elf_backend_dtrel_excludes_plt
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2016 Free Software Foundation, Inc.
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
28
29 /* This file handles functionality common to the different MIPS ABI's. */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "libiberty.h"
35 #include "elf-bfd.h"
36 #include "elfxx-mips.h"
37 #include "elf/mips.h"
38 #include "elf-vxworks.h"
39 #include "dwarf2.h"
40
41 /* Get the ECOFF swapping routines. */
42 #include "coff/sym.h"
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46
47 #include "hashtab.h"
48
49 /* Types of TLS GOT entry. */
50 enum mips_got_tls_type {
51 GOT_TLS_NONE,
52 GOT_TLS_GD,
53 GOT_TLS_LDM,
54 GOT_TLS_IE
55 };
56
57 /* This structure is used to hold information about one GOT entry.
58 There are four types of entry:
59
60 (1) an absolute address
61 requires: abfd == NULL
62 fields: d.address
63
64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 fields: abfd, symndx, d.addend, tls_type
67
68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 requires: abfd != NULL, symndx == -1
70 fields: d.h, tls_type
71
72 (4) a TLS LDM slot
73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 fields: none; there's only one of these per GOT. */
75 struct mips_got_entry
76 {
77 /* One input bfd that needs the GOT entry. */
78 bfd *abfd;
79 /* The index of the symbol, as stored in the relocation r_info, if
80 we have a local symbol; -1 otherwise. */
81 long symndx;
82 union
83 {
84 /* If abfd == NULL, an address that must be stored in the got. */
85 bfd_vma address;
86 /* If abfd != NULL && symndx != -1, the addend of the relocation
87 that should be added to the symbol value. */
88 bfd_vma addend;
89 /* If abfd != NULL && symndx == -1, the hash table entry
90 corresponding to a symbol in the GOT. The symbol's entry
91 is in the local area if h->global_got_area is GGA_NONE,
92 otherwise it is in the global area. */
93 struct mips_elf_link_hash_entry *h;
94 } d;
95
96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
97 symbol entry with r_symndx == 0. */
98 unsigned char tls_type;
99
100 /* True if we have filled in the GOT contents for a TLS entry,
101 and created the associated relocations. */
102 unsigned char tls_initialized;
103
104 /* The offset from the beginning of the .got section to the entry
105 corresponding to this symbol+addend. If it's a global symbol
106 whose offset is yet to be decided, it's going to be -1. */
107 long gotidx;
108 };
109
110 /* This structure represents a GOT page reference from an input bfd.
111 Each instance represents a symbol + ADDEND, where the representation
112 of the symbol depends on whether it is local to the input bfd.
113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
115
116 Page references with SYMNDX >= 0 always become page references
117 in the output. Page references with SYMNDX < 0 only become page
118 references if the symbol binds locally; in other cases, the page
119 reference decays to a global GOT reference. */
120 struct mips_got_page_ref
121 {
122 long symndx;
123 union
124 {
125 struct mips_elf_link_hash_entry *h;
126 bfd *abfd;
127 } u;
128 bfd_vma addend;
129 };
130
131 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132 The structures form a non-overlapping list that is sorted by increasing
133 MIN_ADDEND. */
134 struct mips_got_page_range
135 {
136 struct mips_got_page_range *next;
137 bfd_signed_vma min_addend;
138 bfd_signed_vma max_addend;
139 };
140
141 /* This structure describes the range of addends that are applied to page
142 relocations against a given section. */
143 struct mips_got_page_entry
144 {
145 /* The section that these entries are based on. */
146 asection *sec;
147 /* The ranges for this page entry. */
148 struct mips_got_page_range *ranges;
149 /* The maximum number of page entries needed for RANGES. */
150 bfd_vma num_pages;
151 };
152
153 /* This structure is used to hold .got information when linking. */
154
155 struct mips_got_info
156 {
157 /* The number of global .got entries. */
158 unsigned int global_gotno;
159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
160 unsigned int reloc_only_gotno;
161 /* The number of .got slots used for TLS. */
162 unsigned int tls_gotno;
163 /* The first unused TLS .got entry. Used only during
164 mips_elf_initialize_tls_index. */
165 unsigned int tls_assigned_gotno;
166 /* The number of local .got entries, eventually including page entries. */
167 unsigned int local_gotno;
168 /* The maximum number of page entries needed. */
169 unsigned int page_gotno;
170 /* The number of relocations needed for the GOT entries. */
171 unsigned int relocs;
172 /* The first unused local .got entry. */
173 unsigned int assigned_low_gotno;
174 /* The last unused local .got entry. */
175 unsigned int assigned_high_gotno;
176 /* A hash table holding members of the got. */
177 struct htab *got_entries;
178 /* A hash table holding mips_got_page_ref structures. */
179 struct htab *got_page_refs;
180 /* A hash table of mips_got_page_entry structures. */
181 struct htab *got_page_entries;
182 /* In multi-got links, a pointer to the next got (err, rather, most
183 of the time, it points to the previous got). */
184 struct mips_got_info *next;
185 };
186
187 /* Structure passed when merging bfds' gots. */
188
189 struct mips_elf_got_per_bfd_arg
190 {
191 /* The output bfd. */
192 bfd *obfd;
193 /* The link information. */
194 struct bfd_link_info *info;
195 /* A pointer to the primary got, i.e., the one that's going to get
196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
197 DT_MIPS_GOTSYM. */
198 struct mips_got_info *primary;
199 /* A non-primary got we're trying to merge with other input bfd's
200 gots. */
201 struct mips_got_info *current;
202 /* The maximum number of got entries that can be addressed with a
203 16-bit offset. */
204 unsigned int max_count;
205 /* The maximum number of page entries needed by each got. */
206 unsigned int max_pages;
207 /* The total number of global entries which will live in the
208 primary got and be automatically relocated. This includes
209 those not referenced by the primary GOT but included in
210 the "master" GOT. */
211 unsigned int global_count;
212 };
213
214 /* A structure used to pass information to htab_traverse callbacks
215 when laying out the GOT. */
216
217 struct mips_elf_traverse_got_arg
218 {
219 struct bfd_link_info *info;
220 struct mips_got_info *g;
221 int value;
222 };
223
224 struct _mips_elf_section_data
225 {
226 struct bfd_elf_section_data elf;
227 union
228 {
229 bfd_byte *tdata;
230 } u;
231 };
232
233 #define mips_elf_section_data(sec) \
234 ((struct _mips_elf_section_data *) elf_section_data (sec))
235
236 #define is_mips_elf(bfd) \
237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
238 && elf_tdata (bfd) != NULL \
239 && elf_object_id (bfd) == MIPS_ELF_DATA)
240
241 /* The ABI says that every symbol used by dynamic relocations must have
242 a global GOT entry. Among other things, this provides the dynamic
243 linker with a free, directly-indexed cache. The GOT can therefore
244 contain symbols that are not referenced by GOT relocations themselves
245 (in other words, it may have symbols that are not referenced by things
246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
247
248 GOT relocations are less likely to overflow if we put the associated
249 GOT entries towards the beginning. We therefore divide the global
250 GOT entries into two areas: "normal" and "reloc-only". Entries in
251 the first area can be used for both dynamic relocations and GP-relative
252 accesses, while those in the "reloc-only" area are for dynamic
253 relocations only.
254
255 These GGA_* ("Global GOT Area") values are organised so that lower
256 values are more general than higher values. Also, non-GGA_NONE
257 values are ordered by the position of the area in the GOT. */
258 #define GGA_NORMAL 0
259 #define GGA_RELOC_ONLY 1
260 #define GGA_NONE 2
261
262 /* Information about a non-PIC interface to a PIC function. There are
263 two ways of creating these interfaces. The first is to add:
264
265 lui $25,%hi(func)
266 addiu $25,$25,%lo(func)
267
268 immediately before a PIC function "func". The second is to add:
269
270 lui $25,%hi(func)
271 j func
272 addiu $25,$25,%lo(func)
273
274 to a separate trampoline section.
275
276 Stubs of the first kind go in a new section immediately before the
277 target function. Stubs of the second kind go in a single section
278 pointed to by the hash table's "strampoline" field. */
279 struct mips_elf_la25_stub {
280 /* The generated section that contains this stub. */
281 asection *stub_section;
282
283 /* The offset of the stub from the start of STUB_SECTION. */
284 bfd_vma offset;
285
286 /* One symbol for the original function. Its location is available
287 in H->root.root.u.def. */
288 struct mips_elf_link_hash_entry *h;
289 };
290
291 /* Macros for populating a mips_elf_la25_stub. */
292
293 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
294 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
295 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
296 #define LA25_LUI_MICROMIPS(VAL) \
297 (0x41b90000 | (VAL)) /* lui t9,VAL */
298 #define LA25_J_MICROMIPS(VAL) \
299 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
300 #define LA25_ADDIU_MICROMIPS(VAL) \
301 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
302
303 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
304 the dynamic symbols. */
305
306 struct mips_elf_hash_sort_data
307 {
308 /* The symbol in the global GOT with the lowest dynamic symbol table
309 index. */
310 struct elf_link_hash_entry *low;
311 /* The least dynamic symbol table index corresponding to a non-TLS
312 symbol with a GOT entry. */
313 long min_got_dynindx;
314 /* The greatest dynamic symbol table index corresponding to a symbol
315 with a GOT entry that is not referenced (e.g., a dynamic symbol
316 with dynamic relocations pointing to it from non-primary GOTs). */
317 long max_unref_got_dynindx;
318 /* The greatest dynamic symbol table index not corresponding to a
319 symbol without a GOT entry. */
320 long max_non_got_dynindx;
321 };
322
323 /* We make up to two PLT entries if needed, one for standard MIPS code
324 and one for compressed code, either a MIPS16 or microMIPS one. We
325 keep a separate record of traditional lazy-binding stubs, for easier
326 processing. */
327
328 struct plt_entry
329 {
330 /* Traditional SVR4 stub offset, or -1 if none. */
331 bfd_vma stub_offset;
332
333 /* Standard PLT entry offset, or -1 if none. */
334 bfd_vma mips_offset;
335
336 /* Compressed PLT entry offset, or -1 if none. */
337 bfd_vma comp_offset;
338
339 /* The corresponding .got.plt index, or -1 if none. */
340 bfd_vma gotplt_index;
341
342 /* Whether we need a standard PLT entry. */
343 unsigned int need_mips : 1;
344
345 /* Whether we need a compressed PLT entry. */
346 unsigned int need_comp : 1;
347 };
348
349 /* The MIPS ELF linker needs additional information for each symbol in
350 the global hash table. */
351
352 struct mips_elf_link_hash_entry
353 {
354 struct elf_link_hash_entry root;
355
356 /* External symbol information. */
357 EXTR esym;
358
359 /* The la25 stub we have created for ths symbol, if any. */
360 struct mips_elf_la25_stub *la25_stub;
361
362 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
363 this symbol. */
364 unsigned int possibly_dynamic_relocs;
365
366 /* If there is a stub that 32 bit functions should use to call this
367 16 bit function, this points to the section containing the stub. */
368 asection *fn_stub;
369
370 /* If there is a stub that 16 bit functions should use to call this
371 32 bit function, this points to the section containing the stub. */
372 asection *call_stub;
373
374 /* This is like the call_stub field, but it is used if the function
375 being called returns a floating point value. */
376 asection *call_fp_stub;
377
378 /* The highest GGA_* value that satisfies all references to this symbol. */
379 unsigned int global_got_area : 2;
380
381 /* True if all GOT relocations against this symbol are for calls. This is
382 a looser condition than no_fn_stub below, because there may be other
383 non-call non-GOT relocations against the symbol. */
384 unsigned int got_only_for_calls : 1;
385
386 /* True if one of the relocations described by possibly_dynamic_relocs
387 is against a readonly section. */
388 unsigned int readonly_reloc : 1;
389
390 /* True if there is a relocation against this symbol that must be
391 resolved by the static linker (in other words, if the relocation
392 cannot possibly be made dynamic). */
393 unsigned int has_static_relocs : 1;
394
395 /* True if we must not create a .MIPS.stubs entry for this symbol.
396 This is set, for example, if there are relocations related to
397 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
398 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
399 unsigned int no_fn_stub : 1;
400
401 /* Whether we need the fn_stub; this is true if this symbol appears
402 in any relocs other than a 16 bit call. */
403 unsigned int need_fn_stub : 1;
404
405 /* True if this symbol is referenced by branch relocations from
406 any non-PIC input file. This is used to determine whether an
407 la25 stub is required. */
408 unsigned int has_nonpic_branches : 1;
409
410 /* Does this symbol need a traditional MIPS lazy-binding stub
411 (as opposed to a PLT entry)? */
412 unsigned int needs_lazy_stub : 1;
413
414 /* Does this symbol resolve to a PLT entry? */
415 unsigned int use_plt_entry : 1;
416 };
417
418 /* MIPS ELF linker hash table. */
419
420 struct mips_elf_link_hash_table
421 {
422 struct elf_link_hash_table root;
423
424 /* The number of .rtproc entries. */
425 bfd_size_type procedure_count;
426
427 /* The size of the .compact_rel section (if SGI_COMPAT). */
428 bfd_size_type compact_rel_size;
429
430 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
431 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
432 bfd_boolean use_rld_obj_head;
433
434 /* The __rld_map or __rld_obj_head symbol. */
435 struct elf_link_hash_entry *rld_symbol;
436
437 /* This is set if we see any mips16 stub sections. */
438 bfd_boolean mips16_stubs_seen;
439
440 /* True if we can generate copy relocs and PLTs. */
441 bfd_boolean use_plts_and_copy_relocs;
442
443 /* True if we can only use 32-bit microMIPS instructions. */
444 bfd_boolean insn32;
445
446 /* True if we're generating code for VxWorks. */
447 bfd_boolean is_vxworks;
448
449 /* True if we already reported the small-data section overflow. */
450 bfd_boolean small_data_overflow_reported;
451
452 /* Shortcuts to some dynamic sections, or NULL if they are not
453 being used. */
454 asection *srelbss;
455 asection *sdynbss;
456 asection *srelplt2;
457 asection *sstubs;
458
459 /* The master GOT information. */
460 struct mips_got_info *got_info;
461
462 /* The global symbol in the GOT with the lowest index in the dynamic
463 symbol table. */
464 struct elf_link_hash_entry *global_gotsym;
465
466 /* The size of the PLT header in bytes. */
467 bfd_vma plt_header_size;
468
469 /* The size of a standard PLT entry in bytes. */
470 bfd_vma plt_mips_entry_size;
471
472 /* The size of a compressed PLT entry in bytes. */
473 bfd_vma plt_comp_entry_size;
474
475 /* The offset of the next standard PLT entry to create. */
476 bfd_vma plt_mips_offset;
477
478 /* The offset of the next compressed PLT entry to create. */
479 bfd_vma plt_comp_offset;
480
481 /* The index of the next .got.plt entry to create. */
482 bfd_vma plt_got_index;
483
484 /* The number of functions that need a lazy-binding stub. */
485 bfd_vma lazy_stub_count;
486
487 /* The size of a function stub entry in bytes. */
488 bfd_vma function_stub_size;
489
490 /* The number of reserved entries at the beginning of the GOT. */
491 unsigned int reserved_gotno;
492
493 /* The section used for mips_elf_la25_stub trampolines.
494 See the comment above that structure for details. */
495 asection *strampoline;
496
497 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
498 pairs. */
499 htab_t la25_stubs;
500
501 /* A function FN (NAME, IS, OS) that creates a new input section
502 called NAME and links it to output section OS. If IS is nonnull,
503 the new section should go immediately before it, otherwise it
504 should go at the (current) beginning of OS.
505
506 The function returns the new section on success, otherwise it
507 returns null. */
508 asection *(*add_stub_section) (const char *, asection *, asection *);
509
510 /* Small local sym cache. */
511 struct sym_cache sym_cache;
512
513 /* Is the PLT header compressed? */
514 unsigned int plt_header_is_comp : 1;
515 };
516
517 /* Get the MIPS ELF linker hash table from a link_info structure. */
518
519 #define mips_elf_hash_table(p) \
520 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
521 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
522
523 /* A structure used to communicate with htab_traverse callbacks. */
524 struct mips_htab_traverse_info
525 {
526 /* The usual link-wide information. */
527 struct bfd_link_info *info;
528 bfd *output_bfd;
529
530 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
531 bfd_boolean error;
532 };
533
534 /* MIPS ELF private object data. */
535
536 struct mips_elf_obj_tdata
537 {
538 /* Generic ELF private object data. */
539 struct elf_obj_tdata root;
540
541 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
542 bfd *abi_fp_bfd;
543
544 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
545 bfd *abi_msa_bfd;
546
547 /* The abiflags for this object. */
548 Elf_Internal_ABIFlags_v0 abiflags;
549 bfd_boolean abiflags_valid;
550
551 /* The GOT requirements of input bfds. */
552 struct mips_got_info *got;
553
554 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
555 included directly in this one, but there's no point to wasting
556 the memory just for the infrequently called find_nearest_line. */
557 struct mips_elf_find_line *find_line_info;
558
559 /* An array of stub sections indexed by symbol number. */
560 asection **local_stubs;
561 asection **local_call_stubs;
562
563 /* The Irix 5 support uses two virtual sections, which represent
564 text/data symbols defined in dynamic objects. */
565 asymbol *elf_data_symbol;
566 asymbol *elf_text_symbol;
567 asection *elf_data_section;
568 asection *elf_text_section;
569 };
570
571 /* Get MIPS ELF private object data from BFD's tdata. */
572
573 #define mips_elf_tdata(bfd) \
574 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
575
576 #define TLS_RELOC_P(r_type) \
577 (r_type == R_MIPS_TLS_DTPMOD32 \
578 || r_type == R_MIPS_TLS_DTPMOD64 \
579 || r_type == R_MIPS_TLS_DTPREL32 \
580 || r_type == R_MIPS_TLS_DTPREL64 \
581 || r_type == R_MIPS_TLS_GD \
582 || r_type == R_MIPS_TLS_LDM \
583 || r_type == R_MIPS_TLS_DTPREL_HI16 \
584 || r_type == R_MIPS_TLS_DTPREL_LO16 \
585 || r_type == R_MIPS_TLS_GOTTPREL \
586 || r_type == R_MIPS_TLS_TPREL32 \
587 || r_type == R_MIPS_TLS_TPREL64 \
588 || r_type == R_MIPS_TLS_TPREL_HI16 \
589 || r_type == R_MIPS_TLS_TPREL_LO16 \
590 || r_type == R_MIPS16_TLS_GD \
591 || r_type == R_MIPS16_TLS_LDM \
592 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
593 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
594 || r_type == R_MIPS16_TLS_GOTTPREL \
595 || r_type == R_MIPS16_TLS_TPREL_HI16 \
596 || r_type == R_MIPS16_TLS_TPREL_LO16 \
597 || r_type == R_MICROMIPS_TLS_GD \
598 || r_type == R_MICROMIPS_TLS_LDM \
599 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
600 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
601 || r_type == R_MICROMIPS_TLS_GOTTPREL \
602 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
603 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
604
605 /* Structure used to pass information to mips_elf_output_extsym. */
606
607 struct extsym_info
608 {
609 bfd *abfd;
610 struct bfd_link_info *info;
611 struct ecoff_debug_info *debug;
612 const struct ecoff_debug_swap *swap;
613 bfd_boolean failed;
614 };
615
616 /* The names of the runtime procedure table symbols used on IRIX5. */
617
618 static const char * const mips_elf_dynsym_rtproc_names[] =
619 {
620 "_procedure_table",
621 "_procedure_string_table",
622 "_procedure_table_size",
623 NULL
624 };
625
626 /* These structures are used to generate the .compact_rel section on
627 IRIX5. */
628
629 typedef struct
630 {
631 unsigned long id1; /* Always one? */
632 unsigned long num; /* Number of compact relocation entries. */
633 unsigned long id2; /* Always two? */
634 unsigned long offset; /* The file offset of the first relocation. */
635 unsigned long reserved0; /* Zero? */
636 unsigned long reserved1; /* Zero? */
637 } Elf32_compact_rel;
638
639 typedef struct
640 {
641 bfd_byte id1[4];
642 bfd_byte num[4];
643 bfd_byte id2[4];
644 bfd_byte offset[4];
645 bfd_byte reserved0[4];
646 bfd_byte reserved1[4];
647 } Elf32_External_compact_rel;
648
649 typedef struct
650 {
651 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
652 unsigned int rtype : 4; /* Relocation types. See below. */
653 unsigned int dist2to : 8;
654 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
655 unsigned long konst; /* KONST field. See below. */
656 unsigned long vaddr; /* VADDR to be relocated. */
657 } Elf32_crinfo;
658
659 typedef struct
660 {
661 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
662 unsigned int rtype : 4; /* Relocation types. See below. */
663 unsigned int dist2to : 8;
664 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
665 unsigned long konst; /* KONST field. See below. */
666 } Elf32_crinfo2;
667
668 typedef struct
669 {
670 bfd_byte info[4];
671 bfd_byte konst[4];
672 bfd_byte vaddr[4];
673 } Elf32_External_crinfo;
674
675 typedef struct
676 {
677 bfd_byte info[4];
678 bfd_byte konst[4];
679 } Elf32_External_crinfo2;
680
681 /* These are the constants used to swap the bitfields in a crinfo. */
682
683 #define CRINFO_CTYPE (0x1)
684 #define CRINFO_CTYPE_SH (31)
685 #define CRINFO_RTYPE (0xf)
686 #define CRINFO_RTYPE_SH (27)
687 #define CRINFO_DIST2TO (0xff)
688 #define CRINFO_DIST2TO_SH (19)
689 #define CRINFO_RELVADDR (0x7ffff)
690 #define CRINFO_RELVADDR_SH (0)
691
692 /* A compact relocation info has long (3 words) or short (2 words)
693 formats. A short format doesn't have VADDR field and relvaddr
694 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
695 #define CRF_MIPS_LONG 1
696 #define CRF_MIPS_SHORT 0
697
698 /* There are 4 types of compact relocation at least. The value KONST
699 has different meaning for each type:
700
701 (type) (konst)
702 CT_MIPS_REL32 Address in data
703 CT_MIPS_WORD Address in word (XXX)
704 CT_MIPS_GPHI_LO GP - vaddr
705 CT_MIPS_JMPAD Address to jump
706 */
707
708 #define CRT_MIPS_REL32 0xa
709 #define CRT_MIPS_WORD 0xb
710 #define CRT_MIPS_GPHI_LO 0xc
711 #define CRT_MIPS_JMPAD 0xd
712
713 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
714 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
715 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
716 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
717 \f
718 /* The structure of the runtime procedure descriptor created by the
719 loader for use by the static exception system. */
720
721 typedef struct runtime_pdr {
722 bfd_vma adr; /* Memory address of start of procedure. */
723 long regmask; /* Save register mask. */
724 long regoffset; /* Save register offset. */
725 long fregmask; /* Save floating point register mask. */
726 long fregoffset; /* Save floating point register offset. */
727 long frameoffset; /* Frame size. */
728 short framereg; /* Frame pointer register. */
729 short pcreg; /* Offset or reg of return pc. */
730 long irpss; /* Index into the runtime string table. */
731 long reserved;
732 struct exception_info *exception_info;/* Pointer to exception array. */
733 } RPDR, *pRPDR;
734 #define cbRPDR sizeof (RPDR)
735 #define rpdNil ((pRPDR) 0)
736 \f
737 static struct mips_got_entry *mips_elf_create_local_got_entry
738 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
739 struct mips_elf_link_hash_entry *, int);
740 static bfd_boolean mips_elf_sort_hash_table_f
741 (struct mips_elf_link_hash_entry *, void *);
742 static bfd_vma mips_elf_high
743 (bfd_vma);
744 static bfd_boolean mips_elf_create_dynamic_relocation
745 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
746 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
747 bfd_vma *, asection *);
748 static bfd_vma mips_elf_adjust_gp
749 (bfd *, struct mips_got_info *, bfd *);
750
751 /* This will be used when we sort the dynamic relocation records. */
752 static bfd *reldyn_sorting_bfd;
753
754 /* True if ABFD is for CPUs with load interlocking that include
755 non-MIPS1 CPUs and R3900. */
756 #define LOAD_INTERLOCKS_P(abfd) \
757 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
758 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
759
760 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
761 This should be safe for all architectures. We enable this predicate
762 for RM9000 for now. */
763 #define JAL_TO_BAL_P(abfd) \
764 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
765
766 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
767 This should be safe for all architectures. We enable this predicate for
768 all CPUs. */
769 #define JALR_TO_BAL_P(abfd) 1
770
771 /* True if ABFD is for CPUs that are faster if JR is converted to B.
772 This should be safe for all architectures. We enable this predicate for
773 all CPUs. */
774 #define JR_TO_B_P(abfd) 1
775
776 /* True if ABFD is a PIC object. */
777 #define PIC_OBJECT_P(abfd) \
778 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
779
780 /* Nonzero if ABFD is using the O32 ABI. */
781 #define ABI_O32_P(abfd) \
782 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
783
784 /* Nonzero if ABFD is using the N32 ABI. */
785 #define ABI_N32_P(abfd) \
786 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
787
788 /* Nonzero if ABFD is using the N64 ABI. */
789 #define ABI_64_P(abfd) \
790 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
791
792 /* Nonzero if ABFD is using NewABI conventions. */
793 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
794
795 /* Nonzero if ABFD has microMIPS code. */
796 #define MICROMIPS_P(abfd) \
797 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
798
799 /* Nonzero if ABFD is MIPS R6. */
800 #define MIPSR6_P(abfd) \
801 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
802 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
803
804 /* The IRIX compatibility level we are striving for. */
805 #define IRIX_COMPAT(abfd) \
806 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
807
808 /* Whether we are trying to be compatible with IRIX at all. */
809 #define SGI_COMPAT(abfd) \
810 (IRIX_COMPAT (abfd) != ict_none)
811
812 /* The name of the options section. */
813 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
814 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
815
816 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
817 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
818 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
819 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
820
821 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
822 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
823 (strcmp (NAME, ".MIPS.abiflags") == 0)
824
825 /* Whether the section is readonly. */
826 #define MIPS_ELF_READONLY_SECTION(sec) \
827 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
828 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
829
830 /* The name of the stub section. */
831 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
832
833 /* The size of an external REL relocation. */
834 #define MIPS_ELF_REL_SIZE(abfd) \
835 (get_elf_backend_data (abfd)->s->sizeof_rel)
836
837 /* The size of an external RELA relocation. */
838 #define MIPS_ELF_RELA_SIZE(abfd) \
839 (get_elf_backend_data (abfd)->s->sizeof_rela)
840
841 /* The size of an external dynamic table entry. */
842 #define MIPS_ELF_DYN_SIZE(abfd) \
843 (get_elf_backend_data (abfd)->s->sizeof_dyn)
844
845 /* The size of a GOT entry. */
846 #define MIPS_ELF_GOT_SIZE(abfd) \
847 (get_elf_backend_data (abfd)->s->arch_size / 8)
848
849 /* The size of the .rld_map section. */
850 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
851 (get_elf_backend_data (abfd)->s->arch_size / 8)
852
853 /* The size of a symbol-table entry. */
854 #define MIPS_ELF_SYM_SIZE(abfd) \
855 (get_elf_backend_data (abfd)->s->sizeof_sym)
856
857 /* The default alignment for sections, as a power of two. */
858 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
859 (get_elf_backend_data (abfd)->s->log_file_align)
860
861 /* Get word-sized data. */
862 #define MIPS_ELF_GET_WORD(abfd, ptr) \
863 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
864
865 /* Put out word-sized data. */
866 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
867 (ABI_64_P (abfd) \
868 ? bfd_put_64 (abfd, val, ptr) \
869 : bfd_put_32 (abfd, val, ptr))
870
871 /* The opcode for word-sized loads (LW or LD). */
872 #define MIPS_ELF_LOAD_WORD(abfd) \
873 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
874
875 /* Add a dynamic symbol table-entry. */
876 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
877 _bfd_elf_add_dynamic_entry (info, tag, val)
878
879 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
880 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
881
882 /* The name of the dynamic relocation section. */
883 #define MIPS_ELF_REL_DYN_NAME(INFO) \
884 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
885
886 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
887 from smaller values. Start with zero, widen, *then* decrement. */
888 #define MINUS_ONE (((bfd_vma)0) - 1)
889 #define MINUS_TWO (((bfd_vma)0) - 2)
890
891 /* The value to write into got[1] for SVR4 targets, to identify it is
892 a GNU object. The dynamic linker can then use got[1] to store the
893 module pointer. */
894 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
895 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
896
897 /* The offset of $gp from the beginning of the .got section. */
898 #define ELF_MIPS_GP_OFFSET(INFO) \
899 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
900
901 /* The maximum size of the GOT for it to be addressable using 16-bit
902 offsets from $gp. */
903 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
904
905 /* Instructions which appear in a stub. */
906 #define STUB_LW(abfd) \
907 ((ABI_64_P (abfd) \
908 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
909 : 0x8f998010)) /* lw t9,0x8010(gp) */
910 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
911 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
912 #define STUB_JALR 0x0320f809 /* jalr ra,t9 */
913 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
914 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
915 #define STUB_LI16S(abfd, VAL) \
916 ((ABI_64_P (abfd) \
917 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
918 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
919
920 /* Likewise for the microMIPS ASE. */
921 #define STUB_LW_MICROMIPS(abfd) \
922 (ABI_64_P (abfd) \
923 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
924 : 0xff3c8010) /* lw t9,0x8010(gp) */
925 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
926 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
927 #define STUB_LUI_MICROMIPS(VAL) \
928 (0x41b80000 + (VAL)) /* lui t8,VAL */
929 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
930 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
931 #define STUB_ORI_MICROMIPS(VAL) \
932 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
933 #define STUB_LI16U_MICROMIPS(VAL) \
934 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
935 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
936 (ABI_64_P (abfd) \
937 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
938 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
939
940 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
941 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
942 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
943 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
944 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
945 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
946
947 /* The name of the dynamic interpreter. This is put in the .interp
948 section. */
949
950 #define ELF_DYNAMIC_INTERPRETER(abfd) \
951 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
952 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
953 : "/usr/lib/libc.so.1")
954
955 #ifdef BFD64
956 #define MNAME(bfd,pre,pos) \
957 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
958 #define ELF_R_SYM(bfd, i) \
959 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
960 #define ELF_R_TYPE(bfd, i) \
961 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
962 #define ELF_R_INFO(bfd, s, t) \
963 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
964 #else
965 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
966 #define ELF_R_SYM(bfd, i) \
967 (ELF32_R_SYM (i))
968 #define ELF_R_TYPE(bfd, i) \
969 (ELF32_R_TYPE (i))
970 #define ELF_R_INFO(bfd, s, t) \
971 (ELF32_R_INFO (s, t))
972 #endif
973 \f
974 /* The mips16 compiler uses a couple of special sections to handle
975 floating point arguments.
976
977 Section names that look like .mips16.fn.FNNAME contain stubs that
978 copy floating point arguments from the fp regs to the gp regs and
979 then jump to FNNAME. If any 32 bit function calls FNNAME, the
980 call should be redirected to the stub instead. If no 32 bit
981 function calls FNNAME, the stub should be discarded. We need to
982 consider any reference to the function, not just a call, because
983 if the address of the function is taken we will need the stub,
984 since the address might be passed to a 32 bit function.
985
986 Section names that look like .mips16.call.FNNAME contain stubs
987 that copy floating point arguments from the gp regs to the fp
988 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
989 then any 16 bit function that calls FNNAME should be redirected
990 to the stub instead. If FNNAME is not a 32 bit function, the
991 stub should be discarded.
992
993 .mips16.call.fp.FNNAME sections are similar, but contain stubs
994 which call FNNAME and then copy the return value from the fp regs
995 to the gp regs. These stubs store the return value in $18 while
996 calling FNNAME; any function which might call one of these stubs
997 must arrange to save $18 around the call. (This case is not
998 needed for 32 bit functions that call 16 bit functions, because
999 16 bit functions always return floating point values in both
1000 $f0/$f1 and $2/$3.)
1001
1002 Note that in all cases FNNAME might be defined statically.
1003 Therefore, FNNAME is not used literally. Instead, the relocation
1004 information will indicate which symbol the section is for.
1005
1006 We record any stubs that we find in the symbol table. */
1007
1008 #define FN_STUB ".mips16.fn."
1009 #define CALL_STUB ".mips16.call."
1010 #define CALL_FP_STUB ".mips16.call.fp."
1011
1012 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1013 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1014 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1015 \f
1016 /* The format of the first PLT entry in an O32 executable. */
1017 static const bfd_vma mips_o32_exec_plt0_entry[] =
1018 {
1019 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1020 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1021 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1022 0x031cc023, /* subu $24, $24, $28 */
1023 0x03e07825, /* or t7, ra, zero */
1024 0x0018c082, /* srl $24, $24, 2 */
1025 0x0320f809, /* jalr $25 */
1026 0x2718fffe /* subu $24, $24, 2 */
1027 };
1028
1029 /* The format of the first PLT entry in an N32 executable. Different
1030 because gp ($28) is not available; we use t2 ($14) instead. */
1031 static const bfd_vma mips_n32_exec_plt0_entry[] =
1032 {
1033 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1034 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1035 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1036 0x030ec023, /* subu $24, $24, $14 */
1037 0x03e07825, /* or t7, ra, zero */
1038 0x0018c082, /* srl $24, $24, 2 */
1039 0x0320f809, /* jalr $25 */
1040 0x2718fffe /* subu $24, $24, 2 */
1041 };
1042
1043 /* The format of the first PLT entry in an N64 executable. Different
1044 from N32 because of the increased size of GOT entries. */
1045 static const bfd_vma mips_n64_exec_plt0_entry[] =
1046 {
1047 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1048 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1049 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1050 0x030ec023, /* subu $24, $24, $14 */
1051 0x03e07825, /* or t7, ra, zero */
1052 0x0018c0c2, /* srl $24, $24, 3 */
1053 0x0320f809, /* jalr $25 */
1054 0x2718fffe /* subu $24, $24, 2 */
1055 };
1056
1057 /* The format of the microMIPS first PLT entry in an O32 executable.
1058 We rely on v0 ($2) rather than t8 ($24) to contain the address
1059 of the GOTPLT entry handled, so this stub may only be used when
1060 all the subsequent PLT entries are microMIPS code too.
1061
1062 The trailing NOP is for alignment and correct disassembly only. */
1063 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1064 {
1065 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1066 0xff23, 0x0000, /* lw $25, 0($3) */
1067 0x0535, /* subu $2, $2, $3 */
1068 0x2525, /* srl $2, $2, 2 */
1069 0x3302, 0xfffe, /* subu $24, $2, 2 */
1070 0x0dff, /* move $15, $31 */
1071 0x45f9, /* jalrs $25 */
1072 0x0f83, /* move $28, $3 */
1073 0x0c00 /* nop */
1074 };
1075
1076 /* The format of the microMIPS first PLT entry in an O32 executable
1077 in the insn32 mode. */
1078 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1079 {
1080 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1081 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1082 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1083 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1084 0x001f, 0x7a90, /* or $15, $31, zero */
1085 0x0318, 0x1040, /* srl $24, $24, 2 */
1086 0x03f9, 0x0f3c, /* jalr $25 */
1087 0x3318, 0xfffe /* subu $24, $24, 2 */
1088 };
1089
1090 /* The format of subsequent standard PLT entries. */
1091 static const bfd_vma mips_exec_plt_entry[] =
1092 {
1093 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1094 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1095 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1096 0x03200008 /* jr $25 */
1097 };
1098
1099 /* In the following PLT entry the JR and ADDIU instructions will
1100 be swapped in _bfd_mips_elf_finish_dynamic_symbol because
1101 LOAD_INTERLOCKS_P will be true for MIPS R6. */
1102 static const bfd_vma mipsr6_exec_plt_entry[] =
1103 {
1104 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1105 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1106 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1107 0x03200009 /* jr $25 */
1108 };
1109
1110 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1111 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1112 directly addressable. */
1113 static const bfd_vma mips16_o32_exec_plt_entry[] =
1114 {
1115 0xb203, /* lw $2, 12($pc) */
1116 0x9a60, /* lw $3, 0($2) */
1117 0x651a, /* move $24, $2 */
1118 0xeb00, /* jr $3 */
1119 0x653b, /* move $25, $3 */
1120 0x6500, /* nop */
1121 0x0000, 0x0000 /* .word (.got.plt entry) */
1122 };
1123
1124 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1125 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1126 static const bfd_vma micromips_o32_exec_plt_entry[] =
1127 {
1128 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1129 0xff22, 0x0000, /* lw $25, 0($2) */
1130 0x4599, /* jr $25 */
1131 0x0f02 /* move $24, $2 */
1132 };
1133
1134 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1135 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1136 {
1137 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1138 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1139 0x0019, 0x0f3c, /* jr $25 */
1140 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1141 };
1142
1143 /* The format of the first PLT entry in a VxWorks executable. */
1144 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1145 {
1146 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1147 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1148 0x8f390008, /* lw t9, 8(t9) */
1149 0x00000000, /* nop */
1150 0x03200008, /* jr t9 */
1151 0x00000000 /* nop */
1152 };
1153
1154 /* The format of subsequent PLT entries. */
1155 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1156 {
1157 0x10000000, /* b .PLT_resolver */
1158 0x24180000, /* li t8, <pltindex> */
1159 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1160 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1161 0x8f390000, /* lw t9, 0(t9) */
1162 0x00000000, /* nop */
1163 0x03200008, /* jr t9 */
1164 0x00000000 /* nop */
1165 };
1166
1167 /* The format of the first PLT entry in a VxWorks shared object. */
1168 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1169 {
1170 0x8f990008, /* lw t9, 8(gp) */
1171 0x00000000, /* nop */
1172 0x03200008, /* jr t9 */
1173 0x00000000, /* nop */
1174 0x00000000, /* nop */
1175 0x00000000 /* nop */
1176 };
1177
1178 /* The format of subsequent PLT entries. */
1179 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1180 {
1181 0x10000000, /* b .PLT_resolver */
1182 0x24180000 /* li t8, <pltindex> */
1183 };
1184 \f
1185 /* microMIPS 32-bit opcode helper installer. */
1186
1187 static void
1188 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1189 {
1190 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1191 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1192 }
1193
1194 /* microMIPS 32-bit opcode helper retriever. */
1195
1196 static bfd_vma
1197 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1198 {
1199 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1200 }
1201 \f
1202 /* Look up an entry in a MIPS ELF linker hash table. */
1203
1204 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1205 ((struct mips_elf_link_hash_entry *) \
1206 elf_link_hash_lookup (&(table)->root, (string), (create), \
1207 (copy), (follow)))
1208
1209 /* Traverse a MIPS ELF linker hash table. */
1210
1211 #define mips_elf_link_hash_traverse(table, func, info) \
1212 (elf_link_hash_traverse \
1213 (&(table)->root, \
1214 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1215 (info)))
1216
1217 /* Find the base offsets for thread-local storage in this object,
1218 for GD/LD and IE/LE respectively. */
1219
1220 #define TP_OFFSET 0x7000
1221 #define DTP_OFFSET 0x8000
1222
1223 static bfd_vma
1224 dtprel_base (struct bfd_link_info *info)
1225 {
1226 /* If tls_sec is NULL, we should have signalled an error already. */
1227 if (elf_hash_table (info)->tls_sec == NULL)
1228 return 0;
1229 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1230 }
1231
1232 static bfd_vma
1233 tprel_base (struct bfd_link_info *info)
1234 {
1235 /* If tls_sec is NULL, we should have signalled an error already. */
1236 if (elf_hash_table (info)->tls_sec == NULL)
1237 return 0;
1238 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1239 }
1240
1241 /* Create an entry in a MIPS ELF linker hash table. */
1242
1243 static struct bfd_hash_entry *
1244 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1245 struct bfd_hash_table *table, const char *string)
1246 {
1247 struct mips_elf_link_hash_entry *ret =
1248 (struct mips_elf_link_hash_entry *) entry;
1249
1250 /* Allocate the structure if it has not already been allocated by a
1251 subclass. */
1252 if (ret == NULL)
1253 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1254 if (ret == NULL)
1255 return (struct bfd_hash_entry *) ret;
1256
1257 /* Call the allocation method of the superclass. */
1258 ret = ((struct mips_elf_link_hash_entry *)
1259 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1260 table, string));
1261 if (ret != NULL)
1262 {
1263 /* Set local fields. */
1264 memset (&ret->esym, 0, sizeof (EXTR));
1265 /* We use -2 as a marker to indicate that the information has
1266 not been set. -1 means there is no associated ifd. */
1267 ret->esym.ifd = -2;
1268 ret->la25_stub = 0;
1269 ret->possibly_dynamic_relocs = 0;
1270 ret->fn_stub = NULL;
1271 ret->call_stub = NULL;
1272 ret->call_fp_stub = NULL;
1273 ret->global_got_area = GGA_NONE;
1274 ret->got_only_for_calls = TRUE;
1275 ret->readonly_reloc = FALSE;
1276 ret->has_static_relocs = FALSE;
1277 ret->no_fn_stub = FALSE;
1278 ret->need_fn_stub = FALSE;
1279 ret->has_nonpic_branches = FALSE;
1280 ret->needs_lazy_stub = FALSE;
1281 ret->use_plt_entry = FALSE;
1282 }
1283
1284 return (struct bfd_hash_entry *) ret;
1285 }
1286
1287 /* Allocate MIPS ELF private object data. */
1288
1289 bfd_boolean
1290 _bfd_mips_elf_mkobject (bfd *abfd)
1291 {
1292 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1293 MIPS_ELF_DATA);
1294 }
1295
1296 bfd_boolean
1297 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1298 {
1299 if (!sec->used_by_bfd)
1300 {
1301 struct _mips_elf_section_data *sdata;
1302 bfd_size_type amt = sizeof (*sdata);
1303
1304 sdata = bfd_zalloc (abfd, amt);
1305 if (sdata == NULL)
1306 return FALSE;
1307 sec->used_by_bfd = sdata;
1308 }
1309
1310 return _bfd_elf_new_section_hook (abfd, sec);
1311 }
1312 \f
1313 /* Read ECOFF debugging information from a .mdebug section into a
1314 ecoff_debug_info structure. */
1315
1316 bfd_boolean
1317 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1318 struct ecoff_debug_info *debug)
1319 {
1320 HDRR *symhdr;
1321 const struct ecoff_debug_swap *swap;
1322 char *ext_hdr;
1323
1324 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1325 memset (debug, 0, sizeof (*debug));
1326
1327 ext_hdr = bfd_malloc (swap->external_hdr_size);
1328 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1329 goto error_return;
1330
1331 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1332 swap->external_hdr_size))
1333 goto error_return;
1334
1335 symhdr = &debug->symbolic_header;
1336 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1337
1338 /* The symbolic header contains absolute file offsets and sizes to
1339 read. */
1340 #define READ(ptr, offset, count, size, type) \
1341 if (symhdr->count == 0) \
1342 debug->ptr = NULL; \
1343 else \
1344 { \
1345 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1346 debug->ptr = bfd_malloc (amt); \
1347 if (debug->ptr == NULL) \
1348 goto error_return; \
1349 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1350 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1351 goto error_return; \
1352 }
1353
1354 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1355 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1356 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1357 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1358 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1359 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1360 union aux_ext *);
1361 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1362 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1363 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1364 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1365 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1366 #undef READ
1367
1368 debug->fdr = NULL;
1369
1370 return TRUE;
1371
1372 error_return:
1373 if (ext_hdr != NULL)
1374 free (ext_hdr);
1375 if (debug->line != NULL)
1376 free (debug->line);
1377 if (debug->external_dnr != NULL)
1378 free (debug->external_dnr);
1379 if (debug->external_pdr != NULL)
1380 free (debug->external_pdr);
1381 if (debug->external_sym != NULL)
1382 free (debug->external_sym);
1383 if (debug->external_opt != NULL)
1384 free (debug->external_opt);
1385 if (debug->external_aux != NULL)
1386 free (debug->external_aux);
1387 if (debug->ss != NULL)
1388 free (debug->ss);
1389 if (debug->ssext != NULL)
1390 free (debug->ssext);
1391 if (debug->external_fdr != NULL)
1392 free (debug->external_fdr);
1393 if (debug->external_rfd != NULL)
1394 free (debug->external_rfd);
1395 if (debug->external_ext != NULL)
1396 free (debug->external_ext);
1397 return FALSE;
1398 }
1399 \f
1400 /* Swap RPDR (runtime procedure table entry) for output. */
1401
1402 static void
1403 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1404 {
1405 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1406 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1407 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1408 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1409 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1410 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1411
1412 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1413 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1414
1415 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1416 }
1417
1418 /* Create a runtime procedure table from the .mdebug section. */
1419
1420 static bfd_boolean
1421 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1422 struct bfd_link_info *info, asection *s,
1423 struct ecoff_debug_info *debug)
1424 {
1425 const struct ecoff_debug_swap *swap;
1426 HDRR *hdr = &debug->symbolic_header;
1427 RPDR *rpdr, *rp;
1428 struct rpdr_ext *erp;
1429 void *rtproc;
1430 struct pdr_ext *epdr;
1431 struct sym_ext *esym;
1432 char *ss, **sv;
1433 char *str;
1434 bfd_size_type size;
1435 bfd_size_type count;
1436 unsigned long sindex;
1437 unsigned long i;
1438 PDR pdr;
1439 SYMR sym;
1440 const char *no_name_func = _("static procedure (no name)");
1441
1442 epdr = NULL;
1443 rpdr = NULL;
1444 esym = NULL;
1445 ss = NULL;
1446 sv = NULL;
1447
1448 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1449
1450 sindex = strlen (no_name_func) + 1;
1451 count = hdr->ipdMax;
1452 if (count > 0)
1453 {
1454 size = swap->external_pdr_size;
1455
1456 epdr = bfd_malloc (size * count);
1457 if (epdr == NULL)
1458 goto error_return;
1459
1460 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1461 goto error_return;
1462
1463 size = sizeof (RPDR);
1464 rp = rpdr = bfd_malloc (size * count);
1465 if (rpdr == NULL)
1466 goto error_return;
1467
1468 size = sizeof (char *);
1469 sv = bfd_malloc (size * count);
1470 if (sv == NULL)
1471 goto error_return;
1472
1473 count = hdr->isymMax;
1474 size = swap->external_sym_size;
1475 esym = bfd_malloc (size * count);
1476 if (esym == NULL)
1477 goto error_return;
1478
1479 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1480 goto error_return;
1481
1482 count = hdr->issMax;
1483 ss = bfd_malloc (count);
1484 if (ss == NULL)
1485 goto error_return;
1486 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1487 goto error_return;
1488
1489 count = hdr->ipdMax;
1490 for (i = 0; i < (unsigned long) count; i++, rp++)
1491 {
1492 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1493 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1494 rp->adr = sym.value;
1495 rp->regmask = pdr.regmask;
1496 rp->regoffset = pdr.regoffset;
1497 rp->fregmask = pdr.fregmask;
1498 rp->fregoffset = pdr.fregoffset;
1499 rp->frameoffset = pdr.frameoffset;
1500 rp->framereg = pdr.framereg;
1501 rp->pcreg = pdr.pcreg;
1502 rp->irpss = sindex;
1503 sv[i] = ss + sym.iss;
1504 sindex += strlen (sv[i]) + 1;
1505 }
1506 }
1507
1508 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1509 size = BFD_ALIGN (size, 16);
1510 rtproc = bfd_alloc (abfd, size);
1511 if (rtproc == NULL)
1512 {
1513 mips_elf_hash_table (info)->procedure_count = 0;
1514 goto error_return;
1515 }
1516
1517 mips_elf_hash_table (info)->procedure_count = count + 2;
1518
1519 erp = rtproc;
1520 memset (erp, 0, sizeof (struct rpdr_ext));
1521 erp++;
1522 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1523 strcpy (str, no_name_func);
1524 str += strlen (no_name_func) + 1;
1525 for (i = 0; i < count; i++)
1526 {
1527 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1528 strcpy (str, sv[i]);
1529 str += strlen (sv[i]) + 1;
1530 }
1531 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1532
1533 /* Set the size and contents of .rtproc section. */
1534 s->size = size;
1535 s->contents = rtproc;
1536
1537 /* Skip this section later on (I don't think this currently
1538 matters, but someday it might). */
1539 s->map_head.link_order = NULL;
1540
1541 if (epdr != NULL)
1542 free (epdr);
1543 if (rpdr != NULL)
1544 free (rpdr);
1545 if (esym != NULL)
1546 free (esym);
1547 if (ss != NULL)
1548 free (ss);
1549 if (sv != NULL)
1550 free (sv);
1551
1552 return TRUE;
1553
1554 error_return:
1555 if (epdr != NULL)
1556 free (epdr);
1557 if (rpdr != NULL)
1558 free (rpdr);
1559 if (esym != NULL)
1560 free (esym);
1561 if (ss != NULL)
1562 free (ss);
1563 if (sv != NULL)
1564 free (sv);
1565 return FALSE;
1566 }
1567 \f
1568 /* We're going to create a stub for H. Create a symbol for the stub's
1569 value and size, to help make the disassembly easier to read. */
1570
1571 static bfd_boolean
1572 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1573 struct mips_elf_link_hash_entry *h,
1574 const char *prefix, asection *s, bfd_vma value,
1575 bfd_vma size)
1576 {
1577 bfd_boolean micromips_p = ELF_ST_IS_MICROMIPS (h->root.other);
1578 struct bfd_link_hash_entry *bh;
1579 struct elf_link_hash_entry *elfh;
1580 char *name;
1581 bfd_boolean res;
1582
1583 if (micromips_p)
1584 value |= 1;
1585
1586 /* Create a new symbol. */
1587 name = concat (prefix, h->root.root.root.string, NULL);
1588 bh = NULL;
1589 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1590 BSF_LOCAL, s, value, NULL,
1591 TRUE, FALSE, &bh);
1592 free (name);
1593 if (! res)
1594 return FALSE;
1595
1596 /* Make it a local function. */
1597 elfh = (struct elf_link_hash_entry *) bh;
1598 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1599 elfh->size = size;
1600 elfh->forced_local = 1;
1601 if (micromips_p)
1602 elfh->other = ELF_ST_SET_MICROMIPS (elfh->other);
1603 return TRUE;
1604 }
1605
1606 /* We're about to redefine H. Create a symbol to represent H's
1607 current value and size, to help make the disassembly easier
1608 to read. */
1609
1610 static bfd_boolean
1611 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1612 struct mips_elf_link_hash_entry *h,
1613 const char *prefix)
1614 {
1615 struct bfd_link_hash_entry *bh;
1616 struct elf_link_hash_entry *elfh;
1617 char *name;
1618 asection *s;
1619 bfd_vma value;
1620 bfd_boolean res;
1621
1622 /* Read the symbol's value. */
1623 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1624 || h->root.root.type == bfd_link_hash_defweak);
1625 s = h->root.root.u.def.section;
1626 value = h->root.root.u.def.value;
1627
1628 /* Create a new symbol. */
1629 name = concat (prefix, h->root.root.root.string, NULL);
1630 bh = NULL;
1631 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1632 BSF_LOCAL, s, value, NULL,
1633 TRUE, FALSE, &bh);
1634 free (name);
1635 if (! res)
1636 return FALSE;
1637
1638 /* Make it local and copy the other attributes from H. */
1639 elfh = (struct elf_link_hash_entry *) bh;
1640 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1641 elfh->other = h->root.other;
1642 elfh->size = h->root.size;
1643 elfh->forced_local = 1;
1644 return TRUE;
1645 }
1646
1647 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1648 function rather than to a hard-float stub. */
1649
1650 static bfd_boolean
1651 section_allows_mips16_refs_p (asection *section)
1652 {
1653 const char *name;
1654
1655 name = bfd_get_section_name (section->owner, section);
1656 return (FN_STUB_P (name)
1657 || CALL_STUB_P (name)
1658 || CALL_FP_STUB_P (name)
1659 || strcmp (name, ".pdr") == 0);
1660 }
1661
1662 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1663 stub section of some kind. Return the R_SYMNDX of the target
1664 function, or 0 if we can't decide which function that is. */
1665
1666 static unsigned long
1667 mips16_stub_symndx (const struct elf_backend_data *bed,
1668 asection *sec ATTRIBUTE_UNUSED,
1669 const Elf_Internal_Rela *relocs,
1670 const Elf_Internal_Rela *relend)
1671 {
1672 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1673 const Elf_Internal_Rela *rel;
1674
1675 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1676 one in a compound relocation. */
1677 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1678 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1679 return ELF_R_SYM (sec->owner, rel->r_info);
1680
1681 /* Otherwise trust the first relocation, whatever its kind. This is
1682 the traditional behavior. */
1683 if (relocs < relend)
1684 return ELF_R_SYM (sec->owner, relocs->r_info);
1685
1686 return 0;
1687 }
1688
1689 /* Check the mips16 stubs for a particular symbol, and see if we can
1690 discard them. */
1691
1692 static void
1693 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1694 struct mips_elf_link_hash_entry *h)
1695 {
1696 /* Dynamic symbols must use the standard call interface, in case other
1697 objects try to call them. */
1698 if (h->fn_stub != NULL
1699 && h->root.dynindx != -1)
1700 {
1701 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1702 h->need_fn_stub = TRUE;
1703 }
1704
1705 if (h->fn_stub != NULL
1706 && ! h->need_fn_stub)
1707 {
1708 /* We don't need the fn_stub; the only references to this symbol
1709 are 16 bit calls. Clobber the size to 0 to prevent it from
1710 being included in the link. */
1711 h->fn_stub->size = 0;
1712 h->fn_stub->flags &= ~SEC_RELOC;
1713 h->fn_stub->reloc_count = 0;
1714 h->fn_stub->flags |= SEC_EXCLUDE;
1715 h->fn_stub->output_section = bfd_abs_section_ptr;
1716 }
1717
1718 if (h->call_stub != NULL
1719 && ELF_ST_IS_MIPS16 (h->root.other))
1720 {
1721 /* We don't need the call_stub; this is a 16 bit function, so
1722 calls from other 16 bit functions are OK. Clobber the size
1723 to 0 to prevent it from being included in the link. */
1724 h->call_stub->size = 0;
1725 h->call_stub->flags &= ~SEC_RELOC;
1726 h->call_stub->reloc_count = 0;
1727 h->call_stub->flags |= SEC_EXCLUDE;
1728 h->call_stub->output_section = bfd_abs_section_ptr;
1729 }
1730
1731 if (h->call_fp_stub != NULL
1732 && ELF_ST_IS_MIPS16 (h->root.other))
1733 {
1734 /* We don't need the call_stub; this is a 16 bit function, so
1735 calls from other 16 bit functions are OK. Clobber the size
1736 to 0 to prevent it from being included in the link. */
1737 h->call_fp_stub->size = 0;
1738 h->call_fp_stub->flags &= ~SEC_RELOC;
1739 h->call_fp_stub->reloc_count = 0;
1740 h->call_fp_stub->flags |= SEC_EXCLUDE;
1741 h->call_fp_stub->output_section = bfd_abs_section_ptr;
1742 }
1743 }
1744
1745 /* Hashtable callbacks for mips_elf_la25_stubs. */
1746
1747 static hashval_t
1748 mips_elf_la25_stub_hash (const void *entry_)
1749 {
1750 const struct mips_elf_la25_stub *entry;
1751
1752 entry = (struct mips_elf_la25_stub *) entry_;
1753 return entry->h->root.root.u.def.section->id
1754 + entry->h->root.root.u.def.value;
1755 }
1756
1757 static int
1758 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1759 {
1760 const struct mips_elf_la25_stub *entry1, *entry2;
1761
1762 entry1 = (struct mips_elf_la25_stub *) entry1_;
1763 entry2 = (struct mips_elf_la25_stub *) entry2_;
1764 return ((entry1->h->root.root.u.def.section
1765 == entry2->h->root.root.u.def.section)
1766 && (entry1->h->root.root.u.def.value
1767 == entry2->h->root.root.u.def.value));
1768 }
1769
1770 /* Called by the linker to set up the la25 stub-creation code. FN is
1771 the linker's implementation of add_stub_function. Return true on
1772 success. */
1773
1774 bfd_boolean
1775 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1776 asection *(*fn) (const char *, asection *,
1777 asection *))
1778 {
1779 struct mips_elf_link_hash_table *htab;
1780
1781 htab = mips_elf_hash_table (info);
1782 if (htab == NULL)
1783 return FALSE;
1784
1785 htab->add_stub_section = fn;
1786 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1787 mips_elf_la25_stub_eq, NULL);
1788 if (htab->la25_stubs == NULL)
1789 return FALSE;
1790
1791 return TRUE;
1792 }
1793
1794 /* Return true if H is a locally-defined PIC function, in the sense
1795 that it or its fn_stub might need $25 to be valid on entry.
1796 Note that MIPS16 functions set up $gp using PC-relative instructions,
1797 so they themselves never need $25 to be valid. Only non-MIPS16
1798 entry points are of interest here. */
1799
1800 static bfd_boolean
1801 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1802 {
1803 return ((h->root.root.type == bfd_link_hash_defined
1804 || h->root.root.type == bfd_link_hash_defweak)
1805 && h->root.def_regular
1806 && !bfd_is_abs_section (h->root.root.u.def.section)
1807 && !bfd_is_und_section (h->root.root.u.def.section)
1808 && (!ELF_ST_IS_MIPS16 (h->root.other)
1809 || (h->fn_stub && h->need_fn_stub))
1810 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1811 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1812 }
1813
1814 /* Set *SEC to the input section that contains the target of STUB.
1815 Return the offset of the target from the start of that section. */
1816
1817 static bfd_vma
1818 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1819 asection **sec)
1820 {
1821 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1822 {
1823 BFD_ASSERT (stub->h->need_fn_stub);
1824 *sec = stub->h->fn_stub;
1825 return 0;
1826 }
1827 else
1828 {
1829 *sec = stub->h->root.root.u.def.section;
1830 return stub->h->root.root.u.def.value;
1831 }
1832 }
1833
1834 /* STUB describes an la25 stub that we have decided to implement
1835 by inserting an LUI/ADDIU pair before the target function.
1836 Create the section and redirect the function symbol to it. */
1837
1838 static bfd_boolean
1839 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1840 struct bfd_link_info *info)
1841 {
1842 struct mips_elf_link_hash_table *htab;
1843 char *name;
1844 asection *s, *input_section;
1845 unsigned int align;
1846
1847 htab = mips_elf_hash_table (info);
1848 if (htab == NULL)
1849 return FALSE;
1850
1851 /* Create a unique name for the new section. */
1852 name = bfd_malloc (11 + sizeof (".text.stub."));
1853 if (name == NULL)
1854 return FALSE;
1855 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1856
1857 /* Create the section. */
1858 mips_elf_get_la25_target (stub, &input_section);
1859 s = htab->add_stub_section (name, input_section,
1860 input_section->output_section);
1861 if (s == NULL)
1862 return FALSE;
1863
1864 /* Make sure that any padding goes before the stub. */
1865 align = input_section->alignment_power;
1866 if (!bfd_set_section_alignment (s->owner, s, align))
1867 return FALSE;
1868 if (align > 3)
1869 s->size = (1 << align) - 8;
1870
1871 /* Create a symbol for the stub. */
1872 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1873 stub->stub_section = s;
1874 stub->offset = s->size;
1875
1876 /* Allocate room for it. */
1877 s->size += 8;
1878 return TRUE;
1879 }
1880
1881 /* STUB describes an la25 stub that we have decided to implement
1882 with a separate trampoline. Allocate room for it and redirect
1883 the function symbol to it. */
1884
1885 static bfd_boolean
1886 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1887 struct bfd_link_info *info)
1888 {
1889 struct mips_elf_link_hash_table *htab;
1890 asection *s;
1891
1892 htab = mips_elf_hash_table (info);
1893 if (htab == NULL)
1894 return FALSE;
1895
1896 /* Create a trampoline section, if we haven't already. */
1897 s = htab->strampoline;
1898 if (s == NULL)
1899 {
1900 asection *input_section = stub->h->root.root.u.def.section;
1901 s = htab->add_stub_section (".text", NULL,
1902 input_section->output_section);
1903 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1904 return FALSE;
1905 htab->strampoline = s;
1906 }
1907
1908 /* Create a symbol for the stub. */
1909 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1910 stub->stub_section = s;
1911 stub->offset = s->size;
1912
1913 /* Allocate room for it. */
1914 s->size += 16;
1915 return TRUE;
1916 }
1917
1918 /* H describes a symbol that needs an la25 stub. Make sure that an
1919 appropriate stub exists and point H at it. */
1920
1921 static bfd_boolean
1922 mips_elf_add_la25_stub (struct bfd_link_info *info,
1923 struct mips_elf_link_hash_entry *h)
1924 {
1925 struct mips_elf_link_hash_table *htab;
1926 struct mips_elf_la25_stub search, *stub;
1927 bfd_boolean use_trampoline_p;
1928 asection *s;
1929 bfd_vma value;
1930 void **slot;
1931
1932 /* Describe the stub we want. */
1933 search.stub_section = NULL;
1934 search.offset = 0;
1935 search.h = h;
1936
1937 /* See if we've already created an equivalent stub. */
1938 htab = mips_elf_hash_table (info);
1939 if (htab == NULL)
1940 return FALSE;
1941
1942 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1943 if (slot == NULL)
1944 return FALSE;
1945
1946 stub = (struct mips_elf_la25_stub *) *slot;
1947 if (stub != NULL)
1948 {
1949 /* We can reuse the existing stub. */
1950 h->la25_stub = stub;
1951 return TRUE;
1952 }
1953
1954 /* Create a permanent copy of ENTRY and add it to the hash table. */
1955 stub = bfd_malloc (sizeof (search));
1956 if (stub == NULL)
1957 return FALSE;
1958 *stub = search;
1959 *slot = stub;
1960
1961 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1962 of the section and if we would need no more than 2 nops. */
1963 value = mips_elf_get_la25_target (stub, &s);
1964 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
1965 value &= ~1;
1966 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1967
1968 h->la25_stub = stub;
1969 return (use_trampoline_p
1970 ? mips_elf_add_la25_trampoline (stub, info)
1971 : mips_elf_add_la25_intro (stub, info));
1972 }
1973
1974 /* A mips_elf_link_hash_traverse callback that is called before sizing
1975 sections. DATA points to a mips_htab_traverse_info structure. */
1976
1977 static bfd_boolean
1978 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1979 {
1980 struct mips_htab_traverse_info *hti;
1981
1982 hti = (struct mips_htab_traverse_info *) data;
1983 if (!bfd_link_relocatable (hti->info))
1984 mips_elf_check_mips16_stubs (hti->info, h);
1985
1986 if (mips_elf_local_pic_function_p (h))
1987 {
1988 /* PR 12845: If H is in a section that has been garbage
1989 collected it will have its output section set to *ABS*. */
1990 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1991 return TRUE;
1992
1993 /* H is a function that might need $25 to be valid on entry.
1994 If we're creating a non-PIC relocatable object, mark H as
1995 being PIC. If we're creating a non-relocatable object with
1996 non-PIC branches and jumps to H, make sure that H has an la25
1997 stub. */
1998 if (bfd_link_relocatable (hti->info))
1999 {
2000 if (!PIC_OBJECT_P (hti->output_bfd))
2001 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2002 }
2003 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2004 {
2005 hti->error = TRUE;
2006 return FALSE;
2007 }
2008 }
2009 return TRUE;
2010 }
2011 \f
2012 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2013 Most mips16 instructions are 16 bits, but these instructions
2014 are 32 bits.
2015
2016 The format of these instructions is:
2017
2018 +--------------+--------------------------------+
2019 | JALX | X| Imm 20:16 | Imm 25:21 |
2020 +--------------+--------------------------------+
2021 | Immediate 15:0 |
2022 +-----------------------------------------------+
2023
2024 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2025 Note that the immediate value in the first word is swapped.
2026
2027 When producing a relocatable object file, R_MIPS16_26 is
2028 handled mostly like R_MIPS_26. In particular, the addend is
2029 stored as a straight 26-bit value in a 32-bit instruction.
2030 (gas makes life simpler for itself by never adjusting a
2031 R_MIPS16_26 reloc to be against a section, so the addend is
2032 always zero). However, the 32 bit instruction is stored as 2
2033 16-bit values, rather than a single 32-bit value. In a
2034 big-endian file, the result is the same; in a little-endian
2035 file, the two 16-bit halves of the 32 bit value are swapped.
2036 This is so that a disassembler can recognize the jal
2037 instruction.
2038
2039 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2040 instruction stored as two 16-bit values. The addend A is the
2041 contents of the targ26 field. The calculation is the same as
2042 R_MIPS_26. When storing the calculated value, reorder the
2043 immediate value as shown above, and don't forget to store the
2044 value as two 16-bit values.
2045
2046 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2047 defined as
2048
2049 big-endian:
2050 +--------+----------------------+
2051 | | |
2052 | | targ26-16 |
2053 |31 26|25 0|
2054 +--------+----------------------+
2055
2056 little-endian:
2057 +----------+------+-------------+
2058 | | | |
2059 | sub1 | | sub2 |
2060 |0 9|10 15|16 31|
2061 +----------+--------------------+
2062 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2063 ((sub1 << 16) | sub2)).
2064
2065 When producing a relocatable object file, the calculation is
2066 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2067 When producing a fully linked file, the calculation is
2068 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2069 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2070
2071 The table below lists the other MIPS16 instruction relocations.
2072 Each one is calculated in the same way as the non-MIPS16 relocation
2073 given on the right, but using the extended MIPS16 layout of 16-bit
2074 immediate fields:
2075
2076 R_MIPS16_GPREL R_MIPS_GPREL16
2077 R_MIPS16_GOT16 R_MIPS_GOT16
2078 R_MIPS16_CALL16 R_MIPS_CALL16
2079 R_MIPS16_HI16 R_MIPS_HI16
2080 R_MIPS16_LO16 R_MIPS_LO16
2081
2082 A typical instruction will have a format like this:
2083
2084 +--------------+--------------------------------+
2085 | EXTEND | Imm 10:5 | Imm 15:11 |
2086 +--------------+--------------------------------+
2087 | Major | rx | ry | Imm 4:0 |
2088 +--------------+--------------------------------+
2089
2090 EXTEND is the five bit value 11110. Major is the instruction
2091 opcode.
2092
2093 All we need to do here is shuffle the bits appropriately.
2094 As above, the two 16-bit halves must be swapped on a
2095 little-endian system.
2096
2097 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2098 relocatable field is shifted by 1 rather than 2 and the same bit
2099 shuffling is done as with the relocations above. */
2100
2101 static inline bfd_boolean
2102 mips16_reloc_p (int r_type)
2103 {
2104 switch (r_type)
2105 {
2106 case R_MIPS16_26:
2107 case R_MIPS16_GPREL:
2108 case R_MIPS16_GOT16:
2109 case R_MIPS16_CALL16:
2110 case R_MIPS16_HI16:
2111 case R_MIPS16_LO16:
2112 case R_MIPS16_TLS_GD:
2113 case R_MIPS16_TLS_LDM:
2114 case R_MIPS16_TLS_DTPREL_HI16:
2115 case R_MIPS16_TLS_DTPREL_LO16:
2116 case R_MIPS16_TLS_GOTTPREL:
2117 case R_MIPS16_TLS_TPREL_HI16:
2118 case R_MIPS16_TLS_TPREL_LO16:
2119 case R_MIPS16_PC16_S1:
2120 return TRUE;
2121
2122 default:
2123 return FALSE;
2124 }
2125 }
2126
2127 /* Check if a microMIPS reloc. */
2128
2129 static inline bfd_boolean
2130 micromips_reloc_p (unsigned int r_type)
2131 {
2132 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2133 }
2134
2135 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2136 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2137 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2138
2139 static inline bfd_boolean
2140 micromips_reloc_shuffle_p (unsigned int r_type)
2141 {
2142 return (micromips_reloc_p (r_type)
2143 && r_type != R_MICROMIPS_PC7_S1
2144 && r_type != R_MICROMIPS_PC10_S1);
2145 }
2146
2147 static inline bfd_boolean
2148 got16_reloc_p (int r_type)
2149 {
2150 return (r_type == R_MIPS_GOT16
2151 || r_type == R_MIPS16_GOT16
2152 || r_type == R_MICROMIPS_GOT16);
2153 }
2154
2155 static inline bfd_boolean
2156 call16_reloc_p (int r_type)
2157 {
2158 return (r_type == R_MIPS_CALL16
2159 || r_type == R_MIPS16_CALL16
2160 || r_type == R_MICROMIPS_CALL16);
2161 }
2162
2163 static inline bfd_boolean
2164 got_disp_reloc_p (unsigned int r_type)
2165 {
2166 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2167 }
2168
2169 static inline bfd_boolean
2170 got_page_reloc_p (unsigned int r_type)
2171 {
2172 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2173 }
2174
2175 static inline bfd_boolean
2176 got_lo16_reloc_p (unsigned int r_type)
2177 {
2178 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2179 }
2180
2181 static inline bfd_boolean
2182 call_hi16_reloc_p (unsigned int r_type)
2183 {
2184 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2185 }
2186
2187 static inline bfd_boolean
2188 call_lo16_reloc_p (unsigned int r_type)
2189 {
2190 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2191 }
2192
2193 static inline bfd_boolean
2194 hi16_reloc_p (int r_type)
2195 {
2196 return (r_type == R_MIPS_HI16
2197 || r_type == R_MIPS16_HI16
2198 || r_type == R_MICROMIPS_HI16
2199 || r_type == R_MIPS_PCHI16);
2200 }
2201
2202 static inline bfd_boolean
2203 lo16_reloc_p (int r_type)
2204 {
2205 return (r_type == R_MIPS_LO16
2206 || r_type == R_MIPS16_LO16
2207 || r_type == R_MICROMIPS_LO16
2208 || r_type == R_MIPS_PCLO16);
2209 }
2210
2211 static inline bfd_boolean
2212 mips16_call_reloc_p (int r_type)
2213 {
2214 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2215 }
2216
2217 static inline bfd_boolean
2218 jal_reloc_p (int r_type)
2219 {
2220 return (r_type == R_MIPS_26
2221 || r_type == R_MIPS16_26
2222 || r_type == R_MICROMIPS_26_S1);
2223 }
2224
2225 static inline bfd_boolean
2226 b_reloc_p (int r_type)
2227 {
2228 return (r_type == R_MIPS_PC26_S2
2229 || r_type == R_MIPS_PC21_S2
2230 || r_type == R_MIPS_PC16
2231 || r_type == R_MIPS_GNU_REL16_S2
2232 || r_type == R_MIPS16_PC16_S1
2233 || r_type == R_MICROMIPS_PC16_S1
2234 || r_type == R_MICROMIPS_PC10_S1
2235 || r_type == R_MICROMIPS_PC7_S1);
2236 }
2237
2238 static inline bfd_boolean
2239 aligned_pcrel_reloc_p (int r_type)
2240 {
2241 return (r_type == R_MIPS_PC18_S3
2242 || r_type == R_MIPS_PC19_S2);
2243 }
2244
2245 static inline bfd_boolean
2246 branch_reloc_p (int r_type)
2247 {
2248 return (r_type == R_MIPS_26
2249 || r_type == R_MIPS_PC26_S2
2250 || r_type == R_MIPS_PC21_S2
2251 || r_type == R_MIPS_PC16
2252 || r_type == R_MIPS_GNU_REL16_S2);
2253 }
2254
2255 static inline bfd_boolean
2256 mips16_branch_reloc_p (int r_type)
2257 {
2258 return (r_type == R_MIPS16_26
2259 || r_type == R_MIPS16_PC16_S1);
2260 }
2261
2262 static inline bfd_boolean
2263 micromips_branch_reloc_p (int r_type)
2264 {
2265 return (r_type == R_MICROMIPS_26_S1
2266 || r_type == R_MICROMIPS_PC16_S1
2267 || r_type == R_MICROMIPS_PC10_S1
2268 || r_type == R_MICROMIPS_PC7_S1);
2269 }
2270
2271 static inline bfd_boolean
2272 tls_gd_reloc_p (unsigned int r_type)
2273 {
2274 return (r_type == R_MIPS_TLS_GD
2275 || r_type == R_MIPS16_TLS_GD
2276 || r_type == R_MICROMIPS_TLS_GD);
2277 }
2278
2279 static inline bfd_boolean
2280 tls_ldm_reloc_p (unsigned int r_type)
2281 {
2282 return (r_type == R_MIPS_TLS_LDM
2283 || r_type == R_MIPS16_TLS_LDM
2284 || r_type == R_MICROMIPS_TLS_LDM);
2285 }
2286
2287 static inline bfd_boolean
2288 tls_gottprel_reloc_p (unsigned int r_type)
2289 {
2290 return (r_type == R_MIPS_TLS_GOTTPREL
2291 || r_type == R_MIPS16_TLS_GOTTPREL
2292 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2293 }
2294
2295 void
2296 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2297 bfd_boolean jal_shuffle, bfd_byte *data)
2298 {
2299 bfd_vma first, second, val;
2300
2301 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2302 return;
2303
2304 /* Pick up the first and second halfwords of the instruction. */
2305 first = bfd_get_16 (abfd, data);
2306 second = bfd_get_16 (abfd, data + 2);
2307 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2308 val = first << 16 | second;
2309 else if (r_type != R_MIPS16_26)
2310 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2311 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2312 else
2313 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2314 | ((first & 0x1f) << 21) | second);
2315 bfd_put_32 (abfd, val, data);
2316 }
2317
2318 void
2319 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2320 bfd_boolean jal_shuffle, bfd_byte *data)
2321 {
2322 bfd_vma first, second, val;
2323
2324 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2325 return;
2326
2327 val = bfd_get_32 (abfd, data);
2328 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2329 {
2330 second = val & 0xffff;
2331 first = val >> 16;
2332 }
2333 else if (r_type != R_MIPS16_26)
2334 {
2335 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2336 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2337 }
2338 else
2339 {
2340 second = val & 0xffff;
2341 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2342 | ((val >> 21) & 0x1f);
2343 }
2344 bfd_put_16 (abfd, second, data + 2);
2345 bfd_put_16 (abfd, first, data);
2346 }
2347
2348 bfd_reloc_status_type
2349 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2350 arelent *reloc_entry, asection *input_section,
2351 bfd_boolean relocatable, void *data, bfd_vma gp)
2352 {
2353 bfd_vma relocation;
2354 bfd_signed_vma val;
2355 bfd_reloc_status_type status;
2356
2357 if (bfd_is_com_section (symbol->section))
2358 relocation = 0;
2359 else
2360 relocation = symbol->value;
2361
2362 relocation += symbol->section->output_section->vma;
2363 relocation += symbol->section->output_offset;
2364
2365 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2366 return bfd_reloc_outofrange;
2367
2368 /* Set val to the offset into the section or symbol. */
2369 val = reloc_entry->addend;
2370
2371 _bfd_mips_elf_sign_extend (val, 16);
2372
2373 /* Adjust val for the final section location and GP value. If we
2374 are producing relocatable output, we don't want to do this for
2375 an external symbol. */
2376 if (! relocatable
2377 || (symbol->flags & BSF_SECTION_SYM) != 0)
2378 val += relocation - gp;
2379
2380 if (reloc_entry->howto->partial_inplace)
2381 {
2382 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2383 (bfd_byte *) data
2384 + reloc_entry->address);
2385 if (status != bfd_reloc_ok)
2386 return status;
2387 }
2388 else
2389 reloc_entry->addend = val;
2390
2391 if (relocatable)
2392 reloc_entry->address += input_section->output_offset;
2393
2394 return bfd_reloc_ok;
2395 }
2396
2397 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2398 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2399 that contains the relocation field and DATA points to the start of
2400 INPUT_SECTION. */
2401
2402 struct mips_hi16
2403 {
2404 struct mips_hi16 *next;
2405 bfd_byte *data;
2406 asection *input_section;
2407 arelent rel;
2408 };
2409
2410 /* FIXME: This should not be a static variable. */
2411
2412 static struct mips_hi16 *mips_hi16_list;
2413
2414 /* A howto special_function for REL *HI16 relocations. We can only
2415 calculate the correct value once we've seen the partnering
2416 *LO16 relocation, so just save the information for later.
2417
2418 The ABI requires that the *LO16 immediately follow the *HI16.
2419 However, as a GNU extension, we permit an arbitrary number of
2420 *HI16s to be associated with a single *LO16. This significantly
2421 simplies the relocation handling in gcc. */
2422
2423 bfd_reloc_status_type
2424 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2425 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2426 asection *input_section, bfd *output_bfd,
2427 char **error_message ATTRIBUTE_UNUSED)
2428 {
2429 struct mips_hi16 *n;
2430
2431 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2432 return bfd_reloc_outofrange;
2433
2434 n = bfd_malloc (sizeof *n);
2435 if (n == NULL)
2436 return bfd_reloc_outofrange;
2437
2438 n->next = mips_hi16_list;
2439 n->data = data;
2440 n->input_section = input_section;
2441 n->rel = *reloc_entry;
2442 mips_hi16_list = n;
2443
2444 if (output_bfd != NULL)
2445 reloc_entry->address += input_section->output_offset;
2446
2447 return bfd_reloc_ok;
2448 }
2449
2450 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2451 like any other 16-bit relocation when applied to global symbols, but is
2452 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2453
2454 bfd_reloc_status_type
2455 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2456 void *data, asection *input_section,
2457 bfd *output_bfd, char **error_message)
2458 {
2459 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2460 || bfd_is_und_section (bfd_get_section (symbol))
2461 || bfd_is_com_section (bfd_get_section (symbol)))
2462 /* The relocation is against a global symbol. */
2463 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2464 input_section, output_bfd,
2465 error_message);
2466
2467 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2468 input_section, output_bfd, error_message);
2469 }
2470
2471 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2472 is a straightforward 16 bit inplace relocation, but we must deal with
2473 any partnering high-part relocations as well. */
2474
2475 bfd_reloc_status_type
2476 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2477 void *data, asection *input_section,
2478 bfd *output_bfd, char **error_message)
2479 {
2480 bfd_vma vallo;
2481 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2482
2483 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2484 return bfd_reloc_outofrange;
2485
2486 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2487 location);
2488 vallo = bfd_get_32 (abfd, location);
2489 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2490 location);
2491
2492 while (mips_hi16_list != NULL)
2493 {
2494 bfd_reloc_status_type ret;
2495 struct mips_hi16 *hi;
2496
2497 hi = mips_hi16_list;
2498
2499 /* R_MIPS*_GOT16 relocations are something of a special case. We
2500 want to install the addend in the same way as for a R_MIPS*_HI16
2501 relocation (with a rightshift of 16). However, since GOT16
2502 relocations can also be used with global symbols, their howto
2503 has a rightshift of 0. */
2504 if (hi->rel.howto->type == R_MIPS_GOT16)
2505 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2506 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2507 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2508 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2509 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2510
2511 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2512 carry or borrow will induce a change of +1 or -1 in the high part. */
2513 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2514
2515 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2516 hi->input_section, output_bfd,
2517 error_message);
2518 if (ret != bfd_reloc_ok)
2519 return ret;
2520
2521 mips_hi16_list = hi->next;
2522 free (hi);
2523 }
2524
2525 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2526 input_section, output_bfd,
2527 error_message);
2528 }
2529
2530 /* A generic howto special_function. This calculates and installs the
2531 relocation itself, thus avoiding the oft-discussed problems in
2532 bfd_perform_relocation and bfd_install_relocation. */
2533
2534 bfd_reloc_status_type
2535 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2536 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2537 asection *input_section, bfd *output_bfd,
2538 char **error_message ATTRIBUTE_UNUSED)
2539 {
2540 bfd_signed_vma val;
2541 bfd_reloc_status_type status;
2542 bfd_boolean relocatable;
2543
2544 relocatable = (output_bfd != NULL);
2545
2546 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2547 return bfd_reloc_outofrange;
2548
2549 /* Build up the field adjustment in VAL. */
2550 val = 0;
2551 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2552 {
2553 /* Either we're calculating the final field value or we have a
2554 relocation against a section symbol. Add in the section's
2555 offset or address. */
2556 val += symbol->section->output_section->vma;
2557 val += symbol->section->output_offset;
2558 }
2559
2560 if (!relocatable)
2561 {
2562 /* We're calculating the final field value. Add in the symbol's value
2563 and, if pc-relative, subtract the address of the field itself. */
2564 val += symbol->value;
2565 if (reloc_entry->howto->pc_relative)
2566 {
2567 val -= input_section->output_section->vma;
2568 val -= input_section->output_offset;
2569 val -= reloc_entry->address;
2570 }
2571 }
2572
2573 /* VAL is now the final adjustment. If we're keeping this relocation
2574 in the output file, and if the relocation uses a separate addend,
2575 we just need to add VAL to that addend. Otherwise we need to add
2576 VAL to the relocation field itself. */
2577 if (relocatable && !reloc_entry->howto->partial_inplace)
2578 reloc_entry->addend += val;
2579 else
2580 {
2581 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2582
2583 /* Add in the separate addend, if any. */
2584 val += reloc_entry->addend;
2585
2586 /* Add VAL to the relocation field. */
2587 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2588 location);
2589 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2590 location);
2591 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2592 location);
2593
2594 if (status != bfd_reloc_ok)
2595 return status;
2596 }
2597
2598 if (relocatable)
2599 reloc_entry->address += input_section->output_offset;
2600
2601 return bfd_reloc_ok;
2602 }
2603 \f
2604 /* Swap an entry in a .gptab section. Note that these routines rely
2605 on the equivalence of the two elements of the union. */
2606
2607 static void
2608 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2609 Elf32_gptab *in)
2610 {
2611 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2612 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2613 }
2614
2615 static void
2616 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2617 Elf32_External_gptab *ex)
2618 {
2619 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2620 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2621 }
2622
2623 static void
2624 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2625 Elf32_External_compact_rel *ex)
2626 {
2627 H_PUT_32 (abfd, in->id1, ex->id1);
2628 H_PUT_32 (abfd, in->num, ex->num);
2629 H_PUT_32 (abfd, in->id2, ex->id2);
2630 H_PUT_32 (abfd, in->offset, ex->offset);
2631 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2632 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2633 }
2634
2635 static void
2636 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2637 Elf32_External_crinfo *ex)
2638 {
2639 unsigned long l;
2640
2641 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2642 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2643 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2644 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2645 H_PUT_32 (abfd, l, ex->info);
2646 H_PUT_32 (abfd, in->konst, ex->konst);
2647 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2648 }
2649 \f
2650 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2651 routines swap this structure in and out. They are used outside of
2652 BFD, so they are globally visible. */
2653
2654 void
2655 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2656 Elf32_RegInfo *in)
2657 {
2658 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2659 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2660 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2661 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2662 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2663 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2664 }
2665
2666 void
2667 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2668 Elf32_External_RegInfo *ex)
2669 {
2670 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2671 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2672 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2673 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2674 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2675 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2676 }
2677
2678 /* In the 64 bit ABI, the .MIPS.options section holds register
2679 information in an Elf64_Reginfo structure. These routines swap
2680 them in and out. They are globally visible because they are used
2681 outside of BFD. These routines are here so that gas can call them
2682 without worrying about whether the 64 bit ABI has been included. */
2683
2684 void
2685 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2686 Elf64_Internal_RegInfo *in)
2687 {
2688 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2689 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2690 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2691 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2692 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2693 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2694 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2695 }
2696
2697 void
2698 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2699 Elf64_External_RegInfo *ex)
2700 {
2701 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2702 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2703 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2704 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2705 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2706 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2707 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2708 }
2709
2710 /* Swap in an options header. */
2711
2712 void
2713 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2714 Elf_Internal_Options *in)
2715 {
2716 in->kind = H_GET_8 (abfd, ex->kind);
2717 in->size = H_GET_8 (abfd, ex->size);
2718 in->section = H_GET_16 (abfd, ex->section);
2719 in->info = H_GET_32 (abfd, ex->info);
2720 }
2721
2722 /* Swap out an options header. */
2723
2724 void
2725 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2726 Elf_External_Options *ex)
2727 {
2728 H_PUT_8 (abfd, in->kind, ex->kind);
2729 H_PUT_8 (abfd, in->size, ex->size);
2730 H_PUT_16 (abfd, in->section, ex->section);
2731 H_PUT_32 (abfd, in->info, ex->info);
2732 }
2733
2734 /* Swap in an abiflags structure. */
2735
2736 void
2737 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2738 const Elf_External_ABIFlags_v0 *ex,
2739 Elf_Internal_ABIFlags_v0 *in)
2740 {
2741 in->version = H_GET_16 (abfd, ex->version);
2742 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2743 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2744 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2745 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2746 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2747 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2748 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2749 in->ases = H_GET_32 (abfd, ex->ases);
2750 in->flags1 = H_GET_32 (abfd, ex->flags1);
2751 in->flags2 = H_GET_32 (abfd, ex->flags2);
2752 }
2753
2754 /* Swap out an abiflags structure. */
2755
2756 void
2757 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2758 const Elf_Internal_ABIFlags_v0 *in,
2759 Elf_External_ABIFlags_v0 *ex)
2760 {
2761 H_PUT_16 (abfd, in->version, ex->version);
2762 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2763 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2764 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2765 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2766 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2767 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2768 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2769 H_PUT_32 (abfd, in->ases, ex->ases);
2770 H_PUT_32 (abfd, in->flags1, ex->flags1);
2771 H_PUT_32 (abfd, in->flags2, ex->flags2);
2772 }
2773 \f
2774 /* This function is called via qsort() to sort the dynamic relocation
2775 entries by increasing r_symndx value. */
2776
2777 static int
2778 sort_dynamic_relocs (const void *arg1, const void *arg2)
2779 {
2780 Elf_Internal_Rela int_reloc1;
2781 Elf_Internal_Rela int_reloc2;
2782 int diff;
2783
2784 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2785 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2786
2787 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2788 if (diff != 0)
2789 return diff;
2790
2791 if (int_reloc1.r_offset < int_reloc2.r_offset)
2792 return -1;
2793 if (int_reloc1.r_offset > int_reloc2.r_offset)
2794 return 1;
2795 return 0;
2796 }
2797
2798 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2799
2800 static int
2801 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2802 const void *arg2 ATTRIBUTE_UNUSED)
2803 {
2804 #ifdef BFD64
2805 Elf_Internal_Rela int_reloc1[3];
2806 Elf_Internal_Rela int_reloc2[3];
2807
2808 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2809 (reldyn_sorting_bfd, arg1, int_reloc1);
2810 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2811 (reldyn_sorting_bfd, arg2, int_reloc2);
2812
2813 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2814 return -1;
2815 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2816 return 1;
2817
2818 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2819 return -1;
2820 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2821 return 1;
2822 return 0;
2823 #else
2824 abort ();
2825 #endif
2826 }
2827
2828
2829 /* This routine is used to write out ECOFF debugging external symbol
2830 information. It is called via mips_elf_link_hash_traverse. The
2831 ECOFF external symbol information must match the ELF external
2832 symbol information. Unfortunately, at this point we don't know
2833 whether a symbol is required by reloc information, so the two
2834 tables may wind up being different. We must sort out the external
2835 symbol information before we can set the final size of the .mdebug
2836 section, and we must set the size of the .mdebug section before we
2837 can relocate any sections, and we can't know which symbols are
2838 required by relocation until we relocate the sections.
2839 Fortunately, it is relatively unlikely that any symbol will be
2840 stripped but required by a reloc. In particular, it can not happen
2841 when generating a final executable. */
2842
2843 static bfd_boolean
2844 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2845 {
2846 struct extsym_info *einfo = data;
2847 bfd_boolean strip;
2848 asection *sec, *output_section;
2849
2850 if (h->root.indx == -2)
2851 strip = FALSE;
2852 else if ((h->root.def_dynamic
2853 || h->root.ref_dynamic
2854 || h->root.type == bfd_link_hash_new)
2855 && !h->root.def_regular
2856 && !h->root.ref_regular)
2857 strip = TRUE;
2858 else if (einfo->info->strip == strip_all
2859 || (einfo->info->strip == strip_some
2860 && bfd_hash_lookup (einfo->info->keep_hash,
2861 h->root.root.root.string,
2862 FALSE, FALSE) == NULL))
2863 strip = TRUE;
2864 else
2865 strip = FALSE;
2866
2867 if (strip)
2868 return TRUE;
2869
2870 if (h->esym.ifd == -2)
2871 {
2872 h->esym.jmptbl = 0;
2873 h->esym.cobol_main = 0;
2874 h->esym.weakext = 0;
2875 h->esym.reserved = 0;
2876 h->esym.ifd = ifdNil;
2877 h->esym.asym.value = 0;
2878 h->esym.asym.st = stGlobal;
2879
2880 if (h->root.root.type == bfd_link_hash_undefined
2881 || h->root.root.type == bfd_link_hash_undefweak)
2882 {
2883 const char *name;
2884
2885 /* Use undefined class. Also, set class and type for some
2886 special symbols. */
2887 name = h->root.root.root.string;
2888 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2889 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2890 {
2891 h->esym.asym.sc = scData;
2892 h->esym.asym.st = stLabel;
2893 h->esym.asym.value = 0;
2894 }
2895 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2896 {
2897 h->esym.asym.sc = scAbs;
2898 h->esym.asym.st = stLabel;
2899 h->esym.asym.value =
2900 mips_elf_hash_table (einfo->info)->procedure_count;
2901 }
2902 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2903 {
2904 h->esym.asym.sc = scAbs;
2905 h->esym.asym.st = stLabel;
2906 h->esym.asym.value = elf_gp (einfo->abfd);
2907 }
2908 else
2909 h->esym.asym.sc = scUndefined;
2910 }
2911 else if (h->root.root.type != bfd_link_hash_defined
2912 && h->root.root.type != bfd_link_hash_defweak)
2913 h->esym.asym.sc = scAbs;
2914 else
2915 {
2916 const char *name;
2917
2918 sec = h->root.root.u.def.section;
2919 output_section = sec->output_section;
2920
2921 /* When making a shared library and symbol h is the one from
2922 the another shared library, OUTPUT_SECTION may be null. */
2923 if (output_section == NULL)
2924 h->esym.asym.sc = scUndefined;
2925 else
2926 {
2927 name = bfd_section_name (output_section->owner, output_section);
2928
2929 if (strcmp (name, ".text") == 0)
2930 h->esym.asym.sc = scText;
2931 else if (strcmp (name, ".data") == 0)
2932 h->esym.asym.sc = scData;
2933 else if (strcmp (name, ".sdata") == 0)
2934 h->esym.asym.sc = scSData;
2935 else if (strcmp (name, ".rodata") == 0
2936 || strcmp (name, ".rdata") == 0)
2937 h->esym.asym.sc = scRData;
2938 else if (strcmp (name, ".bss") == 0)
2939 h->esym.asym.sc = scBss;
2940 else if (strcmp (name, ".sbss") == 0)
2941 h->esym.asym.sc = scSBss;
2942 else if (strcmp (name, ".init") == 0)
2943 h->esym.asym.sc = scInit;
2944 else if (strcmp (name, ".fini") == 0)
2945 h->esym.asym.sc = scFini;
2946 else
2947 h->esym.asym.sc = scAbs;
2948 }
2949 }
2950
2951 h->esym.asym.reserved = 0;
2952 h->esym.asym.index = indexNil;
2953 }
2954
2955 if (h->root.root.type == bfd_link_hash_common)
2956 h->esym.asym.value = h->root.root.u.c.size;
2957 else if (h->root.root.type == bfd_link_hash_defined
2958 || h->root.root.type == bfd_link_hash_defweak)
2959 {
2960 if (h->esym.asym.sc == scCommon)
2961 h->esym.asym.sc = scBss;
2962 else if (h->esym.asym.sc == scSCommon)
2963 h->esym.asym.sc = scSBss;
2964
2965 sec = h->root.root.u.def.section;
2966 output_section = sec->output_section;
2967 if (output_section != NULL)
2968 h->esym.asym.value = (h->root.root.u.def.value
2969 + sec->output_offset
2970 + output_section->vma);
2971 else
2972 h->esym.asym.value = 0;
2973 }
2974 else
2975 {
2976 struct mips_elf_link_hash_entry *hd = h;
2977
2978 while (hd->root.root.type == bfd_link_hash_indirect)
2979 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2980
2981 if (hd->needs_lazy_stub)
2982 {
2983 BFD_ASSERT (hd->root.plt.plist != NULL);
2984 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
2985 /* Set type and value for a symbol with a function stub. */
2986 h->esym.asym.st = stProc;
2987 sec = hd->root.root.u.def.section;
2988 if (sec == NULL)
2989 h->esym.asym.value = 0;
2990 else
2991 {
2992 output_section = sec->output_section;
2993 if (output_section != NULL)
2994 h->esym.asym.value = (hd->root.plt.plist->stub_offset
2995 + sec->output_offset
2996 + output_section->vma);
2997 else
2998 h->esym.asym.value = 0;
2999 }
3000 }
3001 }
3002
3003 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3004 h->root.root.root.string,
3005 &h->esym))
3006 {
3007 einfo->failed = TRUE;
3008 return FALSE;
3009 }
3010
3011 return TRUE;
3012 }
3013
3014 /* A comparison routine used to sort .gptab entries. */
3015
3016 static int
3017 gptab_compare (const void *p1, const void *p2)
3018 {
3019 const Elf32_gptab *a1 = p1;
3020 const Elf32_gptab *a2 = p2;
3021
3022 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3023 }
3024 \f
3025 /* Functions to manage the got entry hash table. */
3026
3027 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3028 hash number. */
3029
3030 static INLINE hashval_t
3031 mips_elf_hash_bfd_vma (bfd_vma addr)
3032 {
3033 #ifdef BFD64
3034 return addr + (addr >> 32);
3035 #else
3036 return addr;
3037 #endif
3038 }
3039
3040 static hashval_t
3041 mips_elf_got_entry_hash (const void *entry_)
3042 {
3043 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3044
3045 return (entry->symndx
3046 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3047 + (entry->tls_type == GOT_TLS_LDM ? 0
3048 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3049 : entry->symndx >= 0 ? (entry->abfd->id
3050 + mips_elf_hash_bfd_vma (entry->d.addend))
3051 : entry->d.h->root.root.root.hash));
3052 }
3053
3054 static int
3055 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3056 {
3057 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3058 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3059
3060 return (e1->symndx == e2->symndx
3061 && e1->tls_type == e2->tls_type
3062 && (e1->tls_type == GOT_TLS_LDM ? TRUE
3063 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3064 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3065 && e1->d.addend == e2->d.addend)
3066 : e2->abfd && e1->d.h == e2->d.h));
3067 }
3068
3069 static hashval_t
3070 mips_got_page_ref_hash (const void *ref_)
3071 {
3072 const struct mips_got_page_ref *ref;
3073
3074 ref = (const struct mips_got_page_ref *) ref_;
3075 return ((ref->symndx >= 0
3076 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3077 : ref->u.h->root.root.root.hash)
3078 + mips_elf_hash_bfd_vma (ref->addend));
3079 }
3080
3081 static int
3082 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3083 {
3084 const struct mips_got_page_ref *ref1, *ref2;
3085
3086 ref1 = (const struct mips_got_page_ref *) ref1_;
3087 ref2 = (const struct mips_got_page_ref *) ref2_;
3088 return (ref1->symndx == ref2->symndx
3089 && (ref1->symndx < 0
3090 ? ref1->u.h == ref2->u.h
3091 : ref1->u.abfd == ref2->u.abfd)
3092 && ref1->addend == ref2->addend);
3093 }
3094
3095 static hashval_t
3096 mips_got_page_entry_hash (const void *entry_)
3097 {
3098 const struct mips_got_page_entry *entry;
3099
3100 entry = (const struct mips_got_page_entry *) entry_;
3101 return entry->sec->id;
3102 }
3103
3104 static int
3105 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3106 {
3107 const struct mips_got_page_entry *entry1, *entry2;
3108
3109 entry1 = (const struct mips_got_page_entry *) entry1_;
3110 entry2 = (const struct mips_got_page_entry *) entry2_;
3111 return entry1->sec == entry2->sec;
3112 }
3113 \f
3114 /* Create and return a new mips_got_info structure. */
3115
3116 static struct mips_got_info *
3117 mips_elf_create_got_info (bfd *abfd)
3118 {
3119 struct mips_got_info *g;
3120
3121 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3122 if (g == NULL)
3123 return NULL;
3124
3125 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3126 mips_elf_got_entry_eq, NULL);
3127 if (g->got_entries == NULL)
3128 return NULL;
3129
3130 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3131 mips_got_page_ref_eq, NULL);
3132 if (g->got_page_refs == NULL)
3133 return NULL;
3134
3135 return g;
3136 }
3137
3138 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3139 CREATE_P and if ABFD doesn't already have a GOT. */
3140
3141 static struct mips_got_info *
3142 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3143 {
3144 struct mips_elf_obj_tdata *tdata;
3145
3146 if (!is_mips_elf (abfd))
3147 return NULL;
3148
3149 tdata = mips_elf_tdata (abfd);
3150 if (!tdata->got && create_p)
3151 tdata->got = mips_elf_create_got_info (abfd);
3152 return tdata->got;
3153 }
3154
3155 /* Record that ABFD should use output GOT G. */
3156
3157 static void
3158 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3159 {
3160 struct mips_elf_obj_tdata *tdata;
3161
3162 BFD_ASSERT (is_mips_elf (abfd));
3163 tdata = mips_elf_tdata (abfd);
3164 if (tdata->got)
3165 {
3166 /* The GOT structure itself and the hash table entries are
3167 allocated to a bfd, but the hash tables aren't. */
3168 htab_delete (tdata->got->got_entries);
3169 htab_delete (tdata->got->got_page_refs);
3170 if (tdata->got->got_page_entries)
3171 htab_delete (tdata->got->got_page_entries);
3172 }
3173 tdata->got = g;
3174 }
3175
3176 /* Return the dynamic relocation section. If it doesn't exist, try to
3177 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3178 if creation fails. */
3179
3180 static asection *
3181 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3182 {
3183 const char *dname;
3184 asection *sreloc;
3185 bfd *dynobj;
3186
3187 dname = MIPS_ELF_REL_DYN_NAME (info);
3188 dynobj = elf_hash_table (info)->dynobj;
3189 sreloc = bfd_get_linker_section (dynobj, dname);
3190 if (sreloc == NULL && create_p)
3191 {
3192 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3193 (SEC_ALLOC
3194 | SEC_LOAD
3195 | SEC_HAS_CONTENTS
3196 | SEC_IN_MEMORY
3197 | SEC_LINKER_CREATED
3198 | SEC_READONLY));
3199 if (sreloc == NULL
3200 || ! bfd_set_section_alignment (dynobj, sreloc,
3201 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3202 return NULL;
3203 }
3204 return sreloc;
3205 }
3206
3207 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3208
3209 static int
3210 mips_elf_reloc_tls_type (unsigned int r_type)
3211 {
3212 if (tls_gd_reloc_p (r_type))
3213 return GOT_TLS_GD;
3214
3215 if (tls_ldm_reloc_p (r_type))
3216 return GOT_TLS_LDM;
3217
3218 if (tls_gottprel_reloc_p (r_type))
3219 return GOT_TLS_IE;
3220
3221 return GOT_TLS_NONE;
3222 }
3223
3224 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3225
3226 static int
3227 mips_tls_got_entries (unsigned int type)
3228 {
3229 switch (type)
3230 {
3231 case GOT_TLS_GD:
3232 case GOT_TLS_LDM:
3233 return 2;
3234
3235 case GOT_TLS_IE:
3236 return 1;
3237
3238 case GOT_TLS_NONE:
3239 return 0;
3240 }
3241 abort ();
3242 }
3243
3244 /* Count the number of relocations needed for a TLS GOT entry, with
3245 access types from TLS_TYPE, and symbol H (or a local symbol if H
3246 is NULL). */
3247
3248 static int
3249 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3250 struct elf_link_hash_entry *h)
3251 {
3252 int indx = 0;
3253 bfd_boolean need_relocs = FALSE;
3254 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3255
3256 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3257 && (!bfd_link_pic (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
3258 indx = h->dynindx;
3259
3260 if ((bfd_link_pic (info) || indx != 0)
3261 && (h == NULL
3262 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3263 || h->root.type != bfd_link_hash_undefweak))
3264 need_relocs = TRUE;
3265
3266 if (!need_relocs)
3267 return 0;
3268
3269 switch (tls_type)
3270 {
3271 case GOT_TLS_GD:
3272 return indx != 0 ? 2 : 1;
3273
3274 case GOT_TLS_IE:
3275 return 1;
3276
3277 case GOT_TLS_LDM:
3278 return bfd_link_pic (info) ? 1 : 0;
3279
3280 default:
3281 return 0;
3282 }
3283 }
3284
3285 /* Add the number of GOT entries and TLS relocations required by ENTRY
3286 to G. */
3287
3288 static void
3289 mips_elf_count_got_entry (struct bfd_link_info *info,
3290 struct mips_got_info *g,
3291 struct mips_got_entry *entry)
3292 {
3293 if (entry->tls_type)
3294 {
3295 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3296 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3297 entry->symndx < 0
3298 ? &entry->d.h->root : NULL);
3299 }
3300 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3301 g->local_gotno += 1;
3302 else
3303 g->global_gotno += 1;
3304 }
3305
3306 /* Output a simple dynamic relocation into SRELOC. */
3307
3308 static void
3309 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3310 asection *sreloc,
3311 unsigned long reloc_index,
3312 unsigned long indx,
3313 int r_type,
3314 bfd_vma offset)
3315 {
3316 Elf_Internal_Rela rel[3];
3317
3318 memset (rel, 0, sizeof (rel));
3319
3320 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3321 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3322
3323 if (ABI_64_P (output_bfd))
3324 {
3325 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3326 (output_bfd, &rel[0],
3327 (sreloc->contents
3328 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3329 }
3330 else
3331 bfd_elf32_swap_reloc_out
3332 (output_bfd, &rel[0],
3333 (sreloc->contents
3334 + reloc_index * sizeof (Elf32_External_Rel)));
3335 }
3336
3337 /* Initialize a set of TLS GOT entries for one symbol. */
3338
3339 static void
3340 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3341 struct mips_got_entry *entry,
3342 struct mips_elf_link_hash_entry *h,
3343 bfd_vma value)
3344 {
3345 struct mips_elf_link_hash_table *htab;
3346 int indx;
3347 asection *sreloc, *sgot;
3348 bfd_vma got_offset, got_offset2;
3349 bfd_boolean need_relocs = FALSE;
3350
3351 htab = mips_elf_hash_table (info);
3352 if (htab == NULL)
3353 return;
3354
3355 sgot = htab->root.sgot;
3356
3357 indx = 0;
3358 if (h != NULL)
3359 {
3360 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3361
3362 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info),
3363 &h->root)
3364 && (!bfd_link_pic (info)
3365 || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3366 indx = h->root.dynindx;
3367 }
3368
3369 if (entry->tls_initialized)
3370 return;
3371
3372 if ((bfd_link_pic (info) || indx != 0)
3373 && (h == NULL
3374 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3375 || h->root.type != bfd_link_hash_undefweak))
3376 need_relocs = TRUE;
3377
3378 /* MINUS_ONE means the symbol is not defined in this object. It may not
3379 be defined at all; assume that the value doesn't matter in that
3380 case. Otherwise complain if we would use the value. */
3381 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3382 || h->root.root.type == bfd_link_hash_undefweak);
3383
3384 /* Emit necessary relocations. */
3385 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3386 got_offset = entry->gotidx;
3387
3388 switch (entry->tls_type)
3389 {
3390 case GOT_TLS_GD:
3391 /* General Dynamic. */
3392 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3393
3394 if (need_relocs)
3395 {
3396 mips_elf_output_dynamic_relocation
3397 (abfd, sreloc, sreloc->reloc_count++, indx,
3398 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3399 sgot->output_offset + sgot->output_section->vma + got_offset);
3400
3401 if (indx)
3402 mips_elf_output_dynamic_relocation
3403 (abfd, sreloc, sreloc->reloc_count++, indx,
3404 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3405 sgot->output_offset + sgot->output_section->vma + got_offset2);
3406 else
3407 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3408 sgot->contents + got_offset2);
3409 }
3410 else
3411 {
3412 MIPS_ELF_PUT_WORD (abfd, 1,
3413 sgot->contents + got_offset);
3414 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3415 sgot->contents + got_offset2);
3416 }
3417 break;
3418
3419 case GOT_TLS_IE:
3420 /* Initial Exec model. */
3421 if (need_relocs)
3422 {
3423 if (indx == 0)
3424 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3425 sgot->contents + got_offset);
3426 else
3427 MIPS_ELF_PUT_WORD (abfd, 0,
3428 sgot->contents + got_offset);
3429
3430 mips_elf_output_dynamic_relocation
3431 (abfd, sreloc, sreloc->reloc_count++, indx,
3432 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3433 sgot->output_offset + sgot->output_section->vma + got_offset);
3434 }
3435 else
3436 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3437 sgot->contents + got_offset);
3438 break;
3439
3440 case GOT_TLS_LDM:
3441 /* The initial offset is zero, and the LD offsets will include the
3442 bias by DTP_OFFSET. */
3443 MIPS_ELF_PUT_WORD (abfd, 0,
3444 sgot->contents + got_offset
3445 + MIPS_ELF_GOT_SIZE (abfd));
3446
3447 if (!bfd_link_pic (info))
3448 MIPS_ELF_PUT_WORD (abfd, 1,
3449 sgot->contents + got_offset);
3450 else
3451 mips_elf_output_dynamic_relocation
3452 (abfd, sreloc, sreloc->reloc_count++, indx,
3453 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3454 sgot->output_offset + sgot->output_section->vma + got_offset);
3455 break;
3456
3457 default:
3458 abort ();
3459 }
3460
3461 entry->tls_initialized = TRUE;
3462 }
3463
3464 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3465 for global symbol H. .got.plt comes before the GOT, so the offset
3466 will be negative. */
3467
3468 static bfd_vma
3469 mips_elf_gotplt_index (struct bfd_link_info *info,
3470 struct elf_link_hash_entry *h)
3471 {
3472 bfd_vma got_address, got_value;
3473 struct mips_elf_link_hash_table *htab;
3474
3475 htab = mips_elf_hash_table (info);
3476 BFD_ASSERT (htab != NULL);
3477
3478 BFD_ASSERT (h->plt.plist != NULL);
3479 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3480
3481 /* Calculate the address of the associated .got.plt entry. */
3482 got_address = (htab->root.sgotplt->output_section->vma
3483 + htab->root.sgotplt->output_offset
3484 + (h->plt.plist->gotplt_index
3485 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3486
3487 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3488 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3489 + htab->root.hgot->root.u.def.section->output_offset
3490 + htab->root.hgot->root.u.def.value);
3491
3492 return got_address - got_value;
3493 }
3494
3495 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3496 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3497 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3498 offset can be found. */
3499
3500 static bfd_vma
3501 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3502 bfd_vma value, unsigned long r_symndx,
3503 struct mips_elf_link_hash_entry *h, int r_type)
3504 {
3505 struct mips_elf_link_hash_table *htab;
3506 struct mips_got_entry *entry;
3507
3508 htab = mips_elf_hash_table (info);
3509 BFD_ASSERT (htab != NULL);
3510
3511 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3512 r_symndx, h, r_type);
3513 if (!entry)
3514 return MINUS_ONE;
3515
3516 if (entry->tls_type)
3517 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3518 return entry->gotidx;
3519 }
3520
3521 /* Return the GOT index of global symbol H in the primary GOT. */
3522
3523 static bfd_vma
3524 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3525 struct elf_link_hash_entry *h)
3526 {
3527 struct mips_elf_link_hash_table *htab;
3528 long global_got_dynindx;
3529 struct mips_got_info *g;
3530 bfd_vma got_index;
3531
3532 htab = mips_elf_hash_table (info);
3533 BFD_ASSERT (htab != NULL);
3534
3535 global_got_dynindx = 0;
3536 if (htab->global_gotsym != NULL)
3537 global_got_dynindx = htab->global_gotsym->dynindx;
3538
3539 /* Once we determine the global GOT entry with the lowest dynamic
3540 symbol table index, we must put all dynamic symbols with greater
3541 indices into the primary GOT. That makes it easy to calculate the
3542 GOT offset. */
3543 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3544 g = mips_elf_bfd_got (obfd, FALSE);
3545 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3546 * MIPS_ELF_GOT_SIZE (obfd));
3547 BFD_ASSERT (got_index < htab->root.sgot->size);
3548
3549 return got_index;
3550 }
3551
3552 /* Return the GOT index for the global symbol indicated by H, which is
3553 referenced by a relocation of type R_TYPE in IBFD. */
3554
3555 static bfd_vma
3556 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3557 struct elf_link_hash_entry *h, int r_type)
3558 {
3559 struct mips_elf_link_hash_table *htab;
3560 struct mips_got_info *g;
3561 struct mips_got_entry lookup, *entry;
3562 bfd_vma gotidx;
3563
3564 htab = mips_elf_hash_table (info);
3565 BFD_ASSERT (htab != NULL);
3566
3567 g = mips_elf_bfd_got (ibfd, FALSE);
3568 BFD_ASSERT (g);
3569
3570 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3571 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3572 return mips_elf_primary_global_got_index (obfd, info, h);
3573
3574 lookup.abfd = ibfd;
3575 lookup.symndx = -1;
3576 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3577 entry = htab_find (g->got_entries, &lookup);
3578 BFD_ASSERT (entry);
3579
3580 gotidx = entry->gotidx;
3581 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3582
3583 if (lookup.tls_type)
3584 {
3585 bfd_vma value = MINUS_ONE;
3586
3587 if ((h->root.type == bfd_link_hash_defined
3588 || h->root.type == bfd_link_hash_defweak)
3589 && h->root.u.def.section->output_section)
3590 value = (h->root.u.def.value
3591 + h->root.u.def.section->output_offset
3592 + h->root.u.def.section->output_section->vma);
3593
3594 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3595 }
3596 return gotidx;
3597 }
3598
3599 /* Find a GOT page entry that points to within 32KB of VALUE. These
3600 entries are supposed to be placed at small offsets in the GOT, i.e.,
3601 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3602 entry could be created. If OFFSETP is nonnull, use it to return the
3603 offset of the GOT entry from VALUE. */
3604
3605 static bfd_vma
3606 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3607 bfd_vma value, bfd_vma *offsetp)
3608 {
3609 bfd_vma page, got_index;
3610 struct mips_got_entry *entry;
3611
3612 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3613 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3614 NULL, R_MIPS_GOT_PAGE);
3615
3616 if (!entry)
3617 return MINUS_ONE;
3618
3619 got_index = entry->gotidx;
3620
3621 if (offsetp)
3622 *offsetp = value - entry->d.address;
3623
3624 return got_index;
3625 }
3626
3627 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3628 EXTERNAL is true if the relocation was originally against a global
3629 symbol that binds locally. */
3630
3631 static bfd_vma
3632 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3633 bfd_vma value, bfd_boolean external)
3634 {
3635 struct mips_got_entry *entry;
3636
3637 /* GOT16 relocations against local symbols are followed by a LO16
3638 relocation; those against global symbols are not. Thus if the
3639 symbol was originally local, the GOT16 relocation should load the
3640 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3641 if (! external)
3642 value = mips_elf_high (value) << 16;
3643
3644 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3645 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3646 same in all cases. */
3647 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3648 NULL, R_MIPS_GOT16);
3649 if (entry)
3650 return entry->gotidx;
3651 else
3652 return MINUS_ONE;
3653 }
3654
3655 /* Returns the offset for the entry at the INDEXth position
3656 in the GOT. */
3657
3658 static bfd_vma
3659 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3660 bfd *input_bfd, bfd_vma got_index)
3661 {
3662 struct mips_elf_link_hash_table *htab;
3663 asection *sgot;
3664 bfd_vma gp;
3665
3666 htab = mips_elf_hash_table (info);
3667 BFD_ASSERT (htab != NULL);
3668
3669 sgot = htab->root.sgot;
3670 gp = _bfd_get_gp_value (output_bfd)
3671 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3672
3673 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3674 }
3675
3676 /* Create and return a local GOT entry for VALUE, which was calculated
3677 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3678 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3679 instead. */
3680
3681 static struct mips_got_entry *
3682 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3683 bfd *ibfd, bfd_vma value,
3684 unsigned long r_symndx,
3685 struct mips_elf_link_hash_entry *h,
3686 int r_type)
3687 {
3688 struct mips_got_entry lookup, *entry;
3689 void **loc;
3690 struct mips_got_info *g;
3691 struct mips_elf_link_hash_table *htab;
3692 bfd_vma gotidx;
3693
3694 htab = mips_elf_hash_table (info);
3695 BFD_ASSERT (htab != NULL);
3696
3697 g = mips_elf_bfd_got (ibfd, FALSE);
3698 if (g == NULL)
3699 {
3700 g = mips_elf_bfd_got (abfd, FALSE);
3701 BFD_ASSERT (g != NULL);
3702 }
3703
3704 /* This function shouldn't be called for symbols that live in the global
3705 area of the GOT. */
3706 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3707
3708 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3709 if (lookup.tls_type)
3710 {
3711 lookup.abfd = ibfd;
3712 if (tls_ldm_reloc_p (r_type))
3713 {
3714 lookup.symndx = 0;
3715 lookup.d.addend = 0;
3716 }
3717 else if (h == NULL)
3718 {
3719 lookup.symndx = r_symndx;
3720 lookup.d.addend = 0;
3721 }
3722 else
3723 {
3724 lookup.symndx = -1;
3725 lookup.d.h = h;
3726 }
3727
3728 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3729 BFD_ASSERT (entry);
3730
3731 gotidx = entry->gotidx;
3732 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3733
3734 return entry;
3735 }
3736
3737 lookup.abfd = NULL;
3738 lookup.symndx = -1;
3739 lookup.d.address = value;
3740 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3741 if (!loc)
3742 return NULL;
3743
3744 entry = (struct mips_got_entry *) *loc;
3745 if (entry)
3746 return entry;
3747
3748 if (g->assigned_low_gotno > g->assigned_high_gotno)
3749 {
3750 /* We didn't allocate enough space in the GOT. */
3751 _bfd_error_handler
3752 (_("not enough GOT space for local GOT entries"));
3753 bfd_set_error (bfd_error_bad_value);
3754 return NULL;
3755 }
3756
3757 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3758 if (!entry)
3759 return NULL;
3760
3761 if (got16_reloc_p (r_type)
3762 || call16_reloc_p (r_type)
3763 || got_page_reloc_p (r_type)
3764 || got_disp_reloc_p (r_type))
3765 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3766 else
3767 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3768
3769 *entry = lookup;
3770 *loc = entry;
3771
3772 MIPS_ELF_PUT_WORD (abfd, value, htab->root.sgot->contents + entry->gotidx);
3773
3774 /* These GOT entries need a dynamic relocation on VxWorks. */
3775 if (htab->is_vxworks)
3776 {
3777 Elf_Internal_Rela outrel;
3778 asection *s;
3779 bfd_byte *rloc;
3780 bfd_vma got_address;
3781
3782 s = mips_elf_rel_dyn_section (info, FALSE);
3783 got_address = (htab->root.sgot->output_section->vma
3784 + htab->root.sgot->output_offset
3785 + entry->gotidx);
3786
3787 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3788 outrel.r_offset = got_address;
3789 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3790 outrel.r_addend = value;
3791 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3792 }
3793
3794 return entry;
3795 }
3796
3797 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3798 The number might be exact or a worst-case estimate, depending on how
3799 much information is available to elf_backend_omit_section_dynsym at
3800 the current linking stage. */
3801
3802 static bfd_size_type
3803 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3804 {
3805 bfd_size_type count;
3806
3807 count = 0;
3808 if (bfd_link_pic (info)
3809 || elf_hash_table (info)->is_relocatable_executable)
3810 {
3811 asection *p;
3812 const struct elf_backend_data *bed;
3813
3814 bed = get_elf_backend_data (output_bfd);
3815 for (p = output_bfd->sections; p ; p = p->next)
3816 if ((p->flags & SEC_EXCLUDE) == 0
3817 && (p->flags & SEC_ALLOC) != 0
3818 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3819 ++count;
3820 }
3821 return count;
3822 }
3823
3824 /* Sort the dynamic symbol table so that symbols that need GOT entries
3825 appear towards the end. */
3826
3827 static bfd_boolean
3828 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3829 {
3830 struct mips_elf_link_hash_table *htab;
3831 struct mips_elf_hash_sort_data hsd;
3832 struct mips_got_info *g;
3833
3834 if (elf_hash_table (info)->dynsymcount == 0)
3835 return TRUE;
3836
3837 htab = mips_elf_hash_table (info);
3838 BFD_ASSERT (htab != NULL);
3839
3840 g = htab->got_info;
3841 if (g == NULL)
3842 return TRUE;
3843
3844 hsd.low = NULL;
3845 hsd.max_unref_got_dynindx
3846 = hsd.min_got_dynindx
3847 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3848 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3849 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3850 elf_hash_table (info)),
3851 mips_elf_sort_hash_table_f,
3852 &hsd);
3853
3854 /* There should have been enough room in the symbol table to
3855 accommodate both the GOT and non-GOT symbols. */
3856 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3857 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3858 == elf_hash_table (info)->dynsymcount);
3859 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3860 == g->global_gotno);
3861
3862 /* Now we know which dynamic symbol has the lowest dynamic symbol
3863 table index in the GOT. */
3864 htab->global_gotsym = hsd.low;
3865
3866 return TRUE;
3867 }
3868
3869 /* If H needs a GOT entry, assign it the highest available dynamic
3870 index. Otherwise, assign it the lowest available dynamic
3871 index. */
3872
3873 static bfd_boolean
3874 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3875 {
3876 struct mips_elf_hash_sort_data *hsd = data;
3877
3878 /* Symbols without dynamic symbol table entries aren't interesting
3879 at all. */
3880 if (h->root.dynindx == -1)
3881 return TRUE;
3882
3883 switch (h->global_got_area)
3884 {
3885 case GGA_NONE:
3886 h->root.dynindx = hsd->max_non_got_dynindx++;
3887 break;
3888
3889 case GGA_NORMAL:
3890 h->root.dynindx = --hsd->min_got_dynindx;
3891 hsd->low = (struct elf_link_hash_entry *) h;
3892 break;
3893
3894 case GGA_RELOC_ONLY:
3895 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3896 hsd->low = (struct elf_link_hash_entry *) h;
3897 h->root.dynindx = hsd->max_unref_got_dynindx++;
3898 break;
3899 }
3900
3901 return TRUE;
3902 }
3903
3904 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3905 (which is owned by the caller and shouldn't be added to the
3906 hash table directly). */
3907
3908 static bfd_boolean
3909 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3910 struct mips_got_entry *lookup)
3911 {
3912 struct mips_elf_link_hash_table *htab;
3913 struct mips_got_entry *entry;
3914 struct mips_got_info *g;
3915 void **loc, **bfd_loc;
3916
3917 /* Make sure there's a slot for this entry in the master GOT. */
3918 htab = mips_elf_hash_table (info);
3919 g = htab->got_info;
3920 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3921 if (!loc)
3922 return FALSE;
3923
3924 /* Populate the entry if it isn't already. */
3925 entry = (struct mips_got_entry *) *loc;
3926 if (!entry)
3927 {
3928 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3929 if (!entry)
3930 return FALSE;
3931
3932 lookup->tls_initialized = FALSE;
3933 lookup->gotidx = -1;
3934 *entry = *lookup;
3935 *loc = entry;
3936 }
3937
3938 /* Reuse the same GOT entry for the BFD's GOT. */
3939 g = mips_elf_bfd_got (abfd, TRUE);
3940 if (!g)
3941 return FALSE;
3942
3943 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3944 if (!bfd_loc)
3945 return FALSE;
3946
3947 if (!*bfd_loc)
3948 *bfd_loc = entry;
3949 return TRUE;
3950 }
3951
3952 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3953 entry for it. FOR_CALL is true if the caller is only interested in
3954 using the GOT entry for calls. */
3955
3956 static bfd_boolean
3957 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3958 bfd *abfd, struct bfd_link_info *info,
3959 bfd_boolean for_call, int r_type)
3960 {
3961 struct mips_elf_link_hash_table *htab;
3962 struct mips_elf_link_hash_entry *hmips;
3963 struct mips_got_entry entry;
3964 unsigned char tls_type;
3965
3966 htab = mips_elf_hash_table (info);
3967 BFD_ASSERT (htab != NULL);
3968
3969 hmips = (struct mips_elf_link_hash_entry *) h;
3970 if (!for_call)
3971 hmips->got_only_for_calls = FALSE;
3972
3973 /* A global symbol in the GOT must also be in the dynamic symbol
3974 table. */
3975 if (h->dynindx == -1)
3976 {
3977 switch (ELF_ST_VISIBILITY (h->other))
3978 {
3979 case STV_INTERNAL:
3980 case STV_HIDDEN:
3981 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3982 break;
3983 }
3984 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3985 return FALSE;
3986 }
3987
3988 tls_type = mips_elf_reloc_tls_type (r_type);
3989 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
3990 hmips->global_got_area = GGA_NORMAL;
3991
3992 entry.abfd = abfd;
3993 entry.symndx = -1;
3994 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3995 entry.tls_type = tls_type;
3996 return mips_elf_record_got_entry (info, abfd, &entry);
3997 }
3998
3999 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
4000 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
4001
4002 static bfd_boolean
4003 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
4004 struct bfd_link_info *info, int r_type)
4005 {
4006 struct mips_elf_link_hash_table *htab;
4007 struct mips_got_info *g;
4008 struct mips_got_entry entry;
4009
4010 htab = mips_elf_hash_table (info);
4011 BFD_ASSERT (htab != NULL);
4012
4013 g = htab->got_info;
4014 BFD_ASSERT (g != NULL);
4015
4016 entry.abfd = abfd;
4017 entry.symndx = symndx;
4018 entry.d.addend = addend;
4019 entry.tls_type = mips_elf_reloc_tls_type (r_type);
4020 return mips_elf_record_got_entry (info, abfd, &entry);
4021 }
4022
4023 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4024 H is the symbol's hash table entry, or null if SYMNDX is local
4025 to ABFD. */
4026
4027 static bfd_boolean
4028 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4029 long symndx, struct elf_link_hash_entry *h,
4030 bfd_signed_vma addend)
4031 {
4032 struct mips_elf_link_hash_table *htab;
4033 struct mips_got_info *g1, *g2;
4034 struct mips_got_page_ref lookup, *entry;
4035 void **loc, **bfd_loc;
4036
4037 htab = mips_elf_hash_table (info);
4038 BFD_ASSERT (htab != NULL);
4039
4040 g1 = htab->got_info;
4041 BFD_ASSERT (g1 != NULL);
4042
4043 if (h)
4044 {
4045 lookup.symndx = -1;
4046 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4047 }
4048 else
4049 {
4050 lookup.symndx = symndx;
4051 lookup.u.abfd = abfd;
4052 }
4053 lookup.addend = addend;
4054 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4055 if (loc == NULL)
4056 return FALSE;
4057
4058 entry = (struct mips_got_page_ref *) *loc;
4059 if (!entry)
4060 {
4061 entry = bfd_alloc (abfd, sizeof (*entry));
4062 if (!entry)
4063 return FALSE;
4064
4065 *entry = lookup;
4066 *loc = entry;
4067 }
4068
4069 /* Add the same entry to the BFD's GOT. */
4070 g2 = mips_elf_bfd_got (abfd, TRUE);
4071 if (!g2)
4072 return FALSE;
4073
4074 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4075 if (!bfd_loc)
4076 return FALSE;
4077
4078 if (!*bfd_loc)
4079 *bfd_loc = entry;
4080
4081 return TRUE;
4082 }
4083
4084 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4085
4086 static void
4087 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4088 unsigned int n)
4089 {
4090 asection *s;
4091 struct mips_elf_link_hash_table *htab;
4092
4093 htab = mips_elf_hash_table (info);
4094 BFD_ASSERT (htab != NULL);
4095
4096 s = mips_elf_rel_dyn_section (info, FALSE);
4097 BFD_ASSERT (s != NULL);
4098
4099 if (htab->is_vxworks)
4100 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4101 else
4102 {
4103 if (s->size == 0)
4104 {
4105 /* Make room for a null element. */
4106 s->size += MIPS_ELF_REL_SIZE (abfd);
4107 ++s->reloc_count;
4108 }
4109 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4110 }
4111 }
4112 \f
4113 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4114 mips_elf_traverse_got_arg structure. Count the number of GOT
4115 entries and TLS relocs. Set DATA->value to true if we need
4116 to resolve indirect or warning symbols and then recreate the GOT. */
4117
4118 static int
4119 mips_elf_check_recreate_got (void **entryp, void *data)
4120 {
4121 struct mips_got_entry *entry;
4122 struct mips_elf_traverse_got_arg *arg;
4123
4124 entry = (struct mips_got_entry *) *entryp;
4125 arg = (struct mips_elf_traverse_got_arg *) data;
4126 if (entry->abfd != NULL && entry->symndx == -1)
4127 {
4128 struct mips_elf_link_hash_entry *h;
4129
4130 h = entry->d.h;
4131 if (h->root.root.type == bfd_link_hash_indirect
4132 || h->root.root.type == bfd_link_hash_warning)
4133 {
4134 arg->value = TRUE;
4135 return 0;
4136 }
4137 }
4138 mips_elf_count_got_entry (arg->info, arg->g, entry);
4139 return 1;
4140 }
4141
4142 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4143 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4144 converting entries for indirect and warning symbols into entries
4145 for the target symbol. Set DATA->g to null on error. */
4146
4147 static int
4148 mips_elf_recreate_got (void **entryp, void *data)
4149 {
4150 struct mips_got_entry new_entry, *entry;
4151 struct mips_elf_traverse_got_arg *arg;
4152 void **slot;
4153
4154 entry = (struct mips_got_entry *) *entryp;
4155 arg = (struct mips_elf_traverse_got_arg *) data;
4156 if (entry->abfd != NULL
4157 && entry->symndx == -1
4158 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4159 || entry->d.h->root.root.type == bfd_link_hash_warning))
4160 {
4161 struct mips_elf_link_hash_entry *h;
4162
4163 new_entry = *entry;
4164 entry = &new_entry;
4165 h = entry->d.h;
4166 do
4167 {
4168 BFD_ASSERT (h->global_got_area == GGA_NONE);
4169 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4170 }
4171 while (h->root.root.type == bfd_link_hash_indirect
4172 || h->root.root.type == bfd_link_hash_warning);
4173 entry->d.h = h;
4174 }
4175 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4176 if (slot == NULL)
4177 {
4178 arg->g = NULL;
4179 return 0;
4180 }
4181 if (*slot == NULL)
4182 {
4183 if (entry == &new_entry)
4184 {
4185 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4186 if (!entry)
4187 {
4188 arg->g = NULL;
4189 return 0;
4190 }
4191 *entry = new_entry;
4192 }
4193 *slot = entry;
4194 mips_elf_count_got_entry (arg->info, arg->g, entry);
4195 }
4196 return 1;
4197 }
4198
4199 /* Return the maximum number of GOT page entries required for RANGE. */
4200
4201 static bfd_vma
4202 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4203 {
4204 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4205 }
4206
4207 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4208
4209 static bfd_boolean
4210 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4211 asection *sec, bfd_signed_vma addend)
4212 {
4213 struct mips_got_info *g = arg->g;
4214 struct mips_got_page_entry lookup, *entry;
4215 struct mips_got_page_range **range_ptr, *range;
4216 bfd_vma old_pages, new_pages;
4217 void **loc;
4218
4219 /* Find the mips_got_page_entry hash table entry for this section. */
4220 lookup.sec = sec;
4221 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4222 if (loc == NULL)
4223 return FALSE;
4224
4225 /* Create a mips_got_page_entry if this is the first time we've
4226 seen the section. */
4227 entry = (struct mips_got_page_entry *) *loc;
4228 if (!entry)
4229 {
4230 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4231 if (!entry)
4232 return FALSE;
4233
4234 entry->sec = sec;
4235 *loc = entry;
4236 }
4237
4238 /* Skip over ranges whose maximum extent cannot share a page entry
4239 with ADDEND. */
4240 range_ptr = &entry->ranges;
4241 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4242 range_ptr = &(*range_ptr)->next;
4243
4244 /* If we scanned to the end of the list, or found a range whose
4245 minimum extent cannot share a page entry with ADDEND, create
4246 a new singleton range. */
4247 range = *range_ptr;
4248 if (!range || addend < range->min_addend - 0xffff)
4249 {
4250 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4251 if (!range)
4252 return FALSE;
4253
4254 range->next = *range_ptr;
4255 range->min_addend = addend;
4256 range->max_addend = addend;
4257
4258 *range_ptr = range;
4259 entry->num_pages++;
4260 g->page_gotno++;
4261 return TRUE;
4262 }
4263
4264 /* Remember how many pages the old range contributed. */
4265 old_pages = mips_elf_pages_for_range (range);
4266
4267 /* Update the ranges. */
4268 if (addend < range->min_addend)
4269 range->min_addend = addend;
4270 else if (addend > range->max_addend)
4271 {
4272 if (range->next && addend >= range->next->min_addend - 0xffff)
4273 {
4274 old_pages += mips_elf_pages_for_range (range->next);
4275 range->max_addend = range->next->max_addend;
4276 range->next = range->next->next;
4277 }
4278 else
4279 range->max_addend = addend;
4280 }
4281
4282 /* Record any change in the total estimate. */
4283 new_pages = mips_elf_pages_for_range (range);
4284 if (old_pages != new_pages)
4285 {
4286 entry->num_pages += new_pages - old_pages;
4287 g->page_gotno += new_pages - old_pages;
4288 }
4289
4290 return TRUE;
4291 }
4292
4293 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4294 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4295 whether the page reference described by *REFP needs a GOT page entry,
4296 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4297
4298 static bfd_boolean
4299 mips_elf_resolve_got_page_ref (void **refp, void *data)
4300 {
4301 struct mips_got_page_ref *ref;
4302 struct mips_elf_traverse_got_arg *arg;
4303 struct mips_elf_link_hash_table *htab;
4304 asection *sec;
4305 bfd_vma addend;
4306
4307 ref = (struct mips_got_page_ref *) *refp;
4308 arg = (struct mips_elf_traverse_got_arg *) data;
4309 htab = mips_elf_hash_table (arg->info);
4310
4311 if (ref->symndx < 0)
4312 {
4313 struct mips_elf_link_hash_entry *h;
4314
4315 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4316 h = ref->u.h;
4317 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4318 return 1;
4319
4320 /* Ignore undefined symbols; we'll issue an error later if
4321 appropriate. */
4322 if (!((h->root.root.type == bfd_link_hash_defined
4323 || h->root.root.type == bfd_link_hash_defweak)
4324 && h->root.root.u.def.section))
4325 return 1;
4326
4327 sec = h->root.root.u.def.section;
4328 addend = h->root.root.u.def.value + ref->addend;
4329 }
4330 else
4331 {
4332 Elf_Internal_Sym *isym;
4333
4334 /* Read in the symbol. */
4335 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4336 ref->symndx);
4337 if (isym == NULL)
4338 {
4339 arg->g = NULL;
4340 return 0;
4341 }
4342
4343 /* Get the associated input section. */
4344 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4345 if (sec == NULL)
4346 {
4347 arg->g = NULL;
4348 return 0;
4349 }
4350
4351 /* If this is a mergable section, work out the section and offset
4352 of the merged data. For section symbols, the addend specifies
4353 of the offset _of_ the first byte in the data, otherwise it
4354 specifies the offset _from_ the first byte. */
4355 if (sec->flags & SEC_MERGE)
4356 {
4357 void *secinfo;
4358
4359 secinfo = elf_section_data (sec)->sec_info;
4360 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4361 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4362 isym->st_value + ref->addend);
4363 else
4364 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4365 isym->st_value) + ref->addend;
4366 }
4367 else
4368 addend = isym->st_value + ref->addend;
4369 }
4370 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4371 {
4372 arg->g = NULL;
4373 return 0;
4374 }
4375 return 1;
4376 }
4377
4378 /* If any entries in G->got_entries are for indirect or warning symbols,
4379 replace them with entries for the target symbol. Convert g->got_page_refs
4380 into got_page_entry structures and estimate the number of page entries
4381 that they require. */
4382
4383 static bfd_boolean
4384 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4385 struct mips_got_info *g)
4386 {
4387 struct mips_elf_traverse_got_arg tga;
4388 struct mips_got_info oldg;
4389
4390 oldg = *g;
4391
4392 tga.info = info;
4393 tga.g = g;
4394 tga.value = FALSE;
4395 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4396 if (tga.value)
4397 {
4398 *g = oldg;
4399 g->got_entries = htab_create (htab_size (oldg.got_entries),
4400 mips_elf_got_entry_hash,
4401 mips_elf_got_entry_eq, NULL);
4402 if (!g->got_entries)
4403 return FALSE;
4404
4405 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4406 if (!tga.g)
4407 return FALSE;
4408
4409 htab_delete (oldg.got_entries);
4410 }
4411
4412 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4413 mips_got_page_entry_eq, NULL);
4414 if (g->got_page_entries == NULL)
4415 return FALSE;
4416
4417 tga.info = info;
4418 tga.g = g;
4419 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4420
4421 return TRUE;
4422 }
4423
4424 /* Return true if a GOT entry for H should live in the local rather than
4425 global GOT area. */
4426
4427 static bfd_boolean
4428 mips_use_local_got_p (struct bfd_link_info *info,
4429 struct mips_elf_link_hash_entry *h)
4430 {
4431 /* Symbols that aren't in the dynamic symbol table must live in the
4432 local GOT. This includes symbols that are completely undefined
4433 and which therefore don't bind locally. We'll report undefined
4434 symbols later if appropriate. */
4435 if (h->root.dynindx == -1)
4436 return TRUE;
4437
4438 /* Symbols that bind locally can (and in the case of forced-local
4439 symbols, must) live in the local GOT. */
4440 if (h->got_only_for_calls
4441 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4442 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4443 return TRUE;
4444
4445 /* If this is an executable that must provide a definition of the symbol,
4446 either though PLTs or copy relocations, then that address should go in
4447 the local rather than global GOT. */
4448 if (bfd_link_executable (info) && h->has_static_relocs)
4449 return TRUE;
4450
4451 return FALSE;
4452 }
4453
4454 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4455 link_info structure. Decide whether the hash entry needs an entry in
4456 the global part of the primary GOT, setting global_got_area accordingly.
4457 Count the number of global symbols that are in the primary GOT only
4458 because they have relocations against them (reloc_only_gotno). */
4459
4460 static int
4461 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4462 {
4463 struct bfd_link_info *info;
4464 struct mips_elf_link_hash_table *htab;
4465 struct mips_got_info *g;
4466
4467 info = (struct bfd_link_info *) data;
4468 htab = mips_elf_hash_table (info);
4469 g = htab->got_info;
4470 if (h->global_got_area != GGA_NONE)
4471 {
4472 /* Make a final decision about whether the symbol belongs in the
4473 local or global GOT. */
4474 if (mips_use_local_got_p (info, h))
4475 /* The symbol belongs in the local GOT. We no longer need this
4476 entry if it was only used for relocations; those relocations
4477 will be against the null or section symbol instead of H. */
4478 h->global_got_area = GGA_NONE;
4479 else if (htab->is_vxworks
4480 && h->got_only_for_calls
4481 && h->root.plt.plist->mips_offset != MINUS_ONE)
4482 /* On VxWorks, calls can refer directly to the .got.plt entry;
4483 they don't need entries in the regular GOT. .got.plt entries
4484 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4485 h->global_got_area = GGA_NONE;
4486 else if (h->global_got_area == GGA_RELOC_ONLY)
4487 {
4488 g->reloc_only_gotno++;
4489 g->global_gotno++;
4490 }
4491 }
4492 return 1;
4493 }
4494 \f
4495 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4496 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4497
4498 static int
4499 mips_elf_add_got_entry (void **entryp, void *data)
4500 {
4501 struct mips_got_entry *entry;
4502 struct mips_elf_traverse_got_arg *arg;
4503 void **slot;
4504
4505 entry = (struct mips_got_entry *) *entryp;
4506 arg = (struct mips_elf_traverse_got_arg *) data;
4507 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4508 if (!slot)
4509 {
4510 arg->g = NULL;
4511 return 0;
4512 }
4513 if (!*slot)
4514 {
4515 *slot = entry;
4516 mips_elf_count_got_entry (arg->info, arg->g, entry);
4517 }
4518 return 1;
4519 }
4520
4521 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4522 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4523
4524 static int
4525 mips_elf_add_got_page_entry (void **entryp, void *data)
4526 {
4527 struct mips_got_page_entry *entry;
4528 struct mips_elf_traverse_got_arg *arg;
4529 void **slot;
4530
4531 entry = (struct mips_got_page_entry *) *entryp;
4532 arg = (struct mips_elf_traverse_got_arg *) data;
4533 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4534 if (!slot)
4535 {
4536 arg->g = NULL;
4537 return 0;
4538 }
4539 if (!*slot)
4540 {
4541 *slot = entry;
4542 arg->g->page_gotno += entry->num_pages;
4543 }
4544 return 1;
4545 }
4546
4547 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4548 this would lead to overflow, 1 if they were merged successfully,
4549 and 0 if a merge failed due to lack of memory. (These values are chosen
4550 so that nonnegative return values can be returned by a htab_traverse
4551 callback.) */
4552
4553 static int
4554 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4555 struct mips_got_info *to,
4556 struct mips_elf_got_per_bfd_arg *arg)
4557 {
4558 struct mips_elf_traverse_got_arg tga;
4559 unsigned int estimate;
4560
4561 /* Work out how many page entries we would need for the combined GOT. */
4562 estimate = arg->max_pages;
4563 if (estimate >= from->page_gotno + to->page_gotno)
4564 estimate = from->page_gotno + to->page_gotno;
4565
4566 /* And conservatively estimate how many local and TLS entries
4567 would be needed. */
4568 estimate += from->local_gotno + to->local_gotno;
4569 estimate += from->tls_gotno + to->tls_gotno;
4570
4571 /* If we're merging with the primary got, any TLS relocations will
4572 come after the full set of global entries. Otherwise estimate those
4573 conservatively as well. */
4574 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4575 estimate += arg->global_count;
4576 else
4577 estimate += from->global_gotno + to->global_gotno;
4578
4579 /* Bail out if the combined GOT might be too big. */
4580 if (estimate > arg->max_count)
4581 return -1;
4582
4583 /* Transfer the bfd's got information from FROM to TO. */
4584 tga.info = arg->info;
4585 tga.g = to;
4586 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4587 if (!tga.g)
4588 return 0;
4589
4590 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4591 if (!tga.g)
4592 return 0;
4593
4594 mips_elf_replace_bfd_got (abfd, to);
4595 return 1;
4596 }
4597
4598 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4599 as possible of the primary got, since it doesn't require explicit
4600 dynamic relocations, but don't use bfds that would reference global
4601 symbols out of the addressable range. Failing the primary got,
4602 attempt to merge with the current got, or finish the current got
4603 and then make make the new got current. */
4604
4605 static bfd_boolean
4606 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4607 struct mips_elf_got_per_bfd_arg *arg)
4608 {
4609 unsigned int estimate;
4610 int result;
4611
4612 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4613 return FALSE;
4614
4615 /* Work out the number of page, local and TLS entries. */
4616 estimate = arg->max_pages;
4617 if (estimate > g->page_gotno)
4618 estimate = g->page_gotno;
4619 estimate += g->local_gotno + g->tls_gotno;
4620
4621 /* We place TLS GOT entries after both locals and globals. The globals
4622 for the primary GOT may overflow the normal GOT size limit, so be
4623 sure not to merge a GOT which requires TLS with the primary GOT in that
4624 case. This doesn't affect non-primary GOTs. */
4625 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4626
4627 if (estimate <= arg->max_count)
4628 {
4629 /* If we don't have a primary GOT, use it as
4630 a starting point for the primary GOT. */
4631 if (!arg->primary)
4632 {
4633 arg->primary = g;
4634 return TRUE;
4635 }
4636
4637 /* Try merging with the primary GOT. */
4638 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4639 if (result >= 0)
4640 return result;
4641 }
4642
4643 /* If we can merge with the last-created got, do it. */
4644 if (arg->current)
4645 {
4646 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4647 if (result >= 0)
4648 return result;
4649 }
4650
4651 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4652 fits; if it turns out that it doesn't, we'll get relocation
4653 overflows anyway. */
4654 g->next = arg->current;
4655 arg->current = g;
4656
4657 return TRUE;
4658 }
4659
4660 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4661 to GOTIDX, duplicating the entry if it has already been assigned
4662 an index in a different GOT. */
4663
4664 static bfd_boolean
4665 mips_elf_set_gotidx (void **entryp, long gotidx)
4666 {
4667 struct mips_got_entry *entry;
4668
4669 entry = (struct mips_got_entry *) *entryp;
4670 if (entry->gotidx > 0)
4671 {
4672 struct mips_got_entry *new_entry;
4673
4674 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4675 if (!new_entry)
4676 return FALSE;
4677
4678 *new_entry = *entry;
4679 *entryp = new_entry;
4680 entry = new_entry;
4681 }
4682 entry->gotidx = gotidx;
4683 return TRUE;
4684 }
4685
4686 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4687 mips_elf_traverse_got_arg in which DATA->value is the size of one
4688 GOT entry. Set DATA->g to null on failure. */
4689
4690 static int
4691 mips_elf_initialize_tls_index (void **entryp, void *data)
4692 {
4693 struct mips_got_entry *entry;
4694 struct mips_elf_traverse_got_arg *arg;
4695
4696 /* We're only interested in TLS symbols. */
4697 entry = (struct mips_got_entry *) *entryp;
4698 if (entry->tls_type == GOT_TLS_NONE)
4699 return 1;
4700
4701 arg = (struct mips_elf_traverse_got_arg *) data;
4702 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4703 {
4704 arg->g = NULL;
4705 return 0;
4706 }
4707
4708 /* Account for the entries we've just allocated. */
4709 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4710 return 1;
4711 }
4712
4713 /* A htab_traverse callback for GOT entries, where DATA points to a
4714 mips_elf_traverse_got_arg. Set the global_got_area of each global
4715 symbol to DATA->value. */
4716
4717 static int
4718 mips_elf_set_global_got_area (void **entryp, void *data)
4719 {
4720 struct mips_got_entry *entry;
4721 struct mips_elf_traverse_got_arg *arg;
4722
4723 entry = (struct mips_got_entry *) *entryp;
4724 arg = (struct mips_elf_traverse_got_arg *) data;
4725 if (entry->abfd != NULL
4726 && entry->symndx == -1
4727 && entry->d.h->global_got_area != GGA_NONE)
4728 entry->d.h->global_got_area = arg->value;
4729 return 1;
4730 }
4731
4732 /* A htab_traverse callback for secondary GOT entries, where DATA points
4733 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4734 and record the number of relocations they require. DATA->value is
4735 the size of one GOT entry. Set DATA->g to null on failure. */
4736
4737 static int
4738 mips_elf_set_global_gotidx (void **entryp, void *data)
4739 {
4740 struct mips_got_entry *entry;
4741 struct mips_elf_traverse_got_arg *arg;
4742
4743 entry = (struct mips_got_entry *) *entryp;
4744 arg = (struct mips_elf_traverse_got_arg *) data;
4745 if (entry->abfd != NULL
4746 && entry->symndx == -1
4747 && entry->d.h->global_got_area != GGA_NONE)
4748 {
4749 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4750 {
4751 arg->g = NULL;
4752 return 0;
4753 }
4754 arg->g->assigned_low_gotno += 1;
4755
4756 if (bfd_link_pic (arg->info)
4757 || (elf_hash_table (arg->info)->dynamic_sections_created
4758 && entry->d.h->root.def_dynamic
4759 && !entry->d.h->root.def_regular))
4760 arg->g->relocs += 1;
4761 }
4762
4763 return 1;
4764 }
4765
4766 /* A htab_traverse callback for GOT entries for which DATA is the
4767 bfd_link_info. Forbid any global symbols from having traditional
4768 lazy-binding stubs. */
4769
4770 static int
4771 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4772 {
4773 struct bfd_link_info *info;
4774 struct mips_elf_link_hash_table *htab;
4775 struct mips_got_entry *entry;
4776
4777 entry = (struct mips_got_entry *) *entryp;
4778 info = (struct bfd_link_info *) data;
4779 htab = mips_elf_hash_table (info);
4780 BFD_ASSERT (htab != NULL);
4781
4782 if (entry->abfd != NULL
4783 && entry->symndx == -1
4784 && entry->d.h->needs_lazy_stub)
4785 {
4786 entry->d.h->needs_lazy_stub = FALSE;
4787 htab->lazy_stub_count--;
4788 }
4789
4790 return 1;
4791 }
4792
4793 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4794 the primary GOT. */
4795 static bfd_vma
4796 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4797 {
4798 if (!g->next)
4799 return 0;
4800
4801 g = mips_elf_bfd_got (ibfd, FALSE);
4802 if (! g)
4803 return 0;
4804
4805 BFD_ASSERT (g->next);
4806
4807 g = g->next;
4808
4809 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4810 * MIPS_ELF_GOT_SIZE (abfd);
4811 }
4812
4813 /* Turn a single GOT that is too big for 16-bit addressing into
4814 a sequence of GOTs, each one 16-bit addressable. */
4815
4816 static bfd_boolean
4817 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4818 asection *got, bfd_size_type pages)
4819 {
4820 struct mips_elf_link_hash_table *htab;
4821 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4822 struct mips_elf_traverse_got_arg tga;
4823 struct mips_got_info *g, *gg;
4824 unsigned int assign, needed_relocs;
4825 bfd *dynobj, *ibfd;
4826
4827 dynobj = elf_hash_table (info)->dynobj;
4828 htab = mips_elf_hash_table (info);
4829 BFD_ASSERT (htab != NULL);
4830
4831 g = htab->got_info;
4832
4833 got_per_bfd_arg.obfd = abfd;
4834 got_per_bfd_arg.info = info;
4835 got_per_bfd_arg.current = NULL;
4836 got_per_bfd_arg.primary = NULL;
4837 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4838 / MIPS_ELF_GOT_SIZE (abfd))
4839 - htab->reserved_gotno);
4840 got_per_bfd_arg.max_pages = pages;
4841 /* The number of globals that will be included in the primary GOT.
4842 See the calls to mips_elf_set_global_got_area below for more
4843 information. */
4844 got_per_bfd_arg.global_count = g->global_gotno;
4845
4846 /* Try to merge the GOTs of input bfds together, as long as they
4847 don't seem to exceed the maximum GOT size, choosing one of them
4848 to be the primary GOT. */
4849 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4850 {
4851 gg = mips_elf_bfd_got (ibfd, FALSE);
4852 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4853 return FALSE;
4854 }
4855
4856 /* If we do not find any suitable primary GOT, create an empty one. */
4857 if (got_per_bfd_arg.primary == NULL)
4858 g->next = mips_elf_create_got_info (abfd);
4859 else
4860 g->next = got_per_bfd_arg.primary;
4861 g->next->next = got_per_bfd_arg.current;
4862
4863 /* GG is now the master GOT, and G is the primary GOT. */
4864 gg = g;
4865 g = g->next;
4866
4867 /* Map the output bfd to the primary got. That's what we're going
4868 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4869 didn't mark in check_relocs, and we want a quick way to find it.
4870 We can't just use gg->next because we're going to reverse the
4871 list. */
4872 mips_elf_replace_bfd_got (abfd, g);
4873
4874 /* Every symbol that is referenced in a dynamic relocation must be
4875 present in the primary GOT, so arrange for them to appear after
4876 those that are actually referenced. */
4877 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4878 g->global_gotno = gg->global_gotno;
4879
4880 tga.info = info;
4881 tga.value = GGA_RELOC_ONLY;
4882 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4883 tga.value = GGA_NORMAL;
4884 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4885
4886 /* Now go through the GOTs assigning them offset ranges.
4887 [assigned_low_gotno, local_gotno[ will be set to the range of local
4888 entries in each GOT. We can then compute the end of a GOT by
4889 adding local_gotno to global_gotno. We reverse the list and make
4890 it circular since then we'll be able to quickly compute the
4891 beginning of a GOT, by computing the end of its predecessor. To
4892 avoid special cases for the primary GOT, while still preserving
4893 assertions that are valid for both single- and multi-got links,
4894 we arrange for the main got struct to have the right number of
4895 global entries, but set its local_gotno such that the initial
4896 offset of the primary GOT is zero. Remember that the primary GOT
4897 will become the last item in the circular linked list, so it
4898 points back to the master GOT. */
4899 gg->local_gotno = -g->global_gotno;
4900 gg->global_gotno = g->global_gotno;
4901 gg->tls_gotno = 0;
4902 assign = 0;
4903 gg->next = gg;
4904
4905 do
4906 {
4907 struct mips_got_info *gn;
4908
4909 assign += htab->reserved_gotno;
4910 g->assigned_low_gotno = assign;
4911 g->local_gotno += assign;
4912 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4913 g->assigned_high_gotno = g->local_gotno - 1;
4914 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4915
4916 /* Take g out of the direct list, and push it onto the reversed
4917 list that gg points to. g->next is guaranteed to be nonnull after
4918 this operation, as required by mips_elf_initialize_tls_index. */
4919 gn = g->next;
4920 g->next = gg->next;
4921 gg->next = g;
4922
4923 /* Set up any TLS entries. We always place the TLS entries after
4924 all non-TLS entries. */
4925 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4926 tga.g = g;
4927 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4928 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4929 if (!tga.g)
4930 return FALSE;
4931 BFD_ASSERT (g->tls_assigned_gotno == assign);
4932
4933 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4934 g = gn;
4935
4936 /* Forbid global symbols in every non-primary GOT from having
4937 lazy-binding stubs. */
4938 if (g)
4939 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4940 }
4941 while (g);
4942
4943 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
4944
4945 needed_relocs = 0;
4946 for (g = gg->next; g && g->next != gg; g = g->next)
4947 {
4948 unsigned int save_assign;
4949
4950 /* Assign offsets to global GOT entries and count how many
4951 relocations they need. */
4952 save_assign = g->assigned_low_gotno;
4953 g->assigned_low_gotno = g->local_gotno;
4954 tga.info = info;
4955 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4956 tga.g = g;
4957 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
4958 if (!tga.g)
4959 return FALSE;
4960 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4961 g->assigned_low_gotno = save_assign;
4962
4963 if (bfd_link_pic (info))
4964 {
4965 g->relocs += g->local_gotno - g->assigned_low_gotno;
4966 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
4967 + g->next->global_gotno
4968 + g->next->tls_gotno
4969 + htab->reserved_gotno);
4970 }
4971 needed_relocs += g->relocs;
4972 }
4973 needed_relocs += g->relocs;
4974
4975 if (needed_relocs)
4976 mips_elf_allocate_dynamic_relocations (dynobj, info,
4977 needed_relocs);
4978
4979 return TRUE;
4980 }
4981
4982 \f
4983 /* Returns the first relocation of type r_type found, beginning with
4984 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4985
4986 static const Elf_Internal_Rela *
4987 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4988 const Elf_Internal_Rela *relocation,
4989 const Elf_Internal_Rela *relend)
4990 {
4991 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4992
4993 while (relocation < relend)
4994 {
4995 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4996 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4997 return relocation;
4998
4999 ++relocation;
5000 }
5001
5002 /* We didn't find it. */
5003 return NULL;
5004 }
5005
5006 /* Return whether an input relocation is against a local symbol. */
5007
5008 static bfd_boolean
5009 mips_elf_local_relocation_p (bfd *input_bfd,
5010 const Elf_Internal_Rela *relocation,
5011 asection **local_sections)
5012 {
5013 unsigned long r_symndx;
5014 Elf_Internal_Shdr *symtab_hdr;
5015 size_t extsymoff;
5016
5017 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5018 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5019 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5020
5021 if (r_symndx < extsymoff)
5022 return TRUE;
5023 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5024 return TRUE;
5025
5026 return FALSE;
5027 }
5028 \f
5029 /* Sign-extend VALUE, which has the indicated number of BITS. */
5030
5031 bfd_vma
5032 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
5033 {
5034 if (value & ((bfd_vma) 1 << (bits - 1)))
5035 /* VALUE is negative. */
5036 value |= ((bfd_vma) - 1) << bits;
5037
5038 return value;
5039 }
5040
5041 /* Return non-zero if the indicated VALUE has overflowed the maximum
5042 range expressible by a signed number with the indicated number of
5043 BITS. */
5044
5045 static bfd_boolean
5046 mips_elf_overflow_p (bfd_vma value, int bits)
5047 {
5048 bfd_signed_vma svalue = (bfd_signed_vma) value;
5049
5050 if (svalue > (1 << (bits - 1)) - 1)
5051 /* The value is too big. */
5052 return TRUE;
5053 else if (svalue < -(1 << (bits - 1)))
5054 /* The value is too small. */
5055 return TRUE;
5056
5057 /* All is well. */
5058 return FALSE;
5059 }
5060
5061 /* Calculate the %high function. */
5062
5063 static bfd_vma
5064 mips_elf_high (bfd_vma value)
5065 {
5066 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5067 }
5068
5069 /* Calculate the %higher function. */
5070
5071 static bfd_vma
5072 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5073 {
5074 #ifdef BFD64
5075 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5076 #else
5077 abort ();
5078 return MINUS_ONE;
5079 #endif
5080 }
5081
5082 /* Calculate the %highest function. */
5083
5084 static bfd_vma
5085 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5086 {
5087 #ifdef BFD64
5088 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5089 #else
5090 abort ();
5091 return MINUS_ONE;
5092 #endif
5093 }
5094 \f
5095 /* Create the .compact_rel section. */
5096
5097 static bfd_boolean
5098 mips_elf_create_compact_rel_section
5099 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5100 {
5101 flagword flags;
5102 register asection *s;
5103
5104 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5105 {
5106 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5107 | SEC_READONLY);
5108
5109 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5110 if (s == NULL
5111 || ! bfd_set_section_alignment (abfd, s,
5112 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5113 return FALSE;
5114
5115 s->size = sizeof (Elf32_External_compact_rel);
5116 }
5117
5118 return TRUE;
5119 }
5120
5121 /* Create the .got section to hold the global offset table. */
5122
5123 static bfd_boolean
5124 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5125 {
5126 flagword flags;
5127 register asection *s;
5128 struct elf_link_hash_entry *h;
5129 struct bfd_link_hash_entry *bh;
5130 struct mips_elf_link_hash_table *htab;
5131
5132 htab = mips_elf_hash_table (info);
5133 BFD_ASSERT (htab != NULL);
5134
5135 /* This function may be called more than once. */
5136 if (htab->root.sgot)
5137 return TRUE;
5138
5139 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5140 | SEC_LINKER_CREATED);
5141
5142 /* We have to use an alignment of 2**4 here because this is hardcoded
5143 in the function stub generation and in the linker script. */
5144 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5145 if (s == NULL
5146 || ! bfd_set_section_alignment (abfd, s, 4))
5147 return FALSE;
5148 htab->root.sgot = s;
5149
5150 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5151 linker script because we don't want to define the symbol if we
5152 are not creating a global offset table. */
5153 bh = NULL;
5154 if (! (_bfd_generic_link_add_one_symbol
5155 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5156 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5157 return FALSE;
5158
5159 h = (struct elf_link_hash_entry *) bh;
5160 h->non_elf = 0;
5161 h->def_regular = 1;
5162 h->type = STT_OBJECT;
5163 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5164 elf_hash_table (info)->hgot = h;
5165
5166 if (bfd_link_pic (info)
5167 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5168 return FALSE;
5169
5170 htab->got_info = mips_elf_create_got_info (abfd);
5171 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5172 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5173
5174 /* We also need a .got.plt section when generating PLTs. */
5175 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5176 SEC_ALLOC | SEC_LOAD
5177 | SEC_HAS_CONTENTS
5178 | SEC_IN_MEMORY
5179 | SEC_LINKER_CREATED);
5180 if (s == NULL)
5181 return FALSE;
5182 htab->root.sgotplt = s;
5183
5184 return TRUE;
5185 }
5186 \f
5187 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5188 __GOTT_INDEX__ symbols. These symbols are only special for
5189 shared objects; they are not used in executables. */
5190
5191 static bfd_boolean
5192 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5193 {
5194 return (mips_elf_hash_table (info)->is_vxworks
5195 && bfd_link_pic (info)
5196 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5197 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5198 }
5199
5200 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5201 require an la25 stub. See also mips_elf_local_pic_function_p,
5202 which determines whether the destination function ever requires a
5203 stub. */
5204
5205 static bfd_boolean
5206 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5207 bfd_boolean target_is_16_bit_code_p)
5208 {
5209 /* We specifically ignore branches and jumps from EF_PIC objects,
5210 where the onus is on the compiler or programmer to perform any
5211 necessary initialization of $25. Sometimes such initialization
5212 is unnecessary; for example, -mno-shared functions do not use
5213 the incoming value of $25, and may therefore be called directly. */
5214 if (PIC_OBJECT_P (input_bfd))
5215 return FALSE;
5216
5217 switch (r_type)
5218 {
5219 case R_MIPS_26:
5220 case R_MIPS_PC16:
5221 case R_MIPS_PC21_S2:
5222 case R_MIPS_PC26_S2:
5223 case R_MICROMIPS_26_S1:
5224 case R_MICROMIPS_PC7_S1:
5225 case R_MICROMIPS_PC10_S1:
5226 case R_MICROMIPS_PC16_S1:
5227 case R_MICROMIPS_PC23_S2:
5228 return TRUE;
5229
5230 case R_MIPS16_26:
5231 return !target_is_16_bit_code_p;
5232
5233 default:
5234 return FALSE;
5235 }
5236 }
5237 \f
5238 /* Calculate the value produced by the RELOCATION (which comes from
5239 the INPUT_BFD). The ADDEND is the addend to use for this
5240 RELOCATION; RELOCATION->R_ADDEND is ignored.
5241
5242 The result of the relocation calculation is stored in VALUEP.
5243 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5244 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5245
5246 This function returns bfd_reloc_continue if the caller need take no
5247 further action regarding this relocation, bfd_reloc_notsupported if
5248 something goes dramatically wrong, bfd_reloc_overflow if an
5249 overflow occurs, and bfd_reloc_ok to indicate success. */
5250
5251 static bfd_reloc_status_type
5252 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5253 asection *input_section,
5254 struct bfd_link_info *info,
5255 const Elf_Internal_Rela *relocation,
5256 bfd_vma addend, reloc_howto_type *howto,
5257 Elf_Internal_Sym *local_syms,
5258 asection **local_sections, bfd_vma *valuep,
5259 const char **namep,
5260 bfd_boolean *cross_mode_jump_p,
5261 bfd_boolean save_addend)
5262 {
5263 /* The eventual value we will return. */
5264 bfd_vma value;
5265 /* The address of the symbol against which the relocation is
5266 occurring. */
5267 bfd_vma symbol = 0;
5268 /* The final GP value to be used for the relocatable, executable, or
5269 shared object file being produced. */
5270 bfd_vma gp;
5271 /* The place (section offset or address) of the storage unit being
5272 relocated. */
5273 bfd_vma p;
5274 /* The value of GP used to create the relocatable object. */
5275 bfd_vma gp0;
5276 /* The offset into the global offset table at which the address of
5277 the relocation entry symbol, adjusted by the addend, resides
5278 during execution. */
5279 bfd_vma g = MINUS_ONE;
5280 /* The section in which the symbol referenced by the relocation is
5281 located. */
5282 asection *sec = NULL;
5283 struct mips_elf_link_hash_entry *h = NULL;
5284 /* TRUE if the symbol referred to by this relocation is a local
5285 symbol. */
5286 bfd_boolean local_p, was_local_p;
5287 /* TRUE if the symbol referred to by this relocation is a section
5288 symbol. */
5289 bfd_boolean section_p = FALSE;
5290 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5291 bfd_boolean gp_disp_p = FALSE;
5292 /* TRUE if the symbol referred to by this relocation is
5293 "__gnu_local_gp". */
5294 bfd_boolean gnu_local_gp_p = FALSE;
5295 Elf_Internal_Shdr *symtab_hdr;
5296 size_t extsymoff;
5297 unsigned long r_symndx;
5298 int r_type;
5299 /* TRUE if overflow occurred during the calculation of the
5300 relocation value. */
5301 bfd_boolean overflowed_p;
5302 /* TRUE if this relocation refers to a MIPS16 function. */
5303 bfd_boolean target_is_16_bit_code_p = FALSE;
5304 bfd_boolean target_is_micromips_code_p = FALSE;
5305 struct mips_elf_link_hash_table *htab;
5306 bfd *dynobj;
5307
5308 dynobj = elf_hash_table (info)->dynobj;
5309 htab = mips_elf_hash_table (info);
5310 BFD_ASSERT (htab != NULL);
5311
5312 /* Parse the relocation. */
5313 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5314 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5315 p = (input_section->output_section->vma
5316 + input_section->output_offset
5317 + relocation->r_offset);
5318
5319 /* Assume that there will be no overflow. */
5320 overflowed_p = FALSE;
5321
5322 /* Figure out whether or not the symbol is local, and get the offset
5323 used in the array of hash table entries. */
5324 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5325 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5326 local_sections);
5327 was_local_p = local_p;
5328 if (! elf_bad_symtab (input_bfd))
5329 extsymoff = symtab_hdr->sh_info;
5330 else
5331 {
5332 /* The symbol table does not follow the rule that local symbols
5333 must come before globals. */
5334 extsymoff = 0;
5335 }
5336
5337 /* Figure out the value of the symbol. */
5338 if (local_p)
5339 {
5340 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5341 Elf_Internal_Sym *sym;
5342
5343 sym = local_syms + r_symndx;
5344 sec = local_sections[r_symndx];
5345
5346 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5347
5348 symbol = sec->output_section->vma + sec->output_offset;
5349 if (!section_p || (sec->flags & SEC_MERGE))
5350 symbol += sym->st_value;
5351 if ((sec->flags & SEC_MERGE) && section_p)
5352 {
5353 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5354 addend -= symbol;
5355 addend += sec->output_section->vma + sec->output_offset;
5356 }
5357
5358 /* MIPS16/microMIPS text labels should be treated as odd. */
5359 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5360 ++symbol;
5361
5362 /* Record the name of this symbol, for our caller. */
5363 *namep = bfd_elf_string_from_elf_section (input_bfd,
5364 symtab_hdr->sh_link,
5365 sym->st_name);
5366 if (*namep == NULL || **namep == '\0')
5367 *namep = bfd_section_name (input_bfd, sec);
5368
5369 /* For relocations against a section symbol and ones against no
5370 symbol (absolute relocations) infer the ISA mode from the addend. */
5371 if (section_p || r_symndx == STN_UNDEF)
5372 {
5373 target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5374 target_is_micromips_code_p = (addend & 1) && micromips_p;
5375 }
5376 /* For relocations against an absolute symbol infer the ISA mode
5377 from the value of the symbol plus addend. */
5378 else if (bfd_is_abs_section (sec))
5379 {
5380 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5381 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5382 }
5383 /* Otherwise just use the regular symbol annotation available. */
5384 else
5385 {
5386 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5387 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5388 }
5389 }
5390 else
5391 {
5392 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5393
5394 /* For global symbols we look up the symbol in the hash-table. */
5395 h = ((struct mips_elf_link_hash_entry *)
5396 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5397 /* Find the real hash-table entry for this symbol. */
5398 while (h->root.root.type == bfd_link_hash_indirect
5399 || h->root.root.type == bfd_link_hash_warning)
5400 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5401
5402 /* Record the name of this symbol, for our caller. */
5403 *namep = h->root.root.root.string;
5404
5405 /* See if this is the special _gp_disp symbol. Note that such a
5406 symbol must always be a global symbol. */
5407 if (strcmp (*namep, "_gp_disp") == 0
5408 && ! NEWABI_P (input_bfd))
5409 {
5410 /* Relocations against _gp_disp are permitted only with
5411 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5412 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5413 return bfd_reloc_notsupported;
5414
5415 gp_disp_p = TRUE;
5416 }
5417 /* See if this is the special _gp symbol. Note that such a
5418 symbol must always be a global symbol. */
5419 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5420 gnu_local_gp_p = TRUE;
5421
5422
5423 /* If this symbol is defined, calculate its address. Note that
5424 _gp_disp is a magic symbol, always implicitly defined by the
5425 linker, so it's inappropriate to check to see whether or not
5426 its defined. */
5427 else if ((h->root.root.type == bfd_link_hash_defined
5428 || h->root.root.type == bfd_link_hash_defweak)
5429 && h->root.root.u.def.section)
5430 {
5431 sec = h->root.root.u.def.section;
5432 if (sec->output_section)
5433 symbol = (h->root.root.u.def.value
5434 + sec->output_section->vma
5435 + sec->output_offset);
5436 else
5437 symbol = h->root.root.u.def.value;
5438 }
5439 else if (h->root.root.type == bfd_link_hash_undefweak)
5440 /* We allow relocations against undefined weak symbols, giving
5441 it the value zero, so that you can undefined weak functions
5442 and check to see if they exist by looking at their
5443 addresses. */
5444 symbol = 0;
5445 else if (info->unresolved_syms_in_objects == RM_IGNORE
5446 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5447 symbol = 0;
5448 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5449 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5450 {
5451 /* If this is a dynamic link, we should have created a
5452 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5453 in in _bfd_mips_elf_create_dynamic_sections.
5454 Otherwise, we should define the symbol with a value of 0.
5455 FIXME: It should probably get into the symbol table
5456 somehow as well. */
5457 BFD_ASSERT (! bfd_link_pic (info));
5458 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5459 symbol = 0;
5460 }
5461 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5462 {
5463 /* This is an optional symbol - an Irix specific extension to the
5464 ELF spec. Ignore it for now.
5465 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5466 than simply ignoring them, but we do not handle this for now.
5467 For information see the "64-bit ELF Object File Specification"
5468 which is available from here:
5469 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5470 symbol = 0;
5471 }
5472 else
5473 {
5474 (*info->callbacks->undefined_symbol)
5475 (info, h->root.root.root.string, input_bfd,
5476 input_section, relocation->r_offset,
5477 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5478 || ELF_ST_VISIBILITY (h->root.other));
5479 return bfd_reloc_undefined;
5480 }
5481
5482 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5483 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5484 }
5485
5486 /* If this is a reference to a 16-bit function with a stub, we need
5487 to redirect the relocation to the stub unless:
5488
5489 (a) the relocation is for a MIPS16 JAL;
5490
5491 (b) the relocation is for a MIPS16 PIC call, and there are no
5492 non-MIPS16 uses of the GOT slot; or
5493
5494 (c) the section allows direct references to MIPS16 functions. */
5495 if (r_type != R_MIPS16_26
5496 && !bfd_link_relocatable (info)
5497 && ((h != NULL
5498 && h->fn_stub != NULL
5499 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5500 || (local_p
5501 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5502 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5503 && !section_allows_mips16_refs_p (input_section))
5504 {
5505 /* This is a 32- or 64-bit call to a 16-bit function. We should
5506 have already noticed that we were going to need the
5507 stub. */
5508 if (local_p)
5509 {
5510 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5511 value = 0;
5512 }
5513 else
5514 {
5515 BFD_ASSERT (h->need_fn_stub);
5516 if (h->la25_stub)
5517 {
5518 /* If a LA25 header for the stub itself exists, point to the
5519 prepended LUI/ADDIU sequence. */
5520 sec = h->la25_stub->stub_section;
5521 value = h->la25_stub->offset;
5522 }
5523 else
5524 {
5525 sec = h->fn_stub;
5526 value = 0;
5527 }
5528 }
5529
5530 symbol = sec->output_section->vma + sec->output_offset + value;
5531 /* The target is 16-bit, but the stub isn't. */
5532 target_is_16_bit_code_p = FALSE;
5533 }
5534 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5535 to a standard MIPS function, we need to redirect the call to the stub.
5536 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5537 indirect calls should use an indirect stub instead. */
5538 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
5539 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5540 || (local_p
5541 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5542 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5543 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5544 {
5545 if (local_p)
5546 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5547 else
5548 {
5549 /* If both call_stub and call_fp_stub are defined, we can figure
5550 out which one to use by checking which one appears in the input
5551 file. */
5552 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5553 {
5554 asection *o;
5555
5556 sec = NULL;
5557 for (o = input_bfd->sections; o != NULL; o = o->next)
5558 {
5559 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5560 {
5561 sec = h->call_fp_stub;
5562 break;
5563 }
5564 }
5565 if (sec == NULL)
5566 sec = h->call_stub;
5567 }
5568 else if (h->call_stub != NULL)
5569 sec = h->call_stub;
5570 else
5571 sec = h->call_fp_stub;
5572 }
5573
5574 BFD_ASSERT (sec->size > 0);
5575 symbol = sec->output_section->vma + sec->output_offset;
5576 }
5577 /* If this is a direct call to a PIC function, redirect to the
5578 non-PIC stub. */
5579 else if (h != NULL && h->la25_stub
5580 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5581 target_is_16_bit_code_p))
5582 {
5583 symbol = (h->la25_stub->stub_section->output_section->vma
5584 + h->la25_stub->stub_section->output_offset
5585 + h->la25_stub->offset);
5586 if (ELF_ST_IS_MICROMIPS (h->root.other))
5587 symbol |= 1;
5588 }
5589 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5590 entry is used if a standard PLT entry has also been made. In this
5591 case the symbol will have been set by mips_elf_set_plt_sym_value
5592 to point to the standard PLT entry, so redirect to the compressed
5593 one. */
5594 else if ((mips16_branch_reloc_p (r_type)
5595 || micromips_branch_reloc_p (r_type))
5596 && !bfd_link_relocatable (info)
5597 && h != NULL
5598 && h->use_plt_entry
5599 && h->root.plt.plist->comp_offset != MINUS_ONE
5600 && h->root.plt.plist->mips_offset != MINUS_ONE)
5601 {
5602 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5603
5604 sec = htab->root.splt;
5605 symbol = (sec->output_section->vma
5606 + sec->output_offset
5607 + htab->plt_header_size
5608 + htab->plt_mips_offset
5609 + h->root.plt.plist->comp_offset
5610 + 1);
5611
5612 target_is_16_bit_code_p = !micromips_p;
5613 target_is_micromips_code_p = micromips_p;
5614 }
5615
5616 /* Make sure MIPS16 and microMIPS are not used together. */
5617 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
5618 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5619 {
5620 _bfd_error_handler
5621 (_("MIPS16 and microMIPS functions cannot call each other"));
5622 return bfd_reloc_notsupported;
5623 }
5624
5625 /* Calls from 16-bit code to 32-bit code and vice versa require the
5626 mode change. However, we can ignore calls to undefined weak symbols,
5627 which should never be executed at runtime. This exception is important
5628 because the assembly writer may have "known" that any definition of the
5629 symbol would be 16-bit code, and that direct jumps were therefore
5630 acceptable. */
5631 *cross_mode_jump_p = (!bfd_link_relocatable (info)
5632 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5633 && ((mips16_branch_reloc_p (r_type)
5634 && !target_is_16_bit_code_p)
5635 || (micromips_branch_reloc_p (r_type)
5636 && !target_is_micromips_code_p)
5637 || ((branch_reloc_p (r_type)
5638 || r_type == R_MIPS_JALR)
5639 && (target_is_16_bit_code_p
5640 || target_is_micromips_code_p))));
5641
5642 local_p = (h == NULL || mips_use_local_got_p (info, h));
5643
5644 gp0 = _bfd_get_gp_value (input_bfd);
5645 gp = _bfd_get_gp_value (abfd);
5646 if (htab->got_info)
5647 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5648
5649 if (gnu_local_gp_p)
5650 symbol = gp;
5651
5652 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5653 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5654 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5655 if (got_page_reloc_p (r_type) && !local_p)
5656 {
5657 r_type = (micromips_reloc_p (r_type)
5658 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5659 addend = 0;
5660 }
5661
5662 /* If we haven't already determined the GOT offset, and we're going
5663 to need it, get it now. */
5664 switch (r_type)
5665 {
5666 case R_MIPS16_CALL16:
5667 case R_MIPS16_GOT16:
5668 case R_MIPS_CALL16:
5669 case R_MIPS_GOT16:
5670 case R_MIPS_GOT_DISP:
5671 case R_MIPS_GOT_HI16:
5672 case R_MIPS_CALL_HI16:
5673 case R_MIPS_GOT_LO16:
5674 case R_MIPS_CALL_LO16:
5675 case R_MICROMIPS_CALL16:
5676 case R_MICROMIPS_GOT16:
5677 case R_MICROMIPS_GOT_DISP:
5678 case R_MICROMIPS_GOT_HI16:
5679 case R_MICROMIPS_CALL_HI16:
5680 case R_MICROMIPS_GOT_LO16:
5681 case R_MICROMIPS_CALL_LO16:
5682 case R_MIPS_TLS_GD:
5683 case R_MIPS_TLS_GOTTPREL:
5684 case R_MIPS_TLS_LDM:
5685 case R_MIPS16_TLS_GD:
5686 case R_MIPS16_TLS_GOTTPREL:
5687 case R_MIPS16_TLS_LDM:
5688 case R_MICROMIPS_TLS_GD:
5689 case R_MICROMIPS_TLS_GOTTPREL:
5690 case R_MICROMIPS_TLS_LDM:
5691 /* Find the index into the GOT where this value is located. */
5692 if (tls_ldm_reloc_p (r_type))
5693 {
5694 g = mips_elf_local_got_index (abfd, input_bfd, info,
5695 0, 0, NULL, r_type);
5696 if (g == MINUS_ONE)
5697 return bfd_reloc_outofrange;
5698 }
5699 else if (!local_p)
5700 {
5701 /* On VxWorks, CALL relocations should refer to the .got.plt
5702 entry, which is initialized to point at the PLT stub. */
5703 if (htab->is_vxworks
5704 && (call_hi16_reloc_p (r_type)
5705 || call_lo16_reloc_p (r_type)
5706 || call16_reloc_p (r_type)))
5707 {
5708 BFD_ASSERT (addend == 0);
5709 BFD_ASSERT (h->root.needs_plt);
5710 g = mips_elf_gotplt_index (info, &h->root);
5711 }
5712 else
5713 {
5714 BFD_ASSERT (addend == 0);
5715 g = mips_elf_global_got_index (abfd, info, input_bfd,
5716 &h->root, r_type);
5717 if (!TLS_RELOC_P (r_type)
5718 && !elf_hash_table (info)->dynamic_sections_created)
5719 /* This is a static link. We must initialize the GOT entry. */
5720 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->root.sgot->contents + g);
5721 }
5722 }
5723 else if (!htab->is_vxworks
5724 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5725 /* The calculation below does not involve "g". */
5726 break;
5727 else
5728 {
5729 g = mips_elf_local_got_index (abfd, input_bfd, info,
5730 symbol + addend, r_symndx, h, r_type);
5731 if (g == MINUS_ONE)
5732 return bfd_reloc_outofrange;
5733 }
5734
5735 /* Convert GOT indices to actual offsets. */
5736 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5737 break;
5738 }
5739
5740 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5741 symbols are resolved by the loader. Add them to .rela.dyn. */
5742 if (h != NULL && is_gott_symbol (info, &h->root))
5743 {
5744 Elf_Internal_Rela outrel;
5745 bfd_byte *loc;
5746 asection *s;
5747
5748 s = mips_elf_rel_dyn_section (info, FALSE);
5749 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5750
5751 outrel.r_offset = (input_section->output_section->vma
5752 + input_section->output_offset
5753 + relocation->r_offset);
5754 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5755 outrel.r_addend = addend;
5756 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5757
5758 /* If we've written this relocation for a readonly section,
5759 we need to set DF_TEXTREL again, so that we do not delete the
5760 DT_TEXTREL tag. */
5761 if (MIPS_ELF_READONLY_SECTION (input_section))
5762 info->flags |= DF_TEXTREL;
5763
5764 *valuep = 0;
5765 return bfd_reloc_ok;
5766 }
5767
5768 /* Figure out what kind of relocation is being performed. */
5769 switch (r_type)
5770 {
5771 case R_MIPS_NONE:
5772 return bfd_reloc_continue;
5773
5774 case R_MIPS_16:
5775 if (howto->partial_inplace)
5776 addend = _bfd_mips_elf_sign_extend (addend, 16);
5777 value = symbol + addend;
5778 overflowed_p = mips_elf_overflow_p (value, 16);
5779 break;
5780
5781 case R_MIPS_32:
5782 case R_MIPS_REL32:
5783 case R_MIPS_64:
5784 if ((bfd_link_pic (info)
5785 || (htab->root.dynamic_sections_created
5786 && h != NULL
5787 && h->root.def_dynamic
5788 && !h->root.def_regular
5789 && !h->has_static_relocs))
5790 && r_symndx != STN_UNDEF
5791 && (h == NULL
5792 || h->root.root.type != bfd_link_hash_undefweak
5793 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5794 && (input_section->flags & SEC_ALLOC) != 0)
5795 {
5796 /* If we're creating a shared library, then we can't know
5797 where the symbol will end up. So, we create a relocation
5798 record in the output, and leave the job up to the dynamic
5799 linker. We must do the same for executable references to
5800 shared library symbols, unless we've decided to use copy
5801 relocs or PLTs instead. */
5802 value = addend;
5803 if (!mips_elf_create_dynamic_relocation (abfd,
5804 info,
5805 relocation,
5806 h,
5807 sec,
5808 symbol,
5809 &value,
5810 input_section))
5811 return bfd_reloc_undefined;
5812 }
5813 else
5814 {
5815 if (r_type != R_MIPS_REL32)
5816 value = symbol + addend;
5817 else
5818 value = addend;
5819 }
5820 value &= howto->dst_mask;
5821 break;
5822
5823 case R_MIPS_PC32:
5824 value = symbol + addend - p;
5825 value &= howto->dst_mask;
5826 break;
5827
5828 case R_MIPS16_26:
5829 /* The calculation for R_MIPS16_26 is just the same as for an
5830 R_MIPS_26. It's only the storage of the relocated field into
5831 the output file that's different. That's handled in
5832 mips_elf_perform_relocation. So, we just fall through to the
5833 R_MIPS_26 case here. */
5834 case R_MIPS_26:
5835 case R_MICROMIPS_26_S1:
5836 {
5837 unsigned int shift;
5838
5839 /* Shift is 2, unusually, for microMIPS JALX. */
5840 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5841
5842 if (howto->partial_inplace && !section_p)
5843 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5844 else
5845 value = addend;
5846 value += symbol;
5847
5848 /* Make sure the target of a jump is suitably aligned. Bit 0 must
5849 be the correct ISA mode selector except for weak undefined
5850 symbols. */
5851 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5852 && (*cross_mode_jump_p
5853 ? (value & 3) != (r_type == R_MIPS_26)
5854 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
5855 return bfd_reloc_outofrange;
5856
5857 value >>= shift;
5858 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5859 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5860 value &= howto->dst_mask;
5861 }
5862 break;
5863
5864 case R_MIPS_TLS_DTPREL_HI16:
5865 case R_MIPS16_TLS_DTPREL_HI16:
5866 case R_MICROMIPS_TLS_DTPREL_HI16:
5867 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5868 & howto->dst_mask);
5869 break;
5870
5871 case R_MIPS_TLS_DTPREL_LO16:
5872 case R_MIPS_TLS_DTPREL32:
5873 case R_MIPS_TLS_DTPREL64:
5874 case R_MIPS16_TLS_DTPREL_LO16:
5875 case R_MICROMIPS_TLS_DTPREL_LO16:
5876 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5877 break;
5878
5879 case R_MIPS_TLS_TPREL_HI16:
5880 case R_MIPS16_TLS_TPREL_HI16:
5881 case R_MICROMIPS_TLS_TPREL_HI16:
5882 value = (mips_elf_high (addend + symbol - tprel_base (info))
5883 & howto->dst_mask);
5884 break;
5885
5886 case R_MIPS_TLS_TPREL_LO16:
5887 case R_MIPS_TLS_TPREL32:
5888 case R_MIPS_TLS_TPREL64:
5889 case R_MIPS16_TLS_TPREL_LO16:
5890 case R_MICROMIPS_TLS_TPREL_LO16:
5891 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5892 break;
5893
5894 case R_MIPS_HI16:
5895 case R_MIPS16_HI16:
5896 case R_MICROMIPS_HI16:
5897 if (!gp_disp_p)
5898 {
5899 value = mips_elf_high (addend + symbol);
5900 value &= howto->dst_mask;
5901 }
5902 else
5903 {
5904 /* For MIPS16 ABI code we generate this sequence
5905 0: li $v0,%hi(_gp_disp)
5906 4: addiupc $v1,%lo(_gp_disp)
5907 8: sll $v0,16
5908 12: addu $v0,$v1
5909 14: move $gp,$v0
5910 So the offsets of hi and lo relocs are the same, but the
5911 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5912 ADDIUPC clears the low two bits of the instruction address,
5913 so the base is ($t9 + 4) & ~3. */
5914 if (r_type == R_MIPS16_HI16)
5915 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5916 /* The microMIPS .cpload sequence uses the same assembly
5917 instructions as the traditional psABI version, but the
5918 incoming $t9 has the low bit set. */
5919 else if (r_type == R_MICROMIPS_HI16)
5920 value = mips_elf_high (addend + gp - p - 1);
5921 else
5922 value = mips_elf_high (addend + gp - p);
5923 overflowed_p = mips_elf_overflow_p (value, 16);
5924 }
5925 break;
5926
5927 case R_MIPS_LO16:
5928 case R_MIPS16_LO16:
5929 case R_MICROMIPS_LO16:
5930 case R_MICROMIPS_HI0_LO16:
5931 if (!gp_disp_p)
5932 value = (symbol + addend) & howto->dst_mask;
5933 else
5934 {
5935 /* See the comment for R_MIPS16_HI16 above for the reason
5936 for this conditional. */
5937 if (r_type == R_MIPS16_LO16)
5938 value = addend + gp - (p & ~(bfd_vma) 0x3);
5939 else if (r_type == R_MICROMIPS_LO16
5940 || r_type == R_MICROMIPS_HI0_LO16)
5941 value = addend + gp - p + 3;
5942 else
5943 value = addend + gp - p + 4;
5944 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5945 for overflow. But, on, say, IRIX5, relocations against
5946 _gp_disp are normally generated from the .cpload
5947 pseudo-op. It generates code that normally looks like
5948 this:
5949
5950 lui $gp,%hi(_gp_disp)
5951 addiu $gp,$gp,%lo(_gp_disp)
5952 addu $gp,$gp,$t9
5953
5954 Here $t9 holds the address of the function being called,
5955 as required by the MIPS ELF ABI. The R_MIPS_LO16
5956 relocation can easily overflow in this situation, but the
5957 R_MIPS_HI16 relocation will handle the overflow.
5958 Therefore, we consider this a bug in the MIPS ABI, and do
5959 not check for overflow here. */
5960 }
5961 break;
5962
5963 case R_MIPS_LITERAL:
5964 case R_MICROMIPS_LITERAL:
5965 /* Because we don't merge literal sections, we can handle this
5966 just like R_MIPS_GPREL16. In the long run, we should merge
5967 shared literals, and then we will need to additional work
5968 here. */
5969
5970 /* Fall through. */
5971
5972 case R_MIPS16_GPREL:
5973 /* The R_MIPS16_GPREL performs the same calculation as
5974 R_MIPS_GPREL16, but stores the relocated bits in a different
5975 order. We don't need to do anything special here; the
5976 differences are handled in mips_elf_perform_relocation. */
5977 case R_MIPS_GPREL16:
5978 case R_MICROMIPS_GPREL7_S2:
5979 case R_MICROMIPS_GPREL16:
5980 /* Only sign-extend the addend if it was extracted from the
5981 instruction. If the addend was separate, leave it alone,
5982 otherwise we may lose significant bits. */
5983 if (howto->partial_inplace)
5984 addend = _bfd_mips_elf_sign_extend (addend, 16);
5985 value = symbol + addend - gp;
5986 /* If the symbol was local, any earlier relocatable links will
5987 have adjusted its addend with the gp offset, so compensate
5988 for that now. Don't do it for symbols forced local in this
5989 link, though, since they won't have had the gp offset applied
5990 to them before. */
5991 if (was_local_p)
5992 value += gp0;
5993 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5994 overflowed_p = mips_elf_overflow_p (value, 16);
5995 break;
5996
5997 case R_MIPS16_GOT16:
5998 case R_MIPS16_CALL16:
5999 case R_MIPS_GOT16:
6000 case R_MIPS_CALL16:
6001 case R_MICROMIPS_GOT16:
6002 case R_MICROMIPS_CALL16:
6003 /* VxWorks does not have separate local and global semantics for
6004 R_MIPS*_GOT16; every relocation evaluates to "G". */
6005 if (!htab->is_vxworks && local_p)
6006 {
6007 value = mips_elf_got16_entry (abfd, input_bfd, info,
6008 symbol + addend, !was_local_p);
6009 if (value == MINUS_ONE)
6010 return bfd_reloc_outofrange;
6011 value
6012 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6013 overflowed_p = mips_elf_overflow_p (value, 16);
6014 break;
6015 }
6016
6017 /* Fall through. */
6018
6019 case R_MIPS_TLS_GD:
6020 case R_MIPS_TLS_GOTTPREL:
6021 case R_MIPS_TLS_LDM:
6022 case R_MIPS_GOT_DISP:
6023 case R_MIPS16_TLS_GD:
6024 case R_MIPS16_TLS_GOTTPREL:
6025 case R_MIPS16_TLS_LDM:
6026 case R_MICROMIPS_TLS_GD:
6027 case R_MICROMIPS_TLS_GOTTPREL:
6028 case R_MICROMIPS_TLS_LDM:
6029 case R_MICROMIPS_GOT_DISP:
6030 value = g;
6031 overflowed_p = mips_elf_overflow_p (value, 16);
6032 break;
6033
6034 case R_MIPS_GPREL32:
6035 value = (addend + symbol + gp0 - gp);
6036 if (!save_addend)
6037 value &= howto->dst_mask;
6038 break;
6039
6040 case R_MIPS_PC16:
6041 case R_MIPS_GNU_REL16_S2:
6042 if (howto->partial_inplace)
6043 addend = _bfd_mips_elf_sign_extend (addend, 18);
6044
6045 /* No need to exclude weak undefined symbols here as they resolve
6046 to 0 and never set `*cross_mode_jump_p', so this alignment check
6047 will never trigger for them. */
6048 if (*cross_mode_jump_p
6049 ? ((symbol + addend) & 3) != 1
6050 : ((symbol + addend) & 3) != 0)
6051 return bfd_reloc_outofrange;
6052
6053 value = symbol + addend - p;
6054 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6055 overflowed_p = mips_elf_overflow_p (value, 18);
6056 value >>= howto->rightshift;
6057 value &= howto->dst_mask;
6058 break;
6059
6060 case R_MIPS16_PC16_S1:
6061 if (howto->partial_inplace)
6062 addend = _bfd_mips_elf_sign_extend (addend, 17);
6063
6064 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6065 && (*cross_mode_jump_p
6066 ? ((symbol + addend) & 3) != 0
6067 : ((symbol + addend) & 1) == 0))
6068 return bfd_reloc_outofrange;
6069
6070 value = symbol + addend - p;
6071 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6072 overflowed_p = mips_elf_overflow_p (value, 17);
6073 value >>= howto->rightshift;
6074 value &= howto->dst_mask;
6075 break;
6076
6077 case R_MIPS_PC21_S2:
6078 if (howto->partial_inplace)
6079 addend = _bfd_mips_elf_sign_extend (addend, 23);
6080
6081 if ((symbol + addend) & 3)
6082 return bfd_reloc_outofrange;
6083
6084 value = symbol + addend - p;
6085 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6086 overflowed_p = mips_elf_overflow_p (value, 23);
6087 value >>= howto->rightshift;
6088 value &= howto->dst_mask;
6089 break;
6090
6091 case R_MIPS_PC26_S2:
6092 if (howto->partial_inplace)
6093 addend = _bfd_mips_elf_sign_extend (addend, 28);
6094
6095 if ((symbol + addend) & 3)
6096 return bfd_reloc_outofrange;
6097
6098 value = symbol + addend - p;
6099 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6100 overflowed_p = mips_elf_overflow_p (value, 28);
6101 value >>= howto->rightshift;
6102 value &= howto->dst_mask;
6103 break;
6104
6105 case R_MIPS_PC18_S3:
6106 if (howto->partial_inplace)
6107 addend = _bfd_mips_elf_sign_extend (addend, 21);
6108
6109 if ((symbol + addend) & 7)
6110 return bfd_reloc_outofrange;
6111
6112 value = symbol + addend - ((p | 7) ^ 7);
6113 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6114 overflowed_p = mips_elf_overflow_p (value, 21);
6115 value >>= howto->rightshift;
6116 value &= howto->dst_mask;
6117 break;
6118
6119 case R_MIPS_PC19_S2:
6120 if (howto->partial_inplace)
6121 addend = _bfd_mips_elf_sign_extend (addend, 21);
6122
6123 if ((symbol + addend) & 3)
6124 return bfd_reloc_outofrange;
6125
6126 value = symbol + addend - p;
6127 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6128 overflowed_p = mips_elf_overflow_p (value, 21);
6129 value >>= howto->rightshift;
6130 value &= howto->dst_mask;
6131 break;
6132
6133 case R_MIPS_PCHI16:
6134 value = mips_elf_high (symbol + addend - p);
6135 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6136 overflowed_p = mips_elf_overflow_p (value, 16);
6137 value &= howto->dst_mask;
6138 break;
6139
6140 case R_MIPS_PCLO16:
6141 if (howto->partial_inplace)
6142 addend = _bfd_mips_elf_sign_extend (addend, 16);
6143 value = symbol + addend - p;
6144 value &= howto->dst_mask;
6145 break;
6146
6147 case R_MICROMIPS_PC7_S1:
6148 if (howto->partial_inplace)
6149 addend = _bfd_mips_elf_sign_extend (addend, 8);
6150
6151 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6152 && (*cross_mode_jump_p
6153 ? ((symbol + addend + 2) & 3) != 0
6154 : ((symbol + addend + 2) & 1) == 0))
6155 return bfd_reloc_outofrange;
6156
6157 value = symbol + addend - p;
6158 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6159 overflowed_p = mips_elf_overflow_p (value, 8);
6160 value >>= howto->rightshift;
6161 value &= howto->dst_mask;
6162 break;
6163
6164 case R_MICROMIPS_PC10_S1:
6165 if (howto->partial_inplace)
6166 addend = _bfd_mips_elf_sign_extend (addend, 11);
6167
6168 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6169 && (*cross_mode_jump_p
6170 ? ((symbol + addend + 2) & 3) != 0
6171 : ((symbol + addend + 2) & 1) == 0))
6172 return bfd_reloc_outofrange;
6173
6174 value = symbol + addend - p;
6175 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6176 overflowed_p = mips_elf_overflow_p (value, 11);
6177 value >>= howto->rightshift;
6178 value &= howto->dst_mask;
6179 break;
6180
6181 case R_MICROMIPS_PC16_S1:
6182 if (howto->partial_inplace)
6183 addend = _bfd_mips_elf_sign_extend (addend, 17);
6184
6185 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6186 && (*cross_mode_jump_p
6187 ? ((symbol + addend) & 3) != 0
6188 : ((symbol + addend) & 1) == 0))
6189 return bfd_reloc_outofrange;
6190
6191 value = symbol + addend - p;
6192 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6193 overflowed_p = mips_elf_overflow_p (value, 17);
6194 value >>= howto->rightshift;
6195 value &= howto->dst_mask;
6196 break;
6197
6198 case R_MICROMIPS_PC23_S2:
6199 if (howto->partial_inplace)
6200 addend = _bfd_mips_elf_sign_extend (addend, 25);
6201 value = symbol + addend - ((p | 3) ^ 3);
6202 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6203 overflowed_p = mips_elf_overflow_p (value, 25);
6204 value >>= howto->rightshift;
6205 value &= howto->dst_mask;
6206 break;
6207
6208 case R_MIPS_GOT_HI16:
6209 case R_MIPS_CALL_HI16:
6210 case R_MICROMIPS_GOT_HI16:
6211 case R_MICROMIPS_CALL_HI16:
6212 /* We're allowed to handle these two relocations identically.
6213 The dynamic linker is allowed to handle the CALL relocations
6214 differently by creating a lazy evaluation stub. */
6215 value = g;
6216 value = mips_elf_high (value);
6217 value &= howto->dst_mask;
6218 break;
6219
6220 case R_MIPS_GOT_LO16:
6221 case R_MIPS_CALL_LO16:
6222 case R_MICROMIPS_GOT_LO16:
6223 case R_MICROMIPS_CALL_LO16:
6224 value = g & howto->dst_mask;
6225 break;
6226
6227 case R_MIPS_GOT_PAGE:
6228 case R_MICROMIPS_GOT_PAGE:
6229 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6230 if (value == MINUS_ONE)
6231 return bfd_reloc_outofrange;
6232 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6233 overflowed_p = mips_elf_overflow_p (value, 16);
6234 break;
6235
6236 case R_MIPS_GOT_OFST:
6237 case R_MICROMIPS_GOT_OFST:
6238 if (local_p)
6239 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6240 else
6241 value = addend;
6242 overflowed_p = mips_elf_overflow_p (value, 16);
6243 break;
6244
6245 case R_MIPS_SUB:
6246 case R_MICROMIPS_SUB:
6247 value = symbol - addend;
6248 value &= howto->dst_mask;
6249 break;
6250
6251 case R_MIPS_HIGHER:
6252 case R_MICROMIPS_HIGHER:
6253 value = mips_elf_higher (addend + symbol);
6254 value &= howto->dst_mask;
6255 break;
6256
6257 case R_MIPS_HIGHEST:
6258 case R_MICROMIPS_HIGHEST:
6259 value = mips_elf_highest (addend + symbol);
6260 value &= howto->dst_mask;
6261 break;
6262
6263 case R_MIPS_SCN_DISP:
6264 case R_MICROMIPS_SCN_DISP:
6265 value = symbol + addend - sec->output_offset;
6266 value &= howto->dst_mask;
6267 break;
6268
6269 case R_MIPS_JALR:
6270 case R_MICROMIPS_JALR:
6271 /* This relocation is only a hint. In some cases, we optimize
6272 it into a bal instruction. But we don't try to optimize
6273 when the symbol does not resolve locally. */
6274 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6275 return bfd_reloc_continue;
6276 value = symbol + addend;
6277 break;
6278
6279 case R_MIPS_PJUMP:
6280 case R_MIPS_GNU_VTINHERIT:
6281 case R_MIPS_GNU_VTENTRY:
6282 /* We don't do anything with these at present. */
6283 return bfd_reloc_continue;
6284
6285 default:
6286 /* An unrecognized relocation type. */
6287 return bfd_reloc_notsupported;
6288 }
6289
6290 /* Store the VALUE for our caller. */
6291 *valuep = value;
6292 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6293 }
6294
6295 /* Obtain the field relocated by RELOCATION. */
6296
6297 static bfd_vma
6298 mips_elf_obtain_contents (reloc_howto_type *howto,
6299 const Elf_Internal_Rela *relocation,
6300 bfd *input_bfd, bfd_byte *contents)
6301 {
6302 bfd_vma x = 0;
6303 bfd_byte *location = contents + relocation->r_offset;
6304 unsigned int size = bfd_get_reloc_size (howto);
6305
6306 /* Obtain the bytes. */
6307 if (size != 0)
6308 x = bfd_get (8 * size, input_bfd, location);
6309
6310 return x;
6311 }
6312
6313 /* It has been determined that the result of the RELOCATION is the
6314 VALUE. Use HOWTO to place VALUE into the output file at the
6315 appropriate position. The SECTION is the section to which the
6316 relocation applies.
6317 CROSS_MODE_JUMP_P is true if the relocation field
6318 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6319
6320 Returns FALSE if anything goes wrong. */
6321
6322 static bfd_boolean
6323 mips_elf_perform_relocation (struct bfd_link_info *info,
6324 reloc_howto_type *howto,
6325 const Elf_Internal_Rela *relocation,
6326 bfd_vma value, bfd *input_bfd,
6327 asection *input_section, bfd_byte *contents,
6328 bfd_boolean cross_mode_jump_p)
6329 {
6330 bfd_vma x;
6331 bfd_byte *location;
6332 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6333 unsigned int size;
6334
6335 /* Figure out where the relocation is occurring. */
6336 location = contents + relocation->r_offset;
6337
6338 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6339
6340 /* Obtain the current value. */
6341 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6342
6343 /* Clear the field we are setting. */
6344 x &= ~howto->dst_mask;
6345
6346 /* Set the field. */
6347 x |= (value & howto->dst_mask);
6348
6349 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
6350 if (!cross_mode_jump_p && jal_reloc_p (r_type))
6351 {
6352 bfd_vma opcode = x >> 26;
6353
6354 if (r_type == R_MIPS16_26 ? opcode == 0x7
6355 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6356 : opcode == 0x1d)
6357 {
6358 info->callbacks->einfo
6359 (_("%X%H: Unsupported JALX to the same ISA mode\n"),
6360 input_bfd, input_section, relocation->r_offset);
6361 return TRUE;
6362 }
6363 }
6364 if (cross_mode_jump_p && jal_reloc_p (r_type))
6365 {
6366 bfd_boolean ok;
6367 bfd_vma opcode = x >> 26;
6368 bfd_vma jalx_opcode;
6369
6370 /* Check to see if the opcode is already JAL or JALX. */
6371 if (r_type == R_MIPS16_26)
6372 {
6373 ok = ((opcode == 0x6) || (opcode == 0x7));
6374 jalx_opcode = 0x7;
6375 }
6376 else if (r_type == R_MICROMIPS_26_S1)
6377 {
6378 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6379 jalx_opcode = 0x3c;
6380 }
6381 else
6382 {
6383 ok = ((opcode == 0x3) || (opcode == 0x1d));
6384 jalx_opcode = 0x1d;
6385 }
6386
6387 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6388 convert J or JALS to JALX. */
6389 if (!ok)
6390 {
6391 info->callbacks->einfo
6392 (_("%X%H: Unsupported jump between ISA modes; "
6393 "consider recompiling with interlinking enabled\n"),
6394 input_bfd, input_section, relocation->r_offset);
6395 return TRUE;
6396 }
6397
6398 /* Make this the JALX opcode. */
6399 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6400 }
6401 else if (cross_mode_jump_p && b_reloc_p (r_type))
6402 {
6403 bfd_boolean ok = FALSE;
6404 bfd_vma opcode = x >> 16;
6405 bfd_vma jalx_opcode = 0;
6406 bfd_vma addr;
6407 bfd_vma dest;
6408
6409 if (r_type == R_MICROMIPS_PC16_S1)
6410 {
6411 ok = opcode == 0x4060;
6412 jalx_opcode = 0x3c;
6413 value <<= 1;
6414 }
6415 else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6416 {
6417 ok = opcode == 0x411;
6418 jalx_opcode = 0x1d;
6419 value <<= 2;
6420 }
6421
6422 if (bfd_link_pic (info) || !ok)
6423 {
6424 info->callbacks->einfo
6425 (_("%X%H: Unsupported branch between ISA modes\n"),
6426 input_bfd, input_section, relocation->r_offset);
6427 return TRUE;
6428 }
6429
6430 addr = (input_section->output_section->vma
6431 + input_section->output_offset
6432 + relocation->r_offset
6433 + 4);
6434 dest = addr + (((value & 0x3ffff) ^ 0x20000) - 0x20000);
6435
6436 if ((addr >> 28) << 28 != (dest >> 28) << 28)
6437 {
6438 info->callbacks->einfo
6439 (_("%X%H: Cannot convert branch between ISA modes "
6440 "to JALX: relocation out of range\n"),
6441 input_bfd, input_section, relocation->r_offset);
6442 return TRUE;
6443 }
6444
6445 /* Make this the JALX opcode. */
6446 x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
6447 }
6448
6449 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6450 range. */
6451 if (!bfd_link_relocatable (info)
6452 && !cross_mode_jump_p
6453 && ((JAL_TO_BAL_P (input_bfd)
6454 && r_type == R_MIPS_26
6455 && (x >> 26) == 0x3) /* jal addr */
6456 || (JALR_TO_BAL_P (input_bfd)
6457 && r_type == R_MIPS_JALR
6458 && x == 0x0320f809) /* jalr t9 */
6459 || (JR_TO_B_P (input_bfd)
6460 && r_type == R_MIPS_JALR
6461 && x == 0x03200008))) /* jr t9 */
6462 {
6463 bfd_vma addr;
6464 bfd_vma dest;
6465 bfd_signed_vma off;
6466
6467 addr = (input_section->output_section->vma
6468 + input_section->output_offset
6469 + relocation->r_offset
6470 + 4);
6471 if (r_type == R_MIPS_26)
6472 dest = (value << 2) | ((addr >> 28) << 28);
6473 else
6474 dest = value;
6475 off = dest - addr;
6476 if (off <= 0x1ffff && off >= -0x20000)
6477 {
6478 if (x == 0x03200008) /* jr t9 */
6479 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6480 else
6481 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6482 }
6483 }
6484
6485 /* Put the value into the output. */
6486 size = bfd_get_reloc_size (howto);
6487 if (size != 0)
6488 bfd_put (8 * size, input_bfd, x, location);
6489
6490 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
6491 location);
6492
6493 return TRUE;
6494 }
6495 \f
6496 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6497 is the original relocation, which is now being transformed into a
6498 dynamic relocation. The ADDENDP is adjusted if necessary; the
6499 caller should store the result in place of the original addend. */
6500
6501 static bfd_boolean
6502 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6503 struct bfd_link_info *info,
6504 const Elf_Internal_Rela *rel,
6505 struct mips_elf_link_hash_entry *h,
6506 asection *sec, bfd_vma symbol,
6507 bfd_vma *addendp, asection *input_section)
6508 {
6509 Elf_Internal_Rela outrel[3];
6510 asection *sreloc;
6511 bfd *dynobj;
6512 int r_type;
6513 long indx;
6514 bfd_boolean defined_p;
6515 struct mips_elf_link_hash_table *htab;
6516
6517 htab = mips_elf_hash_table (info);
6518 BFD_ASSERT (htab != NULL);
6519
6520 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6521 dynobj = elf_hash_table (info)->dynobj;
6522 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6523 BFD_ASSERT (sreloc != NULL);
6524 BFD_ASSERT (sreloc->contents != NULL);
6525 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6526 < sreloc->size);
6527
6528 outrel[0].r_offset =
6529 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6530 if (ABI_64_P (output_bfd))
6531 {
6532 outrel[1].r_offset =
6533 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6534 outrel[2].r_offset =
6535 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6536 }
6537
6538 if (outrel[0].r_offset == MINUS_ONE)
6539 /* The relocation field has been deleted. */
6540 return TRUE;
6541
6542 if (outrel[0].r_offset == MINUS_TWO)
6543 {
6544 /* The relocation field has been converted into a relative value of
6545 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6546 the field to be fully relocated, so add in the symbol's value. */
6547 *addendp += symbol;
6548 return TRUE;
6549 }
6550
6551 /* We must now calculate the dynamic symbol table index to use
6552 in the relocation. */
6553 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6554 {
6555 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6556 indx = h->root.dynindx;
6557 if (SGI_COMPAT (output_bfd))
6558 defined_p = h->root.def_regular;
6559 else
6560 /* ??? glibc's ld.so just adds the final GOT entry to the
6561 relocation field. It therefore treats relocs against
6562 defined symbols in the same way as relocs against
6563 undefined symbols. */
6564 defined_p = FALSE;
6565 }
6566 else
6567 {
6568 if (sec != NULL && bfd_is_abs_section (sec))
6569 indx = 0;
6570 else if (sec == NULL || sec->owner == NULL)
6571 {
6572 bfd_set_error (bfd_error_bad_value);
6573 return FALSE;
6574 }
6575 else
6576 {
6577 indx = elf_section_data (sec->output_section)->dynindx;
6578 if (indx == 0)
6579 {
6580 asection *osec = htab->root.text_index_section;
6581 indx = elf_section_data (osec)->dynindx;
6582 }
6583 if (indx == 0)
6584 abort ();
6585 }
6586
6587 /* Instead of generating a relocation using the section
6588 symbol, we may as well make it a fully relative
6589 relocation. We want to avoid generating relocations to
6590 local symbols because we used to generate them
6591 incorrectly, without adding the original symbol value,
6592 which is mandated by the ABI for section symbols. In
6593 order to give dynamic loaders and applications time to
6594 phase out the incorrect use, we refrain from emitting
6595 section-relative relocations. It's not like they're
6596 useful, after all. This should be a bit more efficient
6597 as well. */
6598 /* ??? Although this behavior is compatible with glibc's ld.so,
6599 the ABI says that relocations against STN_UNDEF should have
6600 a symbol value of 0. Irix rld honors this, so relocations
6601 against STN_UNDEF have no effect. */
6602 if (!SGI_COMPAT (output_bfd))
6603 indx = 0;
6604 defined_p = TRUE;
6605 }
6606
6607 /* If the relocation was previously an absolute relocation and
6608 this symbol will not be referred to by the relocation, we must
6609 adjust it by the value we give it in the dynamic symbol table.
6610 Otherwise leave the job up to the dynamic linker. */
6611 if (defined_p && r_type != R_MIPS_REL32)
6612 *addendp += symbol;
6613
6614 if (htab->is_vxworks)
6615 /* VxWorks uses non-relative relocations for this. */
6616 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6617 else
6618 /* The relocation is always an REL32 relocation because we don't
6619 know where the shared library will wind up at load-time. */
6620 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6621 R_MIPS_REL32);
6622
6623 /* For strict adherence to the ABI specification, we should
6624 generate a R_MIPS_64 relocation record by itself before the
6625 _REL32/_64 record as well, such that the addend is read in as
6626 a 64-bit value (REL32 is a 32-bit relocation, after all).
6627 However, since none of the existing ELF64 MIPS dynamic
6628 loaders seems to care, we don't waste space with these
6629 artificial relocations. If this turns out to not be true,
6630 mips_elf_allocate_dynamic_relocation() should be tweaked so
6631 as to make room for a pair of dynamic relocations per
6632 invocation if ABI_64_P, and here we should generate an
6633 additional relocation record with R_MIPS_64 by itself for a
6634 NULL symbol before this relocation record. */
6635 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6636 ABI_64_P (output_bfd)
6637 ? R_MIPS_64
6638 : R_MIPS_NONE);
6639 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6640
6641 /* Adjust the output offset of the relocation to reference the
6642 correct location in the output file. */
6643 outrel[0].r_offset += (input_section->output_section->vma
6644 + input_section->output_offset);
6645 outrel[1].r_offset += (input_section->output_section->vma
6646 + input_section->output_offset);
6647 outrel[2].r_offset += (input_section->output_section->vma
6648 + input_section->output_offset);
6649
6650 /* Put the relocation back out. We have to use the special
6651 relocation outputter in the 64-bit case since the 64-bit
6652 relocation format is non-standard. */
6653 if (ABI_64_P (output_bfd))
6654 {
6655 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6656 (output_bfd, &outrel[0],
6657 (sreloc->contents
6658 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6659 }
6660 else if (htab->is_vxworks)
6661 {
6662 /* VxWorks uses RELA rather than REL dynamic relocations. */
6663 outrel[0].r_addend = *addendp;
6664 bfd_elf32_swap_reloca_out
6665 (output_bfd, &outrel[0],
6666 (sreloc->contents
6667 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6668 }
6669 else
6670 bfd_elf32_swap_reloc_out
6671 (output_bfd, &outrel[0],
6672 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6673
6674 /* We've now added another relocation. */
6675 ++sreloc->reloc_count;
6676
6677 /* Make sure the output section is writable. The dynamic linker
6678 will be writing to it. */
6679 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6680 |= SHF_WRITE;
6681
6682 /* On IRIX5, make an entry of compact relocation info. */
6683 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6684 {
6685 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6686 bfd_byte *cr;
6687
6688 if (scpt)
6689 {
6690 Elf32_crinfo cptrel;
6691
6692 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6693 cptrel.vaddr = (rel->r_offset
6694 + input_section->output_section->vma
6695 + input_section->output_offset);
6696 if (r_type == R_MIPS_REL32)
6697 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6698 else
6699 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6700 mips_elf_set_cr_dist2to (cptrel, 0);
6701 cptrel.konst = *addendp;
6702
6703 cr = (scpt->contents
6704 + sizeof (Elf32_External_compact_rel));
6705 mips_elf_set_cr_relvaddr (cptrel, 0);
6706 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6707 ((Elf32_External_crinfo *) cr
6708 + scpt->reloc_count));
6709 ++scpt->reloc_count;
6710 }
6711 }
6712
6713 /* If we've written this relocation for a readonly section,
6714 we need to set DF_TEXTREL again, so that we do not delete the
6715 DT_TEXTREL tag. */
6716 if (MIPS_ELF_READONLY_SECTION (input_section))
6717 info->flags |= DF_TEXTREL;
6718
6719 return TRUE;
6720 }
6721 \f
6722 /* Return the MACH for a MIPS e_flags value. */
6723
6724 unsigned long
6725 _bfd_elf_mips_mach (flagword flags)
6726 {
6727 switch (flags & EF_MIPS_MACH)
6728 {
6729 case E_MIPS_MACH_3900:
6730 return bfd_mach_mips3900;
6731
6732 case E_MIPS_MACH_4010:
6733 return bfd_mach_mips4010;
6734
6735 case E_MIPS_MACH_4100:
6736 return bfd_mach_mips4100;
6737
6738 case E_MIPS_MACH_4111:
6739 return bfd_mach_mips4111;
6740
6741 case E_MIPS_MACH_4120:
6742 return bfd_mach_mips4120;
6743
6744 case E_MIPS_MACH_4650:
6745 return bfd_mach_mips4650;
6746
6747 case E_MIPS_MACH_5400:
6748 return bfd_mach_mips5400;
6749
6750 case E_MIPS_MACH_5500:
6751 return bfd_mach_mips5500;
6752
6753 case E_MIPS_MACH_5900:
6754 return bfd_mach_mips5900;
6755
6756 case E_MIPS_MACH_9000:
6757 return bfd_mach_mips9000;
6758
6759 case E_MIPS_MACH_SB1:
6760 return bfd_mach_mips_sb1;
6761
6762 case E_MIPS_MACH_LS2E:
6763 return bfd_mach_mips_loongson_2e;
6764
6765 case E_MIPS_MACH_LS2F:
6766 return bfd_mach_mips_loongson_2f;
6767
6768 case E_MIPS_MACH_LS3A:
6769 return bfd_mach_mips_loongson_3a;
6770
6771 case E_MIPS_MACH_OCTEON3:
6772 return bfd_mach_mips_octeon3;
6773
6774 case E_MIPS_MACH_OCTEON2:
6775 return bfd_mach_mips_octeon2;
6776
6777 case E_MIPS_MACH_OCTEON:
6778 return bfd_mach_mips_octeon;
6779
6780 case E_MIPS_MACH_XLR:
6781 return bfd_mach_mips_xlr;
6782
6783 default:
6784 switch (flags & EF_MIPS_ARCH)
6785 {
6786 default:
6787 case E_MIPS_ARCH_1:
6788 return bfd_mach_mips3000;
6789
6790 case E_MIPS_ARCH_2:
6791 return bfd_mach_mips6000;
6792
6793 case E_MIPS_ARCH_3:
6794 return bfd_mach_mips4000;
6795
6796 case E_MIPS_ARCH_4:
6797 return bfd_mach_mips8000;
6798
6799 case E_MIPS_ARCH_5:
6800 return bfd_mach_mips5;
6801
6802 case E_MIPS_ARCH_32:
6803 return bfd_mach_mipsisa32;
6804
6805 case E_MIPS_ARCH_64:
6806 return bfd_mach_mipsisa64;
6807
6808 case E_MIPS_ARCH_32R2:
6809 return bfd_mach_mipsisa32r2;
6810
6811 case E_MIPS_ARCH_64R2:
6812 return bfd_mach_mipsisa64r2;
6813
6814 case E_MIPS_ARCH_32R6:
6815 return bfd_mach_mipsisa32r6;
6816
6817 case E_MIPS_ARCH_64R6:
6818 return bfd_mach_mipsisa64r6;
6819 }
6820 }
6821
6822 return 0;
6823 }
6824
6825 /* Return printable name for ABI. */
6826
6827 static INLINE char *
6828 elf_mips_abi_name (bfd *abfd)
6829 {
6830 flagword flags;
6831
6832 flags = elf_elfheader (abfd)->e_flags;
6833 switch (flags & EF_MIPS_ABI)
6834 {
6835 case 0:
6836 if (ABI_N32_P (abfd))
6837 return "N32";
6838 else if (ABI_64_P (abfd))
6839 return "64";
6840 else
6841 return "none";
6842 case E_MIPS_ABI_O32:
6843 return "O32";
6844 case E_MIPS_ABI_O64:
6845 return "O64";
6846 case E_MIPS_ABI_EABI32:
6847 return "EABI32";
6848 case E_MIPS_ABI_EABI64:
6849 return "EABI64";
6850 default:
6851 return "unknown abi";
6852 }
6853 }
6854 \f
6855 /* MIPS ELF uses two common sections. One is the usual one, and the
6856 other is for small objects. All the small objects are kept
6857 together, and then referenced via the gp pointer, which yields
6858 faster assembler code. This is what we use for the small common
6859 section. This approach is copied from ecoff.c. */
6860 static asection mips_elf_scom_section;
6861 static asymbol mips_elf_scom_symbol;
6862 static asymbol *mips_elf_scom_symbol_ptr;
6863
6864 /* MIPS ELF also uses an acommon section, which represents an
6865 allocated common symbol which may be overridden by a
6866 definition in a shared library. */
6867 static asection mips_elf_acom_section;
6868 static asymbol mips_elf_acom_symbol;
6869 static asymbol *mips_elf_acom_symbol_ptr;
6870
6871 /* This is used for both the 32-bit and the 64-bit ABI. */
6872
6873 void
6874 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6875 {
6876 elf_symbol_type *elfsym;
6877
6878 /* Handle the special MIPS section numbers that a symbol may use. */
6879 elfsym = (elf_symbol_type *) asym;
6880 switch (elfsym->internal_elf_sym.st_shndx)
6881 {
6882 case SHN_MIPS_ACOMMON:
6883 /* This section is used in a dynamically linked executable file.
6884 It is an allocated common section. The dynamic linker can
6885 either resolve these symbols to something in a shared
6886 library, or it can just leave them here. For our purposes,
6887 we can consider these symbols to be in a new section. */
6888 if (mips_elf_acom_section.name == NULL)
6889 {
6890 /* Initialize the acommon section. */
6891 mips_elf_acom_section.name = ".acommon";
6892 mips_elf_acom_section.flags = SEC_ALLOC;
6893 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6894 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6895 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6896 mips_elf_acom_symbol.name = ".acommon";
6897 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6898 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6899 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6900 }
6901 asym->section = &mips_elf_acom_section;
6902 break;
6903
6904 case SHN_COMMON:
6905 /* Common symbols less than the GP size are automatically
6906 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6907 if (asym->value > elf_gp_size (abfd)
6908 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6909 || IRIX_COMPAT (abfd) == ict_irix6)
6910 break;
6911 /* Fall through. */
6912 case SHN_MIPS_SCOMMON:
6913 if (mips_elf_scom_section.name == NULL)
6914 {
6915 /* Initialize the small common section. */
6916 mips_elf_scom_section.name = ".scommon";
6917 mips_elf_scom_section.flags = SEC_IS_COMMON;
6918 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6919 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6920 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6921 mips_elf_scom_symbol.name = ".scommon";
6922 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6923 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6924 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6925 }
6926 asym->section = &mips_elf_scom_section;
6927 asym->value = elfsym->internal_elf_sym.st_size;
6928 break;
6929
6930 case SHN_MIPS_SUNDEFINED:
6931 asym->section = bfd_und_section_ptr;
6932 break;
6933
6934 case SHN_MIPS_TEXT:
6935 {
6936 asection *section = bfd_get_section_by_name (abfd, ".text");
6937
6938 if (section != NULL)
6939 {
6940 asym->section = section;
6941 /* MIPS_TEXT is a bit special, the address is not an offset
6942 to the base of the .text section. So substract the section
6943 base address to make it an offset. */
6944 asym->value -= section->vma;
6945 }
6946 }
6947 break;
6948
6949 case SHN_MIPS_DATA:
6950 {
6951 asection *section = bfd_get_section_by_name (abfd, ".data");
6952
6953 if (section != NULL)
6954 {
6955 asym->section = section;
6956 /* MIPS_DATA is a bit special, the address is not an offset
6957 to the base of the .data section. So substract the section
6958 base address to make it an offset. */
6959 asym->value -= section->vma;
6960 }
6961 }
6962 break;
6963 }
6964
6965 /* If this is an odd-valued function symbol, assume it's a MIPS16
6966 or microMIPS one. */
6967 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6968 && (asym->value & 1) != 0)
6969 {
6970 asym->value--;
6971 if (MICROMIPS_P (abfd))
6972 elfsym->internal_elf_sym.st_other
6973 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6974 else
6975 elfsym->internal_elf_sym.st_other
6976 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6977 }
6978 }
6979 \f
6980 /* Implement elf_backend_eh_frame_address_size. This differs from
6981 the default in the way it handles EABI64.
6982
6983 EABI64 was originally specified as an LP64 ABI, and that is what
6984 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6985 historically accepted the combination of -mabi=eabi and -mlong32,
6986 and this ILP32 variation has become semi-official over time.
6987 Both forms use elf32 and have pointer-sized FDE addresses.
6988
6989 If an EABI object was generated by GCC 4.0 or above, it will have
6990 an empty .gcc_compiled_longXX section, where XX is the size of longs
6991 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6992 have no special marking to distinguish them from LP64 objects.
6993
6994 We don't want users of the official LP64 ABI to be punished for the
6995 existence of the ILP32 variant, but at the same time, we don't want
6996 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6997 We therefore take the following approach:
6998
6999 - If ABFD contains a .gcc_compiled_longXX section, use it to
7000 determine the pointer size.
7001
7002 - Otherwise check the type of the first relocation. Assume that
7003 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
7004
7005 - Otherwise punt.
7006
7007 The second check is enough to detect LP64 objects generated by pre-4.0
7008 compilers because, in the kind of output generated by those compilers,
7009 the first relocation will be associated with either a CIE personality
7010 routine or an FDE start address. Furthermore, the compilers never
7011 used a special (non-pointer) encoding for this ABI.
7012
7013 Checking the relocation type should also be safe because there is no
7014 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7015 did so. */
7016
7017 unsigned int
7018 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
7019 {
7020 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7021 return 8;
7022 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7023 {
7024 bfd_boolean long32_p, long64_p;
7025
7026 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7027 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7028 if (long32_p && long64_p)
7029 return 0;
7030 if (long32_p)
7031 return 4;
7032 if (long64_p)
7033 return 8;
7034
7035 if (sec->reloc_count > 0
7036 && elf_section_data (sec)->relocs != NULL
7037 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7038 == R_MIPS_64))
7039 return 8;
7040
7041 return 0;
7042 }
7043 return 4;
7044 }
7045 \f
7046 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7047 relocations against two unnamed section symbols to resolve to the
7048 same address. For example, if we have code like:
7049
7050 lw $4,%got_disp(.data)($gp)
7051 lw $25,%got_disp(.text)($gp)
7052 jalr $25
7053
7054 then the linker will resolve both relocations to .data and the program
7055 will jump there rather than to .text.
7056
7057 We can work around this problem by giving names to local section symbols.
7058 This is also what the MIPSpro tools do. */
7059
7060 bfd_boolean
7061 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7062 {
7063 return SGI_COMPAT (abfd);
7064 }
7065 \f
7066 /* Work over a section just before writing it out. This routine is
7067 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7068 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7069 a better way. */
7070
7071 bfd_boolean
7072 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
7073 {
7074 if (hdr->sh_type == SHT_MIPS_REGINFO
7075 && hdr->sh_size > 0)
7076 {
7077 bfd_byte buf[4];
7078
7079 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
7080 BFD_ASSERT (hdr->contents == NULL);
7081
7082 if (bfd_seek (abfd,
7083 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7084 SEEK_SET) != 0)
7085 return FALSE;
7086 H_PUT_32 (abfd, elf_gp (abfd), buf);
7087 if (bfd_bwrite (buf, 4, abfd) != 4)
7088 return FALSE;
7089 }
7090
7091 if (hdr->sh_type == SHT_MIPS_OPTIONS
7092 && hdr->bfd_section != NULL
7093 && mips_elf_section_data (hdr->bfd_section) != NULL
7094 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
7095 {
7096 bfd_byte *contents, *l, *lend;
7097
7098 /* We stored the section contents in the tdata field in the
7099 set_section_contents routine. We save the section contents
7100 so that we don't have to read them again.
7101 At this point we know that elf_gp is set, so we can look
7102 through the section contents to see if there is an
7103 ODK_REGINFO structure. */
7104
7105 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
7106 l = contents;
7107 lend = contents + hdr->sh_size;
7108 while (l + sizeof (Elf_External_Options) <= lend)
7109 {
7110 Elf_Internal_Options intopt;
7111
7112 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7113 &intopt);
7114 if (intopt.size < sizeof (Elf_External_Options))
7115 {
7116 _bfd_error_handler
7117 /* xgettext:c-format */
7118 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
7119 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7120 break;
7121 }
7122 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7123 {
7124 bfd_byte buf[8];
7125
7126 if (bfd_seek (abfd,
7127 (hdr->sh_offset
7128 + (l - contents)
7129 + sizeof (Elf_External_Options)
7130 + (sizeof (Elf64_External_RegInfo) - 8)),
7131 SEEK_SET) != 0)
7132 return FALSE;
7133 H_PUT_64 (abfd, elf_gp (abfd), buf);
7134 if (bfd_bwrite (buf, 8, abfd) != 8)
7135 return FALSE;
7136 }
7137 else if (intopt.kind == ODK_REGINFO)
7138 {
7139 bfd_byte buf[4];
7140
7141 if (bfd_seek (abfd,
7142 (hdr->sh_offset
7143 + (l - contents)
7144 + sizeof (Elf_External_Options)
7145 + (sizeof (Elf32_External_RegInfo) - 4)),
7146 SEEK_SET) != 0)
7147 return FALSE;
7148 H_PUT_32 (abfd, elf_gp (abfd), buf);
7149 if (bfd_bwrite (buf, 4, abfd) != 4)
7150 return FALSE;
7151 }
7152 l += intopt.size;
7153 }
7154 }
7155
7156 if (hdr->bfd_section != NULL)
7157 {
7158 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
7159
7160 /* .sbss is not handled specially here because the GNU/Linux
7161 prelinker can convert .sbss from NOBITS to PROGBITS and
7162 changing it back to NOBITS breaks the binary. The entry in
7163 _bfd_mips_elf_special_sections will ensure the correct flags
7164 are set on .sbss if BFD creates it without reading it from an
7165 input file, and without special handling here the flags set
7166 on it in an input file will be followed. */
7167 if (strcmp (name, ".sdata") == 0
7168 || strcmp (name, ".lit8") == 0
7169 || strcmp (name, ".lit4") == 0)
7170 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7171 else if (strcmp (name, ".srdata") == 0)
7172 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
7173 else if (strcmp (name, ".compact_rel") == 0)
7174 hdr->sh_flags = 0;
7175 else if (strcmp (name, ".rtproc") == 0)
7176 {
7177 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7178 {
7179 unsigned int adjust;
7180
7181 adjust = hdr->sh_size % hdr->sh_addralign;
7182 if (adjust != 0)
7183 hdr->sh_size += hdr->sh_addralign - adjust;
7184 }
7185 }
7186 }
7187
7188 return TRUE;
7189 }
7190
7191 /* Handle a MIPS specific section when reading an object file. This
7192 is called when elfcode.h finds a section with an unknown type.
7193 This routine supports both the 32-bit and 64-bit ELF ABI.
7194
7195 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7196 how to. */
7197
7198 bfd_boolean
7199 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7200 Elf_Internal_Shdr *hdr,
7201 const char *name,
7202 int shindex)
7203 {
7204 flagword flags = 0;
7205
7206 /* There ought to be a place to keep ELF backend specific flags, but
7207 at the moment there isn't one. We just keep track of the
7208 sections by their name, instead. Fortunately, the ABI gives
7209 suggested names for all the MIPS specific sections, so we will
7210 probably get away with this. */
7211 switch (hdr->sh_type)
7212 {
7213 case SHT_MIPS_LIBLIST:
7214 if (strcmp (name, ".liblist") != 0)
7215 return FALSE;
7216 break;
7217 case SHT_MIPS_MSYM:
7218 if (strcmp (name, ".msym") != 0)
7219 return FALSE;
7220 break;
7221 case SHT_MIPS_CONFLICT:
7222 if (strcmp (name, ".conflict") != 0)
7223 return FALSE;
7224 break;
7225 case SHT_MIPS_GPTAB:
7226 if (! CONST_STRNEQ (name, ".gptab."))
7227 return FALSE;
7228 break;
7229 case SHT_MIPS_UCODE:
7230 if (strcmp (name, ".ucode") != 0)
7231 return FALSE;
7232 break;
7233 case SHT_MIPS_DEBUG:
7234 if (strcmp (name, ".mdebug") != 0)
7235 return FALSE;
7236 flags = SEC_DEBUGGING;
7237 break;
7238 case SHT_MIPS_REGINFO:
7239 if (strcmp (name, ".reginfo") != 0
7240 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7241 return FALSE;
7242 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7243 break;
7244 case SHT_MIPS_IFACE:
7245 if (strcmp (name, ".MIPS.interfaces") != 0)
7246 return FALSE;
7247 break;
7248 case SHT_MIPS_CONTENT:
7249 if (! CONST_STRNEQ (name, ".MIPS.content"))
7250 return FALSE;
7251 break;
7252 case SHT_MIPS_OPTIONS:
7253 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7254 return FALSE;
7255 break;
7256 case SHT_MIPS_ABIFLAGS:
7257 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7258 return FALSE;
7259 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7260 break;
7261 case SHT_MIPS_DWARF:
7262 if (! CONST_STRNEQ (name, ".debug_")
7263 && ! CONST_STRNEQ (name, ".zdebug_"))
7264 return FALSE;
7265 break;
7266 case SHT_MIPS_SYMBOL_LIB:
7267 if (strcmp (name, ".MIPS.symlib") != 0)
7268 return FALSE;
7269 break;
7270 case SHT_MIPS_EVENTS:
7271 if (! CONST_STRNEQ (name, ".MIPS.events")
7272 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
7273 return FALSE;
7274 break;
7275 default:
7276 break;
7277 }
7278
7279 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7280 return FALSE;
7281
7282 if (flags)
7283 {
7284 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7285 (bfd_get_section_flags (abfd,
7286 hdr->bfd_section)
7287 | flags)))
7288 return FALSE;
7289 }
7290
7291 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7292 {
7293 Elf_External_ABIFlags_v0 ext;
7294
7295 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7296 &ext, 0, sizeof ext))
7297 return FALSE;
7298 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7299 &mips_elf_tdata (abfd)->abiflags);
7300 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7301 return FALSE;
7302 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7303 }
7304
7305 /* FIXME: We should record sh_info for a .gptab section. */
7306
7307 /* For a .reginfo section, set the gp value in the tdata information
7308 from the contents of this section. We need the gp value while
7309 processing relocs, so we just get it now. The .reginfo section
7310 is not used in the 64-bit MIPS ELF ABI. */
7311 if (hdr->sh_type == SHT_MIPS_REGINFO)
7312 {
7313 Elf32_External_RegInfo ext;
7314 Elf32_RegInfo s;
7315
7316 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7317 &ext, 0, sizeof ext))
7318 return FALSE;
7319 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7320 elf_gp (abfd) = s.ri_gp_value;
7321 }
7322
7323 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7324 set the gp value based on what we find. We may see both
7325 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7326 they should agree. */
7327 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7328 {
7329 bfd_byte *contents, *l, *lend;
7330
7331 contents = bfd_malloc (hdr->sh_size);
7332 if (contents == NULL)
7333 return FALSE;
7334 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7335 0, hdr->sh_size))
7336 {
7337 free (contents);
7338 return FALSE;
7339 }
7340 l = contents;
7341 lend = contents + hdr->sh_size;
7342 while (l + sizeof (Elf_External_Options) <= lend)
7343 {
7344 Elf_Internal_Options intopt;
7345
7346 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7347 &intopt);
7348 if (intopt.size < sizeof (Elf_External_Options))
7349 {
7350 _bfd_error_handler
7351 /* xgettext:c-format */
7352 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
7353 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7354 break;
7355 }
7356 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7357 {
7358 Elf64_Internal_RegInfo intreg;
7359
7360 bfd_mips_elf64_swap_reginfo_in
7361 (abfd,
7362 ((Elf64_External_RegInfo *)
7363 (l + sizeof (Elf_External_Options))),
7364 &intreg);
7365 elf_gp (abfd) = intreg.ri_gp_value;
7366 }
7367 else if (intopt.kind == ODK_REGINFO)
7368 {
7369 Elf32_RegInfo intreg;
7370
7371 bfd_mips_elf32_swap_reginfo_in
7372 (abfd,
7373 ((Elf32_External_RegInfo *)
7374 (l + sizeof (Elf_External_Options))),
7375 &intreg);
7376 elf_gp (abfd) = intreg.ri_gp_value;
7377 }
7378 l += intopt.size;
7379 }
7380 free (contents);
7381 }
7382
7383 return TRUE;
7384 }
7385
7386 /* Set the correct type for a MIPS ELF section. We do this by the
7387 section name, which is a hack, but ought to work. This routine is
7388 used by both the 32-bit and the 64-bit ABI. */
7389
7390 bfd_boolean
7391 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7392 {
7393 const char *name = bfd_get_section_name (abfd, sec);
7394
7395 if (strcmp (name, ".liblist") == 0)
7396 {
7397 hdr->sh_type = SHT_MIPS_LIBLIST;
7398 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7399 /* The sh_link field is set in final_write_processing. */
7400 }
7401 else if (strcmp (name, ".conflict") == 0)
7402 hdr->sh_type = SHT_MIPS_CONFLICT;
7403 else if (CONST_STRNEQ (name, ".gptab."))
7404 {
7405 hdr->sh_type = SHT_MIPS_GPTAB;
7406 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7407 /* The sh_info field is set in final_write_processing. */
7408 }
7409 else if (strcmp (name, ".ucode") == 0)
7410 hdr->sh_type = SHT_MIPS_UCODE;
7411 else if (strcmp (name, ".mdebug") == 0)
7412 {
7413 hdr->sh_type = SHT_MIPS_DEBUG;
7414 /* In a shared object on IRIX 5.3, the .mdebug section has an
7415 entsize of 0. FIXME: Does this matter? */
7416 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7417 hdr->sh_entsize = 0;
7418 else
7419 hdr->sh_entsize = 1;
7420 }
7421 else if (strcmp (name, ".reginfo") == 0)
7422 {
7423 hdr->sh_type = SHT_MIPS_REGINFO;
7424 /* In a shared object on IRIX 5.3, the .reginfo section has an
7425 entsize of 0x18. FIXME: Does this matter? */
7426 if (SGI_COMPAT (abfd))
7427 {
7428 if ((abfd->flags & DYNAMIC) != 0)
7429 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7430 else
7431 hdr->sh_entsize = 1;
7432 }
7433 else
7434 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7435 }
7436 else if (SGI_COMPAT (abfd)
7437 && (strcmp (name, ".hash") == 0
7438 || strcmp (name, ".dynamic") == 0
7439 || strcmp (name, ".dynstr") == 0))
7440 {
7441 if (SGI_COMPAT (abfd))
7442 hdr->sh_entsize = 0;
7443 #if 0
7444 /* This isn't how the IRIX6 linker behaves. */
7445 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7446 #endif
7447 }
7448 else if (strcmp (name, ".got") == 0
7449 || strcmp (name, ".srdata") == 0
7450 || strcmp (name, ".sdata") == 0
7451 || strcmp (name, ".sbss") == 0
7452 || strcmp (name, ".lit4") == 0
7453 || strcmp (name, ".lit8") == 0)
7454 hdr->sh_flags |= SHF_MIPS_GPREL;
7455 else if (strcmp (name, ".MIPS.interfaces") == 0)
7456 {
7457 hdr->sh_type = SHT_MIPS_IFACE;
7458 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7459 }
7460 else if (CONST_STRNEQ (name, ".MIPS.content"))
7461 {
7462 hdr->sh_type = SHT_MIPS_CONTENT;
7463 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7464 /* The sh_info field is set in final_write_processing. */
7465 }
7466 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7467 {
7468 hdr->sh_type = SHT_MIPS_OPTIONS;
7469 hdr->sh_entsize = 1;
7470 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7471 }
7472 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7473 {
7474 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7475 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7476 }
7477 else if (CONST_STRNEQ (name, ".debug_")
7478 || CONST_STRNEQ (name, ".zdebug_"))
7479 {
7480 hdr->sh_type = SHT_MIPS_DWARF;
7481
7482 /* Irix facilities such as libexc expect a single .debug_frame
7483 per executable, the system ones have NOSTRIP set and the linker
7484 doesn't merge sections with different flags so ... */
7485 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7486 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7487 }
7488 else if (strcmp (name, ".MIPS.symlib") == 0)
7489 {
7490 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7491 /* The sh_link and sh_info fields are set in
7492 final_write_processing. */
7493 }
7494 else if (CONST_STRNEQ (name, ".MIPS.events")
7495 || CONST_STRNEQ (name, ".MIPS.post_rel"))
7496 {
7497 hdr->sh_type = SHT_MIPS_EVENTS;
7498 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7499 /* The sh_link field is set in final_write_processing. */
7500 }
7501 else if (strcmp (name, ".msym") == 0)
7502 {
7503 hdr->sh_type = SHT_MIPS_MSYM;
7504 hdr->sh_flags |= SHF_ALLOC;
7505 hdr->sh_entsize = 8;
7506 }
7507
7508 /* The generic elf_fake_sections will set up REL_HDR using the default
7509 kind of relocations. We used to set up a second header for the
7510 non-default kind of relocations here, but only NewABI would use
7511 these, and the IRIX ld doesn't like resulting empty RELA sections.
7512 Thus we create those header only on demand now. */
7513
7514 return TRUE;
7515 }
7516
7517 /* Given a BFD section, try to locate the corresponding ELF section
7518 index. This is used by both the 32-bit and the 64-bit ABI.
7519 Actually, it's not clear to me that the 64-bit ABI supports these,
7520 but for non-PIC objects we will certainly want support for at least
7521 the .scommon section. */
7522
7523 bfd_boolean
7524 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7525 asection *sec, int *retval)
7526 {
7527 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7528 {
7529 *retval = SHN_MIPS_SCOMMON;
7530 return TRUE;
7531 }
7532 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7533 {
7534 *retval = SHN_MIPS_ACOMMON;
7535 return TRUE;
7536 }
7537 return FALSE;
7538 }
7539 \f
7540 /* Hook called by the linker routine which adds symbols from an object
7541 file. We must handle the special MIPS section numbers here. */
7542
7543 bfd_boolean
7544 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7545 Elf_Internal_Sym *sym, const char **namep,
7546 flagword *flagsp ATTRIBUTE_UNUSED,
7547 asection **secp, bfd_vma *valp)
7548 {
7549 if (SGI_COMPAT (abfd)
7550 && (abfd->flags & DYNAMIC) != 0
7551 && strcmp (*namep, "_rld_new_interface") == 0)
7552 {
7553 /* Skip IRIX5 rld entry name. */
7554 *namep = NULL;
7555 return TRUE;
7556 }
7557
7558 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7559 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7560 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7561 a magic symbol resolved by the linker, we ignore this bogus definition
7562 of _gp_disp. New ABI objects do not suffer from this problem so this
7563 is not done for them. */
7564 if (!NEWABI_P(abfd)
7565 && (sym->st_shndx == SHN_ABS)
7566 && (strcmp (*namep, "_gp_disp") == 0))
7567 {
7568 *namep = NULL;
7569 return TRUE;
7570 }
7571
7572 switch (sym->st_shndx)
7573 {
7574 case SHN_COMMON:
7575 /* Common symbols less than the GP size are automatically
7576 treated as SHN_MIPS_SCOMMON symbols. */
7577 if (sym->st_size > elf_gp_size (abfd)
7578 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7579 || IRIX_COMPAT (abfd) == ict_irix6)
7580 break;
7581 /* Fall through. */
7582 case SHN_MIPS_SCOMMON:
7583 *secp = bfd_make_section_old_way (abfd, ".scommon");
7584 (*secp)->flags |= SEC_IS_COMMON;
7585 *valp = sym->st_size;
7586 break;
7587
7588 case SHN_MIPS_TEXT:
7589 /* This section is used in a shared object. */
7590 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7591 {
7592 asymbol *elf_text_symbol;
7593 asection *elf_text_section;
7594 bfd_size_type amt = sizeof (asection);
7595
7596 elf_text_section = bfd_zalloc (abfd, amt);
7597 if (elf_text_section == NULL)
7598 return FALSE;
7599
7600 amt = sizeof (asymbol);
7601 elf_text_symbol = bfd_zalloc (abfd, amt);
7602 if (elf_text_symbol == NULL)
7603 return FALSE;
7604
7605 /* Initialize the section. */
7606
7607 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7608 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7609
7610 elf_text_section->symbol = elf_text_symbol;
7611 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7612
7613 elf_text_section->name = ".text";
7614 elf_text_section->flags = SEC_NO_FLAGS;
7615 elf_text_section->output_section = NULL;
7616 elf_text_section->owner = abfd;
7617 elf_text_symbol->name = ".text";
7618 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7619 elf_text_symbol->section = elf_text_section;
7620 }
7621 /* This code used to do *secp = bfd_und_section_ptr if
7622 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7623 so I took it out. */
7624 *secp = mips_elf_tdata (abfd)->elf_text_section;
7625 break;
7626
7627 case SHN_MIPS_ACOMMON:
7628 /* Fall through. XXX Can we treat this as allocated data? */
7629 case SHN_MIPS_DATA:
7630 /* This section is used in a shared object. */
7631 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7632 {
7633 asymbol *elf_data_symbol;
7634 asection *elf_data_section;
7635 bfd_size_type amt = sizeof (asection);
7636
7637 elf_data_section = bfd_zalloc (abfd, amt);
7638 if (elf_data_section == NULL)
7639 return FALSE;
7640
7641 amt = sizeof (asymbol);
7642 elf_data_symbol = bfd_zalloc (abfd, amt);
7643 if (elf_data_symbol == NULL)
7644 return FALSE;
7645
7646 /* Initialize the section. */
7647
7648 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7649 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7650
7651 elf_data_section->symbol = elf_data_symbol;
7652 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7653
7654 elf_data_section->name = ".data";
7655 elf_data_section->flags = SEC_NO_FLAGS;
7656 elf_data_section->output_section = NULL;
7657 elf_data_section->owner = abfd;
7658 elf_data_symbol->name = ".data";
7659 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7660 elf_data_symbol->section = elf_data_section;
7661 }
7662 /* This code used to do *secp = bfd_und_section_ptr if
7663 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7664 so I took it out. */
7665 *secp = mips_elf_tdata (abfd)->elf_data_section;
7666 break;
7667
7668 case SHN_MIPS_SUNDEFINED:
7669 *secp = bfd_und_section_ptr;
7670 break;
7671 }
7672
7673 if (SGI_COMPAT (abfd)
7674 && ! bfd_link_pic (info)
7675 && info->output_bfd->xvec == abfd->xvec
7676 && strcmp (*namep, "__rld_obj_head") == 0)
7677 {
7678 struct elf_link_hash_entry *h;
7679 struct bfd_link_hash_entry *bh;
7680
7681 /* Mark __rld_obj_head as dynamic. */
7682 bh = NULL;
7683 if (! (_bfd_generic_link_add_one_symbol
7684 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7685 get_elf_backend_data (abfd)->collect, &bh)))
7686 return FALSE;
7687
7688 h = (struct elf_link_hash_entry *) bh;
7689 h->non_elf = 0;
7690 h->def_regular = 1;
7691 h->type = STT_OBJECT;
7692
7693 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7694 return FALSE;
7695
7696 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7697 mips_elf_hash_table (info)->rld_symbol = h;
7698 }
7699
7700 /* If this is a mips16 text symbol, add 1 to the value to make it
7701 odd. This will cause something like .word SYM to come up with
7702 the right value when it is loaded into the PC. */
7703 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7704 ++*valp;
7705
7706 return TRUE;
7707 }
7708
7709 /* This hook function is called before the linker writes out a global
7710 symbol. We mark symbols as small common if appropriate. This is
7711 also where we undo the increment of the value for a mips16 symbol. */
7712
7713 int
7714 _bfd_mips_elf_link_output_symbol_hook
7715 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7716 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7717 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7718 {
7719 /* If we see a common symbol, which implies a relocatable link, then
7720 if a symbol was small common in an input file, mark it as small
7721 common in the output file. */
7722 if (sym->st_shndx == SHN_COMMON
7723 && strcmp (input_sec->name, ".scommon") == 0)
7724 sym->st_shndx = SHN_MIPS_SCOMMON;
7725
7726 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7727 sym->st_value &= ~1;
7728
7729 return 1;
7730 }
7731 \f
7732 /* Functions for the dynamic linker. */
7733
7734 /* Create dynamic sections when linking against a dynamic object. */
7735
7736 bfd_boolean
7737 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7738 {
7739 struct elf_link_hash_entry *h;
7740 struct bfd_link_hash_entry *bh;
7741 flagword flags;
7742 register asection *s;
7743 const char * const *namep;
7744 struct mips_elf_link_hash_table *htab;
7745
7746 htab = mips_elf_hash_table (info);
7747 BFD_ASSERT (htab != NULL);
7748
7749 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7750 | SEC_LINKER_CREATED | SEC_READONLY);
7751
7752 /* The psABI requires a read-only .dynamic section, but the VxWorks
7753 EABI doesn't. */
7754 if (!htab->is_vxworks)
7755 {
7756 s = bfd_get_linker_section (abfd, ".dynamic");
7757 if (s != NULL)
7758 {
7759 if (! bfd_set_section_flags (abfd, s, flags))
7760 return FALSE;
7761 }
7762 }
7763
7764 /* We need to create .got section. */
7765 if (!mips_elf_create_got_section (abfd, info))
7766 return FALSE;
7767
7768 if (! mips_elf_rel_dyn_section (info, TRUE))
7769 return FALSE;
7770
7771 /* Create .stub section. */
7772 s = bfd_make_section_anyway_with_flags (abfd,
7773 MIPS_ELF_STUB_SECTION_NAME (abfd),
7774 flags | SEC_CODE);
7775 if (s == NULL
7776 || ! bfd_set_section_alignment (abfd, s,
7777 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7778 return FALSE;
7779 htab->sstubs = s;
7780
7781 if (!mips_elf_hash_table (info)->use_rld_obj_head
7782 && bfd_link_executable (info)
7783 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7784 {
7785 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7786 flags &~ (flagword) SEC_READONLY);
7787 if (s == NULL
7788 || ! bfd_set_section_alignment (abfd, s,
7789 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7790 return FALSE;
7791 }
7792
7793 /* On IRIX5, we adjust add some additional symbols and change the
7794 alignments of several sections. There is no ABI documentation
7795 indicating that this is necessary on IRIX6, nor any evidence that
7796 the linker takes such action. */
7797 if (IRIX_COMPAT (abfd) == ict_irix5)
7798 {
7799 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7800 {
7801 bh = NULL;
7802 if (! (_bfd_generic_link_add_one_symbol
7803 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7804 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7805 return FALSE;
7806
7807 h = (struct elf_link_hash_entry *) bh;
7808 h->non_elf = 0;
7809 h->def_regular = 1;
7810 h->type = STT_SECTION;
7811
7812 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7813 return FALSE;
7814 }
7815
7816 /* We need to create a .compact_rel section. */
7817 if (SGI_COMPAT (abfd))
7818 {
7819 if (!mips_elf_create_compact_rel_section (abfd, info))
7820 return FALSE;
7821 }
7822
7823 /* Change alignments of some sections. */
7824 s = bfd_get_linker_section (abfd, ".hash");
7825 if (s != NULL)
7826 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7827
7828 s = bfd_get_linker_section (abfd, ".dynsym");
7829 if (s != NULL)
7830 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7831
7832 s = bfd_get_linker_section (abfd, ".dynstr");
7833 if (s != NULL)
7834 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7835
7836 /* ??? */
7837 s = bfd_get_section_by_name (abfd, ".reginfo");
7838 if (s != NULL)
7839 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7840
7841 s = bfd_get_linker_section (abfd, ".dynamic");
7842 if (s != NULL)
7843 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7844 }
7845
7846 if (bfd_link_executable (info))
7847 {
7848 const char *name;
7849
7850 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7851 bh = NULL;
7852 if (!(_bfd_generic_link_add_one_symbol
7853 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7854 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7855 return FALSE;
7856
7857 h = (struct elf_link_hash_entry *) bh;
7858 h->non_elf = 0;
7859 h->def_regular = 1;
7860 h->type = STT_SECTION;
7861
7862 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7863 return FALSE;
7864
7865 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7866 {
7867 /* __rld_map is a four byte word located in the .data section
7868 and is filled in by the rtld to contain a pointer to
7869 the _r_debug structure. Its symbol value will be set in
7870 _bfd_mips_elf_finish_dynamic_symbol. */
7871 s = bfd_get_linker_section (abfd, ".rld_map");
7872 BFD_ASSERT (s != NULL);
7873
7874 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7875 bh = NULL;
7876 if (!(_bfd_generic_link_add_one_symbol
7877 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7878 get_elf_backend_data (abfd)->collect, &bh)))
7879 return FALSE;
7880
7881 h = (struct elf_link_hash_entry *) bh;
7882 h->non_elf = 0;
7883 h->def_regular = 1;
7884 h->type = STT_OBJECT;
7885
7886 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7887 return FALSE;
7888 mips_elf_hash_table (info)->rld_symbol = h;
7889 }
7890 }
7891
7892 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7893 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
7894 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7895 return FALSE;
7896
7897 /* Cache the sections created above. */
7898 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
7899 if (htab->is_vxworks)
7900 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
7901 if (!htab->sdynbss
7902 || (htab->is_vxworks && !htab->srelbss && !bfd_link_pic (info))
7903 || !htab->root.srelplt
7904 || !htab->root.splt)
7905 abort ();
7906
7907 /* Do the usual VxWorks handling. */
7908 if (htab->is_vxworks
7909 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7910 return FALSE;
7911
7912 return TRUE;
7913 }
7914 \f
7915 /* Return true if relocation REL against section SEC is a REL rather than
7916 RELA relocation. RELOCS is the first relocation in the section and
7917 ABFD is the bfd that contains SEC. */
7918
7919 static bfd_boolean
7920 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7921 const Elf_Internal_Rela *relocs,
7922 const Elf_Internal_Rela *rel)
7923 {
7924 Elf_Internal_Shdr *rel_hdr;
7925 const struct elf_backend_data *bed;
7926
7927 /* To determine which flavor of relocation this is, we depend on the
7928 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7929 rel_hdr = elf_section_data (sec)->rel.hdr;
7930 if (rel_hdr == NULL)
7931 return FALSE;
7932 bed = get_elf_backend_data (abfd);
7933 return ((size_t) (rel - relocs)
7934 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7935 }
7936
7937 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7938 HOWTO is the relocation's howto and CONTENTS points to the contents
7939 of the section that REL is against. */
7940
7941 static bfd_vma
7942 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7943 reloc_howto_type *howto, bfd_byte *contents)
7944 {
7945 bfd_byte *location;
7946 unsigned int r_type;
7947 bfd_vma addend;
7948 bfd_vma bytes;
7949
7950 r_type = ELF_R_TYPE (abfd, rel->r_info);
7951 location = contents + rel->r_offset;
7952
7953 /* Get the addend, which is stored in the input file. */
7954 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7955 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
7956 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7957
7958 addend = bytes & howto->src_mask;
7959
7960 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
7961 accordingly. */
7962 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
7963 addend <<= 1;
7964
7965 return addend;
7966 }
7967
7968 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7969 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7970 and update *ADDEND with the final addend. Return true on success
7971 or false if the LO16 could not be found. RELEND is the exclusive
7972 upper bound on the relocations for REL's section. */
7973
7974 static bfd_boolean
7975 mips_elf_add_lo16_rel_addend (bfd *abfd,
7976 const Elf_Internal_Rela *rel,
7977 const Elf_Internal_Rela *relend,
7978 bfd_byte *contents, bfd_vma *addend)
7979 {
7980 unsigned int r_type, lo16_type;
7981 const Elf_Internal_Rela *lo16_relocation;
7982 reloc_howto_type *lo16_howto;
7983 bfd_vma l;
7984
7985 r_type = ELF_R_TYPE (abfd, rel->r_info);
7986 if (mips16_reloc_p (r_type))
7987 lo16_type = R_MIPS16_LO16;
7988 else if (micromips_reloc_p (r_type))
7989 lo16_type = R_MICROMIPS_LO16;
7990 else if (r_type == R_MIPS_PCHI16)
7991 lo16_type = R_MIPS_PCLO16;
7992 else
7993 lo16_type = R_MIPS_LO16;
7994
7995 /* The combined value is the sum of the HI16 addend, left-shifted by
7996 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7997 code does a `lui' of the HI16 value, and then an `addiu' of the
7998 LO16 value.)
7999
8000 Scan ahead to find a matching LO16 relocation.
8001
8002 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8003 be immediately following. However, for the IRIX6 ABI, the next
8004 relocation may be a composed relocation consisting of several
8005 relocations for the same address. In that case, the R_MIPS_LO16
8006 relocation may occur as one of these. We permit a similar
8007 extension in general, as that is useful for GCC.
8008
8009 In some cases GCC dead code elimination removes the LO16 but keeps
8010 the corresponding HI16. This is strictly speaking a violation of
8011 the ABI but not immediately harmful. */
8012 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8013 if (lo16_relocation == NULL)
8014 return FALSE;
8015
8016 /* Obtain the addend kept there. */
8017 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
8018 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8019
8020 l <<= lo16_howto->rightshift;
8021 l = _bfd_mips_elf_sign_extend (l, 16);
8022
8023 *addend <<= 16;
8024 *addend += l;
8025 return TRUE;
8026 }
8027
8028 /* Try to read the contents of section SEC in bfd ABFD. Return true and
8029 store the contents in *CONTENTS on success. Assume that *CONTENTS
8030 already holds the contents if it is nonull on entry. */
8031
8032 static bfd_boolean
8033 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8034 {
8035 if (*contents)
8036 return TRUE;
8037
8038 /* Get cached copy if it exists. */
8039 if (elf_section_data (sec)->this_hdr.contents != NULL)
8040 {
8041 *contents = elf_section_data (sec)->this_hdr.contents;
8042 return TRUE;
8043 }
8044
8045 return bfd_malloc_and_get_section (abfd, sec, contents);
8046 }
8047
8048 /* Make a new PLT record to keep internal data. */
8049
8050 static struct plt_entry *
8051 mips_elf_make_plt_record (bfd *abfd)
8052 {
8053 struct plt_entry *entry;
8054
8055 entry = bfd_zalloc (abfd, sizeof (*entry));
8056 if (entry == NULL)
8057 return NULL;
8058
8059 entry->stub_offset = MINUS_ONE;
8060 entry->mips_offset = MINUS_ONE;
8061 entry->comp_offset = MINUS_ONE;
8062 entry->gotplt_index = MINUS_ONE;
8063 return entry;
8064 }
8065
8066 /* Look through the relocs for a section during the first phase, and
8067 allocate space in the global offset table and record the need for
8068 standard MIPS and compressed procedure linkage table entries. */
8069
8070 bfd_boolean
8071 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8072 asection *sec, const Elf_Internal_Rela *relocs)
8073 {
8074 const char *name;
8075 bfd *dynobj;
8076 Elf_Internal_Shdr *symtab_hdr;
8077 struct elf_link_hash_entry **sym_hashes;
8078 size_t extsymoff;
8079 const Elf_Internal_Rela *rel;
8080 const Elf_Internal_Rela *rel_end;
8081 asection *sreloc;
8082 const struct elf_backend_data *bed;
8083 struct mips_elf_link_hash_table *htab;
8084 bfd_byte *contents;
8085 bfd_vma addend;
8086 reloc_howto_type *howto;
8087
8088 if (bfd_link_relocatable (info))
8089 return TRUE;
8090
8091 htab = mips_elf_hash_table (info);
8092 BFD_ASSERT (htab != NULL);
8093
8094 dynobj = elf_hash_table (info)->dynobj;
8095 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8096 sym_hashes = elf_sym_hashes (abfd);
8097 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8098
8099 bed = get_elf_backend_data (abfd);
8100 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
8101
8102 /* Check for the mips16 stub sections. */
8103
8104 name = bfd_get_section_name (abfd, sec);
8105 if (FN_STUB_P (name))
8106 {
8107 unsigned long r_symndx;
8108
8109 /* Look at the relocation information to figure out which symbol
8110 this is for. */
8111
8112 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8113 if (r_symndx == 0)
8114 {
8115 _bfd_error_handler
8116 /* xgettext:c-format */
8117 (_("%B: Warning: cannot determine the target function for"
8118 " stub section `%s'"),
8119 abfd, name);
8120 bfd_set_error (bfd_error_bad_value);
8121 return FALSE;
8122 }
8123
8124 if (r_symndx < extsymoff
8125 || sym_hashes[r_symndx - extsymoff] == NULL)
8126 {
8127 asection *o;
8128
8129 /* This stub is for a local symbol. This stub will only be
8130 needed if there is some relocation in this BFD, other
8131 than a 16 bit function call, which refers to this symbol. */
8132 for (o = abfd->sections; o != NULL; o = o->next)
8133 {
8134 Elf_Internal_Rela *sec_relocs;
8135 const Elf_Internal_Rela *r, *rend;
8136
8137 /* We can ignore stub sections when looking for relocs. */
8138 if ((o->flags & SEC_RELOC) == 0
8139 || o->reloc_count == 0
8140 || section_allows_mips16_refs_p (o))
8141 continue;
8142
8143 sec_relocs
8144 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8145 info->keep_memory);
8146 if (sec_relocs == NULL)
8147 return FALSE;
8148
8149 rend = sec_relocs + o->reloc_count;
8150 for (r = sec_relocs; r < rend; r++)
8151 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8152 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
8153 break;
8154
8155 if (elf_section_data (o)->relocs != sec_relocs)
8156 free (sec_relocs);
8157
8158 if (r < rend)
8159 break;
8160 }
8161
8162 if (o == NULL)
8163 {
8164 /* There is no non-call reloc for this stub, so we do
8165 not need it. Since this function is called before
8166 the linker maps input sections to output sections, we
8167 can easily discard it by setting the SEC_EXCLUDE
8168 flag. */
8169 sec->flags |= SEC_EXCLUDE;
8170 return TRUE;
8171 }
8172
8173 /* Record this stub in an array of local symbol stubs for
8174 this BFD. */
8175 if (mips_elf_tdata (abfd)->local_stubs == NULL)
8176 {
8177 unsigned long symcount;
8178 asection **n;
8179 bfd_size_type amt;
8180
8181 if (elf_bad_symtab (abfd))
8182 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8183 else
8184 symcount = symtab_hdr->sh_info;
8185 amt = symcount * sizeof (asection *);
8186 n = bfd_zalloc (abfd, amt);
8187 if (n == NULL)
8188 return FALSE;
8189 mips_elf_tdata (abfd)->local_stubs = n;
8190 }
8191
8192 sec->flags |= SEC_KEEP;
8193 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8194
8195 /* We don't need to set mips16_stubs_seen in this case.
8196 That flag is used to see whether we need to look through
8197 the global symbol table for stubs. We don't need to set
8198 it here, because we just have a local stub. */
8199 }
8200 else
8201 {
8202 struct mips_elf_link_hash_entry *h;
8203
8204 h = ((struct mips_elf_link_hash_entry *)
8205 sym_hashes[r_symndx - extsymoff]);
8206
8207 while (h->root.root.type == bfd_link_hash_indirect
8208 || h->root.root.type == bfd_link_hash_warning)
8209 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8210
8211 /* H is the symbol this stub is for. */
8212
8213 /* If we already have an appropriate stub for this function, we
8214 don't need another one, so we can discard this one. Since
8215 this function is called before the linker maps input sections
8216 to output sections, we can easily discard it by setting the
8217 SEC_EXCLUDE flag. */
8218 if (h->fn_stub != NULL)
8219 {
8220 sec->flags |= SEC_EXCLUDE;
8221 return TRUE;
8222 }
8223
8224 sec->flags |= SEC_KEEP;
8225 h->fn_stub = sec;
8226 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8227 }
8228 }
8229 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8230 {
8231 unsigned long r_symndx;
8232 struct mips_elf_link_hash_entry *h;
8233 asection **loc;
8234
8235 /* Look at the relocation information to figure out which symbol
8236 this is for. */
8237
8238 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8239 if (r_symndx == 0)
8240 {
8241 _bfd_error_handler
8242 /* xgettext:c-format */
8243 (_("%B: Warning: cannot determine the target function for"
8244 " stub section `%s'"),
8245 abfd, name);
8246 bfd_set_error (bfd_error_bad_value);
8247 return FALSE;
8248 }
8249
8250 if (r_symndx < extsymoff
8251 || sym_hashes[r_symndx - extsymoff] == NULL)
8252 {
8253 asection *o;
8254
8255 /* This stub is for a local symbol. This stub will only be
8256 needed if there is some relocation (R_MIPS16_26) in this BFD
8257 that refers to this symbol. */
8258 for (o = abfd->sections; o != NULL; o = o->next)
8259 {
8260 Elf_Internal_Rela *sec_relocs;
8261 const Elf_Internal_Rela *r, *rend;
8262
8263 /* We can ignore stub sections when looking for relocs. */
8264 if ((o->flags & SEC_RELOC) == 0
8265 || o->reloc_count == 0
8266 || section_allows_mips16_refs_p (o))
8267 continue;
8268
8269 sec_relocs
8270 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8271 info->keep_memory);
8272 if (sec_relocs == NULL)
8273 return FALSE;
8274
8275 rend = sec_relocs + o->reloc_count;
8276 for (r = sec_relocs; r < rend; r++)
8277 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8278 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8279 break;
8280
8281 if (elf_section_data (o)->relocs != sec_relocs)
8282 free (sec_relocs);
8283
8284 if (r < rend)
8285 break;
8286 }
8287
8288 if (o == NULL)
8289 {
8290 /* There is no non-call reloc for this stub, so we do
8291 not need it. Since this function is called before
8292 the linker maps input sections to output sections, we
8293 can easily discard it by setting the SEC_EXCLUDE
8294 flag. */
8295 sec->flags |= SEC_EXCLUDE;
8296 return TRUE;
8297 }
8298
8299 /* Record this stub in an array of local symbol call_stubs for
8300 this BFD. */
8301 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8302 {
8303 unsigned long symcount;
8304 asection **n;
8305 bfd_size_type amt;
8306
8307 if (elf_bad_symtab (abfd))
8308 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8309 else
8310 symcount = symtab_hdr->sh_info;
8311 amt = symcount * sizeof (asection *);
8312 n = bfd_zalloc (abfd, amt);
8313 if (n == NULL)
8314 return FALSE;
8315 mips_elf_tdata (abfd)->local_call_stubs = n;
8316 }
8317
8318 sec->flags |= SEC_KEEP;
8319 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8320
8321 /* We don't need to set mips16_stubs_seen in this case.
8322 That flag is used to see whether we need to look through
8323 the global symbol table for stubs. We don't need to set
8324 it here, because we just have a local stub. */
8325 }
8326 else
8327 {
8328 h = ((struct mips_elf_link_hash_entry *)
8329 sym_hashes[r_symndx - extsymoff]);
8330
8331 /* H is the symbol this stub is for. */
8332
8333 if (CALL_FP_STUB_P (name))
8334 loc = &h->call_fp_stub;
8335 else
8336 loc = &h->call_stub;
8337
8338 /* If we already have an appropriate stub for this function, we
8339 don't need another one, so we can discard this one. Since
8340 this function is called before the linker maps input sections
8341 to output sections, we can easily discard it by setting the
8342 SEC_EXCLUDE flag. */
8343 if (*loc != NULL)
8344 {
8345 sec->flags |= SEC_EXCLUDE;
8346 return TRUE;
8347 }
8348
8349 sec->flags |= SEC_KEEP;
8350 *loc = sec;
8351 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8352 }
8353 }
8354
8355 sreloc = NULL;
8356 contents = NULL;
8357 for (rel = relocs; rel < rel_end; ++rel)
8358 {
8359 unsigned long r_symndx;
8360 unsigned int r_type;
8361 struct elf_link_hash_entry *h;
8362 bfd_boolean can_make_dynamic_p;
8363 bfd_boolean call_reloc_p;
8364 bfd_boolean constrain_symbol_p;
8365
8366 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8367 r_type = ELF_R_TYPE (abfd, rel->r_info);
8368
8369 if (r_symndx < extsymoff)
8370 h = NULL;
8371 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8372 {
8373 _bfd_error_handler
8374 /* xgettext:c-format */
8375 (_("%B: Malformed reloc detected for section %s"),
8376 abfd, name);
8377 bfd_set_error (bfd_error_bad_value);
8378 return FALSE;
8379 }
8380 else
8381 {
8382 h = sym_hashes[r_symndx - extsymoff];
8383 if (h != NULL)
8384 {
8385 while (h->root.type == bfd_link_hash_indirect
8386 || h->root.type == bfd_link_hash_warning)
8387 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8388
8389 /* PR15323, ref flags aren't set for references in the
8390 same object. */
8391 h->root.non_ir_ref = 1;
8392 }
8393 }
8394
8395 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8396 relocation into a dynamic one. */
8397 can_make_dynamic_p = FALSE;
8398
8399 /* Set CALL_RELOC_P to true if the relocation is for a call,
8400 and if pointer equality therefore doesn't matter. */
8401 call_reloc_p = FALSE;
8402
8403 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8404 into account when deciding how to define the symbol.
8405 Relocations in nonallocatable sections such as .pdr and
8406 .debug* should have no effect. */
8407 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8408
8409 switch (r_type)
8410 {
8411 case R_MIPS_CALL16:
8412 case R_MIPS_CALL_HI16:
8413 case R_MIPS_CALL_LO16:
8414 case R_MIPS16_CALL16:
8415 case R_MICROMIPS_CALL16:
8416 case R_MICROMIPS_CALL_HI16:
8417 case R_MICROMIPS_CALL_LO16:
8418 call_reloc_p = TRUE;
8419 /* Fall through. */
8420
8421 case R_MIPS_GOT16:
8422 case R_MIPS_GOT_HI16:
8423 case R_MIPS_GOT_LO16:
8424 case R_MIPS_GOT_PAGE:
8425 case R_MIPS_GOT_OFST:
8426 case R_MIPS_GOT_DISP:
8427 case R_MIPS_TLS_GOTTPREL:
8428 case R_MIPS_TLS_GD:
8429 case R_MIPS_TLS_LDM:
8430 case R_MIPS16_GOT16:
8431 case R_MIPS16_TLS_GOTTPREL:
8432 case R_MIPS16_TLS_GD:
8433 case R_MIPS16_TLS_LDM:
8434 case R_MICROMIPS_GOT16:
8435 case R_MICROMIPS_GOT_HI16:
8436 case R_MICROMIPS_GOT_LO16:
8437 case R_MICROMIPS_GOT_PAGE:
8438 case R_MICROMIPS_GOT_OFST:
8439 case R_MICROMIPS_GOT_DISP:
8440 case R_MICROMIPS_TLS_GOTTPREL:
8441 case R_MICROMIPS_TLS_GD:
8442 case R_MICROMIPS_TLS_LDM:
8443 if (dynobj == NULL)
8444 elf_hash_table (info)->dynobj = dynobj = abfd;
8445 if (!mips_elf_create_got_section (dynobj, info))
8446 return FALSE;
8447 if (htab->is_vxworks && !bfd_link_pic (info))
8448 {
8449 _bfd_error_handler
8450 /* xgettext:c-format */
8451 (_("%B: GOT reloc at 0x%lx not expected in executables"),
8452 abfd, (unsigned long) rel->r_offset);
8453 bfd_set_error (bfd_error_bad_value);
8454 return FALSE;
8455 }
8456 can_make_dynamic_p = TRUE;
8457 break;
8458
8459 case R_MIPS_NONE:
8460 case R_MIPS_JALR:
8461 case R_MICROMIPS_JALR:
8462 /* These relocations have empty fields and are purely there to
8463 provide link information. The symbol value doesn't matter. */
8464 constrain_symbol_p = FALSE;
8465 break;
8466
8467 case R_MIPS_GPREL16:
8468 case R_MIPS_GPREL32:
8469 case R_MIPS16_GPREL:
8470 case R_MICROMIPS_GPREL16:
8471 /* GP-relative relocations always resolve to a definition in a
8472 regular input file, ignoring the one-definition rule. This is
8473 important for the GP setup sequence in NewABI code, which
8474 always resolves to a local function even if other relocations
8475 against the symbol wouldn't. */
8476 constrain_symbol_p = FALSE;
8477 break;
8478
8479 case R_MIPS_32:
8480 case R_MIPS_REL32:
8481 case R_MIPS_64:
8482 /* In VxWorks executables, references to external symbols
8483 must be handled using copy relocs or PLT entries; it is not
8484 possible to convert this relocation into a dynamic one.
8485
8486 For executables that use PLTs and copy-relocs, we have a
8487 choice between converting the relocation into a dynamic
8488 one or using copy relocations or PLT entries. It is
8489 usually better to do the former, unless the relocation is
8490 against a read-only section. */
8491 if ((bfd_link_pic (info)
8492 || (h != NULL
8493 && !htab->is_vxworks
8494 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8495 && !(!info->nocopyreloc
8496 && !PIC_OBJECT_P (abfd)
8497 && MIPS_ELF_READONLY_SECTION (sec))))
8498 && (sec->flags & SEC_ALLOC) != 0)
8499 {
8500 can_make_dynamic_p = TRUE;
8501 if (dynobj == NULL)
8502 elf_hash_table (info)->dynobj = dynobj = abfd;
8503 }
8504 break;
8505
8506 case R_MIPS_26:
8507 case R_MIPS_PC16:
8508 case R_MIPS_PC21_S2:
8509 case R_MIPS_PC26_S2:
8510 case R_MIPS16_26:
8511 case R_MIPS16_PC16_S1:
8512 case R_MICROMIPS_26_S1:
8513 case R_MICROMIPS_PC7_S1:
8514 case R_MICROMIPS_PC10_S1:
8515 case R_MICROMIPS_PC16_S1:
8516 case R_MICROMIPS_PC23_S2:
8517 call_reloc_p = TRUE;
8518 break;
8519 }
8520
8521 if (h)
8522 {
8523 if (constrain_symbol_p)
8524 {
8525 if (!can_make_dynamic_p)
8526 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8527
8528 if (!call_reloc_p)
8529 h->pointer_equality_needed = 1;
8530
8531 /* We must not create a stub for a symbol that has
8532 relocations related to taking the function's address.
8533 This doesn't apply to VxWorks, where CALL relocs refer
8534 to a .got.plt entry instead of a normal .got entry. */
8535 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8536 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8537 }
8538
8539 /* Relocations against the special VxWorks __GOTT_BASE__ and
8540 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8541 room for them in .rela.dyn. */
8542 if (is_gott_symbol (info, h))
8543 {
8544 if (sreloc == NULL)
8545 {
8546 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8547 if (sreloc == NULL)
8548 return FALSE;
8549 }
8550 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8551 if (MIPS_ELF_READONLY_SECTION (sec))
8552 /* We tell the dynamic linker that there are
8553 relocations against the text segment. */
8554 info->flags |= DF_TEXTREL;
8555 }
8556 }
8557 else if (call_lo16_reloc_p (r_type)
8558 || got_lo16_reloc_p (r_type)
8559 || got_disp_reloc_p (r_type)
8560 || (got16_reloc_p (r_type) && htab->is_vxworks))
8561 {
8562 /* We may need a local GOT entry for this relocation. We
8563 don't count R_MIPS_GOT_PAGE because we can estimate the
8564 maximum number of pages needed by looking at the size of
8565 the segment. Similar comments apply to R_MIPS*_GOT16 and
8566 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8567 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8568 R_MIPS_CALL_HI16 because these are always followed by an
8569 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8570 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8571 rel->r_addend, info, r_type))
8572 return FALSE;
8573 }
8574
8575 if (h != NULL
8576 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8577 ELF_ST_IS_MIPS16 (h->other)))
8578 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8579
8580 switch (r_type)
8581 {
8582 case R_MIPS_CALL16:
8583 case R_MIPS16_CALL16:
8584 case R_MICROMIPS_CALL16:
8585 if (h == NULL)
8586 {
8587 _bfd_error_handler
8588 /* xgettext:c-format */
8589 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
8590 abfd, (unsigned long) rel->r_offset);
8591 bfd_set_error (bfd_error_bad_value);
8592 return FALSE;
8593 }
8594 /* Fall through. */
8595
8596 case R_MIPS_CALL_HI16:
8597 case R_MIPS_CALL_LO16:
8598 case R_MICROMIPS_CALL_HI16:
8599 case R_MICROMIPS_CALL_LO16:
8600 if (h != NULL)
8601 {
8602 /* Make sure there is room in the regular GOT to hold the
8603 function's address. We may eliminate it in favour of
8604 a .got.plt entry later; see mips_elf_count_got_symbols. */
8605 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8606 r_type))
8607 return FALSE;
8608
8609 /* We need a stub, not a plt entry for the undefined
8610 function. But we record it as if it needs plt. See
8611 _bfd_elf_adjust_dynamic_symbol. */
8612 h->needs_plt = 1;
8613 h->type = STT_FUNC;
8614 }
8615 break;
8616
8617 case R_MIPS_GOT_PAGE:
8618 case R_MICROMIPS_GOT_PAGE:
8619 case R_MIPS16_GOT16:
8620 case R_MIPS_GOT16:
8621 case R_MIPS_GOT_HI16:
8622 case R_MIPS_GOT_LO16:
8623 case R_MICROMIPS_GOT16:
8624 case R_MICROMIPS_GOT_HI16:
8625 case R_MICROMIPS_GOT_LO16:
8626 if (!h || got_page_reloc_p (r_type))
8627 {
8628 /* This relocation needs (or may need, if h != NULL) a
8629 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8630 know for sure until we know whether the symbol is
8631 preemptible. */
8632 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8633 {
8634 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8635 return FALSE;
8636 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8637 addend = mips_elf_read_rel_addend (abfd, rel,
8638 howto, contents);
8639 if (got16_reloc_p (r_type))
8640 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8641 contents, &addend);
8642 else
8643 addend <<= howto->rightshift;
8644 }
8645 else
8646 addend = rel->r_addend;
8647 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8648 h, addend))
8649 return FALSE;
8650
8651 if (h)
8652 {
8653 struct mips_elf_link_hash_entry *hmips =
8654 (struct mips_elf_link_hash_entry *) h;
8655
8656 /* This symbol is definitely not overridable. */
8657 if (hmips->root.def_regular
8658 && ! (bfd_link_pic (info) && ! info->symbolic
8659 && ! hmips->root.forced_local))
8660 h = NULL;
8661 }
8662 }
8663 /* If this is a global, overridable symbol, GOT_PAGE will
8664 decay to GOT_DISP, so we'll need a GOT entry for it. */
8665 /* Fall through. */
8666
8667 case R_MIPS_GOT_DISP:
8668 case R_MICROMIPS_GOT_DISP:
8669 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8670 FALSE, r_type))
8671 return FALSE;
8672 break;
8673
8674 case R_MIPS_TLS_GOTTPREL:
8675 case R_MIPS16_TLS_GOTTPREL:
8676 case R_MICROMIPS_TLS_GOTTPREL:
8677 if (bfd_link_pic (info))
8678 info->flags |= DF_STATIC_TLS;
8679 /* Fall through */
8680
8681 case R_MIPS_TLS_LDM:
8682 case R_MIPS16_TLS_LDM:
8683 case R_MICROMIPS_TLS_LDM:
8684 if (tls_ldm_reloc_p (r_type))
8685 {
8686 r_symndx = STN_UNDEF;
8687 h = NULL;
8688 }
8689 /* Fall through */
8690
8691 case R_MIPS_TLS_GD:
8692 case R_MIPS16_TLS_GD:
8693 case R_MICROMIPS_TLS_GD:
8694 /* This symbol requires a global offset table entry, or two
8695 for TLS GD relocations. */
8696 if (h != NULL)
8697 {
8698 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8699 FALSE, r_type))
8700 return FALSE;
8701 }
8702 else
8703 {
8704 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8705 rel->r_addend,
8706 info, r_type))
8707 return FALSE;
8708 }
8709 break;
8710
8711 case R_MIPS_32:
8712 case R_MIPS_REL32:
8713 case R_MIPS_64:
8714 /* In VxWorks executables, references to external symbols
8715 are handled using copy relocs or PLT stubs, so there's
8716 no need to add a .rela.dyn entry for this relocation. */
8717 if (can_make_dynamic_p)
8718 {
8719 if (sreloc == NULL)
8720 {
8721 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8722 if (sreloc == NULL)
8723 return FALSE;
8724 }
8725 if (bfd_link_pic (info) && h == NULL)
8726 {
8727 /* When creating a shared object, we must copy these
8728 reloc types into the output file as R_MIPS_REL32
8729 relocs. Make room for this reloc in .rel(a).dyn. */
8730 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8731 if (MIPS_ELF_READONLY_SECTION (sec))
8732 /* We tell the dynamic linker that there are
8733 relocations against the text segment. */
8734 info->flags |= DF_TEXTREL;
8735 }
8736 else
8737 {
8738 struct mips_elf_link_hash_entry *hmips;
8739
8740 /* For a shared object, we must copy this relocation
8741 unless the symbol turns out to be undefined and
8742 weak with non-default visibility, in which case
8743 it will be left as zero.
8744
8745 We could elide R_MIPS_REL32 for locally binding symbols
8746 in shared libraries, but do not yet do so.
8747
8748 For an executable, we only need to copy this
8749 reloc if the symbol is defined in a dynamic
8750 object. */
8751 hmips = (struct mips_elf_link_hash_entry *) h;
8752 ++hmips->possibly_dynamic_relocs;
8753 if (MIPS_ELF_READONLY_SECTION (sec))
8754 /* We need it to tell the dynamic linker if there
8755 are relocations against the text segment. */
8756 hmips->readonly_reloc = TRUE;
8757 }
8758 }
8759
8760 if (SGI_COMPAT (abfd))
8761 mips_elf_hash_table (info)->compact_rel_size +=
8762 sizeof (Elf32_External_crinfo);
8763 break;
8764
8765 case R_MIPS_26:
8766 case R_MIPS_GPREL16:
8767 case R_MIPS_LITERAL:
8768 case R_MIPS_GPREL32:
8769 case R_MICROMIPS_26_S1:
8770 case R_MICROMIPS_GPREL16:
8771 case R_MICROMIPS_LITERAL:
8772 case R_MICROMIPS_GPREL7_S2:
8773 if (SGI_COMPAT (abfd))
8774 mips_elf_hash_table (info)->compact_rel_size +=
8775 sizeof (Elf32_External_crinfo);
8776 break;
8777
8778 /* This relocation describes the C++ object vtable hierarchy.
8779 Reconstruct it for later use during GC. */
8780 case R_MIPS_GNU_VTINHERIT:
8781 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8782 return FALSE;
8783 break;
8784
8785 /* This relocation describes which C++ vtable entries are actually
8786 used. Record for later use during GC. */
8787 case R_MIPS_GNU_VTENTRY:
8788 BFD_ASSERT (h != NULL);
8789 if (h != NULL
8790 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8791 return FALSE;
8792 break;
8793
8794 default:
8795 break;
8796 }
8797
8798 /* Record the need for a PLT entry. At this point we don't know
8799 yet if we are going to create a PLT in the first place, but
8800 we only record whether the relocation requires a standard MIPS
8801 or a compressed code entry anyway. If we don't make a PLT after
8802 all, then we'll just ignore these arrangements. Likewise if
8803 a PLT entry is not created because the symbol is satisfied
8804 locally. */
8805 if (h != NULL
8806 && (branch_reloc_p (r_type)
8807 || mips16_branch_reloc_p (r_type)
8808 || micromips_branch_reloc_p (r_type))
8809 && !SYMBOL_CALLS_LOCAL (info, h))
8810 {
8811 if (h->plt.plist == NULL)
8812 h->plt.plist = mips_elf_make_plt_record (abfd);
8813 if (h->plt.plist == NULL)
8814 return FALSE;
8815
8816 if (branch_reloc_p (r_type))
8817 h->plt.plist->need_mips = TRUE;
8818 else
8819 h->plt.plist->need_comp = TRUE;
8820 }
8821
8822 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8823 if there is one. We only need to handle global symbols here;
8824 we decide whether to keep or delete stubs for local symbols
8825 when processing the stub's relocations. */
8826 if (h != NULL
8827 && !mips16_call_reloc_p (r_type)
8828 && !section_allows_mips16_refs_p (sec))
8829 {
8830 struct mips_elf_link_hash_entry *mh;
8831
8832 mh = (struct mips_elf_link_hash_entry *) h;
8833 mh->need_fn_stub = TRUE;
8834 }
8835
8836 /* Refuse some position-dependent relocations when creating a
8837 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8838 not PIC, but we can create dynamic relocations and the result
8839 will be fine. Also do not refuse R_MIPS_LO16, which can be
8840 combined with R_MIPS_GOT16. */
8841 if (bfd_link_pic (info))
8842 {
8843 switch (r_type)
8844 {
8845 case R_MIPS16_HI16:
8846 case R_MIPS_HI16:
8847 case R_MIPS_HIGHER:
8848 case R_MIPS_HIGHEST:
8849 case R_MICROMIPS_HI16:
8850 case R_MICROMIPS_HIGHER:
8851 case R_MICROMIPS_HIGHEST:
8852 /* Don't refuse a high part relocation if it's against
8853 no symbol (e.g. part of a compound relocation). */
8854 if (r_symndx == STN_UNDEF)
8855 break;
8856
8857 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8858 and has a special meaning. */
8859 if (!NEWABI_P (abfd) && h != NULL
8860 && strcmp (h->root.root.string, "_gp_disp") == 0)
8861 break;
8862
8863 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8864 if (is_gott_symbol (info, h))
8865 break;
8866
8867 /* FALLTHROUGH */
8868
8869 case R_MIPS16_26:
8870 case R_MIPS_26:
8871 case R_MICROMIPS_26_S1:
8872 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8873 _bfd_error_handler
8874 /* xgettext:c-format */
8875 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8876 abfd, howto->name,
8877 (h) ? h->root.root.string : "a local symbol");
8878 bfd_set_error (bfd_error_bad_value);
8879 return FALSE;
8880 default:
8881 break;
8882 }
8883 }
8884 }
8885
8886 return TRUE;
8887 }
8888 \f
8889 bfd_boolean
8890 _bfd_mips_relax_section (bfd *abfd, asection *sec,
8891 struct bfd_link_info *link_info,
8892 bfd_boolean *again)
8893 {
8894 Elf_Internal_Rela *internal_relocs;
8895 Elf_Internal_Rela *irel, *irelend;
8896 Elf_Internal_Shdr *symtab_hdr;
8897 bfd_byte *contents = NULL;
8898 size_t extsymoff;
8899 bfd_boolean changed_contents = FALSE;
8900 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8901 Elf_Internal_Sym *isymbuf = NULL;
8902
8903 /* We are not currently changing any sizes, so only one pass. */
8904 *again = FALSE;
8905
8906 if (bfd_link_relocatable (link_info))
8907 return TRUE;
8908
8909 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
8910 link_info->keep_memory);
8911 if (internal_relocs == NULL)
8912 return TRUE;
8913
8914 irelend = internal_relocs + sec->reloc_count
8915 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8916 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8917 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8918
8919 for (irel = internal_relocs; irel < irelend; irel++)
8920 {
8921 bfd_vma symval;
8922 bfd_signed_vma sym_offset;
8923 unsigned int r_type;
8924 unsigned long r_symndx;
8925 asection *sym_sec;
8926 unsigned long instruction;
8927
8928 /* Turn jalr into bgezal, and jr into beq, if they're marked
8929 with a JALR relocation, that indicate where they jump to.
8930 This saves some pipeline bubbles. */
8931 r_type = ELF_R_TYPE (abfd, irel->r_info);
8932 if (r_type != R_MIPS_JALR)
8933 continue;
8934
8935 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8936 /* Compute the address of the jump target. */
8937 if (r_symndx >= extsymoff)
8938 {
8939 struct mips_elf_link_hash_entry *h
8940 = ((struct mips_elf_link_hash_entry *)
8941 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8942
8943 while (h->root.root.type == bfd_link_hash_indirect
8944 || h->root.root.type == bfd_link_hash_warning)
8945 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8946
8947 /* If a symbol is undefined, or if it may be overridden,
8948 skip it. */
8949 if (! ((h->root.root.type == bfd_link_hash_defined
8950 || h->root.root.type == bfd_link_hash_defweak)
8951 && h->root.root.u.def.section)
8952 || (bfd_link_pic (link_info) && ! link_info->symbolic
8953 && !h->root.forced_local))
8954 continue;
8955
8956 sym_sec = h->root.root.u.def.section;
8957 if (sym_sec->output_section)
8958 symval = (h->root.root.u.def.value
8959 + sym_sec->output_section->vma
8960 + sym_sec->output_offset);
8961 else
8962 symval = h->root.root.u.def.value;
8963 }
8964 else
8965 {
8966 Elf_Internal_Sym *isym;
8967
8968 /* Read this BFD's symbols if we haven't done so already. */
8969 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8970 {
8971 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8972 if (isymbuf == NULL)
8973 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8974 symtab_hdr->sh_info, 0,
8975 NULL, NULL, NULL);
8976 if (isymbuf == NULL)
8977 goto relax_return;
8978 }
8979
8980 isym = isymbuf + r_symndx;
8981 if (isym->st_shndx == SHN_UNDEF)
8982 continue;
8983 else if (isym->st_shndx == SHN_ABS)
8984 sym_sec = bfd_abs_section_ptr;
8985 else if (isym->st_shndx == SHN_COMMON)
8986 sym_sec = bfd_com_section_ptr;
8987 else
8988 sym_sec
8989 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8990 symval = isym->st_value
8991 + sym_sec->output_section->vma
8992 + sym_sec->output_offset;
8993 }
8994
8995 /* Compute branch offset, from delay slot of the jump to the
8996 branch target. */
8997 sym_offset = (symval + irel->r_addend)
8998 - (sec_start + irel->r_offset + 4);
8999
9000 /* Branch offset must be properly aligned. */
9001 if ((sym_offset & 3) != 0)
9002 continue;
9003
9004 sym_offset >>= 2;
9005
9006 /* Check that it's in range. */
9007 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
9008 continue;
9009
9010 /* Get the section contents if we haven't done so already. */
9011 if (!mips_elf_get_section_contents (abfd, sec, &contents))
9012 goto relax_return;
9013
9014 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
9015
9016 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
9017 if ((instruction & 0xfc1fffff) == 0x0000f809)
9018 instruction = 0x04110000;
9019 /* If it was jr <reg>, turn it into b <target>. */
9020 else if ((instruction & 0xfc1fffff) == 0x00000008)
9021 instruction = 0x10000000;
9022 else
9023 continue;
9024
9025 instruction |= (sym_offset & 0xffff);
9026 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
9027 changed_contents = TRUE;
9028 }
9029
9030 if (contents != NULL
9031 && elf_section_data (sec)->this_hdr.contents != contents)
9032 {
9033 if (!changed_contents && !link_info->keep_memory)
9034 free (contents);
9035 else
9036 {
9037 /* Cache the section contents for elf_link_input_bfd. */
9038 elf_section_data (sec)->this_hdr.contents = contents;
9039 }
9040 }
9041 return TRUE;
9042
9043 relax_return:
9044 if (contents != NULL
9045 && elf_section_data (sec)->this_hdr.contents != contents)
9046 free (contents);
9047 return FALSE;
9048 }
9049 \f
9050 /* Allocate space for global sym dynamic relocs. */
9051
9052 static bfd_boolean
9053 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9054 {
9055 struct bfd_link_info *info = inf;
9056 bfd *dynobj;
9057 struct mips_elf_link_hash_entry *hmips;
9058 struct mips_elf_link_hash_table *htab;
9059
9060 htab = mips_elf_hash_table (info);
9061 BFD_ASSERT (htab != NULL);
9062
9063 dynobj = elf_hash_table (info)->dynobj;
9064 hmips = (struct mips_elf_link_hash_entry *) h;
9065
9066 /* VxWorks executables are handled elsewhere; we only need to
9067 allocate relocations in shared objects. */
9068 if (htab->is_vxworks && !bfd_link_pic (info))
9069 return TRUE;
9070
9071 /* Ignore indirect symbols. All relocations against such symbols
9072 will be redirected to the target symbol. */
9073 if (h->root.type == bfd_link_hash_indirect)
9074 return TRUE;
9075
9076 /* If this symbol is defined in a dynamic object, or we are creating
9077 a shared library, we will need to copy any R_MIPS_32 or
9078 R_MIPS_REL32 relocs against it into the output file. */
9079 if (! bfd_link_relocatable (info)
9080 && hmips->possibly_dynamic_relocs != 0
9081 && (h->root.type == bfd_link_hash_defweak
9082 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
9083 || bfd_link_pic (info)))
9084 {
9085 bfd_boolean do_copy = TRUE;
9086
9087 if (h->root.type == bfd_link_hash_undefweak)
9088 {
9089 /* Do not copy relocations for undefined weak symbols with
9090 non-default visibility. */
9091 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9092 do_copy = FALSE;
9093
9094 /* Make sure undefined weak symbols are output as a dynamic
9095 symbol in PIEs. */
9096 else if (h->dynindx == -1 && !h->forced_local)
9097 {
9098 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9099 return FALSE;
9100 }
9101 }
9102
9103 if (do_copy)
9104 {
9105 /* Even though we don't directly need a GOT entry for this symbol,
9106 the SVR4 psABI requires it to have a dynamic symbol table
9107 index greater that DT_MIPS_GOTSYM if there are dynamic
9108 relocations against it.
9109
9110 VxWorks does not enforce the same mapping between the GOT
9111 and the symbol table, so the same requirement does not
9112 apply there. */
9113 if (!htab->is_vxworks)
9114 {
9115 if (hmips->global_got_area > GGA_RELOC_ONLY)
9116 hmips->global_got_area = GGA_RELOC_ONLY;
9117 hmips->got_only_for_calls = FALSE;
9118 }
9119
9120 mips_elf_allocate_dynamic_relocations
9121 (dynobj, info, hmips->possibly_dynamic_relocs);
9122 if (hmips->readonly_reloc)
9123 /* We tell the dynamic linker that there are relocations
9124 against the text segment. */
9125 info->flags |= DF_TEXTREL;
9126 }
9127 }
9128
9129 return TRUE;
9130 }
9131
9132 /* Adjust a symbol defined by a dynamic object and referenced by a
9133 regular object. The current definition is in some section of the
9134 dynamic object, but we're not including those sections. We have to
9135 change the definition to something the rest of the link can
9136 understand. */
9137
9138 bfd_boolean
9139 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
9140 struct elf_link_hash_entry *h)
9141 {
9142 bfd *dynobj;
9143 struct mips_elf_link_hash_entry *hmips;
9144 struct mips_elf_link_hash_table *htab;
9145
9146 htab = mips_elf_hash_table (info);
9147 BFD_ASSERT (htab != NULL);
9148
9149 dynobj = elf_hash_table (info)->dynobj;
9150 hmips = (struct mips_elf_link_hash_entry *) h;
9151
9152 /* Make sure we know what is going on here. */
9153 BFD_ASSERT (dynobj != NULL
9154 && (h->needs_plt
9155 || h->u.weakdef != NULL
9156 || (h->def_dynamic
9157 && h->ref_regular
9158 && !h->def_regular)));
9159
9160 hmips = (struct mips_elf_link_hash_entry *) h;
9161
9162 /* If there are call relocations against an externally-defined symbol,
9163 see whether we can create a MIPS lazy-binding stub for it. We can
9164 only do this if all references to the function are through call
9165 relocations, and in that case, the traditional lazy-binding stubs
9166 are much more efficient than PLT entries.
9167
9168 Traditional stubs are only available on SVR4 psABI-based systems;
9169 VxWorks always uses PLTs instead. */
9170 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
9171 {
9172 if (! elf_hash_table (info)->dynamic_sections_created)
9173 return TRUE;
9174
9175 /* If this symbol is not defined in a regular file, then set
9176 the symbol to the stub location. This is required to make
9177 function pointers compare as equal between the normal
9178 executable and the shared library. */
9179 if (!h->def_regular)
9180 {
9181 hmips->needs_lazy_stub = TRUE;
9182 htab->lazy_stub_count++;
9183 return TRUE;
9184 }
9185 }
9186 /* As above, VxWorks requires PLT entries for externally-defined
9187 functions that are only accessed through call relocations.
9188
9189 Both VxWorks and non-VxWorks targets also need PLT entries if there
9190 are static-only relocations against an externally-defined function.
9191 This can technically occur for shared libraries if there are
9192 branches to the symbol, although it is unlikely that this will be
9193 used in practice due to the short ranges involved. It can occur
9194 for any relative or absolute relocation in executables; in that
9195 case, the PLT entry becomes the function's canonical address. */
9196 else if (((h->needs_plt && !hmips->no_fn_stub)
9197 || (h->type == STT_FUNC && hmips->has_static_relocs))
9198 && htab->use_plts_and_copy_relocs
9199 && !SYMBOL_CALLS_LOCAL (info, h)
9200 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9201 && h->root.type == bfd_link_hash_undefweak))
9202 {
9203 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9204 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9205
9206 /* If this is the first symbol to need a PLT entry, then make some
9207 basic setup. Also work out PLT entry sizes. We'll need them
9208 for PLT offset calculations. */
9209 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9210 {
9211 BFD_ASSERT (htab->root.sgotplt->size == 0);
9212 BFD_ASSERT (htab->plt_got_index == 0);
9213
9214 /* If we're using the PLT additions to the psABI, each PLT
9215 entry is 16 bytes and the PLT0 entry is 32 bytes.
9216 Encourage better cache usage by aligning. We do this
9217 lazily to avoid pessimizing traditional objects. */
9218 if (!htab->is_vxworks
9219 && !bfd_set_section_alignment (dynobj, htab->root.splt, 5))
9220 return FALSE;
9221
9222 /* Make sure that .got.plt is word-aligned. We do this lazily
9223 for the same reason as above. */
9224 if (!bfd_set_section_alignment (dynobj, htab->root.sgotplt,
9225 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9226 return FALSE;
9227
9228 /* On non-VxWorks targets, the first two entries in .got.plt
9229 are reserved. */
9230 if (!htab->is_vxworks)
9231 htab->plt_got_index
9232 += (get_elf_backend_data (dynobj)->got_header_size
9233 / MIPS_ELF_GOT_SIZE (dynobj));
9234
9235 /* On VxWorks, also allocate room for the header's
9236 .rela.plt.unloaded entries. */
9237 if (htab->is_vxworks && !bfd_link_pic (info))
9238 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9239
9240 /* Now work out the sizes of individual PLT entries. */
9241 if (htab->is_vxworks && bfd_link_pic (info))
9242 htab->plt_mips_entry_size
9243 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9244 else if (htab->is_vxworks)
9245 htab->plt_mips_entry_size
9246 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9247 else if (newabi_p)
9248 htab->plt_mips_entry_size
9249 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9250 else if (!micromips_p)
9251 {
9252 htab->plt_mips_entry_size
9253 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9254 htab->plt_comp_entry_size
9255 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9256 }
9257 else if (htab->insn32)
9258 {
9259 htab->plt_mips_entry_size
9260 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9261 htab->plt_comp_entry_size
9262 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9263 }
9264 else
9265 {
9266 htab->plt_mips_entry_size
9267 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9268 htab->plt_comp_entry_size
9269 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9270 }
9271 }
9272
9273 if (h->plt.plist == NULL)
9274 h->plt.plist = mips_elf_make_plt_record (dynobj);
9275 if (h->plt.plist == NULL)
9276 return FALSE;
9277
9278 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9279 n32 or n64, so always use a standard entry there.
9280
9281 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9282 all MIPS16 calls will go via that stub, and there is no benefit
9283 to having a MIPS16 entry. And in the case of call_stub a
9284 standard entry actually has to be used as the stub ends with a J
9285 instruction. */
9286 if (newabi_p
9287 || htab->is_vxworks
9288 || hmips->call_stub
9289 || hmips->call_fp_stub)
9290 {
9291 h->plt.plist->need_mips = TRUE;
9292 h->plt.plist->need_comp = FALSE;
9293 }
9294
9295 /* Otherwise, if there are no direct calls to the function, we
9296 have a free choice of whether to use standard or compressed
9297 entries. Prefer microMIPS entries if the object is known to
9298 contain microMIPS code, so that it becomes possible to create
9299 pure microMIPS binaries. Prefer standard entries otherwise,
9300 because MIPS16 ones are no smaller and are usually slower. */
9301 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9302 {
9303 if (micromips_p)
9304 h->plt.plist->need_comp = TRUE;
9305 else
9306 h->plt.plist->need_mips = TRUE;
9307 }
9308
9309 if (h->plt.plist->need_mips)
9310 {
9311 h->plt.plist->mips_offset = htab->plt_mips_offset;
9312 htab->plt_mips_offset += htab->plt_mips_entry_size;
9313 }
9314 if (h->plt.plist->need_comp)
9315 {
9316 h->plt.plist->comp_offset = htab->plt_comp_offset;
9317 htab->plt_comp_offset += htab->plt_comp_entry_size;
9318 }
9319
9320 /* Reserve the corresponding .got.plt entry now too. */
9321 h->plt.plist->gotplt_index = htab->plt_got_index++;
9322
9323 /* If the output file has no definition of the symbol, set the
9324 symbol's value to the address of the stub. */
9325 if (!bfd_link_pic (info) && !h->def_regular)
9326 hmips->use_plt_entry = TRUE;
9327
9328 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9329 htab->root.srelplt->size += (htab->is_vxworks
9330 ? MIPS_ELF_RELA_SIZE (dynobj)
9331 : MIPS_ELF_REL_SIZE (dynobj));
9332
9333 /* Make room for the .rela.plt.unloaded relocations. */
9334 if (htab->is_vxworks && !bfd_link_pic (info))
9335 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9336
9337 /* All relocations against this symbol that could have been made
9338 dynamic will now refer to the PLT entry instead. */
9339 hmips->possibly_dynamic_relocs = 0;
9340
9341 return TRUE;
9342 }
9343
9344 /* If this is a weak symbol, and there is a real definition, the
9345 processor independent code will have arranged for us to see the
9346 real definition first, and we can just use the same value. */
9347 if (h->u.weakdef != NULL)
9348 {
9349 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
9350 || h->u.weakdef->root.type == bfd_link_hash_defweak);
9351 h->root.u.def.section = h->u.weakdef->root.u.def.section;
9352 h->root.u.def.value = h->u.weakdef->root.u.def.value;
9353 return TRUE;
9354 }
9355
9356 /* Otherwise, there is nothing further to do for symbols defined
9357 in regular objects. */
9358 if (h->def_regular)
9359 return TRUE;
9360
9361 /* There's also nothing more to do if we'll convert all relocations
9362 against this symbol into dynamic relocations. */
9363 if (!hmips->has_static_relocs)
9364 return TRUE;
9365
9366 /* We're now relying on copy relocations. Complain if we have
9367 some that we can't convert. */
9368 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
9369 {
9370 _bfd_error_handler (_("non-dynamic relocations refer to "
9371 "dynamic symbol %s"),
9372 h->root.root.string);
9373 bfd_set_error (bfd_error_bad_value);
9374 return FALSE;
9375 }
9376
9377 /* We must allocate the symbol in our .dynbss section, which will
9378 become part of the .bss section of the executable. There will be
9379 an entry for this symbol in the .dynsym section. The dynamic
9380 object will contain position independent code, so all references
9381 from the dynamic object to this symbol will go through the global
9382 offset table. The dynamic linker will use the .dynsym entry to
9383 determine the address it must put in the global offset table, so
9384 both the dynamic object and the regular object will refer to the
9385 same memory location for the variable. */
9386
9387 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9388 {
9389 if (htab->is_vxworks)
9390 htab->srelbss->size += sizeof (Elf32_External_Rela);
9391 else
9392 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9393 h->needs_copy = 1;
9394 }
9395
9396 /* All relocations against this symbol that could have been made
9397 dynamic will now refer to the local copy instead. */
9398 hmips->possibly_dynamic_relocs = 0;
9399
9400 return _bfd_elf_adjust_dynamic_copy (info, h, htab->sdynbss);
9401 }
9402 \f
9403 /* This function is called after all the input files have been read,
9404 and the input sections have been assigned to output sections. We
9405 check for any mips16 stub sections that we can discard. */
9406
9407 bfd_boolean
9408 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9409 struct bfd_link_info *info)
9410 {
9411 asection *sect;
9412 struct mips_elf_link_hash_table *htab;
9413 struct mips_htab_traverse_info hti;
9414
9415 htab = mips_elf_hash_table (info);
9416 BFD_ASSERT (htab != NULL);
9417
9418 /* The .reginfo section has a fixed size. */
9419 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9420 if (sect != NULL)
9421 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9422
9423 /* The .MIPS.abiflags section has a fixed size. */
9424 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9425 if (sect != NULL)
9426 bfd_set_section_size (output_bfd, sect, sizeof (Elf_External_ABIFlags_v0));
9427
9428 hti.info = info;
9429 hti.output_bfd = output_bfd;
9430 hti.error = FALSE;
9431 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9432 mips_elf_check_symbols, &hti);
9433 if (hti.error)
9434 return FALSE;
9435
9436 return TRUE;
9437 }
9438
9439 /* If the link uses a GOT, lay it out and work out its size. */
9440
9441 static bfd_boolean
9442 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9443 {
9444 bfd *dynobj;
9445 asection *s;
9446 struct mips_got_info *g;
9447 bfd_size_type loadable_size = 0;
9448 bfd_size_type page_gotno;
9449 bfd *ibfd;
9450 struct mips_elf_traverse_got_arg tga;
9451 struct mips_elf_link_hash_table *htab;
9452
9453 htab = mips_elf_hash_table (info);
9454 BFD_ASSERT (htab != NULL);
9455
9456 s = htab->root.sgot;
9457 if (s == NULL)
9458 return TRUE;
9459
9460 dynobj = elf_hash_table (info)->dynobj;
9461 g = htab->got_info;
9462
9463 /* Allocate room for the reserved entries. VxWorks always reserves
9464 3 entries; other objects only reserve 2 entries. */
9465 BFD_ASSERT (g->assigned_low_gotno == 0);
9466 if (htab->is_vxworks)
9467 htab->reserved_gotno = 3;
9468 else
9469 htab->reserved_gotno = 2;
9470 g->local_gotno += htab->reserved_gotno;
9471 g->assigned_low_gotno = htab->reserved_gotno;
9472
9473 /* Decide which symbols need to go in the global part of the GOT and
9474 count the number of reloc-only GOT symbols. */
9475 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9476
9477 if (!mips_elf_resolve_final_got_entries (info, g))
9478 return FALSE;
9479
9480 /* Calculate the total loadable size of the output. That
9481 will give us the maximum number of GOT_PAGE entries
9482 required. */
9483 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9484 {
9485 asection *subsection;
9486
9487 for (subsection = ibfd->sections;
9488 subsection;
9489 subsection = subsection->next)
9490 {
9491 if ((subsection->flags & SEC_ALLOC) == 0)
9492 continue;
9493 loadable_size += ((subsection->size + 0xf)
9494 &~ (bfd_size_type) 0xf);
9495 }
9496 }
9497
9498 if (htab->is_vxworks)
9499 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9500 relocations against local symbols evaluate to "G", and the EABI does
9501 not include R_MIPS_GOT_PAGE. */
9502 page_gotno = 0;
9503 else
9504 /* Assume there are two loadable segments consisting of contiguous
9505 sections. Is 5 enough? */
9506 page_gotno = (loadable_size >> 16) + 5;
9507
9508 /* Choose the smaller of the two page estimates; both are intended to be
9509 conservative. */
9510 if (page_gotno > g->page_gotno)
9511 page_gotno = g->page_gotno;
9512
9513 g->local_gotno += page_gotno;
9514 g->assigned_high_gotno = g->local_gotno - 1;
9515
9516 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9517 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9518 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9519
9520 /* VxWorks does not support multiple GOTs. It initializes $gp to
9521 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9522 dynamic loader. */
9523 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9524 {
9525 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9526 return FALSE;
9527 }
9528 else
9529 {
9530 /* Record that all bfds use G. This also has the effect of freeing
9531 the per-bfd GOTs, which we no longer need. */
9532 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9533 if (mips_elf_bfd_got (ibfd, FALSE))
9534 mips_elf_replace_bfd_got (ibfd, g);
9535 mips_elf_replace_bfd_got (output_bfd, g);
9536
9537 /* Set up TLS entries. */
9538 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9539 tga.info = info;
9540 tga.g = g;
9541 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9542 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9543 if (!tga.g)
9544 return FALSE;
9545 BFD_ASSERT (g->tls_assigned_gotno
9546 == g->global_gotno + g->local_gotno + g->tls_gotno);
9547
9548 /* Each VxWorks GOT entry needs an explicit relocation. */
9549 if (htab->is_vxworks && bfd_link_pic (info))
9550 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9551
9552 /* Allocate room for the TLS relocations. */
9553 if (g->relocs)
9554 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9555 }
9556
9557 return TRUE;
9558 }
9559
9560 /* Estimate the size of the .MIPS.stubs section. */
9561
9562 static void
9563 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9564 {
9565 struct mips_elf_link_hash_table *htab;
9566 bfd_size_type dynsymcount;
9567
9568 htab = mips_elf_hash_table (info);
9569 BFD_ASSERT (htab != NULL);
9570
9571 if (htab->lazy_stub_count == 0)
9572 return;
9573
9574 /* IRIX rld assumes that a function stub isn't at the end of the .text
9575 section, so add a dummy entry to the end. */
9576 htab->lazy_stub_count++;
9577
9578 /* Get a worst-case estimate of the number of dynamic symbols needed.
9579 At this point, dynsymcount does not account for section symbols
9580 and count_section_dynsyms may overestimate the number that will
9581 be needed. */
9582 dynsymcount = (elf_hash_table (info)->dynsymcount
9583 + count_section_dynsyms (output_bfd, info));
9584
9585 /* Determine the size of one stub entry. There's no disadvantage
9586 from using microMIPS code here, so for the sake of pure-microMIPS
9587 binaries we prefer it whenever there's any microMIPS code in
9588 output produced at all. This has a benefit of stubs being
9589 shorter by 4 bytes each too, unless in the insn32 mode. */
9590 if (!MICROMIPS_P (output_bfd))
9591 htab->function_stub_size = (dynsymcount > 0x10000
9592 ? MIPS_FUNCTION_STUB_BIG_SIZE
9593 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9594 else if (htab->insn32)
9595 htab->function_stub_size = (dynsymcount > 0x10000
9596 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9597 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9598 else
9599 htab->function_stub_size = (dynsymcount > 0x10000
9600 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9601 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9602
9603 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9604 }
9605
9606 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9607 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9608 stub, allocate an entry in the stubs section. */
9609
9610 static bfd_boolean
9611 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9612 {
9613 struct mips_htab_traverse_info *hti = data;
9614 struct mips_elf_link_hash_table *htab;
9615 struct bfd_link_info *info;
9616 bfd *output_bfd;
9617
9618 info = hti->info;
9619 output_bfd = hti->output_bfd;
9620 htab = mips_elf_hash_table (info);
9621 BFD_ASSERT (htab != NULL);
9622
9623 if (h->needs_lazy_stub)
9624 {
9625 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9626 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9627 bfd_vma isa_bit = micromips_p;
9628
9629 BFD_ASSERT (htab->root.dynobj != NULL);
9630 if (h->root.plt.plist == NULL)
9631 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9632 if (h->root.plt.plist == NULL)
9633 {
9634 hti->error = TRUE;
9635 return FALSE;
9636 }
9637 h->root.root.u.def.section = htab->sstubs;
9638 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9639 h->root.plt.plist->stub_offset = htab->sstubs->size;
9640 h->root.other = other;
9641 htab->sstubs->size += htab->function_stub_size;
9642 }
9643 return TRUE;
9644 }
9645
9646 /* Allocate offsets in the stubs section to each symbol that needs one.
9647 Set the final size of the .MIPS.stub section. */
9648
9649 static bfd_boolean
9650 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9651 {
9652 bfd *output_bfd = info->output_bfd;
9653 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9654 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9655 bfd_vma isa_bit = micromips_p;
9656 struct mips_elf_link_hash_table *htab;
9657 struct mips_htab_traverse_info hti;
9658 struct elf_link_hash_entry *h;
9659 bfd *dynobj;
9660
9661 htab = mips_elf_hash_table (info);
9662 BFD_ASSERT (htab != NULL);
9663
9664 if (htab->lazy_stub_count == 0)
9665 return TRUE;
9666
9667 htab->sstubs->size = 0;
9668 hti.info = info;
9669 hti.output_bfd = output_bfd;
9670 hti.error = FALSE;
9671 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9672 if (hti.error)
9673 return FALSE;
9674 htab->sstubs->size += htab->function_stub_size;
9675 BFD_ASSERT (htab->sstubs->size
9676 == htab->lazy_stub_count * htab->function_stub_size);
9677
9678 dynobj = elf_hash_table (info)->dynobj;
9679 BFD_ASSERT (dynobj != NULL);
9680 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9681 if (h == NULL)
9682 return FALSE;
9683 h->root.u.def.value = isa_bit;
9684 h->other = other;
9685 h->type = STT_FUNC;
9686
9687 return TRUE;
9688 }
9689
9690 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9691 bfd_link_info. If H uses the address of a PLT entry as the value
9692 of the symbol, then set the entry in the symbol table now. Prefer
9693 a standard MIPS PLT entry. */
9694
9695 static bfd_boolean
9696 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9697 {
9698 struct bfd_link_info *info = data;
9699 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9700 struct mips_elf_link_hash_table *htab;
9701 unsigned int other;
9702 bfd_vma isa_bit;
9703 bfd_vma val;
9704
9705 htab = mips_elf_hash_table (info);
9706 BFD_ASSERT (htab != NULL);
9707
9708 if (h->use_plt_entry)
9709 {
9710 BFD_ASSERT (h->root.plt.plist != NULL);
9711 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9712 || h->root.plt.plist->comp_offset != MINUS_ONE);
9713
9714 val = htab->plt_header_size;
9715 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9716 {
9717 isa_bit = 0;
9718 val += h->root.plt.plist->mips_offset;
9719 other = 0;
9720 }
9721 else
9722 {
9723 isa_bit = 1;
9724 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9725 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9726 }
9727 val += isa_bit;
9728 /* For VxWorks, point at the PLT load stub rather than the lazy
9729 resolution stub; this stub will become the canonical function
9730 address. */
9731 if (htab->is_vxworks)
9732 val += 8;
9733
9734 h->root.root.u.def.section = htab->root.splt;
9735 h->root.root.u.def.value = val;
9736 h->root.other = other;
9737 }
9738
9739 return TRUE;
9740 }
9741
9742 /* Set the sizes of the dynamic sections. */
9743
9744 bfd_boolean
9745 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9746 struct bfd_link_info *info)
9747 {
9748 bfd *dynobj;
9749 asection *s, *sreldyn;
9750 bfd_boolean reltext;
9751 struct mips_elf_link_hash_table *htab;
9752
9753 htab = mips_elf_hash_table (info);
9754 BFD_ASSERT (htab != NULL);
9755 dynobj = elf_hash_table (info)->dynobj;
9756 BFD_ASSERT (dynobj != NULL);
9757
9758 if (elf_hash_table (info)->dynamic_sections_created)
9759 {
9760 /* Set the contents of the .interp section to the interpreter. */
9761 if (bfd_link_executable (info) && !info->nointerp)
9762 {
9763 s = bfd_get_linker_section (dynobj, ".interp");
9764 BFD_ASSERT (s != NULL);
9765 s->size
9766 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9767 s->contents
9768 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9769 }
9770
9771 /* Figure out the size of the PLT header if we know that we
9772 are using it. For the sake of cache alignment always use
9773 a standard header whenever any standard entries are present
9774 even if microMIPS entries are present as well. This also
9775 lets the microMIPS header rely on the value of $v0 only set
9776 by microMIPS entries, for a small size reduction.
9777
9778 Set symbol table entry values for symbols that use the
9779 address of their PLT entry now that we can calculate it.
9780
9781 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9782 haven't already in _bfd_elf_create_dynamic_sections. */
9783 if (htab->root.splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9784 {
9785 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9786 && !htab->plt_mips_offset);
9787 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9788 bfd_vma isa_bit = micromips_p;
9789 struct elf_link_hash_entry *h;
9790 bfd_vma size;
9791
9792 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9793 BFD_ASSERT (htab->root.sgotplt->size == 0);
9794 BFD_ASSERT (htab->root.splt->size == 0);
9795
9796 if (htab->is_vxworks && bfd_link_pic (info))
9797 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9798 else if (htab->is_vxworks)
9799 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9800 else if (ABI_64_P (output_bfd))
9801 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9802 else if (ABI_N32_P (output_bfd))
9803 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9804 else if (!micromips_p)
9805 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9806 else if (htab->insn32)
9807 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9808 else
9809 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9810
9811 htab->plt_header_is_comp = micromips_p;
9812 htab->plt_header_size = size;
9813 htab->root.splt->size = (size
9814 + htab->plt_mips_offset
9815 + htab->plt_comp_offset);
9816 htab->root.sgotplt->size = (htab->plt_got_index
9817 * MIPS_ELF_GOT_SIZE (dynobj));
9818
9819 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9820
9821 if (htab->root.hplt == NULL)
9822 {
9823 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.splt,
9824 "_PROCEDURE_LINKAGE_TABLE_");
9825 htab->root.hplt = h;
9826 if (h == NULL)
9827 return FALSE;
9828 }
9829
9830 h = htab->root.hplt;
9831 h->root.u.def.value = isa_bit;
9832 h->other = other;
9833 h->type = STT_FUNC;
9834 }
9835 }
9836
9837 /* Allocate space for global sym dynamic relocs. */
9838 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9839
9840 mips_elf_estimate_stub_size (output_bfd, info);
9841
9842 if (!mips_elf_lay_out_got (output_bfd, info))
9843 return FALSE;
9844
9845 mips_elf_lay_out_lazy_stubs (info);
9846
9847 /* The check_relocs and adjust_dynamic_symbol entry points have
9848 determined the sizes of the various dynamic sections. Allocate
9849 memory for them. */
9850 reltext = FALSE;
9851 for (s = dynobj->sections; s != NULL; s = s->next)
9852 {
9853 const char *name;
9854
9855 /* It's OK to base decisions on the section name, because none
9856 of the dynobj section names depend upon the input files. */
9857 name = bfd_get_section_name (dynobj, s);
9858
9859 if ((s->flags & SEC_LINKER_CREATED) == 0)
9860 continue;
9861
9862 if (CONST_STRNEQ (name, ".rel"))
9863 {
9864 if (s->size != 0)
9865 {
9866 const char *outname;
9867 asection *target;
9868
9869 /* If this relocation section applies to a read only
9870 section, then we probably need a DT_TEXTREL entry.
9871 If the relocation section is .rel(a).dyn, we always
9872 assert a DT_TEXTREL entry rather than testing whether
9873 there exists a relocation to a read only section or
9874 not. */
9875 outname = bfd_get_section_name (output_bfd,
9876 s->output_section);
9877 target = bfd_get_section_by_name (output_bfd, outname + 4);
9878 if ((target != NULL
9879 && (target->flags & SEC_READONLY) != 0
9880 && (target->flags & SEC_ALLOC) != 0)
9881 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9882 reltext = TRUE;
9883
9884 /* We use the reloc_count field as a counter if we need
9885 to copy relocs into the output file. */
9886 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9887 s->reloc_count = 0;
9888
9889 /* If combreloc is enabled, elf_link_sort_relocs() will
9890 sort relocations, but in a different way than we do,
9891 and before we're done creating relocations. Also, it
9892 will move them around between input sections'
9893 relocation's contents, so our sorting would be
9894 broken, so don't let it run. */
9895 info->combreloc = 0;
9896 }
9897 }
9898 else if (bfd_link_executable (info)
9899 && ! mips_elf_hash_table (info)->use_rld_obj_head
9900 && CONST_STRNEQ (name, ".rld_map"))
9901 {
9902 /* We add a room for __rld_map. It will be filled in by the
9903 rtld to contain a pointer to the _r_debug structure. */
9904 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9905 }
9906 else if (SGI_COMPAT (output_bfd)
9907 && CONST_STRNEQ (name, ".compact_rel"))
9908 s->size += mips_elf_hash_table (info)->compact_rel_size;
9909 else if (s == htab->root.splt)
9910 {
9911 /* If the last PLT entry has a branch delay slot, allocate
9912 room for an extra nop to fill the delay slot. This is
9913 for CPUs without load interlocking. */
9914 if (! LOAD_INTERLOCKS_P (output_bfd)
9915 && ! htab->is_vxworks && s->size > 0)
9916 s->size += 4;
9917 }
9918 else if (! CONST_STRNEQ (name, ".init")
9919 && s != htab->root.sgot
9920 && s != htab->root.sgotplt
9921 && s != htab->sstubs
9922 && s != htab->sdynbss)
9923 {
9924 /* It's not one of our sections, so don't allocate space. */
9925 continue;
9926 }
9927
9928 if (s->size == 0)
9929 {
9930 s->flags |= SEC_EXCLUDE;
9931 continue;
9932 }
9933
9934 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9935 continue;
9936
9937 /* Allocate memory for the section contents. */
9938 s->contents = bfd_zalloc (dynobj, s->size);
9939 if (s->contents == NULL)
9940 {
9941 bfd_set_error (bfd_error_no_memory);
9942 return FALSE;
9943 }
9944 }
9945
9946 if (elf_hash_table (info)->dynamic_sections_created)
9947 {
9948 /* Add some entries to the .dynamic section. We fill in the
9949 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9950 must add the entries now so that we get the correct size for
9951 the .dynamic section. */
9952
9953 /* SGI object has the equivalence of DT_DEBUG in the
9954 DT_MIPS_RLD_MAP entry. This must come first because glibc
9955 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9956 may only look at the first one they see. */
9957 if (!bfd_link_pic (info)
9958 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9959 return FALSE;
9960
9961 if (bfd_link_executable (info)
9962 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
9963 return FALSE;
9964
9965 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9966 used by the debugger. */
9967 if (bfd_link_executable (info)
9968 && !SGI_COMPAT (output_bfd)
9969 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9970 return FALSE;
9971
9972 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9973 info->flags |= DF_TEXTREL;
9974
9975 if ((info->flags & DF_TEXTREL) != 0)
9976 {
9977 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9978 return FALSE;
9979
9980 /* Clear the DF_TEXTREL flag. It will be set again if we
9981 write out an actual text relocation; we may not, because
9982 at this point we do not know whether e.g. any .eh_frame
9983 absolute relocations have been converted to PC-relative. */
9984 info->flags &= ~DF_TEXTREL;
9985 }
9986
9987 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9988 return FALSE;
9989
9990 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9991 if (htab->is_vxworks)
9992 {
9993 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9994 use any of the DT_MIPS_* tags. */
9995 if (sreldyn && sreldyn->size > 0)
9996 {
9997 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9998 return FALSE;
9999
10000 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
10001 return FALSE;
10002
10003 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
10004 return FALSE;
10005 }
10006 }
10007 else
10008 {
10009 if (sreldyn && sreldyn->size > 0)
10010 {
10011 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
10012 return FALSE;
10013
10014 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
10015 return FALSE;
10016
10017 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
10018 return FALSE;
10019 }
10020
10021 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
10022 return FALSE;
10023
10024 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
10025 return FALSE;
10026
10027 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
10028 return FALSE;
10029
10030 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
10031 return FALSE;
10032
10033 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
10034 return FALSE;
10035
10036 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
10037 return FALSE;
10038
10039 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
10040 return FALSE;
10041
10042 if (IRIX_COMPAT (dynobj) == ict_irix5
10043 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
10044 return FALSE;
10045
10046 if (IRIX_COMPAT (dynobj) == ict_irix6
10047 && (bfd_get_section_by_name
10048 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
10049 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
10050 return FALSE;
10051 }
10052 if (htab->root.splt->size > 0)
10053 {
10054 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
10055 return FALSE;
10056
10057 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
10058 return FALSE;
10059
10060 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
10061 return FALSE;
10062
10063 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
10064 return FALSE;
10065 }
10066 if (htab->is_vxworks
10067 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
10068 return FALSE;
10069 }
10070
10071 return TRUE;
10072 }
10073 \f
10074 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
10075 Adjust its R_ADDEND field so that it is correct for the output file.
10076 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
10077 and sections respectively; both use symbol indexes. */
10078
10079 static void
10080 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
10081 bfd *input_bfd, Elf_Internal_Sym *local_syms,
10082 asection **local_sections, Elf_Internal_Rela *rel)
10083 {
10084 unsigned int r_type, r_symndx;
10085 Elf_Internal_Sym *sym;
10086 asection *sec;
10087
10088 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10089 {
10090 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10091 if (gprel16_reloc_p (r_type)
10092 || r_type == R_MIPS_GPREL32
10093 || literal_reloc_p (r_type))
10094 {
10095 rel->r_addend += _bfd_get_gp_value (input_bfd);
10096 rel->r_addend -= _bfd_get_gp_value (output_bfd);
10097 }
10098
10099 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
10100 sym = local_syms + r_symndx;
10101
10102 /* Adjust REL's addend to account for section merging. */
10103 if (!bfd_link_relocatable (info))
10104 {
10105 sec = local_sections[r_symndx];
10106 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
10107 }
10108
10109 /* This would normally be done by the rela_normal code in elflink.c. */
10110 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10111 rel->r_addend += local_sections[r_symndx]->output_offset;
10112 }
10113 }
10114
10115 /* Handle relocations against symbols from removed linkonce sections,
10116 or sections discarded by a linker script. We use this wrapper around
10117 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
10118 on 64-bit ELF targets. In this case for any relocation handled, which
10119 always be the first in a triplet, the remaining two have to be processed
10120 together with the first, even if they are R_MIPS_NONE. It is the symbol
10121 index referred by the first reloc that applies to all the three and the
10122 remaining two never refer to an object symbol. And it is the final
10123 relocation (the last non-null one) that determines the output field of
10124 the whole relocation so retrieve the corresponding howto structure for
10125 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
10126
10127 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
10128 and therefore requires to be pasted in a loop. It also defines a block
10129 and does not protect any of its arguments, hence the extra brackets. */
10130
10131 static void
10132 mips_reloc_against_discarded_section (bfd *output_bfd,
10133 struct bfd_link_info *info,
10134 bfd *input_bfd, asection *input_section,
10135 Elf_Internal_Rela **rel,
10136 const Elf_Internal_Rela **relend,
10137 bfd_boolean rel_reloc,
10138 reloc_howto_type *howto,
10139 bfd_byte *contents)
10140 {
10141 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10142 int count = bed->s->int_rels_per_ext_rel;
10143 unsigned int r_type;
10144 int i;
10145
10146 for (i = count - 1; i > 0; i--)
10147 {
10148 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10149 if (r_type != R_MIPS_NONE)
10150 {
10151 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10152 break;
10153 }
10154 }
10155 do
10156 {
10157 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10158 (*rel), count, (*relend),
10159 howto, i, contents);
10160 }
10161 while (0);
10162 }
10163
10164 /* Relocate a MIPS ELF section. */
10165
10166 bfd_boolean
10167 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10168 bfd *input_bfd, asection *input_section,
10169 bfd_byte *contents, Elf_Internal_Rela *relocs,
10170 Elf_Internal_Sym *local_syms,
10171 asection **local_sections)
10172 {
10173 Elf_Internal_Rela *rel;
10174 const Elf_Internal_Rela *relend;
10175 bfd_vma addend = 0;
10176 bfd_boolean use_saved_addend_p = FALSE;
10177 const struct elf_backend_data *bed;
10178
10179 bed = get_elf_backend_data (output_bfd);
10180 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
10181 for (rel = relocs; rel < relend; ++rel)
10182 {
10183 const char *name;
10184 bfd_vma value = 0;
10185 reloc_howto_type *howto;
10186 bfd_boolean cross_mode_jump_p = FALSE;
10187 /* TRUE if the relocation is a RELA relocation, rather than a
10188 REL relocation. */
10189 bfd_boolean rela_relocation_p = TRUE;
10190 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10191 const char *msg;
10192 unsigned long r_symndx;
10193 asection *sec;
10194 Elf_Internal_Shdr *symtab_hdr;
10195 struct elf_link_hash_entry *h;
10196 bfd_boolean rel_reloc;
10197
10198 rel_reloc = (NEWABI_P (input_bfd)
10199 && mips_elf_rel_relocation_p (input_bfd, input_section,
10200 relocs, rel));
10201 /* Find the relocation howto for this relocation. */
10202 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10203
10204 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10205 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10206 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10207 {
10208 sec = local_sections[r_symndx];
10209 h = NULL;
10210 }
10211 else
10212 {
10213 unsigned long extsymoff;
10214
10215 extsymoff = 0;
10216 if (!elf_bad_symtab (input_bfd))
10217 extsymoff = symtab_hdr->sh_info;
10218 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10219 while (h->root.type == bfd_link_hash_indirect
10220 || h->root.type == bfd_link_hash_warning)
10221 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10222
10223 sec = NULL;
10224 if (h->root.type == bfd_link_hash_defined
10225 || h->root.type == bfd_link_hash_defweak)
10226 sec = h->root.u.def.section;
10227 }
10228
10229 if (sec != NULL && discarded_section (sec))
10230 {
10231 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10232 input_section, &rel, &relend,
10233 rel_reloc, howto, contents);
10234 continue;
10235 }
10236
10237 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10238 {
10239 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10240 64-bit code, but make sure all their addresses are in the
10241 lowermost or uppermost 32-bit section of the 64-bit address
10242 space. Thus, when they use an R_MIPS_64 they mean what is
10243 usually meant by R_MIPS_32, with the exception that the
10244 stored value is sign-extended to 64 bits. */
10245 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
10246
10247 /* On big-endian systems, we need to lie about the position
10248 of the reloc. */
10249 if (bfd_big_endian (input_bfd))
10250 rel->r_offset += 4;
10251 }
10252
10253 if (!use_saved_addend_p)
10254 {
10255 /* If these relocations were originally of the REL variety,
10256 we must pull the addend out of the field that will be
10257 relocated. Otherwise, we simply use the contents of the
10258 RELA relocation. */
10259 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10260 relocs, rel))
10261 {
10262 rela_relocation_p = FALSE;
10263 addend = mips_elf_read_rel_addend (input_bfd, rel,
10264 howto, contents);
10265 if (hi16_reloc_p (r_type)
10266 || (got16_reloc_p (r_type)
10267 && mips_elf_local_relocation_p (input_bfd, rel,
10268 local_sections)))
10269 {
10270 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10271 contents, &addend))
10272 {
10273 if (h)
10274 name = h->root.root.string;
10275 else
10276 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10277 local_syms + r_symndx,
10278 sec);
10279 _bfd_error_handler
10280 /* xgettext:c-format */
10281 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
10282 input_bfd, input_section, name, howto->name,
10283 rel->r_offset);
10284 }
10285 }
10286 else
10287 addend <<= howto->rightshift;
10288 }
10289 else
10290 addend = rel->r_addend;
10291 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10292 local_syms, local_sections, rel);
10293 }
10294
10295 if (bfd_link_relocatable (info))
10296 {
10297 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10298 && bfd_big_endian (input_bfd))
10299 rel->r_offset -= 4;
10300
10301 if (!rela_relocation_p && rel->r_addend)
10302 {
10303 addend += rel->r_addend;
10304 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10305 addend = mips_elf_high (addend);
10306 else if (r_type == R_MIPS_HIGHER)
10307 addend = mips_elf_higher (addend);
10308 else if (r_type == R_MIPS_HIGHEST)
10309 addend = mips_elf_highest (addend);
10310 else
10311 addend >>= howto->rightshift;
10312
10313 /* We use the source mask, rather than the destination
10314 mask because the place to which we are writing will be
10315 source of the addend in the final link. */
10316 addend &= howto->src_mask;
10317
10318 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10319 /* See the comment above about using R_MIPS_64 in the 32-bit
10320 ABI. Here, we need to update the addend. It would be
10321 possible to get away with just using the R_MIPS_32 reloc
10322 but for endianness. */
10323 {
10324 bfd_vma sign_bits;
10325 bfd_vma low_bits;
10326 bfd_vma high_bits;
10327
10328 if (addend & ((bfd_vma) 1 << 31))
10329 #ifdef BFD64
10330 sign_bits = ((bfd_vma) 1 << 32) - 1;
10331 #else
10332 sign_bits = -1;
10333 #endif
10334 else
10335 sign_bits = 0;
10336
10337 /* If we don't know that we have a 64-bit type,
10338 do two separate stores. */
10339 if (bfd_big_endian (input_bfd))
10340 {
10341 /* Store the sign-bits (which are most significant)
10342 first. */
10343 low_bits = sign_bits;
10344 high_bits = addend;
10345 }
10346 else
10347 {
10348 low_bits = addend;
10349 high_bits = sign_bits;
10350 }
10351 bfd_put_32 (input_bfd, low_bits,
10352 contents + rel->r_offset);
10353 bfd_put_32 (input_bfd, high_bits,
10354 contents + rel->r_offset + 4);
10355 continue;
10356 }
10357
10358 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10359 input_bfd, input_section,
10360 contents, FALSE))
10361 return FALSE;
10362 }
10363
10364 /* Go on to the next relocation. */
10365 continue;
10366 }
10367
10368 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10369 relocations for the same offset. In that case we are
10370 supposed to treat the output of each relocation as the addend
10371 for the next. */
10372 if (rel + 1 < relend
10373 && rel->r_offset == rel[1].r_offset
10374 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10375 use_saved_addend_p = TRUE;
10376 else
10377 use_saved_addend_p = FALSE;
10378
10379 /* Figure out what value we are supposed to relocate. */
10380 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10381 input_section, info, rel,
10382 addend, howto, local_syms,
10383 local_sections, &value,
10384 &name, &cross_mode_jump_p,
10385 use_saved_addend_p))
10386 {
10387 case bfd_reloc_continue:
10388 /* There's nothing to do. */
10389 continue;
10390
10391 case bfd_reloc_undefined:
10392 /* mips_elf_calculate_relocation already called the
10393 undefined_symbol callback. There's no real point in
10394 trying to perform the relocation at this point, so we
10395 just skip ahead to the next relocation. */
10396 continue;
10397
10398 case bfd_reloc_notsupported:
10399 msg = _("internal error: unsupported relocation error");
10400 info->callbacks->warning
10401 (info, msg, name, input_bfd, input_section, rel->r_offset);
10402 return FALSE;
10403
10404 case bfd_reloc_overflow:
10405 if (use_saved_addend_p)
10406 /* Ignore overflow until we reach the last relocation for
10407 a given location. */
10408 ;
10409 else
10410 {
10411 struct mips_elf_link_hash_table *htab;
10412
10413 htab = mips_elf_hash_table (info);
10414 BFD_ASSERT (htab != NULL);
10415 BFD_ASSERT (name != NULL);
10416 if (!htab->small_data_overflow_reported
10417 && (gprel16_reloc_p (howto->type)
10418 || literal_reloc_p (howto->type)))
10419 {
10420 msg = _("small-data section exceeds 64KB;"
10421 " lower small-data size limit (see option -G)");
10422
10423 htab->small_data_overflow_reported = TRUE;
10424 (*info->callbacks->einfo) ("%P: %s\n", msg);
10425 }
10426 (*info->callbacks->reloc_overflow)
10427 (info, NULL, name, howto->name, (bfd_vma) 0,
10428 input_bfd, input_section, rel->r_offset);
10429 }
10430 break;
10431
10432 case bfd_reloc_ok:
10433 break;
10434
10435 case bfd_reloc_outofrange:
10436 msg = NULL;
10437 if (jal_reloc_p (howto->type))
10438 msg = (cross_mode_jump_p
10439 ? _("Cannot convert a jump to JALX "
10440 "for a non-word-aligned address")
10441 : (howto->type == R_MIPS16_26
10442 ? _("Jump to a non-word-aligned address")
10443 : _("Jump to a non-instruction-aligned address")));
10444 else if (b_reloc_p (howto->type))
10445 msg = (cross_mode_jump_p
10446 ? _("Cannot convert a branch to JALX "
10447 "for a non-word-aligned address")
10448 : _("Branch to a non-instruction-aligned address"));
10449 else if (aligned_pcrel_reloc_p (howto->type))
10450 msg = _("PC-relative load from unaligned address");
10451 if (msg)
10452 {
10453 info->callbacks->einfo
10454 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10455 break;
10456 }
10457 /* Fall through. */
10458
10459 default:
10460 abort ();
10461 break;
10462 }
10463
10464 /* If we've got another relocation for the address, keep going
10465 until we reach the last one. */
10466 if (use_saved_addend_p)
10467 {
10468 addend = value;
10469 continue;
10470 }
10471
10472 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10473 /* See the comment above about using R_MIPS_64 in the 32-bit
10474 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10475 that calculated the right value. Now, however, we
10476 sign-extend the 32-bit result to 64-bits, and store it as a
10477 64-bit value. We are especially generous here in that we
10478 go to extreme lengths to support this usage on systems with
10479 only a 32-bit VMA. */
10480 {
10481 bfd_vma sign_bits;
10482 bfd_vma low_bits;
10483 bfd_vma high_bits;
10484
10485 if (value & ((bfd_vma) 1 << 31))
10486 #ifdef BFD64
10487 sign_bits = ((bfd_vma) 1 << 32) - 1;
10488 #else
10489 sign_bits = -1;
10490 #endif
10491 else
10492 sign_bits = 0;
10493
10494 /* If we don't know that we have a 64-bit type,
10495 do two separate stores. */
10496 if (bfd_big_endian (input_bfd))
10497 {
10498 /* Undo what we did above. */
10499 rel->r_offset -= 4;
10500 /* Store the sign-bits (which are most significant)
10501 first. */
10502 low_bits = sign_bits;
10503 high_bits = value;
10504 }
10505 else
10506 {
10507 low_bits = value;
10508 high_bits = sign_bits;
10509 }
10510 bfd_put_32 (input_bfd, low_bits,
10511 contents + rel->r_offset);
10512 bfd_put_32 (input_bfd, high_bits,
10513 contents + rel->r_offset + 4);
10514 continue;
10515 }
10516
10517 /* Actually perform the relocation. */
10518 if (! mips_elf_perform_relocation (info, howto, rel, value,
10519 input_bfd, input_section,
10520 contents, cross_mode_jump_p))
10521 return FALSE;
10522 }
10523
10524 return TRUE;
10525 }
10526 \f
10527 /* A function that iterates over each entry in la25_stubs and fills
10528 in the code for each one. DATA points to a mips_htab_traverse_info. */
10529
10530 static int
10531 mips_elf_create_la25_stub (void **slot, void *data)
10532 {
10533 struct mips_htab_traverse_info *hti;
10534 struct mips_elf_link_hash_table *htab;
10535 struct mips_elf_la25_stub *stub;
10536 asection *s;
10537 bfd_byte *loc;
10538 bfd_vma offset, target, target_high, target_low;
10539
10540 stub = (struct mips_elf_la25_stub *) *slot;
10541 hti = (struct mips_htab_traverse_info *) data;
10542 htab = mips_elf_hash_table (hti->info);
10543 BFD_ASSERT (htab != NULL);
10544
10545 /* Create the section contents, if we haven't already. */
10546 s = stub->stub_section;
10547 loc = s->contents;
10548 if (loc == NULL)
10549 {
10550 loc = bfd_malloc (s->size);
10551 if (loc == NULL)
10552 {
10553 hti->error = TRUE;
10554 return FALSE;
10555 }
10556 s->contents = loc;
10557 }
10558
10559 /* Work out where in the section this stub should go. */
10560 offset = stub->offset;
10561
10562 /* Work out the target address. */
10563 target = mips_elf_get_la25_target (stub, &s);
10564 target += s->output_section->vma + s->output_offset;
10565
10566 target_high = ((target + 0x8000) >> 16) & 0xffff;
10567 target_low = (target & 0xffff);
10568
10569 if (stub->stub_section != htab->strampoline)
10570 {
10571 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10572 of the section and write the two instructions at the end. */
10573 memset (loc, 0, offset);
10574 loc += offset;
10575 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10576 {
10577 bfd_put_micromips_32 (hti->output_bfd,
10578 LA25_LUI_MICROMIPS (target_high),
10579 loc);
10580 bfd_put_micromips_32 (hti->output_bfd,
10581 LA25_ADDIU_MICROMIPS (target_low),
10582 loc + 4);
10583 }
10584 else
10585 {
10586 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10587 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10588 }
10589 }
10590 else
10591 {
10592 /* This is trampoline. */
10593 loc += offset;
10594 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10595 {
10596 bfd_put_micromips_32 (hti->output_bfd,
10597 LA25_LUI_MICROMIPS (target_high), loc);
10598 bfd_put_micromips_32 (hti->output_bfd,
10599 LA25_J_MICROMIPS (target), loc + 4);
10600 bfd_put_micromips_32 (hti->output_bfd,
10601 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10602 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10603 }
10604 else
10605 {
10606 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10607 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10608 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10609 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10610 }
10611 }
10612 return TRUE;
10613 }
10614
10615 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10616 adjust it appropriately now. */
10617
10618 static void
10619 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10620 const char *name, Elf_Internal_Sym *sym)
10621 {
10622 /* The linker script takes care of providing names and values for
10623 these, but we must place them into the right sections. */
10624 static const char* const text_section_symbols[] = {
10625 "_ftext",
10626 "_etext",
10627 "__dso_displacement",
10628 "__elf_header",
10629 "__program_header_table",
10630 NULL
10631 };
10632
10633 static const char* const data_section_symbols[] = {
10634 "_fdata",
10635 "_edata",
10636 "_end",
10637 "_fbss",
10638 NULL
10639 };
10640
10641 const char* const *p;
10642 int i;
10643
10644 for (i = 0; i < 2; ++i)
10645 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10646 *p;
10647 ++p)
10648 if (strcmp (*p, name) == 0)
10649 {
10650 /* All of these symbols are given type STT_SECTION by the
10651 IRIX6 linker. */
10652 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10653 sym->st_other = STO_PROTECTED;
10654
10655 /* The IRIX linker puts these symbols in special sections. */
10656 if (i == 0)
10657 sym->st_shndx = SHN_MIPS_TEXT;
10658 else
10659 sym->st_shndx = SHN_MIPS_DATA;
10660
10661 break;
10662 }
10663 }
10664
10665 /* Finish up dynamic symbol handling. We set the contents of various
10666 dynamic sections here. */
10667
10668 bfd_boolean
10669 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10670 struct bfd_link_info *info,
10671 struct elf_link_hash_entry *h,
10672 Elf_Internal_Sym *sym)
10673 {
10674 bfd *dynobj;
10675 asection *sgot;
10676 struct mips_got_info *g, *gg;
10677 const char *name;
10678 int idx;
10679 struct mips_elf_link_hash_table *htab;
10680 struct mips_elf_link_hash_entry *hmips;
10681
10682 htab = mips_elf_hash_table (info);
10683 BFD_ASSERT (htab != NULL);
10684 dynobj = elf_hash_table (info)->dynobj;
10685 hmips = (struct mips_elf_link_hash_entry *) h;
10686
10687 BFD_ASSERT (!htab->is_vxworks);
10688
10689 if (h->plt.plist != NULL
10690 && (h->plt.plist->mips_offset != MINUS_ONE
10691 || h->plt.plist->comp_offset != MINUS_ONE))
10692 {
10693 /* We've decided to create a PLT entry for this symbol. */
10694 bfd_byte *loc;
10695 bfd_vma header_address, got_address;
10696 bfd_vma got_address_high, got_address_low, load;
10697 bfd_vma got_index;
10698 bfd_vma isa_bit;
10699
10700 got_index = h->plt.plist->gotplt_index;
10701
10702 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10703 BFD_ASSERT (h->dynindx != -1);
10704 BFD_ASSERT (htab->root.splt != NULL);
10705 BFD_ASSERT (got_index != MINUS_ONE);
10706 BFD_ASSERT (!h->def_regular);
10707
10708 /* Calculate the address of the PLT header. */
10709 isa_bit = htab->plt_header_is_comp;
10710 header_address = (htab->root.splt->output_section->vma
10711 + htab->root.splt->output_offset + isa_bit);
10712
10713 /* Calculate the address of the .got.plt entry. */
10714 got_address = (htab->root.sgotplt->output_section->vma
10715 + htab->root.sgotplt->output_offset
10716 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10717
10718 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10719 got_address_low = got_address & 0xffff;
10720
10721 /* Initially point the .got.plt entry at the PLT header. */
10722 loc = (htab->root.sgotplt->contents + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10723 if (ABI_64_P (output_bfd))
10724 bfd_put_64 (output_bfd, header_address, loc);
10725 else
10726 bfd_put_32 (output_bfd, header_address, loc);
10727
10728 /* Now handle the PLT itself. First the standard entry (the order
10729 does not matter, we just have to pick one). */
10730 if (h->plt.plist->mips_offset != MINUS_ONE)
10731 {
10732 const bfd_vma *plt_entry;
10733 bfd_vma plt_offset;
10734
10735 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10736
10737 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10738
10739 /* Find out where the .plt entry should go. */
10740 loc = htab->root.splt->contents + plt_offset;
10741
10742 /* Pick the load opcode. */
10743 load = MIPS_ELF_LOAD_WORD (output_bfd);
10744
10745 /* Fill in the PLT entry itself. */
10746
10747 if (MIPSR6_P (output_bfd))
10748 plt_entry = mipsr6_exec_plt_entry;
10749 else
10750 plt_entry = mips_exec_plt_entry;
10751 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10752 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10753 loc + 4);
10754
10755 if (! LOAD_INTERLOCKS_P (output_bfd))
10756 {
10757 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10758 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10759 }
10760 else
10761 {
10762 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10763 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10764 loc + 12);
10765 }
10766 }
10767
10768 /* Now the compressed entry. They come after any standard ones. */
10769 if (h->plt.plist->comp_offset != MINUS_ONE)
10770 {
10771 bfd_vma plt_offset;
10772
10773 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10774 + h->plt.plist->comp_offset);
10775
10776 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10777
10778 /* Find out where the .plt entry should go. */
10779 loc = htab->root.splt->contents + plt_offset;
10780
10781 /* Fill in the PLT entry itself. */
10782 if (!MICROMIPS_P (output_bfd))
10783 {
10784 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10785
10786 bfd_put_16 (output_bfd, plt_entry[0], loc);
10787 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10788 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10789 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10790 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10791 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10792 bfd_put_32 (output_bfd, got_address, loc + 12);
10793 }
10794 else if (htab->insn32)
10795 {
10796 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10797
10798 bfd_put_16 (output_bfd, plt_entry[0], loc);
10799 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10800 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10801 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10802 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10803 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10804 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10805 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10806 }
10807 else
10808 {
10809 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10810 bfd_signed_vma gotpc_offset;
10811 bfd_vma loc_address;
10812
10813 BFD_ASSERT (got_address % 4 == 0);
10814
10815 loc_address = (htab->root.splt->output_section->vma
10816 + htab->root.splt->output_offset + plt_offset);
10817 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10818
10819 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10820 if (gotpc_offset + 0x1000000 >= 0x2000000)
10821 {
10822 _bfd_error_handler
10823 /* xgettext:c-format */
10824 (_("%B: `%A' offset of %ld from `%A' "
10825 "beyond the range of ADDIUPC"),
10826 output_bfd,
10827 htab->root.sgotplt->output_section,
10828 htab->root.splt->output_section,
10829 (long) gotpc_offset);
10830 bfd_set_error (bfd_error_no_error);
10831 return FALSE;
10832 }
10833 bfd_put_16 (output_bfd,
10834 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10835 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10836 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10837 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10838 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10839 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10840 }
10841 }
10842
10843 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10844 mips_elf_output_dynamic_relocation (output_bfd, htab->root.srelplt,
10845 got_index - 2, h->dynindx,
10846 R_MIPS_JUMP_SLOT, got_address);
10847
10848 /* We distinguish between PLT entries and lazy-binding stubs by
10849 giving the former an st_other value of STO_MIPS_PLT. Set the
10850 flag and leave the value if there are any relocations in the
10851 binary where pointer equality matters. */
10852 sym->st_shndx = SHN_UNDEF;
10853 if (h->pointer_equality_needed)
10854 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
10855 else
10856 {
10857 sym->st_value = 0;
10858 sym->st_other = 0;
10859 }
10860 }
10861
10862 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
10863 {
10864 /* We've decided to create a lazy-binding stub. */
10865 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10866 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10867 bfd_vma stub_size = htab->function_stub_size;
10868 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
10869 bfd_vma isa_bit = micromips_p;
10870 bfd_vma stub_big_size;
10871
10872 if (!micromips_p)
10873 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
10874 else if (htab->insn32)
10875 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10876 else
10877 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
10878
10879 /* This symbol has a stub. Set it up. */
10880
10881 BFD_ASSERT (h->dynindx != -1);
10882
10883 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
10884
10885 /* Values up to 2^31 - 1 are allowed. Larger values would cause
10886 sign extension at runtime in the stub, resulting in a negative
10887 index value. */
10888 if (h->dynindx & ~0x7fffffff)
10889 return FALSE;
10890
10891 /* Fill the stub. */
10892 if (micromips_p)
10893 {
10894 idx = 0;
10895 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10896 stub + idx);
10897 idx += 4;
10898 if (htab->insn32)
10899 {
10900 bfd_put_micromips_32 (output_bfd,
10901 STUB_MOVE32_MICROMIPS, stub + idx);
10902 idx += 4;
10903 }
10904 else
10905 {
10906 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10907 idx += 2;
10908 }
10909 if (stub_size == stub_big_size)
10910 {
10911 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10912
10913 bfd_put_micromips_32 (output_bfd,
10914 STUB_LUI_MICROMIPS (dynindx_hi),
10915 stub + idx);
10916 idx += 4;
10917 }
10918 if (htab->insn32)
10919 {
10920 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
10921 stub + idx);
10922 idx += 4;
10923 }
10924 else
10925 {
10926 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
10927 idx += 2;
10928 }
10929
10930 /* If a large stub is not required and sign extension is not a
10931 problem, then use legacy code in the stub. */
10932 if (stub_size == stub_big_size)
10933 bfd_put_micromips_32 (output_bfd,
10934 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
10935 stub + idx);
10936 else if (h->dynindx & ~0x7fff)
10937 bfd_put_micromips_32 (output_bfd,
10938 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
10939 stub + idx);
10940 else
10941 bfd_put_micromips_32 (output_bfd,
10942 STUB_LI16S_MICROMIPS (output_bfd,
10943 h->dynindx),
10944 stub + idx);
10945 }
10946 else
10947 {
10948 idx = 0;
10949 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10950 idx += 4;
10951 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
10952 idx += 4;
10953 if (stub_size == stub_big_size)
10954 {
10955 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10956 stub + idx);
10957 idx += 4;
10958 }
10959 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10960 idx += 4;
10961
10962 /* If a large stub is not required and sign extension is not a
10963 problem, then use legacy code in the stub. */
10964 if (stub_size == stub_big_size)
10965 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
10966 stub + idx);
10967 else if (h->dynindx & ~0x7fff)
10968 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
10969 stub + idx);
10970 else
10971 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10972 stub + idx);
10973 }
10974
10975 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
10976 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
10977 stub, stub_size);
10978
10979 /* Mark the symbol as undefined. stub_offset != -1 occurs
10980 only for the referenced symbol. */
10981 sym->st_shndx = SHN_UNDEF;
10982
10983 /* The run-time linker uses the st_value field of the symbol
10984 to reset the global offset table entry for this external
10985 to its stub address when unlinking a shared object. */
10986 sym->st_value = (htab->sstubs->output_section->vma
10987 + htab->sstubs->output_offset
10988 + h->plt.plist->stub_offset
10989 + isa_bit);
10990 sym->st_other = other;
10991 }
10992
10993 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10994 refer to the stub, since only the stub uses the standard calling
10995 conventions. */
10996 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10997 {
10998 BFD_ASSERT (hmips->need_fn_stub);
10999 sym->st_value = (hmips->fn_stub->output_section->vma
11000 + hmips->fn_stub->output_offset);
11001 sym->st_size = hmips->fn_stub->size;
11002 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
11003 }
11004
11005 BFD_ASSERT (h->dynindx != -1
11006 || h->forced_local);
11007
11008 sgot = htab->root.sgot;
11009 g = htab->got_info;
11010 BFD_ASSERT (g != NULL);
11011
11012 /* Run through the global symbol table, creating GOT entries for all
11013 the symbols that need them. */
11014 if (hmips->global_got_area != GGA_NONE)
11015 {
11016 bfd_vma offset;
11017 bfd_vma value;
11018
11019 value = sym->st_value;
11020 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11021 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
11022 }
11023
11024 if (hmips->global_got_area != GGA_NONE && g->next)
11025 {
11026 struct mips_got_entry e, *p;
11027 bfd_vma entry;
11028 bfd_vma offset;
11029
11030 gg = g;
11031
11032 e.abfd = output_bfd;
11033 e.symndx = -1;
11034 e.d.h = hmips;
11035 e.tls_type = GOT_TLS_NONE;
11036
11037 for (g = g->next; g->next != gg; g = g->next)
11038 {
11039 if (g->got_entries
11040 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
11041 &e)))
11042 {
11043 offset = p->gotidx;
11044 BFD_ASSERT (offset > 0 && offset < htab->root.sgot->size);
11045 if (bfd_link_pic (info)
11046 || (elf_hash_table (info)->dynamic_sections_created
11047 && p->d.h != NULL
11048 && p->d.h->root.def_dynamic
11049 && !p->d.h->root.def_regular))
11050 {
11051 /* Create an R_MIPS_REL32 relocation for this entry. Due to
11052 the various compatibility problems, it's easier to mock
11053 up an R_MIPS_32 or R_MIPS_64 relocation and leave
11054 mips_elf_create_dynamic_relocation to calculate the
11055 appropriate addend. */
11056 Elf_Internal_Rela rel[3];
11057
11058 memset (rel, 0, sizeof (rel));
11059 if (ABI_64_P (output_bfd))
11060 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
11061 else
11062 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
11063 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
11064
11065 entry = 0;
11066 if (! (mips_elf_create_dynamic_relocation
11067 (output_bfd, info, rel,
11068 e.d.h, NULL, sym->st_value, &entry, sgot)))
11069 return FALSE;
11070 }
11071 else
11072 entry = sym->st_value;
11073 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
11074 }
11075 }
11076 }
11077
11078 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
11079 name = h->root.root.string;
11080 if (h == elf_hash_table (info)->hdynamic
11081 || h == elf_hash_table (info)->hgot)
11082 sym->st_shndx = SHN_ABS;
11083 else if (strcmp (name, "_DYNAMIC_LINK") == 0
11084 || strcmp (name, "_DYNAMIC_LINKING") == 0)
11085 {
11086 sym->st_shndx = SHN_ABS;
11087 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11088 sym->st_value = 1;
11089 }
11090 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
11091 {
11092 sym->st_shndx = SHN_ABS;
11093 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11094 sym->st_value = elf_gp (output_bfd);
11095 }
11096 else if (SGI_COMPAT (output_bfd))
11097 {
11098 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
11099 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
11100 {
11101 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11102 sym->st_other = STO_PROTECTED;
11103 sym->st_value = 0;
11104 sym->st_shndx = SHN_MIPS_DATA;
11105 }
11106 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
11107 {
11108 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11109 sym->st_other = STO_PROTECTED;
11110 sym->st_value = mips_elf_hash_table (info)->procedure_count;
11111 sym->st_shndx = SHN_ABS;
11112 }
11113 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
11114 {
11115 if (h->type == STT_FUNC)
11116 sym->st_shndx = SHN_MIPS_TEXT;
11117 else if (h->type == STT_OBJECT)
11118 sym->st_shndx = SHN_MIPS_DATA;
11119 }
11120 }
11121
11122 /* Emit a copy reloc, if needed. */
11123 if (h->needs_copy)
11124 {
11125 asection *s;
11126 bfd_vma symval;
11127
11128 BFD_ASSERT (h->dynindx != -1);
11129 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11130
11131 s = mips_elf_rel_dyn_section (info, FALSE);
11132 symval = (h->root.u.def.section->output_section->vma
11133 + h->root.u.def.section->output_offset
11134 + h->root.u.def.value);
11135 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
11136 h->dynindx, R_MIPS_COPY, symval);
11137 }
11138
11139 /* Handle the IRIX6-specific symbols. */
11140 if (IRIX_COMPAT (output_bfd) == ict_irix6)
11141 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11142
11143 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11144 to treat compressed symbols like any other. */
11145 if (ELF_ST_IS_MIPS16 (sym->st_other))
11146 {
11147 BFD_ASSERT (sym->st_value & 1);
11148 sym->st_other -= STO_MIPS16;
11149 }
11150 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11151 {
11152 BFD_ASSERT (sym->st_value & 1);
11153 sym->st_other -= STO_MICROMIPS;
11154 }
11155
11156 return TRUE;
11157 }
11158
11159 /* Likewise, for VxWorks. */
11160
11161 bfd_boolean
11162 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11163 struct bfd_link_info *info,
11164 struct elf_link_hash_entry *h,
11165 Elf_Internal_Sym *sym)
11166 {
11167 bfd *dynobj;
11168 asection *sgot;
11169 struct mips_got_info *g;
11170 struct mips_elf_link_hash_table *htab;
11171 struct mips_elf_link_hash_entry *hmips;
11172
11173 htab = mips_elf_hash_table (info);
11174 BFD_ASSERT (htab != NULL);
11175 dynobj = elf_hash_table (info)->dynobj;
11176 hmips = (struct mips_elf_link_hash_entry *) h;
11177
11178 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
11179 {
11180 bfd_byte *loc;
11181 bfd_vma plt_address, got_address, got_offset, branch_offset;
11182 Elf_Internal_Rela rel;
11183 static const bfd_vma *plt_entry;
11184 bfd_vma gotplt_index;
11185 bfd_vma plt_offset;
11186
11187 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11188 gotplt_index = h->plt.plist->gotplt_index;
11189
11190 BFD_ASSERT (h->dynindx != -1);
11191 BFD_ASSERT (htab->root.splt != NULL);
11192 BFD_ASSERT (gotplt_index != MINUS_ONE);
11193 BFD_ASSERT (plt_offset <= htab->root.splt->size);
11194
11195 /* Calculate the address of the .plt entry. */
11196 plt_address = (htab->root.splt->output_section->vma
11197 + htab->root.splt->output_offset
11198 + plt_offset);
11199
11200 /* Calculate the address of the .got.plt entry. */
11201 got_address = (htab->root.sgotplt->output_section->vma
11202 + htab->root.sgotplt->output_offset
11203 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11204
11205 /* Calculate the offset of the .got.plt entry from
11206 _GLOBAL_OFFSET_TABLE_. */
11207 got_offset = mips_elf_gotplt_index (info, h);
11208
11209 /* Calculate the offset for the branch at the start of the PLT
11210 entry. The branch jumps to the beginning of .plt. */
11211 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11212
11213 /* Fill in the initial value of the .got.plt entry. */
11214 bfd_put_32 (output_bfd, plt_address,
11215 (htab->root.sgotplt->contents
11216 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11217
11218 /* Find out where the .plt entry should go. */
11219 loc = htab->root.splt->contents + plt_offset;
11220
11221 if (bfd_link_pic (info))
11222 {
11223 plt_entry = mips_vxworks_shared_plt_entry;
11224 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11225 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11226 }
11227 else
11228 {
11229 bfd_vma got_address_high, got_address_low;
11230
11231 plt_entry = mips_vxworks_exec_plt_entry;
11232 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11233 got_address_low = got_address & 0xffff;
11234
11235 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11236 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11237 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11238 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11239 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11240 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11241 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11242 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11243
11244 loc = (htab->srelplt2->contents
11245 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11246
11247 /* Emit a relocation for the .got.plt entry. */
11248 rel.r_offset = got_address;
11249 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11250 rel.r_addend = plt_offset;
11251 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11252
11253 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11254 loc += sizeof (Elf32_External_Rela);
11255 rel.r_offset = plt_address + 8;
11256 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11257 rel.r_addend = got_offset;
11258 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11259
11260 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11261 loc += sizeof (Elf32_External_Rela);
11262 rel.r_offset += 4;
11263 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11264 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11265 }
11266
11267 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11268 loc = (htab->root.srelplt->contents
11269 + gotplt_index * sizeof (Elf32_External_Rela));
11270 rel.r_offset = got_address;
11271 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11272 rel.r_addend = 0;
11273 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11274
11275 if (!h->def_regular)
11276 sym->st_shndx = SHN_UNDEF;
11277 }
11278
11279 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11280
11281 sgot = htab->root.sgot;
11282 g = htab->got_info;
11283 BFD_ASSERT (g != NULL);
11284
11285 /* See if this symbol has an entry in the GOT. */
11286 if (hmips->global_got_area != GGA_NONE)
11287 {
11288 bfd_vma offset;
11289 Elf_Internal_Rela outrel;
11290 bfd_byte *loc;
11291 asection *s;
11292
11293 /* Install the symbol value in the GOT. */
11294 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11295 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11296
11297 /* Add a dynamic relocation for it. */
11298 s = mips_elf_rel_dyn_section (info, FALSE);
11299 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11300 outrel.r_offset = (sgot->output_section->vma
11301 + sgot->output_offset
11302 + offset);
11303 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11304 outrel.r_addend = 0;
11305 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11306 }
11307
11308 /* Emit a copy reloc, if needed. */
11309 if (h->needs_copy)
11310 {
11311 Elf_Internal_Rela rel;
11312
11313 BFD_ASSERT (h->dynindx != -1);
11314
11315 rel.r_offset = (h->root.u.def.section->output_section->vma
11316 + h->root.u.def.section->output_offset
11317 + h->root.u.def.value);
11318 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11319 rel.r_addend = 0;
11320 bfd_elf32_swap_reloca_out (output_bfd, &rel,
11321 htab->srelbss->contents
11322 + (htab->srelbss->reloc_count
11323 * sizeof (Elf32_External_Rela)));
11324 ++htab->srelbss->reloc_count;
11325 }
11326
11327 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11328 if (ELF_ST_IS_COMPRESSED (sym->st_other))
11329 sym->st_value &= ~1;
11330
11331 return TRUE;
11332 }
11333
11334 /* Write out a plt0 entry to the beginning of .plt. */
11335
11336 static bfd_boolean
11337 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11338 {
11339 bfd_byte *loc;
11340 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11341 static const bfd_vma *plt_entry;
11342 struct mips_elf_link_hash_table *htab;
11343
11344 htab = mips_elf_hash_table (info);
11345 BFD_ASSERT (htab != NULL);
11346
11347 if (ABI_64_P (output_bfd))
11348 plt_entry = mips_n64_exec_plt0_entry;
11349 else if (ABI_N32_P (output_bfd))
11350 plt_entry = mips_n32_exec_plt0_entry;
11351 else if (!htab->plt_header_is_comp)
11352 plt_entry = mips_o32_exec_plt0_entry;
11353 else if (htab->insn32)
11354 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11355 else
11356 plt_entry = micromips_o32_exec_plt0_entry;
11357
11358 /* Calculate the value of .got.plt. */
11359 gotplt_value = (htab->root.sgotplt->output_section->vma
11360 + htab->root.sgotplt->output_offset);
11361 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11362 gotplt_value_low = gotplt_value & 0xffff;
11363
11364 /* The PLT sequence is not safe for N64 if .got.plt's address can
11365 not be loaded in two instructions. */
11366 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
11367 || ~(gotplt_value | 0x7fffffff) == 0);
11368
11369 /* Install the PLT header. */
11370 loc = htab->root.splt->contents;
11371 if (plt_entry == micromips_o32_exec_plt0_entry)
11372 {
11373 bfd_vma gotpc_offset;
11374 bfd_vma loc_address;
11375 size_t i;
11376
11377 BFD_ASSERT (gotplt_value % 4 == 0);
11378
11379 loc_address = (htab->root.splt->output_section->vma
11380 + htab->root.splt->output_offset);
11381 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11382
11383 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11384 if (gotpc_offset + 0x1000000 >= 0x2000000)
11385 {
11386 _bfd_error_handler
11387 /* xgettext:c-format */
11388 (_("%B: `%A' offset of %ld from `%A' beyond the range of ADDIUPC"),
11389 output_bfd,
11390 htab->root.sgotplt->output_section,
11391 htab->root.splt->output_section,
11392 (long) gotpc_offset);
11393 bfd_set_error (bfd_error_no_error);
11394 return FALSE;
11395 }
11396 bfd_put_16 (output_bfd,
11397 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11398 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11399 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11400 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11401 }
11402 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11403 {
11404 size_t i;
11405
11406 bfd_put_16 (output_bfd, plt_entry[0], loc);
11407 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11408 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11409 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11410 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11411 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11412 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11413 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11414 }
11415 else
11416 {
11417 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11418 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11419 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11420 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11421 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11422 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11423 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11424 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11425 }
11426
11427 return TRUE;
11428 }
11429
11430 /* Install the PLT header for a VxWorks executable and finalize the
11431 contents of .rela.plt.unloaded. */
11432
11433 static void
11434 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11435 {
11436 Elf_Internal_Rela rela;
11437 bfd_byte *loc;
11438 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11439 static const bfd_vma *plt_entry;
11440 struct mips_elf_link_hash_table *htab;
11441
11442 htab = mips_elf_hash_table (info);
11443 BFD_ASSERT (htab != NULL);
11444
11445 plt_entry = mips_vxworks_exec_plt0_entry;
11446
11447 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11448 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11449 + htab->root.hgot->root.u.def.section->output_offset
11450 + htab->root.hgot->root.u.def.value);
11451
11452 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11453 got_value_low = got_value & 0xffff;
11454
11455 /* Calculate the address of the PLT header. */
11456 plt_address = (htab->root.splt->output_section->vma
11457 + htab->root.splt->output_offset);
11458
11459 /* Install the PLT header. */
11460 loc = htab->root.splt->contents;
11461 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11462 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11463 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11464 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11465 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11466 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11467
11468 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11469 loc = htab->srelplt2->contents;
11470 rela.r_offset = plt_address;
11471 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11472 rela.r_addend = 0;
11473 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11474 loc += sizeof (Elf32_External_Rela);
11475
11476 /* Output the relocation for the following addiu of
11477 %lo(_GLOBAL_OFFSET_TABLE_). */
11478 rela.r_offset += 4;
11479 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11480 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11481 loc += sizeof (Elf32_External_Rela);
11482
11483 /* Fix up the remaining relocations. They may have the wrong
11484 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11485 in which symbols were output. */
11486 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11487 {
11488 Elf_Internal_Rela rel;
11489
11490 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11491 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11492 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11493 loc += sizeof (Elf32_External_Rela);
11494
11495 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11496 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11497 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11498 loc += sizeof (Elf32_External_Rela);
11499
11500 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11501 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11502 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11503 loc += sizeof (Elf32_External_Rela);
11504 }
11505 }
11506
11507 /* Install the PLT header for a VxWorks shared library. */
11508
11509 static void
11510 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11511 {
11512 unsigned int i;
11513 struct mips_elf_link_hash_table *htab;
11514
11515 htab = mips_elf_hash_table (info);
11516 BFD_ASSERT (htab != NULL);
11517
11518 /* We just need to copy the entry byte-by-byte. */
11519 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11520 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11521 htab->root.splt->contents + i * 4);
11522 }
11523
11524 /* Finish up the dynamic sections. */
11525
11526 bfd_boolean
11527 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11528 struct bfd_link_info *info)
11529 {
11530 bfd *dynobj;
11531 asection *sdyn;
11532 asection *sgot;
11533 struct mips_got_info *gg, *g;
11534 struct mips_elf_link_hash_table *htab;
11535
11536 htab = mips_elf_hash_table (info);
11537 BFD_ASSERT (htab != NULL);
11538
11539 dynobj = elf_hash_table (info)->dynobj;
11540
11541 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11542
11543 sgot = htab->root.sgot;
11544 gg = htab->got_info;
11545
11546 if (elf_hash_table (info)->dynamic_sections_created)
11547 {
11548 bfd_byte *b;
11549 int dyn_to_skip = 0, dyn_skipped = 0;
11550
11551 BFD_ASSERT (sdyn != NULL);
11552 BFD_ASSERT (gg != NULL);
11553
11554 g = mips_elf_bfd_got (output_bfd, FALSE);
11555 BFD_ASSERT (g != NULL);
11556
11557 for (b = sdyn->contents;
11558 b < sdyn->contents + sdyn->size;
11559 b += MIPS_ELF_DYN_SIZE (dynobj))
11560 {
11561 Elf_Internal_Dyn dyn;
11562 const char *name;
11563 size_t elemsize;
11564 asection *s;
11565 bfd_boolean swap_out_p;
11566
11567 /* Read in the current dynamic entry. */
11568 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11569
11570 /* Assume that we're going to modify it and write it out. */
11571 swap_out_p = TRUE;
11572
11573 switch (dyn.d_tag)
11574 {
11575 case DT_RELENT:
11576 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11577 break;
11578
11579 case DT_RELAENT:
11580 BFD_ASSERT (htab->is_vxworks);
11581 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11582 break;
11583
11584 case DT_STRSZ:
11585 /* Rewrite DT_STRSZ. */
11586 dyn.d_un.d_val =
11587 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11588 break;
11589
11590 case DT_PLTGOT:
11591 s = htab->root.sgot;
11592 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11593 break;
11594
11595 case DT_MIPS_PLTGOT:
11596 s = htab->root.sgotplt;
11597 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11598 break;
11599
11600 case DT_MIPS_RLD_VERSION:
11601 dyn.d_un.d_val = 1; /* XXX */
11602 break;
11603
11604 case DT_MIPS_FLAGS:
11605 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11606 break;
11607
11608 case DT_MIPS_TIME_STAMP:
11609 {
11610 time_t t;
11611 time (&t);
11612 dyn.d_un.d_val = t;
11613 }
11614 break;
11615
11616 case DT_MIPS_ICHECKSUM:
11617 /* XXX FIXME: */
11618 swap_out_p = FALSE;
11619 break;
11620
11621 case DT_MIPS_IVERSION:
11622 /* XXX FIXME: */
11623 swap_out_p = FALSE;
11624 break;
11625
11626 case DT_MIPS_BASE_ADDRESS:
11627 s = output_bfd->sections;
11628 BFD_ASSERT (s != NULL);
11629 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11630 break;
11631
11632 case DT_MIPS_LOCAL_GOTNO:
11633 dyn.d_un.d_val = g->local_gotno;
11634 break;
11635
11636 case DT_MIPS_UNREFEXTNO:
11637 /* The index into the dynamic symbol table which is the
11638 entry of the first external symbol that is not
11639 referenced within the same object. */
11640 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11641 break;
11642
11643 case DT_MIPS_GOTSYM:
11644 if (htab->global_gotsym)
11645 {
11646 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11647 break;
11648 }
11649 /* In case if we don't have global got symbols we default
11650 to setting DT_MIPS_GOTSYM to the same value as
11651 DT_MIPS_SYMTABNO. */
11652 /* Fall through. */
11653
11654 case DT_MIPS_SYMTABNO:
11655 name = ".dynsym";
11656 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11657 s = bfd_get_linker_section (dynobj, name);
11658
11659 if (s != NULL)
11660 dyn.d_un.d_val = s->size / elemsize;
11661 else
11662 dyn.d_un.d_val = 0;
11663 break;
11664
11665 case DT_MIPS_HIPAGENO:
11666 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11667 break;
11668
11669 case DT_MIPS_RLD_MAP:
11670 {
11671 struct elf_link_hash_entry *h;
11672 h = mips_elf_hash_table (info)->rld_symbol;
11673 if (!h)
11674 {
11675 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11676 swap_out_p = FALSE;
11677 break;
11678 }
11679 s = h->root.u.def.section;
11680
11681 /* The MIPS_RLD_MAP tag stores the absolute address of the
11682 debug pointer. */
11683 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11684 + h->root.u.def.value);
11685 }
11686 break;
11687
11688 case DT_MIPS_RLD_MAP_REL:
11689 {
11690 struct elf_link_hash_entry *h;
11691 bfd_vma dt_addr, rld_addr;
11692 h = mips_elf_hash_table (info)->rld_symbol;
11693 if (!h)
11694 {
11695 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11696 swap_out_p = FALSE;
11697 break;
11698 }
11699 s = h->root.u.def.section;
11700
11701 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11702 pointer, relative to the address of the tag. */
11703 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
11704 + (b - sdyn->contents));
11705 rld_addr = (s->output_section->vma + s->output_offset
11706 + h->root.u.def.value);
11707 dyn.d_un.d_ptr = rld_addr - dt_addr;
11708 }
11709 break;
11710
11711 case DT_MIPS_OPTIONS:
11712 s = (bfd_get_section_by_name
11713 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11714 dyn.d_un.d_ptr = s->vma;
11715 break;
11716
11717 case DT_PLTREL:
11718 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11719 if (htab->is_vxworks)
11720 dyn.d_un.d_val = DT_RELA;
11721 else
11722 dyn.d_un.d_val = DT_REL;
11723 break;
11724
11725 case DT_PLTRELSZ:
11726 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11727 dyn.d_un.d_val = htab->root.srelplt->size;
11728 break;
11729
11730 case DT_JMPREL:
11731 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11732 dyn.d_un.d_ptr = (htab->root.srelplt->output_section->vma
11733 + htab->root.srelplt->output_offset);
11734 break;
11735
11736 case DT_TEXTREL:
11737 /* If we didn't need any text relocations after all, delete
11738 the dynamic tag. */
11739 if (!(info->flags & DF_TEXTREL))
11740 {
11741 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11742 swap_out_p = FALSE;
11743 }
11744 break;
11745
11746 case DT_FLAGS:
11747 /* If we didn't need any text relocations after all, clear
11748 DF_TEXTREL from DT_FLAGS. */
11749 if (!(info->flags & DF_TEXTREL))
11750 dyn.d_un.d_val &= ~DF_TEXTREL;
11751 else
11752 swap_out_p = FALSE;
11753 break;
11754
11755 default:
11756 swap_out_p = FALSE;
11757 if (htab->is_vxworks
11758 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11759 swap_out_p = TRUE;
11760 break;
11761 }
11762
11763 if (swap_out_p || dyn_skipped)
11764 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11765 (dynobj, &dyn, b - dyn_skipped);
11766
11767 if (dyn_to_skip)
11768 {
11769 dyn_skipped += dyn_to_skip;
11770 dyn_to_skip = 0;
11771 }
11772 }
11773
11774 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11775 if (dyn_skipped > 0)
11776 memset (b - dyn_skipped, 0, dyn_skipped);
11777 }
11778
11779 if (sgot != NULL && sgot->size > 0
11780 && !bfd_is_abs_section (sgot->output_section))
11781 {
11782 if (htab->is_vxworks)
11783 {
11784 /* The first entry of the global offset table points to the
11785 ".dynamic" section. The second is initialized by the
11786 loader and contains the shared library identifier.
11787 The third is also initialized by the loader and points
11788 to the lazy resolution stub. */
11789 MIPS_ELF_PUT_WORD (output_bfd,
11790 sdyn->output_offset + sdyn->output_section->vma,
11791 sgot->contents);
11792 MIPS_ELF_PUT_WORD (output_bfd, 0,
11793 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11794 MIPS_ELF_PUT_WORD (output_bfd, 0,
11795 sgot->contents
11796 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11797 }
11798 else
11799 {
11800 /* The first entry of the global offset table will be filled at
11801 runtime. The second entry will be used by some runtime loaders.
11802 This isn't the case of IRIX rld. */
11803 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
11804 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11805 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11806 }
11807
11808 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11809 = MIPS_ELF_GOT_SIZE (output_bfd);
11810 }
11811
11812 /* Generate dynamic relocations for the non-primary gots. */
11813 if (gg != NULL && gg->next)
11814 {
11815 Elf_Internal_Rela rel[3];
11816 bfd_vma addend = 0;
11817
11818 memset (rel, 0, sizeof (rel));
11819 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11820
11821 for (g = gg->next; g->next != gg; g = g->next)
11822 {
11823 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
11824 + g->next->tls_gotno;
11825
11826 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
11827 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11828 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11829 sgot->contents
11830 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11831
11832 if (! bfd_link_pic (info))
11833 continue;
11834
11835 for (; got_index < g->local_gotno; got_index++)
11836 {
11837 if (got_index >= g->assigned_low_gotno
11838 && got_index <= g->assigned_high_gotno)
11839 continue;
11840
11841 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
11842 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
11843 if (!(mips_elf_create_dynamic_relocation
11844 (output_bfd, info, rel, NULL,
11845 bfd_abs_section_ptr,
11846 0, &addend, sgot)))
11847 return FALSE;
11848 BFD_ASSERT (addend == 0);
11849 }
11850 }
11851 }
11852
11853 /* The generation of dynamic relocations for the non-primary gots
11854 adds more dynamic relocations. We cannot count them until
11855 here. */
11856
11857 if (elf_hash_table (info)->dynamic_sections_created)
11858 {
11859 bfd_byte *b;
11860 bfd_boolean swap_out_p;
11861
11862 BFD_ASSERT (sdyn != NULL);
11863
11864 for (b = sdyn->contents;
11865 b < sdyn->contents + sdyn->size;
11866 b += MIPS_ELF_DYN_SIZE (dynobj))
11867 {
11868 Elf_Internal_Dyn dyn;
11869 asection *s;
11870
11871 /* Read in the current dynamic entry. */
11872 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11873
11874 /* Assume that we're going to modify it and write it out. */
11875 swap_out_p = TRUE;
11876
11877 switch (dyn.d_tag)
11878 {
11879 case DT_RELSZ:
11880 /* Reduce DT_RELSZ to account for any relocations we
11881 decided not to make. This is for the n64 irix rld,
11882 which doesn't seem to apply any relocations if there
11883 are trailing null entries. */
11884 s = mips_elf_rel_dyn_section (info, FALSE);
11885 dyn.d_un.d_val = (s->reloc_count
11886 * (ABI_64_P (output_bfd)
11887 ? sizeof (Elf64_Mips_External_Rel)
11888 : sizeof (Elf32_External_Rel)));
11889 /* Adjust the section size too. Tools like the prelinker
11890 can reasonably expect the values to the same. */
11891 elf_section_data (s->output_section)->this_hdr.sh_size
11892 = dyn.d_un.d_val;
11893 break;
11894
11895 default:
11896 swap_out_p = FALSE;
11897 break;
11898 }
11899
11900 if (swap_out_p)
11901 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11902 (dynobj, &dyn, b);
11903 }
11904 }
11905
11906 {
11907 asection *s;
11908 Elf32_compact_rel cpt;
11909
11910 if (SGI_COMPAT (output_bfd))
11911 {
11912 /* Write .compact_rel section out. */
11913 s = bfd_get_linker_section (dynobj, ".compact_rel");
11914 if (s != NULL)
11915 {
11916 cpt.id1 = 1;
11917 cpt.num = s->reloc_count;
11918 cpt.id2 = 2;
11919 cpt.offset = (s->output_section->filepos
11920 + sizeof (Elf32_External_compact_rel));
11921 cpt.reserved0 = 0;
11922 cpt.reserved1 = 0;
11923 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
11924 ((Elf32_External_compact_rel *)
11925 s->contents));
11926
11927 /* Clean up a dummy stub function entry in .text. */
11928 if (htab->sstubs != NULL)
11929 {
11930 file_ptr dummy_offset;
11931
11932 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
11933 dummy_offset = htab->sstubs->size - htab->function_stub_size;
11934 memset (htab->sstubs->contents + dummy_offset, 0,
11935 htab->function_stub_size);
11936 }
11937 }
11938 }
11939
11940 /* The psABI says that the dynamic relocations must be sorted in
11941 increasing order of r_symndx. The VxWorks EABI doesn't require
11942 this, and because the code below handles REL rather than RELA
11943 relocations, using it for VxWorks would be outright harmful. */
11944 if (!htab->is_vxworks)
11945 {
11946 s = mips_elf_rel_dyn_section (info, FALSE);
11947 if (s != NULL
11948 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
11949 {
11950 reldyn_sorting_bfd = output_bfd;
11951
11952 if (ABI_64_P (output_bfd))
11953 qsort ((Elf64_External_Rel *) s->contents + 1,
11954 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
11955 sort_dynamic_relocs_64);
11956 else
11957 qsort ((Elf32_External_Rel *) s->contents + 1,
11958 s->reloc_count - 1, sizeof (Elf32_External_Rel),
11959 sort_dynamic_relocs);
11960 }
11961 }
11962 }
11963
11964 if (htab->root.splt && htab->root.splt->size > 0)
11965 {
11966 if (htab->is_vxworks)
11967 {
11968 if (bfd_link_pic (info))
11969 mips_vxworks_finish_shared_plt (output_bfd, info);
11970 else
11971 mips_vxworks_finish_exec_plt (output_bfd, info);
11972 }
11973 else
11974 {
11975 BFD_ASSERT (!bfd_link_pic (info));
11976 if (!mips_finish_exec_plt (output_bfd, info))
11977 return FALSE;
11978 }
11979 }
11980 return TRUE;
11981 }
11982
11983
11984 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
11985
11986 static void
11987 mips_set_isa_flags (bfd *abfd)
11988 {
11989 flagword val;
11990
11991 switch (bfd_get_mach (abfd))
11992 {
11993 default:
11994 case bfd_mach_mips3000:
11995 val = E_MIPS_ARCH_1;
11996 break;
11997
11998 case bfd_mach_mips3900:
11999 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
12000 break;
12001
12002 case bfd_mach_mips6000:
12003 val = E_MIPS_ARCH_2;
12004 break;
12005
12006 case bfd_mach_mips4000:
12007 case bfd_mach_mips4300:
12008 case bfd_mach_mips4400:
12009 case bfd_mach_mips4600:
12010 val = E_MIPS_ARCH_3;
12011 break;
12012
12013 case bfd_mach_mips4010:
12014 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
12015 break;
12016
12017 case bfd_mach_mips4100:
12018 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
12019 break;
12020
12021 case bfd_mach_mips4111:
12022 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
12023 break;
12024
12025 case bfd_mach_mips4120:
12026 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
12027 break;
12028
12029 case bfd_mach_mips4650:
12030 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
12031 break;
12032
12033 case bfd_mach_mips5400:
12034 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
12035 break;
12036
12037 case bfd_mach_mips5500:
12038 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
12039 break;
12040
12041 case bfd_mach_mips5900:
12042 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
12043 break;
12044
12045 case bfd_mach_mips9000:
12046 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
12047 break;
12048
12049 case bfd_mach_mips5000:
12050 case bfd_mach_mips7000:
12051 case bfd_mach_mips8000:
12052 case bfd_mach_mips10000:
12053 case bfd_mach_mips12000:
12054 case bfd_mach_mips14000:
12055 case bfd_mach_mips16000:
12056 val = E_MIPS_ARCH_4;
12057 break;
12058
12059 case bfd_mach_mips5:
12060 val = E_MIPS_ARCH_5;
12061 break;
12062
12063 case bfd_mach_mips_loongson_2e:
12064 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
12065 break;
12066
12067 case bfd_mach_mips_loongson_2f:
12068 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
12069 break;
12070
12071 case bfd_mach_mips_sb1:
12072 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
12073 break;
12074
12075 case bfd_mach_mips_loongson_3a:
12076 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A;
12077 break;
12078
12079 case bfd_mach_mips_octeon:
12080 case bfd_mach_mips_octeonp:
12081 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
12082 break;
12083
12084 case bfd_mach_mips_octeon3:
12085 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
12086 break;
12087
12088 case bfd_mach_mips_xlr:
12089 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
12090 break;
12091
12092 case bfd_mach_mips_octeon2:
12093 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
12094 break;
12095
12096 case bfd_mach_mipsisa32:
12097 val = E_MIPS_ARCH_32;
12098 break;
12099
12100 case bfd_mach_mipsisa64:
12101 val = E_MIPS_ARCH_64;
12102 break;
12103
12104 case bfd_mach_mipsisa32r2:
12105 case bfd_mach_mipsisa32r3:
12106 case bfd_mach_mipsisa32r5:
12107 val = E_MIPS_ARCH_32R2;
12108 break;
12109
12110 case bfd_mach_mipsisa64r2:
12111 case bfd_mach_mipsisa64r3:
12112 case bfd_mach_mipsisa64r5:
12113 val = E_MIPS_ARCH_64R2;
12114 break;
12115
12116 case bfd_mach_mipsisa32r6:
12117 val = E_MIPS_ARCH_32R6;
12118 break;
12119
12120 case bfd_mach_mipsisa64r6:
12121 val = E_MIPS_ARCH_64R6;
12122 break;
12123 }
12124 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12125 elf_elfheader (abfd)->e_flags |= val;
12126
12127 }
12128
12129
12130 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12131 Don't do so for code sections. We want to keep ordering of HI16/LO16
12132 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12133 relocs to be sorted. */
12134
12135 bfd_boolean
12136 _bfd_mips_elf_sort_relocs_p (asection *sec)
12137 {
12138 return (sec->flags & SEC_CODE) == 0;
12139 }
12140
12141
12142 /* The final processing done just before writing out a MIPS ELF object
12143 file. This gets the MIPS architecture right based on the machine
12144 number. This is used by both the 32-bit and the 64-bit ABI. */
12145
12146 void
12147 _bfd_mips_elf_final_write_processing (bfd *abfd,
12148 bfd_boolean linker ATTRIBUTE_UNUSED)
12149 {
12150 unsigned int i;
12151 Elf_Internal_Shdr **hdrpp;
12152 const char *name;
12153 asection *sec;
12154
12155 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12156 is nonzero. This is for compatibility with old objects, which used
12157 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12158 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12159 mips_set_isa_flags (abfd);
12160
12161 /* Set the sh_info field for .gptab sections and other appropriate
12162 info for each special section. */
12163 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12164 i < elf_numsections (abfd);
12165 i++, hdrpp++)
12166 {
12167 switch ((*hdrpp)->sh_type)
12168 {
12169 case SHT_MIPS_MSYM:
12170 case SHT_MIPS_LIBLIST:
12171 sec = bfd_get_section_by_name (abfd, ".dynstr");
12172 if (sec != NULL)
12173 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12174 break;
12175
12176 case SHT_MIPS_GPTAB:
12177 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12178 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12179 BFD_ASSERT (name != NULL
12180 && CONST_STRNEQ (name, ".gptab."));
12181 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12182 BFD_ASSERT (sec != NULL);
12183 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12184 break;
12185
12186 case SHT_MIPS_CONTENT:
12187 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12188 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12189 BFD_ASSERT (name != NULL
12190 && CONST_STRNEQ (name, ".MIPS.content"));
12191 sec = bfd_get_section_by_name (abfd,
12192 name + sizeof ".MIPS.content" - 1);
12193 BFD_ASSERT (sec != NULL);
12194 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12195 break;
12196
12197 case SHT_MIPS_SYMBOL_LIB:
12198 sec = bfd_get_section_by_name (abfd, ".dynsym");
12199 if (sec != NULL)
12200 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12201 sec = bfd_get_section_by_name (abfd, ".liblist");
12202 if (sec != NULL)
12203 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12204 break;
12205
12206 case SHT_MIPS_EVENTS:
12207 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12208 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12209 BFD_ASSERT (name != NULL);
12210 if (CONST_STRNEQ (name, ".MIPS.events"))
12211 sec = bfd_get_section_by_name (abfd,
12212 name + sizeof ".MIPS.events" - 1);
12213 else
12214 {
12215 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
12216 sec = bfd_get_section_by_name (abfd,
12217 (name
12218 + sizeof ".MIPS.post_rel" - 1));
12219 }
12220 BFD_ASSERT (sec != NULL);
12221 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12222 break;
12223
12224 }
12225 }
12226 }
12227 \f
12228 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12229 segments. */
12230
12231 int
12232 _bfd_mips_elf_additional_program_headers (bfd *abfd,
12233 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12234 {
12235 asection *s;
12236 int ret = 0;
12237
12238 /* See if we need a PT_MIPS_REGINFO segment. */
12239 s = bfd_get_section_by_name (abfd, ".reginfo");
12240 if (s && (s->flags & SEC_LOAD))
12241 ++ret;
12242
12243 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12244 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12245 ++ret;
12246
12247 /* See if we need a PT_MIPS_OPTIONS segment. */
12248 if (IRIX_COMPAT (abfd) == ict_irix6
12249 && bfd_get_section_by_name (abfd,
12250 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12251 ++ret;
12252
12253 /* See if we need a PT_MIPS_RTPROC segment. */
12254 if (IRIX_COMPAT (abfd) == ict_irix5
12255 && bfd_get_section_by_name (abfd, ".dynamic")
12256 && bfd_get_section_by_name (abfd, ".mdebug"))
12257 ++ret;
12258
12259 /* Allocate a PT_NULL header in dynamic objects. See
12260 _bfd_mips_elf_modify_segment_map for details. */
12261 if (!SGI_COMPAT (abfd)
12262 && bfd_get_section_by_name (abfd, ".dynamic"))
12263 ++ret;
12264
12265 return ret;
12266 }
12267
12268 /* Modify the segment map for an IRIX5 executable. */
12269
12270 bfd_boolean
12271 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12272 struct bfd_link_info *info)
12273 {
12274 asection *s;
12275 struct elf_segment_map *m, **pm;
12276 bfd_size_type amt;
12277
12278 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12279 segment. */
12280 s = bfd_get_section_by_name (abfd, ".reginfo");
12281 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12282 {
12283 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12284 if (m->p_type == PT_MIPS_REGINFO)
12285 break;
12286 if (m == NULL)
12287 {
12288 amt = sizeof *m;
12289 m = bfd_zalloc (abfd, amt);
12290 if (m == NULL)
12291 return FALSE;
12292
12293 m->p_type = PT_MIPS_REGINFO;
12294 m->count = 1;
12295 m->sections[0] = s;
12296
12297 /* We want to put it after the PHDR and INTERP segments. */
12298 pm = &elf_seg_map (abfd);
12299 while (*pm != NULL
12300 && ((*pm)->p_type == PT_PHDR
12301 || (*pm)->p_type == PT_INTERP))
12302 pm = &(*pm)->next;
12303
12304 m->next = *pm;
12305 *pm = m;
12306 }
12307 }
12308
12309 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12310 segment. */
12311 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12312 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12313 {
12314 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12315 if (m->p_type == PT_MIPS_ABIFLAGS)
12316 break;
12317 if (m == NULL)
12318 {
12319 amt = sizeof *m;
12320 m = bfd_zalloc (abfd, amt);
12321 if (m == NULL)
12322 return FALSE;
12323
12324 m->p_type = PT_MIPS_ABIFLAGS;
12325 m->count = 1;
12326 m->sections[0] = s;
12327
12328 /* We want to put it after the PHDR and INTERP segments. */
12329 pm = &elf_seg_map (abfd);
12330 while (*pm != NULL
12331 && ((*pm)->p_type == PT_PHDR
12332 || (*pm)->p_type == PT_INTERP))
12333 pm = &(*pm)->next;
12334
12335 m->next = *pm;
12336 *pm = m;
12337 }
12338 }
12339
12340 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12341 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12342 PT_MIPS_OPTIONS segment immediately following the program header
12343 table. */
12344 if (NEWABI_P (abfd)
12345 /* On non-IRIX6 new abi, we'll have already created a segment
12346 for this section, so don't create another. I'm not sure this
12347 is not also the case for IRIX 6, but I can't test it right
12348 now. */
12349 && IRIX_COMPAT (abfd) == ict_irix6)
12350 {
12351 for (s = abfd->sections; s; s = s->next)
12352 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12353 break;
12354
12355 if (s)
12356 {
12357 struct elf_segment_map *options_segment;
12358
12359 pm = &elf_seg_map (abfd);
12360 while (*pm != NULL
12361 && ((*pm)->p_type == PT_PHDR
12362 || (*pm)->p_type == PT_INTERP))
12363 pm = &(*pm)->next;
12364
12365 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12366 {
12367 amt = sizeof (struct elf_segment_map);
12368 options_segment = bfd_zalloc (abfd, amt);
12369 options_segment->next = *pm;
12370 options_segment->p_type = PT_MIPS_OPTIONS;
12371 options_segment->p_flags = PF_R;
12372 options_segment->p_flags_valid = TRUE;
12373 options_segment->count = 1;
12374 options_segment->sections[0] = s;
12375 *pm = options_segment;
12376 }
12377 }
12378 }
12379 else
12380 {
12381 if (IRIX_COMPAT (abfd) == ict_irix5)
12382 {
12383 /* If there are .dynamic and .mdebug sections, we make a room
12384 for the RTPROC header. FIXME: Rewrite without section names. */
12385 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12386 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12387 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12388 {
12389 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12390 if (m->p_type == PT_MIPS_RTPROC)
12391 break;
12392 if (m == NULL)
12393 {
12394 amt = sizeof *m;
12395 m = bfd_zalloc (abfd, amt);
12396 if (m == NULL)
12397 return FALSE;
12398
12399 m->p_type = PT_MIPS_RTPROC;
12400
12401 s = bfd_get_section_by_name (abfd, ".rtproc");
12402 if (s == NULL)
12403 {
12404 m->count = 0;
12405 m->p_flags = 0;
12406 m->p_flags_valid = 1;
12407 }
12408 else
12409 {
12410 m->count = 1;
12411 m->sections[0] = s;
12412 }
12413
12414 /* We want to put it after the DYNAMIC segment. */
12415 pm = &elf_seg_map (abfd);
12416 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12417 pm = &(*pm)->next;
12418 if (*pm != NULL)
12419 pm = &(*pm)->next;
12420
12421 m->next = *pm;
12422 *pm = m;
12423 }
12424 }
12425 }
12426 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12427 .dynstr, .dynsym, and .hash sections, and everything in
12428 between. */
12429 for (pm = &elf_seg_map (abfd); *pm != NULL;
12430 pm = &(*pm)->next)
12431 if ((*pm)->p_type == PT_DYNAMIC)
12432 break;
12433 m = *pm;
12434 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12435 glibc's dynamic linker has traditionally derived the number of
12436 tags from the p_filesz field, and sometimes allocates stack
12437 arrays of that size. An overly-big PT_DYNAMIC segment can
12438 be actively harmful in such cases. Making PT_DYNAMIC contain
12439 other sections can also make life hard for the prelinker,
12440 which might move one of the other sections to a different
12441 PT_LOAD segment. */
12442 if (SGI_COMPAT (abfd)
12443 && m != NULL
12444 && m->count == 1
12445 && strcmp (m->sections[0]->name, ".dynamic") == 0)
12446 {
12447 static const char *sec_names[] =
12448 {
12449 ".dynamic", ".dynstr", ".dynsym", ".hash"
12450 };
12451 bfd_vma low, high;
12452 unsigned int i, c;
12453 struct elf_segment_map *n;
12454
12455 low = ~(bfd_vma) 0;
12456 high = 0;
12457 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12458 {
12459 s = bfd_get_section_by_name (abfd, sec_names[i]);
12460 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12461 {
12462 bfd_size_type sz;
12463
12464 if (low > s->vma)
12465 low = s->vma;
12466 sz = s->size;
12467 if (high < s->vma + sz)
12468 high = s->vma + sz;
12469 }
12470 }
12471
12472 c = 0;
12473 for (s = abfd->sections; s != NULL; s = s->next)
12474 if ((s->flags & SEC_LOAD) != 0
12475 && s->vma >= low
12476 && s->vma + s->size <= high)
12477 ++c;
12478
12479 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
12480 n = bfd_zalloc (abfd, amt);
12481 if (n == NULL)
12482 return FALSE;
12483 *n = *m;
12484 n->count = c;
12485
12486 i = 0;
12487 for (s = abfd->sections; s != NULL; s = s->next)
12488 {
12489 if ((s->flags & SEC_LOAD) != 0
12490 && s->vma >= low
12491 && s->vma + s->size <= high)
12492 {
12493 n->sections[i] = s;
12494 ++i;
12495 }
12496 }
12497
12498 *pm = n;
12499 }
12500 }
12501
12502 /* Allocate a spare program header in dynamic objects so that tools
12503 like the prelinker can add an extra PT_LOAD entry.
12504
12505 If the prelinker needs to make room for a new PT_LOAD entry, its
12506 standard procedure is to move the first (read-only) sections into
12507 the new (writable) segment. However, the MIPS ABI requires
12508 .dynamic to be in a read-only segment, and the section will often
12509 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12510
12511 Although the prelinker could in principle move .dynamic to a
12512 writable segment, it seems better to allocate a spare program
12513 header instead, and avoid the need to move any sections.
12514 There is a long tradition of allocating spare dynamic tags,
12515 so allocating a spare program header seems like a natural
12516 extension.
12517
12518 If INFO is NULL, we may be copying an already prelinked binary
12519 with objcopy or strip, so do not add this header. */
12520 if (info != NULL
12521 && !SGI_COMPAT (abfd)
12522 && bfd_get_section_by_name (abfd, ".dynamic"))
12523 {
12524 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12525 if ((*pm)->p_type == PT_NULL)
12526 break;
12527 if (*pm == NULL)
12528 {
12529 m = bfd_zalloc (abfd, sizeof (*m));
12530 if (m == NULL)
12531 return FALSE;
12532
12533 m->p_type = PT_NULL;
12534 *pm = m;
12535 }
12536 }
12537
12538 return TRUE;
12539 }
12540 \f
12541 /* Return the section that should be marked against GC for a given
12542 relocation. */
12543
12544 asection *
12545 _bfd_mips_elf_gc_mark_hook (asection *sec,
12546 struct bfd_link_info *info,
12547 Elf_Internal_Rela *rel,
12548 struct elf_link_hash_entry *h,
12549 Elf_Internal_Sym *sym)
12550 {
12551 /* ??? Do mips16 stub sections need to be handled special? */
12552
12553 if (h != NULL)
12554 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12555 {
12556 case R_MIPS_GNU_VTINHERIT:
12557 case R_MIPS_GNU_VTENTRY:
12558 return NULL;
12559 }
12560
12561 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12562 }
12563
12564 /* Update the got entry reference counts for the section being removed. */
12565
12566 bfd_boolean
12567 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
12568 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12569 asection *sec ATTRIBUTE_UNUSED,
12570 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
12571 {
12572 #if 0
12573 Elf_Internal_Shdr *symtab_hdr;
12574 struct elf_link_hash_entry **sym_hashes;
12575 bfd_signed_vma *local_got_refcounts;
12576 const Elf_Internal_Rela *rel, *relend;
12577 unsigned long r_symndx;
12578 struct elf_link_hash_entry *h;
12579
12580 if (bfd_link_relocatable (info))
12581 return TRUE;
12582
12583 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12584 sym_hashes = elf_sym_hashes (abfd);
12585 local_got_refcounts = elf_local_got_refcounts (abfd);
12586
12587 relend = relocs + sec->reloc_count;
12588 for (rel = relocs; rel < relend; rel++)
12589 switch (ELF_R_TYPE (abfd, rel->r_info))
12590 {
12591 case R_MIPS16_GOT16:
12592 case R_MIPS16_CALL16:
12593 case R_MIPS_GOT16:
12594 case R_MIPS_CALL16:
12595 case R_MIPS_CALL_HI16:
12596 case R_MIPS_CALL_LO16:
12597 case R_MIPS_GOT_HI16:
12598 case R_MIPS_GOT_LO16:
12599 case R_MIPS_GOT_DISP:
12600 case R_MIPS_GOT_PAGE:
12601 case R_MIPS_GOT_OFST:
12602 case R_MICROMIPS_GOT16:
12603 case R_MICROMIPS_CALL16:
12604 case R_MICROMIPS_CALL_HI16:
12605 case R_MICROMIPS_CALL_LO16:
12606 case R_MICROMIPS_GOT_HI16:
12607 case R_MICROMIPS_GOT_LO16:
12608 case R_MICROMIPS_GOT_DISP:
12609 case R_MICROMIPS_GOT_PAGE:
12610 case R_MICROMIPS_GOT_OFST:
12611 /* ??? It would seem that the existing MIPS code does no sort
12612 of reference counting or whatnot on its GOT and PLT entries,
12613 so it is not possible to garbage collect them at this time. */
12614 break;
12615
12616 default:
12617 break;
12618 }
12619 #endif
12620
12621 return TRUE;
12622 }
12623
12624 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12625
12626 bfd_boolean
12627 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12628 elf_gc_mark_hook_fn gc_mark_hook)
12629 {
12630 bfd *sub;
12631
12632 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12633
12634 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12635 {
12636 asection *o;
12637
12638 if (! is_mips_elf (sub))
12639 continue;
12640
12641 for (o = sub->sections; o != NULL; o = o->next)
12642 if (!o->gc_mark
12643 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12644 (bfd_get_section_name (sub, o)))
12645 {
12646 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12647 return FALSE;
12648 }
12649 }
12650
12651 return TRUE;
12652 }
12653 \f
12654 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12655 hiding the old indirect symbol. Process additional relocation
12656 information. Also called for weakdefs, in which case we just let
12657 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12658
12659 void
12660 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12661 struct elf_link_hash_entry *dir,
12662 struct elf_link_hash_entry *ind)
12663 {
12664 struct mips_elf_link_hash_entry *dirmips, *indmips;
12665
12666 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12667
12668 dirmips = (struct mips_elf_link_hash_entry *) dir;
12669 indmips = (struct mips_elf_link_hash_entry *) ind;
12670 /* Any absolute non-dynamic relocations against an indirect or weak
12671 definition will be against the target symbol. */
12672 if (indmips->has_static_relocs)
12673 dirmips->has_static_relocs = TRUE;
12674
12675 if (ind->root.type != bfd_link_hash_indirect)
12676 return;
12677
12678 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12679 if (indmips->readonly_reloc)
12680 dirmips->readonly_reloc = TRUE;
12681 if (indmips->no_fn_stub)
12682 dirmips->no_fn_stub = TRUE;
12683 if (indmips->fn_stub)
12684 {
12685 dirmips->fn_stub = indmips->fn_stub;
12686 indmips->fn_stub = NULL;
12687 }
12688 if (indmips->need_fn_stub)
12689 {
12690 dirmips->need_fn_stub = TRUE;
12691 indmips->need_fn_stub = FALSE;
12692 }
12693 if (indmips->call_stub)
12694 {
12695 dirmips->call_stub = indmips->call_stub;
12696 indmips->call_stub = NULL;
12697 }
12698 if (indmips->call_fp_stub)
12699 {
12700 dirmips->call_fp_stub = indmips->call_fp_stub;
12701 indmips->call_fp_stub = NULL;
12702 }
12703 if (indmips->global_got_area < dirmips->global_got_area)
12704 dirmips->global_got_area = indmips->global_got_area;
12705 if (indmips->global_got_area < GGA_NONE)
12706 indmips->global_got_area = GGA_NONE;
12707 if (indmips->has_nonpic_branches)
12708 dirmips->has_nonpic_branches = TRUE;
12709 }
12710 \f
12711 #define PDR_SIZE 32
12712
12713 bfd_boolean
12714 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12715 struct bfd_link_info *info)
12716 {
12717 asection *o;
12718 bfd_boolean ret = FALSE;
12719 unsigned char *tdata;
12720 size_t i, skip;
12721
12722 o = bfd_get_section_by_name (abfd, ".pdr");
12723 if (! o)
12724 return FALSE;
12725 if (o->size == 0)
12726 return FALSE;
12727 if (o->size % PDR_SIZE != 0)
12728 return FALSE;
12729 if (o->output_section != NULL
12730 && bfd_is_abs_section (o->output_section))
12731 return FALSE;
12732
12733 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12734 if (! tdata)
12735 return FALSE;
12736
12737 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12738 info->keep_memory);
12739 if (!cookie->rels)
12740 {
12741 free (tdata);
12742 return FALSE;
12743 }
12744
12745 cookie->rel = cookie->rels;
12746 cookie->relend = cookie->rels + o->reloc_count;
12747
12748 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12749 {
12750 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12751 {
12752 tdata[i] = 1;
12753 skip ++;
12754 }
12755 }
12756
12757 if (skip != 0)
12758 {
12759 mips_elf_section_data (o)->u.tdata = tdata;
12760 if (o->rawsize == 0)
12761 o->rawsize = o->size;
12762 o->size -= skip * PDR_SIZE;
12763 ret = TRUE;
12764 }
12765 else
12766 free (tdata);
12767
12768 if (! info->keep_memory)
12769 free (cookie->rels);
12770
12771 return ret;
12772 }
12773
12774 bfd_boolean
12775 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
12776 {
12777 if (strcmp (sec->name, ".pdr") == 0)
12778 return TRUE;
12779 return FALSE;
12780 }
12781
12782 bfd_boolean
12783 _bfd_mips_elf_write_section (bfd *output_bfd,
12784 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12785 asection *sec, bfd_byte *contents)
12786 {
12787 bfd_byte *to, *from, *end;
12788 int i;
12789
12790 if (strcmp (sec->name, ".pdr") != 0)
12791 return FALSE;
12792
12793 if (mips_elf_section_data (sec)->u.tdata == NULL)
12794 return FALSE;
12795
12796 to = contents;
12797 end = contents + sec->size;
12798 for (from = contents, i = 0;
12799 from < end;
12800 from += PDR_SIZE, i++)
12801 {
12802 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
12803 continue;
12804 if (to != from)
12805 memcpy (to, from, PDR_SIZE);
12806 to += PDR_SIZE;
12807 }
12808 bfd_set_section_contents (output_bfd, sec->output_section, contents,
12809 sec->output_offset, sec->size);
12810 return TRUE;
12811 }
12812 \f
12813 /* microMIPS code retains local labels for linker relaxation. Omit them
12814 from output by default for clarity. */
12815
12816 bfd_boolean
12817 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12818 {
12819 return _bfd_elf_is_local_label_name (abfd, sym->name);
12820 }
12821
12822 /* MIPS ELF uses a special find_nearest_line routine in order the
12823 handle the ECOFF debugging information. */
12824
12825 struct mips_elf_find_line
12826 {
12827 struct ecoff_debug_info d;
12828 struct ecoff_find_line i;
12829 };
12830
12831 bfd_boolean
12832 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
12833 asection *section, bfd_vma offset,
12834 const char **filename_ptr,
12835 const char **functionname_ptr,
12836 unsigned int *line_ptr,
12837 unsigned int *discriminator_ptr)
12838 {
12839 asection *msec;
12840
12841 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
12842 filename_ptr, functionname_ptr,
12843 line_ptr, discriminator_ptr,
12844 dwarf_debug_sections,
12845 ABI_64_P (abfd) ? 8 : 0,
12846 &elf_tdata (abfd)->dwarf2_find_line_info))
12847 return TRUE;
12848
12849 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
12850 filename_ptr, functionname_ptr,
12851 line_ptr))
12852 return TRUE;
12853
12854 msec = bfd_get_section_by_name (abfd, ".mdebug");
12855 if (msec != NULL)
12856 {
12857 flagword origflags;
12858 struct mips_elf_find_line *fi;
12859 const struct ecoff_debug_swap * const swap =
12860 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12861
12862 /* If we are called during a link, mips_elf_final_link may have
12863 cleared the SEC_HAS_CONTENTS field. We force it back on here
12864 if appropriate (which it normally will be). */
12865 origflags = msec->flags;
12866 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12867 msec->flags |= SEC_HAS_CONTENTS;
12868
12869 fi = mips_elf_tdata (abfd)->find_line_info;
12870 if (fi == NULL)
12871 {
12872 bfd_size_type external_fdr_size;
12873 char *fraw_src;
12874 char *fraw_end;
12875 struct fdr *fdr_ptr;
12876 bfd_size_type amt = sizeof (struct mips_elf_find_line);
12877
12878 fi = bfd_zalloc (abfd, amt);
12879 if (fi == NULL)
12880 {
12881 msec->flags = origflags;
12882 return FALSE;
12883 }
12884
12885 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12886 {
12887 msec->flags = origflags;
12888 return FALSE;
12889 }
12890
12891 /* Swap in the FDR information. */
12892 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
12893 fi->d.fdr = bfd_alloc (abfd, amt);
12894 if (fi->d.fdr == NULL)
12895 {
12896 msec->flags = origflags;
12897 return FALSE;
12898 }
12899 external_fdr_size = swap->external_fdr_size;
12900 fdr_ptr = fi->d.fdr;
12901 fraw_src = (char *) fi->d.external_fdr;
12902 fraw_end = (fraw_src
12903 + fi->d.symbolic_header.ifdMax * external_fdr_size);
12904 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
12905 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
12906
12907 mips_elf_tdata (abfd)->find_line_info = fi;
12908
12909 /* Note that we don't bother to ever free this information.
12910 find_nearest_line is either called all the time, as in
12911 objdump -l, so the information should be saved, or it is
12912 rarely called, as in ld error messages, so the memory
12913 wasted is unimportant. Still, it would probably be a
12914 good idea for free_cached_info to throw it away. */
12915 }
12916
12917 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
12918 &fi->i, filename_ptr, functionname_ptr,
12919 line_ptr))
12920 {
12921 msec->flags = origflags;
12922 return TRUE;
12923 }
12924
12925 msec->flags = origflags;
12926 }
12927
12928 /* Fall back on the generic ELF find_nearest_line routine. */
12929
12930 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
12931 filename_ptr, functionname_ptr,
12932 line_ptr, discriminator_ptr);
12933 }
12934
12935 bfd_boolean
12936 _bfd_mips_elf_find_inliner_info (bfd *abfd,
12937 const char **filename_ptr,
12938 const char **functionname_ptr,
12939 unsigned int *line_ptr)
12940 {
12941 bfd_boolean found;
12942 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12943 functionname_ptr, line_ptr,
12944 & elf_tdata (abfd)->dwarf2_find_line_info);
12945 return found;
12946 }
12947
12948 \f
12949 /* When are writing out the .options or .MIPS.options section,
12950 remember the bytes we are writing out, so that we can install the
12951 GP value in the section_processing routine. */
12952
12953 bfd_boolean
12954 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
12955 const void *location,
12956 file_ptr offset, bfd_size_type count)
12957 {
12958 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
12959 {
12960 bfd_byte *c;
12961
12962 if (elf_section_data (section) == NULL)
12963 {
12964 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
12965 section->used_by_bfd = bfd_zalloc (abfd, amt);
12966 if (elf_section_data (section) == NULL)
12967 return FALSE;
12968 }
12969 c = mips_elf_section_data (section)->u.tdata;
12970 if (c == NULL)
12971 {
12972 c = bfd_zalloc (abfd, section->size);
12973 if (c == NULL)
12974 return FALSE;
12975 mips_elf_section_data (section)->u.tdata = c;
12976 }
12977
12978 memcpy (c + offset, location, count);
12979 }
12980
12981 return _bfd_elf_set_section_contents (abfd, section, location, offset,
12982 count);
12983 }
12984
12985 /* This is almost identical to bfd_generic_get_... except that some
12986 MIPS relocations need to be handled specially. Sigh. */
12987
12988 bfd_byte *
12989 _bfd_elf_mips_get_relocated_section_contents
12990 (bfd *abfd,
12991 struct bfd_link_info *link_info,
12992 struct bfd_link_order *link_order,
12993 bfd_byte *data,
12994 bfd_boolean relocatable,
12995 asymbol **symbols)
12996 {
12997 /* Get enough memory to hold the stuff */
12998 bfd *input_bfd = link_order->u.indirect.section->owner;
12999 asection *input_section = link_order->u.indirect.section;
13000 bfd_size_type sz;
13001
13002 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
13003 arelent **reloc_vector = NULL;
13004 long reloc_count;
13005
13006 if (reloc_size < 0)
13007 goto error_return;
13008
13009 reloc_vector = bfd_malloc (reloc_size);
13010 if (reloc_vector == NULL && reloc_size != 0)
13011 goto error_return;
13012
13013 /* read in the section */
13014 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
13015 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
13016 goto error_return;
13017
13018 reloc_count = bfd_canonicalize_reloc (input_bfd,
13019 input_section,
13020 reloc_vector,
13021 symbols);
13022 if (reloc_count < 0)
13023 goto error_return;
13024
13025 if (reloc_count > 0)
13026 {
13027 arelent **parent;
13028 /* for mips */
13029 int gp_found;
13030 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
13031
13032 {
13033 struct bfd_hash_entry *h;
13034 struct bfd_link_hash_entry *lh;
13035 /* Skip all this stuff if we aren't mixing formats. */
13036 if (abfd && input_bfd
13037 && abfd->xvec == input_bfd->xvec)
13038 lh = 0;
13039 else
13040 {
13041 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
13042 lh = (struct bfd_link_hash_entry *) h;
13043 }
13044 lookup:
13045 if (lh)
13046 {
13047 switch (lh->type)
13048 {
13049 case bfd_link_hash_undefined:
13050 case bfd_link_hash_undefweak:
13051 case bfd_link_hash_common:
13052 gp_found = 0;
13053 break;
13054 case bfd_link_hash_defined:
13055 case bfd_link_hash_defweak:
13056 gp_found = 1;
13057 gp = lh->u.def.value;
13058 break;
13059 case bfd_link_hash_indirect:
13060 case bfd_link_hash_warning:
13061 lh = lh->u.i.link;
13062 /* @@FIXME ignoring warning for now */
13063 goto lookup;
13064 case bfd_link_hash_new:
13065 default:
13066 abort ();
13067 }
13068 }
13069 else
13070 gp_found = 0;
13071 }
13072 /* end mips */
13073 for (parent = reloc_vector; *parent != NULL; parent++)
13074 {
13075 char *error_message = NULL;
13076 bfd_reloc_status_type r;
13077
13078 /* Specific to MIPS: Deal with relocation types that require
13079 knowing the gp of the output bfd. */
13080 asymbol *sym = *(*parent)->sym_ptr_ptr;
13081
13082 /* If we've managed to find the gp and have a special
13083 function for the relocation then go ahead, else default
13084 to the generic handling. */
13085 if (gp_found
13086 && (*parent)->howto->special_function
13087 == _bfd_mips_elf32_gprel16_reloc)
13088 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
13089 input_section, relocatable,
13090 data, gp);
13091 else
13092 r = bfd_perform_relocation (input_bfd, *parent, data,
13093 input_section,
13094 relocatable ? abfd : NULL,
13095 &error_message);
13096
13097 if (relocatable)
13098 {
13099 asection *os = input_section->output_section;
13100
13101 /* A partial link, so keep the relocs */
13102 os->orelocation[os->reloc_count] = *parent;
13103 os->reloc_count++;
13104 }
13105
13106 if (r != bfd_reloc_ok)
13107 {
13108 switch (r)
13109 {
13110 case bfd_reloc_undefined:
13111 (*link_info->callbacks->undefined_symbol)
13112 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13113 input_bfd, input_section, (*parent)->address, TRUE);
13114 break;
13115 case bfd_reloc_dangerous:
13116 BFD_ASSERT (error_message != NULL);
13117 (*link_info->callbacks->reloc_dangerous)
13118 (link_info, error_message,
13119 input_bfd, input_section, (*parent)->address);
13120 break;
13121 case bfd_reloc_overflow:
13122 (*link_info->callbacks->reloc_overflow)
13123 (link_info, NULL,
13124 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13125 (*parent)->howto->name, (*parent)->addend,
13126 input_bfd, input_section, (*parent)->address);
13127 break;
13128 case bfd_reloc_outofrange:
13129 default:
13130 abort ();
13131 break;
13132 }
13133
13134 }
13135 }
13136 }
13137 if (reloc_vector != NULL)
13138 free (reloc_vector);
13139 return data;
13140
13141 error_return:
13142 if (reloc_vector != NULL)
13143 free (reloc_vector);
13144 return NULL;
13145 }
13146 \f
13147 static bfd_boolean
13148 mips_elf_relax_delete_bytes (bfd *abfd,
13149 asection *sec, bfd_vma addr, int count)
13150 {
13151 Elf_Internal_Shdr *symtab_hdr;
13152 unsigned int sec_shndx;
13153 bfd_byte *contents;
13154 Elf_Internal_Rela *irel, *irelend;
13155 Elf_Internal_Sym *isym;
13156 Elf_Internal_Sym *isymend;
13157 struct elf_link_hash_entry **sym_hashes;
13158 struct elf_link_hash_entry **end_hashes;
13159 struct elf_link_hash_entry **start_hashes;
13160 unsigned int symcount;
13161
13162 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13163 contents = elf_section_data (sec)->this_hdr.contents;
13164
13165 irel = elf_section_data (sec)->relocs;
13166 irelend = irel + sec->reloc_count;
13167
13168 /* Actually delete the bytes. */
13169 memmove (contents + addr, contents + addr + count,
13170 (size_t) (sec->size - addr - count));
13171 sec->size -= count;
13172
13173 /* Adjust all the relocs. */
13174 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13175 {
13176 /* Get the new reloc address. */
13177 if (irel->r_offset > addr)
13178 irel->r_offset -= count;
13179 }
13180
13181 BFD_ASSERT (addr % 2 == 0);
13182 BFD_ASSERT (count % 2 == 0);
13183
13184 /* Adjust the local symbols defined in this section. */
13185 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13186 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13187 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
13188 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
13189 isym->st_value -= count;
13190
13191 /* Now adjust the global symbols defined in this section. */
13192 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13193 - symtab_hdr->sh_info);
13194 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13195 end_hashes = sym_hashes + symcount;
13196
13197 for (; sym_hashes < end_hashes; sym_hashes++)
13198 {
13199 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13200
13201 if ((sym_hash->root.type == bfd_link_hash_defined
13202 || sym_hash->root.type == bfd_link_hash_defweak)
13203 && sym_hash->root.u.def.section == sec)
13204 {
13205 bfd_vma value = sym_hash->root.u.def.value;
13206
13207 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13208 value &= MINUS_TWO;
13209 if (value > addr)
13210 sym_hash->root.u.def.value -= count;
13211 }
13212 }
13213
13214 return TRUE;
13215 }
13216
13217
13218 /* Opcodes needed for microMIPS relaxation as found in
13219 opcodes/micromips-opc.c. */
13220
13221 struct opcode_descriptor {
13222 unsigned long match;
13223 unsigned long mask;
13224 };
13225
13226 /* The $ra register aka $31. */
13227
13228 #define RA 31
13229
13230 /* 32-bit instruction format register fields. */
13231
13232 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13233 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13234
13235 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
13236
13237 #define OP16_VALID_REG(r) \
13238 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13239
13240
13241 /* 32-bit and 16-bit branches. */
13242
13243 static const struct opcode_descriptor b_insns_32[] = {
13244 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13245 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13246 { 0, 0 } /* End marker for find_match(). */
13247 };
13248
13249 static const struct opcode_descriptor bc_insn_32 =
13250 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13251
13252 static const struct opcode_descriptor bz_insn_32 =
13253 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13254
13255 static const struct opcode_descriptor bzal_insn_32 =
13256 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13257
13258 static const struct opcode_descriptor beq_insn_32 =
13259 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13260
13261 static const struct opcode_descriptor b_insn_16 =
13262 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13263
13264 static const struct opcode_descriptor bz_insn_16 =
13265 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13266
13267
13268 /* 32-bit and 16-bit branch EQ and NE zero. */
13269
13270 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13271 eq and second the ne. This convention is used when replacing a
13272 32-bit BEQ/BNE with the 16-bit version. */
13273
13274 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13275
13276 static const struct opcode_descriptor bz_rs_insns_32[] = {
13277 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13278 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13279 { 0, 0 } /* End marker for find_match(). */
13280 };
13281
13282 static const struct opcode_descriptor bz_rt_insns_32[] = {
13283 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13284 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13285 { 0, 0 } /* End marker for find_match(). */
13286 };
13287
13288 static const struct opcode_descriptor bzc_insns_32[] = {
13289 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13290 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13291 { 0, 0 } /* End marker for find_match(). */
13292 };
13293
13294 static const struct opcode_descriptor bz_insns_16[] = {
13295 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13296 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13297 { 0, 0 } /* End marker for find_match(). */
13298 };
13299
13300 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13301
13302 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
13303 #define BZ16_REG_FIELD(r) (((r) & 7) << 7)
13304
13305
13306 /* 32-bit instructions with a delay slot. */
13307
13308 static const struct opcode_descriptor jal_insn_32_bd16 =
13309 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13310
13311 static const struct opcode_descriptor jal_insn_32_bd32 =
13312 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13313
13314 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13315 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13316
13317 static const struct opcode_descriptor j_insn_32 =
13318 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13319
13320 static const struct opcode_descriptor jalr_insn_32 =
13321 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13322
13323 /* This table can be compacted, because no opcode replacement is made. */
13324
13325 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13326 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13327
13328 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13329 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13330
13331 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13332 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13333 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13334 { 0, 0 } /* End marker for find_match(). */
13335 };
13336
13337 /* This table can be compacted, because no opcode replacement is made. */
13338
13339 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13340 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13341
13342 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13343 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13344 { 0, 0 } /* End marker for find_match(). */
13345 };
13346
13347
13348 /* 16-bit instructions with a delay slot. */
13349
13350 static const struct opcode_descriptor jalr_insn_16_bd16 =
13351 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13352
13353 static const struct opcode_descriptor jalr_insn_16_bd32 =
13354 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13355
13356 static const struct opcode_descriptor jr_insn_16 =
13357 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13358
13359 #define JR16_REG(opcode) ((opcode) & 0x1f)
13360
13361 /* This table can be compacted, because no opcode replacement is made. */
13362
13363 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13364 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13365
13366 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13367 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13368 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13369 { 0, 0 } /* End marker for find_match(). */
13370 };
13371
13372
13373 /* LUI instruction. */
13374
13375 static const struct opcode_descriptor lui_insn =
13376 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13377
13378
13379 /* ADDIU instruction. */
13380
13381 static const struct opcode_descriptor addiu_insn =
13382 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13383
13384 static const struct opcode_descriptor addiupc_insn =
13385 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13386
13387 #define ADDIUPC_REG_FIELD(r) \
13388 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13389
13390
13391 /* Relaxable instructions in a JAL delay slot: MOVE. */
13392
13393 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13394 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13395 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13396 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13397
13398 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13399 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13400
13401 static const struct opcode_descriptor move_insns_32[] = {
13402 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13403 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13404 { 0, 0 } /* End marker for find_match(). */
13405 };
13406
13407 static const struct opcode_descriptor move_insn_16 =
13408 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13409
13410
13411 /* NOP instructions. */
13412
13413 static const struct opcode_descriptor nop_insn_32 =
13414 { /* "nop", "", */ 0x00000000, 0xffffffff };
13415
13416 static const struct opcode_descriptor nop_insn_16 =
13417 { /* "nop", "", */ 0x0c00, 0xffff };
13418
13419
13420 /* Instruction match support. */
13421
13422 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13423
13424 static int
13425 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13426 {
13427 unsigned long indx;
13428
13429 for (indx = 0; insn[indx].mask != 0; indx++)
13430 if (MATCH (opcode, insn[indx]))
13431 return indx;
13432
13433 return -1;
13434 }
13435
13436
13437 /* Branch and delay slot decoding support. */
13438
13439 /* If PTR points to what *might* be a 16-bit branch or jump, then
13440 return the minimum length of its delay slot, otherwise return 0.
13441 Non-zero results are not definitive as we might be checking against
13442 the second half of another instruction. */
13443
13444 static int
13445 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13446 {
13447 unsigned long opcode;
13448 int bdsize;
13449
13450 opcode = bfd_get_16 (abfd, ptr);
13451 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13452 /* 16-bit branch/jump with a 32-bit delay slot. */
13453 bdsize = 4;
13454 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13455 || find_match (opcode, ds_insns_16_bd16) >= 0)
13456 /* 16-bit branch/jump with a 16-bit delay slot. */
13457 bdsize = 2;
13458 else
13459 /* No delay slot. */
13460 bdsize = 0;
13461
13462 return bdsize;
13463 }
13464
13465 /* If PTR points to what *might* be a 32-bit branch or jump, then
13466 return the minimum length of its delay slot, otherwise return 0.
13467 Non-zero results are not definitive as we might be checking against
13468 the second half of another instruction. */
13469
13470 static int
13471 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13472 {
13473 unsigned long opcode;
13474 int bdsize;
13475
13476 opcode = bfd_get_micromips_32 (abfd, ptr);
13477 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13478 /* 32-bit branch/jump with a 32-bit delay slot. */
13479 bdsize = 4;
13480 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13481 /* 32-bit branch/jump with a 16-bit delay slot. */
13482 bdsize = 2;
13483 else
13484 /* No delay slot. */
13485 bdsize = 0;
13486
13487 return bdsize;
13488 }
13489
13490 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13491 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13492
13493 static bfd_boolean
13494 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13495 {
13496 unsigned long opcode;
13497
13498 opcode = bfd_get_16 (abfd, ptr);
13499 if (MATCH (opcode, b_insn_16)
13500 /* B16 */
13501 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13502 /* JR16 */
13503 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13504 /* BEQZ16, BNEZ16 */
13505 || (MATCH (opcode, jalr_insn_16_bd32)
13506 /* JALR16 */
13507 && reg != JR16_REG (opcode) && reg != RA))
13508 return TRUE;
13509
13510 return FALSE;
13511 }
13512
13513 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13514 then return TRUE, otherwise FALSE. */
13515
13516 static bfd_boolean
13517 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13518 {
13519 unsigned long opcode;
13520
13521 opcode = bfd_get_micromips_32 (abfd, ptr);
13522 if (MATCH (opcode, j_insn_32)
13523 /* J */
13524 || MATCH (opcode, bc_insn_32)
13525 /* BC1F, BC1T, BC2F, BC2T */
13526 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13527 /* JAL, JALX */
13528 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13529 /* BGEZ, BGTZ, BLEZ, BLTZ */
13530 || (MATCH (opcode, bzal_insn_32)
13531 /* BGEZAL, BLTZAL */
13532 && reg != OP32_SREG (opcode) && reg != RA)
13533 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13534 /* JALR, JALR.HB, BEQ, BNE */
13535 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13536 return TRUE;
13537
13538 return FALSE;
13539 }
13540
13541 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13542 IRELEND) at OFFSET indicate that there must be a compact branch there,
13543 then return TRUE, otherwise FALSE. */
13544
13545 static bfd_boolean
13546 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13547 const Elf_Internal_Rela *internal_relocs,
13548 const Elf_Internal_Rela *irelend)
13549 {
13550 const Elf_Internal_Rela *irel;
13551 unsigned long opcode;
13552
13553 opcode = bfd_get_micromips_32 (abfd, ptr);
13554 if (find_match (opcode, bzc_insns_32) < 0)
13555 return FALSE;
13556
13557 for (irel = internal_relocs; irel < irelend; irel++)
13558 if (irel->r_offset == offset
13559 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13560 return TRUE;
13561
13562 return FALSE;
13563 }
13564
13565 /* Bitsize checking. */
13566 #define IS_BITSIZE(val, N) \
13567 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13568 - (1ULL << ((N) - 1))) == (val))
13569
13570 \f
13571 bfd_boolean
13572 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13573 struct bfd_link_info *link_info,
13574 bfd_boolean *again)
13575 {
13576 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13577 Elf_Internal_Shdr *symtab_hdr;
13578 Elf_Internal_Rela *internal_relocs;
13579 Elf_Internal_Rela *irel, *irelend;
13580 bfd_byte *contents = NULL;
13581 Elf_Internal_Sym *isymbuf = NULL;
13582
13583 /* Assume nothing changes. */
13584 *again = FALSE;
13585
13586 /* We don't have to do anything for a relocatable link, if
13587 this section does not have relocs, or if this is not a
13588 code section. */
13589
13590 if (bfd_link_relocatable (link_info)
13591 || (sec->flags & SEC_RELOC) == 0
13592 || sec->reloc_count == 0
13593 || (sec->flags & SEC_CODE) == 0)
13594 return TRUE;
13595
13596 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13597
13598 /* Get a copy of the native relocations. */
13599 internal_relocs = (_bfd_elf_link_read_relocs
13600 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13601 link_info->keep_memory));
13602 if (internal_relocs == NULL)
13603 goto error_return;
13604
13605 /* Walk through them looking for relaxing opportunities. */
13606 irelend = internal_relocs + sec->reloc_count;
13607 for (irel = internal_relocs; irel < irelend; irel++)
13608 {
13609 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13610 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13611 bfd_boolean target_is_micromips_code_p;
13612 unsigned long opcode;
13613 bfd_vma symval;
13614 bfd_vma pcrval;
13615 bfd_byte *ptr;
13616 int fndopc;
13617
13618 /* The number of bytes to delete for relaxation and from where
13619 to delete these bytes starting at irel->r_offset. */
13620 int delcnt = 0;
13621 int deloff = 0;
13622
13623 /* If this isn't something that can be relaxed, then ignore
13624 this reloc. */
13625 if (r_type != R_MICROMIPS_HI16
13626 && r_type != R_MICROMIPS_PC16_S1
13627 && r_type != R_MICROMIPS_26_S1)
13628 continue;
13629
13630 /* Get the section contents if we haven't done so already. */
13631 if (contents == NULL)
13632 {
13633 /* Get cached copy if it exists. */
13634 if (elf_section_data (sec)->this_hdr.contents != NULL)
13635 contents = elf_section_data (sec)->this_hdr.contents;
13636 /* Go get them off disk. */
13637 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13638 goto error_return;
13639 }
13640 ptr = contents + irel->r_offset;
13641
13642 /* Read this BFD's local symbols if we haven't done so already. */
13643 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13644 {
13645 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13646 if (isymbuf == NULL)
13647 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13648 symtab_hdr->sh_info, 0,
13649 NULL, NULL, NULL);
13650 if (isymbuf == NULL)
13651 goto error_return;
13652 }
13653
13654 /* Get the value of the symbol referred to by the reloc. */
13655 if (r_symndx < symtab_hdr->sh_info)
13656 {
13657 /* A local symbol. */
13658 Elf_Internal_Sym *isym;
13659 asection *sym_sec;
13660
13661 isym = isymbuf + r_symndx;
13662 if (isym->st_shndx == SHN_UNDEF)
13663 sym_sec = bfd_und_section_ptr;
13664 else if (isym->st_shndx == SHN_ABS)
13665 sym_sec = bfd_abs_section_ptr;
13666 else if (isym->st_shndx == SHN_COMMON)
13667 sym_sec = bfd_com_section_ptr;
13668 else
13669 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13670 symval = (isym->st_value
13671 + sym_sec->output_section->vma
13672 + sym_sec->output_offset);
13673 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13674 }
13675 else
13676 {
13677 unsigned long indx;
13678 struct elf_link_hash_entry *h;
13679
13680 /* An external symbol. */
13681 indx = r_symndx - symtab_hdr->sh_info;
13682 h = elf_sym_hashes (abfd)[indx];
13683 BFD_ASSERT (h != NULL);
13684
13685 if (h->root.type != bfd_link_hash_defined
13686 && h->root.type != bfd_link_hash_defweak)
13687 /* This appears to be a reference to an undefined
13688 symbol. Just ignore it -- it will be caught by the
13689 regular reloc processing. */
13690 continue;
13691
13692 symval = (h->root.u.def.value
13693 + h->root.u.def.section->output_section->vma
13694 + h->root.u.def.section->output_offset);
13695 target_is_micromips_code_p = (!h->needs_plt
13696 && ELF_ST_IS_MICROMIPS (h->other));
13697 }
13698
13699
13700 /* For simplicity of coding, we are going to modify the
13701 section contents, the section relocs, and the BFD symbol
13702 table. We must tell the rest of the code not to free up this
13703 information. It would be possible to instead create a table
13704 of changes which have to be made, as is done in coff-mips.c;
13705 that would be more work, but would require less memory when
13706 the linker is run. */
13707
13708 /* Only 32-bit instructions relaxed. */
13709 if (irel->r_offset + 4 > sec->size)
13710 continue;
13711
13712 opcode = bfd_get_micromips_32 (abfd, ptr);
13713
13714 /* This is the pc-relative distance from the instruction the
13715 relocation is applied to, to the symbol referred. */
13716 pcrval = (symval
13717 - (sec->output_section->vma + sec->output_offset)
13718 - irel->r_offset);
13719
13720 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13721 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13722 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13723
13724 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13725
13726 where pcrval has first to be adjusted to apply against the LO16
13727 location (we make the adjustment later on, when we have figured
13728 out the offset). */
13729 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13730 {
13731 bfd_boolean bzc = FALSE;
13732 unsigned long nextopc;
13733 unsigned long reg;
13734 bfd_vma offset;
13735
13736 /* Give up if the previous reloc was a HI16 against this symbol
13737 too. */
13738 if (irel > internal_relocs
13739 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13740 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13741 continue;
13742
13743 /* Or if the next reloc is not a LO16 against this symbol. */
13744 if (irel + 1 >= irelend
13745 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13746 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13747 continue;
13748
13749 /* Or if the second next reloc is a LO16 against this symbol too. */
13750 if (irel + 2 >= irelend
13751 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13752 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13753 continue;
13754
13755 /* See if the LUI instruction *might* be in a branch delay slot.
13756 We check whether what looks like a 16-bit branch or jump is
13757 actually an immediate argument to a compact branch, and let
13758 it through if so. */
13759 if (irel->r_offset >= 2
13760 && check_br16_dslot (abfd, ptr - 2)
13761 && !(irel->r_offset >= 4
13762 && (bzc = check_relocated_bzc (abfd,
13763 ptr - 4, irel->r_offset - 4,
13764 internal_relocs, irelend))))
13765 continue;
13766 if (irel->r_offset >= 4
13767 && !bzc
13768 && check_br32_dslot (abfd, ptr - 4))
13769 continue;
13770
13771 reg = OP32_SREG (opcode);
13772
13773 /* We only relax adjacent instructions or ones separated with
13774 a branch or jump that has a delay slot. The branch or jump
13775 must not fiddle with the register used to hold the address.
13776 Subtract 4 for the LUI itself. */
13777 offset = irel[1].r_offset - irel[0].r_offset;
13778 switch (offset - 4)
13779 {
13780 case 0:
13781 break;
13782 case 2:
13783 if (check_br16 (abfd, ptr + 4, reg))
13784 break;
13785 continue;
13786 case 4:
13787 if (check_br32 (abfd, ptr + 4, reg))
13788 break;
13789 continue;
13790 default:
13791 continue;
13792 }
13793
13794 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
13795
13796 /* Give up unless the same register is used with both
13797 relocations. */
13798 if (OP32_SREG (nextopc) != reg)
13799 continue;
13800
13801 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13802 and rounding up to take masking of the two LSBs into account. */
13803 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13804
13805 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13806 if (IS_BITSIZE (symval, 16))
13807 {
13808 /* Fix the relocation's type. */
13809 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13810
13811 /* Instructions using R_MICROMIPS_LO16 have the base or
13812 source register in bits 20:16. This register becomes $0
13813 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
13814 nextopc &= ~0x001f0000;
13815 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13816 contents + irel[1].r_offset);
13817 }
13818
13819 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13820 We add 4 to take LUI deletion into account while checking
13821 the PC-relative distance. */
13822 else if (symval % 4 == 0
13823 && IS_BITSIZE (pcrval + 4, 25)
13824 && MATCH (nextopc, addiu_insn)
13825 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13826 && OP16_VALID_REG (OP32_TREG (nextopc)))
13827 {
13828 /* Fix the relocation's type. */
13829 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13830
13831 /* Replace ADDIU with the ADDIUPC version. */
13832 nextopc = (addiupc_insn.match
13833 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13834
13835 bfd_put_micromips_32 (abfd, nextopc,
13836 contents + irel[1].r_offset);
13837 }
13838
13839 /* Can't do anything, give up, sigh... */
13840 else
13841 continue;
13842
13843 /* Fix the relocation's type. */
13844 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13845
13846 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
13847 delcnt = 4;
13848 deloff = 0;
13849 }
13850
13851 /* Compact branch relaxation -- due to the multitude of macros
13852 employed by the compiler/assembler, compact branches are not
13853 always generated. Obviously, this can/will be fixed elsewhere,
13854 but there is no drawback in double checking it here. */
13855 else if (r_type == R_MICROMIPS_PC16_S1
13856 && irel->r_offset + 5 < sec->size
13857 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13858 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
13859 && ((!insn32
13860 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13861 nop_insn_16) ? 2 : 0))
13862 || (irel->r_offset + 7 < sec->size
13863 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13864 ptr + 4),
13865 nop_insn_32) ? 4 : 0))))
13866 {
13867 unsigned long reg;
13868
13869 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13870
13871 /* Replace BEQZ/BNEZ with the compact version. */
13872 opcode = (bzc_insns_32[fndopc].match
13873 | BZC32_REG_FIELD (reg)
13874 | (opcode & 0xffff)); /* Addend value. */
13875
13876 bfd_put_micromips_32 (abfd, opcode, ptr);
13877
13878 /* Delete the delay slot NOP: two or four bytes from
13879 irel->offset + 4; delcnt has already been set above. */
13880 deloff = 4;
13881 }
13882
13883 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
13884 to check the distance from the next instruction, so subtract 2. */
13885 else if (!insn32
13886 && r_type == R_MICROMIPS_PC16_S1
13887 && IS_BITSIZE (pcrval - 2, 11)
13888 && find_match (opcode, b_insns_32) >= 0)
13889 {
13890 /* Fix the relocation's type. */
13891 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13892
13893 /* Replace the 32-bit opcode with a 16-bit opcode. */
13894 bfd_put_16 (abfd,
13895 (b_insn_16.match
13896 | (opcode & 0x3ff)), /* Addend value. */
13897 ptr);
13898
13899 /* Delete 2 bytes from irel->r_offset + 2. */
13900 delcnt = 2;
13901 deloff = 2;
13902 }
13903
13904 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
13905 to check the distance from the next instruction, so subtract 2. */
13906 else if (!insn32
13907 && r_type == R_MICROMIPS_PC16_S1
13908 && IS_BITSIZE (pcrval - 2, 8)
13909 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13910 && OP16_VALID_REG (OP32_SREG (opcode)))
13911 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13912 && OP16_VALID_REG (OP32_TREG (opcode)))))
13913 {
13914 unsigned long reg;
13915
13916 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13917
13918 /* Fix the relocation's type. */
13919 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
13920
13921 /* Replace the 32-bit opcode with a 16-bit opcode. */
13922 bfd_put_16 (abfd,
13923 (bz_insns_16[fndopc].match
13924 | BZ16_REG_FIELD (reg)
13925 | (opcode & 0x7f)), /* Addend value. */
13926 ptr);
13927
13928 /* Delete 2 bytes from irel->r_offset + 2. */
13929 delcnt = 2;
13930 deloff = 2;
13931 }
13932
13933 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
13934 else if (!insn32
13935 && r_type == R_MICROMIPS_26_S1
13936 && target_is_micromips_code_p
13937 && irel->r_offset + 7 < sec->size
13938 && MATCH (opcode, jal_insn_32_bd32))
13939 {
13940 unsigned long n32opc;
13941 bfd_boolean relaxed = FALSE;
13942
13943 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
13944
13945 if (MATCH (n32opc, nop_insn_32))
13946 {
13947 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
13948 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
13949
13950 relaxed = TRUE;
13951 }
13952 else if (find_match (n32opc, move_insns_32) >= 0)
13953 {
13954 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
13955 bfd_put_16 (abfd,
13956 (move_insn_16.match
13957 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
13958 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
13959 ptr + 4);
13960
13961 relaxed = TRUE;
13962 }
13963 /* Other 32-bit instructions relaxable to 16-bit
13964 instructions will be handled here later. */
13965
13966 if (relaxed)
13967 {
13968 /* JAL with 32-bit delay slot that is changed to a JALS
13969 with 16-bit delay slot. */
13970 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
13971
13972 /* Delete 2 bytes from irel->r_offset + 6. */
13973 delcnt = 2;
13974 deloff = 6;
13975 }
13976 }
13977
13978 if (delcnt != 0)
13979 {
13980 /* Note that we've changed the relocs, section contents, etc. */
13981 elf_section_data (sec)->relocs = internal_relocs;
13982 elf_section_data (sec)->this_hdr.contents = contents;
13983 symtab_hdr->contents = (unsigned char *) isymbuf;
13984
13985 /* Delete bytes depending on the delcnt and deloff. */
13986 if (!mips_elf_relax_delete_bytes (abfd, sec,
13987 irel->r_offset + deloff, delcnt))
13988 goto error_return;
13989
13990 /* That will change things, so we should relax again.
13991 Note that this is not required, and it may be slow. */
13992 *again = TRUE;
13993 }
13994 }
13995
13996 if (isymbuf != NULL
13997 && symtab_hdr->contents != (unsigned char *) isymbuf)
13998 {
13999 if (! link_info->keep_memory)
14000 free (isymbuf);
14001 else
14002 {
14003 /* Cache the symbols for elf_link_input_bfd. */
14004 symtab_hdr->contents = (unsigned char *) isymbuf;
14005 }
14006 }
14007
14008 if (contents != NULL
14009 && elf_section_data (sec)->this_hdr.contents != contents)
14010 {
14011 if (! link_info->keep_memory)
14012 free (contents);
14013 else
14014 {
14015 /* Cache the section contents for elf_link_input_bfd. */
14016 elf_section_data (sec)->this_hdr.contents = contents;
14017 }
14018 }
14019
14020 if (internal_relocs != NULL
14021 && elf_section_data (sec)->relocs != internal_relocs)
14022 free (internal_relocs);
14023
14024 return TRUE;
14025
14026 error_return:
14027 if (isymbuf != NULL
14028 && symtab_hdr->contents != (unsigned char *) isymbuf)
14029 free (isymbuf);
14030 if (contents != NULL
14031 && elf_section_data (sec)->this_hdr.contents != contents)
14032 free (contents);
14033 if (internal_relocs != NULL
14034 && elf_section_data (sec)->relocs != internal_relocs)
14035 free (internal_relocs);
14036
14037 return FALSE;
14038 }
14039 \f
14040 /* Create a MIPS ELF linker hash table. */
14041
14042 struct bfd_link_hash_table *
14043 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
14044 {
14045 struct mips_elf_link_hash_table *ret;
14046 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
14047
14048 ret = bfd_zmalloc (amt);
14049 if (ret == NULL)
14050 return NULL;
14051
14052 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
14053 mips_elf_link_hash_newfunc,
14054 sizeof (struct mips_elf_link_hash_entry),
14055 MIPS_ELF_DATA))
14056 {
14057 free (ret);
14058 return NULL;
14059 }
14060 ret->root.init_plt_refcount.plist = NULL;
14061 ret->root.init_plt_offset.plist = NULL;
14062
14063 return &ret->root.root;
14064 }
14065
14066 /* Likewise, but indicate that the target is VxWorks. */
14067
14068 struct bfd_link_hash_table *
14069 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
14070 {
14071 struct bfd_link_hash_table *ret;
14072
14073 ret = _bfd_mips_elf_link_hash_table_create (abfd);
14074 if (ret)
14075 {
14076 struct mips_elf_link_hash_table *htab;
14077
14078 htab = (struct mips_elf_link_hash_table *) ret;
14079 htab->use_plts_and_copy_relocs = TRUE;
14080 htab->is_vxworks = TRUE;
14081 }
14082 return ret;
14083 }
14084
14085 /* A function that the linker calls if we are allowed to use PLTs
14086 and copy relocs. */
14087
14088 void
14089 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
14090 {
14091 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
14092 }
14093
14094 /* A function that the linker calls to select between all or only
14095 32-bit microMIPS instructions. */
14096
14097 void
14098 _bfd_mips_elf_insn32 (struct bfd_link_info *info, bfd_boolean on)
14099 {
14100 mips_elf_hash_table (info)->insn32 = on;
14101 }
14102 \f
14103 /* Structure for saying that BFD machine EXTENSION extends BASE. */
14104
14105 struct mips_mach_extension
14106 {
14107 unsigned long extension, base;
14108 };
14109
14110
14111 /* An array describing how BFD machines relate to one another. The entries
14112 are ordered topologically with MIPS I extensions listed last. */
14113
14114 static const struct mips_mach_extension mips_mach_extensions[] =
14115 {
14116 /* MIPS64r2 extensions. */
14117 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
14118 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
14119 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
14120 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
14121 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 },
14122
14123 /* MIPS64 extensions. */
14124 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
14125 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
14126 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
14127
14128 /* MIPS V extensions. */
14129 { bfd_mach_mipsisa64, bfd_mach_mips5 },
14130
14131 /* R10000 extensions. */
14132 { bfd_mach_mips12000, bfd_mach_mips10000 },
14133 { bfd_mach_mips14000, bfd_mach_mips10000 },
14134 { bfd_mach_mips16000, bfd_mach_mips10000 },
14135
14136 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14137 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14138 better to allow vr5400 and vr5500 code to be merged anyway, since
14139 many libraries will just use the core ISA. Perhaps we could add
14140 some sort of ASE flag if this ever proves a problem. */
14141 { bfd_mach_mips5500, bfd_mach_mips5400 },
14142 { bfd_mach_mips5400, bfd_mach_mips5000 },
14143
14144 /* MIPS IV extensions. */
14145 { bfd_mach_mips5, bfd_mach_mips8000 },
14146 { bfd_mach_mips10000, bfd_mach_mips8000 },
14147 { bfd_mach_mips5000, bfd_mach_mips8000 },
14148 { bfd_mach_mips7000, bfd_mach_mips8000 },
14149 { bfd_mach_mips9000, bfd_mach_mips8000 },
14150
14151 /* VR4100 extensions. */
14152 { bfd_mach_mips4120, bfd_mach_mips4100 },
14153 { bfd_mach_mips4111, bfd_mach_mips4100 },
14154
14155 /* MIPS III extensions. */
14156 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14157 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14158 { bfd_mach_mips8000, bfd_mach_mips4000 },
14159 { bfd_mach_mips4650, bfd_mach_mips4000 },
14160 { bfd_mach_mips4600, bfd_mach_mips4000 },
14161 { bfd_mach_mips4400, bfd_mach_mips4000 },
14162 { bfd_mach_mips4300, bfd_mach_mips4000 },
14163 { bfd_mach_mips4100, bfd_mach_mips4000 },
14164 { bfd_mach_mips4010, bfd_mach_mips4000 },
14165 { bfd_mach_mips5900, bfd_mach_mips4000 },
14166
14167 /* MIPS32 extensions. */
14168 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14169
14170 /* MIPS II extensions. */
14171 { bfd_mach_mips4000, bfd_mach_mips6000 },
14172 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14173
14174 /* MIPS I extensions. */
14175 { bfd_mach_mips6000, bfd_mach_mips3000 },
14176 { bfd_mach_mips3900, bfd_mach_mips3000 }
14177 };
14178
14179 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14180
14181 static bfd_boolean
14182 mips_mach_extends_p (unsigned long base, unsigned long extension)
14183 {
14184 size_t i;
14185
14186 if (extension == base)
14187 return TRUE;
14188
14189 if (base == bfd_mach_mipsisa32
14190 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14191 return TRUE;
14192
14193 if (base == bfd_mach_mipsisa32r2
14194 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14195 return TRUE;
14196
14197 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14198 if (extension == mips_mach_extensions[i].extension)
14199 {
14200 extension = mips_mach_extensions[i].base;
14201 if (extension == base)
14202 return TRUE;
14203 }
14204
14205 return FALSE;
14206 }
14207
14208 /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14209
14210 static unsigned long
14211 bfd_mips_isa_ext_mach (unsigned int isa_ext)
14212 {
14213 switch (isa_ext)
14214 {
14215 case AFL_EXT_3900: return bfd_mach_mips3900;
14216 case AFL_EXT_4010: return bfd_mach_mips4010;
14217 case AFL_EXT_4100: return bfd_mach_mips4100;
14218 case AFL_EXT_4111: return bfd_mach_mips4111;
14219 case AFL_EXT_4120: return bfd_mach_mips4120;
14220 case AFL_EXT_4650: return bfd_mach_mips4650;
14221 case AFL_EXT_5400: return bfd_mach_mips5400;
14222 case AFL_EXT_5500: return bfd_mach_mips5500;
14223 case AFL_EXT_5900: return bfd_mach_mips5900;
14224 case AFL_EXT_10000: return bfd_mach_mips10000;
14225 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14226 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14227 case AFL_EXT_LOONGSON_3A: return bfd_mach_mips_loongson_3a;
14228 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
14229 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14230 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14231 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
14232 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14233 default: return bfd_mach_mips3000;
14234 }
14235 }
14236
14237 /* Return the .MIPS.abiflags value representing each ISA Extension. */
14238
14239 unsigned int
14240 bfd_mips_isa_ext (bfd *abfd)
14241 {
14242 switch (bfd_get_mach (abfd))
14243 {
14244 case bfd_mach_mips3900: return AFL_EXT_3900;
14245 case bfd_mach_mips4010: return AFL_EXT_4010;
14246 case bfd_mach_mips4100: return AFL_EXT_4100;
14247 case bfd_mach_mips4111: return AFL_EXT_4111;
14248 case bfd_mach_mips4120: return AFL_EXT_4120;
14249 case bfd_mach_mips4650: return AFL_EXT_4650;
14250 case bfd_mach_mips5400: return AFL_EXT_5400;
14251 case bfd_mach_mips5500: return AFL_EXT_5500;
14252 case bfd_mach_mips5900: return AFL_EXT_5900;
14253 case bfd_mach_mips10000: return AFL_EXT_10000;
14254 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14255 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14256 case bfd_mach_mips_loongson_3a: return AFL_EXT_LOONGSON_3A;
14257 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14258 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14259 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14260 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14261 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14262 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
14263 default: return 0;
14264 }
14265 }
14266
14267 /* Encode ISA level and revision as a single value. */
14268 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14269
14270 /* Decode a single value into level and revision. */
14271 #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14272 #define ISA_REV(LEVREV) ((LEVREV) & 0x7)
14273
14274 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14275
14276 static void
14277 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14278 {
14279 int new_isa = 0;
14280 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14281 {
14282 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14283 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14284 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14285 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14286 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14287 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14288 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14289 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14290 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14291 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14292 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
14293 default:
14294 _bfd_error_handler
14295 /* xgettext:c-format */
14296 (_("%B: Unknown architecture %s"),
14297 abfd, bfd_printable_name (abfd));
14298 }
14299
14300 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14301 {
14302 abiflags->isa_level = ISA_LEVEL (new_isa);
14303 abiflags->isa_rev = ISA_REV (new_isa);
14304 }
14305
14306 /* Update the isa_ext if ABFD describes a further extension. */
14307 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14308 bfd_get_mach (abfd)))
14309 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
14310 }
14311
14312 /* Return true if the given ELF header flags describe a 32-bit binary. */
14313
14314 static bfd_boolean
14315 mips_32bit_flags_p (flagword flags)
14316 {
14317 return ((flags & EF_MIPS_32BITMODE) != 0
14318 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14319 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14320 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14321 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14322 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14323 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14324 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14325 }
14326
14327 /* Infer the content of the ABI flags based on the elf header. */
14328
14329 static void
14330 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14331 {
14332 obj_attribute *in_attr;
14333
14334 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14335 update_mips_abiflags_isa (abfd, abiflags);
14336
14337 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14338 abiflags->gpr_size = AFL_REG_32;
14339 else
14340 abiflags->gpr_size = AFL_REG_64;
14341
14342 abiflags->cpr1_size = AFL_REG_NONE;
14343
14344 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14345 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14346
14347 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14348 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14349 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14350 && abiflags->gpr_size == AFL_REG_32))
14351 abiflags->cpr1_size = AFL_REG_32;
14352 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14353 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14354 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14355 abiflags->cpr1_size = AFL_REG_64;
14356
14357 abiflags->cpr2_size = AFL_REG_NONE;
14358
14359 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14360 abiflags->ases |= AFL_ASE_MDMX;
14361 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14362 abiflags->ases |= AFL_ASE_MIPS16;
14363 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14364 abiflags->ases |= AFL_ASE_MICROMIPS;
14365
14366 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14367 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14368 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14369 && abiflags->isa_level >= 32
14370 && abiflags->isa_ext != AFL_EXT_LOONGSON_3A)
14371 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14372 }
14373
14374 /* We need to use a special link routine to handle the .reginfo and
14375 the .mdebug sections. We need to merge all instances of these
14376 sections together, not write them all out sequentially. */
14377
14378 bfd_boolean
14379 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14380 {
14381 asection *o;
14382 struct bfd_link_order *p;
14383 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14384 asection *rtproc_sec, *abiflags_sec;
14385 Elf32_RegInfo reginfo;
14386 struct ecoff_debug_info debug;
14387 struct mips_htab_traverse_info hti;
14388 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14389 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14390 HDRR *symhdr = &debug.symbolic_header;
14391 void *mdebug_handle = NULL;
14392 asection *s;
14393 EXTR esym;
14394 unsigned int i;
14395 bfd_size_type amt;
14396 struct mips_elf_link_hash_table *htab;
14397
14398 static const char * const secname[] =
14399 {
14400 ".text", ".init", ".fini", ".data",
14401 ".rodata", ".sdata", ".sbss", ".bss"
14402 };
14403 static const int sc[] =
14404 {
14405 scText, scInit, scFini, scData,
14406 scRData, scSData, scSBss, scBss
14407 };
14408
14409 /* Sort the dynamic symbols so that those with GOT entries come after
14410 those without. */
14411 htab = mips_elf_hash_table (info);
14412 BFD_ASSERT (htab != NULL);
14413
14414 if (!mips_elf_sort_hash_table (abfd, info))
14415 return FALSE;
14416
14417 /* Create any scheduled LA25 stubs. */
14418 hti.info = info;
14419 hti.output_bfd = abfd;
14420 hti.error = FALSE;
14421 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14422 if (hti.error)
14423 return FALSE;
14424
14425 /* Get a value for the GP register. */
14426 if (elf_gp (abfd) == 0)
14427 {
14428 struct bfd_link_hash_entry *h;
14429
14430 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
14431 if (h != NULL && h->type == bfd_link_hash_defined)
14432 elf_gp (abfd) = (h->u.def.value
14433 + h->u.def.section->output_section->vma
14434 + h->u.def.section->output_offset);
14435 else if (htab->is_vxworks
14436 && (h = bfd_link_hash_lookup (info->hash,
14437 "_GLOBAL_OFFSET_TABLE_",
14438 FALSE, FALSE, TRUE))
14439 && h->type == bfd_link_hash_defined)
14440 elf_gp (abfd) = (h->u.def.section->output_section->vma
14441 + h->u.def.section->output_offset
14442 + h->u.def.value);
14443 else if (bfd_link_relocatable (info))
14444 {
14445 bfd_vma lo = MINUS_ONE;
14446
14447 /* Find the GP-relative section with the lowest offset. */
14448 for (o = abfd->sections; o != NULL; o = o->next)
14449 if (o->vma < lo
14450 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14451 lo = o->vma;
14452
14453 /* And calculate GP relative to that. */
14454 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14455 }
14456 else
14457 {
14458 /* If the relocate_section function needs to do a reloc
14459 involving the GP value, it should make a reloc_dangerous
14460 callback to warn that GP is not defined. */
14461 }
14462 }
14463
14464 /* Go through the sections and collect the .reginfo and .mdebug
14465 information. */
14466 abiflags_sec = NULL;
14467 reginfo_sec = NULL;
14468 mdebug_sec = NULL;
14469 gptab_data_sec = NULL;
14470 gptab_bss_sec = NULL;
14471 for (o = abfd->sections; o != NULL; o = o->next)
14472 {
14473 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14474 {
14475 /* We have found the .MIPS.abiflags section in the output file.
14476 Look through all the link_orders comprising it and remove them.
14477 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14478 for (p = o->map_head.link_order; p != NULL; p = p->next)
14479 {
14480 asection *input_section;
14481
14482 if (p->type != bfd_indirect_link_order)
14483 {
14484 if (p->type == bfd_data_link_order)
14485 continue;
14486 abort ();
14487 }
14488
14489 input_section = p->u.indirect.section;
14490
14491 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14492 elf_link_input_bfd ignores this section. */
14493 input_section->flags &= ~SEC_HAS_CONTENTS;
14494 }
14495
14496 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14497 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14498
14499 /* Skip this section later on (I don't think this currently
14500 matters, but someday it might). */
14501 o->map_head.link_order = NULL;
14502
14503 abiflags_sec = o;
14504 }
14505
14506 if (strcmp (o->name, ".reginfo") == 0)
14507 {
14508 memset (&reginfo, 0, sizeof reginfo);
14509
14510 /* We have found the .reginfo section in the output file.
14511 Look through all the link_orders comprising it and merge
14512 the information together. */
14513 for (p = o->map_head.link_order; p != NULL; p = p->next)
14514 {
14515 asection *input_section;
14516 bfd *input_bfd;
14517 Elf32_External_RegInfo ext;
14518 Elf32_RegInfo sub;
14519
14520 if (p->type != bfd_indirect_link_order)
14521 {
14522 if (p->type == bfd_data_link_order)
14523 continue;
14524 abort ();
14525 }
14526
14527 input_section = p->u.indirect.section;
14528 input_bfd = input_section->owner;
14529
14530 if (! bfd_get_section_contents (input_bfd, input_section,
14531 &ext, 0, sizeof ext))
14532 return FALSE;
14533
14534 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14535
14536 reginfo.ri_gprmask |= sub.ri_gprmask;
14537 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14538 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14539 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14540 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14541
14542 /* ri_gp_value is set by the function
14543 mips_elf32_section_processing when the section is
14544 finally written out. */
14545
14546 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14547 elf_link_input_bfd ignores this section. */
14548 input_section->flags &= ~SEC_HAS_CONTENTS;
14549 }
14550
14551 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14552 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14553
14554 /* Skip this section later on (I don't think this currently
14555 matters, but someday it might). */
14556 o->map_head.link_order = NULL;
14557
14558 reginfo_sec = o;
14559 }
14560
14561 if (strcmp (o->name, ".mdebug") == 0)
14562 {
14563 struct extsym_info einfo;
14564 bfd_vma last;
14565
14566 /* We have found the .mdebug section in the output file.
14567 Look through all the link_orders comprising it and merge
14568 the information together. */
14569 symhdr->magic = swap->sym_magic;
14570 /* FIXME: What should the version stamp be? */
14571 symhdr->vstamp = 0;
14572 symhdr->ilineMax = 0;
14573 symhdr->cbLine = 0;
14574 symhdr->idnMax = 0;
14575 symhdr->ipdMax = 0;
14576 symhdr->isymMax = 0;
14577 symhdr->ioptMax = 0;
14578 symhdr->iauxMax = 0;
14579 symhdr->issMax = 0;
14580 symhdr->issExtMax = 0;
14581 symhdr->ifdMax = 0;
14582 symhdr->crfd = 0;
14583 symhdr->iextMax = 0;
14584
14585 /* We accumulate the debugging information itself in the
14586 debug_info structure. */
14587 debug.line = NULL;
14588 debug.external_dnr = NULL;
14589 debug.external_pdr = NULL;
14590 debug.external_sym = NULL;
14591 debug.external_opt = NULL;
14592 debug.external_aux = NULL;
14593 debug.ss = NULL;
14594 debug.ssext = debug.ssext_end = NULL;
14595 debug.external_fdr = NULL;
14596 debug.external_rfd = NULL;
14597 debug.external_ext = debug.external_ext_end = NULL;
14598
14599 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14600 if (mdebug_handle == NULL)
14601 return FALSE;
14602
14603 esym.jmptbl = 0;
14604 esym.cobol_main = 0;
14605 esym.weakext = 0;
14606 esym.reserved = 0;
14607 esym.ifd = ifdNil;
14608 esym.asym.iss = issNil;
14609 esym.asym.st = stLocal;
14610 esym.asym.reserved = 0;
14611 esym.asym.index = indexNil;
14612 last = 0;
14613 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14614 {
14615 esym.asym.sc = sc[i];
14616 s = bfd_get_section_by_name (abfd, secname[i]);
14617 if (s != NULL)
14618 {
14619 esym.asym.value = s->vma;
14620 last = s->vma + s->size;
14621 }
14622 else
14623 esym.asym.value = last;
14624 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14625 secname[i], &esym))
14626 return FALSE;
14627 }
14628
14629 for (p = o->map_head.link_order; p != NULL; p = p->next)
14630 {
14631 asection *input_section;
14632 bfd *input_bfd;
14633 const struct ecoff_debug_swap *input_swap;
14634 struct ecoff_debug_info input_debug;
14635 char *eraw_src;
14636 char *eraw_end;
14637
14638 if (p->type != bfd_indirect_link_order)
14639 {
14640 if (p->type == bfd_data_link_order)
14641 continue;
14642 abort ();
14643 }
14644
14645 input_section = p->u.indirect.section;
14646 input_bfd = input_section->owner;
14647
14648 if (!is_mips_elf (input_bfd))
14649 {
14650 /* I don't know what a non MIPS ELF bfd would be
14651 doing with a .mdebug section, but I don't really
14652 want to deal with it. */
14653 continue;
14654 }
14655
14656 input_swap = (get_elf_backend_data (input_bfd)
14657 ->elf_backend_ecoff_debug_swap);
14658
14659 BFD_ASSERT (p->size == input_section->size);
14660
14661 /* The ECOFF linking code expects that we have already
14662 read in the debugging information and set up an
14663 ecoff_debug_info structure, so we do that now. */
14664 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14665 &input_debug))
14666 return FALSE;
14667
14668 if (! (bfd_ecoff_debug_accumulate
14669 (mdebug_handle, abfd, &debug, swap, input_bfd,
14670 &input_debug, input_swap, info)))
14671 return FALSE;
14672
14673 /* Loop through the external symbols. For each one with
14674 interesting information, try to find the symbol in
14675 the linker global hash table and save the information
14676 for the output external symbols. */
14677 eraw_src = input_debug.external_ext;
14678 eraw_end = (eraw_src
14679 + (input_debug.symbolic_header.iextMax
14680 * input_swap->external_ext_size));
14681 for (;
14682 eraw_src < eraw_end;
14683 eraw_src += input_swap->external_ext_size)
14684 {
14685 EXTR ext;
14686 const char *name;
14687 struct mips_elf_link_hash_entry *h;
14688
14689 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
14690 if (ext.asym.sc == scNil
14691 || ext.asym.sc == scUndefined
14692 || ext.asym.sc == scSUndefined)
14693 continue;
14694
14695 name = input_debug.ssext + ext.asym.iss;
14696 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
14697 name, FALSE, FALSE, TRUE);
14698 if (h == NULL || h->esym.ifd != -2)
14699 continue;
14700
14701 if (ext.ifd != -1)
14702 {
14703 BFD_ASSERT (ext.ifd
14704 < input_debug.symbolic_header.ifdMax);
14705 ext.ifd = input_debug.ifdmap[ext.ifd];
14706 }
14707
14708 h->esym = ext;
14709 }
14710
14711 /* Free up the information we just read. */
14712 free (input_debug.line);
14713 free (input_debug.external_dnr);
14714 free (input_debug.external_pdr);
14715 free (input_debug.external_sym);
14716 free (input_debug.external_opt);
14717 free (input_debug.external_aux);
14718 free (input_debug.ss);
14719 free (input_debug.ssext);
14720 free (input_debug.external_fdr);
14721 free (input_debug.external_rfd);
14722 free (input_debug.external_ext);
14723
14724 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14725 elf_link_input_bfd ignores this section. */
14726 input_section->flags &= ~SEC_HAS_CONTENTS;
14727 }
14728
14729 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
14730 {
14731 /* Create .rtproc section. */
14732 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
14733 if (rtproc_sec == NULL)
14734 {
14735 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14736 | SEC_LINKER_CREATED | SEC_READONLY);
14737
14738 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14739 ".rtproc",
14740 flags);
14741 if (rtproc_sec == NULL
14742 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
14743 return FALSE;
14744 }
14745
14746 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14747 info, rtproc_sec,
14748 &debug))
14749 return FALSE;
14750 }
14751
14752 /* Build the external symbol information. */
14753 einfo.abfd = abfd;
14754 einfo.info = info;
14755 einfo.debug = &debug;
14756 einfo.swap = swap;
14757 einfo.failed = FALSE;
14758 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
14759 mips_elf_output_extsym, &einfo);
14760 if (einfo.failed)
14761 return FALSE;
14762
14763 /* Set the size of the .mdebug section. */
14764 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
14765
14766 /* Skip this section later on (I don't think this currently
14767 matters, but someday it might). */
14768 o->map_head.link_order = NULL;
14769
14770 mdebug_sec = o;
14771 }
14772
14773 if (CONST_STRNEQ (o->name, ".gptab."))
14774 {
14775 const char *subname;
14776 unsigned int c;
14777 Elf32_gptab *tab;
14778 Elf32_External_gptab *ext_tab;
14779 unsigned int j;
14780
14781 /* The .gptab.sdata and .gptab.sbss sections hold
14782 information describing how the small data area would
14783 change depending upon the -G switch. These sections
14784 not used in executables files. */
14785 if (! bfd_link_relocatable (info))
14786 {
14787 for (p = o->map_head.link_order; p != NULL; p = p->next)
14788 {
14789 asection *input_section;
14790
14791 if (p->type != bfd_indirect_link_order)
14792 {
14793 if (p->type == bfd_data_link_order)
14794 continue;
14795 abort ();
14796 }
14797
14798 input_section = p->u.indirect.section;
14799
14800 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14801 elf_link_input_bfd ignores this section. */
14802 input_section->flags &= ~SEC_HAS_CONTENTS;
14803 }
14804
14805 /* Skip this section later on (I don't think this
14806 currently matters, but someday it might). */
14807 o->map_head.link_order = NULL;
14808
14809 /* Really remove the section. */
14810 bfd_section_list_remove (abfd, o);
14811 --abfd->section_count;
14812
14813 continue;
14814 }
14815
14816 /* There is one gptab for initialized data, and one for
14817 uninitialized data. */
14818 if (strcmp (o->name, ".gptab.sdata") == 0)
14819 gptab_data_sec = o;
14820 else if (strcmp (o->name, ".gptab.sbss") == 0)
14821 gptab_bss_sec = o;
14822 else
14823 {
14824 _bfd_error_handler
14825 /* xgettext:c-format */
14826 (_("%s: illegal section name `%s'"),
14827 bfd_get_filename (abfd), o->name);
14828 bfd_set_error (bfd_error_nonrepresentable_section);
14829 return FALSE;
14830 }
14831
14832 /* The linker script always combines .gptab.data and
14833 .gptab.sdata into .gptab.sdata, and likewise for
14834 .gptab.bss and .gptab.sbss. It is possible that there is
14835 no .sdata or .sbss section in the output file, in which
14836 case we must change the name of the output section. */
14837 subname = o->name + sizeof ".gptab" - 1;
14838 if (bfd_get_section_by_name (abfd, subname) == NULL)
14839 {
14840 if (o == gptab_data_sec)
14841 o->name = ".gptab.data";
14842 else
14843 o->name = ".gptab.bss";
14844 subname = o->name + sizeof ".gptab" - 1;
14845 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14846 }
14847
14848 /* Set up the first entry. */
14849 c = 1;
14850 amt = c * sizeof (Elf32_gptab);
14851 tab = bfd_malloc (amt);
14852 if (tab == NULL)
14853 return FALSE;
14854 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14855 tab[0].gt_header.gt_unused = 0;
14856
14857 /* Combine the input sections. */
14858 for (p = o->map_head.link_order; p != NULL; p = p->next)
14859 {
14860 asection *input_section;
14861 bfd *input_bfd;
14862 bfd_size_type size;
14863 unsigned long last;
14864 bfd_size_type gpentry;
14865
14866 if (p->type != bfd_indirect_link_order)
14867 {
14868 if (p->type == bfd_data_link_order)
14869 continue;
14870 abort ();
14871 }
14872
14873 input_section = p->u.indirect.section;
14874 input_bfd = input_section->owner;
14875
14876 /* Combine the gptab entries for this input section one
14877 by one. We know that the input gptab entries are
14878 sorted by ascending -G value. */
14879 size = input_section->size;
14880 last = 0;
14881 for (gpentry = sizeof (Elf32_External_gptab);
14882 gpentry < size;
14883 gpentry += sizeof (Elf32_External_gptab))
14884 {
14885 Elf32_External_gptab ext_gptab;
14886 Elf32_gptab int_gptab;
14887 unsigned long val;
14888 unsigned long add;
14889 bfd_boolean exact;
14890 unsigned int look;
14891
14892 if (! (bfd_get_section_contents
14893 (input_bfd, input_section, &ext_gptab, gpentry,
14894 sizeof (Elf32_External_gptab))))
14895 {
14896 free (tab);
14897 return FALSE;
14898 }
14899
14900 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
14901 &int_gptab);
14902 val = int_gptab.gt_entry.gt_g_value;
14903 add = int_gptab.gt_entry.gt_bytes - last;
14904
14905 exact = FALSE;
14906 for (look = 1; look < c; look++)
14907 {
14908 if (tab[look].gt_entry.gt_g_value >= val)
14909 tab[look].gt_entry.gt_bytes += add;
14910
14911 if (tab[look].gt_entry.gt_g_value == val)
14912 exact = TRUE;
14913 }
14914
14915 if (! exact)
14916 {
14917 Elf32_gptab *new_tab;
14918 unsigned int max;
14919
14920 /* We need a new table entry. */
14921 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
14922 new_tab = bfd_realloc (tab, amt);
14923 if (new_tab == NULL)
14924 {
14925 free (tab);
14926 return FALSE;
14927 }
14928 tab = new_tab;
14929 tab[c].gt_entry.gt_g_value = val;
14930 tab[c].gt_entry.gt_bytes = add;
14931
14932 /* Merge in the size for the next smallest -G
14933 value, since that will be implied by this new
14934 value. */
14935 max = 0;
14936 for (look = 1; look < c; look++)
14937 {
14938 if (tab[look].gt_entry.gt_g_value < val
14939 && (max == 0
14940 || (tab[look].gt_entry.gt_g_value
14941 > tab[max].gt_entry.gt_g_value)))
14942 max = look;
14943 }
14944 if (max != 0)
14945 tab[c].gt_entry.gt_bytes +=
14946 tab[max].gt_entry.gt_bytes;
14947
14948 ++c;
14949 }
14950
14951 last = int_gptab.gt_entry.gt_bytes;
14952 }
14953
14954 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14955 elf_link_input_bfd ignores this section. */
14956 input_section->flags &= ~SEC_HAS_CONTENTS;
14957 }
14958
14959 /* The table must be sorted by -G value. */
14960 if (c > 2)
14961 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
14962
14963 /* Swap out the table. */
14964 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
14965 ext_tab = bfd_alloc (abfd, amt);
14966 if (ext_tab == NULL)
14967 {
14968 free (tab);
14969 return FALSE;
14970 }
14971
14972 for (j = 0; j < c; j++)
14973 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
14974 free (tab);
14975
14976 o->size = c * sizeof (Elf32_External_gptab);
14977 o->contents = (bfd_byte *) ext_tab;
14978
14979 /* Skip this section later on (I don't think this currently
14980 matters, but someday it might). */
14981 o->map_head.link_order = NULL;
14982 }
14983 }
14984
14985 /* Invoke the regular ELF backend linker to do all the work. */
14986 if (!bfd_elf_final_link (abfd, info))
14987 return FALSE;
14988
14989 /* Now write out the computed sections. */
14990
14991 if (abiflags_sec != NULL)
14992 {
14993 Elf_External_ABIFlags_v0 ext;
14994 Elf_Internal_ABIFlags_v0 *abiflags;
14995
14996 abiflags = &mips_elf_tdata (abfd)->abiflags;
14997
14998 /* Set up the abiflags if no valid input sections were found. */
14999 if (!mips_elf_tdata (abfd)->abiflags_valid)
15000 {
15001 infer_mips_abiflags (abfd, abiflags);
15002 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
15003 }
15004 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
15005 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
15006 return FALSE;
15007 }
15008
15009 if (reginfo_sec != NULL)
15010 {
15011 Elf32_External_RegInfo ext;
15012
15013 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
15014 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
15015 return FALSE;
15016 }
15017
15018 if (mdebug_sec != NULL)
15019 {
15020 BFD_ASSERT (abfd->output_has_begun);
15021 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
15022 swap, info,
15023 mdebug_sec->filepos))
15024 return FALSE;
15025
15026 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
15027 }
15028
15029 if (gptab_data_sec != NULL)
15030 {
15031 if (! bfd_set_section_contents (abfd, gptab_data_sec,
15032 gptab_data_sec->contents,
15033 0, gptab_data_sec->size))
15034 return FALSE;
15035 }
15036
15037 if (gptab_bss_sec != NULL)
15038 {
15039 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
15040 gptab_bss_sec->contents,
15041 0, gptab_bss_sec->size))
15042 return FALSE;
15043 }
15044
15045 if (SGI_COMPAT (abfd))
15046 {
15047 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
15048 if (rtproc_sec != NULL)
15049 {
15050 if (! bfd_set_section_contents (abfd, rtproc_sec,
15051 rtproc_sec->contents,
15052 0, rtproc_sec->size))
15053 return FALSE;
15054 }
15055 }
15056
15057 return TRUE;
15058 }
15059 \f
15060 /* Merge object file header flags from IBFD into OBFD. Raise an error
15061 if there are conflicting settings. */
15062
15063 static bfd_boolean
15064 mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info)
15065 {
15066 bfd *obfd = info->output_bfd;
15067 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15068 flagword old_flags;
15069 flagword new_flags;
15070 bfd_boolean ok;
15071
15072 new_flags = elf_elfheader (ibfd)->e_flags;
15073 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
15074 old_flags = elf_elfheader (obfd)->e_flags;
15075
15076 /* Check flag compatibility. */
15077
15078 new_flags &= ~EF_MIPS_NOREORDER;
15079 old_flags &= ~EF_MIPS_NOREORDER;
15080
15081 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
15082 doesn't seem to matter. */
15083 new_flags &= ~EF_MIPS_XGOT;
15084 old_flags &= ~EF_MIPS_XGOT;
15085
15086 /* MIPSpro generates ucode info in n64 objects. Again, we should
15087 just be able to ignore this. */
15088 new_flags &= ~EF_MIPS_UCODE;
15089 old_flags &= ~EF_MIPS_UCODE;
15090
15091 /* DSOs should only be linked with CPIC code. */
15092 if ((ibfd->flags & DYNAMIC) != 0)
15093 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
15094
15095 if (new_flags == old_flags)
15096 return TRUE;
15097
15098 ok = TRUE;
15099
15100 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
15101 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
15102 {
15103 _bfd_error_handler
15104 (_("%B: warning: linking abicalls files with non-abicalls files"),
15105 ibfd);
15106 ok = TRUE;
15107 }
15108
15109 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
15110 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
15111 if (! (new_flags & EF_MIPS_PIC))
15112 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
15113
15114 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15115 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15116
15117 /* Compare the ISAs. */
15118 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
15119 {
15120 _bfd_error_handler
15121 (_("%B: linking 32-bit code with 64-bit code"),
15122 ibfd);
15123 ok = FALSE;
15124 }
15125 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15126 {
15127 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15128 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
15129 {
15130 /* Copy the architecture info from IBFD to OBFD. Also copy
15131 the 32-bit flag (if set) so that we continue to recognise
15132 OBFD as a 32-bit binary. */
15133 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15134 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15135 elf_elfheader (obfd)->e_flags
15136 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15137
15138 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15139 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15140
15141 /* Copy across the ABI flags if OBFD doesn't use them
15142 and if that was what caused us to treat IBFD as 32-bit. */
15143 if ((old_flags & EF_MIPS_ABI) == 0
15144 && mips_32bit_flags_p (new_flags)
15145 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15146 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15147 }
15148 else
15149 {
15150 /* The ISAs aren't compatible. */
15151 _bfd_error_handler
15152 /* xgettext:c-format */
15153 (_("%B: linking %s module with previous %s modules"),
15154 ibfd,
15155 bfd_printable_name (ibfd),
15156 bfd_printable_name (obfd));
15157 ok = FALSE;
15158 }
15159 }
15160
15161 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15162 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15163
15164 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15165 does set EI_CLASS differently from any 32-bit ABI. */
15166 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15167 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15168 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15169 {
15170 /* Only error if both are set (to different values). */
15171 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15172 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15173 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15174 {
15175 _bfd_error_handler
15176 /* xgettext:c-format */
15177 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
15178 ibfd,
15179 elf_mips_abi_name (ibfd),
15180 elf_mips_abi_name (obfd));
15181 ok = FALSE;
15182 }
15183 new_flags &= ~EF_MIPS_ABI;
15184 old_flags &= ~EF_MIPS_ABI;
15185 }
15186
15187 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15188 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15189 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15190 {
15191 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15192 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15193 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15194 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15195 int micro_mis = old_m16 && new_micro;
15196 int m16_mis = old_micro && new_m16;
15197
15198 if (m16_mis || micro_mis)
15199 {
15200 _bfd_error_handler
15201 /* xgettext:c-format */
15202 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
15203 ibfd,
15204 m16_mis ? "MIPS16" : "microMIPS",
15205 m16_mis ? "microMIPS" : "MIPS16");
15206 ok = FALSE;
15207 }
15208
15209 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15210
15211 new_flags &= ~ EF_MIPS_ARCH_ASE;
15212 old_flags &= ~ EF_MIPS_ARCH_ASE;
15213 }
15214
15215 /* Compare NaN encodings. */
15216 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15217 {
15218 /* xgettext:c-format */
15219 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15220 ibfd,
15221 (new_flags & EF_MIPS_NAN2008
15222 ? "-mnan=2008" : "-mnan=legacy"),
15223 (old_flags & EF_MIPS_NAN2008
15224 ? "-mnan=2008" : "-mnan=legacy"));
15225 ok = FALSE;
15226 new_flags &= ~EF_MIPS_NAN2008;
15227 old_flags &= ~EF_MIPS_NAN2008;
15228 }
15229
15230 /* Compare FP64 state. */
15231 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15232 {
15233 /* xgettext:c-format */
15234 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15235 ibfd,
15236 (new_flags & EF_MIPS_FP64
15237 ? "-mfp64" : "-mfp32"),
15238 (old_flags & EF_MIPS_FP64
15239 ? "-mfp64" : "-mfp32"));
15240 ok = FALSE;
15241 new_flags &= ~EF_MIPS_FP64;
15242 old_flags &= ~EF_MIPS_FP64;
15243 }
15244
15245 /* Warn about any other mismatches */
15246 if (new_flags != old_flags)
15247 {
15248 /* xgettext:c-format */
15249 _bfd_error_handler
15250 (_("%B: uses different e_flags (0x%lx) fields than previous modules "
15251 "(0x%lx)"),
15252 ibfd, (unsigned long) new_flags,
15253 (unsigned long) old_flags);
15254 ok = FALSE;
15255 }
15256
15257 return ok;
15258 }
15259
15260 /* Merge object attributes from IBFD into OBFD. Raise an error if
15261 there are conflicting attributes. */
15262 static bfd_boolean
15263 mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
15264 {
15265 bfd *obfd = info->output_bfd;
15266 obj_attribute *in_attr;
15267 obj_attribute *out_attr;
15268 bfd *abi_fp_bfd;
15269 bfd *abi_msa_bfd;
15270
15271 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15272 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15273 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
15274 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15275
15276 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15277 if (!abi_msa_bfd
15278 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15279 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15280
15281 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15282 {
15283 /* This is the first object. Copy the attributes. */
15284 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15285
15286 /* Use the Tag_null value to indicate the attributes have been
15287 initialized. */
15288 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15289
15290 return TRUE;
15291 }
15292
15293 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15294 non-conflicting ones. */
15295 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15296 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15297 {
15298 int out_fp, in_fp;
15299
15300 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15301 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15302 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15303 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15304 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
15305 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15306 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15307 || in_fp == Val_GNU_MIPS_ABI_FP_64
15308 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15309 {
15310 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15311 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15312 }
15313 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15314 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15315 || out_fp == Val_GNU_MIPS_ABI_FP_64
15316 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15317 /* Keep the current setting. */;
15318 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15319 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15320 {
15321 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15322 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15323 }
15324 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15325 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15326 /* Keep the current setting. */;
15327 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15328 {
15329 const char *out_string, *in_string;
15330
15331 out_string = _bfd_mips_fp_abi_string (out_fp);
15332 in_string = _bfd_mips_fp_abi_string (in_fp);
15333 /* First warn about cases involving unrecognised ABIs. */
15334 if (!out_string && !in_string)
15335 /* xgettext:c-format */
15336 _bfd_error_handler
15337 (_("Warning: %B uses unknown floating point ABI %d "
15338 "(set by %B), %B uses unknown floating point ABI %d"),
15339 obfd, abi_fp_bfd, ibfd, out_fp, in_fp);
15340 else if (!out_string)
15341 _bfd_error_handler
15342 /* xgettext:c-format */
15343 (_("Warning: %B uses unknown floating point ABI %d "
15344 "(set by %B), %B uses %s"),
15345 obfd, abi_fp_bfd, ibfd, out_fp, in_string);
15346 else if (!in_string)
15347 _bfd_error_handler
15348 /* xgettext:c-format */
15349 (_("Warning: %B uses %s (set by %B), "
15350 "%B uses unknown floating point ABI %d"),
15351 obfd, abi_fp_bfd, ibfd, out_string, in_fp);
15352 else
15353 {
15354 /* If one of the bfds is soft-float, the other must be
15355 hard-float. The exact choice of hard-float ABI isn't
15356 really relevant to the error message. */
15357 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15358 out_string = "-mhard-float";
15359 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15360 in_string = "-mhard-float";
15361 _bfd_error_handler
15362 /* xgettext:c-format */
15363 (_("Warning: %B uses %s (set by %B), %B uses %s"),
15364 obfd, abi_fp_bfd, ibfd, out_string, in_string);
15365 }
15366 }
15367 }
15368
15369 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15370 non-conflicting ones. */
15371 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15372 {
15373 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15374 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15375 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15376 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15377 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15378 {
15379 case Val_GNU_MIPS_ABI_MSA_128:
15380 _bfd_error_handler
15381 /* xgettext:c-format */
15382 (_("Warning: %B uses %s (set by %B), "
15383 "%B uses unknown MSA ABI %d"),
15384 obfd, abi_msa_bfd, ibfd,
15385 "-mmsa", in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15386 break;
15387
15388 default:
15389 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15390 {
15391 case Val_GNU_MIPS_ABI_MSA_128:
15392 _bfd_error_handler
15393 /* xgettext:c-format */
15394 (_("Warning: %B uses unknown MSA ABI %d "
15395 "(set by %B), %B uses %s"),
15396 obfd, abi_msa_bfd, ibfd,
15397 out_attr[Tag_GNU_MIPS_ABI_MSA].i, "-mmsa");
15398 break;
15399
15400 default:
15401 _bfd_error_handler
15402 /* xgettext:c-format */
15403 (_("Warning: %B uses unknown MSA ABI %d "
15404 "(set by %B), %B uses unknown MSA ABI %d"),
15405 obfd, abi_msa_bfd, ibfd,
15406 out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15407 in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15408 break;
15409 }
15410 }
15411 }
15412
15413 /* Merge Tag_compatibility attributes and any common GNU ones. */
15414 return _bfd_elf_merge_object_attributes (ibfd, info);
15415 }
15416
15417 /* Merge object ABI flags from IBFD into OBFD. Raise an error if
15418 there are conflicting settings. */
15419
15420 static bfd_boolean
15421 mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15422 {
15423 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15424 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15425 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15426
15427 /* Update the output abiflags fp_abi using the computed fp_abi. */
15428 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15429
15430 #define max(a, b) ((a) > (b) ? (a) : (b))
15431 /* Merge abiflags. */
15432 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15433 in_tdata->abiflags.isa_level);
15434 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15435 in_tdata->abiflags.isa_rev);
15436 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15437 in_tdata->abiflags.gpr_size);
15438 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15439 in_tdata->abiflags.cpr1_size);
15440 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15441 in_tdata->abiflags.cpr2_size);
15442 #undef max
15443 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15444 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15445
15446 return TRUE;
15447 }
15448
15449 /* Merge backend specific data from an object file to the output
15450 object file when linking. */
15451
15452 bfd_boolean
15453 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
15454 {
15455 bfd *obfd = info->output_bfd;
15456 struct mips_elf_obj_tdata *out_tdata;
15457 struct mips_elf_obj_tdata *in_tdata;
15458 bfd_boolean null_input_bfd = TRUE;
15459 asection *sec;
15460 bfd_boolean ok;
15461
15462 /* Check if we have the same endianness. */
15463 if (! _bfd_generic_verify_endian_match (ibfd, info))
15464 {
15465 _bfd_error_handler
15466 (_("%B: endianness incompatible with that of the selected emulation"),
15467 ibfd);
15468 return FALSE;
15469 }
15470
15471 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15472 return TRUE;
15473
15474 in_tdata = mips_elf_tdata (ibfd);
15475 out_tdata = mips_elf_tdata (obfd);
15476
15477 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15478 {
15479 _bfd_error_handler
15480 (_("%B: ABI is incompatible with that of the selected emulation"),
15481 ibfd);
15482 return FALSE;
15483 }
15484
15485 /* Check to see if the input BFD actually contains any sections. If not,
15486 then it has no attributes, and its flags may not have been initialized
15487 either, but it cannot actually cause any incompatibility. */
15488 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15489 {
15490 /* Ignore synthetic sections and empty .text, .data and .bss sections
15491 which are automatically generated by gas. Also ignore fake
15492 (s)common sections, since merely defining a common symbol does
15493 not affect compatibility. */
15494 if ((sec->flags & SEC_IS_COMMON) == 0
15495 && strcmp (sec->name, ".reginfo")
15496 && strcmp (sec->name, ".mdebug")
15497 && (sec->size != 0
15498 || (strcmp (sec->name, ".text")
15499 && strcmp (sec->name, ".data")
15500 && strcmp (sec->name, ".bss"))))
15501 {
15502 null_input_bfd = FALSE;
15503 break;
15504 }
15505 }
15506 if (null_input_bfd)
15507 return TRUE;
15508
15509 /* Populate abiflags using existing information. */
15510 if (in_tdata->abiflags_valid)
15511 {
15512 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15513 Elf_Internal_ABIFlags_v0 in_abiflags;
15514 Elf_Internal_ABIFlags_v0 abiflags;
15515
15516 /* Set up the FP ABI attribute from the abiflags if it is not already
15517 set. */
15518 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15519 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
15520
15521 infer_mips_abiflags (ibfd, &abiflags);
15522 in_abiflags = in_tdata->abiflags;
15523
15524 /* It is not possible to infer the correct ISA revision
15525 for R3 or R5 so drop down to R2 for the checks. */
15526 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15527 in_abiflags.isa_rev = 2;
15528
15529 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15530 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
15531 _bfd_error_handler
15532 (_("%B: warning: Inconsistent ISA between e_flags and "
15533 ".MIPS.abiflags"), ibfd);
15534 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15535 && in_abiflags.fp_abi != abiflags.fp_abi)
15536 _bfd_error_handler
15537 (_("%B: warning: Inconsistent FP ABI between .gnu.attributes and "
15538 ".MIPS.abiflags"), ibfd);
15539 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15540 _bfd_error_handler
15541 (_("%B: warning: Inconsistent ASEs between e_flags and "
15542 ".MIPS.abiflags"), ibfd);
15543 /* The isa_ext is allowed to be an extension of what can be inferred
15544 from e_flags. */
15545 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15546 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
15547 _bfd_error_handler
15548 (_("%B: warning: Inconsistent ISA extensions between e_flags and "
15549 ".MIPS.abiflags"), ibfd);
15550 if (in_abiflags.flags2 != 0)
15551 _bfd_error_handler
15552 (_("%B: warning: Unexpected flag in the flags2 field of "
15553 ".MIPS.abiflags (0x%lx)"), ibfd,
15554 (unsigned long) in_abiflags.flags2);
15555 }
15556 else
15557 {
15558 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15559 in_tdata->abiflags_valid = TRUE;
15560 }
15561
15562 if (!out_tdata->abiflags_valid)
15563 {
15564 /* Copy input abiflags if output abiflags are not already valid. */
15565 out_tdata->abiflags = in_tdata->abiflags;
15566 out_tdata->abiflags_valid = TRUE;
15567 }
15568
15569 if (! elf_flags_init (obfd))
15570 {
15571 elf_flags_init (obfd) = TRUE;
15572 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15573 elf_elfheader (obfd)->e_ident[EI_CLASS]
15574 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15575
15576 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15577 && (bfd_get_arch_info (obfd)->the_default
15578 || mips_mach_extends_p (bfd_get_mach (obfd),
15579 bfd_get_mach (ibfd))))
15580 {
15581 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15582 bfd_get_mach (ibfd)))
15583 return FALSE;
15584
15585 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15586 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15587 }
15588
15589 ok = TRUE;
15590 }
15591 else
15592 ok = mips_elf_merge_obj_e_flags (ibfd, info);
15593
15594 ok = mips_elf_merge_obj_attributes (ibfd, info) && ok;
15595
15596 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
15597
15598 if (!ok)
15599 {
15600 bfd_set_error (bfd_error_bad_value);
15601 return FALSE;
15602 }
15603
15604 return TRUE;
15605 }
15606
15607 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15608
15609 bfd_boolean
15610 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15611 {
15612 BFD_ASSERT (!elf_flags_init (abfd)
15613 || elf_elfheader (abfd)->e_flags == flags);
15614
15615 elf_elfheader (abfd)->e_flags = flags;
15616 elf_flags_init (abfd) = TRUE;
15617 return TRUE;
15618 }
15619
15620 char *
15621 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15622 {
15623 switch (dtag)
15624 {
15625 default: return "";
15626 case DT_MIPS_RLD_VERSION:
15627 return "MIPS_RLD_VERSION";
15628 case DT_MIPS_TIME_STAMP:
15629 return "MIPS_TIME_STAMP";
15630 case DT_MIPS_ICHECKSUM:
15631 return "MIPS_ICHECKSUM";
15632 case DT_MIPS_IVERSION:
15633 return "MIPS_IVERSION";
15634 case DT_MIPS_FLAGS:
15635 return "MIPS_FLAGS";
15636 case DT_MIPS_BASE_ADDRESS:
15637 return "MIPS_BASE_ADDRESS";
15638 case DT_MIPS_MSYM:
15639 return "MIPS_MSYM";
15640 case DT_MIPS_CONFLICT:
15641 return "MIPS_CONFLICT";
15642 case DT_MIPS_LIBLIST:
15643 return "MIPS_LIBLIST";
15644 case DT_MIPS_LOCAL_GOTNO:
15645 return "MIPS_LOCAL_GOTNO";
15646 case DT_MIPS_CONFLICTNO:
15647 return "MIPS_CONFLICTNO";
15648 case DT_MIPS_LIBLISTNO:
15649 return "MIPS_LIBLISTNO";
15650 case DT_MIPS_SYMTABNO:
15651 return "MIPS_SYMTABNO";
15652 case DT_MIPS_UNREFEXTNO:
15653 return "MIPS_UNREFEXTNO";
15654 case DT_MIPS_GOTSYM:
15655 return "MIPS_GOTSYM";
15656 case DT_MIPS_HIPAGENO:
15657 return "MIPS_HIPAGENO";
15658 case DT_MIPS_RLD_MAP:
15659 return "MIPS_RLD_MAP";
15660 case DT_MIPS_RLD_MAP_REL:
15661 return "MIPS_RLD_MAP_REL";
15662 case DT_MIPS_DELTA_CLASS:
15663 return "MIPS_DELTA_CLASS";
15664 case DT_MIPS_DELTA_CLASS_NO:
15665 return "MIPS_DELTA_CLASS_NO";
15666 case DT_MIPS_DELTA_INSTANCE:
15667 return "MIPS_DELTA_INSTANCE";
15668 case DT_MIPS_DELTA_INSTANCE_NO:
15669 return "MIPS_DELTA_INSTANCE_NO";
15670 case DT_MIPS_DELTA_RELOC:
15671 return "MIPS_DELTA_RELOC";
15672 case DT_MIPS_DELTA_RELOC_NO:
15673 return "MIPS_DELTA_RELOC_NO";
15674 case DT_MIPS_DELTA_SYM:
15675 return "MIPS_DELTA_SYM";
15676 case DT_MIPS_DELTA_SYM_NO:
15677 return "MIPS_DELTA_SYM_NO";
15678 case DT_MIPS_DELTA_CLASSSYM:
15679 return "MIPS_DELTA_CLASSSYM";
15680 case DT_MIPS_DELTA_CLASSSYM_NO:
15681 return "MIPS_DELTA_CLASSSYM_NO";
15682 case DT_MIPS_CXX_FLAGS:
15683 return "MIPS_CXX_FLAGS";
15684 case DT_MIPS_PIXIE_INIT:
15685 return "MIPS_PIXIE_INIT";
15686 case DT_MIPS_SYMBOL_LIB:
15687 return "MIPS_SYMBOL_LIB";
15688 case DT_MIPS_LOCALPAGE_GOTIDX:
15689 return "MIPS_LOCALPAGE_GOTIDX";
15690 case DT_MIPS_LOCAL_GOTIDX:
15691 return "MIPS_LOCAL_GOTIDX";
15692 case DT_MIPS_HIDDEN_GOTIDX:
15693 return "MIPS_HIDDEN_GOTIDX";
15694 case DT_MIPS_PROTECTED_GOTIDX:
15695 return "MIPS_PROTECTED_GOT_IDX";
15696 case DT_MIPS_OPTIONS:
15697 return "MIPS_OPTIONS";
15698 case DT_MIPS_INTERFACE:
15699 return "MIPS_INTERFACE";
15700 case DT_MIPS_DYNSTR_ALIGN:
15701 return "DT_MIPS_DYNSTR_ALIGN";
15702 case DT_MIPS_INTERFACE_SIZE:
15703 return "DT_MIPS_INTERFACE_SIZE";
15704 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15705 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15706 case DT_MIPS_PERF_SUFFIX:
15707 return "DT_MIPS_PERF_SUFFIX";
15708 case DT_MIPS_COMPACT_SIZE:
15709 return "DT_MIPS_COMPACT_SIZE";
15710 case DT_MIPS_GP_VALUE:
15711 return "DT_MIPS_GP_VALUE";
15712 case DT_MIPS_AUX_DYNAMIC:
15713 return "DT_MIPS_AUX_DYNAMIC";
15714 case DT_MIPS_PLTGOT:
15715 return "DT_MIPS_PLTGOT";
15716 case DT_MIPS_RWPLT:
15717 return "DT_MIPS_RWPLT";
15718 }
15719 }
15720
15721 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15722 not known. */
15723
15724 const char *
15725 _bfd_mips_fp_abi_string (int fp)
15726 {
15727 switch (fp)
15728 {
15729 /* These strings aren't translated because they're simply
15730 option lists. */
15731 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15732 return "-mdouble-float";
15733
15734 case Val_GNU_MIPS_ABI_FP_SINGLE:
15735 return "-msingle-float";
15736
15737 case Val_GNU_MIPS_ABI_FP_SOFT:
15738 return "-msoft-float";
15739
15740 case Val_GNU_MIPS_ABI_FP_OLD_64:
15741 return _("-mips32r2 -mfp64 (12 callee-saved)");
15742
15743 case Val_GNU_MIPS_ABI_FP_XX:
15744 return "-mfpxx";
15745
15746 case Val_GNU_MIPS_ABI_FP_64:
15747 return "-mgp32 -mfp64";
15748
15749 case Val_GNU_MIPS_ABI_FP_64A:
15750 return "-mgp32 -mfp64 -mno-odd-spreg";
15751
15752 default:
15753 return 0;
15754 }
15755 }
15756
15757 static void
15758 print_mips_ases (FILE *file, unsigned int mask)
15759 {
15760 if (mask & AFL_ASE_DSP)
15761 fputs ("\n\tDSP ASE", file);
15762 if (mask & AFL_ASE_DSPR2)
15763 fputs ("\n\tDSP R2 ASE", file);
15764 if (mask & AFL_ASE_DSPR3)
15765 fputs ("\n\tDSP R3 ASE", file);
15766 if (mask & AFL_ASE_EVA)
15767 fputs ("\n\tEnhanced VA Scheme", file);
15768 if (mask & AFL_ASE_MCU)
15769 fputs ("\n\tMCU (MicroController) ASE", file);
15770 if (mask & AFL_ASE_MDMX)
15771 fputs ("\n\tMDMX ASE", file);
15772 if (mask & AFL_ASE_MIPS3D)
15773 fputs ("\n\tMIPS-3D ASE", file);
15774 if (mask & AFL_ASE_MT)
15775 fputs ("\n\tMT ASE", file);
15776 if (mask & AFL_ASE_SMARTMIPS)
15777 fputs ("\n\tSmartMIPS ASE", file);
15778 if (mask & AFL_ASE_VIRT)
15779 fputs ("\n\tVZ ASE", file);
15780 if (mask & AFL_ASE_MSA)
15781 fputs ("\n\tMSA ASE", file);
15782 if (mask & AFL_ASE_MIPS16)
15783 fputs ("\n\tMIPS16 ASE", file);
15784 if (mask & AFL_ASE_MICROMIPS)
15785 fputs ("\n\tMICROMIPS ASE", file);
15786 if (mask & AFL_ASE_XPA)
15787 fputs ("\n\tXPA ASE", file);
15788 if (mask == 0)
15789 fprintf (file, "\n\t%s", _("None"));
15790 else if ((mask & ~AFL_ASE_MASK) != 0)
15791 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
15792 }
15793
15794 static void
15795 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15796 {
15797 switch (isa_ext)
15798 {
15799 case 0:
15800 fputs (_("None"), file);
15801 break;
15802 case AFL_EXT_XLR:
15803 fputs ("RMI XLR", file);
15804 break;
15805 case AFL_EXT_OCTEON3:
15806 fputs ("Cavium Networks Octeon3", file);
15807 break;
15808 case AFL_EXT_OCTEON2:
15809 fputs ("Cavium Networks Octeon2", file);
15810 break;
15811 case AFL_EXT_OCTEONP:
15812 fputs ("Cavium Networks OcteonP", file);
15813 break;
15814 case AFL_EXT_LOONGSON_3A:
15815 fputs ("Loongson 3A", file);
15816 break;
15817 case AFL_EXT_OCTEON:
15818 fputs ("Cavium Networks Octeon", file);
15819 break;
15820 case AFL_EXT_5900:
15821 fputs ("Toshiba R5900", file);
15822 break;
15823 case AFL_EXT_4650:
15824 fputs ("MIPS R4650", file);
15825 break;
15826 case AFL_EXT_4010:
15827 fputs ("LSI R4010", file);
15828 break;
15829 case AFL_EXT_4100:
15830 fputs ("NEC VR4100", file);
15831 break;
15832 case AFL_EXT_3900:
15833 fputs ("Toshiba R3900", file);
15834 break;
15835 case AFL_EXT_10000:
15836 fputs ("MIPS R10000", file);
15837 break;
15838 case AFL_EXT_SB1:
15839 fputs ("Broadcom SB-1", file);
15840 break;
15841 case AFL_EXT_4111:
15842 fputs ("NEC VR4111/VR4181", file);
15843 break;
15844 case AFL_EXT_4120:
15845 fputs ("NEC VR4120", file);
15846 break;
15847 case AFL_EXT_5400:
15848 fputs ("NEC VR5400", file);
15849 break;
15850 case AFL_EXT_5500:
15851 fputs ("NEC VR5500", file);
15852 break;
15853 case AFL_EXT_LOONGSON_2E:
15854 fputs ("ST Microelectronics Loongson 2E", file);
15855 break;
15856 case AFL_EXT_LOONGSON_2F:
15857 fputs ("ST Microelectronics Loongson 2F", file);
15858 break;
15859 default:
15860 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
15861 break;
15862 }
15863 }
15864
15865 static void
15866 print_mips_fp_abi_value (FILE *file, int val)
15867 {
15868 switch (val)
15869 {
15870 case Val_GNU_MIPS_ABI_FP_ANY:
15871 fprintf (file, _("Hard or soft float\n"));
15872 break;
15873 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15874 fprintf (file, _("Hard float (double precision)\n"));
15875 break;
15876 case Val_GNU_MIPS_ABI_FP_SINGLE:
15877 fprintf (file, _("Hard float (single precision)\n"));
15878 break;
15879 case Val_GNU_MIPS_ABI_FP_SOFT:
15880 fprintf (file, _("Soft float\n"));
15881 break;
15882 case Val_GNU_MIPS_ABI_FP_OLD_64:
15883 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15884 break;
15885 case Val_GNU_MIPS_ABI_FP_XX:
15886 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
15887 break;
15888 case Val_GNU_MIPS_ABI_FP_64:
15889 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
15890 break;
15891 case Val_GNU_MIPS_ABI_FP_64A:
15892 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
15893 break;
15894 default:
15895 fprintf (file, "??? (%d)\n", val);
15896 break;
15897 }
15898 }
15899
15900 static int
15901 get_mips_reg_size (int reg_size)
15902 {
15903 return (reg_size == AFL_REG_NONE) ? 0
15904 : (reg_size == AFL_REG_32) ? 32
15905 : (reg_size == AFL_REG_64) ? 64
15906 : (reg_size == AFL_REG_128) ? 128
15907 : -1;
15908 }
15909
15910 bfd_boolean
15911 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
15912 {
15913 FILE *file = ptr;
15914
15915 BFD_ASSERT (abfd != NULL && ptr != NULL);
15916
15917 /* Print normal ELF private data. */
15918 _bfd_elf_print_private_bfd_data (abfd, ptr);
15919
15920 /* xgettext:c-format */
15921 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15922
15923 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
15924 fprintf (file, _(" [abi=O32]"));
15925 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
15926 fprintf (file, _(" [abi=O64]"));
15927 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
15928 fprintf (file, _(" [abi=EABI32]"));
15929 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
15930 fprintf (file, _(" [abi=EABI64]"));
15931 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
15932 fprintf (file, _(" [abi unknown]"));
15933 else if (ABI_N32_P (abfd))
15934 fprintf (file, _(" [abi=N32]"));
15935 else if (ABI_64_P (abfd))
15936 fprintf (file, _(" [abi=64]"));
15937 else
15938 fprintf (file, _(" [no abi set]"));
15939
15940 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
15941 fprintf (file, " [mips1]");
15942 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
15943 fprintf (file, " [mips2]");
15944 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
15945 fprintf (file, " [mips3]");
15946 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
15947 fprintf (file, " [mips4]");
15948 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
15949 fprintf (file, " [mips5]");
15950 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
15951 fprintf (file, " [mips32]");
15952 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
15953 fprintf (file, " [mips64]");
15954 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
15955 fprintf (file, " [mips32r2]");
15956 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
15957 fprintf (file, " [mips64r2]");
15958 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
15959 fprintf (file, " [mips32r6]");
15960 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
15961 fprintf (file, " [mips64r6]");
15962 else
15963 fprintf (file, _(" [unknown ISA]"));
15964
15965 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
15966 fprintf (file, " [mdmx]");
15967
15968 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
15969 fprintf (file, " [mips16]");
15970
15971 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
15972 fprintf (file, " [micromips]");
15973
15974 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
15975 fprintf (file, " [nan2008]");
15976
15977 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
15978 fprintf (file, " [old fp64]");
15979
15980 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
15981 fprintf (file, " [32bitmode]");
15982 else
15983 fprintf (file, _(" [not 32bitmode]"));
15984
15985 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
15986 fprintf (file, " [noreorder]");
15987
15988 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
15989 fprintf (file, " [PIC]");
15990
15991 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
15992 fprintf (file, " [CPIC]");
15993
15994 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
15995 fprintf (file, " [XGOT]");
15996
15997 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
15998 fprintf (file, " [UCODE]");
15999
16000 fputc ('\n', file);
16001
16002 if (mips_elf_tdata (abfd)->abiflags_valid)
16003 {
16004 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
16005 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
16006 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
16007 if (abiflags->isa_rev > 1)
16008 fprintf (file, "r%d", abiflags->isa_rev);
16009 fprintf (file, "\nGPR size: %d",
16010 get_mips_reg_size (abiflags->gpr_size));
16011 fprintf (file, "\nCPR1 size: %d",
16012 get_mips_reg_size (abiflags->cpr1_size));
16013 fprintf (file, "\nCPR2 size: %d",
16014 get_mips_reg_size (abiflags->cpr2_size));
16015 fputs ("\nFP ABI: ", file);
16016 print_mips_fp_abi_value (file, abiflags->fp_abi);
16017 fputs ("ISA Extension: ", file);
16018 print_mips_isa_ext (file, abiflags->isa_ext);
16019 fputs ("\nASEs:", file);
16020 print_mips_ases (file, abiflags->ases);
16021 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
16022 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
16023 fputc ('\n', file);
16024 }
16025
16026 return TRUE;
16027 }
16028
16029 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
16030 {
16031 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16032 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16033 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
16034 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16035 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16036 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
16037 { NULL, 0, 0, 0, 0 }
16038 };
16039
16040 /* Merge non visibility st_other attributes. Ensure that the
16041 STO_OPTIONAL flag is copied into h->other, even if this is not a
16042 definiton of the symbol. */
16043 void
16044 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
16045 const Elf_Internal_Sym *isym,
16046 bfd_boolean definition,
16047 bfd_boolean dynamic ATTRIBUTE_UNUSED)
16048 {
16049 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
16050 {
16051 unsigned char other;
16052
16053 other = (definition ? isym->st_other : h->other);
16054 other &= ~ELF_ST_VISIBILITY (-1);
16055 h->other = other | ELF_ST_VISIBILITY (h->other);
16056 }
16057
16058 if (!definition
16059 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
16060 h->other |= STO_OPTIONAL;
16061 }
16062
16063 /* Decide whether an undefined symbol is special and can be ignored.
16064 This is the case for OPTIONAL symbols on IRIX. */
16065 bfd_boolean
16066 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
16067 {
16068 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
16069 }
16070
16071 bfd_boolean
16072 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
16073 {
16074 return (sym->st_shndx == SHN_COMMON
16075 || sym->st_shndx == SHN_MIPS_ACOMMON
16076 || sym->st_shndx == SHN_MIPS_SCOMMON);
16077 }
16078
16079 /* Return address for Ith PLT stub in section PLT, for relocation REL
16080 or (bfd_vma) -1 if it should not be included. */
16081
16082 bfd_vma
16083 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
16084 const arelent *rel ATTRIBUTE_UNUSED)
16085 {
16086 return (plt->vma
16087 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
16088 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
16089 }
16090
16091 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
16092 and microMIPS PLT slots we may have a many-to-one mapping between .plt
16093 and .got.plt and also the slots may be of a different size each we walk
16094 the PLT manually fetching instructions and matching them against known
16095 patterns. To make things easier standard MIPS slots, if any, always come
16096 first. As we don't create proper ELF symbols we use the UDATA.I member
16097 of ASYMBOL to carry ISA annotation. The encoding used is the same as
16098 with the ST_OTHER member of the ELF symbol. */
16099
16100 long
16101 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
16102 long symcount ATTRIBUTE_UNUSED,
16103 asymbol **syms ATTRIBUTE_UNUSED,
16104 long dynsymcount, asymbol **dynsyms,
16105 asymbol **ret)
16106 {
16107 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
16108 static const char microsuffix[] = "@micromipsplt";
16109 static const char m16suffix[] = "@mips16plt";
16110 static const char mipssuffix[] = "@plt";
16111
16112 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
16113 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
16114 bfd_boolean micromips_p = MICROMIPS_P (abfd);
16115 Elf_Internal_Shdr *hdr;
16116 bfd_byte *plt_data;
16117 bfd_vma plt_offset;
16118 unsigned int other;
16119 bfd_vma entry_size;
16120 bfd_vma plt0_size;
16121 asection *relplt;
16122 bfd_vma opcode;
16123 asection *plt;
16124 asymbol *send;
16125 size_t size;
16126 char *names;
16127 long counti;
16128 arelent *p;
16129 asymbol *s;
16130 char *nend;
16131 long count;
16132 long pi;
16133 long i;
16134 long n;
16135
16136 *ret = NULL;
16137
16138 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
16139 return 0;
16140
16141 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16142 if (relplt == NULL)
16143 return 0;
16144
16145 hdr = &elf_section_data (relplt)->this_hdr;
16146 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
16147 return 0;
16148
16149 plt = bfd_get_section_by_name (abfd, ".plt");
16150 if (plt == NULL)
16151 return 0;
16152
16153 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
16154 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
16155 return -1;
16156 p = relplt->relocation;
16157
16158 /* Calculating the exact amount of space required for symbols would
16159 require two passes over the PLT, so just pessimise assuming two
16160 PLT slots per relocation. */
16161 count = relplt->size / hdr->sh_entsize;
16162 counti = count * bed->s->int_rels_per_ext_rel;
16163 size = 2 * count * sizeof (asymbol);
16164 size += count * (sizeof (mipssuffix) +
16165 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16166 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16167 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16168
16169 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16170 size += sizeof (asymbol) + sizeof (pltname);
16171
16172 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16173 return -1;
16174
16175 if (plt->size < 16)
16176 return -1;
16177
16178 s = *ret = bfd_malloc (size);
16179 if (s == NULL)
16180 return -1;
16181 send = s + 2 * count + 1;
16182
16183 names = (char *) send;
16184 nend = (char *) s + size;
16185 n = 0;
16186
16187 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16188 if (opcode == 0x3302fffe)
16189 {
16190 if (!micromips_p)
16191 return -1;
16192 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16193 other = STO_MICROMIPS;
16194 }
16195 else if (opcode == 0x0398c1d0)
16196 {
16197 if (!micromips_p)
16198 return -1;
16199 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16200 other = STO_MICROMIPS;
16201 }
16202 else
16203 {
16204 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16205 other = 0;
16206 }
16207
16208 s->the_bfd = abfd;
16209 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16210 s->section = plt;
16211 s->value = 0;
16212 s->name = names;
16213 s->udata.i = other;
16214 memcpy (names, pltname, sizeof (pltname));
16215 names += sizeof (pltname);
16216 ++s, ++n;
16217
16218 pi = 0;
16219 for (plt_offset = plt0_size;
16220 plt_offset + 8 <= plt->size && s < send;
16221 plt_offset += entry_size)
16222 {
16223 bfd_vma gotplt_addr;
16224 const char *suffix;
16225 bfd_vma gotplt_hi;
16226 bfd_vma gotplt_lo;
16227 size_t suffixlen;
16228
16229 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16230
16231 /* Check if the second word matches the expected MIPS16 instruction. */
16232 if (opcode == 0x651aeb00)
16233 {
16234 if (micromips_p)
16235 return -1;
16236 /* Truncated table??? */
16237 if (plt_offset + 16 > plt->size)
16238 break;
16239 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16240 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16241 suffixlen = sizeof (m16suffix);
16242 suffix = m16suffix;
16243 other = STO_MIPS16;
16244 }
16245 /* Likewise the expected microMIPS instruction (no insn32 mode). */
16246 else if (opcode == 0xff220000)
16247 {
16248 if (!micromips_p)
16249 return -1;
16250 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16251 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16252 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16253 gotplt_lo <<= 2;
16254 gotplt_addr = gotplt_hi + gotplt_lo;
16255 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16256 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16257 suffixlen = sizeof (microsuffix);
16258 suffix = microsuffix;
16259 other = STO_MICROMIPS;
16260 }
16261 /* Likewise the expected microMIPS instruction (insn32 mode). */
16262 else if ((opcode & 0xffff0000) == 0xff2f0000)
16263 {
16264 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16265 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16266 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16267 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16268 gotplt_addr = gotplt_hi + gotplt_lo;
16269 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16270 suffixlen = sizeof (microsuffix);
16271 suffix = microsuffix;
16272 other = STO_MICROMIPS;
16273 }
16274 /* Otherwise assume standard MIPS code. */
16275 else
16276 {
16277 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16278 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16279 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16280 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16281 gotplt_addr = gotplt_hi + gotplt_lo;
16282 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16283 suffixlen = sizeof (mipssuffix);
16284 suffix = mipssuffix;
16285 other = 0;
16286 }
16287 /* Truncated table??? */
16288 if (plt_offset + entry_size > plt->size)
16289 break;
16290
16291 for (i = 0;
16292 i < count && p[pi].address != gotplt_addr;
16293 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16294
16295 if (i < count)
16296 {
16297 size_t namelen;
16298 size_t len;
16299
16300 *s = **p[pi].sym_ptr_ptr;
16301 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16302 we are defining a symbol, ensure one of them is set. */
16303 if ((s->flags & BSF_LOCAL) == 0)
16304 s->flags |= BSF_GLOBAL;
16305 s->flags |= BSF_SYNTHETIC;
16306 s->section = plt;
16307 s->value = plt_offset;
16308 s->name = names;
16309 s->udata.i = other;
16310
16311 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16312 namelen = len + suffixlen;
16313 if (names + namelen > nend)
16314 break;
16315
16316 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16317 names += len;
16318 memcpy (names, suffix, suffixlen);
16319 names += suffixlen;
16320
16321 ++s, ++n;
16322 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16323 }
16324 }
16325
16326 free (plt_data);
16327
16328 return n;
16329 }
16330
16331 void
16332 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16333 {
16334 struct mips_elf_link_hash_table *htab;
16335 Elf_Internal_Ehdr *i_ehdrp;
16336
16337 i_ehdrp = elf_elfheader (abfd);
16338 if (link_info)
16339 {
16340 htab = mips_elf_hash_table (link_info);
16341 BFD_ASSERT (htab != NULL);
16342
16343 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16344 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
16345 }
16346
16347 _bfd_elf_post_process_headers (abfd, link_info);
16348
16349 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16350 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16351 i_ehdrp->e_ident[EI_ABIVERSION] = 3;
16352
16353 if (elf_stack_flags (abfd) && !(elf_stack_flags (abfd) & PF_X))
16354 i_ehdrp->e_ident[EI_ABIVERSION] = 5;
16355 }
16356
16357 int
16358 _bfd_mips_elf_compact_eh_encoding (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16359 {
16360 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16361 }
16362
16363 /* Return the opcode for can't unwind. */
16364
16365 int
16366 _bfd_mips_elf_cant_unwind_opcode (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16367 {
16368 return COMPACT_EH_CANT_UNWIND_OPCODE;
16369 }
This page took 0.336357 seconds and 5 git commands to generate.