PR ld/15323
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
4 Free Software Foundation, Inc.
5
6 Most of the information added by Ian Lance Taylor, Cygnus Support,
7 <ian@cygnus.com>.
8 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
9 <mark@codesourcery.com>
10 Traditional MIPS targets support added by Koundinya.K, Dansk Data
11 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
12
13 This file is part of BFD, the Binary File Descriptor library.
14
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
17 the Free Software Foundation; either version 3 of the License, or
18 (at your option) any later version.
19
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
24
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
27 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
28 MA 02110-1301, USA. */
29
30
31 /* This file handles functionality common to the different MIPS ABI's. */
32
33 #include "sysdep.h"
34 #include "bfd.h"
35 #include "libbfd.h"
36 #include "libiberty.h"
37 #include "elf-bfd.h"
38 #include "elfxx-mips.h"
39 #include "elf/mips.h"
40 #include "elf-vxworks.h"
41
42 /* Get the ECOFF swapping routines. */
43 #include "coff/sym.h"
44 #include "coff/symconst.h"
45 #include "coff/ecoff.h"
46 #include "coff/mips.h"
47
48 #include "hashtab.h"
49
50 /* Types of TLS GOT entry. */
51 enum mips_got_tls_type {
52 GOT_TLS_NONE,
53 GOT_TLS_GD,
54 GOT_TLS_LDM,
55 GOT_TLS_IE
56 };
57
58 /* This structure is used to hold information about one GOT entry.
59 There are four types of entry:
60
61 (1) an absolute address
62 requires: abfd == NULL
63 fields: d.address
64
65 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
66 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
67 fields: abfd, symndx, d.addend, tls_type
68
69 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
70 requires: abfd != NULL, symndx == -1
71 fields: d.h, tls_type
72
73 (4) a TLS LDM slot
74 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
75 fields: none; there's only one of these per GOT. */
76 struct mips_got_entry
77 {
78 /* One input bfd that needs the GOT entry. */
79 bfd *abfd;
80 /* The index of the symbol, as stored in the relocation r_info, if
81 we have a local symbol; -1 otherwise. */
82 long symndx;
83 union
84 {
85 /* If abfd == NULL, an address that must be stored in the got. */
86 bfd_vma address;
87 /* If abfd != NULL && symndx != -1, the addend of the relocation
88 that should be added to the symbol value. */
89 bfd_vma addend;
90 /* If abfd != NULL && symndx == -1, the hash table entry
91 corresponding to a symbol in the GOT. The symbol's entry
92 is in the local area if h->global_got_area is GGA_NONE,
93 otherwise it is in the global area. */
94 struct mips_elf_link_hash_entry *h;
95 } d;
96
97 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
98 symbol entry with r_symndx == 0. */
99 unsigned char tls_type;
100
101 /* True if we have filled in the GOT contents for a TLS entry,
102 and created the associated relocations. */
103 unsigned char tls_initialized;
104
105 /* The offset from the beginning of the .got section to the entry
106 corresponding to this symbol+addend. If it's a global symbol
107 whose offset is yet to be decided, it's going to be -1. */
108 long gotidx;
109 };
110
111 /* This structure represents a GOT page reference from an input bfd.
112 Each instance represents a symbol + ADDEND, where the representation
113 of the symbol depends on whether it is local to the input bfd.
114 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
115 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
116
117 Page references with SYMNDX >= 0 always become page references
118 in the output. Page references with SYMNDX < 0 only become page
119 references if the symbol binds locally; in other cases, the page
120 reference decays to a global GOT reference. */
121 struct mips_got_page_ref
122 {
123 long symndx;
124 union
125 {
126 struct mips_elf_link_hash_entry *h;
127 bfd *abfd;
128 } u;
129 bfd_vma addend;
130 };
131
132 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
133 The structures form a non-overlapping list that is sorted by increasing
134 MIN_ADDEND. */
135 struct mips_got_page_range
136 {
137 struct mips_got_page_range *next;
138 bfd_signed_vma min_addend;
139 bfd_signed_vma max_addend;
140 };
141
142 /* This structure describes the range of addends that are applied to page
143 relocations against a given section. */
144 struct mips_got_page_entry
145 {
146 /* The section that these entries are based on. */
147 asection *sec;
148 /* The ranges for this page entry. */
149 struct mips_got_page_range *ranges;
150 /* The maximum number of page entries needed for RANGES. */
151 bfd_vma num_pages;
152 };
153
154 /* This structure is used to hold .got information when linking. */
155
156 struct mips_got_info
157 {
158 /* The number of global .got entries. */
159 unsigned int global_gotno;
160 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
161 unsigned int reloc_only_gotno;
162 /* The number of .got slots used for TLS. */
163 unsigned int tls_gotno;
164 /* The first unused TLS .got entry. Used only during
165 mips_elf_initialize_tls_index. */
166 unsigned int tls_assigned_gotno;
167 /* The number of local .got entries, eventually including page entries. */
168 unsigned int local_gotno;
169 /* The maximum number of page entries needed. */
170 unsigned int page_gotno;
171 /* The number of relocations needed for the GOT entries. */
172 unsigned int relocs;
173 /* The number of local .got entries we have used. */
174 unsigned int assigned_gotno;
175 /* A hash table holding members of the got. */
176 struct htab *got_entries;
177 /* A hash table holding mips_got_page_ref structures. */
178 struct htab *got_page_refs;
179 /* A hash table of mips_got_page_entry structures. */
180 struct htab *got_page_entries;
181 /* In multi-got links, a pointer to the next got (err, rather, most
182 of the time, it points to the previous got). */
183 struct mips_got_info *next;
184 };
185
186 /* Structure passed when merging bfds' gots. */
187
188 struct mips_elf_got_per_bfd_arg
189 {
190 /* The output bfd. */
191 bfd *obfd;
192 /* The link information. */
193 struct bfd_link_info *info;
194 /* A pointer to the primary got, i.e., the one that's going to get
195 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
196 DT_MIPS_GOTSYM. */
197 struct mips_got_info *primary;
198 /* A non-primary got we're trying to merge with other input bfd's
199 gots. */
200 struct mips_got_info *current;
201 /* The maximum number of got entries that can be addressed with a
202 16-bit offset. */
203 unsigned int max_count;
204 /* The maximum number of page entries needed by each got. */
205 unsigned int max_pages;
206 /* The total number of global entries which will live in the
207 primary got and be automatically relocated. This includes
208 those not referenced by the primary GOT but included in
209 the "master" GOT. */
210 unsigned int global_count;
211 };
212
213 /* A structure used to pass information to htab_traverse callbacks
214 when laying out the GOT. */
215
216 struct mips_elf_traverse_got_arg
217 {
218 struct bfd_link_info *info;
219 struct mips_got_info *g;
220 int value;
221 };
222
223 struct _mips_elf_section_data
224 {
225 struct bfd_elf_section_data elf;
226 union
227 {
228 bfd_byte *tdata;
229 } u;
230 };
231
232 #define mips_elf_section_data(sec) \
233 ((struct _mips_elf_section_data *) elf_section_data (sec))
234
235 #define is_mips_elf(bfd) \
236 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
237 && elf_tdata (bfd) != NULL \
238 && elf_object_id (bfd) == MIPS_ELF_DATA)
239
240 /* The ABI says that every symbol used by dynamic relocations must have
241 a global GOT entry. Among other things, this provides the dynamic
242 linker with a free, directly-indexed cache. The GOT can therefore
243 contain symbols that are not referenced by GOT relocations themselves
244 (in other words, it may have symbols that are not referenced by things
245 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
246
247 GOT relocations are less likely to overflow if we put the associated
248 GOT entries towards the beginning. We therefore divide the global
249 GOT entries into two areas: "normal" and "reloc-only". Entries in
250 the first area can be used for both dynamic relocations and GP-relative
251 accesses, while those in the "reloc-only" area are for dynamic
252 relocations only.
253
254 These GGA_* ("Global GOT Area") values are organised so that lower
255 values are more general than higher values. Also, non-GGA_NONE
256 values are ordered by the position of the area in the GOT. */
257 #define GGA_NORMAL 0
258 #define GGA_RELOC_ONLY 1
259 #define GGA_NONE 2
260
261 /* Information about a non-PIC interface to a PIC function. There are
262 two ways of creating these interfaces. The first is to add:
263
264 lui $25,%hi(func)
265 addiu $25,$25,%lo(func)
266
267 immediately before a PIC function "func". The second is to add:
268
269 lui $25,%hi(func)
270 j func
271 addiu $25,$25,%lo(func)
272
273 to a separate trampoline section.
274
275 Stubs of the first kind go in a new section immediately before the
276 target function. Stubs of the second kind go in a single section
277 pointed to by the hash table's "strampoline" field. */
278 struct mips_elf_la25_stub {
279 /* The generated section that contains this stub. */
280 asection *stub_section;
281
282 /* The offset of the stub from the start of STUB_SECTION. */
283 bfd_vma offset;
284
285 /* One symbol for the original function. Its location is available
286 in H->root.root.u.def. */
287 struct mips_elf_link_hash_entry *h;
288 };
289
290 /* Macros for populating a mips_elf_la25_stub. */
291
292 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
293 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
294 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
295 #define LA25_LUI_MICROMIPS(VAL) \
296 (0x41b90000 | (VAL)) /* lui t9,VAL */
297 #define LA25_J_MICROMIPS(VAL) \
298 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
299 #define LA25_ADDIU_MICROMIPS(VAL) \
300 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
301
302 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
303 the dynamic symbols. */
304
305 struct mips_elf_hash_sort_data
306 {
307 /* The symbol in the global GOT with the lowest dynamic symbol table
308 index. */
309 struct elf_link_hash_entry *low;
310 /* The least dynamic symbol table index corresponding to a non-TLS
311 symbol with a GOT entry. */
312 long min_got_dynindx;
313 /* The greatest dynamic symbol table index corresponding to a symbol
314 with a GOT entry that is not referenced (e.g., a dynamic symbol
315 with dynamic relocations pointing to it from non-primary GOTs). */
316 long max_unref_got_dynindx;
317 /* The greatest dynamic symbol table index not corresponding to a
318 symbol without a GOT entry. */
319 long max_non_got_dynindx;
320 };
321
322 /* The MIPS ELF linker needs additional information for each symbol in
323 the global hash table. */
324
325 struct mips_elf_link_hash_entry
326 {
327 struct elf_link_hash_entry root;
328
329 /* External symbol information. */
330 EXTR esym;
331
332 /* The la25 stub we have created for ths symbol, if any. */
333 struct mips_elf_la25_stub *la25_stub;
334
335 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
336 this symbol. */
337 unsigned int possibly_dynamic_relocs;
338
339 /* If there is a stub that 32 bit functions should use to call this
340 16 bit function, this points to the section containing the stub. */
341 asection *fn_stub;
342
343 /* If there is a stub that 16 bit functions should use to call this
344 32 bit function, this points to the section containing the stub. */
345 asection *call_stub;
346
347 /* This is like the call_stub field, but it is used if the function
348 being called returns a floating point value. */
349 asection *call_fp_stub;
350
351 /* The highest GGA_* value that satisfies all references to this symbol. */
352 unsigned int global_got_area : 2;
353
354 /* True if all GOT relocations against this symbol are for calls. This is
355 a looser condition than no_fn_stub below, because there may be other
356 non-call non-GOT relocations against the symbol. */
357 unsigned int got_only_for_calls : 1;
358
359 /* True if one of the relocations described by possibly_dynamic_relocs
360 is against a readonly section. */
361 unsigned int readonly_reloc : 1;
362
363 /* True if there is a relocation against this symbol that must be
364 resolved by the static linker (in other words, if the relocation
365 cannot possibly be made dynamic). */
366 unsigned int has_static_relocs : 1;
367
368 /* True if we must not create a .MIPS.stubs entry for this symbol.
369 This is set, for example, if there are relocations related to
370 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
371 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
372 unsigned int no_fn_stub : 1;
373
374 /* Whether we need the fn_stub; this is true if this symbol appears
375 in any relocs other than a 16 bit call. */
376 unsigned int need_fn_stub : 1;
377
378 /* True if this symbol is referenced by branch relocations from
379 any non-PIC input file. This is used to determine whether an
380 la25 stub is required. */
381 unsigned int has_nonpic_branches : 1;
382
383 /* Does this symbol need a traditional MIPS lazy-binding stub
384 (as opposed to a PLT entry)? */
385 unsigned int needs_lazy_stub : 1;
386 };
387
388 /* MIPS ELF linker hash table. */
389
390 struct mips_elf_link_hash_table
391 {
392 struct elf_link_hash_table root;
393
394 /* The number of .rtproc entries. */
395 bfd_size_type procedure_count;
396
397 /* The size of the .compact_rel section (if SGI_COMPAT). */
398 bfd_size_type compact_rel_size;
399
400 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
401 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
402 bfd_boolean use_rld_obj_head;
403
404 /* The __rld_map or __rld_obj_head symbol. */
405 struct elf_link_hash_entry *rld_symbol;
406
407 /* This is set if we see any mips16 stub sections. */
408 bfd_boolean mips16_stubs_seen;
409
410 /* True if we can generate copy relocs and PLTs. */
411 bfd_boolean use_plts_and_copy_relocs;
412
413 /* True if we're generating code for VxWorks. */
414 bfd_boolean is_vxworks;
415
416 /* True if we already reported the small-data section overflow. */
417 bfd_boolean small_data_overflow_reported;
418
419 /* Shortcuts to some dynamic sections, or NULL if they are not
420 being used. */
421 asection *srelbss;
422 asection *sdynbss;
423 asection *srelplt;
424 asection *srelplt2;
425 asection *sgotplt;
426 asection *splt;
427 asection *sstubs;
428 asection *sgot;
429
430 /* The master GOT information. */
431 struct mips_got_info *got_info;
432
433 /* The global symbol in the GOT with the lowest index in the dynamic
434 symbol table. */
435 struct elf_link_hash_entry *global_gotsym;
436
437 /* The size of the PLT header in bytes. */
438 bfd_vma plt_header_size;
439
440 /* The size of a PLT entry in bytes. */
441 bfd_vma plt_entry_size;
442
443 /* The number of functions that need a lazy-binding stub. */
444 bfd_vma lazy_stub_count;
445
446 /* The size of a function stub entry in bytes. */
447 bfd_vma function_stub_size;
448
449 /* The number of reserved entries at the beginning of the GOT. */
450 unsigned int reserved_gotno;
451
452 /* The section used for mips_elf_la25_stub trampolines.
453 See the comment above that structure for details. */
454 asection *strampoline;
455
456 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
457 pairs. */
458 htab_t la25_stubs;
459
460 /* A function FN (NAME, IS, OS) that creates a new input section
461 called NAME and links it to output section OS. If IS is nonnull,
462 the new section should go immediately before it, otherwise it
463 should go at the (current) beginning of OS.
464
465 The function returns the new section on success, otherwise it
466 returns null. */
467 asection *(*add_stub_section) (const char *, asection *, asection *);
468
469 /* Small local sym cache. */
470 struct sym_cache sym_cache;
471 };
472
473 /* Get the MIPS ELF linker hash table from a link_info structure. */
474
475 #define mips_elf_hash_table(p) \
476 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
477 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
478
479 /* A structure used to communicate with htab_traverse callbacks. */
480 struct mips_htab_traverse_info
481 {
482 /* The usual link-wide information. */
483 struct bfd_link_info *info;
484 bfd *output_bfd;
485
486 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
487 bfd_boolean error;
488 };
489
490 /* MIPS ELF private object data. */
491
492 struct mips_elf_obj_tdata
493 {
494 /* Generic ELF private object data. */
495 struct elf_obj_tdata root;
496
497 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
498 bfd *abi_fp_bfd;
499
500 /* The GOT requirements of input bfds. */
501 struct mips_got_info *got;
502
503 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
504 included directly in this one, but there's no point to wasting
505 the memory just for the infrequently called find_nearest_line. */
506 struct mips_elf_find_line *find_line_info;
507
508 /* An array of stub sections indexed by symbol number. */
509 asection **local_stubs;
510 asection **local_call_stubs;
511
512 /* The Irix 5 support uses two virtual sections, which represent
513 text/data symbols defined in dynamic objects. */
514 asymbol *elf_data_symbol;
515 asymbol *elf_text_symbol;
516 asection *elf_data_section;
517 asection *elf_text_section;
518 };
519
520 /* Get MIPS ELF private object data from BFD's tdata. */
521
522 #define mips_elf_tdata(bfd) \
523 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
524
525 #define TLS_RELOC_P(r_type) \
526 (r_type == R_MIPS_TLS_DTPMOD32 \
527 || r_type == R_MIPS_TLS_DTPMOD64 \
528 || r_type == R_MIPS_TLS_DTPREL32 \
529 || r_type == R_MIPS_TLS_DTPREL64 \
530 || r_type == R_MIPS_TLS_GD \
531 || r_type == R_MIPS_TLS_LDM \
532 || r_type == R_MIPS_TLS_DTPREL_HI16 \
533 || r_type == R_MIPS_TLS_DTPREL_LO16 \
534 || r_type == R_MIPS_TLS_GOTTPREL \
535 || r_type == R_MIPS_TLS_TPREL32 \
536 || r_type == R_MIPS_TLS_TPREL64 \
537 || r_type == R_MIPS_TLS_TPREL_HI16 \
538 || r_type == R_MIPS_TLS_TPREL_LO16 \
539 || r_type == R_MIPS16_TLS_GD \
540 || r_type == R_MIPS16_TLS_LDM \
541 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
542 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
543 || r_type == R_MIPS16_TLS_GOTTPREL \
544 || r_type == R_MIPS16_TLS_TPREL_HI16 \
545 || r_type == R_MIPS16_TLS_TPREL_LO16 \
546 || r_type == R_MICROMIPS_TLS_GD \
547 || r_type == R_MICROMIPS_TLS_LDM \
548 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
549 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
550 || r_type == R_MICROMIPS_TLS_GOTTPREL \
551 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
552 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
553
554 /* Structure used to pass information to mips_elf_output_extsym. */
555
556 struct extsym_info
557 {
558 bfd *abfd;
559 struct bfd_link_info *info;
560 struct ecoff_debug_info *debug;
561 const struct ecoff_debug_swap *swap;
562 bfd_boolean failed;
563 };
564
565 /* The names of the runtime procedure table symbols used on IRIX5. */
566
567 static const char * const mips_elf_dynsym_rtproc_names[] =
568 {
569 "_procedure_table",
570 "_procedure_string_table",
571 "_procedure_table_size",
572 NULL
573 };
574
575 /* These structures are used to generate the .compact_rel section on
576 IRIX5. */
577
578 typedef struct
579 {
580 unsigned long id1; /* Always one? */
581 unsigned long num; /* Number of compact relocation entries. */
582 unsigned long id2; /* Always two? */
583 unsigned long offset; /* The file offset of the first relocation. */
584 unsigned long reserved0; /* Zero? */
585 unsigned long reserved1; /* Zero? */
586 } Elf32_compact_rel;
587
588 typedef struct
589 {
590 bfd_byte id1[4];
591 bfd_byte num[4];
592 bfd_byte id2[4];
593 bfd_byte offset[4];
594 bfd_byte reserved0[4];
595 bfd_byte reserved1[4];
596 } Elf32_External_compact_rel;
597
598 typedef struct
599 {
600 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
601 unsigned int rtype : 4; /* Relocation types. See below. */
602 unsigned int dist2to : 8;
603 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
604 unsigned long konst; /* KONST field. See below. */
605 unsigned long vaddr; /* VADDR to be relocated. */
606 } Elf32_crinfo;
607
608 typedef struct
609 {
610 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
611 unsigned int rtype : 4; /* Relocation types. See below. */
612 unsigned int dist2to : 8;
613 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
614 unsigned long konst; /* KONST field. See below. */
615 } Elf32_crinfo2;
616
617 typedef struct
618 {
619 bfd_byte info[4];
620 bfd_byte konst[4];
621 bfd_byte vaddr[4];
622 } Elf32_External_crinfo;
623
624 typedef struct
625 {
626 bfd_byte info[4];
627 bfd_byte konst[4];
628 } Elf32_External_crinfo2;
629
630 /* These are the constants used to swap the bitfields in a crinfo. */
631
632 #define CRINFO_CTYPE (0x1)
633 #define CRINFO_CTYPE_SH (31)
634 #define CRINFO_RTYPE (0xf)
635 #define CRINFO_RTYPE_SH (27)
636 #define CRINFO_DIST2TO (0xff)
637 #define CRINFO_DIST2TO_SH (19)
638 #define CRINFO_RELVADDR (0x7ffff)
639 #define CRINFO_RELVADDR_SH (0)
640
641 /* A compact relocation info has long (3 words) or short (2 words)
642 formats. A short format doesn't have VADDR field and relvaddr
643 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
644 #define CRF_MIPS_LONG 1
645 #define CRF_MIPS_SHORT 0
646
647 /* There are 4 types of compact relocation at least. The value KONST
648 has different meaning for each type:
649
650 (type) (konst)
651 CT_MIPS_REL32 Address in data
652 CT_MIPS_WORD Address in word (XXX)
653 CT_MIPS_GPHI_LO GP - vaddr
654 CT_MIPS_JMPAD Address to jump
655 */
656
657 #define CRT_MIPS_REL32 0xa
658 #define CRT_MIPS_WORD 0xb
659 #define CRT_MIPS_GPHI_LO 0xc
660 #define CRT_MIPS_JMPAD 0xd
661
662 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
663 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
664 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
665 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
666 \f
667 /* The structure of the runtime procedure descriptor created by the
668 loader for use by the static exception system. */
669
670 typedef struct runtime_pdr {
671 bfd_vma adr; /* Memory address of start of procedure. */
672 long regmask; /* Save register mask. */
673 long regoffset; /* Save register offset. */
674 long fregmask; /* Save floating point register mask. */
675 long fregoffset; /* Save floating point register offset. */
676 long frameoffset; /* Frame size. */
677 short framereg; /* Frame pointer register. */
678 short pcreg; /* Offset or reg of return pc. */
679 long irpss; /* Index into the runtime string table. */
680 long reserved;
681 struct exception_info *exception_info;/* Pointer to exception array. */
682 } RPDR, *pRPDR;
683 #define cbRPDR sizeof (RPDR)
684 #define rpdNil ((pRPDR) 0)
685 \f
686 static struct mips_got_entry *mips_elf_create_local_got_entry
687 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
688 struct mips_elf_link_hash_entry *, int);
689 static bfd_boolean mips_elf_sort_hash_table_f
690 (struct mips_elf_link_hash_entry *, void *);
691 static bfd_vma mips_elf_high
692 (bfd_vma);
693 static bfd_boolean mips_elf_create_dynamic_relocation
694 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
695 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
696 bfd_vma *, asection *);
697 static bfd_vma mips_elf_adjust_gp
698 (bfd *, struct mips_got_info *, bfd *);
699
700 /* This will be used when we sort the dynamic relocation records. */
701 static bfd *reldyn_sorting_bfd;
702
703 /* True if ABFD is for CPUs with load interlocking that include
704 non-MIPS1 CPUs and R3900. */
705 #define LOAD_INTERLOCKS_P(abfd) \
706 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
707 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
708
709 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
710 This should be safe for all architectures. We enable this predicate
711 for RM9000 for now. */
712 #define JAL_TO_BAL_P(abfd) \
713 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
714
715 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
716 This should be safe for all architectures. We enable this predicate for
717 all CPUs. */
718 #define JALR_TO_BAL_P(abfd) 1
719
720 /* True if ABFD is for CPUs that are faster if JR is converted to B.
721 This should be safe for all architectures. We enable this predicate for
722 all CPUs. */
723 #define JR_TO_B_P(abfd) 1
724
725 /* True if ABFD is a PIC object. */
726 #define PIC_OBJECT_P(abfd) \
727 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
728
729 /* Nonzero if ABFD is using the N32 ABI. */
730 #define ABI_N32_P(abfd) \
731 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
732
733 /* Nonzero if ABFD is using the N64 ABI. */
734 #define ABI_64_P(abfd) \
735 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
736
737 /* Nonzero if ABFD is using NewABI conventions. */
738 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
739
740 /* Nonzero if ABFD has microMIPS code. */
741 #define MICROMIPS_P(abfd) \
742 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
743
744 /* The IRIX compatibility level we are striving for. */
745 #define IRIX_COMPAT(abfd) \
746 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
747
748 /* Whether we are trying to be compatible with IRIX at all. */
749 #define SGI_COMPAT(abfd) \
750 (IRIX_COMPAT (abfd) != ict_none)
751
752 /* The name of the options section. */
753 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
754 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
755
756 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
757 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
758 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
759 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
760
761 /* Whether the section is readonly. */
762 #define MIPS_ELF_READONLY_SECTION(sec) \
763 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
764 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
765
766 /* The name of the stub section. */
767 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
768
769 /* The size of an external REL relocation. */
770 #define MIPS_ELF_REL_SIZE(abfd) \
771 (get_elf_backend_data (abfd)->s->sizeof_rel)
772
773 /* The size of an external RELA relocation. */
774 #define MIPS_ELF_RELA_SIZE(abfd) \
775 (get_elf_backend_data (abfd)->s->sizeof_rela)
776
777 /* The size of an external dynamic table entry. */
778 #define MIPS_ELF_DYN_SIZE(abfd) \
779 (get_elf_backend_data (abfd)->s->sizeof_dyn)
780
781 /* The size of a GOT entry. */
782 #define MIPS_ELF_GOT_SIZE(abfd) \
783 (get_elf_backend_data (abfd)->s->arch_size / 8)
784
785 /* The size of the .rld_map section. */
786 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
787 (get_elf_backend_data (abfd)->s->arch_size / 8)
788
789 /* The size of a symbol-table entry. */
790 #define MIPS_ELF_SYM_SIZE(abfd) \
791 (get_elf_backend_data (abfd)->s->sizeof_sym)
792
793 /* The default alignment for sections, as a power of two. */
794 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
795 (get_elf_backend_data (abfd)->s->log_file_align)
796
797 /* Get word-sized data. */
798 #define MIPS_ELF_GET_WORD(abfd, ptr) \
799 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
800
801 /* Put out word-sized data. */
802 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
803 (ABI_64_P (abfd) \
804 ? bfd_put_64 (abfd, val, ptr) \
805 : bfd_put_32 (abfd, val, ptr))
806
807 /* The opcode for word-sized loads (LW or LD). */
808 #define MIPS_ELF_LOAD_WORD(abfd) \
809 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
810
811 /* Add a dynamic symbol table-entry. */
812 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
813 _bfd_elf_add_dynamic_entry (info, tag, val)
814
815 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
816 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
817
818 /* The name of the dynamic relocation section. */
819 #define MIPS_ELF_REL_DYN_NAME(INFO) \
820 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
821
822 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
823 from smaller values. Start with zero, widen, *then* decrement. */
824 #define MINUS_ONE (((bfd_vma)0) - 1)
825 #define MINUS_TWO (((bfd_vma)0) - 2)
826
827 /* The value to write into got[1] for SVR4 targets, to identify it is
828 a GNU object. The dynamic linker can then use got[1] to store the
829 module pointer. */
830 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
831 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
832
833 /* The offset of $gp from the beginning of the .got section. */
834 #define ELF_MIPS_GP_OFFSET(INFO) \
835 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
836
837 /* The maximum size of the GOT for it to be addressable using 16-bit
838 offsets from $gp. */
839 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
840
841 /* Instructions which appear in a stub. */
842 #define STUB_LW(abfd) \
843 ((ABI_64_P (abfd) \
844 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
845 : 0x8f998010)) /* lw t9,0x8010(gp) */
846 #define STUB_MOVE(abfd) \
847 ((ABI_64_P (abfd) \
848 ? 0x03e0782d /* daddu t7,ra */ \
849 : 0x03e07821)) /* addu t7,ra */
850 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
851 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
852 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
853 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
854 #define STUB_LI16S(abfd, VAL) \
855 ((ABI_64_P (abfd) \
856 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
857 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
858
859 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
860 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
861
862 /* The name of the dynamic interpreter. This is put in the .interp
863 section. */
864
865 #define ELF_DYNAMIC_INTERPRETER(abfd) \
866 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
867 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
868 : "/usr/lib/libc.so.1")
869
870 #ifdef BFD64
871 #define MNAME(bfd,pre,pos) \
872 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
873 #define ELF_R_SYM(bfd, i) \
874 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
875 #define ELF_R_TYPE(bfd, i) \
876 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
877 #define ELF_R_INFO(bfd, s, t) \
878 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
879 #else
880 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
881 #define ELF_R_SYM(bfd, i) \
882 (ELF32_R_SYM (i))
883 #define ELF_R_TYPE(bfd, i) \
884 (ELF32_R_TYPE (i))
885 #define ELF_R_INFO(bfd, s, t) \
886 (ELF32_R_INFO (s, t))
887 #endif
888 \f
889 /* The mips16 compiler uses a couple of special sections to handle
890 floating point arguments.
891
892 Section names that look like .mips16.fn.FNNAME contain stubs that
893 copy floating point arguments from the fp regs to the gp regs and
894 then jump to FNNAME. If any 32 bit function calls FNNAME, the
895 call should be redirected to the stub instead. If no 32 bit
896 function calls FNNAME, the stub should be discarded. We need to
897 consider any reference to the function, not just a call, because
898 if the address of the function is taken we will need the stub,
899 since the address might be passed to a 32 bit function.
900
901 Section names that look like .mips16.call.FNNAME contain stubs
902 that copy floating point arguments from the gp regs to the fp
903 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
904 then any 16 bit function that calls FNNAME should be redirected
905 to the stub instead. If FNNAME is not a 32 bit function, the
906 stub should be discarded.
907
908 .mips16.call.fp.FNNAME sections are similar, but contain stubs
909 which call FNNAME and then copy the return value from the fp regs
910 to the gp regs. These stubs store the return value in $18 while
911 calling FNNAME; any function which might call one of these stubs
912 must arrange to save $18 around the call. (This case is not
913 needed for 32 bit functions that call 16 bit functions, because
914 16 bit functions always return floating point values in both
915 $f0/$f1 and $2/$3.)
916
917 Note that in all cases FNNAME might be defined statically.
918 Therefore, FNNAME is not used literally. Instead, the relocation
919 information will indicate which symbol the section is for.
920
921 We record any stubs that we find in the symbol table. */
922
923 #define FN_STUB ".mips16.fn."
924 #define CALL_STUB ".mips16.call."
925 #define CALL_FP_STUB ".mips16.call.fp."
926
927 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
928 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
929 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
930 \f
931 /* The format of the first PLT entry in an O32 executable. */
932 static const bfd_vma mips_o32_exec_plt0_entry[] =
933 {
934 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
935 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
936 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
937 0x031cc023, /* subu $24, $24, $28 */
938 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
939 0x0018c082, /* srl $24, $24, 2 */
940 0x0320f809, /* jalr $25 */
941 0x2718fffe /* subu $24, $24, 2 */
942 };
943
944 /* The format of the first PLT entry in an N32 executable. Different
945 because gp ($28) is not available; we use t2 ($14) instead. */
946 static const bfd_vma mips_n32_exec_plt0_entry[] =
947 {
948 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
949 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
950 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
951 0x030ec023, /* subu $24, $24, $14 */
952 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
953 0x0018c082, /* srl $24, $24, 2 */
954 0x0320f809, /* jalr $25 */
955 0x2718fffe /* subu $24, $24, 2 */
956 };
957
958 /* The format of the first PLT entry in an N64 executable. Different
959 from N32 because of the increased size of GOT entries. */
960 static const bfd_vma mips_n64_exec_plt0_entry[] =
961 {
962 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
963 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
964 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
965 0x030ec023, /* subu $24, $24, $14 */
966 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
967 0x0018c0c2, /* srl $24, $24, 3 */
968 0x0320f809, /* jalr $25 */
969 0x2718fffe /* subu $24, $24, 2 */
970 };
971
972 /* The format of subsequent PLT entries. */
973 static const bfd_vma mips_exec_plt_entry[] =
974 {
975 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
976 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
977 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
978 0x03200008 /* jr $25 */
979 };
980
981 /* The format of the first PLT entry in a VxWorks executable. */
982 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
983 {
984 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
985 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
986 0x8f390008, /* lw t9, 8(t9) */
987 0x00000000, /* nop */
988 0x03200008, /* jr t9 */
989 0x00000000 /* nop */
990 };
991
992 /* The format of subsequent PLT entries. */
993 static const bfd_vma mips_vxworks_exec_plt_entry[] =
994 {
995 0x10000000, /* b .PLT_resolver */
996 0x24180000, /* li t8, <pltindex> */
997 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
998 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
999 0x8f390000, /* lw t9, 0(t9) */
1000 0x00000000, /* nop */
1001 0x03200008, /* jr t9 */
1002 0x00000000 /* nop */
1003 };
1004
1005 /* The format of the first PLT entry in a VxWorks shared object. */
1006 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1007 {
1008 0x8f990008, /* lw t9, 8(gp) */
1009 0x00000000, /* nop */
1010 0x03200008, /* jr t9 */
1011 0x00000000, /* nop */
1012 0x00000000, /* nop */
1013 0x00000000 /* nop */
1014 };
1015
1016 /* The format of subsequent PLT entries. */
1017 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1018 {
1019 0x10000000, /* b .PLT_resolver */
1020 0x24180000 /* li t8, <pltindex> */
1021 };
1022 \f
1023 /* microMIPS 32-bit opcode helper installer. */
1024
1025 static void
1026 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1027 {
1028 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1029 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1030 }
1031
1032 /* microMIPS 32-bit opcode helper retriever. */
1033
1034 static bfd_vma
1035 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1036 {
1037 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1038 }
1039 \f
1040 /* Look up an entry in a MIPS ELF linker hash table. */
1041
1042 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1043 ((struct mips_elf_link_hash_entry *) \
1044 elf_link_hash_lookup (&(table)->root, (string), (create), \
1045 (copy), (follow)))
1046
1047 /* Traverse a MIPS ELF linker hash table. */
1048
1049 #define mips_elf_link_hash_traverse(table, func, info) \
1050 (elf_link_hash_traverse \
1051 (&(table)->root, \
1052 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1053 (info)))
1054
1055 /* Find the base offsets for thread-local storage in this object,
1056 for GD/LD and IE/LE respectively. */
1057
1058 #define TP_OFFSET 0x7000
1059 #define DTP_OFFSET 0x8000
1060
1061 static bfd_vma
1062 dtprel_base (struct bfd_link_info *info)
1063 {
1064 /* If tls_sec is NULL, we should have signalled an error already. */
1065 if (elf_hash_table (info)->tls_sec == NULL)
1066 return 0;
1067 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1068 }
1069
1070 static bfd_vma
1071 tprel_base (struct bfd_link_info *info)
1072 {
1073 /* If tls_sec is NULL, we should have signalled an error already. */
1074 if (elf_hash_table (info)->tls_sec == NULL)
1075 return 0;
1076 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1077 }
1078
1079 /* Create an entry in a MIPS ELF linker hash table. */
1080
1081 static struct bfd_hash_entry *
1082 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1083 struct bfd_hash_table *table, const char *string)
1084 {
1085 struct mips_elf_link_hash_entry *ret =
1086 (struct mips_elf_link_hash_entry *) entry;
1087
1088 /* Allocate the structure if it has not already been allocated by a
1089 subclass. */
1090 if (ret == NULL)
1091 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1092 if (ret == NULL)
1093 return (struct bfd_hash_entry *) ret;
1094
1095 /* Call the allocation method of the superclass. */
1096 ret = ((struct mips_elf_link_hash_entry *)
1097 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1098 table, string));
1099 if (ret != NULL)
1100 {
1101 /* Set local fields. */
1102 memset (&ret->esym, 0, sizeof (EXTR));
1103 /* We use -2 as a marker to indicate that the information has
1104 not been set. -1 means there is no associated ifd. */
1105 ret->esym.ifd = -2;
1106 ret->la25_stub = 0;
1107 ret->possibly_dynamic_relocs = 0;
1108 ret->fn_stub = NULL;
1109 ret->call_stub = NULL;
1110 ret->call_fp_stub = NULL;
1111 ret->global_got_area = GGA_NONE;
1112 ret->got_only_for_calls = TRUE;
1113 ret->readonly_reloc = FALSE;
1114 ret->has_static_relocs = FALSE;
1115 ret->no_fn_stub = FALSE;
1116 ret->need_fn_stub = FALSE;
1117 ret->has_nonpic_branches = FALSE;
1118 ret->needs_lazy_stub = FALSE;
1119 }
1120
1121 return (struct bfd_hash_entry *) ret;
1122 }
1123
1124 /* Allocate MIPS ELF private object data. */
1125
1126 bfd_boolean
1127 _bfd_mips_elf_mkobject (bfd *abfd)
1128 {
1129 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1130 MIPS_ELF_DATA);
1131 }
1132
1133 bfd_boolean
1134 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1135 {
1136 if (!sec->used_by_bfd)
1137 {
1138 struct _mips_elf_section_data *sdata;
1139 bfd_size_type amt = sizeof (*sdata);
1140
1141 sdata = bfd_zalloc (abfd, amt);
1142 if (sdata == NULL)
1143 return FALSE;
1144 sec->used_by_bfd = sdata;
1145 }
1146
1147 return _bfd_elf_new_section_hook (abfd, sec);
1148 }
1149 \f
1150 /* Read ECOFF debugging information from a .mdebug section into a
1151 ecoff_debug_info structure. */
1152
1153 bfd_boolean
1154 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1155 struct ecoff_debug_info *debug)
1156 {
1157 HDRR *symhdr;
1158 const struct ecoff_debug_swap *swap;
1159 char *ext_hdr;
1160
1161 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1162 memset (debug, 0, sizeof (*debug));
1163
1164 ext_hdr = bfd_malloc (swap->external_hdr_size);
1165 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1166 goto error_return;
1167
1168 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1169 swap->external_hdr_size))
1170 goto error_return;
1171
1172 symhdr = &debug->symbolic_header;
1173 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1174
1175 /* The symbolic header contains absolute file offsets and sizes to
1176 read. */
1177 #define READ(ptr, offset, count, size, type) \
1178 if (symhdr->count == 0) \
1179 debug->ptr = NULL; \
1180 else \
1181 { \
1182 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1183 debug->ptr = bfd_malloc (amt); \
1184 if (debug->ptr == NULL) \
1185 goto error_return; \
1186 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1187 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1188 goto error_return; \
1189 }
1190
1191 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1192 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1193 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1194 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1195 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1196 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1197 union aux_ext *);
1198 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1199 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1200 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1201 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1202 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1203 #undef READ
1204
1205 debug->fdr = NULL;
1206
1207 return TRUE;
1208
1209 error_return:
1210 if (ext_hdr != NULL)
1211 free (ext_hdr);
1212 if (debug->line != NULL)
1213 free (debug->line);
1214 if (debug->external_dnr != NULL)
1215 free (debug->external_dnr);
1216 if (debug->external_pdr != NULL)
1217 free (debug->external_pdr);
1218 if (debug->external_sym != NULL)
1219 free (debug->external_sym);
1220 if (debug->external_opt != NULL)
1221 free (debug->external_opt);
1222 if (debug->external_aux != NULL)
1223 free (debug->external_aux);
1224 if (debug->ss != NULL)
1225 free (debug->ss);
1226 if (debug->ssext != NULL)
1227 free (debug->ssext);
1228 if (debug->external_fdr != NULL)
1229 free (debug->external_fdr);
1230 if (debug->external_rfd != NULL)
1231 free (debug->external_rfd);
1232 if (debug->external_ext != NULL)
1233 free (debug->external_ext);
1234 return FALSE;
1235 }
1236 \f
1237 /* Swap RPDR (runtime procedure table entry) for output. */
1238
1239 static void
1240 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1241 {
1242 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1243 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1244 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1245 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1246 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1247 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1248
1249 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1250 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1251
1252 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1253 }
1254
1255 /* Create a runtime procedure table from the .mdebug section. */
1256
1257 static bfd_boolean
1258 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1259 struct bfd_link_info *info, asection *s,
1260 struct ecoff_debug_info *debug)
1261 {
1262 const struct ecoff_debug_swap *swap;
1263 HDRR *hdr = &debug->symbolic_header;
1264 RPDR *rpdr, *rp;
1265 struct rpdr_ext *erp;
1266 void *rtproc;
1267 struct pdr_ext *epdr;
1268 struct sym_ext *esym;
1269 char *ss, **sv;
1270 char *str;
1271 bfd_size_type size;
1272 bfd_size_type count;
1273 unsigned long sindex;
1274 unsigned long i;
1275 PDR pdr;
1276 SYMR sym;
1277 const char *no_name_func = _("static procedure (no name)");
1278
1279 epdr = NULL;
1280 rpdr = NULL;
1281 esym = NULL;
1282 ss = NULL;
1283 sv = NULL;
1284
1285 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1286
1287 sindex = strlen (no_name_func) + 1;
1288 count = hdr->ipdMax;
1289 if (count > 0)
1290 {
1291 size = swap->external_pdr_size;
1292
1293 epdr = bfd_malloc (size * count);
1294 if (epdr == NULL)
1295 goto error_return;
1296
1297 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1298 goto error_return;
1299
1300 size = sizeof (RPDR);
1301 rp = rpdr = bfd_malloc (size * count);
1302 if (rpdr == NULL)
1303 goto error_return;
1304
1305 size = sizeof (char *);
1306 sv = bfd_malloc (size * count);
1307 if (sv == NULL)
1308 goto error_return;
1309
1310 count = hdr->isymMax;
1311 size = swap->external_sym_size;
1312 esym = bfd_malloc (size * count);
1313 if (esym == NULL)
1314 goto error_return;
1315
1316 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1317 goto error_return;
1318
1319 count = hdr->issMax;
1320 ss = bfd_malloc (count);
1321 if (ss == NULL)
1322 goto error_return;
1323 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1324 goto error_return;
1325
1326 count = hdr->ipdMax;
1327 for (i = 0; i < (unsigned long) count; i++, rp++)
1328 {
1329 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1330 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1331 rp->adr = sym.value;
1332 rp->regmask = pdr.regmask;
1333 rp->regoffset = pdr.regoffset;
1334 rp->fregmask = pdr.fregmask;
1335 rp->fregoffset = pdr.fregoffset;
1336 rp->frameoffset = pdr.frameoffset;
1337 rp->framereg = pdr.framereg;
1338 rp->pcreg = pdr.pcreg;
1339 rp->irpss = sindex;
1340 sv[i] = ss + sym.iss;
1341 sindex += strlen (sv[i]) + 1;
1342 }
1343 }
1344
1345 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1346 size = BFD_ALIGN (size, 16);
1347 rtproc = bfd_alloc (abfd, size);
1348 if (rtproc == NULL)
1349 {
1350 mips_elf_hash_table (info)->procedure_count = 0;
1351 goto error_return;
1352 }
1353
1354 mips_elf_hash_table (info)->procedure_count = count + 2;
1355
1356 erp = rtproc;
1357 memset (erp, 0, sizeof (struct rpdr_ext));
1358 erp++;
1359 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1360 strcpy (str, no_name_func);
1361 str += strlen (no_name_func) + 1;
1362 for (i = 0; i < count; i++)
1363 {
1364 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1365 strcpy (str, sv[i]);
1366 str += strlen (sv[i]) + 1;
1367 }
1368 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1369
1370 /* Set the size and contents of .rtproc section. */
1371 s->size = size;
1372 s->contents = rtproc;
1373
1374 /* Skip this section later on (I don't think this currently
1375 matters, but someday it might). */
1376 s->map_head.link_order = NULL;
1377
1378 if (epdr != NULL)
1379 free (epdr);
1380 if (rpdr != NULL)
1381 free (rpdr);
1382 if (esym != NULL)
1383 free (esym);
1384 if (ss != NULL)
1385 free (ss);
1386 if (sv != NULL)
1387 free (sv);
1388
1389 return TRUE;
1390
1391 error_return:
1392 if (epdr != NULL)
1393 free (epdr);
1394 if (rpdr != NULL)
1395 free (rpdr);
1396 if (esym != NULL)
1397 free (esym);
1398 if (ss != NULL)
1399 free (ss);
1400 if (sv != NULL)
1401 free (sv);
1402 return FALSE;
1403 }
1404 \f
1405 /* We're going to create a stub for H. Create a symbol for the stub's
1406 value and size, to help make the disassembly easier to read. */
1407
1408 static bfd_boolean
1409 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1410 struct mips_elf_link_hash_entry *h,
1411 const char *prefix, asection *s, bfd_vma value,
1412 bfd_vma size)
1413 {
1414 struct bfd_link_hash_entry *bh;
1415 struct elf_link_hash_entry *elfh;
1416 const char *name;
1417
1418 if (ELF_ST_IS_MICROMIPS (h->root.other))
1419 value |= 1;
1420
1421 /* Create a new symbol. */
1422 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1423 bh = NULL;
1424 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1425 BSF_LOCAL, s, value, NULL,
1426 TRUE, FALSE, &bh))
1427 return FALSE;
1428
1429 /* Make it a local function. */
1430 elfh = (struct elf_link_hash_entry *) bh;
1431 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1432 elfh->size = size;
1433 elfh->forced_local = 1;
1434 return TRUE;
1435 }
1436
1437 /* We're about to redefine H. Create a symbol to represent H's
1438 current value and size, to help make the disassembly easier
1439 to read. */
1440
1441 static bfd_boolean
1442 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1443 struct mips_elf_link_hash_entry *h,
1444 const char *prefix)
1445 {
1446 struct bfd_link_hash_entry *bh;
1447 struct elf_link_hash_entry *elfh;
1448 const char *name;
1449 asection *s;
1450 bfd_vma value;
1451
1452 /* Read the symbol's value. */
1453 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1454 || h->root.root.type == bfd_link_hash_defweak);
1455 s = h->root.root.u.def.section;
1456 value = h->root.root.u.def.value;
1457
1458 /* Create a new symbol. */
1459 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1460 bh = NULL;
1461 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1462 BSF_LOCAL, s, value, NULL,
1463 TRUE, FALSE, &bh))
1464 return FALSE;
1465
1466 /* Make it local and copy the other attributes from H. */
1467 elfh = (struct elf_link_hash_entry *) bh;
1468 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1469 elfh->other = h->root.other;
1470 elfh->size = h->root.size;
1471 elfh->forced_local = 1;
1472 return TRUE;
1473 }
1474
1475 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1476 function rather than to a hard-float stub. */
1477
1478 static bfd_boolean
1479 section_allows_mips16_refs_p (asection *section)
1480 {
1481 const char *name;
1482
1483 name = bfd_get_section_name (section->owner, section);
1484 return (FN_STUB_P (name)
1485 || CALL_STUB_P (name)
1486 || CALL_FP_STUB_P (name)
1487 || strcmp (name, ".pdr") == 0);
1488 }
1489
1490 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1491 stub section of some kind. Return the R_SYMNDX of the target
1492 function, or 0 if we can't decide which function that is. */
1493
1494 static unsigned long
1495 mips16_stub_symndx (const struct elf_backend_data *bed,
1496 asection *sec ATTRIBUTE_UNUSED,
1497 const Elf_Internal_Rela *relocs,
1498 const Elf_Internal_Rela *relend)
1499 {
1500 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1501 const Elf_Internal_Rela *rel;
1502
1503 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1504 one in a compound relocation. */
1505 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1506 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1507 return ELF_R_SYM (sec->owner, rel->r_info);
1508
1509 /* Otherwise trust the first relocation, whatever its kind. This is
1510 the traditional behavior. */
1511 if (relocs < relend)
1512 return ELF_R_SYM (sec->owner, relocs->r_info);
1513
1514 return 0;
1515 }
1516
1517 /* Check the mips16 stubs for a particular symbol, and see if we can
1518 discard them. */
1519
1520 static void
1521 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1522 struct mips_elf_link_hash_entry *h)
1523 {
1524 /* Dynamic symbols must use the standard call interface, in case other
1525 objects try to call them. */
1526 if (h->fn_stub != NULL
1527 && h->root.dynindx != -1)
1528 {
1529 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1530 h->need_fn_stub = TRUE;
1531 }
1532
1533 if (h->fn_stub != NULL
1534 && ! h->need_fn_stub)
1535 {
1536 /* We don't need the fn_stub; the only references to this symbol
1537 are 16 bit calls. Clobber the size to 0 to prevent it from
1538 being included in the link. */
1539 h->fn_stub->size = 0;
1540 h->fn_stub->flags &= ~SEC_RELOC;
1541 h->fn_stub->reloc_count = 0;
1542 h->fn_stub->flags |= SEC_EXCLUDE;
1543 }
1544
1545 if (h->call_stub != NULL
1546 && ELF_ST_IS_MIPS16 (h->root.other))
1547 {
1548 /* We don't need the call_stub; this is a 16 bit function, so
1549 calls from other 16 bit functions are OK. Clobber the size
1550 to 0 to prevent it from being included in the link. */
1551 h->call_stub->size = 0;
1552 h->call_stub->flags &= ~SEC_RELOC;
1553 h->call_stub->reloc_count = 0;
1554 h->call_stub->flags |= SEC_EXCLUDE;
1555 }
1556
1557 if (h->call_fp_stub != NULL
1558 && ELF_ST_IS_MIPS16 (h->root.other))
1559 {
1560 /* We don't need the call_stub; this is a 16 bit function, so
1561 calls from other 16 bit functions are OK. Clobber the size
1562 to 0 to prevent it from being included in the link. */
1563 h->call_fp_stub->size = 0;
1564 h->call_fp_stub->flags &= ~SEC_RELOC;
1565 h->call_fp_stub->reloc_count = 0;
1566 h->call_fp_stub->flags |= SEC_EXCLUDE;
1567 }
1568 }
1569
1570 /* Hashtable callbacks for mips_elf_la25_stubs. */
1571
1572 static hashval_t
1573 mips_elf_la25_stub_hash (const void *entry_)
1574 {
1575 const struct mips_elf_la25_stub *entry;
1576
1577 entry = (struct mips_elf_la25_stub *) entry_;
1578 return entry->h->root.root.u.def.section->id
1579 + entry->h->root.root.u.def.value;
1580 }
1581
1582 static int
1583 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1584 {
1585 const struct mips_elf_la25_stub *entry1, *entry2;
1586
1587 entry1 = (struct mips_elf_la25_stub *) entry1_;
1588 entry2 = (struct mips_elf_la25_stub *) entry2_;
1589 return ((entry1->h->root.root.u.def.section
1590 == entry2->h->root.root.u.def.section)
1591 && (entry1->h->root.root.u.def.value
1592 == entry2->h->root.root.u.def.value));
1593 }
1594
1595 /* Called by the linker to set up the la25 stub-creation code. FN is
1596 the linker's implementation of add_stub_function. Return true on
1597 success. */
1598
1599 bfd_boolean
1600 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1601 asection *(*fn) (const char *, asection *,
1602 asection *))
1603 {
1604 struct mips_elf_link_hash_table *htab;
1605
1606 htab = mips_elf_hash_table (info);
1607 if (htab == NULL)
1608 return FALSE;
1609
1610 htab->add_stub_section = fn;
1611 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1612 mips_elf_la25_stub_eq, NULL);
1613 if (htab->la25_stubs == NULL)
1614 return FALSE;
1615
1616 return TRUE;
1617 }
1618
1619 /* Return true if H is a locally-defined PIC function, in the sense
1620 that it or its fn_stub might need $25 to be valid on entry.
1621 Note that MIPS16 functions set up $gp using PC-relative instructions,
1622 so they themselves never need $25 to be valid. Only non-MIPS16
1623 entry points are of interest here. */
1624
1625 static bfd_boolean
1626 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1627 {
1628 return ((h->root.root.type == bfd_link_hash_defined
1629 || h->root.root.type == bfd_link_hash_defweak)
1630 && h->root.def_regular
1631 && !bfd_is_abs_section (h->root.root.u.def.section)
1632 && (!ELF_ST_IS_MIPS16 (h->root.other)
1633 || (h->fn_stub && h->need_fn_stub))
1634 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1635 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1636 }
1637
1638 /* Set *SEC to the input section that contains the target of STUB.
1639 Return the offset of the target from the start of that section. */
1640
1641 static bfd_vma
1642 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1643 asection **sec)
1644 {
1645 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1646 {
1647 BFD_ASSERT (stub->h->need_fn_stub);
1648 *sec = stub->h->fn_stub;
1649 return 0;
1650 }
1651 else
1652 {
1653 *sec = stub->h->root.root.u.def.section;
1654 return stub->h->root.root.u.def.value;
1655 }
1656 }
1657
1658 /* STUB describes an la25 stub that we have decided to implement
1659 by inserting an LUI/ADDIU pair before the target function.
1660 Create the section and redirect the function symbol to it. */
1661
1662 static bfd_boolean
1663 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1664 struct bfd_link_info *info)
1665 {
1666 struct mips_elf_link_hash_table *htab;
1667 char *name;
1668 asection *s, *input_section;
1669 unsigned int align;
1670
1671 htab = mips_elf_hash_table (info);
1672 if (htab == NULL)
1673 return FALSE;
1674
1675 /* Create a unique name for the new section. */
1676 name = bfd_malloc (11 + sizeof (".text.stub."));
1677 if (name == NULL)
1678 return FALSE;
1679 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1680
1681 /* Create the section. */
1682 mips_elf_get_la25_target (stub, &input_section);
1683 s = htab->add_stub_section (name, input_section,
1684 input_section->output_section);
1685 if (s == NULL)
1686 return FALSE;
1687
1688 /* Make sure that any padding goes before the stub. */
1689 align = input_section->alignment_power;
1690 if (!bfd_set_section_alignment (s->owner, s, align))
1691 return FALSE;
1692 if (align > 3)
1693 s->size = (1 << align) - 8;
1694
1695 /* Create a symbol for the stub. */
1696 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1697 stub->stub_section = s;
1698 stub->offset = s->size;
1699
1700 /* Allocate room for it. */
1701 s->size += 8;
1702 return TRUE;
1703 }
1704
1705 /* STUB describes an la25 stub that we have decided to implement
1706 with a separate trampoline. Allocate room for it and redirect
1707 the function symbol to it. */
1708
1709 static bfd_boolean
1710 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1711 struct bfd_link_info *info)
1712 {
1713 struct mips_elf_link_hash_table *htab;
1714 asection *s;
1715
1716 htab = mips_elf_hash_table (info);
1717 if (htab == NULL)
1718 return FALSE;
1719
1720 /* Create a trampoline section, if we haven't already. */
1721 s = htab->strampoline;
1722 if (s == NULL)
1723 {
1724 asection *input_section = stub->h->root.root.u.def.section;
1725 s = htab->add_stub_section (".text", NULL,
1726 input_section->output_section);
1727 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1728 return FALSE;
1729 htab->strampoline = s;
1730 }
1731
1732 /* Create a symbol for the stub. */
1733 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1734 stub->stub_section = s;
1735 stub->offset = s->size;
1736
1737 /* Allocate room for it. */
1738 s->size += 16;
1739 return TRUE;
1740 }
1741
1742 /* H describes a symbol that needs an la25 stub. Make sure that an
1743 appropriate stub exists and point H at it. */
1744
1745 static bfd_boolean
1746 mips_elf_add_la25_stub (struct bfd_link_info *info,
1747 struct mips_elf_link_hash_entry *h)
1748 {
1749 struct mips_elf_link_hash_table *htab;
1750 struct mips_elf_la25_stub search, *stub;
1751 bfd_boolean use_trampoline_p;
1752 asection *s;
1753 bfd_vma value;
1754 void **slot;
1755
1756 /* Describe the stub we want. */
1757 search.stub_section = NULL;
1758 search.offset = 0;
1759 search.h = h;
1760
1761 /* See if we've already created an equivalent stub. */
1762 htab = mips_elf_hash_table (info);
1763 if (htab == NULL)
1764 return FALSE;
1765
1766 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1767 if (slot == NULL)
1768 return FALSE;
1769
1770 stub = (struct mips_elf_la25_stub *) *slot;
1771 if (stub != NULL)
1772 {
1773 /* We can reuse the existing stub. */
1774 h->la25_stub = stub;
1775 return TRUE;
1776 }
1777
1778 /* Create a permanent copy of ENTRY and add it to the hash table. */
1779 stub = bfd_malloc (sizeof (search));
1780 if (stub == NULL)
1781 return FALSE;
1782 *stub = search;
1783 *slot = stub;
1784
1785 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1786 of the section and if we would need no more than 2 nops. */
1787 value = mips_elf_get_la25_target (stub, &s);
1788 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1789
1790 h->la25_stub = stub;
1791 return (use_trampoline_p
1792 ? mips_elf_add_la25_trampoline (stub, info)
1793 : mips_elf_add_la25_intro (stub, info));
1794 }
1795
1796 /* A mips_elf_link_hash_traverse callback that is called before sizing
1797 sections. DATA points to a mips_htab_traverse_info structure. */
1798
1799 static bfd_boolean
1800 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1801 {
1802 struct mips_htab_traverse_info *hti;
1803
1804 hti = (struct mips_htab_traverse_info *) data;
1805 if (!hti->info->relocatable)
1806 mips_elf_check_mips16_stubs (hti->info, h);
1807
1808 if (mips_elf_local_pic_function_p (h))
1809 {
1810 /* PR 12845: If H is in a section that has been garbage
1811 collected it will have its output section set to *ABS*. */
1812 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1813 return TRUE;
1814
1815 /* H is a function that might need $25 to be valid on entry.
1816 If we're creating a non-PIC relocatable object, mark H as
1817 being PIC. If we're creating a non-relocatable object with
1818 non-PIC branches and jumps to H, make sure that H has an la25
1819 stub. */
1820 if (hti->info->relocatable)
1821 {
1822 if (!PIC_OBJECT_P (hti->output_bfd))
1823 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
1824 }
1825 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
1826 {
1827 hti->error = TRUE;
1828 return FALSE;
1829 }
1830 }
1831 return TRUE;
1832 }
1833 \f
1834 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1835 Most mips16 instructions are 16 bits, but these instructions
1836 are 32 bits.
1837
1838 The format of these instructions is:
1839
1840 +--------------+--------------------------------+
1841 | JALX | X| Imm 20:16 | Imm 25:21 |
1842 +--------------+--------------------------------+
1843 | Immediate 15:0 |
1844 +-----------------------------------------------+
1845
1846 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1847 Note that the immediate value in the first word is swapped.
1848
1849 When producing a relocatable object file, R_MIPS16_26 is
1850 handled mostly like R_MIPS_26. In particular, the addend is
1851 stored as a straight 26-bit value in a 32-bit instruction.
1852 (gas makes life simpler for itself by never adjusting a
1853 R_MIPS16_26 reloc to be against a section, so the addend is
1854 always zero). However, the 32 bit instruction is stored as 2
1855 16-bit values, rather than a single 32-bit value. In a
1856 big-endian file, the result is the same; in a little-endian
1857 file, the two 16-bit halves of the 32 bit value are swapped.
1858 This is so that a disassembler can recognize the jal
1859 instruction.
1860
1861 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1862 instruction stored as two 16-bit values. The addend A is the
1863 contents of the targ26 field. The calculation is the same as
1864 R_MIPS_26. When storing the calculated value, reorder the
1865 immediate value as shown above, and don't forget to store the
1866 value as two 16-bit values.
1867
1868 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1869 defined as
1870
1871 big-endian:
1872 +--------+----------------------+
1873 | | |
1874 | | targ26-16 |
1875 |31 26|25 0|
1876 +--------+----------------------+
1877
1878 little-endian:
1879 +----------+------+-------------+
1880 | | | |
1881 | sub1 | | sub2 |
1882 |0 9|10 15|16 31|
1883 +----------+--------------------+
1884 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1885 ((sub1 << 16) | sub2)).
1886
1887 When producing a relocatable object file, the calculation is
1888 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1889 When producing a fully linked file, the calculation is
1890 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1891 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1892
1893 The table below lists the other MIPS16 instruction relocations.
1894 Each one is calculated in the same way as the non-MIPS16 relocation
1895 given on the right, but using the extended MIPS16 layout of 16-bit
1896 immediate fields:
1897
1898 R_MIPS16_GPREL R_MIPS_GPREL16
1899 R_MIPS16_GOT16 R_MIPS_GOT16
1900 R_MIPS16_CALL16 R_MIPS_CALL16
1901 R_MIPS16_HI16 R_MIPS_HI16
1902 R_MIPS16_LO16 R_MIPS_LO16
1903
1904 A typical instruction will have a format like this:
1905
1906 +--------------+--------------------------------+
1907 | EXTEND | Imm 10:5 | Imm 15:11 |
1908 +--------------+--------------------------------+
1909 | Major | rx | ry | Imm 4:0 |
1910 +--------------+--------------------------------+
1911
1912 EXTEND is the five bit value 11110. Major is the instruction
1913 opcode.
1914
1915 All we need to do here is shuffle the bits appropriately.
1916 As above, the two 16-bit halves must be swapped on a
1917 little-endian system. */
1918
1919 static inline bfd_boolean
1920 mips16_reloc_p (int r_type)
1921 {
1922 switch (r_type)
1923 {
1924 case R_MIPS16_26:
1925 case R_MIPS16_GPREL:
1926 case R_MIPS16_GOT16:
1927 case R_MIPS16_CALL16:
1928 case R_MIPS16_HI16:
1929 case R_MIPS16_LO16:
1930 case R_MIPS16_TLS_GD:
1931 case R_MIPS16_TLS_LDM:
1932 case R_MIPS16_TLS_DTPREL_HI16:
1933 case R_MIPS16_TLS_DTPREL_LO16:
1934 case R_MIPS16_TLS_GOTTPREL:
1935 case R_MIPS16_TLS_TPREL_HI16:
1936 case R_MIPS16_TLS_TPREL_LO16:
1937 return TRUE;
1938
1939 default:
1940 return FALSE;
1941 }
1942 }
1943
1944 /* Check if a microMIPS reloc. */
1945
1946 static inline bfd_boolean
1947 micromips_reloc_p (unsigned int r_type)
1948 {
1949 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
1950 }
1951
1952 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
1953 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
1954 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
1955
1956 static inline bfd_boolean
1957 micromips_reloc_shuffle_p (unsigned int r_type)
1958 {
1959 return (micromips_reloc_p (r_type)
1960 && r_type != R_MICROMIPS_PC7_S1
1961 && r_type != R_MICROMIPS_PC10_S1);
1962 }
1963
1964 static inline bfd_boolean
1965 got16_reloc_p (int r_type)
1966 {
1967 return (r_type == R_MIPS_GOT16
1968 || r_type == R_MIPS16_GOT16
1969 || r_type == R_MICROMIPS_GOT16);
1970 }
1971
1972 static inline bfd_boolean
1973 call16_reloc_p (int r_type)
1974 {
1975 return (r_type == R_MIPS_CALL16
1976 || r_type == R_MIPS16_CALL16
1977 || r_type == R_MICROMIPS_CALL16);
1978 }
1979
1980 static inline bfd_boolean
1981 got_disp_reloc_p (unsigned int r_type)
1982 {
1983 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
1984 }
1985
1986 static inline bfd_boolean
1987 got_page_reloc_p (unsigned int r_type)
1988 {
1989 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
1990 }
1991
1992 static inline bfd_boolean
1993 got_ofst_reloc_p (unsigned int r_type)
1994 {
1995 return r_type == R_MIPS_GOT_OFST || r_type == R_MICROMIPS_GOT_OFST;
1996 }
1997
1998 static inline bfd_boolean
1999 got_hi16_reloc_p (unsigned int r_type)
2000 {
2001 return r_type == R_MIPS_GOT_HI16 || r_type == R_MICROMIPS_GOT_HI16;
2002 }
2003
2004 static inline bfd_boolean
2005 got_lo16_reloc_p (unsigned int r_type)
2006 {
2007 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2008 }
2009
2010 static inline bfd_boolean
2011 call_hi16_reloc_p (unsigned int r_type)
2012 {
2013 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2014 }
2015
2016 static inline bfd_boolean
2017 call_lo16_reloc_p (unsigned int r_type)
2018 {
2019 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2020 }
2021
2022 static inline bfd_boolean
2023 hi16_reloc_p (int r_type)
2024 {
2025 return (r_type == R_MIPS_HI16
2026 || r_type == R_MIPS16_HI16
2027 || r_type == R_MICROMIPS_HI16);
2028 }
2029
2030 static inline bfd_boolean
2031 lo16_reloc_p (int r_type)
2032 {
2033 return (r_type == R_MIPS_LO16
2034 || r_type == R_MIPS16_LO16
2035 || r_type == R_MICROMIPS_LO16);
2036 }
2037
2038 static inline bfd_boolean
2039 mips16_call_reloc_p (int r_type)
2040 {
2041 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2042 }
2043
2044 static inline bfd_boolean
2045 jal_reloc_p (int r_type)
2046 {
2047 return (r_type == R_MIPS_26
2048 || r_type == R_MIPS16_26
2049 || r_type == R_MICROMIPS_26_S1);
2050 }
2051
2052 static inline bfd_boolean
2053 micromips_branch_reloc_p (int r_type)
2054 {
2055 return (r_type == R_MICROMIPS_26_S1
2056 || r_type == R_MICROMIPS_PC16_S1
2057 || r_type == R_MICROMIPS_PC10_S1
2058 || r_type == R_MICROMIPS_PC7_S1);
2059 }
2060
2061 static inline bfd_boolean
2062 tls_gd_reloc_p (unsigned int r_type)
2063 {
2064 return (r_type == R_MIPS_TLS_GD
2065 || r_type == R_MIPS16_TLS_GD
2066 || r_type == R_MICROMIPS_TLS_GD);
2067 }
2068
2069 static inline bfd_boolean
2070 tls_ldm_reloc_p (unsigned int r_type)
2071 {
2072 return (r_type == R_MIPS_TLS_LDM
2073 || r_type == R_MIPS16_TLS_LDM
2074 || r_type == R_MICROMIPS_TLS_LDM);
2075 }
2076
2077 static inline bfd_boolean
2078 tls_gottprel_reloc_p (unsigned int r_type)
2079 {
2080 return (r_type == R_MIPS_TLS_GOTTPREL
2081 || r_type == R_MIPS16_TLS_GOTTPREL
2082 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2083 }
2084
2085 void
2086 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2087 bfd_boolean jal_shuffle, bfd_byte *data)
2088 {
2089 bfd_vma first, second, val;
2090
2091 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2092 return;
2093
2094 /* Pick up the first and second halfwords of the instruction. */
2095 first = bfd_get_16 (abfd, data);
2096 second = bfd_get_16 (abfd, data + 2);
2097 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2098 val = first << 16 | second;
2099 else if (r_type != R_MIPS16_26)
2100 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2101 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2102 else
2103 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2104 | ((first & 0x1f) << 21) | second);
2105 bfd_put_32 (abfd, val, data);
2106 }
2107
2108 void
2109 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2110 bfd_boolean jal_shuffle, bfd_byte *data)
2111 {
2112 bfd_vma first, second, val;
2113
2114 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2115 return;
2116
2117 val = bfd_get_32 (abfd, data);
2118 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2119 {
2120 second = val & 0xffff;
2121 first = val >> 16;
2122 }
2123 else if (r_type != R_MIPS16_26)
2124 {
2125 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2126 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2127 }
2128 else
2129 {
2130 second = val & 0xffff;
2131 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2132 | ((val >> 21) & 0x1f);
2133 }
2134 bfd_put_16 (abfd, second, data + 2);
2135 bfd_put_16 (abfd, first, data);
2136 }
2137
2138 bfd_reloc_status_type
2139 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2140 arelent *reloc_entry, asection *input_section,
2141 bfd_boolean relocatable, void *data, bfd_vma gp)
2142 {
2143 bfd_vma relocation;
2144 bfd_signed_vma val;
2145 bfd_reloc_status_type status;
2146
2147 if (bfd_is_com_section (symbol->section))
2148 relocation = 0;
2149 else
2150 relocation = symbol->value;
2151
2152 relocation += symbol->section->output_section->vma;
2153 relocation += symbol->section->output_offset;
2154
2155 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2156 return bfd_reloc_outofrange;
2157
2158 /* Set val to the offset into the section or symbol. */
2159 val = reloc_entry->addend;
2160
2161 _bfd_mips_elf_sign_extend (val, 16);
2162
2163 /* Adjust val for the final section location and GP value. If we
2164 are producing relocatable output, we don't want to do this for
2165 an external symbol. */
2166 if (! relocatable
2167 || (symbol->flags & BSF_SECTION_SYM) != 0)
2168 val += relocation - gp;
2169
2170 if (reloc_entry->howto->partial_inplace)
2171 {
2172 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2173 (bfd_byte *) data
2174 + reloc_entry->address);
2175 if (status != bfd_reloc_ok)
2176 return status;
2177 }
2178 else
2179 reloc_entry->addend = val;
2180
2181 if (relocatable)
2182 reloc_entry->address += input_section->output_offset;
2183
2184 return bfd_reloc_ok;
2185 }
2186
2187 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2188 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2189 that contains the relocation field and DATA points to the start of
2190 INPUT_SECTION. */
2191
2192 struct mips_hi16
2193 {
2194 struct mips_hi16 *next;
2195 bfd_byte *data;
2196 asection *input_section;
2197 arelent rel;
2198 };
2199
2200 /* FIXME: This should not be a static variable. */
2201
2202 static struct mips_hi16 *mips_hi16_list;
2203
2204 /* A howto special_function for REL *HI16 relocations. We can only
2205 calculate the correct value once we've seen the partnering
2206 *LO16 relocation, so just save the information for later.
2207
2208 The ABI requires that the *LO16 immediately follow the *HI16.
2209 However, as a GNU extension, we permit an arbitrary number of
2210 *HI16s to be associated with a single *LO16. This significantly
2211 simplies the relocation handling in gcc. */
2212
2213 bfd_reloc_status_type
2214 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2215 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2216 asection *input_section, bfd *output_bfd,
2217 char **error_message ATTRIBUTE_UNUSED)
2218 {
2219 struct mips_hi16 *n;
2220
2221 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2222 return bfd_reloc_outofrange;
2223
2224 n = bfd_malloc (sizeof *n);
2225 if (n == NULL)
2226 return bfd_reloc_outofrange;
2227
2228 n->next = mips_hi16_list;
2229 n->data = data;
2230 n->input_section = input_section;
2231 n->rel = *reloc_entry;
2232 mips_hi16_list = n;
2233
2234 if (output_bfd != NULL)
2235 reloc_entry->address += input_section->output_offset;
2236
2237 return bfd_reloc_ok;
2238 }
2239
2240 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2241 like any other 16-bit relocation when applied to global symbols, but is
2242 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2243
2244 bfd_reloc_status_type
2245 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2246 void *data, asection *input_section,
2247 bfd *output_bfd, char **error_message)
2248 {
2249 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2250 || bfd_is_und_section (bfd_get_section (symbol))
2251 || bfd_is_com_section (bfd_get_section (symbol)))
2252 /* The relocation is against a global symbol. */
2253 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2254 input_section, output_bfd,
2255 error_message);
2256
2257 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2258 input_section, output_bfd, error_message);
2259 }
2260
2261 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2262 is a straightforward 16 bit inplace relocation, but we must deal with
2263 any partnering high-part relocations as well. */
2264
2265 bfd_reloc_status_type
2266 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2267 void *data, asection *input_section,
2268 bfd *output_bfd, char **error_message)
2269 {
2270 bfd_vma vallo;
2271 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2272
2273 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2274 return bfd_reloc_outofrange;
2275
2276 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2277 location);
2278 vallo = bfd_get_32 (abfd, location);
2279 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2280 location);
2281
2282 while (mips_hi16_list != NULL)
2283 {
2284 bfd_reloc_status_type ret;
2285 struct mips_hi16 *hi;
2286
2287 hi = mips_hi16_list;
2288
2289 /* R_MIPS*_GOT16 relocations are something of a special case. We
2290 want to install the addend in the same way as for a R_MIPS*_HI16
2291 relocation (with a rightshift of 16). However, since GOT16
2292 relocations can also be used with global symbols, their howto
2293 has a rightshift of 0. */
2294 if (hi->rel.howto->type == R_MIPS_GOT16)
2295 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2296 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2297 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2298 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2299 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2300
2301 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2302 carry or borrow will induce a change of +1 or -1 in the high part. */
2303 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2304
2305 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2306 hi->input_section, output_bfd,
2307 error_message);
2308 if (ret != bfd_reloc_ok)
2309 return ret;
2310
2311 mips_hi16_list = hi->next;
2312 free (hi);
2313 }
2314
2315 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2316 input_section, output_bfd,
2317 error_message);
2318 }
2319
2320 /* A generic howto special_function. This calculates and installs the
2321 relocation itself, thus avoiding the oft-discussed problems in
2322 bfd_perform_relocation and bfd_install_relocation. */
2323
2324 bfd_reloc_status_type
2325 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2326 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2327 asection *input_section, bfd *output_bfd,
2328 char **error_message ATTRIBUTE_UNUSED)
2329 {
2330 bfd_signed_vma val;
2331 bfd_reloc_status_type status;
2332 bfd_boolean relocatable;
2333
2334 relocatable = (output_bfd != NULL);
2335
2336 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2337 return bfd_reloc_outofrange;
2338
2339 /* Build up the field adjustment in VAL. */
2340 val = 0;
2341 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2342 {
2343 /* Either we're calculating the final field value or we have a
2344 relocation against a section symbol. Add in the section's
2345 offset or address. */
2346 val += symbol->section->output_section->vma;
2347 val += symbol->section->output_offset;
2348 }
2349
2350 if (!relocatable)
2351 {
2352 /* We're calculating the final field value. Add in the symbol's value
2353 and, if pc-relative, subtract the address of the field itself. */
2354 val += symbol->value;
2355 if (reloc_entry->howto->pc_relative)
2356 {
2357 val -= input_section->output_section->vma;
2358 val -= input_section->output_offset;
2359 val -= reloc_entry->address;
2360 }
2361 }
2362
2363 /* VAL is now the final adjustment. If we're keeping this relocation
2364 in the output file, and if the relocation uses a separate addend,
2365 we just need to add VAL to that addend. Otherwise we need to add
2366 VAL to the relocation field itself. */
2367 if (relocatable && !reloc_entry->howto->partial_inplace)
2368 reloc_entry->addend += val;
2369 else
2370 {
2371 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2372
2373 /* Add in the separate addend, if any. */
2374 val += reloc_entry->addend;
2375
2376 /* Add VAL to the relocation field. */
2377 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2378 location);
2379 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2380 location);
2381 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2382 location);
2383
2384 if (status != bfd_reloc_ok)
2385 return status;
2386 }
2387
2388 if (relocatable)
2389 reloc_entry->address += input_section->output_offset;
2390
2391 return bfd_reloc_ok;
2392 }
2393 \f
2394 /* Swap an entry in a .gptab section. Note that these routines rely
2395 on the equivalence of the two elements of the union. */
2396
2397 static void
2398 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2399 Elf32_gptab *in)
2400 {
2401 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2402 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2403 }
2404
2405 static void
2406 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2407 Elf32_External_gptab *ex)
2408 {
2409 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2410 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2411 }
2412
2413 static void
2414 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2415 Elf32_External_compact_rel *ex)
2416 {
2417 H_PUT_32 (abfd, in->id1, ex->id1);
2418 H_PUT_32 (abfd, in->num, ex->num);
2419 H_PUT_32 (abfd, in->id2, ex->id2);
2420 H_PUT_32 (abfd, in->offset, ex->offset);
2421 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2422 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2423 }
2424
2425 static void
2426 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2427 Elf32_External_crinfo *ex)
2428 {
2429 unsigned long l;
2430
2431 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2432 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2433 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2434 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2435 H_PUT_32 (abfd, l, ex->info);
2436 H_PUT_32 (abfd, in->konst, ex->konst);
2437 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2438 }
2439 \f
2440 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2441 routines swap this structure in and out. They are used outside of
2442 BFD, so they are globally visible. */
2443
2444 void
2445 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2446 Elf32_RegInfo *in)
2447 {
2448 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2449 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2450 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2451 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2452 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2453 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2454 }
2455
2456 void
2457 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2458 Elf32_External_RegInfo *ex)
2459 {
2460 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2461 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2462 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2463 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2464 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2465 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2466 }
2467
2468 /* In the 64 bit ABI, the .MIPS.options section holds register
2469 information in an Elf64_Reginfo structure. These routines swap
2470 them in and out. They are globally visible because they are used
2471 outside of BFD. These routines are here so that gas can call them
2472 without worrying about whether the 64 bit ABI has been included. */
2473
2474 void
2475 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2476 Elf64_Internal_RegInfo *in)
2477 {
2478 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2479 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2480 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2481 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2482 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2483 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2484 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2485 }
2486
2487 void
2488 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2489 Elf64_External_RegInfo *ex)
2490 {
2491 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2492 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2493 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2494 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2495 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2496 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2497 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2498 }
2499
2500 /* Swap in an options header. */
2501
2502 void
2503 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2504 Elf_Internal_Options *in)
2505 {
2506 in->kind = H_GET_8 (abfd, ex->kind);
2507 in->size = H_GET_8 (abfd, ex->size);
2508 in->section = H_GET_16 (abfd, ex->section);
2509 in->info = H_GET_32 (abfd, ex->info);
2510 }
2511
2512 /* Swap out an options header. */
2513
2514 void
2515 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2516 Elf_External_Options *ex)
2517 {
2518 H_PUT_8 (abfd, in->kind, ex->kind);
2519 H_PUT_8 (abfd, in->size, ex->size);
2520 H_PUT_16 (abfd, in->section, ex->section);
2521 H_PUT_32 (abfd, in->info, ex->info);
2522 }
2523 \f
2524 /* This function is called via qsort() to sort the dynamic relocation
2525 entries by increasing r_symndx value. */
2526
2527 static int
2528 sort_dynamic_relocs (const void *arg1, const void *arg2)
2529 {
2530 Elf_Internal_Rela int_reloc1;
2531 Elf_Internal_Rela int_reloc2;
2532 int diff;
2533
2534 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2535 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2536
2537 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2538 if (diff != 0)
2539 return diff;
2540
2541 if (int_reloc1.r_offset < int_reloc2.r_offset)
2542 return -1;
2543 if (int_reloc1.r_offset > int_reloc2.r_offset)
2544 return 1;
2545 return 0;
2546 }
2547
2548 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2549
2550 static int
2551 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2552 const void *arg2 ATTRIBUTE_UNUSED)
2553 {
2554 #ifdef BFD64
2555 Elf_Internal_Rela int_reloc1[3];
2556 Elf_Internal_Rela int_reloc2[3];
2557
2558 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2559 (reldyn_sorting_bfd, arg1, int_reloc1);
2560 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2561 (reldyn_sorting_bfd, arg2, int_reloc2);
2562
2563 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2564 return -1;
2565 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2566 return 1;
2567
2568 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2569 return -1;
2570 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2571 return 1;
2572 return 0;
2573 #else
2574 abort ();
2575 #endif
2576 }
2577
2578
2579 /* This routine is used to write out ECOFF debugging external symbol
2580 information. It is called via mips_elf_link_hash_traverse. The
2581 ECOFF external symbol information must match the ELF external
2582 symbol information. Unfortunately, at this point we don't know
2583 whether a symbol is required by reloc information, so the two
2584 tables may wind up being different. We must sort out the external
2585 symbol information before we can set the final size of the .mdebug
2586 section, and we must set the size of the .mdebug section before we
2587 can relocate any sections, and we can't know which symbols are
2588 required by relocation until we relocate the sections.
2589 Fortunately, it is relatively unlikely that any symbol will be
2590 stripped but required by a reloc. In particular, it can not happen
2591 when generating a final executable. */
2592
2593 static bfd_boolean
2594 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2595 {
2596 struct extsym_info *einfo = data;
2597 bfd_boolean strip;
2598 asection *sec, *output_section;
2599
2600 if (h->root.indx == -2)
2601 strip = FALSE;
2602 else if ((h->root.def_dynamic
2603 || h->root.ref_dynamic
2604 || h->root.type == bfd_link_hash_new)
2605 && !h->root.def_regular
2606 && !h->root.ref_regular)
2607 strip = TRUE;
2608 else if (einfo->info->strip == strip_all
2609 || (einfo->info->strip == strip_some
2610 && bfd_hash_lookup (einfo->info->keep_hash,
2611 h->root.root.root.string,
2612 FALSE, FALSE) == NULL))
2613 strip = TRUE;
2614 else
2615 strip = FALSE;
2616
2617 if (strip)
2618 return TRUE;
2619
2620 if (h->esym.ifd == -2)
2621 {
2622 h->esym.jmptbl = 0;
2623 h->esym.cobol_main = 0;
2624 h->esym.weakext = 0;
2625 h->esym.reserved = 0;
2626 h->esym.ifd = ifdNil;
2627 h->esym.asym.value = 0;
2628 h->esym.asym.st = stGlobal;
2629
2630 if (h->root.root.type == bfd_link_hash_undefined
2631 || h->root.root.type == bfd_link_hash_undefweak)
2632 {
2633 const char *name;
2634
2635 /* Use undefined class. Also, set class and type for some
2636 special symbols. */
2637 name = h->root.root.root.string;
2638 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2639 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2640 {
2641 h->esym.asym.sc = scData;
2642 h->esym.asym.st = stLabel;
2643 h->esym.asym.value = 0;
2644 }
2645 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2646 {
2647 h->esym.asym.sc = scAbs;
2648 h->esym.asym.st = stLabel;
2649 h->esym.asym.value =
2650 mips_elf_hash_table (einfo->info)->procedure_count;
2651 }
2652 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2653 {
2654 h->esym.asym.sc = scAbs;
2655 h->esym.asym.st = stLabel;
2656 h->esym.asym.value = elf_gp (einfo->abfd);
2657 }
2658 else
2659 h->esym.asym.sc = scUndefined;
2660 }
2661 else if (h->root.root.type != bfd_link_hash_defined
2662 && h->root.root.type != bfd_link_hash_defweak)
2663 h->esym.asym.sc = scAbs;
2664 else
2665 {
2666 const char *name;
2667
2668 sec = h->root.root.u.def.section;
2669 output_section = sec->output_section;
2670
2671 /* When making a shared library and symbol h is the one from
2672 the another shared library, OUTPUT_SECTION may be null. */
2673 if (output_section == NULL)
2674 h->esym.asym.sc = scUndefined;
2675 else
2676 {
2677 name = bfd_section_name (output_section->owner, output_section);
2678
2679 if (strcmp (name, ".text") == 0)
2680 h->esym.asym.sc = scText;
2681 else if (strcmp (name, ".data") == 0)
2682 h->esym.asym.sc = scData;
2683 else if (strcmp (name, ".sdata") == 0)
2684 h->esym.asym.sc = scSData;
2685 else if (strcmp (name, ".rodata") == 0
2686 || strcmp (name, ".rdata") == 0)
2687 h->esym.asym.sc = scRData;
2688 else if (strcmp (name, ".bss") == 0)
2689 h->esym.asym.sc = scBss;
2690 else if (strcmp (name, ".sbss") == 0)
2691 h->esym.asym.sc = scSBss;
2692 else if (strcmp (name, ".init") == 0)
2693 h->esym.asym.sc = scInit;
2694 else if (strcmp (name, ".fini") == 0)
2695 h->esym.asym.sc = scFini;
2696 else
2697 h->esym.asym.sc = scAbs;
2698 }
2699 }
2700
2701 h->esym.asym.reserved = 0;
2702 h->esym.asym.index = indexNil;
2703 }
2704
2705 if (h->root.root.type == bfd_link_hash_common)
2706 h->esym.asym.value = h->root.root.u.c.size;
2707 else if (h->root.root.type == bfd_link_hash_defined
2708 || h->root.root.type == bfd_link_hash_defweak)
2709 {
2710 if (h->esym.asym.sc == scCommon)
2711 h->esym.asym.sc = scBss;
2712 else if (h->esym.asym.sc == scSCommon)
2713 h->esym.asym.sc = scSBss;
2714
2715 sec = h->root.root.u.def.section;
2716 output_section = sec->output_section;
2717 if (output_section != NULL)
2718 h->esym.asym.value = (h->root.root.u.def.value
2719 + sec->output_offset
2720 + output_section->vma);
2721 else
2722 h->esym.asym.value = 0;
2723 }
2724 else
2725 {
2726 struct mips_elf_link_hash_entry *hd = h;
2727
2728 while (hd->root.root.type == bfd_link_hash_indirect)
2729 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2730
2731 if (hd->needs_lazy_stub)
2732 {
2733 /* Set type and value for a symbol with a function stub. */
2734 h->esym.asym.st = stProc;
2735 sec = hd->root.root.u.def.section;
2736 if (sec == NULL)
2737 h->esym.asym.value = 0;
2738 else
2739 {
2740 output_section = sec->output_section;
2741 if (output_section != NULL)
2742 h->esym.asym.value = (hd->root.plt.offset
2743 + sec->output_offset
2744 + output_section->vma);
2745 else
2746 h->esym.asym.value = 0;
2747 }
2748 }
2749 }
2750
2751 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2752 h->root.root.root.string,
2753 &h->esym))
2754 {
2755 einfo->failed = TRUE;
2756 return FALSE;
2757 }
2758
2759 return TRUE;
2760 }
2761
2762 /* A comparison routine used to sort .gptab entries. */
2763
2764 static int
2765 gptab_compare (const void *p1, const void *p2)
2766 {
2767 const Elf32_gptab *a1 = p1;
2768 const Elf32_gptab *a2 = p2;
2769
2770 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2771 }
2772 \f
2773 /* Functions to manage the got entry hash table. */
2774
2775 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2776 hash number. */
2777
2778 static INLINE hashval_t
2779 mips_elf_hash_bfd_vma (bfd_vma addr)
2780 {
2781 #ifdef BFD64
2782 return addr + (addr >> 32);
2783 #else
2784 return addr;
2785 #endif
2786 }
2787
2788 static hashval_t
2789 mips_elf_got_entry_hash (const void *entry_)
2790 {
2791 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2792
2793 return (entry->symndx
2794 + ((entry->tls_type == GOT_TLS_LDM) << 18)
2795 + (entry->tls_type == GOT_TLS_LDM ? 0
2796 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
2797 : entry->symndx >= 0 ? (entry->abfd->id
2798 + mips_elf_hash_bfd_vma (entry->d.addend))
2799 : entry->d.h->root.root.root.hash));
2800 }
2801
2802 static int
2803 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
2804 {
2805 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2806 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2807
2808 return (e1->symndx == e2->symndx
2809 && e1->tls_type == e2->tls_type
2810 && (e1->tls_type == GOT_TLS_LDM ? TRUE
2811 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
2812 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
2813 && e1->d.addend == e2->d.addend)
2814 : e2->abfd && e1->d.h == e2->d.h));
2815 }
2816
2817 static hashval_t
2818 mips_got_page_ref_hash (const void *ref_)
2819 {
2820 const struct mips_got_page_ref *ref;
2821
2822 ref = (const struct mips_got_page_ref *) ref_;
2823 return ((ref->symndx >= 0
2824 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
2825 : ref->u.h->root.root.root.hash)
2826 + mips_elf_hash_bfd_vma (ref->addend));
2827 }
2828
2829 static int
2830 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
2831 {
2832 const struct mips_got_page_ref *ref1, *ref2;
2833
2834 ref1 = (const struct mips_got_page_ref *) ref1_;
2835 ref2 = (const struct mips_got_page_ref *) ref2_;
2836 return (ref1->symndx == ref2->symndx
2837 && (ref1->symndx < 0
2838 ? ref1->u.h == ref2->u.h
2839 : ref1->u.abfd == ref2->u.abfd)
2840 && ref1->addend == ref2->addend);
2841 }
2842
2843 static hashval_t
2844 mips_got_page_entry_hash (const void *entry_)
2845 {
2846 const struct mips_got_page_entry *entry;
2847
2848 entry = (const struct mips_got_page_entry *) entry_;
2849 return entry->sec->id;
2850 }
2851
2852 static int
2853 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
2854 {
2855 const struct mips_got_page_entry *entry1, *entry2;
2856
2857 entry1 = (const struct mips_got_page_entry *) entry1_;
2858 entry2 = (const struct mips_got_page_entry *) entry2_;
2859 return entry1->sec == entry2->sec;
2860 }
2861 \f
2862 /* Create and return a new mips_got_info structure. */
2863
2864 static struct mips_got_info *
2865 mips_elf_create_got_info (bfd *abfd)
2866 {
2867 struct mips_got_info *g;
2868
2869 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
2870 if (g == NULL)
2871 return NULL;
2872
2873 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
2874 mips_elf_got_entry_eq, NULL);
2875 if (g->got_entries == NULL)
2876 return NULL;
2877
2878 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
2879 mips_got_page_ref_eq, NULL);
2880 if (g->got_page_refs == NULL)
2881 return NULL;
2882
2883 return g;
2884 }
2885
2886 /* Return the GOT info for input bfd ABFD, trying to create a new one if
2887 CREATE_P and if ABFD doesn't already have a GOT. */
2888
2889 static struct mips_got_info *
2890 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
2891 {
2892 struct mips_elf_obj_tdata *tdata;
2893
2894 if (!is_mips_elf (abfd))
2895 return NULL;
2896
2897 tdata = mips_elf_tdata (abfd);
2898 if (!tdata->got && create_p)
2899 tdata->got = mips_elf_create_got_info (abfd);
2900 return tdata->got;
2901 }
2902
2903 /* Record that ABFD should use output GOT G. */
2904
2905 static void
2906 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
2907 {
2908 struct mips_elf_obj_tdata *tdata;
2909
2910 BFD_ASSERT (is_mips_elf (abfd));
2911 tdata = mips_elf_tdata (abfd);
2912 if (tdata->got)
2913 {
2914 /* The GOT structure itself and the hash table entries are
2915 allocated to a bfd, but the hash tables aren't. */
2916 htab_delete (tdata->got->got_entries);
2917 htab_delete (tdata->got->got_page_refs);
2918 if (tdata->got->got_page_entries)
2919 htab_delete (tdata->got->got_page_entries);
2920 }
2921 tdata->got = g;
2922 }
2923
2924 /* Return the dynamic relocation section. If it doesn't exist, try to
2925 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2926 if creation fails. */
2927
2928 static asection *
2929 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2930 {
2931 const char *dname;
2932 asection *sreloc;
2933 bfd *dynobj;
2934
2935 dname = MIPS_ELF_REL_DYN_NAME (info);
2936 dynobj = elf_hash_table (info)->dynobj;
2937 sreloc = bfd_get_linker_section (dynobj, dname);
2938 if (sreloc == NULL && create_p)
2939 {
2940 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
2941 (SEC_ALLOC
2942 | SEC_LOAD
2943 | SEC_HAS_CONTENTS
2944 | SEC_IN_MEMORY
2945 | SEC_LINKER_CREATED
2946 | SEC_READONLY));
2947 if (sreloc == NULL
2948 || ! bfd_set_section_alignment (dynobj, sreloc,
2949 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2950 return NULL;
2951 }
2952 return sreloc;
2953 }
2954
2955 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
2956
2957 static int
2958 mips_elf_reloc_tls_type (unsigned int r_type)
2959 {
2960 if (tls_gd_reloc_p (r_type))
2961 return GOT_TLS_GD;
2962
2963 if (tls_ldm_reloc_p (r_type))
2964 return GOT_TLS_LDM;
2965
2966 if (tls_gottprel_reloc_p (r_type))
2967 return GOT_TLS_IE;
2968
2969 return GOT_TLS_NONE;
2970 }
2971
2972 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
2973
2974 static int
2975 mips_tls_got_entries (unsigned int type)
2976 {
2977 switch (type)
2978 {
2979 case GOT_TLS_GD:
2980 case GOT_TLS_LDM:
2981 return 2;
2982
2983 case GOT_TLS_IE:
2984 return 1;
2985
2986 case GOT_TLS_NONE:
2987 return 0;
2988 }
2989 abort ();
2990 }
2991
2992 /* Count the number of relocations needed for a TLS GOT entry, with
2993 access types from TLS_TYPE, and symbol H (or a local symbol if H
2994 is NULL). */
2995
2996 static int
2997 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2998 struct elf_link_hash_entry *h)
2999 {
3000 int indx = 0;
3001 bfd_boolean need_relocs = FALSE;
3002 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3003
3004 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3005 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
3006 indx = h->dynindx;
3007
3008 if ((info->shared || indx != 0)
3009 && (h == NULL
3010 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3011 || h->root.type != bfd_link_hash_undefweak))
3012 need_relocs = TRUE;
3013
3014 if (!need_relocs)
3015 return 0;
3016
3017 switch (tls_type)
3018 {
3019 case GOT_TLS_GD:
3020 return indx != 0 ? 2 : 1;
3021
3022 case GOT_TLS_IE:
3023 return 1;
3024
3025 case GOT_TLS_LDM:
3026 return info->shared ? 1 : 0;
3027
3028 default:
3029 return 0;
3030 }
3031 }
3032
3033 /* Add the number of GOT entries and TLS relocations required by ENTRY
3034 to G. */
3035
3036 static void
3037 mips_elf_count_got_entry (struct bfd_link_info *info,
3038 struct mips_got_info *g,
3039 struct mips_got_entry *entry)
3040 {
3041 if (entry->tls_type)
3042 {
3043 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3044 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3045 entry->symndx < 0
3046 ? &entry->d.h->root : NULL);
3047 }
3048 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3049 g->local_gotno += 1;
3050 else
3051 g->global_gotno += 1;
3052 }
3053
3054 /* Output a simple dynamic relocation into SRELOC. */
3055
3056 static void
3057 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3058 asection *sreloc,
3059 unsigned long reloc_index,
3060 unsigned long indx,
3061 int r_type,
3062 bfd_vma offset)
3063 {
3064 Elf_Internal_Rela rel[3];
3065
3066 memset (rel, 0, sizeof (rel));
3067
3068 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3069 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3070
3071 if (ABI_64_P (output_bfd))
3072 {
3073 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3074 (output_bfd, &rel[0],
3075 (sreloc->contents
3076 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3077 }
3078 else
3079 bfd_elf32_swap_reloc_out
3080 (output_bfd, &rel[0],
3081 (sreloc->contents
3082 + reloc_index * sizeof (Elf32_External_Rel)));
3083 }
3084
3085 /* Initialize a set of TLS GOT entries for one symbol. */
3086
3087 static void
3088 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3089 struct mips_got_entry *entry,
3090 struct mips_elf_link_hash_entry *h,
3091 bfd_vma value)
3092 {
3093 struct mips_elf_link_hash_table *htab;
3094 int indx;
3095 asection *sreloc, *sgot;
3096 bfd_vma got_offset, got_offset2;
3097 bfd_boolean need_relocs = FALSE;
3098
3099 htab = mips_elf_hash_table (info);
3100 if (htab == NULL)
3101 return;
3102
3103 sgot = htab->sgot;
3104
3105 indx = 0;
3106 if (h != NULL)
3107 {
3108 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3109
3110 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
3111 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3112 indx = h->root.dynindx;
3113 }
3114
3115 if (entry->tls_initialized)
3116 return;
3117
3118 if ((info->shared || indx != 0)
3119 && (h == NULL
3120 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3121 || h->root.type != bfd_link_hash_undefweak))
3122 need_relocs = TRUE;
3123
3124 /* MINUS_ONE means the symbol is not defined in this object. It may not
3125 be defined at all; assume that the value doesn't matter in that
3126 case. Otherwise complain if we would use the value. */
3127 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3128 || h->root.root.type == bfd_link_hash_undefweak);
3129
3130 /* Emit necessary relocations. */
3131 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3132 got_offset = entry->gotidx;
3133
3134 switch (entry->tls_type)
3135 {
3136 case GOT_TLS_GD:
3137 /* General Dynamic. */
3138 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3139
3140 if (need_relocs)
3141 {
3142 mips_elf_output_dynamic_relocation
3143 (abfd, sreloc, sreloc->reloc_count++, indx,
3144 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3145 sgot->output_offset + sgot->output_section->vma + got_offset);
3146
3147 if (indx)
3148 mips_elf_output_dynamic_relocation
3149 (abfd, sreloc, sreloc->reloc_count++, indx,
3150 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3151 sgot->output_offset + sgot->output_section->vma + got_offset2);
3152 else
3153 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3154 sgot->contents + got_offset2);
3155 }
3156 else
3157 {
3158 MIPS_ELF_PUT_WORD (abfd, 1,
3159 sgot->contents + got_offset);
3160 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3161 sgot->contents + got_offset2);
3162 }
3163 break;
3164
3165 case GOT_TLS_IE:
3166 /* Initial Exec model. */
3167 if (need_relocs)
3168 {
3169 if (indx == 0)
3170 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3171 sgot->contents + got_offset);
3172 else
3173 MIPS_ELF_PUT_WORD (abfd, 0,
3174 sgot->contents + got_offset);
3175
3176 mips_elf_output_dynamic_relocation
3177 (abfd, sreloc, sreloc->reloc_count++, indx,
3178 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3179 sgot->output_offset + sgot->output_section->vma + got_offset);
3180 }
3181 else
3182 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3183 sgot->contents + got_offset);
3184 break;
3185
3186 case GOT_TLS_LDM:
3187 /* The initial offset is zero, and the LD offsets will include the
3188 bias by DTP_OFFSET. */
3189 MIPS_ELF_PUT_WORD (abfd, 0,
3190 sgot->contents + got_offset
3191 + MIPS_ELF_GOT_SIZE (abfd));
3192
3193 if (!info->shared)
3194 MIPS_ELF_PUT_WORD (abfd, 1,
3195 sgot->contents + got_offset);
3196 else
3197 mips_elf_output_dynamic_relocation
3198 (abfd, sreloc, sreloc->reloc_count++, indx,
3199 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3200 sgot->output_offset + sgot->output_section->vma + got_offset);
3201 break;
3202
3203 default:
3204 abort ();
3205 }
3206
3207 entry->tls_initialized = TRUE;
3208 }
3209
3210 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3211 for global symbol H. .got.plt comes before the GOT, so the offset
3212 will be negative. */
3213
3214 static bfd_vma
3215 mips_elf_gotplt_index (struct bfd_link_info *info,
3216 struct elf_link_hash_entry *h)
3217 {
3218 bfd_vma plt_index, got_address, got_value;
3219 struct mips_elf_link_hash_table *htab;
3220
3221 htab = mips_elf_hash_table (info);
3222 BFD_ASSERT (htab != NULL);
3223
3224 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
3225
3226 /* This function only works for VxWorks, because a non-VxWorks .got.plt
3227 section starts with reserved entries. */
3228 BFD_ASSERT (htab->is_vxworks);
3229
3230 /* Calculate the index of the symbol's PLT entry. */
3231 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
3232
3233 /* Calculate the address of the associated .got.plt entry. */
3234 got_address = (htab->sgotplt->output_section->vma
3235 + htab->sgotplt->output_offset
3236 + plt_index * 4);
3237
3238 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3239 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3240 + htab->root.hgot->root.u.def.section->output_offset
3241 + htab->root.hgot->root.u.def.value);
3242
3243 return got_address - got_value;
3244 }
3245
3246 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3247 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3248 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3249 offset can be found. */
3250
3251 static bfd_vma
3252 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3253 bfd_vma value, unsigned long r_symndx,
3254 struct mips_elf_link_hash_entry *h, int r_type)
3255 {
3256 struct mips_elf_link_hash_table *htab;
3257 struct mips_got_entry *entry;
3258
3259 htab = mips_elf_hash_table (info);
3260 BFD_ASSERT (htab != NULL);
3261
3262 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3263 r_symndx, h, r_type);
3264 if (!entry)
3265 return MINUS_ONE;
3266
3267 if (entry->tls_type)
3268 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3269 return entry->gotidx;
3270 }
3271
3272 /* Return the GOT index of global symbol H in the primary GOT. */
3273
3274 static bfd_vma
3275 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3276 struct elf_link_hash_entry *h)
3277 {
3278 struct mips_elf_link_hash_table *htab;
3279 long global_got_dynindx;
3280 struct mips_got_info *g;
3281 bfd_vma got_index;
3282
3283 htab = mips_elf_hash_table (info);
3284 BFD_ASSERT (htab != NULL);
3285
3286 global_got_dynindx = 0;
3287 if (htab->global_gotsym != NULL)
3288 global_got_dynindx = htab->global_gotsym->dynindx;
3289
3290 /* Once we determine the global GOT entry with the lowest dynamic
3291 symbol table index, we must put all dynamic symbols with greater
3292 indices into the primary GOT. That makes it easy to calculate the
3293 GOT offset. */
3294 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3295 g = mips_elf_bfd_got (obfd, FALSE);
3296 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3297 * MIPS_ELF_GOT_SIZE (obfd));
3298 BFD_ASSERT (got_index < htab->sgot->size);
3299
3300 return got_index;
3301 }
3302
3303 /* Return the GOT index for the global symbol indicated by H, which is
3304 referenced by a relocation of type R_TYPE in IBFD. */
3305
3306 static bfd_vma
3307 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3308 struct elf_link_hash_entry *h, int r_type)
3309 {
3310 struct mips_elf_link_hash_table *htab;
3311 struct mips_got_info *g;
3312 struct mips_got_entry lookup, *entry;
3313 bfd_vma gotidx;
3314
3315 htab = mips_elf_hash_table (info);
3316 BFD_ASSERT (htab != NULL);
3317
3318 g = mips_elf_bfd_got (ibfd, FALSE);
3319 BFD_ASSERT (g);
3320
3321 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3322 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3323 return mips_elf_primary_global_got_index (obfd, info, h);
3324
3325 lookup.abfd = ibfd;
3326 lookup.symndx = -1;
3327 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3328 entry = htab_find (g->got_entries, &lookup);
3329 BFD_ASSERT (entry);
3330
3331 gotidx = entry->gotidx;
3332 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3333
3334 if (lookup.tls_type)
3335 {
3336 bfd_vma value = MINUS_ONE;
3337
3338 if ((h->root.type == bfd_link_hash_defined
3339 || h->root.type == bfd_link_hash_defweak)
3340 && h->root.u.def.section->output_section)
3341 value = (h->root.u.def.value
3342 + h->root.u.def.section->output_offset
3343 + h->root.u.def.section->output_section->vma);
3344
3345 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3346 }
3347 return gotidx;
3348 }
3349
3350 /* Find a GOT page entry that points to within 32KB of VALUE. These
3351 entries are supposed to be placed at small offsets in the GOT, i.e.,
3352 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3353 entry could be created. If OFFSETP is nonnull, use it to return the
3354 offset of the GOT entry from VALUE. */
3355
3356 static bfd_vma
3357 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3358 bfd_vma value, bfd_vma *offsetp)
3359 {
3360 bfd_vma page, got_index;
3361 struct mips_got_entry *entry;
3362
3363 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3364 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3365 NULL, R_MIPS_GOT_PAGE);
3366
3367 if (!entry)
3368 return MINUS_ONE;
3369
3370 got_index = entry->gotidx;
3371
3372 if (offsetp)
3373 *offsetp = value - entry->d.address;
3374
3375 return got_index;
3376 }
3377
3378 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3379 EXTERNAL is true if the relocation was originally against a global
3380 symbol that binds locally. */
3381
3382 static bfd_vma
3383 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3384 bfd_vma value, bfd_boolean external)
3385 {
3386 struct mips_got_entry *entry;
3387
3388 /* GOT16 relocations against local symbols are followed by a LO16
3389 relocation; those against global symbols are not. Thus if the
3390 symbol was originally local, the GOT16 relocation should load the
3391 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3392 if (! external)
3393 value = mips_elf_high (value) << 16;
3394
3395 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3396 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3397 same in all cases. */
3398 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3399 NULL, R_MIPS_GOT16);
3400 if (entry)
3401 return entry->gotidx;
3402 else
3403 return MINUS_ONE;
3404 }
3405
3406 /* Returns the offset for the entry at the INDEXth position
3407 in the GOT. */
3408
3409 static bfd_vma
3410 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3411 bfd *input_bfd, bfd_vma got_index)
3412 {
3413 struct mips_elf_link_hash_table *htab;
3414 asection *sgot;
3415 bfd_vma gp;
3416
3417 htab = mips_elf_hash_table (info);
3418 BFD_ASSERT (htab != NULL);
3419
3420 sgot = htab->sgot;
3421 gp = _bfd_get_gp_value (output_bfd)
3422 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3423
3424 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3425 }
3426
3427 /* Create and return a local GOT entry for VALUE, which was calculated
3428 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3429 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3430 instead. */
3431
3432 static struct mips_got_entry *
3433 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3434 bfd *ibfd, bfd_vma value,
3435 unsigned long r_symndx,
3436 struct mips_elf_link_hash_entry *h,
3437 int r_type)
3438 {
3439 struct mips_got_entry lookup, *entry;
3440 void **loc;
3441 struct mips_got_info *g;
3442 struct mips_elf_link_hash_table *htab;
3443 bfd_vma gotidx;
3444
3445 htab = mips_elf_hash_table (info);
3446 BFD_ASSERT (htab != NULL);
3447
3448 g = mips_elf_bfd_got (ibfd, FALSE);
3449 if (g == NULL)
3450 {
3451 g = mips_elf_bfd_got (abfd, FALSE);
3452 BFD_ASSERT (g != NULL);
3453 }
3454
3455 /* This function shouldn't be called for symbols that live in the global
3456 area of the GOT. */
3457 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3458
3459 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3460 if (lookup.tls_type)
3461 {
3462 lookup.abfd = ibfd;
3463 if (tls_ldm_reloc_p (r_type))
3464 {
3465 lookup.symndx = 0;
3466 lookup.d.addend = 0;
3467 }
3468 else if (h == NULL)
3469 {
3470 lookup.symndx = r_symndx;
3471 lookup.d.addend = 0;
3472 }
3473 else
3474 {
3475 lookup.symndx = -1;
3476 lookup.d.h = h;
3477 }
3478
3479 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3480 BFD_ASSERT (entry);
3481
3482 gotidx = entry->gotidx;
3483 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3484
3485 return entry;
3486 }
3487
3488 lookup.abfd = NULL;
3489 lookup.symndx = -1;
3490 lookup.d.address = value;
3491 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3492 if (!loc)
3493 return NULL;
3494
3495 entry = (struct mips_got_entry *) *loc;
3496 if (entry)
3497 return entry;
3498
3499 if (g->assigned_gotno >= g->local_gotno)
3500 {
3501 /* We didn't allocate enough space in the GOT. */
3502 (*_bfd_error_handler)
3503 (_("not enough GOT space for local GOT entries"));
3504 bfd_set_error (bfd_error_bad_value);
3505 return NULL;
3506 }
3507
3508 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3509 if (!entry)
3510 return NULL;
3511
3512 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
3513 *entry = lookup;
3514 *loc = entry;
3515
3516 MIPS_ELF_PUT_WORD (abfd, value, htab->sgot->contents + entry->gotidx);
3517
3518 /* These GOT entries need a dynamic relocation on VxWorks. */
3519 if (htab->is_vxworks)
3520 {
3521 Elf_Internal_Rela outrel;
3522 asection *s;
3523 bfd_byte *rloc;
3524 bfd_vma got_address;
3525
3526 s = mips_elf_rel_dyn_section (info, FALSE);
3527 got_address = (htab->sgot->output_section->vma
3528 + htab->sgot->output_offset
3529 + entry->gotidx);
3530
3531 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3532 outrel.r_offset = got_address;
3533 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3534 outrel.r_addend = value;
3535 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3536 }
3537
3538 return entry;
3539 }
3540
3541 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3542 The number might be exact or a worst-case estimate, depending on how
3543 much information is available to elf_backend_omit_section_dynsym at
3544 the current linking stage. */
3545
3546 static bfd_size_type
3547 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3548 {
3549 bfd_size_type count;
3550
3551 count = 0;
3552 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
3553 {
3554 asection *p;
3555 const struct elf_backend_data *bed;
3556
3557 bed = get_elf_backend_data (output_bfd);
3558 for (p = output_bfd->sections; p ; p = p->next)
3559 if ((p->flags & SEC_EXCLUDE) == 0
3560 && (p->flags & SEC_ALLOC) != 0
3561 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3562 ++count;
3563 }
3564 return count;
3565 }
3566
3567 /* Sort the dynamic symbol table so that symbols that need GOT entries
3568 appear towards the end. */
3569
3570 static bfd_boolean
3571 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3572 {
3573 struct mips_elf_link_hash_table *htab;
3574 struct mips_elf_hash_sort_data hsd;
3575 struct mips_got_info *g;
3576
3577 if (elf_hash_table (info)->dynsymcount == 0)
3578 return TRUE;
3579
3580 htab = mips_elf_hash_table (info);
3581 BFD_ASSERT (htab != NULL);
3582
3583 g = htab->got_info;
3584 if (g == NULL)
3585 return TRUE;
3586
3587 hsd.low = NULL;
3588 hsd.max_unref_got_dynindx
3589 = hsd.min_got_dynindx
3590 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3591 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3592 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3593 elf_hash_table (info)),
3594 mips_elf_sort_hash_table_f,
3595 &hsd);
3596
3597 /* There should have been enough room in the symbol table to
3598 accommodate both the GOT and non-GOT symbols. */
3599 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3600 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3601 == elf_hash_table (info)->dynsymcount);
3602 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3603 == g->global_gotno);
3604
3605 /* Now we know which dynamic symbol has the lowest dynamic symbol
3606 table index in the GOT. */
3607 htab->global_gotsym = hsd.low;
3608
3609 return TRUE;
3610 }
3611
3612 /* If H needs a GOT entry, assign it the highest available dynamic
3613 index. Otherwise, assign it the lowest available dynamic
3614 index. */
3615
3616 static bfd_boolean
3617 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3618 {
3619 struct mips_elf_hash_sort_data *hsd = data;
3620
3621 /* Symbols without dynamic symbol table entries aren't interesting
3622 at all. */
3623 if (h->root.dynindx == -1)
3624 return TRUE;
3625
3626 switch (h->global_got_area)
3627 {
3628 case GGA_NONE:
3629 h->root.dynindx = hsd->max_non_got_dynindx++;
3630 break;
3631
3632 case GGA_NORMAL:
3633 h->root.dynindx = --hsd->min_got_dynindx;
3634 hsd->low = (struct elf_link_hash_entry *) h;
3635 break;
3636
3637 case GGA_RELOC_ONLY:
3638 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3639 hsd->low = (struct elf_link_hash_entry *) h;
3640 h->root.dynindx = hsd->max_unref_got_dynindx++;
3641 break;
3642 }
3643
3644 return TRUE;
3645 }
3646
3647 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3648 (which is owned by the caller and shouldn't be added to the
3649 hash table directly). */
3650
3651 static bfd_boolean
3652 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3653 struct mips_got_entry *lookup)
3654 {
3655 struct mips_elf_link_hash_table *htab;
3656 struct mips_got_entry *entry;
3657 struct mips_got_info *g;
3658 void **loc, **bfd_loc;
3659
3660 /* Make sure there's a slot for this entry in the master GOT. */
3661 htab = mips_elf_hash_table (info);
3662 g = htab->got_info;
3663 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3664 if (!loc)
3665 return FALSE;
3666
3667 /* Populate the entry if it isn't already. */
3668 entry = (struct mips_got_entry *) *loc;
3669 if (!entry)
3670 {
3671 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3672 if (!entry)
3673 return FALSE;
3674
3675 lookup->tls_initialized = FALSE;
3676 lookup->gotidx = -1;
3677 *entry = *lookup;
3678 *loc = entry;
3679 }
3680
3681 /* Reuse the same GOT entry for the BFD's GOT. */
3682 g = mips_elf_bfd_got (abfd, TRUE);
3683 if (!g)
3684 return FALSE;
3685
3686 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3687 if (!bfd_loc)
3688 return FALSE;
3689
3690 if (!*bfd_loc)
3691 *bfd_loc = entry;
3692 return TRUE;
3693 }
3694
3695 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3696 entry for it. FOR_CALL is true if the caller is only interested in
3697 using the GOT entry for calls. */
3698
3699 static bfd_boolean
3700 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3701 bfd *abfd, struct bfd_link_info *info,
3702 bfd_boolean for_call, int r_type)
3703 {
3704 struct mips_elf_link_hash_table *htab;
3705 struct mips_elf_link_hash_entry *hmips;
3706 struct mips_got_entry entry;
3707 unsigned char tls_type;
3708
3709 htab = mips_elf_hash_table (info);
3710 BFD_ASSERT (htab != NULL);
3711
3712 hmips = (struct mips_elf_link_hash_entry *) h;
3713 if (!for_call)
3714 hmips->got_only_for_calls = FALSE;
3715
3716 /* A global symbol in the GOT must also be in the dynamic symbol
3717 table. */
3718 if (h->dynindx == -1)
3719 {
3720 switch (ELF_ST_VISIBILITY (h->other))
3721 {
3722 case STV_INTERNAL:
3723 case STV_HIDDEN:
3724 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3725 break;
3726 }
3727 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3728 return FALSE;
3729 }
3730
3731 tls_type = mips_elf_reloc_tls_type (r_type);
3732 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
3733 hmips->global_got_area = GGA_NORMAL;
3734
3735 entry.abfd = abfd;
3736 entry.symndx = -1;
3737 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3738 entry.tls_type = tls_type;
3739 return mips_elf_record_got_entry (info, abfd, &entry);
3740 }
3741
3742 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
3743 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
3744
3745 static bfd_boolean
3746 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
3747 struct bfd_link_info *info, int r_type)
3748 {
3749 struct mips_elf_link_hash_table *htab;
3750 struct mips_got_info *g;
3751 struct mips_got_entry entry;
3752
3753 htab = mips_elf_hash_table (info);
3754 BFD_ASSERT (htab != NULL);
3755
3756 g = htab->got_info;
3757 BFD_ASSERT (g != NULL);
3758
3759 entry.abfd = abfd;
3760 entry.symndx = symndx;
3761 entry.d.addend = addend;
3762 entry.tls_type = mips_elf_reloc_tls_type (r_type);
3763 return mips_elf_record_got_entry (info, abfd, &entry);
3764 }
3765
3766 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
3767 H is the symbol's hash table entry, or null if SYMNDX is local
3768 to ABFD. */
3769
3770 static bfd_boolean
3771 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
3772 long symndx, struct elf_link_hash_entry *h,
3773 bfd_signed_vma addend)
3774 {
3775 struct mips_elf_link_hash_table *htab;
3776 struct mips_got_info *g1, *g2;
3777 struct mips_got_page_ref lookup, *entry;
3778 void **loc, **bfd_loc;
3779
3780 htab = mips_elf_hash_table (info);
3781 BFD_ASSERT (htab != NULL);
3782
3783 g1 = htab->got_info;
3784 BFD_ASSERT (g1 != NULL);
3785
3786 if (h)
3787 {
3788 lookup.symndx = -1;
3789 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
3790 }
3791 else
3792 {
3793 lookup.symndx = symndx;
3794 lookup.u.abfd = abfd;
3795 }
3796 lookup.addend = addend;
3797 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
3798 if (loc == NULL)
3799 return FALSE;
3800
3801 entry = (struct mips_got_page_ref *) *loc;
3802 if (!entry)
3803 {
3804 entry = bfd_alloc (abfd, sizeof (*entry));
3805 if (!entry)
3806 return FALSE;
3807
3808 *entry = lookup;
3809 *loc = entry;
3810 }
3811
3812 /* Add the same entry to the BFD's GOT. */
3813 g2 = mips_elf_bfd_got (abfd, TRUE);
3814 if (!g2)
3815 return FALSE;
3816
3817 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
3818 if (!bfd_loc)
3819 return FALSE;
3820
3821 if (!*bfd_loc)
3822 *bfd_loc = entry;
3823
3824 return TRUE;
3825 }
3826
3827 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
3828
3829 static void
3830 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
3831 unsigned int n)
3832 {
3833 asection *s;
3834 struct mips_elf_link_hash_table *htab;
3835
3836 htab = mips_elf_hash_table (info);
3837 BFD_ASSERT (htab != NULL);
3838
3839 s = mips_elf_rel_dyn_section (info, FALSE);
3840 BFD_ASSERT (s != NULL);
3841
3842 if (htab->is_vxworks)
3843 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
3844 else
3845 {
3846 if (s->size == 0)
3847 {
3848 /* Make room for a null element. */
3849 s->size += MIPS_ELF_REL_SIZE (abfd);
3850 ++s->reloc_count;
3851 }
3852 s->size += n * MIPS_ELF_REL_SIZE (abfd);
3853 }
3854 }
3855 \f
3856 /* A htab_traverse callback for GOT entries, with DATA pointing to a
3857 mips_elf_traverse_got_arg structure. Count the number of GOT
3858 entries and TLS relocs. Set DATA->value to true if we need
3859 to resolve indirect or warning symbols and then recreate the GOT. */
3860
3861 static int
3862 mips_elf_check_recreate_got (void **entryp, void *data)
3863 {
3864 struct mips_got_entry *entry;
3865 struct mips_elf_traverse_got_arg *arg;
3866
3867 entry = (struct mips_got_entry *) *entryp;
3868 arg = (struct mips_elf_traverse_got_arg *) data;
3869 if (entry->abfd != NULL && entry->symndx == -1)
3870 {
3871 struct mips_elf_link_hash_entry *h;
3872
3873 h = entry->d.h;
3874 if (h->root.root.type == bfd_link_hash_indirect
3875 || h->root.root.type == bfd_link_hash_warning)
3876 {
3877 arg->value = TRUE;
3878 return 0;
3879 }
3880 }
3881 mips_elf_count_got_entry (arg->info, arg->g, entry);
3882 return 1;
3883 }
3884
3885 /* A htab_traverse callback for GOT entries, with DATA pointing to a
3886 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
3887 converting entries for indirect and warning symbols into entries
3888 for the target symbol. Set DATA->g to null on error. */
3889
3890 static int
3891 mips_elf_recreate_got (void **entryp, void *data)
3892 {
3893 struct mips_got_entry new_entry, *entry;
3894 struct mips_elf_traverse_got_arg *arg;
3895 void **slot;
3896
3897 entry = (struct mips_got_entry *) *entryp;
3898 arg = (struct mips_elf_traverse_got_arg *) data;
3899 if (entry->abfd != NULL
3900 && entry->symndx == -1
3901 && (entry->d.h->root.root.type == bfd_link_hash_indirect
3902 || entry->d.h->root.root.type == bfd_link_hash_warning))
3903 {
3904 struct mips_elf_link_hash_entry *h;
3905
3906 new_entry = *entry;
3907 entry = &new_entry;
3908 h = entry->d.h;
3909 do
3910 {
3911 BFD_ASSERT (h->global_got_area == GGA_NONE);
3912 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3913 }
3914 while (h->root.root.type == bfd_link_hash_indirect
3915 || h->root.root.type == bfd_link_hash_warning);
3916 entry->d.h = h;
3917 }
3918 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
3919 if (slot == NULL)
3920 {
3921 arg->g = NULL;
3922 return 0;
3923 }
3924 if (*slot == NULL)
3925 {
3926 if (entry == &new_entry)
3927 {
3928 entry = bfd_alloc (entry->abfd, sizeof (*entry));
3929 if (!entry)
3930 {
3931 arg->g = NULL;
3932 return 0;
3933 }
3934 *entry = new_entry;
3935 }
3936 *slot = entry;
3937 mips_elf_count_got_entry (arg->info, arg->g, entry);
3938 }
3939 return 1;
3940 }
3941
3942 /* Return the maximum number of GOT page entries required for RANGE. */
3943
3944 static bfd_vma
3945 mips_elf_pages_for_range (const struct mips_got_page_range *range)
3946 {
3947 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
3948 }
3949
3950 /* Record that G requires a page entry that can reach SEC + ADDEND. */
3951
3952 static bfd_boolean
3953 mips_elf_record_got_page_entry (struct mips_got_info *g,
3954 asection *sec, bfd_signed_vma addend)
3955 {
3956 struct mips_got_page_entry lookup, *entry;
3957 struct mips_got_page_range **range_ptr, *range;
3958 bfd_vma old_pages, new_pages;
3959 void **loc;
3960
3961 /* Find the mips_got_page_entry hash table entry for this section. */
3962 lookup.sec = sec;
3963 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
3964 if (loc == NULL)
3965 return FALSE;
3966
3967 /* Create a mips_got_page_entry if this is the first time we've
3968 seen the section. */
3969 entry = (struct mips_got_page_entry *) *loc;
3970 if (!entry)
3971 {
3972 entry = bfd_zalloc (sec->owner, sizeof (*entry));
3973 if (!entry)
3974 return FALSE;
3975
3976 entry->sec = sec;
3977 *loc = entry;
3978 }
3979
3980 /* Skip over ranges whose maximum extent cannot share a page entry
3981 with ADDEND. */
3982 range_ptr = &entry->ranges;
3983 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
3984 range_ptr = &(*range_ptr)->next;
3985
3986 /* If we scanned to the end of the list, or found a range whose
3987 minimum extent cannot share a page entry with ADDEND, create
3988 a new singleton range. */
3989 range = *range_ptr;
3990 if (!range || addend < range->min_addend - 0xffff)
3991 {
3992 range = bfd_zalloc (sec->owner, sizeof (*range));
3993 if (!range)
3994 return FALSE;
3995
3996 range->next = *range_ptr;
3997 range->min_addend = addend;
3998 range->max_addend = addend;
3999
4000 *range_ptr = range;
4001 entry->num_pages++;
4002 g->page_gotno++;
4003 return TRUE;
4004 }
4005
4006 /* Remember how many pages the old range contributed. */
4007 old_pages = mips_elf_pages_for_range (range);
4008
4009 /* Update the ranges. */
4010 if (addend < range->min_addend)
4011 range->min_addend = addend;
4012 else if (addend > range->max_addend)
4013 {
4014 if (range->next && addend >= range->next->min_addend - 0xffff)
4015 {
4016 old_pages += mips_elf_pages_for_range (range->next);
4017 range->max_addend = range->next->max_addend;
4018 range->next = range->next->next;
4019 }
4020 else
4021 range->max_addend = addend;
4022 }
4023
4024 /* Record any change in the total estimate. */
4025 new_pages = mips_elf_pages_for_range (range);
4026 if (old_pages != new_pages)
4027 {
4028 entry->num_pages += new_pages - old_pages;
4029 g->page_gotno += new_pages - old_pages;
4030 }
4031
4032 return TRUE;
4033 }
4034
4035 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4036 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4037 whether the page reference described by *REFP needs a GOT page entry,
4038 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4039
4040 static bfd_boolean
4041 mips_elf_resolve_got_page_ref (void **refp, void *data)
4042 {
4043 struct mips_got_page_ref *ref;
4044 struct mips_elf_traverse_got_arg *arg;
4045 struct mips_elf_link_hash_table *htab;
4046 asection *sec;
4047 bfd_vma addend;
4048
4049 ref = (struct mips_got_page_ref *) *refp;
4050 arg = (struct mips_elf_traverse_got_arg *) data;
4051 htab = mips_elf_hash_table (arg->info);
4052
4053 if (ref->symndx < 0)
4054 {
4055 struct mips_elf_link_hash_entry *h;
4056
4057 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4058 h = ref->u.h;
4059 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4060 return 1;
4061
4062 /* Ignore undefined symbols; we'll issue an error later if
4063 appropriate. */
4064 if (!((h->root.root.type == bfd_link_hash_defined
4065 || h->root.root.type == bfd_link_hash_defweak)
4066 && h->root.root.u.def.section))
4067 return 1;
4068
4069 sec = h->root.root.u.def.section;
4070 addend = h->root.root.u.def.value + ref->addend;
4071 }
4072 else
4073 {
4074 Elf_Internal_Sym *isym;
4075
4076 /* Read in the symbol. */
4077 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4078 ref->symndx);
4079 if (isym == NULL)
4080 {
4081 arg->g = NULL;
4082 return 0;
4083 }
4084
4085 /* Get the associated input section. */
4086 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4087 if (sec == NULL)
4088 {
4089 arg->g = NULL;
4090 return 0;
4091 }
4092
4093 /* If this is a mergable section, work out the section and offset
4094 of the merged data. For section symbols, the addend specifies
4095 of the offset _of_ the first byte in the data, otherwise it
4096 specifies the offset _from_ the first byte. */
4097 if (sec->flags & SEC_MERGE)
4098 {
4099 void *secinfo;
4100
4101 secinfo = elf_section_data (sec)->sec_info;
4102 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4103 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4104 isym->st_value + ref->addend);
4105 else
4106 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4107 isym->st_value) + ref->addend;
4108 }
4109 else
4110 addend = isym->st_value + ref->addend;
4111 }
4112 if (!mips_elf_record_got_page_entry (arg->g, sec, addend))
4113 {
4114 arg->g = NULL;
4115 return 0;
4116 }
4117 return 1;
4118 }
4119
4120 /* If any entries in G->got_entries are for indirect or warning symbols,
4121 replace them with entries for the target symbol. Convert g->got_page_refs
4122 into got_page_entry structures and estimate the number of page entries
4123 that they require. */
4124
4125 static bfd_boolean
4126 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4127 struct mips_got_info *g)
4128 {
4129 struct mips_elf_traverse_got_arg tga;
4130 struct mips_got_info oldg;
4131
4132 oldg = *g;
4133
4134 tga.info = info;
4135 tga.g = g;
4136 tga.value = FALSE;
4137 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4138 if (tga.value)
4139 {
4140 *g = oldg;
4141 g->got_entries = htab_create (htab_size (oldg.got_entries),
4142 mips_elf_got_entry_hash,
4143 mips_elf_got_entry_eq, NULL);
4144 if (!g->got_entries)
4145 return FALSE;
4146
4147 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4148 if (!tga.g)
4149 return FALSE;
4150
4151 htab_delete (oldg.got_entries);
4152 }
4153
4154 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4155 mips_got_page_entry_eq, NULL);
4156 if (g->got_page_entries == NULL)
4157 return FALSE;
4158
4159 tga.info = info;
4160 tga.g = g;
4161 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4162
4163 return TRUE;
4164 }
4165
4166 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4167 link_info structure. Decide whether the hash entry needs an entry in
4168 the global part of the primary GOT, setting global_got_area accordingly.
4169 Count the number of global symbols that are in the primary GOT only
4170 because they have relocations against them (reloc_only_gotno). */
4171
4172 static int
4173 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4174 {
4175 struct bfd_link_info *info;
4176 struct mips_elf_link_hash_table *htab;
4177 struct mips_got_info *g;
4178
4179 info = (struct bfd_link_info *) data;
4180 htab = mips_elf_hash_table (info);
4181 g = htab->got_info;
4182 if (h->global_got_area != GGA_NONE)
4183 {
4184 /* Make a final decision about whether the symbol belongs in the
4185 local or global GOT. Symbols that bind locally can (and in the
4186 case of forced-local symbols, must) live in the local GOT.
4187 Those that are aren't in the dynamic symbol table must also
4188 live in the local GOT.
4189
4190 Note that the former condition does not always imply the
4191 latter: symbols do not bind locally if they are completely
4192 undefined. We'll report undefined symbols later if appropriate. */
4193 if (h->root.dynindx == -1
4194 || (h->got_only_for_calls
4195 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4196 : SYMBOL_REFERENCES_LOCAL (info, &h->root)))
4197 /* The symbol belongs in the local GOT. We no longer need this
4198 entry if it was only used for relocations; those relocations
4199 will be against the null or section symbol instead of H. */
4200 h->global_got_area = GGA_NONE;
4201 else if (htab->is_vxworks
4202 && h->got_only_for_calls
4203 && h->root.plt.offset != MINUS_ONE)
4204 /* On VxWorks, calls can refer directly to the .got.plt entry;
4205 they don't need entries in the regular GOT. .got.plt entries
4206 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4207 h->global_got_area = GGA_NONE;
4208 else if (h->global_got_area == GGA_RELOC_ONLY)
4209 {
4210 g->reloc_only_gotno++;
4211 g->global_gotno++;
4212 }
4213 }
4214 return 1;
4215 }
4216 \f
4217 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4218 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4219
4220 static int
4221 mips_elf_add_got_entry (void **entryp, void *data)
4222 {
4223 struct mips_got_entry *entry;
4224 struct mips_elf_traverse_got_arg *arg;
4225 void **slot;
4226
4227 entry = (struct mips_got_entry *) *entryp;
4228 arg = (struct mips_elf_traverse_got_arg *) data;
4229 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4230 if (!slot)
4231 {
4232 arg->g = NULL;
4233 return 0;
4234 }
4235 if (!*slot)
4236 {
4237 *slot = entry;
4238 mips_elf_count_got_entry (arg->info, arg->g, entry);
4239 }
4240 return 1;
4241 }
4242
4243 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4244 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4245
4246 static int
4247 mips_elf_add_got_page_entry (void **entryp, void *data)
4248 {
4249 struct mips_got_page_entry *entry;
4250 struct mips_elf_traverse_got_arg *arg;
4251 void **slot;
4252
4253 entry = (struct mips_got_page_entry *) *entryp;
4254 arg = (struct mips_elf_traverse_got_arg *) data;
4255 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4256 if (!slot)
4257 {
4258 arg->g = NULL;
4259 return 0;
4260 }
4261 if (!*slot)
4262 {
4263 *slot = entry;
4264 arg->g->page_gotno += entry->num_pages;
4265 }
4266 return 1;
4267 }
4268
4269 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4270 this would lead to overflow, 1 if they were merged successfully,
4271 and 0 if a merge failed due to lack of memory. (These values are chosen
4272 so that nonnegative return values can be returned by a htab_traverse
4273 callback.) */
4274
4275 static int
4276 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4277 struct mips_got_info *to,
4278 struct mips_elf_got_per_bfd_arg *arg)
4279 {
4280 struct mips_elf_traverse_got_arg tga;
4281 unsigned int estimate;
4282
4283 /* Work out how many page entries we would need for the combined GOT. */
4284 estimate = arg->max_pages;
4285 if (estimate >= from->page_gotno + to->page_gotno)
4286 estimate = from->page_gotno + to->page_gotno;
4287
4288 /* And conservatively estimate how many local and TLS entries
4289 would be needed. */
4290 estimate += from->local_gotno + to->local_gotno;
4291 estimate += from->tls_gotno + to->tls_gotno;
4292
4293 /* If we're merging with the primary got, any TLS relocations will
4294 come after the full set of global entries. Otherwise estimate those
4295 conservatively as well. */
4296 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4297 estimate += arg->global_count;
4298 else
4299 estimate += from->global_gotno + to->global_gotno;
4300
4301 /* Bail out if the combined GOT might be too big. */
4302 if (estimate > arg->max_count)
4303 return -1;
4304
4305 /* Transfer the bfd's got information from FROM to TO. */
4306 tga.info = arg->info;
4307 tga.g = to;
4308 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4309 if (!tga.g)
4310 return 0;
4311
4312 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4313 if (!tga.g)
4314 return 0;
4315
4316 mips_elf_replace_bfd_got (abfd, to);
4317 return 1;
4318 }
4319
4320 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4321 as possible of the primary got, since it doesn't require explicit
4322 dynamic relocations, but don't use bfds that would reference global
4323 symbols out of the addressable range. Failing the primary got,
4324 attempt to merge with the current got, or finish the current got
4325 and then make make the new got current. */
4326
4327 static bfd_boolean
4328 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4329 struct mips_elf_got_per_bfd_arg *arg)
4330 {
4331 unsigned int estimate;
4332 int result;
4333
4334 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4335 return FALSE;
4336
4337 /* Work out the number of page, local and TLS entries. */
4338 estimate = arg->max_pages;
4339 if (estimate > g->page_gotno)
4340 estimate = g->page_gotno;
4341 estimate += g->local_gotno + g->tls_gotno;
4342
4343 /* We place TLS GOT entries after both locals and globals. The globals
4344 for the primary GOT may overflow the normal GOT size limit, so be
4345 sure not to merge a GOT which requires TLS with the primary GOT in that
4346 case. This doesn't affect non-primary GOTs. */
4347 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4348
4349 if (estimate <= arg->max_count)
4350 {
4351 /* If we don't have a primary GOT, use it as
4352 a starting point for the primary GOT. */
4353 if (!arg->primary)
4354 {
4355 arg->primary = g;
4356 return TRUE;
4357 }
4358
4359 /* Try merging with the primary GOT. */
4360 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4361 if (result >= 0)
4362 return result;
4363 }
4364
4365 /* If we can merge with the last-created got, do it. */
4366 if (arg->current)
4367 {
4368 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4369 if (result >= 0)
4370 return result;
4371 }
4372
4373 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4374 fits; if it turns out that it doesn't, we'll get relocation
4375 overflows anyway. */
4376 g->next = arg->current;
4377 arg->current = g;
4378
4379 return TRUE;
4380 }
4381
4382 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4383 to GOTIDX, duplicating the entry if it has already been assigned
4384 an index in a different GOT. */
4385
4386 static bfd_boolean
4387 mips_elf_set_gotidx (void **entryp, long gotidx)
4388 {
4389 struct mips_got_entry *entry;
4390
4391 entry = (struct mips_got_entry *) *entryp;
4392 if (entry->gotidx > 0)
4393 {
4394 struct mips_got_entry *new_entry;
4395
4396 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4397 if (!new_entry)
4398 return FALSE;
4399
4400 *new_entry = *entry;
4401 *entryp = new_entry;
4402 entry = new_entry;
4403 }
4404 entry->gotidx = gotidx;
4405 return TRUE;
4406 }
4407
4408 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4409 mips_elf_traverse_got_arg in which DATA->value is the size of one
4410 GOT entry. Set DATA->g to null on failure. */
4411
4412 static int
4413 mips_elf_initialize_tls_index (void **entryp, void *data)
4414 {
4415 struct mips_got_entry *entry;
4416 struct mips_elf_traverse_got_arg *arg;
4417
4418 /* We're only interested in TLS symbols. */
4419 entry = (struct mips_got_entry *) *entryp;
4420 if (entry->tls_type == GOT_TLS_NONE)
4421 return 1;
4422
4423 arg = (struct mips_elf_traverse_got_arg *) data;
4424 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4425 {
4426 arg->g = NULL;
4427 return 0;
4428 }
4429
4430 /* Account for the entries we've just allocated. */
4431 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4432 return 1;
4433 }
4434
4435 /* A htab_traverse callback for GOT entries, where DATA points to a
4436 mips_elf_traverse_got_arg. Set the global_got_area of each global
4437 symbol to DATA->value. */
4438
4439 static int
4440 mips_elf_set_global_got_area (void **entryp, void *data)
4441 {
4442 struct mips_got_entry *entry;
4443 struct mips_elf_traverse_got_arg *arg;
4444
4445 entry = (struct mips_got_entry *) *entryp;
4446 arg = (struct mips_elf_traverse_got_arg *) data;
4447 if (entry->abfd != NULL
4448 && entry->symndx == -1
4449 && entry->d.h->global_got_area != GGA_NONE)
4450 entry->d.h->global_got_area = arg->value;
4451 return 1;
4452 }
4453
4454 /* A htab_traverse callback for secondary GOT entries, where DATA points
4455 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4456 and record the number of relocations they require. DATA->value is
4457 the size of one GOT entry. Set DATA->g to null on failure. */
4458
4459 static int
4460 mips_elf_set_global_gotidx (void **entryp, void *data)
4461 {
4462 struct mips_got_entry *entry;
4463 struct mips_elf_traverse_got_arg *arg;
4464
4465 entry = (struct mips_got_entry *) *entryp;
4466 arg = (struct mips_elf_traverse_got_arg *) data;
4467 if (entry->abfd != NULL
4468 && entry->symndx == -1
4469 && entry->d.h->global_got_area != GGA_NONE)
4470 {
4471 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_gotno))
4472 {
4473 arg->g = NULL;
4474 return 0;
4475 }
4476 arg->g->assigned_gotno += 1;
4477
4478 if (arg->info->shared
4479 || (elf_hash_table (arg->info)->dynamic_sections_created
4480 && entry->d.h->root.def_dynamic
4481 && !entry->d.h->root.def_regular))
4482 arg->g->relocs += 1;
4483 }
4484
4485 return 1;
4486 }
4487
4488 /* A htab_traverse callback for GOT entries for which DATA is the
4489 bfd_link_info. Forbid any global symbols from having traditional
4490 lazy-binding stubs. */
4491
4492 static int
4493 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4494 {
4495 struct bfd_link_info *info;
4496 struct mips_elf_link_hash_table *htab;
4497 struct mips_got_entry *entry;
4498
4499 entry = (struct mips_got_entry *) *entryp;
4500 info = (struct bfd_link_info *) data;
4501 htab = mips_elf_hash_table (info);
4502 BFD_ASSERT (htab != NULL);
4503
4504 if (entry->abfd != NULL
4505 && entry->symndx == -1
4506 && entry->d.h->needs_lazy_stub)
4507 {
4508 entry->d.h->needs_lazy_stub = FALSE;
4509 htab->lazy_stub_count--;
4510 }
4511
4512 return 1;
4513 }
4514
4515 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4516 the primary GOT. */
4517 static bfd_vma
4518 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4519 {
4520 if (!g->next)
4521 return 0;
4522
4523 g = mips_elf_bfd_got (ibfd, FALSE);
4524 if (! g)
4525 return 0;
4526
4527 BFD_ASSERT (g->next);
4528
4529 g = g->next;
4530
4531 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4532 * MIPS_ELF_GOT_SIZE (abfd);
4533 }
4534
4535 /* Turn a single GOT that is too big for 16-bit addressing into
4536 a sequence of GOTs, each one 16-bit addressable. */
4537
4538 static bfd_boolean
4539 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4540 asection *got, bfd_size_type pages)
4541 {
4542 struct mips_elf_link_hash_table *htab;
4543 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4544 struct mips_elf_traverse_got_arg tga;
4545 struct mips_got_info *g, *gg;
4546 unsigned int assign, needed_relocs;
4547 bfd *dynobj, *ibfd;
4548
4549 dynobj = elf_hash_table (info)->dynobj;
4550 htab = mips_elf_hash_table (info);
4551 BFD_ASSERT (htab != NULL);
4552
4553 g = htab->got_info;
4554
4555 got_per_bfd_arg.obfd = abfd;
4556 got_per_bfd_arg.info = info;
4557 got_per_bfd_arg.current = NULL;
4558 got_per_bfd_arg.primary = NULL;
4559 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4560 / MIPS_ELF_GOT_SIZE (abfd))
4561 - htab->reserved_gotno);
4562 got_per_bfd_arg.max_pages = pages;
4563 /* The number of globals that will be included in the primary GOT.
4564 See the calls to mips_elf_set_global_got_area below for more
4565 information. */
4566 got_per_bfd_arg.global_count = g->global_gotno;
4567
4568 /* Try to merge the GOTs of input bfds together, as long as they
4569 don't seem to exceed the maximum GOT size, choosing one of them
4570 to be the primary GOT. */
4571 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link_next)
4572 {
4573 gg = mips_elf_bfd_got (ibfd, FALSE);
4574 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4575 return FALSE;
4576 }
4577
4578 /* If we do not find any suitable primary GOT, create an empty one. */
4579 if (got_per_bfd_arg.primary == NULL)
4580 g->next = mips_elf_create_got_info (abfd);
4581 else
4582 g->next = got_per_bfd_arg.primary;
4583 g->next->next = got_per_bfd_arg.current;
4584
4585 /* GG is now the master GOT, and G is the primary GOT. */
4586 gg = g;
4587 g = g->next;
4588
4589 /* Map the output bfd to the primary got. That's what we're going
4590 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4591 didn't mark in check_relocs, and we want a quick way to find it.
4592 We can't just use gg->next because we're going to reverse the
4593 list. */
4594 mips_elf_replace_bfd_got (abfd, g);
4595
4596 /* Every symbol that is referenced in a dynamic relocation must be
4597 present in the primary GOT, so arrange for them to appear after
4598 those that are actually referenced. */
4599 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4600 g->global_gotno = gg->global_gotno;
4601
4602 tga.info = info;
4603 tga.value = GGA_RELOC_ONLY;
4604 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4605 tga.value = GGA_NORMAL;
4606 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4607
4608 /* Now go through the GOTs assigning them offset ranges.
4609 [assigned_gotno, local_gotno[ will be set to the range of local
4610 entries in each GOT. We can then compute the end of a GOT by
4611 adding local_gotno to global_gotno. We reverse the list and make
4612 it circular since then we'll be able to quickly compute the
4613 beginning of a GOT, by computing the end of its predecessor. To
4614 avoid special cases for the primary GOT, while still preserving
4615 assertions that are valid for both single- and multi-got links,
4616 we arrange for the main got struct to have the right number of
4617 global entries, but set its local_gotno such that the initial
4618 offset of the primary GOT is zero. Remember that the primary GOT
4619 will become the last item in the circular linked list, so it
4620 points back to the master GOT. */
4621 gg->local_gotno = -g->global_gotno;
4622 gg->global_gotno = g->global_gotno;
4623 gg->tls_gotno = 0;
4624 assign = 0;
4625 gg->next = gg;
4626
4627 do
4628 {
4629 struct mips_got_info *gn;
4630
4631 assign += htab->reserved_gotno;
4632 g->assigned_gotno = assign;
4633 g->local_gotno += assign;
4634 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4635 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4636
4637 /* Take g out of the direct list, and push it onto the reversed
4638 list that gg points to. g->next is guaranteed to be nonnull after
4639 this operation, as required by mips_elf_initialize_tls_index. */
4640 gn = g->next;
4641 g->next = gg->next;
4642 gg->next = g;
4643
4644 /* Set up any TLS entries. We always place the TLS entries after
4645 all non-TLS entries. */
4646 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4647 tga.g = g;
4648 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4649 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4650 if (!tga.g)
4651 return FALSE;
4652 BFD_ASSERT (g->tls_assigned_gotno == assign);
4653
4654 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4655 g = gn;
4656
4657 /* Forbid global symbols in every non-primary GOT from having
4658 lazy-binding stubs. */
4659 if (g)
4660 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4661 }
4662 while (g);
4663
4664 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
4665
4666 needed_relocs = 0;
4667 for (g = gg->next; g && g->next != gg; g = g->next)
4668 {
4669 unsigned int save_assign;
4670
4671 /* Assign offsets to global GOT entries and count how many
4672 relocations they need. */
4673 save_assign = g->assigned_gotno;
4674 g->assigned_gotno = g->local_gotno;
4675 tga.info = info;
4676 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4677 tga.g = g;
4678 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
4679 if (!tga.g)
4680 return FALSE;
4681 BFD_ASSERT (g->assigned_gotno == g->local_gotno + g->global_gotno);
4682 g->assigned_gotno = save_assign;
4683
4684 if (info->shared)
4685 {
4686 g->relocs += g->local_gotno - g->assigned_gotno;
4687 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
4688 + g->next->global_gotno
4689 + g->next->tls_gotno
4690 + htab->reserved_gotno);
4691 }
4692 needed_relocs += g->relocs;
4693 }
4694 needed_relocs += g->relocs;
4695
4696 if (needed_relocs)
4697 mips_elf_allocate_dynamic_relocations (dynobj, info,
4698 needed_relocs);
4699
4700 return TRUE;
4701 }
4702
4703 \f
4704 /* Returns the first relocation of type r_type found, beginning with
4705 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4706
4707 static const Elf_Internal_Rela *
4708 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4709 const Elf_Internal_Rela *relocation,
4710 const Elf_Internal_Rela *relend)
4711 {
4712 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4713
4714 while (relocation < relend)
4715 {
4716 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4717 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4718 return relocation;
4719
4720 ++relocation;
4721 }
4722
4723 /* We didn't find it. */
4724 return NULL;
4725 }
4726
4727 /* Return whether an input relocation is against a local symbol. */
4728
4729 static bfd_boolean
4730 mips_elf_local_relocation_p (bfd *input_bfd,
4731 const Elf_Internal_Rela *relocation,
4732 asection **local_sections)
4733 {
4734 unsigned long r_symndx;
4735 Elf_Internal_Shdr *symtab_hdr;
4736 size_t extsymoff;
4737
4738 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4739 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4740 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4741
4742 if (r_symndx < extsymoff)
4743 return TRUE;
4744 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
4745 return TRUE;
4746
4747 return FALSE;
4748 }
4749 \f
4750 /* Sign-extend VALUE, which has the indicated number of BITS. */
4751
4752 bfd_vma
4753 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
4754 {
4755 if (value & ((bfd_vma) 1 << (bits - 1)))
4756 /* VALUE is negative. */
4757 value |= ((bfd_vma) - 1) << bits;
4758
4759 return value;
4760 }
4761
4762 /* Return non-zero if the indicated VALUE has overflowed the maximum
4763 range expressible by a signed number with the indicated number of
4764 BITS. */
4765
4766 static bfd_boolean
4767 mips_elf_overflow_p (bfd_vma value, int bits)
4768 {
4769 bfd_signed_vma svalue = (bfd_signed_vma) value;
4770
4771 if (svalue > (1 << (bits - 1)) - 1)
4772 /* The value is too big. */
4773 return TRUE;
4774 else if (svalue < -(1 << (bits - 1)))
4775 /* The value is too small. */
4776 return TRUE;
4777
4778 /* All is well. */
4779 return FALSE;
4780 }
4781
4782 /* Calculate the %high function. */
4783
4784 static bfd_vma
4785 mips_elf_high (bfd_vma value)
4786 {
4787 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
4788 }
4789
4790 /* Calculate the %higher function. */
4791
4792 static bfd_vma
4793 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
4794 {
4795 #ifdef BFD64
4796 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
4797 #else
4798 abort ();
4799 return MINUS_ONE;
4800 #endif
4801 }
4802
4803 /* Calculate the %highest function. */
4804
4805 static bfd_vma
4806 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
4807 {
4808 #ifdef BFD64
4809 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
4810 #else
4811 abort ();
4812 return MINUS_ONE;
4813 #endif
4814 }
4815 \f
4816 /* Create the .compact_rel section. */
4817
4818 static bfd_boolean
4819 mips_elf_create_compact_rel_section
4820 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
4821 {
4822 flagword flags;
4823 register asection *s;
4824
4825 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
4826 {
4827 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
4828 | SEC_READONLY);
4829
4830 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
4831 if (s == NULL
4832 || ! bfd_set_section_alignment (abfd, s,
4833 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4834 return FALSE;
4835
4836 s->size = sizeof (Elf32_External_compact_rel);
4837 }
4838
4839 return TRUE;
4840 }
4841
4842 /* Create the .got section to hold the global offset table. */
4843
4844 static bfd_boolean
4845 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
4846 {
4847 flagword flags;
4848 register asection *s;
4849 struct elf_link_hash_entry *h;
4850 struct bfd_link_hash_entry *bh;
4851 struct mips_elf_link_hash_table *htab;
4852
4853 htab = mips_elf_hash_table (info);
4854 BFD_ASSERT (htab != NULL);
4855
4856 /* This function may be called more than once. */
4857 if (htab->sgot)
4858 return TRUE;
4859
4860 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4861 | SEC_LINKER_CREATED);
4862
4863 /* We have to use an alignment of 2**4 here because this is hardcoded
4864 in the function stub generation and in the linker script. */
4865 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
4866 if (s == NULL
4867 || ! bfd_set_section_alignment (abfd, s, 4))
4868 return FALSE;
4869 htab->sgot = s;
4870
4871 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
4872 linker script because we don't want to define the symbol if we
4873 are not creating a global offset table. */
4874 bh = NULL;
4875 if (! (_bfd_generic_link_add_one_symbol
4876 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
4877 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
4878 return FALSE;
4879
4880 h = (struct elf_link_hash_entry *) bh;
4881 h->non_elf = 0;
4882 h->def_regular = 1;
4883 h->type = STT_OBJECT;
4884 elf_hash_table (info)->hgot = h;
4885
4886 if (info->shared
4887 && ! bfd_elf_link_record_dynamic_symbol (info, h))
4888 return FALSE;
4889
4890 htab->got_info = mips_elf_create_got_info (abfd);
4891 mips_elf_section_data (s)->elf.this_hdr.sh_flags
4892 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4893
4894 /* We also need a .got.plt section when generating PLTs. */
4895 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
4896 SEC_ALLOC | SEC_LOAD
4897 | SEC_HAS_CONTENTS
4898 | SEC_IN_MEMORY
4899 | SEC_LINKER_CREATED);
4900 if (s == NULL)
4901 return FALSE;
4902 htab->sgotplt = s;
4903
4904 return TRUE;
4905 }
4906 \f
4907 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
4908 __GOTT_INDEX__ symbols. These symbols are only special for
4909 shared objects; they are not used in executables. */
4910
4911 static bfd_boolean
4912 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
4913 {
4914 return (mips_elf_hash_table (info)->is_vxworks
4915 && info->shared
4916 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
4917 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
4918 }
4919
4920 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
4921 require an la25 stub. See also mips_elf_local_pic_function_p,
4922 which determines whether the destination function ever requires a
4923 stub. */
4924
4925 static bfd_boolean
4926 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
4927 bfd_boolean target_is_16_bit_code_p)
4928 {
4929 /* We specifically ignore branches and jumps from EF_PIC objects,
4930 where the onus is on the compiler or programmer to perform any
4931 necessary initialization of $25. Sometimes such initialization
4932 is unnecessary; for example, -mno-shared functions do not use
4933 the incoming value of $25, and may therefore be called directly. */
4934 if (PIC_OBJECT_P (input_bfd))
4935 return FALSE;
4936
4937 switch (r_type)
4938 {
4939 case R_MIPS_26:
4940 case R_MIPS_PC16:
4941 case R_MICROMIPS_26_S1:
4942 case R_MICROMIPS_PC7_S1:
4943 case R_MICROMIPS_PC10_S1:
4944 case R_MICROMIPS_PC16_S1:
4945 case R_MICROMIPS_PC23_S2:
4946 return TRUE;
4947
4948 case R_MIPS16_26:
4949 return !target_is_16_bit_code_p;
4950
4951 default:
4952 return FALSE;
4953 }
4954 }
4955 \f
4956 /* Calculate the value produced by the RELOCATION (which comes from
4957 the INPUT_BFD). The ADDEND is the addend to use for this
4958 RELOCATION; RELOCATION->R_ADDEND is ignored.
4959
4960 The result of the relocation calculation is stored in VALUEP.
4961 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
4962 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
4963
4964 This function returns bfd_reloc_continue if the caller need take no
4965 further action regarding this relocation, bfd_reloc_notsupported if
4966 something goes dramatically wrong, bfd_reloc_overflow if an
4967 overflow occurs, and bfd_reloc_ok to indicate success. */
4968
4969 static bfd_reloc_status_type
4970 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
4971 asection *input_section,
4972 struct bfd_link_info *info,
4973 const Elf_Internal_Rela *relocation,
4974 bfd_vma addend, reloc_howto_type *howto,
4975 Elf_Internal_Sym *local_syms,
4976 asection **local_sections, bfd_vma *valuep,
4977 const char **namep,
4978 bfd_boolean *cross_mode_jump_p,
4979 bfd_boolean save_addend)
4980 {
4981 /* The eventual value we will return. */
4982 bfd_vma value;
4983 /* The address of the symbol against which the relocation is
4984 occurring. */
4985 bfd_vma symbol = 0;
4986 /* The final GP value to be used for the relocatable, executable, or
4987 shared object file being produced. */
4988 bfd_vma gp;
4989 /* The place (section offset or address) of the storage unit being
4990 relocated. */
4991 bfd_vma p;
4992 /* The value of GP used to create the relocatable object. */
4993 bfd_vma gp0;
4994 /* The offset into the global offset table at which the address of
4995 the relocation entry symbol, adjusted by the addend, resides
4996 during execution. */
4997 bfd_vma g = MINUS_ONE;
4998 /* The section in which the symbol referenced by the relocation is
4999 located. */
5000 asection *sec = NULL;
5001 struct mips_elf_link_hash_entry *h = NULL;
5002 /* TRUE if the symbol referred to by this relocation is a local
5003 symbol. */
5004 bfd_boolean local_p, was_local_p;
5005 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5006 bfd_boolean gp_disp_p = FALSE;
5007 /* TRUE if the symbol referred to by this relocation is
5008 "__gnu_local_gp". */
5009 bfd_boolean gnu_local_gp_p = FALSE;
5010 Elf_Internal_Shdr *symtab_hdr;
5011 size_t extsymoff;
5012 unsigned long r_symndx;
5013 int r_type;
5014 /* TRUE if overflow occurred during the calculation of the
5015 relocation value. */
5016 bfd_boolean overflowed_p;
5017 /* TRUE if this relocation refers to a MIPS16 function. */
5018 bfd_boolean target_is_16_bit_code_p = FALSE;
5019 bfd_boolean target_is_micromips_code_p = FALSE;
5020 struct mips_elf_link_hash_table *htab;
5021 bfd *dynobj;
5022
5023 dynobj = elf_hash_table (info)->dynobj;
5024 htab = mips_elf_hash_table (info);
5025 BFD_ASSERT (htab != NULL);
5026
5027 /* Parse the relocation. */
5028 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5029 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5030 p = (input_section->output_section->vma
5031 + input_section->output_offset
5032 + relocation->r_offset);
5033
5034 /* Assume that there will be no overflow. */
5035 overflowed_p = FALSE;
5036
5037 /* Figure out whether or not the symbol is local, and get the offset
5038 used in the array of hash table entries. */
5039 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5040 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5041 local_sections);
5042 was_local_p = local_p;
5043 if (! elf_bad_symtab (input_bfd))
5044 extsymoff = symtab_hdr->sh_info;
5045 else
5046 {
5047 /* The symbol table does not follow the rule that local symbols
5048 must come before globals. */
5049 extsymoff = 0;
5050 }
5051
5052 /* Figure out the value of the symbol. */
5053 if (local_p)
5054 {
5055 Elf_Internal_Sym *sym;
5056
5057 sym = local_syms + r_symndx;
5058 sec = local_sections[r_symndx];
5059
5060 symbol = sec->output_section->vma + sec->output_offset;
5061 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
5062 || (sec->flags & SEC_MERGE))
5063 symbol += sym->st_value;
5064 if ((sec->flags & SEC_MERGE)
5065 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5066 {
5067 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5068 addend -= symbol;
5069 addend += sec->output_section->vma + sec->output_offset;
5070 }
5071
5072 /* MIPS16/microMIPS text labels should be treated as odd. */
5073 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5074 ++symbol;
5075
5076 /* Record the name of this symbol, for our caller. */
5077 *namep = bfd_elf_string_from_elf_section (input_bfd,
5078 symtab_hdr->sh_link,
5079 sym->st_name);
5080 if (*namep == '\0')
5081 *namep = bfd_section_name (input_bfd, sec);
5082
5083 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5084 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5085 }
5086 else
5087 {
5088 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5089
5090 /* For global symbols we look up the symbol in the hash-table. */
5091 h = ((struct mips_elf_link_hash_entry *)
5092 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5093 /* Find the real hash-table entry for this symbol. */
5094 while (h->root.root.type == bfd_link_hash_indirect
5095 || h->root.root.type == bfd_link_hash_warning)
5096 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5097
5098 /* Record the name of this symbol, for our caller. */
5099 *namep = h->root.root.root.string;
5100
5101 /* See if this is the special _gp_disp symbol. Note that such a
5102 symbol must always be a global symbol. */
5103 if (strcmp (*namep, "_gp_disp") == 0
5104 && ! NEWABI_P (input_bfd))
5105 {
5106 /* Relocations against _gp_disp are permitted only with
5107 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5108 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5109 return bfd_reloc_notsupported;
5110
5111 gp_disp_p = TRUE;
5112 }
5113 /* See if this is the special _gp symbol. Note that such a
5114 symbol must always be a global symbol. */
5115 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5116 gnu_local_gp_p = TRUE;
5117
5118
5119 /* If this symbol is defined, calculate its address. Note that
5120 _gp_disp is a magic symbol, always implicitly defined by the
5121 linker, so it's inappropriate to check to see whether or not
5122 its defined. */
5123 else if ((h->root.root.type == bfd_link_hash_defined
5124 || h->root.root.type == bfd_link_hash_defweak)
5125 && h->root.root.u.def.section)
5126 {
5127 sec = h->root.root.u.def.section;
5128 if (sec->output_section)
5129 symbol = (h->root.root.u.def.value
5130 + sec->output_section->vma
5131 + sec->output_offset);
5132 else
5133 symbol = h->root.root.u.def.value;
5134 }
5135 else if (h->root.root.type == bfd_link_hash_undefweak)
5136 /* We allow relocations against undefined weak symbols, giving
5137 it the value zero, so that you can undefined weak functions
5138 and check to see if they exist by looking at their
5139 addresses. */
5140 symbol = 0;
5141 else if (info->unresolved_syms_in_objects == RM_IGNORE
5142 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5143 symbol = 0;
5144 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5145 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5146 {
5147 /* If this is a dynamic link, we should have created a
5148 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5149 in in _bfd_mips_elf_create_dynamic_sections.
5150 Otherwise, we should define the symbol with a value of 0.
5151 FIXME: It should probably get into the symbol table
5152 somehow as well. */
5153 BFD_ASSERT (! info->shared);
5154 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5155 symbol = 0;
5156 }
5157 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5158 {
5159 /* This is an optional symbol - an Irix specific extension to the
5160 ELF spec. Ignore it for now.
5161 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5162 than simply ignoring them, but we do not handle this for now.
5163 For information see the "64-bit ELF Object File Specification"
5164 which is available from here:
5165 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5166 symbol = 0;
5167 }
5168 else if ((*info->callbacks->undefined_symbol)
5169 (info, h->root.root.root.string, input_bfd,
5170 input_section, relocation->r_offset,
5171 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5172 || ELF_ST_VISIBILITY (h->root.other)))
5173 {
5174 return bfd_reloc_undefined;
5175 }
5176 else
5177 {
5178 return bfd_reloc_notsupported;
5179 }
5180
5181 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5182 /* If the output section is the PLT section,
5183 then the target is not microMIPS. */
5184 target_is_micromips_code_p = (htab->splt != sec
5185 && ELF_ST_IS_MICROMIPS (h->root.other));
5186 }
5187
5188 /* If this is a reference to a 16-bit function with a stub, we need
5189 to redirect the relocation to the stub unless:
5190
5191 (a) the relocation is for a MIPS16 JAL;
5192
5193 (b) the relocation is for a MIPS16 PIC call, and there are no
5194 non-MIPS16 uses of the GOT slot; or
5195
5196 (c) the section allows direct references to MIPS16 functions. */
5197 if (r_type != R_MIPS16_26
5198 && !info->relocatable
5199 && ((h != NULL
5200 && h->fn_stub != NULL
5201 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5202 || (local_p
5203 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5204 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5205 && !section_allows_mips16_refs_p (input_section))
5206 {
5207 /* This is a 32- or 64-bit call to a 16-bit function. We should
5208 have already noticed that we were going to need the
5209 stub. */
5210 if (local_p)
5211 {
5212 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5213 value = 0;
5214 }
5215 else
5216 {
5217 BFD_ASSERT (h->need_fn_stub);
5218 if (h->la25_stub)
5219 {
5220 /* If a LA25 header for the stub itself exists, point to the
5221 prepended LUI/ADDIU sequence. */
5222 sec = h->la25_stub->stub_section;
5223 value = h->la25_stub->offset;
5224 }
5225 else
5226 {
5227 sec = h->fn_stub;
5228 value = 0;
5229 }
5230 }
5231
5232 symbol = sec->output_section->vma + sec->output_offset + value;
5233 /* The target is 16-bit, but the stub isn't. */
5234 target_is_16_bit_code_p = FALSE;
5235 }
5236 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
5237 need to redirect the call to the stub. Note that we specifically
5238 exclude R_MIPS16_CALL16 from this behavior; indirect calls should
5239 use an indirect stub instead. */
5240 else if (r_type == R_MIPS16_26 && !info->relocatable
5241 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5242 || (local_p
5243 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5244 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5245 && !target_is_16_bit_code_p)
5246 {
5247 if (local_p)
5248 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5249 else
5250 {
5251 /* If both call_stub and call_fp_stub are defined, we can figure
5252 out which one to use by checking which one appears in the input
5253 file. */
5254 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5255 {
5256 asection *o;
5257
5258 sec = NULL;
5259 for (o = input_bfd->sections; o != NULL; o = o->next)
5260 {
5261 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5262 {
5263 sec = h->call_fp_stub;
5264 break;
5265 }
5266 }
5267 if (sec == NULL)
5268 sec = h->call_stub;
5269 }
5270 else if (h->call_stub != NULL)
5271 sec = h->call_stub;
5272 else
5273 sec = h->call_fp_stub;
5274 }
5275
5276 BFD_ASSERT (sec->size > 0);
5277 symbol = sec->output_section->vma + sec->output_offset;
5278 }
5279 /* If this is a direct call to a PIC function, redirect to the
5280 non-PIC stub. */
5281 else if (h != NULL && h->la25_stub
5282 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5283 target_is_16_bit_code_p))
5284 symbol = (h->la25_stub->stub_section->output_section->vma
5285 + h->la25_stub->stub_section->output_offset
5286 + h->la25_stub->offset);
5287
5288 /* Make sure MIPS16 and microMIPS are not used together. */
5289 if ((r_type == R_MIPS16_26 && target_is_micromips_code_p)
5290 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5291 {
5292 (*_bfd_error_handler)
5293 (_("MIPS16 and microMIPS functions cannot call each other"));
5294 return bfd_reloc_notsupported;
5295 }
5296
5297 /* Calls from 16-bit code to 32-bit code and vice versa require the
5298 mode change. However, we can ignore calls to undefined weak symbols,
5299 which should never be executed at runtime. This exception is important
5300 because the assembly writer may have "known" that any definition of the
5301 symbol would be 16-bit code, and that direct jumps were therefore
5302 acceptable. */
5303 *cross_mode_jump_p = (!info->relocatable
5304 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5305 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5306 || (r_type == R_MICROMIPS_26_S1
5307 && !target_is_micromips_code_p)
5308 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5309 && (target_is_16_bit_code_p
5310 || target_is_micromips_code_p))));
5311
5312 local_p = (h == NULL
5313 || (h->got_only_for_calls
5314 ? SYMBOL_CALLS_LOCAL (info, &h->root)
5315 : SYMBOL_REFERENCES_LOCAL (info, &h->root)));
5316
5317 gp0 = _bfd_get_gp_value (input_bfd);
5318 gp = _bfd_get_gp_value (abfd);
5319 if (htab->got_info)
5320 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5321
5322 if (gnu_local_gp_p)
5323 symbol = gp;
5324
5325 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5326 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5327 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5328 if (got_page_reloc_p (r_type) && !local_p)
5329 {
5330 r_type = (micromips_reloc_p (r_type)
5331 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5332 addend = 0;
5333 }
5334
5335 /* If we haven't already determined the GOT offset, and we're going
5336 to need it, get it now. */
5337 switch (r_type)
5338 {
5339 case R_MIPS16_CALL16:
5340 case R_MIPS16_GOT16:
5341 case R_MIPS_CALL16:
5342 case R_MIPS_GOT16:
5343 case R_MIPS_GOT_DISP:
5344 case R_MIPS_GOT_HI16:
5345 case R_MIPS_CALL_HI16:
5346 case R_MIPS_GOT_LO16:
5347 case R_MIPS_CALL_LO16:
5348 case R_MICROMIPS_CALL16:
5349 case R_MICROMIPS_GOT16:
5350 case R_MICROMIPS_GOT_DISP:
5351 case R_MICROMIPS_GOT_HI16:
5352 case R_MICROMIPS_CALL_HI16:
5353 case R_MICROMIPS_GOT_LO16:
5354 case R_MICROMIPS_CALL_LO16:
5355 case R_MIPS_TLS_GD:
5356 case R_MIPS_TLS_GOTTPREL:
5357 case R_MIPS_TLS_LDM:
5358 case R_MIPS16_TLS_GD:
5359 case R_MIPS16_TLS_GOTTPREL:
5360 case R_MIPS16_TLS_LDM:
5361 case R_MICROMIPS_TLS_GD:
5362 case R_MICROMIPS_TLS_GOTTPREL:
5363 case R_MICROMIPS_TLS_LDM:
5364 /* Find the index into the GOT where this value is located. */
5365 if (tls_ldm_reloc_p (r_type))
5366 {
5367 g = mips_elf_local_got_index (abfd, input_bfd, info,
5368 0, 0, NULL, r_type);
5369 if (g == MINUS_ONE)
5370 return bfd_reloc_outofrange;
5371 }
5372 else if (!local_p)
5373 {
5374 /* On VxWorks, CALL relocations should refer to the .got.plt
5375 entry, which is initialized to point at the PLT stub. */
5376 if (htab->is_vxworks
5377 && (call_hi16_reloc_p (r_type)
5378 || call_lo16_reloc_p (r_type)
5379 || call16_reloc_p (r_type)))
5380 {
5381 BFD_ASSERT (addend == 0);
5382 BFD_ASSERT (h->root.needs_plt);
5383 g = mips_elf_gotplt_index (info, &h->root);
5384 }
5385 else
5386 {
5387 BFD_ASSERT (addend == 0);
5388 g = mips_elf_global_got_index (abfd, info, input_bfd,
5389 &h->root, r_type);
5390 if (!TLS_RELOC_P (r_type)
5391 && !elf_hash_table (info)->dynamic_sections_created)
5392 /* This is a static link. We must initialize the GOT entry. */
5393 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5394 }
5395 }
5396 else if (!htab->is_vxworks
5397 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5398 /* The calculation below does not involve "g". */
5399 break;
5400 else
5401 {
5402 g = mips_elf_local_got_index (abfd, input_bfd, info,
5403 symbol + addend, r_symndx, h, r_type);
5404 if (g == MINUS_ONE)
5405 return bfd_reloc_outofrange;
5406 }
5407
5408 /* Convert GOT indices to actual offsets. */
5409 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5410 break;
5411 }
5412
5413 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5414 symbols are resolved by the loader. Add them to .rela.dyn. */
5415 if (h != NULL && is_gott_symbol (info, &h->root))
5416 {
5417 Elf_Internal_Rela outrel;
5418 bfd_byte *loc;
5419 asection *s;
5420
5421 s = mips_elf_rel_dyn_section (info, FALSE);
5422 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5423
5424 outrel.r_offset = (input_section->output_section->vma
5425 + input_section->output_offset
5426 + relocation->r_offset);
5427 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5428 outrel.r_addend = addend;
5429 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5430
5431 /* If we've written this relocation for a readonly section,
5432 we need to set DF_TEXTREL again, so that we do not delete the
5433 DT_TEXTREL tag. */
5434 if (MIPS_ELF_READONLY_SECTION (input_section))
5435 info->flags |= DF_TEXTREL;
5436
5437 *valuep = 0;
5438 return bfd_reloc_ok;
5439 }
5440
5441 /* Figure out what kind of relocation is being performed. */
5442 switch (r_type)
5443 {
5444 case R_MIPS_NONE:
5445 return bfd_reloc_continue;
5446
5447 case R_MIPS_16:
5448 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
5449 overflowed_p = mips_elf_overflow_p (value, 16);
5450 break;
5451
5452 case R_MIPS_32:
5453 case R_MIPS_REL32:
5454 case R_MIPS_64:
5455 if ((info->shared
5456 || (htab->root.dynamic_sections_created
5457 && h != NULL
5458 && h->root.def_dynamic
5459 && !h->root.def_regular
5460 && !h->has_static_relocs))
5461 && r_symndx != STN_UNDEF
5462 && (h == NULL
5463 || h->root.root.type != bfd_link_hash_undefweak
5464 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5465 && (input_section->flags & SEC_ALLOC) != 0)
5466 {
5467 /* If we're creating a shared library, then we can't know
5468 where the symbol will end up. So, we create a relocation
5469 record in the output, and leave the job up to the dynamic
5470 linker. We must do the same for executable references to
5471 shared library symbols, unless we've decided to use copy
5472 relocs or PLTs instead. */
5473 value = addend;
5474 if (!mips_elf_create_dynamic_relocation (abfd,
5475 info,
5476 relocation,
5477 h,
5478 sec,
5479 symbol,
5480 &value,
5481 input_section))
5482 return bfd_reloc_undefined;
5483 }
5484 else
5485 {
5486 if (r_type != R_MIPS_REL32)
5487 value = symbol + addend;
5488 else
5489 value = addend;
5490 }
5491 value &= howto->dst_mask;
5492 break;
5493
5494 case R_MIPS_PC32:
5495 value = symbol + addend - p;
5496 value &= howto->dst_mask;
5497 break;
5498
5499 case R_MIPS16_26:
5500 /* The calculation for R_MIPS16_26 is just the same as for an
5501 R_MIPS_26. It's only the storage of the relocated field into
5502 the output file that's different. That's handled in
5503 mips_elf_perform_relocation. So, we just fall through to the
5504 R_MIPS_26 case here. */
5505 case R_MIPS_26:
5506 case R_MICROMIPS_26_S1:
5507 {
5508 unsigned int shift;
5509
5510 /* Make sure the target of JALX is word-aligned. Bit 0 must be
5511 the correct ISA mode selector and bit 1 must be 0. */
5512 if (*cross_mode_jump_p && (symbol & 3) != (r_type == R_MIPS_26))
5513 return bfd_reloc_outofrange;
5514
5515 /* Shift is 2, unusually, for microMIPS JALX. */
5516 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5517
5518 if (was_local_p)
5519 value = addend | ((p + 4) & (0xfc000000 << shift));
5520 else
5521 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5522 value = (value + symbol) >> shift;
5523 if (!was_local_p && h->root.root.type != bfd_link_hash_undefweak)
5524 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5525 value &= howto->dst_mask;
5526 }
5527 break;
5528
5529 case R_MIPS_TLS_DTPREL_HI16:
5530 case R_MIPS16_TLS_DTPREL_HI16:
5531 case R_MICROMIPS_TLS_DTPREL_HI16:
5532 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5533 & howto->dst_mask);
5534 break;
5535
5536 case R_MIPS_TLS_DTPREL_LO16:
5537 case R_MIPS_TLS_DTPREL32:
5538 case R_MIPS_TLS_DTPREL64:
5539 case R_MIPS16_TLS_DTPREL_LO16:
5540 case R_MICROMIPS_TLS_DTPREL_LO16:
5541 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5542 break;
5543
5544 case R_MIPS_TLS_TPREL_HI16:
5545 case R_MIPS16_TLS_TPREL_HI16:
5546 case R_MICROMIPS_TLS_TPREL_HI16:
5547 value = (mips_elf_high (addend + symbol - tprel_base (info))
5548 & howto->dst_mask);
5549 break;
5550
5551 case R_MIPS_TLS_TPREL_LO16:
5552 case R_MIPS_TLS_TPREL32:
5553 case R_MIPS_TLS_TPREL64:
5554 case R_MIPS16_TLS_TPREL_LO16:
5555 case R_MICROMIPS_TLS_TPREL_LO16:
5556 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5557 break;
5558
5559 case R_MIPS_HI16:
5560 case R_MIPS16_HI16:
5561 case R_MICROMIPS_HI16:
5562 if (!gp_disp_p)
5563 {
5564 value = mips_elf_high (addend + symbol);
5565 value &= howto->dst_mask;
5566 }
5567 else
5568 {
5569 /* For MIPS16 ABI code we generate this sequence
5570 0: li $v0,%hi(_gp_disp)
5571 4: addiupc $v1,%lo(_gp_disp)
5572 8: sll $v0,16
5573 12: addu $v0,$v1
5574 14: move $gp,$v0
5575 So the offsets of hi and lo relocs are the same, but the
5576 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5577 ADDIUPC clears the low two bits of the instruction address,
5578 so the base is ($t9 + 4) & ~3. */
5579 if (r_type == R_MIPS16_HI16)
5580 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5581 /* The microMIPS .cpload sequence uses the same assembly
5582 instructions as the traditional psABI version, but the
5583 incoming $t9 has the low bit set. */
5584 else if (r_type == R_MICROMIPS_HI16)
5585 value = mips_elf_high (addend + gp - p - 1);
5586 else
5587 value = mips_elf_high (addend + gp - p);
5588 overflowed_p = mips_elf_overflow_p (value, 16);
5589 }
5590 break;
5591
5592 case R_MIPS_LO16:
5593 case R_MIPS16_LO16:
5594 case R_MICROMIPS_LO16:
5595 case R_MICROMIPS_HI0_LO16:
5596 if (!gp_disp_p)
5597 value = (symbol + addend) & howto->dst_mask;
5598 else
5599 {
5600 /* See the comment for R_MIPS16_HI16 above for the reason
5601 for this conditional. */
5602 if (r_type == R_MIPS16_LO16)
5603 value = addend + gp - (p & ~(bfd_vma) 0x3);
5604 else if (r_type == R_MICROMIPS_LO16
5605 || r_type == R_MICROMIPS_HI0_LO16)
5606 value = addend + gp - p + 3;
5607 else
5608 value = addend + gp - p + 4;
5609 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5610 for overflow. But, on, say, IRIX5, relocations against
5611 _gp_disp are normally generated from the .cpload
5612 pseudo-op. It generates code that normally looks like
5613 this:
5614
5615 lui $gp,%hi(_gp_disp)
5616 addiu $gp,$gp,%lo(_gp_disp)
5617 addu $gp,$gp,$t9
5618
5619 Here $t9 holds the address of the function being called,
5620 as required by the MIPS ELF ABI. The R_MIPS_LO16
5621 relocation can easily overflow in this situation, but the
5622 R_MIPS_HI16 relocation will handle the overflow.
5623 Therefore, we consider this a bug in the MIPS ABI, and do
5624 not check for overflow here. */
5625 }
5626 break;
5627
5628 case R_MIPS_LITERAL:
5629 case R_MICROMIPS_LITERAL:
5630 /* Because we don't merge literal sections, we can handle this
5631 just like R_MIPS_GPREL16. In the long run, we should merge
5632 shared literals, and then we will need to additional work
5633 here. */
5634
5635 /* Fall through. */
5636
5637 case R_MIPS16_GPREL:
5638 /* The R_MIPS16_GPREL performs the same calculation as
5639 R_MIPS_GPREL16, but stores the relocated bits in a different
5640 order. We don't need to do anything special here; the
5641 differences are handled in mips_elf_perform_relocation. */
5642 case R_MIPS_GPREL16:
5643 case R_MICROMIPS_GPREL7_S2:
5644 case R_MICROMIPS_GPREL16:
5645 /* Only sign-extend the addend if it was extracted from the
5646 instruction. If the addend was separate, leave it alone,
5647 otherwise we may lose significant bits. */
5648 if (howto->partial_inplace)
5649 addend = _bfd_mips_elf_sign_extend (addend, 16);
5650 value = symbol + addend - gp;
5651 /* If the symbol was local, any earlier relocatable links will
5652 have adjusted its addend with the gp offset, so compensate
5653 for that now. Don't do it for symbols forced local in this
5654 link, though, since they won't have had the gp offset applied
5655 to them before. */
5656 if (was_local_p)
5657 value += gp0;
5658 overflowed_p = mips_elf_overflow_p (value, 16);
5659 break;
5660
5661 case R_MIPS16_GOT16:
5662 case R_MIPS16_CALL16:
5663 case R_MIPS_GOT16:
5664 case R_MIPS_CALL16:
5665 case R_MICROMIPS_GOT16:
5666 case R_MICROMIPS_CALL16:
5667 /* VxWorks does not have separate local and global semantics for
5668 R_MIPS*_GOT16; every relocation evaluates to "G". */
5669 if (!htab->is_vxworks && local_p)
5670 {
5671 value = mips_elf_got16_entry (abfd, input_bfd, info,
5672 symbol + addend, !was_local_p);
5673 if (value == MINUS_ONE)
5674 return bfd_reloc_outofrange;
5675 value
5676 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5677 overflowed_p = mips_elf_overflow_p (value, 16);
5678 break;
5679 }
5680
5681 /* Fall through. */
5682
5683 case R_MIPS_TLS_GD:
5684 case R_MIPS_TLS_GOTTPREL:
5685 case R_MIPS_TLS_LDM:
5686 case R_MIPS_GOT_DISP:
5687 case R_MIPS16_TLS_GD:
5688 case R_MIPS16_TLS_GOTTPREL:
5689 case R_MIPS16_TLS_LDM:
5690 case R_MICROMIPS_TLS_GD:
5691 case R_MICROMIPS_TLS_GOTTPREL:
5692 case R_MICROMIPS_TLS_LDM:
5693 case R_MICROMIPS_GOT_DISP:
5694 value = g;
5695 overflowed_p = mips_elf_overflow_p (value, 16);
5696 break;
5697
5698 case R_MIPS_GPREL32:
5699 value = (addend + symbol + gp0 - gp);
5700 if (!save_addend)
5701 value &= howto->dst_mask;
5702 break;
5703
5704 case R_MIPS_PC16:
5705 case R_MIPS_GNU_REL16_S2:
5706 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
5707 overflowed_p = mips_elf_overflow_p (value, 18);
5708 value >>= howto->rightshift;
5709 value &= howto->dst_mask;
5710 break;
5711
5712 case R_MICROMIPS_PC7_S1:
5713 value = symbol + _bfd_mips_elf_sign_extend (addend, 8) - p;
5714 overflowed_p = mips_elf_overflow_p (value, 8);
5715 value >>= howto->rightshift;
5716 value &= howto->dst_mask;
5717 break;
5718
5719 case R_MICROMIPS_PC10_S1:
5720 value = symbol + _bfd_mips_elf_sign_extend (addend, 11) - p;
5721 overflowed_p = mips_elf_overflow_p (value, 11);
5722 value >>= howto->rightshift;
5723 value &= howto->dst_mask;
5724 break;
5725
5726 case R_MICROMIPS_PC16_S1:
5727 value = symbol + _bfd_mips_elf_sign_extend (addend, 17) - p;
5728 overflowed_p = mips_elf_overflow_p (value, 17);
5729 value >>= howto->rightshift;
5730 value &= howto->dst_mask;
5731 break;
5732
5733 case R_MICROMIPS_PC23_S2:
5734 value = symbol + _bfd_mips_elf_sign_extend (addend, 25) - ((p | 3) ^ 3);
5735 overflowed_p = mips_elf_overflow_p (value, 25);
5736 value >>= howto->rightshift;
5737 value &= howto->dst_mask;
5738 break;
5739
5740 case R_MIPS_GOT_HI16:
5741 case R_MIPS_CALL_HI16:
5742 case R_MICROMIPS_GOT_HI16:
5743 case R_MICROMIPS_CALL_HI16:
5744 /* We're allowed to handle these two relocations identically.
5745 The dynamic linker is allowed to handle the CALL relocations
5746 differently by creating a lazy evaluation stub. */
5747 value = g;
5748 value = mips_elf_high (value);
5749 value &= howto->dst_mask;
5750 break;
5751
5752 case R_MIPS_GOT_LO16:
5753 case R_MIPS_CALL_LO16:
5754 case R_MICROMIPS_GOT_LO16:
5755 case R_MICROMIPS_CALL_LO16:
5756 value = g & howto->dst_mask;
5757 break;
5758
5759 case R_MIPS_GOT_PAGE:
5760 case R_MICROMIPS_GOT_PAGE:
5761 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
5762 if (value == MINUS_ONE)
5763 return bfd_reloc_outofrange;
5764 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5765 overflowed_p = mips_elf_overflow_p (value, 16);
5766 break;
5767
5768 case R_MIPS_GOT_OFST:
5769 case R_MICROMIPS_GOT_OFST:
5770 if (local_p)
5771 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
5772 else
5773 value = addend;
5774 overflowed_p = mips_elf_overflow_p (value, 16);
5775 break;
5776
5777 case R_MIPS_SUB:
5778 case R_MICROMIPS_SUB:
5779 value = symbol - addend;
5780 value &= howto->dst_mask;
5781 break;
5782
5783 case R_MIPS_HIGHER:
5784 case R_MICROMIPS_HIGHER:
5785 value = mips_elf_higher (addend + symbol);
5786 value &= howto->dst_mask;
5787 break;
5788
5789 case R_MIPS_HIGHEST:
5790 case R_MICROMIPS_HIGHEST:
5791 value = mips_elf_highest (addend + symbol);
5792 value &= howto->dst_mask;
5793 break;
5794
5795 case R_MIPS_SCN_DISP:
5796 case R_MICROMIPS_SCN_DISP:
5797 value = symbol + addend - sec->output_offset;
5798 value &= howto->dst_mask;
5799 break;
5800
5801 case R_MIPS_JALR:
5802 case R_MICROMIPS_JALR:
5803 /* This relocation is only a hint. In some cases, we optimize
5804 it into a bal instruction. But we don't try to optimize
5805 when the symbol does not resolve locally. */
5806 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
5807 return bfd_reloc_continue;
5808 value = symbol + addend;
5809 break;
5810
5811 case R_MIPS_PJUMP:
5812 case R_MIPS_GNU_VTINHERIT:
5813 case R_MIPS_GNU_VTENTRY:
5814 /* We don't do anything with these at present. */
5815 return bfd_reloc_continue;
5816
5817 default:
5818 /* An unrecognized relocation type. */
5819 return bfd_reloc_notsupported;
5820 }
5821
5822 /* Store the VALUE for our caller. */
5823 *valuep = value;
5824 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
5825 }
5826
5827 /* Obtain the field relocated by RELOCATION. */
5828
5829 static bfd_vma
5830 mips_elf_obtain_contents (reloc_howto_type *howto,
5831 const Elf_Internal_Rela *relocation,
5832 bfd *input_bfd, bfd_byte *contents)
5833 {
5834 bfd_vma x;
5835 bfd_byte *location = contents + relocation->r_offset;
5836
5837 /* Obtain the bytes. */
5838 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
5839
5840 return x;
5841 }
5842
5843 /* It has been determined that the result of the RELOCATION is the
5844 VALUE. Use HOWTO to place VALUE into the output file at the
5845 appropriate position. The SECTION is the section to which the
5846 relocation applies.
5847 CROSS_MODE_JUMP_P is true if the relocation field
5848 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5849
5850 Returns FALSE if anything goes wrong. */
5851
5852 static bfd_boolean
5853 mips_elf_perform_relocation (struct bfd_link_info *info,
5854 reloc_howto_type *howto,
5855 const Elf_Internal_Rela *relocation,
5856 bfd_vma value, bfd *input_bfd,
5857 asection *input_section, bfd_byte *contents,
5858 bfd_boolean cross_mode_jump_p)
5859 {
5860 bfd_vma x;
5861 bfd_byte *location;
5862 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5863
5864 /* Figure out where the relocation is occurring. */
5865 location = contents + relocation->r_offset;
5866
5867 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5868
5869 /* Obtain the current value. */
5870 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5871
5872 /* Clear the field we are setting. */
5873 x &= ~howto->dst_mask;
5874
5875 /* Set the field. */
5876 x |= (value & howto->dst_mask);
5877
5878 /* If required, turn JAL into JALX. */
5879 if (cross_mode_jump_p && jal_reloc_p (r_type))
5880 {
5881 bfd_boolean ok;
5882 bfd_vma opcode = x >> 26;
5883 bfd_vma jalx_opcode;
5884
5885 /* Check to see if the opcode is already JAL or JALX. */
5886 if (r_type == R_MIPS16_26)
5887 {
5888 ok = ((opcode == 0x6) || (opcode == 0x7));
5889 jalx_opcode = 0x7;
5890 }
5891 else if (r_type == R_MICROMIPS_26_S1)
5892 {
5893 ok = ((opcode == 0x3d) || (opcode == 0x3c));
5894 jalx_opcode = 0x3c;
5895 }
5896 else
5897 {
5898 ok = ((opcode == 0x3) || (opcode == 0x1d));
5899 jalx_opcode = 0x1d;
5900 }
5901
5902 /* If the opcode is not JAL or JALX, there's a problem. We cannot
5903 convert J or JALS to JALX. */
5904 if (!ok)
5905 {
5906 (*_bfd_error_handler)
5907 (_("%B: %A+0x%lx: Unsupported jump between ISA modes; consider recompiling with interlinking enabled."),
5908 input_bfd,
5909 input_section,
5910 (unsigned long) relocation->r_offset);
5911 bfd_set_error (bfd_error_bad_value);
5912 return FALSE;
5913 }
5914
5915 /* Make this the JALX opcode. */
5916 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
5917 }
5918
5919 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
5920 range. */
5921 if (!info->relocatable
5922 && !cross_mode_jump_p
5923 && ((JAL_TO_BAL_P (input_bfd)
5924 && r_type == R_MIPS_26
5925 && (x >> 26) == 0x3) /* jal addr */
5926 || (JALR_TO_BAL_P (input_bfd)
5927 && r_type == R_MIPS_JALR
5928 && x == 0x0320f809) /* jalr t9 */
5929 || (JR_TO_B_P (input_bfd)
5930 && r_type == R_MIPS_JALR
5931 && x == 0x03200008))) /* jr t9 */
5932 {
5933 bfd_vma addr;
5934 bfd_vma dest;
5935 bfd_signed_vma off;
5936
5937 addr = (input_section->output_section->vma
5938 + input_section->output_offset
5939 + relocation->r_offset
5940 + 4);
5941 if (r_type == R_MIPS_26)
5942 dest = (value << 2) | ((addr >> 28) << 28);
5943 else
5944 dest = value;
5945 off = dest - addr;
5946 if (off <= 0x1ffff && off >= -0x20000)
5947 {
5948 if (x == 0x03200008) /* jr t9 */
5949 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
5950 else
5951 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
5952 }
5953 }
5954
5955 /* Put the value into the output. */
5956 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
5957
5958 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !info->relocatable,
5959 location);
5960
5961 return TRUE;
5962 }
5963 \f
5964 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5965 is the original relocation, which is now being transformed into a
5966 dynamic relocation. The ADDENDP is adjusted if necessary; the
5967 caller should store the result in place of the original addend. */
5968
5969 static bfd_boolean
5970 mips_elf_create_dynamic_relocation (bfd *output_bfd,
5971 struct bfd_link_info *info,
5972 const Elf_Internal_Rela *rel,
5973 struct mips_elf_link_hash_entry *h,
5974 asection *sec, bfd_vma symbol,
5975 bfd_vma *addendp, asection *input_section)
5976 {
5977 Elf_Internal_Rela outrel[3];
5978 asection *sreloc;
5979 bfd *dynobj;
5980 int r_type;
5981 long indx;
5982 bfd_boolean defined_p;
5983 struct mips_elf_link_hash_table *htab;
5984
5985 htab = mips_elf_hash_table (info);
5986 BFD_ASSERT (htab != NULL);
5987
5988 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
5989 dynobj = elf_hash_table (info)->dynobj;
5990 sreloc = mips_elf_rel_dyn_section (info, FALSE);
5991 BFD_ASSERT (sreloc != NULL);
5992 BFD_ASSERT (sreloc->contents != NULL);
5993 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
5994 < sreloc->size);
5995
5996 outrel[0].r_offset =
5997 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
5998 if (ABI_64_P (output_bfd))
5999 {
6000 outrel[1].r_offset =
6001 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6002 outrel[2].r_offset =
6003 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6004 }
6005
6006 if (outrel[0].r_offset == MINUS_ONE)
6007 /* The relocation field has been deleted. */
6008 return TRUE;
6009
6010 if (outrel[0].r_offset == MINUS_TWO)
6011 {
6012 /* The relocation field has been converted into a relative value of
6013 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6014 the field to be fully relocated, so add in the symbol's value. */
6015 *addendp += symbol;
6016 return TRUE;
6017 }
6018
6019 /* We must now calculate the dynamic symbol table index to use
6020 in the relocation. */
6021 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6022 {
6023 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6024 indx = h->root.dynindx;
6025 if (SGI_COMPAT (output_bfd))
6026 defined_p = h->root.def_regular;
6027 else
6028 /* ??? glibc's ld.so just adds the final GOT entry to the
6029 relocation field. It therefore treats relocs against
6030 defined symbols in the same way as relocs against
6031 undefined symbols. */
6032 defined_p = FALSE;
6033 }
6034 else
6035 {
6036 if (sec != NULL && bfd_is_abs_section (sec))
6037 indx = 0;
6038 else if (sec == NULL || sec->owner == NULL)
6039 {
6040 bfd_set_error (bfd_error_bad_value);
6041 return FALSE;
6042 }
6043 else
6044 {
6045 indx = elf_section_data (sec->output_section)->dynindx;
6046 if (indx == 0)
6047 {
6048 asection *osec = htab->root.text_index_section;
6049 indx = elf_section_data (osec)->dynindx;
6050 }
6051 if (indx == 0)
6052 abort ();
6053 }
6054
6055 /* Instead of generating a relocation using the section
6056 symbol, we may as well make it a fully relative
6057 relocation. We want to avoid generating relocations to
6058 local symbols because we used to generate them
6059 incorrectly, without adding the original symbol value,
6060 which is mandated by the ABI for section symbols. In
6061 order to give dynamic loaders and applications time to
6062 phase out the incorrect use, we refrain from emitting
6063 section-relative relocations. It's not like they're
6064 useful, after all. This should be a bit more efficient
6065 as well. */
6066 /* ??? Although this behavior is compatible with glibc's ld.so,
6067 the ABI says that relocations against STN_UNDEF should have
6068 a symbol value of 0. Irix rld honors this, so relocations
6069 against STN_UNDEF have no effect. */
6070 if (!SGI_COMPAT (output_bfd))
6071 indx = 0;
6072 defined_p = TRUE;
6073 }
6074
6075 /* If the relocation was previously an absolute relocation and
6076 this symbol will not be referred to by the relocation, we must
6077 adjust it by the value we give it in the dynamic symbol table.
6078 Otherwise leave the job up to the dynamic linker. */
6079 if (defined_p && r_type != R_MIPS_REL32)
6080 *addendp += symbol;
6081
6082 if (htab->is_vxworks)
6083 /* VxWorks uses non-relative relocations for this. */
6084 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6085 else
6086 /* The relocation is always an REL32 relocation because we don't
6087 know where the shared library will wind up at load-time. */
6088 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6089 R_MIPS_REL32);
6090
6091 /* For strict adherence to the ABI specification, we should
6092 generate a R_MIPS_64 relocation record by itself before the
6093 _REL32/_64 record as well, such that the addend is read in as
6094 a 64-bit value (REL32 is a 32-bit relocation, after all).
6095 However, since none of the existing ELF64 MIPS dynamic
6096 loaders seems to care, we don't waste space with these
6097 artificial relocations. If this turns out to not be true,
6098 mips_elf_allocate_dynamic_relocation() should be tweaked so
6099 as to make room for a pair of dynamic relocations per
6100 invocation if ABI_64_P, and here we should generate an
6101 additional relocation record with R_MIPS_64 by itself for a
6102 NULL symbol before this relocation record. */
6103 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6104 ABI_64_P (output_bfd)
6105 ? R_MIPS_64
6106 : R_MIPS_NONE);
6107 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6108
6109 /* Adjust the output offset of the relocation to reference the
6110 correct location in the output file. */
6111 outrel[0].r_offset += (input_section->output_section->vma
6112 + input_section->output_offset);
6113 outrel[1].r_offset += (input_section->output_section->vma
6114 + input_section->output_offset);
6115 outrel[2].r_offset += (input_section->output_section->vma
6116 + input_section->output_offset);
6117
6118 /* Put the relocation back out. We have to use the special
6119 relocation outputter in the 64-bit case since the 64-bit
6120 relocation format is non-standard. */
6121 if (ABI_64_P (output_bfd))
6122 {
6123 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6124 (output_bfd, &outrel[0],
6125 (sreloc->contents
6126 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6127 }
6128 else if (htab->is_vxworks)
6129 {
6130 /* VxWorks uses RELA rather than REL dynamic relocations. */
6131 outrel[0].r_addend = *addendp;
6132 bfd_elf32_swap_reloca_out
6133 (output_bfd, &outrel[0],
6134 (sreloc->contents
6135 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6136 }
6137 else
6138 bfd_elf32_swap_reloc_out
6139 (output_bfd, &outrel[0],
6140 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6141
6142 /* We've now added another relocation. */
6143 ++sreloc->reloc_count;
6144
6145 /* Make sure the output section is writable. The dynamic linker
6146 will be writing to it. */
6147 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6148 |= SHF_WRITE;
6149
6150 /* On IRIX5, make an entry of compact relocation info. */
6151 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6152 {
6153 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6154 bfd_byte *cr;
6155
6156 if (scpt)
6157 {
6158 Elf32_crinfo cptrel;
6159
6160 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6161 cptrel.vaddr = (rel->r_offset
6162 + input_section->output_section->vma
6163 + input_section->output_offset);
6164 if (r_type == R_MIPS_REL32)
6165 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6166 else
6167 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6168 mips_elf_set_cr_dist2to (cptrel, 0);
6169 cptrel.konst = *addendp;
6170
6171 cr = (scpt->contents
6172 + sizeof (Elf32_External_compact_rel));
6173 mips_elf_set_cr_relvaddr (cptrel, 0);
6174 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6175 ((Elf32_External_crinfo *) cr
6176 + scpt->reloc_count));
6177 ++scpt->reloc_count;
6178 }
6179 }
6180
6181 /* If we've written this relocation for a readonly section,
6182 we need to set DF_TEXTREL again, so that we do not delete the
6183 DT_TEXTREL tag. */
6184 if (MIPS_ELF_READONLY_SECTION (input_section))
6185 info->flags |= DF_TEXTREL;
6186
6187 return TRUE;
6188 }
6189 \f
6190 /* Return the MACH for a MIPS e_flags value. */
6191
6192 unsigned long
6193 _bfd_elf_mips_mach (flagword flags)
6194 {
6195 switch (flags & EF_MIPS_MACH)
6196 {
6197 case E_MIPS_MACH_3900:
6198 return bfd_mach_mips3900;
6199
6200 case E_MIPS_MACH_4010:
6201 return bfd_mach_mips4010;
6202
6203 case E_MIPS_MACH_4100:
6204 return bfd_mach_mips4100;
6205
6206 case E_MIPS_MACH_4111:
6207 return bfd_mach_mips4111;
6208
6209 case E_MIPS_MACH_4120:
6210 return bfd_mach_mips4120;
6211
6212 case E_MIPS_MACH_4650:
6213 return bfd_mach_mips4650;
6214
6215 case E_MIPS_MACH_5400:
6216 return bfd_mach_mips5400;
6217
6218 case E_MIPS_MACH_5500:
6219 return bfd_mach_mips5500;
6220
6221 case E_MIPS_MACH_5900:
6222 return bfd_mach_mips5900;
6223
6224 case E_MIPS_MACH_9000:
6225 return bfd_mach_mips9000;
6226
6227 case E_MIPS_MACH_SB1:
6228 return bfd_mach_mips_sb1;
6229
6230 case E_MIPS_MACH_LS2E:
6231 return bfd_mach_mips_loongson_2e;
6232
6233 case E_MIPS_MACH_LS2F:
6234 return bfd_mach_mips_loongson_2f;
6235
6236 case E_MIPS_MACH_LS3A:
6237 return bfd_mach_mips_loongson_3a;
6238
6239 case E_MIPS_MACH_OCTEON2:
6240 return bfd_mach_mips_octeon2;
6241
6242 case E_MIPS_MACH_OCTEON:
6243 return bfd_mach_mips_octeon;
6244
6245 case E_MIPS_MACH_XLR:
6246 return bfd_mach_mips_xlr;
6247
6248 default:
6249 switch (flags & EF_MIPS_ARCH)
6250 {
6251 default:
6252 case E_MIPS_ARCH_1:
6253 return bfd_mach_mips3000;
6254
6255 case E_MIPS_ARCH_2:
6256 return bfd_mach_mips6000;
6257
6258 case E_MIPS_ARCH_3:
6259 return bfd_mach_mips4000;
6260
6261 case E_MIPS_ARCH_4:
6262 return bfd_mach_mips8000;
6263
6264 case E_MIPS_ARCH_5:
6265 return bfd_mach_mips5;
6266
6267 case E_MIPS_ARCH_32:
6268 return bfd_mach_mipsisa32;
6269
6270 case E_MIPS_ARCH_64:
6271 return bfd_mach_mipsisa64;
6272
6273 case E_MIPS_ARCH_32R2:
6274 return bfd_mach_mipsisa32r2;
6275
6276 case E_MIPS_ARCH_64R2:
6277 return bfd_mach_mipsisa64r2;
6278 }
6279 }
6280
6281 return 0;
6282 }
6283
6284 /* Return printable name for ABI. */
6285
6286 static INLINE char *
6287 elf_mips_abi_name (bfd *abfd)
6288 {
6289 flagword flags;
6290
6291 flags = elf_elfheader (abfd)->e_flags;
6292 switch (flags & EF_MIPS_ABI)
6293 {
6294 case 0:
6295 if (ABI_N32_P (abfd))
6296 return "N32";
6297 else if (ABI_64_P (abfd))
6298 return "64";
6299 else
6300 return "none";
6301 case E_MIPS_ABI_O32:
6302 return "O32";
6303 case E_MIPS_ABI_O64:
6304 return "O64";
6305 case E_MIPS_ABI_EABI32:
6306 return "EABI32";
6307 case E_MIPS_ABI_EABI64:
6308 return "EABI64";
6309 default:
6310 return "unknown abi";
6311 }
6312 }
6313 \f
6314 /* MIPS ELF uses two common sections. One is the usual one, and the
6315 other is for small objects. All the small objects are kept
6316 together, and then referenced via the gp pointer, which yields
6317 faster assembler code. This is what we use for the small common
6318 section. This approach is copied from ecoff.c. */
6319 static asection mips_elf_scom_section;
6320 static asymbol mips_elf_scom_symbol;
6321 static asymbol *mips_elf_scom_symbol_ptr;
6322
6323 /* MIPS ELF also uses an acommon section, which represents an
6324 allocated common symbol which may be overridden by a
6325 definition in a shared library. */
6326 static asection mips_elf_acom_section;
6327 static asymbol mips_elf_acom_symbol;
6328 static asymbol *mips_elf_acom_symbol_ptr;
6329
6330 /* This is used for both the 32-bit and the 64-bit ABI. */
6331
6332 void
6333 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6334 {
6335 elf_symbol_type *elfsym;
6336
6337 /* Handle the special MIPS section numbers that a symbol may use. */
6338 elfsym = (elf_symbol_type *) asym;
6339 switch (elfsym->internal_elf_sym.st_shndx)
6340 {
6341 case SHN_MIPS_ACOMMON:
6342 /* This section is used in a dynamically linked executable file.
6343 It is an allocated common section. The dynamic linker can
6344 either resolve these symbols to something in a shared
6345 library, or it can just leave them here. For our purposes,
6346 we can consider these symbols to be in a new section. */
6347 if (mips_elf_acom_section.name == NULL)
6348 {
6349 /* Initialize the acommon section. */
6350 mips_elf_acom_section.name = ".acommon";
6351 mips_elf_acom_section.flags = SEC_ALLOC;
6352 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6353 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6354 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6355 mips_elf_acom_symbol.name = ".acommon";
6356 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6357 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6358 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6359 }
6360 asym->section = &mips_elf_acom_section;
6361 break;
6362
6363 case SHN_COMMON:
6364 /* Common symbols less than the GP size are automatically
6365 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6366 if (asym->value > elf_gp_size (abfd)
6367 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6368 || IRIX_COMPAT (abfd) == ict_irix6)
6369 break;
6370 /* Fall through. */
6371 case SHN_MIPS_SCOMMON:
6372 if (mips_elf_scom_section.name == NULL)
6373 {
6374 /* Initialize the small common section. */
6375 mips_elf_scom_section.name = ".scommon";
6376 mips_elf_scom_section.flags = SEC_IS_COMMON;
6377 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6378 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6379 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6380 mips_elf_scom_symbol.name = ".scommon";
6381 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6382 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6383 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6384 }
6385 asym->section = &mips_elf_scom_section;
6386 asym->value = elfsym->internal_elf_sym.st_size;
6387 break;
6388
6389 case SHN_MIPS_SUNDEFINED:
6390 asym->section = bfd_und_section_ptr;
6391 break;
6392
6393 case SHN_MIPS_TEXT:
6394 {
6395 asection *section = bfd_get_section_by_name (abfd, ".text");
6396
6397 if (section != NULL)
6398 {
6399 asym->section = section;
6400 /* MIPS_TEXT is a bit special, the address is not an offset
6401 to the base of the .text section. So substract the section
6402 base address to make it an offset. */
6403 asym->value -= section->vma;
6404 }
6405 }
6406 break;
6407
6408 case SHN_MIPS_DATA:
6409 {
6410 asection *section = bfd_get_section_by_name (abfd, ".data");
6411
6412 if (section != NULL)
6413 {
6414 asym->section = section;
6415 /* MIPS_DATA is a bit special, the address is not an offset
6416 to the base of the .data section. So substract the section
6417 base address to make it an offset. */
6418 asym->value -= section->vma;
6419 }
6420 }
6421 break;
6422 }
6423
6424 /* If this is an odd-valued function symbol, assume it's a MIPS16
6425 or microMIPS one. */
6426 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6427 && (asym->value & 1) != 0)
6428 {
6429 asym->value--;
6430 if (MICROMIPS_P (abfd))
6431 elfsym->internal_elf_sym.st_other
6432 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6433 else
6434 elfsym->internal_elf_sym.st_other
6435 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6436 }
6437 }
6438 \f
6439 /* Implement elf_backend_eh_frame_address_size. This differs from
6440 the default in the way it handles EABI64.
6441
6442 EABI64 was originally specified as an LP64 ABI, and that is what
6443 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6444 historically accepted the combination of -mabi=eabi and -mlong32,
6445 and this ILP32 variation has become semi-official over time.
6446 Both forms use elf32 and have pointer-sized FDE addresses.
6447
6448 If an EABI object was generated by GCC 4.0 or above, it will have
6449 an empty .gcc_compiled_longXX section, where XX is the size of longs
6450 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6451 have no special marking to distinguish them from LP64 objects.
6452
6453 We don't want users of the official LP64 ABI to be punished for the
6454 existence of the ILP32 variant, but at the same time, we don't want
6455 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6456 We therefore take the following approach:
6457
6458 - If ABFD contains a .gcc_compiled_longXX section, use it to
6459 determine the pointer size.
6460
6461 - Otherwise check the type of the first relocation. Assume that
6462 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6463
6464 - Otherwise punt.
6465
6466 The second check is enough to detect LP64 objects generated by pre-4.0
6467 compilers because, in the kind of output generated by those compilers,
6468 the first relocation will be associated with either a CIE personality
6469 routine or an FDE start address. Furthermore, the compilers never
6470 used a special (non-pointer) encoding for this ABI.
6471
6472 Checking the relocation type should also be safe because there is no
6473 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6474 did so. */
6475
6476 unsigned int
6477 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6478 {
6479 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6480 return 8;
6481 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6482 {
6483 bfd_boolean long32_p, long64_p;
6484
6485 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6486 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6487 if (long32_p && long64_p)
6488 return 0;
6489 if (long32_p)
6490 return 4;
6491 if (long64_p)
6492 return 8;
6493
6494 if (sec->reloc_count > 0
6495 && elf_section_data (sec)->relocs != NULL
6496 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6497 == R_MIPS_64))
6498 return 8;
6499
6500 return 0;
6501 }
6502 return 4;
6503 }
6504 \f
6505 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6506 relocations against two unnamed section symbols to resolve to the
6507 same address. For example, if we have code like:
6508
6509 lw $4,%got_disp(.data)($gp)
6510 lw $25,%got_disp(.text)($gp)
6511 jalr $25
6512
6513 then the linker will resolve both relocations to .data and the program
6514 will jump there rather than to .text.
6515
6516 We can work around this problem by giving names to local section symbols.
6517 This is also what the MIPSpro tools do. */
6518
6519 bfd_boolean
6520 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6521 {
6522 return SGI_COMPAT (abfd);
6523 }
6524 \f
6525 /* Work over a section just before writing it out. This routine is
6526 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6527 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6528 a better way. */
6529
6530 bfd_boolean
6531 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
6532 {
6533 if (hdr->sh_type == SHT_MIPS_REGINFO
6534 && hdr->sh_size > 0)
6535 {
6536 bfd_byte buf[4];
6537
6538 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6539 BFD_ASSERT (hdr->contents == NULL);
6540
6541 if (bfd_seek (abfd,
6542 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6543 SEEK_SET) != 0)
6544 return FALSE;
6545 H_PUT_32 (abfd, elf_gp (abfd), buf);
6546 if (bfd_bwrite (buf, 4, abfd) != 4)
6547 return FALSE;
6548 }
6549
6550 if (hdr->sh_type == SHT_MIPS_OPTIONS
6551 && hdr->bfd_section != NULL
6552 && mips_elf_section_data (hdr->bfd_section) != NULL
6553 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
6554 {
6555 bfd_byte *contents, *l, *lend;
6556
6557 /* We stored the section contents in the tdata field in the
6558 set_section_contents routine. We save the section contents
6559 so that we don't have to read them again.
6560 At this point we know that elf_gp is set, so we can look
6561 through the section contents to see if there is an
6562 ODK_REGINFO structure. */
6563
6564 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
6565 l = contents;
6566 lend = contents + hdr->sh_size;
6567 while (l + sizeof (Elf_External_Options) <= lend)
6568 {
6569 Elf_Internal_Options intopt;
6570
6571 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6572 &intopt);
6573 if (intopt.size < sizeof (Elf_External_Options))
6574 {
6575 (*_bfd_error_handler)
6576 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6577 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6578 break;
6579 }
6580 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6581 {
6582 bfd_byte buf[8];
6583
6584 if (bfd_seek (abfd,
6585 (hdr->sh_offset
6586 + (l - contents)
6587 + sizeof (Elf_External_Options)
6588 + (sizeof (Elf64_External_RegInfo) - 8)),
6589 SEEK_SET) != 0)
6590 return FALSE;
6591 H_PUT_64 (abfd, elf_gp (abfd), buf);
6592 if (bfd_bwrite (buf, 8, abfd) != 8)
6593 return FALSE;
6594 }
6595 else if (intopt.kind == ODK_REGINFO)
6596 {
6597 bfd_byte buf[4];
6598
6599 if (bfd_seek (abfd,
6600 (hdr->sh_offset
6601 + (l - contents)
6602 + sizeof (Elf_External_Options)
6603 + (sizeof (Elf32_External_RegInfo) - 4)),
6604 SEEK_SET) != 0)
6605 return FALSE;
6606 H_PUT_32 (abfd, elf_gp (abfd), buf);
6607 if (bfd_bwrite (buf, 4, abfd) != 4)
6608 return FALSE;
6609 }
6610 l += intopt.size;
6611 }
6612 }
6613
6614 if (hdr->bfd_section != NULL)
6615 {
6616 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6617
6618 /* .sbss is not handled specially here because the GNU/Linux
6619 prelinker can convert .sbss from NOBITS to PROGBITS and
6620 changing it back to NOBITS breaks the binary. The entry in
6621 _bfd_mips_elf_special_sections will ensure the correct flags
6622 are set on .sbss if BFD creates it without reading it from an
6623 input file, and without special handling here the flags set
6624 on it in an input file will be followed. */
6625 if (strcmp (name, ".sdata") == 0
6626 || strcmp (name, ".lit8") == 0
6627 || strcmp (name, ".lit4") == 0)
6628 {
6629 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
6630 hdr->sh_type = SHT_PROGBITS;
6631 }
6632 else if (strcmp (name, ".srdata") == 0)
6633 {
6634 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
6635 hdr->sh_type = SHT_PROGBITS;
6636 }
6637 else if (strcmp (name, ".compact_rel") == 0)
6638 {
6639 hdr->sh_flags = 0;
6640 hdr->sh_type = SHT_PROGBITS;
6641 }
6642 else if (strcmp (name, ".rtproc") == 0)
6643 {
6644 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
6645 {
6646 unsigned int adjust;
6647
6648 adjust = hdr->sh_size % hdr->sh_addralign;
6649 if (adjust != 0)
6650 hdr->sh_size += hdr->sh_addralign - adjust;
6651 }
6652 }
6653 }
6654
6655 return TRUE;
6656 }
6657
6658 /* Handle a MIPS specific section when reading an object file. This
6659 is called when elfcode.h finds a section with an unknown type.
6660 This routine supports both the 32-bit and 64-bit ELF ABI.
6661
6662 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
6663 how to. */
6664
6665 bfd_boolean
6666 _bfd_mips_elf_section_from_shdr (bfd *abfd,
6667 Elf_Internal_Shdr *hdr,
6668 const char *name,
6669 int shindex)
6670 {
6671 flagword flags = 0;
6672
6673 /* There ought to be a place to keep ELF backend specific flags, but
6674 at the moment there isn't one. We just keep track of the
6675 sections by their name, instead. Fortunately, the ABI gives
6676 suggested names for all the MIPS specific sections, so we will
6677 probably get away with this. */
6678 switch (hdr->sh_type)
6679 {
6680 case SHT_MIPS_LIBLIST:
6681 if (strcmp (name, ".liblist") != 0)
6682 return FALSE;
6683 break;
6684 case SHT_MIPS_MSYM:
6685 if (strcmp (name, ".msym") != 0)
6686 return FALSE;
6687 break;
6688 case SHT_MIPS_CONFLICT:
6689 if (strcmp (name, ".conflict") != 0)
6690 return FALSE;
6691 break;
6692 case SHT_MIPS_GPTAB:
6693 if (! CONST_STRNEQ (name, ".gptab."))
6694 return FALSE;
6695 break;
6696 case SHT_MIPS_UCODE:
6697 if (strcmp (name, ".ucode") != 0)
6698 return FALSE;
6699 break;
6700 case SHT_MIPS_DEBUG:
6701 if (strcmp (name, ".mdebug") != 0)
6702 return FALSE;
6703 flags = SEC_DEBUGGING;
6704 break;
6705 case SHT_MIPS_REGINFO:
6706 if (strcmp (name, ".reginfo") != 0
6707 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
6708 return FALSE;
6709 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
6710 break;
6711 case SHT_MIPS_IFACE:
6712 if (strcmp (name, ".MIPS.interfaces") != 0)
6713 return FALSE;
6714 break;
6715 case SHT_MIPS_CONTENT:
6716 if (! CONST_STRNEQ (name, ".MIPS.content"))
6717 return FALSE;
6718 break;
6719 case SHT_MIPS_OPTIONS:
6720 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6721 return FALSE;
6722 break;
6723 case SHT_MIPS_DWARF:
6724 if (! CONST_STRNEQ (name, ".debug_")
6725 && ! CONST_STRNEQ (name, ".zdebug_"))
6726 return FALSE;
6727 break;
6728 case SHT_MIPS_SYMBOL_LIB:
6729 if (strcmp (name, ".MIPS.symlib") != 0)
6730 return FALSE;
6731 break;
6732 case SHT_MIPS_EVENTS:
6733 if (! CONST_STRNEQ (name, ".MIPS.events")
6734 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
6735 return FALSE;
6736 break;
6737 default:
6738 break;
6739 }
6740
6741 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
6742 return FALSE;
6743
6744 if (flags)
6745 {
6746 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
6747 (bfd_get_section_flags (abfd,
6748 hdr->bfd_section)
6749 | flags)))
6750 return FALSE;
6751 }
6752
6753 /* FIXME: We should record sh_info for a .gptab section. */
6754
6755 /* For a .reginfo section, set the gp value in the tdata information
6756 from the contents of this section. We need the gp value while
6757 processing relocs, so we just get it now. The .reginfo section
6758 is not used in the 64-bit MIPS ELF ABI. */
6759 if (hdr->sh_type == SHT_MIPS_REGINFO)
6760 {
6761 Elf32_External_RegInfo ext;
6762 Elf32_RegInfo s;
6763
6764 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
6765 &ext, 0, sizeof ext))
6766 return FALSE;
6767 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
6768 elf_gp (abfd) = s.ri_gp_value;
6769 }
6770
6771 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
6772 set the gp value based on what we find. We may see both
6773 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
6774 they should agree. */
6775 if (hdr->sh_type == SHT_MIPS_OPTIONS)
6776 {
6777 bfd_byte *contents, *l, *lend;
6778
6779 contents = bfd_malloc (hdr->sh_size);
6780 if (contents == NULL)
6781 return FALSE;
6782 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
6783 0, hdr->sh_size))
6784 {
6785 free (contents);
6786 return FALSE;
6787 }
6788 l = contents;
6789 lend = contents + hdr->sh_size;
6790 while (l + sizeof (Elf_External_Options) <= lend)
6791 {
6792 Elf_Internal_Options intopt;
6793
6794 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6795 &intopt);
6796 if (intopt.size < sizeof (Elf_External_Options))
6797 {
6798 (*_bfd_error_handler)
6799 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6800 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6801 break;
6802 }
6803 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6804 {
6805 Elf64_Internal_RegInfo intreg;
6806
6807 bfd_mips_elf64_swap_reginfo_in
6808 (abfd,
6809 ((Elf64_External_RegInfo *)
6810 (l + sizeof (Elf_External_Options))),
6811 &intreg);
6812 elf_gp (abfd) = intreg.ri_gp_value;
6813 }
6814 else if (intopt.kind == ODK_REGINFO)
6815 {
6816 Elf32_RegInfo intreg;
6817
6818 bfd_mips_elf32_swap_reginfo_in
6819 (abfd,
6820 ((Elf32_External_RegInfo *)
6821 (l + sizeof (Elf_External_Options))),
6822 &intreg);
6823 elf_gp (abfd) = intreg.ri_gp_value;
6824 }
6825 l += intopt.size;
6826 }
6827 free (contents);
6828 }
6829
6830 return TRUE;
6831 }
6832
6833 /* Set the correct type for a MIPS ELF section. We do this by the
6834 section name, which is a hack, but ought to work. This routine is
6835 used by both the 32-bit and the 64-bit ABI. */
6836
6837 bfd_boolean
6838 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
6839 {
6840 const char *name = bfd_get_section_name (abfd, sec);
6841
6842 if (strcmp (name, ".liblist") == 0)
6843 {
6844 hdr->sh_type = SHT_MIPS_LIBLIST;
6845 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
6846 /* The sh_link field is set in final_write_processing. */
6847 }
6848 else if (strcmp (name, ".conflict") == 0)
6849 hdr->sh_type = SHT_MIPS_CONFLICT;
6850 else if (CONST_STRNEQ (name, ".gptab."))
6851 {
6852 hdr->sh_type = SHT_MIPS_GPTAB;
6853 hdr->sh_entsize = sizeof (Elf32_External_gptab);
6854 /* The sh_info field is set in final_write_processing. */
6855 }
6856 else if (strcmp (name, ".ucode") == 0)
6857 hdr->sh_type = SHT_MIPS_UCODE;
6858 else if (strcmp (name, ".mdebug") == 0)
6859 {
6860 hdr->sh_type = SHT_MIPS_DEBUG;
6861 /* In a shared object on IRIX 5.3, the .mdebug section has an
6862 entsize of 0. FIXME: Does this matter? */
6863 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
6864 hdr->sh_entsize = 0;
6865 else
6866 hdr->sh_entsize = 1;
6867 }
6868 else if (strcmp (name, ".reginfo") == 0)
6869 {
6870 hdr->sh_type = SHT_MIPS_REGINFO;
6871 /* In a shared object on IRIX 5.3, the .reginfo section has an
6872 entsize of 0x18. FIXME: Does this matter? */
6873 if (SGI_COMPAT (abfd))
6874 {
6875 if ((abfd->flags & DYNAMIC) != 0)
6876 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6877 else
6878 hdr->sh_entsize = 1;
6879 }
6880 else
6881 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6882 }
6883 else if (SGI_COMPAT (abfd)
6884 && (strcmp (name, ".hash") == 0
6885 || strcmp (name, ".dynamic") == 0
6886 || strcmp (name, ".dynstr") == 0))
6887 {
6888 if (SGI_COMPAT (abfd))
6889 hdr->sh_entsize = 0;
6890 #if 0
6891 /* This isn't how the IRIX6 linker behaves. */
6892 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
6893 #endif
6894 }
6895 else if (strcmp (name, ".got") == 0
6896 || strcmp (name, ".srdata") == 0
6897 || strcmp (name, ".sdata") == 0
6898 || strcmp (name, ".sbss") == 0
6899 || strcmp (name, ".lit4") == 0
6900 || strcmp (name, ".lit8") == 0)
6901 hdr->sh_flags |= SHF_MIPS_GPREL;
6902 else if (strcmp (name, ".MIPS.interfaces") == 0)
6903 {
6904 hdr->sh_type = SHT_MIPS_IFACE;
6905 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6906 }
6907 else if (CONST_STRNEQ (name, ".MIPS.content"))
6908 {
6909 hdr->sh_type = SHT_MIPS_CONTENT;
6910 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6911 /* The sh_info field is set in final_write_processing. */
6912 }
6913 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6914 {
6915 hdr->sh_type = SHT_MIPS_OPTIONS;
6916 hdr->sh_entsize = 1;
6917 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6918 }
6919 else if (CONST_STRNEQ (name, ".debug_")
6920 || CONST_STRNEQ (name, ".zdebug_"))
6921 {
6922 hdr->sh_type = SHT_MIPS_DWARF;
6923
6924 /* Irix facilities such as libexc expect a single .debug_frame
6925 per executable, the system ones have NOSTRIP set and the linker
6926 doesn't merge sections with different flags so ... */
6927 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
6928 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6929 }
6930 else if (strcmp (name, ".MIPS.symlib") == 0)
6931 {
6932 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
6933 /* The sh_link and sh_info fields are set in
6934 final_write_processing. */
6935 }
6936 else if (CONST_STRNEQ (name, ".MIPS.events")
6937 || CONST_STRNEQ (name, ".MIPS.post_rel"))
6938 {
6939 hdr->sh_type = SHT_MIPS_EVENTS;
6940 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6941 /* The sh_link field is set in final_write_processing. */
6942 }
6943 else if (strcmp (name, ".msym") == 0)
6944 {
6945 hdr->sh_type = SHT_MIPS_MSYM;
6946 hdr->sh_flags |= SHF_ALLOC;
6947 hdr->sh_entsize = 8;
6948 }
6949
6950 /* The generic elf_fake_sections will set up REL_HDR using the default
6951 kind of relocations. We used to set up a second header for the
6952 non-default kind of relocations here, but only NewABI would use
6953 these, and the IRIX ld doesn't like resulting empty RELA sections.
6954 Thus we create those header only on demand now. */
6955
6956 return TRUE;
6957 }
6958
6959 /* Given a BFD section, try to locate the corresponding ELF section
6960 index. This is used by both the 32-bit and the 64-bit ABI.
6961 Actually, it's not clear to me that the 64-bit ABI supports these,
6962 but for non-PIC objects we will certainly want support for at least
6963 the .scommon section. */
6964
6965 bfd_boolean
6966 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
6967 asection *sec, int *retval)
6968 {
6969 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
6970 {
6971 *retval = SHN_MIPS_SCOMMON;
6972 return TRUE;
6973 }
6974 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
6975 {
6976 *retval = SHN_MIPS_ACOMMON;
6977 return TRUE;
6978 }
6979 return FALSE;
6980 }
6981 \f
6982 /* Hook called by the linker routine which adds symbols from an object
6983 file. We must handle the special MIPS section numbers here. */
6984
6985 bfd_boolean
6986 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
6987 Elf_Internal_Sym *sym, const char **namep,
6988 flagword *flagsp ATTRIBUTE_UNUSED,
6989 asection **secp, bfd_vma *valp)
6990 {
6991 if (SGI_COMPAT (abfd)
6992 && (abfd->flags & DYNAMIC) != 0
6993 && strcmp (*namep, "_rld_new_interface") == 0)
6994 {
6995 /* Skip IRIX5 rld entry name. */
6996 *namep = NULL;
6997 return TRUE;
6998 }
6999
7000 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7001 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7002 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7003 a magic symbol resolved by the linker, we ignore this bogus definition
7004 of _gp_disp. New ABI objects do not suffer from this problem so this
7005 is not done for them. */
7006 if (!NEWABI_P(abfd)
7007 && (sym->st_shndx == SHN_ABS)
7008 && (strcmp (*namep, "_gp_disp") == 0))
7009 {
7010 *namep = NULL;
7011 return TRUE;
7012 }
7013
7014 switch (sym->st_shndx)
7015 {
7016 case SHN_COMMON:
7017 /* Common symbols less than the GP size are automatically
7018 treated as SHN_MIPS_SCOMMON symbols. */
7019 if (sym->st_size > elf_gp_size (abfd)
7020 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7021 || IRIX_COMPAT (abfd) == ict_irix6)
7022 break;
7023 /* Fall through. */
7024 case SHN_MIPS_SCOMMON:
7025 *secp = bfd_make_section_old_way (abfd, ".scommon");
7026 (*secp)->flags |= SEC_IS_COMMON;
7027 *valp = sym->st_size;
7028 break;
7029
7030 case SHN_MIPS_TEXT:
7031 /* This section is used in a shared object. */
7032 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7033 {
7034 asymbol *elf_text_symbol;
7035 asection *elf_text_section;
7036 bfd_size_type amt = sizeof (asection);
7037
7038 elf_text_section = bfd_zalloc (abfd, amt);
7039 if (elf_text_section == NULL)
7040 return FALSE;
7041
7042 amt = sizeof (asymbol);
7043 elf_text_symbol = bfd_zalloc (abfd, amt);
7044 if (elf_text_symbol == NULL)
7045 return FALSE;
7046
7047 /* Initialize the section. */
7048
7049 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7050 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7051
7052 elf_text_section->symbol = elf_text_symbol;
7053 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7054
7055 elf_text_section->name = ".text";
7056 elf_text_section->flags = SEC_NO_FLAGS;
7057 elf_text_section->output_section = NULL;
7058 elf_text_section->owner = abfd;
7059 elf_text_symbol->name = ".text";
7060 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7061 elf_text_symbol->section = elf_text_section;
7062 }
7063 /* This code used to do *secp = bfd_und_section_ptr if
7064 info->shared. I don't know why, and that doesn't make sense,
7065 so I took it out. */
7066 *secp = mips_elf_tdata (abfd)->elf_text_section;
7067 break;
7068
7069 case SHN_MIPS_ACOMMON:
7070 /* Fall through. XXX Can we treat this as allocated data? */
7071 case SHN_MIPS_DATA:
7072 /* This section is used in a shared object. */
7073 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7074 {
7075 asymbol *elf_data_symbol;
7076 asection *elf_data_section;
7077 bfd_size_type amt = sizeof (asection);
7078
7079 elf_data_section = bfd_zalloc (abfd, amt);
7080 if (elf_data_section == NULL)
7081 return FALSE;
7082
7083 amt = sizeof (asymbol);
7084 elf_data_symbol = bfd_zalloc (abfd, amt);
7085 if (elf_data_symbol == NULL)
7086 return FALSE;
7087
7088 /* Initialize the section. */
7089
7090 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7091 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7092
7093 elf_data_section->symbol = elf_data_symbol;
7094 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7095
7096 elf_data_section->name = ".data";
7097 elf_data_section->flags = SEC_NO_FLAGS;
7098 elf_data_section->output_section = NULL;
7099 elf_data_section->owner = abfd;
7100 elf_data_symbol->name = ".data";
7101 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7102 elf_data_symbol->section = elf_data_section;
7103 }
7104 /* This code used to do *secp = bfd_und_section_ptr if
7105 info->shared. I don't know why, and that doesn't make sense,
7106 so I took it out. */
7107 *secp = mips_elf_tdata (abfd)->elf_data_section;
7108 break;
7109
7110 case SHN_MIPS_SUNDEFINED:
7111 *secp = bfd_und_section_ptr;
7112 break;
7113 }
7114
7115 if (SGI_COMPAT (abfd)
7116 && ! info->shared
7117 && info->output_bfd->xvec == abfd->xvec
7118 && strcmp (*namep, "__rld_obj_head") == 0)
7119 {
7120 struct elf_link_hash_entry *h;
7121 struct bfd_link_hash_entry *bh;
7122
7123 /* Mark __rld_obj_head as dynamic. */
7124 bh = NULL;
7125 if (! (_bfd_generic_link_add_one_symbol
7126 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7127 get_elf_backend_data (abfd)->collect, &bh)))
7128 return FALSE;
7129
7130 h = (struct elf_link_hash_entry *) bh;
7131 h->non_elf = 0;
7132 h->def_regular = 1;
7133 h->type = STT_OBJECT;
7134
7135 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7136 return FALSE;
7137
7138 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7139 mips_elf_hash_table (info)->rld_symbol = h;
7140 }
7141
7142 /* If this is a mips16 text symbol, add 1 to the value to make it
7143 odd. This will cause something like .word SYM to come up with
7144 the right value when it is loaded into the PC. */
7145 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7146 ++*valp;
7147
7148 return TRUE;
7149 }
7150
7151 /* This hook function is called before the linker writes out a global
7152 symbol. We mark symbols as small common if appropriate. This is
7153 also where we undo the increment of the value for a mips16 symbol. */
7154
7155 int
7156 _bfd_mips_elf_link_output_symbol_hook
7157 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7158 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7159 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7160 {
7161 /* If we see a common symbol, which implies a relocatable link, then
7162 if a symbol was small common in an input file, mark it as small
7163 common in the output file. */
7164 if (sym->st_shndx == SHN_COMMON
7165 && strcmp (input_sec->name, ".scommon") == 0)
7166 sym->st_shndx = SHN_MIPS_SCOMMON;
7167
7168 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7169 sym->st_value &= ~1;
7170
7171 return 1;
7172 }
7173 \f
7174 /* Functions for the dynamic linker. */
7175
7176 /* Create dynamic sections when linking against a dynamic object. */
7177
7178 bfd_boolean
7179 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7180 {
7181 struct elf_link_hash_entry *h;
7182 struct bfd_link_hash_entry *bh;
7183 flagword flags;
7184 register asection *s;
7185 const char * const *namep;
7186 struct mips_elf_link_hash_table *htab;
7187
7188 htab = mips_elf_hash_table (info);
7189 BFD_ASSERT (htab != NULL);
7190
7191 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7192 | SEC_LINKER_CREATED | SEC_READONLY);
7193
7194 /* The psABI requires a read-only .dynamic section, but the VxWorks
7195 EABI doesn't. */
7196 if (!htab->is_vxworks)
7197 {
7198 s = bfd_get_linker_section (abfd, ".dynamic");
7199 if (s != NULL)
7200 {
7201 if (! bfd_set_section_flags (abfd, s, flags))
7202 return FALSE;
7203 }
7204 }
7205
7206 /* We need to create .got section. */
7207 if (!mips_elf_create_got_section (abfd, info))
7208 return FALSE;
7209
7210 if (! mips_elf_rel_dyn_section (info, TRUE))
7211 return FALSE;
7212
7213 /* Create .stub section. */
7214 s = bfd_make_section_anyway_with_flags (abfd,
7215 MIPS_ELF_STUB_SECTION_NAME (abfd),
7216 flags | SEC_CODE);
7217 if (s == NULL
7218 || ! bfd_set_section_alignment (abfd, s,
7219 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7220 return FALSE;
7221 htab->sstubs = s;
7222
7223 if (!mips_elf_hash_table (info)->use_rld_obj_head
7224 && !info->shared
7225 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7226 {
7227 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7228 flags &~ (flagword) SEC_READONLY);
7229 if (s == NULL
7230 || ! bfd_set_section_alignment (abfd, s,
7231 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7232 return FALSE;
7233 }
7234
7235 /* On IRIX5, we adjust add some additional symbols and change the
7236 alignments of several sections. There is no ABI documentation
7237 indicating that this is necessary on IRIX6, nor any evidence that
7238 the linker takes such action. */
7239 if (IRIX_COMPAT (abfd) == ict_irix5)
7240 {
7241 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7242 {
7243 bh = NULL;
7244 if (! (_bfd_generic_link_add_one_symbol
7245 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7246 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7247 return FALSE;
7248
7249 h = (struct elf_link_hash_entry *) bh;
7250 h->non_elf = 0;
7251 h->def_regular = 1;
7252 h->type = STT_SECTION;
7253
7254 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7255 return FALSE;
7256 }
7257
7258 /* We need to create a .compact_rel section. */
7259 if (SGI_COMPAT (abfd))
7260 {
7261 if (!mips_elf_create_compact_rel_section (abfd, info))
7262 return FALSE;
7263 }
7264
7265 /* Change alignments of some sections. */
7266 s = bfd_get_linker_section (abfd, ".hash");
7267 if (s != NULL)
7268 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7269 s = bfd_get_linker_section (abfd, ".dynsym");
7270 if (s != NULL)
7271 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7272 s = bfd_get_linker_section (abfd, ".dynstr");
7273 if (s != NULL)
7274 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7275 /* ??? */
7276 s = bfd_get_section_by_name (abfd, ".reginfo");
7277 if (s != NULL)
7278 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7279 s = bfd_get_linker_section (abfd, ".dynamic");
7280 if (s != NULL)
7281 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7282 }
7283
7284 if (!info->shared)
7285 {
7286 const char *name;
7287
7288 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7289 bh = NULL;
7290 if (!(_bfd_generic_link_add_one_symbol
7291 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7292 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7293 return FALSE;
7294
7295 h = (struct elf_link_hash_entry *) bh;
7296 h->non_elf = 0;
7297 h->def_regular = 1;
7298 h->type = STT_SECTION;
7299
7300 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7301 return FALSE;
7302
7303 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7304 {
7305 /* __rld_map is a four byte word located in the .data section
7306 and is filled in by the rtld to contain a pointer to
7307 the _r_debug structure. Its symbol value will be set in
7308 _bfd_mips_elf_finish_dynamic_symbol. */
7309 s = bfd_get_linker_section (abfd, ".rld_map");
7310 BFD_ASSERT (s != NULL);
7311
7312 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7313 bh = NULL;
7314 if (!(_bfd_generic_link_add_one_symbol
7315 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7316 get_elf_backend_data (abfd)->collect, &bh)))
7317 return FALSE;
7318
7319 h = (struct elf_link_hash_entry *) bh;
7320 h->non_elf = 0;
7321 h->def_regular = 1;
7322 h->type = STT_OBJECT;
7323
7324 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7325 return FALSE;
7326 mips_elf_hash_table (info)->rld_symbol = h;
7327 }
7328 }
7329
7330 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7331 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
7332 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7333 return FALSE;
7334
7335 /* Cache the sections created above. */
7336 htab->splt = bfd_get_linker_section (abfd, ".plt");
7337 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
7338 if (htab->is_vxworks)
7339 {
7340 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
7341 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
7342 }
7343 else
7344 htab->srelplt = bfd_get_linker_section (abfd, ".rel.plt");
7345 if (!htab->sdynbss
7346 || (htab->is_vxworks && !htab->srelbss && !info->shared)
7347 || !htab->srelplt
7348 || !htab->splt)
7349 abort ();
7350
7351 if (htab->is_vxworks)
7352 {
7353 /* Do the usual VxWorks handling. */
7354 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7355 return FALSE;
7356
7357 /* Work out the PLT sizes. */
7358 if (info->shared)
7359 {
7360 htab->plt_header_size
7361 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
7362 htab->plt_entry_size
7363 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
7364 }
7365 else
7366 {
7367 htab->plt_header_size
7368 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
7369 htab->plt_entry_size
7370 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
7371 }
7372 }
7373 else if (!info->shared)
7374 {
7375 /* All variants of the plt0 entry are the same size. */
7376 htab->plt_header_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
7377 htab->plt_entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
7378 }
7379
7380 return TRUE;
7381 }
7382 \f
7383 /* Return true if relocation REL against section SEC is a REL rather than
7384 RELA relocation. RELOCS is the first relocation in the section and
7385 ABFD is the bfd that contains SEC. */
7386
7387 static bfd_boolean
7388 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7389 const Elf_Internal_Rela *relocs,
7390 const Elf_Internal_Rela *rel)
7391 {
7392 Elf_Internal_Shdr *rel_hdr;
7393 const struct elf_backend_data *bed;
7394
7395 /* To determine which flavor of relocation this is, we depend on the
7396 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7397 rel_hdr = elf_section_data (sec)->rel.hdr;
7398 if (rel_hdr == NULL)
7399 return FALSE;
7400 bed = get_elf_backend_data (abfd);
7401 return ((size_t) (rel - relocs)
7402 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7403 }
7404
7405 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7406 HOWTO is the relocation's howto and CONTENTS points to the contents
7407 of the section that REL is against. */
7408
7409 static bfd_vma
7410 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7411 reloc_howto_type *howto, bfd_byte *contents)
7412 {
7413 bfd_byte *location;
7414 unsigned int r_type;
7415 bfd_vma addend;
7416
7417 r_type = ELF_R_TYPE (abfd, rel->r_info);
7418 location = contents + rel->r_offset;
7419
7420 /* Get the addend, which is stored in the input file. */
7421 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7422 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
7423 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7424
7425 return addend & howto->src_mask;
7426 }
7427
7428 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7429 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7430 and update *ADDEND with the final addend. Return true on success
7431 or false if the LO16 could not be found. RELEND is the exclusive
7432 upper bound on the relocations for REL's section. */
7433
7434 static bfd_boolean
7435 mips_elf_add_lo16_rel_addend (bfd *abfd,
7436 const Elf_Internal_Rela *rel,
7437 const Elf_Internal_Rela *relend,
7438 bfd_byte *contents, bfd_vma *addend)
7439 {
7440 unsigned int r_type, lo16_type;
7441 const Elf_Internal_Rela *lo16_relocation;
7442 reloc_howto_type *lo16_howto;
7443 bfd_vma l;
7444
7445 r_type = ELF_R_TYPE (abfd, rel->r_info);
7446 if (mips16_reloc_p (r_type))
7447 lo16_type = R_MIPS16_LO16;
7448 else if (micromips_reloc_p (r_type))
7449 lo16_type = R_MICROMIPS_LO16;
7450 else
7451 lo16_type = R_MIPS_LO16;
7452
7453 /* The combined value is the sum of the HI16 addend, left-shifted by
7454 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7455 code does a `lui' of the HI16 value, and then an `addiu' of the
7456 LO16 value.)
7457
7458 Scan ahead to find a matching LO16 relocation.
7459
7460 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7461 be immediately following. However, for the IRIX6 ABI, the next
7462 relocation may be a composed relocation consisting of several
7463 relocations for the same address. In that case, the R_MIPS_LO16
7464 relocation may occur as one of these. We permit a similar
7465 extension in general, as that is useful for GCC.
7466
7467 In some cases GCC dead code elimination removes the LO16 but keeps
7468 the corresponding HI16. This is strictly speaking a violation of
7469 the ABI but not immediately harmful. */
7470 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7471 if (lo16_relocation == NULL)
7472 return FALSE;
7473
7474 /* Obtain the addend kept there. */
7475 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7476 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7477
7478 l <<= lo16_howto->rightshift;
7479 l = _bfd_mips_elf_sign_extend (l, 16);
7480
7481 *addend <<= 16;
7482 *addend += l;
7483 return TRUE;
7484 }
7485
7486 /* Try to read the contents of section SEC in bfd ABFD. Return true and
7487 store the contents in *CONTENTS on success. Assume that *CONTENTS
7488 already holds the contents if it is nonull on entry. */
7489
7490 static bfd_boolean
7491 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7492 {
7493 if (*contents)
7494 return TRUE;
7495
7496 /* Get cached copy if it exists. */
7497 if (elf_section_data (sec)->this_hdr.contents != NULL)
7498 {
7499 *contents = elf_section_data (sec)->this_hdr.contents;
7500 return TRUE;
7501 }
7502
7503 return bfd_malloc_and_get_section (abfd, sec, contents);
7504 }
7505
7506 /* Look through the relocs for a section during the first phase, and
7507 allocate space in the global offset table. */
7508
7509 bfd_boolean
7510 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7511 asection *sec, const Elf_Internal_Rela *relocs)
7512 {
7513 const char *name;
7514 bfd *dynobj;
7515 Elf_Internal_Shdr *symtab_hdr;
7516 struct elf_link_hash_entry **sym_hashes;
7517 size_t extsymoff;
7518 const Elf_Internal_Rela *rel;
7519 const Elf_Internal_Rela *rel_end;
7520 asection *sreloc;
7521 const struct elf_backend_data *bed;
7522 struct mips_elf_link_hash_table *htab;
7523 bfd_byte *contents;
7524 bfd_vma addend;
7525 reloc_howto_type *howto;
7526
7527 if (info->relocatable)
7528 return TRUE;
7529
7530 htab = mips_elf_hash_table (info);
7531 BFD_ASSERT (htab != NULL);
7532
7533 dynobj = elf_hash_table (info)->dynobj;
7534 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7535 sym_hashes = elf_sym_hashes (abfd);
7536 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7537
7538 bed = get_elf_backend_data (abfd);
7539 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7540
7541 /* Check for the mips16 stub sections. */
7542
7543 name = bfd_get_section_name (abfd, sec);
7544 if (FN_STUB_P (name))
7545 {
7546 unsigned long r_symndx;
7547
7548 /* Look at the relocation information to figure out which symbol
7549 this is for. */
7550
7551 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
7552 if (r_symndx == 0)
7553 {
7554 (*_bfd_error_handler)
7555 (_("%B: Warning: cannot determine the target function for"
7556 " stub section `%s'"),
7557 abfd, name);
7558 bfd_set_error (bfd_error_bad_value);
7559 return FALSE;
7560 }
7561
7562 if (r_symndx < extsymoff
7563 || sym_hashes[r_symndx - extsymoff] == NULL)
7564 {
7565 asection *o;
7566
7567 /* This stub is for a local symbol. This stub will only be
7568 needed if there is some relocation in this BFD, other
7569 than a 16 bit function call, which refers to this symbol. */
7570 for (o = abfd->sections; o != NULL; o = o->next)
7571 {
7572 Elf_Internal_Rela *sec_relocs;
7573 const Elf_Internal_Rela *r, *rend;
7574
7575 /* We can ignore stub sections when looking for relocs. */
7576 if ((o->flags & SEC_RELOC) == 0
7577 || o->reloc_count == 0
7578 || section_allows_mips16_refs_p (o))
7579 continue;
7580
7581 sec_relocs
7582 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7583 info->keep_memory);
7584 if (sec_relocs == NULL)
7585 return FALSE;
7586
7587 rend = sec_relocs + o->reloc_count;
7588 for (r = sec_relocs; r < rend; r++)
7589 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7590 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
7591 break;
7592
7593 if (elf_section_data (o)->relocs != sec_relocs)
7594 free (sec_relocs);
7595
7596 if (r < rend)
7597 break;
7598 }
7599
7600 if (o == NULL)
7601 {
7602 /* There is no non-call reloc for this stub, so we do
7603 not need it. Since this function is called before
7604 the linker maps input sections to output sections, we
7605 can easily discard it by setting the SEC_EXCLUDE
7606 flag. */
7607 sec->flags |= SEC_EXCLUDE;
7608 return TRUE;
7609 }
7610
7611 /* Record this stub in an array of local symbol stubs for
7612 this BFD. */
7613 if (mips_elf_tdata (abfd)->local_stubs == NULL)
7614 {
7615 unsigned long symcount;
7616 asection **n;
7617 bfd_size_type amt;
7618
7619 if (elf_bad_symtab (abfd))
7620 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7621 else
7622 symcount = symtab_hdr->sh_info;
7623 amt = symcount * sizeof (asection *);
7624 n = bfd_zalloc (abfd, amt);
7625 if (n == NULL)
7626 return FALSE;
7627 mips_elf_tdata (abfd)->local_stubs = n;
7628 }
7629
7630 sec->flags |= SEC_KEEP;
7631 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7632
7633 /* We don't need to set mips16_stubs_seen in this case.
7634 That flag is used to see whether we need to look through
7635 the global symbol table for stubs. We don't need to set
7636 it here, because we just have a local stub. */
7637 }
7638 else
7639 {
7640 struct mips_elf_link_hash_entry *h;
7641
7642 h = ((struct mips_elf_link_hash_entry *)
7643 sym_hashes[r_symndx - extsymoff]);
7644
7645 while (h->root.root.type == bfd_link_hash_indirect
7646 || h->root.root.type == bfd_link_hash_warning)
7647 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
7648
7649 /* H is the symbol this stub is for. */
7650
7651 /* If we already have an appropriate stub for this function, we
7652 don't need another one, so we can discard this one. Since
7653 this function is called before the linker maps input sections
7654 to output sections, we can easily discard it by setting the
7655 SEC_EXCLUDE flag. */
7656 if (h->fn_stub != NULL)
7657 {
7658 sec->flags |= SEC_EXCLUDE;
7659 return TRUE;
7660 }
7661
7662 sec->flags |= SEC_KEEP;
7663 h->fn_stub = sec;
7664 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7665 }
7666 }
7667 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
7668 {
7669 unsigned long r_symndx;
7670 struct mips_elf_link_hash_entry *h;
7671 asection **loc;
7672
7673 /* Look at the relocation information to figure out which symbol
7674 this is for. */
7675
7676 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
7677 if (r_symndx == 0)
7678 {
7679 (*_bfd_error_handler)
7680 (_("%B: Warning: cannot determine the target function for"
7681 " stub section `%s'"),
7682 abfd, name);
7683 bfd_set_error (bfd_error_bad_value);
7684 return FALSE;
7685 }
7686
7687 if (r_symndx < extsymoff
7688 || sym_hashes[r_symndx - extsymoff] == NULL)
7689 {
7690 asection *o;
7691
7692 /* This stub is for a local symbol. This stub will only be
7693 needed if there is some relocation (R_MIPS16_26) in this BFD
7694 that refers to this symbol. */
7695 for (o = abfd->sections; o != NULL; o = o->next)
7696 {
7697 Elf_Internal_Rela *sec_relocs;
7698 const Elf_Internal_Rela *r, *rend;
7699
7700 /* We can ignore stub sections when looking for relocs. */
7701 if ((o->flags & SEC_RELOC) == 0
7702 || o->reloc_count == 0
7703 || section_allows_mips16_refs_p (o))
7704 continue;
7705
7706 sec_relocs
7707 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7708 info->keep_memory);
7709 if (sec_relocs == NULL)
7710 return FALSE;
7711
7712 rend = sec_relocs + o->reloc_count;
7713 for (r = sec_relocs; r < rend; r++)
7714 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7715 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
7716 break;
7717
7718 if (elf_section_data (o)->relocs != sec_relocs)
7719 free (sec_relocs);
7720
7721 if (r < rend)
7722 break;
7723 }
7724
7725 if (o == NULL)
7726 {
7727 /* There is no non-call reloc for this stub, so we do
7728 not need it. Since this function is called before
7729 the linker maps input sections to output sections, we
7730 can easily discard it by setting the SEC_EXCLUDE
7731 flag. */
7732 sec->flags |= SEC_EXCLUDE;
7733 return TRUE;
7734 }
7735
7736 /* Record this stub in an array of local symbol call_stubs for
7737 this BFD. */
7738 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
7739 {
7740 unsigned long symcount;
7741 asection **n;
7742 bfd_size_type amt;
7743
7744 if (elf_bad_symtab (abfd))
7745 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7746 else
7747 symcount = symtab_hdr->sh_info;
7748 amt = symcount * sizeof (asection *);
7749 n = bfd_zalloc (abfd, amt);
7750 if (n == NULL)
7751 return FALSE;
7752 mips_elf_tdata (abfd)->local_call_stubs = n;
7753 }
7754
7755 sec->flags |= SEC_KEEP;
7756 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
7757
7758 /* We don't need to set mips16_stubs_seen in this case.
7759 That flag is used to see whether we need to look through
7760 the global symbol table for stubs. We don't need to set
7761 it here, because we just have a local stub. */
7762 }
7763 else
7764 {
7765 h = ((struct mips_elf_link_hash_entry *)
7766 sym_hashes[r_symndx - extsymoff]);
7767
7768 /* H is the symbol this stub is for. */
7769
7770 if (CALL_FP_STUB_P (name))
7771 loc = &h->call_fp_stub;
7772 else
7773 loc = &h->call_stub;
7774
7775 /* If we already have an appropriate stub for this function, we
7776 don't need another one, so we can discard this one. Since
7777 this function is called before the linker maps input sections
7778 to output sections, we can easily discard it by setting the
7779 SEC_EXCLUDE flag. */
7780 if (*loc != NULL)
7781 {
7782 sec->flags |= SEC_EXCLUDE;
7783 return TRUE;
7784 }
7785
7786 sec->flags |= SEC_KEEP;
7787 *loc = sec;
7788 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7789 }
7790 }
7791
7792 sreloc = NULL;
7793 contents = NULL;
7794 for (rel = relocs; rel < rel_end; ++rel)
7795 {
7796 unsigned long r_symndx;
7797 unsigned int r_type;
7798 struct elf_link_hash_entry *h;
7799 bfd_boolean can_make_dynamic_p;
7800
7801 r_symndx = ELF_R_SYM (abfd, rel->r_info);
7802 r_type = ELF_R_TYPE (abfd, rel->r_info);
7803
7804 if (r_symndx < extsymoff)
7805 h = NULL;
7806 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
7807 {
7808 (*_bfd_error_handler)
7809 (_("%B: Malformed reloc detected for section %s"),
7810 abfd, name);
7811 bfd_set_error (bfd_error_bad_value);
7812 return FALSE;
7813 }
7814 else
7815 {
7816 h = sym_hashes[r_symndx - extsymoff];
7817 if (h != NULL)
7818 {
7819 while (h->root.type == bfd_link_hash_indirect
7820 || h->root.type == bfd_link_hash_warning)
7821 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7822
7823 /* PR15323, ref flags aren't set for references in the
7824 same object. */
7825 h->root.non_ir_ref = 1;
7826 }
7827 }
7828
7829 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
7830 relocation into a dynamic one. */
7831 can_make_dynamic_p = FALSE;
7832 switch (r_type)
7833 {
7834 case R_MIPS_GOT16:
7835 case R_MIPS_CALL16:
7836 case R_MIPS_CALL_HI16:
7837 case R_MIPS_CALL_LO16:
7838 case R_MIPS_GOT_HI16:
7839 case R_MIPS_GOT_LO16:
7840 case R_MIPS_GOT_PAGE:
7841 case R_MIPS_GOT_OFST:
7842 case R_MIPS_GOT_DISP:
7843 case R_MIPS_TLS_GOTTPREL:
7844 case R_MIPS_TLS_GD:
7845 case R_MIPS_TLS_LDM:
7846 case R_MIPS16_GOT16:
7847 case R_MIPS16_CALL16:
7848 case R_MIPS16_TLS_GOTTPREL:
7849 case R_MIPS16_TLS_GD:
7850 case R_MIPS16_TLS_LDM:
7851 case R_MICROMIPS_GOT16:
7852 case R_MICROMIPS_CALL16:
7853 case R_MICROMIPS_CALL_HI16:
7854 case R_MICROMIPS_CALL_LO16:
7855 case R_MICROMIPS_GOT_HI16:
7856 case R_MICROMIPS_GOT_LO16:
7857 case R_MICROMIPS_GOT_PAGE:
7858 case R_MICROMIPS_GOT_OFST:
7859 case R_MICROMIPS_GOT_DISP:
7860 case R_MICROMIPS_TLS_GOTTPREL:
7861 case R_MICROMIPS_TLS_GD:
7862 case R_MICROMIPS_TLS_LDM:
7863 if (dynobj == NULL)
7864 elf_hash_table (info)->dynobj = dynobj = abfd;
7865 if (!mips_elf_create_got_section (dynobj, info))
7866 return FALSE;
7867 if (htab->is_vxworks && !info->shared)
7868 {
7869 (*_bfd_error_handler)
7870 (_("%B: GOT reloc at 0x%lx not expected in executables"),
7871 abfd, (unsigned long) rel->r_offset);
7872 bfd_set_error (bfd_error_bad_value);
7873 return FALSE;
7874 }
7875 break;
7876
7877 /* This is just a hint; it can safely be ignored. Don't set
7878 has_static_relocs for the corresponding symbol. */
7879 case R_MIPS_JALR:
7880 case R_MICROMIPS_JALR:
7881 break;
7882
7883 case R_MIPS_32:
7884 case R_MIPS_REL32:
7885 case R_MIPS_64:
7886 /* In VxWorks executables, references to external symbols
7887 must be handled using copy relocs or PLT entries; it is not
7888 possible to convert this relocation into a dynamic one.
7889
7890 For executables that use PLTs and copy-relocs, we have a
7891 choice between converting the relocation into a dynamic
7892 one or using copy relocations or PLT entries. It is
7893 usually better to do the former, unless the relocation is
7894 against a read-only section. */
7895 if ((info->shared
7896 || (h != NULL
7897 && !htab->is_vxworks
7898 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
7899 && !(!info->nocopyreloc
7900 && !PIC_OBJECT_P (abfd)
7901 && MIPS_ELF_READONLY_SECTION (sec))))
7902 && (sec->flags & SEC_ALLOC) != 0)
7903 {
7904 can_make_dynamic_p = TRUE;
7905 if (dynobj == NULL)
7906 elf_hash_table (info)->dynobj = dynobj = abfd;
7907 break;
7908 }
7909 /* For sections that are not SEC_ALLOC a copy reloc would be
7910 output if possible (implying questionable semantics for
7911 read-only data objects) or otherwise the final link would
7912 fail as ld.so will not process them and could not therefore
7913 handle any outstanding dynamic relocations.
7914
7915 For such sections that are also SEC_DEBUGGING, we can avoid
7916 these problems by simply ignoring any relocs as these
7917 sections have a predefined use and we know it is safe to do
7918 so.
7919
7920 This is needed in cases such as a global symbol definition
7921 in a shared library causing a common symbol from an object
7922 file to be converted to an undefined reference. If that
7923 happens, then all the relocations against this symbol from
7924 SEC_DEBUGGING sections in the object file will resolve to
7925 nil. */
7926 if ((sec->flags & SEC_DEBUGGING) != 0)
7927 break;
7928 /* Fall through. */
7929
7930 default:
7931 /* Most static relocations require pointer equality, except
7932 for branches. */
7933 if (h)
7934 h->pointer_equality_needed = TRUE;
7935 /* Fall through. */
7936
7937 case R_MIPS_26:
7938 case R_MIPS_PC16:
7939 case R_MIPS16_26:
7940 case R_MICROMIPS_26_S1:
7941 case R_MICROMIPS_PC7_S1:
7942 case R_MICROMIPS_PC10_S1:
7943 case R_MICROMIPS_PC16_S1:
7944 case R_MICROMIPS_PC23_S2:
7945 if (h)
7946 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = TRUE;
7947 break;
7948 }
7949
7950 if (h)
7951 {
7952 /* Relocations against the special VxWorks __GOTT_BASE__ and
7953 __GOTT_INDEX__ symbols must be left to the loader. Allocate
7954 room for them in .rela.dyn. */
7955 if (is_gott_symbol (info, h))
7956 {
7957 if (sreloc == NULL)
7958 {
7959 sreloc = mips_elf_rel_dyn_section (info, TRUE);
7960 if (sreloc == NULL)
7961 return FALSE;
7962 }
7963 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
7964 if (MIPS_ELF_READONLY_SECTION (sec))
7965 /* We tell the dynamic linker that there are
7966 relocations against the text segment. */
7967 info->flags |= DF_TEXTREL;
7968 }
7969 }
7970 else if (call_lo16_reloc_p (r_type)
7971 || got_lo16_reloc_p (r_type)
7972 || got_disp_reloc_p (r_type)
7973 || (got16_reloc_p (r_type) && htab->is_vxworks))
7974 {
7975 /* We may need a local GOT entry for this relocation. We
7976 don't count R_MIPS_GOT_PAGE because we can estimate the
7977 maximum number of pages needed by looking at the size of
7978 the segment. Similar comments apply to R_MIPS*_GOT16 and
7979 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
7980 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
7981 R_MIPS_CALL_HI16 because these are always followed by an
7982 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
7983 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
7984 rel->r_addend, info, r_type))
7985 return FALSE;
7986 }
7987
7988 if (h != NULL
7989 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
7990 ELF_ST_IS_MIPS16 (h->other)))
7991 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
7992
7993 switch (r_type)
7994 {
7995 case R_MIPS_CALL16:
7996 case R_MIPS16_CALL16:
7997 case R_MICROMIPS_CALL16:
7998 if (h == NULL)
7999 {
8000 (*_bfd_error_handler)
8001 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
8002 abfd, (unsigned long) rel->r_offset);
8003 bfd_set_error (bfd_error_bad_value);
8004 return FALSE;
8005 }
8006 /* Fall through. */
8007
8008 case R_MIPS_CALL_HI16:
8009 case R_MIPS_CALL_LO16:
8010 case R_MICROMIPS_CALL_HI16:
8011 case R_MICROMIPS_CALL_LO16:
8012 if (h != NULL)
8013 {
8014 /* Make sure there is room in the regular GOT to hold the
8015 function's address. We may eliminate it in favour of
8016 a .got.plt entry later; see mips_elf_count_got_symbols. */
8017 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8018 r_type))
8019 return FALSE;
8020
8021 /* We need a stub, not a plt entry for the undefined
8022 function. But we record it as if it needs plt. See
8023 _bfd_elf_adjust_dynamic_symbol. */
8024 h->needs_plt = 1;
8025 h->type = STT_FUNC;
8026 }
8027 break;
8028
8029 case R_MIPS_GOT_PAGE:
8030 case R_MICROMIPS_GOT_PAGE:
8031 case R_MIPS16_GOT16:
8032 case R_MIPS_GOT16:
8033 case R_MIPS_GOT_HI16:
8034 case R_MIPS_GOT_LO16:
8035 case R_MICROMIPS_GOT16:
8036 case R_MICROMIPS_GOT_HI16:
8037 case R_MICROMIPS_GOT_LO16:
8038 if (!h || got_page_reloc_p (r_type))
8039 {
8040 /* This relocation needs (or may need, if h != NULL) a
8041 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8042 know for sure until we know whether the symbol is
8043 preemptible. */
8044 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8045 {
8046 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8047 return FALSE;
8048 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8049 addend = mips_elf_read_rel_addend (abfd, rel,
8050 howto, contents);
8051 if (got16_reloc_p (r_type))
8052 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8053 contents, &addend);
8054 else
8055 addend <<= howto->rightshift;
8056 }
8057 else
8058 addend = rel->r_addend;
8059 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8060 h, addend))
8061 return FALSE;
8062
8063 if (h)
8064 {
8065 struct mips_elf_link_hash_entry *hmips =
8066 (struct mips_elf_link_hash_entry *) h;
8067
8068 /* This symbol is definitely not overridable. */
8069 if (hmips->root.def_regular
8070 && ! (info->shared && ! info->symbolic
8071 && ! hmips->root.forced_local))
8072 h = NULL;
8073 }
8074 }
8075 /* If this is a global, overridable symbol, GOT_PAGE will
8076 decay to GOT_DISP, so we'll need a GOT entry for it. */
8077 /* Fall through. */
8078
8079 case R_MIPS_GOT_DISP:
8080 case R_MICROMIPS_GOT_DISP:
8081 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8082 FALSE, r_type))
8083 return FALSE;
8084 break;
8085
8086 case R_MIPS_TLS_GOTTPREL:
8087 case R_MIPS16_TLS_GOTTPREL:
8088 case R_MICROMIPS_TLS_GOTTPREL:
8089 if (info->shared)
8090 info->flags |= DF_STATIC_TLS;
8091 /* Fall through */
8092
8093 case R_MIPS_TLS_LDM:
8094 case R_MIPS16_TLS_LDM:
8095 case R_MICROMIPS_TLS_LDM:
8096 if (tls_ldm_reloc_p (r_type))
8097 {
8098 r_symndx = STN_UNDEF;
8099 h = NULL;
8100 }
8101 /* Fall through */
8102
8103 case R_MIPS_TLS_GD:
8104 case R_MIPS16_TLS_GD:
8105 case R_MICROMIPS_TLS_GD:
8106 /* This symbol requires a global offset table entry, or two
8107 for TLS GD relocations. */
8108 if (h != NULL)
8109 {
8110 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8111 FALSE, r_type))
8112 return FALSE;
8113 }
8114 else
8115 {
8116 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8117 rel->r_addend,
8118 info, r_type))
8119 return FALSE;
8120 }
8121 break;
8122
8123 case R_MIPS_32:
8124 case R_MIPS_REL32:
8125 case R_MIPS_64:
8126 /* In VxWorks executables, references to external symbols
8127 are handled using copy relocs or PLT stubs, so there's
8128 no need to add a .rela.dyn entry for this relocation. */
8129 if (can_make_dynamic_p)
8130 {
8131 if (sreloc == NULL)
8132 {
8133 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8134 if (sreloc == NULL)
8135 return FALSE;
8136 }
8137 if (info->shared && h == NULL)
8138 {
8139 /* When creating a shared object, we must copy these
8140 reloc types into the output file as R_MIPS_REL32
8141 relocs. Make room for this reloc in .rel(a).dyn. */
8142 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8143 if (MIPS_ELF_READONLY_SECTION (sec))
8144 /* We tell the dynamic linker that there are
8145 relocations against the text segment. */
8146 info->flags |= DF_TEXTREL;
8147 }
8148 else
8149 {
8150 struct mips_elf_link_hash_entry *hmips;
8151
8152 /* For a shared object, we must copy this relocation
8153 unless the symbol turns out to be undefined and
8154 weak with non-default visibility, in which case
8155 it will be left as zero.
8156
8157 We could elide R_MIPS_REL32 for locally binding symbols
8158 in shared libraries, but do not yet do so.
8159
8160 For an executable, we only need to copy this
8161 reloc if the symbol is defined in a dynamic
8162 object. */
8163 hmips = (struct mips_elf_link_hash_entry *) h;
8164 ++hmips->possibly_dynamic_relocs;
8165 if (MIPS_ELF_READONLY_SECTION (sec))
8166 /* We need it to tell the dynamic linker if there
8167 are relocations against the text segment. */
8168 hmips->readonly_reloc = TRUE;
8169 }
8170 }
8171
8172 if (SGI_COMPAT (abfd))
8173 mips_elf_hash_table (info)->compact_rel_size +=
8174 sizeof (Elf32_External_crinfo);
8175 break;
8176
8177 case R_MIPS_26:
8178 case R_MIPS_GPREL16:
8179 case R_MIPS_LITERAL:
8180 case R_MIPS_GPREL32:
8181 case R_MICROMIPS_26_S1:
8182 case R_MICROMIPS_GPREL16:
8183 case R_MICROMIPS_LITERAL:
8184 case R_MICROMIPS_GPREL7_S2:
8185 if (SGI_COMPAT (abfd))
8186 mips_elf_hash_table (info)->compact_rel_size +=
8187 sizeof (Elf32_External_crinfo);
8188 break;
8189
8190 /* This relocation describes the C++ object vtable hierarchy.
8191 Reconstruct it for later use during GC. */
8192 case R_MIPS_GNU_VTINHERIT:
8193 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8194 return FALSE;
8195 break;
8196
8197 /* This relocation describes which C++ vtable entries are actually
8198 used. Record for later use during GC. */
8199 case R_MIPS_GNU_VTENTRY:
8200 BFD_ASSERT (h != NULL);
8201 if (h != NULL
8202 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8203 return FALSE;
8204 break;
8205
8206 default:
8207 break;
8208 }
8209
8210 /* We must not create a stub for a symbol that has relocations
8211 related to taking the function's address. This doesn't apply to
8212 VxWorks, where CALL relocs refer to a .got.plt entry instead of
8213 a normal .got entry. */
8214 if (!htab->is_vxworks && h != NULL)
8215 switch (r_type)
8216 {
8217 default:
8218 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8219 break;
8220 case R_MIPS16_CALL16:
8221 case R_MIPS_CALL16:
8222 case R_MIPS_CALL_HI16:
8223 case R_MIPS_CALL_LO16:
8224 case R_MIPS_JALR:
8225 case R_MICROMIPS_CALL16:
8226 case R_MICROMIPS_CALL_HI16:
8227 case R_MICROMIPS_CALL_LO16:
8228 case R_MICROMIPS_JALR:
8229 break;
8230 }
8231
8232 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8233 if there is one. We only need to handle global symbols here;
8234 we decide whether to keep or delete stubs for local symbols
8235 when processing the stub's relocations. */
8236 if (h != NULL
8237 && !mips16_call_reloc_p (r_type)
8238 && !section_allows_mips16_refs_p (sec))
8239 {
8240 struct mips_elf_link_hash_entry *mh;
8241
8242 mh = (struct mips_elf_link_hash_entry *) h;
8243 mh->need_fn_stub = TRUE;
8244 }
8245
8246 /* Refuse some position-dependent relocations when creating a
8247 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8248 not PIC, but we can create dynamic relocations and the result
8249 will be fine. Also do not refuse R_MIPS_LO16, which can be
8250 combined with R_MIPS_GOT16. */
8251 if (info->shared)
8252 {
8253 switch (r_type)
8254 {
8255 case R_MIPS16_HI16:
8256 case R_MIPS_HI16:
8257 case R_MIPS_HIGHER:
8258 case R_MIPS_HIGHEST:
8259 case R_MICROMIPS_HI16:
8260 case R_MICROMIPS_HIGHER:
8261 case R_MICROMIPS_HIGHEST:
8262 /* Don't refuse a high part relocation if it's against
8263 no symbol (e.g. part of a compound relocation). */
8264 if (r_symndx == STN_UNDEF)
8265 break;
8266
8267 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8268 and has a special meaning. */
8269 if (!NEWABI_P (abfd) && h != NULL
8270 && strcmp (h->root.root.string, "_gp_disp") == 0)
8271 break;
8272
8273 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8274 if (is_gott_symbol (info, h))
8275 break;
8276
8277 /* FALLTHROUGH */
8278
8279 case R_MIPS16_26:
8280 case R_MIPS_26:
8281 case R_MICROMIPS_26_S1:
8282 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8283 (*_bfd_error_handler)
8284 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8285 abfd, howto->name,
8286 (h) ? h->root.root.string : "a local symbol");
8287 bfd_set_error (bfd_error_bad_value);
8288 return FALSE;
8289 default:
8290 break;
8291 }
8292 }
8293 }
8294
8295 return TRUE;
8296 }
8297 \f
8298 bfd_boolean
8299 _bfd_mips_relax_section (bfd *abfd, asection *sec,
8300 struct bfd_link_info *link_info,
8301 bfd_boolean *again)
8302 {
8303 Elf_Internal_Rela *internal_relocs;
8304 Elf_Internal_Rela *irel, *irelend;
8305 Elf_Internal_Shdr *symtab_hdr;
8306 bfd_byte *contents = NULL;
8307 size_t extsymoff;
8308 bfd_boolean changed_contents = FALSE;
8309 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8310 Elf_Internal_Sym *isymbuf = NULL;
8311
8312 /* We are not currently changing any sizes, so only one pass. */
8313 *again = FALSE;
8314
8315 if (link_info->relocatable)
8316 return TRUE;
8317
8318 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
8319 link_info->keep_memory);
8320 if (internal_relocs == NULL)
8321 return TRUE;
8322
8323 irelend = internal_relocs + sec->reloc_count
8324 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8325 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8326 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8327
8328 for (irel = internal_relocs; irel < irelend; irel++)
8329 {
8330 bfd_vma symval;
8331 bfd_signed_vma sym_offset;
8332 unsigned int r_type;
8333 unsigned long r_symndx;
8334 asection *sym_sec;
8335 unsigned long instruction;
8336
8337 /* Turn jalr into bgezal, and jr into beq, if they're marked
8338 with a JALR relocation, that indicate where they jump to.
8339 This saves some pipeline bubbles. */
8340 r_type = ELF_R_TYPE (abfd, irel->r_info);
8341 if (r_type != R_MIPS_JALR)
8342 continue;
8343
8344 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8345 /* Compute the address of the jump target. */
8346 if (r_symndx >= extsymoff)
8347 {
8348 struct mips_elf_link_hash_entry *h
8349 = ((struct mips_elf_link_hash_entry *)
8350 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8351
8352 while (h->root.root.type == bfd_link_hash_indirect
8353 || h->root.root.type == bfd_link_hash_warning)
8354 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8355
8356 /* If a symbol is undefined, or if it may be overridden,
8357 skip it. */
8358 if (! ((h->root.root.type == bfd_link_hash_defined
8359 || h->root.root.type == bfd_link_hash_defweak)
8360 && h->root.root.u.def.section)
8361 || (link_info->shared && ! link_info->symbolic
8362 && !h->root.forced_local))
8363 continue;
8364
8365 sym_sec = h->root.root.u.def.section;
8366 if (sym_sec->output_section)
8367 symval = (h->root.root.u.def.value
8368 + sym_sec->output_section->vma
8369 + sym_sec->output_offset);
8370 else
8371 symval = h->root.root.u.def.value;
8372 }
8373 else
8374 {
8375 Elf_Internal_Sym *isym;
8376
8377 /* Read this BFD's symbols if we haven't done so already. */
8378 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8379 {
8380 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8381 if (isymbuf == NULL)
8382 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8383 symtab_hdr->sh_info, 0,
8384 NULL, NULL, NULL);
8385 if (isymbuf == NULL)
8386 goto relax_return;
8387 }
8388
8389 isym = isymbuf + r_symndx;
8390 if (isym->st_shndx == SHN_UNDEF)
8391 continue;
8392 else if (isym->st_shndx == SHN_ABS)
8393 sym_sec = bfd_abs_section_ptr;
8394 else if (isym->st_shndx == SHN_COMMON)
8395 sym_sec = bfd_com_section_ptr;
8396 else
8397 sym_sec
8398 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8399 symval = isym->st_value
8400 + sym_sec->output_section->vma
8401 + sym_sec->output_offset;
8402 }
8403
8404 /* Compute branch offset, from delay slot of the jump to the
8405 branch target. */
8406 sym_offset = (symval + irel->r_addend)
8407 - (sec_start + irel->r_offset + 4);
8408
8409 /* Branch offset must be properly aligned. */
8410 if ((sym_offset & 3) != 0)
8411 continue;
8412
8413 sym_offset >>= 2;
8414
8415 /* Check that it's in range. */
8416 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8417 continue;
8418
8419 /* Get the section contents if we haven't done so already. */
8420 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8421 goto relax_return;
8422
8423 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8424
8425 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8426 if ((instruction & 0xfc1fffff) == 0x0000f809)
8427 instruction = 0x04110000;
8428 /* If it was jr <reg>, turn it into b <target>. */
8429 else if ((instruction & 0xfc1fffff) == 0x00000008)
8430 instruction = 0x10000000;
8431 else
8432 continue;
8433
8434 instruction |= (sym_offset & 0xffff);
8435 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8436 changed_contents = TRUE;
8437 }
8438
8439 if (contents != NULL
8440 && elf_section_data (sec)->this_hdr.contents != contents)
8441 {
8442 if (!changed_contents && !link_info->keep_memory)
8443 free (contents);
8444 else
8445 {
8446 /* Cache the section contents for elf_link_input_bfd. */
8447 elf_section_data (sec)->this_hdr.contents = contents;
8448 }
8449 }
8450 return TRUE;
8451
8452 relax_return:
8453 if (contents != NULL
8454 && elf_section_data (sec)->this_hdr.contents != contents)
8455 free (contents);
8456 return FALSE;
8457 }
8458 \f
8459 /* Allocate space for global sym dynamic relocs. */
8460
8461 static bfd_boolean
8462 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8463 {
8464 struct bfd_link_info *info = inf;
8465 bfd *dynobj;
8466 struct mips_elf_link_hash_entry *hmips;
8467 struct mips_elf_link_hash_table *htab;
8468
8469 htab = mips_elf_hash_table (info);
8470 BFD_ASSERT (htab != NULL);
8471
8472 dynobj = elf_hash_table (info)->dynobj;
8473 hmips = (struct mips_elf_link_hash_entry *) h;
8474
8475 /* VxWorks executables are handled elsewhere; we only need to
8476 allocate relocations in shared objects. */
8477 if (htab->is_vxworks && !info->shared)
8478 return TRUE;
8479
8480 /* Ignore indirect symbols. All relocations against such symbols
8481 will be redirected to the target symbol. */
8482 if (h->root.type == bfd_link_hash_indirect)
8483 return TRUE;
8484
8485 /* If this symbol is defined in a dynamic object, or we are creating
8486 a shared library, we will need to copy any R_MIPS_32 or
8487 R_MIPS_REL32 relocs against it into the output file. */
8488 if (! info->relocatable
8489 && hmips->possibly_dynamic_relocs != 0
8490 && (h->root.type == bfd_link_hash_defweak
8491 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
8492 || info->shared))
8493 {
8494 bfd_boolean do_copy = TRUE;
8495
8496 if (h->root.type == bfd_link_hash_undefweak)
8497 {
8498 /* Do not copy relocations for undefined weak symbols with
8499 non-default visibility. */
8500 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8501 do_copy = FALSE;
8502
8503 /* Make sure undefined weak symbols are output as a dynamic
8504 symbol in PIEs. */
8505 else if (h->dynindx == -1 && !h->forced_local)
8506 {
8507 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8508 return FALSE;
8509 }
8510 }
8511
8512 if (do_copy)
8513 {
8514 /* Even though we don't directly need a GOT entry for this symbol,
8515 the SVR4 psABI requires it to have a dynamic symbol table
8516 index greater that DT_MIPS_GOTSYM if there are dynamic
8517 relocations against it.
8518
8519 VxWorks does not enforce the same mapping between the GOT
8520 and the symbol table, so the same requirement does not
8521 apply there. */
8522 if (!htab->is_vxworks)
8523 {
8524 if (hmips->global_got_area > GGA_RELOC_ONLY)
8525 hmips->global_got_area = GGA_RELOC_ONLY;
8526 hmips->got_only_for_calls = FALSE;
8527 }
8528
8529 mips_elf_allocate_dynamic_relocations
8530 (dynobj, info, hmips->possibly_dynamic_relocs);
8531 if (hmips->readonly_reloc)
8532 /* We tell the dynamic linker that there are relocations
8533 against the text segment. */
8534 info->flags |= DF_TEXTREL;
8535 }
8536 }
8537
8538 return TRUE;
8539 }
8540
8541 /* Adjust a symbol defined by a dynamic object and referenced by a
8542 regular object. The current definition is in some section of the
8543 dynamic object, but we're not including those sections. We have to
8544 change the definition to something the rest of the link can
8545 understand. */
8546
8547 bfd_boolean
8548 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8549 struct elf_link_hash_entry *h)
8550 {
8551 bfd *dynobj;
8552 struct mips_elf_link_hash_entry *hmips;
8553 struct mips_elf_link_hash_table *htab;
8554
8555 htab = mips_elf_hash_table (info);
8556 BFD_ASSERT (htab != NULL);
8557
8558 dynobj = elf_hash_table (info)->dynobj;
8559 hmips = (struct mips_elf_link_hash_entry *) h;
8560
8561 /* Make sure we know what is going on here. */
8562 BFD_ASSERT (dynobj != NULL
8563 && (h->needs_plt
8564 || h->u.weakdef != NULL
8565 || (h->def_dynamic
8566 && h->ref_regular
8567 && !h->def_regular)));
8568
8569 hmips = (struct mips_elf_link_hash_entry *) h;
8570
8571 /* If there are call relocations against an externally-defined symbol,
8572 see whether we can create a MIPS lazy-binding stub for it. We can
8573 only do this if all references to the function are through call
8574 relocations, and in that case, the traditional lazy-binding stubs
8575 are much more efficient than PLT entries.
8576
8577 Traditional stubs are only available on SVR4 psABI-based systems;
8578 VxWorks always uses PLTs instead. */
8579 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
8580 {
8581 if (! elf_hash_table (info)->dynamic_sections_created)
8582 return TRUE;
8583
8584 /* If this symbol is not defined in a regular file, then set
8585 the symbol to the stub location. This is required to make
8586 function pointers compare as equal between the normal
8587 executable and the shared library. */
8588 if (!h->def_regular)
8589 {
8590 hmips->needs_lazy_stub = TRUE;
8591 htab->lazy_stub_count++;
8592 return TRUE;
8593 }
8594 }
8595 /* As above, VxWorks requires PLT entries for externally-defined
8596 functions that are only accessed through call relocations.
8597
8598 Both VxWorks and non-VxWorks targets also need PLT entries if there
8599 are static-only relocations against an externally-defined function.
8600 This can technically occur for shared libraries if there are
8601 branches to the symbol, although it is unlikely that this will be
8602 used in practice due to the short ranges involved. It can occur
8603 for any relative or absolute relocation in executables; in that
8604 case, the PLT entry becomes the function's canonical address. */
8605 else if (((h->needs_plt && !hmips->no_fn_stub)
8606 || (h->type == STT_FUNC && hmips->has_static_relocs))
8607 && htab->use_plts_and_copy_relocs
8608 && !SYMBOL_CALLS_LOCAL (info, h)
8609 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8610 && h->root.type == bfd_link_hash_undefweak))
8611 {
8612 /* If this is the first symbol to need a PLT entry, allocate room
8613 for the header. */
8614 if (htab->splt->size == 0)
8615 {
8616 BFD_ASSERT (htab->sgotplt->size == 0);
8617
8618 /* If we're using the PLT additions to the psABI, each PLT
8619 entry is 16 bytes and the PLT0 entry is 32 bytes.
8620 Encourage better cache usage by aligning. We do this
8621 lazily to avoid pessimizing traditional objects. */
8622 if (!htab->is_vxworks
8623 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
8624 return FALSE;
8625
8626 /* Make sure that .got.plt is word-aligned. We do this lazily
8627 for the same reason as above. */
8628 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
8629 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
8630 return FALSE;
8631
8632 htab->splt->size += htab->plt_header_size;
8633
8634 /* On non-VxWorks targets, the first two entries in .got.plt
8635 are reserved. */
8636 if (!htab->is_vxworks)
8637 htab->sgotplt->size
8638 += get_elf_backend_data (dynobj)->got_header_size;
8639
8640 /* On VxWorks, also allocate room for the header's
8641 .rela.plt.unloaded entries. */
8642 if (htab->is_vxworks && !info->shared)
8643 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
8644 }
8645
8646 /* Assign the next .plt entry to this symbol. */
8647 h->plt.offset = htab->splt->size;
8648 htab->splt->size += htab->plt_entry_size;
8649
8650 /* If the output file has no definition of the symbol, set the
8651 symbol's value to the address of the stub. */
8652 if (!info->shared && !h->def_regular)
8653 {
8654 h->root.u.def.section = htab->splt;
8655 h->root.u.def.value = h->plt.offset;
8656 /* For VxWorks, point at the PLT load stub rather than the
8657 lazy resolution stub; this stub will become the canonical
8658 function address. */
8659 if (htab->is_vxworks)
8660 h->root.u.def.value += 8;
8661 }
8662
8663 /* Make room for the .got.plt entry and the R_MIPS_JUMP_SLOT
8664 relocation. */
8665 htab->sgotplt->size += MIPS_ELF_GOT_SIZE (dynobj);
8666 htab->srelplt->size += (htab->is_vxworks
8667 ? MIPS_ELF_RELA_SIZE (dynobj)
8668 : MIPS_ELF_REL_SIZE (dynobj));
8669
8670 /* Make room for the .rela.plt.unloaded relocations. */
8671 if (htab->is_vxworks && !info->shared)
8672 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
8673
8674 /* All relocations against this symbol that could have been made
8675 dynamic will now refer to the PLT entry instead. */
8676 hmips->possibly_dynamic_relocs = 0;
8677
8678 return TRUE;
8679 }
8680
8681 /* If this is a weak symbol, and there is a real definition, the
8682 processor independent code will have arranged for us to see the
8683 real definition first, and we can just use the same value. */
8684 if (h->u.weakdef != NULL)
8685 {
8686 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
8687 || h->u.weakdef->root.type == bfd_link_hash_defweak);
8688 h->root.u.def.section = h->u.weakdef->root.u.def.section;
8689 h->root.u.def.value = h->u.weakdef->root.u.def.value;
8690 return TRUE;
8691 }
8692
8693 /* Otherwise, there is nothing further to do for symbols defined
8694 in regular objects. */
8695 if (h->def_regular)
8696 return TRUE;
8697
8698 /* There's also nothing more to do if we'll convert all relocations
8699 against this symbol into dynamic relocations. */
8700 if (!hmips->has_static_relocs)
8701 return TRUE;
8702
8703 /* We're now relying on copy relocations. Complain if we have
8704 some that we can't convert. */
8705 if (!htab->use_plts_and_copy_relocs || info->shared)
8706 {
8707 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
8708 "dynamic symbol %s"),
8709 h->root.root.string);
8710 bfd_set_error (bfd_error_bad_value);
8711 return FALSE;
8712 }
8713
8714 /* We must allocate the symbol in our .dynbss section, which will
8715 become part of the .bss section of the executable. There will be
8716 an entry for this symbol in the .dynsym section. The dynamic
8717 object will contain position independent code, so all references
8718 from the dynamic object to this symbol will go through the global
8719 offset table. The dynamic linker will use the .dynsym entry to
8720 determine the address it must put in the global offset table, so
8721 both the dynamic object and the regular object will refer to the
8722 same memory location for the variable. */
8723
8724 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
8725 {
8726 if (htab->is_vxworks)
8727 htab->srelbss->size += sizeof (Elf32_External_Rela);
8728 else
8729 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8730 h->needs_copy = 1;
8731 }
8732
8733 /* All relocations against this symbol that could have been made
8734 dynamic will now refer to the local copy instead. */
8735 hmips->possibly_dynamic_relocs = 0;
8736
8737 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
8738 }
8739 \f
8740 /* This function is called after all the input files have been read,
8741 and the input sections have been assigned to output sections. We
8742 check for any mips16 stub sections that we can discard. */
8743
8744 bfd_boolean
8745 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
8746 struct bfd_link_info *info)
8747 {
8748 asection *ri;
8749 struct mips_elf_link_hash_table *htab;
8750 struct mips_htab_traverse_info hti;
8751
8752 htab = mips_elf_hash_table (info);
8753 BFD_ASSERT (htab != NULL);
8754
8755 /* The .reginfo section has a fixed size. */
8756 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
8757 if (ri != NULL)
8758 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
8759
8760 hti.info = info;
8761 hti.output_bfd = output_bfd;
8762 hti.error = FALSE;
8763 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8764 mips_elf_check_symbols, &hti);
8765 if (hti.error)
8766 return FALSE;
8767
8768 return TRUE;
8769 }
8770
8771 /* If the link uses a GOT, lay it out and work out its size. */
8772
8773 static bfd_boolean
8774 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
8775 {
8776 bfd *dynobj;
8777 asection *s;
8778 struct mips_got_info *g;
8779 bfd_size_type loadable_size = 0;
8780 bfd_size_type page_gotno;
8781 bfd *ibfd;
8782 struct mips_elf_traverse_got_arg tga;
8783 struct mips_elf_link_hash_table *htab;
8784
8785 htab = mips_elf_hash_table (info);
8786 BFD_ASSERT (htab != NULL);
8787
8788 s = htab->sgot;
8789 if (s == NULL)
8790 return TRUE;
8791
8792 dynobj = elf_hash_table (info)->dynobj;
8793 g = htab->got_info;
8794
8795 /* Allocate room for the reserved entries. VxWorks always reserves
8796 3 entries; other objects only reserve 2 entries. */
8797 BFD_ASSERT (g->assigned_gotno == 0);
8798 if (htab->is_vxworks)
8799 htab->reserved_gotno = 3;
8800 else
8801 htab->reserved_gotno = 2;
8802 g->local_gotno += htab->reserved_gotno;
8803 g->assigned_gotno = htab->reserved_gotno;
8804
8805 /* Decide which symbols need to go in the global part of the GOT and
8806 count the number of reloc-only GOT symbols. */
8807 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
8808
8809 if (!mips_elf_resolve_final_got_entries (info, g))
8810 return FALSE;
8811
8812 /* Calculate the total loadable size of the output. That
8813 will give us the maximum number of GOT_PAGE entries
8814 required. */
8815 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link_next)
8816 {
8817 asection *subsection;
8818
8819 for (subsection = ibfd->sections;
8820 subsection;
8821 subsection = subsection->next)
8822 {
8823 if ((subsection->flags & SEC_ALLOC) == 0)
8824 continue;
8825 loadable_size += ((subsection->size + 0xf)
8826 &~ (bfd_size_type) 0xf);
8827 }
8828 }
8829
8830 if (htab->is_vxworks)
8831 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
8832 relocations against local symbols evaluate to "G", and the EABI does
8833 not include R_MIPS_GOT_PAGE. */
8834 page_gotno = 0;
8835 else
8836 /* Assume there are two loadable segments consisting of contiguous
8837 sections. Is 5 enough? */
8838 page_gotno = (loadable_size >> 16) + 5;
8839
8840 /* Choose the smaller of the two page estimates; both are intended to be
8841 conservative. */
8842 if (page_gotno > g->page_gotno)
8843 page_gotno = g->page_gotno;
8844
8845 g->local_gotno += page_gotno;
8846
8847 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8848 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8849 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8850
8851 /* VxWorks does not support multiple GOTs. It initializes $gp to
8852 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
8853 dynamic loader. */
8854 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
8855 {
8856 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
8857 return FALSE;
8858 }
8859 else
8860 {
8861 /* Record that all bfds use G. This also has the effect of freeing
8862 the per-bfd GOTs, which we no longer need. */
8863 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link_next)
8864 if (mips_elf_bfd_got (ibfd, FALSE))
8865 mips_elf_replace_bfd_got (ibfd, g);
8866 mips_elf_replace_bfd_got (output_bfd, g);
8867
8868 /* Set up TLS entries. */
8869 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
8870 tga.info = info;
8871 tga.g = g;
8872 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
8873 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
8874 if (!tga.g)
8875 return FALSE;
8876 BFD_ASSERT (g->tls_assigned_gotno
8877 == g->global_gotno + g->local_gotno + g->tls_gotno);
8878
8879 /* Each VxWorks GOT entry needs an explicit relocation. */
8880 if (htab->is_vxworks && info->shared)
8881 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
8882
8883 /* Allocate room for the TLS relocations. */
8884 if (g->relocs)
8885 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
8886 }
8887
8888 return TRUE;
8889 }
8890
8891 /* Estimate the size of the .MIPS.stubs section. */
8892
8893 static void
8894 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
8895 {
8896 struct mips_elf_link_hash_table *htab;
8897 bfd_size_type dynsymcount;
8898
8899 htab = mips_elf_hash_table (info);
8900 BFD_ASSERT (htab != NULL);
8901
8902 if (htab->lazy_stub_count == 0)
8903 return;
8904
8905 /* IRIX rld assumes that a function stub isn't at the end of the .text
8906 section, so add a dummy entry to the end. */
8907 htab->lazy_stub_count++;
8908
8909 /* Get a worst-case estimate of the number of dynamic symbols needed.
8910 At this point, dynsymcount does not account for section symbols
8911 and count_section_dynsyms may overestimate the number that will
8912 be needed. */
8913 dynsymcount = (elf_hash_table (info)->dynsymcount
8914 + count_section_dynsyms (output_bfd, info));
8915
8916 /* Determine the size of one stub entry. */
8917 htab->function_stub_size = (dynsymcount > 0x10000
8918 ? MIPS_FUNCTION_STUB_BIG_SIZE
8919 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
8920
8921 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
8922 }
8923
8924 /* A mips_elf_link_hash_traverse callback for which DATA points to the
8925 MIPS hash table. If H needs a traditional MIPS lazy-binding stub,
8926 allocate an entry in the stubs section. */
8927
8928 static bfd_boolean
8929 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
8930 {
8931 struct mips_elf_link_hash_table *htab;
8932
8933 htab = (struct mips_elf_link_hash_table *) data;
8934 if (h->needs_lazy_stub)
8935 {
8936 h->root.root.u.def.section = htab->sstubs;
8937 h->root.root.u.def.value = htab->sstubs->size;
8938 h->root.plt.offset = htab->sstubs->size;
8939 htab->sstubs->size += htab->function_stub_size;
8940 }
8941 return TRUE;
8942 }
8943
8944 /* Allocate offsets in the stubs section to each symbol that needs one.
8945 Set the final size of the .MIPS.stub section. */
8946
8947 static void
8948 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
8949 {
8950 struct mips_elf_link_hash_table *htab;
8951
8952 htab = mips_elf_hash_table (info);
8953 BFD_ASSERT (htab != NULL);
8954
8955 if (htab->lazy_stub_count == 0)
8956 return;
8957
8958 htab->sstubs->size = 0;
8959 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, htab);
8960 htab->sstubs->size += htab->function_stub_size;
8961 BFD_ASSERT (htab->sstubs->size
8962 == htab->lazy_stub_count * htab->function_stub_size);
8963 }
8964
8965 /* Set the sizes of the dynamic sections. */
8966
8967 bfd_boolean
8968 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
8969 struct bfd_link_info *info)
8970 {
8971 bfd *dynobj;
8972 asection *s, *sreldyn;
8973 bfd_boolean reltext;
8974 struct mips_elf_link_hash_table *htab;
8975
8976 htab = mips_elf_hash_table (info);
8977 BFD_ASSERT (htab != NULL);
8978 dynobj = elf_hash_table (info)->dynobj;
8979 BFD_ASSERT (dynobj != NULL);
8980
8981 if (elf_hash_table (info)->dynamic_sections_created)
8982 {
8983 /* Set the contents of the .interp section to the interpreter. */
8984 if (info->executable)
8985 {
8986 s = bfd_get_linker_section (dynobj, ".interp");
8987 BFD_ASSERT (s != NULL);
8988 s->size
8989 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
8990 s->contents
8991 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
8992 }
8993
8994 /* Create a symbol for the PLT, if we know that we are using it. */
8995 if (htab->splt && htab->splt->size > 0 && htab->root.hplt == NULL)
8996 {
8997 struct elf_link_hash_entry *h;
8998
8999 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9000
9001 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
9002 "_PROCEDURE_LINKAGE_TABLE_");
9003 htab->root.hplt = h;
9004 if (h == NULL)
9005 return FALSE;
9006 h->type = STT_FUNC;
9007 }
9008 }
9009
9010 /* Allocate space for global sym dynamic relocs. */
9011 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9012
9013 mips_elf_estimate_stub_size (output_bfd, info);
9014
9015 if (!mips_elf_lay_out_got (output_bfd, info))
9016 return FALSE;
9017
9018 mips_elf_lay_out_lazy_stubs (info);
9019
9020 /* The check_relocs and adjust_dynamic_symbol entry points have
9021 determined the sizes of the various dynamic sections. Allocate
9022 memory for them. */
9023 reltext = FALSE;
9024 for (s = dynobj->sections; s != NULL; s = s->next)
9025 {
9026 const char *name;
9027
9028 /* It's OK to base decisions on the section name, because none
9029 of the dynobj section names depend upon the input files. */
9030 name = bfd_get_section_name (dynobj, s);
9031
9032 if ((s->flags & SEC_LINKER_CREATED) == 0)
9033 continue;
9034
9035 if (CONST_STRNEQ (name, ".rel"))
9036 {
9037 if (s->size != 0)
9038 {
9039 const char *outname;
9040 asection *target;
9041
9042 /* If this relocation section applies to a read only
9043 section, then we probably need a DT_TEXTREL entry.
9044 If the relocation section is .rel(a).dyn, we always
9045 assert a DT_TEXTREL entry rather than testing whether
9046 there exists a relocation to a read only section or
9047 not. */
9048 outname = bfd_get_section_name (output_bfd,
9049 s->output_section);
9050 target = bfd_get_section_by_name (output_bfd, outname + 4);
9051 if ((target != NULL
9052 && (target->flags & SEC_READONLY) != 0
9053 && (target->flags & SEC_ALLOC) != 0)
9054 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9055 reltext = TRUE;
9056
9057 /* We use the reloc_count field as a counter if we need
9058 to copy relocs into the output file. */
9059 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9060 s->reloc_count = 0;
9061
9062 /* If combreloc is enabled, elf_link_sort_relocs() will
9063 sort relocations, but in a different way than we do,
9064 and before we're done creating relocations. Also, it
9065 will move them around between input sections'
9066 relocation's contents, so our sorting would be
9067 broken, so don't let it run. */
9068 info->combreloc = 0;
9069 }
9070 }
9071 else if (! info->shared
9072 && ! mips_elf_hash_table (info)->use_rld_obj_head
9073 && CONST_STRNEQ (name, ".rld_map"))
9074 {
9075 /* We add a room for __rld_map. It will be filled in by the
9076 rtld to contain a pointer to the _r_debug structure. */
9077 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9078 }
9079 else if (SGI_COMPAT (output_bfd)
9080 && CONST_STRNEQ (name, ".compact_rel"))
9081 s->size += mips_elf_hash_table (info)->compact_rel_size;
9082 else if (s == htab->splt)
9083 {
9084 /* If the last PLT entry has a branch delay slot, allocate
9085 room for an extra nop to fill the delay slot. This is
9086 for CPUs without load interlocking. */
9087 if (! LOAD_INTERLOCKS_P (output_bfd)
9088 && ! htab->is_vxworks && s->size > 0)
9089 s->size += 4;
9090 }
9091 else if (! CONST_STRNEQ (name, ".init")
9092 && s != htab->sgot
9093 && s != htab->sgotplt
9094 && s != htab->sstubs
9095 && s != htab->sdynbss)
9096 {
9097 /* It's not one of our sections, so don't allocate space. */
9098 continue;
9099 }
9100
9101 if (s->size == 0)
9102 {
9103 s->flags |= SEC_EXCLUDE;
9104 continue;
9105 }
9106
9107 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9108 continue;
9109
9110 /* Allocate memory for the section contents. */
9111 s->contents = bfd_zalloc (dynobj, s->size);
9112 if (s->contents == NULL)
9113 {
9114 bfd_set_error (bfd_error_no_memory);
9115 return FALSE;
9116 }
9117 }
9118
9119 if (elf_hash_table (info)->dynamic_sections_created)
9120 {
9121 /* Add some entries to the .dynamic section. We fill in the
9122 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9123 must add the entries now so that we get the correct size for
9124 the .dynamic section. */
9125
9126 /* SGI object has the equivalence of DT_DEBUG in the
9127 DT_MIPS_RLD_MAP entry. This must come first because glibc
9128 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9129 may only look at the first one they see. */
9130 if (!info->shared
9131 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9132 return FALSE;
9133
9134 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9135 used by the debugger. */
9136 if (info->executable
9137 && !SGI_COMPAT (output_bfd)
9138 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9139 return FALSE;
9140
9141 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9142 info->flags |= DF_TEXTREL;
9143
9144 if ((info->flags & DF_TEXTREL) != 0)
9145 {
9146 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9147 return FALSE;
9148
9149 /* Clear the DF_TEXTREL flag. It will be set again if we
9150 write out an actual text relocation; we may not, because
9151 at this point we do not know whether e.g. any .eh_frame
9152 absolute relocations have been converted to PC-relative. */
9153 info->flags &= ~DF_TEXTREL;
9154 }
9155
9156 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9157 return FALSE;
9158
9159 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9160 if (htab->is_vxworks)
9161 {
9162 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9163 use any of the DT_MIPS_* tags. */
9164 if (sreldyn && sreldyn->size > 0)
9165 {
9166 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9167 return FALSE;
9168
9169 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9170 return FALSE;
9171
9172 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9173 return FALSE;
9174 }
9175 }
9176 else
9177 {
9178 if (sreldyn && sreldyn->size > 0)
9179 {
9180 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9181 return FALSE;
9182
9183 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9184 return FALSE;
9185
9186 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9187 return FALSE;
9188 }
9189
9190 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9191 return FALSE;
9192
9193 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9194 return FALSE;
9195
9196 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9197 return FALSE;
9198
9199 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9200 return FALSE;
9201
9202 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9203 return FALSE;
9204
9205 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9206 return FALSE;
9207
9208 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9209 return FALSE;
9210
9211 if (IRIX_COMPAT (dynobj) == ict_irix5
9212 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9213 return FALSE;
9214
9215 if (IRIX_COMPAT (dynobj) == ict_irix6
9216 && (bfd_get_section_by_name
9217 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9218 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9219 return FALSE;
9220 }
9221 if (htab->splt->size > 0)
9222 {
9223 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9224 return FALSE;
9225
9226 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9227 return FALSE;
9228
9229 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9230 return FALSE;
9231
9232 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9233 return FALSE;
9234 }
9235 if (htab->is_vxworks
9236 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9237 return FALSE;
9238 }
9239
9240 return TRUE;
9241 }
9242 \f
9243 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9244 Adjust its R_ADDEND field so that it is correct for the output file.
9245 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9246 and sections respectively; both use symbol indexes. */
9247
9248 static void
9249 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9250 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9251 asection **local_sections, Elf_Internal_Rela *rel)
9252 {
9253 unsigned int r_type, r_symndx;
9254 Elf_Internal_Sym *sym;
9255 asection *sec;
9256
9257 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9258 {
9259 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9260 if (gprel16_reloc_p (r_type)
9261 || r_type == R_MIPS_GPREL32
9262 || literal_reloc_p (r_type))
9263 {
9264 rel->r_addend += _bfd_get_gp_value (input_bfd);
9265 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9266 }
9267
9268 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9269 sym = local_syms + r_symndx;
9270
9271 /* Adjust REL's addend to account for section merging. */
9272 if (!info->relocatable)
9273 {
9274 sec = local_sections[r_symndx];
9275 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9276 }
9277
9278 /* This would normally be done by the rela_normal code in elflink.c. */
9279 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9280 rel->r_addend += local_sections[r_symndx]->output_offset;
9281 }
9282 }
9283
9284 /* Handle relocations against symbols from removed linkonce sections,
9285 or sections discarded by a linker script. We use this wrapper around
9286 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
9287 on 64-bit ELF targets. In this case for any relocation handled, which
9288 always be the first in a triplet, the remaining two have to be processed
9289 together with the first, even if they are R_MIPS_NONE. It is the symbol
9290 index referred by the first reloc that applies to all the three and the
9291 remaining two never refer to an object symbol. And it is the final
9292 relocation (the last non-null one) that determines the output field of
9293 the whole relocation so retrieve the corresponding howto structure for
9294 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
9295
9296 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
9297 and therefore requires to be pasted in a loop. It also defines a block
9298 and does not protect any of its arguments, hence the extra brackets. */
9299
9300 static void
9301 mips_reloc_against_discarded_section (bfd *output_bfd,
9302 struct bfd_link_info *info,
9303 bfd *input_bfd, asection *input_section,
9304 Elf_Internal_Rela **rel,
9305 const Elf_Internal_Rela **relend,
9306 bfd_boolean rel_reloc,
9307 reloc_howto_type *howto,
9308 bfd_byte *contents)
9309 {
9310 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9311 int count = bed->s->int_rels_per_ext_rel;
9312 unsigned int r_type;
9313 int i;
9314
9315 for (i = count - 1; i > 0; i--)
9316 {
9317 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
9318 if (r_type != R_MIPS_NONE)
9319 {
9320 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9321 break;
9322 }
9323 }
9324 do
9325 {
9326 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9327 (*rel), count, (*relend),
9328 howto, i, contents);
9329 }
9330 while (0);
9331 }
9332
9333 /* Relocate a MIPS ELF section. */
9334
9335 bfd_boolean
9336 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
9337 bfd *input_bfd, asection *input_section,
9338 bfd_byte *contents, Elf_Internal_Rela *relocs,
9339 Elf_Internal_Sym *local_syms,
9340 asection **local_sections)
9341 {
9342 Elf_Internal_Rela *rel;
9343 const Elf_Internal_Rela *relend;
9344 bfd_vma addend = 0;
9345 bfd_boolean use_saved_addend_p = FALSE;
9346 const struct elf_backend_data *bed;
9347
9348 bed = get_elf_backend_data (output_bfd);
9349 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
9350 for (rel = relocs; rel < relend; ++rel)
9351 {
9352 const char *name;
9353 bfd_vma value = 0;
9354 reloc_howto_type *howto;
9355 bfd_boolean cross_mode_jump_p;
9356 /* TRUE if the relocation is a RELA relocation, rather than a
9357 REL relocation. */
9358 bfd_boolean rela_relocation_p = TRUE;
9359 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9360 const char *msg;
9361 unsigned long r_symndx;
9362 asection *sec;
9363 Elf_Internal_Shdr *symtab_hdr;
9364 struct elf_link_hash_entry *h;
9365 bfd_boolean rel_reloc;
9366
9367 rel_reloc = (NEWABI_P (input_bfd)
9368 && mips_elf_rel_relocation_p (input_bfd, input_section,
9369 relocs, rel));
9370 /* Find the relocation howto for this relocation. */
9371 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9372
9373 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
9374 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9375 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9376 {
9377 sec = local_sections[r_symndx];
9378 h = NULL;
9379 }
9380 else
9381 {
9382 unsigned long extsymoff;
9383
9384 extsymoff = 0;
9385 if (!elf_bad_symtab (input_bfd))
9386 extsymoff = symtab_hdr->sh_info;
9387 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
9388 while (h->root.type == bfd_link_hash_indirect
9389 || h->root.type == bfd_link_hash_warning)
9390 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9391
9392 sec = NULL;
9393 if (h->root.type == bfd_link_hash_defined
9394 || h->root.type == bfd_link_hash_defweak)
9395 sec = h->root.u.def.section;
9396 }
9397
9398 if (sec != NULL && discarded_section (sec))
9399 {
9400 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
9401 input_section, &rel, &relend,
9402 rel_reloc, howto, contents);
9403 continue;
9404 }
9405
9406 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
9407 {
9408 /* Some 32-bit code uses R_MIPS_64. In particular, people use
9409 64-bit code, but make sure all their addresses are in the
9410 lowermost or uppermost 32-bit section of the 64-bit address
9411 space. Thus, when they use an R_MIPS_64 they mean what is
9412 usually meant by R_MIPS_32, with the exception that the
9413 stored value is sign-extended to 64 bits. */
9414 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
9415
9416 /* On big-endian systems, we need to lie about the position
9417 of the reloc. */
9418 if (bfd_big_endian (input_bfd))
9419 rel->r_offset += 4;
9420 }
9421
9422 if (!use_saved_addend_p)
9423 {
9424 /* If these relocations were originally of the REL variety,
9425 we must pull the addend out of the field that will be
9426 relocated. Otherwise, we simply use the contents of the
9427 RELA relocation. */
9428 if (mips_elf_rel_relocation_p (input_bfd, input_section,
9429 relocs, rel))
9430 {
9431 rela_relocation_p = FALSE;
9432 addend = mips_elf_read_rel_addend (input_bfd, rel,
9433 howto, contents);
9434 if (hi16_reloc_p (r_type)
9435 || (got16_reloc_p (r_type)
9436 && mips_elf_local_relocation_p (input_bfd, rel,
9437 local_sections)))
9438 {
9439 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
9440 contents, &addend))
9441 {
9442 if (h)
9443 name = h->root.root.string;
9444 else
9445 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9446 local_syms + r_symndx,
9447 sec);
9448 (*_bfd_error_handler)
9449 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
9450 input_bfd, input_section, name, howto->name,
9451 rel->r_offset);
9452 }
9453 }
9454 else
9455 addend <<= howto->rightshift;
9456 }
9457 else
9458 addend = rel->r_addend;
9459 mips_elf_adjust_addend (output_bfd, info, input_bfd,
9460 local_syms, local_sections, rel);
9461 }
9462
9463 if (info->relocatable)
9464 {
9465 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
9466 && bfd_big_endian (input_bfd))
9467 rel->r_offset -= 4;
9468
9469 if (!rela_relocation_p && rel->r_addend)
9470 {
9471 addend += rel->r_addend;
9472 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
9473 addend = mips_elf_high (addend);
9474 else if (r_type == R_MIPS_HIGHER)
9475 addend = mips_elf_higher (addend);
9476 else if (r_type == R_MIPS_HIGHEST)
9477 addend = mips_elf_highest (addend);
9478 else
9479 addend >>= howto->rightshift;
9480
9481 /* We use the source mask, rather than the destination
9482 mask because the place to which we are writing will be
9483 source of the addend in the final link. */
9484 addend &= howto->src_mask;
9485
9486 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9487 /* See the comment above about using R_MIPS_64 in the 32-bit
9488 ABI. Here, we need to update the addend. It would be
9489 possible to get away with just using the R_MIPS_32 reloc
9490 but for endianness. */
9491 {
9492 bfd_vma sign_bits;
9493 bfd_vma low_bits;
9494 bfd_vma high_bits;
9495
9496 if (addend & ((bfd_vma) 1 << 31))
9497 #ifdef BFD64
9498 sign_bits = ((bfd_vma) 1 << 32) - 1;
9499 #else
9500 sign_bits = -1;
9501 #endif
9502 else
9503 sign_bits = 0;
9504
9505 /* If we don't know that we have a 64-bit type,
9506 do two separate stores. */
9507 if (bfd_big_endian (input_bfd))
9508 {
9509 /* Store the sign-bits (which are most significant)
9510 first. */
9511 low_bits = sign_bits;
9512 high_bits = addend;
9513 }
9514 else
9515 {
9516 low_bits = addend;
9517 high_bits = sign_bits;
9518 }
9519 bfd_put_32 (input_bfd, low_bits,
9520 contents + rel->r_offset);
9521 bfd_put_32 (input_bfd, high_bits,
9522 contents + rel->r_offset + 4);
9523 continue;
9524 }
9525
9526 if (! mips_elf_perform_relocation (info, howto, rel, addend,
9527 input_bfd, input_section,
9528 contents, FALSE))
9529 return FALSE;
9530 }
9531
9532 /* Go on to the next relocation. */
9533 continue;
9534 }
9535
9536 /* In the N32 and 64-bit ABIs there may be multiple consecutive
9537 relocations for the same offset. In that case we are
9538 supposed to treat the output of each relocation as the addend
9539 for the next. */
9540 if (rel + 1 < relend
9541 && rel->r_offset == rel[1].r_offset
9542 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
9543 use_saved_addend_p = TRUE;
9544 else
9545 use_saved_addend_p = FALSE;
9546
9547 /* Figure out what value we are supposed to relocate. */
9548 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
9549 input_section, info, rel,
9550 addend, howto, local_syms,
9551 local_sections, &value,
9552 &name, &cross_mode_jump_p,
9553 use_saved_addend_p))
9554 {
9555 case bfd_reloc_continue:
9556 /* There's nothing to do. */
9557 continue;
9558
9559 case bfd_reloc_undefined:
9560 /* mips_elf_calculate_relocation already called the
9561 undefined_symbol callback. There's no real point in
9562 trying to perform the relocation at this point, so we
9563 just skip ahead to the next relocation. */
9564 continue;
9565
9566 case bfd_reloc_notsupported:
9567 msg = _("internal error: unsupported relocation error");
9568 info->callbacks->warning
9569 (info, msg, name, input_bfd, input_section, rel->r_offset);
9570 return FALSE;
9571
9572 case bfd_reloc_overflow:
9573 if (use_saved_addend_p)
9574 /* Ignore overflow until we reach the last relocation for
9575 a given location. */
9576 ;
9577 else
9578 {
9579 struct mips_elf_link_hash_table *htab;
9580
9581 htab = mips_elf_hash_table (info);
9582 BFD_ASSERT (htab != NULL);
9583 BFD_ASSERT (name != NULL);
9584 if (!htab->small_data_overflow_reported
9585 && (gprel16_reloc_p (howto->type)
9586 || literal_reloc_p (howto->type)))
9587 {
9588 msg = _("small-data section exceeds 64KB;"
9589 " lower small-data size limit (see option -G)");
9590
9591 htab->small_data_overflow_reported = TRUE;
9592 (*info->callbacks->einfo) ("%P: %s\n", msg);
9593 }
9594 if (! ((*info->callbacks->reloc_overflow)
9595 (info, NULL, name, howto->name, (bfd_vma) 0,
9596 input_bfd, input_section, rel->r_offset)))
9597 return FALSE;
9598 }
9599 break;
9600
9601 case bfd_reloc_ok:
9602 break;
9603
9604 case bfd_reloc_outofrange:
9605 if (jal_reloc_p (howto->type))
9606 {
9607 msg = _("JALX to a non-word-aligned address");
9608 info->callbacks->warning
9609 (info, msg, name, input_bfd, input_section, rel->r_offset);
9610 return FALSE;
9611 }
9612 /* Fall through. */
9613
9614 default:
9615 abort ();
9616 break;
9617 }
9618
9619 /* If we've got another relocation for the address, keep going
9620 until we reach the last one. */
9621 if (use_saved_addend_p)
9622 {
9623 addend = value;
9624 continue;
9625 }
9626
9627 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9628 /* See the comment above about using R_MIPS_64 in the 32-bit
9629 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
9630 that calculated the right value. Now, however, we
9631 sign-extend the 32-bit result to 64-bits, and store it as a
9632 64-bit value. We are especially generous here in that we
9633 go to extreme lengths to support this usage on systems with
9634 only a 32-bit VMA. */
9635 {
9636 bfd_vma sign_bits;
9637 bfd_vma low_bits;
9638 bfd_vma high_bits;
9639
9640 if (value & ((bfd_vma) 1 << 31))
9641 #ifdef BFD64
9642 sign_bits = ((bfd_vma) 1 << 32) - 1;
9643 #else
9644 sign_bits = -1;
9645 #endif
9646 else
9647 sign_bits = 0;
9648
9649 /* If we don't know that we have a 64-bit type,
9650 do two separate stores. */
9651 if (bfd_big_endian (input_bfd))
9652 {
9653 /* Undo what we did above. */
9654 rel->r_offset -= 4;
9655 /* Store the sign-bits (which are most significant)
9656 first. */
9657 low_bits = sign_bits;
9658 high_bits = value;
9659 }
9660 else
9661 {
9662 low_bits = value;
9663 high_bits = sign_bits;
9664 }
9665 bfd_put_32 (input_bfd, low_bits,
9666 contents + rel->r_offset);
9667 bfd_put_32 (input_bfd, high_bits,
9668 contents + rel->r_offset + 4);
9669 continue;
9670 }
9671
9672 /* Actually perform the relocation. */
9673 if (! mips_elf_perform_relocation (info, howto, rel, value,
9674 input_bfd, input_section,
9675 contents, cross_mode_jump_p))
9676 return FALSE;
9677 }
9678
9679 return TRUE;
9680 }
9681 \f
9682 /* A function that iterates over each entry in la25_stubs and fills
9683 in the code for each one. DATA points to a mips_htab_traverse_info. */
9684
9685 static int
9686 mips_elf_create_la25_stub (void **slot, void *data)
9687 {
9688 struct mips_htab_traverse_info *hti;
9689 struct mips_elf_link_hash_table *htab;
9690 struct mips_elf_la25_stub *stub;
9691 asection *s;
9692 bfd_byte *loc;
9693 bfd_vma offset, target, target_high, target_low;
9694
9695 stub = (struct mips_elf_la25_stub *) *slot;
9696 hti = (struct mips_htab_traverse_info *) data;
9697 htab = mips_elf_hash_table (hti->info);
9698 BFD_ASSERT (htab != NULL);
9699
9700 /* Create the section contents, if we haven't already. */
9701 s = stub->stub_section;
9702 loc = s->contents;
9703 if (loc == NULL)
9704 {
9705 loc = bfd_malloc (s->size);
9706 if (loc == NULL)
9707 {
9708 hti->error = TRUE;
9709 return FALSE;
9710 }
9711 s->contents = loc;
9712 }
9713
9714 /* Work out where in the section this stub should go. */
9715 offset = stub->offset;
9716
9717 /* Work out the target address. */
9718 target = mips_elf_get_la25_target (stub, &s);
9719 target += s->output_section->vma + s->output_offset;
9720
9721 target_high = ((target + 0x8000) >> 16) & 0xffff;
9722 target_low = (target & 0xffff);
9723
9724 if (stub->stub_section != htab->strampoline)
9725 {
9726 /* This is a simple LUI/ADDIU stub. Zero out the beginning
9727 of the section and write the two instructions at the end. */
9728 memset (loc, 0, offset);
9729 loc += offset;
9730 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9731 {
9732 bfd_put_micromips_32 (hti->output_bfd,
9733 LA25_LUI_MICROMIPS (target_high),
9734 loc);
9735 bfd_put_micromips_32 (hti->output_bfd,
9736 LA25_ADDIU_MICROMIPS (target_low),
9737 loc + 4);
9738 }
9739 else
9740 {
9741 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9742 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
9743 }
9744 }
9745 else
9746 {
9747 /* This is trampoline. */
9748 loc += offset;
9749 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9750 {
9751 bfd_put_micromips_32 (hti->output_bfd,
9752 LA25_LUI_MICROMIPS (target_high), loc);
9753 bfd_put_micromips_32 (hti->output_bfd,
9754 LA25_J_MICROMIPS (target), loc + 4);
9755 bfd_put_micromips_32 (hti->output_bfd,
9756 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
9757 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9758 }
9759 else
9760 {
9761 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9762 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
9763 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
9764 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9765 }
9766 }
9767 return TRUE;
9768 }
9769
9770 /* If NAME is one of the special IRIX6 symbols defined by the linker,
9771 adjust it appropriately now. */
9772
9773 static void
9774 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
9775 const char *name, Elf_Internal_Sym *sym)
9776 {
9777 /* The linker script takes care of providing names and values for
9778 these, but we must place them into the right sections. */
9779 static const char* const text_section_symbols[] = {
9780 "_ftext",
9781 "_etext",
9782 "__dso_displacement",
9783 "__elf_header",
9784 "__program_header_table",
9785 NULL
9786 };
9787
9788 static const char* const data_section_symbols[] = {
9789 "_fdata",
9790 "_edata",
9791 "_end",
9792 "_fbss",
9793 NULL
9794 };
9795
9796 const char* const *p;
9797 int i;
9798
9799 for (i = 0; i < 2; ++i)
9800 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
9801 *p;
9802 ++p)
9803 if (strcmp (*p, name) == 0)
9804 {
9805 /* All of these symbols are given type STT_SECTION by the
9806 IRIX6 linker. */
9807 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9808 sym->st_other = STO_PROTECTED;
9809
9810 /* The IRIX linker puts these symbols in special sections. */
9811 if (i == 0)
9812 sym->st_shndx = SHN_MIPS_TEXT;
9813 else
9814 sym->st_shndx = SHN_MIPS_DATA;
9815
9816 break;
9817 }
9818 }
9819
9820 /* Finish up dynamic symbol handling. We set the contents of various
9821 dynamic sections here. */
9822
9823 bfd_boolean
9824 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
9825 struct bfd_link_info *info,
9826 struct elf_link_hash_entry *h,
9827 Elf_Internal_Sym *sym)
9828 {
9829 bfd *dynobj;
9830 asection *sgot;
9831 struct mips_got_info *g, *gg;
9832 const char *name;
9833 int idx;
9834 struct mips_elf_link_hash_table *htab;
9835 struct mips_elf_link_hash_entry *hmips;
9836
9837 htab = mips_elf_hash_table (info);
9838 BFD_ASSERT (htab != NULL);
9839 dynobj = elf_hash_table (info)->dynobj;
9840 hmips = (struct mips_elf_link_hash_entry *) h;
9841
9842 BFD_ASSERT (!htab->is_vxworks);
9843
9844 if (h->plt.offset != MINUS_ONE && hmips->no_fn_stub)
9845 {
9846 /* We've decided to create a PLT entry for this symbol. */
9847 bfd_byte *loc;
9848 bfd_vma header_address, plt_index, got_address;
9849 bfd_vma got_address_high, got_address_low, load;
9850 const bfd_vma *plt_entry;
9851
9852 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9853 BFD_ASSERT (h->dynindx != -1);
9854 BFD_ASSERT (htab->splt != NULL);
9855 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9856 BFD_ASSERT (!h->def_regular);
9857
9858 /* Calculate the address of the PLT header. */
9859 header_address = (htab->splt->output_section->vma
9860 + htab->splt->output_offset);
9861
9862 /* Calculate the index of the entry. */
9863 plt_index = ((h->plt.offset - htab->plt_header_size)
9864 / htab->plt_entry_size);
9865
9866 /* Calculate the address of the .got.plt entry. */
9867 got_address = (htab->sgotplt->output_section->vma
9868 + htab->sgotplt->output_offset
9869 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9870 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9871 got_address_low = got_address & 0xffff;
9872
9873 /* Initially point the .got.plt entry at the PLT header. */
9874 loc = (htab->sgotplt->contents
9875 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9876 if (ABI_64_P (output_bfd))
9877 bfd_put_64 (output_bfd, header_address, loc);
9878 else
9879 bfd_put_32 (output_bfd, header_address, loc);
9880
9881 /* Find out where the .plt entry should go. */
9882 loc = htab->splt->contents + h->plt.offset;
9883
9884 /* Pick the load opcode. */
9885 load = MIPS_ELF_LOAD_WORD (output_bfd);
9886
9887 /* Fill in the PLT entry itself. */
9888 plt_entry = mips_exec_plt_entry;
9889 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
9890 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, loc + 4);
9891
9892 if (! LOAD_INTERLOCKS_P (output_bfd))
9893 {
9894 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
9895 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9896 }
9897 else
9898 {
9899 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
9900 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 12);
9901 }
9902
9903 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9904 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
9905 plt_index, h->dynindx,
9906 R_MIPS_JUMP_SLOT, got_address);
9907
9908 /* We distinguish between PLT entries and lazy-binding stubs by
9909 giving the former an st_other value of STO_MIPS_PLT. Set the
9910 flag and leave the value if there are any relocations in the
9911 binary where pointer equality matters. */
9912 sym->st_shndx = SHN_UNDEF;
9913 if (h->pointer_equality_needed)
9914 sym->st_other = STO_MIPS_PLT;
9915 else
9916 sym->st_value = 0;
9917 }
9918 else if (h->plt.offset != MINUS_ONE)
9919 {
9920 /* We've decided to create a lazy-binding stub. */
9921 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
9922
9923 /* This symbol has a stub. Set it up. */
9924
9925 BFD_ASSERT (h->dynindx != -1);
9926
9927 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9928 || (h->dynindx <= 0xffff));
9929
9930 /* Values up to 2^31 - 1 are allowed. Larger values would cause
9931 sign extension at runtime in the stub, resulting in a negative
9932 index value. */
9933 if (h->dynindx & ~0x7fffffff)
9934 return FALSE;
9935
9936 /* Fill the stub. */
9937 idx = 0;
9938 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
9939 idx += 4;
9940 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
9941 idx += 4;
9942 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9943 {
9944 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
9945 stub + idx);
9946 idx += 4;
9947 }
9948 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
9949 idx += 4;
9950
9951 /* If a large stub is not required and sign extension is not a
9952 problem, then use legacy code in the stub. */
9953 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9954 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
9955 else if (h->dynindx & ~0x7fff)
9956 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
9957 else
9958 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
9959 stub + idx);
9960
9961 BFD_ASSERT (h->plt.offset <= htab->sstubs->size);
9962 memcpy (htab->sstubs->contents + h->plt.offset,
9963 stub, htab->function_stub_size);
9964
9965 /* Mark the symbol as undefined. plt.offset != -1 occurs
9966 only for the referenced symbol. */
9967 sym->st_shndx = SHN_UNDEF;
9968
9969 /* The run-time linker uses the st_value field of the symbol
9970 to reset the global offset table entry for this external
9971 to its stub address when unlinking a shared object. */
9972 sym->st_value = (htab->sstubs->output_section->vma
9973 + htab->sstubs->output_offset
9974 + h->plt.offset);
9975 }
9976
9977 /* If we have a MIPS16 function with a stub, the dynamic symbol must
9978 refer to the stub, since only the stub uses the standard calling
9979 conventions. */
9980 if (h->dynindx != -1 && hmips->fn_stub != NULL)
9981 {
9982 BFD_ASSERT (hmips->need_fn_stub);
9983 sym->st_value = (hmips->fn_stub->output_section->vma
9984 + hmips->fn_stub->output_offset);
9985 sym->st_size = hmips->fn_stub->size;
9986 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
9987 }
9988
9989 BFD_ASSERT (h->dynindx != -1
9990 || h->forced_local);
9991
9992 sgot = htab->sgot;
9993 g = htab->got_info;
9994 BFD_ASSERT (g != NULL);
9995
9996 /* Run through the global symbol table, creating GOT entries for all
9997 the symbols that need them. */
9998 if (hmips->global_got_area != GGA_NONE)
9999 {
10000 bfd_vma offset;
10001 bfd_vma value;
10002
10003 value = sym->st_value;
10004 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
10005 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10006 }
10007
10008 if (hmips->global_got_area != GGA_NONE && g->next)
10009 {
10010 struct mips_got_entry e, *p;
10011 bfd_vma entry;
10012 bfd_vma offset;
10013
10014 gg = g;
10015
10016 e.abfd = output_bfd;
10017 e.symndx = -1;
10018 e.d.h = hmips;
10019 e.tls_type = GOT_TLS_NONE;
10020
10021 for (g = g->next; g->next != gg; g = g->next)
10022 {
10023 if (g->got_entries
10024 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10025 &e)))
10026 {
10027 offset = p->gotidx;
10028 BFD_ASSERT (offset > 0 && offset < htab->sgot->size);
10029 if (info->shared
10030 || (elf_hash_table (info)->dynamic_sections_created
10031 && p->d.h != NULL
10032 && p->d.h->root.def_dynamic
10033 && !p->d.h->root.def_regular))
10034 {
10035 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10036 the various compatibility problems, it's easier to mock
10037 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10038 mips_elf_create_dynamic_relocation to calculate the
10039 appropriate addend. */
10040 Elf_Internal_Rela rel[3];
10041
10042 memset (rel, 0, sizeof (rel));
10043 if (ABI_64_P (output_bfd))
10044 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10045 else
10046 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10047 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10048
10049 entry = 0;
10050 if (! (mips_elf_create_dynamic_relocation
10051 (output_bfd, info, rel,
10052 e.d.h, NULL, sym->st_value, &entry, sgot)))
10053 return FALSE;
10054 }
10055 else
10056 entry = sym->st_value;
10057 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
10058 }
10059 }
10060 }
10061
10062 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10063 name = h->root.root.string;
10064 if (h == elf_hash_table (info)->hdynamic
10065 || h == elf_hash_table (info)->hgot)
10066 sym->st_shndx = SHN_ABS;
10067 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10068 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10069 {
10070 sym->st_shndx = SHN_ABS;
10071 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10072 sym->st_value = 1;
10073 }
10074 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
10075 {
10076 sym->st_shndx = SHN_ABS;
10077 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10078 sym->st_value = elf_gp (output_bfd);
10079 }
10080 else if (SGI_COMPAT (output_bfd))
10081 {
10082 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10083 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10084 {
10085 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10086 sym->st_other = STO_PROTECTED;
10087 sym->st_value = 0;
10088 sym->st_shndx = SHN_MIPS_DATA;
10089 }
10090 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10091 {
10092 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10093 sym->st_other = STO_PROTECTED;
10094 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10095 sym->st_shndx = SHN_ABS;
10096 }
10097 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10098 {
10099 if (h->type == STT_FUNC)
10100 sym->st_shndx = SHN_MIPS_TEXT;
10101 else if (h->type == STT_OBJECT)
10102 sym->st_shndx = SHN_MIPS_DATA;
10103 }
10104 }
10105
10106 /* Emit a copy reloc, if needed. */
10107 if (h->needs_copy)
10108 {
10109 asection *s;
10110 bfd_vma symval;
10111
10112 BFD_ASSERT (h->dynindx != -1);
10113 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10114
10115 s = mips_elf_rel_dyn_section (info, FALSE);
10116 symval = (h->root.u.def.section->output_section->vma
10117 + h->root.u.def.section->output_offset
10118 + h->root.u.def.value);
10119 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
10120 h->dynindx, R_MIPS_COPY, symval);
10121 }
10122
10123 /* Handle the IRIX6-specific symbols. */
10124 if (IRIX_COMPAT (output_bfd) == ict_irix6)
10125 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
10126
10127 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
10128 to treat compressed symbols like any other. */
10129 if (ELF_ST_IS_MIPS16 (sym->st_other))
10130 {
10131 BFD_ASSERT (sym->st_value & 1);
10132 sym->st_other -= STO_MIPS16;
10133 }
10134 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
10135 {
10136 BFD_ASSERT (sym->st_value & 1);
10137 sym->st_other -= STO_MICROMIPS;
10138 }
10139
10140 return TRUE;
10141 }
10142
10143 /* Likewise, for VxWorks. */
10144
10145 bfd_boolean
10146 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
10147 struct bfd_link_info *info,
10148 struct elf_link_hash_entry *h,
10149 Elf_Internal_Sym *sym)
10150 {
10151 bfd *dynobj;
10152 asection *sgot;
10153 struct mips_got_info *g;
10154 struct mips_elf_link_hash_table *htab;
10155 struct mips_elf_link_hash_entry *hmips;
10156
10157 htab = mips_elf_hash_table (info);
10158 BFD_ASSERT (htab != NULL);
10159 dynobj = elf_hash_table (info)->dynobj;
10160 hmips = (struct mips_elf_link_hash_entry *) h;
10161
10162 if (h->plt.offset != (bfd_vma) -1)
10163 {
10164 bfd_byte *loc;
10165 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
10166 Elf_Internal_Rela rel;
10167 static const bfd_vma *plt_entry;
10168
10169 BFD_ASSERT (h->dynindx != -1);
10170 BFD_ASSERT (htab->splt != NULL);
10171 BFD_ASSERT (h->plt.offset <= htab->splt->size);
10172
10173 /* Calculate the address of the .plt entry. */
10174 plt_address = (htab->splt->output_section->vma
10175 + htab->splt->output_offset
10176 + h->plt.offset);
10177
10178 /* Calculate the index of the entry. */
10179 plt_index = ((h->plt.offset - htab->plt_header_size)
10180 / htab->plt_entry_size);
10181
10182 /* Calculate the address of the .got.plt entry. */
10183 got_address = (htab->sgotplt->output_section->vma
10184 + htab->sgotplt->output_offset
10185 + plt_index * 4);
10186
10187 /* Calculate the offset of the .got.plt entry from
10188 _GLOBAL_OFFSET_TABLE_. */
10189 got_offset = mips_elf_gotplt_index (info, h);
10190
10191 /* Calculate the offset for the branch at the start of the PLT
10192 entry. The branch jumps to the beginning of .plt. */
10193 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
10194
10195 /* Fill in the initial value of the .got.plt entry. */
10196 bfd_put_32 (output_bfd, plt_address,
10197 htab->sgotplt->contents + plt_index * 4);
10198
10199 /* Find out where the .plt entry should go. */
10200 loc = htab->splt->contents + h->plt.offset;
10201
10202 if (info->shared)
10203 {
10204 plt_entry = mips_vxworks_shared_plt_entry;
10205 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10206 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10207 }
10208 else
10209 {
10210 bfd_vma got_address_high, got_address_low;
10211
10212 plt_entry = mips_vxworks_exec_plt_entry;
10213 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10214 got_address_low = got_address & 0xffff;
10215
10216 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10217 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10218 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
10219 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
10220 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10221 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10222 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10223 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10224
10225 loc = (htab->srelplt2->contents
10226 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
10227
10228 /* Emit a relocation for the .got.plt entry. */
10229 rel.r_offset = got_address;
10230 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10231 rel.r_addend = h->plt.offset;
10232 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10233
10234 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
10235 loc += sizeof (Elf32_External_Rela);
10236 rel.r_offset = plt_address + 8;
10237 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10238 rel.r_addend = got_offset;
10239 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10240
10241 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
10242 loc += sizeof (Elf32_External_Rela);
10243 rel.r_offset += 4;
10244 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10245 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10246 }
10247
10248 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10249 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
10250 rel.r_offset = got_address;
10251 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
10252 rel.r_addend = 0;
10253 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10254
10255 if (!h->def_regular)
10256 sym->st_shndx = SHN_UNDEF;
10257 }
10258
10259 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
10260
10261 sgot = htab->sgot;
10262 g = htab->got_info;
10263 BFD_ASSERT (g != NULL);
10264
10265 /* See if this symbol has an entry in the GOT. */
10266 if (hmips->global_got_area != GGA_NONE)
10267 {
10268 bfd_vma offset;
10269 Elf_Internal_Rela outrel;
10270 bfd_byte *loc;
10271 asection *s;
10272
10273 /* Install the symbol value in the GOT. */
10274 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
10275 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
10276
10277 /* Add a dynamic relocation for it. */
10278 s = mips_elf_rel_dyn_section (info, FALSE);
10279 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
10280 outrel.r_offset = (sgot->output_section->vma
10281 + sgot->output_offset
10282 + offset);
10283 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
10284 outrel.r_addend = 0;
10285 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
10286 }
10287
10288 /* Emit a copy reloc, if needed. */
10289 if (h->needs_copy)
10290 {
10291 Elf_Internal_Rela rel;
10292
10293 BFD_ASSERT (h->dynindx != -1);
10294
10295 rel.r_offset = (h->root.u.def.section->output_section->vma
10296 + h->root.u.def.section->output_offset
10297 + h->root.u.def.value);
10298 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
10299 rel.r_addend = 0;
10300 bfd_elf32_swap_reloca_out (output_bfd, &rel,
10301 htab->srelbss->contents
10302 + (htab->srelbss->reloc_count
10303 * sizeof (Elf32_External_Rela)));
10304 ++htab->srelbss->reloc_count;
10305 }
10306
10307 /* If this is a mips16/microMIPS symbol, force the value to be even. */
10308 if (ELF_ST_IS_COMPRESSED (sym->st_other))
10309 sym->st_value &= ~1;
10310
10311 return TRUE;
10312 }
10313
10314 /* Write out a plt0 entry to the beginning of .plt. */
10315
10316 static void
10317 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10318 {
10319 bfd_byte *loc;
10320 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
10321 static const bfd_vma *plt_entry;
10322 struct mips_elf_link_hash_table *htab;
10323
10324 htab = mips_elf_hash_table (info);
10325 BFD_ASSERT (htab != NULL);
10326
10327 if (ABI_64_P (output_bfd))
10328 plt_entry = mips_n64_exec_plt0_entry;
10329 else if (ABI_N32_P (output_bfd))
10330 plt_entry = mips_n32_exec_plt0_entry;
10331 else
10332 plt_entry = mips_o32_exec_plt0_entry;
10333
10334 /* Calculate the value of .got.plt. */
10335 gotplt_value = (htab->sgotplt->output_section->vma
10336 + htab->sgotplt->output_offset);
10337 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
10338 gotplt_value_low = gotplt_value & 0xffff;
10339
10340 /* The PLT sequence is not safe for N64 if .got.plt's address can
10341 not be loaded in two instructions. */
10342 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
10343 || ~(gotplt_value | 0x7fffffff) == 0);
10344
10345 /* Install the PLT header. */
10346 loc = htab->splt->contents;
10347 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
10348 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
10349 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
10350 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10351 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10352 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10353 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10354 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10355 }
10356
10357 /* Install the PLT header for a VxWorks executable and finalize the
10358 contents of .rela.plt.unloaded. */
10359
10360 static void
10361 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10362 {
10363 Elf_Internal_Rela rela;
10364 bfd_byte *loc;
10365 bfd_vma got_value, got_value_high, got_value_low, plt_address;
10366 static const bfd_vma *plt_entry;
10367 struct mips_elf_link_hash_table *htab;
10368
10369 htab = mips_elf_hash_table (info);
10370 BFD_ASSERT (htab != NULL);
10371
10372 plt_entry = mips_vxworks_exec_plt0_entry;
10373
10374 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
10375 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
10376 + htab->root.hgot->root.u.def.section->output_offset
10377 + htab->root.hgot->root.u.def.value);
10378
10379 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
10380 got_value_low = got_value & 0xffff;
10381
10382 /* Calculate the address of the PLT header. */
10383 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
10384
10385 /* Install the PLT header. */
10386 loc = htab->splt->contents;
10387 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
10388 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
10389 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
10390 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10391 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10392 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10393
10394 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
10395 loc = htab->srelplt2->contents;
10396 rela.r_offset = plt_address;
10397 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10398 rela.r_addend = 0;
10399 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10400 loc += sizeof (Elf32_External_Rela);
10401
10402 /* Output the relocation for the following addiu of
10403 %lo(_GLOBAL_OFFSET_TABLE_). */
10404 rela.r_offset += 4;
10405 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10406 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10407 loc += sizeof (Elf32_External_Rela);
10408
10409 /* Fix up the remaining relocations. They may have the wrong
10410 symbol index for _G_O_T_ or _P_L_T_ depending on the order
10411 in which symbols were output. */
10412 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
10413 {
10414 Elf_Internal_Rela rel;
10415
10416 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10417 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10418 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10419 loc += sizeof (Elf32_External_Rela);
10420
10421 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10422 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10423 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10424 loc += sizeof (Elf32_External_Rela);
10425
10426 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10427 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10428 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10429 loc += sizeof (Elf32_External_Rela);
10430 }
10431 }
10432
10433 /* Install the PLT header for a VxWorks shared library. */
10434
10435 static void
10436 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
10437 {
10438 unsigned int i;
10439 struct mips_elf_link_hash_table *htab;
10440
10441 htab = mips_elf_hash_table (info);
10442 BFD_ASSERT (htab != NULL);
10443
10444 /* We just need to copy the entry byte-by-byte. */
10445 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
10446 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
10447 htab->splt->contents + i * 4);
10448 }
10449
10450 /* Finish up the dynamic sections. */
10451
10452 bfd_boolean
10453 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
10454 struct bfd_link_info *info)
10455 {
10456 bfd *dynobj;
10457 asection *sdyn;
10458 asection *sgot;
10459 struct mips_got_info *gg, *g;
10460 struct mips_elf_link_hash_table *htab;
10461
10462 htab = mips_elf_hash_table (info);
10463 BFD_ASSERT (htab != NULL);
10464
10465 dynobj = elf_hash_table (info)->dynobj;
10466
10467 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
10468
10469 sgot = htab->sgot;
10470 gg = htab->got_info;
10471
10472 if (elf_hash_table (info)->dynamic_sections_created)
10473 {
10474 bfd_byte *b;
10475 int dyn_to_skip = 0, dyn_skipped = 0;
10476
10477 BFD_ASSERT (sdyn != NULL);
10478 BFD_ASSERT (gg != NULL);
10479
10480 g = mips_elf_bfd_got (output_bfd, FALSE);
10481 BFD_ASSERT (g != NULL);
10482
10483 for (b = sdyn->contents;
10484 b < sdyn->contents + sdyn->size;
10485 b += MIPS_ELF_DYN_SIZE (dynobj))
10486 {
10487 Elf_Internal_Dyn dyn;
10488 const char *name;
10489 size_t elemsize;
10490 asection *s;
10491 bfd_boolean swap_out_p;
10492
10493 /* Read in the current dynamic entry. */
10494 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10495
10496 /* Assume that we're going to modify it and write it out. */
10497 swap_out_p = TRUE;
10498
10499 switch (dyn.d_tag)
10500 {
10501 case DT_RELENT:
10502 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
10503 break;
10504
10505 case DT_RELAENT:
10506 BFD_ASSERT (htab->is_vxworks);
10507 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
10508 break;
10509
10510 case DT_STRSZ:
10511 /* Rewrite DT_STRSZ. */
10512 dyn.d_un.d_val =
10513 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
10514 break;
10515
10516 case DT_PLTGOT:
10517 s = htab->sgot;
10518 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10519 break;
10520
10521 case DT_MIPS_PLTGOT:
10522 s = htab->sgotplt;
10523 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10524 break;
10525
10526 case DT_MIPS_RLD_VERSION:
10527 dyn.d_un.d_val = 1; /* XXX */
10528 break;
10529
10530 case DT_MIPS_FLAGS:
10531 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
10532 break;
10533
10534 case DT_MIPS_TIME_STAMP:
10535 {
10536 time_t t;
10537 time (&t);
10538 dyn.d_un.d_val = t;
10539 }
10540 break;
10541
10542 case DT_MIPS_ICHECKSUM:
10543 /* XXX FIXME: */
10544 swap_out_p = FALSE;
10545 break;
10546
10547 case DT_MIPS_IVERSION:
10548 /* XXX FIXME: */
10549 swap_out_p = FALSE;
10550 break;
10551
10552 case DT_MIPS_BASE_ADDRESS:
10553 s = output_bfd->sections;
10554 BFD_ASSERT (s != NULL);
10555 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
10556 break;
10557
10558 case DT_MIPS_LOCAL_GOTNO:
10559 dyn.d_un.d_val = g->local_gotno;
10560 break;
10561
10562 case DT_MIPS_UNREFEXTNO:
10563 /* The index into the dynamic symbol table which is the
10564 entry of the first external symbol that is not
10565 referenced within the same object. */
10566 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
10567 break;
10568
10569 case DT_MIPS_GOTSYM:
10570 if (htab->global_gotsym)
10571 {
10572 dyn.d_un.d_val = htab->global_gotsym->dynindx;
10573 break;
10574 }
10575 /* In case if we don't have global got symbols we default
10576 to setting DT_MIPS_GOTSYM to the same value as
10577 DT_MIPS_SYMTABNO, so we just fall through. */
10578
10579 case DT_MIPS_SYMTABNO:
10580 name = ".dynsym";
10581 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
10582 s = bfd_get_section_by_name (output_bfd, name);
10583 BFD_ASSERT (s != NULL);
10584
10585 dyn.d_un.d_val = s->size / elemsize;
10586 break;
10587
10588 case DT_MIPS_HIPAGENO:
10589 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
10590 break;
10591
10592 case DT_MIPS_RLD_MAP:
10593 {
10594 struct elf_link_hash_entry *h;
10595 h = mips_elf_hash_table (info)->rld_symbol;
10596 if (!h)
10597 {
10598 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10599 swap_out_p = FALSE;
10600 break;
10601 }
10602 s = h->root.u.def.section;
10603 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
10604 + h->root.u.def.value);
10605 }
10606 break;
10607
10608 case DT_MIPS_OPTIONS:
10609 s = (bfd_get_section_by_name
10610 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
10611 dyn.d_un.d_ptr = s->vma;
10612 break;
10613
10614 case DT_RELASZ:
10615 BFD_ASSERT (htab->is_vxworks);
10616 /* The count does not include the JUMP_SLOT relocations. */
10617 if (htab->srelplt)
10618 dyn.d_un.d_val -= htab->srelplt->size;
10619 break;
10620
10621 case DT_PLTREL:
10622 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10623 if (htab->is_vxworks)
10624 dyn.d_un.d_val = DT_RELA;
10625 else
10626 dyn.d_un.d_val = DT_REL;
10627 break;
10628
10629 case DT_PLTRELSZ:
10630 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10631 dyn.d_un.d_val = htab->srelplt->size;
10632 break;
10633
10634 case DT_JMPREL:
10635 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10636 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
10637 + htab->srelplt->output_offset);
10638 break;
10639
10640 case DT_TEXTREL:
10641 /* If we didn't need any text relocations after all, delete
10642 the dynamic tag. */
10643 if (!(info->flags & DF_TEXTREL))
10644 {
10645 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10646 swap_out_p = FALSE;
10647 }
10648 break;
10649
10650 case DT_FLAGS:
10651 /* If we didn't need any text relocations after all, clear
10652 DF_TEXTREL from DT_FLAGS. */
10653 if (!(info->flags & DF_TEXTREL))
10654 dyn.d_un.d_val &= ~DF_TEXTREL;
10655 else
10656 swap_out_p = FALSE;
10657 break;
10658
10659 default:
10660 swap_out_p = FALSE;
10661 if (htab->is_vxworks
10662 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
10663 swap_out_p = TRUE;
10664 break;
10665 }
10666
10667 if (swap_out_p || dyn_skipped)
10668 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10669 (dynobj, &dyn, b - dyn_skipped);
10670
10671 if (dyn_to_skip)
10672 {
10673 dyn_skipped += dyn_to_skip;
10674 dyn_to_skip = 0;
10675 }
10676 }
10677
10678 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
10679 if (dyn_skipped > 0)
10680 memset (b - dyn_skipped, 0, dyn_skipped);
10681 }
10682
10683 if (sgot != NULL && sgot->size > 0
10684 && !bfd_is_abs_section (sgot->output_section))
10685 {
10686 if (htab->is_vxworks)
10687 {
10688 /* The first entry of the global offset table points to the
10689 ".dynamic" section. The second is initialized by the
10690 loader and contains the shared library identifier.
10691 The third is also initialized by the loader and points
10692 to the lazy resolution stub. */
10693 MIPS_ELF_PUT_WORD (output_bfd,
10694 sdyn->output_offset + sdyn->output_section->vma,
10695 sgot->contents);
10696 MIPS_ELF_PUT_WORD (output_bfd, 0,
10697 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10698 MIPS_ELF_PUT_WORD (output_bfd, 0,
10699 sgot->contents
10700 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
10701 }
10702 else
10703 {
10704 /* The first entry of the global offset table will be filled at
10705 runtime. The second entry will be used by some runtime loaders.
10706 This isn't the case of IRIX rld. */
10707 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
10708 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10709 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10710 }
10711
10712 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
10713 = MIPS_ELF_GOT_SIZE (output_bfd);
10714 }
10715
10716 /* Generate dynamic relocations for the non-primary gots. */
10717 if (gg != NULL && gg->next)
10718 {
10719 Elf_Internal_Rela rel[3];
10720 bfd_vma addend = 0;
10721
10722 memset (rel, 0, sizeof (rel));
10723 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
10724
10725 for (g = gg->next; g->next != gg; g = g->next)
10726 {
10727 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
10728 + g->next->tls_gotno;
10729
10730 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
10731 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10732 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10733 sgot->contents
10734 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10735
10736 if (! info->shared)
10737 continue;
10738
10739 while (got_index < g->assigned_gotno)
10740 {
10741 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
10742 = got_index++ * MIPS_ELF_GOT_SIZE (output_bfd);
10743 if (!(mips_elf_create_dynamic_relocation
10744 (output_bfd, info, rel, NULL,
10745 bfd_abs_section_ptr,
10746 0, &addend, sgot)))
10747 return FALSE;
10748 BFD_ASSERT (addend == 0);
10749 }
10750 }
10751 }
10752
10753 /* The generation of dynamic relocations for the non-primary gots
10754 adds more dynamic relocations. We cannot count them until
10755 here. */
10756
10757 if (elf_hash_table (info)->dynamic_sections_created)
10758 {
10759 bfd_byte *b;
10760 bfd_boolean swap_out_p;
10761
10762 BFD_ASSERT (sdyn != NULL);
10763
10764 for (b = sdyn->contents;
10765 b < sdyn->contents + sdyn->size;
10766 b += MIPS_ELF_DYN_SIZE (dynobj))
10767 {
10768 Elf_Internal_Dyn dyn;
10769 asection *s;
10770
10771 /* Read in the current dynamic entry. */
10772 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10773
10774 /* Assume that we're going to modify it and write it out. */
10775 swap_out_p = TRUE;
10776
10777 switch (dyn.d_tag)
10778 {
10779 case DT_RELSZ:
10780 /* Reduce DT_RELSZ to account for any relocations we
10781 decided not to make. This is for the n64 irix rld,
10782 which doesn't seem to apply any relocations if there
10783 are trailing null entries. */
10784 s = mips_elf_rel_dyn_section (info, FALSE);
10785 dyn.d_un.d_val = (s->reloc_count
10786 * (ABI_64_P (output_bfd)
10787 ? sizeof (Elf64_Mips_External_Rel)
10788 : sizeof (Elf32_External_Rel)));
10789 /* Adjust the section size too. Tools like the prelinker
10790 can reasonably expect the values to the same. */
10791 elf_section_data (s->output_section)->this_hdr.sh_size
10792 = dyn.d_un.d_val;
10793 break;
10794
10795 default:
10796 swap_out_p = FALSE;
10797 break;
10798 }
10799
10800 if (swap_out_p)
10801 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10802 (dynobj, &dyn, b);
10803 }
10804 }
10805
10806 {
10807 asection *s;
10808 Elf32_compact_rel cpt;
10809
10810 if (SGI_COMPAT (output_bfd))
10811 {
10812 /* Write .compact_rel section out. */
10813 s = bfd_get_linker_section (dynobj, ".compact_rel");
10814 if (s != NULL)
10815 {
10816 cpt.id1 = 1;
10817 cpt.num = s->reloc_count;
10818 cpt.id2 = 2;
10819 cpt.offset = (s->output_section->filepos
10820 + sizeof (Elf32_External_compact_rel));
10821 cpt.reserved0 = 0;
10822 cpt.reserved1 = 0;
10823 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
10824 ((Elf32_External_compact_rel *)
10825 s->contents));
10826
10827 /* Clean up a dummy stub function entry in .text. */
10828 if (htab->sstubs != NULL)
10829 {
10830 file_ptr dummy_offset;
10831
10832 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
10833 dummy_offset = htab->sstubs->size - htab->function_stub_size;
10834 memset (htab->sstubs->contents + dummy_offset, 0,
10835 htab->function_stub_size);
10836 }
10837 }
10838 }
10839
10840 /* The psABI says that the dynamic relocations must be sorted in
10841 increasing order of r_symndx. The VxWorks EABI doesn't require
10842 this, and because the code below handles REL rather than RELA
10843 relocations, using it for VxWorks would be outright harmful. */
10844 if (!htab->is_vxworks)
10845 {
10846 s = mips_elf_rel_dyn_section (info, FALSE);
10847 if (s != NULL
10848 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
10849 {
10850 reldyn_sorting_bfd = output_bfd;
10851
10852 if (ABI_64_P (output_bfd))
10853 qsort ((Elf64_External_Rel *) s->contents + 1,
10854 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
10855 sort_dynamic_relocs_64);
10856 else
10857 qsort ((Elf32_External_Rel *) s->contents + 1,
10858 s->reloc_count - 1, sizeof (Elf32_External_Rel),
10859 sort_dynamic_relocs);
10860 }
10861 }
10862 }
10863
10864 if (htab->splt && htab->splt->size > 0)
10865 {
10866 if (htab->is_vxworks)
10867 {
10868 if (info->shared)
10869 mips_vxworks_finish_shared_plt (output_bfd, info);
10870 else
10871 mips_vxworks_finish_exec_plt (output_bfd, info);
10872 }
10873 else
10874 {
10875 BFD_ASSERT (!info->shared);
10876 mips_finish_exec_plt (output_bfd, info);
10877 }
10878 }
10879 return TRUE;
10880 }
10881
10882
10883 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
10884
10885 static void
10886 mips_set_isa_flags (bfd *abfd)
10887 {
10888 flagword val;
10889
10890 switch (bfd_get_mach (abfd))
10891 {
10892 default:
10893 case bfd_mach_mips3000:
10894 val = E_MIPS_ARCH_1;
10895 break;
10896
10897 case bfd_mach_mips3900:
10898 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
10899 break;
10900
10901 case bfd_mach_mips6000:
10902 val = E_MIPS_ARCH_2;
10903 break;
10904
10905 case bfd_mach_mips4000:
10906 case bfd_mach_mips4300:
10907 case bfd_mach_mips4400:
10908 case bfd_mach_mips4600:
10909 val = E_MIPS_ARCH_3;
10910 break;
10911
10912 case bfd_mach_mips4010:
10913 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
10914 break;
10915
10916 case bfd_mach_mips4100:
10917 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
10918 break;
10919
10920 case bfd_mach_mips4111:
10921 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
10922 break;
10923
10924 case bfd_mach_mips4120:
10925 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
10926 break;
10927
10928 case bfd_mach_mips4650:
10929 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
10930 break;
10931
10932 case bfd_mach_mips5400:
10933 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
10934 break;
10935
10936 case bfd_mach_mips5500:
10937 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
10938 break;
10939
10940 case bfd_mach_mips5900:
10941 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
10942 break;
10943
10944 case bfd_mach_mips9000:
10945 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
10946 break;
10947
10948 case bfd_mach_mips5000:
10949 case bfd_mach_mips7000:
10950 case bfd_mach_mips8000:
10951 case bfd_mach_mips10000:
10952 case bfd_mach_mips12000:
10953 case bfd_mach_mips14000:
10954 case bfd_mach_mips16000:
10955 val = E_MIPS_ARCH_4;
10956 break;
10957
10958 case bfd_mach_mips5:
10959 val = E_MIPS_ARCH_5;
10960 break;
10961
10962 case bfd_mach_mips_loongson_2e:
10963 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
10964 break;
10965
10966 case bfd_mach_mips_loongson_2f:
10967 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
10968 break;
10969
10970 case bfd_mach_mips_sb1:
10971 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
10972 break;
10973
10974 case bfd_mach_mips_loongson_3a:
10975 val = E_MIPS_ARCH_64 | E_MIPS_MACH_LS3A;
10976 break;
10977
10978 case bfd_mach_mips_octeon:
10979 case bfd_mach_mips_octeonp:
10980 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
10981 break;
10982
10983 case bfd_mach_mips_xlr:
10984 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
10985 break;
10986
10987 case bfd_mach_mips_octeon2:
10988 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
10989 break;
10990
10991 case bfd_mach_mipsisa32:
10992 val = E_MIPS_ARCH_32;
10993 break;
10994
10995 case bfd_mach_mipsisa64:
10996 val = E_MIPS_ARCH_64;
10997 break;
10998
10999 case bfd_mach_mipsisa32r2:
11000 val = E_MIPS_ARCH_32R2;
11001 break;
11002
11003 case bfd_mach_mipsisa64r2:
11004 val = E_MIPS_ARCH_64R2;
11005 break;
11006 }
11007 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11008 elf_elfheader (abfd)->e_flags |= val;
11009
11010 }
11011
11012
11013 /* The final processing done just before writing out a MIPS ELF object
11014 file. This gets the MIPS architecture right based on the machine
11015 number. This is used by both the 32-bit and the 64-bit ABI. */
11016
11017 void
11018 _bfd_mips_elf_final_write_processing (bfd *abfd,
11019 bfd_boolean linker ATTRIBUTE_UNUSED)
11020 {
11021 unsigned int i;
11022 Elf_Internal_Shdr **hdrpp;
11023 const char *name;
11024 asection *sec;
11025
11026 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
11027 is nonzero. This is for compatibility with old objects, which used
11028 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
11029 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
11030 mips_set_isa_flags (abfd);
11031
11032 /* Set the sh_info field for .gptab sections and other appropriate
11033 info for each special section. */
11034 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
11035 i < elf_numsections (abfd);
11036 i++, hdrpp++)
11037 {
11038 switch ((*hdrpp)->sh_type)
11039 {
11040 case SHT_MIPS_MSYM:
11041 case SHT_MIPS_LIBLIST:
11042 sec = bfd_get_section_by_name (abfd, ".dynstr");
11043 if (sec != NULL)
11044 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11045 break;
11046
11047 case SHT_MIPS_GPTAB:
11048 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11049 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11050 BFD_ASSERT (name != NULL
11051 && CONST_STRNEQ (name, ".gptab."));
11052 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
11053 BFD_ASSERT (sec != NULL);
11054 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11055 break;
11056
11057 case SHT_MIPS_CONTENT:
11058 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11059 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11060 BFD_ASSERT (name != NULL
11061 && CONST_STRNEQ (name, ".MIPS.content"));
11062 sec = bfd_get_section_by_name (abfd,
11063 name + sizeof ".MIPS.content" - 1);
11064 BFD_ASSERT (sec != NULL);
11065 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11066 break;
11067
11068 case SHT_MIPS_SYMBOL_LIB:
11069 sec = bfd_get_section_by_name (abfd, ".dynsym");
11070 if (sec != NULL)
11071 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11072 sec = bfd_get_section_by_name (abfd, ".liblist");
11073 if (sec != NULL)
11074 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11075 break;
11076
11077 case SHT_MIPS_EVENTS:
11078 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11079 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11080 BFD_ASSERT (name != NULL);
11081 if (CONST_STRNEQ (name, ".MIPS.events"))
11082 sec = bfd_get_section_by_name (abfd,
11083 name + sizeof ".MIPS.events" - 1);
11084 else
11085 {
11086 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
11087 sec = bfd_get_section_by_name (abfd,
11088 (name
11089 + sizeof ".MIPS.post_rel" - 1));
11090 }
11091 BFD_ASSERT (sec != NULL);
11092 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11093 break;
11094
11095 }
11096 }
11097 }
11098 \f
11099 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
11100 segments. */
11101
11102 int
11103 _bfd_mips_elf_additional_program_headers (bfd *abfd,
11104 struct bfd_link_info *info ATTRIBUTE_UNUSED)
11105 {
11106 asection *s;
11107 int ret = 0;
11108
11109 /* See if we need a PT_MIPS_REGINFO segment. */
11110 s = bfd_get_section_by_name (abfd, ".reginfo");
11111 if (s && (s->flags & SEC_LOAD))
11112 ++ret;
11113
11114 /* See if we need a PT_MIPS_OPTIONS segment. */
11115 if (IRIX_COMPAT (abfd) == ict_irix6
11116 && bfd_get_section_by_name (abfd,
11117 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
11118 ++ret;
11119
11120 /* See if we need a PT_MIPS_RTPROC segment. */
11121 if (IRIX_COMPAT (abfd) == ict_irix5
11122 && bfd_get_section_by_name (abfd, ".dynamic")
11123 && bfd_get_section_by_name (abfd, ".mdebug"))
11124 ++ret;
11125
11126 /* Allocate a PT_NULL header in dynamic objects. See
11127 _bfd_mips_elf_modify_segment_map for details. */
11128 if (!SGI_COMPAT (abfd)
11129 && bfd_get_section_by_name (abfd, ".dynamic"))
11130 ++ret;
11131
11132 return ret;
11133 }
11134
11135 /* Modify the segment map for an IRIX5 executable. */
11136
11137 bfd_boolean
11138 _bfd_mips_elf_modify_segment_map (bfd *abfd,
11139 struct bfd_link_info *info)
11140 {
11141 asection *s;
11142 struct elf_segment_map *m, **pm;
11143 bfd_size_type amt;
11144
11145 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
11146 segment. */
11147 s = bfd_get_section_by_name (abfd, ".reginfo");
11148 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11149 {
11150 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
11151 if (m->p_type == PT_MIPS_REGINFO)
11152 break;
11153 if (m == NULL)
11154 {
11155 amt = sizeof *m;
11156 m = bfd_zalloc (abfd, amt);
11157 if (m == NULL)
11158 return FALSE;
11159
11160 m->p_type = PT_MIPS_REGINFO;
11161 m->count = 1;
11162 m->sections[0] = s;
11163
11164 /* We want to put it after the PHDR and INTERP segments. */
11165 pm = &elf_seg_map (abfd);
11166 while (*pm != NULL
11167 && ((*pm)->p_type == PT_PHDR
11168 || (*pm)->p_type == PT_INTERP))
11169 pm = &(*pm)->next;
11170
11171 m->next = *pm;
11172 *pm = m;
11173 }
11174 }
11175
11176 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
11177 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
11178 PT_MIPS_OPTIONS segment immediately following the program header
11179 table. */
11180 if (NEWABI_P (abfd)
11181 /* On non-IRIX6 new abi, we'll have already created a segment
11182 for this section, so don't create another. I'm not sure this
11183 is not also the case for IRIX 6, but I can't test it right
11184 now. */
11185 && IRIX_COMPAT (abfd) == ict_irix6)
11186 {
11187 for (s = abfd->sections; s; s = s->next)
11188 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
11189 break;
11190
11191 if (s)
11192 {
11193 struct elf_segment_map *options_segment;
11194
11195 pm = &elf_seg_map (abfd);
11196 while (*pm != NULL
11197 && ((*pm)->p_type == PT_PHDR
11198 || (*pm)->p_type == PT_INTERP))
11199 pm = &(*pm)->next;
11200
11201 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
11202 {
11203 amt = sizeof (struct elf_segment_map);
11204 options_segment = bfd_zalloc (abfd, amt);
11205 options_segment->next = *pm;
11206 options_segment->p_type = PT_MIPS_OPTIONS;
11207 options_segment->p_flags = PF_R;
11208 options_segment->p_flags_valid = TRUE;
11209 options_segment->count = 1;
11210 options_segment->sections[0] = s;
11211 *pm = options_segment;
11212 }
11213 }
11214 }
11215 else
11216 {
11217 if (IRIX_COMPAT (abfd) == ict_irix5)
11218 {
11219 /* If there are .dynamic and .mdebug sections, we make a room
11220 for the RTPROC header. FIXME: Rewrite without section names. */
11221 if (bfd_get_section_by_name (abfd, ".interp") == NULL
11222 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
11223 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
11224 {
11225 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
11226 if (m->p_type == PT_MIPS_RTPROC)
11227 break;
11228 if (m == NULL)
11229 {
11230 amt = sizeof *m;
11231 m = bfd_zalloc (abfd, amt);
11232 if (m == NULL)
11233 return FALSE;
11234
11235 m->p_type = PT_MIPS_RTPROC;
11236
11237 s = bfd_get_section_by_name (abfd, ".rtproc");
11238 if (s == NULL)
11239 {
11240 m->count = 0;
11241 m->p_flags = 0;
11242 m->p_flags_valid = 1;
11243 }
11244 else
11245 {
11246 m->count = 1;
11247 m->sections[0] = s;
11248 }
11249
11250 /* We want to put it after the DYNAMIC segment. */
11251 pm = &elf_seg_map (abfd);
11252 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
11253 pm = &(*pm)->next;
11254 if (*pm != NULL)
11255 pm = &(*pm)->next;
11256
11257 m->next = *pm;
11258 *pm = m;
11259 }
11260 }
11261 }
11262 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
11263 .dynstr, .dynsym, and .hash sections, and everything in
11264 between. */
11265 for (pm = &elf_seg_map (abfd); *pm != NULL;
11266 pm = &(*pm)->next)
11267 if ((*pm)->p_type == PT_DYNAMIC)
11268 break;
11269 m = *pm;
11270 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
11271 {
11272 /* For a normal mips executable the permissions for the PT_DYNAMIC
11273 segment are read, write and execute. We do that here since
11274 the code in elf.c sets only the read permission. This matters
11275 sometimes for the dynamic linker. */
11276 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
11277 {
11278 m->p_flags = PF_R | PF_W | PF_X;
11279 m->p_flags_valid = 1;
11280 }
11281 }
11282 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
11283 glibc's dynamic linker has traditionally derived the number of
11284 tags from the p_filesz field, and sometimes allocates stack
11285 arrays of that size. An overly-big PT_DYNAMIC segment can
11286 be actively harmful in such cases. Making PT_DYNAMIC contain
11287 other sections can also make life hard for the prelinker,
11288 which might move one of the other sections to a different
11289 PT_LOAD segment. */
11290 if (SGI_COMPAT (abfd)
11291 && m != NULL
11292 && m->count == 1
11293 && strcmp (m->sections[0]->name, ".dynamic") == 0)
11294 {
11295 static const char *sec_names[] =
11296 {
11297 ".dynamic", ".dynstr", ".dynsym", ".hash"
11298 };
11299 bfd_vma low, high;
11300 unsigned int i, c;
11301 struct elf_segment_map *n;
11302
11303 low = ~(bfd_vma) 0;
11304 high = 0;
11305 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
11306 {
11307 s = bfd_get_section_by_name (abfd, sec_names[i]);
11308 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11309 {
11310 bfd_size_type sz;
11311
11312 if (low > s->vma)
11313 low = s->vma;
11314 sz = s->size;
11315 if (high < s->vma + sz)
11316 high = s->vma + sz;
11317 }
11318 }
11319
11320 c = 0;
11321 for (s = abfd->sections; s != NULL; s = s->next)
11322 if ((s->flags & SEC_LOAD) != 0
11323 && s->vma >= low
11324 && s->vma + s->size <= high)
11325 ++c;
11326
11327 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
11328 n = bfd_zalloc (abfd, amt);
11329 if (n == NULL)
11330 return FALSE;
11331 *n = *m;
11332 n->count = c;
11333
11334 i = 0;
11335 for (s = abfd->sections; s != NULL; s = s->next)
11336 {
11337 if ((s->flags & SEC_LOAD) != 0
11338 && s->vma >= low
11339 && s->vma + s->size <= high)
11340 {
11341 n->sections[i] = s;
11342 ++i;
11343 }
11344 }
11345
11346 *pm = n;
11347 }
11348 }
11349
11350 /* Allocate a spare program header in dynamic objects so that tools
11351 like the prelinker can add an extra PT_LOAD entry.
11352
11353 If the prelinker needs to make room for a new PT_LOAD entry, its
11354 standard procedure is to move the first (read-only) sections into
11355 the new (writable) segment. However, the MIPS ABI requires
11356 .dynamic to be in a read-only segment, and the section will often
11357 start within sizeof (ElfNN_Phdr) bytes of the last program header.
11358
11359 Although the prelinker could in principle move .dynamic to a
11360 writable segment, it seems better to allocate a spare program
11361 header instead, and avoid the need to move any sections.
11362 There is a long tradition of allocating spare dynamic tags,
11363 so allocating a spare program header seems like a natural
11364 extension.
11365
11366 If INFO is NULL, we may be copying an already prelinked binary
11367 with objcopy or strip, so do not add this header. */
11368 if (info != NULL
11369 && !SGI_COMPAT (abfd)
11370 && bfd_get_section_by_name (abfd, ".dynamic"))
11371 {
11372 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
11373 if ((*pm)->p_type == PT_NULL)
11374 break;
11375 if (*pm == NULL)
11376 {
11377 m = bfd_zalloc (abfd, sizeof (*m));
11378 if (m == NULL)
11379 return FALSE;
11380
11381 m->p_type = PT_NULL;
11382 *pm = m;
11383 }
11384 }
11385
11386 return TRUE;
11387 }
11388 \f
11389 /* Return the section that should be marked against GC for a given
11390 relocation. */
11391
11392 asection *
11393 _bfd_mips_elf_gc_mark_hook (asection *sec,
11394 struct bfd_link_info *info,
11395 Elf_Internal_Rela *rel,
11396 struct elf_link_hash_entry *h,
11397 Elf_Internal_Sym *sym)
11398 {
11399 /* ??? Do mips16 stub sections need to be handled special? */
11400
11401 if (h != NULL)
11402 switch (ELF_R_TYPE (sec->owner, rel->r_info))
11403 {
11404 case R_MIPS_GNU_VTINHERIT:
11405 case R_MIPS_GNU_VTENTRY:
11406 return NULL;
11407 }
11408
11409 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
11410 }
11411
11412 /* Update the got entry reference counts for the section being removed. */
11413
11414 bfd_boolean
11415 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
11416 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11417 asection *sec ATTRIBUTE_UNUSED,
11418 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
11419 {
11420 #if 0
11421 Elf_Internal_Shdr *symtab_hdr;
11422 struct elf_link_hash_entry **sym_hashes;
11423 bfd_signed_vma *local_got_refcounts;
11424 const Elf_Internal_Rela *rel, *relend;
11425 unsigned long r_symndx;
11426 struct elf_link_hash_entry *h;
11427
11428 if (info->relocatable)
11429 return TRUE;
11430
11431 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11432 sym_hashes = elf_sym_hashes (abfd);
11433 local_got_refcounts = elf_local_got_refcounts (abfd);
11434
11435 relend = relocs + sec->reloc_count;
11436 for (rel = relocs; rel < relend; rel++)
11437 switch (ELF_R_TYPE (abfd, rel->r_info))
11438 {
11439 case R_MIPS16_GOT16:
11440 case R_MIPS16_CALL16:
11441 case R_MIPS_GOT16:
11442 case R_MIPS_CALL16:
11443 case R_MIPS_CALL_HI16:
11444 case R_MIPS_CALL_LO16:
11445 case R_MIPS_GOT_HI16:
11446 case R_MIPS_GOT_LO16:
11447 case R_MIPS_GOT_DISP:
11448 case R_MIPS_GOT_PAGE:
11449 case R_MIPS_GOT_OFST:
11450 case R_MICROMIPS_GOT16:
11451 case R_MICROMIPS_CALL16:
11452 case R_MICROMIPS_CALL_HI16:
11453 case R_MICROMIPS_CALL_LO16:
11454 case R_MICROMIPS_GOT_HI16:
11455 case R_MICROMIPS_GOT_LO16:
11456 case R_MICROMIPS_GOT_DISP:
11457 case R_MICROMIPS_GOT_PAGE:
11458 case R_MICROMIPS_GOT_OFST:
11459 /* ??? It would seem that the existing MIPS code does no sort
11460 of reference counting or whatnot on its GOT and PLT entries,
11461 so it is not possible to garbage collect them at this time. */
11462 break;
11463
11464 default:
11465 break;
11466 }
11467 #endif
11468
11469 return TRUE;
11470 }
11471 \f
11472 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
11473 hiding the old indirect symbol. Process additional relocation
11474 information. Also called for weakdefs, in which case we just let
11475 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
11476
11477 void
11478 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
11479 struct elf_link_hash_entry *dir,
11480 struct elf_link_hash_entry *ind)
11481 {
11482 struct mips_elf_link_hash_entry *dirmips, *indmips;
11483
11484 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
11485
11486 dirmips = (struct mips_elf_link_hash_entry *) dir;
11487 indmips = (struct mips_elf_link_hash_entry *) ind;
11488 /* Any absolute non-dynamic relocations against an indirect or weak
11489 definition will be against the target symbol. */
11490 if (indmips->has_static_relocs)
11491 dirmips->has_static_relocs = TRUE;
11492
11493 if (ind->root.type != bfd_link_hash_indirect)
11494 return;
11495
11496 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
11497 if (indmips->readonly_reloc)
11498 dirmips->readonly_reloc = TRUE;
11499 if (indmips->no_fn_stub)
11500 dirmips->no_fn_stub = TRUE;
11501 if (indmips->fn_stub)
11502 {
11503 dirmips->fn_stub = indmips->fn_stub;
11504 indmips->fn_stub = NULL;
11505 }
11506 if (indmips->need_fn_stub)
11507 {
11508 dirmips->need_fn_stub = TRUE;
11509 indmips->need_fn_stub = FALSE;
11510 }
11511 if (indmips->call_stub)
11512 {
11513 dirmips->call_stub = indmips->call_stub;
11514 indmips->call_stub = NULL;
11515 }
11516 if (indmips->call_fp_stub)
11517 {
11518 dirmips->call_fp_stub = indmips->call_fp_stub;
11519 indmips->call_fp_stub = NULL;
11520 }
11521 if (indmips->global_got_area < dirmips->global_got_area)
11522 dirmips->global_got_area = indmips->global_got_area;
11523 if (indmips->global_got_area < GGA_NONE)
11524 indmips->global_got_area = GGA_NONE;
11525 if (indmips->has_nonpic_branches)
11526 dirmips->has_nonpic_branches = TRUE;
11527 }
11528 \f
11529 #define PDR_SIZE 32
11530
11531 bfd_boolean
11532 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
11533 struct bfd_link_info *info)
11534 {
11535 asection *o;
11536 bfd_boolean ret = FALSE;
11537 unsigned char *tdata;
11538 size_t i, skip;
11539
11540 o = bfd_get_section_by_name (abfd, ".pdr");
11541 if (! o)
11542 return FALSE;
11543 if (o->size == 0)
11544 return FALSE;
11545 if (o->size % PDR_SIZE != 0)
11546 return FALSE;
11547 if (o->output_section != NULL
11548 && bfd_is_abs_section (o->output_section))
11549 return FALSE;
11550
11551 tdata = bfd_zmalloc (o->size / PDR_SIZE);
11552 if (! tdata)
11553 return FALSE;
11554
11555 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
11556 info->keep_memory);
11557 if (!cookie->rels)
11558 {
11559 free (tdata);
11560 return FALSE;
11561 }
11562
11563 cookie->rel = cookie->rels;
11564 cookie->relend = cookie->rels + o->reloc_count;
11565
11566 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
11567 {
11568 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
11569 {
11570 tdata[i] = 1;
11571 skip ++;
11572 }
11573 }
11574
11575 if (skip != 0)
11576 {
11577 mips_elf_section_data (o)->u.tdata = tdata;
11578 o->size -= skip * PDR_SIZE;
11579 ret = TRUE;
11580 }
11581 else
11582 free (tdata);
11583
11584 if (! info->keep_memory)
11585 free (cookie->rels);
11586
11587 return ret;
11588 }
11589
11590 bfd_boolean
11591 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
11592 {
11593 if (strcmp (sec->name, ".pdr") == 0)
11594 return TRUE;
11595 return FALSE;
11596 }
11597
11598 bfd_boolean
11599 _bfd_mips_elf_write_section (bfd *output_bfd,
11600 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
11601 asection *sec, bfd_byte *contents)
11602 {
11603 bfd_byte *to, *from, *end;
11604 int i;
11605
11606 if (strcmp (sec->name, ".pdr") != 0)
11607 return FALSE;
11608
11609 if (mips_elf_section_data (sec)->u.tdata == NULL)
11610 return FALSE;
11611
11612 to = contents;
11613 end = contents + sec->size;
11614 for (from = contents, i = 0;
11615 from < end;
11616 from += PDR_SIZE, i++)
11617 {
11618 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
11619 continue;
11620 if (to != from)
11621 memcpy (to, from, PDR_SIZE);
11622 to += PDR_SIZE;
11623 }
11624 bfd_set_section_contents (output_bfd, sec->output_section, contents,
11625 sec->output_offset, sec->size);
11626 return TRUE;
11627 }
11628 \f
11629 /* microMIPS code retains local labels for linker relaxation. Omit them
11630 from output by default for clarity. */
11631
11632 bfd_boolean
11633 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
11634 {
11635 return _bfd_elf_is_local_label_name (abfd, sym->name);
11636 }
11637
11638 /* MIPS ELF uses a special find_nearest_line routine in order the
11639 handle the ECOFF debugging information. */
11640
11641 struct mips_elf_find_line
11642 {
11643 struct ecoff_debug_info d;
11644 struct ecoff_find_line i;
11645 };
11646
11647 bfd_boolean
11648 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
11649 asymbol **symbols, bfd_vma offset,
11650 const char **filename_ptr,
11651 const char **functionname_ptr,
11652 unsigned int *line_ptr)
11653 {
11654 asection *msec;
11655
11656 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
11657 filename_ptr, functionname_ptr,
11658 line_ptr))
11659 return TRUE;
11660
11661 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
11662 section, symbols, offset,
11663 filename_ptr, functionname_ptr,
11664 line_ptr, NULL, ABI_64_P (abfd) ? 8 : 0,
11665 &elf_tdata (abfd)->dwarf2_find_line_info))
11666 return TRUE;
11667
11668 msec = bfd_get_section_by_name (abfd, ".mdebug");
11669 if (msec != NULL)
11670 {
11671 flagword origflags;
11672 struct mips_elf_find_line *fi;
11673 const struct ecoff_debug_swap * const swap =
11674 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
11675
11676 /* If we are called during a link, mips_elf_final_link may have
11677 cleared the SEC_HAS_CONTENTS field. We force it back on here
11678 if appropriate (which it normally will be). */
11679 origflags = msec->flags;
11680 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
11681 msec->flags |= SEC_HAS_CONTENTS;
11682
11683 fi = mips_elf_tdata (abfd)->find_line_info;
11684 if (fi == NULL)
11685 {
11686 bfd_size_type external_fdr_size;
11687 char *fraw_src;
11688 char *fraw_end;
11689 struct fdr *fdr_ptr;
11690 bfd_size_type amt = sizeof (struct mips_elf_find_line);
11691
11692 fi = bfd_zalloc (abfd, amt);
11693 if (fi == NULL)
11694 {
11695 msec->flags = origflags;
11696 return FALSE;
11697 }
11698
11699 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
11700 {
11701 msec->flags = origflags;
11702 return FALSE;
11703 }
11704
11705 /* Swap in the FDR information. */
11706 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
11707 fi->d.fdr = bfd_alloc (abfd, amt);
11708 if (fi->d.fdr == NULL)
11709 {
11710 msec->flags = origflags;
11711 return FALSE;
11712 }
11713 external_fdr_size = swap->external_fdr_size;
11714 fdr_ptr = fi->d.fdr;
11715 fraw_src = (char *) fi->d.external_fdr;
11716 fraw_end = (fraw_src
11717 + fi->d.symbolic_header.ifdMax * external_fdr_size);
11718 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
11719 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
11720
11721 mips_elf_tdata (abfd)->find_line_info = fi;
11722
11723 /* Note that we don't bother to ever free this information.
11724 find_nearest_line is either called all the time, as in
11725 objdump -l, so the information should be saved, or it is
11726 rarely called, as in ld error messages, so the memory
11727 wasted is unimportant. Still, it would probably be a
11728 good idea for free_cached_info to throw it away. */
11729 }
11730
11731 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
11732 &fi->i, filename_ptr, functionname_ptr,
11733 line_ptr))
11734 {
11735 msec->flags = origflags;
11736 return TRUE;
11737 }
11738
11739 msec->flags = origflags;
11740 }
11741
11742 /* Fall back on the generic ELF find_nearest_line routine. */
11743
11744 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
11745 filename_ptr, functionname_ptr,
11746 line_ptr);
11747 }
11748
11749 bfd_boolean
11750 _bfd_mips_elf_find_inliner_info (bfd *abfd,
11751 const char **filename_ptr,
11752 const char **functionname_ptr,
11753 unsigned int *line_ptr)
11754 {
11755 bfd_boolean found;
11756 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
11757 functionname_ptr, line_ptr,
11758 & elf_tdata (abfd)->dwarf2_find_line_info);
11759 return found;
11760 }
11761
11762 \f
11763 /* When are writing out the .options or .MIPS.options section,
11764 remember the bytes we are writing out, so that we can install the
11765 GP value in the section_processing routine. */
11766
11767 bfd_boolean
11768 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
11769 const void *location,
11770 file_ptr offset, bfd_size_type count)
11771 {
11772 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
11773 {
11774 bfd_byte *c;
11775
11776 if (elf_section_data (section) == NULL)
11777 {
11778 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
11779 section->used_by_bfd = bfd_zalloc (abfd, amt);
11780 if (elf_section_data (section) == NULL)
11781 return FALSE;
11782 }
11783 c = mips_elf_section_data (section)->u.tdata;
11784 if (c == NULL)
11785 {
11786 c = bfd_zalloc (abfd, section->size);
11787 if (c == NULL)
11788 return FALSE;
11789 mips_elf_section_data (section)->u.tdata = c;
11790 }
11791
11792 memcpy (c + offset, location, count);
11793 }
11794
11795 return _bfd_elf_set_section_contents (abfd, section, location, offset,
11796 count);
11797 }
11798
11799 /* This is almost identical to bfd_generic_get_... except that some
11800 MIPS relocations need to be handled specially. Sigh. */
11801
11802 bfd_byte *
11803 _bfd_elf_mips_get_relocated_section_contents
11804 (bfd *abfd,
11805 struct bfd_link_info *link_info,
11806 struct bfd_link_order *link_order,
11807 bfd_byte *data,
11808 bfd_boolean relocatable,
11809 asymbol **symbols)
11810 {
11811 /* Get enough memory to hold the stuff */
11812 bfd *input_bfd = link_order->u.indirect.section->owner;
11813 asection *input_section = link_order->u.indirect.section;
11814 bfd_size_type sz;
11815
11816 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
11817 arelent **reloc_vector = NULL;
11818 long reloc_count;
11819
11820 if (reloc_size < 0)
11821 goto error_return;
11822
11823 reloc_vector = bfd_malloc (reloc_size);
11824 if (reloc_vector == NULL && reloc_size != 0)
11825 goto error_return;
11826
11827 /* read in the section */
11828 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
11829 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
11830 goto error_return;
11831
11832 reloc_count = bfd_canonicalize_reloc (input_bfd,
11833 input_section,
11834 reloc_vector,
11835 symbols);
11836 if (reloc_count < 0)
11837 goto error_return;
11838
11839 if (reloc_count > 0)
11840 {
11841 arelent **parent;
11842 /* for mips */
11843 int gp_found;
11844 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
11845
11846 {
11847 struct bfd_hash_entry *h;
11848 struct bfd_link_hash_entry *lh;
11849 /* Skip all this stuff if we aren't mixing formats. */
11850 if (abfd && input_bfd
11851 && abfd->xvec == input_bfd->xvec)
11852 lh = 0;
11853 else
11854 {
11855 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
11856 lh = (struct bfd_link_hash_entry *) h;
11857 }
11858 lookup:
11859 if (lh)
11860 {
11861 switch (lh->type)
11862 {
11863 case bfd_link_hash_undefined:
11864 case bfd_link_hash_undefweak:
11865 case bfd_link_hash_common:
11866 gp_found = 0;
11867 break;
11868 case bfd_link_hash_defined:
11869 case bfd_link_hash_defweak:
11870 gp_found = 1;
11871 gp = lh->u.def.value;
11872 break;
11873 case bfd_link_hash_indirect:
11874 case bfd_link_hash_warning:
11875 lh = lh->u.i.link;
11876 /* @@FIXME ignoring warning for now */
11877 goto lookup;
11878 case bfd_link_hash_new:
11879 default:
11880 abort ();
11881 }
11882 }
11883 else
11884 gp_found = 0;
11885 }
11886 /* end mips */
11887 for (parent = reloc_vector; *parent != NULL; parent++)
11888 {
11889 char *error_message = NULL;
11890 bfd_reloc_status_type r;
11891
11892 /* Specific to MIPS: Deal with relocation types that require
11893 knowing the gp of the output bfd. */
11894 asymbol *sym = *(*parent)->sym_ptr_ptr;
11895
11896 /* If we've managed to find the gp and have a special
11897 function for the relocation then go ahead, else default
11898 to the generic handling. */
11899 if (gp_found
11900 && (*parent)->howto->special_function
11901 == _bfd_mips_elf32_gprel16_reloc)
11902 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
11903 input_section, relocatable,
11904 data, gp);
11905 else
11906 r = bfd_perform_relocation (input_bfd, *parent, data,
11907 input_section,
11908 relocatable ? abfd : NULL,
11909 &error_message);
11910
11911 if (relocatable)
11912 {
11913 asection *os = input_section->output_section;
11914
11915 /* A partial link, so keep the relocs */
11916 os->orelocation[os->reloc_count] = *parent;
11917 os->reloc_count++;
11918 }
11919
11920 if (r != bfd_reloc_ok)
11921 {
11922 switch (r)
11923 {
11924 case bfd_reloc_undefined:
11925 if (!((*link_info->callbacks->undefined_symbol)
11926 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11927 input_bfd, input_section, (*parent)->address, TRUE)))
11928 goto error_return;
11929 break;
11930 case bfd_reloc_dangerous:
11931 BFD_ASSERT (error_message != NULL);
11932 if (!((*link_info->callbacks->reloc_dangerous)
11933 (link_info, error_message, input_bfd, input_section,
11934 (*parent)->address)))
11935 goto error_return;
11936 break;
11937 case bfd_reloc_overflow:
11938 if (!((*link_info->callbacks->reloc_overflow)
11939 (link_info, NULL,
11940 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11941 (*parent)->howto->name, (*parent)->addend,
11942 input_bfd, input_section, (*parent)->address)))
11943 goto error_return;
11944 break;
11945 case bfd_reloc_outofrange:
11946 default:
11947 abort ();
11948 break;
11949 }
11950
11951 }
11952 }
11953 }
11954 if (reloc_vector != NULL)
11955 free (reloc_vector);
11956 return data;
11957
11958 error_return:
11959 if (reloc_vector != NULL)
11960 free (reloc_vector);
11961 return NULL;
11962 }
11963 \f
11964 static bfd_boolean
11965 mips_elf_relax_delete_bytes (bfd *abfd,
11966 asection *sec, bfd_vma addr, int count)
11967 {
11968 Elf_Internal_Shdr *symtab_hdr;
11969 unsigned int sec_shndx;
11970 bfd_byte *contents;
11971 Elf_Internal_Rela *irel, *irelend;
11972 Elf_Internal_Sym *isym;
11973 Elf_Internal_Sym *isymend;
11974 struct elf_link_hash_entry **sym_hashes;
11975 struct elf_link_hash_entry **end_hashes;
11976 struct elf_link_hash_entry **start_hashes;
11977 unsigned int symcount;
11978
11979 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
11980 contents = elf_section_data (sec)->this_hdr.contents;
11981
11982 irel = elf_section_data (sec)->relocs;
11983 irelend = irel + sec->reloc_count;
11984
11985 /* Actually delete the bytes. */
11986 memmove (contents + addr, contents + addr + count,
11987 (size_t) (sec->size - addr - count));
11988 sec->size -= count;
11989
11990 /* Adjust all the relocs. */
11991 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
11992 {
11993 /* Get the new reloc address. */
11994 if (irel->r_offset > addr)
11995 irel->r_offset -= count;
11996 }
11997
11998 BFD_ASSERT (addr % 2 == 0);
11999 BFD_ASSERT (count % 2 == 0);
12000
12001 /* Adjust the local symbols defined in this section. */
12002 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12003 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
12004 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
12005 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
12006 isym->st_value -= count;
12007
12008 /* Now adjust the global symbols defined in this section. */
12009 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
12010 - symtab_hdr->sh_info);
12011 sym_hashes = start_hashes = elf_sym_hashes (abfd);
12012 end_hashes = sym_hashes + symcount;
12013
12014 for (; sym_hashes < end_hashes; sym_hashes++)
12015 {
12016 struct elf_link_hash_entry *sym_hash = *sym_hashes;
12017
12018 if ((sym_hash->root.type == bfd_link_hash_defined
12019 || sym_hash->root.type == bfd_link_hash_defweak)
12020 && sym_hash->root.u.def.section == sec)
12021 {
12022 bfd_vma value = sym_hash->root.u.def.value;
12023
12024 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
12025 value &= MINUS_TWO;
12026 if (value > addr)
12027 sym_hash->root.u.def.value -= count;
12028 }
12029 }
12030
12031 return TRUE;
12032 }
12033
12034
12035 /* Opcodes needed for microMIPS relaxation as found in
12036 opcodes/micromips-opc.c. */
12037
12038 struct opcode_descriptor {
12039 unsigned long match;
12040 unsigned long mask;
12041 };
12042
12043 /* The $ra register aka $31. */
12044
12045 #define RA 31
12046
12047 /* 32-bit instruction format register fields. */
12048
12049 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
12050 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
12051
12052 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
12053
12054 #define OP16_VALID_REG(r) \
12055 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
12056
12057
12058 /* 32-bit and 16-bit branches. */
12059
12060 static const struct opcode_descriptor b_insns_32[] = {
12061 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
12062 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
12063 { 0, 0 } /* End marker for find_match(). */
12064 };
12065
12066 static const struct opcode_descriptor bc_insn_32 =
12067 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
12068
12069 static const struct opcode_descriptor bz_insn_32 =
12070 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
12071
12072 static const struct opcode_descriptor bzal_insn_32 =
12073 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
12074
12075 static const struct opcode_descriptor beq_insn_32 =
12076 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
12077
12078 static const struct opcode_descriptor b_insn_16 =
12079 { /* "b", "mD", */ 0xcc00, 0xfc00 };
12080
12081 static const struct opcode_descriptor bz_insn_16 =
12082 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
12083
12084
12085 /* 32-bit and 16-bit branch EQ and NE zero. */
12086
12087 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
12088 eq and second the ne. This convention is used when replacing a
12089 32-bit BEQ/BNE with the 16-bit version. */
12090
12091 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
12092
12093 static const struct opcode_descriptor bz_rs_insns_32[] = {
12094 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
12095 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
12096 { 0, 0 } /* End marker for find_match(). */
12097 };
12098
12099 static const struct opcode_descriptor bz_rt_insns_32[] = {
12100 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
12101 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
12102 { 0, 0 } /* End marker for find_match(). */
12103 };
12104
12105 static const struct opcode_descriptor bzc_insns_32[] = {
12106 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
12107 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
12108 { 0, 0 } /* End marker for find_match(). */
12109 };
12110
12111 static const struct opcode_descriptor bz_insns_16[] = {
12112 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
12113 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
12114 { 0, 0 } /* End marker for find_match(). */
12115 };
12116
12117 /* Switch between a 5-bit register index and its 3-bit shorthand. */
12118
12119 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0x17) + 2)
12120 #define BZ16_REG_FIELD(r) \
12121 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 7)
12122
12123
12124 /* 32-bit instructions with a delay slot. */
12125
12126 static const struct opcode_descriptor jal_insn_32_bd16 =
12127 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
12128
12129 static const struct opcode_descriptor jal_insn_32_bd32 =
12130 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
12131
12132 static const struct opcode_descriptor jal_x_insn_32_bd32 =
12133 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
12134
12135 static const struct opcode_descriptor j_insn_32 =
12136 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
12137
12138 static const struct opcode_descriptor jalr_insn_32 =
12139 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
12140
12141 /* This table can be compacted, because no opcode replacement is made. */
12142
12143 static const struct opcode_descriptor ds_insns_32_bd16[] = {
12144 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
12145
12146 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
12147 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
12148
12149 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
12150 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
12151 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
12152 { 0, 0 } /* End marker for find_match(). */
12153 };
12154
12155 /* This table can be compacted, because no opcode replacement is made. */
12156
12157 static const struct opcode_descriptor ds_insns_32_bd32[] = {
12158 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
12159
12160 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
12161 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
12162 { 0, 0 } /* End marker for find_match(). */
12163 };
12164
12165
12166 /* 16-bit instructions with a delay slot. */
12167
12168 static const struct opcode_descriptor jalr_insn_16_bd16 =
12169 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
12170
12171 static const struct opcode_descriptor jalr_insn_16_bd32 =
12172 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
12173
12174 static const struct opcode_descriptor jr_insn_16 =
12175 { /* "jr", "mj", */ 0x4580, 0xffe0 };
12176
12177 #define JR16_REG(opcode) ((opcode) & 0x1f)
12178
12179 /* This table can be compacted, because no opcode replacement is made. */
12180
12181 static const struct opcode_descriptor ds_insns_16_bd16[] = {
12182 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
12183
12184 { /* "b", "mD", */ 0xcc00, 0xfc00 },
12185 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
12186 { /* "jr", "mj", */ 0x4580, 0xffe0 },
12187 { 0, 0 } /* End marker for find_match(). */
12188 };
12189
12190
12191 /* LUI instruction. */
12192
12193 static const struct opcode_descriptor lui_insn =
12194 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
12195
12196
12197 /* ADDIU instruction. */
12198
12199 static const struct opcode_descriptor addiu_insn =
12200 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
12201
12202 static const struct opcode_descriptor addiupc_insn =
12203 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
12204
12205 #define ADDIUPC_REG_FIELD(r) \
12206 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
12207
12208
12209 /* Relaxable instructions in a JAL delay slot: MOVE. */
12210
12211 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
12212 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
12213 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
12214 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
12215
12216 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
12217 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
12218
12219 static const struct opcode_descriptor move_insns_32[] = {
12220 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
12221 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
12222 { 0, 0 } /* End marker for find_match(). */
12223 };
12224
12225 static const struct opcode_descriptor move_insn_16 =
12226 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
12227
12228
12229 /* NOP instructions. */
12230
12231 static const struct opcode_descriptor nop_insn_32 =
12232 { /* "nop", "", */ 0x00000000, 0xffffffff };
12233
12234 static const struct opcode_descriptor nop_insn_16 =
12235 { /* "nop", "", */ 0x0c00, 0xffff };
12236
12237
12238 /* Instruction match support. */
12239
12240 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
12241
12242 static int
12243 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
12244 {
12245 unsigned long indx;
12246
12247 for (indx = 0; insn[indx].mask != 0; indx++)
12248 if (MATCH (opcode, insn[indx]))
12249 return indx;
12250
12251 return -1;
12252 }
12253
12254
12255 /* Branch and delay slot decoding support. */
12256
12257 /* If PTR points to what *might* be a 16-bit branch or jump, then
12258 return the minimum length of its delay slot, otherwise return 0.
12259 Non-zero results are not definitive as we might be checking against
12260 the second half of another instruction. */
12261
12262 static int
12263 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
12264 {
12265 unsigned long opcode;
12266 int bdsize;
12267
12268 opcode = bfd_get_16 (abfd, ptr);
12269 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
12270 /* 16-bit branch/jump with a 32-bit delay slot. */
12271 bdsize = 4;
12272 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
12273 || find_match (opcode, ds_insns_16_bd16) >= 0)
12274 /* 16-bit branch/jump with a 16-bit delay slot. */
12275 bdsize = 2;
12276 else
12277 /* No delay slot. */
12278 bdsize = 0;
12279
12280 return bdsize;
12281 }
12282
12283 /* If PTR points to what *might* be a 32-bit branch or jump, then
12284 return the minimum length of its delay slot, otherwise return 0.
12285 Non-zero results are not definitive as we might be checking against
12286 the second half of another instruction. */
12287
12288 static int
12289 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
12290 {
12291 unsigned long opcode;
12292 int bdsize;
12293
12294 opcode = bfd_get_micromips_32 (abfd, ptr);
12295 if (find_match (opcode, ds_insns_32_bd32) >= 0)
12296 /* 32-bit branch/jump with a 32-bit delay slot. */
12297 bdsize = 4;
12298 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
12299 /* 32-bit branch/jump with a 16-bit delay slot. */
12300 bdsize = 2;
12301 else
12302 /* No delay slot. */
12303 bdsize = 0;
12304
12305 return bdsize;
12306 }
12307
12308 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
12309 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
12310
12311 static bfd_boolean
12312 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12313 {
12314 unsigned long opcode;
12315
12316 opcode = bfd_get_16 (abfd, ptr);
12317 if (MATCH (opcode, b_insn_16)
12318 /* B16 */
12319 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
12320 /* JR16 */
12321 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
12322 /* BEQZ16, BNEZ16 */
12323 || (MATCH (opcode, jalr_insn_16_bd32)
12324 /* JALR16 */
12325 && reg != JR16_REG (opcode) && reg != RA))
12326 return TRUE;
12327
12328 return FALSE;
12329 }
12330
12331 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
12332 then return TRUE, otherwise FALSE. */
12333
12334 static bfd_boolean
12335 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12336 {
12337 unsigned long opcode;
12338
12339 opcode = bfd_get_micromips_32 (abfd, ptr);
12340 if (MATCH (opcode, j_insn_32)
12341 /* J */
12342 || MATCH (opcode, bc_insn_32)
12343 /* BC1F, BC1T, BC2F, BC2T */
12344 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
12345 /* JAL, JALX */
12346 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
12347 /* BGEZ, BGTZ, BLEZ, BLTZ */
12348 || (MATCH (opcode, bzal_insn_32)
12349 /* BGEZAL, BLTZAL */
12350 && reg != OP32_SREG (opcode) && reg != RA)
12351 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
12352 /* JALR, JALR.HB, BEQ, BNE */
12353 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
12354 return TRUE;
12355
12356 return FALSE;
12357 }
12358
12359 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
12360 IRELEND) at OFFSET indicate that there must be a compact branch there,
12361 then return TRUE, otherwise FALSE. */
12362
12363 static bfd_boolean
12364 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
12365 const Elf_Internal_Rela *internal_relocs,
12366 const Elf_Internal_Rela *irelend)
12367 {
12368 const Elf_Internal_Rela *irel;
12369 unsigned long opcode;
12370
12371 opcode = bfd_get_micromips_32 (abfd, ptr);
12372 if (find_match (opcode, bzc_insns_32) < 0)
12373 return FALSE;
12374
12375 for (irel = internal_relocs; irel < irelend; irel++)
12376 if (irel->r_offset == offset
12377 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
12378 return TRUE;
12379
12380 return FALSE;
12381 }
12382
12383 /* Bitsize checking. */
12384 #define IS_BITSIZE(val, N) \
12385 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
12386 - (1ULL << ((N) - 1))) == (val))
12387
12388 \f
12389 bfd_boolean
12390 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
12391 struct bfd_link_info *link_info,
12392 bfd_boolean *again)
12393 {
12394 Elf_Internal_Shdr *symtab_hdr;
12395 Elf_Internal_Rela *internal_relocs;
12396 Elf_Internal_Rela *irel, *irelend;
12397 bfd_byte *contents = NULL;
12398 Elf_Internal_Sym *isymbuf = NULL;
12399
12400 /* Assume nothing changes. */
12401 *again = FALSE;
12402
12403 /* We don't have to do anything for a relocatable link, if
12404 this section does not have relocs, or if this is not a
12405 code section. */
12406
12407 if (link_info->relocatable
12408 || (sec->flags & SEC_RELOC) == 0
12409 || sec->reloc_count == 0
12410 || (sec->flags & SEC_CODE) == 0)
12411 return TRUE;
12412
12413 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12414
12415 /* Get a copy of the native relocations. */
12416 internal_relocs = (_bfd_elf_link_read_relocs
12417 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
12418 link_info->keep_memory));
12419 if (internal_relocs == NULL)
12420 goto error_return;
12421
12422 /* Walk through them looking for relaxing opportunities. */
12423 irelend = internal_relocs + sec->reloc_count;
12424 for (irel = internal_relocs; irel < irelend; irel++)
12425 {
12426 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
12427 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
12428 bfd_boolean target_is_micromips_code_p;
12429 unsigned long opcode;
12430 bfd_vma symval;
12431 bfd_vma pcrval;
12432 bfd_byte *ptr;
12433 int fndopc;
12434
12435 /* The number of bytes to delete for relaxation and from where
12436 to delete these bytes starting at irel->r_offset. */
12437 int delcnt = 0;
12438 int deloff = 0;
12439
12440 /* If this isn't something that can be relaxed, then ignore
12441 this reloc. */
12442 if (r_type != R_MICROMIPS_HI16
12443 && r_type != R_MICROMIPS_PC16_S1
12444 && r_type != R_MICROMIPS_26_S1)
12445 continue;
12446
12447 /* Get the section contents if we haven't done so already. */
12448 if (contents == NULL)
12449 {
12450 /* Get cached copy if it exists. */
12451 if (elf_section_data (sec)->this_hdr.contents != NULL)
12452 contents = elf_section_data (sec)->this_hdr.contents;
12453 /* Go get them off disk. */
12454 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
12455 goto error_return;
12456 }
12457 ptr = contents + irel->r_offset;
12458
12459 /* Read this BFD's local symbols if we haven't done so already. */
12460 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
12461 {
12462 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
12463 if (isymbuf == NULL)
12464 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12465 symtab_hdr->sh_info, 0,
12466 NULL, NULL, NULL);
12467 if (isymbuf == NULL)
12468 goto error_return;
12469 }
12470
12471 /* Get the value of the symbol referred to by the reloc. */
12472 if (r_symndx < symtab_hdr->sh_info)
12473 {
12474 /* A local symbol. */
12475 Elf_Internal_Sym *isym;
12476 asection *sym_sec;
12477
12478 isym = isymbuf + r_symndx;
12479 if (isym->st_shndx == SHN_UNDEF)
12480 sym_sec = bfd_und_section_ptr;
12481 else if (isym->st_shndx == SHN_ABS)
12482 sym_sec = bfd_abs_section_ptr;
12483 else if (isym->st_shndx == SHN_COMMON)
12484 sym_sec = bfd_com_section_ptr;
12485 else
12486 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
12487 symval = (isym->st_value
12488 + sym_sec->output_section->vma
12489 + sym_sec->output_offset);
12490 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
12491 }
12492 else
12493 {
12494 unsigned long indx;
12495 struct elf_link_hash_entry *h;
12496
12497 /* An external symbol. */
12498 indx = r_symndx - symtab_hdr->sh_info;
12499 h = elf_sym_hashes (abfd)[indx];
12500 BFD_ASSERT (h != NULL);
12501
12502 if (h->root.type != bfd_link_hash_defined
12503 && h->root.type != bfd_link_hash_defweak)
12504 /* This appears to be a reference to an undefined
12505 symbol. Just ignore it -- it will be caught by the
12506 regular reloc processing. */
12507 continue;
12508
12509 symval = (h->root.u.def.value
12510 + h->root.u.def.section->output_section->vma
12511 + h->root.u.def.section->output_offset);
12512 target_is_micromips_code_p = (!h->needs_plt
12513 && ELF_ST_IS_MICROMIPS (h->other));
12514 }
12515
12516
12517 /* For simplicity of coding, we are going to modify the
12518 section contents, the section relocs, and the BFD symbol
12519 table. We must tell the rest of the code not to free up this
12520 information. It would be possible to instead create a table
12521 of changes which have to be made, as is done in coff-mips.c;
12522 that would be more work, but would require less memory when
12523 the linker is run. */
12524
12525 /* Only 32-bit instructions relaxed. */
12526 if (irel->r_offset + 4 > sec->size)
12527 continue;
12528
12529 opcode = bfd_get_micromips_32 (abfd, ptr);
12530
12531 /* This is the pc-relative distance from the instruction the
12532 relocation is applied to, to the symbol referred. */
12533 pcrval = (symval
12534 - (sec->output_section->vma + sec->output_offset)
12535 - irel->r_offset);
12536
12537 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
12538 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
12539 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
12540
12541 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
12542
12543 where pcrval has first to be adjusted to apply against the LO16
12544 location (we make the adjustment later on, when we have figured
12545 out the offset). */
12546 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
12547 {
12548 bfd_boolean bzc = FALSE;
12549 unsigned long nextopc;
12550 unsigned long reg;
12551 bfd_vma offset;
12552
12553 /* Give up if the previous reloc was a HI16 against this symbol
12554 too. */
12555 if (irel > internal_relocs
12556 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
12557 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
12558 continue;
12559
12560 /* Or if the next reloc is not a LO16 against this symbol. */
12561 if (irel + 1 >= irelend
12562 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
12563 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
12564 continue;
12565
12566 /* Or if the second next reloc is a LO16 against this symbol too. */
12567 if (irel + 2 >= irelend
12568 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
12569 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
12570 continue;
12571
12572 /* See if the LUI instruction *might* be in a branch delay slot.
12573 We check whether what looks like a 16-bit branch or jump is
12574 actually an immediate argument to a compact branch, and let
12575 it through if so. */
12576 if (irel->r_offset >= 2
12577 && check_br16_dslot (abfd, ptr - 2)
12578 && !(irel->r_offset >= 4
12579 && (bzc = check_relocated_bzc (abfd,
12580 ptr - 4, irel->r_offset - 4,
12581 internal_relocs, irelend))))
12582 continue;
12583 if (irel->r_offset >= 4
12584 && !bzc
12585 && check_br32_dslot (abfd, ptr - 4))
12586 continue;
12587
12588 reg = OP32_SREG (opcode);
12589
12590 /* We only relax adjacent instructions or ones separated with
12591 a branch or jump that has a delay slot. The branch or jump
12592 must not fiddle with the register used to hold the address.
12593 Subtract 4 for the LUI itself. */
12594 offset = irel[1].r_offset - irel[0].r_offset;
12595 switch (offset - 4)
12596 {
12597 case 0:
12598 break;
12599 case 2:
12600 if (check_br16 (abfd, ptr + 4, reg))
12601 break;
12602 continue;
12603 case 4:
12604 if (check_br32 (abfd, ptr + 4, reg))
12605 break;
12606 continue;
12607 default:
12608 continue;
12609 }
12610
12611 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
12612
12613 /* Give up unless the same register is used with both
12614 relocations. */
12615 if (OP32_SREG (nextopc) != reg)
12616 continue;
12617
12618 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
12619 and rounding up to take masking of the two LSBs into account. */
12620 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
12621
12622 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
12623 if (IS_BITSIZE (symval, 16))
12624 {
12625 /* Fix the relocation's type. */
12626 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
12627
12628 /* Instructions using R_MICROMIPS_LO16 have the base or
12629 source register in bits 20:16. This register becomes $0
12630 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
12631 nextopc &= ~0x001f0000;
12632 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
12633 contents + irel[1].r_offset);
12634 }
12635
12636 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
12637 We add 4 to take LUI deletion into account while checking
12638 the PC-relative distance. */
12639 else if (symval % 4 == 0
12640 && IS_BITSIZE (pcrval + 4, 25)
12641 && MATCH (nextopc, addiu_insn)
12642 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
12643 && OP16_VALID_REG (OP32_TREG (nextopc)))
12644 {
12645 /* Fix the relocation's type. */
12646 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
12647
12648 /* Replace ADDIU with the ADDIUPC version. */
12649 nextopc = (addiupc_insn.match
12650 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
12651
12652 bfd_put_micromips_32 (abfd, nextopc,
12653 contents + irel[1].r_offset);
12654 }
12655
12656 /* Can't do anything, give up, sigh... */
12657 else
12658 continue;
12659
12660 /* Fix the relocation's type. */
12661 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
12662
12663 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
12664 delcnt = 4;
12665 deloff = 0;
12666 }
12667
12668 /* Compact branch relaxation -- due to the multitude of macros
12669 employed by the compiler/assembler, compact branches are not
12670 always generated. Obviously, this can/will be fixed elsewhere,
12671 but there is no drawback in double checking it here. */
12672 else if (r_type == R_MICROMIPS_PC16_S1
12673 && irel->r_offset + 5 < sec->size
12674 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12675 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
12676 && MATCH (bfd_get_16 (abfd, ptr + 4), nop_insn_16))
12677 {
12678 unsigned long reg;
12679
12680 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12681
12682 /* Replace BEQZ/BNEZ with the compact version. */
12683 opcode = (bzc_insns_32[fndopc].match
12684 | BZC32_REG_FIELD (reg)
12685 | (opcode & 0xffff)); /* Addend value. */
12686
12687 bfd_put_micromips_32 (abfd, opcode, ptr);
12688
12689 /* Delete the 16-bit delay slot NOP: two bytes from
12690 irel->offset + 4. */
12691 delcnt = 2;
12692 deloff = 4;
12693 }
12694
12695 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
12696 to check the distance from the next instruction, so subtract 2. */
12697 else if (r_type == R_MICROMIPS_PC16_S1
12698 && IS_BITSIZE (pcrval - 2, 11)
12699 && find_match (opcode, b_insns_32) >= 0)
12700 {
12701 /* Fix the relocation's type. */
12702 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
12703
12704 /* Replace the 32-bit opcode with a 16-bit opcode. */
12705 bfd_put_16 (abfd,
12706 (b_insn_16.match
12707 | (opcode & 0x3ff)), /* Addend value. */
12708 ptr);
12709
12710 /* Delete 2 bytes from irel->r_offset + 2. */
12711 delcnt = 2;
12712 deloff = 2;
12713 }
12714
12715 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
12716 to check the distance from the next instruction, so subtract 2. */
12717 else if (r_type == R_MICROMIPS_PC16_S1
12718 && IS_BITSIZE (pcrval - 2, 8)
12719 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12720 && OP16_VALID_REG (OP32_SREG (opcode)))
12721 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
12722 && OP16_VALID_REG (OP32_TREG (opcode)))))
12723 {
12724 unsigned long reg;
12725
12726 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12727
12728 /* Fix the relocation's type. */
12729 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
12730
12731 /* Replace the 32-bit opcode with a 16-bit opcode. */
12732 bfd_put_16 (abfd,
12733 (bz_insns_16[fndopc].match
12734 | BZ16_REG_FIELD (reg)
12735 | (opcode & 0x7f)), /* Addend value. */
12736 ptr);
12737
12738 /* Delete 2 bytes from irel->r_offset + 2. */
12739 delcnt = 2;
12740 deloff = 2;
12741 }
12742
12743 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
12744 else if (r_type == R_MICROMIPS_26_S1
12745 && target_is_micromips_code_p
12746 && irel->r_offset + 7 < sec->size
12747 && MATCH (opcode, jal_insn_32_bd32))
12748 {
12749 unsigned long n32opc;
12750 bfd_boolean relaxed = FALSE;
12751
12752 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
12753
12754 if (MATCH (n32opc, nop_insn_32))
12755 {
12756 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
12757 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
12758
12759 relaxed = TRUE;
12760 }
12761 else if (find_match (n32opc, move_insns_32) >= 0)
12762 {
12763 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
12764 bfd_put_16 (abfd,
12765 (move_insn_16.match
12766 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
12767 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
12768 ptr + 4);
12769
12770 relaxed = TRUE;
12771 }
12772 /* Other 32-bit instructions relaxable to 16-bit
12773 instructions will be handled here later. */
12774
12775 if (relaxed)
12776 {
12777 /* JAL with 32-bit delay slot that is changed to a JALS
12778 with 16-bit delay slot. */
12779 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
12780
12781 /* Delete 2 bytes from irel->r_offset + 6. */
12782 delcnt = 2;
12783 deloff = 6;
12784 }
12785 }
12786
12787 if (delcnt != 0)
12788 {
12789 /* Note that we've changed the relocs, section contents, etc. */
12790 elf_section_data (sec)->relocs = internal_relocs;
12791 elf_section_data (sec)->this_hdr.contents = contents;
12792 symtab_hdr->contents = (unsigned char *) isymbuf;
12793
12794 /* Delete bytes depending on the delcnt and deloff. */
12795 if (!mips_elf_relax_delete_bytes (abfd, sec,
12796 irel->r_offset + deloff, delcnt))
12797 goto error_return;
12798
12799 /* That will change things, so we should relax again.
12800 Note that this is not required, and it may be slow. */
12801 *again = TRUE;
12802 }
12803 }
12804
12805 if (isymbuf != NULL
12806 && symtab_hdr->contents != (unsigned char *) isymbuf)
12807 {
12808 if (! link_info->keep_memory)
12809 free (isymbuf);
12810 else
12811 {
12812 /* Cache the symbols for elf_link_input_bfd. */
12813 symtab_hdr->contents = (unsigned char *) isymbuf;
12814 }
12815 }
12816
12817 if (contents != NULL
12818 && elf_section_data (sec)->this_hdr.contents != contents)
12819 {
12820 if (! link_info->keep_memory)
12821 free (contents);
12822 else
12823 {
12824 /* Cache the section contents for elf_link_input_bfd. */
12825 elf_section_data (sec)->this_hdr.contents = contents;
12826 }
12827 }
12828
12829 if (internal_relocs != NULL
12830 && elf_section_data (sec)->relocs != internal_relocs)
12831 free (internal_relocs);
12832
12833 return TRUE;
12834
12835 error_return:
12836 if (isymbuf != NULL
12837 && symtab_hdr->contents != (unsigned char *) isymbuf)
12838 free (isymbuf);
12839 if (contents != NULL
12840 && elf_section_data (sec)->this_hdr.contents != contents)
12841 free (contents);
12842 if (internal_relocs != NULL
12843 && elf_section_data (sec)->relocs != internal_relocs)
12844 free (internal_relocs);
12845
12846 return FALSE;
12847 }
12848 \f
12849 /* Create a MIPS ELF linker hash table. */
12850
12851 struct bfd_link_hash_table *
12852 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
12853 {
12854 struct mips_elf_link_hash_table *ret;
12855 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
12856
12857 ret = bfd_zmalloc (amt);
12858 if (ret == NULL)
12859 return NULL;
12860
12861 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
12862 mips_elf_link_hash_newfunc,
12863 sizeof (struct mips_elf_link_hash_entry),
12864 MIPS_ELF_DATA))
12865 {
12866 free (ret);
12867 return NULL;
12868 }
12869
12870 return &ret->root.root;
12871 }
12872
12873 /* Likewise, but indicate that the target is VxWorks. */
12874
12875 struct bfd_link_hash_table *
12876 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
12877 {
12878 struct bfd_link_hash_table *ret;
12879
12880 ret = _bfd_mips_elf_link_hash_table_create (abfd);
12881 if (ret)
12882 {
12883 struct mips_elf_link_hash_table *htab;
12884
12885 htab = (struct mips_elf_link_hash_table *) ret;
12886 htab->use_plts_and_copy_relocs = TRUE;
12887 htab->is_vxworks = TRUE;
12888 }
12889 return ret;
12890 }
12891
12892 /* A function that the linker calls if we are allowed to use PLTs
12893 and copy relocs. */
12894
12895 void
12896 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
12897 {
12898 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
12899 }
12900 \f
12901 /* We need to use a special link routine to handle the .reginfo and
12902 the .mdebug sections. We need to merge all instances of these
12903 sections together, not write them all out sequentially. */
12904
12905 bfd_boolean
12906 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
12907 {
12908 asection *o;
12909 struct bfd_link_order *p;
12910 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
12911 asection *rtproc_sec;
12912 Elf32_RegInfo reginfo;
12913 struct ecoff_debug_info debug;
12914 struct mips_htab_traverse_info hti;
12915 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12916 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
12917 HDRR *symhdr = &debug.symbolic_header;
12918 void *mdebug_handle = NULL;
12919 asection *s;
12920 EXTR esym;
12921 unsigned int i;
12922 bfd_size_type amt;
12923 struct mips_elf_link_hash_table *htab;
12924
12925 static const char * const secname[] =
12926 {
12927 ".text", ".init", ".fini", ".data",
12928 ".rodata", ".sdata", ".sbss", ".bss"
12929 };
12930 static const int sc[] =
12931 {
12932 scText, scInit, scFini, scData,
12933 scRData, scSData, scSBss, scBss
12934 };
12935
12936 /* Sort the dynamic symbols so that those with GOT entries come after
12937 those without. */
12938 htab = mips_elf_hash_table (info);
12939 BFD_ASSERT (htab != NULL);
12940
12941 if (!mips_elf_sort_hash_table (abfd, info))
12942 return FALSE;
12943
12944 /* Create any scheduled LA25 stubs. */
12945 hti.info = info;
12946 hti.output_bfd = abfd;
12947 hti.error = FALSE;
12948 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
12949 if (hti.error)
12950 return FALSE;
12951
12952 /* Get a value for the GP register. */
12953 if (elf_gp (abfd) == 0)
12954 {
12955 struct bfd_link_hash_entry *h;
12956
12957 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
12958 if (h != NULL && h->type == bfd_link_hash_defined)
12959 elf_gp (abfd) = (h->u.def.value
12960 + h->u.def.section->output_section->vma
12961 + h->u.def.section->output_offset);
12962 else if (htab->is_vxworks
12963 && (h = bfd_link_hash_lookup (info->hash,
12964 "_GLOBAL_OFFSET_TABLE_",
12965 FALSE, FALSE, TRUE))
12966 && h->type == bfd_link_hash_defined)
12967 elf_gp (abfd) = (h->u.def.section->output_section->vma
12968 + h->u.def.section->output_offset
12969 + h->u.def.value);
12970 else if (info->relocatable)
12971 {
12972 bfd_vma lo = MINUS_ONE;
12973
12974 /* Find the GP-relative section with the lowest offset. */
12975 for (o = abfd->sections; o != NULL; o = o->next)
12976 if (o->vma < lo
12977 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
12978 lo = o->vma;
12979
12980 /* And calculate GP relative to that. */
12981 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
12982 }
12983 else
12984 {
12985 /* If the relocate_section function needs to do a reloc
12986 involving the GP value, it should make a reloc_dangerous
12987 callback to warn that GP is not defined. */
12988 }
12989 }
12990
12991 /* Go through the sections and collect the .reginfo and .mdebug
12992 information. */
12993 reginfo_sec = NULL;
12994 mdebug_sec = NULL;
12995 gptab_data_sec = NULL;
12996 gptab_bss_sec = NULL;
12997 for (o = abfd->sections; o != NULL; o = o->next)
12998 {
12999 if (strcmp (o->name, ".reginfo") == 0)
13000 {
13001 memset (&reginfo, 0, sizeof reginfo);
13002
13003 /* We have found the .reginfo section in the output file.
13004 Look through all the link_orders comprising it and merge
13005 the information together. */
13006 for (p = o->map_head.link_order; p != NULL; p = p->next)
13007 {
13008 asection *input_section;
13009 bfd *input_bfd;
13010 Elf32_External_RegInfo ext;
13011 Elf32_RegInfo sub;
13012
13013 if (p->type != bfd_indirect_link_order)
13014 {
13015 if (p->type == bfd_data_link_order)
13016 continue;
13017 abort ();
13018 }
13019
13020 input_section = p->u.indirect.section;
13021 input_bfd = input_section->owner;
13022
13023 if (! bfd_get_section_contents (input_bfd, input_section,
13024 &ext, 0, sizeof ext))
13025 return FALSE;
13026
13027 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
13028
13029 reginfo.ri_gprmask |= sub.ri_gprmask;
13030 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
13031 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
13032 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
13033 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
13034
13035 /* ri_gp_value is set by the function
13036 mips_elf32_section_processing when the section is
13037 finally written out. */
13038
13039 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13040 elf_link_input_bfd ignores this section. */
13041 input_section->flags &= ~SEC_HAS_CONTENTS;
13042 }
13043
13044 /* Size has been set in _bfd_mips_elf_always_size_sections. */
13045 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
13046
13047 /* Skip this section later on (I don't think this currently
13048 matters, but someday it might). */
13049 o->map_head.link_order = NULL;
13050
13051 reginfo_sec = o;
13052 }
13053
13054 if (strcmp (o->name, ".mdebug") == 0)
13055 {
13056 struct extsym_info einfo;
13057 bfd_vma last;
13058
13059 /* We have found the .mdebug section in the output file.
13060 Look through all the link_orders comprising it and merge
13061 the information together. */
13062 symhdr->magic = swap->sym_magic;
13063 /* FIXME: What should the version stamp be? */
13064 symhdr->vstamp = 0;
13065 symhdr->ilineMax = 0;
13066 symhdr->cbLine = 0;
13067 symhdr->idnMax = 0;
13068 symhdr->ipdMax = 0;
13069 symhdr->isymMax = 0;
13070 symhdr->ioptMax = 0;
13071 symhdr->iauxMax = 0;
13072 symhdr->issMax = 0;
13073 symhdr->issExtMax = 0;
13074 symhdr->ifdMax = 0;
13075 symhdr->crfd = 0;
13076 symhdr->iextMax = 0;
13077
13078 /* We accumulate the debugging information itself in the
13079 debug_info structure. */
13080 debug.line = NULL;
13081 debug.external_dnr = NULL;
13082 debug.external_pdr = NULL;
13083 debug.external_sym = NULL;
13084 debug.external_opt = NULL;
13085 debug.external_aux = NULL;
13086 debug.ss = NULL;
13087 debug.ssext = debug.ssext_end = NULL;
13088 debug.external_fdr = NULL;
13089 debug.external_rfd = NULL;
13090 debug.external_ext = debug.external_ext_end = NULL;
13091
13092 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
13093 if (mdebug_handle == NULL)
13094 return FALSE;
13095
13096 esym.jmptbl = 0;
13097 esym.cobol_main = 0;
13098 esym.weakext = 0;
13099 esym.reserved = 0;
13100 esym.ifd = ifdNil;
13101 esym.asym.iss = issNil;
13102 esym.asym.st = stLocal;
13103 esym.asym.reserved = 0;
13104 esym.asym.index = indexNil;
13105 last = 0;
13106 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
13107 {
13108 esym.asym.sc = sc[i];
13109 s = bfd_get_section_by_name (abfd, secname[i]);
13110 if (s != NULL)
13111 {
13112 esym.asym.value = s->vma;
13113 last = s->vma + s->size;
13114 }
13115 else
13116 esym.asym.value = last;
13117 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
13118 secname[i], &esym))
13119 return FALSE;
13120 }
13121
13122 for (p = o->map_head.link_order; p != NULL; p = p->next)
13123 {
13124 asection *input_section;
13125 bfd *input_bfd;
13126 const struct ecoff_debug_swap *input_swap;
13127 struct ecoff_debug_info input_debug;
13128 char *eraw_src;
13129 char *eraw_end;
13130
13131 if (p->type != bfd_indirect_link_order)
13132 {
13133 if (p->type == bfd_data_link_order)
13134 continue;
13135 abort ();
13136 }
13137
13138 input_section = p->u.indirect.section;
13139 input_bfd = input_section->owner;
13140
13141 if (!is_mips_elf (input_bfd))
13142 {
13143 /* I don't know what a non MIPS ELF bfd would be
13144 doing with a .mdebug section, but I don't really
13145 want to deal with it. */
13146 continue;
13147 }
13148
13149 input_swap = (get_elf_backend_data (input_bfd)
13150 ->elf_backend_ecoff_debug_swap);
13151
13152 BFD_ASSERT (p->size == input_section->size);
13153
13154 /* The ECOFF linking code expects that we have already
13155 read in the debugging information and set up an
13156 ecoff_debug_info structure, so we do that now. */
13157 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
13158 &input_debug))
13159 return FALSE;
13160
13161 if (! (bfd_ecoff_debug_accumulate
13162 (mdebug_handle, abfd, &debug, swap, input_bfd,
13163 &input_debug, input_swap, info)))
13164 return FALSE;
13165
13166 /* Loop through the external symbols. For each one with
13167 interesting information, try to find the symbol in
13168 the linker global hash table and save the information
13169 for the output external symbols. */
13170 eraw_src = input_debug.external_ext;
13171 eraw_end = (eraw_src
13172 + (input_debug.symbolic_header.iextMax
13173 * input_swap->external_ext_size));
13174 for (;
13175 eraw_src < eraw_end;
13176 eraw_src += input_swap->external_ext_size)
13177 {
13178 EXTR ext;
13179 const char *name;
13180 struct mips_elf_link_hash_entry *h;
13181
13182 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
13183 if (ext.asym.sc == scNil
13184 || ext.asym.sc == scUndefined
13185 || ext.asym.sc == scSUndefined)
13186 continue;
13187
13188 name = input_debug.ssext + ext.asym.iss;
13189 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
13190 name, FALSE, FALSE, TRUE);
13191 if (h == NULL || h->esym.ifd != -2)
13192 continue;
13193
13194 if (ext.ifd != -1)
13195 {
13196 BFD_ASSERT (ext.ifd
13197 < input_debug.symbolic_header.ifdMax);
13198 ext.ifd = input_debug.ifdmap[ext.ifd];
13199 }
13200
13201 h->esym = ext;
13202 }
13203
13204 /* Free up the information we just read. */
13205 free (input_debug.line);
13206 free (input_debug.external_dnr);
13207 free (input_debug.external_pdr);
13208 free (input_debug.external_sym);
13209 free (input_debug.external_opt);
13210 free (input_debug.external_aux);
13211 free (input_debug.ss);
13212 free (input_debug.ssext);
13213 free (input_debug.external_fdr);
13214 free (input_debug.external_rfd);
13215 free (input_debug.external_ext);
13216
13217 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13218 elf_link_input_bfd ignores this section. */
13219 input_section->flags &= ~SEC_HAS_CONTENTS;
13220 }
13221
13222 if (SGI_COMPAT (abfd) && info->shared)
13223 {
13224 /* Create .rtproc section. */
13225 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
13226 if (rtproc_sec == NULL)
13227 {
13228 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
13229 | SEC_LINKER_CREATED | SEC_READONLY);
13230
13231 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
13232 ".rtproc",
13233 flags);
13234 if (rtproc_sec == NULL
13235 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
13236 return FALSE;
13237 }
13238
13239 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
13240 info, rtproc_sec,
13241 &debug))
13242 return FALSE;
13243 }
13244
13245 /* Build the external symbol information. */
13246 einfo.abfd = abfd;
13247 einfo.info = info;
13248 einfo.debug = &debug;
13249 einfo.swap = swap;
13250 einfo.failed = FALSE;
13251 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
13252 mips_elf_output_extsym, &einfo);
13253 if (einfo.failed)
13254 return FALSE;
13255
13256 /* Set the size of the .mdebug section. */
13257 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
13258
13259 /* Skip this section later on (I don't think this currently
13260 matters, but someday it might). */
13261 o->map_head.link_order = NULL;
13262
13263 mdebug_sec = o;
13264 }
13265
13266 if (CONST_STRNEQ (o->name, ".gptab."))
13267 {
13268 const char *subname;
13269 unsigned int c;
13270 Elf32_gptab *tab;
13271 Elf32_External_gptab *ext_tab;
13272 unsigned int j;
13273
13274 /* The .gptab.sdata and .gptab.sbss sections hold
13275 information describing how the small data area would
13276 change depending upon the -G switch. These sections
13277 not used in executables files. */
13278 if (! info->relocatable)
13279 {
13280 for (p = o->map_head.link_order; p != NULL; p = p->next)
13281 {
13282 asection *input_section;
13283
13284 if (p->type != bfd_indirect_link_order)
13285 {
13286 if (p->type == bfd_data_link_order)
13287 continue;
13288 abort ();
13289 }
13290
13291 input_section = p->u.indirect.section;
13292
13293 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13294 elf_link_input_bfd ignores this section. */
13295 input_section->flags &= ~SEC_HAS_CONTENTS;
13296 }
13297
13298 /* Skip this section later on (I don't think this
13299 currently matters, but someday it might). */
13300 o->map_head.link_order = NULL;
13301
13302 /* Really remove the section. */
13303 bfd_section_list_remove (abfd, o);
13304 --abfd->section_count;
13305
13306 continue;
13307 }
13308
13309 /* There is one gptab for initialized data, and one for
13310 uninitialized data. */
13311 if (strcmp (o->name, ".gptab.sdata") == 0)
13312 gptab_data_sec = o;
13313 else if (strcmp (o->name, ".gptab.sbss") == 0)
13314 gptab_bss_sec = o;
13315 else
13316 {
13317 (*_bfd_error_handler)
13318 (_("%s: illegal section name `%s'"),
13319 bfd_get_filename (abfd), o->name);
13320 bfd_set_error (bfd_error_nonrepresentable_section);
13321 return FALSE;
13322 }
13323
13324 /* The linker script always combines .gptab.data and
13325 .gptab.sdata into .gptab.sdata, and likewise for
13326 .gptab.bss and .gptab.sbss. It is possible that there is
13327 no .sdata or .sbss section in the output file, in which
13328 case we must change the name of the output section. */
13329 subname = o->name + sizeof ".gptab" - 1;
13330 if (bfd_get_section_by_name (abfd, subname) == NULL)
13331 {
13332 if (o == gptab_data_sec)
13333 o->name = ".gptab.data";
13334 else
13335 o->name = ".gptab.bss";
13336 subname = o->name + sizeof ".gptab" - 1;
13337 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
13338 }
13339
13340 /* Set up the first entry. */
13341 c = 1;
13342 amt = c * sizeof (Elf32_gptab);
13343 tab = bfd_malloc (amt);
13344 if (tab == NULL)
13345 return FALSE;
13346 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
13347 tab[0].gt_header.gt_unused = 0;
13348
13349 /* Combine the input sections. */
13350 for (p = o->map_head.link_order; p != NULL; p = p->next)
13351 {
13352 asection *input_section;
13353 bfd *input_bfd;
13354 bfd_size_type size;
13355 unsigned long last;
13356 bfd_size_type gpentry;
13357
13358 if (p->type != bfd_indirect_link_order)
13359 {
13360 if (p->type == bfd_data_link_order)
13361 continue;
13362 abort ();
13363 }
13364
13365 input_section = p->u.indirect.section;
13366 input_bfd = input_section->owner;
13367
13368 /* Combine the gptab entries for this input section one
13369 by one. We know that the input gptab entries are
13370 sorted by ascending -G value. */
13371 size = input_section->size;
13372 last = 0;
13373 for (gpentry = sizeof (Elf32_External_gptab);
13374 gpentry < size;
13375 gpentry += sizeof (Elf32_External_gptab))
13376 {
13377 Elf32_External_gptab ext_gptab;
13378 Elf32_gptab int_gptab;
13379 unsigned long val;
13380 unsigned long add;
13381 bfd_boolean exact;
13382 unsigned int look;
13383
13384 if (! (bfd_get_section_contents
13385 (input_bfd, input_section, &ext_gptab, gpentry,
13386 sizeof (Elf32_External_gptab))))
13387 {
13388 free (tab);
13389 return FALSE;
13390 }
13391
13392 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
13393 &int_gptab);
13394 val = int_gptab.gt_entry.gt_g_value;
13395 add = int_gptab.gt_entry.gt_bytes - last;
13396
13397 exact = FALSE;
13398 for (look = 1; look < c; look++)
13399 {
13400 if (tab[look].gt_entry.gt_g_value >= val)
13401 tab[look].gt_entry.gt_bytes += add;
13402
13403 if (tab[look].gt_entry.gt_g_value == val)
13404 exact = TRUE;
13405 }
13406
13407 if (! exact)
13408 {
13409 Elf32_gptab *new_tab;
13410 unsigned int max;
13411
13412 /* We need a new table entry. */
13413 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
13414 new_tab = bfd_realloc (tab, amt);
13415 if (new_tab == NULL)
13416 {
13417 free (tab);
13418 return FALSE;
13419 }
13420 tab = new_tab;
13421 tab[c].gt_entry.gt_g_value = val;
13422 tab[c].gt_entry.gt_bytes = add;
13423
13424 /* Merge in the size for the next smallest -G
13425 value, since that will be implied by this new
13426 value. */
13427 max = 0;
13428 for (look = 1; look < c; look++)
13429 {
13430 if (tab[look].gt_entry.gt_g_value < val
13431 && (max == 0
13432 || (tab[look].gt_entry.gt_g_value
13433 > tab[max].gt_entry.gt_g_value)))
13434 max = look;
13435 }
13436 if (max != 0)
13437 tab[c].gt_entry.gt_bytes +=
13438 tab[max].gt_entry.gt_bytes;
13439
13440 ++c;
13441 }
13442
13443 last = int_gptab.gt_entry.gt_bytes;
13444 }
13445
13446 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13447 elf_link_input_bfd ignores this section. */
13448 input_section->flags &= ~SEC_HAS_CONTENTS;
13449 }
13450
13451 /* The table must be sorted by -G value. */
13452 if (c > 2)
13453 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
13454
13455 /* Swap out the table. */
13456 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
13457 ext_tab = bfd_alloc (abfd, amt);
13458 if (ext_tab == NULL)
13459 {
13460 free (tab);
13461 return FALSE;
13462 }
13463
13464 for (j = 0; j < c; j++)
13465 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
13466 free (tab);
13467
13468 o->size = c * sizeof (Elf32_External_gptab);
13469 o->contents = (bfd_byte *) ext_tab;
13470
13471 /* Skip this section later on (I don't think this currently
13472 matters, but someday it might). */
13473 o->map_head.link_order = NULL;
13474 }
13475 }
13476
13477 /* Invoke the regular ELF backend linker to do all the work. */
13478 if (!bfd_elf_final_link (abfd, info))
13479 return FALSE;
13480
13481 /* Now write out the computed sections. */
13482
13483 if (reginfo_sec != NULL)
13484 {
13485 Elf32_External_RegInfo ext;
13486
13487 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
13488 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
13489 return FALSE;
13490 }
13491
13492 if (mdebug_sec != NULL)
13493 {
13494 BFD_ASSERT (abfd->output_has_begun);
13495 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
13496 swap, info,
13497 mdebug_sec->filepos))
13498 return FALSE;
13499
13500 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
13501 }
13502
13503 if (gptab_data_sec != NULL)
13504 {
13505 if (! bfd_set_section_contents (abfd, gptab_data_sec,
13506 gptab_data_sec->contents,
13507 0, gptab_data_sec->size))
13508 return FALSE;
13509 }
13510
13511 if (gptab_bss_sec != NULL)
13512 {
13513 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
13514 gptab_bss_sec->contents,
13515 0, gptab_bss_sec->size))
13516 return FALSE;
13517 }
13518
13519 if (SGI_COMPAT (abfd))
13520 {
13521 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
13522 if (rtproc_sec != NULL)
13523 {
13524 if (! bfd_set_section_contents (abfd, rtproc_sec,
13525 rtproc_sec->contents,
13526 0, rtproc_sec->size))
13527 return FALSE;
13528 }
13529 }
13530
13531 return TRUE;
13532 }
13533 \f
13534 /* Structure for saying that BFD machine EXTENSION extends BASE. */
13535
13536 struct mips_mach_extension {
13537 unsigned long extension, base;
13538 };
13539
13540
13541 /* An array describing how BFD machines relate to one another. The entries
13542 are ordered topologically with MIPS I extensions listed last. */
13543
13544 static const struct mips_mach_extension mips_mach_extensions[] = {
13545 /* MIPS64r2 extensions. */
13546 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
13547 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
13548 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13549
13550 /* MIPS64 extensions. */
13551 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
13552 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
13553 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
13554 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64 },
13555
13556 /* MIPS V extensions. */
13557 { bfd_mach_mipsisa64, bfd_mach_mips5 },
13558
13559 /* R10000 extensions. */
13560 { bfd_mach_mips12000, bfd_mach_mips10000 },
13561 { bfd_mach_mips14000, bfd_mach_mips10000 },
13562 { bfd_mach_mips16000, bfd_mach_mips10000 },
13563
13564 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
13565 vr5400 ISA, but doesn't include the multimedia stuff. It seems
13566 better to allow vr5400 and vr5500 code to be merged anyway, since
13567 many libraries will just use the core ISA. Perhaps we could add
13568 some sort of ASE flag if this ever proves a problem. */
13569 { bfd_mach_mips5500, bfd_mach_mips5400 },
13570 { bfd_mach_mips5400, bfd_mach_mips5000 },
13571
13572 /* MIPS IV extensions. */
13573 { bfd_mach_mips5, bfd_mach_mips8000 },
13574 { bfd_mach_mips10000, bfd_mach_mips8000 },
13575 { bfd_mach_mips5000, bfd_mach_mips8000 },
13576 { bfd_mach_mips7000, bfd_mach_mips8000 },
13577 { bfd_mach_mips9000, bfd_mach_mips8000 },
13578
13579 /* VR4100 extensions. */
13580 { bfd_mach_mips4120, bfd_mach_mips4100 },
13581 { bfd_mach_mips4111, bfd_mach_mips4100 },
13582
13583 /* MIPS III extensions. */
13584 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
13585 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
13586 { bfd_mach_mips8000, bfd_mach_mips4000 },
13587 { bfd_mach_mips4650, bfd_mach_mips4000 },
13588 { bfd_mach_mips4600, bfd_mach_mips4000 },
13589 { bfd_mach_mips4400, bfd_mach_mips4000 },
13590 { bfd_mach_mips4300, bfd_mach_mips4000 },
13591 { bfd_mach_mips4100, bfd_mach_mips4000 },
13592 { bfd_mach_mips4010, bfd_mach_mips4000 },
13593 { bfd_mach_mips5900, bfd_mach_mips4000 },
13594
13595 /* MIPS32 extensions. */
13596 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
13597
13598 /* MIPS II extensions. */
13599 { bfd_mach_mips4000, bfd_mach_mips6000 },
13600 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
13601
13602 /* MIPS I extensions. */
13603 { bfd_mach_mips6000, bfd_mach_mips3000 },
13604 { bfd_mach_mips3900, bfd_mach_mips3000 }
13605 };
13606
13607
13608 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
13609
13610 static bfd_boolean
13611 mips_mach_extends_p (unsigned long base, unsigned long extension)
13612 {
13613 size_t i;
13614
13615 if (extension == base)
13616 return TRUE;
13617
13618 if (base == bfd_mach_mipsisa32
13619 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
13620 return TRUE;
13621
13622 if (base == bfd_mach_mipsisa32r2
13623 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
13624 return TRUE;
13625
13626 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
13627 if (extension == mips_mach_extensions[i].extension)
13628 {
13629 extension = mips_mach_extensions[i].base;
13630 if (extension == base)
13631 return TRUE;
13632 }
13633
13634 return FALSE;
13635 }
13636
13637
13638 /* Return true if the given ELF header flags describe a 32-bit binary. */
13639
13640 static bfd_boolean
13641 mips_32bit_flags_p (flagword flags)
13642 {
13643 return ((flags & EF_MIPS_32BITMODE) != 0
13644 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
13645 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
13646 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
13647 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
13648 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
13649 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
13650 }
13651
13652
13653 /* Merge object attributes from IBFD into OBFD. Raise an error if
13654 there are conflicting attributes. */
13655 static bfd_boolean
13656 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
13657 {
13658 obj_attribute *in_attr;
13659 obj_attribute *out_attr;
13660 bfd *abi_fp_bfd;
13661
13662 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
13663 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
13664 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != 0)
13665 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
13666
13667 if (!elf_known_obj_attributes_proc (obfd)[0].i)
13668 {
13669 /* This is the first object. Copy the attributes. */
13670 _bfd_elf_copy_obj_attributes (ibfd, obfd);
13671
13672 /* Use the Tag_null value to indicate the attributes have been
13673 initialized. */
13674 elf_known_obj_attributes_proc (obfd)[0].i = 1;
13675
13676 return TRUE;
13677 }
13678
13679 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
13680 non-conflicting ones. */
13681 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
13682 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
13683 {
13684 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
13685 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
13686 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
13687 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i != 0)
13688 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
13689 {
13690 case 1:
13691 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13692 {
13693 case 2:
13694 _bfd_error_handler
13695 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13696 obfd, abi_fp_bfd, ibfd, "-mdouble-float", "-msingle-float");
13697 break;
13698
13699 case 3:
13700 _bfd_error_handler
13701 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13702 obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float");
13703 break;
13704
13705 case 4:
13706 _bfd_error_handler
13707 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13708 obfd, abi_fp_bfd, ibfd,
13709 "-mdouble-float", "-mips32r2 -mfp64");
13710 break;
13711
13712 default:
13713 _bfd_error_handler
13714 (_("Warning: %B uses %s (set by %B), "
13715 "%B uses unknown floating point ABI %d"),
13716 obfd, abi_fp_bfd, ibfd,
13717 "-mdouble-float", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13718 break;
13719 }
13720 break;
13721
13722 case 2:
13723 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13724 {
13725 case 1:
13726 _bfd_error_handler
13727 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13728 obfd, abi_fp_bfd, ibfd, "-msingle-float", "-mdouble-float");
13729 break;
13730
13731 case 3:
13732 _bfd_error_handler
13733 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13734 obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float");
13735 break;
13736
13737 case 4:
13738 _bfd_error_handler
13739 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13740 obfd, abi_fp_bfd, ibfd,
13741 "-msingle-float", "-mips32r2 -mfp64");
13742 break;
13743
13744 default:
13745 _bfd_error_handler
13746 (_("Warning: %B uses %s (set by %B), "
13747 "%B uses unknown floating point ABI %d"),
13748 obfd, abi_fp_bfd, ibfd,
13749 "-msingle-float", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13750 break;
13751 }
13752 break;
13753
13754 case 3:
13755 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13756 {
13757 case 1:
13758 case 2:
13759 case 4:
13760 _bfd_error_handler
13761 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13762 obfd, abi_fp_bfd, ibfd, "-msoft-float", "-mhard-float");
13763 break;
13764
13765 default:
13766 _bfd_error_handler
13767 (_("Warning: %B uses %s (set by %B), "
13768 "%B uses unknown floating point ABI %d"),
13769 obfd, abi_fp_bfd, ibfd,
13770 "-msoft-float", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13771 break;
13772 }
13773 break;
13774
13775 case 4:
13776 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13777 {
13778 case 1:
13779 _bfd_error_handler
13780 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13781 obfd, abi_fp_bfd, ibfd,
13782 "-mips32r2 -mfp64", "-mdouble-float");
13783 break;
13784
13785 case 2:
13786 _bfd_error_handler
13787 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13788 obfd, abi_fp_bfd, ibfd,
13789 "-mips32r2 -mfp64", "-msingle-float");
13790 break;
13791
13792 case 3:
13793 _bfd_error_handler
13794 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13795 obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float");
13796 break;
13797
13798 default:
13799 _bfd_error_handler
13800 (_("Warning: %B uses %s (set by %B), "
13801 "%B uses unknown floating point ABI %d"),
13802 obfd, abi_fp_bfd, ibfd,
13803 "-mips32r2 -mfp64", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13804 break;
13805 }
13806 break;
13807
13808 default:
13809 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13810 {
13811 case 1:
13812 _bfd_error_handler
13813 (_("Warning: %B uses unknown floating point ABI %d "
13814 "(set by %B), %B uses %s"),
13815 obfd, abi_fp_bfd, ibfd,
13816 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-mdouble-float");
13817 break;
13818
13819 case 2:
13820 _bfd_error_handler
13821 (_("Warning: %B uses unknown floating point ABI %d "
13822 "(set by %B), %B uses %s"),
13823 obfd, abi_fp_bfd, ibfd,
13824 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-msingle-float");
13825 break;
13826
13827 case 3:
13828 _bfd_error_handler
13829 (_("Warning: %B uses unknown floating point ABI %d "
13830 "(set by %B), %B uses %s"),
13831 obfd, abi_fp_bfd, ibfd,
13832 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-msoft-float");
13833 break;
13834
13835 case 4:
13836 _bfd_error_handler
13837 (_("Warning: %B uses unknown floating point ABI %d "
13838 "(set by %B), %B uses %s"),
13839 obfd, abi_fp_bfd, ibfd,
13840 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-mips32r2 -mfp64");
13841 break;
13842
13843 default:
13844 _bfd_error_handler
13845 (_("Warning: %B uses unknown floating point ABI %d "
13846 "(set by %B), %B uses unknown floating point ABI %d"),
13847 obfd, abi_fp_bfd, ibfd,
13848 out_attr[Tag_GNU_MIPS_ABI_FP].i,
13849 in_attr[Tag_GNU_MIPS_ABI_FP].i);
13850 break;
13851 }
13852 break;
13853 }
13854 }
13855
13856 /* Merge Tag_compatibility attributes and any common GNU ones. */
13857 _bfd_elf_merge_object_attributes (ibfd, obfd);
13858
13859 return TRUE;
13860 }
13861
13862 /* Merge backend specific data from an object file to the output
13863 object file when linking. */
13864
13865 bfd_boolean
13866 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
13867 {
13868 flagword old_flags;
13869 flagword new_flags;
13870 bfd_boolean ok;
13871 bfd_boolean null_input_bfd = TRUE;
13872 asection *sec;
13873
13874 /* Check if we have the same endianness. */
13875 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
13876 {
13877 (*_bfd_error_handler)
13878 (_("%B: endianness incompatible with that of the selected emulation"),
13879 ibfd);
13880 return FALSE;
13881 }
13882
13883 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
13884 return TRUE;
13885
13886 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
13887 {
13888 (*_bfd_error_handler)
13889 (_("%B: ABI is incompatible with that of the selected emulation"),
13890 ibfd);
13891 return FALSE;
13892 }
13893
13894 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
13895 return FALSE;
13896
13897 new_flags = elf_elfheader (ibfd)->e_flags;
13898 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
13899 old_flags = elf_elfheader (obfd)->e_flags;
13900
13901 if (! elf_flags_init (obfd))
13902 {
13903 elf_flags_init (obfd) = TRUE;
13904 elf_elfheader (obfd)->e_flags = new_flags;
13905 elf_elfheader (obfd)->e_ident[EI_CLASS]
13906 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
13907
13908 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
13909 && (bfd_get_arch_info (obfd)->the_default
13910 || mips_mach_extends_p (bfd_get_mach (obfd),
13911 bfd_get_mach (ibfd))))
13912 {
13913 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
13914 bfd_get_mach (ibfd)))
13915 return FALSE;
13916 }
13917
13918 return TRUE;
13919 }
13920
13921 /* Check flag compatibility. */
13922
13923 new_flags &= ~EF_MIPS_NOREORDER;
13924 old_flags &= ~EF_MIPS_NOREORDER;
13925
13926 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
13927 doesn't seem to matter. */
13928 new_flags &= ~EF_MIPS_XGOT;
13929 old_flags &= ~EF_MIPS_XGOT;
13930
13931 /* MIPSpro generates ucode info in n64 objects. Again, we should
13932 just be able to ignore this. */
13933 new_flags &= ~EF_MIPS_UCODE;
13934 old_flags &= ~EF_MIPS_UCODE;
13935
13936 /* DSOs should only be linked with CPIC code. */
13937 if ((ibfd->flags & DYNAMIC) != 0)
13938 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
13939
13940 if (new_flags == old_flags)
13941 return TRUE;
13942
13943 /* Check to see if the input BFD actually contains any sections.
13944 If not, its flags may not have been initialised either, but it cannot
13945 actually cause any incompatibility. */
13946 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
13947 {
13948 /* Ignore synthetic sections and empty .text, .data and .bss sections
13949 which are automatically generated by gas. Also ignore fake
13950 (s)common sections, since merely defining a common symbol does
13951 not affect compatibility. */
13952 if ((sec->flags & SEC_IS_COMMON) == 0
13953 && strcmp (sec->name, ".reginfo")
13954 && strcmp (sec->name, ".mdebug")
13955 && (sec->size != 0
13956 || (strcmp (sec->name, ".text")
13957 && strcmp (sec->name, ".data")
13958 && strcmp (sec->name, ".bss"))))
13959 {
13960 null_input_bfd = FALSE;
13961 break;
13962 }
13963 }
13964 if (null_input_bfd)
13965 return TRUE;
13966
13967 ok = TRUE;
13968
13969 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
13970 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
13971 {
13972 (*_bfd_error_handler)
13973 (_("%B: warning: linking abicalls files with non-abicalls files"),
13974 ibfd);
13975 ok = TRUE;
13976 }
13977
13978 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
13979 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
13980 if (! (new_flags & EF_MIPS_PIC))
13981 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
13982
13983 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
13984 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
13985
13986 /* Compare the ISAs. */
13987 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
13988 {
13989 (*_bfd_error_handler)
13990 (_("%B: linking 32-bit code with 64-bit code"),
13991 ibfd);
13992 ok = FALSE;
13993 }
13994 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
13995 {
13996 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
13997 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
13998 {
13999 /* Copy the architecture info from IBFD to OBFD. Also copy
14000 the 32-bit flag (if set) so that we continue to recognise
14001 OBFD as a 32-bit binary. */
14002 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
14003 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
14004 elf_elfheader (obfd)->e_flags
14005 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14006
14007 /* Copy across the ABI flags if OBFD doesn't use them
14008 and if that was what caused us to treat IBFD as 32-bit. */
14009 if ((old_flags & EF_MIPS_ABI) == 0
14010 && mips_32bit_flags_p (new_flags)
14011 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
14012 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
14013 }
14014 else
14015 {
14016 /* The ISAs aren't compatible. */
14017 (*_bfd_error_handler)
14018 (_("%B: linking %s module with previous %s modules"),
14019 ibfd,
14020 bfd_printable_name (ibfd),
14021 bfd_printable_name (obfd));
14022 ok = FALSE;
14023 }
14024 }
14025
14026 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14027 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14028
14029 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
14030 does set EI_CLASS differently from any 32-bit ABI. */
14031 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
14032 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14033 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14034 {
14035 /* Only error if both are set (to different values). */
14036 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
14037 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14038 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14039 {
14040 (*_bfd_error_handler)
14041 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
14042 ibfd,
14043 elf_mips_abi_name (ibfd),
14044 elf_mips_abi_name (obfd));
14045 ok = FALSE;
14046 }
14047 new_flags &= ~EF_MIPS_ABI;
14048 old_flags &= ~EF_MIPS_ABI;
14049 }
14050
14051 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
14052 and allow arbitrary mixing of the remaining ASEs (retain the union). */
14053 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
14054 {
14055 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
14056 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
14057 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
14058 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
14059 int micro_mis = old_m16 && new_micro;
14060 int m16_mis = old_micro && new_m16;
14061
14062 if (m16_mis || micro_mis)
14063 {
14064 (*_bfd_error_handler)
14065 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
14066 ibfd,
14067 m16_mis ? "MIPS16" : "microMIPS",
14068 m16_mis ? "microMIPS" : "MIPS16");
14069 ok = FALSE;
14070 }
14071
14072 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
14073
14074 new_flags &= ~ EF_MIPS_ARCH_ASE;
14075 old_flags &= ~ EF_MIPS_ARCH_ASE;
14076 }
14077
14078 /* Warn about any other mismatches */
14079 if (new_flags != old_flags)
14080 {
14081 (*_bfd_error_handler)
14082 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
14083 ibfd, (unsigned long) new_flags,
14084 (unsigned long) old_flags);
14085 ok = FALSE;
14086 }
14087
14088 if (! ok)
14089 {
14090 bfd_set_error (bfd_error_bad_value);
14091 return FALSE;
14092 }
14093
14094 return TRUE;
14095 }
14096
14097 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
14098
14099 bfd_boolean
14100 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
14101 {
14102 BFD_ASSERT (!elf_flags_init (abfd)
14103 || elf_elfheader (abfd)->e_flags == flags);
14104
14105 elf_elfheader (abfd)->e_flags = flags;
14106 elf_flags_init (abfd) = TRUE;
14107 return TRUE;
14108 }
14109
14110 char *
14111 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
14112 {
14113 switch (dtag)
14114 {
14115 default: return "";
14116 case DT_MIPS_RLD_VERSION:
14117 return "MIPS_RLD_VERSION";
14118 case DT_MIPS_TIME_STAMP:
14119 return "MIPS_TIME_STAMP";
14120 case DT_MIPS_ICHECKSUM:
14121 return "MIPS_ICHECKSUM";
14122 case DT_MIPS_IVERSION:
14123 return "MIPS_IVERSION";
14124 case DT_MIPS_FLAGS:
14125 return "MIPS_FLAGS";
14126 case DT_MIPS_BASE_ADDRESS:
14127 return "MIPS_BASE_ADDRESS";
14128 case DT_MIPS_MSYM:
14129 return "MIPS_MSYM";
14130 case DT_MIPS_CONFLICT:
14131 return "MIPS_CONFLICT";
14132 case DT_MIPS_LIBLIST:
14133 return "MIPS_LIBLIST";
14134 case DT_MIPS_LOCAL_GOTNO:
14135 return "MIPS_LOCAL_GOTNO";
14136 case DT_MIPS_CONFLICTNO:
14137 return "MIPS_CONFLICTNO";
14138 case DT_MIPS_LIBLISTNO:
14139 return "MIPS_LIBLISTNO";
14140 case DT_MIPS_SYMTABNO:
14141 return "MIPS_SYMTABNO";
14142 case DT_MIPS_UNREFEXTNO:
14143 return "MIPS_UNREFEXTNO";
14144 case DT_MIPS_GOTSYM:
14145 return "MIPS_GOTSYM";
14146 case DT_MIPS_HIPAGENO:
14147 return "MIPS_HIPAGENO";
14148 case DT_MIPS_RLD_MAP:
14149 return "MIPS_RLD_MAP";
14150 case DT_MIPS_DELTA_CLASS:
14151 return "MIPS_DELTA_CLASS";
14152 case DT_MIPS_DELTA_CLASS_NO:
14153 return "MIPS_DELTA_CLASS_NO";
14154 case DT_MIPS_DELTA_INSTANCE:
14155 return "MIPS_DELTA_INSTANCE";
14156 case DT_MIPS_DELTA_INSTANCE_NO:
14157 return "MIPS_DELTA_INSTANCE_NO";
14158 case DT_MIPS_DELTA_RELOC:
14159 return "MIPS_DELTA_RELOC";
14160 case DT_MIPS_DELTA_RELOC_NO:
14161 return "MIPS_DELTA_RELOC_NO";
14162 case DT_MIPS_DELTA_SYM:
14163 return "MIPS_DELTA_SYM";
14164 case DT_MIPS_DELTA_SYM_NO:
14165 return "MIPS_DELTA_SYM_NO";
14166 case DT_MIPS_DELTA_CLASSSYM:
14167 return "MIPS_DELTA_CLASSSYM";
14168 case DT_MIPS_DELTA_CLASSSYM_NO:
14169 return "MIPS_DELTA_CLASSSYM_NO";
14170 case DT_MIPS_CXX_FLAGS:
14171 return "MIPS_CXX_FLAGS";
14172 case DT_MIPS_PIXIE_INIT:
14173 return "MIPS_PIXIE_INIT";
14174 case DT_MIPS_SYMBOL_LIB:
14175 return "MIPS_SYMBOL_LIB";
14176 case DT_MIPS_LOCALPAGE_GOTIDX:
14177 return "MIPS_LOCALPAGE_GOTIDX";
14178 case DT_MIPS_LOCAL_GOTIDX:
14179 return "MIPS_LOCAL_GOTIDX";
14180 case DT_MIPS_HIDDEN_GOTIDX:
14181 return "MIPS_HIDDEN_GOTIDX";
14182 case DT_MIPS_PROTECTED_GOTIDX:
14183 return "MIPS_PROTECTED_GOT_IDX";
14184 case DT_MIPS_OPTIONS:
14185 return "MIPS_OPTIONS";
14186 case DT_MIPS_INTERFACE:
14187 return "MIPS_INTERFACE";
14188 case DT_MIPS_DYNSTR_ALIGN:
14189 return "DT_MIPS_DYNSTR_ALIGN";
14190 case DT_MIPS_INTERFACE_SIZE:
14191 return "DT_MIPS_INTERFACE_SIZE";
14192 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
14193 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
14194 case DT_MIPS_PERF_SUFFIX:
14195 return "DT_MIPS_PERF_SUFFIX";
14196 case DT_MIPS_COMPACT_SIZE:
14197 return "DT_MIPS_COMPACT_SIZE";
14198 case DT_MIPS_GP_VALUE:
14199 return "DT_MIPS_GP_VALUE";
14200 case DT_MIPS_AUX_DYNAMIC:
14201 return "DT_MIPS_AUX_DYNAMIC";
14202 case DT_MIPS_PLTGOT:
14203 return "DT_MIPS_PLTGOT";
14204 case DT_MIPS_RWPLT:
14205 return "DT_MIPS_RWPLT";
14206 }
14207 }
14208
14209 bfd_boolean
14210 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
14211 {
14212 FILE *file = ptr;
14213
14214 BFD_ASSERT (abfd != NULL && ptr != NULL);
14215
14216 /* Print normal ELF private data. */
14217 _bfd_elf_print_private_bfd_data (abfd, ptr);
14218
14219 /* xgettext:c-format */
14220 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
14221
14222 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
14223 fprintf (file, _(" [abi=O32]"));
14224 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
14225 fprintf (file, _(" [abi=O64]"));
14226 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
14227 fprintf (file, _(" [abi=EABI32]"));
14228 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
14229 fprintf (file, _(" [abi=EABI64]"));
14230 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
14231 fprintf (file, _(" [abi unknown]"));
14232 else if (ABI_N32_P (abfd))
14233 fprintf (file, _(" [abi=N32]"));
14234 else if (ABI_64_P (abfd))
14235 fprintf (file, _(" [abi=64]"));
14236 else
14237 fprintf (file, _(" [no abi set]"));
14238
14239 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
14240 fprintf (file, " [mips1]");
14241 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
14242 fprintf (file, " [mips2]");
14243 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
14244 fprintf (file, " [mips3]");
14245 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
14246 fprintf (file, " [mips4]");
14247 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
14248 fprintf (file, " [mips5]");
14249 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
14250 fprintf (file, " [mips32]");
14251 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
14252 fprintf (file, " [mips64]");
14253 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
14254 fprintf (file, " [mips32r2]");
14255 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
14256 fprintf (file, " [mips64r2]");
14257 else
14258 fprintf (file, _(" [unknown ISA]"));
14259
14260 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14261 fprintf (file, " [mdmx]");
14262
14263 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14264 fprintf (file, " [mips16]");
14265
14266 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14267 fprintf (file, " [micromips]");
14268
14269 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
14270 fprintf (file, " [32bitmode]");
14271 else
14272 fprintf (file, _(" [not 32bitmode]"));
14273
14274 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
14275 fprintf (file, " [noreorder]");
14276
14277 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
14278 fprintf (file, " [PIC]");
14279
14280 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
14281 fprintf (file, " [CPIC]");
14282
14283 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
14284 fprintf (file, " [XGOT]");
14285
14286 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
14287 fprintf (file, " [UCODE]");
14288
14289 fputc ('\n', file);
14290
14291 return TRUE;
14292 }
14293
14294 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
14295 {
14296 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14297 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14298 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
14299 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14300 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14301 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
14302 { NULL, 0, 0, 0, 0 }
14303 };
14304
14305 /* Merge non visibility st_other attributes. Ensure that the
14306 STO_OPTIONAL flag is copied into h->other, even if this is not a
14307 definiton of the symbol. */
14308 void
14309 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
14310 const Elf_Internal_Sym *isym,
14311 bfd_boolean definition,
14312 bfd_boolean dynamic ATTRIBUTE_UNUSED)
14313 {
14314 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
14315 {
14316 unsigned char other;
14317
14318 other = (definition ? isym->st_other : h->other);
14319 other &= ~ELF_ST_VISIBILITY (-1);
14320 h->other = other | ELF_ST_VISIBILITY (h->other);
14321 }
14322
14323 if (!definition
14324 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
14325 h->other |= STO_OPTIONAL;
14326 }
14327
14328 /* Decide whether an undefined symbol is special and can be ignored.
14329 This is the case for OPTIONAL symbols on IRIX. */
14330 bfd_boolean
14331 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
14332 {
14333 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
14334 }
14335
14336 bfd_boolean
14337 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
14338 {
14339 return (sym->st_shndx == SHN_COMMON
14340 || sym->st_shndx == SHN_MIPS_ACOMMON
14341 || sym->st_shndx == SHN_MIPS_SCOMMON);
14342 }
14343
14344 /* Return address for Ith PLT stub in section PLT, for relocation REL
14345 or (bfd_vma) -1 if it should not be included. */
14346
14347 bfd_vma
14348 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
14349 const arelent *rel ATTRIBUTE_UNUSED)
14350 {
14351 return (plt->vma
14352 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
14353 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
14354 }
14355
14356 void
14357 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
14358 {
14359 struct mips_elf_link_hash_table *htab;
14360 Elf_Internal_Ehdr *i_ehdrp;
14361
14362 i_ehdrp = elf_elfheader (abfd);
14363 if (link_info)
14364 {
14365 htab = mips_elf_hash_table (link_info);
14366 BFD_ASSERT (htab != NULL);
14367
14368 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
14369 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
14370 }
14371 }
This page took 0.306766 seconds and 5 git commands to generate.