MIPS/BFD: Factor out relocated field storing
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2018 Free Software Foundation, Inc.
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
28
29 /* This file handles functionality common to the different MIPS ABI's. */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "libiberty.h"
35 #include "elf-bfd.h"
36 #include "elfxx-mips.h"
37 #include "elf/mips.h"
38 #include "elf-vxworks.h"
39 #include "dwarf2.h"
40
41 /* Get the ECOFF swapping routines. */
42 #include "coff/sym.h"
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46
47 #include "hashtab.h"
48
49 /* Types of TLS GOT entry. */
50 enum mips_got_tls_type {
51 GOT_TLS_NONE,
52 GOT_TLS_GD,
53 GOT_TLS_LDM,
54 GOT_TLS_IE
55 };
56
57 /* This structure is used to hold information about one GOT entry.
58 There are four types of entry:
59
60 (1) an absolute address
61 requires: abfd == NULL
62 fields: d.address
63
64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 fields: abfd, symndx, d.addend, tls_type
67
68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 requires: abfd != NULL, symndx == -1
70 fields: d.h, tls_type
71
72 (4) a TLS LDM slot
73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 fields: none; there's only one of these per GOT. */
75 struct mips_got_entry
76 {
77 /* One input bfd that needs the GOT entry. */
78 bfd *abfd;
79 /* The index of the symbol, as stored in the relocation r_info, if
80 we have a local symbol; -1 otherwise. */
81 long symndx;
82 union
83 {
84 /* If abfd == NULL, an address that must be stored in the got. */
85 bfd_vma address;
86 /* If abfd != NULL && symndx != -1, the addend of the relocation
87 that should be added to the symbol value. */
88 bfd_vma addend;
89 /* If abfd != NULL && symndx == -1, the hash table entry
90 corresponding to a symbol in the GOT. The symbol's entry
91 is in the local area if h->global_got_area is GGA_NONE,
92 otherwise it is in the global area. */
93 struct mips_elf_link_hash_entry *h;
94 } d;
95
96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
97 symbol entry with r_symndx == 0. */
98 unsigned char tls_type;
99
100 /* True if we have filled in the GOT contents for a TLS entry,
101 and created the associated relocations. */
102 unsigned char tls_initialized;
103
104 /* The offset from the beginning of the .got section to the entry
105 corresponding to this symbol+addend. If it's a global symbol
106 whose offset is yet to be decided, it's going to be -1. */
107 long gotidx;
108 };
109
110 /* This structure represents a GOT page reference from an input bfd.
111 Each instance represents a symbol + ADDEND, where the representation
112 of the symbol depends on whether it is local to the input bfd.
113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
115
116 Page references with SYMNDX >= 0 always become page references
117 in the output. Page references with SYMNDX < 0 only become page
118 references if the symbol binds locally; in other cases, the page
119 reference decays to a global GOT reference. */
120 struct mips_got_page_ref
121 {
122 long symndx;
123 union
124 {
125 struct mips_elf_link_hash_entry *h;
126 bfd *abfd;
127 } u;
128 bfd_vma addend;
129 };
130
131 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132 The structures form a non-overlapping list that is sorted by increasing
133 MIN_ADDEND. */
134 struct mips_got_page_range
135 {
136 struct mips_got_page_range *next;
137 bfd_signed_vma min_addend;
138 bfd_signed_vma max_addend;
139 };
140
141 /* This structure describes the range of addends that are applied to page
142 relocations against a given section. */
143 struct mips_got_page_entry
144 {
145 /* The section that these entries are based on. */
146 asection *sec;
147 /* The ranges for this page entry. */
148 struct mips_got_page_range *ranges;
149 /* The maximum number of page entries needed for RANGES. */
150 bfd_vma num_pages;
151 };
152
153 /* This structure is used to hold .got information when linking. */
154
155 struct mips_got_info
156 {
157 /* The number of global .got entries. */
158 unsigned int global_gotno;
159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
160 unsigned int reloc_only_gotno;
161 /* The number of .got slots used for TLS. */
162 unsigned int tls_gotno;
163 /* The first unused TLS .got entry. Used only during
164 mips_elf_initialize_tls_index. */
165 unsigned int tls_assigned_gotno;
166 /* The number of local .got entries, eventually including page entries. */
167 unsigned int local_gotno;
168 /* The maximum number of page entries needed. */
169 unsigned int page_gotno;
170 /* The number of relocations needed for the GOT entries. */
171 unsigned int relocs;
172 /* The first unused local .got entry. */
173 unsigned int assigned_low_gotno;
174 /* The last unused local .got entry. */
175 unsigned int assigned_high_gotno;
176 /* A hash table holding members of the got. */
177 struct htab *got_entries;
178 /* A hash table holding mips_got_page_ref structures. */
179 struct htab *got_page_refs;
180 /* A hash table of mips_got_page_entry structures. */
181 struct htab *got_page_entries;
182 /* In multi-got links, a pointer to the next got (err, rather, most
183 of the time, it points to the previous got). */
184 struct mips_got_info *next;
185 };
186
187 /* Structure passed when merging bfds' gots. */
188
189 struct mips_elf_got_per_bfd_arg
190 {
191 /* The output bfd. */
192 bfd *obfd;
193 /* The link information. */
194 struct bfd_link_info *info;
195 /* A pointer to the primary got, i.e., the one that's going to get
196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
197 DT_MIPS_GOTSYM. */
198 struct mips_got_info *primary;
199 /* A non-primary got we're trying to merge with other input bfd's
200 gots. */
201 struct mips_got_info *current;
202 /* The maximum number of got entries that can be addressed with a
203 16-bit offset. */
204 unsigned int max_count;
205 /* The maximum number of page entries needed by each got. */
206 unsigned int max_pages;
207 /* The total number of global entries which will live in the
208 primary got and be automatically relocated. This includes
209 those not referenced by the primary GOT but included in
210 the "master" GOT. */
211 unsigned int global_count;
212 };
213
214 /* A structure used to pass information to htab_traverse callbacks
215 when laying out the GOT. */
216
217 struct mips_elf_traverse_got_arg
218 {
219 struct bfd_link_info *info;
220 struct mips_got_info *g;
221 int value;
222 };
223
224 struct _mips_elf_section_data
225 {
226 struct bfd_elf_section_data elf;
227 union
228 {
229 bfd_byte *tdata;
230 } u;
231 };
232
233 #define mips_elf_section_data(sec) \
234 ((struct _mips_elf_section_data *) elf_section_data (sec))
235
236 #define is_mips_elf(bfd) \
237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
238 && elf_tdata (bfd) != NULL \
239 && elf_object_id (bfd) == MIPS_ELF_DATA)
240
241 /* The ABI says that every symbol used by dynamic relocations must have
242 a global GOT entry. Among other things, this provides the dynamic
243 linker with a free, directly-indexed cache. The GOT can therefore
244 contain symbols that are not referenced by GOT relocations themselves
245 (in other words, it may have symbols that are not referenced by things
246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
247
248 GOT relocations are less likely to overflow if we put the associated
249 GOT entries towards the beginning. We therefore divide the global
250 GOT entries into two areas: "normal" and "reloc-only". Entries in
251 the first area can be used for both dynamic relocations and GP-relative
252 accesses, while those in the "reloc-only" area are for dynamic
253 relocations only.
254
255 These GGA_* ("Global GOT Area") values are organised so that lower
256 values are more general than higher values. Also, non-GGA_NONE
257 values are ordered by the position of the area in the GOT. */
258 #define GGA_NORMAL 0
259 #define GGA_RELOC_ONLY 1
260 #define GGA_NONE 2
261
262 /* Information about a non-PIC interface to a PIC function. There are
263 two ways of creating these interfaces. The first is to add:
264
265 lui $25,%hi(func)
266 addiu $25,$25,%lo(func)
267
268 immediately before a PIC function "func". The second is to add:
269
270 lui $25,%hi(func)
271 j func
272 addiu $25,$25,%lo(func)
273
274 to a separate trampoline section.
275
276 Stubs of the first kind go in a new section immediately before the
277 target function. Stubs of the second kind go in a single section
278 pointed to by the hash table's "strampoline" field. */
279 struct mips_elf_la25_stub {
280 /* The generated section that contains this stub. */
281 asection *stub_section;
282
283 /* The offset of the stub from the start of STUB_SECTION. */
284 bfd_vma offset;
285
286 /* One symbol for the original function. Its location is available
287 in H->root.root.u.def. */
288 struct mips_elf_link_hash_entry *h;
289 };
290
291 /* Macros for populating a mips_elf_la25_stub. */
292
293 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
294 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
295 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
296 #define LA25_LUI_MICROMIPS(VAL) \
297 (0x41b90000 | (VAL)) /* lui t9,VAL */
298 #define LA25_J_MICROMIPS(VAL) \
299 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
300 #define LA25_ADDIU_MICROMIPS(VAL) \
301 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
302
303 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
304 the dynamic symbols. */
305
306 struct mips_elf_hash_sort_data
307 {
308 /* The symbol in the global GOT with the lowest dynamic symbol table
309 index. */
310 struct elf_link_hash_entry *low;
311 /* The least dynamic symbol table index corresponding to a non-TLS
312 symbol with a GOT entry. */
313 bfd_size_type min_got_dynindx;
314 /* The greatest dynamic symbol table index corresponding to a symbol
315 with a GOT entry that is not referenced (e.g., a dynamic symbol
316 with dynamic relocations pointing to it from non-primary GOTs). */
317 bfd_size_type max_unref_got_dynindx;
318 /* The greatest dynamic symbol table index corresponding to a local
319 symbol. */
320 bfd_size_type max_local_dynindx;
321 /* The greatest dynamic symbol table index corresponding to an external
322 symbol without a GOT entry. */
323 bfd_size_type max_non_got_dynindx;
324 };
325
326 /* We make up to two PLT entries if needed, one for standard MIPS code
327 and one for compressed code, either a MIPS16 or microMIPS one. We
328 keep a separate record of traditional lazy-binding stubs, for easier
329 processing. */
330
331 struct plt_entry
332 {
333 /* Traditional SVR4 stub offset, or -1 if none. */
334 bfd_vma stub_offset;
335
336 /* Standard PLT entry offset, or -1 if none. */
337 bfd_vma mips_offset;
338
339 /* Compressed PLT entry offset, or -1 if none. */
340 bfd_vma comp_offset;
341
342 /* The corresponding .got.plt index, or -1 if none. */
343 bfd_vma gotplt_index;
344
345 /* Whether we need a standard PLT entry. */
346 unsigned int need_mips : 1;
347
348 /* Whether we need a compressed PLT entry. */
349 unsigned int need_comp : 1;
350 };
351
352 /* The MIPS ELF linker needs additional information for each symbol in
353 the global hash table. */
354
355 struct mips_elf_link_hash_entry
356 {
357 struct elf_link_hash_entry root;
358
359 /* External symbol information. */
360 EXTR esym;
361
362 /* The la25 stub we have created for ths symbol, if any. */
363 struct mips_elf_la25_stub *la25_stub;
364
365 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
366 this symbol. */
367 unsigned int possibly_dynamic_relocs;
368
369 /* If there is a stub that 32 bit functions should use to call this
370 16 bit function, this points to the section containing the stub. */
371 asection *fn_stub;
372
373 /* If there is a stub that 16 bit functions should use to call this
374 32 bit function, this points to the section containing the stub. */
375 asection *call_stub;
376
377 /* This is like the call_stub field, but it is used if the function
378 being called returns a floating point value. */
379 asection *call_fp_stub;
380
381 /* The highest GGA_* value that satisfies all references to this symbol. */
382 unsigned int global_got_area : 2;
383
384 /* True if all GOT relocations against this symbol are for calls. This is
385 a looser condition than no_fn_stub below, because there may be other
386 non-call non-GOT relocations against the symbol. */
387 unsigned int got_only_for_calls : 1;
388
389 /* True if one of the relocations described by possibly_dynamic_relocs
390 is against a readonly section. */
391 unsigned int readonly_reloc : 1;
392
393 /* True if there is a relocation against this symbol that must be
394 resolved by the static linker (in other words, if the relocation
395 cannot possibly be made dynamic). */
396 unsigned int has_static_relocs : 1;
397
398 /* True if we must not create a .MIPS.stubs entry for this symbol.
399 This is set, for example, if there are relocations related to
400 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
401 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
402 unsigned int no_fn_stub : 1;
403
404 /* Whether we need the fn_stub; this is true if this symbol appears
405 in any relocs other than a 16 bit call. */
406 unsigned int need_fn_stub : 1;
407
408 /* True if this symbol is referenced by branch relocations from
409 any non-PIC input file. This is used to determine whether an
410 la25 stub is required. */
411 unsigned int has_nonpic_branches : 1;
412
413 /* Does this symbol need a traditional MIPS lazy-binding stub
414 (as opposed to a PLT entry)? */
415 unsigned int needs_lazy_stub : 1;
416
417 /* Does this symbol resolve to a PLT entry? */
418 unsigned int use_plt_entry : 1;
419 };
420
421 /* MIPS ELF linker hash table. */
422
423 struct mips_elf_link_hash_table
424 {
425 struct elf_link_hash_table root;
426
427 /* The number of .rtproc entries. */
428 bfd_size_type procedure_count;
429
430 /* The size of the .compact_rel section (if SGI_COMPAT). */
431 bfd_size_type compact_rel_size;
432
433 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
434 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
435 bfd_boolean use_rld_obj_head;
436
437 /* The __rld_map or __rld_obj_head symbol. */
438 struct elf_link_hash_entry *rld_symbol;
439
440 /* This is set if we see any mips16 stub sections. */
441 bfd_boolean mips16_stubs_seen;
442
443 /* True if we can generate copy relocs and PLTs. */
444 bfd_boolean use_plts_and_copy_relocs;
445
446 /* True if we can only use 32-bit microMIPS instructions. */
447 bfd_boolean insn32;
448
449 /* True if we suppress checks for invalid branches between ISA modes. */
450 bfd_boolean ignore_branch_isa;
451
452 /* True if we're generating code for VxWorks. */
453 bfd_boolean is_vxworks;
454
455 /* True if we already reported the small-data section overflow. */
456 bfd_boolean small_data_overflow_reported;
457
458 /* Shortcuts to some dynamic sections, or NULL if they are not
459 being used. */
460 asection *srelplt2;
461 asection *sstubs;
462
463 /* The master GOT information. */
464 struct mips_got_info *got_info;
465
466 /* The global symbol in the GOT with the lowest index in the dynamic
467 symbol table. */
468 struct elf_link_hash_entry *global_gotsym;
469
470 /* The size of the PLT header in bytes. */
471 bfd_vma plt_header_size;
472
473 /* The size of a standard PLT entry in bytes. */
474 bfd_vma plt_mips_entry_size;
475
476 /* The size of a compressed PLT entry in bytes. */
477 bfd_vma plt_comp_entry_size;
478
479 /* The offset of the next standard PLT entry to create. */
480 bfd_vma plt_mips_offset;
481
482 /* The offset of the next compressed PLT entry to create. */
483 bfd_vma plt_comp_offset;
484
485 /* The index of the next .got.plt entry to create. */
486 bfd_vma plt_got_index;
487
488 /* The number of functions that need a lazy-binding stub. */
489 bfd_vma lazy_stub_count;
490
491 /* The size of a function stub entry in bytes. */
492 bfd_vma function_stub_size;
493
494 /* The number of reserved entries at the beginning of the GOT. */
495 unsigned int reserved_gotno;
496
497 /* The section used for mips_elf_la25_stub trampolines.
498 See the comment above that structure for details. */
499 asection *strampoline;
500
501 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
502 pairs. */
503 htab_t la25_stubs;
504
505 /* A function FN (NAME, IS, OS) that creates a new input section
506 called NAME and links it to output section OS. If IS is nonnull,
507 the new section should go immediately before it, otherwise it
508 should go at the (current) beginning of OS.
509
510 The function returns the new section on success, otherwise it
511 returns null. */
512 asection *(*add_stub_section) (const char *, asection *, asection *);
513
514 /* Small local sym cache. */
515 struct sym_cache sym_cache;
516
517 /* Is the PLT header compressed? */
518 unsigned int plt_header_is_comp : 1;
519 };
520
521 /* Get the MIPS ELF linker hash table from a link_info structure. */
522
523 #define mips_elf_hash_table(p) \
524 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
525 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
526
527 /* A structure used to communicate with htab_traverse callbacks. */
528 struct mips_htab_traverse_info
529 {
530 /* The usual link-wide information. */
531 struct bfd_link_info *info;
532 bfd *output_bfd;
533
534 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
535 bfd_boolean error;
536 };
537
538 /* MIPS ELF private object data. */
539
540 struct mips_elf_obj_tdata
541 {
542 /* Generic ELF private object data. */
543 struct elf_obj_tdata root;
544
545 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
546 bfd *abi_fp_bfd;
547
548 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
549 bfd *abi_msa_bfd;
550
551 /* The abiflags for this object. */
552 Elf_Internal_ABIFlags_v0 abiflags;
553 bfd_boolean abiflags_valid;
554
555 /* The GOT requirements of input bfds. */
556 struct mips_got_info *got;
557
558 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
559 included directly in this one, but there's no point to wasting
560 the memory just for the infrequently called find_nearest_line. */
561 struct mips_elf_find_line *find_line_info;
562
563 /* An array of stub sections indexed by symbol number. */
564 asection **local_stubs;
565 asection **local_call_stubs;
566
567 /* The Irix 5 support uses two virtual sections, which represent
568 text/data symbols defined in dynamic objects. */
569 asymbol *elf_data_symbol;
570 asymbol *elf_text_symbol;
571 asection *elf_data_section;
572 asection *elf_text_section;
573 };
574
575 /* Get MIPS ELF private object data from BFD's tdata. */
576
577 #define mips_elf_tdata(bfd) \
578 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
579
580 #define TLS_RELOC_P(r_type) \
581 (r_type == R_MIPS_TLS_DTPMOD32 \
582 || r_type == R_MIPS_TLS_DTPMOD64 \
583 || r_type == R_MIPS_TLS_DTPREL32 \
584 || r_type == R_MIPS_TLS_DTPREL64 \
585 || r_type == R_MIPS_TLS_GD \
586 || r_type == R_MIPS_TLS_LDM \
587 || r_type == R_MIPS_TLS_DTPREL_HI16 \
588 || r_type == R_MIPS_TLS_DTPREL_LO16 \
589 || r_type == R_MIPS_TLS_GOTTPREL \
590 || r_type == R_MIPS_TLS_TPREL32 \
591 || r_type == R_MIPS_TLS_TPREL64 \
592 || r_type == R_MIPS_TLS_TPREL_HI16 \
593 || r_type == R_MIPS_TLS_TPREL_LO16 \
594 || r_type == R_MIPS16_TLS_GD \
595 || r_type == R_MIPS16_TLS_LDM \
596 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
597 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
598 || r_type == R_MIPS16_TLS_GOTTPREL \
599 || r_type == R_MIPS16_TLS_TPREL_HI16 \
600 || r_type == R_MIPS16_TLS_TPREL_LO16 \
601 || r_type == R_MICROMIPS_TLS_GD \
602 || r_type == R_MICROMIPS_TLS_LDM \
603 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
604 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
605 || r_type == R_MICROMIPS_TLS_GOTTPREL \
606 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
607 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
608
609 /* Structure used to pass information to mips_elf_output_extsym. */
610
611 struct extsym_info
612 {
613 bfd *abfd;
614 struct bfd_link_info *info;
615 struct ecoff_debug_info *debug;
616 const struct ecoff_debug_swap *swap;
617 bfd_boolean failed;
618 };
619
620 /* The names of the runtime procedure table symbols used on IRIX5. */
621
622 static const char * const mips_elf_dynsym_rtproc_names[] =
623 {
624 "_procedure_table",
625 "_procedure_string_table",
626 "_procedure_table_size",
627 NULL
628 };
629
630 /* These structures are used to generate the .compact_rel section on
631 IRIX5. */
632
633 typedef struct
634 {
635 unsigned long id1; /* Always one? */
636 unsigned long num; /* Number of compact relocation entries. */
637 unsigned long id2; /* Always two? */
638 unsigned long offset; /* The file offset of the first relocation. */
639 unsigned long reserved0; /* Zero? */
640 unsigned long reserved1; /* Zero? */
641 } Elf32_compact_rel;
642
643 typedef struct
644 {
645 bfd_byte id1[4];
646 bfd_byte num[4];
647 bfd_byte id2[4];
648 bfd_byte offset[4];
649 bfd_byte reserved0[4];
650 bfd_byte reserved1[4];
651 } Elf32_External_compact_rel;
652
653 typedef struct
654 {
655 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
656 unsigned int rtype : 4; /* Relocation types. See below. */
657 unsigned int dist2to : 8;
658 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
659 unsigned long konst; /* KONST field. See below. */
660 unsigned long vaddr; /* VADDR to be relocated. */
661 } Elf32_crinfo;
662
663 typedef struct
664 {
665 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
666 unsigned int rtype : 4; /* Relocation types. See below. */
667 unsigned int dist2to : 8;
668 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
669 unsigned long konst; /* KONST field. See below. */
670 } Elf32_crinfo2;
671
672 typedef struct
673 {
674 bfd_byte info[4];
675 bfd_byte konst[4];
676 bfd_byte vaddr[4];
677 } Elf32_External_crinfo;
678
679 typedef struct
680 {
681 bfd_byte info[4];
682 bfd_byte konst[4];
683 } Elf32_External_crinfo2;
684
685 /* These are the constants used to swap the bitfields in a crinfo. */
686
687 #define CRINFO_CTYPE (0x1)
688 #define CRINFO_CTYPE_SH (31)
689 #define CRINFO_RTYPE (0xf)
690 #define CRINFO_RTYPE_SH (27)
691 #define CRINFO_DIST2TO (0xff)
692 #define CRINFO_DIST2TO_SH (19)
693 #define CRINFO_RELVADDR (0x7ffff)
694 #define CRINFO_RELVADDR_SH (0)
695
696 /* A compact relocation info has long (3 words) or short (2 words)
697 formats. A short format doesn't have VADDR field and relvaddr
698 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
699 #define CRF_MIPS_LONG 1
700 #define CRF_MIPS_SHORT 0
701
702 /* There are 4 types of compact relocation at least. The value KONST
703 has different meaning for each type:
704
705 (type) (konst)
706 CT_MIPS_REL32 Address in data
707 CT_MIPS_WORD Address in word (XXX)
708 CT_MIPS_GPHI_LO GP - vaddr
709 CT_MIPS_JMPAD Address to jump
710 */
711
712 #define CRT_MIPS_REL32 0xa
713 #define CRT_MIPS_WORD 0xb
714 #define CRT_MIPS_GPHI_LO 0xc
715 #define CRT_MIPS_JMPAD 0xd
716
717 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
718 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
719 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
720 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
721 \f
722 /* The structure of the runtime procedure descriptor created by the
723 loader for use by the static exception system. */
724
725 typedef struct runtime_pdr {
726 bfd_vma adr; /* Memory address of start of procedure. */
727 long regmask; /* Save register mask. */
728 long regoffset; /* Save register offset. */
729 long fregmask; /* Save floating point register mask. */
730 long fregoffset; /* Save floating point register offset. */
731 long frameoffset; /* Frame size. */
732 short framereg; /* Frame pointer register. */
733 short pcreg; /* Offset or reg of return pc. */
734 long irpss; /* Index into the runtime string table. */
735 long reserved;
736 struct exception_info *exception_info;/* Pointer to exception array. */
737 } RPDR, *pRPDR;
738 #define cbRPDR sizeof (RPDR)
739 #define rpdNil ((pRPDR) 0)
740 \f
741 static struct mips_got_entry *mips_elf_create_local_got_entry
742 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
743 struct mips_elf_link_hash_entry *, int);
744 static bfd_boolean mips_elf_sort_hash_table_f
745 (struct mips_elf_link_hash_entry *, void *);
746 static bfd_vma mips_elf_high
747 (bfd_vma);
748 static bfd_boolean mips_elf_create_dynamic_relocation
749 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
750 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
751 bfd_vma *, asection *);
752 static bfd_vma mips_elf_adjust_gp
753 (bfd *, struct mips_got_info *, bfd *);
754
755 /* This will be used when we sort the dynamic relocation records. */
756 static bfd *reldyn_sorting_bfd;
757
758 /* True if ABFD is for CPUs with load interlocking that include
759 non-MIPS1 CPUs and R3900. */
760 #define LOAD_INTERLOCKS_P(abfd) \
761 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
762 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
763
764 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
765 This should be safe for all architectures. We enable this predicate
766 for RM9000 for now. */
767 #define JAL_TO_BAL_P(abfd) \
768 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
769
770 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
771 This should be safe for all architectures. We enable this predicate for
772 all CPUs. */
773 #define JALR_TO_BAL_P(abfd) 1
774
775 /* True if ABFD is for CPUs that are faster if JR is converted to B.
776 This should be safe for all architectures. We enable this predicate for
777 all CPUs. */
778 #define JR_TO_B_P(abfd) 1
779
780 /* True if ABFD is a PIC object. */
781 #define PIC_OBJECT_P(abfd) \
782 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
783
784 /* Nonzero if ABFD is using the O32 ABI. */
785 #define ABI_O32_P(abfd) \
786 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
787
788 /* Nonzero if ABFD is using the N32 ABI. */
789 #define ABI_N32_P(abfd) \
790 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
791
792 /* Nonzero if ABFD is using the N64 ABI. */
793 #define ABI_64_P(abfd) \
794 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
795
796 /* Nonzero if ABFD is using NewABI conventions. */
797 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
798
799 /* Nonzero if ABFD has microMIPS code. */
800 #define MICROMIPS_P(abfd) \
801 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
802
803 /* Nonzero if ABFD is MIPS R6. */
804 #define MIPSR6_P(abfd) \
805 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
806 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
807
808 /* The IRIX compatibility level we are striving for. */
809 #define IRIX_COMPAT(abfd) \
810 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
811
812 /* Whether we are trying to be compatible with IRIX at all. */
813 #define SGI_COMPAT(abfd) \
814 (IRIX_COMPAT (abfd) != ict_none)
815
816 /* The name of the options section. */
817 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
818 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
819
820 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
821 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
822 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
823 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
824
825 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
826 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
827 (strcmp (NAME, ".MIPS.abiflags") == 0)
828
829 /* Whether the section is readonly. */
830 #define MIPS_ELF_READONLY_SECTION(sec) \
831 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
832 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
833
834 /* The name of the stub section. */
835 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
836
837 /* The size of an external REL relocation. */
838 #define MIPS_ELF_REL_SIZE(abfd) \
839 (get_elf_backend_data (abfd)->s->sizeof_rel)
840
841 /* The size of an external RELA relocation. */
842 #define MIPS_ELF_RELA_SIZE(abfd) \
843 (get_elf_backend_data (abfd)->s->sizeof_rela)
844
845 /* The size of an external dynamic table entry. */
846 #define MIPS_ELF_DYN_SIZE(abfd) \
847 (get_elf_backend_data (abfd)->s->sizeof_dyn)
848
849 /* The size of a GOT entry. */
850 #define MIPS_ELF_GOT_SIZE(abfd) \
851 (get_elf_backend_data (abfd)->s->arch_size / 8)
852
853 /* The size of the .rld_map section. */
854 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
855 (get_elf_backend_data (abfd)->s->arch_size / 8)
856
857 /* The size of a symbol-table entry. */
858 #define MIPS_ELF_SYM_SIZE(abfd) \
859 (get_elf_backend_data (abfd)->s->sizeof_sym)
860
861 /* The default alignment for sections, as a power of two. */
862 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
863 (get_elf_backend_data (abfd)->s->log_file_align)
864
865 /* Get word-sized data. */
866 #define MIPS_ELF_GET_WORD(abfd, ptr) \
867 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
868
869 /* Put out word-sized data. */
870 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
871 (ABI_64_P (abfd) \
872 ? bfd_put_64 (abfd, val, ptr) \
873 : bfd_put_32 (abfd, val, ptr))
874
875 /* The opcode for word-sized loads (LW or LD). */
876 #define MIPS_ELF_LOAD_WORD(abfd) \
877 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
878
879 /* Add a dynamic symbol table-entry. */
880 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
881 _bfd_elf_add_dynamic_entry (info, tag, val)
882
883 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
884 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (abfd, rtype, rela))
885
886 /* The name of the dynamic relocation section. */
887 #define MIPS_ELF_REL_DYN_NAME(INFO) \
888 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
889
890 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
891 from smaller values. Start with zero, widen, *then* decrement. */
892 #define MINUS_ONE (((bfd_vma)0) - 1)
893 #define MINUS_TWO (((bfd_vma)0) - 2)
894
895 /* The value to write into got[1] for SVR4 targets, to identify it is
896 a GNU object. The dynamic linker can then use got[1] to store the
897 module pointer. */
898 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
899 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
900
901 /* The offset of $gp from the beginning of the .got section. */
902 #define ELF_MIPS_GP_OFFSET(INFO) \
903 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
904
905 /* The maximum size of the GOT for it to be addressable using 16-bit
906 offsets from $gp. */
907 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
908
909 /* Instructions which appear in a stub. */
910 #define STUB_LW(abfd) \
911 ((ABI_64_P (abfd) \
912 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
913 : 0x8f998010)) /* lw t9,0x8010(gp) */
914 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
915 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
916 #define STUB_JALR 0x0320f809 /* jalr ra,t9 */
917 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
918 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
919 #define STUB_LI16S(abfd, VAL) \
920 ((ABI_64_P (abfd) \
921 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
922 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
923
924 /* Likewise for the microMIPS ASE. */
925 #define STUB_LW_MICROMIPS(abfd) \
926 (ABI_64_P (abfd) \
927 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
928 : 0xff3c8010) /* lw t9,0x8010(gp) */
929 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
930 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
931 #define STUB_LUI_MICROMIPS(VAL) \
932 (0x41b80000 + (VAL)) /* lui t8,VAL */
933 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
934 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
935 #define STUB_ORI_MICROMIPS(VAL) \
936 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
937 #define STUB_LI16U_MICROMIPS(VAL) \
938 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
939 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
940 (ABI_64_P (abfd) \
941 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
942 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
943
944 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
945 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
946 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
947 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
948 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
949 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
950
951 /* The name of the dynamic interpreter. This is put in the .interp
952 section. */
953
954 #define ELF_DYNAMIC_INTERPRETER(abfd) \
955 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
956 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
957 : "/usr/lib/libc.so.1")
958
959 #ifdef BFD64
960 #define MNAME(bfd,pre,pos) \
961 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
962 #define ELF_R_SYM(bfd, i) \
963 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
964 #define ELF_R_TYPE(bfd, i) \
965 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
966 #define ELF_R_INFO(bfd, s, t) \
967 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
968 #else
969 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
970 #define ELF_R_SYM(bfd, i) \
971 (ELF32_R_SYM (i))
972 #define ELF_R_TYPE(bfd, i) \
973 (ELF32_R_TYPE (i))
974 #define ELF_R_INFO(bfd, s, t) \
975 (ELF32_R_INFO (s, t))
976 #endif
977 \f
978 /* The mips16 compiler uses a couple of special sections to handle
979 floating point arguments.
980
981 Section names that look like .mips16.fn.FNNAME contain stubs that
982 copy floating point arguments from the fp regs to the gp regs and
983 then jump to FNNAME. If any 32 bit function calls FNNAME, the
984 call should be redirected to the stub instead. If no 32 bit
985 function calls FNNAME, the stub should be discarded. We need to
986 consider any reference to the function, not just a call, because
987 if the address of the function is taken we will need the stub,
988 since the address might be passed to a 32 bit function.
989
990 Section names that look like .mips16.call.FNNAME contain stubs
991 that copy floating point arguments from the gp regs to the fp
992 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
993 then any 16 bit function that calls FNNAME should be redirected
994 to the stub instead. If FNNAME is not a 32 bit function, the
995 stub should be discarded.
996
997 .mips16.call.fp.FNNAME sections are similar, but contain stubs
998 which call FNNAME and then copy the return value from the fp regs
999 to the gp regs. These stubs store the return value in $18 while
1000 calling FNNAME; any function which might call one of these stubs
1001 must arrange to save $18 around the call. (This case is not
1002 needed for 32 bit functions that call 16 bit functions, because
1003 16 bit functions always return floating point values in both
1004 $f0/$f1 and $2/$3.)
1005
1006 Note that in all cases FNNAME might be defined statically.
1007 Therefore, FNNAME is not used literally. Instead, the relocation
1008 information will indicate which symbol the section is for.
1009
1010 We record any stubs that we find in the symbol table. */
1011
1012 #define FN_STUB ".mips16.fn."
1013 #define CALL_STUB ".mips16.call."
1014 #define CALL_FP_STUB ".mips16.call.fp."
1015
1016 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1017 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1018 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1019 \f
1020 /* The format of the first PLT entry in an O32 executable. */
1021 static const bfd_vma mips_o32_exec_plt0_entry[] =
1022 {
1023 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1024 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1025 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1026 0x031cc023, /* subu $24, $24, $28 */
1027 0x03e07825, /* or t7, ra, zero */
1028 0x0018c082, /* srl $24, $24, 2 */
1029 0x0320f809, /* jalr $25 */
1030 0x2718fffe /* subu $24, $24, 2 */
1031 };
1032
1033 /* The format of the first PLT entry in an N32 executable. Different
1034 because gp ($28) is not available; we use t2 ($14) instead. */
1035 static const bfd_vma mips_n32_exec_plt0_entry[] =
1036 {
1037 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1038 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1039 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1040 0x030ec023, /* subu $24, $24, $14 */
1041 0x03e07825, /* or t7, ra, zero */
1042 0x0018c082, /* srl $24, $24, 2 */
1043 0x0320f809, /* jalr $25 */
1044 0x2718fffe /* subu $24, $24, 2 */
1045 };
1046
1047 /* The format of the first PLT entry in an N64 executable. Different
1048 from N32 because of the increased size of GOT entries. */
1049 static const bfd_vma mips_n64_exec_plt0_entry[] =
1050 {
1051 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1052 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1053 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1054 0x030ec023, /* subu $24, $24, $14 */
1055 0x03e07825, /* or t7, ra, zero */
1056 0x0018c0c2, /* srl $24, $24, 3 */
1057 0x0320f809, /* jalr $25 */
1058 0x2718fffe /* subu $24, $24, 2 */
1059 };
1060
1061 /* The format of the microMIPS first PLT entry in an O32 executable.
1062 We rely on v0 ($2) rather than t8 ($24) to contain the address
1063 of the GOTPLT entry handled, so this stub may only be used when
1064 all the subsequent PLT entries are microMIPS code too.
1065
1066 The trailing NOP is for alignment and correct disassembly only. */
1067 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1068 {
1069 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1070 0xff23, 0x0000, /* lw $25, 0($3) */
1071 0x0535, /* subu $2, $2, $3 */
1072 0x2525, /* srl $2, $2, 2 */
1073 0x3302, 0xfffe, /* subu $24, $2, 2 */
1074 0x0dff, /* move $15, $31 */
1075 0x45f9, /* jalrs $25 */
1076 0x0f83, /* move $28, $3 */
1077 0x0c00 /* nop */
1078 };
1079
1080 /* The format of the microMIPS first PLT entry in an O32 executable
1081 in the insn32 mode. */
1082 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1083 {
1084 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1085 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1086 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1087 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1088 0x001f, 0x7a90, /* or $15, $31, zero */
1089 0x0318, 0x1040, /* srl $24, $24, 2 */
1090 0x03f9, 0x0f3c, /* jalr $25 */
1091 0x3318, 0xfffe /* subu $24, $24, 2 */
1092 };
1093
1094 /* The format of subsequent standard PLT entries. */
1095 static const bfd_vma mips_exec_plt_entry[] =
1096 {
1097 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1098 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1099 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1100 0x03200008 /* jr $25 */
1101 };
1102
1103 /* In the following PLT entry the JR and ADDIU instructions will
1104 be swapped in _bfd_mips_elf_finish_dynamic_symbol because
1105 LOAD_INTERLOCKS_P will be true for MIPS R6. */
1106 static const bfd_vma mipsr6_exec_plt_entry[] =
1107 {
1108 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1109 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1110 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1111 0x03200009 /* jr $25 */
1112 };
1113
1114 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1115 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1116 directly addressable. */
1117 static const bfd_vma mips16_o32_exec_plt_entry[] =
1118 {
1119 0xb203, /* lw $2, 12($pc) */
1120 0x9a60, /* lw $3, 0($2) */
1121 0x651a, /* move $24, $2 */
1122 0xeb00, /* jr $3 */
1123 0x653b, /* move $25, $3 */
1124 0x6500, /* nop */
1125 0x0000, 0x0000 /* .word (.got.plt entry) */
1126 };
1127
1128 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1129 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1130 static const bfd_vma micromips_o32_exec_plt_entry[] =
1131 {
1132 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1133 0xff22, 0x0000, /* lw $25, 0($2) */
1134 0x4599, /* jr $25 */
1135 0x0f02 /* move $24, $2 */
1136 };
1137
1138 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1139 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1140 {
1141 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1142 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1143 0x0019, 0x0f3c, /* jr $25 */
1144 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1145 };
1146
1147 /* The format of the first PLT entry in a VxWorks executable. */
1148 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1149 {
1150 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1151 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1152 0x8f390008, /* lw t9, 8(t9) */
1153 0x00000000, /* nop */
1154 0x03200008, /* jr t9 */
1155 0x00000000 /* nop */
1156 };
1157
1158 /* The format of subsequent PLT entries. */
1159 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1160 {
1161 0x10000000, /* b .PLT_resolver */
1162 0x24180000, /* li t8, <pltindex> */
1163 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1164 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1165 0x8f390000, /* lw t9, 0(t9) */
1166 0x00000000, /* nop */
1167 0x03200008, /* jr t9 */
1168 0x00000000 /* nop */
1169 };
1170
1171 /* The format of the first PLT entry in a VxWorks shared object. */
1172 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1173 {
1174 0x8f990008, /* lw t9, 8(gp) */
1175 0x00000000, /* nop */
1176 0x03200008, /* jr t9 */
1177 0x00000000, /* nop */
1178 0x00000000, /* nop */
1179 0x00000000 /* nop */
1180 };
1181
1182 /* The format of subsequent PLT entries. */
1183 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1184 {
1185 0x10000000, /* b .PLT_resolver */
1186 0x24180000 /* li t8, <pltindex> */
1187 };
1188 \f
1189 /* microMIPS 32-bit opcode helper installer. */
1190
1191 static void
1192 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1193 {
1194 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1195 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1196 }
1197
1198 /* microMIPS 32-bit opcode helper retriever. */
1199
1200 static bfd_vma
1201 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1202 {
1203 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1204 }
1205 \f
1206 /* Look up an entry in a MIPS ELF linker hash table. */
1207
1208 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1209 ((struct mips_elf_link_hash_entry *) \
1210 elf_link_hash_lookup (&(table)->root, (string), (create), \
1211 (copy), (follow)))
1212
1213 /* Traverse a MIPS ELF linker hash table. */
1214
1215 #define mips_elf_link_hash_traverse(table, func, info) \
1216 (elf_link_hash_traverse \
1217 (&(table)->root, \
1218 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1219 (info)))
1220
1221 /* Find the base offsets for thread-local storage in this object,
1222 for GD/LD and IE/LE respectively. */
1223
1224 #define TP_OFFSET 0x7000
1225 #define DTP_OFFSET 0x8000
1226
1227 static bfd_vma
1228 dtprel_base (struct bfd_link_info *info)
1229 {
1230 /* If tls_sec is NULL, we should have signalled an error already. */
1231 if (elf_hash_table (info)->tls_sec == NULL)
1232 return 0;
1233 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1234 }
1235
1236 static bfd_vma
1237 tprel_base (struct bfd_link_info *info)
1238 {
1239 /* If tls_sec is NULL, we should have signalled an error already. */
1240 if (elf_hash_table (info)->tls_sec == NULL)
1241 return 0;
1242 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1243 }
1244
1245 /* Create an entry in a MIPS ELF linker hash table. */
1246
1247 static struct bfd_hash_entry *
1248 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1249 struct bfd_hash_table *table, const char *string)
1250 {
1251 struct mips_elf_link_hash_entry *ret =
1252 (struct mips_elf_link_hash_entry *) entry;
1253
1254 /* Allocate the structure if it has not already been allocated by a
1255 subclass. */
1256 if (ret == NULL)
1257 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1258 if (ret == NULL)
1259 return (struct bfd_hash_entry *) ret;
1260
1261 /* Call the allocation method of the superclass. */
1262 ret = ((struct mips_elf_link_hash_entry *)
1263 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1264 table, string));
1265 if (ret != NULL)
1266 {
1267 /* Set local fields. */
1268 memset (&ret->esym, 0, sizeof (EXTR));
1269 /* We use -2 as a marker to indicate that the information has
1270 not been set. -1 means there is no associated ifd. */
1271 ret->esym.ifd = -2;
1272 ret->la25_stub = 0;
1273 ret->possibly_dynamic_relocs = 0;
1274 ret->fn_stub = NULL;
1275 ret->call_stub = NULL;
1276 ret->call_fp_stub = NULL;
1277 ret->global_got_area = GGA_NONE;
1278 ret->got_only_for_calls = TRUE;
1279 ret->readonly_reloc = FALSE;
1280 ret->has_static_relocs = FALSE;
1281 ret->no_fn_stub = FALSE;
1282 ret->need_fn_stub = FALSE;
1283 ret->has_nonpic_branches = FALSE;
1284 ret->needs_lazy_stub = FALSE;
1285 ret->use_plt_entry = FALSE;
1286 }
1287
1288 return (struct bfd_hash_entry *) ret;
1289 }
1290
1291 /* Allocate MIPS ELF private object data. */
1292
1293 bfd_boolean
1294 _bfd_mips_elf_mkobject (bfd *abfd)
1295 {
1296 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1297 MIPS_ELF_DATA);
1298 }
1299
1300 bfd_boolean
1301 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1302 {
1303 if (!sec->used_by_bfd)
1304 {
1305 struct _mips_elf_section_data *sdata;
1306 bfd_size_type amt = sizeof (*sdata);
1307
1308 sdata = bfd_zalloc (abfd, amt);
1309 if (sdata == NULL)
1310 return FALSE;
1311 sec->used_by_bfd = sdata;
1312 }
1313
1314 return _bfd_elf_new_section_hook (abfd, sec);
1315 }
1316 \f
1317 /* Read ECOFF debugging information from a .mdebug section into a
1318 ecoff_debug_info structure. */
1319
1320 bfd_boolean
1321 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1322 struct ecoff_debug_info *debug)
1323 {
1324 HDRR *symhdr;
1325 const struct ecoff_debug_swap *swap;
1326 char *ext_hdr;
1327
1328 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1329 memset (debug, 0, sizeof (*debug));
1330
1331 ext_hdr = bfd_malloc (swap->external_hdr_size);
1332 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1333 goto error_return;
1334
1335 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1336 swap->external_hdr_size))
1337 goto error_return;
1338
1339 symhdr = &debug->symbolic_header;
1340 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1341
1342 /* The symbolic header contains absolute file offsets and sizes to
1343 read. */
1344 #define READ(ptr, offset, count, size, type) \
1345 if (symhdr->count == 0) \
1346 debug->ptr = NULL; \
1347 else \
1348 { \
1349 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1350 debug->ptr = bfd_malloc (amt); \
1351 if (debug->ptr == NULL) \
1352 goto error_return; \
1353 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1354 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1355 goto error_return; \
1356 }
1357
1358 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1359 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1360 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1361 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1362 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1363 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1364 union aux_ext *);
1365 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1366 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1367 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1368 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1369 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1370 #undef READ
1371
1372 debug->fdr = NULL;
1373
1374 return TRUE;
1375
1376 error_return:
1377 if (ext_hdr != NULL)
1378 free (ext_hdr);
1379 if (debug->line != NULL)
1380 free (debug->line);
1381 if (debug->external_dnr != NULL)
1382 free (debug->external_dnr);
1383 if (debug->external_pdr != NULL)
1384 free (debug->external_pdr);
1385 if (debug->external_sym != NULL)
1386 free (debug->external_sym);
1387 if (debug->external_opt != NULL)
1388 free (debug->external_opt);
1389 if (debug->external_aux != NULL)
1390 free (debug->external_aux);
1391 if (debug->ss != NULL)
1392 free (debug->ss);
1393 if (debug->ssext != NULL)
1394 free (debug->ssext);
1395 if (debug->external_fdr != NULL)
1396 free (debug->external_fdr);
1397 if (debug->external_rfd != NULL)
1398 free (debug->external_rfd);
1399 if (debug->external_ext != NULL)
1400 free (debug->external_ext);
1401 return FALSE;
1402 }
1403 \f
1404 /* Swap RPDR (runtime procedure table entry) for output. */
1405
1406 static void
1407 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1408 {
1409 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1410 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1411 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1412 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1413 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1414 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1415
1416 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1417 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1418
1419 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1420 }
1421
1422 /* Create a runtime procedure table from the .mdebug section. */
1423
1424 static bfd_boolean
1425 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1426 struct bfd_link_info *info, asection *s,
1427 struct ecoff_debug_info *debug)
1428 {
1429 const struct ecoff_debug_swap *swap;
1430 HDRR *hdr = &debug->symbolic_header;
1431 RPDR *rpdr, *rp;
1432 struct rpdr_ext *erp;
1433 void *rtproc;
1434 struct pdr_ext *epdr;
1435 struct sym_ext *esym;
1436 char *ss, **sv;
1437 char *str;
1438 bfd_size_type size;
1439 bfd_size_type count;
1440 unsigned long sindex;
1441 unsigned long i;
1442 PDR pdr;
1443 SYMR sym;
1444 const char *no_name_func = _("static procedure (no name)");
1445
1446 epdr = NULL;
1447 rpdr = NULL;
1448 esym = NULL;
1449 ss = NULL;
1450 sv = NULL;
1451
1452 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1453
1454 sindex = strlen (no_name_func) + 1;
1455 count = hdr->ipdMax;
1456 if (count > 0)
1457 {
1458 size = swap->external_pdr_size;
1459
1460 epdr = bfd_malloc (size * count);
1461 if (epdr == NULL)
1462 goto error_return;
1463
1464 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1465 goto error_return;
1466
1467 size = sizeof (RPDR);
1468 rp = rpdr = bfd_malloc (size * count);
1469 if (rpdr == NULL)
1470 goto error_return;
1471
1472 size = sizeof (char *);
1473 sv = bfd_malloc (size * count);
1474 if (sv == NULL)
1475 goto error_return;
1476
1477 count = hdr->isymMax;
1478 size = swap->external_sym_size;
1479 esym = bfd_malloc (size * count);
1480 if (esym == NULL)
1481 goto error_return;
1482
1483 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1484 goto error_return;
1485
1486 count = hdr->issMax;
1487 ss = bfd_malloc (count);
1488 if (ss == NULL)
1489 goto error_return;
1490 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1491 goto error_return;
1492
1493 count = hdr->ipdMax;
1494 for (i = 0; i < (unsigned long) count; i++, rp++)
1495 {
1496 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1497 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1498 rp->adr = sym.value;
1499 rp->regmask = pdr.regmask;
1500 rp->regoffset = pdr.regoffset;
1501 rp->fregmask = pdr.fregmask;
1502 rp->fregoffset = pdr.fregoffset;
1503 rp->frameoffset = pdr.frameoffset;
1504 rp->framereg = pdr.framereg;
1505 rp->pcreg = pdr.pcreg;
1506 rp->irpss = sindex;
1507 sv[i] = ss + sym.iss;
1508 sindex += strlen (sv[i]) + 1;
1509 }
1510 }
1511
1512 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1513 size = BFD_ALIGN (size, 16);
1514 rtproc = bfd_alloc (abfd, size);
1515 if (rtproc == NULL)
1516 {
1517 mips_elf_hash_table (info)->procedure_count = 0;
1518 goto error_return;
1519 }
1520
1521 mips_elf_hash_table (info)->procedure_count = count + 2;
1522
1523 erp = rtproc;
1524 memset (erp, 0, sizeof (struct rpdr_ext));
1525 erp++;
1526 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1527 strcpy (str, no_name_func);
1528 str += strlen (no_name_func) + 1;
1529 for (i = 0; i < count; i++)
1530 {
1531 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1532 strcpy (str, sv[i]);
1533 str += strlen (sv[i]) + 1;
1534 }
1535 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1536
1537 /* Set the size and contents of .rtproc section. */
1538 s->size = size;
1539 s->contents = rtproc;
1540
1541 /* Skip this section later on (I don't think this currently
1542 matters, but someday it might). */
1543 s->map_head.link_order = NULL;
1544
1545 if (epdr != NULL)
1546 free (epdr);
1547 if (rpdr != NULL)
1548 free (rpdr);
1549 if (esym != NULL)
1550 free (esym);
1551 if (ss != NULL)
1552 free (ss);
1553 if (sv != NULL)
1554 free (sv);
1555
1556 return TRUE;
1557
1558 error_return:
1559 if (epdr != NULL)
1560 free (epdr);
1561 if (rpdr != NULL)
1562 free (rpdr);
1563 if (esym != NULL)
1564 free (esym);
1565 if (ss != NULL)
1566 free (ss);
1567 if (sv != NULL)
1568 free (sv);
1569 return FALSE;
1570 }
1571 \f
1572 /* We're going to create a stub for H. Create a symbol for the stub's
1573 value and size, to help make the disassembly easier to read. */
1574
1575 static bfd_boolean
1576 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1577 struct mips_elf_link_hash_entry *h,
1578 const char *prefix, asection *s, bfd_vma value,
1579 bfd_vma size)
1580 {
1581 bfd_boolean micromips_p = ELF_ST_IS_MICROMIPS (h->root.other);
1582 struct bfd_link_hash_entry *bh;
1583 struct elf_link_hash_entry *elfh;
1584 char *name;
1585 bfd_boolean res;
1586
1587 if (micromips_p)
1588 value |= 1;
1589
1590 /* Create a new symbol. */
1591 name = concat (prefix, h->root.root.root.string, NULL);
1592 bh = NULL;
1593 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1594 BSF_LOCAL, s, value, NULL,
1595 TRUE, FALSE, &bh);
1596 free (name);
1597 if (! res)
1598 return FALSE;
1599
1600 /* Make it a local function. */
1601 elfh = (struct elf_link_hash_entry *) bh;
1602 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1603 elfh->size = size;
1604 elfh->forced_local = 1;
1605 if (micromips_p)
1606 elfh->other = ELF_ST_SET_MICROMIPS (elfh->other);
1607 return TRUE;
1608 }
1609
1610 /* We're about to redefine H. Create a symbol to represent H's
1611 current value and size, to help make the disassembly easier
1612 to read. */
1613
1614 static bfd_boolean
1615 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1616 struct mips_elf_link_hash_entry *h,
1617 const char *prefix)
1618 {
1619 struct bfd_link_hash_entry *bh;
1620 struct elf_link_hash_entry *elfh;
1621 char *name;
1622 asection *s;
1623 bfd_vma value;
1624 bfd_boolean res;
1625
1626 /* Read the symbol's value. */
1627 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1628 || h->root.root.type == bfd_link_hash_defweak);
1629 s = h->root.root.u.def.section;
1630 value = h->root.root.u.def.value;
1631
1632 /* Create a new symbol. */
1633 name = concat (prefix, h->root.root.root.string, NULL);
1634 bh = NULL;
1635 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1636 BSF_LOCAL, s, value, NULL,
1637 TRUE, FALSE, &bh);
1638 free (name);
1639 if (! res)
1640 return FALSE;
1641
1642 /* Make it local and copy the other attributes from H. */
1643 elfh = (struct elf_link_hash_entry *) bh;
1644 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1645 elfh->other = h->root.other;
1646 elfh->size = h->root.size;
1647 elfh->forced_local = 1;
1648 return TRUE;
1649 }
1650
1651 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1652 function rather than to a hard-float stub. */
1653
1654 static bfd_boolean
1655 section_allows_mips16_refs_p (asection *section)
1656 {
1657 const char *name;
1658
1659 name = bfd_get_section_name (section->owner, section);
1660 return (FN_STUB_P (name)
1661 || CALL_STUB_P (name)
1662 || CALL_FP_STUB_P (name)
1663 || strcmp (name, ".pdr") == 0);
1664 }
1665
1666 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1667 stub section of some kind. Return the R_SYMNDX of the target
1668 function, or 0 if we can't decide which function that is. */
1669
1670 static unsigned long
1671 mips16_stub_symndx (const struct elf_backend_data *bed,
1672 asection *sec ATTRIBUTE_UNUSED,
1673 const Elf_Internal_Rela *relocs,
1674 const Elf_Internal_Rela *relend)
1675 {
1676 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1677 const Elf_Internal_Rela *rel;
1678
1679 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1680 one in a compound relocation. */
1681 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1682 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1683 return ELF_R_SYM (sec->owner, rel->r_info);
1684
1685 /* Otherwise trust the first relocation, whatever its kind. This is
1686 the traditional behavior. */
1687 if (relocs < relend)
1688 return ELF_R_SYM (sec->owner, relocs->r_info);
1689
1690 return 0;
1691 }
1692
1693 /* Check the mips16 stubs for a particular symbol, and see if we can
1694 discard them. */
1695
1696 static void
1697 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1698 struct mips_elf_link_hash_entry *h)
1699 {
1700 /* Dynamic symbols must use the standard call interface, in case other
1701 objects try to call them. */
1702 if (h->fn_stub != NULL
1703 && h->root.dynindx != -1)
1704 {
1705 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1706 h->need_fn_stub = TRUE;
1707 }
1708
1709 if (h->fn_stub != NULL
1710 && ! h->need_fn_stub)
1711 {
1712 /* We don't need the fn_stub; the only references to this symbol
1713 are 16 bit calls. Clobber the size to 0 to prevent it from
1714 being included in the link. */
1715 h->fn_stub->size = 0;
1716 h->fn_stub->flags &= ~SEC_RELOC;
1717 h->fn_stub->reloc_count = 0;
1718 h->fn_stub->flags |= SEC_EXCLUDE;
1719 h->fn_stub->output_section = bfd_abs_section_ptr;
1720 }
1721
1722 if (h->call_stub != NULL
1723 && ELF_ST_IS_MIPS16 (h->root.other))
1724 {
1725 /* We don't need the call_stub; this is a 16 bit function, so
1726 calls from other 16 bit functions are OK. Clobber the size
1727 to 0 to prevent it from being included in the link. */
1728 h->call_stub->size = 0;
1729 h->call_stub->flags &= ~SEC_RELOC;
1730 h->call_stub->reloc_count = 0;
1731 h->call_stub->flags |= SEC_EXCLUDE;
1732 h->call_stub->output_section = bfd_abs_section_ptr;
1733 }
1734
1735 if (h->call_fp_stub != NULL
1736 && ELF_ST_IS_MIPS16 (h->root.other))
1737 {
1738 /* We don't need the call_stub; this is a 16 bit function, so
1739 calls from other 16 bit functions are OK. Clobber the size
1740 to 0 to prevent it from being included in the link. */
1741 h->call_fp_stub->size = 0;
1742 h->call_fp_stub->flags &= ~SEC_RELOC;
1743 h->call_fp_stub->reloc_count = 0;
1744 h->call_fp_stub->flags |= SEC_EXCLUDE;
1745 h->call_fp_stub->output_section = bfd_abs_section_ptr;
1746 }
1747 }
1748
1749 /* Hashtable callbacks for mips_elf_la25_stubs. */
1750
1751 static hashval_t
1752 mips_elf_la25_stub_hash (const void *entry_)
1753 {
1754 const struct mips_elf_la25_stub *entry;
1755
1756 entry = (struct mips_elf_la25_stub *) entry_;
1757 return entry->h->root.root.u.def.section->id
1758 + entry->h->root.root.u.def.value;
1759 }
1760
1761 static int
1762 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1763 {
1764 const struct mips_elf_la25_stub *entry1, *entry2;
1765
1766 entry1 = (struct mips_elf_la25_stub *) entry1_;
1767 entry2 = (struct mips_elf_la25_stub *) entry2_;
1768 return ((entry1->h->root.root.u.def.section
1769 == entry2->h->root.root.u.def.section)
1770 && (entry1->h->root.root.u.def.value
1771 == entry2->h->root.root.u.def.value));
1772 }
1773
1774 /* Called by the linker to set up the la25 stub-creation code. FN is
1775 the linker's implementation of add_stub_function. Return true on
1776 success. */
1777
1778 bfd_boolean
1779 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1780 asection *(*fn) (const char *, asection *,
1781 asection *))
1782 {
1783 struct mips_elf_link_hash_table *htab;
1784
1785 htab = mips_elf_hash_table (info);
1786 if (htab == NULL)
1787 return FALSE;
1788
1789 htab->add_stub_section = fn;
1790 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1791 mips_elf_la25_stub_eq, NULL);
1792 if (htab->la25_stubs == NULL)
1793 return FALSE;
1794
1795 return TRUE;
1796 }
1797
1798 /* Return true if H is a locally-defined PIC function, in the sense
1799 that it or its fn_stub might need $25 to be valid on entry.
1800 Note that MIPS16 functions set up $gp using PC-relative instructions,
1801 so they themselves never need $25 to be valid. Only non-MIPS16
1802 entry points are of interest here. */
1803
1804 static bfd_boolean
1805 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1806 {
1807 return ((h->root.root.type == bfd_link_hash_defined
1808 || h->root.root.type == bfd_link_hash_defweak)
1809 && h->root.def_regular
1810 && !bfd_is_abs_section (h->root.root.u.def.section)
1811 && !bfd_is_und_section (h->root.root.u.def.section)
1812 && (!ELF_ST_IS_MIPS16 (h->root.other)
1813 || (h->fn_stub && h->need_fn_stub))
1814 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1815 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1816 }
1817
1818 /* Set *SEC to the input section that contains the target of STUB.
1819 Return the offset of the target from the start of that section. */
1820
1821 static bfd_vma
1822 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1823 asection **sec)
1824 {
1825 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1826 {
1827 BFD_ASSERT (stub->h->need_fn_stub);
1828 *sec = stub->h->fn_stub;
1829 return 0;
1830 }
1831 else
1832 {
1833 *sec = stub->h->root.root.u.def.section;
1834 return stub->h->root.root.u.def.value;
1835 }
1836 }
1837
1838 /* STUB describes an la25 stub that we have decided to implement
1839 by inserting an LUI/ADDIU pair before the target function.
1840 Create the section and redirect the function symbol to it. */
1841
1842 static bfd_boolean
1843 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1844 struct bfd_link_info *info)
1845 {
1846 struct mips_elf_link_hash_table *htab;
1847 char *name;
1848 asection *s, *input_section;
1849 unsigned int align;
1850
1851 htab = mips_elf_hash_table (info);
1852 if (htab == NULL)
1853 return FALSE;
1854
1855 /* Create a unique name for the new section. */
1856 name = bfd_malloc (11 + sizeof (".text.stub."));
1857 if (name == NULL)
1858 return FALSE;
1859 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1860
1861 /* Create the section. */
1862 mips_elf_get_la25_target (stub, &input_section);
1863 s = htab->add_stub_section (name, input_section,
1864 input_section->output_section);
1865 if (s == NULL)
1866 return FALSE;
1867
1868 /* Make sure that any padding goes before the stub. */
1869 align = input_section->alignment_power;
1870 if (!bfd_set_section_alignment (s->owner, s, align))
1871 return FALSE;
1872 if (align > 3)
1873 s->size = (1 << align) - 8;
1874
1875 /* Create a symbol for the stub. */
1876 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1877 stub->stub_section = s;
1878 stub->offset = s->size;
1879
1880 /* Allocate room for it. */
1881 s->size += 8;
1882 return TRUE;
1883 }
1884
1885 /* STUB describes an la25 stub that we have decided to implement
1886 with a separate trampoline. Allocate room for it and redirect
1887 the function symbol to it. */
1888
1889 static bfd_boolean
1890 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1891 struct bfd_link_info *info)
1892 {
1893 struct mips_elf_link_hash_table *htab;
1894 asection *s;
1895
1896 htab = mips_elf_hash_table (info);
1897 if (htab == NULL)
1898 return FALSE;
1899
1900 /* Create a trampoline section, if we haven't already. */
1901 s = htab->strampoline;
1902 if (s == NULL)
1903 {
1904 asection *input_section = stub->h->root.root.u.def.section;
1905 s = htab->add_stub_section (".text", NULL,
1906 input_section->output_section);
1907 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1908 return FALSE;
1909 htab->strampoline = s;
1910 }
1911
1912 /* Create a symbol for the stub. */
1913 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1914 stub->stub_section = s;
1915 stub->offset = s->size;
1916
1917 /* Allocate room for it. */
1918 s->size += 16;
1919 return TRUE;
1920 }
1921
1922 /* H describes a symbol that needs an la25 stub. Make sure that an
1923 appropriate stub exists and point H at it. */
1924
1925 static bfd_boolean
1926 mips_elf_add_la25_stub (struct bfd_link_info *info,
1927 struct mips_elf_link_hash_entry *h)
1928 {
1929 struct mips_elf_link_hash_table *htab;
1930 struct mips_elf_la25_stub search, *stub;
1931 bfd_boolean use_trampoline_p;
1932 asection *s;
1933 bfd_vma value;
1934 void **slot;
1935
1936 /* Describe the stub we want. */
1937 search.stub_section = NULL;
1938 search.offset = 0;
1939 search.h = h;
1940
1941 /* See if we've already created an equivalent stub. */
1942 htab = mips_elf_hash_table (info);
1943 if (htab == NULL)
1944 return FALSE;
1945
1946 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1947 if (slot == NULL)
1948 return FALSE;
1949
1950 stub = (struct mips_elf_la25_stub *) *slot;
1951 if (stub != NULL)
1952 {
1953 /* We can reuse the existing stub. */
1954 h->la25_stub = stub;
1955 return TRUE;
1956 }
1957
1958 /* Create a permanent copy of ENTRY and add it to the hash table. */
1959 stub = bfd_malloc (sizeof (search));
1960 if (stub == NULL)
1961 return FALSE;
1962 *stub = search;
1963 *slot = stub;
1964
1965 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1966 of the section and if we would need no more than 2 nops. */
1967 value = mips_elf_get_la25_target (stub, &s);
1968 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
1969 value &= ~1;
1970 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1971
1972 h->la25_stub = stub;
1973 return (use_trampoline_p
1974 ? mips_elf_add_la25_trampoline (stub, info)
1975 : mips_elf_add_la25_intro (stub, info));
1976 }
1977
1978 /* A mips_elf_link_hash_traverse callback that is called before sizing
1979 sections. DATA points to a mips_htab_traverse_info structure. */
1980
1981 static bfd_boolean
1982 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1983 {
1984 struct mips_htab_traverse_info *hti;
1985
1986 hti = (struct mips_htab_traverse_info *) data;
1987 if (!bfd_link_relocatable (hti->info))
1988 mips_elf_check_mips16_stubs (hti->info, h);
1989
1990 if (mips_elf_local_pic_function_p (h))
1991 {
1992 /* PR 12845: If H is in a section that has been garbage
1993 collected it will have its output section set to *ABS*. */
1994 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1995 return TRUE;
1996
1997 /* H is a function that might need $25 to be valid on entry.
1998 If we're creating a non-PIC relocatable object, mark H as
1999 being PIC. If we're creating a non-relocatable object with
2000 non-PIC branches and jumps to H, make sure that H has an la25
2001 stub. */
2002 if (bfd_link_relocatable (hti->info))
2003 {
2004 if (!PIC_OBJECT_P (hti->output_bfd))
2005 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2006 }
2007 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2008 {
2009 hti->error = TRUE;
2010 return FALSE;
2011 }
2012 }
2013 return TRUE;
2014 }
2015 \f
2016 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2017 Most mips16 instructions are 16 bits, but these instructions
2018 are 32 bits.
2019
2020 The format of these instructions is:
2021
2022 +--------------+--------------------------------+
2023 | JALX | X| Imm 20:16 | Imm 25:21 |
2024 +--------------+--------------------------------+
2025 | Immediate 15:0 |
2026 +-----------------------------------------------+
2027
2028 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2029 Note that the immediate value in the first word is swapped.
2030
2031 When producing a relocatable object file, R_MIPS16_26 is
2032 handled mostly like R_MIPS_26. In particular, the addend is
2033 stored as a straight 26-bit value in a 32-bit instruction.
2034 (gas makes life simpler for itself by never adjusting a
2035 R_MIPS16_26 reloc to be against a section, so the addend is
2036 always zero). However, the 32 bit instruction is stored as 2
2037 16-bit values, rather than a single 32-bit value. In a
2038 big-endian file, the result is the same; in a little-endian
2039 file, the two 16-bit halves of the 32 bit value are swapped.
2040 This is so that a disassembler can recognize the jal
2041 instruction.
2042
2043 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2044 instruction stored as two 16-bit values. The addend A is the
2045 contents of the targ26 field. The calculation is the same as
2046 R_MIPS_26. When storing the calculated value, reorder the
2047 immediate value as shown above, and don't forget to store the
2048 value as two 16-bit values.
2049
2050 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2051 defined as
2052
2053 big-endian:
2054 +--------+----------------------+
2055 | | |
2056 | | targ26-16 |
2057 |31 26|25 0|
2058 +--------+----------------------+
2059
2060 little-endian:
2061 +----------+------+-------------+
2062 | | | |
2063 | sub1 | | sub2 |
2064 |0 9|10 15|16 31|
2065 +----------+--------------------+
2066 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2067 ((sub1 << 16) | sub2)).
2068
2069 When producing a relocatable object file, the calculation is
2070 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2071 When producing a fully linked file, the calculation is
2072 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2073 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2074
2075 The table below lists the other MIPS16 instruction relocations.
2076 Each one is calculated in the same way as the non-MIPS16 relocation
2077 given on the right, but using the extended MIPS16 layout of 16-bit
2078 immediate fields:
2079
2080 R_MIPS16_GPREL R_MIPS_GPREL16
2081 R_MIPS16_GOT16 R_MIPS_GOT16
2082 R_MIPS16_CALL16 R_MIPS_CALL16
2083 R_MIPS16_HI16 R_MIPS_HI16
2084 R_MIPS16_LO16 R_MIPS_LO16
2085
2086 A typical instruction will have a format like this:
2087
2088 +--------------+--------------------------------+
2089 | EXTEND | Imm 10:5 | Imm 15:11 |
2090 +--------------+--------------------------------+
2091 | Major | rx | ry | Imm 4:0 |
2092 +--------------+--------------------------------+
2093
2094 EXTEND is the five bit value 11110. Major is the instruction
2095 opcode.
2096
2097 All we need to do here is shuffle the bits appropriately.
2098 As above, the two 16-bit halves must be swapped on a
2099 little-endian system.
2100
2101 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2102 relocatable field is shifted by 1 rather than 2 and the same bit
2103 shuffling is done as with the relocations above. */
2104
2105 static inline bfd_boolean
2106 mips16_reloc_p (int r_type)
2107 {
2108 switch (r_type)
2109 {
2110 case R_MIPS16_26:
2111 case R_MIPS16_GPREL:
2112 case R_MIPS16_GOT16:
2113 case R_MIPS16_CALL16:
2114 case R_MIPS16_HI16:
2115 case R_MIPS16_LO16:
2116 case R_MIPS16_TLS_GD:
2117 case R_MIPS16_TLS_LDM:
2118 case R_MIPS16_TLS_DTPREL_HI16:
2119 case R_MIPS16_TLS_DTPREL_LO16:
2120 case R_MIPS16_TLS_GOTTPREL:
2121 case R_MIPS16_TLS_TPREL_HI16:
2122 case R_MIPS16_TLS_TPREL_LO16:
2123 case R_MIPS16_PC16_S1:
2124 return TRUE;
2125
2126 default:
2127 return FALSE;
2128 }
2129 }
2130
2131 /* Check if a microMIPS reloc. */
2132
2133 static inline bfd_boolean
2134 micromips_reloc_p (unsigned int r_type)
2135 {
2136 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2137 }
2138
2139 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2140 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2141 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2142
2143 static inline bfd_boolean
2144 micromips_reloc_shuffle_p (unsigned int r_type)
2145 {
2146 return (micromips_reloc_p (r_type)
2147 && r_type != R_MICROMIPS_PC7_S1
2148 && r_type != R_MICROMIPS_PC10_S1);
2149 }
2150
2151 static inline bfd_boolean
2152 got16_reloc_p (int r_type)
2153 {
2154 return (r_type == R_MIPS_GOT16
2155 || r_type == R_MIPS16_GOT16
2156 || r_type == R_MICROMIPS_GOT16);
2157 }
2158
2159 static inline bfd_boolean
2160 call16_reloc_p (int r_type)
2161 {
2162 return (r_type == R_MIPS_CALL16
2163 || r_type == R_MIPS16_CALL16
2164 || r_type == R_MICROMIPS_CALL16);
2165 }
2166
2167 static inline bfd_boolean
2168 got_disp_reloc_p (unsigned int r_type)
2169 {
2170 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2171 }
2172
2173 static inline bfd_boolean
2174 got_page_reloc_p (unsigned int r_type)
2175 {
2176 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2177 }
2178
2179 static inline bfd_boolean
2180 got_lo16_reloc_p (unsigned int r_type)
2181 {
2182 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2183 }
2184
2185 static inline bfd_boolean
2186 call_hi16_reloc_p (unsigned int r_type)
2187 {
2188 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2189 }
2190
2191 static inline bfd_boolean
2192 call_lo16_reloc_p (unsigned int r_type)
2193 {
2194 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2195 }
2196
2197 static inline bfd_boolean
2198 hi16_reloc_p (int r_type)
2199 {
2200 return (r_type == R_MIPS_HI16
2201 || r_type == R_MIPS16_HI16
2202 || r_type == R_MICROMIPS_HI16
2203 || r_type == R_MIPS_PCHI16);
2204 }
2205
2206 static inline bfd_boolean
2207 lo16_reloc_p (int r_type)
2208 {
2209 return (r_type == R_MIPS_LO16
2210 || r_type == R_MIPS16_LO16
2211 || r_type == R_MICROMIPS_LO16
2212 || r_type == R_MIPS_PCLO16);
2213 }
2214
2215 static inline bfd_boolean
2216 mips16_call_reloc_p (int r_type)
2217 {
2218 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2219 }
2220
2221 static inline bfd_boolean
2222 jal_reloc_p (int r_type)
2223 {
2224 return (r_type == R_MIPS_26
2225 || r_type == R_MIPS16_26
2226 || r_type == R_MICROMIPS_26_S1);
2227 }
2228
2229 static inline bfd_boolean
2230 b_reloc_p (int r_type)
2231 {
2232 return (r_type == R_MIPS_PC26_S2
2233 || r_type == R_MIPS_PC21_S2
2234 || r_type == R_MIPS_PC16
2235 || r_type == R_MIPS_GNU_REL16_S2
2236 || r_type == R_MIPS16_PC16_S1
2237 || r_type == R_MICROMIPS_PC16_S1
2238 || r_type == R_MICROMIPS_PC10_S1
2239 || r_type == R_MICROMIPS_PC7_S1);
2240 }
2241
2242 static inline bfd_boolean
2243 aligned_pcrel_reloc_p (int r_type)
2244 {
2245 return (r_type == R_MIPS_PC18_S3
2246 || r_type == R_MIPS_PC19_S2);
2247 }
2248
2249 static inline bfd_boolean
2250 branch_reloc_p (int r_type)
2251 {
2252 return (r_type == R_MIPS_26
2253 || r_type == R_MIPS_PC26_S2
2254 || r_type == R_MIPS_PC21_S2
2255 || r_type == R_MIPS_PC16
2256 || r_type == R_MIPS_GNU_REL16_S2);
2257 }
2258
2259 static inline bfd_boolean
2260 mips16_branch_reloc_p (int r_type)
2261 {
2262 return (r_type == R_MIPS16_26
2263 || r_type == R_MIPS16_PC16_S1);
2264 }
2265
2266 static inline bfd_boolean
2267 micromips_branch_reloc_p (int r_type)
2268 {
2269 return (r_type == R_MICROMIPS_26_S1
2270 || r_type == R_MICROMIPS_PC16_S1
2271 || r_type == R_MICROMIPS_PC10_S1
2272 || r_type == R_MICROMIPS_PC7_S1);
2273 }
2274
2275 static inline bfd_boolean
2276 tls_gd_reloc_p (unsigned int r_type)
2277 {
2278 return (r_type == R_MIPS_TLS_GD
2279 || r_type == R_MIPS16_TLS_GD
2280 || r_type == R_MICROMIPS_TLS_GD);
2281 }
2282
2283 static inline bfd_boolean
2284 tls_ldm_reloc_p (unsigned int r_type)
2285 {
2286 return (r_type == R_MIPS_TLS_LDM
2287 || r_type == R_MIPS16_TLS_LDM
2288 || r_type == R_MICROMIPS_TLS_LDM);
2289 }
2290
2291 static inline bfd_boolean
2292 tls_gottprel_reloc_p (unsigned int r_type)
2293 {
2294 return (r_type == R_MIPS_TLS_GOTTPREL
2295 || r_type == R_MIPS16_TLS_GOTTPREL
2296 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2297 }
2298
2299 void
2300 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2301 bfd_boolean jal_shuffle, bfd_byte *data)
2302 {
2303 bfd_vma first, second, val;
2304
2305 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2306 return;
2307
2308 /* Pick up the first and second halfwords of the instruction. */
2309 first = bfd_get_16 (abfd, data);
2310 second = bfd_get_16 (abfd, data + 2);
2311 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2312 val = first << 16 | second;
2313 else if (r_type != R_MIPS16_26)
2314 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2315 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2316 else
2317 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2318 | ((first & 0x1f) << 21) | second);
2319 bfd_put_32 (abfd, val, data);
2320 }
2321
2322 void
2323 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2324 bfd_boolean jal_shuffle, bfd_byte *data)
2325 {
2326 bfd_vma first, second, val;
2327
2328 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2329 return;
2330
2331 val = bfd_get_32 (abfd, data);
2332 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2333 {
2334 second = val & 0xffff;
2335 first = val >> 16;
2336 }
2337 else if (r_type != R_MIPS16_26)
2338 {
2339 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2340 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2341 }
2342 else
2343 {
2344 second = val & 0xffff;
2345 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2346 | ((val >> 21) & 0x1f);
2347 }
2348 bfd_put_16 (abfd, second, data + 2);
2349 bfd_put_16 (abfd, first, data);
2350 }
2351
2352 bfd_reloc_status_type
2353 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2354 arelent *reloc_entry, asection *input_section,
2355 bfd_boolean relocatable, void *data, bfd_vma gp)
2356 {
2357 bfd_vma relocation;
2358 bfd_signed_vma val;
2359 bfd_reloc_status_type status;
2360
2361 if (bfd_is_com_section (symbol->section))
2362 relocation = 0;
2363 else
2364 relocation = symbol->value;
2365
2366 relocation += symbol->section->output_section->vma;
2367 relocation += symbol->section->output_offset;
2368
2369 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2370 return bfd_reloc_outofrange;
2371
2372 /* Set val to the offset into the section or symbol. */
2373 val = reloc_entry->addend;
2374
2375 _bfd_mips_elf_sign_extend (val, 16);
2376
2377 /* Adjust val for the final section location and GP value. If we
2378 are producing relocatable output, we don't want to do this for
2379 an external symbol. */
2380 if (! relocatable
2381 || (symbol->flags & BSF_SECTION_SYM) != 0)
2382 val += relocation - gp;
2383
2384 if (reloc_entry->howto->partial_inplace)
2385 {
2386 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2387 (bfd_byte *) data
2388 + reloc_entry->address);
2389 if (status != bfd_reloc_ok)
2390 return status;
2391 }
2392 else
2393 reloc_entry->addend = val;
2394
2395 if (relocatable)
2396 reloc_entry->address += input_section->output_offset;
2397
2398 return bfd_reloc_ok;
2399 }
2400
2401 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2402 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2403 that contains the relocation field and DATA points to the start of
2404 INPUT_SECTION. */
2405
2406 struct mips_hi16
2407 {
2408 struct mips_hi16 *next;
2409 bfd_byte *data;
2410 asection *input_section;
2411 arelent rel;
2412 };
2413
2414 /* FIXME: This should not be a static variable. */
2415
2416 static struct mips_hi16 *mips_hi16_list;
2417
2418 /* A howto special_function for REL *HI16 relocations. We can only
2419 calculate the correct value once we've seen the partnering
2420 *LO16 relocation, so just save the information for later.
2421
2422 The ABI requires that the *LO16 immediately follow the *HI16.
2423 However, as a GNU extension, we permit an arbitrary number of
2424 *HI16s to be associated with a single *LO16. This significantly
2425 simplies the relocation handling in gcc. */
2426
2427 bfd_reloc_status_type
2428 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2429 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2430 asection *input_section, bfd *output_bfd,
2431 char **error_message ATTRIBUTE_UNUSED)
2432 {
2433 struct mips_hi16 *n;
2434
2435 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2436 return bfd_reloc_outofrange;
2437
2438 n = bfd_malloc (sizeof *n);
2439 if (n == NULL)
2440 return bfd_reloc_outofrange;
2441
2442 n->next = mips_hi16_list;
2443 n->data = data;
2444 n->input_section = input_section;
2445 n->rel = *reloc_entry;
2446 mips_hi16_list = n;
2447
2448 if (output_bfd != NULL)
2449 reloc_entry->address += input_section->output_offset;
2450
2451 return bfd_reloc_ok;
2452 }
2453
2454 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2455 like any other 16-bit relocation when applied to global symbols, but is
2456 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2457
2458 bfd_reloc_status_type
2459 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2460 void *data, asection *input_section,
2461 bfd *output_bfd, char **error_message)
2462 {
2463 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2464 || bfd_is_und_section (bfd_get_section (symbol))
2465 || bfd_is_com_section (bfd_get_section (symbol)))
2466 /* The relocation is against a global symbol. */
2467 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2468 input_section, output_bfd,
2469 error_message);
2470
2471 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2472 input_section, output_bfd, error_message);
2473 }
2474
2475 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2476 is a straightforward 16 bit inplace relocation, but we must deal with
2477 any partnering high-part relocations as well. */
2478
2479 bfd_reloc_status_type
2480 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2481 void *data, asection *input_section,
2482 bfd *output_bfd, char **error_message)
2483 {
2484 bfd_vma vallo;
2485 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2486
2487 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2488 return bfd_reloc_outofrange;
2489
2490 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2491 location);
2492 vallo = bfd_get_32 (abfd, location);
2493 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2494 location);
2495
2496 while (mips_hi16_list != NULL)
2497 {
2498 bfd_reloc_status_type ret;
2499 struct mips_hi16 *hi;
2500
2501 hi = mips_hi16_list;
2502
2503 /* R_MIPS*_GOT16 relocations are something of a special case. We
2504 want to install the addend in the same way as for a R_MIPS*_HI16
2505 relocation (with a rightshift of 16). However, since GOT16
2506 relocations can also be used with global symbols, their howto
2507 has a rightshift of 0. */
2508 if (hi->rel.howto->type == R_MIPS_GOT16)
2509 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2510 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2511 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2512 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2513 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2514
2515 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2516 carry or borrow will induce a change of +1 or -1 in the high part. */
2517 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2518
2519 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2520 hi->input_section, output_bfd,
2521 error_message);
2522 if (ret != bfd_reloc_ok)
2523 return ret;
2524
2525 mips_hi16_list = hi->next;
2526 free (hi);
2527 }
2528
2529 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2530 input_section, output_bfd,
2531 error_message);
2532 }
2533
2534 /* A generic howto special_function. This calculates and installs the
2535 relocation itself, thus avoiding the oft-discussed problems in
2536 bfd_perform_relocation and bfd_install_relocation. */
2537
2538 bfd_reloc_status_type
2539 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2540 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2541 asection *input_section, bfd *output_bfd,
2542 char **error_message ATTRIBUTE_UNUSED)
2543 {
2544 bfd_signed_vma val;
2545 bfd_reloc_status_type status;
2546 bfd_boolean relocatable;
2547
2548 relocatable = (output_bfd != NULL);
2549
2550 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2551 return bfd_reloc_outofrange;
2552
2553 /* Build up the field adjustment in VAL. */
2554 val = 0;
2555 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2556 {
2557 /* Either we're calculating the final field value or we have a
2558 relocation against a section symbol. Add in the section's
2559 offset or address. */
2560 val += symbol->section->output_section->vma;
2561 val += symbol->section->output_offset;
2562 }
2563
2564 if (!relocatable)
2565 {
2566 /* We're calculating the final field value. Add in the symbol's value
2567 and, if pc-relative, subtract the address of the field itself. */
2568 val += symbol->value;
2569 if (reloc_entry->howto->pc_relative)
2570 {
2571 val -= input_section->output_section->vma;
2572 val -= input_section->output_offset;
2573 val -= reloc_entry->address;
2574 }
2575 }
2576
2577 /* VAL is now the final adjustment. If we're keeping this relocation
2578 in the output file, and if the relocation uses a separate addend,
2579 we just need to add VAL to that addend. Otherwise we need to add
2580 VAL to the relocation field itself. */
2581 if (relocatable && !reloc_entry->howto->partial_inplace)
2582 reloc_entry->addend += val;
2583 else
2584 {
2585 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2586
2587 /* Add in the separate addend, if any. */
2588 val += reloc_entry->addend;
2589
2590 /* Add VAL to the relocation field. */
2591 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2592 location);
2593 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2594 location);
2595 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2596 location);
2597
2598 if (status != bfd_reloc_ok)
2599 return status;
2600 }
2601
2602 if (relocatable)
2603 reloc_entry->address += input_section->output_offset;
2604
2605 return bfd_reloc_ok;
2606 }
2607 \f
2608 /* Swap an entry in a .gptab section. Note that these routines rely
2609 on the equivalence of the two elements of the union. */
2610
2611 static void
2612 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2613 Elf32_gptab *in)
2614 {
2615 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2616 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2617 }
2618
2619 static void
2620 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2621 Elf32_External_gptab *ex)
2622 {
2623 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2624 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2625 }
2626
2627 static void
2628 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2629 Elf32_External_compact_rel *ex)
2630 {
2631 H_PUT_32 (abfd, in->id1, ex->id1);
2632 H_PUT_32 (abfd, in->num, ex->num);
2633 H_PUT_32 (abfd, in->id2, ex->id2);
2634 H_PUT_32 (abfd, in->offset, ex->offset);
2635 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2636 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2637 }
2638
2639 static void
2640 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2641 Elf32_External_crinfo *ex)
2642 {
2643 unsigned long l;
2644
2645 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2646 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2647 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2648 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2649 H_PUT_32 (abfd, l, ex->info);
2650 H_PUT_32 (abfd, in->konst, ex->konst);
2651 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2652 }
2653 \f
2654 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2655 routines swap this structure in and out. They are used outside of
2656 BFD, so they are globally visible. */
2657
2658 void
2659 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2660 Elf32_RegInfo *in)
2661 {
2662 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2663 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2664 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2665 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2666 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2667 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2668 }
2669
2670 void
2671 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2672 Elf32_External_RegInfo *ex)
2673 {
2674 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2675 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2676 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2677 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2678 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2679 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2680 }
2681
2682 /* In the 64 bit ABI, the .MIPS.options section holds register
2683 information in an Elf64_Reginfo structure. These routines swap
2684 them in and out. They are globally visible because they are used
2685 outside of BFD. These routines are here so that gas can call them
2686 without worrying about whether the 64 bit ABI has been included. */
2687
2688 void
2689 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2690 Elf64_Internal_RegInfo *in)
2691 {
2692 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2693 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2694 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2695 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2696 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2697 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2698 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2699 }
2700
2701 void
2702 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2703 Elf64_External_RegInfo *ex)
2704 {
2705 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2706 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2707 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2708 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2709 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2710 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2711 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2712 }
2713
2714 /* Swap in an options header. */
2715
2716 void
2717 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2718 Elf_Internal_Options *in)
2719 {
2720 in->kind = H_GET_8 (abfd, ex->kind);
2721 in->size = H_GET_8 (abfd, ex->size);
2722 in->section = H_GET_16 (abfd, ex->section);
2723 in->info = H_GET_32 (abfd, ex->info);
2724 }
2725
2726 /* Swap out an options header. */
2727
2728 void
2729 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2730 Elf_External_Options *ex)
2731 {
2732 H_PUT_8 (abfd, in->kind, ex->kind);
2733 H_PUT_8 (abfd, in->size, ex->size);
2734 H_PUT_16 (abfd, in->section, ex->section);
2735 H_PUT_32 (abfd, in->info, ex->info);
2736 }
2737
2738 /* Swap in an abiflags structure. */
2739
2740 void
2741 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2742 const Elf_External_ABIFlags_v0 *ex,
2743 Elf_Internal_ABIFlags_v0 *in)
2744 {
2745 in->version = H_GET_16 (abfd, ex->version);
2746 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2747 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2748 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2749 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2750 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2751 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2752 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2753 in->ases = H_GET_32 (abfd, ex->ases);
2754 in->flags1 = H_GET_32 (abfd, ex->flags1);
2755 in->flags2 = H_GET_32 (abfd, ex->flags2);
2756 }
2757
2758 /* Swap out an abiflags structure. */
2759
2760 void
2761 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2762 const Elf_Internal_ABIFlags_v0 *in,
2763 Elf_External_ABIFlags_v0 *ex)
2764 {
2765 H_PUT_16 (abfd, in->version, ex->version);
2766 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2767 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2768 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2769 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2770 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2771 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2772 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2773 H_PUT_32 (abfd, in->ases, ex->ases);
2774 H_PUT_32 (abfd, in->flags1, ex->flags1);
2775 H_PUT_32 (abfd, in->flags2, ex->flags2);
2776 }
2777 \f
2778 /* This function is called via qsort() to sort the dynamic relocation
2779 entries by increasing r_symndx value. */
2780
2781 static int
2782 sort_dynamic_relocs (const void *arg1, const void *arg2)
2783 {
2784 Elf_Internal_Rela int_reloc1;
2785 Elf_Internal_Rela int_reloc2;
2786 int diff;
2787
2788 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2789 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2790
2791 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2792 if (diff != 0)
2793 return diff;
2794
2795 if (int_reloc1.r_offset < int_reloc2.r_offset)
2796 return -1;
2797 if (int_reloc1.r_offset > int_reloc2.r_offset)
2798 return 1;
2799 return 0;
2800 }
2801
2802 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2803
2804 static int
2805 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2806 const void *arg2 ATTRIBUTE_UNUSED)
2807 {
2808 #ifdef BFD64
2809 Elf_Internal_Rela int_reloc1[3];
2810 Elf_Internal_Rela int_reloc2[3];
2811
2812 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2813 (reldyn_sorting_bfd, arg1, int_reloc1);
2814 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2815 (reldyn_sorting_bfd, arg2, int_reloc2);
2816
2817 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2818 return -1;
2819 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2820 return 1;
2821
2822 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2823 return -1;
2824 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2825 return 1;
2826 return 0;
2827 #else
2828 abort ();
2829 #endif
2830 }
2831
2832
2833 /* This routine is used to write out ECOFF debugging external symbol
2834 information. It is called via mips_elf_link_hash_traverse. The
2835 ECOFF external symbol information must match the ELF external
2836 symbol information. Unfortunately, at this point we don't know
2837 whether a symbol is required by reloc information, so the two
2838 tables may wind up being different. We must sort out the external
2839 symbol information before we can set the final size of the .mdebug
2840 section, and we must set the size of the .mdebug section before we
2841 can relocate any sections, and we can't know which symbols are
2842 required by relocation until we relocate the sections.
2843 Fortunately, it is relatively unlikely that any symbol will be
2844 stripped but required by a reloc. In particular, it can not happen
2845 when generating a final executable. */
2846
2847 static bfd_boolean
2848 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2849 {
2850 struct extsym_info *einfo = data;
2851 bfd_boolean strip;
2852 asection *sec, *output_section;
2853
2854 if (h->root.indx == -2)
2855 strip = FALSE;
2856 else if ((h->root.def_dynamic
2857 || h->root.ref_dynamic
2858 || h->root.type == bfd_link_hash_new)
2859 && !h->root.def_regular
2860 && !h->root.ref_regular)
2861 strip = TRUE;
2862 else if (einfo->info->strip == strip_all
2863 || (einfo->info->strip == strip_some
2864 && bfd_hash_lookup (einfo->info->keep_hash,
2865 h->root.root.root.string,
2866 FALSE, FALSE) == NULL))
2867 strip = TRUE;
2868 else
2869 strip = FALSE;
2870
2871 if (strip)
2872 return TRUE;
2873
2874 if (h->esym.ifd == -2)
2875 {
2876 h->esym.jmptbl = 0;
2877 h->esym.cobol_main = 0;
2878 h->esym.weakext = 0;
2879 h->esym.reserved = 0;
2880 h->esym.ifd = ifdNil;
2881 h->esym.asym.value = 0;
2882 h->esym.asym.st = stGlobal;
2883
2884 if (h->root.root.type == bfd_link_hash_undefined
2885 || h->root.root.type == bfd_link_hash_undefweak)
2886 {
2887 const char *name;
2888
2889 /* Use undefined class. Also, set class and type for some
2890 special symbols. */
2891 name = h->root.root.root.string;
2892 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2893 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2894 {
2895 h->esym.asym.sc = scData;
2896 h->esym.asym.st = stLabel;
2897 h->esym.asym.value = 0;
2898 }
2899 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2900 {
2901 h->esym.asym.sc = scAbs;
2902 h->esym.asym.st = stLabel;
2903 h->esym.asym.value =
2904 mips_elf_hash_table (einfo->info)->procedure_count;
2905 }
2906 else
2907 h->esym.asym.sc = scUndefined;
2908 }
2909 else if (h->root.root.type != bfd_link_hash_defined
2910 && h->root.root.type != bfd_link_hash_defweak)
2911 h->esym.asym.sc = scAbs;
2912 else
2913 {
2914 const char *name;
2915
2916 sec = h->root.root.u.def.section;
2917 output_section = sec->output_section;
2918
2919 /* When making a shared library and symbol h is the one from
2920 the another shared library, OUTPUT_SECTION may be null. */
2921 if (output_section == NULL)
2922 h->esym.asym.sc = scUndefined;
2923 else
2924 {
2925 name = bfd_section_name (output_section->owner, output_section);
2926
2927 if (strcmp (name, ".text") == 0)
2928 h->esym.asym.sc = scText;
2929 else if (strcmp (name, ".data") == 0)
2930 h->esym.asym.sc = scData;
2931 else if (strcmp (name, ".sdata") == 0)
2932 h->esym.asym.sc = scSData;
2933 else if (strcmp (name, ".rodata") == 0
2934 || strcmp (name, ".rdata") == 0)
2935 h->esym.asym.sc = scRData;
2936 else if (strcmp (name, ".bss") == 0)
2937 h->esym.asym.sc = scBss;
2938 else if (strcmp (name, ".sbss") == 0)
2939 h->esym.asym.sc = scSBss;
2940 else if (strcmp (name, ".init") == 0)
2941 h->esym.asym.sc = scInit;
2942 else if (strcmp (name, ".fini") == 0)
2943 h->esym.asym.sc = scFini;
2944 else
2945 h->esym.asym.sc = scAbs;
2946 }
2947 }
2948
2949 h->esym.asym.reserved = 0;
2950 h->esym.asym.index = indexNil;
2951 }
2952
2953 if (h->root.root.type == bfd_link_hash_common)
2954 h->esym.asym.value = h->root.root.u.c.size;
2955 else if (h->root.root.type == bfd_link_hash_defined
2956 || h->root.root.type == bfd_link_hash_defweak)
2957 {
2958 if (h->esym.asym.sc == scCommon)
2959 h->esym.asym.sc = scBss;
2960 else if (h->esym.asym.sc == scSCommon)
2961 h->esym.asym.sc = scSBss;
2962
2963 sec = h->root.root.u.def.section;
2964 output_section = sec->output_section;
2965 if (output_section != NULL)
2966 h->esym.asym.value = (h->root.root.u.def.value
2967 + sec->output_offset
2968 + output_section->vma);
2969 else
2970 h->esym.asym.value = 0;
2971 }
2972 else
2973 {
2974 struct mips_elf_link_hash_entry *hd = h;
2975
2976 while (hd->root.root.type == bfd_link_hash_indirect)
2977 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2978
2979 if (hd->needs_lazy_stub)
2980 {
2981 BFD_ASSERT (hd->root.plt.plist != NULL);
2982 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
2983 /* Set type and value for a symbol with a function stub. */
2984 h->esym.asym.st = stProc;
2985 sec = hd->root.root.u.def.section;
2986 if (sec == NULL)
2987 h->esym.asym.value = 0;
2988 else
2989 {
2990 output_section = sec->output_section;
2991 if (output_section != NULL)
2992 h->esym.asym.value = (hd->root.plt.plist->stub_offset
2993 + sec->output_offset
2994 + output_section->vma);
2995 else
2996 h->esym.asym.value = 0;
2997 }
2998 }
2999 }
3000
3001 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3002 h->root.root.root.string,
3003 &h->esym))
3004 {
3005 einfo->failed = TRUE;
3006 return FALSE;
3007 }
3008
3009 return TRUE;
3010 }
3011
3012 /* A comparison routine used to sort .gptab entries. */
3013
3014 static int
3015 gptab_compare (const void *p1, const void *p2)
3016 {
3017 const Elf32_gptab *a1 = p1;
3018 const Elf32_gptab *a2 = p2;
3019
3020 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3021 }
3022 \f
3023 /* Functions to manage the got entry hash table. */
3024
3025 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3026 hash number. */
3027
3028 static INLINE hashval_t
3029 mips_elf_hash_bfd_vma (bfd_vma addr)
3030 {
3031 #ifdef BFD64
3032 return addr + (addr >> 32);
3033 #else
3034 return addr;
3035 #endif
3036 }
3037
3038 static hashval_t
3039 mips_elf_got_entry_hash (const void *entry_)
3040 {
3041 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3042
3043 return (entry->symndx
3044 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3045 + (entry->tls_type == GOT_TLS_LDM ? 0
3046 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3047 : entry->symndx >= 0 ? (entry->abfd->id
3048 + mips_elf_hash_bfd_vma (entry->d.addend))
3049 : entry->d.h->root.root.root.hash));
3050 }
3051
3052 static int
3053 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3054 {
3055 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3056 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3057
3058 return (e1->symndx == e2->symndx
3059 && e1->tls_type == e2->tls_type
3060 && (e1->tls_type == GOT_TLS_LDM ? TRUE
3061 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3062 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3063 && e1->d.addend == e2->d.addend)
3064 : e2->abfd && e1->d.h == e2->d.h));
3065 }
3066
3067 static hashval_t
3068 mips_got_page_ref_hash (const void *ref_)
3069 {
3070 const struct mips_got_page_ref *ref;
3071
3072 ref = (const struct mips_got_page_ref *) ref_;
3073 return ((ref->symndx >= 0
3074 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3075 : ref->u.h->root.root.root.hash)
3076 + mips_elf_hash_bfd_vma (ref->addend));
3077 }
3078
3079 static int
3080 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3081 {
3082 const struct mips_got_page_ref *ref1, *ref2;
3083
3084 ref1 = (const struct mips_got_page_ref *) ref1_;
3085 ref2 = (const struct mips_got_page_ref *) ref2_;
3086 return (ref1->symndx == ref2->symndx
3087 && (ref1->symndx < 0
3088 ? ref1->u.h == ref2->u.h
3089 : ref1->u.abfd == ref2->u.abfd)
3090 && ref1->addend == ref2->addend);
3091 }
3092
3093 static hashval_t
3094 mips_got_page_entry_hash (const void *entry_)
3095 {
3096 const struct mips_got_page_entry *entry;
3097
3098 entry = (const struct mips_got_page_entry *) entry_;
3099 return entry->sec->id;
3100 }
3101
3102 static int
3103 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3104 {
3105 const struct mips_got_page_entry *entry1, *entry2;
3106
3107 entry1 = (const struct mips_got_page_entry *) entry1_;
3108 entry2 = (const struct mips_got_page_entry *) entry2_;
3109 return entry1->sec == entry2->sec;
3110 }
3111 \f
3112 /* Create and return a new mips_got_info structure. */
3113
3114 static struct mips_got_info *
3115 mips_elf_create_got_info (bfd *abfd)
3116 {
3117 struct mips_got_info *g;
3118
3119 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3120 if (g == NULL)
3121 return NULL;
3122
3123 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3124 mips_elf_got_entry_eq, NULL);
3125 if (g->got_entries == NULL)
3126 return NULL;
3127
3128 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3129 mips_got_page_ref_eq, NULL);
3130 if (g->got_page_refs == NULL)
3131 return NULL;
3132
3133 return g;
3134 }
3135
3136 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3137 CREATE_P and if ABFD doesn't already have a GOT. */
3138
3139 static struct mips_got_info *
3140 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3141 {
3142 struct mips_elf_obj_tdata *tdata;
3143
3144 if (!is_mips_elf (abfd))
3145 return NULL;
3146
3147 tdata = mips_elf_tdata (abfd);
3148 if (!tdata->got && create_p)
3149 tdata->got = mips_elf_create_got_info (abfd);
3150 return tdata->got;
3151 }
3152
3153 /* Record that ABFD should use output GOT G. */
3154
3155 static void
3156 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3157 {
3158 struct mips_elf_obj_tdata *tdata;
3159
3160 BFD_ASSERT (is_mips_elf (abfd));
3161 tdata = mips_elf_tdata (abfd);
3162 if (tdata->got)
3163 {
3164 /* The GOT structure itself and the hash table entries are
3165 allocated to a bfd, but the hash tables aren't. */
3166 htab_delete (tdata->got->got_entries);
3167 htab_delete (tdata->got->got_page_refs);
3168 if (tdata->got->got_page_entries)
3169 htab_delete (tdata->got->got_page_entries);
3170 }
3171 tdata->got = g;
3172 }
3173
3174 /* Return the dynamic relocation section. If it doesn't exist, try to
3175 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3176 if creation fails. */
3177
3178 static asection *
3179 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3180 {
3181 const char *dname;
3182 asection *sreloc;
3183 bfd *dynobj;
3184
3185 dname = MIPS_ELF_REL_DYN_NAME (info);
3186 dynobj = elf_hash_table (info)->dynobj;
3187 sreloc = bfd_get_linker_section (dynobj, dname);
3188 if (sreloc == NULL && create_p)
3189 {
3190 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3191 (SEC_ALLOC
3192 | SEC_LOAD
3193 | SEC_HAS_CONTENTS
3194 | SEC_IN_MEMORY
3195 | SEC_LINKER_CREATED
3196 | SEC_READONLY));
3197 if (sreloc == NULL
3198 || ! bfd_set_section_alignment (dynobj, sreloc,
3199 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3200 return NULL;
3201 }
3202 return sreloc;
3203 }
3204
3205 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3206
3207 static int
3208 mips_elf_reloc_tls_type (unsigned int r_type)
3209 {
3210 if (tls_gd_reloc_p (r_type))
3211 return GOT_TLS_GD;
3212
3213 if (tls_ldm_reloc_p (r_type))
3214 return GOT_TLS_LDM;
3215
3216 if (tls_gottprel_reloc_p (r_type))
3217 return GOT_TLS_IE;
3218
3219 return GOT_TLS_NONE;
3220 }
3221
3222 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3223
3224 static int
3225 mips_tls_got_entries (unsigned int type)
3226 {
3227 switch (type)
3228 {
3229 case GOT_TLS_GD:
3230 case GOT_TLS_LDM:
3231 return 2;
3232
3233 case GOT_TLS_IE:
3234 return 1;
3235
3236 case GOT_TLS_NONE:
3237 return 0;
3238 }
3239 abort ();
3240 }
3241
3242 /* Count the number of relocations needed for a TLS GOT entry, with
3243 access types from TLS_TYPE, and symbol H (or a local symbol if H
3244 is NULL). */
3245
3246 static int
3247 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3248 struct elf_link_hash_entry *h)
3249 {
3250 int indx = 0;
3251 bfd_boolean need_relocs = FALSE;
3252 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3253
3254 if (h != NULL
3255 && h->dynindx != -1
3256 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3257 && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
3258 indx = h->dynindx;
3259
3260 if ((bfd_link_dll (info) || indx != 0)
3261 && (h == NULL
3262 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3263 || h->root.type != bfd_link_hash_undefweak))
3264 need_relocs = TRUE;
3265
3266 if (!need_relocs)
3267 return 0;
3268
3269 switch (tls_type)
3270 {
3271 case GOT_TLS_GD:
3272 return indx != 0 ? 2 : 1;
3273
3274 case GOT_TLS_IE:
3275 return 1;
3276
3277 case GOT_TLS_LDM:
3278 return bfd_link_dll (info) ? 1 : 0;
3279
3280 default:
3281 return 0;
3282 }
3283 }
3284
3285 /* Add the number of GOT entries and TLS relocations required by ENTRY
3286 to G. */
3287
3288 static void
3289 mips_elf_count_got_entry (struct bfd_link_info *info,
3290 struct mips_got_info *g,
3291 struct mips_got_entry *entry)
3292 {
3293 if (entry->tls_type)
3294 {
3295 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3296 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3297 entry->symndx < 0
3298 ? &entry->d.h->root : NULL);
3299 }
3300 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3301 g->local_gotno += 1;
3302 else
3303 g->global_gotno += 1;
3304 }
3305
3306 /* Output a simple dynamic relocation into SRELOC. */
3307
3308 static void
3309 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3310 asection *sreloc,
3311 unsigned long reloc_index,
3312 unsigned long indx,
3313 int r_type,
3314 bfd_vma offset)
3315 {
3316 Elf_Internal_Rela rel[3];
3317
3318 memset (rel, 0, sizeof (rel));
3319
3320 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3321 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3322
3323 if (ABI_64_P (output_bfd))
3324 {
3325 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3326 (output_bfd, &rel[0],
3327 (sreloc->contents
3328 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3329 }
3330 else
3331 bfd_elf32_swap_reloc_out
3332 (output_bfd, &rel[0],
3333 (sreloc->contents
3334 + reloc_index * sizeof (Elf32_External_Rel)));
3335 }
3336
3337 /* Initialize a set of TLS GOT entries for one symbol. */
3338
3339 static void
3340 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3341 struct mips_got_entry *entry,
3342 struct mips_elf_link_hash_entry *h,
3343 bfd_vma value)
3344 {
3345 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3346 struct mips_elf_link_hash_table *htab;
3347 int indx;
3348 asection *sreloc, *sgot;
3349 bfd_vma got_offset, got_offset2;
3350 bfd_boolean need_relocs = FALSE;
3351
3352 htab = mips_elf_hash_table (info);
3353 if (htab == NULL)
3354 return;
3355
3356 sgot = htab->root.sgot;
3357
3358 indx = 0;
3359 if (h != NULL
3360 && h->root.dynindx != -1
3361 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), &h->root)
3362 && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3363 indx = h->root.dynindx;
3364
3365 if (entry->tls_initialized)
3366 return;
3367
3368 if ((bfd_link_dll (info) || indx != 0)
3369 && (h == NULL
3370 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3371 || h->root.type != bfd_link_hash_undefweak))
3372 need_relocs = TRUE;
3373
3374 /* MINUS_ONE means the symbol is not defined in this object. It may not
3375 be defined at all; assume that the value doesn't matter in that
3376 case. Otherwise complain if we would use the value. */
3377 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3378 || h->root.root.type == bfd_link_hash_undefweak);
3379
3380 /* Emit necessary relocations. */
3381 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3382 got_offset = entry->gotidx;
3383
3384 switch (entry->tls_type)
3385 {
3386 case GOT_TLS_GD:
3387 /* General Dynamic. */
3388 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3389
3390 if (need_relocs)
3391 {
3392 mips_elf_output_dynamic_relocation
3393 (abfd, sreloc, sreloc->reloc_count++, indx,
3394 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3395 sgot->output_offset + sgot->output_section->vma + got_offset);
3396
3397 if (indx)
3398 mips_elf_output_dynamic_relocation
3399 (abfd, sreloc, sreloc->reloc_count++, indx,
3400 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3401 sgot->output_offset + sgot->output_section->vma + got_offset2);
3402 else
3403 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3404 sgot->contents + got_offset2);
3405 }
3406 else
3407 {
3408 MIPS_ELF_PUT_WORD (abfd, 1,
3409 sgot->contents + got_offset);
3410 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3411 sgot->contents + got_offset2);
3412 }
3413 break;
3414
3415 case GOT_TLS_IE:
3416 /* Initial Exec model. */
3417 if (need_relocs)
3418 {
3419 if (indx == 0)
3420 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3421 sgot->contents + got_offset);
3422 else
3423 MIPS_ELF_PUT_WORD (abfd, 0,
3424 sgot->contents + got_offset);
3425
3426 mips_elf_output_dynamic_relocation
3427 (abfd, sreloc, sreloc->reloc_count++, indx,
3428 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3429 sgot->output_offset + sgot->output_section->vma + got_offset);
3430 }
3431 else
3432 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3433 sgot->contents + got_offset);
3434 break;
3435
3436 case GOT_TLS_LDM:
3437 /* The initial offset is zero, and the LD offsets will include the
3438 bias by DTP_OFFSET. */
3439 MIPS_ELF_PUT_WORD (abfd, 0,
3440 sgot->contents + got_offset
3441 + MIPS_ELF_GOT_SIZE (abfd));
3442
3443 if (!bfd_link_dll (info))
3444 MIPS_ELF_PUT_WORD (abfd, 1,
3445 sgot->contents + got_offset);
3446 else
3447 mips_elf_output_dynamic_relocation
3448 (abfd, sreloc, sreloc->reloc_count++, indx,
3449 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3450 sgot->output_offset + sgot->output_section->vma + got_offset);
3451 break;
3452
3453 default:
3454 abort ();
3455 }
3456
3457 entry->tls_initialized = TRUE;
3458 }
3459
3460 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3461 for global symbol H. .got.plt comes before the GOT, so the offset
3462 will be negative. */
3463
3464 static bfd_vma
3465 mips_elf_gotplt_index (struct bfd_link_info *info,
3466 struct elf_link_hash_entry *h)
3467 {
3468 bfd_vma got_address, got_value;
3469 struct mips_elf_link_hash_table *htab;
3470
3471 htab = mips_elf_hash_table (info);
3472 BFD_ASSERT (htab != NULL);
3473
3474 BFD_ASSERT (h->plt.plist != NULL);
3475 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3476
3477 /* Calculate the address of the associated .got.plt entry. */
3478 got_address = (htab->root.sgotplt->output_section->vma
3479 + htab->root.sgotplt->output_offset
3480 + (h->plt.plist->gotplt_index
3481 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3482
3483 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3484 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3485 + htab->root.hgot->root.u.def.section->output_offset
3486 + htab->root.hgot->root.u.def.value);
3487
3488 return got_address - got_value;
3489 }
3490
3491 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3492 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3493 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3494 offset can be found. */
3495
3496 static bfd_vma
3497 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3498 bfd_vma value, unsigned long r_symndx,
3499 struct mips_elf_link_hash_entry *h, int r_type)
3500 {
3501 struct mips_elf_link_hash_table *htab;
3502 struct mips_got_entry *entry;
3503
3504 htab = mips_elf_hash_table (info);
3505 BFD_ASSERT (htab != NULL);
3506
3507 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3508 r_symndx, h, r_type);
3509 if (!entry)
3510 return MINUS_ONE;
3511
3512 if (entry->tls_type)
3513 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3514 return entry->gotidx;
3515 }
3516
3517 /* Return the GOT index of global symbol H in the primary GOT. */
3518
3519 static bfd_vma
3520 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3521 struct elf_link_hash_entry *h)
3522 {
3523 struct mips_elf_link_hash_table *htab;
3524 long global_got_dynindx;
3525 struct mips_got_info *g;
3526 bfd_vma got_index;
3527
3528 htab = mips_elf_hash_table (info);
3529 BFD_ASSERT (htab != NULL);
3530
3531 global_got_dynindx = 0;
3532 if (htab->global_gotsym != NULL)
3533 global_got_dynindx = htab->global_gotsym->dynindx;
3534
3535 /* Once we determine the global GOT entry with the lowest dynamic
3536 symbol table index, we must put all dynamic symbols with greater
3537 indices into the primary GOT. That makes it easy to calculate the
3538 GOT offset. */
3539 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3540 g = mips_elf_bfd_got (obfd, FALSE);
3541 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3542 * MIPS_ELF_GOT_SIZE (obfd));
3543 BFD_ASSERT (got_index < htab->root.sgot->size);
3544
3545 return got_index;
3546 }
3547
3548 /* Return the GOT index for the global symbol indicated by H, which is
3549 referenced by a relocation of type R_TYPE in IBFD. */
3550
3551 static bfd_vma
3552 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3553 struct elf_link_hash_entry *h, int r_type)
3554 {
3555 struct mips_elf_link_hash_table *htab;
3556 struct mips_got_info *g;
3557 struct mips_got_entry lookup, *entry;
3558 bfd_vma gotidx;
3559
3560 htab = mips_elf_hash_table (info);
3561 BFD_ASSERT (htab != NULL);
3562
3563 g = mips_elf_bfd_got (ibfd, FALSE);
3564 BFD_ASSERT (g);
3565
3566 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3567 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3568 return mips_elf_primary_global_got_index (obfd, info, h);
3569
3570 lookup.abfd = ibfd;
3571 lookup.symndx = -1;
3572 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3573 entry = htab_find (g->got_entries, &lookup);
3574 BFD_ASSERT (entry);
3575
3576 gotidx = entry->gotidx;
3577 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3578
3579 if (lookup.tls_type)
3580 {
3581 bfd_vma value = MINUS_ONE;
3582
3583 if ((h->root.type == bfd_link_hash_defined
3584 || h->root.type == bfd_link_hash_defweak)
3585 && h->root.u.def.section->output_section)
3586 value = (h->root.u.def.value
3587 + h->root.u.def.section->output_offset
3588 + h->root.u.def.section->output_section->vma);
3589
3590 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3591 }
3592 return gotidx;
3593 }
3594
3595 /* Find a GOT page entry that points to within 32KB of VALUE. These
3596 entries are supposed to be placed at small offsets in the GOT, i.e.,
3597 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3598 entry could be created. If OFFSETP is nonnull, use it to return the
3599 offset of the GOT entry from VALUE. */
3600
3601 static bfd_vma
3602 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3603 bfd_vma value, bfd_vma *offsetp)
3604 {
3605 bfd_vma page, got_index;
3606 struct mips_got_entry *entry;
3607
3608 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3609 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3610 NULL, R_MIPS_GOT_PAGE);
3611
3612 if (!entry)
3613 return MINUS_ONE;
3614
3615 got_index = entry->gotidx;
3616
3617 if (offsetp)
3618 *offsetp = value - entry->d.address;
3619
3620 return got_index;
3621 }
3622
3623 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3624 EXTERNAL is true if the relocation was originally against a global
3625 symbol that binds locally. */
3626
3627 static bfd_vma
3628 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3629 bfd_vma value, bfd_boolean external)
3630 {
3631 struct mips_got_entry *entry;
3632
3633 /* GOT16 relocations against local symbols are followed by a LO16
3634 relocation; those against global symbols are not. Thus if the
3635 symbol was originally local, the GOT16 relocation should load the
3636 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3637 if (! external)
3638 value = mips_elf_high (value) << 16;
3639
3640 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3641 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3642 same in all cases. */
3643 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3644 NULL, R_MIPS_GOT16);
3645 if (entry)
3646 return entry->gotidx;
3647 else
3648 return MINUS_ONE;
3649 }
3650
3651 /* Returns the offset for the entry at the INDEXth position
3652 in the GOT. */
3653
3654 static bfd_vma
3655 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3656 bfd *input_bfd, bfd_vma got_index)
3657 {
3658 struct mips_elf_link_hash_table *htab;
3659 asection *sgot;
3660 bfd_vma gp;
3661
3662 htab = mips_elf_hash_table (info);
3663 BFD_ASSERT (htab != NULL);
3664
3665 sgot = htab->root.sgot;
3666 gp = _bfd_get_gp_value (output_bfd)
3667 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3668
3669 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3670 }
3671
3672 /* Create and return a local GOT entry for VALUE, which was calculated
3673 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3674 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3675 instead. */
3676
3677 static struct mips_got_entry *
3678 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3679 bfd *ibfd, bfd_vma value,
3680 unsigned long r_symndx,
3681 struct mips_elf_link_hash_entry *h,
3682 int r_type)
3683 {
3684 struct mips_got_entry lookup, *entry;
3685 void **loc;
3686 struct mips_got_info *g;
3687 struct mips_elf_link_hash_table *htab;
3688 bfd_vma gotidx;
3689
3690 htab = mips_elf_hash_table (info);
3691 BFD_ASSERT (htab != NULL);
3692
3693 g = mips_elf_bfd_got (ibfd, FALSE);
3694 if (g == NULL)
3695 {
3696 g = mips_elf_bfd_got (abfd, FALSE);
3697 BFD_ASSERT (g != NULL);
3698 }
3699
3700 /* This function shouldn't be called for symbols that live in the global
3701 area of the GOT. */
3702 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3703
3704 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3705 if (lookup.tls_type)
3706 {
3707 lookup.abfd = ibfd;
3708 if (tls_ldm_reloc_p (r_type))
3709 {
3710 lookup.symndx = 0;
3711 lookup.d.addend = 0;
3712 }
3713 else if (h == NULL)
3714 {
3715 lookup.symndx = r_symndx;
3716 lookup.d.addend = 0;
3717 }
3718 else
3719 {
3720 lookup.symndx = -1;
3721 lookup.d.h = h;
3722 }
3723
3724 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3725 BFD_ASSERT (entry);
3726
3727 gotidx = entry->gotidx;
3728 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3729
3730 return entry;
3731 }
3732
3733 lookup.abfd = NULL;
3734 lookup.symndx = -1;
3735 lookup.d.address = value;
3736 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3737 if (!loc)
3738 return NULL;
3739
3740 entry = (struct mips_got_entry *) *loc;
3741 if (entry)
3742 return entry;
3743
3744 if (g->assigned_low_gotno > g->assigned_high_gotno)
3745 {
3746 /* We didn't allocate enough space in the GOT. */
3747 _bfd_error_handler
3748 (_("not enough GOT space for local GOT entries"));
3749 bfd_set_error (bfd_error_bad_value);
3750 return NULL;
3751 }
3752
3753 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3754 if (!entry)
3755 return NULL;
3756
3757 if (got16_reloc_p (r_type)
3758 || call16_reloc_p (r_type)
3759 || got_page_reloc_p (r_type)
3760 || got_disp_reloc_p (r_type))
3761 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3762 else
3763 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3764
3765 *entry = lookup;
3766 *loc = entry;
3767
3768 MIPS_ELF_PUT_WORD (abfd, value, htab->root.sgot->contents + entry->gotidx);
3769
3770 /* These GOT entries need a dynamic relocation on VxWorks. */
3771 if (htab->is_vxworks)
3772 {
3773 Elf_Internal_Rela outrel;
3774 asection *s;
3775 bfd_byte *rloc;
3776 bfd_vma got_address;
3777
3778 s = mips_elf_rel_dyn_section (info, FALSE);
3779 got_address = (htab->root.sgot->output_section->vma
3780 + htab->root.sgot->output_offset
3781 + entry->gotidx);
3782
3783 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3784 outrel.r_offset = got_address;
3785 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3786 outrel.r_addend = value;
3787 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3788 }
3789
3790 return entry;
3791 }
3792
3793 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3794 The number might be exact or a worst-case estimate, depending on how
3795 much information is available to elf_backend_omit_section_dynsym at
3796 the current linking stage. */
3797
3798 static bfd_size_type
3799 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3800 {
3801 bfd_size_type count;
3802
3803 count = 0;
3804 if (bfd_link_pic (info)
3805 || elf_hash_table (info)->is_relocatable_executable)
3806 {
3807 asection *p;
3808 const struct elf_backend_data *bed;
3809
3810 bed = get_elf_backend_data (output_bfd);
3811 for (p = output_bfd->sections; p ; p = p->next)
3812 if ((p->flags & SEC_EXCLUDE) == 0
3813 && (p->flags & SEC_ALLOC) != 0
3814 && elf_hash_table (info)->dynamic_relocs
3815 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3816 ++count;
3817 }
3818 return count;
3819 }
3820
3821 /* Sort the dynamic symbol table so that symbols that need GOT entries
3822 appear towards the end. */
3823
3824 static bfd_boolean
3825 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3826 {
3827 struct mips_elf_link_hash_table *htab;
3828 struct mips_elf_hash_sort_data hsd;
3829 struct mips_got_info *g;
3830
3831 htab = mips_elf_hash_table (info);
3832 BFD_ASSERT (htab != NULL);
3833
3834 if (htab->root.dynsymcount == 0)
3835 return TRUE;
3836
3837 g = htab->got_info;
3838 if (g == NULL)
3839 return TRUE;
3840
3841 hsd.low = NULL;
3842 hsd.max_unref_got_dynindx
3843 = hsd.min_got_dynindx
3844 = (htab->root.dynsymcount - g->reloc_only_gotno);
3845 /* Add 1 to local symbol indices to account for the mandatory NULL entry
3846 at the head of the table; see `_bfd_elf_link_renumber_dynsyms'. */
3847 hsd.max_local_dynindx = count_section_dynsyms (abfd, info) + 1;
3848 hsd.max_non_got_dynindx = htab->root.local_dynsymcount + 1;
3849 mips_elf_link_hash_traverse (htab, mips_elf_sort_hash_table_f, &hsd);
3850
3851 /* There should have been enough room in the symbol table to
3852 accommodate both the GOT and non-GOT symbols. */
3853 BFD_ASSERT (hsd.max_local_dynindx <= htab->root.local_dynsymcount + 1);
3854 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3855 BFD_ASSERT (hsd.max_unref_got_dynindx == htab->root.dynsymcount);
3856 BFD_ASSERT (htab->root.dynsymcount - hsd.min_got_dynindx == g->global_gotno);
3857
3858 /* Now we know which dynamic symbol has the lowest dynamic symbol
3859 table index in the GOT. */
3860 htab->global_gotsym = hsd.low;
3861
3862 return TRUE;
3863 }
3864
3865 /* If H needs a GOT entry, assign it the highest available dynamic
3866 index. Otherwise, assign it the lowest available dynamic
3867 index. */
3868
3869 static bfd_boolean
3870 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3871 {
3872 struct mips_elf_hash_sort_data *hsd = data;
3873
3874 /* Symbols without dynamic symbol table entries aren't interesting
3875 at all. */
3876 if (h->root.dynindx == -1)
3877 return TRUE;
3878
3879 switch (h->global_got_area)
3880 {
3881 case GGA_NONE:
3882 if (h->root.forced_local)
3883 h->root.dynindx = hsd->max_local_dynindx++;
3884 else
3885 h->root.dynindx = hsd->max_non_got_dynindx++;
3886 break;
3887
3888 case GGA_NORMAL:
3889 h->root.dynindx = --hsd->min_got_dynindx;
3890 hsd->low = (struct elf_link_hash_entry *) h;
3891 break;
3892
3893 case GGA_RELOC_ONLY:
3894 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3895 hsd->low = (struct elf_link_hash_entry *) h;
3896 h->root.dynindx = hsd->max_unref_got_dynindx++;
3897 break;
3898 }
3899
3900 return TRUE;
3901 }
3902
3903 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3904 (which is owned by the caller and shouldn't be added to the
3905 hash table directly). */
3906
3907 static bfd_boolean
3908 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3909 struct mips_got_entry *lookup)
3910 {
3911 struct mips_elf_link_hash_table *htab;
3912 struct mips_got_entry *entry;
3913 struct mips_got_info *g;
3914 void **loc, **bfd_loc;
3915
3916 /* Make sure there's a slot for this entry in the master GOT. */
3917 htab = mips_elf_hash_table (info);
3918 g = htab->got_info;
3919 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3920 if (!loc)
3921 return FALSE;
3922
3923 /* Populate the entry if it isn't already. */
3924 entry = (struct mips_got_entry *) *loc;
3925 if (!entry)
3926 {
3927 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3928 if (!entry)
3929 return FALSE;
3930
3931 lookup->tls_initialized = FALSE;
3932 lookup->gotidx = -1;
3933 *entry = *lookup;
3934 *loc = entry;
3935 }
3936
3937 /* Reuse the same GOT entry for the BFD's GOT. */
3938 g = mips_elf_bfd_got (abfd, TRUE);
3939 if (!g)
3940 return FALSE;
3941
3942 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3943 if (!bfd_loc)
3944 return FALSE;
3945
3946 if (!*bfd_loc)
3947 *bfd_loc = entry;
3948 return TRUE;
3949 }
3950
3951 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3952 entry for it. FOR_CALL is true if the caller is only interested in
3953 using the GOT entry for calls. */
3954
3955 static bfd_boolean
3956 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3957 bfd *abfd, struct bfd_link_info *info,
3958 bfd_boolean for_call, int r_type)
3959 {
3960 struct mips_elf_link_hash_table *htab;
3961 struct mips_elf_link_hash_entry *hmips;
3962 struct mips_got_entry entry;
3963 unsigned char tls_type;
3964
3965 htab = mips_elf_hash_table (info);
3966 BFD_ASSERT (htab != NULL);
3967
3968 hmips = (struct mips_elf_link_hash_entry *) h;
3969 if (!for_call)
3970 hmips->got_only_for_calls = FALSE;
3971
3972 /* A global symbol in the GOT must also be in the dynamic symbol
3973 table. */
3974 if (h->dynindx == -1)
3975 {
3976 switch (ELF_ST_VISIBILITY (h->other))
3977 {
3978 case STV_INTERNAL:
3979 case STV_HIDDEN:
3980 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3981 break;
3982 }
3983 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3984 return FALSE;
3985 }
3986
3987 tls_type = mips_elf_reloc_tls_type (r_type);
3988 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
3989 hmips->global_got_area = GGA_NORMAL;
3990
3991 entry.abfd = abfd;
3992 entry.symndx = -1;
3993 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3994 entry.tls_type = tls_type;
3995 return mips_elf_record_got_entry (info, abfd, &entry);
3996 }
3997
3998 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
3999 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
4000
4001 static bfd_boolean
4002 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
4003 struct bfd_link_info *info, int r_type)
4004 {
4005 struct mips_elf_link_hash_table *htab;
4006 struct mips_got_info *g;
4007 struct mips_got_entry entry;
4008
4009 htab = mips_elf_hash_table (info);
4010 BFD_ASSERT (htab != NULL);
4011
4012 g = htab->got_info;
4013 BFD_ASSERT (g != NULL);
4014
4015 entry.abfd = abfd;
4016 entry.symndx = symndx;
4017 entry.d.addend = addend;
4018 entry.tls_type = mips_elf_reloc_tls_type (r_type);
4019 return mips_elf_record_got_entry (info, abfd, &entry);
4020 }
4021
4022 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4023 H is the symbol's hash table entry, or null if SYMNDX is local
4024 to ABFD. */
4025
4026 static bfd_boolean
4027 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4028 long symndx, struct elf_link_hash_entry *h,
4029 bfd_signed_vma addend)
4030 {
4031 struct mips_elf_link_hash_table *htab;
4032 struct mips_got_info *g1, *g2;
4033 struct mips_got_page_ref lookup, *entry;
4034 void **loc, **bfd_loc;
4035
4036 htab = mips_elf_hash_table (info);
4037 BFD_ASSERT (htab != NULL);
4038
4039 g1 = htab->got_info;
4040 BFD_ASSERT (g1 != NULL);
4041
4042 if (h)
4043 {
4044 lookup.symndx = -1;
4045 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4046 }
4047 else
4048 {
4049 lookup.symndx = symndx;
4050 lookup.u.abfd = abfd;
4051 }
4052 lookup.addend = addend;
4053 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4054 if (loc == NULL)
4055 return FALSE;
4056
4057 entry = (struct mips_got_page_ref *) *loc;
4058 if (!entry)
4059 {
4060 entry = bfd_alloc (abfd, sizeof (*entry));
4061 if (!entry)
4062 return FALSE;
4063
4064 *entry = lookup;
4065 *loc = entry;
4066 }
4067
4068 /* Add the same entry to the BFD's GOT. */
4069 g2 = mips_elf_bfd_got (abfd, TRUE);
4070 if (!g2)
4071 return FALSE;
4072
4073 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4074 if (!bfd_loc)
4075 return FALSE;
4076
4077 if (!*bfd_loc)
4078 *bfd_loc = entry;
4079
4080 return TRUE;
4081 }
4082
4083 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4084
4085 static void
4086 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4087 unsigned int n)
4088 {
4089 asection *s;
4090 struct mips_elf_link_hash_table *htab;
4091
4092 htab = mips_elf_hash_table (info);
4093 BFD_ASSERT (htab != NULL);
4094
4095 s = mips_elf_rel_dyn_section (info, FALSE);
4096 BFD_ASSERT (s != NULL);
4097
4098 if (htab->is_vxworks)
4099 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4100 else
4101 {
4102 if (s->size == 0)
4103 {
4104 /* Make room for a null element. */
4105 s->size += MIPS_ELF_REL_SIZE (abfd);
4106 ++s->reloc_count;
4107 }
4108 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4109 }
4110 }
4111 \f
4112 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4113 mips_elf_traverse_got_arg structure. Count the number of GOT
4114 entries and TLS relocs. Set DATA->value to true if we need
4115 to resolve indirect or warning symbols and then recreate the GOT. */
4116
4117 static int
4118 mips_elf_check_recreate_got (void **entryp, void *data)
4119 {
4120 struct mips_got_entry *entry;
4121 struct mips_elf_traverse_got_arg *arg;
4122
4123 entry = (struct mips_got_entry *) *entryp;
4124 arg = (struct mips_elf_traverse_got_arg *) data;
4125 if (entry->abfd != NULL && entry->symndx == -1)
4126 {
4127 struct mips_elf_link_hash_entry *h;
4128
4129 h = entry->d.h;
4130 if (h->root.root.type == bfd_link_hash_indirect
4131 || h->root.root.type == bfd_link_hash_warning)
4132 {
4133 arg->value = TRUE;
4134 return 0;
4135 }
4136 }
4137 mips_elf_count_got_entry (arg->info, arg->g, entry);
4138 return 1;
4139 }
4140
4141 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4142 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4143 converting entries for indirect and warning symbols into entries
4144 for the target symbol. Set DATA->g to null on error. */
4145
4146 static int
4147 mips_elf_recreate_got (void **entryp, void *data)
4148 {
4149 struct mips_got_entry new_entry, *entry;
4150 struct mips_elf_traverse_got_arg *arg;
4151 void **slot;
4152
4153 entry = (struct mips_got_entry *) *entryp;
4154 arg = (struct mips_elf_traverse_got_arg *) data;
4155 if (entry->abfd != NULL
4156 && entry->symndx == -1
4157 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4158 || entry->d.h->root.root.type == bfd_link_hash_warning))
4159 {
4160 struct mips_elf_link_hash_entry *h;
4161
4162 new_entry = *entry;
4163 entry = &new_entry;
4164 h = entry->d.h;
4165 do
4166 {
4167 BFD_ASSERT (h->global_got_area == GGA_NONE);
4168 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4169 }
4170 while (h->root.root.type == bfd_link_hash_indirect
4171 || h->root.root.type == bfd_link_hash_warning);
4172 entry->d.h = h;
4173 }
4174 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4175 if (slot == NULL)
4176 {
4177 arg->g = NULL;
4178 return 0;
4179 }
4180 if (*slot == NULL)
4181 {
4182 if (entry == &new_entry)
4183 {
4184 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4185 if (!entry)
4186 {
4187 arg->g = NULL;
4188 return 0;
4189 }
4190 *entry = new_entry;
4191 }
4192 *slot = entry;
4193 mips_elf_count_got_entry (arg->info, arg->g, entry);
4194 }
4195 return 1;
4196 }
4197
4198 /* Return the maximum number of GOT page entries required for RANGE. */
4199
4200 static bfd_vma
4201 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4202 {
4203 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4204 }
4205
4206 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4207
4208 static bfd_boolean
4209 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4210 asection *sec, bfd_signed_vma addend)
4211 {
4212 struct mips_got_info *g = arg->g;
4213 struct mips_got_page_entry lookup, *entry;
4214 struct mips_got_page_range **range_ptr, *range;
4215 bfd_vma old_pages, new_pages;
4216 void **loc;
4217
4218 /* Find the mips_got_page_entry hash table entry for this section. */
4219 lookup.sec = sec;
4220 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4221 if (loc == NULL)
4222 return FALSE;
4223
4224 /* Create a mips_got_page_entry if this is the first time we've
4225 seen the section. */
4226 entry = (struct mips_got_page_entry *) *loc;
4227 if (!entry)
4228 {
4229 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4230 if (!entry)
4231 return FALSE;
4232
4233 entry->sec = sec;
4234 *loc = entry;
4235 }
4236
4237 /* Skip over ranges whose maximum extent cannot share a page entry
4238 with ADDEND. */
4239 range_ptr = &entry->ranges;
4240 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4241 range_ptr = &(*range_ptr)->next;
4242
4243 /* If we scanned to the end of the list, or found a range whose
4244 minimum extent cannot share a page entry with ADDEND, create
4245 a new singleton range. */
4246 range = *range_ptr;
4247 if (!range || addend < range->min_addend - 0xffff)
4248 {
4249 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4250 if (!range)
4251 return FALSE;
4252
4253 range->next = *range_ptr;
4254 range->min_addend = addend;
4255 range->max_addend = addend;
4256
4257 *range_ptr = range;
4258 entry->num_pages++;
4259 g->page_gotno++;
4260 return TRUE;
4261 }
4262
4263 /* Remember how many pages the old range contributed. */
4264 old_pages = mips_elf_pages_for_range (range);
4265
4266 /* Update the ranges. */
4267 if (addend < range->min_addend)
4268 range->min_addend = addend;
4269 else if (addend > range->max_addend)
4270 {
4271 if (range->next && addend >= range->next->min_addend - 0xffff)
4272 {
4273 old_pages += mips_elf_pages_for_range (range->next);
4274 range->max_addend = range->next->max_addend;
4275 range->next = range->next->next;
4276 }
4277 else
4278 range->max_addend = addend;
4279 }
4280
4281 /* Record any change in the total estimate. */
4282 new_pages = mips_elf_pages_for_range (range);
4283 if (old_pages != new_pages)
4284 {
4285 entry->num_pages += new_pages - old_pages;
4286 g->page_gotno += new_pages - old_pages;
4287 }
4288
4289 return TRUE;
4290 }
4291
4292 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4293 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4294 whether the page reference described by *REFP needs a GOT page entry,
4295 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4296
4297 static bfd_boolean
4298 mips_elf_resolve_got_page_ref (void **refp, void *data)
4299 {
4300 struct mips_got_page_ref *ref;
4301 struct mips_elf_traverse_got_arg *arg;
4302 struct mips_elf_link_hash_table *htab;
4303 asection *sec;
4304 bfd_vma addend;
4305
4306 ref = (struct mips_got_page_ref *) *refp;
4307 arg = (struct mips_elf_traverse_got_arg *) data;
4308 htab = mips_elf_hash_table (arg->info);
4309
4310 if (ref->symndx < 0)
4311 {
4312 struct mips_elf_link_hash_entry *h;
4313
4314 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4315 h = ref->u.h;
4316 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4317 return 1;
4318
4319 /* Ignore undefined symbols; we'll issue an error later if
4320 appropriate. */
4321 if (!((h->root.root.type == bfd_link_hash_defined
4322 || h->root.root.type == bfd_link_hash_defweak)
4323 && h->root.root.u.def.section))
4324 return 1;
4325
4326 sec = h->root.root.u.def.section;
4327 addend = h->root.root.u.def.value + ref->addend;
4328 }
4329 else
4330 {
4331 Elf_Internal_Sym *isym;
4332
4333 /* Read in the symbol. */
4334 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4335 ref->symndx);
4336 if (isym == NULL)
4337 {
4338 arg->g = NULL;
4339 return 0;
4340 }
4341
4342 /* Get the associated input section. */
4343 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4344 if (sec == NULL)
4345 {
4346 arg->g = NULL;
4347 return 0;
4348 }
4349
4350 /* If this is a mergable section, work out the section and offset
4351 of the merged data. For section symbols, the addend specifies
4352 of the offset _of_ the first byte in the data, otherwise it
4353 specifies the offset _from_ the first byte. */
4354 if (sec->flags & SEC_MERGE)
4355 {
4356 void *secinfo;
4357
4358 secinfo = elf_section_data (sec)->sec_info;
4359 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4360 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4361 isym->st_value + ref->addend);
4362 else
4363 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4364 isym->st_value) + ref->addend;
4365 }
4366 else
4367 addend = isym->st_value + ref->addend;
4368 }
4369 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4370 {
4371 arg->g = NULL;
4372 return 0;
4373 }
4374 return 1;
4375 }
4376
4377 /* If any entries in G->got_entries are for indirect or warning symbols,
4378 replace them with entries for the target symbol. Convert g->got_page_refs
4379 into got_page_entry structures and estimate the number of page entries
4380 that they require. */
4381
4382 static bfd_boolean
4383 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4384 struct mips_got_info *g)
4385 {
4386 struct mips_elf_traverse_got_arg tga;
4387 struct mips_got_info oldg;
4388
4389 oldg = *g;
4390
4391 tga.info = info;
4392 tga.g = g;
4393 tga.value = FALSE;
4394 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4395 if (tga.value)
4396 {
4397 *g = oldg;
4398 g->got_entries = htab_create (htab_size (oldg.got_entries),
4399 mips_elf_got_entry_hash,
4400 mips_elf_got_entry_eq, NULL);
4401 if (!g->got_entries)
4402 return FALSE;
4403
4404 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4405 if (!tga.g)
4406 return FALSE;
4407
4408 htab_delete (oldg.got_entries);
4409 }
4410
4411 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4412 mips_got_page_entry_eq, NULL);
4413 if (g->got_page_entries == NULL)
4414 return FALSE;
4415
4416 tga.info = info;
4417 tga.g = g;
4418 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4419
4420 return TRUE;
4421 }
4422
4423 /* Return true if a GOT entry for H should live in the local rather than
4424 global GOT area. */
4425
4426 static bfd_boolean
4427 mips_use_local_got_p (struct bfd_link_info *info,
4428 struct mips_elf_link_hash_entry *h)
4429 {
4430 /* Symbols that aren't in the dynamic symbol table must live in the
4431 local GOT. This includes symbols that are completely undefined
4432 and which therefore don't bind locally. We'll report undefined
4433 symbols later if appropriate. */
4434 if (h->root.dynindx == -1)
4435 return TRUE;
4436
4437 /* Symbols that bind locally can (and in the case of forced-local
4438 symbols, must) live in the local GOT. */
4439 if (h->got_only_for_calls
4440 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4441 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4442 return TRUE;
4443
4444 /* If this is an executable that must provide a definition of the symbol,
4445 either though PLTs or copy relocations, then that address should go in
4446 the local rather than global GOT. */
4447 if (bfd_link_executable (info) && h->has_static_relocs)
4448 return TRUE;
4449
4450 return FALSE;
4451 }
4452
4453 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4454 link_info structure. Decide whether the hash entry needs an entry in
4455 the global part of the primary GOT, setting global_got_area accordingly.
4456 Count the number of global symbols that are in the primary GOT only
4457 because they have relocations against them (reloc_only_gotno). */
4458
4459 static int
4460 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4461 {
4462 struct bfd_link_info *info;
4463 struct mips_elf_link_hash_table *htab;
4464 struct mips_got_info *g;
4465
4466 info = (struct bfd_link_info *) data;
4467 htab = mips_elf_hash_table (info);
4468 g = htab->got_info;
4469 if (h->global_got_area != GGA_NONE)
4470 {
4471 /* Make a final decision about whether the symbol belongs in the
4472 local or global GOT. */
4473 if (mips_use_local_got_p (info, h))
4474 /* The symbol belongs in the local GOT. We no longer need this
4475 entry if it was only used for relocations; those relocations
4476 will be against the null or section symbol instead of H. */
4477 h->global_got_area = GGA_NONE;
4478 else if (htab->is_vxworks
4479 && h->got_only_for_calls
4480 && h->root.plt.plist->mips_offset != MINUS_ONE)
4481 /* On VxWorks, calls can refer directly to the .got.plt entry;
4482 they don't need entries in the regular GOT. .got.plt entries
4483 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4484 h->global_got_area = GGA_NONE;
4485 else if (h->global_got_area == GGA_RELOC_ONLY)
4486 {
4487 g->reloc_only_gotno++;
4488 g->global_gotno++;
4489 }
4490 }
4491 return 1;
4492 }
4493 \f
4494 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4495 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4496
4497 static int
4498 mips_elf_add_got_entry (void **entryp, void *data)
4499 {
4500 struct mips_got_entry *entry;
4501 struct mips_elf_traverse_got_arg *arg;
4502 void **slot;
4503
4504 entry = (struct mips_got_entry *) *entryp;
4505 arg = (struct mips_elf_traverse_got_arg *) data;
4506 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4507 if (!slot)
4508 {
4509 arg->g = NULL;
4510 return 0;
4511 }
4512 if (!*slot)
4513 {
4514 *slot = entry;
4515 mips_elf_count_got_entry (arg->info, arg->g, entry);
4516 }
4517 return 1;
4518 }
4519
4520 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4521 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4522
4523 static int
4524 mips_elf_add_got_page_entry (void **entryp, void *data)
4525 {
4526 struct mips_got_page_entry *entry;
4527 struct mips_elf_traverse_got_arg *arg;
4528 void **slot;
4529
4530 entry = (struct mips_got_page_entry *) *entryp;
4531 arg = (struct mips_elf_traverse_got_arg *) data;
4532 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4533 if (!slot)
4534 {
4535 arg->g = NULL;
4536 return 0;
4537 }
4538 if (!*slot)
4539 {
4540 *slot = entry;
4541 arg->g->page_gotno += entry->num_pages;
4542 }
4543 return 1;
4544 }
4545
4546 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4547 this would lead to overflow, 1 if they were merged successfully,
4548 and 0 if a merge failed due to lack of memory. (These values are chosen
4549 so that nonnegative return values can be returned by a htab_traverse
4550 callback.) */
4551
4552 static int
4553 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4554 struct mips_got_info *to,
4555 struct mips_elf_got_per_bfd_arg *arg)
4556 {
4557 struct mips_elf_traverse_got_arg tga;
4558 unsigned int estimate;
4559
4560 /* Work out how many page entries we would need for the combined GOT. */
4561 estimate = arg->max_pages;
4562 if (estimate >= from->page_gotno + to->page_gotno)
4563 estimate = from->page_gotno + to->page_gotno;
4564
4565 /* And conservatively estimate how many local and TLS entries
4566 would be needed. */
4567 estimate += from->local_gotno + to->local_gotno;
4568 estimate += from->tls_gotno + to->tls_gotno;
4569
4570 /* If we're merging with the primary got, any TLS relocations will
4571 come after the full set of global entries. Otherwise estimate those
4572 conservatively as well. */
4573 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4574 estimate += arg->global_count;
4575 else
4576 estimate += from->global_gotno + to->global_gotno;
4577
4578 /* Bail out if the combined GOT might be too big. */
4579 if (estimate > arg->max_count)
4580 return -1;
4581
4582 /* Transfer the bfd's got information from FROM to TO. */
4583 tga.info = arg->info;
4584 tga.g = to;
4585 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4586 if (!tga.g)
4587 return 0;
4588
4589 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4590 if (!tga.g)
4591 return 0;
4592
4593 mips_elf_replace_bfd_got (abfd, to);
4594 return 1;
4595 }
4596
4597 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4598 as possible of the primary got, since it doesn't require explicit
4599 dynamic relocations, but don't use bfds that would reference global
4600 symbols out of the addressable range. Failing the primary got,
4601 attempt to merge with the current got, or finish the current got
4602 and then make make the new got current. */
4603
4604 static bfd_boolean
4605 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4606 struct mips_elf_got_per_bfd_arg *arg)
4607 {
4608 unsigned int estimate;
4609 int result;
4610
4611 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4612 return FALSE;
4613
4614 /* Work out the number of page, local and TLS entries. */
4615 estimate = arg->max_pages;
4616 if (estimate > g->page_gotno)
4617 estimate = g->page_gotno;
4618 estimate += g->local_gotno + g->tls_gotno;
4619
4620 /* We place TLS GOT entries after both locals and globals. The globals
4621 for the primary GOT may overflow the normal GOT size limit, so be
4622 sure not to merge a GOT which requires TLS with the primary GOT in that
4623 case. This doesn't affect non-primary GOTs. */
4624 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4625
4626 if (estimate <= arg->max_count)
4627 {
4628 /* If we don't have a primary GOT, use it as
4629 a starting point for the primary GOT. */
4630 if (!arg->primary)
4631 {
4632 arg->primary = g;
4633 return TRUE;
4634 }
4635
4636 /* Try merging with the primary GOT. */
4637 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4638 if (result >= 0)
4639 return result;
4640 }
4641
4642 /* If we can merge with the last-created got, do it. */
4643 if (arg->current)
4644 {
4645 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4646 if (result >= 0)
4647 return result;
4648 }
4649
4650 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4651 fits; if it turns out that it doesn't, we'll get relocation
4652 overflows anyway. */
4653 g->next = arg->current;
4654 arg->current = g;
4655
4656 return TRUE;
4657 }
4658
4659 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4660 to GOTIDX, duplicating the entry if it has already been assigned
4661 an index in a different GOT. */
4662
4663 static bfd_boolean
4664 mips_elf_set_gotidx (void **entryp, long gotidx)
4665 {
4666 struct mips_got_entry *entry;
4667
4668 entry = (struct mips_got_entry *) *entryp;
4669 if (entry->gotidx > 0)
4670 {
4671 struct mips_got_entry *new_entry;
4672
4673 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4674 if (!new_entry)
4675 return FALSE;
4676
4677 *new_entry = *entry;
4678 *entryp = new_entry;
4679 entry = new_entry;
4680 }
4681 entry->gotidx = gotidx;
4682 return TRUE;
4683 }
4684
4685 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4686 mips_elf_traverse_got_arg in which DATA->value is the size of one
4687 GOT entry. Set DATA->g to null on failure. */
4688
4689 static int
4690 mips_elf_initialize_tls_index (void **entryp, void *data)
4691 {
4692 struct mips_got_entry *entry;
4693 struct mips_elf_traverse_got_arg *arg;
4694
4695 /* We're only interested in TLS symbols. */
4696 entry = (struct mips_got_entry *) *entryp;
4697 if (entry->tls_type == GOT_TLS_NONE)
4698 return 1;
4699
4700 arg = (struct mips_elf_traverse_got_arg *) data;
4701 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4702 {
4703 arg->g = NULL;
4704 return 0;
4705 }
4706
4707 /* Account for the entries we've just allocated. */
4708 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4709 return 1;
4710 }
4711
4712 /* A htab_traverse callback for GOT entries, where DATA points to a
4713 mips_elf_traverse_got_arg. Set the global_got_area of each global
4714 symbol to DATA->value. */
4715
4716 static int
4717 mips_elf_set_global_got_area (void **entryp, void *data)
4718 {
4719 struct mips_got_entry *entry;
4720 struct mips_elf_traverse_got_arg *arg;
4721
4722 entry = (struct mips_got_entry *) *entryp;
4723 arg = (struct mips_elf_traverse_got_arg *) data;
4724 if (entry->abfd != NULL
4725 && entry->symndx == -1
4726 && entry->d.h->global_got_area != GGA_NONE)
4727 entry->d.h->global_got_area = arg->value;
4728 return 1;
4729 }
4730
4731 /* A htab_traverse callback for secondary GOT entries, where DATA points
4732 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4733 and record the number of relocations they require. DATA->value is
4734 the size of one GOT entry. Set DATA->g to null on failure. */
4735
4736 static int
4737 mips_elf_set_global_gotidx (void **entryp, void *data)
4738 {
4739 struct mips_got_entry *entry;
4740 struct mips_elf_traverse_got_arg *arg;
4741
4742 entry = (struct mips_got_entry *) *entryp;
4743 arg = (struct mips_elf_traverse_got_arg *) data;
4744 if (entry->abfd != NULL
4745 && entry->symndx == -1
4746 && entry->d.h->global_got_area != GGA_NONE)
4747 {
4748 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4749 {
4750 arg->g = NULL;
4751 return 0;
4752 }
4753 arg->g->assigned_low_gotno += 1;
4754
4755 if (bfd_link_pic (arg->info)
4756 || (elf_hash_table (arg->info)->dynamic_sections_created
4757 && entry->d.h->root.def_dynamic
4758 && !entry->d.h->root.def_regular))
4759 arg->g->relocs += 1;
4760 }
4761
4762 return 1;
4763 }
4764
4765 /* A htab_traverse callback for GOT entries for which DATA is the
4766 bfd_link_info. Forbid any global symbols from having traditional
4767 lazy-binding stubs. */
4768
4769 static int
4770 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4771 {
4772 struct bfd_link_info *info;
4773 struct mips_elf_link_hash_table *htab;
4774 struct mips_got_entry *entry;
4775
4776 entry = (struct mips_got_entry *) *entryp;
4777 info = (struct bfd_link_info *) data;
4778 htab = mips_elf_hash_table (info);
4779 BFD_ASSERT (htab != NULL);
4780
4781 if (entry->abfd != NULL
4782 && entry->symndx == -1
4783 && entry->d.h->needs_lazy_stub)
4784 {
4785 entry->d.h->needs_lazy_stub = FALSE;
4786 htab->lazy_stub_count--;
4787 }
4788
4789 return 1;
4790 }
4791
4792 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4793 the primary GOT. */
4794 static bfd_vma
4795 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4796 {
4797 if (!g->next)
4798 return 0;
4799
4800 g = mips_elf_bfd_got (ibfd, FALSE);
4801 if (! g)
4802 return 0;
4803
4804 BFD_ASSERT (g->next);
4805
4806 g = g->next;
4807
4808 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4809 * MIPS_ELF_GOT_SIZE (abfd);
4810 }
4811
4812 /* Turn a single GOT that is too big for 16-bit addressing into
4813 a sequence of GOTs, each one 16-bit addressable. */
4814
4815 static bfd_boolean
4816 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4817 asection *got, bfd_size_type pages)
4818 {
4819 struct mips_elf_link_hash_table *htab;
4820 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4821 struct mips_elf_traverse_got_arg tga;
4822 struct mips_got_info *g, *gg;
4823 unsigned int assign, needed_relocs;
4824 bfd *dynobj, *ibfd;
4825
4826 dynobj = elf_hash_table (info)->dynobj;
4827 htab = mips_elf_hash_table (info);
4828 BFD_ASSERT (htab != NULL);
4829
4830 g = htab->got_info;
4831
4832 got_per_bfd_arg.obfd = abfd;
4833 got_per_bfd_arg.info = info;
4834 got_per_bfd_arg.current = NULL;
4835 got_per_bfd_arg.primary = NULL;
4836 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4837 / MIPS_ELF_GOT_SIZE (abfd))
4838 - htab->reserved_gotno);
4839 got_per_bfd_arg.max_pages = pages;
4840 /* The number of globals that will be included in the primary GOT.
4841 See the calls to mips_elf_set_global_got_area below for more
4842 information. */
4843 got_per_bfd_arg.global_count = g->global_gotno;
4844
4845 /* Try to merge the GOTs of input bfds together, as long as they
4846 don't seem to exceed the maximum GOT size, choosing one of them
4847 to be the primary GOT. */
4848 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4849 {
4850 gg = mips_elf_bfd_got (ibfd, FALSE);
4851 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4852 return FALSE;
4853 }
4854
4855 /* If we do not find any suitable primary GOT, create an empty one. */
4856 if (got_per_bfd_arg.primary == NULL)
4857 g->next = mips_elf_create_got_info (abfd);
4858 else
4859 g->next = got_per_bfd_arg.primary;
4860 g->next->next = got_per_bfd_arg.current;
4861
4862 /* GG is now the master GOT, and G is the primary GOT. */
4863 gg = g;
4864 g = g->next;
4865
4866 /* Map the output bfd to the primary got. That's what we're going
4867 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4868 didn't mark in check_relocs, and we want a quick way to find it.
4869 We can't just use gg->next because we're going to reverse the
4870 list. */
4871 mips_elf_replace_bfd_got (abfd, g);
4872
4873 /* Every symbol that is referenced in a dynamic relocation must be
4874 present in the primary GOT, so arrange for them to appear after
4875 those that are actually referenced. */
4876 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4877 g->global_gotno = gg->global_gotno;
4878
4879 tga.info = info;
4880 tga.value = GGA_RELOC_ONLY;
4881 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4882 tga.value = GGA_NORMAL;
4883 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4884
4885 /* Now go through the GOTs assigning them offset ranges.
4886 [assigned_low_gotno, local_gotno[ will be set to the range of local
4887 entries in each GOT. We can then compute the end of a GOT by
4888 adding local_gotno to global_gotno. We reverse the list and make
4889 it circular since then we'll be able to quickly compute the
4890 beginning of a GOT, by computing the end of its predecessor. To
4891 avoid special cases for the primary GOT, while still preserving
4892 assertions that are valid for both single- and multi-got links,
4893 we arrange for the main got struct to have the right number of
4894 global entries, but set its local_gotno such that the initial
4895 offset of the primary GOT is zero. Remember that the primary GOT
4896 will become the last item in the circular linked list, so it
4897 points back to the master GOT. */
4898 gg->local_gotno = -g->global_gotno;
4899 gg->global_gotno = g->global_gotno;
4900 gg->tls_gotno = 0;
4901 assign = 0;
4902 gg->next = gg;
4903
4904 do
4905 {
4906 struct mips_got_info *gn;
4907
4908 assign += htab->reserved_gotno;
4909 g->assigned_low_gotno = assign;
4910 g->local_gotno += assign;
4911 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4912 g->assigned_high_gotno = g->local_gotno - 1;
4913 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4914
4915 /* Take g out of the direct list, and push it onto the reversed
4916 list that gg points to. g->next is guaranteed to be nonnull after
4917 this operation, as required by mips_elf_initialize_tls_index. */
4918 gn = g->next;
4919 g->next = gg->next;
4920 gg->next = g;
4921
4922 /* Set up any TLS entries. We always place the TLS entries after
4923 all non-TLS entries. */
4924 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4925 tga.g = g;
4926 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4927 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4928 if (!tga.g)
4929 return FALSE;
4930 BFD_ASSERT (g->tls_assigned_gotno == assign);
4931
4932 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4933 g = gn;
4934
4935 /* Forbid global symbols in every non-primary GOT from having
4936 lazy-binding stubs. */
4937 if (g)
4938 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4939 }
4940 while (g);
4941
4942 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
4943
4944 needed_relocs = 0;
4945 for (g = gg->next; g && g->next != gg; g = g->next)
4946 {
4947 unsigned int save_assign;
4948
4949 /* Assign offsets to global GOT entries and count how many
4950 relocations they need. */
4951 save_assign = g->assigned_low_gotno;
4952 g->assigned_low_gotno = g->local_gotno;
4953 tga.info = info;
4954 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4955 tga.g = g;
4956 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
4957 if (!tga.g)
4958 return FALSE;
4959 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4960 g->assigned_low_gotno = save_assign;
4961
4962 if (bfd_link_pic (info))
4963 {
4964 g->relocs += g->local_gotno - g->assigned_low_gotno;
4965 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
4966 + g->next->global_gotno
4967 + g->next->tls_gotno
4968 + htab->reserved_gotno);
4969 }
4970 needed_relocs += g->relocs;
4971 }
4972 needed_relocs += g->relocs;
4973
4974 if (needed_relocs)
4975 mips_elf_allocate_dynamic_relocations (dynobj, info,
4976 needed_relocs);
4977
4978 return TRUE;
4979 }
4980
4981 \f
4982 /* Returns the first relocation of type r_type found, beginning with
4983 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4984
4985 static const Elf_Internal_Rela *
4986 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4987 const Elf_Internal_Rela *relocation,
4988 const Elf_Internal_Rela *relend)
4989 {
4990 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4991
4992 while (relocation < relend)
4993 {
4994 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4995 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4996 return relocation;
4997
4998 ++relocation;
4999 }
5000
5001 /* We didn't find it. */
5002 return NULL;
5003 }
5004
5005 /* Return whether an input relocation is against a local symbol. */
5006
5007 static bfd_boolean
5008 mips_elf_local_relocation_p (bfd *input_bfd,
5009 const Elf_Internal_Rela *relocation,
5010 asection **local_sections)
5011 {
5012 unsigned long r_symndx;
5013 Elf_Internal_Shdr *symtab_hdr;
5014 size_t extsymoff;
5015
5016 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5017 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5018 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5019
5020 if (r_symndx < extsymoff)
5021 return TRUE;
5022 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5023 return TRUE;
5024
5025 return FALSE;
5026 }
5027 \f
5028 /* Sign-extend VALUE, which has the indicated number of BITS. */
5029
5030 bfd_vma
5031 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
5032 {
5033 if (value & ((bfd_vma) 1 << (bits - 1)))
5034 /* VALUE is negative. */
5035 value |= ((bfd_vma) - 1) << bits;
5036
5037 return value;
5038 }
5039
5040 /* Return non-zero if the indicated VALUE has overflowed the maximum
5041 range expressible by a signed number with the indicated number of
5042 BITS. */
5043
5044 static bfd_boolean
5045 mips_elf_overflow_p (bfd_vma value, int bits)
5046 {
5047 bfd_signed_vma svalue = (bfd_signed_vma) value;
5048
5049 if (svalue > (1 << (bits - 1)) - 1)
5050 /* The value is too big. */
5051 return TRUE;
5052 else if (svalue < -(1 << (bits - 1)))
5053 /* The value is too small. */
5054 return TRUE;
5055
5056 /* All is well. */
5057 return FALSE;
5058 }
5059
5060 /* Calculate the %high function. */
5061
5062 static bfd_vma
5063 mips_elf_high (bfd_vma value)
5064 {
5065 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5066 }
5067
5068 /* Calculate the %higher function. */
5069
5070 static bfd_vma
5071 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5072 {
5073 #ifdef BFD64
5074 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5075 #else
5076 abort ();
5077 return MINUS_ONE;
5078 #endif
5079 }
5080
5081 /* Calculate the %highest function. */
5082
5083 static bfd_vma
5084 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5085 {
5086 #ifdef BFD64
5087 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5088 #else
5089 abort ();
5090 return MINUS_ONE;
5091 #endif
5092 }
5093 \f
5094 /* Create the .compact_rel section. */
5095
5096 static bfd_boolean
5097 mips_elf_create_compact_rel_section
5098 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5099 {
5100 flagword flags;
5101 register asection *s;
5102
5103 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5104 {
5105 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5106 | SEC_READONLY);
5107
5108 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5109 if (s == NULL
5110 || ! bfd_set_section_alignment (abfd, s,
5111 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5112 return FALSE;
5113
5114 s->size = sizeof (Elf32_External_compact_rel);
5115 }
5116
5117 return TRUE;
5118 }
5119
5120 /* Create the .got section to hold the global offset table. */
5121
5122 static bfd_boolean
5123 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5124 {
5125 flagword flags;
5126 register asection *s;
5127 struct elf_link_hash_entry *h;
5128 struct bfd_link_hash_entry *bh;
5129 struct mips_elf_link_hash_table *htab;
5130
5131 htab = mips_elf_hash_table (info);
5132 BFD_ASSERT (htab != NULL);
5133
5134 /* This function may be called more than once. */
5135 if (htab->root.sgot)
5136 return TRUE;
5137
5138 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5139 | SEC_LINKER_CREATED);
5140
5141 /* We have to use an alignment of 2**4 here because this is hardcoded
5142 in the function stub generation and in the linker script. */
5143 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5144 if (s == NULL
5145 || ! bfd_set_section_alignment (abfd, s, 4))
5146 return FALSE;
5147 htab->root.sgot = s;
5148
5149 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5150 linker script because we don't want to define the symbol if we
5151 are not creating a global offset table. */
5152 bh = NULL;
5153 if (! (_bfd_generic_link_add_one_symbol
5154 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5155 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5156 return FALSE;
5157
5158 h = (struct elf_link_hash_entry *) bh;
5159 h->non_elf = 0;
5160 h->def_regular = 1;
5161 h->type = STT_OBJECT;
5162 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5163 elf_hash_table (info)->hgot = h;
5164
5165 if (bfd_link_pic (info)
5166 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5167 return FALSE;
5168
5169 htab->got_info = mips_elf_create_got_info (abfd);
5170 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5171 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5172
5173 /* We also need a .got.plt section when generating PLTs. */
5174 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5175 SEC_ALLOC | SEC_LOAD
5176 | SEC_HAS_CONTENTS
5177 | SEC_IN_MEMORY
5178 | SEC_LINKER_CREATED);
5179 if (s == NULL)
5180 return FALSE;
5181 htab->root.sgotplt = s;
5182
5183 return TRUE;
5184 }
5185 \f
5186 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5187 __GOTT_INDEX__ symbols. These symbols are only special for
5188 shared objects; they are not used in executables. */
5189
5190 static bfd_boolean
5191 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5192 {
5193 return (mips_elf_hash_table (info)->is_vxworks
5194 && bfd_link_pic (info)
5195 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5196 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5197 }
5198
5199 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5200 require an la25 stub. See also mips_elf_local_pic_function_p,
5201 which determines whether the destination function ever requires a
5202 stub. */
5203
5204 static bfd_boolean
5205 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5206 bfd_boolean target_is_16_bit_code_p)
5207 {
5208 /* We specifically ignore branches and jumps from EF_PIC objects,
5209 where the onus is on the compiler or programmer to perform any
5210 necessary initialization of $25. Sometimes such initialization
5211 is unnecessary; for example, -mno-shared functions do not use
5212 the incoming value of $25, and may therefore be called directly. */
5213 if (PIC_OBJECT_P (input_bfd))
5214 return FALSE;
5215
5216 switch (r_type)
5217 {
5218 case R_MIPS_26:
5219 case R_MIPS_PC16:
5220 case R_MIPS_PC21_S2:
5221 case R_MIPS_PC26_S2:
5222 case R_MICROMIPS_26_S1:
5223 case R_MICROMIPS_PC7_S1:
5224 case R_MICROMIPS_PC10_S1:
5225 case R_MICROMIPS_PC16_S1:
5226 case R_MICROMIPS_PC23_S2:
5227 return TRUE;
5228
5229 case R_MIPS16_26:
5230 return !target_is_16_bit_code_p;
5231
5232 default:
5233 return FALSE;
5234 }
5235 }
5236 \f
5237 /* Store the field relocated by RELOCATION. */
5238
5239 static void
5240 mips_elf_store_contents (reloc_howto_type *howto,
5241 const Elf_Internal_Rela *relocation,
5242 bfd *input_bfd, bfd_byte *contents, bfd_vma x)
5243 {
5244 bfd_byte *location = contents + relocation->r_offset;
5245 unsigned int size = bfd_get_reloc_size (howto);
5246
5247 /* Put the value into the output. */
5248 if (size != 0)
5249 bfd_put (8 * size, input_bfd, x, location);
5250 }
5251
5252 /* Calculate the value produced by the RELOCATION (which comes from
5253 the INPUT_BFD). The ADDEND is the addend to use for this
5254 RELOCATION; RELOCATION->R_ADDEND is ignored.
5255
5256 The result of the relocation calculation is stored in VALUEP.
5257 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5258 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5259
5260 This function returns bfd_reloc_continue if the caller need take no
5261 further action regarding this relocation, bfd_reloc_notsupported if
5262 something goes dramatically wrong, bfd_reloc_overflow if an
5263 overflow occurs, and bfd_reloc_ok to indicate success. */
5264
5265 static bfd_reloc_status_type
5266 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5267 asection *input_section,
5268 struct bfd_link_info *info,
5269 const Elf_Internal_Rela *relocation,
5270 bfd_vma addend, reloc_howto_type *howto,
5271 Elf_Internal_Sym *local_syms,
5272 asection **local_sections, bfd_vma *valuep,
5273 const char **namep,
5274 bfd_boolean *cross_mode_jump_p,
5275 bfd_boolean save_addend)
5276 {
5277 /* The eventual value we will return. */
5278 bfd_vma value;
5279 /* The address of the symbol against which the relocation is
5280 occurring. */
5281 bfd_vma symbol = 0;
5282 /* The final GP value to be used for the relocatable, executable, or
5283 shared object file being produced. */
5284 bfd_vma gp;
5285 /* The place (section offset or address) of the storage unit being
5286 relocated. */
5287 bfd_vma p;
5288 /* The value of GP used to create the relocatable object. */
5289 bfd_vma gp0;
5290 /* The offset into the global offset table at which the address of
5291 the relocation entry symbol, adjusted by the addend, resides
5292 during execution. */
5293 bfd_vma g = MINUS_ONE;
5294 /* The section in which the symbol referenced by the relocation is
5295 located. */
5296 asection *sec = NULL;
5297 struct mips_elf_link_hash_entry *h = NULL;
5298 /* TRUE if the symbol referred to by this relocation is a local
5299 symbol. */
5300 bfd_boolean local_p, was_local_p;
5301 /* TRUE if the symbol referred to by this relocation is a section
5302 symbol. */
5303 bfd_boolean section_p = FALSE;
5304 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5305 bfd_boolean gp_disp_p = FALSE;
5306 /* TRUE if the symbol referred to by this relocation is
5307 "__gnu_local_gp". */
5308 bfd_boolean gnu_local_gp_p = FALSE;
5309 Elf_Internal_Shdr *symtab_hdr;
5310 size_t extsymoff;
5311 unsigned long r_symndx;
5312 int r_type;
5313 /* TRUE if overflow occurred during the calculation of the
5314 relocation value. */
5315 bfd_boolean overflowed_p;
5316 /* TRUE if this relocation refers to a MIPS16 function. */
5317 bfd_boolean target_is_16_bit_code_p = FALSE;
5318 bfd_boolean target_is_micromips_code_p = FALSE;
5319 struct mips_elf_link_hash_table *htab;
5320 bfd *dynobj;
5321 bfd_boolean resolved_to_zero;
5322
5323 dynobj = elf_hash_table (info)->dynobj;
5324 htab = mips_elf_hash_table (info);
5325 BFD_ASSERT (htab != NULL);
5326
5327 /* Parse the relocation. */
5328 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5329 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5330 p = (input_section->output_section->vma
5331 + input_section->output_offset
5332 + relocation->r_offset);
5333
5334 /* Assume that there will be no overflow. */
5335 overflowed_p = FALSE;
5336
5337 /* Figure out whether or not the symbol is local, and get the offset
5338 used in the array of hash table entries. */
5339 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5340 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5341 local_sections);
5342 was_local_p = local_p;
5343 if (! elf_bad_symtab (input_bfd))
5344 extsymoff = symtab_hdr->sh_info;
5345 else
5346 {
5347 /* The symbol table does not follow the rule that local symbols
5348 must come before globals. */
5349 extsymoff = 0;
5350 }
5351
5352 /* Figure out the value of the symbol. */
5353 if (local_p)
5354 {
5355 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5356 Elf_Internal_Sym *sym;
5357
5358 sym = local_syms + r_symndx;
5359 sec = local_sections[r_symndx];
5360
5361 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5362
5363 symbol = sec->output_section->vma + sec->output_offset;
5364 if (!section_p || (sec->flags & SEC_MERGE))
5365 symbol += sym->st_value;
5366 if ((sec->flags & SEC_MERGE) && section_p)
5367 {
5368 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5369 addend -= symbol;
5370 addend += sec->output_section->vma + sec->output_offset;
5371 }
5372
5373 /* MIPS16/microMIPS text labels should be treated as odd. */
5374 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5375 ++symbol;
5376
5377 /* Record the name of this symbol, for our caller. */
5378 *namep = bfd_elf_string_from_elf_section (input_bfd,
5379 symtab_hdr->sh_link,
5380 sym->st_name);
5381 if (*namep == NULL || **namep == '\0')
5382 *namep = bfd_section_name (input_bfd, sec);
5383
5384 /* For relocations against a section symbol and ones against no
5385 symbol (absolute relocations) infer the ISA mode from the addend. */
5386 if (section_p || r_symndx == STN_UNDEF)
5387 {
5388 target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5389 target_is_micromips_code_p = (addend & 1) && micromips_p;
5390 }
5391 /* For relocations against an absolute symbol infer the ISA mode
5392 from the value of the symbol plus addend. */
5393 else if (bfd_is_abs_section (sec))
5394 {
5395 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5396 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5397 }
5398 /* Otherwise just use the regular symbol annotation available. */
5399 else
5400 {
5401 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5402 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5403 }
5404 }
5405 else
5406 {
5407 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5408
5409 /* For global symbols we look up the symbol in the hash-table. */
5410 h = ((struct mips_elf_link_hash_entry *)
5411 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5412 /* Find the real hash-table entry for this symbol. */
5413 while (h->root.root.type == bfd_link_hash_indirect
5414 || h->root.root.type == bfd_link_hash_warning)
5415 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5416
5417 /* Record the name of this symbol, for our caller. */
5418 *namep = h->root.root.root.string;
5419
5420 /* See if this is the special _gp_disp symbol. Note that such a
5421 symbol must always be a global symbol. */
5422 if (strcmp (*namep, "_gp_disp") == 0
5423 && ! NEWABI_P (input_bfd))
5424 {
5425 /* Relocations against _gp_disp are permitted only with
5426 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5427 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5428 return bfd_reloc_notsupported;
5429
5430 gp_disp_p = TRUE;
5431 }
5432 /* See if this is the special _gp symbol. Note that such a
5433 symbol must always be a global symbol. */
5434 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5435 gnu_local_gp_p = TRUE;
5436
5437
5438 /* If this symbol is defined, calculate its address. Note that
5439 _gp_disp is a magic symbol, always implicitly defined by the
5440 linker, so it's inappropriate to check to see whether or not
5441 its defined. */
5442 else if ((h->root.root.type == bfd_link_hash_defined
5443 || h->root.root.type == bfd_link_hash_defweak)
5444 && h->root.root.u.def.section)
5445 {
5446 sec = h->root.root.u.def.section;
5447 if (sec->output_section)
5448 symbol = (h->root.root.u.def.value
5449 + sec->output_section->vma
5450 + sec->output_offset);
5451 else
5452 symbol = h->root.root.u.def.value;
5453 }
5454 else if (h->root.root.type == bfd_link_hash_undefweak)
5455 /* We allow relocations against undefined weak symbols, giving
5456 it the value zero, so that you can undefined weak functions
5457 and check to see if they exist by looking at their
5458 addresses. */
5459 symbol = 0;
5460 else if (info->unresolved_syms_in_objects == RM_IGNORE
5461 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5462 symbol = 0;
5463 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5464 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5465 {
5466 /* If this is a dynamic link, we should have created a
5467 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5468 in _bfd_mips_elf_create_dynamic_sections.
5469 Otherwise, we should define the symbol with a value of 0.
5470 FIXME: It should probably get into the symbol table
5471 somehow as well. */
5472 BFD_ASSERT (! bfd_link_pic (info));
5473 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5474 symbol = 0;
5475 }
5476 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5477 {
5478 /* This is an optional symbol - an Irix specific extension to the
5479 ELF spec. Ignore it for now.
5480 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5481 than simply ignoring them, but we do not handle this for now.
5482 For information see the "64-bit ELF Object File Specification"
5483 which is available from here:
5484 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5485 symbol = 0;
5486 }
5487 else
5488 {
5489 bfd_boolean reject_undefined
5490 = (info->unresolved_syms_in_objects == RM_GENERATE_ERROR
5491 || ELF_ST_VISIBILITY (h->root.other) != STV_DEFAULT);
5492
5493 (*info->callbacks->undefined_symbol)
5494 (info, h->root.root.root.string, input_bfd,
5495 input_section, relocation->r_offset, reject_undefined);
5496
5497 if (reject_undefined)
5498 return bfd_reloc_undefined;
5499
5500 symbol = 0;
5501 }
5502
5503 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5504 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5505 }
5506
5507 /* If this is a reference to a 16-bit function with a stub, we need
5508 to redirect the relocation to the stub unless:
5509
5510 (a) the relocation is for a MIPS16 JAL;
5511
5512 (b) the relocation is for a MIPS16 PIC call, and there are no
5513 non-MIPS16 uses of the GOT slot; or
5514
5515 (c) the section allows direct references to MIPS16 functions. */
5516 if (r_type != R_MIPS16_26
5517 && !bfd_link_relocatable (info)
5518 && ((h != NULL
5519 && h->fn_stub != NULL
5520 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5521 || (local_p
5522 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5523 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5524 && !section_allows_mips16_refs_p (input_section))
5525 {
5526 /* This is a 32- or 64-bit call to a 16-bit function. We should
5527 have already noticed that we were going to need the
5528 stub. */
5529 if (local_p)
5530 {
5531 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5532 value = 0;
5533 }
5534 else
5535 {
5536 BFD_ASSERT (h->need_fn_stub);
5537 if (h->la25_stub)
5538 {
5539 /* If a LA25 header for the stub itself exists, point to the
5540 prepended LUI/ADDIU sequence. */
5541 sec = h->la25_stub->stub_section;
5542 value = h->la25_stub->offset;
5543 }
5544 else
5545 {
5546 sec = h->fn_stub;
5547 value = 0;
5548 }
5549 }
5550
5551 symbol = sec->output_section->vma + sec->output_offset + value;
5552 /* The target is 16-bit, but the stub isn't. */
5553 target_is_16_bit_code_p = FALSE;
5554 }
5555 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5556 to a standard MIPS function, we need to redirect the call to the stub.
5557 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5558 indirect calls should use an indirect stub instead. */
5559 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
5560 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5561 || (local_p
5562 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5563 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5564 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5565 {
5566 if (local_p)
5567 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5568 else
5569 {
5570 /* If both call_stub and call_fp_stub are defined, we can figure
5571 out which one to use by checking which one appears in the input
5572 file. */
5573 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5574 {
5575 asection *o;
5576
5577 sec = NULL;
5578 for (o = input_bfd->sections; o != NULL; o = o->next)
5579 {
5580 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5581 {
5582 sec = h->call_fp_stub;
5583 break;
5584 }
5585 }
5586 if (sec == NULL)
5587 sec = h->call_stub;
5588 }
5589 else if (h->call_stub != NULL)
5590 sec = h->call_stub;
5591 else
5592 sec = h->call_fp_stub;
5593 }
5594
5595 BFD_ASSERT (sec->size > 0);
5596 symbol = sec->output_section->vma + sec->output_offset;
5597 }
5598 /* If this is a direct call to a PIC function, redirect to the
5599 non-PIC stub. */
5600 else if (h != NULL && h->la25_stub
5601 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5602 target_is_16_bit_code_p))
5603 {
5604 symbol = (h->la25_stub->stub_section->output_section->vma
5605 + h->la25_stub->stub_section->output_offset
5606 + h->la25_stub->offset);
5607 if (ELF_ST_IS_MICROMIPS (h->root.other))
5608 symbol |= 1;
5609 }
5610 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5611 entry is used if a standard PLT entry has also been made. In this
5612 case the symbol will have been set by mips_elf_set_plt_sym_value
5613 to point to the standard PLT entry, so redirect to the compressed
5614 one. */
5615 else if ((mips16_branch_reloc_p (r_type)
5616 || micromips_branch_reloc_p (r_type))
5617 && !bfd_link_relocatable (info)
5618 && h != NULL
5619 && h->use_plt_entry
5620 && h->root.plt.plist->comp_offset != MINUS_ONE
5621 && h->root.plt.plist->mips_offset != MINUS_ONE)
5622 {
5623 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5624
5625 sec = htab->root.splt;
5626 symbol = (sec->output_section->vma
5627 + sec->output_offset
5628 + htab->plt_header_size
5629 + htab->plt_mips_offset
5630 + h->root.plt.plist->comp_offset
5631 + 1);
5632
5633 target_is_16_bit_code_p = !micromips_p;
5634 target_is_micromips_code_p = micromips_p;
5635 }
5636
5637 /* Make sure MIPS16 and microMIPS are not used together. */
5638 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
5639 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5640 {
5641 _bfd_error_handler
5642 (_("MIPS16 and microMIPS functions cannot call each other"));
5643 return bfd_reloc_notsupported;
5644 }
5645
5646 /* Calls from 16-bit code to 32-bit code and vice versa require the
5647 mode change. However, we can ignore calls to undefined weak symbols,
5648 which should never be executed at runtime. This exception is important
5649 because the assembly writer may have "known" that any definition of the
5650 symbol would be 16-bit code, and that direct jumps were therefore
5651 acceptable. */
5652 *cross_mode_jump_p = (!bfd_link_relocatable (info)
5653 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5654 && ((mips16_branch_reloc_p (r_type)
5655 && !target_is_16_bit_code_p)
5656 || (micromips_branch_reloc_p (r_type)
5657 && !target_is_micromips_code_p)
5658 || ((branch_reloc_p (r_type)
5659 || r_type == R_MIPS_JALR)
5660 && (target_is_16_bit_code_p
5661 || target_is_micromips_code_p))));
5662
5663 local_p = (h == NULL || mips_use_local_got_p (info, h));
5664
5665 gp0 = _bfd_get_gp_value (input_bfd);
5666 gp = _bfd_get_gp_value (abfd);
5667 if (htab->got_info)
5668 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5669
5670 if (gnu_local_gp_p)
5671 symbol = gp;
5672
5673 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5674 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5675 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5676 if (got_page_reloc_p (r_type) && !local_p)
5677 {
5678 r_type = (micromips_reloc_p (r_type)
5679 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5680 addend = 0;
5681 }
5682
5683 resolved_to_zero = (h != NULL
5684 && UNDEFWEAK_NO_DYNAMIC_RELOC (info,
5685 &h->root));
5686
5687 /* If we haven't already determined the GOT offset, and we're going
5688 to need it, get it now. */
5689 switch (r_type)
5690 {
5691 case R_MIPS16_CALL16:
5692 case R_MIPS16_GOT16:
5693 case R_MIPS_CALL16:
5694 case R_MIPS_GOT16:
5695 case R_MIPS_GOT_DISP:
5696 case R_MIPS_GOT_HI16:
5697 case R_MIPS_CALL_HI16:
5698 case R_MIPS_GOT_LO16:
5699 case R_MIPS_CALL_LO16:
5700 case R_MICROMIPS_CALL16:
5701 case R_MICROMIPS_GOT16:
5702 case R_MICROMIPS_GOT_DISP:
5703 case R_MICROMIPS_GOT_HI16:
5704 case R_MICROMIPS_CALL_HI16:
5705 case R_MICROMIPS_GOT_LO16:
5706 case R_MICROMIPS_CALL_LO16:
5707 case R_MIPS_TLS_GD:
5708 case R_MIPS_TLS_GOTTPREL:
5709 case R_MIPS_TLS_LDM:
5710 case R_MIPS16_TLS_GD:
5711 case R_MIPS16_TLS_GOTTPREL:
5712 case R_MIPS16_TLS_LDM:
5713 case R_MICROMIPS_TLS_GD:
5714 case R_MICROMIPS_TLS_GOTTPREL:
5715 case R_MICROMIPS_TLS_LDM:
5716 /* Find the index into the GOT where this value is located. */
5717 if (tls_ldm_reloc_p (r_type))
5718 {
5719 g = mips_elf_local_got_index (abfd, input_bfd, info,
5720 0, 0, NULL, r_type);
5721 if (g == MINUS_ONE)
5722 return bfd_reloc_outofrange;
5723 }
5724 else if (!local_p)
5725 {
5726 /* On VxWorks, CALL relocations should refer to the .got.plt
5727 entry, which is initialized to point at the PLT stub. */
5728 if (htab->is_vxworks
5729 && (call_hi16_reloc_p (r_type)
5730 || call_lo16_reloc_p (r_type)
5731 || call16_reloc_p (r_type)))
5732 {
5733 BFD_ASSERT (addend == 0);
5734 BFD_ASSERT (h->root.needs_plt);
5735 g = mips_elf_gotplt_index (info, &h->root);
5736 }
5737 else
5738 {
5739 BFD_ASSERT (addend == 0);
5740 g = mips_elf_global_got_index (abfd, info, input_bfd,
5741 &h->root, r_type);
5742 if (!TLS_RELOC_P (r_type)
5743 && !elf_hash_table (info)->dynamic_sections_created)
5744 /* This is a static link. We must initialize the GOT entry. */
5745 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->root.sgot->contents + g);
5746 }
5747 }
5748 else if (!htab->is_vxworks
5749 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5750 /* The calculation below does not involve "g". */
5751 break;
5752 else
5753 {
5754 g = mips_elf_local_got_index (abfd, input_bfd, info,
5755 symbol + addend, r_symndx, h, r_type);
5756 if (g == MINUS_ONE)
5757 return bfd_reloc_outofrange;
5758 }
5759
5760 /* Convert GOT indices to actual offsets. */
5761 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5762 break;
5763 }
5764
5765 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5766 symbols are resolved by the loader. Add them to .rela.dyn. */
5767 if (h != NULL && is_gott_symbol (info, &h->root))
5768 {
5769 Elf_Internal_Rela outrel;
5770 bfd_byte *loc;
5771 asection *s;
5772
5773 s = mips_elf_rel_dyn_section (info, FALSE);
5774 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5775
5776 outrel.r_offset = (input_section->output_section->vma
5777 + input_section->output_offset
5778 + relocation->r_offset);
5779 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5780 outrel.r_addend = addend;
5781 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5782
5783 /* If we've written this relocation for a readonly section,
5784 we need to set DF_TEXTREL again, so that we do not delete the
5785 DT_TEXTREL tag. */
5786 if (MIPS_ELF_READONLY_SECTION (input_section))
5787 info->flags |= DF_TEXTREL;
5788
5789 *valuep = 0;
5790 return bfd_reloc_ok;
5791 }
5792
5793 /* Figure out what kind of relocation is being performed. */
5794 switch (r_type)
5795 {
5796 case R_MIPS_NONE:
5797 return bfd_reloc_continue;
5798
5799 case R_MIPS_16:
5800 if (howto->partial_inplace)
5801 addend = _bfd_mips_elf_sign_extend (addend, 16);
5802 value = symbol + addend;
5803 overflowed_p = mips_elf_overflow_p (value, 16);
5804 break;
5805
5806 case R_MIPS_32:
5807 case R_MIPS_REL32:
5808 case R_MIPS_64:
5809 if ((bfd_link_pic (info)
5810 || (htab->root.dynamic_sections_created
5811 && h != NULL
5812 && h->root.def_dynamic
5813 && !h->root.def_regular
5814 && !h->has_static_relocs))
5815 && r_symndx != STN_UNDEF
5816 && (h == NULL
5817 || h->root.root.type != bfd_link_hash_undefweak
5818 || (ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
5819 && !resolved_to_zero))
5820 && (input_section->flags & SEC_ALLOC) != 0)
5821 {
5822 /* If we're creating a shared library, then we can't know
5823 where the symbol will end up. So, we create a relocation
5824 record in the output, and leave the job up to the dynamic
5825 linker. We must do the same for executable references to
5826 shared library symbols, unless we've decided to use copy
5827 relocs or PLTs instead. */
5828 value = addend;
5829 if (!mips_elf_create_dynamic_relocation (abfd,
5830 info,
5831 relocation,
5832 h,
5833 sec,
5834 symbol,
5835 &value,
5836 input_section))
5837 return bfd_reloc_undefined;
5838 }
5839 else
5840 {
5841 if (r_type != R_MIPS_REL32)
5842 value = symbol + addend;
5843 else
5844 value = addend;
5845 }
5846 value &= howto->dst_mask;
5847 break;
5848
5849 case R_MIPS_PC32:
5850 value = symbol + addend - p;
5851 value &= howto->dst_mask;
5852 break;
5853
5854 case R_MIPS16_26:
5855 /* The calculation for R_MIPS16_26 is just the same as for an
5856 R_MIPS_26. It's only the storage of the relocated field into
5857 the output file that's different. That's handled in
5858 mips_elf_perform_relocation. So, we just fall through to the
5859 R_MIPS_26 case here. */
5860 case R_MIPS_26:
5861 case R_MICROMIPS_26_S1:
5862 {
5863 unsigned int shift;
5864
5865 /* Shift is 2, unusually, for microMIPS JALX. */
5866 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5867
5868 if (howto->partial_inplace && !section_p)
5869 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5870 else
5871 value = addend;
5872 value += symbol;
5873
5874 /* Make sure the target of a jump is suitably aligned. Bit 0 must
5875 be the correct ISA mode selector except for weak undefined
5876 symbols. */
5877 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5878 && (*cross_mode_jump_p
5879 ? (value & 3) != (r_type == R_MIPS_26)
5880 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
5881 return bfd_reloc_outofrange;
5882
5883 value >>= shift;
5884 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5885 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5886 value &= howto->dst_mask;
5887 }
5888 break;
5889
5890 case R_MIPS_TLS_DTPREL_HI16:
5891 case R_MIPS16_TLS_DTPREL_HI16:
5892 case R_MICROMIPS_TLS_DTPREL_HI16:
5893 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5894 & howto->dst_mask);
5895 break;
5896
5897 case R_MIPS_TLS_DTPREL_LO16:
5898 case R_MIPS_TLS_DTPREL32:
5899 case R_MIPS_TLS_DTPREL64:
5900 case R_MIPS16_TLS_DTPREL_LO16:
5901 case R_MICROMIPS_TLS_DTPREL_LO16:
5902 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5903 break;
5904
5905 case R_MIPS_TLS_TPREL_HI16:
5906 case R_MIPS16_TLS_TPREL_HI16:
5907 case R_MICROMIPS_TLS_TPREL_HI16:
5908 value = (mips_elf_high (addend + symbol - tprel_base (info))
5909 & howto->dst_mask);
5910 break;
5911
5912 case R_MIPS_TLS_TPREL_LO16:
5913 case R_MIPS_TLS_TPREL32:
5914 case R_MIPS_TLS_TPREL64:
5915 case R_MIPS16_TLS_TPREL_LO16:
5916 case R_MICROMIPS_TLS_TPREL_LO16:
5917 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5918 break;
5919
5920 case R_MIPS_HI16:
5921 case R_MIPS16_HI16:
5922 case R_MICROMIPS_HI16:
5923 if (!gp_disp_p)
5924 {
5925 value = mips_elf_high (addend + symbol);
5926 value &= howto->dst_mask;
5927 }
5928 else
5929 {
5930 /* For MIPS16 ABI code we generate this sequence
5931 0: li $v0,%hi(_gp_disp)
5932 4: addiupc $v1,%lo(_gp_disp)
5933 8: sll $v0,16
5934 12: addu $v0,$v1
5935 14: move $gp,$v0
5936 So the offsets of hi and lo relocs are the same, but the
5937 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5938 ADDIUPC clears the low two bits of the instruction address,
5939 so the base is ($t9 + 4) & ~3. */
5940 if (r_type == R_MIPS16_HI16)
5941 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5942 /* The microMIPS .cpload sequence uses the same assembly
5943 instructions as the traditional psABI version, but the
5944 incoming $t9 has the low bit set. */
5945 else if (r_type == R_MICROMIPS_HI16)
5946 value = mips_elf_high (addend + gp - p - 1);
5947 else
5948 value = mips_elf_high (addend + gp - p);
5949 }
5950 break;
5951
5952 case R_MIPS_LO16:
5953 case R_MIPS16_LO16:
5954 case R_MICROMIPS_LO16:
5955 case R_MICROMIPS_HI0_LO16:
5956 if (!gp_disp_p)
5957 value = (symbol + addend) & howto->dst_mask;
5958 else
5959 {
5960 /* See the comment for R_MIPS16_HI16 above for the reason
5961 for this conditional. */
5962 if (r_type == R_MIPS16_LO16)
5963 value = addend + gp - (p & ~(bfd_vma) 0x3);
5964 else if (r_type == R_MICROMIPS_LO16
5965 || r_type == R_MICROMIPS_HI0_LO16)
5966 value = addend + gp - p + 3;
5967 else
5968 value = addend + gp - p + 4;
5969 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5970 for overflow. But, on, say, IRIX5, relocations against
5971 _gp_disp are normally generated from the .cpload
5972 pseudo-op. It generates code that normally looks like
5973 this:
5974
5975 lui $gp,%hi(_gp_disp)
5976 addiu $gp,$gp,%lo(_gp_disp)
5977 addu $gp,$gp,$t9
5978
5979 Here $t9 holds the address of the function being called,
5980 as required by the MIPS ELF ABI. The R_MIPS_LO16
5981 relocation can easily overflow in this situation, but the
5982 R_MIPS_HI16 relocation will handle the overflow.
5983 Therefore, we consider this a bug in the MIPS ABI, and do
5984 not check for overflow here. */
5985 }
5986 break;
5987
5988 case R_MIPS_LITERAL:
5989 case R_MICROMIPS_LITERAL:
5990 /* Because we don't merge literal sections, we can handle this
5991 just like R_MIPS_GPREL16. In the long run, we should merge
5992 shared literals, and then we will need to additional work
5993 here. */
5994
5995 /* Fall through. */
5996
5997 case R_MIPS16_GPREL:
5998 /* The R_MIPS16_GPREL performs the same calculation as
5999 R_MIPS_GPREL16, but stores the relocated bits in a different
6000 order. We don't need to do anything special here; the
6001 differences are handled in mips_elf_perform_relocation. */
6002 case R_MIPS_GPREL16:
6003 case R_MICROMIPS_GPREL7_S2:
6004 case R_MICROMIPS_GPREL16:
6005 /* Only sign-extend the addend if it was extracted from the
6006 instruction. If the addend was separate, leave it alone,
6007 otherwise we may lose significant bits. */
6008 if (howto->partial_inplace)
6009 addend = _bfd_mips_elf_sign_extend (addend, 16);
6010 value = symbol + addend - gp;
6011 /* If the symbol was local, any earlier relocatable links will
6012 have adjusted its addend with the gp offset, so compensate
6013 for that now. Don't do it for symbols forced local in this
6014 link, though, since they won't have had the gp offset applied
6015 to them before. */
6016 if (was_local_p)
6017 value += gp0;
6018 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6019 overflowed_p = mips_elf_overflow_p (value, 16);
6020 break;
6021
6022 case R_MIPS16_GOT16:
6023 case R_MIPS16_CALL16:
6024 case R_MIPS_GOT16:
6025 case R_MIPS_CALL16:
6026 case R_MICROMIPS_GOT16:
6027 case R_MICROMIPS_CALL16:
6028 /* VxWorks does not have separate local and global semantics for
6029 R_MIPS*_GOT16; every relocation evaluates to "G". */
6030 if (!htab->is_vxworks && local_p)
6031 {
6032 value = mips_elf_got16_entry (abfd, input_bfd, info,
6033 symbol + addend, !was_local_p);
6034 if (value == MINUS_ONE)
6035 return bfd_reloc_outofrange;
6036 value
6037 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6038 overflowed_p = mips_elf_overflow_p (value, 16);
6039 break;
6040 }
6041
6042 /* Fall through. */
6043
6044 case R_MIPS_TLS_GD:
6045 case R_MIPS_TLS_GOTTPREL:
6046 case R_MIPS_TLS_LDM:
6047 case R_MIPS_GOT_DISP:
6048 case R_MIPS16_TLS_GD:
6049 case R_MIPS16_TLS_GOTTPREL:
6050 case R_MIPS16_TLS_LDM:
6051 case R_MICROMIPS_TLS_GD:
6052 case R_MICROMIPS_TLS_GOTTPREL:
6053 case R_MICROMIPS_TLS_LDM:
6054 case R_MICROMIPS_GOT_DISP:
6055 value = g;
6056 overflowed_p = mips_elf_overflow_p (value, 16);
6057 break;
6058
6059 case R_MIPS_GPREL32:
6060 value = (addend + symbol + gp0 - gp);
6061 if (!save_addend)
6062 value &= howto->dst_mask;
6063 break;
6064
6065 case R_MIPS_PC16:
6066 case R_MIPS_GNU_REL16_S2:
6067 if (howto->partial_inplace)
6068 addend = _bfd_mips_elf_sign_extend (addend, 18);
6069
6070 /* No need to exclude weak undefined symbols here as they resolve
6071 to 0 and never set `*cross_mode_jump_p', so this alignment check
6072 will never trigger for them. */
6073 if (*cross_mode_jump_p
6074 ? ((symbol + addend) & 3) != 1
6075 : ((symbol + addend) & 3) != 0)
6076 return bfd_reloc_outofrange;
6077
6078 value = symbol + addend - p;
6079 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6080 overflowed_p = mips_elf_overflow_p (value, 18);
6081 value >>= howto->rightshift;
6082 value &= howto->dst_mask;
6083 break;
6084
6085 case R_MIPS16_PC16_S1:
6086 if (howto->partial_inplace)
6087 addend = _bfd_mips_elf_sign_extend (addend, 17);
6088
6089 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6090 && (*cross_mode_jump_p
6091 ? ((symbol + addend) & 3) != 0
6092 : ((symbol + addend) & 1) == 0))
6093 return bfd_reloc_outofrange;
6094
6095 value = symbol + addend - p;
6096 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6097 overflowed_p = mips_elf_overflow_p (value, 17);
6098 value >>= howto->rightshift;
6099 value &= howto->dst_mask;
6100 break;
6101
6102 case R_MIPS_PC21_S2:
6103 if (howto->partial_inplace)
6104 addend = _bfd_mips_elf_sign_extend (addend, 23);
6105
6106 if ((symbol + addend) & 3)
6107 return bfd_reloc_outofrange;
6108
6109 value = symbol + addend - p;
6110 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6111 overflowed_p = mips_elf_overflow_p (value, 23);
6112 value >>= howto->rightshift;
6113 value &= howto->dst_mask;
6114 break;
6115
6116 case R_MIPS_PC26_S2:
6117 if (howto->partial_inplace)
6118 addend = _bfd_mips_elf_sign_extend (addend, 28);
6119
6120 if ((symbol + addend) & 3)
6121 return bfd_reloc_outofrange;
6122
6123 value = symbol + addend - p;
6124 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6125 overflowed_p = mips_elf_overflow_p (value, 28);
6126 value >>= howto->rightshift;
6127 value &= howto->dst_mask;
6128 break;
6129
6130 case R_MIPS_PC18_S3:
6131 if (howto->partial_inplace)
6132 addend = _bfd_mips_elf_sign_extend (addend, 21);
6133
6134 if ((symbol + addend) & 7)
6135 return bfd_reloc_outofrange;
6136
6137 value = symbol + addend - ((p | 7) ^ 7);
6138 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6139 overflowed_p = mips_elf_overflow_p (value, 21);
6140 value >>= howto->rightshift;
6141 value &= howto->dst_mask;
6142 break;
6143
6144 case R_MIPS_PC19_S2:
6145 if (howto->partial_inplace)
6146 addend = _bfd_mips_elf_sign_extend (addend, 21);
6147
6148 if ((symbol + addend) & 3)
6149 return bfd_reloc_outofrange;
6150
6151 value = symbol + addend - p;
6152 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6153 overflowed_p = mips_elf_overflow_p (value, 21);
6154 value >>= howto->rightshift;
6155 value &= howto->dst_mask;
6156 break;
6157
6158 case R_MIPS_PCHI16:
6159 value = mips_elf_high (symbol + addend - p);
6160 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6161 overflowed_p = mips_elf_overflow_p (value, 16);
6162 value &= howto->dst_mask;
6163 break;
6164
6165 case R_MIPS_PCLO16:
6166 if (howto->partial_inplace)
6167 addend = _bfd_mips_elf_sign_extend (addend, 16);
6168 value = symbol + addend - p;
6169 value &= howto->dst_mask;
6170 break;
6171
6172 case R_MICROMIPS_PC7_S1:
6173 if (howto->partial_inplace)
6174 addend = _bfd_mips_elf_sign_extend (addend, 8);
6175
6176 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6177 && (*cross_mode_jump_p
6178 ? ((symbol + addend + 2) & 3) != 0
6179 : ((symbol + addend + 2) & 1) == 0))
6180 return bfd_reloc_outofrange;
6181
6182 value = symbol + addend - p;
6183 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6184 overflowed_p = mips_elf_overflow_p (value, 8);
6185 value >>= howto->rightshift;
6186 value &= howto->dst_mask;
6187 break;
6188
6189 case R_MICROMIPS_PC10_S1:
6190 if (howto->partial_inplace)
6191 addend = _bfd_mips_elf_sign_extend (addend, 11);
6192
6193 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6194 && (*cross_mode_jump_p
6195 ? ((symbol + addend + 2) & 3) != 0
6196 : ((symbol + addend + 2) & 1) == 0))
6197 return bfd_reloc_outofrange;
6198
6199 value = symbol + addend - p;
6200 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6201 overflowed_p = mips_elf_overflow_p (value, 11);
6202 value >>= howto->rightshift;
6203 value &= howto->dst_mask;
6204 break;
6205
6206 case R_MICROMIPS_PC16_S1:
6207 if (howto->partial_inplace)
6208 addend = _bfd_mips_elf_sign_extend (addend, 17);
6209
6210 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6211 && (*cross_mode_jump_p
6212 ? ((symbol + addend) & 3) != 0
6213 : ((symbol + addend) & 1) == 0))
6214 return bfd_reloc_outofrange;
6215
6216 value = symbol + addend - p;
6217 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6218 overflowed_p = mips_elf_overflow_p (value, 17);
6219 value >>= howto->rightshift;
6220 value &= howto->dst_mask;
6221 break;
6222
6223 case R_MICROMIPS_PC23_S2:
6224 if (howto->partial_inplace)
6225 addend = _bfd_mips_elf_sign_extend (addend, 25);
6226 value = symbol + addend - ((p | 3) ^ 3);
6227 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6228 overflowed_p = mips_elf_overflow_p (value, 25);
6229 value >>= howto->rightshift;
6230 value &= howto->dst_mask;
6231 break;
6232
6233 case R_MIPS_GOT_HI16:
6234 case R_MIPS_CALL_HI16:
6235 case R_MICROMIPS_GOT_HI16:
6236 case R_MICROMIPS_CALL_HI16:
6237 /* We're allowed to handle these two relocations identically.
6238 The dynamic linker is allowed to handle the CALL relocations
6239 differently by creating a lazy evaluation stub. */
6240 value = g;
6241 value = mips_elf_high (value);
6242 value &= howto->dst_mask;
6243 break;
6244
6245 case R_MIPS_GOT_LO16:
6246 case R_MIPS_CALL_LO16:
6247 case R_MICROMIPS_GOT_LO16:
6248 case R_MICROMIPS_CALL_LO16:
6249 value = g & howto->dst_mask;
6250 break;
6251
6252 case R_MIPS_GOT_PAGE:
6253 case R_MICROMIPS_GOT_PAGE:
6254 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6255 if (value == MINUS_ONE)
6256 return bfd_reloc_outofrange;
6257 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6258 overflowed_p = mips_elf_overflow_p (value, 16);
6259 break;
6260
6261 case R_MIPS_GOT_OFST:
6262 case R_MICROMIPS_GOT_OFST:
6263 if (local_p)
6264 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6265 else
6266 value = addend;
6267 overflowed_p = mips_elf_overflow_p (value, 16);
6268 break;
6269
6270 case R_MIPS_SUB:
6271 case R_MICROMIPS_SUB:
6272 value = symbol - addend;
6273 value &= howto->dst_mask;
6274 break;
6275
6276 case R_MIPS_HIGHER:
6277 case R_MICROMIPS_HIGHER:
6278 value = mips_elf_higher (addend + symbol);
6279 value &= howto->dst_mask;
6280 break;
6281
6282 case R_MIPS_HIGHEST:
6283 case R_MICROMIPS_HIGHEST:
6284 value = mips_elf_highest (addend + symbol);
6285 value &= howto->dst_mask;
6286 break;
6287
6288 case R_MIPS_SCN_DISP:
6289 case R_MICROMIPS_SCN_DISP:
6290 value = symbol + addend - sec->output_offset;
6291 value &= howto->dst_mask;
6292 break;
6293
6294 case R_MIPS_JALR:
6295 case R_MICROMIPS_JALR:
6296 /* This relocation is only a hint. In some cases, we optimize
6297 it into a bal instruction. But we don't try to optimize
6298 when the symbol does not resolve locally. */
6299 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6300 return bfd_reloc_continue;
6301 /* We can't optimize cross-mode jumps either. */
6302 if (*cross_mode_jump_p)
6303 return bfd_reloc_continue;
6304 value = symbol + addend;
6305 /* Neither we can non-instruction-aligned targets. */
6306 if (r_type == R_MIPS_JALR ? (value & 3) != 0 : (value & 1) == 0)
6307 return bfd_reloc_continue;
6308 break;
6309
6310 case R_MIPS_PJUMP:
6311 case R_MIPS_GNU_VTINHERIT:
6312 case R_MIPS_GNU_VTENTRY:
6313 /* We don't do anything with these at present. */
6314 return bfd_reloc_continue;
6315
6316 default:
6317 /* An unrecognized relocation type. */
6318 return bfd_reloc_notsupported;
6319 }
6320
6321 /* Store the VALUE for our caller. */
6322 *valuep = value;
6323 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6324 }
6325
6326 /* Obtain the field relocated by RELOCATION. */
6327
6328 static bfd_vma
6329 mips_elf_obtain_contents (reloc_howto_type *howto,
6330 const Elf_Internal_Rela *relocation,
6331 bfd *input_bfd, bfd_byte *contents)
6332 {
6333 bfd_vma x = 0;
6334 bfd_byte *location = contents + relocation->r_offset;
6335 unsigned int size = bfd_get_reloc_size (howto);
6336
6337 /* Obtain the bytes. */
6338 if (size != 0)
6339 x = bfd_get (8 * size, input_bfd, location);
6340
6341 return x;
6342 }
6343
6344 /* It has been determined that the result of the RELOCATION is the
6345 VALUE. Use HOWTO to place VALUE into the output file at the
6346 appropriate position. The SECTION is the section to which the
6347 relocation applies.
6348 CROSS_MODE_JUMP_P is true if the relocation field
6349 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6350
6351 Returns FALSE if anything goes wrong. */
6352
6353 static bfd_boolean
6354 mips_elf_perform_relocation (struct bfd_link_info *info,
6355 reloc_howto_type *howto,
6356 const Elf_Internal_Rela *relocation,
6357 bfd_vma value, bfd *input_bfd,
6358 asection *input_section, bfd_byte *contents,
6359 bfd_boolean cross_mode_jump_p)
6360 {
6361 bfd_vma x;
6362 bfd_byte *location;
6363 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6364
6365 /* Figure out where the relocation is occurring. */
6366 location = contents + relocation->r_offset;
6367
6368 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6369
6370 /* Obtain the current value. */
6371 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6372
6373 /* Clear the field we are setting. */
6374 x &= ~howto->dst_mask;
6375
6376 /* Set the field. */
6377 x |= (value & howto->dst_mask);
6378
6379 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
6380 if (!cross_mode_jump_p && jal_reloc_p (r_type))
6381 {
6382 bfd_vma opcode = x >> 26;
6383
6384 if (r_type == R_MIPS16_26 ? opcode == 0x7
6385 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6386 : opcode == 0x1d)
6387 {
6388 info->callbacks->einfo
6389 (_("%X%H: unsupported JALX to the same ISA mode\n"),
6390 input_bfd, input_section, relocation->r_offset);
6391 return TRUE;
6392 }
6393 }
6394 if (cross_mode_jump_p && jal_reloc_p (r_type))
6395 {
6396 bfd_boolean ok;
6397 bfd_vma opcode = x >> 26;
6398 bfd_vma jalx_opcode;
6399
6400 /* Check to see if the opcode is already JAL or JALX. */
6401 if (r_type == R_MIPS16_26)
6402 {
6403 ok = ((opcode == 0x6) || (opcode == 0x7));
6404 jalx_opcode = 0x7;
6405 }
6406 else if (r_type == R_MICROMIPS_26_S1)
6407 {
6408 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6409 jalx_opcode = 0x3c;
6410 }
6411 else
6412 {
6413 ok = ((opcode == 0x3) || (opcode == 0x1d));
6414 jalx_opcode = 0x1d;
6415 }
6416
6417 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6418 convert J or JALS to JALX. */
6419 if (!ok)
6420 {
6421 info->callbacks->einfo
6422 (_("%X%H: unsupported jump between ISA modes; "
6423 "consider recompiling with interlinking enabled\n"),
6424 input_bfd, input_section, relocation->r_offset);
6425 return TRUE;
6426 }
6427
6428 /* Make this the JALX opcode. */
6429 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6430 }
6431 else if (cross_mode_jump_p && b_reloc_p (r_type))
6432 {
6433 bfd_boolean ok = FALSE;
6434 bfd_vma opcode = x >> 16;
6435 bfd_vma jalx_opcode = 0;
6436 bfd_vma sign_bit = 0;
6437 bfd_vma addr;
6438 bfd_vma dest;
6439
6440 if (r_type == R_MICROMIPS_PC16_S1)
6441 {
6442 ok = opcode == 0x4060;
6443 jalx_opcode = 0x3c;
6444 sign_bit = 0x10000;
6445 value <<= 1;
6446 }
6447 else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6448 {
6449 ok = opcode == 0x411;
6450 jalx_opcode = 0x1d;
6451 sign_bit = 0x20000;
6452 value <<= 2;
6453 }
6454
6455 if (ok && !bfd_link_pic (info))
6456 {
6457 addr = (input_section->output_section->vma
6458 + input_section->output_offset
6459 + relocation->r_offset
6460 + 4);
6461 dest = (addr
6462 + (((value & ((sign_bit << 1) - 1)) ^ sign_bit) - sign_bit));
6463
6464 if ((addr >> 28) << 28 != (dest >> 28) << 28)
6465 {
6466 info->callbacks->einfo
6467 (_("%X%H: cannot convert branch between ISA modes "
6468 "to JALX: relocation out of range\n"),
6469 input_bfd, input_section, relocation->r_offset);
6470 return TRUE;
6471 }
6472
6473 /* Make this the JALX opcode. */
6474 x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
6475 }
6476 else if (!mips_elf_hash_table (info)->ignore_branch_isa)
6477 {
6478 info->callbacks->einfo
6479 (_("%X%H: unsupported branch between ISA modes\n"),
6480 input_bfd, input_section, relocation->r_offset);
6481 return TRUE;
6482 }
6483 }
6484
6485 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6486 range. */
6487 if (!bfd_link_relocatable (info)
6488 && !cross_mode_jump_p
6489 && ((JAL_TO_BAL_P (input_bfd)
6490 && r_type == R_MIPS_26
6491 && (x >> 26) == 0x3) /* jal addr */
6492 || (JALR_TO_BAL_P (input_bfd)
6493 && r_type == R_MIPS_JALR
6494 && x == 0x0320f809) /* jalr t9 */
6495 || (JR_TO_B_P (input_bfd)
6496 && r_type == R_MIPS_JALR
6497 && (x & ~1) == 0x03200008))) /* jr t9 / jalr zero, t9 */
6498 {
6499 bfd_vma addr;
6500 bfd_vma dest;
6501 bfd_signed_vma off;
6502
6503 addr = (input_section->output_section->vma
6504 + input_section->output_offset
6505 + relocation->r_offset
6506 + 4);
6507 if (r_type == R_MIPS_26)
6508 dest = (value << 2) | ((addr >> 28) << 28);
6509 else
6510 dest = value;
6511 off = dest - addr;
6512 if (off <= 0x1ffff && off >= -0x20000)
6513 {
6514 if ((x & ~1) == 0x03200008) /* jr t9 / jalr zero, t9 */
6515 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6516 else
6517 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6518 }
6519 }
6520
6521 /* Put the value into the output. */
6522 mips_elf_store_contents (howto, relocation, input_bfd, contents, x);
6523
6524 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
6525 location);
6526
6527 return TRUE;
6528 }
6529 \f
6530 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6531 is the original relocation, which is now being transformed into a
6532 dynamic relocation. The ADDENDP is adjusted if necessary; the
6533 caller should store the result in place of the original addend. */
6534
6535 static bfd_boolean
6536 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6537 struct bfd_link_info *info,
6538 const Elf_Internal_Rela *rel,
6539 struct mips_elf_link_hash_entry *h,
6540 asection *sec, bfd_vma symbol,
6541 bfd_vma *addendp, asection *input_section)
6542 {
6543 Elf_Internal_Rela outrel[3];
6544 asection *sreloc;
6545 bfd *dynobj;
6546 int r_type;
6547 long indx;
6548 bfd_boolean defined_p;
6549 struct mips_elf_link_hash_table *htab;
6550
6551 htab = mips_elf_hash_table (info);
6552 BFD_ASSERT (htab != NULL);
6553
6554 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6555 dynobj = elf_hash_table (info)->dynobj;
6556 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6557 BFD_ASSERT (sreloc != NULL);
6558 BFD_ASSERT (sreloc->contents != NULL);
6559 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6560 < sreloc->size);
6561
6562 outrel[0].r_offset =
6563 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6564 if (ABI_64_P (output_bfd))
6565 {
6566 outrel[1].r_offset =
6567 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6568 outrel[2].r_offset =
6569 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6570 }
6571
6572 if (outrel[0].r_offset == MINUS_ONE)
6573 /* The relocation field has been deleted. */
6574 return TRUE;
6575
6576 if (outrel[0].r_offset == MINUS_TWO)
6577 {
6578 /* The relocation field has been converted into a relative value of
6579 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6580 the field to be fully relocated, so add in the symbol's value. */
6581 *addendp += symbol;
6582 return TRUE;
6583 }
6584
6585 /* We must now calculate the dynamic symbol table index to use
6586 in the relocation. */
6587 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6588 {
6589 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6590 indx = h->root.dynindx;
6591 if (SGI_COMPAT (output_bfd))
6592 defined_p = h->root.def_regular;
6593 else
6594 /* ??? glibc's ld.so just adds the final GOT entry to the
6595 relocation field. It therefore treats relocs against
6596 defined symbols in the same way as relocs against
6597 undefined symbols. */
6598 defined_p = FALSE;
6599 }
6600 else
6601 {
6602 if (sec != NULL && bfd_is_abs_section (sec))
6603 indx = 0;
6604 else if (sec == NULL || sec->owner == NULL)
6605 {
6606 bfd_set_error (bfd_error_bad_value);
6607 return FALSE;
6608 }
6609 else
6610 {
6611 indx = elf_section_data (sec->output_section)->dynindx;
6612 if (indx == 0)
6613 {
6614 asection *osec = htab->root.text_index_section;
6615 indx = elf_section_data (osec)->dynindx;
6616 }
6617 if (indx == 0)
6618 abort ();
6619 }
6620
6621 /* Instead of generating a relocation using the section
6622 symbol, we may as well make it a fully relative
6623 relocation. We want to avoid generating relocations to
6624 local symbols because we used to generate them
6625 incorrectly, without adding the original symbol value,
6626 which is mandated by the ABI for section symbols. In
6627 order to give dynamic loaders and applications time to
6628 phase out the incorrect use, we refrain from emitting
6629 section-relative relocations. It's not like they're
6630 useful, after all. This should be a bit more efficient
6631 as well. */
6632 /* ??? Although this behavior is compatible with glibc's ld.so,
6633 the ABI says that relocations against STN_UNDEF should have
6634 a symbol value of 0. Irix rld honors this, so relocations
6635 against STN_UNDEF have no effect. */
6636 if (!SGI_COMPAT (output_bfd))
6637 indx = 0;
6638 defined_p = TRUE;
6639 }
6640
6641 /* If the relocation was previously an absolute relocation and
6642 this symbol will not be referred to by the relocation, we must
6643 adjust it by the value we give it in the dynamic symbol table.
6644 Otherwise leave the job up to the dynamic linker. */
6645 if (defined_p && r_type != R_MIPS_REL32)
6646 *addendp += symbol;
6647
6648 if (htab->is_vxworks)
6649 /* VxWorks uses non-relative relocations for this. */
6650 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6651 else
6652 /* The relocation is always an REL32 relocation because we don't
6653 know where the shared library will wind up at load-time. */
6654 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6655 R_MIPS_REL32);
6656
6657 /* For strict adherence to the ABI specification, we should
6658 generate a R_MIPS_64 relocation record by itself before the
6659 _REL32/_64 record as well, such that the addend is read in as
6660 a 64-bit value (REL32 is a 32-bit relocation, after all).
6661 However, since none of the existing ELF64 MIPS dynamic
6662 loaders seems to care, we don't waste space with these
6663 artificial relocations. If this turns out to not be true,
6664 mips_elf_allocate_dynamic_relocation() should be tweaked so
6665 as to make room for a pair of dynamic relocations per
6666 invocation if ABI_64_P, and here we should generate an
6667 additional relocation record with R_MIPS_64 by itself for a
6668 NULL symbol before this relocation record. */
6669 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6670 ABI_64_P (output_bfd)
6671 ? R_MIPS_64
6672 : R_MIPS_NONE);
6673 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6674
6675 /* Adjust the output offset of the relocation to reference the
6676 correct location in the output file. */
6677 outrel[0].r_offset += (input_section->output_section->vma
6678 + input_section->output_offset);
6679 outrel[1].r_offset += (input_section->output_section->vma
6680 + input_section->output_offset);
6681 outrel[2].r_offset += (input_section->output_section->vma
6682 + input_section->output_offset);
6683
6684 /* Put the relocation back out. We have to use the special
6685 relocation outputter in the 64-bit case since the 64-bit
6686 relocation format is non-standard. */
6687 if (ABI_64_P (output_bfd))
6688 {
6689 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6690 (output_bfd, &outrel[0],
6691 (sreloc->contents
6692 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6693 }
6694 else if (htab->is_vxworks)
6695 {
6696 /* VxWorks uses RELA rather than REL dynamic relocations. */
6697 outrel[0].r_addend = *addendp;
6698 bfd_elf32_swap_reloca_out
6699 (output_bfd, &outrel[0],
6700 (sreloc->contents
6701 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6702 }
6703 else
6704 bfd_elf32_swap_reloc_out
6705 (output_bfd, &outrel[0],
6706 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6707
6708 /* We've now added another relocation. */
6709 ++sreloc->reloc_count;
6710
6711 /* Make sure the output section is writable. The dynamic linker
6712 will be writing to it. */
6713 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6714 |= SHF_WRITE;
6715
6716 /* On IRIX5, make an entry of compact relocation info. */
6717 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6718 {
6719 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6720 bfd_byte *cr;
6721
6722 if (scpt)
6723 {
6724 Elf32_crinfo cptrel;
6725
6726 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6727 cptrel.vaddr = (rel->r_offset
6728 + input_section->output_section->vma
6729 + input_section->output_offset);
6730 if (r_type == R_MIPS_REL32)
6731 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6732 else
6733 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6734 mips_elf_set_cr_dist2to (cptrel, 0);
6735 cptrel.konst = *addendp;
6736
6737 cr = (scpt->contents
6738 + sizeof (Elf32_External_compact_rel));
6739 mips_elf_set_cr_relvaddr (cptrel, 0);
6740 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6741 ((Elf32_External_crinfo *) cr
6742 + scpt->reloc_count));
6743 ++scpt->reloc_count;
6744 }
6745 }
6746
6747 /* If we've written this relocation for a readonly section,
6748 we need to set DF_TEXTREL again, so that we do not delete the
6749 DT_TEXTREL tag. */
6750 if (MIPS_ELF_READONLY_SECTION (input_section))
6751 info->flags |= DF_TEXTREL;
6752
6753 return TRUE;
6754 }
6755 \f
6756 /* Return the MACH for a MIPS e_flags value. */
6757
6758 unsigned long
6759 _bfd_elf_mips_mach (flagword flags)
6760 {
6761 switch (flags & EF_MIPS_MACH)
6762 {
6763 case E_MIPS_MACH_3900:
6764 return bfd_mach_mips3900;
6765
6766 case E_MIPS_MACH_4010:
6767 return bfd_mach_mips4010;
6768
6769 case E_MIPS_MACH_4100:
6770 return bfd_mach_mips4100;
6771
6772 case E_MIPS_MACH_4111:
6773 return bfd_mach_mips4111;
6774
6775 case E_MIPS_MACH_4120:
6776 return bfd_mach_mips4120;
6777
6778 case E_MIPS_MACH_4650:
6779 return bfd_mach_mips4650;
6780
6781 case E_MIPS_MACH_5400:
6782 return bfd_mach_mips5400;
6783
6784 case E_MIPS_MACH_5500:
6785 return bfd_mach_mips5500;
6786
6787 case E_MIPS_MACH_5900:
6788 return bfd_mach_mips5900;
6789
6790 case E_MIPS_MACH_9000:
6791 return bfd_mach_mips9000;
6792
6793 case E_MIPS_MACH_SB1:
6794 return bfd_mach_mips_sb1;
6795
6796 case E_MIPS_MACH_LS2E:
6797 return bfd_mach_mips_loongson_2e;
6798
6799 case E_MIPS_MACH_LS2F:
6800 return bfd_mach_mips_loongson_2f;
6801
6802 case E_MIPS_MACH_GS464:
6803 return bfd_mach_mips_gs464;
6804
6805 case E_MIPS_MACH_GS464E:
6806 return bfd_mach_mips_gs464e;
6807
6808 case E_MIPS_MACH_GS264E:
6809 return bfd_mach_mips_gs264e;
6810
6811 case E_MIPS_MACH_OCTEON3:
6812 return bfd_mach_mips_octeon3;
6813
6814 case E_MIPS_MACH_OCTEON2:
6815 return bfd_mach_mips_octeon2;
6816
6817 case E_MIPS_MACH_OCTEON:
6818 return bfd_mach_mips_octeon;
6819
6820 case E_MIPS_MACH_XLR:
6821 return bfd_mach_mips_xlr;
6822
6823 case E_MIPS_MACH_IAMR2:
6824 return bfd_mach_mips_interaptiv_mr2;
6825
6826 default:
6827 switch (flags & EF_MIPS_ARCH)
6828 {
6829 default:
6830 case E_MIPS_ARCH_1:
6831 return bfd_mach_mips3000;
6832
6833 case E_MIPS_ARCH_2:
6834 return bfd_mach_mips6000;
6835
6836 case E_MIPS_ARCH_3:
6837 return bfd_mach_mips4000;
6838
6839 case E_MIPS_ARCH_4:
6840 return bfd_mach_mips8000;
6841
6842 case E_MIPS_ARCH_5:
6843 return bfd_mach_mips5;
6844
6845 case E_MIPS_ARCH_32:
6846 return bfd_mach_mipsisa32;
6847
6848 case E_MIPS_ARCH_64:
6849 return bfd_mach_mipsisa64;
6850
6851 case E_MIPS_ARCH_32R2:
6852 return bfd_mach_mipsisa32r2;
6853
6854 case E_MIPS_ARCH_64R2:
6855 return bfd_mach_mipsisa64r2;
6856
6857 case E_MIPS_ARCH_32R6:
6858 return bfd_mach_mipsisa32r6;
6859
6860 case E_MIPS_ARCH_64R6:
6861 return bfd_mach_mipsisa64r6;
6862 }
6863 }
6864
6865 return 0;
6866 }
6867
6868 /* Return printable name for ABI. */
6869
6870 static INLINE char *
6871 elf_mips_abi_name (bfd *abfd)
6872 {
6873 flagword flags;
6874
6875 flags = elf_elfheader (abfd)->e_flags;
6876 switch (flags & EF_MIPS_ABI)
6877 {
6878 case 0:
6879 if (ABI_N32_P (abfd))
6880 return "N32";
6881 else if (ABI_64_P (abfd))
6882 return "64";
6883 else
6884 return "none";
6885 case E_MIPS_ABI_O32:
6886 return "O32";
6887 case E_MIPS_ABI_O64:
6888 return "O64";
6889 case E_MIPS_ABI_EABI32:
6890 return "EABI32";
6891 case E_MIPS_ABI_EABI64:
6892 return "EABI64";
6893 default:
6894 return "unknown abi";
6895 }
6896 }
6897 \f
6898 /* MIPS ELF uses two common sections. One is the usual one, and the
6899 other is for small objects. All the small objects are kept
6900 together, and then referenced via the gp pointer, which yields
6901 faster assembler code. This is what we use for the small common
6902 section. This approach is copied from ecoff.c. */
6903 static asection mips_elf_scom_section;
6904 static asymbol mips_elf_scom_symbol;
6905 static asymbol *mips_elf_scom_symbol_ptr;
6906
6907 /* MIPS ELF also uses an acommon section, which represents an
6908 allocated common symbol which may be overridden by a
6909 definition in a shared library. */
6910 static asection mips_elf_acom_section;
6911 static asymbol mips_elf_acom_symbol;
6912 static asymbol *mips_elf_acom_symbol_ptr;
6913
6914 /* This is used for both the 32-bit and the 64-bit ABI. */
6915
6916 void
6917 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6918 {
6919 elf_symbol_type *elfsym;
6920
6921 /* Handle the special MIPS section numbers that a symbol may use. */
6922 elfsym = (elf_symbol_type *) asym;
6923 switch (elfsym->internal_elf_sym.st_shndx)
6924 {
6925 case SHN_MIPS_ACOMMON:
6926 /* This section is used in a dynamically linked executable file.
6927 It is an allocated common section. The dynamic linker can
6928 either resolve these symbols to something in a shared
6929 library, or it can just leave them here. For our purposes,
6930 we can consider these symbols to be in a new section. */
6931 if (mips_elf_acom_section.name == NULL)
6932 {
6933 /* Initialize the acommon section. */
6934 mips_elf_acom_section.name = ".acommon";
6935 mips_elf_acom_section.flags = SEC_ALLOC;
6936 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6937 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6938 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6939 mips_elf_acom_symbol.name = ".acommon";
6940 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6941 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6942 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6943 }
6944 asym->section = &mips_elf_acom_section;
6945 break;
6946
6947 case SHN_COMMON:
6948 /* Common symbols less than the GP size are automatically
6949 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6950 if (asym->value > elf_gp_size (abfd)
6951 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6952 || IRIX_COMPAT (abfd) == ict_irix6)
6953 break;
6954 /* Fall through. */
6955 case SHN_MIPS_SCOMMON:
6956 if (mips_elf_scom_section.name == NULL)
6957 {
6958 /* Initialize the small common section. */
6959 mips_elf_scom_section.name = ".scommon";
6960 mips_elf_scom_section.flags = SEC_IS_COMMON;
6961 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6962 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6963 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6964 mips_elf_scom_symbol.name = ".scommon";
6965 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6966 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6967 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6968 }
6969 asym->section = &mips_elf_scom_section;
6970 asym->value = elfsym->internal_elf_sym.st_size;
6971 break;
6972
6973 case SHN_MIPS_SUNDEFINED:
6974 asym->section = bfd_und_section_ptr;
6975 break;
6976
6977 case SHN_MIPS_TEXT:
6978 {
6979 asection *section = bfd_get_section_by_name (abfd, ".text");
6980
6981 if (section != NULL)
6982 {
6983 asym->section = section;
6984 /* MIPS_TEXT is a bit special, the address is not an offset
6985 to the base of the .text section. So subtract the section
6986 base address to make it an offset. */
6987 asym->value -= section->vma;
6988 }
6989 }
6990 break;
6991
6992 case SHN_MIPS_DATA:
6993 {
6994 asection *section = bfd_get_section_by_name (abfd, ".data");
6995
6996 if (section != NULL)
6997 {
6998 asym->section = section;
6999 /* MIPS_DATA is a bit special, the address is not an offset
7000 to the base of the .data section. So subtract the section
7001 base address to make it an offset. */
7002 asym->value -= section->vma;
7003 }
7004 }
7005 break;
7006 }
7007
7008 /* If this is an odd-valued function symbol, assume it's a MIPS16
7009 or microMIPS one. */
7010 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
7011 && (asym->value & 1) != 0)
7012 {
7013 asym->value--;
7014 if (MICROMIPS_P (abfd))
7015 elfsym->internal_elf_sym.st_other
7016 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
7017 else
7018 elfsym->internal_elf_sym.st_other
7019 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
7020 }
7021 }
7022 \f
7023 /* Implement elf_backend_eh_frame_address_size. This differs from
7024 the default in the way it handles EABI64.
7025
7026 EABI64 was originally specified as an LP64 ABI, and that is what
7027 -mabi=eabi normally gives on a 64-bit target. However, gcc has
7028 historically accepted the combination of -mabi=eabi and -mlong32,
7029 and this ILP32 variation has become semi-official over time.
7030 Both forms use elf32 and have pointer-sized FDE addresses.
7031
7032 If an EABI object was generated by GCC 4.0 or above, it will have
7033 an empty .gcc_compiled_longXX section, where XX is the size of longs
7034 in bits. Unfortunately, ILP32 objects generated by earlier compilers
7035 have no special marking to distinguish them from LP64 objects.
7036
7037 We don't want users of the official LP64 ABI to be punished for the
7038 existence of the ILP32 variant, but at the same time, we don't want
7039 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
7040 We therefore take the following approach:
7041
7042 - If ABFD contains a .gcc_compiled_longXX section, use it to
7043 determine the pointer size.
7044
7045 - Otherwise check the type of the first relocation. Assume that
7046 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
7047
7048 - Otherwise punt.
7049
7050 The second check is enough to detect LP64 objects generated by pre-4.0
7051 compilers because, in the kind of output generated by those compilers,
7052 the first relocation will be associated with either a CIE personality
7053 routine or an FDE start address. Furthermore, the compilers never
7054 used a special (non-pointer) encoding for this ABI.
7055
7056 Checking the relocation type should also be safe because there is no
7057 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7058 did so. */
7059
7060 unsigned int
7061 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, const asection *sec)
7062 {
7063 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7064 return 8;
7065 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7066 {
7067 bfd_boolean long32_p, long64_p;
7068
7069 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7070 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7071 if (long32_p && long64_p)
7072 return 0;
7073 if (long32_p)
7074 return 4;
7075 if (long64_p)
7076 return 8;
7077
7078 if (sec->reloc_count > 0
7079 && elf_section_data (sec)->relocs != NULL
7080 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7081 == R_MIPS_64))
7082 return 8;
7083
7084 return 0;
7085 }
7086 return 4;
7087 }
7088 \f
7089 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7090 relocations against two unnamed section symbols to resolve to the
7091 same address. For example, if we have code like:
7092
7093 lw $4,%got_disp(.data)($gp)
7094 lw $25,%got_disp(.text)($gp)
7095 jalr $25
7096
7097 then the linker will resolve both relocations to .data and the program
7098 will jump there rather than to .text.
7099
7100 We can work around this problem by giving names to local section symbols.
7101 This is also what the MIPSpro tools do. */
7102
7103 bfd_boolean
7104 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7105 {
7106 return SGI_COMPAT (abfd);
7107 }
7108 \f
7109 /* Work over a section just before writing it out. This routine is
7110 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7111 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7112 a better way. */
7113
7114 bfd_boolean
7115 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
7116 {
7117 if (hdr->sh_type == SHT_MIPS_REGINFO
7118 && hdr->sh_size > 0)
7119 {
7120 bfd_byte buf[4];
7121
7122 BFD_ASSERT (hdr->contents == NULL);
7123
7124 if (hdr->sh_size != sizeof (Elf32_External_RegInfo))
7125 {
7126 _bfd_error_handler
7127 (_("%pB: incorrect `.reginfo' section size; "
7128 "expected %" PRIu64 ", got %" PRIu64),
7129 abfd, (uint64_t) sizeof (Elf32_External_RegInfo),
7130 (uint64_t) hdr->sh_size);
7131 bfd_set_error (bfd_error_bad_value);
7132 return FALSE;
7133 }
7134
7135 if (bfd_seek (abfd,
7136 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7137 SEEK_SET) != 0)
7138 return FALSE;
7139 H_PUT_32 (abfd, elf_gp (abfd), buf);
7140 if (bfd_bwrite (buf, 4, abfd) != 4)
7141 return FALSE;
7142 }
7143
7144 if (hdr->sh_type == SHT_MIPS_OPTIONS
7145 && hdr->bfd_section != NULL
7146 && mips_elf_section_data (hdr->bfd_section) != NULL
7147 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
7148 {
7149 bfd_byte *contents, *l, *lend;
7150
7151 /* We stored the section contents in the tdata field in the
7152 set_section_contents routine. We save the section contents
7153 so that we don't have to read them again.
7154 At this point we know that elf_gp is set, so we can look
7155 through the section contents to see if there is an
7156 ODK_REGINFO structure. */
7157
7158 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
7159 l = contents;
7160 lend = contents + hdr->sh_size;
7161 while (l + sizeof (Elf_External_Options) <= lend)
7162 {
7163 Elf_Internal_Options intopt;
7164
7165 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7166 &intopt);
7167 if (intopt.size < sizeof (Elf_External_Options))
7168 {
7169 _bfd_error_handler
7170 /* xgettext:c-format */
7171 (_("%pB: warning: bad `%s' option size %u smaller than"
7172 " its header"),
7173 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7174 break;
7175 }
7176 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7177 {
7178 bfd_byte buf[8];
7179
7180 if (bfd_seek (abfd,
7181 (hdr->sh_offset
7182 + (l - contents)
7183 + sizeof (Elf_External_Options)
7184 + (sizeof (Elf64_External_RegInfo) - 8)),
7185 SEEK_SET) != 0)
7186 return FALSE;
7187 H_PUT_64 (abfd, elf_gp (abfd), buf);
7188 if (bfd_bwrite (buf, 8, abfd) != 8)
7189 return FALSE;
7190 }
7191 else if (intopt.kind == ODK_REGINFO)
7192 {
7193 bfd_byte buf[4];
7194
7195 if (bfd_seek (abfd,
7196 (hdr->sh_offset
7197 + (l - contents)
7198 + sizeof (Elf_External_Options)
7199 + (sizeof (Elf32_External_RegInfo) - 4)),
7200 SEEK_SET) != 0)
7201 return FALSE;
7202 H_PUT_32 (abfd, elf_gp (abfd), buf);
7203 if (bfd_bwrite (buf, 4, abfd) != 4)
7204 return FALSE;
7205 }
7206 l += intopt.size;
7207 }
7208 }
7209
7210 if (hdr->bfd_section != NULL)
7211 {
7212 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
7213
7214 /* .sbss is not handled specially here because the GNU/Linux
7215 prelinker can convert .sbss from NOBITS to PROGBITS and
7216 changing it back to NOBITS breaks the binary. The entry in
7217 _bfd_mips_elf_special_sections will ensure the correct flags
7218 are set on .sbss if BFD creates it without reading it from an
7219 input file, and without special handling here the flags set
7220 on it in an input file will be followed. */
7221 if (strcmp (name, ".sdata") == 0
7222 || strcmp (name, ".lit8") == 0
7223 || strcmp (name, ".lit4") == 0)
7224 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7225 else if (strcmp (name, ".srdata") == 0)
7226 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
7227 else if (strcmp (name, ".compact_rel") == 0)
7228 hdr->sh_flags = 0;
7229 else if (strcmp (name, ".rtproc") == 0)
7230 {
7231 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7232 {
7233 unsigned int adjust;
7234
7235 adjust = hdr->sh_size % hdr->sh_addralign;
7236 if (adjust != 0)
7237 hdr->sh_size += hdr->sh_addralign - adjust;
7238 }
7239 }
7240 }
7241
7242 return TRUE;
7243 }
7244
7245 /* Handle a MIPS specific section when reading an object file. This
7246 is called when elfcode.h finds a section with an unknown type.
7247 This routine supports both the 32-bit and 64-bit ELF ABI.
7248
7249 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7250 how to. */
7251
7252 bfd_boolean
7253 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7254 Elf_Internal_Shdr *hdr,
7255 const char *name,
7256 int shindex)
7257 {
7258 flagword flags = 0;
7259
7260 /* There ought to be a place to keep ELF backend specific flags, but
7261 at the moment there isn't one. We just keep track of the
7262 sections by their name, instead. Fortunately, the ABI gives
7263 suggested names for all the MIPS specific sections, so we will
7264 probably get away with this. */
7265 switch (hdr->sh_type)
7266 {
7267 case SHT_MIPS_LIBLIST:
7268 if (strcmp (name, ".liblist") != 0)
7269 return FALSE;
7270 break;
7271 case SHT_MIPS_MSYM:
7272 if (strcmp (name, ".msym") != 0)
7273 return FALSE;
7274 break;
7275 case SHT_MIPS_CONFLICT:
7276 if (strcmp (name, ".conflict") != 0)
7277 return FALSE;
7278 break;
7279 case SHT_MIPS_GPTAB:
7280 if (! CONST_STRNEQ (name, ".gptab."))
7281 return FALSE;
7282 break;
7283 case SHT_MIPS_UCODE:
7284 if (strcmp (name, ".ucode") != 0)
7285 return FALSE;
7286 break;
7287 case SHT_MIPS_DEBUG:
7288 if (strcmp (name, ".mdebug") != 0)
7289 return FALSE;
7290 flags = SEC_DEBUGGING;
7291 break;
7292 case SHT_MIPS_REGINFO:
7293 if (strcmp (name, ".reginfo") != 0
7294 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7295 return FALSE;
7296 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7297 break;
7298 case SHT_MIPS_IFACE:
7299 if (strcmp (name, ".MIPS.interfaces") != 0)
7300 return FALSE;
7301 break;
7302 case SHT_MIPS_CONTENT:
7303 if (! CONST_STRNEQ (name, ".MIPS.content"))
7304 return FALSE;
7305 break;
7306 case SHT_MIPS_OPTIONS:
7307 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7308 return FALSE;
7309 break;
7310 case SHT_MIPS_ABIFLAGS:
7311 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7312 return FALSE;
7313 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7314 break;
7315 case SHT_MIPS_DWARF:
7316 if (! CONST_STRNEQ (name, ".debug_")
7317 && ! CONST_STRNEQ (name, ".zdebug_"))
7318 return FALSE;
7319 break;
7320 case SHT_MIPS_SYMBOL_LIB:
7321 if (strcmp (name, ".MIPS.symlib") != 0)
7322 return FALSE;
7323 break;
7324 case SHT_MIPS_EVENTS:
7325 if (! CONST_STRNEQ (name, ".MIPS.events")
7326 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
7327 return FALSE;
7328 break;
7329 default:
7330 break;
7331 }
7332
7333 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7334 return FALSE;
7335
7336 if (flags)
7337 {
7338 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7339 (bfd_get_section_flags (abfd,
7340 hdr->bfd_section)
7341 | flags)))
7342 return FALSE;
7343 }
7344
7345 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7346 {
7347 Elf_External_ABIFlags_v0 ext;
7348
7349 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7350 &ext, 0, sizeof ext))
7351 return FALSE;
7352 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7353 &mips_elf_tdata (abfd)->abiflags);
7354 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7355 return FALSE;
7356 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7357 }
7358
7359 /* FIXME: We should record sh_info for a .gptab section. */
7360
7361 /* For a .reginfo section, set the gp value in the tdata information
7362 from the contents of this section. We need the gp value while
7363 processing relocs, so we just get it now. The .reginfo section
7364 is not used in the 64-bit MIPS ELF ABI. */
7365 if (hdr->sh_type == SHT_MIPS_REGINFO)
7366 {
7367 Elf32_External_RegInfo ext;
7368 Elf32_RegInfo s;
7369
7370 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7371 &ext, 0, sizeof ext))
7372 return FALSE;
7373 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7374 elf_gp (abfd) = s.ri_gp_value;
7375 }
7376
7377 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7378 set the gp value based on what we find. We may see both
7379 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7380 they should agree. */
7381 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7382 {
7383 bfd_byte *contents, *l, *lend;
7384
7385 contents = bfd_malloc (hdr->sh_size);
7386 if (contents == NULL)
7387 return FALSE;
7388 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7389 0, hdr->sh_size))
7390 {
7391 free (contents);
7392 return FALSE;
7393 }
7394 l = contents;
7395 lend = contents + hdr->sh_size;
7396 while (l + sizeof (Elf_External_Options) <= lend)
7397 {
7398 Elf_Internal_Options intopt;
7399
7400 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7401 &intopt);
7402 if (intopt.size < sizeof (Elf_External_Options))
7403 {
7404 _bfd_error_handler
7405 /* xgettext:c-format */
7406 (_("%pB: warning: bad `%s' option size %u smaller than"
7407 " its header"),
7408 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7409 break;
7410 }
7411 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7412 {
7413 Elf64_Internal_RegInfo intreg;
7414
7415 bfd_mips_elf64_swap_reginfo_in
7416 (abfd,
7417 ((Elf64_External_RegInfo *)
7418 (l + sizeof (Elf_External_Options))),
7419 &intreg);
7420 elf_gp (abfd) = intreg.ri_gp_value;
7421 }
7422 else if (intopt.kind == ODK_REGINFO)
7423 {
7424 Elf32_RegInfo intreg;
7425
7426 bfd_mips_elf32_swap_reginfo_in
7427 (abfd,
7428 ((Elf32_External_RegInfo *)
7429 (l + sizeof (Elf_External_Options))),
7430 &intreg);
7431 elf_gp (abfd) = intreg.ri_gp_value;
7432 }
7433 l += intopt.size;
7434 }
7435 free (contents);
7436 }
7437
7438 return TRUE;
7439 }
7440
7441 /* Set the correct type for a MIPS ELF section. We do this by the
7442 section name, which is a hack, but ought to work. This routine is
7443 used by both the 32-bit and the 64-bit ABI. */
7444
7445 bfd_boolean
7446 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7447 {
7448 const char *name = bfd_get_section_name (abfd, sec);
7449
7450 if (strcmp (name, ".liblist") == 0)
7451 {
7452 hdr->sh_type = SHT_MIPS_LIBLIST;
7453 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7454 /* The sh_link field is set in final_write_processing. */
7455 }
7456 else if (strcmp (name, ".conflict") == 0)
7457 hdr->sh_type = SHT_MIPS_CONFLICT;
7458 else if (CONST_STRNEQ (name, ".gptab."))
7459 {
7460 hdr->sh_type = SHT_MIPS_GPTAB;
7461 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7462 /* The sh_info field is set in final_write_processing. */
7463 }
7464 else if (strcmp (name, ".ucode") == 0)
7465 hdr->sh_type = SHT_MIPS_UCODE;
7466 else if (strcmp (name, ".mdebug") == 0)
7467 {
7468 hdr->sh_type = SHT_MIPS_DEBUG;
7469 /* In a shared object on IRIX 5.3, the .mdebug section has an
7470 entsize of 0. FIXME: Does this matter? */
7471 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7472 hdr->sh_entsize = 0;
7473 else
7474 hdr->sh_entsize = 1;
7475 }
7476 else if (strcmp (name, ".reginfo") == 0)
7477 {
7478 hdr->sh_type = SHT_MIPS_REGINFO;
7479 /* In a shared object on IRIX 5.3, the .reginfo section has an
7480 entsize of 0x18. FIXME: Does this matter? */
7481 if (SGI_COMPAT (abfd))
7482 {
7483 if ((abfd->flags & DYNAMIC) != 0)
7484 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7485 else
7486 hdr->sh_entsize = 1;
7487 }
7488 else
7489 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7490 }
7491 else if (SGI_COMPAT (abfd)
7492 && (strcmp (name, ".hash") == 0
7493 || strcmp (name, ".dynamic") == 0
7494 || strcmp (name, ".dynstr") == 0))
7495 {
7496 if (SGI_COMPAT (abfd))
7497 hdr->sh_entsize = 0;
7498 #if 0
7499 /* This isn't how the IRIX6 linker behaves. */
7500 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7501 #endif
7502 }
7503 else if (strcmp (name, ".got") == 0
7504 || strcmp (name, ".srdata") == 0
7505 || strcmp (name, ".sdata") == 0
7506 || strcmp (name, ".sbss") == 0
7507 || strcmp (name, ".lit4") == 0
7508 || strcmp (name, ".lit8") == 0)
7509 hdr->sh_flags |= SHF_MIPS_GPREL;
7510 else if (strcmp (name, ".MIPS.interfaces") == 0)
7511 {
7512 hdr->sh_type = SHT_MIPS_IFACE;
7513 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7514 }
7515 else if (CONST_STRNEQ (name, ".MIPS.content"))
7516 {
7517 hdr->sh_type = SHT_MIPS_CONTENT;
7518 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7519 /* The sh_info field is set in final_write_processing. */
7520 }
7521 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7522 {
7523 hdr->sh_type = SHT_MIPS_OPTIONS;
7524 hdr->sh_entsize = 1;
7525 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7526 }
7527 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7528 {
7529 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7530 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7531 }
7532 else if (CONST_STRNEQ (name, ".debug_")
7533 || CONST_STRNEQ (name, ".zdebug_"))
7534 {
7535 hdr->sh_type = SHT_MIPS_DWARF;
7536
7537 /* Irix facilities such as libexc expect a single .debug_frame
7538 per executable, the system ones have NOSTRIP set and the linker
7539 doesn't merge sections with different flags so ... */
7540 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7541 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7542 }
7543 else if (strcmp (name, ".MIPS.symlib") == 0)
7544 {
7545 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7546 /* The sh_link and sh_info fields are set in
7547 final_write_processing. */
7548 }
7549 else if (CONST_STRNEQ (name, ".MIPS.events")
7550 || CONST_STRNEQ (name, ".MIPS.post_rel"))
7551 {
7552 hdr->sh_type = SHT_MIPS_EVENTS;
7553 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7554 /* The sh_link field is set in final_write_processing. */
7555 }
7556 else if (strcmp (name, ".msym") == 0)
7557 {
7558 hdr->sh_type = SHT_MIPS_MSYM;
7559 hdr->sh_flags |= SHF_ALLOC;
7560 hdr->sh_entsize = 8;
7561 }
7562
7563 /* The generic elf_fake_sections will set up REL_HDR using the default
7564 kind of relocations. We used to set up a second header for the
7565 non-default kind of relocations here, but only NewABI would use
7566 these, and the IRIX ld doesn't like resulting empty RELA sections.
7567 Thus we create those header only on demand now. */
7568
7569 return TRUE;
7570 }
7571
7572 /* Given a BFD section, try to locate the corresponding ELF section
7573 index. This is used by both the 32-bit and the 64-bit ABI.
7574 Actually, it's not clear to me that the 64-bit ABI supports these,
7575 but for non-PIC objects we will certainly want support for at least
7576 the .scommon section. */
7577
7578 bfd_boolean
7579 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7580 asection *sec, int *retval)
7581 {
7582 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7583 {
7584 *retval = SHN_MIPS_SCOMMON;
7585 return TRUE;
7586 }
7587 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7588 {
7589 *retval = SHN_MIPS_ACOMMON;
7590 return TRUE;
7591 }
7592 return FALSE;
7593 }
7594 \f
7595 /* Hook called by the linker routine which adds symbols from an object
7596 file. We must handle the special MIPS section numbers here. */
7597
7598 bfd_boolean
7599 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7600 Elf_Internal_Sym *sym, const char **namep,
7601 flagword *flagsp ATTRIBUTE_UNUSED,
7602 asection **secp, bfd_vma *valp)
7603 {
7604 if (SGI_COMPAT (abfd)
7605 && (abfd->flags & DYNAMIC) != 0
7606 && strcmp (*namep, "_rld_new_interface") == 0)
7607 {
7608 /* Skip IRIX5 rld entry name. */
7609 *namep = NULL;
7610 return TRUE;
7611 }
7612
7613 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7614 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7615 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7616 a magic symbol resolved by the linker, we ignore this bogus definition
7617 of _gp_disp. New ABI objects do not suffer from this problem so this
7618 is not done for them. */
7619 if (!NEWABI_P(abfd)
7620 && (sym->st_shndx == SHN_ABS)
7621 && (strcmp (*namep, "_gp_disp") == 0))
7622 {
7623 *namep = NULL;
7624 return TRUE;
7625 }
7626
7627 switch (sym->st_shndx)
7628 {
7629 case SHN_COMMON:
7630 /* Common symbols less than the GP size are automatically
7631 treated as SHN_MIPS_SCOMMON symbols. */
7632 if (sym->st_size > elf_gp_size (abfd)
7633 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7634 || IRIX_COMPAT (abfd) == ict_irix6)
7635 break;
7636 /* Fall through. */
7637 case SHN_MIPS_SCOMMON:
7638 *secp = bfd_make_section_old_way (abfd, ".scommon");
7639 (*secp)->flags |= SEC_IS_COMMON;
7640 *valp = sym->st_size;
7641 break;
7642
7643 case SHN_MIPS_TEXT:
7644 /* This section is used in a shared object. */
7645 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7646 {
7647 asymbol *elf_text_symbol;
7648 asection *elf_text_section;
7649 bfd_size_type amt = sizeof (asection);
7650
7651 elf_text_section = bfd_zalloc (abfd, amt);
7652 if (elf_text_section == NULL)
7653 return FALSE;
7654
7655 amt = sizeof (asymbol);
7656 elf_text_symbol = bfd_zalloc (abfd, amt);
7657 if (elf_text_symbol == NULL)
7658 return FALSE;
7659
7660 /* Initialize the section. */
7661
7662 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7663 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7664
7665 elf_text_section->symbol = elf_text_symbol;
7666 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7667
7668 elf_text_section->name = ".text";
7669 elf_text_section->flags = SEC_NO_FLAGS;
7670 elf_text_section->output_section = NULL;
7671 elf_text_section->owner = abfd;
7672 elf_text_symbol->name = ".text";
7673 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7674 elf_text_symbol->section = elf_text_section;
7675 }
7676 /* This code used to do *secp = bfd_und_section_ptr if
7677 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7678 so I took it out. */
7679 *secp = mips_elf_tdata (abfd)->elf_text_section;
7680 break;
7681
7682 case SHN_MIPS_ACOMMON:
7683 /* Fall through. XXX Can we treat this as allocated data? */
7684 case SHN_MIPS_DATA:
7685 /* This section is used in a shared object. */
7686 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7687 {
7688 asymbol *elf_data_symbol;
7689 asection *elf_data_section;
7690 bfd_size_type amt = sizeof (asection);
7691
7692 elf_data_section = bfd_zalloc (abfd, amt);
7693 if (elf_data_section == NULL)
7694 return FALSE;
7695
7696 amt = sizeof (asymbol);
7697 elf_data_symbol = bfd_zalloc (abfd, amt);
7698 if (elf_data_symbol == NULL)
7699 return FALSE;
7700
7701 /* Initialize the section. */
7702
7703 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7704 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7705
7706 elf_data_section->symbol = elf_data_symbol;
7707 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7708
7709 elf_data_section->name = ".data";
7710 elf_data_section->flags = SEC_NO_FLAGS;
7711 elf_data_section->output_section = NULL;
7712 elf_data_section->owner = abfd;
7713 elf_data_symbol->name = ".data";
7714 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7715 elf_data_symbol->section = elf_data_section;
7716 }
7717 /* This code used to do *secp = bfd_und_section_ptr if
7718 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7719 so I took it out. */
7720 *secp = mips_elf_tdata (abfd)->elf_data_section;
7721 break;
7722
7723 case SHN_MIPS_SUNDEFINED:
7724 *secp = bfd_und_section_ptr;
7725 break;
7726 }
7727
7728 if (SGI_COMPAT (abfd)
7729 && ! bfd_link_pic (info)
7730 && info->output_bfd->xvec == abfd->xvec
7731 && strcmp (*namep, "__rld_obj_head") == 0)
7732 {
7733 struct elf_link_hash_entry *h;
7734 struct bfd_link_hash_entry *bh;
7735
7736 /* Mark __rld_obj_head as dynamic. */
7737 bh = NULL;
7738 if (! (_bfd_generic_link_add_one_symbol
7739 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7740 get_elf_backend_data (abfd)->collect, &bh)))
7741 return FALSE;
7742
7743 h = (struct elf_link_hash_entry *) bh;
7744 h->non_elf = 0;
7745 h->def_regular = 1;
7746 h->type = STT_OBJECT;
7747
7748 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7749 return FALSE;
7750
7751 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7752 mips_elf_hash_table (info)->rld_symbol = h;
7753 }
7754
7755 /* If this is a mips16 text symbol, add 1 to the value to make it
7756 odd. This will cause something like .word SYM to come up with
7757 the right value when it is loaded into the PC. */
7758 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7759 ++*valp;
7760
7761 return TRUE;
7762 }
7763
7764 /* This hook function is called before the linker writes out a global
7765 symbol. We mark symbols as small common if appropriate. This is
7766 also where we undo the increment of the value for a mips16 symbol. */
7767
7768 int
7769 _bfd_mips_elf_link_output_symbol_hook
7770 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7771 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7772 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7773 {
7774 /* If we see a common symbol, which implies a relocatable link, then
7775 if a symbol was small common in an input file, mark it as small
7776 common in the output file. */
7777 if (sym->st_shndx == SHN_COMMON
7778 && strcmp (input_sec->name, ".scommon") == 0)
7779 sym->st_shndx = SHN_MIPS_SCOMMON;
7780
7781 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7782 sym->st_value &= ~1;
7783
7784 return 1;
7785 }
7786 \f
7787 /* Functions for the dynamic linker. */
7788
7789 /* Create dynamic sections when linking against a dynamic object. */
7790
7791 bfd_boolean
7792 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7793 {
7794 struct elf_link_hash_entry *h;
7795 struct bfd_link_hash_entry *bh;
7796 flagword flags;
7797 register asection *s;
7798 const char * const *namep;
7799 struct mips_elf_link_hash_table *htab;
7800
7801 htab = mips_elf_hash_table (info);
7802 BFD_ASSERT (htab != NULL);
7803
7804 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7805 | SEC_LINKER_CREATED | SEC_READONLY);
7806
7807 /* The psABI requires a read-only .dynamic section, but the VxWorks
7808 EABI doesn't. */
7809 if (!htab->is_vxworks)
7810 {
7811 s = bfd_get_linker_section (abfd, ".dynamic");
7812 if (s != NULL)
7813 {
7814 if (! bfd_set_section_flags (abfd, s, flags))
7815 return FALSE;
7816 }
7817 }
7818
7819 /* We need to create .got section. */
7820 if (!mips_elf_create_got_section (abfd, info))
7821 return FALSE;
7822
7823 if (! mips_elf_rel_dyn_section (info, TRUE))
7824 return FALSE;
7825
7826 /* Create .stub section. */
7827 s = bfd_make_section_anyway_with_flags (abfd,
7828 MIPS_ELF_STUB_SECTION_NAME (abfd),
7829 flags | SEC_CODE);
7830 if (s == NULL
7831 || ! bfd_set_section_alignment (abfd, s,
7832 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7833 return FALSE;
7834 htab->sstubs = s;
7835
7836 if (!mips_elf_hash_table (info)->use_rld_obj_head
7837 && bfd_link_executable (info)
7838 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7839 {
7840 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7841 flags &~ (flagword) SEC_READONLY);
7842 if (s == NULL
7843 || ! bfd_set_section_alignment (abfd, s,
7844 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7845 return FALSE;
7846 }
7847
7848 /* On IRIX5, we adjust add some additional symbols and change the
7849 alignments of several sections. There is no ABI documentation
7850 indicating that this is necessary on IRIX6, nor any evidence that
7851 the linker takes such action. */
7852 if (IRIX_COMPAT (abfd) == ict_irix5)
7853 {
7854 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7855 {
7856 bh = NULL;
7857 if (! (_bfd_generic_link_add_one_symbol
7858 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7859 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7860 return FALSE;
7861
7862 h = (struct elf_link_hash_entry *) bh;
7863 h->mark = 1;
7864 h->non_elf = 0;
7865 h->def_regular = 1;
7866 h->type = STT_SECTION;
7867
7868 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7869 return FALSE;
7870 }
7871
7872 /* We need to create a .compact_rel section. */
7873 if (SGI_COMPAT (abfd))
7874 {
7875 if (!mips_elf_create_compact_rel_section (abfd, info))
7876 return FALSE;
7877 }
7878
7879 /* Change alignments of some sections. */
7880 s = bfd_get_linker_section (abfd, ".hash");
7881 if (s != NULL)
7882 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7883
7884 s = bfd_get_linker_section (abfd, ".dynsym");
7885 if (s != NULL)
7886 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7887
7888 s = bfd_get_linker_section (abfd, ".dynstr");
7889 if (s != NULL)
7890 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7891
7892 /* ??? */
7893 s = bfd_get_section_by_name (abfd, ".reginfo");
7894 if (s != NULL)
7895 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7896
7897 s = bfd_get_linker_section (abfd, ".dynamic");
7898 if (s != NULL)
7899 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7900 }
7901
7902 if (bfd_link_executable (info))
7903 {
7904 const char *name;
7905
7906 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7907 bh = NULL;
7908 if (!(_bfd_generic_link_add_one_symbol
7909 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7910 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7911 return FALSE;
7912
7913 h = (struct elf_link_hash_entry *) bh;
7914 h->non_elf = 0;
7915 h->def_regular = 1;
7916 h->type = STT_SECTION;
7917
7918 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7919 return FALSE;
7920
7921 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7922 {
7923 /* __rld_map is a four byte word located in the .data section
7924 and is filled in by the rtld to contain a pointer to
7925 the _r_debug structure. Its symbol value will be set in
7926 _bfd_mips_elf_finish_dynamic_symbol. */
7927 s = bfd_get_linker_section (abfd, ".rld_map");
7928 BFD_ASSERT (s != NULL);
7929
7930 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7931 bh = NULL;
7932 if (!(_bfd_generic_link_add_one_symbol
7933 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7934 get_elf_backend_data (abfd)->collect, &bh)))
7935 return FALSE;
7936
7937 h = (struct elf_link_hash_entry *) bh;
7938 h->non_elf = 0;
7939 h->def_regular = 1;
7940 h->type = STT_OBJECT;
7941
7942 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7943 return FALSE;
7944 mips_elf_hash_table (info)->rld_symbol = h;
7945 }
7946 }
7947
7948 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7949 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
7950 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7951 return FALSE;
7952
7953 /* Do the usual VxWorks handling. */
7954 if (htab->is_vxworks
7955 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7956 return FALSE;
7957
7958 return TRUE;
7959 }
7960 \f
7961 /* Return true if relocation REL against section SEC is a REL rather than
7962 RELA relocation. RELOCS is the first relocation in the section and
7963 ABFD is the bfd that contains SEC. */
7964
7965 static bfd_boolean
7966 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7967 const Elf_Internal_Rela *relocs,
7968 const Elf_Internal_Rela *rel)
7969 {
7970 Elf_Internal_Shdr *rel_hdr;
7971 const struct elf_backend_data *bed;
7972
7973 /* To determine which flavor of relocation this is, we depend on the
7974 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7975 rel_hdr = elf_section_data (sec)->rel.hdr;
7976 if (rel_hdr == NULL)
7977 return FALSE;
7978 bed = get_elf_backend_data (abfd);
7979 return ((size_t) (rel - relocs)
7980 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7981 }
7982
7983 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7984 HOWTO is the relocation's howto and CONTENTS points to the contents
7985 of the section that REL is against. */
7986
7987 static bfd_vma
7988 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7989 reloc_howto_type *howto, bfd_byte *contents)
7990 {
7991 bfd_byte *location;
7992 unsigned int r_type;
7993 bfd_vma addend;
7994 bfd_vma bytes;
7995
7996 r_type = ELF_R_TYPE (abfd, rel->r_info);
7997 location = contents + rel->r_offset;
7998
7999 /* Get the addend, which is stored in the input file. */
8000 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
8001 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
8002 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
8003
8004 addend = bytes & howto->src_mask;
8005
8006 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
8007 accordingly. */
8008 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
8009 addend <<= 1;
8010
8011 return addend;
8012 }
8013
8014 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
8015 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
8016 and update *ADDEND with the final addend. Return true on success
8017 or false if the LO16 could not be found. RELEND is the exclusive
8018 upper bound on the relocations for REL's section. */
8019
8020 static bfd_boolean
8021 mips_elf_add_lo16_rel_addend (bfd *abfd,
8022 const Elf_Internal_Rela *rel,
8023 const Elf_Internal_Rela *relend,
8024 bfd_byte *contents, bfd_vma *addend)
8025 {
8026 unsigned int r_type, lo16_type;
8027 const Elf_Internal_Rela *lo16_relocation;
8028 reloc_howto_type *lo16_howto;
8029 bfd_vma l;
8030
8031 r_type = ELF_R_TYPE (abfd, rel->r_info);
8032 if (mips16_reloc_p (r_type))
8033 lo16_type = R_MIPS16_LO16;
8034 else if (micromips_reloc_p (r_type))
8035 lo16_type = R_MICROMIPS_LO16;
8036 else if (r_type == R_MIPS_PCHI16)
8037 lo16_type = R_MIPS_PCLO16;
8038 else
8039 lo16_type = R_MIPS_LO16;
8040
8041 /* The combined value is the sum of the HI16 addend, left-shifted by
8042 sixteen bits, and the LO16 addend, sign extended. (Usually, the
8043 code does a `lui' of the HI16 value, and then an `addiu' of the
8044 LO16 value.)
8045
8046 Scan ahead to find a matching LO16 relocation.
8047
8048 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8049 be immediately following. However, for the IRIX6 ABI, the next
8050 relocation may be a composed relocation consisting of several
8051 relocations for the same address. In that case, the R_MIPS_LO16
8052 relocation may occur as one of these. We permit a similar
8053 extension in general, as that is useful for GCC.
8054
8055 In some cases GCC dead code elimination removes the LO16 but keeps
8056 the corresponding HI16. This is strictly speaking a violation of
8057 the ABI but not immediately harmful. */
8058 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8059 if (lo16_relocation == NULL)
8060 return FALSE;
8061
8062 /* Obtain the addend kept there. */
8063 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
8064 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8065
8066 l <<= lo16_howto->rightshift;
8067 l = _bfd_mips_elf_sign_extend (l, 16);
8068
8069 *addend <<= 16;
8070 *addend += l;
8071 return TRUE;
8072 }
8073
8074 /* Try to read the contents of section SEC in bfd ABFD. Return true and
8075 store the contents in *CONTENTS on success. Assume that *CONTENTS
8076 already holds the contents if it is nonull on entry. */
8077
8078 static bfd_boolean
8079 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8080 {
8081 if (*contents)
8082 return TRUE;
8083
8084 /* Get cached copy if it exists. */
8085 if (elf_section_data (sec)->this_hdr.contents != NULL)
8086 {
8087 *contents = elf_section_data (sec)->this_hdr.contents;
8088 return TRUE;
8089 }
8090
8091 return bfd_malloc_and_get_section (abfd, sec, contents);
8092 }
8093
8094 /* Make a new PLT record to keep internal data. */
8095
8096 static struct plt_entry *
8097 mips_elf_make_plt_record (bfd *abfd)
8098 {
8099 struct plt_entry *entry;
8100
8101 entry = bfd_zalloc (abfd, sizeof (*entry));
8102 if (entry == NULL)
8103 return NULL;
8104
8105 entry->stub_offset = MINUS_ONE;
8106 entry->mips_offset = MINUS_ONE;
8107 entry->comp_offset = MINUS_ONE;
8108 entry->gotplt_index = MINUS_ONE;
8109 return entry;
8110 }
8111
8112 /* Look through the relocs for a section during the first phase, and
8113 allocate space in the global offset table and record the need for
8114 standard MIPS and compressed procedure linkage table entries. */
8115
8116 bfd_boolean
8117 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8118 asection *sec, const Elf_Internal_Rela *relocs)
8119 {
8120 const char *name;
8121 bfd *dynobj;
8122 Elf_Internal_Shdr *symtab_hdr;
8123 struct elf_link_hash_entry **sym_hashes;
8124 size_t extsymoff;
8125 const Elf_Internal_Rela *rel;
8126 const Elf_Internal_Rela *rel_end;
8127 asection *sreloc;
8128 const struct elf_backend_data *bed;
8129 struct mips_elf_link_hash_table *htab;
8130 bfd_byte *contents;
8131 bfd_vma addend;
8132 reloc_howto_type *howto;
8133
8134 if (bfd_link_relocatable (info))
8135 return TRUE;
8136
8137 htab = mips_elf_hash_table (info);
8138 BFD_ASSERT (htab != NULL);
8139
8140 dynobj = elf_hash_table (info)->dynobj;
8141 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8142 sym_hashes = elf_sym_hashes (abfd);
8143 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8144
8145 bed = get_elf_backend_data (abfd);
8146 rel_end = relocs + sec->reloc_count;
8147
8148 /* Check for the mips16 stub sections. */
8149
8150 name = bfd_get_section_name (abfd, sec);
8151 if (FN_STUB_P (name))
8152 {
8153 unsigned long r_symndx;
8154
8155 /* Look at the relocation information to figure out which symbol
8156 this is for. */
8157
8158 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8159 if (r_symndx == 0)
8160 {
8161 _bfd_error_handler
8162 /* xgettext:c-format */
8163 (_("%pB: warning: cannot determine the target function for"
8164 " stub section `%s'"),
8165 abfd, name);
8166 bfd_set_error (bfd_error_bad_value);
8167 return FALSE;
8168 }
8169
8170 if (r_symndx < extsymoff
8171 || sym_hashes[r_symndx - extsymoff] == NULL)
8172 {
8173 asection *o;
8174
8175 /* This stub is for a local symbol. This stub will only be
8176 needed if there is some relocation in this BFD, other
8177 than a 16 bit function call, which refers to this symbol. */
8178 for (o = abfd->sections; o != NULL; o = o->next)
8179 {
8180 Elf_Internal_Rela *sec_relocs;
8181 const Elf_Internal_Rela *r, *rend;
8182
8183 /* We can ignore stub sections when looking for relocs. */
8184 if ((o->flags & SEC_RELOC) == 0
8185 || o->reloc_count == 0
8186 || section_allows_mips16_refs_p (o))
8187 continue;
8188
8189 sec_relocs
8190 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8191 info->keep_memory);
8192 if (sec_relocs == NULL)
8193 return FALSE;
8194
8195 rend = sec_relocs + o->reloc_count;
8196 for (r = sec_relocs; r < rend; r++)
8197 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8198 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
8199 break;
8200
8201 if (elf_section_data (o)->relocs != sec_relocs)
8202 free (sec_relocs);
8203
8204 if (r < rend)
8205 break;
8206 }
8207
8208 if (o == NULL)
8209 {
8210 /* There is no non-call reloc for this stub, so we do
8211 not need it. Since this function is called before
8212 the linker maps input sections to output sections, we
8213 can easily discard it by setting the SEC_EXCLUDE
8214 flag. */
8215 sec->flags |= SEC_EXCLUDE;
8216 return TRUE;
8217 }
8218
8219 /* Record this stub in an array of local symbol stubs for
8220 this BFD. */
8221 if (mips_elf_tdata (abfd)->local_stubs == NULL)
8222 {
8223 unsigned long symcount;
8224 asection **n;
8225 bfd_size_type amt;
8226
8227 if (elf_bad_symtab (abfd))
8228 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8229 else
8230 symcount = symtab_hdr->sh_info;
8231 amt = symcount * sizeof (asection *);
8232 n = bfd_zalloc (abfd, amt);
8233 if (n == NULL)
8234 return FALSE;
8235 mips_elf_tdata (abfd)->local_stubs = n;
8236 }
8237
8238 sec->flags |= SEC_KEEP;
8239 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8240
8241 /* We don't need to set mips16_stubs_seen in this case.
8242 That flag is used to see whether we need to look through
8243 the global symbol table for stubs. We don't need to set
8244 it here, because we just have a local stub. */
8245 }
8246 else
8247 {
8248 struct mips_elf_link_hash_entry *h;
8249
8250 h = ((struct mips_elf_link_hash_entry *)
8251 sym_hashes[r_symndx - extsymoff]);
8252
8253 while (h->root.root.type == bfd_link_hash_indirect
8254 || h->root.root.type == bfd_link_hash_warning)
8255 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8256
8257 /* H is the symbol this stub is for. */
8258
8259 /* If we already have an appropriate stub for this function, we
8260 don't need another one, so we can discard this one. Since
8261 this function is called before the linker maps input sections
8262 to output sections, we can easily discard it by setting the
8263 SEC_EXCLUDE flag. */
8264 if (h->fn_stub != NULL)
8265 {
8266 sec->flags |= SEC_EXCLUDE;
8267 return TRUE;
8268 }
8269
8270 sec->flags |= SEC_KEEP;
8271 h->fn_stub = sec;
8272 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8273 }
8274 }
8275 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8276 {
8277 unsigned long r_symndx;
8278 struct mips_elf_link_hash_entry *h;
8279 asection **loc;
8280
8281 /* Look at the relocation information to figure out which symbol
8282 this is for. */
8283
8284 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8285 if (r_symndx == 0)
8286 {
8287 _bfd_error_handler
8288 /* xgettext:c-format */
8289 (_("%pB: warning: cannot determine the target function for"
8290 " stub section `%s'"),
8291 abfd, name);
8292 bfd_set_error (bfd_error_bad_value);
8293 return FALSE;
8294 }
8295
8296 if (r_symndx < extsymoff
8297 || sym_hashes[r_symndx - extsymoff] == NULL)
8298 {
8299 asection *o;
8300
8301 /* This stub is for a local symbol. This stub will only be
8302 needed if there is some relocation (R_MIPS16_26) in this BFD
8303 that refers to this symbol. */
8304 for (o = abfd->sections; o != NULL; o = o->next)
8305 {
8306 Elf_Internal_Rela *sec_relocs;
8307 const Elf_Internal_Rela *r, *rend;
8308
8309 /* We can ignore stub sections when looking for relocs. */
8310 if ((o->flags & SEC_RELOC) == 0
8311 || o->reloc_count == 0
8312 || section_allows_mips16_refs_p (o))
8313 continue;
8314
8315 sec_relocs
8316 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8317 info->keep_memory);
8318 if (sec_relocs == NULL)
8319 return FALSE;
8320
8321 rend = sec_relocs + o->reloc_count;
8322 for (r = sec_relocs; r < rend; r++)
8323 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8324 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8325 break;
8326
8327 if (elf_section_data (o)->relocs != sec_relocs)
8328 free (sec_relocs);
8329
8330 if (r < rend)
8331 break;
8332 }
8333
8334 if (o == NULL)
8335 {
8336 /* There is no non-call reloc for this stub, so we do
8337 not need it. Since this function is called before
8338 the linker maps input sections to output sections, we
8339 can easily discard it by setting the SEC_EXCLUDE
8340 flag. */
8341 sec->flags |= SEC_EXCLUDE;
8342 return TRUE;
8343 }
8344
8345 /* Record this stub in an array of local symbol call_stubs for
8346 this BFD. */
8347 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8348 {
8349 unsigned long symcount;
8350 asection **n;
8351 bfd_size_type amt;
8352
8353 if (elf_bad_symtab (abfd))
8354 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8355 else
8356 symcount = symtab_hdr->sh_info;
8357 amt = symcount * sizeof (asection *);
8358 n = bfd_zalloc (abfd, amt);
8359 if (n == NULL)
8360 return FALSE;
8361 mips_elf_tdata (abfd)->local_call_stubs = n;
8362 }
8363
8364 sec->flags |= SEC_KEEP;
8365 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8366
8367 /* We don't need to set mips16_stubs_seen in this case.
8368 That flag is used to see whether we need to look through
8369 the global symbol table for stubs. We don't need to set
8370 it here, because we just have a local stub. */
8371 }
8372 else
8373 {
8374 h = ((struct mips_elf_link_hash_entry *)
8375 sym_hashes[r_symndx - extsymoff]);
8376
8377 /* H is the symbol this stub is for. */
8378
8379 if (CALL_FP_STUB_P (name))
8380 loc = &h->call_fp_stub;
8381 else
8382 loc = &h->call_stub;
8383
8384 /* If we already have an appropriate stub for this function, we
8385 don't need another one, so we can discard this one. Since
8386 this function is called before the linker maps input sections
8387 to output sections, we can easily discard it by setting the
8388 SEC_EXCLUDE flag. */
8389 if (*loc != NULL)
8390 {
8391 sec->flags |= SEC_EXCLUDE;
8392 return TRUE;
8393 }
8394
8395 sec->flags |= SEC_KEEP;
8396 *loc = sec;
8397 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8398 }
8399 }
8400
8401 sreloc = NULL;
8402 contents = NULL;
8403 for (rel = relocs; rel < rel_end; ++rel)
8404 {
8405 unsigned long r_symndx;
8406 unsigned int r_type;
8407 struct elf_link_hash_entry *h;
8408 bfd_boolean can_make_dynamic_p;
8409 bfd_boolean call_reloc_p;
8410 bfd_boolean constrain_symbol_p;
8411
8412 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8413 r_type = ELF_R_TYPE (abfd, rel->r_info);
8414
8415 if (r_symndx < extsymoff)
8416 h = NULL;
8417 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8418 {
8419 _bfd_error_handler
8420 /* xgettext:c-format */
8421 (_("%pB: malformed reloc detected for section %s"),
8422 abfd, name);
8423 bfd_set_error (bfd_error_bad_value);
8424 return FALSE;
8425 }
8426 else
8427 {
8428 h = sym_hashes[r_symndx - extsymoff];
8429 if (h != NULL)
8430 {
8431 while (h->root.type == bfd_link_hash_indirect
8432 || h->root.type == bfd_link_hash_warning)
8433 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8434 }
8435 }
8436
8437 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8438 relocation into a dynamic one. */
8439 can_make_dynamic_p = FALSE;
8440
8441 /* Set CALL_RELOC_P to true if the relocation is for a call,
8442 and if pointer equality therefore doesn't matter. */
8443 call_reloc_p = FALSE;
8444
8445 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8446 into account when deciding how to define the symbol.
8447 Relocations in nonallocatable sections such as .pdr and
8448 .debug* should have no effect. */
8449 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8450
8451 switch (r_type)
8452 {
8453 case R_MIPS_CALL16:
8454 case R_MIPS_CALL_HI16:
8455 case R_MIPS_CALL_LO16:
8456 case R_MIPS16_CALL16:
8457 case R_MICROMIPS_CALL16:
8458 case R_MICROMIPS_CALL_HI16:
8459 case R_MICROMIPS_CALL_LO16:
8460 call_reloc_p = TRUE;
8461 /* Fall through. */
8462
8463 case R_MIPS_GOT16:
8464 case R_MIPS_GOT_HI16:
8465 case R_MIPS_GOT_LO16:
8466 case R_MIPS_GOT_PAGE:
8467 case R_MIPS_GOT_OFST:
8468 case R_MIPS_GOT_DISP:
8469 case R_MIPS_TLS_GOTTPREL:
8470 case R_MIPS_TLS_GD:
8471 case R_MIPS_TLS_LDM:
8472 case R_MIPS16_GOT16:
8473 case R_MIPS16_TLS_GOTTPREL:
8474 case R_MIPS16_TLS_GD:
8475 case R_MIPS16_TLS_LDM:
8476 case R_MICROMIPS_GOT16:
8477 case R_MICROMIPS_GOT_HI16:
8478 case R_MICROMIPS_GOT_LO16:
8479 case R_MICROMIPS_GOT_PAGE:
8480 case R_MICROMIPS_GOT_OFST:
8481 case R_MICROMIPS_GOT_DISP:
8482 case R_MICROMIPS_TLS_GOTTPREL:
8483 case R_MICROMIPS_TLS_GD:
8484 case R_MICROMIPS_TLS_LDM:
8485 if (dynobj == NULL)
8486 elf_hash_table (info)->dynobj = dynobj = abfd;
8487 if (!mips_elf_create_got_section (dynobj, info))
8488 return FALSE;
8489 if (htab->is_vxworks && !bfd_link_pic (info))
8490 {
8491 _bfd_error_handler
8492 /* xgettext:c-format */
8493 (_("%pB: GOT reloc at %#" PRIx64 " not expected in executables"),
8494 abfd, (uint64_t) rel->r_offset);
8495 bfd_set_error (bfd_error_bad_value);
8496 return FALSE;
8497 }
8498 can_make_dynamic_p = TRUE;
8499 break;
8500
8501 case R_MIPS_NONE:
8502 case R_MIPS_JALR:
8503 case R_MICROMIPS_JALR:
8504 /* These relocations have empty fields and are purely there to
8505 provide link information. The symbol value doesn't matter. */
8506 constrain_symbol_p = FALSE;
8507 break;
8508
8509 case R_MIPS_GPREL16:
8510 case R_MIPS_GPREL32:
8511 case R_MIPS16_GPREL:
8512 case R_MICROMIPS_GPREL16:
8513 /* GP-relative relocations always resolve to a definition in a
8514 regular input file, ignoring the one-definition rule. This is
8515 important for the GP setup sequence in NewABI code, which
8516 always resolves to a local function even if other relocations
8517 against the symbol wouldn't. */
8518 constrain_symbol_p = FALSE;
8519 break;
8520
8521 case R_MIPS_32:
8522 case R_MIPS_REL32:
8523 case R_MIPS_64:
8524 /* In VxWorks executables, references to external symbols
8525 must be handled using copy relocs or PLT entries; it is not
8526 possible to convert this relocation into a dynamic one.
8527
8528 For executables that use PLTs and copy-relocs, we have a
8529 choice between converting the relocation into a dynamic
8530 one or using copy relocations or PLT entries. It is
8531 usually better to do the former, unless the relocation is
8532 against a read-only section. */
8533 if ((bfd_link_pic (info)
8534 || (h != NULL
8535 && !htab->is_vxworks
8536 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8537 && !(!info->nocopyreloc
8538 && !PIC_OBJECT_P (abfd)
8539 && MIPS_ELF_READONLY_SECTION (sec))))
8540 && (sec->flags & SEC_ALLOC) != 0)
8541 {
8542 can_make_dynamic_p = TRUE;
8543 if (dynobj == NULL)
8544 elf_hash_table (info)->dynobj = dynobj = abfd;
8545 }
8546 break;
8547
8548 case R_MIPS_26:
8549 case R_MIPS_PC16:
8550 case R_MIPS_PC21_S2:
8551 case R_MIPS_PC26_S2:
8552 case R_MIPS16_26:
8553 case R_MIPS16_PC16_S1:
8554 case R_MICROMIPS_26_S1:
8555 case R_MICROMIPS_PC7_S1:
8556 case R_MICROMIPS_PC10_S1:
8557 case R_MICROMIPS_PC16_S1:
8558 case R_MICROMIPS_PC23_S2:
8559 call_reloc_p = TRUE;
8560 break;
8561 }
8562
8563 if (h)
8564 {
8565 if (constrain_symbol_p)
8566 {
8567 if (!can_make_dynamic_p)
8568 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8569
8570 if (!call_reloc_p)
8571 h->pointer_equality_needed = 1;
8572
8573 /* We must not create a stub for a symbol that has
8574 relocations related to taking the function's address.
8575 This doesn't apply to VxWorks, where CALL relocs refer
8576 to a .got.plt entry instead of a normal .got entry. */
8577 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8578 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8579 }
8580
8581 /* Relocations against the special VxWorks __GOTT_BASE__ and
8582 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8583 room for them in .rela.dyn. */
8584 if (is_gott_symbol (info, h))
8585 {
8586 if (sreloc == NULL)
8587 {
8588 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8589 if (sreloc == NULL)
8590 return FALSE;
8591 }
8592 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8593 if (MIPS_ELF_READONLY_SECTION (sec))
8594 /* We tell the dynamic linker that there are
8595 relocations against the text segment. */
8596 info->flags |= DF_TEXTREL;
8597 }
8598 }
8599 else if (call_lo16_reloc_p (r_type)
8600 || got_lo16_reloc_p (r_type)
8601 || got_disp_reloc_p (r_type)
8602 || (got16_reloc_p (r_type) && htab->is_vxworks))
8603 {
8604 /* We may need a local GOT entry for this relocation. We
8605 don't count R_MIPS_GOT_PAGE because we can estimate the
8606 maximum number of pages needed by looking at the size of
8607 the segment. Similar comments apply to R_MIPS*_GOT16 and
8608 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8609 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8610 R_MIPS_CALL_HI16 because these are always followed by an
8611 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8612 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8613 rel->r_addend, info, r_type))
8614 return FALSE;
8615 }
8616
8617 if (h != NULL
8618 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8619 ELF_ST_IS_MIPS16 (h->other)))
8620 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8621
8622 switch (r_type)
8623 {
8624 case R_MIPS_CALL16:
8625 case R_MIPS16_CALL16:
8626 case R_MICROMIPS_CALL16:
8627 if (h == NULL)
8628 {
8629 _bfd_error_handler
8630 /* xgettext:c-format */
8631 (_("%pB: CALL16 reloc at %#" PRIx64 " not against global symbol"),
8632 abfd, (uint64_t) rel->r_offset);
8633 bfd_set_error (bfd_error_bad_value);
8634 return FALSE;
8635 }
8636 /* Fall through. */
8637
8638 case R_MIPS_CALL_HI16:
8639 case R_MIPS_CALL_LO16:
8640 case R_MICROMIPS_CALL_HI16:
8641 case R_MICROMIPS_CALL_LO16:
8642 if (h != NULL)
8643 {
8644 /* Make sure there is room in the regular GOT to hold the
8645 function's address. We may eliminate it in favour of
8646 a .got.plt entry later; see mips_elf_count_got_symbols. */
8647 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8648 r_type))
8649 return FALSE;
8650
8651 /* We need a stub, not a plt entry for the undefined
8652 function. But we record it as if it needs plt. See
8653 _bfd_elf_adjust_dynamic_symbol. */
8654 h->needs_plt = 1;
8655 h->type = STT_FUNC;
8656 }
8657 break;
8658
8659 case R_MIPS_GOT_PAGE:
8660 case R_MICROMIPS_GOT_PAGE:
8661 case R_MIPS16_GOT16:
8662 case R_MIPS_GOT16:
8663 case R_MIPS_GOT_HI16:
8664 case R_MIPS_GOT_LO16:
8665 case R_MICROMIPS_GOT16:
8666 case R_MICROMIPS_GOT_HI16:
8667 case R_MICROMIPS_GOT_LO16:
8668 if (!h || got_page_reloc_p (r_type))
8669 {
8670 /* This relocation needs (or may need, if h != NULL) a
8671 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8672 know for sure until we know whether the symbol is
8673 preemptible. */
8674 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8675 {
8676 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8677 return FALSE;
8678 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8679 addend = mips_elf_read_rel_addend (abfd, rel,
8680 howto, contents);
8681 if (got16_reloc_p (r_type))
8682 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8683 contents, &addend);
8684 else
8685 addend <<= howto->rightshift;
8686 }
8687 else
8688 addend = rel->r_addend;
8689 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8690 h, addend))
8691 return FALSE;
8692
8693 if (h)
8694 {
8695 struct mips_elf_link_hash_entry *hmips =
8696 (struct mips_elf_link_hash_entry *) h;
8697
8698 /* This symbol is definitely not overridable. */
8699 if (hmips->root.def_regular
8700 && ! (bfd_link_pic (info) && ! info->symbolic
8701 && ! hmips->root.forced_local))
8702 h = NULL;
8703 }
8704 }
8705 /* If this is a global, overridable symbol, GOT_PAGE will
8706 decay to GOT_DISP, so we'll need a GOT entry for it. */
8707 /* Fall through. */
8708
8709 case R_MIPS_GOT_DISP:
8710 case R_MICROMIPS_GOT_DISP:
8711 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8712 FALSE, r_type))
8713 return FALSE;
8714 break;
8715
8716 case R_MIPS_TLS_GOTTPREL:
8717 case R_MIPS16_TLS_GOTTPREL:
8718 case R_MICROMIPS_TLS_GOTTPREL:
8719 if (bfd_link_pic (info))
8720 info->flags |= DF_STATIC_TLS;
8721 /* Fall through */
8722
8723 case R_MIPS_TLS_LDM:
8724 case R_MIPS16_TLS_LDM:
8725 case R_MICROMIPS_TLS_LDM:
8726 if (tls_ldm_reloc_p (r_type))
8727 {
8728 r_symndx = STN_UNDEF;
8729 h = NULL;
8730 }
8731 /* Fall through */
8732
8733 case R_MIPS_TLS_GD:
8734 case R_MIPS16_TLS_GD:
8735 case R_MICROMIPS_TLS_GD:
8736 /* This symbol requires a global offset table entry, or two
8737 for TLS GD relocations. */
8738 if (h != NULL)
8739 {
8740 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8741 FALSE, r_type))
8742 return FALSE;
8743 }
8744 else
8745 {
8746 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8747 rel->r_addend,
8748 info, r_type))
8749 return FALSE;
8750 }
8751 break;
8752
8753 case R_MIPS_32:
8754 case R_MIPS_REL32:
8755 case R_MIPS_64:
8756 /* In VxWorks executables, references to external symbols
8757 are handled using copy relocs or PLT stubs, so there's
8758 no need to add a .rela.dyn entry for this relocation. */
8759 if (can_make_dynamic_p)
8760 {
8761 if (sreloc == NULL)
8762 {
8763 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8764 if (sreloc == NULL)
8765 return FALSE;
8766 }
8767 if (bfd_link_pic (info) && h == NULL)
8768 {
8769 /* When creating a shared object, we must copy these
8770 reloc types into the output file as R_MIPS_REL32
8771 relocs. Make room for this reloc in .rel(a).dyn. */
8772 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8773 if (MIPS_ELF_READONLY_SECTION (sec))
8774 /* We tell the dynamic linker that there are
8775 relocations against the text segment. */
8776 info->flags |= DF_TEXTREL;
8777 }
8778 else
8779 {
8780 struct mips_elf_link_hash_entry *hmips;
8781
8782 /* For a shared object, we must copy this relocation
8783 unless the symbol turns out to be undefined and
8784 weak with non-default visibility, in which case
8785 it will be left as zero.
8786
8787 We could elide R_MIPS_REL32 for locally binding symbols
8788 in shared libraries, but do not yet do so.
8789
8790 For an executable, we only need to copy this
8791 reloc if the symbol is defined in a dynamic
8792 object. */
8793 hmips = (struct mips_elf_link_hash_entry *) h;
8794 ++hmips->possibly_dynamic_relocs;
8795 if (MIPS_ELF_READONLY_SECTION (sec))
8796 /* We need it to tell the dynamic linker if there
8797 are relocations against the text segment. */
8798 hmips->readonly_reloc = TRUE;
8799 }
8800 }
8801
8802 if (SGI_COMPAT (abfd))
8803 mips_elf_hash_table (info)->compact_rel_size +=
8804 sizeof (Elf32_External_crinfo);
8805 break;
8806
8807 case R_MIPS_26:
8808 case R_MIPS_GPREL16:
8809 case R_MIPS_LITERAL:
8810 case R_MIPS_GPREL32:
8811 case R_MICROMIPS_26_S1:
8812 case R_MICROMIPS_GPREL16:
8813 case R_MICROMIPS_LITERAL:
8814 case R_MICROMIPS_GPREL7_S2:
8815 if (SGI_COMPAT (abfd))
8816 mips_elf_hash_table (info)->compact_rel_size +=
8817 sizeof (Elf32_External_crinfo);
8818 break;
8819
8820 /* This relocation describes the C++ object vtable hierarchy.
8821 Reconstruct it for later use during GC. */
8822 case R_MIPS_GNU_VTINHERIT:
8823 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8824 return FALSE;
8825 break;
8826
8827 /* This relocation describes which C++ vtable entries are actually
8828 used. Record for later use during GC. */
8829 case R_MIPS_GNU_VTENTRY:
8830 BFD_ASSERT (h != NULL);
8831 if (h != NULL
8832 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8833 return FALSE;
8834 break;
8835
8836 default:
8837 break;
8838 }
8839
8840 /* Record the need for a PLT entry. At this point we don't know
8841 yet if we are going to create a PLT in the first place, but
8842 we only record whether the relocation requires a standard MIPS
8843 or a compressed code entry anyway. If we don't make a PLT after
8844 all, then we'll just ignore these arrangements. Likewise if
8845 a PLT entry is not created because the symbol is satisfied
8846 locally. */
8847 if (h != NULL
8848 && (branch_reloc_p (r_type)
8849 || mips16_branch_reloc_p (r_type)
8850 || micromips_branch_reloc_p (r_type))
8851 && !SYMBOL_CALLS_LOCAL (info, h))
8852 {
8853 if (h->plt.plist == NULL)
8854 h->plt.plist = mips_elf_make_plt_record (abfd);
8855 if (h->plt.plist == NULL)
8856 return FALSE;
8857
8858 if (branch_reloc_p (r_type))
8859 h->plt.plist->need_mips = TRUE;
8860 else
8861 h->plt.plist->need_comp = TRUE;
8862 }
8863
8864 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8865 if there is one. We only need to handle global symbols here;
8866 we decide whether to keep or delete stubs for local symbols
8867 when processing the stub's relocations. */
8868 if (h != NULL
8869 && !mips16_call_reloc_p (r_type)
8870 && !section_allows_mips16_refs_p (sec))
8871 {
8872 struct mips_elf_link_hash_entry *mh;
8873
8874 mh = (struct mips_elf_link_hash_entry *) h;
8875 mh->need_fn_stub = TRUE;
8876 }
8877
8878 /* Refuse some position-dependent relocations when creating a
8879 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8880 not PIC, but we can create dynamic relocations and the result
8881 will be fine. Also do not refuse R_MIPS_LO16, which can be
8882 combined with R_MIPS_GOT16. */
8883 if (bfd_link_pic (info))
8884 {
8885 switch (r_type)
8886 {
8887 case R_MIPS16_HI16:
8888 case R_MIPS_HI16:
8889 case R_MIPS_HIGHER:
8890 case R_MIPS_HIGHEST:
8891 case R_MICROMIPS_HI16:
8892 case R_MICROMIPS_HIGHER:
8893 case R_MICROMIPS_HIGHEST:
8894 /* Don't refuse a high part relocation if it's against
8895 no symbol (e.g. part of a compound relocation). */
8896 if (r_symndx == STN_UNDEF)
8897 break;
8898
8899 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8900 and has a special meaning. */
8901 if (!NEWABI_P (abfd) && h != NULL
8902 && strcmp (h->root.root.string, "_gp_disp") == 0)
8903 break;
8904
8905 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8906 if (is_gott_symbol (info, h))
8907 break;
8908
8909 /* FALLTHROUGH */
8910
8911 case R_MIPS16_26:
8912 case R_MIPS_26:
8913 case R_MICROMIPS_26_S1:
8914 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8915 _bfd_error_handler
8916 /* xgettext:c-format */
8917 (_("%pB: relocation %s against `%s' can not be used"
8918 " when making a shared object; recompile with -fPIC"),
8919 abfd, howto->name,
8920 (h) ? h->root.root.string : "a local symbol");
8921 bfd_set_error (bfd_error_bad_value);
8922 return FALSE;
8923 default:
8924 break;
8925 }
8926 }
8927 }
8928
8929 return TRUE;
8930 }
8931 \f
8932 /* Allocate space for global sym dynamic relocs. */
8933
8934 static bfd_boolean
8935 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8936 {
8937 struct bfd_link_info *info = inf;
8938 bfd *dynobj;
8939 struct mips_elf_link_hash_entry *hmips;
8940 struct mips_elf_link_hash_table *htab;
8941
8942 htab = mips_elf_hash_table (info);
8943 BFD_ASSERT (htab != NULL);
8944
8945 dynobj = elf_hash_table (info)->dynobj;
8946 hmips = (struct mips_elf_link_hash_entry *) h;
8947
8948 /* VxWorks executables are handled elsewhere; we only need to
8949 allocate relocations in shared objects. */
8950 if (htab->is_vxworks && !bfd_link_pic (info))
8951 return TRUE;
8952
8953 /* Ignore indirect symbols. All relocations against such symbols
8954 will be redirected to the target symbol. */
8955 if (h->root.type == bfd_link_hash_indirect)
8956 return TRUE;
8957
8958 /* If this symbol is defined in a dynamic object, or we are creating
8959 a shared library, we will need to copy any R_MIPS_32 or
8960 R_MIPS_REL32 relocs against it into the output file. */
8961 if (! bfd_link_relocatable (info)
8962 && hmips->possibly_dynamic_relocs != 0
8963 && (h->root.type == bfd_link_hash_defweak
8964 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
8965 || bfd_link_pic (info)))
8966 {
8967 bfd_boolean do_copy = TRUE;
8968
8969 if (h->root.type == bfd_link_hash_undefweak)
8970 {
8971 /* Do not copy relocations for undefined weak symbols that
8972 we are not going to export. */
8973 if (UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8974 do_copy = FALSE;
8975
8976 /* Make sure undefined weak symbols are output as a dynamic
8977 symbol in PIEs. */
8978 else if (h->dynindx == -1 && !h->forced_local)
8979 {
8980 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8981 return FALSE;
8982 }
8983 }
8984
8985 if (do_copy)
8986 {
8987 /* Even though we don't directly need a GOT entry for this symbol,
8988 the SVR4 psABI requires it to have a dynamic symbol table
8989 index greater that DT_MIPS_GOTSYM if there are dynamic
8990 relocations against it.
8991
8992 VxWorks does not enforce the same mapping between the GOT
8993 and the symbol table, so the same requirement does not
8994 apply there. */
8995 if (!htab->is_vxworks)
8996 {
8997 if (hmips->global_got_area > GGA_RELOC_ONLY)
8998 hmips->global_got_area = GGA_RELOC_ONLY;
8999 hmips->got_only_for_calls = FALSE;
9000 }
9001
9002 mips_elf_allocate_dynamic_relocations
9003 (dynobj, info, hmips->possibly_dynamic_relocs);
9004 if (hmips->readonly_reloc)
9005 /* We tell the dynamic linker that there are relocations
9006 against the text segment. */
9007 info->flags |= DF_TEXTREL;
9008 }
9009 }
9010
9011 return TRUE;
9012 }
9013
9014 /* Adjust a symbol defined by a dynamic object and referenced by a
9015 regular object. The current definition is in some section of the
9016 dynamic object, but we're not including those sections. We have to
9017 change the definition to something the rest of the link can
9018 understand. */
9019
9020 bfd_boolean
9021 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
9022 struct elf_link_hash_entry *h)
9023 {
9024 bfd *dynobj;
9025 struct mips_elf_link_hash_entry *hmips;
9026 struct mips_elf_link_hash_table *htab;
9027 asection *s, *srel;
9028
9029 htab = mips_elf_hash_table (info);
9030 BFD_ASSERT (htab != NULL);
9031
9032 dynobj = elf_hash_table (info)->dynobj;
9033 hmips = (struct mips_elf_link_hash_entry *) h;
9034
9035 /* Make sure we know what is going on here. */
9036 BFD_ASSERT (dynobj != NULL
9037 && (h->needs_plt
9038 || h->is_weakalias
9039 || (h->def_dynamic
9040 && h->ref_regular
9041 && !h->def_regular)));
9042
9043 hmips = (struct mips_elf_link_hash_entry *) h;
9044
9045 /* If there are call relocations against an externally-defined symbol,
9046 see whether we can create a MIPS lazy-binding stub for it. We can
9047 only do this if all references to the function are through call
9048 relocations, and in that case, the traditional lazy-binding stubs
9049 are much more efficient than PLT entries.
9050
9051 Traditional stubs are only available on SVR4 psABI-based systems;
9052 VxWorks always uses PLTs instead. */
9053 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
9054 {
9055 if (! elf_hash_table (info)->dynamic_sections_created)
9056 return TRUE;
9057
9058 /* If this symbol is not defined in a regular file, then set
9059 the symbol to the stub location. This is required to make
9060 function pointers compare as equal between the normal
9061 executable and the shared library. */
9062 if (!h->def_regular
9063 && !bfd_is_abs_section (htab->sstubs->output_section))
9064 {
9065 hmips->needs_lazy_stub = TRUE;
9066 htab->lazy_stub_count++;
9067 return TRUE;
9068 }
9069 }
9070 /* As above, VxWorks requires PLT entries for externally-defined
9071 functions that are only accessed through call relocations.
9072
9073 Both VxWorks and non-VxWorks targets also need PLT entries if there
9074 are static-only relocations against an externally-defined function.
9075 This can technically occur for shared libraries if there are
9076 branches to the symbol, although it is unlikely that this will be
9077 used in practice due to the short ranges involved. It can occur
9078 for any relative or absolute relocation in executables; in that
9079 case, the PLT entry becomes the function's canonical address. */
9080 else if (((h->needs_plt && !hmips->no_fn_stub)
9081 || (h->type == STT_FUNC && hmips->has_static_relocs))
9082 && htab->use_plts_and_copy_relocs
9083 && !SYMBOL_CALLS_LOCAL (info, h)
9084 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9085 && h->root.type == bfd_link_hash_undefweak))
9086 {
9087 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9088 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9089
9090 /* If this is the first symbol to need a PLT entry, then make some
9091 basic setup. Also work out PLT entry sizes. We'll need them
9092 for PLT offset calculations. */
9093 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9094 {
9095 BFD_ASSERT (htab->root.sgotplt->size == 0);
9096 BFD_ASSERT (htab->plt_got_index == 0);
9097
9098 /* If we're using the PLT additions to the psABI, each PLT
9099 entry is 16 bytes and the PLT0 entry is 32 bytes.
9100 Encourage better cache usage by aligning. We do this
9101 lazily to avoid pessimizing traditional objects. */
9102 if (!htab->is_vxworks
9103 && !bfd_set_section_alignment (dynobj, htab->root.splt, 5))
9104 return FALSE;
9105
9106 /* Make sure that .got.plt is word-aligned. We do this lazily
9107 for the same reason as above. */
9108 if (!bfd_set_section_alignment (dynobj, htab->root.sgotplt,
9109 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9110 return FALSE;
9111
9112 /* On non-VxWorks targets, the first two entries in .got.plt
9113 are reserved. */
9114 if (!htab->is_vxworks)
9115 htab->plt_got_index
9116 += (get_elf_backend_data (dynobj)->got_header_size
9117 / MIPS_ELF_GOT_SIZE (dynobj));
9118
9119 /* On VxWorks, also allocate room for the header's
9120 .rela.plt.unloaded entries. */
9121 if (htab->is_vxworks && !bfd_link_pic (info))
9122 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9123
9124 /* Now work out the sizes of individual PLT entries. */
9125 if (htab->is_vxworks && bfd_link_pic (info))
9126 htab->plt_mips_entry_size
9127 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9128 else if (htab->is_vxworks)
9129 htab->plt_mips_entry_size
9130 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9131 else if (newabi_p)
9132 htab->plt_mips_entry_size
9133 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9134 else if (!micromips_p)
9135 {
9136 htab->plt_mips_entry_size
9137 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9138 htab->plt_comp_entry_size
9139 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9140 }
9141 else if (htab->insn32)
9142 {
9143 htab->plt_mips_entry_size
9144 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9145 htab->plt_comp_entry_size
9146 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9147 }
9148 else
9149 {
9150 htab->plt_mips_entry_size
9151 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9152 htab->plt_comp_entry_size
9153 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9154 }
9155 }
9156
9157 if (h->plt.plist == NULL)
9158 h->plt.plist = mips_elf_make_plt_record (dynobj);
9159 if (h->plt.plist == NULL)
9160 return FALSE;
9161
9162 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9163 n32 or n64, so always use a standard entry there.
9164
9165 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9166 all MIPS16 calls will go via that stub, and there is no benefit
9167 to having a MIPS16 entry. And in the case of call_stub a
9168 standard entry actually has to be used as the stub ends with a J
9169 instruction. */
9170 if (newabi_p
9171 || htab->is_vxworks
9172 || hmips->call_stub
9173 || hmips->call_fp_stub)
9174 {
9175 h->plt.plist->need_mips = TRUE;
9176 h->plt.plist->need_comp = FALSE;
9177 }
9178
9179 /* Otherwise, if there are no direct calls to the function, we
9180 have a free choice of whether to use standard or compressed
9181 entries. Prefer microMIPS entries if the object is known to
9182 contain microMIPS code, so that it becomes possible to create
9183 pure microMIPS binaries. Prefer standard entries otherwise,
9184 because MIPS16 ones are no smaller and are usually slower. */
9185 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9186 {
9187 if (micromips_p)
9188 h->plt.plist->need_comp = TRUE;
9189 else
9190 h->plt.plist->need_mips = TRUE;
9191 }
9192
9193 if (h->plt.plist->need_mips)
9194 {
9195 h->plt.plist->mips_offset = htab->plt_mips_offset;
9196 htab->plt_mips_offset += htab->plt_mips_entry_size;
9197 }
9198 if (h->plt.plist->need_comp)
9199 {
9200 h->plt.plist->comp_offset = htab->plt_comp_offset;
9201 htab->plt_comp_offset += htab->plt_comp_entry_size;
9202 }
9203
9204 /* Reserve the corresponding .got.plt entry now too. */
9205 h->plt.plist->gotplt_index = htab->plt_got_index++;
9206
9207 /* If the output file has no definition of the symbol, set the
9208 symbol's value to the address of the stub. */
9209 if (!bfd_link_pic (info) && !h->def_regular)
9210 hmips->use_plt_entry = TRUE;
9211
9212 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9213 htab->root.srelplt->size += (htab->is_vxworks
9214 ? MIPS_ELF_RELA_SIZE (dynobj)
9215 : MIPS_ELF_REL_SIZE (dynobj));
9216
9217 /* Make room for the .rela.plt.unloaded relocations. */
9218 if (htab->is_vxworks && !bfd_link_pic (info))
9219 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9220
9221 /* All relocations against this symbol that could have been made
9222 dynamic will now refer to the PLT entry instead. */
9223 hmips->possibly_dynamic_relocs = 0;
9224
9225 return TRUE;
9226 }
9227
9228 /* If this is a weak symbol, and there is a real definition, the
9229 processor independent code will have arranged for us to see the
9230 real definition first, and we can just use the same value. */
9231 if (h->is_weakalias)
9232 {
9233 struct elf_link_hash_entry *def = weakdef (h);
9234 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
9235 h->root.u.def.section = def->root.u.def.section;
9236 h->root.u.def.value = def->root.u.def.value;
9237 return TRUE;
9238 }
9239
9240 /* Otherwise, there is nothing further to do for symbols defined
9241 in regular objects. */
9242 if (h->def_regular)
9243 return TRUE;
9244
9245 /* There's also nothing more to do if we'll convert all relocations
9246 against this symbol into dynamic relocations. */
9247 if (!hmips->has_static_relocs)
9248 return TRUE;
9249
9250 /* We're now relying on copy relocations. Complain if we have
9251 some that we can't convert. */
9252 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
9253 {
9254 _bfd_error_handler (_("non-dynamic relocations refer to "
9255 "dynamic symbol %s"),
9256 h->root.root.string);
9257 bfd_set_error (bfd_error_bad_value);
9258 return FALSE;
9259 }
9260
9261 /* We must allocate the symbol in our .dynbss section, which will
9262 become part of the .bss section of the executable. There will be
9263 an entry for this symbol in the .dynsym section. The dynamic
9264 object will contain position independent code, so all references
9265 from the dynamic object to this symbol will go through the global
9266 offset table. The dynamic linker will use the .dynsym entry to
9267 determine the address it must put in the global offset table, so
9268 both the dynamic object and the regular object will refer to the
9269 same memory location for the variable. */
9270
9271 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
9272 {
9273 s = htab->root.sdynrelro;
9274 srel = htab->root.sreldynrelro;
9275 }
9276 else
9277 {
9278 s = htab->root.sdynbss;
9279 srel = htab->root.srelbss;
9280 }
9281 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9282 {
9283 if (htab->is_vxworks)
9284 srel->size += sizeof (Elf32_External_Rela);
9285 else
9286 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9287 h->needs_copy = 1;
9288 }
9289
9290 /* All relocations against this symbol that could have been made
9291 dynamic will now refer to the local copy instead. */
9292 hmips->possibly_dynamic_relocs = 0;
9293
9294 return _bfd_elf_adjust_dynamic_copy (info, h, s);
9295 }
9296 \f
9297 /* This function is called after all the input files have been read,
9298 and the input sections have been assigned to output sections. We
9299 check for any mips16 stub sections that we can discard. */
9300
9301 bfd_boolean
9302 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9303 struct bfd_link_info *info)
9304 {
9305 asection *sect;
9306 struct mips_elf_link_hash_table *htab;
9307 struct mips_htab_traverse_info hti;
9308
9309 htab = mips_elf_hash_table (info);
9310 BFD_ASSERT (htab != NULL);
9311
9312 /* The .reginfo section has a fixed size. */
9313 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9314 if (sect != NULL)
9315 {
9316 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9317 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9318 }
9319
9320 /* The .MIPS.abiflags section has a fixed size. */
9321 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9322 if (sect != NULL)
9323 {
9324 bfd_set_section_size (output_bfd, sect,
9325 sizeof (Elf_External_ABIFlags_v0));
9326 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9327 }
9328
9329 hti.info = info;
9330 hti.output_bfd = output_bfd;
9331 hti.error = FALSE;
9332 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9333 mips_elf_check_symbols, &hti);
9334 if (hti.error)
9335 return FALSE;
9336
9337 return TRUE;
9338 }
9339
9340 /* If the link uses a GOT, lay it out and work out its size. */
9341
9342 static bfd_boolean
9343 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9344 {
9345 bfd *dynobj;
9346 asection *s;
9347 struct mips_got_info *g;
9348 bfd_size_type loadable_size = 0;
9349 bfd_size_type page_gotno;
9350 bfd *ibfd;
9351 struct mips_elf_traverse_got_arg tga;
9352 struct mips_elf_link_hash_table *htab;
9353
9354 htab = mips_elf_hash_table (info);
9355 BFD_ASSERT (htab != NULL);
9356
9357 s = htab->root.sgot;
9358 if (s == NULL)
9359 return TRUE;
9360
9361 dynobj = elf_hash_table (info)->dynobj;
9362 g = htab->got_info;
9363
9364 /* Allocate room for the reserved entries. VxWorks always reserves
9365 3 entries; other objects only reserve 2 entries. */
9366 BFD_ASSERT (g->assigned_low_gotno == 0);
9367 if (htab->is_vxworks)
9368 htab->reserved_gotno = 3;
9369 else
9370 htab->reserved_gotno = 2;
9371 g->local_gotno += htab->reserved_gotno;
9372 g->assigned_low_gotno = htab->reserved_gotno;
9373
9374 /* Decide which symbols need to go in the global part of the GOT and
9375 count the number of reloc-only GOT symbols. */
9376 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9377
9378 if (!mips_elf_resolve_final_got_entries (info, g))
9379 return FALSE;
9380
9381 /* Calculate the total loadable size of the output. That
9382 will give us the maximum number of GOT_PAGE entries
9383 required. */
9384 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9385 {
9386 asection *subsection;
9387
9388 for (subsection = ibfd->sections;
9389 subsection;
9390 subsection = subsection->next)
9391 {
9392 if ((subsection->flags & SEC_ALLOC) == 0)
9393 continue;
9394 loadable_size += ((subsection->size + 0xf)
9395 &~ (bfd_size_type) 0xf);
9396 }
9397 }
9398
9399 if (htab->is_vxworks)
9400 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9401 relocations against local symbols evaluate to "G", and the EABI does
9402 not include R_MIPS_GOT_PAGE. */
9403 page_gotno = 0;
9404 else
9405 /* Assume there are two loadable segments consisting of contiguous
9406 sections. Is 5 enough? */
9407 page_gotno = (loadable_size >> 16) + 5;
9408
9409 /* Choose the smaller of the two page estimates; both are intended to be
9410 conservative. */
9411 if (page_gotno > g->page_gotno)
9412 page_gotno = g->page_gotno;
9413
9414 g->local_gotno += page_gotno;
9415 g->assigned_high_gotno = g->local_gotno - 1;
9416
9417 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9418 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9419 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9420
9421 /* VxWorks does not support multiple GOTs. It initializes $gp to
9422 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9423 dynamic loader. */
9424 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9425 {
9426 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9427 return FALSE;
9428 }
9429 else
9430 {
9431 /* Record that all bfds use G. This also has the effect of freeing
9432 the per-bfd GOTs, which we no longer need. */
9433 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9434 if (mips_elf_bfd_got (ibfd, FALSE))
9435 mips_elf_replace_bfd_got (ibfd, g);
9436 mips_elf_replace_bfd_got (output_bfd, g);
9437
9438 /* Set up TLS entries. */
9439 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9440 tga.info = info;
9441 tga.g = g;
9442 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9443 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9444 if (!tga.g)
9445 return FALSE;
9446 BFD_ASSERT (g->tls_assigned_gotno
9447 == g->global_gotno + g->local_gotno + g->tls_gotno);
9448
9449 /* Each VxWorks GOT entry needs an explicit relocation. */
9450 if (htab->is_vxworks && bfd_link_pic (info))
9451 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9452
9453 /* Allocate room for the TLS relocations. */
9454 if (g->relocs)
9455 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9456 }
9457
9458 return TRUE;
9459 }
9460
9461 /* Estimate the size of the .MIPS.stubs section. */
9462
9463 static void
9464 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9465 {
9466 struct mips_elf_link_hash_table *htab;
9467 bfd_size_type dynsymcount;
9468
9469 htab = mips_elf_hash_table (info);
9470 BFD_ASSERT (htab != NULL);
9471
9472 if (htab->lazy_stub_count == 0)
9473 return;
9474
9475 /* IRIX rld assumes that a function stub isn't at the end of the .text
9476 section, so add a dummy entry to the end. */
9477 htab->lazy_stub_count++;
9478
9479 /* Get a worst-case estimate of the number of dynamic symbols needed.
9480 At this point, dynsymcount does not account for section symbols
9481 and count_section_dynsyms may overestimate the number that will
9482 be needed. */
9483 dynsymcount = (elf_hash_table (info)->dynsymcount
9484 + count_section_dynsyms (output_bfd, info));
9485
9486 /* Determine the size of one stub entry. There's no disadvantage
9487 from using microMIPS code here, so for the sake of pure-microMIPS
9488 binaries we prefer it whenever there's any microMIPS code in
9489 output produced at all. This has a benefit of stubs being
9490 shorter by 4 bytes each too, unless in the insn32 mode. */
9491 if (!MICROMIPS_P (output_bfd))
9492 htab->function_stub_size = (dynsymcount > 0x10000
9493 ? MIPS_FUNCTION_STUB_BIG_SIZE
9494 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9495 else if (htab->insn32)
9496 htab->function_stub_size = (dynsymcount > 0x10000
9497 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9498 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9499 else
9500 htab->function_stub_size = (dynsymcount > 0x10000
9501 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9502 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9503
9504 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9505 }
9506
9507 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9508 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9509 stub, allocate an entry in the stubs section. */
9510
9511 static bfd_boolean
9512 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9513 {
9514 struct mips_htab_traverse_info *hti = data;
9515 struct mips_elf_link_hash_table *htab;
9516 struct bfd_link_info *info;
9517 bfd *output_bfd;
9518
9519 info = hti->info;
9520 output_bfd = hti->output_bfd;
9521 htab = mips_elf_hash_table (info);
9522 BFD_ASSERT (htab != NULL);
9523
9524 if (h->needs_lazy_stub)
9525 {
9526 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9527 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9528 bfd_vma isa_bit = micromips_p;
9529
9530 BFD_ASSERT (htab->root.dynobj != NULL);
9531 if (h->root.plt.plist == NULL)
9532 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9533 if (h->root.plt.plist == NULL)
9534 {
9535 hti->error = TRUE;
9536 return FALSE;
9537 }
9538 h->root.root.u.def.section = htab->sstubs;
9539 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9540 h->root.plt.plist->stub_offset = htab->sstubs->size;
9541 h->root.other = other;
9542 htab->sstubs->size += htab->function_stub_size;
9543 }
9544 return TRUE;
9545 }
9546
9547 /* Allocate offsets in the stubs section to each symbol that needs one.
9548 Set the final size of the .MIPS.stub section. */
9549
9550 static bfd_boolean
9551 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9552 {
9553 bfd *output_bfd = info->output_bfd;
9554 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9555 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9556 bfd_vma isa_bit = micromips_p;
9557 struct mips_elf_link_hash_table *htab;
9558 struct mips_htab_traverse_info hti;
9559 struct elf_link_hash_entry *h;
9560 bfd *dynobj;
9561
9562 htab = mips_elf_hash_table (info);
9563 BFD_ASSERT (htab != NULL);
9564
9565 if (htab->lazy_stub_count == 0)
9566 return TRUE;
9567
9568 htab->sstubs->size = 0;
9569 hti.info = info;
9570 hti.output_bfd = output_bfd;
9571 hti.error = FALSE;
9572 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9573 if (hti.error)
9574 return FALSE;
9575 htab->sstubs->size += htab->function_stub_size;
9576 BFD_ASSERT (htab->sstubs->size
9577 == htab->lazy_stub_count * htab->function_stub_size);
9578
9579 dynobj = elf_hash_table (info)->dynobj;
9580 BFD_ASSERT (dynobj != NULL);
9581 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9582 if (h == NULL)
9583 return FALSE;
9584 h->root.u.def.value = isa_bit;
9585 h->other = other;
9586 h->type = STT_FUNC;
9587
9588 return TRUE;
9589 }
9590
9591 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9592 bfd_link_info. If H uses the address of a PLT entry as the value
9593 of the symbol, then set the entry in the symbol table now. Prefer
9594 a standard MIPS PLT entry. */
9595
9596 static bfd_boolean
9597 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9598 {
9599 struct bfd_link_info *info = data;
9600 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9601 struct mips_elf_link_hash_table *htab;
9602 unsigned int other;
9603 bfd_vma isa_bit;
9604 bfd_vma val;
9605
9606 htab = mips_elf_hash_table (info);
9607 BFD_ASSERT (htab != NULL);
9608
9609 if (h->use_plt_entry)
9610 {
9611 BFD_ASSERT (h->root.plt.plist != NULL);
9612 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9613 || h->root.plt.plist->comp_offset != MINUS_ONE);
9614
9615 val = htab->plt_header_size;
9616 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9617 {
9618 isa_bit = 0;
9619 val += h->root.plt.plist->mips_offset;
9620 other = 0;
9621 }
9622 else
9623 {
9624 isa_bit = 1;
9625 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9626 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9627 }
9628 val += isa_bit;
9629 /* For VxWorks, point at the PLT load stub rather than the lazy
9630 resolution stub; this stub will become the canonical function
9631 address. */
9632 if (htab->is_vxworks)
9633 val += 8;
9634
9635 h->root.root.u.def.section = htab->root.splt;
9636 h->root.root.u.def.value = val;
9637 h->root.other = other;
9638 }
9639
9640 return TRUE;
9641 }
9642
9643 /* Set the sizes of the dynamic sections. */
9644
9645 bfd_boolean
9646 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9647 struct bfd_link_info *info)
9648 {
9649 bfd *dynobj;
9650 asection *s, *sreldyn;
9651 bfd_boolean reltext;
9652 struct mips_elf_link_hash_table *htab;
9653
9654 htab = mips_elf_hash_table (info);
9655 BFD_ASSERT (htab != NULL);
9656 dynobj = elf_hash_table (info)->dynobj;
9657 BFD_ASSERT (dynobj != NULL);
9658
9659 if (elf_hash_table (info)->dynamic_sections_created)
9660 {
9661 /* Set the contents of the .interp section to the interpreter. */
9662 if (bfd_link_executable (info) && !info->nointerp)
9663 {
9664 s = bfd_get_linker_section (dynobj, ".interp");
9665 BFD_ASSERT (s != NULL);
9666 s->size
9667 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9668 s->contents
9669 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9670 }
9671
9672 /* Figure out the size of the PLT header if we know that we
9673 are using it. For the sake of cache alignment always use
9674 a standard header whenever any standard entries are present
9675 even if microMIPS entries are present as well. This also
9676 lets the microMIPS header rely on the value of $v0 only set
9677 by microMIPS entries, for a small size reduction.
9678
9679 Set symbol table entry values for symbols that use the
9680 address of their PLT entry now that we can calculate it.
9681
9682 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9683 haven't already in _bfd_elf_create_dynamic_sections. */
9684 if (htab->root.splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9685 {
9686 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9687 && !htab->plt_mips_offset);
9688 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9689 bfd_vma isa_bit = micromips_p;
9690 struct elf_link_hash_entry *h;
9691 bfd_vma size;
9692
9693 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9694 BFD_ASSERT (htab->root.sgotplt->size == 0);
9695 BFD_ASSERT (htab->root.splt->size == 0);
9696
9697 if (htab->is_vxworks && bfd_link_pic (info))
9698 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9699 else if (htab->is_vxworks)
9700 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9701 else if (ABI_64_P (output_bfd))
9702 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9703 else if (ABI_N32_P (output_bfd))
9704 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9705 else if (!micromips_p)
9706 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9707 else if (htab->insn32)
9708 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9709 else
9710 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9711
9712 htab->plt_header_is_comp = micromips_p;
9713 htab->plt_header_size = size;
9714 htab->root.splt->size = (size
9715 + htab->plt_mips_offset
9716 + htab->plt_comp_offset);
9717 htab->root.sgotplt->size = (htab->plt_got_index
9718 * MIPS_ELF_GOT_SIZE (dynobj));
9719
9720 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9721
9722 if (htab->root.hplt == NULL)
9723 {
9724 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.splt,
9725 "_PROCEDURE_LINKAGE_TABLE_");
9726 htab->root.hplt = h;
9727 if (h == NULL)
9728 return FALSE;
9729 }
9730
9731 h = htab->root.hplt;
9732 h->root.u.def.value = isa_bit;
9733 h->other = other;
9734 h->type = STT_FUNC;
9735 }
9736 }
9737
9738 /* Allocate space for global sym dynamic relocs. */
9739 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9740
9741 mips_elf_estimate_stub_size (output_bfd, info);
9742
9743 if (!mips_elf_lay_out_got (output_bfd, info))
9744 return FALSE;
9745
9746 mips_elf_lay_out_lazy_stubs (info);
9747
9748 /* The check_relocs and adjust_dynamic_symbol entry points have
9749 determined the sizes of the various dynamic sections. Allocate
9750 memory for them. */
9751 reltext = FALSE;
9752 for (s = dynobj->sections; s != NULL; s = s->next)
9753 {
9754 const char *name;
9755
9756 /* It's OK to base decisions on the section name, because none
9757 of the dynobj section names depend upon the input files. */
9758 name = bfd_get_section_name (dynobj, s);
9759
9760 if ((s->flags & SEC_LINKER_CREATED) == 0)
9761 continue;
9762
9763 if (CONST_STRNEQ (name, ".rel"))
9764 {
9765 if (s->size != 0)
9766 {
9767 const char *outname;
9768 asection *target;
9769
9770 /* If this relocation section applies to a read only
9771 section, then we probably need a DT_TEXTREL entry.
9772 If the relocation section is .rel(a).dyn, we always
9773 assert a DT_TEXTREL entry rather than testing whether
9774 there exists a relocation to a read only section or
9775 not. */
9776 outname = bfd_get_section_name (output_bfd,
9777 s->output_section);
9778 target = bfd_get_section_by_name (output_bfd, outname + 4);
9779 if ((target != NULL
9780 && (target->flags & SEC_READONLY) != 0
9781 && (target->flags & SEC_ALLOC) != 0)
9782 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9783 reltext = TRUE;
9784
9785 /* We use the reloc_count field as a counter if we need
9786 to copy relocs into the output file. */
9787 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9788 s->reloc_count = 0;
9789
9790 /* If combreloc is enabled, elf_link_sort_relocs() will
9791 sort relocations, but in a different way than we do,
9792 and before we're done creating relocations. Also, it
9793 will move them around between input sections'
9794 relocation's contents, so our sorting would be
9795 broken, so don't let it run. */
9796 info->combreloc = 0;
9797 }
9798 }
9799 else if (bfd_link_executable (info)
9800 && ! mips_elf_hash_table (info)->use_rld_obj_head
9801 && CONST_STRNEQ (name, ".rld_map"))
9802 {
9803 /* We add a room for __rld_map. It will be filled in by the
9804 rtld to contain a pointer to the _r_debug structure. */
9805 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9806 }
9807 else if (SGI_COMPAT (output_bfd)
9808 && CONST_STRNEQ (name, ".compact_rel"))
9809 s->size += mips_elf_hash_table (info)->compact_rel_size;
9810 else if (s == htab->root.splt)
9811 {
9812 /* If the last PLT entry has a branch delay slot, allocate
9813 room for an extra nop to fill the delay slot. This is
9814 for CPUs without load interlocking. */
9815 if (! LOAD_INTERLOCKS_P (output_bfd)
9816 && ! htab->is_vxworks && s->size > 0)
9817 s->size += 4;
9818 }
9819 else if (! CONST_STRNEQ (name, ".init")
9820 && s != htab->root.sgot
9821 && s != htab->root.sgotplt
9822 && s != htab->sstubs
9823 && s != htab->root.sdynbss
9824 && s != htab->root.sdynrelro)
9825 {
9826 /* It's not one of our sections, so don't allocate space. */
9827 continue;
9828 }
9829
9830 if (s->size == 0)
9831 {
9832 s->flags |= SEC_EXCLUDE;
9833 continue;
9834 }
9835
9836 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9837 continue;
9838
9839 /* Allocate memory for the section contents. */
9840 s->contents = bfd_zalloc (dynobj, s->size);
9841 if (s->contents == NULL)
9842 {
9843 bfd_set_error (bfd_error_no_memory);
9844 return FALSE;
9845 }
9846 }
9847
9848 if (elf_hash_table (info)->dynamic_sections_created)
9849 {
9850 /* Add some entries to the .dynamic section. We fill in the
9851 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9852 must add the entries now so that we get the correct size for
9853 the .dynamic section. */
9854
9855 /* SGI object has the equivalence of DT_DEBUG in the
9856 DT_MIPS_RLD_MAP entry. This must come first because glibc
9857 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9858 may only look at the first one they see. */
9859 if (!bfd_link_pic (info)
9860 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9861 return FALSE;
9862
9863 if (bfd_link_executable (info)
9864 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
9865 return FALSE;
9866
9867 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9868 used by the debugger. */
9869 if (bfd_link_executable (info)
9870 && !SGI_COMPAT (output_bfd)
9871 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9872 return FALSE;
9873
9874 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9875 info->flags |= DF_TEXTREL;
9876
9877 if ((info->flags & DF_TEXTREL) != 0)
9878 {
9879 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9880 return FALSE;
9881
9882 /* Clear the DF_TEXTREL flag. It will be set again if we
9883 write out an actual text relocation; we may not, because
9884 at this point we do not know whether e.g. any .eh_frame
9885 absolute relocations have been converted to PC-relative. */
9886 info->flags &= ~DF_TEXTREL;
9887 }
9888
9889 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9890 return FALSE;
9891
9892 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9893 if (htab->is_vxworks)
9894 {
9895 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9896 use any of the DT_MIPS_* tags. */
9897 if (sreldyn && sreldyn->size > 0)
9898 {
9899 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9900 return FALSE;
9901
9902 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9903 return FALSE;
9904
9905 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9906 return FALSE;
9907 }
9908 }
9909 else
9910 {
9911 if (sreldyn && sreldyn->size > 0
9912 && !bfd_is_abs_section (sreldyn->output_section))
9913 {
9914 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9915 return FALSE;
9916
9917 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9918 return FALSE;
9919
9920 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9921 return FALSE;
9922 }
9923
9924 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9925 return FALSE;
9926
9927 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9928 return FALSE;
9929
9930 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9931 return FALSE;
9932
9933 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9934 return FALSE;
9935
9936 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9937 return FALSE;
9938
9939 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9940 return FALSE;
9941
9942 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9943 return FALSE;
9944
9945 if (IRIX_COMPAT (dynobj) == ict_irix5
9946 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9947 return FALSE;
9948
9949 if (IRIX_COMPAT (dynobj) == ict_irix6
9950 && (bfd_get_section_by_name
9951 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9952 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9953 return FALSE;
9954 }
9955 if (htab->root.splt->size > 0)
9956 {
9957 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9958 return FALSE;
9959
9960 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9961 return FALSE;
9962
9963 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9964 return FALSE;
9965
9966 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9967 return FALSE;
9968 }
9969 if (htab->is_vxworks
9970 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9971 return FALSE;
9972 }
9973
9974 return TRUE;
9975 }
9976 \f
9977 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9978 Adjust its R_ADDEND field so that it is correct for the output file.
9979 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9980 and sections respectively; both use symbol indexes. */
9981
9982 static void
9983 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9984 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9985 asection **local_sections, Elf_Internal_Rela *rel)
9986 {
9987 unsigned int r_type, r_symndx;
9988 Elf_Internal_Sym *sym;
9989 asection *sec;
9990
9991 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9992 {
9993 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9994 if (gprel16_reloc_p (r_type)
9995 || r_type == R_MIPS_GPREL32
9996 || literal_reloc_p (r_type))
9997 {
9998 rel->r_addend += _bfd_get_gp_value (input_bfd);
9999 rel->r_addend -= _bfd_get_gp_value (output_bfd);
10000 }
10001
10002 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
10003 sym = local_syms + r_symndx;
10004
10005 /* Adjust REL's addend to account for section merging. */
10006 if (!bfd_link_relocatable (info))
10007 {
10008 sec = local_sections[r_symndx];
10009 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
10010 }
10011
10012 /* This would normally be done by the rela_normal code in elflink.c. */
10013 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10014 rel->r_addend += local_sections[r_symndx]->output_offset;
10015 }
10016 }
10017
10018 /* Handle relocations against symbols from removed linkonce sections,
10019 or sections discarded by a linker script. We use this wrapper around
10020 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
10021 on 64-bit ELF targets. In this case for any relocation handled, which
10022 always be the first in a triplet, the remaining two have to be processed
10023 together with the first, even if they are R_MIPS_NONE. It is the symbol
10024 index referred by the first reloc that applies to all the three and the
10025 remaining two never refer to an object symbol. And it is the final
10026 relocation (the last non-null one) that determines the output field of
10027 the whole relocation so retrieve the corresponding howto structure for
10028 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
10029
10030 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
10031 and therefore requires to be pasted in a loop. It also defines a block
10032 and does not protect any of its arguments, hence the extra brackets. */
10033
10034 static void
10035 mips_reloc_against_discarded_section (bfd *output_bfd,
10036 struct bfd_link_info *info,
10037 bfd *input_bfd, asection *input_section,
10038 Elf_Internal_Rela **rel,
10039 const Elf_Internal_Rela **relend,
10040 bfd_boolean rel_reloc,
10041 reloc_howto_type *howto,
10042 bfd_byte *contents)
10043 {
10044 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10045 int count = bed->s->int_rels_per_ext_rel;
10046 unsigned int r_type;
10047 int i;
10048
10049 for (i = count - 1; i > 0; i--)
10050 {
10051 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10052 if (r_type != R_MIPS_NONE)
10053 {
10054 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10055 break;
10056 }
10057 }
10058 do
10059 {
10060 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10061 (*rel), count, (*relend),
10062 howto, i, contents);
10063 }
10064 while (0);
10065 }
10066
10067 /* Relocate a MIPS ELF section. */
10068
10069 bfd_boolean
10070 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10071 bfd *input_bfd, asection *input_section,
10072 bfd_byte *contents, Elf_Internal_Rela *relocs,
10073 Elf_Internal_Sym *local_syms,
10074 asection **local_sections)
10075 {
10076 Elf_Internal_Rela *rel;
10077 const Elf_Internal_Rela *relend;
10078 bfd_vma addend = 0;
10079 bfd_boolean use_saved_addend_p = FALSE;
10080
10081 relend = relocs + input_section->reloc_count;
10082 for (rel = relocs; rel < relend; ++rel)
10083 {
10084 const char *name;
10085 bfd_vma value = 0;
10086 reloc_howto_type *howto;
10087 bfd_boolean cross_mode_jump_p = FALSE;
10088 /* TRUE if the relocation is a RELA relocation, rather than a
10089 REL relocation. */
10090 bfd_boolean rela_relocation_p = TRUE;
10091 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10092 const char *msg;
10093 unsigned long r_symndx;
10094 asection *sec;
10095 Elf_Internal_Shdr *symtab_hdr;
10096 struct elf_link_hash_entry *h;
10097 bfd_boolean rel_reloc;
10098
10099 rel_reloc = (NEWABI_P (input_bfd)
10100 && mips_elf_rel_relocation_p (input_bfd, input_section,
10101 relocs, rel));
10102 /* Find the relocation howto for this relocation. */
10103 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10104
10105 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10106 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10107 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10108 {
10109 sec = local_sections[r_symndx];
10110 h = NULL;
10111 }
10112 else
10113 {
10114 unsigned long extsymoff;
10115
10116 extsymoff = 0;
10117 if (!elf_bad_symtab (input_bfd))
10118 extsymoff = symtab_hdr->sh_info;
10119 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10120 while (h->root.type == bfd_link_hash_indirect
10121 || h->root.type == bfd_link_hash_warning)
10122 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10123
10124 sec = NULL;
10125 if (h->root.type == bfd_link_hash_defined
10126 || h->root.type == bfd_link_hash_defweak)
10127 sec = h->root.u.def.section;
10128 }
10129
10130 if (sec != NULL && discarded_section (sec))
10131 {
10132 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10133 input_section, &rel, &relend,
10134 rel_reloc, howto, contents);
10135 continue;
10136 }
10137
10138 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10139 {
10140 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10141 64-bit code, but make sure all their addresses are in the
10142 lowermost or uppermost 32-bit section of the 64-bit address
10143 space. Thus, when they use an R_MIPS_64 they mean what is
10144 usually meant by R_MIPS_32, with the exception that the
10145 stored value is sign-extended to 64 bits. */
10146 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
10147
10148 /* On big-endian systems, we need to lie about the position
10149 of the reloc. */
10150 if (bfd_big_endian (input_bfd))
10151 rel->r_offset += 4;
10152 }
10153
10154 if (!use_saved_addend_p)
10155 {
10156 /* If these relocations were originally of the REL variety,
10157 we must pull the addend out of the field that will be
10158 relocated. Otherwise, we simply use the contents of the
10159 RELA relocation. */
10160 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10161 relocs, rel))
10162 {
10163 rela_relocation_p = FALSE;
10164 addend = mips_elf_read_rel_addend (input_bfd, rel,
10165 howto, contents);
10166 if (hi16_reloc_p (r_type)
10167 || (got16_reloc_p (r_type)
10168 && mips_elf_local_relocation_p (input_bfd, rel,
10169 local_sections)))
10170 {
10171 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10172 contents, &addend))
10173 {
10174 if (h)
10175 name = h->root.root.string;
10176 else
10177 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10178 local_syms + r_symndx,
10179 sec);
10180 _bfd_error_handler
10181 /* xgettext:c-format */
10182 (_("%pB: can't find matching LO16 reloc against `%s'"
10183 " for %s at %#" PRIx64 " in section `%pA'"),
10184 input_bfd, name,
10185 howto->name, (uint64_t) rel->r_offset, input_section);
10186 }
10187 }
10188 else
10189 addend <<= howto->rightshift;
10190 }
10191 else
10192 addend = rel->r_addend;
10193 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10194 local_syms, local_sections, rel);
10195 }
10196
10197 if (bfd_link_relocatable (info))
10198 {
10199 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10200 && bfd_big_endian (input_bfd))
10201 rel->r_offset -= 4;
10202
10203 if (!rela_relocation_p && rel->r_addend)
10204 {
10205 addend += rel->r_addend;
10206 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10207 addend = mips_elf_high (addend);
10208 else if (r_type == R_MIPS_HIGHER)
10209 addend = mips_elf_higher (addend);
10210 else if (r_type == R_MIPS_HIGHEST)
10211 addend = mips_elf_highest (addend);
10212 else
10213 addend >>= howto->rightshift;
10214
10215 /* We use the source mask, rather than the destination
10216 mask because the place to which we are writing will be
10217 source of the addend in the final link. */
10218 addend &= howto->src_mask;
10219
10220 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10221 /* See the comment above about using R_MIPS_64 in the 32-bit
10222 ABI. Here, we need to update the addend. It would be
10223 possible to get away with just using the R_MIPS_32 reloc
10224 but for endianness. */
10225 {
10226 bfd_vma sign_bits;
10227 bfd_vma low_bits;
10228 bfd_vma high_bits;
10229
10230 if (addend & ((bfd_vma) 1 << 31))
10231 #ifdef BFD64
10232 sign_bits = ((bfd_vma) 1 << 32) - 1;
10233 #else
10234 sign_bits = -1;
10235 #endif
10236 else
10237 sign_bits = 0;
10238
10239 /* If we don't know that we have a 64-bit type,
10240 do two separate stores. */
10241 if (bfd_big_endian (input_bfd))
10242 {
10243 /* Store the sign-bits (which are most significant)
10244 first. */
10245 low_bits = sign_bits;
10246 high_bits = addend;
10247 }
10248 else
10249 {
10250 low_bits = addend;
10251 high_bits = sign_bits;
10252 }
10253 bfd_put_32 (input_bfd, low_bits,
10254 contents + rel->r_offset);
10255 bfd_put_32 (input_bfd, high_bits,
10256 contents + rel->r_offset + 4);
10257 continue;
10258 }
10259
10260 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10261 input_bfd, input_section,
10262 contents, FALSE))
10263 return FALSE;
10264 }
10265
10266 /* Go on to the next relocation. */
10267 continue;
10268 }
10269
10270 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10271 relocations for the same offset. In that case we are
10272 supposed to treat the output of each relocation as the addend
10273 for the next. */
10274 if (rel + 1 < relend
10275 && rel->r_offset == rel[1].r_offset
10276 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10277 use_saved_addend_p = TRUE;
10278 else
10279 use_saved_addend_p = FALSE;
10280
10281 /* Figure out what value we are supposed to relocate. */
10282 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10283 input_section, info, rel,
10284 addend, howto, local_syms,
10285 local_sections, &value,
10286 &name, &cross_mode_jump_p,
10287 use_saved_addend_p))
10288 {
10289 case bfd_reloc_continue:
10290 /* There's nothing to do. */
10291 continue;
10292
10293 case bfd_reloc_undefined:
10294 /* mips_elf_calculate_relocation already called the
10295 undefined_symbol callback. There's no real point in
10296 trying to perform the relocation at this point, so we
10297 just skip ahead to the next relocation. */
10298 continue;
10299
10300 case bfd_reloc_notsupported:
10301 msg = _("internal error: unsupported relocation error");
10302 info->callbacks->warning
10303 (info, msg, name, input_bfd, input_section, rel->r_offset);
10304 return FALSE;
10305
10306 case bfd_reloc_overflow:
10307 if (use_saved_addend_p)
10308 /* Ignore overflow until we reach the last relocation for
10309 a given location. */
10310 ;
10311 else
10312 {
10313 struct mips_elf_link_hash_table *htab;
10314
10315 htab = mips_elf_hash_table (info);
10316 BFD_ASSERT (htab != NULL);
10317 BFD_ASSERT (name != NULL);
10318 if (!htab->small_data_overflow_reported
10319 && (gprel16_reloc_p (howto->type)
10320 || literal_reloc_p (howto->type)))
10321 {
10322 msg = _("small-data section exceeds 64KB;"
10323 " lower small-data size limit (see option -G)");
10324
10325 htab->small_data_overflow_reported = TRUE;
10326 (*info->callbacks->einfo) ("%P: %s\n", msg);
10327 }
10328 (*info->callbacks->reloc_overflow)
10329 (info, NULL, name, howto->name, (bfd_vma) 0,
10330 input_bfd, input_section, rel->r_offset);
10331 }
10332 break;
10333
10334 case bfd_reloc_ok:
10335 break;
10336
10337 case bfd_reloc_outofrange:
10338 msg = NULL;
10339 if (jal_reloc_p (howto->type))
10340 msg = (cross_mode_jump_p
10341 ? _("cannot convert a jump to JALX "
10342 "for a non-word-aligned address")
10343 : (howto->type == R_MIPS16_26
10344 ? _("jump to a non-word-aligned address")
10345 : _("jump to a non-instruction-aligned address")));
10346 else if (b_reloc_p (howto->type))
10347 msg = (cross_mode_jump_p
10348 ? _("cannot convert a branch to JALX "
10349 "for a non-word-aligned address")
10350 : _("branch to a non-instruction-aligned address"));
10351 else if (aligned_pcrel_reloc_p (howto->type))
10352 msg = _("PC-relative load from unaligned address");
10353 if (msg)
10354 {
10355 info->callbacks->einfo
10356 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10357 break;
10358 }
10359 /* Fall through. */
10360
10361 default:
10362 abort ();
10363 break;
10364 }
10365
10366 /* If we've got another relocation for the address, keep going
10367 until we reach the last one. */
10368 if (use_saved_addend_p)
10369 {
10370 addend = value;
10371 continue;
10372 }
10373
10374 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10375 /* See the comment above about using R_MIPS_64 in the 32-bit
10376 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10377 that calculated the right value. Now, however, we
10378 sign-extend the 32-bit result to 64-bits, and store it as a
10379 64-bit value. We are especially generous here in that we
10380 go to extreme lengths to support this usage on systems with
10381 only a 32-bit VMA. */
10382 {
10383 bfd_vma sign_bits;
10384 bfd_vma low_bits;
10385 bfd_vma high_bits;
10386
10387 if (value & ((bfd_vma) 1 << 31))
10388 #ifdef BFD64
10389 sign_bits = ((bfd_vma) 1 << 32) - 1;
10390 #else
10391 sign_bits = -1;
10392 #endif
10393 else
10394 sign_bits = 0;
10395
10396 /* If we don't know that we have a 64-bit type,
10397 do two separate stores. */
10398 if (bfd_big_endian (input_bfd))
10399 {
10400 /* Undo what we did above. */
10401 rel->r_offset -= 4;
10402 /* Store the sign-bits (which are most significant)
10403 first. */
10404 low_bits = sign_bits;
10405 high_bits = value;
10406 }
10407 else
10408 {
10409 low_bits = value;
10410 high_bits = sign_bits;
10411 }
10412 bfd_put_32 (input_bfd, low_bits,
10413 contents + rel->r_offset);
10414 bfd_put_32 (input_bfd, high_bits,
10415 contents + rel->r_offset + 4);
10416 continue;
10417 }
10418
10419 /* Actually perform the relocation. */
10420 if (! mips_elf_perform_relocation (info, howto, rel, value,
10421 input_bfd, input_section,
10422 contents, cross_mode_jump_p))
10423 return FALSE;
10424 }
10425
10426 return TRUE;
10427 }
10428 \f
10429 /* A function that iterates over each entry in la25_stubs and fills
10430 in the code for each one. DATA points to a mips_htab_traverse_info. */
10431
10432 static int
10433 mips_elf_create_la25_stub (void **slot, void *data)
10434 {
10435 struct mips_htab_traverse_info *hti;
10436 struct mips_elf_link_hash_table *htab;
10437 struct mips_elf_la25_stub *stub;
10438 asection *s;
10439 bfd_byte *loc;
10440 bfd_vma offset, target, target_high, target_low;
10441
10442 stub = (struct mips_elf_la25_stub *) *slot;
10443 hti = (struct mips_htab_traverse_info *) data;
10444 htab = mips_elf_hash_table (hti->info);
10445 BFD_ASSERT (htab != NULL);
10446
10447 /* Create the section contents, if we haven't already. */
10448 s = stub->stub_section;
10449 loc = s->contents;
10450 if (loc == NULL)
10451 {
10452 loc = bfd_malloc (s->size);
10453 if (loc == NULL)
10454 {
10455 hti->error = TRUE;
10456 return FALSE;
10457 }
10458 s->contents = loc;
10459 }
10460
10461 /* Work out where in the section this stub should go. */
10462 offset = stub->offset;
10463
10464 /* Work out the target address. */
10465 target = mips_elf_get_la25_target (stub, &s);
10466 target += s->output_section->vma + s->output_offset;
10467
10468 target_high = ((target + 0x8000) >> 16) & 0xffff;
10469 target_low = (target & 0xffff);
10470
10471 if (stub->stub_section != htab->strampoline)
10472 {
10473 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10474 of the section and write the two instructions at the end. */
10475 memset (loc, 0, offset);
10476 loc += offset;
10477 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10478 {
10479 bfd_put_micromips_32 (hti->output_bfd,
10480 LA25_LUI_MICROMIPS (target_high),
10481 loc);
10482 bfd_put_micromips_32 (hti->output_bfd,
10483 LA25_ADDIU_MICROMIPS (target_low),
10484 loc + 4);
10485 }
10486 else
10487 {
10488 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10489 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10490 }
10491 }
10492 else
10493 {
10494 /* This is trampoline. */
10495 loc += offset;
10496 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10497 {
10498 bfd_put_micromips_32 (hti->output_bfd,
10499 LA25_LUI_MICROMIPS (target_high), loc);
10500 bfd_put_micromips_32 (hti->output_bfd,
10501 LA25_J_MICROMIPS (target), loc + 4);
10502 bfd_put_micromips_32 (hti->output_bfd,
10503 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10504 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10505 }
10506 else
10507 {
10508 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10509 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10510 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10511 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10512 }
10513 }
10514 return TRUE;
10515 }
10516
10517 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10518 adjust it appropriately now. */
10519
10520 static void
10521 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10522 const char *name, Elf_Internal_Sym *sym)
10523 {
10524 /* The linker script takes care of providing names and values for
10525 these, but we must place them into the right sections. */
10526 static const char* const text_section_symbols[] = {
10527 "_ftext",
10528 "_etext",
10529 "__dso_displacement",
10530 "__elf_header",
10531 "__program_header_table",
10532 NULL
10533 };
10534
10535 static const char* const data_section_symbols[] = {
10536 "_fdata",
10537 "_edata",
10538 "_end",
10539 "_fbss",
10540 NULL
10541 };
10542
10543 const char* const *p;
10544 int i;
10545
10546 for (i = 0; i < 2; ++i)
10547 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10548 *p;
10549 ++p)
10550 if (strcmp (*p, name) == 0)
10551 {
10552 /* All of these symbols are given type STT_SECTION by the
10553 IRIX6 linker. */
10554 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10555 sym->st_other = STO_PROTECTED;
10556
10557 /* The IRIX linker puts these symbols in special sections. */
10558 if (i == 0)
10559 sym->st_shndx = SHN_MIPS_TEXT;
10560 else
10561 sym->st_shndx = SHN_MIPS_DATA;
10562
10563 break;
10564 }
10565 }
10566
10567 /* Finish up dynamic symbol handling. We set the contents of various
10568 dynamic sections here. */
10569
10570 bfd_boolean
10571 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10572 struct bfd_link_info *info,
10573 struct elf_link_hash_entry *h,
10574 Elf_Internal_Sym *sym)
10575 {
10576 bfd *dynobj;
10577 asection *sgot;
10578 struct mips_got_info *g, *gg;
10579 const char *name;
10580 int idx;
10581 struct mips_elf_link_hash_table *htab;
10582 struct mips_elf_link_hash_entry *hmips;
10583
10584 htab = mips_elf_hash_table (info);
10585 BFD_ASSERT (htab != NULL);
10586 dynobj = elf_hash_table (info)->dynobj;
10587 hmips = (struct mips_elf_link_hash_entry *) h;
10588
10589 BFD_ASSERT (!htab->is_vxworks);
10590
10591 if (h->plt.plist != NULL
10592 && (h->plt.plist->mips_offset != MINUS_ONE
10593 || h->plt.plist->comp_offset != MINUS_ONE))
10594 {
10595 /* We've decided to create a PLT entry for this symbol. */
10596 bfd_byte *loc;
10597 bfd_vma header_address, got_address;
10598 bfd_vma got_address_high, got_address_low, load;
10599 bfd_vma got_index;
10600 bfd_vma isa_bit;
10601
10602 got_index = h->plt.plist->gotplt_index;
10603
10604 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10605 BFD_ASSERT (h->dynindx != -1);
10606 BFD_ASSERT (htab->root.splt != NULL);
10607 BFD_ASSERT (got_index != MINUS_ONE);
10608 BFD_ASSERT (!h->def_regular);
10609
10610 /* Calculate the address of the PLT header. */
10611 isa_bit = htab->plt_header_is_comp;
10612 header_address = (htab->root.splt->output_section->vma
10613 + htab->root.splt->output_offset + isa_bit);
10614
10615 /* Calculate the address of the .got.plt entry. */
10616 got_address = (htab->root.sgotplt->output_section->vma
10617 + htab->root.sgotplt->output_offset
10618 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10619
10620 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10621 got_address_low = got_address & 0xffff;
10622
10623 /* The PLT sequence is not safe for N64 if .got.plt entry's address
10624 cannot be loaded in two instructions. */
10625 if (ABI_64_P (output_bfd)
10626 && ((got_address + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
10627 {
10628 _bfd_error_handler
10629 /* xgettext:c-format */
10630 (_("%pB: `%pA' entry VMA of %#" PRIx64 " outside the 32-bit range "
10631 "supported; consider using `-Ttext-segment=...'"),
10632 output_bfd,
10633 htab->root.sgotplt->output_section,
10634 (int64_t) got_address);
10635 bfd_set_error (bfd_error_no_error);
10636 return FALSE;
10637 }
10638
10639 /* Initially point the .got.plt entry at the PLT header. */
10640 loc = (htab->root.sgotplt->contents
10641 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10642 if (ABI_64_P (output_bfd))
10643 bfd_put_64 (output_bfd, header_address, loc);
10644 else
10645 bfd_put_32 (output_bfd, header_address, loc);
10646
10647 /* Now handle the PLT itself. First the standard entry (the order
10648 does not matter, we just have to pick one). */
10649 if (h->plt.plist->mips_offset != MINUS_ONE)
10650 {
10651 const bfd_vma *plt_entry;
10652 bfd_vma plt_offset;
10653
10654 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10655
10656 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10657
10658 /* Find out where the .plt entry should go. */
10659 loc = htab->root.splt->contents + plt_offset;
10660
10661 /* Pick the load opcode. */
10662 load = MIPS_ELF_LOAD_WORD (output_bfd);
10663
10664 /* Fill in the PLT entry itself. */
10665
10666 if (MIPSR6_P (output_bfd))
10667 plt_entry = mipsr6_exec_plt_entry;
10668 else
10669 plt_entry = mips_exec_plt_entry;
10670 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10671 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10672 loc + 4);
10673
10674 if (! LOAD_INTERLOCKS_P (output_bfd))
10675 {
10676 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10677 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10678 }
10679 else
10680 {
10681 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10682 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10683 loc + 12);
10684 }
10685 }
10686
10687 /* Now the compressed entry. They come after any standard ones. */
10688 if (h->plt.plist->comp_offset != MINUS_ONE)
10689 {
10690 bfd_vma plt_offset;
10691
10692 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10693 + h->plt.plist->comp_offset);
10694
10695 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10696
10697 /* Find out where the .plt entry should go. */
10698 loc = htab->root.splt->contents + plt_offset;
10699
10700 /* Fill in the PLT entry itself. */
10701 if (!MICROMIPS_P (output_bfd))
10702 {
10703 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10704
10705 bfd_put_16 (output_bfd, plt_entry[0], loc);
10706 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10707 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10708 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10709 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10710 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10711 bfd_put_32 (output_bfd, got_address, loc + 12);
10712 }
10713 else if (htab->insn32)
10714 {
10715 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10716
10717 bfd_put_16 (output_bfd, plt_entry[0], loc);
10718 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10719 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10720 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10721 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10722 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10723 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10724 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10725 }
10726 else
10727 {
10728 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10729 bfd_signed_vma gotpc_offset;
10730 bfd_vma loc_address;
10731
10732 BFD_ASSERT (got_address % 4 == 0);
10733
10734 loc_address = (htab->root.splt->output_section->vma
10735 + htab->root.splt->output_offset + plt_offset);
10736 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10737
10738 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10739 if (gotpc_offset + 0x1000000 >= 0x2000000)
10740 {
10741 _bfd_error_handler
10742 /* xgettext:c-format */
10743 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
10744 "beyond the range of ADDIUPC"),
10745 output_bfd,
10746 htab->root.sgotplt->output_section,
10747 (int64_t) gotpc_offset,
10748 htab->root.splt->output_section);
10749 bfd_set_error (bfd_error_no_error);
10750 return FALSE;
10751 }
10752 bfd_put_16 (output_bfd,
10753 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10754 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10755 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10756 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10757 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10758 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10759 }
10760 }
10761
10762 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10763 mips_elf_output_dynamic_relocation (output_bfd, htab->root.srelplt,
10764 got_index - 2, h->dynindx,
10765 R_MIPS_JUMP_SLOT, got_address);
10766
10767 /* We distinguish between PLT entries and lazy-binding stubs by
10768 giving the former an st_other value of STO_MIPS_PLT. Set the
10769 flag and leave the value if there are any relocations in the
10770 binary where pointer equality matters. */
10771 sym->st_shndx = SHN_UNDEF;
10772 if (h->pointer_equality_needed)
10773 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
10774 else
10775 {
10776 sym->st_value = 0;
10777 sym->st_other = 0;
10778 }
10779 }
10780
10781 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
10782 {
10783 /* We've decided to create a lazy-binding stub. */
10784 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10785 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10786 bfd_vma stub_size = htab->function_stub_size;
10787 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
10788 bfd_vma isa_bit = micromips_p;
10789 bfd_vma stub_big_size;
10790
10791 if (!micromips_p)
10792 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
10793 else if (htab->insn32)
10794 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10795 else
10796 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
10797
10798 /* This symbol has a stub. Set it up. */
10799
10800 BFD_ASSERT (h->dynindx != -1);
10801
10802 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
10803
10804 /* Values up to 2^31 - 1 are allowed. Larger values would cause
10805 sign extension at runtime in the stub, resulting in a negative
10806 index value. */
10807 if (h->dynindx & ~0x7fffffff)
10808 return FALSE;
10809
10810 /* Fill the stub. */
10811 if (micromips_p)
10812 {
10813 idx = 0;
10814 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10815 stub + idx);
10816 idx += 4;
10817 if (htab->insn32)
10818 {
10819 bfd_put_micromips_32 (output_bfd,
10820 STUB_MOVE32_MICROMIPS, stub + idx);
10821 idx += 4;
10822 }
10823 else
10824 {
10825 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10826 idx += 2;
10827 }
10828 if (stub_size == stub_big_size)
10829 {
10830 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10831
10832 bfd_put_micromips_32 (output_bfd,
10833 STUB_LUI_MICROMIPS (dynindx_hi),
10834 stub + idx);
10835 idx += 4;
10836 }
10837 if (htab->insn32)
10838 {
10839 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
10840 stub + idx);
10841 idx += 4;
10842 }
10843 else
10844 {
10845 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
10846 idx += 2;
10847 }
10848
10849 /* If a large stub is not required and sign extension is not a
10850 problem, then use legacy code in the stub. */
10851 if (stub_size == stub_big_size)
10852 bfd_put_micromips_32 (output_bfd,
10853 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
10854 stub + idx);
10855 else if (h->dynindx & ~0x7fff)
10856 bfd_put_micromips_32 (output_bfd,
10857 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
10858 stub + idx);
10859 else
10860 bfd_put_micromips_32 (output_bfd,
10861 STUB_LI16S_MICROMIPS (output_bfd,
10862 h->dynindx),
10863 stub + idx);
10864 }
10865 else
10866 {
10867 idx = 0;
10868 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10869 idx += 4;
10870 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
10871 idx += 4;
10872 if (stub_size == stub_big_size)
10873 {
10874 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10875 stub + idx);
10876 idx += 4;
10877 }
10878 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10879 idx += 4;
10880
10881 /* If a large stub is not required and sign extension is not a
10882 problem, then use legacy code in the stub. */
10883 if (stub_size == stub_big_size)
10884 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
10885 stub + idx);
10886 else if (h->dynindx & ~0x7fff)
10887 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
10888 stub + idx);
10889 else
10890 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10891 stub + idx);
10892 }
10893
10894 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
10895 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
10896 stub, stub_size);
10897
10898 /* Mark the symbol as undefined. stub_offset != -1 occurs
10899 only for the referenced symbol. */
10900 sym->st_shndx = SHN_UNDEF;
10901
10902 /* The run-time linker uses the st_value field of the symbol
10903 to reset the global offset table entry for this external
10904 to its stub address when unlinking a shared object. */
10905 sym->st_value = (htab->sstubs->output_section->vma
10906 + htab->sstubs->output_offset
10907 + h->plt.plist->stub_offset
10908 + isa_bit);
10909 sym->st_other = other;
10910 }
10911
10912 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10913 refer to the stub, since only the stub uses the standard calling
10914 conventions. */
10915 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10916 {
10917 BFD_ASSERT (hmips->need_fn_stub);
10918 sym->st_value = (hmips->fn_stub->output_section->vma
10919 + hmips->fn_stub->output_offset);
10920 sym->st_size = hmips->fn_stub->size;
10921 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10922 }
10923
10924 BFD_ASSERT (h->dynindx != -1
10925 || h->forced_local);
10926
10927 sgot = htab->root.sgot;
10928 g = htab->got_info;
10929 BFD_ASSERT (g != NULL);
10930
10931 /* Run through the global symbol table, creating GOT entries for all
10932 the symbols that need them. */
10933 if (hmips->global_got_area != GGA_NONE)
10934 {
10935 bfd_vma offset;
10936 bfd_vma value;
10937
10938 value = sym->st_value;
10939 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
10940 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10941 }
10942
10943 if (hmips->global_got_area != GGA_NONE && g->next)
10944 {
10945 struct mips_got_entry e, *p;
10946 bfd_vma entry;
10947 bfd_vma offset;
10948
10949 gg = g;
10950
10951 e.abfd = output_bfd;
10952 e.symndx = -1;
10953 e.d.h = hmips;
10954 e.tls_type = GOT_TLS_NONE;
10955
10956 for (g = g->next; g->next != gg; g = g->next)
10957 {
10958 if (g->got_entries
10959 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10960 &e)))
10961 {
10962 offset = p->gotidx;
10963 BFD_ASSERT (offset > 0 && offset < htab->root.sgot->size);
10964 if (bfd_link_pic (info)
10965 || (elf_hash_table (info)->dynamic_sections_created
10966 && p->d.h != NULL
10967 && p->d.h->root.def_dynamic
10968 && !p->d.h->root.def_regular))
10969 {
10970 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10971 the various compatibility problems, it's easier to mock
10972 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10973 mips_elf_create_dynamic_relocation to calculate the
10974 appropriate addend. */
10975 Elf_Internal_Rela rel[3];
10976
10977 memset (rel, 0, sizeof (rel));
10978 if (ABI_64_P (output_bfd))
10979 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10980 else
10981 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10982 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10983
10984 entry = 0;
10985 if (! (mips_elf_create_dynamic_relocation
10986 (output_bfd, info, rel,
10987 e.d.h, NULL, sym->st_value, &entry, sgot)))
10988 return FALSE;
10989 }
10990 else
10991 entry = sym->st_value;
10992 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
10993 }
10994 }
10995 }
10996
10997 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10998 name = h->root.root.string;
10999 if (h == elf_hash_table (info)->hdynamic
11000 || h == elf_hash_table (info)->hgot)
11001 sym->st_shndx = SHN_ABS;
11002 else if (strcmp (name, "_DYNAMIC_LINK") == 0
11003 || strcmp (name, "_DYNAMIC_LINKING") == 0)
11004 {
11005 sym->st_shndx = SHN_ABS;
11006 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11007 sym->st_value = 1;
11008 }
11009 else if (SGI_COMPAT (output_bfd))
11010 {
11011 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
11012 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
11013 {
11014 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11015 sym->st_other = STO_PROTECTED;
11016 sym->st_value = 0;
11017 sym->st_shndx = SHN_MIPS_DATA;
11018 }
11019 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
11020 {
11021 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11022 sym->st_other = STO_PROTECTED;
11023 sym->st_value = mips_elf_hash_table (info)->procedure_count;
11024 sym->st_shndx = SHN_ABS;
11025 }
11026 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
11027 {
11028 if (h->type == STT_FUNC)
11029 sym->st_shndx = SHN_MIPS_TEXT;
11030 else if (h->type == STT_OBJECT)
11031 sym->st_shndx = SHN_MIPS_DATA;
11032 }
11033 }
11034
11035 /* Emit a copy reloc, if needed. */
11036 if (h->needs_copy)
11037 {
11038 asection *s;
11039 bfd_vma symval;
11040
11041 BFD_ASSERT (h->dynindx != -1);
11042 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11043
11044 s = mips_elf_rel_dyn_section (info, FALSE);
11045 symval = (h->root.u.def.section->output_section->vma
11046 + h->root.u.def.section->output_offset
11047 + h->root.u.def.value);
11048 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
11049 h->dynindx, R_MIPS_COPY, symval);
11050 }
11051
11052 /* Handle the IRIX6-specific symbols. */
11053 if (IRIX_COMPAT (output_bfd) == ict_irix6)
11054 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11055
11056 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11057 to treat compressed symbols like any other. */
11058 if (ELF_ST_IS_MIPS16 (sym->st_other))
11059 {
11060 BFD_ASSERT (sym->st_value & 1);
11061 sym->st_other -= STO_MIPS16;
11062 }
11063 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11064 {
11065 BFD_ASSERT (sym->st_value & 1);
11066 sym->st_other -= STO_MICROMIPS;
11067 }
11068
11069 return TRUE;
11070 }
11071
11072 /* Likewise, for VxWorks. */
11073
11074 bfd_boolean
11075 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11076 struct bfd_link_info *info,
11077 struct elf_link_hash_entry *h,
11078 Elf_Internal_Sym *sym)
11079 {
11080 bfd *dynobj;
11081 asection *sgot;
11082 struct mips_got_info *g;
11083 struct mips_elf_link_hash_table *htab;
11084 struct mips_elf_link_hash_entry *hmips;
11085
11086 htab = mips_elf_hash_table (info);
11087 BFD_ASSERT (htab != NULL);
11088 dynobj = elf_hash_table (info)->dynobj;
11089 hmips = (struct mips_elf_link_hash_entry *) h;
11090
11091 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
11092 {
11093 bfd_byte *loc;
11094 bfd_vma plt_address, got_address, got_offset, branch_offset;
11095 Elf_Internal_Rela rel;
11096 static const bfd_vma *plt_entry;
11097 bfd_vma gotplt_index;
11098 bfd_vma plt_offset;
11099
11100 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11101 gotplt_index = h->plt.plist->gotplt_index;
11102
11103 BFD_ASSERT (h->dynindx != -1);
11104 BFD_ASSERT (htab->root.splt != NULL);
11105 BFD_ASSERT (gotplt_index != MINUS_ONE);
11106 BFD_ASSERT (plt_offset <= htab->root.splt->size);
11107
11108 /* Calculate the address of the .plt entry. */
11109 plt_address = (htab->root.splt->output_section->vma
11110 + htab->root.splt->output_offset
11111 + plt_offset);
11112
11113 /* Calculate the address of the .got.plt entry. */
11114 got_address = (htab->root.sgotplt->output_section->vma
11115 + htab->root.sgotplt->output_offset
11116 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11117
11118 /* Calculate the offset of the .got.plt entry from
11119 _GLOBAL_OFFSET_TABLE_. */
11120 got_offset = mips_elf_gotplt_index (info, h);
11121
11122 /* Calculate the offset for the branch at the start of the PLT
11123 entry. The branch jumps to the beginning of .plt. */
11124 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11125
11126 /* Fill in the initial value of the .got.plt entry. */
11127 bfd_put_32 (output_bfd, plt_address,
11128 (htab->root.sgotplt->contents
11129 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11130
11131 /* Find out where the .plt entry should go. */
11132 loc = htab->root.splt->contents + plt_offset;
11133
11134 if (bfd_link_pic (info))
11135 {
11136 plt_entry = mips_vxworks_shared_plt_entry;
11137 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11138 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11139 }
11140 else
11141 {
11142 bfd_vma got_address_high, got_address_low;
11143
11144 plt_entry = mips_vxworks_exec_plt_entry;
11145 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11146 got_address_low = got_address & 0xffff;
11147
11148 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11149 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11150 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11151 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11152 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11153 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11154 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11155 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11156
11157 loc = (htab->srelplt2->contents
11158 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11159
11160 /* Emit a relocation for the .got.plt entry. */
11161 rel.r_offset = got_address;
11162 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11163 rel.r_addend = plt_offset;
11164 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11165
11166 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11167 loc += sizeof (Elf32_External_Rela);
11168 rel.r_offset = plt_address + 8;
11169 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11170 rel.r_addend = got_offset;
11171 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11172
11173 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11174 loc += sizeof (Elf32_External_Rela);
11175 rel.r_offset += 4;
11176 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11177 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11178 }
11179
11180 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11181 loc = (htab->root.srelplt->contents
11182 + gotplt_index * sizeof (Elf32_External_Rela));
11183 rel.r_offset = got_address;
11184 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11185 rel.r_addend = 0;
11186 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11187
11188 if (!h->def_regular)
11189 sym->st_shndx = SHN_UNDEF;
11190 }
11191
11192 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11193
11194 sgot = htab->root.sgot;
11195 g = htab->got_info;
11196 BFD_ASSERT (g != NULL);
11197
11198 /* See if this symbol has an entry in the GOT. */
11199 if (hmips->global_got_area != GGA_NONE)
11200 {
11201 bfd_vma offset;
11202 Elf_Internal_Rela outrel;
11203 bfd_byte *loc;
11204 asection *s;
11205
11206 /* Install the symbol value in the GOT. */
11207 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11208 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11209
11210 /* Add a dynamic relocation for it. */
11211 s = mips_elf_rel_dyn_section (info, FALSE);
11212 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11213 outrel.r_offset = (sgot->output_section->vma
11214 + sgot->output_offset
11215 + offset);
11216 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11217 outrel.r_addend = 0;
11218 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11219 }
11220
11221 /* Emit a copy reloc, if needed. */
11222 if (h->needs_copy)
11223 {
11224 Elf_Internal_Rela rel;
11225 asection *srel;
11226 bfd_byte *loc;
11227
11228 BFD_ASSERT (h->dynindx != -1);
11229
11230 rel.r_offset = (h->root.u.def.section->output_section->vma
11231 + h->root.u.def.section->output_offset
11232 + h->root.u.def.value);
11233 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11234 rel.r_addend = 0;
11235 if (h->root.u.def.section == htab->root.sdynrelro)
11236 srel = htab->root.sreldynrelro;
11237 else
11238 srel = htab->root.srelbss;
11239 loc = srel->contents + srel->reloc_count * sizeof (Elf32_External_Rela);
11240 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11241 ++srel->reloc_count;
11242 }
11243
11244 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11245 if (ELF_ST_IS_COMPRESSED (sym->st_other))
11246 sym->st_value &= ~1;
11247
11248 return TRUE;
11249 }
11250
11251 /* Write out a plt0 entry to the beginning of .plt. */
11252
11253 static bfd_boolean
11254 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11255 {
11256 bfd_byte *loc;
11257 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11258 static const bfd_vma *plt_entry;
11259 struct mips_elf_link_hash_table *htab;
11260
11261 htab = mips_elf_hash_table (info);
11262 BFD_ASSERT (htab != NULL);
11263
11264 if (ABI_64_P (output_bfd))
11265 plt_entry = mips_n64_exec_plt0_entry;
11266 else if (ABI_N32_P (output_bfd))
11267 plt_entry = mips_n32_exec_plt0_entry;
11268 else if (!htab->plt_header_is_comp)
11269 plt_entry = mips_o32_exec_plt0_entry;
11270 else if (htab->insn32)
11271 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11272 else
11273 plt_entry = micromips_o32_exec_plt0_entry;
11274
11275 /* Calculate the value of .got.plt. */
11276 gotplt_value = (htab->root.sgotplt->output_section->vma
11277 + htab->root.sgotplt->output_offset);
11278 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11279 gotplt_value_low = gotplt_value & 0xffff;
11280
11281 /* The PLT sequence is not safe for N64 if .got.plt's address can
11282 not be loaded in two instructions. */
11283 if (ABI_64_P (output_bfd)
11284 && ((gotplt_value + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
11285 {
11286 _bfd_error_handler
11287 /* xgettext:c-format */
11288 (_("%pB: `%pA' start VMA of %#" PRIx64 " outside the 32-bit range "
11289 "supported; consider using `-Ttext-segment=...'"),
11290 output_bfd,
11291 htab->root.sgotplt->output_section,
11292 (int64_t) gotplt_value);
11293 bfd_set_error (bfd_error_no_error);
11294 return FALSE;
11295 }
11296
11297 /* Install the PLT header. */
11298 loc = htab->root.splt->contents;
11299 if (plt_entry == micromips_o32_exec_plt0_entry)
11300 {
11301 bfd_vma gotpc_offset;
11302 bfd_vma loc_address;
11303 size_t i;
11304
11305 BFD_ASSERT (gotplt_value % 4 == 0);
11306
11307 loc_address = (htab->root.splt->output_section->vma
11308 + htab->root.splt->output_offset);
11309 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11310
11311 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11312 if (gotpc_offset + 0x1000000 >= 0x2000000)
11313 {
11314 _bfd_error_handler
11315 /* xgettext:c-format */
11316 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
11317 "beyond the range of ADDIUPC"),
11318 output_bfd,
11319 htab->root.sgotplt->output_section,
11320 (int64_t) gotpc_offset,
11321 htab->root.splt->output_section);
11322 bfd_set_error (bfd_error_no_error);
11323 return FALSE;
11324 }
11325 bfd_put_16 (output_bfd,
11326 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11327 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11328 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11329 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11330 }
11331 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11332 {
11333 size_t i;
11334
11335 bfd_put_16 (output_bfd, plt_entry[0], loc);
11336 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11337 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11338 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11339 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11340 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11341 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11342 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11343 }
11344 else
11345 {
11346 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11347 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11348 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11349 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11350 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11351 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11352 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11353 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11354 }
11355
11356 return TRUE;
11357 }
11358
11359 /* Install the PLT header for a VxWorks executable and finalize the
11360 contents of .rela.plt.unloaded. */
11361
11362 static void
11363 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11364 {
11365 Elf_Internal_Rela rela;
11366 bfd_byte *loc;
11367 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11368 static const bfd_vma *plt_entry;
11369 struct mips_elf_link_hash_table *htab;
11370
11371 htab = mips_elf_hash_table (info);
11372 BFD_ASSERT (htab != NULL);
11373
11374 plt_entry = mips_vxworks_exec_plt0_entry;
11375
11376 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11377 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11378 + htab->root.hgot->root.u.def.section->output_offset
11379 + htab->root.hgot->root.u.def.value);
11380
11381 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11382 got_value_low = got_value & 0xffff;
11383
11384 /* Calculate the address of the PLT header. */
11385 plt_address = (htab->root.splt->output_section->vma
11386 + htab->root.splt->output_offset);
11387
11388 /* Install the PLT header. */
11389 loc = htab->root.splt->contents;
11390 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11391 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11392 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11393 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11394 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11395 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11396
11397 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11398 loc = htab->srelplt2->contents;
11399 rela.r_offset = plt_address;
11400 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11401 rela.r_addend = 0;
11402 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11403 loc += sizeof (Elf32_External_Rela);
11404
11405 /* Output the relocation for the following addiu of
11406 %lo(_GLOBAL_OFFSET_TABLE_). */
11407 rela.r_offset += 4;
11408 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11409 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11410 loc += sizeof (Elf32_External_Rela);
11411
11412 /* Fix up the remaining relocations. They may have the wrong
11413 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11414 in which symbols were output. */
11415 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11416 {
11417 Elf_Internal_Rela rel;
11418
11419 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11420 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11421 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11422 loc += sizeof (Elf32_External_Rela);
11423
11424 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11425 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11426 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11427 loc += sizeof (Elf32_External_Rela);
11428
11429 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11430 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11431 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11432 loc += sizeof (Elf32_External_Rela);
11433 }
11434 }
11435
11436 /* Install the PLT header for a VxWorks shared library. */
11437
11438 static void
11439 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11440 {
11441 unsigned int i;
11442 struct mips_elf_link_hash_table *htab;
11443
11444 htab = mips_elf_hash_table (info);
11445 BFD_ASSERT (htab != NULL);
11446
11447 /* We just need to copy the entry byte-by-byte. */
11448 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11449 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11450 htab->root.splt->contents + i * 4);
11451 }
11452
11453 /* Finish up the dynamic sections. */
11454
11455 bfd_boolean
11456 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11457 struct bfd_link_info *info)
11458 {
11459 bfd *dynobj;
11460 asection *sdyn;
11461 asection *sgot;
11462 struct mips_got_info *gg, *g;
11463 struct mips_elf_link_hash_table *htab;
11464
11465 htab = mips_elf_hash_table (info);
11466 BFD_ASSERT (htab != NULL);
11467
11468 dynobj = elf_hash_table (info)->dynobj;
11469
11470 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11471
11472 sgot = htab->root.sgot;
11473 gg = htab->got_info;
11474
11475 if (elf_hash_table (info)->dynamic_sections_created)
11476 {
11477 bfd_byte *b;
11478 int dyn_to_skip = 0, dyn_skipped = 0;
11479
11480 BFD_ASSERT (sdyn != NULL);
11481 BFD_ASSERT (gg != NULL);
11482
11483 g = mips_elf_bfd_got (output_bfd, FALSE);
11484 BFD_ASSERT (g != NULL);
11485
11486 for (b = sdyn->contents;
11487 b < sdyn->contents + sdyn->size;
11488 b += MIPS_ELF_DYN_SIZE (dynobj))
11489 {
11490 Elf_Internal_Dyn dyn;
11491 const char *name;
11492 size_t elemsize;
11493 asection *s;
11494 bfd_boolean swap_out_p;
11495
11496 /* Read in the current dynamic entry. */
11497 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11498
11499 /* Assume that we're going to modify it and write it out. */
11500 swap_out_p = TRUE;
11501
11502 switch (dyn.d_tag)
11503 {
11504 case DT_RELENT:
11505 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11506 break;
11507
11508 case DT_RELAENT:
11509 BFD_ASSERT (htab->is_vxworks);
11510 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11511 break;
11512
11513 case DT_STRSZ:
11514 /* Rewrite DT_STRSZ. */
11515 dyn.d_un.d_val =
11516 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11517 break;
11518
11519 case DT_PLTGOT:
11520 s = htab->root.sgot;
11521 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11522 break;
11523
11524 case DT_MIPS_PLTGOT:
11525 s = htab->root.sgotplt;
11526 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11527 break;
11528
11529 case DT_MIPS_RLD_VERSION:
11530 dyn.d_un.d_val = 1; /* XXX */
11531 break;
11532
11533 case DT_MIPS_FLAGS:
11534 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11535 break;
11536
11537 case DT_MIPS_TIME_STAMP:
11538 {
11539 time_t t;
11540 time (&t);
11541 dyn.d_un.d_val = t;
11542 }
11543 break;
11544
11545 case DT_MIPS_ICHECKSUM:
11546 /* XXX FIXME: */
11547 swap_out_p = FALSE;
11548 break;
11549
11550 case DT_MIPS_IVERSION:
11551 /* XXX FIXME: */
11552 swap_out_p = FALSE;
11553 break;
11554
11555 case DT_MIPS_BASE_ADDRESS:
11556 s = output_bfd->sections;
11557 BFD_ASSERT (s != NULL);
11558 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11559 break;
11560
11561 case DT_MIPS_LOCAL_GOTNO:
11562 dyn.d_un.d_val = g->local_gotno;
11563 break;
11564
11565 case DT_MIPS_UNREFEXTNO:
11566 /* The index into the dynamic symbol table which is the
11567 entry of the first external symbol that is not
11568 referenced within the same object. */
11569 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11570 break;
11571
11572 case DT_MIPS_GOTSYM:
11573 if (htab->global_gotsym)
11574 {
11575 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11576 break;
11577 }
11578 /* In case if we don't have global got symbols we default
11579 to setting DT_MIPS_GOTSYM to the same value as
11580 DT_MIPS_SYMTABNO. */
11581 /* Fall through. */
11582
11583 case DT_MIPS_SYMTABNO:
11584 name = ".dynsym";
11585 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11586 s = bfd_get_linker_section (dynobj, name);
11587
11588 if (s != NULL)
11589 dyn.d_un.d_val = s->size / elemsize;
11590 else
11591 dyn.d_un.d_val = 0;
11592 break;
11593
11594 case DT_MIPS_HIPAGENO:
11595 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11596 break;
11597
11598 case DT_MIPS_RLD_MAP:
11599 {
11600 struct elf_link_hash_entry *h;
11601 h = mips_elf_hash_table (info)->rld_symbol;
11602 if (!h)
11603 {
11604 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11605 swap_out_p = FALSE;
11606 break;
11607 }
11608 s = h->root.u.def.section;
11609
11610 /* The MIPS_RLD_MAP tag stores the absolute address of the
11611 debug pointer. */
11612 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11613 + h->root.u.def.value);
11614 }
11615 break;
11616
11617 case DT_MIPS_RLD_MAP_REL:
11618 {
11619 struct elf_link_hash_entry *h;
11620 bfd_vma dt_addr, rld_addr;
11621 h = mips_elf_hash_table (info)->rld_symbol;
11622 if (!h)
11623 {
11624 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11625 swap_out_p = FALSE;
11626 break;
11627 }
11628 s = h->root.u.def.section;
11629
11630 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11631 pointer, relative to the address of the tag. */
11632 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
11633 + (b - sdyn->contents));
11634 rld_addr = (s->output_section->vma + s->output_offset
11635 + h->root.u.def.value);
11636 dyn.d_un.d_ptr = rld_addr - dt_addr;
11637 }
11638 break;
11639
11640 case DT_MIPS_OPTIONS:
11641 s = (bfd_get_section_by_name
11642 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11643 dyn.d_un.d_ptr = s->vma;
11644 break;
11645
11646 case DT_PLTREL:
11647 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11648 if (htab->is_vxworks)
11649 dyn.d_un.d_val = DT_RELA;
11650 else
11651 dyn.d_un.d_val = DT_REL;
11652 break;
11653
11654 case DT_PLTRELSZ:
11655 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11656 dyn.d_un.d_val = htab->root.srelplt->size;
11657 break;
11658
11659 case DT_JMPREL:
11660 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11661 dyn.d_un.d_ptr = (htab->root.srelplt->output_section->vma
11662 + htab->root.srelplt->output_offset);
11663 break;
11664
11665 case DT_TEXTREL:
11666 /* If we didn't need any text relocations after all, delete
11667 the dynamic tag. */
11668 if (!(info->flags & DF_TEXTREL))
11669 {
11670 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11671 swap_out_p = FALSE;
11672 }
11673 break;
11674
11675 case DT_FLAGS:
11676 /* If we didn't need any text relocations after all, clear
11677 DF_TEXTREL from DT_FLAGS. */
11678 if (!(info->flags & DF_TEXTREL))
11679 dyn.d_un.d_val &= ~DF_TEXTREL;
11680 else
11681 swap_out_p = FALSE;
11682 break;
11683
11684 default:
11685 swap_out_p = FALSE;
11686 if (htab->is_vxworks
11687 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11688 swap_out_p = TRUE;
11689 break;
11690 }
11691
11692 if (swap_out_p || dyn_skipped)
11693 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11694 (dynobj, &dyn, b - dyn_skipped);
11695
11696 if (dyn_to_skip)
11697 {
11698 dyn_skipped += dyn_to_skip;
11699 dyn_to_skip = 0;
11700 }
11701 }
11702
11703 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11704 if (dyn_skipped > 0)
11705 memset (b - dyn_skipped, 0, dyn_skipped);
11706 }
11707
11708 if (sgot != NULL && sgot->size > 0
11709 && !bfd_is_abs_section (sgot->output_section))
11710 {
11711 if (htab->is_vxworks)
11712 {
11713 /* The first entry of the global offset table points to the
11714 ".dynamic" section. The second is initialized by the
11715 loader and contains the shared library identifier.
11716 The third is also initialized by the loader and points
11717 to the lazy resolution stub. */
11718 MIPS_ELF_PUT_WORD (output_bfd,
11719 sdyn->output_offset + sdyn->output_section->vma,
11720 sgot->contents);
11721 MIPS_ELF_PUT_WORD (output_bfd, 0,
11722 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11723 MIPS_ELF_PUT_WORD (output_bfd, 0,
11724 sgot->contents
11725 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11726 }
11727 else
11728 {
11729 /* The first entry of the global offset table will be filled at
11730 runtime. The second entry will be used by some runtime loaders.
11731 This isn't the case of IRIX rld. */
11732 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
11733 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11734 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11735 }
11736
11737 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11738 = MIPS_ELF_GOT_SIZE (output_bfd);
11739 }
11740
11741 /* Generate dynamic relocations for the non-primary gots. */
11742 if (gg != NULL && gg->next)
11743 {
11744 Elf_Internal_Rela rel[3];
11745 bfd_vma addend = 0;
11746
11747 memset (rel, 0, sizeof (rel));
11748 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11749
11750 for (g = gg->next; g->next != gg; g = g->next)
11751 {
11752 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
11753 + g->next->tls_gotno;
11754
11755 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
11756 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11757 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11758 sgot->contents
11759 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11760
11761 if (! bfd_link_pic (info))
11762 continue;
11763
11764 for (; got_index < g->local_gotno; got_index++)
11765 {
11766 if (got_index >= g->assigned_low_gotno
11767 && got_index <= g->assigned_high_gotno)
11768 continue;
11769
11770 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
11771 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
11772 if (!(mips_elf_create_dynamic_relocation
11773 (output_bfd, info, rel, NULL,
11774 bfd_abs_section_ptr,
11775 0, &addend, sgot)))
11776 return FALSE;
11777 BFD_ASSERT (addend == 0);
11778 }
11779 }
11780 }
11781
11782 /* The generation of dynamic relocations for the non-primary gots
11783 adds more dynamic relocations. We cannot count them until
11784 here. */
11785
11786 if (elf_hash_table (info)->dynamic_sections_created)
11787 {
11788 bfd_byte *b;
11789 bfd_boolean swap_out_p;
11790
11791 BFD_ASSERT (sdyn != NULL);
11792
11793 for (b = sdyn->contents;
11794 b < sdyn->contents + sdyn->size;
11795 b += MIPS_ELF_DYN_SIZE (dynobj))
11796 {
11797 Elf_Internal_Dyn dyn;
11798 asection *s;
11799
11800 /* Read in the current dynamic entry. */
11801 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11802
11803 /* Assume that we're going to modify it and write it out. */
11804 swap_out_p = TRUE;
11805
11806 switch (dyn.d_tag)
11807 {
11808 case DT_RELSZ:
11809 /* Reduce DT_RELSZ to account for any relocations we
11810 decided not to make. This is for the n64 irix rld,
11811 which doesn't seem to apply any relocations if there
11812 are trailing null entries. */
11813 s = mips_elf_rel_dyn_section (info, FALSE);
11814 dyn.d_un.d_val = (s->reloc_count
11815 * (ABI_64_P (output_bfd)
11816 ? sizeof (Elf64_Mips_External_Rel)
11817 : sizeof (Elf32_External_Rel)));
11818 /* Adjust the section size too. Tools like the prelinker
11819 can reasonably expect the values to the same. */
11820 BFD_ASSERT (!bfd_is_abs_section (s->output_section));
11821 elf_section_data (s->output_section)->this_hdr.sh_size
11822 = dyn.d_un.d_val;
11823 break;
11824
11825 default:
11826 swap_out_p = FALSE;
11827 break;
11828 }
11829
11830 if (swap_out_p)
11831 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11832 (dynobj, &dyn, b);
11833 }
11834 }
11835
11836 {
11837 asection *s;
11838 Elf32_compact_rel cpt;
11839
11840 if (SGI_COMPAT (output_bfd))
11841 {
11842 /* Write .compact_rel section out. */
11843 s = bfd_get_linker_section (dynobj, ".compact_rel");
11844 if (s != NULL)
11845 {
11846 cpt.id1 = 1;
11847 cpt.num = s->reloc_count;
11848 cpt.id2 = 2;
11849 cpt.offset = (s->output_section->filepos
11850 + sizeof (Elf32_External_compact_rel));
11851 cpt.reserved0 = 0;
11852 cpt.reserved1 = 0;
11853 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
11854 ((Elf32_External_compact_rel *)
11855 s->contents));
11856
11857 /* Clean up a dummy stub function entry in .text. */
11858 if (htab->sstubs != NULL)
11859 {
11860 file_ptr dummy_offset;
11861
11862 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
11863 dummy_offset = htab->sstubs->size - htab->function_stub_size;
11864 memset (htab->sstubs->contents + dummy_offset, 0,
11865 htab->function_stub_size);
11866 }
11867 }
11868 }
11869
11870 /* The psABI says that the dynamic relocations must be sorted in
11871 increasing order of r_symndx. The VxWorks EABI doesn't require
11872 this, and because the code below handles REL rather than RELA
11873 relocations, using it for VxWorks would be outright harmful. */
11874 if (!htab->is_vxworks)
11875 {
11876 s = mips_elf_rel_dyn_section (info, FALSE);
11877 if (s != NULL
11878 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
11879 {
11880 reldyn_sorting_bfd = output_bfd;
11881
11882 if (ABI_64_P (output_bfd))
11883 qsort ((Elf64_External_Rel *) s->contents + 1,
11884 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
11885 sort_dynamic_relocs_64);
11886 else
11887 qsort ((Elf32_External_Rel *) s->contents + 1,
11888 s->reloc_count - 1, sizeof (Elf32_External_Rel),
11889 sort_dynamic_relocs);
11890 }
11891 }
11892 }
11893
11894 if (htab->root.splt && htab->root.splt->size > 0)
11895 {
11896 if (htab->is_vxworks)
11897 {
11898 if (bfd_link_pic (info))
11899 mips_vxworks_finish_shared_plt (output_bfd, info);
11900 else
11901 mips_vxworks_finish_exec_plt (output_bfd, info);
11902 }
11903 else
11904 {
11905 BFD_ASSERT (!bfd_link_pic (info));
11906 if (!mips_finish_exec_plt (output_bfd, info))
11907 return FALSE;
11908 }
11909 }
11910 return TRUE;
11911 }
11912
11913
11914 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
11915
11916 static void
11917 mips_set_isa_flags (bfd *abfd)
11918 {
11919 flagword val;
11920
11921 switch (bfd_get_mach (abfd))
11922 {
11923 default:
11924 case bfd_mach_mips3000:
11925 val = E_MIPS_ARCH_1;
11926 break;
11927
11928 case bfd_mach_mips3900:
11929 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
11930 break;
11931
11932 case bfd_mach_mips6000:
11933 val = E_MIPS_ARCH_2;
11934 break;
11935
11936 case bfd_mach_mips4010:
11937 val = E_MIPS_ARCH_2 | E_MIPS_MACH_4010;
11938 break;
11939
11940 case bfd_mach_mips4000:
11941 case bfd_mach_mips4300:
11942 case bfd_mach_mips4400:
11943 case bfd_mach_mips4600:
11944 val = E_MIPS_ARCH_3;
11945 break;
11946
11947 case bfd_mach_mips4100:
11948 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
11949 break;
11950
11951 case bfd_mach_mips4111:
11952 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
11953 break;
11954
11955 case bfd_mach_mips4120:
11956 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
11957 break;
11958
11959 case bfd_mach_mips4650:
11960 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
11961 break;
11962
11963 case bfd_mach_mips5400:
11964 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
11965 break;
11966
11967 case bfd_mach_mips5500:
11968 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
11969 break;
11970
11971 case bfd_mach_mips5900:
11972 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
11973 break;
11974
11975 case bfd_mach_mips9000:
11976 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
11977 break;
11978
11979 case bfd_mach_mips5000:
11980 case bfd_mach_mips7000:
11981 case bfd_mach_mips8000:
11982 case bfd_mach_mips10000:
11983 case bfd_mach_mips12000:
11984 case bfd_mach_mips14000:
11985 case bfd_mach_mips16000:
11986 val = E_MIPS_ARCH_4;
11987 break;
11988
11989 case bfd_mach_mips5:
11990 val = E_MIPS_ARCH_5;
11991 break;
11992
11993 case bfd_mach_mips_loongson_2e:
11994 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
11995 break;
11996
11997 case bfd_mach_mips_loongson_2f:
11998 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
11999 break;
12000
12001 case bfd_mach_mips_sb1:
12002 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
12003 break;
12004
12005 case bfd_mach_mips_gs464:
12006 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS464;
12007 break;
12008
12009 case bfd_mach_mips_gs464e:
12010 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS464E;
12011 break;
12012
12013 case bfd_mach_mips_gs264e:
12014 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS264E;
12015 break;
12016
12017 case bfd_mach_mips_octeon:
12018 case bfd_mach_mips_octeonp:
12019 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
12020 break;
12021
12022 case bfd_mach_mips_octeon3:
12023 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
12024 break;
12025
12026 case bfd_mach_mips_xlr:
12027 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
12028 break;
12029
12030 case bfd_mach_mips_octeon2:
12031 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
12032 break;
12033
12034 case bfd_mach_mipsisa32:
12035 val = E_MIPS_ARCH_32;
12036 break;
12037
12038 case bfd_mach_mipsisa64:
12039 val = E_MIPS_ARCH_64;
12040 break;
12041
12042 case bfd_mach_mipsisa32r2:
12043 case bfd_mach_mipsisa32r3:
12044 case bfd_mach_mipsisa32r5:
12045 val = E_MIPS_ARCH_32R2;
12046 break;
12047
12048 case bfd_mach_mips_interaptiv_mr2:
12049 val = E_MIPS_ARCH_32R2 | E_MIPS_MACH_IAMR2;
12050 break;
12051
12052 case bfd_mach_mipsisa64r2:
12053 case bfd_mach_mipsisa64r3:
12054 case bfd_mach_mipsisa64r5:
12055 val = E_MIPS_ARCH_64R2;
12056 break;
12057
12058 case bfd_mach_mipsisa32r6:
12059 val = E_MIPS_ARCH_32R6;
12060 break;
12061
12062 case bfd_mach_mipsisa64r6:
12063 val = E_MIPS_ARCH_64R6;
12064 break;
12065 }
12066 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12067 elf_elfheader (abfd)->e_flags |= val;
12068
12069 }
12070
12071
12072 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12073 Don't do so for code sections. We want to keep ordering of HI16/LO16
12074 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12075 relocs to be sorted. */
12076
12077 bfd_boolean
12078 _bfd_mips_elf_sort_relocs_p (asection *sec)
12079 {
12080 return (sec->flags & SEC_CODE) == 0;
12081 }
12082
12083
12084 /* The final processing done just before writing out a MIPS ELF object
12085 file. This gets the MIPS architecture right based on the machine
12086 number. This is used by both the 32-bit and the 64-bit ABI. */
12087
12088 void
12089 _bfd_mips_elf_final_write_processing (bfd *abfd,
12090 bfd_boolean linker ATTRIBUTE_UNUSED)
12091 {
12092 unsigned int i;
12093 Elf_Internal_Shdr **hdrpp;
12094 const char *name;
12095 asection *sec;
12096
12097 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12098 is nonzero. This is for compatibility with old objects, which used
12099 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12100 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12101 mips_set_isa_flags (abfd);
12102
12103 /* Set the sh_info field for .gptab sections and other appropriate
12104 info for each special section. */
12105 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12106 i < elf_numsections (abfd);
12107 i++, hdrpp++)
12108 {
12109 switch ((*hdrpp)->sh_type)
12110 {
12111 case SHT_MIPS_MSYM:
12112 case SHT_MIPS_LIBLIST:
12113 sec = bfd_get_section_by_name (abfd, ".dynstr");
12114 if (sec != NULL)
12115 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12116 break;
12117
12118 case SHT_MIPS_GPTAB:
12119 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12120 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12121 BFD_ASSERT (name != NULL
12122 && CONST_STRNEQ (name, ".gptab."));
12123 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12124 BFD_ASSERT (sec != NULL);
12125 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12126 break;
12127
12128 case SHT_MIPS_CONTENT:
12129 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12130 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12131 BFD_ASSERT (name != NULL
12132 && CONST_STRNEQ (name, ".MIPS.content"));
12133 sec = bfd_get_section_by_name (abfd,
12134 name + sizeof ".MIPS.content" - 1);
12135 BFD_ASSERT (sec != NULL);
12136 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12137 break;
12138
12139 case SHT_MIPS_SYMBOL_LIB:
12140 sec = bfd_get_section_by_name (abfd, ".dynsym");
12141 if (sec != NULL)
12142 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12143 sec = bfd_get_section_by_name (abfd, ".liblist");
12144 if (sec != NULL)
12145 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12146 break;
12147
12148 case SHT_MIPS_EVENTS:
12149 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12150 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12151 BFD_ASSERT (name != NULL);
12152 if (CONST_STRNEQ (name, ".MIPS.events"))
12153 sec = bfd_get_section_by_name (abfd,
12154 name + sizeof ".MIPS.events" - 1);
12155 else
12156 {
12157 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
12158 sec = bfd_get_section_by_name (abfd,
12159 (name
12160 + sizeof ".MIPS.post_rel" - 1));
12161 }
12162 BFD_ASSERT (sec != NULL);
12163 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12164 break;
12165
12166 }
12167 }
12168 }
12169 \f
12170 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12171 segments. */
12172
12173 int
12174 _bfd_mips_elf_additional_program_headers (bfd *abfd,
12175 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12176 {
12177 asection *s;
12178 int ret = 0;
12179
12180 /* See if we need a PT_MIPS_REGINFO segment. */
12181 s = bfd_get_section_by_name (abfd, ".reginfo");
12182 if (s && (s->flags & SEC_LOAD))
12183 ++ret;
12184
12185 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12186 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12187 ++ret;
12188
12189 /* See if we need a PT_MIPS_OPTIONS segment. */
12190 if (IRIX_COMPAT (abfd) == ict_irix6
12191 && bfd_get_section_by_name (abfd,
12192 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12193 ++ret;
12194
12195 /* See if we need a PT_MIPS_RTPROC segment. */
12196 if (IRIX_COMPAT (abfd) == ict_irix5
12197 && bfd_get_section_by_name (abfd, ".dynamic")
12198 && bfd_get_section_by_name (abfd, ".mdebug"))
12199 ++ret;
12200
12201 /* Allocate a PT_NULL header in dynamic objects. See
12202 _bfd_mips_elf_modify_segment_map for details. */
12203 if (!SGI_COMPAT (abfd)
12204 && bfd_get_section_by_name (abfd, ".dynamic"))
12205 ++ret;
12206
12207 return ret;
12208 }
12209
12210 /* Modify the segment map for an IRIX5 executable. */
12211
12212 bfd_boolean
12213 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12214 struct bfd_link_info *info)
12215 {
12216 asection *s;
12217 struct elf_segment_map *m, **pm;
12218 bfd_size_type amt;
12219
12220 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12221 segment. */
12222 s = bfd_get_section_by_name (abfd, ".reginfo");
12223 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12224 {
12225 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12226 if (m->p_type == PT_MIPS_REGINFO)
12227 break;
12228 if (m == NULL)
12229 {
12230 amt = sizeof *m;
12231 m = bfd_zalloc (abfd, amt);
12232 if (m == NULL)
12233 return FALSE;
12234
12235 m->p_type = PT_MIPS_REGINFO;
12236 m->count = 1;
12237 m->sections[0] = s;
12238
12239 /* We want to put it after the PHDR and INTERP segments. */
12240 pm = &elf_seg_map (abfd);
12241 while (*pm != NULL
12242 && ((*pm)->p_type == PT_PHDR
12243 || (*pm)->p_type == PT_INTERP))
12244 pm = &(*pm)->next;
12245
12246 m->next = *pm;
12247 *pm = m;
12248 }
12249 }
12250
12251 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12252 segment. */
12253 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12254 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12255 {
12256 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12257 if (m->p_type == PT_MIPS_ABIFLAGS)
12258 break;
12259 if (m == NULL)
12260 {
12261 amt = sizeof *m;
12262 m = bfd_zalloc (abfd, amt);
12263 if (m == NULL)
12264 return FALSE;
12265
12266 m->p_type = PT_MIPS_ABIFLAGS;
12267 m->count = 1;
12268 m->sections[0] = s;
12269
12270 /* We want to put it after the PHDR and INTERP segments. */
12271 pm = &elf_seg_map (abfd);
12272 while (*pm != NULL
12273 && ((*pm)->p_type == PT_PHDR
12274 || (*pm)->p_type == PT_INTERP))
12275 pm = &(*pm)->next;
12276
12277 m->next = *pm;
12278 *pm = m;
12279 }
12280 }
12281
12282 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12283 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12284 PT_MIPS_OPTIONS segment immediately following the program header
12285 table. */
12286 if (NEWABI_P (abfd)
12287 /* On non-IRIX6 new abi, we'll have already created a segment
12288 for this section, so don't create another. I'm not sure this
12289 is not also the case for IRIX 6, but I can't test it right
12290 now. */
12291 && IRIX_COMPAT (abfd) == ict_irix6)
12292 {
12293 for (s = abfd->sections; s; s = s->next)
12294 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12295 break;
12296
12297 if (s)
12298 {
12299 struct elf_segment_map *options_segment;
12300
12301 pm = &elf_seg_map (abfd);
12302 while (*pm != NULL
12303 && ((*pm)->p_type == PT_PHDR
12304 || (*pm)->p_type == PT_INTERP))
12305 pm = &(*pm)->next;
12306
12307 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12308 {
12309 amt = sizeof (struct elf_segment_map);
12310 options_segment = bfd_zalloc (abfd, amt);
12311 options_segment->next = *pm;
12312 options_segment->p_type = PT_MIPS_OPTIONS;
12313 options_segment->p_flags = PF_R;
12314 options_segment->p_flags_valid = TRUE;
12315 options_segment->count = 1;
12316 options_segment->sections[0] = s;
12317 *pm = options_segment;
12318 }
12319 }
12320 }
12321 else
12322 {
12323 if (IRIX_COMPAT (abfd) == ict_irix5)
12324 {
12325 /* If there are .dynamic and .mdebug sections, we make a room
12326 for the RTPROC header. FIXME: Rewrite without section names. */
12327 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12328 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12329 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12330 {
12331 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12332 if (m->p_type == PT_MIPS_RTPROC)
12333 break;
12334 if (m == NULL)
12335 {
12336 amt = sizeof *m;
12337 m = bfd_zalloc (abfd, amt);
12338 if (m == NULL)
12339 return FALSE;
12340
12341 m->p_type = PT_MIPS_RTPROC;
12342
12343 s = bfd_get_section_by_name (abfd, ".rtproc");
12344 if (s == NULL)
12345 {
12346 m->count = 0;
12347 m->p_flags = 0;
12348 m->p_flags_valid = 1;
12349 }
12350 else
12351 {
12352 m->count = 1;
12353 m->sections[0] = s;
12354 }
12355
12356 /* We want to put it after the DYNAMIC segment. */
12357 pm = &elf_seg_map (abfd);
12358 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12359 pm = &(*pm)->next;
12360 if (*pm != NULL)
12361 pm = &(*pm)->next;
12362
12363 m->next = *pm;
12364 *pm = m;
12365 }
12366 }
12367 }
12368 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12369 .dynstr, .dynsym, and .hash sections, and everything in
12370 between. */
12371 for (pm = &elf_seg_map (abfd); *pm != NULL;
12372 pm = &(*pm)->next)
12373 if ((*pm)->p_type == PT_DYNAMIC)
12374 break;
12375 m = *pm;
12376 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12377 glibc's dynamic linker has traditionally derived the number of
12378 tags from the p_filesz field, and sometimes allocates stack
12379 arrays of that size. An overly-big PT_DYNAMIC segment can
12380 be actively harmful in such cases. Making PT_DYNAMIC contain
12381 other sections can also make life hard for the prelinker,
12382 which might move one of the other sections to a different
12383 PT_LOAD segment. */
12384 if (SGI_COMPAT (abfd)
12385 && m != NULL
12386 && m->count == 1
12387 && strcmp (m->sections[0]->name, ".dynamic") == 0)
12388 {
12389 static const char *sec_names[] =
12390 {
12391 ".dynamic", ".dynstr", ".dynsym", ".hash"
12392 };
12393 bfd_vma low, high;
12394 unsigned int i, c;
12395 struct elf_segment_map *n;
12396
12397 low = ~(bfd_vma) 0;
12398 high = 0;
12399 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12400 {
12401 s = bfd_get_section_by_name (abfd, sec_names[i]);
12402 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12403 {
12404 bfd_size_type sz;
12405
12406 if (low > s->vma)
12407 low = s->vma;
12408 sz = s->size;
12409 if (high < s->vma + sz)
12410 high = s->vma + sz;
12411 }
12412 }
12413
12414 c = 0;
12415 for (s = abfd->sections; s != NULL; s = s->next)
12416 if ((s->flags & SEC_LOAD) != 0
12417 && s->vma >= low
12418 && s->vma + s->size <= high)
12419 ++c;
12420
12421 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
12422 n = bfd_zalloc (abfd, amt);
12423 if (n == NULL)
12424 return FALSE;
12425 *n = *m;
12426 n->count = c;
12427
12428 i = 0;
12429 for (s = abfd->sections; s != NULL; s = s->next)
12430 {
12431 if ((s->flags & SEC_LOAD) != 0
12432 && s->vma >= low
12433 && s->vma + s->size <= high)
12434 {
12435 n->sections[i] = s;
12436 ++i;
12437 }
12438 }
12439
12440 *pm = n;
12441 }
12442 }
12443
12444 /* Allocate a spare program header in dynamic objects so that tools
12445 like the prelinker can add an extra PT_LOAD entry.
12446
12447 If the prelinker needs to make room for a new PT_LOAD entry, its
12448 standard procedure is to move the first (read-only) sections into
12449 the new (writable) segment. However, the MIPS ABI requires
12450 .dynamic to be in a read-only segment, and the section will often
12451 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12452
12453 Although the prelinker could in principle move .dynamic to a
12454 writable segment, it seems better to allocate a spare program
12455 header instead, and avoid the need to move any sections.
12456 There is a long tradition of allocating spare dynamic tags,
12457 so allocating a spare program header seems like a natural
12458 extension.
12459
12460 If INFO is NULL, we may be copying an already prelinked binary
12461 with objcopy or strip, so do not add this header. */
12462 if (info != NULL
12463 && !SGI_COMPAT (abfd)
12464 && bfd_get_section_by_name (abfd, ".dynamic"))
12465 {
12466 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12467 if ((*pm)->p_type == PT_NULL)
12468 break;
12469 if (*pm == NULL)
12470 {
12471 m = bfd_zalloc (abfd, sizeof (*m));
12472 if (m == NULL)
12473 return FALSE;
12474
12475 m->p_type = PT_NULL;
12476 *pm = m;
12477 }
12478 }
12479
12480 return TRUE;
12481 }
12482 \f
12483 /* Return the section that should be marked against GC for a given
12484 relocation. */
12485
12486 asection *
12487 _bfd_mips_elf_gc_mark_hook (asection *sec,
12488 struct bfd_link_info *info,
12489 Elf_Internal_Rela *rel,
12490 struct elf_link_hash_entry *h,
12491 Elf_Internal_Sym *sym)
12492 {
12493 /* ??? Do mips16 stub sections need to be handled special? */
12494
12495 if (h != NULL)
12496 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12497 {
12498 case R_MIPS_GNU_VTINHERIT:
12499 case R_MIPS_GNU_VTENTRY:
12500 return NULL;
12501 }
12502
12503 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12504 }
12505
12506 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12507
12508 bfd_boolean
12509 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12510 elf_gc_mark_hook_fn gc_mark_hook)
12511 {
12512 bfd *sub;
12513
12514 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12515
12516 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12517 {
12518 asection *o;
12519
12520 if (! is_mips_elf (sub))
12521 continue;
12522
12523 for (o = sub->sections; o != NULL; o = o->next)
12524 if (!o->gc_mark
12525 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12526 (bfd_get_section_name (sub, o)))
12527 {
12528 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12529 return FALSE;
12530 }
12531 }
12532
12533 return TRUE;
12534 }
12535 \f
12536 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12537 hiding the old indirect symbol. Process additional relocation
12538 information. Also called for weakdefs, in which case we just let
12539 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12540
12541 void
12542 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12543 struct elf_link_hash_entry *dir,
12544 struct elf_link_hash_entry *ind)
12545 {
12546 struct mips_elf_link_hash_entry *dirmips, *indmips;
12547
12548 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12549
12550 dirmips = (struct mips_elf_link_hash_entry *) dir;
12551 indmips = (struct mips_elf_link_hash_entry *) ind;
12552 /* Any absolute non-dynamic relocations against an indirect or weak
12553 definition will be against the target symbol. */
12554 if (indmips->has_static_relocs)
12555 dirmips->has_static_relocs = TRUE;
12556
12557 if (ind->root.type != bfd_link_hash_indirect)
12558 return;
12559
12560 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12561 if (indmips->readonly_reloc)
12562 dirmips->readonly_reloc = TRUE;
12563 if (indmips->no_fn_stub)
12564 dirmips->no_fn_stub = TRUE;
12565 if (indmips->fn_stub)
12566 {
12567 dirmips->fn_stub = indmips->fn_stub;
12568 indmips->fn_stub = NULL;
12569 }
12570 if (indmips->need_fn_stub)
12571 {
12572 dirmips->need_fn_stub = TRUE;
12573 indmips->need_fn_stub = FALSE;
12574 }
12575 if (indmips->call_stub)
12576 {
12577 dirmips->call_stub = indmips->call_stub;
12578 indmips->call_stub = NULL;
12579 }
12580 if (indmips->call_fp_stub)
12581 {
12582 dirmips->call_fp_stub = indmips->call_fp_stub;
12583 indmips->call_fp_stub = NULL;
12584 }
12585 if (indmips->global_got_area < dirmips->global_got_area)
12586 dirmips->global_got_area = indmips->global_got_area;
12587 if (indmips->global_got_area < GGA_NONE)
12588 indmips->global_got_area = GGA_NONE;
12589 if (indmips->has_nonpic_branches)
12590 dirmips->has_nonpic_branches = TRUE;
12591 }
12592 \f
12593 #define PDR_SIZE 32
12594
12595 bfd_boolean
12596 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12597 struct bfd_link_info *info)
12598 {
12599 asection *o;
12600 bfd_boolean ret = FALSE;
12601 unsigned char *tdata;
12602 size_t i, skip;
12603
12604 o = bfd_get_section_by_name (abfd, ".pdr");
12605 if (! o)
12606 return FALSE;
12607 if (o->size == 0)
12608 return FALSE;
12609 if (o->size % PDR_SIZE != 0)
12610 return FALSE;
12611 if (o->output_section != NULL
12612 && bfd_is_abs_section (o->output_section))
12613 return FALSE;
12614
12615 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12616 if (! tdata)
12617 return FALSE;
12618
12619 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12620 info->keep_memory);
12621 if (!cookie->rels)
12622 {
12623 free (tdata);
12624 return FALSE;
12625 }
12626
12627 cookie->rel = cookie->rels;
12628 cookie->relend = cookie->rels + o->reloc_count;
12629
12630 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12631 {
12632 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12633 {
12634 tdata[i] = 1;
12635 skip ++;
12636 }
12637 }
12638
12639 if (skip != 0)
12640 {
12641 mips_elf_section_data (o)->u.tdata = tdata;
12642 if (o->rawsize == 0)
12643 o->rawsize = o->size;
12644 o->size -= skip * PDR_SIZE;
12645 ret = TRUE;
12646 }
12647 else
12648 free (tdata);
12649
12650 if (! info->keep_memory)
12651 free (cookie->rels);
12652
12653 return ret;
12654 }
12655
12656 bfd_boolean
12657 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
12658 {
12659 if (strcmp (sec->name, ".pdr") == 0)
12660 return TRUE;
12661 return FALSE;
12662 }
12663
12664 bfd_boolean
12665 _bfd_mips_elf_write_section (bfd *output_bfd,
12666 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12667 asection *sec, bfd_byte *contents)
12668 {
12669 bfd_byte *to, *from, *end;
12670 int i;
12671
12672 if (strcmp (sec->name, ".pdr") != 0)
12673 return FALSE;
12674
12675 if (mips_elf_section_data (sec)->u.tdata == NULL)
12676 return FALSE;
12677
12678 to = contents;
12679 end = contents + sec->size;
12680 for (from = contents, i = 0;
12681 from < end;
12682 from += PDR_SIZE, i++)
12683 {
12684 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
12685 continue;
12686 if (to != from)
12687 memcpy (to, from, PDR_SIZE);
12688 to += PDR_SIZE;
12689 }
12690 bfd_set_section_contents (output_bfd, sec->output_section, contents,
12691 sec->output_offset, sec->size);
12692 return TRUE;
12693 }
12694 \f
12695 /* microMIPS code retains local labels for linker relaxation. Omit them
12696 from output by default for clarity. */
12697
12698 bfd_boolean
12699 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12700 {
12701 return _bfd_elf_is_local_label_name (abfd, sym->name);
12702 }
12703
12704 /* MIPS ELF uses a special find_nearest_line routine in order the
12705 handle the ECOFF debugging information. */
12706
12707 struct mips_elf_find_line
12708 {
12709 struct ecoff_debug_info d;
12710 struct ecoff_find_line i;
12711 };
12712
12713 bfd_boolean
12714 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
12715 asection *section, bfd_vma offset,
12716 const char **filename_ptr,
12717 const char **functionname_ptr,
12718 unsigned int *line_ptr,
12719 unsigned int *discriminator_ptr)
12720 {
12721 asection *msec;
12722
12723 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
12724 filename_ptr, functionname_ptr,
12725 line_ptr, discriminator_ptr,
12726 dwarf_debug_sections,
12727 ABI_64_P (abfd) ? 8 : 0,
12728 &elf_tdata (abfd)->dwarf2_find_line_info)
12729 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
12730 filename_ptr, functionname_ptr,
12731 line_ptr))
12732 {
12733 /* PR 22789: If the function name or filename was not found through
12734 the debug information, then try an ordinary lookup instead. */
12735 if ((functionname_ptr != NULL && *functionname_ptr == NULL)
12736 || (filename_ptr != NULL && *filename_ptr == NULL))
12737 {
12738 /* Do not override already discovered names. */
12739 if (functionname_ptr != NULL && *functionname_ptr != NULL)
12740 functionname_ptr = NULL;
12741
12742 if (filename_ptr != NULL && *filename_ptr != NULL)
12743 filename_ptr = NULL;
12744
12745 _bfd_elf_find_function (abfd, symbols, section, offset,
12746 filename_ptr, functionname_ptr);
12747 }
12748
12749 return TRUE;
12750 }
12751
12752 msec = bfd_get_section_by_name (abfd, ".mdebug");
12753 if (msec != NULL)
12754 {
12755 flagword origflags;
12756 struct mips_elf_find_line *fi;
12757 const struct ecoff_debug_swap * const swap =
12758 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12759
12760 /* If we are called during a link, mips_elf_final_link may have
12761 cleared the SEC_HAS_CONTENTS field. We force it back on here
12762 if appropriate (which it normally will be). */
12763 origflags = msec->flags;
12764 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12765 msec->flags |= SEC_HAS_CONTENTS;
12766
12767 fi = mips_elf_tdata (abfd)->find_line_info;
12768 if (fi == NULL)
12769 {
12770 bfd_size_type external_fdr_size;
12771 char *fraw_src;
12772 char *fraw_end;
12773 struct fdr *fdr_ptr;
12774 bfd_size_type amt = sizeof (struct mips_elf_find_line);
12775
12776 fi = bfd_zalloc (abfd, amt);
12777 if (fi == NULL)
12778 {
12779 msec->flags = origflags;
12780 return FALSE;
12781 }
12782
12783 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12784 {
12785 msec->flags = origflags;
12786 return FALSE;
12787 }
12788
12789 /* Swap in the FDR information. */
12790 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
12791 fi->d.fdr = bfd_alloc (abfd, amt);
12792 if (fi->d.fdr == NULL)
12793 {
12794 msec->flags = origflags;
12795 return FALSE;
12796 }
12797 external_fdr_size = swap->external_fdr_size;
12798 fdr_ptr = fi->d.fdr;
12799 fraw_src = (char *) fi->d.external_fdr;
12800 fraw_end = (fraw_src
12801 + fi->d.symbolic_header.ifdMax * external_fdr_size);
12802 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
12803 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
12804
12805 mips_elf_tdata (abfd)->find_line_info = fi;
12806
12807 /* Note that we don't bother to ever free this information.
12808 find_nearest_line is either called all the time, as in
12809 objdump -l, so the information should be saved, or it is
12810 rarely called, as in ld error messages, so the memory
12811 wasted is unimportant. Still, it would probably be a
12812 good idea for free_cached_info to throw it away. */
12813 }
12814
12815 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
12816 &fi->i, filename_ptr, functionname_ptr,
12817 line_ptr))
12818 {
12819 msec->flags = origflags;
12820 return TRUE;
12821 }
12822
12823 msec->flags = origflags;
12824 }
12825
12826 /* Fall back on the generic ELF find_nearest_line routine. */
12827
12828 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
12829 filename_ptr, functionname_ptr,
12830 line_ptr, discriminator_ptr);
12831 }
12832
12833 bfd_boolean
12834 _bfd_mips_elf_find_inliner_info (bfd *abfd,
12835 const char **filename_ptr,
12836 const char **functionname_ptr,
12837 unsigned int *line_ptr)
12838 {
12839 bfd_boolean found;
12840 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12841 functionname_ptr, line_ptr,
12842 & elf_tdata (abfd)->dwarf2_find_line_info);
12843 return found;
12844 }
12845
12846 \f
12847 /* When are writing out the .options or .MIPS.options section,
12848 remember the bytes we are writing out, so that we can install the
12849 GP value in the section_processing routine. */
12850
12851 bfd_boolean
12852 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
12853 const void *location,
12854 file_ptr offset, bfd_size_type count)
12855 {
12856 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
12857 {
12858 bfd_byte *c;
12859
12860 if (elf_section_data (section) == NULL)
12861 {
12862 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
12863 section->used_by_bfd = bfd_zalloc (abfd, amt);
12864 if (elf_section_data (section) == NULL)
12865 return FALSE;
12866 }
12867 c = mips_elf_section_data (section)->u.tdata;
12868 if (c == NULL)
12869 {
12870 c = bfd_zalloc (abfd, section->size);
12871 if (c == NULL)
12872 return FALSE;
12873 mips_elf_section_data (section)->u.tdata = c;
12874 }
12875
12876 memcpy (c + offset, location, count);
12877 }
12878
12879 return _bfd_elf_set_section_contents (abfd, section, location, offset,
12880 count);
12881 }
12882
12883 /* This is almost identical to bfd_generic_get_... except that some
12884 MIPS relocations need to be handled specially. Sigh. */
12885
12886 bfd_byte *
12887 _bfd_elf_mips_get_relocated_section_contents
12888 (bfd *abfd,
12889 struct bfd_link_info *link_info,
12890 struct bfd_link_order *link_order,
12891 bfd_byte *data,
12892 bfd_boolean relocatable,
12893 asymbol **symbols)
12894 {
12895 /* Get enough memory to hold the stuff */
12896 bfd *input_bfd = link_order->u.indirect.section->owner;
12897 asection *input_section = link_order->u.indirect.section;
12898 bfd_size_type sz;
12899
12900 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
12901 arelent **reloc_vector = NULL;
12902 long reloc_count;
12903
12904 if (reloc_size < 0)
12905 goto error_return;
12906
12907 reloc_vector = bfd_malloc (reloc_size);
12908 if (reloc_vector == NULL && reloc_size != 0)
12909 goto error_return;
12910
12911 /* read in the section */
12912 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
12913 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
12914 goto error_return;
12915
12916 reloc_count = bfd_canonicalize_reloc (input_bfd,
12917 input_section,
12918 reloc_vector,
12919 symbols);
12920 if (reloc_count < 0)
12921 goto error_return;
12922
12923 if (reloc_count > 0)
12924 {
12925 arelent **parent;
12926 /* for mips */
12927 int gp_found;
12928 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
12929
12930 {
12931 struct bfd_hash_entry *h;
12932 struct bfd_link_hash_entry *lh;
12933 /* Skip all this stuff if we aren't mixing formats. */
12934 if (abfd && input_bfd
12935 && abfd->xvec == input_bfd->xvec)
12936 lh = 0;
12937 else
12938 {
12939 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
12940 lh = (struct bfd_link_hash_entry *) h;
12941 }
12942 lookup:
12943 if (lh)
12944 {
12945 switch (lh->type)
12946 {
12947 case bfd_link_hash_undefined:
12948 case bfd_link_hash_undefweak:
12949 case bfd_link_hash_common:
12950 gp_found = 0;
12951 break;
12952 case bfd_link_hash_defined:
12953 case bfd_link_hash_defweak:
12954 gp_found = 1;
12955 gp = lh->u.def.value;
12956 break;
12957 case bfd_link_hash_indirect:
12958 case bfd_link_hash_warning:
12959 lh = lh->u.i.link;
12960 /* @@FIXME ignoring warning for now */
12961 goto lookup;
12962 case bfd_link_hash_new:
12963 default:
12964 abort ();
12965 }
12966 }
12967 else
12968 gp_found = 0;
12969 }
12970 /* end mips */
12971 for (parent = reloc_vector; *parent != NULL; parent++)
12972 {
12973 char *error_message = NULL;
12974 bfd_reloc_status_type r;
12975
12976 /* Specific to MIPS: Deal with relocation types that require
12977 knowing the gp of the output bfd. */
12978 asymbol *sym = *(*parent)->sym_ptr_ptr;
12979
12980 /* If we've managed to find the gp and have a special
12981 function for the relocation then go ahead, else default
12982 to the generic handling. */
12983 if (gp_found
12984 && (*parent)->howto->special_function
12985 == _bfd_mips_elf32_gprel16_reloc)
12986 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
12987 input_section, relocatable,
12988 data, gp);
12989 else
12990 r = bfd_perform_relocation (input_bfd, *parent, data,
12991 input_section,
12992 relocatable ? abfd : NULL,
12993 &error_message);
12994
12995 if (relocatable)
12996 {
12997 asection *os = input_section->output_section;
12998
12999 /* A partial link, so keep the relocs */
13000 os->orelocation[os->reloc_count] = *parent;
13001 os->reloc_count++;
13002 }
13003
13004 if (r != bfd_reloc_ok)
13005 {
13006 switch (r)
13007 {
13008 case bfd_reloc_undefined:
13009 (*link_info->callbacks->undefined_symbol)
13010 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13011 input_bfd, input_section, (*parent)->address, TRUE);
13012 break;
13013 case bfd_reloc_dangerous:
13014 BFD_ASSERT (error_message != NULL);
13015 (*link_info->callbacks->reloc_dangerous)
13016 (link_info, error_message,
13017 input_bfd, input_section, (*parent)->address);
13018 break;
13019 case bfd_reloc_overflow:
13020 (*link_info->callbacks->reloc_overflow)
13021 (link_info, NULL,
13022 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13023 (*parent)->howto->name, (*parent)->addend,
13024 input_bfd, input_section, (*parent)->address);
13025 break;
13026 case bfd_reloc_outofrange:
13027 default:
13028 abort ();
13029 break;
13030 }
13031
13032 }
13033 }
13034 }
13035 if (reloc_vector != NULL)
13036 free (reloc_vector);
13037 return data;
13038
13039 error_return:
13040 if (reloc_vector != NULL)
13041 free (reloc_vector);
13042 return NULL;
13043 }
13044 \f
13045 static bfd_boolean
13046 mips_elf_relax_delete_bytes (bfd *abfd,
13047 asection *sec, bfd_vma addr, int count)
13048 {
13049 Elf_Internal_Shdr *symtab_hdr;
13050 unsigned int sec_shndx;
13051 bfd_byte *contents;
13052 Elf_Internal_Rela *irel, *irelend;
13053 Elf_Internal_Sym *isym;
13054 Elf_Internal_Sym *isymend;
13055 struct elf_link_hash_entry **sym_hashes;
13056 struct elf_link_hash_entry **end_hashes;
13057 struct elf_link_hash_entry **start_hashes;
13058 unsigned int symcount;
13059
13060 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13061 contents = elf_section_data (sec)->this_hdr.contents;
13062
13063 irel = elf_section_data (sec)->relocs;
13064 irelend = irel + sec->reloc_count;
13065
13066 /* Actually delete the bytes. */
13067 memmove (contents + addr, contents + addr + count,
13068 (size_t) (sec->size - addr - count));
13069 sec->size -= count;
13070
13071 /* Adjust all the relocs. */
13072 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13073 {
13074 /* Get the new reloc address. */
13075 if (irel->r_offset > addr)
13076 irel->r_offset -= count;
13077 }
13078
13079 BFD_ASSERT (addr % 2 == 0);
13080 BFD_ASSERT (count % 2 == 0);
13081
13082 /* Adjust the local symbols defined in this section. */
13083 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13084 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13085 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
13086 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
13087 isym->st_value -= count;
13088
13089 /* Now adjust the global symbols defined in this section. */
13090 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13091 - symtab_hdr->sh_info);
13092 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13093 end_hashes = sym_hashes + symcount;
13094
13095 for (; sym_hashes < end_hashes; sym_hashes++)
13096 {
13097 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13098
13099 if ((sym_hash->root.type == bfd_link_hash_defined
13100 || sym_hash->root.type == bfd_link_hash_defweak)
13101 && sym_hash->root.u.def.section == sec)
13102 {
13103 bfd_vma value = sym_hash->root.u.def.value;
13104
13105 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13106 value &= MINUS_TWO;
13107 if (value > addr)
13108 sym_hash->root.u.def.value -= count;
13109 }
13110 }
13111
13112 return TRUE;
13113 }
13114
13115
13116 /* Opcodes needed for microMIPS relaxation as found in
13117 opcodes/micromips-opc.c. */
13118
13119 struct opcode_descriptor {
13120 unsigned long match;
13121 unsigned long mask;
13122 };
13123
13124 /* The $ra register aka $31. */
13125
13126 #define RA 31
13127
13128 /* 32-bit instruction format register fields. */
13129
13130 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13131 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13132
13133 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
13134
13135 #define OP16_VALID_REG(r) \
13136 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13137
13138
13139 /* 32-bit and 16-bit branches. */
13140
13141 static const struct opcode_descriptor b_insns_32[] = {
13142 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13143 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13144 { 0, 0 } /* End marker for find_match(). */
13145 };
13146
13147 static const struct opcode_descriptor bc_insn_32 =
13148 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13149
13150 static const struct opcode_descriptor bz_insn_32 =
13151 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13152
13153 static const struct opcode_descriptor bzal_insn_32 =
13154 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13155
13156 static const struct opcode_descriptor beq_insn_32 =
13157 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13158
13159 static const struct opcode_descriptor b_insn_16 =
13160 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13161
13162 static const struct opcode_descriptor bz_insn_16 =
13163 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13164
13165
13166 /* 32-bit and 16-bit branch EQ and NE zero. */
13167
13168 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13169 eq and second the ne. This convention is used when replacing a
13170 32-bit BEQ/BNE with the 16-bit version. */
13171
13172 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13173
13174 static const struct opcode_descriptor bz_rs_insns_32[] = {
13175 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13176 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13177 { 0, 0 } /* End marker for find_match(). */
13178 };
13179
13180 static const struct opcode_descriptor bz_rt_insns_32[] = {
13181 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13182 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13183 { 0, 0 } /* End marker for find_match(). */
13184 };
13185
13186 static const struct opcode_descriptor bzc_insns_32[] = {
13187 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13188 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13189 { 0, 0 } /* End marker for find_match(). */
13190 };
13191
13192 static const struct opcode_descriptor bz_insns_16[] = {
13193 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13194 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13195 { 0, 0 } /* End marker for find_match(). */
13196 };
13197
13198 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13199
13200 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
13201 #define BZ16_REG_FIELD(r) (((r) & 7) << 7)
13202
13203
13204 /* 32-bit instructions with a delay slot. */
13205
13206 static const struct opcode_descriptor jal_insn_32_bd16 =
13207 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13208
13209 static const struct opcode_descriptor jal_insn_32_bd32 =
13210 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13211
13212 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13213 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13214
13215 static const struct opcode_descriptor j_insn_32 =
13216 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13217
13218 static const struct opcode_descriptor jalr_insn_32 =
13219 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13220
13221 /* This table can be compacted, because no opcode replacement is made. */
13222
13223 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13224 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13225
13226 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13227 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13228
13229 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13230 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13231 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13232 { 0, 0 } /* End marker for find_match(). */
13233 };
13234
13235 /* This table can be compacted, because no opcode replacement is made. */
13236
13237 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13238 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13239
13240 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13241 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13242 { 0, 0 } /* End marker for find_match(). */
13243 };
13244
13245
13246 /* 16-bit instructions with a delay slot. */
13247
13248 static const struct opcode_descriptor jalr_insn_16_bd16 =
13249 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13250
13251 static const struct opcode_descriptor jalr_insn_16_bd32 =
13252 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13253
13254 static const struct opcode_descriptor jr_insn_16 =
13255 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13256
13257 #define JR16_REG(opcode) ((opcode) & 0x1f)
13258
13259 /* This table can be compacted, because no opcode replacement is made. */
13260
13261 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13262 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13263
13264 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13265 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13266 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13267 { 0, 0 } /* End marker for find_match(). */
13268 };
13269
13270
13271 /* LUI instruction. */
13272
13273 static const struct opcode_descriptor lui_insn =
13274 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13275
13276
13277 /* ADDIU instruction. */
13278
13279 static const struct opcode_descriptor addiu_insn =
13280 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13281
13282 static const struct opcode_descriptor addiupc_insn =
13283 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13284
13285 #define ADDIUPC_REG_FIELD(r) \
13286 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13287
13288
13289 /* Relaxable instructions in a JAL delay slot: MOVE. */
13290
13291 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13292 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13293 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13294 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13295
13296 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13297 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13298
13299 static const struct opcode_descriptor move_insns_32[] = {
13300 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13301 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13302 { 0, 0 } /* End marker for find_match(). */
13303 };
13304
13305 static const struct opcode_descriptor move_insn_16 =
13306 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13307
13308
13309 /* NOP instructions. */
13310
13311 static const struct opcode_descriptor nop_insn_32 =
13312 { /* "nop", "", */ 0x00000000, 0xffffffff };
13313
13314 static const struct opcode_descriptor nop_insn_16 =
13315 { /* "nop", "", */ 0x0c00, 0xffff };
13316
13317
13318 /* Instruction match support. */
13319
13320 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13321
13322 static int
13323 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13324 {
13325 unsigned long indx;
13326
13327 for (indx = 0; insn[indx].mask != 0; indx++)
13328 if (MATCH (opcode, insn[indx]))
13329 return indx;
13330
13331 return -1;
13332 }
13333
13334
13335 /* Branch and delay slot decoding support. */
13336
13337 /* If PTR points to what *might* be a 16-bit branch or jump, then
13338 return the minimum length of its delay slot, otherwise return 0.
13339 Non-zero results are not definitive as we might be checking against
13340 the second half of another instruction. */
13341
13342 static int
13343 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13344 {
13345 unsigned long opcode;
13346 int bdsize;
13347
13348 opcode = bfd_get_16 (abfd, ptr);
13349 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13350 /* 16-bit branch/jump with a 32-bit delay slot. */
13351 bdsize = 4;
13352 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13353 || find_match (opcode, ds_insns_16_bd16) >= 0)
13354 /* 16-bit branch/jump with a 16-bit delay slot. */
13355 bdsize = 2;
13356 else
13357 /* No delay slot. */
13358 bdsize = 0;
13359
13360 return bdsize;
13361 }
13362
13363 /* If PTR points to what *might* be a 32-bit branch or jump, then
13364 return the minimum length of its delay slot, otherwise return 0.
13365 Non-zero results are not definitive as we might be checking against
13366 the second half of another instruction. */
13367
13368 static int
13369 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13370 {
13371 unsigned long opcode;
13372 int bdsize;
13373
13374 opcode = bfd_get_micromips_32 (abfd, ptr);
13375 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13376 /* 32-bit branch/jump with a 32-bit delay slot. */
13377 bdsize = 4;
13378 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13379 /* 32-bit branch/jump with a 16-bit delay slot. */
13380 bdsize = 2;
13381 else
13382 /* No delay slot. */
13383 bdsize = 0;
13384
13385 return bdsize;
13386 }
13387
13388 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13389 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13390
13391 static bfd_boolean
13392 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13393 {
13394 unsigned long opcode;
13395
13396 opcode = bfd_get_16 (abfd, ptr);
13397 if (MATCH (opcode, b_insn_16)
13398 /* B16 */
13399 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13400 /* JR16 */
13401 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13402 /* BEQZ16, BNEZ16 */
13403 || (MATCH (opcode, jalr_insn_16_bd32)
13404 /* JALR16 */
13405 && reg != JR16_REG (opcode) && reg != RA))
13406 return TRUE;
13407
13408 return FALSE;
13409 }
13410
13411 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13412 then return TRUE, otherwise FALSE. */
13413
13414 static bfd_boolean
13415 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13416 {
13417 unsigned long opcode;
13418
13419 opcode = bfd_get_micromips_32 (abfd, ptr);
13420 if (MATCH (opcode, j_insn_32)
13421 /* J */
13422 || MATCH (opcode, bc_insn_32)
13423 /* BC1F, BC1T, BC2F, BC2T */
13424 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13425 /* JAL, JALX */
13426 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13427 /* BGEZ, BGTZ, BLEZ, BLTZ */
13428 || (MATCH (opcode, bzal_insn_32)
13429 /* BGEZAL, BLTZAL */
13430 && reg != OP32_SREG (opcode) && reg != RA)
13431 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13432 /* JALR, JALR.HB, BEQ, BNE */
13433 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13434 return TRUE;
13435
13436 return FALSE;
13437 }
13438
13439 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13440 IRELEND) at OFFSET indicate that there must be a compact branch there,
13441 then return TRUE, otherwise FALSE. */
13442
13443 static bfd_boolean
13444 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13445 const Elf_Internal_Rela *internal_relocs,
13446 const Elf_Internal_Rela *irelend)
13447 {
13448 const Elf_Internal_Rela *irel;
13449 unsigned long opcode;
13450
13451 opcode = bfd_get_micromips_32 (abfd, ptr);
13452 if (find_match (opcode, bzc_insns_32) < 0)
13453 return FALSE;
13454
13455 for (irel = internal_relocs; irel < irelend; irel++)
13456 if (irel->r_offset == offset
13457 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13458 return TRUE;
13459
13460 return FALSE;
13461 }
13462
13463 /* Bitsize checking. */
13464 #define IS_BITSIZE(val, N) \
13465 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13466 - (1ULL << ((N) - 1))) == (val))
13467
13468 \f
13469 bfd_boolean
13470 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13471 struct bfd_link_info *link_info,
13472 bfd_boolean *again)
13473 {
13474 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13475 Elf_Internal_Shdr *symtab_hdr;
13476 Elf_Internal_Rela *internal_relocs;
13477 Elf_Internal_Rela *irel, *irelend;
13478 bfd_byte *contents = NULL;
13479 Elf_Internal_Sym *isymbuf = NULL;
13480
13481 /* Assume nothing changes. */
13482 *again = FALSE;
13483
13484 /* We don't have to do anything for a relocatable link, if
13485 this section does not have relocs, or if this is not a
13486 code section. */
13487
13488 if (bfd_link_relocatable (link_info)
13489 || (sec->flags & SEC_RELOC) == 0
13490 || sec->reloc_count == 0
13491 || (sec->flags & SEC_CODE) == 0)
13492 return TRUE;
13493
13494 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13495
13496 /* Get a copy of the native relocations. */
13497 internal_relocs = (_bfd_elf_link_read_relocs
13498 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13499 link_info->keep_memory));
13500 if (internal_relocs == NULL)
13501 goto error_return;
13502
13503 /* Walk through them looking for relaxing opportunities. */
13504 irelend = internal_relocs + sec->reloc_count;
13505 for (irel = internal_relocs; irel < irelend; irel++)
13506 {
13507 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13508 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13509 bfd_boolean target_is_micromips_code_p;
13510 unsigned long opcode;
13511 bfd_vma symval;
13512 bfd_vma pcrval;
13513 bfd_byte *ptr;
13514 int fndopc;
13515
13516 /* The number of bytes to delete for relaxation and from where
13517 to delete these bytes starting at irel->r_offset. */
13518 int delcnt = 0;
13519 int deloff = 0;
13520
13521 /* If this isn't something that can be relaxed, then ignore
13522 this reloc. */
13523 if (r_type != R_MICROMIPS_HI16
13524 && r_type != R_MICROMIPS_PC16_S1
13525 && r_type != R_MICROMIPS_26_S1)
13526 continue;
13527
13528 /* Get the section contents if we haven't done so already. */
13529 if (contents == NULL)
13530 {
13531 /* Get cached copy if it exists. */
13532 if (elf_section_data (sec)->this_hdr.contents != NULL)
13533 contents = elf_section_data (sec)->this_hdr.contents;
13534 /* Go get them off disk. */
13535 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13536 goto error_return;
13537 }
13538 ptr = contents + irel->r_offset;
13539
13540 /* Read this BFD's local symbols if we haven't done so already. */
13541 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13542 {
13543 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13544 if (isymbuf == NULL)
13545 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13546 symtab_hdr->sh_info, 0,
13547 NULL, NULL, NULL);
13548 if (isymbuf == NULL)
13549 goto error_return;
13550 }
13551
13552 /* Get the value of the symbol referred to by the reloc. */
13553 if (r_symndx < symtab_hdr->sh_info)
13554 {
13555 /* A local symbol. */
13556 Elf_Internal_Sym *isym;
13557 asection *sym_sec;
13558
13559 isym = isymbuf + r_symndx;
13560 if (isym->st_shndx == SHN_UNDEF)
13561 sym_sec = bfd_und_section_ptr;
13562 else if (isym->st_shndx == SHN_ABS)
13563 sym_sec = bfd_abs_section_ptr;
13564 else if (isym->st_shndx == SHN_COMMON)
13565 sym_sec = bfd_com_section_ptr;
13566 else
13567 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13568 symval = (isym->st_value
13569 + sym_sec->output_section->vma
13570 + sym_sec->output_offset);
13571 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13572 }
13573 else
13574 {
13575 unsigned long indx;
13576 struct elf_link_hash_entry *h;
13577
13578 /* An external symbol. */
13579 indx = r_symndx - symtab_hdr->sh_info;
13580 h = elf_sym_hashes (abfd)[indx];
13581 BFD_ASSERT (h != NULL);
13582
13583 if (h->root.type != bfd_link_hash_defined
13584 && h->root.type != bfd_link_hash_defweak)
13585 /* This appears to be a reference to an undefined
13586 symbol. Just ignore it -- it will be caught by the
13587 regular reloc processing. */
13588 continue;
13589
13590 symval = (h->root.u.def.value
13591 + h->root.u.def.section->output_section->vma
13592 + h->root.u.def.section->output_offset);
13593 target_is_micromips_code_p = (!h->needs_plt
13594 && ELF_ST_IS_MICROMIPS (h->other));
13595 }
13596
13597
13598 /* For simplicity of coding, we are going to modify the
13599 section contents, the section relocs, and the BFD symbol
13600 table. We must tell the rest of the code not to free up this
13601 information. It would be possible to instead create a table
13602 of changes which have to be made, as is done in coff-mips.c;
13603 that would be more work, but would require less memory when
13604 the linker is run. */
13605
13606 /* Only 32-bit instructions relaxed. */
13607 if (irel->r_offset + 4 > sec->size)
13608 continue;
13609
13610 opcode = bfd_get_micromips_32 (abfd, ptr);
13611
13612 /* This is the pc-relative distance from the instruction the
13613 relocation is applied to, to the symbol referred. */
13614 pcrval = (symval
13615 - (sec->output_section->vma + sec->output_offset)
13616 - irel->r_offset);
13617
13618 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13619 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13620 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13621
13622 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13623
13624 where pcrval has first to be adjusted to apply against the LO16
13625 location (we make the adjustment later on, when we have figured
13626 out the offset). */
13627 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13628 {
13629 bfd_boolean bzc = FALSE;
13630 unsigned long nextopc;
13631 unsigned long reg;
13632 bfd_vma offset;
13633
13634 /* Give up if the previous reloc was a HI16 against this symbol
13635 too. */
13636 if (irel > internal_relocs
13637 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13638 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13639 continue;
13640
13641 /* Or if the next reloc is not a LO16 against this symbol. */
13642 if (irel + 1 >= irelend
13643 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13644 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13645 continue;
13646
13647 /* Or if the second next reloc is a LO16 against this symbol too. */
13648 if (irel + 2 >= irelend
13649 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13650 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13651 continue;
13652
13653 /* See if the LUI instruction *might* be in a branch delay slot.
13654 We check whether what looks like a 16-bit branch or jump is
13655 actually an immediate argument to a compact branch, and let
13656 it through if so. */
13657 if (irel->r_offset >= 2
13658 && check_br16_dslot (abfd, ptr - 2)
13659 && !(irel->r_offset >= 4
13660 && (bzc = check_relocated_bzc (abfd,
13661 ptr - 4, irel->r_offset - 4,
13662 internal_relocs, irelend))))
13663 continue;
13664 if (irel->r_offset >= 4
13665 && !bzc
13666 && check_br32_dslot (abfd, ptr - 4))
13667 continue;
13668
13669 reg = OP32_SREG (opcode);
13670
13671 /* We only relax adjacent instructions or ones separated with
13672 a branch or jump that has a delay slot. The branch or jump
13673 must not fiddle with the register used to hold the address.
13674 Subtract 4 for the LUI itself. */
13675 offset = irel[1].r_offset - irel[0].r_offset;
13676 switch (offset - 4)
13677 {
13678 case 0:
13679 break;
13680 case 2:
13681 if (check_br16 (abfd, ptr + 4, reg))
13682 break;
13683 continue;
13684 case 4:
13685 if (check_br32 (abfd, ptr + 4, reg))
13686 break;
13687 continue;
13688 default:
13689 continue;
13690 }
13691
13692 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
13693
13694 /* Give up unless the same register is used with both
13695 relocations. */
13696 if (OP32_SREG (nextopc) != reg)
13697 continue;
13698
13699 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13700 and rounding up to take masking of the two LSBs into account. */
13701 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13702
13703 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13704 if (IS_BITSIZE (symval, 16))
13705 {
13706 /* Fix the relocation's type. */
13707 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13708
13709 /* Instructions using R_MICROMIPS_LO16 have the base or
13710 source register in bits 20:16. This register becomes $0
13711 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
13712 nextopc &= ~0x001f0000;
13713 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13714 contents + irel[1].r_offset);
13715 }
13716
13717 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13718 We add 4 to take LUI deletion into account while checking
13719 the PC-relative distance. */
13720 else if (symval % 4 == 0
13721 && IS_BITSIZE (pcrval + 4, 25)
13722 && MATCH (nextopc, addiu_insn)
13723 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13724 && OP16_VALID_REG (OP32_TREG (nextopc)))
13725 {
13726 /* Fix the relocation's type. */
13727 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13728
13729 /* Replace ADDIU with the ADDIUPC version. */
13730 nextopc = (addiupc_insn.match
13731 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13732
13733 bfd_put_micromips_32 (abfd, nextopc,
13734 contents + irel[1].r_offset);
13735 }
13736
13737 /* Can't do anything, give up, sigh... */
13738 else
13739 continue;
13740
13741 /* Fix the relocation's type. */
13742 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13743
13744 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
13745 delcnt = 4;
13746 deloff = 0;
13747 }
13748
13749 /* Compact branch relaxation -- due to the multitude of macros
13750 employed by the compiler/assembler, compact branches are not
13751 always generated. Obviously, this can/will be fixed elsewhere,
13752 but there is no drawback in double checking it here. */
13753 else if (r_type == R_MICROMIPS_PC16_S1
13754 && irel->r_offset + 5 < sec->size
13755 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13756 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
13757 && ((!insn32
13758 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13759 nop_insn_16) ? 2 : 0))
13760 || (irel->r_offset + 7 < sec->size
13761 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13762 ptr + 4),
13763 nop_insn_32) ? 4 : 0))))
13764 {
13765 unsigned long reg;
13766
13767 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13768
13769 /* Replace BEQZ/BNEZ with the compact version. */
13770 opcode = (bzc_insns_32[fndopc].match
13771 | BZC32_REG_FIELD (reg)
13772 | (opcode & 0xffff)); /* Addend value. */
13773
13774 bfd_put_micromips_32 (abfd, opcode, ptr);
13775
13776 /* Delete the delay slot NOP: two or four bytes from
13777 irel->offset + 4; delcnt has already been set above. */
13778 deloff = 4;
13779 }
13780
13781 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
13782 to check the distance from the next instruction, so subtract 2. */
13783 else if (!insn32
13784 && r_type == R_MICROMIPS_PC16_S1
13785 && IS_BITSIZE (pcrval - 2, 11)
13786 && find_match (opcode, b_insns_32) >= 0)
13787 {
13788 /* Fix the relocation's type. */
13789 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13790
13791 /* Replace the 32-bit opcode with a 16-bit opcode. */
13792 bfd_put_16 (abfd,
13793 (b_insn_16.match
13794 | (opcode & 0x3ff)), /* Addend value. */
13795 ptr);
13796
13797 /* Delete 2 bytes from irel->r_offset + 2. */
13798 delcnt = 2;
13799 deloff = 2;
13800 }
13801
13802 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
13803 to check the distance from the next instruction, so subtract 2. */
13804 else if (!insn32
13805 && r_type == R_MICROMIPS_PC16_S1
13806 && IS_BITSIZE (pcrval - 2, 8)
13807 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13808 && OP16_VALID_REG (OP32_SREG (opcode)))
13809 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13810 && OP16_VALID_REG (OP32_TREG (opcode)))))
13811 {
13812 unsigned long reg;
13813
13814 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13815
13816 /* Fix the relocation's type. */
13817 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
13818
13819 /* Replace the 32-bit opcode with a 16-bit opcode. */
13820 bfd_put_16 (abfd,
13821 (bz_insns_16[fndopc].match
13822 | BZ16_REG_FIELD (reg)
13823 | (opcode & 0x7f)), /* Addend value. */
13824 ptr);
13825
13826 /* Delete 2 bytes from irel->r_offset + 2. */
13827 delcnt = 2;
13828 deloff = 2;
13829 }
13830
13831 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
13832 else if (!insn32
13833 && r_type == R_MICROMIPS_26_S1
13834 && target_is_micromips_code_p
13835 && irel->r_offset + 7 < sec->size
13836 && MATCH (opcode, jal_insn_32_bd32))
13837 {
13838 unsigned long n32opc;
13839 bfd_boolean relaxed = FALSE;
13840
13841 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
13842
13843 if (MATCH (n32opc, nop_insn_32))
13844 {
13845 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
13846 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
13847
13848 relaxed = TRUE;
13849 }
13850 else if (find_match (n32opc, move_insns_32) >= 0)
13851 {
13852 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
13853 bfd_put_16 (abfd,
13854 (move_insn_16.match
13855 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
13856 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
13857 ptr + 4);
13858
13859 relaxed = TRUE;
13860 }
13861 /* Other 32-bit instructions relaxable to 16-bit
13862 instructions will be handled here later. */
13863
13864 if (relaxed)
13865 {
13866 /* JAL with 32-bit delay slot that is changed to a JALS
13867 with 16-bit delay slot. */
13868 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
13869
13870 /* Delete 2 bytes from irel->r_offset + 6. */
13871 delcnt = 2;
13872 deloff = 6;
13873 }
13874 }
13875
13876 if (delcnt != 0)
13877 {
13878 /* Note that we've changed the relocs, section contents, etc. */
13879 elf_section_data (sec)->relocs = internal_relocs;
13880 elf_section_data (sec)->this_hdr.contents = contents;
13881 symtab_hdr->contents = (unsigned char *) isymbuf;
13882
13883 /* Delete bytes depending on the delcnt and deloff. */
13884 if (!mips_elf_relax_delete_bytes (abfd, sec,
13885 irel->r_offset + deloff, delcnt))
13886 goto error_return;
13887
13888 /* That will change things, so we should relax again.
13889 Note that this is not required, and it may be slow. */
13890 *again = TRUE;
13891 }
13892 }
13893
13894 if (isymbuf != NULL
13895 && symtab_hdr->contents != (unsigned char *) isymbuf)
13896 {
13897 if (! link_info->keep_memory)
13898 free (isymbuf);
13899 else
13900 {
13901 /* Cache the symbols for elf_link_input_bfd. */
13902 symtab_hdr->contents = (unsigned char *) isymbuf;
13903 }
13904 }
13905
13906 if (contents != NULL
13907 && elf_section_data (sec)->this_hdr.contents != contents)
13908 {
13909 if (! link_info->keep_memory)
13910 free (contents);
13911 else
13912 {
13913 /* Cache the section contents for elf_link_input_bfd. */
13914 elf_section_data (sec)->this_hdr.contents = contents;
13915 }
13916 }
13917
13918 if (internal_relocs != NULL
13919 && elf_section_data (sec)->relocs != internal_relocs)
13920 free (internal_relocs);
13921
13922 return TRUE;
13923
13924 error_return:
13925 if (isymbuf != NULL
13926 && symtab_hdr->contents != (unsigned char *) isymbuf)
13927 free (isymbuf);
13928 if (contents != NULL
13929 && elf_section_data (sec)->this_hdr.contents != contents)
13930 free (contents);
13931 if (internal_relocs != NULL
13932 && elf_section_data (sec)->relocs != internal_relocs)
13933 free (internal_relocs);
13934
13935 return FALSE;
13936 }
13937 \f
13938 /* Create a MIPS ELF linker hash table. */
13939
13940 struct bfd_link_hash_table *
13941 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
13942 {
13943 struct mips_elf_link_hash_table *ret;
13944 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
13945
13946 ret = bfd_zmalloc (amt);
13947 if (ret == NULL)
13948 return NULL;
13949
13950 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
13951 mips_elf_link_hash_newfunc,
13952 sizeof (struct mips_elf_link_hash_entry),
13953 MIPS_ELF_DATA))
13954 {
13955 free (ret);
13956 return NULL;
13957 }
13958 ret->root.init_plt_refcount.plist = NULL;
13959 ret->root.init_plt_offset.plist = NULL;
13960
13961 return &ret->root.root;
13962 }
13963
13964 /* Likewise, but indicate that the target is VxWorks. */
13965
13966 struct bfd_link_hash_table *
13967 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
13968 {
13969 struct bfd_link_hash_table *ret;
13970
13971 ret = _bfd_mips_elf_link_hash_table_create (abfd);
13972 if (ret)
13973 {
13974 struct mips_elf_link_hash_table *htab;
13975
13976 htab = (struct mips_elf_link_hash_table *) ret;
13977 htab->use_plts_and_copy_relocs = TRUE;
13978 htab->is_vxworks = TRUE;
13979 }
13980 return ret;
13981 }
13982
13983 /* A function that the linker calls if we are allowed to use PLTs
13984 and copy relocs. */
13985
13986 void
13987 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
13988 {
13989 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
13990 }
13991
13992 /* A function that the linker calls to select between all or only
13993 32-bit microMIPS instructions, and between making or ignoring
13994 branch relocation checks for invalid transitions between ISA modes. */
13995
13996 void
13997 _bfd_mips_elf_linker_flags (struct bfd_link_info *info, bfd_boolean insn32,
13998 bfd_boolean ignore_branch_isa)
13999 {
14000 mips_elf_hash_table (info)->insn32 = insn32;
14001 mips_elf_hash_table (info)->ignore_branch_isa = ignore_branch_isa;
14002 }
14003 \f
14004 /* Structure for saying that BFD machine EXTENSION extends BASE. */
14005
14006 struct mips_mach_extension
14007 {
14008 unsigned long extension, base;
14009 };
14010
14011
14012 /* An array describing how BFD machines relate to one another. The entries
14013 are ordered topologically with MIPS I extensions listed last. */
14014
14015 static const struct mips_mach_extension mips_mach_extensions[] =
14016 {
14017 /* MIPS64r2 extensions. */
14018 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
14019 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
14020 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
14021 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
14022 { bfd_mach_mips_gs264e, bfd_mach_mips_gs464e },
14023 { bfd_mach_mips_gs464e, bfd_mach_mips_gs464 },
14024 { bfd_mach_mips_gs464, bfd_mach_mipsisa64r2 },
14025
14026 /* MIPS64 extensions. */
14027 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
14028 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
14029 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
14030
14031 /* MIPS V extensions. */
14032 { bfd_mach_mipsisa64, bfd_mach_mips5 },
14033
14034 /* R10000 extensions. */
14035 { bfd_mach_mips12000, bfd_mach_mips10000 },
14036 { bfd_mach_mips14000, bfd_mach_mips10000 },
14037 { bfd_mach_mips16000, bfd_mach_mips10000 },
14038
14039 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14040 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14041 better to allow vr5400 and vr5500 code to be merged anyway, since
14042 many libraries will just use the core ISA. Perhaps we could add
14043 some sort of ASE flag if this ever proves a problem. */
14044 { bfd_mach_mips5500, bfd_mach_mips5400 },
14045 { bfd_mach_mips5400, bfd_mach_mips5000 },
14046
14047 /* MIPS IV extensions. */
14048 { bfd_mach_mips5, bfd_mach_mips8000 },
14049 { bfd_mach_mips10000, bfd_mach_mips8000 },
14050 { bfd_mach_mips5000, bfd_mach_mips8000 },
14051 { bfd_mach_mips7000, bfd_mach_mips8000 },
14052 { bfd_mach_mips9000, bfd_mach_mips8000 },
14053
14054 /* VR4100 extensions. */
14055 { bfd_mach_mips4120, bfd_mach_mips4100 },
14056 { bfd_mach_mips4111, bfd_mach_mips4100 },
14057
14058 /* MIPS III extensions. */
14059 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14060 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14061 { bfd_mach_mips8000, bfd_mach_mips4000 },
14062 { bfd_mach_mips4650, bfd_mach_mips4000 },
14063 { bfd_mach_mips4600, bfd_mach_mips4000 },
14064 { bfd_mach_mips4400, bfd_mach_mips4000 },
14065 { bfd_mach_mips4300, bfd_mach_mips4000 },
14066 { bfd_mach_mips4100, bfd_mach_mips4000 },
14067 { bfd_mach_mips5900, bfd_mach_mips4000 },
14068
14069 /* MIPS32r3 extensions. */
14070 { bfd_mach_mips_interaptiv_mr2, bfd_mach_mipsisa32r3 },
14071
14072 /* MIPS32r2 extensions. */
14073 { bfd_mach_mipsisa32r3, bfd_mach_mipsisa32r2 },
14074
14075 /* MIPS32 extensions. */
14076 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14077
14078 /* MIPS II extensions. */
14079 { bfd_mach_mips4000, bfd_mach_mips6000 },
14080 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14081 { bfd_mach_mips4010, bfd_mach_mips6000 },
14082
14083 /* MIPS I extensions. */
14084 { bfd_mach_mips6000, bfd_mach_mips3000 },
14085 { bfd_mach_mips3900, bfd_mach_mips3000 }
14086 };
14087
14088 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14089
14090 static bfd_boolean
14091 mips_mach_extends_p (unsigned long base, unsigned long extension)
14092 {
14093 size_t i;
14094
14095 if (extension == base)
14096 return TRUE;
14097
14098 if (base == bfd_mach_mipsisa32
14099 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14100 return TRUE;
14101
14102 if (base == bfd_mach_mipsisa32r2
14103 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14104 return TRUE;
14105
14106 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14107 if (extension == mips_mach_extensions[i].extension)
14108 {
14109 extension = mips_mach_extensions[i].base;
14110 if (extension == base)
14111 return TRUE;
14112 }
14113
14114 return FALSE;
14115 }
14116
14117 /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14118
14119 static unsigned long
14120 bfd_mips_isa_ext_mach (unsigned int isa_ext)
14121 {
14122 switch (isa_ext)
14123 {
14124 case AFL_EXT_3900: return bfd_mach_mips3900;
14125 case AFL_EXT_4010: return bfd_mach_mips4010;
14126 case AFL_EXT_4100: return bfd_mach_mips4100;
14127 case AFL_EXT_4111: return bfd_mach_mips4111;
14128 case AFL_EXT_4120: return bfd_mach_mips4120;
14129 case AFL_EXT_4650: return bfd_mach_mips4650;
14130 case AFL_EXT_5400: return bfd_mach_mips5400;
14131 case AFL_EXT_5500: return bfd_mach_mips5500;
14132 case AFL_EXT_5900: return bfd_mach_mips5900;
14133 case AFL_EXT_10000: return bfd_mach_mips10000;
14134 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14135 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14136 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
14137 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14138 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14139 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
14140 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14141 default: return bfd_mach_mips3000;
14142 }
14143 }
14144
14145 /* Return the .MIPS.abiflags value representing each ISA Extension. */
14146
14147 unsigned int
14148 bfd_mips_isa_ext (bfd *abfd)
14149 {
14150 switch (bfd_get_mach (abfd))
14151 {
14152 case bfd_mach_mips3900: return AFL_EXT_3900;
14153 case bfd_mach_mips4010: return AFL_EXT_4010;
14154 case bfd_mach_mips4100: return AFL_EXT_4100;
14155 case bfd_mach_mips4111: return AFL_EXT_4111;
14156 case bfd_mach_mips4120: return AFL_EXT_4120;
14157 case bfd_mach_mips4650: return AFL_EXT_4650;
14158 case bfd_mach_mips5400: return AFL_EXT_5400;
14159 case bfd_mach_mips5500: return AFL_EXT_5500;
14160 case bfd_mach_mips5900: return AFL_EXT_5900;
14161 case bfd_mach_mips10000: return AFL_EXT_10000;
14162 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14163 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14164 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14165 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14166 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14167 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14168 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14169 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
14170 case bfd_mach_mips_interaptiv_mr2:
14171 return AFL_EXT_INTERAPTIV_MR2;
14172 default: return 0;
14173 }
14174 }
14175
14176 /* Encode ISA level and revision as a single value. */
14177 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14178
14179 /* Decode a single value into level and revision. */
14180 #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14181 #define ISA_REV(LEVREV) ((LEVREV) & 0x7)
14182
14183 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14184
14185 static void
14186 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14187 {
14188 int new_isa = 0;
14189 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14190 {
14191 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14192 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14193 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14194 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14195 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14196 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14197 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14198 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14199 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14200 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14201 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
14202 default:
14203 _bfd_error_handler
14204 /* xgettext:c-format */
14205 (_("%pB: unknown architecture %s"),
14206 abfd, bfd_printable_name (abfd));
14207 }
14208
14209 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14210 {
14211 abiflags->isa_level = ISA_LEVEL (new_isa);
14212 abiflags->isa_rev = ISA_REV (new_isa);
14213 }
14214
14215 /* Update the isa_ext if ABFD describes a further extension. */
14216 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14217 bfd_get_mach (abfd)))
14218 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
14219 }
14220
14221 /* Return true if the given ELF header flags describe a 32-bit binary. */
14222
14223 static bfd_boolean
14224 mips_32bit_flags_p (flagword flags)
14225 {
14226 return ((flags & EF_MIPS_32BITMODE) != 0
14227 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14228 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14229 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14230 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14231 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14232 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14233 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14234 }
14235
14236 /* Infer the content of the ABI flags based on the elf header. */
14237
14238 static void
14239 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14240 {
14241 obj_attribute *in_attr;
14242
14243 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14244 update_mips_abiflags_isa (abfd, abiflags);
14245
14246 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14247 abiflags->gpr_size = AFL_REG_32;
14248 else
14249 abiflags->gpr_size = AFL_REG_64;
14250
14251 abiflags->cpr1_size = AFL_REG_NONE;
14252
14253 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14254 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14255
14256 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14257 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14258 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14259 && abiflags->gpr_size == AFL_REG_32))
14260 abiflags->cpr1_size = AFL_REG_32;
14261 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14262 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14263 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14264 abiflags->cpr1_size = AFL_REG_64;
14265
14266 abiflags->cpr2_size = AFL_REG_NONE;
14267
14268 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14269 abiflags->ases |= AFL_ASE_MDMX;
14270 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14271 abiflags->ases |= AFL_ASE_MIPS16;
14272 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14273 abiflags->ases |= AFL_ASE_MICROMIPS;
14274
14275 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14276 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14277 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14278 && abiflags->isa_level >= 32
14279 && abiflags->ases != AFL_ASE_LOONGSON_EXT)
14280 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14281 }
14282
14283 /* We need to use a special link routine to handle the .reginfo and
14284 the .mdebug sections. We need to merge all instances of these
14285 sections together, not write them all out sequentially. */
14286
14287 bfd_boolean
14288 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14289 {
14290 asection *o;
14291 struct bfd_link_order *p;
14292 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14293 asection *rtproc_sec, *abiflags_sec;
14294 Elf32_RegInfo reginfo;
14295 struct ecoff_debug_info debug;
14296 struct mips_htab_traverse_info hti;
14297 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14298 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14299 HDRR *symhdr = &debug.symbolic_header;
14300 void *mdebug_handle = NULL;
14301 asection *s;
14302 EXTR esym;
14303 unsigned int i;
14304 bfd_size_type amt;
14305 struct mips_elf_link_hash_table *htab;
14306
14307 static const char * const secname[] =
14308 {
14309 ".text", ".init", ".fini", ".data",
14310 ".rodata", ".sdata", ".sbss", ".bss"
14311 };
14312 static const int sc[] =
14313 {
14314 scText, scInit, scFini, scData,
14315 scRData, scSData, scSBss, scBss
14316 };
14317
14318 htab = mips_elf_hash_table (info);
14319 BFD_ASSERT (htab != NULL);
14320
14321 /* Sort the dynamic symbols so that those with GOT entries come after
14322 those without. */
14323 if (!mips_elf_sort_hash_table (abfd, info))
14324 return FALSE;
14325
14326 /* Create any scheduled LA25 stubs. */
14327 hti.info = info;
14328 hti.output_bfd = abfd;
14329 hti.error = FALSE;
14330 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14331 if (hti.error)
14332 return FALSE;
14333
14334 /* Get a value for the GP register. */
14335 if (elf_gp (abfd) == 0)
14336 {
14337 struct bfd_link_hash_entry *h;
14338
14339 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
14340 if (h != NULL && h->type == bfd_link_hash_defined)
14341 elf_gp (abfd) = (h->u.def.value
14342 + h->u.def.section->output_section->vma
14343 + h->u.def.section->output_offset);
14344 else if (htab->is_vxworks
14345 && (h = bfd_link_hash_lookup (info->hash,
14346 "_GLOBAL_OFFSET_TABLE_",
14347 FALSE, FALSE, TRUE))
14348 && h->type == bfd_link_hash_defined)
14349 elf_gp (abfd) = (h->u.def.section->output_section->vma
14350 + h->u.def.section->output_offset
14351 + h->u.def.value);
14352 else if (bfd_link_relocatable (info))
14353 {
14354 bfd_vma lo = MINUS_ONE;
14355
14356 /* Find the GP-relative section with the lowest offset. */
14357 for (o = abfd->sections; o != NULL; o = o->next)
14358 if (o->vma < lo
14359 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14360 lo = o->vma;
14361
14362 /* And calculate GP relative to that. */
14363 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14364 }
14365 else
14366 {
14367 /* If the relocate_section function needs to do a reloc
14368 involving the GP value, it should make a reloc_dangerous
14369 callback to warn that GP is not defined. */
14370 }
14371 }
14372
14373 /* Go through the sections and collect the .reginfo and .mdebug
14374 information. */
14375 abiflags_sec = NULL;
14376 reginfo_sec = NULL;
14377 mdebug_sec = NULL;
14378 gptab_data_sec = NULL;
14379 gptab_bss_sec = NULL;
14380 for (o = abfd->sections; o != NULL; o = o->next)
14381 {
14382 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14383 {
14384 /* We have found the .MIPS.abiflags section in the output file.
14385 Look through all the link_orders comprising it and remove them.
14386 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14387 for (p = o->map_head.link_order; p != NULL; p = p->next)
14388 {
14389 asection *input_section;
14390
14391 if (p->type != bfd_indirect_link_order)
14392 {
14393 if (p->type == bfd_data_link_order)
14394 continue;
14395 abort ();
14396 }
14397
14398 input_section = p->u.indirect.section;
14399
14400 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14401 elf_link_input_bfd ignores this section. */
14402 input_section->flags &= ~SEC_HAS_CONTENTS;
14403 }
14404
14405 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14406 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14407
14408 /* Skip this section later on (I don't think this currently
14409 matters, but someday it might). */
14410 o->map_head.link_order = NULL;
14411
14412 abiflags_sec = o;
14413 }
14414
14415 if (strcmp (o->name, ".reginfo") == 0)
14416 {
14417 memset (&reginfo, 0, sizeof reginfo);
14418
14419 /* We have found the .reginfo section in the output file.
14420 Look through all the link_orders comprising it and merge
14421 the information together. */
14422 for (p = o->map_head.link_order; p != NULL; p = p->next)
14423 {
14424 asection *input_section;
14425 bfd *input_bfd;
14426 Elf32_External_RegInfo ext;
14427 Elf32_RegInfo sub;
14428 bfd_size_type sz;
14429
14430 if (p->type != bfd_indirect_link_order)
14431 {
14432 if (p->type == bfd_data_link_order)
14433 continue;
14434 abort ();
14435 }
14436
14437 input_section = p->u.indirect.section;
14438 input_bfd = input_section->owner;
14439
14440 sz = (input_section->size < sizeof (ext)
14441 ? input_section->size : sizeof (ext));
14442 memset (&ext, 0, sizeof (ext));
14443 if (! bfd_get_section_contents (input_bfd, input_section,
14444 &ext, 0, sz))
14445 return FALSE;
14446
14447 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14448
14449 reginfo.ri_gprmask |= sub.ri_gprmask;
14450 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14451 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14452 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14453 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14454
14455 /* ri_gp_value is set by the function
14456 `_bfd_mips_elf_section_processing' when the section is
14457 finally written out. */
14458
14459 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14460 elf_link_input_bfd ignores this section. */
14461 input_section->flags &= ~SEC_HAS_CONTENTS;
14462 }
14463
14464 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14465 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14466
14467 /* Skip this section later on (I don't think this currently
14468 matters, but someday it might). */
14469 o->map_head.link_order = NULL;
14470
14471 reginfo_sec = o;
14472 }
14473
14474 if (strcmp (o->name, ".mdebug") == 0)
14475 {
14476 struct extsym_info einfo;
14477 bfd_vma last;
14478
14479 /* We have found the .mdebug section in the output file.
14480 Look through all the link_orders comprising it and merge
14481 the information together. */
14482 symhdr->magic = swap->sym_magic;
14483 /* FIXME: What should the version stamp be? */
14484 symhdr->vstamp = 0;
14485 symhdr->ilineMax = 0;
14486 symhdr->cbLine = 0;
14487 symhdr->idnMax = 0;
14488 symhdr->ipdMax = 0;
14489 symhdr->isymMax = 0;
14490 symhdr->ioptMax = 0;
14491 symhdr->iauxMax = 0;
14492 symhdr->issMax = 0;
14493 symhdr->issExtMax = 0;
14494 symhdr->ifdMax = 0;
14495 symhdr->crfd = 0;
14496 symhdr->iextMax = 0;
14497
14498 /* We accumulate the debugging information itself in the
14499 debug_info structure. */
14500 debug.line = NULL;
14501 debug.external_dnr = NULL;
14502 debug.external_pdr = NULL;
14503 debug.external_sym = NULL;
14504 debug.external_opt = NULL;
14505 debug.external_aux = NULL;
14506 debug.ss = NULL;
14507 debug.ssext = debug.ssext_end = NULL;
14508 debug.external_fdr = NULL;
14509 debug.external_rfd = NULL;
14510 debug.external_ext = debug.external_ext_end = NULL;
14511
14512 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14513 if (mdebug_handle == NULL)
14514 return FALSE;
14515
14516 esym.jmptbl = 0;
14517 esym.cobol_main = 0;
14518 esym.weakext = 0;
14519 esym.reserved = 0;
14520 esym.ifd = ifdNil;
14521 esym.asym.iss = issNil;
14522 esym.asym.st = stLocal;
14523 esym.asym.reserved = 0;
14524 esym.asym.index = indexNil;
14525 last = 0;
14526 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14527 {
14528 esym.asym.sc = sc[i];
14529 s = bfd_get_section_by_name (abfd, secname[i]);
14530 if (s != NULL)
14531 {
14532 esym.asym.value = s->vma;
14533 last = s->vma + s->size;
14534 }
14535 else
14536 esym.asym.value = last;
14537 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14538 secname[i], &esym))
14539 return FALSE;
14540 }
14541
14542 for (p = o->map_head.link_order; p != NULL; p = p->next)
14543 {
14544 asection *input_section;
14545 bfd *input_bfd;
14546 const struct ecoff_debug_swap *input_swap;
14547 struct ecoff_debug_info input_debug;
14548 char *eraw_src;
14549 char *eraw_end;
14550
14551 if (p->type != bfd_indirect_link_order)
14552 {
14553 if (p->type == bfd_data_link_order)
14554 continue;
14555 abort ();
14556 }
14557
14558 input_section = p->u.indirect.section;
14559 input_bfd = input_section->owner;
14560
14561 if (!is_mips_elf (input_bfd))
14562 {
14563 /* I don't know what a non MIPS ELF bfd would be
14564 doing with a .mdebug section, but I don't really
14565 want to deal with it. */
14566 continue;
14567 }
14568
14569 input_swap = (get_elf_backend_data (input_bfd)
14570 ->elf_backend_ecoff_debug_swap);
14571
14572 BFD_ASSERT (p->size == input_section->size);
14573
14574 /* The ECOFF linking code expects that we have already
14575 read in the debugging information and set up an
14576 ecoff_debug_info structure, so we do that now. */
14577 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14578 &input_debug))
14579 return FALSE;
14580
14581 if (! (bfd_ecoff_debug_accumulate
14582 (mdebug_handle, abfd, &debug, swap, input_bfd,
14583 &input_debug, input_swap, info)))
14584 return FALSE;
14585
14586 /* Loop through the external symbols. For each one with
14587 interesting information, try to find the symbol in
14588 the linker global hash table and save the information
14589 for the output external symbols. */
14590 eraw_src = input_debug.external_ext;
14591 eraw_end = (eraw_src
14592 + (input_debug.symbolic_header.iextMax
14593 * input_swap->external_ext_size));
14594 for (;
14595 eraw_src < eraw_end;
14596 eraw_src += input_swap->external_ext_size)
14597 {
14598 EXTR ext;
14599 const char *name;
14600 struct mips_elf_link_hash_entry *h;
14601
14602 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
14603 if (ext.asym.sc == scNil
14604 || ext.asym.sc == scUndefined
14605 || ext.asym.sc == scSUndefined)
14606 continue;
14607
14608 name = input_debug.ssext + ext.asym.iss;
14609 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
14610 name, FALSE, FALSE, TRUE);
14611 if (h == NULL || h->esym.ifd != -2)
14612 continue;
14613
14614 if (ext.ifd != -1)
14615 {
14616 BFD_ASSERT (ext.ifd
14617 < input_debug.symbolic_header.ifdMax);
14618 ext.ifd = input_debug.ifdmap[ext.ifd];
14619 }
14620
14621 h->esym = ext;
14622 }
14623
14624 /* Free up the information we just read. */
14625 free (input_debug.line);
14626 free (input_debug.external_dnr);
14627 free (input_debug.external_pdr);
14628 free (input_debug.external_sym);
14629 free (input_debug.external_opt);
14630 free (input_debug.external_aux);
14631 free (input_debug.ss);
14632 free (input_debug.ssext);
14633 free (input_debug.external_fdr);
14634 free (input_debug.external_rfd);
14635 free (input_debug.external_ext);
14636
14637 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14638 elf_link_input_bfd ignores this section. */
14639 input_section->flags &= ~SEC_HAS_CONTENTS;
14640 }
14641
14642 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
14643 {
14644 /* Create .rtproc section. */
14645 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
14646 if (rtproc_sec == NULL)
14647 {
14648 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14649 | SEC_LINKER_CREATED | SEC_READONLY);
14650
14651 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14652 ".rtproc",
14653 flags);
14654 if (rtproc_sec == NULL
14655 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
14656 return FALSE;
14657 }
14658
14659 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14660 info, rtproc_sec,
14661 &debug))
14662 return FALSE;
14663 }
14664
14665 /* Build the external symbol information. */
14666 einfo.abfd = abfd;
14667 einfo.info = info;
14668 einfo.debug = &debug;
14669 einfo.swap = swap;
14670 einfo.failed = FALSE;
14671 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
14672 mips_elf_output_extsym, &einfo);
14673 if (einfo.failed)
14674 return FALSE;
14675
14676 /* Set the size of the .mdebug section. */
14677 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
14678
14679 /* Skip this section later on (I don't think this currently
14680 matters, but someday it might). */
14681 o->map_head.link_order = NULL;
14682
14683 mdebug_sec = o;
14684 }
14685
14686 if (CONST_STRNEQ (o->name, ".gptab."))
14687 {
14688 const char *subname;
14689 unsigned int c;
14690 Elf32_gptab *tab;
14691 Elf32_External_gptab *ext_tab;
14692 unsigned int j;
14693
14694 /* The .gptab.sdata and .gptab.sbss sections hold
14695 information describing how the small data area would
14696 change depending upon the -G switch. These sections
14697 not used in executables files. */
14698 if (! bfd_link_relocatable (info))
14699 {
14700 for (p = o->map_head.link_order; p != NULL; p = p->next)
14701 {
14702 asection *input_section;
14703
14704 if (p->type != bfd_indirect_link_order)
14705 {
14706 if (p->type == bfd_data_link_order)
14707 continue;
14708 abort ();
14709 }
14710
14711 input_section = p->u.indirect.section;
14712
14713 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14714 elf_link_input_bfd ignores this section. */
14715 input_section->flags &= ~SEC_HAS_CONTENTS;
14716 }
14717
14718 /* Skip this section later on (I don't think this
14719 currently matters, but someday it might). */
14720 o->map_head.link_order = NULL;
14721
14722 /* Really remove the section. */
14723 bfd_section_list_remove (abfd, o);
14724 --abfd->section_count;
14725
14726 continue;
14727 }
14728
14729 /* There is one gptab for initialized data, and one for
14730 uninitialized data. */
14731 if (strcmp (o->name, ".gptab.sdata") == 0)
14732 gptab_data_sec = o;
14733 else if (strcmp (o->name, ".gptab.sbss") == 0)
14734 gptab_bss_sec = o;
14735 else
14736 {
14737 _bfd_error_handler
14738 /* xgettext:c-format */
14739 (_("%pB: illegal section name `%pA'"), abfd, o);
14740 bfd_set_error (bfd_error_nonrepresentable_section);
14741 return FALSE;
14742 }
14743
14744 /* The linker script always combines .gptab.data and
14745 .gptab.sdata into .gptab.sdata, and likewise for
14746 .gptab.bss and .gptab.sbss. It is possible that there is
14747 no .sdata or .sbss section in the output file, in which
14748 case we must change the name of the output section. */
14749 subname = o->name + sizeof ".gptab" - 1;
14750 if (bfd_get_section_by_name (abfd, subname) == NULL)
14751 {
14752 if (o == gptab_data_sec)
14753 o->name = ".gptab.data";
14754 else
14755 o->name = ".gptab.bss";
14756 subname = o->name + sizeof ".gptab" - 1;
14757 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14758 }
14759
14760 /* Set up the first entry. */
14761 c = 1;
14762 amt = c * sizeof (Elf32_gptab);
14763 tab = bfd_malloc (amt);
14764 if (tab == NULL)
14765 return FALSE;
14766 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14767 tab[0].gt_header.gt_unused = 0;
14768
14769 /* Combine the input sections. */
14770 for (p = o->map_head.link_order; p != NULL; p = p->next)
14771 {
14772 asection *input_section;
14773 bfd *input_bfd;
14774 bfd_size_type size;
14775 unsigned long last;
14776 bfd_size_type gpentry;
14777
14778 if (p->type != bfd_indirect_link_order)
14779 {
14780 if (p->type == bfd_data_link_order)
14781 continue;
14782 abort ();
14783 }
14784
14785 input_section = p->u.indirect.section;
14786 input_bfd = input_section->owner;
14787
14788 /* Combine the gptab entries for this input section one
14789 by one. We know that the input gptab entries are
14790 sorted by ascending -G value. */
14791 size = input_section->size;
14792 last = 0;
14793 for (gpentry = sizeof (Elf32_External_gptab);
14794 gpentry < size;
14795 gpentry += sizeof (Elf32_External_gptab))
14796 {
14797 Elf32_External_gptab ext_gptab;
14798 Elf32_gptab int_gptab;
14799 unsigned long val;
14800 unsigned long add;
14801 bfd_boolean exact;
14802 unsigned int look;
14803
14804 if (! (bfd_get_section_contents
14805 (input_bfd, input_section, &ext_gptab, gpentry,
14806 sizeof (Elf32_External_gptab))))
14807 {
14808 free (tab);
14809 return FALSE;
14810 }
14811
14812 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
14813 &int_gptab);
14814 val = int_gptab.gt_entry.gt_g_value;
14815 add = int_gptab.gt_entry.gt_bytes - last;
14816
14817 exact = FALSE;
14818 for (look = 1; look < c; look++)
14819 {
14820 if (tab[look].gt_entry.gt_g_value >= val)
14821 tab[look].gt_entry.gt_bytes += add;
14822
14823 if (tab[look].gt_entry.gt_g_value == val)
14824 exact = TRUE;
14825 }
14826
14827 if (! exact)
14828 {
14829 Elf32_gptab *new_tab;
14830 unsigned int max;
14831
14832 /* We need a new table entry. */
14833 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
14834 new_tab = bfd_realloc (tab, amt);
14835 if (new_tab == NULL)
14836 {
14837 free (tab);
14838 return FALSE;
14839 }
14840 tab = new_tab;
14841 tab[c].gt_entry.gt_g_value = val;
14842 tab[c].gt_entry.gt_bytes = add;
14843
14844 /* Merge in the size for the next smallest -G
14845 value, since that will be implied by this new
14846 value. */
14847 max = 0;
14848 for (look = 1; look < c; look++)
14849 {
14850 if (tab[look].gt_entry.gt_g_value < val
14851 && (max == 0
14852 || (tab[look].gt_entry.gt_g_value
14853 > tab[max].gt_entry.gt_g_value)))
14854 max = look;
14855 }
14856 if (max != 0)
14857 tab[c].gt_entry.gt_bytes +=
14858 tab[max].gt_entry.gt_bytes;
14859
14860 ++c;
14861 }
14862
14863 last = int_gptab.gt_entry.gt_bytes;
14864 }
14865
14866 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14867 elf_link_input_bfd ignores this section. */
14868 input_section->flags &= ~SEC_HAS_CONTENTS;
14869 }
14870
14871 /* The table must be sorted by -G value. */
14872 if (c > 2)
14873 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
14874
14875 /* Swap out the table. */
14876 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
14877 ext_tab = bfd_alloc (abfd, amt);
14878 if (ext_tab == NULL)
14879 {
14880 free (tab);
14881 return FALSE;
14882 }
14883
14884 for (j = 0; j < c; j++)
14885 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
14886 free (tab);
14887
14888 o->size = c * sizeof (Elf32_External_gptab);
14889 o->contents = (bfd_byte *) ext_tab;
14890
14891 /* Skip this section later on (I don't think this currently
14892 matters, but someday it might). */
14893 o->map_head.link_order = NULL;
14894 }
14895 }
14896
14897 /* Invoke the regular ELF backend linker to do all the work. */
14898 if (!bfd_elf_final_link (abfd, info))
14899 return FALSE;
14900
14901 /* Now write out the computed sections. */
14902
14903 if (abiflags_sec != NULL)
14904 {
14905 Elf_External_ABIFlags_v0 ext;
14906 Elf_Internal_ABIFlags_v0 *abiflags;
14907
14908 abiflags = &mips_elf_tdata (abfd)->abiflags;
14909
14910 /* Set up the abiflags if no valid input sections were found. */
14911 if (!mips_elf_tdata (abfd)->abiflags_valid)
14912 {
14913 infer_mips_abiflags (abfd, abiflags);
14914 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
14915 }
14916 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
14917 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
14918 return FALSE;
14919 }
14920
14921 if (reginfo_sec != NULL)
14922 {
14923 Elf32_External_RegInfo ext;
14924
14925 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
14926 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
14927 return FALSE;
14928 }
14929
14930 if (mdebug_sec != NULL)
14931 {
14932 BFD_ASSERT (abfd->output_has_begun);
14933 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
14934 swap, info,
14935 mdebug_sec->filepos))
14936 return FALSE;
14937
14938 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
14939 }
14940
14941 if (gptab_data_sec != NULL)
14942 {
14943 if (! bfd_set_section_contents (abfd, gptab_data_sec,
14944 gptab_data_sec->contents,
14945 0, gptab_data_sec->size))
14946 return FALSE;
14947 }
14948
14949 if (gptab_bss_sec != NULL)
14950 {
14951 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
14952 gptab_bss_sec->contents,
14953 0, gptab_bss_sec->size))
14954 return FALSE;
14955 }
14956
14957 if (SGI_COMPAT (abfd))
14958 {
14959 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
14960 if (rtproc_sec != NULL)
14961 {
14962 if (! bfd_set_section_contents (abfd, rtproc_sec,
14963 rtproc_sec->contents,
14964 0, rtproc_sec->size))
14965 return FALSE;
14966 }
14967 }
14968
14969 return TRUE;
14970 }
14971 \f
14972 /* Merge object file header flags from IBFD into OBFD. Raise an error
14973 if there are conflicting settings. */
14974
14975 static bfd_boolean
14976 mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info)
14977 {
14978 bfd *obfd = info->output_bfd;
14979 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
14980 flagword old_flags;
14981 flagword new_flags;
14982 bfd_boolean ok;
14983
14984 new_flags = elf_elfheader (ibfd)->e_flags;
14985 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
14986 old_flags = elf_elfheader (obfd)->e_flags;
14987
14988 /* Check flag compatibility. */
14989
14990 new_flags &= ~EF_MIPS_NOREORDER;
14991 old_flags &= ~EF_MIPS_NOREORDER;
14992
14993 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
14994 doesn't seem to matter. */
14995 new_flags &= ~EF_MIPS_XGOT;
14996 old_flags &= ~EF_MIPS_XGOT;
14997
14998 /* MIPSpro generates ucode info in n64 objects. Again, we should
14999 just be able to ignore this. */
15000 new_flags &= ~EF_MIPS_UCODE;
15001 old_flags &= ~EF_MIPS_UCODE;
15002
15003 /* DSOs should only be linked with CPIC code. */
15004 if ((ibfd->flags & DYNAMIC) != 0)
15005 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
15006
15007 if (new_flags == old_flags)
15008 return TRUE;
15009
15010 ok = TRUE;
15011
15012 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
15013 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
15014 {
15015 _bfd_error_handler
15016 (_("%pB: warning: linking abicalls files with non-abicalls files"),
15017 ibfd);
15018 ok = TRUE;
15019 }
15020
15021 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
15022 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
15023 if (! (new_flags & EF_MIPS_PIC))
15024 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
15025
15026 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15027 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15028
15029 /* Compare the ISAs. */
15030 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
15031 {
15032 _bfd_error_handler
15033 (_("%pB: linking 32-bit code with 64-bit code"),
15034 ibfd);
15035 ok = FALSE;
15036 }
15037 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15038 {
15039 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15040 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
15041 {
15042 /* Copy the architecture info from IBFD to OBFD. Also copy
15043 the 32-bit flag (if set) so that we continue to recognise
15044 OBFD as a 32-bit binary. */
15045 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15046 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15047 elf_elfheader (obfd)->e_flags
15048 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15049
15050 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15051 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15052
15053 /* Copy across the ABI flags if OBFD doesn't use them
15054 and if that was what caused us to treat IBFD as 32-bit. */
15055 if ((old_flags & EF_MIPS_ABI) == 0
15056 && mips_32bit_flags_p (new_flags)
15057 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15058 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15059 }
15060 else
15061 {
15062 /* The ISAs aren't compatible. */
15063 _bfd_error_handler
15064 /* xgettext:c-format */
15065 (_("%pB: linking %s module with previous %s modules"),
15066 ibfd,
15067 bfd_printable_name (ibfd),
15068 bfd_printable_name (obfd));
15069 ok = FALSE;
15070 }
15071 }
15072
15073 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15074 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15075
15076 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15077 does set EI_CLASS differently from any 32-bit ABI. */
15078 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15079 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15080 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15081 {
15082 /* Only error if both are set (to different values). */
15083 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15084 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15085 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15086 {
15087 _bfd_error_handler
15088 /* xgettext:c-format */
15089 (_("%pB: ABI mismatch: linking %s module with previous %s modules"),
15090 ibfd,
15091 elf_mips_abi_name (ibfd),
15092 elf_mips_abi_name (obfd));
15093 ok = FALSE;
15094 }
15095 new_flags &= ~EF_MIPS_ABI;
15096 old_flags &= ~EF_MIPS_ABI;
15097 }
15098
15099 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15100 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15101 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15102 {
15103 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15104 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15105 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15106 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15107 int micro_mis = old_m16 && new_micro;
15108 int m16_mis = old_micro && new_m16;
15109
15110 if (m16_mis || micro_mis)
15111 {
15112 _bfd_error_handler
15113 /* xgettext:c-format */
15114 (_("%pB: ASE mismatch: linking %s module with previous %s modules"),
15115 ibfd,
15116 m16_mis ? "MIPS16" : "microMIPS",
15117 m16_mis ? "microMIPS" : "MIPS16");
15118 ok = FALSE;
15119 }
15120
15121 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15122
15123 new_flags &= ~ EF_MIPS_ARCH_ASE;
15124 old_flags &= ~ EF_MIPS_ARCH_ASE;
15125 }
15126
15127 /* Compare NaN encodings. */
15128 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15129 {
15130 /* xgettext:c-format */
15131 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15132 ibfd,
15133 (new_flags & EF_MIPS_NAN2008
15134 ? "-mnan=2008" : "-mnan=legacy"),
15135 (old_flags & EF_MIPS_NAN2008
15136 ? "-mnan=2008" : "-mnan=legacy"));
15137 ok = FALSE;
15138 new_flags &= ~EF_MIPS_NAN2008;
15139 old_flags &= ~EF_MIPS_NAN2008;
15140 }
15141
15142 /* Compare FP64 state. */
15143 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15144 {
15145 /* xgettext:c-format */
15146 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15147 ibfd,
15148 (new_flags & EF_MIPS_FP64
15149 ? "-mfp64" : "-mfp32"),
15150 (old_flags & EF_MIPS_FP64
15151 ? "-mfp64" : "-mfp32"));
15152 ok = FALSE;
15153 new_flags &= ~EF_MIPS_FP64;
15154 old_flags &= ~EF_MIPS_FP64;
15155 }
15156
15157 /* Warn about any other mismatches */
15158 if (new_flags != old_flags)
15159 {
15160 /* xgettext:c-format */
15161 _bfd_error_handler
15162 (_("%pB: uses different e_flags (%#x) fields than previous modules "
15163 "(%#x)"),
15164 ibfd, new_flags, old_flags);
15165 ok = FALSE;
15166 }
15167
15168 return ok;
15169 }
15170
15171 /* Merge object attributes from IBFD into OBFD. Raise an error if
15172 there are conflicting attributes. */
15173 static bfd_boolean
15174 mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
15175 {
15176 bfd *obfd = info->output_bfd;
15177 obj_attribute *in_attr;
15178 obj_attribute *out_attr;
15179 bfd *abi_fp_bfd;
15180 bfd *abi_msa_bfd;
15181
15182 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15183 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15184 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
15185 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15186
15187 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15188 if (!abi_msa_bfd
15189 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15190 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15191
15192 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15193 {
15194 /* This is the first object. Copy the attributes. */
15195 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15196
15197 /* Use the Tag_null value to indicate the attributes have been
15198 initialized. */
15199 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15200
15201 return TRUE;
15202 }
15203
15204 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15205 non-conflicting ones. */
15206 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15207 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15208 {
15209 int out_fp, in_fp;
15210
15211 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15212 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15213 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15214 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15215 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
15216 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15217 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15218 || in_fp == Val_GNU_MIPS_ABI_FP_64
15219 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15220 {
15221 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15222 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15223 }
15224 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15225 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15226 || out_fp == Val_GNU_MIPS_ABI_FP_64
15227 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15228 /* Keep the current setting. */;
15229 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15230 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15231 {
15232 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15233 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15234 }
15235 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15236 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15237 /* Keep the current setting. */;
15238 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15239 {
15240 const char *out_string, *in_string;
15241
15242 out_string = _bfd_mips_fp_abi_string (out_fp);
15243 in_string = _bfd_mips_fp_abi_string (in_fp);
15244 /* First warn about cases involving unrecognised ABIs. */
15245 if (!out_string && !in_string)
15246 /* xgettext:c-format */
15247 _bfd_error_handler
15248 (_("warning: %pB uses unknown floating point ABI %d "
15249 "(set by %pB), %pB uses unknown floating point ABI %d"),
15250 obfd, out_fp, abi_fp_bfd, ibfd, in_fp);
15251 else if (!out_string)
15252 _bfd_error_handler
15253 /* xgettext:c-format */
15254 (_("warning: %pB uses unknown floating point ABI %d "
15255 "(set by %pB), %pB uses %s"),
15256 obfd, out_fp, abi_fp_bfd, ibfd, in_string);
15257 else if (!in_string)
15258 _bfd_error_handler
15259 /* xgettext:c-format */
15260 (_("warning: %pB uses %s (set by %pB), "
15261 "%pB uses unknown floating point ABI %d"),
15262 obfd, out_string, abi_fp_bfd, ibfd, in_fp);
15263 else
15264 {
15265 /* If one of the bfds is soft-float, the other must be
15266 hard-float. The exact choice of hard-float ABI isn't
15267 really relevant to the error message. */
15268 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15269 out_string = "-mhard-float";
15270 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15271 in_string = "-mhard-float";
15272 _bfd_error_handler
15273 /* xgettext:c-format */
15274 (_("warning: %pB uses %s (set by %pB), %pB uses %s"),
15275 obfd, out_string, abi_fp_bfd, ibfd, in_string);
15276 }
15277 }
15278 }
15279
15280 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15281 non-conflicting ones. */
15282 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15283 {
15284 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15285 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15286 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15287 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15288 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15289 {
15290 case Val_GNU_MIPS_ABI_MSA_128:
15291 _bfd_error_handler
15292 /* xgettext:c-format */
15293 (_("warning: %pB uses %s (set by %pB), "
15294 "%pB uses unknown MSA ABI %d"),
15295 obfd, "-mmsa", abi_msa_bfd,
15296 ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15297 break;
15298
15299 default:
15300 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15301 {
15302 case Val_GNU_MIPS_ABI_MSA_128:
15303 _bfd_error_handler
15304 /* xgettext:c-format */
15305 (_("warning: %pB uses unknown MSA ABI %d "
15306 "(set by %pB), %pB uses %s"),
15307 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15308 abi_msa_bfd, ibfd, "-mmsa");
15309 break;
15310
15311 default:
15312 _bfd_error_handler
15313 /* xgettext:c-format */
15314 (_("warning: %pB uses unknown MSA ABI %d "
15315 "(set by %pB), %pB uses unknown MSA ABI %d"),
15316 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15317 abi_msa_bfd, ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15318 break;
15319 }
15320 }
15321 }
15322
15323 /* Merge Tag_compatibility attributes and any common GNU ones. */
15324 return _bfd_elf_merge_object_attributes (ibfd, info);
15325 }
15326
15327 /* Merge object ABI flags from IBFD into OBFD. Raise an error if
15328 there are conflicting settings. */
15329
15330 static bfd_boolean
15331 mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15332 {
15333 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15334 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15335 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15336
15337 /* Update the output abiflags fp_abi using the computed fp_abi. */
15338 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15339
15340 #define max(a, b) ((a) > (b) ? (a) : (b))
15341 /* Merge abiflags. */
15342 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15343 in_tdata->abiflags.isa_level);
15344 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15345 in_tdata->abiflags.isa_rev);
15346 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15347 in_tdata->abiflags.gpr_size);
15348 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15349 in_tdata->abiflags.cpr1_size);
15350 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15351 in_tdata->abiflags.cpr2_size);
15352 #undef max
15353 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15354 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15355
15356 return TRUE;
15357 }
15358
15359 /* Merge backend specific data from an object file to the output
15360 object file when linking. */
15361
15362 bfd_boolean
15363 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
15364 {
15365 bfd *obfd = info->output_bfd;
15366 struct mips_elf_obj_tdata *out_tdata;
15367 struct mips_elf_obj_tdata *in_tdata;
15368 bfd_boolean null_input_bfd = TRUE;
15369 asection *sec;
15370 bfd_boolean ok;
15371
15372 /* Check if we have the same endianness. */
15373 if (! _bfd_generic_verify_endian_match (ibfd, info))
15374 {
15375 _bfd_error_handler
15376 (_("%pB: endianness incompatible with that of the selected emulation"),
15377 ibfd);
15378 return FALSE;
15379 }
15380
15381 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15382 return TRUE;
15383
15384 in_tdata = mips_elf_tdata (ibfd);
15385 out_tdata = mips_elf_tdata (obfd);
15386
15387 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15388 {
15389 _bfd_error_handler
15390 (_("%pB: ABI is incompatible with that of the selected emulation"),
15391 ibfd);
15392 return FALSE;
15393 }
15394
15395 /* Check to see if the input BFD actually contains any sections. If not,
15396 then it has no attributes, and its flags may not have been initialized
15397 either, but it cannot actually cause any incompatibility. */
15398 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15399 {
15400 /* Ignore synthetic sections and empty .text, .data and .bss sections
15401 which are automatically generated by gas. Also ignore fake
15402 (s)common sections, since merely defining a common symbol does
15403 not affect compatibility. */
15404 if ((sec->flags & SEC_IS_COMMON) == 0
15405 && strcmp (sec->name, ".reginfo")
15406 && strcmp (sec->name, ".mdebug")
15407 && (sec->size != 0
15408 || (strcmp (sec->name, ".text")
15409 && strcmp (sec->name, ".data")
15410 && strcmp (sec->name, ".bss"))))
15411 {
15412 null_input_bfd = FALSE;
15413 break;
15414 }
15415 }
15416 if (null_input_bfd)
15417 return TRUE;
15418
15419 /* Populate abiflags using existing information. */
15420 if (in_tdata->abiflags_valid)
15421 {
15422 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15423 Elf_Internal_ABIFlags_v0 in_abiflags;
15424 Elf_Internal_ABIFlags_v0 abiflags;
15425
15426 /* Set up the FP ABI attribute from the abiflags if it is not already
15427 set. */
15428 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15429 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
15430
15431 infer_mips_abiflags (ibfd, &abiflags);
15432 in_abiflags = in_tdata->abiflags;
15433
15434 /* It is not possible to infer the correct ISA revision
15435 for R3 or R5 so drop down to R2 for the checks. */
15436 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15437 in_abiflags.isa_rev = 2;
15438
15439 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15440 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
15441 _bfd_error_handler
15442 (_("%pB: warning: inconsistent ISA between e_flags and "
15443 ".MIPS.abiflags"), ibfd);
15444 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15445 && in_abiflags.fp_abi != abiflags.fp_abi)
15446 _bfd_error_handler
15447 (_("%pB: warning: inconsistent FP ABI between .gnu.attributes and "
15448 ".MIPS.abiflags"), ibfd);
15449 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15450 _bfd_error_handler
15451 (_("%pB: warning: inconsistent ASEs between e_flags and "
15452 ".MIPS.abiflags"), ibfd);
15453 /* The isa_ext is allowed to be an extension of what can be inferred
15454 from e_flags. */
15455 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15456 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
15457 _bfd_error_handler
15458 (_("%pB: warning: inconsistent ISA extensions between e_flags and "
15459 ".MIPS.abiflags"), ibfd);
15460 if (in_abiflags.flags2 != 0)
15461 _bfd_error_handler
15462 (_("%pB: warning: unexpected flag in the flags2 field of "
15463 ".MIPS.abiflags (0x%lx)"), ibfd,
15464 in_abiflags.flags2);
15465 }
15466 else
15467 {
15468 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15469 in_tdata->abiflags_valid = TRUE;
15470 }
15471
15472 if (!out_tdata->abiflags_valid)
15473 {
15474 /* Copy input abiflags if output abiflags are not already valid. */
15475 out_tdata->abiflags = in_tdata->abiflags;
15476 out_tdata->abiflags_valid = TRUE;
15477 }
15478
15479 if (! elf_flags_init (obfd))
15480 {
15481 elf_flags_init (obfd) = TRUE;
15482 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15483 elf_elfheader (obfd)->e_ident[EI_CLASS]
15484 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15485
15486 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15487 && (bfd_get_arch_info (obfd)->the_default
15488 || mips_mach_extends_p (bfd_get_mach (obfd),
15489 bfd_get_mach (ibfd))))
15490 {
15491 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15492 bfd_get_mach (ibfd)))
15493 return FALSE;
15494
15495 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15496 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15497 }
15498
15499 ok = TRUE;
15500 }
15501 else
15502 ok = mips_elf_merge_obj_e_flags (ibfd, info);
15503
15504 ok = mips_elf_merge_obj_attributes (ibfd, info) && ok;
15505
15506 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
15507
15508 if (!ok)
15509 {
15510 bfd_set_error (bfd_error_bad_value);
15511 return FALSE;
15512 }
15513
15514 return TRUE;
15515 }
15516
15517 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15518
15519 bfd_boolean
15520 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15521 {
15522 BFD_ASSERT (!elf_flags_init (abfd)
15523 || elf_elfheader (abfd)->e_flags == flags);
15524
15525 elf_elfheader (abfd)->e_flags = flags;
15526 elf_flags_init (abfd) = TRUE;
15527 return TRUE;
15528 }
15529
15530 char *
15531 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15532 {
15533 switch (dtag)
15534 {
15535 default: return "";
15536 case DT_MIPS_RLD_VERSION:
15537 return "MIPS_RLD_VERSION";
15538 case DT_MIPS_TIME_STAMP:
15539 return "MIPS_TIME_STAMP";
15540 case DT_MIPS_ICHECKSUM:
15541 return "MIPS_ICHECKSUM";
15542 case DT_MIPS_IVERSION:
15543 return "MIPS_IVERSION";
15544 case DT_MIPS_FLAGS:
15545 return "MIPS_FLAGS";
15546 case DT_MIPS_BASE_ADDRESS:
15547 return "MIPS_BASE_ADDRESS";
15548 case DT_MIPS_MSYM:
15549 return "MIPS_MSYM";
15550 case DT_MIPS_CONFLICT:
15551 return "MIPS_CONFLICT";
15552 case DT_MIPS_LIBLIST:
15553 return "MIPS_LIBLIST";
15554 case DT_MIPS_LOCAL_GOTNO:
15555 return "MIPS_LOCAL_GOTNO";
15556 case DT_MIPS_CONFLICTNO:
15557 return "MIPS_CONFLICTNO";
15558 case DT_MIPS_LIBLISTNO:
15559 return "MIPS_LIBLISTNO";
15560 case DT_MIPS_SYMTABNO:
15561 return "MIPS_SYMTABNO";
15562 case DT_MIPS_UNREFEXTNO:
15563 return "MIPS_UNREFEXTNO";
15564 case DT_MIPS_GOTSYM:
15565 return "MIPS_GOTSYM";
15566 case DT_MIPS_HIPAGENO:
15567 return "MIPS_HIPAGENO";
15568 case DT_MIPS_RLD_MAP:
15569 return "MIPS_RLD_MAP";
15570 case DT_MIPS_RLD_MAP_REL:
15571 return "MIPS_RLD_MAP_REL";
15572 case DT_MIPS_DELTA_CLASS:
15573 return "MIPS_DELTA_CLASS";
15574 case DT_MIPS_DELTA_CLASS_NO:
15575 return "MIPS_DELTA_CLASS_NO";
15576 case DT_MIPS_DELTA_INSTANCE:
15577 return "MIPS_DELTA_INSTANCE";
15578 case DT_MIPS_DELTA_INSTANCE_NO:
15579 return "MIPS_DELTA_INSTANCE_NO";
15580 case DT_MIPS_DELTA_RELOC:
15581 return "MIPS_DELTA_RELOC";
15582 case DT_MIPS_DELTA_RELOC_NO:
15583 return "MIPS_DELTA_RELOC_NO";
15584 case DT_MIPS_DELTA_SYM:
15585 return "MIPS_DELTA_SYM";
15586 case DT_MIPS_DELTA_SYM_NO:
15587 return "MIPS_DELTA_SYM_NO";
15588 case DT_MIPS_DELTA_CLASSSYM:
15589 return "MIPS_DELTA_CLASSSYM";
15590 case DT_MIPS_DELTA_CLASSSYM_NO:
15591 return "MIPS_DELTA_CLASSSYM_NO";
15592 case DT_MIPS_CXX_FLAGS:
15593 return "MIPS_CXX_FLAGS";
15594 case DT_MIPS_PIXIE_INIT:
15595 return "MIPS_PIXIE_INIT";
15596 case DT_MIPS_SYMBOL_LIB:
15597 return "MIPS_SYMBOL_LIB";
15598 case DT_MIPS_LOCALPAGE_GOTIDX:
15599 return "MIPS_LOCALPAGE_GOTIDX";
15600 case DT_MIPS_LOCAL_GOTIDX:
15601 return "MIPS_LOCAL_GOTIDX";
15602 case DT_MIPS_HIDDEN_GOTIDX:
15603 return "MIPS_HIDDEN_GOTIDX";
15604 case DT_MIPS_PROTECTED_GOTIDX:
15605 return "MIPS_PROTECTED_GOT_IDX";
15606 case DT_MIPS_OPTIONS:
15607 return "MIPS_OPTIONS";
15608 case DT_MIPS_INTERFACE:
15609 return "MIPS_INTERFACE";
15610 case DT_MIPS_DYNSTR_ALIGN:
15611 return "DT_MIPS_DYNSTR_ALIGN";
15612 case DT_MIPS_INTERFACE_SIZE:
15613 return "DT_MIPS_INTERFACE_SIZE";
15614 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15615 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15616 case DT_MIPS_PERF_SUFFIX:
15617 return "DT_MIPS_PERF_SUFFIX";
15618 case DT_MIPS_COMPACT_SIZE:
15619 return "DT_MIPS_COMPACT_SIZE";
15620 case DT_MIPS_GP_VALUE:
15621 return "DT_MIPS_GP_VALUE";
15622 case DT_MIPS_AUX_DYNAMIC:
15623 return "DT_MIPS_AUX_DYNAMIC";
15624 case DT_MIPS_PLTGOT:
15625 return "DT_MIPS_PLTGOT";
15626 case DT_MIPS_RWPLT:
15627 return "DT_MIPS_RWPLT";
15628 }
15629 }
15630
15631 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15632 not known. */
15633
15634 const char *
15635 _bfd_mips_fp_abi_string (int fp)
15636 {
15637 switch (fp)
15638 {
15639 /* These strings aren't translated because they're simply
15640 option lists. */
15641 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15642 return "-mdouble-float";
15643
15644 case Val_GNU_MIPS_ABI_FP_SINGLE:
15645 return "-msingle-float";
15646
15647 case Val_GNU_MIPS_ABI_FP_SOFT:
15648 return "-msoft-float";
15649
15650 case Val_GNU_MIPS_ABI_FP_OLD_64:
15651 return _("-mips32r2 -mfp64 (12 callee-saved)");
15652
15653 case Val_GNU_MIPS_ABI_FP_XX:
15654 return "-mfpxx";
15655
15656 case Val_GNU_MIPS_ABI_FP_64:
15657 return "-mgp32 -mfp64";
15658
15659 case Val_GNU_MIPS_ABI_FP_64A:
15660 return "-mgp32 -mfp64 -mno-odd-spreg";
15661
15662 default:
15663 return 0;
15664 }
15665 }
15666
15667 static void
15668 print_mips_ases (FILE *file, unsigned int mask)
15669 {
15670 if (mask & AFL_ASE_DSP)
15671 fputs ("\n\tDSP ASE", file);
15672 if (mask & AFL_ASE_DSPR2)
15673 fputs ("\n\tDSP R2 ASE", file);
15674 if (mask & AFL_ASE_DSPR3)
15675 fputs ("\n\tDSP R3 ASE", file);
15676 if (mask & AFL_ASE_EVA)
15677 fputs ("\n\tEnhanced VA Scheme", file);
15678 if (mask & AFL_ASE_MCU)
15679 fputs ("\n\tMCU (MicroController) ASE", file);
15680 if (mask & AFL_ASE_MDMX)
15681 fputs ("\n\tMDMX ASE", file);
15682 if (mask & AFL_ASE_MIPS3D)
15683 fputs ("\n\tMIPS-3D ASE", file);
15684 if (mask & AFL_ASE_MT)
15685 fputs ("\n\tMT ASE", file);
15686 if (mask & AFL_ASE_SMARTMIPS)
15687 fputs ("\n\tSmartMIPS ASE", file);
15688 if (mask & AFL_ASE_VIRT)
15689 fputs ("\n\tVZ ASE", file);
15690 if (mask & AFL_ASE_MSA)
15691 fputs ("\n\tMSA ASE", file);
15692 if (mask & AFL_ASE_MIPS16)
15693 fputs ("\n\tMIPS16 ASE", file);
15694 if (mask & AFL_ASE_MICROMIPS)
15695 fputs ("\n\tMICROMIPS ASE", file);
15696 if (mask & AFL_ASE_XPA)
15697 fputs ("\n\tXPA ASE", file);
15698 if (mask & AFL_ASE_MIPS16E2)
15699 fputs ("\n\tMIPS16e2 ASE", file);
15700 if (mask & AFL_ASE_CRC)
15701 fputs ("\n\tCRC ASE", file);
15702 if (mask & AFL_ASE_GINV)
15703 fputs ("\n\tGINV ASE", file);
15704 if (mask & AFL_ASE_LOONGSON_MMI)
15705 fputs ("\n\tLoongson MMI ASE", file);
15706 if (mask & AFL_ASE_LOONGSON_CAM)
15707 fputs ("\n\tLoongson CAM ASE", file);
15708 if (mask & AFL_ASE_LOONGSON_EXT)
15709 fputs ("\n\tLoongson EXT ASE", file);
15710 if (mask & AFL_ASE_LOONGSON_EXT2)
15711 fputs ("\n\tLoongson EXT2 ASE", file);
15712 if (mask == 0)
15713 fprintf (file, "\n\t%s", _("None"));
15714 else if ((mask & ~AFL_ASE_MASK) != 0)
15715 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
15716 }
15717
15718 static void
15719 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15720 {
15721 switch (isa_ext)
15722 {
15723 case 0:
15724 fputs (_("None"), file);
15725 break;
15726 case AFL_EXT_XLR:
15727 fputs ("RMI XLR", file);
15728 break;
15729 case AFL_EXT_OCTEON3:
15730 fputs ("Cavium Networks Octeon3", file);
15731 break;
15732 case AFL_EXT_OCTEON2:
15733 fputs ("Cavium Networks Octeon2", file);
15734 break;
15735 case AFL_EXT_OCTEONP:
15736 fputs ("Cavium Networks OcteonP", file);
15737 break;
15738 case AFL_EXT_OCTEON:
15739 fputs ("Cavium Networks Octeon", file);
15740 break;
15741 case AFL_EXT_5900:
15742 fputs ("Toshiba R5900", file);
15743 break;
15744 case AFL_EXT_4650:
15745 fputs ("MIPS R4650", file);
15746 break;
15747 case AFL_EXT_4010:
15748 fputs ("LSI R4010", file);
15749 break;
15750 case AFL_EXT_4100:
15751 fputs ("NEC VR4100", file);
15752 break;
15753 case AFL_EXT_3900:
15754 fputs ("Toshiba R3900", file);
15755 break;
15756 case AFL_EXT_10000:
15757 fputs ("MIPS R10000", file);
15758 break;
15759 case AFL_EXT_SB1:
15760 fputs ("Broadcom SB-1", file);
15761 break;
15762 case AFL_EXT_4111:
15763 fputs ("NEC VR4111/VR4181", file);
15764 break;
15765 case AFL_EXT_4120:
15766 fputs ("NEC VR4120", file);
15767 break;
15768 case AFL_EXT_5400:
15769 fputs ("NEC VR5400", file);
15770 break;
15771 case AFL_EXT_5500:
15772 fputs ("NEC VR5500", file);
15773 break;
15774 case AFL_EXT_LOONGSON_2E:
15775 fputs ("ST Microelectronics Loongson 2E", file);
15776 break;
15777 case AFL_EXT_LOONGSON_2F:
15778 fputs ("ST Microelectronics Loongson 2F", file);
15779 break;
15780 case AFL_EXT_INTERAPTIV_MR2:
15781 fputs ("Imagination interAptiv MR2", file);
15782 break;
15783 default:
15784 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
15785 break;
15786 }
15787 }
15788
15789 static void
15790 print_mips_fp_abi_value (FILE *file, int val)
15791 {
15792 switch (val)
15793 {
15794 case Val_GNU_MIPS_ABI_FP_ANY:
15795 fprintf (file, _("Hard or soft float\n"));
15796 break;
15797 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15798 fprintf (file, _("Hard float (double precision)\n"));
15799 break;
15800 case Val_GNU_MIPS_ABI_FP_SINGLE:
15801 fprintf (file, _("Hard float (single precision)\n"));
15802 break;
15803 case Val_GNU_MIPS_ABI_FP_SOFT:
15804 fprintf (file, _("Soft float\n"));
15805 break;
15806 case Val_GNU_MIPS_ABI_FP_OLD_64:
15807 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15808 break;
15809 case Val_GNU_MIPS_ABI_FP_XX:
15810 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
15811 break;
15812 case Val_GNU_MIPS_ABI_FP_64:
15813 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
15814 break;
15815 case Val_GNU_MIPS_ABI_FP_64A:
15816 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
15817 break;
15818 default:
15819 fprintf (file, "??? (%d)\n", val);
15820 break;
15821 }
15822 }
15823
15824 static int
15825 get_mips_reg_size (int reg_size)
15826 {
15827 return (reg_size == AFL_REG_NONE) ? 0
15828 : (reg_size == AFL_REG_32) ? 32
15829 : (reg_size == AFL_REG_64) ? 64
15830 : (reg_size == AFL_REG_128) ? 128
15831 : -1;
15832 }
15833
15834 bfd_boolean
15835 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
15836 {
15837 FILE *file = ptr;
15838
15839 BFD_ASSERT (abfd != NULL && ptr != NULL);
15840
15841 /* Print normal ELF private data. */
15842 _bfd_elf_print_private_bfd_data (abfd, ptr);
15843
15844 /* xgettext:c-format */
15845 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15846
15847 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
15848 fprintf (file, _(" [abi=O32]"));
15849 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
15850 fprintf (file, _(" [abi=O64]"));
15851 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
15852 fprintf (file, _(" [abi=EABI32]"));
15853 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
15854 fprintf (file, _(" [abi=EABI64]"));
15855 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
15856 fprintf (file, _(" [abi unknown]"));
15857 else if (ABI_N32_P (abfd))
15858 fprintf (file, _(" [abi=N32]"));
15859 else if (ABI_64_P (abfd))
15860 fprintf (file, _(" [abi=64]"));
15861 else
15862 fprintf (file, _(" [no abi set]"));
15863
15864 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
15865 fprintf (file, " [mips1]");
15866 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
15867 fprintf (file, " [mips2]");
15868 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
15869 fprintf (file, " [mips3]");
15870 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
15871 fprintf (file, " [mips4]");
15872 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
15873 fprintf (file, " [mips5]");
15874 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
15875 fprintf (file, " [mips32]");
15876 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
15877 fprintf (file, " [mips64]");
15878 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
15879 fprintf (file, " [mips32r2]");
15880 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
15881 fprintf (file, " [mips64r2]");
15882 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
15883 fprintf (file, " [mips32r6]");
15884 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
15885 fprintf (file, " [mips64r6]");
15886 else
15887 fprintf (file, _(" [unknown ISA]"));
15888
15889 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
15890 fprintf (file, " [mdmx]");
15891
15892 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
15893 fprintf (file, " [mips16]");
15894
15895 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
15896 fprintf (file, " [micromips]");
15897
15898 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
15899 fprintf (file, " [nan2008]");
15900
15901 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
15902 fprintf (file, " [old fp64]");
15903
15904 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
15905 fprintf (file, " [32bitmode]");
15906 else
15907 fprintf (file, _(" [not 32bitmode]"));
15908
15909 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
15910 fprintf (file, " [noreorder]");
15911
15912 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
15913 fprintf (file, " [PIC]");
15914
15915 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
15916 fprintf (file, " [CPIC]");
15917
15918 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
15919 fprintf (file, " [XGOT]");
15920
15921 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
15922 fprintf (file, " [UCODE]");
15923
15924 fputc ('\n', file);
15925
15926 if (mips_elf_tdata (abfd)->abiflags_valid)
15927 {
15928 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
15929 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
15930 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
15931 if (abiflags->isa_rev > 1)
15932 fprintf (file, "r%d", abiflags->isa_rev);
15933 fprintf (file, "\nGPR size: %d",
15934 get_mips_reg_size (abiflags->gpr_size));
15935 fprintf (file, "\nCPR1 size: %d",
15936 get_mips_reg_size (abiflags->cpr1_size));
15937 fprintf (file, "\nCPR2 size: %d",
15938 get_mips_reg_size (abiflags->cpr2_size));
15939 fputs ("\nFP ABI: ", file);
15940 print_mips_fp_abi_value (file, abiflags->fp_abi);
15941 fputs ("ISA Extension: ", file);
15942 print_mips_isa_ext (file, abiflags->isa_ext);
15943 fputs ("\nASEs:", file);
15944 print_mips_ases (file, abiflags->ases);
15945 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
15946 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
15947 fputc ('\n', file);
15948 }
15949
15950 return TRUE;
15951 }
15952
15953 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
15954 {
15955 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15956 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15957 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
15958 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15959 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15960 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
15961 { NULL, 0, 0, 0, 0 }
15962 };
15963
15964 /* Merge non visibility st_other attributes. Ensure that the
15965 STO_OPTIONAL flag is copied into h->other, even if this is not a
15966 definiton of the symbol. */
15967 void
15968 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
15969 const Elf_Internal_Sym *isym,
15970 bfd_boolean definition,
15971 bfd_boolean dynamic ATTRIBUTE_UNUSED)
15972 {
15973 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
15974 {
15975 unsigned char other;
15976
15977 other = (definition ? isym->st_other : h->other);
15978 other &= ~ELF_ST_VISIBILITY (-1);
15979 h->other = other | ELF_ST_VISIBILITY (h->other);
15980 }
15981
15982 if (!definition
15983 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
15984 h->other |= STO_OPTIONAL;
15985 }
15986
15987 /* Decide whether an undefined symbol is special and can be ignored.
15988 This is the case for OPTIONAL symbols on IRIX. */
15989 bfd_boolean
15990 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
15991 {
15992 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
15993 }
15994
15995 bfd_boolean
15996 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
15997 {
15998 return (sym->st_shndx == SHN_COMMON
15999 || sym->st_shndx == SHN_MIPS_ACOMMON
16000 || sym->st_shndx == SHN_MIPS_SCOMMON);
16001 }
16002
16003 /* Return address for Ith PLT stub in section PLT, for relocation REL
16004 or (bfd_vma) -1 if it should not be included. */
16005
16006 bfd_vma
16007 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
16008 const arelent *rel ATTRIBUTE_UNUSED)
16009 {
16010 return (plt->vma
16011 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
16012 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
16013 }
16014
16015 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
16016 and microMIPS PLT slots we may have a many-to-one mapping between .plt
16017 and .got.plt and also the slots may be of a different size each we walk
16018 the PLT manually fetching instructions and matching them against known
16019 patterns. To make things easier standard MIPS slots, if any, always come
16020 first. As we don't create proper ELF symbols we use the UDATA.I member
16021 of ASYMBOL to carry ISA annotation. The encoding used is the same as
16022 with the ST_OTHER member of the ELF symbol. */
16023
16024 long
16025 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
16026 long symcount ATTRIBUTE_UNUSED,
16027 asymbol **syms ATTRIBUTE_UNUSED,
16028 long dynsymcount, asymbol **dynsyms,
16029 asymbol **ret)
16030 {
16031 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
16032 static const char microsuffix[] = "@micromipsplt";
16033 static const char m16suffix[] = "@mips16plt";
16034 static const char mipssuffix[] = "@plt";
16035
16036 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
16037 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
16038 bfd_boolean micromips_p = MICROMIPS_P (abfd);
16039 Elf_Internal_Shdr *hdr;
16040 bfd_byte *plt_data;
16041 bfd_vma plt_offset;
16042 unsigned int other;
16043 bfd_vma entry_size;
16044 bfd_vma plt0_size;
16045 asection *relplt;
16046 bfd_vma opcode;
16047 asection *plt;
16048 asymbol *send;
16049 size_t size;
16050 char *names;
16051 long counti;
16052 arelent *p;
16053 asymbol *s;
16054 char *nend;
16055 long count;
16056 long pi;
16057 long i;
16058 long n;
16059
16060 *ret = NULL;
16061
16062 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
16063 return 0;
16064
16065 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16066 if (relplt == NULL)
16067 return 0;
16068
16069 hdr = &elf_section_data (relplt)->this_hdr;
16070 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
16071 return 0;
16072
16073 plt = bfd_get_section_by_name (abfd, ".plt");
16074 if (plt == NULL)
16075 return 0;
16076
16077 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
16078 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
16079 return -1;
16080 p = relplt->relocation;
16081
16082 /* Calculating the exact amount of space required for symbols would
16083 require two passes over the PLT, so just pessimise assuming two
16084 PLT slots per relocation. */
16085 count = relplt->size / hdr->sh_entsize;
16086 counti = count * bed->s->int_rels_per_ext_rel;
16087 size = 2 * count * sizeof (asymbol);
16088 size += count * (sizeof (mipssuffix) +
16089 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16090 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16091 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16092
16093 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16094 size += sizeof (asymbol) + sizeof (pltname);
16095
16096 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16097 return -1;
16098
16099 if (plt->size < 16)
16100 return -1;
16101
16102 s = *ret = bfd_malloc (size);
16103 if (s == NULL)
16104 return -1;
16105 send = s + 2 * count + 1;
16106
16107 names = (char *) send;
16108 nend = (char *) s + size;
16109 n = 0;
16110
16111 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16112 if (opcode == 0x3302fffe)
16113 {
16114 if (!micromips_p)
16115 return -1;
16116 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16117 other = STO_MICROMIPS;
16118 }
16119 else if (opcode == 0x0398c1d0)
16120 {
16121 if (!micromips_p)
16122 return -1;
16123 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16124 other = STO_MICROMIPS;
16125 }
16126 else
16127 {
16128 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16129 other = 0;
16130 }
16131
16132 s->the_bfd = abfd;
16133 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16134 s->section = plt;
16135 s->value = 0;
16136 s->name = names;
16137 s->udata.i = other;
16138 memcpy (names, pltname, sizeof (pltname));
16139 names += sizeof (pltname);
16140 ++s, ++n;
16141
16142 pi = 0;
16143 for (plt_offset = plt0_size;
16144 plt_offset + 8 <= plt->size && s < send;
16145 plt_offset += entry_size)
16146 {
16147 bfd_vma gotplt_addr;
16148 const char *suffix;
16149 bfd_vma gotplt_hi;
16150 bfd_vma gotplt_lo;
16151 size_t suffixlen;
16152
16153 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16154
16155 /* Check if the second word matches the expected MIPS16 instruction. */
16156 if (opcode == 0x651aeb00)
16157 {
16158 if (micromips_p)
16159 return -1;
16160 /* Truncated table??? */
16161 if (plt_offset + 16 > plt->size)
16162 break;
16163 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16164 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16165 suffixlen = sizeof (m16suffix);
16166 suffix = m16suffix;
16167 other = STO_MIPS16;
16168 }
16169 /* Likewise the expected microMIPS instruction (no insn32 mode). */
16170 else if (opcode == 0xff220000)
16171 {
16172 if (!micromips_p)
16173 return -1;
16174 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16175 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16176 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16177 gotplt_lo <<= 2;
16178 gotplt_addr = gotplt_hi + gotplt_lo;
16179 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16180 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16181 suffixlen = sizeof (microsuffix);
16182 suffix = microsuffix;
16183 other = STO_MICROMIPS;
16184 }
16185 /* Likewise the expected microMIPS instruction (insn32 mode). */
16186 else if ((opcode & 0xffff0000) == 0xff2f0000)
16187 {
16188 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16189 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16190 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16191 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16192 gotplt_addr = gotplt_hi + gotplt_lo;
16193 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16194 suffixlen = sizeof (microsuffix);
16195 suffix = microsuffix;
16196 other = STO_MICROMIPS;
16197 }
16198 /* Otherwise assume standard MIPS code. */
16199 else
16200 {
16201 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16202 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16203 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16204 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16205 gotplt_addr = gotplt_hi + gotplt_lo;
16206 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16207 suffixlen = sizeof (mipssuffix);
16208 suffix = mipssuffix;
16209 other = 0;
16210 }
16211 /* Truncated table??? */
16212 if (plt_offset + entry_size > plt->size)
16213 break;
16214
16215 for (i = 0;
16216 i < count && p[pi].address != gotplt_addr;
16217 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16218
16219 if (i < count)
16220 {
16221 size_t namelen;
16222 size_t len;
16223
16224 *s = **p[pi].sym_ptr_ptr;
16225 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16226 we are defining a symbol, ensure one of them is set. */
16227 if ((s->flags & BSF_LOCAL) == 0)
16228 s->flags |= BSF_GLOBAL;
16229 s->flags |= BSF_SYNTHETIC;
16230 s->section = plt;
16231 s->value = plt_offset;
16232 s->name = names;
16233 s->udata.i = other;
16234
16235 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16236 namelen = len + suffixlen;
16237 if (names + namelen > nend)
16238 break;
16239
16240 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16241 names += len;
16242 memcpy (names, suffix, suffixlen);
16243 names += suffixlen;
16244
16245 ++s, ++n;
16246 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16247 }
16248 }
16249
16250 free (plt_data);
16251
16252 return n;
16253 }
16254
16255 /* Return the ABI flags associated with ABFD if available. */
16256
16257 Elf_Internal_ABIFlags_v0 *
16258 bfd_mips_elf_get_abiflags (bfd *abfd)
16259 {
16260 struct mips_elf_obj_tdata *tdata = mips_elf_tdata (abfd);
16261
16262 return tdata->abiflags_valid ? &tdata->abiflags : NULL;
16263 }
16264
16265 /* MIPS libc ABI versions, used with the EI_ABIVERSION ELF file header
16266 field. Taken from `libc-abis.h' generated at GNU libc build time.
16267 Using a MIPS_ prefix as other libc targets use different values. */
16268 enum
16269 {
16270 MIPS_LIBC_ABI_DEFAULT = 0,
16271 MIPS_LIBC_ABI_MIPS_PLT,
16272 MIPS_LIBC_ABI_UNIQUE,
16273 MIPS_LIBC_ABI_MIPS_O32_FP64,
16274 MIPS_LIBC_ABI_MAX
16275 };
16276
16277 void
16278 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16279 {
16280 struct mips_elf_link_hash_table *htab;
16281 Elf_Internal_Ehdr *i_ehdrp;
16282
16283 i_ehdrp = elf_elfheader (abfd);
16284 if (link_info)
16285 {
16286 htab = mips_elf_hash_table (link_info);
16287 BFD_ASSERT (htab != NULL);
16288
16289 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16290 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_PLT;
16291 }
16292
16293 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16294 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16295 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_O32_FP64;
16296
16297 _bfd_elf_post_process_headers (abfd, link_info);
16298 }
16299
16300 int
16301 _bfd_mips_elf_compact_eh_encoding
16302 (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16303 {
16304 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16305 }
16306
16307 /* Return the opcode for can't unwind. */
16308
16309 int
16310 _bfd_mips_elf_cant_unwind_opcode
16311 (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16312 {
16313 return COMPACT_EH_CANT_UNWIND_OPCODE;
16314 }
This page took 0.379903 seconds and 5 git commands to generate.