2012-07-24 Teresa Johnson <tejohnson@google.com>
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 Free Software Foundation, Inc.
5
6 Most of the information added by Ian Lance Taylor, Cygnus Support,
7 <ian@cygnus.com>.
8 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
9 <mark@codesourcery.com>
10 Traditional MIPS targets support added by Koundinya.K, Dansk Data
11 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
12
13 This file is part of BFD, the Binary File Descriptor library.
14
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
17 the Free Software Foundation; either version 3 of the License, or
18 (at your option) any later version.
19
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
24
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
27 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
28 MA 02110-1301, USA. */
29
30
31 /* This file handles functionality common to the different MIPS ABI's. */
32
33 #include "sysdep.h"
34 #include "bfd.h"
35 #include "libbfd.h"
36 #include "libiberty.h"
37 #include "elf-bfd.h"
38 #include "elfxx-mips.h"
39 #include "elf/mips.h"
40 #include "elf-vxworks.h"
41
42 /* Get the ECOFF swapping routines. */
43 #include "coff/sym.h"
44 #include "coff/symconst.h"
45 #include "coff/ecoff.h"
46 #include "coff/mips.h"
47
48 #include "hashtab.h"
49
50 /* This structure is used to hold information about one GOT entry.
51 There are three types of entry:
52
53 (1) absolute addresses
54 (abfd == NULL)
55 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
56 (abfd != NULL, symndx >= 0)
57 (3) SYMBOL addresses, where SYMBOL is not local to an input bfd
58 (abfd != NULL, symndx == -1)
59
60 Type (3) entries are treated differently for different types of GOT.
61 In the "master" GOT -- i.e. the one that describes every GOT
62 reference needed in the link -- the mips_got_entry is keyed on both
63 the symbol and the input bfd that references it. If it turns out
64 that we need multiple GOTs, we can then use this information to
65 create separate GOTs for each input bfd.
66
67 However, we want each of these separate GOTs to have at most one
68 entry for a given symbol, so their type (3) entries are keyed only
69 on the symbol. The input bfd given by the "abfd" field is somewhat
70 arbitrary in this case.
71
72 This means that when there are multiple GOTs, each GOT has a unique
73 mips_got_entry for every symbol within it. We can therefore use the
74 mips_got_entry fields (tls_type and gotidx) to track the symbol's
75 GOT index.
76
77 However, if it turns out that we need only a single GOT, we continue
78 to use the master GOT to describe it. There may therefore be several
79 mips_got_entries for the same symbol, each with a different input bfd.
80 We want to make sure that each symbol gets a unique GOT entry, so when
81 there's a single GOT, we use the symbol's hash entry, not the
82 mips_got_entry fields, to track a symbol's GOT index. */
83 struct mips_got_entry
84 {
85 /* The input bfd in which the symbol is defined. */
86 bfd *abfd;
87 /* The index of the symbol, as stored in the relocation r_info, if
88 we have a local symbol; -1 otherwise. */
89 long symndx;
90 union
91 {
92 /* If abfd == NULL, an address that must be stored in the got. */
93 bfd_vma address;
94 /* If abfd != NULL && symndx != -1, the addend of the relocation
95 that should be added to the symbol value. */
96 bfd_vma addend;
97 /* If abfd != NULL && symndx == -1, the hash table entry
98 corresponding to symbol in the GOT. The symbol's entry
99 is in the local area if h->global_got_area is GGA_NONE,
100 otherwise it is in the global area. */
101 struct mips_elf_link_hash_entry *h;
102 } d;
103
104 /* The TLS types included in this GOT entry (specifically, GD and
105 IE). The GD and IE flags can be added as we encounter new
106 relocations. LDM can also be set; it will always be alone, not
107 combined with any GD or IE flags. An LDM GOT entry will be
108 a local symbol entry with r_symndx == 0. */
109 unsigned char tls_type;
110
111 /* The offset from the beginning of the .got section to the entry
112 corresponding to this symbol+addend. If it's a global symbol
113 whose offset is yet to be decided, it's going to be -1. */
114 long gotidx;
115 };
116
117 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
118 The structures form a non-overlapping list that is sorted by increasing
119 MIN_ADDEND. */
120 struct mips_got_page_range
121 {
122 struct mips_got_page_range *next;
123 bfd_signed_vma min_addend;
124 bfd_signed_vma max_addend;
125 };
126
127 /* This structure describes the range of addends that are applied to page
128 relocations against a given symbol. */
129 struct mips_got_page_entry
130 {
131 /* The input bfd in which the symbol is defined. */
132 bfd *abfd;
133 /* The index of the symbol, as stored in the relocation r_info. */
134 long symndx;
135 /* The ranges for this page entry. */
136 struct mips_got_page_range *ranges;
137 /* The maximum number of page entries needed for RANGES. */
138 bfd_vma num_pages;
139 };
140
141 /* This structure is used to hold .got information when linking. */
142
143 struct mips_got_info
144 {
145 /* The global symbol in the GOT with the lowest index in the dynamic
146 symbol table. */
147 struct elf_link_hash_entry *global_gotsym;
148 /* The number of global .got entries. */
149 unsigned int global_gotno;
150 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
151 unsigned int reloc_only_gotno;
152 /* The number of .got slots used for TLS. */
153 unsigned int tls_gotno;
154 /* The first unused TLS .got entry. Used only during
155 mips_elf_initialize_tls_index. */
156 unsigned int tls_assigned_gotno;
157 /* The number of local .got entries, eventually including page entries. */
158 unsigned int local_gotno;
159 /* The maximum number of page entries needed. */
160 unsigned int page_gotno;
161 /* The number of local .got entries we have used. */
162 unsigned int assigned_gotno;
163 /* A hash table holding members of the got. */
164 struct htab *got_entries;
165 /* A hash table of mips_got_page_entry structures. */
166 struct htab *got_page_entries;
167 /* A hash table mapping input bfds to other mips_got_info. NULL
168 unless multi-got was necessary. */
169 struct htab *bfd2got;
170 /* In multi-got links, a pointer to the next got (err, rather, most
171 of the time, it points to the previous got). */
172 struct mips_got_info *next;
173 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
174 for none, or MINUS_TWO for not yet assigned. This is needed
175 because a single-GOT link may have multiple hash table entries
176 for the LDM. It does not get initialized in multi-GOT mode. */
177 bfd_vma tls_ldm_offset;
178 };
179
180 /* Map an input bfd to a got in a multi-got link. */
181
182 struct mips_elf_bfd2got_hash
183 {
184 bfd *bfd;
185 struct mips_got_info *g;
186 };
187
188 /* Structure passed when traversing the bfd2got hash table, used to
189 create and merge bfd's gots. */
190
191 struct mips_elf_got_per_bfd_arg
192 {
193 /* A hashtable that maps bfds to gots. */
194 htab_t bfd2got;
195 /* The output bfd. */
196 bfd *obfd;
197 /* The link information. */
198 struct bfd_link_info *info;
199 /* A pointer to the primary got, i.e., the one that's going to get
200 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
201 DT_MIPS_GOTSYM. */
202 struct mips_got_info *primary;
203 /* A non-primary got we're trying to merge with other input bfd's
204 gots. */
205 struct mips_got_info *current;
206 /* The maximum number of got entries that can be addressed with a
207 16-bit offset. */
208 unsigned int max_count;
209 /* The maximum number of page entries needed by each got. */
210 unsigned int max_pages;
211 /* The total number of global entries which will live in the
212 primary got and be automatically relocated. This includes
213 those not referenced by the primary GOT but included in
214 the "master" GOT. */
215 unsigned int global_count;
216 };
217
218 /* Another structure used to pass arguments for got entries traversal. */
219
220 struct mips_elf_set_global_got_offset_arg
221 {
222 struct mips_got_info *g;
223 int value;
224 unsigned int needed_relocs;
225 struct bfd_link_info *info;
226 };
227
228 /* A structure used to count TLS relocations or GOT entries, for GOT
229 entry or ELF symbol table traversal. */
230
231 struct mips_elf_count_tls_arg
232 {
233 struct bfd_link_info *info;
234 unsigned int needed;
235 };
236
237 struct _mips_elf_section_data
238 {
239 struct bfd_elf_section_data elf;
240 union
241 {
242 bfd_byte *tdata;
243 } u;
244 };
245
246 #define mips_elf_section_data(sec) \
247 ((struct _mips_elf_section_data *) elf_section_data (sec))
248
249 #define is_mips_elf(bfd) \
250 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
251 && elf_tdata (bfd) != NULL \
252 && elf_object_id (bfd) == MIPS_ELF_DATA)
253
254 /* The ABI says that every symbol used by dynamic relocations must have
255 a global GOT entry. Among other things, this provides the dynamic
256 linker with a free, directly-indexed cache. The GOT can therefore
257 contain symbols that are not referenced by GOT relocations themselves
258 (in other words, it may have symbols that are not referenced by things
259 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
260
261 GOT relocations are less likely to overflow if we put the associated
262 GOT entries towards the beginning. We therefore divide the global
263 GOT entries into two areas: "normal" and "reloc-only". Entries in
264 the first area can be used for both dynamic relocations and GP-relative
265 accesses, while those in the "reloc-only" area are for dynamic
266 relocations only.
267
268 These GGA_* ("Global GOT Area") values are organised so that lower
269 values are more general than higher values. Also, non-GGA_NONE
270 values are ordered by the position of the area in the GOT. */
271 #define GGA_NORMAL 0
272 #define GGA_RELOC_ONLY 1
273 #define GGA_NONE 2
274
275 /* Information about a non-PIC interface to a PIC function. There are
276 two ways of creating these interfaces. The first is to add:
277
278 lui $25,%hi(func)
279 addiu $25,$25,%lo(func)
280
281 immediately before a PIC function "func". The second is to add:
282
283 lui $25,%hi(func)
284 j func
285 addiu $25,$25,%lo(func)
286
287 to a separate trampoline section.
288
289 Stubs of the first kind go in a new section immediately before the
290 target function. Stubs of the second kind go in a single section
291 pointed to by the hash table's "strampoline" field. */
292 struct mips_elf_la25_stub {
293 /* The generated section that contains this stub. */
294 asection *stub_section;
295
296 /* The offset of the stub from the start of STUB_SECTION. */
297 bfd_vma offset;
298
299 /* One symbol for the original function. Its location is available
300 in H->root.root.u.def. */
301 struct mips_elf_link_hash_entry *h;
302 };
303
304 /* Macros for populating a mips_elf_la25_stub. */
305
306 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
307 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
308 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
309 #define LA25_LUI_MICROMIPS_1(VAL) (0x41b9) /* lui t9,VAL */
310 #define LA25_LUI_MICROMIPS_2(VAL) (VAL)
311 #define LA25_J_MICROMIPS_1(VAL) (0xd400 | (((VAL) >> 17) & 0x3ff)) /* j VAL */
312 #define LA25_J_MICROMIPS_2(VAL) ((VAL) >> 1)
313 #define LA25_ADDIU_MICROMIPS_1(VAL) (0x3339) /* addiu t9,t9,VAL */
314 #define LA25_ADDIU_MICROMIPS_2(VAL) (VAL)
315
316 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
317 the dynamic symbols. */
318
319 struct mips_elf_hash_sort_data
320 {
321 /* The symbol in the global GOT with the lowest dynamic symbol table
322 index. */
323 struct elf_link_hash_entry *low;
324 /* The least dynamic symbol table index corresponding to a non-TLS
325 symbol with a GOT entry. */
326 long min_got_dynindx;
327 /* The greatest dynamic symbol table index corresponding to a symbol
328 with a GOT entry that is not referenced (e.g., a dynamic symbol
329 with dynamic relocations pointing to it from non-primary GOTs). */
330 long max_unref_got_dynindx;
331 /* The greatest dynamic symbol table index not corresponding to a
332 symbol without a GOT entry. */
333 long max_non_got_dynindx;
334 };
335
336 /* The MIPS ELF linker needs additional information for each symbol in
337 the global hash table. */
338
339 struct mips_elf_link_hash_entry
340 {
341 struct elf_link_hash_entry root;
342
343 /* External symbol information. */
344 EXTR esym;
345
346 /* The la25 stub we have created for ths symbol, if any. */
347 struct mips_elf_la25_stub *la25_stub;
348
349 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
350 this symbol. */
351 unsigned int possibly_dynamic_relocs;
352
353 /* If there is a stub that 32 bit functions should use to call this
354 16 bit function, this points to the section containing the stub. */
355 asection *fn_stub;
356
357 /* If there is a stub that 16 bit functions should use to call this
358 32 bit function, this points to the section containing the stub. */
359 asection *call_stub;
360
361 /* This is like the call_stub field, but it is used if the function
362 being called returns a floating point value. */
363 asection *call_fp_stub;
364
365 #define GOT_NORMAL 0
366 #define GOT_TLS_GD 1
367 #define GOT_TLS_LDM 2
368 #define GOT_TLS_IE 4
369 #define GOT_TLS_OFFSET_DONE 0x40
370 #define GOT_TLS_DONE 0x80
371 unsigned char tls_type;
372
373 /* This is only used in single-GOT mode; in multi-GOT mode there
374 is one mips_got_entry per GOT entry, so the offset is stored
375 there. In single-GOT mode there may be many mips_got_entry
376 structures all referring to the same GOT slot. It might be
377 possible to use root.got.offset instead, but that field is
378 overloaded already. */
379 bfd_vma tls_got_offset;
380
381 /* The highest GGA_* value that satisfies all references to this symbol. */
382 unsigned int global_got_area : 2;
383
384 /* True if all GOT relocations against this symbol are for calls. This is
385 a looser condition than no_fn_stub below, because there may be other
386 non-call non-GOT relocations against the symbol. */
387 unsigned int got_only_for_calls : 1;
388
389 /* True if one of the relocations described by possibly_dynamic_relocs
390 is against a readonly section. */
391 unsigned int readonly_reloc : 1;
392
393 /* True if there is a relocation against this symbol that must be
394 resolved by the static linker (in other words, if the relocation
395 cannot possibly be made dynamic). */
396 unsigned int has_static_relocs : 1;
397
398 /* True if we must not create a .MIPS.stubs entry for this symbol.
399 This is set, for example, if there are relocations related to
400 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
401 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
402 unsigned int no_fn_stub : 1;
403
404 /* Whether we need the fn_stub; this is true if this symbol appears
405 in any relocs other than a 16 bit call. */
406 unsigned int need_fn_stub : 1;
407
408 /* True if this symbol is referenced by branch relocations from
409 any non-PIC input file. This is used to determine whether an
410 la25 stub is required. */
411 unsigned int has_nonpic_branches : 1;
412
413 /* Does this symbol need a traditional MIPS lazy-binding stub
414 (as opposed to a PLT entry)? */
415 unsigned int needs_lazy_stub : 1;
416 };
417
418 /* MIPS ELF linker hash table. */
419
420 struct mips_elf_link_hash_table
421 {
422 struct elf_link_hash_table root;
423 #if 0
424 /* We no longer use this. */
425 /* String section indices for the dynamic section symbols. */
426 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
427 #endif
428
429 /* The number of .rtproc entries. */
430 bfd_size_type procedure_count;
431
432 /* The size of the .compact_rel section (if SGI_COMPAT). */
433 bfd_size_type compact_rel_size;
434
435 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
436 entry is set to the address of __rld_obj_head as in IRIX5. */
437 bfd_boolean use_rld_obj_head;
438
439 /* The __rld_map or __rld_obj_head symbol. */
440 struct elf_link_hash_entry *rld_symbol;
441
442 /* This is set if we see any mips16 stub sections. */
443 bfd_boolean mips16_stubs_seen;
444
445 /* True if we can generate copy relocs and PLTs. */
446 bfd_boolean use_plts_and_copy_relocs;
447
448 /* True if we're generating code for VxWorks. */
449 bfd_boolean is_vxworks;
450
451 /* True if we already reported the small-data section overflow. */
452 bfd_boolean small_data_overflow_reported;
453
454 /* Shortcuts to some dynamic sections, or NULL if they are not
455 being used. */
456 asection *srelbss;
457 asection *sdynbss;
458 asection *srelplt;
459 asection *srelplt2;
460 asection *sgotplt;
461 asection *splt;
462 asection *sstubs;
463 asection *sgot;
464
465 /* The master GOT information. */
466 struct mips_got_info *got_info;
467
468 /* The size of the PLT header in bytes. */
469 bfd_vma plt_header_size;
470
471 /* The size of a PLT entry in bytes. */
472 bfd_vma plt_entry_size;
473
474 /* The number of functions that need a lazy-binding stub. */
475 bfd_vma lazy_stub_count;
476
477 /* The size of a function stub entry in bytes. */
478 bfd_vma function_stub_size;
479
480 /* The number of reserved entries at the beginning of the GOT. */
481 unsigned int reserved_gotno;
482
483 /* The section used for mips_elf_la25_stub trampolines.
484 See the comment above that structure for details. */
485 asection *strampoline;
486
487 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
488 pairs. */
489 htab_t la25_stubs;
490
491 /* A function FN (NAME, IS, OS) that creates a new input section
492 called NAME and links it to output section OS. If IS is nonnull,
493 the new section should go immediately before it, otherwise it
494 should go at the (current) beginning of OS.
495
496 The function returns the new section on success, otherwise it
497 returns null. */
498 asection *(*add_stub_section) (const char *, asection *, asection *);
499 };
500
501 /* Get the MIPS ELF linker hash table from a link_info structure. */
502
503 #define mips_elf_hash_table(p) \
504 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
505 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
506
507 /* A structure used to communicate with htab_traverse callbacks. */
508 struct mips_htab_traverse_info
509 {
510 /* The usual link-wide information. */
511 struct bfd_link_info *info;
512 bfd *output_bfd;
513
514 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
515 bfd_boolean error;
516 };
517
518 #define TLS_RELOC_P(r_type) \
519 (r_type == R_MIPS_TLS_DTPMOD32 \
520 || r_type == R_MIPS_TLS_DTPMOD64 \
521 || r_type == R_MIPS_TLS_DTPREL32 \
522 || r_type == R_MIPS_TLS_DTPREL64 \
523 || r_type == R_MIPS_TLS_GD \
524 || r_type == R_MIPS_TLS_LDM \
525 || r_type == R_MIPS_TLS_DTPREL_HI16 \
526 || r_type == R_MIPS_TLS_DTPREL_LO16 \
527 || r_type == R_MIPS_TLS_GOTTPREL \
528 || r_type == R_MIPS_TLS_TPREL32 \
529 || r_type == R_MIPS_TLS_TPREL64 \
530 || r_type == R_MIPS_TLS_TPREL_HI16 \
531 || r_type == R_MIPS_TLS_TPREL_LO16 \
532 || r_type == R_MIPS16_TLS_GD \
533 || r_type == R_MIPS16_TLS_LDM \
534 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
535 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
536 || r_type == R_MIPS16_TLS_GOTTPREL \
537 || r_type == R_MIPS16_TLS_TPREL_HI16 \
538 || r_type == R_MIPS16_TLS_TPREL_LO16 \
539 || r_type == R_MICROMIPS_TLS_GD \
540 || r_type == R_MICROMIPS_TLS_LDM \
541 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
542 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
543 || r_type == R_MICROMIPS_TLS_GOTTPREL \
544 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
545 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
546
547 /* Structure used to pass information to mips_elf_output_extsym. */
548
549 struct extsym_info
550 {
551 bfd *abfd;
552 struct bfd_link_info *info;
553 struct ecoff_debug_info *debug;
554 const struct ecoff_debug_swap *swap;
555 bfd_boolean failed;
556 };
557
558 /* The names of the runtime procedure table symbols used on IRIX5. */
559
560 static const char * const mips_elf_dynsym_rtproc_names[] =
561 {
562 "_procedure_table",
563 "_procedure_string_table",
564 "_procedure_table_size",
565 NULL
566 };
567
568 /* These structures are used to generate the .compact_rel section on
569 IRIX5. */
570
571 typedef struct
572 {
573 unsigned long id1; /* Always one? */
574 unsigned long num; /* Number of compact relocation entries. */
575 unsigned long id2; /* Always two? */
576 unsigned long offset; /* The file offset of the first relocation. */
577 unsigned long reserved0; /* Zero? */
578 unsigned long reserved1; /* Zero? */
579 } Elf32_compact_rel;
580
581 typedef struct
582 {
583 bfd_byte id1[4];
584 bfd_byte num[4];
585 bfd_byte id2[4];
586 bfd_byte offset[4];
587 bfd_byte reserved0[4];
588 bfd_byte reserved1[4];
589 } Elf32_External_compact_rel;
590
591 typedef struct
592 {
593 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
594 unsigned int rtype : 4; /* Relocation types. See below. */
595 unsigned int dist2to : 8;
596 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
597 unsigned long konst; /* KONST field. See below. */
598 unsigned long vaddr; /* VADDR to be relocated. */
599 } Elf32_crinfo;
600
601 typedef struct
602 {
603 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
604 unsigned int rtype : 4; /* Relocation types. See below. */
605 unsigned int dist2to : 8;
606 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
607 unsigned long konst; /* KONST field. See below. */
608 } Elf32_crinfo2;
609
610 typedef struct
611 {
612 bfd_byte info[4];
613 bfd_byte konst[4];
614 bfd_byte vaddr[4];
615 } Elf32_External_crinfo;
616
617 typedef struct
618 {
619 bfd_byte info[4];
620 bfd_byte konst[4];
621 } Elf32_External_crinfo2;
622
623 /* These are the constants used to swap the bitfields in a crinfo. */
624
625 #define CRINFO_CTYPE (0x1)
626 #define CRINFO_CTYPE_SH (31)
627 #define CRINFO_RTYPE (0xf)
628 #define CRINFO_RTYPE_SH (27)
629 #define CRINFO_DIST2TO (0xff)
630 #define CRINFO_DIST2TO_SH (19)
631 #define CRINFO_RELVADDR (0x7ffff)
632 #define CRINFO_RELVADDR_SH (0)
633
634 /* A compact relocation info has long (3 words) or short (2 words)
635 formats. A short format doesn't have VADDR field and relvaddr
636 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
637 #define CRF_MIPS_LONG 1
638 #define CRF_MIPS_SHORT 0
639
640 /* There are 4 types of compact relocation at least. The value KONST
641 has different meaning for each type:
642
643 (type) (konst)
644 CT_MIPS_REL32 Address in data
645 CT_MIPS_WORD Address in word (XXX)
646 CT_MIPS_GPHI_LO GP - vaddr
647 CT_MIPS_JMPAD Address to jump
648 */
649
650 #define CRT_MIPS_REL32 0xa
651 #define CRT_MIPS_WORD 0xb
652 #define CRT_MIPS_GPHI_LO 0xc
653 #define CRT_MIPS_JMPAD 0xd
654
655 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
656 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
657 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
658 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
659 \f
660 /* The structure of the runtime procedure descriptor created by the
661 loader for use by the static exception system. */
662
663 typedef struct runtime_pdr {
664 bfd_vma adr; /* Memory address of start of procedure. */
665 long regmask; /* Save register mask. */
666 long regoffset; /* Save register offset. */
667 long fregmask; /* Save floating point register mask. */
668 long fregoffset; /* Save floating point register offset. */
669 long frameoffset; /* Frame size. */
670 short framereg; /* Frame pointer register. */
671 short pcreg; /* Offset or reg of return pc. */
672 long irpss; /* Index into the runtime string table. */
673 long reserved;
674 struct exception_info *exception_info;/* Pointer to exception array. */
675 } RPDR, *pRPDR;
676 #define cbRPDR sizeof (RPDR)
677 #define rpdNil ((pRPDR) 0)
678 \f
679 static struct mips_got_entry *mips_elf_create_local_got_entry
680 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
681 struct mips_elf_link_hash_entry *, int);
682 static bfd_boolean mips_elf_sort_hash_table_f
683 (struct mips_elf_link_hash_entry *, void *);
684 static bfd_vma mips_elf_high
685 (bfd_vma);
686 static bfd_boolean mips_elf_create_dynamic_relocation
687 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
688 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
689 bfd_vma *, asection *);
690 static hashval_t mips_elf_got_entry_hash
691 (const void *);
692 static bfd_vma mips_elf_adjust_gp
693 (bfd *, struct mips_got_info *, bfd *);
694 static struct mips_got_info *mips_elf_got_for_ibfd
695 (struct mips_got_info *, bfd *);
696
697 /* This will be used when we sort the dynamic relocation records. */
698 static bfd *reldyn_sorting_bfd;
699
700 /* True if ABFD is for CPUs with load interlocking that include
701 non-MIPS1 CPUs and R3900. */
702 #define LOAD_INTERLOCKS_P(abfd) \
703 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
704 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
705
706 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
707 This should be safe for all architectures. We enable this predicate
708 for RM9000 for now. */
709 #define JAL_TO_BAL_P(abfd) \
710 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
711
712 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
713 This should be safe for all architectures. We enable this predicate for
714 all CPUs. */
715 #define JALR_TO_BAL_P(abfd) 1
716
717 /* True if ABFD is for CPUs that are faster if JR is converted to B.
718 This should be safe for all architectures. We enable this predicate for
719 all CPUs. */
720 #define JR_TO_B_P(abfd) 1
721
722 /* True if ABFD is a PIC object. */
723 #define PIC_OBJECT_P(abfd) \
724 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
725
726 /* Nonzero if ABFD is using the N32 ABI. */
727 #define ABI_N32_P(abfd) \
728 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
729
730 /* Nonzero if ABFD is using the N64 ABI. */
731 #define ABI_64_P(abfd) \
732 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
733
734 /* Nonzero if ABFD is using NewABI conventions. */
735 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
736
737 /* The IRIX compatibility level we are striving for. */
738 #define IRIX_COMPAT(abfd) \
739 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
740
741 /* Whether we are trying to be compatible with IRIX at all. */
742 #define SGI_COMPAT(abfd) \
743 (IRIX_COMPAT (abfd) != ict_none)
744
745 /* The name of the options section. */
746 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
747 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
748
749 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
750 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
751 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
752 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
753
754 /* Whether the section is readonly. */
755 #define MIPS_ELF_READONLY_SECTION(sec) \
756 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
757 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
758
759 /* The name of the stub section. */
760 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
761
762 /* The size of an external REL relocation. */
763 #define MIPS_ELF_REL_SIZE(abfd) \
764 (get_elf_backend_data (abfd)->s->sizeof_rel)
765
766 /* The size of an external RELA relocation. */
767 #define MIPS_ELF_RELA_SIZE(abfd) \
768 (get_elf_backend_data (abfd)->s->sizeof_rela)
769
770 /* The size of an external dynamic table entry. */
771 #define MIPS_ELF_DYN_SIZE(abfd) \
772 (get_elf_backend_data (abfd)->s->sizeof_dyn)
773
774 /* The size of a GOT entry. */
775 #define MIPS_ELF_GOT_SIZE(abfd) \
776 (get_elf_backend_data (abfd)->s->arch_size / 8)
777
778 /* The size of the .rld_map section. */
779 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
780 (get_elf_backend_data (abfd)->s->arch_size / 8)
781
782 /* The size of a symbol-table entry. */
783 #define MIPS_ELF_SYM_SIZE(abfd) \
784 (get_elf_backend_data (abfd)->s->sizeof_sym)
785
786 /* The default alignment for sections, as a power of two. */
787 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
788 (get_elf_backend_data (abfd)->s->log_file_align)
789
790 /* Get word-sized data. */
791 #define MIPS_ELF_GET_WORD(abfd, ptr) \
792 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
793
794 /* Put out word-sized data. */
795 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
796 (ABI_64_P (abfd) \
797 ? bfd_put_64 (abfd, val, ptr) \
798 : bfd_put_32 (abfd, val, ptr))
799
800 /* The opcode for word-sized loads (LW or LD). */
801 #define MIPS_ELF_LOAD_WORD(abfd) \
802 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
803
804 /* Add a dynamic symbol table-entry. */
805 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
806 _bfd_elf_add_dynamic_entry (info, tag, val)
807
808 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
809 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
810
811 /* The name of the dynamic relocation section. */
812 #define MIPS_ELF_REL_DYN_NAME(INFO) \
813 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
814
815 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
816 from smaller values. Start with zero, widen, *then* decrement. */
817 #define MINUS_ONE (((bfd_vma)0) - 1)
818 #define MINUS_TWO (((bfd_vma)0) - 2)
819
820 /* The value to write into got[1] for SVR4 targets, to identify it is
821 a GNU object. The dynamic linker can then use got[1] to store the
822 module pointer. */
823 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
824 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
825
826 /* The offset of $gp from the beginning of the .got section. */
827 #define ELF_MIPS_GP_OFFSET(INFO) \
828 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
829
830 /* The maximum size of the GOT for it to be addressable using 16-bit
831 offsets from $gp. */
832 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
833
834 /* Instructions which appear in a stub. */
835 #define STUB_LW(abfd) \
836 ((ABI_64_P (abfd) \
837 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
838 : 0x8f998010)) /* lw t9,0x8010(gp) */
839 #define STUB_MOVE(abfd) \
840 ((ABI_64_P (abfd) \
841 ? 0x03e0782d /* daddu t7,ra */ \
842 : 0x03e07821)) /* addu t7,ra */
843 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
844 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
845 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
846 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
847 #define STUB_LI16S(abfd, VAL) \
848 ((ABI_64_P (abfd) \
849 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
850 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
851
852 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
853 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
854
855 /* The name of the dynamic interpreter. This is put in the .interp
856 section. */
857
858 #define ELF_DYNAMIC_INTERPRETER(abfd) \
859 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
860 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
861 : "/usr/lib/libc.so.1")
862
863 #ifdef BFD64
864 #define MNAME(bfd,pre,pos) \
865 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
866 #define ELF_R_SYM(bfd, i) \
867 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
868 #define ELF_R_TYPE(bfd, i) \
869 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
870 #define ELF_R_INFO(bfd, s, t) \
871 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
872 #else
873 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
874 #define ELF_R_SYM(bfd, i) \
875 (ELF32_R_SYM (i))
876 #define ELF_R_TYPE(bfd, i) \
877 (ELF32_R_TYPE (i))
878 #define ELF_R_INFO(bfd, s, t) \
879 (ELF32_R_INFO (s, t))
880 #endif
881 \f
882 /* The mips16 compiler uses a couple of special sections to handle
883 floating point arguments.
884
885 Section names that look like .mips16.fn.FNNAME contain stubs that
886 copy floating point arguments from the fp regs to the gp regs and
887 then jump to FNNAME. If any 32 bit function calls FNNAME, the
888 call should be redirected to the stub instead. If no 32 bit
889 function calls FNNAME, the stub should be discarded. We need to
890 consider any reference to the function, not just a call, because
891 if the address of the function is taken we will need the stub,
892 since the address might be passed to a 32 bit function.
893
894 Section names that look like .mips16.call.FNNAME contain stubs
895 that copy floating point arguments from the gp regs to the fp
896 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
897 then any 16 bit function that calls FNNAME should be redirected
898 to the stub instead. If FNNAME is not a 32 bit function, the
899 stub should be discarded.
900
901 .mips16.call.fp.FNNAME sections are similar, but contain stubs
902 which call FNNAME and then copy the return value from the fp regs
903 to the gp regs. These stubs store the return value in $18 while
904 calling FNNAME; any function which might call one of these stubs
905 must arrange to save $18 around the call. (This case is not
906 needed for 32 bit functions that call 16 bit functions, because
907 16 bit functions always return floating point values in both
908 $f0/$f1 and $2/$3.)
909
910 Note that in all cases FNNAME might be defined statically.
911 Therefore, FNNAME is not used literally. Instead, the relocation
912 information will indicate which symbol the section is for.
913
914 We record any stubs that we find in the symbol table. */
915
916 #define FN_STUB ".mips16.fn."
917 #define CALL_STUB ".mips16.call."
918 #define CALL_FP_STUB ".mips16.call.fp."
919
920 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
921 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
922 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
923 \f
924 /* The format of the first PLT entry in an O32 executable. */
925 static const bfd_vma mips_o32_exec_plt0_entry[] =
926 {
927 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
928 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
929 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
930 0x031cc023, /* subu $24, $24, $28 */
931 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
932 0x0018c082, /* srl $24, $24, 2 */
933 0x0320f809, /* jalr $25 */
934 0x2718fffe /* subu $24, $24, 2 */
935 };
936
937 /* The format of the first PLT entry in an N32 executable. Different
938 because gp ($28) is not available; we use t2 ($14) instead. */
939 static const bfd_vma mips_n32_exec_plt0_entry[] =
940 {
941 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
942 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
943 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
944 0x030ec023, /* subu $24, $24, $14 */
945 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
946 0x0018c082, /* srl $24, $24, 2 */
947 0x0320f809, /* jalr $25 */
948 0x2718fffe /* subu $24, $24, 2 */
949 };
950
951 /* The format of the first PLT entry in an N64 executable. Different
952 from N32 because of the increased size of GOT entries. */
953 static const bfd_vma mips_n64_exec_plt0_entry[] =
954 {
955 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
956 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
957 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
958 0x030ec023, /* subu $24, $24, $14 */
959 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
960 0x0018c0c2, /* srl $24, $24, 3 */
961 0x0320f809, /* jalr $25 */
962 0x2718fffe /* subu $24, $24, 2 */
963 };
964
965 /* The format of subsequent PLT entries. */
966 static const bfd_vma mips_exec_plt_entry[] =
967 {
968 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
969 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
970 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
971 0x03200008 /* jr $25 */
972 };
973
974 /* The format of the first PLT entry in a VxWorks executable. */
975 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
976 {
977 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
978 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
979 0x8f390008, /* lw t9, 8(t9) */
980 0x00000000, /* nop */
981 0x03200008, /* jr t9 */
982 0x00000000 /* nop */
983 };
984
985 /* The format of subsequent PLT entries. */
986 static const bfd_vma mips_vxworks_exec_plt_entry[] =
987 {
988 0x10000000, /* b .PLT_resolver */
989 0x24180000, /* li t8, <pltindex> */
990 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
991 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
992 0x8f390000, /* lw t9, 0(t9) */
993 0x00000000, /* nop */
994 0x03200008, /* jr t9 */
995 0x00000000 /* nop */
996 };
997
998 /* The format of the first PLT entry in a VxWorks shared object. */
999 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1000 {
1001 0x8f990008, /* lw t9, 8(gp) */
1002 0x00000000, /* nop */
1003 0x03200008, /* jr t9 */
1004 0x00000000, /* nop */
1005 0x00000000, /* nop */
1006 0x00000000 /* nop */
1007 };
1008
1009 /* The format of subsequent PLT entries. */
1010 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1011 {
1012 0x10000000, /* b .PLT_resolver */
1013 0x24180000 /* li t8, <pltindex> */
1014 };
1015 \f
1016 /* Look up an entry in a MIPS ELF linker hash table. */
1017
1018 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1019 ((struct mips_elf_link_hash_entry *) \
1020 elf_link_hash_lookup (&(table)->root, (string), (create), \
1021 (copy), (follow)))
1022
1023 /* Traverse a MIPS ELF linker hash table. */
1024
1025 #define mips_elf_link_hash_traverse(table, func, info) \
1026 (elf_link_hash_traverse \
1027 (&(table)->root, \
1028 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1029 (info)))
1030
1031 /* Find the base offsets for thread-local storage in this object,
1032 for GD/LD and IE/LE respectively. */
1033
1034 #define TP_OFFSET 0x7000
1035 #define DTP_OFFSET 0x8000
1036
1037 static bfd_vma
1038 dtprel_base (struct bfd_link_info *info)
1039 {
1040 /* If tls_sec is NULL, we should have signalled an error already. */
1041 if (elf_hash_table (info)->tls_sec == NULL)
1042 return 0;
1043 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1044 }
1045
1046 static bfd_vma
1047 tprel_base (struct bfd_link_info *info)
1048 {
1049 /* If tls_sec is NULL, we should have signalled an error already. */
1050 if (elf_hash_table (info)->tls_sec == NULL)
1051 return 0;
1052 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1053 }
1054
1055 /* Create an entry in a MIPS ELF linker hash table. */
1056
1057 static struct bfd_hash_entry *
1058 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1059 struct bfd_hash_table *table, const char *string)
1060 {
1061 struct mips_elf_link_hash_entry *ret =
1062 (struct mips_elf_link_hash_entry *) entry;
1063
1064 /* Allocate the structure if it has not already been allocated by a
1065 subclass. */
1066 if (ret == NULL)
1067 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1068 if (ret == NULL)
1069 return (struct bfd_hash_entry *) ret;
1070
1071 /* Call the allocation method of the superclass. */
1072 ret = ((struct mips_elf_link_hash_entry *)
1073 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1074 table, string));
1075 if (ret != NULL)
1076 {
1077 /* Set local fields. */
1078 memset (&ret->esym, 0, sizeof (EXTR));
1079 /* We use -2 as a marker to indicate that the information has
1080 not been set. -1 means there is no associated ifd. */
1081 ret->esym.ifd = -2;
1082 ret->la25_stub = 0;
1083 ret->possibly_dynamic_relocs = 0;
1084 ret->fn_stub = NULL;
1085 ret->call_stub = NULL;
1086 ret->call_fp_stub = NULL;
1087 ret->tls_type = GOT_NORMAL;
1088 ret->global_got_area = GGA_NONE;
1089 ret->got_only_for_calls = TRUE;
1090 ret->readonly_reloc = FALSE;
1091 ret->has_static_relocs = FALSE;
1092 ret->no_fn_stub = FALSE;
1093 ret->need_fn_stub = FALSE;
1094 ret->has_nonpic_branches = FALSE;
1095 ret->needs_lazy_stub = FALSE;
1096 }
1097
1098 return (struct bfd_hash_entry *) ret;
1099 }
1100
1101 bfd_boolean
1102 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1103 {
1104 if (!sec->used_by_bfd)
1105 {
1106 struct _mips_elf_section_data *sdata;
1107 bfd_size_type amt = sizeof (*sdata);
1108
1109 sdata = bfd_zalloc (abfd, amt);
1110 if (sdata == NULL)
1111 return FALSE;
1112 sec->used_by_bfd = sdata;
1113 }
1114
1115 return _bfd_elf_new_section_hook (abfd, sec);
1116 }
1117 \f
1118 /* Read ECOFF debugging information from a .mdebug section into a
1119 ecoff_debug_info structure. */
1120
1121 bfd_boolean
1122 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1123 struct ecoff_debug_info *debug)
1124 {
1125 HDRR *symhdr;
1126 const struct ecoff_debug_swap *swap;
1127 char *ext_hdr;
1128
1129 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1130 memset (debug, 0, sizeof (*debug));
1131
1132 ext_hdr = bfd_malloc (swap->external_hdr_size);
1133 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1134 goto error_return;
1135
1136 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1137 swap->external_hdr_size))
1138 goto error_return;
1139
1140 symhdr = &debug->symbolic_header;
1141 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1142
1143 /* The symbolic header contains absolute file offsets and sizes to
1144 read. */
1145 #define READ(ptr, offset, count, size, type) \
1146 if (symhdr->count == 0) \
1147 debug->ptr = NULL; \
1148 else \
1149 { \
1150 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1151 debug->ptr = bfd_malloc (amt); \
1152 if (debug->ptr == NULL) \
1153 goto error_return; \
1154 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1155 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1156 goto error_return; \
1157 }
1158
1159 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1160 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1161 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1162 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1163 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1164 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1165 union aux_ext *);
1166 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1167 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1168 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1169 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1170 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1171 #undef READ
1172
1173 debug->fdr = NULL;
1174
1175 return TRUE;
1176
1177 error_return:
1178 if (ext_hdr != NULL)
1179 free (ext_hdr);
1180 if (debug->line != NULL)
1181 free (debug->line);
1182 if (debug->external_dnr != NULL)
1183 free (debug->external_dnr);
1184 if (debug->external_pdr != NULL)
1185 free (debug->external_pdr);
1186 if (debug->external_sym != NULL)
1187 free (debug->external_sym);
1188 if (debug->external_opt != NULL)
1189 free (debug->external_opt);
1190 if (debug->external_aux != NULL)
1191 free (debug->external_aux);
1192 if (debug->ss != NULL)
1193 free (debug->ss);
1194 if (debug->ssext != NULL)
1195 free (debug->ssext);
1196 if (debug->external_fdr != NULL)
1197 free (debug->external_fdr);
1198 if (debug->external_rfd != NULL)
1199 free (debug->external_rfd);
1200 if (debug->external_ext != NULL)
1201 free (debug->external_ext);
1202 return FALSE;
1203 }
1204 \f
1205 /* Swap RPDR (runtime procedure table entry) for output. */
1206
1207 static void
1208 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1209 {
1210 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1211 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1212 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1213 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1214 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1215 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1216
1217 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1218 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1219
1220 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1221 }
1222
1223 /* Create a runtime procedure table from the .mdebug section. */
1224
1225 static bfd_boolean
1226 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1227 struct bfd_link_info *info, asection *s,
1228 struct ecoff_debug_info *debug)
1229 {
1230 const struct ecoff_debug_swap *swap;
1231 HDRR *hdr = &debug->symbolic_header;
1232 RPDR *rpdr, *rp;
1233 struct rpdr_ext *erp;
1234 void *rtproc;
1235 struct pdr_ext *epdr;
1236 struct sym_ext *esym;
1237 char *ss, **sv;
1238 char *str;
1239 bfd_size_type size;
1240 bfd_size_type count;
1241 unsigned long sindex;
1242 unsigned long i;
1243 PDR pdr;
1244 SYMR sym;
1245 const char *no_name_func = _("static procedure (no name)");
1246
1247 epdr = NULL;
1248 rpdr = NULL;
1249 esym = NULL;
1250 ss = NULL;
1251 sv = NULL;
1252
1253 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1254
1255 sindex = strlen (no_name_func) + 1;
1256 count = hdr->ipdMax;
1257 if (count > 0)
1258 {
1259 size = swap->external_pdr_size;
1260
1261 epdr = bfd_malloc (size * count);
1262 if (epdr == NULL)
1263 goto error_return;
1264
1265 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1266 goto error_return;
1267
1268 size = sizeof (RPDR);
1269 rp = rpdr = bfd_malloc (size * count);
1270 if (rpdr == NULL)
1271 goto error_return;
1272
1273 size = sizeof (char *);
1274 sv = bfd_malloc (size * count);
1275 if (sv == NULL)
1276 goto error_return;
1277
1278 count = hdr->isymMax;
1279 size = swap->external_sym_size;
1280 esym = bfd_malloc (size * count);
1281 if (esym == NULL)
1282 goto error_return;
1283
1284 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1285 goto error_return;
1286
1287 count = hdr->issMax;
1288 ss = bfd_malloc (count);
1289 if (ss == NULL)
1290 goto error_return;
1291 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1292 goto error_return;
1293
1294 count = hdr->ipdMax;
1295 for (i = 0; i < (unsigned long) count; i++, rp++)
1296 {
1297 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1298 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1299 rp->adr = sym.value;
1300 rp->regmask = pdr.regmask;
1301 rp->regoffset = pdr.regoffset;
1302 rp->fregmask = pdr.fregmask;
1303 rp->fregoffset = pdr.fregoffset;
1304 rp->frameoffset = pdr.frameoffset;
1305 rp->framereg = pdr.framereg;
1306 rp->pcreg = pdr.pcreg;
1307 rp->irpss = sindex;
1308 sv[i] = ss + sym.iss;
1309 sindex += strlen (sv[i]) + 1;
1310 }
1311 }
1312
1313 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1314 size = BFD_ALIGN (size, 16);
1315 rtproc = bfd_alloc (abfd, size);
1316 if (rtproc == NULL)
1317 {
1318 mips_elf_hash_table (info)->procedure_count = 0;
1319 goto error_return;
1320 }
1321
1322 mips_elf_hash_table (info)->procedure_count = count + 2;
1323
1324 erp = rtproc;
1325 memset (erp, 0, sizeof (struct rpdr_ext));
1326 erp++;
1327 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1328 strcpy (str, no_name_func);
1329 str += strlen (no_name_func) + 1;
1330 for (i = 0; i < count; i++)
1331 {
1332 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1333 strcpy (str, sv[i]);
1334 str += strlen (sv[i]) + 1;
1335 }
1336 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1337
1338 /* Set the size and contents of .rtproc section. */
1339 s->size = size;
1340 s->contents = rtproc;
1341
1342 /* Skip this section later on (I don't think this currently
1343 matters, but someday it might). */
1344 s->map_head.link_order = NULL;
1345
1346 if (epdr != NULL)
1347 free (epdr);
1348 if (rpdr != NULL)
1349 free (rpdr);
1350 if (esym != NULL)
1351 free (esym);
1352 if (ss != NULL)
1353 free (ss);
1354 if (sv != NULL)
1355 free (sv);
1356
1357 return TRUE;
1358
1359 error_return:
1360 if (epdr != NULL)
1361 free (epdr);
1362 if (rpdr != NULL)
1363 free (rpdr);
1364 if (esym != NULL)
1365 free (esym);
1366 if (ss != NULL)
1367 free (ss);
1368 if (sv != NULL)
1369 free (sv);
1370 return FALSE;
1371 }
1372 \f
1373 /* We're going to create a stub for H. Create a symbol for the stub's
1374 value and size, to help make the disassembly easier to read. */
1375
1376 static bfd_boolean
1377 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1378 struct mips_elf_link_hash_entry *h,
1379 const char *prefix, asection *s, bfd_vma value,
1380 bfd_vma size)
1381 {
1382 struct bfd_link_hash_entry *bh;
1383 struct elf_link_hash_entry *elfh;
1384 const char *name;
1385
1386 if (ELF_ST_IS_MICROMIPS (h->root.other))
1387 value |= 1;
1388
1389 /* Create a new symbol. */
1390 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1391 bh = NULL;
1392 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1393 BSF_LOCAL, s, value, NULL,
1394 TRUE, FALSE, &bh))
1395 return FALSE;
1396
1397 /* Make it a local function. */
1398 elfh = (struct elf_link_hash_entry *) bh;
1399 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1400 elfh->size = size;
1401 elfh->forced_local = 1;
1402 return TRUE;
1403 }
1404
1405 /* We're about to redefine H. Create a symbol to represent H's
1406 current value and size, to help make the disassembly easier
1407 to read. */
1408
1409 static bfd_boolean
1410 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1411 struct mips_elf_link_hash_entry *h,
1412 const char *prefix)
1413 {
1414 struct bfd_link_hash_entry *bh;
1415 struct elf_link_hash_entry *elfh;
1416 const char *name;
1417 asection *s;
1418 bfd_vma value;
1419
1420 /* Read the symbol's value. */
1421 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1422 || h->root.root.type == bfd_link_hash_defweak);
1423 s = h->root.root.u.def.section;
1424 value = h->root.root.u.def.value;
1425
1426 /* Create a new symbol. */
1427 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1428 bh = NULL;
1429 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1430 BSF_LOCAL, s, value, NULL,
1431 TRUE, FALSE, &bh))
1432 return FALSE;
1433
1434 /* Make it local and copy the other attributes from H. */
1435 elfh = (struct elf_link_hash_entry *) bh;
1436 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1437 elfh->other = h->root.other;
1438 elfh->size = h->root.size;
1439 elfh->forced_local = 1;
1440 return TRUE;
1441 }
1442
1443 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1444 function rather than to a hard-float stub. */
1445
1446 static bfd_boolean
1447 section_allows_mips16_refs_p (asection *section)
1448 {
1449 const char *name;
1450
1451 name = bfd_get_section_name (section->owner, section);
1452 return (FN_STUB_P (name)
1453 || CALL_STUB_P (name)
1454 || CALL_FP_STUB_P (name)
1455 || strcmp (name, ".pdr") == 0);
1456 }
1457
1458 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1459 stub section of some kind. Return the R_SYMNDX of the target
1460 function, or 0 if we can't decide which function that is. */
1461
1462 static unsigned long
1463 mips16_stub_symndx (const struct elf_backend_data *bed,
1464 asection *sec ATTRIBUTE_UNUSED,
1465 const Elf_Internal_Rela *relocs,
1466 const Elf_Internal_Rela *relend)
1467 {
1468 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1469 const Elf_Internal_Rela *rel;
1470
1471 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1472 one in a compound relocation. */
1473 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1474 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1475 return ELF_R_SYM (sec->owner, rel->r_info);
1476
1477 /* Otherwise trust the first relocation, whatever its kind. This is
1478 the traditional behavior. */
1479 if (relocs < relend)
1480 return ELF_R_SYM (sec->owner, relocs->r_info);
1481
1482 return 0;
1483 }
1484
1485 /* Check the mips16 stubs for a particular symbol, and see if we can
1486 discard them. */
1487
1488 static void
1489 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1490 struct mips_elf_link_hash_entry *h)
1491 {
1492 /* Dynamic symbols must use the standard call interface, in case other
1493 objects try to call them. */
1494 if (h->fn_stub != NULL
1495 && h->root.dynindx != -1)
1496 {
1497 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1498 h->need_fn_stub = TRUE;
1499 }
1500
1501 if (h->fn_stub != NULL
1502 && ! h->need_fn_stub)
1503 {
1504 /* We don't need the fn_stub; the only references to this symbol
1505 are 16 bit calls. Clobber the size to 0 to prevent it from
1506 being included in the link. */
1507 h->fn_stub->size = 0;
1508 h->fn_stub->flags &= ~SEC_RELOC;
1509 h->fn_stub->reloc_count = 0;
1510 h->fn_stub->flags |= SEC_EXCLUDE;
1511 }
1512
1513 if (h->call_stub != NULL
1514 && ELF_ST_IS_MIPS16 (h->root.other))
1515 {
1516 /* We don't need the call_stub; this is a 16 bit function, so
1517 calls from other 16 bit functions are OK. Clobber the size
1518 to 0 to prevent it from being included in the link. */
1519 h->call_stub->size = 0;
1520 h->call_stub->flags &= ~SEC_RELOC;
1521 h->call_stub->reloc_count = 0;
1522 h->call_stub->flags |= SEC_EXCLUDE;
1523 }
1524
1525 if (h->call_fp_stub != NULL
1526 && ELF_ST_IS_MIPS16 (h->root.other))
1527 {
1528 /* We don't need the call_stub; this is a 16 bit function, so
1529 calls from other 16 bit functions are OK. Clobber the size
1530 to 0 to prevent it from being included in the link. */
1531 h->call_fp_stub->size = 0;
1532 h->call_fp_stub->flags &= ~SEC_RELOC;
1533 h->call_fp_stub->reloc_count = 0;
1534 h->call_fp_stub->flags |= SEC_EXCLUDE;
1535 }
1536 }
1537
1538 /* Hashtable callbacks for mips_elf_la25_stubs. */
1539
1540 static hashval_t
1541 mips_elf_la25_stub_hash (const void *entry_)
1542 {
1543 const struct mips_elf_la25_stub *entry;
1544
1545 entry = (struct mips_elf_la25_stub *) entry_;
1546 return entry->h->root.root.u.def.section->id
1547 + entry->h->root.root.u.def.value;
1548 }
1549
1550 static int
1551 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1552 {
1553 const struct mips_elf_la25_stub *entry1, *entry2;
1554
1555 entry1 = (struct mips_elf_la25_stub *) entry1_;
1556 entry2 = (struct mips_elf_la25_stub *) entry2_;
1557 return ((entry1->h->root.root.u.def.section
1558 == entry2->h->root.root.u.def.section)
1559 && (entry1->h->root.root.u.def.value
1560 == entry2->h->root.root.u.def.value));
1561 }
1562
1563 /* Called by the linker to set up the la25 stub-creation code. FN is
1564 the linker's implementation of add_stub_function. Return true on
1565 success. */
1566
1567 bfd_boolean
1568 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1569 asection *(*fn) (const char *, asection *,
1570 asection *))
1571 {
1572 struct mips_elf_link_hash_table *htab;
1573
1574 htab = mips_elf_hash_table (info);
1575 if (htab == NULL)
1576 return FALSE;
1577
1578 htab->add_stub_section = fn;
1579 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1580 mips_elf_la25_stub_eq, NULL);
1581 if (htab->la25_stubs == NULL)
1582 return FALSE;
1583
1584 return TRUE;
1585 }
1586
1587 /* Return true if H is a locally-defined PIC function, in the sense
1588 that it or its fn_stub might need $25 to be valid on entry.
1589 Note that MIPS16 functions set up $gp using PC-relative instructions,
1590 so they themselves never need $25 to be valid. Only non-MIPS16
1591 entry points are of interest here. */
1592
1593 static bfd_boolean
1594 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1595 {
1596 return ((h->root.root.type == bfd_link_hash_defined
1597 || h->root.root.type == bfd_link_hash_defweak)
1598 && h->root.def_regular
1599 && !bfd_is_abs_section (h->root.root.u.def.section)
1600 && (!ELF_ST_IS_MIPS16 (h->root.other)
1601 || (h->fn_stub && h->need_fn_stub))
1602 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1603 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1604 }
1605
1606 /* Set *SEC to the input section that contains the target of STUB.
1607 Return the offset of the target from the start of that section. */
1608
1609 static bfd_vma
1610 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1611 asection **sec)
1612 {
1613 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1614 {
1615 BFD_ASSERT (stub->h->need_fn_stub);
1616 *sec = stub->h->fn_stub;
1617 return 0;
1618 }
1619 else
1620 {
1621 *sec = stub->h->root.root.u.def.section;
1622 return stub->h->root.root.u.def.value;
1623 }
1624 }
1625
1626 /* STUB describes an la25 stub that we have decided to implement
1627 by inserting an LUI/ADDIU pair before the target function.
1628 Create the section and redirect the function symbol to it. */
1629
1630 static bfd_boolean
1631 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1632 struct bfd_link_info *info)
1633 {
1634 struct mips_elf_link_hash_table *htab;
1635 char *name;
1636 asection *s, *input_section;
1637 unsigned int align;
1638
1639 htab = mips_elf_hash_table (info);
1640 if (htab == NULL)
1641 return FALSE;
1642
1643 /* Create a unique name for the new section. */
1644 name = bfd_malloc (11 + sizeof (".text.stub."));
1645 if (name == NULL)
1646 return FALSE;
1647 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1648
1649 /* Create the section. */
1650 mips_elf_get_la25_target (stub, &input_section);
1651 s = htab->add_stub_section (name, input_section,
1652 input_section->output_section);
1653 if (s == NULL)
1654 return FALSE;
1655
1656 /* Make sure that any padding goes before the stub. */
1657 align = input_section->alignment_power;
1658 if (!bfd_set_section_alignment (s->owner, s, align))
1659 return FALSE;
1660 if (align > 3)
1661 s->size = (1 << align) - 8;
1662
1663 /* Create a symbol for the stub. */
1664 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1665 stub->stub_section = s;
1666 stub->offset = s->size;
1667
1668 /* Allocate room for it. */
1669 s->size += 8;
1670 return TRUE;
1671 }
1672
1673 /* STUB describes an la25 stub that we have decided to implement
1674 with a separate trampoline. Allocate room for it and redirect
1675 the function symbol to it. */
1676
1677 static bfd_boolean
1678 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1679 struct bfd_link_info *info)
1680 {
1681 struct mips_elf_link_hash_table *htab;
1682 asection *s;
1683
1684 htab = mips_elf_hash_table (info);
1685 if (htab == NULL)
1686 return FALSE;
1687
1688 /* Create a trampoline section, if we haven't already. */
1689 s = htab->strampoline;
1690 if (s == NULL)
1691 {
1692 asection *input_section = stub->h->root.root.u.def.section;
1693 s = htab->add_stub_section (".text", NULL,
1694 input_section->output_section);
1695 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1696 return FALSE;
1697 htab->strampoline = s;
1698 }
1699
1700 /* Create a symbol for the stub. */
1701 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1702 stub->stub_section = s;
1703 stub->offset = s->size;
1704
1705 /* Allocate room for it. */
1706 s->size += 16;
1707 return TRUE;
1708 }
1709
1710 /* H describes a symbol that needs an la25 stub. Make sure that an
1711 appropriate stub exists and point H at it. */
1712
1713 static bfd_boolean
1714 mips_elf_add_la25_stub (struct bfd_link_info *info,
1715 struct mips_elf_link_hash_entry *h)
1716 {
1717 struct mips_elf_link_hash_table *htab;
1718 struct mips_elf_la25_stub search, *stub;
1719 bfd_boolean use_trampoline_p;
1720 asection *s;
1721 bfd_vma value;
1722 void **slot;
1723
1724 /* Describe the stub we want. */
1725 search.stub_section = NULL;
1726 search.offset = 0;
1727 search.h = h;
1728
1729 /* See if we've already created an equivalent stub. */
1730 htab = mips_elf_hash_table (info);
1731 if (htab == NULL)
1732 return FALSE;
1733
1734 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1735 if (slot == NULL)
1736 return FALSE;
1737
1738 stub = (struct mips_elf_la25_stub *) *slot;
1739 if (stub != NULL)
1740 {
1741 /* We can reuse the existing stub. */
1742 h->la25_stub = stub;
1743 return TRUE;
1744 }
1745
1746 /* Create a permanent copy of ENTRY and add it to the hash table. */
1747 stub = bfd_malloc (sizeof (search));
1748 if (stub == NULL)
1749 return FALSE;
1750 *stub = search;
1751 *slot = stub;
1752
1753 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1754 of the section and if we would need no more than 2 nops. */
1755 value = mips_elf_get_la25_target (stub, &s);
1756 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1757
1758 h->la25_stub = stub;
1759 return (use_trampoline_p
1760 ? mips_elf_add_la25_trampoline (stub, info)
1761 : mips_elf_add_la25_intro (stub, info));
1762 }
1763
1764 /* A mips_elf_link_hash_traverse callback that is called before sizing
1765 sections. DATA points to a mips_htab_traverse_info structure. */
1766
1767 static bfd_boolean
1768 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1769 {
1770 struct mips_htab_traverse_info *hti;
1771
1772 hti = (struct mips_htab_traverse_info *) data;
1773 if (!hti->info->relocatable)
1774 mips_elf_check_mips16_stubs (hti->info, h);
1775
1776 if (mips_elf_local_pic_function_p (h))
1777 {
1778 /* PR 12845: If H is in a section that has been garbage
1779 collected it will have its output section set to *ABS*. */
1780 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1781 return TRUE;
1782
1783 /* H is a function that might need $25 to be valid on entry.
1784 If we're creating a non-PIC relocatable object, mark H as
1785 being PIC. If we're creating a non-relocatable object with
1786 non-PIC branches and jumps to H, make sure that H has an la25
1787 stub. */
1788 if (hti->info->relocatable)
1789 {
1790 if (!PIC_OBJECT_P (hti->output_bfd))
1791 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
1792 }
1793 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
1794 {
1795 hti->error = TRUE;
1796 return FALSE;
1797 }
1798 }
1799 return TRUE;
1800 }
1801 \f
1802 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1803 Most mips16 instructions are 16 bits, but these instructions
1804 are 32 bits.
1805
1806 The format of these instructions is:
1807
1808 +--------------+--------------------------------+
1809 | JALX | X| Imm 20:16 | Imm 25:21 |
1810 +--------------+--------------------------------+
1811 | Immediate 15:0 |
1812 +-----------------------------------------------+
1813
1814 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1815 Note that the immediate value in the first word is swapped.
1816
1817 When producing a relocatable object file, R_MIPS16_26 is
1818 handled mostly like R_MIPS_26. In particular, the addend is
1819 stored as a straight 26-bit value in a 32-bit instruction.
1820 (gas makes life simpler for itself by never adjusting a
1821 R_MIPS16_26 reloc to be against a section, so the addend is
1822 always zero). However, the 32 bit instruction is stored as 2
1823 16-bit values, rather than a single 32-bit value. In a
1824 big-endian file, the result is the same; in a little-endian
1825 file, the two 16-bit halves of the 32 bit value are swapped.
1826 This is so that a disassembler can recognize the jal
1827 instruction.
1828
1829 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1830 instruction stored as two 16-bit values. The addend A is the
1831 contents of the targ26 field. The calculation is the same as
1832 R_MIPS_26. When storing the calculated value, reorder the
1833 immediate value as shown above, and don't forget to store the
1834 value as two 16-bit values.
1835
1836 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1837 defined as
1838
1839 big-endian:
1840 +--------+----------------------+
1841 | | |
1842 | | targ26-16 |
1843 |31 26|25 0|
1844 +--------+----------------------+
1845
1846 little-endian:
1847 +----------+------+-------------+
1848 | | | |
1849 | sub1 | | sub2 |
1850 |0 9|10 15|16 31|
1851 +----------+--------------------+
1852 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1853 ((sub1 << 16) | sub2)).
1854
1855 When producing a relocatable object file, the calculation is
1856 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1857 When producing a fully linked file, the calculation is
1858 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1859 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1860
1861 The table below lists the other MIPS16 instruction relocations.
1862 Each one is calculated in the same way as the non-MIPS16 relocation
1863 given on the right, but using the extended MIPS16 layout of 16-bit
1864 immediate fields:
1865
1866 R_MIPS16_GPREL R_MIPS_GPREL16
1867 R_MIPS16_GOT16 R_MIPS_GOT16
1868 R_MIPS16_CALL16 R_MIPS_CALL16
1869 R_MIPS16_HI16 R_MIPS_HI16
1870 R_MIPS16_LO16 R_MIPS_LO16
1871
1872 A typical instruction will have a format like this:
1873
1874 +--------------+--------------------------------+
1875 | EXTEND | Imm 10:5 | Imm 15:11 |
1876 +--------------+--------------------------------+
1877 | Major | rx | ry | Imm 4:0 |
1878 +--------------+--------------------------------+
1879
1880 EXTEND is the five bit value 11110. Major is the instruction
1881 opcode.
1882
1883 All we need to do here is shuffle the bits appropriately.
1884 As above, the two 16-bit halves must be swapped on a
1885 little-endian system. */
1886
1887 static inline bfd_boolean
1888 mips16_reloc_p (int r_type)
1889 {
1890 switch (r_type)
1891 {
1892 case R_MIPS16_26:
1893 case R_MIPS16_GPREL:
1894 case R_MIPS16_GOT16:
1895 case R_MIPS16_CALL16:
1896 case R_MIPS16_HI16:
1897 case R_MIPS16_LO16:
1898 case R_MIPS16_TLS_GD:
1899 case R_MIPS16_TLS_LDM:
1900 case R_MIPS16_TLS_DTPREL_HI16:
1901 case R_MIPS16_TLS_DTPREL_LO16:
1902 case R_MIPS16_TLS_GOTTPREL:
1903 case R_MIPS16_TLS_TPREL_HI16:
1904 case R_MIPS16_TLS_TPREL_LO16:
1905 return TRUE;
1906
1907 default:
1908 return FALSE;
1909 }
1910 }
1911
1912 /* Check if a microMIPS reloc. */
1913
1914 static inline bfd_boolean
1915 micromips_reloc_p (unsigned int r_type)
1916 {
1917 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
1918 }
1919
1920 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
1921 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
1922 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
1923
1924 static inline bfd_boolean
1925 micromips_reloc_shuffle_p (unsigned int r_type)
1926 {
1927 return (micromips_reloc_p (r_type)
1928 && r_type != R_MICROMIPS_PC7_S1
1929 && r_type != R_MICROMIPS_PC10_S1);
1930 }
1931
1932 static inline bfd_boolean
1933 got16_reloc_p (int r_type)
1934 {
1935 return (r_type == R_MIPS_GOT16
1936 || r_type == R_MIPS16_GOT16
1937 || r_type == R_MICROMIPS_GOT16);
1938 }
1939
1940 static inline bfd_boolean
1941 call16_reloc_p (int r_type)
1942 {
1943 return (r_type == R_MIPS_CALL16
1944 || r_type == R_MIPS16_CALL16
1945 || r_type == R_MICROMIPS_CALL16);
1946 }
1947
1948 static inline bfd_boolean
1949 got_disp_reloc_p (unsigned int r_type)
1950 {
1951 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
1952 }
1953
1954 static inline bfd_boolean
1955 got_page_reloc_p (unsigned int r_type)
1956 {
1957 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
1958 }
1959
1960 static inline bfd_boolean
1961 got_ofst_reloc_p (unsigned int r_type)
1962 {
1963 return r_type == R_MIPS_GOT_OFST || r_type == R_MICROMIPS_GOT_OFST;
1964 }
1965
1966 static inline bfd_boolean
1967 got_hi16_reloc_p (unsigned int r_type)
1968 {
1969 return r_type == R_MIPS_GOT_HI16 || r_type == R_MICROMIPS_GOT_HI16;
1970 }
1971
1972 static inline bfd_boolean
1973 got_lo16_reloc_p (unsigned int r_type)
1974 {
1975 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
1976 }
1977
1978 static inline bfd_boolean
1979 call_hi16_reloc_p (unsigned int r_type)
1980 {
1981 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
1982 }
1983
1984 static inline bfd_boolean
1985 call_lo16_reloc_p (unsigned int r_type)
1986 {
1987 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
1988 }
1989
1990 static inline bfd_boolean
1991 hi16_reloc_p (int r_type)
1992 {
1993 return (r_type == R_MIPS_HI16
1994 || r_type == R_MIPS16_HI16
1995 || r_type == R_MICROMIPS_HI16);
1996 }
1997
1998 static inline bfd_boolean
1999 lo16_reloc_p (int r_type)
2000 {
2001 return (r_type == R_MIPS_LO16
2002 || r_type == R_MIPS16_LO16
2003 || r_type == R_MICROMIPS_LO16);
2004 }
2005
2006 static inline bfd_boolean
2007 mips16_call_reloc_p (int r_type)
2008 {
2009 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2010 }
2011
2012 static inline bfd_boolean
2013 jal_reloc_p (int r_type)
2014 {
2015 return (r_type == R_MIPS_26
2016 || r_type == R_MIPS16_26
2017 || r_type == R_MICROMIPS_26_S1);
2018 }
2019
2020 static inline bfd_boolean
2021 micromips_branch_reloc_p (int r_type)
2022 {
2023 return (r_type == R_MICROMIPS_26_S1
2024 || r_type == R_MICROMIPS_PC16_S1
2025 || r_type == R_MICROMIPS_PC10_S1
2026 || r_type == R_MICROMIPS_PC7_S1);
2027 }
2028
2029 static inline bfd_boolean
2030 tls_gd_reloc_p (unsigned int r_type)
2031 {
2032 return (r_type == R_MIPS_TLS_GD
2033 || r_type == R_MIPS16_TLS_GD
2034 || r_type == R_MICROMIPS_TLS_GD);
2035 }
2036
2037 static inline bfd_boolean
2038 tls_ldm_reloc_p (unsigned int r_type)
2039 {
2040 return (r_type == R_MIPS_TLS_LDM
2041 || r_type == R_MIPS16_TLS_LDM
2042 || r_type == R_MICROMIPS_TLS_LDM);
2043 }
2044
2045 static inline bfd_boolean
2046 tls_gottprel_reloc_p (unsigned int r_type)
2047 {
2048 return (r_type == R_MIPS_TLS_GOTTPREL
2049 || r_type == R_MIPS16_TLS_GOTTPREL
2050 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2051 }
2052
2053 void
2054 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2055 bfd_boolean jal_shuffle, bfd_byte *data)
2056 {
2057 bfd_vma first, second, val;
2058
2059 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2060 return;
2061
2062 /* Pick up the first and second halfwords of the instruction. */
2063 first = bfd_get_16 (abfd, data);
2064 second = bfd_get_16 (abfd, data + 2);
2065 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2066 val = first << 16 | second;
2067 else if (r_type != R_MIPS16_26)
2068 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2069 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2070 else
2071 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2072 | ((first & 0x1f) << 21) | second);
2073 bfd_put_32 (abfd, val, data);
2074 }
2075
2076 void
2077 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2078 bfd_boolean jal_shuffle, bfd_byte *data)
2079 {
2080 bfd_vma first, second, val;
2081
2082 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2083 return;
2084
2085 val = bfd_get_32 (abfd, data);
2086 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2087 {
2088 second = val & 0xffff;
2089 first = val >> 16;
2090 }
2091 else if (r_type != R_MIPS16_26)
2092 {
2093 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2094 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2095 }
2096 else
2097 {
2098 second = val & 0xffff;
2099 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2100 | ((val >> 21) & 0x1f);
2101 }
2102 bfd_put_16 (abfd, second, data + 2);
2103 bfd_put_16 (abfd, first, data);
2104 }
2105
2106 bfd_reloc_status_type
2107 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2108 arelent *reloc_entry, asection *input_section,
2109 bfd_boolean relocatable, void *data, bfd_vma gp)
2110 {
2111 bfd_vma relocation;
2112 bfd_signed_vma val;
2113 bfd_reloc_status_type status;
2114
2115 if (bfd_is_com_section (symbol->section))
2116 relocation = 0;
2117 else
2118 relocation = symbol->value;
2119
2120 relocation += symbol->section->output_section->vma;
2121 relocation += symbol->section->output_offset;
2122
2123 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2124 return bfd_reloc_outofrange;
2125
2126 /* Set val to the offset into the section or symbol. */
2127 val = reloc_entry->addend;
2128
2129 _bfd_mips_elf_sign_extend (val, 16);
2130
2131 /* Adjust val for the final section location and GP value. If we
2132 are producing relocatable output, we don't want to do this for
2133 an external symbol. */
2134 if (! relocatable
2135 || (symbol->flags & BSF_SECTION_SYM) != 0)
2136 val += relocation - gp;
2137
2138 if (reloc_entry->howto->partial_inplace)
2139 {
2140 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2141 (bfd_byte *) data
2142 + reloc_entry->address);
2143 if (status != bfd_reloc_ok)
2144 return status;
2145 }
2146 else
2147 reloc_entry->addend = val;
2148
2149 if (relocatable)
2150 reloc_entry->address += input_section->output_offset;
2151
2152 return bfd_reloc_ok;
2153 }
2154
2155 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2156 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2157 that contains the relocation field and DATA points to the start of
2158 INPUT_SECTION. */
2159
2160 struct mips_hi16
2161 {
2162 struct mips_hi16 *next;
2163 bfd_byte *data;
2164 asection *input_section;
2165 arelent rel;
2166 };
2167
2168 /* FIXME: This should not be a static variable. */
2169
2170 static struct mips_hi16 *mips_hi16_list;
2171
2172 /* A howto special_function for REL *HI16 relocations. We can only
2173 calculate the correct value once we've seen the partnering
2174 *LO16 relocation, so just save the information for later.
2175
2176 The ABI requires that the *LO16 immediately follow the *HI16.
2177 However, as a GNU extension, we permit an arbitrary number of
2178 *HI16s to be associated with a single *LO16. This significantly
2179 simplies the relocation handling in gcc. */
2180
2181 bfd_reloc_status_type
2182 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2183 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2184 asection *input_section, bfd *output_bfd,
2185 char **error_message ATTRIBUTE_UNUSED)
2186 {
2187 struct mips_hi16 *n;
2188
2189 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2190 return bfd_reloc_outofrange;
2191
2192 n = bfd_malloc (sizeof *n);
2193 if (n == NULL)
2194 return bfd_reloc_outofrange;
2195
2196 n->next = mips_hi16_list;
2197 n->data = data;
2198 n->input_section = input_section;
2199 n->rel = *reloc_entry;
2200 mips_hi16_list = n;
2201
2202 if (output_bfd != NULL)
2203 reloc_entry->address += input_section->output_offset;
2204
2205 return bfd_reloc_ok;
2206 }
2207
2208 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2209 like any other 16-bit relocation when applied to global symbols, but is
2210 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2211
2212 bfd_reloc_status_type
2213 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2214 void *data, asection *input_section,
2215 bfd *output_bfd, char **error_message)
2216 {
2217 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2218 || bfd_is_und_section (bfd_get_section (symbol))
2219 || bfd_is_com_section (bfd_get_section (symbol)))
2220 /* The relocation is against a global symbol. */
2221 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2222 input_section, output_bfd,
2223 error_message);
2224
2225 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2226 input_section, output_bfd, error_message);
2227 }
2228
2229 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2230 is a straightforward 16 bit inplace relocation, but we must deal with
2231 any partnering high-part relocations as well. */
2232
2233 bfd_reloc_status_type
2234 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2235 void *data, asection *input_section,
2236 bfd *output_bfd, char **error_message)
2237 {
2238 bfd_vma vallo;
2239 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2240
2241 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2242 return bfd_reloc_outofrange;
2243
2244 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2245 location);
2246 vallo = bfd_get_32 (abfd, location);
2247 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2248 location);
2249
2250 while (mips_hi16_list != NULL)
2251 {
2252 bfd_reloc_status_type ret;
2253 struct mips_hi16 *hi;
2254
2255 hi = mips_hi16_list;
2256
2257 /* R_MIPS*_GOT16 relocations are something of a special case. We
2258 want to install the addend in the same way as for a R_MIPS*_HI16
2259 relocation (with a rightshift of 16). However, since GOT16
2260 relocations can also be used with global symbols, their howto
2261 has a rightshift of 0. */
2262 if (hi->rel.howto->type == R_MIPS_GOT16)
2263 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2264 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2265 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2266 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2267 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2268
2269 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2270 carry or borrow will induce a change of +1 or -1 in the high part. */
2271 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2272
2273 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2274 hi->input_section, output_bfd,
2275 error_message);
2276 if (ret != bfd_reloc_ok)
2277 return ret;
2278
2279 mips_hi16_list = hi->next;
2280 free (hi);
2281 }
2282
2283 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2284 input_section, output_bfd,
2285 error_message);
2286 }
2287
2288 /* A generic howto special_function. This calculates and installs the
2289 relocation itself, thus avoiding the oft-discussed problems in
2290 bfd_perform_relocation and bfd_install_relocation. */
2291
2292 bfd_reloc_status_type
2293 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2294 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2295 asection *input_section, bfd *output_bfd,
2296 char **error_message ATTRIBUTE_UNUSED)
2297 {
2298 bfd_signed_vma val;
2299 bfd_reloc_status_type status;
2300 bfd_boolean relocatable;
2301
2302 relocatable = (output_bfd != NULL);
2303
2304 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2305 return bfd_reloc_outofrange;
2306
2307 /* Build up the field adjustment in VAL. */
2308 val = 0;
2309 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2310 {
2311 /* Either we're calculating the final field value or we have a
2312 relocation against a section symbol. Add in the section's
2313 offset or address. */
2314 val += symbol->section->output_section->vma;
2315 val += symbol->section->output_offset;
2316 }
2317
2318 if (!relocatable)
2319 {
2320 /* We're calculating the final field value. Add in the symbol's value
2321 and, if pc-relative, subtract the address of the field itself. */
2322 val += symbol->value;
2323 if (reloc_entry->howto->pc_relative)
2324 {
2325 val -= input_section->output_section->vma;
2326 val -= input_section->output_offset;
2327 val -= reloc_entry->address;
2328 }
2329 }
2330
2331 /* VAL is now the final adjustment. If we're keeping this relocation
2332 in the output file, and if the relocation uses a separate addend,
2333 we just need to add VAL to that addend. Otherwise we need to add
2334 VAL to the relocation field itself. */
2335 if (relocatable && !reloc_entry->howto->partial_inplace)
2336 reloc_entry->addend += val;
2337 else
2338 {
2339 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2340
2341 /* Add in the separate addend, if any. */
2342 val += reloc_entry->addend;
2343
2344 /* Add VAL to the relocation field. */
2345 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2346 location);
2347 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2348 location);
2349 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2350 location);
2351
2352 if (status != bfd_reloc_ok)
2353 return status;
2354 }
2355
2356 if (relocatable)
2357 reloc_entry->address += input_section->output_offset;
2358
2359 return bfd_reloc_ok;
2360 }
2361 \f
2362 /* Swap an entry in a .gptab section. Note that these routines rely
2363 on the equivalence of the two elements of the union. */
2364
2365 static void
2366 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2367 Elf32_gptab *in)
2368 {
2369 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2370 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2371 }
2372
2373 static void
2374 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2375 Elf32_External_gptab *ex)
2376 {
2377 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2378 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2379 }
2380
2381 static void
2382 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2383 Elf32_External_compact_rel *ex)
2384 {
2385 H_PUT_32 (abfd, in->id1, ex->id1);
2386 H_PUT_32 (abfd, in->num, ex->num);
2387 H_PUT_32 (abfd, in->id2, ex->id2);
2388 H_PUT_32 (abfd, in->offset, ex->offset);
2389 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2390 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2391 }
2392
2393 static void
2394 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2395 Elf32_External_crinfo *ex)
2396 {
2397 unsigned long l;
2398
2399 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2400 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2401 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2402 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2403 H_PUT_32 (abfd, l, ex->info);
2404 H_PUT_32 (abfd, in->konst, ex->konst);
2405 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2406 }
2407 \f
2408 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2409 routines swap this structure in and out. They are used outside of
2410 BFD, so they are globally visible. */
2411
2412 void
2413 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2414 Elf32_RegInfo *in)
2415 {
2416 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2417 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2418 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2419 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2420 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2421 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2422 }
2423
2424 void
2425 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2426 Elf32_External_RegInfo *ex)
2427 {
2428 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2429 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2430 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2431 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2432 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2433 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2434 }
2435
2436 /* In the 64 bit ABI, the .MIPS.options section holds register
2437 information in an Elf64_Reginfo structure. These routines swap
2438 them in and out. They are globally visible because they are used
2439 outside of BFD. These routines are here so that gas can call them
2440 without worrying about whether the 64 bit ABI has been included. */
2441
2442 void
2443 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2444 Elf64_Internal_RegInfo *in)
2445 {
2446 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2447 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2448 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2449 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2450 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2451 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2452 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2453 }
2454
2455 void
2456 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2457 Elf64_External_RegInfo *ex)
2458 {
2459 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2460 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2461 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2462 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2463 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2464 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2465 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2466 }
2467
2468 /* Swap in an options header. */
2469
2470 void
2471 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2472 Elf_Internal_Options *in)
2473 {
2474 in->kind = H_GET_8 (abfd, ex->kind);
2475 in->size = H_GET_8 (abfd, ex->size);
2476 in->section = H_GET_16 (abfd, ex->section);
2477 in->info = H_GET_32 (abfd, ex->info);
2478 }
2479
2480 /* Swap out an options header. */
2481
2482 void
2483 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2484 Elf_External_Options *ex)
2485 {
2486 H_PUT_8 (abfd, in->kind, ex->kind);
2487 H_PUT_8 (abfd, in->size, ex->size);
2488 H_PUT_16 (abfd, in->section, ex->section);
2489 H_PUT_32 (abfd, in->info, ex->info);
2490 }
2491 \f
2492 /* This function is called via qsort() to sort the dynamic relocation
2493 entries by increasing r_symndx value. */
2494
2495 static int
2496 sort_dynamic_relocs (const void *arg1, const void *arg2)
2497 {
2498 Elf_Internal_Rela int_reloc1;
2499 Elf_Internal_Rela int_reloc2;
2500 int diff;
2501
2502 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2503 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2504
2505 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2506 if (diff != 0)
2507 return diff;
2508
2509 if (int_reloc1.r_offset < int_reloc2.r_offset)
2510 return -1;
2511 if (int_reloc1.r_offset > int_reloc2.r_offset)
2512 return 1;
2513 return 0;
2514 }
2515
2516 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2517
2518 static int
2519 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2520 const void *arg2 ATTRIBUTE_UNUSED)
2521 {
2522 #ifdef BFD64
2523 Elf_Internal_Rela int_reloc1[3];
2524 Elf_Internal_Rela int_reloc2[3];
2525
2526 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2527 (reldyn_sorting_bfd, arg1, int_reloc1);
2528 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2529 (reldyn_sorting_bfd, arg2, int_reloc2);
2530
2531 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2532 return -1;
2533 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2534 return 1;
2535
2536 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2537 return -1;
2538 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2539 return 1;
2540 return 0;
2541 #else
2542 abort ();
2543 #endif
2544 }
2545
2546
2547 /* This routine is used to write out ECOFF debugging external symbol
2548 information. It is called via mips_elf_link_hash_traverse. The
2549 ECOFF external symbol information must match the ELF external
2550 symbol information. Unfortunately, at this point we don't know
2551 whether a symbol is required by reloc information, so the two
2552 tables may wind up being different. We must sort out the external
2553 symbol information before we can set the final size of the .mdebug
2554 section, and we must set the size of the .mdebug section before we
2555 can relocate any sections, and we can't know which symbols are
2556 required by relocation until we relocate the sections.
2557 Fortunately, it is relatively unlikely that any symbol will be
2558 stripped but required by a reloc. In particular, it can not happen
2559 when generating a final executable. */
2560
2561 static bfd_boolean
2562 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2563 {
2564 struct extsym_info *einfo = data;
2565 bfd_boolean strip;
2566 asection *sec, *output_section;
2567
2568 if (h->root.indx == -2)
2569 strip = FALSE;
2570 else if ((h->root.def_dynamic
2571 || h->root.ref_dynamic
2572 || h->root.type == bfd_link_hash_new)
2573 && !h->root.def_regular
2574 && !h->root.ref_regular)
2575 strip = TRUE;
2576 else if (einfo->info->strip == strip_all
2577 || (einfo->info->strip == strip_some
2578 && bfd_hash_lookup (einfo->info->keep_hash,
2579 h->root.root.root.string,
2580 FALSE, FALSE) == NULL))
2581 strip = TRUE;
2582 else
2583 strip = FALSE;
2584
2585 if (strip)
2586 return TRUE;
2587
2588 if (h->esym.ifd == -2)
2589 {
2590 h->esym.jmptbl = 0;
2591 h->esym.cobol_main = 0;
2592 h->esym.weakext = 0;
2593 h->esym.reserved = 0;
2594 h->esym.ifd = ifdNil;
2595 h->esym.asym.value = 0;
2596 h->esym.asym.st = stGlobal;
2597
2598 if (h->root.root.type == bfd_link_hash_undefined
2599 || h->root.root.type == bfd_link_hash_undefweak)
2600 {
2601 const char *name;
2602
2603 /* Use undefined class. Also, set class and type for some
2604 special symbols. */
2605 name = h->root.root.root.string;
2606 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2607 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2608 {
2609 h->esym.asym.sc = scData;
2610 h->esym.asym.st = stLabel;
2611 h->esym.asym.value = 0;
2612 }
2613 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2614 {
2615 h->esym.asym.sc = scAbs;
2616 h->esym.asym.st = stLabel;
2617 h->esym.asym.value =
2618 mips_elf_hash_table (einfo->info)->procedure_count;
2619 }
2620 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2621 {
2622 h->esym.asym.sc = scAbs;
2623 h->esym.asym.st = stLabel;
2624 h->esym.asym.value = elf_gp (einfo->abfd);
2625 }
2626 else
2627 h->esym.asym.sc = scUndefined;
2628 }
2629 else if (h->root.root.type != bfd_link_hash_defined
2630 && h->root.root.type != bfd_link_hash_defweak)
2631 h->esym.asym.sc = scAbs;
2632 else
2633 {
2634 const char *name;
2635
2636 sec = h->root.root.u.def.section;
2637 output_section = sec->output_section;
2638
2639 /* When making a shared library and symbol h is the one from
2640 the another shared library, OUTPUT_SECTION may be null. */
2641 if (output_section == NULL)
2642 h->esym.asym.sc = scUndefined;
2643 else
2644 {
2645 name = bfd_section_name (output_section->owner, output_section);
2646
2647 if (strcmp (name, ".text") == 0)
2648 h->esym.asym.sc = scText;
2649 else if (strcmp (name, ".data") == 0)
2650 h->esym.asym.sc = scData;
2651 else if (strcmp (name, ".sdata") == 0)
2652 h->esym.asym.sc = scSData;
2653 else if (strcmp (name, ".rodata") == 0
2654 || strcmp (name, ".rdata") == 0)
2655 h->esym.asym.sc = scRData;
2656 else if (strcmp (name, ".bss") == 0)
2657 h->esym.asym.sc = scBss;
2658 else if (strcmp (name, ".sbss") == 0)
2659 h->esym.asym.sc = scSBss;
2660 else if (strcmp (name, ".init") == 0)
2661 h->esym.asym.sc = scInit;
2662 else if (strcmp (name, ".fini") == 0)
2663 h->esym.asym.sc = scFini;
2664 else
2665 h->esym.asym.sc = scAbs;
2666 }
2667 }
2668
2669 h->esym.asym.reserved = 0;
2670 h->esym.asym.index = indexNil;
2671 }
2672
2673 if (h->root.root.type == bfd_link_hash_common)
2674 h->esym.asym.value = h->root.root.u.c.size;
2675 else if (h->root.root.type == bfd_link_hash_defined
2676 || h->root.root.type == bfd_link_hash_defweak)
2677 {
2678 if (h->esym.asym.sc == scCommon)
2679 h->esym.asym.sc = scBss;
2680 else if (h->esym.asym.sc == scSCommon)
2681 h->esym.asym.sc = scSBss;
2682
2683 sec = h->root.root.u.def.section;
2684 output_section = sec->output_section;
2685 if (output_section != NULL)
2686 h->esym.asym.value = (h->root.root.u.def.value
2687 + sec->output_offset
2688 + output_section->vma);
2689 else
2690 h->esym.asym.value = 0;
2691 }
2692 else
2693 {
2694 struct mips_elf_link_hash_entry *hd = h;
2695
2696 while (hd->root.root.type == bfd_link_hash_indirect)
2697 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2698
2699 if (hd->needs_lazy_stub)
2700 {
2701 /* Set type and value for a symbol with a function stub. */
2702 h->esym.asym.st = stProc;
2703 sec = hd->root.root.u.def.section;
2704 if (sec == NULL)
2705 h->esym.asym.value = 0;
2706 else
2707 {
2708 output_section = sec->output_section;
2709 if (output_section != NULL)
2710 h->esym.asym.value = (hd->root.plt.offset
2711 + sec->output_offset
2712 + output_section->vma);
2713 else
2714 h->esym.asym.value = 0;
2715 }
2716 }
2717 }
2718
2719 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2720 h->root.root.root.string,
2721 &h->esym))
2722 {
2723 einfo->failed = TRUE;
2724 return FALSE;
2725 }
2726
2727 return TRUE;
2728 }
2729
2730 /* A comparison routine used to sort .gptab entries. */
2731
2732 static int
2733 gptab_compare (const void *p1, const void *p2)
2734 {
2735 const Elf32_gptab *a1 = p1;
2736 const Elf32_gptab *a2 = p2;
2737
2738 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2739 }
2740 \f
2741 /* Functions to manage the got entry hash table. */
2742
2743 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2744 hash number. */
2745
2746 static INLINE hashval_t
2747 mips_elf_hash_bfd_vma (bfd_vma addr)
2748 {
2749 #ifdef BFD64
2750 return addr + (addr >> 32);
2751 #else
2752 return addr;
2753 #endif
2754 }
2755
2756 /* got_entries only match if they're identical, except for gotidx, so
2757 use all fields to compute the hash, and compare the appropriate
2758 union members. */
2759
2760 static hashval_t
2761 mips_elf_got_entry_hash (const void *entry_)
2762 {
2763 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2764
2765 return entry->symndx
2766 + ((entry->tls_type & GOT_TLS_LDM) << 17)
2767 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
2768 : entry->abfd->id
2769 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
2770 : entry->d.h->root.root.root.hash));
2771 }
2772
2773 static int
2774 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
2775 {
2776 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2777 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2778
2779 /* An LDM entry can only match another LDM entry. */
2780 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2781 return 0;
2782
2783 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
2784 && (! e1->abfd ? e1->d.address == e2->d.address
2785 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
2786 : e1->d.h == e2->d.h);
2787 }
2788
2789 /* multi_got_entries are still a match in the case of global objects,
2790 even if the input bfd in which they're referenced differs, so the
2791 hash computation and compare functions are adjusted
2792 accordingly. */
2793
2794 static hashval_t
2795 mips_elf_multi_got_entry_hash (const void *entry_)
2796 {
2797 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2798
2799 return entry->symndx
2800 + (! entry->abfd
2801 ? mips_elf_hash_bfd_vma (entry->d.address)
2802 : entry->symndx >= 0
2803 ? ((entry->tls_type & GOT_TLS_LDM)
2804 ? (GOT_TLS_LDM << 17)
2805 : (entry->abfd->id
2806 + mips_elf_hash_bfd_vma (entry->d.addend)))
2807 : entry->d.h->root.root.root.hash);
2808 }
2809
2810 static int
2811 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
2812 {
2813 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2814 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2815
2816 /* Any two LDM entries match. */
2817 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2818 return 1;
2819
2820 /* Nothing else matches an LDM entry. */
2821 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2822 return 0;
2823
2824 return e1->symndx == e2->symndx
2825 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2826 : e1->abfd == NULL || e2->abfd == NULL
2827 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2828 : e1->d.h == e2->d.h);
2829 }
2830
2831 static hashval_t
2832 mips_got_page_entry_hash (const void *entry_)
2833 {
2834 const struct mips_got_page_entry *entry;
2835
2836 entry = (const struct mips_got_page_entry *) entry_;
2837 return entry->abfd->id + entry->symndx;
2838 }
2839
2840 static int
2841 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
2842 {
2843 const struct mips_got_page_entry *entry1, *entry2;
2844
2845 entry1 = (const struct mips_got_page_entry *) entry1_;
2846 entry2 = (const struct mips_got_page_entry *) entry2_;
2847 return entry1->abfd == entry2->abfd && entry1->symndx == entry2->symndx;
2848 }
2849 \f
2850 /* Return the dynamic relocation section. If it doesn't exist, try to
2851 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2852 if creation fails. */
2853
2854 static asection *
2855 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2856 {
2857 const char *dname;
2858 asection *sreloc;
2859 bfd *dynobj;
2860
2861 dname = MIPS_ELF_REL_DYN_NAME (info);
2862 dynobj = elf_hash_table (info)->dynobj;
2863 sreloc = bfd_get_linker_section (dynobj, dname);
2864 if (sreloc == NULL && create_p)
2865 {
2866 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
2867 (SEC_ALLOC
2868 | SEC_LOAD
2869 | SEC_HAS_CONTENTS
2870 | SEC_IN_MEMORY
2871 | SEC_LINKER_CREATED
2872 | SEC_READONLY));
2873 if (sreloc == NULL
2874 || ! bfd_set_section_alignment (dynobj, sreloc,
2875 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2876 return NULL;
2877 }
2878 return sreloc;
2879 }
2880
2881 /* Count the number of relocations needed for a TLS GOT entry, with
2882 access types from TLS_TYPE, and symbol H (or a local symbol if H
2883 is NULL). */
2884
2885 static int
2886 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2887 struct elf_link_hash_entry *h)
2888 {
2889 int indx = 0;
2890 int ret = 0;
2891 bfd_boolean need_relocs = FALSE;
2892 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2893
2894 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2895 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2896 indx = h->dynindx;
2897
2898 if ((info->shared || indx != 0)
2899 && (h == NULL
2900 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2901 || h->root.type != bfd_link_hash_undefweak))
2902 need_relocs = TRUE;
2903
2904 if (!need_relocs)
2905 return FALSE;
2906
2907 if (tls_type & GOT_TLS_GD)
2908 {
2909 ret++;
2910 if (indx != 0)
2911 ret++;
2912 }
2913
2914 if (tls_type & GOT_TLS_IE)
2915 ret++;
2916
2917 if ((tls_type & GOT_TLS_LDM) && info->shared)
2918 ret++;
2919
2920 return ret;
2921 }
2922
2923 /* Count the number of TLS relocations required for the GOT entry in
2924 ARG1, if it describes a local symbol. */
2925
2926 static int
2927 mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2928 {
2929 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2930 struct mips_elf_count_tls_arg *arg = arg2;
2931
2932 if (entry->abfd != NULL && entry->symndx != -1)
2933 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2934
2935 return 1;
2936 }
2937
2938 /* Count the number of TLS GOT entries required for the global (or
2939 forced-local) symbol in ARG1. */
2940
2941 static int
2942 mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2943 {
2944 struct mips_elf_link_hash_entry *hm
2945 = (struct mips_elf_link_hash_entry *) arg1;
2946 struct mips_elf_count_tls_arg *arg = arg2;
2947
2948 if (hm->tls_type & GOT_TLS_GD)
2949 arg->needed += 2;
2950 if (hm->tls_type & GOT_TLS_IE)
2951 arg->needed += 1;
2952
2953 return 1;
2954 }
2955
2956 /* Count the number of TLS relocations required for the global (or
2957 forced-local) symbol in ARG1. */
2958
2959 static int
2960 mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2961 {
2962 struct mips_elf_link_hash_entry *hm
2963 = (struct mips_elf_link_hash_entry *) arg1;
2964 struct mips_elf_count_tls_arg *arg = arg2;
2965
2966 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2967
2968 return 1;
2969 }
2970
2971 /* Output a simple dynamic relocation into SRELOC. */
2972
2973 static void
2974 mips_elf_output_dynamic_relocation (bfd *output_bfd,
2975 asection *sreloc,
2976 unsigned long reloc_index,
2977 unsigned long indx,
2978 int r_type,
2979 bfd_vma offset)
2980 {
2981 Elf_Internal_Rela rel[3];
2982
2983 memset (rel, 0, sizeof (rel));
2984
2985 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2986 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2987
2988 if (ABI_64_P (output_bfd))
2989 {
2990 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2991 (output_bfd, &rel[0],
2992 (sreloc->contents
2993 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
2994 }
2995 else
2996 bfd_elf32_swap_reloc_out
2997 (output_bfd, &rel[0],
2998 (sreloc->contents
2999 + reloc_index * sizeof (Elf32_External_Rel)));
3000 }
3001
3002 /* Initialize a set of TLS GOT entries for one symbol. */
3003
3004 static void
3005 mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
3006 unsigned char *tls_type_p,
3007 struct bfd_link_info *info,
3008 struct mips_elf_link_hash_entry *h,
3009 bfd_vma value)
3010 {
3011 struct mips_elf_link_hash_table *htab;
3012 int indx;
3013 asection *sreloc, *sgot;
3014 bfd_vma offset, offset2;
3015 bfd_boolean need_relocs = FALSE;
3016
3017 htab = mips_elf_hash_table (info);
3018 if (htab == NULL)
3019 return;
3020
3021 sgot = htab->sgot;
3022
3023 indx = 0;
3024 if (h != NULL)
3025 {
3026 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3027
3028 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
3029 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3030 indx = h->root.dynindx;
3031 }
3032
3033 if (*tls_type_p & GOT_TLS_DONE)
3034 return;
3035
3036 if ((info->shared || indx != 0)
3037 && (h == NULL
3038 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3039 || h->root.type != bfd_link_hash_undefweak))
3040 need_relocs = TRUE;
3041
3042 /* MINUS_ONE means the symbol is not defined in this object. It may not
3043 be defined at all; assume that the value doesn't matter in that
3044 case. Otherwise complain if we would use the value. */
3045 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3046 || h->root.root.type == bfd_link_hash_undefweak);
3047
3048 /* Emit necessary relocations. */
3049 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3050
3051 /* General Dynamic. */
3052 if (*tls_type_p & GOT_TLS_GD)
3053 {
3054 offset = got_offset;
3055 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
3056
3057 if (need_relocs)
3058 {
3059 mips_elf_output_dynamic_relocation
3060 (abfd, sreloc, sreloc->reloc_count++, indx,
3061 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3062 sgot->output_offset + sgot->output_section->vma + offset);
3063
3064 if (indx)
3065 mips_elf_output_dynamic_relocation
3066 (abfd, sreloc, sreloc->reloc_count++, indx,
3067 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3068 sgot->output_offset + sgot->output_section->vma + offset2);
3069 else
3070 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3071 sgot->contents + offset2);
3072 }
3073 else
3074 {
3075 MIPS_ELF_PUT_WORD (abfd, 1,
3076 sgot->contents + offset);
3077 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3078 sgot->contents + offset2);
3079 }
3080
3081 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
3082 }
3083
3084 /* Initial Exec model. */
3085 if (*tls_type_p & GOT_TLS_IE)
3086 {
3087 offset = got_offset;
3088
3089 if (need_relocs)
3090 {
3091 if (indx == 0)
3092 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3093 sgot->contents + offset);
3094 else
3095 MIPS_ELF_PUT_WORD (abfd, 0,
3096 sgot->contents + offset);
3097
3098 mips_elf_output_dynamic_relocation
3099 (abfd, sreloc, sreloc->reloc_count++, indx,
3100 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3101 sgot->output_offset + sgot->output_section->vma + offset);
3102 }
3103 else
3104 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3105 sgot->contents + offset);
3106 }
3107
3108 if (*tls_type_p & GOT_TLS_LDM)
3109 {
3110 /* The initial offset is zero, and the LD offsets will include the
3111 bias by DTP_OFFSET. */
3112 MIPS_ELF_PUT_WORD (abfd, 0,
3113 sgot->contents + got_offset
3114 + MIPS_ELF_GOT_SIZE (abfd));
3115
3116 if (!info->shared)
3117 MIPS_ELF_PUT_WORD (abfd, 1,
3118 sgot->contents + got_offset);
3119 else
3120 mips_elf_output_dynamic_relocation
3121 (abfd, sreloc, sreloc->reloc_count++, indx,
3122 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3123 sgot->output_offset + sgot->output_section->vma + got_offset);
3124 }
3125
3126 *tls_type_p |= GOT_TLS_DONE;
3127 }
3128
3129 /* Return the GOT index to use for a relocation of type R_TYPE against
3130 a symbol accessed using TLS_TYPE models. The GOT entries for this
3131 symbol in this GOT start at GOT_INDEX. This function initializes the
3132 GOT entries and corresponding relocations. */
3133
3134 static bfd_vma
3135 mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
3136 int r_type, struct bfd_link_info *info,
3137 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
3138 {
3139 BFD_ASSERT (tls_gottprel_reloc_p (r_type)
3140 || tls_gd_reloc_p (r_type)
3141 || tls_ldm_reloc_p (r_type));
3142
3143 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
3144
3145 if (tls_gottprel_reloc_p (r_type))
3146 {
3147 BFD_ASSERT (*tls_type & GOT_TLS_IE);
3148 if (*tls_type & GOT_TLS_GD)
3149 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
3150 else
3151 return got_index;
3152 }
3153
3154 if (tls_gd_reloc_p (r_type))
3155 {
3156 BFD_ASSERT (*tls_type & GOT_TLS_GD);
3157 return got_index;
3158 }
3159
3160 if (tls_ldm_reloc_p (r_type))
3161 {
3162 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
3163 return got_index;
3164 }
3165
3166 return got_index;
3167 }
3168
3169 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3170 for global symbol H. .got.plt comes before the GOT, so the offset
3171 will be negative. */
3172
3173 static bfd_vma
3174 mips_elf_gotplt_index (struct bfd_link_info *info,
3175 struct elf_link_hash_entry *h)
3176 {
3177 bfd_vma plt_index, got_address, got_value;
3178 struct mips_elf_link_hash_table *htab;
3179
3180 htab = mips_elf_hash_table (info);
3181 BFD_ASSERT (htab != NULL);
3182
3183 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
3184
3185 /* This function only works for VxWorks, because a non-VxWorks .got.plt
3186 section starts with reserved entries. */
3187 BFD_ASSERT (htab->is_vxworks);
3188
3189 /* Calculate the index of the symbol's PLT entry. */
3190 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
3191
3192 /* Calculate the address of the associated .got.plt entry. */
3193 got_address = (htab->sgotplt->output_section->vma
3194 + htab->sgotplt->output_offset
3195 + plt_index * 4);
3196
3197 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3198 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3199 + htab->root.hgot->root.u.def.section->output_offset
3200 + htab->root.hgot->root.u.def.value);
3201
3202 return got_address - got_value;
3203 }
3204
3205 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3206 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3207 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3208 offset can be found. */
3209
3210 static bfd_vma
3211 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3212 bfd_vma value, unsigned long r_symndx,
3213 struct mips_elf_link_hash_entry *h, int r_type)
3214 {
3215 struct mips_elf_link_hash_table *htab;
3216 struct mips_got_entry *entry;
3217
3218 htab = mips_elf_hash_table (info);
3219 BFD_ASSERT (htab != NULL);
3220
3221 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3222 r_symndx, h, r_type);
3223 if (!entry)
3224 return MINUS_ONE;
3225
3226 if (TLS_RELOC_P (r_type))
3227 {
3228 if (entry->symndx == -1 && htab->got_info->next == NULL)
3229 /* A type (3) entry in the single-GOT case. We use the symbol's
3230 hash table entry to track the index. */
3231 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
3232 r_type, info, h, value);
3233 else
3234 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
3235 r_type, info, h, value);
3236 }
3237 else
3238 return entry->gotidx;
3239 }
3240
3241 /* Returns the GOT index for the global symbol indicated by H. */
3242
3243 static bfd_vma
3244 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
3245 int r_type, struct bfd_link_info *info)
3246 {
3247 struct mips_elf_link_hash_table *htab;
3248 bfd_vma got_index;
3249 struct mips_got_info *g, *gg;
3250 long global_got_dynindx = 0;
3251
3252 htab = mips_elf_hash_table (info);
3253 BFD_ASSERT (htab != NULL);
3254
3255 gg = g = htab->got_info;
3256 if (g->bfd2got && ibfd)
3257 {
3258 struct mips_got_entry e, *p;
3259
3260 BFD_ASSERT (h->dynindx >= 0);
3261
3262 g = mips_elf_got_for_ibfd (g, ibfd);
3263 if (g->next != gg || TLS_RELOC_P (r_type))
3264 {
3265 e.abfd = ibfd;
3266 e.symndx = -1;
3267 e.d.h = (struct mips_elf_link_hash_entry *)h;
3268 e.tls_type = 0;
3269
3270 p = htab_find (g->got_entries, &e);
3271
3272 BFD_ASSERT (p->gotidx > 0);
3273
3274 if (TLS_RELOC_P (r_type))
3275 {
3276 bfd_vma value = MINUS_ONE;
3277 if ((h->root.type == bfd_link_hash_defined
3278 || h->root.type == bfd_link_hash_defweak)
3279 && h->root.u.def.section->output_section)
3280 value = (h->root.u.def.value
3281 + h->root.u.def.section->output_offset
3282 + h->root.u.def.section->output_section->vma);
3283
3284 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
3285 info, e.d.h, value);
3286 }
3287 else
3288 return p->gotidx;
3289 }
3290 }
3291
3292 if (gg->global_gotsym != NULL)
3293 global_got_dynindx = gg->global_gotsym->dynindx;
3294
3295 if (TLS_RELOC_P (r_type))
3296 {
3297 struct mips_elf_link_hash_entry *hm
3298 = (struct mips_elf_link_hash_entry *) h;
3299 bfd_vma value = MINUS_ONE;
3300
3301 if ((h->root.type == bfd_link_hash_defined
3302 || h->root.type == bfd_link_hash_defweak)
3303 && h->root.u.def.section->output_section)
3304 value = (h->root.u.def.value
3305 + h->root.u.def.section->output_offset
3306 + h->root.u.def.section->output_section->vma);
3307
3308 got_index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
3309 r_type, info, hm, value);
3310 }
3311 else
3312 {
3313 /* Once we determine the global GOT entry with the lowest dynamic
3314 symbol table index, we must put all dynamic symbols with greater
3315 indices into the GOT. That makes it easy to calculate the GOT
3316 offset. */
3317 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3318 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3319 * MIPS_ELF_GOT_SIZE (abfd));
3320 }
3321 BFD_ASSERT (got_index < htab->sgot->size);
3322
3323 return got_index;
3324 }
3325
3326 /* Find a GOT page entry that points to within 32KB of VALUE. These
3327 entries are supposed to be placed at small offsets in the GOT, i.e.,
3328 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3329 entry could be created. If OFFSETP is nonnull, use it to return the
3330 offset of the GOT entry from VALUE. */
3331
3332 static bfd_vma
3333 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3334 bfd_vma value, bfd_vma *offsetp)
3335 {
3336 bfd_vma page, got_index;
3337 struct mips_got_entry *entry;
3338
3339 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3340 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3341 NULL, R_MIPS_GOT_PAGE);
3342
3343 if (!entry)
3344 return MINUS_ONE;
3345
3346 got_index = entry->gotidx;
3347
3348 if (offsetp)
3349 *offsetp = value - entry->d.address;
3350
3351 return got_index;
3352 }
3353
3354 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3355 EXTERNAL is true if the relocation was originally against a global
3356 symbol that binds locally. */
3357
3358 static bfd_vma
3359 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3360 bfd_vma value, bfd_boolean external)
3361 {
3362 struct mips_got_entry *entry;
3363
3364 /* GOT16 relocations against local symbols are followed by a LO16
3365 relocation; those against global symbols are not. Thus if the
3366 symbol was originally local, the GOT16 relocation should load the
3367 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3368 if (! external)
3369 value = mips_elf_high (value) << 16;
3370
3371 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3372 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3373 same in all cases. */
3374 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3375 NULL, R_MIPS_GOT16);
3376 if (entry)
3377 return entry->gotidx;
3378 else
3379 return MINUS_ONE;
3380 }
3381
3382 /* Returns the offset for the entry at the INDEXth position
3383 in the GOT. */
3384
3385 static bfd_vma
3386 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3387 bfd *input_bfd, bfd_vma got_index)
3388 {
3389 struct mips_elf_link_hash_table *htab;
3390 asection *sgot;
3391 bfd_vma gp;
3392
3393 htab = mips_elf_hash_table (info);
3394 BFD_ASSERT (htab != NULL);
3395
3396 sgot = htab->sgot;
3397 gp = _bfd_get_gp_value (output_bfd)
3398 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3399
3400 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3401 }
3402
3403 /* Create and return a local GOT entry for VALUE, which was calculated
3404 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3405 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3406 instead. */
3407
3408 static struct mips_got_entry *
3409 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3410 bfd *ibfd, bfd_vma value,
3411 unsigned long r_symndx,
3412 struct mips_elf_link_hash_entry *h,
3413 int r_type)
3414 {
3415 struct mips_got_entry entry, **loc;
3416 struct mips_got_info *g;
3417 struct mips_elf_link_hash_table *htab;
3418
3419 htab = mips_elf_hash_table (info);
3420 BFD_ASSERT (htab != NULL);
3421
3422 entry.abfd = NULL;
3423 entry.symndx = -1;
3424 entry.d.address = value;
3425 entry.tls_type = 0;
3426
3427 g = mips_elf_got_for_ibfd (htab->got_info, ibfd);
3428 if (g == NULL)
3429 {
3430 g = mips_elf_got_for_ibfd (htab->got_info, abfd);
3431 BFD_ASSERT (g != NULL);
3432 }
3433
3434 /* This function shouldn't be called for symbols that live in the global
3435 area of the GOT. */
3436 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3437 if (TLS_RELOC_P (r_type))
3438 {
3439 struct mips_got_entry *p;
3440
3441 entry.abfd = ibfd;
3442 if (tls_ldm_reloc_p (r_type))
3443 {
3444 entry.tls_type = GOT_TLS_LDM;
3445 entry.symndx = 0;
3446 entry.d.addend = 0;
3447 }
3448 else if (h == NULL)
3449 {
3450 entry.symndx = r_symndx;
3451 entry.d.addend = 0;
3452 }
3453 else
3454 entry.d.h = h;
3455
3456 p = (struct mips_got_entry *)
3457 htab_find (g->got_entries, &entry);
3458
3459 BFD_ASSERT (p);
3460 return p;
3461 }
3462
3463 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3464 INSERT);
3465 if (*loc)
3466 return *loc;
3467
3468 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
3469 entry.tls_type = 0;
3470
3471 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3472
3473 if (! *loc)
3474 return NULL;
3475
3476 memcpy (*loc, &entry, sizeof entry);
3477
3478 if (g->assigned_gotno > g->local_gotno)
3479 {
3480 (*loc)->gotidx = -1;
3481 /* We didn't allocate enough space in the GOT. */
3482 (*_bfd_error_handler)
3483 (_("not enough GOT space for local GOT entries"));
3484 bfd_set_error (bfd_error_bad_value);
3485 return NULL;
3486 }
3487
3488 MIPS_ELF_PUT_WORD (abfd, value,
3489 (htab->sgot->contents + entry.gotidx));
3490
3491 /* These GOT entries need a dynamic relocation on VxWorks. */
3492 if (htab->is_vxworks)
3493 {
3494 Elf_Internal_Rela outrel;
3495 asection *s;
3496 bfd_byte *rloc;
3497 bfd_vma got_address;
3498
3499 s = mips_elf_rel_dyn_section (info, FALSE);
3500 got_address = (htab->sgot->output_section->vma
3501 + htab->sgot->output_offset
3502 + entry.gotidx);
3503
3504 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3505 outrel.r_offset = got_address;
3506 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3507 outrel.r_addend = value;
3508 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3509 }
3510
3511 return *loc;
3512 }
3513
3514 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3515 The number might be exact or a worst-case estimate, depending on how
3516 much information is available to elf_backend_omit_section_dynsym at
3517 the current linking stage. */
3518
3519 static bfd_size_type
3520 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3521 {
3522 bfd_size_type count;
3523
3524 count = 0;
3525 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
3526 {
3527 asection *p;
3528 const struct elf_backend_data *bed;
3529
3530 bed = get_elf_backend_data (output_bfd);
3531 for (p = output_bfd->sections; p ; p = p->next)
3532 if ((p->flags & SEC_EXCLUDE) == 0
3533 && (p->flags & SEC_ALLOC) != 0
3534 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3535 ++count;
3536 }
3537 return count;
3538 }
3539
3540 /* Sort the dynamic symbol table so that symbols that need GOT entries
3541 appear towards the end. */
3542
3543 static bfd_boolean
3544 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3545 {
3546 struct mips_elf_link_hash_table *htab;
3547 struct mips_elf_hash_sort_data hsd;
3548 struct mips_got_info *g;
3549
3550 if (elf_hash_table (info)->dynsymcount == 0)
3551 return TRUE;
3552
3553 htab = mips_elf_hash_table (info);
3554 BFD_ASSERT (htab != NULL);
3555
3556 g = htab->got_info;
3557 if (g == NULL)
3558 return TRUE;
3559
3560 hsd.low = NULL;
3561 hsd.max_unref_got_dynindx
3562 = hsd.min_got_dynindx
3563 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3564 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3565 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3566 elf_hash_table (info)),
3567 mips_elf_sort_hash_table_f,
3568 &hsd);
3569
3570 /* There should have been enough room in the symbol table to
3571 accommodate both the GOT and non-GOT symbols. */
3572 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3573 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3574 == elf_hash_table (info)->dynsymcount);
3575 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3576 == g->global_gotno);
3577
3578 /* Now we know which dynamic symbol has the lowest dynamic symbol
3579 table index in the GOT. */
3580 g->global_gotsym = hsd.low;
3581
3582 return TRUE;
3583 }
3584
3585 /* If H needs a GOT entry, assign it the highest available dynamic
3586 index. Otherwise, assign it the lowest available dynamic
3587 index. */
3588
3589 static bfd_boolean
3590 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3591 {
3592 struct mips_elf_hash_sort_data *hsd = data;
3593
3594 /* Symbols without dynamic symbol table entries aren't interesting
3595 at all. */
3596 if (h->root.dynindx == -1)
3597 return TRUE;
3598
3599 switch (h->global_got_area)
3600 {
3601 case GGA_NONE:
3602 h->root.dynindx = hsd->max_non_got_dynindx++;
3603 break;
3604
3605 case GGA_NORMAL:
3606 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3607
3608 h->root.dynindx = --hsd->min_got_dynindx;
3609 hsd->low = (struct elf_link_hash_entry *) h;
3610 break;
3611
3612 case GGA_RELOC_ONLY:
3613 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3614
3615 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3616 hsd->low = (struct elf_link_hash_entry *) h;
3617 h->root.dynindx = hsd->max_unref_got_dynindx++;
3618 break;
3619 }
3620
3621 return TRUE;
3622 }
3623
3624 /* If H is a symbol that needs a global GOT entry, but has a dynamic
3625 symbol table index lower than any we've seen to date, record it for
3626 posterity. FOR_CALL is true if the caller is only interested in
3627 using the GOT entry for calls. */
3628
3629 static bfd_boolean
3630 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3631 bfd *abfd, struct bfd_link_info *info,
3632 bfd_boolean for_call,
3633 unsigned char tls_flag)
3634 {
3635 struct mips_elf_link_hash_table *htab;
3636 struct mips_elf_link_hash_entry *hmips;
3637 struct mips_got_entry entry, **loc;
3638 struct mips_got_info *g;
3639
3640 htab = mips_elf_hash_table (info);
3641 BFD_ASSERT (htab != NULL);
3642
3643 hmips = (struct mips_elf_link_hash_entry *) h;
3644 if (!for_call)
3645 hmips->got_only_for_calls = FALSE;
3646
3647 /* A global symbol in the GOT must also be in the dynamic symbol
3648 table. */
3649 if (h->dynindx == -1)
3650 {
3651 switch (ELF_ST_VISIBILITY (h->other))
3652 {
3653 case STV_INTERNAL:
3654 case STV_HIDDEN:
3655 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3656 break;
3657 }
3658 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3659 return FALSE;
3660 }
3661
3662 /* Make sure we have a GOT to put this entry into. */
3663 g = htab->got_info;
3664 BFD_ASSERT (g != NULL);
3665
3666 entry.abfd = abfd;
3667 entry.symndx = -1;
3668 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3669 entry.tls_type = 0;
3670
3671 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3672 INSERT);
3673
3674 /* If we've already marked this entry as needing GOT space, we don't
3675 need to do it again. */
3676 if (*loc)
3677 {
3678 (*loc)->tls_type |= tls_flag;
3679 return TRUE;
3680 }
3681
3682 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3683
3684 if (! *loc)
3685 return FALSE;
3686
3687 entry.gotidx = -1;
3688 entry.tls_type = tls_flag;
3689
3690 memcpy (*loc, &entry, sizeof entry);
3691
3692 if (tls_flag == 0)
3693 hmips->global_got_area = GGA_NORMAL;
3694
3695 return TRUE;
3696 }
3697
3698 /* Reserve space in G for a GOT entry containing the value of symbol
3699 SYMNDX in input bfd ABDF, plus ADDEND. */
3700
3701 static bfd_boolean
3702 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
3703 struct bfd_link_info *info,
3704 unsigned char tls_flag)
3705 {
3706 struct mips_elf_link_hash_table *htab;
3707 struct mips_got_info *g;
3708 struct mips_got_entry entry, **loc;
3709
3710 htab = mips_elf_hash_table (info);
3711 BFD_ASSERT (htab != NULL);
3712
3713 g = htab->got_info;
3714 BFD_ASSERT (g != NULL);
3715
3716 entry.abfd = abfd;
3717 entry.symndx = symndx;
3718 entry.d.addend = addend;
3719 entry.tls_type = tls_flag;
3720 loc = (struct mips_got_entry **)
3721 htab_find_slot (g->got_entries, &entry, INSERT);
3722
3723 if (*loc)
3724 {
3725 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
3726 {
3727 g->tls_gotno += 2;
3728 (*loc)->tls_type |= tls_flag;
3729 }
3730 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
3731 {
3732 g->tls_gotno += 1;
3733 (*loc)->tls_type |= tls_flag;
3734 }
3735 return TRUE;
3736 }
3737
3738 if (tls_flag != 0)
3739 {
3740 entry.gotidx = -1;
3741 entry.tls_type = tls_flag;
3742 if (tls_flag == GOT_TLS_IE)
3743 g->tls_gotno += 1;
3744 else if (tls_flag == GOT_TLS_GD)
3745 g->tls_gotno += 2;
3746 else if (g->tls_ldm_offset == MINUS_ONE)
3747 {
3748 g->tls_ldm_offset = MINUS_TWO;
3749 g->tls_gotno += 2;
3750 }
3751 }
3752 else
3753 {
3754 entry.gotidx = g->local_gotno++;
3755 entry.tls_type = 0;
3756 }
3757
3758 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3759
3760 if (! *loc)
3761 return FALSE;
3762
3763 memcpy (*loc, &entry, sizeof entry);
3764
3765 return TRUE;
3766 }
3767
3768 /* Return the maximum number of GOT page entries required for RANGE. */
3769
3770 static bfd_vma
3771 mips_elf_pages_for_range (const struct mips_got_page_range *range)
3772 {
3773 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
3774 }
3775
3776 /* Record that ABFD has a page relocation against symbol SYMNDX and
3777 that ADDEND is the addend for that relocation.
3778
3779 This function creates an upper bound on the number of GOT slots
3780 required; no attempt is made to combine references to non-overridable
3781 global symbols across multiple input files. */
3782
3783 static bfd_boolean
3784 mips_elf_record_got_page_entry (struct bfd_link_info *info, bfd *abfd,
3785 long symndx, bfd_signed_vma addend)
3786 {
3787 struct mips_elf_link_hash_table *htab;
3788 struct mips_got_info *g;
3789 struct mips_got_page_entry lookup, *entry;
3790 struct mips_got_page_range **range_ptr, *range;
3791 bfd_vma old_pages, new_pages;
3792 void **loc;
3793
3794 htab = mips_elf_hash_table (info);
3795 BFD_ASSERT (htab != NULL);
3796
3797 g = htab->got_info;
3798 BFD_ASSERT (g != NULL);
3799
3800 /* Find the mips_got_page_entry hash table entry for this symbol. */
3801 lookup.abfd = abfd;
3802 lookup.symndx = symndx;
3803 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
3804 if (loc == NULL)
3805 return FALSE;
3806
3807 /* Create a mips_got_page_entry if this is the first time we've
3808 seen the symbol. */
3809 entry = (struct mips_got_page_entry *) *loc;
3810 if (!entry)
3811 {
3812 entry = bfd_alloc (abfd, sizeof (*entry));
3813 if (!entry)
3814 return FALSE;
3815
3816 entry->abfd = abfd;
3817 entry->symndx = symndx;
3818 entry->ranges = NULL;
3819 entry->num_pages = 0;
3820 *loc = entry;
3821 }
3822
3823 /* Skip over ranges whose maximum extent cannot share a page entry
3824 with ADDEND. */
3825 range_ptr = &entry->ranges;
3826 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
3827 range_ptr = &(*range_ptr)->next;
3828
3829 /* If we scanned to the end of the list, or found a range whose
3830 minimum extent cannot share a page entry with ADDEND, create
3831 a new singleton range. */
3832 range = *range_ptr;
3833 if (!range || addend < range->min_addend - 0xffff)
3834 {
3835 range = bfd_alloc (abfd, sizeof (*range));
3836 if (!range)
3837 return FALSE;
3838
3839 range->next = *range_ptr;
3840 range->min_addend = addend;
3841 range->max_addend = addend;
3842
3843 *range_ptr = range;
3844 entry->num_pages++;
3845 g->page_gotno++;
3846 return TRUE;
3847 }
3848
3849 /* Remember how many pages the old range contributed. */
3850 old_pages = mips_elf_pages_for_range (range);
3851
3852 /* Update the ranges. */
3853 if (addend < range->min_addend)
3854 range->min_addend = addend;
3855 else if (addend > range->max_addend)
3856 {
3857 if (range->next && addend >= range->next->min_addend - 0xffff)
3858 {
3859 old_pages += mips_elf_pages_for_range (range->next);
3860 range->max_addend = range->next->max_addend;
3861 range->next = range->next->next;
3862 }
3863 else
3864 range->max_addend = addend;
3865 }
3866
3867 /* Record any change in the total estimate. */
3868 new_pages = mips_elf_pages_for_range (range);
3869 if (old_pages != new_pages)
3870 {
3871 entry->num_pages += new_pages - old_pages;
3872 g->page_gotno += new_pages - old_pages;
3873 }
3874
3875 return TRUE;
3876 }
3877
3878 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
3879
3880 static void
3881 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
3882 unsigned int n)
3883 {
3884 asection *s;
3885 struct mips_elf_link_hash_table *htab;
3886
3887 htab = mips_elf_hash_table (info);
3888 BFD_ASSERT (htab != NULL);
3889
3890 s = mips_elf_rel_dyn_section (info, FALSE);
3891 BFD_ASSERT (s != NULL);
3892
3893 if (htab->is_vxworks)
3894 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
3895 else
3896 {
3897 if (s->size == 0)
3898 {
3899 /* Make room for a null element. */
3900 s->size += MIPS_ELF_REL_SIZE (abfd);
3901 ++s->reloc_count;
3902 }
3903 s->size += n * MIPS_ELF_REL_SIZE (abfd);
3904 }
3905 }
3906 \f
3907 /* A htab_traverse callback for GOT entries. Set boolean *DATA to true
3908 if the GOT entry is for an indirect or warning symbol. */
3909
3910 static int
3911 mips_elf_check_recreate_got (void **entryp, void *data)
3912 {
3913 struct mips_got_entry *entry;
3914 bfd_boolean *must_recreate;
3915
3916 entry = (struct mips_got_entry *) *entryp;
3917 must_recreate = (bfd_boolean *) data;
3918 if (entry->abfd != NULL && entry->symndx == -1)
3919 {
3920 struct mips_elf_link_hash_entry *h;
3921
3922 h = entry->d.h;
3923 if (h->root.root.type == bfd_link_hash_indirect
3924 || h->root.root.type == bfd_link_hash_warning)
3925 {
3926 *must_recreate = TRUE;
3927 return 0;
3928 }
3929 }
3930 return 1;
3931 }
3932
3933 /* A htab_traverse callback for GOT entries. Add all entries to
3934 hash table *DATA, converting entries for indirect and warning
3935 symbols into entries for the target symbol. Set *DATA to null
3936 on error. */
3937
3938 static int
3939 mips_elf_recreate_got (void **entryp, void *data)
3940 {
3941 htab_t *new_got;
3942 struct mips_got_entry *entry;
3943 void **slot;
3944
3945 new_got = (htab_t *) data;
3946 entry = (struct mips_got_entry *) *entryp;
3947 if (entry->abfd != NULL && entry->symndx == -1)
3948 {
3949 struct mips_elf_link_hash_entry *h;
3950
3951 h = entry->d.h;
3952 while (h->root.root.type == bfd_link_hash_indirect
3953 || h->root.root.type == bfd_link_hash_warning)
3954 {
3955 BFD_ASSERT (h->global_got_area == GGA_NONE);
3956 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3957 }
3958 entry->d.h = h;
3959 }
3960 slot = htab_find_slot (*new_got, entry, INSERT);
3961 if (slot == NULL)
3962 {
3963 *new_got = NULL;
3964 return 0;
3965 }
3966 if (*slot == NULL)
3967 *slot = entry;
3968 else
3969 free (entry);
3970 return 1;
3971 }
3972
3973 /* If any entries in G->got_entries are for indirect or warning symbols,
3974 replace them with entries for the target symbol. */
3975
3976 static bfd_boolean
3977 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
3978 {
3979 bfd_boolean must_recreate;
3980 htab_t new_got;
3981
3982 must_recreate = FALSE;
3983 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &must_recreate);
3984 if (must_recreate)
3985 {
3986 new_got = htab_create (htab_size (g->got_entries),
3987 mips_elf_got_entry_hash,
3988 mips_elf_got_entry_eq, NULL);
3989 htab_traverse (g->got_entries, mips_elf_recreate_got, &new_got);
3990 if (new_got == NULL)
3991 return FALSE;
3992
3993 /* Each entry in g->got_entries has either been copied to new_got
3994 or freed. Now delete the hash table itself. */
3995 htab_delete (g->got_entries);
3996 g->got_entries = new_got;
3997 }
3998 return TRUE;
3999 }
4000
4001 /* A mips_elf_link_hash_traverse callback for which DATA points
4002 to the link_info structure. Count the number of type (3) entries
4003 in the master GOT. */
4004
4005 static int
4006 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4007 {
4008 struct bfd_link_info *info;
4009 struct mips_elf_link_hash_table *htab;
4010 struct mips_got_info *g;
4011
4012 info = (struct bfd_link_info *) data;
4013 htab = mips_elf_hash_table (info);
4014 g = htab->got_info;
4015 if (h->global_got_area != GGA_NONE)
4016 {
4017 /* Make a final decision about whether the symbol belongs in the
4018 local or global GOT. Symbols that bind locally can (and in the
4019 case of forced-local symbols, must) live in the local GOT.
4020 Those that are aren't in the dynamic symbol table must also
4021 live in the local GOT.
4022
4023 Note that the former condition does not always imply the
4024 latter: symbols do not bind locally if they are completely
4025 undefined. We'll report undefined symbols later if appropriate. */
4026 if (h->root.dynindx == -1
4027 || (h->got_only_for_calls
4028 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4029 : SYMBOL_REFERENCES_LOCAL (info, &h->root)))
4030 {
4031 /* The symbol belongs in the local GOT. We no longer need this
4032 entry if it was only used for relocations; those relocations
4033 will be against the null or section symbol instead of H. */
4034 if (h->global_got_area != GGA_RELOC_ONLY)
4035 g->local_gotno++;
4036 h->global_got_area = GGA_NONE;
4037 }
4038 else if (htab->is_vxworks
4039 && h->got_only_for_calls
4040 && h->root.plt.offset != MINUS_ONE)
4041 /* On VxWorks, calls can refer directly to the .got.plt entry;
4042 they don't need entries in the regular GOT. .got.plt entries
4043 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4044 h->global_got_area = GGA_NONE;
4045 else
4046 {
4047 g->global_gotno++;
4048 if (h->global_got_area == GGA_RELOC_ONLY)
4049 g->reloc_only_gotno++;
4050 }
4051 }
4052 return 1;
4053 }
4054 \f
4055 /* Compute the hash value of the bfd in a bfd2got hash entry. */
4056
4057 static hashval_t
4058 mips_elf_bfd2got_entry_hash (const void *entry_)
4059 {
4060 const struct mips_elf_bfd2got_hash *entry
4061 = (struct mips_elf_bfd2got_hash *)entry_;
4062
4063 return entry->bfd->id;
4064 }
4065
4066 /* Check whether two hash entries have the same bfd. */
4067
4068 static int
4069 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
4070 {
4071 const struct mips_elf_bfd2got_hash *e1
4072 = (const struct mips_elf_bfd2got_hash *)entry1;
4073 const struct mips_elf_bfd2got_hash *e2
4074 = (const struct mips_elf_bfd2got_hash *)entry2;
4075
4076 return e1->bfd == e2->bfd;
4077 }
4078
4079 /* In a multi-got link, determine the GOT to be used for IBFD. G must
4080 be the master GOT data. */
4081
4082 static struct mips_got_info *
4083 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
4084 {
4085 struct mips_elf_bfd2got_hash e, *p;
4086
4087 if (! g->bfd2got)
4088 return g;
4089
4090 e.bfd = ibfd;
4091 p = htab_find (g->bfd2got, &e);
4092 return p ? p->g : NULL;
4093 }
4094
4095 /* Use BFD2GOT to find ABFD's got entry, creating one if none exists.
4096 Return NULL if an error occured. */
4097
4098 static struct mips_got_info *
4099 mips_elf_get_got_for_bfd (struct htab *bfd2got, bfd *output_bfd,
4100 bfd *input_bfd)
4101 {
4102 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
4103 struct mips_got_info *g;
4104 void **bfdgotp;
4105
4106 bfdgot_entry.bfd = input_bfd;
4107 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
4108 bfdgot = (struct mips_elf_bfd2got_hash *) *bfdgotp;
4109
4110 if (bfdgot == NULL)
4111 {
4112 bfdgot = ((struct mips_elf_bfd2got_hash *)
4113 bfd_alloc (output_bfd, sizeof (struct mips_elf_bfd2got_hash)));
4114 if (bfdgot == NULL)
4115 return NULL;
4116
4117 *bfdgotp = bfdgot;
4118
4119 g = ((struct mips_got_info *)
4120 bfd_alloc (output_bfd, sizeof (struct mips_got_info)));
4121 if (g == NULL)
4122 return NULL;
4123
4124 bfdgot->bfd = input_bfd;
4125 bfdgot->g = g;
4126
4127 g->global_gotsym = NULL;
4128 g->global_gotno = 0;
4129 g->reloc_only_gotno = 0;
4130 g->local_gotno = 0;
4131 g->page_gotno = 0;
4132 g->assigned_gotno = -1;
4133 g->tls_gotno = 0;
4134 g->tls_assigned_gotno = 0;
4135 g->tls_ldm_offset = MINUS_ONE;
4136 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
4137 mips_elf_multi_got_entry_eq, NULL);
4138 if (g->got_entries == NULL)
4139 return NULL;
4140
4141 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4142 mips_got_page_entry_eq, NULL);
4143 if (g->got_page_entries == NULL)
4144 return NULL;
4145
4146 g->bfd2got = NULL;
4147 g->next = NULL;
4148 }
4149
4150 return bfdgot->g;
4151 }
4152
4153 /* A htab_traverse callback for the entries in the master got.
4154 Create one separate got for each bfd that has entries in the global
4155 got, such that we can tell how many local and global entries each
4156 bfd requires. */
4157
4158 static int
4159 mips_elf_make_got_per_bfd (void **entryp, void *p)
4160 {
4161 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4162 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
4163 struct mips_got_info *g;
4164
4165 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4166 if (g == NULL)
4167 {
4168 arg->obfd = NULL;
4169 return 0;
4170 }
4171
4172 /* Insert the GOT entry in the bfd's got entry hash table. */
4173 entryp = htab_find_slot (g->got_entries, entry, INSERT);
4174 if (*entryp != NULL)
4175 return 1;
4176
4177 *entryp = entry;
4178
4179 if (entry->tls_type)
4180 {
4181 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
4182 g->tls_gotno += 2;
4183 if (entry->tls_type & GOT_TLS_IE)
4184 g->tls_gotno += 1;
4185 }
4186 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
4187 ++g->local_gotno;
4188 else
4189 ++g->global_gotno;
4190
4191 return 1;
4192 }
4193
4194 /* A htab_traverse callback for the page entries in the master got.
4195 Associate each page entry with the bfd's got. */
4196
4197 static int
4198 mips_elf_make_got_pages_per_bfd (void **entryp, void *p)
4199 {
4200 struct mips_got_page_entry *entry = (struct mips_got_page_entry *) *entryp;
4201 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *) p;
4202 struct mips_got_info *g;
4203
4204 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4205 if (g == NULL)
4206 {
4207 arg->obfd = NULL;
4208 return 0;
4209 }
4210
4211 /* Insert the GOT entry in the bfd's got entry hash table. */
4212 entryp = htab_find_slot (g->got_page_entries, entry, INSERT);
4213 if (*entryp != NULL)
4214 return 1;
4215
4216 *entryp = entry;
4217 g->page_gotno += entry->num_pages;
4218 return 1;
4219 }
4220
4221 /* Consider merging the got described by BFD2GOT with TO, using the
4222 information given by ARG. Return -1 if this would lead to overflow,
4223 1 if they were merged successfully, and 0 if a merge failed due to
4224 lack of memory. (These values are chosen so that nonnegative return
4225 values can be returned by a htab_traverse callback.) */
4226
4227 static int
4228 mips_elf_merge_got_with (struct mips_elf_bfd2got_hash *bfd2got,
4229 struct mips_got_info *to,
4230 struct mips_elf_got_per_bfd_arg *arg)
4231 {
4232 struct mips_got_info *from = bfd2got->g;
4233 unsigned int estimate;
4234
4235 /* Work out how many page entries we would need for the combined GOT. */
4236 estimate = arg->max_pages;
4237 if (estimate >= from->page_gotno + to->page_gotno)
4238 estimate = from->page_gotno + to->page_gotno;
4239
4240 /* And conservatively estimate how many local and TLS entries
4241 would be needed. */
4242 estimate += from->local_gotno + to->local_gotno;
4243 estimate += from->tls_gotno + to->tls_gotno;
4244
4245 /* If we're merging with the primary got, we will always have
4246 the full set of global entries. Otherwise estimate those
4247 conservatively as well. */
4248 if (to == arg->primary)
4249 estimate += arg->global_count;
4250 else
4251 estimate += from->global_gotno + to->global_gotno;
4252
4253 /* Bail out if the combined GOT might be too big. */
4254 if (estimate > arg->max_count)
4255 return -1;
4256
4257 /* Commit to the merge. Record that TO is now the bfd for this got. */
4258 bfd2got->g = to;
4259
4260 /* Transfer the bfd's got information from FROM to TO. */
4261 htab_traverse (from->got_entries, mips_elf_make_got_per_bfd, arg);
4262 if (arg->obfd == NULL)
4263 return 0;
4264
4265 htab_traverse (from->got_page_entries, mips_elf_make_got_pages_per_bfd, arg);
4266 if (arg->obfd == NULL)
4267 return 0;
4268
4269 /* We don't have to worry about releasing memory of the actual
4270 got entries, since they're all in the master got_entries hash
4271 table anyway. */
4272 htab_delete (from->got_entries);
4273 htab_delete (from->got_page_entries);
4274 return 1;
4275 }
4276
4277 /* Attempt to merge gots of different input bfds. Try to use as much
4278 as possible of the primary got, since it doesn't require explicit
4279 dynamic relocations, but don't use bfds that would reference global
4280 symbols out of the addressable range. Failing the primary got,
4281 attempt to merge with the current got, or finish the current got
4282 and then make make the new got current. */
4283
4284 static int
4285 mips_elf_merge_gots (void **bfd2got_, void *p)
4286 {
4287 struct mips_elf_bfd2got_hash *bfd2got
4288 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
4289 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
4290 struct mips_got_info *g;
4291 unsigned int estimate;
4292 int result;
4293
4294 g = bfd2got->g;
4295
4296 /* Work out the number of page, local and TLS entries. */
4297 estimate = arg->max_pages;
4298 if (estimate > g->page_gotno)
4299 estimate = g->page_gotno;
4300 estimate += g->local_gotno + g->tls_gotno;
4301
4302 /* We place TLS GOT entries after both locals and globals. The globals
4303 for the primary GOT may overflow the normal GOT size limit, so be
4304 sure not to merge a GOT which requires TLS with the primary GOT in that
4305 case. This doesn't affect non-primary GOTs. */
4306 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4307
4308 if (estimate <= arg->max_count)
4309 {
4310 /* If we don't have a primary GOT, use it as
4311 a starting point for the primary GOT. */
4312 if (!arg->primary)
4313 {
4314 arg->primary = bfd2got->g;
4315 return 1;
4316 }
4317
4318 /* Try merging with the primary GOT. */
4319 result = mips_elf_merge_got_with (bfd2got, arg->primary, arg);
4320 if (result >= 0)
4321 return result;
4322 }
4323
4324 /* If we can merge with the last-created got, do it. */
4325 if (arg->current)
4326 {
4327 result = mips_elf_merge_got_with (bfd2got, arg->current, arg);
4328 if (result >= 0)
4329 return result;
4330 }
4331
4332 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4333 fits; if it turns out that it doesn't, we'll get relocation
4334 overflows anyway. */
4335 g->next = arg->current;
4336 arg->current = g;
4337
4338 return 1;
4339 }
4340
4341 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
4342 is null iff there is just a single GOT. */
4343
4344 static int
4345 mips_elf_initialize_tls_index (void **entryp, void *p)
4346 {
4347 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4348 struct mips_got_info *g = p;
4349 bfd_vma next_index;
4350 unsigned char tls_type;
4351
4352 /* We're only interested in TLS symbols. */
4353 if (entry->tls_type == 0)
4354 return 1;
4355
4356 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
4357
4358 if (entry->symndx == -1 && g->next == NULL)
4359 {
4360 /* A type (3) got entry in the single-GOT case. We use the symbol's
4361 hash table entry to track its index. */
4362 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
4363 return 1;
4364 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
4365 entry->d.h->tls_got_offset = next_index;
4366 tls_type = entry->d.h->tls_type;
4367 }
4368 else
4369 {
4370 if (entry->tls_type & GOT_TLS_LDM)
4371 {
4372 /* There are separate mips_got_entry objects for each input bfd
4373 that requires an LDM entry. Make sure that all LDM entries in
4374 a GOT resolve to the same index. */
4375 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
4376 {
4377 entry->gotidx = g->tls_ldm_offset;
4378 return 1;
4379 }
4380 g->tls_ldm_offset = next_index;
4381 }
4382 entry->gotidx = next_index;
4383 tls_type = entry->tls_type;
4384 }
4385
4386 /* Account for the entries we've just allocated. */
4387 if (tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
4388 g->tls_assigned_gotno += 2;
4389 if (tls_type & GOT_TLS_IE)
4390 g->tls_assigned_gotno += 1;
4391
4392 return 1;
4393 }
4394
4395 /* If passed a NULL mips_got_info in the argument, set the marker used
4396 to tell whether a global symbol needs a got entry (in the primary
4397 got) to the given VALUE.
4398
4399 If passed a pointer G to a mips_got_info in the argument (it must
4400 not be the primary GOT), compute the offset from the beginning of
4401 the (primary) GOT section to the entry in G corresponding to the
4402 global symbol. G's assigned_gotno must contain the index of the
4403 first available global GOT entry in G. VALUE must contain the size
4404 of a GOT entry in bytes. For each global GOT entry that requires a
4405 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4406 marked as not eligible for lazy resolution through a function
4407 stub. */
4408 static int
4409 mips_elf_set_global_got_offset (void **entryp, void *p)
4410 {
4411 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4412 struct mips_elf_set_global_got_offset_arg *arg
4413 = (struct mips_elf_set_global_got_offset_arg *)p;
4414 struct mips_got_info *g = arg->g;
4415
4416 if (g && entry->tls_type != GOT_NORMAL)
4417 arg->needed_relocs +=
4418 mips_tls_got_relocs (arg->info, entry->tls_type,
4419 entry->symndx == -1 ? &entry->d.h->root : NULL);
4420
4421 if (entry->abfd != NULL
4422 && entry->symndx == -1
4423 && entry->d.h->global_got_area != GGA_NONE)
4424 {
4425 if (g)
4426 {
4427 BFD_ASSERT (g->global_gotsym == NULL);
4428
4429 entry->gotidx = arg->value * (long) g->assigned_gotno++;
4430 if (arg->info->shared
4431 || (elf_hash_table (arg->info)->dynamic_sections_created
4432 && entry->d.h->root.def_dynamic
4433 && !entry->d.h->root.def_regular))
4434 ++arg->needed_relocs;
4435 }
4436 else
4437 entry->d.h->global_got_area = arg->value;
4438 }
4439
4440 return 1;
4441 }
4442
4443 /* A htab_traverse callback for GOT entries for which DATA is the
4444 bfd_link_info. Forbid any global symbols from having traditional
4445 lazy-binding stubs. */
4446
4447 static int
4448 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4449 {
4450 struct bfd_link_info *info;
4451 struct mips_elf_link_hash_table *htab;
4452 struct mips_got_entry *entry;
4453
4454 entry = (struct mips_got_entry *) *entryp;
4455 info = (struct bfd_link_info *) data;
4456 htab = mips_elf_hash_table (info);
4457 BFD_ASSERT (htab != NULL);
4458
4459 if (entry->abfd != NULL
4460 && entry->symndx == -1
4461 && entry->d.h->needs_lazy_stub)
4462 {
4463 entry->d.h->needs_lazy_stub = FALSE;
4464 htab->lazy_stub_count--;
4465 }
4466
4467 return 1;
4468 }
4469
4470 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4471 the primary GOT. */
4472 static bfd_vma
4473 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4474 {
4475 if (g->bfd2got == NULL)
4476 return 0;
4477
4478 g = mips_elf_got_for_ibfd (g, ibfd);
4479 if (! g)
4480 return 0;
4481
4482 BFD_ASSERT (g->next);
4483
4484 g = g->next;
4485
4486 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4487 * MIPS_ELF_GOT_SIZE (abfd);
4488 }
4489
4490 /* Turn a single GOT that is too big for 16-bit addressing into
4491 a sequence of GOTs, each one 16-bit addressable. */
4492
4493 static bfd_boolean
4494 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4495 asection *got, bfd_size_type pages)
4496 {
4497 struct mips_elf_link_hash_table *htab;
4498 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4499 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
4500 struct mips_got_info *g, *gg;
4501 unsigned int assign, needed_relocs;
4502 bfd *dynobj;
4503
4504 dynobj = elf_hash_table (info)->dynobj;
4505 htab = mips_elf_hash_table (info);
4506 BFD_ASSERT (htab != NULL);
4507
4508 g = htab->got_info;
4509 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
4510 mips_elf_bfd2got_entry_eq, NULL);
4511 if (g->bfd2got == NULL)
4512 return FALSE;
4513
4514 got_per_bfd_arg.bfd2got = g->bfd2got;
4515 got_per_bfd_arg.obfd = abfd;
4516 got_per_bfd_arg.info = info;
4517
4518 /* Count how many GOT entries each input bfd requires, creating a
4519 map from bfd to got info while at that. */
4520 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
4521 if (got_per_bfd_arg.obfd == NULL)
4522 return FALSE;
4523
4524 /* Also count how many page entries each input bfd requires. */
4525 htab_traverse (g->got_page_entries, mips_elf_make_got_pages_per_bfd,
4526 &got_per_bfd_arg);
4527 if (got_per_bfd_arg.obfd == NULL)
4528 return FALSE;
4529
4530 got_per_bfd_arg.current = NULL;
4531 got_per_bfd_arg.primary = NULL;
4532 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4533 / MIPS_ELF_GOT_SIZE (abfd))
4534 - htab->reserved_gotno);
4535 got_per_bfd_arg.max_pages = pages;
4536 /* The number of globals that will be included in the primary GOT.
4537 See the calls to mips_elf_set_global_got_offset below for more
4538 information. */
4539 got_per_bfd_arg.global_count = g->global_gotno;
4540
4541 /* Try to merge the GOTs of input bfds together, as long as they
4542 don't seem to exceed the maximum GOT size, choosing one of them
4543 to be the primary GOT. */
4544 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
4545 if (got_per_bfd_arg.obfd == NULL)
4546 return FALSE;
4547
4548 /* If we do not find any suitable primary GOT, create an empty one. */
4549 if (got_per_bfd_arg.primary == NULL)
4550 {
4551 g->next = (struct mips_got_info *)
4552 bfd_alloc (abfd, sizeof (struct mips_got_info));
4553 if (g->next == NULL)
4554 return FALSE;
4555
4556 g->next->global_gotsym = NULL;
4557 g->next->global_gotno = 0;
4558 g->next->reloc_only_gotno = 0;
4559 g->next->local_gotno = 0;
4560 g->next->page_gotno = 0;
4561 g->next->tls_gotno = 0;
4562 g->next->assigned_gotno = 0;
4563 g->next->tls_assigned_gotno = 0;
4564 g->next->tls_ldm_offset = MINUS_ONE;
4565 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
4566 mips_elf_multi_got_entry_eq,
4567 NULL);
4568 if (g->next->got_entries == NULL)
4569 return FALSE;
4570 g->next->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4571 mips_got_page_entry_eq,
4572 NULL);
4573 if (g->next->got_page_entries == NULL)
4574 return FALSE;
4575 g->next->bfd2got = NULL;
4576 }
4577 else
4578 g->next = got_per_bfd_arg.primary;
4579 g->next->next = got_per_bfd_arg.current;
4580
4581 /* GG is now the master GOT, and G is the primary GOT. */
4582 gg = g;
4583 g = g->next;
4584
4585 /* Map the output bfd to the primary got. That's what we're going
4586 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4587 didn't mark in check_relocs, and we want a quick way to find it.
4588 We can't just use gg->next because we're going to reverse the
4589 list. */
4590 {
4591 struct mips_elf_bfd2got_hash *bfdgot;
4592 void **bfdgotp;
4593
4594 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
4595 (abfd, sizeof (struct mips_elf_bfd2got_hash));
4596
4597 if (bfdgot == NULL)
4598 return FALSE;
4599
4600 bfdgot->bfd = abfd;
4601 bfdgot->g = g;
4602 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
4603
4604 BFD_ASSERT (*bfdgotp == NULL);
4605 *bfdgotp = bfdgot;
4606 }
4607
4608 /* Every symbol that is referenced in a dynamic relocation must be
4609 present in the primary GOT, so arrange for them to appear after
4610 those that are actually referenced. */
4611 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4612 g->global_gotno = gg->global_gotno;
4613
4614 set_got_offset_arg.g = NULL;
4615 set_got_offset_arg.value = GGA_RELOC_ONLY;
4616 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
4617 &set_got_offset_arg);
4618 set_got_offset_arg.value = GGA_NORMAL;
4619 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
4620 &set_got_offset_arg);
4621
4622 /* Now go through the GOTs assigning them offset ranges.
4623 [assigned_gotno, local_gotno[ will be set to the range of local
4624 entries in each GOT. We can then compute the end of a GOT by
4625 adding local_gotno to global_gotno. We reverse the list and make
4626 it circular since then we'll be able to quickly compute the
4627 beginning of a GOT, by computing the end of its predecessor. To
4628 avoid special cases for the primary GOT, while still preserving
4629 assertions that are valid for both single- and multi-got links,
4630 we arrange for the main got struct to have the right number of
4631 global entries, but set its local_gotno such that the initial
4632 offset of the primary GOT is zero. Remember that the primary GOT
4633 will become the last item in the circular linked list, so it
4634 points back to the master GOT. */
4635 gg->local_gotno = -g->global_gotno;
4636 gg->global_gotno = g->global_gotno;
4637 gg->tls_gotno = 0;
4638 assign = 0;
4639 gg->next = gg;
4640
4641 do
4642 {
4643 struct mips_got_info *gn;
4644
4645 assign += htab->reserved_gotno;
4646 g->assigned_gotno = assign;
4647 g->local_gotno += assign;
4648 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4649 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4650
4651 /* Take g out of the direct list, and push it onto the reversed
4652 list that gg points to. g->next is guaranteed to be nonnull after
4653 this operation, as required by mips_elf_initialize_tls_index. */
4654 gn = g->next;
4655 g->next = gg->next;
4656 gg->next = g;
4657
4658 /* Set up any TLS entries. We always place the TLS entries after
4659 all non-TLS entries. */
4660 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4661 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
4662
4663 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4664 g = gn;
4665
4666 /* Forbid global symbols in every non-primary GOT from having
4667 lazy-binding stubs. */
4668 if (g)
4669 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4670 }
4671 while (g);
4672
4673 got->size = (gg->next->local_gotno
4674 + gg->next->global_gotno
4675 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
4676
4677 needed_relocs = 0;
4678 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (abfd);
4679 set_got_offset_arg.info = info;
4680 for (g = gg->next; g && g->next != gg; g = g->next)
4681 {
4682 unsigned int save_assign;
4683
4684 /* Assign offsets to global GOT entries. */
4685 save_assign = g->assigned_gotno;
4686 g->assigned_gotno = g->local_gotno;
4687 set_got_offset_arg.g = g;
4688 set_got_offset_arg.needed_relocs = 0;
4689 htab_traverse (g->got_entries,
4690 mips_elf_set_global_got_offset,
4691 &set_got_offset_arg);
4692 needed_relocs += set_got_offset_arg.needed_relocs;
4693 BFD_ASSERT (g->assigned_gotno - g->local_gotno <= g->global_gotno);
4694
4695 g->assigned_gotno = save_assign;
4696 if (info->shared)
4697 {
4698 needed_relocs += g->local_gotno - g->assigned_gotno;
4699 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
4700 + g->next->global_gotno
4701 + g->next->tls_gotno
4702 + htab->reserved_gotno);
4703 }
4704 }
4705
4706 if (needed_relocs)
4707 mips_elf_allocate_dynamic_relocations (dynobj, info,
4708 needed_relocs);
4709
4710 return TRUE;
4711 }
4712
4713 \f
4714 /* Returns the first relocation of type r_type found, beginning with
4715 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4716
4717 static const Elf_Internal_Rela *
4718 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4719 const Elf_Internal_Rela *relocation,
4720 const Elf_Internal_Rela *relend)
4721 {
4722 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4723
4724 while (relocation < relend)
4725 {
4726 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4727 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4728 return relocation;
4729
4730 ++relocation;
4731 }
4732
4733 /* We didn't find it. */
4734 return NULL;
4735 }
4736
4737 /* Return whether an input relocation is against a local symbol. */
4738
4739 static bfd_boolean
4740 mips_elf_local_relocation_p (bfd *input_bfd,
4741 const Elf_Internal_Rela *relocation,
4742 asection **local_sections)
4743 {
4744 unsigned long r_symndx;
4745 Elf_Internal_Shdr *symtab_hdr;
4746 size_t extsymoff;
4747
4748 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4749 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4750 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4751
4752 if (r_symndx < extsymoff)
4753 return TRUE;
4754 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
4755 return TRUE;
4756
4757 return FALSE;
4758 }
4759 \f
4760 /* Sign-extend VALUE, which has the indicated number of BITS. */
4761
4762 bfd_vma
4763 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
4764 {
4765 if (value & ((bfd_vma) 1 << (bits - 1)))
4766 /* VALUE is negative. */
4767 value |= ((bfd_vma) - 1) << bits;
4768
4769 return value;
4770 }
4771
4772 /* Return non-zero if the indicated VALUE has overflowed the maximum
4773 range expressible by a signed number with the indicated number of
4774 BITS. */
4775
4776 static bfd_boolean
4777 mips_elf_overflow_p (bfd_vma value, int bits)
4778 {
4779 bfd_signed_vma svalue = (bfd_signed_vma) value;
4780
4781 if (svalue > (1 << (bits - 1)) - 1)
4782 /* The value is too big. */
4783 return TRUE;
4784 else if (svalue < -(1 << (bits - 1)))
4785 /* The value is too small. */
4786 return TRUE;
4787
4788 /* All is well. */
4789 return FALSE;
4790 }
4791
4792 /* Calculate the %high function. */
4793
4794 static bfd_vma
4795 mips_elf_high (bfd_vma value)
4796 {
4797 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
4798 }
4799
4800 /* Calculate the %higher function. */
4801
4802 static bfd_vma
4803 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
4804 {
4805 #ifdef BFD64
4806 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
4807 #else
4808 abort ();
4809 return MINUS_ONE;
4810 #endif
4811 }
4812
4813 /* Calculate the %highest function. */
4814
4815 static bfd_vma
4816 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
4817 {
4818 #ifdef BFD64
4819 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
4820 #else
4821 abort ();
4822 return MINUS_ONE;
4823 #endif
4824 }
4825 \f
4826 /* Create the .compact_rel section. */
4827
4828 static bfd_boolean
4829 mips_elf_create_compact_rel_section
4830 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
4831 {
4832 flagword flags;
4833 register asection *s;
4834
4835 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
4836 {
4837 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
4838 | SEC_READONLY);
4839
4840 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
4841 if (s == NULL
4842 || ! bfd_set_section_alignment (abfd, s,
4843 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4844 return FALSE;
4845
4846 s->size = sizeof (Elf32_External_compact_rel);
4847 }
4848
4849 return TRUE;
4850 }
4851
4852 /* Create the .got section to hold the global offset table. */
4853
4854 static bfd_boolean
4855 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
4856 {
4857 flagword flags;
4858 register asection *s;
4859 struct elf_link_hash_entry *h;
4860 struct bfd_link_hash_entry *bh;
4861 struct mips_got_info *g;
4862 bfd_size_type amt;
4863 struct mips_elf_link_hash_table *htab;
4864
4865 htab = mips_elf_hash_table (info);
4866 BFD_ASSERT (htab != NULL);
4867
4868 /* This function may be called more than once. */
4869 if (htab->sgot)
4870 return TRUE;
4871
4872 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4873 | SEC_LINKER_CREATED);
4874
4875 /* We have to use an alignment of 2**4 here because this is hardcoded
4876 in the function stub generation and in the linker script. */
4877 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
4878 if (s == NULL
4879 || ! bfd_set_section_alignment (abfd, s, 4))
4880 return FALSE;
4881 htab->sgot = s;
4882
4883 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
4884 linker script because we don't want to define the symbol if we
4885 are not creating a global offset table. */
4886 bh = NULL;
4887 if (! (_bfd_generic_link_add_one_symbol
4888 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
4889 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
4890 return FALSE;
4891
4892 h = (struct elf_link_hash_entry *) bh;
4893 h->non_elf = 0;
4894 h->def_regular = 1;
4895 h->type = STT_OBJECT;
4896 elf_hash_table (info)->hgot = h;
4897
4898 if (info->shared
4899 && ! bfd_elf_link_record_dynamic_symbol (info, h))
4900 return FALSE;
4901
4902 amt = sizeof (struct mips_got_info);
4903 g = bfd_alloc (abfd, amt);
4904 if (g == NULL)
4905 return FALSE;
4906 g->global_gotsym = NULL;
4907 g->global_gotno = 0;
4908 g->reloc_only_gotno = 0;
4909 g->tls_gotno = 0;
4910 g->local_gotno = 0;
4911 g->page_gotno = 0;
4912 g->assigned_gotno = 0;
4913 g->bfd2got = NULL;
4914 g->next = NULL;
4915 g->tls_ldm_offset = MINUS_ONE;
4916 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
4917 mips_elf_got_entry_eq, NULL);
4918 if (g->got_entries == NULL)
4919 return FALSE;
4920 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4921 mips_got_page_entry_eq, NULL);
4922 if (g->got_page_entries == NULL)
4923 return FALSE;
4924 htab->got_info = g;
4925 mips_elf_section_data (s)->elf.this_hdr.sh_flags
4926 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4927
4928 /* We also need a .got.plt section when generating PLTs. */
4929 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
4930 SEC_ALLOC | SEC_LOAD
4931 | SEC_HAS_CONTENTS
4932 | SEC_IN_MEMORY
4933 | SEC_LINKER_CREATED);
4934 if (s == NULL)
4935 return FALSE;
4936 htab->sgotplt = s;
4937
4938 return TRUE;
4939 }
4940 \f
4941 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
4942 __GOTT_INDEX__ symbols. These symbols are only special for
4943 shared objects; they are not used in executables. */
4944
4945 static bfd_boolean
4946 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
4947 {
4948 return (mips_elf_hash_table (info)->is_vxworks
4949 && info->shared
4950 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
4951 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
4952 }
4953
4954 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
4955 require an la25 stub. See also mips_elf_local_pic_function_p,
4956 which determines whether the destination function ever requires a
4957 stub. */
4958
4959 static bfd_boolean
4960 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
4961 bfd_boolean target_is_16_bit_code_p)
4962 {
4963 /* We specifically ignore branches and jumps from EF_PIC objects,
4964 where the onus is on the compiler or programmer to perform any
4965 necessary initialization of $25. Sometimes such initialization
4966 is unnecessary; for example, -mno-shared functions do not use
4967 the incoming value of $25, and may therefore be called directly. */
4968 if (PIC_OBJECT_P (input_bfd))
4969 return FALSE;
4970
4971 switch (r_type)
4972 {
4973 case R_MIPS_26:
4974 case R_MIPS_PC16:
4975 case R_MICROMIPS_26_S1:
4976 case R_MICROMIPS_PC7_S1:
4977 case R_MICROMIPS_PC10_S1:
4978 case R_MICROMIPS_PC16_S1:
4979 case R_MICROMIPS_PC23_S2:
4980 return TRUE;
4981
4982 case R_MIPS16_26:
4983 return !target_is_16_bit_code_p;
4984
4985 default:
4986 return FALSE;
4987 }
4988 }
4989 \f
4990 /* Calculate the value produced by the RELOCATION (which comes from
4991 the INPUT_BFD). The ADDEND is the addend to use for this
4992 RELOCATION; RELOCATION->R_ADDEND is ignored.
4993
4994 The result of the relocation calculation is stored in VALUEP.
4995 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
4996 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
4997
4998 This function returns bfd_reloc_continue if the caller need take no
4999 further action regarding this relocation, bfd_reloc_notsupported if
5000 something goes dramatically wrong, bfd_reloc_overflow if an
5001 overflow occurs, and bfd_reloc_ok to indicate success. */
5002
5003 static bfd_reloc_status_type
5004 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5005 asection *input_section,
5006 struct bfd_link_info *info,
5007 const Elf_Internal_Rela *relocation,
5008 bfd_vma addend, reloc_howto_type *howto,
5009 Elf_Internal_Sym *local_syms,
5010 asection **local_sections, bfd_vma *valuep,
5011 const char **namep,
5012 bfd_boolean *cross_mode_jump_p,
5013 bfd_boolean save_addend)
5014 {
5015 /* The eventual value we will return. */
5016 bfd_vma value;
5017 /* The address of the symbol against which the relocation is
5018 occurring. */
5019 bfd_vma symbol = 0;
5020 /* The final GP value to be used for the relocatable, executable, or
5021 shared object file being produced. */
5022 bfd_vma gp;
5023 /* The place (section offset or address) of the storage unit being
5024 relocated. */
5025 bfd_vma p;
5026 /* The value of GP used to create the relocatable object. */
5027 bfd_vma gp0;
5028 /* The offset into the global offset table at which the address of
5029 the relocation entry symbol, adjusted by the addend, resides
5030 during execution. */
5031 bfd_vma g = MINUS_ONE;
5032 /* The section in which the symbol referenced by the relocation is
5033 located. */
5034 asection *sec = NULL;
5035 struct mips_elf_link_hash_entry *h = NULL;
5036 /* TRUE if the symbol referred to by this relocation is a local
5037 symbol. */
5038 bfd_boolean local_p, was_local_p;
5039 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5040 bfd_boolean gp_disp_p = FALSE;
5041 /* TRUE if the symbol referred to by this relocation is
5042 "__gnu_local_gp". */
5043 bfd_boolean gnu_local_gp_p = FALSE;
5044 Elf_Internal_Shdr *symtab_hdr;
5045 size_t extsymoff;
5046 unsigned long r_symndx;
5047 int r_type;
5048 /* TRUE if overflow occurred during the calculation of the
5049 relocation value. */
5050 bfd_boolean overflowed_p;
5051 /* TRUE if this relocation refers to a MIPS16 function. */
5052 bfd_boolean target_is_16_bit_code_p = FALSE;
5053 bfd_boolean target_is_micromips_code_p = FALSE;
5054 struct mips_elf_link_hash_table *htab;
5055 bfd *dynobj;
5056
5057 dynobj = elf_hash_table (info)->dynobj;
5058 htab = mips_elf_hash_table (info);
5059 BFD_ASSERT (htab != NULL);
5060
5061 /* Parse the relocation. */
5062 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5063 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5064 p = (input_section->output_section->vma
5065 + input_section->output_offset
5066 + relocation->r_offset);
5067
5068 /* Assume that there will be no overflow. */
5069 overflowed_p = FALSE;
5070
5071 /* Figure out whether or not the symbol is local, and get the offset
5072 used in the array of hash table entries. */
5073 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5074 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5075 local_sections);
5076 was_local_p = local_p;
5077 if (! elf_bad_symtab (input_bfd))
5078 extsymoff = symtab_hdr->sh_info;
5079 else
5080 {
5081 /* The symbol table does not follow the rule that local symbols
5082 must come before globals. */
5083 extsymoff = 0;
5084 }
5085
5086 /* Figure out the value of the symbol. */
5087 if (local_p)
5088 {
5089 Elf_Internal_Sym *sym;
5090
5091 sym = local_syms + r_symndx;
5092 sec = local_sections[r_symndx];
5093
5094 symbol = sec->output_section->vma + sec->output_offset;
5095 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
5096 || (sec->flags & SEC_MERGE))
5097 symbol += sym->st_value;
5098 if ((sec->flags & SEC_MERGE)
5099 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5100 {
5101 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5102 addend -= symbol;
5103 addend += sec->output_section->vma + sec->output_offset;
5104 }
5105
5106 /* MIPS16/microMIPS text labels should be treated as odd. */
5107 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5108 ++symbol;
5109
5110 /* Record the name of this symbol, for our caller. */
5111 *namep = bfd_elf_string_from_elf_section (input_bfd,
5112 symtab_hdr->sh_link,
5113 sym->st_name);
5114 if (*namep == '\0')
5115 *namep = bfd_section_name (input_bfd, sec);
5116
5117 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5118 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5119 }
5120 else
5121 {
5122 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5123
5124 /* For global symbols we look up the symbol in the hash-table. */
5125 h = ((struct mips_elf_link_hash_entry *)
5126 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5127 /* Find the real hash-table entry for this symbol. */
5128 while (h->root.root.type == bfd_link_hash_indirect
5129 || h->root.root.type == bfd_link_hash_warning)
5130 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5131
5132 /* Record the name of this symbol, for our caller. */
5133 *namep = h->root.root.root.string;
5134
5135 /* See if this is the special _gp_disp symbol. Note that such a
5136 symbol must always be a global symbol. */
5137 if (strcmp (*namep, "_gp_disp") == 0
5138 && ! NEWABI_P (input_bfd))
5139 {
5140 /* Relocations against _gp_disp are permitted only with
5141 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5142 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5143 return bfd_reloc_notsupported;
5144
5145 gp_disp_p = TRUE;
5146 }
5147 /* See if this is the special _gp symbol. Note that such a
5148 symbol must always be a global symbol. */
5149 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5150 gnu_local_gp_p = TRUE;
5151
5152
5153 /* If this symbol is defined, calculate its address. Note that
5154 _gp_disp is a magic symbol, always implicitly defined by the
5155 linker, so it's inappropriate to check to see whether or not
5156 its defined. */
5157 else if ((h->root.root.type == bfd_link_hash_defined
5158 || h->root.root.type == bfd_link_hash_defweak)
5159 && h->root.root.u.def.section)
5160 {
5161 sec = h->root.root.u.def.section;
5162 if (sec->output_section)
5163 symbol = (h->root.root.u.def.value
5164 + sec->output_section->vma
5165 + sec->output_offset);
5166 else
5167 symbol = h->root.root.u.def.value;
5168 }
5169 else if (h->root.root.type == bfd_link_hash_undefweak)
5170 /* We allow relocations against undefined weak symbols, giving
5171 it the value zero, so that you can undefined weak functions
5172 and check to see if they exist by looking at their
5173 addresses. */
5174 symbol = 0;
5175 else if (info->unresolved_syms_in_objects == RM_IGNORE
5176 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5177 symbol = 0;
5178 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5179 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5180 {
5181 /* If this is a dynamic link, we should have created a
5182 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5183 in in _bfd_mips_elf_create_dynamic_sections.
5184 Otherwise, we should define the symbol with a value of 0.
5185 FIXME: It should probably get into the symbol table
5186 somehow as well. */
5187 BFD_ASSERT (! info->shared);
5188 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5189 symbol = 0;
5190 }
5191 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5192 {
5193 /* This is an optional symbol - an Irix specific extension to the
5194 ELF spec. Ignore it for now.
5195 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5196 than simply ignoring them, but we do not handle this for now.
5197 For information see the "64-bit ELF Object File Specification"
5198 which is available from here:
5199 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5200 symbol = 0;
5201 }
5202 else if ((*info->callbacks->undefined_symbol)
5203 (info, h->root.root.root.string, input_bfd,
5204 input_section, relocation->r_offset,
5205 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5206 || ELF_ST_VISIBILITY (h->root.other)))
5207 {
5208 return bfd_reloc_undefined;
5209 }
5210 else
5211 {
5212 return bfd_reloc_notsupported;
5213 }
5214
5215 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5216 /* If the output section is the PLT section,
5217 then the target is not microMIPS. */
5218 target_is_micromips_code_p = (htab->splt != sec
5219 && ELF_ST_IS_MICROMIPS (h->root.other));
5220 }
5221
5222 /* If this is a reference to a 16-bit function with a stub, we need
5223 to redirect the relocation to the stub unless:
5224
5225 (a) the relocation is for a MIPS16 JAL;
5226
5227 (b) the relocation is for a MIPS16 PIC call, and there are no
5228 non-MIPS16 uses of the GOT slot; or
5229
5230 (c) the section allows direct references to MIPS16 functions. */
5231 if (r_type != R_MIPS16_26
5232 && !info->relocatable
5233 && ((h != NULL
5234 && h->fn_stub != NULL
5235 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5236 || (local_p
5237 && elf_tdata (input_bfd)->local_stubs != NULL
5238 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5239 && !section_allows_mips16_refs_p (input_section))
5240 {
5241 /* This is a 32- or 64-bit call to a 16-bit function. We should
5242 have already noticed that we were going to need the
5243 stub. */
5244 if (local_p)
5245 {
5246 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
5247 value = 0;
5248 }
5249 else
5250 {
5251 BFD_ASSERT (h->need_fn_stub);
5252 if (h->la25_stub)
5253 {
5254 /* If a LA25 header for the stub itself exists, point to the
5255 prepended LUI/ADDIU sequence. */
5256 sec = h->la25_stub->stub_section;
5257 value = h->la25_stub->offset;
5258 }
5259 else
5260 {
5261 sec = h->fn_stub;
5262 value = 0;
5263 }
5264 }
5265
5266 symbol = sec->output_section->vma + sec->output_offset + value;
5267 /* The target is 16-bit, but the stub isn't. */
5268 target_is_16_bit_code_p = FALSE;
5269 }
5270 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
5271 need to redirect the call to the stub. Note that we specifically
5272 exclude R_MIPS16_CALL16 from this behavior; indirect calls should
5273 use an indirect stub instead. */
5274 else if (r_type == R_MIPS16_26 && !info->relocatable
5275 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5276 || (local_p
5277 && elf_tdata (input_bfd)->local_call_stubs != NULL
5278 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5279 && !target_is_16_bit_code_p)
5280 {
5281 if (local_p)
5282 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5283 else
5284 {
5285 /* If both call_stub and call_fp_stub are defined, we can figure
5286 out which one to use by checking which one appears in the input
5287 file. */
5288 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5289 {
5290 asection *o;
5291
5292 sec = NULL;
5293 for (o = input_bfd->sections; o != NULL; o = o->next)
5294 {
5295 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5296 {
5297 sec = h->call_fp_stub;
5298 break;
5299 }
5300 }
5301 if (sec == NULL)
5302 sec = h->call_stub;
5303 }
5304 else if (h->call_stub != NULL)
5305 sec = h->call_stub;
5306 else
5307 sec = h->call_fp_stub;
5308 }
5309
5310 BFD_ASSERT (sec->size > 0);
5311 symbol = sec->output_section->vma + sec->output_offset;
5312 }
5313 /* If this is a direct call to a PIC function, redirect to the
5314 non-PIC stub. */
5315 else if (h != NULL && h->la25_stub
5316 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5317 target_is_16_bit_code_p))
5318 symbol = (h->la25_stub->stub_section->output_section->vma
5319 + h->la25_stub->stub_section->output_offset
5320 + h->la25_stub->offset);
5321
5322 /* Make sure MIPS16 and microMIPS are not used together. */
5323 if ((r_type == R_MIPS16_26 && target_is_micromips_code_p)
5324 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5325 {
5326 (*_bfd_error_handler)
5327 (_("MIPS16 and microMIPS functions cannot call each other"));
5328 return bfd_reloc_notsupported;
5329 }
5330
5331 /* Calls from 16-bit code to 32-bit code and vice versa require the
5332 mode change. However, we can ignore calls to undefined weak symbols,
5333 which should never be executed at runtime. This exception is important
5334 because the assembly writer may have "known" that any definition of the
5335 symbol would be 16-bit code, and that direct jumps were therefore
5336 acceptable. */
5337 *cross_mode_jump_p = (!info->relocatable
5338 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5339 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5340 || (r_type == R_MICROMIPS_26_S1
5341 && !target_is_micromips_code_p)
5342 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5343 && (target_is_16_bit_code_p
5344 || target_is_micromips_code_p))));
5345
5346 local_p = h == NULL || SYMBOL_REFERENCES_LOCAL (info, &h->root);
5347
5348 gp0 = _bfd_get_gp_value (input_bfd);
5349 gp = _bfd_get_gp_value (abfd);
5350 if (htab->got_info)
5351 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5352
5353 if (gnu_local_gp_p)
5354 symbol = gp;
5355
5356 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5357 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5358 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5359 if (got_page_reloc_p (r_type) && !local_p)
5360 {
5361 r_type = (micromips_reloc_p (r_type)
5362 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5363 addend = 0;
5364 }
5365
5366 /* If we haven't already determined the GOT offset, and we're going
5367 to need it, get it now. */
5368 switch (r_type)
5369 {
5370 case R_MIPS16_CALL16:
5371 case R_MIPS16_GOT16:
5372 case R_MIPS_CALL16:
5373 case R_MIPS_GOT16:
5374 case R_MIPS_GOT_DISP:
5375 case R_MIPS_GOT_HI16:
5376 case R_MIPS_CALL_HI16:
5377 case R_MIPS_GOT_LO16:
5378 case R_MIPS_CALL_LO16:
5379 case R_MICROMIPS_CALL16:
5380 case R_MICROMIPS_GOT16:
5381 case R_MICROMIPS_GOT_DISP:
5382 case R_MICROMIPS_GOT_HI16:
5383 case R_MICROMIPS_CALL_HI16:
5384 case R_MICROMIPS_GOT_LO16:
5385 case R_MICROMIPS_CALL_LO16:
5386 case R_MIPS_TLS_GD:
5387 case R_MIPS_TLS_GOTTPREL:
5388 case R_MIPS_TLS_LDM:
5389 case R_MIPS16_TLS_GD:
5390 case R_MIPS16_TLS_GOTTPREL:
5391 case R_MIPS16_TLS_LDM:
5392 case R_MICROMIPS_TLS_GD:
5393 case R_MICROMIPS_TLS_GOTTPREL:
5394 case R_MICROMIPS_TLS_LDM:
5395 /* Find the index into the GOT where this value is located. */
5396 if (tls_ldm_reloc_p (r_type))
5397 {
5398 g = mips_elf_local_got_index (abfd, input_bfd, info,
5399 0, 0, NULL, r_type);
5400 if (g == MINUS_ONE)
5401 return bfd_reloc_outofrange;
5402 }
5403 else if (!local_p)
5404 {
5405 /* On VxWorks, CALL relocations should refer to the .got.plt
5406 entry, which is initialized to point at the PLT stub. */
5407 if (htab->is_vxworks
5408 && (call_hi16_reloc_p (r_type)
5409 || call_lo16_reloc_p (r_type)
5410 || call16_reloc_p (r_type)))
5411 {
5412 BFD_ASSERT (addend == 0);
5413 BFD_ASSERT (h->root.needs_plt);
5414 g = mips_elf_gotplt_index (info, &h->root);
5415 }
5416 else
5417 {
5418 BFD_ASSERT (addend == 0);
5419 g = mips_elf_global_got_index (dynobj, input_bfd,
5420 &h->root, r_type, info);
5421 if (h->tls_type == GOT_NORMAL
5422 && !elf_hash_table (info)->dynamic_sections_created)
5423 /* This is a static link. We must initialize the GOT entry. */
5424 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5425 }
5426 }
5427 else if (!htab->is_vxworks
5428 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5429 /* The calculation below does not involve "g". */
5430 break;
5431 else
5432 {
5433 g = mips_elf_local_got_index (abfd, input_bfd, info,
5434 symbol + addend, r_symndx, h, r_type);
5435 if (g == MINUS_ONE)
5436 return bfd_reloc_outofrange;
5437 }
5438
5439 /* Convert GOT indices to actual offsets. */
5440 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5441 break;
5442 }
5443
5444 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5445 symbols are resolved by the loader. Add them to .rela.dyn. */
5446 if (h != NULL && is_gott_symbol (info, &h->root))
5447 {
5448 Elf_Internal_Rela outrel;
5449 bfd_byte *loc;
5450 asection *s;
5451
5452 s = mips_elf_rel_dyn_section (info, FALSE);
5453 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5454
5455 outrel.r_offset = (input_section->output_section->vma
5456 + input_section->output_offset
5457 + relocation->r_offset);
5458 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5459 outrel.r_addend = addend;
5460 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5461
5462 /* If we've written this relocation for a readonly section,
5463 we need to set DF_TEXTREL again, so that we do not delete the
5464 DT_TEXTREL tag. */
5465 if (MIPS_ELF_READONLY_SECTION (input_section))
5466 info->flags |= DF_TEXTREL;
5467
5468 *valuep = 0;
5469 return bfd_reloc_ok;
5470 }
5471
5472 /* Figure out what kind of relocation is being performed. */
5473 switch (r_type)
5474 {
5475 case R_MIPS_NONE:
5476 return bfd_reloc_continue;
5477
5478 case R_MIPS_16:
5479 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
5480 overflowed_p = mips_elf_overflow_p (value, 16);
5481 break;
5482
5483 case R_MIPS_32:
5484 case R_MIPS_REL32:
5485 case R_MIPS_64:
5486 if ((info->shared
5487 || (htab->root.dynamic_sections_created
5488 && h != NULL
5489 && h->root.def_dynamic
5490 && !h->root.def_regular
5491 && !h->has_static_relocs))
5492 && r_symndx != STN_UNDEF
5493 && (h == NULL
5494 || h->root.root.type != bfd_link_hash_undefweak
5495 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5496 && (input_section->flags & SEC_ALLOC) != 0)
5497 {
5498 /* If we're creating a shared library, then we can't know
5499 where the symbol will end up. So, we create a relocation
5500 record in the output, and leave the job up to the dynamic
5501 linker. We must do the same for executable references to
5502 shared library symbols, unless we've decided to use copy
5503 relocs or PLTs instead. */
5504 value = addend;
5505 if (!mips_elf_create_dynamic_relocation (abfd,
5506 info,
5507 relocation,
5508 h,
5509 sec,
5510 symbol,
5511 &value,
5512 input_section))
5513 return bfd_reloc_undefined;
5514 }
5515 else
5516 {
5517 if (r_type != R_MIPS_REL32)
5518 value = symbol + addend;
5519 else
5520 value = addend;
5521 }
5522 value &= howto->dst_mask;
5523 break;
5524
5525 case R_MIPS_PC32:
5526 value = symbol + addend - p;
5527 value &= howto->dst_mask;
5528 break;
5529
5530 case R_MIPS16_26:
5531 /* The calculation for R_MIPS16_26 is just the same as for an
5532 R_MIPS_26. It's only the storage of the relocated field into
5533 the output file that's different. That's handled in
5534 mips_elf_perform_relocation. So, we just fall through to the
5535 R_MIPS_26 case here. */
5536 case R_MIPS_26:
5537 case R_MICROMIPS_26_S1:
5538 {
5539 unsigned int shift;
5540
5541 /* Make sure the target of JALX is word-aligned. Bit 0 must be
5542 the correct ISA mode selector and bit 1 must be 0. */
5543 if (*cross_mode_jump_p && (symbol & 3) != (r_type == R_MIPS_26))
5544 return bfd_reloc_outofrange;
5545
5546 /* Shift is 2, unusually, for microMIPS JALX. */
5547 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5548
5549 if (was_local_p)
5550 value = addend | ((p + 4) & (0xfc000000 << shift));
5551 else
5552 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5553 value = (value + symbol) >> shift;
5554 if (!was_local_p && h->root.root.type != bfd_link_hash_undefweak)
5555 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5556 value &= howto->dst_mask;
5557 }
5558 break;
5559
5560 case R_MIPS_TLS_DTPREL_HI16:
5561 case R_MIPS16_TLS_DTPREL_HI16:
5562 case R_MICROMIPS_TLS_DTPREL_HI16:
5563 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5564 & howto->dst_mask);
5565 break;
5566
5567 case R_MIPS_TLS_DTPREL_LO16:
5568 case R_MIPS_TLS_DTPREL32:
5569 case R_MIPS_TLS_DTPREL64:
5570 case R_MIPS16_TLS_DTPREL_LO16:
5571 case R_MICROMIPS_TLS_DTPREL_LO16:
5572 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5573 break;
5574
5575 case R_MIPS_TLS_TPREL_HI16:
5576 case R_MIPS16_TLS_TPREL_HI16:
5577 case R_MICROMIPS_TLS_TPREL_HI16:
5578 value = (mips_elf_high (addend + symbol - tprel_base (info))
5579 & howto->dst_mask);
5580 break;
5581
5582 case R_MIPS_TLS_TPREL_LO16:
5583 case R_MIPS_TLS_TPREL32:
5584 case R_MIPS_TLS_TPREL64:
5585 case R_MIPS16_TLS_TPREL_LO16:
5586 case R_MICROMIPS_TLS_TPREL_LO16:
5587 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5588 break;
5589
5590 case R_MIPS_HI16:
5591 case R_MIPS16_HI16:
5592 case R_MICROMIPS_HI16:
5593 if (!gp_disp_p)
5594 {
5595 value = mips_elf_high (addend + symbol);
5596 value &= howto->dst_mask;
5597 }
5598 else
5599 {
5600 /* For MIPS16 ABI code we generate this sequence
5601 0: li $v0,%hi(_gp_disp)
5602 4: addiupc $v1,%lo(_gp_disp)
5603 8: sll $v0,16
5604 12: addu $v0,$v1
5605 14: move $gp,$v0
5606 So the offsets of hi and lo relocs are the same, but the
5607 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5608 ADDIUPC clears the low two bits of the instruction address,
5609 so the base is ($t9 + 4) & ~3. */
5610 if (r_type == R_MIPS16_HI16)
5611 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5612 /* The microMIPS .cpload sequence uses the same assembly
5613 instructions as the traditional psABI version, but the
5614 incoming $t9 has the low bit set. */
5615 else if (r_type == R_MICROMIPS_HI16)
5616 value = mips_elf_high (addend + gp - p - 1);
5617 else
5618 value = mips_elf_high (addend + gp - p);
5619 overflowed_p = mips_elf_overflow_p (value, 16);
5620 }
5621 break;
5622
5623 case R_MIPS_LO16:
5624 case R_MIPS16_LO16:
5625 case R_MICROMIPS_LO16:
5626 case R_MICROMIPS_HI0_LO16:
5627 if (!gp_disp_p)
5628 value = (symbol + addend) & howto->dst_mask;
5629 else
5630 {
5631 /* See the comment for R_MIPS16_HI16 above for the reason
5632 for this conditional. */
5633 if (r_type == R_MIPS16_LO16)
5634 value = addend + gp - (p & ~(bfd_vma) 0x3);
5635 else if (r_type == R_MICROMIPS_LO16
5636 || r_type == R_MICROMIPS_HI0_LO16)
5637 value = addend + gp - p + 3;
5638 else
5639 value = addend + gp - p + 4;
5640 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5641 for overflow. But, on, say, IRIX5, relocations against
5642 _gp_disp are normally generated from the .cpload
5643 pseudo-op. It generates code that normally looks like
5644 this:
5645
5646 lui $gp,%hi(_gp_disp)
5647 addiu $gp,$gp,%lo(_gp_disp)
5648 addu $gp,$gp,$t9
5649
5650 Here $t9 holds the address of the function being called,
5651 as required by the MIPS ELF ABI. The R_MIPS_LO16
5652 relocation can easily overflow in this situation, but the
5653 R_MIPS_HI16 relocation will handle the overflow.
5654 Therefore, we consider this a bug in the MIPS ABI, and do
5655 not check for overflow here. */
5656 }
5657 break;
5658
5659 case R_MIPS_LITERAL:
5660 case R_MICROMIPS_LITERAL:
5661 /* Because we don't merge literal sections, we can handle this
5662 just like R_MIPS_GPREL16. In the long run, we should merge
5663 shared literals, and then we will need to additional work
5664 here. */
5665
5666 /* Fall through. */
5667
5668 case R_MIPS16_GPREL:
5669 /* The R_MIPS16_GPREL performs the same calculation as
5670 R_MIPS_GPREL16, but stores the relocated bits in a different
5671 order. We don't need to do anything special here; the
5672 differences are handled in mips_elf_perform_relocation. */
5673 case R_MIPS_GPREL16:
5674 case R_MICROMIPS_GPREL7_S2:
5675 case R_MICROMIPS_GPREL16:
5676 /* Only sign-extend the addend if it was extracted from the
5677 instruction. If the addend was separate, leave it alone,
5678 otherwise we may lose significant bits. */
5679 if (howto->partial_inplace)
5680 addend = _bfd_mips_elf_sign_extend (addend, 16);
5681 value = symbol + addend - gp;
5682 /* If the symbol was local, any earlier relocatable links will
5683 have adjusted its addend with the gp offset, so compensate
5684 for that now. Don't do it for symbols forced local in this
5685 link, though, since they won't have had the gp offset applied
5686 to them before. */
5687 if (was_local_p)
5688 value += gp0;
5689 overflowed_p = mips_elf_overflow_p (value, 16);
5690 break;
5691
5692 case R_MIPS16_GOT16:
5693 case R_MIPS16_CALL16:
5694 case R_MIPS_GOT16:
5695 case R_MIPS_CALL16:
5696 case R_MICROMIPS_GOT16:
5697 case R_MICROMIPS_CALL16:
5698 /* VxWorks does not have separate local and global semantics for
5699 R_MIPS*_GOT16; every relocation evaluates to "G". */
5700 if (!htab->is_vxworks && local_p)
5701 {
5702 value = mips_elf_got16_entry (abfd, input_bfd, info,
5703 symbol + addend, !was_local_p);
5704 if (value == MINUS_ONE)
5705 return bfd_reloc_outofrange;
5706 value
5707 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5708 overflowed_p = mips_elf_overflow_p (value, 16);
5709 break;
5710 }
5711
5712 /* Fall through. */
5713
5714 case R_MIPS_TLS_GD:
5715 case R_MIPS_TLS_GOTTPREL:
5716 case R_MIPS_TLS_LDM:
5717 case R_MIPS_GOT_DISP:
5718 case R_MIPS16_TLS_GD:
5719 case R_MIPS16_TLS_GOTTPREL:
5720 case R_MIPS16_TLS_LDM:
5721 case R_MICROMIPS_TLS_GD:
5722 case R_MICROMIPS_TLS_GOTTPREL:
5723 case R_MICROMIPS_TLS_LDM:
5724 case R_MICROMIPS_GOT_DISP:
5725 value = g;
5726 overflowed_p = mips_elf_overflow_p (value, 16);
5727 break;
5728
5729 case R_MIPS_GPREL32:
5730 value = (addend + symbol + gp0 - gp);
5731 if (!save_addend)
5732 value &= howto->dst_mask;
5733 break;
5734
5735 case R_MIPS_PC16:
5736 case R_MIPS_GNU_REL16_S2:
5737 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
5738 overflowed_p = mips_elf_overflow_p (value, 18);
5739 value >>= howto->rightshift;
5740 value &= howto->dst_mask;
5741 break;
5742
5743 case R_MICROMIPS_PC7_S1:
5744 value = symbol + _bfd_mips_elf_sign_extend (addend, 8) - p;
5745 overflowed_p = mips_elf_overflow_p (value, 8);
5746 value >>= howto->rightshift;
5747 value &= howto->dst_mask;
5748 break;
5749
5750 case R_MICROMIPS_PC10_S1:
5751 value = symbol + _bfd_mips_elf_sign_extend (addend, 11) - p;
5752 overflowed_p = mips_elf_overflow_p (value, 11);
5753 value >>= howto->rightshift;
5754 value &= howto->dst_mask;
5755 break;
5756
5757 case R_MICROMIPS_PC16_S1:
5758 value = symbol + _bfd_mips_elf_sign_extend (addend, 17) - p;
5759 overflowed_p = mips_elf_overflow_p (value, 17);
5760 value >>= howto->rightshift;
5761 value &= howto->dst_mask;
5762 break;
5763
5764 case R_MICROMIPS_PC23_S2:
5765 value = symbol + _bfd_mips_elf_sign_extend (addend, 25) - ((p | 3) ^ 3);
5766 overflowed_p = mips_elf_overflow_p (value, 25);
5767 value >>= howto->rightshift;
5768 value &= howto->dst_mask;
5769 break;
5770
5771 case R_MIPS_GOT_HI16:
5772 case R_MIPS_CALL_HI16:
5773 case R_MICROMIPS_GOT_HI16:
5774 case R_MICROMIPS_CALL_HI16:
5775 /* We're allowed to handle these two relocations identically.
5776 The dynamic linker is allowed to handle the CALL relocations
5777 differently by creating a lazy evaluation stub. */
5778 value = g;
5779 value = mips_elf_high (value);
5780 value &= howto->dst_mask;
5781 break;
5782
5783 case R_MIPS_GOT_LO16:
5784 case R_MIPS_CALL_LO16:
5785 case R_MICROMIPS_GOT_LO16:
5786 case R_MICROMIPS_CALL_LO16:
5787 value = g & howto->dst_mask;
5788 break;
5789
5790 case R_MIPS_GOT_PAGE:
5791 case R_MICROMIPS_GOT_PAGE:
5792 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
5793 if (value == MINUS_ONE)
5794 return bfd_reloc_outofrange;
5795 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5796 overflowed_p = mips_elf_overflow_p (value, 16);
5797 break;
5798
5799 case R_MIPS_GOT_OFST:
5800 case R_MICROMIPS_GOT_OFST:
5801 if (local_p)
5802 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
5803 else
5804 value = addend;
5805 overflowed_p = mips_elf_overflow_p (value, 16);
5806 break;
5807
5808 case R_MIPS_SUB:
5809 case R_MICROMIPS_SUB:
5810 value = symbol - addend;
5811 value &= howto->dst_mask;
5812 break;
5813
5814 case R_MIPS_HIGHER:
5815 case R_MICROMIPS_HIGHER:
5816 value = mips_elf_higher (addend + symbol);
5817 value &= howto->dst_mask;
5818 break;
5819
5820 case R_MIPS_HIGHEST:
5821 case R_MICROMIPS_HIGHEST:
5822 value = mips_elf_highest (addend + symbol);
5823 value &= howto->dst_mask;
5824 break;
5825
5826 case R_MIPS_SCN_DISP:
5827 case R_MICROMIPS_SCN_DISP:
5828 value = symbol + addend - sec->output_offset;
5829 value &= howto->dst_mask;
5830 break;
5831
5832 case R_MIPS_JALR:
5833 case R_MICROMIPS_JALR:
5834 /* This relocation is only a hint. In some cases, we optimize
5835 it into a bal instruction. But we don't try to optimize
5836 when the symbol does not resolve locally. */
5837 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
5838 return bfd_reloc_continue;
5839 value = symbol + addend;
5840 break;
5841
5842 case R_MIPS_PJUMP:
5843 case R_MIPS_GNU_VTINHERIT:
5844 case R_MIPS_GNU_VTENTRY:
5845 /* We don't do anything with these at present. */
5846 return bfd_reloc_continue;
5847
5848 default:
5849 /* An unrecognized relocation type. */
5850 return bfd_reloc_notsupported;
5851 }
5852
5853 /* Store the VALUE for our caller. */
5854 *valuep = value;
5855 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
5856 }
5857
5858 /* Obtain the field relocated by RELOCATION. */
5859
5860 static bfd_vma
5861 mips_elf_obtain_contents (reloc_howto_type *howto,
5862 const Elf_Internal_Rela *relocation,
5863 bfd *input_bfd, bfd_byte *contents)
5864 {
5865 bfd_vma x;
5866 bfd_byte *location = contents + relocation->r_offset;
5867
5868 /* Obtain the bytes. */
5869 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
5870
5871 return x;
5872 }
5873
5874 /* It has been determined that the result of the RELOCATION is the
5875 VALUE. Use HOWTO to place VALUE into the output file at the
5876 appropriate position. The SECTION is the section to which the
5877 relocation applies.
5878 CROSS_MODE_JUMP_P is true if the relocation field
5879 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5880
5881 Returns FALSE if anything goes wrong. */
5882
5883 static bfd_boolean
5884 mips_elf_perform_relocation (struct bfd_link_info *info,
5885 reloc_howto_type *howto,
5886 const Elf_Internal_Rela *relocation,
5887 bfd_vma value, bfd *input_bfd,
5888 asection *input_section, bfd_byte *contents,
5889 bfd_boolean cross_mode_jump_p)
5890 {
5891 bfd_vma x;
5892 bfd_byte *location;
5893 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5894
5895 /* Figure out where the relocation is occurring. */
5896 location = contents + relocation->r_offset;
5897
5898 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5899
5900 /* Obtain the current value. */
5901 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5902
5903 /* Clear the field we are setting. */
5904 x &= ~howto->dst_mask;
5905
5906 /* Set the field. */
5907 x |= (value & howto->dst_mask);
5908
5909 /* If required, turn JAL into JALX. */
5910 if (cross_mode_jump_p && jal_reloc_p (r_type))
5911 {
5912 bfd_boolean ok;
5913 bfd_vma opcode = x >> 26;
5914 bfd_vma jalx_opcode;
5915
5916 /* Check to see if the opcode is already JAL or JALX. */
5917 if (r_type == R_MIPS16_26)
5918 {
5919 ok = ((opcode == 0x6) || (opcode == 0x7));
5920 jalx_opcode = 0x7;
5921 }
5922 else if (r_type == R_MICROMIPS_26_S1)
5923 {
5924 ok = ((opcode == 0x3d) || (opcode == 0x3c));
5925 jalx_opcode = 0x3c;
5926 }
5927 else
5928 {
5929 ok = ((opcode == 0x3) || (opcode == 0x1d));
5930 jalx_opcode = 0x1d;
5931 }
5932
5933 /* If the opcode is not JAL or JALX, there's a problem. */
5934 if (!ok)
5935 {
5936 (*_bfd_error_handler)
5937 (_("%B: %A+0x%lx: Direct jumps between ISA modes are not allowed; consider recompiling with interlinking enabled."),
5938 input_bfd,
5939 input_section,
5940 (unsigned long) relocation->r_offset);
5941 bfd_set_error (bfd_error_bad_value);
5942 return FALSE;
5943 }
5944
5945 /* Make this the JALX opcode. */
5946 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
5947 }
5948
5949 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
5950 range. */
5951 if (!info->relocatable
5952 && !cross_mode_jump_p
5953 && ((JAL_TO_BAL_P (input_bfd)
5954 && r_type == R_MIPS_26
5955 && (x >> 26) == 0x3) /* jal addr */
5956 || (JALR_TO_BAL_P (input_bfd)
5957 && r_type == R_MIPS_JALR
5958 && x == 0x0320f809) /* jalr t9 */
5959 || (JR_TO_B_P (input_bfd)
5960 && r_type == R_MIPS_JALR
5961 && x == 0x03200008))) /* jr t9 */
5962 {
5963 bfd_vma addr;
5964 bfd_vma dest;
5965 bfd_signed_vma off;
5966
5967 addr = (input_section->output_section->vma
5968 + input_section->output_offset
5969 + relocation->r_offset
5970 + 4);
5971 if (r_type == R_MIPS_26)
5972 dest = (value << 2) | ((addr >> 28) << 28);
5973 else
5974 dest = value;
5975 off = dest - addr;
5976 if (off <= 0x1ffff && off >= -0x20000)
5977 {
5978 if (x == 0x03200008) /* jr t9 */
5979 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
5980 else
5981 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
5982 }
5983 }
5984
5985 /* Put the value into the output. */
5986 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
5987
5988 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !info->relocatable,
5989 location);
5990
5991 return TRUE;
5992 }
5993 \f
5994 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5995 is the original relocation, which is now being transformed into a
5996 dynamic relocation. The ADDENDP is adjusted if necessary; the
5997 caller should store the result in place of the original addend. */
5998
5999 static bfd_boolean
6000 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6001 struct bfd_link_info *info,
6002 const Elf_Internal_Rela *rel,
6003 struct mips_elf_link_hash_entry *h,
6004 asection *sec, bfd_vma symbol,
6005 bfd_vma *addendp, asection *input_section)
6006 {
6007 Elf_Internal_Rela outrel[3];
6008 asection *sreloc;
6009 bfd *dynobj;
6010 int r_type;
6011 long indx;
6012 bfd_boolean defined_p;
6013 struct mips_elf_link_hash_table *htab;
6014
6015 htab = mips_elf_hash_table (info);
6016 BFD_ASSERT (htab != NULL);
6017
6018 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6019 dynobj = elf_hash_table (info)->dynobj;
6020 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6021 BFD_ASSERT (sreloc != NULL);
6022 BFD_ASSERT (sreloc->contents != NULL);
6023 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6024 < sreloc->size);
6025
6026 outrel[0].r_offset =
6027 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6028 if (ABI_64_P (output_bfd))
6029 {
6030 outrel[1].r_offset =
6031 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6032 outrel[2].r_offset =
6033 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6034 }
6035
6036 if (outrel[0].r_offset == MINUS_ONE)
6037 /* The relocation field has been deleted. */
6038 return TRUE;
6039
6040 if (outrel[0].r_offset == MINUS_TWO)
6041 {
6042 /* The relocation field has been converted into a relative value of
6043 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6044 the field to be fully relocated, so add in the symbol's value. */
6045 *addendp += symbol;
6046 return TRUE;
6047 }
6048
6049 /* We must now calculate the dynamic symbol table index to use
6050 in the relocation. */
6051 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6052 {
6053 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6054 indx = h->root.dynindx;
6055 if (SGI_COMPAT (output_bfd))
6056 defined_p = h->root.def_regular;
6057 else
6058 /* ??? glibc's ld.so just adds the final GOT entry to the
6059 relocation field. It therefore treats relocs against
6060 defined symbols in the same way as relocs against
6061 undefined symbols. */
6062 defined_p = FALSE;
6063 }
6064 else
6065 {
6066 if (sec != NULL && bfd_is_abs_section (sec))
6067 indx = 0;
6068 else if (sec == NULL || sec->owner == NULL)
6069 {
6070 bfd_set_error (bfd_error_bad_value);
6071 return FALSE;
6072 }
6073 else
6074 {
6075 indx = elf_section_data (sec->output_section)->dynindx;
6076 if (indx == 0)
6077 {
6078 asection *osec = htab->root.text_index_section;
6079 indx = elf_section_data (osec)->dynindx;
6080 }
6081 if (indx == 0)
6082 abort ();
6083 }
6084
6085 /* Instead of generating a relocation using the section
6086 symbol, we may as well make it a fully relative
6087 relocation. We want to avoid generating relocations to
6088 local symbols because we used to generate them
6089 incorrectly, without adding the original symbol value,
6090 which is mandated by the ABI for section symbols. In
6091 order to give dynamic loaders and applications time to
6092 phase out the incorrect use, we refrain from emitting
6093 section-relative relocations. It's not like they're
6094 useful, after all. This should be a bit more efficient
6095 as well. */
6096 /* ??? Although this behavior is compatible with glibc's ld.so,
6097 the ABI says that relocations against STN_UNDEF should have
6098 a symbol value of 0. Irix rld honors this, so relocations
6099 against STN_UNDEF have no effect. */
6100 if (!SGI_COMPAT (output_bfd))
6101 indx = 0;
6102 defined_p = TRUE;
6103 }
6104
6105 /* If the relocation was previously an absolute relocation and
6106 this symbol will not be referred to by the relocation, we must
6107 adjust it by the value we give it in the dynamic symbol table.
6108 Otherwise leave the job up to the dynamic linker. */
6109 if (defined_p && r_type != R_MIPS_REL32)
6110 *addendp += symbol;
6111
6112 if (htab->is_vxworks)
6113 /* VxWorks uses non-relative relocations for this. */
6114 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6115 else
6116 /* The relocation is always an REL32 relocation because we don't
6117 know where the shared library will wind up at load-time. */
6118 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6119 R_MIPS_REL32);
6120
6121 /* For strict adherence to the ABI specification, we should
6122 generate a R_MIPS_64 relocation record by itself before the
6123 _REL32/_64 record as well, such that the addend is read in as
6124 a 64-bit value (REL32 is a 32-bit relocation, after all).
6125 However, since none of the existing ELF64 MIPS dynamic
6126 loaders seems to care, we don't waste space with these
6127 artificial relocations. If this turns out to not be true,
6128 mips_elf_allocate_dynamic_relocation() should be tweaked so
6129 as to make room for a pair of dynamic relocations per
6130 invocation if ABI_64_P, and here we should generate an
6131 additional relocation record with R_MIPS_64 by itself for a
6132 NULL symbol before this relocation record. */
6133 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6134 ABI_64_P (output_bfd)
6135 ? R_MIPS_64
6136 : R_MIPS_NONE);
6137 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6138
6139 /* Adjust the output offset of the relocation to reference the
6140 correct location in the output file. */
6141 outrel[0].r_offset += (input_section->output_section->vma
6142 + input_section->output_offset);
6143 outrel[1].r_offset += (input_section->output_section->vma
6144 + input_section->output_offset);
6145 outrel[2].r_offset += (input_section->output_section->vma
6146 + input_section->output_offset);
6147
6148 /* Put the relocation back out. We have to use the special
6149 relocation outputter in the 64-bit case since the 64-bit
6150 relocation format is non-standard. */
6151 if (ABI_64_P (output_bfd))
6152 {
6153 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6154 (output_bfd, &outrel[0],
6155 (sreloc->contents
6156 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6157 }
6158 else if (htab->is_vxworks)
6159 {
6160 /* VxWorks uses RELA rather than REL dynamic relocations. */
6161 outrel[0].r_addend = *addendp;
6162 bfd_elf32_swap_reloca_out
6163 (output_bfd, &outrel[0],
6164 (sreloc->contents
6165 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6166 }
6167 else
6168 bfd_elf32_swap_reloc_out
6169 (output_bfd, &outrel[0],
6170 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6171
6172 /* We've now added another relocation. */
6173 ++sreloc->reloc_count;
6174
6175 /* Make sure the output section is writable. The dynamic linker
6176 will be writing to it. */
6177 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6178 |= SHF_WRITE;
6179
6180 /* On IRIX5, make an entry of compact relocation info. */
6181 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6182 {
6183 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6184 bfd_byte *cr;
6185
6186 if (scpt)
6187 {
6188 Elf32_crinfo cptrel;
6189
6190 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6191 cptrel.vaddr = (rel->r_offset
6192 + input_section->output_section->vma
6193 + input_section->output_offset);
6194 if (r_type == R_MIPS_REL32)
6195 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6196 else
6197 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6198 mips_elf_set_cr_dist2to (cptrel, 0);
6199 cptrel.konst = *addendp;
6200
6201 cr = (scpt->contents
6202 + sizeof (Elf32_External_compact_rel));
6203 mips_elf_set_cr_relvaddr (cptrel, 0);
6204 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6205 ((Elf32_External_crinfo *) cr
6206 + scpt->reloc_count));
6207 ++scpt->reloc_count;
6208 }
6209 }
6210
6211 /* If we've written this relocation for a readonly section,
6212 we need to set DF_TEXTREL again, so that we do not delete the
6213 DT_TEXTREL tag. */
6214 if (MIPS_ELF_READONLY_SECTION (input_section))
6215 info->flags |= DF_TEXTREL;
6216
6217 return TRUE;
6218 }
6219 \f
6220 /* Return the MACH for a MIPS e_flags value. */
6221
6222 unsigned long
6223 _bfd_elf_mips_mach (flagword flags)
6224 {
6225 switch (flags & EF_MIPS_MACH)
6226 {
6227 case E_MIPS_MACH_3900:
6228 return bfd_mach_mips3900;
6229
6230 case E_MIPS_MACH_4010:
6231 return bfd_mach_mips4010;
6232
6233 case E_MIPS_MACH_4100:
6234 return bfd_mach_mips4100;
6235
6236 case E_MIPS_MACH_4111:
6237 return bfd_mach_mips4111;
6238
6239 case E_MIPS_MACH_4120:
6240 return bfd_mach_mips4120;
6241
6242 case E_MIPS_MACH_4650:
6243 return bfd_mach_mips4650;
6244
6245 case E_MIPS_MACH_5400:
6246 return bfd_mach_mips5400;
6247
6248 case E_MIPS_MACH_5500:
6249 return bfd_mach_mips5500;
6250
6251 case E_MIPS_MACH_9000:
6252 return bfd_mach_mips9000;
6253
6254 case E_MIPS_MACH_SB1:
6255 return bfd_mach_mips_sb1;
6256
6257 case E_MIPS_MACH_LS2E:
6258 return bfd_mach_mips_loongson_2e;
6259
6260 case E_MIPS_MACH_LS2F:
6261 return bfd_mach_mips_loongson_2f;
6262
6263 case E_MIPS_MACH_LS3A:
6264 return bfd_mach_mips_loongson_3a;
6265
6266 case E_MIPS_MACH_OCTEON2:
6267 return bfd_mach_mips_octeon2;
6268
6269 case E_MIPS_MACH_OCTEON:
6270 return bfd_mach_mips_octeon;
6271
6272 case E_MIPS_MACH_XLR:
6273 return bfd_mach_mips_xlr;
6274
6275 default:
6276 switch (flags & EF_MIPS_ARCH)
6277 {
6278 default:
6279 case E_MIPS_ARCH_1:
6280 return bfd_mach_mips3000;
6281
6282 case E_MIPS_ARCH_2:
6283 return bfd_mach_mips6000;
6284
6285 case E_MIPS_ARCH_3:
6286 return bfd_mach_mips4000;
6287
6288 case E_MIPS_ARCH_4:
6289 return bfd_mach_mips8000;
6290
6291 case E_MIPS_ARCH_5:
6292 return bfd_mach_mips5;
6293
6294 case E_MIPS_ARCH_32:
6295 return bfd_mach_mipsisa32;
6296
6297 case E_MIPS_ARCH_64:
6298 return bfd_mach_mipsisa64;
6299
6300 case E_MIPS_ARCH_32R2:
6301 return bfd_mach_mipsisa32r2;
6302
6303 case E_MIPS_ARCH_64R2:
6304 return bfd_mach_mipsisa64r2;
6305 }
6306 }
6307
6308 return 0;
6309 }
6310
6311 /* Return printable name for ABI. */
6312
6313 static INLINE char *
6314 elf_mips_abi_name (bfd *abfd)
6315 {
6316 flagword flags;
6317
6318 flags = elf_elfheader (abfd)->e_flags;
6319 switch (flags & EF_MIPS_ABI)
6320 {
6321 case 0:
6322 if (ABI_N32_P (abfd))
6323 return "N32";
6324 else if (ABI_64_P (abfd))
6325 return "64";
6326 else
6327 return "none";
6328 case E_MIPS_ABI_O32:
6329 return "O32";
6330 case E_MIPS_ABI_O64:
6331 return "O64";
6332 case E_MIPS_ABI_EABI32:
6333 return "EABI32";
6334 case E_MIPS_ABI_EABI64:
6335 return "EABI64";
6336 default:
6337 return "unknown abi";
6338 }
6339 }
6340 \f
6341 /* MIPS ELF uses two common sections. One is the usual one, and the
6342 other is for small objects. All the small objects are kept
6343 together, and then referenced via the gp pointer, which yields
6344 faster assembler code. This is what we use for the small common
6345 section. This approach is copied from ecoff.c. */
6346 static asection mips_elf_scom_section;
6347 static asymbol mips_elf_scom_symbol;
6348 static asymbol *mips_elf_scom_symbol_ptr;
6349
6350 /* MIPS ELF also uses an acommon section, which represents an
6351 allocated common symbol which may be overridden by a
6352 definition in a shared library. */
6353 static asection mips_elf_acom_section;
6354 static asymbol mips_elf_acom_symbol;
6355 static asymbol *mips_elf_acom_symbol_ptr;
6356
6357 /* This is used for both the 32-bit and the 64-bit ABI. */
6358
6359 void
6360 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6361 {
6362 elf_symbol_type *elfsym;
6363
6364 /* Handle the special MIPS section numbers that a symbol may use. */
6365 elfsym = (elf_symbol_type *) asym;
6366 switch (elfsym->internal_elf_sym.st_shndx)
6367 {
6368 case SHN_MIPS_ACOMMON:
6369 /* This section is used in a dynamically linked executable file.
6370 It is an allocated common section. The dynamic linker can
6371 either resolve these symbols to something in a shared
6372 library, or it can just leave them here. For our purposes,
6373 we can consider these symbols to be in a new section. */
6374 if (mips_elf_acom_section.name == NULL)
6375 {
6376 /* Initialize the acommon section. */
6377 mips_elf_acom_section.name = ".acommon";
6378 mips_elf_acom_section.flags = SEC_ALLOC;
6379 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6380 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6381 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6382 mips_elf_acom_symbol.name = ".acommon";
6383 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6384 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6385 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6386 }
6387 asym->section = &mips_elf_acom_section;
6388 break;
6389
6390 case SHN_COMMON:
6391 /* Common symbols less than the GP size are automatically
6392 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6393 if (asym->value > elf_gp_size (abfd)
6394 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6395 || IRIX_COMPAT (abfd) == ict_irix6)
6396 break;
6397 /* Fall through. */
6398 case SHN_MIPS_SCOMMON:
6399 if (mips_elf_scom_section.name == NULL)
6400 {
6401 /* Initialize the small common section. */
6402 mips_elf_scom_section.name = ".scommon";
6403 mips_elf_scom_section.flags = SEC_IS_COMMON;
6404 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6405 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6406 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6407 mips_elf_scom_symbol.name = ".scommon";
6408 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6409 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6410 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6411 }
6412 asym->section = &mips_elf_scom_section;
6413 asym->value = elfsym->internal_elf_sym.st_size;
6414 break;
6415
6416 case SHN_MIPS_SUNDEFINED:
6417 asym->section = bfd_und_section_ptr;
6418 break;
6419
6420 case SHN_MIPS_TEXT:
6421 {
6422 asection *section = bfd_get_section_by_name (abfd, ".text");
6423
6424 if (section != NULL)
6425 {
6426 asym->section = section;
6427 /* MIPS_TEXT is a bit special, the address is not an offset
6428 to the base of the .text section. So substract the section
6429 base address to make it an offset. */
6430 asym->value -= section->vma;
6431 }
6432 }
6433 break;
6434
6435 case SHN_MIPS_DATA:
6436 {
6437 asection *section = bfd_get_section_by_name (abfd, ".data");
6438
6439 if (section != NULL)
6440 {
6441 asym->section = section;
6442 /* MIPS_DATA is a bit special, the address is not an offset
6443 to the base of the .data section. So substract the section
6444 base address to make it an offset. */
6445 asym->value -= section->vma;
6446 }
6447 }
6448 break;
6449 }
6450
6451 /* If this is an odd-valued function symbol, assume it's a MIPS16
6452 or microMIPS one. */
6453 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6454 && (asym->value & 1) != 0)
6455 {
6456 asym->value--;
6457 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
6458 elfsym->internal_elf_sym.st_other
6459 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6460 else
6461 elfsym->internal_elf_sym.st_other
6462 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6463 }
6464 }
6465 \f
6466 /* Implement elf_backend_eh_frame_address_size. This differs from
6467 the default in the way it handles EABI64.
6468
6469 EABI64 was originally specified as an LP64 ABI, and that is what
6470 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6471 historically accepted the combination of -mabi=eabi and -mlong32,
6472 and this ILP32 variation has become semi-official over time.
6473 Both forms use elf32 and have pointer-sized FDE addresses.
6474
6475 If an EABI object was generated by GCC 4.0 or above, it will have
6476 an empty .gcc_compiled_longXX section, where XX is the size of longs
6477 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6478 have no special marking to distinguish them from LP64 objects.
6479
6480 We don't want users of the official LP64 ABI to be punished for the
6481 existence of the ILP32 variant, but at the same time, we don't want
6482 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6483 We therefore take the following approach:
6484
6485 - If ABFD contains a .gcc_compiled_longXX section, use it to
6486 determine the pointer size.
6487
6488 - Otherwise check the type of the first relocation. Assume that
6489 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6490
6491 - Otherwise punt.
6492
6493 The second check is enough to detect LP64 objects generated by pre-4.0
6494 compilers because, in the kind of output generated by those compilers,
6495 the first relocation will be associated with either a CIE personality
6496 routine or an FDE start address. Furthermore, the compilers never
6497 used a special (non-pointer) encoding for this ABI.
6498
6499 Checking the relocation type should also be safe because there is no
6500 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6501 did so. */
6502
6503 unsigned int
6504 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6505 {
6506 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6507 return 8;
6508 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6509 {
6510 bfd_boolean long32_p, long64_p;
6511
6512 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6513 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6514 if (long32_p && long64_p)
6515 return 0;
6516 if (long32_p)
6517 return 4;
6518 if (long64_p)
6519 return 8;
6520
6521 if (sec->reloc_count > 0
6522 && elf_section_data (sec)->relocs != NULL
6523 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6524 == R_MIPS_64))
6525 return 8;
6526
6527 return 0;
6528 }
6529 return 4;
6530 }
6531 \f
6532 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6533 relocations against two unnamed section symbols to resolve to the
6534 same address. For example, if we have code like:
6535
6536 lw $4,%got_disp(.data)($gp)
6537 lw $25,%got_disp(.text)($gp)
6538 jalr $25
6539
6540 then the linker will resolve both relocations to .data and the program
6541 will jump there rather than to .text.
6542
6543 We can work around this problem by giving names to local section symbols.
6544 This is also what the MIPSpro tools do. */
6545
6546 bfd_boolean
6547 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6548 {
6549 return SGI_COMPAT (abfd);
6550 }
6551 \f
6552 /* Work over a section just before writing it out. This routine is
6553 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6554 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6555 a better way. */
6556
6557 bfd_boolean
6558 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
6559 {
6560 if (hdr->sh_type == SHT_MIPS_REGINFO
6561 && hdr->sh_size > 0)
6562 {
6563 bfd_byte buf[4];
6564
6565 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6566 BFD_ASSERT (hdr->contents == NULL);
6567
6568 if (bfd_seek (abfd,
6569 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6570 SEEK_SET) != 0)
6571 return FALSE;
6572 H_PUT_32 (abfd, elf_gp (abfd), buf);
6573 if (bfd_bwrite (buf, 4, abfd) != 4)
6574 return FALSE;
6575 }
6576
6577 if (hdr->sh_type == SHT_MIPS_OPTIONS
6578 && hdr->bfd_section != NULL
6579 && mips_elf_section_data (hdr->bfd_section) != NULL
6580 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
6581 {
6582 bfd_byte *contents, *l, *lend;
6583
6584 /* We stored the section contents in the tdata field in the
6585 set_section_contents routine. We save the section contents
6586 so that we don't have to read them again.
6587 At this point we know that elf_gp is set, so we can look
6588 through the section contents to see if there is an
6589 ODK_REGINFO structure. */
6590
6591 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
6592 l = contents;
6593 lend = contents + hdr->sh_size;
6594 while (l + sizeof (Elf_External_Options) <= lend)
6595 {
6596 Elf_Internal_Options intopt;
6597
6598 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6599 &intopt);
6600 if (intopt.size < sizeof (Elf_External_Options))
6601 {
6602 (*_bfd_error_handler)
6603 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6604 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6605 break;
6606 }
6607 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6608 {
6609 bfd_byte buf[8];
6610
6611 if (bfd_seek (abfd,
6612 (hdr->sh_offset
6613 + (l - contents)
6614 + sizeof (Elf_External_Options)
6615 + (sizeof (Elf64_External_RegInfo) - 8)),
6616 SEEK_SET) != 0)
6617 return FALSE;
6618 H_PUT_64 (abfd, elf_gp (abfd), buf);
6619 if (bfd_bwrite (buf, 8, abfd) != 8)
6620 return FALSE;
6621 }
6622 else if (intopt.kind == ODK_REGINFO)
6623 {
6624 bfd_byte buf[4];
6625
6626 if (bfd_seek (abfd,
6627 (hdr->sh_offset
6628 + (l - contents)
6629 + sizeof (Elf_External_Options)
6630 + (sizeof (Elf32_External_RegInfo) - 4)),
6631 SEEK_SET) != 0)
6632 return FALSE;
6633 H_PUT_32 (abfd, elf_gp (abfd), buf);
6634 if (bfd_bwrite (buf, 4, abfd) != 4)
6635 return FALSE;
6636 }
6637 l += intopt.size;
6638 }
6639 }
6640
6641 if (hdr->bfd_section != NULL)
6642 {
6643 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6644
6645 /* .sbss is not handled specially here because the GNU/Linux
6646 prelinker can convert .sbss from NOBITS to PROGBITS and
6647 changing it back to NOBITS breaks the binary. The entry in
6648 _bfd_mips_elf_special_sections will ensure the correct flags
6649 are set on .sbss if BFD creates it without reading it from an
6650 input file, and without special handling here the flags set
6651 on it in an input file will be followed. */
6652 if (strcmp (name, ".sdata") == 0
6653 || strcmp (name, ".lit8") == 0
6654 || strcmp (name, ".lit4") == 0)
6655 {
6656 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
6657 hdr->sh_type = SHT_PROGBITS;
6658 }
6659 else if (strcmp (name, ".srdata") == 0)
6660 {
6661 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
6662 hdr->sh_type = SHT_PROGBITS;
6663 }
6664 else if (strcmp (name, ".compact_rel") == 0)
6665 {
6666 hdr->sh_flags = 0;
6667 hdr->sh_type = SHT_PROGBITS;
6668 }
6669 else if (strcmp (name, ".rtproc") == 0)
6670 {
6671 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
6672 {
6673 unsigned int adjust;
6674
6675 adjust = hdr->sh_size % hdr->sh_addralign;
6676 if (adjust != 0)
6677 hdr->sh_size += hdr->sh_addralign - adjust;
6678 }
6679 }
6680 }
6681
6682 return TRUE;
6683 }
6684
6685 /* Handle a MIPS specific section when reading an object file. This
6686 is called when elfcode.h finds a section with an unknown type.
6687 This routine supports both the 32-bit and 64-bit ELF ABI.
6688
6689 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
6690 how to. */
6691
6692 bfd_boolean
6693 _bfd_mips_elf_section_from_shdr (bfd *abfd,
6694 Elf_Internal_Shdr *hdr,
6695 const char *name,
6696 int shindex)
6697 {
6698 flagword flags = 0;
6699
6700 /* There ought to be a place to keep ELF backend specific flags, but
6701 at the moment there isn't one. We just keep track of the
6702 sections by their name, instead. Fortunately, the ABI gives
6703 suggested names for all the MIPS specific sections, so we will
6704 probably get away with this. */
6705 switch (hdr->sh_type)
6706 {
6707 case SHT_MIPS_LIBLIST:
6708 if (strcmp (name, ".liblist") != 0)
6709 return FALSE;
6710 break;
6711 case SHT_MIPS_MSYM:
6712 if (strcmp (name, ".msym") != 0)
6713 return FALSE;
6714 break;
6715 case SHT_MIPS_CONFLICT:
6716 if (strcmp (name, ".conflict") != 0)
6717 return FALSE;
6718 break;
6719 case SHT_MIPS_GPTAB:
6720 if (! CONST_STRNEQ (name, ".gptab."))
6721 return FALSE;
6722 break;
6723 case SHT_MIPS_UCODE:
6724 if (strcmp (name, ".ucode") != 0)
6725 return FALSE;
6726 break;
6727 case SHT_MIPS_DEBUG:
6728 if (strcmp (name, ".mdebug") != 0)
6729 return FALSE;
6730 flags = SEC_DEBUGGING;
6731 break;
6732 case SHT_MIPS_REGINFO:
6733 if (strcmp (name, ".reginfo") != 0
6734 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
6735 return FALSE;
6736 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
6737 break;
6738 case SHT_MIPS_IFACE:
6739 if (strcmp (name, ".MIPS.interfaces") != 0)
6740 return FALSE;
6741 break;
6742 case SHT_MIPS_CONTENT:
6743 if (! CONST_STRNEQ (name, ".MIPS.content"))
6744 return FALSE;
6745 break;
6746 case SHT_MIPS_OPTIONS:
6747 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6748 return FALSE;
6749 break;
6750 case SHT_MIPS_DWARF:
6751 if (! CONST_STRNEQ (name, ".debug_")
6752 && ! CONST_STRNEQ (name, ".zdebug_"))
6753 return FALSE;
6754 break;
6755 case SHT_MIPS_SYMBOL_LIB:
6756 if (strcmp (name, ".MIPS.symlib") != 0)
6757 return FALSE;
6758 break;
6759 case SHT_MIPS_EVENTS:
6760 if (! CONST_STRNEQ (name, ".MIPS.events")
6761 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
6762 return FALSE;
6763 break;
6764 default:
6765 break;
6766 }
6767
6768 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
6769 return FALSE;
6770
6771 if (flags)
6772 {
6773 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
6774 (bfd_get_section_flags (abfd,
6775 hdr->bfd_section)
6776 | flags)))
6777 return FALSE;
6778 }
6779
6780 /* FIXME: We should record sh_info for a .gptab section. */
6781
6782 /* For a .reginfo section, set the gp value in the tdata information
6783 from the contents of this section. We need the gp value while
6784 processing relocs, so we just get it now. The .reginfo section
6785 is not used in the 64-bit MIPS ELF ABI. */
6786 if (hdr->sh_type == SHT_MIPS_REGINFO)
6787 {
6788 Elf32_External_RegInfo ext;
6789 Elf32_RegInfo s;
6790
6791 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
6792 &ext, 0, sizeof ext))
6793 return FALSE;
6794 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
6795 elf_gp (abfd) = s.ri_gp_value;
6796 }
6797
6798 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
6799 set the gp value based on what we find. We may see both
6800 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
6801 they should agree. */
6802 if (hdr->sh_type == SHT_MIPS_OPTIONS)
6803 {
6804 bfd_byte *contents, *l, *lend;
6805
6806 contents = bfd_malloc (hdr->sh_size);
6807 if (contents == NULL)
6808 return FALSE;
6809 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
6810 0, hdr->sh_size))
6811 {
6812 free (contents);
6813 return FALSE;
6814 }
6815 l = contents;
6816 lend = contents + hdr->sh_size;
6817 while (l + sizeof (Elf_External_Options) <= lend)
6818 {
6819 Elf_Internal_Options intopt;
6820
6821 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6822 &intopt);
6823 if (intopt.size < sizeof (Elf_External_Options))
6824 {
6825 (*_bfd_error_handler)
6826 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6827 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6828 break;
6829 }
6830 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6831 {
6832 Elf64_Internal_RegInfo intreg;
6833
6834 bfd_mips_elf64_swap_reginfo_in
6835 (abfd,
6836 ((Elf64_External_RegInfo *)
6837 (l + sizeof (Elf_External_Options))),
6838 &intreg);
6839 elf_gp (abfd) = intreg.ri_gp_value;
6840 }
6841 else if (intopt.kind == ODK_REGINFO)
6842 {
6843 Elf32_RegInfo intreg;
6844
6845 bfd_mips_elf32_swap_reginfo_in
6846 (abfd,
6847 ((Elf32_External_RegInfo *)
6848 (l + sizeof (Elf_External_Options))),
6849 &intreg);
6850 elf_gp (abfd) = intreg.ri_gp_value;
6851 }
6852 l += intopt.size;
6853 }
6854 free (contents);
6855 }
6856
6857 return TRUE;
6858 }
6859
6860 /* Set the correct type for a MIPS ELF section. We do this by the
6861 section name, which is a hack, but ought to work. This routine is
6862 used by both the 32-bit and the 64-bit ABI. */
6863
6864 bfd_boolean
6865 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
6866 {
6867 const char *name = bfd_get_section_name (abfd, sec);
6868
6869 if (strcmp (name, ".liblist") == 0)
6870 {
6871 hdr->sh_type = SHT_MIPS_LIBLIST;
6872 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
6873 /* The sh_link field is set in final_write_processing. */
6874 }
6875 else if (strcmp (name, ".conflict") == 0)
6876 hdr->sh_type = SHT_MIPS_CONFLICT;
6877 else if (CONST_STRNEQ (name, ".gptab."))
6878 {
6879 hdr->sh_type = SHT_MIPS_GPTAB;
6880 hdr->sh_entsize = sizeof (Elf32_External_gptab);
6881 /* The sh_info field is set in final_write_processing. */
6882 }
6883 else if (strcmp (name, ".ucode") == 0)
6884 hdr->sh_type = SHT_MIPS_UCODE;
6885 else if (strcmp (name, ".mdebug") == 0)
6886 {
6887 hdr->sh_type = SHT_MIPS_DEBUG;
6888 /* In a shared object on IRIX 5.3, the .mdebug section has an
6889 entsize of 0. FIXME: Does this matter? */
6890 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
6891 hdr->sh_entsize = 0;
6892 else
6893 hdr->sh_entsize = 1;
6894 }
6895 else if (strcmp (name, ".reginfo") == 0)
6896 {
6897 hdr->sh_type = SHT_MIPS_REGINFO;
6898 /* In a shared object on IRIX 5.3, the .reginfo section has an
6899 entsize of 0x18. FIXME: Does this matter? */
6900 if (SGI_COMPAT (abfd))
6901 {
6902 if ((abfd->flags & DYNAMIC) != 0)
6903 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6904 else
6905 hdr->sh_entsize = 1;
6906 }
6907 else
6908 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6909 }
6910 else if (SGI_COMPAT (abfd)
6911 && (strcmp (name, ".hash") == 0
6912 || strcmp (name, ".dynamic") == 0
6913 || strcmp (name, ".dynstr") == 0))
6914 {
6915 if (SGI_COMPAT (abfd))
6916 hdr->sh_entsize = 0;
6917 #if 0
6918 /* This isn't how the IRIX6 linker behaves. */
6919 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
6920 #endif
6921 }
6922 else if (strcmp (name, ".got") == 0
6923 || strcmp (name, ".srdata") == 0
6924 || strcmp (name, ".sdata") == 0
6925 || strcmp (name, ".sbss") == 0
6926 || strcmp (name, ".lit4") == 0
6927 || strcmp (name, ".lit8") == 0)
6928 hdr->sh_flags |= SHF_MIPS_GPREL;
6929 else if (strcmp (name, ".MIPS.interfaces") == 0)
6930 {
6931 hdr->sh_type = SHT_MIPS_IFACE;
6932 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6933 }
6934 else if (CONST_STRNEQ (name, ".MIPS.content"))
6935 {
6936 hdr->sh_type = SHT_MIPS_CONTENT;
6937 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6938 /* The sh_info field is set in final_write_processing. */
6939 }
6940 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6941 {
6942 hdr->sh_type = SHT_MIPS_OPTIONS;
6943 hdr->sh_entsize = 1;
6944 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6945 }
6946 else if (CONST_STRNEQ (name, ".debug_")
6947 || CONST_STRNEQ (name, ".zdebug_"))
6948 {
6949 hdr->sh_type = SHT_MIPS_DWARF;
6950
6951 /* Irix facilities such as libexc expect a single .debug_frame
6952 per executable, the system ones have NOSTRIP set and the linker
6953 doesn't merge sections with different flags so ... */
6954 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
6955 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6956 }
6957 else if (strcmp (name, ".MIPS.symlib") == 0)
6958 {
6959 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
6960 /* The sh_link and sh_info fields are set in
6961 final_write_processing. */
6962 }
6963 else if (CONST_STRNEQ (name, ".MIPS.events")
6964 || CONST_STRNEQ (name, ".MIPS.post_rel"))
6965 {
6966 hdr->sh_type = SHT_MIPS_EVENTS;
6967 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6968 /* The sh_link field is set in final_write_processing. */
6969 }
6970 else if (strcmp (name, ".msym") == 0)
6971 {
6972 hdr->sh_type = SHT_MIPS_MSYM;
6973 hdr->sh_flags |= SHF_ALLOC;
6974 hdr->sh_entsize = 8;
6975 }
6976
6977 /* The generic elf_fake_sections will set up REL_HDR using the default
6978 kind of relocations. We used to set up a second header for the
6979 non-default kind of relocations here, but only NewABI would use
6980 these, and the IRIX ld doesn't like resulting empty RELA sections.
6981 Thus we create those header only on demand now. */
6982
6983 return TRUE;
6984 }
6985
6986 /* Given a BFD section, try to locate the corresponding ELF section
6987 index. This is used by both the 32-bit and the 64-bit ABI.
6988 Actually, it's not clear to me that the 64-bit ABI supports these,
6989 but for non-PIC objects we will certainly want support for at least
6990 the .scommon section. */
6991
6992 bfd_boolean
6993 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
6994 asection *sec, int *retval)
6995 {
6996 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
6997 {
6998 *retval = SHN_MIPS_SCOMMON;
6999 return TRUE;
7000 }
7001 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7002 {
7003 *retval = SHN_MIPS_ACOMMON;
7004 return TRUE;
7005 }
7006 return FALSE;
7007 }
7008 \f
7009 /* Hook called by the linker routine which adds symbols from an object
7010 file. We must handle the special MIPS section numbers here. */
7011
7012 bfd_boolean
7013 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7014 Elf_Internal_Sym *sym, const char **namep,
7015 flagword *flagsp ATTRIBUTE_UNUSED,
7016 asection **secp, bfd_vma *valp)
7017 {
7018 if (SGI_COMPAT (abfd)
7019 && (abfd->flags & DYNAMIC) != 0
7020 && strcmp (*namep, "_rld_new_interface") == 0)
7021 {
7022 /* Skip IRIX5 rld entry name. */
7023 *namep = NULL;
7024 return TRUE;
7025 }
7026
7027 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7028 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7029 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7030 a magic symbol resolved by the linker, we ignore this bogus definition
7031 of _gp_disp. New ABI objects do not suffer from this problem so this
7032 is not done for them. */
7033 if (!NEWABI_P(abfd)
7034 && (sym->st_shndx == SHN_ABS)
7035 && (strcmp (*namep, "_gp_disp") == 0))
7036 {
7037 *namep = NULL;
7038 return TRUE;
7039 }
7040
7041 switch (sym->st_shndx)
7042 {
7043 case SHN_COMMON:
7044 /* Common symbols less than the GP size are automatically
7045 treated as SHN_MIPS_SCOMMON symbols. */
7046 if (sym->st_size > elf_gp_size (abfd)
7047 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7048 || IRIX_COMPAT (abfd) == ict_irix6)
7049 break;
7050 /* Fall through. */
7051 case SHN_MIPS_SCOMMON:
7052 *secp = bfd_make_section_old_way (abfd, ".scommon");
7053 (*secp)->flags |= SEC_IS_COMMON;
7054 *valp = sym->st_size;
7055 break;
7056
7057 case SHN_MIPS_TEXT:
7058 /* This section is used in a shared object. */
7059 if (elf_tdata (abfd)->elf_text_section == NULL)
7060 {
7061 asymbol *elf_text_symbol;
7062 asection *elf_text_section;
7063 bfd_size_type amt = sizeof (asection);
7064
7065 elf_text_section = bfd_zalloc (abfd, amt);
7066 if (elf_text_section == NULL)
7067 return FALSE;
7068
7069 amt = sizeof (asymbol);
7070 elf_text_symbol = bfd_zalloc (abfd, amt);
7071 if (elf_text_symbol == NULL)
7072 return FALSE;
7073
7074 /* Initialize the section. */
7075
7076 elf_tdata (abfd)->elf_text_section = elf_text_section;
7077 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7078
7079 elf_text_section->symbol = elf_text_symbol;
7080 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
7081
7082 elf_text_section->name = ".text";
7083 elf_text_section->flags = SEC_NO_FLAGS;
7084 elf_text_section->output_section = NULL;
7085 elf_text_section->owner = abfd;
7086 elf_text_symbol->name = ".text";
7087 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7088 elf_text_symbol->section = elf_text_section;
7089 }
7090 /* This code used to do *secp = bfd_und_section_ptr if
7091 info->shared. I don't know why, and that doesn't make sense,
7092 so I took it out. */
7093 *secp = elf_tdata (abfd)->elf_text_section;
7094 break;
7095
7096 case SHN_MIPS_ACOMMON:
7097 /* Fall through. XXX Can we treat this as allocated data? */
7098 case SHN_MIPS_DATA:
7099 /* This section is used in a shared object. */
7100 if (elf_tdata (abfd)->elf_data_section == NULL)
7101 {
7102 asymbol *elf_data_symbol;
7103 asection *elf_data_section;
7104 bfd_size_type amt = sizeof (asection);
7105
7106 elf_data_section = bfd_zalloc (abfd, amt);
7107 if (elf_data_section == NULL)
7108 return FALSE;
7109
7110 amt = sizeof (asymbol);
7111 elf_data_symbol = bfd_zalloc (abfd, amt);
7112 if (elf_data_symbol == NULL)
7113 return FALSE;
7114
7115 /* Initialize the section. */
7116
7117 elf_tdata (abfd)->elf_data_section = elf_data_section;
7118 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7119
7120 elf_data_section->symbol = elf_data_symbol;
7121 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
7122
7123 elf_data_section->name = ".data";
7124 elf_data_section->flags = SEC_NO_FLAGS;
7125 elf_data_section->output_section = NULL;
7126 elf_data_section->owner = abfd;
7127 elf_data_symbol->name = ".data";
7128 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7129 elf_data_symbol->section = elf_data_section;
7130 }
7131 /* This code used to do *secp = bfd_und_section_ptr if
7132 info->shared. I don't know why, and that doesn't make sense,
7133 so I took it out. */
7134 *secp = elf_tdata (abfd)->elf_data_section;
7135 break;
7136
7137 case SHN_MIPS_SUNDEFINED:
7138 *secp = bfd_und_section_ptr;
7139 break;
7140 }
7141
7142 if (SGI_COMPAT (abfd)
7143 && ! info->shared
7144 && info->output_bfd->xvec == abfd->xvec
7145 && strcmp (*namep, "__rld_obj_head") == 0)
7146 {
7147 struct elf_link_hash_entry *h;
7148 struct bfd_link_hash_entry *bh;
7149
7150 /* Mark __rld_obj_head as dynamic. */
7151 bh = NULL;
7152 if (! (_bfd_generic_link_add_one_symbol
7153 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7154 get_elf_backend_data (abfd)->collect, &bh)))
7155 return FALSE;
7156
7157 h = (struct elf_link_hash_entry *) bh;
7158 h->non_elf = 0;
7159 h->def_regular = 1;
7160 h->type = STT_OBJECT;
7161
7162 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7163 return FALSE;
7164
7165 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7166 mips_elf_hash_table (info)->rld_symbol = h;
7167 }
7168
7169 /* If this is a mips16 text symbol, add 1 to the value to make it
7170 odd. This will cause something like .word SYM to come up with
7171 the right value when it is loaded into the PC. */
7172 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7173 ++*valp;
7174
7175 return TRUE;
7176 }
7177
7178 /* This hook function is called before the linker writes out a global
7179 symbol. We mark symbols as small common if appropriate. This is
7180 also where we undo the increment of the value for a mips16 symbol. */
7181
7182 int
7183 _bfd_mips_elf_link_output_symbol_hook
7184 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7185 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7186 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7187 {
7188 /* If we see a common symbol, which implies a relocatable link, then
7189 if a symbol was small common in an input file, mark it as small
7190 common in the output file. */
7191 if (sym->st_shndx == SHN_COMMON
7192 && strcmp (input_sec->name, ".scommon") == 0)
7193 sym->st_shndx = SHN_MIPS_SCOMMON;
7194
7195 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7196 sym->st_value &= ~1;
7197
7198 return 1;
7199 }
7200 \f
7201 /* Functions for the dynamic linker. */
7202
7203 /* Create dynamic sections when linking against a dynamic object. */
7204
7205 bfd_boolean
7206 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7207 {
7208 struct elf_link_hash_entry *h;
7209 struct bfd_link_hash_entry *bh;
7210 flagword flags;
7211 register asection *s;
7212 const char * const *namep;
7213 struct mips_elf_link_hash_table *htab;
7214
7215 htab = mips_elf_hash_table (info);
7216 BFD_ASSERT (htab != NULL);
7217
7218 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7219 | SEC_LINKER_CREATED | SEC_READONLY);
7220
7221 /* The psABI requires a read-only .dynamic section, but the VxWorks
7222 EABI doesn't. */
7223 if (!htab->is_vxworks)
7224 {
7225 s = bfd_get_linker_section (abfd, ".dynamic");
7226 if (s != NULL)
7227 {
7228 if (! bfd_set_section_flags (abfd, s, flags))
7229 return FALSE;
7230 }
7231 }
7232
7233 /* We need to create .got section. */
7234 if (!mips_elf_create_got_section (abfd, info))
7235 return FALSE;
7236
7237 if (! mips_elf_rel_dyn_section (info, TRUE))
7238 return FALSE;
7239
7240 /* Create .stub section. */
7241 s = bfd_make_section_anyway_with_flags (abfd,
7242 MIPS_ELF_STUB_SECTION_NAME (abfd),
7243 flags | SEC_CODE);
7244 if (s == NULL
7245 || ! bfd_set_section_alignment (abfd, s,
7246 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7247 return FALSE;
7248 htab->sstubs = s;
7249
7250 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
7251 && !info->shared
7252 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7253 {
7254 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7255 flags &~ (flagword) SEC_READONLY);
7256 if (s == NULL
7257 || ! bfd_set_section_alignment (abfd, s,
7258 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7259 return FALSE;
7260 }
7261
7262 /* On IRIX5, we adjust add some additional symbols and change the
7263 alignments of several sections. There is no ABI documentation
7264 indicating that this is necessary on IRIX6, nor any evidence that
7265 the linker takes such action. */
7266 if (IRIX_COMPAT (abfd) == ict_irix5)
7267 {
7268 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7269 {
7270 bh = NULL;
7271 if (! (_bfd_generic_link_add_one_symbol
7272 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7273 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7274 return FALSE;
7275
7276 h = (struct elf_link_hash_entry *) bh;
7277 h->non_elf = 0;
7278 h->def_regular = 1;
7279 h->type = STT_SECTION;
7280
7281 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7282 return FALSE;
7283 }
7284
7285 /* We need to create a .compact_rel section. */
7286 if (SGI_COMPAT (abfd))
7287 {
7288 if (!mips_elf_create_compact_rel_section (abfd, info))
7289 return FALSE;
7290 }
7291
7292 /* Change alignments of some sections. */
7293 s = bfd_get_linker_section (abfd, ".hash");
7294 if (s != NULL)
7295 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7296 s = bfd_get_linker_section (abfd, ".dynsym");
7297 if (s != NULL)
7298 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7299 s = bfd_get_linker_section (abfd, ".dynstr");
7300 if (s != NULL)
7301 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7302 /* ??? */
7303 s = bfd_get_section_by_name (abfd, ".reginfo");
7304 if (s != NULL)
7305 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7306 s = bfd_get_linker_section (abfd, ".dynamic");
7307 if (s != NULL)
7308 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7309 }
7310
7311 if (!info->shared)
7312 {
7313 const char *name;
7314
7315 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7316 bh = NULL;
7317 if (!(_bfd_generic_link_add_one_symbol
7318 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7319 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7320 return FALSE;
7321
7322 h = (struct elf_link_hash_entry *) bh;
7323 h->non_elf = 0;
7324 h->def_regular = 1;
7325 h->type = STT_SECTION;
7326
7327 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7328 return FALSE;
7329
7330 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7331 {
7332 /* __rld_map is a four byte word located in the .data section
7333 and is filled in by the rtld to contain a pointer to
7334 the _r_debug structure. Its symbol value will be set in
7335 _bfd_mips_elf_finish_dynamic_symbol. */
7336 s = bfd_get_linker_section (abfd, ".rld_map");
7337 BFD_ASSERT (s != NULL);
7338
7339 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7340 bh = NULL;
7341 if (!(_bfd_generic_link_add_one_symbol
7342 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7343 get_elf_backend_data (abfd)->collect, &bh)))
7344 return FALSE;
7345
7346 h = (struct elf_link_hash_entry *) bh;
7347 h->non_elf = 0;
7348 h->def_regular = 1;
7349 h->type = STT_OBJECT;
7350
7351 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7352 return FALSE;
7353 mips_elf_hash_table (info)->rld_symbol = h;
7354 }
7355 }
7356
7357 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7358 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
7359 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7360 return FALSE;
7361
7362 /* Cache the sections created above. */
7363 htab->splt = bfd_get_linker_section (abfd, ".plt");
7364 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
7365 if (htab->is_vxworks)
7366 {
7367 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
7368 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
7369 }
7370 else
7371 htab->srelplt = bfd_get_linker_section (abfd, ".rel.plt");
7372 if (!htab->sdynbss
7373 || (htab->is_vxworks && !htab->srelbss && !info->shared)
7374 || !htab->srelplt
7375 || !htab->splt)
7376 abort ();
7377
7378 if (htab->is_vxworks)
7379 {
7380 /* Do the usual VxWorks handling. */
7381 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7382 return FALSE;
7383
7384 /* Work out the PLT sizes. */
7385 if (info->shared)
7386 {
7387 htab->plt_header_size
7388 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
7389 htab->plt_entry_size
7390 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
7391 }
7392 else
7393 {
7394 htab->plt_header_size
7395 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
7396 htab->plt_entry_size
7397 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
7398 }
7399 }
7400 else if (!info->shared)
7401 {
7402 /* All variants of the plt0 entry are the same size. */
7403 htab->plt_header_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
7404 htab->plt_entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
7405 }
7406
7407 return TRUE;
7408 }
7409 \f
7410 /* Return true if relocation REL against section SEC is a REL rather than
7411 RELA relocation. RELOCS is the first relocation in the section and
7412 ABFD is the bfd that contains SEC. */
7413
7414 static bfd_boolean
7415 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7416 const Elf_Internal_Rela *relocs,
7417 const Elf_Internal_Rela *rel)
7418 {
7419 Elf_Internal_Shdr *rel_hdr;
7420 const struct elf_backend_data *bed;
7421
7422 /* To determine which flavor of relocation this is, we depend on the
7423 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7424 rel_hdr = elf_section_data (sec)->rel.hdr;
7425 if (rel_hdr == NULL)
7426 return FALSE;
7427 bed = get_elf_backend_data (abfd);
7428 return ((size_t) (rel - relocs)
7429 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7430 }
7431
7432 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7433 HOWTO is the relocation's howto and CONTENTS points to the contents
7434 of the section that REL is against. */
7435
7436 static bfd_vma
7437 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7438 reloc_howto_type *howto, bfd_byte *contents)
7439 {
7440 bfd_byte *location;
7441 unsigned int r_type;
7442 bfd_vma addend;
7443
7444 r_type = ELF_R_TYPE (abfd, rel->r_info);
7445 location = contents + rel->r_offset;
7446
7447 /* Get the addend, which is stored in the input file. */
7448 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7449 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
7450 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7451
7452 return addend & howto->src_mask;
7453 }
7454
7455 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7456 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7457 and update *ADDEND with the final addend. Return true on success
7458 or false if the LO16 could not be found. RELEND is the exclusive
7459 upper bound on the relocations for REL's section. */
7460
7461 static bfd_boolean
7462 mips_elf_add_lo16_rel_addend (bfd *abfd,
7463 const Elf_Internal_Rela *rel,
7464 const Elf_Internal_Rela *relend,
7465 bfd_byte *contents, bfd_vma *addend)
7466 {
7467 unsigned int r_type, lo16_type;
7468 const Elf_Internal_Rela *lo16_relocation;
7469 reloc_howto_type *lo16_howto;
7470 bfd_vma l;
7471
7472 r_type = ELF_R_TYPE (abfd, rel->r_info);
7473 if (mips16_reloc_p (r_type))
7474 lo16_type = R_MIPS16_LO16;
7475 else if (micromips_reloc_p (r_type))
7476 lo16_type = R_MICROMIPS_LO16;
7477 else
7478 lo16_type = R_MIPS_LO16;
7479
7480 /* The combined value is the sum of the HI16 addend, left-shifted by
7481 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7482 code does a `lui' of the HI16 value, and then an `addiu' of the
7483 LO16 value.)
7484
7485 Scan ahead to find a matching LO16 relocation.
7486
7487 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7488 be immediately following. However, for the IRIX6 ABI, the next
7489 relocation may be a composed relocation consisting of several
7490 relocations for the same address. In that case, the R_MIPS_LO16
7491 relocation may occur as one of these. We permit a similar
7492 extension in general, as that is useful for GCC.
7493
7494 In some cases GCC dead code elimination removes the LO16 but keeps
7495 the corresponding HI16. This is strictly speaking a violation of
7496 the ABI but not immediately harmful. */
7497 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7498 if (lo16_relocation == NULL)
7499 return FALSE;
7500
7501 /* Obtain the addend kept there. */
7502 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7503 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7504
7505 l <<= lo16_howto->rightshift;
7506 l = _bfd_mips_elf_sign_extend (l, 16);
7507
7508 *addend <<= 16;
7509 *addend += l;
7510 return TRUE;
7511 }
7512
7513 /* Try to read the contents of section SEC in bfd ABFD. Return true and
7514 store the contents in *CONTENTS on success. Assume that *CONTENTS
7515 already holds the contents if it is nonull on entry. */
7516
7517 static bfd_boolean
7518 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7519 {
7520 if (*contents)
7521 return TRUE;
7522
7523 /* Get cached copy if it exists. */
7524 if (elf_section_data (sec)->this_hdr.contents != NULL)
7525 {
7526 *contents = elf_section_data (sec)->this_hdr.contents;
7527 return TRUE;
7528 }
7529
7530 return bfd_malloc_and_get_section (abfd, sec, contents);
7531 }
7532
7533 /* Look through the relocs for a section during the first phase, and
7534 allocate space in the global offset table. */
7535
7536 bfd_boolean
7537 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7538 asection *sec, const Elf_Internal_Rela *relocs)
7539 {
7540 const char *name;
7541 bfd *dynobj;
7542 Elf_Internal_Shdr *symtab_hdr;
7543 struct elf_link_hash_entry **sym_hashes;
7544 size_t extsymoff;
7545 const Elf_Internal_Rela *rel;
7546 const Elf_Internal_Rela *rel_end;
7547 asection *sreloc;
7548 const struct elf_backend_data *bed;
7549 struct mips_elf_link_hash_table *htab;
7550 bfd_byte *contents;
7551 bfd_vma addend;
7552 reloc_howto_type *howto;
7553
7554 if (info->relocatable)
7555 return TRUE;
7556
7557 htab = mips_elf_hash_table (info);
7558 BFD_ASSERT (htab != NULL);
7559
7560 dynobj = elf_hash_table (info)->dynobj;
7561 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7562 sym_hashes = elf_sym_hashes (abfd);
7563 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7564
7565 bed = get_elf_backend_data (abfd);
7566 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7567
7568 /* Check for the mips16 stub sections. */
7569
7570 name = bfd_get_section_name (abfd, sec);
7571 if (FN_STUB_P (name))
7572 {
7573 unsigned long r_symndx;
7574
7575 /* Look at the relocation information to figure out which symbol
7576 this is for. */
7577
7578 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
7579 if (r_symndx == 0)
7580 {
7581 (*_bfd_error_handler)
7582 (_("%B: Warning: cannot determine the target function for"
7583 " stub section `%s'"),
7584 abfd, name);
7585 bfd_set_error (bfd_error_bad_value);
7586 return FALSE;
7587 }
7588
7589 if (r_symndx < extsymoff
7590 || sym_hashes[r_symndx - extsymoff] == NULL)
7591 {
7592 asection *o;
7593
7594 /* This stub is for a local symbol. This stub will only be
7595 needed if there is some relocation in this BFD, other
7596 than a 16 bit function call, which refers to this symbol. */
7597 for (o = abfd->sections; o != NULL; o = o->next)
7598 {
7599 Elf_Internal_Rela *sec_relocs;
7600 const Elf_Internal_Rela *r, *rend;
7601
7602 /* We can ignore stub sections when looking for relocs. */
7603 if ((o->flags & SEC_RELOC) == 0
7604 || o->reloc_count == 0
7605 || section_allows_mips16_refs_p (o))
7606 continue;
7607
7608 sec_relocs
7609 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7610 info->keep_memory);
7611 if (sec_relocs == NULL)
7612 return FALSE;
7613
7614 rend = sec_relocs + o->reloc_count;
7615 for (r = sec_relocs; r < rend; r++)
7616 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7617 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
7618 break;
7619
7620 if (elf_section_data (o)->relocs != sec_relocs)
7621 free (sec_relocs);
7622
7623 if (r < rend)
7624 break;
7625 }
7626
7627 if (o == NULL)
7628 {
7629 /* There is no non-call reloc for this stub, so we do
7630 not need it. Since this function is called before
7631 the linker maps input sections to output sections, we
7632 can easily discard it by setting the SEC_EXCLUDE
7633 flag. */
7634 sec->flags |= SEC_EXCLUDE;
7635 return TRUE;
7636 }
7637
7638 /* Record this stub in an array of local symbol stubs for
7639 this BFD. */
7640 if (elf_tdata (abfd)->local_stubs == NULL)
7641 {
7642 unsigned long symcount;
7643 asection **n;
7644 bfd_size_type amt;
7645
7646 if (elf_bad_symtab (abfd))
7647 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7648 else
7649 symcount = symtab_hdr->sh_info;
7650 amt = symcount * sizeof (asection *);
7651 n = bfd_zalloc (abfd, amt);
7652 if (n == NULL)
7653 return FALSE;
7654 elf_tdata (abfd)->local_stubs = n;
7655 }
7656
7657 sec->flags |= SEC_KEEP;
7658 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7659
7660 /* We don't need to set mips16_stubs_seen in this case.
7661 That flag is used to see whether we need to look through
7662 the global symbol table for stubs. We don't need to set
7663 it here, because we just have a local stub. */
7664 }
7665 else
7666 {
7667 struct mips_elf_link_hash_entry *h;
7668
7669 h = ((struct mips_elf_link_hash_entry *)
7670 sym_hashes[r_symndx - extsymoff]);
7671
7672 while (h->root.root.type == bfd_link_hash_indirect
7673 || h->root.root.type == bfd_link_hash_warning)
7674 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
7675
7676 /* H is the symbol this stub is for. */
7677
7678 /* If we already have an appropriate stub for this function, we
7679 don't need another one, so we can discard this one. Since
7680 this function is called before the linker maps input sections
7681 to output sections, we can easily discard it by setting the
7682 SEC_EXCLUDE flag. */
7683 if (h->fn_stub != NULL)
7684 {
7685 sec->flags |= SEC_EXCLUDE;
7686 return TRUE;
7687 }
7688
7689 sec->flags |= SEC_KEEP;
7690 h->fn_stub = sec;
7691 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7692 }
7693 }
7694 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
7695 {
7696 unsigned long r_symndx;
7697 struct mips_elf_link_hash_entry *h;
7698 asection **loc;
7699
7700 /* Look at the relocation information to figure out which symbol
7701 this is for. */
7702
7703 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
7704 if (r_symndx == 0)
7705 {
7706 (*_bfd_error_handler)
7707 (_("%B: Warning: cannot determine the target function for"
7708 " stub section `%s'"),
7709 abfd, name);
7710 bfd_set_error (bfd_error_bad_value);
7711 return FALSE;
7712 }
7713
7714 if (r_symndx < extsymoff
7715 || sym_hashes[r_symndx - extsymoff] == NULL)
7716 {
7717 asection *o;
7718
7719 /* This stub is for a local symbol. This stub will only be
7720 needed if there is some relocation (R_MIPS16_26) in this BFD
7721 that refers to this symbol. */
7722 for (o = abfd->sections; o != NULL; o = o->next)
7723 {
7724 Elf_Internal_Rela *sec_relocs;
7725 const Elf_Internal_Rela *r, *rend;
7726
7727 /* We can ignore stub sections when looking for relocs. */
7728 if ((o->flags & SEC_RELOC) == 0
7729 || o->reloc_count == 0
7730 || section_allows_mips16_refs_p (o))
7731 continue;
7732
7733 sec_relocs
7734 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7735 info->keep_memory);
7736 if (sec_relocs == NULL)
7737 return FALSE;
7738
7739 rend = sec_relocs + o->reloc_count;
7740 for (r = sec_relocs; r < rend; r++)
7741 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7742 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
7743 break;
7744
7745 if (elf_section_data (o)->relocs != sec_relocs)
7746 free (sec_relocs);
7747
7748 if (r < rend)
7749 break;
7750 }
7751
7752 if (o == NULL)
7753 {
7754 /* There is no non-call reloc for this stub, so we do
7755 not need it. Since this function is called before
7756 the linker maps input sections to output sections, we
7757 can easily discard it by setting the SEC_EXCLUDE
7758 flag. */
7759 sec->flags |= SEC_EXCLUDE;
7760 return TRUE;
7761 }
7762
7763 /* Record this stub in an array of local symbol call_stubs for
7764 this BFD. */
7765 if (elf_tdata (abfd)->local_call_stubs == NULL)
7766 {
7767 unsigned long symcount;
7768 asection **n;
7769 bfd_size_type amt;
7770
7771 if (elf_bad_symtab (abfd))
7772 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7773 else
7774 symcount = symtab_hdr->sh_info;
7775 amt = symcount * sizeof (asection *);
7776 n = bfd_zalloc (abfd, amt);
7777 if (n == NULL)
7778 return FALSE;
7779 elf_tdata (abfd)->local_call_stubs = n;
7780 }
7781
7782 sec->flags |= SEC_KEEP;
7783 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
7784
7785 /* We don't need to set mips16_stubs_seen in this case.
7786 That flag is used to see whether we need to look through
7787 the global symbol table for stubs. We don't need to set
7788 it here, because we just have a local stub. */
7789 }
7790 else
7791 {
7792 h = ((struct mips_elf_link_hash_entry *)
7793 sym_hashes[r_symndx - extsymoff]);
7794
7795 /* H is the symbol this stub is for. */
7796
7797 if (CALL_FP_STUB_P (name))
7798 loc = &h->call_fp_stub;
7799 else
7800 loc = &h->call_stub;
7801
7802 /* If we already have an appropriate stub for this function, we
7803 don't need another one, so we can discard this one. Since
7804 this function is called before the linker maps input sections
7805 to output sections, we can easily discard it by setting the
7806 SEC_EXCLUDE flag. */
7807 if (*loc != NULL)
7808 {
7809 sec->flags |= SEC_EXCLUDE;
7810 return TRUE;
7811 }
7812
7813 sec->flags |= SEC_KEEP;
7814 *loc = sec;
7815 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7816 }
7817 }
7818
7819 sreloc = NULL;
7820 contents = NULL;
7821 for (rel = relocs; rel < rel_end; ++rel)
7822 {
7823 unsigned long r_symndx;
7824 unsigned int r_type;
7825 struct elf_link_hash_entry *h;
7826 bfd_boolean can_make_dynamic_p;
7827
7828 r_symndx = ELF_R_SYM (abfd, rel->r_info);
7829 r_type = ELF_R_TYPE (abfd, rel->r_info);
7830
7831 if (r_symndx < extsymoff)
7832 h = NULL;
7833 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
7834 {
7835 (*_bfd_error_handler)
7836 (_("%B: Malformed reloc detected for section %s"),
7837 abfd, name);
7838 bfd_set_error (bfd_error_bad_value);
7839 return FALSE;
7840 }
7841 else
7842 {
7843 h = sym_hashes[r_symndx - extsymoff];
7844 while (h != NULL
7845 && (h->root.type == bfd_link_hash_indirect
7846 || h->root.type == bfd_link_hash_warning))
7847 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7848 }
7849
7850 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
7851 relocation into a dynamic one. */
7852 can_make_dynamic_p = FALSE;
7853 switch (r_type)
7854 {
7855 case R_MIPS_GOT16:
7856 case R_MIPS_CALL16:
7857 case R_MIPS_CALL_HI16:
7858 case R_MIPS_CALL_LO16:
7859 case R_MIPS_GOT_HI16:
7860 case R_MIPS_GOT_LO16:
7861 case R_MIPS_GOT_PAGE:
7862 case R_MIPS_GOT_OFST:
7863 case R_MIPS_GOT_DISP:
7864 case R_MIPS_TLS_GOTTPREL:
7865 case R_MIPS_TLS_GD:
7866 case R_MIPS_TLS_LDM:
7867 case R_MIPS16_GOT16:
7868 case R_MIPS16_CALL16:
7869 case R_MIPS16_TLS_GOTTPREL:
7870 case R_MIPS16_TLS_GD:
7871 case R_MIPS16_TLS_LDM:
7872 case R_MICROMIPS_GOT16:
7873 case R_MICROMIPS_CALL16:
7874 case R_MICROMIPS_CALL_HI16:
7875 case R_MICROMIPS_CALL_LO16:
7876 case R_MICROMIPS_GOT_HI16:
7877 case R_MICROMIPS_GOT_LO16:
7878 case R_MICROMIPS_GOT_PAGE:
7879 case R_MICROMIPS_GOT_OFST:
7880 case R_MICROMIPS_GOT_DISP:
7881 case R_MICROMIPS_TLS_GOTTPREL:
7882 case R_MICROMIPS_TLS_GD:
7883 case R_MICROMIPS_TLS_LDM:
7884 if (dynobj == NULL)
7885 elf_hash_table (info)->dynobj = dynobj = abfd;
7886 if (!mips_elf_create_got_section (dynobj, info))
7887 return FALSE;
7888 if (htab->is_vxworks && !info->shared)
7889 {
7890 (*_bfd_error_handler)
7891 (_("%B: GOT reloc at 0x%lx not expected in executables"),
7892 abfd, (unsigned long) rel->r_offset);
7893 bfd_set_error (bfd_error_bad_value);
7894 return FALSE;
7895 }
7896 break;
7897
7898 /* This is just a hint; it can safely be ignored. Don't set
7899 has_static_relocs for the corresponding symbol. */
7900 case R_MIPS_JALR:
7901 case R_MICROMIPS_JALR:
7902 break;
7903
7904 case R_MIPS_32:
7905 case R_MIPS_REL32:
7906 case R_MIPS_64:
7907 /* In VxWorks executables, references to external symbols
7908 must be handled using copy relocs or PLT entries; it is not
7909 possible to convert this relocation into a dynamic one.
7910
7911 For executables that use PLTs and copy-relocs, we have a
7912 choice between converting the relocation into a dynamic
7913 one or using copy relocations or PLT entries. It is
7914 usually better to do the former, unless the relocation is
7915 against a read-only section. */
7916 if ((info->shared
7917 || (h != NULL
7918 && !htab->is_vxworks
7919 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
7920 && !(!info->nocopyreloc
7921 && !PIC_OBJECT_P (abfd)
7922 && MIPS_ELF_READONLY_SECTION (sec))))
7923 && (sec->flags & SEC_ALLOC) != 0)
7924 {
7925 can_make_dynamic_p = TRUE;
7926 if (dynobj == NULL)
7927 elf_hash_table (info)->dynobj = dynobj = abfd;
7928 break;
7929 }
7930 /* For sections that are not SEC_ALLOC a copy reloc would be
7931 output if possible (implying questionable semantics for
7932 read-only data objects) or otherwise the final link would
7933 fail as ld.so will not process them and could not therefore
7934 handle any outstanding dynamic relocations.
7935
7936 For such sections that are also SEC_DEBUGGING, we can avoid
7937 these problems by simply ignoring any relocs as these
7938 sections have a predefined use and we know it is safe to do
7939 so.
7940
7941 This is needed in cases such as a global symbol definition
7942 in a shared library causing a common symbol from an object
7943 file to be converted to an undefined reference. If that
7944 happens, then all the relocations against this symbol from
7945 SEC_DEBUGGING sections in the object file will resolve to
7946 nil. */
7947 if ((sec->flags & SEC_DEBUGGING) != 0)
7948 break;
7949 /* Fall through. */
7950
7951 default:
7952 /* Most static relocations require pointer equality, except
7953 for branches. */
7954 if (h)
7955 h->pointer_equality_needed = TRUE;
7956 /* Fall through. */
7957
7958 case R_MIPS_26:
7959 case R_MIPS_PC16:
7960 case R_MIPS16_26:
7961 case R_MICROMIPS_26_S1:
7962 case R_MICROMIPS_PC7_S1:
7963 case R_MICROMIPS_PC10_S1:
7964 case R_MICROMIPS_PC16_S1:
7965 case R_MICROMIPS_PC23_S2:
7966 if (h)
7967 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = TRUE;
7968 break;
7969 }
7970
7971 if (h)
7972 {
7973 /* Relocations against the special VxWorks __GOTT_BASE__ and
7974 __GOTT_INDEX__ symbols must be left to the loader. Allocate
7975 room for them in .rela.dyn. */
7976 if (is_gott_symbol (info, h))
7977 {
7978 if (sreloc == NULL)
7979 {
7980 sreloc = mips_elf_rel_dyn_section (info, TRUE);
7981 if (sreloc == NULL)
7982 return FALSE;
7983 }
7984 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
7985 if (MIPS_ELF_READONLY_SECTION (sec))
7986 /* We tell the dynamic linker that there are
7987 relocations against the text segment. */
7988 info->flags |= DF_TEXTREL;
7989 }
7990 }
7991 else if (call_lo16_reloc_p (r_type)
7992 || got_lo16_reloc_p (r_type)
7993 || got_disp_reloc_p (r_type)
7994 || (got16_reloc_p (r_type) && htab->is_vxworks))
7995 {
7996 /* We may need a local GOT entry for this relocation. We
7997 don't count R_MIPS_GOT_PAGE because we can estimate the
7998 maximum number of pages needed by looking at the size of
7999 the segment. Similar comments apply to R_MIPS*_GOT16 and
8000 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8001 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8002 R_MIPS_CALL_HI16 because these are always followed by an
8003 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8004 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8005 rel->r_addend, info, 0))
8006 return FALSE;
8007 }
8008
8009 if (h != NULL
8010 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8011 ELF_ST_IS_MIPS16 (h->other)))
8012 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8013
8014 switch (r_type)
8015 {
8016 case R_MIPS_CALL16:
8017 case R_MIPS16_CALL16:
8018 case R_MICROMIPS_CALL16:
8019 if (h == NULL)
8020 {
8021 (*_bfd_error_handler)
8022 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
8023 abfd, (unsigned long) rel->r_offset);
8024 bfd_set_error (bfd_error_bad_value);
8025 return FALSE;
8026 }
8027 /* Fall through. */
8028
8029 case R_MIPS_CALL_HI16:
8030 case R_MIPS_CALL_LO16:
8031 case R_MICROMIPS_CALL_HI16:
8032 case R_MICROMIPS_CALL_LO16:
8033 if (h != NULL)
8034 {
8035 /* Make sure there is room in the regular GOT to hold the
8036 function's address. We may eliminate it in favour of
8037 a .got.plt entry later; see mips_elf_count_got_symbols. */
8038 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE, 0))
8039 return FALSE;
8040
8041 /* We need a stub, not a plt entry for the undefined
8042 function. But we record it as if it needs plt. See
8043 _bfd_elf_adjust_dynamic_symbol. */
8044 h->needs_plt = 1;
8045 h->type = STT_FUNC;
8046 }
8047 break;
8048
8049 case R_MIPS_GOT_PAGE:
8050 case R_MICROMIPS_GOT_PAGE:
8051 /* If this is a global, overridable symbol, GOT_PAGE will
8052 decay to GOT_DISP, so we'll need a GOT entry for it. */
8053 if (h)
8054 {
8055 struct mips_elf_link_hash_entry *hmips =
8056 (struct mips_elf_link_hash_entry *) h;
8057
8058 /* This symbol is definitely not overridable. */
8059 if (hmips->root.def_regular
8060 && ! (info->shared && ! info->symbolic
8061 && ! hmips->root.forced_local))
8062 h = NULL;
8063 }
8064 /* Fall through. */
8065
8066 case R_MIPS16_GOT16:
8067 case R_MIPS_GOT16:
8068 case R_MIPS_GOT_HI16:
8069 case R_MIPS_GOT_LO16:
8070 case R_MICROMIPS_GOT16:
8071 case R_MICROMIPS_GOT_HI16:
8072 case R_MICROMIPS_GOT_LO16:
8073 if (!h || got_page_reloc_p (r_type))
8074 {
8075 /* This relocation needs (or may need, if h != NULL) a
8076 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8077 know for sure until we know whether the symbol is
8078 preemptible. */
8079 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8080 {
8081 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8082 return FALSE;
8083 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8084 addend = mips_elf_read_rel_addend (abfd, rel,
8085 howto, contents);
8086 if (got16_reloc_p (r_type))
8087 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8088 contents, &addend);
8089 else
8090 addend <<= howto->rightshift;
8091 }
8092 else
8093 addend = rel->r_addend;
8094 if (!mips_elf_record_got_page_entry (info, abfd, r_symndx,
8095 addend))
8096 return FALSE;
8097 }
8098 /* Fall through. */
8099
8100 case R_MIPS_GOT_DISP:
8101 case R_MICROMIPS_GOT_DISP:
8102 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8103 FALSE, 0))
8104 return FALSE;
8105 break;
8106
8107 case R_MIPS_TLS_GOTTPREL:
8108 case R_MIPS16_TLS_GOTTPREL:
8109 case R_MICROMIPS_TLS_GOTTPREL:
8110 if (info->shared)
8111 info->flags |= DF_STATIC_TLS;
8112 /* Fall through */
8113
8114 case R_MIPS_TLS_LDM:
8115 case R_MIPS16_TLS_LDM:
8116 case R_MICROMIPS_TLS_LDM:
8117 if (tls_ldm_reloc_p (r_type))
8118 {
8119 r_symndx = STN_UNDEF;
8120 h = NULL;
8121 }
8122 /* Fall through */
8123
8124 case R_MIPS_TLS_GD:
8125 case R_MIPS16_TLS_GD:
8126 case R_MICROMIPS_TLS_GD:
8127 /* This symbol requires a global offset table entry, or two
8128 for TLS GD relocations. */
8129 {
8130 unsigned char flag;
8131
8132 flag = (tls_gd_reloc_p (r_type)
8133 ? GOT_TLS_GD
8134 : tls_ldm_reloc_p (r_type) ? GOT_TLS_LDM : GOT_TLS_IE);
8135 if (h != NULL)
8136 {
8137 struct mips_elf_link_hash_entry *hmips =
8138 (struct mips_elf_link_hash_entry *) h;
8139 hmips->tls_type |= flag;
8140
8141 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8142 FALSE, flag))
8143 return FALSE;
8144 }
8145 else
8146 {
8147 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != STN_UNDEF);
8148
8149 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8150 rel->r_addend,
8151 info, flag))
8152 return FALSE;
8153 }
8154 }
8155 break;
8156
8157 case R_MIPS_32:
8158 case R_MIPS_REL32:
8159 case R_MIPS_64:
8160 /* In VxWorks executables, references to external symbols
8161 are handled using copy relocs or PLT stubs, so there's
8162 no need to add a .rela.dyn entry for this relocation. */
8163 if (can_make_dynamic_p)
8164 {
8165 if (sreloc == NULL)
8166 {
8167 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8168 if (sreloc == NULL)
8169 return FALSE;
8170 }
8171 if (info->shared && h == NULL)
8172 {
8173 /* When creating a shared object, we must copy these
8174 reloc types into the output file as R_MIPS_REL32
8175 relocs. Make room for this reloc in .rel(a).dyn. */
8176 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8177 if (MIPS_ELF_READONLY_SECTION (sec))
8178 /* We tell the dynamic linker that there are
8179 relocations against the text segment. */
8180 info->flags |= DF_TEXTREL;
8181 }
8182 else
8183 {
8184 struct mips_elf_link_hash_entry *hmips;
8185
8186 /* For a shared object, we must copy this relocation
8187 unless the symbol turns out to be undefined and
8188 weak with non-default visibility, in which case
8189 it will be left as zero.
8190
8191 We could elide R_MIPS_REL32 for locally binding symbols
8192 in shared libraries, but do not yet do so.
8193
8194 For an executable, we only need to copy this
8195 reloc if the symbol is defined in a dynamic
8196 object. */
8197 hmips = (struct mips_elf_link_hash_entry *) h;
8198 ++hmips->possibly_dynamic_relocs;
8199 if (MIPS_ELF_READONLY_SECTION (sec))
8200 /* We need it to tell the dynamic linker if there
8201 are relocations against the text segment. */
8202 hmips->readonly_reloc = TRUE;
8203 }
8204 }
8205
8206 if (SGI_COMPAT (abfd))
8207 mips_elf_hash_table (info)->compact_rel_size +=
8208 sizeof (Elf32_External_crinfo);
8209 break;
8210
8211 case R_MIPS_26:
8212 case R_MIPS_GPREL16:
8213 case R_MIPS_LITERAL:
8214 case R_MIPS_GPREL32:
8215 case R_MICROMIPS_26_S1:
8216 case R_MICROMIPS_GPREL16:
8217 case R_MICROMIPS_LITERAL:
8218 case R_MICROMIPS_GPREL7_S2:
8219 if (SGI_COMPAT (abfd))
8220 mips_elf_hash_table (info)->compact_rel_size +=
8221 sizeof (Elf32_External_crinfo);
8222 break;
8223
8224 /* This relocation describes the C++ object vtable hierarchy.
8225 Reconstruct it for later use during GC. */
8226 case R_MIPS_GNU_VTINHERIT:
8227 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8228 return FALSE;
8229 break;
8230
8231 /* This relocation describes which C++ vtable entries are actually
8232 used. Record for later use during GC. */
8233 case R_MIPS_GNU_VTENTRY:
8234 BFD_ASSERT (h != NULL);
8235 if (h != NULL
8236 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8237 return FALSE;
8238 break;
8239
8240 default:
8241 break;
8242 }
8243
8244 /* We must not create a stub for a symbol that has relocations
8245 related to taking the function's address. This doesn't apply to
8246 VxWorks, where CALL relocs refer to a .got.plt entry instead of
8247 a normal .got entry. */
8248 if (!htab->is_vxworks && h != NULL)
8249 switch (r_type)
8250 {
8251 default:
8252 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8253 break;
8254 case R_MIPS16_CALL16:
8255 case R_MIPS_CALL16:
8256 case R_MIPS_CALL_HI16:
8257 case R_MIPS_CALL_LO16:
8258 case R_MIPS_JALR:
8259 case R_MICROMIPS_CALL16:
8260 case R_MICROMIPS_CALL_HI16:
8261 case R_MICROMIPS_CALL_LO16:
8262 case R_MICROMIPS_JALR:
8263 break;
8264 }
8265
8266 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8267 if there is one. We only need to handle global symbols here;
8268 we decide whether to keep or delete stubs for local symbols
8269 when processing the stub's relocations. */
8270 if (h != NULL
8271 && !mips16_call_reloc_p (r_type)
8272 && !section_allows_mips16_refs_p (sec))
8273 {
8274 struct mips_elf_link_hash_entry *mh;
8275
8276 mh = (struct mips_elf_link_hash_entry *) h;
8277 mh->need_fn_stub = TRUE;
8278 }
8279
8280 /* Refuse some position-dependent relocations when creating a
8281 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8282 not PIC, but we can create dynamic relocations and the result
8283 will be fine. Also do not refuse R_MIPS_LO16, which can be
8284 combined with R_MIPS_GOT16. */
8285 if (info->shared)
8286 {
8287 switch (r_type)
8288 {
8289 case R_MIPS16_HI16:
8290 case R_MIPS_HI16:
8291 case R_MIPS_HIGHER:
8292 case R_MIPS_HIGHEST:
8293 case R_MICROMIPS_HI16:
8294 case R_MICROMIPS_HIGHER:
8295 case R_MICROMIPS_HIGHEST:
8296 /* Don't refuse a high part relocation if it's against
8297 no symbol (e.g. part of a compound relocation). */
8298 if (r_symndx == STN_UNDEF)
8299 break;
8300
8301 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8302 and has a special meaning. */
8303 if (!NEWABI_P (abfd) && h != NULL
8304 && strcmp (h->root.root.string, "_gp_disp") == 0)
8305 break;
8306
8307 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8308 if (is_gott_symbol (info, h))
8309 break;
8310
8311 /* FALLTHROUGH */
8312
8313 case R_MIPS16_26:
8314 case R_MIPS_26:
8315 case R_MICROMIPS_26_S1:
8316 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8317 (*_bfd_error_handler)
8318 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8319 abfd, howto->name,
8320 (h) ? h->root.root.string : "a local symbol");
8321 bfd_set_error (bfd_error_bad_value);
8322 return FALSE;
8323 default:
8324 break;
8325 }
8326 }
8327 }
8328
8329 return TRUE;
8330 }
8331 \f
8332 bfd_boolean
8333 _bfd_mips_relax_section (bfd *abfd, asection *sec,
8334 struct bfd_link_info *link_info,
8335 bfd_boolean *again)
8336 {
8337 Elf_Internal_Rela *internal_relocs;
8338 Elf_Internal_Rela *irel, *irelend;
8339 Elf_Internal_Shdr *symtab_hdr;
8340 bfd_byte *contents = NULL;
8341 size_t extsymoff;
8342 bfd_boolean changed_contents = FALSE;
8343 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8344 Elf_Internal_Sym *isymbuf = NULL;
8345
8346 /* We are not currently changing any sizes, so only one pass. */
8347 *again = FALSE;
8348
8349 if (link_info->relocatable)
8350 return TRUE;
8351
8352 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
8353 link_info->keep_memory);
8354 if (internal_relocs == NULL)
8355 return TRUE;
8356
8357 irelend = internal_relocs + sec->reloc_count
8358 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8359 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8360 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8361
8362 for (irel = internal_relocs; irel < irelend; irel++)
8363 {
8364 bfd_vma symval;
8365 bfd_signed_vma sym_offset;
8366 unsigned int r_type;
8367 unsigned long r_symndx;
8368 asection *sym_sec;
8369 unsigned long instruction;
8370
8371 /* Turn jalr into bgezal, and jr into beq, if they're marked
8372 with a JALR relocation, that indicate where they jump to.
8373 This saves some pipeline bubbles. */
8374 r_type = ELF_R_TYPE (abfd, irel->r_info);
8375 if (r_type != R_MIPS_JALR)
8376 continue;
8377
8378 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8379 /* Compute the address of the jump target. */
8380 if (r_symndx >= extsymoff)
8381 {
8382 struct mips_elf_link_hash_entry *h
8383 = ((struct mips_elf_link_hash_entry *)
8384 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8385
8386 while (h->root.root.type == bfd_link_hash_indirect
8387 || h->root.root.type == bfd_link_hash_warning)
8388 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8389
8390 /* If a symbol is undefined, or if it may be overridden,
8391 skip it. */
8392 if (! ((h->root.root.type == bfd_link_hash_defined
8393 || h->root.root.type == bfd_link_hash_defweak)
8394 && h->root.root.u.def.section)
8395 || (link_info->shared && ! link_info->symbolic
8396 && !h->root.forced_local))
8397 continue;
8398
8399 sym_sec = h->root.root.u.def.section;
8400 if (sym_sec->output_section)
8401 symval = (h->root.root.u.def.value
8402 + sym_sec->output_section->vma
8403 + sym_sec->output_offset);
8404 else
8405 symval = h->root.root.u.def.value;
8406 }
8407 else
8408 {
8409 Elf_Internal_Sym *isym;
8410
8411 /* Read this BFD's symbols if we haven't done so already. */
8412 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8413 {
8414 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8415 if (isymbuf == NULL)
8416 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8417 symtab_hdr->sh_info, 0,
8418 NULL, NULL, NULL);
8419 if (isymbuf == NULL)
8420 goto relax_return;
8421 }
8422
8423 isym = isymbuf + r_symndx;
8424 if (isym->st_shndx == SHN_UNDEF)
8425 continue;
8426 else if (isym->st_shndx == SHN_ABS)
8427 sym_sec = bfd_abs_section_ptr;
8428 else if (isym->st_shndx == SHN_COMMON)
8429 sym_sec = bfd_com_section_ptr;
8430 else
8431 sym_sec
8432 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8433 symval = isym->st_value
8434 + sym_sec->output_section->vma
8435 + sym_sec->output_offset;
8436 }
8437
8438 /* Compute branch offset, from delay slot of the jump to the
8439 branch target. */
8440 sym_offset = (symval + irel->r_addend)
8441 - (sec_start + irel->r_offset + 4);
8442
8443 /* Branch offset must be properly aligned. */
8444 if ((sym_offset & 3) != 0)
8445 continue;
8446
8447 sym_offset >>= 2;
8448
8449 /* Check that it's in range. */
8450 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8451 continue;
8452
8453 /* Get the section contents if we haven't done so already. */
8454 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8455 goto relax_return;
8456
8457 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8458
8459 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8460 if ((instruction & 0xfc1fffff) == 0x0000f809)
8461 instruction = 0x04110000;
8462 /* If it was jr <reg>, turn it into b <target>. */
8463 else if ((instruction & 0xfc1fffff) == 0x00000008)
8464 instruction = 0x10000000;
8465 else
8466 continue;
8467
8468 instruction |= (sym_offset & 0xffff);
8469 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8470 changed_contents = TRUE;
8471 }
8472
8473 if (contents != NULL
8474 && elf_section_data (sec)->this_hdr.contents != contents)
8475 {
8476 if (!changed_contents && !link_info->keep_memory)
8477 free (contents);
8478 else
8479 {
8480 /* Cache the section contents for elf_link_input_bfd. */
8481 elf_section_data (sec)->this_hdr.contents = contents;
8482 }
8483 }
8484 return TRUE;
8485
8486 relax_return:
8487 if (contents != NULL
8488 && elf_section_data (sec)->this_hdr.contents != contents)
8489 free (contents);
8490 return FALSE;
8491 }
8492 \f
8493 /* Allocate space for global sym dynamic relocs. */
8494
8495 static bfd_boolean
8496 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8497 {
8498 struct bfd_link_info *info = inf;
8499 bfd *dynobj;
8500 struct mips_elf_link_hash_entry *hmips;
8501 struct mips_elf_link_hash_table *htab;
8502
8503 htab = mips_elf_hash_table (info);
8504 BFD_ASSERT (htab != NULL);
8505
8506 dynobj = elf_hash_table (info)->dynobj;
8507 hmips = (struct mips_elf_link_hash_entry *) h;
8508
8509 /* VxWorks executables are handled elsewhere; we only need to
8510 allocate relocations in shared objects. */
8511 if (htab->is_vxworks && !info->shared)
8512 return TRUE;
8513
8514 /* Ignore indirect symbols. All relocations against such symbols
8515 will be redirected to the target symbol. */
8516 if (h->root.type == bfd_link_hash_indirect)
8517 return TRUE;
8518
8519 /* If this symbol is defined in a dynamic object, or we are creating
8520 a shared library, we will need to copy any R_MIPS_32 or
8521 R_MIPS_REL32 relocs against it into the output file. */
8522 if (! info->relocatable
8523 && hmips->possibly_dynamic_relocs != 0
8524 && (h->root.type == bfd_link_hash_defweak
8525 || !h->def_regular
8526 || info->shared))
8527 {
8528 bfd_boolean do_copy = TRUE;
8529
8530 if (h->root.type == bfd_link_hash_undefweak)
8531 {
8532 /* Do not copy relocations for undefined weak symbols with
8533 non-default visibility. */
8534 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8535 do_copy = FALSE;
8536
8537 /* Make sure undefined weak symbols are output as a dynamic
8538 symbol in PIEs. */
8539 else if (h->dynindx == -1 && !h->forced_local)
8540 {
8541 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8542 return FALSE;
8543 }
8544 }
8545
8546 if (do_copy)
8547 {
8548 /* Even though we don't directly need a GOT entry for this symbol,
8549 the SVR4 psABI requires it to have a dynamic symbol table
8550 index greater that DT_MIPS_GOTSYM if there are dynamic
8551 relocations against it.
8552
8553 VxWorks does not enforce the same mapping between the GOT
8554 and the symbol table, so the same requirement does not
8555 apply there. */
8556 if (!htab->is_vxworks)
8557 {
8558 if (hmips->global_got_area > GGA_RELOC_ONLY)
8559 hmips->global_got_area = GGA_RELOC_ONLY;
8560 hmips->got_only_for_calls = FALSE;
8561 }
8562
8563 mips_elf_allocate_dynamic_relocations
8564 (dynobj, info, hmips->possibly_dynamic_relocs);
8565 if (hmips->readonly_reloc)
8566 /* We tell the dynamic linker that there are relocations
8567 against the text segment. */
8568 info->flags |= DF_TEXTREL;
8569 }
8570 }
8571
8572 return TRUE;
8573 }
8574
8575 /* Adjust a symbol defined by a dynamic object and referenced by a
8576 regular object. The current definition is in some section of the
8577 dynamic object, but we're not including those sections. We have to
8578 change the definition to something the rest of the link can
8579 understand. */
8580
8581 bfd_boolean
8582 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8583 struct elf_link_hash_entry *h)
8584 {
8585 bfd *dynobj;
8586 struct mips_elf_link_hash_entry *hmips;
8587 struct mips_elf_link_hash_table *htab;
8588
8589 htab = mips_elf_hash_table (info);
8590 BFD_ASSERT (htab != NULL);
8591
8592 dynobj = elf_hash_table (info)->dynobj;
8593 hmips = (struct mips_elf_link_hash_entry *) h;
8594
8595 /* Make sure we know what is going on here. */
8596 BFD_ASSERT (dynobj != NULL
8597 && (h->needs_plt
8598 || h->u.weakdef != NULL
8599 || (h->def_dynamic
8600 && h->ref_regular
8601 && !h->def_regular)));
8602
8603 hmips = (struct mips_elf_link_hash_entry *) h;
8604
8605 /* If there are call relocations against an externally-defined symbol,
8606 see whether we can create a MIPS lazy-binding stub for it. We can
8607 only do this if all references to the function are through call
8608 relocations, and in that case, the traditional lazy-binding stubs
8609 are much more efficient than PLT entries.
8610
8611 Traditional stubs are only available on SVR4 psABI-based systems;
8612 VxWorks always uses PLTs instead. */
8613 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
8614 {
8615 if (! elf_hash_table (info)->dynamic_sections_created)
8616 return TRUE;
8617
8618 /* If this symbol is not defined in a regular file, then set
8619 the symbol to the stub location. This is required to make
8620 function pointers compare as equal between the normal
8621 executable and the shared library. */
8622 if (!h->def_regular)
8623 {
8624 hmips->needs_lazy_stub = TRUE;
8625 htab->lazy_stub_count++;
8626 return TRUE;
8627 }
8628 }
8629 /* As above, VxWorks requires PLT entries for externally-defined
8630 functions that are only accessed through call relocations.
8631
8632 Both VxWorks and non-VxWorks targets also need PLT entries if there
8633 are static-only relocations against an externally-defined function.
8634 This can technically occur for shared libraries if there are
8635 branches to the symbol, although it is unlikely that this will be
8636 used in practice due to the short ranges involved. It can occur
8637 for any relative or absolute relocation in executables; in that
8638 case, the PLT entry becomes the function's canonical address. */
8639 else if (((h->needs_plt && !hmips->no_fn_stub)
8640 || (h->type == STT_FUNC && hmips->has_static_relocs))
8641 && htab->use_plts_and_copy_relocs
8642 && !SYMBOL_CALLS_LOCAL (info, h)
8643 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8644 && h->root.type == bfd_link_hash_undefweak))
8645 {
8646 /* If this is the first symbol to need a PLT entry, allocate room
8647 for the header. */
8648 if (htab->splt->size == 0)
8649 {
8650 BFD_ASSERT (htab->sgotplt->size == 0);
8651
8652 /* If we're using the PLT additions to the psABI, each PLT
8653 entry is 16 bytes and the PLT0 entry is 32 bytes.
8654 Encourage better cache usage by aligning. We do this
8655 lazily to avoid pessimizing traditional objects. */
8656 if (!htab->is_vxworks
8657 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
8658 return FALSE;
8659
8660 /* Make sure that .got.plt is word-aligned. We do this lazily
8661 for the same reason as above. */
8662 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
8663 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
8664 return FALSE;
8665
8666 htab->splt->size += htab->plt_header_size;
8667
8668 /* On non-VxWorks targets, the first two entries in .got.plt
8669 are reserved. */
8670 if (!htab->is_vxworks)
8671 htab->sgotplt->size
8672 += get_elf_backend_data (dynobj)->got_header_size;
8673
8674 /* On VxWorks, also allocate room for the header's
8675 .rela.plt.unloaded entries. */
8676 if (htab->is_vxworks && !info->shared)
8677 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
8678 }
8679
8680 /* Assign the next .plt entry to this symbol. */
8681 h->plt.offset = htab->splt->size;
8682 htab->splt->size += htab->plt_entry_size;
8683
8684 /* If the output file has no definition of the symbol, set the
8685 symbol's value to the address of the stub. */
8686 if (!info->shared && !h->def_regular)
8687 {
8688 h->root.u.def.section = htab->splt;
8689 h->root.u.def.value = h->plt.offset;
8690 /* For VxWorks, point at the PLT load stub rather than the
8691 lazy resolution stub; this stub will become the canonical
8692 function address. */
8693 if (htab->is_vxworks)
8694 h->root.u.def.value += 8;
8695 }
8696
8697 /* Make room for the .got.plt entry and the R_MIPS_JUMP_SLOT
8698 relocation. */
8699 htab->sgotplt->size += MIPS_ELF_GOT_SIZE (dynobj);
8700 htab->srelplt->size += (htab->is_vxworks
8701 ? MIPS_ELF_RELA_SIZE (dynobj)
8702 : MIPS_ELF_REL_SIZE (dynobj));
8703
8704 /* Make room for the .rela.plt.unloaded relocations. */
8705 if (htab->is_vxworks && !info->shared)
8706 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
8707
8708 /* All relocations against this symbol that could have been made
8709 dynamic will now refer to the PLT entry instead. */
8710 hmips->possibly_dynamic_relocs = 0;
8711
8712 return TRUE;
8713 }
8714
8715 /* If this is a weak symbol, and there is a real definition, the
8716 processor independent code will have arranged for us to see the
8717 real definition first, and we can just use the same value. */
8718 if (h->u.weakdef != NULL)
8719 {
8720 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
8721 || h->u.weakdef->root.type == bfd_link_hash_defweak);
8722 h->root.u.def.section = h->u.weakdef->root.u.def.section;
8723 h->root.u.def.value = h->u.weakdef->root.u.def.value;
8724 return TRUE;
8725 }
8726
8727 /* Otherwise, there is nothing further to do for symbols defined
8728 in regular objects. */
8729 if (h->def_regular)
8730 return TRUE;
8731
8732 /* There's also nothing more to do if we'll convert all relocations
8733 against this symbol into dynamic relocations. */
8734 if (!hmips->has_static_relocs)
8735 return TRUE;
8736
8737 /* We're now relying on copy relocations. Complain if we have
8738 some that we can't convert. */
8739 if (!htab->use_plts_and_copy_relocs || info->shared)
8740 {
8741 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
8742 "dynamic symbol %s"),
8743 h->root.root.string);
8744 bfd_set_error (bfd_error_bad_value);
8745 return FALSE;
8746 }
8747
8748 /* We must allocate the symbol in our .dynbss section, which will
8749 become part of the .bss section of the executable. There will be
8750 an entry for this symbol in the .dynsym section. The dynamic
8751 object will contain position independent code, so all references
8752 from the dynamic object to this symbol will go through the global
8753 offset table. The dynamic linker will use the .dynsym entry to
8754 determine the address it must put in the global offset table, so
8755 both the dynamic object and the regular object will refer to the
8756 same memory location for the variable. */
8757
8758 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
8759 {
8760 if (htab->is_vxworks)
8761 htab->srelbss->size += sizeof (Elf32_External_Rela);
8762 else
8763 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8764 h->needs_copy = 1;
8765 }
8766
8767 /* All relocations against this symbol that could have been made
8768 dynamic will now refer to the local copy instead. */
8769 hmips->possibly_dynamic_relocs = 0;
8770
8771 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
8772 }
8773 \f
8774 /* This function is called after all the input files have been read,
8775 and the input sections have been assigned to output sections. We
8776 check for any mips16 stub sections that we can discard. */
8777
8778 bfd_boolean
8779 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
8780 struct bfd_link_info *info)
8781 {
8782 asection *ri;
8783 struct mips_elf_link_hash_table *htab;
8784 struct mips_htab_traverse_info hti;
8785
8786 htab = mips_elf_hash_table (info);
8787 BFD_ASSERT (htab != NULL);
8788
8789 /* The .reginfo section has a fixed size. */
8790 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
8791 if (ri != NULL)
8792 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
8793
8794 hti.info = info;
8795 hti.output_bfd = output_bfd;
8796 hti.error = FALSE;
8797 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8798 mips_elf_check_symbols, &hti);
8799 if (hti.error)
8800 return FALSE;
8801
8802 return TRUE;
8803 }
8804
8805 /* If the link uses a GOT, lay it out and work out its size. */
8806
8807 static bfd_boolean
8808 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
8809 {
8810 bfd *dynobj;
8811 asection *s;
8812 struct mips_got_info *g;
8813 bfd_size_type loadable_size = 0;
8814 bfd_size_type page_gotno;
8815 bfd *sub;
8816 struct mips_elf_count_tls_arg count_tls_arg;
8817 struct mips_elf_link_hash_table *htab;
8818
8819 htab = mips_elf_hash_table (info);
8820 BFD_ASSERT (htab != NULL);
8821
8822 s = htab->sgot;
8823 if (s == NULL)
8824 return TRUE;
8825
8826 dynobj = elf_hash_table (info)->dynobj;
8827 g = htab->got_info;
8828
8829 /* Allocate room for the reserved entries. VxWorks always reserves
8830 3 entries; other objects only reserve 2 entries. */
8831 BFD_ASSERT (g->assigned_gotno == 0);
8832 if (htab->is_vxworks)
8833 htab->reserved_gotno = 3;
8834 else
8835 htab->reserved_gotno = 2;
8836 g->local_gotno += htab->reserved_gotno;
8837 g->assigned_gotno = htab->reserved_gotno;
8838
8839 /* Replace entries for indirect and warning symbols with entries for
8840 the target symbol. */
8841 if (!mips_elf_resolve_final_got_entries (g))
8842 return FALSE;
8843
8844 /* Count the number of GOT symbols. */
8845 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
8846
8847 /* Calculate the total loadable size of the output. That
8848 will give us the maximum number of GOT_PAGE entries
8849 required. */
8850 for (sub = info->input_bfds; sub; sub = sub->link_next)
8851 {
8852 asection *subsection;
8853
8854 for (subsection = sub->sections;
8855 subsection;
8856 subsection = subsection->next)
8857 {
8858 if ((subsection->flags & SEC_ALLOC) == 0)
8859 continue;
8860 loadable_size += ((subsection->size + 0xf)
8861 &~ (bfd_size_type) 0xf);
8862 }
8863 }
8864
8865 if (htab->is_vxworks)
8866 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
8867 relocations against local symbols evaluate to "G", and the EABI does
8868 not include R_MIPS_GOT_PAGE. */
8869 page_gotno = 0;
8870 else
8871 /* Assume there are two loadable segments consisting of contiguous
8872 sections. Is 5 enough? */
8873 page_gotno = (loadable_size >> 16) + 5;
8874
8875 /* Choose the smaller of the two estimates; both are intended to be
8876 conservative. */
8877 if (page_gotno > g->page_gotno)
8878 page_gotno = g->page_gotno;
8879
8880 g->local_gotno += page_gotno;
8881 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8882 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8883
8884 /* We need to calculate tls_gotno for global symbols at this point
8885 instead of building it up earlier, to avoid doublecounting
8886 entries for one global symbol from multiple input files. */
8887 count_tls_arg.info = info;
8888 count_tls_arg.needed = 0;
8889 elf_link_hash_traverse (elf_hash_table (info),
8890 mips_elf_count_global_tls_entries,
8891 &count_tls_arg);
8892 g->tls_gotno += count_tls_arg.needed;
8893 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8894
8895 /* VxWorks does not support multiple GOTs. It initializes $gp to
8896 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
8897 dynamic loader. */
8898 if (htab->is_vxworks)
8899 {
8900 /* VxWorks executables do not need a GOT. */
8901 if (info->shared)
8902 {
8903 /* Each VxWorks GOT entry needs an explicit relocation. */
8904 unsigned int count;
8905
8906 count = g->global_gotno + g->local_gotno - htab->reserved_gotno;
8907 if (count)
8908 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
8909 }
8910 }
8911 else if (s->size > MIPS_ELF_GOT_MAX_SIZE (info))
8912 {
8913 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
8914 return FALSE;
8915 }
8916 else
8917 {
8918 struct mips_elf_count_tls_arg arg;
8919
8920 /* Set up TLS entries. */
8921 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
8922 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
8923
8924 /* Allocate room for the TLS relocations. */
8925 arg.info = info;
8926 arg.needed = 0;
8927 htab_traverse (g->got_entries, mips_elf_count_local_tls_relocs, &arg);
8928 elf_link_hash_traverse (elf_hash_table (info),
8929 mips_elf_count_global_tls_relocs,
8930 &arg);
8931 if (arg.needed)
8932 mips_elf_allocate_dynamic_relocations (dynobj, info, arg.needed);
8933 }
8934
8935 return TRUE;
8936 }
8937
8938 /* Estimate the size of the .MIPS.stubs section. */
8939
8940 static void
8941 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
8942 {
8943 struct mips_elf_link_hash_table *htab;
8944 bfd_size_type dynsymcount;
8945
8946 htab = mips_elf_hash_table (info);
8947 BFD_ASSERT (htab != NULL);
8948
8949 if (htab->lazy_stub_count == 0)
8950 return;
8951
8952 /* IRIX rld assumes that a function stub isn't at the end of the .text
8953 section, so add a dummy entry to the end. */
8954 htab->lazy_stub_count++;
8955
8956 /* Get a worst-case estimate of the number of dynamic symbols needed.
8957 At this point, dynsymcount does not account for section symbols
8958 and count_section_dynsyms may overestimate the number that will
8959 be needed. */
8960 dynsymcount = (elf_hash_table (info)->dynsymcount
8961 + count_section_dynsyms (output_bfd, info));
8962
8963 /* Determine the size of one stub entry. */
8964 htab->function_stub_size = (dynsymcount > 0x10000
8965 ? MIPS_FUNCTION_STUB_BIG_SIZE
8966 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
8967
8968 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
8969 }
8970
8971 /* A mips_elf_link_hash_traverse callback for which DATA points to the
8972 MIPS hash table. If H needs a traditional MIPS lazy-binding stub,
8973 allocate an entry in the stubs section. */
8974
8975 static bfd_boolean
8976 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void **data)
8977 {
8978 struct mips_elf_link_hash_table *htab;
8979
8980 htab = (struct mips_elf_link_hash_table *) data;
8981 if (h->needs_lazy_stub)
8982 {
8983 h->root.root.u.def.section = htab->sstubs;
8984 h->root.root.u.def.value = htab->sstubs->size;
8985 h->root.plt.offset = htab->sstubs->size;
8986 htab->sstubs->size += htab->function_stub_size;
8987 }
8988 return TRUE;
8989 }
8990
8991 /* Allocate offsets in the stubs section to each symbol that needs one.
8992 Set the final size of the .MIPS.stub section. */
8993
8994 static void
8995 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
8996 {
8997 struct mips_elf_link_hash_table *htab;
8998
8999 htab = mips_elf_hash_table (info);
9000 BFD_ASSERT (htab != NULL);
9001
9002 if (htab->lazy_stub_count == 0)
9003 return;
9004
9005 htab->sstubs->size = 0;
9006 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, htab);
9007 htab->sstubs->size += htab->function_stub_size;
9008 BFD_ASSERT (htab->sstubs->size
9009 == htab->lazy_stub_count * htab->function_stub_size);
9010 }
9011
9012 /* Set the sizes of the dynamic sections. */
9013
9014 bfd_boolean
9015 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9016 struct bfd_link_info *info)
9017 {
9018 bfd *dynobj;
9019 asection *s, *sreldyn;
9020 bfd_boolean reltext;
9021 struct mips_elf_link_hash_table *htab;
9022
9023 htab = mips_elf_hash_table (info);
9024 BFD_ASSERT (htab != NULL);
9025 dynobj = elf_hash_table (info)->dynobj;
9026 BFD_ASSERT (dynobj != NULL);
9027
9028 if (elf_hash_table (info)->dynamic_sections_created)
9029 {
9030 /* Set the contents of the .interp section to the interpreter. */
9031 if (info->executable)
9032 {
9033 s = bfd_get_linker_section (dynobj, ".interp");
9034 BFD_ASSERT (s != NULL);
9035 s->size
9036 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9037 s->contents
9038 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9039 }
9040
9041 /* Create a symbol for the PLT, if we know that we are using it. */
9042 if (htab->splt && htab->splt->size > 0 && htab->root.hplt == NULL)
9043 {
9044 struct elf_link_hash_entry *h;
9045
9046 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9047
9048 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
9049 "_PROCEDURE_LINKAGE_TABLE_");
9050 htab->root.hplt = h;
9051 if (h == NULL)
9052 return FALSE;
9053 h->type = STT_FUNC;
9054 }
9055 }
9056
9057 /* Allocate space for global sym dynamic relocs. */
9058 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9059
9060 mips_elf_estimate_stub_size (output_bfd, info);
9061
9062 if (!mips_elf_lay_out_got (output_bfd, info))
9063 return FALSE;
9064
9065 mips_elf_lay_out_lazy_stubs (info);
9066
9067 /* The check_relocs and adjust_dynamic_symbol entry points have
9068 determined the sizes of the various dynamic sections. Allocate
9069 memory for them. */
9070 reltext = FALSE;
9071 for (s = dynobj->sections; s != NULL; s = s->next)
9072 {
9073 const char *name;
9074
9075 /* It's OK to base decisions on the section name, because none
9076 of the dynobj section names depend upon the input files. */
9077 name = bfd_get_section_name (dynobj, s);
9078
9079 if ((s->flags & SEC_LINKER_CREATED) == 0)
9080 continue;
9081
9082 if (CONST_STRNEQ (name, ".rel"))
9083 {
9084 if (s->size != 0)
9085 {
9086 const char *outname;
9087 asection *target;
9088
9089 /* If this relocation section applies to a read only
9090 section, then we probably need a DT_TEXTREL entry.
9091 If the relocation section is .rel(a).dyn, we always
9092 assert a DT_TEXTREL entry rather than testing whether
9093 there exists a relocation to a read only section or
9094 not. */
9095 outname = bfd_get_section_name (output_bfd,
9096 s->output_section);
9097 target = bfd_get_section_by_name (output_bfd, outname + 4);
9098 if ((target != NULL
9099 && (target->flags & SEC_READONLY) != 0
9100 && (target->flags & SEC_ALLOC) != 0)
9101 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9102 reltext = TRUE;
9103
9104 /* We use the reloc_count field as a counter if we need
9105 to copy relocs into the output file. */
9106 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9107 s->reloc_count = 0;
9108
9109 /* If combreloc is enabled, elf_link_sort_relocs() will
9110 sort relocations, but in a different way than we do,
9111 and before we're done creating relocations. Also, it
9112 will move them around between input sections'
9113 relocation's contents, so our sorting would be
9114 broken, so don't let it run. */
9115 info->combreloc = 0;
9116 }
9117 }
9118 else if (! info->shared
9119 && ! mips_elf_hash_table (info)->use_rld_obj_head
9120 && CONST_STRNEQ (name, ".rld_map"))
9121 {
9122 /* We add a room for __rld_map. It will be filled in by the
9123 rtld to contain a pointer to the _r_debug structure. */
9124 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9125 }
9126 else if (SGI_COMPAT (output_bfd)
9127 && CONST_STRNEQ (name, ".compact_rel"))
9128 s->size += mips_elf_hash_table (info)->compact_rel_size;
9129 else if (s == htab->splt)
9130 {
9131 /* If the last PLT entry has a branch delay slot, allocate
9132 room for an extra nop to fill the delay slot. This is
9133 for CPUs without load interlocking. */
9134 if (! LOAD_INTERLOCKS_P (output_bfd)
9135 && ! htab->is_vxworks && s->size > 0)
9136 s->size += 4;
9137 }
9138 else if (! CONST_STRNEQ (name, ".init")
9139 && s != htab->sgot
9140 && s != htab->sgotplt
9141 && s != htab->sstubs
9142 && s != htab->sdynbss)
9143 {
9144 /* It's not one of our sections, so don't allocate space. */
9145 continue;
9146 }
9147
9148 if (s->size == 0)
9149 {
9150 s->flags |= SEC_EXCLUDE;
9151 continue;
9152 }
9153
9154 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9155 continue;
9156
9157 /* Allocate memory for the section contents. */
9158 s->contents = bfd_zalloc (dynobj, s->size);
9159 if (s->contents == NULL)
9160 {
9161 bfd_set_error (bfd_error_no_memory);
9162 return FALSE;
9163 }
9164 }
9165
9166 if (elf_hash_table (info)->dynamic_sections_created)
9167 {
9168 /* Add some entries to the .dynamic section. We fill in the
9169 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9170 must add the entries now so that we get the correct size for
9171 the .dynamic section. */
9172
9173 /* SGI object has the equivalence of DT_DEBUG in the
9174 DT_MIPS_RLD_MAP entry. This must come first because glibc
9175 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only
9176 looks at the first one it sees. */
9177 if (!info->shared
9178 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9179 return FALSE;
9180
9181 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9182 used by the debugger. */
9183 if (info->executable
9184 && !SGI_COMPAT (output_bfd)
9185 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9186 return FALSE;
9187
9188 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9189 info->flags |= DF_TEXTREL;
9190
9191 if ((info->flags & DF_TEXTREL) != 0)
9192 {
9193 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9194 return FALSE;
9195
9196 /* Clear the DF_TEXTREL flag. It will be set again if we
9197 write out an actual text relocation; we may not, because
9198 at this point we do not know whether e.g. any .eh_frame
9199 absolute relocations have been converted to PC-relative. */
9200 info->flags &= ~DF_TEXTREL;
9201 }
9202
9203 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9204 return FALSE;
9205
9206 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9207 if (htab->is_vxworks)
9208 {
9209 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9210 use any of the DT_MIPS_* tags. */
9211 if (sreldyn && sreldyn->size > 0)
9212 {
9213 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9214 return FALSE;
9215
9216 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9217 return FALSE;
9218
9219 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9220 return FALSE;
9221 }
9222 }
9223 else
9224 {
9225 if (sreldyn && sreldyn->size > 0)
9226 {
9227 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9228 return FALSE;
9229
9230 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9231 return FALSE;
9232
9233 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9234 return FALSE;
9235 }
9236
9237 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9238 return FALSE;
9239
9240 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9241 return FALSE;
9242
9243 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9244 return FALSE;
9245
9246 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9247 return FALSE;
9248
9249 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9250 return FALSE;
9251
9252 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9253 return FALSE;
9254
9255 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9256 return FALSE;
9257
9258 if (IRIX_COMPAT (dynobj) == ict_irix5
9259 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9260 return FALSE;
9261
9262 if (IRIX_COMPAT (dynobj) == ict_irix6
9263 && (bfd_get_section_by_name
9264 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9265 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9266 return FALSE;
9267 }
9268 if (htab->splt->size > 0)
9269 {
9270 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9271 return FALSE;
9272
9273 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9274 return FALSE;
9275
9276 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9277 return FALSE;
9278
9279 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9280 return FALSE;
9281 }
9282 if (htab->is_vxworks
9283 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9284 return FALSE;
9285 }
9286
9287 return TRUE;
9288 }
9289 \f
9290 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9291 Adjust its R_ADDEND field so that it is correct for the output file.
9292 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9293 and sections respectively; both use symbol indexes. */
9294
9295 static void
9296 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9297 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9298 asection **local_sections, Elf_Internal_Rela *rel)
9299 {
9300 unsigned int r_type, r_symndx;
9301 Elf_Internal_Sym *sym;
9302 asection *sec;
9303
9304 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9305 {
9306 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9307 if (gprel16_reloc_p (r_type)
9308 || r_type == R_MIPS_GPREL32
9309 || literal_reloc_p (r_type))
9310 {
9311 rel->r_addend += _bfd_get_gp_value (input_bfd);
9312 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9313 }
9314
9315 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9316 sym = local_syms + r_symndx;
9317
9318 /* Adjust REL's addend to account for section merging. */
9319 if (!info->relocatable)
9320 {
9321 sec = local_sections[r_symndx];
9322 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9323 }
9324
9325 /* This would normally be done by the rela_normal code in elflink.c. */
9326 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9327 rel->r_addend += local_sections[r_symndx]->output_offset;
9328 }
9329 }
9330
9331 /* Handle relocations against symbols from removed linkonce sections,
9332 or sections discarded by a linker script. We use this wrapper around
9333 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
9334 on 64-bit ELF targets. In this case for any relocation handled, which
9335 always be the first in a triplet, the remaining two have to be processed
9336 together with the first, even if they are R_MIPS_NONE. It is the symbol
9337 index referred by the first reloc that applies to all the three and the
9338 remaining two never refer to an object symbol. And it is the final
9339 relocation (the last non-null one) that determines the output field of
9340 the whole relocation so retrieve the corresponding howto structure for
9341 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
9342
9343 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
9344 and therefore requires to be pasted in a loop. It also defines a block
9345 and does not protect any of its arguments, hence the extra brackets. */
9346
9347 static void
9348 mips_reloc_against_discarded_section (bfd *output_bfd,
9349 struct bfd_link_info *info,
9350 bfd *input_bfd, asection *input_section,
9351 Elf_Internal_Rela **rel,
9352 const Elf_Internal_Rela **relend,
9353 bfd_boolean rel_reloc,
9354 reloc_howto_type *howto,
9355 bfd_byte *contents)
9356 {
9357 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9358 int count = bed->s->int_rels_per_ext_rel;
9359 unsigned int r_type;
9360 int i;
9361
9362 for (i = count - 1; i > 0; i--)
9363 {
9364 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
9365 if (r_type != R_MIPS_NONE)
9366 {
9367 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9368 break;
9369 }
9370 }
9371 do
9372 {
9373 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9374 (*rel), count, (*relend),
9375 howto, i, contents);
9376 }
9377 while (0);
9378 }
9379
9380 /* Relocate a MIPS ELF section. */
9381
9382 bfd_boolean
9383 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
9384 bfd *input_bfd, asection *input_section,
9385 bfd_byte *contents, Elf_Internal_Rela *relocs,
9386 Elf_Internal_Sym *local_syms,
9387 asection **local_sections)
9388 {
9389 Elf_Internal_Rela *rel;
9390 const Elf_Internal_Rela *relend;
9391 bfd_vma addend = 0;
9392 bfd_boolean use_saved_addend_p = FALSE;
9393 const struct elf_backend_data *bed;
9394
9395 bed = get_elf_backend_data (output_bfd);
9396 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
9397 for (rel = relocs; rel < relend; ++rel)
9398 {
9399 const char *name;
9400 bfd_vma value = 0;
9401 reloc_howto_type *howto;
9402 bfd_boolean cross_mode_jump_p;
9403 /* TRUE if the relocation is a RELA relocation, rather than a
9404 REL relocation. */
9405 bfd_boolean rela_relocation_p = TRUE;
9406 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9407 const char *msg;
9408 unsigned long r_symndx;
9409 asection *sec;
9410 Elf_Internal_Shdr *symtab_hdr;
9411 struct elf_link_hash_entry *h;
9412 bfd_boolean rel_reloc;
9413
9414 rel_reloc = (NEWABI_P (input_bfd)
9415 && mips_elf_rel_relocation_p (input_bfd, input_section,
9416 relocs, rel));
9417 /* Find the relocation howto for this relocation. */
9418 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9419
9420 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
9421 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9422 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9423 {
9424 sec = local_sections[r_symndx];
9425 h = NULL;
9426 }
9427 else
9428 {
9429 unsigned long extsymoff;
9430
9431 extsymoff = 0;
9432 if (!elf_bad_symtab (input_bfd))
9433 extsymoff = symtab_hdr->sh_info;
9434 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
9435 while (h->root.type == bfd_link_hash_indirect
9436 || h->root.type == bfd_link_hash_warning)
9437 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9438
9439 sec = NULL;
9440 if (h->root.type == bfd_link_hash_defined
9441 || h->root.type == bfd_link_hash_defweak)
9442 sec = h->root.u.def.section;
9443 }
9444
9445 if (sec != NULL && discarded_section (sec))
9446 {
9447 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
9448 input_section, &rel, &relend,
9449 rel_reloc, howto, contents);
9450 continue;
9451 }
9452
9453 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
9454 {
9455 /* Some 32-bit code uses R_MIPS_64. In particular, people use
9456 64-bit code, but make sure all their addresses are in the
9457 lowermost or uppermost 32-bit section of the 64-bit address
9458 space. Thus, when they use an R_MIPS_64 they mean what is
9459 usually meant by R_MIPS_32, with the exception that the
9460 stored value is sign-extended to 64 bits. */
9461 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
9462
9463 /* On big-endian systems, we need to lie about the position
9464 of the reloc. */
9465 if (bfd_big_endian (input_bfd))
9466 rel->r_offset += 4;
9467 }
9468
9469 if (!use_saved_addend_p)
9470 {
9471 /* If these relocations were originally of the REL variety,
9472 we must pull the addend out of the field that will be
9473 relocated. Otherwise, we simply use the contents of the
9474 RELA relocation. */
9475 if (mips_elf_rel_relocation_p (input_bfd, input_section,
9476 relocs, rel))
9477 {
9478 rela_relocation_p = FALSE;
9479 addend = mips_elf_read_rel_addend (input_bfd, rel,
9480 howto, contents);
9481 if (hi16_reloc_p (r_type)
9482 || (got16_reloc_p (r_type)
9483 && mips_elf_local_relocation_p (input_bfd, rel,
9484 local_sections)))
9485 {
9486 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
9487 contents, &addend))
9488 {
9489 if (h)
9490 name = h->root.root.string;
9491 else
9492 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9493 local_syms + r_symndx,
9494 sec);
9495 (*_bfd_error_handler)
9496 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
9497 input_bfd, input_section, name, howto->name,
9498 rel->r_offset);
9499 }
9500 }
9501 else
9502 addend <<= howto->rightshift;
9503 }
9504 else
9505 addend = rel->r_addend;
9506 mips_elf_adjust_addend (output_bfd, info, input_bfd,
9507 local_syms, local_sections, rel);
9508 }
9509
9510 if (info->relocatable)
9511 {
9512 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
9513 && bfd_big_endian (input_bfd))
9514 rel->r_offset -= 4;
9515
9516 if (!rela_relocation_p && rel->r_addend)
9517 {
9518 addend += rel->r_addend;
9519 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
9520 addend = mips_elf_high (addend);
9521 else if (r_type == R_MIPS_HIGHER)
9522 addend = mips_elf_higher (addend);
9523 else if (r_type == R_MIPS_HIGHEST)
9524 addend = mips_elf_highest (addend);
9525 else
9526 addend >>= howto->rightshift;
9527
9528 /* We use the source mask, rather than the destination
9529 mask because the place to which we are writing will be
9530 source of the addend in the final link. */
9531 addend &= howto->src_mask;
9532
9533 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9534 /* See the comment above about using R_MIPS_64 in the 32-bit
9535 ABI. Here, we need to update the addend. It would be
9536 possible to get away with just using the R_MIPS_32 reloc
9537 but for endianness. */
9538 {
9539 bfd_vma sign_bits;
9540 bfd_vma low_bits;
9541 bfd_vma high_bits;
9542
9543 if (addend & ((bfd_vma) 1 << 31))
9544 #ifdef BFD64
9545 sign_bits = ((bfd_vma) 1 << 32) - 1;
9546 #else
9547 sign_bits = -1;
9548 #endif
9549 else
9550 sign_bits = 0;
9551
9552 /* If we don't know that we have a 64-bit type,
9553 do two separate stores. */
9554 if (bfd_big_endian (input_bfd))
9555 {
9556 /* Store the sign-bits (which are most significant)
9557 first. */
9558 low_bits = sign_bits;
9559 high_bits = addend;
9560 }
9561 else
9562 {
9563 low_bits = addend;
9564 high_bits = sign_bits;
9565 }
9566 bfd_put_32 (input_bfd, low_bits,
9567 contents + rel->r_offset);
9568 bfd_put_32 (input_bfd, high_bits,
9569 contents + rel->r_offset + 4);
9570 continue;
9571 }
9572
9573 if (! mips_elf_perform_relocation (info, howto, rel, addend,
9574 input_bfd, input_section,
9575 contents, FALSE))
9576 return FALSE;
9577 }
9578
9579 /* Go on to the next relocation. */
9580 continue;
9581 }
9582
9583 /* In the N32 and 64-bit ABIs there may be multiple consecutive
9584 relocations for the same offset. In that case we are
9585 supposed to treat the output of each relocation as the addend
9586 for the next. */
9587 if (rel + 1 < relend
9588 && rel->r_offset == rel[1].r_offset
9589 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
9590 use_saved_addend_p = TRUE;
9591 else
9592 use_saved_addend_p = FALSE;
9593
9594 /* Figure out what value we are supposed to relocate. */
9595 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
9596 input_section, info, rel,
9597 addend, howto, local_syms,
9598 local_sections, &value,
9599 &name, &cross_mode_jump_p,
9600 use_saved_addend_p))
9601 {
9602 case bfd_reloc_continue:
9603 /* There's nothing to do. */
9604 continue;
9605
9606 case bfd_reloc_undefined:
9607 /* mips_elf_calculate_relocation already called the
9608 undefined_symbol callback. There's no real point in
9609 trying to perform the relocation at this point, so we
9610 just skip ahead to the next relocation. */
9611 continue;
9612
9613 case bfd_reloc_notsupported:
9614 msg = _("internal error: unsupported relocation error");
9615 info->callbacks->warning
9616 (info, msg, name, input_bfd, input_section, rel->r_offset);
9617 return FALSE;
9618
9619 case bfd_reloc_overflow:
9620 if (use_saved_addend_p)
9621 /* Ignore overflow until we reach the last relocation for
9622 a given location. */
9623 ;
9624 else
9625 {
9626 struct mips_elf_link_hash_table *htab;
9627
9628 htab = mips_elf_hash_table (info);
9629 BFD_ASSERT (htab != NULL);
9630 BFD_ASSERT (name != NULL);
9631 if (!htab->small_data_overflow_reported
9632 && (gprel16_reloc_p (howto->type)
9633 || literal_reloc_p (howto->type)))
9634 {
9635 msg = _("small-data section exceeds 64KB;"
9636 " lower small-data size limit (see option -G)");
9637
9638 htab->small_data_overflow_reported = TRUE;
9639 (*info->callbacks->einfo) ("%P: %s\n", msg);
9640 }
9641 if (! ((*info->callbacks->reloc_overflow)
9642 (info, NULL, name, howto->name, (bfd_vma) 0,
9643 input_bfd, input_section, rel->r_offset)))
9644 return FALSE;
9645 }
9646 break;
9647
9648 case bfd_reloc_ok:
9649 break;
9650
9651 case bfd_reloc_outofrange:
9652 if (jal_reloc_p (howto->type))
9653 {
9654 msg = _("JALX to a non-word-aligned address");
9655 info->callbacks->warning
9656 (info, msg, name, input_bfd, input_section, rel->r_offset);
9657 return FALSE;
9658 }
9659 /* Fall through. */
9660
9661 default:
9662 abort ();
9663 break;
9664 }
9665
9666 /* If we've got another relocation for the address, keep going
9667 until we reach the last one. */
9668 if (use_saved_addend_p)
9669 {
9670 addend = value;
9671 continue;
9672 }
9673
9674 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9675 /* See the comment above about using R_MIPS_64 in the 32-bit
9676 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
9677 that calculated the right value. Now, however, we
9678 sign-extend the 32-bit result to 64-bits, and store it as a
9679 64-bit value. We are especially generous here in that we
9680 go to extreme lengths to support this usage on systems with
9681 only a 32-bit VMA. */
9682 {
9683 bfd_vma sign_bits;
9684 bfd_vma low_bits;
9685 bfd_vma high_bits;
9686
9687 if (value & ((bfd_vma) 1 << 31))
9688 #ifdef BFD64
9689 sign_bits = ((bfd_vma) 1 << 32) - 1;
9690 #else
9691 sign_bits = -1;
9692 #endif
9693 else
9694 sign_bits = 0;
9695
9696 /* If we don't know that we have a 64-bit type,
9697 do two separate stores. */
9698 if (bfd_big_endian (input_bfd))
9699 {
9700 /* Undo what we did above. */
9701 rel->r_offset -= 4;
9702 /* Store the sign-bits (which are most significant)
9703 first. */
9704 low_bits = sign_bits;
9705 high_bits = value;
9706 }
9707 else
9708 {
9709 low_bits = value;
9710 high_bits = sign_bits;
9711 }
9712 bfd_put_32 (input_bfd, low_bits,
9713 contents + rel->r_offset);
9714 bfd_put_32 (input_bfd, high_bits,
9715 contents + rel->r_offset + 4);
9716 continue;
9717 }
9718
9719 /* Actually perform the relocation. */
9720 if (! mips_elf_perform_relocation (info, howto, rel, value,
9721 input_bfd, input_section,
9722 contents, cross_mode_jump_p))
9723 return FALSE;
9724 }
9725
9726 return TRUE;
9727 }
9728 \f
9729 /* A function that iterates over each entry in la25_stubs and fills
9730 in the code for each one. DATA points to a mips_htab_traverse_info. */
9731
9732 static int
9733 mips_elf_create_la25_stub (void **slot, void *data)
9734 {
9735 struct mips_htab_traverse_info *hti;
9736 struct mips_elf_link_hash_table *htab;
9737 struct mips_elf_la25_stub *stub;
9738 asection *s;
9739 bfd_byte *loc;
9740 bfd_vma offset, target, target_high, target_low;
9741
9742 stub = (struct mips_elf_la25_stub *) *slot;
9743 hti = (struct mips_htab_traverse_info *) data;
9744 htab = mips_elf_hash_table (hti->info);
9745 BFD_ASSERT (htab != NULL);
9746
9747 /* Create the section contents, if we haven't already. */
9748 s = stub->stub_section;
9749 loc = s->contents;
9750 if (loc == NULL)
9751 {
9752 loc = bfd_malloc (s->size);
9753 if (loc == NULL)
9754 {
9755 hti->error = TRUE;
9756 return FALSE;
9757 }
9758 s->contents = loc;
9759 }
9760
9761 /* Work out where in the section this stub should go. */
9762 offset = stub->offset;
9763
9764 /* Work out the target address. */
9765 target = mips_elf_get_la25_target (stub, &s);
9766 target += s->output_section->vma + s->output_offset;
9767
9768 target_high = ((target + 0x8000) >> 16) & 0xffff;
9769 target_low = (target & 0xffff);
9770
9771 if (stub->stub_section != htab->strampoline)
9772 {
9773 /* This is a simple LUI/ADDIU stub. Zero out the beginning
9774 of the section and write the two instructions at the end. */
9775 memset (loc, 0, offset);
9776 loc += offset;
9777 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9778 {
9779 bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_1 (target_high),
9780 loc);
9781 bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_2 (target_high),
9782 loc + 2);
9783 bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_1 (target_low),
9784 loc + 4);
9785 bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_2 (target_low),
9786 loc + 6);
9787 }
9788 else
9789 {
9790 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9791 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
9792 }
9793 }
9794 else
9795 {
9796 /* This is trampoline. */
9797 loc += offset;
9798 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9799 {
9800 bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_1 (target_high),
9801 loc);
9802 bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_2 (target_high),
9803 loc + 2);
9804 bfd_put_16 (hti->output_bfd, LA25_J_MICROMIPS_1 (target), loc + 4);
9805 bfd_put_16 (hti->output_bfd, LA25_J_MICROMIPS_2 (target), loc + 6);
9806 bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_1 (target_low),
9807 loc + 8);
9808 bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_2 (target_low),
9809 loc + 10);
9810 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9811 }
9812 else
9813 {
9814 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9815 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
9816 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
9817 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9818 }
9819 }
9820 return TRUE;
9821 }
9822
9823 /* If NAME is one of the special IRIX6 symbols defined by the linker,
9824 adjust it appropriately now. */
9825
9826 static void
9827 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
9828 const char *name, Elf_Internal_Sym *sym)
9829 {
9830 /* The linker script takes care of providing names and values for
9831 these, but we must place them into the right sections. */
9832 static const char* const text_section_symbols[] = {
9833 "_ftext",
9834 "_etext",
9835 "__dso_displacement",
9836 "__elf_header",
9837 "__program_header_table",
9838 NULL
9839 };
9840
9841 static const char* const data_section_symbols[] = {
9842 "_fdata",
9843 "_edata",
9844 "_end",
9845 "_fbss",
9846 NULL
9847 };
9848
9849 const char* const *p;
9850 int i;
9851
9852 for (i = 0; i < 2; ++i)
9853 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
9854 *p;
9855 ++p)
9856 if (strcmp (*p, name) == 0)
9857 {
9858 /* All of these symbols are given type STT_SECTION by the
9859 IRIX6 linker. */
9860 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9861 sym->st_other = STO_PROTECTED;
9862
9863 /* The IRIX linker puts these symbols in special sections. */
9864 if (i == 0)
9865 sym->st_shndx = SHN_MIPS_TEXT;
9866 else
9867 sym->st_shndx = SHN_MIPS_DATA;
9868
9869 break;
9870 }
9871 }
9872
9873 /* Finish up dynamic symbol handling. We set the contents of various
9874 dynamic sections here. */
9875
9876 bfd_boolean
9877 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
9878 struct bfd_link_info *info,
9879 struct elf_link_hash_entry *h,
9880 Elf_Internal_Sym *sym)
9881 {
9882 bfd *dynobj;
9883 asection *sgot;
9884 struct mips_got_info *g, *gg;
9885 const char *name;
9886 int idx;
9887 struct mips_elf_link_hash_table *htab;
9888 struct mips_elf_link_hash_entry *hmips;
9889
9890 htab = mips_elf_hash_table (info);
9891 BFD_ASSERT (htab != NULL);
9892 dynobj = elf_hash_table (info)->dynobj;
9893 hmips = (struct mips_elf_link_hash_entry *) h;
9894
9895 BFD_ASSERT (!htab->is_vxworks);
9896
9897 if (h->plt.offset != MINUS_ONE && hmips->no_fn_stub)
9898 {
9899 /* We've decided to create a PLT entry for this symbol. */
9900 bfd_byte *loc;
9901 bfd_vma header_address, plt_index, got_address;
9902 bfd_vma got_address_high, got_address_low, load;
9903 const bfd_vma *plt_entry;
9904
9905 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9906 BFD_ASSERT (h->dynindx != -1);
9907 BFD_ASSERT (htab->splt != NULL);
9908 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9909 BFD_ASSERT (!h->def_regular);
9910
9911 /* Calculate the address of the PLT header. */
9912 header_address = (htab->splt->output_section->vma
9913 + htab->splt->output_offset);
9914
9915 /* Calculate the index of the entry. */
9916 plt_index = ((h->plt.offset - htab->plt_header_size)
9917 / htab->plt_entry_size);
9918
9919 /* Calculate the address of the .got.plt entry. */
9920 got_address = (htab->sgotplt->output_section->vma
9921 + htab->sgotplt->output_offset
9922 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9923 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9924 got_address_low = got_address & 0xffff;
9925
9926 /* Initially point the .got.plt entry at the PLT header. */
9927 loc = (htab->sgotplt->contents
9928 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9929 if (ABI_64_P (output_bfd))
9930 bfd_put_64 (output_bfd, header_address, loc);
9931 else
9932 bfd_put_32 (output_bfd, header_address, loc);
9933
9934 /* Find out where the .plt entry should go. */
9935 loc = htab->splt->contents + h->plt.offset;
9936
9937 /* Pick the load opcode. */
9938 load = MIPS_ELF_LOAD_WORD (output_bfd);
9939
9940 /* Fill in the PLT entry itself. */
9941 plt_entry = mips_exec_plt_entry;
9942 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
9943 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, loc + 4);
9944
9945 if (! LOAD_INTERLOCKS_P (output_bfd))
9946 {
9947 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
9948 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9949 }
9950 else
9951 {
9952 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
9953 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 12);
9954 }
9955
9956 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9957 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
9958 plt_index, h->dynindx,
9959 R_MIPS_JUMP_SLOT, got_address);
9960
9961 /* We distinguish between PLT entries and lazy-binding stubs by
9962 giving the former an st_other value of STO_MIPS_PLT. Set the
9963 flag and leave the value if there are any relocations in the
9964 binary where pointer equality matters. */
9965 sym->st_shndx = SHN_UNDEF;
9966 if (h->pointer_equality_needed)
9967 sym->st_other = STO_MIPS_PLT;
9968 else
9969 sym->st_value = 0;
9970 }
9971 else if (h->plt.offset != MINUS_ONE)
9972 {
9973 /* We've decided to create a lazy-binding stub. */
9974 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
9975
9976 /* This symbol has a stub. Set it up. */
9977
9978 BFD_ASSERT (h->dynindx != -1);
9979
9980 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9981 || (h->dynindx <= 0xffff));
9982
9983 /* Values up to 2^31 - 1 are allowed. Larger values would cause
9984 sign extension at runtime in the stub, resulting in a negative
9985 index value. */
9986 if (h->dynindx & ~0x7fffffff)
9987 return FALSE;
9988
9989 /* Fill the stub. */
9990 idx = 0;
9991 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
9992 idx += 4;
9993 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
9994 idx += 4;
9995 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9996 {
9997 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
9998 stub + idx);
9999 idx += 4;
10000 }
10001 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10002 idx += 4;
10003
10004 /* If a large stub is not required and sign extension is not a
10005 problem, then use legacy code in the stub. */
10006 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
10007 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
10008 else if (h->dynindx & ~0x7fff)
10009 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
10010 else
10011 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10012 stub + idx);
10013
10014 BFD_ASSERT (h->plt.offset <= htab->sstubs->size);
10015 memcpy (htab->sstubs->contents + h->plt.offset,
10016 stub, htab->function_stub_size);
10017
10018 /* Mark the symbol as undefined. plt.offset != -1 occurs
10019 only for the referenced symbol. */
10020 sym->st_shndx = SHN_UNDEF;
10021
10022 /* The run-time linker uses the st_value field of the symbol
10023 to reset the global offset table entry for this external
10024 to its stub address when unlinking a shared object. */
10025 sym->st_value = (htab->sstubs->output_section->vma
10026 + htab->sstubs->output_offset
10027 + h->plt.offset);
10028 }
10029
10030 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10031 refer to the stub, since only the stub uses the standard calling
10032 conventions. */
10033 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10034 {
10035 BFD_ASSERT (hmips->need_fn_stub);
10036 sym->st_value = (hmips->fn_stub->output_section->vma
10037 + hmips->fn_stub->output_offset);
10038 sym->st_size = hmips->fn_stub->size;
10039 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10040 }
10041
10042 BFD_ASSERT (h->dynindx != -1
10043 || h->forced_local);
10044
10045 sgot = htab->sgot;
10046 g = htab->got_info;
10047 BFD_ASSERT (g != NULL);
10048
10049 /* Run through the global symbol table, creating GOT entries for all
10050 the symbols that need them. */
10051 if (hmips->global_got_area != GGA_NONE)
10052 {
10053 bfd_vma offset;
10054 bfd_vma value;
10055
10056 value = sym->st_value;
10057 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
10058 R_MIPS_GOT16, info);
10059 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10060 }
10061
10062 if (hmips->global_got_area != GGA_NONE && g->next && h->type != STT_TLS)
10063 {
10064 struct mips_got_entry e, *p;
10065 bfd_vma entry;
10066 bfd_vma offset;
10067
10068 gg = g;
10069
10070 e.abfd = output_bfd;
10071 e.symndx = -1;
10072 e.d.h = hmips;
10073 e.tls_type = 0;
10074
10075 for (g = g->next; g->next != gg; g = g->next)
10076 {
10077 if (g->got_entries
10078 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10079 &e)))
10080 {
10081 offset = p->gotidx;
10082 if (info->shared
10083 || (elf_hash_table (info)->dynamic_sections_created
10084 && p->d.h != NULL
10085 && p->d.h->root.def_dynamic
10086 && !p->d.h->root.def_regular))
10087 {
10088 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10089 the various compatibility problems, it's easier to mock
10090 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10091 mips_elf_create_dynamic_relocation to calculate the
10092 appropriate addend. */
10093 Elf_Internal_Rela rel[3];
10094
10095 memset (rel, 0, sizeof (rel));
10096 if (ABI_64_P (output_bfd))
10097 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10098 else
10099 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10100 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10101
10102 entry = 0;
10103 if (! (mips_elf_create_dynamic_relocation
10104 (output_bfd, info, rel,
10105 e.d.h, NULL, sym->st_value, &entry, sgot)))
10106 return FALSE;
10107 }
10108 else
10109 entry = sym->st_value;
10110 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
10111 }
10112 }
10113 }
10114
10115 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10116 name = h->root.root.string;
10117 if (strcmp (name, "_DYNAMIC") == 0
10118 || h == elf_hash_table (info)->hgot)
10119 sym->st_shndx = SHN_ABS;
10120 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10121 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10122 {
10123 sym->st_shndx = SHN_ABS;
10124 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10125 sym->st_value = 1;
10126 }
10127 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
10128 {
10129 sym->st_shndx = SHN_ABS;
10130 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10131 sym->st_value = elf_gp (output_bfd);
10132 }
10133 else if (SGI_COMPAT (output_bfd))
10134 {
10135 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10136 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10137 {
10138 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10139 sym->st_other = STO_PROTECTED;
10140 sym->st_value = 0;
10141 sym->st_shndx = SHN_MIPS_DATA;
10142 }
10143 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10144 {
10145 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10146 sym->st_other = STO_PROTECTED;
10147 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10148 sym->st_shndx = SHN_ABS;
10149 }
10150 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10151 {
10152 if (h->type == STT_FUNC)
10153 sym->st_shndx = SHN_MIPS_TEXT;
10154 else if (h->type == STT_OBJECT)
10155 sym->st_shndx = SHN_MIPS_DATA;
10156 }
10157 }
10158
10159 /* Emit a copy reloc, if needed. */
10160 if (h->needs_copy)
10161 {
10162 asection *s;
10163 bfd_vma symval;
10164
10165 BFD_ASSERT (h->dynindx != -1);
10166 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10167
10168 s = mips_elf_rel_dyn_section (info, FALSE);
10169 symval = (h->root.u.def.section->output_section->vma
10170 + h->root.u.def.section->output_offset
10171 + h->root.u.def.value);
10172 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
10173 h->dynindx, R_MIPS_COPY, symval);
10174 }
10175
10176 /* Handle the IRIX6-specific symbols. */
10177 if (IRIX_COMPAT (output_bfd) == ict_irix6)
10178 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
10179
10180 /* Keep dynamic MIPS16 symbols odd. This allows the dynamic linker to
10181 treat MIPS16 symbols like any other. */
10182 if (ELF_ST_IS_MIPS16 (sym->st_other))
10183 {
10184 BFD_ASSERT (sym->st_value & 1);
10185 sym->st_other -= STO_MIPS16;
10186 }
10187
10188 return TRUE;
10189 }
10190
10191 /* Likewise, for VxWorks. */
10192
10193 bfd_boolean
10194 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
10195 struct bfd_link_info *info,
10196 struct elf_link_hash_entry *h,
10197 Elf_Internal_Sym *sym)
10198 {
10199 bfd *dynobj;
10200 asection *sgot;
10201 struct mips_got_info *g;
10202 struct mips_elf_link_hash_table *htab;
10203 struct mips_elf_link_hash_entry *hmips;
10204
10205 htab = mips_elf_hash_table (info);
10206 BFD_ASSERT (htab != NULL);
10207 dynobj = elf_hash_table (info)->dynobj;
10208 hmips = (struct mips_elf_link_hash_entry *) h;
10209
10210 if (h->plt.offset != (bfd_vma) -1)
10211 {
10212 bfd_byte *loc;
10213 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
10214 Elf_Internal_Rela rel;
10215 static const bfd_vma *plt_entry;
10216
10217 BFD_ASSERT (h->dynindx != -1);
10218 BFD_ASSERT (htab->splt != NULL);
10219 BFD_ASSERT (h->plt.offset <= htab->splt->size);
10220
10221 /* Calculate the address of the .plt entry. */
10222 plt_address = (htab->splt->output_section->vma
10223 + htab->splt->output_offset
10224 + h->plt.offset);
10225
10226 /* Calculate the index of the entry. */
10227 plt_index = ((h->plt.offset - htab->plt_header_size)
10228 / htab->plt_entry_size);
10229
10230 /* Calculate the address of the .got.plt entry. */
10231 got_address = (htab->sgotplt->output_section->vma
10232 + htab->sgotplt->output_offset
10233 + plt_index * 4);
10234
10235 /* Calculate the offset of the .got.plt entry from
10236 _GLOBAL_OFFSET_TABLE_. */
10237 got_offset = mips_elf_gotplt_index (info, h);
10238
10239 /* Calculate the offset for the branch at the start of the PLT
10240 entry. The branch jumps to the beginning of .plt. */
10241 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
10242
10243 /* Fill in the initial value of the .got.plt entry. */
10244 bfd_put_32 (output_bfd, plt_address,
10245 htab->sgotplt->contents + plt_index * 4);
10246
10247 /* Find out where the .plt entry should go. */
10248 loc = htab->splt->contents + h->plt.offset;
10249
10250 if (info->shared)
10251 {
10252 plt_entry = mips_vxworks_shared_plt_entry;
10253 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10254 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10255 }
10256 else
10257 {
10258 bfd_vma got_address_high, got_address_low;
10259
10260 plt_entry = mips_vxworks_exec_plt_entry;
10261 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10262 got_address_low = got_address & 0xffff;
10263
10264 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10265 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10266 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
10267 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
10268 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10269 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10270 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10271 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10272
10273 loc = (htab->srelplt2->contents
10274 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
10275
10276 /* Emit a relocation for the .got.plt entry. */
10277 rel.r_offset = got_address;
10278 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10279 rel.r_addend = h->plt.offset;
10280 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10281
10282 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
10283 loc += sizeof (Elf32_External_Rela);
10284 rel.r_offset = plt_address + 8;
10285 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10286 rel.r_addend = got_offset;
10287 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10288
10289 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
10290 loc += sizeof (Elf32_External_Rela);
10291 rel.r_offset += 4;
10292 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10293 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10294 }
10295
10296 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10297 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
10298 rel.r_offset = got_address;
10299 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
10300 rel.r_addend = 0;
10301 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10302
10303 if (!h->def_regular)
10304 sym->st_shndx = SHN_UNDEF;
10305 }
10306
10307 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
10308
10309 sgot = htab->sgot;
10310 g = htab->got_info;
10311 BFD_ASSERT (g != NULL);
10312
10313 /* See if this symbol has an entry in the GOT. */
10314 if (hmips->global_got_area != GGA_NONE)
10315 {
10316 bfd_vma offset;
10317 Elf_Internal_Rela outrel;
10318 bfd_byte *loc;
10319 asection *s;
10320
10321 /* Install the symbol value in the GOT. */
10322 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
10323 R_MIPS_GOT16, info);
10324 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
10325
10326 /* Add a dynamic relocation for it. */
10327 s = mips_elf_rel_dyn_section (info, FALSE);
10328 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
10329 outrel.r_offset = (sgot->output_section->vma
10330 + sgot->output_offset
10331 + offset);
10332 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
10333 outrel.r_addend = 0;
10334 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
10335 }
10336
10337 /* Emit a copy reloc, if needed. */
10338 if (h->needs_copy)
10339 {
10340 Elf_Internal_Rela rel;
10341
10342 BFD_ASSERT (h->dynindx != -1);
10343
10344 rel.r_offset = (h->root.u.def.section->output_section->vma
10345 + h->root.u.def.section->output_offset
10346 + h->root.u.def.value);
10347 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
10348 rel.r_addend = 0;
10349 bfd_elf32_swap_reloca_out (output_bfd, &rel,
10350 htab->srelbss->contents
10351 + (htab->srelbss->reloc_count
10352 * sizeof (Elf32_External_Rela)));
10353 ++htab->srelbss->reloc_count;
10354 }
10355
10356 /* If this is a mips16/microMIPS symbol, force the value to be even. */
10357 if (ELF_ST_IS_COMPRESSED (sym->st_other))
10358 sym->st_value &= ~1;
10359
10360 return TRUE;
10361 }
10362
10363 /* Write out a plt0 entry to the beginning of .plt. */
10364
10365 static void
10366 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10367 {
10368 bfd_byte *loc;
10369 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
10370 static const bfd_vma *plt_entry;
10371 struct mips_elf_link_hash_table *htab;
10372
10373 htab = mips_elf_hash_table (info);
10374 BFD_ASSERT (htab != NULL);
10375
10376 if (ABI_64_P (output_bfd))
10377 plt_entry = mips_n64_exec_plt0_entry;
10378 else if (ABI_N32_P (output_bfd))
10379 plt_entry = mips_n32_exec_plt0_entry;
10380 else
10381 plt_entry = mips_o32_exec_plt0_entry;
10382
10383 /* Calculate the value of .got.plt. */
10384 gotplt_value = (htab->sgotplt->output_section->vma
10385 + htab->sgotplt->output_offset);
10386 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
10387 gotplt_value_low = gotplt_value & 0xffff;
10388
10389 /* The PLT sequence is not safe for N64 if .got.plt's address can
10390 not be loaded in two instructions. */
10391 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
10392 || ~(gotplt_value | 0x7fffffff) == 0);
10393
10394 /* Install the PLT header. */
10395 loc = htab->splt->contents;
10396 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
10397 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
10398 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
10399 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10400 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10401 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10402 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10403 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10404 }
10405
10406 /* Install the PLT header for a VxWorks executable and finalize the
10407 contents of .rela.plt.unloaded. */
10408
10409 static void
10410 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10411 {
10412 Elf_Internal_Rela rela;
10413 bfd_byte *loc;
10414 bfd_vma got_value, got_value_high, got_value_low, plt_address;
10415 static const bfd_vma *plt_entry;
10416 struct mips_elf_link_hash_table *htab;
10417
10418 htab = mips_elf_hash_table (info);
10419 BFD_ASSERT (htab != NULL);
10420
10421 plt_entry = mips_vxworks_exec_plt0_entry;
10422
10423 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
10424 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
10425 + htab->root.hgot->root.u.def.section->output_offset
10426 + htab->root.hgot->root.u.def.value);
10427
10428 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
10429 got_value_low = got_value & 0xffff;
10430
10431 /* Calculate the address of the PLT header. */
10432 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
10433
10434 /* Install the PLT header. */
10435 loc = htab->splt->contents;
10436 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
10437 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
10438 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
10439 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10440 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10441 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10442
10443 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
10444 loc = htab->srelplt2->contents;
10445 rela.r_offset = plt_address;
10446 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10447 rela.r_addend = 0;
10448 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10449 loc += sizeof (Elf32_External_Rela);
10450
10451 /* Output the relocation for the following addiu of
10452 %lo(_GLOBAL_OFFSET_TABLE_). */
10453 rela.r_offset += 4;
10454 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10455 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10456 loc += sizeof (Elf32_External_Rela);
10457
10458 /* Fix up the remaining relocations. They may have the wrong
10459 symbol index for _G_O_T_ or _P_L_T_ depending on the order
10460 in which symbols were output. */
10461 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
10462 {
10463 Elf_Internal_Rela rel;
10464
10465 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10466 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10467 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10468 loc += sizeof (Elf32_External_Rela);
10469
10470 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10471 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10472 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10473 loc += sizeof (Elf32_External_Rela);
10474
10475 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10476 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10477 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10478 loc += sizeof (Elf32_External_Rela);
10479 }
10480 }
10481
10482 /* Install the PLT header for a VxWorks shared library. */
10483
10484 static void
10485 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
10486 {
10487 unsigned int i;
10488 struct mips_elf_link_hash_table *htab;
10489
10490 htab = mips_elf_hash_table (info);
10491 BFD_ASSERT (htab != NULL);
10492
10493 /* We just need to copy the entry byte-by-byte. */
10494 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
10495 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
10496 htab->splt->contents + i * 4);
10497 }
10498
10499 /* Finish up the dynamic sections. */
10500
10501 bfd_boolean
10502 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
10503 struct bfd_link_info *info)
10504 {
10505 bfd *dynobj;
10506 asection *sdyn;
10507 asection *sgot;
10508 struct mips_got_info *gg, *g;
10509 struct mips_elf_link_hash_table *htab;
10510
10511 htab = mips_elf_hash_table (info);
10512 BFD_ASSERT (htab != NULL);
10513
10514 dynobj = elf_hash_table (info)->dynobj;
10515
10516 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
10517
10518 sgot = htab->sgot;
10519 gg = htab->got_info;
10520
10521 if (elf_hash_table (info)->dynamic_sections_created)
10522 {
10523 bfd_byte *b;
10524 int dyn_to_skip = 0, dyn_skipped = 0;
10525
10526 BFD_ASSERT (sdyn != NULL);
10527 BFD_ASSERT (gg != NULL);
10528
10529 g = mips_elf_got_for_ibfd (gg, output_bfd);
10530 BFD_ASSERT (g != NULL);
10531
10532 for (b = sdyn->contents;
10533 b < sdyn->contents + sdyn->size;
10534 b += MIPS_ELF_DYN_SIZE (dynobj))
10535 {
10536 Elf_Internal_Dyn dyn;
10537 const char *name;
10538 size_t elemsize;
10539 asection *s;
10540 bfd_boolean swap_out_p;
10541
10542 /* Read in the current dynamic entry. */
10543 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10544
10545 /* Assume that we're going to modify it and write it out. */
10546 swap_out_p = TRUE;
10547
10548 switch (dyn.d_tag)
10549 {
10550 case DT_RELENT:
10551 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
10552 break;
10553
10554 case DT_RELAENT:
10555 BFD_ASSERT (htab->is_vxworks);
10556 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
10557 break;
10558
10559 case DT_STRSZ:
10560 /* Rewrite DT_STRSZ. */
10561 dyn.d_un.d_val =
10562 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
10563 break;
10564
10565 case DT_PLTGOT:
10566 s = htab->sgot;
10567 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10568 break;
10569
10570 case DT_MIPS_PLTGOT:
10571 s = htab->sgotplt;
10572 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10573 break;
10574
10575 case DT_MIPS_RLD_VERSION:
10576 dyn.d_un.d_val = 1; /* XXX */
10577 break;
10578
10579 case DT_MIPS_FLAGS:
10580 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
10581 break;
10582
10583 case DT_MIPS_TIME_STAMP:
10584 {
10585 time_t t;
10586 time (&t);
10587 dyn.d_un.d_val = t;
10588 }
10589 break;
10590
10591 case DT_MIPS_ICHECKSUM:
10592 /* XXX FIXME: */
10593 swap_out_p = FALSE;
10594 break;
10595
10596 case DT_MIPS_IVERSION:
10597 /* XXX FIXME: */
10598 swap_out_p = FALSE;
10599 break;
10600
10601 case DT_MIPS_BASE_ADDRESS:
10602 s = output_bfd->sections;
10603 BFD_ASSERT (s != NULL);
10604 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
10605 break;
10606
10607 case DT_MIPS_LOCAL_GOTNO:
10608 dyn.d_un.d_val = g->local_gotno;
10609 break;
10610
10611 case DT_MIPS_UNREFEXTNO:
10612 /* The index into the dynamic symbol table which is the
10613 entry of the first external symbol that is not
10614 referenced within the same object. */
10615 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
10616 break;
10617
10618 case DT_MIPS_GOTSYM:
10619 if (gg->global_gotsym)
10620 {
10621 dyn.d_un.d_val = gg->global_gotsym->dynindx;
10622 break;
10623 }
10624 /* In case if we don't have global got symbols we default
10625 to setting DT_MIPS_GOTSYM to the same value as
10626 DT_MIPS_SYMTABNO, so we just fall through. */
10627
10628 case DT_MIPS_SYMTABNO:
10629 name = ".dynsym";
10630 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
10631 s = bfd_get_section_by_name (output_bfd, name);
10632 BFD_ASSERT (s != NULL);
10633
10634 dyn.d_un.d_val = s->size / elemsize;
10635 break;
10636
10637 case DT_MIPS_HIPAGENO:
10638 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
10639 break;
10640
10641 case DT_MIPS_RLD_MAP:
10642 {
10643 struct elf_link_hash_entry *h;
10644 h = mips_elf_hash_table (info)->rld_symbol;
10645 if (!h)
10646 {
10647 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10648 swap_out_p = FALSE;
10649 break;
10650 }
10651 s = h->root.u.def.section;
10652 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
10653 + h->root.u.def.value);
10654 }
10655 break;
10656
10657 case DT_MIPS_OPTIONS:
10658 s = (bfd_get_section_by_name
10659 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
10660 dyn.d_un.d_ptr = s->vma;
10661 break;
10662
10663 case DT_RELASZ:
10664 BFD_ASSERT (htab->is_vxworks);
10665 /* The count does not include the JUMP_SLOT relocations. */
10666 if (htab->srelplt)
10667 dyn.d_un.d_val -= htab->srelplt->size;
10668 break;
10669
10670 case DT_PLTREL:
10671 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10672 if (htab->is_vxworks)
10673 dyn.d_un.d_val = DT_RELA;
10674 else
10675 dyn.d_un.d_val = DT_REL;
10676 break;
10677
10678 case DT_PLTRELSZ:
10679 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10680 dyn.d_un.d_val = htab->srelplt->size;
10681 break;
10682
10683 case DT_JMPREL:
10684 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10685 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
10686 + htab->srelplt->output_offset);
10687 break;
10688
10689 case DT_TEXTREL:
10690 /* If we didn't need any text relocations after all, delete
10691 the dynamic tag. */
10692 if (!(info->flags & DF_TEXTREL))
10693 {
10694 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10695 swap_out_p = FALSE;
10696 }
10697 break;
10698
10699 case DT_FLAGS:
10700 /* If we didn't need any text relocations after all, clear
10701 DF_TEXTREL from DT_FLAGS. */
10702 if (!(info->flags & DF_TEXTREL))
10703 dyn.d_un.d_val &= ~DF_TEXTREL;
10704 else
10705 swap_out_p = FALSE;
10706 break;
10707
10708 default:
10709 swap_out_p = FALSE;
10710 if (htab->is_vxworks
10711 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
10712 swap_out_p = TRUE;
10713 break;
10714 }
10715
10716 if (swap_out_p || dyn_skipped)
10717 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10718 (dynobj, &dyn, b - dyn_skipped);
10719
10720 if (dyn_to_skip)
10721 {
10722 dyn_skipped += dyn_to_skip;
10723 dyn_to_skip = 0;
10724 }
10725 }
10726
10727 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
10728 if (dyn_skipped > 0)
10729 memset (b - dyn_skipped, 0, dyn_skipped);
10730 }
10731
10732 if (sgot != NULL && sgot->size > 0
10733 && !bfd_is_abs_section (sgot->output_section))
10734 {
10735 if (htab->is_vxworks)
10736 {
10737 /* The first entry of the global offset table points to the
10738 ".dynamic" section. The second is initialized by the
10739 loader and contains the shared library identifier.
10740 The third is also initialized by the loader and points
10741 to the lazy resolution stub. */
10742 MIPS_ELF_PUT_WORD (output_bfd,
10743 sdyn->output_offset + sdyn->output_section->vma,
10744 sgot->contents);
10745 MIPS_ELF_PUT_WORD (output_bfd, 0,
10746 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10747 MIPS_ELF_PUT_WORD (output_bfd, 0,
10748 sgot->contents
10749 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
10750 }
10751 else
10752 {
10753 /* The first entry of the global offset table will be filled at
10754 runtime. The second entry will be used by some runtime loaders.
10755 This isn't the case of IRIX rld. */
10756 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
10757 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10758 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10759 }
10760
10761 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
10762 = MIPS_ELF_GOT_SIZE (output_bfd);
10763 }
10764
10765 /* Generate dynamic relocations for the non-primary gots. */
10766 if (gg != NULL && gg->next)
10767 {
10768 Elf_Internal_Rela rel[3];
10769 bfd_vma addend = 0;
10770
10771 memset (rel, 0, sizeof (rel));
10772 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
10773
10774 for (g = gg->next; g->next != gg; g = g->next)
10775 {
10776 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
10777 + g->next->tls_gotno;
10778
10779 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
10780 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10781 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10782 sgot->contents
10783 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10784
10785 if (! info->shared)
10786 continue;
10787
10788 while (got_index < g->assigned_gotno)
10789 {
10790 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
10791 = got_index++ * MIPS_ELF_GOT_SIZE (output_bfd);
10792 if (!(mips_elf_create_dynamic_relocation
10793 (output_bfd, info, rel, NULL,
10794 bfd_abs_section_ptr,
10795 0, &addend, sgot)))
10796 return FALSE;
10797 BFD_ASSERT (addend == 0);
10798 }
10799 }
10800 }
10801
10802 /* The generation of dynamic relocations for the non-primary gots
10803 adds more dynamic relocations. We cannot count them until
10804 here. */
10805
10806 if (elf_hash_table (info)->dynamic_sections_created)
10807 {
10808 bfd_byte *b;
10809 bfd_boolean swap_out_p;
10810
10811 BFD_ASSERT (sdyn != NULL);
10812
10813 for (b = sdyn->contents;
10814 b < sdyn->contents + sdyn->size;
10815 b += MIPS_ELF_DYN_SIZE (dynobj))
10816 {
10817 Elf_Internal_Dyn dyn;
10818 asection *s;
10819
10820 /* Read in the current dynamic entry. */
10821 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10822
10823 /* Assume that we're going to modify it and write it out. */
10824 swap_out_p = TRUE;
10825
10826 switch (dyn.d_tag)
10827 {
10828 case DT_RELSZ:
10829 /* Reduce DT_RELSZ to account for any relocations we
10830 decided not to make. This is for the n64 irix rld,
10831 which doesn't seem to apply any relocations if there
10832 are trailing null entries. */
10833 s = mips_elf_rel_dyn_section (info, FALSE);
10834 dyn.d_un.d_val = (s->reloc_count
10835 * (ABI_64_P (output_bfd)
10836 ? sizeof (Elf64_Mips_External_Rel)
10837 : sizeof (Elf32_External_Rel)));
10838 /* Adjust the section size too. Tools like the prelinker
10839 can reasonably expect the values to the same. */
10840 elf_section_data (s->output_section)->this_hdr.sh_size
10841 = dyn.d_un.d_val;
10842 break;
10843
10844 default:
10845 swap_out_p = FALSE;
10846 break;
10847 }
10848
10849 if (swap_out_p)
10850 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10851 (dynobj, &dyn, b);
10852 }
10853 }
10854
10855 {
10856 asection *s;
10857 Elf32_compact_rel cpt;
10858
10859 if (SGI_COMPAT (output_bfd))
10860 {
10861 /* Write .compact_rel section out. */
10862 s = bfd_get_linker_section (dynobj, ".compact_rel");
10863 if (s != NULL)
10864 {
10865 cpt.id1 = 1;
10866 cpt.num = s->reloc_count;
10867 cpt.id2 = 2;
10868 cpt.offset = (s->output_section->filepos
10869 + sizeof (Elf32_External_compact_rel));
10870 cpt.reserved0 = 0;
10871 cpt.reserved1 = 0;
10872 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
10873 ((Elf32_External_compact_rel *)
10874 s->contents));
10875
10876 /* Clean up a dummy stub function entry in .text. */
10877 if (htab->sstubs != NULL)
10878 {
10879 file_ptr dummy_offset;
10880
10881 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
10882 dummy_offset = htab->sstubs->size - htab->function_stub_size;
10883 memset (htab->sstubs->contents + dummy_offset, 0,
10884 htab->function_stub_size);
10885 }
10886 }
10887 }
10888
10889 /* The psABI says that the dynamic relocations must be sorted in
10890 increasing order of r_symndx. The VxWorks EABI doesn't require
10891 this, and because the code below handles REL rather than RELA
10892 relocations, using it for VxWorks would be outright harmful. */
10893 if (!htab->is_vxworks)
10894 {
10895 s = mips_elf_rel_dyn_section (info, FALSE);
10896 if (s != NULL
10897 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
10898 {
10899 reldyn_sorting_bfd = output_bfd;
10900
10901 if (ABI_64_P (output_bfd))
10902 qsort ((Elf64_External_Rel *) s->contents + 1,
10903 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
10904 sort_dynamic_relocs_64);
10905 else
10906 qsort ((Elf32_External_Rel *) s->contents + 1,
10907 s->reloc_count - 1, sizeof (Elf32_External_Rel),
10908 sort_dynamic_relocs);
10909 }
10910 }
10911 }
10912
10913 if (htab->splt && htab->splt->size > 0)
10914 {
10915 if (htab->is_vxworks)
10916 {
10917 if (info->shared)
10918 mips_vxworks_finish_shared_plt (output_bfd, info);
10919 else
10920 mips_vxworks_finish_exec_plt (output_bfd, info);
10921 }
10922 else
10923 {
10924 BFD_ASSERT (!info->shared);
10925 mips_finish_exec_plt (output_bfd, info);
10926 }
10927 }
10928 return TRUE;
10929 }
10930
10931
10932 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
10933
10934 static void
10935 mips_set_isa_flags (bfd *abfd)
10936 {
10937 flagword val;
10938
10939 switch (bfd_get_mach (abfd))
10940 {
10941 default:
10942 case bfd_mach_mips3000:
10943 val = E_MIPS_ARCH_1;
10944 break;
10945
10946 case bfd_mach_mips3900:
10947 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
10948 break;
10949
10950 case bfd_mach_mips6000:
10951 val = E_MIPS_ARCH_2;
10952 break;
10953
10954 case bfd_mach_mips4000:
10955 case bfd_mach_mips4300:
10956 case bfd_mach_mips4400:
10957 case bfd_mach_mips4600:
10958 val = E_MIPS_ARCH_3;
10959 break;
10960
10961 case bfd_mach_mips4010:
10962 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
10963 break;
10964
10965 case bfd_mach_mips4100:
10966 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
10967 break;
10968
10969 case bfd_mach_mips4111:
10970 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
10971 break;
10972
10973 case bfd_mach_mips4120:
10974 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
10975 break;
10976
10977 case bfd_mach_mips4650:
10978 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
10979 break;
10980
10981 case bfd_mach_mips5400:
10982 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
10983 break;
10984
10985 case bfd_mach_mips5500:
10986 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
10987 break;
10988
10989 case bfd_mach_mips9000:
10990 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
10991 break;
10992
10993 case bfd_mach_mips5000:
10994 case bfd_mach_mips7000:
10995 case bfd_mach_mips8000:
10996 case bfd_mach_mips10000:
10997 case bfd_mach_mips12000:
10998 case bfd_mach_mips14000:
10999 case bfd_mach_mips16000:
11000 val = E_MIPS_ARCH_4;
11001 break;
11002
11003 case bfd_mach_mips5:
11004 val = E_MIPS_ARCH_5;
11005 break;
11006
11007 case bfd_mach_mips_loongson_2e:
11008 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
11009 break;
11010
11011 case bfd_mach_mips_loongson_2f:
11012 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
11013 break;
11014
11015 case bfd_mach_mips_sb1:
11016 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
11017 break;
11018
11019 case bfd_mach_mips_loongson_3a:
11020 val = E_MIPS_ARCH_64 | E_MIPS_MACH_LS3A;
11021 break;
11022
11023 case bfd_mach_mips_octeon:
11024 case bfd_mach_mips_octeonp:
11025 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
11026 break;
11027
11028 case bfd_mach_mips_xlr:
11029 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
11030 break;
11031
11032 case bfd_mach_mips_octeon2:
11033 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
11034 break;
11035
11036 case bfd_mach_mipsisa32:
11037 val = E_MIPS_ARCH_32;
11038 break;
11039
11040 case bfd_mach_mipsisa64:
11041 val = E_MIPS_ARCH_64;
11042 break;
11043
11044 case bfd_mach_mipsisa32r2:
11045 val = E_MIPS_ARCH_32R2;
11046 break;
11047
11048 case bfd_mach_mipsisa64r2:
11049 val = E_MIPS_ARCH_64R2;
11050 break;
11051 }
11052 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11053 elf_elfheader (abfd)->e_flags |= val;
11054
11055 }
11056
11057
11058 /* The final processing done just before writing out a MIPS ELF object
11059 file. This gets the MIPS architecture right based on the machine
11060 number. This is used by both the 32-bit and the 64-bit ABI. */
11061
11062 void
11063 _bfd_mips_elf_final_write_processing (bfd *abfd,
11064 bfd_boolean linker ATTRIBUTE_UNUSED)
11065 {
11066 unsigned int i;
11067 Elf_Internal_Shdr **hdrpp;
11068 const char *name;
11069 asection *sec;
11070
11071 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
11072 is nonzero. This is for compatibility with old objects, which used
11073 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
11074 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
11075 mips_set_isa_flags (abfd);
11076
11077 /* Set the sh_info field for .gptab sections and other appropriate
11078 info for each special section. */
11079 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
11080 i < elf_numsections (abfd);
11081 i++, hdrpp++)
11082 {
11083 switch ((*hdrpp)->sh_type)
11084 {
11085 case SHT_MIPS_MSYM:
11086 case SHT_MIPS_LIBLIST:
11087 sec = bfd_get_section_by_name (abfd, ".dynstr");
11088 if (sec != NULL)
11089 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11090 break;
11091
11092 case SHT_MIPS_GPTAB:
11093 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11094 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11095 BFD_ASSERT (name != NULL
11096 && CONST_STRNEQ (name, ".gptab."));
11097 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
11098 BFD_ASSERT (sec != NULL);
11099 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11100 break;
11101
11102 case SHT_MIPS_CONTENT:
11103 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11104 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11105 BFD_ASSERT (name != NULL
11106 && CONST_STRNEQ (name, ".MIPS.content"));
11107 sec = bfd_get_section_by_name (abfd,
11108 name + sizeof ".MIPS.content" - 1);
11109 BFD_ASSERT (sec != NULL);
11110 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11111 break;
11112
11113 case SHT_MIPS_SYMBOL_LIB:
11114 sec = bfd_get_section_by_name (abfd, ".dynsym");
11115 if (sec != NULL)
11116 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11117 sec = bfd_get_section_by_name (abfd, ".liblist");
11118 if (sec != NULL)
11119 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11120 break;
11121
11122 case SHT_MIPS_EVENTS:
11123 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11124 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11125 BFD_ASSERT (name != NULL);
11126 if (CONST_STRNEQ (name, ".MIPS.events"))
11127 sec = bfd_get_section_by_name (abfd,
11128 name + sizeof ".MIPS.events" - 1);
11129 else
11130 {
11131 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
11132 sec = bfd_get_section_by_name (abfd,
11133 (name
11134 + sizeof ".MIPS.post_rel" - 1));
11135 }
11136 BFD_ASSERT (sec != NULL);
11137 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11138 break;
11139
11140 }
11141 }
11142 }
11143 \f
11144 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
11145 segments. */
11146
11147 int
11148 _bfd_mips_elf_additional_program_headers (bfd *abfd,
11149 struct bfd_link_info *info ATTRIBUTE_UNUSED)
11150 {
11151 asection *s;
11152 int ret = 0;
11153
11154 /* See if we need a PT_MIPS_REGINFO segment. */
11155 s = bfd_get_section_by_name (abfd, ".reginfo");
11156 if (s && (s->flags & SEC_LOAD))
11157 ++ret;
11158
11159 /* See if we need a PT_MIPS_OPTIONS segment. */
11160 if (IRIX_COMPAT (abfd) == ict_irix6
11161 && bfd_get_section_by_name (abfd,
11162 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
11163 ++ret;
11164
11165 /* See if we need a PT_MIPS_RTPROC segment. */
11166 if (IRIX_COMPAT (abfd) == ict_irix5
11167 && bfd_get_section_by_name (abfd, ".dynamic")
11168 && bfd_get_section_by_name (abfd, ".mdebug"))
11169 ++ret;
11170
11171 /* Allocate a PT_NULL header in dynamic objects. See
11172 _bfd_mips_elf_modify_segment_map for details. */
11173 if (!SGI_COMPAT (abfd)
11174 && bfd_get_section_by_name (abfd, ".dynamic"))
11175 ++ret;
11176
11177 return ret;
11178 }
11179
11180 /* Modify the segment map for an IRIX5 executable. */
11181
11182 bfd_boolean
11183 _bfd_mips_elf_modify_segment_map (bfd *abfd,
11184 struct bfd_link_info *info)
11185 {
11186 asection *s;
11187 struct elf_segment_map *m, **pm;
11188 bfd_size_type amt;
11189
11190 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
11191 segment. */
11192 s = bfd_get_section_by_name (abfd, ".reginfo");
11193 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11194 {
11195 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11196 if (m->p_type == PT_MIPS_REGINFO)
11197 break;
11198 if (m == NULL)
11199 {
11200 amt = sizeof *m;
11201 m = bfd_zalloc (abfd, amt);
11202 if (m == NULL)
11203 return FALSE;
11204
11205 m->p_type = PT_MIPS_REGINFO;
11206 m->count = 1;
11207 m->sections[0] = s;
11208
11209 /* We want to put it after the PHDR and INTERP segments. */
11210 pm = &elf_tdata (abfd)->segment_map;
11211 while (*pm != NULL
11212 && ((*pm)->p_type == PT_PHDR
11213 || (*pm)->p_type == PT_INTERP))
11214 pm = &(*pm)->next;
11215
11216 m->next = *pm;
11217 *pm = m;
11218 }
11219 }
11220
11221 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
11222 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
11223 PT_MIPS_OPTIONS segment immediately following the program header
11224 table. */
11225 if (NEWABI_P (abfd)
11226 /* On non-IRIX6 new abi, we'll have already created a segment
11227 for this section, so don't create another. I'm not sure this
11228 is not also the case for IRIX 6, but I can't test it right
11229 now. */
11230 && IRIX_COMPAT (abfd) == ict_irix6)
11231 {
11232 for (s = abfd->sections; s; s = s->next)
11233 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
11234 break;
11235
11236 if (s)
11237 {
11238 struct elf_segment_map *options_segment;
11239
11240 pm = &elf_tdata (abfd)->segment_map;
11241 while (*pm != NULL
11242 && ((*pm)->p_type == PT_PHDR
11243 || (*pm)->p_type == PT_INTERP))
11244 pm = &(*pm)->next;
11245
11246 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
11247 {
11248 amt = sizeof (struct elf_segment_map);
11249 options_segment = bfd_zalloc (abfd, amt);
11250 options_segment->next = *pm;
11251 options_segment->p_type = PT_MIPS_OPTIONS;
11252 options_segment->p_flags = PF_R;
11253 options_segment->p_flags_valid = TRUE;
11254 options_segment->count = 1;
11255 options_segment->sections[0] = s;
11256 *pm = options_segment;
11257 }
11258 }
11259 }
11260 else
11261 {
11262 if (IRIX_COMPAT (abfd) == ict_irix5)
11263 {
11264 /* If there are .dynamic and .mdebug sections, we make a room
11265 for the RTPROC header. FIXME: Rewrite without section names. */
11266 if (bfd_get_section_by_name (abfd, ".interp") == NULL
11267 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
11268 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
11269 {
11270 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11271 if (m->p_type == PT_MIPS_RTPROC)
11272 break;
11273 if (m == NULL)
11274 {
11275 amt = sizeof *m;
11276 m = bfd_zalloc (abfd, amt);
11277 if (m == NULL)
11278 return FALSE;
11279
11280 m->p_type = PT_MIPS_RTPROC;
11281
11282 s = bfd_get_section_by_name (abfd, ".rtproc");
11283 if (s == NULL)
11284 {
11285 m->count = 0;
11286 m->p_flags = 0;
11287 m->p_flags_valid = 1;
11288 }
11289 else
11290 {
11291 m->count = 1;
11292 m->sections[0] = s;
11293 }
11294
11295 /* We want to put it after the DYNAMIC segment. */
11296 pm = &elf_tdata (abfd)->segment_map;
11297 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
11298 pm = &(*pm)->next;
11299 if (*pm != NULL)
11300 pm = &(*pm)->next;
11301
11302 m->next = *pm;
11303 *pm = m;
11304 }
11305 }
11306 }
11307 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
11308 .dynstr, .dynsym, and .hash sections, and everything in
11309 between. */
11310 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
11311 pm = &(*pm)->next)
11312 if ((*pm)->p_type == PT_DYNAMIC)
11313 break;
11314 m = *pm;
11315 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
11316 {
11317 /* For a normal mips executable the permissions for the PT_DYNAMIC
11318 segment are read, write and execute. We do that here since
11319 the code in elf.c sets only the read permission. This matters
11320 sometimes for the dynamic linker. */
11321 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
11322 {
11323 m->p_flags = PF_R | PF_W | PF_X;
11324 m->p_flags_valid = 1;
11325 }
11326 }
11327 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
11328 glibc's dynamic linker has traditionally derived the number of
11329 tags from the p_filesz field, and sometimes allocates stack
11330 arrays of that size. An overly-big PT_DYNAMIC segment can
11331 be actively harmful in such cases. Making PT_DYNAMIC contain
11332 other sections can also make life hard for the prelinker,
11333 which might move one of the other sections to a different
11334 PT_LOAD segment. */
11335 if (SGI_COMPAT (abfd)
11336 && m != NULL
11337 && m->count == 1
11338 && strcmp (m->sections[0]->name, ".dynamic") == 0)
11339 {
11340 static const char *sec_names[] =
11341 {
11342 ".dynamic", ".dynstr", ".dynsym", ".hash"
11343 };
11344 bfd_vma low, high;
11345 unsigned int i, c;
11346 struct elf_segment_map *n;
11347
11348 low = ~(bfd_vma) 0;
11349 high = 0;
11350 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
11351 {
11352 s = bfd_get_section_by_name (abfd, sec_names[i]);
11353 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11354 {
11355 bfd_size_type sz;
11356
11357 if (low > s->vma)
11358 low = s->vma;
11359 sz = s->size;
11360 if (high < s->vma + sz)
11361 high = s->vma + sz;
11362 }
11363 }
11364
11365 c = 0;
11366 for (s = abfd->sections; s != NULL; s = s->next)
11367 if ((s->flags & SEC_LOAD) != 0
11368 && s->vma >= low
11369 && s->vma + s->size <= high)
11370 ++c;
11371
11372 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
11373 n = bfd_zalloc (abfd, amt);
11374 if (n == NULL)
11375 return FALSE;
11376 *n = *m;
11377 n->count = c;
11378
11379 i = 0;
11380 for (s = abfd->sections; s != NULL; s = s->next)
11381 {
11382 if ((s->flags & SEC_LOAD) != 0
11383 && s->vma >= low
11384 && s->vma + s->size <= high)
11385 {
11386 n->sections[i] = s;
11387 ++i;
11388 }
11389 }
11390
11391 *pm = n;
11392 }
11393 }
11394
11395 /* Allocate a spare program header in dynamic objects so that tools
11396 like the prelinker can add an extra PT_LOAD entry.
11397
11398 If the prelinker needs to make room for a new PT_LOAD entry, its
11399 standard procedure is to move the first (read-only) sections into
11400 the new (writable) segment. However, the MIPS ABI requires
11401 .dynamic to be in a read-only segment, and the section will often
11402 start within sizeof (ElfNN_Phdr) bytes of the last program header.
11403
11404 Although the prelinker could in principle move .dynamic to a
11405 writable segment, it seems better to allocate a spare program
11406 header instead, and avoid the need to move any sections.
11407 There is a long tradition of allocating spare dynamic tags,
11408 so allocating a spare program header seems like a natural
11409 extension.
11410
11411 If INFO is NULL, we may be copying an already prelinked binary
11412 with objcopy or strip, so do not add this header. */
11413 if (info != NULL
11414 && !SGI_COMPAT (abfd)
11415 && bfd_get_section_by_name (abfd, ".dynamic"))
11416 {
11417 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
11418 if ((*pm)->p_type == PT_NULL)
11419 break;
11420 if (*pm == NULL)
11421 {
11422 m = bfd_zalloc (abfd, sizeof (*m));
11423 if (m == NULL)
11424 return FALSE;
11425
11426 m->p_type = PT_NULL;
11427 *pm = m;
11428 }
11429 }
11430
11431 return TRUE;
11432 }
11433 \f
11434 /* Return the section that should be marked against GC for a given
11435 relocation. */
11436
11437 asection *
11438 _bfd_mips_elf_gc_mark_hook (asection *sec,
11439 struct bfd_link_info *info,
11440 Elf_Internal_Rela *rel,
11441 struct elf_link_hash_entry *h,
11442 Elf_Internal_Sym *sym)
11443 {
11444 /* ??? Do mips16 stub sections need to be handled special? */
11445
11446 if (h != NULL)
11447 switch (ELF_R_TYPE (sec->owner, rel->r_info))
11448 {
11449 case R_MIPS_GNU_VTINHERIT:
11450 case R_MIPS_GNU_VTENTRY:
11451 return NULL;
11452 }
11453
11454 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
11455 }
11456
11457 /* Update the got entry reference counts for the section being removed. */
11458
11459 bfd_boolean
11460 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
11461 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11462 asection *sec ATTRIBUTE_UNUSED,
11463 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
11464 {
11465 #if 0
11466 Elf_Internal_Shdr *symtab_hdr;
11467 struct elf_link_hash_entry **sym_hashes;
11468 bfd_signed_vma *local_got_refcounts;
11469 const Elf_Internal_Rela *rel, *relend;
11470 unsigned long r_symndx;
11471 struct elf_link_hash_entry *h;
11472
11473 if (info->relocatable)
11474 return TRUE;
11475
11476 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11477 sym_hashes = elf_sym_hashes (abfd);
11478 local_got_refcounts = elf_local_got_refcounts (abfd);
11479
11480 relend = relocs + sec->reloc_count;
11481 for (rel = relocs; rel < relend; rel++)
11482 switch (ELF_R_TYPE (abfd, rel->r_info))
11483 {
11484 case R_MIPS16_GOT16:
11485 case R_MIPS16_CALL16:
11486 case R_MIPS_GOT16:
11487 case R_MIPS_CALL16:
11488 case R_MIPS_CALL_HI16:
11489 case R_MIPS_CALL_LO16:
11490 case R_MIPS_GOT_HI16:
11491 case R_MIPS_GOT_LO16:
11492 case R_MIPS_GOT_DISP:
11493 case R_MIPS_GOT_PAGE:
11494 case R_MIPS_GOT_OFST:
11495 case R_MICROMIPS_GOT16:
11496 case R_MICROMIPS_CALL16:
11497 case R_MICROMIPS_CALL_HI16:
11498 case R_MICROMIPS_CALL_LO16:
11499 case R_MICROMIPS_GOT_HI16:
11500 case R_MICROMIPS_GOT_LO16:
11501 case R_MICROMIPS_GOT_DISP:
11502 case R_MICROMIPS_GOT_PAGE:
11503 case R_MICROMIPS_GOT_OFST:
11504 /* ??? It would seem that the existing MIPS code does no sort
11505 of reference counting or whatnot on its GOT and PLT entries,
11506 so it is not possible to garbage collect them at this time. */
11507 break;
11508
11509 default:
11510 break;
11511 }
11512 #endif
11513
11514 return TRUE;
11515 }
11516 \f
11517 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
11518 hiding the old indirect symbol. Process additional relocation
11519 information. Also called for weakdefs, in which case we just let
11520 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
11521
11522 void
11523 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
11524 struct elf_link_hash_entry *dir,
11525 struct elf_link_hash_entry *ind)
11526 {
11527 struct mips_elf_link_hash_entry *dirmips, *indmips;
11528
11529 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
11530
11531 dirmips = (struct mips_elf_link_hash_entry *) dir;
11532 indmips = (struct mips_elf_link_hash_entry *) ind;
11533 /* Any absolute non-dynamic relocations against an indirect or weak
11534 definition will be against the target symbol. */
11535 if (indmips->has_static_relocs)
11536 dirmips->has_static_relocs = TRUE;
11537
11538 if (ind->root.type != bfd_link_hash_indirect)
11539 return;
11540
11541 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
11542 if (indmips->readonly_reloc)
11543 dirmips->readonly_reloc = TRUE;
11544 if (indmips->no_fn_stub)
11545 dirmips->no_fn_stub = TRUE;
11546 if (indmips->fn_stub)
11547 {
11548 dirmips->fn_stub = indmips->fn_stub;
11549 indmips->fn_stub = NULL;
11550 }
11551 if (indmips->need_fn_stub)
11552 {
11553 dirmips->need_fn_stub = TRUE;
11554 indmips->need_fn_stub = FALSE;
11555 }
11556 if (indmips->call_stub)
11557 {
11558 dirmips->call_stub = indmips->call_stub;
11559 indmips->call_stub = NULL;
11560 }
11561 if (indmips->call_fp_stub)
11562 {
11563 dirmips->call_fp_stub = indmips->call_fp_stub;
11564 indmips->call_fp_stub = NULL;
11565 }
11566 if (indmips->global_got_area < dirmips->global_got_area)
11567 dirmips->global_got_area = indmips->global_got_area;
11568 if (indmips->global_got_area < GGA_NONE)
11569 indmips->global_got_area = GGA_NONE;
11570 if (indmips->has_nonpic_branches)
11571 dirmips->has_nonpic_branches = TRUE;
11572
11573 if (dirmips->tls_type == 0)
11574 dirmips->tls_type = indmips->tls_type;
11575 }
11576 \f
11577 #define PDR_SIZE 32
11578
11579 bfd_boolean
11580 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
11581 struct bfd_link_info *info)
11582 {
11583 asection *o;
11584 bfd_boolean ret = FALSE;
11585 unsigned char *tdata;
11586 size_t i, skip;
11587
11588 o = bfd_get_section_by_name (abfd, ".pdr");
11589 if (! o)
11590 return FALSE;
11591 if (o->size == 0)
11592 return FALSE;
11593 if (o->size % PDR_SIZE != 0)
11594 return FALSE;
11595 if (o->output_section != NULL
11596 && bfd_is_abs_section (o->output_section))
11597 return FALSE;
11598
11599 tdata = bfd_zmalloc (o->size / PDR_SIZE);
11600 if (! tdata)
11601 return FALSE;
11602
11603 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
11604 info->keep_memory);
11605 if (!cookie->rels)
11606 {
11607 free (tdata);
11608 return FALSE;
11609 }
11610
11611 cookie->rel = cookie->rels;
11612 cookie->relend = cookie->rels + o->reloc_count;
11613
11614 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
11615 {
11616 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
11617 {
11618 tdata[i] = 1;
11619 skip ++;
11620 }
11621 }
11622
11623 if (skip != 0)
11624 {
11625 mips_elf_section_data (o)->u.tdata = tdata;
11626 o->size -= skip * PDR_SIZE;
11627 ret = TRUE;
11628 }
11629 else
11630 free (tdata);
11631
11632 if (! info->keep_memory)
11633 free (cookie->rels);
11634
11635 return ret;
11636 }
11637
11638 bfd_boolean
11639 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
11640 {
11641 if (strcmp (sec->name, ".pdr") == 0)
11642 return TRUE;
11643 return FALSE;
11644 }
11645
11646 bfd_boolean
11647 _bfd_mips_elf_write_section (bfd *output_bfd,
11648 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
11649 asection *sec, bfd_byte *contents)
11650 {
11651 bfd_byte *to, *from, *end;
11652 int i;
11653
11654 if (strcmp (sec->name, ".pdr") != 0)
11655 return FALSE;
11656
11657 if (mips_elf_section_data (sec)->u.tdata == NULL)
11658 return FALSE;
11659
11660 to = contents;
11661 end = contents + sec->size;
11662 for (from = contents, i = 0;
11663 from < end;
11664 from += PDR_SIZE, i++)
11665 {
11666 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
11667 continue;
11668 if (to != from)
11669 memcpy (to, from, PDR_SIZE);
11670 to += PDR_SIZE;
11671 }
11672 bfd_set_section_contents (output_bfd, sec->output_section, contents,
11673 sec->output_offset, sec->size);
11674 return TRUE;
11675 }
11676 \f
11677 /* microMIPS code retains local labels for linker relaxation. Omit them
11678 from output by default for clarity. */
11679
11680 bfd_boolean
11681 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
11682 {
11683 return _bfd_elf_is_local_label_name (abfd, sym->name);
11684 }
11685
11686 /* MIPS ELF uses a special find_nearest_line routine in order the
11687 handle the ECOFF debugging information. */
11688
11689 struct mips_elf_find_line
11690 {
11691 struct ecoff_debug_info d;
11692 struct ecoff_find_line i;
11693 };
11694
11695 bfd_boolean
11696 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
11697 asymbol **symbols, bfd_vma offset,
11698 const char **filename_ptr,
11699 const char **functionname_ptr,
11700 unsigned int *line_ptr)
11701 {
11702 asection *msec;
11703
11704 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
11705 filename_ptr, functionname_ptr,
11706 line_ptr))
11707 return TRUE;
11708
11709 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
11710 section, symbols, offset,
11711 filename_ptr, functionname_ptr,
11712 line_ptr, NULL, ABI_64_P (abfd) ? 8 : 0,
11713 &elf_tdata (abfd)->dwarf2_find_line_info))
11714 return TRUE;
11715
11716 msec = bfd_get_section_by_name (abfd, ".mdebug");
11717 if (msec != NULL)
11718 {
11719 flagword origflags;
11720 struct mips_elf_find_line *fi;
11721 const struct ecoff_debug_swap * const swap =
11722 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
11723
11724 /* If we are called during a link, mips_elf_final_link may have
11725 cleared the SEC_HAS_CONTENTS field. We force it back on here
11726 if appropriate (which it normally will be). */
11727 origflags = msec->flags;
11728 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
11729 msec->flags |= SEC_HAS_CONTENTS;
11730
11731 fi = elf_tdata (abfd)->find_line_info;
11732 if (fi == NULL)
11733 {
11734 bfd_size_type external_fdr_size;
11735 char *fraw_src;
11736 char *fraw_end;
11737 struct fdr *fdr_ptr;
11738 bfd_size_type amt = sizeof (struct mips_elf_find_line);
11739
11740 fi = bfd_zalloc (abfd, amt);
11741 if (fi == NULL)
11742 {
11743 msec->flags = origflags;
11744 return FALSE;
11745 }
11746
11747 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
11748 {
11749 msec->flags = origflags;
11750 return FALSE;
11751 }
11752
11753 /* Swap in the FDR information. */
11754 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
11755 fi->d.fdr = bfd_alloc (abfd, amt);
11756 if (fi->d.fdr == NULL)
11757 {
11758 msec->flags = origflags;
11759 return FALSE;
11760 }
11761 external_fdr_size = swap->external_fdr_size;
11762 fdr_ptr = fi->d.fdr;
11763 fraw_src = (char *) fi->d.external_fdr;
11764 fraw_end = (fraw_src
11765 + fi->d.symbolic_header.ifdMax * external_fdr_size);
11766 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
11767 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
11768
11769 elf_tdata (abfd)->find_line_info = fi;
11770
11771 /* Note that we don't bother to ever free this information.
11772 find_nearest_line is either called all the time, as in
11773 objdump -l, so the information should be saved, or it is
11774 rarely called, as in ld error messages, so the memory
11775 wasted is unimportant. Still, it would probably be a
11776 good idea for free_cached_info to throw it away. */
11777 }
11778
11779 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
11780 &fi->i, filename_ptr, functionname_ptr,
11781 line_ptr))
11782 {
11783 msec->flags = origflags;
11784 return TRUE;
11785 }
11786
11787 msec->flags = origflags;
11788 }
11789
11790 /* Fall back on the generic ELF find_nearest_line routine. */
11791
11792 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
11793 filename_ptr, functionname_ptr,
11794 line_ptr);
11795 }
11796
11797 bfd_boolean
11798 _bfd_mips_elf_find_inliner_info (bfd *abfd,
11799 const char **filename_ptr,
11800 const char **functionname_ptr,
11801 unsigned int *line_ptr)
11802 {
11803 bfd_boolean found;
11804 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
11805 functionname_ptr, line_ptr,
11806 & elf_tdata (abfd)->dwarf2_find_line_info);
11807 return found;
11808 }
11809
11810 \f
11811 /* When are writing out the .options or .MIPS.options section,
11812 remember the bytes we are writing out, so that we can install the
11813 GP value in the section_processing routine. */
11814
11815 bfd_boolean
11816 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
11817 const void *location,
11818 file_ptr offset, bfd_size_type count)
11819 {
11820 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
11821 {
11822 bfd_byte *c;
11823
11824 if (elf_section_data (section) == NULL)
11825 {
11826 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
11827 section->used_by_bfd = bfd_zalloc (abfd, amt);
11828 if (elf_section_data (section) == NULL)
11829 return FALSE;
11830 }
11831 c = mips_elf_section_data (section)->u.tdata;
11832 if (c == NULL)
11833 {
11834 c = bfd_zalloc (abfd, section->size);
11835 if (c == NULL)
11836 return FALSE;
11837 mips_elf_section_data (section)->u.tdata = c;
11838 }
11839
11840 memcpy (c + offset, location, count);
11841 }
11842
11843 return _bfd_elf_set_section_contents (abfd, section, location, offset,
11844 count);
11845 }
11846
11847 /* This is almost identical to bfd_generic_get_... except that some
11848 MIPS relocations need to be handled specially. Sigh. */
11849
11850 bfd_byte *
11851 _bfd_elf_mips_get_relocated_section_contents
11852 (bfd *abfd,
11853 struct bfd_link_info *link_info,
11854 struct bfd_link_order *link_order,
11855 bfd_byte *data,
11856 bfd_boolean relocatable,
11857 asymbol **symbols)
11858 {
11859 /* Get enough memory to hold the stuff */
11860 bfd *input_bfd = link_order->u.indirect.section->owner;
11861 asection *input_section = link_order->u.indirect.section;
11862 bfd_size_type sz;
11863
11864 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
11865 arelent **reloc_vector = NULL;
11866 long reloc_count;
11867
11868 if (reloc_size < 0)
11869 goto error_return;
11870
11871 reloc_vector = bfd_malloc (reloc_size);
11872 if (reloc_vector == NULL && reloc_size != 0)
11873 goto error_return;
11874
11875 /* read in the section */
11876 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
11877 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
11878 goto error_return;
11879
11880 reloc_count = bfd_canonicalize_reloc (input_bfd,
11881 input_section,
11882 reloc_vector,
11883 symbols);
11884 if (reloc_count < 0)
11885 goto error_return;
11886
11887 if (reloc_count > 0)
11888 {
11889 arelent **parent;
11890 /* for mips */
11891 int gp_found;
11892 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
11893
11894 {
11895 struct bfd_hash_entry *h;
11896 struct bfd_link_hash_entry *lh;
11897 /* Skip all this stuff if we aren't mixing formats. */
11898 if (abfd && input_bfd
11899 && abfd->xvec == input_bfd->xvec)
11900 lh = 0;
11901 else
11902 {
11903 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
11904 lh = (struct bfd_link_hash_entry *) h;
11905 }
11906 lookup:
11907 if (lh)
11908 {
11909 switch (lh->type)
11910 {
11911 case bfd_link_hash_undefined:
11912 case bfd_link_hash_undefweak:
11913 case bfd_link_hash_common:
11914 gp_found = 0;
11915 break;
11916 case bfd_link_hash_defined:
11917 case bfd_link_hash_defweak:
11918 gp_found = 1;
11919 gp = lh->u.def.value;
11920 break;
11921 case bfd_link_hash_indirect:
11922 case bfd_link_hash_warning:
11923 lh = lh->u.i.link;
11924 /* @@FIXME ignoring warning for now */
11925 goto lookup;
11926 case bfd_link_hash_new:
11927 default:
11928 abort ();
11929 }
11930 }
11931 else
11932 gp_found = 0;
11933 }
11934 /* end mips */
11935 for (parent = reloc_vector; *parent != NULL; parent++)
11936 {
11937 char *error_message = NULL;
11938 bfd_reloc_status_type r;
11939
11940 /* Specific to MIPS: Deal with relocation types that require
11941 knowing the gp of the output bfd. */
11942 asymbol *sym = *(*parent)->sym_ptr_ptr;
11943
11944 /* If we've managed to find the gp and have a special
11945 function for the relocation then go ahead, else default
11946 to the generic handling. */
11947 if (gp_found
11948 && (*parent)->howto->special_function
11949 == _bfd_mips_elf32_gprel16_reloc)
11950 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
11951 input_section, relocatable,
11952 data, gp);
11953 else
11954 r = bfd_perform_relocation (input_bfd, *parent, data,
11955 input_section,
11956 relocatable ? abfd : NULL,
11957 &error_message);
11958
11959 if (relocatable)
11960 {
11961 asection *os = input_section->output_section;
11962
11963 /* A partial link, so keep the relocs */
11964 os->orelocation[os->reloc_count] = *parent;
11965 os->reloc_count++;
11966 }
11967
11968 if (r != bfd_reloc_ok)
11969 {
11970 switch (r)
11971 {
11972 case bfd_reloc_undefined:
11973 if (!((*link_info->callbacks->undefined_symbol)
11974 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11975 input_bfd, input_section, (*parent)->address, TRUE)))
11976 goto error_return;
11977 break;
11978 case bfd_reloc_dangerous:
11979 BFD_ASSERT (error_message != NULL);
11980 if (!((*link_info->callbacks->reloc_dangerous)
11981 (link_info, error_message, input_bfd, input_section,
11982 (*parent)->address)))
11983 goto error_return;
11984 break;
11985 case bfd_reloc_overflow:
11986 if (!((*link_info->callbacks->reloc_overflow)
11987 (link_info, NULL,
11988 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11989 (*parent)->howto->name, (*parent)->addend,
11990 input_bfd, input_section, (*parent)->address)))
11991 goto error_return;
11992 break;
11993 case bfd_reloc_outofrange:
11994 default:
11995 abort ();
11996 break;
11997 }
11998
11999 }
12000 }
12001 }
12002 if (reloc_vector != NULL)
12003 free (reloc_vector);
12004 return data;
12005
12006 error_return:
12007 if (reloc_vector != NULL)
12008 free (reloc_vector);
12009 return NULL;
12010 }
12011 \f
12012 static bfd_boolean
12013 mips_elf_relax_delete_bytes (bfd *abfd,
12014 asection *sec, bfd_vma addr, int count)
12015 {
12016 Elf_Internal_Shdr *symtab_hdr;
12017 unsigned int sec_shndx;
12018 bfd_byte *contents;
12019 Elf_Internal_Rela *irel, *irelend;
12020 Elf_Internal_Sym *isym;
12021 Elf_Internal_Sym *isymend;
12022 struct elf_link_hash_entry **sym_hashes;
12023 struct elf_link_hash_entry **end_hashes;
12024 struct elf_link_hash_entry **start_hashes;
12025 unsigned int symcount;
12026
12027 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
12028 contents = elf_section_data (sec)->this_hdr.contents;
12029
12030 irel = elf_section_data (sec)->relocs;
12031 irelend = irel + sec->reloc_count;
12032
12033 /* Actually delete the bytes. */
12034 memmove (contents + addr, contents + addr + count,
12035 (size_t) (sec->size - addr - count));
12036 sec->size -= count;
12037
12038 /* Adjust all the relocs. */
12039 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
12040 {
12041 /* Get the new reloc address. */
12042 if (irel->r_offset > addr)
12043 irel->r_offset -= count;
12044 }
12045
12046 BFD_ASSERT (addr % 2 == 0);
12047 BFD_ASSERT (count % 2 == 0);
12048
12049 /* Adjust the local symbols defined in this section. */
12050 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12051 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
12052 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
12053 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
12054 isym->st_value -= count;
12055
12056 /* Now adjust the global symbols defined in this section. */
12057 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
12058 - symtab_hdr->sh_info);
12059 sym_hashes = start_hashes = elf_sym_hashes (abfd);
12060 end_hashes = sym_hashes + symcount;
12061
12062 for (; sym_hashes < end_hashes; sym_hashes++)
12063 {
12064 struct elf_link_hash_entry *sym_hash = *sym_hashes;
12065
12066 if ((sym_hash->root.type == bfd_link_hash_defined
12067 || sym_hash->root.type == bfd_link_hash_defweak)
12068 && sym_hash->root.u.def.section == sec)
12069 {
12070 bfd_vma value = sym_hash->root.u.def.value;
12071
12072 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
12073 value &= MINUS_TWO;
12074 if (value > addr)
12075 sym_hash->root.u.def.value -= count;
12076 }
12077 }
12078
12079 return TRUE;
12080 }
12081
12082
12083 /* Opcodes needed for microMIPS relaxation as found in
12084 opcodes/micromips-opc.c. */
12085
12086 struct opcode_descriptor {
12087 unsigned long match;
12088 unsigned long mask;
12089 };
12090
12091 /* The $ra register aka $31. */
12092
12093 #define RA 31
12094
12095 /* 32-bit instruction format register fields. */
12096
12097 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
12098 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
12099
12100 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
12101
12102 #define OP16_VALID_REG(r) \
12103 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
12104
12105
12106 /* 32-bit and 16-bit branches. */
12107
12108 static const struct opcode_descriptor b_insns_32[] = {
12109 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
12110 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
12111 { 0, 0 } /* End marker for find_match(). */
12112 };
12113
12114 static const struct opcode_descriptor bc_insn_32 =
12115 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
12116
12117 static const struct opcode_descriptor bz_insn_32 =
12118 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
12119
12120 static const struct opcode_descriptor bzal_insn_32 =
12121 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
12122
12123 static const struct opcode_descriptor beq_insn_32 =
12124 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
12125
12126 static const struct opcode_descriptor b_insn_16 =
12127 { /* "b", "mD", */ 0xcc00, 0xfc00 };
12128
12129 static const struct opcode_descriptor bz_insn_16 =
12130 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
12131
12132
12133 /* 32-bit and 16-bit branch EQ and NE zero. */
12134
12135 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
12136 eq and second the ne. This convention is used when replacing a
12137 32-bit BEQ/BNE with the 16-bit version. */
12138
12139 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
12140
12141 static const struct opcode_descriptor bz_rs_insns_32[] = {
12142 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
12143 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
12144 { 0, 0 } /* End marker for find_match(). */
12145 };
12146
12147 static const struct opcode_descriptor bz_rt_insns_32[] = {
12148 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
12149 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
12150 { 0, 0 } /* End marker for find_match(). */
12151 };
12152
12153 static const struct opcode_descriptor bzc_insns_32[] = {
12154 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
12155 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
12156 { 0, 0 } /* End marker for find_match(). */
12157 };
12158
12159 static const struct opcode_descriptor bz_insns_16[] = {
12160 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
12161 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
12162 { 0, 0 } /* End marker for find_match(). */
12163 };
12164
12165 /* Switch between a 5-bit register index and its 3-bit shorthand. */
12166
12167 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0x17) + 2)
12168 #define BZ16_REG_FIELD(r) \
12169 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 7)
12170
12171
12172 /* 32-bit instructions with a delay slot. */
12173
12174 static const struct opcode_descriptor jal_insn_32_bd16 =
12175 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
12176
12177 static const struct opcode_descriptor jal_insn_32_bd32 =
12178 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
12179
12180 static const struct opcode_descriptor jal_x_insn_32_bd32 =
12181 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
12182
12183 static const struct opcode_descriptor j_insn_32 =
12184 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
12185
12186 static const struct opcode_descriptor jalr_insn_32 =
12187 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
12188
12189 /* This table can be compacted, because no opcode replacement is made. */
12190
12191 static const struct opcode_descriptor ds_insns_32_bd16[] = {
12192 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
12193
12194 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
12195 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
12196
12197 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
12198 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
12199 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
12200 { 0, 0 } /* End marker for find_match(). */
12201 };
12202
12203 /* This table can be compacted, because no opcode replacement is made. */
12204
12205 static const struct opcode_descriptor ds_insns_32_bd32[] = {
12206 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
12207
12208 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
12209 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
12210 { 0, 0 } /* End marker for find_match(). */
12211 };
12212
12213
12214 /* 16-bit instructions with a delay slot. */
12215
12216 static const struct opcode_descriptor jalr_insn_16_bd16 =
12217 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
12218
12219 static const struct opcode_descriptor jalr_insn_16_bd32 =
12220 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
12221
12222 static const struct opcode_descriptor jr_insn_16 =
12223 { /* "jr", "mj", */ 0x4580, 0xffe0 };
12224
12225 #define JR16_REG(opcode) ((opcode) & 0x1f)
12226
12227 /* This table can be compacted, because no opcode replacement is made. */
12228
12229 static const struct opcode_descriptor ds_insns_16_bd16[] = {
12230 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
12231
12232 { /* "b", "mD", */ 0xcc00, 0xfc00 },
12233 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
12234 { /* "jr", "mj", */ 0x4580, 0xffe0 },
12235 { 0, 0 } /* End marker for find_match(). */
12236 };
12237
12238
12239 /* LUI instruction. */
12240
12241 static const struct opcode_descriptor lui_insn =
12242 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
12243
12244
12245 /* ADDIU instruction. */
12246
12247 static const struct opcode_descriptor addiu_insn =
12248 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
12249
12250 static const struct opcode_descriptor addiupc_insn =
12251 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
12252
12253 #define ADDIUPC_REG_FIELD(r) \
12254 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
12255
12256
12257 /* Relaxable instructions in a JAL delay slot: MOVE. */
12258
12259 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
12260 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
12261 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
12262 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
12263
12264 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
12265 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
12266
12267 static const struct opcode_descriptor move_insns_32[] = {
12268 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
12269 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
12270 { 0, 0 } /* End marker for find_match(). */
12271 };
12272
12273 static const struct opcode_descriptor move_insn_16 =
12274 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
12275
12276
12277 /* NOP instructions. */
12278
12279 static const struct opcode_descriptor nop_insn_32 =
12280 { /* "nop", "", */ 0x00000000, 0xffffffff };
12281
12282 static const struct opcode_descriptor nop_insn_16 =
12283 { /* "nop", "", */ 0x0c00, 0xffff };
12284
12285
12286 /* Instruction match support. */
12287
12288 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
12289
12290 static int
12291 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
12292 {
12293 unsigned long indx;
12294
12295 for (indx = 0; insn[indx].mask != 0; indx++)
12296 if (MATCH (opcode, insn[indx]))
12297 return indx;
12298
12299 return -1;
12300 }
12301
12302
12303 /* Branch and delay slot decoding support. */
12304
12305 /* If PTR points to what *might* be a 16-bit branch or jump, then
12306 return the minimum length of its delay slot, otherwise return 0.
12307 Non-zero results are not definitive as we might be checking against
12308 the second half of another instruction. */
12309
12310 static int
12311 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
12312 {
12313 unsigned long opcode;
12314 int bdsize;
12315
12316 opcode = bfd_get_16 (abfd, ptr);
12317 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
12318 /* 16-bit branch/jump with a 32-bit delay slot. */
12319 bdsize = 4;
12320 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
12321 || find_match (opcode, ds_insns_16_bd16) >= 0)
12322 /* 16-bit branch/jump with a 16-bit delay slot. */
12323 bdsize = 2;
12324 else
12325 /* No delay slot. */
12326 bdsize = 0;
12327
12328 return bdsize;
12329 }
12330
12331 /* If PTR points to what *might* be a 32-bit branch or jump, then
12332 return the minimum length of its delay slot, otherwise return 0.
12333 Non-zero results are not definitive as we might be checking against
12334 the second half of another instruction. */
12335
12336 static int
12337 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
12338 {
12339 unsigned long opcode;
12340 int bdsize;
12341
12342 opcode = (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
12343 if (find_match (opcode, ds_insns_32_bd32) >= 0)
12344 /* 32-bit branch/jump with a 32-bit delay slot. */
12345 bdsize = 4;
12346 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
12347 /* 32-bit branch/jump with a 16-bit delay slot. */
12348 bdsize = 2;
12349 else
12350 /* No delay slot. */
12351 bdsize = 0;
12352
12353 return bdsize;
12354 }
12355
12356 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
12357 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
12358
12359 static bfd_boolean
12360 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12361 {
12362 unsigned long opcode;
12363
12364 opcode = bfd_get_16 (abfd, ptr);
12365 if (MATCH (opcode, b_insn_16)
12366 /* B16 */
12367 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
12368 /* JR16 */
12369 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
12370 /* BEQZ16, BNEZ16 */
12371 || (MATCH (opcode, jalr_insn_16_bd32)
12372 /* JALR16 */
12373 && reg != JR16_REG (opcode) && reg != RA))
12374 return TRUE;
12375
12376 return FALSE;
12377 }
12378
12379 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
12380 then return TRUE, otherwise FALSE. */
12381
12382 static bfd_boolean
12383 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12384 {
12385 unsigned long opcode;
12386
12387 opcode = (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
12388 if (MATCH (opcode, j_insn_32)
12389 /* J */
12390 || MATCH (opcode, bc_insn_32)
12391 /* BC1F, BC1T, BC2F, BC2T */
12392 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
12393 /* JAL, JALX */
12394 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
12395 /* BGEZ, BGTZ, BLEZ, BLTZ */
12396 || (MATCH (opcode, bzal_insn_32)
12397 /* BGEZAL, BLTZAL */
12398 && reg != OP32_SREG (opcode) && reg != RA)
12399 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
12400 /* JALR, JALR.HB, BEQ, BNE */
12401 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
12402 return TRUE;
12403
12404 return FALSE;
12405 }
12406
12407 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
12408 IRELEND) at OFFSET indicate that there must be a compact branch there,
12409 then return TRUE, otherwise FALSE. */
12410
12411 static bfd_boolean
12412 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
12413 const Elf_Internal_Rela *internal_relocs,
12414 const Elf_Internal_Rela *irelend)
12415 {
12416 const Elf_Internal_Rela *irel;
12417 unsigned long opcode;
12418
12419 opcode = bfd_get_16 (abfd, ptr);
12420 opcode <<= 16;
12421 opcode |= bfd_get_16 (abfd, ptr + 2);
12422 if (find_match (opcode, bzc_insns_32) < 0)
12423 return FALSE;
12424
12425 for (irel = internal_relocs; irel < irelend; irel++)
12426 if (irel->r_offset == offset
12427 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
12428 return TRUE;
12429
12430 return FALSE;
12431 }
12432
12433 /* Bitsize checking. */
12434 #define IS_BITSIZE(val, N) \
12435 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
12436 - (1ULL << ((N) - 1))) == (val))
12437
12438 \f
12439 bfd_boolean
12440 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
12441 struct bfd_link_info *link_info,
12442 bfd_boolean *again)
12443 {
12444 Elf_Internal_Shdr *symtab_hdr;
12445 Elf_Internal_Rela *internal_relocs;
12446 Elf_Internal_Rela *irel, *irelend;
12447 bfd_byte *contents = NULL;
12448 Elf_Internal_Sym *isymbuf = NULL;
12449
12450 /* Assume nothing changes. */
12451 *again = FALSE;
12452
12453 /* We don't have to do anything for a relocatable link, if
12454 this section does not have relocs, or if this is not a
12455 code section. */
12456
12457 if (link_info->relocatable
12458 || (sec->flags & SEC_RELOC) == 0
12459 || sec->reloc_count == 0
12460 || (sec->flags & SEC_CODE) == 0)
12461 return TRUE;
12462
12463 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12464
12465 /* Get a copy of the native relocations. */
12466 internal_relocs = (_bfd_elf_link_read_relocs
12467 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
12468 link_info->keep_memory));
12469 if (internal_relocs == NULL)
12470 goto error_return;
12471
12472 /* Walk through them looking for relaxing opportunities. */
12473 irelend = internal_relocs + sec->reloc_count;
12474 for (irel = internal_relocs; irel < irelend; irel++)
12475 {
12476 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
12477 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
12478 bfd_boolean target_is_micromips_code_p;
12479 unsigned long opcode;
12480 bfd_vma symval;
12481 bfd_vma pcrval;
12482 bfd_byte *ptr;
12483 int fndopc;
12484
12485 /* The number of bytes to delete for relaxation and from where
12486 to delete these bytes starting at irel->r_offset. */
12487 int delcnt = 0;
12488 int deloff = 0;
12489
12490 /* If this isn't something that can be relaxed, then ignore
12491 this reloc. */
12492 if (r_type != R_MICROMIPS_HI16
12493 && r_type != R_MICROMIPS_PC16_S1
12494 && r_type != R_MICROMIPS_26_S1)
12495 continue;
12496
12497 /* Get the section contents if we haven't done so already. */
12498 if (contents == NULL)
12499 {
12500 /* Get cached copy if it exists. */
12501 if (elf_section_data (sec)->this_hdr.contents != NULL)
12502 contents = elf_section_data (sec)->this_hdr.contents;
12503 /* Go get them off disk. */
12504 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
12505 goto error_return;
12506 }
12507 ptr = contents + irel->r_offset;
12508
12509 /* Read this BFD's local symbols if we haven't done so already. */
12510 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
12511 {
12512 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
12513 if (isymbuf == NULL)
12514 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12515 symtab_hdr->sh_info, 0,
12516 NULL, NULL, NULL);
12517 if (isymbuf == NULL)
12518 goto error_return;
12519 }
12520
12521 /* Get the value of the symbol referred to by the reloc. */
12522 if (r_symndx < symtab_hdr->sh_info)
12523 {
12524 /* A local symbol. */
12525 Elf_Internal_Sym *isym;
12526 asection *sym_sec;
12527
12528 isym = isymbuf + r_symndx;
12529 if (isym->st_shndx == SHN_UNDEF)
12530 sym_sec = bfd_und_section_ptr;
12531 else if (isym->st_shndx == SHN_ABS)
12532 sym_sec = bfd_abs_section_ptr;
12533 else if (isym->st_shndx == SHN_COMMON)
12534 sym_sec = bfd_com_section_ptr;
12535 else
12536 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
12537 symval = (isym->st_value
12538 + sym_sec->output_section->vma
12539 + sym_sec->output_offset);
12540 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
12541 }
12542 else
12543 {
12544 unsigned long indx;
12545 struct elf_link_hash_entry *h;
12546
12547 /* An external symbol. */
12548 indx = r_symndx - symtab_hdr->sh_info;
12549 h = elf_sym_hashes (abfd)[indx];
12550 BFD_ASSERT (h != NULL);
12551
12552 if (h->root.type != bfd_link_hash_defined
12553 && h->root.type != bfd_link_hash_defweak)
12554 /* This appears to be a reference to an undefined
12555 symbol. Just ignore it -- it will be caught by the
12556 regular reloc processing. */
12557 continue;
12558
12559 symval = (h->root.u.def.value
12560 + h->root.u.def.section->output_section->vma
12561 + h->root.u.def.section->output_offset);
12562 target_is_micromips_code_p = (!h->needs_plt
12563 && ELF_ST_IS_MICROMIPS (h->other));
12564 }
12565
12566
12567 /* For simplicity of coding, we are going to modify the
12568 section contents, the section relocs, and the BFD symbol
12569 table. We must tell the rest of the code not to free up this
12570 information. It would be possible to instead create a table
12571 of changes which have to be made, as is done in coff-mips.c;
12572 that would be more work, but would require less memory when
12573 the linker is run. */
12574
12575 /* Only 32-bit instructions relaxed. */
12576 if (irel->r_offset + 4 > sec->size)
12577 continue;
12578
12579 opcode = bfd_get_16 (abfd, ptr ) << 16;
12580 opcode |= bfd_get_16 (abfd, ptr + 2);
12581
12582 /* This is the pc-relative distance from the instruction the
12583 relocation is applied to, to the symbol referred. */
12584 pcrval = (symval
12585 - (sec->output_section->vma + sec->output_offset)
12586 - irel->r_offset);
12587
12588 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
12589 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
12590 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
12591
12592 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
12593
12594 where pcrval has first to be adjusted to apply against the LO16
12595 location (we make the adjustment later on, when we have figured
12596 out the offset). */
12597 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
12598 {
12599 bfd_boolean bzc = FALSE;
12600 unsigned long nextopc;
12601 unsigned long reg;
12602 bfd_vma offset;
12603
12604 /* Give up if the previous reloc was a HI16 against this symbol
12605 too. */
12606 if (irel > internal_relocs
12607 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
12608 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
12609 continue;
12610
12611 /* Or if the next reloc is not a LO16 against this symbol. */
12612 if (irel + 1 >= irelend
12613 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
12614 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
12615 continue;
12616
12617 /* Or if the second next reloc is a LO16 against this symbol too. */
12618 if (irel + 2 >= irelend
12619 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
12620 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
12621 continue;
12622
12623 /* See if the LUI instruction *might* be in a branch delay slot.
12624 We check whether what looks like a 16-bit branch or jump is
12625 actually an immediate argument to a compact branch, and let
12626 it through if so. */
12627 if (irel->r_offset >= 2
12628 && check_br16_dslot (abfd, ptr - 2)
12629 && !(irel->r_offset >= 4
12630 && (bzc = check_relocated_bzc (abfd,
12631 ptr - 4, irel->r_offset - 4,
12632 internal_relocs, irelend))))
12633 continue;
12634 if (irel->r_offset >= 4
12635 && !bzc
12636 && check_br32_dslot (abfd, ptr - 4))
12637 continue;
12638
12639 reg = OP32_SREG (opcode);
12640
12641 /* We only relax adjacent instructions or ones separated with
12642 a branch or jump that has a delay slot. The branch or jump
12643 must not fiddle with the register used to hold the address.
12644 Subtract 4 for the LUI itself. */
12645 offset = irel[1].r_offset - irel[0].r_offset;
12646 switch (offset - 4)
12647 {
12648 case 0:
12649 break;
12650 case 2:
12651 if (check_br16 (abfd, ptr + 4, reg))
12652 break;
12653 continue;
12654 case 4:
12655 if (check_br32 (abfd, ptr + 4, reg))
12656 break;
12657 continue;
12658 default:
12659 continue;
12660 }
12661
12662 nextopc = bfd_get_16 (abfd, contents + irel[1].r_offset ) << 16;
12663 nextopc |= bfd_get_16 (abfd, contents + irel[1].r_offset + 2);
12664
12665 /* Give up unless the same register is used with both
12666 relocations. */
12667 if (OP32_SREG (nextopc) != reg)
12668 continue;
12669
12670 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
12671 and rounding up to take masking of the two LSBs into account. */
12672 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
12673
12674 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
12675 if (IS_BITSIZE (symval, 16))
12676 {
12677 /* Fix the relocation's type. */
12678 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
12679
12680 /* Instructions using R_MICROMIPS_LO16 have the base or
12681 source register in bits 20:16. This register becomes $0
12682 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
12683 nextopc &= ~0x001f0000;
12684 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
12685 contents + irel[1].r_offset);
12686 }
12687
12688 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
12689 We add 4 to take LUI deletion into account while checking
12690 the PC-relative distance. */
12691 else if (symval % 4 == 0
12692 && IS_BITSIZE (pcrval + 4, 25)
12693 && MATCH (nextopc, addiu_insn)
12694 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
12695 && OP16_VALID_REG (OP32_TREG (nextopc)))
12696 {
12697 /* Fix the relocation's type. */
12698 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
12699
12700 /* Replace ADDIU with the ADDIUPC version. */
12701 nextopc = (addiupc_insn.match
12702 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
12703
12704 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
12705 contents + irel[1].r_offset);
12706 bfd_put_16 (abfd, nextopc & 0xffff,
12707 contents + irel[1].r_offset + 2);
12708 }
12709
12710 /* Can't do anything, give up, sigh... */
12711 else
12712 continue;
12713
12714 /* Fix the relocation's type. */
12715 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
12716
12717 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
12718 delcnt = 4;
12719 deloff = 0;
12720 }
12721
12722 /* Compact branch relaxation -- due to the multitude of macros
12723 employed by the compiler/assembler, compact branches are not
12724 always generated. Obviously, this can/will be fixed elsewhere,
12725 but there is no drawback in double checking it here. */
12726 else if (r_type == R_MICROMIPS_PC16_S1
12727 && irel->r_offset + 5 < sec->size
12728 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12729 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
12730 && MATCH (bfd_get_16 (abfd, ptr + 4), nop_insn_16))
12731 {
12732 unsigned long reg;
12733
12734 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12735
12736 /* Replace BEQZ/BNEZ with the compact version. */
12737 opcode = (bzc_insns_32[fndopc].match
12738 | BZC32_REG_FIELD (reg)
12739 | (opcode & 0xffff)); /* Addend value. */
12740
12741 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
12742 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
12743
12744 /* Delete the 16-bit delay slot NOP: two bytes from
12745 irel->offset + 4. */
12746 delcnt = 2;
12747 deloff = 4;
12748 }
12749
12750 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
12751 to check the distance from the next instruction, so subtract 2. */
12752 else if (r_type == R_MICROMIPS_PC16_S1
12753 && IS_BITSIZE (pcrval - 2, 11)
12754 && find_match (opcode, b_insns_32) >= 0)
12755 {
12756 /* Fix the relocation's type. */
12757 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
12758
12759 /* Replace the the 32-bit opcode with a 16-bit opcode. */
12760 bfd_put_16 (abfd,
12761 (b_insn_16.match
12762 | (opcode & 0x3ff)), /* Addend value. */
12763 ptr);
12764
12765 /* Delete 2 bytes from irel->r_offset + 2. */
12766 delcnt = 2;
12767 deloff = 2;
12768 }
12769
12770 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
12771 to check the distance from the next instruction, so subtract 2. */
12772 else if (r_type == R_MICROMIPS_PC16_S1
12773 && IS_BITSIZE (pcrval - 2, 8)
12774 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12775 && OP16_VALID_REG (OP32_SREG (opcode)))
12776 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
12777 && OP16_VALID_REG (OP32_TREG (opcode)))))
12778 {
12779 unsigned long reg;
12780
12781 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12782
12783 /* Fix the relocation's type. */
12784 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
12785
12786 /* Replace the the 32-bit opcode with a 16-bit opcode. */
12787 bfd_put_16 (abfd,
12788 (bz_insns_16[fndopc].match
12789 | BZ16_REG_FIELD (reg)
12790 | (opcode & 0x7f)), /* Addend value. */
12791 ptr);
12792
12793 /* Delete 2 bytes from irel->r_offset + 2. */
12794 delcnt = 2;
12795 deloff = 2;
12796 }
12797
12798 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
12799 else if (r_type == R_MICROMIPS_26_S1
12800 && target_is_micromips_code_p
12801 && irel->r_offset + 7 < sec->size
12802 && MATCH (opcode, jal_insn_32_bd32))
12803 {
12804 unsigned long n32opc;
12805 bfd_boolean relaxed = FALSE;
12806
12807 n32opc = bfd_get_16 (abfd, ptr + 4) << 16;
12808 n32opc |= bfd_get_16 (abfd, ptr + 6);
12809
12810 if (MATCH (n32opc, nop_insn_32))
12811 {
12812 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
12813 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
12814
12815 relaxed = TRUE;
12816 }
12817 else if (find_match (n32opc, move_insns_32) >= 0)
12818 {
12819 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
12820 bfd_put_16 (abfd,
12821 (move_insn_16.match
12822 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
12823 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
12824 ptr + 4);
12825
12826 relaxed = TRUE;
12827 }
12828 /* Other 32-bit instructions relaxable to 16-bit
12829 instructions will be handled here later. */
12830
12831 if (relaxed)
12832 {
12833 /* JAL with 32-bit delay slot that is changed to a JALS
12834 with 16-bit delay slot. */
12835 bfd_put_16 (abfd, (jal_insn_32_bd16.match >> 16) & 0xffff,
12836 ptr);
12837 bfd_put_16 (abfd, jal_insn_32_bd16.match & 0xffff,
12838 ptr + 2);
12839
12840 /* Delete 2 bytes from irel->r_offset + 6. */
12841 delcnt = 2;
12842 deloff = 6;
12843 }
12844 }
12845
12846 if (delcnt != 0)
12847 {
12848 /* Note that we've changed the relocs, section contents, etc. */
12849 elf_section_data (sec)->relocs = internal_relocs;
12850 elf_section_data (sec)->this_hdr.contents = contents;
12851 symtab_hdr->contents = (unsigned char *) isymbuf;
12852
12853 /* Delete bytes depending on the delcnt and deloff. */
12854 if (!mips_elf_relax_delete_bytes (abfd, sec,
12855 irel->r_offset + deloff, delcnt))
12856 goto error_return;
12857
12858 /* That will change things, so we should relax again.
12859 Note that this is not required, and it may be slow. */
12860 *again = TRUE;
12861 }
12862 }
12863
12864 if (isymbuf != NULL
12865 && symtab_hdr->contents != (unsigned char *) isymbuf)
12866 {
12867 if (! link_info->keep_memory)
12868 free (isymbuf);
12869 else
12870 {
12871 /* Cache the symbols for elf_link_input_bfd. */
12872 symtab_hdr->contents = (unsigned char *) isymbuf;
12873 }
12874 }
12875
12876 if (contents != NULL
12877 && elf_section_data (sec)->this_hdr.contents != contents)
12878 {
12879 if (! link_info->keep_memory)
12880 free (contents);
12881 else
12882 {
12883 /* Cache the section contents for elf_link_input_bfd. */
12884 elf_section_data (sec)->this_hdr.contents = contents;
12885 }
12886 }
12887
12888 if (internal_relocs != NULL
12889 && elf_section_data (sec)->relocs != internal_relocs)
12890 free (internal_relocs);
12891
12892 return TRUE;
12893
12894 error_return:
12895 if (isymbuf != NULL
12896 && symtab_hdr->contents != (unsigned char *) isymbuf)
12897 free (isymbuf);
12898 if (contents != NULL
12899 && elf_section_data (sec)->this_hdr.contents != contents)
12900 free (contents);
12901 if (internal_relocs != NULL
12902 && elf_section_data (sec)->relocs != internal_relocs)
12903 free (internal_relocs);
12904
12905 return FALSE;
12906 }
12907 \f
12908 /* Create a MIPS ELF linker hash table. */
12909
12910 struct bfd_link_hash_table *
12911 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
12912 {
12913 struct mips_elf_link_hash_table *ret;
12914 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
12915
12916 ret = bfd_malloc (amt);
12917 if (ret == NULL)
12918 return NULL;
12919
12920 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
12921 mips_elf_link_hash_newfunc,
12922 sizeof (struct mips_elf_link_hash_entry),
12923 MIPS_ELF_DATA))
12924 {
12925 free (ret);
12926 return NULL;
12927 }
12928
12929 #if 0
12930 /* We no longer use this. */
12931 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
12932 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
12933 #endif
12934 ret->procedure_count = 0;
12935 ret->compact_rel_size = 0;
12936 ret->use_rld_obj_head = FALSE;
12937 ret->rld_symbol = NULL;
12938 ret->mips16_stubs_seen = FALSE;
12939 ret->use_plts_and_copy_relocs = FALSE;
12940 ret->is_vxworks = FALSE;
12941 ret->small_data_overflow_reported = FALSE;
12942 ret->srelbss = NULL;
12943 ret->sdynbss = NULL;
12944 ret->srelplt = NULL;
12945 ret->srelplt2 = NULL;
12946 ret->sgotplt = NULL;
12947 ret->splt = NULL;
12948 ret->sstubs = NULL;
12949 ret->sgot = NULL;
12950 ret->got_info = NULL;
12951 ret->plt_header_size = 0;
12952 ret->plt_entry_size = 0;
12953 ret->lazy_stub_count = 0;
12954 ret->function_stub_size = 0;
12955 ret->strampoline = NULL;
12956 ret->la25_stubs = NULL;
12957 ret->add_stub_section = NULL;
12958
12959 return &ret->root.root;
12960 }
12961
12962 /* Likewise, but indicate that the target is VxWorks. */
12963
12964 struct bfd_link_hash_table *
12965 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
12966 {
12967 struct bfd_link_hash_table *ret;
12968
12969 ret = _bfd_mips_elf_link_hash_table_create (abfd);
12970 if (ret)
12971 {
12972 struct mips_elf_link_hash_table *htab;
12973
12974 htab = (struct mips_elf_link_hash_table *) ret;
12975 htab->use_plts_and_copy_relocs = TRUE;
12976 htab->is_vxworks = TRUE;
12977 }
12978 return ret;
12979 }
12980
12981 /* A function that the linker calls if we are allowed to use PLTs
12982 and copy relocs. */
12983
12984 void
12985 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
12986 {
12987 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
12988 }
12989 \f
12990 /* We need to use a special link routine to handle the .reginfo and
12991 the .mdebug sections. We need to merge all instances of these
12992 sections together, not write them all out sequentially. */
12993
12994 bfd_boolean
12995 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
12996 {
12997 asection *o;
12998 struct bfd_link_order *p;
12999 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
13000 asection *rtproc_sec;
13001 Elf32_RegInfo reginfo;
13002 struct ecoff_debug_info debug;
13003 struct mips_htab_traverse_info hti;
13004 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13005 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
13006 HDRR *symhdr = &debug.symbolic_header;
13007 void *mdebug_handle = NULL;
13008 asection *s;
13009 EXTR esym;
13010 unsigned int i;
13011 bfd_size_type amt;
13012 struct mips_elf_link_hash_table *htab;
13013
13014 static const char * const secname[] =
13015 {
13016 ".text", ".init", ".fini", ".data",
13017 ".rodata", ".sdata", ".sbss", ".bss"
13018 };
13019 static const int sc[] =
13020 {
13021 scText, scInit, scFini, scData,
13022 scRData, scSData, scSBss, scBss
13023 };
13024
13025 /* Sort the dynamic symbols so that those with GOT entries come after
13026 those without. */
13027 htab = mips_elf_hash_table (info);
13028 BFD_ASSERT (htab != NULL);
13029
13030 if (!mips_elf_sort_hash_table (abfd, info))
13031 return FALSE;
13032
13033 /* Create any scheduled LA25 stubs. */
13034 hti.info = info;
13035 hti.output_bfd = abfd;
13036 hti.error = FALSE;
13037 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
13038 if (hti.error)
13039 return FALSE;
13040
13041 /* Get a value for the GP register. */
13042 if (elf_gp (abfd) == 0)
13043 {
13044 struct bfd_link_hash_entry *h;
13045
13046 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
13047 if (h != NULL && h->type == bfd_link_hash_defined)
13048 elf_gp (abfd) = (h->u.def.value
13049 + h->u.def.section->output_section->vma
13050 + h->u.def.section->output_offset);
13051 else if (htab->is_vxworks
13052 && (h = bfd_link_hash_lookup (info->hash,
13053 "_GLOBAL_OFFSET_TABLE_",
13054 FALSE, FALSE, TRUE))
13055 && h->type == bfd_link_hash_defined)
13056 elf_gp (abfd) = (h->u.def.section->output_section->vma
13057 + h->u.def.section->output_offset
13058 + h->u.def.value);
13059 else if (info->relocatable)
13060 {
13061 bfd_vma lo = MINUS_ONE;
13062
13063 /* Find the GP-relative section with the lowest offset. */
13064 for (o = abfd->sections; o != NULL; o = o->next)
13065 if (o->vma < lo
13066 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
13067 lo = o->vma;
13068
13069 /* And calculate GP relative to that. */
13070 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
13071 }
13072 else
13073 {
13074 /* If the relocate_section function needs to do a reloc
13075 involving the GP value, it should make a reloc_dangerous
13076 callback to warn that GP is not defined. */
13077 }
13078 }
13079
13080 /* Go through the sections and collect the .reginfo and .mdebug
13081 information. */
13082 reginfo_sec = NULL;
13083 mdebug_sec = NULL;
13084 gptab_data_sec = NULL;
13085 gptab_bss_sec = NULL;
13086 for (o = abfd->sections; o != NULL; o = o->next)
13087 {
13088 if (strcmp (o->name, ".reginfo") == 0)
13089 {
13090 memset (&reginfo, 0, sizeof reginfo);
13091
13092 /* We have found the .reginfo section in the output file.
13093 Look through all the link_orders comprising it and merge
13094 the information together. */
13095 for (p = o->map_head.link_order; p != NULL; p = p->next)
13096 {
13097 asection *input_section;
13098 bfd *input_bfd;
13099 Elf32_External_RegInfo ext;
13100 Elf32_RegInfo sub;
13101
13102 if (p->type != bfd_indirect_link_order)
13103 {
13104 if (p->type == bfd_data_link_order)
13105 continue;
13106 abort ();
13107 }
13108
13109 input_section = p->u.indirect.section;
13110 input_bfd = input_section->owner;
13111
13112 if (! bfd_get_section_contents (input_bfd, input_section,
13113 &ext, 0, sizeof ext))
13114 return FALSE;
13115
13116 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
13117
13118 reginfo.ri_gprmask |= sub.ri_gprmask;
13119 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
13120 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
13121 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
13122 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
13123
13124 /* ri_gp_value is set by the function
13125 mips_elf32_section_processing when the section is
13126 finally written out. */
13127
13128 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13129 elf_link_input_bfd ignores this section. */
13130 input_section->flags &= ~SEC_HAS_CONTENTS;
13131 }
13132
13133 /* Size has been set in _bfd_mips_elf_always_size_sections. */
13134 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
13135
13136 /* Skip this section later on (I don't think this currently
13137 matters, but someday it might). */
13138 o->map_head.link_order = NULL;
13139
13140 reginfo_sec = o;
13141 }
13142
13143 if (strcmp (o->name, ".mdebug") == 0)
13144 {
13145 struct extsym_info einfo;
13146 bfd_vma last;
13147
13148 /* We have found the .mdebug section in the output file.
13149 Look through all the link_orders comprising it and merge
13150 the information together. */
13151 symhdr->magic = swap->sym_magic;
13152 /* FIXME: What should the version stamp be? */
13153 symhdr->vstamp = 0;
13154 symhdr->ilineMax = 0;
13155 symhdr->cbLine = 0;
13156 symhdr->idnMax = 0;
13157 symhdr->ipdMax = 0;
13158 symhdr->isymMax = 0;
13159 symhdr->ioptMax = 0;
13160 symhdr->iauxMax = 0;
13161 symhdr->issMax = 0;
13162 symhdr->issExtMax = 0;
13163 symhdr->ifdMax = 0;
13164 symhdr->crfd = 0;
13165 symhdr->iextMax = 0;
13166
13167 /* We accumulate the debugging information itself in the
13168 debug_info structure. */
13169 debug.line = NULL;
13170 debug.external_dnr = NULL;
13171 debug.external_pdr = NULL;
13172 debug.external_sym = NULL;
13173 debug.external_opt = NULL;
13174 debug.external_aux = NULL;
13175 debug.ss = NULL;
13176 debug.ssext = debug.ssext_end = NULL;
13177 debug.external_fdr = NULL;
13178 debug.external_rfd = NULL;
13179 debug.external_ext = debug.external_ext_end = NULL;
13180
13181 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
13182 if (mdebug_handle == NULL)
13183 return FALSE;
13184
13185 esym.jmptbl = 0;
13186 esym.cobol_main = 0;
13187 esym.weakext = 0;
13188 esym.reserved = 0;
13189 esym.ifd = ifdNil;
13190 esym.asym.iss = issNil;
13191 esym.asym.st = stLocal;
13192 esym.asym.reserved = 0;
13193 esym.asym.index = indexNil;
13194 last = 0;
13195 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
13196 {
13197 esym.asym.sc = sc[i];
13198 s = bfd_get_section_by_name (abfd, secname[i]);
13199 if (s != NULL)
13200 {
13201 esym.asym.value = s->vma;
13202 last = s->vma + s->size;
13203 }
13204 else
13205 esym.asym.value = last;
13206 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
13207 secname[i], &esym))
13208 return FALSE;
13209 }
13210
13211 for (p = o->map_head.link_order; p != NULL; p = p->next)
13212 {
13213 asection *input_section;
13214 bfd *input_bfd;
13215 const struct ecoff_debug_swap *input_swap;
13216 struct ecoff_debug_info input_debug;
13217 char *eraw_src;
13218 char *eraw_end;
13219
13220 if (p->type != bfd_indirect_link_order)
13221 {
13222 if (p->type == bfd_data_link_order)
13223 continue;
13224 abort ();
13225 }
13226
13227 input_section = p->u.indirect.section;
13228 input_bfd = input_section->owner;
13229
13230 if (!is_mips_elf (input_bfd))
13231 {
13232 /* I don't know what a non MIPS ELF bfd would be
13233 doing with a .mdebug section, but I don't really
13234 want to deal with it. */
13235 continue;
13236 }
13237
13238 input_swap = (get_elf_backend_data (input_bfd)
13239 ->elf_backend_ecoff_debug_swap);
13240
13241 BFD_ASSERT (p->size == input_section->size);
13242
13243 /* The ECOFF linking code expects that we have already
13244 read in the debugging information and set up an
13245 ecoff_debug_info structure, so we do that now. */
13246 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
13247 &input_debug))
13248 return FALSE;
13249
13250 if (! (bfd_ecoff_debug_accumulate
13251 (mdebug_handle, abfd, &debug, swap, input_bfd,
13252 &input_debug, input_swap, info)))
13253 return FALSE;
13254
13255 /* Loop through the external symbols. For each one with
13256 interesting information, try to find the symbol in
13257 the linker global hash table and save the information
13258 for the output external symbols. */
13259 eraw_src = input_debug.external_ext;
13260 eraw_end = (eraw_src
13261 + (input_debug.symbolic_header.iextMax
13262 * input_swap->external_ext_size));
13263 for (;
13264 eraw_src < eraw_end;
13265 eraw_src += input_swap->external_ext_size)
13266 {
13267 EXTR ext;
13268 const char *name;
13269 struct mips_elf_link_hash_entry *h;
13270
13271 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
13272 if (ext.asym.sc == scNil
13273 || ext.asym.sc == scUndefined
13274 || ext.asym.sc == scSUndefined)
13275 continue;
13276
13277 name = input_debug.ssext + ext.asym.iss;
13278 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
13279 name, FALSE, FALSE, TRUE);
13280 if (h == NULL || h->esym.ifd != -2)
13281 continue;
13282
13283 if (ext.ifd != -1)
13284 {
13285 BFD_ASSERT (ext.ifd
13286 < input_debug.symbolic_header.ifdMax);
13287 ext.ifd = input_debug.ifdmap[ext.ifd];
13288 }
13289
13290 h->esym = ext;
13291 }
13292
13293 /* Free up the information we just read. */
13294 free (input_debug.line);
13295 free (input_debug.external_dnr);
13296 free (input_debug.external_pdr);
13297 free (input_debug.external_sym);
13298 free (input_debug.external_opt);
13299 free (input_debug.external_aux);
13300 free (input_debug.ss);
13301 free (input_debug.ssext);
13302 free (input_debug.external_fdr);
13303 free (input_debug.external_rfd);
13304 free (input_debug.external_ext);
13305
13306 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13307 elf_link_input_bfd ignores this section. */
13308 input_section->flags &= ~SEC_HAS_CONTENTS;
13309 }
13310
13311 if (SGI_COMPAT (abfd) && info->shared)
13312 {
13313 /* Create .rtproc section. */
13314 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
13315 if (rtproc_sec == NULL)
13316 {
13317 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
13318 | SEC_LINKER_CREATED | SEC_READONLY);
13319
13320 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
13321 ".rtproc",
13322 flags);
13323 if (rtproc_sec == NULL
13324 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
13325 return FALSE;
13326 }
13327
13328 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
13329 info, rtproc_sec,
13330 &debug))
13331 return FALSE;
13332 }
13333
13334 /* Build the external symbol information. */
13335 einfo.abfd = abfd;
13336 einfo.info = info;
13337 einfo.debug = &debug;
13338 einfo.swap = swap;
13339 einfo.failed = FALSE;
13340 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
13341 mips_elf_output_extsym, &einfo);
13342 if (einfo.failed)
13343 return FALSE;
13344
13345 /* Set the size of the .mdebug section. */
13346 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
13347
13348 /* Skip this section later on (I don't think this currently
13349 matters, but someday it might). */
13350 o->map_head.link_order = NULL;
13351
13352 mdebug_sec = o;
13353 }
13354
13355 if (CONST_STRNEQ (o->name, ".gptab."))
13356 {
13357 const char *subname;
13358 unsigned int c;
13359 Elf32_gptab *tab;
13360 Elf32_External_gptab *ext_tab;
13361 unsigned int j;
13362
13363 /* The .gptab.sdata and .gptab.sbss sections hold
13364 information describing how the small data area would
13365 change depending upon the -G switch. These sections
13366 not used in executables files. */
13367 if (! info->relocatable)
13368 {
13369 for (p = o->map_head.link_order; p != NULL; p = p->next)
13370 {
13371 asection *input_section;
13372
13373 if (p->type != bfd_indirect_link_order)
13374 {
13375 if (p->type == bfd_data_link_order)
13376 continue;
13377 abort ();
13378 }
13379
13380 input_section = p->u.indirect.section;
13381
13382 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13383 elf_link_input_bfd ignores this section. */
13384 input_section->flags &= ~SEC_HAS_CONTENTS;
13385 }
13386
13387 /* Skip this section later on (I don't think this
13388 currently matters, but someday it might). */
13389 o->map_head.link_order = NULL;
13390
13391 /* Really remove the section. */
13392 bfd_section_list_remove (abfd, o);
13393 --abfd->section_count;
13394
13395 continue;
13396 }
13397
13398 /* There is one gptab for initialized data, and one for
13399 uninitialized data. */
13400 if (strcmp (o->name, ".gptab.sdata") == 0)
13401 gptab_data_sec = o;
13402 else if (strcmp (o->name, ".gptab.sbss") == 0)
13403 gptab_bss_sec = o;
13404 else
13405 {
13406 (*_bfd_error_handler)
13407 (_("%s: illegal section name `%s'"),
13408 bfd_get_filename (abfd), o->name);
13409 bfd_set_error (bfd_error_nonrepresentable_section);
13410 return FALSE;
13411 }
13412
13413 /* The linker script always combines .gptab.data and
13414 .gptab.sdata into .gptab.sdata, and likewise for
13415 .gptab.bss and .gptab.sbss. It is possible that there is
13416 no .sdata or .sbss section in the output file, in which
13417 case we must change the name of the output section. */
13418 subname = o->name + sizeof ".gptab" - 1;
13419 if (bfd_get_section_by_name (abfd, subname) == NULL)
13420 {
13421 if (o == gptab_data_sec)
13422 o->name = ".gptab.data";
13423 else
13424 o->name = ".gptab.bss";
13425 subname = o->name + sizeof ".gptab" - 1;
13426 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
13427 }
13428
13429 /* Set up the first entry. */
13430 c = 1;
13431 amt = c * sizeof (Elf32_gptab);
13432 tab = bfd_malloc (amt);
13433 if (tab == NULL)
13434 return FALSE;
13435 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
13436 tab[0].gt_header.gt_unused = 0;
13437
13438 /* Combine the input sections. */
13439 for (p = o->map_head.link_order; p != NULL; p = p->next)
13440 {
13441 asection *input_section;
13442 bfd *input_bfd;
13443 bfd_size_type size;
13444 unsigned long last;
13445 bfd_size_type gpentry;
13446
13447 if (p->type != bfd_indirect_link_order)
13448 {
13449 if (p->type == bfd_data_link_order)
13450 continue;
13451 abort ();
13452 }
13453
13454 input_section = p->u.indirect.section;
13455 input_bfd = input_section->owner;
13456
13457 /* Combine the gptab entries for this input section one
13458 by one. We know that the input gptab entries are
13459 sorted by ascending -G value. */
13460 size = input_section->size;
13461 last = 0;
13462 for (gpentry = sizeof (Elf32_External_gptab);
13463 gpentry < size;
13464 gpentry += sizeof (Elf32_External_gptab))
13465 {
13466 Elf32_External_gptab ext_gptab;
13467 Elf32_gptab int_gptab;
13468 unsigned long val;
13469 unsigned long add;
13470 bfd_boolean exact;
13471 unsigned int look;
13472
13473 if (! (bfd_get_section_contents
13474 (input_bfd, input_section, &ext_gptab, gpentry,
13475 sizeof (Elf32_External_gptab))))
13476 {
13477 free (tab);
13478 return FALSE;
13479 }
13480
13481 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
13482 &int_gptab);
13483 val = int_gptab.gt_entry.gt_g_value;
13484 add = int_gptab.gt_entry.gt_bytes - last;
13485
13486 exact = FALSE;
13487 for (look = 1; look < c; look++)
13488 {
13489 if (tab[look].gt_entry.gt_g_value >= val)
13490 tab[look].gt_entry.gt_bytes += add;
13491
13492 if (tab[look].gt_entry.gt_g_value == val)
13493 exact = TRUE;
13494 }
13495
13496 if (! exact)
13497 {
13498 Elf32_gptab *new_tab;
13499 unsigned int max;
13500
13501 /* We need a new table entry. */
13502 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
13503 new_tab = bfd_realloc (tab, amt);
13504 if (new_tab == NULL)
13505 {
13506 free (tab);
13507 return FALSE;
13508 }
13509 tab = new_tab;
13510 tab[c].gt_entry.gt_g_value = val;
13511 tab[c].gt_entry.gt_bytes = add;
13512
13513 /* Merge in the size for the next smallest -G
13514 value, since that will be implied by this new
13515 value. */
13516 max = 0;
13517 for (look = 1; look < c; look++)
13518 {
13519 if (tab[look].gt_entry.gt_g_value < val
13520 && (max == 0
13521 || (tab[look].gt_entry.gt_g_value
13522 > tab[max].gt_entry.gt_g_value)))
13523 max = look;
13524 }
13525 if (max != 0)
13526 tab[c].gt_entry.gt_bytes +=
13527 tab[max].gt_entry.gt_bytes;
13528
13529 ++c;
13530 }
13531
13532 last = int_gptab.gt_entry.gt_bytes;
13533 }
13534
13535 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13536 elf_link_input_bfd ignores this section. */
13537 input_section->flags &= ~SEC_HAS_CONTENTS;
13538 }
13539
13540 /* The table must be sorted by -G value. */
13541 if (c > 2)
13542 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
13543
13544 /* Swap out the table. */
13545 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
13546 ext_tab = bfd_alloc (abfd, amt);
13547 if (ext_tab == NULL)
13548 {
13549 free (tab);
13550 return FALSE;
13551 }
13552
13553 for (j = 0; j < c; j++)
13554 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
13555 free (tab);
13556
13557 o->size = c * sizeof (Elf32_External_gptab);
13558 o->contents = (bfd_byte *) ext_tab;
13559
13560 /* Skip this section later on (I don't think this currently
13561 matters, but someday it might). */
13562 o->map_head.link_order = NULL;
13563 }
13564 }
13565
13566 /* Invoke the regular ELF backend linker to do all the work. */
13567 if (!bfd_elf_final_link (abfd, info))
13568 return FALSE;
13569
13570 /* Now write out the computed sections. */
13571
13572 if (reginfo_sec != NULL)
13573 {
13574 Elf32_External_RegInfo ext;
13575
13576 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
13577 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
13578 return FALSE;
13579 }
13580
13581 if (mdebug_sec != NULL)
13582 {
13583 BFD_ASSERT (abfd->output_has_begun);
13584 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
13585 swap, info,
13586 mdebug_sec->filepos))
13587 return FALSE;
13588
13589 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
13590 }
13591
13592 if (gptab_data_sec != NULL)
13593 {
13594 if (! bfd_set_section_contents (abfd, gptab_data_sec,
13595 gptab_data_sec->contents,
13596 0, gptab_data_sec->size))
13597 return FALSE;
13598 }
13599
13600 if (gptab_bss_sec != NULL)
13601 {
13602 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
13603 gptab_bss_sec->contents,
13604 0, gptab_bss_sec->size))
13605 return FALSE;
13606 }
13607
13608 if (SGI_COMPAT (abfd))
13609 {
13610 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
13611 if (rtproc_sec != NULL)
13612 {
13613 if (! bfd_set_section_contents (abfd, rtproc_sec,
13614 rtproc_sec->contents,
13615 0, rtproc_sec->size))
13616 return FALSE;
13617 }
13618 }
13619
13620 return TRUE;
13621 }
13622 \f
13623 /* Structure for saying that BFD machine EXTENSION extends BASE. */
13624
13625 struct mips_mach_extension {
13626 unsigned long extension, base;
13627 };
13628
13629
13630 /* An array describing how BFD machines relate to one another. The entries
13631 are ordered topologically with MIPS I extensions listed last. */
13632
13633 static const struct mips_mach_extension mips_mach_extensions[] = {
13634 /* MIPS64r2 extensions. */
13635 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
13636 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
13637 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13638
13639 /* MIPS64 extensions. */
13640 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
13641 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
13642 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
13643 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64 },
13644
13645 /* MIPS V extensions. */
13646 { bfd_mach_mipsisa64, bfd_mach_mips5 },
13647
13648 /* R10000 extensions. */
13649 { bfd_mach_mips12000, bfd_mach_mips10000 },
13650 { bfd_mach_mips14000, bfd_mach_mips10000 },
13651 { bfd_mach_mips16000, bfd_mach_mips10000 },
13652
13653 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
13654 vr5400 ISA, but doesn't include the multimedia stuff. It seems
13655 better to allow vr5400 and vr5500 code to be merged anyway, since
13656 many libraries will just use the core ISA. Perhaps we could add
13657 some sort of ASE flag if this ever proves a problem. */
13658 { bfd_mach_mips5500, bfd_mach_mips5400 },
13659 { bfd_mach_mips5400, bfd_mach_mips5000 },
13660
13661 /* MIPS IV extensions. */
13662 { bfd_mach_mips5, bfd_mach_mips8000 },
13663 { bfd_mach_mips10000, bfd_mach_mips8000 },
13664 { bfd_mach_mips5000, bfd_mach_mips8000 },
13665 { bfd_mach_mips7000, bfd_mach_mips8000 },
13666 { bfd_mach_mips9000, bfd_mach_mips8000 },
13667
13668 /* VR4100 extensions. */
13669 { bfd_mach_mips4120, bfd_mach_mips4100 },
13670 { bfd_mach_mips4111, bfd_mach_mips4100 },
13671
13672 /* MIPS III extensions. */
13673 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
13674 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
13675 { bfd_mach_mips8000, bfd_mach_mips4000 },
13676 { bfd_mach_mips4650, bfd_mach_mips4000 },
13677 { bfd_mach_mips4600, bfd_mach_mips4000 },
13678 { bfd_mach_mips4400, bfd_mach_mips4000 },
13679 { bfd_mach_mips4300, bfd_mach_mips4000 },
13680 { bfd_mach_mips4100, bfd_mach_mips4000 },
13681 { bfd_mach_mips4010, bfd_mach_mips4000 },
13682
13683 /* MIPS32 extensions. */
13684 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
13685
13686 /* MIPS II extensions. */
13687 { bfd_mach_mips4000, bfd_mach_mips6000 },
13688 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
13689
13690 /* MIPS I extensions. */
13691 { bfd_mach_mips6000, bfd_mach_mips3000 },
13692 { bfd_mach_mips3900, bfd_mach_mips3000 }
13693 };
13694
13695
13696 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
13697
13698 static bfd_boolean
13699 mips_mach_extends_p (unsigned long base, unsigned long extension)
13700 {
13701 size_t i;
13702
13703 if (extension == base)
13704 return TRUE;
13705
13706 if (base == bfd_mach_mipsisa32
13707 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
13708 return TRUE;
13709
13710 if (base == bfd_mach_mipsisa32r2
13711 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
13712 return TRUE;
13713
13714 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
13715 if (extension == mips_mach_extensions[i].extension)
13716 {
13717 extension = mips_mach_extensions[i].base;
13718 if (extension == base)
13719 return TRUE;
13720 }
13721
13722 return FALSE;
13723 }
13724
13725
13726 /* Return true if the given ELF header flags describe a 32-bit binary. */
13727
13728 static bfd_boolean
13729 mips_32bit_flags_p (flagword flags)
13730 {
13731 return ((flags & EF_MIPS_32BITMODE) != 0
13732 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
13733 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
13734 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
13735 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
13736 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
13737 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
13738 }
13739
13740
13741 /* Merge object attributes from IBFD into OBFD. Raise an error if
13742 there are conflicting attributes. */
13743 static bfd_boolean
13744 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
13745 {
13746 obj_attribute *in_attr;
13747 obj_attribute *out_attr;
13748
13749 if (!elf_known_obj_attributes_proc (obfd)[0].i)
13750 {
13751 /* This is the first object. Copy the attributes. */
13752 _bfd_elf_copy_obj_attributes (ibfd, obfd);
13753
13754 /* Use the Tag_null value to indicate the attributes have been
13755 initialized. */
13756 elf_known_obj_attributes_proc (obfd)[0].i = 1;
13757
13758 return TRUE;
13759 }
13760
13761 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
13762 non-conflicting ones. */
13763 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
13764 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
13765 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
13766 {
13767 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
13768 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
13769 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
13770 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
13771 ;
13772 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
13773 _bfd_error_handler
13774 (_("Warning: %B uses unknown floating point ABI %d"), ibfd,
13775 in_attr[Tag_GNU_MIPS_ABI_FP].i);
13776 else if (out_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
13777 _bfd_error_handler
13778 (_("Warning: %B uses unknown floating point ABI %d"), obfd,
13779 out_attr[Tag_GNU_MIPS_ABI_FP].i);
13780 else
13781 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
13782 {
13783 case 1:
13784 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13785 {
13786 case 2:
13787 _bfd_error_handler
13788 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
13789 obfd, ibfd);
13790 break;
13791
13792 case 3:
13793 _bfd_error_handler
13794 (_("Warning: %B uses hard float, %B uses soft float"),
13795 obfd, ibfd);
13796 break;
13797
13798 case 4:
13799 _bfd_error_handler
13800 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
13801 obfd, ibfd);
13802 break;
13803
13804 default:
13805 abort ();
13806 }
13807 break;
13808
13809 case 2:
13810 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13811 {
13812 case 1:
13813 _bfd_error_handler
13814 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
13815 ibfd, obfd);
13816 break;
13817
13818 case 3:
13819 _bfd_error_handler
13820 (_("Warning: %B uses hard float, %B uses soft float"),
13821 obfd, ibfd);
13822 break;
13823
13824 case 4:
13825 _bfd_error_handler
13826 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
13827 obfd, ibfd);
13828 break;
13829
13830 default:
13831 abort ();
13832 }
13833 break;
13834
13835 case 3:
13836 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13837 {
13838 case 1:
13839 case 2:
13840 case 4:
13841 _bfd_error_handler
13842 (_("Warning: %B uses hard float, %B uses soft float"),
13843 ibfd, obfd);
13844 break;
13845
13846 default:
13847 abort ();
13848 }
13849 break;
13850
13851 case 4:
13852 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13853 {
13854 case 1:
13855 _bfd_error_handler
13856 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
13857 ibfd, obfd);
13858 break;
13859
13860 case 2:
13861 _bfd_error_handler
13862 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
13863 ibfd, obfd);
13864 break;
13865
13866 case 3:
13867 _bfd_error_handler
13868 (_("Warning: %B uses hard float, %B uses soft float"),
13869 obfd, ibfd);
13870 break;
13871
13872 default:
13873 abort ();
13874 }
13875 break;
13876
13877 default:
13878 abort ();
13879 }
13880 }
13881
13882 /* Merge Tag_compatibility attributes and any common GNU ones. */
13883 _bfd_elf_merge_object_attributes (ibfd, obfd);
13884
13885 return TRUE;
13886 }
13887
13888 /* Merge backend specific data from an object file to the output
13889 object file when linking. */
13890
13891 bfd_boolean
13892 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
13893 {
13894 flagword old_flags;
13895 flagword new_flags;
13896 bfd_boolean ok;
13897 bfd_boolean null_input_bfd = TRUE;
13898 asection *sec;
13899
13900 /* Check if we have the same endianness. */
13901 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
13902 {
13903 (*_bfd_error_handler)
13904 (_("%B: endianness incompatible with that of the selected emulation"),
13905 ibfd);
13906 return FALSE;
13907 }
13908
13909 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
13910 return TRUE;
13911
13912 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
13913 {
13914 (*_bfd_error_handler)
13915 (_("%B: ABI is incompatible with that of the selected emulation"),
13916 ibfd);
13917 return FALSE;
13918 }
13919
13920 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
13921 return FALSE;
13922
13923 new_flags = elf_elfheader (ibfd)->e_flags;
13924 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
13925 old_flags = elf_elfheader (obfd)->e_flags;
13926
13927 if (! elf_flags_init (obfd))
13928 {
13929 elf_flags_init (obfd) = TRUE;
13930 elf_elfheader (obfd)->e_flags = new_flags;
13931 elf_elfheader (obfd)->e_ident[EI_CLASS]
13932 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
13933
13934 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
13935 && (bfd_get_arch_info (obfd)->the_default
13936 || mips_mach_extends_p (bfd_get_mach (obfd),
13937 bfd_get_mach (ibfd))))
13938 {
13939 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
13940 bfd_get_mach (ibfd)))
13941 return FALSE;
13942 }
13943
13944 return TRUE;
13945 }
13946
13947 /* Check flag compatibility. */
13948
13949 new_flags &= ~EF_MIPS_NOREORDER;
13950 old_flags &= ~EF_MIPS_NOREORDER;
13951
13952 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
13953 doesn't seem to matter. */
13954 new_flags &= ~EF_MIPS_XGOT;
13955 old_flags &= ~EF_MIPS_XGOT;
13956
13957 /* MIPSpro generates ucode info in n64 objects. Again, we should
13958 just be able to ignore this. */
13959 new_flags &= ~EF_MIPS_UCODE;
13960 old_flags &= ~EF_MIPS_UCODE;
13961
13962 /* DSOs should only be linked with CPIC code. */
13963 if ((ibfd->flags & DYNAMIC) != 0)
13964 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
13965
13966 if (new_flags == old_flags)
13967 return TRUE;
13968
13969 /* Check to see if the input BFD actually contains any sections.
13970 If not, its flags may not have been initialised either, but it cannot
13971 actually cause any incompatibility. */
13972 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
13973 {
13974 /* Ignore synthetic sections and empty .text, .data and .bss sections
13975 which are automatically generated by gas. Also ignore fake
13976 (s)common sections, since merely defining a common symbol does
13977 not affect compatibility. */
13978 if ((sec->flags & SEC_IS_COMMON) == 0
13979 && strcmp (sec->name, ".reginfo")
13980 && strcmp (sec->name, ".mdebug")
13981 && (sec->size != 0
13982 || (strcmp (sec->name, ".text")
13983 && strcmp (sec->name, ".data")
13984 && strcmp (sec->name, ".bss"))))
13985 {
13986 null_input_bfd = FALSE;
13987 break;
13988 }
13989 }
13990 if (null_input_bfd)
13991 return TRUE;
13992
13993 ok = TRUE;
13994
13995 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
13996 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
13997 {
13998 (*_bfd_error_handler)
13999 (_("%B: warning: linking abicalls files with non-abicalls files"),
14000 ibfd);
14001 ok = TRUE;
14002 }
14003
14004 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
14005 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
14006 if (! (new_flags & EF_MIPS_PIC))
14007 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
14008
14009 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14010 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14011
14012 /* Compare the ISAs. */
14013 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
14014 {
14015 (*_bfd_error_handler)
14016 (_("%B: linking 32-bit code with 64-bit code"),
14017 ibfd);
14018 ok = FALSE;
14019 }
14020 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
14021 {
14022 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
14023 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
14024 {
14025 /* Copy the architecture info from IBFD to OBFD. Also copy
14026 the 32-bit flag (if set) so that we continue to recognise
14027 OBFD as a 32-bit binary. */
14028 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
14029 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
14030 elf_elfheader (obfd)->e_flags
14031 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14032
14033 /* Copy across the ABI flags if OBFD doesn't use them
14034 and if that was what caused us to treat IBFD as 32-bit. */
14035 if ((old_flags & EF_MIPS_ABI) == 0
14036 && mips_32bit_flags_p (new_flags)
14037 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
14038 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
14039 }
14040 else
14041 {
14042 /* The ISAs aren't compatible. */
14043 (*_bfd_error_handler)
14044 (_("%B: linking %s module with previous %s modules"),
14045 ibfd,
14046 bfd_printable_name (ibfd),
14047 bfd_printable_name (obfd));
14048 ok = FALSE;
14049 }
14050 }
14051
14052 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14053 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14054
14055 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
14056 does set EI_CLASS differently from any 32-bit ABI. */
14057 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
14058 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14059 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14060 {
14061 /* Only error if both are set (to different values). */
14062 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
14063 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14064 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14065 {
14066 (*_bfd_error_handler)
14067 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
14068 ibfd,
14069 elf_mips_abi_name (ibfd),
14070 elf_mips_abi_name (obfd));
14071 ok = FALSE;
14072 }
14073 new_flags &= ~EF_MIPS_ABI;
14074 old_flags &= ~EF_MIPS_ABI;
14075 }
14076
14077 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
14078 and allow arbitrary mixing of the remaining ASEs (retain the union). */
14079 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
14080 {
14081 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
14082 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
14083 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
14084 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
14085 int micro_mis = old_m16 && new_micro;
14086 int m16_mis = old_micro && new_m16;
14087
14088 if (m16_mis || micro_mis)
14089 {
14090 (*_bfd_error_handler)
14091 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
14092 ibfd,
14093 m16_mis ? "MIPS16" : "microMIPS",
14094 m16_mis ? "microMIPS" : "MIPS16");
14095 ok = FALSE;
14096 }
14097
14098 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
14099
14100 new_flags &= ~ EF_MIPS_ARCH_ASE;
14101 old_flags &= ~ EF_MIPS_ARCH_ASE;
14102 }
14103
14104 /* Warn about any other mismatches */
14105 if (new_flags != old_flags)
14106 {
14107 (*_bfd_error_handler)
14108 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
14109 ibfd, (unsigned long) new_flags,
14110 (unsigned long) old_flags);
14111 ok = FALSE;
14112 }
14113
14114 if (! ok)
14115 {
14116 bfd_set_error (bfd_error_bad_value);
14117 return FALSE;
14118 }
14119
14120 return TRUE;
14121 }
14122
14123 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
14124
14125 bfd_boolean
14126 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
14127 {
14128 BFD_ASSERT (!elf_flags_init (abfd)
14129 || elf_elfheader (abfd)->e_flags == flags);
14130
14131 elf_elfheader (abfd)->e_flags = flags;
14132 elf_flags_init (abfd) = TRUE;
14133 return TRUE;
14134 }
14135
14136 char *
14137 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
14138 {
14139 switch (dtag)
14140 {
14141 default: return "";
14142 case DT_MIPS_RLD_VERSION:
14143 return "MIPS_RLD_VERSION";
14144 case DT_MIPS_TIME_STAMP:
14145 return "MIPS_TIME_STAMP";
14146 case DT_MIPS_ICHECKSUM:
14147 return "MIPS_ICHECKSUM";
14148 case DT_MIPS_IVERSION:
14149 return "MIPS_IVERSION";
14150 case DT_MIPS_FLAGS:
14151 return "MIPS_FLAGS";
14152 case DT_MIPS_BASE_ADDRESS:
14153 return "MIPS_BASE_ADDRESS";
14154 case DT_MIPS_MSYM:
14155 return "MIPS_MSYM";
14156 case DT_MIPS_CONFLICT:
14157 return "MIPS_CONFLICT";
14158 case DT_MIPS_LIBLIST:
14159 return "MIPS_LIBLIST";
14160 case DT_MIPS_LOCAL_GOTNO:
14161 return "MIPS_LOCAL_GOTNO";
14162 case DT_MIPS_CONFLICTNO:
14163 return "MIPS_CONFLICTNO";
14164 case DT_MIPS_LIBLISTNO:
14165 return "MIPS_LIBLISTNO";
14166 case DT_MIPS_SYMTABNO:
14167 return "MIPS_SYMTABNO";
14168 case DT_MIPS_UNREFEXTNO:
14169 return "MIPS_UNREFEXTNO";
14170 case DT_MIPS_GOTSYM:
14171 return "MIPS_GOTSYM";
14172 case DT_MIPS_HIPAGENO:
14173 return "MIPS_HIPAGENO";
14174 case DT_MIPS_RLD_MAP:
14175 return "MIPS_RLD_MAP";
14176 case DT_MIPS_DELTA_CLASS:
14177 return "MIPS_DELTA_CLASS";
14178 case DT_MIPS_DELTA_CLASS_NO:
14179 return "MIPS_DELTA_CLASS_NO";
14180 case DT_MIPS_DELTA_INSTANCE:
14181 return "MIPS_DELTA_INSTANCE";
14182 case DT_MIPS_DELTA_INSTANCE_NO:
14183 return "MIPS_DELTA_INSTANCE_NO";
14184 case DT_MIPS_DELTA_RELOC:
14185 return "MIPS_DELTA_RELOC";
14186 case DT_MIPS_DELTA_RELOC_NO:
14187 return "MIPS_DELTA_RELOC_NO";
14188 case DT_MIPS_DELTA_SYM:
14189 return "MIPS_DELTA_SYM";
14190 case DT_MIPS_DELTA_SYM_NO:
14191 return "MIPS_DELTA_SYM_NO";
14192 case DT_MIPS_DELTA_CLASSSYM:
14193 return "MIPS_DELTA_CLASSSYM";
14194 case DT_MIPS_DELTA_CLASSSYM_NO:
14195 return "MIPS_DELTA_CLASSSYM_NO";
14196 case DT_MIPS_CXX_FLAGS:
14197 return "MIPS_CXX_FLAGS";
14198 case DT_MIPS_PIXIE_INIT:
14199 return "MIPS_PIXIE_INIT";
14200 case DT_MIPS_SYMBOL_LIB:
14201 return "MIPS_SYMBOL_LIB";
14202 case DT_MIPS_LOCALPAGE_GOTIDX:
14203 return "MIPS_LOCALPAGE_GOTIDX";
14204 case DT_MIPS_LOCAL_GOTIDX:
14205 return "MIPS_LOCAL_GOTIDX";
14206 case DT_MIPS_HIDDEN_GOTIDX:
14207 return "MIPS_HIDDEN_GOTIDX";
14208 case DT_MIPS_PROTECTED_GOTIDX:
14209 return "MIPS_PROTECTED_GOT_IDX";
14210 case DT_MIPS_OPTIONS:
14211 return "MIPS_OPTIONS";
14212 case DT_MIPS_INTERFACE:
14213 return "MIPS_INTERFACE";
14214 case DT_MIPS_DYNSTR_ALIGN:
14215 return "DT_MIPS_DYNSTR_ALIGN";
14216 case DT_MIPS_INTERFACE_SIZE:
14217 return "DT_MIPS_INTERFACE_SIZE";
14218 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
14219 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
14220 case DT_MIPS_PERF_SUFFIX:
14221 return "DT_MIPS_PERF_SUFFIX";
14222 case DT_MIPS_COMPACT_SIZE:
14223 return "DT_MIPS_COMPACT_SIZE";
14224 case DT_MIPS_GP_VALUE:
14225 return "DT_MIPS_GP_VALUE";
14226 case DT_MIPS_AUX_DYNAMIC:
14227 return "DT_MIPS_AUX_DYNAMIC";
14228 case DT_MIPS_PLTGOT:
14229 return "DT_MIPS_PLTGOT";
14230 case DT_MIPS_RWPLT:
14231 return "DT_MIPS_RWPLT";
14232 }
14233 }
14234
14235 bfd_boolean
14236 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
14237 {
14238 FILE *file = ptr;
14239
14240 BFD_ASSERT (abfd != NULL && ptr != NULL);
14241
14242 /* Print normal ELF private data. */
14243 _bfd_elf_print_private_bfd_data (abfd, ptr);
14244
14245 /* xgettext:c-format */
14246 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
14247
14248 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
14249 fprintf (file, _(" [abi=O32]"));
14250 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
14251 fprintf (file, _(" [abi=O64]"));
14252 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
14253 fprintf (file, _(" [abi=EABI32]"));
14254 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
14255 fprintf (file, _(" [abi=EABI64]"));
14256 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
14257 fprintf (file, _(" [abi unknown]"));
14258 else if (ABI_N32_P (abfd))
14259 fprintf (file, _(" [abi=N32]"));
14260 else if (ABI_64_P (abfd))
14261 fprintf (file, _(" [abi=64]"));
14262 else
14263 fprintf (file, _(" [no abi set]"));
14264
14265 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
14266 fprintf (file, " [mips1]");
14267 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
14268 fprintf (file, " [mips2]");
14269 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
14270 fprintf (file, " [mips3]");
14271 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
14272 fprintf (file, " [mips4]");
14273 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
14274 fprintf (file, " [mips5]");
14275 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
14276 fprintf (file, " [mips32]");
14277 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
14278 fprintf (file, " [mips64]");
14279 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
14280 fprintf (file, " [mips32r2]");
14281 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
14282 fprintf (file, " [mips64r2]");
14283 else
14284 fprintf (file, _(" [unknown ISA]"));
14285
14286 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14287 fprintf (file, " [mdmx]");
14288
14289 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14290 fprintf (file, " [mips16]");
14291
14292 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14293 fprintf (file, " [micromips]");
14294
14295 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
14296 fprintf (file, " [32bitmode]");
14297 else
14298 fprintf (file, _(" [not 32bitmode]"));
14299
14300 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
14301 fprintf (file, " [noreorder]");
14302
14303 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
14304 fprintf (file, " [PIC]");
14305
14306 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
14307 fprintf (file, " [CPIC]");
14308
14309 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
14310 fprintf (file, " [XGOT]");
14311
14312 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
14313 fprintf (file, " [UCODE]");
14314
14315 fputc ('\n', file);
14316
14317 return TRUE;
14318 }
14319
14320 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
14321 {
14322 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14323 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14324 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
14325 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14326 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14327 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
14328 { NULL, 0, 0, 0, 0 }
14329 };
14330
14331 /* Merge non visibility st_other attributes. Ensure that the
14332 STO_OPTIONAL flag is copied into h->other, even if this is not a
14333 definiton of the symbol. */
14334 void
14335 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
14336 const Elf_Internal_Sym *isym,
14337 bfd_boolean definition,
14338 bfd_boolean dynamic ATTRIBUTE_UNUSED)
14339 {
14340 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
14341 {
14342 unsigned char other;
14343
14344 other = (definition ? isym->st_other : h->other);
14345 other &= ~ELF_ST_VISIBILITY (-1);
14346 h->other = other | ELF_ST_VISIBILITY (h->other);
14347 }
14348
14349 if (!definition
14350 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
14351 h->other |= STO_OPTIONAL;
14352 }
14353
14354 /* Decide whether an undefined symbol is special and can be ignored.
14355 This is the case for OPTIONAL symbols on IRIX. */
14356 bfd_boolean
14357 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
14358 {
14359 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
14360 }
14361
14362 bfd_boolean
14363 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
14364 {
14365 return (sym->st_shndx == SHN_COMMON
14366 || sym->st_shndx == SHN_MIPS_ACOMMON
14367 || sym->st_shndx == SHN_MIPS_SCOMMON);
14368 }
14369
14370 /* Return address for Ith PLT stub in section PLT, for relocation REL
14371 or (bfd_vma) -1 if it should not be included. */
14372
14373 bfd_vma
14374 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
14375 const arelent *rel ATTRIBUTE_UNUSED)
14376 {
14377 return (plt->vma
14378 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
14379 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
14380 }
14381
14382 void
14383 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
14384 {
14385 struct mips_elf_link_hash_table *htab;
14386 Elf_Internal_Ehdr *i_ehdrp;
14387
14388 i_ehdrp = elf_elfheader (abfd);
14389 if (link_info)
14390 {
14391 htab = mips_elf_hash_table (link_info);
14392 BFD_ASSERT (htab != NULL);
14393
14394 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
14395 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
14396 }
14397 }
This page took 0.326763 seconds and 5 git commands to generate.