MIPS/BFD: Correct microMIPS cross-mode BAL to JALX relaxation
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2017 Free Software Foundation, Inc.
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
28
29 /* This file handles functionality common to the different MIPS ABI's. */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "libiberty.h"
35 #include "elf-bfd.h"
36 #include "elfxx-mips.h"
37 #include "elf/mips.h"
38 #include "elf-vxworks.h"
39 #include "dwarf2.h"
40
41 /* Get the ECOFF swapping routines. */
42 #include "coff/sym.h"
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46
47 #include "hashtab.h"
48
49 /* Types of TLS GOT entry. */
50 enum mips_got_tls_type {
51 GOT_TLS_NONE,
52 GOT_TLS_GD,
53 GOT_TLS_LDM,
54 GOT_TLS_IE
55 };
56
57 /* This structure is used to hold information about one GOT entry.
58 There are four types of entry:
59
60 (1) an absolute address
61 requires: abfd == NULL
62 fields: d.address
63
64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 fields: abfd, symndx, d.addend, tls_type
67
68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 requires: abfd != NULL, symndx == -1
70 fields: d.h, tls_type
71
72 (4) a TLS LDM slot
73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 fields: none; there's only one of these per GOT. */
75 struct mips_got_entry
76 {
77 /* One input bfd that needs the GOT entry. */
78 bfd *abfd;
79 /* The index of the symbol, as stored in the relocation r_info, if
80 we have a local symbol; -1 otherwise. */
81 long symndx;
82 union
83 {
84 /* If abfd == NULL, an address that must be stored in the got. */
85 bfd_vma address;
86 /* If abfd != NULL && symndx != -1, the addend of the relocation
87 that should be added to the symbol value. */
88 bfd_vma addend;
89 /* If abfd != NULL && symndx == -1, the hash table entry
90 corresponding to a symbol in the GOT. The symbol's entry
91 is in the local area if h->global_got_area is GGA_NONE,
92 otherwise it is in the global area. */
93 struct mips_elf_link_hash_entry *h;
94 } d;
95
96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
97 symbol entry with r_symndx == 0. */
98 unsigned char tls_type;
99
100 /* True if we have filled in the GOT contents for a TLS entry,
101 and created the associated relocations. */
102 unsigned char tls_initialized;
103
104 /* The offset from the beginning of the .got section to the entry
105 corresponding to this symbol+addend. If it's a global symbol
106 whose offset is yet to be decided, it's going to be -1. */
107 long gotidx;
108 };
109
110 /* This structure represents a GOT page reference from an input bfd.
111 Each instance represents a symbol + ADDEND, where the representation
112 of the symbol depends on whether it is local to the input bfd.
113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
115
116 Page references with SYMNDX >= 0 always become page references
117 in the output. Page references with SYMNDX < 0 only become page
118 references if the symbol binds locally; in other cases, the page
119 reference decays to a global GOT reference. */
120 struct mips_got_page_ref
121 {
122 long symndx;
123 union
124 {
125 struct mips_elf_link_hash_entry *h;
126 bfd *abfd;
127 } u;
128 bfd_vma addend;
129 };
130
131 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132 The structures form a non-overlapping list that is sorted by increasing
133 MIN_ADDEND. */
134 struct mips_got_page_range
135 {
136 struct mips_got_page_range *next;
137 bfd_signed_vma min_addend;
138 bfd_signed_vma max_addend;
139 };
140
141 /* This structure describes the range of addends that are applied to page
142 relocations against a given section. */
143 struct mips_got_page_entry
144 {
145 /* The section that these entries are based on. */
146 asection *sec;
147 /* The ranges for this page entry. */
148 struct mips_got_page_range *ranges;
149 /* The maximum number of page entries needed for RANGES. */
150 bfd_vma num_pages;
151 };
152
153 /* This structure is used to hold .got information when linking. */
154
155 struct mips_got_info
156 {
157 /* The number of global .got entries. */
158 unsigned int global_gotno;
159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
160 unsigned int reloc_only_gotno;
161 /* The number of .got slots used for TLS. */
162 unsigned int tls_gotno;
163 /* The first unused TLS .got entry. Used only during
164 mips_elf_initialize_tls_index. */
165 unsigned int tls_assigned_gotno;
166 /* The number of local .got entries, eventually including page entries. */
167 unsigned int local_gotno;
168 /* The maximum number of page entries needed. */
169 unsigned int page_gotno;
170 /* The number of relocations needed for the GOT entries. */
171 unsigned int relocs;
172 /* The first unused local .got entry. */
173 unsigned int assigned_low_gotno;
174 /* The last unused local .got entry. */
175 unsigned int assigned_high_gotno;
176 /* A hash table holding members of the got. */
177 struct htab *got_entries;
178 /* A hash table holding mips_got_page_ref structures. */
179 struct htab *got_page_refs;
180 /* A hash table of mips_got_page_entry structures. */
181 struct htab *got_page_entries;
182 /* In multi-got links, a pointer to the next got (err, rather, most
183 of the time, it points to the previous got). */
184 struct mips_got_info *next;
185 };
186
187 /* Structure passed when merging bfds' gots. */
188
189 struct mips_elf_got_per_bfd_arg
190 {
191 /* The output bfd. */
192 bfd *obfd;
193 /* The link information. */
194 struct bfd_link_info *info;
195 /* A pointer to the primary got, i.e., the one that's going to get
196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
197 DT_MIPS_GOTSYM. */
198 struct mips_got_info *primary;
199 /* A non-primary got we're trying to merge with other input bfd's
200 gots. */
201 struct mips_got_info *current;
202 /* The maximum number of got entries that can be addressed with a
203 16-bit offset. */
204 unsigned int max_count;
205 /* The maximum number of page entries needed by each got. */
206 unsigned int max_pages;
207 /* The total number of global entries which will live in the
208 primary got and be automatically relocated. This includes
209 those not referenced by the primary GOT but included in
210 the "master" GOT. */
211 unsigned int global_count;
212 };
213
214 /* A structure used to pass information to htab_traverse callbacks
215 when laying out the GOT. */
216
217 struct mips_elf_traverse_got_arg
218 {
219 struct bfd_link_info *info;
220 struct mips_got_info *g;
221 int value;
222 };
223
224 struct _mips_elf_section_data
225 {
226 struct bfd_elf_section_data elf;
227 union
228 {
229 bfd_byte *tdata;
230 } u;
231 };
232
233 #define mips_elf_section_data(sec) \
234 ((struct _mips_elf_section_data *) elf_section_data (sec))
235
236 #define is_mips_elf(bfd) \
237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
238 && elf_tdata (bfd) != NULL \
239 && elf_object_id (bfd) == MIPS_ELF_DATA)
240
241 /* The ABI says that every symbol used by dynamic relocations must have
242 a global GOT entry. Among other things, this provides the dynamic
243 linker with a free, directly-indexed cache. The GOT can therefore
244 contain symbols that are not referenced by GOT relocations themselves
245 (in other words, it may have symbols that are not referenced by things
246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
247
248 GOT relocations are less likely to overflow if we put the associated
249 GOT entries towards the beginning. We therefore divide the global
250 GOT entries into two areas: "normal" and "reloc-only". Entries in
251 the first area can be used for both dynamic relocations and GP-relative
252 accesses, while those in the "reloc-only" area are for dynamic
253 relocations only.
254
255 These GGA_* ("Global GOT Area") values are organised so that lower
256 values are more general than higher values. Also, non-GGA_NONE
257 values are ordered by the position of the area in the GOT. */
258 #define GGA_NORMAL 0
259 #define GGA_RELOC_ONLY 1
260 #define GGA_NONE 2
261
262 /* Information about a non-PIC interface to a PIC function. There are
263 two ways of creating these interfaces. The first is to add:
264
265 lui $25,%hi(func)
266 addiu $25,$25,%lo(func)
267
268 immediately before a PIC function "func". The second is to add:
269
270 lui $25,%hi(func)
271 j func
272 addiu $25,$25,%lo(func)
273
274 to a separate trampoline section.
275
276 Stubs of the first kind go in a new section immediately before the
277 target function. Stubs of the second kind go in a single section
278 pointed to by the hash table's "strampoline" field. */
279 struct mips_elf_la25_stub {
280 /* The generated section that contains this stub. */
281 asection *stub_section;
282
283 /* The offset of the stub from the start of STUB_SECTION. */
284 bfd_vma offset;
285
286 /* One symbol for the original function. Its location is available
287 in H->root.root.u.def. */
288 struct mips_elf_link_hash_entry *h;
289 };
290
291 /* Macros for populating a mips_elf_la25_stub. */
292
293 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
294 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
295 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
296 #define LA25_LUI_MICROMIPS(VAL) \
297 (0x41b90000 | (VAL)) /* lui t9,VAL */
298 #define LA25_J_MICROMIPS(VAL) \
299 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
300 #define LA25_ADDIU_MICROMIPS(VAL) \
301 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
302
303 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
304 the dynamic symbols. */
305
306 struct mips_elf_hash_sort_data
307 {
308 /* The symbol in the global GOT with the lowest dynamic symbol table
309 index. */
310 struct elf_link_hash_entry *low;
311 /* The least dynamic symbol table index corresponding to a non-TLS
312 symbol with a GOT entry. */
313 bfd_size_type min_got_dynindx;
314 /* The greatest dynamic symbol table index corresponding to a symbol
315 with a GOT entry that is not referenced (e.g., a dynamic symbol
316 with dynamic relocations pointing to it from non-primary GOTs). */
317 bfd_size_type max_unref_got_dynindx;
318 /* The greatest dynamic symbol table index corresponding to a local
319 symbol. */
320 bfd_size_type max_local_dynindx;
321 /* The greatest dynamic symbol table index corresponding to an external
322 symbol without a GOT entry. */
323 bfd_size_type max_non_got_dynindx;
324 };
325
326 /* We make up to two PLT entries if needed, one for standard MIPS code
327 and one for compressed code, either a MIPS16 or microMIPS one. We
328 keep a separate record of traditional lazy-binding stubs, for easier
329 processing. */
330
331 struct plt_entry
332 {
333 /* Traditional SVR4 stub offset, or -1 if none. */
334 bfd_vma stub_offset;
335
336 /* Standard PLT entry offset, or -1 if none. */
337 bfd_vma mips_offset;
338
339 /* Compressed PLT entry offset, or -1 if none. */
340 bfd_vma comp_offset;
341
342 /* The corresponding .got.plt index, or -1 if none. */
343 bfd_vma gotplt_index;
344
345 /* Whether we need a standard PLT entry. */
346 unsigned int need_mips : 1;
347
348 /* Whether we need a compressed PLT entry. */
349 unsigned int need_comp : 1;
350 };
351
352 /* The MIPS ELF linker needs additional information for each symbol in
353 the global hash table. */
354
355 struct mips_elf_link_hash_entry
356 {
357 struct elf_link_hash_entry root;
358
359 /* External symbol information. */
360 EXTR esym;
361
362 /* The la25 stub we have created for ths symbol, if any. */
363 struct mips_elf_la25_stub *la25_stub;
364
365 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
366 this symbol. */
367 unsigned int possibly_dynamic_relocs;
368
369 /* If there is a stub that 32 bit functions should use to call this
370 16 bit function, this points to the section containing the stub. */
371 asection *fn_stub;
372
373 /* If there is a stub that 16 bit functions should use to call this
374 32 bit function, this points to the section containing the stub. */
375 asection *call_stub;
376
377 /* This is like the call_stub field, but it is used if the function
378 being called returns a floating point value. */
379 asection *call_fp_stub;
380
381 /* The highest GGA_* value that satisfies all references to this symbol. */
382 unsigned int global_got_area : 2;
383
384 /* True if all GOT relocations against this symbol are for calls. This is
385 a looser condition than no_fn_stub below, because there may be other
386 non-call non-GOT relocations against the symbol. */
387 unsigned int got_only_for_calls : 1;
388
389 /* True if one of the relocations described by possibly_dynamic_relocs
390 is against a readonly section. */
391 unsigned int readonly_reloc : 1;
392
393 /* True if there is a relocation against this symbol that must be
394 resolved by the static linker (in other words, if the relocation
395 cannot possibly be made dynamic). */
396 unsigned int has_static_relocs : 1;
397
398 /* True if we must not create a .MIPS.stubs entry for this symbol.
399 This is set, for example, if there are relocations related to
400 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
401 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
402 unsigned int no_fn_stub : 1;
403
404 /* Whether we need the fn_stub; this is true if this symbol appears
405 in any relocs other than a 16 bit call. */
406 unsigned int need_fn_stub : 1;
407
408 /* True if this symbol is referenced by branch relocations from
409 any non-PIC input file. This is used to determine whether an
410 la25 stub is required. */
411 unsigned int has_nonpic_branches : 1;
412
413 /* Does this symbol need a traditional MIPS lazy-binding stub
414 (as opposed to a PLT entry)? */
415 unsigned int needs_lazy_stub : 1;
416
417 /* Does this symbol resolve to a PLT entry? */
418 unsigned int use_plt_entry : 1;
419 };
420
421 /* MIPS ELF linker hash table. */
422
423 struct mips_elf_link_hash_table
424 {
425 struct elf_link_hash_table root;
426
427 /* The number of .rtproc entries. */
428 bfd_size_type procedure_count;
429
430 /* The size of the .compact_rel section (if SGI_COMPAT). */
431 bfd_size_type compact_rel_size;
432
433 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
434 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
435 bfd_boolean use_rld_obj_head;
436
437 /* The __rld_map or __rld_obj_head symbol. */
438 struct elf_link_hash_entry *rld_symbol;
439
440 /* This is set if we see any mips16 stub sections. */
441 bfd_boolean mips16_stubs_seen;
442
443 /* True if we can generate copy relocs and PLTs. */
444 bfd_boolean use_plts_and_copy_relocs;
445
446 /* True if we can only use 32-bit microMIPS instructions. */
447 bfd_boolean insn32;
448
449 /* True if we suppress checks for invalid branches between ISA modes. */
450 bfd_boolean ignore_branch_isa;
451
452 /* True if we're generating code for VxWorks. */
453 bfd_boolean is_vxworks;
454
455 /* True if we already reported the small-data section overflow. */
456 bfd_boolean small_data_overflow_reported;
457
458 /* Shortcuts to some dynamic sections, or NULL if they are not
459 being used. */
460 asection *srelplt2;
461 asection *sstubs;
462
463 /* The master GOT information. */
464 struct mips_got_info *got_info;
465
466 /* The global symbol in the GOT with the lowest index in the dynamic
467 symbol table. */
468 struct elf_link_hash_entry *global_gotsym;
469
470 /* The size of the PLT header in bytes. */
471 bfd_vma plt_header_size;
472
473 /* The size of a standard PLT entry in bytes. */
474 bfd_vma plt_mips_entry_size;
475
476 /* The size of a compressed PLT entry in bytes. */
477 bfd_vma plt_comp_entry_size;
478
479 /* The offset of the next standard PLT entry to create. */
480 bfd_vma plt_mips_offset;
481
482 /* The offset of the next compressed PLT entry to create. */
483 bfd_vma plt_comp_offset;
484
485 /* The index of the next .got.plt entry to create. */
486 bfd_vma plt_got_index;
487
488 /* The number of functions that need a lazy-binding stub. */
489 bfd_vma lazy_stub_count;
490
491 /* The size of a function stub entry in bytes. */
492 bfd_vma function_stub_size;
493
494 /* The number of reserved entries at the beginning of the GOT. */
495 unsigned int reserved_gotno;
496
497 /* The section used for mips_elf_la25_stub trampolines.
498 See the comment above that structure for details. */
499 asection *strampoline;
500
501 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
502 pairs. */
503 htab_t la25_stubs;
504
505 /* A function FN (NAME, IS, OS) that creates a new input section
506 called NAME and links it to output section OS. If IS is nonnull,
507 the new section should go immediately before it, otherwise it
508 should go at the (current) beginning of OS.
509
510 The function returns the new section on success, otherwise it
511 returns null. */
512 asection *(*add_stub_section) (const char *, asection *, asection *);
513
514 /* Small local sym cache. */
515 struct sym_cache sym_cache;
516
517 /* Is the PLT header compressed? */
518 unsigned int plt_header_is_comp : 1;
519 };
520
521 /* Get the MIPS ELF linker hash table from a link_info structure. */
522
523 #define mips_elf_hash_table(p) \
524 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
525 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
526
527 /* A structure used to communicate with htab_traverse callbacks. */
528 struct mips_htab_traverse_info
529 {
530 /* The usual link-wide information. */
531 struct bfd_link_info *info;
532 bfd *output_bfd;
533
534 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
535 bfd_boolean error;
536 };
537
538 /* MIPS ELF private object data. */
539
540 struct mips_elf_obj_tdata
541 {
542 /* Generic ELF private object data. */
543 struct elf_obj_tdata root;
544
545 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
546 bfd *abi_fp_bfd;
547
548 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
549 bfd *abi_msa_bfd;
550
551 /* The abiflags for this object. */
552 Elf_Internal_ABIFlags_v0 abiflags;
553 bfd_boolean abiflags_valid;
554
555 /* The GOT requirements of input bfds. */
556 struct mips_got_info *got;
557
558 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
559 included directly in this one, but there's no point to wasting
560 the memory just for the infrequently called find_nearest_line. */
561 struct mips_elf_find_line *find_line_info;
562
563 /* An array of stub sections indexed by symbol number. */
564 asection **local_stubs;
565 asection **local_call_stubs;
566
567 /* The Irix 5 support uses two virtual sections, which represent
568 text/data symbols defined in dynamic objects. */
569 asymbol *elf_data_symbol;
570 asymbol *elf_text_symbol;
571 asection *elf_data_section;
572 asection *elf_text_section;
573 };
574
575 /* Get MIPS ELF private object data from BFD's tdata. */
576
577 #define mips_elf_tdata(bfd) \
578 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
579
580 #define TLS_RELOC_P(r_type) \
581 (r_type == R_MIPS_TLS_DTPMOD32 \
582 || r_type == R_MIPS_TLS_DTPMOD64 \
583 || r_type == R_MIPS_TLS_DTPREL32 \
584 || r_type == R_MIPS_TLS_DTPREL64 \
585 || r_type == R_MIPS_TLS_GD \
586 || r_type == R_MIPS_TLS_LDM \
587 || r_type == R_MIPS_TLS_DTPREL_HI16 \
588 || r_type == R_MIPS_TLS_DTPREL_LO16 \
589 || r_type == R_MIPS_TLS_GOTTPREL \
590 || r_type == R_MIPS_TLS_TPREL32 \
591 || r_type == R_MIPS_TLS_TPREL64 \
592 || r_type == R_MIPS_TLS_TPREL_HI16 \
593 || r_type == R_MIPS_TLS_TPREL_LO16 \
594 || r_type == R_MIPS16_TLS_GD \
595 || r_type == R_MIPS16_TLS_LDM \
596 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
597 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
598 || r_type == R_MIPS16_TLS_GOTTPREL \
599 || r_type == R_MIPS16_TLS_TPREL_HI16 \
600 || r_type == R_MIPS16_TLS_TPREL_LO16 \
601 || r_type == R_MICROMIPS_TLS_GD \
602 || r_type == R_MICROMIPS_TLS_LDM \
603 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
604 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
605 || r_type == R_MICROMIPS_TLS_GOTTPREL \
606 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
607 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
608
609 /* Structure used to pass information to mips_elf_output_extsym. */
610
611 struct extsym_info
612 {
613 bfd *abfd;
614 struct bfd_link_info *info;
615 struct ecoff_debug_info *debug;
616 const struct ecoff_debug_swap *swap;
617 bfd_boolean failed;
618 };
619
620 /* The names of the runtime procedure table symbols used on IRIX5. */
621
622 static const char * const mips_elf_dynsym_rtproc_names[] =
623 {
624 "_procedure_table",
625 "_procedure_string_table",
626 "_procedure_table_size",
627 NULL
628 };
629
630 /* These structures are used to generate the .compact_rel section on
631 IRIX5. */
632
633 typedef struct
634 {
635 unsigned long id1; /* Always one? */
636 unsigned long num; /* Number of compact relocation entries. */
637 unsigned long id2; /* Always two? */
638 unsigned long offset; /* The file offset of the first relocation. */
639 unsigned long reserved0; /* Zero? */
640 unsigned long reserved1; /* Zero? */
641 } Elf32_compact_rel;
642
643 typedef struct
644 {
645 bfd_byte id1[4];
646 bfd_byte num[4];
647 bfd_byte id2[4];
648 bfd_byte offset[4];
649 bfd_byte reserved0[4];
650 bfd_byte reserved1[4];
651 } Elf32_External_compact_rel;
652
653 typedef struct
654 {
655 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
656 unsigned int rtype : 4; /* Relocation types. See below. */
657 unsigned int dist2to : 8;
658 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
659 unsigned long konst; /* KONST field. See below. */
660 unsigned long vaddr; /* VADDR to be relocated. */
661 } Elf32_crinfo;
662
663 typedef struct
664 {
665 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
666 unsigned int rtype : 4; /* Relocation types. See below. */
667 unsigned int dist2to : 8;
668 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
669 unsigned long konst; /* KONST field. See below. */
670 } Elf32_crinfo2;
671
672 typedef struct
673 {
674 bfd_byte info[4];
675 bfd_byte konst[4];
676 bfd_byte vaddr[4];
677 } Elf32_External_crinfo;
678
679 typedef struct
680 {
681 bfd_byte info[4];
682 bfd_byte konst[4];
683 } Elf32_External_crinfo2;
684
685 /* These are the constants used to swap the bitfields in a crinfo. */
686
687 #define CRINFO_CTYPE (0x1)
688 #define CRINFO_CTYPE_SH (31)
689 #define CRINFO_RTYPE (0xf)
690 #define CRINFO_RTYPE_SH (27)
691 #define CRINFO_DIST2TO (0xff)
692 #define CRINFO_DIST2TO_SH (19)
693 #define CRINFO_RELVADDR (0x7ffff)
694 #define CRINFO_RELVADDR_SH (0)
695
696 /* A compact relocation info has long (3 words) or short (2 words)
697 formats. A short format doesn't have VADDR field and relvaddr
698 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
699 #define CRF_MIPS_LONG 1
700 #define CRF_MIPS_SHORT 0
701
702 /* There are 4 types of compact relocation at least. The value KONST
703 has different meaning for each type:
704
705 (type) (konst)
706 CT_MIPS_REL32 Address in data
707 CT_MIPS_WORD Address in word (XXX)
708 CT_MIPS_GPHI_LO GP - vaddr
709 CT_MIPS_JMPAD Address to jump
710 */
711
712 #define CRT_MIPS_REL32 0xa
713 #define CRT_MIPS_WORD 0xb
714 #define CRT_MIPS_GPHI_LO 0xc
715 #define CRT_MIPS_JMPAD 0xd
716
717 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
718 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
719 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
720 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
721 \f
722 /* The structure of the runtime procedure descriptor created by the
723 loader for use by the static exception system. */
724
725 typedef struct runtime_pdr {
726 bfd_vma adr; /* Memory address of start of procedure. */
727 long regmask; /* Save register mask. */
728 long regoffset; /* Save register offset. */
729 long fregmask; /* Save floating point register mask. */
730 long fregoffset; /* Save floating point register offset. */
731 long frameoffset; /* Frame size. */
732 short framereg; /* Frame pointer register. */
733 short pcreg; /* Offset or reg of return pc. */
734 long irpss; /* Index into the runtime string table. */
735 long reserved;
736 struct exception_info *exception_info;/* Pointer to exception array. */
737 } RPDR, *pRPDR;
738 #define cbRPDR sizeof (RPDR)
739 #define rpdNil ((pRPDR) 0)
740 \f
741 static struct mips_got_entry *mips_elf_create_local_got_entry
742 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
743 struct mips_elf_link_hash_entry *, int);
744 static bfd_boolean mips_elf_sort_hash_table_f
745 (struct mips_elf_link_hash_entry *, void *);
746 static bfd_vma mips_elf_high
747 (bfd_vma);
748 static bfd_boolean mips_elf_create_dynamic_relocation
749 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
750 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
751 bfd_vma *, asection *);
752 static bfd_vma mips_elf_adjust_gp
753 (bfd *, struct mips_got_info *, bfd *);
754
755 /* This will be used when we sort the dynamic relocation records. */
756 static bfd *reldyn_sorting_bfd;
757
758 /* True if ABFD is for CPUs with load interlocking that include
759 non-MIPS1 CPUs and R3900. */
760 #define LOAD_INTERLOCKS_P(abfd) \
761 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
762 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
763
764 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
765 This should be safe for all architectures. We enable this predicate
766 for RM9000 for now. */
767 #define JAL_TO_BAL_P(abfd) \
768 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
769
770 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
771 This should be safe for all architectures. We enable this predicate for
772 all CPUs. */
773 #define JALR_TO_BAL_P(abfd) 1
774
775 /* True if ABFD is for CPUs that are faster if JR is converted to B.
776 This should be safe for all architectures. We enable this predicate for
777 all CPUs. */
778 #define JR_TO_B_P(abfd) 1
779
780 /* True if ABFD is a PIC object. */
781 #define PIC_OBJECT_P(abfd) \
782 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
783
784 /* Nonzero if ABFD is using the O32 ABI. */
785 #define ABI_O32_P(abfd) \
786 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
787
788 /* Nonzero if ABFD is using the N32 ABI. */
789 #define ABI_N32_P(abfd) \
790 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
791
792 /* Nonzero if ABFD is using the N64 ABI. */
793 #define ABI_64_P(abfd) \
794 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
795
796 /* Nonzero if ABFD is using NewABI conventions. */
797 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
798
799 /* Nonzero if ABFD has microMIPS code. */
800 #define MICROMIPS_P(abfd) \
801 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
802
803 /* Nonzero if ABFD is MIPS R6. */
804 #define MIPSR6_P(abfd) \
805 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
806 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
807
808 /* The IRIX compatibility level we are striving for. */
809 #define IRIX_COMPAT(abfd) \
810 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
811
812 /* Whether we are trying to be compatible with IRIX at all. */
813 #define SGI_COMPAT(abfd) \
814 (IRIX_COMPAT (abfd) != ict_none)
815
816 /* The name of the options section. */
817 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
818 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
819
820 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
821 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
822 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
823 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
824
825 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
826 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
827 (strcmp (NAME, ".MIPS.abiflags") == 0)
828
829 /* Whether the section is readonly. */
830 #define MIPS_ELF_READONLY_SECTION(sec) \
831 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
832 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
833
834 /* The name of the stub section. */
835 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
836
837 /* The size of an external REL relocation. */
838 #define MIPS_ELF_REL_SIZE(abfd) \
839 (get_elf_backend_data (abfd)->s->sizeof_rel)
840
841 /* The size of an external RELA relocation. */
842 #define MIPS_ELF_RELA_SIZE(abfd) \
843 (get_elf_backend_data (abfd)->s->sizeof_rela)
844
845 /* The size of an external dynamic table entry. */
846 #define MIPS_ELF_DYN_SIZE(abfd) \
847 (get_elf_backend_data (abfd)->s->sizeof_dyn)
848
849 /* The size of a GOT entry. */
850 #define MIPS_ELF_GOT_SIZE(abfd) \
851 (get_elf_backend_data (abfd)->s->arch_size / 8)
852
853 /* The size of the .rld_map section. */
854 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
855 (get_elf_backend_data (abfd)->s->arch_size / 8)
856
857 /* The size of a symbol-table entry. */
858 #define MIPS_ELF_SYM_SIZE(abfd) \
859 (get_elf_backend_data (abfd)->s->sizeof_sym)
860
861 /* The default alignment for sections, as a power of two. */
862 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
863 (get_elf_backend_data (abfd)->s->log_file_align)
864
865 /* Get word-sized data. */
866 #define MIPS_ELF_GET_WORD(abfd, ptr) \
867 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
868
869 /* Put out word-sized data. */
870 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
871 (ABI_64_P (abfd) \
872 ? bfd_put_64 (abfd, val, ptr) \
873 : bfd_put_32 (abfd, val, ptr))
874
875 /* The opcode for word-sized loads (LW or LD). */
876 #define MIPS_ELF_LOAD_WORD(abfd) \
877 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
878
879 /* Add a dynamic symbol table-entry. */
880 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
881 _bfd_elf_add_dynamic_entry (info, tag, val)
882
883 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
884 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
885
886 /* The name of the dynamic relocation section. */
887 #define MIPS_ELF_REL_DYN_NAME(INFO) \
888 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
889
890 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
891 from smaller values. Start with zero, widen, *then* decrement. */
892 #define MINUS_ONE (((bfd_vma)0) - 1)
893 #define MINUS_TWO (((bfd_vma)0) - 2)
894
895 /* The value to write into got[1] for SVR4 targets, to identify it is
896 a GNU object. The dynamic linker can then use got[1] to store the
897 module pointer. */
898 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
899 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
900
901 /* The offset of $gp from the beginning of the .got section. */
902 #define ELF_MIPS_GP_OFFSET(INFO) \
903 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
904
905 /* The maximum size of the GOT for it to be addressable using 16-bit
906 offsets from $gp. */
907 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
908
909 /* Instructions which appear in a stub. */
910 #define STUB_LW(abfd) \
911 ((ABI_64_P (abfd) \
912 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
913 : 0x8f998010)) /* lw t9,0x8010(gp) */
914 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
915 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
916 #define STUB_JALR 0x0320f809 /* jalr ra,t9 */
917 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
918 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
919 #define STUB_LI16S(abfd, VAL) \
920 ((ABI_64_P (abfd) \
921 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
922 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
923
924 /* Likewise for the microMIPS ASE. */
925 #define STUB_LW_MICROMIPS(abfd) \
926 (ABI_64_P (abfd) \
927 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
928 : 0xff3c8010) /* lw t9,0x8010(gp) */
929 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
930 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
931 #define STUB_LUI_MICROMIPS(VAL) \
932 (0x41b80000 + (VAL)) /* lui t8,VAL */
933 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
934 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
935 #define STUB_ORI_MICROMIPS(VAL) \
936 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
937 #define STUB_LI16U_MICROMIPS(VAL) \
938 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
939 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
940 (ABI_64_P (abfd) \
941 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
942 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
943
944 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
945 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
946 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
947 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
948 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
949 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
950
951 /* The name of the dynamic interpreter. This is put in the .interp
952 section. */
953
954 #define ELF_DYNAMIC_INTERPRETER(abfd) \
955 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
956 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
957 : "/usr/lib/libc.so.1")
958
959 #ifdef BFD64
960 #define MNAME(bfd,pre,pos) \
961 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
962 #define ELF_R_SYM(bfd, i) \
963 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
964 #define ELF_R_TYPE(bfd, i) \
965 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
966 #define ELF_R_INFO(bfd, s, t) \
967 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
968 #else
969 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
970 #define ELF_R_SYM(bfd, i) \
971 (ELF32_R_SYM (i))
972 #define ELF_R_TYPE(bfd, i) \
973 (ELF32_R_TYPE (i))
974 #define ELF_R_INFO(bfd, s, t) \
975 (ELF32_R_INFO (s, t))
976 #endif
977 \f
978 /* The mips16 compiler uses a couple of special sections to handle
979 floating point arguments.
980
981 Section names that look like .mips16.fn.FNNAME contain stubs that
982 copy floating point arguments from the fp regs to the gp regs and
983 then jump to FNNAME. If any 32 bit function calls FNNAME, the
984 call should be redirected to the stub instead. If no 32 bit
985 function calls FNNAME, the stub should be discarded. We need to
986 consider any reference to the function, not just a call, because
987 if the address of the function is taken we will need the stub,
988 since the address might be passed to a 32 bit function.
989
990 Section names that look like .mips16.call.FNNAME contain stubs
991 that copy floating point arguments from the gp regs to the fp
992 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
993 then any 16 bit function that calls FNNAME should be redirected
994 to the stub instead. If FNNAME is not a 32 bit function, the
995 stub should be discarded.
996
997 .mips16.call.fp.FNNAME sections are similar, but contain stubs
998 which call FNNAME and then copy the return value from the fp regs
999 to the gp regs. These stubs store the return value in $18 while
1000 calling FNNAME; any function which might call one of these stubs
1001 must arrange to save $18 around the call. (This case is not
1002 needed for 32 bit functions that call 16 bit functions, because
1003 16 bit functions always return floating point values in both
1004 $f0/$f1 and $2/$3.)
1005
1006 Note that in all cases FNNAME might be defined statically.
1007 Therefore, FNNAME is not used literally. Instead, the relocation
1008 information will indicate which symbol the section is for.
1009
1010 We record any stubs that we find in the symbol table. */
1011
1012 #define FN_STUB ".mips16.fn."
1013 #define CALL_STUB ".mips16.call."
1014 #define CALL_FP_STUB ".mips16.call.fp."
1015
1016 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1017 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1018 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1019 \f
1020 /* The format of the first PLT entry in an O32 executable. */
1021 static const bfd_vma mips_o32_exec_plt0_entry[] =
1022 {
1023 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1024 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1025 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1026 0x031cc023, /* subu $24, $24, $28 */
1027 0x03e07825, /* or t7, ra, zero */
1028 0x0018c082, /* srl $24, $24, 2 */
1029 0x0320f809, /* jalr $25 */
1030 0x2718fffe /* subu $24, $24, 2 */
1031 };
1032
1033 /* The format of the first PLT entry in an N32 executable. Different
1034 because gp ($28) is not available; we use t2 ($14) instead. */
1035 static const bfd_vma mips_n32_exec_plt0_entry[] =
1036 {
1037 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1038 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1039 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1040 0x030ec023, /* subu $24, $24, $14 */
1041 0x03e07825, /* or t7, ra, zero */
1042 0x0018c082, /* srl $24, $24, 2 */
1043 0x0320f809, /* jalr $25 */
1044 0x2718fffe /* subu $24, $24, 2 */
1045 };
1046
1047 /* The format of the first PLT entry in an N64 executable. Different
1048 from N32 because of the increased size of GOT entries. */
1049 static const bfd_vma mips_n64_exec_plt0_entry[] =
1050 {
1051 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1052 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1053 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1054 0x030ec023, /* subu $24, $24, $14 */
1055 0x03e07825, /* or t7, ra, zero */
1056 0x0018c0c2, /* srl $24, $24, 3 */
1057 0x0320f809, /* jalr $25 */
1058 0x2718fffe /* subu $24, $24, 2 */
1059 };
1060
1061 /* The format of the microMIPS first PLT entry in an O32 executable.
1062 We rely on v0 ($2) rather than t8 ($24) to contain the address
1063 of the GOTPLT entry handled, so this stub may only be used when
1064 all the subsequent PLT entries are microMIPS code too.
1065
1066 The trailing NOP is for alignment and correct disassembly only. */
1067 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1068 {
1069 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1070 0xff23, 0x0000, /* lw $25, 0($3) */
1071 0x0535, /* subu $2, $2, $3 */
1072 0x2525, /* srl $2, $2, 2 */
1073 0x3302, 0xfffe, /* subu $24, $2, 2 */
1074 0x0dff, /* move $15, $31 */
1075 0x45f9, /* jalrs $25 */
1076 0x0f83, /* move $28, $3 */
1077 0x0c00 /* nop */
1078 };
1079
1080 /* The format of the microMIPS first PLT entry in an O32 executable
1081 in the insn32 mode. */
1082 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1083 {
1084 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1085 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1086 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1087 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1088 0x001f, 0x7a90, /* or $15, $31, zero */
1089 0x0318, 0x1040, /* srl $24, $24, 2 */
1090 0x03f9, 0x0f3c, /* jalr $25 */
1091 0x3318, 0xfffe /* subu $24, $24, 2 */
1092 };
1093
1094 /* The format of subsequent standard PLT entries. */
1095 static const bfd_vma mips_exec_plt_entry[] =
1096 {
1097 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1098 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1099 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1100 0x03200008 /* jr $25 */
1101 };
1102
1103 /* In the following PLT entry the JR and ADDIU instructions will
1104 be swapped in _bfd_mips_elf_finish_dynamic_symbol because
1105 LOAD_INTERLOCKS_P will be true for MIPS R6. */
1106 static const bfd_vma mipsr6_exec_plt_entry[] =
1107 {
1108 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1109 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1110 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1111 0x03200009 /* jr $25 */
1112 };
1113
1114 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1115 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1116 directly addressable. */
1117 static const bfd_vma mips16_o32_exec_plt_entry[] =
1118 {
1119 0xb203, /* lw $2, 12($pc) */
1120 0x9a60, /* lw $3, 0($2) */
1121 0x651a, /* move $24, $2 */
1122 0xeb00, /* jr $3 */
1123 0x653b, /* move $25, $3 */
1124 0x6500, /* nop */
1125 0x0000, 0x0000 /* .word (.got.plt entry) */
1126 };
1127
1128 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1129 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1130 static const bfd_vma micromips_o32_exec_plt_entry[] =
1131 {
1132 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1133 0xff22, 0x0000, /* lw $25, 0($2) */
1134 0x4599, /* jr $25 */
1135 0x0f02 /* move $24, $2 */
1136 };
1137
1138 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1139 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1140 {
1141 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1142 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1143 0x0019, 0x0f3c, /* jr $25 */
1144 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1145 };
1146
1147 /* The format of the first PLT entry in a VxWorks executable. */
1148 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1149 {
1150 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1151 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1152 0x8f390008, /* lw t9, 8(t9) */
1153 0x00000000, /* nop */
1154 0x03200008, /* jr t9 */
1155 0x00000000 /* nop */
1156 };
1157
1158 /* The format of subsequent PLT entries. */
1159 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1160 {
1161 0x10000000, /* b .PLT_resolver */
1162 0x24180000, /* li t8, <pltindex> */
1163 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1164 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1165 0x8f390000, /* lw t9, 0(t9) */
1166 0x00000000, /* nop */
1167 0x03200008, /* jr t9 */
1168 0x00000000 /* nop */
1169 };
1170
1171 /* The format of the first PLT entry in a VxWorks shared object. */
1172 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1173 {
1174 0x8f990008, /* lw t9, 8(gp) */
1175 0x00000000, /* nop */
1176 0x03200008, /* jr t9 */
1177 0x00000000, /* nop */
1178 0x00000000, /* nop */
1179 0x00000000 /* nop */
1180 };
1181
1182 /* The format of subsequent PLT entries. */
1183 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1184 {
1185 0x10000000, /* b .PLT_resolver */
1186 0x24180000 /* li t8, <pltindex> */
1187 };
1188 \f
1189 /* microMIPS 32-bit opcode helper installer. */
1190
1191 static void
1192 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1193 {
1194 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1195 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1196 }
1197
1198 /* microMIPS 32-bit opcode helper retriever. */
1199
1200 static bfd_vma
1201 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1202 {
1203 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1204 }
1205 \f
1206 /* Look up an entry in a MIPS ELF linker hash table. */
1207
1208 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1209 ((struct mips_elf_link_hash_entry *) \
1210 elf_link_hash_lookup (&(table)->root, (string), (create), \
1211 (copy), (follow)))
1212
1213 /* Traverse a MIPS ELF linker hash table. */
1214
1215 #define mips_elf_link_hash_traverse(table, func, info) \
1216 (elf_link_hash_traverse \
1217 (&(table)->root, \
1218 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1219 (info)))
1220
1221 /* Find the base offsets for thread-local storage in this object,
1222 for GD/LD and IE/LE respectively. */
1223
1224 #define TP_OFFSET 0x7000
1225 #define DTP_OFFSET 0x8000
1226
1227 static bfd_vma
1228 dtprel_base (struct bfd_link_info *info)
1229 {
1230 /* If tls_sec is NULL, we should have signalled an error already. */
1231 if (elf_hash_table (info)->tls_sec == NULL)
1232 return 0;
1233 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1234 }
1235
1236 static bfd_vma
1237 tprel_base (struct bfd_link_info *info)
1238 {
1239 /* If tls_sec is NULL, we should have signalled an error already. */
1240 if (elf_hash_table (info)->tls_sec == NULL)
1241 return 0;
1242 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1243 }
1244
1245 /* Create an entry in a MIPS ELF linker hash table. */
1246
1247 static struct bfd_hash_entry *
1248 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1249 struct bfd_hash_table *table, const char *string)
1250 {
1251 struct mips_elf_link_hash_entry *ret =
1252 (struct mips_elf_link_hash_entry *) entry;
1253
1254 /* Allocate the structure if it has not already been allocated by a
1255 subclass. */
1256 if (ret == NULL)
1257 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1258 if (ret == NULL)
1259 return (struct bfd_hash_entry *) ret;
1260
1261 /* Call the allocation method of the superclass. */
1262 ret = ((struct mips_elf_link_hash_entry *)
1263 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1264 table, string));
1265 if (ret != NULL)
1266 {
1267 /* Set local fields. */
1268 memset (&ret->esym, 0, sizeof (EXTR));
1269 /* We use -2 as a marker to indicate that the information has
1270 not been set. -1 means there is no associated ifd. */
1271 ret->esym.ifd = -2;
1272 ret->la25_stub = 0;
1273 ret->possibly_dynamic_relocs = 0;
1274 ret->fn_stub = NULL;
1275 ret->call_stub = NULL;
1276 ret->call_fp_stub = NULL;
1277 ret->global_got_area = GGA_NONE;
1278 ret->got_only_for_calls = TRUE;
1279 ret->readonly_reloc = FALSE;
1280 ret->has_static_relocs = FALSE;
1281 ret->no_fn_stub = FALSE;
1282 ret->need_fn_stub = FALSE;
1283 ret->has_nonpic_branches = FALSE;
1284 ret->needs_lazy_stub = FALSE;
1285 ret->use_plt_entry = FALSE;
1286 }
1287
1288 return (struct bfd_hash_entry *) ret;
1289 }
1290
1291 /* Allocate MIPS ELF private object data. */
1292
1293 bfd_boolean
1294 _bfd_mips_elf_mkobject (bfd *abfd)
1295 {
1296 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1297 MIPS_ELF_DATA);
1298 }
1299
1300 bfd_boolean
1301 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1302 {
1303 if (!sec->used_by_bfd)
1304 {
1305 struct _mips_elf_section_data *sdata;
1306 bfd_size_type amt = sizeof (*sdata);
1307
1308 sdata = bfd_zalloc (abfd, amt);
1309 if (sdata == NULL)
1310 return FALSE;
1311 sec->used_by_bfd = sdata;
1312 }
1313
1314 return _bfd_elf_new_section_hook (abfd, sec);
1315 }
1316 \f
1317 /* Read ECOFF debugging information from a .mdebug section into a
1318 ecoff_debug_info structure. */
1319
1320 bfd_boolean
1321 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1322 struct ecoff_debug_info *debug)
1323 {
1324 HDRR *symhdr;
1325 const struct ecoff_debug_swap *swap;
1326 char *ext_hdr;
1327
1328 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1329 memset (debug, 0, sizeof (*debug));
1330
1331 ext_hdr = bfd_malloc (swap->external_hdr_size);
1332 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1333 goto error_return;
1334
1335 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1336 swap->external_hdr_size))
1337 goto error_return;
1338
1339 symhdr = &debug->symbolic_header;
1340 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1341
1342 /* The symbolic header contains absolute file offsets and sizes to
1343 read. */
1344 #define READ(ptr, offset, count, size, type) \
1345 if (symhdr->count == 0) \
1346 debug->ptr = NULL; \
1347 else \
1348 { \
1349 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1350 debug->ptr = bfd_malloc (amt); \
1351 if (debug->ptr == NULL) \
1352 goto error_return; \
1353 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1354 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1355 goto error_return; \
1356 }
1357
1358 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1359 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1360 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1361 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1362 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1363 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1364 union aux_ext *);
1365 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1366 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1367 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1368 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1369 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1370 #undef READ
1371
1372 debug->fdr = NULL;
1373
1374 return TRUE;
1375
1376 error_return:
1377 if (ext_hdr != NULL)
1378 free (ext_hdr);
1379 if (debug->line != NULL)
1380 free (debug->line);
1381 if (debug->external_dnr != NULL)
1382 free (debug->external_dnr);
1383 if (debug->external_pdr != NULL)
1384 free (debug->external_pdr);
1385 if (debug->external_sym != NULL)
1386 free (debug->external_sym);
1387 if (debug->external_opt != NULL)
1388 free (debug->external_opt);
1389 if (debug->external_aux != NULL)
1390 free (debug->external_aux);
1391 if (debug->ss != NULL)
1392 free (debug->ss);
1393 if (debug->ssext != NULL)
1394 free (debug->ssext);
1395 if (debug->external_fdr != NULL)
1396 free (debug->external_fdr);
1397 if (debug->external_rfd != NULL)
1398 free (debug->external_rfd);
1399 if (debug->external_ext != NULL)
1400 free (debug->external_ext);
1401 return FALSE;
1402 }
1403 \f
1404 /* Swap RPDR (runtime procedure table entry) for output. */
1405
1406 static void
1407 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1408 {
1409 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1410 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1411 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1412 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1413 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1414 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1415
1416 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1417 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1418
1419 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1420 }
1421
1422 /* Create a runtime procedure table from the .mdebug section. */
1423
1424 static bfd_boolean
1425 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1426 struct bfd_link_info *info, asection *s,
1427 struct ecoff_debug_info *debug)
1428 {
1429 const struct ecoff_debug_swap *swap;
1430 HDRR *hdr = &debug->symbolic_header;
1431 RPDR *rpdr, *rp;
1432 struct rpdr_ext *erp;
1433 void *rtproc;
1434 struct pdr_ext *epdr;
1435 struct sym_ext *esym;
1436 char *ss, **sv;
1437 char *str;
1438 bfd_size_type size;
1439 bfd_size_type count;
1440 unsigned long sindex;
1441 unsigned long i;
1442 PDR pdr;
1443 SYMR sym;
1444 const char *no_name_func = _("static procedure (no name)");
1445
1446 epdr = NULL;
1447 rpdr = NULL;
1448 esym = NULL;
1449 ss = NULL;
1450 sv = NULL;
1451
1452 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1453
1454 sindex = strlen (no_name_func) + 1;
1455 count = hdr->ipdMax;
1456 if (count > 0)
1457 {
1458 size = swap->external_pdr_size;
1459
1460 epdr = bfd_malloc (size * count);
1461 if (epdr == NULL)
1462 goto error_return;
1463
1464 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1465 goto error_return;
1466
1467 size = sizeof (RPDR);
1468 rp = rpdr = bfd_malloc (size * count);
1469 if (rpdr == NULL)
1470 goto error_return;
1471
1472 size = sizeof (char *);
1473 sv = bfd_malloc (size * count);
1474 if (sv == NULL)
1475 goto error_return;
1476
1477 count = hdr->isymMax;
1478 size = swap->external_sym_size;
1479 esym = bfd_malloc (size * count);
1480 if (esym == NULL)
1481 goto error_return;
1482
1483 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1484 goto error_return;
1485
1486 count = hdr->issMax;
1487 ss = bfd_malloc (count);
1488 if (ss == NULL)
1489 goto error_return;
1490 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1491 goto error_return;
1492
1493 count = hdr->ipdMax;
1494 for (i = 0; i < (unsigned long) count; i++, rp++)
1495 {
1496 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1497 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1498 rp->adr = sym.value;
1499 rp->regmask = pdr.regmask;
1500 rp->regoffset = pdr.regoffset;
1501 rp->fregmask = pdr.fregmask;
1502 rp->fregoffset = pdr.fregoffset;
1503 rp->frameoffset = pdr.frameoffset;
1504 rp->framereg = pdr.framereg;
1505 rp->pcreg = pdr.pcreg;
1506 rp->irpss = sindex;
1507 sv[i] = ss + sym.iss;
1508 sindex += strlen (sv[i]) + 1;
1509 }
1510 }
1511
1512 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1513 size = BFD_ALIGN (size, 16);
1514 rtproc = bfd_alloc (abfd, size);
1515 if (rtproc == NULL)
1516 {
1517 mips_elf_hash_table (info)->procedure_count = 0;
1518 goto error_return;
1519 }
1520
1521 mips_elf_hash_table (info)->procedure_count = count + 2;
1522
1523 erp = rtproc;
1524 memset (erp, 0, sizeof (struct rpdr_ext));
1525 erp++;
1526 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1527 strcpy (str, no_name_func);
1528 str += strlen (no_name_func) + 1;
1529 for (i = 0; i < count; i++)
1530 {
1531 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1532 strcpy (str, sv[i]);
1533 str += strlen (sv[i]) + 1;
1534 }
1535 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1536
1537 /* Set the size and contents of .rtproc section. */
1538 s->size = size;
1539 s->contents = rtproc;
1540
1541 /* Skip this section later on (I don't think this currently
1542 matters, but someday it might). */
1543 s->map_head.link_order = NULL;
1544
1545 if (epdr != NULL)
1546 free (epdr);
1547 if (rpdr != NULL)
1548 free (rpdr);
1549 if (esym != NULL)
1550 free (esym);
1551 if (ss != NULL)
1552 free (ss);
1553 if (sv != NULL)
1554 free (sv);
1555
1556 return TRUE;
1557
1558 error_return:
1559 if (epdr != NULL)
1560 free (epdr);
1561 if (rpdr != NULL)
1562 free (rpdr);
1563 if (esym != NULL)
1564 free (esym);
1565 if (ss != NULL)
1566 free (ss);
1567 if (sv != NULL)
1568 free (sv);
1569 return FALSE;
1570 }
1571 \f
1572 /* We're going to create a stub for H. Create a symbol for the stub's
1573 value and size, to help make the disassembly easier to read. */
1574
1575 static bfd_boolean
1576 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1577 struct mips_elf_link_hash_entry *h,
1578 const char *prefix, asection *s, bfd_vma value,
1579 bfd_vma size)
1580 {
1581 bfd_boolean micromips_p = ELF_ST_IS_MICROMIPS (h->root.other);
1582 struct bfd_link_hash_entry *bh;
1583 struct elf_link_hash_entry *elfh;
1584 char *name;
1585 bfd_boolean res;
1586
1587 if (micromips_p)
1588 value |= 1;
1589
1590 /* Create a new symbol. */
1591 name = concat (prefix, h->root.root.root.string, NULL);
1592 bh = NULL;
1593 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1594 BSF_LOCAL, s, value, NULL,
1595 TRUE, FALSE, &bh);
1596 free (name);
1597 if (! res)
1598 return FALSE;
1599
1600 /* Make it a local function. */
1601 elfh = (struct elf_link_hash_entry *) bh;
1602 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1603 elfh->size = size;
1604 elfh->forced_local = 1;
1605 if (micromips_p)
1606 elfh->other = ELF_ST_SET_MICROMIPS (elfh->other);
1607 return TRUE;
1608 }
1609
1610 /* We're about to redefine H. Create a symbol to represent H's
1611 current value and size, to help make the disassembly easier
1612 to read. */
1613
1614 static bfd_boolean
1615 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1616 struct mips_elf_link_hash_entry *h,
1617 const char *prefix)
1618 {
1619 struct bfd_link_hash_entry *bh;
1620 struct elf_link_hash_entry *elfh;
1621 char *name;
1622 asection *s;
1623 bfd_vma value;
1624 bfd_boolean res;
1625
1626 /* Read the symbol's value. */
1627 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1628 || h->root.root.type == bfd_link_hash_defweak);
1629 s = h->root.root.u.def.section;
1630 value = h->root.root.u.def.value;
1631
1632 /* Create a new symbol. */
1633 name = concat (prefix, h->root.root.root.string, NULL);
1634 bh = NULL;
1635 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1636 BSF_LOCAL, s, value, NULL,
1637 TRUE, FALSE, &bh);
1638 free (name);
1639 if (! res)
1640 return FALSE;
1641
1642 /* Make it local and copy the other attributes from H. */
1643 elfh = (struct elf_link_hash_entry *) bh;
1644 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1645 elfh->other = h->root.other;
1646 elfh->size = h->root.size;
1647 elfh->forced_local = 1;
1648 return TRUE;
1649 }
1650
1651 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1652 function rather than to a hard-float stub. */
1653
1654 static bfd_boolean
1655 section_allows_mips16_refs_p (asection *section)
1656 {
1657 const char *name;
1658
1659 name = bfd_get_section_name (section->owner, section);
1660 return (FN_STUB_P (name)
1661 || CALL_STUB_P (name)
1662 || CALL_FP_STUB_P (name)
1663 || strcmp (name, ".pdr") == 0);
1664 }
1665
1666 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1667 stub section of some kind. Return the R_SYMNDX of the target
1668 function, or 0 if we can't decide which function that is. */
1669
1670 static unsigned long
1671 mips16_stub_symndx (const struct elf_backend_data *bed,
1672 asection *sec ATTRIBUTE_UNUSED,
1673 const Elf_Internal_Rela *relocs,
1674 const Elf_Internal_Rela *relend)
1675 {
1676 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1677 const Elf_Internal_Rela *rel;
1678
1679 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1680 one in a compound relocation. */
1681 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1682 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1683 return ELF_R_SYM (sec->owner, rel->r_info);
1684
1685 /* Otherwise trust the first relocation, whatever its kind. This is
1686 the traditional behavior. */
1687 if (relocs < relend)
1688 return ELF_R_SYM (sec->owner, relocs->r_info);
1689
1690 return 0;
1691 }
1692
1693 /* Check the mips16 stubs for a particular symbol, and see if we can
1694 discard them. */
1695
1696 static void
1697 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1698 struct mips_elf_link_hash_entry *h)
1699 {
1700 /* Dynamic symbols must use the standard call interface, in case other
1701 objects try to call them. */
1702 if (h->fn_stub != NULL
1703 && h->root.dynindx != -1)
1704 {
1705 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1706 h->need_fn_stub = TRUE;
1707 }
1708
1709 if (h->fn_stub != NULL
1710 && ! h->need_fn_stub)
1711 {
1712 /* We don't need the fn_stub; the only references to this symbol
1713 are 16 bit calls. Clobber the size to 0 to prevent it from
1714 being included in the link. */
1715 h->fn_stub->size = 0;
1716 h->fn_stub->flags &= ~SEC_RELOC;
1717 h->fn_stub->reloc_count = 0;
1718 h->fn_stub->flags |= SEC_EXCLUDE;
1719 h->fn_stub->output_section = bfd_abs_section_ptr;
1720 }
1721
1722 if (h->call_stub != NULL
1723 && ELF_ST_IS_MIPS16 (h->root.other))
1724 {
1725 /* We don't need the call_stub; this is a 16 bit function, so
1726 calls from other 16 bit functions are OK. Clobber the size
1727 to 0 to prevent it from being included in the link. */
1728 h->call_stub->size = 0;
1729 h->call_stub->flags &= ~SEC_RELOC;
1730 h->call_stub->reloc_count = 0;
1731 h->call_stub->flags |= SEC_EXCLUDE;
1732 h->call_stub->output_section = bfd_abs_section_ptr;
1733 }
1734
1735 if (h->call_fp_stub != NULL
1736 && ELF_ST_IS_MIPS16 (h->root.other))
1737 {
1738 /* We don't need the call_stub; this is a 16 bit function, so
1739 calls from other 16 bit functions are OK. Clobber the size
1740 to 0 to prevent it from being included in the link. */
1741 h->call_fp_stub->size = 0;
1742 h->call_fp_stub->flags &= ~SEC_RELOC;
1743 h->call_fp_stub->reloc_count = 0;
1744 h->call_fp_stub->flags |= SEC_EXCLUDE;
1745 h->call_fp_stub->output_section = bfd_abs_section_ptr;
1746 }
1747 }
1748
1749 /* Hashtable callbacks for mips_elf_la25_stubs. */
1750
1751 static hashval_t
1752 mips_elf_la25_stub_hash (const void *entry_)
1753 {
1754 const struct mips_elf_la25_stub *entry;
1755
1756 entry = (struct mips_elf_la25_stub *) entry_;
1757 return entry->h->root.root.u.def.section->id
1758 + entry->h->root.root.u.def.value;
1759 }
1760
1761 static int
1762 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1763 {
1764 const struct mips_elf_la25_stub *entry1, *entry2;
1765
1766 entry1 = (struct mips_elf_la25_stub *) entry1_;
1767 entry2 = (struct mips_elf_la25_stub *) entry2_;
1768 return ((entry1->h->root.root.u.def.section
1769 == entry2->h->root.root.u.def.section)
1770 && (entry1->h->root.root.u.def.value
1771 == entry2->h->root.root.u.def.value));
1772 }
1773
1774 /* Called by the linker to set up the la25 stub-creation code. FN is
1775 the linker's implementation of add_stub_function. Return true on
1776 success. */
1777
1778 bfd_boolean
1779 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1780 asection *(*fn) (const char *, asection *,
1781 asection *))
1782 {
1783 struct mips_elf_link_hash_table *htab;
1784
1785 htab = mips_elf_hash_table (info);
1786 if (htab == NULL)
1787 return FALSE;
1788
1789 htab->add_stub_section = fn;
1790 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1791 mips_elf_la25_stub_eq, NULL);
1792 if (htab->la25_stubs == NULL)
1793 return FALSE;
1794
1795 return TRUE;
1796 }
1797
1798 /* Return true if H is a locally-defined PIC function, in the sense
1799 that it or its fn_stub might need $25 to be valid on entry.
1800 Note that MIPS16 functions set up $gp using PC-relative instructions,
1801 so they themselves never need $25 to be valid. Only non-MIPS16
1802 entry points are of interest here. */
1803
1804 static bfd_boolean
1805 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1806 {
1807 return ((h->root.root.type == bfd_link_hash_defined
1808 || h->root.root.type == bfd_link_hash_defweak)
1809 && h->root.def_regular
1810 && !bfd_is_abs_section (h->root.root.u.def.section)
1811 && !bfd_is_und_section (h->root.root.u.def.section)
1812 && (!ELF_ST_IS_MIPS16 (h->root.other)
1813 || (h->fn_stub && h->need_fn_stub))
1814 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1815 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1816 }
1817
1818 /* Set *SEC to the input section that contains the target of STUB.
1819 Return the offset of the target from the start of that section. */
1820
1821 static bfd_vma
1822 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1823 asection **sec)
1824 {
1825 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1826 {
1827 BFD_ASSERT (stub->h->need_fn_stub);
1828 *sec = stub->h->fn_stub;
1829 return 0;
1830 }
1831 else
1832 {
1833 *sec = stub->h->root.root.u.def.section;
1834 return stub->h->root.root.u.def.value;
1835 }
1836 }
1837
1838 /* STUB describes an la25 stub that we have decided to implement
1839 by inserting an LUI/ADDIU pair before the target function.
1840 Create the section and redirect the function symbol to it. */
1841
1842 static bfd_boolean
1843 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1844 struct bfd_link_info *info)
1845 {
1846 struct mips_elf_link_hash_table *htab;
1847 char *name;
1848 asection *s, *input_section;
1849 unsigned int align;
1850
1851 htab = mips_elf_hash_table (info);
1852 if (htab == NULL)
1853 return FALSE;
1854
1855 /* Create a unique name for the new section. */
1856 name = bfd_malloc (11 + sizeof (".text.stub."));
1857 if (name == NULL)
1858 return FALSE;
1859 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1860
1861 /* Create the section. */
1862 mips_elf_get_la25_target (stub, &input_section);
1863 s = htab->add_stub_section (name, input_section,
1864 input_section->output_section);
1865 if (s == NULL)
1866 return FALSE;
1867
1868 /* Make sure that any padding goes before the stub. */
1869 align = input_section->alignment_power;
1870 if (!bfd_set_section_alignment (s->owner, s, align))
1871 return FALSE;
1872 if (align > 3)
1873 s->size = (1 << align) - 8;
1874
1875 /* Create a symbol for the stub. */
1876 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1877 stub->stub_section = s;
1878 stub->offset = s->size;
1879
1880 /* Allocate room for it. */
1881 s->size += 8;
1882 return TRUE;
1883 }
1884
1885 /* STUB describes an la25 stub that we have decided to implement
1886 with a separate trampoline. Allocate room for it and redirect
1887 the function symbol to it. */
1888
1889 static bfd_boolean
1890 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1891 struct bfd_link_info *info)
1892 {
1893 struct mips_elf_link_hash_table *htab;
1894 asection *s;
1895
1896 htab = mips_elf_hash_table (info);
1897 if (htab == NULL)
1898 return FALSE;
1899
1900 /* Create a trampoline section, if we haven't already. */
1901 s = htab->strampoline;
1902 if (s == NULL)
1903 {
1904 asection *input_section = stub->h->root.root.u.def.section;
1905 s = htab->add_stub_section (".text", NULL,
1906 input_section->output_section);
1907 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1908 return FALSE;
1909 htab->strampoline = s;
1910 }
1911
1912 /* Create a symbol for the stub. */
1913 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1914 stub->stub_section = s;
1915 stub->offset = s->size;
1916
1917 /* Allocate room for it. */
1918 s->size += 16;
1919 return TRUE;
1920 }
1921
1922 /* H describes a symbol that needs an la25 stub. Make sure that an
1923 appropriate stub exists and point H at it. */
1924
1925 static bfd_boolean
1926 mips_elf_add_la25_stub (struct bfd_link_info *info,
1927 struct mips_elf_link_hash_entry *h)
1928 {
1929 struct mips_elf_link_hash_table *htab;
1930 struct mips_elf_la25_stub search, *stub;
1931 bfd_boolean use_trampoline_p;
1932 asection *s;
1933 bfd_vma value;
1934 void **slot;
1935
1936 /* Describe the stub we want. */
1937 search.stub_section = NULL;
1938 search.offset = 0;
1939 search.h = h;
1940
1941 /* See if we've already created an equivalent stub. */
1942 htab = mips_elf_hash_table (info);
1943 if (htab == NULL)
1944 return FALSE;
1945
1946 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1947 if (slot == NULL)
1948 return FALSE;
1949
1950 stub = (struct mips_elf_la25_stub *) *slot;
1951 if (stub != NULL)
1952 {
1953 /* We can reuse the existing stub. */
1954 h->la25_stub = stub;
1955 return TRUE;
1956 }
1957
1958 /* Create a permanent copy of ENTRY and add it to the hash table. */
1959 stub = bfd_malloc (sizeof (search));
1960 if (stub == NULL)
1961 return FALSE;
1962 *stub = search;
1963 *slot = stub;
1964
1965 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1966 of the section and if we would need no more than 2 nops. */
1967 value = mips_elf_get_la25_target (stub, &s);
1968 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
1969 value &= ~1;
1970 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1971
1972 h->la25_stub = stub;
1973 return (use_trampoline_p
1974 ? mips_elf_add_la25_trampoline (stub, info)
1975 : mips_elf_add_la25_intro (stub, info));
1976 }
1977
1978 /* A mips_elf_link_hash_traverse callback that is called before sizing
1979 sections. DATA points to a mips_htab_traverse_info structure. */
1980
1981 static bfd_boolean
1982 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1983 {
1984 struct mips_htab_traverse_info *hti;
1985
1986 hti = (struct mips_htab_traverse_info *) data;
1987 if (!bfd_link_relocatable (hti->info))
1988 mips_elf_check_mips16_stubs (hti->info, h);
1989
1990 if (mips_elf_local_pic_function_p (h))
1991 {
1992 /* PR 12845: If H is in a section that has been garbage
1993 collected it will have its output section set to *ABS*. */
1994 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1995 return TRUE;
1996
1997 /* H is a function that might need $25 to be valid on entry.
1998 If we're creating a non-PIC relocatable object, mark H as
1999 being PIC. If we're creating a non-relocatable object with
2000 non-PIC branches and jumps to H, make sure that H has an la25
2001 stub. */
2002 if (bfd_link_relocatable (hti->info))
2003 {
2004 if (!PIC_OBJECT_P (hti->output_bfd))
2005 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2006 }
2007 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2008 {
2009 hti->error = TRUE;
2010 return FALSE;
2011 }
2012 }
2013 return TRUE;
2014 }
2015 \f
2016 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2017 Most mips16 instructions are 16 bits, but these instructions
2018 are 32 bits.
2019
2020 The format of these instructions is:
2021
2022 +--------------+--------------------------------+
2023 | JALX | X| Imm 20:16 | Imm 25:21 |
2024 +--------------+--------------------------------+
2025 | Immediate 15:0 |
2026 +-----------------------------------------------+
2027
2028 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2029 Note that the immediate value in the first word is swapped.
2030
2031 When producing a relocatable object file, R_MIPS16_26 is
2032 handled mostly like R_MIPS_26. In particular, the addend is
2033 stored as a straight 26-bit value in a 32-bit instruction.
2034 (gas makes life simpler for itself by never adjusting a
2035 R_MIPS16_26 reloc to be against a section, so the addend is
2036 always zero). However, the 32 bit instruction is stored as 2
2037 16-bit values, rather than a single 32-bit value. In a
2038 big-endian file, the result is the same; in a little-endian
2039 file, the two 16-bit halves of the 32 bit value are swapped.
2040 This is so that a disassembler can recognize the jal
2041 instruction.
2042
2043 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2044 instruction stored as two 16-bit values. The addend A is the
2045 contents of the targ26 field. The calculation is the same as
2046 R_MIPS_26. When storing the calculated value, reorder the
2047 immediate value as shown above, and don't forget to store the
2048 value as two 16-bit values.
2049
2050 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2051 defined as
2052
2053 big-endian:
2054 +--------+----------------------+
2055 | | |
2056 | | targ26-16 |
2057 |31 26|25 0|
2058 +--------+----------------------+
2059
2060 little-endian:
2061 +----------+------+-------------+
2062 | | | |
2063 | sub1 | | sub2 |
2064 |0 9|10 15|16 31|
2065 +----------+--------------------+
2066 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2067 ((sub1 << 16) | sub2)).
2068
2069 When producing a relocatable object file, the calculation is
2070 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2071 When producing a fully linked file, the calculation is
2072 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2073 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2074
2075 The table below lists the other MIPS16 instruction relocations.
2076 Each one is calculated in the same way as the non-MIPS16 relocation
2077 given on the right, but using the extended MIPS16 layout of 16-bit
2078 immediate fields:
2079
2080 R_MIPS16_GPREL R_MIPS_GPREL16
2081 R_MIPS16_GOT16 R_MIPS_GOT16
2082 R_MIPS16_CALL16 R_MIPS_CALL16
2083 R_MIPS16_HI16 R_MIPS_HI16
2084 R_MIPS16_LO16 R_MIPS_LO16
2085
2086 A typical instruction will have a format like this:
2087
2088 +--------------+--------------------------------+
2089 | EXTEND | Imm 10:5 | Imm 15:11 |
2090 +--------------+--------------------------------+
2091 | Major | rx | ry | Imm 4:0 |
2092 +--------------+--------------------------------+
2093
2094 EXTEND is the five bit value 11110. Major is the instruction
2095 opcode.
2096
2097 All we need to do here is shuffle the bits appropriately.
2098 As above, the two 16-bit halves must be swapped on a
2099 little-endian system.
2100
2101 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2102 relocatable field is shifted by 1 rather than 2 and the same bit
2103 shuffling is done as with the relocations above. */
2104
2105 static inline bfd_boolean
2106 mips16_reloc_p (int r_type)
2107 {
2108 switch (r_type)
2109 {
2110 case R_MIPS16_26:
2111 case R_MIPS16_GPREL:
2112 case R_MIPS16_GOT16:
2113 case R_MIPS16_CALL16:
2114 case R_MIPS16_HI16:
2115 case R_MIPS16_LO16:
2116 case R_MIPS16_TLS_GD:
2117 case R_MIPS16_TLS_LDM:
2118 case R_MIPS16_TLS_DTPREL_HI16:
2119 case R_MIPS16_TLS_DTPREL_LO16:
2120 case R_MIPS16_TLS_GOTTPREL:
2121 case R_MIPS16_TLS_TPREL_HI16:
2122 case R_MIPS16_TLS_TPREL_LO16:
2123 case R_MIPS16_PC16_S1:
2124 return TRUE;
2125
2126 default:
2127 return FALSE;
2128 }
2129 }
2130
2131 /* Check if a microMIPS reloc. */
2132
2133 static inline bfd_boolean
2134 micromips_reloc_p (unsigned int r_type)
2135 {
2136 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2137 }
2138
2139 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2140 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2141 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2142
2143 static inline bfd_boolean
2144 micromips_reloc_shuffle_p (unsigned int r_type)
2145 {
2146 return (micromips_reloc_p (r_type)
2147 && r_type != R_MICROMIPS_PC7_S1
2148 && r_type != R_MICROMIPS_PC10_S1);
2149 }
2150
2151 static inline bfd_boolean
2152 got16_reloc_p (int r_type)
2153 {
2154 return (r_type == R_MIPS_GOT16
2155 || r_type == R_MIPS16_GOT16
2156 || r_type == R_MICROMIPS_GOT16);
2157 }
2158
2159 static inline bfd_boolean
2160 call16_reloc_p (int r_type)
2161 {
2162 return (r_type == R_MIPS_CALL16
2163 || r_type == R_MIPS16_CALL16
2164 || r_type == R_MICROMIPS_CALL16);
2165 }
2166
2167 static inline bfd_boolean
2168 got_disp_reloc_p (unsigned int r_type)
2169 {
2170 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2171 }
2172
2173 static inline bfd_boolean
2174 got_page_reloc_p (unsigned int r_type)
2175 {
2176 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2177 }
2178
2179 static inline bfd_boolean
2180 got_lo16_reloc_p (unsigned int r_type)
2181 {
2182 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2183 }
2184
2185 static inline bfd_boolean
2186 call_hi16_reloc_p (unsigned int r_type)
2187 {
2188 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2189 }
2190
2191 static inline bfd_boolean
2192 call_lo16_reloc_p (unsigned int r_type)
2193 {
2194 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2195 }
2196
2197 static inline bfd_boolean
2198 hi16_reloc_p (int r_type)
2199 {
2200 return (r_type == R_MIPS_HI16
2201 || r_type == R_MIPS16_HI16
2202 || r_type == R_MICROMIPS_HI16
2203 || r_type == R_MIPS_PCHI16);
2204 }
2205
2206 static inline bfd_boolean
2207 lo16_reloc_p (int r_type)
2208 {
2209 return (r_type == R_MIPS_LO16
2210 || r_type == R_MIPS16_LO16
2211 || r_type == R_MICROMIPS_LO16
2212 || r_type == R_MIPS_PCLO16);
2213 }
2214
2215 static inline bfd_boolean
2216 mips16_call_reloc_p (int r_type)
2217 {
2218 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2219 }
2220
2221 static inline bfd_boolean
2222 jal_reloc_p (int r_type)
2223 {
2224 return (r_type == R_MIPS_26
2225 || r_type == R_MIPS16_26
2226 || r_type == R_MICROMIPS_26_S1);
2227 }
2228
2229 static inline bfd_boolean
2230 b_reloc_p (int r_type)
2231 {
2232 return (r_type == R_MIPS_PC26_S2
2233 || r_type == R_MIPS_PC21_S2
2234 || r_type == R_MIPS_PC16
2235 || r_type == R_MIPS_GNU_REL16_S2
2236 || r_type == R_MIPS16_PC16_S1
2237 || r_type == R_MICROMIPS_PC16_S1
2238 || r_type == R_MICROMIPS_PC10_S1
2239 || r_type == R_MICROMIPS_PC7_S1);
2240 }
2241
2242 static inline bfd_boolean
2243 aligned_pcrel_reloc_p (int r_type)
2244 {
2245 return (r_type == R_MIPS_PC18_S3
2246 || r_type == R_MIPS_PC19_S2);
2247 }
2248
2249 static inline bfd_boolean
2250 branch_reloc_p (int r_type)
2251 {
2252 return (r_type == R_MIPS_26
2253 || r_type == R_MIPS_PC26_S2
2254 || r_type == R_MIPS_PC21_S2
2255 || r_type == R_MIPS_PC16
2256 || r_type == R_MIPS_GNU_REL16_S2);
2257 }
2258
2259 static inline bfd_boolean
2260 mips16_branch_reloc_p (int r_type)
2261 {
2262 return (r_type == R_MIPS16_26
2263 || r_type == R_MIPS16_PC16_S1);
2264 }
2265
2266 static inline bfd_boolean
2267 micromips_branch_reloc_p (int r_type)
2268 {
2269 return (r_type == R_MICROMIPS_26_S1
2270 || r_type == R_MICROMIPS_PC16_S1
2271 || r_type == R_MICROMIPS_PC10_S1
2272 || r_type == R_MICROMIPS_PC7_S1);
2273 }
2274
2275 static inline bfd_boolean
2276 tls_gd_reloc_p (unsigned int r_type)
2277 {
2278 return (r_type == R_MIPS_TLS_GD
2279 || r_type == R_MIPS16_TLS_GD
2280 || r_type == R_MICROMIPS_TLS_GD);
2281 }
2282
2283 static inline bfd_boolean
2284 tls_ldm_reloc_p (unsigned int r_type)
2285 {
2286 return (r_type == R_MIPS_TLS_LDM
2287 || r_type == R_MIPS16_TLS_LDM
2288 || r_type == R_MICROMIPS_TLS_LDM);
2289 }
2290
2291 static inline bfd_boolean
2292 tls_gottprel_reloc_p (unsigned int r_type)
2293 {
2294 return (r_type == R_MIPS_TLS_GOTTPREL
2295 || r_type == R_MIPS16_TLS_GOTTPREL
2296 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2297 }
2298
2299 void
2300 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2301 bfd_boolean jal_shuffle, bfd_byte *data)
2302 {
2303 bfd_vma first, second, val;
2304
2305 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2306 return;
2307
2308 /* Pick up the first and second halfwords of the instruction. */
2309 first = bfd_get_16 (abfd, data);
2310 second = bfd_get_16 (abfd, data + 2);
2311 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2312 val = first << 16 | second;
2313 else if (r_type != R_MIPS16_26)
2314 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2315 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2316 else
2317 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2318 | ((first & 0x1f) << 21) | second);
2319 bfd_put_32 (abfd, val, data);
2320 }
2321
2322 void
2323 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2324 bfd_boolean jal_shuffle, bfd_byte *data)
2325 {
2326 bfd_vma first, second, val;
2327
2328 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2329 return;
2330
2331 val = bfd_get_32 (abfd, data);
2332 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2333 {
2334 second = val & 0xffff;
2335 first = val >> 16;
2336 }
2337 else if (r_type != R_MIPS16_26)
2338 {
2339 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2340 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2341 }
2342 else
2343 {
2344 second = val & 0xffff;
2345 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2346 | ((val >> 21) & 0x1f);
2347 }
2348 bfd_put_16 (abfd, second, data + 2);
2349 bfd_put_16 (abfd, first, data);
2350 }
2351
2352 bfd_reloc_status_type
2353 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2354 arelent *reloc_entry, asection *input_section,
2355 bfd_boolean relocatable, void *data, bfd_vma gp)
2356 {
2357 bfd_vma relocation;
2358 bfd_signed_vma val;
2359 bfd_reloc_status_type status;
2360
2361 if (bfd_is_com_section (symbol->section))
2362 relocation = 0;
2363 else
2364 relocation = symbol->value;
2365
2366 relocation += symbol->section->output_section->vma;
2367 relocation += symbol->section->output_offset;
2368
2369 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2370 return bfd_reloc_outofrange;
2371
2372 /* Set val to the offset into the section or symbol. */
2373 val = reloc_entry->addend;
2374
2375 _bfd_mips_elf_sign_extend (val, 16);
2376
2377 /* Adjust val for the final section location and GP value. If we
2378 are producing relocatable output, we don't want to do this for
2379 an external symbol. */
2380 if (! relocatable
2381 || (symbol->flags & BSF_SECTION_SYM) != 0)
2382 val += relocation - gp;
2383
2384 if (reloc_entry->howto->partial_inplace)
2385 {
2386 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2387 (bfd_byte *) data
2388 + reloc_entry->address);
2389 if (status != bfd_reloc_ok)
2390 return status;
2391 }
2392 else
2393 reloc_entry->addend = val;
2394
2395 if (relocatable)
2396 reloc_entry->address += input_section->output_offset;
2397
2398 return bfd_reloc_ok;
2399 }
2400
2401 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2402 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2403 that contains the relocation field and DATA points to the start of
2404 INPUT_SECTION. */
2405
2406 struct mips_hi16
2407 {
2408 struct mips_hi16 *next;
2409 bfd_byte *data;
2410 asection *input_section;
2411 arelent rel;
2412 };
2413
2414 /* FIXME: This should not be a static variable. */
2415
2416 static struct mips_hi16 *mips_hi16_list;
2417
2418 /* A howto special_function for REL *HI16 relocations. We can only
2419 calculate the correct value once we've seen the partnering
2420 *LO16 relocation, so just save the information for later.
2421
2422 The ABI requires that the *LO16 immediately follow the *HI16.
2423 However, as a GNU extension, we permit an arbitrary number of
2424 *HI16s to be associated with a single *LO16. This significantly
2425 simplies the relocation handling in gcc. */
2426
2427 bfd_reloc_status_type
2428 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2429 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2430 asection *input_section, bfd *output_bfd,
2431 char **error_message ATTRIBUTE_UNUSED)
2432 {
2433 struct mips_hi16 *n;
2434
2435 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2436 return bfd_reloc_outofrange;
2437
2438 n = bfd_malloc (sizeof *n);
2439 if (n == NULL)
2440 return bfd_reloc_outofrange;
2441
2442 n->next = mips_hi16_list;
2443 n->data = data;
2444 n->input_section = input_section;
2445 n->rel = *reloc_entry;
2446 mips_hi16_list = n;
2447
2448 if (output_bfd != NULL)
2449 reloc_entry->address += input_section->output_offset;
2450
2451 return bfd_reloc_ok;
2452 }
2453
2454 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2455 like any other 16-bit relocation when applied to global symbols, but is
2456 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2457
2458 bfd_reloc_status_type
2459 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2460 void *data, asection *input_section,
2461 bfd *output_bfd, char **error_message)
2462 {
2463 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2464 || bfd_is_und_section (bfd_get_section (symbol))
2465 || bfd_is_com_section (bfd_get_section (symbol)))
2466 /* The relocation is against a global symbol. */
2467 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2468 input_section, output_bfd,
2469 error_message);
2470
2471 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2472 input_section, output_bfd, error_message);
2473 }
2474
2475 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2476 is a straightforward 16 bit inplace relocation, but we must deal with
2477 any partnering high-part relocations as well. */
2478
2479 bfd_reloc_status_type
2480 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2481 void *data, asection *input_section,
2482 bfd *output_bfd, char **error_message)
2483 {
2484 bfd_vma vallo;
2485 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2486
2487 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2488 return bfd_reloc_outofrange;
2489
2490 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2491 location);
2492 vallo = bfd_get_32 (abfd, location);
2493 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2494 location);
2495
2496 while (mips_hi16_list != NULL)
2497 {
2498 bfd_reloc_status_type ret;
2499 struct mips_hi16 *hi;
2500
2501 hi = mips_hi16_list;
2502
2503 /* R_MIPS*_GOT16 relocations are something of a special case. We
2504 want to install the addend in the same way as for a R_MIPS*_HI16
2505 relocation (with a rightshift of 16). However, since GOT16
2506 relocations can also be used with global symbols, their howto
2507 has a rightshift of 0. */
2508 if (hi->rel.howto->type == R_MIPS_GOT16)
2509 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2510 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2511 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2512 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2513 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2514
2515 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2516 carry or borrow will induce a change of +1 or -1 in the high part. */
2517 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2518
2519 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2520 hi->input_section, output_bfd,
2521 error_message);
2522 if (ret != bfd_reloc_ok)
2523 return ret;
2524
2525 mips_hi16_list = hi->next;
2526 free (hi);
2527 }
2528
2529 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2530 input_section, output_bfd,
2531 error_message);
2532 }
2533
2534 /* A generic howto special_function. This calculates and installs the
2535 relocation itself, thus avoiding the oft-discussed problems in
2536 bfd_perform_relocation and bfd_install_relocation. */
2537
2538 bfd_reloc_status_type
2539 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2540 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2541 asection *input_section, bfd *output_bfd,
2542 char **error_message ATTRIBUTE_UNUSED)
2543 {
2544 bfd_signed_vma val;
2545 bfd_reloc_status_type status;
2546 bfd_boolean relocatable;
2547
2548 relocatable = (output_bfd != NULL);
2549
2550 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2551 return bfd_reloc_outofrange;
2552
2553 /* Build up the field adjustment in VAL. */
2554 val = 0;
2555 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2556 {
2557 /* Either we're calculating the final field value or we have a
2558 relocation against a section symbol. Add in the section's
2559 offset or address. */
2560 val += symbol->section->output_section->vma;
2561 val += symbol->section->output_offset;
2562 }
2563
2564 if (!relocatable)
2565 {
2566 /* We're calculating the final field value. Add in the symbol's value
2567 and, if pc-relative, subtract the address of the field itself. */
2568 val += symbol->value;
2569 if (reloc_entry->howto->pc_relative)
2570 {
2571 val -= input_section->output_section->vma;
2572 val -= input_section->output_offset;
2573 val -= reloc_entry->address;
2574 }
2575 }
2576
2577 /* VAL is now the final adjustment. If we're keeping this relocation
2578 in the output file, and if the relocation uses a separate addend,
2579 we just need to add VAL to that addend. Otherwise we need to add
2580 VAL to the relocation field itself. */
2581 if (relocatable && !reloc_entry->howto->partial_inplace)
2582 reloc_entry->addend += val;
2583 else
2584 {
2585 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2586
2587 /* Add in the separate addend, if any. */
2588 val += reloc_entry->addend;
2589
2590 /* Add VAL to the relocation field. */
2591 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2592 location);
2593 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2594 location);
2595 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2596 location);
2597
2598 if (status != bfd_reloc_ok)
2599 return status;
2600 }
2601
2602 if (relocatable)
2603 reloc_entry->address += input_section->output_offset;
2604
2605 return bfd_reloc_ok;
2606 }
2607 \f
2608 /* Swap an entry in a .gptab section. Note that these routines rely
2609 on the equivalence of the two elements of the union. */
2610
2611 static void
2612 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2613 Elf32_gptab *in)
2614 {
2615 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2616 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2617 }
2618
2619 static void
2620 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2621 Elf32_External_gptab *ex)
2622 {
2623 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2624 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2625 }
2626
2627 static void
2628 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2629 Elf32_External_compact_rel *ex)
2630 {
2631 H_PUT_32 (abfd, in->id1, ex->id1);
2632 H_PUT_32 (abfd, in->num, ex->num);
2633 H_PUT_32 (abfd, in->id2, ex->id2);
2634 H_PUT_32 (abfd, in->offset, ex->offset);
2635 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2636 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2637 }
2638
2639 static void
2640 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2641 Elf32_External_crinfo *ex)
2642 {
2643 unsigned long l;
2644
2645 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2646 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2647 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2648 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2649 H_PUT_32 (abfd, l, ex->info);
2650 H_PUT_32 (abfd, in->konst, ex->konst);
2651 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2652 }
2653 \f
2654 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2655 routines swap this structure in and out. They are used outside of
2656 BFD, so they are globally visible. */
2657
2658 void
2659 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2660 Elf32_RegInfo *in)
2661 {
2662 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2663 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2664 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2665 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2666 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2667 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2668 }
2669
2670 void
2671 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2672 Elf32_External_RegInfo *ex)
2673 {
2674 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2675 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2676 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2677 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2678 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2679 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2680 }
2681
2682 /* In the 64 bit ABI, the .MIPS.options section holds register
2683 information in an Elf64_Reginfo structure. These routines swap
2684 them in and out. They are globally visible because they are used
2685 outside of BFD. These routines are here so that gas can call them
2686 without worrying about whether the 64 bit ABI has been included. */
2687
2688 void
2689 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2690 Elf64_Internal_RegInfo *in)
2691 {
2692 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2693 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2694 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2695 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2696 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2697 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2698 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2699 }
2700
2701 void
2702 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2703 Elf64_External_RegInfo *ex)
2704 {
2705 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2706 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2707 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2708 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2709 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2710 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2711 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2712 }
2713
2714 /* Swap in an options header. */
2715
2716 void
2717 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2718 Elf_Internal_Options *in)
2719 {
2720 in->kind = H_GET_8 (abfd, ex->kind);
2721 in->size = H_GET_8 (abfd, ex->size);
2722 in->section = H_GET_16 (abfd, ex->section);
2723 in->info = H_GET_32 (abfd, ex->info);
2724 }
2725
2726 /* Swap out an options header. */
2727
2728 void
2729 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2730 Elf_External_Options *ex)
2731 {
2732 H_PUT_8 (abfd, in->kind, ex->kind);
2733 H_PUT_8 (abfd, in->size, ex->size);
2734 H_PUT_16 (abfd, in->section, ex->section);
2735 H_PUT_32 (abfd, in->info, ex->info);
2736 }
2737
2738 /* Swap in an abiflags structure. */
2739
2740 void
2741 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2742 const Elf_External_ABIFlags_v0 *ex,
2743 Elf_Internal_ABIFlags_v0 *in)
2744 {
2745 in->version = H_GET_16 (abfd, ex->version);
2746 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2747 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2748 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2749 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2750 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2751 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2752 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2753 in->ases = H_GET_32 (abfd, ex->ases);
2754 in->flags1 = H_GET_32 (abfd, ex->flags1);
2755 in->flags2 = H_GET_32 (abfd, ex->flags2);
2756 }
2757
2758 /* Swap out an abiflags structure. */
2759
2760 void
2761 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2762 const Elf_Internal_ABIFlags_v0 *in,
2763 Elf_External_ABIFlags_v0 *ex)
2764 {
2765 H_PUT_16 (abfd, in->version, ex->version);
2766 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2767 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2768 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2769 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2770 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2771 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2772 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2773 H_PUT_32 (abfd, in->ases, ex->ases);
2774 H_PUT_32 (abfd, in->flags1, ex->flags1);
2775 H_PUT_32 (abfd, in->flags2, ex->flags2);
2776 }
2777 \f
2778 /* This function is called via qsort() to sort the dynamic relocation
2779 entries by increasing r_symndx value. */
2780
2781 static int
2782 sort_dynamic_relocs (const void *arg1, const void *arg2)
2783 {
2784 Elf_Internal_Rela int_reloc1;
2785 Elf_Internal_Rela int_reloc2;
2786 int diff;
2787
2788 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2789 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2790
2791 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2792 if (diff != 0)
2793 return diff;
2794
2795 if (int_reloc1.r_offset < int_reloc2.r_offset)
2796 return -1;
2797 if (int_reloc1.r_offset > int_reloc2.r_offset)
2798 return 1;
2799 return 0;
2800 }
2801
2802 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2803
2804 static int
2805 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2806 const void *arg2 ATTRIBUTE_UNUSED)
2807 {
2808 #ifdef BFD64
2809 Elf_Internal_Rela int_reloc1[3];
2810 Elf_Internal_Rela int_reloc2[3];
2811
2812 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2813 (reldyn_sorting_bfd, arg1, int_reloc1);
2814 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2815 (reldyn_sorting_bfd, arg2, int_reloc2);
2816
2817 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2818 return -1;
2819 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2820 return 1;
2821
2822 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2823 return -1;
2824 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2825 return 1;
2826 return 0;
2827 #else
2828 abort ();
2829 #endif
2830 }
2831
2832
2833 /* This routine is used to write out ECOFF debugging external symbol
2834 information. It is called via mips_elf_link_hash_traverse. The
2835 ECOFF external symbol information must match the ELF external
2836 symbol information. Unfortunately, at this point we don't know
2837 whether a symbol is required by reloc information, so the two
2838 tables may wind up being different. We must sort out the external
2839 symbol information before we can set the final size of the .mdebug
2840 section, and we must set the size of the .mdebug section before we
2841 can relocate any sections, and we can't know which symbols are
2842 required by relocation until we relocate the sections.
2843 Fortunately, it is relatively unlikely that any symbol will be
2844 stripped but required by a reloc. In particular, it can not happen
2845 when generating a final executable. */
2846
2847 static bfd_boolean
2848 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2849 {
2850 struct extsym_info *einfo = data;
2851 bfd_boolean strip;
2852 asection *sec, *output_section;
2853
2854 if (h->root.indx == -2)
2855 strip = FALSE;
2856 else if ((h->root.def_dynamic
2857 || h->root.ref_dynamic
2858 || h->root.type == bfd_link_hash_new)
2859 && !h->root.def_regular
2860 && !h->root.ref_regular)
2861 strip = TRUE;
2862 else if (einfo->info->strip == strip_all
2863 || (einfo->info->strip == strip_some
2864 && bfd_hash_lookup (einfo->info->keep_hash,
2865 h->root.root.root.string,
2866 FALSE, FALSE) == NULL))
2867 strip = TRUE;
2868 else
2869 strip = FALSE;
2870
2871 if (strip)
2872 return TRUE;
2873
2874 if (h->esym.ifd == -2)
2875 {
2876 h->esym.jmptbl = 0;
2877 h->esym.cobol_main = 0;
2878 h->esym.weakext = 0;
2879 h->esym.reserved = 0;
2880 h->esym.ifd = ifdNil;
2881 h->esym.asym.value = 0;
2882 h->esym.asym.st = stGlobal;
2883
2884 if (h->root.root.type == bfd_link_hash_undefined
2885 || h->root.root.type == bfd_link_hash_undefweak)
2886 {
2887 const char *name;
2888
2889 /* Use undefined class. Also, set class and type for some
2890 special symbols. */
2891 name = h->root.root.root.string;
2892 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2893 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2894 {
2895 h->esym.asym.sc = scData;
2896 h->esym.asym.st = stLabel;
2897 h->esym.asym.value = 0;
2898 }
2899 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2900 {
2901 h->esym.asym.sc = scAbs;
2902 h->esym.asym.st = stLabel;
2903 h->esym.asym.value =
2904 mips_elf_hash_table (einfo->info)->procedure_count;
2905 }
2906 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2907 {
2908 h->esym.asym.sc = scAbs;
2909 h->esym.asym.st = stLabel;
2910 h->esym.asym.value = elf_gp (einfo->abfd);
2911 }
2912 else
2913 h->esym.asym.sc = scUndefined;
2914 }
2915 else if (h->root.root.type != bfd_link_hash_defined
2916 && h->root.root.type != bfd_link_hash_defweak)
2917 h->esym.asym.sc = scAbs;
2918 else
2919 {
2920 const char *name;
2921
2922 sec = h->root.root.u.def.section;
2923 output_section = sec->output_section;
2924
2925 /* When making a shared library and symbol h is the one from
2926 the another shared library, OUTPUT_SECTION may be null. */
2927 if (output_section == NULL)
2928 h->esym.asym.sc = scUndefined;
2929 else
2930 {
2931 name = bfd_section_name (output_section->owner, output_section);
2932
2933 if (strcmp (name, ".text") == 0)
2934 h->esym.asym.sc = scText;
2935 else if (strcmp (name, ".data") == 0)
2936 h->esym.asym.sc = scData;
2937 else if (strcmp (name, ".sdata") == 0)
2938 h->esym.asym.sc = scSData;
2939 else if (strcmp (name, ".rodata") == 0
2940 || strcmp (name, ".rdata") == 0)
2941 h->esym.asym.sc = scRData;
2942 else if (strcmp (name, ".bss") == 0)
2943 h->esym.asym.sc = scBss;
2944 else if (strcmp (name, ".sbss") == 0)
2945 h->esym.asym.sc = scSBss;
2946 else if (strcmp (name, ".init") == 0)
2947 h->esym.asym.sc = scInit;
2948 else if (strcmp (name, ".fini") == 0)
2949 h->esym.asym.sc = scFini;
2950 else
2951 h->esym.asym.sc = scAbs;
2952 }
2953 }
2954
2955 h->esym.asym.reserved = 0;
2956 h->esym.asym.index = indexNil;
2957 }
2958
2959 if (h->root.root.type == bfd_link_hash_common)
2960 h->esym.asym.value = h->root.root.u.c.size;
2961 else if (h->root.root.type == bfd_link_hash_defined
2962 || h->root.root.type == bfd_link_hash_defweak)
2963 {
2964 if (h->esym.asym.sc == scCommon)
2965 h->esym.asym.sc = scBss;
2966 else if (h->esym.asym.sc == scSCommon)
2967 h->esym.asym.sc = scSBss;
2968
2969 sec = h->root.root.u.def.section;
2970 output_section = sec->output_section;
2971 if (output_section != NULL)
2972 h->esym.asym.value = (h->root.root.u.def.value
2973 + sec->output_offset
2974 + output_section->vma);
2975 else
2976 h->esym.asym.value = 0;
2977 }
2978 else
2979 {
2980 struct mips_elf_link_hash_entry *hd = h;
2981
2982 while (hd->root.root.type == bfd_link_hash_indirect)
2983 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2984
2985 if (hd->needs_lazy_stub)
2986 {
2987 BFD_ASSERT (hd->root.plt.plist != NULL);
2988 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
2989 /* Set type and value for a symbol with a function stub. */
2990 h->esym.asym.st = stProc;
2991 sec = hd->root.root.u.def.section;
2992 if (sec == NULL)
2993 h->esym.asym.value = 0;
2994 else
2995 {
2996 output_section = sec->output_section;
2997 if (output_section != NULL)
2998 h->esym.asym.value = (hd->root.plt.plist->stub_offset
2999 + sec->output_offset
3000 + output_section->vma);
3001 else
3002 h->esym.asym.value = 0;
3003 }
3004 }
3005 }
3006
3007 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3008 h->root.root.root.string,
3009 &h->esym))
3010 {
3011 einfo->failed = TRUE;
3012 return FALSE;
3013 }
3014
3015 return TRUE;
3016 }
3017
3018 /* A comparison routine used to sort .gptab entries. */
3019
3020 static int
3021 gptab_compare (const void *p1, const void *p2)
3022 {
3023 const Elf32_gptab *a1 = p1;
3024 const Elf32_gptab *a2 = p2;
3025
3026 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3027 }
3028 \f
3029 /* Functions to manage the got entry hash table. */
3030
3031 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3032 hash number. */
3033
3034 static INLINE hashval_t
3035 mips_elf_hash_bfd_vma (bfd_vma addr)
3036 {
3037 #ifdef BFD64
3038 return addr + (addr >> 32);
3039 #else
3040 return addr;
3041 #endif
3042 }
3043
3044 static hashval_t
3045 mips_elf_got_entry_hash (const void *entry_)
3046 {
3047 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3048
3049 return (entry->symndx
3050 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3051 + (entry->tls_type == GOT_TLS_LDM ? 0
3052 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3053 : entry->symndx >= 0 ? (entry->abfd->id
3054 + mips_elf_hash_bfd_vma (entry->d.addend))
3055 : entry->d.h->root.root.root.hash));
3056 }
3057
3058 static int
3059 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3060 {
3061 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3062 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3063
3064 return (e1->symndx == e2->symndx
3065 && e1->tls_type == e2->tls_type
3066 && (e1->tls_type == GOT_TLS_LDM ? TRUE
3067 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3068 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3069 && e1->d.addend == e2->d.addend)
3070 : e2->abfd && e1->d.h == e2->d.h));
3071 }
3072
3073 static hashval_t
3074 mips_got_page_ref_hash (const void *ref_)
3075 {
3076 const struct mips_got_page_ref *ref;
3077
3078 ref = (const struct mips_got_page_ref *) ref_;
3079 return ((ref->symndx >= 0
3080 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3081 : ref->u.h->root.root.root.hash)
3082 + mips_elf_hash_bfd_vma (ref->addend));
3083 }
3084
3085 static int
3086 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3087 {
3088 const struct mips_got_page_ref *ref1, *ref2;
3089
3090 ref1 = (const struct mips_got_page_ref *) ref1_;
3091 ref2 = (const struct mips_got_page_ref *) ref2_;
3092 return (ref1->symndx == ref2->symndx
3093 && (ref1->symndx < 0
3094 ? ref1->u.h == ref2->u.h
3095 : ref1->u.abfd == ref2->u.abfd)
3096 && ref1->addend == ref2->addend);
3097 }
3098
3099 static hashval_t
3100 mips_got_page_entry_hash (const void *entry_)
3101 {
3102 const struct mips_got_page_entry *entry;
3103
3104 entry = (const struct mips_got_page_entry *) entry_;
3105 return entry->sec->id;
3106 }
3107
3108 static int
3109 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3110 {
3111 const struct mips_got_page_entry *entry1, *entry2;
3112
3113 entry1 = (const struct mips_got_page_entry *) entry1_;
3114 entry2 = (const struct mips_got_page_entry *) entry2_;
3115 return entry1->sec == entry2->sec;
3116 }
3117 \f
3118 /* Create and return a new mips_got_info structure. */
3119
3120 static struct mips_got_info *
3121 mips_elf_create_got_info (bfd *abfd)
3122 {
3123 struct mips_got_info *g;
3124
3125 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3126 if (g == NULL)
3127 return NULL;
3128
3129 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3130 mips_elf_got_entry_eq, NULL);
3131 if (g->got_entries == NULL)
3132 return NULL;
3133
3134 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3135 mips_got_page_ref_eq, NULL);
3136 if (g->got_page_refs == NULL)
3137 return NULL;
3138
3139 return g;
3140 }
3141
3142 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3143 CREATE_P and if ABFD doesn't already have a GOT. */
3144
3145 static struct mips_got_info *
3146 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3147 {
3148 struct mips_elf_obj_tdata *tdata;
3149
3150 if (!is_mips_elf (abfd))
3151 return NULL;
3152
3153 tdata = mips_elf_tdata (abfd);
3154 if (!tdata->got && create_p)
3155 tdata->got = mips_elf_create_got_info (abfd);
3156 return tdata->got;
3157 }
3158
3159 /* Record that ABFD should use output GOT G. */
3160
3161 static void
3162 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3163 {
3164 struct mips_elf_obj_tdata *tdata;
3165
3166 BFD_ASSERT (is_mips_elf (abfd));
3167 tdata = mips_elf_tdata (abfd);
3168 if (tdata->got)
3169 {
3170 /* The GOT structure itself and the hash table entries are
3171 allocated to a bfd, but the hash tables aren't. */
3172 htab_delete (tdata->got->got_entries);
3173 htab_delete (tdata->got->got_page_refs);
3174 if (tdata->got->got_page_entries)
3175 htab_delete (tdata->got->got_page_entries);
3176 }
3177 tdata->got = g;
3178 }
3179
3180 /* Return the dynamic relocation section. If it doesn't exist, try to
3181 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3182 if creation fails. */
3183
3184 static asection *
3185 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3186 {
3187 const char *dname;
3188 asection *sreloc;
3189 bfd *dynobj;
3190
3191 dname = MIPS_ELF_REL_DYN_NAME (info);
3192 dynobj = elf_hash_table (info)->dynobj;
3193 sreloc = bfd_get_linker_section (dynobj, dname);
3194 if (sreloc == NULL && create_p)
3195 {
3196 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3197 (SEC_ALLOC
3198 | SEC_LOAD
3199 | SEC_HAS_CONTENTS
3200 | SEC_IN_MEMORY
3201 | SEC_LINKER_CREATED
3202 | SEC_READONLY));
3203 if (sreloc == NULL
3204 || ! bfd_set_section_alignment (dynobj, sreloc,
3205 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3206 return NULL;
3207 }
3208 return sreloc;
3209 }
3210
3211 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3212
3213 static int
3214 mips_elf_reloc_tls_type (unsigned int r_type)
3215 {
3216 if (tls_gd_reloc_p (r_type))
3217 return GOT_TLS_GD;
3218
3219 if (tls_ldm_reloc_p (r_type))
3220 return GOT_TLS_LDM;
3221
3222 if (tls_gottprel_reloc_p (r_type))
3223 return GOT_TLS_IE;
3224
3225 return GOT_TLS_NONE;
3226 }
3227
3228 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3229
3230 static int
3231 mips_tls_got_entries (unsigned int type)
3232 {
3233 switch (type)
3234 {
3235 case GOT_TLS_GD:
3236 case GOT_TLS_LDM:
3237 return 2;
3238
3239 case GOT_TLS_IE:
3240 return 1;
3241
3242 case GOT_TLS_NONE:
3243 return 0;
3244 }
3245 abort ();
3246 }
3247
3248 /* Count the number of relocations needed for a TLS GOT entry, with
3249 access types from TLS_TYPE, and symbol H (or a local symbol if H
3250 is NULL). */
3251
3252 static int
3253 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3254 struct elf_link_hash_entry *h)
3255 {
3256 int indx = 0;
3257 bfd_boolean need_relocs = FALSE;
3258 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3259
3260 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3261 && (!bfd_link_pic (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
3262 indx = h->dynindx;
3263
3264 if ((bfd_link_pic (info) || indx != 0)
3265 && (h == NULL
3266 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3267 || h->root.type != bfd_link_hash_undefweak))
3268 need_relocs = TRUE;
3269
3270 if (!need_relocs)
3271 return 0;
3272
3273 switch (tls_type)
3274 {
3275 case GOT_TLS_GD:
3276 return indx != 0 ? 2 : 1;
3277
3278 case GOT_TLS_IE:
3279 return 1;
3280
3281 case GOT_TLS_LDM:
3282 return bfd_link_pic (info) ? 1 : 0;
3283
3284 default:
3285 return 0;
3286 }
3287 }
3288
3289 /* Add the number of GOT entries and TLS relocations required by ENTRY
3290 to G. */
3291
3292 static void
3293 mips_elf_count_got_entry (struct bfd_link_info *info,
3294 struct mips_got_info *g,
3295 struct mips_got_entry *entry)
3296 {
3297 if (entry->tls_type)
3298 {
3299 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3300 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3301 entry->symndx < 0
3302 ? &entry->d.h->root : NULL);
3303 }
3304 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3305 g->local_gotno += 1;
3306 else
3307 g->global_gotno += 1;
3308 }
3309
3310 /* Output a simple dynamic relocation into SRELOC. */
3311
3312 static void
3313 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3314 asection *sreloc,
3315 unsigned long reloc_index,
3316 unsigned long indx,
3317 int r_type,
3318 bfd_vma offset)
3319 {
3320 Elf_Internal_Rela rel[3];
3321
3322 memset (rel, 0, sizeof (rel));
3323
3324 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3325 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3326
3327 if (ABI_64_P (output_bfd))
3328 {
3329 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3330 (output_bfd, &rel[0],
3331 (sreloc->contents
3332 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3333 }
3334 else
3335 bfd_elf32_swap_reloc_out
3336 (output_bfd, &rel[0],
3337 (sreloc->contents
3338 + reloc_index * sizeof (Elf32_External_Rel)));
3339 }
3340
3341 /* Initialize a set of TLS GOT entries for one symbol. */
3342
3343 static void
3344 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3345 struct mips_got_entry *entry,
3346 struct mips_elf_link_hash_entry *h,
3347 bfd_vma value)
3348 {
3349 struct mips_elf_link_hash_table *htab;
3350 int indx;
3351 asection *sreloc, *sgot;
3352 bfd_vma got_offset, got_offset2;
3353 bfd_boolean need_relocs = FALSE;
3354
3355 htab = mips_elf_hash_table (info);
3356 if (htab == NULL)
3357 return;
3358
3359 sgot = htab->root.sgot;
3360
3361 indx = 0;
3362 if (h != NULL)
3363 {
3364 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3365
3366 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info),
3367 &h->root)
3368 && (!bfd_link_pic (info)
3369 || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3370 indx = h->root.dynindx;
3371 }
3372
3373 if (entry->tls_initialized)
3374 return;
3375
3376 if ((bfd_link_pic (info) || indx != 0)
3377 && (h == NULL
3378 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3379 || h->root.type != bfd_link_hash_undefweak))
3380 need_relocs = TRUE;
3381
3382 /* MINUS_ONE means the symbol is not defined in this object. It may not
3383 be defined at all; assume that the value doesn't matter in that
3384 case. Otherwise complain if we would use the value. */
3385 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3386 || h->root.root.type == bfd_link_hash_undefweak);
3387
3388 /* Emit necessary relocations. */
3389 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3390 got_offset = entry->gotidx;
3391
3392 switch (entry->tls_type)
3393 {
3394 case GOT_TLS_GD:
3395 /* General Dynamic. */
3396 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3397
3398 if (need_relocs)
3399 {
3400 mips_elf_output_dynamic_relocation
3401 (abfd, sreloc, sreloc->reloc_count++, indx,
3402 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3403 sgot->output_offset + sgot->output_section->vma + got_offset);
3404
3405 if (indx)
3406 mips_elf_output_dynamic_relocation
3407 (abfd, sreloc, sreloc->reloc_count++, indx,
3408 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3409 sgot->output_offset + sgot->output_section->vma + got_offset2);
3410 else
3411 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3412 sgot->contents + got_offset2);
3413 }
3414 else
3415 {
3416 MIPS_ELF_PUT_WORD (abfd, 1,
3417 sgot->contents + got_offset);
3418 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3419 sgot->contents + got_offset2);
3420 }
3421 break;
3422
3423 case GOT_TLS_IE:
3424 /* Initial Exec model. */
3425 if (need_relocs)
3426 {
3427 if (indx == 0)
3428 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3429 sgot->contents + got_offset);
3430 else
3431 MIPS_ELF_PUT_WORD (abfd, 0,
3432 sgot->contents + got_offset);
3433
3434 mips_elf_output_dynamic_relocation
3435 (abfd, sreloc, sreloc->reloc_count++, indx,
3436 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3437 sgot->output_offset + sgot->output_section->vma + got_offset);
3438 }
3439 else
3440 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3441 sgot->contents + got_offset);
3442 break;
3443
3444 case GOT_TLS_LDM:
3445 /* The initial offset is zero, and the LD offsets will include the
3446 bias by DTP_OFFSET. */
3447 MIPS_ELF_PUT_WORD (abfd, 0,
3448 sgot->contents + got_offset
3449 + MIPS_ELF_GOT_SIZE (abfd));
3450
3451 if (!bfd_link_pic (info))
3452 MIPS_ELF_PUT_WORD (abfd, 1,
3453 sgot->contents + got_offset);
3454 else
3455 mips_elf_output_dynamic_relocation
3456 (abfd, sreloc, sreloc->reloc_count++, indx,
3457 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3458 sgot->output_offset + sgot->output_section->vma + got_offset);
3459 break;
3460
3461 default:
3462 abort ();
3463 }
3464
3465 entry->tls_initialized = TRUE;
3466 }
3467
3468 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3469 for global symbol H. .got.plt comes before the GOT, so the offset
3470 will be negative. */
3471
3472 static bfd_vma
3473 mips_elf_gotplt_index (struct bfd_link_info *info,
3474 struct elf_link_hash_entry *h)
3475 {
3476 bfd_vma got_address, got_value;
3477 struct mips_elf_link_hash_table *htab;
3478
3479 htab = mips_elf_hash_table (info);
3480 BFD_ASSERT (htab != NULL);
3481
3482 BFD_ASSERT (h->plt.plist != NULL);
3483 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3484
3485 /* Calculate the address of the associated .got.plt entry. */
3486 got_address = (htab->root.sgotplt->output_section->vma
3487 + htab->root.sgotplt->output_offset
3488 + (h->plt.plist->gotplt_index
3489 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3490
3491 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3492 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3493 + htab->root.hgot->root.u.def.section->output_offset
3494 + htab->root.hgot->root.u.def.value);
3495
3496 return got_address - got_value;
3497 }
3498
3499 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3500 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3501 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3502 offset can be found. */
3503
3504 static bfd_vma
3505 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3506 bfd_vma value, unsigned long r_symndx,
3507 struct mips_elf_link_hash_entry *h, int r_type)
3508 {
3509 struct mips_elf_link_hash_table *htab;
3510 struct mips_got_entry *entry;
3511
3512 htab = mips_elf_hash_table (info);
3513 BFD_ASSERT (htab != NULL);
3514
3515 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3516 r_symndx, h, r_type);
3517 if (!entry)
3518 return MINUS_ONE;
3519
3520 if (entry->tls_type)
3521 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3522 return entry->gotidx;
3523 }
3524
3525 /* Return the GOT index of global symbol H in the primary GOT. */
3526
3527 static bfd_vma
3528 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3529 struct elf_link_hash_entry *h)
3530 {
3531 struct mips_elf_link_hash_table *htab;
3532 long global_got_dynindx;
3533 struct mips_got_info *g;
3534 bfd_vma got_index;
3535
3536 htab = mips_elf_hash_table (info);
3537 BFD_ASSERT (htab != NULL);
3538
3539 global_got_dynindx = 0;
3540 if (htab->global_gotsym != NULL)
3541 global_got_dynindx = htab->global_gotsym->dynindx;
3542
3543 /* Once we determine the global GOT entry with the lowest dynamic
3544 symbol table index, we must put all dynamic symbols with greater
3545 indices into the primary GOT. That makes it easy to calculate the
3546 GOT offset. */
3547 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3548 g = mips_elf_bfd_got (obfd, FALSE);
3549 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3550 * MIPS_ELF_GOT_SIZE (obfd));
3551 BFD_ASSERT (got_index < htab->root.sgot->size);
3552
3553 return got_index;
3554 }
3555
3556 /* Return the GOT index for the global symbol indicated by H, which is
3557 referenced by a relocation of type R_TYPE in IBFD. */
3558
3559 static bfd_vma
3560 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3561 struct elf_link_hash_entry *h, int r_type)
3562 {
3563 struct mips_elf_link_hash_table *htab;
3564 struct mips_got_info *g;
3565 struct mips_got_entry lookup, *entry;
3566 bfd_vma gotidx;
3567
3568 htab = mips_elf_hash_table (info);
3569 BFD_ASSERT (htab != NULL);
3570
3571 g = mips_elf_bfd_got (ibfd, FALSE);
3572 BFD_ASSERT (g);
3573
3574 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3575 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3576 return mips_elf_primary_global_got_index (obfd, info, h);
3577
3578 lookup.abfd = ibfd;
3579 lookup.symndx = -1;
3580 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3581 entry = htab_find (g->got_entries, &lookup);
3582 BFD_ASSERT (entry);
3583
3584 gotidx = entry->gotidx;
3585 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3586
3587 if (lookup.tls_type)
3588 {
3589 bfd_vma value = MINUS_ONE;
3590
3591 if ((h->root.type == bfd_link_hash_defined
3592 || h->root.type == bfd_link_hash_defweak)
3593 && h->root.u.def.section->output_section)
3594 value = (h->root.u.def.value
3595 + h->root.u.def.section->output_offset
3596 + h->root.u.def.section->output_section->vma);
3597
3598 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3599 }
3600 return gotidx;
3601 }
3602
3603 /* Find a GOT page entry that points to within 32KB of VALUE. These
3604 entries are supposed to be placed at small offsets in the GOT, i.e.,
3605 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3606 entry could be created. If OFFSETP is nonnull, use it to return the
3607 offset of the GOT entry from VALUE. */
3608
3609 static bfd_vma
3610 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3611 bfd_vma value, bfd_vma *offsetp)
3612 {
3613 bfd_vma page, got_index;
3614 struct mips_got_entry *entry;
3615
3616 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3617 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3618 NULL, R_MIPS_GOT_PAGE);
3619
3620 if (!entry)
3621 return MINUS_ONE;
3622
3623 got_index = entry->gotidx;
3624
3625 if (offsetp)
3626 *offsetp = value - entry->d.address;
3627
3628 return got_index;
3629 }
3630
3631 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3632 EXTERNAL is true if the relocation was originally against a global
3633 symbol that binds locally. */
3634
3635 static bfd_vma
3636 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3637 bfd_vma value, bfd_boolean external)
3638 {
3639 struct mips_got_entry *entry;
3640
3641 /* GOT16 relocations against local symbols are followed by a LO16
3642 relocation; those against global symbols are not. Thus if the
3643 symbol was originally local, the GOT16 relocation should load the
3644 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3645 if (! external)
3646 value = mips_elf_high (value) << 16;
3647
3648 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3649 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3650 same in all cases. */
3651 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3652 NULL, R_MIPS_GOT16);
3653 if (entry)
3654 return entry->gotidx;
3655 else
3656 return MINUS_ONE;
3657 }
3658
3659 /* Returns the offset for the entry at the INDEXth position
3660 in the GOT. */
3661
3662 static bfd_vma
3663 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3664 bfd *input_bfd, bfd_vma got_index)
3665 {
3666 struct mips_elf_link_hash_table *htab;
3667 asection *sgot;
3668 bfd_vma gp;
3669
3670 htab = mips_elf_hash_table (info);
3671 BFD_ASSERT (htab != NULL);
3672
3673 sgot = htab->root.sgot;
3674 gp = _bfd_get_gp_value (output_bfd)
3675 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3676
3677 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3678 }
3679
3680 /* Create and return a local GOT entry for VALUE, which was calculated
3681 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3682 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3683 instead. */
3684
3685 static struct mips_got_entry *
3686 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3687 bfd *ibfd, bfd_vma value,
3688 unsigned long r_symndx,
3689 struct mips_elf_link_hash_entry *h,
3690 int r_type)
3691 {
3692 struct mips_got_entry lookup, *entry;
3693 void **loc;
3694 struct mips_got_info *g;
3695 struct mips_elf_link_hash_table *htab;
3696 bfd_vma gotidx;
3697
3698 htab = mips_elf_hash_table (info);
3699 BFD_ASSERT (htab != NULL);
3700
3701 g = mips_elf_bfd_got (ibfd, FALSE);
3702 if (g == NULL)
3703 {
3704 g = mips_elf_bfd_got (abfd, FALSE);
3705 BFD_ASSERT (g != NULL);
3706 }
3707
3708 /* This function shouldn't be called for symbols that live in the global
3709 area of the GOT. */
3710 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3711
3712 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3713 if (lookup.tls_type)
3714 {
3715 lookup.abfd = ibfd;
3716 if (tls_ldm_reloc_p (r_type))
3717 {
3718 lookup.symndx = 0;
3719 lookup.d.addend = 0;
3720 }
3721 else if (h == NULL)
3722 {
3723 lookup.symndx = r_symndx;
3724 lookup.d.addend = 0;
3725 }
3726 else
3727 {
3728 lookup.symndx = -1;
3729 lookup.d.h = h;
3730 }
3731
3732 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3733 BFD_ASSERT (entry);
3734
3735 gotidx = entry->gotidx;
3736 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3737
3738 return entry;
3739 }
3740
3741 lookup.abfd = NULL;
3742 lookup.symndx = -1;
3743 lookup.d.address = value;
3744 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3745 if (!loc)
3746 return NULL;
3747
3748 entry = (struct mips_got_entry *) *loc;
3749 if (entry)
3750 return entry;
3751
3752 if (g->assigned_low_gotno > g->assigned_high_gotno)
3753 {
3754 /* We didn't allocate enough space in the GOT. */
3755 _bfd_error_handler
3756 (_("not enough GOT space for local GOT entries"));
3757 bfd_set_error (bfd_error_bad_value);
3758 return NULL;
3759 }
3760
3761 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3762 if (!entry)
3763 return NULL;
3764
3765 if (got16_reloc_p (r_type)
3766 || call16_reloc_p (r_type)
3767 || got_page_reloc_p (r_type)
3768 || got_disp_reloc_p (r_type))
3769 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3770 else
3771 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3772
3773 *entry = lookup;
3774 *loc = entry;
3775
3776 MIPS_ELF_PUT_WORD (abfd, value, htab->root.sgot->contents + entry->gotidx);
3777
3778 /* These GOT entries need a dynamic relocation on VxWorks. */
3779 if (htab->is_vxworks)
3780 {
3781 Elf_Internal_Rela outrel;
3782 asection *s;
3783 bfd_byte *rloc;
3784 bfd_vma got_address;
3785
3786 s = mips_elf_rel_dyn_section (info, FALSE);
3787 got_address = (htab->root.sgot->output_section->vma
3788 + htab->root.sgot->output_offset
3789 + entry->gotidx);
3790
3791 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3792 outrel.r_offset = got_address;
3793 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3794 outrel.r_addend = value;
3795 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3796 }
3797
3798 return entry;
3799 }
3800
3801 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3802 The number might be exact or a worst-case estimate, depending on how
3803 much information is available to elf_backend_omit_section_dynsym at
3804 the current linking stage. */
3805
3806 static bfd_size_type
3807 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3808 {
3809 bfd_size_type count;
3810
3811 count = 0;
3812 if (bfd_link_pic (info)
3813 || elf_hash_table (info)->is_relocatable_executable)
3814 {
3815 asection *p;
3816 const struct elf_backend_data *bed;
3817
3818 bed = get_elf_backend_data (output_bfd);
3819 for (p = output_bfd->sections; p ; p = p->next)
3820 if ((p->flags & SEC_EXCLUDE) == 0
3821 && (p->flags & SEC_ALLOC) != 0
3822 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3823 ++count;
3824 }
3825 return count;
3826 }
3827
3828 /* Sort the dynamic symbol table so that symbols that need GOT entries
3829 appear towards the end. */
3830
3831 static bfd_boolean
3832 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3833 {
3834 struct mips_elf_link_hash_table *htab;
3835 struct mips_elf_hash_sort_data hsd;
3836 struct mips_got_info *g;
3837
3838 htab = mips_elf_hash_table (info);
3839 BFD_ASSERT (htab != NULL);
3840
3841 if (htab->root.dynsymcount == 0)
3842 return TRUE;
3843
3844 g = htab->got_info;
3845 if (g == NULL)
3846 return TRUE;
3847
3848 hsd.low = NULL;
3849 hsd.max_unref_got_dynindx
3850 = hsd.min_got_dynindx
3851 = (htab->root.dynsymcount - g->reloc_only_gotno);
3852 /* Add 1 to local symbol indices to account for the mandatory NULL entry
3853 at the head of the table; see `_bfd_elf_link_renumber_dynsyms'. */
3854 hsd.max_local_dynindx = count_section_dynsyms (abfd, info) + 1;
3855 hsd.max_non_got_dynindx = htab->root.local_dynsymcount + 1;
3856 mips_elf_link_hash_traverse (htab, mips_elf_sort_hash_table_f, &hsd);
3857
3858 /* There should have been enough room in the symbol table to
3859 accommodate both the GOT and non-GOT symbols. */
3860 BFD_ASSERT (hsd.max_local_dynindx <= htab->root.local_dynsymcount + 1);
3861 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3862 BFD_ASSERT (hsd.max_unref_got_dynindx == htab->root.dynsymcount);
3863 BFD_ASSERT (htab->root.dynsymcount - hsd.min_got_dynindx == g->global_gotno);
3864
3865 /* Now we know which dynamic symbol has the lowest dynamic symbol
3866 table index in the GOT. */
3867 htab->global_gotsym = hsd.low;
3868
3869 return TRUE;
3870 }
3871
3872 /* If H needs a GOT entry, assign it the highest available dynamic
3873 index. Otherwise, assign it the lowest available dynamic
3874 index. */
3875
3876 static bfd_boolean
3877 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3878 {
3879 struct mips_elf_hash_sort_data *hsd = data;
3880
3881 /* Symbols without dynamic symbol table entries aren't interesting
3882 at all. */
3883 if (h->root.dynindx == -1)
3884 return TRUE;
3885
3886 switch (h->global_got_area)
3887 {
3888 case GGA_NONE:
3889 if (h->root.forced_local)
3890 h->root.dynindx = hsd->max_local_dynindx++;
3891 else
3892 h->root.dynindx = hsd->max_non_got_dynindx++;
3893 break;
3894
3895 case GGA_NORMAL:
3896 h->root.dynindx = --hsd->min_got_dynindx;
3897 hsd->low = (struct elf_link_hash_entry *) h;
3898 break;
3899
3900 case GGA_RELOC_ONLY:
3901 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3902 hsd->low = (struct elf_link_hash_entry *) h;
3903 h->root.dynindx = hsd->max_unref_got_dynindx++;
3904 break;
3905 }
3906
3907 return TRUE;
3908 }
3909
3910 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3911 (which is owned by the caller and shouldn't be added to the
3912 hash table directly). */
3913
3914 static bfd_boolean
3915 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3916 struct mips_got_entry *lookup)
3917 {
3918 struct mips_elf_link_hash_table *htab;
3919 struct mips_got_entry *entry;
3920 struct mips_got_info *g;
3921 void **loc, **bfd_loc;
3922
3923 /* Make sure there's a slot for this entry in the master GOT. */
3924 htab = mips_elf_hash_table (info);
3925 g = htab->got_info;
3926 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3927 if (!loc)
3928 return FALSE;
3929
3930 /* Populate the entry if it isn't already. */
3931 entry = (struct mips_got_entry *) *loc;
3932 if (!entry)
3933 {
3934 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3935 if (!entry)
3936 return FALSE;
3937
3938 lookup->tls_initialized = FALSE;
3939 lookup->gotidx = -1;
3940 *entry = *lookup;
3941 *loc = entry;
3942 }
3943
3944 /* Reuse the same GOT entry for the BFD's GOT. */
3945 g = mips_elf_bfd_got (abfd, TRUE);
3946 if (!g)
3947 return FALSE;
3948
3949 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3950 if (!bfd_loc)
3951 return FALSE;
3952
3953 if (!*bfd_loc)
3954 *bfd_loc = entry;
3955 return TRUE;
3956 }
3957
3958 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3959 entry for it. FOR_CALL is true if the caller is only interested in
3960 using the GOT entry for calls. */
3961
3962 static bfd_boolean
3963 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3964 bfd *abfd, struct bfd_link_info *info,
3965 bfd_boolean for_call, int r_type)
3966 {
3967 struct mips_elf_link_hash_table *htab;
3968 struct mips_elf_link_hash_entry *hmips;
3969 struct mips_got_entry entry;
3970 unsigned char tls_type;
3971
3972 htab = mips_elf_hash_table (info);
3973 BFD_ASSERT (htab != NULL);
3974
3975 hmips = (struct mips_elf_link_hash_entry *) h;
3976 if (!for_call)
3977 hmips->got_only_for_calls = FALSE;
3978
3979 /* A global symbol in the GOT must also be in the dynamic symbol
3980 table. */
3981 if (h->dynindx == -1)
3982 {
3983 switch (ELF_ST_VISIBILITY (h->other))
3984 {
3985 case STV_INTERNAL:
3986 case STV_HIDDEN:
3987 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3988 break;
3989 }
3990 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3991 return FALSE;
3992 }
3993
3994 tls_type = mips_elf_reloc_tls_type (r_type);
3995 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
3996 hmips->global_got_area = GGA_NORMAL;
3997
3998 entry.abfd = abfd;
3999 entry.symndx = -1;
4000 entry.d.h = (struct mips_elf_link_hash_entry *) h;
4001 entry.tls_type = tls_type;
4002 return mips_elf_record_got_entry (info, abfd, &entry);
4003 }
4004
4005 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
4006 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
4007
4008 static bfd_boolean
4009 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
4010 struct bfd_link_info *info, int r_type)
4011 {
4012 struct mips_elf_link_hash_table *htab;
4013 struct mips_got_info *g;
4014 struct mips_got_entry entry;
4015
4016 htab = mips_elf_hash_table (info);
4017 BFD_ASSERT (htab != NULL);
4018
4019 g = htab->got_info;
4020 BFD_ASSERT (g != NULL);
4021
4022 entry.abfd = abfd;
4023 entry.symndx = symndx;
4024 entry.d.addend = addend;
4025 entry.tls_type = mips_elf_reloc_tls_type (r_type);
4026 return mips_elf_record_got_entry (info, abfd, &entry);
4027 }
4028
4029 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4030 H is the symbol's hash table entry, or null if SYMNDX is local
4031 to ABFD. */
4032
4033 static bfd_boolean
4034 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4035 long symndx, struct elf_link_hash_entry *h,
4036 bfd_signed_vma addend)
4037 {
4038 struct mips_elf_link_hash_table *htab;
4039 struct mips_got_info *g1, *g2;
4040 struct mips_got_page_ref lookup, *entry;
4041 void **loc, **bfd_loc;
4042
4043 htab = mips_elf_hash_table (info);
4044 BFD_ASSERT (htab != NULL);
4045
4046 g1 = htab->got_info;
4047 BFD_ASSERT (g1 != NULL);
4048
4049 if (h)
4050 {
4051 lookup.symndx = -1;
4052 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4053 }
4054 else
4055 {
4056 lookup.symndx = symndx;
4057 lookup.u.abfd = abfd;
4058 }
4059 lookup.addend = addend;
4060 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4061 if (loc == NULL)
4062 return FALSE;
4063
4064 entry = (struct mips_got_page_ref *) *loc;
4065 if (!entry)
4066 {
4067 entry = bfd_alloc (abfd, sizeof (*entry));
4068 if (!entry)
4069 return FALSE;
4070
4071 *entry = lookup;
4072 *loc = entry;
4073 }
4074
4075 /* Add the same entry to the BFD's GOT. */
4076 g2 = mips_elf_bfd_got (abfd, TRUE);
4077 if (!g2)
4078 return FALSE;
4079
4080 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4081 if (!bfd_loc)
4082 return FALSE;
4083
4084 if (!*bfd_loc)
4085 *bfd_loc = entry;
4086
4087 return TRUE;
4088 }
4089
4090 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4091
4092 static void
4093 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4094 unsigned int n)
4095 {
4096 asection *s;
4097 struct mips_elf_link_hash_table *htab;
4098
4099 htab = mips_elf_hash_table (info);
4100 BFD_ASSERT (htab != NULL);
4101
4102 s = mips_elf_rel_dyn_section (info, FALSE);
4103 BFD_ASSERT (s != NULL);
4104
4105 if (htab->is_vxworks)
4106 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4107 else
4108 {
4109 if (s->size == 0)
4110 {
4111 /* Make room for a null element. */
4112 s->size += MIPS_ELF_REL_SIZE (abfd);
4113 ++s->reloc_count;
4114 }
4115 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4116 }
4117 }
4118 \f
4119 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4120 mips_elf_traverse_got_arg structure. Count the number of GOT
4121 entries and TLS relocs. Set DATA->value to true if we need
4122 to resolve indirect or warning symbols and then recreate the GOT. */
4123
4124 static int
4125 mips_elf_check_recreate_got (void **entryp, void *data)
4126 {
4127 struct mips_got_entry *entry;
4128 struct mips_elf_traverse_got_arg *arg;
4129
4130 entry = (struct mips_got_entry *) *entryp;
4131 arg = (struct mips_elf_traverse_got_arg *) data;
4132 if (entry->abfd != NULL && entry->symndx == -1)
4133 {
4134 struct mips_elf_link_hash_entry *h;
4135
4136 h = entry->d.h;
4137 if (h->root.root.type == bfd_link_hash_indirect
4138 || h->root.root.type == bfd_link_hash_warning)
4139 {
4140 arg->value = TRUE;
4141 return 0;
4142 }
4143 }
4144 mips_elf_count_got_entry (arg->info, arg->g, entry);
4145 return 1;
4146 }
4147
4148 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4149 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4150 converting entries for indirect and warning symbols into entries
4151 for the target symbol. Set DATA->g to null on error. */
4152
4153 static int
4154 mips_elf_recreate_got (void **entryp, void *data)
4155 {
4156 struct mips_got_entry new_entry, *entry;
4157 struct mips_elf_traverse_got_arg *arg;
4158 void **slot;
4159
4160 entry = (struct mips_got_entry *) *entryp;
4161 arg = (struct mips_elf_traverse_got_arg *) data;
4162 if (entry->abfd != NULL
4163 && entry->symndx == -1
4164 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4165 || entry->d.h->root.root.type == bfd_link_hash_warning))
4166 {
4167 struct mips_elf_link_hash_entry *h;
4168
4169 new_entry = *entry;
4170 entry = &new_entry;
4171 h = entry->d.h;
4172 do
4173 {
4174 BFD_ASSERT (h->global_got_area == GGA_NONE);
4175 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4176 }
4177 while (h->root.root.type == bfd_link_hash_indirect
4178 || h->root.root.type == bfd_link_hash_warning);
4179 entry->d.h = h;
4180 }
4181 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4182 if (slot == NULL)
4183 {
4184 arg->g = NULL;
4185 return 0;
4186 }
4187 if (*slot == NULL)
4188 {
4189 if (entry == &new_entry)
4190 {
4191 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4192 if (!entry)
4193 {
4194 arg->g = NULL;
4195 return 0;
4196 }
4197 *entry = new_entry;
4198 }
4199 *slot = entry;
4200 mips_elf_count_got_entry (arg->info, arg->g, entry);
4201 }
4202 return 1;
4203 }
4204
4205 /* Return the maximum number of GOT page entries required for RANGE. */
4206
4207 static bfd_vma
4208 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4209 {
4210 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4211 }
4212
4213 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4214
4215 static bfd_boolean
4216 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4217 asection *sec, bfd_signed_vma addend)
4218 {
4219 struct mips_got_info *g = arg->g;
4220 struct mips_got_page_entry lookup, *entry;
4221 struct mips_got_page_range **range_ptr, *range;
4222 bfd_vma old_pages, new_pages;
4223 void **loc;
4224
4225 /* Find the mips_got_page_entry hash table entry for this section. */
4226 lookup.sec = sec;
4227 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4228 if (loc == NULL)
4229 return FALSE;
4230
4231 /* Create a mips_got_page_entry if this is the first time we've
4232 seen the section. */
4233 entry = (struct mips_got_page_entry *) *loc;
4234 if (!entry)
4235 {
4236 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4237 if (!entry)
4238 return FALSE;
4239
4240 entry->sec = sec;
4241 *loc = entry;
4242 }
4243
4244 /* Skip over ranges whose maximum extent cannot share a page entry
4245 with ADDEND. */
4246 range_ptr = &entry->ranges;
4247 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4248 range_ptr = &(*range_ptr)->next;
4249
4250 /* If we scanned to the end of the list, or found a range whose
4251 minimum extent cannot share a page entry with ADDEND, create
4252 a new singleton range. */
4253 range = *range_ptr;
4254 if (!range || addend < range->min_addend - 0xffff)
4255 {
4256 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4257 if (!range)
4258 return FALSE;
4259
4260 range->next = *range_ptr;
4261 range->min_addend = addend;
4262 range->max_addend = addend;
4263
4264 *range_ptr = range;
4265 entry->num_pages++;
4266 g->page_gotno++;
4267 return TRUE;
4268 }
4269
4270 /* Remember how many pages the old range contributed. */
4271 old_pages = mips_elf_pages_for_range (range);
4272
4273 /* Update the ranges. */
4274 if (addend < range->min_addend)
4275 range->min_addend = addend;
4276 else if (addend > range->max_addend)
4277 {
4278 if (range->next && addend >= range->next->min_addend - 0xffff)
4279 {
4280 old_pages += mips_elf_pages_for_range (range->next);
4281 range->max_addend = range->next->max_addend;
4282 range->next = range->next->next;
4283 }
4284 else
4285 range->max_addend = addend;
4286 }
4287
4288 /* Record any change in the total estimate. */
4289 new_pages = mips_elf_pages_for_range (range);
4290 if (old_pages != new_pages)
4291 {
4292 entry->num_pages += new_pages - old_pages;
4293 g->page_gotno += new_pages - old_pages;
4294 }
4295
4296 return TRUE;
4297 }
4298
4299 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4300 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4301 whether the page reference described by *REFP needs a GOT page entry,
4302 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4303
4304 static bfd_boolean
4305 mips_elf_resolve_got_page_ref (void **refp, void *data)
4306 {
4307 struct mips_got_page_ref *ref;
4308 struct mips_elf_traverse_got_arg *arg;
4309 struct mips_elf_link_hash_table *htab;
4310 asection *sec;
4311 bfd_vma addend;
4312
4313 ref = (struct mips_got_page_ref *) *refp;
4314 arg = (struct mips_elf_traverse_got_arg *) data;
4315 htab = mips_elf_hash_table (arg->info);
4316
4317 if (ref->symndx < 0)
4318 {
4319 struct mips_elf_link_hash_entry *h;
4320
4321 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4322 h = ref->u.h;
4323 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4324 return 1;
4325
4326 /* Ignore undefined symbols; we'll issue an error later if
4327 appropriate. */
4328 if (!((h->root.root.type == bfd_link_hash_defined
4329 || h->root.root.type == bfd_link_hash_defweak)
4330 && h->root.root.u.def.section))
4331 return 1;
4332
4333 sec = h->root.root.u.def.section;
4334 addend = h->root.root.u.def.value + ref->addend;
4335 }
4336 else
4337 {
4338 Elf_Internal_Sym *isym;
4339
4340 /* Read in the symbol. */
4341 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4342 ref->symndx);
4343 if (isym == NULL)
4344 {
4345 arg->g = NULL;
4346 return 0;
4347 }
4348
4349 /* Get the associated input section. */
4350 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4351 if (sec == NULL)
4352 {
4353 arg->g = NULL;
4354 return 0;
4355 }
4356
4357 /* If this is a mergable section, work out the section and offset
4358 of the merged data. For section symbols, the addend specifies
4359 of the offset _of_ the first byte in the data, otherwise it
4360 specifies the offset _from_ the first byte. */
4361 if (sec->flags & SEC_MERGE)
4362 {
4363 void *secinfo;
4364
4365 secinfo = elf_section_data (sec)->sec_info;
4366 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4367 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4368 isym->st_value + ref->addend);
4369 else
4370 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4371 isym->st_value) + ref->addend;
4372 }
4373 else
4374 addend = isym->st_value + ref->addend;
4375 }
4376 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4377 {
4378 arg->g = NULL;
4379 return 0;
4380 }
4381 return 1;
4382 }
4383
4384 /* If any entries in G->got_entries are for indirect or warning symbols,
4385 replace them with entries for the target symbol. Convert g->got_page_refs
4386 into got_page_entry structures and estimate the number of page entries
4387 that they require. */
4388
4389 static bfd_boolean
4390 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4391 struct mips_got_info *g)
4392 {
4393 struct mips_elf_traverse_got_arg tga;
4394 struct mips_got_info oldg;
4395
4396 oldg = *g;
4397
4398 tga.info = info;
4399 tga.g = g;
4400 tga.value = FALSE;
4401 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4402 if (tga.value)
4403 {
4404 *g = oldg;
4405 g->got_entries = htab_create (htab_size (oldg.got_entries),
4406 mips_elf_got_entry_hash,
4407 mips_elf_got_entry_eq, NULL);
4408 if (!g->got_entries)
4409 return FALSE;
4410
4411 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4412 if (!tga.g)
4413 return FALSE;
4414
4415 htab_delete (oldg.got_entries);
4416 }
4417
4418 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4419 mips_got_page_entry_eq, NULL);
4420 if (g->got_page_entries == NULL)
4421 return FALSE;
4422
4423 tga.info = info;
4424 tga.g = g;
4425 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4426
4427 return TRUE;
4428 }
4429
4430 /* Return true if a GOT entry for H should live in the local rather than
4431 global GOT area. */
4432
4433 static bfd_boolean
4434 mips_use_local_got_p (struct bfd_link_info *info,
4435 struct mips_elf_link_hash_entry *h)
4436 {
4437 /* Symbols that aren't in the dynamic symbol table must live in the
4438 local GOT. This includes symbols that are completely undefined
4439 and which therefore don't bind locally. We'll report undefined
4440 symbols later if appropriate. */
4441 if (h->root.dynindx == -1)
4442 return TRUE;
4443
4444 /* Symbols that bind locally can (and in the case of forced-local
4445 symbols, must) live in the local GOT. */
4446 if (h->got_only_for_calls
4447 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4448 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4449 return TRUE;
4450
4451 /* If this is an executable that must provide a definition of the symbol,
4452 either though PLTs or copy relocations, then that address should go in
4453 the local rather than global GOT. */
4454 if (bfd_link_executable (info) && h->has_static_relocs)
4455 return TRUE;
4456
4457 return FALSE;
4458 }
4459
4460 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4461 link_info structure. Decide whether the hash entry needs an entry in
4462 the global part of the primary GOT, setting global_got_area accordingly.
4463 Count the number of global symbols that are in the primary GOT only
4464 because they have relocations against them (reloc_only_gotno). */
4465
4466 static int
4467 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4468 {
4469 struct bfd_link_info *info;
4470 struct mips_elf_link_hash_table *htab;
4471 struct mips_got_info *g;
4472
4473 info = (struct bfd_link_info *) data;
4474 htab = mips_elf_hash_table (info);
4475 g = htab->got_info;
4476 if (h->global_got_area != GGA_NONE)
4477 {
4478 /* Make a final decision about whether the symbol belongs in the
4479 local or global GOT. */
4480 if (mips_use_local_got_p (info, h))
4481 /* The symbol belongs in the local GOT. We no longer need this
4482 entry if it was only used for relocations; those relocations
4483 will be against the null or section symbol instead of H. */
4484 h->global_got_area = GGA_NONE;
4485 else if (htab->is_vxworks
4486 && h->got_only_for_calls
4487 && h->root.plt.plist->mips_offset != MINUS_ONE)
4488 /* On VxWorks, calls can refer directly to the .got.plt entry;
4489 they don't need entries in the regular GOT. .got.plt entries
4490 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4491 h->global_got_area = GGA_NONE;
4492 else if (h->global_got_area == GGA_RELOC_ONLY)
4493 {
4494 g->reloc_only_gotno++;
4495 g->global_gotno++;
4496 }
4497 }
4498 return 1;
4499 }
4500 \f
4501 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4502 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4503
4504 static int
4505 mips_elf_add_got_entry (void **entryp, void *data)
4506 {
4507 struct mips_got_entry *entry;
4508 struct mips_elf_traverse_got_arg *arg;
4509 void **slot;
4510
4511 entry = (struct mips_got_entry *) *entryp;
4512 arg = (struct mips_elf_traverse_got_arg *) data;
4513 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4514 if (!slot)
4515 {
4516 arg->g = NULL;
4517 return 0;
4518 }
4519 if (!*slot)
4520 {
4521 *slot = entry;
4522 mips_elf_count_got_entry (arg->info, arg->g, entry);
4523 }
4524 return 1;
4525 }
4526
4527 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4528 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4529
4530 static int
4531 mips_elf_add_got_page_entry (void **entryp, void *data)
4532 {
4533 struct mips_got_page_entry *entry;
4534 struct mips_elf_traverse_got_arg *arg;
4535 void **slot;
4536
4537 entry = (struct mips_got_page_entry *) *entryp;
4538 arg = (struct mips_elf_traverse_got_arg *) data;
4539 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4540 if (!slot)
4541 {
4542 arg->g = NULL;
4543 return 0;
4544 }
4545 if (!*slot)
4546 {
4547 *slot = entry;
4548 arg->g->page_gotno += entry->num_pages;
4549 }
4550 return 1;
4551 }
4552
4553 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4554 this would lead to overflow, 1 if they were merged successfully,
4555 and 0 if a merge failed due to lack of memory. (These values are chosen
4556 so that nonnegative return values can be returned by a htab_traverse
4557 callback.) */
4558
4559 static int
4560 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4561 struct mips_got_info *to,
4562 struct mips_elf_got_per_bfd_arg *arg)
4563 {
4564 struct mips_elf_traverse_got_arg tga;
4565 unsigned int estimate;
4566
4567 /* Work out how many page entries we would need for the combined GOT. */
4568 estimate = arg->max_pages;
4569 if (estimate >= from->page_gotno + to->page_gotno)
4570 estimate = from->page_gotno + to->page_gotno;
4571
4572 /* And conservatively estimate how many local and TLS entries
4573 would be needed. */
4574 estimate += from->local_gotno + to->local_gotno;
4575 estimate += from->tls_gotno + to->tls_gotno;
4576
4577 /* If we're merging with the primary got, any TLS relocations will
4578 come after the full set of global entries. Otherwise estimate those
4579 conservatively as well. */
4580 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4581 estimate += arg->global_count;
4582 else
4583 estimate += from->global_gotno + to->global_gotno;
4584
4585 /* Bail out if the combined GOT might be too big. */
4586 if (estimate > arg->max_count)
4587 return -1;
4588
4589 /* Transfer the bfd's got information from FROM to TO. */
4590 tga.info = arg->info;
4591 tga.g = to;
4592 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4593 if (!tga.g)
4594 return 0;
4595
4596 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4597 if (!tga.g)
4598 return 0;
4599
4600 mips_elf_replace_bfd_got (abfd, to);
4601 return 1;
4602 }
4603
4604 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4605 as possible of the primary got, since it doesn't require explicit
4606 dynamic relocations, but don't use bfds that would reference global
4607 symbols out of the addressable range. Failing the primary got,
4608 attempt to merge with the current got, or finish the current got
4609 and then make make the new got current. */
4610
4611 static bfd_boolean
4612 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4613 struct mips_elf_got_per_bfd_arg *arg)
4614 {
4615 unsigned int estimate;
4616 int result;
4617
4618 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4619 return FALSE;
4620
4621 /* Work out the number of page, local and TLS entries. */
4622 estimate = arg->max_pages;
4623 if (estimate > g->page_gotno)
4624 estimate = g->page_gotno;
4625 estimate += g->local_gotno + g->tls_gotno;
4626
4627 /* We place TLS GOT entries after both locals and globals. The globals
4628 for the primary GOT may overflow the normal GOT size limit, so be
4629 sure not to merge a GOT which requires TLS with the primary GOT in that
4630 case. This doesn't affect non-primary GOTs. */
4631 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4632
4633 if (estimate <= arg->max_count)
4634 {
4635 /* If we don't have a primary GOT, use it as
4636 a starting point for the primary GOT. */
4637 if (!arg->primary)
4638 {
4639 arg->primary = g;
4640 return TRUE;
4641 }
4642
4643 /* Try merging with the primary GOT. */
4644 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4645 if (result >= 0)
4646 return result;
4647 }
4648
4649 /* If we can merge with the last-created got, do it. */
4650 if (arg->current)
4651 {
4652 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4653 if (result >= 0)
4654 return result;
4655 }
4656
4657 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4658 fits; if it turns out that it doesn't, we'll get relocation
4659 overflows anyway. */
4660 g->next = arg->current;
4661 arg->current = g;
4662
4663 return TRUE;
4664 }
4665
4666 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4667 to GOTIDX, duplicating the entry if it has already been assigned
4668 an index in a different GOT. */
4669
4670 static bfd_boolean
4671 mips_elf_set_gotidx (void **entryp, long gotidx)
4672 {
4673 struct mips_got_entry *entry;
4674
4675 entry = (struct mips_got_entry *) *entryp;
4676 if (entry->gotidx > 0)
4677 {
4678 struct mips_got_entry *new_entry;
4679
4680 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4681 if (!new_entry)
4682 return FALSE;
4683
4684 *new_entry = *entry;
4685 *entryp = new_entry;
4686 entry = new_entry;
4687 }
4688 entry->gotidx = gotidx;
4689 return TRUE;
4690 }
4691
4692 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4693 mips_elf_traverse_got_arg in which DATA->value is the size of one
4694 GOT entry. Set DATA->g to null on failure. */
4695
4696 static int
4697 mips_elf_initialize_tls_index (void **entryp, void *data)
4698 {
4699 struct mips_got_entry *entry;
4700 struct mips_elf_traverse_got_arg *arg;
4701
4702 /* We're only interested in TLS symbols. */
4703 entry = (struct mips_got_entry *) *entryp;
4704 if (entry->tls_type == GOT_TLS_NONE)
4705 return 1;
4706
4707 arg = (struct mips_elf_traverse_got_arg *) data;
4708 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4709 {
4710 arg->g = NULL;
4711 return 0;
4712 }
4713
4714 /* Account for the entries we've just allocated. */
4715 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4716 return 1;
4717 }
4718
4719 /* A htab_traverse callback for GOT entries, where DATA points to a
4720 mips_elf_traverse_got_arg. Set the global_got_area of each global
4721 symbol to DATA->value. */
4722
4723 static int
4724 mips_elf_set_global_got_area (void **entryp, void *data)
4725 {
4726 struct mips_got_entry *entry;
4727 struct mips_elf_traverse_got_arg *arg;
4728
4729 entry = (struct mips_got_entry *) *entryp;
4730 arg = (struct mips_elf_traverse_got_arg *) data;
4731 if (entry->abfd != NULL
4732 && entry->symndx == -1
4733 && entry->d.h->global_got_area != GGA_NONE)
4734 entry->d.h->global_got_area = arg->value;
4735 return 1;
4736 }
4737
4738 /* A htab_traverse callback for secondary GOT entries, where DATA points
4739 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4740 and record the number of relocations they require. DATA->value is
4741 the size of one GOT entry. Set DATA->g to null on failure. */
4742
4743 static int
4744 mips_elf_set_global_gotidx (void **entryp, void *data)
4745 {
4746 struct mips_got_entry *entry;
4747 struct mips_elf_traverse_got_arg *arg;
4748
4749 entry = (struct mips_got_entry *) *entryp;
4750 arg = (struct mips_elf_traverse_got_arg *) data;
4751 if (entry->abfd != NULL
4752 && entry->symndx == -1
4753 && entry->d.h->global_got_area != GGA_NONE)
4754 {
4755 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4756 {
4757 arg->g = NULL;
4758 return 0;
4759 }
4760 arg->g->assigned_low_gotno += 1;
4761
4762 if (bfd_link_pic (arg->info)
4763 || (elf_hash_table (arg->info)->dynamic_sections_created
4764 && entry->d.h->root.def_dynamic
4765 && !entry->d.h->root.def_regular))
4766 arg->g->relocs += 1;
4767 }
4768
4769 return 1;
4770 }
4771
4772 /* A htab_traverse callback for GOT entries for which DATA is the
4773 bfd_link_info. Forbid any global symbols from having traditional
4774 lazy-binding stubs. */
4775
4776 static int
4777 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4778 {
4779 struct bfd_link_info *info;
4780 struct mips_elf_link_hash_table *htab;
4781 struct mips_got_entry *entry;
4782
4783 entry = (struct mips_got_entry *) *entryp;
4784 info = (struct bfd_link_info *) data;
4785 htab = mips_elf_hash_table (info);
4786 BFD_ASSERT (htab != NULL);
4787
4788 if (entry->abfd != NULL
4789 && entry->symndx == -1
4790 && entry->d.h->needs_lazy_stub)
4791 {
4792 entry->d.h->needs_lazy_stub = FALSE;
4793 htab->lazy_stub_count--;
4794 }
4795
4796 return 1;
4797 }
4798
4799 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4800 the primary GOT. */
4801 static bfd_vma
4802 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4803 {
4804 if (!g->next)
4805 return 0;
4806
4807 g = mips_elf_bfd_got (ibfd, FALSE);
4808 if (! g)
4809 return 0;
4810
4811 BFD_ASSERT (g->next);
4812
4813 g = g->next;
4814
4815 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4816 * MIPS_ELF_GOT_SIZE (abfd);
4817 }
4818
4819 /* Turn a single GOT that is too big for 16-bit addressing into
4820 a sequence of GOTs, each one 16-bit addressable. */
4821
4822 static bfd_boolean
4823 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4824 asection *got, bfd_size_type pages)
4825 {
4826 struct mips_elf_link_hash_table *htab;
4827 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4828 struct mips_elf_traverse_got_arg tga;
4829 struct mips_got_info *g, *gg;
4830 unsigned int assign, needed_relocs;
4831 bfd *dynobj, *ibfd;
4832
4833 dynobj = elf_hash_table (info)->dynobj;
4834 htab = mips_elf_hash_table (info);
4835 BFD_ASSERT (htab != NULL);
4836
4837 g = htab->got_info;
4838
4839 got_per_bfd_arg.obfd = abfd;
4840 got_per_bfd_arg.info = info;
4841 got_per_bfd_arg.current = NULL;
4842 got_per_bfd_arg.primary = NULL;
4843 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4844 / MIPS_ELF_GOT_SIZE (abfd))
4845 - htab->reserved_gotno);
4846 got_per_bfd_arg.max_pages = pages;
4847 /* The number of globals that will be included in the primary GOT.
4848 See the calls to mips_elf_set_global_got_area below for more
4849 information. */
4850 got_per_bfd_arg.global_count = g->global_gotno;
4851
4852 /* Try to merge the GOTs of input bfds together, as long as they
4853 don't seem to exceed the maximum GOT size, choosing one of them
4854 to be the primary GOT. */
4855 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4856 {
4857 gg = mips_elf_bfd_got (ibfd, FALSE);
4858 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4859 return FALSE;
4860 }
4861
4862 /* If we do not find any suitable primary GOT, create an empty one. */
4863 if (got_per_bfd_arg.primary == NULL)
4864 g->next = mips_elf_create_got_info (abfd);
4865 else
4866 g->next = got_per_bfd_arg.primary;
4867 g->next->next = got_per_bfd_arg.current;
4868
4869 /* GG is now the master GOT, and G is the primary GOT. */
4870 gg = g;
4871 g = g->next;
4872
4873 /* Map the output bfd to the primary got. That's what we're going
4874 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4875 didn't mark in check_relocs, and we want a quick way to find it.
4876 We can't just use gg->next because we're going to reverse the
4877 list. */
4878 mips_elf_replace_bfd_got (abfd, g);
4879
4880 /* Every symbol that is referenced in a dynamic relocation must be
4881 present in the primary GOT, so arrange for them to appear after
4882 those that are actually referenced. */
4883 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4884 g->global_gotno = gg->global_gotno;
4885
4886 tga.info = info;
4887 tga.value = GGA_RELOC_ONLY;
4888 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4889 tga.value = GGA_NORMAL;
4890 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4891
4892 /* Now go through the GOTs assigning them offset ranges.
4893 [assigned_low_gotno, local_gotno[ will be set to the range of local
4894 entries in each GOT. We can then compute the end of a GOT by
4895 adding local_gotno to global_gotno. We reverse the list and make
4896 it circular since then we'll be able to quickly compute the
4897 beginning of a GOT, by computing the end of its predecessor. To
4898 avoid special cases for the primary GOT, while still preserving
4899 assertions that are valid for both single- and multi-got links,
4900 we arrange for the main got struct to have the right number of
4901 global entries, but set its local_gotno such that the initial
4902 offset of the primary GOT is zero. Remember that the primary GOT
4903 will become the last item in the circular linked list, so it
4904 points back to the master GOT. */
4905 gg->local_gotno = -g->global_gotno;
4906 gg->global_gotno = g->global_gotno;
4907 gg->tls_gotno = 0;
4908 assign = 0;
4909 gg->next = gg;
4910
4911 do
4912 {
4913 struct mips_got_info *gn;
4914
4915 assign += htab->reserved_gotno;
4916 g->assigned_low_gotno = assign;
4917 g->local_gotno += assign;
4918 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4919 g->assigned_high_gotno = g->local_gotno - 1;
4920 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4921
4922 /* Take g out of the direct list, and push it onto the reversed
4923 list that gg points to. g->next is guaranteed to be nonnull after
4924 this operation, as required by mips_elf_initialize_tls_index. */
4925 gn = g->next;
4926 g->next = gg->next;
4927 gg->next = g;
4928
4929 /* Set up any TLS entries. We always place the TLS entries after
4930 all non-TLS entries. */
4931 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4932 tga.g = g;
4933 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4934 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4935 if (!tga.g)
4936 return FALSE;
4937 BFD_ASSERT (g->tls_assigned_gotno == assign);
4938
4939 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4940 g = gn;
4941
4942 /* Forbid global symbols in every non-primary GOT from having
4943 lazy-binding stubs. */
4944 if (g)
4945 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4946 }
4947 while (g);
4948
4949 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
4950
4951 needed_relocs = 0;
4952 for (g = gg->next; g && g->next != gg; g = g->next)
4953 {
4954 unsigned int save_assign;
4955
4956 /* Assign offsets to global GOT entries and count how many
4957 relocations they need. */
4958 save_assign = g->assigned_low_gotno;
4959 g->assigned_low_gotno = g->local_gotno;
4960 tga.info = info;
4961 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4962 tga.g = g;
4963 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
4964 if (!tga.g)
4965 return FALSE;
4966 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4967 g->assigned_low_gotno = save_assign;
4968
4969 if (bfd_link_pic (info))
4970 {
4971 g->relocs += g->local_gotno - g->assigned_low_gotno;
4972 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
4973 + g->next->global_gotno
4974 + g->next->tls_gotno
4975 + htab->reserved_gotno);
4976 }
4977 needed_relocs += g->relocs;
4978 }
4979 needed_relocs += g->relocs;
4980
4981 if (needed_relocs)
4982 mips_elf_allocate_dynamic_relocations (dynobj, info,
4983 needed_relocs);
4984
4985 return TRUE;
4986 }
4987
4988 \f
4989 /* Returns the first relocation of type r_type found, beginning with
4990 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4991
4992 static const Elf_Internal_Rela *
4993 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4994 const Elf_Internal_Rela *relocation,
4995 const Elf_Internal_Rela *relend)
4996 {
4997 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4998
4999 while (relocation < relend)
5000 {
5001 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
5002 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
5003 return relocation;
5004
5005 ++relocation;
5006 }
5007
5008 /* We didn't find it. */
5009 return NULL;
5010 }
5011
5012 /* Return whether an input relocation is against a local symbol. */
5013
5014 static bfd_boolean
5015 mips_elf_local_relocation_p (bfd *input_bfd,
5016 const Elf_Internal_Rela *relocation,
5017 asection **local_sections)
5018 {
5019 unsigned long r_symndx;
5020 Elf_Internal_Shdr *symtab_hdr;
5021 size_t extsymoff;
5022
5023 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5024 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5025 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5026
5027 if (r_symndx < extsymoff)
5028 return TRUE;
5029 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5030 return TRUE;
5031
5032 return FALSE;
5033 }
5034 \f
5035 /* Sign-extend VALUE, which has the indicated number of BITS. */
5036
5037 bfd_vma
5038 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
5039 {
5040 if (value & ((bfd_vma) 1 << (bits - 1)))
5041 /* VALUE is negative. */
5042 value |= ((bfd_vma) - 1) << bits;
5043
5044 return value;
5045 }
5046
5047 /* Return non-zero if the indicated VALUE has overflowed the maximum
5048 range expressible by a signed number with the indicated number of
5049 BITS. */
5050
5051 static bfd_boolean
5052 mips_elf_overflow_p (bfd_vma value, int bits)
5053 {
5054 bfd_signed_vma svalue = (bfd_signed_vma) value;
5055
5056 if (svalue > (1 << (bits - 1)) - 1)
5057 /* The value is too big. */
5058 return TRUE;
5059 else if (svalue < -(1 << (bits - 1)))
5060 /* The value is too small. */
5061 return TRUE;
5062
5063 /* All is well. */
5064 return FALSE;
5065 }
5066
5067 /* Calculate the %high function. */
5068
5069 static bfd_vma
5070 mips_elf_high (bfd_vma value)
5071 {
5072 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5073 }
5074
5075 /* Calculate the %higher function. */
5076
5077 static bfd_vma
5078 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5079 {
5080 #ifdef BFD64
5081 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5082 #else
5083 abort ();
5084 return MINUS_ONE;
5085 #endif
5086 }
5087
5088 /* Calculate the %highest function. */
5089
5090 static bfd_vma
5091 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5092 {
5093 #ifdef BFD64
5094 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5095 #else
5096 abort ();
5097 return MINUS_ONE;
5098 #endif
5099 }
5100 \f
5101 /* Create the .compact_rel section. */
5102
5103 static bfd_boolean
5104 mips_elf_create_compact_rel_section
5105 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5106 {
5107 flagword flags;
5108 register asection *s;
5109
5110 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5111 {
5112 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5113 | SEC_READONLY);
5114
5115 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5116 if (s == NULL
5117 || ! bfd_set_section_alignment (abfd, s,
5118 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5119 return FALSE;
5120
5121 s->size = sizeof (Elf32_External_compact_rel);
5122 }
5123
5124 return TRUE;
5125 }
5126
5127 /* Create the .got section to hold the global offset table. */
5128
5129 static bfd_boolean
5130 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5131 {
5132 flagword flags;
5133 register asection *s;
5134 struct elf_link_hash_entry *h;
5135 struct bfd_link_hash_entry *bh;
5136 struct mips_elf_link_hash_table *htab;
5137
5138 htab = mips_elf_hash_table (info);
5139 BFD_ASSERT (htab != NULL);
5140
5141 /* This function may be called more than once. */
5142 if (htab->root.sgot)
5143 return TRUE;
5144
5145 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5146 | SEC_LINKER_CREATED);
5147
5148 /* We have to use an alignment of 2**4 here because this is hardcoded
5149 in the function stub generation and in the linker script. */
5150 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5151 if (s == NULL
5152 || ! bfd_set_section_alignment (abfd, s, 4))
5153 return FALSE;
5154 htab->root.sgot = s;
5155
5156 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5157 linker script because we don't want to define the symbol if we
5158 are not creating a global offset table. */
5159 bh = NULL;
5160 if (! (_bfd_generic_link_add_one_symbol
5161 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5162 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5163 return FALSE;
5164
5165 h = (struct elf_link_hash_entry *) bh;
5166 h->non_elf = 0;
5167 h->def_regular = 1;
5168 h->type = STT_OBJECT;
5169 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5170 elf_hash_table (info)->hgot = h;
5171
5172 if (bfd_link_pic (info)
5173 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5174 return FALSE;
5175
5176 htab->got_info = mips_elf_create_got_info (abfd);
5177 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5178 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5179
5180 /* We also need a .got.plt section when generating PLTs. */
5181 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5182 SEC_ALLOC | SEC_LOAD
5183 | SEC_HAS_CONTENTS
5184 | SEC_IN_MEMORY
5185 | SEC_LINKER_CREATED);
5186 if (s == NULL)
5187 return FALSE;
5188 htab->root.sgotplt = s;
5189
5190 return TRUE;
5191 }
5192 \f
5193 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5194 __GOTT_INDEX__ symbols. These symbols are only special for
5195 shared objects; they are not used in executables. */
5196
5197 static bfd_boolean
5198 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5199 {
5200 return (mips_elf_hash_table (info)->is_vxworks
5201 && bfd_link_pic (info)
5202 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5203 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5204 }
5205
5206 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5207 require an la25 stub. See also mips_elf_local_pic_function_p,
5208 which determines whether the destination function ever requires a
5209 stub. */
5210
5211 static bfd_boolean
5212 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5213 bfd_boolean target_is_16_bit_code_p)
5214 {
5215 /* We specifically ignore branches and jumps from EF_PIC objects,
5216 where the onus is on the compiler or programmer to perform any
5217 necessary initialization of $25. Sometimes such initialization
5218 is unnecessary; for example, -mno-shared functions do not use
5219 the incoming value of $25, and may therefore be called directly. */
5220 if (PIC_OBJECT_P (input_bfd))
5221 return FALSE;
5222
5223 switch (r_type)
5224 {
5225 case R_MIPS_26:
5226 case R_MIPS_PC16:
5227 case R_MIPS_PC21_S2:
5228 case R_MIPS_PC26_S2:
5229 case R_MICROMIPS_26_S1:
5230 case R_MICROMIPS_PC7_S1:
5231 case R_MICROMIPS_PC10_S1:
5232 case R_MICROMIPS_PC16_S1:
5233 case R_MICROMIPS_PC23_S2:
5234 return TRUE;
5235
5236 case R_MIPS16_26:
5237 return !target_is_16_bit_code_p;
5238
5239 default:
5240 return FALSE;
5241 }
5242 }
5243 \f
5244 /* Calculate the value produced by the RELOCATION (which comes from
5245 the INPUT_BFD). The ADDEND is the addend to use for this
5246 RELOCATION; RELOCATION->R_ADDEND is ignored.
5247
5248 The result of the relocation calculation is stored in VALUEP.
5249 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5250 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5251
5252 This function returns bfd_reloc_continue if the caller need take no
5253 further action regarding this relocation, bfd_reloc_notsupported if
5254 something goes dramatically wrong, bfd_reloc_overflow if an
5255 overflow occurs, and bfd_reloc_ok to indicate success. */
5256
5257 static bfd_reloc_status_type
5258 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5259 asection *input_section,
5260 struct bfd_link_info *info,
5261 const Elf_Internal_Rela *relocation,
5262 bfd_vma addend, reloc_howto_type *howto,
5263 Elf_Internal_Sym *local_syms,
5264 asection **local_sections, bfd_vma *valuep,
5265 const char **namep,
5266 bfd_boolean *cross_mode_jump_p,
5267 bfd_boolean save_addend)
5268 {
5269 /* The eventual value we will return. */
5270 bfd_vma value;
5271 /* The address of the symbol against which the relocation is
5272 occurring. */
5273 bfd_vma symbol = 0;
5274 /* The final GP value to be used for the relocatable, executable, or
5275 shared object file being produced. */
5276 bfd_vma gp;
5277 /* The place (section offset or address) of the storage unit being
5278 relocated. */
5279 bfd_vma p;
5280 /* The value of GP used to create the relocatable object. */
5281 bfd_vma gp0;
5282 /* The offset into the global offset table at which the address of
5283 the relocation entry symbol, adjusted by the addend, resides
5284 during execution. */
5285 bfd_vma g = MINUS_ONE;
5286 /* The section in which the symbol referenced by the relocation is
5287 located. */
5288 asection *sec = NULL;
5289 struct mips_elf_link_hash_entry *h = NULL;
5290 /* TRUE if the symbol referred to by this relocation is a local
5291 symbol. */
5292 bfd_boolean local_p, was_local_p;
5293 /* TRUE if the symbol referred to by this relocation is a section
5294 symbol. */
5295 bfd_boolean section_p = FALSE;
5296 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5297 bfd_boolean gp_disp_p = FALSE;
5298 /* TRUE if the symbol referred to by this relocation is
5299 "__gnu_local_gp". */
5300 bfd_boolean gnu_local_gp_p = FALSE;
5301 Elf_Internal_Shdr *symtab_hdr;
5302 size_t extsymoff;
5303 unsigned long r_symndx;
5304 int r_type;
5305 /* TRUE if overflow occurred during the calculation of the
5306 relocation value. */
5307 bfd_boolean overflowed_p;
5308 /* TRUE if this relocation refers to a MIPS16 function. */
5309 bfd_boolean target_is_16_bit_code_p = FALSE;
5310 bfd_boolean target_is_micromips_code_p = FALSE;
5311 struct mips_elf_link_hash_table *htab;
5312 bfd *dynobj;
5313
5314 dynobj = elf_hash_table (info)->dynobj;
5315 htab = mips_elf_hash_table (info);
5316 BFD_ASSERT (htab != NULL);
5317
5318 /* Parse the relocation. */
5319 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5320 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5321 p = (input_section->output_section->vma
5322 + input_section->output_offset
5323 + relocation->r_offset);
5324
5325 /* Assume that there will be no overflow. */
5326 overflowed_p = FALSE;
5327
5328 /* Figure out whether or not the symbol is local, and get the offset
5329 used in the array of hash table entries. */
5330 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5331 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5332 local_sections);
5333 was_local_p = local_p;
5334 if (! elf_bad_symtab (input_bfd))
5335 extsymoff = symtab_hdr->sh_info;
5336 else
5337 {
5338 /* The symbol table does not follow the rule that local symbols
5339 must come before globals. */
5340 extsymoff = 0;
5341 }
5342
5343 /* Figure out the value of the symbol. */
5344 if (local_p)
5345 {
5346 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5347 Elf_Internal_Sym *sym;
5348
5349 sym = local_syms + r_symndx;
5350 sec = local_sections[r_symndx];
5351
5352 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5353
5354 symbol = sec->output_section->vma + sec->output_offset;
5355 if (!section_p || (sec->flags & SEC_MERGE))
5356 symbol += sym->st_value;
5357 if ((sec->flags & SEC_MERGE) && section_p)
5358 {
5359 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5360 addend -= symbol;
5361 addend += sec->output_section->vma + sec->output_offset;
5362 }
5363
5364 /* MIPS16/microMIPS text labels should be treated as odd. */
5365 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5366 ++symbol;
5367
5368 /* Record the name of this symbol, for our caller. */
5369 *namep = bfd_elf_string_from_elf_section (input_bfd,
5370 symtab_hdr->sh_link,
5371 sym->st_name);
5372 if (*namep == NULL || **namep == '\0')
5373 *namep = bfd_section_name (input_bfd, sec);
5374
5375 /* For relocations against a section symbol and ones against no
5376 symbol (absolute relocations) infer the ISA mode from the addend. */
5377 if (section_p || r_symndx == STN_UNDEF)
5378 {
5379 target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5380 target_is_micromips_code_p = (addend & 1) && micromips_p;
5381 }
5382 /* For relocations against an absolute symbol infer the ISA mode
5383 from the value of the symbol plus addend. */
5384 else if (bfd_is_abs_section (sec))
5385 {
5386 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5387 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5388 }
5389 /* Otherwise just use the regular symbol annotation available. */
5390 else
5391 {
5392 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5393 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5394 }
5395 }
5396 else
5397 {
5398 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5399
5400 /* For global symbols we look up the symbol in the hash-table. */
5401 h = ((struct mips_elf_link_hash_entry *)
5402 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5403 /* Find the real hash-table entry for this symbol. */
5404 while (h->root.root.type == bfd_link_hash_indirect
5405 || h->root.root.type == bfd_link_hash_warning)
5406 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5407
5408 /* Record the name of this symbol, for our caller. */
5409 *namep = h->root.root.root.string;
5410
5411 /* See if this is the special _gp_disp symbol. Note that such a
5412 symbol must always be a global symbol. */
5413 if (strcmp (*namep, "_gp_disp") == 0
5414 && ! NEWABI_P (input_bfd))
5415 {
5416 /* Relocations against _gp_disp are permitted only with
5417 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5418 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5419 return bfd_reloc_notsupported;
5420
5421 gp_disp_p = TRUE;
5422 }
5423 /* See if this is the special _gp symbol. Note that such a
5424 symbol must always be a global symbol. */
5425 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5426 gnu_local_gp_p = TRUE;
5427
5428
5429 /* If this symbol is defined, calculate its address. Note that
5430 _gp_disp is a magic symbol, always implicitly defined by the
5431 linker, so it's inappropriate to check to see whether or not
5432 its defined. */
5433 else if ((h->root.root.type == bfd_link_hash_defined
5434 || h->root.root.type == bfd_link_hash_defweak)
5435 && h->root.root.u.def.section)
5436 {
5437 sec = h->root.root.u.def.section;
5438 if (sec->output_section)
5439 symbol = (h->root.root.u.def.value
5440 + sec->output_section->vma
5441 + sec->output_offset);
5442 else
5443 symbol = h->root.root.u.def.value;
5444 }
5445 else if (h->root.root.type == bfd_link_hash_undefweak)
5446 /* We allow relocations against undefined weak symbols, giving
5447 it the value zero, so that you can undefined weak functions
5448 and check to see if they exist by looking at their
5449 addresses. */
5450 symbol = 0;
5451 else if (info->unresolved_syms_in_objects == RM_IGNORE
5452 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5453 symbol = 0;
5454 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5455 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5456 {
5457 /* If this is a dynamic link, we should have created a
5458 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5459 in _bfd_mips_elf_create_dynamic_sections.
5460 Otherwise, we should define the symbol with a value of 0.
5461 FIXME: It should probably get into the symbol table
5462 somehow as well. */
5463 BFD_ASSERT (! bfd_link_pic (info));
5464 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5465 symbol = 0;
5466 }
5467 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5468 {
5469 /* This is an optional symbol - an Irix specific extension to the
5470 ELF spec. Ignore it for now.
5471 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5472 than simply ignoring them, but we do not handle this for now.
5473 For information see the "64-bit ELF Object File Specification"
5474 which is available from here:
5475 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5476 symbol = 0;
5477 }
5478 else
5479 {
5480 (*info->callbacks->undefined_symbol)
5481 (info, h->root.root.root.string, input_bfd,
5482 input_section, relocation->r_offset,
5483 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5484 || ELF_ST_VISIBILITY (h->root.other));
5485 return bfd_reloc_undefined;
5486 }
5487
5488 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5489 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5490 }
5491
5492 /* If this is a reference to a 16-bit function with a stub, we need
5493 to redirect the relocation to the stub unless:
5494
5495 (a) the relocation is for a MIPS16 JAL;
5496
5497 (b) the relocation is for a MIPS16 PIC call, and there are no
5498 non-MIPS16 uses of the GOT slot; or
5499
5500 (c) the section allows direct references to MIPS16 functions. */
5501 if (r_type != R_MIPS16_26
5502 && !bfd_link_relocatable (info)
5503 && ((h != NULL
5504 && h->fn_stub != NULL
5505 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5506 || (local_p
5507 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5508 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5509 && !section_allows_mips16_refs_p (input_section))
5510 {
5511 /* This is a 32- or 64-bit call to a 16-bit function. We should
5512 have already noticed that we were going to need the
5513 stub. */
5514 if (local_p)
5515 {
5516 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5517 value = 0;
5518 }
5519 else
5520 {
5521 BFD_ASSERT (h->need_fn_stub);
5522 if (h->la25_stub)
5523 {
5524 /* If a LA25 header for the stub itself exists, point to the
5525 prepended LUI/ADDIU sequence. */
5526 sec = h->la25_stub->stub_section;
5527 value = h->la25_stub->offset;
5528 }
5529 else
5530 {
5531 sec = h->fn_stub;
5532 value = 0;
5533 }
5534 }
5535
5536 symbol = sec->output_section->vma + sec->output_offset + value;
5537 /* The target is 16-bit, but the stub isn't. */
5538 target_is_16_bit_code_p = FALSE;
5539 }
5540 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5541 to a standard MIPS function, we need to redirect the call to the stub.
5542 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5543 indirect calls should use an indirect stub instead. */
5544 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
5545 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5546 || (local_p
5547 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5548 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5549 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5550 {
5551 if (local_p)
5552 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5553 else
5554 {
5555 /* If both call_stub and call_fp_stub are defined, we can figure
5556 out which one to use by checking which one appears in the input
5557 file. */
5558 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5559 {
5560 asection *o;
5561
5562 sec = NULL;
5563 for (o = input_bfd->sections; o != NULL; o = o->next)
5564 {
5565 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5566 {
5567 sec = h->call_fp_stub;
5568 break;
5569 }
5570 }
5571 if (sec == NULL)
5572 sec = h->call_stub;
5573 }
5574 else if (h->call_stub != NULL)
5575 sec = h->call_stub;
5576 else
5577 sec = h->call_fp_stub;
5578 }
5579
5580 BFD_ASSERT (sec->size > 0);
5581 symbol = sec->output_section->vma + sec->output_offset;
5582 }
5583 /* If this is a direct call to a PIC function, redirect to the
5584 non-PIC stub. */
5585 else if (h != NULL && h->la25_stub
5586 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5587 target_is_16_bit_code_p))
5588 {
5589 symbol = (h->la25_stub->stub_section->output_section->vma
5590 + h->la25_stub->stub_section->output_offset
5591 + h->la25_stub->offset);
5592 if (ELF_ST_IS_MICROMIPS (h->root.other))
5593 symbol |= 1;
5594 }
5595 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5596 entry is used if a standard PLT entry has also been made. In this
5597 case the symbol will have been set by mips_elf_set_plt_sym_value
5598 to point to the standard PLT entry, so redirect to the compressed
5599 one. */
5600 else if ((mips16_branch_reloc_p (r_type)
5601 || micromips_branch_reloc_p (r_type))
5602 && !bfd_link_relocatable (info)
5603 && h != NULL
5604 && h->use_plt_entry
5605 && h->root.plt.plist->comp_offset != MINUS_ONE
5606 && h->root.plt.plist->mips_offset != MINUS_ONE)
5607 {
5608 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5609
5610 sec = htab->root.splt;
5611 symbol = (sec->output_section->vma
5612 + sec->output_offset
5613 + htab->plt_header_size
5614 + htab->plt_mips_offset
5615 + h->root.plt.plist->comp_offset
5616 + 1);
5617
5618 target_is_16_bit_code_p = !micromips_p;
5619 target_is_micromips_code_p = micromips_p;
5620 }
5621
5622 /* Make sure MIPS16 and microMIPS are not used together. */
5623 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
5624 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5625 {
5626 _bfd_error_handler
5627 (_("MIPS16 and microMIPS functions cannot call each other"));
5628 return bfd_reloc_notsupported;
5629 }
5630
5631 /* Calls from 16-bit code to 32-bit code and vice versa require the
5632 mode change. However, we can ignore calls to undefined weak symbols,
5633 which should never be executed at runtime. This exception is important
5634 because the assembly writer may have "known" that any definition of the
5635 symbol would be 16-bit code, and that direct jumps were therefore
5636 acceptable. */
5637 *cross_mode_jump_p = (!bfd_link_relocatable (info)
5638 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5639 && ((mips16_branch_reloc_p (r_type)
5640 && !target_is_16_bit_code_p)
5641 || (micromips_branch_reloc_p (r_type)
5642 && !target_is_micromips_code_p)
5643 || ((branch_reloc_p (r_type)
5644 || r_type == R_MIPS_JALR)
5645 && (target_is_16_bit_code_p
5646 || target_is_micromips_code_p))));
5647
5648 local_p = (h == NULL || mips_use_local_got_p (info, h));
5649
5650 gp0 = _bfd_get_gp_value (input_bfd);
5651 gp = _bfd_get_gp_value (abfd);
5652 if (htab->got_info)
5653 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5654
5655 if (gnu_local_gp_p)
5656 symbol = gp;
5657
5658 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5659 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5660 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5661 if (got_page_reloc_p (r_type) && !local_p)
5662 {
5663 r_type = (micromips_reloc_p (r_type)
5664 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5665 addend = 0;
5666 }
5667
5668 /* If we haven't already determined the GOT offset, and we're going
5669 to need it, get it now. */
5670 switch (r_type)
5671 {
5672 case R_MIPS16_CALL16:
5673 case R_MIPS16_GOT16:
5674 case R_MIPS_CALL16:
5675 case R_MIPS_GOT16:
5676 case R_MIPS_GOT_DISP:
5677 case R_MIPS_GOT_HI16:
5678 case R_MIPS_CALL_HI16:
5679 case R_MIPS_GOT_LO16:
5680 case R_MIPS_CALL_LO16:
5681 case R_MICROMIPS_CALL16:
5682 case R_MICROMIPS_GOT16:
5683 case R_MICROMIPS_GOT_DISP:
5684 case R_MICROMIPS_GOT_HI16:
5685 case R_MICROMIPS_CALL_HI16:
5686 case R_MICROMIPS_GOT_LO16:
5687 case R_MICROMIPS_CALL_LO16:
5688 case R_MIPS_TLS_GD:
5689 case R_MIPS_TLS_GOTTPREL:
5690 case R_MIPS_TLS_LDM:
5691 case R_MIPS16_TLS_GD:
5692 case R_MIPS16_TLS_GOTTPREL:
5693 case R_MIPS16_TLS_LDM:
5694 case R_MICROMIPS_TLS_GD:
5695 case R_MICROMIPS_TLS_GOTTPREL:
5696 case R_MICROMIPS_TLS_LDM:
5697 /* Find the index into the GOT where this value is located. */
5698 if (tls_ldm_reloc_p (r_type))
5699 {
5700 g = mips_elf_local_got_index (abfd, input_bfd, info,
5701 0, 0, NULL, r_type);
5702 if (g == MINUS_ONE)
5703 return bfd_reloc_outofrange;
5704 }
5705 else if (!local_p)
5706 {
5707 /* On VxWorks, CALL relocations should refer to the .got.plt
5708 entry, which is initialized to point at the PLT stub. */
5709 if (htab->is_vxworks
5710 && (call_hi16_reloc_p (r_type)
5711 || call_lo16_reloc_p (r_type)
5712 || call16_reloc_p (r_type)))
5713 {
5714 BFD_ASSERT (addend == 0);
5715 BFD_ASSERT (h->root.needs_plt);
5716 g = mips_elf_gotplt_index (info, &h->root);
5717 }
5718 else
5719 {
5720 BFD_ASSERT (addend == 0);
5721 g = mips_elf_global_got_index (abfd, info, input_bfd,
5722 &h->root, r_type);
5723 if (!TLS_RELOC_P (r_type)
5724 && !elf_hash_table (info)->dynamic_sections_created)
5725 /* This is a static link. We must initialize the GOT entry. */
5726 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->root.sgot->contents + g);
5727 }
5728 }
5729 else if (!htab->is_vxworks
5730 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5731 /* The calculation below does not involve "g". */
5732 break;
5733 else
5734 {
5735 g = mips_elf_local_got_index (abfd, input_bfd, info,
5736 symbol + addend, r_symndx, h, r_type);
5737 if (g == MINUS_ONE)
5738 return bfd_reloc_outofrange;
5739 }
5740
5741 /* Convert GOT indices to actual offsets. */
5742 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5743 break;
5744 }
5745
5746 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5747 symbols are resolved by the loader. Add them to .rela.dyn. */
5748 if (h != NULL && is_gott_symbol (info, &h->root))
5749 {
5750 Elf_Internal_Rela outrel;
5751 bfd_byte *loc;
5752 asection *s;
5753
5754 s = mips_elf_rel_dyn_section (info, FALSE);
5755 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5756
5757 outrel.r_offset = (input_section->output_section->vma
5758 + input_section->output_offset
5759 + relocation->r_offset);
5760 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5761 outrel.r_addend = addend;
5762 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5763
5764 /* If we've written this relocation for a readonly section,
5765 we need to set DF_TEXTREL again, so that we do not delete the
5766 DT_TEXTREL tag. */
5767 if (MIPS_ELF_READONLY_SECTION (input_section))
5768 info->flags |= DF_TEXTREL;
5769
5770 *valuep = 0;
5771 return bfd_reloc_ok;
5772 }
5773
5774 /* Figure out what kind of relocation is being performed. */
5775 switch (r_type)
5776 {
5777 case R_MIPS_NONE:
5778 return bfd_reloc_continue;
5779
5780 case R_MIPS_16:
5781 if (howto->partial_inplace)
5782 addend = _bfd_mips_elf_sign_extend (addend, 16);
5783 value = symbol + addend;
5784 overflowed_p = mips_elf_overflow_p (value, 16);
5785 break;
5786
5787 case R_MIPS_32:
5788 case R_MIPS_REL32:
5789 case R_MIPS_64:
5790 if ((bfd_link_pic (info)
5791 || (htab->root.dynamic_sections_created
5792 && h != NULL
5793 && h->root.def_dynamic
5794 && !h->root.def_regular
5795 && !h->has_static_relocs))
5796 && r_symndx != STN_UNDEF
5797 && (h == NULL
5798 || h->root.root.type != bfd_link_hash_undefweak
5799 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5800 && (input_section->flags & SEC_ALLOC) != 0)
5801 {
5802 /* If we're creating a shared library, then we can't know
5803 where the symbol will end up. So, we create a relocation
5804 record in the output, and leave the job up to the dynamic
5805 linker. We must do the same for executable references to
5806 shared library symbols, unless we've decided to use copy
5807 relocs or PLTs instead. */
5808 value = addend;
5809 if (!mips_elf_create_dynamic_relocation (abfd,
5810 info,
5811 relocation,
5812 h,
5813 sec,
5814 symbol,
5815 &value,
5816 input_section))
5817 return bfd_reloc_undefined;
5818 }
5819 else
5820 {
5821 if (r_type != R_MIPS_REL32)
5822 value = symbol + addend;
5823 else
5824 value = addend;
5825 }
5826 value &= howto->dst_mask;
5827 break;
5828
5829 case R_MIPS_PC32:
5830 value = symbol + addend - p;
5831 value &= howto->dst_mask;
5832 break;
5833
5834 case R_MIPS16_26:
5835 /* The calculation for R_MIPS16_26 is just the same as for an
5836 R_MIPS_26. It's only the storage of the relocated field into
5837 the output file that's different. That's handled in
5838 mips_elf_perform_relocation. So, we just fall through to the
5839 R_MIPS_26 case here. */
5840 case R_MIPS_26:
5841 case R_MICROMIPS_26_S1:
5842 {
5843 unsigned int shift;
5844
5845 /* Shift is 2, unusually, for microMIPS JALX. */
5846 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5847
5848 if (howto->partial_inplace && !section_p)
5849 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5850 else
5851 value = addend;
5852 value += symbol;
5853
5854 /* Make sure the target of a jump is suitably aligned. Bit 0 must
5855 be the correct ISA mode selector except for weak undefined
5856 symbols. */
5857 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5858 && (*cross_mode_jump_p
5859 ? (value & 3) != (r_type == R_MIPS_26)
5860 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
5861 return bfd_reloc_outofrange;
5862
5863 value >>= shift;
5864 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5865 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5866 value &= howto->dst_mask;
5867 }
5868 break;
5869
5870 case R_MIPS_TLS_DTPREL_HI16:
5871 case R_MIPS16_TLS_DTPREL_HI16:
5872 case R_MICROMIPS_TLS_DTPREL_HI16:
5873 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5874 & howto->dst_mask);
5875 break;
5876
5877 case R_MIPS_TLS_DTPREL_LO16:
5878 case R_MIPS_TLS_DTPREL32:
5879 case R_MIPS_TLS_DTPREL64:
5880 case R_MIPS16_TLS_DTPREL_LO16:
5881 case R_MICROMIPS_TLS_DTPREL_LO16:
5882 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5883 break;
5884
5885 case R_MIPS_TLS_TPREL_HI16:
5886 case R_MIPS16_TLS_TPREL_HI16:
5887 case R_MICROMIPS_TLS_TPREL_HI16:
5888 value = (mips_elf_high (addend + symbol - tprel_base (info))
5889 & howto->dst_mask);
5890 break;
5891
5892 case R_MIPS_TLS_TPREL_LO16:
5893 case R_MIPS_TLS_TPREL32:
5894 case R_MIPS_TLS_TPREL64:
5895 case R_MIPS16_TLS_TPREL_LO16:
5896 case R_MICROMIPS_TLS_TPREL_LO16:
5897 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5898 break;
5899
5900 case R_MIPS_HI16:
5901 case R_MIPS16_HI16:
5902 case R_MICROMIPS_HI16:
5903 if (!gp_disp_p)
5904 {
5905 value = mips_elf_high (addend + symbol);
5906 value &= howto->dst_mask;
5907 }
5908 else
5909 {
5910 /* For MIPS16 ABI code we generate this sequence
5911 0: li $v0,%hi(_gp_disp)
5912 4: addiupc $v1,%lo(_gp_disp)
5913 8: sll $v0,16
5914 12: addu $v0,$v1
5915 14: move $gp,$v0
5916 So the offsets of hi and lo relocs are the same, but the
5917 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5918 ADDIUPC clears the low two bits of the instruction address,
5919 so the base is ($t9 + 4) & ~3. */
5920 if (r_type == R_MIPS16_HI16)
5921 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5922 /* The microMIPS .cpload sequence uses the same assembly
5923 instructions as the traditional psABI version, but the
5924 incoming $t9 has the low bit set. */
5925 else if (r_type == R_MICROMIPS_HI16)
5926 value = mips_elf_high (addend + gp - p - 1);
5927 else
5928 value = mips_elf_high (addend + gp - p);
5929 }
5930 break;
5931
5932 case R_MIPS_LO16:
5933 case R_MIPS16_LO16:
5934 case R_MICROMIPS_LO16:
5935 case R_MICROMIPS_HI0_LO16:
5936 if (!gp_disp_p)
5937 value = (symbol + addend) & howto->dst_mask;
5938 else
5939 {
5940 /* See the comment for R_MIPS16_HI16 above for the reason
5941 for this conditional. */
5942 if (r_type == R_MIPS16_LO16)
5943 value = addend + gp - (p & ~(bfd_vma) 0x3);
5944 else if (r_type == R_MICROMIPS_LO16
5945 || r_type == R_MICROMIPS_HI0_LO16)
5946 value = addend + gp - p + 3;
5947 else
5948 value = addend + gp - p + 4;
5949 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5950 for overflow. But, on, say, IRIX5, relocations against
5951 _gp_disp are normally generated from the .cpload
5952 pseudo-op. It generates code that normally looks like
5953 this:
5954
5955 lui $gp,%hi(_gp_disp)
5956 addiu $gp,$gp,%lo(_gp_disp)
5957 addu $gp,$gp,$t9
5958
5959 Here $t9 holds the address of the function being called,
5960 as required by the MIPS ELF ABI. The R_MIPS_LO16
5961 relocation can easily overflow in this situation, but the
5962 R_MIPS_HI16 relocation will handle the overflow.
5963 Therefore, we consider this a bug in the MIPS ABI, and do
5964 not check for overflow here. */
5965 }
5966 break;
5967
5968 case R_MIPS_LITERAL:
5969 case R_MICROMIPS_LITERAL:
5970 /* Because we don't merge literal sections, we can handle this
5971 just like R_MIPS_GPREL16. In the long run, we should merge
5972 shared literals, and then we will need to additional work
5973 here. */
5974
5975 /* Fall through. */
5976
5977 case R_MIPS16_GPREL:
5978 /* The R_MIPS16_GPREL performs the same calculation as
5979 R_MIPS_GPREL16, but stores the relocated bits in a different
5980 order. We don't need to do anything special here; the
5981 differences are handled in mips_elf_perform_relocation. */
5982 case R_MIPS_GPREL16:
5983 case R_MICROMIPS_GPREL7_S2:
5984 case R_MICROMIPS_GPREL16:
5985 /* Only sign-extend the addend if it was extracted from the
5986 instruction. If the addend was separate, leave it alone,
5987 otherwise we may lose significant bits. */
5988 if (howto->partial_inplace)
5989 addend = _bfd_mips_elf_sign_extend (addend, 16);
5990 value = symbol + addend - gp;
5991 /* If the symbol was local, any earlier relocatable links will
5992 have adjusted its addend with the gp offset, so compensate
5993 for that now. Don't do it for symbols forced local in this
5994 link, though, since they won't have had the gp offset applied
5995 to them before. */
5996 if (was_local_p)
5997 value += gp0;
5998 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5999 overflowed_p = mips_elf_overflow_p (value, 16);
6000 break;
6001
6002 case R_MIPS16_GOT16:
6003 case R_MIPS16_CALL16:
6004 case R_MIPS_GOT16:
6005 case R_MIPS_CALL16:
6006 case R_MICROMIPS_GOT16:
6007 case R_MICROMIPS_CALL16:
6008 /* VxWorks does not have separate local and global semantics for
6009 R_MIPS*_GOT16; every relocation evaluates to "G". */
6010 if (!htab->is_vxworks && local_p)
6011 {
6012 value = mips_elf_got16_entry (abfd, input_bfd, info,
6013 symbol + addend, !was_local_p);
6014 if (value == MINUS_ONE)
6015 return bfd_reloc_outofrange;
6016 value
6017 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6018 overflowed_p = mips_elf_overflow_p (value, 16);
6019 break;
6020 }
6021
6022 /* Fall through. */
6023
6024 case R_MIPS_TLS_GD:
6025 case R_MIPS_TLS_GOTTPREL:
6026 case R_MIPS_TLS_LDM:
6027 case R_MIPS_GOT_DISP:
6028 case R_MIPS16_TLS_GD:
6029 case R_MIPS16_TLS_GOTTPREL:
6030 case R_MIPS16_TLS_LDM:
6031 case R_MICROMIPS_TLS_GD:
6032 case R_MICROMIPS_TLS_GOTTPREL:
6033 case R_MICROMIPS_TLS_LDM:
6034 case R_MICROMIPS_GOT_DISP:
6035 value = g;
6036 overflowed_p = mips_elf_overflow_p (value, 16);
6037 break;
6038
6039 case R_MIPS_GPREL32:
6040 value = (addend + symbol + gp0 - gp);
6041 if (!save_addend)
6042 value &= howto->dst_mask;
6043 break;
6044
6045 case R_MIPS_PC16:
6046 case R_MIPS_GNU_REL16_S2:
6047 if (howto->partial_inplace)
6048 addend = _bfd_mips_elf_sign_extend (addend, 18);
6049
6050 /* No need to exclude weak undefined symbols here as they resolve
6051 to 0 and never set `*cross_mode_jump_p', so this alignment check
6052 will never trigger for them. */
6053 if (*cross_mode_jump_p
6054 ? ((symbol + addend) & 3) != 1
6055 : ((symbol + addend) & 3) != 0)
6056 return bfd_reloc_outofrange;
6057
6058 value = symbol + addend - p;
6059 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6060 overflowed_p = mips_elf_overflow_p (value, 18);
6061 value >>= howto->rightshift;
6062 value &= howto->dst_mask;
6063 break;
6064
6065 case R_MIPS16_PC16_S1:
6066 if (howto->partial_inplace)
6067 addend = _bfd_mips_elf_sign_extend (addend, 17);
6068
6069 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6070 && (*cross_mode_jump_p
6071 ? ((symbol + addend) & 3) != 0
6072 : ((symbol + addend) & 1) == 0))
6073 return bfd_reloc_outofrange;
6074
6075 value = symbol + addend - p;
6076 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6077 overflowed_p = mips_elf_overflow_p (value, 17);
6078 value >>= howto->rightshift;
6079 value &= howto->dst_mask;
6080 break;
6081
6082 case R_MIPS_PC21_S2:
6083 if (howto->partial_inplace)
6084 addend = _bfd_mips_elf_sign_extend (addend, 23);
6085
6086 if ((symbol + addend) & 3)
6087 return bfd_reloc_outofrange;
6088
6089 value = symbol + addend - p;
6090 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6091 overflowed_p = mips_elf_overflow_p (value, 23);
6092 value >>= howto->rightshift;
6093 value &= howto->dst_mask;
6094 break;
6095
6096 case R_MIPS_PC26_S2:
6097 if (howto->partial_inplace)
6098 addend = _bfd_mips_elf_sign_extend (addend, 28);
6099
6100 if ((symbol + addend) & 3)
6101 return bfd_reloc_outofrange;
6102
6103 value = symbol + addend - p;
6104 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6105 overflowed_p = mips_elf_overflow_p (value, 28);
6106 value >>= howto->rightshift;
6107 value &= howto->dst_mask;
6108 break;
6109
6110 case R_MIPS_PC18_S3:
6111 if (howto->partial_inplace)
6112 addend = _bfd_mips_elf_sign_extend (addend, 21);
6113
6114 if ((symbol + addend) & 7)
6115 return bfd_reloc_outofrange;
6116
6117 value = symbol + addend - ((p | 7) ^ 7);
6118 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6119 overflowed_p = mips_elf_overflow_p (value, 21);
6120 value >>= howto->rightshift;
6121 value &= howto->dst_mask;
6122 break;
6123
6124 case R_MIPS_PC19_S2:
6125 if (howto->partial_inplace)
6126 addend = _bfd_mips_elf_sign_extend (addend, 21);
6127
6128 if ((symbol + addend) & 3)
6129 return bfd_reloc_outofrange;
6130
6131 value = symbol + addend - p;
6132 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6133 overflowed_p = mips_elf_overflow_p (value, 21);
6134 value >>= howto->rightshift;
6135 value &= howto->dst_mask;
6136 break;
6137
6138 case R_MIPS_PCHI16:
6139 value = mips_elf_high (symbol + addend - p);
6140 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6141 overflowed_p = mips_elf_overflow_p (value, 16);
6142 value &= howto->dst_mask;
6143 break;
6144
6145 case R_MIPS_PCLO16:
6146 if (howto->partial_inplace)
6147 addend = _bfd_mips_elf_sign_extend (addend, 16);
6148 value = symbol + addend - p;
6149 value &= howto->dst_mask;
6150 break;
6151
6152 case R_MICROMIPS_PC7_S1:
6153 if (howto->partial_inplace)
6154 addend = _bfd_mips_elf_sign_extend (addend, 8);
6155
6156 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6157 && (*cross_mode_jump_p
6158 ? ((symbol + addend + 2) & 3) != 0
6159 : ((symbol + addend + 2) & 1) == 0))
6160 return bfd_reloc_outofrange;
6161
6162 value = symbol + addend - p;
6163 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6164 overflowed_p = mips_elf_overflow_p (value, 8);
6165 value >>= howto->rightshift;
6166 value &= howto->dst_mask;
6167 break;
6168
6169 case R_MICROMIPS_PC10_S1:
6170 if (howto->partial_inplace)
6171 addend = _bfd_mips_elf_sign_extend (addend, 11);
6172
6173 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6174 && (*cross_mode_jump_p
6175 ? ((symbol + addend + 2) & 3) != 0
6176 : ((symbol + addend + 2) & 1) == 0))
6177 return bfd_reloc_outofrange;
6178
6179 value = symbol + addend - p;
6180 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6181 overflowed_p = mips_elf_overflow_p (value, 11);
6182 value >>= howto->rightshift;
6183 value &= howto->dst_mask;
6184 break;
6185
6186 case R_MICROMIPS_PC16_S1:
6187 if (howto->partial_inplace)
6188 addend = _bfd_mips_elf_sign_extend (addend, 17);
6189
6190 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6191 && (*cross_mode_jump_p
6192 ? ((symbol + addend) & 3) != 0
6193 : ((symbol + addend) & 1) == 0))
6194 return bfd_reloc_outofrange;
6195
6196 value = symbol + addend - p;
6197 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6198 overflowed_p = mips_elf_overflow_p (value, 17);
6199 value >>= howto->rightshift;
6200 value &= howto->dst_mask;
6201 break;
6202
6203 case R_MICROMIPS_PC23_S2:
6204 if (howto->partial_inplace)
6205 addend = _bfd_mips_elf_sign_extend (addend, 25);
6206 value = symbol + addend - ((p | 3) ^ 3);
6207 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6208 overflowed_p = mips_elf_overflow_p (value, 25);
6209 value >>= howto->rightshift;
6210 value &= howto->dst_mask;
6211 break;
6212
6213 case R_MIPS_GOT_HI16:
6214 case R_MIPS_CALL_HI16:
6215 case R_MICROMIPS_GOT_HI16:
6216 case R_MICROMIPS_CALL_HI16:
6217 /* We're allowed to handle these two relocations identically.
6218 The dynamic linker is allowed to handle the CALL relocations
6219 differently by creating a lazy evaluation stub. */
6220 value = g;
6221 value = mips_elf_high (value);
6222 value &= howto->dst_mask;
6223 break;
6224
6225 case R_MIPS_GOT_LO16:
6226 case R_MIPS_CALL_LO16:
6227 case R_MICROMIPS_GOT_LO16:
6228 case R_MICROMIPS_CALL_LO16:
6229 value = g & howto->dst_mask;
6230 break;
6231
6232 case R_MIPS_GOT_PAGE:
6233 case R_MICROMIPS_GOT_PAGE:
6234 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6235 if (value == MINUS_ONE)
6236 return bfd_reloc_outofrange;
6237 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6238 overflowed_p = mips_elf_overflow_p (value, 16);
6239 break;
6240
6241 case R_MIPS_GOT_OFST:
6242 case R_MICROMIPS_GOT_OFST:
6243 if (local_p)
6244 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6245 else
6246 value = addend;
6247 overflowed_p = mips_elf_overflow_p (value, 16);
6248 break;
6249
6250 case R_MIPS_SUB:
6251 case R_MICROMIPS_SUB:
6252 value = symbol - addend;
6253 value &= howto->dst_mask;
6254 break;
6255
6256 case R_MIPS_HIGHER:
6257 case R_MICROMIPS_HIGHER:
6258 value = mips_elf_higher (addend + symbol);
6259 value &= howto->dst_mask;
6260 break;
6261
6262 case R_MIPS_HIGHEST:
6263 case R_MICROMIPS_HIGHEST:
6264 value = mips_elf_highest (addend + symbol);
6265 value &= howto->dst_mask;
6266 break;
6267
6268 case R_MIPS_SCN_DISP:
6269 case R_MICROMIPS_SCN_DISP:
6270 value = symbol + addend - sec->output_offset;
6271 value &= howto->dst_mask;
6272 break;
6273
6274 case R_MIPS_JALR:
6275 case R_MICROMIPS_JALR:
6276 /* This relocation is only a hint. In some cases, we optimize
6277 it into a bal instruction. But we don't try to optimize
6278 when the symbol does not resolve locally. */
6279 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6280 return bfd_reloc_continue;
6281 /* We can't optimize cross-mode jumps either. */
6282 if (*cross_mode_jump_p)
6283 return bfd_reloc_continue;
6284 value = symbol + addend;
6285 /* Neither we can non-instruction-aligned targets. */
6286 if (r_type == R_MIPS_JALR ? (value & 3) != 0 : (value & 1) == 0)
6287 return bfd_reloc_continue;
6288 break;
6289
6290 case R_MIPS_PJUMP:
6291 case R_MIPS_GNU_VTINHERIT:
6292 case R_MIPS_GNU_VTENTRY:
6293 /* We don't do anything with these at present. */
6294 return bfd_reloc_continue;
6295
6296 default:
6297 /* An unrecognized relocation type. */
6298 return bfd_reloc_notsupported;
6299 }
6300
6301 /* Store the VALUE for our caller. */
6302 *valuep = value;
6303 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6304 }
6305
6306 /* Obtain the field relocated by RELOCATION. */
6307
6308 static bfd_vma
6309 mips_elf_obtain_contents (reloc_howto_type *howto,
6310 const Elf_Internal_Rela *relocation,
6311 bfd *input_bfd, bfd_byte *contents)
6312 {
6313 bfd_vma x = 0;
6314 bfd_byte *location = contents + relocation->r_offset;
6315 unsigned int size = bfd_get_reloc_size (howto);
6316
6317 /* Obtain the bytes. */
6318 if (size != 0)
6319 x = bfd_get (8 * size, input_bfd, location);
6320
6321 return x;
6322 }
6323
6324 /* It has been determined that the result of the RELOCATION is the
6325 VALUE. Use HOWTO to place VALUE into the output file at the
6326 appropriate position. The SECTION is the section to which the
6327 relocation applies.
6328 CROSS_MODE_JUMP_P is true if the relocation field
6329 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6330
6331 Returns FALSE if anything goes wrong. */
6332
6333 static bfd_boolean
6334 mips_elf_perform_relocation (struct bfd_link_info *info,
6335 reloc_howto_type *howto,
6336 const Elf_Internal_Rela *relocation,
6337 bfd_vma value, bfd *input_bfd,
6338 asection *input_section, bfd_byte *contents,
6339 bfd_boolean cross_mode_jump_p)
6340 {
6341 bfd_vma x;
6342 bfd_byte *location;
6343 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6344 unsigned int size;
6345
6346 /* Figure out where the relocation is occurring. */
6347 location = contents + relocation->r_offset;
6348
6349 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6350
6351 /* Obtain the current value. */
6352 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6353
6354 /* Clear the field we are setting. */
6355 x &= ~howto->dst_mask;
6356
6357 /* Set the field. */
6358 x |= (value & howto->dst_mask);
6359
6360 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
6361 if (!cross_mode_jump_p && jal_reloc_p (r_type))
6362 {
6363 bfd_vma opcode = x >> 26;
6364
6365 if (r_type == R_MIPS16_26 ? opcode == 0x7
6366 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6367 : opcode == 0x1d)
6368 {
6369 info->callbacks->einfo
6370 (_("%X%H: Unsupported JALX to the same ISA mode\n"),
6371 input_bfd, input_section, relocation->r_offset);
6372 return TRUE;
6373 }
6374 }
6375 if (cross_mode_jump_p && jal_reloc_p (r_type))
6376 {
6377 bfd_boolean ok;
6378 bfd_vma opcode = x >> 26;
6379 bfd_vma jalx_opcode;
6380
6381 /* Check to see if the opcode is already JAL or JALX. */
6382 if (r_type == R_MIPS16_26)
6383 {
6384 ok = ((opcode == 0x6) || (opcode == 0x7));
6385 jalx_opcode = 0x7;
6386 }
6387 else if (r_type == R_MICROMIPS_26_S1)
6388 {
6389 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6390 jalx_opcode = 0x3c;
6391 }
6392 else
6393 {
6394 ok = ((opcode == 0x3) || (opcode == 0x1d));
6395 jalx_opcode = 0x1d;
6396 }
6397
6398 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6399 convert J or JALS to JALX. */
6400 if (!ok)
6401 {
6402 info->callbacks->einfo
6403 (_("%X%H: Unsupported jump between ISA modes; "
6404 "consider recompiling with interlinking enabled\n"),
6405 input_bfd, input_section, relocation->r_offset);
6406 return TRUE;
6407 }
6408
6409 /* Make this the JALX opcode. */
6410 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6411 }
6412 else if (cross_mode_jump_p && b_reloc_p (r_type))
6413 {
6414 bfd_boolean ok = FALSE;
6415 bfd_vma opcode = x >> 16;
6416 bfd_vma jalx_opcode = 0;
6417 bfd_vma sign_bit = 0;
6418 bfd_vma addr;
6419 bfd_vma dest;
6420
6421 if (r_type == R_MICROMIPS_PC16_S1)
6422 {
6423 ok = opcode == 0x4060;
6424 jalx_opcode = 0x3c;
6425 sign_bit = 0x10000;
6426 value <<= 1;
6427 }
6428 else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6429 {
6430 ok = opcode == 0x411;
6431 jalx_opcode = 0x1d;
6432 sign_bit = 0x20000;
6433 value <<= 2;
6434 }
6435
6436 if (ok && !bfd_link_pic (info))
6437 {
6438 addr = (input_section->output_section->vma
6439 + input_section->output_offset
6440 + relocation->r_offset
6441 + 4);
6442 dest = (addr
6443 + (((value & ((sign_bit << 1) - 1)) ^ sign_bit) - sign_bit));
6444
6445 if ((addr >> 28) << 28 != (dest >> 28) << 28)
6446 {
6447 info->callbacks->einfo
6448 (_("%X%H: Cannot convert branch between ISA modes "
6449 "to JALX: relocation out of range\n"),
6450 input_bfd, input_section, relocation->r_offset);
6451 return TRUE;
6452 }
6453
6454 /* Make this the JALX opcode. */
6455 x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
6456 }
6457 else if (!mips_elf_hash_table (info)->ignore_branch_isa)
6458 {
6459 info->callbacks->einfo
6460 (_("%X%H: Unsupported branch between ISA modes\n"),
6461 input_bfd, input_section, relocation->r_offset);
6462 return TRUE;
6463 }
6464 }
6465
6466 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6467 range. */
6468 if (!bfd_link_relocatable (info)
6469 && !cross_mode_jump_p
6470 && ((JAL_TO_BAL_P (input_bfd)
6471 && r_type == R_MIPS_26
6472 && (x >> 26) == 0x3) /* jal addr */
6473 || (JALR_TO_BAL_P (input_bfd)
6474 && r_type == R_MIPS_JALR
6475 && x == 0x0320f809) /* jalr t9 */
6476 || (JR_TO_B_P (input_bfd)
6477 && r_type == R_MIPS_JALR
6478 && (x & ~1) == 0x03200008))) /* jr t9 / jalr zero, t9 */
6479 {
6480 bfd_vma addr;
6481 bfd_vma dest;
6482 bfd_signed_vma off;
6483
6484 addr = (input_section->output_section->vma
6485 + input_section->output_offset
6486 + relocation->r_offset
6487 + 4);
6488 if (r_type == R_MIPS_26)
6489 dest = (value << 2) | ((addr >> 28) << 28);
6490 else
6491 dest = value;
6492 off = dest - addr;
6493 if (off <= 0x1ffff && off >= -0x20000)
6494 {
6495 if ((x & ~1) == 0x03200008) /* jr t9 / jalr zero, t9 */
6496 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6497 else
6498 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6499 }
6500 }
6501
6502 /* Put the value into the output. */
6503 size = bfd_get_reloc_size (howto);
6504 if (size != 0)
6505 bfd_put (8 * size, input_bfd, x, location);
6506
6507 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
6508 location);
6509
6510 return TRUE;
6511 }
6512 \f
6513 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6514 is the original relocation, which is now being transformed into a
6515 dynamic relocation. The ADDENDP is adjusted if necessary; the
6516 caller should store the result in place of the original addend. */
6517
6518 static bfd_boolean
6519 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6520 struct bfd_link_info *info,
6521 const Elf_Internal_Rela *rel,
6522 struct mips_elf_link_hash_entry *h,
6523 asection *sec, bfd_vma symbol,
6524 bfd_vma *addendp, asection *input_section)
6525 {
6526 Elf_Internal_Rela outrel[3];
6527 asection *sreloc;
6528 bfd *dynobj;
6529 int r_type;
6530 long indx;
6531 bfd_boolean defined_p;
6532 struct mips_elf_link_hash_table *htab;
6533
6534 htab = mips_elf_hash_table (info);
6535 BFD_ASSERT (htab != NULL);
6536
6537 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6538 dynobj = elf_hash_table (info)->dynobj;
6539 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6540 BFD_ASSERT (sreloc != NULL);
6541 BFD_ASSERT (sreloc->contents != NULL);
6542 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6543 < sreloc->size);
6544
6545 outrel[0].r_offset =
6546 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6547 if (ABI_64_P (output_bfd))
6548 {
6549 outrel[1].r_offset =
6550 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6551 outrel[2].r_offset =
6552 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6553 }
6554
6555 if (outrel[0].r_offset == MINUS_ONE)
6556 /* The relocation field has been deleted. */
6557 return TRUE;
6558
6559 if (outrel[0].r_offset == MINUS_TWO)
6560 {
6561 /* The relocation field has been converted into a relative value of
6562 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6563 the field to be fully relocated, so add in the symbol's value. */
6564 *addendp += symbol;
6565 return TRUE;
6566 }
6567
6568 /* We must now calculate the dynamic symbol table index to use
6569 in the relocation. */
6570 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6571 {
6572 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6573 indx = h->root.dynindx;
6574 if (SGI_COMPAT (output_bfd))
6575 defined_p = h->root.def_regular;
6576 else
6577 /* ??? glibc's ld.so just adds the final GOT entry to the
6578 relocation field. It therefore treats relocs against
6579 defined symbols in the same way as relocs against
6580 undefined symbols. */
6581 defined_p = FALSE;
6582 }
6583 else
6584 {
6585 if (sec != NULL && bfd_is_abs_section (sec))
6586 indx = 0;
6587 else if (sec == NULL || sec->owner == NULL)
6588 {
6589 bfd_set_error (bfd_error_bad_value);
6590 return FALSE;
6591 }
6592 else
6593 {
6594 indx = elf_section_data (sec->output_section)->dynindx;
6595 if (indx == 0)
6596 {
6597 asection *osec = htab->root.text_index_section;
6598 indx = elf_section_data (osec)->dynindx;
6599 }
6600 if (indx == 0)
6601 abort ();
6602 }
6603
6604 /* Instead of generating a relocation using the section
6605 symbol, we may as well make it a fully relative
6606 relocation. We want to avoid generating relocations to
6607 local symbols because we used to generate them
6608 incorrectly, without adding the original symbol value,
6609 which is mandated by the ABI for section symbols. In
6610 order to give dynamic loaders and applications time to
6611 phase out the incorrect use, we refrain from emitting
6612 section-relative relocations. It's not like they're
6613 useful, after all. This should be a bit more efficient
6614 as well. */
6615 /* ??? Although this behavior is compatible with glibc's ld.so,
6616 the ABI says that relocations against STN_UNDEF should have
6617 a symbol value of 0. Irix rld honors this, so relocations
6618 against STN_UNDEF have no effect. */
6619 if (!SGI_COMPAT (output_bfd))
6620 indx = 0;
6621 defined_p = TRUE;
6622 }
6623
6624 /* If the relocation was previously an absolute relocation and
6625 this symbol will not be referred to by the relocation, we must
6626 adjust it by the value we give it in the dynamic symbol table.
6627 Otherwise leave the job up to the dynamic linker. */
6628 if (defined_p && r_type != R_MIPS_REL32)
6629 *addendp += symbol;
6630
6631 if (htab->is_vxworks)
6632 /* VxWorks uses non-relative relocations for this. */
6633 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6634 else
6635 /* The relocation is always an REL32 relocation because we don't
6636 know where the shared library will wind up at load-time. */
6637 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6638 R_MIPS_REL32);
6639
6640 /* For strict adherence to the ABI specification, we should
6641 generate a R_MIPS_64 relocation record by itself before the
6642 _REL32/_64 record as well, such that the addend is read in as
6643 a 64-bit value (REL32 is a 32-bit relocation, after all).
6644 However, since none of the existing ELF64 MIPS dynamic
6645 loaders seems to care, we don't waste space with these
6646 artificial relocations. If this turns out to not be true,
6647 mips_elf_allocate_dynamic_relocation() should be tweaked so
6648 as to make room for a pair of dynamic relocations per
6649 invocation if ABI_64_P, and here we should generate an
6650 additional relocation record with R_MIPS_64 by itself for a
6651 NULL symbol before this relocation record. */
6652 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6653 ABI_64_P (output_bfd)
6654 ? R_MIPS_64
6655 : R_MIPS_NONE);
6656 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6657
6658 /* Adjust the output offset of the relocation to reference the
6659 correct location in the output file. */
6660 outrel[0].r_offset += (input_section->output_section->vma
6661 + input_section->output_offset);
6662 outrel[1].r_offset += (input_section->output_section->vma
6663 + input_section->output_offset);
6664 outrel[2].r_offset += (input_section->output_section->vma
6665 + input_section->output_offset);
6666
6667 /* Put the relocation back out. We have to use the special
6668 relocation outputter in the 64-bit case since the 64-bit
6669 relocation format is non-standard. */
6670 if (ABI_64_P (output_bfd))
6671 {
6672 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6673 (output_bfd, &outrel[0],
6674 (sreloc->contents
6675 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6676 }
6677 else if (htab->is_vxworks)
6678 {
6679 /* VxWorks uses RELA rather than REL dynamic relocations. */
6680 outrel[0].r_addend = *addendp;
6681 bfd_elf32_swap_reloca_out
6682 (output_bfd, &outrel[0],
6683 (sreloc->contents
6684 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6685 }
6686 else
6687 bfd_elf32_swap_reloc_out
6688 (output_bfd, &outrel[0],
6689 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6690
6691 /* We've now added another relocation. */
6692 ++sreloc->reloc_count;
6693
6694 /* Make sure the output section is writable. The dynamic linker
6695 will be writing to it. */
6696 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6697 |= SHF_WRITE;
6698
6699 /* On IRIX5, make an entry of compact relocation info. */
6700 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6701 {
6702 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6703 bfd_byte *cr;
6704
6705 if (scpt)
6706 {
6707 Elf32_crinfo cptrel;
6708
6709 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6710 cptrel.vaddr = (rel->r_offset
6711 + input_section->output_section->vma
6712 + input_section->output_offset);
6713 if (r_type == R_MIPS_REL32)
6714 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6715 else
6716 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6717 mips_elf_set_cr_dist2to (cptrel, 0);
6718 cptrel.konst = *addendp;
6719
6720 cr = (scpt->contents
6721 + sizeof (Elf32_External_compact_rel));
6722 mips_elf_set_cr_relvaddr (cptrel, 0);
6723 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6724 ((Elf32_External_crinfo *) cr
6725 + scpt->reloc_count));
6726 ++scpt->reloc_count;
6727 }
6728 }
6729
6730 /* If we've written this relocation for a readonly section,
6731 we need to set DF_TEXTREL again, so that we do not delete the
6732 DT_TEXTREL tag. */
6733 if (MIPS_ELF_READONLY_SECTION (input_section))
6734 info->flags |= DF_TEXTREL;
6735
6736 return TRUE;
6737 }
6738 \f
6739 /* Return the MACH for a MIPS e_flags value. */
6740
6741 unsigned long
6742 _bfd_elf_mips_mach (flagword flags)
6743 {
6744 switch (flags & EF_MIPS_MACH)
6745 {
6746 case E_MIPS_MACH_3900:
6747 return bfd_mach_mips3900;
6748
6749 case E_MIPS_MACH_4010:
6750 return bfd_mach_mips4010;
6751
6752 case E_MIPS_MACH_4100:
6753 return bfd_mach_mips4100;
6754
6755 case E_MIPS_MACH_4111:
6756 return bfd_mach_mips4111;
6757
6758 case E_MIPS_MACH_4120:
6759 return bfd_mach_mips4120;
6760
6761 case E_MIPS_MACH_4650:
6762 return bfd_mach_mips4650;
6763
6764 case E_MIPS_MACH_5400:
6765 return bfd_mach_mips5400;
6766
6767 case E_MIPS_MACH_5500:
6768 return bfd_mach_mips5500;
6769
6770 case E_MIPS_MACH_5900:
6771 return bfd_mach_mips5900;
6772
6773 case E_MIPS_MACH_9000:
6774 return bfd_mach_mips9000;
6775
6776 case E_MIPS_MACH_SB1:
6777 return bfd_mach_mips_sb1;
6778
6779 case E_MIPS_MACH_LS2E:
6780 return bfd_mach_mips_loongson_2e;
6781
6782 case E_MIPS_MACH_LS2F:
6783 return bfd_mach_mips_loongson_2f;
6784
6785 case E_MIPS_MACH_LS3A:
6786 return bfd_mach_mips_loongson_3a;
6787
6788 case E_MIPS_MACH_OCTEON3:
6789 return bfd_mach_mips_octeon3;
6790
6791 case E_MIPS_MACH_OCTEON2:
6792 return bfd_mach_mips_octeon2;
6793
6794 case E_MIPS_MACH_OCTEON:
6795 return bfd_mach_mips_octeon;
6796
6797 case E_MIPS_MACH_XLR:
6798 return bfd_mach_mips_xlr;
6799
6800 case E_MIPS_MACH_IAMR2:
6801 return bfd_mach_mips_interaptiv_mr2;
6802
6803 default:
6804 switch (flags & EF_MIPS_ARCH)
6805 {
6806 default:
6807 case E_MIPS_ARCH_1:
6808 return bfd_mach_mips3000;
6809
6810 case E_MIPS_ARCH_2:
6811 return bfd_mach_mips6000;
6812
6813 case E_MIPS_ARCH_3:
6814 return bfd_mach_mips4000;
6815
6816 case E_MIPS_ARCH_4:
6817 return bfd_mach_mips8000;
6818
6819 case E_MIPS_ARCH_5:
6820 return bfd_mach_mips5;
6821
6822 case E_MIPS_ARCH_32:
6823 return bfd_mach_mipsisa32;
6824
6825 case E_MIPS_ARCH_64:
6826 return bfd_mach_mipsisa64;
6827
6828 case E_MIPS_ARCH_32R2:
6829 return bfd_mach_mipsisa32r2;
6830
6831 case E_MIPS_ARCH_64R2:
6832 return bfd_mach_mipsisa64r2;
6833
6834 case E_MIPS_ARCH_32R6:
6835 return bfd_mach_mipsisa32r6;
6836
6837 case E_MIPS_ARCH_64R6:
6838 return bfd_mach_mipsisa64r6;
6839 }
6840 }
6841
6842 return 0;
6843 }
6844
6845 /* Return printable name for ABI. */
6846
6847 static INLINE char *
6848 elf_mips_abi_name (bfd *abfd)
6849 {
6850 flagword flags;
6851
6852 flags = elf_elfheader (abfd)->e_flags;
6853 switch (flags & EF_MIPS_ABI)
6854 {
6855 case 0:
6856 if (ABI_N32_P (abfd))
6857 return "N32";
6858 else if (ABI_64_P (abfd))
6859 return "64";
6860 else
6861 return "none";
6862 case E_MIPS_ABI_O32:
6863 return "O32";
6864 case E_MIPS_ABI_O64:
6865 return "O64";
6866 case E_MIPS_ABI_EABI32:
6867 return "EABI32";
6868 case E_MIPS_ABI_EABI64:
6869 return "EABI64";
6870 default:
6871 return "unknown abi";
6872 }
6873 }
6874 \f
6875 /* MIPS ELF uses two common sections. One is the usual one, and the
6876 other is for small objects. All the small objects are kept
6877 together, and then referenced via the gp pointer, which yields
6878 faster assembler code. This is what we use for the small common
6879 section. This approach is copied from ecoff.c. */
6880 static asection mips_elf_scom_section;
6881 static asymbol mips_elf_scom_symbol;
6882 static asymbol *mips_elf_scom_symbol_ptr;
6883
6884 /* MIPS ELF also uses an acommon section, which represents an
6885 allocated common symbol which may be overridden by a
6886 definition in a shared library. */
6887 static asection mips_elf_acom_section;
6888 static asymbol mips_elf_acom_symbol;
6889 static asymbol *mips_elf_acom_symbol_ptr;
6890
6891 /* This is used for both the 32-bit and the 64-bit ABI. */
6892
6893 void
6894 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6895 {
6896 elf_symbol_type *elfsym;
6897
6898 /* Handle the special MIPS section numbers that a symbol may use. */
6899 elfsym = (elf_symbol_type *) asym;
6900 switch (elfsym->internal_elf_sym.st_shndx)
6901 {
6902 case SHN_MIPS_ACOMMON:
6903 /* This section is used in a dynamically linked executable file.
6904 It is an allocated common section. The dynamic linker can
6905 either resolve these symbols to something in a shared
6906 library, or it can just leave them here. For our purposes,
6907 we can consider these symbols to be in a new section. */
6908 if (mips_elf_acom_section.name == NULL)
6909 {
6910 /* Initialize the acommon section. */
6911 mips_elf_acom_section.name = ".acommon";
6912 mips_elf_acom_section.flags = SEC_ALLOC;
6913 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6914 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6915 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6916 mips_elf_acom_symbol.name = ".acommon";
6917 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6918 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6919 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6920 }
6921 asym->section = &mips_elf_acom_section;
6922 break;
6923
6924 case SHN_COMMON:
6925 /* Common symbols less than the GP size are automatically
6926 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6927 if (asym->value > elf_gp_size (abfd)
6928 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6929 || IRIX_COMPAT (abfd) == ict_irix6)
6930 break;
6931 /* Fall through. */
6932 case SHN_MIPS_SCOMMON:
6933 if (mips_elf_scom_section.name == NULL)
6934 {
6935 /* Initialize the small common section. */
6936 mips_elf_scom_section.name = ".scommon";
6937 mips_elf_scom_section.flags = SEC_IS_COMMON;
6938 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6939 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6940 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6941 mips_elf_scom_symbol.name = ".scommon";
6942 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6943 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6944 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6945 }
6946 asym->section = &mips_elf_scom_section;
6947 asym->value = elfsym->internal_elf_sym.st_size;
6948 break;
6949
6950 case SHN_MIPS_SUNDEFINED:
6951 asym->section = bfd_und_section_ptr;
6952 break;
6953
6954 case SHN_MIPS_TEXT:
6955 {
6956 asection *section = bfd_get_section_by_name (abfd, ".text");
6957
6958 if (section != NULL)
6959 {
6960 asym->section = section;
6961 /* MIPS_TEXT is a bit special, the address is not an offset
6962 to the base of the .text section. So subtract the section
6963 base address to make it an offset. */
6964 asym->value -= section->vma;
6965 }
6966 }
6967 break;
6968
6969 case SHN_MIPS_DATA:
6970 {
6971 asection *section = bfd_get_section_by_name (abfd, ".data");
6972
6973 if (section != NULL)
6974 {
6975 asym->section = section;
6976 /* MIPS_DATA is a bit special, the address is not an offset
6977 to the base of the .data section. So subtract the section
6978 base address to make it an offset. */
6979 asym->value -= section->vma;
6980 }
6981 }
6982 break;
6983 }
6984
6985 /* If this is an odd-valued function symbol, assume it's a MIPS16
6986 or microMIPS one. */
6987 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6988 && (asym->value & 1) != 0)
6989 {
6990 asym->value--;
6991 if (MICROMIPS_P (abfd))
6992 elfsym->internal_elf_sym.st_other
6993 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6994 else
6995 elfsym->internal_elf_sym.st_other
6996 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6997 }
6998 }
6999 \f
7000 /* Implement elf_backend_eh_frame_address_size. This differs from
7001 the default in the way it handles EABI64.
7002
7003 EABI64 was originally specified as an LP64 ABI, and that is what
7004 -mabi=eabi normally gives on a 64-bit target. However, gcc has
7005 historically accepted the combination of -mabi=eabi and -mlong32,
7006 and this ILP32 variation has become semi-official over time.
7007 Both forms use elf32 and have pointer-sized FDE addresses.
7008
7009 If an EABI object was generated by GCC 4.0 or above, it will have
7010 an empty .gcc_compiled_longXX section, where XX is the size of longs
7011 in bits. Unfortunately, ILP32 objects generated by earlier compilers
7012 have no special marking to distinguish them from LP64 objects.
7013
7014 We don't want users of the official LP64 ABI to be punished for the
7015 existence of the ILP32 variant, but at the same time, we don't want
7016 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
7017 We therefore take the following approach:
7018
7019 - If ABFD contains a .gcc_compiled_longXX section, use it to
7020 determine the pointer size.
7021
7022 - Otherwise check the type of the first relocation. Assume that
7023 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
7024
7025 - Otherwise punt.
7026
7027 The second check is enough to detect LP64 objects generated by pre-4.0
7028 compilers because, in the kind of output generated by those compilers,
7029 the first relocation will be associated with either a CIE personality
7030 routine or an FDE start address. Furthermore, the compilers never
7031 used a special (non-pointer) encoding for this ABI.
7032
7033 Checking the relocation type should also be safe because there is no
7034 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7035 did so. */
7036
7037 unsigned int
7038 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, const asection *sec)
7039 {
7040 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7041 return 8;
7042 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7043 {
7044 bfd_boolean long32_p, long64_p;
7045
7046 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7047 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7048 if (long32_p && long64_p)
7049 return 0;
7050 if (long32_p)
7051 return 4;
7052 if (long64_p)
7053 return 8;
7054
7055 if (sec->reloc_count > 0
7056 && elf_section_data (sec)->relocs != NULL
7057 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7058 == R_MIPS_64))
7059 return 8;
7060
7061 return 0;
7062 }
7063 return 4;
7064 }
7065 \f
7066 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7067 relocations against two unnamed section symbols to resolve to the
7068 same address. For example, if we have code like:
7069
7070 lw $4,%got_disp(.data)($gp)
7071 lw $25,%got_disp(.text)($gp)
7072 jalr $25
7073
7074 then the linker will resolve both relocations to .data and the program
7075 will jump there rather than to .text.
7076
7077 We can work around this problem by giving names to local section symbols.
7078 This is also what the MIPSpro tools do. */
7079
7080 bfd_boolean
7081 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7082 {
7083 return SGI_COMPAT (abfd);
7084 }
7085 \f
7086 /* Work over a section just before writing it out. This routine is
7087 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7088 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7089 a better way. */
7090
7091 bfd_boolean
7092 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
7093 {
7094 if (hdr->sh_type == SHT_MIPS_REGINFO
7095 && hdr->sh_size > 0)
7096 {
7097 bfd_byte buf[4];
7098
7099 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
7100 BFD_ASSERT (hdr->contents == NULL);
7101
7102 if (bfd_seek (abfd,
7103 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7104 SEEK_SET) != 0)
7105 return FALSE;
7106 H_PUT_32 (abfd, elf_gp (abfd), buf);
7107 if (bfd_bwrite (buf, 4, abfd) != 4)
7108 return FALSE;
7109 }
7110
7111 if (hdr->sh_type == SHT_MIPS_OPTIONS
7112 && hdr->bfd_section != NULL
7113 && mips_elf_section_data (hdr->bfd_section) != NULL
7114 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
7115 {
7116 bfd_byte *contents, *l, *lend;
7117
7118 /* We stored the section contents in the tdata field in the
7119 set_section_contents routine. We save the section contents
7120 so that we don't have to read them again.
7121 At this point we know that elf_gp is set, so we can look
7122 through the section contents to see if there is an
7123 ODK_REGINFO structure. */
7124
7125 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
7126 l = contents;
7127 lend = contents + hdr->sh_size;
7128 while (l + sizeof (Elf_External_Options) <= lend)
7129 {
7130 Elf_Internal_Options intopt;
7131
7132 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7133 &intopt);
7134 if (intopt.size < sizeof (Elf_External_Options))
7135 {
7136 _bfd_error_handler
7137 /* xgettext:c-format */
7138 (_("%B: Warning: bad `%s' option size %u smaller than"
7139 " its header"),
7140 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7141 break;
7142 }
7143 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7144 {
7145 bfd_byte buf[8];
7146
7147 if (bfd_seek (abfd,
7148 (hdr->sh_offset
7149 + (l - contents)
7150 + sizeof (Elf_External_Options)
7151 + (sizeof (Elf64_External_RegInfo) - 8)),
7152 SEEK_SET) != 0)
7153 return FALSE;
7154 H_PUT_64 (abfd, elf_gp (abfd), buf);
7155 if (bfd_bwrite (buf, 8, abfd) != 8)
7156 return FALSE;
7157 }
7158 else if (intopt.kind == ODK_REGINFO)
7159 {
7160 bfd_byte buf[4];
7161
7162 if (bfd_seek (abfd,
7163 (hdr->sh_offset
7164 + (l - contents)
7165 + sizeof (Elf_External_Options)
7166 + (sizeof (Elf32_External_RegInfo) - 4)),
7167 SEEK_SET) != 0)
7168 return FALSE;
7169 H_PUT_32 (abfd, elf_gp (abfd), buf);
7170 if (bfd_bwrite (buf, 4, abfd) != 4)
7171 return FALSE;
7172 }
7173 l += intopt.size;
7174 }
7175 }
7176
7177 if (hdr->bfd_section != NULL)
7178 {
7179 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
7180
7181 /* .sbss is not handled specially here because the GNU/Linux
7182 prelinker can convert .sbss from NOBITS to PROGBITS and
7183 changing it back to NOBITS breaks the binary. The entry in
7184 _bfd_mips_elf_special_sections will ensure the correct flags
7185 are set on .sbss if BFD creates it without reading it from an
7186 input file, and without special handling here the flags set
7187 on it in an input file will be followed. */
7188 if (strcmp (name, ".sdata") == 0
7189 || strcmp (name, ".lit8") == 0
7190 || strcmp (name, ".lit4") == 0)
7191 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7192 else if (strcmp (name, ".srdata") == 0)
7193 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
7194 else if (strcmp (name, ".compact_rel") == 0)
7195 hdr->sh_flags = 0;
7196 else if (strcmp (name, ".rtproc") == 0)
7197 {
7198 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7199 {
7200 unsigned int adjust;
7201
7202 adjust = hdr->sh_size % hdr->sh_addralign;
7203 if (adjust != 0)
7204 hdr->sh_size += hdr->sh_addralign - adjust;
7205 }
7206 }
7207 }
7208
7209 return TRUE;
7210 }
7211
7212 /* Handle a MIPS specific section when reading an object file. This
7213 is called when elfcode.h finds a section with an unknown type.
7214 This routine supports both the 32-bit and 64-bit ELF ABI.
7215
7216 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7217 how to. */
7218
7219 bfd_boolean
7220 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7221 Elf_Internal_Shdr *hdr,
7222 const char *name,
7223 int shindex)
7224 {
7225 flagword flags = 0;
7226
7227 /* There ought to be a place to keep ELF backend specific flags, but
7228 at the moment there isn't one. We just keep track of the
7229 sections by their name, instead. Fortunately, the ABI gives
7230 suggested names for all the MIPS specific sections, so we will
7231 probably get away with this. */
7232 switch (hdr->sh_type)
7233 {
7234 case SHT_MIPS_LIBLIST:
7235 if (strcmp (name, ".liblist") != 0)
7236 return FALSE;
7237 break;
7238 case SHT_MIPS_MSYM:
7239 if (strcmp (name, ".msym") != 0)
7240 return FALSE;
7241 break;
7242 case SHT_MIPS_CONFLICT:
7243 if (strcmp (name, ".conflict") != 0)
7244 return FALSE;
7245 break;
7246 case SHT_MIPS_GPTAB:
7247 if (! CONST_STRNEQ (name, ".gptab."))
7248 return FALSE;
7249 break;
7250 case SHT_MIPS_UCODE:
7251 if (strcmp (name, ".ucode") != 0)
7252 return FALSE;
7253 break;
7254 case SHT_MIPS_DEBUG:
7255 if (strcmp (name, ".mdebug") != 0)
7256 return FALSE;
7257 flags = SEC_DEBUGGING;
7258 break;
7259 case SHT_MIPS_REGINFO:
7260 if (strcmp (name, ".reginfo") != 0
7261 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7262 return FALSE;
7263 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7264 break;
7265 case SHT_MIPS_IFACE:
7266 if (strcmp (name, ".MIPS.interfaces") != 0)
7267 return FALSE;
7268 break;
7269 case SHT_MIPS_CONTENT:
7270 if (! CONST_STRNEQ (name, ".MIPS.content"))
7271 return FALSE;
7272 break;
7273 case SHT_MIPS_OPTIONS:
7274 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7275 return FALSE;
7276 break;
7277 case SHT_MIPS_ABIFLAGS:
7278 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7279 return FALSE;
7280 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7281 break;
7282 case SHT_MIPS_DWARF:
7283 if (! CONST_STRNEQ (name, ".debug_")
7284 && ! CONST_STRNEQ (name, ".zdebug_"))
7285 return FALSE;
7286 break;
7287 case SHT_MIPS_SYMBOL_LIB:
7288 if (strcmp (name, ".MIPS.symlib") != 0)
7289 return FALSE;
7290 break;
7291 case SHT_MIPS_EVENTS:
7292 if (! CONST_STRNEQ (name, ".MIPS.events")
7293 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
7294 return FALSE;
7295 break;
7296 default:
7297 break;
7298 }
7299
7300 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7301 return FALSE;
7302
7303 if (flags)
7304 {
7305 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7306 (bfd_get_section_flags (abfd,
7307 hdr->bfd_section)
7308 | flags)))
7309 return FALSE;
7310 }
7311
7312 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7313 {
7314 Elf_External_ABIFlags_v0 ext;
7315
7316 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7317 &ext, 0, sizeof ext))
7318 return FALSE;
7319 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7320 &mips_elf_tdata (abfd)->abiflags);
7321 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7322 return FALSE;
7323 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7324 }
7325
7326 /* FIXME: We should record sh_info for a .gptab section. */
7327
7328 /* For a .reginfo section, set the gp value in the tdata information
7329 from the contents of this section. We need the gp value while
7330 processing relocs, so we just get it now. The .reginfo section
7331 is not used in the 64-bit MIPS ELF ABI. */
7332 if (hdr->sh_type == SHT_MIPS_REGINFO)
7333 {
7334 Elf32_External_RegInfo ext;
7335 Elf32_RegInfo s;
7336
7337 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7338 &ext, 0, sizeof ext))
7339 return FALSE;
7340 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7341 elf_gp (abfd) = s.ri_gp_value;
7342 }
7343
7344 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7345 set the gp value based on what we find. We may see both
7346 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7347 they should agree. */
7348 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7349 {
7350 bfd_byte *contents, *l, *lend;
7351
7352 contents = bfd_malloc (hdr->sh_size);
7353 if (contents == NULL)
7354 return FALSE;
7355 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7356 0, hdr->sh_size))
7357 {
7358 free (contents);
7359 return FALSE;
7360 }
7361 l = contents;
7362 lend = contents + hdr->sh_size;
7363 while (l + sizeof (Elf_External_Options) <= lend)
7364 {
7365 Elf_Internal_Options intopt;
7366
7367 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7368 &intopt);
7369 if (intopt.size < sizeof (Elf_External_Options))
7370 {
7371 _bfd_error_handler
7372 /* xgettext:c-format */
7373 (_("%B: Warning: bad `%s' option size %u smaller than"
7374 " its header"),
7375 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7376 break;
7377 }
7378 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7379 {
7380 Elf64_Internal_RegInfo intreg;
7381
7382 bfd_mips_elf64_swap_reginfo_in
7383 (abfd,
7384 ((Elf64_External_RegInfo *)
7385 (l + sizeof (Elf_External_Options))),
7386 &intreg);
7387 elf_gp (abfd) = intreg.ri_gp_value;
7388 }
7389 else if (intopt.kind == ODK_REGINFO)
7390 {
7391 Elf32_RegInfo intreg;
7392
7393 bfd_mips_elf32_swap_reginfo_in
7394 (abfd,
7395 ((Elf32_External_RegInfo *)
7396 (l + sizeof (Elf_External_Options))),
7397 &intreg);
7398 elf_gp (abfd) = intreg.ri_gp_value;
7399 }
7400 l += intopt.size;
7401 }
7402 free (contents);
7403 }
7404
7405 return TRUE;
7406 }
7407
7408 /* Set the correct type for a MIPS ELF section. We do this by the
7409 section name, which is a hack, but ought to work. This routine is
7410 used by both the 32-bit and the 64-bit ABI. */
7411
7412 bfd_boolean
7413 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7414 {
7415 const char *name = bfd_get_section_name (abfd, sec);
7416
7417 if (strcmp (name, ".liblist") == 0)
7418 {
7419 hdr->sh_type = SHT_MIPS_LIBLIST;
7420 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7421 /* The sh_link field is set in final_write_processing. */
7422 }
7423 else if (strcmp (name, ".conflict") == 0)
7424 hdr->sh_type = SHT_MIPS_CONFLICT;
7425 else if (CONST_STRNEQ (name, ".gptab."))
7426 {
7427 hdr->sh_type = SHT_MIPS_GPTAB;
7428 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7429 /* The sh_info field is set in final_write_processing. */
7430 }
7431 else if (strcmp (name, ".ucode") == 0)
7432 hdr->sh_type = SHT_MIPS_UCODE;
7433 else if (strcmp (name, ".mdebug") == 0)
7434 {
7435 hdr->sh_type = SHT_MIPS_DEBUG;
7436 /* In a shared object on IRIX 5.3, the .mdebug section has an
7437 entsize of 0. FIXME: Does this matter? */
7438 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7439 hdr->sh_entsize = 0;
7440 else
7441 hdr->sh_entsize = 1;
7442 }
7443 else if (strcmp (name, ".reginfo") == 0)
7444 {
7445 hdr->sh_type = SHT_MIPS_REGINFO;
7446 /* In a shared object on IRIX 5.3, the .reginfo section has an
7447 entsize of 0x18. FIXME: Does this matter? */
7448 if (SGI_COMPAT (abfd))
7449 {
7450 if ((abfd->flags & DYNAMIC) != 0)
7451 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7452 else
7453 hdr->sh_entsize = 1;
7454 }
7455 else
7456 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7457 }
7458 else if (SGI_COMPAT (abfd)
7459 && (strcmp (name, ".hash") == 0
7460 || strcmp (name, ".dynamic") == 0
7461 || strcmp (name, ".dynstr") == 0))
7462 {
7463 if (SGI_COMPAT (abfd))
7464 hdr->sh_entsize = 0;
7465 #if 0
7466 /* This isn't how the IRIX6 linker behaves. */
7467 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7468 #endif
7469 }
7470 else if (strcmp (name, ".got") == 0
7471 || strcmp (name, ".srdata") == 0
7472 || strcmp (name, ".sdata") == 0
7473 || strcmp (name, ".sbss") == 0
7474 || strcmp (name, ".lit4") == 0
7475 || strcmp (name, ".lit8") == 0)
7476 hdr->sh_flags |= SHF_MIPS_GPREL;
7477 else if (strcmp (name, ".MIPS.interfaces") == 0)
7478 {
7479 hdr->sh_type = SHT_MIPS_IFACE;
7480 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7481 }
7482 else if (CONST_STRNEQ (name, ".MIPS.content"))
7483 {
7484 hdr->sh_type = SHT_MIPS_CONTENT;
7485 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7486 /* The sh_info field is set in final_write_processing. */
7487 }
7488 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7489 {
7490 hdr->sh_type = SHT_MIPS_OPTIONS;
7491 hdr->sh_entsize = 1;
7492 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7493 }
7494 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7495 {
7496 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7497 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7498 }
7499 else if (CONST_STRNEQ (name, ".debug_")
7500 || CONST_STRNEQ (name, ".zdebug_"))
7501 {
7502 hdr->sh_type = SHT_MIPS_DWARF;
7503
7504 /* Irix facilities such as libexc expect a single .debug_frame
7505 per executable, the system ones have NOSTRIP set and the linker
7506 doesn't merge sections with different flags so ... */
7507 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7508 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7509 }
7510 else if (strcmp (name, ".MIPS.symlib") == 0)
7511 {
7512 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7513 /* The sh_link and sh_info fields are set in
7514 final_write_processing. */
7515 }
7516 else if (CONST_STRNEQ (name, ".MIPS.events")
7517 || CONST_STRNEQ (name, ".MIPS.post_rel"))
7518 {
7519 hdr->sh_type = SHT_MIPS_EVENTS;
7520 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7521 /* The sh_link field is set in final_write_processing. */
7522 }
7523 else if (strcmp (name, ".msym") == 0)
7524 {
7525 hdr->sh_type = SHT_MIPS_MSYM;
7526 hdr->sh_flags |= SHF_ALLOC;
7527 hdr->sh_entsize = 8;
7528 }
7529
7530 /* The generic elf_fake_sections will set up REL_HDR using the default
7531 kind of relocations. We used to set up a second header for the
7532 non-default kind of relocations here, but only NewABI would use
7533 these, and the IRIX ld doesn't like resulting empty RELA sections.
7534 Thus we create those header only on demand now. */
7535
7536 return TRUE;
7537 }
7538
7539 /* Given a BFD section, try to locate the corresponding ELF section
7540 index. This is used by both the 32-bit and the 64-bit ABI.
7541 Actually, it's not clear to me that the 64-bit ABI supports these,
7542 but for non-PIC objects we will certainly want support for at least
7543 the .scommon section. */
7544
7545 bfd_boolean
7546 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7547 asection *sec, int *retval)
7548 {
7549 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7550 {
7551 *retval = SHN_MIPS_SCOMMON;
7552 return TRUE;
7553 }
7554 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7555 {
7556 *retval = SHN_MIPS_ACOMMON;
7557 return TRUE;
7558 }
7559 return FALSE;
7560 }
7561 \f
7562 /* Hook called by the linker routine which adds symbols from an object
7563 file. We must handle the special MIPS section numbers here. */
7564
7565 bfd_boolean
7566 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7567 Elf_Internal_Sym *sym, const char **namep,
7568 flagword *flagsp ATTRIBUTE_UNUSED,
7569 asection **secp, bfd_vma *valp)
7570 {
7571 if (SGI_COMPAT (abfd)
7572 && (abfd->flags & DYNAMIC) != 0
7573 && strcmp (*namep, "_rld_new_interface") == 0)
7574 {
7575 /* Skip IRIX5 rld entry name. */
7576 *namep = NULL;
7577 return TRUE;
7578 }
7579
7580 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7581 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7582 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7583 a magic symbol resolved by the linker, we ignore this bogus definition
7584 of _gp_disp. New ABI objects do not suffer from this problem so this
7585 is not done for them. */
7586 if (!NEWABI_P(abfd)
7587 && (sym->st_shndx == SHN_ABS)
7588 && (strcmp (*namep, "_gp_disp") == 0))
7589 {
7590 *namep = NULL;
7591 return TRUE;
7592 }
7593
7594 switch (sym->st_shndx)
7595 {
7596 case SHN_COMMON:
7597 /* Common symbols less than the GP size are automatically
7598 treated as SHN_MIPS_SCOMMON symbols. */
7599 if (sym->st_size > elf_gp_size (abfd)
7600 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7601 || IRIX_COMPAT (abfd) == ict_irix6)
7602 break;
7603 /* Fall through. */
7604 case SHN_MIPS_SCOMMON:
7605 *secp = bfd_make_section_old_way (abfd, ".scommon");
7606 (*secp)->flags |= SEC_IS_COMMON;
7607 *valp = sym->st_size;
7608 break;
7609
7610 case SHN_MIPS_TEXT:
7611 /* This section is used in a shared object. */
7612 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7613 {
7614 asymbol *elf_text_symbol;
7615 asection *elf_text_section;
7616 bfd_size_type amt = sizeof (asection);
7617
7618 elf_text_section = bfd_zalloc (abfd, amt);
7619 if (elf_text_section == NULL)
7620 return FALSE;
7621
7622 amt = sizeof (asymbol);
7623 elf_text_symbol = bfd_zalloc (abfd, amt);
7624 if (elf_text_symbol == NULL)
7625 return FALSE;
7626
7627 /* Initialize the section. */
7628
7629 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7630 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7631
7632 elf_text_section->symbol = elf_text_symbol;
7633 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7634
7635 elf_text_section->name = ".text";
7636 elf_text_section->flags = SEC_NO_FLAGS;
7637 elf_text_section->output_section = NULL;
7638 elf_text_section->owner = abfd;
7639 elf_text_symbol->name = ".text";
7640 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7641 elf_text_symbol->section = elf_text_section;
7642 }
7643 /* This code used to do *secp = bfd_und_section_ptr if
7644 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7645 so I took it out. */
7646 *secp = mips_elf_tdata (abfd)->elf_text_section;
7647 break;
7648
7649 case SHN_MIPS_ACOMMON:
7650 /* Fall through. XXX Can we treat this as allocated data? */
7651 case SHN_MIPS_DATA:
7652 /* This section is used in a shared object. */
7653 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7654 {
7655 asymbol *elf_data_symbol;
7656 asection *elf_data_section;
7657 bfd_size_type amt = sizeof (asection);
7658
7659 elf_data_section = bfd_zalloc (abfd, amt);
7660 if (elf_data_section == NULL)
7661 return FALSE;
7662
7663 amt = sizeof (asymbol);
7664 elf_data_symbol = bfd_zalloc (abfd, amt);
7665 if (elf_data_symbol == NULL)
7666 return FALSE;
7667
7668 /* Initialize the section. */
7669
7670 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7671 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7672
7673 elf_data_section->symbol = elf_data_symbol;
7674 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7675
7676 elf_data_section->name = ".data";
7677 elf_data_section->flags = SEC_NO_FLAGS;
7678 elf_data_section->output_section = NULL;
7679 elf_data_section->owner = abfd;
7680 elf_data_symbol->name = ".data";
7681 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7682 elf_data_symbol->section = elf_data_section;
7683 }
7684 /* This code used to do *secp = bfd_und_section_ptr if
7685 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7686 so I took it out. */
7687 *secp = mips_elf_tdata (abfd)->elf_data_section;
7688 break;
7689
7690 case SHN_MIPS_SUNDEFINED:
7691 *secp = bfd_und_section_ptr;
7692 break;
7693 }
7694
7695 if (SGI_COMPAT (abfd)
7696 && ! bfd_link_pic (info)
7697 && info->output_bfd->xvec == abfd->xvec
7698 && strcmp (*namep, "__rld_obj_head") == 0)
7699 {
7700 struct elf_link_hash_entry *h;
7701 struct bfd_link_hash_entry *bh;
7702
7703 /* Mark __rld_obj_head as dynamic. */
7704 bh = NULL;
7705 if (! (_bfd_generic_link_add_one_symbol
7706 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7707 get_elf_backend_data (abfd)->collect, &bh)))
7708 return FALSE;
7709
7710 h = (struct elf_link_hash_entry *) bh;
7711 h->non_elf = 0;
7712 h->def_regular = 1;
7713 h->type = STT_OBJECT;
7714
7715 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7716 return FALSE;
7717
7718 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7719 mips_elf_hash_table (info)->rld_symbol = h;
7720 }
7721
7722 /* If this is a mips16 text symbol, add 1 to the value to make it
7723 odd. This will cause something like .word SYM to come up with
7724 the right value when it is loaded into the PC. */
7725 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7726 ++*valp;
7727
7728 return TRUE;
7729 }
7730
7731 /* This hook function is called before the linker writes out a global
7732 symbol. We mark symbols as small common if appropriate. This is
7733 also where we undo the increment of the value for a mips16 symbol. */
7734
7735 int
7736 _bfd_mips_elf_link_output_symbol_hook
7737 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7738 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7739 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7740 {
7741 /* If we see a common symbol, which implies a relocatable link, then
7742 if a symbol was small common in an input file, mark it as small
7743 common in the output file. */
7744 if (sym->st_shndx == SHN_COMMON
7745 && strcmp (input_sec->name, ".scommon") == 0)
7746 sym->st_shndx = SHN_MIPS_SCOMMON;
7747
7748 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7749 sym->st_value &= ~1;
7750
7751 return 1;
7752 }
7753 \f
7754 /* Functions for the dynamic linker. */
7755
7756 /* Create dynamic sections when linking against a dynamic object. */
7757
7758 bfd_boolean
7759 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7760 {
7761 struct elf_link_hash_entry *h;
7762 struct bfd_link_hash_entry *bh;
7763 flagword flags;
7764 register asection *s;
7765 const char * const *namep;
7766 struct mips_elf_link_hash_table *htab;
7767
7768 htab = mips_elf_hash_table (info);
7769 BFD_ASSERT (htab != NULL);
7770
7771 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7772 | SEC_LINKER_CREATED | SEC_READONLY);
7773
7774 /* The psABI requires a read-only .dynamic section, but the VxWorks
7775 EABI doesn't. */
7776 if (!htab->is_vxworks)
7777 {
7778 s = bfd_get_linker_section (abfd, ".dynamic");
7779 if (s != NULL)
7780 {
7781 if (! bfd_set_section_flags (abfd, s, flags))
7782 return FALSE;
7783 }
7784 }
7785
7786 /* We need to create .got section. */
7787 if (!mips_elf_create_got_section (abfd, info))
7788 return FALSE;
7789
7790 if (! mips_elf_rel_dyn_section (info, TRUE))
7791 return FALSE;
7792
7793 /* Create .stub section. */
7794 s = bfd_make_section_anyway_with_flags (abfd,
7795 MIPS_ELF_STUB_SECTION_NAME (abfd),
7796 flags | SEC_CODE);
7797 if (s == NULL
7798 || ! bfd_set_section_alignment (abfd, s,
7799 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7800 return FALSE;
7801 htab->sstubs = s;
7802
7803 if (!mips_elf_hash_table (info)->use_rld_obj_head
7804 && bfd_link_executable (info)
7805 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7806 {
7807 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7808 flags &~ (flagword) SEC_READONLY);
7809 if (s == NULL
7810 || ! bfd_set_section_alignment (abfd, s,
7811 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7812 return FALSE;
7813 }
7814
7815 /* On IRIX5, we adjust add some additional symbols and change the
7816 alignments of several sections. There is no ABI documentation
7817 indicating that this is necessary on IRIX6, nor any evidence that
7818 the linker takes such action. */
7819 if (IRIX_COMPAT (abfd) == ict_irix5)
7820 {
7821 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7822 {
7823 bh = NULL;
7824 if (! (_bfd_generic_link_add_one_symbol
7825 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7826 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7827 return FALSE;
7828
7829 h = (struct elf_link_hash_entry *) bh;
7830 h->non_elf = 0;
7831 h->def_regular = 1;
7832 h->type = STT_SECTION;
7833
7834 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7835 return FALSE;
7836 }
7837
7838 /* We need to create a .compact_rel section. */
7839 if (SGI_COMPAT (abfd))
7840 {
7841 if (!mips_elf_create_compact_rel_section (abfd, info))
7842 return FALSE;
7843 }
7844
7845 /* Change alignments of some sections. */
7846 s = bfd_get_linker_section (abfd, ".hash");
7847 if (s != NULL)
7848 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7849
7850 s = bfd_get_linker_section (abfd, ".dynsym");
7851 if (s != NULL)
7852 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7853
7854 s = bfd_get_linker_section (abfd, ".dynstr");
7855 if (s != NULL)
7856 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7857
7858 /* ??? */
7859 s = bfd_get_section_by_name (abfd, ".reginfo");
7860 if (s != NULL)
7861 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7862
7863 s = bfd_get_linker_section (abfd, ".dynamic");
7864 if (s != NULL)
7865 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7866 }
7867
7868 if (bfd_link_executable (info))
7869 {
7870 const char *name;
7871
7872 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7873 bh = NULL;
7874 if (!(_bfd_generic_link_add_one_symbol
7875 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7876 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7877 return FALSE;
7878
7879 h = (struct elf_link_hash_entry *) bh;
7880 h->non_elf = 0;
7881 h->def_regular = 1;
7882 h->type = STT_SECTION;
7883
7884 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7885 return FALSE;
7886
7887 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7888 {
7889 /* __rld_map is a four byte word located in the .data section
7890 and is filled in by the rtld to contain a pointer to
7891 the _r_debug structure. Its symbol value will be set in
7892 _bfd_mips_elf_finish_dynamic_symbol. */
7893 s = bfd_get_linker_section (abfd, ".rld_map");
7894 BFD_ASSERT (s != NULL);
7895
7896 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7897 bh = NULL;
7898 if (!(_bfd_generic_link_add_one_symbol
7899 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7900 get_elf_backend_data (abfd)->collect, &bh)))
7901 return FALSE;
7902
7903 h = (struct elf_link_hash_entry *) bh;
7904 h->non_elf = 0;
7905 h->def_regular = 1;
7906 h->type = STT_OBJECT;
7907
7908 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7909 return FALSE;
7910 mips_elf_hash_table (info)->rld_symbol = h;
7911 }
7912 }
7913
7914 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7915 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
7916 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7917 return FALSE;
7918
7919 /* Do the usual VxWorks handling. */
7920 if (htab->is_vxworks
7921 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7922 return FALSE;
7923
7924 return TRUE;
7925 }
7926 \f
7927 /* Return true if relocation REL against section SEC is a REL rather than
7928 RELA relocation. RELOCS is the first relocation in the section and
7929 ABFD is the bfd that contains SEC. */
7930
7931 static bfd_boolean
7932 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7933 const Elf_Internal_Rela *relocs,
7934 const Elf_Internal_Rela *rel)
7935 {
7936 Elf_Internal_Shdr *rel_hdr;
7937 const struct elf_backend_data *bed;
7938
7939 /* To determine which flavor of relocation this is, we depend on the
7940 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7941 rel_hdr = elf_section_data (sec)->rel.hdr;
7942 if (rel_hdr == NULL)
7943 return FALSE;
7944 bed = get_elf_backend_data (abfd);
7945 return ((size_t) (rel - relocs)
7946 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7947 }
7948
7949 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7950 HOWTO is the relocation's howto and CONTENTS points to the contents
7951 of the section that REL is against. */
7952
7953 static bfd_vma
7954 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7955 reloc_howto_type *howto, bfd_byte *contents)
7956 {
7957 bfd_byte *location;
7958 unsigned int r_type;
7959 bfd_vma addend;
7960 bfd_vma bytes;
7961
7962 r_type = ELF_R_TYPE (abfd, rel->r_info);
7963 location = contents + rel->r_offset;
7964
7965 /* Get the addend, which is stored in the input file. */
7966 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7967 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
7968 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7969
7970 addend = bytes & howto->src_mask;
7971
7972 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
7973 accordingly. */
7974 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
7975 addend <<= 1;
7976
7977 return addend;
7978 }
7979
7980 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7981 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7982 and update *ADDEND with the final addend. Return true on success
7983 or false if the LO16 could not be found. RELEND is the exclusive
7984 upper bound on the relocations for REL's section. */
7985
7986 static bfd_boolean
7987 mips_elf_add_lo16_rel_addend (bfd *abfd,
7988 const Elf_Internal_Rela *rel,
7989 const Elf_Internal_Rela *relend,
7990 bfd_byte *contents, bfd_vma *addend)
7991 {
7992 unsigned int r_type, lo16_type;
7993 const Elf_Internal_Rela *lo16_relocation;
7994 reloc_howto_type *lo16_howto;
7995 bfd_vma l;
7996
7997 r_type = ELF_R_TYPE (abfd, rel->r_info);
7998 if (mips16_reloc_p (r_type))
7999 lo16_type = R_MIPS16_LO16;
8000 else if (micromips_reloc_p (r_type))
8001 lo16_type = R_MICROMIPS_LO16;
8002 else if (r_type == R_MIPS_PCHI16)
8003 lo16_type = R_MIPS_PCLO16;
8004 else
8005 lo16_type = R_MIPS_LO16;
8006
8007 /* The combined value is the sum of the HI16 addend, left-shifted by
8008 sixteen bits, and the LO16 addend, sign extended. (Usually, the
8009 code does a `lui' of the HI16 value, and then an `addiu' of the
8010 LO16 value.)
8011
8012 Scan ahead to find a matching LO16 relocation.
8013
8014 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8015 be immediately following. However, for the IRIX6 ABI, the next
8016 relocation may be a composed relocation consisting of several
8017 relocations for the same address. In that case, the R_MIPS_LO16
8018 relocation may occur as one of these. We permit a similar
8019 extension in general, as that is useful for GCC.
8020
8021 In some cases GCC dead code elimination removes the LO16 but keeps
8022 the corresponding HI16. This is strictly speaking a violation of
8023 the ABI but not immediately harmful. */
8024 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8025 if (lo16_relocation == NULL)
8026 return FALSE;
8027
8028 /* Obtain the addend kept there. */
8029 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
8030 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8031
8032 l <<= lo16_howto->rightshift;
8033 l = _bfd_mips_elf_sign_extend (l, 16);
8034
8035 *addend <<= 16;
8036 *addend += l;
8037 return TRUE;
8038 }
8039
8040 /* Try to read the contents of section SEC in bfd ABFD. Return true and
8041 store the contents in *CONTENTS on success. Assume that *CONTENTS
8042 already holds the contents if it is nonull on entry. */
8043
8044 static bfd_boolean
8045 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8046 {
8047 if (*contents)
8048 return TRUE;
8049
8050 /* Get cached copy if it exists. */
8051 if (elf_section_data (sec)->this_hdr.contents != NULL)
8052 {
8053 *contents = elf_section_data (sec)->this_hdr.contents;
8054 return TRUE;
8055 }
8056
8057 return bfd_malloc_and_get_section (abfd, sec, contents);
8058 }
8059
8060 /* Make a new PLT record to keep internal data. */
8061
8062 static struct plt_entry *
8063 mips_elf_make_plt_record (bfd *abfd)
8064 {
8065 struct plt_entry *entry;
8066
8067 entry = bfd_zalloc (abfd, sizeof (*entry));
8068 if (entry == NULL)
8069 return NULL;
8070
8071 entry->stub_offset = MINUS_ONE;
8072 entry->mips_offset = MINUS_ONE;
8073 entry->comp_offset = MINUS_ONE;
8074 entry->gotplt_index = MINUS_ONE;
8075 return entry;
8076 }
8077
8078 /* Look through the relocs for a section during the first phase, and
8079 allocate space in the global offset table and record the need for
8080 standard MIPS and compressed procedure linkage table entries. */
8081
8082 bfd_boolean
8083 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8084 asection *sec, const Elf_Internal_Rela *relocs)
8085 {
8086 const char *name;
8087 bfd *dynobj;
8088 Elf_Internal_Shdr *symtab_hdr;
8089 struct elf_link_hash_entry **sym_hashes;
8090 size_t extsymoff;
8091 const Elf_Internal_Rela *rel;
8092 const Elf_Internal_Rela *rel_end;
8093 asection *sreloc;
8094 const struct elf_backend_data *bed;
8095 struct mips_elf_link_hash_table *htab;
8096 bfd_byte *contents;
8097 bfd_vma addend;
8098 reloc_howto_type *howto;
8099
8100 if (bfd_link_relocatable (info))
8101 return TRUE;
8102
8103 htab = mips_elf_hash_table (info);
8104 BFD_ASSERT (htab != NULL);
8105
8106 dynobj = elf_hash_table (info)->dynobj;
8107 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8108 sym_hashes = elf_sym_hashes (abfd);
8109 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8110
8111 bed = get_elf_backend_data (abfd);
8112 rel_end = relocs + sec->reloc_count;
8113
8114 /* Check for the mips16 stub sections. */
8115
8116 name = bfd_get_section_name (abfd, sec);
8117 if (FN_STUB_P (name))
8118 {
8119 unsigned long r_symndx;
8120
8121 /* Look at the relocation information to figure out which symbol
8122 this is for. */
8123
8124 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8125 if (r_symndx == 0)
8126 {
8127 _bfd_error_handler
8128 /* xgettext:c-format */
8129 (_("%B: Warning: cannot determine the target function for"
8130 " stub section `%s'"),
8131 abfd, name);
8132 bfd_set_error (bfd_error_bad_value);
8133 return FALSE;
8134 }
8135
8136 if (r_symndx < extsymoff
8137 || sym_hashes[r_symndx - extsymoff] == NULL)
8138 {
8139 asection *o;
8140
8141 /* This stub is for a local symbol. This stub will only be
8142 needed if there is some relocation in this BFD, other
8143 than a 16 bit function call, which refers to this symbol. */
8144 for (o = abfd->sections; o != NULL; o = o->next)
8145 {
8146 Elf_Internal_Rela *sec_relocs;
8147 const Elf_Internal_Rela *r, *rend;
8148
8149 /* We can ignore stub sections when looking for relocs. */
8150 if ((o->flags & SEC_RELOC) == 0
8151 || o->reloc_count == 0
8152 || section_allows_mips16_refs_p (o))
8153 continue;
8154
8155 sec_relocs
8156 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8157 info->keep_memory);
8158 if (sec_relocs == NULL)
8159 return FALSE;
8160
8161 rend = sec_relocs + o->reloc_count;
8162 for (r = sec_relocs; r < rend; r++)
8163 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8164 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
8165 break;
8166
8167 if (elf_section_data (o)->relocs != sec_relocs)
8168 free (sec_relocs);
8169
8170 if (r < rend)
8171 break;
8172 }
8173
8174 if (o == NULL)
8175 {
8176 /* There is no non-call reloc for this stub, so we do
8177 not need it. Since this function is called before
8178 the linker maps input sections to output sections, we
8179 can easily discard it by setting the SEC_EXCLUDE
8180 flag. */
8181 sec->flags |= SEC_EXCLUDE;
8182 return TRUE;
8183 }
8184
8185 /* Record this stub in an array of local symbol stubs for
8186 this BFD. */
8187 if (mips_elf_tdata (abfd)->local_stubs == NULL)
8188 {
8189 unsigned long symcount;
8190 asection **n;
8191 bfd_size_type amt;
8192
8193 if (elf_bad_symtab (abfd))
8194 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8195 else
8196 symcount = symtab_hdr->sh_info;
8197 amt = symcount * sizeof (asection *);
8198 n = bfd_zalloc (abfd, amt);
8199 if (n == NULL)
8200 return FALSE;
8201 mips_elf_tdata (abfd)->local_stubs = n;
8202 }
8203
8204 sec->flags |= SEC_KEEP;
8205 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8206
8207 /* We don't need to set mips16_stubs_seen in this case.
8208 That flag is used to see whether we need to look through
8209 the global symbol table for stubs. We don't need to set
8210 it here, because we just have a local stub. */
8211 }
8212 else
8213 {
8214 struct mips_elf_link_hash_entry *h;
8215
8216 h = ((struct mips_elf_link_hash_entry *)
8217 sym_hashes[r_symndx - extsymoff]);
8218
8219 while (h->root.root.type == bfd_link_hash_indirect
8220 || h->root.root.type == bfd_link_hash_warning)
8221 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8222
8223 /* H is the symbol this stub is for. */
8224
8225 /* If we already have an appropriate stub for this function, we
8226 don't need another one, so we can discard this one. Since
8227 this function is called before the linker maps input sections
8228 to output sections, we can easily discard it by setting the
8229 SEC_EXCLUDE flag. */
8230 if (h->fn_stub != NULL)
8231 {
8232 sec->flags |= SEC_EXCLUDE;
8233 return TRUE;
8234 }
8235
8236 sec->flags |= SEC_KEEP;
8237 h->fn_stub = sec;
8238 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8239 }
8240 }
8241 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8242 {
8243 unsigned long r_symndx;
8244 struct mips_elf_link_hash_entry *h;
8245 asection **loc;
8246
8247 /* Look at the relocation information to figure out which symbol
8248 this is for. */
8249
8250 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8251 if (r_symndx == 0)
8252 {
8253 _bfd_error_handler
8254 /* xgettext:c-format */
8255 (_("%B: Warning: cannot determine the target function for"
8256 " stub section `%s'"),
8257 abfd, name);
8258 bfd_set_error (bfd_error_bad_value);
8259 return FALSE;
8260 }
8261
8262 if (r_symndx < extsymoff
8263 || sym_hashes[r_symndx - extsymoff] == NULL)
8264 {
8265 asection *o;
8266
8267 /* This stub is for a local symbol. This stub will only be
8268 needed if there is some relocation (R_MIPS16_26) in this BFD
8269 that refers to this symbol. */
8270 for (o = abfd->sections; o != NULL; o = o->next)
8271 {
8272 Elf_Internal_Rela *sec_relocs;
8273 const Elf_Internal_Rela *r, *rend;
8274
8275 /* We can ignore stub sections when looking for relocs. */
8276 if ((o->flags & SEC_RELOC) == 0
8277 || o->reloc_count == 0
8278 || section_allows_mips16_refs_p (o))
8279 continue;
8280
8281 sec_relocs
8282 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8283 info->keep_memory);
8284 if (sec_relocs == NULL)
8285 return FALSE;
8286
8287 rend = sec_relocs + o->reloc_count;
8288 for (r = sec_relocs; r < rend; r++)
8289 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8290 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8291 break;
8292
8293 if (elf_section_data (o)->relocs != sec_relocs)
8294 free (sec_relocs);
8295
8296 if (r < rend)
8297 break;
8298 }
8299
8300 if (o == NULL)
8301 {
8302 /* There is no non-call reloc for this stub, so we do
8303 not need it. Since this function is called before
8304 the linker maps input sections to output sections, we
8305 can easily discard it by setting the SEC_EXCLUDE
8306 flag. */
8307 sec->flags |= SEC_EXCLUDE;
8308 return TRUE;
8309 }
8310
8311 /* Record this stub in an array of local symbol call_stubs for
8312 this BFD. */
8313 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8314 {
8315 unsigned long symcount;
8316 asection **n;
8317 bfd_size_type amt;
8318
8319 if (elf_bad_symtab (abfd))
8320 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8321 else
8322 symcount = symtab_hdr->sh_info;
8323 amt = symcount * sizeof (asection *);
8324 n = bfd_zalloc (abfd, amt);
8325 if (n == NULL)
8326 return FALSE;
8327 mips_elf_tdata (abfd)->local_call_stubs = n;
8328 }
8329
8330 sec->flags |= SEC_KEEP;
8331 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8332
8333 /* We don't need to set mips16_stubs_seen in this case.
8334 That flag is used to see whether we need to look through
8335 the global symbol table for stubs. We don't need to set
8336 it here, because we just have a local stub. */
8337 }
8338 else
8339 {
8340 h = ((struct mips_elf_link_hash_entry *)
8341 sym_hashes[r_symndx - extsymoff]);
8342
8343 /* H is the symbol this stub is for. */
8344
8345 if (CALL_FP_STUB_P (name))
8346 loc = &h->call_fp_stub;
8347 else
8348 loc = &h->call_stub;
8349
8350 /* If we already have an appropriate stub for this function, we
8351 don't need another one, so we can discard this one. Since
8352 this function is called before the linker maps input sections
8353 to output sections, we can easily discard it by setting the
8354 SEC_EXCLUDE flag. */
8355 if (*loc != NULL)
8356 {
8357 sec->flags |= SEC_EXCLUDE;
8358 return TRUE;
8359 }
8360
8361 sec->flags |= SEC_KEEP;
8362 *loc = sec;
8363 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8364 }
8365 }
8366
8367 sreloc = NULL;
8368 contents = NULL;
8369 for (rel = relocs; rel < rel_end; ++rel)
8370 {
8371 unsigned long r_symndx;
8372 unsigned int r_type;
8373 struct elf_link_hash_entry *h;
8374 bfd_boolean can_make_dynamic_p;
8375 bfd_boolean call_reloc_p;
8376 bfd_boolean constrain_symbol_p;
8377
8378 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8379 r_type = ELF_R_TYPE (abfd, rel->r_info);
8380
8381 if (r_symndx < extsymoff)
8382 h = NULL;
8383 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8384 {
8385 _bfd_error_handler
8386 /* xgettext:c-format */
8387 (_("%B: Malformed reloc detected for section %s"),
8388 abfd, name);
8389 bfd_set_error (bfd_error_bad_value);
8390 return FALSE;
8391 }
8392 else
8393 {
8394 h = sym_hashes[r_symndx - extsymoff];
8395 if (h != NULL)
8396 {
8397 while (h->root.type == bfd_link_hash_indirect
8398 || h->root.type == bfd_link_hash_warning)
8399 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8400
8401 /* PR15323, ref flags aren't set for references in the
8402 same object. */
8403 h->root.non_ir_ref_regular = 1;
8404 }
8405 }
8406
8407 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8408 relocation into a dynamic one. */
8409 can_make_dynamic_p = FALSE;
8410
8411 /* Set CALL_RELOC_P to true if the relocation is for a call,
8412 and if pointer equality therefore doesn't matter. */
8413 call_reloc_p = FALSE;
8414
8415 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8416 into account when deciding how to define the symbol.
8417 Relocations in nonallocatable sections such as .pdr and
8418 .debug* should have no effect. */
8419 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8420
8421 switch (r_type)
8422 {
8423 case R_MIPS_CALL16:
8424 case R_MIPS_CALL_HI16:
8425 case R_MIPS_CALL_LO16:
8426 case R_MIPS16_CALL16:
8427 case R_MICROMIPS_CALL16:
8428 case R_MICROMIPS_CALL_HI16:
8429 case R_MICROMIPS_CALL_LO16:
8430 call_reloc_p = TRUE;
8431 /* Fall through. */
8432
8433 case R_MIPS_GOT16:
8434 case R_MIPS_GOT_HI16:
8435 case R_MIPS_GOT_LO16:
8436 case R_MIPS_GOT_PAGE:
8437 case R_MIPS_GOT_OFST:
8438 case R_MIPS_GOT_DISP:
8439 case R_MIPS_TLS_GOTTPREL:
8440 case R_MIPS_TLS_GD:
8441 case R_MIPS_TLS_LDM:
8442 case R_MIPS16_GOT16:
8443 case R_MIPS16_TLS_GOTTPREL:
8444 case R_MIPS16_TLS_GD:
8445 case R_MIPS16_TLS_LDM:
8446 case R_MICROMIPS_GOT16:
8447 case R_MICROMIPS_GOT_HI16:
8448 case R_MICROMIPS_GOT_LO16:
8449 case R_MICROMIPS_GOT_PAGE:
8450 case R_MICROMIPS_GOT_OFST:
8451 case R_MICROMIPS_GOT_DISP:
8452 case R_MICROMIPS_TLS_GOTTPREL:
8453 case R_MICROMIPS_TLS_GD:
8454 case R_MICROMIPS_TLS_LDM:
8455 if (dynobj == NULL)
8456 elf_hash_table (info)->dynobj = dynobj = abfd;
8457 if (!mips_elf_create_got_section (dynobj, info))
8458 return FALSE;
8459 if (htab->is_vxworks && !bfd_link_pic (info))
8460 {
8461 _bfd_error_handler
8462 /* xgettext:c-format */
8463 (_("%B: GOT reloc at %#Lx not expected in executables"),
8464 abfd, rel->r_offset);
8465 bfd_set_error (bfd_error_bad_value);
8466 return FALSE;
8467 }
8468 can_make_dynamic_p = TRUE;
8469 break;
8470
8471 case R_MIPS_NONE:
8472 case R_MIPS_JALR:
8473 case R_MICROMIPS_JALR:
8474 /* These relocations have empty fields and are purely there to
8475 provide link information. The symbol value doesn't matter. */
8476 constrain_symbol_p = FALSE;
8477 break;
8478
8479 case R_MIPS_GPREL16:
8480 case R_MIPS_GPREL32:
8481 case R_MIPS16_GPREL:
8482 case R_MICROMIPS_GPREL16:
8483 /* GP-relative relocations always resolve to a definition in a
8484 regular input file, ignoring the one-definition rule. This is
8485 important for the GP setup sequence in NewABI code, which
8486 always resolves to a local function even if other relocations
8487 against the symbol wouldn't. */
8488 constrain_symbol_p = FALSE;
8489 break;
8490
8491 case R_MIPS_32:
8492 case R_MIPS_REL32:
8493 case R_MIPS_64:
8494 /* In VxWorks executables, references to external symbols
8495 must be handled using copy relocs or PLT entries; it is not
8496 possible to convert this relocation into a dynamic one.
8497
8498 For executables that use PLTs and copy-relocs, we have a
8499 choice between converting the relocation into a dynamic
8500 one or using copy relocations or PLT entries. It is
8501 usually better to do the former, unless the relocation is
8502 against a read-only section. */
8503 if ((bfd_link_pic (info)
8504 || (h != NULL
8505 && !htab->is_vxworks
8506 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8507 && !(!info->nocopyreloc
8508 && !PIC_OBJECT_P (abfd)
8509 && MIPS_ELF_READONLY_SECTION (sec))))
8510 && (sec->flags & SEC_ALLOC) != 0)
8511 {
8512 can_make_dynamic_p = TRUE;
8513 if (dynobj == NULL)
8514 elf_hash_table (info)->dynobj = dynobj = abfd;
8515 }
8516 break;
8517
8518 case R_MIPS_26:
8519 case R_MIPS_PC16:
8520 case R_MIPS_PC21_S2:
8521 case R_MIPS_PC26_S2:
8522 case R_MIPS16_26:
8523 case R_MIPS16_PC16_S1:
8524 case R_MICROMIPS_26_S1:
8525 case R_MICROMIPS_PC7_S1:
8526 case R_MICROMIPS_PC10_S1:
8527 case R_MICROMIPS_PC16_S1:
8528 case R_MICROMIPS_PC23_S2:
8529 call_reloc_p = TRUE;
8530 break;
8531 }
8532
8533 if (h)
8534 {
8535 if (constrain_symbol_p)
8536 {
8537 if (!can_make_dynamic_p)
8538 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8539
8540 if (!call_reloc_p)
8541 h->pointer_equality_needed = 1;
8542
8543 /* We must not create a stub for a symbol that has
8544 relocations related to taking the function's address.
8545 This doesn't apply to VxWorks, where CALL relocs refer
8546 to a .got.plt entry instead of a normal .got entry. */
8547 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8548 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8549 }
8550
8551 /* Relocations against the special VxWorks __GOTT_BASE__ and
8552 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8553 room for them in .rela.dyn. */
8554 if (is_gott_symbol (info, h))
8555 {
8556 if (sreloc == NULL)
8557 {
8558 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8559 if (sreloc == NULL)
8560 return FALSE;
8561 }
8562 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8563 if (MIPS_ELF_READONLY_SECTION (sec))
8564 /* We tell the dynamic linker that there are
8565 relocations against the text segment. */
8566 info->flags |= DF_TEXTREL;
8567 }
8568 }
8569 else if (call_lo16_reloc_p (r_type)
8570 || got_lo16_reloc_p (r_type)
8571 || got_disp_reloc_p (r_type)
8572 || (got16_reloc_p (r_type) && htab->is_vxworks))
8573 {
8574 /* We may need a local GOT entry for this relocation. We
8575 don't count R_MIPS_GOT_PAGE because we can estimate the
8576 maximum number of pages needed by looking at the size of
8577 the segment. Similar comments apply to R_MIPS*_GOT16 and
8578 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8579 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8580 R_MIPS_CALL_HI16 because these are always followed by an
8581 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8582 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8583 rel->r_addend, info, r_type))
8584 return FALSE;
8585 }
8586
8587 if (h != NULL
8588 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8589 ELF_ST_IS_MIPS16 (h->other)))
8590 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8591
8592 switch (r_type)
8593 {
8594 case R_MIPS_CALL16:
8595 case R_MIPS16_CALL16:
8596 case R_MICROMIPS_CALL16:
8597 if (h == NULL)
8598 {
8599 _bfd_error_handler
8600 /* xgettext:c-format */
8601 (_("%B: CALL16 reloc at %#Lx not against global symbol"),
8602 abfd, rel->r_offset);
8603 bfd_set_error (bfd_error_bad_value);
8604 return FALSE;
8605 }
8606 /* Fall through. */
8607
8608 case R_MIPS_CALL_HI16:
8609 case R_MIPS_CALL_LO16:
8610 case R_MICROMIPS_CALL_HI16:
8611 case R_MICROMIPS_CALL_LO16:
8612 if (h != NULL)
8613 {
8614 /* Make sure there is room in the regular GOT to hold the
8615 function's address. We may eliminate it in favour of
8616 a .got.plt entry later; see mips_elf_count_got_symbols. */
8617 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8618 r_type))
8619 return FALSE;
8620
8621 /* We need a stub, not a plt entry for the undefined
8622 function. But we record it as if it needs plt. See
8623 _bfd_elf_adjust_dynamic_symbol. */
8624 h->needs_plt = 1;
8625 h->type = STT_FUNC;
8626 }
8627 break;
8628
8629 case R_MIPS_GOT_PAGE:
8630 case R_MICROMIPS_GOT_PAGE:
8631 case R_MIPS16_GOT16:
8632 case R_MIPS_GOT16:
8633 case R_MIPS_GOT_HI16:
8634 case R_MIPS_GOT_LO16:
8635 case R_MICROMIPS_GOT16:
8636 case R_MICROMIPS_GOT_HI16:
8637 case R_MICROMIPS_GOT_LO16:
8638 if (!h || got_page_reloc_p (r_type))
8639 {
8640 /* This relocation needs (or may need, if h != NULL) a
8641 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8642 know for sure until we know whether the symbol is
8643 preemptible. */
8644 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8645 {
8646 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8647 return FALSE;
8648 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8649 addend = mips_elf_read_rel_addend (abfd, rel,
8650 howto, contents);
8651 if (got16_reloc_p (r_type))
8652 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8653 contents, &addend);
8654 else
8655 addend <<= howto->rightshift;
8656 }
8657 else
8658 addend = rel->r_addend;
8659 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8660 h, addend))
8661 return FALSE;
8662
8663 if (h)
8664 {
8665 struct mips_elf_link_hash_entry *hmips =
8666 (struct mips_elf_link_hash_entry *) h;
8667
8668 /* This symbol is definitely not overridable. */
8669 if (hmips->root.def_regular
8670 && ! (bfd_link_pic (info) && ! info->symbolic
8671 && ! hmips->root.forced_local))
8672 h = NULL;
8673 }
8674 }
8675 /* If this is a global, overridable symbol, GOT_PAGE will
8676 decay to GOT_DISP, so we'll need a GOT entry for it. */
8677 /* Fall through. */
8678
8679 case R_MIPS_GOT_DISP:
8680 case R_MICROMIPS_GOT_DISP:
8681 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8682 FALSE, r_type))
8683 return FALSE;
8684 break;
8685
8686 case R_MIPS_TLS_GOTTPREL:
8687 case R_MIPS16_TLS_GOTTPREL:
8688 case R_MICROMIPS_TLS_GOTTPREL:
8689 if (bfd_link_pic (info))
8690 info->flags |= DF_STATIC_TLS;
8691 /* Fall through */
8692
8693 case R_MIPS_TLS_LDM:
8694 case R_MIPS16_TLS_LDM:
8695 case R_MICROMIPS_TLS_LDM:
8696 if (tls_ldm_reloc_p (r_type))
8697 {
8698 r_symndx = STN_UNDEF;
8699 h = NULL;
8700 }
8701 /* Fall through */
8702
8703 case R_MIPS_TLS_GD:
8704 case R_MIPS16_TLS_GD:
8705 case R_MICROMIPS_TLS_GD:
8706 /* This symbol requires a global offset table entry, or two
8707 for TLS GD relocations. */
8708 if (h != NULL)
8709 {
8710 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8711 FALSE, r_type))
8712 return FALSE;
8713 }
8714 else
8715 {
8716 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8717 rel->r_addend,
8718 info, r_type))
8719 return FALSE;
8720 }
8721 break;
8722
8723 case R_MIPS_32:
8724 case R_MIPS_REL32:
8725 case R_MIPS_64:
8726 /* In VxWorks executables, references to external symbols
8727 are handled using copy relocs or PLT stubs, so there's
8728 no need to add a .rela.dyn entry for this relocation. */
8729 if (can_make_dynamic_p)
8730 {
8731 if (sreloc == NULL)
8732 {
8733 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8734 if (sreloc == NULL)
8735 return FALSE;
8736 }
8737 if (bfd_link_pic (info) && h == NULL)
8738 {
8739 /* When creating a shared object, we must copy these
8740 reloc types into the output file as R_MIPS_REL32
8741 relocs. Make room for this reloc in .rel(a).dyn. */
8742 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8743 if (MIPS_ELF_READONLY_SECTION (sec))
8744 /* We tell the dynamic linker that there are
8745 relocations against the text segment. */
8746 info->flags |= DF_TEXTREL;
8747 }
8748 else
8749 {
8750 struct mips_elf_link_hash_entry *hmips;
8751
8752 /* For a shared object, we must copy this relocation
8753 unless the symbol turns out to be undefined and
8754 weak with non-default visibility, in which case
8755 it will be left as zero.
8756
8757 We could elide R_MIPS_REL32 for locally binding symbols
8758 in shared libraries, but do not yet do so.
8759
8760 For an executable, we only need to copy this
8761 reloc if the symbol is defined in a dynamic
8762 object. */
8763 hmips = (struct mips_elf_link_hash_entry *) h;
8764 ++hmips->possibly_dynamic_relocs;
8765 if (MIPS_ELF_READONLY_SECTION (sec))
8766 /* We need it to tell the dynamic linker if there
8767 are relocations against the text segment. */
8768 hmips->readonly_reloc = TRUE;
8769 }
8770 }
8771
8772 if (SGI_COMPAT (abfd))
8773 mips_elf_hash_table (info)->compact_rel_size +=
8774 sizeof (Elf32_External_crinfo);
8775 break;
8776
8777 case R_MIPS_26:
8778 case R_MIPS_GPREL16:
8779 case R_MIPS_LITERAL:
8780 case R_MIPS_GPREL32:
8781 case R_MICROMIPS_26_S1:
8782 case R_MICROMIPS_GPREL16:
8783 case R_MICROMIPS_LITERAL:
8784 case R_MICROMIPS_GPREL7_S2:
8785 if (SGI_COMPAT (abfd))
8786 mips_elf_hash_table (info)->compact_rel_size +=
8787 sizeof (Elf32_External_crinfo);
8788 break;
8789
8790 /* This relocation describes the C++ object vtable hierarchy.
8791 Reconstruct it for later use during GC. */
8792 case R_MIPS_GNU_VTINHERIT:
8793 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8794 return FALSE;
8795 break;
8796
8797 /* This relocation describes which C++ vtable entries are actually
8798 used. Record for later use during GC. */
8799 case R_MIPS_GNU_VTENTRY:
8800 BFD_ASSERT (h != NULL);
8801 if (h != NULL
8802 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8803 return FALSE;
8804 break;
8805
8806 default:
8807 break;
8808 }
8809
8810 /* Record the need for a PLT entry. At this point we don't know
8811 yet if we are going to create a PLT in the first place, but
8812 we only record whether the relocation requires a standard MIPS
8813 or a compressed code entry anyway. If we don't make a PLT after
8814 all, then we'll just ignore these arrangements. Likewise if
8815 a PLT entry is not created because the symbol is satisfied
8816 locally. */
8817 if (h != NULL
8818 && (branch_reloc_p (r_type)
8819 || mips16_branch_reloc_p (r_type)
8820 || micromips_branch_reloc_p (r_type))
8821 && !SYMBOL_CALLS_LOCAL (info, h))
8822 {
8823 if (h->plt.plist == NULL)
8824 h->plt.plist = mips_elf_make_plt_record (abfd);
8825 if (h->plt.plist == NULL)
8826 return FALSE;
8827
8828 if (branch_reloc_p (r_type))
8829 h->plt.plist->need_mips = TRUE;
8830 else
8831 h->plt.plist->need_comp = TRUE;
8832 }
8833
8834 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8835 if there is one. We only need to handle global symbols here;
8836 we decide whether to keep or delete stubs for local symbols
8837 when processing the stub's relocations. */
8838 if (h != NULL
8839 && !mips16_call_reloc_p (r_type)
8840 && !section_allows_mips16_refs_p (sec))
8841 {
8842 struct mips_elf_link_hash_entry *mh;
8843
8844 mh = (struct mips_elf_link_hash_entry *) h;
8845 mh->need_fn_stub = TRUE;
8846 }
8847
8848 /* Refuse some position-dependent relocations when creating a
8849 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8850 not PIC, but we can create dynamic relocations and the result
8851 will be fine. Also do not refuse R_MIPS_LO16, which can be
8852 combined with R_MIPS_GOT16. */
8853 if (bfd_link_pic (info))
8854 {
8855 switch (r_type)
8856 {
8857 case R_MIPS16_HI16:
8858 case R_MIPS_HI16:
8859 case R_MIPS_HIGHER:
8860 case R_MIPS_HIGHEST:
8861 case R_MICROMIPS_HI16:
8862 case R_MICROMIPS_HIGHER:
8863 case R_MICROMIPS_HIGHEST:
8864 /* Don't refuse a high part relocation if it's against
8865 no symbol (e.g. part of a compound relocation). */
8866 if (r_symndx == STN_UNDEF)
8867 break;
8868
8869 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8870 and has a special meaning. */
8871 if (!NEWABI_P (abfd) && h != NULL
8872 && strcmp (h->root.root.string, "_gp_disp") == 0)
8873 break;
8874
8875 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8876 if (is_gott_symbol (info, h))
8877 break;
8878
8879 /* FALLTHROUGH */
8880
8881 case R_MIPS16_26:
8882 case R_MIPS_26:
8883 case R_MICROMIPS_26_S1:
8884 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8885 _bfd_error_handler
8886 /* xgettext:c-format */
8887 (_("%B: relocation %s against `%s' can not be used"
8888 " when making a shared object; recompile with -fPIC"),
8889 abfd, howto->name,
8890 (h) ? h->root.root.string : "a local symbol");
8891 bfd_set_error (bfd_error_bad_value);
8892 return FALSE;
8893 default:
8894 break;
8895 }
8896 }
8897 }
8898
8899 return TRUE;
8900 }
8901 \f
8902 /* Allocate space for global sym dynamic relocs. */
8903
8904 static bfd_boolean
8905 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8906 {
8907 struct bfd_link_info *info = inf;
8908 bfd *dynobj;
8909 struct mips_elf_link_hash_entry *hmips;
8910 struct mips_elf_link_hash_table *htab;
8911
8912 htab = mips_elf_hash_table (info);
8913 BFD_ASSERT (htab != NULL);
8914
8915 dynobj = elf_hash_table (info)->dynobj;
8916 hmips = (struct mips_elf_link_hash_entry *) h;
8917
8918 /* VxWorks executables are handled elsewhere; we only need to
8919 allocate relocations in shared objects. */
8920 if (htab->is_vxworks && !bfd_link_pic (info))
8921 return TRUE;
8922
8923 /* Ignore indirect symbols. All relocations against such symbols
8924 will be redirected to the target symbol. */
8925 if (h->root.type == bfd_link_hash_indirect)
8926 return TRUE;
8927
8928 /* If this symbol is defined in a dynamic object, or we are creating
8929 a shared library, we will need to copy any R_MIPS_32 or
8930 R_MIPS_REL32 relocs against it into the output file. */
8931 if (! bfd_link_relocatable (info)
8932 && hmips->possibly_dynamic_relocs != 0
8933 && (h->root.type == bfd_link_hash_defweak
8934 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
8935 || bfd_link_pic (info)))
8936 {
8937 bfd_boolean do_copy = TRUE;
8938
8939 if (h->root.type == bfd_link_hash_undefweak)
8940 {
8941 /* Do not copy relocations for undefined weak symbols with
8942 non-default visibility. */
8943 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8944 do_copy = FALSE;
8945
8946 /* Make sure undefined weak symbols are output as a dynamic
8947 symbol in PIEs. */
8948 else if (h->dynindx == -1 && !h->forced_local)
8949 {
8950 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8951 return FALSE;
8952 }
8953 }
8954
8955 if (do_copy)
8956 {
8957 /* Even though we don't directly need a GOT entry for this symbol,
8958 the SVR4 psABI requires it to have a dynamic symbol table
8959 index greater that DT_MIPS_GOTSYM if there are dynamic
8960 relocations against it.
8961
8962 VxWorks does not enforce the same mapping between the GOT
8963 and the symbol table, so the same requirement does not
8964 apply there. */
8965 if (!htab->is_vxworks)
8966 {
8967 if (hmips->global_got_area > GGA_RELOC_ONLY)
8968 hmips->global_got_area = GGA_RELOC_ONLY;
8969 hmips->got_only_for_calls = FALSE;
8970 }
8971
8972 mips_elf_allocate_dynamic_relocations
8973 (dynobj, info, hmips->possibly_dynamic_relocs);
8974 if (hmips->readonly_reloc)
8975 /* We tell the dynamic linker that there are relocations
8976 against the text segment. */
8977 info->flags |= DF_TEXTREL;
8978 }
8979 }
8980
8981 return TRUE;
8982 }
8983
8984 /* Adjust a symbol defined by a dynamic object and referenced by a
8985 regular object. The current definition is in some section of the
8986 dynamic object, but we're not including those sections. We have to
8987 change the definition to something the rest of the link can
8988 understand. */
8989
8990 bfd_boolean
8991 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8992 struct elf_link_hash_entry *h)
8993 {
8994 bfd *dynobj;
8995 struct mips_elf_link_hash_entry *hmips;
8996 struct mips_elf_link_hash_table *htab;
8997 asection *s, *srel;
8998
8999 htab = mips_elf_hash_table (info);
9000 BFD_ASSERT (htab != NULL);
9001
9002 dynobj = elf_hash_table (info)->dynobj;
9003 hmips = (struct mips_elf_link_hash_entry *) h;
9004
9005 /* Make sure we know what is going on here. */
9006 BFD_ASSERT (dynobj != NULL
9007 && (h->needs_plt
9008 || h->u.weakdef != NULL
9009 || (h->def_dynamic
9010 && h->ref_regular
9011 && !h->def_regular)));
9012
9013 hmips = (struct mips_elf_link_hash_entry *) h;
9014
9015 /* If there are call relocations against an externally-defined symbol,
9016 see whether we can create a MIPS lazy-binding stub for it. We can
9017 only do this if all references to the function are through call
9018 relocations, and in that case, the traditional lazy-binding stubs
9019 are much more efficient than PLT entries.
9020
9021 Traditional stubs are only available on SVR4 psABI-based systems;
9022 VxWorks always uses PLTs instead. */
9023 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
9024 {
9025 if (! elf_hash_table (info)->dynamic_sections_created)
9026 return TRUE;
9027
9028 /* If this symbol is not defined in a regular file, then set
9029 the symbol to the stub location. This is required to make
9030 function pointers compare as equal between the normal
9031 executable and the shared library. */
9032 if (!h->def_regular)
9033 {
9034 hmips->needs_lazy_stub = TRUE;
9035 htab->lazy_stub_count++;
9036 return TRUE;
9037 }
9038 }
9039 /* As above, VxWorks requires PLT entries for externally-defined
9040 functions that are only accessed through call relocations.
9041
9042 Both VxWorks and non-VxWorks targets also need PLT entries if there
9043 are static-only relocations against an externally-defined function.
9044 This can technically occur for shared libraries if there are
9045 branches to the symbol, although it is unlikely that this will be
9046 used in practice due to the short ranges involved. It can occur
9047 for any relative or absolute relocation in executables; in that
9048 case, the PLT entry becomes the function's canonical address. */
9049 else if (((h->needs_plt && !hmips->no_fn_stub)
9050 || (h->type == STT_FUNC && hmips->has_static_relocs))
9051 && htab->use_plts_and_copy_relocs
9052 && !SYMBOL_CALLS_LOCAL (info, h)
9053 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9054 && h->root.type == bfd_link_hash_undefweak))
9055 {
9056 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9057 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9058
9059 /* If this is the first symbol to need a PLT entry, then make some
9060 basic setup. Also work out PLT entry sizes. We'll need them
9061 for PLT offset calculations. */
9062 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9063 {
9064 BFD_ASSERT (htab->root.sgotplt->size == 0);
9065 BFD_ASSERT (htab->plt_got_index == 0);
9066
9067 /* If we're using the PLT additions to the psABI, each PLT
9068 entry is 16 bytes and the PLT0 entry is 32 bytes.
9069 Encourage better cache usage by aligning. We do this
9070 lazily to avoid pessimizing traditional objects. */
9071 if (!htab->is_vxworks
9072 && !bfd_set_section_alignment (dynobj, htab->root.splt, 5))
9073 return FALSE;
9074
9075 /* Make sure that .got.plt is word-aligned. We do this lazily
9076 for the same reason as above. */
9077 if (!bfd_set_section_alignment (dynobj, htab->root.sgotplt,
9078 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9079 return FALSE;
9080
9081 /* On non-VxWorks targets, the first two entries in .got.plt
9082 are reserved. */
9083 if (!htab->is_vxworks)
9084 htab->plt_got_index
9085 += (get_elf_backend_data (dynobj)->got_header_size
9086 / MIPS_ELF_GOT_SIZE (dynobj));
9087
9088 /* On VxWorks, also allocate room for the header's
9089 .rela.plt.unloaded entries. */
9090 if (htab->is_vxworks && !bfd_link_pic (info))
9091 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9092
9093 /* Now work out the sizes of individual PLT entries. */
9094 if (htab->is_vxworks && bfd_link_pic (info))
9095 htab->plt_mips_entry_size
9096 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9097 else if (htab->is_vxworks)
9098 htab->plt_mips_entry_size
9099 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9100 else if (newabi_p)
9101 htab->plt_mips_entry_size
9102 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9103 else if (!micromips_p)
9104 {
9105 htab->plt_mips_entry_size
9106 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9107 htab->plt_comp_entry_size
9108 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9109 }
9110 else if (htab->insn32)
9111 {
9112 htab->plt_mips_entry_size
9113 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9114 htab->plt_comp_entry_size
9115 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9116 }
9117 else
9118 {
9119 htab->plt_mips_entry_size
9120 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9121 htab->plt_comp_entry_size
9122 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9123 }
9124 }
9125
9126 if (h->plt.plist == NULL)
9127 h->plt.plist = mips_elf_make_plt_record (dynobj);
9128 if (h->plt.plist == NULL)
9129 return FALSE;
9130
9131 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9132 n32 or n64, so always use a standard entry there.
9133
9134 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9135 all MIPS16 calls will go via that stub, and there is no benefit
9136 to having a MIPS16 entry. And in the case of call_stub a
9137 standard entry actually has to be used as the stub ends with a J
9138 instruction. */
9139 if (newabi_p
9140 || htab->is_vxworks
9141 || hmips->call_stub
9142 || hmips->call_fp_stub)
9143 {
9144 h->plt.plist->need_mips = TRUE;
9145 h->plt.plist->need_comp = FALSE;
9146 }
9147
9148 /* Otherwise, if there are no direct calls to the function, we
9149 have a free choice of whether to use standard or compressed
9150 entries. Prefer microMIPS entries if the object is known to
9151 contain microMIPS code, so that it becomes possible to create
9152 pure microMIPS binaries. Prefer standard entries otherwise,
9153 because MIPS16 ones are no smaller and are usually slower. */
9154 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9155 {
9156 if (micromips_p)
9157 h->plt.plist->need_comp = TRUE;
9158 else
9159 h->plt.plist->need_mips = TRUE;
9160 }
9161
9162 if (h->plt.plist->need_mips)
9163 {
9164 h->plt.plist->mips_offset = htab->plt_mips_offset;
9165 htab->plt_mips_offset += htab->plt_mips_entry_size;
9166 }
9167 if (h->plt.plist->need_comp)
9168 {
9169 h->plt.plist->comp_offset = htab->plt_comp_offset;
9170 htab->plt_comp_offset += htab->plt_comp_entry_size;
9171 }
9172
9173 /* Reserve the corresponding .got.plt entry now too. */
9174 h->plt.plist->gotplt_index = htab->plt_got_index++;
9175
9176 /* If the output file has no definition of the symbol, set the
9177 symbol's value to the address of the stub. */
9178 if (!bfd_link_pic (info) && !h->def_regular)
9179 hmips->use_plt_entry = TRUE;
9180
9181 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9182 htab->root.srelplt->size += (htab->is_vxworks
9183 ? MIPS_ELF_RELA_SIZE (dynobj)
9184 : MIPS_ELF_REL_SIZE (dynobj));
9185
9186 /* Make room for the .rela.plt.unloaded relocations. */
9187 if (htab->is_vxworks && !bfd_link_pic (info))
9188 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9189
9190 /* All relocations against this symbol that could have been made
9191 dynamic will now refer to the PLT entry instead. */
9192 hmips->possibly_dynamic_relocs = 0;
9193
9194 return TRUE;
9195 }
9196
9197 /* If this is a weak symbol, and there is a real definition, the
9198 processor independent code will have arranged for us to see the
9199 real definition first, and we can just use the same value. */
9200 if (h->u.weakdef != NULL)
9201 {
9202 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
9203 || h->u.weakdef->root.type == bfd_link_hash_defweak);
9204 h->root.u.def.section = h->u.weakdef->root.u.def.section;
9205 h->root.u.def.value = h->u.weakdef->root.u.def.value;
9206 return TRUE;
9207 }
9208
9209 /* Otherwise, there is nothing further to do for symbols defined
9210 in regular objects. */
9211 if (h->def_regular)
9212 return TRUE;
9213
9214 /* There's also nothing more to do if we'll convert all relocations
9215 against this symbol into dynamic relocations. */
9216 if (!hmips->has_static_relocs)
9217 return TRUE;
9218
9219 /* We're now relying on copy relocations. Complain if we have
9220 some that we can't convert. */
9221 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
9222 {
9223 _bfd_error_handler (_("non-dynamic relocations refer to "
9224 "dynamic symbol %s"),
9225 h->root.root.string);
9226 bfd_set_error (bfd_error_bad_value);
9227 return FALSE;
9228 }
9229
9230 /* We must allocate the symbol in our .dynbss section, which will
9231 become part of the .bss section of the executable. There will be
9232 an entry for this symbol in the .dynsym section. The dynamic
9233 object will contain position independent code, so all references
9234 from the dynamic object to this symbol will go through the global
9235 offset table. The dynamic linker will use the .dynsym entry to
9236 determine the address it must put in the global offset table, so
9237 both the dynamic object and the regular object will refer to the
9238 same memory location for the variable. */
9239
9240 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
9241 {
9242 s = htab->root.sdynrelro;
9243 srel = htab->root.sreldynrelro;
9244 }
9245 else
9246 {
9247 s = htab->root.sdynbss;
9248 srel = htab->root.srelbss;
9249 }
9250 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9251 {
9252 if (htab->is_vxworks)
9253 srel->size += sizeof (Elf32_External_Rela);
9254 else
9255 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9256 h->needs_copy = 1;
9257 }
9258
9259 /* All relocations against this symbol that could have been made
9260 dynamic will now refer to the local copy instead. */
9261 hmips->possibly_dynamic_relocs = 0;
9262
9263 return _bfd_elf_adjust_dynamic_copy (info, h, s);
9264 }
9265 \f
9266 /* This function is called after all the input files have been read,
9267 and the input sections have been assigned to output sections. We
9268 check for any mips16 stub sections that we can discard. */
9269
9270 bfd_boolean
9271 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9272 struct bfd_link_info *info)
9273 {
9274 asection *sect;
9275 struct mips_elf_link_hash_table *htab;
9276 struct mips_htab_traverse_info hti;
9277
9278 htab = mips_elf_hash_table (info);
9279 BFD_ASSERT (htab != NULL);
9280
9281 /* The .reginfo section has a fixed size. */
9282 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9283 if (sect != NULL)
9284 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9285
9286 /* The .MIPS.abiflags section has a fixed size. */
9287 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9288 if (sect != NULL)
9289 bfd_set_section_size (output_bfd, sect, sizeof (Elf_External_ABIFlags_v0));
9290
9291 hti.info = info;
9292 hti.output_bfd = output_bfd;
9293 hti.error = FALSE;
9294 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9295 mips_elf_check_symbols, &hti);
9296 if (hti.error)
9297 return FALSE;
9298
9299 return TRUE;
9300 }
9301
9302 /* If the link uses a GOT, lay it out and work out its size. */
9303
9304 static bfd_boolean
9305 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9306 {
9307 bfd *dynobj;
9308 asection *s;
9309 struct mips_got_info *g;
9310 bfd_size_type loadable_size = 0;
9311 bfd_size_type page_gotno;
9312 bfd *ibfd;
9313 struct mips_elf_traverse_got_arg tga;
9314 struct mips_elf_link_hash_table *htab;
9315
9316 htab = mips_elf_hash_table (info);
9317 BFD_ASSERT (htab != NULL);
9318
9319 s = htab->root.sgot;
9320 if (s == NULL)
9321 return TRUE;
9322
9323 dynobj = elf_hash_table (info)->dynobj;
9324 g = htab->got_info;
9325
9326 /* Allocate room for the reserved entries. VxWorks always reserves
9327 3 entries; other objects only reserve 2 entries. */
9328 BFD_ASSERT (g->assigned_low_gotno == 0);
9329 if (htab->is_vxworks)
9330 htab->reserved_gotno = 3;
9331 else
9332 htab->reserved_gotno = 2;
9333 g->local_gotno += htab->reserved_gotno;
9334 g->assigned_low_gotno = htab->reserved_gotno;
9335
9336 /* Decide which symbols need to go in the global part of the GOT and
9337 count the number of reloc-only GOT symbols. */
9338 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9339
9340 if (!mips_elf_resolve_final_got_entries (info, g))
9341 return FALSE;
9342
9343 /* Calculate the total loadable size of the output. That
9344 will give us the maximum number of GOT_PAGE entries
9345 required. */
9346 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9347 {
9348 asection *subsection;
9349
9350 for (subsection = ibfd->sections;
9351 subsection;
9352 subsection = subsection->next)
9353 {
9354 if ((subsection->flags & SEC_ALLOC) == 0)
9355 continue;
9356 loadable_size += ((subsection->size + 0xf)
9357 &~ (bfd_size_type) 0xf);
9358 }
9359 }
9360
9361 if (htab->is_vxworks)
9362 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9363 relocations against local symbols evaluate to "G", and the EABI does
9364 not include R_MIPS_GOT_PAGE. */
9365 page_gotno = 0;
9366 else
9367 /* Assume there are two loadable segments consisting of contiguous
9368 sections. Is 5 enough? */
9369 page_gotno = (loadable_size >> 16) + 5;
9370
9371 /* Choose the smaller of the two page estimates; both are intended to be
9372 conservative. */
9373 if (page_gotno > g->page_gotno)
9374 page_gotno = g->page_gotno;
9375
9376 g->local_gotno += page_gotno;
9377 g->assigned_high_gotno = g->local_gotno - 1;
9378
9379 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9380 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9381 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9382
9383 /* VxWorks does not support multiple GOTs. It initializes $gp to
9384 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9385 dynamic loader. */
9386 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9387 {
9388 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9389 return FALSE;
9390 }
9391 else
9392 {
9393 /* Record that all bfds use G. This also has the effect of freeing
9394 the per-bfd GOTs, which we no longer need. */
9395 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9396 if (mips_elf_bfd_got (ibfd, FALSE))
9397 mips_elf_replace_bfd_got (ibfd, g);
9398 mips_elf_replace_bfd_got (output_bfd, g);
9399
9400 /* Set up TLS entries. */
9401 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9402 tga.info = info;
9403 tga.g = g;
9404 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9405 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9406 if (!tga.g)
9407 return FALSE;
9408 BFD_ASSERT (g->tls_assigned_gotno
9409 == g->global_gotno + g->local_gotno + g->tls_gotno);
9410
9411 /* Each VxWorks GOT entry needs an explicit relocation. */
9412 if (htab->is_vxworks && bfd_link_pic (info))
9413 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9414
9415 /* Allocate room for the TLS relocations. */
9416 if (g->relocs)
9417 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9418 }
9419
9420 return TRUE;
9421 }
9422
9423 /* Estimate the size of the .MIPS.stubs section. */
9424
9425 static void
9426 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9427 {
9428 struct mips_elf_link_hash_table *htab;
9429 bfd_size_type dynsymcount;
9430
9431 htab = mips_elf_hash_table (info);
9432 BFD_ASSERT (htab != NULL);
9433
9434 if (htab->lazy_stub_count == 0)
9435 return;
9436
9437 /* IRIX rld assumes that a function stub isn't at the end of the .text
9438 section, so add a dummy entry to the end. */
9439 htab->lazy_stub_count++;
9440
9441 /* Get a worst-case estimate of the number of dynamic symbols needed.
9442 At this point, dynsymcount does not account for section symbols
9443 and count_section_dynsyms may overestimate the number that will
9444 be needed. */
9445 dynsymcount = (elf_hash_table (info)->dynsymcount
9446 + count_section_dynsyms (output_bfd, info));
9447
9448 /* Determine the size of one stub entry. There's no disadvantage
9449 from using microMIPS code here, so for the sake of pure-microMIPS
9450 binaries we prefer it whenever there's any microMIPS code in
9451 output produced at all. This has a benefit of stubs being
9452 shorter by 4 bytes each too, unless in the insn32 mode. */
9453 if (!MICROMIPS_P (output_bfd))
9454 htab->function_stub_size = (dynsymcount > 0x10000
9455 ? MIPS_FUNCTION_STUB_BIG_SIZE
9456 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9457 else if (htab->insn32)
9458 htab->function_stub_size = (dynsymcount > 0x10000
9459 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9460 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9461 else
9462 htab->function_stub_size = (dynsymcount > 0x10000
9463 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9464 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9465
9466 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9467 }
9468
9469 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9470 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9471 stub, allocate an entry in the stubs section. */
9472
9473 static bfd_boolean
9474 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9475 {
9476 struct mips_htab_traverse_info *hti = data;
9477 struct mips_elf_link_hash_table *htab;
9478 struct bfd_link_info *info;
9479 bfd *output_bfd;
9480
9481 info = hti->info;
9482 output_bfd = hti->output_bfd;
9483 htab = mips_elf_hash_table (info);
9484 BFD_ASSERT (htab != NULL);
9485
9486 if (h->needs_lazy_stub)
9487 {
9488 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9489 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9490 bfd_vma isa_bit = micromips_p;
9491
9492 BFD_ASSERT (htab->root.dynobj != NULL);
9493 if (h->root.plt.plist == NULL)
9494 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9495 if (h->root.plt.plist == NULL)
9496 {
9497 hti->error = TRUE;
9498 return FALSE;
9499 }
9500 h->root.root.u.def.section = htab->sstubs;
9501 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9502 h->root.plt.plist->stub_offset = htab->sstubs->size;
9503 h->root.other = other;
9504 htab->sstubs->size += htab->function_stub_size;
9505 }
9506 return TRUE;
9507 }
9508
9509 /* Allocate offsets in the stubs section to each symbol that needs one.
9510 Set the final size of the .MIPS.stub section. */
9511
9512 static bfd_boolean
9513 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9514 {
9515 bfd *output_bfd = info->output_bfd;
9516 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9517 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9518 bfd_vma isa_bit = micromips_p;
9519 struct mips_elf_link_hash_table *htab;
9520 struct mips_htab_traverse_info hti;
9521 struct elf_link_hash_entry *h;
9522 bfd *dynobj;
9523
9524 htab = mips_elf_hash_table (info);
9525 BFD_ASSERT (htab != NULL);
9526
9527 if (htab->lazy_stub_count == 0)
9528 return TRUE;
9529
9530 htab->sstubs->size = 0;
9531 hti.info = info;
9532 hti.output_bfd = output_bfd;
9533 hti.error = FALSE;
9534 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9535 if (hti.error)
9536 return FALSE;
9537 htab->sstubs->size += htab->function_stub_size;
9538 BFD_ASSERT (htab->sstubs->size
9539 == htab->lazy_stub_count * htab->function_stub_size);
9540
9541 dynobj = elf_hash_table (info)->dynobj;
9542 BFD_ASSERT (dynobj != NULL);
9543 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9544 if (h == NULL)
9545 return FALSE;
9546 h->root.u.def.value = isa_bit;
9547 h->other = other;
9548 h->type = STT_FUNC;
9549
9550 return TRUE;
9551 }
9552
9553 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9554 bfd_link_info. If H uses the address of a PLT entry as the value
9555 of the symbol, then set the entry in the symbol table now. Prefer
9556 a standard MIPS PLT entry. */
9557
9558 static bfd_boolean
9559 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9560 {
9561 struct bfd_link_info *info = data;
9562 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9563 struct mips_elf_link_hash_table *htab;
9564 unsigned int other;
9565 bfd_vma isa_bit;
9566 bfd_vma val;
9567
9568 htab = mips_elf_hash_table (info);
9569 BFD_ASSERT (htab != NULL);
9570
9571 if (h->use_plt_entry)
9572 {
9573 BFD_ASSERT (h->root.plt.plist != NULL);
9574 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9575 || h->root.plt.plist->comp_offset != MINUS_ONE);
9576
9577 val = htab->plt_header_size;
9578 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9579 {
9580 isa_bit = 0;
9581 val += h->root.plt.plist->mips_offset;
9582 other = 0;
9583 }
9584 else
9585 {
9586 isa_bit = 1;
9587 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9588 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9589 }
9590 val += isa_bit;
9591 /* For VxWorks, point at the PLT load stub rather than the lazy
9592 resolution stub; this stub will become the canonical function
9593 address. */
9594 if (htab->is_vxworks)
9595 val += 8;
9596
9597 h->root.root.u.def.section = htab->root.splt;
9598 h->root.root.u.def.value = val;
9599 h->root.other = other;
9600 }
9601
9602 return TRUE;
9603 }
9604
9605 /* Set the sizes of the dynamic sections. */
9606
9607 bfd_boolean
9608 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9609 struct bfd_link_info *info)
9610 {
9611 bfd *dynobj;
9612 asection *s, *sreldyn;
9613 bfd_boolean reltext;
9614 struct mips_elf_link_hash_table *htab;
9615
9616 htab = mips_elf_hash_table (info);
9617 BFD_ASSERT (htab != NULL);
9618 dynobj = elf_hash_table (info)->dynobj;
9619 BFD_ASSERT (dynobj != NULL);
9620
9621 if (elf_hash_table (info)->dynamic_sections_created)
9622 {
9623 /* Set the contents of the .interp section to the interpreter. */
9624 if (bfd_link_executable (info) && !info->nointerp)
9625 {
9626 s = bfd_get_linker_section (dynobj, ".interp");
9627 BFD_ASSERT (s != NULL);
9628 s->size
9629 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9630 s->contents
9631 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9632 }
9633
9634 /* Figure out the size of the PLT header if we know that we
9635 are using it. For the sake of cache alignment always use
9636 a standard header whenever any standard entries are present
9637 even if microMIPS entries are present as well. This also
9638 lets the microMIPS header rely on the value of $v0 only set
9639 by microMIPS entries, for a small size reduction.
9640
9641 Set symbol table entry values for symbols that use the
9642 address of their PLT entry now that we can calculate it.
9643
9644 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9645 haven't already in _bfd_elf_create_dynamic_sections. */
9646 if (htab->root.splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9647 {
9648 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9649 && !htab->plt_mips_offset);
9650 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9651 bfd_vma isa_bit = micromips_p;
9652 struct elf_link_hash_entry *h;
9653 bfd_vma size;
9654
9655 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9656 BFD_ASSERT (htab->root.sgotplt->size == 0);
9657 BFD_ASSERT (htab->root.splt->size == 0);
9658
9659 if (htab->is_vxworks && bfd_link_pic (info))
9660 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9661 else if (htab->is_vxworks)
9662 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9663 else if (ABI_64_P (output_bfd))
9664 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9665 else if (ABI_N32_P (output_bfd))
9666 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9667 else if (!micromips_p)
9668 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9669 else if (htab->insn32)
9670 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9671 else
9672 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9673
9674 htab->plt_header_is_comp = micromips_p;
9675 htab->plt_header_size = size;
9676 htab->root.splt->size = (size
9677 + htab->plt_mips_offset
9678 + htab->plt_comp_offset);
9679 htab->root.sgotplt->size = (htab->plt_got_index
9680 * MIPS_ELF_GOT_SIZE (dynobj));
9681
9682 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9683
9684 if (htab->root.hplt == NULL)
9685 {
9686 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.splt,
9687 "_PROCEDURE_LINKAGE_TABLE_");
9688 htab->root.hplt = h;
9689 if (h == NULL)
9690 return FALSE;
9691 }
9692
9693 h = htab->root.hplt;
9694 h->root.u.def.value = isa_bit;
9695 h->other = other;
9696 h->type = STT_FUNC;
9697 }
9698 }
9699
9700 /* Allocate space for global sym dynamic relocs. */
9701 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9702
9703 mips_elf_estimate_stub_size (output_bfd, info);
9704
9705 if (!mips_elf_lay_out_got (output_bfd, info))
9706 return FALSE;
9707
9708 mips_elf_lay_out_lazy_stubs (info);
9709
9710 /* The check_relocs and adjust_dynamic_symbol entry points have
9711 determined the sizes of the various dynamic sections. Allocate
9712 memory for them. */
9713 reltext = FALSE;
9714 for (s = dynobj->sections; s != NULL; s = s->next)
9715 {
9716 const char *name;
9717
9718 /* It's OK to base decisions on the section name, because none
9719 of the dynobj section names depend upon the input files. */
9720 name = bfd_get_section_name (dynobj, s);
9721
9722 if ((s->flags & SEC_LINKER_CREATED) == 0)
9723 continue;
9724
9725 if (CONST_STRNEQ (name, ".rel"))
9726 {
9727 if (s->size != 0)
9728 {
9729 const char *outname;
9730 asection *target;
9731
9732 /* If this relocation section applies to a read only
9733 section, then we probably need a DT_TEXTREL entry.
9734 If the relocation section is .rel(a).dyn, we always
9735 assert a DT_TEXTREL entry rather than testing whether
9736 there exists a relocation to a read only section or
9737 not. */
9738 outname = bfd_get_section_name (output_bfd,
9739 s->output_section);
9740 target = bfd_get_section_by_name (output_bfd, outname + 4);
9741 if ((target != NULL
9742 && (target->flags & SEC_READONLY) != 0
9743 && (target->flags & SEC_ALLOC) != 0)
9744 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9745 reltext = TRUE;
9746
9747 /* We use the reloc_count field as a counter if we need
9748 to copy relocs into the output file. */
9749 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9750 s->reloc_count = 0;
9751
9752 /* If combreloc is enabled, elf_link_sort_relocs() will
9753 sort relocations, but in a different way than we do,
9754 and before we're done creating relocations. Also, it
9755 will move them around between input sections'
9756 relocation's contents, so our sorting would be
9757 broken, so don't let it run. */
9758 info->combreloc = 0;
9759 }
9760 }
9761 else if (bfd_link_executable (info)
9762 && ! mips_elf_hash_table (info)->use_rld_obj_head
9763 && CONST_STRNEQ (name, ".rld_map"))
9764 {
9765 /* We add a room for __rld_map. It will be filled in by the
9766 rtld to contain a pointer to the _r_debug structure. */
9767 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9768 }
9769 else if (SGI_COMPAT (output_bfd)
9770 && CONST_STRNEQ (name, ".compact_rel"))
9771 s->size += mips_elf_hash_table (info)->compact_rel_size;
9772 else if (s == htab->root.splt)
9773 {
9774 /* If the last PLT entry has a branch delay slot, allocate
9775 room for an extra nop to fill the delay slot. This is
9776 for CPUs without load interlocking. */
9777 if (! LOAD_INTERLOCKS_P (output_bfd)
9778 && ! htab->is_vxworks && s->size > 0)
9779 s->size += 4;
9780 }
9781 else if (! CONST_STRNEQ (name, ".init")
9782 && s != htab->root.sgot
9783 && s != htab->root.sgotplt
9784 && s != htab->sstubs
9785 && s != htab->root.sdynbss
9786 && s != htab->root.sdynrelro)
9787 {
9788 /* It's not one of our sections, so don't allocate space. */
9789 continue;
9790 }
9791
9792 if (s->size == 0)
9793 {
9794 s->flags |= SEC_EXCLUDE;
9795 continue;
9796 }
9797
9798 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9799 continue;
9800
9801 /* Allocate memory for the section contents. */
9802 s->contents = bfd_zalloc (dynobj, s->size);
9803 if (s->contents == NULL)
9804 {
9805 bfd_set_error (bfd_error_no_memory);
9806 return FALSE;
9807 }
9808 }
9809
9810 if (elf_hash_table (info)->dynamic_sections_created)
9811 {
9812 /* Add some entries to the .dynamic section. We fill in the
9813 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9814 must add the entries now so that we get the correct size for
9815 the .dynamic section. */
9816
9817 /* SGI object has the equivalence of DT_DEBUG in the
9818 DT_MIPS_RLD_MAP entry. This must come first because glibc
9819 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9820 may only look at the first one they see. */
9821 if (!bfd_link_pic (info)
9822 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9823 return FALSE;
9824
9825 if (bfd_link_executable (info)
9826 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
9827 return FALSE;
9828
9829 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9830 used by the debugger. */
9831 if (bfd_link_executable (info)
9832 && !SGI_COMPAT (output_bfd)
9833 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9834 return FALSE;
9835
9836 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9837 info->flags |= DF_TEXTREL;
9838
9839 if ((info->flags & DF_TEXTREL) != 0)
9840 {
9841 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9842 return FALSE;
9843
9844 /* Clear the DF_TEXTREL flag. It will be set again if we
9845 write out an actual text relocation; we may not, because
9846 at this point we do not know whether e.g. any .eh_frame
9847 absolute relocations have been converted to PC-relative. */
9848 info->flags &= ~DF_TEXTREL;
9849 }
9850
9851 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9852 return FALSE;
9853
9854 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9855 if (htab->is_vxworks)
9856 {
9857 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9858 use any of the DT_MIPS_* tags. */
9859 if (sreldyn && sreldyn->size > 0)
9860 {
9861 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9862 return FALSE;
9863
9864 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9865 return FALSE;
9866
9867 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9868 return FALSE;
9869 }
9870 }
9871 else
9872 {
9873 if (sreldyn && sreldyn->size > 0)
9874 {
9875 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9876 return FALSE;
9877
9878 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9879 return FALSE;
9880
9881 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9882 return FALSE;
9883 }
9884
9885 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9886 return FALSE;
9887
9888 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9889 return FALSE;
9890
9891 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9892 return FALSE;
9893
9894 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9895 return FALSE;
9896
9897 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9898 return FALSE;
9899
9900 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9901 return FALSE;
9902
9903 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9904 return FALSE;
9905
9906 if (IRIX_COMPAT (dynobj) == ict_irix5
9907 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9908 return FALSE;
9909
9910 if (IRIX_COMPAT (dynobj) == ict_irix6
9911 && (bfd_get_section_by_name
9912 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9913 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9914 return FALSE;
9915 }
9916 if (htab->root.splt->size > 0)
9917 {
9918 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9919 return FALSE;
9920
9921 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9922 return FALSE;
9923
9924 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9925 return FALSE;
9926
9927 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9928 return FALSE;
9929 }
9930 if (htab->is_vxworks
9931 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9932 return FALSE;
9933 }
9934
9935 return TRUE;
9936 }
9937 \f
9938 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9939 Adjust its R_ADDEND field so that it is correct for the output file.
9940 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9941 and sections respectively; both use symbol indexes. */
9942
9943 static void
9944 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9945 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9946 asection **local_sections, Elf_Internal_Rela *rel)
9947 {
9948 unsigned int r_type, r_symndx;
9949 Elf_Internal_Sym *sym;
9950 asection *sec;
9951
9952 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9953 {
9954 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9955 if (gprel16_reloc_p (r_type)
9956 || r_type == R_MIPS_GPREL32
9957 || literal_reloc_p (r_type))
9958 {
9959 rel->r_addend += _bfd_get_gp_value (input_bfd);
9960 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9961 }
9962
9963 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9964 sym = local_syms + r_symndx;
9965
9966 /* Adjust REL's addend to account for section merging. */
9967 if (!bfd_link_relocatable (info))
9968 {
9969 sec = local_sections[r_symndx];
9970 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9971 }
9972
9973 /* This would normally be done by the rela_normal code in elflink.c. */
9974 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9975 rel->r_addend += local_sections[r_symndx]->output_offset;
9976 }
9977 }
9978
9979 /* Handle relocations against symbols from removed linkonce sections,
9980 or sections discarded by a linker script. We use this wrapper around
9981 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
9982 on 64-bit ELF targets. In this case for any relocation handled, which
9983 always be the first in a triplet, the remaining two have to be processed
9984 together with the first, even if they are R_MIPS_NONE. It is the symbol
9985 index referred by the first reloc that applies to all the three and the
9986 remaining two never refer to an object symbol. And it is the final
9987 relocation (the last non-null one) that determines the output field of
9988 the whole relocation so retrieve the corresponding howto structure for
9989 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
9990
9991 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
9992 and therefore requires to be pasted in a loop. It also defines a block
9993 and does not protect any of its arguments, hence the extra brackets. */
9994
9995 static void
9996 mips_reloc_against_discarded_section (bfd *output_bfd,
9997 struct bfd_link_info *info,
9998 bfd *input_bfd, asection *input_section,
9999 Elf_Internal_Rela **rel,
10000 const Elf_Internal_Rela **relend,
10001 bfd_boolean rel_reloc,
10002 reloc_howto_type *howto,
10003 bfd_byte *contents)
10004 {
10005 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10006 int count = bed->s->int_rels_per_ext_rel;
10007 unsigned int r_type;
10008 int i;
10009
10010 for (i = count - 1; i > 0; i--)
10011 {
10012 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10013 if (r_type != R_MIPS_NONE)
10014 {
10015 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10016 break;
10017 }
10018 }
10019 do
10020 {
10021 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10022 (*rel), count, (*relend),
10023 howto, i, contents);
10024 }
10025 while (0);
10026 }
10027
10028 /* Relocate a MIPS ELF section. */
10029
10030 bfd_boolean
10031 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10032 bfd *input_bfd, asection *input_section,
10033 bfd_byte *contents, Elf_Internal_Rela *relocs,
10034 Elf_Internal_Sym *local_syms,
10035 asection **local_sections)
10036 {
10037 Elf_Internal_Rela *rel;
10038 const Elf_Internal_Rela *relend;
10039 bfd_vma addend = 0;
10040 bfd_boolean use_saved_addend_p = FALSE;
10041
10042 relend = relocs + input_section->reloc_count;
10043 for (rel = relocs; rel < relend; ++rel)
10044 {
10045 const char *name;
10046 bfd_vma value = 0;
10047 reloc_howto_type *howto;
10048 bfd_boolean cross_mode_jump_p = FALSE;
10049 /* TRUE if the relocation is a RELA relocation, rather than a
10050 REL relocation. */
10051 bfd_boolean rela_relocation_p = TRUE;
10052 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10053 const char *msg;
10054 unsigned long r_symndx;
10055 asection *sec;
10056 Elf_Internal_Shdr *symtab_hdr;
10057 struct elf_link_hash_entry *h;
10058 bfd_boolean rel_reloc;
10059
10060 rel_reloc = (NEWABI_P (input_bfd)
10061 && mips_elf_rel_relocation_p (input_bfd, input_section,
10062 relocs, rel));
10063 /* Find the relocation howto for this relocation. */
10064 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10065
10066 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10067 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10068 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10069 {
10070 sec = local_sections[r_symndx];
10071 h = NULL;
10072 }
10073 else
10074 {
10075 unsigned long extsymoff;
10076
10077 extsymoff = 0;
10078 if (!elf_bad_symtab (input_bfd))
10079 extsymoff = symtab_hdr->sh_info;
10080 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10081 while (h->root.type == bfd_link_hash_indirect
10082 || h->root.type == bfd_link_hash_warning)
10083 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10084
10085 sec = NULL;
10086 if (h->root.type == bfd_link_hash_defined
10087 || h->root.type == bfd_link_hash_defweak)
10088 sec = h->root.u.def.section;
10089 }
10090
10091 if (sec != NULL && discarded_section (sec))
10092 {
10093 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10094 input_section, &rel, &relend,
10095 rel_reloc, howto, contents);
10096 continue;
10097 }
10098
10099 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10100 {
10101 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10102 64-bit code, but make sure all their addresses are in the
10103 lowermost or uppermost 32-bit section of the 64-bit address
10104 space. Thus, when they use an R_MIPS_64 they mean what is
10105 usually meant by R_MIPS_32, with the exception that the
10106 stored value is sign-extended to 64 bits. */
10107 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
10108
10109 /* On big-endian systems, we need to lie about the position
10110 of the reloc. */
10111 if (bfd_big_endian (input_bfd))
10112 rel->r_offset += 4;
10113 }
10114
10115 if (!use_saved_addend_p)
10116 {
10117 /* If these relocations were originally of the REL variety,
10118 we must pull the addend out of the field that will be
10119 relocated. Otherwise, we simply use the contents of the
10120 RELA relocation. */
10121 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10122 relocs, rel))
10123 {
10124 rela_relocation_p = FALSE;
10125 addend = mips_elf_read_rel_addend (input_bfd, rel,
10126 howto, contents);
10127 if (hi16_reloc_p (r_type)
10128 || (got16_reloc_p (r_type)
10129 && mips_elf_local_relocation_p (input_bfd, rel,
10130 local_sections)))
10131 {
10132 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10133 contents, &addend))
10134 {
10135 if (h)
10136 name = h->root.root.string;
10137 else
10138 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10139 local_syms + r_symndx,
10140 sec);
10141 _bfd_error_handler
10142 /* xgettext:c-format */
10143 (_("%B: Can't find matching LO16 reloc against `%s'"
10144 " for %s at %#Lx in section `%A'"),
10145 input_bfd, name,
10146 howto->name, rel->r_offset, input_section);
10147 }
10148 }
10149 else
10150 addend <<= howto->rightshift;
10151 }
10152 else
10153 addend = rel->r_addend;
10154 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10155 local_syms, local_sections, rel);
10156 }
10157
10158 if (bfd_link_relocatable (info))
10159 {
10160 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10161 && bfd_big_endian (input_bfd))
10162 rel->r_offset -= 4;
10163
10164 if (!rela_relocation_p && rel->r_addend)
10165 {
10166 addend += rel->r_addend;
10167 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10168 addend = mips_elf_high (addend);
10169 else if (r_type == R_MIPS_HIGHER)
10170 addend = mips_elf_higher (addend);
10171 else if (r_type == R_MIPS_HIGHEST)
10172 addend = mips_elf_highest (addend);
10173 else
10174 addend >>= howto->rightshift;
10175
10176 /* We use the source mask, rather than the destination
10177 mask because the place to which we are writing will be
10178 source of the addend in the final link. */
10179 addend &= howto->src_mask;
10180
10181 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10182 /* See the comment above about using R_MIPS_64 in the 32-bit
10183 ABI. Here, we need to update the addend. It would be
10184 possible to get away with just using the R_MIPS_32 reloc
10185 but for endianness. */
10186 {
10187 bfd_vma sign_bits;
10188 bfd_vma low_bits;
10189 bfd_vma high_bits;
10190
10191 if (addend & ((bfd_vma) 1 << 31))
10192 #ifdef BFD64
10193 sign_bits = ((bfd_vma) 1 << 32) - 1;
10194 #else
10195 sign_bits = -1;
10196 #endif
10197 else
10198 sign_bits = 0;
10199
10200 /* If we don't know that we have a 64-bit type,
10201 do two separate stores. */
10202 if (bfd_big_endian (input_bfd))
10203 {
10204 /* Store the sign-bits (which are most significant)
10205 first. */
10206 low_bits = sign_bits;
10207 high_bits = addend;
10208 }
10209 else
10210 {
10211 low_bits = addend;
10212 high_bits = sign_bits;
10213 }
10214 bfd_put_32 (input_bfd, low_bits,
10215 contents + rel->r_offset);
10216 bfd_put_32 (input_bfd, high_bits,
10217 contents + rel->r_offset + 4);
10218 continue;
10219 }
10220
10221 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10222 input_bfd, input_section,
10223 contents, FALSE))
10224 return FALSE;
10225 }
10226
10227 /* Go on to the next relocation. */
10228 continue;
10229 }
10230
10231 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10232 relocations for the same offset. In that case we are
10233 supposed to treat the output of each relocation as the addend
10234 for the next. */
10235 if (rel + 1 < relend
10236 && rel->r_offset == rel[1].r_offset
10237 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10238 use_saved_addend_p = TRUE;
10239 else
10240 use_saved_addend_p = FALSE;
10241
10242 /* Figure out what value we are supposed to relocate. */
10243 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10244 input_section, info, rel,
10245 addend, howto, local_syms,
10246 local_sections, &value,
10247 &name, &cross_mode_jump_p,
10248 use_saved_addend_p))
10249 {
10250 case bfd_reloc_continue:
10251 /* There's nothing to do. */
10252 continue;
10253
10254 case bfd_reloc_undefined:
10255 /* mips_elf_calculate_relocation already called the
10256 undefined_symbol callback. There's no real point in
10257 trying to perform the relocation at this point, so we
10258 just skip ahead to the next relocation. */
10259 continue;
10260
10261 case bfd_reloc_notsupported:
10262 msg = _("internal error: unsupported relocation error");
10263 info->callbacks->warning
10264 (info, msg, name, input_bfd, input_section, rel->r_offset);
10265 return FALSE;
10266
10267 case bfd_reloc_overflow:
10268 if (use_saved_addend_p)
10269 /* Ignore overflow until we reach the last relocation for
10270 a given location. */
10271 ;
10272 else
10273 {
10274 struct mips_elf_link_hash_table *htab;
10275
10276 htab = mips_elf_hash_table (info);
10277 BFD_ASSERT (htab != NULL);
10278 BFD_ASSERT (name != NULL);
10279 if (!htab->small_data_overflow_reported
10280 && (gprel16_reloc_p (howto->type)
10281 || literal_reloc_p (howto->type)))
10282 {
10283 msg = _("small-data section exceeds 64KB;"
10284 " lower small-data size limit (see option -G)");
10285
10286 htab->small_data_overflow_reported = TRUE;
10287 (*info->callbacks->einfo) ("%P: %s\n", msg);
10288 }
10289 (*info->callbacks->reloc_overflow)
10290 (info, NULL, name, howto->name, (bfd_vma) 0,
10291 input_bfd, input_section, rel->r_offset);
10292 }
10293 break;
10294
10295 case bfd_reloc_ok:
10296 break;
10297
10298 case bfd_reloc_outofrange:
10299 msg = NULL;
10300 if (jal_reloc_p (howto->type))
10301 msg = (cross_mode_jump_p
10302 ? _("Cannot convert a jump to JALX "
10303 "for a non-word-aligned address")
10304 : (howto->type == R_MIPS16_26
10305 ? _("Jump to a non-word-aligned address")
10306 : _("Jump to a non-instruction-aligned address")));
10307 else if (b_reloc_p (howto->type))
10308 msg = (cross_mode_jump_p
10309 ? _("Cannot convert a branch to JALX "
10310 "for a non-word-aligned address")
10311 : _("Branch to a non-instruction-aligned address"));
10312 else if (aligned_pcrel_reloc_p (howto->type))
10313 msg = _("PC-relative load from unaligned address");
10314 if (msg)
10315 {
10316 info->callbacks->einfo
10317 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10318 break;
10319 }
10320 /* Fall through. */
10321
10322 default:
10323 abort ();
10324 break;
10325 }
10326
10327 /* If we've got another relocation for the address, keep going
10328 until we reach the last one. */
10329 if (use_saved_addend_p)
10330 {
10331 addend = value;
10332 continue;
10333 }
10334
10335 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10336 /* See the comment above about using R_MIPS_64 in the 32-bit
10337 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10338 that calculated the right value. Now, however, we
10339 sign-extend the 32-bit result to 64-bits, and store it as a
10340 64-bit value. We are especially generous here in that we
10341 go to extreme lengths to support this usage on systems with
10342 only a 32-bit VMA. */
10343 {
10344 bfd_vma sign_bits;
10345 bfd_vma low_bits;
10346 bfd_vma high_bits;
10347
10348 if (value & ((bfd_vma) 1 << 31))
10349 #ifdef BFD64
10350 sign_bits = ((bfd_vma) 1 << 32) - 1;
10351 #else
10352 sign_bits = -1;
10353 #endif
10354 else
10355 sign_bits = 0;
10356
10357 /* If we don't know that we have a 64-bit type,
10358 do two separate stores. */
10359 if (bfd_big_endian (input_bfd))
10360 {
10361 /* Undo what we did above. */
10362 rel->r_offset -= 4;
10363 /* Store the sign-bits (which are most significant)
10364 first. */
10365 low_bits = sign_bits;
10366 high_bits = value;
10367 }
10368 else
10369 {
10370 low_bits = value;
10371 high_bits = sign_bits;
10372 }
10373 bfd_put_32 (input_bfd, low_bits,
10374 contents + rel->r_offset);
10375 bfd_put_32 (input_bfd, high_bits,
10376 contents + rel->r_offset + 4);
10377 continue;
10378 }
10379
10380 /* Actually perform the relocation. */
10381 if (! mips_elf_perform_relocation (info, howto, rel, value,
10382 input_bfd, input_section,
10383 contents, cross_mode_jump_p))
10384 return FALSE;
10385 }
10386
10387 return TRUE;
10388 }
10389 \f
10390 /* A function that iterates over each entry in la25_stubs and fills
10391 in the code for each one. DATA points to a mips_htab_traverse_info. */
10392
10393 static int
10394 mips_elf_create_la25_stub (void **slot, void *data)
10395 {
10396 struct mips_htab_traverse_info *hti;
10397 struct mips_elf_link_hash_table *htab;
10398 struct mips_elf_la25_stub *stub;
10399 asection *s;
10400 bfd_byte *loc;
10401 bfd_vma offset, target, target_high, target_low;
10402
10403 stub = (struct mips_elf_la25_stub *) *slot;
10404 hti = (struct mips_htab_traverse_info *) data;
10405 htab = mips_elf_hash_table (hti->info);
10406 BFD_ASSERT (htab != NULL);
10407
10408 /* Create the section contents, if we haven't already. */
10409 s = stub->stub_section;
10410 loc = s->contents;
10411 if (loc == NULL)
10412 {
10413 loc = bfd_malloc (s->size);
10414 if (loc == NULL)
10415 {
10416 hti->error = TRUE;
10417 return FALSE;
10418 }
10419 s->contents = loc;
10420 }
10421
10422 /* Work out where in the section this stub should go. */
10423 offset = stub->offset;
10424
10425 /* Work out the target address. */
10426 target = mips_elf_get_la25_target (stub, &s);
10427 target += s->output_section->vma + s->output_offset;
10428
10429 target_high = ((target + 0x8000) >> 16) & 0xffff;
10430 target_low = (target & 0xffff);
10431
10432 if (stub->stub_section != htab->strampoline)
10433 {
10434 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10435 of the section and write the two instructions at the end. */
10436 memset (loc, 0, offset);
10437 loc += offset;
10438 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10439 {
10440 bfd_put_micromips_32 (hti->output_bfd,
10441 LA25_LUI_MICROMIPS (target_high),
10442 loc);
10443 bfd_put_micromips_32 (hti->output_bfd,
10444 LA25_ADDIU_MICROMIPS (target_low),
10445 loc + 4);
10446 }
10447 else
10448 {
10449 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10450 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10451 }
10452 }
10453 else
10454 {
10455 /* This is trampoline. */
10456 loc += offset;
10457 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10458 {
10459 bfd_put_micromips_32 (hti->output_bfd,
10460 LA25_LUI_MICROMIPS (target_high), loc);
10461 bfd_put_micromips_32 (hti->output_bfd,
10462 LA25_J_MICROMIPS (target), loc + 4);
10463 bfd_put_micromips_32 (hti->output_bfd,
10464 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10465 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10466 }
10467 else
10468 {
10469 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10470 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10471 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10472 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10473 }
10474 }
10475 return TRUE;
10476 }
10477
10478 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10479 adjust it appropriately now. */
10480
10481 static void
10482 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10483 const char *name, Elf_Internal_Sym *sym)
10484 {
10485 /* The linker script takes care of providing names and values for
10486 these, but we must place them into the right sections. */
10487 static const char* const text_section_symbols[] = {
10488 "_ftext",
10489 "_etext",
10490 "__dso_displacement",
10491 "__elf_header",
10492 "__program_header_table",
10493 NULL
10494 };
10495
10496 static const char* const data_section_symbols[] = {
10497 "_fdata",
10498 "_edata",
10499 "_end",
10500 "_fbss",
10501 NULL
10502 };
10503
10504 const char* const *p;
10505 int i;
10506
10507 for (i = 0; i < 2; ++i)
10508 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10509 *p;
10510 ++p)
10511 if (strcmp (*p, name) == 0)
10512 {
10513 /* All of these symbols are given type STT_SECTION by the
10514 IRIX6 linker. */
10515 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10516 sym->st_other = STO_PROTECTED;
10517
10518 /* The IRIX linker puts these symbols in special sections. */
10519 if (i == 0)
10520 sym->st_shndx = SHN_MIPS_TEXT;
10521 else
10522 sym->st_shndx = SHN_MIPS_DATA;
10523
10524 break;
10525 }
10526 }
10527
10528 /* Finish up dynamic symbol handling. We set the contents of various
10529 dynamic sections here. */
10530
10531 bfd_boolean
10532 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10533 struct bfd_link_info *info,
10534 struct elf_link_hash_entry *h,
10535 Elf_Internal_Sym *sym)
10536 {
10537 bfd *dynobj;
10538 asection *sgot;
10539 struct mips_got_info *g, *gg;
10540 const char *name;
10541 int idx;
10542 struct mips_elf_link_hash_table *htab;
10543 struct mips_elf_link_hash_entry *hmips;
10544
10545 htab = mips_elf_hash_table (info);
10546 BFD_ASSERT (htab != NULL);
10547 dynobj = elf_hash_table (info)->dynobj;
10548 hmips = (struct mips_elf_link_hash_entry *) h;
10549
10550 BFD_ASSERT (!htab->is_vxworks);
10551
10552 if (h->plt.plist != NULL
10553 && (h->plt.plist->mips_offset != MINUS_ONE
10554 || h->plt.plist->comp_offset != MINUS_ONE))
10555 {
10556 /* We've decided to create a PLT entry for this symbol. */
10557 bfd_byte *loc;
10558 bfd_vma header_address, got_address;
10559 bfd_vma got_address_high, got_address_low, load;
10560 bfd_vma got_index;
10561 bfd_vma isa_bit;
10562
10563 got_index = h->plt.plist->gotplt_index;
10564
10565 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10566 BFD_ASSERT (h->dynindx != -1);
10567 BFD_ASSERT (htab->root.splt != NULL);
10568 BFD_ASSERT (got_index != MINUS_ONE);
10569 BFD_ASSERT (!h->def_regular);
10570
10571 /* Calculate the address of the PLT header. */
10572 isa_bit = htab->plt_header_is_comp;
10573 header_address = (htab->root.splt->output_section->vma
10574 + htab->root.splt->output_offset + isa_bit);
10575
10576 /* Calculate the address of the .got.plt entry. */
10577 got_address = (htab->root.sgotplt->output_section->vma
10578 + htab->root.sgotplt->output_offset
10579 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10580
10581 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10582 got_address_low = got_address & 0xffff;
10583
10584 /* Initially point the .got.plt entry at the PLT header. */
10585 loc = (htab->root.sgotplt->contents + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10586 if (ABI_64_P (output_bfd))
10587 bfd_put_64 (output_bfd, header_address, loc);
10588 else
10589 bfd_put_32 (output_bfd, header_address, loc);
10590
10591 /* Now handle the PLT itself. First the standard entry (the order
10592 does not matter, we just have to pick one). */
10593 if (h->plt.plist->mips_offset != MINUS_ONE)
10594 {
10595 const bfd_vma *plt_entry;
10596 bfd_vma plt_offset;
10597
10598 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10599
10600 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10601
10602 /* Find out where the .plt entry should go. */
10603 loc = htab->root.splt->contents + plt_offset;
10604
10605 /* Pick the load opcode. */
10606 load = MIPS_ELF_LOAD_WORD (output_bfd);
10607
10608 /* Fill in the PLT entry itself. */
10609
10610 if (MIPSR6_P (output_bfd))
10611 plt_entry = mipsr6_exec_plt_entry;
10612 else
10613 plt_entry = mips_exec_plt_entry;
10614 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10615 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10616 loc + 4);
10617
10618 if (! LOAD_INTERLOCKS_P (output_bfd))
10619 {
10620 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10621 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10622 }
10623 else
10624 {
10625 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10626 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10627 loc + 12);
10628 }
10629 }
10630
10631 /* Now the compressed entry. They come after any standard ones. */
10632 if (h->plt.plist->comp_offset != MINUS_ONE)
10633 {
10634 bfd_vma plt_offset;
10635
10636 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10637 + h->plt.plist->comp_offset);
10638
10639 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10640
10641 /* Find out where the .plt entry should go. */
10642 loc = htab->root.splt->contents + plt_offset;
10643
10644 /* Fill in the PLT entry itself. */
10645 if (!MICROMIPS_P (output_bfd))
10646 {
10647 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10648
10649 bfd_put_16 (output_bfd, plt_entry[0], loc);
10650 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10651 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10652 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10653 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10654 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10655 bfd_put_32 (output_bfd, got_address, loc + 12);
10656 }
10657 else if (htab->insn32)
10658 {
10659 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10660
10661 bfd_put_16 (output_bfd, plt_entry[0], loc);
10662 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10663 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10664 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10665 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10666 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10667 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10668 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10669 }
10670 else
10671 {
10672 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10673 bfd_signed_vma gotpc_offset;
10674 bfd_vma loc_address;
10675
10676 BFD_ASSERT (got_address % 4 == 0);
10677
10678 loc_address = (htab->root.splt->output_section->vma
10679 + htab->root.splt->output_offset + plt_offset);
10680 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10681
10682 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10683 if (gotpc_offset + 0x1000000 >= 0x2000000)
10684 {
10685 _bfd_error_handler
10686 /* xgettext:c-format */
10687 (_("%B: `%A' offset of %Ld from `%A' "
10688 "beyond the range of ADDIUPC"),
10689 output_bfd,
10690 htab->root.sgotplt->output_section,
10691 gotpc_offset,
10692 htab->root.splt->output_section);
10693 bfd_set_error (bfd_error_no_error);
10694 return FALSE;
10695 }
10696 bfd_put_16 (output_bfd,
10697 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10698 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10699 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10700 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10701 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10702 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10703 }
10704 }
10705
10706 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10707 mips_elf_output_dynamic_relocation (output_bfd, htab->root.srelplt,
10708 got_index - 2, h->dynindx,
10709 R_MIPS_JUMP_SLOT, got_address);
10710
10711 /* We distinguish between PLT entries and lazy-binding stubs by
10712 giving the former an st_other value of STO_MIPS_PLT. Set the
10713 flag and leave the value if there are any relocations in the
10714 binary where pointer equality matters. */
10715 sym->st_shndx = SHN_UNDEF;
10716 if (h->pointer_equality_needed)
10717 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
10718 else
10719 {
10720 sym->st_value = 0;
10721 sym->st_other = 0;
10722 }
10723 }
10724
10725 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
10726 {
10727 /* We've decided to create a lazy-binding stub. */
10728 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10729 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10730 bfd_vma stub_size = htab->function_stub_size;
10731 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
10732 bfd_vma isa_bit = micromips_p;
10733 bfd_vma stub_big_size;
10734
10735 if (!micromips_p)
10736 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
10737 else if (htab->insn32)
10738 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10739 else
10740 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
10741
10742 /* This symbol has a stub. Set it up. */
10743
10744 BFD_ASSERT (h->dynindx != -1);
10745
10746 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
10747
10748 /* Values up to 2^31 - 1 are allowed. Larger values would cause
10749 sign extension at runtime in the stub, resulting in a negative
10750 index value. */
10751 if (h->dynindx & ~0x7fffffff)
10752 return FALSE;
10753
10754 /* Fill the stub. */
10755 if (micromips_p)
10756 {
10757 idx = 0;
10758 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10759 stub + idx);
10760 idx += 4;
10761 if (htab->insn32)
10762 {
10763 bfd_put_micromips_32 (output_bfd,
10764 STUB_MOVE32_MICROMIPS, stub + idx);
10765 idx += 4;
10766 }
10767 else
10768 {
10769 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10770 idx += 2;
10771 }
10772 if (stub_size == stub_big_size)
10773 {
10774 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10775
10776 bfd_put_micromips_32 (output_bfd,
10777 STUB_LUI_MICROMIPS (dynindx_hi),
10778 stub + idx);
10779 idx += 4;
10780 }
10781 if (htab->insn32)
10782 {
10783 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
10784 stub + idx);
10785 idx += 4;
10786 }
10787 else
10788 {
10789 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
10790 idx += 2;
10791 }
10792
10793 /* If a large stub is not required and sign extension is not a
10794 problem, then use legacy code in the stub. */
10795 if (stub_size == stub_big_size)
10796 bfd_put_micromips_32 (output_bfd,
10797 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
10798 stub + idx);
10799 else if (h->dynindx & ~0x7fff)
10800 bfd_put_micromips_32 (output_bfd,
10801 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
10802 stub + idx);
10803 else
10804 bfd_put_micromips_32 (output_bfd,
10805 STUB_LI16S_MICROMIPS (output_bfd,
10806 h->dynindx),
10807 stub + idx);
10808 }
10809 else
10810 {
10811 idx = 0;
10812 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10813 idx += 4;
10814 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
10815 idx += 4;
10816 if (stub_size == stub_big_size)
10817 {
10818 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10819 stub + idx);
10820 idx += 4;
10821 }
10822 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10823 idx += 4;
10824
10825 /* If a large stub is not required and sign extension is not a
10826 problem, then use legacy code in the stub. */
10827 if (stub_size == stub_big_size)
10828 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
10829 stub + idx);
10830 else if (h->dynindx & ~0x7fff)
10831 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
10832 stub + idx);
10833 else
10834 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10835 stub + idx);
10836 }
10837
10838 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
10839 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
10840 stub, stub_size);
10841
10842 /* Mark the symbol as undefined. stub_offset != -1 occurs
10843 only for the referenced symbol. */
10844 sym->st_shndx = SHN_UNDEF;
10845
10846 /* The run-time linker uses the st_value field of the symbol
10847 to reset the global offset table entry for this external
10848 to its stub address when unlinking a shared object. */
10849 sym->st_value = (htab->sstubs->output_section->vma
10850 + htab->sstubs->output_offset
10851 + h->plt.plist->stub_offset
10852 + isa_bit);
10853 sym->st_other = other;
10854 }
10855
10856 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10857 refer to the stub, since only the stub uses the standard calling
10858 conventions. */
10859 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10860 {
10861 BFD_ASSERT (hmips->need_fn_stub);
10862 sym->st_value = (hmips->fn_stub->output_section->vma
10863 + hmips->fn_stub->output_offset);
10864 sym->st_size = hmips->fn_stub->size;
10865 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10866 }
10867
10868 BFD_ASSERT (h->dynindx != -1
10869 || h->forced_local);
10870
10871 sgot = htab->root.sgot;
10872 g = htab->got_info;
10873 BFD_ASSERT (g != NULL);
10874
10875 /* Run through the global symbol table, creating GOT entries for all
10876 the symbols that need them. */
10877 if (hmips->global_got_area != GGA_NONE)
10878 {
10879 bfd_vma offset;
10880 bfd_vma value;
10881
10882 value = sym->st_value;
10883 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
10884 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10885 }
10886
10887 if (hmips->global_got_area != GGA_NONE && g->next)
10888 {
10889 struct mips_got_entry e, *p;
10890 bfd_vma entry;
10891 bfd_vma offset;
10892
10893 gg = g;
10894
10895 e.abfd = output_bfd;
10896 e.symndx = -1;
10897 e.d.h = hmips;
10898 e.tls_type = GOT_TLS_NONE;
10899
10900 for (g = g->next; g->next != gg; g = g->next)
10901 {
10902 if (g->got_entries
10903 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10904 &e)))
10905 {
10906 offset = p->gotidx;
10907 BFD_ASSERT (offset > 0 && offset < htab->root.sgot->size);
10908 if (bfd_link_pic (info)
10909 || (elf_hash_table (info)->dynamic_sections_created
10910 && p->d.h != NULL
10911 && p->d.h->root.def_dynamic
10912 && !p->d.h->root.def_regular))
10913 {
10914 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10915 the various compatibility problems, it's easier to mock
10916 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10917 mips_elf_create_dynamic_relocation to calculate the
10918 appropriate addend. */
10919 Elf_Internal_Rela rel[3];
10920
10921 memset (rel, 0, sizeof (rel));
10922 if (ABI_64_P (output_bfd))
10923 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10924 else
10925 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10926 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10927
10928 entry = 0;
10929 if (! (mips_elf_create_dynamic_relocation
10930 (output_bfd, info, rel,
10931 e.d.h, NULL, sym->st_value, &entry, sgot)))
10932 return FALSE;
10933 }
10934 else
10935 entry = sym->st_value;
10936 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
10937 }
10938 }
10939 }
10940
10941 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10942 name = h->root.root.string;
10943 if (h == elf_hash_table (info)->hdynamic
10944 || h == elf_hash_table (info)->hgot)
10945 sym->st_shndx = SHN_ABS;
10946 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10947 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10948 {
10949 sym->st_shndx = SHN_ABS;
10950 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10951 sym->st_value = 1;
10952 }
10953 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
10954 {
10955 sym->st_shndx = SHN_ABS;
10956 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10957 sym->st_value = elf_gp (output_bfd);
10958 }
10959 else if (SGI_COMPAT (output_bfd))
10960 {
10961 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10962 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10963 {
10964 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10965 sym->st_other = STO_PROTECTED;
10966 sym->st_value = 0;
10967 sym->st_shndx = SHN_MIPS_DATA;
10968 }
10969 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10970 {
10971 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10972 sym->st_other = STO_PROTECTED;
10973 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10974 sym->st_shndx = SHN_ABS;
10975 }
10976 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10977 {
10978 if (h->type == STT_FUNC)
10979 sym->st_shndx = SHN_MIPS_TEXT;
10980 else if (h->type == STT_OBJECT)
10981 sym->st_shndx = SHN_MIPS_DATA;
10982 }
10983 }
10984
10985 /* Emit a copy reloc, if needed. */
10986 if (h->needs_copy)
10987 {
10988 asection *s;
10989 bfd_vma symval;
10990
10991 BFD_ASSERT (h->dynindx != -1);
10992 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10993
10994 s = mips_elf_rel_dyn_section (info, FALSE);
10995 symval = (h->root.u.def.section->output_section->vma
10996 + h->root.u.def.section->output_offset
10997 + h->root.u.def.value);
10998 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
10999 h->dynindx, R_MIPS_COPY, symval);
11000 }
11001
11002 /* Handle the IRIX6-specific symbols. */
11003 if (IRIX_COMPAT (output_bfd) == ict_irix6)
11004 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11005
11006 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11007 to treat compressed symbols like any other. */
11008 if (ELF_ST_IS_MIPS16 (sym->st_other))
11009 {
11010 BFD_ASSERT (sym->st_value & 1);
11011 sym->st_other -= STO_MIPS16;
11012 }
11013 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11014 {
11015 BFD_ASSERT (sym->st_value & 1);
11016 sym->st_other -= STO_MICROMIPS;
11017 }
11018
11019 return TRUE;
11020 }
11021
11022 /* Likewise, for VxWorks. */
11023
11024 bfd_boolean
11025 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11026 struct bfd_link_info *info,
11027 struct elf_link_hash_entry *h,
11028 Elf_Internal_Sym *sym)
11029 {
11030 bfd *dynobj;
11031 asection *sgot;
11032 struct mips_got_info *g;
11033 struct mips_elf_link_hash_table *htab;
11034 struct mips_elf_link_hash_entry *hmips;
11035
11036 htab = mips_elf_hash_table (info);
11037 BFD_ASSERT (htab != NULL);
11038 dynobj = elf_hash_table (info)->dynobj;
11039 hmips = (struct mips_elf_link_hash_entry *) h;
11040
11041 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
11042 {
11043 bfd_byte *loc;
11044 bfd_vma plt_address, got_address, got_offset, branch_offset;
11045 Elf_Internal_Rela rel;
11046 static const bfd_vma *plt_entry;
11047 bfd_vma gotplt_index;
11048 bfd_vma plt_offset;
11049
11050 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11051 gotplt_index = h->plt.plist->gotplt_index;
11052
11053 BFD_ASSERT (h->dynindx != -1);
11054 BFD_ASSERT (htab->root.splt != NULL);
11055 BFD_ASSERT (gotplt_index != MINUS_ONE);
11056 BFD_ASSERT (plt_offset <= htab->root.splt->size);
11057
11058 /* Calculate the address of the .plt entry. */
11059 plt_address = (htab->root.splt->output_section->vma
11060 + htab->root.splt->output_offset
11061 + plt_offset);
11062
11063 /* Calculate the address of the .got.plt entry. */
11064 got_address = (htab->root.sgotplt->output_section->vma
11065 + htab->root.sgotplt->output_offset
11066 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11067
11068 /* Calculate the offset of the .got.plt entry from
11069 _GLOBAL_OFFSET_TABLE_. */
11070 got_offset = mips_elf_gotplt_index (info, h);
11071
11072 /* Calculate the offset for the branch at the start of the PLT
11073 entry. The branch jumps to the beginning of .plt. */
11074 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11075
11076 /* Fill in the initial value of the .got.plt entry. */
11077 bfd_put_32 (output_bfd, plt_address,
11078 (htab->root.sgotplt->contents
11079 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11080
11081 /* Find out where the .plt entry should go. */
11082 loc = htab->root.splt->contents + plt_offset;
11083
11084 if (bfd_link_pic (info))
11085 {
11086 plt_entry = mips_vxworks_shared_plt_entry;
11087 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11088 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11089 }
11090 else
11091 {
11092 bfd_vma got_address_high, got_address_low;
11093
11094 plt_entry = mips_vxworks_exec_plt_entry;
11095 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11096 got_address_low = got_address & 0xffff;
11097
11098 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11099 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11100 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11101 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11102 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11103 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11104 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11105 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11106
11107 loc = (htab->srelplt2->contents
11108 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11109
11110 /* Emit a relocation for the .got.plt entry. */
11111 rel.r_offset = got_address;
11112 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11113 rel.r_addend = plt_offset;
11114 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11115
11116 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11117 loc += sizeof (Elf32_External_Rela);
11118 rel.r_offset = plt_address + 8;
11119 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11120 rel.r_addend = got_offset;
11121 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11122
11123 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11124 loc += sizeof (Elf32_External_Rela);
11125 rel.r_offset += 4;
11126 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11127 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11128 }
11129
11130 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11131 loc = (htab->root.srelplt->contents
11132 + gotplt_index * sizeof (Elf32_External_Rela));
11133 rel.r_offset = got_address;
11134 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11135 rel.r_addend = 0;
11136 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11137
11138 if (!h->def_regular)
11139 sym->st_shndx = SHN_UNDEF;
11140 }
11141
11142 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11143
11144 sgot = htab->root.sgot;
11145 g = htab->got_info;
11146 BFD_ASSERT (g != NULL);
11147
11148 /* See if this symbol has an entry in the GOT. */
11149 if (hmips->global_got_area != GGA_NONE)
11150 {
11151 bfd_vma offset;
11152 Elf_Internal_Rela outrel;
11153 bfd_byte *loc;
11154 asection *s;
11155
11156 /* Install the symbol value in the GOT. */
11157 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11158 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11159
11160 /* Add a dynamic relocation for it. */
11161 s = mips_elf_rel_dyn_section (info, FALSE);
11162 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11163 outrel.r_offset = (sgot->output_section->vma
11164 + sgot->output_offset
11165 + offset);
11166 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11167 outrel.r_addend = 0;
11168 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11169 }
11170
11171 /* Emit a copy reloc, if needed. */
11172 if (h->needs_copy)
11173 {
11174 Elf_Internal_Rela rel;
11175 asection *srel;
11176 bfd_byte *loc;
11177
11178 BFD_ASSERT (h->dynindx != -1);
11179
11180 rel.r_offset = (h->root.u.def.section->output_section->vma
11181 + h->root.u.def.section->output_offset
11182 + h->root.u.def.value);
11183 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11184 rel.r_addend = 0;
11185 if (h->root.u.def.section == htab->root.sdynrelro)
11186 srel = htab->root.sreldynrelro;
11187 else
11188 srel = htab->root.srelbss;
11189 loc = srel->contents + srel->reloc_count * sizeof (Elf32_External_Rela);
11190 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11191 ++srel->reloc_count;
11192 }
11193
11194 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11195 if (ELF_ST_IS_COMPRESSED (sym->st_other))
11196 sym->st_value &= ~1;
11197
11198 return TRUE;
11199 }
11200
11201 /* Write out a plt0 entry to the beginning of .plt. */
11202
11203 static bfd_boolean
11204 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11205 {
11206 bfd_byte *loc;
11207 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11208 static const bfd_vma *plt_entry;
11209 struct mips_elf_link_hash_table *htab;
11210
11211 htab = mips_elf_hash_table (info);
11212 BFD_ASSERT (htab != NULL);
11213
11214 if (ABI_64_P (output_bfd))
11215 plt_entry = mips_n64_exec_plt0_entry;
11216 else if (ABI_N32_P (output_bfd))
11217 plt_entry = mips_n32_exec_plt0_entry;
11218 else if (!htab->plt_header_is_comp)
11219 plt_entry = mips_o32_exec_plt0_entry;
11220 else if (htab->insn32)
11221 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11222 else
11223 plt_entry = micromips_o32_exec_plt0_entry;
11224
11225 /* Calculate the value of .got.plt. */
11226 gotplt_value = (htab->root.sgotplt->output_section->vma
11227 + htab->root.sgotplt->output_offset);
11228 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11229 gotplt_value_low = gotplt_value & 0xffff;
11230
11231 /* The PLT sequence is not safe for N64 if .got.plt's address can
11232 not be loaded in two instructions. */
11233 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
11234 || ~(gotplt_value | 0x7fffffff) == 0);
11235
11236 /* Install the PLT header. */
11237 loc = htab->root.splt->contents;
11238 if (plt_entry == micromips_o32_exec_plt0_entry)
11239 {
11240 bfd_vma gotpc_offset;
11241 bfd_vma loc_address;
11242 size_t i;
11243
11244 BFD_ASSERT (gotplt_value % 4 == 0);
11245
11246 loc_address = (htab->root.splt->output_section->vma
11247 + htab->root.splt->output_offset);
11248 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11249
11250 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11251 if (gotpc_offset + 0x1000000 >= 0x2000000)
11252 {
11253 _bfd_error_handler
11254 /* xgettext:c-format */
11255 (_("%B: `%A' offset of %Ld from `%A' beyond the range of ADDIUPC"),
11256 output_bfd,
11257 htab->root.sgotplt->output_section,
11258 gotpc_offset,
11259 htab->root.splt->output_section);
11260 bfd_set_error (bfd_error_no_error);
11261 return FALSE;
11262 }
11263 bfd_put_16 (output_bfd,
11264 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11265 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11266 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11267 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11268 }
11269 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11270 {
11271 size_t i;
11272
11273 bfd_put_16 (output_bfd, plt_entry[0], loc);
11274 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11275 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11276 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11277 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11278 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11279 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11280 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11281 }
11282 else
11283 {
11284 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11285 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11286 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11287 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11288 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11289 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11290 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11291 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11292 }
11293
11294 return TRUE;
11295 }
11296
11297 /* Install the PLT header for a VxWorks executable and finalize the
11298 contents of .rela.plt.unloaded. */
11299
11300 static void
11301 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11302 {
11303 Elf_Internal_Rela rela;
11304 bfd_byte *loc;
11305 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11306 static const bfd_vma *plt_entry;
11307 struct mips_elf_link_hash_table *htab;
11308
11309 htab = mips_elf_hash_table (info);
11310 BFD_ASSERT (htab != NULL);
11311
11312 plt_entry = mips_vxworks_exec_plt0_entry;
11313
11314 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11315 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11316 + htab->root.hgot->root.u.def.section->output_offset
11317 + htab->root.hgot->root.u.def.value);
11318
11319 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11320 got_value_low = got_value & 0xffff;
11321
11322 /* Calculate the address of the PLT header. */
11323 plt_address = (htab->root.splt->output_section->vma
11324 + htab->root.splt->output_offset);
11325
11326 /* Install the PLT header. */
11327 loc = htab->root.splt->contents;
11328 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11329 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11330 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11331 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11332 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11333 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11334
11335 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11336 loc = htab->srelplt2->contents;
11337 rela.r_offset = plt_address;
11338 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11339 rela.r_addend = 0;
11340 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11341 loc += sizeof (Elf32_External_Rela);
11342
11343 /* Output the relocation for the following addiu of
11344 %lo(_GLOBAL_OFFSET_TABLE_). */
11345 rela.r_offset += 4;
11346 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11347 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11348 loc += sizeof (Elf32_External_Rela);
11349
11350 /* Fix up the remaining relocations. They may have the wrong
11351 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11352 in which symbols were output. */
11353 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11354 {
11355 Elf_Internal_Rela rel;
11356
11357 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11358 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11359 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11360 loc += sizeof (Elf32_External_Rela);
11361
11362 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11363 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11364 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11365 loc += sizeof (Elf32_External_Rela);
11366
11367 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11368 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11369 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11370 loc += sizeof (Elf32_External_Rela);
11371 }
11372 }
11373
11374 /* Install the PLT header for a VxWorks shared library. */
11375
11376 static void
11377 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11378 {
11379 unsigned int i;
11380 struct mips_elf_link_hash_table *htab;
11381
11382 htab = mips_elf_hash_table (info);
11383 BFD_ASSERT (htab != NULL);
11384
11385 /* We just need to copy the entry byte-by-byte. */
11386 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11387 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11388 htab->root.splt->contents + i * 4);
11389 }
11390
11391 /* Finish up the dynamic sections. */
11392
11393 bfd_boolean
11394 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11395 struct bfd_link_info *info)
11396 {
11397 bfd *dynobj;
11398 asection *sdyn;
11399 asection *sgot;
11400 struct mips_got_info *gg, *g;
11401 struct mips_elf_link_hash_table *htab;
11402
11403 htab = mips_elf_hash_table (info);
11404 BFD_ASSERT (htab != NULL);
11405
11406 dynobj = elf_hash_table (info)->dynobj;
11407
11408 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11409
11410 sgot = htab->root.sgot;
11411 gg = htab->got_info;
11412
11413 if (elf_hash_table (info)->dynamic_sections_created)
11414 {
11415 bfd_byte *b;
11416 int dyn_to_skip = 0, dyn_skipped = 0;
11417
11418 BFD_ASSERT (sdyn != NULL);
11419 BFD_ASSERT (gg != NULL);
11420
11421 g = mips_elf_bfd_got (output_bfd, FALSE);
11422 BFD_ASSERT (g != NULL);
11423
11424 for (b = sdyn->contents;
11425 b < sdyn->contents + sdyn->size;
11426 b += MIPS_ELF_DYN_SIZE (dynobj))
11427 {
11428 Elf_Internal_Dyn dyn;
11429 const char *name;
11430 size_t elemsize;
11431 asection *s;
11432 bfd_boolean swap_out_p;
11433
11434 /* Read in the current dynamic entry. */
11435 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11436
11437 /* Assume that we're going to modify it and write it out. */
11438 swap_out_p = TRUE;
11439
11440 switch (dyn.d_tag)
11441 {
11442 case DT_RELENT:
11443 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11444 break;
11445
11446 case DT_RELAENT:
11447 BFD_ASSERT (htab->is_vxworks);
11448 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11449 break;
11450
11451 case DT_STRSZ:
11452 /* Rewrite DT_STRSZ. */
11453 dyn.d_un.d_val =
11454 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11455 break;
11456
11457 case DT_PLTGOT:
11458 s = htab->root.sgot;
11459 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11460 break;
11461
11462 case DT_MIPS_PLTGOT:
11463 s = htab->root.sgotplt;
11464 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11465 break;
11466
11467 case DT_MIPS_RLD_VERSION:
11468 dyn.d_un.d_val = 1; /* XXX */
11469 break;
11470
11471 case DT_MIPS_FLAGS:
11472 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11473 break;
11474
11475 case DT_MIPS_TIME_STAMP:
11476 {
11477 time_t t;
11478 time (&t);
11479 dyn.d_un.d_val = t;
11480 }
11481 break;
11482
11483 case DT_MIPS_ICHECKSUM:
11484 /* XXX FIXME: */
11485 swap_out_p = FALSE;
11486 break;
11487
11488 case DT_MIPS_IVERSION:
11489 /* XXX FIXME: */
11490 swap_out_p = FALSE;
11491 break;
11492
11493 case DT_MIPS_BASE_ADDRESS:
11494 s = output_bfd->sections;
11495 BFD_ASSERT (s != NULL);
11496 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11497 break;
11498
11499 case DT_MIPS_LOCAL_GOTNO:
11500 dyn.d_un.d_val = g->local_gotno;
11501 break;
11502
11503 case DT_MIPS_UNREFEXTNO:
11504 /* The index into the dynamic symbol table which is the
11505 entry of the first external symbol that is not
11506 referenced within the same object. */
11507 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11508 break;
11509
11510 case DT_MIPS_GOTSYM:
11511 if (htab->global_gotsym)
11512 {
11513 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11514 break;
11515 }
11516 /* In case if we don't have global got symbols we default
11517 to setting DT_MIPS_GOTSYM to the same value as
11518 DT_MIPS_SYMTABNO. */
11519 /* Fall through. */
11520
11521 case DT_MIPS_SYMTABNO:
11522 name = ".dynsym";
11523 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11524 s = bfd_get_linker_section (dynobj, name);
11525
11526 if (s != NULL)
11527 dyn.d_un.d_val = s->size / elemsize;
11528 else
11529 dyn.d_un.d_val = 0;
11530 break;
11531
11532 case DT_MIPS_HIPAGENO:
11533 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11534 break;
11535
11536 case DT_MIPS_RLD_MAP:
11537 {
11538 struct elf_link_hash_entry *h;
11539 h = mips_elf_hash_table (info)->rld_symbol;
11540 if (!h)
11541 {
11542 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11543 swap_out_p = FALSE;
11544 break;
11545 }
11546 s = h->root.u.def.section;
11547
11548 /* The MIPS_RLD_MAP tag stores the absolute address of the
11549 debug pointer. */
11550 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11551 + h->root.u.def.value);
11552 }
11553 break;
11554
11555 case DT_MIPS_RLD_MAP_REL:
11556 {
11557 struct elf_link_hash_entry *h;
11558 bfd_vma dt_addr, rld_addr;
11559 h = mips_elf_hash_table (info)->rld_symbol;
11560 if (!h)
11561 {
11562 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11563 swap_out_p = FALSE;
11564 break;
11565 }
11566 s = h->root.u.def.section;
11567
11568 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11569 pointer, relative to the address of the tag. */
11570 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
11571 + (b - sdyn->contents));
11572 rld_addr = (s->output_section->vma + s->output_offset
11573 + h->root.u.def.value);
11574 dyn.d_un.d_ptr = rld_addr - dt_addr;
11575 }
11576 break;
11577
11578 case DT_MIPS_OPTIONS:
11579 s = (bfd_get_section_by_name
11580 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11581 dyn.d_un.d_ptr = s->vma;
11582 break;
11583
11584 case DT_PLTREL:
11585 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11586 if (htab->is_vxworks)
11587 dyn.d_un.d_val = DT_RELA;
11588 else
11589 dyn.d_un.d_val = DT_REL;
11590 break;
11591
11592 case DT_PLTRELSZ:
11593 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11594 dyn.d_un.d_val = htab->root.srelplt->size;
11595 break;
11596
11597 case DT_JMPREL:
11598 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11599 dyn.d_un.d_ptr = (htab->root.srelplt->output_section->vma
11600 + htab->root.srelplt->output_offset);
11601 break;
11602
11603 case DT_TEXTREL:
11604 /* If we didn't need any text relocations after all, delete
11605 the dynamic tag. */
11606 if (!(info->flags & DF_TEXTREL))
11607 {
11608 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11609 swap_out_p = FALSE;
11610 }
11611 break;
11612
11613 case DT_FLAGS:
11614 /* If we didn't need any text relocations after all, clear
11615 DF_TEXTREL from DT_FLAGS. */
11616 if (!(info->flags & DF_TEXTREL))
11617 dyn.d_un.d_val &= ~DF_TEXTREL;
11618 else
11619 swap_out_p = FALSE;
11620 break;
11621
11622 default:
11623 swap_out_p = FALSE;
11624 if (htab->is_vxworks
11625 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11626 swap_out_p = TRUE;
11627 break;
11628 }
11629
11630 if (swap_out_p || dyn_skipped)
11631 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11632 (dynobj, &dyn, b - dyn_skipped);
11633
11634 if (dyn_to_skip)
11635 {
11636 dyn_skipped += dyn_to_skip;
11637 dyn_to_skip = 0;
11638 }
11639 }
11640
11641 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11642 if (dyn_skipped > 0)
11643 memset (b - dyn_skipped, 0, dyn_skipped);
11644 }
11645
11646 if (sgot != NULL && sgot->size > 0
11647 && !bfd_is_abs_section (sgot->output_section))
11648 {
11649 if (htab->is_vxworks)
11650 {
11651 /* The first entry of the global offset table points to the
11652 ".dynamic" section. The second is initialized by the
11653 loader and contains the shared library identifier.
11654 The third is also initialized by the loader and points
11655 to the lazy resolution stub. */
11656 MIPS_ELF_PUT_WORD (output_bfd,
11657 sdyn->output_offset + sdyn->output_section->vma,
11658 sgot->contents);
11659 MIPS_ELF_PUT_WORD (output_bfd, 0,
11660 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11661 MIPS_ELF_PUT_WORD (output_bfd, 0,
11662 sgot->contents
11663 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11664 }
11665 else
11666 {
11667 /* The first entry of the global offset table will be filled at
11668 runtime. The second entry will be used by some runtime loaders.
11669 This isn't the case of IRIX rld. */
11670 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
11671 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11672 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11673 }
11674
11675 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11676 = MIPS_ELF_GOT_SIZE (output_bfd);
11677 }
11678
11679 /* Generate dynamic relocations for the non-primary gots. */
11680 if (gg != NULL && gg->next)
11681 {
11682 Elf_Internal_Rela rel[3];
11683 bfd_vma addend = 0;
11684
11685 memset (rel, 0, sizeof (rel));
11686 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11687
11688 for (g = gg->next; g->next != gg; g = g->next)
11689 {
11690 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
11691 + g->next->tls_gotno;
11692
11693 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
11694 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11695 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11696 sgot->contents
11697 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11698
11699 if (! bfd_link_pic (info))
11700 continue;
11701
11702 for (; got_index < g->local_gotno; got_index++)
11703 {
11704 if (got_index >= g->assigned_low_gotno
11705 && got_index <= g->assigned_high_gotno)
11706 continue;
11707
11708 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
11709 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
11710 if (!(mips_elf_create_dynamic_relocation
11711 (output_bfd, info, rel, NULL,
11712 bfd_abs_section_ptr,
11713 0, &addend, sgot)))
11714 return FALSE;
11715 BFD_ASSERT (addend == 0);
11716 }
11717 }
11718 }
11719
11720 /* The generation of dynamic relocations for the non-primary gots
11721 adds more dynamic relocations. We cannot count them until
11722 here. */
11723
11724 if (elf_hash_table (info)->dynamic_sections_created)
11725 {
11726 bfd_byte *b;
11727 bfd_boolean swap_out_p;
11728
11729 BFD_ASSERT (sdyn != NULL);
11730
11731 for (b = sdyn->contents;
11732 b < sdyn->contents + sdyn->size;
11733 b += MIPS_ELF_DYN_SIZE (dynobj))
11734 {
11735 Elf_Internal_Dyn dyn;
11736 asection *s;
11737
11738 /* Read in the current dynamic entry. */
11739 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11740
11741 /* Assume that we're going to modify it and write it out. */
11742 swap_out_p = TRUE;
11743
11744 switch (dyn.d_tag)
11745 {
11746 case DT_RELSZ:
11747 /* Reduce DT_RELSZ to account for any relocations we
11748 decided not to make. This is for the n64 irix rld,
11749 which doesn't seem to apply any relocations if there
11750 are trailing null entries. */
11751 s = mips_elf_rel_dyn_section (info, FALSE);
11752 dyn.d_un.d_val = (s->reloc_count
11753 * (ABI_64_P (output_bfd)
11754 ? sizeof (Elf64_Mips_External_Rel)
11755 : sizeof (Elf32_External_Rel)));
11756 /* Adjust the section size too. Tools like the prelinker
11757 can reasonably expect the values to the same. */
11758 elf_section_data (s->output_section)->this_hdr.sh_size
11759 = dyn.d_un.d_val;
11760 break;
11761
11762 default:
11763 swap_out_p = FALSE;
11764 break;
11765 }
11766
11767 if (swap_out_p)
11768 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11769 (dynobj, &dyn, b);
11770 }
11771 }
11772
11773 {
11774 asection *s;
11775 Elf32_compact_rel cpt;
11776
11777 if (SGI_COMPAT (output_bfd))
11778 {
11779 /* Write .compact_rel section out. */
11780 s = bfd_get_linker_section (dynobj, ".compact_rel");
11781 if (s != NULL)
11782 {
11783 cpt.id1 = 1;
11784 cpt.num = s->reloc_count;
11785 cpt.id2 = 2;
11786 cpt.offset = (s->output_section->filepos
11787 + sizeof (Elf32_External_compact_rel));
11788 cpt.reserved0 = 0;
11789 cpt.reserved1 = 0;
11790 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
11791 ((Elf32_External_compact_rel *)
11792 s->contents));
11793
11794 /* Clean up a dummy stub function entry in .text. */
11795 if (htab->sstubs != NULL)
11796 {
11797 file_ptr dummy_offset;
11798
11799 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
11800 dummy_offset = htab->sstubs->size - htab->function_stub_size;
11801 memset (htab->sstubs->contents + dummy_offset, 0,
11802 htab->function_stub_size);
11803 }
11804 }
11805 }
11806
11807 /* The psABI says that the dynamic relocations must be sorted in
11808 increasing order of r_symndx. The VxWorks EABI doesn't require
11809 this, and because the code below handles REL rather than RELA
11810 relocations, using it for VxWorks would be outright harmful. */
11811 if (!htab->is_vxworks)
11812 {
11813 s = mips_elf_rel_dyn_section (info, FALSE);
11814 if (s != NULL
11815 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
11816 {
11817 reldyn_sorting_bfd = output_bfd;
11818
11819 if (ABI_64_P (output_bfd))
11820 qsort ((Elf64_External_Rel *) s->contents + 1,
11821 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
11822 sort_dynamic_relocs_64);
11823 else
11824 qsort ((Elf32_External_Rel *) s->contents + 1,
11825 s->reloc_count - 1, sizeof (Elf32_External_Rel),
11826 sort_dynamic_relocs);
11827 }
11828 }
11829 }
11830
11831 if (htab->root.splt && htab->root.splt->size > 0)
11832 {
11833 if (htab->is_vxworks)
11834 {
11835 if (bfd_link_pic (info))
11836 mips_vxworks_finish_shared_plt (output_bfd, info);
11837 else
11838 mips_vxworks_finish_exec_plt (output_bfd, info);
11839 }
11840 else
11841 {
11842 BFD_ASSERT (!bfd_link_pic (info));
11843 if (!mips_finish_exec_plt (output_bfd, info))
11844 return FALSE;
11845 }
11846 }
11847 return TRUE;
11848 }
11849
11850
11851 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
11852
11853 static void
11854 mips_set_isa_flags (bfd *abfd)
11855 {
11856 flagword val;
11857
11858 switch (bfd_get_mach (abfd))
11859 {
11860 default:
11861 case bfd_mach_mips3000:
11862 val = E_MIPS_ARCH_1;
11863 break;
11864
11865 case bfd_mach_mips3900:
11866 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
11867 break;
11868
11869 case bfd_mach_mips6000:
11870 val = E_MIPS_ARCH_2;
11871 break;
11872
11873 case bfd_mach_mips4010:
11874 val = E_MIPS_ARCH_2 | E_MIPS_MACH_4010;
11875 break;
11876
11877 case bfd_mach_mips4000:
11878 case bfd_mach_mips4300:
11879 case bfd_mach_mips4400:
11880 case bfd_mach_mips4600:
11881 val = E_MIPS_ARCH_3;
11882 break;
11883
11884 case bfd_mach_mips4100:
11885 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
11886 break;
11887
11888 case bfd_mach_mips4111:
11889 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
11890 break;
11891
11892 case bfd_mach_mips4120:
11893 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
11894 break;
11895
11896 case bfd_mach_mips4650:
11897 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
11898 break;
11899
11900 case bfd_mach_mips5400:
11901 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
11902 break;
11903
11904 case bfd_mach_mips5500:
11905 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
11906 break;
11907
11908 case bfd_mach_mips5900:
11909 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
11910 break;
11911
11912 case bfd_mach_mips9000:
11913 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
11914 break;
11915
11916 case bfd_mach_mips5000:
11917 case bfd_mach_mips7000:
11918 case bfd_mach_mips8000:
11919 case bfd_mach_mips10000:
11920 case bfd_mach_mips12000:
11921 case bfd_mach_mips14000:
11922 case bfd_mach_mips16000:
11923 val = E_MIPS_ARCH_4;
11924 break;
11925
11926 case bfd_mach_mips5:
11927 val = E_MIPS_ARCH_5;
11928 break;
11929
11930 case bfd_mach_mips_loongson_2e:
11931 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
11932 break;
11933
11934 case bfd_mach_mips_loongson_2f:
11935 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
11936 break;
11937
11938 case bfd_mach_mips_sb1:
11939 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
11940 break;
11941
11942 case bfd_mach_mips_loongson_3a:
11943 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A;
11944 break;
11945
11946 case bfd_mach_mips_octeon:
11947 case bfd_mach_mips_octeonp:
11948 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
11949 break;
11950
11951 case bfd_mach_mips_octeon3:
11952 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
11953 break;
11954
11955 case bfd_mach_mips_xlr:
11956 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
11957 break;
11958
11959 case bfd_mach_mips_octeon2:
11960 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
11961 break;
11962
11963 case bfd_mach_mipsisa32:
11964 val = E_MIPS_ARCH_32;
11965 break;
11966
11967 case bfd_mach_mipsisa64:
11968 val = E_MIPS_ARCH_64;
11969 break;
11970
11971 case bfd_mach_mipsisa32r2:
11972 case bfd_mach_mipsisa32r3:
11973 case bfd_mach_mipsisa32r5:
11974 val = E_MIPS_ARCH_32R2;
11975 break;
11976
11977 case bfd_mach_mips_interaptiv_mr2:
11978 val = E_MIPS_ARCH_32R2 | E_MIPS_MACH_IAMR2;
11979 break;
11980
11981 case bfd_mach_mipsisa64r2:
11982 case bfd_mach_mipsisa64r3:
11983 case bfd_mach_mipsisa64r5:
11984 val = E_MIPS_ARCH_64R2;
11985 break;
11986
11987 case bfd_mach_mipsisa32r6:
11988 val = E_MIPS_ARCH_32R6;
11989 break;
11990
11991 case bfd_mach_mipsisa64r6:
11992 val = E_MIPS_ARCH_64R6;
11993 break;
11994 }
11995 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11996 elf_elfheader (abfd)->e_flags |= val;
11997
11998 }
11999
12000
12001 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12002 Don't do so for code sections. We want to keep ordering of HI16/LO16
12003 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12004 relocs to be sorted. */
12005
12006 bfd_boolean
12007 _bfd_mips_elf_sort_relocs_p (asection *sec)
12008 {
12009 return (sec->flags & SEC_CODE) == 0;
12010 }
12011
12012
12013 /* The final processing done just before writing out a MIPS ELF object
12014 file. This gets the MIPS architecture right based on the machine
12015 number. This is used by both the 32-bit and the 64-bit ABI. */
12016
12017 void
12018 _bfd_mips_elf_final_write_processing (bfd *abfd,
12019 bfd_boolean linker ATTRIBUTE_UNUSED)
12020 {
12021 unsigned int i;
12022 Elf_Internal_Shdr **hdrpp;
12023 const char *name;
12024 asection *sec;
12025
12026 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12027 is nonzero. This is for compatibility with old objects, which used
12028 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12029 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12030 mips_set_isa_flags (abfd);
12031
12032 /* Set the sh_info field for .gptab sections and other appropriate
12033 info for each special section. */
12034 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12035 i < elf_numsections (abfd);
12036 i++, hdrpp++)
12037 {
12038 switch ((*hdrpp)->sh_type)
12039 {
12040 case SHT_MIPS_MSYM:
12041 case SHT_MIPS_LIBLIST:
12042 sec = bfd_get_section_by_name (abfd, ".dynstr");
12043 if (sec != NULL)
12044 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12045 break;
12046
12047 case SHT_MIPS_GPTAB:
12048 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12049 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12050 BFD_ASSERT (name != NULL
12051 && CONST_STRNEQ (name, ".gptab."));
12052 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12053 BFD_ASSERT (sec != NULL);
12054 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12055 break;
12056
12057 case SHT_MIPS_CONTENT:
12058 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12059 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12060 BFD_ASSERT (name != NULL
12061 && CONST_STRNEQ (name, ".MIPS.content"));
12062 sec = bfd_get_section_by_name (abfd,
12063 name + sizeof ".MIPS.content" - 1);
12064 BFD_ASSERT (sec != NULL);
12065 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12066 break;
12067
12068 case SHT_MIPS_SYMBOL_LIB:
12069 sec = bfd_get_section_by_name (abfd, ".dynsym");
12070 if (sec != NULL)
12071 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12072 sec = bfd_get_section_by_name (abfd, ".liblist");
12073 if (sec != NULL)
12074 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12075 break;
12076
12077 case SHT_MIPS_EVENTS:
12078 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12079 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12080 BFD_ASSERT (name != NULL);
12081 if (CONST_STRNEQ (name, ".MIPS.events"))
12082 sec = bfd_get_section_by_name (abfd,
12083 name + sizeof ".MIPS.events" - 1);
12084 else
12085 {
12086 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
12087 sec = bfd_get_section_by_name (abfd,
12088 (name
12089 + sizeof ".MIPS.post_rel" - 1));
12090 }
12091 BFD_ASSERT (sec != NULL);
12092 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12093 break;
12094
12095 }
12096 }
12097 }
12098 \f
12099 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12100 segments. */
12101
12102 int
12103 _bfd_mips_elf_additional_program_headers (bfd *abfd,
12104 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12105 {
12106 asection *s;
12107 int ret = 0;
12108
12109 /* See if we need a PT_MIPS_REGINFO segment. */
12110 s = bfd_get_section_by_name (abfd, ".reginfo");
12111 if (s && (s->flags & SEC_LOAD))
12112 ++ret;
12113
12114 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12115 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12116 ++ret;
12117
12118 /* See if we need a PT_MIPS_OPTIONS segment. */
12119 if (IRIX_COMPAT (abfd) == ict_irix6
12120 && bfd_get_section_by_name (abfd,
12121 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12122 ++ret;
12123
12124 /* See if we need a PT_MIPS_RTPROC segment. */
12125 if (IRIX_COMPAT (abfd) == ict_irix5
12126 && bfd_get_section_by_name (abfd, ".dynamic")
12127 && bfd_get_section_by_name (abfd, ".mdebug"))
12128 ++ret;
12129
12130 /* Allocate a PT_NULL header in dynamic objects. See
12131 _bfd_mips_elf_modify_segment_map for details. */
12132 if (!SGI_COMPAT (abfd)
12133 && bfd_get_section_by_name (abfd, ".dynamic"))
12134 ++ret;
12135
12136 return ret;
12137 }
12138
12139 /* Modify the segment map for an IRIX5 executable. */
12140
12141 bfd_boolean
12142 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12143 struct bfd_link_info *info)
12144 {
12145 asection *s;
12146 struct elf_segment_map *m, **pm;
12147 bfd_size_type amt;
12148
12149 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12150 segment. */
12151 s = bfd_get_section_by_name (abfd, ".reginfo");
12152 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12153 {
12154 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12155 if (m->p_type == PT_MIPS_REGINFO)
12156 break;
12157 if (m == NULL)
12158 {
12159 amt = sizeof *m;
12160 m = bfd_zalloc (abfd, amt);
12161 if (m == NULL)
12162 return FALSE;
12163
12164 m->p_type = PT_MIPS_REGINFO;
12165 m->count = 1;
12166 m->sections[0] = s;
12167
12168 /* We want to put it after the PHDR and INTERP segments. */
12169 pm = &elf_seg_map (abfd);
12170 while (*pm != NULL
12171 && ((*pm)->p_type == PT_PHDR
12172 || (*pm)->p_type == PT_INTERP))
12173 pm = &(*pm)->next;
12174
12175 m->next = *pm;
12176 *pm = m;
12177 }
12178 }
12179
12180 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12181 segment. */
12182 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12183 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12184 {
12185 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12186 if (m->p_type == PT_MIPS_ABIFLAGS)
12187 break;
12188 if (m == NULL)
12189 {
12190 amt = sizeof *m;
12191 m = bfd_zalloc (abfd, amt);
12192 if (m == NULL)
12193 return FALSE;
12194
12195 m->p_type = PT_MIPS_ABIFLAGS;
12196 m->count = 1;
12197 m->sections[0] = s;
12198
12199 /* We want to put it after the PHDR and INTERP segments. */
12200 pm = &elf_seg_map (abfd);
12201 while (*pm != NULL
12202 && ((*pm)->p_type == PT_PHDR
12203 || (*pm)->p_type == PT_INTERP))
12204 pm = &(*pm)->next;
12205
12206 m->next = *pm;
12207 *pm = m;
12208 }
12209 }
12210
12211 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12212 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12213 PT_MIPS_OPTIONS segment immediately following the program header
12214 table. */
12215 if (NEWABI_P (abfd)
12216 /* On non-IRIX6 new abi, we'll have already created a segment
12217 for this section, so don't create another. I'm not sure this
12218 is not also the case for IRIX 6, but I can't test it right
12219 now. */
12220 && IRIX_COMPAT (abfd) == ict_irix6)
12221 {
12222 for (s = abfd->sections; s; s = s->next)
12223 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12224 break;
12225
12226 if (s)
12227 {
12228 struct elf_segment_map *options_segment;
12229
12230 pm = &elf_seg_map (abfd);
12231 while (*pm != NULL
12232 && ((*pm)->p_type == PT_PHDR
12233 || (*pm)->p_type == PT_INTERP))
12234 pm = &(*pm)->next;
12235
12236 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12237 {
12238 amt = sizeof (struct elf_segment_map);
12239 options_segment = bfd_zalloc (abfd, amt);
12240 options_segment->next = *pm;
12241 options_segment->p_type = PT_MIPS_OPTIONS;
12242 options_segment->p_flags = PF_R;
12243 options_segment->p_flags_valid = TRUE;
12244 options_segment->count = 1;
12245 options_segment->sections[0] = s;
12246 *pm = options_segment;
12247 }
12248 }
12249 }
12250 else
12251 {
12252 if (IRIX_COMPAT (abfd) == ict_irix5)
12253 {
12254 /* If there are .dynamic and .mdebug sections, we make a room
12255 for the RTPROC header. FIXME: Rewrite without section names. */
12256 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12257 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12258 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12259 {
12260 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12261 if (m->p_type == PT_MIPS_RTPROC)
12262 break;
12263 if (m == NULL)
12264 {
12265 amt = sizeof *m;
12266 m = bfd_zalloc (abfd, amt);
12267 if (m == NULL)
12268 return FALSE;
12269
12270 m->p_type = PT_MIPS_RTPROC;
12271
12272 s = bfd_get_section_by_name (abfd, ".rtproc");
12273 if (s == NULL)
12274 {
12275 m->count = 0;
12276 m->p_flags = 0;
12277 m->p_flags_valid = 1;
12278 }
12279 else
12280 {
12281 m->count = 1;
12282 m->sections[0] = s;
12283 }
12284
12285 /* We want to put it after the DYNAMIC segment. */
12286 pm = &elf_seg_map (abfd);
12287 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12288 pm = &(*pm)->next;
12289 if (*pm != NULL)
12290 pm = &(*pm)->next;
12291
12292 m->next = *pm;
12293 *pm = m;
12294 }
12295 }
12296 }
12297 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12298 .dynstr, .dynsym, and .hash sections, and everything in
12299 between. */
12300 for (pm = &elf_seg_map (abfd); *pm != NULL;
12301 pm = &(*pm)->next)
12302 if ((*pm)->p_type == PT_DYNAMIC)
12303 break;
12304 m = *pm;
12305 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12306 glibc's dynamic linker has traditionally derived the number of
12307 tags from the p_filesz field, and sometimes allocates stack
12308 arrays of that size. An overly-big PT_DYNAMIC segment can
12309 be actively harmful in such cases. Making PT_DYNAMIC contain
12310 other sections can also make life hard for the prelinker,
12311 which might move one of the other sections to a different
12312 PT_LOAD segment. */
12313 if (SGI_COMPAT (abfd)
12314 && m != NULL
12315 && m->count == 1
12316 && strcmp (m->sections[0]->name, ".dynamic") == 0)
12317 {
12318 static const char *sec_names[] =
12319 {
12320 ".dynamic", ".dynstr", ".dynsym", ".hash"
12321 };
12322 bfd_vma low, high;
12323 unsigned int i, c;
12324 struct elf_segment_map *n;
12325
12326 low = ~(bfd_vma) 0;
12327 high = 0;
12328 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12329 {
12330 s = bfd_get_section_by_name (abfd, sec_names[i]);
12331 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12332 {
12333 bfd_size_type sz;
12334
12335 if (low > s->vma)
12336 low = s->vma;
12337 sz = s->size;
12338 if (high < s->vma + sz)
12339 high = s->vma + sz;
12340 }
12341 }
12342
12343 c = 0;
12344 for (s = abfd->sections; s != NULL; s = s->next)
12345 if ((s->flags & SEC_LOAD) != 0
12346 && s->vma >= low
12347 && s->vma + s->size <= high)
12348 ++c;
12349
12350 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
12351 n = bfd_zalloc (abfd, amt);
12352 if (n == NULL)
12353 return FALSE;
12354 *n = *m;
12355 n->count = c;
12356
12357 i = 0;
12358 for (s = abfd->sections; s != NULL; s = s->next)
12359 {
12360 if ((s->flags & SEC_LOAD) != 0
12361 && s->vma >= low
12362 && s->vma + s->size <= high)
12363 {
12364 n->sections[i] = s;
12365 ++i;
12366 }
12367 }
12368
12369 *pm = n;
12370 }
12371 }
12372
12373 /* Allocate a spare program header in dynamic objects so that tools
12374 like the prelinker can add an extra PT_LOAD entry.
12375
12376 If the prelinker needs to make room for a new PT_LOAD entry, its
12377 standard procedure is to move the first (read-only) sections into
12378 the new (writable) segment. However, the MIPS ABI requires
12379 .dynamic to be in a read-only segment, and the section will often
12380 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12381
12382 Although the prelinker could in principle move .dynamic to a
12383 writable segment, it seems better to allocate a spare program
12384 header instead, and avoid the need to move any sections.
12385 There is a long tradition of allocating spare dynamic tags,
12386 so allocating a spare program header seems like a natural
12387 extension.
12388
12389 If INFO is NULL, we may be copying an already prelinked binary
12390 with objcopy or strip, so do not add this header. */
12391 if (info != NULL
12392 && !SGI_COMPAT (abfd)
12393 && bfd_get_section_by_name (abfd, ".dynamic"))
12394 {
12395 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12396 if ((*pm)->p_type == PT_NULL)
12397 break;
12398 if (*pm == NULL)
12399 {
12400 m = bfd_zalloc (abfd, sizeof (*m));
12401 if (m == NULL)
12402 return FALSE;
12403
12404 m->p_type = PT_NULL;
12405 *pm = m;
12406 }
12407 }
12408
12409 return TRUE;
12410 }
12411 \f
12412 /* Return the section that should be marked against GC for a given
12413 relocation. */
12414
12415 asection *
12416 _bfd_mips_elf_gc_mark_hook (asection *sec,
12417 struct bfd_link_info *info,
12418 Elf_Internal_Rela *rel,
12419 struct elf_link_hash_entry *h,
12420 Elf_Internal_Sym *sym)
12421 {
12422 /* ??? Do mips16 stub sections need to be handled special? */
12423
12424 if (h != NULL)
12425 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12426 {
12427 case R_MIPS_GNU_VTINHERIT:
12428 case R_MIPS_GNU_VTENTRY:
12429 return NULL;
12430 }
12431
12432 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12433 }
12434
12435 /* Update the got entry reference counts for the section being removed. */
12436
12437 bfd_boolean
12438 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
12439 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12440 asection *sec ATTRIBUTE_UNUSED,
12441 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
12442 {
12443 #if 0
12444 Elf_Internal_Shdr *symtab_hdr;
12445 struct elf_link_hash_entry **sym_hashes;
12446 bfd_signed_vma *local_got_refcounts;
12447 const Elf_Internal_Rela *rel, *relend;
12448 unsigned long r_symndx;
12449 struct elf_link_hash_entry *h;
12450
12451 if (bfd_link_relocatable (info))
12452 return TRUE;
12453
12454 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12455 sym_hashes = elf_sym_hashes (abfd);
12456 local_got_refcounts = elf_local_got_refcounts (abfd);
12457
12458 relend = relocs + sec->reloc_count;
12459 for (rel = relocs; rel < relend; rel++)
12460 switch (ELF_R_TYPE (abfd, rel->r_info))
12461 {
12462 case R_MIPS16_GOT16:
12463 case R_MIPS16_CALL16:
12464 case R_MIPS_GOT16:
12465 case R_MIPS_CALL16:
12466 case R_MIPS_CALL_HI16:
12467 case R_MIPS_CALL_LO16:
12468 case R_MIPS_GOT_HI16:
12469 case R_MIPS_GOT_LO16:
12470 case R_MIPS_GOT_DISP:
12471 case R_MIPS_GOT_PAGE:
12472 case R_MIPS_GOT_OFST:
12473 case R_MICROMIPS_GOT16:
12474 case R_MICROMIPS_CALL16:
12475 case R_MICROMIPS_CALL_HI16:
12476 case R_MICROMIPS_CALL_LO16:
12477 case R_MICROMIPS_GOT_HI16:
12478 case R_MICROMIPS_GOT_LO16:
12479 case R_MICROMIPS_GOT_DISP:
12480 case R_MICROMIPS_GOT_PAGE:
12481 case R_MICROMIPS_GOT_OFST:
12482 /* ??? It would seem that the existing MIPS code does no sort
12483 of reference counting or whatnot on its GOT and PLT entries,
12484 so it is not possible to garbage collect them at this time. */
12485 break;
12486
12487 default:
12488 break;
12489 }
12490 #endif
12491
12492 return TRUE;
12493 }
12494
12495 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12496
12497 bfd_boolean
12498 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12499 elf_gc_mark_hook_fn gc_mark_hook)
12500 {
12501 bfd *sub;
12502
12503 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12504
12505 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12506 {
12507 asection *o;
12508
12509 if (! is_mips_elf (sub))
12510 continue;
12511
12512 for (o = sub->sections; o != NULL; o = o->next)
12513 if (!o->gc_mark
12514 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12515 (bfd_get_section_name (sub, o)))
12516 {
12517 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12518 return FALSE;
12519 }
12520 }
12521
12522 return TRUE;
12523 }
12524 \f
12525 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12526 hiding the old indirect symbol. Process additional relocation
12527 information. Also called for weakdefs, in which case we just let
12528 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12529
12530 void
12531 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12532 struct elf_link_hash_entry *dir,
12533 struct elf_link_hash_entry *ind)
12534 {
12535 struct mips_elf_link_hash_entry *dirmips, *indmips;
12536
12537 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12538
12539 dirmips = (struct mips_elf_link_hash_entry *) dir;
12540 indmips = (struct mips_elf_link_hash_entry *) ind;
12541 /* Any absolute non-dynamic relocations against an indirect or weak
12542 definition will be against the target symbol. */
12543 if (indmips->has_static_relocs)
12544 dirmips->has_static_relocs = TRUE;
12545
12546 if (ind->root.type != bfd_link_hash_indirect)
12547 return;
12548
12549 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12550 if (indmips->readonly_reloc)
12551 dirmips->readonly_reloc = TRUE;
12552 if (indmips->no_fn_stub)
12553 dirmips->no_fn_stub = TRUE;
12554 if (indmips->fn_stub)
12555 {
12556 dirmips->fn_stub = indmips->fn_stub;
12557 indmips->fn_stub = NULL;
12558 }
12559 if (indmips->need_fn_stub)
12560 {
12561 dirmips->need_fn_stub = TRUE;
12562 indmips->need_fn_stub = FALSE;
12563 }
12564 if (indmips->call_stub)
12565 {
12566 dirmips->call_stub = indmips->call_stub;
12567 indmips->call_stub = NULL;
12568 }
12569 if (indmips->call_fp_stub)
12570 {
12571 dirmips->call_fp_stub = indmips->call_fp_stub;
12572 indmips->call_fp_stub = NULL;
12573 }
12574 if (indmips->global_got_area < dirmips->global_got_area)
12575 dirmips->global_got_area = indmips->global_got_area;
12576 if (indmips->global_got_area < GGA_NONE)
12577 indmips->global_got_area = GGA_NONE;
12578 if (indmips->has_nonpic_branches)
12579 dirmips->has_nonpic_branches = TRUE;
12580 }
12581 \f
12582 #define PDR_SIZE 32
12583
12584 bfd_boolean
12585 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12586 struct bfd_link_info *info)
12587 {
12588 asection *o;
12589 bfd_boolean ret = FALSE;
12590 unsigned char *tdata;
12591 size_t i, skip;
12592
12593 o = bfd_get_section_by_name (abfd, ".pdr");
12594 if (! o)
12595 return FALSE;
12596 if (o->size == 0)
12597 return FALSE;
12598 if (o->size % PDR_SIZE != 0)
12599 return FALSE;
12600 if (o->output_section != NULL
12601 && bfd_is_abs_section (o->output_section))
12602 return FALSE;
12603
12604 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12605 if (! tdata)
12606 return FALSE;
12607
12608 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12609 info->keep_memory);
12610 if (!cookie->rels)
12611 {
12612 free (tdata);
12613 return FALSE;
12614 }
12615
12616 cookie->rel = cookie->rels;
12617 cookie->relend = cookie->rels + o->reloc_count;
12618
12619 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12620 {
12621 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12622 {
12623 tdata[i] = 1;
12624 skip ++;
12625 }
12626 }
12627
12628 if (skip != 0)
12629 {
12630 mips_elf_section_data (o)->u.tdata = tdata;
12631 if (o->rawsize == 0)
12632 o->rawsize = o->size;
12633 o->size -= skip * PDR_SIZE;
12634 ret = TRUE;
12635 }
12636 else
12637 free (tdata);
12638
12639 if (! info->keep_memory)
12640 free (cookie->rels);
12641
12642 return ret;
12643 }
12644
12645 bfd_boolean
12646 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
12647 {
12648 if (strcmp (sec->name, ".pdr") == 0)
12649 return TRUE;
12650 return FALSE;
12651 }
12652
12653 bfd_boolean
12654 _bfd_mips_elf_write_section (bfd *output_bfd,
12655 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12656 asection *sec, bfd_byte *contents)
12657 {
12658 bfd_byte *to, *from, *end;
12659 int i;
12660
12661 if (strcmp (sec->name, ".pdr") != 0)
12662 return FALSE;
12663
12664 if (mips_elf_section_data (sec)->u.tdata == NULL)
12665 return FALSE;
12666
12667 to = contents;
12668 end = contents + sec->size;
12669 for (from = contents, i = 0;
12670 from < end;
12671 from += PDR_SIZE, i++)
12672 {
12673 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
12674 continue;
12675 if (to != from)
12676 memcpy (to, from, PDR_SIZE);
12677 to += PDR_SIZE;
12678 }
12679 bfd_set_section_contents (output_bfd, sec->output_section, contents,
12680 sec->output_offset, sec->size);
12681 return TRUE;
12682 }
12683 \f
12684 /* microMIPS code retains local labels for linker relaxation. Omit them
12685 from output by default for clarity. */
12686
12687 bfd_boolean
12688 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12689 {
12690 return _bfd_elf_is_local_label_name (abfd, sym->name);
12691 }
12692
12693 /* MIPS ELF uses a special find_nearest_line routine in order the
12694 handle the ECOFF debugging information. */
12695
12696 struct mips_elf_find_line
12697 {
12698 struct ecoff_debug_info d;
12699 struct ecoff_find_line i;
12700 };
12701
12702 bfd_boolean
12703 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
12704 asection *section, bfd_vma offset,
12705 const char **filename_ptr,
12706 const char **functionname_ptr,
12707 unsigned int *line_ptr,
12708 unsigned int *discriminator_ptr)
12709 {
12710 asection *msec;
12711
12712 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
12713 filename_ptr, functionname_ptr,
12714 line_ptr, discriminator_ptr,
12715 dwarf_debug_sections,
12716 ABI_64_P (abfd) ? 8 : 0,
12717 &elf_tdata (abfd)->dwarf2_find_line_info))
12718 return TRUE;
12719
12720 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
12721 filename_ptr, functionname_ptr,
12722 line_ptr))
12723 return TRUE;
12724
12725 msec = bfd_get_section_by_name (abfd, ".mdebug");
12726 if (msec != NULL)
12727 {
12728 flagword origflags;
12729 struct mips_elf_find_line *fi;
12730 const struct ecoff_debug_swap * const swap =
12731 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12732
12733 /* If we are called during a link, mips_elf_final_link may have
12734 cleared the SEC_HAS_CONTENTS field. We force it back on here
12735 if appropriate (which it normally will be). */
12736 origflags = msec->flags;
12737 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12738 msec->flags |= SEC_HAS_CONTENTS;
12739
12740 fi = mips_elf_tdata (abfd)->find_line_info;
12741 if (fi == NULL)
12742 {
12743 bfd_size_type external_fdr_size;
12744 char *fraw_src;
12745 char *fraw_end;
12746 struct fdr *fdr_ptr;
12747 bfd_size_type amt = sizeof (struct mips_elf_find_line);
12748
12749 fi = bfd_zalloc (abfd, amt);
12750 if (fi == NULL)
12751 {
12752 msec->flags = origflags;
12753 return FALSE;
12754 }
12755
12756 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12757 {
12758 msec->flags = origflags;
12759 return FALSE;
12760 }
12761
12762 /* Swap in the FDR information. */
12763 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
12764 fi->d.fdr = bfd_alloc (abfd, amt);
12765 if (fi->d.fdr == NULL)
12766 {
12767 msec->flags = origflags;
12768 return FALSE;
12769 }
12770 external_fdr_size = swap->external_fdr_size;
12771 fdr_ptr = fi->d.fdr;
12772 fraw_src = (char *) fi->d.external_fdr;
12773 fraw_end = (fraw_src
12774 + fi->d.symbolic_header.ifdMax * external_fdr_size);
12775 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
12776 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
12777
12778 mips_elf_tdata (abfd)->find_line_info = fi;
12779
12780 /* Note that we don't bother to ever free this information.
12781 find_nearest_line is either called all the time, as in
12782 objdump -l, so the information should be saved, or it is
12783 rarely called, as in ld error messages, so the memory
12784 wasted is unimportant. Still, it would probably be a
12785 good idea for free_cached_info to throw it away. */
12786 }
12787
12788 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
12789 &fi->i, filename_ptr, functionname_ptr,
12790 line_ptr))
12791 {
12792 msec->flags = origflags;
12793 return TRUE;
12794 }
12795
12796 msec->flags = origflags;
12797 }
12798
12799 /* Fall back on the generic ELF find_nearest_line routine. */
12800
12801 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
12802 filename_ptr, functionname_ptr,
12803 line_ptr, discriminator_ptr);
12804 }
12805
12806 bfd_boolean
12807 _bfd_mips_elf_find_inliner_info (bfd *abfd,
12808 const char **filename_ptr,
12809 const char **functionname_ptr,
12810 unsigned int *line_ptr)
12811 {
12812 bfd_boolean found;
12813 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12814 functionname_ptr, line_ptr,
12815 & elf_tdata (abfd)->dwarf2_find_line_info);
12816 return found;
12817 }
12818
12819 \f
12820 /* When are writing out the .options or .MIPS.options section,
12821 remember the bytes we are writing out, so that we can install the
12822 GP value in the section_processing routine. */
12823
12824 bfd_boolean
12825 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
12826 const void *location,
12827 file_ptr offset, bfd_size_type count)
12828 {
12829 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
12830 {
12831 bfd_byte *c;
12832
12833 if (elf_section_data (section) == NULL)
12834 {
12835 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
12836 section->used_by_bfd = bfd_zalloc (abfd, amt);
12837 if (elf_section_data (section) == NULL)
12838 return FALSE;
12839 }
12840 c = mips_elf_section_data (section)->u.tdata;
12841 if (c == NULL)
12842 {
12843 c = bfd_zalloc (abfd, section->size);
12844 if (c == NULL)
12845 return FALSE;
12846 mips_elf_section_data (section)->u.tdata = c;
12847 }
12848
12849 memcpy (c + offset, location, count);
12850 }
12851
12852 return _bfd_elf_set_section_contents (abfd, section, location, offset,
12853 count);
12854 }
12855
12856 /* This is almost identical to bfd_generic_get_... except that some
12857 MIPS relocations need to be handled specially. Sigh. */
12858
12859 bfd_byte *
12860 _bfd_elf_mips_get_relocated_section_contents
12861 (bfd *abfd,
12862 struct bfd_link_info *link_info,
12863 struct bfd_link_order *link_order,
12864 bfd_byte *data,
12865 bfd_boolean relocatable,
12866 asymbol **symbols)
12867 {
12868 /* Get enough memory to hold the stuff */
12869 bfd *input_bfd = link_order->u.indirect.section->owner;
12870 asection *input_section = link_order->u.indirect.section;
12871 bfd_size_type sz;
12872
12873 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
12874 arelent **reloc_vector = NULL;
12875 long reloc_count;
12876
12877 if (reloc_size < 0)
12878 goto error_return;
12879
12880 reloc_vector = bfd_malloc (reloc_size);
12881 if (reloc_vector == NULL && reloc_size != 0)
12882 goto error_return;
12883
12884 /* read in the section */
12885 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
12886 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
12887 goto error_return;
12888
12889 reloc_count = bfd_canonicalize_reloc (input_bfd,
12890 input_section,
12891 reloc_vector,
12892 symbols);
12893 if (reloc_count < 0)
12894 goto error_return;
12895
12896 if (reloc_count > 0)
12897 {
12898 arelent **parent;
12899 /* for mips */
12900 int gp_found;
12901 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
12902
12903 {
12904 struct bfd_hash_entry *h;
12905 struct bfd_link_hash_entry *lh;
12906 /* Skip all this stuff if we aren't mixing formats. */
12907 if (abfd && input_bfd
12908 && abfd->xvec == input_bfd->xvec)
12909 lh = 0;
12910 else
12911 {
12912 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
12913 lh = (struct bfd_link_hash_entry *) h;
12914 }
12915 lookup:
12916 if (lh)
12917 {
12918 switch (lh->type)
12919 {
12920 case bfd_link_hash_undefined:
12921 case bfd_link_hash_undefweak:
12922 case bfd_link_hash_common:
12923 gp_found = 0;
12924 break;
12925 case bfd_link_hash_defined:
12926 case bfd_link_hash_defweak:
12927 gp_found = 1;
12928 gp = lh->u.def.value;
12929 break;
12930 case bfd_link_hash_indirect:
12931 case bfd_link_hash_warning:
12932 lh = lh->u.i.link;
12933 /* @@FIXME ignoring warning for now */
12934 goto lookup;
12935 case bfd_link_hash_new:
12936 default:
12937 abort ();
12938 }
12939 }
12940 else
12941 gp_found = 0;
12942 }
12943 /* end mips */
12944 for (parent = reloc_vector; *parent != NULL; parent++)
12945 {
12946 char *error_message = NULL;
12947 bfd_reloc_status_type r;
12948
12949 /* Specific to MIPS: Deal with relocation types that require
12950 knowing the gp of the output bfd. */
12951 asymbol *sym = *(*parent)->sym_ptr_ptr;
12952
12953 /* If we've managed to find the gp and have a special
12954 function for the relocation then go ahead, else default
12955 to the generic handling. */
12956 if (gp_found
12957 && (*parent)->howto->special_function
12958 == _bfd_mips_elf32_gprel16_reloc)
12959 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
12960 input_section, relocatable,
12961 data, gp);
12962 else
12963 r = bfd_perform_relocation (input_bfd, *parent, data,
12964 input_section,
12965 relocatable ? abfd : NULL,
12966 &error_message);
12967
12968 if (relocatable)
12969 {
12970 asection *os = input_section->output_section;
12971
12972 /* A partial link, so keep the relocs */
12973 os->orelocation[os->reloc_count] = *parent;
12974 os->reloc_count++;
12975 }
12976
12977 if (r != bfd_reloc_ok)
12978 {
12979 switch (r)
12980 {
12981 case bfd_reloc_undefined:
12982 (*link_info->callbacks->undefined_symbol)
12983 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12984 input_bfd, input_section, (*parent)->address, TRUE);
12985 break;
12986 case bfd_reloc_dangerous:
12987 BFD_ASSERT (error_message != NULL);
12988 (*link_info->callbacks->reloc_dangerous)
12989 (link_info, error_message,
12990 input_bfd, input_section, (*parent)->address);
12991 break;
12992 case bfd_reloc_overflow:
12993 (*link_info->callbacks->reloc_overflow)
12994 (link_info, NULL,
12995 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12996 (*parent)->howto->name, (*parent)->addend,
12997 input_bfd, input_section, (*parent)->address);
12998 break;
12999 case bfd_reloc_outofrange:
13000 default:
13001 abort ();
13002 break;
13003 }
13004
13005 }
13006 }
13007 }
13008 if (reloc_vector != NULL)
13009 free (reloc_vector);
13010 return data;
13011
13012 error_return:
13013 if (reloc_vector != NULL)
13014 free (reloc_vector);
13015 return NULL;
13016 }
13017 \f
13018 static bfd_boolean
13019 mips_elf_relax_delete_bytes (bfd *abfd,
13020 asection *sec, bfd_vma addr, int count)
13021 {
13022 Elf_Internal_Shdr *symtab_hdr;
13023 unsigned int sec_shndx;
13024 bfd_byte *contents;
13025 Elf_Internal_Rela *irel, *irelend;
13026 Elf_Internal_Sym *isym;
13027 Elf_Internal_Sym *isymend;
13028 struct elf_link_hash_entry **sym_hashes;
13029 struct elf_link_hash_entry **end_hashes;
13030 struct elf_link_hash_entry **start_hashes;
13031 unsigned int symcount;
13032
13033 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13034 contents = elf_section_data (sec)->this_hdr.contents;
13035
13036 irel = elf_section_data (sec)->relocs;
13037 irelend = irel + sec->reloc_count;
13038
13039 /* Actually delete the bytes. */
13040 memmove (contents + addr, contents + addr + count,
13041 (size_t) (sec->size - addr - count));
13042 sec->size -= count;
13043
13044 /* Adjust all the relocs. */
13045 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13046 {
13047 /* Get the new reloc address. */
13048 if (irel->r_offset > addr)
13049 irel->r_offset -= count;
13050 }
13051
13052 BFD_ASSERT (addr % 2 == 0);
13053 BFD_ASSERT (count % 2 == 0);
13054
13055 /* Adjust the local symbols defined in this section. */
13056 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13057 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13058 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
13059 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
13060 isym->st_value -= count;
13061
13062 /* Now adjust the global symbols defined in this section. */
13063 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13064 - symtab_hdr->sh_info);
13065 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13066 end_hashes = sym_hashes + symcount;
13067
13068 for (; sym_hashes < end_hashes; sym_hashes++)
13069 {
13070 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13071
13072 if ((sym_hash->root.type == bfd_link_hash_defined
13073 || sym_hash->root.type == bfd_link_hash_defweak)
13074 && sym_hash->root.u.def.section == sec)
13075 {
13076 bfd_vma value = sym_hash->root.u.def.value;
13077
13078 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13079 value &= MINUS_TWO;
13080 if (value > addr)
13081 sym_hash->root.u.def.value -= count;
13082 }
13083 }
13084
13085 return TRUE;
13086 }
13087
13088
13089 /* Opcodes needed for microMIPS relaxation as found in
13090 opcodes/micromips-opc.c. */
13091
13092 struct opcode_descriptor {
13093 unsigned long match;
13094 unsigned long mask;
13095 };
13096
13097 /* The $ra register aka $31. */
13098
13099 #define RA 31
13100
13101 /* 32-bit instruction format register fields. */
13102
13103 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13104 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13105
13106 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
13107
13108 #define OP16_VALID_REG(r) \
13109 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13110
13111
13112 /* 32-bit and 16-bit branches. */
13113
13114 static const struct opcode_descriptor b_insns_32[] = {
13115 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13116 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13117 { 0, 0 } /* End marker for find_match(). */
13118 };
13119
13120 static const struct opcode_descriptor bc_insn_32 =
13121 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13122
13123 static const struct opcode_descriptor bz_insn_32 =
13124 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13125
13126 static const struct opcode_descriptor bzal_insn_32 =
13127 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13128
13129 static const struct opcode_descriptor beq_insn_32 =
13130 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13131
13132 static const struct opcode_descriptor b_insn_16 =
13133 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13134
13135 static const struct opcode_descriptor bz_insn_16 =
13136 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13137
13138
13139 /* 32-bit and 16-bit branch EQ and NE zero. */
13140
13141 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13142 eq and second the ne. This convention is used when replacing a
13143 32-bit BEQ/BNE with the 16-bit version. */
13144
13145 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13146
13147 static const struct opcode_descriptor bz_rs_insns_32[] = {
13148 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13149 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13150 { 0, 0 } /* End marker for find_match(). */
13151 };
13152
13153 static const struct opcode_descriptor bz_rt_insns_32[] = {
13154 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13155 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13156 { 0, 0 } /* End marker for find_match(). */
13157 };
13158
13159 static const struct opcode_descriptor bzc_insns_32[] = {
13160 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13161 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13162 { 0, 0 } /* End marker for find_match(). */
13163 };
13164
13165 static const struct opcode_descriptor bz_insns_16[] = {
13166 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13167 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13168 { 0, 0 } /* End marker for find_match(). */
13169 };
13170
13171 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13172
13173 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
13174 #define BZ16_REG_FIELD(r) (((r) & 7) << 7)
13175
13176
13177 /* 32-bit instructions with a delay slot. */
13178
13179 static const struct opcode_descriptor jal_insn_32_bd16 =
13180 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13181
13182 static const struct opcode_descriptor jal_insn_32_bd32 =
13183 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13184
13185 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13186 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13187
13188 static const struct opcode_descriptor j_insn_32 =
13189 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13190
13191 static const struct opcode_descriptor jalr_insn_32 =
13192 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13193
13194 /* This table can be compacted, because no opcode replacement is made. */
13195
13196 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13197 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13198
13199 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13200 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13201
13202 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13203 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13204 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13205 { 0, 0 } /* End marker for find_match(). */
13206 };
13207
13208 /* This table can be compacted, because no opcode replacement is made. */
13209
13210 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13211 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13212
13213 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13214 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13215 { 0, 0 } /* End marker for find_match(). */
13216 };
13217
13218
13219 /* 16-bit instructions with a delay slot. */
13220
13221 static const struct opcode_descriptor jalr_insn_16_bd16 =
13222 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13223
13224 static const struct opcode_descriptor jalr_insn_16_bd32 =
13225 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13226
13227 static const struct opcode_descriptor jr_insn_16 =
13228 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13229
13230 #define JR16_REG(opcode) ((opcode) & 0x1f)
13231
13232 /* This table can be compacted, because no opcode replacement is made. */
13233
13234 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13235 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13236
13237 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13238 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13239 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13240 { 0, 0 } /* End marker for find_match(). */
13241 };
13242
13243
13244 /* LUI instruction. */
13245
13246 static const struct opcode_descriptor lui_insn =
13247 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13248
13249
13250 /* ADDIU instruction. */
13251
13252 static const struct opcode_descriptor addiu_insn =
13253 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13254
13255 static const struct opcode_descriptor addiupc_insn =
13256 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13257
13258 #define ADDIUPC_REG_FIELD(r) \
13259 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13260
13261
13262 /* Relaxable instructions in a JAL delay slot: MOVE. */
13263
13264 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13265 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13266 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13267 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13268
13269 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13270 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13271
13272 static const struct opcode_descriptor move_insns_32[] = {
13273 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13274 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13275 { 0, 0 } /* End marker for find_match(). */
13276 };
13277
13278 static const struct opcode_descriptor move_insn_16 =
13279 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13280
13281
13282 /* NOP instructions. */
13283
13284 static const struct opcode_descriptor nop_insn_32 =
13285 { /* "nop", "", */ 0x00000000, 0xffffffff };
13286
13287 static const struct opcode_descriptor nop_insn_16 =
13288 { /* "nop", "", */ 0x0c00, 0xffff };
13289
13290
13291 /* Instruction match support. */
13292
13293 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13294
13295 static int
13296 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13297 {
13298 unsigned long indx;
13299
13300 for (indx = 0; insn[indx].mask != 0; indx++)
13301 if (MATCH (opcode, insn[indx]))
13302 return indx;
13303
13304 return -1;
13305 }
13306
13307
13308 /* Branch and delay slot decoding support. */
13309
13310 /* If PTR points to what *might* be a 16-bit branch or jump, then
13311 return the minimum length of its delay slot, otherwise return 0.
13312 Non-zero results are not definitive as we might be checking against
13313 the second half of another instruction. */
13314
13315 static int
13316 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13317 {
13318 unsigned long opcode;
13319 int bdsize;
13320
13321 opcode = bfd_get_16 (abfd, ptr);
13322 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13323 /* 16-bit branch/jump with a 32-bit delay slot. */
13324 bdsize = 4;
13325 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13326 || find_match (opcode, ds_insns_16_bd16) >= 0)
13327 /* 16-bit branch/jump with a 16-bit delay slot. */
13328 bdsize = 2;
13329 else
13330 /* No delay slot. */
13331 bdsize = 0;
13332
13333 return bdsize;
13334 }
13335
13336 /* If PTR points to what *might* be a 32-bit branch or jump, then
13337 return the minimum length of its delay slot, otherwise return 0.
13338 Non-zero results are not definitive as we might be checking against
13339 the second half of another instruction. */
13340
13341 static int
13342 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13343 {
13344 unsigned long opcode;
13345 int bdsize;
13346
13347 opcode = bfd_get_micromips_32 (abfd, ptr);
13348 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13349 /* 32-bit branch/jump with a 32-bit delay slot. */
13350 bdsize = 4;
13351 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13352 /* 32-bit branch/jump with a 16-bit delay slot. */
13353 bdsize = 2;
13354 else
13355 /* No delay slot. */
13356 bdsize = 0;
13357
13358 return bdsize;
13359 }
13360
13361 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13362 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13363
13364 static bfd_boolean
13365 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13366 {
13367 unsigned long opcode;
13368
13369 opcode = bfd_get_16 (abfd, ptr);
13370 if (MATCH (opcode, b_insn_16)
13371 /* B16 */
13372 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13373 /* JR16 */
13374 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13375 /* BEQZ16, BNEZ16 */
13376 || (MATCH (opcode, jalr_insn_16_bd32)
13377 /* JALR16 */
13378 && reg != JR16_REG (opcode) && reg != RA))
13379 return TRUE;
13380
13381 return FALSE;
13382 }
13383
13384 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13385 then return TRUE, otherwise FALSE. */
13386
13387 static bfd_boolean
13388 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13389 {
13390 unsigned long opcode;
13391
13392 opcode = bfd_get_micromips_32 (abfd, ptr);
13393 if (MATCH (opcode, j_insn_32)
13394 /* J */
13395 || MATCH (opcode, bc_insn_32)
13396 /* BC1F, BC1T, BC2F, BC2T */
13397 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13398 /* JAL, JALX */
13399 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13400 /* BGEZ, BGTZ, BLEZ, BLTZ */
13401 || (MATCH (opcode, bzal_insn_32)
13402 /* BGEZAL, BLTZAL */
13403 && reg != OP32_SREG (opcode) && reg != RA)
13404 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13405 /* JALR, JALR.HB, BEQ, BNE */
13406 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13407 return TRUE;
13408
13409 return FALSE;
13410 }
13411
13412 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13413 IRELEND) at OFFSET indicate that there must be a compact branch there,
13414 then return TRUE, otherwise FALSE. */
13415
13416 static bfd_boolean
13417 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13418 const Elf_Internal_Rela *internal_relocs,
13419 const Elf_Internal_Rela *irelend)
13420 {
13421 const Elf_Internal_Rela *irel;
13422 unsigned long opcode;
13423
13424 opcode = bfd_get_micromips_32 (abfd, ptr);
13425 if (find_match (opcode, bzc_insns_32) < 0)
13426 return FALSE;
13427
13428 for (irel = internal_relocs; irel < irelend; irel++)
13429 if (irel->r_offset == offset
13430 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13431 return TRUE;
13432
13433 return FALSE;
13434 }
13435
13436 /* Bitsize checking. */
13437 #define IS_BITSIZE(val, N) \
13438 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13439 - (1ULL << ((N) - 1))) == (val))
13440
13441 \f
13442 bfd_boolean
13443 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13444 struct bfd_link_info *link_info,
13445 bfd_boolean *again)
13446 {
13447 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13448 Elf_Internal_Shdr *symtab_hdr;
13449 Elf_Internal_Rela *internal_relocs;
13450 Elf_Internal_Rela *irel, *irelend;
13451 bfd_byte *contents = NULL;
13452 Elf_Internal_Sym *isymbuf = NULL;
13453
13454 /* Assume nothing changes. */
13455 *again = FALSE;
13456
13457 /* We don't have to do anything for a relocatable link, if
13458 this section does not have relocs, or if this is not a
13459 code section. */
13460
13461 if (bfd_link_relocatable (link_info)
13462 || (sec->flags & SEC_RELOC) == 0
13463 || sec->reloc_count == 0
13464 || (sec->flags & SEC_CODE) == 0)
13465 return TRUE;
13466
13467 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13468
13469 /* Get a copy of the native relocations. */
13470 internal_relocs = (_bfd_elf_link_read_relocs
13471 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13472 link_info->keep_memory));
13473 if (internal_relocs == NULL)
13474 goto error_return;
13475
13476 /* Walk through them looking for relaxing opportunities. */
13477 irelend = internal_relocs + sec->reloc_count;
13478 for (irel = internal_relocs; irel < irelend; irel++)
13479 {
13480 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13481 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13482 bfd_boolean target_is_micromips_code_p;
13483 unsigned long opcode;
13484 bfd_vma symval;
13485 bfd_vma pcrval;
13486 bfd_byte *ptr;
13487 int fndopc;
13488
13489 /* The number of bytes to delete for relaxation and from where
13490 to delete these bytes starting at irel->r_offset. */
13491 int delcnt = 0;
13492 int deloff = 0;
13493
13494 /* If this isn't something that can be relaxed, then ignore
13495 this reloc. */
13496 if (r_type != R_MICROMIPS_HI16
13497 && r_type != R_MICROMIPS_PC16_S1
13498 && r_type != R_MICROMIPS_26_S1)
13499 continue;
13500
13501 /* Get the section contents if we haven't done so already. */
13502 if (contents == NULL)
13503 {
13504 /* Get cached copy if it exists. */
13505 if (elf_section_data (sec)->this_hdr.contents != NULL)
13506 contents = elf_section_data (sec)->this_hdr.contents;
13507 /* Go get them off disk. */
13508 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13509 goto error_return;
13510 }
13511 ptr = contents + irel->r_offset;
13512
13513 /* Read this BFD's local symbols if we haven't done so already. */
13514 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13515 {
13516 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13517 if (isymbuf == NULL)
13518 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13519 symtab_hdr->sh_info, 0,
13520 NULL, NULL, NULL);
13521 if (isymbuf == NULL)
13522 goto error_return;
13523 }
13524
13525 /* Get the value of the symbol referred to by the reloc. */
13526 if (r_symndx < symtab_hdr->sh_info)
13527 {
13528 /* A local symbol. */
13529 Elf_Internal_Sym *isym;
13530 asection *sym_sec;
13531
13532 isym = isymbuf + r_symndx;
13533 if (isym->st_shndx == SHN_UNDEF)
13534 sym_sec = bfd_und_section_ptr;
13535 else if (isym->st_shndx == SHN_ABS)
13536 sym_sec = bfd_abs_section_ptr;
13537 else if (isym->st_shndx == SHN_COMMON)
13538 sym_sec = bfd_com_section_ptr;
13539 else
13540 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13541 symval = (isym->st_value
13542 + sym_sec->output_section->vma
13543 + sym_sec->output_offset);
13544 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13545 }
13546 else
13547 {
13548 unsigned long indx;
13549 struct elf_link_hash_entry *h;
13550
13551 /* An external symbol. */
13552 indx = r_symndx - symtab_hdr->sh_info;
13553 h = elf_sym_hashes (abfd)[indx];
13554 BFD_ASSERT (h != NULL);
13555
13556 if (h->root.type != bfd_link_hash_defined
13557 && h->root.type != bfd_link_hash_defweak)
13558 /* This appears to be a reference to an undefined
13559 symbol. Just ignore it -- it will be caught by the
13560 regular reloc processing. */
13561 continue;
13562
13563 symval = (h->root.u.def.value
13564 + h->root.u.def.section->output_section->vma
13565 + h->root.u.def.section->output_offset);
13566 target_is_micromips_code_p = (!h->needs_plt
13567 && ELF_ST_IS_MICROMIPS (h->other));
13568 }
13569
13570
13571 /* For simplicity of coding, we are going to modify the
13572 section contents, the section relocs, and the BFD symbol
13573 table. We must tell the rest of the code not to free up this
13574 information. It would be possible to instead create a table
13575 of changes which have to be made, as is done in coff-mips.c;
13576 that would be more work, but would require less memory when
13577 the linker is run. */
13578
13579 /* Only 32-bit instructions relaxed. */
13580 if (irel->r_offset + 4 > sec->size)
13581 continue;
13582
13583 opcode = bfd_get_micromips_32 (abfd, ptr);
13584
13585 /* This is the pc-relative distance from the instruction the
13586 relocation is applied to, to the symbol referred. */
13587 pcrval = (symval
13588 - (sec->output_section->vma + sec->output_offset)
13589 - irel->r_offset);
13590
13591 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13592 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13593 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13594
13595 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13596
13597 where pcrval has first to be adjusted to apply against the LO16
13598 location (we make the adjustment later on, when we have figured
13599 out the offset). */
13600 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13601 {
13602 bfd_boolean bzc = FALSE;
13603 unsigned long nextopc;
13604 unsigned long reg;
13605 bfd_vma offset;
13606
13607 /* Give up if the previous reloc was a HI16 against this symbol
13608 too. */
13609 if (irel > internal_relocs
13610 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13611 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13612 continue;
13613
13614 /* Or if the next reloc is not a LO16 against this symbol. */
13615 if (irel + 1 >= irelend
13616 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13617 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13618 continue;
13619
13620 /* Or if the second next reloc is a LO16 against this symbol too. */
13621 if (irel + 2 >= irelend
13622 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13623 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13624 continue;
13625
13626 /* See if the LUI instruction *might* be in a branch delay slot.
13627 We check whether what looks like a 16-bit branch or jump is
13628 actually an immediate argument to a compact branch, and let
13629 it through if so. */
13630 if (irel->r_offset >= 2
13631 && check_br16_dslot (abfd, ptr - 2)
13632 && !(irel->r_offset >= 4
13633 && (bzc = check_relocated_bzc (abfd,
13634 ptr - 4, irel->r_offset - 4,
13635 internal_relocs, irelend))))
13636 continue;
13637 if (irel->r_offset >= 4
13638 && !bzc
13639 && check_br32_dslot (abfd, ptr - 4))
13640 continue;
13641
13642 reg = OP32_SREG (opcode);
13643
13644 /* We only relax adjacent instructions or ones separated with
13645 a branch or jump that has a delay slot. The branch or jump
13646 must not fiddle with the register used to hold the address.
13647 Subtract 4 for the LUI itself. */
13648 offset = irel[1].r_offset - irel[0].r_offset;
13649 switch (offset - 4)
13650 {
13651 case 0:
13652 break;
13653 case 2:
13654 if (check_br16 (abfd, ptr + 4, reg))
13655 break;
13656 continue;
13657 case 4:
13658 if (check_br32 (abfd, ptr + 4, reg))
13659 break;
13660 continue;
13661 default:
13662 continue;
13663 }
13664
13665 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
13666
13667 /* Give up unless the same register is used with both
13668 relocations. */
13669 if (OP32_SREG (nextopc) != reg)
13670 continue;
13671
13672 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13673 and rounding up to take masking of the two LSBs into account. */
13674 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13675
13676 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13677 if (IS_BITSIZE (symval, 16))
13678 {
13679 /* Fix the relocation's type. */
13680 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13681
13682 /* Instructions using R_MICROMIPS_LO16 have the base or
13683 source register in bits 20:16. This register becomes $0
13684 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
13685 nextopc &= ~0x001f0000;
13686 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13687 contents + irel[1].r_offset);
13688 }
13689
13690 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13691 We add 4 to take LUI deletion into account while checking
13692 the PC-relative distance. */
13693 else if (symval % 4 == 0
13694 && IS_BITSIZE (pcrval + 4, 25)
13695 && MATCH (nextopc, addiu_insn)
13696 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13697 && OP16_VALID_REG (OP32_TREG (nextopc)))
13698 {
13699 /* Fix the relocation's type. */
13700 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13701
13702 /* Replace ADDIU with the ADDIUPC version. */
13703 nextopc = (addiupc_insn.match
13704 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13705
13706 bfd_put_micromips_32 (abfd, nextopc,
13707 contents + irel[1].r_offset);
13708 }
13709
13710 /* Can't do anything, give up, sigh... */
13711 else
13712 continue;
13713
13714 /* Fix the relocation's type. */
13715 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13716
13717 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
13718 delcnt = 4;
13719 deloff = 0;
13720 }
13721
13722 /* Compact branch relaxation -- due to the multitude of macros
13723 employed by the compiler/assembler, compact branches are not
13724 always generated. Obviously, this can/will be fixed elsewhere,
13725 but there is no drawback in double checking it here. */
13726 else if (r_type == R_MICROMIPS_PC16_S1
13727 && irel->r_offset + 5 < sec->size
13728 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13729 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
13730 && ((!insn32
13731 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13732 nop_insn_16) ? 2 : 0))
13733 || (irel->r_offset + 7 < sec->size
13734 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13735 ptr + 4),
13736 nop_insn_32) ? 4 : 0))))
13737 {
13738 unsigned long reg;
13739
13740 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13741
13742 /* Replace BEQZ/BNEZ with the compact version. */
13743 opcode = (bzc_insns_32[fndopc].match
13744 | BZC32_REG_FIELD (reg)
13745 | (opcode & 0xffff)); /* Addend value. */
13746
13747 bfd_put_micromips_32 (abfd, opcode, ptr);
13748
13749 /* Delete the delay slot NOP: two or four bytes from
13750 irel->offset + 4; delcnt has already been set above. */
13751 deloff = 4;
13752 }
13753
13754 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
13755 to check the distance from the next instruction, so subtract 2. */
13756 else if (!insn32
13757 && r_type == R_MICROMIPS_PC16_S1
13758 && IS_BITSIZE (pcrval - 2, 11)
13759 && find_match (opcode, b_insns_32) >= 0)
13760 {
13761 /* Fix the relocation's type. */
13762 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13763
13764 /* Replace the 32-bit opcode with a 16-bit opcode. */
13765 bfd_put_16 (abfd,
13766 (b_insn_16.match
13767 | (opcode & 0x3ff)), /* Addend value. */
13768 ptr);
13769
13770 /* Delete 2 bytes from irel->r_offset + 2. */
13771 delcnt = 2;
13772 deloff = 2;
13773 }
13774
13775 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
13776 to check the distance from the next instruction, so subtract 2. */
13777 else if (!insn32
13778 && r_type == R_MICROMIPS_PC16_S1
13779 && IS_BITSIZE (pcrval - 2, 8)
13780 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13781 && OP16_VALID_REG (OP32_SREG (opcode)))
13782 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13783 && OP16_VALID_REG (OP32_TREG (opcode)))))
13784 {
13785 unsigned long reg;
13786
13787 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13788
13789 /* Fix the relocation's type. */
13790 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
13791
13792 /* Replace the 32-bit opcode with a 16-bit opcode. */
13793 bfd_put_16 (abfd,
13794 (bz_insns_16[fndopc].match
13795 | BZ16_REG_FIELD (reg)
13796 | (opcode & 0x7f)), /* Addend value. */
13797 ptr);
13798
13799 /* Delete 2 bytes from irel->r_offset + 2. */
13800 delcnt = 2;
13801 deloff = 2;
13802 }
13803
13804 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
13805 else if (!insn32
13806 && r_type == R_MICROMIPS_26_S1
13807 && target_is_micromips_code_p
13808 && irel->r_offset + 7 < sec->size
13809 && MATCH (opcode, jal_insn_32_bd32))
13810 {
13811 unsigned long n32opc;
13812 bfd_boolean relaxed = FALSE;
13813
13814 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
13815
13816 if (MATCH (n32opc, nop_insn_32))
13817 {
13818 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
13819 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
13820
13821 relaxed = TRUE;
13822 }
13823 else if (find_match (n32opc, move_insns_32) >= 0)
13824 {
13825 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
13826 bfd_put_16 (abfd,
13827 (move_insn_16.match
13828 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
13829 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
13830 ptr + 4);
13831
13832 relaxed = TRUE;
13833 }
13834 /* Other 32-bit instructions relaxable to 16-bit
13835 instructions will be handled here later. */
13836
13837 if (relaxed)
13838 {
13839 /* JAL with 32-bit delay slot that is changed to a JALS
13840 with 16-bit delay slot. */
13841 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
13842
13843 /* Delete 2 bytes from irel->r_offset + 6. */
13844 delcnt = 2;
13845 deloff = 6;
13846 }
13847 }
13848
13849 if (delcnt != 0)
13850 {
13851 /* Note that we've changed the relocs, section contents, etc. */
13852 elf_section_data (sec)->relocs = internal_relocs;
13853 elf_section_data (sec)->this_hdr.contents = contents;
13854 symtab_hdr->contents = (unsigned char *) isymbuf;
13855
13856 /* Delete bytes depending on the delcnt and deloff. */
13857 if (!mips_elf_relax_delete_bytes (abfd, sec,
13858 irel->r_offset + deloff, delcnt))
13859 goto error_return;
13860
13861 /* That will change things, so we should relax again.
13862 Note that this is not required, and it may be slow. */
13863 *again = TRUE;
13864 }
13865 }
13866
13867 if (isymbuf != NULL
13868 && symtab_hdr->contents != (unsigned char *) isymbuf)
13869 {
13870 if (! link_info->keep_memory)
13871 free (isymbuf);
13872 else
13873 {
13874 /* Cache the symbols for elf_link_input_bfd. */
13875 symtab_hdr->contents = (unsigned char *) isymbuf;
13876 }
13877 }
13878
13879 if (contents != NULL
13880 && elf_section_data (sec)->this_hdr.contents != contents)
13881 {
13882 if (! link_info->keep_memory)
13883 free (contents);
13884 else
13885 {
13886 /* Cache the section contents for elf_link_input_bfd. */
13887 elf_section_data (sec)->this_hdr.contents = contents;
13888 }
13889 }
13890
13891 if (internal_relocs != NULL
13892 && elf_section_data (sec)->relocs != internal_relocs)
13893 free (internal_relocs);
13894
13895 return TRUE;
13896
13897 error_return:
13898 if (isymbuf != NULL
13899 && symtab_hdr->contents != (unsigned char *) isymbuf)
13900 free (isymbuf);
13901 if (contents != NULL
13902 && elf_section_data (sec)->this_hdr.contents != contents)
13903 free (contents);
13904 if (internal_relocs != NULL
13905 && elf_section_data (sec)->relocs != internal_relocs)
13906 free (internal_relocs);
13907
13908 return FALSE;
13909 }
13910 \f
13911 /* Create a MIPS ELF linker hash table. */
13912
13913 struct bfd_link_hash_table *
13914 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
13915 {
13916 struct mips_elf_link_hash_table *ret;
13917 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
13918
13919 ret = bfd_zmalloc (amt);
13920 if (ret == NULL)
13921 return NULL;
13922
13923 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
13924 mips_elf_link_hash_newfunc,
13925 sizeof (struct mips_elf_link_hash_entry),
13926 MIPS_ELF_DATA))
13927 {
13928 free (ret);
13929 return NULL;
13930 }
13931 ret->root.init_plt_refcount.plist = NULL;
13932 ret->root.init_plt_offset.plist = NULL;
13933
13934 return &ret->root.root;
13935 }
13936
13937 /* Likewise, but indicate that the target is VxWorks. */
13938
13939 struct bfd_link_hash_table *
13940 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
13941 {
13942 struct bfd_link_hash_table *ret;
13943
13944 ret = _bfd_mips_elf_link_hash_table_create (abfd);
13945 if (ret)
13946 {
13947 struct mips_elf_link_hash_table *htab;
13948
13949 htab = (struct mips_elf_link_hash_table *) ret;
13950 htab->use_plts_and_copy_relocs = TRUE;
13951 htab->is_vxworks = TRUE;
13952 }
13953 return ret;
13954 }
13955
13956 /* A function that the linker calls if we are allowed to use PLTs
13957 and copy relocs. */
13958
13959 void
13960 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
13961 {
13962 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
13963 }
13964
13965 /* A function that the linker calls to select between all or only
13966 32-bit microMIPS instructions, and between making or ignoring
13967 branch relocation checks for invalid transitions between ISA modes. */
13968
13969 void
13970 _bfd_mips_elf_linker_flags (struct bfd_link_info *info, bfd_boolean insn32,
13971 bfd_boolean ignore_branch_isa)
13972 {
13973 mips_elf_hash_table (info)->insn32 = insn32;
13974 mips_elf_hash_table (info)->ignore_branch_isa = ignore_branch_isa;
13975 }
13976 \f
13977 /* Structure for saying that BFD machine EXTENSION extends BASE. */
13978
13979 struct mips_mach_extension
13980 {
13981 unsigned long extension, base;
13982 };
13983
13984
13985 /* An array describing how BFD machines relate to one another. The entries
13986 are ordered topologically with MIPS I extensions listed last. */
13987
13988 static const struct mips_mach_extension mips_mach_extensions[] =
13989 {
13990 /* MIPS64r2 extensions. */
13991 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
13992 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
13993 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
13994 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13995 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 },
13996
13997 /* MIPS64 extensions. */
13998 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
13999 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
14000 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
14001
14002 /* MIPS V extensions. */
14003 { bfd_mach_mipsisa64, bfd_mach_mips5 },
14004
14005 /* R10000 extensions. */
14006 { bfd_mach_mips12000, bfd_mach_mips10000 },
14007 { bfd_mach_mips14000, bfd_mach_mips10000 },
14008 { bfd_mach_mips16000, bfd_mach_mips10000 },
14009
14010 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14011 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14012 better to allow vr5400 and vr5500 code to be merged anyway, since
14013 many libraries will just use the core ISA. Perhaps we could add
14014 some sort of ASE flag if this ever proves a problem. */
14015 { bfd_mach_mips5500, bfd_mach_mips5400 },
14016 { bfd_mach_mips5400, bfd_mach_mips5000 },
14017
14018 /* MIPS IV extensions. */
14019 { bfd_mach_mips5, bfd_mach_mips8000 },
14020 { bfd_mach_mips10000, bfd_mach_mips8000 },
14021 { bfd_mach_mips5000, bfd_mach_mips8000 },
14022 { bfd_mach_mips7000, bfd_mach_mips8000 },
14023 { bfd_mach_mips9000, bfd_mach_mips8000 },
14024
14025 /* VR4100 extensions. */
14026 { bfd_mach_mips4120, bfd_mach_mips4100 },
14027 { bfd_mach_mips4111, bfd_mach_mips4100 },
14028
14029 /* MIPS III extensions. */
14030 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14031 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14032 { bfd_mach_mips8000, bfd_mach_mips4000 },
14033 { bfd_mach_mips4650, bfd_mach_mips4000 },
14034 { bfd_mach_mips4600, bfd_mach_mips4000 },
14035 { bfd_mach_mips4400, bfd_mach_mips4000 },
14036 { bfd_mach_mips4300, bfd_mach_mips4000 },
14037 { bfd_mach_mips4100, bfd_mach_mips4000 },
14038 { bfd_mach_mips5900, bfd_mach_mips4000 },
14039
14040 /* MIPS32r3 extensions. */
14041 { bfd_mach_mips_interaptiv_mr2, bfd_mach_mipsisa32r3 },
14042
14043 /* MIPS32r2 extensions. */
14044 { bfd_mach_mipsisa32r3, bfd_mach_mipsisa32r2 },
14045
14046 /* MIPS32 extensions. */
14047 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14048
14049 /* MIPS II extensions. */
14050 { bfd_mach_mips4000, bfd_mach_mips6000 },
14051 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14052 { bfd_mach_mips4010, bfd_mach_mips6000 },
14053
14054 /* MIPS I extensions. */
14055 { bfd_mach_mips6000, bfd_mach_mips3000 },
14056 { bfd_mach_mips3900, bfd_mach_mips3000 }
14057 };
14058
14059 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14060
14061 static bfd_boolean
14062 mips_mach_extends_p (unsigned long base, unsigned long extension)
14063 {
14064 size_t i;
14065
14066 if (extension == base)
14067 return TRUE;
14068
14069 if (base == bfd_mach_mipsisa32
14070 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14071 return TRUE;
14072
14073 if (base == bfd_mach_mipsisa32r2
14074 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14075 return TRUE;
14076
14077 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14078 if (extension == mips_mach_extensions[i].extension)
14079 {
14080 extension = mips_mach_extensions[i].base;
14081 if (extension == base)
14082 return TRUE;
14083 }
14084
14085 return FALSE;
14086 }
14087
14088 /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14089
14090 static unsigned long
14091 bfd_mips_isa_ext_mach (unsigned int isa_ext)
14092 {
14093 switch (isa_ext)
14094 {
14095 case AFL_EXT_3900: return bfd_mach_mips3900;
14096 case AFL_EXT_4010: return bfd_mach_mips4010;
14097 case AFL_EXT_4100: return bfd_mach_mips4100;
14098 case AFL_EXT_4111: return bfd_mach_mips4111;
14099 case AFL_EXT_4120: return bfd_mach_mips4120;
14100 case AFL_EXT_4650: return bfd_mach_mips4650;
14101 case AFL_EXT_5400: return bfd_mach_mips5400;
14102 case AFL_EXT_5500: return bfd_mach_mips5500;
14103 case AFL_EXT_5900: return bfd_mach_mips5900;
14104 case AFL_EXT_10000: return bfd_mach_mips10000;
14105 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14106 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14107 case AFL_EXT_LOONGSON_3A: return bfd_mach_mips_loongson_3a;
14108 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
14109 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14110 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14111 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
14112 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14113 default: return bfd_mach_mips3000;
14114 }
14115 }
14116
14117 /* Return the .MIPS.abiflags value representing each ISA Extension. */
14118
14119 unsigned int
14120 bfd_mips_isa_ext (bfd *abfd)
14121 {
14122 switch (bfd_get_mach (abfd))
14123 {
14124 case bfd_mach_mips3900: return AFL_EXT_3900;
14125 case bfd_mach_mips4010: return AFL_EXT_4010;
14126 case bfd_mach_mips4100: return AFL_EXT_4100;
14127 case bfd_mach_mips4111: return AFL_EXT_4111;
14128 case bfd_mach_mips4120: return AFL_EXT_4120;
14129 case bfd_mach_mips4650: return AFL_EXT_4650;
14130 case bfd_mach_mips5400: return AFL_EXT_5400;
14131 case bfd_mach_mips5500: return AFL_EXT_5500;
14132 case bfd_mach_mips5900: return AFL_EXT_5900;
14133 case bfd_mach_mips10000: return AFL_EXT_10000;
14134 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14135 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14136 case bfd_mach_mips_loongson_3a: return AFL_EXT_LOONGSON_3A;
14137 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14138 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14139 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14140 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14141 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14142 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
14143 case bfd_mach_mips_interaptiv_mr2:
14144 return AFL_EXT_INTERAPTIV_MR2;
14145 default: return 0;
14146 }
14147 }
14148
14149 /* Encode ISA level and revision as a single value. */
14150 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14151
14152 /* Decode a single value into level and revision. */
14153 #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14154 #define ISA_REV(LEVREV) ((LEVREV) & 0x7)
14155
14156 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14157
14158 static void
14159 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14160 {
14161 int new_isa = 0;
14162 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14163 {
14164 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14165 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14166 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14167 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14168 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14169 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14170 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14171 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14172 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14173 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14174 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
14175 default:
14176 _bfd_error_handler
14177 /* xgettext:c-format */
14178 (_("%B: Unknown architecture %s"),
14179 abfd, bfd_printable_name (abfd));
14180 }
14181
14182 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14183 {
14184 abiflags->isa_level = ISA_LEVEL (new_isa);
14185 abiflags->isa_rev = ISA_REV (new_isa);
14186 }
14187
14188 /* Update the isa_ext if ABFD describes a further extension. */
14189 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14190 bfd_get_mach (abfd)))
14191 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
14192 }
14193
14194 /* Return true if the given ELF header flags describe a 32-bit binary. */
14195
14196 static bfd_boolean
14197 mips_32bit_flags_p (flagword flags)
14198 {
14199 return ((flags & EF_MIPS_32BITMODE) != 0
14200 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14201 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14202 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14203 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14204 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14205 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14206 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14207 }
14208
14209 /* Infer the content of the ABI flags based on the elf header. */
14210
14211 static void
14212 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14213 {
14214 obj_attribute *in_attr;
14215
14216 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14217 update_mips_abiflags_isa (abfd, abiflags);
14218
14219 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14220 abiflags->gpr_size = AFL_REG_32;
14221 else
14222 abiflags->gpr_size = AFL_REG_64;
14223
14224 abiflags->cpr1_size = AFL_REG_NONE;
14225
14226 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14227 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14228
14229 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14230 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14231 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14232 && abiflags->gpr_size == AFL_REG_32))
14233 abiflags->cpr1_size = AFL_REG_32;
14234 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14235 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14236 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14237 abiflags->cpr1_size = AFL_REG_64;
14238
14239 abiflags->cpr2_size = AFL_REG_NONE;
14240
14241 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14242 abiflags->ases |= AFL_ASE_MDMX;
14243 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14244 abiflags->ases |= AFL_ASE_MIPS16;
14245 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14246 abiflags->ases |= AFL_ASE_MICROMIPS;
14247
14248 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14249 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14250 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14251 && abiflags->isa_level >= 32
14252 && abiflags->isa_ext != AFL_EXT_LOONGSON_3A)
14253 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14254 }
14255
14256 /* We need to use a special link routine to handle the .reginfo and
14257 the .mdebug sections. We need to merge all instances of these
14258 sections together, not write them all out sequentially. */
14259
14260 bfd_boolean
14261 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14262 {
14263 asection *o;
14264 struct bfd_link_order *p;
14265 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14266 asection *rtproc_sec, *abiflags_sec;
14267 Elf32_RegInfo reginfo;
14268 struct ecoff_debug_info debug;
14269 struct mips_htab_traverse_info hti;
14270 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14271 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14272 HDRR *symhdr = &debug.symbolic_header;
14273 void *mdebug_handle = NULL;
14274 asection *s;
14275 EXTR esym;
14276 unsigned int i;
14277 bfd_size_type amt;
14278 struct mips_elf_link_hash_table *htab;
14279
14280 static const char * const secname[] =
14281 {
14282 ".text", ".init", ".fini", ".data",
14283 ".rodata", ".sdata", ".sbss", ".bss"
14284 };
14285 static const int sc[] =
14286 {
14287 scText, scInit, scFini, scData,
14288 scRData, scSData, scSBss, scBss
14289 };
14290
14291 htab = mips_elf_hash_table (info);
14292 BFD_ASSERT (htab != NULL);
14293
14294 /* Sort the dynamic symbols so that those with GOT entries come after
14295 those without. */
14296 if (!mips_elf_sort_hash_table (abfd, info))
14297 return FALSE;
14298
14299 /* Create any scheduled LA25 stubs. */
14300 hti.info = info;
14301 hti.output_bfd = abfd;
14302 hti.error = FALSE;
14303 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14304 if (hti.error)
14305 return FALSE;
14306
14307 /* Get a value for the GP register. */
14308 if (elf_gp (abfd) == 0)
14309 {
14310 struct bfd_link_hash_entry *h;
14311
14312 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
14313 if (h != NULL && h->type == bfd_link_hash_defined)
14314 elf_gp (abfd) = (h->u.def.value
14315 + h->u.def.section->output_section->vma
14316 + h->u.def.section->output_offset);
14317 else if (htab->is_vxworks
14318 && (h = bfd_link_hash_lookup (info->hash,
14319 "_GLOBAL_OFFSET_TABLE_",
14320 FALSE, FALSE, TRUE))
14321 && h->type == bfd_link_hash_defined)
14322 elf_gp (abfd) = (h->u.def.section->output_section->vma
14323 + h->u.def.section->output_offset
14324 + h->u.def.value);
14325 else if (bfd_link_relocatable (info))
14326 {
14327 bfd_vma lo = MINUS_ONE;
14328
14329 /* Find the GP-relative section with the lowest offset. */
14330 for (o = abfd->sections; o != NULL; o = o->next)
14331 if (o->vma < lo
14332 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14333 lo = o->vma;
14334
14335 /* And calculate GP relative to that. */
14336 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14337 }
14338 else
14339 {
14340 /* If the relocate_section function needs to do a reloc
14341 involving the GP value, it should make a reloc_dangerous
14342 callback to warn that GP is not defined. */
14343 }
14344 }
14345
14346 /* Go through the sections and collect the .reginfo and .mdebug
14347 information. */
14348 abiflags_sec = NULL;
14349 reginfo_sec = NULL;
14350 mdebug_sec = NULL;
14351 gptab_data_sec = NULL;
14352 gptab_bss_sec = NULL;
14353 for (o = abfd->sections; o != NULL; o = o->next)
14354 {
14355 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14356 {
14357 /* We have found the .MIPS.abiflags section in the output file.
14358 Look through all the link_orders comprising it and remove them.
14359 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14360 for (p = o->map_head.link_order; p != NULL; p = p->next)
14361 {
14362 asection *input_section;
14363
14364 if (p->type != bfd_indirect_link_order)
14365 {
14366 if (p->type == bfd_data_link_order)
14367 continue;
14368 abort ();
14369 }
14370
14371 input_section = p->u.indirect.section;
14372
14373 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14374 elf_link_input_bfd ignores this section. */
14375 input_section->flags &= ~SEC_HAS_CONTENTS;
14376 }
14377
14378 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14379 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14380
14381 /* Skip this section later on (I don't think this currently
14382 matters, but someday it might). */
14383 o->map_head.link_order = NULL;
14384
14385 abiflags_sec = o;
14386 }
14387
14388 if (strcmp (o->name, ".reginfo") == 0)
14389 {
14390 memset (&reginfo, 0, sizeof reginfo);
14391
14392 /* We have found the .reginfo section in the output file.
14393 Look through all the link_orders comprising it and merge
14394 the information together. */
14395 for (p = o->map_head.link_order; p != NULL; p = p->next)
14396 {
14397 asection *input_section;
14398 bfd *input_bfd;
14399 Elf32_External_RegInfo ext;
14400 Elf32_RegInfo sub;
14401
14402 if (p->type != bfd_indirect_link_order)
14403 {
14404 if (p->type == bfd_data_link_order)
14405 continue;
14406 abort ();
14407 }
14408
14409 input_section = p->u.indirect.section;
14410 input_bfd = input_section->owner;
14411
14412 if (! bfd_get_section_contents (input_bfd, input_section,
14413 &ext, 0, sizeof ext))
14414 return FALSE;
14415
14416 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14417
14418 reginfo.ri_gprmask |= sub.ri_gprmask;
14419 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14420 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14421 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14422 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14423
14424 /* ri_gp_value is set by the function
14425 mips_elf32_section_processing when the section is
14426 finally written out. */
14427
14428 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14429 elf_link_input_bfd ignores this section. */
14430 input_section->flags &= ~SEC_HAS_CONTENTS;
14431 }
14432
14433 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14434 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14435
14436 /* Skip this section later on (I don't think this currently
14437 matters, but someday it might). */
14438 o->map_head.link_order = NULL;
14439
14440 reginfo_sec = o;
14441 }
14442
14443 if (strcmp (o->name, ".mdebug") == 0)
14444 {
14445 struct extsym_info einfo;
14446 bfd_vma last;
14447
14448 /* We have found the .mdebug section in the output file.
14449 Look through all the link_orders comprising it and merge
14450 the information together. */
14451 symhdr->magic = swap->sym_magic;
14452 /* FIXME: What should the version stamp be? */
14453 symhdr->vstamp = 0;
14454 symhdr->ilineMax = 0;
14455 symhdr->cbLine = 0;
14456 symhdr->idnMax = 0;
14457 symhdr->ipdMax = 0;
14458 symhdr->isymMax = 0;
14459 symhdr->ioptMax = 0;
14460 symhdr->iauxMax = 0;
14461 symhdr->issMax = 0;
14462 symhdr->issExtMax = 0;
14463 symhdr->ifdMax = 0;
14464 symhdr->crfd = 0;
14465 symhdr->iextMax = 0;
14466
14467 /* We accumulate the debugging information itself in the
14468 debug_info structure. */
14469 debug.line = NULL;
14470 debug.external_dnr = NULL;
14471 debug.external_pdr = NULL;
14472 debug.external_sym = NULL;
14473 debug.external_opt = NULL;
14474 debug.external_aux = NULL;
14475 debug.ss = NULL;
14476 debug.ssext = debug.ssext_end = NULL;
14477 debug.external_fdr = NULL;
14478 debug.external_rfd = NULL;
14479 debug.external_ext = debug.external_ext_end = NULL;
14480
14481 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14482 if (mdebug_handle == NULL)
14483 return FALSE;
14484
14485 esym.jmptbl = 0;
14486 esym.cobol_main = 0;
14487 esym.weakext = 0;
14488 esym.reserved = 0;
14489 esym.ifd = ifdNil;
14490 esym.asym.iss = issNil;
14491 esym.asym.st = stLocal;
14492 esym.asym.reserved = 0;
14493 esym.asym.index = indexNil;
14494 last = 0;
14495 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14496 {
14497 esym.asym.sc = sc[i];
14498 s = bfd_get_section_by_name (abfd, secname[i]);
14499 if (s != NULL)
14500 {
14501 esym.asym.value = s->vma;
14502 last = s->vma + s->size;
14503 }
14504 else
14505 esym.asym.value = last;
14506 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14507 secname[i], &esym))
14508 return FALSE;
14509 }
14510
14511 for (p = o->map_head.link_order; p != NULL; p = p->next)
14512 {
14513 asection *input_section;
14514 bfd *input_bfd;
14515 const struct ecoff_debug_swap *input_swap;
14516 struct ecoff_debug_info input_debug;
14517 char *eraw_src;
14518 char *eraw_end;
14519
14520 if (p->type != bfd_indirect_link_order)
14521 {
14522 if (p->type == bfd_data_link_order)
14523 continue;
14524 abort ();
14525 }
14526
14527 input_section = p->u.indirect.section;
14528 input_bfd = input_section->owner;
14529
14530 if (!is_mips_elf (input_bfd))
14531 {
14532 /* I don't know what a non MIPS ELF bfd would be
14533 doing with a .mdebug section, but I don't really
14534 want to deal with it. */
14535 continue;
14536 }
14537
14538 input_swap = (get_elf_backend_data (input_bfd)
14539 ->elf_backend_ecoff_debug_swap);
14540
14541 BFD_ASSERT (p->size == input_section->size);
14542
14543 /* The ECOFF linking code expects that we have already
14544 read in the debugging information and set up an
14545 ecoff_debug_info structure, so we do that now. */
14546 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14547 &input_debug))
14548 return FALSE;
14549
14550 if (! (bfd_ecoff_debug_accumulate
14551 (mdebug_handle, abfd, &debug, swap, input_bfd,
14552 &input_debug, input_swap, info)))
14553 return FALSE;
14554
14555 /* Loop through the external symbols. For each one with
14556 interesting information, try to find the symbol in
14557 the linker global hash table and save the information
14558 for the output external symbols. */
14559 eraw_src = input_debug.external_ext;
14560 eraw_end = (eraw_src
14561 + (input_debug.symbolic_header.iextMax
14562 * input_swap->external_ext_size));
14563 for (;
14564 eraw_src < eraw_end;
14565 eraw_src += input_swap->external_ext_size)
14566 {
14567 EXTR ext;
14568 const char *name;
14569 struct mips_elf_link_hash_entry *h;
14570
14571 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
14572 if (ext.asym.sc == scNil
14573 || ext.asym.sc == scUndefined
14574 || ext.asym.sc == scSUndefined)
14575 continue;
14576
14577 name = input_debug.ssext + ext.asym.iss;
14578 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
14579 name, FALSE, FALSE, TRUE);
14580 if (h == NULL || h->esym.ifd != -2)
14581 continue;
14582
14583 if (ext.ifd != -1)
14584 {
14585 BFD_ASSERT (ext.ifd
14586 < input_debug.symbolic_header.ifdMax);
14587 ext.ifd = input_debug.ifdmap[ext.ifd];
14588 }
14589
14590 h->esym = ext;
14591 }
14592
14593 /* Free up the information we just read. */
14594 free (input_debug.line);
14595 free (input_debug.external_dnr);
14596 free (input_debug.external_pdr);
14597 free (input_debug.external_sym);
14598 free (input_debug.external_opt);
14599 free (input_debug.external_aux);
14600 free (input_debug.ss);
14601 free (input_debug.ssext);
14602 free (input_debug.external_fdr);
14603 free (input_debug.external_rfd);
14604 free (input_debug.external_ext);
14605
14606 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14607 elf_link_input_bfd ignores this section. */
14608 input_section->flags &= ~SEC_HAS_CONTENTS;
14609 }
14610
14611 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
14612 {
14613 /* Create .rtproc section. */
14614 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
14615 if (rtproc_sec == NULL)
14616 {
14617 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14618 | SEC_LINKER_CREATED | SEC_READONLY);
14619
14620 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14621 ".rtproc",
14622 flags);
14623 if (rtproc_sec == NULL
14624 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
14625 return FALSE;
14626 }
14627
14628 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14629 info, rtproc_sec,
14630 &debug))
14631 return FALSE;
14632 }
14633
14634 /* Build the external symbol information. */
14635 einfo.abfd = abfd;
14636 einfo.info = info;
14637 einfo.debug = &debug;
14638 einfo.swap = swap;
14639 einfo.failed = FALSE;
14640 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
14641 mips_elf_output_extsym, &einfo);
14642 if (einfo.failed)
14643 return FALSE;
14644
14645 /* Set the size of the .mdebug section. */
14646 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
14647
14648 /* Skip this section later on (I don't think this currently
14649 matters, but someday it might). */
14650 o->map_head.link_order = NULL;
14651
14652 mdebug_sec = o;
14653 }
14654
14655 if (CONST_STRNEQ (o->name, ".gptab."))
14656 {
14657 const char *subname;
14658 unsigned int c;
14659 Elf32_gptab *tab;
14660 Elf32_External_gptab *ext_tab;
14661 unsigned int j;
14662
14663 /* The .gptab.sdata and .gptab.sbss sections hold
14664 information describing how the small data area would
14665 change depending upon the -G switch. These sections
14666 not used in executables files. */
14667 if (! bfd_link_relocatable (info))
14668 {
14669 for (p = o->map_head.link_order; p != NULL; p = p->next)
14670 {
14671 asection *input_section;
14672
14673 if (p->type != bfd_indirect_link_order)
14674 {
14675 if (p->type == bfd_data_link_order)
14676 continue;
14677 abort ();
14678 }
14679
14680 input_section = p->u.indirect.section;
14681
14682 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14683 elf_link_input_bfd ignores this section. */
14684 input_section->flags &= ~SEC_HAS_CONTENTS;
14685 }
14686
14687 /* Skip this section later on (I don't think this
14688 currently matters, but someday it might). */
14689 o->map_head.link_order = NULL;
14690
14691 /* Really remove the section. */
14692 bfd_section_list_remove (abfd, o);
14693 --abfd->section_count;
14694
14695 continue;
14696 }
14697
14698 /* There is one gptab for initialized data, and one for
14699 uninitialized data. */
14700 if (strcmp (o->name, ".gptab.sdata") == 0)
14701 gptab_data_sec = o;
14702 else if (strcmp (o->name, ".gptab.sbss") == 0)
14703 gptab_bss_sec = o;
14704 else
14705 {
14706 _bfd_error_handler
14707 /* xgettext:c-format */
14708 (_("%B: illegal section name `%A'"), abfd, o);
14709 bfd_set_error (bfd_error_nonrepresentable_section);
14710 return FALSE;
14711 }
14712
14713 /* The linker script always combines .gptab.data and
14714 .gptab.sdata into .gptab.sdata, and likewise for
14715 .gptab.bss and .gptab.sbss. It is possible that there is
14716 no .sdata or .sbss section in the output file, in which
14717 case we must change the name of the output section. */
14718 subname = o->name + sizeof ".gptab" - 1;
14719 if (bfd_get_section_by_name (abfd, subname) == NULL)
14720 {
14721 if (o == gptab_data_sec)
14722 o->name = ".gptab.data";
14723 else
14724 o->name = ".gptab.bss";
14725 subname = o->name + sizeof ".gptab" - 1;
14726 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14727 }
14728
14729 /* Set up the first entry. */
14730 c = 1;
14731 amt = c * sizeof (Elf32_gptab);
14732 tab = bfd_malloc (amt);
14733 if (tab == NULL)
14734 return FALSE;
14735 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14736 tab[0].gt_header.gt_unused = 0;
14737
14738 /* Combine the input sections. */
14739 for (p = o->map_head.link_order; p != NULL; p = p->next)
14740 {
14741 asection *input_section;
14742 bfd *input_bfd;
14743 bfd_size_type size;
14744 unsigned long last;
14745 bfd_size_type gpentry;
14746
14747 if (p->type != bfd_indirect_link_order)
14748 {
14749 if (p->type == bfd_data_link_order)
14750 continue;
14751 abort ();
14752 }
14753
14754 input_section = p->u.indirect.section;
14755 input_bfd = input_section->owner;
14756
14757 /* Combine the gptab entries for this input section one
14758 by one. We know that the input gptab entries are
14759 sorted by ascending -G value. */
14760 size = input_section->size;
14761 last = 0;
14762 for (gpentry = sizeof (Elf32_External_gptab);
14763 gpentry < size;
14764 gpentry += sizeof (Elf32_External_gptab))
14765 {
14766 Elf32_External_gptab ext_gptab;
14767 Elf32_gptab int_gptab;
14768 unsigned long val;
14769 unsigned long add;
14770 bfd_boolean exact;
14771 unsigned int look;
14772
14773 if (! (bfd_get_section_contents
14774 (input_bfd, input_section, &ext_gptab, gpentry,
14775 sizeof (Elf32_External_gptab))))
14776 {
14777 free (tab);
14778 return FALSE;
14779 }
14780
14781 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
14782 &int_gptab);
14783 val = int_gptab.gt_entry.gt_g_value;
14784 add = int_gptab.gt_entry.gt_bytes - last;
14785
14786 exact = FALSE;
14787 for (look = 1; look < c; look++)
14788 {
14789 if (tab[look].gt_entry.gt_g_value >= val)
14790 tab[look].gt_entry.gt_bytes += add;
14791
14792 if (tab[look].gt_entry.gt_g_value == val)
14793 exact = TRUE;
14794 }
14795
14796 if (! exact)
14797 {
14798 Elf32_gptab *new_tab;
14799 unsigned int max;
14800
14801 /* We need a new table entry. */
14802 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
14803 new_tab = bfd_realloc (tab, amt);
14804 if (new_tab == NULL)
14805 {
14806 free (tab);
14807 return FALSE;
14808 }
14809 tab = new_tab;
14810 tab[c].gt_entry.gt_g_value = val;
14811 tab[c].gt_entry.gt_bytes = add;
14812
14813 /* Merge in the size for the next smallest -G
14814 value, since that will be implied by this new
14815 value. */
14816 max = 0;
14817 for (look = 1; look < c; look++)
14818 {
14819 if (tab[look].gt_entry.gt_g_value < val
14820 && (max == 0
14821 || (tab[look].gt_entry.gt_g_value
14822 > tab[max].gt_entry.gt_g_value)))
14823 max = look;
14824 }
14825 if (max != 0)
14826 tab[c].gt_entry.gt_bytes +=
14827 tab[max].gt_entry.gt_bytes;
14828
14829 ++c;
14830 }
14831
14832 last = int_gptab.gt_entry.gt_bytes;
14833 }
14834
14835 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14836 elf_link_input_bfd ignores this section. */
14837 input_section->flags &= ~SEC_HAS_CONTENTS;
14838 }
14839
14840 /* The table must be sorted by -G value. */
14841 if (c > 2)
14842 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
14843
14844 /* Swap out the table. */
14845 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
14846 ext_tab = bfd_alloc (abfd, amt);
14847 if (ext_tab == NULL)
14848 {
14849 free (tab);
14850 return FALSE;
14851 }
14852
14853 for (j = 0; j < c; j++)
14854 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
14855 free (tab);
14856
14857 o->size = c * sizeof (Elf32_External_gptab);
14858 o->contents = (bfd_byte *) ext_tab;
14859
14860 /* Skip this section later on (I don't think this currently
14861 matters, but someday it might). */
14862 o->map_head.link_order = NULL;
14863 }
14864 }
14865
14866 /* Invoke the regular ELF backend linker to do all the work. */
14867 if (!bfd_elf_final_link (abfd, info))
14868 return FALSE;
14869
14870 /* Now write out the computed sections. */
14871
14872 if (abiflags_sec != NULL)
14873 {
14874 Elf_External_ABIFlags_v0 ext;
14875 Elf_Internal_ABIFlags_v0 *abiflags;
14876
14877 abiflags = &mips_elf_tdata (abfd)->abiflags;
14878
14879 /* Set up the abiflags if no valid input sections were found. */
14880 if (!mips_elf_tdata (abfd)->abiflags_valid)
14881 {
14882 infer_mips_abiflags (abfd, abiflags);
14883 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
14884 }
14885 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
14886 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
14887 return FALSE;
14888 }
14889
14890 if (reginfo_sec != NULL)
14891 {
14892 Elf32_External_RegInfo ext;
14893
14894 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
14895 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
14896 return FALSE;
14897 }
14898
14899 if (mdebug_sec != NULL)
14900 {
14901 BFD_ASSERT (abfd->output_has_begun);
14902 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
14903 swap, info,
14904 mdebug_sec->filepos))
14905 return FALSE;
14906
14907 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
14908 }
14909
14910 if (gptab_data_sec != NULL)
14911 {
14912 if (! bfd_set_section_contents (abfd, gptab_data_sec,
14913 gptab_data_sec->contents,
14914 0, gptab_data_sec->size))
14915 return FALSE;
14916 }
14917
14918 if (gptab_bss_sec != NULL)
14919 {
14920 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
14921 gptab_bss_sec->contents,
14922 0, gptab_bss_sec->size))
14923 return FALSE;
14924 }
14925
14926 if (SGI_COMPAT (abfd))
14927 {
14928 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
14929 if (rtproc_sec != NULL)
14930 {
14931 if (! bfd_set_section_contents (abfd, rtproc_sec,
14932 rtproc_sec->contents,
14933 0, rtproc_sec->size))
14934 return FALSE;
14935 }
14936 }
14937
14938 return TRUE;
14939 }
14940 \f
14941 /* Merge object file header flags from IBFD into OBFD. Raise an error
14942 if there are conflicting settings. */
14943
14944 static bfd_boolean
14945 mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info)
14946 {
14947 bfd *obfd = info->output_bfd;
14948 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
14949 flagword old_flags;
14950 flagword new_flags;
14951 bfd_boolean ok;
14952
14953 new_flags = elf_elfheader (ibfd)->e_flags;
14954 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
14955 old_flags = elf_elfheader (obfd)->e_flags;
14956
14957 /* Check flag compatibility. */
14958
14959 new_flags &= ~EF_MIPS_NOREORDER;
14960 old_flags &= ~EF_MIPS_NOREORDER;
14961
14962 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
14963 doesn't seem to matter. */
14964 new_flags &= ~EF_MIPS_XGOT;
14965 old_flags &= ~EF_MIPS_XGOT;
14966
14967 /* MIPSpro generates ucode info in n64 objects. Again, we should
14968 just be able to ignore this. */
14969 new_flags &= ~EF_MIPS_UCODE;
14970 old_flags &= ~EF_MIPS_UCODE;
14971
14972 /* DSOs should only be linked with CPIC code. */
14973 if ((ibfd->flags & DYNAMIC) != 0)
14974 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
14975
14976 if (new_flags == old_flags)
14977 return TRUE;
14978
14979 ok = TRUE;
14980
14981 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
14982 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
14983 {
14984 _bfd_error_handler
14985 (_("%B: warning: linking abicalls files with non-abicalls files"),
14986 ibfd);
14987 ok = TRUE;
14988 }
14989
14990 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
14991 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
14992 if (! (new_flags & EF_MIPS_PIC))
14993 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
14994
14995 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14996 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14997
14998 /* Compare the ISAs. */
14999 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
15000 {
15001 _bfd_error_handler
15002 (_("%B: linking 32-bit code with 64-bit code"),
15003 ibfd);
15004 ok = FALSE;
15005 }
15006 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15007 {
15008 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15009 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
15010 {
15011 /* Copy the architecture info from IBFD to OBFD. Also copy
15012 the 32-bit flag (if set) so that we continue to recognise
15013 OBFD as a 32-bit binary. */
15014 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15015 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15016 elf_elfheader (obfd)->e_flags
15017 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15018
15019 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15020 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15021
15022 /* Copy across the ABI flags if OBFD doesn't use them
15023 and if that was what caused us to treat IBFD as 32-bit. */
15024 if ((old_flags & EF_MIPS_ABI) == 0
15025 && mips_32bit_flags_p (new_flags)
15026 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15027 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15028 }
15029 else
15030 {
15031 /* The ISAs aren't compatible. */
15032 _bfd_error_handler
15033 /* xgettext:c-format */
15034 (_("%B: linking %s module with previous %s modules"),
15035 ibfd,
15036 bfd_printable_name (ibfd),
15037 bfd_printable_name (obfd));
15038 ok = FALSE;
15039 }
15040 }
15041
15042 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15043 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15044
15045 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15046 does set EI_CLASS differently from any 32-bit ABI. */
15047 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15048 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15049 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15050 {
15051 /* Only error if both are set (to different values). */
15052 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15053 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15054 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15055 {
15056 _bfd_error_handler
15057 /* xgettext:c-format */
15058 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
15059 ibfd,
15060 elf_mips_abi_name (ibfd),
15061 elf_mips_abi_name (obfd));
15062 ok = FALSE;
15063 }
15064 new_flags &= ~EF_MIPS_ABI;
15065 old_flags &= ~EF_MIPS_ABI;
15066 }
15067
15068 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15069 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15070 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15071 {
15072 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15073 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15074 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15075 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15076 int micro_mis = old_m16 && new_micro;
15077 int m16_mis = old_micro && new_m16;
15078
15079 if (m16_mis || micro_mis)
15080 {
15081 _bfd_error_handler
15082 /* xgettext:c-format */
15083 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
15084 ibfd,
15085 m16_mis ? "MIPS16" : "microMIPS",
15086 m16_mis ? "microMIPS" : "MIPS16");
15087 ok = FALSE;
15088 }
15089
15090 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15091
15092 new_flags &= ~ EF_MIPS_ARCH_ASE;
15093 old_flags &= ~ EF_MIPS_ARCH_ASE;
15094 }
15095
15096 /* Compare NaN encodings. */
15097 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15098 {
15099 /* xgettext:c-format */
15100 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15101 ibfd,
15102 (new_flags & EF_MIPS_NAN2008
15103 ? "-mnan=2008" : "-mnan=legacy"),
15104 (old_flags & EF_MIPS_NAN2008
15105 ? "-mnan=2008" : "-mnan=legacy"));
15106 ok = FALSE;
15107 new_flags &= ~EF_MIPS_NAN2008;
15108 old_flags &= ~EF_MIPS_NAN2008;
15109 }
15110
15111 /* Compare FP64 state. */
15112 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15113 {
15114 /* xgettext:c-format */
15115 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15116 ibfd,
15117 (new_flags & EF_MIPS_FP64
15118 ? "-mfp64" : "-mfp32"),
15119 (old_flags & EF_MIPS_FP64
15120 ? "-mfp64" : "-mfp32"));
15121 ok = FALSE;
15122 new_flags &= ~EF_MIPS_FP64;
15123 old_flags &= ~EF_MIPS_FP64;
15124 }
15125
15126 /* Warn about any other mismatches */
15127 if (new_flags != old_flags)
15128 {
15129 /* xgettext:c-format */
15130 _bfd_error_handler
15131 (_("%B: uses different e_flags (%#x) fields than previous modules "
15132 "(%#x)"),
15133 ibfd, new_flags, old_flags);
15134 ok = FALSE;
15135 }
15136
15137 return ok;
15138 }
15139
15140 /* Merge object attributes from IBFD into OBFD. Raise an error if
15141 there are conflicting attributes. */
15142 static bfd_boolean
15143 mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
15144 {
15145 bfd *obfd = info->output_bfd;
15146 obj_attribute *in_attr;
15147 obj_attribute *out_attr;
15148 bfd *abi_fp_bfd;
15149 bfd *abi_msa_bfd;
15150
15151 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15152 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15153 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
15154 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15155
15156 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15157 if (!abi_msa_bfd
15158 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15159 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15160
15161 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15162 {
15163 /* This is the first object. Copy the attributes. */
15164 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15165
15166 /* Use the Tag_null value to indicate the attributes have been
15167 initialized. */
15168 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15169
15170 return TRUE;
15171 }
15172
15173 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15174 non-conflicting ones. */
15175 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15176 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15177 {
15178 int out_fp, in_fp;
15179
15180 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15181 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15182 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15183 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15184 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
15185 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15186 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15187 || in_fp == Val_GNU_MIPS_ABI_FP_64
15188 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15189 {
15190 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15191 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15192 }
15193 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15194 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15195 || out_fp == Val_GNU_MIPS_ABI_FP_64
15196 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15197 /* Keep the current setting. */;
15198 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15199 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15200 {
15201 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15202 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15203 }
15204 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15205 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15206 /* Keep the current setting. */;
15207 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15208 {
15209 const char *out_string, *in_string;
15210
15211 out_string = _bfd_mips_fp_abi_string (out_fp);
15212 in_string = _bfd_mips_fp_abi_string (in_fp);
15213 /* First warn about cases involving unrecognised ABIs. */
15214 if (!out_string && !in_string)
15215 /* xgettext:c-format */
15216 _bfd_error_handler
15217 (_("Warning: %B uses unknown floating point ABI %d "
15218 "(set by %B), %B uses unknown floating point ABI %d"),
15219 obfd, out_fp, abi_fp_bfd, ibfd, in_fp);
15220 else if (!out_string)
15221 _bfd_error_handler
15222 /* xgettext:c-format */
15223 (_("Warning: %B uses unknown floating point ABI %d "
15224 "(set by %B), %B uses %s"),
15225 obfd, out_fp, abi_fp_bfd, ibfd, in_string);
15226 else if (!in_string)
15227 _bfd_error_handler
15228 /* xgettext:c-format */
15229 (_("Warning: %B uses %s (set by %B), "
15230 "%B uses unknown floating point ABI %d"),
15231 obfd, out_string, abi_fp_bfd, ibfd, in_fp);
15232 else
15233 {
15234 /* If one of the bfds is soft-float, the other must be
15235 hard-float. The exact choice of hard-float ABI isn't
15236 really relevant to the error message. */
15237 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15238 out_string = "-mhard-float";
15239 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15240 in_string = "-mhard-float";
15241 _bfd_error_handler
15242 /* xgettext:c-format */
15243 (_("Warning: %B uses %s (set by %B), %B uses %s"),
15244 obfd, out_string, abi_fp_bfd, ibfd, in_string);
15245 }
15246 }
15247 }
15248
15249 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15250 non-conflicting ones. */
15251 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15252 {
15253 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15254 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15255 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15256 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15257 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15258 {
15259 case Val_GNU_MIPS_ABI_MSA_128:
15260 _bfd_error_handler
15261 /* xgettext:c-format */
15262 (_("Warning: %B uses %s (set by %B), "
15263 "%B uses unknown MSA ABI %d"),
15264 obfd, "-mmsa", abi_msa_bfd,
15265 ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15266 break;
15267
15268 default:
15269 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15270 {
15271 case Val_GNU_MIPS_ABI_MSA_128:
15272 _bfd_error_handler
15273 /* xgettext:c-format */
15274 (_("Warning: %B uses unknown MSA ABI %d "
15275 "(set by %B), %B uses %s"),
15276 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15277 abi_msa_bfd, ibfd, "-mmsa");
15278 break;
15279
15280 default:
15281 _bfd_error_handler
15282 /* xgettext:c-format */
15283 (_("Warning: %B uses unknown MSA ABI %d "
15284 "(set by %B), %B uses unknown MSA ABI %d"),
15285 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15286 abi_msa_bfd, ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15287 break;
15288 }
15289 }
15290 }
15291
15292 /* Merge Tag_compatibility attributes and any common GNU ones. */
15293 return _bfd_elf_merge_object_attributes (ibfd, info);
15294 }
15295
15296 /* Merge object ABI flags from IBFD into OBFD. Raise an error if
15297 there are conflicting settings. */
15298
15299 static bfd_boolean
15300 mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15301 {
15302 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15303 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15304 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15305
15306 /* Update the output abiflags fp_abi using the computed fp_abi. */
15307 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15308
15309 #define max(a, b) ((a) > (b) ? (a) : (b))
15310 /* Merge abiflags. */
15311 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15312 in_tdata->abiflags.isa_level);
15313 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15314 in_tdata->abiflags.isa_rev);
15315 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15316 in_tdata->abiflags.gpr_size);
15317 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15318 in_tdata->abiflags.cpr1_size);
15319 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15320 in_tdata->abiflags.cpr2_size);
15321 #undef max
15322 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15323 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15324
15325 return TRUE;
15326 }
15327
15328 /* Merge backend specific data from an object file to the output
15329 object file when linking. */
15330
15331 bfd_boolean
15332 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
15333 {
15334 bfd *obfd = info->output_bfd;
15335 struct mips_elf_obj_tdata *out_tdata;
15336 struct mips_elf_obj_tdata *in_tdata;
15337 bfd_boolean null_input_bfd = TRUE;
15338 asection *sec;
15339 bfd_boolean ok;
15340
15341 /* Check if we have the same endianness. */
15342 if (! _bfd_generic_verify_endian_match (ibfd, info))
15343 {
15344 _bfd_error_handler
15345 (_("%B: endianness incompatible with that of the selected emulation"),
15346 ibfd);
15347 return FALSE;
15348 }
15349
15350 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15351 return TRUE;
15352
15353 in_tdata = mips_elf_tdata (ibfd);
15354 out_tdata = mips_elf_tdata (obfd);
15355
15356 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15357 {
15358 _bfd_error_handler
15359 (_("%B: ABI is incompatible with that of the selected emulation"),
15360 ibfd);
15361 return FALSE;
15362 }
15363
15364 /* Check to see if the input BFD actually contains any sections. If not,
15365 then it has no attributes, and its flags may not have been initialized
15366 either, but it cannot actually cause any incompatibility. */
15367 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15368 {
15369 /* Ignore synthetic sections and empty .text, .data and .bss sections
15370 which are automatically generated by gas. Also ignore fake
15371 (s)common sections, since merely defining a common symbol does
15372 not affect compatibility. */
15373 if ((sec->flags & SEC_IS_COMMON) == 0
15374 && strcmp (sec->name, ".reginfo")
15375 && strcmp (sec->name, ".mdebug")
15376 && (sec->size != 0
15377 || (strcmp (sec->name, ".text")
15378 && strcmp (sec->name, ".data")
15379 && strcmp (sec->name, ".bss"))))
15380 {
15381 null_input_bfd = FALSE;
15382 break;
15383 }
15384 }
15385 if (null_input_bfd)
15386 return TRUE;
15387
15388 /* Populate abiflags using existing information. */
15389 if (in_tdata->abiflags_valid)
15390 {
15391 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15392 Elf_Internal_ABIFlags_v0 in_abiflags;
15393 Elf_Internal_ABIFlags_v0 abiflags;
15394
15395 /* Set up the FP ABI attribute from the abiflags if it is not already
15396 set. */
15397 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15398 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
15399
15400 infer_mips_abiflags (ibfd, &abiflags);
15401 in_abiflags = in_tdata->abiflags;
15402
15403 /* It is not possible to infer the correct ISA revision
15404 for R3 or R5 so drop down to R2 for the checks. */
15405 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15406 in_abiflags.isa_rev = 2;
15407
15408 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15409 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
15410 _bfd_error_handler
15411 (_("%B: warning: Inconsistent ISA between e_flags and "
15412 ".MIPS.abiflags"), ibfd);
15413 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15414 && in_abiflags.fp_abi != abiflags.fp_abi)
15415 _bfd_error_handler
15416 (_("%B: warning: Inconsistent FP ABI between .gnu.attributes and "
15417 ".MIPS.abiflags"), ibfd);
15418 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15419 _bfd_error_handler
15420 (_("%B: warning: Inconsistent ASEs between e_flags and "
15421 ".MIPS.abiflags"), ibfd);
15422 /* The isa_ext is allowed to be an extension of what can be inferred
15423 from e_flags. */
15424 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15425 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
15426 _bfd_error_handler
15427 (_("%B: warning: Inconsistent ISA extensions between e_flags and "
15428 ".MIPS.abiflags"), ibfd);
15429 if (in_abiflags.flags2 != 0)
15430 _bfd_error_handler
15431 (_("%B: warning: Unexpected flag in the flags2 field of "
15432 ".MIPS.abiflags (0x%lx)"), ibfd,
15433 in_abiflags.flags2);
15434 }
15435 else
15436 {
15437 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15438 in_tdata->abiflags_valid = TRUE;
15439 }
15440
15441 if (!out_tdata->abiflags_valid)
15442 {
15443 /* Copy input abiflags if output abiflags are not already valid. */
15444 out_tdata->abiflags = in_tdata->abiflags;
15445 out_tdata->abiflags_valid = TRUE;
15446 }
15447
15448 if (! elf_flags_init (obfd))
15449 {
15450 elf_flags_init (obfd) = TRUE;
15451 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15452 elf_elfheader (obfd)->e_ident[EI_CLASS]
15453 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15454
15455 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15456 && (bfd_get_arch_info (obfd)->the_default
15457 || mips_mach_extends_p (bfd_get_mach (obfd),
15458 bfd_get_mach (ibfd))))
15459 {
15460 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15461 bfd_get_mach (ibfd)))
15462 return FALSE;
15463
15464 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15465 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15466 }
15467
15468 ok = TRUE;
15469 }
15470 else
15471 ok = mips_elf_merge_obj_e_flags (ibfd, info);
15472
15473 ok = mips_elf_merge_obj_attributes (ibfd, info) && ok;
15474
15475 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
15476
15477 if (!ok)
15478 {
15479 bfd_set_error (bfd_error_bad_value);
15480 return FALSE;
15481 }
15482
15483 return TRUE;
15484 }
15485
15486 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15487
15488 bfd_boolean
15489 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15490 {
15491 BFD_ASSERT (!elf_flags_init (abfd)
15492 || elf_elfheader (abfd)->e_flags == flags);
15493
15494 elf_elfheader (abfd)->e_flags = flags;
15495 elf_flags_init (abfd) = TRUE;
15496 return TRUE;
15497 }
15498
15499 char *
15500 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15501 {
15502 switch (dtag)
15503 {
15504 default: return "";
15505 case DT_MIPS_RLD_VERSION:
15506 return "MIPS_RLD_VERSION";
15507 case DT_MIPS_TIME_STAMP:
15508 return "MIPS_TIME_STAMP";
15509 case DT_MIPS_ICHECKSUM:
15510 return "MIPS_ICHECKSUM";
15511 case DT_MIPS_IVERSION:
15512 return "MIPS_IVERSION";
15513 case DT_MIPS_FLAGS:
15514 return "MIPS_FLAGS";
15515 case DT_MIPS_BASE_ADDRESS:
15516 return "MIPS_BASE_ADDRESS";
15517 case DT_MIPS_MSYM:
15518 return "MIPS_MSYM";
15519 case DT_MIPS_CONFLICT:
15520 return "MIPS_CONFLICT";
15521 case DT_MIPS_LIBLIST:
15522 return "MIPS_LIBLIST";
15523 case DT_MIPS_LOCAL_GOTNO:
15524 return "MIPS_LOCAL_GOTNO";
15525 case DT_MIPS_CONFLICTNO:
15526 return "MIPS_CONFLICTNO";
15527 case DT_MIPS_LIBLISTNO:
15528 return "MIPS_LIBLISTNO";
15529 case DT_MIPS_SYMTABNO:
15530 return "MIPS_SYMTABNO";
15531 case DT_MIPS_UNREFEXTNO:
15532 return "MIPS_UNREFEXTNO";
15533 case DT_MIPS_GOTSYM:
15534 return "MIPS_GOTSYM";
15535 case DT_MIPS_HIPAGENO:
15536 return "MIPS_HIPAGENO";
15537 case DT_MIPS_RLD_MAP:
15538 return "MIPS_RLD_MAP";
15539 case DT_MIPS_RLD_MAP_REL:
15540 return "MIPS_RLD_MAP_REL";
15541 case DT_MIPS_DELTA_CLASS:
15542 return "MIPS_DELTA_CLASS";
15543 case DT_MIPS_DELTA_CLASS_NO:
15544 return "MIPS_DELTA_CLASS_NO";
15545 case DT_MIPS_DELTA_INSTANCE:
15546 return "MIPS_DELTA_INSTANCE";
15547 case DT_MIPS_DELTA_INSTANCE_NO:
15548 return "MIPS_DELTA_INSTANCE_NO";
15549 case DT_MIPS_DELTA_RELOC:
15550 return "MIPS_DELTA_RELOC";
15551 case DT_MIPS_DELTA_RELOC_NO:
15552 return "MIPS_DELTA_RELOC_NO";
15553 case DT_MIPS_DELTA_SYM:
15554 return "MIPS_DELTA_SYM";
15555 case DT_MIPS_DELTA_SYM_NO:
15556 return "MIPS_DELTA_SYM_NO";
15557 case DT_MIPS_DELTA_CLASSSYM:
15558 return "MIPS_DELTA_CLASSSYM";
15559 case DT_MIPS_DELTA_CLASSSYM_NO:
15560 return "MIPS_DELTA_CLASSSYM_NO";
15561 case DT_MIPS_CXX_FLAGS:
15562 return "MIPS_CXX_FLAGS";
15563 case DT_MIPS_PIXIE_INIT:
15564 return "MIPS_PIXIE_INIT";
15565 case DT_MIPS_SYMBOL_LIB:
15566 return "MIPS_SYMBOL_LIB";
15567 case DT_MIPS_LOCALPAGE_GOTIDX:
15568 return "MIPS_LOCALPAGE_GOTIDX";
15569 case DT_MIPS_LOCAL_GOTIDX:
15570 return "MIPS_LOCAL_GOTIDX";
15571 case DT_MIPS_HIDDEN_GOTIDX:
15572 return "MIPS_HIDDEN_GOTIDX";
15573 case DT_MIPS_PROTECTED_GOTIDX:
15574 return "MIPS_PROTECTED_GOT_IDX";
15575 case DT_MIPS_OPTIONS:
15576 return "MIPS_OPTIONS";
15577 case DT_MIPS_INTERFACE:
15578 return "MIPS_INTERFACE";
15579 case DT_MIPS_DYNSTR_ALIGN:
15580 return "DT_MIPS_DYNSTR_ALIGN";
15581 case DT_MIPS_INTERFACE_SIZE:
15582 return "DT_MIPS_INTERFACE_SIZE";
15583 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15584 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15585 case DT_MIPS_PERF_SUFFIX:
15586 return "DT_MIPS_PERF_SUFFIX";
15587 case DT_MIPS_COMPACT_SIZE:
15588 return "DT_MIPS_COMPACT_SIZE";
15589 case DT_MIPS_GP_VALUE:
15590 return "DT_MIPS_GP_VALUE";
15591 case DT_MIPS_AUX_DYNAMIC:
15592 return "DT_MIPS_AUX_DYNAMIC";
15593 case DT_MIPS_PLTGOT:
15594 return "DT_MIPS_PLTGOT";
15595 case DT_MIPS_RWPLT:
15596 return "DT_MIPS_RWPLT";
15597 }
15598 }
15599
15600 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15601 not known. */
15602
15603 const char *
15604 _bfd_mips_fp_abi_string (int fp)
15605 {
15606 switch (fp)
15607 {
15608 /* These strings aren't translated because they're simply
15609 option lists. */
15610 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15611 return "-mdouble-float";
15612
15613 case Val_GNU_MIPS_ABI_FP_SINGLE:
15614 return "-msingle-float";
15615
15616 case Val_GNU_MIPS_ABI_FP_SOFT:
15617 return "-msoft-float";
15618
15619 case Val_GNU_MIPS_ABI_FP_OLD_64:
15620 return _("-mips32r2 -mfp64 (12 callee-saved)");
15621
15622 case Val_GNU_MIPS_ABI_FP_XX:
15623 return "-mfpxx";
15624
15625 case Val_GNU_MIPS_ABI_FP_64:
15626 return "-mgp32 -mfp64";
15627
15628 case Val_GNU_MIPS_ABI_FP_64A:
15629 return "-mgp32 -mfp64 -mno-odd-spreg";
15630
15631 default:
15632 return 0;
15633 }
15634 }
15635
15636 static void
15637 print_mips_ases (FILE *file, unsigned int mask)
15638 {
15639 if (mask & AFL_ASE_DSP)
15640 fputs ("\n\tDSP ASE", file);
15641 if (mask & AFL_ASE_DSPR2)
15642 fputs ("\n\tDSP R2 ASE", file);
15643 if (mask & AFL_ASE_DSPR3)
15644 fputs ("\n\tDSP R3 ASE", file);
15645 if (mask & AFL_ASE_EVA)
15646 fputs ("\n\tEnhanced VA Scheme", file);
15647 if (mask & AFL_ASE_MCU)
15648 fputs ("\n\tMCU (MicroController) ASE", file);
15649 if (mask & AFL_ASE_MDMX)
15650 fputs ("\n\tMDMX ASE", file);
15651 if (mask & AFL_ASE_MIPS3D)
15652 fputs ("\n\tMIPS-3D ASE", file);
15653 if (mask & AFL_ASE_MT)
15654 fputs ("\n\tMT ASE", file);
15655 if (mask & AFL_ASE_SMARTMIPS)
15656 fputs ("\n\tSmartMIPS ASE", file);
15657 if (mask & AFL_ASE_VIRT)
15658 fputs ("\n\tVZ ASE", file);
15659 if (mask & AFL_ASE_MSA)
15660 fputs ("\n\tMSA ASE", file);
15661 if (mask & AFL_ASE_MIPS16)
15662 fputs ("\n\tMIPS16 ASE", file);
15663 if (mask & AFL_ASE_MICROMIPS)
15664 fputs ("\n\tMICROMIPS ASE", file);
15665 if (mask & AFL_ASE_XPA)
15666 fputs ("\n\tXPA ASE", file);
15667 if (mask & AFL_ASE_MIPS16E2)
15668 fputs ("\n\tMIPS16e2 ASE", file);
15669 if (mask == 0)
15670 fprintf (file, "\n\t%s", _("None"));
15671 else if ((mask & ~AFL_ASE_MASK) != 0)
15672 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
15673 }
15674
15675 static void
15676 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15677 {
15678 switch (isa_ext)
15679 {
15680 case 0:
15681 fputs (_("None"), file);
15682 break;
15683 case AFL_EXT_XLR:
15684 fputs ("RMI XLR", file);
15685 break;
15686 case AFL_EXT_OCTEON3:
15687 fputs ("Cavium Networks Octeon3", file);
15688 break;
15689 case AFL_EXT_OCTEON2:
15690 fputs ("Cavium Networks Octeon2", file);
15691 break;
15692 case AFL_EXT_OCTEONP:
15693 fputs ("Cavium Networks OcteonP", file);
15694 break;
15695 case AFL_EXT_LOONGSON_3A:
15696 fputs ("Loongson 3A", file);
15697 break;
15698 case AFL_EXT_OCTEON:
15699 fputs ("Cavium Networks Octeon", file);
15700 break;
15701 case AFL_EXT_5900:
15702 fputs ("Toshiba R5900", file);
15703 break;
15704 case AFL_EXT_4650:
15705 fputs ("MIPS R4650", file);
15706 break;
15707 case AFL_EXT_4010:
15708 fputs ("LSI R4010", file);
15709 break;
15710 case AFL_EXT_4100:
15711 fputs ("NEC VR4100", file);
15712 break;
15713 case AFL_EXT_3900:
15714 fputs ("Toshiba R3900", file);
15715 break;
15716 case AFL_EXT_10000:
15717 fputs ("MIPS R10000", file);
15718 break;
15719 case AFL_EXT_SB1:
15720 fputs ("Broadcom SB-1", file);
15721 break;
15722 case AFL_EXT_4111:
15723 fputs ("NEC VR4111/VR4181", file);
15724 break;
15725 case AFL_EXT_4120:
15726 fputs ("NEC VR4120", file);
15727 break;
15728 case AFL_EXT_5400:
15729 fputs ("NEC VR5400", file);
15730 break;
15731 case AFL_EXT_5500:
15732 fputs ("NEC VR5500", file);
15733 break;
15734 case AFL_EXT_LOONGSON_2E:
15735 fputs ("ST Microelectronics Loongson 2E", file);
15736 break;
15737 case AFL_EXT_LOONGSON_2F:
15738 fputs ("ST Microelectronics Loongson 2F", file);
15739 break;
15740 case AFL_EXT_INTERAPTIV_MR2:
15741 fputs ("Imagination interAptiv MR2", file);
15742 break;
15743 default:
15744 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
15745 break;
15746 }
15747 }
15748
15749 static void
15750 print_mips_fp_abi_value (FILE *file, int val)
15751 {
15752 switch (val)
15753 {
15754 case Val_GNU_MIPS_ABI_FP_ANY:
15755 fprintf (file, _("Hard or soft float\n"));
15756 break;
15757 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15758 fprintf (file, _("Hard float (double precision)\n"));
15759 break;
15760 case Val_GNU_MIPS_ABI_FP_SINGLE:
15761 fprintf (file, _("Hard float (single precision)\n"));
15762 break;
15763 case Val_GNU_MIPS_ABI_FP_SOFT:
15764 fprintf (file, _("Soft float\n"));
15765 break;
15766 case Val_GNU_MIPS_ABI_FP_OLD_64:
15767 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15768 break;
15769 case Val_GNU_MIPS_ABI_FP_XX:
15770 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
15771 break;
15772 case Val_GNU_MIPS_ABI_FP_64:
15773 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
15774 break;
15775 case Val_GNU_MIPS_ABI_FP_64A:
15776 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
15777 break;
15778 default:
15779 fprintf (file, "??? (%d)\n", val);
15780 break;
15781 }
15782 }
15783
15784 static int
15785 get_mips_reg_size (int reg_size)
15786 {
15787 return (reg_size == AFL_REG_NONE) ? 0
15788 : (reg_size == AFL_REG_32) ? 32
15789 : (reg_size == AFL_REG_64) ? 64
15790 : (reg_size == AFL_REG_128) ? 128
15791 : -1;
15792 }
15793
15794 bfd_boolean
15795 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
15796 {
15797 FILE *file = ptr;
15798
15799 BFD_ASSERT (abfd != NULL && ptr != NULL);
15800
15801 /* Print normal ELF private data. */
15802 _bfd_elf_print_private_bfd_data (abfd, ptr);
15803
15804 /* xgettext:c-format */
15805 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15806
15807 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
15808 fprintf (file, _(" [abi=O32]"));
15809 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
15810 fprintf (file, _(" [abi=O64]"));
15811 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
15812 fprintf (file, _(" [abi=EABI32]"));
15813 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
15814 fprintf (file, _(" [abi=EABI64]"));
15815 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
15816 fprintf (file, _(" [abi unknown]"));
15817 else if (ABI_N32_P (abfd))
15818 fprintf (file, _(" [abi=N32]"));
15819 else if (ABI_64_P (abfd))
15820 fprintf (file, _(" [abi=64]"));
15821 else
15822 fprintf (file, _(" [no abi set]"));
15823
15824 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
15825 fprintf (file, " [mips1]");
15826 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
15827 fprintf (file, " [mips2]");
15828 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
15829 fprintf (file, " [mips3]");
15830 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
15831 fprintf (file, " [mips4]");
15832 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
15833 fprintf (file, " [mips5]");
15834 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
15835 fprintf (file, " [mips32]");
15836 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
15837 fprintf (file, " [mips64]");
15838 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
15839 fprintf (file, " [mips32r2]");
15840 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
15841 fprintf (file, " [mips64r2]");
15842 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
15843 fprintf (file, " [mips32r6]");
15844 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
15845 fprintf (file, " [mips64r6]");
15846 else
15847 fprintf (file, _(" [unknown ISA]"));
15848
15849 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
15850 fprintf (file, " [mdmx]");
15851
15852 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
15853 fprintf (file, " [mips16]");
15854
15855 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
15856 fprintf (file, " [micromips]");
15857
15858 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
15859 fprintf (file, " [nan2008]");
15860
15861 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
15862 fprintf (file, " [old fp64]");
15863
15864 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
15865 fprintf (file, " [32bitmode]");
15866 else
15867 fprintf (file, _(" [not 32bitmode]"));
15868
15869 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
15870 fprintf (file, " [noreorder]");
15871
15872 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
15873 fprintf (file, " [PIC]");
15874
15875 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
15876 fprintf (file, " [CPIC]");
15877
15878 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
15879 fprintf (file, " [XGOT]");
15880
15881 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
15882 fprintf (file, " [UCODE]");
15883
15884 fputc ('\n', file);
15885
15886 if (mips_elf_tdata (abfd)->abiflags_valid)
15887 {
15888 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
15889 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
15890 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
15891 if (abiflags->isa_rev > 1)
15892 fprintf (file, "r%d", abiflags->isa_rev);
15893 fprintf (file, "\nGPR size: %d",
15894 get_mips_reg_size (abiflags->gpr_size));
15895 fprintf (file, "\nCPR1 size: %d",
15896 get_mips_reg_size (abiflags->cpr1_size));
15897 fprintf (file, "\nCPR2 size: %d",
15898 get_mips_reg_size (abiflags->cpr2_size));
15899 fputs ("\nFP ABI: ", file);
15900 print_mips_fp_abi_value (file, abiflags->fp_abi);
15901 fputs ("ISA Extension: ", file);
15902 print_mips_isa_ext (file, abiflags->isa_ext);
15903 fputs ("\nASEs:", file);
15904 print_mips_ases (file, abiflags->ases);
15905 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
15906 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
15907 fputc ('\n', file);
15908 }
15909
15910 return TRUE;
15911 }
15912
15913 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
15914 {
15915 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15916 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15917 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
15918 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15919 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15920 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
15921 { NULL, 0, 0, 0, 0 }
15922 };
15923
15924 /* Merge non visibility st_other attributes. Ensure that the
15925 STO_OPTIONAL flag is copied into h->other, even if this is not a
15926 definiton of the symbol. */
15927 void
15928 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
15929 const Elf_Internal_Sym *isym,
15930 bfd_boolean definition,
15931 bfd_boolean dynamic ATTRIBUTE_UNUSED)
15932 {
15933 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
15934 {
15935 unsigned char other;
15936
15937 other = (definition ? isym->st_other : h->other);
15938 other &= ~ELF_ST_VISIBILITY (-1);
15939 h->other = other | ELF_ST_VISIBILITY (h->other);
15940 }
15941
15942 if (!definition
15943 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
15944 h->other |= STO_OPTIONAL;
15945 }
15946
15947 /* Decide whether an undefined symbol is special and can be ignored.
15948 This is the case for OPTIONAL symbols on IRIX. */
15949 bfd_boolean
15950 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
15951 {
15952 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
15953 }
15954
15955 bfd_boolean
15956 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
15957 {
15958 return (sym->st_shndx == SHN_COMMON
15959 || sym->st_shndx == SHN_MIPS_ACOMMON
15960 || sym->st_shndx == SHN_MIPS_SCOMMON);
15961 }
15962
15963 /* Return address for Ith PLT stub in section PLT, for relocation REL
15964 or (bfd_vma) -1 if it should not be included. */
15965
15966 bfd_vma
15967 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
15968 const arelent *rel ATTRIBUTE_UNUSED)
15969 {
15970 return (plt->vma
15971 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
15972 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
15973 }
15974
15975 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
15976 and microMIPS PLT slots we may have a many-to-one mapping between .plt
15977 and .got.plt and also the slots may be of a different size each we walk
15978 the PLT manually fetching instructions and matching them against known
15979 patterns. To make things easier standard MIPS slots, if any, always come
15980 first. As we don't create proper ELF symbols we use the UDATA.I member
15981 of ASYMBOL to carry ISA annotation. The encoding used is the same as
15982 with the ST_OTHER member of the ELF symbol. */
15983
15984 long
15985 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
15986 long symcount ATTRIBUTE_UNUSED,
15987 asymbol **syms ATTRIBUTE_UNUSED,
15988 long dynsymcount, asymbol **dynsyms,
15989 asymbol **ret)
15990 {
15991 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
15992 static const char microsuffix[] = "@micromipsplt";
15993 static const char m16suffix[] = "@mips16plt";
15994 static const char mipssuffix[] = "@plt";
15995
15996 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
15997 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
15998 bfd_boolean micromips_p = MICROMIPS_P (abfd);
15999 Elf_Internal_Shdr *hdr;
16000 bfd_byte *plt_data;
16001 bfd_vma plt_offset;
16002 unsigned int other;
16003 bfd_vma entry_size;
16004 bfd_vma plt0_size;
16005 asection *relplt;
16006 bfd_vma opcode;
16007 asection *plt;
16008 asymbol *send;
16009 size_t size;
16010 char *names;
16011 long counti;
16012 arelent *p;
16013 asymbol *s;
16014 char *nend;
16015 long count;
16016 long pi;
16017 long i;
16018 long n;
16019
16020 *ret = NULL;
16021
16022 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
16023 return 0;
16024
16025 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16026 if (relplt == NULL)
16027 return 0;
16028
16029 hdr = &elf_section_data (relplt)->this_hdr;
16030 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
16031 return 0;
16032
16033 plt = bfd_get_section_by_name (abfd, ".plt");
16034 if (plt == NULL)
16035 return 0;
16036
16037 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
16038 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
16039 return -1;
16040 p = relplt->relocation;
16041
16042 /* Calculating the exact amount of space required for symbols would
16043 require two passes over the PLT, so just pessimise assuming two
16044 PLT slots per relocation. */
16045 count = relplt->size / hdr->sh_entsize;
16046 counti = count * bed->s->int_rels_per_ext_rel;
16047 size = 2 * count * sizeof (asymbol);
16048 size += count * (sizeof (mipssuffix) +
16049 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16050 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16051 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16052
16053 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16054 size += sizeof (asymbol) + sizeof (pltname);
16055
16056 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16057 return -1;
16058
16059 if (plt->size < 16)
16060 return -1;
16061
16062 s = *ret = bfd_malloc (size);
16063 if (s == NULL)
16064 return -1;
16065 send = s + 2 * count + 1;
16066
16067 names = (char *) send;
16068 nend = (char *) s + size;
16069 n = 0;
16070
16071 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16072 if (opcode == 0x3302fffe)
16073 {
16074 if (!micromips_p)
16075 return -1;
16076 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16077 other = STO_MICROMIPS;
16078 }
16079 else if (opcode == 0x0398c1d0)
16080 {
16081 if (!micromips_p)
16082 return -1;
16083 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16084 other = STO_MICROMIPS;
16085 }
16086 else
16087 {
16088 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16089 other = 0;
16090 }
16091
16092 s->the_bfd = abfd;
16093 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16094 s->section = plt;
16095 s->value = 0;
16096 s->name = names;
16097 s->udata.i = other;
16098 memcpy (names, pltname, sizeof (pltname));
16099 names += sizeof (pltname);
16100 ++s, ++n;
16101
16102 pi = 0;
16103 for (plt_offset = plt0_size;
16104 plt_offset + 8 <= plt->size && s < send;
16105 plt_offset += entry_size)
16106 {
16107 bfd_vma gotplt_addr;
16108 const char *suffix;
16109 bfd_vma gotplt_hi;
16110 bfd_vma gotplt_lo;
16111 size_t suffixlen;
16112
16113 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16114
16115 /* Check if the second word matches the expected MIPS16 instruction. */
16116 if (opcode == 0x651aeb00)
16117 {
16118 if (micromips_p)
16119 return -1;
16120 /* Truncated table??? */
16121 if (plt_offset + 16 > plt->size)
16122 break;
16123 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16124 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16125 suffixlen = sizeof (m16suffix);
16126 suffix = m16suffix;
16127 other = STO_MIPS16;
16128 }
16129 /* Likewise the expected microMIPS instruction (no insn32 mode). */
16130 else if (opcode == 0xff220000)
16131 {
16132 if (!micromips_p)
16133 return -1;
16134 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16135 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16136 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16137 gotplt_lo <<= 2;
16138 gotplt_addr = gotplt_hi + gotplt_lo;
16139 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16140 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16141 suffixlen = sizeof (microsuffix);
16142 suffix = microsuffix;
16143 other = STO_MICROMIPS;
16144 }
16145 /* Likewise the expected microMIPS instruction (insn32 mode). */
16146 else if ((opcode & 0xffff0000) == 0xff2f0000)
16147 {
16148 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16149 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16150 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16151 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16152 gotplt_addr = gotplt_hi + gotplt_lo;
16153 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16154 suffixlen = sizeof (microsuffix);
16155 suffix = microsuffix;
16156 other = STO_MICROMIPS;
16157 }
16158 /* Otherwise assume standard MIPS code. */
16159 else
16160 {
16161 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16162 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16163 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16164 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16165 gotplt_addr = gotplt_hi + gotplt_lo;
16166 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16167 suffixlen = sizeof (mipssuffix);
16168 suffix = mipssuffix;
16169 other = 0;
16170 }
16171 /* Truncated table??? */
16172 if (plt_offset + entry_size > plt->size)
16173 break;
16174
16175 for (i = 0;
16176 i < count && p[pi].address != gotplt_addr;
16177 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16178
16179 if (i < count)
16180 {
16181 size_t namelen;
16182 size_t len;
16183
16184 *s = **p[pi].sym_ptr_ptr;
16185 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16186 we are defining a symbol, ensure one of them is set. */
16187 if ((s->flags & BSF_LOCAL) == 0)
16188 s->flags |= BSF_GLOBAL;
16189 s->flags |= BSF_SYNTHETIC;
16190 s->section = plt;
16191 s->value = plt_offset;
16192 s->name = names;
16193 s->udata.i = other;
16194
16195 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16196 namelen = len + suffixlen;
16197 if (names + namelen > nend)
16198 break;
16199
16200 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16201 names += len;
16202 memcpy (names, suffix, suffixlen);
16203 names += suffixlen;
16204
16205 ++s, ++n;
16206 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16207 }
16208 }
16209
16210 free (plt_data);
16211
16212 return n;
16213 }
16214
16215 /* Return the ABI flags associated with ABFD if available. */
16216
16217 Elf_Internal_ABIFlags_v0 *
16218 bfd_mips_elf_get_abiflags (bfd *abfd)
16219 {
16220 struct mips_elf_obj_tdata *tdata = mips_elf_tdata (abfd);
16221
16222 return tdata->abiflags_valid ? &tdata->abiflags : NULL;
16223 }
16224
16225 void
16226 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16227 {
16228 struct mips_elf_link_hash_table *htab;
16229 Elf_Internal_Ehdr *i_ehdrp;
16230
16231 i_ehdrp = elf_elfheader (abfd);
16232 if (link_info)
16233 {
16234 htab = mips_elf_hash_table (link_info);
16235 BFD_ASSERT (htab != NULL);
16236
16237 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16238 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
16239 }
16240
16241 _bfd_elf_post_process_headers (abfd, link_info);
16242
16243 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16244 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16245 i_ehdrp->e_ident[EI_ABIVERSION] = 3;
16246 }
16247
16248 int
16249 _bfd_mips_elf_compact_eh_encoding (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16250 {
16251 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16252 }
16253
16254 /* Return the opcode for can't unwind. */
16255
16256 int
16257 _bfd_mips_elf_cant_unwind_opcode (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16258 {
16259 return COMPACT_EH_CANT_UNWIND_OPCODE;
16260 }
This page took 0.347419 seconds and 5 git commands to generate.