[MIPS] Add Loongson 2K1000 proccessor support.
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2018 Free Software Foundation, Inc.
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
28
29 /* This file handles functionality common to the different MIPS ABI's. */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "libiberty.h"
35 #include "elf-bfd.h"
36 #include "elfxx-mips.h"
37 #include "elf/mips.h"
38 #include "elf-vxworks.h"
39 #include "dwarf2.h"
40
41 /* Get the ECOFF swapping routines. */
42 #include "coff/sym.h"
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46
47 #include "hashtab.h"
48
49 /* Types of TLS GOT entry. */
50 enum mips_got_tls_type {
51 GOT_TLS_NONE,
52 GOT_TLS_GD,
53 GOT_TLS_LDM,
54 GOT_TLS_IE
55 };
56
57 /* This structure is used to hold information about one GOT entry.
58 There are four types of entry:
59
60 (1) an absolute address
61 requires: abfd == NULL
62 fields: d.address
63
64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 fields: abfd, symndx, d.addend, tls_type
67
68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 requires: abfd != NULL, symndx == -1
70 fields: d.h, tls_type
71
72 (4) a TLS LDM slot
73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 fields: none; there's only one of these per GOT. */
75 struct mips_got_entry
76 {
77 /* One input bfd that needs the GOT entry. */
78 bfd *abfd;
79 /* The index of the symbol, as stored in the relocation r_info, if
80 we have a local symbol; -1 otherwise. */
81 long symndx;
82 union
83 {
84 /* If abfd == NULL, an address that must be stored in the got. */
85 bfd_vma address;
86 /* If abfd != NULL && symndx != -1, the addend of the relocation
87 that should be added to the symbol value. */
88 bfd_vma addend;
89 /* If abfd != NULL && symndx == -1, the hash table entry
90 corresponding to a symbol in the GOT. The symbol's entry
91 is in the local area if h->global_got_area is GGA_NONE,
92 otherwise it is in the global area. */
93 struct mips_elf_link_hash_entry *h;
94 } d;
95
96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
97 symbol entry with r_symndx == 0. */
98 unsigned char tls_type;
99
100 /* True if we have filled in the GOT contents for a TLS entry,
101 and created the associated relocations. */
102 unsigned char tls_initialized;
103
104 /* The offset from the beginning of the .got section to the entry
105 corresponding to this symbol+addend. If it's a global symbol
106 whose offset is yet to be decided, it's going to be -1. */
107 long gotidx;
108 };
109
110 /* This structure represents a GOT page reference from an input bfd.
111 Each instance represents a symbol + ADDEND, where the representation
112 of the symbol depends on whether it is local to the input bfd.
113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
115
116 Page references with SYMNDX >= 0 always become page references
117 in the output. Page references with SYMNDX < 0 only become page
118 references if the symbol binds locally; in other cases, the page
119 reference decays to a global GOT reference. */
120 struct mips_got_page_ref
121 {
122 long symndx;
123 union
124 {
125 struct mips_elf_link_hash_entry *h;
126 bfd *abfd;
127 } u;
128 bfd_vma addend;
129 };
130
131 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132 The structures form a non-overlapping list that is sorted by increasing
133 MIN_ADDEND. */
134 struct mips_got_page_range
135 {
136 struct mips_got_page_range *next;
137 bfd_signed_vma min_addend;
138 bfd_signed_vma max_addend;
139 };
140
141 /* This structure describes the range of addends that are applied to page
142 relocations against a given section. */
143 struct mips_got_page_entry
144 {
145 /* The section that these entries are based on. */
146 asection *sec;
147 /* The ranges for this page entry. */
148 struct mips_got_page_range *ranges;
149 /* The maximum number of page entries needed for RANGES. */
150 bfd_vma num_pages;
151 };
152
153 /* This structure is used to hold .got information when linking. */
154
155 struct mips_got_info
156 {
157 /* The number of global .got entries. */
158 unsigned int global_gotno;
159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
160 unsigned int reloc_only_gotno;
161 /* The number of .got slots used for TLS. */
162 unsigned int tls_gotno;
163 /* The first unused TLS .got entry. Used only during
164 mips_elf_initialize_tls_index. */
165 unsigned int tls_assigned_gotno;
166 /* The number of local .got entries, eventually including page entries. */
167 unsigned int local_gotno;
168 /* The maximum number of page entries needed. */
169 unsigned int page_gotno;
170 /* The number of relocations needed for the GOT entries. */
171 unsigned int relocs;
172 /* The first unused local .got entry. */
173 unsigned int assigned_low_gotno;
174 /* The last unused local .got entry. */
175 unsigned int assigned_high_gotno;
176 /* A hash table holding members of the got. */
177 struct htab *got_entries;
178 /* A hash table holding mips_got_page_ref structures. */
179 struct htab *got_page_refs;
180 /* A hash table of mips_got_page_entry structures. */
181 struct htab *got_page_entries;
182 /* In multi-got links, a pointer to the next got (err, rather, most
183 of the time, it points to the previous got). */
184 struct mips_got_info *next;
185 };
186
187 /* Structure passed when merging bfds' gots. */
188
189 struct mips_elf_got_per_bfd_arg
190 {
191 /* The output bfd. */
192 bfd *obfd;
193 /* The link information. */
194 struct bfd_link_info *info;
195 /* A pointer to the primary got, i.e., the one that's going to get
196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
197 DT_MIPS_GOTSYM. */
198 struct mips_got_info *primary;
199 /* A non-primary got we're trying to merge with other input bfd's
200 gots. */
201 struct mips_got_info *current;
202 /* The maximum number of got entries that can be addressed with a
203 16-bit offset. */
204 unsigned int max_count;
205 /* The maximum number of page entries needed by each got. */
206 unsigned int max_pages;
207 /* The total number of global entries which will live in the
208 primary got and be automatically relocated. This includes
209 those not referenced by the primary GOT but included in
210 the "master" GOT. */
211 unsigned int global_count;
212 };
213
214 /* A structure used to pass information to htab_traverse callbacks
215 when laying out the GOT. */
216
217 struct mips_elf_traverse_got_arg
218 {
219 struct bfd_link_info *info;
220 struct mips_got_info *g;
221 int value;
222 };
223
224 struct _mips_elf_section_data
225 {
226 struct bfd_elf_section_data elf;
227 union
228 {
229 bfd_byte *tdata;
230 } u;
231 };
232
233 #define mips_elf_section_data(sec) \
234 ((struct _mips_elf_section_data *) elf_section_data (sec))
235
236 #define is_mips_elf(bfd) \
237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
238 && elf_tdata (bfd) != NULL \
239 && elf_object_id (bfd) == MIPS_ELF_DATA)
240
241 /* The ABI says that every symbol used by dynamic relocations must have
242 a global GOT entry. Among other things, this provides the dynamic
243 linker with a free, directly-indexed cache. The GOT can therefore
244 contain symbols that are not referenced by GOT relocations themselves
245 (in other words, it may have symbols that are not referenced by things
246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
247
248 GOT relocations are less likely to overflow if we put the associated
249 GOT entries towards the beginning. We therefore divide the global
250 GOT entries into two areas: "normal" and "reloc-only". Entries in
251 the first area can be used for both dynamic relocations and GP-relative
252 accesses, while those in the "reloc-only" area are for dynamic
253 relocations only.
254
255 These GGA_* ("Global GOT Area") values are organised so that lower
256 values are more general than higher values. Also, non-GGA_NONE
257 values are ordered by the position of the area in the GOT. */
258 #define GGA_NORMAL 0
259 #define GGA_RELOC_ONLY 1
260 #define GGA_NONE 2
261
262 /* Information about a non-PIC interface to a PIC function. There are
263 two ways of creating these interfaces. The first is to add:
264
265 lui $25,%hi(func)
266 addiu $25,$25,%lo(func)
267
268 immediately before a PIC function "func". The second is to add:
269
270 lui $25,%hi(func)
271 j func
272 addiu $25,$25,%lo(func)
273
274 to a separate trampoline section.
275
276 Stubs of the first kind go in a new section immediately before the
277 target function. Stubs of the second kind go in a single section
278 pointed to by the hash table's "strampoline" field. */
279 struct mips_elf_la25_stub {
280 /* The generated section that contains this stub. */
281 asection *stub_section;
282
283 /* The offset of the stub from the start of STUB_SECTION. */
284 bfd_vma offset;
285
286 /* One symbol for the original function. Its location is available
287 in H->root.root.u.def. */
288 struct mips_elf_link_hash_entry *h;
289 };
290
291 /* Macros for populating a mips_elf_la25_stub. */
292
293 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
294 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
295 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
296 #define LA25_LUI_MICROMIPS(VAL) \
297 (0x41b90000 | (VAL)) /* lui t9,VAL */
298 #define LA25_J_MICROMIPS(VAL) \
299 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
300 #define LA25_ADDIU_MICROMIPS(VAL) \
301 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
302
303 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
304 the dynamic symbols. */
305
306 struct mips_elf_hash_sort_data
307 {
308 /* The symbol in the global GOT with the lowest dynamic symbol table
309 index. */
310 struct elf_link_hash_entry *low;
311 /* The least dynamic symbol table index corresponding to a non-TLS
312 symbol with a GOT entry. */
313 bfd_size_type min_got_dynindx;
314 /* The greatest dynamic symbol table index corresponding to a symbol
315 with a GOT entry that is not referenced (e.g., a dynamic symbol
316 with dynamic relocations pointing to it from non-primary GOTs). */
317 bfd_size_type max_unref_got_dynindx;
318 /* The greatest dynamic symbol table index corresponding to a local
319 symbol. */
320 bfd_size_type max_local_dynindx;
321 /* The greatest dynamic symbol table index corresponding to an external
322 symbol without a GOT entry. */
323 bfd_size_type max_non_got_dynindx;
324 };
325
326 /* We make up to two PLT entries if needed, one for standard MIPS code
327 and one for compressed code, either a MIPS16 or microMIPS one. We
328 keep a separate record of traditional lazy-binding stubs, for easier
329 processing. */
330
331 struct plt_entry
332 {
333 /* Traditional SVR4 stub offset, or -1 if none. */
334 bfd_vma stub_offset;
335
336 /* Standard PLT entry offset, or -1 if none. */
337 bfd_vma mips_offset;
338
339 /* Compressed PLT entry offset, or -1 if none. */
340 bfd_vma comp_offset;
341
342 /* The corresponding .got.plt index, or -1 if none. */
343 bfd_vma gotplt_index;
344
345 /* Whether we need a standard PLT entry. */
346 unsigned int need_mips : 1;
347
348 /* Whether we need a compressed PLT entry. */
349 unsigned int need_comp : 1;
350 };
351
352 /* The MIPS ELF linker needs additional information for each symbol in
353 the global hash table. */
354
355 struct mips_elf_link_hash_entry
356 {
357 struct elf_link_hash_entry root;
358
359 /* External symbol information. */
360 EXTR esym;
361
362 /* The la25 stub we have created for ths symbol, if any. */
363 struct mips_elf_la25_stub *la25_stub;
364
365 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
366 this symbol. */
367 unsigned int possibly_dynamic_relocs;
368
369 /* If there is a stub that 32 bit functions should use to call this
370 16 bit function, this points to the section containing the stub. */
371 asection *fn_stub;
372
373 /* If there is a stub that 16 bit functions should use to call this
374 32 bit function, this points to the section containing the stub. */
375 asection *call_stub;
376
377 /* This is like the call_stub field, but it is used if the function
378 being called returns a floating point value. */
379 asection *call_fp_stub;
380
381 /* The highest GGA_* value that satisfies all references to this symbol. */
382 unsigned int global_got_area : 2;
383
384 /* True if all GOT relocations against this symbol are for calls. This is
385 a looser condition than no_fn_stub below, because there may be other
386 non-call non-GOT relocations against the symbol. */
387 unsigned int got_only_for_calls : 1;
388
389 /* True if one of the relocations described by possibly_dynamic_relocs
390 is against a readonly section. */
391 unsigned int readonly_reloc : 1;
392
393 /* True if there is a relocation against this symbol that must be
394 resolved by the static linker (in other words, if the relocation
395 cannot possibly be made dynamic). */
396 unsigned int has_static_relocs : 1;
397
398 /* True if we must not create a .MIPS.stubs entry for this symbol.
399 This is set, for example, if there are relocations related to
400 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
401 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
402 unsigned int no_fn_stub : 1;
403
404 /* Whether we need the fn_stub; this is true if this symbol appears
405 in any relocs other than a 16 bit call. */
406 unsigned int need_fn_stub : 1;
407
408 /* True if this symbol is referenced by branch relocations from
409 any non-PIC input file. This is used to determine whether an
410 la25 stub is required. */
411 unsigned int has_nonpic_branches : 1;
412
413 /* Does this symbol need a traditional MIPS lazy-binding stub
414 (as opposed to a PLT entry)? */
415 unsigned int needs_lazy_stub : 1;
416
417 /* Does this symbol resolve to a PLT entry? */
418 unsigned int use_plt_entry : 1;
419 };
420
421 /* MIPS ELF linker hash table. */
422
423 struct mips_elf_link_hash_table
424 {
425 struct elf_link_hash_table root;
426
427 /* The number of .rtproc entries. */
428 bfd_size_type procedure_count;
429
430 /* The size of the .compact_rel section (if SGI_COMPAT). */
431 bfd_size_type compact_rel_size;
432
433 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
434 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
435 bfd_boolean use_rld_obj_head;
436
437 /* The __rld_map or __rld_obj_head symbol. */
438 struct elf_link_hash_entry *rld_symbol;
439
440 /* This is set if we see any mips16 stub sections. */
441 bfd_boolean mips16_stubs_seen;
442
443 /* True if we can generate copy relocs and PLTs. */
444 bfd_boolean use_plts_and_copy_relocs;
445
446 /* True if we can only use 32-bit microMIPS instructions. */
447 bfd_boolean insn32;
448
449 /* True if we suppress checks for invalid branches between ISA modes. */
450 bfd_boolean ignore_branch_isa;
451
452 /* True if we're generating code for VxWorks. */
453 bfd_boolean is_vxworks;
454
455 /* True if we already reported the small-data section overflow. */
456 bfd_boolean small_data_overflow_reported;
457
458 /* Shortcuts to some dynamic sections, or NULL if they are not
459 being used. */
460 asection *srelplt2;
461 asection *sstubs;
462
463 /* The master GOT information. */
464 struct mips_got_info *got_info;
465
466 /* The global symbol in the GOT with the lowest index in the dynamic
467 symbol table. */
468 struct elf_link_hash_entry *global_gotsym;
469
470 /* The size of the PLT header in bytes. */
471 bfd_vma plt_header_size;
472
473 /* The size of a standard PLT entry in bytes. */
474 bfd_vma plt_mips_entry_size;
475
476 /* The size of a compressed PLT entry in bytes. */
477 bfd_vma plt_comp_entry_size;
478
479 /* The offset of the next standard PLT entry to create. */
480 bfd_vma plt_mips_offset;
481
482 /* The offset of the next compressed PLT entry to create. */
483 bfd_vma plt_comp_offset;
484
485 /* The index of the next .got.plt entry to create. */
486 bfd_vma plt_got_index;
487
488 /* The number of functions that need a lazy-binding stub. */
489 bfd_vma lazy_stub_count;
490
491 /* The size of a function stub entry in bytes. */
492 bfd_vma function_stub_size;
493
494 /* The number of reserved entries at the beginning of the GOT. */
495 unsigned int reserved_gotno;
496
497 /* The section used for mips_elf_la25_stub trampolines.
498 See the comment above that structure for details. */
499 asection *strampoline;
500
501 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
502 pairs. */
503 htab_t la25_stubs;
504
505 /* A function FN (NAME, IS, OS) that creates a new input section
506 called NAME and links it to output section OS. If IS is nonnull,
507 the new section should go immediately before it, otherwise it
508 should go at the (current) beginning of OS.
509
510 The function returns the new section on success, otherwise it
511 returns null. */
512 asection *(*add_stub_section) (const char *, asection *, asection *);
513
514 /* Small local sym cache. */
515 struct sym_cache sym_cache;
516
517 /* Is the PLT header compressed? */
518 unsigned int plt_header_is_comp : 1;
519 };
520
521 /* Get the MIPS ELF linker hash table from a link_info structure. */
522
523 #define mips_elf_hash_table(p) \
524 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
525 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
526
527 /* A structure used to communicate with htab_traverse callbacks. */
528 struct mips_htab_traverse_info
529 {
530 /* The usual link-wide information. */
531 struct bfd_link_info *info;
532 bfd *output_bfd;
533
534 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
535 bfd_boolean error;
536 };
537
538 /* MIPS ELF private object data. */
539
540 struct mips_elf_obj_tdata
541 {
542 /* Generic ELF private object data. */
543 struct elf_obj_tdata root;
544
545 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
546 bfd *abi_fp_bfd;
547
548 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
549 bfd *abi_msa_bfd;
550
551 /* The abiflags for this object. */
552 Elf_Internal_ABIFlags_v0 abiflags;
553 bfd_boolean abiflags_valid;
554
555 /* The GOT requirements of input bfds. */
556 struct mips_got_info *got;
557
558 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
559 included directly in this one, but there's no point to wasting
560 the memory just for the infrequently called find_nearest_line. */
561 struct mips_elf_find_line *find_line_info;
562
563 /* An array of stub sections indexed by symbol number. */
564 asection **local_stubs;
565 asection **local_call_stubs;
566
567 /* The Irix 5 support uses two virtual sections, which represent
568 text/data symbols defined in dynamic objects. */
569 asymbol *elf_data_symbol;
570 asymbol *elf_text_symbol;
571 asection *elf_data_section;
572 asection *elf_text_section;
573 };
574
575 /* Get MIPS ELF private object data from BFD's tdata. */
576
577 #define mips_elf_tdata(bfd) \
578 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
579
580 #define TLS_RELOC_P(r_type) \
581 (r_type == R_MIPS_TLS_DTPMOD32 \
582 || r_type == R_MIPS_TLS_DTPMOD64 \
583 || r_type == R_MIPS_TLS_DTPREL32 \
584 || r_type == R_MIPS_TLS_DTPREL64 \
585 || r_type == R_MIPS_TLS_GD \
586 || r_type == R_MIPS_TLS_LDM \
587 || r_type == R_MIPS_TLS_DTPREL_HI16 \
588 || r_type == R_MIPS_TLS_DTPREL_LO16 \
589 || r_type == R_MIPS_TLS_GOTTPREL \
590 || r_type == R_MIPS_TLS_TPREL32 \
591 || r_type == R_MIPS_TLS_TPREL64 \
592 || r_type == R_MIPS_TLS_TPREL_HI16 \
593 || r_type == R_MIPS_TLS_TPREL_LO16 \
594 || r_type == R_MIPS16_TLS_GD \
595 || r_type == R_MIPS16_TLS_LDM \
596 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
597 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
598 || r_type == R_MIPS16_TLS_GOTTPREL \
599 || r_type == R_MIPS16_TLS_TPREL_HI16 \
600 || r_type == R_MIPS16_TLS_TPREL_LO16 \
601 || r_type == R_MICROMIPS_TLS_GD \
602 || r_type == R_MICROMIPS_TLS_LDM \
603 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
604 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
605 || r_type == R_MICROMIPS_TLS_GOTTPREL \
606 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
607 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
608
609 /* Structure used to pass information to mips_elf_output_extsym. */
610
611 struct extsym_info
612 {
613 bfd *abfd;
614 struct bfd_link_info *info;
615 struct ecoff_debug_info *debug;
616 const struct ecoff_debug_swap *swap;
617 bfd_boolean failed;
618 };
619
620 /* The names of the runtime procedure table symbols used on IRIX5. */
621
622 static const char * const mips_elf_dynsym_rtproc_names[] =
623 {
624 "_procedure_table",
625 "_procedure_string_table",
626 "_procedure_table_size",
627 NULL
628 };
629
630 /* These structures are used to generate the .compact_rel section on
631 IRIX5. */
632
633 typedef struct
634 {
635 unsigned long id1; /* Always one? */
636 unsigned long num; /* Number of compact relocation entries. */
637 unsigned long id2; /* Always two? */
638 unsigned long offset; /* The file offset of the first relocation. */
639 unsigned long reserved0; /* Zero? */
640 unsigned long reserved1; /* Zero? */
641 } Elf32_compact_rel;
642
643 typedef struct
644 {
645 bfd_byte id1[4];
646 bfd_byte num[4];
647 bfd_byte id2[4];
648 bfd_byte offset[4];
649 bfd_byte reserved0[4];
650 bfd_byte reserved1[4];
651 } Elf32_External_compact_rel;
652
653 typedef struct
654 {
655 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
656 unsigned int rtype : 4; /* Relocation types. See below. */
657 unsigned int dist2to : 8;
658 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
659 unsigned long konst; /* KONST field. See below. */
660 unsigned long vaddr; /* VADDR to be relocated. */
661 } Elf32_crinfo;
662
663 typedef struct
664 {
665 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
666 unsigned int rtype : 4; /* Relocation types. See below. */
667 unsigned int dist2to : 8;
668 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
669 unsigned long konst; /* KONST field. See below. */
670 } Elf32_crinfo2;
671
672 typedef struct
673 {
674 bfd_byte info[4];
675 bfd_byte konst[4];
676 bfd_byte vaddr[4];
677 } Elf32_External_crinfo;
678
679 typedef struct
680 {
681 bfd_byte info[4];
682 bfd_byte konst[4];
683 } Elf32_External_crinfo2;
684
685 /* These are the constants used to swap the bitfields in a crinfo. */
686
687 #define CRINFO_CTYPE (0x1)
688 #define CRINFO_CTYPE_SH (31)
689 #define CRINFO_RTYPE (0xf)
690 #define CRINFO_RTYPE_SH (27)
691 #define CRINFO_DIST2TO (0xff)
692 #define CRINFO_DIST2TO_SH (19)
693 #define CRINFO_RELVADDR (0x7ffff)
694 #define CRINFO_RELVADDR_SH (0)
695
696 /* A compact relocation info has long (3 words) or short (2 words)
697 formats. A short format doesn't have VADDR field and relvaddr
698 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
699 #define CRF_MIPS_LONG 1
700 #define CRF_MIPS_SHORT 0
701
702 /* There are 4 types of compact relocation at least. The value KONST
703 has different meaning for each type:
704
705 (type) (konst)
706 CT_MIPS_REL32 Address in data
707 CT_MIPS_WORD Address in word (XXX)
708 CT_MIPS_GPHI_LO GP - vaddr
709 CT_MIPS_JMPAD Address to jump
710 */
711
712 #define CRT_MIPS_REL32 0xa
713 #define CRT_MIPS_WORD 0xb
714 #define CRT_MIPS_GPHI_LO 0xc
715 #define CRT_MIPS_JMPAD 0xd
716
717 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
718 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
719 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
720 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
721 \f
722 /* The structure of the runtime procedure descriptor created by the
723 loader for use by the static exception system. */
724
725 typedef struct runtime_pdr {
726 bfd_vma adr; /* Memory address of start of procedure. */
727 long regmask; /* Save register mask. */
728 long regoffset; /* Save register offset. */
729 long fregmask; /* Save floating point register mask. */
730 long fregoffset; /* Save floating point register offset. */
731 long frameoffset; /* Frame size. */
732 short framereg; /* Frame pointer register. */
733 short pcreg; /* Offset or reg of return pc. */
734 long irpss; /* Index into the runtime string table. */
735 long reserved;
736 struct exception_info *exception_info;/* Pointer to exception array. */
737 } RPDR, *pRPDR;
738 #define cbRPDR sizeof (RPDR)
739 #define rpdNil ((pRPDR) 0)
740 \f
741 static struct mips_got_entry *mips_elf_create_local_got_entry
742 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
743 struct mips_elf_link_hash_entry *, int);
744 static bfd_boolean mips_elf_sort_hash_table_f
745 (struct mips_elf_link_hash_entry *, void *);
746 static bfd_vma mips_elf_high
747 (bfd_vma);
748 static bfd_boolean mips_elf_create_dynamic_relocation
749 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
750 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
751 bfd_vma *, asection *);
752 static bfd_vma mips_elf_adjust_gp
753 (bfd *, struct mips_got_info *, bfd *);
754
755 /* This will be used when we sort the dynamic relocation records. */
756 static bfd *reldyn_sorting_bfd;
757
758 /* True if ABFD is for CPUs with load interlocking that include
759 non-MIPS1 CPUs and R3900. */
760 #define LOAD_INTERLOCKS_P(abfd) \
761 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
762 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
763
764 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
765 This should be safe for all architectures. We enable this predicate
766 for RM9000 for now. */
767 #define JAL_TO_BAL_P(abfd) \
768 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
769
770 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
771 This should be safe for all architectures. We enable this predicate for
772 all CPUs. */
773 #define JALR_TO_BAL_P(abfd) 1
774
775 /* True if ABFD is for CPUs that are faster if JR is converted to B.
776 This should be safe for all architectures. We enable this predicate for
777 all CPUs. */
778 #define JR_TO_B_P(abfd) 1
779
780 /* True if ABFD is a PIC object. */
781 #define PIC_OBJECT_P(abfd) \
782 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
783
784 /* Nonzero if ABFD is using the O32 ABI. */
785 #define ABI_O32_P(abfd) \
786 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
787
788 /* Nonzero if ABFD is using the N32 ABI. */
789 #define ABI_N32_P(abfd) \
790 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
791
792 /* Nonzero if ABFD is using the N64 ABI. */
793 #define ABI_64_P(abfd) \
794 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
795
796 /* Nonzero if ABFD is using NewABI conventions. */
797 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
798
799 /* Nonzero if ABFD has microMIPS code. */
800 #define MICROMIPS_P(abfd) \
801 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
802
803 /* Nonzero if ABFD is MIPS R6. */
804 #define MIPSR6_P(abfd) \
805 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
806 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
807
808 /* The IRIX compatibility level we are striving for. */
809 #define IRIX_COMPAT(abfd) \
810 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
811
812 /* Whether we are trying to be compatible with IRIX at all. */
813 #define SGI_COMPAT(abfd) \
814 (IRIX_COMPAT (abfd) != ict_none)
815
816 /* The name of the options section. */
817 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
818 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
819
820 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
821 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
822 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
823 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
824
825 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
826 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
827 (strcmp (NAME, ".MIPS.abiflags") == 0)
828
829 /* Whether the section is readonly. */
830 #define MIPS_ELF_READONLY_SECTION(sec) \
831 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
832 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
833
834 /* The name of the stub section. */
835 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
836
837 /* The size of an external REL relocation. */
838 #define MIPS_ELF_REL_SIZE(abfd) \
839 (get_elf_backend_data (abfd)->s->sizeof_rel)
840
841 /* The size of an external RELA relocation. */
842 #define MIPS_ELF_RELA_SIZE(abfd) \
843 (get_elf_backend_data (abfd)->s->sizeof_rela)
844
845 /* The size of an external dynamic table entry. */
846 #define MIPS_ELF_DYN_SIZE(abfd) \
847 (get_elf_backend_data (abfd)->s->sizeof_dyn)
848
849 /* The size of a GOT entry. */
850 #define MIPS_ELF_GOT_SIZE(abfd) \
851 (get_elf_backend_data (abfd)->s->arch_size / 8)
852
853 /* The size of the .rld_map section. */
854 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
855 (get_elf_backend_data (abfd)->s->arch_size / 8)
856
857 /* The size of a symbol-table entry. */
858 #define MIPS_ELF_SYM_SIZE(abfd) \
859 (get_elf_backend_data (abfd)->s->sizeof_sym)
860
861 /* The default alignment for sections, as a power of two. */
862 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
863 (get_elf_backend_data (abfd)->s->log_file_align)
864
865 /* Get word-sized data. */
866 #define MIPS_ELF_GET_WORD(abfd, ptr) \
867 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
868
869 /* Put out word-sized data. */
870 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
871 (ABI_64_P (abfd) \
872 ? bfd_put_64 (abfd, val, ptr) \
873 : bfd_put_32 (abfd, val, ptr))
874
875 /* The opcode for word-sized loads (LW or LD). */
876 #define MIPS_ELF_LOAD_WORD(abfd) \
877 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
878
879 /* Add a dynamic symbol table-entry. */
880 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
881 _bfd_elf_add_dynamic_entry (info, tag, val)
882
883 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
884 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (abfd, rtype, rela))
885
886 /* The name of the dynamic relocation section. */
887 #define MIPS_ELF_REL_DYN_NAME(INFO) \
888 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
889
890 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
891 from smaller values. Start with zero, widen, *then* decrement. */
892 #define MINUS_ONE (((bfd_vma)0) - 1)
893 #define MINUS_TWO (((bfd_vma)0) - 2)
894
895 /* The value to write into got[1] for SVR4 targets, to identify it is
896 a GNU object. The dynamic linker can then use got[1] to store the
897 module pointer. */
898 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
899 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
900
901 /* The offset of $gp from the beginning of the .got section. */
902 #define ELF_MIPS_GP_OFFSET(INFO) \
903 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
904
905 /* The maximum size of the GOT for it to be addressable using 16-bit
906 offsets from $gp. */
907 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
908
909 /* Instructions which appear in a stub. */
910 #define STUB_LW(abfd) \
911 ((ABI_64_P (abfd) \
912 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
913 : 0x8f998010)) /* lw t9,0x8010(gp) */
914 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
915 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
916 #define STUB_JALR 0x0320f809 /* jalr ra,t9 */
917 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
918 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
919 #define STUB_LI16S(abfd, VAL) \
920 ((ABI_64_P (abfd) \
921 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
922 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
923
924 /* Likewise for the microMIPS ASE. */
925 #define STUB_LW_MICROMIPS(abfd) \
926 (ABI_64_P (abfd) \
927 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
928 : 0xff3c8010) /* lw t9,0x8010(gp) */
929 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
930 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
931 #define STUB_LUI_MICROMIPS(VAL) \
932 (0x41b80000 + (VAL)) /* lui t8,VAL */
933 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
934 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
935 #define STUB_ORI_MICROMIPS(VAL) \
936 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
937 #define STUB_LI16U_MICROMIPS(VAL) \
938 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
939 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
940 (ABI_64_P (abfd) \
941 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
942 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
943
944 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
945 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
946 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
947 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
948 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
949 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
950
951 /* The name of the dynamic interpreter. This is put in the .interp
952 section. */
953
954 #define ELF_DYNAMIC_INTERPRETER(abfd) \
955 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
956 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
957 : "/usr/lib/libc.so.1")
958
959 #ifdef BFD64
960 #define MNAME(bfd,pre,pos) \
961 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
962 #define ELF_R_SYM(bfd, i) \
963 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
964 #define ELF_R_TYPE(bfd, i) \
965 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
966 #define ELF_R_INFO(bfd, s, t) \
967 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
968 #else
969 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
970 #define ELF_R_SYM(bfd, i) \
971 (ELF32_R_SYM (i))
972 #define ELF_R_TYPE(bfd, i) \
973 (ELF32_R_TYPE (i))
974 #define ELF_R_INFO(bfd, s, t) \
975 (ELF32_R_INFO (s, t))
976 #endif
977 \f
978 /* The mips16 compiler uses a couple of special sections to handle
979 floating point arguments.
980
981 Section names that look like .mips16.fn.FNNAME contain stubs that
982 copy floating point arguments from the fp regs to the gp regs and
983 then jump to FNNAME. If any 32 bit function calls FNNAME, the
984 call should be redirected to the stub instead. If no 32 bit
985 function calls FNNAME, the stub should be discarded. We need to
986 consider any reference to the function, not just a call, because
987 if the address of the function is taken we will need the stub,
988 since the address might be passed to a 32 bit function.
989
990 Section names that look like .mips16.call.FNNAME contain stubs
991 that copy floating point arguments from the gp regs to the fp
992 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
993 then any 16 bit function that calls FNNAME should be redirected
994 to the stub instead. If FNNAME is not a 32 bit function, the
995 stub should be discarded.
996
997 .mips16.call.fp.FNNAME sections are similar, but contain stubs
998 which call FNNAME and then copy the return value from the fp regs
999 to the gp regs. These stubs store the return value in $18 while
1000 calling FNNAME; any function which might call one of these stubs
1001 must arrange to save $18 around the call. (This case is not
1002 needed for 32 bit functions that call 16 bit functions, because
1003 16 bit functions always return floating point values in both
1004 $f0/$f1 and $2/$3.)
1005
1006 Note that in all cases FNNAME might be defined statically.
1007 Therefore, FNNAME is not used literally. Instead, the relocation
1008 information will indicate which symbol the section is for.
1009
1010 We record any stubs that we find in the symbol table. */
1011
1012 #define FN_STUB ".mips16.fn."
1013 #define CALL_STUB ".mips16.call."
1014 #define CALL_FP_STUB ".mips16.call.fp."
1015
1016 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1017 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1018 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1019 \f
1020 /* The format of the first PLT entry in an O32 executable. */
1021 static const bfd_vma mips_o32_exec_plt0_entry[] =
1022 {
1023 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1024 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1025 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1026 0x031cc023, /* subu $24, $24, $28 */
1027 0x03e07825, /* or t7, ra, zero */
1028 0x0018c082, /* srl $24, $24, 2 */
1029 0x0320f809, /* jalr $25 */
1030 0x2718fffe /* subu $24, $24, 2 */
1031 };
1032
1033 /* The format of the first PLT entry in an N32 executable. Different
1034 because gp ($28) is not available; we use t2 ($14) instead. */
1035 static const bfd_vma mips_n32_exec_plt0_entry[] =
1036 {
1037 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1038 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1039 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1040 0x030ec023, /* subu $24, $24, $14 */
1041 0x03e07825, /* or t7, ra, zero */
1042 0x0018c082, /* srl $24, $24, 2 */
1043 0x0320f809, /* jalr $25 */
1044 0x2718fffe /* subu $24, $24, 2 */
1045 };
1046
1047 /* The format of the first PLT entry in an N64 executable. Different
1048 from N32 because of the increased size of GOT entries. */
1049 static const bfd_vma mips_n64_exec_plt0_entry[] =
1050 {
1051 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1052 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1053 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1054 0x030ec023, /* subu $24, $24, $14 */
1055 0x03e07825, /* or t7, ra, zero */
1056 0x0018c0c2, /* srl $24, $24, 3 */
1057 0x0320f809, /* jalr $25 */
1058 0x2718fffe /* subu $24, $24, 2 */
1059 };
1060
1061 /* The format of the microMIPS first PLT entry in an O32 executable.
1062 We rely on v0 ($2) rather than t8 ($24) to contain the address
1063 of the GOTPLT entry handled, so this stub may only be used when
1064 all the subsequent PLT entries are microMIPS code too.
1065
1066 The trailing NOP is for alignment and correct disassembly only. */
1067 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1068 {
1069 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1070 0xff23, 0x0000, /* lw $25, 0($3) */
1071 0x0535, /* subu $2, $2, $3 */
1072 0x2525, /* srl $2, $2, 2 */
1073 0x3302, 0xfffe, /* subu $24, $2, 2 */
1074 0x0dff, /* move $15, $31 */
1075 0x45f9, /* jalrs $25 */
1076 0x0f83, /* move $28, $3 */
1077 0x0c00 /* nop */
1078 };
1079
1080 /* The format of the microMIPS first PLT entry in an O32 executable
1081 in the insn32 mode. */
1082 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1083 {
1084 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1085 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1086 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1087 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1088 0x001f, 0x7a90, /* or $15, $31, zero */
1089 0x0318, 0x1040, /* srl $24, $24, 2 */
1090 0x03f9, 0x0f3c, /* jalr $25 */
1091 0x3318, 0xfffe /* subu $24, $24, 2 */
1092 };
1093
1094 /* The format of subsequent standard PLT entries. */
1095 static const bfd_vma mips_exec_plt_entry[] =
1096 {
1097 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1098 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1099 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1100 0x03200008 /* jr $25 */
1101 };
1102
1103 /* In the following PLT entry the JR and ADDIU instructions will
1104 be swapped in _bfd_mips_elf_finish_dynamic_symbol because
1105 LOAD_INTERLOCKS_P will be true for MIPS R6. */
1106 static const bfd_vma mipsr6_exec_plt_entry[] =
1107 {
1108 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1109 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1110 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1111 0x03200009 /* jr $25 */
1112 };
1113
1114 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1115 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1116 directly addressable. */
1117 static const bfd_vma mips16_o32_exec_plt_entry[] =
1118 {
1119 0xb203, /* lw $2, 12($pc) */
1120 0x9a60, /* lw $3, 0($2) */
1121 0x651a, /* move $24, $2 */
1122 0xeb00, /* jr $3 */
1123 0x653b, /* move $25, $3 */
1124 0x6500, /* nop */
1125 0x0000, 0x0000 /* .word (.got.plt entry) */
1126 };
1127
1128 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1129 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1130 static const bfd_vma micromips_o32_exec_plt_entry[] =
1131 {
1132 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1133 0xff22, 0x0000, /* lw $25, 0($2) */
1134 0x4599, /* jr $25 */
1135 0x0f02 /* move $24, $2 */
1136 };
1137
1138 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1139 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1140 {
1141 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1142 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1143 0x0019, 0x0f3c, /* jr $25 */
1144 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1145 };
1146
1147 /* The format of the first PLT entry in a VxWorks executable. */
1148 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1149 {
1150 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1151 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1152 0x8f390008, /* lw t9, 8(t9) */
1153 0x00000000, /* nop */
1154 0x03200008, /* jr t9 */
1155 0x00000000 /* nop */
1156 };
1157
1158 /* The format of subsequent PLT entries. */
1159 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1160 {
1161 0x10000000, /* b .PLT_resolver */
1162 0x24180000, /* li t8, <pltindex> */
1163 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1164 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1165 0x8f390000, /* lw t9, 0(t9) */
1166 0x00000000, /* nop */
1167 0x03200008, /* jr t9 */
1168 0x00000000 /* nop */
1169 };
1170
1171 /* The format of the first PLT entry in a VxWorks shared object. */
1172 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1173 {
1174 0x8f990008, /* lw t9, 8(gp) */
1175 0x00000000, /* nop */
1176 0x03200008, /* jr t9 */
1177 0x00000000, /* nop */
1178 0x00000000, /* nop */
1179 0x00000000 /* nop */
1180 };
1181
1182 /* The format of subsequent PLT entries. */
1183 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1184 {
1185 0x10000000, /* b .PLT_resolver */
1186 0x24180000 /* li t8, <pltindex> */
1187 };
1188 \f
1189 /* microMIPS 32-bit opcode helper installer. */
1190
1191 static void
1192 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1193 {
1194 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1195 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1196 }
1197
1198 /* microMIPS 32-bit opcode helper retriever. */
1199
1200 static bfd_vma
1201 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1202 {
1203 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1204 }
1205 \f
1206 /* Look up an entry in a MIPS ELF linker hash table. */
1207
1208 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1209 ((struct mips_elf_link_hash_entry *) \
1210 elf_link_hash_lookup (&(table)->root, (string), (create), \
1211 (copy), (follow)))
1212
1213 /* Traverse a MIPS ELF linker hash table. */
1214
1215 #define mips_elf_link_hash_traverse(table, func, info) \
1216 (elf_link_hash_traverse \
1217 (&(table)->root, \
1218 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1219 (info)))
1220
1221 /* Find the base offsets for thread-local storage in this object,
1222 for GD/LD and IE/LE respectively. */
1223
1224 #define TP_OFFSET 0x7000
1225 #define DTP_OFFSET 0x8000
1226
1227 static bfd_vma
1228 dtprel_base (struct bfd_link_info *info)
1229 {
1230 /* If tls_sec is NULL, we should have signalled an error already. */
1231 if (elf_hash_table (info)->tls_sec == NULL)
1232 return 0;
1233 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1234 }
1235
1236 static bfd_vma
1237 tprel_base (struct bfd_link_info *info)
1238 {
1239 /* If tls_sec is NULL, we should have signalled an error already. */
1240 if (elf_hash_table (info)->tls_sec == NULL)
1241 return 0;
1242 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1243 }
1244
1245 /* Create an entry in a MIPS ELF linker hash table. */
1246
1247 static struct bfd_hash_entry *
1248 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1249 struct bfd_hash_table *table, const char *string)
1250 {
1251 struct mips_elf_link_hash_entry *ret =
1252 (struct mips_elf_link_hash_entry *) entry;
1253
1254 /* Allocate the structure if it has not already been allocated by a
1255 subclass. */
1256 if (ret == NULL)
1257 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1258 if (ret == NULL)
1259 return (struct bfd_hash_entry *) ret;
1260
1261 /* Call the allocation method of the superclass. */
1262 ret = ((struct mips_elf_link_hash_entry *)
1263 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1264 table, string));
1265 if (ret != NULL)
1266 {
1267 /* Set local fields. */
1268 memset (&ret->esym, 0, sizeof (EXTR));
1269 /* We use -2 as a marker to indicate that the information has
1270 not been set. -1 means there is no associated ifd. */
1271 ret->esym.ifd = -2;
1272 ret->la25_stub = 0;
1273 ret->possibly_dynamic_relocs = 0;
1274 ret->fn_stub = NULL;
1275 ret->call_stub = NULL;
1276 ret->call_fp_stub = NULL;
1277 ret->global_got_area = GGA_NONE;
1278 ret->got_only_for_calls = TRUE;
1279 ret->readonly_reloc = FALSE;
1280 ret->has_static_relocs = FALSE;
1281 ret->no_fn_stub = FALSE;
1282 ret->need_fn_stub = FALSE;
1283 ret->has_nonpic_branches = FALSE;
1284 ret->needs_lazy_stub = FALSE;
1285 ret->use_plt_entry = FALSE;
1286 }
1287
1288 return (struct bfd_hash_entry *) ret;
1289 }
1290
1291 /* Allocate MIPS ELF private object data. */
1292
1293 bfd_boolean
1294 _bfd_mips_elf_mkobject (bfd *abfd)
1295 {
1296 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1297 MIPS_ELF_DATA);
1298 }
1299
1300 bfd_boolean
1301 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1302 {
1303 if (!sec->used_by_bfd)
1304 {
1305 struct _mips_elf_section_data *sdata;
1306 bfd_size_type amt = sizeof (*sdata);
1307
1308 sdata = bfd_zalloc (abfd, amt);
1309 if (sdata == NULL)
1310 return FALSE;
1311 sec->used_by_bfd = sdata;
1312 }
1313
1314 return _bfd_elf_new_section_hook (abfd, sec);
1315 }
1316 \f
1317 /* Read ECOFF debugging information from a .mdebug section into a
1318 ecoff_debug_info structure. */
1319
1320 bfd_boolean
1321 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1322 struct ecoff_debug_info *debug)
1323 {
1324 HDRR *symhdr;
1325 const struct ecoff_debug_swap *swap;
1326 char *ext_hdr;
1327
1328 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1329 memset (debug, 0, sizeof (*debug));
1330
1331 ext_hdr = bfd_malloc (swap->external_hdr_size);
1332 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1333 goto error_return;
1334
1335 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1336 swap->external_hdr_size))
1337 goto error_return;
1338
1339 symhdr = &debug->symbolic_header;
1340 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1341
1342 /* The symbolic header contains absolute file offsets and sizes to
1343 read. */
1344 #define READ(ptr, offset, count, size, type) \
1345 if (symhdr->count == 0) \
1346 debug->ptr = NULL; \
1347 else \
1348 { \
1349 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1350 debug->ptr = bfd_malloc (amt); \
1351 if (debug->ptr == NULL) \
1352 goto error_return; \
1353 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1354 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1355 goto error_return; \
1356 }
1357
1358 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1359 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1360 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1361 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1362 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1363 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1364 union aux_ext *);
1365 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1366 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1367 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1368 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1369 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1370 #undef READ
1371
1372 debug->fdr = NULL;
1373
1374 return TRUE;
1375
1376 error_return:
1377 if (ext_hdr != NULL)
1378 free (ext_hdr);
1379 if (debug->line != NULL)
1380 free (debug->line);
1381 if (debug->external_dnr != NULL)
1382 free (debug->external_dnr);
1383 if (debug->external_pdr != NULL)
1384 free (debug->external_pdr);
1385 if (debug->external_sym != NULL)
1386 free (debug->external_sym);
1387 if (debug->external_opt != NULL)
1388 free (debug->external_opt);
1389 if (debug->external_aux != NULL)
1390 free (debug->external_aux);
1391 if (debug->ss != NULL)
1392 free (debug->ss);
1393 if (debug->ssext != NULL)
1394 free (debug->ssext);
1395 if (debug->external_fdr != NULL)
1396 free (debug->external_fdr);
1397 if (debug->external_rfd != NULL)
1398 free (debug->external_rfd);
1399 if (debug->external_ext != NULL)
1400 free (debug->external_ext);
1401 return FALSE;
1402 }
1403 \f
1404 /* Swap RPDR (runtime procedure table entry) for output. */
1405
1406 static void
1407 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1408 {
1409 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1410 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1411 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1412 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1413 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1414 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1415
1416 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1417 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1418
1419 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1420 }
1421
1422 /* Create a runtime procedure table from the .mdebug section. */
1423
1424 static bfd_boolean
1425 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1426 struct bfd_link_info *info, asection *s,
1427 struct ecoff_debug_info *debug)
1428 {
1429 const struct ecoff_debug_swap *swap;
1430 HDRR *hdr = &debug->symbolic_header;
1431 RPDR *rpdr, *rp;
1432 struct rpdr_ext *erp;
1433 void *rtproc;
1434 struct pdr_ext *epdr;
1435 struct sym_ext *esym;
1436 char *ss, **sv;
1437 char *str;
1438 bfd_size_type size;
1439 bfd_size_type count;
1440 unsigned long sindex;
1441 unsigned long i;
1442 PDR pdr;
1443 SYMR sym;
1444 const char *no_name_func = _("static procedure (no name)");
1445
1446 epdr = NULL;
1447 rpdr = NULL;
1448 esym = NULL;
1449 ss = NULL;
1450 sv = NULL;
1451
1452 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1453
1454 sindex = strlen (no_name_func) + 1;
1455 count = hdr->ipdMax;
1456 if (count > 0)
1457 {
1458 size = swap->external_pdr_size;
1459
1460 epdr = bfd_malloc (size * count);
1461 if (epdr == NULL)
1462 goto error_return;
1463
1464 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1465 goto error_return;
1466
1467 size = sizeof (RPDR);
1468 rp = rpdr = bfd_malloc (size * count);
1469 if (rpdr == NULL)
1470 goto error_return;
1471
1472 size = sizeof (char *);
1473 sv = bfd_malloc (size * count);
1474 if (sv == NULL)
1475 goto error_return;
1476
1477 count = hdr->isymMax;
1478 size = swap->external_sym_size;
1479 esym = bfd_malloc (size * count);
1480 if (esym == NULL)
1481 goto error_return;
1482
1483 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1484 goto error_return;
1485
1486 count = hdr->issMax;
1487 ss = bfd_malloc (count);
1488 if (ss == NULL)
1489 goto error_return;
1490 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1491 goto error_return;
1492
1493 count = hdr->ipdMax;
1494 for (i = 0; i < (unsigned long) count; i++, rp++)
1495 {
1496 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1497 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1498 rp->adr = sym.value;
1499 rp->regmask = pdr.regmask;
1500 rp->regoffset = pdr.regoffset;
1501 rp->fregmask = pdr.fregmask;
1502 rp->fregoffset = pdr.fregoffset;
1503 rp->frameoffset = pdr.frameoffset;
1504 rp->framereg = pdr.framereg;
1505 rp->pcreg = pdr.pcreg;
1506 rp->irpss = sindex;
1507 sv[i] = ss + sym.iss;
1508 sindex += strlen (sv[i]) + 1;
1509 }
1510 }
1511
1512 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1513 size = BFD_ALIGN (size, 16);
1514 rtproc = bfd_alloc (abfd, size);
1515 if (rtproc == NULL)
1516 {
1517 mips_elf_hash_table (info)->procedure_count = 0;
1518 goto error_return;
1519 }
1520
1521 mips_elf_hash_table (info)->procedure_count = count + 2;
1522
1523 erp = rtproc;
1524 memset (erp, 0, sizeof (struct rpdr_ext));
1525 erp++;
1526 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1527 strcpy (str, no_name_func);
1528 str += strlen (no_name_func) + 1;
1529 for (i = 0; i < count; i++)
1530 {
1531 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1532 strcpy (str, sv[i]);
1533 str += strlen (sv[i]) + 1;
1534 }
1535 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1536
1537 /* Set the size and contents of .rtproc section. */
1538 s->size = size;
1539 s->contents = rtproc;
1540
1541 /* Skip this section later on (I don't think this currently
1542 matters, but someday it might). */
1543 s->map_head.link_order = NULL;
1544
1545 if (epdr != NULL)
1546 free (epdr);
1547 if (rpdr != NULL)
1548 free (rpdr);
1549 if (esym != NULL)
1550 free (esym);
1551 if (ss != NULL)
1552 free (ss);
1553 if (sv != NULL)
1554 free (sv);
1555
1556 return TRUE;
1557
1558 error_return:
1559 if (epdr != NULL)
1560 free (epdr);
1561 if (rpdr != NULL)
1562 free (rpdr);
1563 if (esym != NULL)
1564 free (esym);
1565 if (ss != NULL)
1566 free (ss);
1567 if (sv != NULL)
1568 free (sv);
1569 return FALSE;
1570 }
1571 \f
1572 /* We're going to create a stub for H. Create a symbol for the stub's
1573 value and size, to help make the disassembly easier to read. */
1574
1575 static bfd_boolean
1576 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1577 struct mips_elf_link_hash_entry *h,
1578 const char *prefix, asection *s, bfd_vma value,
1579 bfd_vma size)
1580 {
1581 bfd_boolean micromips_p = ELF_ST_IS_MICROMIPS (h->root.other);
1582 struct bfd_link_hash_entry *bh;
1583 struct elf_link_hash_entry *elfh;
1584 char *name;
1585 bfd_boolean res;
1586
1587 if (micromips_p)
1588 value |= 1;
1589
1590 /* Create a new symbol. */
1591 name = concat (prefix, h->root.root.root.string, NULL);
1592 bh = NULL;
1593 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1594 BSF_LOCAL, s, value, NULL,
1595 TRUE, FALSE, &bh);
1596 free (name);
1597 if (! res)
1598 return FALSE;
1599
1600 /* Make it a local function. */
1601 elfh = (struct elf_link_hash_entry *) bh;
1602 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1603 elfh->size = size;
1604 elfh->forced_local = 1;
1605 if (micromips_p)
1606 elfh->other = ELF_ST_SET_MICROMIPS (elfh->other);
1607 return TRUE;
1608 }
1609
1610 /* We're about to redefine H. Create a symbol to represent H's
1611 current value and size, to help make the disassembly easier
1612 to read. */
1613
1614 static bfd_boolean
1615 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1616 struct mips_elf_link_hash_entry *h,
1617 const char *prefix)
1618 {
1619 struct bfd_link_hash_entry *bh;
1620 struct elf_link_hash_entry *elfh;
1621 char *name;
1622 asection *s;
1623 bfd_vma value;
1624 bfd_boolean res;
1625
1626 /* Read the symbol's value. */
1627 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1628 || h->root.root.type == bfd_link_hash_defweak);
1629 s = h->root.root.u.def.section;
1630 value = h->root.root.u.def.value;
1631
1632 /* Create a new symbol. */
1633 name = concat (prefix, h->root.root.root.string, NULL);
1634 bh = NULL;
1635 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1636 BSF_LOCAL, s, value, NULL,
1637 TRUE, FALSE, &bh);
1638 free (name);
1639 if (! res)
1640 return FALSE;
1641
1642 /* Make it local and copy the other attributes from H. */
1643 elfh = (struct elf_link_hash_entry *) bh;
1644 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1645 elfh->other = h->root.other;
1646 elfh->size = h->root.size;
1647 elfh->forced_local = 1;
1648 return TRUE;
1649 }
1650
1651 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1652 function rather than to a hard-float stub. */
1653
1654 static bfd_boolean
1655 section_allows_mips16_refs_p (asection *section)
1656 {
1657 const char *name;
1658
1659 name = bfd_get_section_name (section->owner, section);
1660 return (FN_STUB_P (name)
1661 || CALL_STUB_P (name)
1662 || CALL_FP_STUB_P (name)
1663 || strcmp (name, ".pdr") == 0);
1664 }
1665
1666 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1667 stub section of some kind. Return the R_SYMNDX of the target
1668 function, or 0 if we can't decide which function that is. */
1669
1670 static unsigned long
1671 mips16_stub_symndx (const struct elf_backend_data *bed,
1672 asection *sec ATTRIBUTE_UNUSED,
1673 const Elf_Internal_Rela *relocs,
1674 const Elf_Internal_Rela *relend)
1675 {
1676 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1677 const Elf_Internal_Rela *rel;
1678
1679 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1680 one in a compound relocation. */
1681 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1682 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1683 return ELF_R_SYM (sec->owner, rel->r_info);
1684
1685 /* Otherwise trust the first relocation, whatever its kind. This is
1686 the traditional behavior. */
1687 if (relocs < relend)
1688 return ELF_R_SYM (sec->owner, relocs->r_info);
1689
1690 return 0;
1691 }
1692
1693 /* Check the mips16 stubs for a particular symbol, and see if we can
1694 discard them. */
1695
1696 static void
1697 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1698 struct mips_elf_link_hash_entry *h)
1699 {
1700 /* Dynamic symbols must use the standard call interface, in case other
1701 objects try to call them. */
1702 if (h->fn_stub != NULL
1703 && h->root.dynindx != -1)
1704 {
1705 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1706 h->need_fn_stub = TRUE;
1707 }
1708
1709 if (h->fn_stub != NULL
1710 && ! h->need_fn_stub)
1711 {
1712 /* We don't need the fn_stub; the only references to this symbol
1713 are 16 bit calls. Clobber the size to 0 to prevent it from
1714 being included in the link. */
1715 h->fn_stub->size = 0;
1716 h->fn_stub->flags &= ~SEC_RELOC;
1717 h->fn_stub->reloc_count = 0;
1718 h->fn_stub->flags |= SEC_EXCLUDE;
1719 h->fn_stub->output_section = bfd_abs_section_ptr;
1720 }
1721
1722 if (h->call_stub != NULL
1723 && ELF_ST_IS_MIPS16 (h->root.other))
1724 {
1725 /* We don't need the call_stub; this is a 16 bit function, so
1726 calls from other 16 bit functions are OK. Clobber the size
1727 to 0 to prevent it from being included in the link. */
1728 h->call_stub->size = 0;
1729 h->call_stub->flags &= ~SEC_RELOC;
1730 h->call_stub->reloc_count = 0;
1731 h->call_stub->flags |= SEC_EXCLUDE;
1732 h->call_stub->output_section = bfd_abs_section_ptr;
1733 }
1734
1735 if (h->call_fp_stub != NULL
1736 && ELF_ST_IS_MIPS16 (h->root.other))
1737 {
1738 /* We don't need the call_stub; this is a 16 bit function, so
1739 calls from other 16 bit functions are OK. Clobber the size
1740 to 0 to prevent it from being included in the link. */
1741 h->call_fp_stub->size = 0;
1742 h->call_fp_stub->flags &= ~SEC_RELOC;
1743 h->call_fp_stub->reloc_count = 0;
1744 h->call_fp_stub->flags |= SEC_EXCLUDE;
1745 h->call_fp_stub->output_section = bfd_abs_section_ptr;
1746 }
1747 }
1748
1749 /* Hashtable callbacks for mips_elf_la25_stubs. */
1750
1751 static hashval_t
1752 mips_elf_la25_stub_hash (const void *entry_)
1753 {
1754 const struct mips_elf_la25_stub *entry;
1755
1756 entry = (struct mips_elf_la25_stub *) entry_;
1757 return entry->h->root.root.u.def.section->id
1758 + entry->h->root.root.u.def.value;
1759 }
1760
1761 static int
1762 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1763 {
1764 const struct mips_elf_la25_stub *entry1, *entry2;
1765
1766 entry1 = (struct mips_elf_la25_stub *) entry1_;
1767 entry2 = (struct mips_elf_la25_stub *) entry2_;
1768 return ((entry1->h->root.root.u.def.section
1769 == entry2->h->root.root.u.def.section)
1770 && (entry1->h->root.root.u.def.value
1771 == entry2->h->root.root.u.def.value));
1772 }
1773
1774 /* Called by the linker to set up the la25 stub-creation code. FN is
1775 the linker's implementation of add_stub_function. Return true on
1776 success. */
1777
1778 bfd_boolean
1779 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1780 asection *(*fn) (const char *, asection *,
1781 asection *))
1782 {
1783 struct mips_elf_link_hash_table *htab;
1784
1785 htab = mips_elf_hash_table (info);
1786 if (htab == NULL)
1787 return FALSE;
1788
1789 htab->add_stub_section = fn;
1790 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1791 mips_elf_la25_stub_eq, NULL);
1792 if (htab->la25_stubs == NULL)
1793 return FALSE;
1794
1795 return TRUE;
1796 }
1797
1798 /* Return true if H is a locally-defined PIC function, in the sense
1799 that it or its fn_stub might need $25 to be valid on entry.
1800 Note that MIPS16 functions set up $gp using PC-relative instructions,
1801 so they themselves never need $25 to be valid. Only non-MIPS16
1802 entry points are of interest here. */
1803
1804 static bfd_boolean
1805 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1806 {
1807 return ((h->root.root.type == bfd_link_hash_defined
1808 || h->root.root.type == bfd_link_hash_defweak)
1809 && h->root.def_regular
1810 && !bfd_is_abs_section (h->root.root.u.def.section)
1811 && !bfd_is_und_section (h->root.root.u.def.section)
1812 && (!ELF_ST_IS_MIPS16 (h->root.other)
1813 || (h->fn_stub && h->need_fn_stub))
1814 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1815 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1816 }
1817
1818 /* Set *SEC to the input section that contains the target of STUB.
1819 Return the offset of the target from the start of that section. */
1820
1821 static bfd_vma
1822 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1823 asection **sec)
1824 {
1825 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1826 {
1827 BFD_ASSERT (stub->h->need_fn_stub);
1828 *sec = stub->h->fn_stub;
1829 return 0;
1830 }
1831 else
1832 {
1833 *sec = stub->h->root.root.u.def.section;
1834 return stub->h->root.root.u.def.value;
1835 }
1836 }
1837
1838 /* STUB describes an la25 stub that we have decided to implement
1839 by inserting an LUI/ADDIU pair before the target function.
1840 Create the section and redirect the function symbol to it. */
1841
1842 static bfd_boolean
1843 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1844 struct bfd_link_info *info)
1845 {
1846 struct mips_elf_link_hash_table *htab;
1847 char *name;
1848 asection *s, *input_section;
1849 unsigned int align;
1850
1851 htab = mips_elf_hash_table (info);
1852 if (htab == NULL)
1853 return FALSE;
1854
1855 /* Create a unique name for the new section. */
1856 name = bfd_malloc (11 + sizeof (".text.stub."));
1857 if (name == NULL)
1858 return FALSE;
1859 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1860
1861 /* Create the section. */
1862 mips_elf_get_la25_target (stub, &input_section);
1863 s = htab->add_stub_section (name, input_section,
1864 input_section->output_section);
1865 if (s == NULL)
1866 return FALSE;
1867
1868 /* Make sure that any padding goes before the stub. */
1869 align = input_section->alignment_power;
1870 if (!bfd_set_section_alignment (s->owner, s, align))
1871 return FALSE;
1872 if (align > 3)
1873 s->size = (1 << align) - 8;
1874
1875 /* Create a symbol for the stub. */
1876 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1877 stub->stub_section = s;
1878 stub->offset = s->size;
1879
1880 /* Allocate room for it. */
1881 s->size += 8;
1882 return TRUE;
1883 }
1884
1885 /* STUB describes an la25 stub that we have decided to implement
1886 with a separate trampoline. Allocate room for it and redirect
1887 the function symbol to it. */
1888
1889 static bfd_boolean
1890 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1891 struct bfd_link_info *info)
1892 {
1893 struct mips_elf_link_hash_table *htab;
1894 asection *s;
1895
1896 htab = mips_elf_hash_table (info);
1897 if (htab == NULL)
1898 return FALSE;
1899
1900 /* Create a trampoline section, if we haven't already. */
1901 s = htab->strampoline;
1902 if (s == NULL)
1903 {
1904 asection *input_section = stub->h->root.root.u.def.section;
1905 s = htab->add_stub_section (".text", NULL,
1906 input_section->output_section);
1907 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1908 return FALSE;
1909 htab->strampoline = s;
1910 }
1911
1912 /* Create a symbol for the stub. */
1913 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1914 stub->stub_section = s;
1915 stub->offset = s->size;
1916
1917 /* Allocate room for it. */
1918 s->size += 16;
1919 return TRUE;
1920 }
1921
1922 /* H describes a symbol that needs an la25 stub. Make sure that an
1923 appropriate stub exists and point H at it. */
1924
1925 static bfd_boolean
1926 mips_elf_add_la25_stub (struct bfd_link_info *info,
1927 struct mips_elf_link_hash_entry *h)
1928 {
1929 struct mips_elf_link_hash_table *htab;
1930 struct mips_elf_la25_stub search, *stub;
1931 bfd_boolean use_trampoline_p;
1932 asection *s;
1933 bfd_vma value;
1934 void **slot;
1935
1936 /* Describe the stub we want. */
1937 search.stub_section = NULL;
1938 search.offset = 0;
1939 search.h = h;
1940
1941 /* See if we've already created an equivalent stub. */
1942 htab = mips_elf_hash_table (info);
1943 if (htab == NULL)
1944 return FALSE;
1945
1946 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1947 if (slot == NULL)
1948 return FALSE;
1949
1950 stub = (struct mips_elf_la25_stub *) *slot;
1951 if (stub != NULL)
1952 {
1953 /* We can reuse the existing stub. */
1954 h->la25_stub = stub;
1955 return TRUE;
1956 }
1957
1958 /* Create a permanent copy of ENTRY and add it to the hash table. */
1959 stub = bfd_malloc (sizeof (search));
1960 if (stub == NULL)
1961 return FALSE;
1962 *stub = search;
1963 *slot = stub;
1964
1965 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1966 of the section and if we would need no more than 2 nops. */
1967 value = mips_elf_get_la25_target (stub, &s);
1968 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
1969 value &= ~1;
1970 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1971
1972 h->la25_stub = stub;
1973 return (use_trampoline_p
1974 ? mips_elf_add_la25_trampoline (stub, info)
1975 : mips_elf_add_la25_intro (stub, info));
1976 }
1977
1978 /* A mips_elf_link_hash_traverse callback that is called before sizing
1979 sections. DATA points to a mips_htab_traverse_info structure. */
1980
1981 static bfd_boolean
1982 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1983 {
1984 struct mips_htab_traverse_info *hti;
1985
1986 hti = (struct mips_htab_traverse_info *) data;
1987 if (!bfd_link_relocatable (hti->info))
1988 mips_elf_check_mips16_stubs (hti->info, h);
1989
1990 if (mips_elf_local_pic_function_p (h))
1991 {
1992 /* PR 12845: If H is in a section that has been garbage
1993 collected it will have its output section set to *ABS*. */
1994 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1995 return TRUE;
1996
1997 /* H is a function that might need $25 to be valid on entry.
1998 If we're creating a non-PIC relocatable object, mark H as
1999 being PIC. If we're creating a non-relocatable object with
2000 non-PIC branches and jumps to H, make sure that H has an la25
2001 stub. */
2002 if (bfd_link_relocatable (hti->info))
2003 {
2004 if (!PIC_OBJECT_P (hti->output_bfd))
2005 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2006 }
2007 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2008 {
2009 hti->error = TRUE;
2010 return FALSE;
2011 }
2012 }
2013 return TRUE;
2014 }
2015 \f
2016 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2017 Most mips16 instructions are 16 bits, but these instructions
2018 are 32 bits.
2019
2020 The format of these instructions is:
2021
2022 +--------------+--------------------------------+
2023 | JALX | X| Imm 20:16 | Imm 25:21 |
2024 +--------------+--------------------------------+
2025 | Immediate 15:0 |
2026 +-----------------------------------------------+
2027
2028 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2029 Note that the immediate value in the first word is swapped.
2030
2031 When producing a relocatable object file, R_MIPS16_26 is
2032 handled mostly like R_MIPS_26. In particular, the addend is
2033 stored as a straight 26-bit value in a 32-bit instruction.
2034 (gas makes life simpler for itself by never adjusting a
2035 R_MIPS16_26 reloc to be against a section, so the addend is
2036 always zero). However, the 32 bit instruction is stored as 2
2037 16-bit values, rather than a single 32-bit value. In a
2038 big-endian file, the result is the same; in a little-endian
2039 file, the two 16-bit halves of the 32 bit value are swapped.
2040 This is so that a disassembler can recognize the jal
2041 instruction.
2042
2043 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2044 instruction stored as two 16-bit values. The addend A is the
2045 contents of the targ26 field. The calculation is the same as
2046 R_MIPS_26. When storing the calculated value, reorder the
2047 immediate value as shown above, and don't forget to store the
2048 value as two 16-bit values.
2049
2050 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2051 defined as
2052
2053 big-endian:
2054 +--------+----------------------+
2055 | | |
2056 | | targ26-16 |
2057 |31 26|25 0|
2058 +--------+----------------------+
2059
2060 little-endian:
2061 +----------+------+-------------+
2062 | | | |
2063 | sub1 | | sub2 |
2064 |0 9|10 15|16 31|
2065 +----------+--------------------+
2066 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2067 ((sub1 << 16) | sub2)).
2068
2069 When producing a relocatable object file, the calculation is
2070 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2071 When producing a fully linked file, the calculation is
2072 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2073 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2074
2075 The table below lists the other MIPS16 instruction relocations.
2076 Each one is calculated in the same way as the non-MIPS16 relocation
2077 given on the right, but using the extended MIPS16 layout of 16-bit
2078 immediate fields:
2079
2080 R_MIPS16_GPREL R_MIPS_GPREL16
2081 R_MIPS16_GOT16 R_MIPS_GOT16
2082 R_MIPS16_CALL16 R_MIPS_CALL16
2083 R_MIPS16_HI16 R_MIPS_HI16
2084 R_MIPS16_LO16 R_MIPS_LO16
2085
2086 A typical instruction will have a format like this:
2087
2088 +--------------+--------------------------------+
2089 | EXTEND | Imm 10:5 | Imm 15:11 |
2090 +--------------+--------------------------------+
2091 | Major | rx | ry | Imm 4:0 |
2092 +--------------+--------------------------------+
2093
2094 EXTEND is the five bit value 11110. Major is the instruction
2095 opcode.
2096
2097 All we need to do here is shuffle the bits appropriately.
2098 As above, the two 16-bit halves must be swapped on a
2099 little-endian system.
2100
2101 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2102 relocatable field is shifted by 1 rather than 2 and the same bit
2103 shuffling is done as with the relocations above. */
2104
2105 static inline bfd_boolean
2106 mips16_reloc_p (int r_type)
2107 {
2108 switch (r_type)
2109 {
2110 case R_MIPS16_26:
2111 case R_MIPS16_GPREL:
2112 case R_MIPS16_GOT16:
2113 case R_MIPS16_CALL16:
2114 case R_MIPS16_HI16:
2115 case R_MIPS16_LO16:
2116 case R_MIPS16_TLS_GD:
2117 case R_MIPS16_TLS_LDM:
2118 case R_MIPS16_TLS_DTPREL_HI16:
2119 case R_MIPS16_TLS_DTPREL_LO16:
2120 case R_MIPS16_TLS_GOTTPREL:
2121 case R_MIPS16_TLS_TPREL_HI16:
2122 case R_MIPS16_TLS_TPREL_LO16:
2123 case R_MIPS16_PC16_S1:
2124 return TRUE;
2125
2126 default:
2127 return FALSE;
2128 }
2129 }
2130
2131 /* Check if a microMIPS reloc. */
2132
2133 static inline bfd_boolean
2134 micromips_reloc_p (unsigned int r_type)
2135 {
2136 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2137 }
2138
2139 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2140 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2141 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2142
2143 static inline bfd_boolean
2144 micromips_reloc_shuffle_p (unsigned int r_type)
2145 {
2146 return (micromips_reloc_p (r_type)
2147 && r_type != R_MICROMIPS_PC7_S1
2148 && r_type != R_MICROMIPS_PC10_S1);
2149 }
2150
2151 static inline bfd_boolean
2152 got16_reloc_p (int r_type)
2153 {
2154 return (r_type == R_MIPS_GOT16
2155 || r_type == R_MIPS16_GOT16
2156 || r_type == R_MICROMIPS_GOT16);
2157 }
2158
2159 static inline bfd_boolean
2160 call16_reloc_p (int r_type)
2161 {
2162 return (r_type == R_MIPS_CALL16
2163 || r_type == R_MIPS16_CALL16
2164 || r_type == R_MICROMIPS_CALL16);
2165 }
2166
2167 static inline bfd_boolean
2168 got_disp_reloc_p (unsigned int r_type)
2169 {
2170 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2171 }
2172
2173 static inline bfd_boolean
2174 got_page_reloc_p (unsigned int r_type)
2175 {
2176 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2177 }
2178
2179 static inline bfd_boolean
2180 got_lo16_reloc_p (unsigned int r_type)
2181 {
2182 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2183 }
2184
2185 static inline bfd_boolean
2186 call_hi16_reloc_p (unsigned int r_type)
2187 {
2188 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2189 }
2190
2191 static inline bfd_boolean
2192 call_lo16_reloc_p (unsigned int r_type)
2193 {
2194 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2195 }
2196
2197 static inline bfd_boolean
2198 hi16_reloc_p (int r_type)
2199 {
2200 return (r_type == R_MIPS_HI16
2201 || r_type == R_MIPS16_HI16
2202 || r_type == R_MICROMIPS_HI16
2203 || r_type == R_MIPS_PCHI16);
2204 }
2205
2206 static inline bfd_boolean
2207 lo16_reloc_p (int r_type)
2208 {
2209 return (r_type == R_MIPS_LO16
2210 || r_type == R_MIPS16_LO16
2211 || r_type == R_MICROMIPS_LO16
2212 || r_type == R_MIPS_PCLO16);
2213 }
2214
2215 static inline bfd_boolean
2216 mips16_call_reloc_p (int r_type)
2217 {
2218 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2219 }
2220
2221 static inline bfd_boolean
2222 jal_reloc_p (int r_type)
2223 {
2224 return (r_type == R_MIPS_26
2225 || r_type == R_MIPS16_26
2226 || r_type == R_MICROMIPS_26_S1);
2227 }
2228
2229 static inline bfd_boolean
2230 b_reloc_p (int r_type)
2231 {
2232 return (r_type == R_MIPS_PC26_S2
2233 || r_type == R_MIPS_PC21_S2
2234 || r_type == R_MIPS_PC16
2235 || r_type == R_MIPS_GNU_REL16_S2
2236 || r_type == R_MIPS16_PC16_S1
2237 || r_type == R_MICROMIPS_PC16_S1
2238 || r_type == R_MICROMIPS_PC10_S1
2239 || r_type == R_MICROMIPS_PC7_S1);
2240 }
2241
2242 static inline bfd_boolean
2243 aligned_pcrel_reloc_p (int r_type)
2244 {
2245 return (r_type == R_MIPS_PC18_S3
2246 || r_type == R_MIPS_PC19_S2);
2247 }
2248
2249 static inline bfd_boolean
2250 branch_reloc_p (int r_type)
2251 {
2252 return (r_type == R_MIPS_26
2253 || r_type == R_MIPS_PC26_S2
2254 || r_type == R_MIPS_PC21_S2
2255 || r_type == R_MIPS_PC16
2256 || r_type == R_MIPS_GNU_REL16_S2);
2257 }
2258
2259 static inline bfd_boolean
2260 mips16_branch_reloc_p (int r_type)
2261 {
2262 return (r_type == R_MIPS16_26
2263 || r_type == R_MIPS16_PC16_S1);
2264 }
2265
2266 static inline bfd_boolean
2267 micromips_branch_reloc_p (int r_type)
2268 {
2269 return (r_type == R_MICROMIPS_26_S1
2270 || r_type == R_MICROMIPS_PC16_S1
2271 || r_type == R_MICROMIPS_PC10_S1
2272 || r_type == R_MICROMIPS_PC7_S1);
2273 }
2274
2275 static inline bfd_boolean
2276 tls_gd_reloc_p (unsigned int r_type)
2277 {
2278 return (r_type == R_MIPS_TLS_GD
2279 || r_type == R_MIPS16_TLS_GD
2280 || r_type == R_MICROMIPS_TLS_GD);
2281 }
2282
2283 static inline bfd_boolean
2284 tls_ldm_reloc_p (unsigned int r_type)
2285 {
2286 return (r_type == R_MIPS_TLS_LDM
2287 || r_type == R_MIPS16_TLS_LDM
2288 || r_type == R_MICROMIPS_TLS_LDM);
2289 }
2290
2291 static inline bfd_boolean
2292 tls_gottprel_reloc_p (unsigned int r_type)
2293 {
2294 return (r_type == R_MIPS_TLS_GOTTPREL
2295 || r_type == R_MIPS16_TLS_GOTTPREL
2296 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2297 }
2298
2299 void
2300 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2301 bfd_boolean jal_shuffle, bfd_byte *data)
2302 {
2303 bfd_vma first, second, val;
2304
2305 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2306 return;
2307
2308 /* Pick up the first and second halfwords of the instruction. */
2309 first = bfd_get_16 (abfd, data);
2310 second = bfd_get_16 (abfd, data + 2);
2311 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2312 val = first << 16 | second;
2313 else if (r_type != R_MIPS16_26)
2314 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2315 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2316 else
2317 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2318 | ((first & 0x1f) << 21) | second);
2319 bfd_put_32 (abfd, val, data);
2320 }
2321
2322 void
2323 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2324 bfd_boolean jal_shuffle, bfd_byte *data)
2325 {
2326 bfd_vma first, second, val;
2327
2328 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2329 return;
2330
2331 val = bfd_get_32 (abfd, data);
2332 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2333 {
2334 second = val & 0xffff;
2335 first = val >> 16;
2336 }
2337 else if (r_type != R_MIPS16_26)
2338 {
2339 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2340 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2341 }
2342 else
2343 {
2344 second = val & 0xffff;
2345 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2346 | ((val >> 21) & 0x1f);
2347 }
2348 bfd_put_16 (abfd, second, data + 2);
2349 bfd_put_16 (abfd, first, data);
2350 }
2351
2352 bfd_reloc_status_type
2353 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2354 arelent *reloc_entry, asection *input_section,
2355 bfd_boolean relocatable, void *data, bfd_vma gp)
2356 {
2357 bfd_vma relocation;
2358 bfd_signed_vma val;
2359 bfd_reloc_status_type status;
2360
2361 if (bfd_is_com_section (symbol->section))
2362 relocation = 0;
2363 else
2364 relocation = symbol->value;
2365
2366 relocation += symbol->section->output_section->vma;
2367 relocation += symbol->section->output_offset;
2368
2369 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2370 return bfd_reloc_outofrange;
2371
2372 /* Set val to the offset into the section or symbol. */
2373 val = reloc_entry->addend;
2374
2375 _bfd_mips_elf_sign_extend (val, 16);
2376
2377 /* Adjust val for the final section location and GP value. If we
2378 are producing relocatable output, we don't want to do this for
2379 an external symbol. */
2380 if (! relocatable
2381 || (symbol->flags & BSF_SECTION_SYM) != 0)
2382 val += relocation - gp;
2383
2384 if (reloc_entry->howto->partial_inplace)
2385 {
2386 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2387 (bfd_byte *) data
2388 + reloc_entry->address);
2389 if (status != bfd_reloc_ok)
2390 return status;
2391 }
2392 else
2393 reloc_entry->addend = val;
2394
2395 if (relocatable)
2396 reloc_entry->address += input_section->output_offset;
2397
2398 return bfd_reloc_ok;
2399 }
2400
2401 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2402 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2403 that contains the relocation field and DATA points to the start of
2404 INPUT_SECTION. */
2405
2406 struct mips_hi16
2407 {
2408 struct mips_hi16 *next;
2409 bfd_byte *data;
2410 asection *input_section;
2411 arelent rel;
2412 };
2413
2414 /* FIXME: This should not be a static variable. */
2415
2416 static struct mips_hi16 *mips_hi16_list;
2417
2418 /* A howto special_function for REL *HI16 relocations. We can only
2419 calculate the correct value once we've seen the partnering
2420 *LO16 relocation, so just save the information for later.
2421
2422 The ABI requires that the *LO16 immediately follow the *HI16.
2423 However, as a GNU extension, we permit an arbitrary number of
2424 *HI16s to be associated with a single *LO16. This significantly
2425 simplies the relocation handling in gcc. */
2426
2427 bfd_reloc_status_type
2428 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2429 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2430 asection *input_section, bfd *output_bfd,
2431 char **error_message ATTRIBUTE_UNUSED)
2432 {
2433 struct mips_hi16 *n;
2434
2435 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2436 return bfd_reloc_outofrange;
2437
2438 n = bfd_malloc (sizeof *n);
2439 if (n == NULL)
2440 return bfd_reloc_outofrange;
2441
2442 n->next = mips_hi16_list;
2443 n->data = data;
2444 n->input_section = input_section;
2445 n->rel = *reloc_entry;
2446 mips_hi16_list = n;
2447
2448 if (output_bfd != NULL)
2449 reloc_entry->address += input_section->output_offset;
2450
2451 return bfd_reloc_ok;
2452 }
2453
2454 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2455 like any other 16-bit relocation when applied to global symbols, but is
2456 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2457
2458 bfd_reloc_status_type
2459 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2460 void *data, asection *input_section,
2461 bfd *output_bfd, char **error_message)
2462 {
2463 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2464 || bfd_is_und_section (bfd_get_section (symbol))
2465 || bfd_is_com_section (bfd_get_section (symbol)))
2466 /* The relocation is against a global symbol. */
2467 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2468 input_section, output_bfd,
2469 error_message);
2470
2471 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2472 input_section, output_bfd, error_message);
2473 }
2474
2475 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2476 is a straightforward 16 bit inplace relocation, but we must deal with
2477 any partnering high-part relocations as well. */
2478
2479 bfd_reloc_status_type
2480 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2481 void *data, asection *input_section,
2482 bfd *output_bfd, char **error_message)
2483 {
2484 bfd_vma vallo;
2485 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2486
2487 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2488 return bfd_reloc_outofrange;
2489
2490 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2491 location);
2492 vallo = bfd_get_32 (abfd, location);
2493 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2494 location);
2495
2496 while (mips_hi16_list != NULL)
2497 {
2498 bfd_reloc_status_type ret;
2499 struct mips_hi16 *hi;
2500
2501 hi = mips_hi16_list;
2502
2503 /* R_MIPS*_GOT16 relocations are something of a special case. We
2504 want to install the addend in the same way as for a R_MIPS*_HI16
2505 relocation (with a rightshift of 16). However, since GOT16
2506 relocations can also be used with global symbols, their howto
2507 has a rightshift of 0. */
2508 if (hi->rel.howto->type == R_MIPS_GOT16)
2509 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2510 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2511 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2512 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2513 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2514
2515 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2516 carry or borrow will induce a change of +1 or -1 in the high part. */
2517 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2518
2519 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2520 hi->input_section, output_bfd,
2521 error_message);
2522 if (ret != bfd_reloc_ok)
2523 return ret;
2524
2525 mips_hi16_list = hi->next;
2526 free (hi);
2527 }
2528
2529 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2530 input_section, output_bfd,
2531 error_message);
2532 }
2533
2534 /* A generic howto special_function. This calculates and installs the
2535 relocation itself, thus avoiding the oft-discussed problems in
2536 bfd_perform_relocation and bfd_install_relocation. */
2537
2538 bfd_reloc_status_type
2539 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2540 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2541 asection *input_section, bfd *output_bfd,
2542 char **error_message ATTRIBUTE_UNUSED)
2543 {
2544 bfd_signed_vma val;
2545 bfd_reloc_status_type status;
2546 bfd_boolean relocatable;
2547
2548 relocatable = (output_bfd != NULL);
2549
2550 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2551 return bfd_reloc_outofrange;
2552
2553 /* Build up the field adjustment in VAL. */
2554 val = 0;
2555 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2556 {
2557 /* Either we're calculating the final field value or we have a
2558 relocation against a section symbol. Add in the section's
2559 offset or address. */
2560 val += symbol->section->output_section->vma;
2561 val += symbol->section->output_offset;
2562 }
2563
2564 if (!relocatable)
2565 {
2566 /* We're calculating the final field value. Add in the symbol's value
2567 and, if pc-relative, subtract the address of the field itself. */
2568 val += symbol->value;
2569 if (reloc_entry->howto->pc_relative)
2570 {
2571 val -= input_section->output_section->vma;
2572 val -= input_section->output_offset;
2573 val -= reloc_entry->address;
2574 }
2575 }
2576
2577 /* VAL is now the final adjustment. If we're keeping this relocation
2578 in the output file, and if the relocation uses a separate addend,
2579 we just need to add VAL to that addend. Otherwise we need to add
2580 VAL to the relocation field itself. */
2581 if (relocatable && !reloc_entry->howto->partial_inplace)
2582 reloc_entry->addend += val;
2583 else
2584 {
2585 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2586
2587 /* Add in the separate addend, if any. */
2588 val += reloc_entry->addend;
2589
2590 /* Add VAL to the relocation field. */
2591 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2592 location);
2593 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2594 location);
2595 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2596 location);
2597
2598 if (status != bfd_reloc_ok)
2599 return status;
2600 }
2601
2602 if (relocatable)
2603 reloc_entry->address += input_section->output_offset;
2604
2605 return bfd_reloc_ok;
2606 }
2607 \f
2608 /* Swap an entry in a .gptab section. Note that these routines rely
2609 on the equivalence of the two elements of the union. */
2610
2611 static void
2612 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2613 Elf32_gptab *in)
2614 {
2615 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2616 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2617 }
2618
2619 static void
2620 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2621 Elf32_External_gptab *ex)
2622 {
2623 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2624 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2625 }
2626
2627 static void
2628 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2629 Elf32_External_compact_rel *ex)
2630 {
2631 H_PUT_32 (abfd, in->id1, ex->id1);
2632 H_PUT_32 (abfd, in->num, ex->num);
2633 H_PUT_32 (abfd, in->id2, ex->id2);
2634 H_PUT_32 (abfd, in->offset, ex->offset);
2635 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2636 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2637 }
2638
2639 static void
2640 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2641 Elf32_External_crinfo *ex)
2642 {
2643 unsigned long l;
2644
2645 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2646 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2647 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2648 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2649 H_PUT_32 (abfd, l, ex->info);
2650 H_PUT_32 (abfd, in->konst, ex->konst);
2651 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2652 }
2653 \f
2654 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2655 routines swap this structure in and out. They are used outside of
2656 BFD, so they are globally visible. */
2657
2658 void
2659 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2660 Elf32_RegInfo *in)
2661 {
2662 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2663 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2664 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2665 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2666 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2667 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2668 }
2669
2670 void
2671 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2672 Elf32_External_RegInfo *ex)
2673 {
2674 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2675 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2676 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2677 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2678 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2679 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2680 }
2681
2682 /* In the 64 bit ABI, the .MIPS.options section holds register
2683 information in an Elf64_Reginfo structure. These routines swap
2684 them in and out. They are globally visible because they are used
2685 outside of BFD. These routines are here so that gas can call them
2686 without worrying about whether the 64 bit ABI has been included. */
2687
2688 void
2689 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2690 Elf64_Internal_RegInfo *in)
2691 {
2692 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2693 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2694 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2695 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2696 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2697 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2698 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2699 }
2700
2701 void
2702 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2703 Elf64_External_RegInfo *ex)
2704 {
2705 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2706 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2707 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2708 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2709 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2710 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2711 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2712 }
2713
2714 /* Swap in an options header. */
2715
2716 void
2717 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2718 Elf_Internal_Options *in)
2719 {
2720 in->kind = H_GET_8 (abfd, ex->kind);
2721 in->size = H_GET_8 (abfd, ex->size);
2722 in->section = H_GET_16 (abfd, ex->section);
2723 in->info = H_GET_32 (abfd, ex->info);
2724 }
2725
2726 /* Swap out an options header. */
2727
2728 void
2729 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2730 Elf_External_Options *ex)
2731 {
2732 H_PUT_8 (abfd, in->kind, ex->kind);
2733 H_PUT_8 (abfd, in->size, ex->size);
2734 H_PUT_16 (abfd, in->section, ex->section);
2735 H_PUT_32 (abfd, in->info, ex->info);
2736 }
2737
2738 /* Swap in an abiflags structure. */
2739
2740 void
2741 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2742 const Elf_External_ABIFlags_v0 *ex,
2743 Elf_Internal_ABIFlags_v0 *in)
2744 {
2745 in->version = H_GET_16 (abfd, ex->version);
2746 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2747 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2748 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2749 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2750 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2751 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2752 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2753 in->ases = H_GET_32 (abfd, ex->ases);
2754 in->flags1 = H_GET_32 (abfd, ex->flags1);
2755 in->flags2 = H_GET_32 (abfd, ex->flags2);
2756 }
2757
2758 /* Swap out an abiflags structure. */
2759
2760 void
2761 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2762 const Elf_Internal_ABIFlags_v0 *in,
2763 Elf_External_ABIFlags_v0 *ex)
2764 {
2765 H_PUT_16 (abfd, in->version, ex->version);
2766 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2767 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2768 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2769 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2770 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2771 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2772 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2773 H_PUT_32 (abfd, in->ases, ex->ases);
2774 H_PUT_32 (abfd, in->flags1, ex->flags1);
2775 H_PUT_32 (abfd, in->flags2, ex->flags2);
2776 }
2777 \f
2778 /* This function is called via qsort() to sort the dynamic relocation
2779 entries by increasing r_symndx value. */
2780
2781 static int
2782 sort_dynamic_relocs (const void *arg1, const void *arg2)
2783 {
2784 Elf_Internal_Rela int_reloc1;
2785 Elf_Internal_Rela int_reloc2;
2786 int diff;
2787
2788 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2789 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2790
2791 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2792 if (diff != 0)
2793 return diff;
2794
2795 if (int_reloc1.r_offset < int_reloc2.r_offset)
2796 return -1;
2797 if (int_reloc1.r_offset > int_reloc2.r_offset)
2798 return 1;
2799 return 0;
2800 }
2801
2802 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2803
2804 static int
2805 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2806 const void *arg2 ATTRIBUTE_UNUSED)
2807 {
2808 #ifdef BFD64
2809 Elf_Internal_Rela int_reloc1[3];
2810 Elf_Internal_Rela int_reloc2[3];
2811
2812 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2813 (reldyn_sorting_bfd, arg1, int_reloc1);
2814 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2815 (reldyn_sorting_bfd, arg2, int_reloc2);
2816
2817 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2818 return -1;
2819 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2820 return 1;
2821
2822 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2823 return -1;
2824 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2825 return 1;
2826 return 0;
2827 #else
2828 abort ();
2829 #endif
2830 }
2831
2832
2833 /* This routine is used to write out ECOFF debugging external symbol
2834 information. It is called via mips_elf_link_hash_traverse. The
2835 ECOFF external symbol information must match the ELF external
2836 symbol information. Unfortunately, at this point we don't know
2837 whether a symbol is required by reloc information, so the two
2838 tables may wind up being different. We must sort out the external
2839 symbol information before we can set the final size of the .mdebug
2840 section, and we must set the size of the .mdebug section before we
2841 can relocate any sections, and we can't know which symbols are
2842 required by relocation until we relocate the sections.
2843 Fortunately, it is relatively unlikely that any symbol will be
2844 stripped but required by a reloc. In particular, it can not happen
2845 when generating a final executable. */
2846
2847 static bfd_boolean
2848 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2849 {
2850 struct extsym_info *einfo = data;
2851 bfd_boolean strip;
2852 asection *sec, *output_section;
2853
2854 if (h->root.indx == -2)
2855 strip = FALSE;
2856 else if ((h->root.def_dynamic
2857 || h->root.ref_dynamic
2858 || h->root.type == bfd_link_hash_new)
2859 && !h->root.def_regular
2860 && !h->root.ref_regular)
2861 strip = TRUE;
2862 else if (einfo->info->strip == strip_all
2863 || (einfo->info->strip == strip_some
2864 && bfd_hash_lookup (einfo->info->keep_hash,
2865 h->root.root.root.string,
2866 FALSE, FALSE) == NULL))
2867 strip = TRUE;
2868 else
2869 strip = FALSE;
2870
2871 if (strip)
2872 return TRUE;
2873
2874 if (h->esym.ifd == -2)
2875 {
2876 h->esym.jmptbl = 0;
2877 h->esym.cobol_main = 0;
2878 h->esym.weakext = 0;
2879 h->esym.reserved = 0;
2880 h->esym.ifd = ifdNil;
2881 h->esym.asym.value = 0;
2882 h->esym.asym.st = stGlobal;
2883
2884 if (h->root.root.type == bfd_link_hash_undefined
2885 || h->root.root.type == bfd_link_hash_undefweak)
2886 {
2887 const char *name;
2888
2889 /* Use undefined class. Also, set class and type for some
2890 special symbols. */
2891 name = h->root.root.root.string;
2892 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2893 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2894 {
2895 h->esym.asym.sc = scData;
2896 h->esym.asym.st = stLabel;
2897 h->esym.asym.value = 0;
2898 }
2899 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2900 {
2901 h->esym.asym.sc = scAbs;
2902 h->esym.asym.st = stLabel;
2903 h->esym.asym.value =
2904 mips_elf_hash_table (einfo->info)->procedure_count;
2905 }
2906 else
2907 h->esym.asym.sc = scUndefined;
2908 }
2909 else if (h->root.root.type != bfd_link_hash_defined
2910 && h->root.root.type != bfd_link_hash_defweak)
2911 h->esym.asym.sc = scAbs;
2912 else
2913 {
2914 const char *name;
2915
2916 sec = h->root.root.u.def.section;
2917 output_section = sec->output_section;
2918
2919 /* When making a shared library and symbol h is the one from
2920 the another shared library, OUTPUT_SECTION may be null. */
2921 if (output_section == NULL)
2922 h->esym.asym.sc = scUndefined;
2923 else
2924 {
2925 name = bfd_section_name (output_section->owner, output_section);
2926
2927 if (strcmp (name, ".text") == 0)
2928 h->esym.asym.sc = scText;
2929 else if (strcmp (name, ".data") == 0)
2930 h->esym.asym.sc = scData;
2931 else if (strcmp (name, ".sdata") == 0)
2932 h->esym.asym.sc = scSData;
2933 else if (strcmp (name, ".rodata") == 0
2934 || strcmp (name, ".rdata") == 0)
2935 h->esym.asym.sc = scRData;
2936 else if (strcmp (name, ".bss") == 0)
2937 h->esym.asym.sc = scBss;
2938 else if (strcmp (name, ".sbss") == 0)
2939 h->esym.asym.sc = scSBss;
2940 else if (strcmp (name, ".init") == 0)
2941 h->esym.asym.sc = scInit;
2942 else if (strcmp (name, ".fini") == 0)
2943 h->esym.asym.sc = scFini;
2944 else
2945 h->esym.asym.sc = scAbs;
2946 }
2947 }
2948
2949 h->esym.asym.reserved = 0;
2950 h->esym.asym.index = indexNil;
2951 }
2952
2953 if (h->root.root.type == bfd_link_hash_common)
2954 h->esym.asym.value = h->root.root.u.c.size;
2955 else if (h->root.root.type == bfd_link_hash_defined
2956 || h->root.root.type == bfd_link_hash_defweak)
2957 {
2958 if (h->esym.asym.sc == scCommon)
2959 h->esym.asym.sc = scBss;
2960 else if (h->esym.asym.sc == scSCommon)
2961 h->esym.asym.sc = scSBss;
2962
2963 sec = h->root.root.u.def.section;
2964 output_section = sec->output_section;
2965 if (output_section != NULL)
2966 h->esym.asym.value = (h->root.root.u.def.value
2967 + sec->output_offset
2968 + output_section->vma);
2969 else
2970 h->esym.asym.value = 0;
2971 }
2972 else
2973 {
2974 struct mips_elf_link_hash_entry *hd = h;
2975
2976 while (hd->root.root.type == bfd_link_hash_indirect)
2977 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2978
2979 if (hd->needs_lazy_stub)
2980 {
2981 BFD_ASSERT (hd->root.plt.plist != NULL);
2982 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
2983 /* Set type and value for a symbol with a function stub. */
2984 h->esym.asym.st = stProc;
2985 sec = hd->root.root.u.def.section;
2986 if (sec == NULL)
2987 h->esym.asym.value = 0;
2988 else
2989 {
2990 output_section = sec->output_section;
2991 if (output_section != NULL)
2992 h->esym.asym.value = (hd->root.plt.plist->stub_offset
2993 + sec->output_offset
2994 + output_section->vma);
2995 else
2996 h->esym.asym.value = 0;
2997 }
2998 }
2999 }
3000
3001 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3002 h->root.root.root.string,
3003 &h->esym))
3004 {
3005 einfo->failed = TRUE;
3006 return FALSE;
3007 }
3008
3009 return TRUE;
3010 }
3011
3012 /* A comparison routine used to sort .gptab entries. */
3013
3014 static int
3015 gptab_compare (const void *p1, const void *p2)
3016 {
3017 const Elf32_gptab *a1 = p1;
3018 const Elf32_gptab *a2 = p2;
3019
3020 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3021 }
3022 \f
3023 /* Functions to manage the got entry hash table. */
3024
3025 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3026 hash number. */
3027
3028 static INLINE hashval_t
3029 mips_elf_hash_bfd_vma (bfd_vma addr)
3030 {
3031 #ifdef BFD64
3032 return addr + (addr >> 32);
3033 #else
3034 return addr;
3035 #endif
3036 }
3037
3038 static hashval_t
3039 mips_elf_got_entry_hash (const void *entry_)
3040 {
3041 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3042
3043 return (entry->symndx
3044 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3045 + (entry->tls_type == GOT_TLS_LDM ? 0
3046 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3047 : entry->symndx >= 0 ? (entry->abfd->id
3048 + mips_elf_hash_bfd_vma (entry->d.addend))
3049 : entry->d.h->root.root.root.hash));
3050 }
3051
3052 static int
3053 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3054 {
3055 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3056 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3057
3058 return (e1->symndx == e2->symndx
3059 && e1->tls_type == e2->tls_type
3060 && (e1->tls_type == GOT_TLS_LDM ? TRUE
3061 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3062 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3063 && e1->d.addend == e2->d.addend)
3064 : e2->abfd && e1->d.h == e2->d.h));
3065 }
3066
3067 static hashval_t
3068 mips_got_page_ref_hash (const void *ref_)
3069 {
3070 const struct mips_got_page_ref *ref;
3071
3072 ref = (const struct mips_got_page_ref *) ref_;
3073 return ((ref->symndx >= 0
3074 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3075 : ref->u.h->root.root.root.hash)
3076 + mips_elf_hash_bfd_vma (ref->addend));
3077 }
3078
3079 static int
3080 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3081 {
3082 const struct mips_got_page_ref *ref1, *ref2;
3083
3084 ref1 = (const struct mips_got_page_ref *) ref1_;
3085 ref2 = (const struct mips_got_page_ref *) ref2_;
3086 return (ref1->symndx == ref2->symndx
3087 && (ref1->symndx < 0
3088 ? ref1->u.h == ref2->u.h
3089 : ref1->u.abfd == ref2->u.abfd)
3090 && ref1->addend == ref2->addend);
3091 }
3092
3093 static hashval_t
3094 mips_got_page_entry_hash (const void *entry_)
3095 {
3096 const struct mips_got_page_entry *entry;
3097
3098 entry = (const struct mips_got_page_entry *) entry_;
3099 return entry->sec->id;
3100 }
3101
3102 static int
3103 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3104 {
3105 const struct mips_got_page_entry *entry1, *entry2;
3106
3107 entry1 = (const struct mips_got_page_entry *) entry1_;
3108 entry2 = (const struct mips_got_page_entry *) entry2_;
3109 return entry1->sec == entry2->sec;
3110 }
3111 \f
3112 /* Create and return a new mips_got_info structure. */
3113
3114 static struct mips_got_info *
3115 mips_elf_create_got_info (bfd *abfd)
3116 {
3117 struct mips_got_info *g;
3118
3119 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3120 if (g == NULL)
3121 return NULL;
3122
3123 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3124 mips_elf_got_entry_eq, NULL);
3125 if (g->got_entries == NULL)
3126 return NULL;
3127
3128 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3129 mips_got_page_ref_eq, NULL);
3130 if (g->got_page_refs == NULL)
3131 return NULL;
3132
3133 return g;
3134 }
3135
3136 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3137 CREATE_P and if ABFD doesn't already have a GOT. */
3138
3139 static struct mips_got_info *
3140 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3141 {
3142 struct mips_elf_obj_tdata *tdata;
3143
3144 if (!is_mips_elf (abfd))
3145 return NULL;
3146
3147 tdata = mips_elf_tdata (abfd);
3148 if (!tdata->got && create_p)
3149 tdata->got = mips_elf_create_got_info (abfd);
3150 return tdata->got;
3151 }
3152
3153 /* Record that ABFD should use output GOT G. */
3154
3155 static void
3156 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3157 {
3158 struct mips_elf_obj_tdata *tdata;
3159
3160 BFD_ASSERT (is_mips_elf (abfd));
3161 tdata = mips_elf_tdata (abfd);
3162 if (tdata->got)
3163 {
3164 /* The GOT structure itself and the hash table entries are
3165 allocated to a bfd, but the hash tables aren't. */
3166 htab_delete (tdata->got->got_entries);
3167 htab_delete (tdata->got->got_page_refs);
3168 if (tdata->got->got_page_entries)
3169 htab_delete (tdata->got->got_page_entries);
3170 }
3171 tdata->got = g;
3172 }
3173
3174 /* Return the dynamic relocation section. If it doesn't exist, try to
3175 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3176 if creation fails. */
3177
3178 static asection *
3179 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3180 {
3181 const char *dname;
3182 asection *sreloc;
3183 bfd *dynobj;
3184
3185 dname = MIPS_ELF_REL_DYN_NAME (info);
3186 dynobj = elf_hash_table (info)->dynobj;
3187 sreloc = bfd_get_linker_section (dynobj, dname);
3188 if (sreloc == NULL && create_p)
3189 {
3190 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3191 (SEC_ALLOC
3192 | SEC_LOAD
3193 | SEC_HAS_CONTENTS
3194 | SEC_IN_MEMORY
3195 | SEC_LINKER_CREATED
3196 | SEC_READONLY));
3197 if (sreloc == NULL
3198 || ! bfd_set_section_alignment (dynobj, sreloc,
3199 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3200 return NULL;
3201 }
3202 return sreloc;
3203 }
3204
3205 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3206
3207 static int
3208 mips_elf_reloc_tls_type (unsigned int r_type)
3209 {
3210 if (tls_gd_reloc_p (r_type))
3211 return GOT_TLS_GD;
3212
3213 if (tls_ldm_reloc_p (r_type))
3214 return GOT_TLS_LDM;
3215
3216 if (tls_gottprel_reloc_p (r_type))
3217 return GOT_TLS_IE;
3218
3219 return GOT_TLS_NONE;
3220 }
3221
3222 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3223
3224 static int
3225 mips_tls_got_entries (unsigned int type)
3226 {
3227 switch (type)
3228 {
3229 case GOT_TLS_GD:
3230 case GOT_TLS_LDM:
3231 return 2;
3232
3233 case GOT_TLS_IE:
3234 return 1;
3235
3236 case GOT_TLS_NONE:
3237 return 0;
3238 }
3239 abort ();
3240 }
3241
3242 /* Count the number of relocations needed for a TLS GOT entry, with
3243 access types from TLS_TYPE, and symbol H (or a local symbol if H
3244 is NULL). */
3245
3246 static int
3247 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3248 struct elf_link_hash_entry *h)
3249 {
3250 int indx = 0;
3251 bfd_boolean need_relocs = FALSE;
3252 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3253
3254 if (h != NULL
3255 && h->dynindx != -1
3256 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3257 && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
3258 indx = h->dynindx;
3259
3260 if ((bfd_link_dll (info) || indx != 0)
3261 && (h == NULL
3262 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3263 || h->root.type != bfd_link_hash_undefweak))
3264 need_relocs = TRUE;
3265
3266 if (!need_relocs)
3267 return 0;
3268
3269 switch (tls_type)
3270 {
3271 case GOT_TLS_GD:
3272 return indx != 0 ? 2 : 1;
3273
3274 case GOT_TLS_IE:
3275 return 1;
3276
3277 case GOT_TLS_LDM:
3278 return bfd_link_dll (info) ? 1 : 0;
3279
3280 default:
3281 return 0;
3282 }
3283 }
3284
3285 /* Add the number of GOT entries and TLS relocations required by ENTRY
3286 to G. */
3287
3288 static void
3289 mips_elf_count_got_entry (struct bfd_link_info *info,
3290 struct mips_got_info *g,
3291 struct mips_got_entry *entry)
3292 {
3293 if (entry->tls_type)
3294 {
3295 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3296 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3297 entry->symndx < 0
3298 ? &entry->d.h->root : NULL);
3299 }
3300 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3301 g->local_gotno += 1;
3302 else
3303 g->global_gotno += 1;
3304 }
3305
3306 /* Output a simple dynamic relocation into SRELOC. */
3307
3308 static void
3309 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3310 asection *sreloc,
3311 unsigned long reloc_index,
3312 unsigned long indx,
3313 int r_type,
3314 bfd_vma offset)
3315 {
3316 Elf_Internal_Rela rel[3];
3317
3318 memset (rel, 0, sizeof (rel));
3319
3320 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3321 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3322
3323 if (ABI_64_P (output_bfd))
3324 {
3325 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3326 (output_bfd, &rel[0],
3327 (sreloc->contents
3328 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3329 }
3330 else
3331 bfd_elf32_swap_reloc_out
3332 (output_bfd, &rel[0],
3333 (sreloc->contents
3334 + reloc_index * sizeof (Elf32_External_Rel)));
3335 }
3336
3337 /* Initialize a set of TLS GOT entries for one symbol. */
3338
3339 static void
3340 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3341 struct mips_got_entry *entry,
3342 struct mips_elf_link_hash_entry *h,
3343 bfd_vma value)
3344 {
3345 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3346 struct mips_elf_link_hash_table *htab;
3347 int indx;
3348 asection *sreloc, *sgot;
3349 bfd_vma got_offset, got_offset2;
3350 bfd_boolean need_relocs = FALSE;
3351
3352 htab = mips_elf_hash_table (info);
3353 if (htab == NULL)
3354 return;
3355
3356 sgot = htab->root.sgot;
3357
3358 indx = 0;
3359 if (h != NULL
3360 && h->root.dynindx != -1
3361 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), &h->root)
3362 && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3363 indx = h->root.dynindx;
3364
3365 if (entry->tls_initialized)
3366 return;
3367
3368 if ((bfd_link_dll (info) || indx != 0)
3369 && (h == NULL
3370 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3371 || h->root.type != bfd_link_hash_undefweak))
3372 need_relocs = TRUE;
3373
3374 /* MINUS_ONE means the symbol is not defined in this object. It may not
3375 be defined at all; assume that the value doesn't matter in that
3376 case. Otherwise complain if we would use the value. */
3377 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3378 || h->root.root.type == bfd_link_hash_undefweak);
3379
3380 /* Emit necessary relocations. */
3381 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3382 got_offset = entry->gotidx;
3383
3384 switch (entry->tls_type)
3385 {
3386 case GOT_TLS_GD:
3387 /* General Dynamic. */
3388 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3389
3390 if (need_relocs)
3391 {
3392 mips_elf_output_dynamic_relocation
3393 (abfd, sreloc, sreloc->reloc_count++, indx,
3394 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3395 sgot->output_offset + sgot->output_section->vma + got_offset);
3396
3397 if (indx)
3398 mips_elf_output_dynamic_relocation
3399 (abfd, sreloc, sreloc->reloc_count++, indx,
3400 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3401 sgot->output_offset + sgot->output_section->vma + got_offset2);
3402 else
3403 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3404 sgot->contents + got_offset2);
3405 }
3406 else
3407 {
3408 MIPS_ELF_PUT_WORD (abfd, 1,
3409 sgot->contents + got_offset);
3410 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3411 sgot->contents + got_offset2);
3412 }
3413 break;
3414
3415 case GOT_TLS_IE:
3416 /* Initial Exec model. */
3417 if (need_relocs)
3418 {
3419 if (indx == 0)
3420 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3421 sgot->contents + got_offset);
3422 else
3423 MIPS_ELF_PUT_WORD (abfd, 0,
3424 sgot->contents + got_offset);
3425
3426 mips_elf_output_dynamic_relocation
3427 (abfd, sreloc, sreloc->reloc_count++, indx,
3428 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3429 sgot->output_offset + sgot->output_section->vma + got_offset);
3430 }
3431 else
3432 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3433 sgot->contents + got_offset);
3434 break;
3435
3436 case GOT_TLS_LDM:
3437 /* The initial offset is zero, and the LD offsets will include the
3438 bias by DTP_OFFSET. */
3439 MIPS_ELF_PUT_WORD (abfd, 0,
3440 sgot->contents + got_offset
3441 + MIPS_ELF_GOT_SIZE (abfd));
3442
3443 if (!bfd_link_dll (info))
3444 MIPS_ELF_PUT_WORD (abfd, 1,
3445 sgot->contents + got_offset);
3446 else
3447 mips_elf_output_dynamic_relocation
3448 (abfd, sreloc, sreloc->reloc_count++, indx,
3449 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3450 sgot->output_offset + sgot->output_section->vma + got_offset);
3451 break;
3452
3453 default:
3454 abort ();
3455 }
3456
3457 entry->tls_initialized = TRUE;
3458 }
3459
3460 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3461 for global symbol H. .got.plt comes before the GOT, so the offset
3462 will be negative. */
3463
3464 static bfd_vma
3465 mips_elf_gotplt_index (struct bfd_link_info *info,
3466 struct elf_link_hash_entry *h)
3467 {
3468 bfd_vma got_address, got_value;
3469 struct mips_elf_link_hash_table *htab;
3470
3471 htab = mips_elf_hash_table (info);
3472 BFD_ASSERT (htab != NULL);
3473
3474 BFD_ASSERT (h->plt.plist != NULL);
3475 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3476
3477 /* Calculate the address of the associated .got.plt entry. */
3478 got_address = (htab->root.sgotplt->output_section->vma
3479 + htab->root.sgotplt->output_offset
3480 + (h->plt.plist->gotplt_index
3481 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3482
3483 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3484 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3485 + htab->root.hgot->root.u.def.section->output_offset
3486 + htab->root.hgot->root.u.def.value);
3487
3488 return got_address - got_value;
3489 }
3490
3491 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3492 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3493 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3494 offset can be found. */
3495
3496 static bfd_vma
3497 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3498 bfd_vma value, unsigned long r_symndx,
3499 struct mips_elf_link_hash_entry *h, int r_type)
3500 {
3501 struct mips_elf_link_hash_table *htab;
3502 struct mips_got_entry *entry;
3503
3504 htab = mips_elf_hash_table (info);
3505 BFD_ASSERT (htab != NULL);
3506
3507 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3508 r_symndx, h, r_type);
3509 if (!entry)
3510 return MINUS_ONE;
3511
3512 if (entry->tls_type)
3513 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3514 return entry->gotidx;
3515 }
3516
3517 /* Return the GOT index of global symbol H in the primary GOT. */
3518
3519 static bfd_vma
3520 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3521 struct elf_link_hash_entry *h)
3522 {
3523 struct mips_elf_link_hash_table *htab;
3524 long global_got_dynindx;
3525 struct mips_got_info *g;
3526 bfd_vma got_index;
3527
3528 htab = mips_elf_hash_table (info);
3529 BFD_ASSERT (htab != NULL);
3530
3531 global_got_dynindx = 0;
3532 if (htab->global_gotsym != NULL)
3533 global_got_dynindx = htab->global_gotsym->dynindx;
3534
3535 /* Once we determine the global GOT entry with the lowest dynamic
3536 symbol table index, we must put all dynamic symbols with greater
3537 indices into the primary GOT. That makes it easy to calculate the
3538 GOT offset. */
3539 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3540 g = mips_elf_bfd_got (obfd, FALSE);
3541 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3542 * MIPS_ELF_GOT_SIZE (obfd));
3543 BFD_ASSERT (got_index < htab->root.sgot->size);
3544
3545 return got_index;
3546 }
3547
3548 /* Return the GOT index for the global symbol indicated by H, which is
3549 referenced by a relocation of type R_TYPE in IBFD. */
3550
3551 static bfd_vma
3552 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3553 struct elf_link_hash_entry *h, int r_type)
3554 {
3555 struct mips_elf_link_hash_table *htab;
3556 struct mips_got_info *g;
3557 struct mips_got_entry lookup, *entry;
3558 bfd_vma gotidx;
3559
3560 htab = mips_elf_hash_table (info);
3561 BFD_ASSERT (htab != NULL);
3562
3563 g = mips_elf_bfd_got (ibfd, FALSE);
3564 BFD_ASSERT (g);
3565
3566 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3567 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3568 return mips_elf_primary_global_got_index (obfd, info, h);
3569
3570 lookup.abfd = ibfd;
3571 lookup.symndx = -1;
3572 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3573 entry = htab_find (g->got_entries, &lookup);
3574 BFD_ASSERT (entry);
3575
3576 gotidx = entry->gotidx;
3577 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3578
3579 if (lookup.tls_type)
3580 {
3581 bfd_vma value = MINUS_ONE;
3582
3583 if ((h->root.type == bfd_link_hash_defined
3584 || h->root.type == bfd_link_hash_defweak)
3585 && h->root.u.def.section->output_section)
3586 value = (h->root.u.def.value
3587 + h->root.u.def.section->output_offset
3588 + h->root.u.def.section->output_section->vma);
3589
3590 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3591 }
3592 return gotidx;
3593 }
3594
3595 /* Find a GOT page entry that points to within 32KB of VALUE. These
3596 entries are supposed to be placed at small offsets in the GOT, i.e.,
3597 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3598 entry could be created. If OFFSETP is nonnull, use it to return the
3599 offset of the GOT entry from VALUE. */
3600
3601 static bfd_vma
3602 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3603 bfd_vma value, bfd_vma *offsetp)
3604 {
3605 bfd_vma page, got_index;
3606 struct mips_got_entry *entry;
3607
3608 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3609 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3610 NULL, R_MIPS_GOT_PAGE);
3611
3612 if (!entry)
3613 return MINUS_ONE;
3614
3615 got_index = entry->gotidx;
3616
3617 if (offsetp)
3618 *offsetp = value - entry->d.address;
3619
3620 return got_index;
3621 }
3622
3623 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3624 EXTERNAL is true if the relocation was originally against a global
3625 symbol that binds locally. */
3626
3627 static bfd_vma
3628 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3629 bfd_vma value, bfd_boolean external)
3630 {
3631 struct mips_got_entry *entry;
3632
3633 /* GOT16 relocations against local symbols are followed by a LO16
3634 relocation; those against global symbols are not. Thus if the
3635 symbol was originally local, the GOT16 relocation should load the
3636 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3637 if (! external)
3638 value = mips_elf_high (value) << 16;
3639
3640 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3641 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3642 same in all cases. */
3643 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3644 NULL, R_MIPS_GOT16);
3645 if (entry)
3646 return entry->gotidx;
3647 else
3648 return MINUS_ONE;
3649 }
3650
3651 /* Returns the offset for the entry at the INDEXth position
3652 in the GOT. */
3653
3654 static bfd_vma
3655 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3656 bfd *input_bfd, bfd_vma got_index)
3657 {
3658 struct mips_elf_link_hash_table *htab;
3659 asection *sgot;
3660 bfd_vma gp;
3661
3662 htab = mips_elf_hash_table (info);
3663 BFD_ASSERT (htab != NULL);
3664
3665 sgot = htab->root.sgot;
3666 gp = _bfd_get_gp_value (output_bfd)
3667 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3668
3669 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3670 }
3671
3672 /* Create and return a local GOT entry for VALUE, which was calculated
3673 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3674 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3675 instead. */
3676
3677 static struct mips_got_entry *
3678 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3679 bfd *ibfd, bfd_vma value,
3680 unsigned long r_symndx,
3681 struct mips_elf_link_hash_entry *h,
3682 int r_type)
3683 {
3684 struct mips_got_entry lookup, *entry;
3685 void **loc;
3686 struct mips_got_info *g;
3687 struct mips_elf_link_hash_table *htab;
3688 bfd_vma gotidx;
3689
3690 htab = mips_elf_hash_table (info);
3691 BFD_ASSERT (htab != NULL);
3692
3693 g = mips_elf_bfd_got (ibfd, FALSE);
3694 if (g == NULL)
3695 {
3696 g = mips_elf_bfd_got (abfd, FALSE);
3697 BFD_ASSERT (g != NULL);
3698 }
3699
3700 /* This function shouldn't be called for symbols that live in the global
3701 area of the GOT. */
3702 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3703
3704 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3705 if (lookup.tls_type)
3706 {
3707 lookup.abfd = ibfd;
3708 if (tls_ldm_reloc_p (r_type))
3709 {
3710 lookup.symndx = 0;
3711 lookup.d.addend = 0;
3712 }
3713 else if (h == NULL)
3714 {
3715 lookup.symndx = r_symndx;
3716 lookup.d.addend = 0;
3717 }
3718 else
3719 {
3720 lookup.symndx = -1;
3721 lookup.d.h = h;
3722 }
3723
3724 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3725 BFD_ASSERT (entry);
3726
3727 gotidx = entry->gotidx;
3728 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3729
3730 return entry;
3731 }
3732
3733 lookup.abfd = NULL;
3734 lookup.symndx = -1;
3735 lookup.d.address = value;
3736 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3737 if (!loc)
3738 return NULL;
3739
3740 entry = (struct mips_got_entry *) *loc;
3741 if (entry)
3742 return entry;
3743
3744 if (g->assigned_low_gotno > g->assigned_high_gotno)
3745 {
3746 /* We didn't allocate enough space in the GOT. */
3747 _bfd_error_handler
3748 (_("not enough GOT space for local GOT entries"));
3749 bfd_set_error (bfd_error_bad_value);
3750 return NULL;
3751 }
3752
3753 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3754 if (!entry)
3755 return NULL;
3756
3757 if (got16_reloc_p (r_type)
3758 || call16_reloc_p (r_type)
3759 || got_page_reloc_p (r_type)
3760 || got_disp_reloc_p (r_type))
3761 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3762 else
3763 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3764
3765 *entry = lookup;
3766 *loc = entry;
3767
3768 MIPS_ELF_PUT_WORD (abfd, value, htab->root.sgot->contents + entry->gotidx);
3769
3770 /* These GOT entries need a dynamic relocation on VxWorks. */
3771 if (htab->is_vxworks)
3772 {
3773 Elf_Internal_Rela outrel;
3774 asection *s;
3775 bfd_byte *rloc;
3776 bfd_vma got_address;
3777
3778 s = mips_elf_rel_dyn_section (info, FALSE);
3779 got_address = (htab->root.sgot->output_section->vma
3780 + htab->root.sgot->output_offset
3781 + entry->gotidx);
3782
3783 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3784 outrel.r_offset = got_address;
3785 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3786 outrel.r_addend = value;
3787 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3788 }
3789
3790 return entry;
3791 }
3792
3793 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3794 The number might be exact or a worst-case estimate, depending on how
3795 much information is available to elf_backend_omit_section_dynsym at
3796 the current linking stage. */
3797
3798 static bfd_size_type
3799 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3800 {
3801 bfd_size_type count;
3802
3803 count = 0;
3804 if (bfd_link_pic (info)
3805 || elf_hash_table (info)->is_relocatable_executable)
3806 {
3807 asection *p;
3808 const struct elf_backend_data *bed;
3809
3810 bed = get_elf_backend_data (output_bfd);
3811 for (p = output_bfd->sections; p ; p = p->next)
3812 if ((p->flags & SEC_EXCLUDE) == 0
3813 && (p->flags & SEC_ALLOC) != 0
3814 && elf_hash_table (info)->dynamic_relocs
3815 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3816 ++count;
3817 }
3818 return count;
3819 }
3820
3821 /* Sort the dynamic symbol table so that symbols that need GOT entries
3822 appear towards the end. */
3823
3824 static bfd_boolean
3825 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3826 {
3827 struct mips_elf_link_hash_table *htab;
3828 struct mips_elf_hash_sort_data hsd;
3829 struct mips_got_info *g;
3830
3831 htab = mips_elf_hash_table (info);
3832 BFD_ASSERT (htab != NULL);
3833
3834 if (htab->root.dynsymcount == 0)
3835 return TRUE;
3836
3837 g = htab->got_info;
3838 if (g == NULL)
3839 return TRUE;
3840
3841 hsd.low = NULL;
3842 hsd.max_unref_got_dynindx
3843 = hsd.min_got_dynindx
3844 = (htab->root.dynsymcount - g->reloc_only_gotno);
3845 /* Add 1 to local symbol indices to account for the mandatory NULL entry
3846 at the head of the table; see `_bfd_elf_link_renumber_dynsyms'. */
3847 hsd.max_local_dynindx = count_section_dynsyms (abfd, info) + 1;
3848 hsd.max_non_got_dynindx = htab->root.local_dynsymcount + 1;
3849 mips_elf_link_hash_traverse (htab, mips_elf_sort_hash_table_f, &hsd);
3850
3851 /* There should have been enough room in the symbol table to
3852 accommodate both the GOT and non-GOT symbols. */
3853 BFD_ASSERT (hsd.max_local_dynindx <= htab->root.local_dynsymcount + 1);
3854 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3855 BFD_ASSERT (hsd.max_unref_got_dynindx == htab->root.dynsymcount);
3856 BFD_ASSERT (htab->root.dynsymcount - hsd.min_got_dynindx == g->global_gotno);
3857
3858 /* Now we know which dynamic symbol has the lowest dynamic symbol
3859 table index in the GOT. */
3860 htab->global_gotsym = hsd.low;
3861
3862 return TRUE;
3863 }
3864
3865 /* If H needs a GOT entry, assign it the highest available dynamic
3866 index. Otherwise, assign it the lowest available dynamic
3867 index. */
3868
3869 static bfd_boolean
3870 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3871 {
3872 struct mips_elf_hash_sort_data *hsd = data;
3873
3874 /* Symbols without dynamic symbol table entries aren't interesting
3875 at all. */
3876 if (h->root.dynindx == -1)
3877 return TRUE;
3878
3879 switch (h->global_got_area)
3880 {
3881 case GGA_NONE:
3882 if (h->root.forced_local)
3883 h->root.dynindx = hsd->max_local_dynindx++;
3884 else
3885 h->root.dynindx = hsd->max_non_got_dynindx++;
3886 break;
3887
3888 case GGA_NORMAL:
3889 h->root.dynindx = --hsd->min_got_dynindx;
3890 hsd->low = (struct elf_link_hash_entry *) h;
3891 break;
3892
3893 case GGA_RELOC_ONLY:
3894 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3895 hsd->low = (struct elf_link_hash_entry *) h;
3896 h->root.dynindx = hsd->max_unref_got_dynindx++;
3897 break;
3898 }
3899
3900 return TRUE;
3901 }
3902
3903 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3904 (which is owned by the caller and shouldn't be added to the
3905 hash table directly). */
3906
3907 static bfd_boolean
3908 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3909 struct mips_got_entry *lookup)
3910 {
3911 struct mips_elf_link_hash_table *htab;
3912 struct mips_got_entry *entry;
3913 struct mips_got_info *g;
3914 void **loc, **bfd_loc;
3915
3916 /* Make sure there's a slot for this entry in the master GOT. */
3917 htab = mips_elf_hash_table (info);
3918 g = htab->got_info;
3919 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3920 if (!loc)
3921 return FALSE;
3922
3923 /* Populate the entry if it isn't already. */
3924 entry = (struct mips_got_entry *) *loc;
3925 if (!entry)
3926 {
3927 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3928 if (!entry)
3929 return FALSE;
3930
3931 lookup->tls_initialized = FALSE;
3932 lookup->gotidx = -1;
3933 *entry = *lookup;
3934 *loc = entry;
3935 }
3936
3937 /* Reuse the same GOT entry for the BFD's GOT. */
3938 g = mips_elf_bfd_got (abfd, TRUE);
3939 if (!g)
3940 return FALSE;
3941
3942 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3943 if (!bfd_loc)
3944 return FALSE;
3945
3946 if (!*bfd_loc)
3947 *bfd_loc = entry;
3948 return TRUE;
3949 }
3950
3951 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3952 entry for it. FOR_CALL is true if the caller is only interested in
3953 using the GOT entry for calls. */
3954
3955 static bfd_boolean
3956 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3957 bfd *abfd, struct bfd_link_info *info,
3958 bfd_boolean for_call, int r_type)
3959 {
3960 struct mips_elf_link_hash_table *htab;
3961 struct mips_elf_link_hash_entry *hmips;
3962 struct mips_got_entry entry;
3963 unsigned char tls_type;
3964
3965 htab = mips_elf_hash_table (info);
3966 BFD_ASSERT (htab != NULL);
3967
3968 hmips = (struct mips_elf_link_hash_entry *) h;
3969 if (!for_call)
3970 hmips->got_only_for_calls = FALSE;
3971
3972 /* A global symbol in the GOT must also be in the dynamic symbol
3973 table. */
3974 if (h->dynindx == -1)
3975 {
3976 switch (ELF_ST_VISIBILITY (h->other))
3977 {
3978 case STV_INTERNAL:
3979 case STV_HIDDEN:
3980 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3981 break;
3982 }
3983 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3984 return FALSE;
3985 }
3986
3987 tls_type = mips_elf_reloc_tls_type (r_type);
3988 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
3989 hmips->global_got_area = GGA_NORMAL;
3990
3991 entry.abfd = abfd;
3992 entry.symndx = -1;
3993 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3994 entry.tls_type = tls_type;
3995 return mips_elf_record_got_entry (info, abfd, &entry);
3996 }
3997
3998 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
3999 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
4000
4001 static bfd_boolean
4002 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
4003 struct bfd_link_info *info, int r_type)
4004 {
4005 struct mips_elf_link_hash_table *htab;
4006 struct mips_got_info *g;
4007 struct mips_got_entry entry;
4008
4009 htab = mips_elf_hash_table (info);
4010 BFD_ASSERT (htab != NULL);
4011
4012 g = htab->got_info;
4013 BFD_ASSERT (g != NULL);
4014
4015 entry.abfd = abfd;
4016 entry.symndx = symndx;
4017 entry.d.addend = addend;
4018 entry.tls_type = mips_elf_reloc_tls_type (r_type);
4019 return mips_elf_record_got_entry (info, abfd, &entry);
4020 }
4021
4022 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4023 H is the symbol's hash table entry, or null if SYMNDX is local
4024 to ABFD. */
4025
4026 static bfd_boolean
4027 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4028 long symndx, struct elf_link_hash_entry *h,
4029 bfd_signed_vma addend)
4030 {
4031 struct mips_elf_link_hash_table *htab;
4032 struct mips_got_info *g1, *g2;
4033 struct mips_got_page_ref lookup, *entry;
4034 void **loc, **bfd_loc;
4035
4036 htab = mips_elf_hash_table (info);
4037 BFD_ASSERT (htab != NULL);
4038
4039 g1 = htab->got_info;
4040 BFD_ASSERT (g1 != NULL);
4041
4042 if (h)
4043 {
4044 lookup.symndx = -1;
4045 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4046 }
4047 else
4048 {
4049 lookup.symndx = symndx;
4050 lookup.u.abfd = abfd;
4051 }
4052 lookup.addend = addend;
4053 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4054 if (loc == NULL)
4055 return FALSE;
4056
4057 entry = (struct mips_got_page_ref *) *loc;
4058 if (!entry)
4059 {
4060 entry = bfd_alloc (abfd, sizeof (*entry));
4061 if (!entry)
4062 return FALSE;
4063
4064 *entry = lookup;
4065 *loc = entry;
4066 }
4067
4068 /* Add the same entry to the BFD's GOT. */
4069 g2 = mips_elf_bfd_got (abfd, TRUE);
4070 if (!g2)
4071 return FALSE;
4072
4073 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4074 if (!bfd_loc)
4075 return FALSE;
4076
4077 if (!*bfd_loc)
4078 *bfd_loc = entry;
4079
4080 return TRUE;
4081 }
4082
4083 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4084
4085 static void
4086 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4087 unsigned int n)
4088 {
4089 asection *s;
4090 struct mips_elf_link_hash_table *htab;
4091
4092 htab = mips_elf_hash_table (info);
4093 BFD_ASSERT (htab != NULL);
4094
4095 s = mips_elf_rel_dyn_section (info, FALSE);
4096 BFD_ASSERT (s != NULL);
4097
4098 if (htab->is_vxworks)
4099 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4100 else
4101 {
4102 if (s->size == 0)
4103 {
4104 /* Make room for a null element. */
4105 s->size += MIPS_ELF_REL_SIZE (abfd);
4106 ++s->reloc_count;
4107 }
4108 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4109 }
4110 }
4111 \f
4112 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4113 mips_elf_traverse_got_arg structure. Count the number of GOT
4114 entries and TLS relocs. Set DATA->value to true if we need
4115 to resolve indirect or warning symbols and then recreate the GOT. */
4116
4117 static int
4118 mips_elf_check_recreate_got (void **entryp, void *data)
4119 {
4120 struct mips_got_entry *entry;
4121 struct mips_elf_traverse_got_arg *arg;
4122
4123 entry = (struct mips_got_entry *) *entryp;
4124 arg = (struct mips_elf_traverse_got_arg *) data;
4125 if (entry->abfd != NULL && entry->symndx == -1)
4126 {
4127 struct mips_elf_link_hash_entry *h;
4128
4129 h = entry->d.h;
4130 if (h->root.root.type == bfd_link_hash_indirect
4131 || h->root.root.type == bfd_link_hash_warning)
4132 {
4133 arg->value = TRUE;
4134 return 0;
4135 }
4136 }
4137 mips_elf_count_got_entry (arg->info, arg->g, entry);
4138 return 1;
4139 }
4140
4141 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4142 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4143 converting entries for indirect and warning symbols into entries
4144 for the target symbol. Set DATA->g to null on error. */
4145
4146 static int
4147 mips_elf_recreate_got (void **entryp, void *data)
4148 {
4149 struct mips_got_entry new_entry, *entry;
4150 struct mips_elf_traverse_got_arg *arg;
4151 void **slot;
4152
4153 entry = (struct mips_got_entry *) *entryp;
4154 arg = (struct mips_elf_traverse_got_arg *) data;
4155 if (entry->abfd != NULL
4156 && entry->symndx == -1
4157 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4158 || entry->d.h->root.root.type == bfd_link_hash_warning))
4159 {
4160 struct mips_elf_link_hash_entry *h;
4161
4162 new_entry = *entry;
4163 entry = &new_entry;
4164 h = entry->d.h;
4165 do
4166 {
4167 BFD_ASSERT (h->global_got_area == GGA_NONE);
4168 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4169 }
4170 while (h->root.root.type == bfd_link_hash_indirect
4171 || h->root.root.type == bfd_link_hash_warning);
4172 entry->d.h = h;
4173 }
4174 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4175 if (slot == NULL)
4176 {
4177 arg->g = NULL;
4178 return 0;
4179 }
4180 if (*slot == NULL)
4181 {
4182 if (entry == &new_entry)
4183 {
4184 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4185 if (!entry)
4186 {
4187 arg->g = NULL;
4188 return 0;
4189 }
4190 *entry = new_entry;
4191 }
4192 *slot = entry;
4193 mips_elf_count_got_entry (arg->info, arg->g, entry);
4194 }
4195 return 1;
4196 }
4197
4198 /* Return the maximum number of GOT page entries required for RANGE. */
4199
4200 static bfd_vma
4201 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4202 {
4203 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4204 }
4205
4206 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4207
4208 static bfd_boolean
4209 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4210 asection *sec, bfd_signed_vma addend)
4211 {
4212 struct mips_got_info *g = arg->g;
4213 struct mips_got_page_entry lookup, *entry;
4214 struct mips_got_page_range **range_ptr, *range;
4215 bfd_vma old_pages, new_pages;
4216 void **loc;
4217
4218 /* Find the mips_got_page_entry hash table entry for this section. */
4219 lookup.sec = sec;
4220 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4221 if (loc == NULL)
4222 return FALSE;
4223
4224 /* Create a mips_got_page_entry if this is the first time we've
4225 seen the section. */
4226 entry = (struct mips_got_page_entry *) *loc;
4227 if (!entry)
4228 {
4229 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4230 if (!entry)
4231 return FALSE;
4232
4233 entry->sec = sec;
4234 *loc = entry;
4235 }
4236
4237 /* Skip over ranges whose maximum extent cannot share a page entry
4238 with ADDEND. */
4239 range_ptr = &entry->ranges;
4240 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4241 range_ptr = &(*range_ptr)->next;
4242
4243 /* If we scanned to the end of the list, or found a range whose
4244 minimum extent cannot share a page entry with ADDEND, create
4245 a new singleton range. */
4246 range = *range_ptr;
4247 if (!range || addend < range->min_addend - 0xffff)
4248 {
4249 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4250 if (!range)
4251 return FALSE;
4252
4253 range->next = *range_ptr;
4254 range->min_addend = addend;
4255 range->max_addend = addend;
4256
4257 *range_ptr = range;
4258 entry->num_pages++;
4259 g->page_gotno++;
4260 return TRUE;
4261 }
4262
4263 /* Remember how many pages the old range contributed. */
4264 old_pages = mips_elf_pages_for_range (range);
4265
4266 /* Update the ranges. */
4267 if (addend < range->min_addend)
4268 range->min_addend = addend;
4269 else if (addend > range->max_addend)
4270 {
4271 if (range->next && addend >= range->next->min_addend - 0xffff)
4272 {
4273 old_pages += mips_elf_pages_for_range (range->next);
4274 range->max_addend = range->next->max_addend;
4275 range->next = range->next->next;
4276 }
4277 else
4278 range->max_addend = addend;
4279 }
4280
4281 /* Record any change in the total estimate. */
4282 new_pages = mips_elf_pages_for_range (range);
4283 if (old_pages != new_pages)
4284 {
4285 entry->num_pages += new_pages - old_pages;
4286 g->page_gotno += new_pages - old_pages;
4287 }
4288
4289 return TRUE;
4290 }
4291
4292 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4293 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4294 whether the page reference described by *REFP needs a GOT page entry,
4295 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4296
4297 static bfd_boolean
4298 mips_elf_resolve_got_page_ref (void **refp, void *data)
4299 {
4300 struct mips_got_page_ref *ref;
4301 struct mips_elf_traverse_got_arg *arg;
4302 struct mips_elf_link_hash_table *htab;
4303 asection *sec;
4304 bfd_vma addend;
4305
4306 ref = (struct mips_got_page_ref *) *refp;
4307 arg = (struct mips_elf_traverse_got_arg *) data;
4308 htab = mips_elf_hash_table (arg->info);
4309
4310 if (ref->symndx < 0)
4311 {
4312 struct mips_elf_link_hash_entry *h;
4313
4314 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4315 h = ref->u.h;
4316 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4317 return 1;
4318
4319 /* Ignore undefined symbols; we'll issue an error later if
4320 appropriate. */
4321 if (!((h->root.root.type == bfd_link_hash_defined
4322 || h->root.root.type == bfd_link_hash_defweak)
4323 && h->root.root.u.def.section))
4324 return 1;
4325
4326 sec = h->root.root.u.def.section;
4327 addend = h->root.root.u.def.value + ref->addend;
4328 }
4329 else
4330 {
4331 Elf_Internal_Sym *isym;
4332
4333 /* Read in the symbol. */
4334 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4335 ref->symndx);
4336 if (isym == NULL)
4337 {
4338 arg->g = NULL;
4339 return 0;
4340 }
4341
4342 /* Get the associated input section. */
4343 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4344 if (sec == NULL)
4345 {
4346 arg->g = NULL;
4347 return 0;
4348 }
4349
4350 /* If this is a mergable section, work out the section and offset
4351 of the merged data. For section symbols, the addend specifies
4352 of the offset _of_ the first byte in the data, otherwise it
4353 specifies the offset _from_ the first byte. */
4354 if (sec->flags & SEC_MERGE)
4355 {
4356 void *secinfo;
4357
4358 secinfo = elf_section_data (sec)->sec_info;
4359 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4360 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4361 isym->st_value + ref->addend);
4362 else
4363 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4364 isym->st_value) + ref->addend;
4365 }
4366 else
4367 addend = isym->st_value + ref->addend;
4368 }
4369 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4370 {
4371 arg->g = NULL;
4372 return 0;
4373 }
4374 return 1;
4375 }
4376
4377 /* If any entries in G->got_entries are for indirect or warning symbols,
4378 replace them with entries for the target symbol. Convert g->got_page_refs
4379 into got_page_entry structures and estimate the number of page entries
4380 that they require. */
4381
4382 static bfd_boolean
4383 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4384 struct mips_got_info *g)
4385 {
4386 struct mips_elf_traverse_got_arg tga;
4387 struct mips_got_info oldg;
4388
4389 oldg = *g;
4390
4391 tga.info = info;
4392 tga.g = g;
4393 tga.value = FALSE;
4394 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4395 if (tga.value)
4396 {
4397 *g = oldg;
4398 g->got_entries = htab_create (htab_size (oldg.got_entries),
4399 mips_elf_got_entry_hash,
4400 mips_elf_got_entry_eq, NULL);
4401 if (!g->got_entries)
4402 return FALSE;
4403
4404 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4405 if (!tga.g)
4406 return FALSE;
4407
4408 htab_delete (oldg.got_entries);
4409 }
4410
4411 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4412 mips_got_page_entry_eq, NULL);
4413 if (g->got_page_entries == NULL)
4414 return FALSE;
4415
4416 tga.info = info;
4417 tga.g = g;
4418 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4419
4420 return TRUE;
4421 }
4422
4423 /* Return true if a GOT entry for H should live in the local rather than
4424 global GOT area. */
4425
4426 static bfd_boolean
4427 mips_use_local_got_p (struct bfd_link_info *info,
4428 struct mips_elf_link_hash_entry *h)
4429 {
4430 /* Symbols that aren't in the dynamic symbol table must live in the
4431 local GOT. This includes symbols that are completely undefined
4432 and which therefore don't bind locally. We'll report undefined
4433 symbols later if appropriate. */
4434 if (h->root.dynindx == -1)
4435 return TRUE;
4436
4437 /* Symbols that bind locally can (and in the case of forced-local
4438 symbols, must) live in the local GOT. */
4439 if (h->got_only_for_calls
4440 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4441 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4442 return TRUE;
4443
4444 /* If this is an executable that must provide a definition of the symbol,
4445 either though PLTs or copy relocations, then that address should go in
4446 the local rather than global GOT. */
4447 if (bfd_link_executable (info) && h->has_static_relocs)
4448 return TRUE;
4449
4450 return FALSE;
4451 }
4452
4453 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4454 link_info structure. Decide whether the hash entry needs an entry in
4455 the global part of the primary GOT, setting global_got_area accordingly.
4456 Count the number of global symbols that are in the primary GOT only
4457 because they have relocations against them (reloc_only_gotno). */
4458
4459 static int
4460 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4461 {
4462 struct bfd_link_info *info;
4463 struct mips_elf_link_hash_table *htab;
4464 struct mips_got_info *g;
4465
4466 info = (struct bfd_link_info *) data;
4467 htab = mips_elf_hash_table (info);
4468 g = htab->got_info;
4469 if (h->global_got_area != GGA_NONE)
4470 {
4471 /* Make a final decision about whether the symbol belongs in the
4472 local or global GOT. */
4473 if (mips_use_local_got_p (info, h))
4474 /* The symbol belongs in the local GOT. We no longer need this
4475 entry if it was only used for relocations; those relocations
4476 will be against the null or section symbol instead of H. */
4477 h->global_got_area = GGA_NONE;
4478 else if (htab->is_vxworks
4479 && h->got_only_for_calls
4480 && h->root.plt.plist->mips_offset != MINUS_ONE)
4481 /* On VxWorks, calls can refer directly to the .got.plt entry;
4482 they don't need entries in the regular GOT. .got.plt entries
4483 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4484 h->global_got_area = GGA_NONE;
4485 else if (h->global_got_area == GGA_RELOC_ONLY)
4486 {
4487 g->reloc_only_gotno++;
4488 g->global_gotno++;
4489 }
4490 }
4491 return 1;
4492 }
4493 \f
4494 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4495 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4496
4497 static int
4498 mips_elf_add_got_entry (void **entryp, void *data)
4499 {
4500 struct mips_got_entry *entry;
4501 struct mips_elf_traverse_got_arg *arg;
4502 void **slot;
4503
4504 entry = (struct mips_got_entry *) *entryp;
4505 arg = (struct mips_elf_traverse_got_arg *) data;
4506 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4507 if (!slot)
4508 {
4509 arg->g = NULL;
4510 return 0;
4511 }
4512 if (!*slot)
4513 {
4514 *slot = entry;
4515 mips_elf_count_got_entry (arg->info, arg->g, entry);
4516 }
4517 return 1;
4518 }
4519
4520 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4521 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4522
4523 static int
4524 mips_elf_add_got_page_entry (void **entryp, void *data)
4525 {
4526 struct mips_got_page_entry *entry;
4527 struct mips_elf_traverse_got_arg *arg;
4528 void **slot;
4529
4530 entry = (struct mips_got_page_entry *) *entryp;
4531 arg = (struct mips_elf_traverse_got_arg *) data;
4532 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4533 if (!slot)
4534 {
4535 arg->g = NULL;
4536 return 0;
4537 }
4538 if (!*slot)
4539 {
4540 *slot = entry;
4541 arg->g->page_gotno += entry->num_pages;
4542 }
4543 return 1;
4544 }
4545
4546 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4547 this would lead to overflow, 1 if they were merged successfully,
4548 and 0 if a merge failed due to lack of memory. (These values are chosen
4549 so that nonnegative return values can be returned by a htab_traverse
4550 callback.) */
4551
4552 static int
4553 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4554 struct mips_got_info *to,
4555 struct mips_elf_got_per_bfd_arg *arg)
4556 {
4557 struct mips_elf_traverse_got_arg tga;
4558 unsigned int estimate;
4559
4560 /* Work out how many page entries we would need for the combined GOT. */
4561 estimate = arg->max_pages;
4562 if (estimate >= from->page_gotno + to->page_gotno)
4563 estimate = from->page_gotno + to->page_gotno;
4564
4565 /* And conservatively estimate how many local and TLS entries
4566 would be needed. */
4567 estimate += from->local_gotno + to->local_gotno;
4568 estimate += from->tls_gotno + to->tls_gotno;
4569
4570 /* If we're merging with the primary got, any TLS relocations will
4571 come after the full set of global entries. Otherwise estimate those
4572 conservatively as well. */
4573 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4574 estimate += arg->global_count;
4575 else
4576 estimate += from->global_gotno + to->global_gotno;
4577
4578 /* Bail out if the combined GOT might be too big. */
4579 if (estimate > arg->max_count)
4580 return -1;
4581
4582 /* Transfer the bfd's got information from FROM to TO. */
4583 tga.info = arg->info;
4584 tga.g = to;
4585 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4586 if (!tga.g)
4587 return 0;
4588
4589 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4590 if (!tga.g)
4591 return 0;
4592
4593 mips_elf_replace_bfd_got (abfd, to);
4594 return 1;
4595 }
4596
4597 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4598 as possible of the primary got, since it doesn't require explicit
4599 dynamic relocations, but don't use bfds that would reference global
4600 symbols out of the addressable range. Failing the primary got,
4601 attempt to merge with the current got, or finish the current got
4602 and then make make the new got current. */
4603
4604 static bfd_boolean
4605 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4606 struct mips_elf_got_per_bfd_arg *arg)
4607 {
4608 unsigned int estimate;
4609 int result;
4610
4611 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4612 return FALSE;
4613
4614 /* Work out the number of page, local and TLS entries. */
4615 estimate = arg->max_pages;
4616 if (estimate > g->page_gotno)
4617 estimate = g->page_gotno;
4618 estimate += g->local_gotno + g->tls_gotno;
4619
4620 /* We place TLS GOT entries after both locals and globals. The globals
4621 for the primary GOT may overflow the normal GOT size limit, so be
4622 sure not to merge a GOT which requires TLS with the primary GOT in that
4623 case. This doesn't affect non-primary GOTs. */
4624 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4625
4626 if (estimate <= arg->max_count)
4627 {
4628 /* If we don't have a primary GOT, use it as
4629 a starting point for the primary GOT. */
4630 if (!arg->primary)
4631 {
4632 arg->primary = g;
4633 return TRUE;
4634 }
4635
4636 /* Try merging with the primary GOT. */
4637 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4638 if (result >= 0)
4639 return result;
4640 }
4641
4642 /* If we can merge with the last-created got, do it. */
4643 if (arg->current)
4644 {
4645 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4646 if (result >= 0)
4647 return result;
4648 }
4649
4650 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4651 fits; if it turns out that it doesn't, we'll get relocation
4652 overflows anyway. */
4653 g->next = arg->current;
4654 arg->current = g;
4655
4656 return TRUE;
4657 }
4658
4659 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4660 to GOTIDX, duplicating the entry if it has already been assigned
4661 an index in a different GOT. */
4662
4663 static bfd_boolean
4664 mips_elf_set_gotidx (void **entryp, long gotidx)
4665 {
4666 struct mips_got_entry *entry;
4667
4668 entry = (struct mips_got_entry *) *entryp;
4669 if (entry->gotidx > 0)
4670 {
4671 struct mips_got_entry *new_entry;
4672
4673 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4674 if (!new_entry)
4675 return FALSE;
4676
4677 *new_entry = *entry;
4678 *entryp = new_entry;
4679 entry = new_entry;
4680 }
4681 entry->gotidx = gotidx;
4682 return TRUE;
4683 }
4684
4685 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4686 mips_elf_traverse_got_arg in which DATA->value is the size of one
4687 GOT entry. Set DATA->g to null on failure. */
4688
4689 static int
4690 mips_elf_initialize_tls_index (void **entryp, void *data)
4691 {
4692 struct mips_got_entry *entry;
4693 struct mips_elf_traverse_got_arg *arg;
4694
4695 /* We're only interested in TLS symbols. */
4696 entry = (struct mips_got_entry *) *entryp;
4697 if (entry->tls_type == GOT_TLS_NONE)
4698 return 1;
4699
4700 arg = (struct mips_elf_traverse_got_arg *) data;
4701 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4702 {
4703 arg->g = NULL;
4704 return 0;
4705 }
4706
4707 /* Account for the entries we've just allocated. */
4708 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4709 return 1;
4710 }
4711
4712 /* A htab_traverse callback for GOT entries, where DATA points to a
4713 mips_elf_traverse_got_arg. Set the global_got_area of each global
4714 symbol to DATA->value. */
4715
4716 static int
4717 mips_elf_set_global_got_area (void **entryp, void *data)
4718 {
4719 struct mips_got_entry *entry;
4720 struct mips_elf_traverse_got_arg *arg;
4721
4722 entry = (struct mips_got_entry *) *entryp;
4723 arg = (struct mips_elf_traverse_got_arg *) data;
4724 if (entry->abfd != NULL
4725 && entry->symndx == -1
4726 && entry->d.h->global_got_area != GGA_NONE)
4727 entry->d.h->global_got_area = arg->value;
4728 return 1;
4729 }
4730
4731 /* A htab_traverse callback for secondary GOT entries, where DATA points
4732 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4733 and record the number of relocations they require. DATA->value is
4734 the size of one GOT entry. Set DATA->g to null on failure. */
4735
4736 static int
4737 mips_elf_set_global_gotidx (void **entryp, void *data)
4738 {
4739 struct mips_got_entry *entry;
4740 struct mips_elf_traverse_got_arg *arg;
4741
4742 entry = (struct mips_got_entry *) *entryp;
4743 arg = (struct mips_elf_traverse_got_arg *) data;
4744 if (entry->abfd != NULL
4745 && entry->symndx == -1
4746 && entry->d.h->global_got_area != GGA_NONE)
4747 {
4748 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4749 {
4750 arg->g = NULL;
4751 return 0;
4752 }
4753 arg->g->assigned_low_gotno += 1;
4754
4755 if (bfd_link_pic (arg->info)
4756 || (elf_hash_table (arg->info)->dynamic_sections_created
4757 && entry->d.h->root.def_dynamic
4758 && !entry->d.h->root.def_regular))
4759 arg->g->relocs += 1;
4760 }
4761
4762 return 1;
4763 }
4764
4765 /* A htab_traverse callback for GOT entries for which DATA is the
4766 bfd_link_info. Forbid any global symbols from having traditional
4767 lazy-binding stubs. */
4768
4769 static int
4770 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4771 {
4772 struct bfd_link_info *info;
4773 struct mips_elf_link_hash_table *htab;
4774 struct mips_got_entry *entry;
4775
4776 entry = (struct mips_got_entry *) *entryp;
4777 info = (struct bfd_link_info *) data;
4778 htab = mips_elf_hash_table (info);
4779 BFD_ASSERT (htab != NULL);
4780
4781 if (entry->abfd != NULL
4782 && entry->symndx == -1
4783 && entry->d.h->needs_lazy_stub)
4784 {
4785 entry->d.h->needs_lazy_stub = FALSE;
4786 htab->lazy_stub_count--;
4787 }
4788
4789 return 1;
4790 }
4791
4792 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4793 the primary GOT. */
4794 static bfd_vma
4795 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4796 {
4797 if (!g->next)
4798 return 0;
4799
4800 g = mips_elf_bfd_got (ibfd, FALSE);
4801 if (! g)
4802 return 0;
4803
4804 BFD_ASSERT (g->next);
4805
4806 g = g->next;
4807
4808 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4809 * MIPS_ELF_GOT_SIZE (abfd);
4810 }
4811
4812 /* Turn a single GOT that is too big for 16-bit addressing into
4813 a sequence of GOTs, each one 16-bit addressable. */
4814
4815 static bfd_boolean
4816 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4817 asection *got, bfd_size_type pages)
4818 {
4819 struct mips_elf_link_hash_table *htab;
4820 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4821 struct mips_elf_traverse_got_arg tga;
4822 struct mips_got_info *g, *gg;
4823 unsigned int assign, needed_relocs;
4824 bfd *dynobj, *ibfd;
4825
4826 dynobj = elf_hash_table (info)->dynobj;
4827 htab = mips_elf_hash_table (info);
4828 BFD_ASSERT (htab != NULL);
4829
4830 g = htab->got_info;
4831
4832 got_per_bfd_arg.obfd = abfd;
4833 got_per_bfd_arg.info = info;
4834 got_per_bfd_arg.current = NULL;
4835 got_per_bfd_arg.primary = NULL;
4836 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4837 / MIPS_ELF_GOT_SIZE (abfd))
4838 - htab->reserved_gotno);
4839 got_per_bfd_arg.max_pages = pages;
4840 /* The number of globals that will be included in the primary GOT.
4841 See the calls to mips_elf_set_global_got_area below for more
4842 information. */
4843 got_per_bfd_arg.global_count = g->global_gotno;
4844
4845 /* Try to merge the GOTs of input bfds together, as long as they
4846 don't seem to exceed the maximum GOT size, choosing one of them
4847 to be the primary GOT. */
4848 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4849 {
4850 gg = mips_elf_bfd_got (ibfd, FALSE);
4851 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4852 return FALSE;
4853 }
4854
4855 /* If we do not find any suitable primary GOT, create an empty one. */
4856 if (got_per_bfd_arg.primary == NULL)
4857 g->next = mips_elf_create_got_info (abfd);
4858 else
4859 g->next = got_per_bfd_arg.primary;
4860 g->next->next = got_per_bfd_arg.current;
4861
4862 /* GG is now the master GOT, and G is the primary GOT. */
4863 gg = g;
4864 g = g->next;
4865
4866 /* Map the output bfd to the primary got. That's what we're going
4867 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4868 didn't mark in check_relocs, and we want a quick way to find it.
4869 We can't just use gg->next because we're going to reverse the
4870 list. */
4871 mips_elf_replace_bfd_got (abfd, g);
4872
4873 /* Every symbol that is referenced in a dynamic relocation must be
4874 present in the primary GOT, so arrange for them to appear after
4875 those that are actually referenced. */
4876 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4877 g->global_gotno = gg->global_gotno;
4878
4879 tga.info = info;
4880 tga.value = GGA_RELOC_ONLY;
4881 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4882 tga.value = GGA_NORMAL;
4883 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4884
4885 /* Now go through the GOTs assigning them offset ranges.
4886 [assigned_low_gotno, local_gotno[ will be set to the range of local
4887 entries in each GOT. We can then compute the end of a GOT by
4888 adding local_gotno to global_gotno. We reverse the list and make
4889 it circular since then we'll be able to quickly compute the
4890 beginning of a GOT, by computing the end of its predecessor. To
4891 avoid special cases for the primary GOT, while still preserving
4892 assertions that are valid for both single- and multi-got links,
4893 we arrange for the main got struct to have the right number of
4894 global entries, but set its local_gotno such that the initial
4895 offset of the primary GOT is zero. Remember that the primary GOT
4896 will become the last item in the circular linked list, so it
4897 points back to the master GOT. */
4898 gg->local_gotno = -g->global_gotno;
4899 gg->global_gotno = g->global_gotno;
4900 gg->tls_gotno = 0;
4901 assign = 0;
4902 gg->next = gg;
4903
4904 do
4905 {
4906 struct mips_got_info *gn;
4907
4908 assign += htab->reserved_gotno;
4909 g->assigned_low_gotno = assign;
4910 g->local_gotno += assign;
4911 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4912 g->assigned_high_gotno = g->local_gotno - 1;
4913 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4914
4915 /* Take g out of the direct list, and push it onto the reversed
4916 list that gg points to. g->next is guaranteed to be nonnull after
4917 this operation, as required by mips_elf_initialize_tls_index. */
4918 gn = g->next;
4919 g->next = gg->next;
4920 gg->next = g;
4921
4922 /* Set up any TLS entries. We always place the TLS entries after
4923 all non-TLS entries. */
4924 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4925 tga.g = g;
4926 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4927 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4928 if (!tga.g)
4929 return FALSE;
4930 BFD_ASSERT (g->tls_assigned_gotno == assign);
4931
4932 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4933 g = gn;
4934
4935 /* Forbid global symbols in every non-primary GOT from having
4936 lazy-binding stubs. */
4937 if (g)
4938 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4939 }
4940 while (g);
4941
4942 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
4943
4944 needed_relocs = 0;
4945 for (g = gg->next; g && g->next != gg; g = g->next)
4946 {
4947 unsigned int save_assign;
4948
4949 /* Assign offsets to global GOT entries and count how many
4950 relocations they need. */
4951 save_assign = g->assigned_low_gotno;
4952 g->assigned_low_gotno = g->local_gotno;
4953 tga.info = info;
4954 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4955 tga.g = g;
4956 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
4957 if (!tga.g)
4958 return FALSE;
4959 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4960 g->assigned_low_gotno = save_assign;
4961
4962 if (bfd_link_pic (info))
4963 {
4964 g->relocs += g->local_gotno - g->assigned_low_gotno;
4965 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
4966 + g->next->global_gotno
4967 + g->next->tls_gotno
4968 + htab->reserved_gotno);
4969 }
4970 needed_relocs += g->relocs;
4971 }
4972 needed_relocs += g->relocs;
4973
4974 if (needed_relocs)
4975 mips_elf_allocate_dynamic_relocations (dynobj, info,
4976 needed_relocs);
4977
4978 return TRUE;
4979 }
4980
4981 \f
4982 /* Returns the first relocation of type r_type found, beginning with
4983 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4984
4985 static const Elf_Internal_Rela *
4986 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4987 const Elf_Internal_Rela *relocation,
4988 const Elf_Internal_Rela *relend)
4989 {
4990 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4991
4992 while (relocation < relend)
4993 {
4994 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4995 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4996 return relocation;
4997
4998 ++relocation;
4999 }
5000
5001 /* We didn't find it. */
5002 return NULL;
5003 }
5004
5005 /* Return whether an input relocation is against a local symbol. */
5006
5007 static bfd_boolean
5008 mips_elf_local_relocation_p (bfd *input_bfd,
5009 const Elf_Internal_Rela *relocation,
5010 asection **local_sections)
5011 {
5012 unsigned long r_symndx;
5013 Elf_Internal_Shdr *symtab_hdr;
5014 size_t extsymoff;
5015
5016 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5017 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5018 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5019
5020 if (r_symndx < extsymoff)
5021 return TRUE;
5022 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5023 return TRUE;
5024
5025 return FALSE;
5026 }
5027 \f
5028 /* Sign-extend VALUE, which has the indicated number of BITS. */
5029
5030 bfd_vma
5031 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
5032 {
5033 if (value & ((bfd_vma) 1 << (bits - 1)))
5034 /* VALUE is negative. */
5035 value |= ((bfd_vma) - 1) << bits;
5036
5037 return value;
5038 }
5039
5040 /* Return non-zero if the indicated VALUE has overflowed the maximum
5041 range expressible by a signed number with the indicated number of
5042 BITS. */
5043
5044 static bfd_boolean
5045 mips_elf_overflow_p (bfd_vma value, int bits)
5046 {
5047 bfd_signed_vma svalue = (bfd_signed_vma) value;
5048
5049 if (svalue > (1 << (bits - 1)) - 1)
5050 /* The value is too big. */
5051 return TRUE;
5052 else if (svalue < -(1 << (bits - 1)))
5053 /* The value is too small. */
5054 return TRUE;
5055
5056 /* All is well. */
5057 return FALSE;
5058 }
5059
5060 /* Calculate the %high function. */
5061
5062 static bfd_vma
5063 mips_elf_high (bfd_vma value)
5064 {
5065 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5066 }
5067
5068 /* Calculate the %higher function. */
5069
5070 static bfd_vma
5071 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5072 {
5073 #ifdef BFD64
5074 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5075 #else
5076 abort ();
5077 return MINUS_ONE;
5078 #endif
5079 }
5080
5081 /* Calculate the %highest function. */
5082
5083 static bfd_vma
5084 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5085 {
5086 #ifdef BFD64
5087 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5088 #else
5089 abort ();
5090 return MINUS_ONE;
5091 #endif
5092 }
5093 \f
5094 /* Create the .compact_rel section. */
5095
5096 static bfd_boolean
5097 mips_elf_create_compact_rel_section
5098 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5099 {
5100 flagword flags;
5101 register asection *s;
5102
5103 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5104 {
5105 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5106 | SEC_READONLY);
5107
5108 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5109 if (s == NULL
5110 || ! bfd_set_section_alignment (abfd, s,
5111 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5112 return FALSE;
5113
5114 s->size = sizeof (Elf32_External_compact_rel);
5115 }
5116
5117 return TRUE;
5118 }
5119
5120 /* Create the .got section to hold the global offset table. */
5121
5122 static bfd_boolean
5123 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5124 {
5125 flagword flags;
5126 register asection *s;
5127 struct elf_link_hash_entry *h;
5128 struct bfd_link_hash_entry *bh;
5129 struct mips_elf_link_hash_table *htab;
5130
5131 htab = mips_elf_hash_table (info);
5132 BFD_ASSERT (htab != NULL);
5133
5134 /* This function may be called more than once. */
5135 if (htab->root.sgot)
5136 return TRUE;
5137
5138 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5139 | SEC_LINKER_CREATED);
5140
5141 /* We have to use an alignment of 2**4 here because this is hardcoded
5142 in the function stub generation and in the linker script. */
5143 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5144 if (s == NULL
5145 || ! bfd_set_section_alignment (abfd, s, 4))
5146 return FALSE;
5147 htab->root.sgot = s;
5148
5149 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5150 linker script because we don't want to define the symbol if we
5151 are not creating a global offset table. */
5152 bh = NULL;
5153 if (! (_bfd_generic_link_add_one_symbol
5154 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5155 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5156 return FALSE;
5157
5158 h = (struct elf_link_hash_entry *) bh;
5159 h->non_elf = 0;
5160 h->def_regular = 1;
5161 h->type = STT_OBJECT;
5162 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5163 elf_hash_table (info)->hgot = h;
5164
5165 if (bfd_link_pic (info)
5166 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5167 return FALSE;
5168
5169 htab->got_info = mips_elf_create_got_info (abfd);
5170 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5171 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5172
5173 /* We also need a .got.plt section when generating PLTs. */
5174 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5175 SEC_ALLOC | SEC_LOAD
5176 | SEC_HAS_CONTENTS
5177 | SEC_IN_MEMORY
5178 | SEC_LINKER_CREATED);
5179 if (s == NULL)
5180 return FALSE;
5181 htab->root.sgotplt = s;
5182
5183 return TRUE;
5184 }
5185 \f
5186 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5187 __GOTT_INDEX__ symbols. These symbols are only special for
5188 shared objects; they are not used in executables. */
5189
5190 static bfd_boolean
5191 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5192 {
5193 return (mips_elf_hash_table (info)->is_vxworks
5194 && bfd_link_pic (info)
5195 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5196 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5197 }
5198
5199 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5200 require an la25 stub. See also mips_elf_local_pic_function_p,
5201 which determines whether the destination function ever requires a
5202 stub. */
5203
5204 static bfd_boolean
5205 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5206 bfd_boolean target_is_16_bit_code_p)
5207 {
5208 /* We specifically ignore branches and jumps from EF_PIC objects,
5209 where the onus is on the compiler or programmer to perform any
5210 necessary initialization of $25. Sometimes such initialization
5211 is unnecessary; for example, -mno-shared functions do not use
5212 the incoming value of $25, and may therefore be called directly. */
5213 if (PIC_OBJECT_P (input_bfd))
5214 return FALSE;
5215
5216 switch (r_type)
5217 {
5218 case R_MIPS_26:
5219 case R_MIPS_PC16:
5220 case R_MIPS_PC21_S2:
5221 case R_MIPS_PC26_S2:
5222 case R_MICROMIPS_26_S1:
5223 case R_MICROMIPS_PC7_S1:
5224 case R_MICROMIPS_PC10_S1:
5225 case R_MICROMIPS_PC16_S1:
5226 case R_MICROMIPS_PC23_S2:
5227 return TRUE;
5228
5229 case R_MIPS16_26:
5230 return !target_is_16_bit_code_p;
5231
5232 default:
5233 return FALSE;
5234 }
5235 }
5236 \f
5237 /* Calculate the value produced by the RELOCATION (which comes from
5238 the INPUT_BFD). The ADDEND is the addend to use for this
5239 RELOCATION; RELOCATION->R_ADDEND is ignored.
5240
5241 The result of the relocation calculation is stored in VALUEP.
5242 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5243 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5244
5245 This function returns bfd_reloc_continue if the caller need take no
5246 further action regarding this relocation, bfd_reloc_notsupported if
5247 something goes dramatically wrong, bfd_reloc_overflow if an
5248 overflow occurs, and bfd_reloc_ok to indicate success. */
5249
5250 static bfd_reloc_status_type
5251 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5252 asection *input_section,
5253 struct bfd_link_info *info,
5254 const Elf_Internal_Rela *relocation,
5255 bfd_vma addend, reloc_howto_type *howto,
5256 Elf_Internal_Sym *local_syms,
5257 asection **local_sections, bfd_vma *valuep,
5258 const char **namep,
5259 bfd_boolean *cross_mode_jump_p,
5260 bfd_boolean save_addend)
5261 {
5262 /* The eventual value we will return. */
5263 bfd_vma value;
5264 /* The address of the symbol against which the relocation is
5265 occurring. */
5266 bfd_vma symbol = 0;
5267 /* The final GP value to be used for the relocatable, executable, or
5268 shared object file being produced. */
5269 bfd_vma gp;
5270 /* The place (section offset or address) of the storage unit being
5271 relocated. */
5272 bfd_vma p;
5273 /* The value of GP used to create the relocatable object. */
5274 bfd_vma gp0;
5275 /* The offset into the global offset table at which the address of
5276 the relocation entry symbol, adjusted by the addend, resides
5277 during execution. */
5278 bfd_vma g = MINUS_ONE;
5279 /* The section in which the symbol referenced by the relocation is
5280 located. */
5281 asection *sec = NULL;
5282 struct mips_elf_link_hash_entry *h = NULL;
5283 /* TRUE if the symbol referred to by this relocation is a local
5284 symbol. */
5285 bfd_boolean local_p, was_local_p;
5286 /* TRUE if the symbol referred to by this relocation is a section
5287 symbol. */
5288 bfd_boolean section_p = FALSE;
5289 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5290 bfd_boolean gp_disp_p = FALSE;
5291 /* TRUE if the symbol referred to by this relocation is
5292 "__gnu_local_gp". */
5293 bfd_boolean gnu_local_gp_p = FALSE;
5294 Elf_Internal_Shdr *symtab_hdr;
5295 size_t extsymoff;
5296 unsigned long r_symndx;
5297 int r_type;
5298 /* TRUE if overflow occurred during the calculation of the
5299 relocation value. */
5300 bfd_boolean overflowed_p;
5301 /* TRUE if this relocation refers to a MIPS16 function. */
5302 bfd_boolean target_is_16_bit_code_p = FALSE;
5303 bfd_boolean target_is_micromips_code_p = FALSE;
5304 struct mips_elf_link_hash_table *htab;
5305 bfd *dynobj;
5306 bfd_boolean resolved_to_zero;
5307
5308 dynobj = elf_hash_table (info)->dynobj;
5309 htab = mips_elf_hash_table (info);
5310 BFD_ASSERT (htab != NULL);
5311
5312 /* Parse the relocation. */
5313 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5314 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5315 p = (input_section->output_section->vma
5316 + input_section->output_offset
5317 + relocation->r_offset);
5318
5319 /* Assume that there will be no overflow. */
5320 overflowed_p = FALSE;
5321
5322 /* Figure out whether or not the symbol is local, and get the offset
5323 used in the array of hash table entries. */
5324 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5325 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5326 local_sections);
5327 was_local_p = local_p;
5328 if (! elf_bad_symtab (input_bfd))
5329 extsymoff = symtab_hdr->sh_info;
5330 else
5331 {
5332 /* The symbol table does not follow the rule that local symbols
5333 must come before globals. */
5334 extsymoff = 0;
5335 }
5336
5337 /* Figure out the value of the symbol. */
5338 if (local_p)
5339 {
5340 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5341 Elf_Internal_Sym *sym;
5342
5343 sym = local_syms + r_symndx;
5344 sec = local_sections[r_symndx];
5345
5346 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5347
5348 symbol = sec->output_section->vma + sec->output_offset;
5349 if (!section_p || (sec->flags & SEC_MERGE))
5350 symbol += sym->st_value;
5351 if ((sec->flags & SEC_MERGE) && section_p)
5352 {
5353 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5354 addend -= symbol;
5355 addend += sec->output_section->vma + sec->output_offset;
5356 }
5357
5358 /* MIPS16/microMIPS text labels should be treated as odd. */
5359 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5360 ++symbol;
5361
5362 /* Record the name of this symbol, for our caller. */
5363 *namep = bfd_elf_string_from_elf_section (input_bfd,
5364 symtab_hdr->sh_link,
5365 sym->st_name);
5366 if (*namep == NULL || **namep == '\0')
5367 *namep = bfd_section_name (input_bfd, sec);
5368
5369 /* For relocations against a section symbol and ones against no
5370 symbol (absolute relocations) infer the ISA mode from the addend. */
5371 if (section_p || r_symndx == STN_UNDEF)
5372 {
5373 target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5374 target_is_micromips_code_p = (addend & 1) && micromips_p;
5375 }
5376 /* For relocations against an absolute symbol infer the ISA mode
5377 from the value of the symbol plus addend. */
5378 else if (bfd_is_abs_section (sec))
5379 {
5380 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5381 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5382 }
5383 /* Otherwise just use the regular symbol annotation available. */
5384 else
5385 {
5386 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5387 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5388 }
5389 }
5390 else
5391 {
5392 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5393
5394 /* For global symbols we look up the symbol in the hash-table. */
5395 h = ((struct mips_elf_link_hash_entry *)
5396 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5397 /* Find the real hash-table entry for this symbol. */
5398 while (h->root.root.type == bfd_link_hash_indirect
5399 || h->root.root.type == bfd_link_hash_warning)
5400 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5401
5402 /* Record the name of this symbol, for our caller. */
5403 *namep = h->root.root.root.string;
5404
5405 /* See if this is the special _gp_disp symbol. Note that such a
5406 symbol must always be a global symbol. */
5407 if (strcmp (*namep, "_gp_disp") == 0
5408 && ! NEWABI_P (input_bfd))
5409 {
5410 /* Relocations against _gp_disp are permitted only with
5411 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5412 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5413 return bfd_reloc_notsupported;
5414
5415 gp_disp_p = TRUE;
5416 }
5417 /* See if this is the special _gp symbol. Note that such a
5418 symbol must always be a global symbol. */
5419 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5420 gnu_local_gp_p = TRUE;
5421
5422
5423 /* If this symbol is defined, calculate its address. Note that
5424 _gp_disp is a magic symbol, always implicitly defined by the
5425 linker, so it's inappropriate to check to see whether or not
5426 its defined. */
5427 else if ((h->root.root.type == bfd_link_hash_defined
5428 || h->root.root.type == bfd_link_hash_defweak)
5429 && h->root.root.u.def.section)
5430 {
5431 sec = h->root.root.u.def.section;
5432 if (sec->output_section)
5433 symbol = (h->root.root.u.def.value
5434 + sec->output_section->vma
5435 + sec->output_offset);
5436 else
5437 symbol = h->root.root.u.def.value;
5438 }
5439 else if (h->root.root.type == bfd_link_hash_undefweak)
5440 /* We allow relocations against undefined weak symbols, giving
5441 it the value zero, so that you can undefined weak functions
5442 and check to see if they exist by looking at their
5443 addresses. */
5444 symbol = 0;
5445 else if (info->unresolved_syms_in_objects == RM_IGNORE
5446 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5447 symbol = 0;
5448 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5449 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5450 {
5451 /* If this is a dynamic link, we should have created a
5452 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5453 in _bfd_mips_elf_create_dynamic_sections.
5454 Otherwise, we should define the symbol with a value of 0.
5455 FIXME: It should probably get into the symbol table
5456 somehow as well. */
5457 BFD_ASSERT (! bfd_link_pic (info));
5458 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5459 symbol = 0;
5460 }
5461 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5462 {
5463 /* This is an optional symbol - an Irix specific extension to the
5464 ELF spec. Ignore it for now.
5465 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5466 than simply ignoring them, but we do not handle this for now.
5467 For information see the "64-bit ELF Object File Specification"
5468 which is available from here:
5469 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5470 symbol = 0;
5471 }
5472 else
5473 {
5474 bfd_boolean reject_undefined
5475 = (info->unresolved_syms_in_objects == RM_GENERATE_ERROR
5476 || ELF_ST_VISIBILITY (h->root.other) != STV_DEFAULT);
5477
5478 (*info->callbacks->undefined_symbol)
5479 (info, h->root.root.root.string, input_bfd,
5480 input_section, relocation->r_offset, reject_undefined);
5481
5482 if (reject_undefined)
5483 return bfd_reloc_undefined;
5484
5485 symbol = 0;
5486 }
5487
5488 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5489 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5490 }
5491
5492 /* If this is a reference to a 16-bit function with a stub, we need
5493 to redirect the relocation to the stub unless:
5494
5495 (a) the relocation is for a MIPS16 JAL;
5496
5497 (b) the relocation is for a MIPS16 PIC call, and there are no
5498 non-MIPS16 uses of the GOT slot; or
5499
5500 (c) the section allows direct references to MIPS16 functions. */
5501 if (r_type != R_MIPS16_26
5502 && !bfd_link_relocatable (info)
5503 && ((h != NULL
5504 && h->fn_stub != NULL
5505 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5506 || (local_p
5507 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5508 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5509 && !section_allows_mips16_refs_p (input_section))
5510 {
5511 /* This is a 32- or 64-bit call to a 16-bit function. We should
5512 have already noticed that we were going to need the
5513 stub. */
5514 if (local_p)
5515 {
5516 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5517 value = 0;
5518 }
5519 else
5520 {
5521 BFD_ASSERT (h->need_fn_stub);
5522 if (h->la25_stub)
5523 {
5524 /* If a LA25 header for the stub itself exists, point to the
5525 prepended LUI/ADDIU sequence. */
5526 sec = h->la25_stub->stub_section;
5527 value = h->la25_stub->offset;
5528 }
5529 else
5530 {
5531 sec = h->fn_stub;
5532 value = 0;
5533 }
5534 }
5535
5536 symbol = sec->output_section->vma + sec->output_offset + value;
5537 /* The target is 16-bit, but the stub isn't. */
5538 target_is_16_bit_code_p = FALSE;
5539 }
5540 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5541 to a standard MIPS function, we need to redirect the call to the stub.
5542 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5543 indirect calls should use an indirect stub instead. */
5544 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
5545 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5546 || (local_p
5547 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5548 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5549 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5550 {
5551 if (local_p)
5552 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5553 else
5554 {
5555 /* If both call_stub and call_fp_stub are defined, we can figure
5556 out which one to use by checking which one appears in the input
5557 file. */
5558 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5559 {
5560 asection *o;
5561
5562 sec = NULL;
5563 for (o = input_bfd->sections; o != NULL; o = o->next)
5564 {
5565 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5566 {
5567 sec = h->call_fp_stub;
5568 break;
5569 }
5570 }
5571 if (sec == NULL)
5572 sec = h->call_stub;
5573 }
5574 else if (h->call_stub != NULL)
5575 sec = h->call_stub;
5576 else
5577 sec = h->call_fp_stub;
5578 }
5579
5580 BFD_ASSERT (sec->size > 0);
5581 symbol = sec->output_section->vma + sec->output_offset;
5582 }
5583 /* If this is a direct call to a PIC function, redirect to the
5584 non-PIC stub. */
5585 else if (h != NULL && h->la25_stub
5586 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5587 target_is_16_bit_code_p))
5588 {
5589 symbol = (h->la25_stub->stub_section->output_section->vma
5590 + h->la25_stub->stub_section->output_offset
5591 + h->la25_stub->offset);
5592 if (ELF_ST_IS_MICROMIPS (h->root.other))
5593 symbol |= 1;
5594 }
5595 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5596 entry is used if a standard PLT entry has also been made. In this
5597 case the symbol will have been set by mips_elf_set_plt_sym_value
5598 to point to the standard PLT entry, so redirect to the compressed
5599 one. */
5600 else if ((mips16_branch_reloc_p (r_type)
5601 || micromips_branch_reloc_p (r_type))
5602 && !bfd_link_relocatable (info)
5603 && h != NULL
5604 && h->use_plt_entry
5605 && h->root.plt.plist->comp_offset != MINUS_ONE
5606 && h->root.plt.plist->mips_offset != MINUS_ONE)
5607 {
5608 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5609
5610 sec = htab->root.splt;
5611 symbol = (sec->output_section->vma
5612 + sec->output_offset
5613 + htab->plt_header_size
5614 + htab->plt_mips_offset
5615 + h->root.plt.plist->comp_offset
5616 + 1);
5617
5618 target_is_16_bit_code_p = !micromips_p;
5619 target_is_micromips_code_p = micromips_p;
5620 }
5621
5622 /* Make sure MIPS16 and microMIPS are not used together. */
5623 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
5624 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5625 {
5626 _bfd_error_handler
5627 (_("MIPS16 and microMIPS functions cannot call each other"));
5628 return bfd_reloc_notsupported;
5629 }
5630
5631 /* Calls from 16-bit code to 32-bit code and vice versa require the
5632 mode change. However, we can ignore calls to undefined weak symbols,
5633 which should never be executed at runtime. This exception is important
5634 because the assembly writer may have "known" that any definition of the
5635 symbol would be 16-bit code, and that direct jumps were therefore
5636 acceptable. */
5637 *cross_mode_jump_p = (!bfd_link_relocatable (info)
5638 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5639 && ((mips16_branch_reloc_p (r_type)
5640 && !target_is_16_bit_code_p)
5641 || (micromips_branch_reloc_p (r_type)
5642 && !target_is_micromips_code_p)
5643 || ((branch_reloc_p (r_type)
5644 || r_type == R_MIPS_JALR)
5645 && (target_is_16_bit_code_p
5646 || target_is_micromips_code_p))));
5647
5648 local_p = (h == NULL || mips_use_local_got_p (info, h));
5649
5650 gp0 = _bfd_get_gp_value (input_bfd);
5651 gp = _bfd_get_gp_value (abfd);
5652 if (htab->got_info)
5653 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5654
5655 if (gnu_local_gp_p)
5656 symbol = gp;
5657
5658 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5659 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5660 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5661 if (got_page_reloc_p (r_type) && !local_p)
5662 {
5663 r_type = (micromips_reloc_p (r_type)
5664 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5665 addend = 0;
5666 }
5667
5668 resolved_to_zero = (h != NULL
5669 && UNDEFWEAK_NO_DYNAMIC_RELOC (info,
5670 &h->root));
5671
5672 /* If we haven't already determined the GOT offset, and we're going
5673 to need it, get it now. */
5674 switch (r_type)
5675 {
5676 case R_MIPS16_CALL16:
5677 case R_MIPS16_GOT16:
5678 case R_MIPS_CALL16:
5679 case R_MIPS_GOT16:
5680 case R_MIPS_GOT_DISP:
5681 case R_MIPS_GOT_HI16:
5682 case R_MIPS_CALL_HI16:
5683 case R_MIPS_GOT_LO16:
5684 case R_MIPS_CALL_LO16:
5685 case R_MICROMIPS_CALL16:
5686 case R_MICROMIPS_GOT16:
5687 case R_MICROMIPS_GOT_DISP:
5688 case R_MICROMIPS_GOT_HI16:
5689 case R_MICROMIPS_CALL_HI16:
5690 case R_MICROMIPS_GOT_LO16:
5691 case R_MICROMIPS_CALL_LO16:
5692 case R_MIPS_TLS_GD:
5693 case R_MIPS_TLS_GOTTPREL:
5694 case R_MIPS_TLS_LDM:
5695 case R_MIPS16_TLS_GD:
5696 case R_MIPS16_TLS_GOTTPREL:
5697 case R_MIPS16_TLS_LDM:
5698 case R_MICROMIPS_TLS_GD:
5699 case R_MICROMIPS_TLS_GOTTPREL:
5700 case R_MICROMIPS_TLS_LDM:
5701 /* Find the index into the GOT where this value is located. */
5702 if (tls_ldm_reloc_p (r_type))
5703 {
5704 g = mips_elf_local_got_index (abfd, input_bfd, info,
5705 0, 0, NULL, r_type);
5706 if (g == MINUS_ONE)
5707 return bfd_reloc_outofrange;
5708 }
5709 else if (!local_p)
5710 {
5711 /* On VxWorks, CALL relocations should refer to the .got.plt
5712 entry, which is initialized to point at the PLT stub. */
5713 if (htab->is_vxworks
5714 && (call_hi16_reloc_p (r_type)
5715 || call_lo16_reloc_p (r_type)
5716 || call16_reloc_p (r_type)))
5717 {
5718 BFD_ASSERT (addend == 0);
5719 BFD_ASSERT (h->root.needs_plt);
5720 g = mips_elf_gotplt_index (info, &h->root);
5721 }
5722 else
5723 {
5724 BFD_ASSERT (addend == 0);
5725 g = mips_elf_global_got_index (abfd, info, input_bfd,
5726 &h->root, r_type);
5727 if (!TLS_RELOC_P (r_type)
5728 && !elf_hash_table (info)->dynamic_sections_created)
5729 /* This is a static link. We must initialize the GOT entry. */
5730 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->root.sgot->contents + g);
5731 }
5732 }
5733 else if (!htab->is_vxworks
5734 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5735 /* The calculation below does not involve "g". */
5736 break;
5737 else
5738 {
5739 g = mips_elf_local_got_index (abfd, input_bfd, info,
5740 symbol + addend, r_symndx, h, r_type);
5741 if (g == MINUS_ONE)
5742 return bfd_reloc_outofrange;
5743 }
5744
5745 /* Convert GOT indices to actual offsets. */
5746 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5747 break;
5748 }
5749
5750 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5751 symbols are resolved by the loader. Add them to .rela.dyn. */
5752 if (h != NULL && is_gott_symbol (info, &h->root))
5753 {
5754 Elf_Internal_Rela outrel;
5755 bfd_byte *loc;
5756 asection *s;
5757
5758 s = mips_elf_rel_dyn_section (info, FALSE);
5759 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5760
5761 outrel.r_offset = (input_section->output_section->vma
5762 + input_section->output_offset
5763 + relocation->r_offset);
5764 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5765 outrel.r_addend = addend;
5766 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5767
5768 /* If we've written this relocation for a readonly section,
5769 we need to set DF_TEXTREL again, so that we do not delete the
5770 DT_TEXTREL tag. */
5771 if (MIPS_ELF_READONLY_SECTION (input_section))
5772 info->flags |= DF_TEXTREL;
5773
5774 *valuep = 0;
5775 return bfd_reloc_ok;
5776 }
5777
5778 /* Figure out what kind of relocation is being performed. */
5779 switch (r_type)
5780 {
5781 case R_MIPS_NONE:
5782 return bfd_reloc_continue;
5783
5784 case R_MIPS_16:
5785 if (howto->partial_inplace)
5786 addend = _bfd_mips_elf_sign_extend (addend, 16);
5787 value = symbol + addend;
5788 overflowed_p = mips_elf_overflow_p (value, 16);
5789 break;
5790
5791 case R_MIPS_32:
5792 case R_MIPS_REL32:
5793 case R_MIPS_64:
5794 if ((bfd_link_pic (info)
5795 || (htab->root.dynamic_sections_created
5796 && h != NULL
5797 && h->root.def_dynamic
5798 && !h->root.def_regular
5799 && !h->has_static_relocs))
5800 && r_symndx != STN_UNDEF
5801 && (h == NULL
5802 || h->root.root.type != bfd_link_hash_undefweak
5803 || (ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
5804 && !resolved_to_zero))
5805 && (input_section->flags & SEC_ALLOC) != 0)
5806 {
5807 /* If we're creating a shared library, then we can't know
5808 where the symbol will end up. So, we create a relocation
5809 record in the output, and leave the job up to the dynamic
5810 linker. We must do the same for executable references to
5811 shared library symbols, unless we've decided to use copy
5812 relocs or PLTs instead. */
5813 value = addend;
5814 if (!mips_elf_create_dynamic_relocation (abfd,
5815 info,
5816 relocation,
5817 h,
5818 sec,
5819 symbol,
5820 &value,
5821 input_section))
5822 return bfd_reloc_undefined;
5823 }
5824 else
5825 {
5826 if (r_type != R_MIPS_REL32)
5827 value = symbol + addend;
5828 else
5829 value = addend;
5830 }
5831 value &= howto->dst_mask;
5832 break;
5833
5834 case R_MIPS_PC32:
5835 value = symbol + addend - p;
5836 value &= howto->dst_mask;
5837 break;
5838
5839 case R_MIPS16_26:
5840 /* The calculation for R_MIPS16_26 is just the same as for an
5841 R_MIPS_26. It's only the storage of the relocated field into
5842 the output file that's different. That's handled in
5843 mips_elf_perform_relocation. So, we just fall through to the
5844 R_MIPS_26 case here. */
5845 case R_MIPS_26:
5846 case R_MICROMIPS_26_S1:
5847 {
5848 unsigned int shift;
5849
5850 /* Shift is 2, unusually, for microMIPS JALX. */
5851 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5852
5853 if (howto->partial_inplace && !section_p)
5854 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5855 else
5856 value = addend;
5857 value += symbol;
5858
5859 /* Make sure the target of a jump is suitably aligned. Bit 0 must
5860 be the correct ISA mode selector except for weak undefined
5861 symbols. */
5862 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5863 && (*cross_mode_jump_p
5864 ? (value & 3) != (r_type == R_MIPS_26)
5865 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
5866 return bfd_reloc_outofrange;
5867
5868 value >>= shift;
5869 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5870 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5871 value &= howto->dst_mask;
5872 }
5873 break;
5874
5875 case R_MIPS_TLS_DTPREL_HI16:
5876 case R_MIPS16_TLS_DTPREL_HI16:
5877 case R_MICROMIPS_TLS_DTPREL_HI16:
5878 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5879 & howto->dst_mask);
5880 break;
5881
5882 case R_MIPS_TLS_DTPREL_LO16:
5883 case R_MIPS_TLS_DTPREL32:
5884 case R_MIPS_TLS_DTPREL64:
5885 case R_MIPS16_TLS_DTPREL_LO16:
5886 case R_MICROMIPS_TLS_DTPREL_LO16:
5887 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5888 break;
5889
5890 case R_MIPS_TLS_TPREL_HI16:
5891 case R_MIPS16_TLS_TPREL_HI16:
5892 case R_MICROMIPS_TLS_TPREL_HI16:
5893 value = (mips_elf_high (addend + symbol - tprel_base (info))
5894 & howto->dst_mask);
5895 break;
5896
5897 case R_MIPS_TLS_TPREL_LO16:
5898 case R_MIPS_TLS_TPREL32:
5899 case R_MIPS_TLS_TPREL64:
5900 case R_MIPS16_TLS_TPREL_LO16:
5901 case R_MICROMIPS_TLS_TPREL_LO16:
5902 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5903 break;
5904
5905 case R_MIPS_HI16:
5906 case R_MIPS16_HI16:
5907 case R_MICROMIPS_HI16:
5908 if (!gp_disp_p)
5909 {
5910 value = mips_elf_high (addend + symbol);
5911 value &= howto->dst_mask;
5912 }
5913 else
5914 {
5915 /* For MIPS16 ABI code we generate this sequence
5916 0: li $v0,%hi(_gp_disp)
5917 4: addiupc $v1,%lo(_gp_disp)
5918 8: sll $v0,16
5919 12: addu $v0,$v1
5920 14: move $gp,$v0
5921 So the offsets of hi and lo relocs are the same, but the
5922 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5923 ADDIUPC clears the low two bits of the instruction address,
5924 so the base is ($t9 + 4) & ~3. */
5925 if (r_type == R_MIPS16_HI16)
5926 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5927 /* The microMIPS .cpload sequence uses the same assembly
5928 instructions as the traditional psABI version, but the
5929 incoming $t9 has the low bit set. */
5930 else if (r_type == R_MICROMIPS_HI16)
5931 value = mips_elf_high (addend + gp - p - 1);
5932 else
5933 value = mips_elf_high (addend + gp - p);
5934 }
5935 break;
5936
5937 case R_MIPS_LO16:
5938 case R_MIPS16_LO16:
5939 case R_MICROMIPS_LO16:
5940 case R_MICROMIPS_HI0_LO16:
5941 if (!gp_disp_p)
5942 value = (symbol + addend) & howto->dst_mask;
5943 else
5944 {
5945 /* See the comment for R_MIPS16_HI16 above for the reason
5946 for this conditional. */
5947 if (r_type == R_MIPS16_LO16)
5948 value = addend + gp - (p & ~(bfd_vma) 0x3);
5949 else if (r_type == R_MICROMIPS_LO16
5950 || r_type == R_MICROMIPS_HI0_LO16)
5951 value = addend + gp - p + 3;
5952 else
5953 value = addend + gp - p + 4;
5954 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5955 for overflow. But, on, say, IRIX5, relocations against
5956 _gp_disp are normally generated from the .cpload
5957 pseudo-op. It generates code that normally looks like
5958 this:
5959
5960 lui $gp,%hi(_gp_disp)
5961 addiu $gp,$gp,%lo(_gp_disp)
5962 addu $gp,$gp,$t9
5963
5964 Here $t9 holds the address of the function being called,
5965 as required by the MIPS ELF ABI. The R_MIPS_LO16
5966 relocation can easily overflow in this situation, but the
5967 R_MIPS_HI16 relocation will handle the overflow.
5968 Therefore, we consider this a bug in the MIPS ABI, and do
5969 not check for overflow here. */
5970 }
5971 break;
5972
5973 case R_MIPS_LITERAL:
5974 case R_MICROMIPS_LITERAL:
5975 /* Because we don't merge literal sections, we can handle this
5976 just like R_MIPS_GPREL16. In the long run, we should merge
5977 shared literals, and then we will need to additional work
5978 here. */
5979
5980 /* Fall through. */
5981
5982 case R_MIPS16_GPREL:
5983 /* The R_MIPS16_GPREL performs the same calculation as
5984 R_MIPS_GPREL16, but stores the relocated bits in a different
5985 order. We don't need to do anything special here; the
5986 differences are handled in mips_elf_perform_relocation. */
5987 case R_MIPS_GPREL16:
5988 case R_MICROMIPS_GPREL7_S2:
5989 case R_MICROMIPS_GPREL16:
5990 /* Only sign-extend the addend if it was extracted from the
5991 instruction. If the addend was separate, leave it alone,
5992 otherwise we may lose significant bits. */
5993 if (howto->partial_inplace)
5994 addend = _bfd_mips_elf_sign_extend (addend, 16);
5995 value = symbol + addend - gp;
5996 /* If the symbol was local, any earlier relocatable links will
5997 have adjusted its addend with the gp offset, so compensate
5998 for that now. Don't do it for symbols forced local in this
5999 link, though, since they won't have had the gp offset applied
6000 to them before. */
6001 if (was_local_p)
6002 value += gp0;
6003 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6004 overflowed_p = mips_elf_overflow_p (value, 16);
6005 break;
6006
6007 case R_MIPS16_GOT16:
6008 case R_MIPS16_CALL16:
6009 case R_MIPS_GOT16:
6010 case R_MIPS_CALL16:
6011 case R_MICROMIPS_GOT16:
6012 case R_MICROMIPS_CALL16:
6013 /* VxWorks does not have separate local and global semantics for
6014 R_MIPS*_GOT16; every relocation evaluates to "G". */
6015 if (!htab->is_vxworks && local_p)
6016 {
6017 value = mips_elf_got16_entry (abfd, input_bfd, info,
6018 symbol + addend, !was_local_p);
6019 if (value == MINUS_ONE)
6020 return bfd_reloc_outofrange;
6021 value
6022 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6023 overflowed_p = mips_elf_overflow_p (value, 16);
6024 break;
6025 }
6026
6027 /* Fall through. */
6028
6029 case R_MIPS_TLS_GD:
6030 case R_MIPS_TLS_GOTTPREL:
6031 case R_MIPS_TLS_LDM:
6032 case R_MIPS_GOT_DISP:
6033 case R_MIPS16_TLS_GD:
6034 case R_MIPS16_TLS_GOTTPREL:
6035 case R_MIPS16_TLS_LDM:
6036 case R_MICROMIPS_TLS_GD:
6037 case R_MICROMIPS_TLS_GOTTPREL:
6038 case R_MICROMIPS_TLS_LDM:
6039 case R_MICROMIPS_GOT_DISP:
6040 value = g;
6041 overflowed_p = mips_elf_overflow_p (value, 16);
6042 break;
6043
6044 case R_MIPS_GPREL32:
6045 value = (addend + symbol + gp0 - gp);
6046 if (!save_addend)
6047 value &= howto->dst_mask;
6048 break;
6049
6050 case R_MIPS_PC16:
6051 case R_MIPS_GNU_REL16_S2:
6052 if (howto->partial_inplace)
6053 addend = _bfd_mips_elf_sign_extend (addend, 18);
6054
6055 /* No need to exclude weak undefined symbols here as they resolve
6056 to 0 and never set `*cross_mode_jump_p', so this alignment check
6057 will never trigger for them. */
6058 if (*cross_mode_jump_p
6059 ? ((symbol + addend) & 3) != 1
6060 : ((symbol + addend) & 3) != 0)
6061 return bfd_reloc_outofrange;
6062
6063 value = symbol + addend - p;
6064 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6065 overflowed_p = mips_elf_overflow_p (value, 18);
6066 value >>= howto->rightshift;
6067 value &= howto->dst_mask;
6068 break;
6069
6070 case R_MIPS16_PC16_S1:
6071 if (howto->partial_inplace)
6072 addend = _bfd_mips_elf_sign_extend (addend, 17);
6073
6074 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6075 && (*cross_mode_jump_p
6076 ? ((symbol + addend) & 3) != 0
6077 : ((symbol + addend) & 1) == 0))
6078 return bfd_reloc_outofrange;
6079
6080 value = symbol + addend - p;
6081 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6082 overflowed_p = mips_elf_overflow_p (value, 17);
6083 value >>= howto->rightshift;
6084 value &= howto->dst_mask;
6085 break;
6086
6087 case R_MIPS_PC21_S2:
6088 if (howto->partial_inplace)
6089 addend = _bfd_mips_elf_sign_extend (addend, 23);
6090
6091 if ((symbol + addend) & 3)
6092 return bfd_reloc_outofrange;
6093
6094 value = symbol + addend - p;
6095 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6096 overflowed_p = mips_elf_overflow_p (value, 23);
6097 value >>= howto->rightshift;
6098 value &= howto->dst_mask;
6099 break;
6100
6101 case R_MIPS_PC26_S2:
6102 if (howto->partial_inplace)
6103 addend = _bfd_mips_elf_sign_extend (addend, 28);
6104
6105 if ((symbol + addend) & 3)
6106 return bfd_reloc_outofrange;
6107
6108 value = symbol + addend - p;
6109 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6110 overflowed_p = mips_elf_overflow_p (value, 28);
6111 value >>= howto->rightshift;
6112 value &= howto->dst_mask;
6113 break;
6114
6115 case R_MIPS_PC18_S3:
6116 if (howto->partial_inplace)
6117 addend = _bfd_mips_elf_sign_extend (addend, 21);
6118
6119 if ((symbol + addend) & 7)
6120 return bfd_reloc_outofrange;
6121
6122 value = symbol + addend - ((p | 7) ^ 7);
6123 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6124 overflowed_p = mips_elf_overflow_p (value, 21);
6125 value >>= howto->rightshift;
6126 value &= howto->dst_mask;
6127 break;
6128
6129 case R_MIPS_PC19_S2:
6130 if (howto->partial_inplace)
6131 addend = _bfd_mips_elf_sign_extend (addend, 21);
6132
6133 if ((symbol + addend) & 3)
6134 return bfd_reloc_outofrange;
6135
6136 value = symbol + addend - p;
6137 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6138 overflowed_p = mips_elf_overflow_p (value, 21);
6139 value >>= howto->rightshift;
6140 value &= howto->dst_mask;
6141 break;
6142
6143 case R_MIPS_PCHI16:
6144 value = mips_elf_high (symbol + addend - p);
6145 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6146 overflowed_p = mips_elf_overflow_p (value, 16);
6147 value &= howto->dst_mask;
6148 break;
6149
6150 case R_MIPS_PCLO16:
6151 if (howto->partial_inplace)
6152 addend = _bfd_mips_elf_sign_extend (addend, 16);
6153 value = symbol + addend - p;
6154 value &= howto->dst_mask;
6155 break;
6156
6157 case R_MICROMIPS_PC7_S1:
6158 if (howto->partial_inplace)
6159 addend = _bfd_mips_elf_sign_extend (addend, 8);
6160
6161 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6162 && (*cross_mode_jump_p
6163 ? ((symbol + addend + 2) & 3) != 0
6164 : ((symbol + addend + 2) & 1) == 0))
6165 return bfd_reloc_outofrange;
6166
6167 value = symbol + addend - p;
6168 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6169 overflowed_p = mips_elf_overflow_p (value, 8);
6170 value >>= howto->rightshift;
6171 value &= howto->dst_mask;
6172 break;
6173
6174 case R_MICROMIPS_PC10_S1:
6175 if (howto->partial_inplace)
6176 addend = _bfd_mips_elf_sign_extend (addend, 11);
6177
6178 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6179 && (*cross_mode_jump_p
6180 ? ((symbol + addend + 2) & 3) != 0
6181 : ((symbol + addend + 2) & 1) == 0))
6182 return bfd_reloc_outofrange;
6183
6184 value = symbol + addend - p;
6185 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6186 overflowed_p = mips_elf_overflow_p (value, 11);
6187 value >>= howto->rightshift;
6188 value &= howto->dst_mask;
6189 break;
6190
6191 case R_MICROMIPS_PC16_S1:
6192 if (howto->partial_inplace)
6193 addend = _bfd_mips_elf_sign_extend (addend, 17);
6194
6195 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6196 && (*cross_mode_jump_p
6197 ? ((symbol + addend) & 3) != 0
6198 : ((symbol + addend) & 1) == 0))
6199 return bfd_reloc_outofrange;
6200
6201 value = symbol + addend - p;
6202 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6203 overflowed_p = mips_elf_overflow_p (value, 17);
6204 value >>= howto->rightshift;
6205 value &= howto->dst_mask;
6206 break;
6207
6208 case R_MICROMIPS_PC23_S2:
6209 if (howto->partial_inplace)
6210 addend = _bfd_mips_elf_sign_extend (addend, 25);
6211 value = symbol + addend - ((p | 3) ^ 3);
6212 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6213 overflowed_p = mips_elf_overflow_p (value, 25);
6214 value >>= howto->rightshift;
6215 value &= howto->dst_mask;
6216 break;
6217
6218 case R_MIPS_GOT_HI16:
6219 case R_MIPS_CALL_HI16:
6220 case R_MICROMIPS_GOT_HI16:
6221 case R_MICROMIPS_CALL_HI16:
6222 /* We're allowed to handle these two relocations identically.
6223 The dynamic linker is allowed to handle the CALL relocations
6224 differently by creating a lazy evaluation stub. */
6225 value = g;
6226 value = mips_elf_high (value);
6227 value &= howto->dst_mask;
6228 break;
6229
6230 case R_MIPS_GOT_LO16:
6231 case R_MIPS_CALL_LO16:
6232 case R_MICROMIPS_GOT_LO16:
6233 case R_MICROMIPS_CALL_LO16:
6234 value = g & howto->dst_mask;
6235 break;
6236
6237 case R_MIPS_GOT_PAGE:
6238 case R_MICROMIPS_GOT_PAGE:
6239 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6240 if (value == MINUS_ONE)
6241 return bfd_reloc_outofrange;
6242 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6243 overflowed_p = mips_elf_overflow_p (value, 16);
6244 break;
6245
6246 case R_MIPS_GOT_OFST:
6247 case R_MICROMIPS_GOT_OFST:
6248 if (local_p)
6249 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6250 else
6251 value = addend;
6252 overflowed_p = mips_elf_overflow_p (value, 16);
6253 break;
6254
6255 case R_MIPS_SUB:
6256 case R_MICROMIPS_SUB:
6257 value = symbol - addend;
6258 value &= howto->dst_mask;
6259 break;
6260
6261 case R_MIPS_HIGHER:
6262 case R_MICROMIPS_HIGHER:
6263 value = mips_elf_higher (addend + symbol);
6264 value &= howto->dst_mask;
6265 break;
6266
6267 case R_MIPS_HIGHEST:
6268 case R_MICROMIPS_HIGHEST:
6269 value = mips_elf_highest (addend + symbol);
6270 value &= howto->dst_mask;
6271 break;
6272
6273 case R_MIPS_SCN_DISP:
6274 case R_MICROMIPS_SCN_DISP:
6275 value = symbol + addend - sec->output_offset;
6276 value &= howto->dst_mask;
6277 break;
6278
6279 case R_MIPS_JALR:
6280 case R_MICROMIPS_JALR:
6281 /* This relocation is only a hint. In some cases, we optimize
6282 it into a bal instruction. But we don't try to optimize
6283 when the symbol does not resolve locally. */
6284 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6285 return bfd_reloc_continue;
6286 /* We can't optimize cross-mode jumps either. */
6287 if (*cross_mode_jump_p)
6288 return bfd_reloc_continue;
6289 value = symbol + addend;
6290 /* Neither we can non-instruction-aligned targets. */
6291 if (r_type == R_MIPS_JALR ? (value & 3) != 0 : (value & 1) == 0)
6292 return bfd_reloc_continue;
6293 break;
6294
6295 case R_MIPS_PJUMP:
6296 case R_MIPS_GNU_VTINHERIT:
6297 case R_MIPS_GNU_VTENTRY:
6298 /* We don't do anything with these at present. */
6299 return bfd_reloc_continue;
6300
6301 default:
6302 /* An unrecognized relocation type. */
6303 return bfd_reloc_notsupported;
6304 }
6305
6306 /* Store the VALUE for our caller. */
6307 *valuep = value;
6308 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6309 }
6310
6311 /* Obtain the field relocated by RELOCATION. */
6312
6313 static bfd_vma
6314 mips_elf_obtain_contents (reloc_howto_type *howto,
6315 const Elf_Internal_Rela *relocation,
6316 bfd *input_bfd, bfd_byte *contents)
6317 {
6318 bfd_vma x = 0;
6319 bfd_byte *location = contents + relocation->r_offset;
6320 unsigned int size = bfd_get_reloc_size (howto);
6321
6322 /* Obtain the bytes. */
6323 if (size != 0)
6324 x = bfd_get (8 * size, input_bfd, location);
6325
6326 return x;
6327 }
6328
6329 /* It has been determined that the result of the RELOCATION is the
6330 VALUE. Use HOWTO to place VALUE into the output file at the
6331 appropriate position. The SECTION is the section to which the
6332 relocation applies.
6333 CROSS_MODE_JUMP_P is true if the relocation field
6334 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6335
6336 Returns FALSE if anything goes wrong. */
6337
6338 static bfd_boolean
6339 mips_elf_perform_relocation (struct bfd_link_info *info,
6340 reloc_howto_type *howto,
6341 const Elf_Internal_Rela *relocation,
6342 bfd_vma value, bfd *input_bfd,
6343 asection *input_section, bfd_byte *contents,
6344 bfd_boolean cross_mode_jump_p)
6345 {
6346 bfd_vma x;
6347 bfd_byte *location;
6348 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6349 unsigned int size;
6350
6351 /* Figure out where the relocation is occurring. */
6352 location = contents + relocation->r_offset;
6353
6354 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6355
6356 /* Obtain the current value. */
6357 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6358
6359 /* Clear the field we are setting. */
6360 x &= ~howto->dst_mask;
6361
6362 /* Set the field. */
6363 x |= (value & howto->dst_mask);
6364
6365 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
6366 if (!cross_mode_jump_p && jal_reloc_p (r_type))
6367 {
6368 bfd_vma opcode = x >> 26;
6369
6370 if (r_type == R_MIPS16_26 ? opcode == 0x7
6371 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6372 : opcode == 0x1d)
6373 {
6374 info->callbacks->einfo
6375 (_("%X%H: unsupported JALX to the same ISA mode\n"),
6376 input_bfd, input_section, relocation->r_offset);
6377 return TRUE;
6378 }
6379 }
6380 if (cross_mode_jump_p && jal_reloc_p (r_type))
6381 {
6382 bfd_boolean ok;
6383 bfd_vma opcode = x >> 26;
6384 bfd_vma jalx_opcode;
6385
6386 /* Check to see if the opcode is already JAL or JALX. */
6387 if (r_type == R_MIPS16_26)
6388 {
6389 ok = ((opcode == 0x6) || (opcode == 0x7));
6390 jalx_opcode = 0x7;
6391 }
6392 else if (r_type == R_MICROMIPS_26_S1)
6393 {
6394 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6395 jalx_opcode = 0x3c;
6396 }
6397 else
6398 {
6399 ok = ((opcode == 0x3) || (opcode == 0x1d));
6400 jalx_opcode = 0x1d;
6401 }
6402
6403 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6404 convert J or JALS to JALX. */
6405 if (!ok)
6406 {
6407 info->callbacks->einfo
6408 (_("%X%H: unsupported jump between ISA modes; "
6409 "consider recompiling with interlinking enabled\n"),
6410 input_bfd, input_section, relocation->r_offset);
6411 return TRUE;
6412 }
6413
6414 /* Make this the JALX opcode. */
6415 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6416 }
6417 else if (cross_mode_jump_p && b_reloc_p (r_type))
6418 {
6419 bfd_boolean ok = FALSE;
6420 bfd_vma opcode = x >> 16;
6421 bfd_vma jalx_opcode = 0;
6422 bfd_vma sign_bit = 0;
6423 bfd_vma addr;
6424 bfd_vma dest;
6425
6426 if (r_type == R_MICROMIPS_PC16_S1)
6427 {
6428 ok = opcode == 0x4060;
6429 jalx_opcode = 0x3c;
6430 sign_bit = 0x10000;
6431 value <<= 1;
6432 }
6433 else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6434 {
6435 ok = opcode == 0x411;
6436 jalx_opcode = 0x1d;
6437 sign_bit = 0x20000;
6438 value <<= 2;
6439 }
6440
6441 if (ok && !bfd_link_pic (info))
6442 {
6443 addr = (input_section->output_section->vma
6444 + input_section->output_offset
6445 + relocation->r_offset
6446 + 4);
6447 dest = (addr
6448 + (((value & ((sign_bit << 1) - 1)) ^ sign_bit) - sign_bit));
6449
6450 if ((addr >> 28) << 28 != (dest >> 28) << 28)
6451 {
6452 info->callbacks->einfo
6453 (_("%X%H: cannot convert branch between ISA modes "
6454 "to JALX: relocation out of range\n"),
6455 input_bfd, input_section, relocation->r_offset);
6456 return TRUE;
6457 }
6458
6459 /* Make this the JALX opcode. */
6460 x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
6461 }
6462 else if (!mips_elf_hash_table (info)->ignore_branch_isa)
6463 {
6464 info->callbacks->einfo
6465 (_("%X%H: unsupported branch between ISA modes\n"),
6466 input_bfd, input_section, relocation->r_offset);
6467 return TRUE;
6468 }
6469 }
6470
6471 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6472 range. */
6473 if (!bfd_link_relocatable (info)
6474 && !cross_mode_jump_p
6475 && ((JAL_TO_BAL_P (input_bfd)
6476 && r_type == R_MIPS_26
6477 && (x >> 26) == 0x3) /* jal addr */
6478 || (JALR_TO_BAL_P (input_bfd)
6479 && r_type == R_MIPS_JALR
6480 && x == 0x0320f809) /* jalr t9 */
6481 || (JR_TO_B_P (input_bfd)
6482 && r_type == R_MIPS_JALR
6483 && (x & ~1) == 0x03200008))) /* jr t9 / jalr zero, t9 */
6484 {
6485 bfd_vma addr;
6486 bfd_vma dest;
6487 bfd_signed_vma off;
6488
6489 addr = (input_section->output_section->vma
6490 + input_section->output_offset
6491 + relocation->r_offset
6492 + 4);
6493 if (r_type == R_MIPS_26)
6494 dest = (value << 2) | ((addr >> 28) << 28);
6495 else
6496 dest = value;
6497 off = dest - addr;
6498 if (off <= 0x1ffff && off >= -0x20000)
6499 {
6500 if ((x & ~1) == 0x03200008) /* jr t9 / jalr zero, t9 */
6501 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6502 else
6503 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6504 }
6505 }
6506
6507 /* Put the value into the output. */
6508 size = bfd_get_reloc_size (howto);
6509 if (size != 0)
6510 bfd_put (8 * size, input_bfd, x, location);
6511
6512 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
6513 location);
6514
6515 return TRUE;
6516 }
6517 \f
6518 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6519 is the original relocation, which is now being transformed into a
6520 dynamic relocation. The ADDENDP is adjusted if necessary; the
6521 caller should store the result in place of the original addend. */
6522
6523 static bfd_boolean
6524 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6525 struct bfd_link_info *info,
6526 const Elf_Internal_Rela *rel,
6527 struct mips_elf_link_hash_entry *h,
6528 asection *sec, bfd_vma symbol,
6529 bfd_vma *addendp, asection *input_section)
6530 {
6531 Elf_Internal_Rela outrel[3];
6532 asection *sreloc;
6533 bfd *dynobj;
6534 int r_type;
6535 long indx;
6536 bfd_boolean defined_p;
6537 struct mips_elf_link_hash_table *htab;
6538
6539 htab = mips_elf_hash_table (info);
6540 BFD_ASSERT (htab != NULL);
6541
6542 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6543 dynobj = elf_hash_table (info)->dynobj;
6544 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6545 BFD_ASSERT (sreloc != NULL);
6546 BFD_ASSERT (sreloc->contents != NULL);
6547 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6548 < sreloc->size);
6549
6550 outrel[0].r_offset =
6551 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6552 if (ABI_64_P (output_bfd))
6553 {
6554 outrel[1].r_offset =
6555 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6556 outrel[2].r_offset =
6557 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6558 }
6559
6560 if (outrel[0].r_offset == MINUS_ONE)
6561 /* The relocation field has been deleted. */
6562 return TRUE;
6563
6564 if (outrel[0].r_offset == MINUS_TWO)
6565 {
6566 /* The relocation field has been converted into a relative value of
6567 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6568 the field to be fully relocated, so add in the symbol's value. */
6569 *addendp += symbol;
6570 return TRUE;
6571 }
6572
6573 /* We must now calculate the dynamic symbol table index to use
6574 in the relocation. */
6575 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6576 {
6577 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6578 indx = h->root.dynindx;
6579 if (SGI_COMPAT (output_bfd))
6580 defined_p = h->root.def_regular;
6581 else
6582 /* ??? glibc's ld.so just adds the final GOT entry to the
6583 relocation field. It therefore treats relocs against
6584 defined symbols in the same way as relocs against
6585 undefined symbols. */
6586 defined_p = FALSE;
6587 }
6588 else
6589 {
6590 if (sec != NULL && bfd_is_abs_section (sec))
6591 indx = 0;
6592 else if (sec == NULL || sec->owner == NULL)
6593 {
6594 bfd_set_error (bfd_error_bad_value);
6595 return FALSE;
6596 }
6597 else
6598 {
6599 indx = elf_section_data (sec->output_section)->dynindx;
6600 if (indx == 0)
6601 {
6602 asection *osec = htab->root.text_index_section;
6603 indx = elf_section_data (osec)->dynindx;
6604 }
6605 if (indx == 0)
6606 abort ();
6607 }
6608
6609 /* Instead of generating a relocation using the section
6610 symbol, we may as well make it a fully relative
6611 relocation. We want to avoid generating relocations to
6612 local symbols because we used to generate them
6613 incorrectly, without adding the original symbol value,
6614 which is mandated by the ABI for section symbols. In
6615 order to give dynamic loaders and applications time to
6616 phase out the incorrect use, we refrain from emitting
6617 section-relative relocations. It's not like they're
6618 useful, after all. This should be a bit more efficient
6619 as well. */
6620 /* ??? Although this behavior is compatible with glibc's ld.so,
6621 the ABI says that relocations against STN_UNDEF should have
6622 a symbol value of 0. Irix rld honors this, so relocations
6623 against STN_UNDEF have no effect. */
6624 if (!SGI_COMPAT (output_bfd))
6625 indx = 0;
6626 defined_p = TRUE;
6627 }
6628
6629 /* If the relocation was previously an absolute relocation and
6630 this symbol will not be referred to by the relocation, we must
6631 adjust it by the value we give it in the dynamic symbol table.
6632 Otherwise leave the job up to the dynamic linker. */
6633 if (defined_p && r_type != R_MIPS_REL32)
6634 *addendp += symbol;
6635
6636 if (htab->is_vxworks)
6637 /* VxWorks uses non-relative relocations for this. */
6638 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6639 else
6640 /* The relocation is always an REL32 relocation because we don't
6641 know where the shared library will wind up at load-time. */
6642 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6643 R_MIPS_REL32);
6644
6645 /* For strict adherence to the ABI specification, we should
6646 generate a R_MIPS_64 relocation record by itself before the
6647 _REL32/_64 record as well, such that the addend is read in as
6648 a 64-bit value (REL32 is a 32-bit relocation, after all).
6649 However, since none of the existing ELF64 MIPS dynamic
6650 loaders seems to care, we don't waste space with these
6651 artificial relocations. If this turns out to not be true,
6652 mips_elf_allocate_dynamic_relocation() should be tweaked so
6653 as to make room for a pair of dynamic relocations per
6654 invocation if ABI_64_P, and here we should generate an
6655 additional relocation record with R_MIPS_64 by itself for a
6656 NULL symbol before this relocation record. */
6657 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6658 ABI_64_P (output_bfd)
6659 ? R_MIPS_64
6660 : R_MIPS_NONE);
6661 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6662
6663 /* Adjust the output offset of the relocation to reference the
6664 correct location in the output file. */
6665 outrel[0].r_offset += (input_section->output_section->vma
6666 + input_section->output_offset);
6667 outrel[1].r_offset += (input_section->output_section->vma
6668 + input_section->output_offset);
6669 outrel[2].r_offset += (input_section->output_section->vma
6670 + input_section->output_offset);
6671
6672 /* Put the relocation back out. We have to use the special
6673 relocation outputter in the 64-bit case since the 64-bit
6674 relocation format is non-standard. */
6675 if (ABI_64_P (output_bfd))
6676 {
6677 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6678 (output_bfd, &outrel[0],
6679 (sreloc->contents
6680 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6681 }
6682 else if (htab->is_vxworks)
6683 {
6684 /* VxWorks uses RELA rather than REL dynamic relocations. */
6685 outrel[0].r_addend = *addendp;
6686 bfd_elf32_swap_reloca_out
6687 (output_bfd, &outrel[0],
6688 (sreloc->contents
6689 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6690 }
6691 else
6692 bfd_elf32_swap_reloc_out
6693 (output_bfd, &outrel[0],
6694 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6695
6696 /* We've now added another relocation. */
6697 ++sreloc->reloc_count;
6698
6699 /* Make sure the output section is writable. The dynamic linker
6700 will be writing to it. */
6701 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6702 |= SHF_WRITE;
6703
6704 /* On IRIX5, make an entry of compact relocation info. */
6705 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6706 {
6707 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6708 bfd_byte *cr;
6709
6710 if (scpt)
6711 {
6712 Elf32_crinfo cptrel;
6713
6714 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6715 cptrel.vaddr = (rel->r_offset
6716 + input_section->output_section->vma
6717 + input_section->output_offset);
6718 if (r_type == R_MIPS_REL32)
6719 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6720 else
6721 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6722 mips_elf_set_cr_dist2to (cptrel, 0);
6723 cptrel.konst = *addendp;
6724
6725 cr = (scpt->contents
6726 + sizeof (Elf32_External_compact_rel));
6727 mips_elf_set_cr_relvaddr (cptrel, 0);
6728 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6729 ((Elf32_External_crinfo *) cr
6730 + scpt->reloc_count));
6731 ++scpt->reloc_count;
6732 }
6733 }
6734
6735 /* If we've written this relocation for a readonly section,
6736 we need to set DF_TEXTREL again, so that we do not delete the
6737 DT_TEXTREL tag. */
6738 if (MIPS_ELF_READONLY_SECTION (input_section))
6739 info->flags |= DF_TEXTREL;
6740
6741 return TRUE;
6742 }
6743 \f
6744 /* Return the MACH for a MIPS e_flags value. */
6745
6746 unsigned long
6747 _bfd_elf_mips_mach (flagword flags)
6748 {
6749 switch (flags & EF_MIPS_MACH)
6750 {
6751 case E_MIPS_MACH_3900:
6752 return bfd_mach_mips3900;
6753
6754 case E_MIPS_MACH_4010:
6755 return bfd_mach_mips4010;
6756
6757 case E_MIPS_MACH_4100:
6758 return bfd_mach_mips4100;
6759
6760 case E_MIPS_MACH_4111:
6761 return bfd_mach_mips4111;
6762
6763 case E_MIPS_MACH_4120:
6764 return bfd_mach_mips4120;
6765
6766 case E_MIPS_MACH_4650:
6767 return bfd_mach_mips4650;
6768
6769 case E_MIPS_MACH_5400:
6770 return bfd_mach_mips5400;
6771
6772 case E_MIPS_MACH_5500:
6773 return bfd_mach_mips5500;
6774
6775 case E_MIPS_MACH_5900:
6776 return bfd_mach_mips5900;
6777
6778 case E_MIPS_MACH_9000:
6779 return bfd_mach_mips9000;
6780
6781 case E_MIPS_MACH_SB1:
6782 return bfd_mach_mips_sb1;
6783
6784 case E_MIPS_MACH_LS2E:
6785 return bfd_mach_mips_loongson_2e;
6786
6787 case E_MIPS_MACH_LS2F:
6788 return bfd_mach_mips_loongson_2f;
6789
6790 case E_MIPS_MACH_GS464:
6791 return bfd_mach_mips_gs464;
6792
6793 case E_MIPS_MACH_GS464E:
6794 return bfd_mach_mips_gs464e;
6795
6796 case E_MIPS_MACH_GS264E:
6797 return bfd_mach_mips_gs264e;
6798
6799 case E_MIPS_MACH_OCTEON3:
6800 return bfd_mach_mips_octeon3;
6801
6802 case E_MIPS_MACH_OCTEON2:
6803 return bfd_mach_mips_octeon2;
6804
6805 case E_MIPS_MACH_OCTEON:
6806 return bfd_mach_mips_octeon;
6807
6808 case E_MIPS_MACH_XLR:
6809 return bfd_mach_mips_xlr;
6810
6811 case E_MIPS_MACH_IAMR2:
6812 return bfd_mach_mips_interaptiv_mr2;
6813
6814 default:
6815 switch (flags & EF_MIPS_ARCH)
6816 {
6817 default:
6818 case E_MIPS_ARCH_1:
6819 return bfd_mach_mips3000;
6820
6821 case E_MIPS_ARCH_2:
6822 return bfd_mach_mips6000;
6823
6824 case E_MIPS_ARCH_3:
6825 return bfd_mach_mips4000;
6826
6827 case E_MIPS_ARCH_4:
6828 return bfd_mach_mips8000;
6829
6830 case E_MIPS_ARCH_5:
6831 return bfd_mach_mips5;
6832
6833 case E_MIPS_ARCH_32:
6834 return bfd_mach_mipsisa32;
6835
6836 case E_MIPS_ARCH_64:
6837 return bfd_mach_mipsisa64;
6838
6839 case E_MIPS_ARCH_32R2:
6840 return bfd_mach_mipsisa32r2;
6841
6842 case E_MIPS_ARCH_64R2:
6843 return bfd_mach_mipsisa64r2;
6844
6845 case E_MIPS_ARCH_32R6:
6846 return bfd_mach_mipsisa32r6;
6847
6848 case E_MIPS_ARCH_64R6:
6849 return bfd_mach_mipsisa64r6;
6850 }
6851 }
6852
6853 return 0;
6854 }
6855
6856 /* Return printable name for ABI. */
6857
6858 static INLINE char *
6859 elf_mips_abi_name (bfd *abfd)
6860 {
6861 flagword flags;
6862
6863 flags = elf_elfheader (abfd)->e_flags;
6864 switch (flags & EF_MIPS_ABI)
6865 {
6866 case 0:
6867 if (ABI_N32_P (abfd))
6868 return "N32";
6869 else if (ABI_64_P (abfd))
6870 return "64";
6871 else
6872 return "none";
6873 case E_MIPS_ABI_O32:
6874 return "O32";
6875 case E_MIPS_ABI_O64:
6876 return "O64";
6877 case E_MIPS_ABI_EABI32:
6878 return "EABI32";
6879 case E_MIPS_ABI_EABI64:
6880 return "EABI64";
6881 default:
6882 return "unknown abi";
6883 }
6884 }
6885 \f
6886 /* MIPS ELF uses two common sections. One is the usual one, and the
6887 other is for small objects. All the small objects are kept
6888 together, and then referenced via the gp pointer, which yields
6889 faster assembler code. This is what we use for the small common
6890 section. This approach is copied from ecoff.c. */
6891 static asection mips_elf_scom_section;
6892 static asymbol mips_elf_scom_symbol;
6893 static asymbol *mips_elf_scom_symbol_ptr;
6894
6895 /* MIPS ELF also uses an acommon section, which represents an
6896 allocated common symbol which may be overridden by a
6897 definition in a shared library. */
6898 static asection mips_elf_acom_section;
6899 static asymbol mips_elf_acom_symbol;
6900 static asymbol *mips_elf_acom_symbol_ptr;
6901
6902 /* This is used for both the 32-bit and the 64-bit ABI. */
6903
6904 void
6905 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6906 {
6907 elf_symbol_type *elfsym;
6908
6909 /* Handle the special MIPS section numbers that a symbol may use. */
6910 elfsym = (elf_symbol_type *) asym;
6911 switch (elfsym->internal_elf_sym.st_shndx)
6912 {
6913 case SHN_MIPS_ACOMMON:
6914 /* This section is used in a dynamically linked executable file.
6915 It is an allocated common section. The dynamic linker can
6916 either resolve these symbols to something in a shared
6917 library, or it can just leave them here. For our purposes,
6918 we can consider these symbols to be in a new section. */
6919 if (mips_elf_acom_section.name == NULL)
6920 {
6921 /* Initialize the acommon section. */
6922 mips_elf_acom_section.name = ".acommon";
6923 mips_elf_acom_section.flags = SEC_ALLOC;
6924 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6925 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6926 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6927 mips_elf_acom_symbol.name = ".acommon";
6928 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6929 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6930 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6931 }
6932 asym->section = &mips_elf_acom_section;
6933 break;
6934
6935 case SHN_COMMON:
6936 /* Common symbols less than the GP size are automatically
6937 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6938 if (asym->value > elf_gp_size (abfd)
6939 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6940 || IRIX_COMPAT (abfd) == ict_irix6)
6941 break;
6942 /* Fall through. */
6943 case SHN_MIPS_SCOMMON:
6944 if (mips_elf_scom_section.name == NULL)
6945 {
6946 /* Initialize the small common section. */
6947 mips_elf_scom_section.name = ".scommon";
6948 mips_elf_scom_section.flags = SEC_IS_COMMON;
6949 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6950 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6951 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6952 mips_elf_scom_symbol.name = ".scommon";
6953 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6954 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6955 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6956 }
6957 asym->section = &mips_elf_scom_section;
6958 asym->value = elfsym->internal_elf_sym.st_size;
6959 break;
6960
6961 case SHN_MIPS_SUNDEFINED:
6962 asym->section = bfd_und_section_ptr;
6963 break;
6964
6965 case SHN_MIPS_TEXT:
6966 {
6967 asection *section = bfd_get_section_by_name (abfd, ".text");
6968
6969 if (section != NULL)
6970 {
6971 asym->section = section;
6972 /* MIPS_TEXT is a bit special, the address is not an offset
6973 to the base of the .text section. So subtract the section
6974 base address to make it an offset. */
6975 asym->value -= section->vma;
6976 }
6977 }
6978 break;
6979
6980 case SHN_MIPS_DATA:
6981 {
6982 asection *section = bfd_get_section_by_name (abfd, ".data");
6983
6984 if (section != NULL)
6985 {
6986 asym->section = section;
6987 /* MIPS_DATA is a bit special, the address is not an offset
6988 to the base of the .data section. So subtract the section
6989 base address to make it an offset. */
6990 asym->value -= section->vma;
6991 }
6992 }
6993 break;
6994 }
6995
6996 /* If this is an odd-valued function symbol, assume it's a MIPS16
6997 or microMIPS one. */
6998 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6999 && (asym->value & 1) != 0)
7000 {
7001 asym->value--;
7002 if (MICROMIPS_P (abfd))
7003 elfsym->internal_elf_sym.st_other
7004 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
7005 else
7006 elfsym->internal_elf_sym.st_other
7007 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
7008 }
7009 }
7010 \f
7011 /* Implement elf_backend_eh_frame_address_size. This differs from
7012 the default in the way it handles EABI64.
7013
7014 EABI64 was originally specified as an LP64 ABI, and that is what
7015 -mabi=eabi normally gives on a 64-bit target. However, gcc has
7016 historically accepted the combination of -mabi=eabi and -mlong32,
7017 and this ILP32 variation has become semi-official over time.
7018 Both forms use elf32 and have pointer-sized FDE addresses.
7019
7020 If an EABI object was generated by GCC 4.0 or above, it will have
7021 an empty .gcc_compiled_longXX section, where XX is the size of longs
7022 in bits. Unfortunately, ILP32 objects generated by earlier compilers
7023 have no special marking to distinguish them from LP64 objects.
7024
7025 We don't want users of the official LP64 ABI to be punished for the
7026 existence of the ILP32 variant, but at the same time, we don't want
7027 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
7028 We therefore take the following approach:
7029
7030 - If ABFD contains a .gcc_compiled_longXX section, use it to
7031 determine the pointer size.
7032
7033 - Otherwise check the type of the first relocation. Assume that
7034 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
7035
7036 - Otherwise punt.
7037
7038 The second check is enough to detect LP64 objects generated by pre-4.0
7039 compilers because, in the kind of output generated by those compilers,
7040 the first relocation will be associated with either a CIE personality
7041 routine or an FDE start address. Furthermore, the compilers never
7042 used a special (non-pointer) encoding for this ABI.
7043
7044 Checking the relocation type should also be safe because there is no
7045 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7046 did so. */
7047
7048 unsigned int
7049 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, const asection *sec)
7050 {
7051 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7052 return 8;
7053 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7054 {
7055 bfd_boolean long32_p, long64_p;
7056
7057 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7058 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7059 if (long32_p && long64_p)
7060 return 0;
7061 if (long32_p)
7062 return 4;
7063 if (long64_p)
7064 return 8;
7065
7066 if (sec->reloc_count > 0
7067 && elf_section_data (sec)->relocs != NULL
7068 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7069 == R_MIPS_64))
7070 return 8;
7071
7072 return 0;
7073 }
7074 return 4;
7075 }
7076 \f
7077 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7078 relocations against two unnamed section symbols to resolve to the
7079 same address. For example, if we have code like:
7080
7081 lw $4,%got_disp(.data)($gp)
7082 lw $25,%got_disp(.text)($gp)
7083 jalr $25
7084
7085 then the linker will resolve both relocations to .data and the program
7086 will jump there rather than to .text.
7087
7088 We can work around this problem by giving names to local section symbols.
7089 This is also what the MIPSpro tools do. */
7090
7091 bfd_boolean
7092 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7093 {
7094 return SGI_COMPAT (abfd);
7095 }
7096 \f
7097 /* Work over a section just before writing it out. This routine is
7098 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7099 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7100 a better way. */
7101
7102 bfd_boolean
7103 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
7104 {
7105 if (hdr->sh_type == SHT_MIPS_REGINFO
7106 && hdr->sh_size > 0)
7107 {
7108 bfd_byte buf[4];
7109
7110 BFD_ASSERT (hdr->contents == NULL);
7111
7112 if (hdr->sh_size != sizeof (Elf32_External_RegInfo))
7113 {
7114 _bfd_error_handler
7115 (_("%pB: incorrect `.reginfo' section size; "
7116 "expected %" PRIu64 ", got %" PRIu64),
7117 abfd, (uint64_t) sizeof (Elf32_External_RegInfo),
7118 (uint64_t) hdr->sh_size);
7119 bfd_set_error (bfd_error_bad_value);
7120 return FALSE;
7121 }
7122
7123 if (bfd_seek (abfd,
7124 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7125 SEEK_SET) != 0)
7126 return FALSE;
7127 H_PUT_32 (abfd, elf_gp (abfd), buf);
7128 if (bfd_bwrite (buf, 4, abfd) != 4)
7129 return FALSE;
7130 }
7131
7132 if (hdr->sh_type == SHT_MIPS_OPTIONS
7133 && hdr->bfd_section != NULL
7134 && mips_elf_section_data (hdr->bfd_section) != NULL
7135 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
7136 {
7137 bfd_byte *contents, *l, *lend;
7138
7139 /* We stored the section contents in the tdata field in the
7140 set_section_contents routine. We save the section contents
7141 so that we don't have to read them again.
7142 At this point we know that elf_gp is set, so we can look
7143 through the section contents to see if there is an
7144 ODK_REGINFO structure. */
7145
7146 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
7147 l = contents;
7148 lend = contents + hdr->sh_size;
7149 while (l + sizeof (Elf_External_Options) <= lend)
7150 {
7151 Elf_Internal_Options intopt;
7152
7153 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7154 &intopt);
7155 if (intopt.size < sizeof (Elf_External_Options))
7156 {
7157 _bfd_error_handler
7158 /* xgettext:c-format */
7159 (_("%pB: warning: bad `%s' option size %u smaller than"
7160 " its header"),
7161 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7162 break;
7163 }
7164 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7165 {
7166 bfd_byte buf[8];
7167
7168 if (bfd_seek (abfd,
7169 (hdr->sh_offset
7170 + (l - contents)
7171 + sizeof (Elf_External_Options)
7172 + (sizeof (Elf64_External_RegInfo) - 8)),
7173 SEEK_SET) != 0)
7174 return FALSE;
7175 H_PUT_64 (abfd, elf_gp (abfd), buf);
7176 if (bfd_bwrite (buf, 8, abfd) != 8)
7177 return FALSE;
7178 }
7179 else if (intopt.kind == ODK_REGINFO)
7180 {
7181 bfd_byte buf[4];
7182
7183 if (bfd_seek (abfd,
7184 (hdr->sh_offset
7185 + (l - contents)
7186 + sizeof (Elf_External_Options)
7187 + (sizeof (Elf32_External_RegInfo) - 4)),
7188 SEEK_SET) != 0)
7189 return FALSE;
7190 H_PUT_32 (abfd, elf_gp (abfd), buf);
7191 if (bfd_bwrite (buf, 4, abfd) != 4)
7192 return FALSE;
7193 }
7194 l += intopt.size;
7195 }
7196 }
7197
7198 if (hdr->bfd_section != NULL)
7199 {
7200 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
7201
7202 /* .sbss is not handled specially here because the GNU/Linux
7203 prelinker can convert .sbss from NOBITS to PROGBITS and
7204 changing it back to NOBITS breaks the binary. The entry in
7205 _bfd_mips_elf_special_sections will ensure the correct flags
7206 are set on .sbss if BFD creates it without reading it from an
7207 input file, and without special handling here the flags set
7208 on it in an input file will be followed. */
7209 if (strcmp (name, ".sdata") == 0
7210 || strcmp (name, ".lit8") == 0
7211 || strcmp (name, ".lit4") == 0)
7212 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7213 else if (strcmp (name, ".srdata") == 0)
7214 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
7215 else if (strcmp (name, ".compact_rel") == 0)
7216 hdr->sh_flags = 0;
7217 else if (strcmp (name, ".rtproc") == 0)
7218 {
7219 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7220 {
7221 unsigned int adjust;
7222
7223 adjust = hdr->sh_size % hdr->sh_addralign;
7224 if (adjust != 0)
7225 hdr->sh_size += hdr->sh_addralign - adjust;
7226 }
7227 }
7228 }
7229
7230 return TRUE;
7231 }
7232
7233 /* Handle a MIPS specific section when reading an object file. This
7234 is called when elfcode.h finds a section with an unknown type.
7235 This routine supports both the 32-bit and 64-bit ELF ABI.
7236
7237 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7238 how to. */
7239
7240 bfd_boolean
7241 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7242 Elf_Internal_Shdr *hdr,
7243 const char *name,
7244 int shindex)
7245 {
7246 flagword flags = 0;
7247
7248 /* There ought to be a place to keep ELF backend specific flags, but
7249 at the moment there isn't one. We just keep track of the
7250 sections by their name, instead. Fortunately, the ABI gives
7251 suggested names for all the MIPS specific sections, so we will
7252 probably get away with this. */
7253 switch (hdr->sh_type)
7254 {
7255 case SHT_MIPS_LIBLIST:
7256 if (strcmp (name, ".liblist") != 0)
7257 return FALSE;
7258 break;
7259 case SHT_MIPS_MSYM:
7260 if (strcmp (name, ".msym") != 0)
7261 return FALSE;
7262 break;
7263 case SHT_MIPS_CONFLICT:
7264 if (strcmp (name, ".conflict") != 0)
7265 return FALSE;
7266 break;
7267 case SHT_MIPS_GPTAB:
7268 if (! CONST_STRNEQ (name, ".gptab."))
7269 return FALSE;
7270 break;
7271 case SHT_MIPS_UCODE:
7272 if (strcmp (name, ".ucode") != 0)
7273 return FALSE;
7274 break;
7275 case SHT_MIPS_DEBUG:
7276 if (strcmp (name, ".mdebug") != 0)
7277 return FALSE;
7278 flags = SEC_DEBUGGING;
7279 break;
7280 case SHT_MIPS_REGINFO:
7281 if (strcmp (name, ".reginfo") != 0
7282 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7283 return FALSE;
7284 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7285 break;
7286 case SHT_MIPS_IFACE:
7287 if (strcmp (name, ".MIPS.interfaces") != 0)
7288 return FALSE;
7289 break;
7290 case SHT_MIPS_CONTENT:
7291 if (! CONST_STRNEQ (name, ".MIPS.content"))
7292 return FALSE;
7293 break;
7294 case SHT_MIPS_OPTIONS:
7295 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7296 return FALSE;
7297 break;
7298 case SHT_MIPS_ABIFLAGS:
7299 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7300 return FALSE;
7301 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7302 break;
7303 case SHT_MIPS_DWARF:
7304 if (! CONST_STRNEQ (name, ".debug_")
7305 && ! CONST_STRNEQ (name, ".zdebug_"))
7306 return FALSE;
7307 break;
7308 case SHT_MIPS_SYMBOL_LIB:
7309 if (strcmp (name, ".MIPS.symlib") != 0)
7310 return FALSE;
7311 break;
7312 case SHT_MIPS_EVENTS:
7313 if (! CONST_STRNEQ (name, ".MIPS.events")
7314 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
7315 return FALSE;
7316 break;
7317 default:
7318 break;
7319 }
7320
7321 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7322 return FALSE;
7323
7324 if (flags)
7325 {
7326 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7327 (bfd_get_section_flags (abfd,
7328 hdr->bfd_section)
7329 | flags)))
7330 return FALSE;
7331 }
7332
7333 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7334 {
7335 Elf_External_ABIFlags_v0 ext;
7336
7337 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7338 &ext, 0, sizeof ext))
7339 return FALSE;
7340 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7341 &mips_elf_tdata (abfd)->abiflags);
7342 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7343 return FALSE;
7344 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7345 }
7346
7347 /* FIXME: We should record sh_info for a .gptab section. */
7348
7349 /* For a .reginfo section, set the gp value in the tdata information
7350 from the contents of this section. We need the gp value while
7351 processing relocs, so we just get it now. The .reginfo section
7352 is not used in the 64-bit MIPS ELF ABI. */
7353 if (hdr->sh_type == SHT_MIPS_REGINFO)
7354 {
7355 Elf32_External_RegInfo ext;
7356 Elf32_RegInfo s;
7357
7358 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7359 &ext, 0, sizeof ext))
7360 return FALSE;
7361 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7362 elf_gp (abfd) = s.ri_gp_value;
7363 }
7364
7365 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7366 set the gp value based on what we find. We may see both
7367 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7368 they should agree. */
7369 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7370 {
7371 bfd_byte *contents, *l, *lend;
7372
7373 contents = bfd_malloc (hdr->sh_size);
7374 if (contents == NULL)
7375 return FALSE;
7376 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7377 0, hdr->sh_size))
7378 {
7379 free (contents);
7380 return FALSE;
7381 }
7382 l = contents;
7383 lend = contents + hdr->sh_size;
7384 while (l + sizeof (Elf_External_Options) <= lend)
7385 {
7386 Elf_Internal_Options intopt;
7387
7388 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7389 &intopt);
7390 if (intopt.size < sizeof (Elf_External_Options))
7391 {
7392 _bfd_error_handler
7393 /* xgettext:c-format */
7394 (_("%pB: warning: bad `%s' option size %u smaller than"
7395 " its header"),
7396 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7397 break;
7398 }
7399 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7400 {
7401 Elf64_Internal_RegInfo intreg;
7402
7403 bfd_mips_elf64_swap_reginfo_in
7404 (abfd,
7405 ((Elf64_External_RegInfo *)
7406 (l + sizeof (Elf_External_Options))),
7407 &intreg);
7408 elf_gp (abfd) = intreg.ri_gp_value;
7409 }
7410 else if (intopt.kind == ODK_REGINFO)
7411 {
7412 Elf32_RegInfo intreg;
7413
7414 bfd_mips_elf32_swap_reginfo_in
7415 (abfd,
7416 ((Elf32_External_RegInfo *)
7417 (l + sizeof (Elf_External_Options))),
7418 &intreg);
7419 elf_gp (abfd) = intreg.ri_gp_value;
7420 }
7421 l += intopt.size;
7422 }
7423 free (contents);
7424 }
7425
7426 return TRUE;
7427 }
7428
7429 /* Set the correct type for a MIPS ELF section. We do this by the
7430 section name, which is a hack, but ought to work. This routine is
7431 used by both the 32-bit and the 64-bit ABI. */
7432
7433 bfd_boolean
7434 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7435 {
7436 const char *name = bfd_get_section_name (abfd, sec);
7437
7438 if (strcmp (name, ".liblist") == 0)
7439 {
7440 hdr->sh_type = SHT_MIPS_LIBLIST;
7441 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7442 /* The sh_link field is set in final_write_processing. */
7443 }
7444 else if (strcmp (name, ".conflict") == 0)
7445 hdr->sh_type = SHT_MIPS_CONFLICT;
7446 else if (CONST_STRNEQ (name, ".gptab."))
7447 {
7448 hdr->sh_type = SHT_MIPS_GPTAB;
7449 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7450 /* The sh_info field is set in final_write_processing. */
7451 }
7452 else if (strcmp (name, ".ucode") == 0)
7453 hdr->sh_type = SHT_MIPS_UCODE;
7454 else if (strcmp (name, ".mdebug") == 0)
7455 {
7456 hdr->sh_type = SHT_MIPS_DEBUG;
7457 /* In a shared object on IRIX 5.3, the .mdebug section has an
7458 entsize of 0. FIXME: Does this matter? */
7459 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7460 hdr->sh_entsize = 0;
7461 else
7462 hdr->sh_entsize = 1;
7463 }
7464 else if (strcmp (name, ".reginfo") == 0)
7465 {
7466 hdr->sh_type = SHT_MIPS_REGINFO;
7467 /* In a shared object on IRIX 5.3, the .reginfo section has an
7468 entsize of 0x18. FIXME: Does this matter? */
7469 if (SGI_COMPAT (abfd))
7470 {
7471 if ((abfd->flags & DYNAMIC) != 0)
7472 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7473 else
7474 hdr->sh_entsize = 1;
7475 }
7476 else
7477 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7478 }
7479 else if (SGI_COMPAT (abfd)
7480 && (strcmp (name, ".hash") == 0
7481 || strcmp (name, ".dynamic") == 0
7482 || strcmp (name, ".dynstr") == 0))
7483 {
7484 if (SGI_COMPAT (abfd))
7485 hdr->sh_entsize = 0;
7486 #if 0
7487 /* This isn't how the IRIX6 linker behaves. */
7488 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7489 #endif
7490 }
7491 else if (strcmp (name, ".got") == 0
7492 || strcmp (name, ".srdata") == 0
7493 || strcmp (name, ".sdata") == 0
7494 || strcmp (name, ".sbss") == 0
7495 || strcmp (name, ".lit4") == 0
7496 || strcmp (name, ".lit8") == 0)
7497 hdr->sh_flags |= SHF_MIPS_GPREL;
7498 else if (strcmp (name, ".MIPS.interfaces") == 0)
7499 {
7500 hdr->sh_type = SHT_MIPS_IFACE;
7501 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7502 }
7503 else if (CONST_STRNEQ (name, ".MIPS.content"))
7504 {
7505 hdr->sh_type = SHT_MIPS_CONTENT;
7506 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7507 /* The sh_info field is set in final_write_processing. */
7508 }
7509 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7510 {
7511 hdr->sh_type = SHT_MIPS_OPTIONS;
7512 hdr->sh_entsize = 1;
7513 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7514 }
7515 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7516 {
7517 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7518 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7519 }
7520 else if (CONST_STRNEQ (name, ".debug_")
7521 || CONST_STRNEQ (name, ".zdebug_"))
7522 {
7523 hdr->sh_type = SHT_MIPS_DWARF;
7524
7525 /* Irix facilities such as libexc expect a single .debug_frame
7526 per executable, the system ones have NOSTRIP set and the linker
7527 doesn't merge sections with different flags so ... */
7528 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7529 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7530 }
7531 else if (strcmp (name, ".MIPS.symlib") == 0)
7532 {
7533 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7534 /* The sh_link and sh_info fields are set in
7535 final_write_processing. */
7536 }
7537 else if (CONST_STRNEQ (name, ".MIPS.events")
7538 || CONST_STRNEQ (name, ".MIPS.post_rel"))
7539 {
7540 hdr->sh_type = SHT_MIPS_EVENTS;
7541 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7542 /* The sh_link field is set in final_write_processing. */
7543 }
7544 else if (strcmp (name, ".msym") == 0)
7545 {
7546 hdr->sh_type = SHT_MIPS_MSYM;
7547 hdr->sh_flags |= SHF_ALLOC;
7548 hdr->sh_entsize = 8;
7549 }
7550
7551 /* The generic elf_fake_sections will set up REL_HDR using the default
7552 kind of relocations. We used to set up a second header for the
7553 non-default kind of relocations here, but only NewABI would use
7554 these, and the IRIX ld doesn't like resulting empty RELA sections.
7555 Thus we create those header only on demand now. */
7556
7557 return TRUE;
7558 }
7559
7560 /* Given a BFD section, try to locate the corresponding ELF section
7561 index. This is used by both the 32-bit and the 64-bit ABI.
7562 Actually, it's not clear to me that the 64-bit ABI supports these,
7563 but for non-PIC objects we will certainly want support for at least
7564 the .scommon section. */
7565
7566 bfd_boolean
7567 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7568 asection *sec, int *retval)
7569 {
7570 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7571 {
7572 *retval = SHN_MIPS_SCOMMON;
7573 return TRUE;
7574 }
7575 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7576 {
7577 *retval = SHN_MIPS_ACOMMON;
7578 return TRUE;
7579 }
7580 return FALSE;
7581 }
7582 \f
7583 /* Hook called by the linker routine which adds symbols from an object
7584 file. We must handle the special MIPS section numbers here. */
7585
7586 bfd_boolean
7587 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7588 Elf_Internal_Sym *sym, const char **namep,
7589 flagword *flagsp ATTRIBUTE_UNUSED,
7590 asection **secp, bfd_vma *valp)
7591 {
7592 if (SGI_COMPAT (abfd)
7593 && (abfd->flags & DYNAMIC) != 0
7594 && strcmp (*namep, "_rld_new_interface") == 0)
7595 {
7596 /* Skip IRIX5 rld entry name. */
7597 *namep = NULL;
7598 return TRUE;
7599 }
7600
7601 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7602 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7603 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7604 a magic symbol resolved by the linker, we ignore this bogus definition
7605 of _gp_disp. New ABI objects do not suffer from this problem so this
7606 is not done for them. */
7607 if (!NEWABI_P(abfd)
7608 && (sym->st_shndx == SHN_ABS)
7609 && (strcmp (*namep, "_gp_disp") == 0))
7610 {
7611 *namep = NULL;
7612 return TRUE;
7613 }
7614
7615 switch (sym->st_shndx)
7616 {
7617 case SHN_COMMON:
7618 /* Common symbols less than the GP size are automatically
7619 treated as SHN_MIPS_SCOMMON symbols. */
7620 if (sym->st_size > elf_gp_size (abfd)
7621 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7622 || IRIX_COMPAT (abfd) == ict_irix6)
7623 break;
7624 /* Fall through. */
7625 case SHN_MIPS_SCOMMON:
7626 *secp = bfd_make_section_old_way (abfd, ".scommon");
7627 (*secp)->flags |= SEC_IS_COMMON;
7628 *valp = sym->st_size;
7629 break;
7630
7631 case SHN_MIPS_TEXT:
7632 /* This section is used in a shared object. */
7633 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7634 {
7635 asymbol *elf_text_symbol;
7636 asection *elf_text_section;
7637 bfd_size_type amt = sizeof (asection);
7638
7639 elf_text_section = bfd_zalloc (abfd, amt);
7640 if (elf_text_section == NULL)
7641 return FALSE;
7642
7643 amt = sizeof (asymbol);
7644 elf_text_symbol = bfd_zalloc (abfd, amt);
7645 if (elf_text_symbol == NULL)
7646 return FALSE;
7647
7648 /* Initialize the section. */
7649
7650 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7651 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7652
7653 elf_text_section->symbol = elf_text_symbol;
7654 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7655
7656 elf_text_section->name = ".text";
7657 elf_text_section->flags = SEC_NO_FLAGS;
7658 elf_text_section->output_section = NULL;
7659 elf_text_section->owner = abfd;
7660 elf_text_symbol->name = ".text";
7661 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7662 elf_text_symbol->section = elf_text_section;
7663 }
7664 /* This code used to do *secp = bfd_und_section_ptr if
7665 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7666 so I took it out. */
7667 *secp = mips_elf_tdata (abfd)->elf_text_section;
7668 break;
7669
7670 case SHN_MIPS_ACOMMON:
7671 /* Fall through. XXX Can we treat this as allocated data? */
7672 case SHN_MIPS_DATA:
7673 /* This section is used in a shared object. */
7674 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7675 {
7676 asymbol *elf_data_symbol;
7677 asection *elf_data_section;
7678 bfd_size_type amt = sizeof (asection);
7679
7680 elf_data_section = bfd_zalloc (abfd, amt);
7681 if (elf_data_section == NULL)
7682 return FALSE;
7683
7684 amt = sizeof (asymbol);
7685 elf_data_symbol = bfd_zalloc (abfd, amt);
7686 if (elf_data_symbol == NULL)
7687 return FALSE;
7688
7689 /* Initialize the section. */
7690
7691 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7692 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7693
7694 elf_data_section->symbol = elf_data_symbol;
7695 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7696
7697 elf_data_section->name = ".data";
7698 elf_data_section->flags = SEC_NO_FLAGS;
7699 elf_data_section->output_section = NULL;
7700 elf_data_section->owner = abfd;
7701 elf_data_symbol->name = ".data";
7702 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7703 elf_data_symbol->section = elf_data_section;
7704 }
7705 /* This code used to do *secp = bfd_und_section_ptr if
7706 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7707 so I took it out. */
7708 *secp = mips_elf_tdata (abfd)->elf_data_section;
7709 break;
7710
7711 case SHN_MIPS_SUNDEFINED:
7712 *secp = bfd_und_section_ptr;
7713 break;
7714 }
7715
7716 if (SGI_COMPAT (abfd)
7717 && ! bfd_link_pic (info)
7718 && info->output_bfd->xvec == abfd->xvec
7719 && strcmp (*namep, "__rld_obj_head") == 0)
7720 {
7721 struct elf_link_hash_entry *h;
7722 struct bfd_link_hash_entry *bh;
7723
7724 /* Mark __rld_obj_head as dynamic. */
7725 bh = NULL;
7726 if (! (_bfd_generic_link_add_one_symbol
7727 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7728 get_elf_backend_data (abfd)->collect, &bh)))
7729 return FALSE;
7730
7731 h = (struct elf_link_hash_entry *) bh;
7732 h->non_elf = 0;
7733 h->def_regular = 1;
7734 h->type = STT_OBJECT;
7735
7736 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7737 return FALSE;
7738
7739 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7740 mips_elf_hash_table (info)->rld_symbol = h;
7741 }
7742
7743 /* If this is a mips16 text symbol, add 1 to the value to make it
7744 odd. This will cause something like .word SYM to come up with
7745 the right value when it is loaded into the PC. */
7746 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7747 ++*valp;
7748
7749 return TRUE;
7750 }
7751
7752 /* This hook function is called before the linker writes out a global
7753 symbol. We mark symbols as small common if appropriate. This is
7754 also where we undo the increment of the value for a mips16 symbol. */
7755
7756 int
7757 _bfd_mips_elf_link_output_symbol_hook
7758 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7759 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7760 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7761 {
7762 /* If we see a common symbol, which implies a relocatable link, then
7763 if a symbol was small common in an input file, mark it as small
7764 common in the output file. */
7765 if (sym->st_shndx == SHN_COMMON
7766 && strcmp (input_sec->name, ".scommon") == 0)
7767 sym->st_shndx = SHN_MIPS_SCOMMON;
7768
7769 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7770 sym->st_value &= ~1;
7771
7772 return 1;
7773 }
7774 \f
7775 /* Functions for the dynamic linker. */
7776
7777 /* Create dynamic sections when linking against a dynamic object. */
7778
7779 bfd_boolean
7780 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7781 {
7782 struct elf_link_hash_entry *h;
7783 struct bfd_link_hash_entry *bh;
7784 flagword flags;
7785 register asection *s;
7786 const char * const *namep;
7787 struct mips_elf_link_hash_table *htab;
7788
7789 htab = mips_elf_hash_table (info);
7790 BFD_ASSERT (htab != NULL);
7791
7792 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7793 | SEC_LINKER_CREATED | SEC_READONLY);
7794
7795 /* The psABI requires a read-only .dynamic section, but the VxWorks
7796 EABI doesn't. */
7797 if (!htab->is_vxworks)
7798 {
7799 s = bfd_get_linker_section (abfd, ".dynamic");
7800 if (s != NULL)
7801 {
7802 if (! bfd_set_section_flags (abfd, s, flags))
7803 return FALSE;
7804 }
7805 }
7806
7807 /* We need to create .got section. */
7808 if (!mips_elf_create_got_section (abfd, info))
7809 return FALSE;
7810
7811 if (! mips_elf_rel_dyn_section (info, TRUE))
7812 return FALSE;
7813
7814 /* Create .stub section. */
7815 s = bfd_make_section_anyway_with_flags (abfd,
7816 MIPS_ELF_STUB_SECTION_NAME (abfd),
7817 flags | SEC_CODE);
7818 if (s == NULL
7819 || ! bfd_set_section_alignment (abfd, s,
7820 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7821 return FALSE;
7822 htab->sstubs = s;
7823
7824 if (!mips_elf_hash_table (info)->use_rld_obj_head
7825 && bfd_link_executable (info)
7826 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7827 {
7828 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7829 flags &~ (flagword) SEC_READONLY);
7830 if (s == NULL
7831 || ! bfd_set_section_alignment (abfd, s,
7832 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7833 return FALSE;
7834 }
7835
7836 /* On IRIX5, we adjust add some additional symbols and change the
7837 alignments of several sections. There is no ABI documentation
7838 indicating that this is necessary on IRIX6, nor any evidence that
7839 the linker takes such action. */
7840 if (IRIX_COMPAT (abfd) == ict_irix5)
7841 {
7842 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7843 {
7844 bh = NULL;
7845 if (! (_bfd_generic_link_add_one_symbol
7846 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7847 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7848 return FALSE;
7849
7850 h = (struct elf_link_hash_entry *) bh;
7851 h->mark = 1;
7852 h->non_elf = 0;
7853 h->def_regular = 1;
7854 h->type = STT_SECTION;
7855
7856 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7857 return FALSE;
7858 }
7859
7860 /* We need to create a .compact_rel section. */
7861 if (SGI_COMPAT (abfd))
7862 {
7863 if (!mips_elf_create_compact_rel_section (abfd, info))
7864 return FALSE;
7865 }
7866
7867 /* Change alignments of some sections. */
7868 s = bfd_get_linker_section (abfd, ".hash");
7869 if (s != NULL)
7870 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7871
7872 s = bfd_get_linker_section (abfd, ".dynsym");
7873 if (s != NULL)
7874 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7875
7876 s = bfd_get_linker_section (abfd, ".dynstr");
7877 if (s != NULL)
7878 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7879
7880 /* ??? */
7881 s = bfd_get_section_by_name (abfd, ".reginfo");
7882 if (s != NULL)
7883 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7884
7885 s = bfd_get_linker_section (abfd, ".dynamic");
7886 if (s != NULL)
7887 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7888 }
7889
7890 if (bfd_link_executable (info))
7891 {
7892 const char *name;
7893
7894 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7895 bh = NULL;
7896 if (!(_bfd_generic_link_add_one_symbol
7897 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7898 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7899 return FALSE;
7900
7901 h = (struct elf_link_hash_entry *) bh;
7902 h->non_elf = 0;
7903 h->def_regular = 1;
7904 h->type = STT_SECTION;
7905
7906 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7907 return FALSE;
7908
7909 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7910 {
7911 /* __rld_map is a four byte word located in the .data section
7912 and is filled in by the rtld to contain a pointer to
7913 the _r_debug structure. Its symbol value will be set in
7914 _bfd_mips_elf_finish_dynamic_symbol. */
7915 s = bfd_get_linker_section (abfd, ".rld_map");
7916 BFD_ASSERT (s != NULL);
7917
7918 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7919 bh = NULL;
7920 if (!(_bfd_generic_link_add_one_symbol
7921 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7922 get_elf_backend_data (abfd)->collect, &bh)))
7923 return FALSE;
7924
7925 h = (struct elf_link_hash_entry *) bh;
7926 h->non_elf = 0;
7927 h->def_regular = 1;
7928 h->type = STT_OBJECT;
7929
7930 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7931 return FALSE;
7932 mips_elf_hash_table (info)->rld_symbol = h;
7933 }
7934 }
7935
7936 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7937 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
7938 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7939 return FALSE;
7940
7941 /* Do the usual VxWorks handling. */
7942 if (htab->is_vxworks
7943 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7944 return FALSE;
7945
7946 return TRUE;
7947 }
7948 \f
7949 /* Return true if relocation REL against section SEC is a REL rather than
7950 RELA relocation. RELOCS is the first relocation in the section and
7951 ABFD is the bfd that contains SEC. */
7952
7953 static bfd_boolean
7954 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7955 const Elf_Internal_Rela *relocs,
7956 const Elf_Internal_Rela *rel)
7957 {
7958 Elf_Internal_Shdr *rel_hdr;
7959 const struct elf_backend_data *bed;
7960
7961 /* To determine which flavor of relocation this is, we depend on the
7962 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7963 rel_hdr = elf_section_data (sec)->rel.hdr;
7964 if (rel_hdr == NULL)
7965 return FALSE;
7966 bed = get_elf_backend_data (abfd);
7967 return ((size_t) (rel - relocs)
7968 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7969 }
7970
7971 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7972 HOWTO is the relocation's howto and CONTENTS points to the contents
7973 of the section that REL is against. */
7974
7975 static bfd_vma
7976 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7977 reloc_howto_type *howto, bfd_byte *contents)
7978 {
7979 bfd_byte *location;
7980 unsigned int r_type;
7981 bfd_vma addend;
7982 bfd_vma bytes;
7983
7984 r_type = ELF_R_TYPE (abfd, rel->r_info);
7985 location = contents + rel->r_offset;
7986
7987 /* Get the addend, which is stored in the input file. */
7988 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7989 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
7990 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7991
7992 addend = bytes & howto->src_mask;
7993
7994 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
7995 accordingly. */
7996 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
7997 addend <<= 1;
7998
7999 return addend;
8000 }
8001
8002 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
8003 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
8004 and update *ADDEND with the final addend. Return true on success
8005 or false if the LO16 could not be found. RELEND is the exclusive
8006 upper bound on the relocations for REL's section. */
8007
8008 static bfd_boolean
8009 mips_elf_add_lo16_rel_addend (bfd *abfd,
8010 const Elf_Internal_Rela *rel,
8011 const Elf_Internal_Rela *relend,
8012 bfd_byte *contents, bfd_vma *addend)
8013 {
8014 unsigned int r_type, lo16_type;
8015 const Elf_Internal_Rela *lo16_relocation;
8016 reloc_howto_type *lo16_howto;
8017 bfd_vma l;
8018
8019 r_type = ELF_R_TYPE (abfd, rel->r_info);
8020 if (mips16_reloc_p (r_type))
8021 lo16_type = R_MIPS16_LO16;
8022 else if (micromips_reloc_p (r_type))
8023 lo16_type = R_MICROMIPS_LO16;
8024 else if (r_type == R_MIPS_PCHI16)
8025 lo16_type = R_MIPS_PCLO16;
8026 else
8027 lo16_type = R_MIPS_LO16;
8028
8029 /* The combined value is the sum of the HI16 addend, left-shifted by
8030 sixteen bits, and the LO16 addend, sign extended. (Usually, the
8031 code does a `lui' of the HI16 value, and then an `addiu' of the
8032 LO16 value.)
8033
8034 Scan ahead to find a matching LO16 relocation.
8035
8036 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8037 be immediately following. However, for the IRIX6 ABI, the next
8038 relocation may be a composed relocation consisting of several
8039 relocations for the same address. In that case, the R_MIPS_LO16
8040 relocation may occur as one of these. We permit a similar
8041 extension in general, as that is useful for GCC.
8042
8043 In some cases GCC dead code elimination removes the LO16 but keeps
8044 the corresponding HI16. This is strictly speaking a violation of
8045 the ABI but not immediately harmful. */
8046 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8047 if (lo16_relocation == NULL)
8048 return FALSE;
8049
8050 /* Obtain the addend kept there. */
8051 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
8052 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8053
8054 l <<= lo16_howto->rightshift;
8055 l = _bfd_mips_elf_sign_extend (l, 16);
8056
8057 *addend <<= 16;
8058 *addend += l;
8059 return TRUE;
8060 }
8061
8062 /* Try to read the contents of section SEC in bfd ABFD. Return true and
8063 store the contents in *CONTENTS on success. Assume that *CONTENTS
8064 already holds the contents if it is nonull on entry. */
8065
8066 static bfd_boolean
8067 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8068 {
8069 if (*contents)
8070 return TRUE;
8071
8072 /* Get cached copy if it exists. */
8073 if (elf_section_data (sec)->this_hdr.contents != NULL)
8074 {
8075 *contents = elf_section_data (sec)->this_hdr.contents;
8076 return TRUE;
8077 }
8078
8079 return bfd_malloc_and_get_section (abfd, sec, contents);
8080 }
8081
8082 /* Make a new PLT record to keep internal data. */
8083
8084 static struct plt_entry *
8085 mips_elf_make_plt_record (bfd *abfd)
8086 {
8087 struct plt_entry *entry;
8088
8089 entry = bfd_zalloc (abfd, sizeof (*entry));
8090 if (entry == NULL)
8091 return NULL;
8092
8093 entry->stub_offset = MINUS_ONE;
8094 entry->mips_offset = MINUS_ONE;
8095 entry->comp_offset = MINUS_ONE;
8096 entry->gotplt_index = MINUS_ONE;
8097 return entry;
8098 }
8099
8100 /* Look through the relocs for a section during the first phase, and
8101 allocate space in the global offset table and record the need for
8102 standard MIPS and compressed procedure linkage table entries. */
8103
8104 bfd_boolean
8105 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8106 asection *sec, const Elf_Internal_Rela *relocs)
8107 {
8108 const char *name;
8109 bfd *dynobj;
8110 Elf_Internal_Shdr *symtab_hdr;
8111 struct elf_link_hash_entry **sym_hashes;
8112 size_t extsymoff;
8113 const Elf_Internal_Rela *rel;
8114 const Elf_Internal_Rela *rel_end;
8115 asection *sreloc;
8116 const struct elf_backend_data *bed;
8117 struct mips_elf_link_hash_table *htab;
8118 bfd_byte *contents;
8119 bfd_vma addend;
8120 reloc_howto_type *howto;
8121
8122 if (bfd_link_relocatable (info))
8123 return TRUE;
8124
8125 htab = mips_elf_hash_table (info);
8126 BFD_ASSERT (htab != NULL);
8127
8128 dynobj = elf_hash_table (info)->dynobj;
8129 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8130 sym_hashes = elf_sym_hashes (abfd);
8131 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8132
8133 bed = get_elf_backend_data (abfd);
8134 rel_end = relocs + sec->reloc_count;
8135
8136 /* Check for the mips16 stub sections. */
8137
8138 name = bfd_get_section_name (abfd, sec);
8139 if (FN_STUB_P (name))
8140 {
8141 unsigned long r_symndx;
8142
8143 /* Look at the relocation information to figure out which symbol
8144 this is for. */
8145
8146 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8147 if (r_symndx == 0)
8148 {
8149 _bfd_error_handler
8150 /* xgettext:c-format */
8151 (_("%pB: warning: cannot determine the target function for"
8152 " stub section `%s'"),
8153 abfd, name);
8154 bfd_set_error (bfd_error_bad_value);
8155 return FALSE;
8156 }
8157
8158 if (r_symndx < extsymoff
8159 || sym_hashes[r_symndx - extsymoff] == NULL)
8160 {
8161 asection *o;
8162
8163 /* This stub is for a local symbol. This stub will only be
8164 needed if there is some relocation in this BFD, other
8165 than a 16 bit function call, which refers to this symbol. */
8166 for (o = abfd->sections; o != NULL; o = o->next)
8167 {
8168 Elf_Internal_Rela *sec_relocs;
8169 const Elf_Internal_Rela *r, *rend;
8170
8171 /* We can ignore stub sections when looking for relocs. */
8172 if ((o->flags & SEC_RELOC) == 0
8173 || o->reloc_count == 0
8174 || section_allows_mips16_refs_p (o))
8175 continue;
8176
8177 sec_relocs
8178 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8179 info->keep_memory);
8180 if (sec_relocs == NULL)
8181 return FALSE;
8182
8183 rend = sec_relocs + o->reloc_count;
8184 for (r = sec_relocs; r < rend; r++)
8185 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8186 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
8187 break;
8188
8189 if (elf_section_data (o)->relocs != sec_relocs)
8190 free (sec_relocs);
8191
8192 if (r < rend)
8193 break;
8194 }
8195
8196 if (o == NULL)
8197 {
8198 /* There is no non-call reloc for this stub, so we do
8199 not need it. Since this function is called before
8200 the linker maps input sections to output sections, we
8201 can easily discard it by setting the SEC_EXCLUDE
8202 flag. */
8203 sec->flags |= SEC_EXCLUDE;
8204 return TRUE;
8205 }
8206
8207 /* Record this stub in an array of local symbol stubs for
8208 this BFD. */
8209 if (mips_elf_tdata (abfd)->local_stubs == NULL)
8210 {
8211 unsigned long symcount;
8212 asection **n;
8213 bfd_size_type amt;
8214
8215 if (elf_bad_symtab (abfd))
8216 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8217 else
8218 symcount = symtab_hdr->sh_info;
8219 amt = symcount * sizeof (asection *);
8220 n = bfd_zalloc (abfd, amt);
8221 if (n == NULL)
8222 return FALSE;
8223 mips_elf_tdata (abfd)->local_stubs = n;
8224 }
8225
8226 sec->flags |= SEC_KEEP;
8227 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8228
8229 /* We don't need to set mips16_stubs_seen in this case.
8230 That flag is used to see whether we need to look through
8231 the global symbol table for stubs. We don't need to set
8232 it here, because we just have a local stub. */
8233 }
8234 else
8235 {
8236 struct mips_elf_link_hash_entry *h;
8237
8238 h = ((struct mips_elf_link_hash_entry *)
8239 sym_hashes[r_symndx - extsymoff]);
8240
8241 while (h->root.root.type == bfd_link_hash_indirect
8242 || h->root.root.type == bfd_link_hash_warning)
8243 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8244
8245 /* H is the symbol this stub is for. */
8246
8247 /* If we already have an appropriate stub for this function, we
8248 don't need another one, so we can discard this one. Since
8249 this function is called before the linker maps input sections
8250 to output sections, we can easily discard it by setting the
8251 SEC_EXCLUDE flag. */
8252 if (h->fn_stub != NULL)
8253 {
8254 sec->flags |= SEC_EXCLUDE;
8255 return TRUE;
8256 }
8257
8258 sec->flags |= SEC_KEEP;
8259 h->fn_stub = sec;
8260 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8261 }
8262 }
8263 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8264 {
8265 unsigned long r_symndx;
8266 struct mips_elf_link_hash_entry *h;
8267 asection **loc;
8268
8269 /* Look at the relocation information to figure out which symbol
8270 this is for. */
8271
8272 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8273 if (r_symndx == 0)
8274 {
8275 _bfd_error_handler
8276 /* xgettext:c-format */
8277 (_("%pB: warning: cannot determine the target function for"
8278 " stub section `%s'"),
8279 abfd, name);
8280 bfd_set_error (bfd_error_bad_value);
8281 return FALSE;
8282 }
8283
8284 if (r_symndx < extsymoff
8285 || sym_hashes[r_symndx - extsymoff] == NULL)
8286 {
8287 asection *o;
8288
8289 /* This stub is for a local symbol. This stub will only be
8290 needed if there is some relocation (R_MIPS16_26) in this BFD
8291 that refers to this symbol. */
8292 for (o = abfd->sections; o != NULL; o = o->next)
8293 {
8294 Elf_Internal_Rela *sec_relocs;
8295 const Elf_Internal_Rela *r, *rend;
8296
8297 /* We can ignore stub sections when looking for relocs. */
8298 if ((o->flags & SEC_RELOC) == 0
8299 || o->reloc_count == 0
8300 || section_allows_mips16_refs_p (o))
8301 continue;
8302
8303 sec_relocs
8304 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8305 info->keep_memory);
8306 if (sec_relocs == NULL)
8307 return FALSE;
8308
8309 rend = sec_relocs + o->reloc_count;
8310 for (r = sec_relocs; r < rend; r++)
8311 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8312 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8313 break;
8314
8315 if (elf_section_data (o)->relocs != sec_relocs)
8316 free (sec_relocs);
8317
8318 if (r < rend)
8319 break;
8320 }
8321
8322 if (o == NULL)
8323 {
8324 /* There is no non-call reloc for this stub, so we do
8325 not need it. Since this function is called before
8326 the linker maps input sections to output sections, we
8327 can easily discard it by setting the SEC_EXCLUDE
8328 flag. */
8329 sec->flags |= SEC_EXCLUDE;
8330 return TRUE;
8331 }
8332
8333 /* Record this stub in an array of local symbol call_stubs for
8334 this BFD. */
8335 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8336 {
8337 unsigned long symcount;
8338 asection **n;
8339 bfd_size_type amt;
8340
8341 if (elf_bad_symtab (abfd))
8342 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8343 else
8344 symcount = symtab_hdr->sh_info;
8345 amt = symcount * sizeof (asection *);
8346 n = bfd_zalloc (abfd, amt);
8347 if (n == NULL)
8348 return FALSE;
8349 mips_elf_tdata (abfd)->local_call_stubs = n;
8350 }
8351
8352 sec->flags |= SEC_KEEP;
8353 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8354
8355 /* We don't need to set mips16_stubs_seen in this case.
8356 That flag is used to see whether we need to look through
8357 the global symbol table for stubs. We don't need to set
8358 it here, because we just have a local stub. */
8359 }
8360 else
8361 {
8362 h = ((struct mips_elf_link_hash_entry *)
8363 sym_hashes[r_symndx - extsymoff]);
8364
8365 /* H is the symbol this stub is for. */
8366
8367 if (CALL_FP_STUB_P (name))
8368 loc = &h->call_fp_stub;
8369 else
8370 loc = &h->call_stub;
8371
8372 /* If we already have an appropriate stub for this function, we
8373 don't need another one, so we can discard this one. Since
8374 this function is called before the linker maps input sections
8375 to output sections, we can easily discard it by setting the
8376 SEC_EXCLUDE flag. */
8377 if (*loc != NULL)
8378 {
8379 sec->flags |= SEC_EXCLUDE;
8380 return TRUE;
8381 }
8382
8383 sec->flags |= SEC_KEEP;
8384 *loc = sec;
8385 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8386 }
8387 }
8388
8389 sreloc = NULL;
8390 contents = NULL;
8391 for (rel = relocs; rel < rel_end; ++rel)
8392 {
8393 unsigned long r_symndx;
8394 unsigned int r_type;
8395 struct elf_link_hash_entry *h;
8396 bfd_boolean can_make_dynamic_p;
8397 bfd_boolean call_reloc_p;
8398 bfd_boolean constrain_symbol_p;
8399
8400 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8401 r_type = ELF_R_TYPE (abfd, rel->r_info);
8402
8403 if (r_symndx < extsymoff)
8404 h = NULL;
8405 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8406 {
8407 _bfd_error_handler
8408 /* xgettext:c-format */
8409 (_("%pB: malformed reloc detected for section %s"),
8410 abfd, name);
8411 bfd_set_error (bfd_error_bad_value);
8412 return FALSE;
8413 }
8414 else
8415 {
8416 h = sym_hashes[r_symndx - extsymoff];
8417 if (h != NULL)
8418 {
8419 while (h->root.type == bfd_link_hash_indirect
8420 || h->root.type == bfd_link_hash_warning)
8421 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8422 }
8423 }
8424
8425 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8426 relocation into a dynamic one. */
8427 can_make_dynamic_p = FALSE;
8428
8429 /* Set CALL_RELOC_P to true if the relocation is for a call,
8430 and if pointer equality therefore doesn't matter. */
8431 call_reloc_p = FALSE;
8432
8433 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8434 into account when deciding how to define the symbol.
8435 Relocations in nonallocatable sections such as .pdr and
8436 .debug* should have no effect. */
8437 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8438
8439 switch (r_type)
8440 {
8441 case R_MIPS_CALL16:
8442 case R_MIPS_CALL_HI16:
8443 case R_MIPS_CALL_LO16:
8444 case R_MIPS16_CALL16:
8445 case R_MICROMIPS_CALL16:
8446 case R_MICROMIPS_CALL_HI16:
8447 case R_MICROMIPS_CALL_LO16:
8448 call_reloc_p = TRUE;
8449 /* Fall through. */
8450
8451 case R_MIPS_GOT16:
8452 case R_MIPS_GOT_HI16:
8453 case R_MIPS_GOT_LO16:
8454 case R_MIPS_GOT_PAGE:
8455 case R_MIPS_GOT_OFST:
8456 case R_MIPS_GOT_DISP:
8457 case R_MIPS_TLS_GOTTPREL:
8458 case R_MIPS_TLS_GD:
8459 case R_MIPS_TLS_LDM:
8460 case R_MIPS16_GOT16:
8461 case R_MIPS16_TLS_GOTTPREL:
8462 case R_MIPS16_TLS_GD:
8463 case R_MIPS16_TLS_LDM:
8464 case R_MICROMIPS_GOT16:
8465 case R_MICROMIPS_GOT_HI16:
8466 case R_MICROMIPS_GOT_LO16:
8467 case R_MICROMIPS_GOT_PAGE:
8468 case R_MICROMIPS_GOT_OFST:
8469 case R_MICROMIPS_GOT_DISP:
8470 case R_MICROMIPS_TLS_GOTTPREL:
8471 case R_MICROMIPS_TLS_GD:
8472 case R_MICROMIPS_TLS_LDM:
8473 if (dynobj == NULL)
8474 elf_hash_table (info)->dynobj = dynobj = abfd;
8475 if (!mips_elf_create_got_section (dynobj, info))
8476 return FALSE;
8477 if (htab->is_vxworks && !bfd_link_pic (info))
8478 {
8479 _bfd_error_handler
8480 /* xgettext:c-format */
8481 (_("%pB: GOT reloc at %#" PRIx64 " not expected in executables"),
8482 abfd, (uint64_t) rel->r_offset);
8483 bfd_set_error (bfd_error_bad_value);
8484 return FALSE;
8485 }
8486 can_make_dynamic_p = TRUE;
8487 break;
8488
8489 case R_MIPS_NONE:
8490 case R_MIPS_JALR:
8491 case R_MICROMIPS_JALR:
8492 /* These relocations have empty fields and are purely there to
8493 provide link information. The symbol value doesn't matter. */
8494 constrain_symbol_p = FALSE;
8495 break;
8496
8497 case R_MIPS_GPREL16:
8498 case R_MIPS_GPREL32:
8499 case R_MIPS16_GPREL:
8500 case R_MICROMIPS_GPREL16:
8501 /* GP-relative relocations always resolve to a definition in a
8502 regular input file, ignoring the one-definition rule. This is
8503 important for the GP setup sequence in NewABI code, which
8504 always resolves to a local function even if other relocations
8505 against the symbol wouldn't. */
8506 constrain_symbol_p = FALSE;
8507 break;
8508
8509 case R_MIPS_32:
8510 case R_MIPS_REL32:
8511 case R_MIPS_64:
8512 /* In VxWorks executables, references to external symbols
8513 must be handled using copy relocs or PLT entries; it is not
8514 possible to convert this relocation into a dynamic one.
8515
8516 For executables that use PLTs and copy-relocs, we have a
8517 choice between converting the relocation into a dynamic
8518 one or using copy relocations or PLT entries. It is
8519 usually better to do the former, unless the relocation is
8520 against a read-only section. */
8521 if ((bfd_link_pic (info)
8522 || (h != NULL
8523 && !htab->is_vxworks
8524 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8525 && !(!info->nocopyreloc
8526 && !PIC_OBJECT_P (abfd)
8527 && MIPS_ELF_READONLY_SECTION (sec))))
8528 && (sec->flags & SEC_ALLOC) != 0)
8529 {
8530 can_make_dynamic_p = TRUE;
8531 if (dynobj == NULL)
8532 elf_hash_table (info)->dynobj = dynobj = abfd;
8533 }
8534 break;
8535
8536 case R_MIPS_26:
8537 case R_MIPS_PC16:
8538 case R_MIPS_PC21_S2:
8539 case R_MIPS_PC26_S2:
8540 case R_MIPS16_26:
8541 case R_MIPS16_PC16_S1:
8542 case R_MICROMIPS_26_S1:
8543 case R_MICROMIPS_PC7_S1:
8544 case R_MICROMIPS_PC10_S1:
8545 case R_MICROMIPS_PC16_S1:
8546 case R_MICROMIPS_PC23_S2:
8547 call_reloc_p = TRUE;
8548 break;
8549 }
8550
8551 if (h)
8552 {
8553 if (constrain_symbol_p)
8554 {
8555 if (!can_make_dynamic_p)
8556 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8557
8558 if (!call_reloc_p)
8559 h->pointer_equality_needed = 1;
8560
8561 /* We must not create a stub for a symbol that has
8562 relocations related to taking the function's address.
8563 This doesn't apply to VxWorks, where CALL relocs refer
8564 to a .got.plt entry instead of a normal .got entry. */
8565 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8566 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8567 }
8568
8569 /* Relocations against the special VxWorks __GOTT_BASE__ and
8570 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8571 room for them in .rela.dyn. */
8572 if (is_gott_symbol (info, h))
8573 {
8574 if (sreloc == NULL)
8575 {
8576 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8577 if (sreloc == NULL)
8578 return FALSE;
8579 }
8580 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8581 if (MIPS_ELF_READONLY_SECTION (sec))
8582 /* We tell the dynamic linker that there are
8583 relocations against the text segment. */
8584 info->flags |= DF_TEXTREL;
8585 }
8586 }
8587 else if (call_lo16_reloc_p (r_type)
8588 || got_lo16_reloc_p (r_type)
8589 || got_disp_reloc_p (r_type)
8590 || (got16_reloc_p (r_type) && htab->is_vxworks))
8591 {
8592 /* We may need a local GOT entry for this relocation. We
8593 don't count R_MIPS_GOT_PAGE because we can estimate the
8594 maximum number of pages needed by looking at the size of
8595 the segment. Similar comments apply to R_MIPS*_GOT16 and
8596 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8597 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8598 R_MIPS_CALL_HI16 because these are always followed by an
8599 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8600 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8601 rel->r_addend, info, r_type))
8602 return FALSE;
8603 }
8604
8605 if (h != NULL
8606 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8607 ELF_ST_IS_MIPS16 (h->other)))
8608 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8609
8610 switch (r_type)
8611 {
8612 case R_MIPS_CALL16:
8613 case R_MIPS16_CALL16:
8614 case R_MICROMIPS_CALL16:
8615 if (h == NULL)
8616 {
8617 _bfd_error_handler
8618 /* xgettext:c-format */
8619 (_("%pB: CALL16 reloc at %#" PRIx64 " not against global symbol"),
8620 abfd, (uint64_t) rel->r_offset);
8621 bfd_set_error (bfd_error_bad_value);
8622 return FALSE;
8623 }
8624 /* Fall through. */
8625
8626 case R_MIPS_CALL_HI16:
8627 case R_MIPS_CALL_LO16:
8628 case R_MICROMIPS_CALL_HI16:
8629 case R_MICROMIPS_CALL_LO16:
8630 if (h != NULL)
8631 {
8632 /* Make sure there is room in the regular GOT to hold the
8633 function's address. We may eliminate it in favour of
8634 a .got.plt entry later; see mips_elf_count_got_symbols. */
8635 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8636 r_type))
8637 return FALSE;
8638
8639 /* We need a stub, not a plt entry for the undefined
8640 function. But we record it as if it needs plt. See
8641 _bfd_elf_adjust_dynamic_symbol. */
8642 h->needs_plt = 1;
8643 h->type = STT_FUNC;
8644 }
8645 break;
8646
8647 case R_MIPS_GOT_PAGE:
8648 case R_MICROMIPS_GOT_PAGE:
8649 case R_MIPS16_GOT16:
8650 case R_MIPS_GOT16:
8651 case R_MIPS_GOT_HI16:
8652 case R_MIPS_GOT_LO16:
8653 case R_MICROMIPS_GOT16:
8654 case R_MICROMIPS_GOT_HI16:
8655 case R_MICROMIPS_GOT_LO16:
8656 if (!h || got_page_reloc_p (r_type))
8657 {
8658 /* This relocation needs (or may need, if h != NULL) a
8659 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8660 know for sure until we know whether the symbol is
8661 preemptible. */
8662 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8663 {
8664 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8665 return FALSE;
8666 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8667 addend = mips_elf_read_rel_addend (abfd, rel,
8668 howto, contents);
8669 if (got16_reloc_p (r_type))
8670 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8671 contents, &addend);
8672 else
8673 addend <<= howto->rightshift;
8674 }
8675 else
8676 addend = rel->r_addend;
8677 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8678 h, addend))
8679 return FALSE;
8680
8681 if (h)
8682 {
8683 struct mips_elf_link_hash_entry *hmips =
8684 (struct mips_elf_link_hash_entry *) h;
8685
8686 /* This symbol is definitely not overridable. */
8687 if (hmips->root.def_regular
8688 && ! (bfd_link_pic (info) && ! info->symbolic
8689 && ! hmips->root.forced_local))
8690 h = NULL;
8691 }
8692 }
8693 /* If this is a global, overridable symbol, GOT_PAGE will
8694 decay to GOT_DISP, so we'll need a GOT entry for it. */
8695 /* Fall through. */
8696
8697 case R_MIPS_GOT_DISP:
8698 case R_MICROMIPS_GOT_DISP:
8699 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8700 FALSE, r_type))
8701 return FALSE;
8702 break;
8703
8704 case R_MIPS_TLS_GOTTPREL:
8705 case R_MIPS16_TLS_GOTTPREL:
8706 case R_MICROMIPS_TLS_GOTTPREL:
8707 if (bfd_link_pic (info))
8708 info->flags |= DF_STATIC_TLS;
8709 /* Fall through */
8710
8711 case R_MIPS_TLS_LDM:
8712 case R_MIPS16_TLS_LDM:
8713 case R_MICROMIPS_TLS_LDM:
8714 if (tls_ldm_reloc_p (r_type))
8715 {
8716 r_symndx = STN_UNDEF;
8717 h = NULL;
8718 }
8719 /* Fall through */
8720
8721 case R_MIPS_TLS_GD:
8722 case R_MIPS16_TLS_GD:
8723 case R_MICROMIPS_TLS_GD:
8724 /* This symbol requires a global offset table entry, or two
8725 for TLS GD relocations. */
8726 if (h != NULL)
8727 {
8728 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8729 FALSE, r_type))
8730 return FALSE;
8731 }
8732 else
8733 {
8734 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8735 rel->r_addend,
8736 info, r_type))
8737 return FALSE;
8738 }
8739 break;
8740
8741 case R_MIPS_32:
8742 case R_MIPS_REL32:
8743 case R_MIPS_64:
8744 /* In VxWorks executables, references to external symbols
8745 are handled using copy relocs or PLT stubs, so there's
8746 no need to add a .rela.dyn entry for this relocation. */
8747 if (can_make_dynamic_p)
8748 {
8749 if (sreloc == NULL)
8750 {
8751 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8752 if (sreloc == NULL)
8753 return FALSE;
8754 }
8755 if (bfd_link_pic (info) && h == NULL)
8756 {
8757 /* When creating a shared object, we must copy these
8758 reloc types into the output file as R_MIPS_REL32
8759 relocs. Make room for this reloc in .rel(a).dyn. */
8760 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8761 if (MIPS_ELF_READONLY_SECTION (sec))
8762 /* We tell the dynamic linker that there are
8763 relocations against the text segment. */
8764 info->flags |= DF_TEXTREL;
8765 }
8766 else
8767 {
8768 struct mips_elf_link_hash_entry *hmips;
8769
8770 /* For a shared object, we must copy this relocation
8771 unless the symbol turns out to be undefined and
8772 weak with non-default visibility, in which case
8773 it will be left as zero.
8774
8775 We could elide R_MIPS_REL32 for locally binding symbols
8776 in shared libraries, but do not yet do so.
8777
8778 For an executable, we only need to copy this
8779 reloc if the symbol is defined in a dynamic
8780 object. */
8781 hmips = (struct mips_elf_link_hash_entry *) h;
8782 ++hmips->possibly_dynamic_relocs;
8783 if (MIPS_ELF_READONLY_SECTION (sec))
8784 /* We need it to tell the dynamic linker if there
8785 are relocations against the text segment. */
8786 hmips->readonly_reloc = TRUE;
8787 }
8788 }
8789
8790 if (SGI_COMPAT (abfd))
8791 mips_elf_hash_table (info)->compact_rel_size +=
8792 sizeof (Elf32_External_crinfo);
8793 break;
8794
8795 case R_MIPS_26:
8796 case R_MIPS_GPREL16:
8797 case R_MIPS_LITERAL:
8798 case R_MIPS_GPREL32:
8799 case R_MICROMIPS_26_S1:
8800 case R_MICROMIPS_GPREL16:
8801 case R_MICROMIPS_LITERAL:
8802 case R_MICROMIPS_GPREL7_S2:
8803 if (SGI_COMPAT (abfd))
8804 mips_elf_hash_table (info)->compact_rel_size +=
8805 sizeof (Elf32_External_crinfo);
8806 break;
8807
8808 /* This relocation describes the C++ object vtable hierarchy.
8809 Reconstruct it for later use during GC. */
8810 case R_MIPS_GNU_VTINHERIT:
8811 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8812 return FALSE;
8813 break;
8814
8815 /* This relocation describes which C++ vtable entries are actually
8816 used. Record for later use during GC. */
8817 case R_MIPS_GNU_VTENTRY:
8818 BFD_ASSERT (h != NULL);
8819 if (h != NULL
8820 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8821 return FALSE;
8822 break;
8823
8824 default:
8825 break;
8826 }
8827
8828 /* Record the need for a PLT entry. At this point we don't know
8829 yet if we are going to create a PLT in the first place, but
8830 we only record whether the relocation requires a standard MIPS
8831 or a compressed code entry anyway. If we don't make a PLT after
8832 all, then we'll just ignore these arrangements. Likewise if
8833 a PLT entry is not created because the symbol is satisfied
8834 locally. */
8835 if (h != NULL
8836 && (branch_reloc_p (r_type)
8837 || mips16_branch_reloc_p (r_type)
8838 || micromips_branch_reloc_p (r_type))
8839 && !SYMBOL_CALLS_LOCAL (info, h))
8840 {
8841 if (h->plt.plist == NULL)
8842 h->plt.plist = mips_elf_make_plt_record (abfd);
8843 if (h->plt.plist == NULL)
8844 return FALSE;
8845
8846 if (branch_reloc_p (r_type))
8847 h->plt.plist->need_mips = TRUE;
8848 else
8849 h->plt.plist->need_comp = TRUE;
8850 }
8851
8852 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8853 if there is one. We only need to handle global symbols here;
8854 we decide whether to keep or delete stubs for local symbols
8855 when processing the stub's relocations. */
8856 if (h != NULL
8857 && !mips16_call_reloc_p (r_type)
8858 && !section_allows_mips16_refs_p (sec))
8859 {
8860 struct mips_elf_link_hash_entry *mh;
8861
8862 mh = (struct mips_elf_link_hash_entry *) h;
8863 mh->need_fn_stub = TRUE;
8864 }
8865
8866 /* Refuse some position-dependent relocations when creating a
8867 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8868 not PIC, but we can create dynamic relocations and the result
8869 will be fine. Also do not refuse R_MIPS_LO16, which can be
8870 combined with R_MIPS_GOT16. */
8871 if (bfd_link_pic (info))
8872 {
8873 switch (r_type)
8874 {
8875 case R_MIPS16_HI16:
8876 case R_MIPS_HI16:
8877 case R_MIPS_HIGHER:
8878 case R_MIPS_HIGHEST:
8879 case R_MICROMIPS_HI16:
8880 case R_MICROMIPS_HIGHER:
8881 case R_MICROMIPS_HIGHEST:
8882 /* Don't refuse a high part relocation if it's against
8883 no symbol (e.g. part of a compound relocation). */
8884 if (r_symndx == STN_UNDEF)
8885 break;
8886
8887 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8888 and has a special meaning. */
8889 if (!NEWABI_P (abfd) && h != NULL
8890 && strcmp (h->root.root.string, "_gp_disp") == 0)
8891 break;
8892
8893 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8894 if (is_gott_symbol (info, h))
8895 break;
8896
8897 /* FALLTHROUGH */
8898
8899 case R_MIPS16_26:
8900 case R_MIPS_26:
8901 case R_MICROMIPS_26_S1:
8902 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8903 _bfd_error_handler
8904 /* xgettext:c-format */
8905 (_("%pB: relocation %s against `%s' can not be used"
8906 " when making a shared object; recompile with -fPIC"),
8907 abfd, howto->name,
8908 (h) ? h->root.root.string : "a local symbol");
8909 bfd_set_error (bfd_error_bad_value);
8910 return FALSE;
8911 default:
8912 break;
8913 }
8914 }
8915 }
8916
8917 return TRUE;
8918 }
8919 \f
8920 /* Allocate space for global sym dynamic relocs. */
8921
8922 static bfd_boolean
8923 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8924 {
8925 struct bfd_link_info *info = inf;
8926 bfd *dynobj;
8927 struct mips_elf_link_hash_entry *hmips;
8928 struct mips_elf_link_hash_table *htab;
8929
8930 htab = mips_elf_hash_table (info);
8931 BFD_ASSERT (htab != NULL);
8932
8933 dynobj = elf_hash_table (info)->dynobj;
8934 hmips = (struct mips_elf_link_hash_entry *) h;
8935
8936 /* VxWorks executables are handled elsewhere; we only need to
8937 allocate relocations in shared objects. */
8938 if (htab->is_vxworks && !bfd_link_pic (info))
8939 return TRUE;
8940
8941 /* Ignore indirect symbols. All relocations against such symbols
8942 will be redirected to the target symbol. */
8943 if (h->root.type == bfd_link_hash_indirect)
8944 return TRUE;
8945
8946 /* If this symbol is defined in a dynamic object, or we are creating
8947 a shared library, we will need to copy any R_MIPS_32 or
8948 R_MIPS_REL32 relocs against it into the output file. */
8949 if (! bfd_link_relocatable (info)
8950 && hmips->possibly_dynamic_relocs != 0
8951 && (h->root.type == bfd_link_hash_defweak
8952 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
8953 || bfd_link_pic (info)))
8954 {
8955 bfd_boolean do_copy = TRUE;
8956
8957 if (h->root.type == bfd_link_hash_undefweak)
8958 {
8959 /* Do not copy relocations for undefined weak symbols that
8960 we are not going to export. */
8961 if (UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8962 do_copy = FALSE;
8963
8964 /* Make sure undefined weak symbols are output as a dynamic
8965 symbol in PIEs. */
8966 else if (h->dynindx == -1 && !h->forced_local)
8967 {
8968 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8969 return FALSE;
8970 }
8971 }
8972
8973 if (do_copy)
8974 {
8975 /* Even though we don't directly need a GOT entry for this symbol,
8976 the SVR4 psABI requires it to have a dynamic symbol table
8977 index greater that DT_MIPS_GOTSYM if there are dynamic
8978 relocations against it.
8979
8980 VxWorks does not enforce the same mapping between the GOT
8981 and the symbol table, so the same requirement does not
8982 apply there. */
8983 if (!htab->is_vxworks)
8984 {
8985 if (hmips->global_got_area > GGA_RELOC_ONLY)
8986 hmips->global_got_area = GGA_RELOC_ONLY;
8987 hmips->got_only_for_calls = FALSE;
8988 }
8989
8990 mips_elf_allocate_dynamic_relocations
8991 (dynobj, info, hmips->possibly_dynamic_relocs);
8992 if (hmips->readonly_reloc)
8993 /* We tell the dynamic linker that there are relocations
8994 against the text segment. */
8995 info->flags |= DF_TEXTREL;
8996 }
8997 }
8998
8999 return TRUE;
9000 }
9001
9002 /* Adjust a symbol defined by a dynamic object and referenced by a
9003 regular object. The current definition is in some section of the
9004 dynamic object, but we're not including those sections. We have to
9005 change the definition to something the rest of the link can
9006 understand. */
9007
9008 bfd_boolean
9009 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
9010 struct elf_link_hash_entry *h)
9011 {
9012 bfd *dynobj;
9013 struct mips_elf_link_hash_entry *hmips;
9014 struct mips_elf_link_hash_table *htab;
9015 asection *s, *srel;
9016
9017 htab = mips_elf_hash_table (info);
9018 BFD_ASSERT (htab != NULL);
9019
9020 dynobj = elf_hash_table (info)->dynobj;
9021 hmips = (struct mips_elf_link_hash_entry *) h;
9022
9023 /* Make sure we know what is going on here. */
9024 BFD_ASSERT (dynobj != NULL
9025 && (h->needs_plt
9026 || h->is_weakalias
9027 || (h->def_dynamic
9028 && h->ref_regular
9029 && !h->def_regular)));
9030
9031 hmips = (struct mips_elf_link_hash_entry *) h;
9032
9033 /* If there are call relocations against an externally-defined symbol,
9034 see whether we can create a MIPS lazy-binding stub for it. We can
9035 only do this if all references to the function are through call
9036 relocations, and in that case, the traditional lazy-binding stubs
9037 are much more efficient than PLT entries.
9038
9039 Traditional stubs are only available on SVR4 psABI-based systems;
9040 VxWorks always uses PLTs instead. */
9041 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
9042 {
9043 if (! elf_hash_table (info)->dynamic_sections_created)
9044 return TRUE;
9045
9046 /* If this symbol is not defined in a regular file, then set
9047 the symbol to the stub location. This is required to make
9048 function pointers compare as equal between the normal
9049 executable and the shared library. */
9050 if (!h->def_regular
9051 && !bfd_is_abs_section (htab->sstubs->output_section))
9052 {
9053 hmips->needs_lazy_stub = TRUE;
9054 htab->lazy_stub_count++;
9055 return TRUE;
9056 }
9057 }
9058 /* As above, VxWorks requires PLT entries for externally-defined
9059 functions that are only accessed through call relocations.
9060
9061 Both VxWorks and non-VxWorks targets also need PLT entries if there
9062 are static-only relocations against an externally-defined function.
9063 This can technically occur for shared libraries if there are
9064 branches to the symbol, although it is unlikely that this will be
9065 used in practice due to the short ranges involved. It can occur
9066 for any relative or absolute relocation in executables; in that
9067 case, the PLT entry becomes the function's canonical address. */
9068 else if (((h->needs_plt && !hmips->no_fn_stub)
9069 || (h->type == STT_FUNC && hmips->has_static_relocs))
9070 && htab->use_plts_and_copy_relocs
9071 && !SYMBOL_CALLS_LOCAL (info, h)
9072 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9073 && h->root.type == bfd_link_hash_undefweak))
9074 {
9075 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9076 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9077
9078 /* If this is the first symbol to need a PLT entry, then make some
9079 basic setup. Also work out PLT entry sizes. We'll need them
9080 for PLT offset calculations. */
9081 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9082 {
9083 BFD_ASSERT (htab->root.sgotplt->size == 0);
9084 BFD_ASSERT (htab->plt_got_index == 0);
9085
9086 /* If we're using the PLT additions to the psABI, each PLT
9087 entry is 16 bytes and the PLT0 entry is 32 bytes.
9088 Encourage better cache usage by aligning. We do this
9089 lazily to avoid pessimizing traditional objects. */
9090 if (!htab->is_vxworks
9091 && !bfd_set_section_alignment (dynobj, htab->root.splt, 5))
9092 return FALSE;
9093
9094 /* Make sure that .got.plt is word-aligned. We do this lazily
9095 for the same reason as above. */
9096 if (!bfd_set_section_alignment (dynobj, htab->root.sgotplt,
9097 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9098 return FALSE;
9099
9100 /* On non-VxWorks targets, the first two entries in .got.plt
9101 are reserved. */
9102 if (!htab->is_vxworks)
9103 htab->plt_got_index
9104 += (get_elf_backend_data (dynobj)->got_header_size
9105 / MIPS_ELF_GOT_SIZE (dynobj));
9106
9107 /* On VxWorks, also allocate room for the header's
9108 .rela.plt.unloaded entries. */
9109 if (htab->is_vxworks && !bfd_link_pic (info))
9110 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9111
9112 /* Now work out the sizes of individual PLT entries. */
9113 if (htab->is_vxworks && bfd_link_pic (info))
9114 htab->plt_mips_entry_size
9115 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9116 else if (htab->is_vxworks)
9117 htab->plt_mips_entry_size
9118 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9119 else if (newabi_p)
9120 htab->plt_mips_entry_size
9121 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9122 else if (!micromips_p)
9123 {
9124 htab->plt_mips_entry_size
9125 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9126 htab->plt_comp_entry_size
9127 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9128 }
9129 else if (htab->insn32)
9130 {
9131 htab->plt_mips_entry_size
9132 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9133 htab->plt_comp_entry_size
9134 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9135 }
9136 else
9137 {
9138 htab->plt_mips_entry_size
9139 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9140 htab->plt_comp_entry_size
9141 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9142 }
9143 }
9144
9145 if (h->plt.plist == NULL)
9146 h->plt.plist = mips_elf_make_plt_record (dynobj);
9147 if (h->plt.plist == NULL)
9148 return FALSE;
9149
9150 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9151 n32 or n64, so always use a standard entry there.
9152
9153 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9154 all MIPS16 calls will go via that stub, and there is no benefit
9155 to having a MIPS16 entry. And in the case of call_stub a
9156 standard entry actually has to be used as the stub ends with a J
9157 instruction. */
9158 if (newabi_p
9159 || htab->is_vxworks
9160 || hmips->call_stub
9161 || hmips->call_fp_stub)
9162 {
9163 h->plt.plist->need_mips = TRUE;
9164 h->plt.plist->need_comp = FALSE;
9165 }
9166
9167 /* Otherwise, if there are no direct calls to the function, we
9168 have a free choice of whether to use standard or compressed
9169 entries. Prefer microMIPS entries if the object is known to
9170 contain microMIPS code, so that it becomes possible to create
9171 pure microMIPS binaries. Prefer standard entries otherwise,
9172 because MIPS16 ones are no smaller and are usually slower. */
9173 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9174 {
9175 if (micromips_p)
9176 h->plt.plist->need_comp = TRUE;
9177 else
9178 h->plt.plist->need_mips = TRUE;
9179 }
9180
9181 if (h->plt.plist->need_mips)
9182 {
9183 h->plt.plist->mips_offset = htab->plt_mips_offset;
9184 htab->plt_mips_offset += htab->plt_mips_entry_size;
9185 }
9186 if (h->plt.plist->need_comp)
9187 {
9188 h->plt.plist->comp_offset = htab->plt_comp_offset;
9189 htab->plt_comp_offset += htab->plt_comp_entry_size;
9190 }
9191
9192 /* Reserve the corresponding .got.plt entry now too. */
9193 h->plt.plist->gotplt_index = htab->plt_got_index++;
9194
9195 /* If the output file has no definition of the symbol, set the
9196 symbol's value to the address of the stub. */
9197 if (!bfd_link_pic (info) && !h->def_regular)
9198 hmips->use_plt_entry = TRUE;
9199
9200 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9201 htab->root.srelplt->size += (htab->is_vxworks
9202 ? MIPS_ELF_RELA_SIZE (dynobj)
9203 : MIPS_ELF_REL_SIZE (dynobj));
9204
9205 /* Make room for the .rela.plt.unloaded relocations. */
9206 if (htab->is_vxworks && !bfd_link_pic (info))
9207 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9208
9209 /* All relocations against this symbol that could have been made
9210 dynamic will now refer to the PLT entry instead. */
9211 hmips->possibly_dynamic_relocs = 0;
9212
9213 return TRUE;
9214 }
9215
9216 /* If this is a weak symbol, and there is a real definition, the
9217 processor independent code will have arranged for us to see the
9218 real definition first, and we can just use the same value. */
9219 if (h->is_weakalias)
9220 {
9221 struct elf_link_hash_entry *def = weakdef (h);
9222 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
9223 h->root.u.def.section = def->root.u.def.section;
9224 h->root.u.def.value = def->root.u.def.value;
9225 return TRUE;
9226 }
9227
9228 /* Otherwise, there is nothing further to do for symbols defined
9229 in regular objects. */
9230 if (h->def_regular)
9231 return TRUE;
9232
9233 /* There's also nothing more to do if we'll convert all relocations
9234 against this symbol into dynamic relocations. */
9235 if (!hmips->has_static_relocs)
9236 return TRUE;
9237
9238 /* We're now relying on copy relocations. Complain if we have
9239 some that we can't convert. */
9240 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
9241 {
9242 _bfd_error_handler (_("non-dynamic relocations refer to "
9243 "dynamic symbol %s"),
9244 h->root.root.string);
9245 bfd_set_error (bfd_error_bad_value);
9246 return FALSE;
9247 }
9248
9249 /* We must allocate the symbol in our .dynbss section, which will
9250 become part of the .bss section of the executable. There will be
9251 an entry for this symbol in the .dynsym section. The dynamic
9252 object will contain position independent code, so all references
9253 from the dynamic object to this symbol will go through the global
9254 offset table. The dynamic linker will use the .dynsym entry to
9255 determine the address it must put in the global offset table, so
9256 both the dynamic object and the regular object will refer to the
9257 same memory location for the variable. */
9258
9259 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
9260 {
9261 s = htab->root.sdynrelro;
9262 srel = htab->root.sreldynrelro;
9263 }
9264 else
9265 {
9266 s = htab->root.sdynbss;
9267 srel = htab->root.srelbss;
9268 }
9269 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9270 {
9271 if (htab->is_vxworks)
9272 srel->size += sizeof (Elf32_External_Rela);
9273 else
9274 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9275 h->needs_copy = 1;
9276 }
9277
9278 /* All relocations against this symbol that could have been made
9279 dynamic will now refer to the local copy instead. */
9280 hmips->possibly_dynamic_relocs = 0;
9281
9282 return _bfd_elf_adjust_dynamic_copy (info, h, s);
9283 }
9284 \f
9285 /* This function is called after all the input files have been read,
9286 and the input sections have been assigned to output sections. We
9287 check for any mips16 stub sections that we can discard. */
9288
9289 bfd_boolean
9290 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9291 struct bfd_link_info *info)
9292 {
9293 asection *sect;
9294 struct mips_elf_link_hash_table *htab;
9295 struct mips_htab_traverse_info hti;
9296
9297 htab = mips_elf_hash_table (info);
9298 BFD_ASSERT (htab != NULL);
9299
9300 /* The .reginfo section has a fixed size. */
9301 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9302 if (sect != NULL)
9303 {
9304 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9305 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9306 }
9307
9308 /* The .MIPS.abiflags section has a fixed size. */
9309 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9310 if (sect != NULL)
9311 {
9312 bfd_set_section_size (output_bfd, sect,
9313 sizeof (Elf_External_ABIFlags_v0));
9314 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9315 }
9316
9317 hti.info = info;
9318 hti.output_bfd = output_bfd;
9319 hti.error = FALSE;
9320 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9321 mips_elf_check_symbols, &hti);
9322 if (hti.error)
9323 return FALSE;
9324
9325 return TRUE;
9326 }
9327
9328 /* If the link uses a GOT, lay it out and work out its size. */
9329
9330 static bfd_boolean
9331 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9332 {
9333 bfd *dynobj;
9334 asection *s;
9335 struct mips_got_info *g;
9336 bfd_size_type loadable_size = 0;
9337 bfd_size_type page_gotno;
9338 bfd *ibfd;
9339 struct mips_elf_traverse_got_arg tga;
9340 struct mips_elf_link_hash_table *htab;
9341
9342 htab = mips_elf_hash_table (info);
9343 BFD_ASSERT (htab != NULL);
9344
9345 s = htab->root.sgot;
9346 if (s == NULL)
9347 return TRUE;
9348
9349 dynobj = elf_hash_table (info)->dynobj;
9350 g = htab->got_info;
9351
9352 /* Allocate room for the reserved entries. VxWorks always reserves
9353 3 entries; other objects only reserve 2 entries. */
9354 BFD_ASSERT (g->assigned_low_gotno == 0);
9355 if (htab->is_vxworks)
9356 htab->reserved_gotno = 3;
9357 else
9358 htab->reserved_gotno = 2;
9359 g->local_gotno += htab->reserved_gotno;
9360 g->assigned_low_gotno = htab->reserved_gotno;
9361
9362 /* Decide which symbols need to go in the global part of the GOT and
9363 count the number of reloc-only GOT symbols. */
9364 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9365
9366 if (!mips_elf_resolve_final_got_entries (info, g))
9367 return FALSE;
9368
9369 /* Calculate the total loadable size of the output. That
9370 will give us the maximum number of GOT_PAGE entries
9371 required. */
9372 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9373 {
9374 asection *subsection;
9375
9376 for (subsection = ibfd->sections;
9377 subsection;
9378 subsection = subsection->next)
9379 {
9380 if ((subsection->flags & SEC_ALLOC) == 0)
9381 continue;
9382 loadable_size += ((subsection->size + 0xf)
9383 &~ (bfd_size_type) 0xf);
9384 }
9385 }
9386
9387 if (htab->is_vxworks)
9388 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9389 relocations against local symbols evaluate to "G", and the EABI does
9390 not include R_MIPS_GOT_PAGE. */
9391 page_gotno = 0;
9392 else
9393 /* Assume there are two loadable segments consisting of contiguous
9394 sections. Is 5 enough? */
9395 page_gotno = (loadable_size >> 16) + 5;
9396
9397 /* Choose the smaller of the two page estimates; both are intended to be
9398 conservative. */
9399 if (page_gotno > g->page_gotno)
9400 page_gotno = g->page_gotno;
9401
9402 g->local_gotno += page_gotno;
9403 g->assigned_high_gotno = g->local_gotno - 1;
9404
9405 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9406 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9407 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9408
9409 /* VxWorks does not support multiple GOTs. It initializes $gp to
9410 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9411 dynamic loader. */
9412 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9413 {
9414 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9415 return FALSE;
9416 }
9417 else
9418 {
9419 /* Record that all bfds use G. This also has the effect of freeing
9420 the per-bfd GOTs, which we no longer need. */
9421 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9422 if (mips_elf_bfd_got (ibfd, FALSE))
9423 mips_elf_replace_bfd_got (ibfd, g);
9424 mips_elf_replace_bfd_got (output_bfd, g);
9425
9426 /* Set up TLS entries. */
9427 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9428 tga.info = info;
9429 tga.g = g;
9430 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9431 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9432 if (!tga.g)
9433 return FALSE;
9434 BFD_ASSERT (g->tls_assigned_gotno
9435 == g->global_gotno + g->local_gotno + g->tls_gotno);
9436
9437 /* Each VxWorks GOT entry needs an explicit relocation. */
9438 if (htab->is_vxworks && bfd_link_pic (info))
9439 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9440
9441 /* Allocate room for the TLS relocations. */
9442 if (g->relocs)
9443 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9444 }
9445
9446 return TRUE;
9447 }
9448
9449 /* Estimate the size of the .MIPS.stubs section. */
9450
9451 static void
9452 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9453 {
9454 struct mips_elf_link_hash_table *htab;
9455 bfd_size_type dynsymcount;
9456
9457 htab = mips_elf_hash_table (info);
9458 BFD_ASSERT (htab != NULL);
9459
9460 if (htab->lazy_stub_count == 0)
9461 return;
9462
9463 /* IRIX rld assumes that a function stub isn't at the end of the .text
9464 section, so add a dummy entry to the end. */
9465 htab->lazy_stub_count++;
9466
9467 /* Get a worst-case estimate of the number of dynamic symbols needed.
9468 At this point, dynsymcount does not account for section symbols
9469 and count_section_dynsyms may overestimate the number that will
9470 be needed. */
9471 dynsymcount = (elf_hash_table (info)->dynsymcount
9472 + count_section_dynsyms (output_bfd, info));
9473
9474 /* Determine the size of one stub entry. There's no disadvantage
9475 from using microMIPS code here, so for the sake of pure-microMIPS
9476 binaries we prefer it whenever there's any microMIPS code in
9477 output produced at all. This has a benefit of stubs being
9478 shorter by 4 bytes each too, unless in the insn32 mode. */
9479 if (!MICROMIPS_P (output_bfd))
9480 htab->function_stub_size = (dynsymcount > 0x10000
9481 ? MIPS_FUNCTION_STUB_BIG_SIZE
9482 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9483 else if (htab->insn32)
9484 htab->function_stub_size = (dynsymcount > 0x10000
9485 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9486 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9487 else
9488 htab->function_stub_size = (dynsymcount > 0x10000
9489 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9490 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9491
9492 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9493 }
9494
9495 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9496 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9497 stub, allocate an entry in the stubs section. */
9498
9499 static bfd_boolean
9500 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9501 {
9502 struct mips_htab_traverse_info *hti = data;
9503 struct mips_elf_link_hash_table *htab;
9504 struct bfd_link_info *info;
9505 bfd *output_bfd;
9506
9507 info = hti->info;
9508 output_bfd = hti->output_bfd;
9509 htab = mips_elf_hash_table (info);
9510 BFD_ASSERT (htab != NULL);
9511
9512 if (h->needs_lazy_stub)
9513 {
9514 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9515 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9516 bfd_vma isa_bit = micromips_p;
9517
9518 BFD_ASSERT (htab->root.dynobj != NULL);
9519 if (h->root.plt.plist == NULL)
9520 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9521 if (h->root.plt.plist == NULL)
9522 {
9523 hti->error = TRUE;
9524 return FALSE;
9525 }
9526 h->root.root.u.def.section = htab->sstubs;
9527 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9528 h->root.plt.plist->stub_offset = htab->sstubs->size;
9529 h->root.other = other;
9530 htab->sstubs->size += htab->function_stub_size;
9531 }
9532 return TRUE;
9533 }
9534
9535 /* Allocate offsets in the stubs section to each symbol that needs one.
9536 Set the final size of the .MIPS.stub section. */
9537
9538 static bfd_boolean
9539 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9540 {
9541 bfd *output_bfd = info->output_bfd;
9542 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9543 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9544 bfd_vma isa_bit = micromips_p;
9545 struct mips_elf_link_hash_table *htab;
9546 struct mips_htab_traverse_info hti;
9547 struct elf_link_hash_entry *h;
9548 bfd *dynobj;
9549
9550 htab = mips_elf_hash_table (info);
9551 BFD_ASSERT (htab != NULL);
9552
9553 if (htab->lazy_stub_count == 0)
9554 return TRUE;
9555
9556 htab->sstubs->size = 0;
9557 hti.info = info;
9558 hti.output_bfd = output_bfd;
9559 hti.error = FALSE;
9560 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9561 if (hti.error)
9562 return FALSE;
9563 htab->sstubs->size += htab->function_stub_size;
9564 BFD_ASSERT (htab->sstubs->size
9565 == htab->lazy_stub_count * htab->function_stub_size);
9566
9567 dynobj = elf_hash_table (info)->dynobj;
9568 BFD_ASSERT (dynobj != NULL);
9569 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9570 if (h == NULL)
9571 return FALSE;
9572 h->root.u.def.value = isa_bit;
9573 h->other = other;
9574 h->type = STT_FUNC;
9575
9576 return TRUE;
9577 }
9578
9579 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9580 bfd_link_info. If H uses the address of a PLT entry as the value
9581 of the symbol, then set the entry in the symbol table now. Prefer
9582 a standard MIPS PLT entry. */
9583
9584 static bfd_boolean
9585 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9586 {
9587 struct bfd_link_info *info = data;
9588 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9589 struct mips_elf_link_hash_table *htab;
9590 unsigned int other;
9591 bfd_vma isa_bit;
9592 bfd_vma val;
9593
9594 htab = mips_elf_hash_table (info);
9595 BFD_ASSERT (htab != NULL);
9596
9597 if (h->use_plt_entry)
9598 {
9599 BFD_ASSERT (h->root.plt.plist != NULL);
9600 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9601 || h->root.plt.plist->comp_offset != MINUS_ONE);
9602
9603 val = htab->plt_header_size;
9604 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9605 {
9606 isa_bit = 0;
9607 val += h->root.plt.plist->mips_offset;
9608 other = 0;
9609 }
9610 else
9611 {
9612 isa_bit = 1;
9613 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9614 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9615 }
9616 val += isa_bit;
9617 /* For VxWorks, point at the PLT load stub rather than the lazy
9618 resolution stub; this stub will become the canonical function
9619 address. */
9620 if (htab->is_vxworks)
9621 val += 8;
9622
9623 h->root.root.u.def.section = htab->root.splt;
9624 h->root.root.u.def.value = val;
9625 h->root.other = other;
9626 }
9627
9628 return TRUE;
9629 }
9630
9631 /* Set the sizes of the dynamic sections. */
9632
9633 bfd_boolean
9634 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9635 struct bfd_link_info *info)
9636 {
9637 bfd *dynobj;
9638 asection *s, *sreldyn;
9639 bfd_boolean reltext;
9640 struct mips_elf_link_hash_table *htab;
9641
9642 htab = mips_elf_hash_table (info);
9643 BFD_ASSERT (htab != NULL);
9644 dynobj = elf_hash_table (info)->dynobj;
9645 BFD_ASSERT (dynobj != NULL);
9646
9647 if (elf_hash_table (info)->dynamic_sections_created)
9648 {
9649 /* Set the contents of the .interp section to the interpreter. */
9650 if (bfd_link_executable (info) && !info->nointerp)
9651 {
9652 s = bfd_get_linker_section (dynobj, ".interp");
9653 BFD_ASSERT (s != NULL);
9654 s->size
9655 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9656 s->contents
9657 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9658 }
9659
9660 /* Figure out the size of the PLT header if we know that we
9661 are using it. For the sake of cache alignment always use
9662 a standard header whenever any standard entries are present
9663 even if microMIPS entries are present as well. This also
9664 lets the microMIPS header rely on the value of $v0 only set
9665 by microMIPS entries, for a small size reduction.
9666
9667 Set symbol table entry values for symbols that use the
9668 address of their PLT entry now that we can calculate it.
9669
9670 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9671 haven't already in _bfd_elf_create_dynamic_sections. */
9672 if (htab->root.splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9673 {
9674 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9675 && !htab->plt_mips_offset);
9676 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9677 bfd_vma isa_bit = micromips_p;
9678 struct elf_link_hash_entry *h;
9679 bfd_vma size;
9680
9681 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9682 BFD_ASSERT (htab->root.sgotplt->size == 0);
9683 BFD_ASSERT (htab->root.splt->size == 0);
9684
9685 if (htab->is_vxworks && bfd_link_pic (info))
9686 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9687 else if (htab->is_vxworks)
9688 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9689 else if (ABI_64_P (output_bfd))
9690 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9691 else if (ABI_N32_P (output_bfd))
9692 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9693 else if (!micromips_p)
9694 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9695 else if (htab->insn32)
9696 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9697 else
9698 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9699
9700 htab->plt_header_is_comp = micromips_p;
9701 htab->plt_header_size = size;
9702 htab->root.splt->size = (size
9703 + htab->plt_mips_offset
9704 + htab->plt_comp_offset);
9705 htab->root.sgotplt->size = (htab->plt_got_index
9706 * MIPS_ELF_GOT_SIZE (dynobj));
9707
9708 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9709
9710 if (htab->root.hplt == NULL)
9711 {
9712 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.splt,
9713 "_PROCEDURE_LINKAGE_TABLE_");
9714 htab->root.hplt = h;
9715 if (h == NULL)
9716 return FALSE;
9717 }
9718
9719 h = htab->root.hplt;
9720 h->root.u.def.value = isa_bit;
9721 h->other = other;
9722 h->type = STT_FUNC;
9723 }
9724 }
9725
9726 /* Allocate space for global sym dynamic relocs. */
9727 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9728
9729 mips_elf_estimate_stub_size (output_bfd, info);
9730
9731 if (!mips_elf_lay_out_got (output_bfd, info))
9732 return FALSE;
9733
9734 mips_elf_lay_out_lazy_stubs (info);
9735
9736 /* The check_relocs and adjust_dynamic_symbol entry points have
9737 determined the sizes of the various dynamic sections. Allocate
9738 memory for them. */
9739 reltext = FALSE;
9740 for (s = dynobj->sections; s != NULL; s = s->next)
9741 {
9742 const char *name;
9743
9744 /* It's OK to base decisions on the section name, because none
9745 of the dynobj section names depend upon the input files. */
9746 name = bfd_get_section_name (dynobj, s);
9747
9748 if ((s->flags & SEC_LINKER_CREATED) == 0)
9749 continue;
9750
9751 if (CONST_STRNEQ (name, ".rel"))
9752 {
9753 if (s->size != 0)
9754 {
9755 const char *outname;
9756 asection *target;
9757
9758 /* If this relocation section applies to a read only
9759 section, then we probably need a DT_TEXTREL entry.
9760 If the relocation section is .rel(a).dyn, we always
9761 assert a DT_TEXTREL entry rather than testing whether
9762 there exists a relocation to a read only section or
9763 not. */
9764 outname = bfd_get_section_name (output_bfd,
9765 s->output_section);
9766 target = bfd_get_section_by_name (output_bfd, outname + 4);
9767 if ((target != NULL
9768 && (target->flags & SEC_READONLY) != 0
9769 && (target->flags & SEC_ALLOC) != 0)
9770 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9771 reltext = TRUE;
9772
9773 /* We use the reloc_count field as a counter if we need
9774 to copy relocs into the output file. */
9775 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9776 s->reloc_count = 0;
9777
9778 /* If combreloc is enabled, elf_link_sort_relocs() will
9779 sort relocations, but in a different way than we do,
9780 and before we're done creating relocations. Also, it
9781 will move them around between input sections'
9782 relocation's contents, so our sorting would be
9783 broken, so don't let it run. */
9784 info->combreloc = 0;
9785 }
9786 }
9787 else if (bfd_link_executable (info)
9788 && ! mips_elf_hash_table (info)->use_rld_obj_head
9789 && CONST_STRNEQ (name, ".rld_map"))
9790 {
9791 /* We add a room for __rld_map. It will be filled in by the
9792 rtld to contain a pointer to the _r_debug structure. */
9793 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9794 }
9795 else if (SGI_COMPAT (output_bfd)
9796 && CONST_STRNEQ (name, ".compact_rel"))
9797 s->size += mips_elf_hash_table (info)->compact_rel_size;
9798 else if (s == htab->root.splt)
9799 {
9800 /* If the last PLT entry has a branch delay slot, allocate
9801 room for an extra nop to fill the delay slot. This is
9802 for CPUs without load interlocking. */
9803 if (! LOAD_INTERLOCKS_P (output_bfd)
9804 && ! htab->is_vxworks && s->size > 0)
9805 s->size += 4;
9806 }
9807 else if (! CONST_STRNEQ (name, ".init")
9808 && s != htab->root.sgot
9809 && s != htab->root.sgotplt
9810 && s != htab->sstubs
9811 && s != htab->root.sdynbss
9812 && s != htab->root.sdynrelro)
9813 {
9814 /* It's not one of our sections, so don't allocate space. */
9815 continue;
9816 }
9817
9818 if (s->size == 0)
9819 {
9820 s->flags |= SEC_EXCLUDE;
9821 continue;
9822 }
9823
9824 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9825 continue;
9826
9827 /* Allocate memory for the section contents. */
9828 s->contents = bfd_zalloc (dynobj, s->size);
9829 if (s->contents == NULL)
9830 {
9831 bfd_set_error (bfd_error_no_memory);
9832 return FALSE;
9833 }
9834 }
9835
9836 if (elf_hash_table (info)->dynamic_sections_created)
9837 {
9838 /* Add some entries to the .dynamic section. We fill in the
9839 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9840 must add the entries now so that we get the correct size for
9841 the .dynamic section. */
9842
9843 /* SGI object has the equivalence of DT_DEBUG in the
9844 DT_MIPS_RLD_MAP entry. This must come first because glibc
9845 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9846 may only look at the first one they see. */
9847 if (!bfd_link_pic (info)
9848 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9849 return FALSE;
9850
9851 if (bfd_link_executable (info)
9852 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
9853 return FALSE;
9854
9855 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9856 used by the debugger. */
9857 if (bfd_link_executable (info)
9858 && !SGI_COMPAT (output_bfd)
9859 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9860 return FALSE;
9861
9862 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9863 info->flags |= DF_TEXTREL;
9864
9865 if ((info->flags & DF_TEXTREL) != 0)
9866 {
9867 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9868 return FALSE;
9869
9870 /* Clear the DF_TEXTREL flag. It will be set again if we
9871 write out an actual text relocation; we may not, because
9872 at this point we do not know whether e.g. any .eh_frame
9873 absolute relocations have been converted to PC-relative. */
9874 info->flags &= ~DF_TEXTREL;
9875 }
9876
9877 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9878 return FALSE;
9879
9880 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9881 if (htab->is_vxworks)
9882 {
9883 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9884 use any of the DT_MIPS_* tags. */
9885 if (sreldyn && sreldyn->size > 0)
9886 {
9887 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9888 return FALSE;
9889
9890 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9891 return FALSE;
9892
9893 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9894 return FALSE;
9895 }
9896 }
9897 else
9898 {
9899 if (sreldyn && sreldyn->size > 0
9900 && !bfd_is_abs_section (sreldyn->output_section))
9901 {
9902 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9903 return FALSE;
9904
9905 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9906 return FALSE;
9907
9908 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9909 return FALSE;
9910 }
9911
9912 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9913 return FALSE;
9914
9915 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9916 return FALSE;
9917
9918 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9919 return FALSE;
9920
9921 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9922 return FALSE;
9923
9924 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9925 return FALSE;
9926
9927 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9928 return FALSE;
9929
9930 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9931 return FALSE;
9932
9933 if (IRIX_COMPAT (dynobj) == ict_irix5
9934 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9935 return FALSE;
9936
9937 if (IRIX_COMPAT (dynobj) == ict_irix6
9938 && (bfd_get_section_by_name
9939 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9940 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9941 return FALSE;
9942 }
9943 if (htab->root.splt->size > 0)
9944 {
9945 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9946 return FALSE;
9947
9948 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9949 return FALSE;
9950
9951 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9952 return FALSE;
9953
9954 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9955 return FALSE;
9956 }
9957 if (htab->is_vxworks
9958 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9959 return FALSE;
9960 }
9961
9962 return TRUE;
9963 }
9964 \f
9965 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9966 Adjust its R_ADDEND field so that it is correct for the output file.
9967 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9968 and sections respectively; both use symbol indexes. */
9969
9970 static void
9971 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9972 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9973 asection **local_sections, Elf_Internal_Rela *rel)
9974 {
9975 unsigned int r_type, r_symndx;
9976 Elf_Internal_Sym *sym;
9977 asection *sec;
9978
9979 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9980 {
9981 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9982 if (gprel16_reloc_p (r_type)
9983 || r_type == R_MIPS_GPREL32
9984 || literal_reloc_p (r_type))
9985 {
9986 rel->r_addend += _bfd_get_gp_value (input_bfd);
9987 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9988 }
9989
9990 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9991 sym = local_syms + r_symndx;
9992
9993 /* Adjust REL's addend to account for section merging. */
9994 if (!bfd_link_relocatable (info))
9995 {
9996 sec = local_sections[r_symndx];
9997 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9998 }
9999
10000 /* This would normally be done by the rela_normal code in elflink.c. */
10001 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10002 rel->r_addend += local_sections[r_symndx]->output_offset;
10003 }
10004 }
10005
10006 /* Handle relocations against symbols from removed linkonce sections,
10007 or sections discarded by a linker script. We use this wrapper around
10008 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
10009 on 64-bit ELF targets. In this case for any relocation handled, which
10010 always be the first in a triplet, the remaining two have to be processed
10011 together with the first, even if they are R_MIPS_NONE. It is the symbol
10012 index referred by the first reloc that applies to all the three and the
10013 remaining two never refer to an object symbol. And it is the final
10014 relocation (the last non-null one) that determines the output field of
10015 the whole relocation so retrieve the corresponding howto structure for
10016 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
10017
10018 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
10019 and therefore requires to be pasted in a loop. It also defines a block
10020 and does not protect any of its arguments, hence the extra brackets. */
10021
10022 static void
10023 mips_reloc_against_discarded_section (bfd *output_bfd,
10024 struct bfd_link_info *info,
10025 bfd *input_bfd, asection *input_section,
10026 Elf_Internal_Rela **rel,
10027 const Elf_Internal_Rela **relend,
10028 bfd_boolean rel_reloc,
10029 reloc_howto_type *howto,
10030 bfd_byte *contents)
10031 {
10032 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10033 int count = bed->s->int_rels_per_ext_rel;
10034 unsigned int r_type;
10035 int i;
10036
10037 for (i = count - 1; i > 0; i--)
10038 {
10039 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10040 if (r_type != R_MIPS_NONE)
10041 {
10042 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10043 break;
10044 }
10045 }
10046 do
10047 {
10048 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10049 (*rel), count, (*relend),
10050 howto, i, contents);
10051 }
10052 while (0);
10053 }
10054
10055 /* Relocate a MIPS ELF section. */
10056
10057 bfd_boolean
10058 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10059 bfd *input_bfd, asection *input_section,
10060 bfd_byte *contents, Elf_Internal_Rela *relocs,
10061 Elf_Internal_Sym *local_syms,
10062 asection **local_sections)
10063 {
10064 Elf_Internal_Rela *rel;
10065 const Elf_Internal_Rela *relend;
10066 bfd_vma addend = 0;
10067 bfd_boolean use_saved_addend_p = FALSE;
10068
10069 relend = relocs + input_section->reloc_count;
10070 for (rel = relocs; rel < relend; ++rel)
10071 {
10072 const char *name;
10073 bfd_vma value = 0;
10074 reloc_howto_type *howto;
10075 bfd_boolean cross_mode_jump_p = FALSE;
10076 /* TRUE if the relocation is a RELA relocation, rather than a
10077 REL relocation. */
10078 bfd_boolean rela_relocation_p = TRUE;
10079 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10080 const char *msg;
10081 unsigned long r_symndx;
10082 asection *sec;
10083 Elf_Internal_Shdr *symtab_hdr;
10084 struct elf_link_hash_entry *h;
10085 bfd_boolean rel_reloc;
10086
10087 rel_reloc = (NEWABI_P (input_bfd)
10088 && mips_elf_rel_relocation_p (input_bfd, input_section,
10089 relocs, rel));
10090 /* Find the relocation howto for this relocation. */
10091 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10092
10093 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10094 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10095 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10096 {
10097 sec = local_sections[r_symndx];
10098 h = NULL;
10099 }
10100 else
10101 {
10102 unsigned long extsymoff;
10103
10104 extsymoff = 0;
10105 if (!elf_bad_symtab (input_bfd))
10106 extsymoff = symtab_hdr->sh_info;
10107 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10108 while (h->root.type == bfd_link_hash_indirect
10109 || h->root.type == bfd_link_hash_warning)
10110 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10111
10112 sec = NULL;
10113 if (h->root.type == bfd_link_hash_defined
10114 || h->root.type == bfd_link_hash_defweak)
10115 sec = h->root.u.def.section;
10116 }
10117
10118 if (sec != NULL && discarded_section (sec))
10119 {
10120 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10121 input_section, &rel, &relend,
10122 rel_reloc, howto, contents);
10123 continue;
10124 }
10125
10126 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10127 {
10128 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10129 64-bit code, but make sure all their addresses are in the
10130 lowermost or uppermost 32-bit section of the 64-bit address
10131 space. Thus, when they use an R_MIPS_64 they mean what is
10132 usually meant by R_MIPS_32, with the exception that the
10133 stored value is sign-extended to 64 bits. */
10134 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
10135
10136 /* On big-endian systems, we need to lie about the position
10137 of the reloc. */
10138 if (bfd_big_endian (input_bfd))
10139 rel->r_offset += 4;
10140 }
10141
10142 if (!use_saved_addend_p)
10143 {
10144 /* If these relocations were originally of the REL variety,
10145 we must pull the addend out of the field that will be
10146 relocated. Otherwise, we simply use the contents of the
10147 RELA relocation. */
10148 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10149 relocs, rel))
10150 {
10151 rela_relocation_p = FALSE;
10152 addend = mips_elf_read_rel_addend (input_bfd, rel,
10153 howto, contents);
10154 if (hi16_reloc_p (r_type)
10155 || (got16_reloc_p (r_type)
10156 && mips_elf_local_relocation_p (input_bfd, rel,
10157 local_sections)))
10158 {
10159 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10160 contents, &addend))
10161 {
10162 if (h)
10163 name = h->root.root.string;
10164 else
10165 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10166 local_syms + r_symndx,
10167 sec);
10168 _bfd_error_handler
10169 /* xgettext:c-format */
10170 (_("%pB: can't find matching LO16 reloc against `%s'"
10171 " for %s at %#" PRIx64 " in section `%pA'"),
10172 input_bfd, name,
10173 howto->name, (uint64_t) rel->r_offset, input_section);
10174 }
10175 }
10176 else
10177 addend <<= howto->rightshift;
10178 }
10179 else
10180 addend = rel->r_addend;
10181 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10182 local_syms, local_sections, rel);
10183 }
10184
10185 if (bfd_link_relocatable (info))
10186 {
10187 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10188 && bfd_big_endian (input_bfd))
10189 rel->r_offset -= 4;
10190
10191 if (!rela_relocation_p && rel->r_addend)
10192 {
10193 addend += rel->r_addend;
10194 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10195 addend = mips_elf_high (addend);
10196 else if (r_type == R_MIPS_HIGHER)
10197 addend = mips_elf_higher (addend);
10198 else if (r_type == R_MIPS_HIGHEST)
10199 addend = mips_elf_highest (addend);
10200 else
10201 addend >>= howto->rightshift;
10202
10203 /* We use the source mask, rather than the destination
10204 mask because the place to which we are writing will be
10205 source of the addend in the final link. */
10206 addend &= howto->src_mask;
10207
10208 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10209 /* See the comment above about using R_MIPS_64 in the 32-bit
10210 ABI. Here, we need to update the addend. It would be
10211 possible to get away with just using the R_MIPS_32 reloc
10212 but for endianness. */
10213 {
10214 bfd_vma sign_bits;
10215 bfd_vma low_bits;
10216 bfd_vma high_bits;
10217
10218 if (addend & ((bfd_vma) 1 << 31))
10219 #ifdef BFD64
10220 sign_bits = ((bfd_vma) 1 << 32) - 1;
10221 #else
10222 sign_bits = -1;
10223 #endif
10224 else
10225 sign_bits = 0;
10226
10227 /* If we don't know that we have a 64-bit type,
10228 do two separate stores. */
10229 if (bfd_big_endian (input_bfd))
10230 {
10231 /* Store the sign-bits (which are most significant)
10232 first. */
10233 low_bits = sign_bits;
10234 high_bits = addend;
10235 }
10236 else
10237 {
10238 low_bits = addend;
10239 high_bits = sign_bits;
10240 }
10241 bfd_put_32 (input_bfd, low_bits,
10242 contents + rel->r_offset);
10243 bfd_put_32 (input_bfd, high_bits,
10244 contents + rel->r_offset + 4);
10245 continue;
10246 }
10247
10248 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10249 input_bfd, input_section,
10250 contents, FALSE))
10251 return FALSE;
10252 }
10253
10254 /* Go on to the next relocation. */
10255 continue;
10256 }
10257
10258 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10259 relocations for the same offset. In that case we are
10260 supposed to treat the output of each relocation as the addend
10261 for the next. */
10262 if (rel + 1 < relend
10263 && rel->r_offset == rel[1].r_offset
10264 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10265 use_saved_addend_p = TRUE;
10266 else
10267 use_saved_addend_p = FALSE;
10268
10269 /* Figure out what value we are supposed to relocate. */
10270 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10271 input_section, info, rel,
10272 addend, howto, local_syms,
10273 local_sections, &value,
10274 &name, &cross_mode_jump_p,
10275 use_saved_addend_p))
10276 {
10277 case bfd_reloc_continue:
10278 /* There's nothing to do. */
10279 continue;
10280
10281 case bfd_reloc_undefined:
10282 /* mips_elf_calculate_relocation already called the
10283 undefined_symbol callback. There's no real point in
10284 trying to perform the relocation at this point, so we
10285 just skip ahead to the next relocation. */
10286 continue;
10287
10288 case bfd_reloc_notsupported:
10289 msg = _("internal error: unsupported relocation error");
10290 info->callbacks->warning
10291 (info, msg, name, input_bfd, input_section, rel->r_offset);
10292 return FALSE;
10293
10294 case bfd_reloc_overflow:
10295 if (use_saved_addend_p)
10296 /* Ignore overflow until we reach the last relocation for
10297 a given location. */
10298 ;
10299 else
10300 {
10301 struct mips_elf_link_hash_table *htab;
10302
10303 htab = mips_elf_hash_table (info);
10304 BFD_ASSERT (htab != NULL);
10305 BFD_ASSERT (name != NULL);
10306 if (!htab->small_data_overflow_reported
10307 && (gprel16_reloc_p (howto->type)
10308 || literal_reloc_p (howto->type)))
10309 {
10310 msg = _("small-data section exceeds 64KB;"
10311 " lower small-data size limit (see option -G)");
10312
10313 htab->small_data_overflow_reported = TRUE;
10314 (*info->callbacks->einfo) ("%P: %s\n", msg);
10315 }
10316 (*info->callbacks->reloc_overflow)
10317 (info, NULL, name, howto->name, (bfd_vma) 0,
10318 input_bfd, input_section, rel->r_offset);
10319 }
10320 break;
10321
10322 case bfd_reloc_ok:
10323 break;
10324
10325 case bfd_reloc_outofrange:
10326 msg = NULL;
10327 if (jal_reloc_p (howto->type))
10328 msg = (cross_mode_jump_p
10329 ? _("cannot convert a jump to JALX "
10330 "for a non-word-aligned address")
10331 : (howto->type == R_MIPS16_26
10332 ? _("jump to a non-word-aligned address")
10333 : _("jump to a non-instruction-aligned address")));
10334 else if (b_reloc_p (howto->type))
10335 msg = (cross_mode_jump_p
10336 ? _("cannot convert a branch to JALX "
10337 "for a non-word-aligned address")
10338 : _("branch to a non-instruction-aligned address"));
10339 else if (aligned_pcrel_reloc_p (howto->type))
10340 msg = _("PC-relative load from unaligned address");
10341 if (msg)
10342 {
10343 info->callbacks->einfo
10344 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10345 break;
10346 }
10347 /* Fall through. */
10348
10349 default:
10350 abort ();
10351 break;
10352 }
10353
10354 /* If we've got another relocation for the address, keep going
10355 until we reach the last one. */
10356 if (use_saved_addend_p)
10357 {
10358 addend = value;
10359 continue;
10360 }
10361
10362 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10363 /* See the comment above about using R_MIPS_64 in the 32-bit
10364 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10365 that calculated the right value. Now, however, we
10366 sign-extend the 32-bit result to 64-bits, and store it as a
10367 64-bit value. We are especially generous here in that we
10368 go to extreme lengths to support this usage on systems with
10369 only a 32-bit VMA. */
10370 {
10371 bfd_vma sign_bits;
10372 bfd_vma low_bits;
10373 bfd_vma high_bits;
10374
10375 if (value & ((bfd_vma) 1 << 31))
10376 #ifdef BFD64
10377 sign_bits = ((bfd_vma) 1 << 32) - 1;
10378 #else
10379 sign_bits = -1;
10380 #endif
10381 else
10382 sign_bits = 0;
10383
10384 /* If we don't know that we have a 64-bit type,
10385 do two separate stores. */
10386 if (bfd_big_endian (input_bfd))
10387 {
10388 /* Undo what we did above. */
10389 rel->r_offset -= 4;
10390 /* Store the sign-bits (which are most significant)
10391 first. */
10392 low_bits = sign_bits;
10393 high_bits = value;
10394 }
10395 else
10396 {
10397 low_bits = value;
10398 high_bits = sign_bits;
10399 }
10400 bfd_put_32 (input_bfd, low_bits,
10401 contents + rel->r_offset);
10402 bfd_put_32 (input_bfd, high_bits,
10403 contents + rel->r_offset + 4);
10404 continue;
10405 }
10406
10407 /* Actually perform the relocation. */
10408 if (! mips_elf_perform_relocation (info, howto, rel, value,
10409 input_bfd, input_section,
10410 contents, cross_mode_jump_p))
10411 return FALSE;
10412 }
10413
10414 return TRUE;
10415 }
10416 \f
10417 /* A function that iterates over each entry in la25_stubs and fills
10418 in the code for each one. DATA points to a mips_htab_traverse_info. */
10419
10420 static int
10421 mips_elf_create_la25_stub (void **slot, void *data)
10422 {
10423 struct mips_htab_traverse_info *hti;
10424 struct mips_elf_link_hash_table *htab;
10425 struct mips_elf_la25_stub *stub;
10426 asection *s;
10427 bfd_byte *loc;
10428 bfd_vma offset, target, target_high, target_low;
10429
10430 stub = (struct mips_elf_la25_stub *) *slot;
10431 hti = (struct mips_htab_traverse_info *) data;
10432 htab = mips_elf_hash_table (hti->info);
10433 BFD_ASSERT (htab != NULL);
10434
10435 /* Create the section contents, if we haven't already. */
10436 s = stub->stub_section;
10437 loc = s->contents;
10438 if (loc == NULL)
10439 {
10440 loc = bfd_malloc (s->size);
10441 if (loc == NULL)
10442 {
10443 hti->error = TRUE;
10444 return FALSE;
10445 }
10446 s->contents = loc;
10447 }
10448
10449 /* Work out where in the section this stub should go. */
10450 offset = stub->offset;
10451
10452 /* Work out the target address. */
10453 target = mips_elf_get_la25_target (stub, &s);
10454 target += s->output_section->vma + s->output_offset;
10455
10456 target_high = ((target + 0x8000) >> 16) & 0xffff;
10457 target_low = (target & 0xffff);
10458
10459 if (stub->stub_section != htab->strampoline)
10460 {
10461 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10462 of the section and write the two instructions at the end. */
10463 memset (loc, 0, offset);
10464 loc += offset;
10465 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10466 {
10467 bfd_put_micromips_32 (hti->output_bfd,
10468 LA25_LUI_MICROMIPS (target_high),
10469 loc);
10470 bfd_put_micromips_32 (hti->output_bfd,
10471 LA25_ADDIU_MICROMIPS (target_low),
10472 loc + 4);
10473 }
10474 else
10475 {
10476 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10477 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10478 }
10479 }
10480 else
10481 {
10482 /* This is trampoline. */
10483 loc += offset;
10484 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10485 {
10486 bfd_put_micromips_32 (hti->output_bfd,
10487 LA25_LUI_MICROMIPS (target_high), loc);
10488 bfd_put_micromips_32 (hti->output_bfd,
10489 LA25_J_MICROMIPS (target), loc + 4);
10490 bfd_put_micromips_32 (hti->output_bfd,
10491 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10492 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10493 }
10494 else
10495 {
10496 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10497 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10498 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10499 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10500 }
10501 }
10502 return TRUE;
10503 }
10504
10505 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10506 adjust it appropriately now. */
10507
10508 static void
10509 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10510 const char *name, Elf_Internal_Sym *sym)
10511 {
10512 /* The linker script takes care of providing names and values for
10513 these, but we must place them into the right sections. */
10514 static const char* const text_section_symbols[] = {
10515 "_ftext",
10516 "_etext",
10517 "__dso_displacement",
10518 "__elf_header",
10519 "__program_header_table",
10520 NULL
10521 };
10522
10523 static const char* const data_section_symbols[] = {
10524 "_fdata",
10525 "_edata",
10526 "_end",
10527 "_fbss",
10528 NULL
10529 };
10530
10531 const char* const *p;
10532 int i;
10533
10534 for (i = 0; i < 2; ++i)
10535 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10536 *p;
10537 ++p)
10538 if (strcmp (*p, name) == 0)
10539 {
10540 /* All of these symbols are given type STT_SECTION by the
10541 IRIX6 linker. */
10542 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10543 sym->st_other = STO_PROTECTED;
10544
10545 /* The IRIX linker puts these symbols in special sections. */
10546 if (i == 0)
10547 sym->st_shndx = SHN_MIPS_TEXT;
10548 else
10549 sym->st_shndx = SHN_MIPS_DATA;
10550
10551 break;
10552 }
10553 }
10554
10555 /* Finish up dynamic symbol handling. We set the contents of various
10556 dynamic sections here. */
10557
10558 bfd_boolean
10559 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10560 struct bfd_link_info *info,
10561 struct elf_link_hash_entry *h,
10562 Elf_Internal_Sym *sym)
10563 {
10564 bfd *dynobj;
10565 asection *sgot;
10566 struct mips_got_info *g, *gg;
10567 const char *name;
10568 int idx;
10569 struct mips_elf_link_hash_table *htab;
10570 struct mips_elf_link_hash_entry *hmips;
10571
10572 htab = mips_elf_hash_table (info);
10573 BFD_ASSERT (htab != NULL);
10574 dynobj = elf_hash_table (info)->dynobj;
10575 hmips = (struct mips_elf_link_hash_entry *) h;
10576
10577 BFD_ASSERT (!htab->is_vxworks);
10578
10579 if (h->plt.plist != NULL
10580 && (h->plt.plist->mips_offset != MINUS_ONE
10581 || h->plt.plist->comp_offset != MINUS_ONE))
10582 {
10583 /* We've decided to create a PLT entry for this symbol. */
10584 bfd_byte *loc;
10585 bfd_vma header_address, got_address;
10586 bfd_vma got_address_high, got_address_low, load;
10587 bfd_vma got_index;
10588 bfd_vma isa_bit;
10589
10590 got_index = h->plt.plist->gotplt_index;
10591
10592 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10593 BFD_ASSERT (h->dynindx != -1);
10594 BFD_ASSERT (htab->root.splt != NULL);
10595 BFD_ASSERT (got_index != MINUS_ONE);
10596 BFD_ASSERT (!h->def_regular);
10597
10598 /* Calculate the address of the PLT header. */
10599 isa_bit = htab->plt_header_is_comp;
10600 header_address = (htab->root.splt->output_section->vma
10601 + htab->root.splt->output_offset + isa_bit);
10602
10603 /* Calculate the address of the .got.plt entry. */
10604 got_address = (htab->root.sgotplt->output_section->vma
10605 + htab->root.sgotplt->output_offset
10606 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10607
10608 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10609 got_address_low = got_address & 0xffff;
10610
10611 /* The PLT sequence is not safe for N64 if .got.plt entry's address
10612 cannot be loaded in two instructions. */
10613 if (ABI_64_P (output_bfd)
10614 && ((got_address + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
10615 {
10616 _bfd_error_handler
10617 /* xgettext:c-format */
10618 (_("%pB: `%pA' entry VMA of %#" PRIx64 " outside the 32-bit range "
10619 "supported; consider using `-Ttext-segment=...'"),
10620 output_bfd,
10621 htab->root.sgotplt->output_section,
10622 (int64_t) got_address);
10623 bfd_set_error (bfd_error_no_error);
10624 return FALSE;
10625 }
10626
10627 /* Initially point the .got.plt entry at the PLT header. */
10628 loc = (htab->root.sgotplt->contents
10629 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10630 if (ABI_64_P (output_bfd))
10631 bfd_put_64 (output_bfd, header_address, loc);
10632 else
10633 bfd_put_32 (output_bfd, header_address, loc);
10634
10635 /* Now handle the PLT itself. First the standard entry (the order
10636 does not matter, we just have to pick one). */
10637 if (h->plt.plist->mips_offset != MINUS_ONE)
10638 {
10639 const bfd_vma *plt_entry;
10640 bfd_vma plt_offset;
10641
10642 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10643
10644 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10645
10646 /* Find out where the .plt entry should go. */
10647 loc = htab->root.splt->contents + plt_offset;
10648
10649 /* Pick the load opcode. */
10650 load = MIPS_ELF_LOAD_WORD (output_bfd);
10651
10652 /* Fill in the PLT entry itself. */
10653
10654 if (MIPSR6_P (output_bfd))
10655 plt_entry = mipsr6_exec_plt_entry;
10656 else
10657 plt_entry = mips_exec_plt_entry;
10658 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10659 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10660 loc + 4);
10661
10662 if (! LOAD_INTERLOCKS_P (output_bfd))
10663 {
10664 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10665 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10666 }
10667 else
10668 {
10669 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10670 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10671 loc + 12);
10672 }
10673 }
10674
10675 /* Now the compressed entry. They come after any standard ones. */
10676 if (h->plt.plist->comp_offset != MINUS_ONE)
10677 {
10678 bfd_vma plt_offset;
10679
10680 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10681 + h->plt.plist->comp_offset);
10682
10683 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10684
10685 /* Find out where the .plt entry should go. */
10686 loc = htab->root.splt->contents + plt_offset;
10687
10688 /* Fill in the PLT entry itself. */
10689 if (!MICROMIPS_P (output_bfd))
10690 {
10691 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10692
10693 bfd_put_16 (output_bfd, plt_entry[0], loc);
10694 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10695 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10696 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10697 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10698 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10699 bfd_put_32 (output_bfd, got_address, loc + 12);
10700 }
10701 else if (htab->insn32)
10702 {
10703 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10704
10705 bfd_put_16 (output_bfd, plt_entry[0], loc);
10706 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10707 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10708 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10709 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10710 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10711 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10712 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10713 }
10714 else
10715 {
10716 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10717 bfd_signed_vma gotpc_offset;
10718 bfd_vma loc_address;
10719
10720 BFD_ASSERT (got_address % 4 == 0);
10721
10722 loc_address = (htab->root.splt->output_section->vma
10723 + htab->root.splt->output_offset + plt_offset);
10724 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10725
10726 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10727 if (gotpc_offset + 0x1000000 >= 0x2000000)
10728 {
10729 _bfd_error_handler
10730 /* xgettext:c-format */
10731 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
10732 "beyond the range of ADDIUPC"),
10733 output_bfd,
10734 htab->root.sgotplt->output_section,
10735 (int64_t) gotpc_offset,
10736 htab->root.splt->output_section);
10737 bfd_set_error (bfd_error_no_error);
10738 return FALSE;
10739 }
10740 bfd_put_16 (output_bfd,
10741 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10742 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10743 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10744 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10745 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10746 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10747 }
10748 }
10749
10750 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10751 mips_elf_output_dynamic_relocation (output_bfd, htab->root.srelplt,
10752 got_index - 2, h->dynindx,
10753 R_MIPS_JUMP_SLOT, got_address);
10754
10755 /* We distinguish between PLT entries and lazy-binding stubs by
10756 giving the former an st_other value of STO_MIPS_PLT. Set the
10757 flag and leave the value if there are any relocations in the
10758 binary where pointer equality matters. */
10759 sym->st_shndx = SHN_UNDEF;
10760 if (h->pointer_equality_needed)
10761 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
10762 else
10763 {
10764 sym->st_value = 0;
10765 sym->st_other = 0;
10766 }
10767 }
10768
10769 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
10770 {
10771 /* We've decided to create a lazy-binding stub. */
10772 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10773 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10774 bfd_vma stub_size = htab->function_stub_size;
10775 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
10776 bfd_vma isa_bit = micromips_p;
10777 bfd_vma stub_big_size;
10778
10779 if (!micromips_p)
10780 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
10781 else if (htab->insn32)
10782 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10783 else
10784 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
10785
10786 /* This symbol has a stub. Set it up. */
10787
10788 BFD_ASSERT (h->dynindx != -1);
10789
10790 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
10791
10792 /* Values up to 2^31 - 1 are allowed. Larger values would cause
10793 sign extension at runtime in the stub, resulting in a negative
10794 index value. */
10795 if (h->dynindx & ~0x7fffffff)
10796 return FALSE;
10797
10798 /* Fill the stub. */
10799 if (micromips_p)
10800 {
10801 idx = 0;
10802 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10803 stub + idx);
10804 idx += 4;
10805 if (htab->insn32)
10806 {
10807 bfd_put_micromips_32 (output_bfd,
10808 STUB_MOVE32_MICROMIPS, stub + idx);
10809 idx += 4;
10810 }
10811 else
10812 {
10813 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10814 idx += 2;
10815 }
10816 if (stub_size == stub_big_size)
10817 {
10818 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10819
10820 bfd_put_micromips_32 (output_bfd,
10821 STUB_LUI_MICROMIPS (dynindx_hi),
10822 stub + idx);
10823 idx += 4;
10824 }
10825 if (htab->insn32)
10826 {
10827 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
10828 stub + idx);
10829 idx += 4;
10830 }
10831 else
10832 {
10833 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
10834 idx += 2;
10835 }
10836
10837 /* If a large stub is not required and sign extension is not a
10838 problem, then use legacy code in the stub. */
10839 if (stub_size == stub_big_size)
10840 bfd_put_micromips_32 (output_bfd,
10841 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
10842 stub + idx);
10843 else if (h->dynindx & ~0x7fff)
10844 bfd_put_micromips_32 (output_bfd,
10845 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
10846 stub + idx);
10847 else
10848 bfd_put_micromips_32 (output_bfd,
10849 STUB_LI16S_MICROMIPS (output_bfd,
10850 h->dynindx),
10851 stub + idx);
10852 }
10853 else
10854 {
10855 idx = 0;
10856 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10857 idx += 4;
10858 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
10859 idx += 4;
10860 if (stub_size == stub_big_size)
10861 {
10862 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10863 stub + idx);
10864 idx += 4;
10865 }
10866 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10867 idx += 4;
10868
10869 /* If a large stub is not required and sign extension is not a
10870 problem, then use legacy code in the stub. */
10871 if (stub_size == stub_big_size)
10872 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
10873 stub + idx);
10874 else if (h->dynindx & ~0x7fff)
10875 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
10876 stub + idx);
10877 else
10878 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10879 stub + idx);
10880 }
10881
10882 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
10883 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
10884 stub, stub_size);
10885
10886 /* Mark the symbol as undefined. stub_offset != -1 occurs
10887 only for the referenced symbol. */
10888 sym->st_shndx = SHN_UNDEF;
10889
10890 /* The run-time linker uses the st_value field of the symbol
10891 to reset the global offset table entry for this external
10892 to its stub address when unlinking a shared object. */
10893 sym->st_value = (htab->sstubs->output_section->vma
10894 + htab->sstubs->output_offset
10895 + h->plt.plist->stub_offset
10896 + isa_bit);
10897 sym->st_other = other;
10898 }
10899
10900 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10901 refer to the stub, since only the stub uses the standard calling
10902 conventions. */
10903 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10904 {
10905 BFD_ASSERT (hmips->need_fn_stub);
10906 sym->st_value = (hmips->fn_stub->output_section->vma
10907 + hmips->fn_stub->output_offset);
10908 sym->st_size = hmips->fn_stub->size;
10909 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10910 }
10911
10912 BFD_ASSERT (h->dynindx != -1
10913 || h->forced_local);
10914
10915 sgot = htab->root.sgot;
10916 g = htab->got_info;
10917 BFD_ASSERT (g != NULL);
10918
10919 /* Run through the global symbol table, creating GOT entries for all
10920 the symbols that need them. */
10921 if (hmips->global_got_area != GGA_NONE)
10922 {
10923 bfd_vma offset;
10924 bfd_vma value;
10925
10926 value = sym->st_value;
10927 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
10928 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10929 }
10930
10931 if (hmips->global_got_area != GGA_NONE && g->next)
10932 {
10933 struct mips_got_entry e, *p;
10934 bfd_vma entry;
10935 bfd_vma offset;
10936
10937 gg = g;
10938
10939 e.abfd = output_bfd;
10940 e.symndx = -1;
10941 e.d.h = hmips;
10942 e.tls_type = GOT_TLS_NONE;
10943
10944 for (g = g->next; g->next != gg; g = g->next)
10945 {
10946 if (g->got_entries
10947 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10948 &e)))
10949 {
10950 offset = p->gotidx;
10951 BFD_ASSERT (offset > 0 && offset < htab->root.sgot->size);
10952 if (bfd_link_pic (info)
10953 || (elf_hash_table (info)->dynamic_sections_created
10954 && p->d.h != NULL
10955 && p->d.h->root.def_dynamic
10956 && !p->d.h->root.def_regular))
10957 {
10958 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10959 the various compatibility problems, it's easier to mock
10960 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10961 mips_elf_create_dynamic_relocation to calculate the
10962 appropriate addend. */
10963 Elf_Internal_Rela rel[3];
10964
10965 memset (rel, 0, sizeof (rel));
10966 if (ABI_64_P (output_bfd))
10967 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10968 else
10969 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10970 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10971
10972 entry = 0;
10973 if (! (mips_elf_create_dynamic_relocation
10974 (output_bfd, info, rel,
10975 e.d.h, NULL, sym->st_value, &entry, sgot)))
10976 return FALSE;
10977 }
10978 else
10979 entry = sym->st_value;
10980 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
10981 }
10982 }
10983 }
10984
10985 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10986 name = h->root.root.string;
10987 if (h == elf_hash_table (info)->hdynamic
10988 || h == elf_hash_table (info)->hgot)
10989 sym->st_shndx = SHN_ABS;
10990 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10991 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10992 {
10993 sym->st_shndx = SHN_ABS;
10994 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10995 sym->st_value = 1;
10996 }
10997 else if (SGI_COMPAT (output_bfd))
10998 {
10999 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
11000 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
11001 {
11002 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11003 sym->st_other = STO_PROTECTED;
11004 sym->st_value = 0;
11005 sym->st_shndx = SHN_MIPS_DATA;
11006 }
11007 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
11008 {
11009 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11010 sym->st_other = STO_PROTECTED;
11011 sym->st_value = mips_elf_hash_table (info)->procedure_count;
11012 sym->st_shndx = SHN_ABS;
11013 }
11014 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
11015 {
11016 if (h->type == STT_FUNC)
11017 sym->st_shndx = SHN_MIPS_TEXT;
11018 else if (h->type == STT_OBJECT)
11019 sym->st_shndx = SHN_MIPS_DATA;
11020 }
11021 }
11022
11023 /* Emit a copy reloc, if needed. */
11024 if (h->needs_copy)
11025 {
11026 asection *s;
11027 bfd_vma symval;
11028
11029 BFD_ASSERT (h->dynindx != -1);
11030 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11031
11032 s = mips_elf_rel_dyn_section (info, FALSE);
11033 symval = (h->root.u.def.section->output_section->vma
11034 + h->root.u.def.section->output_offset
11035 + h->root.u.def.value);
11036 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
11037 h->dynindx, R_MIPS_COPY, symval);
11038 }
11039
11040 /* Handle the IRIX6-specific symbols. */
11041 if (IRIX_COMPAT (output_bfd) == ict_irix6)
11042 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11043
11044 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11045 to treat compressed symbols like any other. */
11046 if (ELF_ST_IS_MIPS16 (sym->st_other))
11047 {
11048 BFD_ASSERT (sym->st_value & 1);
11049 sym->st_other -= STO_MIPS16;
11050 }
11051 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11052 {
11053 BFD_ASSERT (sym->st_value & 1);
11054 sym->st_other -= STO_MICROMIPS;
11055 }
11056
11057 return TRUE;
11058 }
11059
11060 /* Likewise, for VxWorks. */
11061
11062 bfd_boolean
11063 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11064 struct bfd_link_info *info,
11065 struct elf_link_hash_entry *h,
11066 Elf_Internal_Sym *sym)
11067 {
11068 bfd *dynobj;
11069 asection *sgot;
11070 struct mips_got_info *g;
11071 struct mips_elf_link_hash_table *htab;
11072 struct mips_elf_link_hash_entry *hmips;
11073
11074 htab = mips_elf_hash_table (info);
11075 BFD_ASSERT (htab != NULL);
11076 dynobj = elf_hash_table (info)->dynobj;
11077 hmips = (struct mips_elf_link_hash_entry *) h;
11078
11079 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
11080 {
11081 bfd_byte *loc;
11082 bfd_vma plt_address, got_address, got_offset, branch_offset;
11083 Elf_Internal_Rela rel;
11084 static const bfd_vma *plt_entry;
11085 bfd_vma gotplt_index;
11086 bfd_vma plt_offset;
11087
11088 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11089 gotplt_index = h->plt.plist->gotplt_index;
11090
11091 BFD_ASSERT (h->dynindx != -1);
11092 BFD_ASSERT (htab->root.splt != NULL);
11093 BFD_ASSERT (gotplt_index != MINUS_ONE);
11094 BFD_ASSERT (plt_offset <= htab->root.splt->size);
11095
11096 /* Calculate the address of the .plt entry. */
11097 plt_address = (htab->root.splt->output_section->vma
11098 + htab->root.splt->output_offset
11099 + plt_offset);
11100
11101 /* Calculate the address of the .got.plt entry. */
11102 got_address = (htab->root.sgotplt->output_section->vma
11103 + htab->root.sgotplt->output_offset
11104 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11105
11106 /* Calculate the offset of the .got.plt entry from
11107 _GLOBAL_OFFSET_TABLE_. */
11108 got_offset = mips_elf_gotplt_index (info, h);
11109
11110 /* Calculate the offset for the branch at the start of the PLT
11111 entry. The branch jumps to the beginning of .plt. */
11112 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11113
11114 /* Fill in the initial value of the .got.plt entry. */
11115 bfd_put_32 (output_bfd, plt_address,
11116 (htab->root.sgotplt->contents
11117 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11118
11119 /* Find out where the .plt entry should go. */
11120 loc = htab->root.splt->contents + plt_offset;
11121
11122 if (bfd_link_pic (info))
11123 {
11124 plt_entry = mips_vxworks_shared_plt_entry;
11125 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11126 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11127 }
11128 else
11129 {
11130 bfd_vma got_address_high, got_address_low;
11131
11132 plt_entry = mips_vxworks_exec_plt_entry;
11133 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11134 got_address_low = got_address & 0xffff;
11135
11136 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11137 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11138 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11139 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11140 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11141 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11142 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11143 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11144
11145 loc = (htab->srelplt2->contents
11146 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11147
11148 /* Emit a relocation for the .got.plt entry. */
11149 rel.r_offset = got_address;
11150 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11151 rel.r_addend = plt_offset;
11152 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11153
11154 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11155 loc += sizeof (Elf32_External_Rela);
11156 rel.r_offset = plt_address + 8;
11157 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11158 rel.r_addend = got_offset;
11159 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11160
11161 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11162 loc += sizeof (Elf32_External_Rela);
11163 rel.r_offset += 4;
11164 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11165 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11166 }
11167
11168 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11169 loc = (htab->root.srelplt->contents
11170 + gotplt_index * sizeof (Elf32_External_Rela));
11171 rel.r_offset = got_address;
11172 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11173 rel.r_addend = 0;
11174 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11175
11176 if (!h->def_regular)
11177 sym->st_shndx = SHN_UNDEF;
11178 }
11179
11180 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11181
11182 sgot = htab->root.sgot;
11183 g = htab->got_info;
11184 BFD_ASSERT (g != NULL);
11185
11186 /* See if this symbol has an entry in the GOT. */
11187 if (hmips->global_got_area != GGA_NONE)
11188 {
11189 bfd_vma offset;
11190 Elf_Internal_Rela outrel;
11191 bfd_byte *loc;
11192 asection *s;
11193
11194 /* Install the symbol value in the GOT. */
11195 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11196 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11197
11198 /* Add a dynamic relocation for it. */
11199 s = mips_elf_rel_dyn_section (info, FALSE);
11200 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11201 outrel.r_offset = (sgot->output_section->vma
11202 + sgot->output_offset
11203 + offset);
11204 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11205 outrel.r_addend = 0;
11206 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11207 }
11208
11209 /* Emit a copy reloc, if needed. */
11210 if (h->needs_copy)
11211 {
11212 Elf_Internal_Rela rel;
11213 asection *srel;
11214 bfd_byte *loc;
11215
11216 BFD_ASSERT (h->dynindx != -1);
11217
11218 rel.r_offset = (h->root.u.def.section->output_section->vma
11219 + h->root.u.def.section->output_offset
11220 + h->root.u.def.value);
11221 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11222 rel.r_addend = 0;
11223 if (h->root.u.def.section == htab->root.sdynrelro)
11224 srel = htab->root.sreldynrelro;
11225 else
11226 srel = htab->root.srelbss;
11227 loc = srel->contents + srel->reloc_count * sizeof (Elf32_External_Rela);
11228 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11229 ++srel->reloc_count;
11230 }
11231
11232 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11233 if (ELF_ST_IS_COMPRESSED (sym->st_other))
11234 sym->st_value &= ~1;
11235
11236 return TRUE;
11237 }
11238
11239 /* Write out a plt0 entry to the beginning of .plt. */
11240
11241 static bfd_boolean
11242 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11243 {
11244 bfd_byte *loc;
11245 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11246 static const bfd_vma *plt_entry;
11247 struct mips_elf_link_hash_table *htab;
11248
11249 htab = mips_elf_hash_table (info);
11250 BFD_ASSERT (htab != NULL);
11251
11252 if (ABI_64_P (output_bfd))
11253 plt_entry = mips_n64_exec_plt0_entry;
11254 else if (ABI_N32_P (output_bfd))
11255 plt_entry = mips_n32_exec_plt0_entry;
11256 else if (!htab->plt_header_is_comp)
11257 plt_entry = mips_o32_exec_plt0_entry;
11258 else if (htab->insn32)
11259 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11260 else
11261 plt_entry = micromips_o32_exec_plt0_entry;
11262
11263 /* Calculate the value of .got.plt. */
11264 gotplt_value = (htab->root.sgotplt->output_section->vma
11265 + htab->root.sgotplt->output_offset);
11266 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11267 gotplt_value_low = gotplt_value & 0xffff;
11268
11269 /* The PLT sequence is not safe for N64 if .got.plt's address can
11270 not be loaded in two instructions. */
11271 if (ABI_64_P (output_bfd)
11272 && ((gotplt_value + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
11273 {
11274 _bfd_error_handler
11275 /* xgettext:c-format */
11276 (_("%pB: `%pA' start VMA of %#" PRIx64 " outside the 32-bit range "
11277 "supported; consider using `-Ttext-segment=...'"),
11278 output_bfd,
11279 htab->root.sgotplt->output_section,
11280 (int64_t) gotplt_value);
11281 bfd_set_error (bfd_error_no_error);
11282 return FALSE;
11283 }
11284
11285 /* Install the PLT header. */
11286 loc = htab->root.splt->contents;
11287 if (plt_entry == micromips_o32_exec_plt0_entry)
11288 {
11289 bfd_vma gotpc_offset;
11290 bfd_vma loc_address;
11291 size_t i;
11292
11293 BFD_ASSERT (gotplt_value % 4 == 0);
11294
11295 loc_address = (htab->root.splt->output_section->vma
11296 + htab->root.splt->output_offset);
11297 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11298
11299 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11300 if (gotpc_offset + 0x1000000 >= 0x2000000)
11301 {
11302 _bfd_error_handler
11303 /* xgettext:c-format */
11304 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
11305 "beyond the range of ADDIUPC"),
11306 output_bfd,
11307 htab->root.sgotplt->output_section,
11308 (int64_t) gotpc_offset,
11309 htab->root.splt->output_section);
11310 bfd_set_error (bfd_error_no_error);
11311 return FALSE;
11312 }
11313 bfd_put_16 (output_bfd,
11314 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11315 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11316 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11317 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11318 }
11319 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11320 {
11321 size_t i;
11322
11323 bfd_put_16 (output_bfd, plt_entry[0], loc);
11324 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11325 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11326 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11327 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11328 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11329 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11330 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11331 }
11332 else
11333 {
11334 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11335 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11336 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11337 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11338 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11339 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11340 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11341 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11342 }
11343
11344 return TRUE;
11345 }
11346
11347 /* Install the PLT header for a VxWorks executable and finalize the
11348 contents of .rela.plt.unloaded. */
11349
11350 static void
11351 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11352 {
11353 Elf_Internal_Rela rela;
11354 bfd_byte *loc;
11355 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11356 static const bfd_vma *plt_entry;
11357 struct mips_elf_link_hash_table *htab;
11358
11359 htab = mips_elf_hash_table (info);
11360 BFD_ASSERT (htab != NULL);
11361
11362 plt_entry = mips_vxworks_exec_plt0_entry;
11363
11364 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11365 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11366 + htab->root.hgot->root.u.def.section->output_offset
11367 + htab->root.hgot->root.u.def.value);
11368
11369 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11370 got_value_low = got_value & 0xffff;
11371
11372 /* Calculate the address of the PLT header. */
11373 plt_address = (htab->root.splt->output_section->vma
11374 + htab->root.splt->output_offset);
11375
11376 /* Install the PLT header. */
11377 loc = htab->root.splt->contents;
11378 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11379 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11380 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11381 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11382 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11383 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11384
11385 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11386 loc = htab->srelplt2->contents;
11387 rela.r_offset = plt_address;
11388 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11389 rela.r_addend = 0;
11390 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11391 loc += sizeof (Elf32_External_Rela);
11392
11393 /* Output the relocation for the following addiu of
11394 %lo(_GLOBAL_OFFSET_TABLE_). */
11395 rela.r_offset += 4;
11396 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11397 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11398 loc += sizeof (Elf32_External_Rela);
11399
11400 /* Fix up the remaining relocations. They may have the wrong
11401 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11402 in which symbols were output. */
11403 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11404 {
11405 Elf_Internal_Rela rel;
11406
11407 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11408 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11409 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11410 loc += sizeof (Elf32_External_Rela);
11411
11412 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11413 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11414 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11415 loc += sizeof (Elf32_External_Rela);
11416
11417 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11418 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11419 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11420 loc += sizeof (Elf32_External_Rela);
11421 }
11422 }
11423
11424 /* Install the PLT header for a VxWorks shared library. */
11425
11426 static void
11427 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11428 {
11429 unsigned int i;
11430 struct mips_elf_link_hash_table *htab;
11431
11432 htab = mips_elf_hash_table (info);
11433 BFD_ASSERT (htab != NULL);
11434
11435 /* We just need to copy the entry byte-by-byte. */
11436 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11437 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11438 htab->root.splt->contents + i * 4);
11439 }
11440
11441 /* Finish up the dynamic sections. */
11442
11443 bfd_boolean
11444 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11445 struct bfd_link_info *info)
11446 {
11447 bfd *dynobj;
11448 asection *sdyn;
11449 asection *sgot;
11450 struct mips_got_info *gg, *g;
11451 struct mips_elf_link_hash_table *htab;
11452
11453 htab = mips_elf_hash_table (info);
11454 BFD_ASSERT (htab != NULL);
11455
11456 dynobj = elf_hash_table (info)->dynobj;
11457
11458 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11459
11460 sgot = htab->root.sgot;
11461 gg = htab->got_info;
11462
11463 if (elf_hash_table (info)->dynamic_sections_created)
11464 {
11465 bfd_byte *b;
11466 int dyn_to_skip = 0, dyn_skipped = 0;
11467
11468 BFD_ASSERT (sdyn != NULL);
11469 BFD_ASSERT (gg != NULL);
11470
11471 g = mips_elf_bfd_got (output_bfd, FALSE);
11472 BFD_ASSERT (g != NULL);
11473
11474 for (b = sdyn->contents;
11475 b < sdyn->contents + sdyn->size;
11476 b += MIPS_ELF_DYN_SIZE (dynobj))
11477 {
11478 Elf_Internal_Dyn dyn;
11479 const char *name;
11480 size_t elemsize;
11481 asection *s;
11482 bfd_boolean swap_out_p;
11483
11484 /* Read in the current dynamic entry. */
11485 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11486
11487 /* Assume that we're going to modify it and write it out. */
11488 swap_out_p = TRUE;
11489
11490 switch (dyn.d_tag)
11491 {
11492 case DT_RELENT:
11493 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11494 break;
11495
11496 case DT_RELAENT:
11497 BFD_ASSERT (htab->is_vxworks);
11498 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11499 break;
11500
11501 case DT_STRSZ:
11502 /* Rewrite DT_STRSZ. */
11503 dyn.d_un.d_val =
11504 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11505 break;
11506
11507 case DT_PLTGOT:
11508 s = htab->root.sgot;
11509 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11510 break;
11511
11512 case DT_MIPS_PLTGOT:
11513 s = htab->root.sgotplt;
11514 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11515 break;
11516
11517 case DT_MIPS_RLD_VERSION:
11518 dyn.d_un.d_val = 1; /* XXX */
11519 break;
11520
11521 case DT_MIPS_FLAGS:
11522 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11523 break;
11524
11525 case DT_MIPS_TIME_STAMP:
11526 {
11527 time_t t;
11528 time (&t);
11529 dyn.d_un.d_val = t;
11530 }
11531 break;
11532
11533 case DT_MIPS_ICHECKSUM:
11534 /* XXX FIXME: */
11535 swap_out_p = FALSE;
11536 break;
11537
11538 case DT_MIPS_IVERSION:
11539 /* XXX FIXME: */
11540 swap_out_p = FALSE;
11541 break;
11542
11543 case DT_MIPS_BASE_ADDRESS:
11544 s = output_bfd->sections;
11545 BFD_ASSERT (s != NULL);
11546 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11547 break;
11548
11549 case DT_MIPS_LOCAL_GOTNO:
11550 dyn.d_un.d_val = g->local_gotno;
11551 break;
11552
11553 case DT_MIPS_UNREFEXTNO:
11554 /* The index into the dynamic symbol table which is the
11555 entry of the first external symbol that is not
11556 referenced within the same object. */
11557 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11558 break;
11559
11560 case DT_MIPS_GOTSYM:
11561 if (htab->global_gotsym)
11562 {
11563 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11564 break;
11565 }
11566 /* In case if we don't have global got symbols we default
11567 to setting DT_MIPS_GOTSYM to the same value as
11568 DT_MIPS_SYMTABNO. */
11569 /* Fall through. */
11570
11571 case DT_MIPS_SYMTABNO:
11572 name = ".dynsym";
11573 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11574 s = bfd_get_linker_section (dynobj, name);
11575
11576 if (s != NULL)
11577 dyn.d_un.d_val = s->size / elemsize;
11578 else
11579 dyn.d_un.d_val = 0;
11580 break;
11581
11582 case DT_MIPS_HIPAGENO:
11583 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11584 break;
11585
11586 case DT_MIPS_RLD_MAP:
11587 {
11588 struct elf_link_hash_entry *h;
11589 h = mips_elf_hash_table (info)->rld_symbol;
11590 if (!h)
11591 {
11592 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11593 swap_out_p = FALSE;
11594 break;
11595 }
11596 s = h->root.u.def.section;
11597
11598 /* The MIPS_RLD_MAP tag stores the absolute address of the
11599 debug pointer. */
11600 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11601 + h->root.u.def.value);
11602 }
11603 break;
11604
11605 case DT_MIPS_RLD_MAP_REL:
11606 {
11607 struct elf_link_hash_entry *h;
11608 bfd_vma dt_addr, rld_addr;
11609 h = mips_elf_hash_table (info)->rld_symbol;
11610 if (!h)
11611 {
11612 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11613 swap_out_p = FALSE;
11614 break;
11615 }
11616 s = h->root.u.def.section;
11617
11618 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11619 pointer, relative to the address of the tag. */
11620 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
11621 + (b - sdyn->contents));
11622 rld_addr = (s->output_section->vma + s->output_offset
11623 + h->root.u.def.value);
11624 dyn.d_un.d_ptr = rld_addr - dt_addr;
11625 }
11626 break;
11627
11628 case DT_MIPS_OPTIONS:
11629 s = (bfd_get_section_by_name
11630 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11631 dyn.d_un.d_ptr = s->vma;
11632 break;
11633
11634 case DT_PLTREL:
11635 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11636 if (htab->is_vxworks)
11637 dyn.d_un.d_val = DT_RELA;
11638 else
11639 dyn.d_un.d_val = DT_REL;
11640 break;
11641
11642 case DT_PLTRELSZ:
11643 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11644 dyn.d_un.d_val = htab->root.srelplt->size;
11645 break;
11646
11647 case DT_JMPREL:
11648 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11649 dyn.d_un.d_ptr = (htab->root.srelplt->output_section->vma
11650 + htab->root.srelplt->output_offset);
11651 break;
11652
11653 case DT_TEXTREL:
11654 /* If we didn't need any text relocations after all, delete
11655 the dynamic tag. */
11656 if (!(info->flags & DF_TEXTREL))
11657 {
11658 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11659 swap_out_p = FALSE;
11660 }
11661 break;
11662
11663 case DT_FLAGS:
11664 /* If we didn't need any text relocations after all, clear
11665 DF_TEXTREL from DT_FLAGS. */
11666 if (!(info->flags & DF_TEXTREL))
11667 dyn.d_un.d_val &= ~DF_TEXTREL;
11668 else
11669 swap_out_p = FALSE;
11670 break;
11671
11672 default:
11673 swap_out_p = FALSE;
11674 if (htab->is_vxworks
11675 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11676 swap_out_p = TRUE;
11677 break;
11678 }
11679
11680 if (swap_out_p || dyn_skipped)
11681 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11682 (dynobj, &dyn, b - dyn_skipped);
11683
11684 if (dyn_to_skip)
11685 {
11686 dyn_skipped += dyn_to_skip;
11687 dyn_to_skip = 0;
11688 }
11689 }
11690
11691 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11692 if (dyn_skipped > 0)
11693 memset (b - dyn_skipped, 0, dyn_skipped);
11694 }
11695
11696 if (sgot != NULL && sgot->size > 0
11697 && !bfd_is_abs_section (sgot->output_section))
11698 {
11699 if (htab->is_vxworks)
11700 {
11701 /* The first entry of the global offset table points to the
11702 ".dynamic" section. The second is initialized by the
11703 loader and contains the shared library identifier.
11704 The third is also initialized by the loader and points
11705 to the lazy resolution stub. */
11706 MIPS_ELF_PUT_WORD (output_bfd,
11707 sdyn->output_offset + sdyn->output_section->vma,
11708 sgot->contents);
11709 MIPS_ELF_PUT_WORD (output_bfd, 0,
11710 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11711 MIPS_ELF_PUT_WORD (output_bfd, 0,
11712 sgot->contents
11713 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11714 }
11715 else
11716 {
11717 /* The first entry of the global offset table will be filled at
11718 runtime. The second entry will be used by some runtime loaders.
11719 This isn't the case of IRIX rld. */
11720 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
11721 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11722 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11723 }
11724
11725 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11726 = MIPS_ELF_GOT_SIZE (output_bfd);
11727 }
11728
11729 /* Generate dynamic relocations for the non-primary gots. */
11730 if (gg != NULL && gg->next)
11731 {
11732 Elf_Internal_Rela rel[3];
11733 bfd_vma addend = 0;
11734
11735 memset (rel, 0, sizeof (rel));
11736 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11737
11738 for (g = gg->next; g->next != gg; g = g->next)
11739 {
11740 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
11741 + g->next->tls_gotno;
11742
11743 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
11744 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11745 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11746 sgot->contents
11747 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11748
11749 if (! bfd_link_pic (info))
11750 continue;
11751
11752 for (; got_index < g->local_gotno; got_index++)
11753 {
11754 if (got_index >= g->assigned_low_gotno
11755 && got_index <= g->assigned_high_gotno)
11756 continue;
11757
11758 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
11759 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
11760 if (!(mips_elf_create_dynamic_relocation
11761 (output_bfd, info, rel, NULL,
11762 bfd_abs_section_ptr,
11763 0, &addend, sgot)))
11764 return FALSE;
11765 BFD_ASSERT (addend == 0);
11766 }
11767 }
11768 }
11769
11770 /* The generation of dynamic relocations for the non-primary gots
11771 adds more dynamic relocations. We cannot count them until
11772 here. */
11773
11774 if (elf_hash_table (info)->dynamic_sections_created)
11775 {
11776 bfd_byte *b;
11777 bfd_boolean swap_out_p;
11778
11779 BFD_ASSERT (sdyn != NULL);
11780
11781 for (b = sdyn->contents;
11782 b < sdyn->contents + sdyn->size;
11783 b += MIPS_ELF_DYN_SIZE (dynobj))
11784 {
11785 Elf_Internal_Dyn dyn;
11786 asection *s;
11787
11788 /* Read in the current dynamic entry. */
11789 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11790
11791 /* Assume that we're going to modify it and write it out. */
11792 swap_out_p = TRUE;
11793
11794 switch (dyn.d_tag)
11795 {
11796 case DT_RELSZ:
11797 /* Reduce DT_RELSZ to account for any relocations we
11798 decided not to make. This is for the n64 irix rld,
11799 which doesn't seem to apply any relocations if there
11800 are trailing null entries. */
11801 s = mips_elf_rel_dyn_section (info, FALSE);
11802 dyn.d_un.d_val = (s->reloc_count
11803 * (ABI_64_P (output_bfd)
11804 ? sizeof (Elf64_Mips_External_Rel)
11805 : sizeof (Elf32_External_Rel)));
11806 /* Adjust the section size too. Tools like the prelinker
11807 can reasonably expect the values to the same. */
11808 BFD_ASSERT (!bfd_is_abs_section (s->output_section));
11809 elf_section_data (s->output_section)->this_hdr.sh_size
11810 = dyn.d_un.d_val;
11811 break;
11812
11813 default:
11814 swap_out_p = FALSE;
11815 break;
11816 }
11817
11818 if (swap_out_p)
11819 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11820 (dynobj, &dyn, b);
11821 }
11822 }
11823
11824 {
11825 asection *s;
11826 Elf32_compact_rel cpt;
11827
11828 if (SGI_COMPAT (output_bfd))
11829 {
11830 /* Write .compact_rel section out. */
11831 s = bfd_get_linker_section (dynobj, ".compact_rel");
11832 if (s != NULL)
11833 {
11834 cpt.id1 = 1;
11835 cpt.num = s->reloc_count;
11836 cpt.id2 = 2;
11837 cpt.offset = (s->output_section->filepos
11838 + sizeof (Elf32_External_compact_rel));
11839 cpt.reserved0 = 0;
11840 cpt.reserved1 = 0;
11841 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
11842 ((Elf32_External_compact_rel *)
11843 s->contents));
11844
11845 /* Clean up a dummy stub function entry in .text. */
11846 if (htab->sstubs != NULL)
11847 {
11848 file_ptr dummy_offset;
11849
11850 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
11851 dummy_offset = htab->sstubs->size - htab->function_stub_size;
11852 memset (htab->sstubs->contents + dummy_offset, 0,
11853 htab->function_stub_size);
11854 }
11855 }
11856 }
11857
11858 /* The psABI says that the dynamic relocations must be sorted in
11859 increasing order of r_symndx. The VxWorks EABI doesn't require
11860 this, and because the code below handles REL rather than RELA
11861 relocations, using it for VxWorks would be outright harmful. */
11862 if (!htab->is_vxworks)
11863 {
11864 s = mips_elf_rel_dyn_section (info, FALSE);
11865 if (s != NULL
11866 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
11867 {
11868 reldyn_sorting_bfd = output_bfd;
11869
11870 if (ABI_64_P (output_bfd))
11871 qsort ((Elf64_External_Rel *) s->contents + 1,
11872 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
11873 sort_dynamic_relocs_64);
11874 else
11875 qsort ((Elf32_External_Rel *) s->contents + 1,
11876 s->reloc_count - 1, sizeof (Elf32_External_Rel),
11877 sort_dynamic_relocs);
11878 }
11879 }
11880 }
11881
11882 if (htab->root.splt && htab->root.splt->size > 0)
11883 {
11884 if (htab->is_vxworks)
11885 {
11886 if (bfd_link_pic (info))
11887 mips_vxworks_finish_shared_plt (output_bfd, info);
11888 else
11889 mips_vxworks_finish_exec_plt (output_bfd, info);
11890 }
11891 else
11892 {
11893 BFD_ASSERT (!bfd_link_pic (info));
11894 if (!mips_finish_exec_plt (output_bfd, info))
11895 return FALSE;
11896 }
11897 }
11898 return TRUE;
11899 }
11900
11901
11902 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
11903
11904 static void
11905 mips_set_isa_flags (bfd *abfd)
11906 {
11907 flagword val;
11908
11909 switch (bfd_get_mach (abfd))
11910 {
11911 default:
11912 case bfd_mach_mips3000:
11913 val = E_MIPS_ARCH_1;
11914 break;
11915
11916 case bfd_mach_mips3900:
11917 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
11918 break;
11919
11920 case bfd_mach_mips6000:
11921 val = E_MIPS_ARCH_2;
11922 break;
11923
11924 case bfd_mach_mips4010:
11925 val = E_MIPS_ARCH_2 | E_MIPS_MACH_4010;
11926 break;
11927
11928 case bfd_mach_mips4000:
11929 case bfd_mach_mips4300:
11930 case bfd_mach_mips4400:
11931 case bfd_mach_mips4600:
11932 val = E_MIPS_ARCH_3;
11933 break;
11934
11935 case bfd_mach_mips4100:
11936 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
11937 break;
11938
11939 case bfd_mach_mips4111:
11940 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
11941 break;
11942
11943 case bfd_mach_mips4120:
11944 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
11945 break;
11946
11947 case bfd_mach_mips4650:
11948 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
11949 break;
11950
11951 case bfd_mach_mips5400:
11952 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
11953 break;
11954
11955 case bfd_mach_mips5500:
11956 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
11957 break;
11958
11959 case bfd_mach_mips5900:
11960 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
11961 break;
11962
11963 case bfd_mach_mips9000:
11964 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
11965 break;
11966
11967 case bfd_mach_mips5000:
11968 case bfd_mach_mips7000:
11969 case bfd_mach_mips8000:
11970 case bfd_mach_mips10000:
11971 case bfd_mach_mips12000:
11972 case bfd_mach_mips14000:
11973 case bfd_mach_mips16000:
11974 val = E_MIPS_ARCH_4;
11975 break;
11976
11977 case bfd_mach_mips5:
11978 val = E_MIPS_ARCH_5;
11979 break;
11980
11981 case bfd_mach_mips_loongson_2e:
11982 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
11983 break;
11984
11985 case bfd_mach_mips_loongson_2f:
11986 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
11987 break;
11988
11989 case bfd_mach_mips_sb1:
11990 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
11991 break;
11992
11993 case bfd_mach_mips_gs464:
11994 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS464;
11995 break;
11996
11997 case bfd_mach_mips_gs464e:
11998 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS464E;
11999 break;
12000
12001 case bfd_mach_mips_gs264e:
12002 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS264E;
12003 break;
12004
12005 case bfd_mach_mips_octeon:
12006 case bfd_mach_mips_octeonp:
12007 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
12008 break;
12009
12010 case bfd_mach_mips_octeon3:
12011 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
12012 break;
12013
12014 case bfd_mach_mips_xlr:
12015 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
12016 break;
12017
12018 case bfd_mach_mips_octeon2:
12019 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
12020 break;
12021
12022 case bfd_mach_mipsisa32:
12023 val = E_MIPS_ARCH_32;
12024 break;
12025
12026 case bfd_mach_mipsisa64:
12027 val = E_MIPS_ARCH_64;
12028 break;
12029
12030 case bfd_mach_mipsisa32r2:
12031 case bfd_mach_mipsisa32r3:
12032 case bfd_mach_mipsisa32r5:
12033 val = E_MIPS_ARCH_32R2;
12034 break;
12035
12036 case bfd_mach_mips_interaptiv_mr2:
12037 val = E_MIPS_ARCH_32R2 | E_MIPS_MACH_IAMR2;
12038 break;
12039
12040 case bfd_mach_mipsisa64r2:
12041 case bfd_mach_mipsisa64r3:
12042 case bfd_mach_mipsisa64r5:
12043 val = E_MIPS_ARCH_64R2;
12044 break;
12045
12046 case bfd_mach_mipsisa32r6:
12047 val = E_MIPS_ARCH_32R6;
12048 break;
12049
12050 case bfd_mach_mipsisa64r6:
12051 val = E_MIPS_ARCH_64R6;
12052 break;
12053 }
12054 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12055 elf_elfheader (abfd)->e_flags |= val;
12056
12057 }
12058
12059
12060 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12061 Don't do so for code sections. We want to keep ordering of HI16/LO16
12062 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12063 relocs to be sorted. */
12064
12065 bfd_boolean
12066 _bfd_mips_elf_sort_relocs_p (asection *sec)
12067 {
12068 return (sec->flags & SEC_CODE) == 0;
12069 }
12070
12071
12072 /* The final processing done just before writing out a MIPS ELF object
12073 file. This gets the MIPS architecture right based on the machine
12074 number. This is used by both the 32-bit and the 64-bit ABI. */
12075
12076 void
12077 _bfd_mips_elf_final_write_processing (bfd *abfd,
12078 bfd_boolean linker ATTRIBUTE_UNUSED)
12079 {
12080 unsigned int i;
12081 Elf_Internal_Shdr **hdrpp;
12082 const char *name;
12083 asection *sec;
12084
12085 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12086 is nonzero. This is for compatibility with old objects, which used
12087 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12088 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12089 mips_set_isa_flags (abfd);
12090
12091 /* Set the sh_info field for .gptab sections and other appropriate
12092 info for each special section. */
12093 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12094 i < elf_numsections (abfd);
12095 i++, hdrpp++)
12096 {
12097 switch ((*hdrpp)->sh_type)
12098 {
12099 case SHT_MIPS_MSYM:
12100 case SHT_MIPS_LIBLIST:
12101 sec = bfd_get_section_by_name (abfd, ".dynstr");
12102 if (sec != NULL)
12103 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12104 break;
12105
12106 case SHT_MIPS_GPTAB:
12107 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12108 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12109 BFD_ASSERT (name != NULL
12110 && CONST_STRNEQ (name, ".gptab."));
12111 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12112 BFD_ASSERT (sec != NULL);
12113 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12114 break;
12115
12116 case SHT_MIPS_CONTENT:
12117 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12118 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12119 BFD_ASSERT (name != NULL
12120 && CONST_STRNEQ (name, ".MIPS.content"));
12121 sec = bfd_get_section_by_name (abfd,
12122 name + sizeof ".MIPS.content" - 1);
12123 BFD_ASSERT (sec != NULL);
12124 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12125 break;
12126
12127 case SHT_MIPS_SYMBOL_LIB:
12128 sec = bfd_get_section_by_name (abfd, ".dynsym");
12129 if (sec != NULL)
12130 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12131 sec = bfd_get_section_by_name (abfd, ".liblist");
12132 if (sec != NULL)
12133 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12134 break;
12135
12136 case SHT_MIPS_EVENTS:
12137 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12138 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12139 BFD_ASSERT (name != NULL);
12140 if (CONST_STRNEQ (name, ".MIPS.events"))
12141 sec = bfd_get_section_by_name (abfd,
12142 name + sizeof ".MIPS.events" - 1);
12143 else
12144 {
12145 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
12146 sec = bfd_get_section_by_name (abfd,
12147 (name
12148 + sizeof ".MIPS.post_rel" - 1));
12149 }
12150 BFD_ASSERT (sec != NULL);
12151 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12152 break;
12153
12154 }
12155 }
12156 }
12157 \f
12158 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12159 segments. */
12160
12161 int
12162 _bfd_mips_elf_additional_program_headers (bfd *abfd,
12163 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12164 {
12165 asection *s;
12166 int ret = 0;
12167
12168 /* See if we need a PT_MIPS_REGINFO segment. */
12169 s = bfd_get_section_by_name (abfd, ".reginfo");
12170 if (s && (s->flags & SEC_LOAD))
12171 ++ret;
12172
12173 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12174 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12175 ++ret;
12176
12177 /* See if we need a PT_MIPS_OPTIONS segment. */
12178 if (IRIX_COMPAT (abfd) == ict_irix6
12179 && bfd_get_section_by_name (abfd,
12180 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12181 ++ret;
12182
12183 /* See if we need a PT_MIPS_RTPROC segment. */
12184 if (IRIX_COMPAT (abfd) == ict_irix5
12185 && bfd_get_section_by_name (abfd, ".dynamic")
12186 && bfd_get_section_by_name (abfd, ".mdebug"))
12187 ++ret;
12188
12189 /* Allocate a PT_NULL header in dynamic objects. See
12190 _bfd_mips_elf_modify_segment_map for details. */
12191 if (!SGI_COMPAT (abfd)
12192 && bfd_get_section_by_name (abfd, ".dynamic"))
12193 ++ret;
12194
12195 return ret;
12196 }
12197
12198 /* Modify the segment map for an IRIX5 executable. */
12199
12200 bfd_boolean
12201 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12202 struct bfd_link_info *info)
12203 {
12204 asection *s;
12205 struct elf_segment_map *m, **pm;
12206 bfd_size_type amt;
12207
12208 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12209 segment. */
12210 s = bfd_get_section_by_name (abfd, ".reginfo");
12211 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12212 {
12213 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12214 if (m->p_type == PT_MIPS_REGINFO)
12215 break;
12216 if (m == NULL)
12217 {
12218 amt = sizeof *m;
12219 m = bfd_zalloc (abfd, amt);
12220 if (m == NULL)
12221 return FALSE;
12222
12223 m->p_type = PT_MIPS_REGINFO;
12224 m->count = 1;
12225 m->sections[0] = s;
12226
12227 /* We want to put it after the PHDR and INTERP segments. */
12228 pm = &elf_seg_map (abfd);
12229 while (*pm != NULL
12230 && ((*pm)->p_type == PT_PHDR
12231 || (*pm)->p_type == PT_INTERP))
12232 pm = &(*pm)->next;
12233
12234 m->next = *pm;
12235 *pm = m;
12236 }
12237 }
12238
12239 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12240 segment. */
12241 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12242 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12243 {
12244 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12245 if (m->p_type == PT_MIPS_ABIFLAGS)
12246 break;
12247 if (m == NULL)
12248 {
12249 amt = sizeof *m;
12250 m = bfd_zalloc (abfd, amt);
12251 if (m == NULL)
12252 return FALSE;
12253
12254 m->p_type = PT_MIPS_ABIFLAGS;
12255 m->count = 1;
12256 m->sections[0] = s;
12257
12258 /* We want to put it after the PHDR and INTERP segments. */
12259 pm = &elf_seg_map (abfd);
12260 while (*pm != NULL
12261 && ((*pm)->p_type == PT_PHDR
12262 || (*pm)->p_type == PT_INTERP))
12263 pm = &(*pm)->next;
12264
12265 m->next = *pm;
12266 *pm = m;
12267 }
12268 }
12269
12270 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12271 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12272 PT_MIPS_OPTIONS segment immediately following the program header
12273 table. */
12274 if (NEWABI_P (abfd)
12275 /* On non-IRIX6 new abi, we'll have already created a segment
12276 for this section, so don't create another. I'm not sure this
12277 is not also the case for IRIX 6, but I can't test it right
12278 now. */
12279 && IRIX_COMPAT (abfd) == ict_irix6)
12280 {
12281 for (s = abfd->sections; s; s = s->next)
12282 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12283 break;
12284
12285 if (s)
12286 {
12287 struct elf_segment_map *options_segment;
12288
12289 pm = &elf_seg_map (abfd);
12290 while (*pm != NULL
12291 && ((*pm)->p_type == PT_PHDR
12292 || (*pm)->p_type == PT_INTERP))
12293 pm = &(*pm)->next;
12294
12295 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12296 {
12297 amt = sizeof (struct elf_segment_map);
12298 options_segment = bfd_zalloc (abfd, amt);
12299 options_segment->next = *pm;
12300 options_segment->p_type = PT_MIPS_OPTIONS;
12301 options_segment->p_flags = PF_R;
12302 options_segment->p_flags_valid = TRUE;
12303 options_segment->count = 1;
12304 options_segment->sections[0] = s;
12305 *pm = options_segment;
12306 }
12307 }
12308 }
12309 else
12310 {
12311 if (IRIX_COMPAT (abfd) == ict_irix5)
12312 {
12313 /* If there are .dynamic and .mdebug sections, we make a room
12314 for the RTPROC header. FIXME: Rewrite without section names. */
12315 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12316 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12317 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12318 {
12319 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12320 if (m->p_type == PT_MIPS_RTPROC)
12321 break;
12322 if (m == NULL)
12323 {
12324 amt = sizeof *m;
12325 m = bfd_zalloc (abfd, amt);
12326 if (m == NULL)
12327 return FALSE;
12328
12329 m->p_type = PT_MIPS_RTPROC;
12330
12331 s = bfd_get_section_by_name (abfd, ".rtproc");
12332 if (s == NULL)
12333 {
12334 m->count = 0;
12335 m->p_flags = 0;
12336 m->p_flags_valid = 1;
12337 }
12338 else
12339 {
12340 m->count = 1;
12341 m->sections[0] = s;
12342 }
12343
12344 /* We want to put it after the DYNAMIC segment. */
12345 pm = &elf_seg_map (abfd);
12346 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12347 pm = &(*pm)->next;
12348 if (*pm != NULL)
12349 pm = &(*pm)->next;
12350
12351 m->next = *pm;
12352 *pm = m;
12353 }
12354 }
12355 }
12356 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12357 .dynstr, .dynsym, and .hash sections, and everything in
12358 between. */
12359 for (pm = &elf_seg_map (abfd); *pm != NULL;
12360 pm = &(*pm)->next)
12361 if ((*pm)->p_type == PT_DYNAMIC)
12362 break;
12363 m = *pm;
12364 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12365 glibc's dynamic linker has traditionally derived the number of
12366 tags from the p_filesz field, and sometimes allocates stack
12367 arrays of that size. An overly-big PT_DYNAMIC segment can
12368 be actively harmful in such cases. Making PT_DYNAMIC contain
12369 other sections can also make life hard for the prelinker,
12370 which might move one of the other sections to a different
12371 PT_LOAD segment. */
12372 if (SGI_COMPAT (abfd)
12373 && m != NULL
12374 && m->count == 1
12375 && strcmp (m->sections[0]->name, ".dynamic") == 0)
12376 {
12377 static const char *sec_names[] =
12378 {
12379 ".dynamic", ".dynstr", ".dynsym", ".hash"
12380 };
12381 bfd_vma low, high;
12382 unsigned int i, c;
12383 struct elf_segment_map *n;
12384
12385 low = ~(bfd_vma) 0;
12386 high = 0;
12387 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12388 {
12389 s = bfd_get_section_by_name (abfd, sec_names[i]);
12390 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12391 {
12392 bfd_size_type sz;
12393
12394 if (low > s->vma)
12395 low = s->vma;
12396 sz = s->size;
12397 if (high < s->vma + sz)
12398 high = s->vma + sz;
12399 }
12400 }
12401
12402 c = 0;
12403 for (s = abfd->sections; s != NULL; s = s->next)
12404 if ((s->flags & SEC_LOAD) != 0
12405 && s->vma >= low
12406 && s->vma + s->size <= high)
12407 ++c;
12408
12409 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
12410 n = bfd_zalloc (abfd, amt);
12411 if (n == NULL)
12412 return FALSE;
12413 *n = *m;
12414 n->count = c;
12415
12416 i = 0;
12417 for (s = abfd->sections; s != NULL; s = s->next)
12418 {
12419 if ((s->flags & SEC_LOAD) != 0
12420 && s->vma >= low
12421 && s->vma + s->size <= high)
12422 {
12423 n->sections[i] = s;
12424 ++i;
12425 }
12426 }
12427
12428 *pm = n;
12429 }
12430 }
12431
12432 /* Allocate a spare program header in dynamic objects so that tools
12433 like the prelinker can add an extra PT_LOAD entry.
12434
12435 If the prelinker needs to make room for a new PT_LOAD entry, its
12436 standard procedure is to move the first (read-only) sections into
12437 the new (writable) segment. However, the MIPS ABI requires
12438 .dynamic to be in a read-only segment, and the section will often
12439 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12440
12441 Although the prelinker could in principle move .dynamic to a
12442 writable segment, it seems better to allocate a spare program
12443 header instead, and avoid the need to move any sections.
12444 There is a long tradition of allocating spare dynamic tags,
12445 so allocating a spare program header seems like a natural
12446 extension.
12447
12448 If INFO is NULL, we may be copying an already prelinked binary
12449 with objcopy or strip, so do not add this header. */
12450 if (info != NULL
12451 && !SGI_COMPAT (abfd)
12452 && bfd_get_section_by_name (abfd, ".dynamic"))
12453 {
12454 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12455 if ((*pm)->p_type == PT_NULL)
12456 break;
12457 if (*pm == NULL)
12458 {
12459 m = bfd_zalloc (abfd, sizeof (*m));
12460 if (m == NULL)
12461 return FALSE;
12462
12463 m->p_type = PT_NULL;
12464 *pm = m;
12465 }
12466 }
12467
12468 return TRUE;
12469 }
12470 \f
12471 /* Return the section that should be marked against GC for a given
12472 relocation. */
12473
12474 asection *
12475 _bfd_mips_elf_gc_mark_hook (asection *sec,
12476 struct bfd_link_info *info,
12477 Elf_Internal_Rela *rel,
12478 struct elf_link_hash_entry *h,
12479 Elf_Internal_Sym *sym)
12480 {
12481 /* ??? Do mips16 stub sections need to be handled special? */
12482
12483 if (h != NULL)
12484 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12485 {
12486 case R_MIPS_GNU_VTINHERIT:
12487 case R_MIPS_GNU_VTENTRY:
12488 return NULL;
12489 }
12490
12491 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12492 }
12493
12494 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12495
12496 bfd_boolean
12497 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12498 elf_gc_mark_hook_fn gc_mark_hook)
12499 {
12500 bfd *sub;
12501
12502 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12503
12504 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12505 {
12506 asection *o;
12507
12508 if (! is_mips_elf (sub))
12509 continue;
12510
12511 for (o = sub->sections; o != NULL; o = o->next)
12512 if (!o->gc_mark
12513 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12514 (bfd_get_section_name (sub, o)))
12515 {
12516 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12517 return FALSE;
12518 }
12519 }
12520
12521 return TRUE;
12522 }
12523 \f
12524 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12525 hiding the old indirect symbol. Process additional relocation
12526 information. Also called for weakdefs, in which case we just let
12527 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12528
12529 void
12530 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12531 struct elf_link_hash_entry *dir,
12532 struct elf_link_hash_entry *ind)
12533 {
12534 struct mips_elf_link_hash_entry *dirmips, *indmips;
12535
12536 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12537
12538 dirmips = (struct mips_elf_link_hash_entry *) dir;
12539 indmips = (struct mips_elf_link_hash_entry *) ind;
12540 /* Any absolute non-dynamic relocations against an indirect or weak
12541 definition will be against the target symbol. */
12542 if (indmips->has_static_relocs)
12543 dirmips->has_static_relocs = TRUE;
12544
12545 if (ind->root.type != bfd_link_hash_indirect)
12546 return;
12547
12548 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12549 if (indmips->readonly_reloc)
12550 dirmips->readonly_reloc = TRUE;
12551 if (indmips->no_fn_stub)
12552 dirmips->no_fn_stub = TRUE;
12553 if (indmips->fn_stub)
12554 {
12555 dirmips->fn_stub = indmips->fn_stub;
12556 indmips->fn_stub = NULL;
12557 }
12558 if (indmips->need_fn_stub)
12559 {
12560 dirmips->need_fn_stub = TRUE;
12561 indmips->need_fn_stub = FALSE;
12562 }
12563 if (indmips->call_stub)
12564 {
12565 dirmips->call_stub = indmips->call_stub;
12566 indmips->call_stub = NULL;
12567 }
12568 if (indmips->call_fp_stub)
12569 {
12570 dirmips->call_fp_stub = indmips->call_fp_stub;
12571 indmips->call_fp_stub = NULL;
12572 }
12573 if (indmips->global_got_area < dirmips->global_got_area)
12574 dirmips->global_got_area = indmips->global_got_area;
12575 if (indmips->global_got_area < GGA_NONE)
12576 indmips->global_got_area = GGA_NONE;
12577 if (indmips->has_nonpic_branches)
12578 dirmips->has_nonpic_branches = TRUE;
12579 }
12580 \f
12581 #define PDR_SIZE 32
12582
12583 bfd_boolean
12584 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12585 struct bfd_link_info *info)
12586 {
12587 asection *o;
12588 bfd_boolean ret = FALSE;
12589 unsigned char *tdata;
12590 size_t i, skip;
12591
12592 o = bfd_get_section_by_name (abfd, ".pdr");
12593 if (! o)
12594 return FALSE;
12595 if (o->size == 0)
12596 return FALSE;
12597 if (o->size % PDR_SIZE != 0)
12598 return FALSE;
12599 if (o->output_section != NULL
12600 && bfd_is_abs_section (o->output_section))
12601 return FALSE;
12602
12603 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12604 if (! tdata)
12605 return FALSE;
12606
12607 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12608 info->keep_memory);
12609 if (!cookie->rels)
12610 {
12611 free (tdata);
12612 return FALSE;
12613 }
12614
12615 cookie->rel = cookie->rels;
12616 cookie->relend = cookie->rels + o->reloc_count;
12617
12618 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12619 {
12620 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12621 {
12622 tdata[i] = 1;
12623 skip ++;
12624 }
12625 }
12626
12627 if (skip != 0)
12628 {
12629 mips_elf_section_data (o)->u.tdata = tdata;
12630 if (o->rawsize == 0)
12631 o->rawsize = o->size;
12632 o->size -= skip * PDR_SIZE;
12633 ret = TRUE;
12634 }
12635 else
12636 free (tdata);
12637
12638 if (! info->keep_memory)
12639 free (cookie->rels);
12640
12641 return ret;
12642 }
12643
12644 bfd_boolean
12645 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
12646 {
12647 if (strcmp (sec->name, ".pdr") == 0)
12648 return TRUE;
12649 return FALSE;
12650 }
12651
12652 bfd_boolean
12653 _bfd_mips_elf_write_section (bfd *output_bfd,
12654 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12655 asection *sec, bfd_byte *contents)
12656 {
12657 bfd_byte *to, *from, *end;
12658 int i;
12659
12660 if (strcmp (sec->name, ".pdr") != 0)
12661 return FALSE;
12662
12663 if (mips_elf_section_data (sec)->u.tdata == NULL)
12664 return FALSE;
12665
12666 to = contents;
12667 end = contents + sec->size;
12668 for (from = contents, i = 0;
12669 from < end;
12670 from += PDR_SIZE, i++)
12671 {
12672 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
12673 continue;
12674 if (to != from)
12675 memcpy (to, from, PDR_SIZE);
12676 to += PDR_SIZE;
12677 }
12678 bfd_set_section_contents (output_bfd, sec->output_section, contents,
12679 sec->output_offset, sec->size);
12680 return TRUE;
12681 }
12682 \f
12683 /* microMIPS code retains local labels for linker relaxation. Omit them
12684 from output by default for clarity. */
12685
12686 bfd_boolean
12687 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12688 {
12689 return _bfd_elf_is_local_label_name (abfd, sym->name);
12690 }
12691
12692 /* MIPS ELF uses a special find_nearest_line routine in order the
12693 handle the ECOFF debugging information. */
12694
12695 struct mips_elf_find_line
12696 {
12697 struct ecoff_debug_info d;
12698 struct ecoff_find_line i;
12699 };
12700
12701 bfd_boolean
12702 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
12703 asection *section, bfd_vma offset,
12704 const char **filename_ptr,
12705 const char **functionname_ptr,
12706 unsigned int *line_ptr,
12707 unsigned int *discriminator_ptr)
12708 {
12709 asection *msec;
12710
12711 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
12712 filename_ptr, functionname_ptr,
12713 line_ptr, discriminator_ptr,
12714 dwarf_debug_sections,
12715 ABI_64_P (abfd) ? 8 : 0,
12716 &elf_tdata (abfd)->dwarf2_find_line_info)
12717 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
12718 filename_ptr, functionname_ptr,
12719 line_ptr))
12720 {
12721 /* PR 22789: If the function name or filename was not found through
12722 the debug information, then try an ordinary lookup instead. */
12723 if ((functionname_ptr != NULL && *functionname_ptr == NULL)
12724 || (filename_ptr != NULL && *filename_ptr == NULL))
12725 {
12726 /* Do not override already discovered names. */
12727 if (functionname_ptr != NULL && *functionname_ptr != NULL)
12728 functionname_ptr = NULL;
12729
12730 if (filename_ptr != NULL && *filename_ptr != NULL)
12731 filename_ptr = NULL;
12732
12733 _bfd_elf_find_function (abfd, symbols, section, offset,
12734 filename_ptr, functionname_ptr);
12735 }
12736
12737 return TRUE;
12738 }
12739
12740 msec = bfd_get_section_by_name (abfd, ".mdebug");
12741 if (msec != NULL)
12742 {
12743 flagword origflags;
12744 struct mips_elf_find_line *fi;
12745 const struct ecoff_debug_swap * const swap =
12746 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12747
12748 /* If we are called during a link, mips_elf_final_link may have
12749 cleared the SEC_HAS_CONTENTS field. We force it back on here
12750 if appropriate (which it normally will be). */
12751 origflags = msec->flags;
12752 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12753 msec->flags |= SEC_HAS_CONTENTS;
12754
12755 fi = mips_elf_tdata (abfd)->find_line_info;
12756 if (fi == NULL)
12757 {
12758 bfd_size_type external_fdr_size;
12759 char *fraw_src;
12760 char *fraw_end;
12761 struct fdr *fdr_ptr;
12762 bfd_size_type amt = sizeof (struct mips_elf_find_line);
12763
12764 fi = bfd_zalloc (abfd, amt);
12765 if (fi == NULL)
12766 {
12767 msec->flags = origflags;
12768 return FALSE;
12769 }
12770
12771 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12772 {
12773 msec->flags = origflags;
12774 return FALSE;
12775 }
12776
12777 /* Swap in the FDR information. */
12778 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
12779 fi->d.fdr = bfd_alloc (abfd, amt);
12780 if (fi->d.fdr == NULL)
12781 {
12782 msec->flags = origflags;
12783 return FALSE;
12784 }
12785 external_fdr_size = swap->external_fdr_size;
12786 fdr_ptr = fi->d.fdr;
12787 fraw_src = (char *) fi->d.external_fdr;
12788 fraw_end = (fraw_src
12789 + fi->d.symbolic_header.ifdMax * external_fdr_size);
12790 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
12791 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
12792
12793 mips_elf_tdata (abfd)->find_line_info = fi;
12794
12795 /* Note that we don't bother to ever free this information.
12796 find_nearest_line is either called all the time, as in
12797 objdump -l, so the information should be saved, or it is
12798 rarely called, as in ld error messages, so the memory
12799 wasted is unimportant. Still, it would probably be a
12800 good idea for free_cached_info to throw it away. */
12801 }
12802
12803 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
12804 &fi->i, filename_ptr, functionname_ptr,
12805 line_ptr))
12806 {
12807 msec->flags = origflags;
12808 return TRUE;
12809 }
12810
12811 msec->flags = origflags;
12812 }
12813
12814 /* Fall back on the generic ELF find_nearest_line routine. */
12815
12816 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
12817 filename_ptr, functionname_ptr,
12818 line_ptr, discriminator_ptr);
12819 }
12820
12821 bfd_boolean
12822 _bfd_mips_elf_find_inliner_info (bfd *abfd,
12823 const char **filename_ptr,
12824 const char **functionname_ptr,
12825 unsigned int *line_ptr)
12826 {
12827 bfd_boolean found;
12828 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12829 functionname_ptr, line_ptr,
12830 & elf_tdata (abfd)->dwarf2_find_line_info);
12831 return found;
12832 }
12833
12834 \f
12835 /* When are writing out the .options or .MIPS.options section,
12836 remember the bytes we are writing out, so that we can install the
12837 GP value in the section_processing routine. */
12838
12839 bfd_boolean
12840 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
12841 const void *location,
12842 file_ptr offset, bfd_size_type count)
12843 {
12844 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
12845 {
12846 bfd_byte *c;
12847
12848 if (elf_section_data (section) == NULL)
12849 {
12850 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
12851 section->used_by_bfd = bfd_zalloc (abfd, amt);
12852 if (elf_section_data (section) == NULL)
12853 return FALSE;
12854 }
12855 c = mips_elf_section_data (section)->u.tdata;
12856 if (c == NULL)
12857 {
12858 c = bfd_zalloc (abfd, section->size);
12859 if (c == NULL)
12860 return FALSE;
12861 mips_elf_section_data (section)->u.tdata = c;
12862 }
12863
12864 memcpy (c + offset, location, count);
12865 }
12866
12867 return _bfd_elf_set_section_contents (abfd, section, location, offset,
12868 count);
12869 }
12870
12871 /* This is almost identical to bfd_generic_get_... except that some
12872 MIPS relocations need to be handled specially. Sigh. */
12873
12874 bfd_byte *
12875 _bfd_elf_mips_get_relocated_section_contents
12876 (bfd *abfd,
12877 struct bfd_link_info *link_info,
12878 struct bfd_link_order *link_order,
12879 bfd_byte *data,
12880 bfd_boolean relocatable,
12881 asymbol **symbols)
12882 {
12883 /* Get enough memory to hold the stuff */
12884 bfd *input_bfd = link_order->u.indirect.section->owner;
12885 asection *input_section = link_order->u.indirect.section;
12886 bfd_size_type sz;
12887
12888 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
12889 arelent **reloc_vector = NULL;
12890 long reloc_count;
12891
12892 if (reloc_size < 0)
12893 goto error_return;
12894
12895 reloc_vector = bfd_malloc (reloc_size);
12896 if (reloc_vector == NULL && reloc_size != 0)
12897 goto error_return;
12898
12899 /* read in the section */
12900 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
12901 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
12902 goto error_return;
12903
12904 reloc_count = bfd_canonicalize_reloc (input_bfd,
12905 input_section,
12906 reloc_vector,
12907 symbols);
12908 if (reloc_count < 0)
12909 goto error_return;
12910
12911 if (reloc_count > 0)
12912 {
12913 arelent **parent;
12914 /* for mips */
12915 int gp_found;
12916 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
12917
12918 {
12919 struct bfd_hash_entry *h;
12920 struct bfd_link_hash_entry *lh;
12921 /* Skip all this stuff if we aren't mixing formats. */
12922 if (abfd && input_bfd
12923 && abfd->xvec == input_bfd->xvec)
12924 lh = 0;
12925 else
12926 {
12927 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
12928 lh = (struct bfd_link_hash_entry *) h;
12929 }
12930 lookup:
12931 if (lh)
12932 {
12933 switch (lh->type)
12934 {
12935 case bfd_link_hash_undefined:
12936 case bfd_link_hash_undefweak:
12937 case bfd_link_hash_common:
12938 gp_found = 0;
12939 break;
12940 case bfd_link_hash_defined:
12941 case bfd_link_hash_defweak:
12942 gp_found = 1;
12943 gp = lh->u.def.value;
12944 break;
12945 case bfd_link_hash_indirect:
12946 case bfd_link_hash_warning:
12947 lh = lh->u.i.link;
12948 /* @@FIXME ignoring warning for now */
12949 goto lookup;
12950 case bfd_link_hash_new:
12951 default:
12952 abort ();
12953 }
12954 }
12955 else
12956 gp_found = 0;
12957 }
12958 /* end mips */
12959 for (parent = reloc_vector; *parent != NULL; parent++)
12960 {
12961 char *error_message = NULL;
12962 bfd_reloc_status_type r;
12963
12964 /* Specific to MIPS: Deal with relocation types that require
12965 knowing the gp of the output bfd. */
12966 asymbol *sym = *(*parent)->sym_ptr_ptr;
12967
12968 /* If we've managed to find the gp and have a special
12969 function for the relocation then go ahead, else default
12970 to the generic handling. */
12971 if (gp_found
12972 && (*parent)->howto->special_function
12973 == _bfd_mips_elf32_gprel16_reloc)
12974 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
12975 input_section, relocatable,
12976 data, gp);
12977 else
12978 r = bfd_perform_relocation (input_bfd, *parent, data,
12979 input_section,
12980 relocatable ? abfd : NULL,
12981 &error_message);
12982
12983 if (relocatable)
12984 {
12985 asection *os = input_section->output_section;
12986
12987 /* A partial link, so keep the relocs */
12988 os->orelocation[os->reloc_count] = *parent;
12989 os->reloc_count++;
12990 }
12991
12992 if (r != bfd_reloc_ok)
12993 {
12994 switch (r)
12995 {
12996 case bfd_reloc_undefined:
12997 (*link_info->callbacks->undefined_symbol)
12998 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12999 input_bfd, input_section, (*parent)->address, TRUE);
13000 break;
13001 case bfd_reloc_dangerous:
13002 BFD_ASSERT (error_message != NULL);
13003 (*link_info->callbacks->reloc_dangerous)
13004 (link_info, error_message,
13005 input_bfd, input_section, (*parent)->address);
13006 break;
13007 case bfd_reloc_overflow:
13008 (*link_info->callbacks->reloc_overflow)
13009 (link_info, NULL,
13010 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13011 (*parent)->howto->name, (*parent)->addend,
13012 input_bfd, input_section, (*parent)->address);
13013 break;
13014 case bfd_reloc_outofrange:
13015 default:
13016 abort ();
13017 break;
13018 }
13019
13020 }
13021 }
13022 }
13023 if (reloc_vector != NULL)
13024 free (reloc_vector);
13025 return data;
13026
13027 error_return:
13028 if (reloc_vector != NULL)
13029 free (reloc_vector);
13030 return NULL;
13031 }
13032 \f
13033 static bfd_boolean
13034 mips_elf_relax_delete_bytes (bfd *abfd,
13035 asection *sec, bfd_vma addr, int count)
13036 {
13037 Elf_Internal_Shdr *symtab_hdr;
13038 unsigned int sec_shndx;
13039 bfd_byte *contents;
13040 Elf_Internal_Rela *irel, *irelend;
13041 Elf_Internal_Sym *isym;
13042 Elf_Internal_Sym *isymend;
13043 struct elf_link_hash_entry **sym_hashes;
13044 struct elf_link_hash_entry **end_hashes;
13045 struct elf_link_hash_entry **start_hashes;
13046 unsigned int symcount;
13047
13048 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13049 contents = elf_section_data (sec)->this_hdr.contents;
13050
13051 irel = elf_section_data (sec)->relocs;
13052 irelend = irel + sec->reloc_count;
13053
13054 /* Actually delete the bytes. */
13055 memmove (contents + addr, contents + addr + count,
13056 (size_t) (sec->size - addr - count));
13057 sec->size -= count;
13058
13059 /* Adjust all the relocs. */
13060 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13061 {
13062 /* Get the new reloc address. */
13063 if (irel->r_offset > addr)
13064 irel->r_offset -= count;
13065 }
13066
13067 BFD_ASSERT (addr % 2 == 0);
13068 BFD_ASSERT (count % 2 == 0);
13069
13070 /* Adjust the local symbols defined in this section. */
13071 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13072 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13073 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
13074 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
13075 isym->st_value -= count;
13076
13077 /* Now adjust the global symbols defined in this section. */
13078 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13079 - symtab_hdr->sh_info);
13080 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13081 end_hashes = sym_hashes + symcount;
13082
13083 for (; sym_hashes < end_hashes; sym_hashes++)
13084 {
13085 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13086
13087 if ((sym_hash->root.type == bfd_link_hash_defined
13088 || sym_hash->root.type == bfd_link_hash_defweak)
13089 && sym_hash->root.u.def.section == sec)
13090 {
13091 bfd_vma value = sym_hash->root.u.def.value;
13092
13093 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13094 value &= MINUS_TWO;
13095 if (value > addr)
13096 sym_hash->root.u.def.value -= count;
13097 }
13098 }
13099
13100 return TRUE;
13101 }
13102
13103
13104 /* Opcodes needed for microMIPS relaxation as found in
13105 opcodes/micromips-opc.c. */
13106
13107 struct opcode_descriptor {
13108 unsigned long match;
13109 unsigned long mask;
13110 };
13111
13112 /* The $ra register aka $31. */
13113
13114 #define RA 31
13115
13116 /* 32-bit instruction format register fields. */
13117
13118 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13119 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13120
13121 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
13122
13123 #define OP16_VALID_REG(r) \
13124 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13125
13126
13127 /* 32-bit and 16-bit branches. */
13128
13129 static const struct opcode_descriptor b_insns_32[] = {
13130 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13131 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13132 { 0, 0 } /* End marker for find_match(). */
13133 };
13134
13135 static const struct opcode_descriptor bc_insn_32 =
13136 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13137
13138 static const struct opcode_descriptor bz_insn_32 =
13139 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13140
13141 static const struct opcode_descriptor bzal_insn_32 =
13142 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13143
13144 static const struct opcode_descriptor beq_insn_32 =
13145 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13146
13147 static const struct opcode_descriptor b_insn_16 =
13148 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13149
13150 static const struct opcode_descriptor bz_insn_16 =
13151 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13152
13153
13154 /* 32-bit and 16-bit branch EQ and NE zero. */
13155
13156 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13157 eq and second the ne. This convention is used when replacing a
13158 32-bit BEQ/BNE with the 16-bit version. */
13159
13160 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13161
13162 static const struct opcode_descriptor bz_rs_insns_32[] = {
13163 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13164 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13165 { 0, 0 } /* End marker for find_match(). */
13166 };
13167
13168 static const struct opcode_descriptor bz_rt_insns_32[] = {
13169 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13170 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13171 { 0, 0 } /* End marker for find_match(). */
13172 };
13173
13174 static const struct opcode_descriptor bzc_insns_32[] = {
13175 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13176 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13177 { 0, 0 } /* End marker for find_match(). */
13178 };
13179
13180 static const struct opcode_descriptor bz_insns_16[] = {
13181 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13182 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13183 { 0, 0 } /* End marker for find_match(). */
13184 };
13185
13186 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13187
13188 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
13189 #define BZ16_REG_FIELD(r) (((r) & 7) << 7)
13190
13191
13192 /* 32-bit instructions with a delay slot. */
13193
13194 static const struct opcode_descriptor jal_insn_32_bd16 =
13195 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13196
13197 static const struct opcode_descriptor jal_insn_32_bd32 =
13198 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13199
13200 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13201 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13202
13203 static const struct opcode_descriptor j_insn_32 =
13204 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13205
13206 static const struct opcode_descriptor jalr_insn_32 =
13207 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13208
13209 /* This table can be compacted, because no opcode replacement is made. */
13210
13211 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13212 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13213
13214 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13215 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13216
13217 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13218 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13219 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13220 { 0, 0 } /* End marker for find_match(). */
13221 };
13222
13223 /* This table can be compacted, because no opcode replacement is made. */
13224
13225 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13226 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13227
13228 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13229 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13230 { 0, 0 } /* End marker for find_match(). */
13231 };
13232
13233
13234 /* 16-bit instructions with a delay slot. */
13235
13236 static const struct opcode_descriptor jalr_insn_16_bd16 =
13237 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13238
13239 static const struct opcode_descriptor jalr_insn_16_bd32 =
13240 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13241
13242 static const struct opcode_descriptor jr_insn_16 =
13243 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13244
13245 #define JR16_REG(opcode) ((opcode) & 0x1f)
13246
13247 /* This table can be compacted, because no opcode replacement is made. */
13248
13249 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13250 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13251
13252 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13253 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13254 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13255 { 0, 0 } /* End marker for find_match(). */
13256 };
13257
13258
13259 /* LUI instruction. */
13260
13261 static const struct opcode_descriptor lui_insn =
13262 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13263
13264
13265 /* ADDIU instruction. */
13266
13267 static const struct opcode_descriptor addiu_insn =
13268 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13269
13270 static const struct opcode_descriptor addiupc_insn =
13271 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13272
13273 #define ADDIUPC_REG_FIELD(r) \
13274 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13275
13276
13277 /* Relaxable instructions in a JAL delay slot: MOVE. */
13278
13279 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13280 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13281 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13282 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13283
13284 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13285 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13286
13287 static const struct opcode_descriptor move_insns_32[] = {
13288 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13289 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13290 { 0, 0 } /* End marker for find_match(). */
13291 };
13292
13293 static const struct opcode_descriptor move_insn_16 =
13294 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13295
13296
13297 /* NOP instructions. */
13298
13299 static const struct opcode_descriptor nop_insn_32 =
13300 { /* "nop", "", */ 0x00000000, 0xffffffff };
13301
13302 static const struct opcode_descriptor nop_insn_16 =
13303 { /* "nop", "", */ 0x0c00, 0xffff };
13304
13305
13306 /* Instruction match support. */
13307
13308 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13309
13310 static int
13311 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13312 {
13313 unsigned long indx;
13314
13315 for (indx = 0; insn[indx].mask != 0; indx++)
13316 if (MATCH (opcode, insn[indx]))
13317 return indx;
13318
13319 return -1;
13320 }
13321
13322
13323 /* Branch and delay slot decoding support. */
13324
13325 /* If PTR points to what *might* be a 16-bit branch or jump, then
13326 return the minimum length of its delay slot, otherwise return 0.
13327 Non-zero results are not definitive as we might be checking against
13328 the second half of another instruction. */
13329
13330 static int
13331 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13332 {
13333 unsigned long opcode;
13334 int bdsize;
13335
13336 opcode = bfd_get_16 (abfd, ptr);
13337 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13338 /* 16-bit branch/jump with a 32-bit delay slot. */
13339 bdsize = 4;
13340 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13341 || find_match (opcode, ds_insns_16_bd16) >= 0)
13342 /* 16-bit branch/jump with a 16-bit delay slot. */
13343 bdsize = 2;
13344 else
13345 /* No delay slot. */
13346 bdsize = 0;
13347
13348 return bdsize;
13349 }
13350
13351 /* If PTR points to what *might* be a 32-bit branch or jump, then
13352 return the minimum length of its delay slot, otherwise return 0.
13353 Non-zero results are not definitive as we might be checking against
13354 the second half of another instruction. */
13355
13356 static int
13357 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13358 {
13359 unsigned long opcode;
13360 int bdsize;
13361
13362 opcode = bfd_get_micromips_32 (abfd, ptr);
13363 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13364 /* 32-bit branch/jump with a 32-bit delay slot. */
13365 bdsize = 4;
13366 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13367 /* 32-bit branch/jump with a 16-bit delay slot. */
13368 bdsize = 2;
13369 else
13370 /* No delay slot. */
13371 bdsize = 0;
13372
13373 return bdsize;
13374 }
13375
13376 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13377 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13378
13379 static bfd_boolean
13380 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13381 {
13382 unsigned long opcode;
13383
13384 opcode = bfd_get_16 (abfd, ptr);
13385 if (MATCH (opcode, b_insn_16)
13386 /* B16 */
13387 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13388 /* JR16 */
13389 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13390 /* BEQZ16, BNEZ16 */
13391 || (MATCH (opcode, jalr_insn_16_bd32)
13392 /* JALR16 */
13393 && reg != JR16_REG (opcode) && reg != RA))
13394 return TRUE;
13395
13396 return FALSE;
13397 }
13398
13399 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13400 then return TRUE, otherwise FALSE. */
13401
13402 static bfd_boolean
13403 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13404 {
13405 unsigned long opcode;
13406
13407 opcode = bfd_get_micromips_32 (abfd, ptr);
13408 if (MATCH (opcode, j_insn_32)
13409 /* J */
13410 || MATCH (opcode, bc_insn_32)
13411 /* BC1F, BC1T, BC2F, BC2T */
13412 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13413 /* JAL, JALX */
13414 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13415 /* BGEZ, BGTZ, BLEZ, BLTZ */
13416 || (MATCH (opcode, bzal_insn_32)
13417 /* BGEZAL, BLTZAL */
13418 && reg != OP32_SREG (opcode) && reg != RA)
13419 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13420 /* JALR, JALR.HB, BEQ, BNE */
13421 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13422 return TRUE;
13423
13424 return FALSE;
13425 }
13426
13427 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13428 IRELEND) at OFFSET indicate that there must be a compact branch there,
13429 then return TRUE, otherwise FALSE. */
13430
13431 static bfd_boolean
13432 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13433 const Elf_Internal_Rela *internal_relocs,
13434 const Elf_Internal_Rela *irelend)
13435 {
13436 const Elf_Internal_Rela *irel;
13437 unsigned long opcode;
13438
13439 opcode = bfd_get_micromips_32 (abfd, ptr);
13440 if (find_match (opcode, bzc_insns_32) < 0)
13441 return FALSE;
13442
13443 for (irel = internal_relocs; irel < irelend; irel++)
13444 if (irel->r_offset == offset
13445 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13446 return TRUE;
13447
13448 return FALSE;
13449 }
13450
13451 /* Bitsize checking. */
13452 #define IS_BITSIZE(val, N) \
13453 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13454 - (1ULL << ((N) - 1))) == (val))
13455
13456 \f
13457 bfd_boolean
13458 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13459 struct bfd_link_info *link_info,
13460 bfd_boolean *again)
13461 {
13462 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13463 Elf_Internal_Shdr *symtab_hdr;
13464 Elf_Internal_Rela *internal_relocs;
13465 Elf_Internal_Rela *irel, *irelend;
13466 bfd_byte *contents = NULL;
13467 Elf_Internal_Sym *isymbuf = NULL;
13468
13469 /* Assume nothing changes. */
13470 *again = FALSE;
13471
13472 /* We don't have to do anything for a relocatable link, if
13473 this section does not have relocs, or if this is not a
13474 code section. */
13475
13476 if (bfd_link_relocatable (link_info)
13477 || (sec->flags & SEC_RELOC) == 0
13478 || sec->reloc_count == 0
13479 || (sec->flags & SEC_CODE) == 0)
13480 return TRUE;
13481
13482 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13483
13484 /* Get a copy of the native relocations. */
13485 internal_relocs = (_bfd_elf_link_read_relocs
13486 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13487 link_info->keep_memory));
13488 if (internal_relocs == NULL)
13489 goto error_return;
13490
13491 /* Walk through them looking for relaxing opportunities. */
13492 irelend = internal_relocs + sec->reloc_count;
13493 for (irel = internal_relocs; irel < irelend; irel++)
13494 {
13495 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13496 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13497 bfd_boolean target_is_micromips_code_p;
13498 unsigned long opcode;
13499 bfd_vma symval;
13500 bfd_vma pcrval;
13501 bfd_byte *ptr;
13502 int fndopc;
13503
13504 /* The number of bytes to delete for relaxation and from where
13505 to delete these bytes starting at irel->r_offset. */
13506 int delcnt = 0;
13507 int deloff = 0;
13508
13509 /* If this isn't something that can be relaxed, then ignore
13510 this reloc. */
13511 if (r_type != R_MICROMIPS_HI16
13512 && r_type != R_MICROMIPS_PC16_S1
13513 && r_type != R_MICROMIPS_26_S1)
13514 continue;
13515
13516 /* Get the section contents if we haven't done so already. */
13517 if (contents == NULL)
13518 {
13519 /* Get cached copy if it exists. */
13520 if (elf_section_data (sec)->this_hdr.contents != NULL)
13521 contents = elf_section_data (sec)->this_hdr.contents;
13522 /* Go get them off disk. */
13523 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13524 goto error_return;
13525 }
13526 ptr = contents + irel->r_offset;
13527
13528 /* Read this BFD's local symbols if we haven't done so already. */
13529 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13530 {
13531 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13532 if (isymbuf == NULL)
13533 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13534 symtab_hdr->sh_info, 0,
13535 NULL, NULL, NULL);
13536 if (isymbuf == NULL)
13537 goto error_return;
13538 }
13539
13540 /* Get the value of the symbol referred to by the reloc. */
13541 if (r_symndx < symtab_hdr->sh_info)
13542 {
13543 /* A local symbol. */
13544 Elf_Internal_Sym *isym;
13545 asection *sym_sec;
13546
13547 isym = isymbuf + r_symndx;
13548 if (isym->st_shndx == SHN_UNDEF)
13549 sym_sec = bfd_und_section_ptr;
13550 else if (isym->st_shndx == SHN_ABS)
13551 sym_sec = bfd_abs_section_ptr;
13552 else if (isym->st_shndx == SHN_COMMON)
13553 sym_sec = bfd_com_section_ptr;
13554 else
13555 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13556 symval = (isym->st_value
13557 + sym_sec->output_section->vma
13558 + sym_sec->output_offset);
13559 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13560 }
13561 else
13562 {
13563 unsigned long indx;
13564 struct elf_link_hash_entry *h;
13565
13566 /* An external symbol. */
13567 indx = r_symndx - symtab_hdr->sh_info;
13568 h = elf_sym_hashes (abfd)[indx];
13569 BFD_ASSERT (h != NULL);
13570
13571 if (h->root.type != bfd_link_hash_defined
13572 && h->root.type != bfd_link_hash_defweak)
13573 /* This appears to be a reference to an undefined
13574 symbol. Just ignore it -- it will be caught by the
13575 regular reloc processing. */
13576 continue;
13577
13578 symval = (h->root.u.def.value
13579 + h->root.u.def.section->output_section->vma
13580 + h->root.u.def.section->output_offset);
13581 target_is_micromips_code_p = (!h->needs_plt
13582 && ELF_ST_IS_MICROMIPS (h->other));
13583 }
13584
13585
13586 /* For simplicity of coding, we are going to modify the
13587 section contents, the section relocs, and the BFD symbol
13588 table. We must tell the rest of the code not to free up this
13589 information. It would be possible to instead create a table
13590 of changes which have to be made, as is done in coff-mips.c;
13591 that would be more work, but would require less memory when
13592 the linker is run. */
13593
13594 /* Only 32-bit instructions relaxed. */
13595 if (irel->r_offset + 4 > sec->size)
13596 continue;
13597
13598 opcode = bfd_get_micromips_32 (abfd, ptr);
13599
13600 /* This is the pc-relative distance from the instruction the
13601 relocation is applied to, to the symbol referred. */
13602 pcrval = (symval
13603 - (sec->output_section->vma + sec->output_offset)
13604 - irel->r_offset);
13605
13606 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13607 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13608 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13609
13610 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13611
13612 where pcrval has first to be adjusted to apply against the LO16
13613 location (we make the adjustment later on, when we have figured
13614 out the offset). */
13615 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13616 {
13617 bfd_boolean bzc = FALSE;
13618 unsigned long nextopc;
13619 unsigned long reg;
13620 bfd_vma offset;
13621
13622 /* Give up if the previous reloc was a HI16 against this symbol
13623 too. */
13624 if (irel > internal_relocs
13625 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13626 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13627 continue;
13628
13629 /* Or if the next reloc is not a LO16 against this symbol. */
13630 if (irel + 1 >= irelend
13631 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13632 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13633 continue;
13634
13635 /* Or if the second next reloc is a LO16 against this symbol too. */
13636 if (irel + 2 >= irelend
13637 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13638 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13639 continue;
13640
13641 /* See if the LUI instruction *might* be in a branch delay slot.
13642 We check whether what looks like a 16-bit branch or jump is
13643 actually an immediate argument to a compact branch, and let
13644 it through if so. */
13645 if (irel->r_offset >= 2
13646 && check_br16_dslot (abfd, ptr - 2)
13647 && !(irel->r_offset >= 4
13648 && (bzc = check_relocated_bzc (abfd,
13649 ptr - 4, irel->r_offset - 4,
13650 internal_relocs, irelend))))
13651 continue;
13652 if (irel->r_offset >= 4
13653 && !bzc
13654 && check_br32_dslot (abfd, ptr - 4))
13655 continue;
13656
13657 reg = OP32_SREG (opcode);
13658
13659 /* We only relax adjacent instructions or ones separated with
13660 a branch or jump that has a delay slot. The branch or jump
13661 must not fiddle with the register used to hold the address.
13662 Subtract 4 for the LUI itself. */
13663 offset = irel[1].r_offset - irel[0].r_offset;
13664 switch (offset - 4)
13665 {
13666 case 0:
13667 break;
13668 case 2:
13669 if (check_br16 (abfd, ptr + 4, reg))
13670 break;
13671 continue;
13672 case 4:
13673 if (check_br32 (abfd, ptr + 4, reg))
13674 break;
13675 continue;
13676 default:
13677 continue;
13678 }
13679
13680 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
13681
13682 /* Give up unless the same register is used with both
13683 relocations. */
13684 if (OP32_SREG (nextopc) != reg)
13685 continue;
13686
13687 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13688 and rounding up to take masking of the two LSBs into account. */
13689 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13690
13691 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13692 if (IS_BITSIZE (symval, 16))
13693 {
13694 /* Fix the relocation's type. */
13695 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13696
13697 /* Instructions using R_MICROMIPS_LO16 have the base or
13698 source register in bits 20:16. This register becomes $0
13699 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
13700 nextopc &= ~0x001f0000;
13701 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13702 contents + irel[1].r_offset);
13703 }
13704
13705 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13706 We add 4 to take LUI deletion into account while checking
13707 the PC-relative distance. */
13708 else if (symval % 4 == 0
13709 && IS_BITSIZE (pcrval + 4, 25)
13710 && MATCH (nextopc, addiu_insn)
13711 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13712 && OP16_VALID_REG (OP32_TREG (nextopc)))
13713 {
13714 /* Fix the relocation's type. */
13715 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13716
13717 /* Replace ADDIU with the ADDIUPC version. */
13718 nextopc = (addiupc_insn.match
13719 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13720
13721 bfd_put_micromips_32 (abfd, nextopc,
13722 contents + irel[1].r_offset);
13723 }
13724
13725 /* Can't do anything, give up, sigh... */
13726 else
13727 continue;
13728
13729 /* Fix the relocation's type. */
13730 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13731
13732 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
13733 delcnt = 4;
13734 deloff = 0;
13735 }
13736
13737 /* Compact branch relaxation -- due to the multitude of macros
13738 employed by the compiler/assembler, compact branches are not
13739 always generated. Obviously, this can/will be fixed elsewhere,
13740 but there is no drawback in double checking it here. */
13741 else if (r_type == R_MICROMIPS_PC16_S1
13742 && irel->r_offset + 5 < sec->size
13743 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13744 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
13745 && ((!insn32
13746 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13747 nop_insn_16) ? 2 : 0))
13748 || (irel->r_offset + 7 < sec->size
13749 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13750 ptr + 4),
13751 nop_insn_32) ? 4 : 0))))
13752 {
13753 unsigned long reg;
13754
13755 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13756
13757 /* Replace BEQZ/BNEZ with the compact version. */
13758 opcode = (bzc_insns_32[fndopc].match
13759 | BZC32_REG_FIELD (reg)
13760 | (opcode & 0xffff)); /* Addend value. */
13761
13762 bfd_put_micromips_32 (abfd, opcode, ptr);
13763
13764 /* Delete the delay slot NOP: two or four bytes from
13765 irel->offset + 4; delcnt has already been set above. */
13766 deloff = 4;
13767 }
13768
13769 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
13770 to check the distance from the next instruction, so subtract 2. */
13771 else if (!insn32
13772 && r_type == R_MICROMIPS_PC16_S1
13773 && IS_BITSIZE (pcrval - 2, 11)
13774 && find_match (opcode, b_insns_32) >= 0)
13775 {
13776 /* Fix the relocation's type. */
13777 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13778
13779 /* Replace the 32-bit opcode with a 16-bit opcode. */
13780 bfd_put_16 (abfd,
13781 (b_insn_16.match
13782 | (opcode & 0x3ff)), /* Addend value. */
13783 ptr);
13784
13785 /* Delete 2 bytes from irel->r_offset + 2. */
13786 delcnt = 2;
13787 deloff = 2;
13788 }
13789
13790 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
13791 to check the distance from the next instruction, so subtract 2. */
13792 else if (!insn32
13793 && r_type == R_MICROMIPS_PC16_S1
13794 && IS_BITSIZE (pcrval - 2, 8)
13795 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13796 && OP16_VALID_REG (OP32_SREG (opcode)))
13797 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13798 && OP16_VALID_REG (OP32_TREG (opcode)))))
13799 {
13800 unsigned long reg;
13801
13802 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13803
13804 /* Fix the relocation's type. */
13805 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
13806
13807 /* Replace the 32-bit opcode with a 16-bit opcode. */
13808 bfd_put_16 (abfd,
13809 (bz_insns_16[fndopc].match
13810 | BZ16_REG_FIELD (reg)
13811 | (opcode & 0x7f)), /* Addend value. */
13812 ptr);
13813
13814 /* Delete 2 bytes from irel->r_offset + 2. */
13815 delcnt = 2;
13816 deloff = 2;
13817 }
13818
13819 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
13820 else if (!insn32
13821 && r_type == R_MICROMIPS_26_S1
13822 && target_is_micromips_code_p
13823 && irel->r_offset + 7 < sec->size
13824 && MATCH (opcode, jal_insn_32_bd32))
13825 {
13826 unsigned long n32opc;
13827 bfd_boolean relaxed = FALSE;
13828
13829 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
13830
13831 if (MATCH (n32opc, nop_insn_32))
13832 {
13833 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
13834 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
13835
13836 relaxed = TRUE;
13837 }
13838 else if (find_match (n32opc, move_insns_32) >= 0)
13839 {
13840 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
13841 bfd_put_16 (abfd,
13842 (move_insn_16.match
13843 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
13844 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
13845 ptr + 4);
13846
13847 relaxed = TRUE;
13848 }
13849 /* Other 32-bit instructions relaxable to 16-bit
13850 instructions will be handled here later. */
13851
13852 if (relaxed)
13853 {
13854 /* JAL with 32-bit delay slot that is changed to a JALS
13855 with 16-bit delay slot. */
13856 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
13857
13858 /* Delete 2 bytes from irel->r_offset + 6. */
13859 delcnt = 2;
13860 deloff = 6;
13861 }
13862 }
13863
13864 if (delcnt != 0)
13865 {
13866 /* Note that we've changed the relocs, section contents, etc. */
13867 elf_section_data (sec)->relocs = internal_relocs;
13868 elf_section_data (sec)->this_hdr.contents = contents;
13869 symtab_hdr->contents = (unsigned char *) isymbuf;
13870
13871 /* Delete bytes depending on the delcnt and deloff. */
13872 if (!mips_elf_relax_delete_bytes (abfd, sec,
13873 irel->r_offset + deloff, delcnt))
13874 goto error_return;
13875
13876 /* That will change things, so we should relax again.
13877 Note that this is not required, and it may be slow. */
13878 *again = TRUE;
13879 }
13880 }
13881
13882 if (isymbuf != NULL
13883 && symtab_hdr->contents != (unsigned char *) isymbuf)
13884 {
13885 if (! link_info->keep_memory)
13886 free (isymbuf);
13887 else
13888 {
13889 /* Cache the symbols for elf_link_input_bfd. */
13890 symtab_hdr->contents = (unsigned char *) isymbuf;
13891 }
13892 }
13893
13894 if (contents != NULL
13895 && elf_section_data (sec)->this_hdr.contents != contents)
13896 {
13897 if (! link_info->keep_memory)
13898 free (contents);
13899 else
13900 {
13901 /* Cache the section contents for elf_link_input_bfd. */
13902 elf_section_data (sec)->this_hdr.contents = contents;
13903 }
13904 }
13905
13906 if (internal_relocs != NULL
13907 && elf_section_data (sec)->relocs != internal_relocs)
13908 free (internal_relocs);
13909
13910 return TRUE;
13911
13912 error_return:
13913 if (isymbuf != NULL
13914 && symtab_hdr->contents != (unsigned char *) isymbuf)
13915 free (isymbuf);
13916 if (contents != NULL
13917 && elf_section_data (sec)->this_hdr.contents != contents)
13918 free (contents);
13919 if (internal_relocs != NULL
13920 && elf_section_data (sec)->relocs != internal_relocs)
13921 free (internal_relocs);
13922
13923 return FALSE;
13924 }
13925 \f
13926 /* Create a MIPS ELF linker hash table. */
13927
13928 struct bfd_link_hash_table *
13929 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
13930 {
13931 struct mips_elf_link_hash_table *ret;
13932 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
13933
13934 ret = bfd_zmalloc (amt);
13935 if (ret == NULL)
13936 return NULL;
13937
13938 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
13939 mips_elf_link_hash_newfunc,
13940 sizeof (struct mips_elf_link_hash_entry),
13941 MIPS_ELF_DATA))
13942 {
13943 free (ret);
13944 return NULL;
13945 }
13946 ret->root.init_plt_refcount.plist = NULL;
13947 ret->root.init_plt_offset.plist = NULL;
13948
13949 return &ret->root.root;
13950 }
13951
13952 /* Likewise, but indicate that the target is VxWorks. */
13953
13954 struct bfd_link_hash_table *
13955 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
13956 {
13957 struct bfd_link_hash_table *ret;
13958
13959 ret = _bfd_mips_elf_link_hash_table_create (abfd);
13960 if (ret)
13961 {
13962 struct mips_elf_link_hash_table *htab;
13963
13964 htab = (struct mips_elf_link_hash_table *) ret;
13965 htab->use_plts_and_copy_relocs = TRUE;
13966 htab->is_vxworks = TRUE;
13967 }
13968 return ret;
13969 }
13970
13971 /* A function that the linker calls if we are allowed to use PLTs
13972 and copy relocs. */
13973
13974 void
13975 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
13976 {
13977 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
13978 }
13979
13980 /* A function that the linker calls to select between all or only
13981 32-bit microMIPS instructions, and between making or ignoring
13982 branch relocation checks for invalid transitions between ISA modes. */
13983
13984 void
13985 _bfd_mips_elf_linker_flags (struct bfd_link_info *info, bfd_boolean insn32,
13986 bfd_boolean ignore_branch_isa)
13987 {
13988 mips_elf_hash_table (info)->insn32 = insn32;
13989 mips_elf_hash_table (info)->ignore_branch_isa = ignore_branch_isa;
13990 }
13991 \f
13992 /* Structure for saying that BFD machine EXTENSION extends BASE. */
13993
13994 struct mips_mach_extension
13995 {
13996 unsigned long extension, base;
13997 };
13998
13999
14000 /* An array describing how BFD machines relate to one another. The entries
14001 are ordered topologically with MIPS I extensions listed last. */
14002
14003 static const struct mips_mach_extension mips_mach_extensions[] =
14004 {
14005 /* MIPS64r2 extensions. */
14006 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
14007 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
14008 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
14009 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
14010 { bfd_mach_mips_gs264e, bfd_mach_mips_gs464e },
14011 { bfd_mach_mips_gs464e, bfd_mach_mips_gs464 },
14012 { bfd_mach_mips_gs464, bfd_mach_mipsisa64r2 },
14013
14014 /* MIPS64 extensions. */
14015 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
14016 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
14017 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
14018
14019 /* MIPS V extensions. */
14020 { bfd_mach_mipsisa64, bfd_mach_mips5 },
14021
14022 /* R10000 extensions. */
14023 { bfd_mach_mips12000, bfd_mach_mips10000 },
14024 { bfd_mach_mips14000, bfd_mach_mips10000 },
14025 { bfd_mach_mips16000, bfd_mach_mips10000 },
14026
14027 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14028 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14029 better to allow vr5400 and vr5500 code to be merged anyway, since
14030 many libraries will just use the core ISA. Perhaps we could add
14031 some sort of ASE flag if this ever proves a problem. */
14032 { bfd_mach_mips5500, bfd_mach_mips5400 },
14033 { bfd_mach_mips5400, bfd_mach_mips5000 },
14034
14035 /* MIPS IV extensions. */
14036 { bfd_mach_mips5, bfd_mach_mips8000 },
14037 { bfd_mach_mips10000, bfd_mach_mips8000 },
14038 { bfd_mach_mips5000, bfd_mach_mips8000 },
14039 { bfd_mach_mips7000, bfd_mach_mips8000 },
14040 { bfd_mach_mips9000, bfd_mach_mips8000 },
14041
14042 /* VR4100 extensions. */
14043 { bfd_mach_mips4120, bfd_mach_mips4100 },
14044 { bfd_mach_mips4111, bfd_mach_mips4100 },
14045
14046 /* MIPS III extensions. */
14047 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14048 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14049 { bfd_mach_mips8000, bfd_mach_mips4000 },
14050 { bfd_mach_mips4650, bfd_mach_mips4000 },
14051 { bfd_mach_mips4600, bfd_mach_mips4000 },
14052 { bfd_mach_mips4400, bfd_mach_mips4000 },
14053 { bfd_mach_mips4300, bfd_mach_mips4000 },
14054 { bfd_mach_mips4100, bfd_mach_mips4000 },
14055 { bfd_mach_mips5900, bfd_mach_mips4000 },
14056
14057 /* MIPS32r3 extensions. */
14058 { bfd_mach_mips_interaptiv_mr2, bfd_mach_mipsisa32r3 },
14059
14060 /* MIPS32r2 extensions. */
14061 { bfd_mach_mipsisa32r3, bfd_mach_mipsisa32r2 },
14062
14063 /* MIPS32 extensions. */
14064 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14065
14066 /* MIPS II extensions. */
14067 { bfd_mach_mips4000, bfd_mach_mips6000 },
14068 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14069 { bfd_mach_mips4010, bfd_mach_mips6000 },
14070
14071 /* MIPS I extensions. */
14072 { bfd_mach_mips6000, bfd_mach_mips3000 },
14073 { bfd_mach_mips3900, bfd_mach_mips3000 }
14074 };
14075
14076 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14077
14078 static bfd_boolean
14079 mips_mach_extends_p (unsigned long base, unsigned long extension)
14080 {
14081 size_t i;
14082
14083 if (extension == base)
14084 return TRUE;
14085
14086 if (base == bfd_mach_mipsisa32
14087 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14088 return TRUE;
14089
14090 if (base == bfd_mach_mipsisa32r2
14091 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14092 return TRUE;
14093
14094 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14095 if (extension == mips_mach_extensions[i].extension)
14096 {
14097 extension = mips_mach_extensions[i].base;
14098 if (extension == base)
14099 return TRUE;
14100 }
14101
14102 return FALSE;
14103 }
14104
14105 /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14106
14107 static unsigned long
14108 bfd_mips_isa_ext_mach (unsigned int isa_ext)
14109 {
14110 switch (isa_ext)
14111 {
14112 case AFL_EXT_3900: return bfd_mach_mips3900;
14113 case AFL_EXT_4010: return bfd_mach_mips4010;
14114 case AFL_EXT_4100: return bfd_mach_mips4100;
14115 case AFL_EXT_4111: return bfd_mach_mips4111;
14116 case AFL_EXT_4120: return bfd_mach_mips4120;
14117 case AFL_EXT_4650: return bfd_mach_mips4650;
14118 case AFL_EXT_5400: return bfd_mach_mips5400;
14119 case AFL_EXT_5500: return bfd_mach_mips5500;
14120 case AFL_EXT_5900: return bfd_mach_mips5900;
14121 case AFL_EXT_10000: return bfd_mach_mips10000;
14122 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14123 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14124 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
14125 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14126 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14127 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
14128 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14129 default: return bfd_mach_mips3000;
14130 }
14131 }
14132
14133 /* Return the .MIPS.abiflags value representing each ISA Extension. */
14134
14135 unsigned int
14136 bfd_mips_isa_ext (bfd *abfd)
14137 {
14138 switch (bfd_get_mach (abfd))
14139 {
14140 case bfd_mach_mips3900: return AFL_EXT_3900;
14141 case bfd_mach_mips4010: return AFL_EXT_4010;
14142 case bfd_mach_mips4100: return AFL_EXT_4100;
14143 case bfd_mach_mips4111: return AFL_EXT_4111;
14144 case bfd_mach_mips4120: return AFL_EXT_4120;
14145 case bfd_mach_mips4650: return AFL_EXT_4650;
14146 case bfd_mach_mips5400: return AFL_EXT_5400;
14147 case bfd_mach_mips5500: return AFL_EXT_5500;
14148 case bfd_mach_mips5900: return AFL_EXT_5900;
14149 case bfd_mach_mips10000: return AFL_EXT_10000;
14150 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14151 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14152 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14153 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14154 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14155 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14156 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14157 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
14158 case bfd_mach_mips_interaptiv_mr2:
14159 return AFL_EXT_INTERAPTIV_MR2;
14160 default: return 0;
14161 }
14162 }
14163
14164 /* Encode ISA level and revision as a single value. */
14165 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14166
14167 /* Decode a single value into level and revision. */
14168 #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14169 #define ISA_REV(LEVREV) ((LEVREV) & 0x7)
14170
14171 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14172
14173 static void
14174 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14175 {
14176 int new_isa = 0;
14177 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14178 {
14179 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14180 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14181 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14182 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14183 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14184 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14185 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14186 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14187 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14188 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14189 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
14190 default:
14191 _bfd_error_handler
14192 /* xgettext:c-format */
14193 (_("%pB: unknown architecture %s"),
14194 abfd, bfd_printable_name (abfd));
14195 }
14196
14197 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14198 {
14199 abiflags->isa_level = ISA_LEVEL (new_isa);
14200 abiflags->isa_rev = ISA_REV (new_isa);
14201 }
14202
14203 /* Update the isa_ext if ABFD describes a further extension. */
14204 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14205 bfd_get_mach (abfd)))
14206 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
14207 }
14208
14209 /* Return true if the given ELF header flags describe a 32-bit binary. */
14210
14211 static bfd_boolean
14212 mips_32bit_flags_p (flagword flags)
14213 {
14214 return ((flags & EF_MIPS_32BITMODE) != 0
14215 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14216 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14217 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14218 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14219 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14220 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14221 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14222 }
14223
14224 /* Infer the content of the ABI flags based on the elf header. */
14225
14226 static void
14227 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14228 {
14229 obj_attribute *in_attr;
14230
14231 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14232 update_mips_abiflags_isa (abfd, abiflags);
14233
14234 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14235 abiflags->gpr_size = AFL_REG_32;
14236 else
14237 abiflags->gpr_size = AFL_REG_64;
14238
14239 abiflags->cpr1_size = AFL_REG_NONE;
14240
14241 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14242 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14243
14244 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14245 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14246 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14247 && abiflags->gpr_size == AFL_REG_32))
14248 abiflags->cpr1_size = AFL_REG_32;
14249 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14250 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14251 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14252 abiflags->cpr1_size = AFL_REG_64;
14253
14254 abiflags->cpr2_size = AFL_REG_NONE;
14255
14256 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14257 abiflags->ases |= AFL_ASE_MDMX;
14258 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14259 abiflags->ases |= AFL_ASE_MIPS16;
14260 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14261 abiflags->ases |= AFL_ASE_MICROMIPS;
14262
14263 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14264 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14265 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14266 && abiflags->isa_level >= 32
14267 && abiflags->ases != AFL_ASE_LOONGSON_EXT)
14268 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14269 }
14270
14271 /* We need to use a special link routine to handle the .reginfo and
14272 the .mdebug sections. We need to merge all instances of these
14273 sections together, not write them all out sequentially. */
14274
14275 bfd_boolean
14276 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14277 {
14278 asection *o;
14279 struct bfd_link_order *p;
14280 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14281 asection *rtproc_sec, *abiflags_sec;
14282 Elf32_RegInfo reginfo;
14283 struct ecoff_debug_info debug;
14284 struct mips_htab_traverse_info hti;
14285 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14286 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14287 HDRR *symhdr = &debug.symbolic_header;
14288 void *mdebug_handle = NULL;
14289 asection *s;
14290 EXTR esym;
14291 unsigned int i;
14292 bfd_size_type amt;
14293 struct mips_elf_link_hash_table *htab;
14294
14295 static const char * const secname[] =
14296 {
14297 ".text", ".init", ".fini", ".data",
14298 ".rodata", ".sdata", ".sbss", ".bss"
14299 };
14300 static const int sc[] =
14301 {
14302 scText, scInit, scFini, scData,
14303 scRData, scSData, scSBss, scBss
14304 };
14305
14306 htab = mips_elf_hash_table (info);
14307 BFD_ASSERT (htab != NULL);
14308
14309 /* Sort the dynamic symbols so that those with GOT entries come after
14310 those without. */
14311 if (!mips_elf_sort_hash_table (abfd, info))
14312 return FALSE;
14313
14314 /* Create any scheduled LA25 stubs. */
14315 hti.info = info;
14316 hti.output_bfd = abfd;
14317 hti.error = FALSE;
14318 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14319 if (hti.error)
14320 return FALSE;
14321
14322 /* Get a value for the GP register. */
14323 if (elf_gp (abfd) == 0)
14324 {
14325 struct bfd_link_hash_entry *h;
14326
14327 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
14328 if (h != NULL && h->type == bfd_link_hash_defined)
14329 elf_gp (abfd) = (h->u.def.value
14330 + h->u.def.section->output_section->vma
14331 + h->u.def.section->output_offset);
14332 else if (htab->is_vxworks
14333 && (h = bfd_link_hash_lookup (info->hash,
14334 "_GLOBAL_OFFSET_TABLE_",
14335 FALSE, FALSE, TRUE))
14336 && h->type == bfd_link_hash_defined)
14337 elf_gp (abfd) = (h->u.def.section->output_section->vma
14338 + h->u.def.section->output_offset
14339 + h->u.def.value);
14340 else if (bfd_link_relocatable (info))
14341 {
14342 bfd_vma lo = MINUS_ONE;
14343
14344 /* Find the GP-relative section with the lowest offset. */
14345 for (o = abfd->sections; o != NULL; o = o->next)
14346 if (o->vma < lo
14347 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14348 lo = o->vma;
14349
14350 /* And calculate GP relative to that. */
14351 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14352 }
14353 else
14354 {
14355 /* If the relocate_section function needs to do a reloc
14356 involving the GP value, it should make a reloc_dangerous
14357 callback to warn that GP is not defined. */
14358 }
14359 }
14360
14361 /* Go through the sections and collect the .reginfo and .mdebug
14362 information. */
14363 abiflags_sec = NULL;
14364 reginfo_sec = NULL;
14365 mdebug_sec = NULL;
14366 gptab_data_sec = NULL;
14367 gptab_bss_sec = NULL;
14368 for (o = abfd->sections; o != NULL; o = o->next)
14369 {
14370 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14371 {
14372 /* We have found the .MIPS.abiflags section in the output file.
14373 Look through all the link_orders comprising it and remove them.
14374 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14375 for (p = o->map_head.link_order; p != NULL; p = p->next)
14376 {
14377 asection *input_section;
14378
14379 if (p->type != bfd_indirect_link_order)
14380 {
14381 if (p->type == bfd_data_link_order)
14382 continue;
14383 abort ();
14384 }
14385
14386 input_section = p->u.indirect.section;
14387
14388 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14389 elf_link_input_bfd ignores this section. */
14390 input_section->flags &= ~SEC_HAS_CONTENTS;
14391 }
14392
14393 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14394 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14395
14396 /* Skip this section later on (I don't think this currently
14397 matters, but someday it might). */
14398 o->map_head.link_order = NULL;
14399
14400 abiflags_sec = o;
14401 }
14402
14403 if (strcmp (o->name, ".reginfo") == 0)
14404 {
14405 memset (&reginfo, 0, sizeof reginfo);
14406
14407 /* We have found the .reginfo section in the output file.
14408 Look through all the link_orders comprising it and merge
14409 the information together. */
14410 for (p = o->map_head.link_order; p != NULL; p = p->next)
14411 {
14412 asection *input_section;
14413 bfd *input_bfd;
14414 Elf32_External_RegInfo ext;
14415 Elf32_RegInfo sub;
14416 bfd_size_type sz;
14417
14418 if (p->type != bfd_indirect_link_order)
14419 {
14420 if (p->type == bfd_data_link_order)
14421 continue;
14422 abort ();
14423 }
14424
14425 input_section = p->u.indirect.section;
14426 input_bfd = input_section->owner;
14427
14428 sz = (input_section->size < sizeof (ext)
14429 ? input_section->size : sizeof (ext));
14430 memset (&ext, 0, sizeof (ext));
14431 if (! bfd_get_section_contents (input_bfd, input_section,
14432 &ext, 0, sz))
14433 return FALSE;
14434
14435 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14436
14437 reginfo.ri_gprmask |= sub.ri_gprmask;
14438 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14439 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14440 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14441 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14442
14443 /* ri_gp_value is set by the function
14444 `_bfd_mips_elf_section_processing' when the section is
14445 finally written out. */
14446
14447 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14448 elf_link_input_bfd ignores this section. */
14449 input_section->flags &= ~SEC_HAS_CONTENTS;
14450 }
14451
14452 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14453 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14454
14455 /* Skip this section later on (I don't think this currently
14456 matters, but someday it might). */
14457 o->map_head.link_order = NULL;
14458
14459 reginfo_sec = o;
14460 }
14461
14462 if (strcmp (o->name, ".mdebug") == 0)
14463 {
14464 struct extsym_info einfo;
14465 bfd_vma last;
14466
14467 /* We have found the .mdebug section in the output file.
14468 Look through all the link_orders comprising it and merge
14469 the information together. */
14470 symhdr->magic = swap->sym_magic;
14471 /* FIXME: What should the version stamp be? */
14472 symhdr->vstamp = 0;
14473 symhdr->ilineMax = 0;
14474 symhdr->cbLine = 0;
14475 symhdr->idnMax = 0;
14476 symhdr->ipdMax = 0;
14477 symhdr->isymMax = 0;
14478 symhdr->ioptMax = 0;
14479 symhdr->iauxMax = 0;
14480 symhdr->issMax = 0;
14481 symhdr->issExtMax = 0;
14482 symhdr->ifdMax = 0;
14483 symhdr->crfd = 0;
14484 symhdr->iextMax = 0;
14485
14486 /* We accumulate the debugging information itself in the
14487 debug_info structure. */
14488 debug.line = NULL;
14489 debug.external_dnr = NULL;
14490 debug.external_pdr = NULL;
14491 debug.external_sym = NULL;
14492 debug.external_opt = NULL;
14493 debug.external_aux = NULL;
14494 debug.ss = NULL;
14495 debug.ssext = debug.ssext_end = NULL;
14496 debug.external_fdr = NULL;
14497 debug.external_rfd = NULL;
14498 debug.external_ext = debug.external_ext_end = NULL;
14499
14500 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14501 if (mdebug_handle == NULL)
14502 return FALSE;
14503
14504 esym.jmptbl = 0;
14505 esym.cobol_main = 0;
14506 esym.weakext = 0;
14507 esym.reserved = 0;
14508 esym.ifd = ifdNil;
14509 esym.asym.iss = issNil;
14510 esym.asym.st = stLocal;
14511 esym.asym.reserved = 0;
14512 esym.asym.index = indexNil;
14513 last = 0;
14514 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14515 {
14516 esym.asym.sc = sc[i];
14517 s = bfd_get_section_by_name (abfd, secname[i]);
14518 if (s != NULL)
14519 {
14520 esym.asym.value = s->vma;
14521 last = s->vma + s->size;
14522 }
14523 else
14524 esym.asym.value = last;
14525 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14526 secname[i], &esym))
14527 return FALSE;
14528 }
14529
14530 for (p = o->map_head.link_order; p != NULL; p = p->next)
14531 {
14532 asection *input_section;
14533 bfd *input_bfd;
14534 const struct ecoff_debug_swap *input_swap;
14535 struct ecoff_debug_info input_debug;
14536 char *eraw_src;
14537 char *eraw_end;
14538
14539 if (p->type != bfd_indirect_link_order)
14540 {
14541 if (p->type == bfd_data_link_order)
14542 continue;
14543 abort ();
14544 }
14545
14546 input_section = p->u.indirect.section;
14547 input_bfd = input_section->owner;
14548
14549 if (!is_mips_elf (input_bfd))
14550 {
14551 /* I don't know what a non MIPS ELF bfd would be
14552 doing with a .mdebug section, but I don't really
14553 want to deal with it. */
14554 continue;
14555 }
14556
14557 input_swap = (get_elf_backend_data (input_bfd)
14558 ->elf_backend_ecoff_debug_swap);
14559
14560 BFD_ASSERT (p->size == input_section->size);
14561
14562 /* The ECOFF linking code expects that we have already
14563 read in the debugging information and set up an
14564 ecoff_debug_info structure, so we do that now. */
14565 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14566 &input_debug))
14567 return FALSE;
14568
14569 if (! (bfd_ecoff_debug_accumulate
14570 (mdebug_handle, abfd, &debug, swap, input_bfd,
14571 &input_debug, input_swap, info)))
14572 return FALSE;
14573
14574 /* Loop through the external symbols. For each one with
14575 interesting information, try to find the symbol in
14576 the linker global hash table and save the information
14577 for the output external symbols. */
14578 eraw_src = input_debug.external_ext;
14579 eraw_end = (eraw_src
14580 + (input_debug.symbolic_header.iextMax
14581 * input_swap->external_ext_size));
14582 for (;
14583 eraw_src < eraw_end;
14584 eraw_src += input_swap->external_ext_size)
14585 {
14586 EXTR ext;
14587 const char *name;
14588 struct mips_elf_link_hash_entry *h;
14589
14590 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
14591 if (ext.asym.sc == scNil
14592 || ext.asym.sc == scUndefined
14593 || ext.asym.sc == scSUndefined)
14594 continue;
14595
14596 name = input_debug.ssext + ext.asym.iss;
14597 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
14598 name, FALSE, FALSE, TRUE);
14599 if (h == NULL || h->esym.ifd != -2)
14600 continue;
14601
14602 if (ext.ifd != -1)
14603 {
14604 BFD_ASSERT (ext.ifd
14605 < input_debug.symbolic_header.ifdMax);
14606 ext.ifd = input_debug.ifdmap[ext.ifd];
14607 }
14608
14609 h->esym = ext;
14610 }
14611
14612 /* Free up the information we just read. */
14613 free (input_debug.line);
14614 free (input_debug.external_dnr);
14615 free (input_debug.external_pdr);
14616 free (input_debug.external_sym);
14617 free (input_debug.external_opt);
14618 free (input_debug.external_aux);
14619 free (input_debug.ss);
14620 free (input_debug.ssext);
14621 free (input_debug.external_fdr);
14622 free (input_debug.external_rfd);
14623 free (input_debug.external_ext);
14624
14625 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14626 elf_link_input_bfd ignores this section. */
14627 input_section->flags &= ~SEC_HAS_CONTENTS;
14628 }
14629
14630 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
14631 {
14632 /* Create .rtproc section. */
14633 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
14634 if (rtproc_sec == NULL)
14635 {
14636 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14637 | SEC_LINKER_CREATED | SEC_READONLY);
14638
14639 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14640 ".rtproc",
14641 flags);
14642 if (rtproc_sec == NULL
14643 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
14644 return FALSE;
14645 }
14646
14647 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14648 info, rtproc_sec,
14649 &debug))
14650 return FALSE;
14651 }
14652
14653 /* Build the external symbol information. */
14654 einfo.abfd = abfd;
14655 einfo.info = info;
14656 einfo.debug = &debug;
14657 einfo.swap = swap;
14658 einfo.failed = FALSE;
14659 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
14660 mips_elf_output_extsym, &einfo);
14661 if (einfo.failed)
14662 return FALSE;
14663
14664 /* Set the size of the .mdebug section. */
14665 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
14666
14667 /* Skip this section later on (I don't think this currently
14668 matters, but someday it might). */
14669 o->map_head.link_order = NULL;
14670
14671 mdebug_sec = o;
14672 }
14673
14674 if (CONST_STRNEQ (o->name, ".gptab."))
14675 {
14676 const char *subname;
14677 unsigned int c;
14678 Elf32_gptab *tab;
14679 Elf32_External_gptab *ext_tab;
14680 unsigned int j;
14681
14682 /* The .gptab.sdata and .gptab.sbss sections hold
14683 information describing how the small data area would
14684 change depending upon the -G switch. These sections
14685 not used in executables files. */
14686 if (! bfd_link_relocatable (info))
14687 {
14688 for (p = o->map_head.link_order; p != NULL; p = p->next)
14689 {
14690 asection *input_section;
14691
14692 if (p->type != bfd_indirect_link_order)
14693 {
14694 if (p->type == bfd_data_link_order)
14695 continue;
14696 abort ();
14697 }
14698
14699 input_section = p->u.indirect.section;
14700
14701 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14702 elf_link_input_bfd ignores this section. */
14703 input_section->flags &= ~SEC_HAS_CONTENTS;
14704 }
14705
14706 /* Skip this section later on (I don't think this
14707 currently matters, but someday it might). */
14708 o->map_head.link_order = NULL;
14709
14710 /* Really remove the section. */
14711 bfd_section_list_remove (abfd, o);
14712 --abfd->section_count;
14713
14714 continue;
14715 }
14716
14717 /* There is one gptab for initialized data, and one for
14718 uninitialized data. */
14719 if (strcmp (o->name, ".gptab.sdata") == 0)
14720 gptab_data_sec = o;
14721 else if (strcmp (o->name, ".gptab.sbss") == 0)
14722 gptab_bss_sec = o;
14723 else
14724 {
14725 _bfd_error_handler
14726 /* xgettext:c-format */
14727 (_("%pB: illegal section name `%pA'"), abfd, o);
14728 bfd_set_error (bfd_error_nonrepresentable_section);
14729 return FALSE;
14730 }
14731
14732 /* The linker script always combines .gptab.data and
14733 .gptab.sdata into .gptab.sdata, and likewise for
14734 .gptab.bss and .gptab.sbss. It is possible that there is
14735 no .sdata or .sbss section in the output file, in which
14736 case we must change the name of the output section. */
14737 subname = o->name + sizeof ".gptab" - 1;
14738 if (bfd_get_section_by_name (abfd, subname) == NULL)
14739 {
14740 if (o == gptab_data_sec)
14741 o->name = ".gptab.data";
14742 else
14743 o->name = ".gptab.bss";
14744 subname = o->name + sizeof ".gptab" - 1;
14745 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14746 }
14747
14748 /* Set up the first entry. */
14749 c = 1;
14750 amt = c * sizeof (Elf32_gptab);
14751 tab = bfd_malloc (amt);
14752 if (tab == NULL)
14753 return FALSE;
14754 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14755 tab[0].gt_header.gt_unused = 0;
14756
14757 /* Combine the input sections. */
14758 for (p = o->map_head.link_order; p != NULL; p = p->next)
14759 {
14760 asection *input_section;
14761 bfd *input_bfd;
14762 bfd_size_type size;
14763 unsigned long last;
14764 bfd_size_type gpentry;
14765
14766 if (p->type != bfd_indirect_link_order)
14767 {
14768 if (p->type == bfd_data_link_order)
14769 continue;
14770 abort ();
14771 }
14772
14773 input_section = p->u.indirect.section;
14774 input_bfd = input_section->owner;
14775
14776 /* Combine the gptab entries for this input section one
14777 by one. We know that the input gptab entries are
14778 sorted by ascending -G value. */
14779 size = input_section->size;
14780 last = 0;
14781 for (gpentry = sizeof (Elf32_External_gptab);
14782 gpentry < size;
14783 gpentry += sizeof (Elf32_External_gptab))
14784 {
14785 Elf32_External_gptab ext_gptab;
14786 Elf32_gptab int_gptab;
14787 unsigned long val;
14788 unsigned long add;
14789 bfd_boolean exact;
14790 unsigned int look;
14791
14792 if (! (bfd_get_section_contents
14793 (input_bfd, input_section, &ext_gptab, gpentry,
14794 sizeof (Elf32_External_gptab))))
14795 {
14796 free (tab);
14797 return FALSE;
14798 }
14799
14800 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
14801 &int_gptab);
14802 val = int_gptab.gt_entry.gt_g_value;
14803 add = int_gptab.gt_entry.gt_bytes - last;
14804
14805 exact = FALSE;
14806 for (look = 1; look < c; look++)
14807 {
14808 if (tab[look].gt_entry.gt_g_value >= val)
14809 tab[look].gt_entry.gt_bytes += add;
14810
14811 if (tab[look].gt_entry.gt_g_value == val)
14812 exact = TRUE;
14813 }
14814
14815 if (! exact)
14816 {
14817 Elf32_gptab *new_tab;
14818 unsigned int max;
14819
14820 /* We need a new table entry. */
14821 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
14822 new_tab = bfd_realloc (tab, amt);
14823 if (new_tab == NULL)
14824 {
14825 free (tab);
14826 return FALSE;
14827 }
14828 tab = new_tab;
14829 tab[c].gt_entry.gt_g_value = val;
14830 tab[c].gt_entry.gt_bytes = add;
14831
14832 /* Merge in the size for the next smallest -G
14833 value, since that will be implied by this new
14834 value. */
14835 max = 0;
14836 for (look = 1; look < c; look++)
14837 {
14838 if (tab[look].gt_entry.gt_g_value < val
14839 && (max == 0
14840 || (tab[look].gt_entry.gt_g_value
14841 > tab[max].gt_entry.gt_g_value)))
14842 max = look;
14843 }
14844 if (max != 0)
14845 tab[c].gt_entry.gt_bytes +=
14846 tab[max].gt_entry.gt_bytes;
14847
14848 ++c;
14849 }
14850
14851 last = int_gptab.gt_entry.gt_bytes;
14852 }
14853
14854 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14855 elf_link_input_bfd ignores this section. */
14856 input_section->flags &= ~SEC_HAS_CONTENTS;
14857 }
14858
14859 /* The table must be sorted by -G value. */
14860 if (c > 2)
14861 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
14862
14863 /* Swap out the table. */
14864 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
14865 ext_tab = bfd_alloc (abfd, amt);
14866 if (ext_tab == NULL)
14867 {
14868 free (tab);
14869 return FALSE;
14870 }
14871
14872 for (j = 0; j < c; j++)
14873 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
14874 free (tab);
14875
14876 o->size = c * sizeof (Elf32_External_gptab);
14877 o->contents = (bfd_byte *) ext_tab;
14878
14879 /* Skip this section later on (I don't think this currently
14880 matters, but someday it might). */
14881 o->map_head.link_order = NULL;
14882 }
14883 }
14884
14885 /* Invoke the regular ELF backend linker to do all the work. */
14886 if (!bfd_elf_final_link (abfd, info))
14887 return FALSE;
14888
14889 /* Now write out the computed sections. */
14890
14891 if (abiflags_sec != NULL)
14892 {
14893 Elf_External_ABIFlags_v0 ext;
14894 Elf_Internal_ABIFlags_v0 *abiflags;
14895
14896 abiflags = &mips_elf_tdata (abfd)->abiflags;
14897
14898 /* Set up the abiflags if no valid input sections were found. */
14899 if (!mips_elf_tdata (abfd)->abiflags_valid)
14900 {
14901 infer_mips_abiflags (abfd, abiflags);
14902 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
14903 }
14904 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
14905 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
14906 return FALSE;
14907 }
14908
14909 if (reginfo_sec != NULL)
14910 {
14911 Elf32_External_RegInfo ext;
14912
14913 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
14914 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
14915 return FALSE;
14916 }
14917
14918 if (mdebug_sec != NULL)
14919 {
14920 BFD_ASSERT (abfd->output_has_begun);
14921 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
14922 swap, info,
14923 mdebug_sec->filepos))
14924 return FALSE;
14925
14926 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
14927 }
14928
14929 if (gptab_data_sec != NULL)
14930 {
14931 if (! bfd_set_section_contents (abfd, gptab_data_sec,
14932 gptab_data_sec->contents,
14933 0, gptab_data_sec->size))
14934 return FALSE;
14935 }
14936
14937 if (gptab_bss_sec != NULL)
14938 {
14939 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
14940 gptab_bss_sec->contents,
14941 0, gptab_bss_sec->size))
14942 return FALSE;
14943 }
14944
14945 if (SGI_COMPAT (abfd))
14946 {
14947 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
14948 if (rtproc_sec != NULL)
14949 {
14950 if (! bfd_set_section_contents (abfd, rtproc_sec,
14951 rtproc_sec->contents,
14952 0, rtproc_sec->size))
14953 return FALSE;
14954 }
14955 }
14956
14957 return TRUE;
14958 }
14959 \f
14960 /* Merge object file header flags from IBFD into OBFD. Raise an error
14961 if there are conflicting settings. */
14962
14963 static bfd_boolean
14964 mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info)
14965 {
14966 bfd *obfd = info->output_bfd;
14967 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
14968 flagword old_flags;
14969 flagword new_flags;
14970 bfd_boolean ok;
14971
14972 new_flags = elf_elfheader (ibfd)->e_flags;
14973 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
14974 old_flags = elf_elfheader (obfd)->e_flags;
14975
14976 /* Check flag compatibility. */
14977
14978 new_flags &= ~EF_MIPS_NOREORDER;
14979 old_flags &= ~EF_MIPS_NOREORDER;
14980
14981 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
14982 doesn't seem to matter. */
14983 new_flags &= ~EF_MIPS_XGOT;
14984 old_flags &= ~EF_MIPS_XGOT;
14985
14986 /* MIPSpro generates ucode info in n64 objects. Again, we should
14987 just be able to ignore this. */
14988 new_flags &= ~EF_MIPS_UCODE;
14989 old_flags &= ~EF_MIPS_UCODE;
14990
14991 /* DSOs should only be linked with CPIC code. */
14992 if ((ibfd->flags & DYNAMIC) != 0)
14993 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
14994
14995 if (new_flags == old_flags)
14996 return TRUE;
14997
14998 ok = TRUE;
14999
15000 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
15001 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
15002 {
15003 _bfd_error_handler
15004 (_("%pB: warning: linking abicalls files with non-abicalls files"),
15005 ibfd);
15006 ok = TRUE;
15007 }
15008
15009 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
15010 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
15011 if (! (new_flags & EF_MIPS_PIC))
15012 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
15013
15014 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15015 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15016
15017 /* Compare the ISAs. */
15018 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
15019 {
15020 _bfd_error_handler
15021 (_("%pB: linking 32-bit code with 64-bit code"),
15022 ibfd);
15023 ok = FALSE;
15024 }
15025 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15026 {
15027 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15028 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
15029 {
15030 /* Copy the architecture info from IBFD to OBFD. Also copy
15031 the 32-bit flag (if set) so that we continue to recognise
15032 OBFD as a 32-bit binary. */
15033 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15034 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15035 elf_elfheader (obfd)->e_flags
15036 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15037
15038 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15039 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15040
15041 /* Copy across the ABI flags if OBFD doesn't use them
15042 and if that was what caused us to treat IBFD as 32-bit. */
15043 if ((old_flags & EF_MIPS_ABI) == 0
15044 && mips_32bit_flags_p (new_flags)
15045 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15046 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15047 }
15048 else
15049 {
15050 /* The ISAs aren't compatible. */
15051 _bfd_error_handler
15052 /* xgettext:c-format */
15053 (_("%pB: linking %s module with previous %s modules"),
15054 ibfd,
15055 bfd_printable_name (ibfd),
15056 bfd_printable_name (obfd));
15057 ok = FALSE;
15058 }
15059 }
15060
15061 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15062 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15063
15064 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15065 does set EI_CLASS differently from any 32-bit ABI. */
15066 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15067 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15068 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15069 {
15070 /* Only error if both are set (to different values). */
15071 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15072 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15073 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15074 {
15075 _bfd_error_handler
15076 /* xgettext:c-format */
15077 (_("%pB: ABI mismatch: linking %s module with previous %s modules"),
15078 ibfd,
15079 elf_mips_abi_name (ibfd),
15080 elf_mips_abi_name (obfd));
15081 ok = FALSE;
15082 }
15083 new_flags &= ~EF_MIPS_ABI;
15084 old_flags &= ~EF_MIPS_ABI;
15085 }
15086
15087 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15088 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15089 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15090 {
15091 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15092 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15093 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15094 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15095 int micro_mis = old_m16 && new_micro;
15096 int m16_mis = old_micro && new_m16;
15097
15098 if (m16_mis || micro_mis)
15099 {
15100 _bfd_error_handler
15101 /* xgettext:c-format */
15102 (_("%pB: ASE mismatch: linking %s module with previous %s modules"),
15103 ibfd,
15104 m16_mis ? "MIPS16" : "microMIPS",
15105 m16_mis ? "microMIPS" : "MIPS16");
15106 ok = FALSE;
15107 }
15108
15109 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15110
15111 new_flags &= ~ EF_MIPS_ARCH_ASE;
15112 old_flags &= ~ EF_MIPS_ARCH_ASE;
15113 }
15114
15115 /* Compare NaN encodings. */
15116 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15117 {
15118 /* xgettext:c-format */
15119 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15120 ibfd,
15121 (new_flags & EF_MIPS_NAN2008
15122 ? "-mnan=2008" : "-mnan=legacy"),
15123 (old_flags & EF_MIPS_NAN2008
15124 ? "-mnan=2008" : "-mnan=legacy"));
15125 ok = FALSE;
15126 new_flags &= ~EF_MIPS_NAN2008;
15127 old_flags &= ~EF_MIPS_NAN2008;
15128 }
15129
15130 /* Compare FP64 state. */
15131 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15132 {
15133 /* xgettext:c-format */
15134 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15135 ibfd,
15136 (new_flags & EF_MIPS_FP64
15137 ? "-mfp64" : "-mfp32"),
15138 (old_flags & EF_MIPS_FP64
15139 ? "-mfp64" : "-mfp32"));
15140 ok = FALSE;
15141 new_flags &= ~EF_MIPS_FP64;
15142 old_flags &= ~EF_MIPS_FP64;
15143 }
15144
15145 /* Warn about any other mismatches */
15146 if (new_flags != old_flags)
15147 {
15148 /* xgettext:c-format */
15149 _bfd_error_handler
15150 (_("%pB: uses different e_flags (%#x) fields than previous modules "
15151 "(%#x)"),
15152 ibfd, new_flags, old_flags);
15153 ok = FALSE;
15154 }
15155
15156 return ok;
15157 }
15158
15159 /* Merge object attributes from IBFD into OBFD. Raise an error if
15160 there are conflicting attributes. */
15161 static bfd_boolean
15162 mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
15163 {
15164 bfd *obfd = info->output_bfd;
15165 obj_attribute *in_attr;
15166 obj_attribute *out_attr;
15167 bfd *abi_fp_bfd;
15168 bfd *abi_msa_bfd;
15169
15170 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15171 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15172 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
15173 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15174
15175 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15176 if (!abi_msa_bfd
15177 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15178 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15179
15180 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15181 {
15182 /* This is the first object. Copy the attributes. */
15183 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15184
15185 /* Use the Tag_null value to indicate the attributes have been
15186 initialized. */
15187 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15188
15189 return TRUE;
15190 }
15191
15192 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15193 non-conflicting ones. */
15194 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15195 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15196 {
15197 int out_fp, in_fp;
15198
15199 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15200 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15201 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15202 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15203 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
15204 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15205 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15206 || in_fp == Val_GNU_MIPS_ABI_FP_64
15207 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15208 {
15209 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15210 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15211 }
15212 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15213 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15214 || out_fp == Val_GNU_MIPS_ABI_FP_64
15215 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15216 /* Keep the current setting. */;
15217 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15218 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15219 {
15220 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15221 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15222 }
15223 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15224 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15225 /* Keep the current setting. */;
15226 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15227 {
15228 const char *out_string, *in_string;
15229
15230 out_string = _bfd_mips_fp_abi_string (out_fp);
15231 in_string = _bfd_mips_fp_abi_string (in_fp);
15232 /* First warn about cases involving unrecognised ABIs. */
15233 if (!out_string && !in_string)
15234 /* xgettext:c-format */
15235 _bfd_error_handler
15236 (_("warning: %pB uses unknown floating point ABI %d "
15237 "(set by %pB), %pB uses unknown floating point ABI %d"),
15238 obfd, out_fp, abi_fp_bfd, ibfd, in_fp);
15239 else if (!out_string)
15240 _bfd_error_handler
15241 /* xgettext:c-format */
15242 (_("warning: %pB uses unknown floating point ABI %d "
15243 "(set by %pB), %pB uses %s"),
15244 obfd, out_fp, abi_fp_bfd, ibfd, in_string);
15245 else if (!in_string)
15246 _bfd_error_handler
15247 /* xgettext:c-format */
15248 (_("warning: %pB uses %s (set by %pB), "
15249 "%pB uses unknown floating point ABI %d"),
15250 obfd, out_string, abi_fp_bfd, ibfd, in_fp);
15251 else
15252 {
15253 /* If one of the bfds is soft-float, the other must be
15254 hard-float. The exact choice of hard-float ABI isn't
15255 really relevant to the error message. */
15256 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15257 out_string = "-mhard-float";
15258 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15259 in_string = "-mhard-float";
15260 _bfd_error_handler
15261 /* xgettext:c-format */
15262 (_("warning: %pB uses %s (set by %pB), %pB uses %s"),
15263 obfd, out_string, abi_fp_bfd, ibfd, in_string);
15264 }
15265 }
15266 }
15267
15268 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15269 non-conflicting ones. */
15270 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15271 {
15272 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15273 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15274 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15275 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15276 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15277 {
15278 case Val_GNU_MIPS_ABI_MSA_128:
15279 _bfd_error_handler
15280 /* xgettext:c-format */
15281 (_("warning: %pB uses %s (set by %pB), "
15282 "%pB uses unknown MSA ABI %d"),
15283 obfd, "-mmsa", abi_msa_bfd,
15284 ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15285 break;
15286
15287 default:
15288 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15289 {
15290 case Val_GNU_MIPS_ABI_MSA_128:
15291 _bfd_error_handler
15292 /* xgettext:c-format */
15293 (_("warning: %pB uses unknown MSA ABI %d "
15294 "(set by %pB), %pB uses %s"),
15295 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15296 abi_msa_bfd, ibfd, "-mmsa");
15297 break;
15298
15299 default:
15300 _bfd_error_handler
15301 /* xgettext:c-format */
15302 (_("warning: %pB uses unknown MSA ABI %d "
15303 "(set by %pB), %pB uses unknown MSA ABI %d"),
15304 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15305 abi_msa_bfd, ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15306 break;
15307 }
15308 }
15309 }
15310
15311 /* Merge Tag_compatibility attributes and any common GNU ones. */
15312 return _bfd_elf_merge_object_attributes (ibfd, info);
15313 }
15314
15315 /* Merge object ABI flags from IBFD into OBFD. Raise an error if
15316 there are conflicting settings. */
15317
15318 static bfd_boolean
15319 mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15320 {
15321 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15322 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15323 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15324
15325 /* Update the output abiflags fp_abi using the computed fp_abi. */
15326 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15327
15328 #define max(a, b) ((a) > (b) ? (a) : (b))
15329 /* Merge abiflags. */
15330 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15331 in_tdata->abiflags.isa_level);
15332 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15333 in_tdata->abiflags.isa_rev);
15334 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15335 in_tdata->abiflags.gpr_size);
15336 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15337 in_tdata->abiflags.cpr1_size);
15338 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15339 in_tdata->abiflags.cpr2_size);
15340 #undef max
15341 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15342 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15343
15344 return TRUE;
15345 }
15346
15347 /* Merge backend specific data from an object file to the output
15348 object file when linking. */
15349
15350 bfd_boolean
15351 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
15352 {
15353 bfd *obfd = info->output_bfd;
15354 struct mips_elf_obj_tdata *out_tdata;
15355 struct mips_elf_obj_tdata *in_tdata;
15356 bfd_boolean null_input_bfd = TRUE;
15357 asection *sec;
15358 bfd_boolean ok;
15359
15360 /* Check if we have the same endianness. */
15361 if (! _bfd_generic_verify_endian_match (ibfd, info))
15362 {
15363 _bfd_error_handler
15364 (_("%pB: endianness incompatible with that of the selected emulation"),
15365 ibfd);
15366 return FALSE;
15367 }
15368
15369 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15370 return TRUE;
15371
15372 in_tdata = mips_elf_tdata (ibfd);
15373 out_tdata = mips_elf_tdata (obfd);
15374
15375 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15376 {
15377 _bfd_error_handler
15378 (_("%pB: ABI is incompatible with that of the selected emulation"),
15379 ibfd);
15380 return FALSE;
15381 }
15382
15383 /* Check to see if the input BFD actually contains any sections. If not,
15384 then it has no attributes, and its flags may not have been initialized
15385 either, but it cannot actually cause any incompatibility. */
15386 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15387 {
15388 /* Ignore synthetic sections and empty .text, .data and .bss sections
15389 which are automatically generated by gas. Also ignore fake
15390 (s)common sections, since merely defining a common symbol does
15391 not affect compatibility. */
15392 if ((sec->flags & SEC_IS_COMMON) == 0
15393 && strcmp (sec->name, ".reginfo")
15394 && strcmp (sec->name, ".mdebug")
15395 && (sec->size != 0
15396 || (strcmp (sec->name, ".text")
15397 && strcmp (sec->name, ".data")
15398 && strcmp (sec->name, ".bss"))))
15399 {
15400 null_input_bfd = FALSE;
15401 break;
15402 }
15403 }
15404 if (null_input_bfd)
15405 return TRUE;
15406
15407 /* Populate abiflags using existing information. */
15408 if (in_tdata->abiflags_valid)
15409 {
15410 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15411 Elf_Internal_ABIFlags_v0 in_abiflags;
15412 Elf_Internal_ABIFlags_v0 abiflags;
15413
15414 /* Set up the FP ABI attribute from the abiflags if it is not already
15415 set. */
15416 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15417 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
15418
15419 infer_mips_abiflags (ibfd, &abiflags);
15420 in_abiflags = in_tdata->abiflags;
15421
15422 /* It is not possible to infer the correct ISA revision
15423 for R3 or R5 so drop down to R2 for the checks. */
15424 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15425 in_abiflags.isa_rev = 2;
15426
15427 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15428 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
15429 _bfd_error_handler
15430 (_("%pB: warning: inconsistent ISA between e_flags and "
15431 ".MIPS.abiflags"), ibfd);
15432 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15433 && in_abiflags.fp_abi != abiflags.fp_abi)
15434 _bfd_error_handler
15435 (_("%pB: warning: inconsistent FP ABI between .gnu.attributes and "
15436 ".MIPS.abiflags"), ibfd);
15437 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15438 _bfd_error_handler
15439 (_("%pB: warning: inconsistent ASEs between e_flags and "
15440 ".MIPS.abiflags"), ibfd);
15441 /* The isa_ext is allowed to be an extension of what can be inferred
15442 from e_flags. */
15443 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15444 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
15445 _bfd_error_handler
15446 (_("%pB: warning: inconsistent ISA extensions between e_flags and "
15447 ".MIPS.abiflags"), ibfd);
15448 if (in_abiflags.flags2 != 0)
15449 _bfd_error_handler
15450 (_("%pB: warning: unexpected flag in the flags2 field of "
15451 ".MIPS.abiflags (0x%lx)"), ibfd,
15452 in_abiflags.flags2);
15453 }
15454 else
15455 {
15456 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15457 in_tdata->abiflags_valid = TRUE;
15458 }
15459
15460 if (!out_tdata->abiflags_valid)
15461 {
15462 /* Copy input abiflags if output abiflags are not already valid. */
15463 out_tdata->abiflags = in_tdata->abiflags;
15464 out_tdata->abiflags_valid = TRUE;
15465 }
15466
15467 if (! elf_flags_init (obfd))
15468 {
15469 elf_flags_init (obfd) = TRUE;
15470 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15471 elf_elfheader (obfd)->e_ident[EI_CLASS]
15472 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15473
15474 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15475 && (bfd_get_arch_info (obfd)->the_default
15476 || mips_mach_extends_p (bfd_get_mach (obfd),
15477 bfd_get_mach (ibfd))))
15478 {
15479 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15480 bfd_get_mach (ibfd)))
15481 return FALSE;
15482
15483 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15484 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15485 }
15486
15487 ok = TRUE;
15488 }
15489 else
15490 ok = mips_elf_merge_obj_e_flags (ibfd, info);
15491
15492 ok = mips_elf_merge_obj_attributes (ibfd, info) && ok;
15493
15494 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
15495
15496 if (!ok)
15497 {
15498 bfd_set_error (bfd_error_bad_value);
15499 return FALSE;
15500 }
15501
15502 return TRUE;
15503 }
15504
15505 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15506
15507 bfd_boolean
15508 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15509 {
15510 BFD_ASSERT (!elf_flags_init (abfd)
15511 || elf_elfheader (abfd)->e_flags == flags);
15512
15513 elf_elfheader (abfd)->e_flags = flags;
15514 elf_flags_init (abfd) = TRUE;
15515 return TRUE;
15516 }
15517
15518 char *
15519 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15520 {
15521 switch (dtag)
15522 {
15523 default: return "";
15524 case DT_MIPS_RLD_VERSION:
15525 return "MIPS_RLD_VERSION";
15526 case DT_MIPS_TIME_STAMP:
15527 return "MIPS_TIME_STAMP";
15528 case DT_MIPS_ICHECKSUM:
15529 return "MIPS_ICHECKSUM";
15530 case DT_MIPS_IVERSION:
15531 return "MIPS_IVERSION";
15532 case DT_MIPS_FLAGS:
15533 return "MIPS_FLAGS";
15534 case DT_MIPS_BASE_ADDRESS:
15535 return "MIPS_BASE_ADDRESS";
15536 case DT_MIPS_MSYM:
15537 return "MIPS_MSYM";
15538 case DT_MIPS_CONFLICT:
15539 return "MIPS_CONFLICT";
15540 case DT_MIPS_LIBLIST:
15541 return "MIPS_LIBLIST";
15542 case DT_MIPS_LOCAL_GOTNO:
15543 return "MIPS_LOCAL_GOTNO";
15544 case DT_MIPS_CONFLICTNO:
15545 return "MIPS_CONFLICTNO";
15546 case DT_MIPS_LIBLISTNO:
15547 return "MIPS_LIBLISTNO";
15548 case DT_MIPS_SYMTABNO:
15549 return "MIPS_SYMTABNO";
15550 case DT_MIPS_UNREFEXTNO:
15551 return "MIPS_UNREFEXTNO";
15552 case DT_MIPS_GOTSYM:
15553 return "MIPS_GOTSYM";
15554 case DT_MIPS_HIPAGENO:
15555 return "MIPS_HIPAGENO";
15556 case DT_MIPS_RLD_MAP:
15557 return "MIPS_RLD_MAP";
15558 case DT_MIPS_RLD_MAP_REL:
15559 return "MIPS_RLD_MAP_REL";
15560 case DT_MIPS_DELTA_CLASS:
15561 return "MIPS_DELTA_CLASS";
15562 case DT_MIPS_DELTA_CLASS_NO:
15563 return "MIPS_DELTA_CLASS_NO";
15564 case DT_MIPS_DELTA_INSTANCE:
15565 return "MIPS_DELTA_INSTANCE";
15566 case DT_MIPS_DELTA_INSTANCE_NO:
15567 return "MIPS_DELTA_INSTANCE_NO";
15568 case DT_MIPS_DELTA_RELOC:
15569 return "MIPS_DELTA_RELOC";
15570 case DT_MIPS_DELTA_RELOC_NO:
15571 return "MIPS_DELTA_RELOC_NO";
15572 case DT_MIPS_DELTA_SYM:
15573 return "MIPS_DELTA_SYM";
15574 case DT_MIPS_DELTA_SYM_NO:
15575 return "MIPS_DELTA_SYM_NO";
15576 case DT_MIPS_DELTA_CLASSSYM:
15577 return "MIPS_DELTA_CLASSSYM";
15578 case DT_MIPS_DELTA_CLASSSYM_NO:
15579 return "MIPS_DELTA_CLASSSYM_NO";
15580 case DT_MIPS_CXX_FLAGS:
15581 return "MIPS_CXX_FLAGS";
15582 case DT_MIPS_PIXIE_INIT:
15583 return "MIPS_PIXIE_INIT";
15584 case DT_MIPS_SYMBOL_LIB:
15585 return "MIPS_SYMBOL_LIB";
15586 case DT_MIPS_LOCALPAGE_GOTIDX:
15587 return "MIPS_LOCALPAGE_GOTIDX";
15588 case DT_MIPS_LOCAL_GOTIDX:
15589 return "MIPS_LOCAL_GOTIDX";
15590 case DT_MIPS_HIDDEN_GOTIDX:
15591 return "MIPS_HIDDEN_GOTIDX";
15592 case DT_MIPS_PROTECTED_GOTIDX:
15593 return "MIPS_PROTECTED_GOT_IDX";
15594 case DT_MIPS_OPTIONS:
15595 return "MIPS_OPTIONS";
15596 case DT_MIPS_INTERFACE:
15597 return "MIPS_INTERFACE";
15598 case DT_MIPS_DYNSTR_ALIGN:
15599 return "DT_MIPS_DYNSTR_ALIGN";
15600 case DT_MIPS_INTERFACE_SIZE:
15601 return "DT_MIPS_INTERFACE_SIZE";
15602 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15603 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15604 case DT_MIPS_PERF_SUFFIX:
15605 return "DT_MIPS_PERF_SUFFIX";
15606 case DT_MIPS_COMPACT_SIZE:
15607 return "DT_MIPS_COMPACT_SIZE";
15608 case DT_MIPS_GP_VALUE:
15609 return "DT_MIPS_GP_VALUE";
15610 case DT_MIPS_AUX_DYNAMIC:
15611 return "DT_MIPS_AUX_DYNAMIC";
15612 case DT_MIPS_PLTGOT:
15613 return "DT_MIPS_PLTGOT";
15614 case DT_MIPS_RWPLT:
15615 return "DT_MIPS_RWPLT";
15616 }
15617 }
15618
15619 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15620 not known. */
15621
15622 const char *
15623 _bfd_mips_fp_abi_string (int fp)
15624 {
15625 switch (fp)
15626 {
15627 /* These strings aren't translated because they're simply
15628 option lists. */
15629 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15630 return "-mdouble-float";
15631
15632 case Val_GNU_MIPS_ABI_FP_SINGLE:
15633 return "-msingle-float";
15634
15635 case Val_GNU_MIPS_ABI_FP_SOFT:
15636 return "-msoft-float";
15637
15638 case Val_GNU_MIPS_ABI_FP_OLD_64:
15639 return _("-mips32r2 -mfp64 (12 callee-saved)");
15640
15641 case Val_GNU_MIPS_ABI_FP_XX:
15642 return "-mfpxx";
15643
15644 case Val_GNU_MIPS_ABI_FP_64:
15645 return "-mgp32 -mfp64";
15646
15647 case Val_GNU_MIPS_ABI_FP_64A:
15648 return "-mgp32 -mfp64 -mno-odd-spreg";
15649
15650 default:
15651 return 0;
15652 }
15653 }
15654
15655 static void
15656 print_mips_ases (FILE *file, unsigned int mask)
15657 {
15658 if (mask & AFL_ASE_DSP)
15659 fputs ("\n\tDSP ASE", file);
15660 if (mask & AFL_ASE_DSPR2)
15661 fputs ("\n\tDSP R2 ASE", file);
15662 if (mask & AFL_ASE_DSPR3)
15663 fputs ("\n\tDSP R3 ASE", file);
15664 if (mask & AFL_ASE_EVA)
15665 fputs ("\n\tEnhanced VA Scheme", file);
15666 if (mask & AFL_ASE_MCU)
15667 fputs ("\n\tMCU (MicroController) ASE", file);
15668 if (mask & AFL_ASE_MDMX)
15669 fputs ("\n\tMDMX ASE", file);
15670 if (mask & AFL_ASE_MIPS3D)
15671 fputs ("\n\tMIPS-3D ASE", file);
15672 if (mask & AFL_ASE_MT)
15673 fputs ("\n\tMT ASE", file);
15674 if (mask & AFL_ASE_SMARTMIPS)
15675 fputs ("\n\tSmartMIPS ASE", file);
15676 if (mask & AFL_ASE_VIRT)
15677 fputs ("\n\tVZ ASE", file);
15678 if (mask & AFL_ASE_MSA)
15679 fputs ("\n\tMSA ASE", file);
15680 if (mask & AFL_ASE_MIPS16)
15681 fputs ("\n\tMIPS16 ASE", file);
15682 if (mask & AFL_ASE_MICROMIPS)
15683 fputs ("\n\tMICROMIPS ASE", file);
15684 if (mask & AFL_ASE_XPA)
15685 fputs ("\n\tXPA ASE", file);
15686 if (mask & AFL_ASE_MIPS16E2)
15687 fputs ("\n\tMIPS16e2 ASE", file);
15688 if (mask & AFL_ASE_CRC)
15689 fputs ("\n\tCRC ASE", file);
15690 if (mask & AFL_ASE_GINV)
15691 fputs ("\n\tGINV ASE", file);
15692 if (mask & AFL_ASE_LOONGSON_MMI)
15693 fputs ("\n\tLoongson MMI ASE", file);
15694 if (mask & AFL_ASE_LOONGSON_CAM)
15695 fputs ("\n\tLoongson CAM ASE", file);
15696 if (mask & AFL_ASE_LOONGSON_EXT)
15697 fputs ("\n\tLoongson EXT ASE", file);
15698 if (mask & AFL_ASE_LOONGSON_EXT2)
15699 fputs ("\n\tLoongson EXT2 ASE", file);
15700 if (mask == 0)
15701 fprintf (file, "\n\t%s", _("None"));
15702 else if ((mask & ~AFL_ASE_MASK) != 0)
15703 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
15704 }
15705
15706 static void
15707 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15708 {
15709 switch (isa_ext)
15710 {
15711 case 0:
15712 fputs (_("None"), file);
15713 break;
15714 case AFL_EXT_XLR:
15715 fputs ("RMI XLR", file);
15716 break;
15717 case AFL_EXT_OCTEON3:
15718 fputs ("Cavium Networks Octeon3", file);
15719 break;
15720 case AFL_EXT_OCTEON2:
15721 fputs ("Cavium Networks Octeon2", file);
15722 break;
15723 case AFL_EXT_OCTEONP:
15724 fputs ("Cavium Networks OcteonP", file);
15725 break;
15726 case AFL_EXT_OCTEON:
15727 fputs ("Cavium Networks Octeon", file);
15728 break;
15729 case AFL_EXT_5900:
15730 fputs ("Toshiba R5900", file);
15731 break;
15732 case AFL_EXT_4650:
15733 fputs ("MIPS R4650", file);
15734 break;
15735 case AFL_EXT_4010:
15736 fputs ("LSI R4010", file);
15737 break;
15738 case AFL_EXT_4100:
15739 fputs ("NEC VR4100", file);
15740 break;
15741 case AFL_EXT_3900:
15742 fputs ("Toshiba R3900", file);
15743 break;
15744 case AFL_EXT_10000:
15745 fputs ("MIPS R10000", file);
15746 break;
15747 case AFL_EXT_SB1:
15748 fputs ("Broadcom SB-1", file);
15749 break;
15750 case AFL_EXT_4111:
15751 fputs ("NEC VR4111/VR4181", file);
15752 break;
15753 case AFL_EXT_4120:
15754 fputs ("NEC VR4120", file);
15755 break;
15756 case AFL_EXT_5400:
15757 fputs ("NEC VR5400", file);
15758 break;
15759 case AFL_EXT_5500:
15760 fputs ("NEC VR5500", file);
15761 break;
15762 case AFL_EXT_LOONGSON_2E:
15763 fputs ("ST Microelectronics Loongson 2E", file);
15764 break;
15765 case AFL_EXT_LOONGSON_2F:
15766 fputs ("ST Microelectronics Loongson 2F", file);
15767 break;
15768 case AFL_EXT_INTERAPTIV_MR2:
15769 fputs ("Imagination interAptiv MR2", file);
15770 break;
15771 default:
15772 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
15773 break;
15774 }
15775 }
15776
15777 static void
15778 print_mips_fp_abi_value (FILE *file, int val)
15779 {
15780 switch (val)
15781 {
15782 case Val_GNU_MIPS_ABI_FP_ANY:
15783 fprintf (file, _("Hard or soft float\n"));
15784 break;
15785 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15786 fprintf (file, _("Hard float (double precision)\n"));
15787 break;
15788 case Val_GNU_MIPS_ABI_FP_SINGLE:
15789 fprintf (file, _("Hard float (single precision)\n"));
15790 break;
15791 case Val_GNU_MIPS_ABI_FP_SOFT:
15792 fprintf (file, _("Soft float\n"));
15793 break;
15794 case Val_GNU_MIPS_ABI_FP_OLD_64:
15795 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15796 break;
15797 case Val_GNU_MIPS_ABI_FP_XX:
15798 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
15799 break;
15800 case Val_GNU_MIPS_ABI_FP_64:
15801 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
15802 break;
15803 case Val_GNU_MIPS_ABI_FP_64A:
15804 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
15805 break;
15806 default:
15807 fprintf (file, "??? (%d)\n", val);
15808 break;
15809 }
15810 }
15811
15812 static int
15813 get_mips_reg_size (int reg_size)
15814 {
15815 return (reg_size == AFL_REG_NONE) ? 0
15816 : (reg_size == AFL_REG_32) ? 32
15817 : (reg_size == AFL_REG_64) ? 64
15818 : (reg_size == AFL_REG_128) ? 128
15819 : -1;
15820 }
15821
15822 bfd_boolean
15823 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
15824 {
15825 FILE *file = ptr;
15826
15827 BFD_ASSERT (abfd != NULL && ptr != NULL);
15828
15829 /* Print normal ELF private data. */
15830 _bfd_elf_print_private_bfd_data (abfd, ptr);
15831
15832 /* xgettext:c-format */
15833 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15834
15835 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
15836 fprintf (file, _(" [abi=O32]"));
15837 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
15838 fprintf (file, _(" [abi=O64]"));
15839 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
15840 fprintf (file, _(" [abi=EABI32]"));
15841 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
15842 fprintf (file, _(" [abi=EABI64]"));
15843 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
15844 fprintf (file, _(" [abi unknown]"));
15845 else if (ABI_N32_P (abfd))
15846 fprintf (file, _(" [abi=N32]"));
15847 else if (ABI_64_P (abfd))
15848 fprintf (file, _(" [abi=64]"));
15849 else
15850 fprintf (file, _(" [no abi set]"));
15851
15852 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
15853 fprintf (file, " [mips1]");
15854 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
15855 fprintf (file, " [mips2]");
15856 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
15857 fprintf (file, " [mips3]");
15858 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
15859 fprintf (file, " [mips4]");
15860 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
15861 fprintf (file, " [mips5]");
15862 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
15863 fprintf (file, " [mips32]");
15864 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
15865 fprintf (file, " [mips64]");
15866 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
15867 fprintf (file, " [mips32r2]");
15868 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
15869 fprintf (file, " [mips64r2]");
15870 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
15871 fprintf (file, " [mips32r6]");
15872 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
15873 fprintf (file, " [mips64r6]");
15874 else
15875 fprintf (file, _(" [unknown ISA]"));
15876
15877 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
15878 fprintf (file, " [mdmx]");
15879
15880 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
15881 fprintf (file, " [mips16]");
15882
15883 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
15884 fprintf (file, " [micromips]");
15885
15886 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
15887 fprintf (file, " [nan2008]");
15888
15889 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
15890 fprintf (file, " [old fp64]");
15891
15892 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
15893 fprintf (file, " [32bitmode]");
15894 else
15895 fprintf (file, _(" [not 32bitmode]"));
15896
15897 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
15898 fprintf (file, " [noreorder]");
15899
15900 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
15901 fprintf (file, " [PIC]");
15902
15903 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
15904 fprintf (file, " [CPIC]");
15905
15906 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
15907 fprintf (file, " [XGOT]");
15908
15909 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
15910 fprintf (file, " [UCODE]");
15911
15912 fputc ('\n', file);
15913
15914 if (mips_elf_tdata (abfd)->abiflags_valid)
15915 {
15916 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
15917 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
15918 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
15919 if (abiflags->isa_rev > 1)
15920 fprintf (file, "r%d", abiflags->isa_rev);
15921 fprintf (file, "\nGPR size: %d",
15922 get_mips_reg_size (abiflags->gpr_size));
15923 fprintf (file, "\nCPR1 size: %d",
15924 get_mips_reg_size (abiflags->cpr1_size));
15925 fprintf (file, "\nCPR2 size: %d",
15926 get_mips_reg_size (abiflags->cpr2_size));
15927 fputs ("\nFP ABI: ", file);
15928 print_mips_fp_abi_value (file, abiflags->fp_abi);
15929 fputs ("ISA Extension: ", file);
15930 print_mips_isa_ext (file, abiflags->isa_ext);
15931 fputs ("\nASEs:", file);
15932 print_mips_ases (file, abiflags->ases);
15933 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
15934 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
15935 fputc ('\n', file);
15936 }
15937
15938 return TRUE;
15939 }
15940
15941 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
15942 {
15943 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15944 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15945 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
15946 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15947 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15948 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
15949 { NULL, 0, 0, 0, 0 }
15950 };
15951
15952 /* Merge non visibility st_other attributes. Ensure that the
15953 STO_OPTIONAL flag is copied into h->other, even if this is not a
15954 definiton of the symbol. */
15955 void
15956 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
15957 const Elf_Internal_Sym *isym,
15958 bfd_boolean definition,
15959 bfd_boolean dynamic ATTRIBUTE_UNUSED)
15960 {
15961 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
15962 {
15963 unsigned char other;
15964
15965 other = (definition ? isym->st_other : h->other);
15966 other &= ~ELF_ST_VISIBILITY (-1);
15967 h->other = other | ELF_ST_VISIBILITY (h->other);
15968 }
15969
15970 if (!definition
15971 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
15972 h->other |= STO_OPTIONAL;
15973 }
15974
15975 /* Decide whether an undefined symbol is special and can be ignored.
15976 This is the case for OPTIONAL symbols on IRIX. */
15977 bfd_boolean
15978 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
15979 {
15980 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
15981 }
15982
15983 bfd_boolean
15984 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
15985 {
15986 return (sym->st_shndx == SHN_COMMON
15987 || sym->st_shndx == SHN_MIPS_ACOMMON
15988 || sym->st_shndx == SHN_MIPS_SCOMMON);
15989 }
15990
15991 /* Return address for Ith PLT stub in section PLT, for relocation REL
15992 or (bfd_vma) -1 if it should not be included. */
15993
15994 bfd_vma
15995 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
15996 const arelent *rel ATTRIBUTE_UNUSED)
15997 {
15998 return (plt->vma
15999 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
16000 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
16001 }
16002
16003 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
16004 and microMIPS PLT slots we may have a many-to-one mapping between .plt
16005 and .got.plt and also the slots may be of a different size each we walk
16006 the PLT manually fetching instructions and matching them against known
16007 patterns. To make things easier standard MIPS slots, if any, always come
16008 first. As we don't create proper ELF symbols we use the UDATA.I member
16009 of ASYMBOL to carry ISA annotation. The encoding used is the same as
16010 with the ST_OTHER member of the ELF symbol. */
16011
16012 long
16013 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
16014 long symcount ATTRIBUTE_UNUSED,
16015 asymbol **syms ATTRIBUTE_UNUSED,
16016 long dynsymcount, asymbol **dynsyms,
16017 asymbol **ret)
16018 {
16019 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
16020 static const char microsuffix[] = "@micromipsplt";
16021 static const char m16suffix[] = "@mips16plt";
16022 static const char mipssuffix[] = "@plt";
16023
16024 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
16025 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
16026 bfd_boolean micromips_p = MICROMIPS_P (abfd);
16027 Elf_Internal_Shdr *hdr;
16028 bfd_byte *plt_data;
16029 bfd_vma plt_offset;
16030 unsigned int other;
16031 bfd_vma entry_size;
16032 bfd_vma plt0_size;
16033 asection *relplt;
16034 bfd_vma opcode;
16035 asection *plt;
16036 asymbol *send;
16037 size_t size;
16038 char *names;
16039 long counti;
16040 arelent *p;
16041 asymbol *s;
16042 char *nend;
16043 long count;
16044 long pi;
16045 long i;
16046 long n;
16047
16048 *ret = NULL;
16049
16050 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
16051 return 0;
16052
16053 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16054 if (relplt == NULL)
16055 return 0;
16056
16057 hdr = &elf_section_data (relplt)->this_hdr;
16058 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
16059 return 0;
16060
16061 plt = bfd_get_section_by_name (abfd, ".plt");
16062 if (plt == NULL)
16063 return 0;
16064
16065 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
16066 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
16067 return -1;
16068 p = relplt->relocation;
16069
16070 /* Calculating the exact amount of space required for symbols would
16071 require two passes over the PLT, so just pessimise assuming two
16072 PLT slots per relocation. */
16073 count = relplt->size / hdr->sh_entsize;
16074 counti = count * bed->s->int_rels_per_ext_rel;
16075 size = 2 * count * sizeof (asymbol);
16076 size += count * (sizeof (mipssuffix) +
16077 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16078 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16079 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16080
16081 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16082 size += sizeof (asymbol) + sizeof (pltname);
16083
16084 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16085 return -1;
16086
16087 if (plt->size < 16)
16088 return -1;
16089
16090 s = *ret = bfd_malloc (size);
16091 if (s == NULL)
16092 return -1;
16093 send = s + 2 * count + 1;
16094
16095 names = (char *) send;
16096 nend = (char *) s + size;
16097 n = 0;
16098
16099 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16100 if (opcode == 0x3302fffe)
16101 {
16102 if (!micromips_p)
16103 return -1;
16104 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16105 other = STO_MICROMIPS;
16106 }
16107 else if (opcode == 0x0398c1d0)
16108 {
16109 if (!micromips_p)
16110 return -1;
16111 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16112 other = STO_MICROMIPS;
16113 }
16114 else
16115 {
16116 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16117 other = 0;
16118 }
16119
16120 s->the_bfd = abfd;
16121 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16122 s->section = plt;
16123 s->value = 0;
16124 s->name = names;
16125 s->udata.i = other;
16126 memcpy (names, pltname, sizeof (pltname));
16127 names += sizeof (pltname);
16128 ++s, ++n;
16129
16130 pi = 0;
16131 for (plt_offset = plt0_size;
16132 plt_offset + 8 <= plt->size && s < send;
16133 plt_offset += entry_size)
16134 {
16135 bfd_vma gotplt_addr;
16136 const char *suffix;
16137 bfd_vma gotplt_hi;
16138 bfd_vma gotplt_lo;
16139 size_t suffixlen;
16140
16141 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16142
16143 /* Check if the second word matches the expected MIPS16 instruction. */
16144 if (opcode == 0x651aeb00)
16145 {
16146 if (micromips_p)
16147 return -1;
16148 /* Truncated table??? */
16149 if (plt_offset + 16 > plt->size)
16150 break;
16151 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16152 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16153 suffixlen = sizeof (m16suffix);
16154 suffix = m16suffix;
16155 other = STO_MIPS16;
16156 }
16157 /* Likewise the expected microMIPS instruction (no insn32 mode). */
16158 else if (opcode == 0xff220000)
16159 {
16160 if (!micromips_p)
16161 return -1;
16162 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16163 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16164 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16165 gotplt_lo <<= 2;
16166 gotplt_addr = gotplt_hi + gotplt_lo;
16167 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16168 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16169 suffixlen = sizeof (microsuffix);
16170 suffix = microsuffix;
16171 other = STO_MICROMIPS;
16172 }
16173 /* Likewise the expected microMIPS instruction (insn32 mode). */
16174 else if ((opcode & 0xffff0000) == 0xff2f0000)
16175 {
16176 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16177 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16178 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16179 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16180 gotplt_addr = gotplt_hi + gotplt_lo;
16181 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16182 suffixlen = sizeof (microsuffix);
16183 suffix = microsuffix;
16184 other = STO_MICROMIPS;
16185 }
16186 /* Otherwise assume standard MIPS code. */
16187 else
16188 {
16189 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16190 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16191 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16192 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16193 gotplt_addr = gotplt_hi + gotplt_lo;
16194 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16195 suffixlen = sizeof (mipssuffix);
16196 suffix = mipssuffix;
16197 other = 0;
16198 }
16199 /* Truncated table??? */
16200 if (plt_offset + entry_size > plt->size)
16201 break;
16202
16203 for (i = 0;
16204 i < count && p[pi].address != gotplt_addr;
16205 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16206
16207 if (i < count)
16208 {
16209 size_t namelen;
16210 size_t len;
16211
16212 *s = **p[pi].sym_ptr_ptr;
16213 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16214 we are defining a symbol, ensure one of them is set. */
16215 if ((s->flags & BSF_LOCAL) == 0)
16216 s->flags |= BSF_GLOBAL;
16217 s->flags |= BSF_SYNTHETIC;
16218 s->section = plt;
16219 s->value = plt_offset;
16220 s->name = names;
16221 s->udata.i = other;
16222
16223 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16224 namelen = len + suffixlen;
16225 if (names + namelen > nend)
16226 break;
16227
16228 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16229 names += len;
16230 memcpy (names, suffix, suffixlen);
16231 names += suffixlen;
16232
16233 ++s, ++n;
16234 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16235 }
16236 }
16237
16238 free (plt_data);
16239
16240 return n;
16241 }
16242
16243 /* Return the ABI flags associated with ABFD if available. */
16244
16245 Elf_Internal_ABIFlags_v0 *
16246 bfd_mips_elf_get_abiflags (bfd *abfd)
16247 {
16248 struct mips_elf_obj_tdata *tdata = mips_elf_tdata (abfd);
16249
16250 return tdata->abiflags_valid ? &tdata->abiflags : NULL;
16251 }
16252
16253 /* MIPS libc ABI versions, used with the EI_ABIVERSION ELF file header
16254 field. Taken from `libc-abis.h' generated at GNU libc build time.
16255 Using a MIPS_ prefix as other libc targets use different values. */
16256 enum
16257 {
16258 MIPS_LIBC_ABI_DEFAULT = 0,
16259 MIPS_LIBC_ABI_MIPS_PLT,
16260 MIPS_LIBC_ABI_UNIQUE,
16261 MIPS_LIBC_ABI_MIPS_O32_FP64,
16262 MIPS_LIBC_ABI_MAX
16263 };
16264
16265 void
16266 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16267 {
16268 struct mips_elf_link_hash_table *htab;
16269 Elf_Internal_Ehdr *i_ehdrp;
16270
16271 i_ehdrp = elf_elfheader (abfd);
16272 if (link_info)
16273 {
16274 htab = mips_elf_hash_table (link_info);
16275 BFD_ASSERT (htab != NULL);
16276
16277 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16278 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_PLT;
16279 }
16280
16281 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16282 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16283 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_O32_FP64;
16284
16285 _bfd_elf_post_process_headers (abfd, link_info);
16286 }
16287
16288 int
16289 _bfd_mips_elf_compact_eh_encoding
16290 (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16291 {
16292 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16293 }
16294
16295 /* Return the opcode for can't unwind. */
16296
16297 int
16298 _bfd_mips_elf_cant_unwind_opcode
16299 (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16300 {
16301 return COMPACT_EH_CANT_UNWIND_OPCODE;
16302 }
This page took 0.345871 seconds and 5 git commands to generate.