MIPS: Convert cross-mode BAL to JALX
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2016 Free Software Foundation, Inc.
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
28
29 /* This file handles functionality common to the different MIPS ABI's. */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "libiberty.h"
35 #include "elf-bfd.h"
36 #include "elfxx-mips.h"
37 #include "elf/mips.h"
38 #include "elf-vxworks.h"
39 #include "dwarf2.h"
40
41 /* Get the ECOFF swapping routines. */
42 #include "coff/sym.h"
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46
47 #include "hashtab.h"
48
49 /* Types of TLS GOT entry. */
50 enum mips_got_tls_type {
51 GOT_TLS_NONE,
52 GOT_TLS_GD,
53 GOT_TLS_LDM,
54 GOT_TLS_IE
55 };
56
57 /* This structure is used to hold information about one GOT entry.
58 There are four types of entry:
59
60 (1) an absolute address
61 requires: abfd == NULL
62 fields: d.address
63
64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 fields: abfd, symndx, d.addend, tls_type
67
68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 requires: abfd != NULL, symndx == -1
70 fields: d.h, tls_type
71
72 (4) a TLS LDM slot
73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 fields: none; there's only one of these per GOT. */
75 struct mips_got_entry
76 {
77 /* One input bfd that needs the GOT entry. */
78 bfd *abfd;
79 /* The index of the symbol, as stored in the relocation r_info, if
80 we have a local symbol; -1 otherwise. */
81 long symndx;
82 union
83 {
84 /* If abfd == NULL, an address that must be stored in the got. */
85 bfd_vma address;
86 /* If abfd != NULL && symndx != -1, the addend of the relocation
87 that should be added to the symbol value. */
88 bfd_vma addend;
89 /* If abfd != NULL && symndx == -1, the hash table entry
90 corresponding to a symbol in the GOT. The symbol's entry
91 is in the local area if h->global_got_area is GGA_NONE,
92 otherwise it is in the global area. */
93 struct mips_elf_link_hash_entry *h;
94 } d;
95
96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
97 symbol entry with r_symndx == 0. */
98 unsigned char tls_type;
99
100 /* True if we have filled in the GOT contents for a TLS entry,
101 and created the associated relocations. */
102 unsigned char tls_initialized;
103
104 /* The offset from the beginning of the .got section to the entry
105 corresponding to this symbol+addend. If it's a global symbol
106 whose offset is yet to be decided, it's going to be -1. */
107 long gotidx;
108 };
109
110 /* This structure represents a GOT page reference from an input bfd.
111 Each instance represents a symbol + ADDEND, where the representation
112 of the symbol depends on whether it is local to the input bfd.
113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
115
116 Page references with SYMNDX >= 0 always become page references
117 in the output. Page references with SYMNDX < 0 only become page
118 references if the symbol binds locally; in other cases, the page
119 reference decays to a global GOT reference. */
120 struct mips_got_page_ref
121 {
122 long symndx;
123 union
124 {
125 struct mips_elf_link_hash_entry *h;
126 bfd *abfd;
127 } u;
128 bfd_vma addend;
129 };
130
131 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132 The structures form a non-overlapping list that is sorted by increasing
133 MIN_ADDEND. */
134 struct mips_got_page_range
135 {
136 struct mips_got_page_range *next;
137 bfd_signed_vma min_addend;
138 bfd_signed_vma max_addend;
139 };
140
141 /* This structure describes the range of addends that are applied to page
142 relocations against a given section. */
143 struct mips_got_page_entry
144 {
145 /* The section that these entries are based on. */
146 asection *sec;
147 /* The ranges for this page entry. */
148 struct mips_got_page_range *ranges;
149 /* The maximum number of page entries needed for RANGES. */
150 bfd_vma num_pages;
151 };
152
153 /* This structure is used to hold .got information when linking. */
154
155 struct mips_got_info
156 {
157 /* The number of global .got entries. */
158 unsigned int global_gotno;
159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
160 unsigned int reloc_only_gotno;
161 /* The number of .got slots used for TLS. */
162 unsigned int tls_gotno;
163 /* The first unused TLS .got entry. Used only during
164 mips_elf_initialize_tls_index. */
165 unsigned int tls_assigned_gotno;
166 /* The number of local .got entries, eventually including page entries. */
167 unsigned int local_gotno;
168 /* The maximum number of page entries needed. */
169 unsigned int page_gotno;
170 /* The number of relocations needed for the GOT entries. */
171 unsigned int relocs;
172 /* The first unused local .got entry. */
173 unsigned int assigned_low_gotno;
174 /* The last unused local .got entry. */
175 unsigned int assigned_high_gotno;
176 /* A hash table holding members of the got. */
177 struct htab *got_entries;
178 /* A hash table holding mips_got_page_ref structures. */
179 struct htab *got_page_refs;
180 /* A hash table of mips_got_page_entry structures. */
181 struct htab *got_page_entries;
182 /* In multi-got links, a pointer to the next got (err, rather, most
183 of the time, it points to the previous got). */
184 struct mips_got_info *next;
185 };
186
187 /* Structure passed when merging bfds' gots. */
188
189 struct mips_elf_got_per_bfd_arg
190 {
191 /* The output bfd. */
192 bfd *obfd;
193 /* The link information. */
194 struct bfd_link_info *info;
195 /* A pointer to the primary got, i.e., the one that's going to get
196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
197 DT_MIPS_GOTSYM. */
198 struct mips_got_info *primary;
199 /* A non-primary got we're trying to merge with other input bfd's
200 gots. */
201 struct mips_got_info *current;
202 /* The maximum number of got entries that can be addressed with a
203 16-bit offset. */
204 unsigned int max_count;
205 /* The maximum number of page entries needed by each got. */
206 unsigned int max_pages;
207 /* The total number of global entries which will live in the
208 primary got and be automatically relocated. This includes
209 those not referenced by the primary GOT but included in
210 the "master" GOT. */
211 unsigned int global_count;
212 };
213
214 /* A structure used to pass information to htab_traverse callbacks
215 when laying out the GOT. */
216
217 struct mips_elf_traverse_got_arg
218 {
219 struct bfd_link_info *info;
220 struct mips_got_info *g;
221 int value;
222 };
223
224 struct _mips_elf_section_data
225 {
226 struct bfd_elf_section_data elf;
227 union
228 {
229 bfd_byte *tdata;
230 } u;
231 };
232
233 #define mips_elf_section_data(sec) \
234 ((struct _mips_elf_section_data *) elf_section_data (sec))
235
236 #define is_mips_elf(bfd) \
237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
238 && elf_tdata (bfd) != NULL \
239 && elf_object_id (bfd) == MIPS_ELF_DATA)
240
241 /* The ABI says that every symbol used by dynamic relocations must have
242 a global GOT entry. Among other things, this provides the dynamic
243 linker with a free, directly-indexed cache. The GOT can therefore
244 contain symbols that are not referenced by GOT relocations themselves
245 (in other words, it may have symbols that are not referenced by things
246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
247
248 GOT relocations are less likely to overflow if we put the associated
249 GOT entries towards the beginning. We therefore divide the global
250 GOT entries into two areas: "normal" and "reloc-only". Entries in
251 the first area can be used for both dynamic relocations and GP-relative
252 accesses, while those in the "reloc-only" area are for dynamic
253 relocations only.
254
255 These GGA_* ("Global GOT Area") values are organised so that lower
256 values are more general than higher values. Also, non-GGA_NONE
257 values are ordered by the position of the area in the GOT. */
258 #define GGA_NORMAL 0
259 #define GGA_RELOC_ONLY 1
260 #define GGA_NONE 2
261
262 /* Information about a non-PIC interface to a PIC function. There are
263 two ways of creating these interfaces. The first is to add:
264
265 lui $25,%hi(func)
266 addiu $25,$25,%lo(func)
267
268 immediately before a PIC function "func". The second is to add:
269
270 lui $25,%hi(func)
271 j func
272 addiu $25,$25,%lo(func)
273
274 to a separate trampoline section.
275
276 Stubs of the first kind go in a new section immediately before the
277 target function. Stubs of the second kind go in a single section
278 pointed to by the hash table's "strampoline" field. */
279 struct mips_elf_la25_stub {
280 /* The generated section that contains this stub. */
281 asection *stub_section;
282
283 /* The offset of the stub from the start of STUB_SECTION. */
284 bfd_vma offset;
285
286 /* One symbol for the original function. Its location is available
287 in H->root.root.u.def. */
288 struct mips_elf_link_hash_entry *h;
289 };
290
291 /* Macros for populating a mips_elf_la25_stub. */
292
293 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
294 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
295 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
296 #define LA25_LUI_MICROMIPS(VAL) \
297 (0x41b90000 | (VAL)) /* lui t9,VAL */
298 #define LA25_J_MICROMIPS(VAL) \
299 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
300 #define LA25_ADDIU_MICROMIPS(VAL) \
301 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
302
303 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
304 the dynamic symbols. */
305
306 struct mips_elf_hash_sort_data
307 {
308 /* The symbol in the global GOT with the lowest dynamic symbol table
309 index. */
310 struct elf_link_hash_entry *low;
311 /* The least dynamic symbol table index corresponding to a non-TLS
312 symbol with a GOT entry. */
313 long min_got_dynindx;
314 /* The greatest dynamic symbol table index corresponding to a symbol
315 with a GOT entry that is not referenced (e.g., a dynamic symbol
316 with dynamic relocations pointing to it from non-primary GOTs). */
317 long max_unref_got_dynindx;
318 /* The greatest dynamic symbol table index not corresponding to a
319 symbol without a GOT entry. */
320 long max_non_got_dynindx;
321 };
322
323 /* We make up to two PLT entries if needed, one for standard MIPS code
324 and one for compressed code, either a MIPS16 or microMIPS one. We
325 keep a separate record of traditional lazy-binding stubs, for easier
326 processing. */
327
328 struct plt_entry
329 {
330 /* Traditional SVR4 stub offset, or -1 if none. */
331 bfd_vma stub_offset;
332
333 /* Standard PLT entry offset, or -1 if none. */
334 bfd_vma mips_offset;
335
336 /* Compressed PLT entry offset, or -1 if none. */
337 bfd_vma comp_offset;
338
339 /* The corresponding .got.plt index, or -1 if none. */
340 bfd_vma gotplt_index;
341
342 /* Whether we need a standard PLT entry. */
343 unsigned int need_mips : 1;
344
345 /* Whether we need a compressed PLT entry. */
346 unsigned int need_comp : 1;
347 };
348
349 /* The MIPS ELF linker needs additional information for each symbol in
350 the global hash table. */
351
352 struct mips_elf_link_hash_entry
353 {
354 struct elf_link_hash_entry root;
355
356 /* External symbol information. */
357 EXTR esym;
358
359 /* The la25 stub we have created for ths symbol, if any. */
360 struct mips_elf_la25_stub *la25_stub;
361
362 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
363 this symbol. */
364 unsigned int possibly_dynamic_relocs;
365
366 /* If there is a stub that 32 bit functions should use to call this
367 16 bit function, this points to the section containing the stub. */
368 asection *fn_stub;
369
370 /* If there is a stub that 16 bit functions should use to call this
371 32 bit function, this points to the section containing the stub. */
372 asection *call_stub;
373
374 /* This is like the call_stub field, but it is used if the function
375 being called returns a floating point value. */
376 asection *call_fp_stub;
377
378 /* The highest GGA_* value that satisfies all references to this symbol. */
379 unsigned int global_got_area : 2;
380
381 /* True if all GOT relocations against this symbol are for calls. This is
382 a looser condition than no_fn_stub below, because there may be other
383 non-call non-GOT relocations against the symbol. */
384 unsigned int got_only_for_calls : 1;
385
386 /* True if one of the relocations described by possibly_dynamic_relocs
387 is against a readonly section. */
388 unsigned int readonly_reloc : 1;
389
390 /* True if there is a relocation against this symbol that must be
391 resolved by the static linker (in other words, if the relocation
392 cannot possibly be made dynamic). */
393 unsigned int has_static_relocs : 1;
394
395 /* True if we must not create a .MIPS.stubs entry for this symbol.
396 This is set, for example, if there are relocations related to
397 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
398 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
399 unsigned int no_fn_stub : 1;
400
401 /* Whether we need the fn_stub; this is true if this symbol appears
402 in any relocs other than a 16 bit call. */
403 unsigned int need_fn_stub : 1;
404
405 /* True if this symbol is referenced by branch relocations from
406 any non-PIC input file. This is used to determine whether an
407 la25 stub is required. */
408 unsigned int has_nonpic_branches : 1;
409
410 /* Does this symbol need a traditional MIPS lazy-binding stub
411 (as opposed to a PLT entry)? */
412 unsigned int needs_lazy_stub : 1;
413
414 /* Does this symbol resolve to a PLT entry? */
415 unsigned int use_plt_entry : 1;
416 };
417
418 /* MIPS ELF linker hash table. */
419
420 struct mips_elf_link_hash_table
421 {
422 struct elf_link_hash_table root;
423
424 /* The number of .rtproc entries. */
425 bfd_size_type procedure_count;
426
427 /* The size of the .compact_rel section (if SGI_COMPAT). */
428 bfd_size_type compact_rel_size;
429
430 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
431 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
432 bfd_boolean use_rld_obj_head;
433
434 /* The __rld_map or __rld_obj_head symbol. */
435 struct elf_link_hash_entry *rld_symbol;
436
437 /* This is set if we see any mips16 stub sections. */
438 bfd_boolean mips16_stubs_seen;
439
440 /* True if we can generate copy relocs and PLTs. */
441 bfd_boolean use_plts_and_copy_relocs;
442
443 /* True if we can only use 32-bit microMIPS instructions. */
444 bfd_boolean insn32;
445
446 /* True if we're generating code for VxWorks. */
447 bfd_boolean is_vxworks;
448
449 /* True if we already reported the small-data section overflow. */
450 bfd_boolean small_data_overflow_reported;
451
452 /* Shortcuts to some dynamic sections, or NULL if they are not
453 being used. */
454 asection *srelbss;
455 asection *sdynbss;
456 asection *srelplt;
457 asection *srelplt2;
458 asection *sgotplt;
459 asection *splt;
460 asection *sstubs;
461 asection *sgot;
462
463 /* The master GOT information. */
464 struct mips_got_info *got_info;
465
466 /* The global symbol in the GOT with the lowest index in the dynamic
467 symbol table. */
468 struct elf_link_hash_entry *global_gotsym;
469
470 /* The size of the PLT header in bytes. */
471 bfd_vma plt_header_size;
472
473 /* The size of a standard PLT entry in bytes. */
474 bfd_vma plt_mips_entry_size;
475
476 /* The size of a compressed PLT entry in bytes. */
477 bfd_vma plt_comp_entry_size;
478
479 /* The offset of the next standard PLT entry to create. */
480 bfd_vma plt_mips_offset;
481
482 /* The offset of the next compressed PLT entry to create. */
483 bfd_vma plt_comp_offset;
484
485 /* The index of the next .got.plt entry to create. */
486 bfd_vma plt_got_index;
487
488 /* The number of functions that need a lazy-binding stub. */
489 bfd_vma lazy_stub_count;
490
491 /* The size of a function stub entry in bytes. */
492 bfd_vma function_stub_size;
493
494 /* The number of reserved entries at the beginning of the GOT. */
495 unsigned int reserved_gotno;
496
497 /* The section used for mips_elf_la25_stub trampolines.
498 See the comment above that structure for details. */
499 asection *strampoline;
500
501 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
502 pairs. */
503 htab_t la25_stubs;
504
505 /* A function FN (NAME, IS, OS) that creates a new input section
506 called NAME and links it to output section OS. If IS is nonnull,
507 the new section should go immediately before it, otherwise it
508 should go at the (current) beginning of OS.
509
510 The function returns the new section on success, otherwise it
511 returns null. */
512 asection *(*add_stub_section) (const char *, asection *, asection *);
513
514 /* Small local sym cache. */
515 struct sym_cache sym_cache;
516
517 /* Is the PLT header compressed? */
518 unsigned int plt_header_is_comp : 1;
519 };
520
521 /* Get the MIPS ELF linker hash table from a link_info structure. */
522
523 #define mips_elf_hash_table(p) \
524 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
525 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
526
527 /* A structure used to communicate with htab_traverse callbacks. */
528 struct mips_htab_traverse_info
529 {
530 /* The usual link-wide information. */
531 struct bfd_link_info *info;
532 bfd *output_bfd;
533
534 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
535 bfd_boolean error;
536 };
537
538 /* MIPS ELF private object data. */
539
540 struct mips_elf_obj_tdata
541 {
542 /* Generic ELF private object data. */
543 struct elf_obj_tdata root;
544
545 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
546 bfd *abi_fp_bfd;
547
548 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
549 bfd *abi_msa_bfd;
550
551 /* The abiflags for this object. */
552 Elf_Internal_ABIFlags_v0 abiflags;
553 bfd_boolean abiflags_valid;
554
555 /* The GOT requirements of input bfds. */
556 struct mips_got_info *got;
557
558 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
559 included directly in this one, but there's no point to wasting
560 the memory just for the infrequently called find_nearest_line. */
561 struct mips_elf_find_line *find_line_info;
562
563 /* An array of stub sections indexed by symbol number. */
564 asection **local_stubs;
565 asection **local_call_stubs;
566
567 /* The Irix 5 support uses two virtual sections, which represent
568 text/data symbols defined in dynamic objects. */
569 asymbol *elf_data_symbol;
570 asymbol *elf_text_symbol;
571 asection *elf_data_section;
572 asection *elf_text_section;
573 };
574
575 /* Get MIPS ELF private object data from BFD's tdata. */
576
577 #define mips_elf_tdata(bfd) \
578 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
579
580 #define TLS_RELOC_P(r_type) \
581 (r_type == R_MIPS_TLS_DTPMOD32 \
582 || r_type == R_MIPS_TLS_DTPMOD64 \
583 || r_type == R_MIPS_TLS_DTPREL32 \
584 || r_type == R_MIPS_TLS_DTPREL64 \
585 || r_type == R_MIPS_TLS_GD \
586 || r_type == R_MIPS_TLS_LDM \
587 || r_type == R_MIPS_TLS_DTPREL_HI16 \
588 || r_type == R_MIPS_TLS_DTPREL_LO16 \
589 || r_type == R_MIPS_TLS_GOTTPREL \
590 || r_type == R_MIPS_TLS_TPREL32 \
591 || r_type == R_MIPS_TLS_TPREL64 \
592 || r_type == R_MIPS_TLS_TPREL_HI16 \
593 || r_type == R_MIPS_TLS_TPREL_LO16 \
594 || r_type == R_MIPS16_TLS_GD \
595 || r_type == R_MIPS16_TLS_LDM \
596 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
597 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
598 || r_type == R_MIPS16_TLS_GOTTPREL \
599 || r_type == R_MIPS16_TLS_TPREL_HI16 \
600 || r_type == R_MIPS16_TLS_TPREL_LO16 \
601 || r_type == R_MICROMIPS_TLS_GD \
602 || r_type == R_MICROMIPS_TLS_LDM \
603 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
604 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
605 || r_type == R_MICROMIPS_TLS_GOTTPREL \
606 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
607 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
608
609 /* Structure used to pass information to mips_elf_output_extsym. */
610
611 struct extsym_info
612 {
613 bfd *abfd;
614 struct bfd_link_info *info;
615 struct ecoff_debug_info *debug;
616 const struct ecoff_debug_swap *swap;
617 bfd_boolean failed;
618 };
619
620 /* The names of the runtime procedure table symbols used on IRIX5. */
621
622 static const char * const mips_elf_dynsym_rtproc_names[] =
623 {
624 "_procedure_table",
625 "_procedure_string_table",
626 "_procedure_table_size",
627 NULL
628 };
629
630 /* These structures are used to generate the .compact_rel section on
631 IRIX5. */
632
633 typedef struct
634 {
635 unsigned long id1; /* Always one? */
636 unsigned long num; /* Number of compact relocation entries. */
637 unsigned long id2; /* Always two? */
638 unsigned long offset; /* The file offset of the first relocation. */
639 unsigned long reserved0; /* Zero? */
640 unsigned long reserved1; /* Zero? */
641 } Elf32_compact_rel;
642
643 typedef struct
644 {
645 bfd_byte id1[4];
646 bfd_byte num[4];
647 bfd_byte id2[4];
648 bfd_byte offset[4];
649 bfd_byte reserved0[4];
650 bfd_byte reserved1[4];
651 } Elf32_External_compact_rel;
652
653 typedef struct
654 {
655 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
656 unsigned int rtype : 4; /* Relocation types. See below. */
657 unsigned int dist2to : 8;
658 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
659 unsigned long konst; /* KONST field. See below. */
660 unsigned long vaddr; /* VADDR to be relocated. */
661 } Elf32_crinfo;
662
663 typedef struct
664 {
665 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
666 unsigned int rtype : 4; /* Relocation types. See below. */
667 unsigned int dist2to : 8;
668 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
669 unsigned long konst; /* KONST field. See below. */
670 } Elf32_crinfo2;
671
672 typedef struct
673 {
674 bfd_byte info[4];
675 bfd_byte konst[4];
676 bfd_byte vaddr[4];
677 } Elf32_External_crinfo;
678
679 typedef struct
680 {
681 bfd_byte info[4];
682 bfd_byte konst[4];
683 } Elf32_External_crinfo2;
684
685 /* These are the constants used to swap the bitfields in a crinfo. */
686
687 #define CRINFO_CTYPE (0x1)
688 #define CRINFO_CTYPE_SH (31)
689 #define CRINFO_RTYPE (0xf)
690 #define CRINFO_RTYPE_SH (27)
691 #define CRINFO_DIST2TO (0xff)
692 #define CRINFO_DIST2TO_SH (19)
693 #define CRINFO_RELVADDR (0x7ffff)
694 #define CRINFO_RELVADDR_SH (0)
695
696 /* A compact relocation info has long (3 words) or short (2 words)
697 formats. A short format doesn't have VADDR field and relvaddr
698 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
699 #define CRF_MIPS_LONG 1
700 #define CRF_MIPS_SHORT 0
701
702 /* There are 4 types of compact relocation at least. The value KONST
703 has different meaning for each type:
704
705 (type) (konst)
706 CT_MIPS_REL32 Address in data
707 CT_MIPS_WORD Address in word (XXX)
708 CT_MIPS_GPHI_LO GP - vaddr
709 CT_MIPS_JMPAD Address to jump
710 */
711
712 #define CRT_MIPS_REL32 0xa
713 #define CRT_MIPS_WORD 0xb
714 #define CRT_MIPS_GPHI_LO 0xc
715 #define CRT_MIPS_JMPAD 0xd
716
717 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
718 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
719 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
720 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
721 \f
722 /* The structure of the runtime procedure descriptor created by the
723 loader for use by the static exception system. */
724
725 typedef struct runtime_pdr {
726 bfd_vma adr; /* Memory address of start of procedure. */
727 long regmask; /* Save register mask. */
728 long regoffset; /* Save register offset. */
729 long fregmask; /* Save floating point register mask. */
730 long fregoffset; /* Save floating point register offset. */
731 long frameoffset; /* Frame size. */
732 short framereg; /* Frame pointer register. */
733 short pcreg; /* Offset or reg of return pc. */
734 long irpss; /* Index into the runtime string table. */
735 long reserved;
736 struct exception_info *exception_info;/* Pointer to exception array. */
737 } RPDR, *pRPDR;
738 #define cbRPDR sizeof (RPDR)
739 #define rpdNil ((pRPDR) 0)
740 \f
741 static struct mips_got_entry *mips_elf_create_local_got_entry
742 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
743 struct mips_elf_link_hash_entry *, int);
744 static bfd_boolean mips_elf_sort_hash_table_f
745 (struct mips_elf_link_hash_entry *, void *);
746 static bfd_vma mips_elf_high
747 (bfd_vma);
748 static bfd_boolean mips_elf_create_dynamic_relocation
749 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
750 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
751 bfd_vma *, asection *);
752 static bfd_vma mips_elf_adjust_gp
753 (bfd *, struct mips_got_info *, bfd *);
754
755 /* This will be used when we sort the dynamic relocation records. */
756 static bfd *reldyn_sorting_bfd;
757
758 /* True if ABFD is for CPUs with load interlocking that include
759 non-MIPS1 CPUs and R3900. */
760 #define LOAD_INTERLOCKS_P(abfd) \
761 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
762 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
763
764 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
765 This should be safe for all architectures. We enable this predicate
766 for RM9000 for now. */
767 #define JAL_TO_BAL_P(abfd) \
768 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
769
770 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
771 This should be safe for all architectures. We enable this predicate for
772 all CPUs. */
773 #define JALR_TO_BAL_P(abfd) 1
774
775 /* True if ABFD is for CPUs that are faster if JR is converted to B.
776 This should be safe for all architectures. We enable this predicate for
777 all CPUs. */
778 #define JR_TO_B_P(abfd) 1
779
780 /* True if ABFD is a PIC object. */
781 #define PIC_OBJECT_P(abfd) \
782 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
783
784 /* Nonzero if ABFD is using the O32 ABI. */
785 #define ABI_O32_P(abfd) \
786 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
787
788 /* Nonzero if ABFD is using the N32 ABI. */
789 #define ABI_N32_P(abfd) \
790 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
791
792 /* Nonzero if ABFD is using the N64 ABI. */
793 #define ABI_64_P(abfd) \
794 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
795
796 /* Nonzero if ABFD is using NewABI conventions. */
797 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
798
799 /* Nonzero if ABFD has microMIPS code. */
800 #define MICROMIPS_P(abfd) \
801 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
802
803 /* Nonzero if ABFD is MIPS R6. */
804 #define MIPSR6_P(abfd) \
805 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
806 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
807
808 /* The IRIX compatibility level we are striving for. */
809 #define IRIX_COMPAT(abfd) \
810 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
811
812 /* Whether we are trying to be compatible with IRIX at all. */
813 #define SGI_COMPAT(abfd) \
814 (IRIX_COMPAT (abfd) != ict_none)
815
816 /* The name of the options section. */
817 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
818 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
819
820 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
821 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
822 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
823 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
824
825 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
826 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
827 (strcmp (NAME, ".MIPS.abiflags") == 0)
828
829 /* Whether the section is readonly. */
830 #define MIPS_ELF_READONLY_SECTION(sec) \
831 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
832 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
833
834 /* The name of the stub section. */
835 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
836
837 /* The size of an external REL relocation. */
838 #define MIPS_ELF_REL_SIZE(abfd) \
839 (get_elf_backend_data (abfd)->s->sizeof_rel)
840
841 /* The size of an external RELA relocation. */
842 #define MIPS_ELF_RELA_SIZE(abfd) \
843 (get_elf_backend_data (abfd)->s->sizeof_rela)
844
845 /* The size of an external dynamic table entry. */
846 #define MIPS_ELF_DYN_SIZE(abfd) \
847 (get_elf_backend_data (abfd)->s->sizeof_dyn)
848
849 /* The size of a GOT entry. */
850 #define MIPS_ELF_GOT_SIZE(abfd) \
851 (get_elf_backend_data (abfd)->s->arch_size / 8)
852
853 /* The size of the .rld_map section. */
854 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
855 (get_elf_backend_data (abfd)->s->arch_size / 8)
856
857 /* The size of a symbol-table entry. */
858 #define MIPS_ELF_SYM_SIZE(abfd) \
859 (get_elf_backend_data (abfd)->s->sizeof_sym)
860
861 /* The default alignment for sections, as a power of two. */
862 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
863 (get_elf_backend_data (abfd)->s->log_file_align)
864
865 /* Get word-sized data. */
866 #define MIPS_ELF_GET_WORD(abfd, ptr) \
867 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
868
869 /* Put out word-sized data. */
870 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
871 (ABI_64_P (abfd) \
872 ? bfd_put_64 (abfd, val, ptr) \
873 : bfd_put_32 (abfd, val, ptr))
874
875 /* The opcode for word-sized loads (LW or LD). */
876 #define MIPS_ELF_LOAD_WORD(abfd) \
877 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
878
879 /* Add a dynamic symbol table-entry. */
880 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
881 _bfd_elf_add_dynamic_entry (info, tag, val)
882
883 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
884 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
885
886 /* The name of the dynamic relocation section. */
887 #define MIPS_ELF_REL_DYN_NAME(INFO) \
888 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
889
890 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
891 from smaller values. Start with zero, widen, *then* decrement. */
892 #define MINUS_ONE (((bfd_vma)0) - 1)
893 #define MINUS_TWO (((bfd_vma)0) - 2)
894
895 /* The value to write into got[1] for SVR4 targets, to identify it is
896 a GNU object. The dynamic linker can then use got[1] to store the
897 module pointer. */
898 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
899 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
900
901 /* The offset of $gp from the beginning of the .got section. */
902 #define ELF_MIPS_GP_OFFSET(INFO) \
903 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
904
905 /* The maximum size of the GOT for it to be addressable using 16-bit
906 offsets from $gp. */
907 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
908
909 /* Instructions which appear in a stub. */
910 #define STUB_LW(abfd) \
911 ((ABI_64_P (abfd) \
912 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
913 : 0x8f998010)) /* lw t9,0x8010(gp) */
914 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
915 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
916 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
917 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
918 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
919 #define STUB_LI16S(abfd, VAL) \
920 ((ABI_64_P (abfd) \
921 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
922 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
923
924 /* Likewise for the microMIPS ASE. */
925 #define STUB_LW_MICROMIPS(abfd) \
926 (ABI_64_P (abfd) \
927 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
928 : 0xff3c8010) /* lw t9,0x8010(gp) */
929 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
930 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
931 #define STUB_LUI_MICROMIPS(VAL) \
932 (0x41b80000 + (VAL)) /* lui t8,VAL */
933 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
934 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
935 #define STUB_ORI_MICROMIPS(VAL) \
936 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
937 #define STUB_LI16U_MICROMIPS(VAL) \
938 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
939 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
940 (ABI_64_P (abfd) \
941 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
942 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
943
944 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
945 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
946 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
947 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
948 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
949 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
950
951 /* The name of the dynamic interpreter. This is put in the .interp
952 section. */
953
954 #define ELF_DYNAMIC_INTERPRETER(abfd) \
955 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
956 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
957 : "/usr/lib/libc.so.1")
958
959 #ifdef BFD64
960 #define MNAME(bfd,pre,pos) \
961 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
962 #define ELF_R_SYM(bfd, i) \
963 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
964 #define ELF_R_TYPE(bfd, i) \
965 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
966 #define ELF_R_INFO(bfd, s, t) \
967 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
968 #else
969 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
970 #define ELF_R_SYM(bfd, i) \
971 (ELF32_R_SYM (i))
972 #define ELF_R_TYPE(bfd, i) \
973 (ELF32_R_TYPE (i))
974 #define ELF_R_INFO(bfd, s, t) \
975 (ELF32_R_INFO (s, t))
976 #endif
977 \f
978 /* The mips16 compiler uses a couple of special sections to handle
979 floating point arguments.
980
981 Section names that look like .mips16.fn.FNNAME contain stubs that
982 copy floating point arguments from the fp regs to the gp regs and
983 then jump to FNNAME. If any 32 bit function calls FNNAME, the
984 call should be redirected to the stub instead. If no 32 bit
985 function calls FNNAME, the stub should be discarded. We need to
986 consider any reference to the function, not just a call, because
987 if the address of the function is taken we will need the stub,
988 since the address might be passed to a 32 bit function.
989
990 Section names that look like .mips16.call.FNNAME contain stubs
991 that copy floating point arguments from the gp regs to the fp
992 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
993 then any 16 bit function that calls FNNAME should be redirected
994 to the stub instead. If FNNAME is not a 32 bit function, the
995 stub should be discarded.
996
997 .mips16.call.fp.FNNAME sections are similar, but contain stubs
998 which call FNNAME and then copy the return value from the fp regs
999 to the gp regs. These stubs store the return value in $18 while
1000 calling FNNAME; any function which might call one of these stubs
1001 must arrange to save $18 around the call. (This case is not
1002 needed for 32 bit functions that call 16 bit functions, because
1003 16 bit functions always return floating point values in both
1004 $f0/$f1 and $2/$3.)
1005
1006 Note that in all cases FNNAME might be defined statically.
1007 Therefore, FNNAME is not used literally. Instead, the relocation
1008 information will indicate which symbol the section is for.
1009
1010 We record any stubs that we find in the symbol table. */
1011
1012 #define FN_STUB ".mips16.fn."
1013 #define CALL_STUB ".mips16.call."
1014 #define CALL_FP_STUB ".mips16.call.fp."
1015
1016 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1017 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1018 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1019 \f
1020 /* The format of the first PLT entry in an O32 executable. */
1021 static const bfd_vma mips_o32_exec_plt0_entry[] =
1022 {
1023 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1024 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1025 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1026 0x031cc023, /* subu $24, $24, $28 */
1027 0x03e07825, /* or t7, ra, zero */
1028 0x0018c082, /* srl $24, $24, 2 */
1029 0x0320f809, /* jalr $25 */
1030 0x2718fffe /* subu $24, $24, 2 */
1031 };
1032
1033 /* The format of the first PLT entry in an N32 executable. Different
1034 because gp ($28) is not available; we use t2 ($14) instead. */
1035 static const bfd_vma mips_n32_exec_plt0_entry[] =
1036 {
1037 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1038 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1039 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1040 0x030ec023, /* subu $24, $24, $14 */
1041 0x03e07825, /* or t7, ra, zero */
1042 0x0018c082, /* srl $24, $24, 2 */
1043 0x0320f809, /* jalr $25 */
1044 0x2718fffe /* subu $24, $24, 2 */
1045 };
1046
1047 /* The format of the first PLT entry in an N64 executable. Different
1048 from N32 because of the increased size of GOT entries. */
1049 static const bfd_vma mips_n64_exec_plt0_entry[] =
1050 {
1051 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1052 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1053 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1054 0x030ec023, /* subu $24, $24, $14 */
1055 0x03e07825, /* or t7, ra, zero */
1056 0x0018c0c2, /* srl $24, $24, 3 */
1057 0x0320f809, /* jalr $25 */
1058 0x2718fffe /* subu $24, $24, 2 */
1059 };
1060
1061 /* The format of the microMIPS first PLT entry in an O32 executable.
1062 We rely on v0 ($2) rather than t8 ($24) to contain the address
1063 of the GOTPLT entry handled, so this stub may only be used when
1064 all the subsequent PLT entries are microMIPS code too.
1065
1066 The trailing NOP is for alignment and correct disassembly only. */
1067 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1068 {
1069 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1070 0xff23, 0x0000, /* lw $25, 0($3) */
1071 0x0535, /* subu $2, $2, $3 */
1072 0x2525, /* srl $2, $2, 2 */
1073 0x3302, 0xfffe, /* subu $24, $2, 2 */
1074 0x0dff, /* move $15, $31 */
1075 0x45f9, /* jalrs $25 */
1076 0x0f83, /* move $28, $3 */
1077 0x0c00 /* nop */
1078 };
1079
1080 /* The format of the microMIPS first PLT entry in an O32 executable
1081 in the insn32 mode. */
1082 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1083 {
1084 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1085 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1086 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1087 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1088 0x001f, 0x7a90, /* or $15, $31, zero */
1089 0x0318, 0x1040, /* srl $24, $24, 2 */
1090 0x03f9, 0x0f3c, /* jalr $25 */
1091 0x3318, 0xfffe /* subu $24, $24, 2 */
1092 };
1093
1094 /* The format of subsequent standard PLT entries. */
1095 static const bfd_vma mips_exec_plt_entry[] =
1096 {
1097 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1098 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1099 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1100 0x03200008 /* jr $25 */
1101 };
1102
1103 /* In the following PLT entry the JR and ADDIU instructions will
1104 be swapped in _bfd_mips_elf_finish_dynamic_symbol because
1105 LOAD_INTERLOCKS_P will be true for MIPS R6. */
1106 static const bfd_vma mipsr6_exec_plt_entry[] =
1107 {
1108 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1109 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1110 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1111 0x03200009 /* jr $25 */
1112 };
1113
1114 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1115 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1116 directly addressable. */
1117 static const bfd_vma mips16_o32_exec_plt_entry[] =
1118 {
1119 0xb203, /* lw $2, 12($pc) */
1120 0x9a60, /* lw $3, 0($2) */
1121 0x651a, /* move $24, $2 */
1122 0xeb00, /* jr $3 */
1123 0x653b, /* move $25, $3 */
1124 0x6500, /* nop */
1125 0x0000, 0x0000 /* .word (.got.plt entry) */
1126 };
1127
1128 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1129 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1130 static const bfd_vma micromips_o32_exec_plt_entry[] =
1131 {
1132 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1133 0xff22, 0x0000, /* lw $25, 0($2) */
1134 0x4599, /* jr $25 */
1135 0x0f02 /* move $24, $2 */
1136 };
1137
1138 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1139 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1140 {
1141 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1142 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1143 0x0019, 0x0f3c, /* jr $25 */
1144 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1145 };
1146
1147 /* The format of the first PLT entry in a VxWorks executable. */
1148 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1149 {
1150 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1151 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1152 0x8f390008, /* lw t9, 8(t9) */
1153 0x00000000, /* nop */
1154 0x03200008, /* jr t9 */
1155 0x00000000 /* nop */
1156 };
1157
1158 /* The format of subsequent PLT entries. */
1159 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1160 {
1161 0x10000000, /* b .PLT_resolver */
1162 0x24180000, /* li t8, <pltindex> */
1163 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1164 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1165 0x8f390000, /* lw t9, 0(t9) */
1166 0x00000000, /* nop */
1167 0x03200008, /* jr t9 */
1168 0x00000000 /* nop */
1169 };
1170
1171 /* The format of the first PLT entry in a VxWorks shared object. */
1172 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1173 {
1174 0x8f990008, /* lw t9, 8(gp) */
1175 0x00000000, /* nop */
1176 0x03200008, /* jr t9 */
1177 0x00000000, /* nop */
1178 0x00000000, /* nop */
1179 0x00000000 /* nop */
1180 };
1181
1182 /* The format of subsequent PLT entries. */
1183 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1184 {
1185 0x10000000, /* b .PLT_resolver */
1186 0x24180000 /* li t8, <pltindex> */
1187 };
1188 \f
1189 /* microMIPS 32-bit opcode helper installer. */
1190
1191 static void
1192 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1193 {
1194 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1195 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1196 }
1197
1198 /* microMIPS 32-bit opcode helper retriever. */
1199
1200 static bfd_vma
1201 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1202 {
1203 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1204 }
1205 \f
1206 /* Look up an entry in a MIPS ELF linker hash table. */
1207
1208 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1209 ((struct mips_elf_link_hash_entry *) \
1210 elf_link_hash_lookup (&(table)->root, (string), (create), \
1211 (copy), (follow)))
1212
1213 /* Traverse a MIPS ELF linker hash table. */
1214
1215 #define mips_elf_link_hash_traverse(table, func, info) \
1216 (elf_link_hash_traverse \
1217 (&(table)->root, \
1218 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1219 (info)))
1220
1221 /* Find the base offsets for thread-local storage in this object,
1222 for GD/LD and IE/LE respectively. */
1223
1224 #define TP_OFFSET 0x7000
1225 #define DTP_OFFSET 0x8000
1226
1227 static bfd_vma
1228 dtprel_base (struct bfd_link_info *info)
1229 {
1230 /* If tls_sec is NULL, we should have signalled an error already. */
1231 if (elf_hash_table (info)->tls_sec == NULL)
1232 return 0;
1233 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1234 }
1235
1236 static bfd_vma
1237 tprel_base (struct bfd_link_info *info)
1238 {
1239 /* If tls_sec is NULL, we should have signalled an error already. */
1240 if (elf_hash_table (info)->tls_sec == NULL)
1241 return 0;
1242 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1243 }
1244
1245 /* Create an entry in a MIPS ELF linker hash table. */
1246
1247 static struct bfd_hash_entry *
1248 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1249 struct bfd_hash_table *table, const char *string)
1250 {
1251 struct mips_elf_link_hash_entry *ret =
1252 (struct mips_elf_link_hash_entry *) entry;
1253
1254 /* Allocate the structure if it has not already been allocated by a
1255 subclass. */
1256 if (ret == NULL)
1257 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1258 if (ret == NULL)
1259 return (struct bfd_hash_entry *) ret;
1260
1261 /* Call the allocation method of the superclass. */
1262 ret = ((struct mips_elf_link_hash_entry *)
1263 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1264 table, string));
1265 if (ret != NULL)
1266 {
1267 /* Set local fields. */
1268 memset (&ret->esym, 0, sizeof (EXTR));
1269 /* We use -2 as a marker to indicate that the information has
1270 not been set. -1 means there is no associated ifd. */
1271 ret->esym.ifd = -2;
1272 ret->la25_stub = 0;
1273 ret->possibly_dynamic_relocs = 0;
1274 ret->fn_stub = NULL;
1275 ret->call_stub = NULL;
1276 ret->call_fp_stub = NULL;
1277 ret->global_got_area = GGA_NONE;
1278 ret->got_only_for_calls = TRUE;
1279 ret->readonly_reloc = FALSE;
1280 ret->has_static_relocs = FALSE;
1281 ret->no_fn_stub = FALSE;
1282 ret->need_fn_stub = FALSE;
1283 ret->has_nonpic_branches = FALSE;
1284 ret->needs_lazy_stub = FALSE;
1285 ret->use_plt_entry = FALSE;
1286 }
1287
1288 return (struct bfd_hash_entry *) ret;
1289 }
1290
1291 /* Allocate MIPS ELF private object data. */
1292
1293 bfd_boolean
1294 _bfd_mips_elf_mkobject (bfd *abfd)
1295 {
1296 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1297 MIPS_ELF_DATA);
1298 }
1299
1300 bfd_boolean
1301 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1302 {
1303 if (!sec->used_by_bfd)
1304 {
1305 struct _mips_elf_section_data *sdata;
1306 bfd_size_type amt = sizeof (*sdata);
1307
1308 sdata = bfd_zalloc (abfd, amt);
1309 if (sdata == NULL)
1310 return FALSE;
1311 sec->used_by_bfd = sdata;
1312 }
1313
1314 return _bfd_elf_new_section_hook (abfd, sec);
1315 }
1316 \f
1317 /* Read ECOFF debugging information from a .mdebug section into a
1318 ecoff_debug_info structure. */
1319
1320 bfd_boolean
1321 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1322 struct ecoff_debug_info *debug)
1323 {
1324 HDRR *symhdr;
1325 const struct ecoff_debug_swap *swap;
1326 char *ext_hdr;
1327
1328 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1329 memset (debug, 0, sizeof (*debug));
1330
1331 ext_hdr = bfd_malloc (swap->external_hdr_size);
1332 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1333 goto error_return;
1334
1335 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1336 swap->external_hdr_size))
1337 goto error_return;
1338
1339 symhdr = &debug->symbolic_header;
1340 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1341
1342 /* The symbolic header contains absolute file offsets and sizes to
1343 read. */
1344 #define READ(ptr, offset, count, size, type) \
1345 if (symhdr->count == 0) \
1346 debug->ptr = NULL; \
1347 else \
1348 { \
1349 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1350 debug->ptr = bfd_malloc (amt); \
1351 if (debug->ptr == NULL) \
1352 goto error_return; \
1353 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1354 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1355 goto error_return; \
1356 }
1357
1358 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1359 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1360 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1361 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1362 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1363 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1364 union aux_ext *);
1365 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1366 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1367 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1368 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1369 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1370 #undef READ
1371
1372 debug->fdr = NULL;
1373
1374 return TRUE;
1375
1376 error_return:
1377 if (ext_hdr != NULL)
1378 free (ext_hdr);
1379 if (debug->line != NULL)
1380 free (debug->line);
1381 if (debug->external_dnr != NULL)
1382 free (debug->external_dnr);
1383 if (debug->external_pdr != NULL)
1384 free (debug->external_pdr);
1385 if (debug->external_sym != NULL)
1386 free (debug->external_sym);
1387 if (debug->external_opt != NULL)
1388 free (debug->external_opt);
1389 if (debug->external_aux != NULL)
1390 free (debug->external_aux);
1391 if (debug->ss != NULL)
1392 free (debug->ss);
1393 if (debug->ssext != NULL)
1394 free (debug->ssext);
1395 if (debug->external_fdr != NULL)
1396 free (debug->external_fdr);
1397 if (debug->external_rfd != NULL)
1398 free (debug->external_rfd);
1399 if (debug->external_ext != NULL)
1400 free (debug->external_ext);
1401 return FALSE;
1402 }
1403 \f
1404 /* Swap RPDR (runtime procedure table entry) for output. */
1405
1406 static void
1407 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1408 {
1409 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1410 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1411 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1412 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1413 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1414 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1415
1416 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1417 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1418
1419 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1420 }
1421
1422 /* Create a runtime procedure table from the .mdebug section. */
1423
1424 static bfd_boolean
1425 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1426 struct bfd_link_info *info, asection *s,
1427 struct ecoff_debug_info *debug)
1428 {
1429 const struct ecoff_debug_swap *swap;
1430 HDRR *hdr = &debug->symbolic_header;
1431 RPDR *rpdr, *rp;
1432 struct rpdr_ext *erp;
1433 void *rtproc;
1434 struct pdr_ext *epdr;
1435 struct sym_ext *esym;
1436 char *ss, **sv;
1437 char *str;
1438 bfd_size_type size;
1439 bfd_size_type count;
1440 unsigned long sindex;
1441 unsigned long i;
1442 PDR pdr;
1443 SYMR sym;
1444 const char *no_name_func = _("static procedure (no name)");
1445
1446 epdr = NULL;
1447 rpdr = NULL;
1448 esym = NULL;
1449 ss = NULL;
1450 sv = NULL;
1451
1452 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1453
1454 sindex = strlen (no_name_func) + 1;
1455 count = hdr->ipdMax;
1456 if (count > 0)
1457 {
1458 size = swap->external_pdr_size;
1459
1460 epdr = bfd_malloc (size * count);
1461 if (epdr == NULL)
1462 goto error_return;
1463
1464 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1465 goto error_return;
1466
1467 size = sizeof (RPDR);
1468 rp = rpdr = bfd_malloc (size * count);
1469 if (rpdr == NULL)
1470 goto error_return;
1471
1472 size = sizeof (char *);
1473 sv = bfd_malloc (size * count);
1474 if (sv == NULL)
1475 goto error_return;
1476
1477 count = hdr->isymMax;
1478 size = swap->external_sym_size;
1479 esym = bfd_malloc (size * count);
1480 if (esym == NULL)
1481 goto error_return;
1482
1483 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1484 goto error_return;
1485
1486 count = hdr->issMax;
1487 ss = bfd_malloc (count);
1488 if (ss == NULL)
1489 goto error_return;
1490 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1491 goto error_return;
1492
1493 count = hdr->ipdMax;
1494 for (i = 0; i < (unsigned long) count; i++, rp++)
1495 {
1496 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1497 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1498 rp->adr = sym.value;
1499 rp->regmask = pdr.regmask;
1500 rp->regoffset = pdr.regoffset;
1501 rp->fregmask = pdr.fregmask;
1502 rp->fregoffset = pdr.fregoffset;
1503 rp->frameoffset = pdr.frameoffset;
1504 rp->framereg = pdr.framereg;
1505 rp->pcreg = pdr.pcreg;
1506 rp->irpss = sindex;
1507 sv[i] = ss + sym.iss;
1508 sindex += strlen (sv[i]) + 1;
1509 }
1510 }
1511
1512 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1513 size = BFD_ALIGN (size, 16);
1514 rtproc = bfd_alloc (abfd, size);
1515 if (rtproc == NULL)
1516 {
1517 mips_elf_hash_table (info)->procedure_count = 0;
1518 goto error_return;
1519 }
1520
1521 mips_elf_hash_table (info)->procedure_count = count + 2;
1522
1523 erp = rtproc;
1524 memset (erp, 0, sizeof (struct rpdr_ext));
1525 erp++;
1526 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1527 strcpy (str, no_name_func);
1528 str += strlen (no_name_func) + 1;
1529 for (i = 0; i < count; i++)
1530 {
1531 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1532 strcpy (str, sv[i]);
1533 str += strlen (sv[i]) + 1;
1534 }
1535 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1536
1537 /* Set the size and contents of .rtproc section. */
1538 s->size = size;
1539 s->contents = rtproc;
1540
1541 /* Skip this section later on (I don't think this currently
1542 matters, but someday it might). */
1543 s->map_head.link_order = NULL;
1544
1545 if (epdr != NULL)
1546 free (epdr);
1547 if (rpdr != NULL)
1548 free (rpdr);
1549 if (esym != NULL)
1550 free (esym);
1551 if (ss != NULL)
1552 free (ss);
1553 if (sv != NULL)
1554 free (sv);
1555
1556 return TRUE;
1557
1558 error_return:
1559 if (epdr != NULL)
1560 free (epdr);
1561 if (rpdr != NULL)
1562 free (rpdr);
1563 if (esym != NULL)
1564 free (esym);
1565 if (ss != NULL)
1566 free (ss);
1567 if (sv != NULL)
1568 free (sv);
1569 return FALSE;
1570 }
1571 \f
1572 /* We're going to create a stub for H. Create a symbol for the stub's
1573 value and size, to help make the disassembly easier to read. */
1574
1575 static bfd_boolean
1576 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1577 struct mips_elf_link_hash_entry *h,
1578 const char *prefix, asection *s, bfd_vma value,
1579 bfd_vma size)
1580 {
1581 struct bfd_link_hash_entry *bh;
1582 struct elf_link_hash_entry *elfh;
1583 char *name;
1584 bfd_boolean res;
1585
1586 if (ELF_ST_IS_MICROMIPS (h->root.other))
1587 value |= 1;
1588
1589 /* Create a new symbol. */
1590 name = concat (prefix, h->root.root.root.string, NULL);
1591 bh = NULL;
1592 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1593 BSF_LOCAL, s, value, NULL,
1594 TRUE, FALSE, &bh);
1595 free (name);
1596 if (! res)
1597 return FALSE;
1598
1599 /* Make it a local function. */
1600 elfh = (struct elf_link_hash_entry *) bh;
1601 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1602 elfh->size = size;
1603 elfh->forced_local = 1;
1604 return TRUE;
1605 }
1606
1607 /* We're about to redefine H. Create a symbol to represent H's
1608 current value and size, to help make the disassembly easier
1609 to read. */
1610
1611 static bfd_boolean
1612 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1613 struct mips_elf_link_hash_entry *h,
1614 const char *prefix)
1615 {
1616 struct bfd_link_hash_entry *bh;
1617 struct elf_link_hash_entry *elfh;
1618 char *name;
1619 asection *s;
1620 bfd_vma value;
1621 bfd_boolean res;
1622
1623 /* Read the symbol's value. */
1624 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1625 || h->root.root.type == bfd_link_hash_defweak);
1626 s = h->root.root.u.def.section;
1627 value = h->root.root.u.def.value;
1628
1629 /* Create a new symbol. */
1630 name = concat (prefix, h->root.root.root.string, NULL);
1631 bh = NULL;
1632 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1633 BSF_LOCAL, s, value, NULL,
1634 TRUE, FALSE, &bh);
1635 free (name);
1636 if (! res)
1637 return FALSE;
1638
1639 /* Make it local and copy the other attributes from H. */
1640 elfh = (struct elf_link_hash_entry *) bh;
1641 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1642 elfh->other = h->root.other;
1643 elfh->size = h->root.size;
1644 elfh->forced_local = 1;
1645 return TRUE;
1646 }
1647
1648 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1649 function rather than to a hard-float stub. */
1650
1651 static bfd_boolean
1652 section_allows_mips16_refs_p (asection *section)
1653 {
1654 const char *name;
1655
1656 name = bfd_get_section_name (section->owner, section);
1657 return (FN_STUB_P (name)
1658 || CALL_STUB_P (name)
1659 || CALL_FP_STUB_P (name)
1660 || strcmp (name, ".pdr") == 0);
1661 }
1662
1663 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1664 stub section of some kind. Return the R_SYMNDX of the target
1665 function, or 0 if we can't decide which function that is. */
1666
1667 static unsigned long
1668 mips16_stub_symndx (const struct elf_backend_data *bed,
1669 asection *sec ATTRIBUTE_UNUSED,
1670 const Elf_Internal_Rela *relocs,
1671 const Elf_Internal_Rela *relend)
1672 {
1673 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1674 const Elf_Internal_Rela *rel;
1675
1676 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1677 one in a compound relocation. */
1678 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1679 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1680 return ELF_R_SYM (sec->owner, rel->r_info);
1681
1682 /* Otherwise trust the first relocation, whatever its kind. This is
1683 the traditional behavior. */
1684 if (relocs < relend)
1685 return ELF_R_SYM (sec->owner, relocs->r_info);
1686
1687 return 0;
1688 }
1689
1690 /* Check the mips16 stubs for a particular symbol, and see if we can
1691 discard them. */
1692
1693 static void
1694 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1695 struct mips_elf_link_hash_entry *h)
1696 {
1697 /* Dynamic symbols must use the standard call interface, in case other
1698 objects try to call them. */
1699 if (h->fn_stub != NULL
1700 && h->root.dynindx != -1)
1701 {
1702 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1703 h->need_fn_stub = TRUE;
1704 }
1705
1706 if (h->fn_stub != NULL
1707 && ! h->need_fn_stub)
1708 {
1709 /* We don't need the fn_stub; the only references to this symbol
1710 are 16 bit calls. Clobber the size to 0 to prevent it from
1711 being included in the link. */
1712 h->fn_stub->size = 0;
1713 h->fn_stub->flags &= ~SEC_RELOC;
1714 h->fn_stub->reloc_count = 0;
1715 h->fn_stub->flags |= SEC_EXCLUDE;
1716 h->fn_stub->output_section = bfd_abs_section_ptr;
1717 }
1718
1719 if (h->call_stub != NULL
1720 && ELF_ST_IS_MIPS16 (h->root.other))
1721 {
1722 /* We don't need the call_stub; this is a 16 bit function, so
1723 calls from other 16 bit functions are OK. Clobber the size
1724 to 0 to prevent it from being included in the link. */
1725 h->call_stub->size = 0;
1726 h->call_stub->flags &= ~SEC_RELOC;
1727 h->call_stub->reloc_count = 0;
1728 h->call_stub->flags |= SEC_EXCLUDE;
1729 h->call_stub->output_section = bfd_abs_section_ptr;
1730 }
1731
1732 if (h->call_fp_stub != NULL
1733 && ELF_ST_IS_MIPS16 (h->root.other))
1734 {
1735 /* We don't need the call_stub; this is a 16 bit function, so
1736 calls from other 16 bit functions are OK. Clobber the size
1737 to 0 to prevent it from being included in the link. */
1738 h->call_fp_stub->size = 0;
1739 h->call_fp_stub->flags &= ~SEC_RELOC;
1740 h->call_fp_stub->reloc_count = 0;
1741 h->call_fp_stub->flags |= SEC_EXCLUDE;
1742 h->call_fp_stub->output_section = bfd_abs_section_ptr;
1743 }
1744 }
1745
1746 /* Hashtable callbacks for mips_elf_la25_stubs. */
1747
1748 static hashval_t
1749 mips_elf_la25_stub_hash (const void *entry_)
1750 {
1751 const struct mips_elf_la25_stub *entry;
1752
1753 entry = (struct mips_elf_la25_stub *) entry_;
1754 return entry->h->root.root.u.def.section->id
1755 + entry->h->root.root.u.def.value;
1756 }
1757
1758 static int
1759 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1760 {
1761 const struct mips_elf_la25_stub *entry1, *entry2;
1762
1763 entry1 = (struct mips_elf_la25_stub *) entry1_;
1764 entry2 = (struct mips_elf_la25_stub *) entry2_;
1765 return ((entry1->h->root.root.u.def.section
1766 == entry2->h->root.root.u.def.section)
1767 && (entry1->h->root.root.u.def.value
1768 == entry2->h->root.root.u.def.value));
1769 }
1770
1771 /* Called by the linker to set up the la25 stub-creation code. FN is
1772 the linker's implementation of add_stub_function. Return true on
1773 success. */
1774
1775 bfd_boolean
1776 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1777 asection *(*fn) (const char *, asection *,
1778 asection *))
1779 {
1780 struct mips_elf_link_hash_table *htab;
1781
1782 htab = mips_elf_hash_table (info);
1783 if (htab == NULL)
1784 return FALSE;
1785
1786 htab->add_stub_section = fn;
1787 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1788 mips_elf_la25_stub_eq, NULL);
1789 if (htab->la25_stubs == NULL)
1790 return FALSE;
1791
1792 return TRUE;
1793 }
1794
1795 /* Return true if H is a locally-defined PIC function, in the sense
1796 that it or its fn_stub might need $25 to be valid on entry.
1797 Note that MIPS16 functions set up $gp using PC-relative instructions,
1798 so they themselves never need $25 to be valid. Only non-MIPS16
1799 entry points are of interest here. */
1800
1801 static bfd_boolean
1802 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1803 {
1804 return ((h->root.root.type == bfd_link_hash_defined
1805 || h->root.root.type == bfd_link_hash_defweak)
1806 && h->root.def_regular
1807 && !bfd_is_abs_section (h->root.root.u.def.section)
1808 && (!ELF_ST_IS_MIPS16 (h->root.other)
1809 || (h->fn_stub && h->need_fn_stub))
1810 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1811 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1812 }
1813
1814 /* Set *SEC to the input section that contains the target of STUB.
1815 Return the offset of the target from the start of that section. */
1816
1817 static bfd_vma
1818 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1819 asection **sec)
1820 {
1821 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1822 {
1823 BFD_ASSERT (stub->h->need_fn_stub);
1824 *sec = stub->h->fn_stub;
1825 return 0;
1826 }
1827 else
1828 {
1829 *sec = stub->h->root.root.u.def.section;
1830 return stub->h->root.root.u.def.value;
1831 }
1832 }
1833
1834 /* STUB describes an la25 stub that we have decided to implement
1835 by inserting an LUI/ADDIU pair before the target function.
1836 Create the section and redirect the function symbol to it. */
1837
1838 static bfd_boolean
1839 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1840 struct bfd_link_info *info)
1841 {
1842 struct mips_elf_link_hash_table *htab;
1843 char *name;
1844 asection *s, *input_section;
1845 unsigned int align;
1846
1847 htab = mips_elf_hash_table (info);
1848 if (htab == NULL)
1849 return FALSE;
1850
1851 /* Create a unique name for the new section. */
1852 name = bfd_malloc (11 + sizeof (".text.stub."));
1853 if (name == NULL)
1854 return FALSE;
1855 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1856
1857 /* Create the section. */
1858 mips_elf_get_la25_target (stub, &input_section);
1859 s = htab->add_stub_section (name, input_section,
1860 input_section->output_section);
1861 if (s == NULL)
1862 return FALSE;
1863
1864 /* Make sure that any padding goes before the stub. */
1865 align = input_section->alignment_power;
1866 if (!bfd_set_section_alignment (s->owner, s, align))
1867 return FALSE;
1868 if (align > 3)
1869 s->size = (1 << align) - 8;
1870
1871 /* Create a symbol for the stub. */
1872 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1873 stub->stub_section = s;
1874 stub->offset = s->size;
1875
1876 /* Allocate room for it. */
1877 s->size += 8;
1878 return TRUE;
1879 }
1880
1881 /* STUB describes an la25 stub that we have decided to implement
1882 with a separate trampoline. Allocate room for it and redirect
1883 the function symbol to it. */
1884
1885 static bfd_boolean
1886 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1887 struct bfd_link_info *info)
1888 {
1889 struct mips_elf_link_hash_table *htab;
1890 asection *s;
1891
1892 htab = mips_elf_hash_table (info);
1893 if (htab == NULL)
1894 return FALSE;
1895
1896 /* Create a trampoline section, if we haven't already. */
1897 s = htab->strampoline;
1898 if (s == NULL)
1899 {
1900 asection *input_section = stub->h->root.root.u.def.section;
1901 s = htab->add_stub_section (".text", NULL,
1902 input_section->output_section);
1903 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1904 return FALSE;
1905 htab->strampoline = s;
1906 }
1907
1908 /* Create a symbol for the stub. */
1909 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1910 stub->stub_section = s;
1911 stub->offset = s->size;
1912
1913 /* Allocate room for it. */
1914 s->size += 16;
1915 return TRUE;
1916 }
1917
1918 /* H describes a symbol that needs an la25 stub. Make sure that an
1919 appropriate stub exists and point H at it. */
1920
1921 static bfd_boolean
1922 mips_elf_add_la25_stub (struct bfd_link_info *info,
1923 struct mips_elf_link_hash_entry *h)
1924 {
1925 struct mips_elf_link_hash_table *htab;
1926 struct mips_elf_la25_stub search, *stub;
1927 bfd_boolean use_trampoline_p;
1928 asection *s;
1929 bfd_vma value;
1930 void **slot;
1931
1932 /* Describe the stub we want. */
1933 search.stub_section = NULL;
1934 search.offset = 0;
1935 search.h = h;
1936
1937 /* See if we've already created an equivalent stub. */
1938 htab = mips_elf_hash_table (info);
1939 if (htab == NULL)
1940 return FALSE;
1941
1942 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1943 if (slot == NULL)
1944 return FALSE;
1945
1946 stub = (struct mips_elf_la25_stub *) *slot;
1947 if (stub != NULL)
1948 {
1949 /* We can reuse the existing stub. */
1950 h->la25_stub = stub;
1951 return TRUE;
1952 }
1953
1954 /* Create a permanent copy of ENTRY and add it to the hash table. */
1955 stub = bfd_malloc (sizeof (search));
1956 if (stub == NULL)
1957 return FALSE;
1958 *stub = search;
1959 *slot = stub;
1960
1961 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1962 of the section and if we would need no more than 2 nops. */
1963 value = mips_elf_get_la25_target (stub, &s);
1964 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1965
1966 h->la25_stub = stub;
1967 return (use_trampoline_p
1968 ? mips_elf_add_la25_trampoline (stub, info)
1969 : mips_elf_add_la25_intro (stub, info));
1970 }
1971
1972 /* A mips_elf_link_hash_traverse callback that is called before sizing
1973 sections. DATA points to a mips_htab_traverse_info structure. */
1974
1975 static bfd_boolean
1976 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1977 {
1978 struct mips_htab_traverse_info *hti;
1979
1980 hti = (struct mips_htab_traverse_info *) data;
1981 if (!bfd_link_relocatable (hti->info))
1982 mips_elf_check_mips16_stubs (hti->info, h);
1983
1984 if (mips_elf_local_pic_function_p (h))
1985 {
1986 /* PR 12845: If H is in a section that has been garbage
1987 collected it will have its output section set to *ABS*. */
1988 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1989 return TRUE;
1990
1991 /* H is a function that might need $25 to be valid on entry.
1992 If we're creating a non-PIC relocatable object, mark H as
1993 being PIC. If we're creating a non-relocatable object with
1994 non-PIC branches and jumps to H, make sure that H has an la25
1995 stub. */
1996 if (bfd_link_relocatable (hti->info))
1997 {
1998 if (!PIC_OBJECT_P (hti->output_bfd))
1999 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2000 }
2001 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2002 {
2003 hti->error = TRUE;
2004 return FALSE;
2005 }
2006 }
2007 return TRUE;
2008 }
2009 \f
2010 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2011 Most mips16 instructions are 16 bits, but these instructions
2012 are 32 bits.
2013
2014 The format of these instructions is:
2015
2016 +--------------+--------------------------------+
2017 | JALX | X| Imm 20:16 | Imm 25:21 |
2018 +--------------+--------------------------------+
2019 | Immediate 15:0 |
2020 +-----------------------------------------------+
2021
2022 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2023 Note that the immediate value in the first word is swapped.
2024
2025 When producing a relocatable object file, R_MIPS16_26 is
2026 handled mostly like R_MIPS_26. In particular, the addend is
2027 stored as a straight 26-bit value in a 32-bit instruction.
2028 (gas makes life simpler for itself by never adjusting a
2029 R_MIPS16_26 reloc to be against a section, so the addend is
2030 always zero). However, the 32 bit instruction is stored as 2
2031 16-bit values, rather than a single 32-bit value. In a
2032 big-endian file, the result is the same; in a little-endian
2033 file, the two 16-bit halves of the 32 bit value are swapped.
2034 This is so that a disassembler can recognize the jal
2035 instruction.
2036
2037 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2038 instruction stored as two 16-bit values. The addend A is the
2039 contents of the targ26 field. The calculation is the same as
2040 R_MIPS_26. When storing the calculated value, reorder the
2041 immediate value as shown above, and don't forget to store the
2042 value as two 16-bit values.
2043
2044 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2045 defined as
2046
2047 big-endian:
2048 +--------+----------------------+
2049 | | |
2050 | | targ26-16 |
2051 |31 26|25 0|
2052 +--------+----------------------+
2053
2054 little-endian:
2055 +----------+------+-------------+
2056 | | | |
2057 | sub1 | | sub2 |
2058 |0 9|10 15|16 31|
2059 +----------+--------------------+
2060 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2061 ((sub1 << 16) | sub2)).
2062
2063 When producing a relocatable object file, the calculation is
2064 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2065 When producing a fully linked file, the calculation is
2066 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2067 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2068
2069 The table below lists the other MIPS16 instruction relocations.
2070 Each one is calculated in the same way as the non-MIPS16 relocation
2071 given on the right, but using the extended MIPS16 layout of 16-bit
2072 immediate fields:
2073
2074 R_MIPS16_GPREL R_MIPS_GPREL16
2075 R_MIPS16_GOT16 R_MIPS_GOT16
2076 R_MIPS16_CALL16 R_MIPS_CALL16
2077 R_MIPS16_HI16 R_MIPS_HI16
2078 R_MIPS16_LO16 R_MIPS_LO16
2079
2080 A typical instruction will have a format like this:
2081
2082 +--------------+--------------------------------+
2083 | EXTEND | Imm 10:5 | Imm 15:11 |
2084 +--------------+--------------------------------+
2085 | Major | rx | ry | Imm 4:0 |
2086 +--------------+--------------------------------+
2087
2088 EXTEND is the five bit value 11110. Major is the instruction
2089 opcode.
2090
2091 All we need to do here is shuffle the bits appropriately.
2092 As above, the two 16-bit halves must be swapped on a
2093 little-endian system.
2094
2095 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2096 relocatable field is shifted by 1 rather than 2 and the same bit
2097 shuffling is done as with the relocations above. */
2098
2099 static inline bfd_boolean
2100 mips16_reloc_p (int r_type)
2101 {
2102 switch (r_type)
2103 {
2104 case R_MIPS16_26:
2105 case R_MIPS16_GPREL:
2106 case R_MIPS16_GOT16:
2107 case R_MIPS16_CALL16:
2108 case R_MIPS16_HI16:
2109 case R_MIPS16_LO16:
2110 case R_MIPS16_TLS_GD:
2111 case R_MIPS16_TLS_LDM:
2112 case R_MIPS16_TLS_DTPREL_HI16:
2113 case R_MIPS16_TLS_DTPREL_LO16:
2114 case R_MIPS16_TLS_GOTTPREL:
2115 case R_MIPS16_TLS_TPREL_HI16:
2116 case R_MIPS16_TLS_TPREL_LO16:
2117 case R_MIPS16_PC16_S1:
2118 return TRUE;
2119
2120 default:
2121 return FALSE;
2122 }
2123 }
2124
2125 /* Check if a microMIPS reloc. */
2126
2127 static inline bfd_boolean
2128 micromips_reloc_p (unsigned int r_type)
2129 {
2130 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2131 }
2132
2133 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2134 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2135 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2136
2137 static inline bfd_boolean
2138 micromips_reloc_shuffle_p (unsigned int r_type)
2139 {
2140 return (micromips_reloc_p (r_type)
2141 && r_type != R_MICROMIPS_PC7_S1
2142 && r_type != R_MICROMIPS_PC10_S1);
2143 }
2144
2145 static inline bfd_boolean
2146 got16_reloc_p (int r_type)
2147 {
2148 return (r_type == R_MIPS_GOT16
2149 || r_type == R_MIPS16_GOT16
2150 || r_type == R_MICROMIPS_GOT16);
2151 }
2152
2153 static inline bfd_boolean
2154 call16_reloc_p (int r_type)
2155 {
2156 return (r_type == R_MIPS_CALL16
2157 || r_type == R_MIPS16_CALL16
2158 || r_type == R_MICROMIPS_CALL16);
2159 }
2160
2161 static inline bfd_boolean
2162 got_disp_reloc_p (unsigned int r_type)
2163 {
2164 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2165 }
2166
2167 static inline bfd_boolean
2168 got_page_reloc_p (unsigned int r_type)
2169 {
2170 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2171 }
2172
2173 static inline bfd_boolean
2174 got_lo16_reloc_p (unsigned int r_type)
2175 {
2176 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2177 }
2178
2179 static inline bfd_boolean
2180 call_hi16_reloc_p (unsigned int r_type)
2181 {
2182 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2183 }
2184
2185 static inline bfd_boolean
2186 call_lo16_reloc_p (unsigned int r_type)
2187 {
2188 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2189 }
2190
2191 static inline bfd_boolean
2192 hi16_reloc_p (int r_type)
2193 {
2194 return (r_type == R_MIPS_HI16
2195 || r_type == R_MIPS16_HI16
2196 || r_type == R_MICROMIPS_HI16
2197 || r_type == R_MIPS_PCHI16);
2198 }
2199
2200 static inline bfd_boolean
2201 lo16_reloc_p (int r_type)
2202 {
2203 return (r_type == R_MIPS_LO16
2204 || r_type == R_MIPS16_LO16
2205 || r_type == R_MICROMIPS_LO16
2206 || r_type == R_MIPS_PCLO16);
2207 }
2208
2209 static inline bfd_boolean
2210 mips16_call_reloc_p (int r_type)
2211 {
2212 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2213 }
2214
2215 static inline bfd_boolean
2216 jal_reloc_p (int r_type)
2217 {
2218 return (r_type == R_MIPS_26
2219 || r_type == R_MIPS16_26
2220 || r_type == R_MICROMIPS_26_S1);
2221 }
2222
2223 static inline bfd_boolean
2224 b_reloc_p (int r_type)
2225 {
2226 return (r_type == R_MIPS_PC26_S2
2227 || r_type == R_MIPS_PC21_S2
2228 || r_type == R_MIPS_PC16
2229 || r_type == R_MIPS_GNU_REL16_S2
2230 || r_type == R_MIPS16_PC16_S1
2231 || r_type == R_MICROMIPS_PC16_S1
2232 || r_type == R_MICROMIPS_PC10_S1
2233 || r_type == R_MICROMIPS_PC7_S1);
2234 }
2235
2236 static inline bfd_boolean
2237 aligned_pcrel_reloc_p (int r_type)
2238 {
2239 return (r_type == R_MIPS_PC18_S3
2240 || r_type == R_MIPS_PC19_S2);
2241 }
2242
2243 static inline bfd_boolean
2244 branch_reloc_p (int r_type)
2245 {
2246 return (r_type == R_MIPS_26
2247 || r_type == R_MIPS_PC26_S2
2248 || r_type == R_MIPS_PC21_S2
2249 || r_type == R_MIPS_PC16
2250 || r_type == R_MIPS_GNU_REL16_S2);
2251 }
2252
2253 static inline bfd_boolean
2254 mips16_branch_reloc_p (int r_type)
2255 {
2256 return (r_type == R_MIPS16_26
2257 || r_type == R_MIPS16_PC16_S1);
2258 }
2259
2260 static inline bfd_boolean
2261 micromips_branch_reloc_p (int r_type)
2262 {
2263 return (r_type == R_MICROMIPS_26_S1
2264 || r_type == R_MICROMIPS_PC16_S1
2265 || r_type == R_MICROMIPS_PC10_S1
2266 || r_type == R_MICROMIPS_PC7_S1);
2267 }
2268
2269 static inline bfd_boolean
2270 tls_gd_reloc_p (unsigned int r_type)
2271 {
2272 return (r_type == R_MIPS_TLS_GD
2273 || r_type == R_MIPS16_TLS_GD
2274 || r_type == R_MICROMIPS_TLS_GD);
2275 }
2276
2277 static inline bfd_boolean
2278 tls_ldm_reloc_p (unsigned int r_type)
2279 {
2280 return (r_type == R_MIPS_TLS_LDM
2281 || r_type == R_MIPS16_TLS_LDM
2282 || r_type == R_MICROMIPS_TLS_LDM);
2283 }
2284
2285 static inline bfd_boolean
2286 tls_gottprel_reloc_p (unsigned int r_type)
2287 {
2288 return (r_type == R_MIPS_TLS_GOTTPREL
2289 || r_type == R_MIPS16_TLS_GOTTPREL
2290 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2291 }
2292
2293 void
2294 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2295 bfd_boolean jal_shuffle, bfd_byte *data)
2296 {
2297 bfd_vma first, second, val;
2298
2299 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2300 return;
2301
2302 /* Pick up the first and second halfwords of the instruction. */
2303 first = bfd_get_16 (abfd, data);
2304 second = bfd_get_16 (abfd, data + 2);
2305 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2306 val = first << 16 | second;
2307 else if (r_type != R_MIPS16_26)
2308 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2309 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2310 else
2311 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2312 | ((first & 0x1f) << 21) | second);
2313 bfd_put_32 (abfd, val, data);
2314 }
2315
2316 void
2317 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2318 bfd_boolean jal_shuffle, bfd_byte *data)
2319 {
2320 bfd_vma first, second, val;
2321
2322 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2323 return;
2324
2325 val = bfd_get_32 (abfd, data);
2326 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2327 {
2328 second = val & 0xffff;
2329 first = val >> 16;
2330 }
2331 else if (r_type != R_MIPS16_26)
2332 {
2333 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2334 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2335 }
2336 else
2337 {
2338 second = val & 0xffff;
2339 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2340 | ((val >> 21) & 0x1f);
2341 }
2342 bfd_put_16 (abfd, second, data + 2);
2343 bfd_put_16 (abfd, first, data);
2344 }
2345
2346 bfd_reloc_status_type
2347 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2348 arelent *reloc_entry, asection *input_section,
2349 bfd_boolean relocatable, void *data, bfd_vma gp)
2350 {
2351 bfd_vma relocation;
2352 bfd_signed_vma val;
2353 bfd_reloc_status_type status;
2354
2355 if (bfd_is_com_section (symbol->section))
2356 relocation = 0;
2357 else
2358 relocation = symbol->value;
2359
2360 relocation += symbol->section->output_section->vma;
2361 relocation += symbol->section->output_offset;
2362
2363 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2364 return bfd_reloc_outofrange;
2365
2366 /* Set val to the offset into the section or symbol. */
2367 val = reloc_entry->addend;
2368
2369 _bfd_mips_elf_sign_extend (val, 16);
2370
2371 /* Adjust val for the final section location and GP value. If we
2372 are producing relocatable output, we don't want to do this for
2373 an external symbol. */
2374 if (! relocatable
2375 || (symbol->flags & BSF_SECTION_SYM) != 0)
2376 val += relocation - gp;
2377
2378 if (reloc_entry->howto->partial_inplace)
2379 {
2380 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2381 (bfd_byte *) data
2382 + reloc_entry->address);
2383 if (status != bfd_reloc_ok)
2384 return status;
2385 }
2386 else
2387 reloc_entry->addend = val;
2388
2389 if (relocatable)
2390 reloc_entry->address += input_section->output_offset;
2391
2392 return bfd_reloc_ok;
2393 }
2394
2395 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2396 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2397 that contains the relocation field and DATA points to the start of
2398 INPUT_SECTION. */
2399
2400 struct mips_hi16
2401 {
2402 struct mips_hi16 *next;
2403 bfd_byte *data;
2404 asection *input_section;
2405 arelent rel;
2406 };
2407
2408 /* FIXME: This should not be a static variable. */
2409
2410 static struct mips_hi16 *mips_hi16_list;
2411
2412 /* A howto special_function for REL *HI16 relocations. We can only
2413 calculate the correct value once we've seen the partnering
2414 *LO16 relocation, so just save the information for later.
2415
2416 The ABI requires that the *LO16 immediately follow the *HI16.
2417 However, as a GNU extension, we permit an arbitrary number of
2418 *HI16s to be associated with a single *LO16. This significantly
2419 simplies the relocation handling in gcc. */
2420
2421 bfd_reloc_status_type
2422 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2423 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2424 asection *input_section, bfd *output_bfd,
2425 char **error_message ATTRIBUTE_UNUSED)
2426 {
2427 struct mips_hi16 *n;
2428
2429 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2430 return bfd_reloc_outofrange;
2431
2432 n = bfd_malloc (sizeof *n);
2433 if (n == NULL)
2434 return bfd_reloc_outofrange;
2435
2436 n->next = mips_hi16_list;
2437 n->data = data;
2438 n->input_section = input_section;
2439 n->rel = *reloc_entry;
2440 mips_hi16_list = n;
2441
2442 if (output_bfd != NULL)
2443 reloc_entry->address += input_section->output_offset;
2444
2445 return bfd_reloc_ok;
2446 }
2447
2448 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2449 like any other 16-bit relocation when applied to global symbols, but is
2450 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2451
2452 bfd_reloc_status_type
2453 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2454 void *data, asection *input_section,
2455 bfd *output_bfd, char **error_message)
2456 {
2457 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2458 || bfd_is_und_section (bfd_get_section (symbol))
2459 || bfd_is_com_section (bfd_get_section (symbol)))
2460 /* The relocation is against a global symbol. */
2461 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2462 input_section, output_bfd,
2463 error_message);
2464
2465 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2466 input_section, output_bfd, error_message);
2467 }
2468
2469 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2470 is a straightforward 16 bit inplace relocation, but we must deal with
2471 any partnering high-part relocations as well. */
2472
2473 bfd_reloc_status_type
2474 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2475 void *data, asection *input_section,
2476 bfd *output_bfd, char **error_message)
2477 {
2478 bfd_vma vallo;
2479 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2480
2481 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2482 return bfd_reloc_outofrange;
2483
2484 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2485 location);
2486 vallo = bfd_get_32 (abfd, location);
2487 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2488 location);
2489
2490 while (mips_hi16_list != NULL)
2491 {
2492 bfd_reloc_status_type ret;
2493 struct mips_hi16 *hi;
2494
2495 hi = mips_hi16_list;
2496
2497 /* R_MIPS*_GOT16 relocations are something of a special case. We
2498 want to install the addend in the same way as for a R_MIPS*_HI16
2499 relocation (with a rightshift of 16). However, since GOT16
2500 relocations can also be used with global symbols, their howto
2501 has a rightshift of 0. */
2502 if (hi->rel.howto->type == R_MIPS_GOT16)
2503 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2504 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2505 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2506 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2507 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2508
2509 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2510 carry or borrow will induce a change of +1 or -1 in the high part. */
2511 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2512
2513 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2514 hi->input_section, output_bfd,
2515 error_message);
2516 if (ret != bfd_reloc_ok)
2517 return ret;
2518
2519 mips_hi16_list = hi->next;
2520 free (hi);
2521 }
2522
2523 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2524 input_section, output_bfd,
2525 error_message);
2526 }
2527
2528 /* A generic howto special_function. This calculates and installs the
2529 relocation itself, thus avoiding the oft-discussed problems in
2530 bfd_perform_relocation and bfd_install_relocation. */
2531
2532 bfd_reloc_status_type
2533 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2534 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2535 asection *input_section, bfd *output_bfd,
2536 char **error_message ATTRIBUTE_UNUSED)
2537 {
2538 bfd_signed_vma val;
2539 bfd_reloc_status_type status;
2540 bfd_boolean relocatable;
2541
2542 relocatable = (output_bfd != NULL);
2543
2544 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2545 return bfd_reloc_outofrange;
2546
2547 /* Build up the field adjustment in VAL. */
2548 val = 0;
2549 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2550 {
2551 /* Either we're calculating the final field value or we have a
2552 relocation against a section symbol. Add in the section's
2553 offset or address. */
2554 val += symbol->section->output_section->vma;
2555 val += symbol->section->output_offset;
2556 }
2557
2558 if (!relocatable)
2559 {
2560 /* We're calculating the final field value. Add in the symbol's value
2561 and, if pc-relative, subtract the address of the field itself. */
2562 val += symbol->value;
2563 if (reloc_entry->howto->pc_relative)
2564 {
2565 val -= input_section->output_section->vma;
2566 val -= input_section->output_offset;
2567 val -= reloc_entry->address;
2568 }
2569 }
2570
2571 /* VAL is now the final adjustment. If we're keeping this relocation
2572 in the output file, and if the relocation uses a separate addend,
2573 we just need to add VAL to that addend. Otherwise we need to add
2574 VAL to the relocation field itself. */
2575 if (relocatable && !reloc_entry->howto->partial_inplace)
2576 reloc_entry->addend += val;
2577 else
2578 {
2579 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2580
2581 /* Add in the separate addend, if any. */
2582 val += reloc_entry->addend;
2583
2584 /* Add VAL to the relocation field. */
2585 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2586 location);
2587 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2588 location);
2589 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2590 location);
2591
2592 if (status != bfd_reloc_ok)
2593 return status;
2594 }
2595
2596 if (relocatable)
2597 reloc_entry->address += input_section->output_offset;
2598
2599 return bfd_reloc_ok;
2600 }
2601 \f
2602 /* Swap an entry in a .gptab section. Note that these routines rely
2603 on the equivalence of the two elements of the union. */
2604
2605 static void
2606 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2607 Elf32_gptab *in)
2608 {
2609 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2610 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2611 }
2612
2613 static void
2614 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2615 Elf32_External_gptab *ex)
2616 {
2617 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2618 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2619 }
2620
2621 static void
2622 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2623 Elf32_External_compact_rel *ex)
2624 {
2625 H_PUT_32 (abfd, in->id1, ex->id1);
2626 H_PUT_32 (abfd, in->num, ex->num);
2627 H_PUT_32 (abfd, in->id2, ex->id2);
2628 H_PUT_32 (abfd, in->offset, ex->offset);
2629 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2630 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2631 }
2632
2633 static void
2634 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2635 Elf32_External_crinfo *ex)
2636 {
2637 unsigned long l;
2638
2639 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2640 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2641 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2642 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2643 H_PUT_32 (abfd, l, ex->info);
2644 H_PUT_32 (abfd, in->konst, ex->konst);
2645 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2646 }
2647 \f
2648 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2649 routines swap this structure in and out. They are used outside of
2650 BFD, so they are globally visible. */
2651
2652 void
2653 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2654 Elf32_RegInfo *in)
2655 {
2656 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2657 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2658 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2659 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2660 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2661 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2662 }
2663
2664 void
2665 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2666 Elf32_External_RegInfo *ex)
2667 {
2668 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2669 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2670 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2671 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2672 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2673 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2674 }
2675
2676 /* In the 64 bit ABI, the .MIPS.options section holds register
2677 information in an Elf64_Reginfo structure. These routines swap
2678 them in and out. They are globally visible because they are used
2679 outside of BFD. These routines are here so that gas can call them
2680 without worrying about whether the 64 bit ABI has been included. */
2681
2682 void
2683 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2684 Elf64_Internal_RegInfo *in)
2685 {
2686 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2687 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2688 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2689 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2690 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2691 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2692 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2693 }
2694
2695 void
2696 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2697 Elf64_External_RegInfo *ex)
2698 {
2699 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2700 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2701 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2702 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2703 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2704 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2705 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2706 }
2707
2708 /* Swap in an options header. */
2709
2710 void
2711 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2712 Elf_Internal_Options *in)
2713 {
2714 in->kind = H_GET_8 (abfd, ex->kind);
2715 in->size = H_GET_8 (abfd, ex->size);
2716 in->section = H_GET_16 (abfd, ex->section);
2717 in->info = H_GET_32 (abfd, ex->info);
2718 }
2719
2720 /* Swap out an options header. */
2721
2722 void
2723 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2724 Elf_External_Options *ex)
2725 {
2726 H_PUT_8 (abfd, in->kind, ex->kind);
2727 H_PUT_8 (abfd, in->size, ex->size);
2728 H_PUT_16 (abfd, in->section, ex->section);
2729 H_PUT_32 (abfd, in->info, ex->info);
2730 }
2731
2732 /* Swap in an abiflags structure. */
2733
2734 void
2735 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2736 const Elf_External_ABIFlags_v0 *ex,
2737 Elf_Internal_ABIFlags_v0 *in)
2738 {
2739 in->version = H_GET_16 (abfd, ex->version);
2740 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2741 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2742 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2743 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2744 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2745 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2746 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2747 in->ases = H_GET_32 (abfd, ex->ases);
2748 in->flags1 = H_GET_32 (abfd, ex->flags1);
2749 in->flags2 = H_GET_32 (abfd, ex->flags2);
2750 }
2751
2752 /* Swap out an abiflags structure. */
2753
2754 void
2755 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2756 const Elf_Internal_ABIFlags_v0 *in,
2757 Elf_External_ABIFlags_v0 *ex)
2758 {
2759 H_PUT_16 (abfd, in->version, ex->version);
2760 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2761 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2762 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2763 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2764 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2765 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2766 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2767 H_PUT_32 (abfd, in->ases, ex->ases);
2768 H_PUT_32 (abfd, in->flags1, ex->flags1);
2769 H_PUT_32 (abfd, in->flags2, ex->flags2);
2770 }
2771 \f
2772 /* This function is called via qsort() to sort the dynamic relocation
2773 entries by increasing r_symndx value. */
2774
2775 static int
2776 sort_dynamic_relocs (const void *arg1, const void *arg2)
2777 {
2778 Elf_Internal_Rela int_reloc1;
2779 Elf_Internal_Rela int_reloc2;
2780 int diff;
2781
2782 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2783 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2784
2785 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2786 if (diff != 0)
2787 return diff;
2788
2789 if (int_reloc1.r_offset < int_reloc2.r_offset)
2790 return -1;
2791 if (int_reloc1.r_offset > int_reloc2.r_offset)
2792 return 1;
2793 return 0;
2794 }
2795
2796 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2797
2798 static int
2799 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2800 const void *arg2 ATTRIBUTE_UNUSED)
2801 {
2802 #ifdef BFD64
2803 Elf_Internal_Rela int_reloc1[3];
2804 Elf_Internal_Rela int_reloc2[3];
2805
2806 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2807 (reldyn_sorting_bfd, arg1, int_reloc1);
2808 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2809 (reldyn_sorting_bfd, arg2, int_reloc2);
2810
2811 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2812 return -1;
2813 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2814 return 1;
2815
2816 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2817 return -1;
2818 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2819 return 1;
2820 return 0;
2821 #else
2822 abort ();
2823 #endif
2824 }
2825
2826
2827 /* This routine is used to write out ECOFF debugging external symbol
2828 information. It is called via mips_elf_link_hash_traverse. The
2829 ECOFF external symbol information must match the ELF external
2830 symbol information. Unfortunately, at this point we don't know
2831 whether a symbol is required by reloc information, so the two
2832 tables may wind up being different. We must sort out the external
2833 symbol information before we can set the final size of the .mdebug
2834 section, and we must set the size of the .mdebug section before we
2835 can relocate any sections, and we can't know which symbols are
2836 required by relocation until we relocate the sections.
2837 Fortunately, it is relatively unlikely that any symbol will be
2838 stripped but required by a reloc. In particular, it can not happen
2839 when generating a final executable. */
2840
2841 static bfd_boolean
2842 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2843 {
2844 struct extsym_info *einfo = data;
2845 bfd_boolean strip;
2846 asection *sec, *output_section;
2847
2848 if (h->root.indx == -2)
2849 strip = FALSE;
2850 else if ((h->root.def_dynamic
2851 || h->root.ref_dynamic
2852 || h->root.type == bfd_link_hash_new)
2853 && !h->root.def_regular
2854 && !h->root.ref_regular)
2855 strip = TRUE;
2856 else if (einfo->info->strip == strip_all
2857 || (einfo->info->strip == strip_some
2858 && bfd_hash_lookup (einfo->info->keep_hash,
2859 h->root.root.root.string,
2860 FALSE, FALSE) == NULL))
2861 strip = TRUE;
2862 else
2863 strip = FALSE;
2864
2865 if (strip)
2866 return TRUE;
2867
2868 if (h->esym.ifd == -2)
2869 {
2870 h->esym.jmptbl = 0;
2871 h->esym.cobol_main = 0;
2872 h->esym.weakext = 0;
2873 h->esym.reserved = 0;
2874 h->esym.ifd = ifdNil;
2875 h->esym.asym.value = 0;
2876 h->esym.asym.st = stGlobal;
2877
2878 if (h->root.root.type == bfd_link_hash_undefined
2879 || h->root.root.type == bfd_link_hash_undefweak)
2880 {
2881 const char *name;
2882
2883 /* Use undefined class. Also, set class and type for some
2884 special symbols. */
2885 name = h->root.root.root.string;
2886 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2887 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2888 {
2889 h->esym.asym.sc = scData;
2890 h->esym.asym.st = stLabel;
2891 h->esym.asym.value = 0;
2892 }
2893 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2894 {
2895 h->esym.asym.sc = scAbs;
2896 h->esym.asym.st = stLabel;
2897 h->esym.asym.value =
2898 mips_elf_hash_table (einfo->info)->procedure_count;
2899 }
2900 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2901 {
2902 h->esym.asym.sc = scAbs;
2903 h->esym.asym.st = stLabel;
2904 h->esym.asym.value = elf_gp (einfo->abfd);
2905 }
2906 else
2907 h->esym.asym.sc = scUndefined;
2908 }
2909 else if (h->root.root.type != bfd_link_hash_defined
2910 && h->root.root.type != bfd_link_hash_defweak)
2911 h->esym.asym.sc = scAbs;
2912 else
2913 {
2914 const char *name;
2915
2916 sec = h->root.root.u.def.section;
2917 output_section = sec->output_section;
2918
2919 /* When making a shared library and symbol h is the one from
2920 the another shared library, OUTPUT_SECTION may be null. */
2921 if (output_section == NULL)
2922 h->esym.asym.sc = scUndefined;
2923 else
2924 {
2925 name = bfd_section_name (output_section->owner, output_section);
2926
2927 if (strcmp (name, ".text") == 0)
2928 h->esym.asym.sc = scText;
2929 else if (strcmp (name, ".data") == 0)
2930 h->esym.asym.sc = scData;
2931 else if (strcmp (name, ".sdata") == 0)
2932 h->esym.asym.sc = scSData;
2933 else if (strcmp (name, ".rodata") == 0
2934 || strcmp (name, ".rdata") == 0)
2935 h->esym.asym.sc = scRData;
2936 else if (strcmp (name, ".bss") == 0)
2937 h->esym.asym.sc = scBss;
2938 else if (strcmp (name, ".sbss") == 0)
2939 h->esym.asym.sc = scSBss;
2940 else if (strcmp (name, ".init") == 0)
2941 h->esym.asym.sc = scInit;
2942 else if (strcmp (name, ".fini") == 0)
2943 h->esym.asym.sc = scFini;
2944 else
2945 h->esym.asym.sc = scAbs;
2946 }
2947 }
2948
2949 h->esym.asym.reserved = 0;
2950 h->esym.asym.index = indexNil;
2951 }
2952
2953 if (h->root.root.type == bfd_link_hash_common)
2954 h->esym.asym.value = h->root.root.u.c.size;
2955 else if (h->root.root.type == bfd_link_hash_defined
2956 || h->root.root.type == bfd_link_hash_defweak)
2957 {
2958 if (h->esym.asym.sc == scCommon)
2959 h->esym.asym.sc = scBss;
2960 else if (h->esym.asym.sc == scSCommon)
2961 h->esym.asym.sc = scSBss;
2962
2963 sec = h->root.root.u.def.section;
2964 output_section = sec->output_section;
2965 if (output_section != NULL)
2966 h->esym.asym.value = (h->root.root.u.def.value
2967 + sec->output_offset
2968 + output_section->vma);
2969 else
2970 h->esym.asym.value = 0;
2971 }
2972 else
2973 {
2974 struct mips_elf_link_hash_entry *hd = h;
2975
2976 while (hd->root.root.type == bfd_link_hash_indirect)
2977 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2978
2979 if (hd->needs_lazy_stub)
2980 {
2981 BFD_ASSERT (hd->root.plt.plist != NULL);
2982 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
2983 /* Set type and value for a symbol with a function stub. */
2984 h->esym.asym.st = stProc;
2985 sec = hd->root.root.u.def.section;
2986 if (sec == NULL)
2987 h->esym.asym.value = 0;
2988 else
2989 {
2990 output_section = sec->output_section;
2991 if (output_section != NULL)
2992 h->esym.asym.value = (hd->root.plt.plist->stub_offset
2993 + sec->output_offset
2994 + output_section->vma);
2995 else
2996 h->esym.asym.value = 0;
2997 }
2998 }
2999 }
3000
3001 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3002 h->root.root.root.string,
3003 &h->esym))
3004 {
3005 einfo->failed = TRUE;
3006 return FALSE;
3007 }
3008
3009 return TRUE;
3010 }
3011
3012 /* A comparison routine used to sort .gptab entries. */
3013
3014 static int
3015 gptab_compare (const void *p1, const void *p2)
3016 {
3017 const Elf32_gptab *a1 = p1;
3018 const Elf32_gptab *a2 = p2;
3019
3020 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3021 }
3022 \f
3023 /* Functions to manage the got entry hash table. */
3024
3025 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3026 hash number. */
3027
3028 static INLINE hashval_t
3029 mips_elf_hash_bfd_vma (bfd_vma addr)
3030 {
3031 #ifdef BFD64
3032 return addr + (addr >> 32);
3033 #else
3034 return addr;
3035 #endif
3036 }
3037
3038 static hashval_t
3039 mips_elf_got_entry_hash (const void *entry_)
3040 {
3041 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3042
3043 return (entry->symndx
3044 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3045 + (entry->tls_type == GOT_TLS_LDM ? 0
3046 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3047 : entry->symndx >= 0 ? (entry->abfd->id
3048 + mips_elf_hash_bfd_vma (entry->d.addend))
3049 : entry->d.h->root.root.root.hash));
3050 }
3051
3052 static int
3053 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3054 {
3055 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3056 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3057
3058 return (e1->symndx == e2->symndx
3059 && e1->tls_type == e2->tls_type
3060 && (e1->tls_type == GOT_TLS_LDM ? TRUE
3061 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3062 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3063 && e1->d.addend == e2->d.addend)
3064 : e2->abfd && e1->d.h == e2->d.h));
3065 }
3066
3067 static hashval_t
3068 mips_got_page_ref_hash (const void *ref_)
3069 {
3070 const struct mips_got_page_ref *ref;
3071
3072 ref = (const struct mips_got_page_ref *) ref_;
3073 return ((ref->symndx >= 0
3074 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3075 : ref->u.h->root.root.root.hash)
3076 + mips_elf_hash_bfd_vma (ref->addend));
3077 }
3078
3079 static int
3080 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3081 {
3082 const struct mips_got_page_ref *ref1, *ref2;
3083
3084 ref1 = (const struct mips_got_page_ref *) ref1_;
3085 ref2 = (const struct mips_got_page_ref *) ref2_;
3086 return (ref1->symndx == ref2->symndx
3087 && (ref1->symndx < 0
3088 ? ref1->u.h == ref2->u.h
3089 : ref1->u.abfd == ref2->u.abfd)
3090 && ref1->addend == ref2->addend);
3091 }
3092
3093 static hashval_t
3094 mips_got_page_entry_hash (const void *entry_)
3095 {
3096 const struct mips_got_page_entry *entry;
3097
3098 entry = (const struct mips_got_page_entry *) entry_;
3099 return entry->sec->id;
3100 }
3101
3102 static int
3103 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3104 {
3105 const struct mips_got_page_entry *entry1, *entry2;
3106
3107 entry1 = (const struct mips_got_page_entry *) entry1_;
3108 entry2 = (const struct mips_got_page_entry *) entry2_;
3109 return entry1->sec == entry2->sec;
3110 }
3111 \f
3112 /* Create and return a new mips_got_info structure. */
3113
3114 static struct mips_got_info *
3115 mips_elf_create_got_info (bfd *abfd)
3116 {
3117 struct mips_got_info *g;
3118
3119 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3120 if (g == NULL)
3121 return NULL;
3122
3123 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3124 mips_elf_got_entry_eq, NULL);
3125 if (g->got_entries == NULL)
3126 return NULL;
3127
3128 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3129 mips_got_page_ref_eq, NULL);
3130 if (g->got_page_refs == NULL)
3131 return NULL;
3132
3133 return g;
3134 }
3135
3136 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3137 CREATE_P and if ABFD doesn't already have a GOT. */
3138
3139 static struct mips_got_info *
3140 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3141 {
3142 struct mips_elf_obj_tdata *tdata;
3143
3144 if (!is_mips_elf (abfd))
3145 return NULL;
3146
3147 tdata = mips_elf_tdata (abfd);
3148 if (!tdata->got && create_p)
3149 tdata->got = mips_elf_create_got_info (abfd);
3150 return tdata->got;
3151 }
3152
3153 /* Record that ABFD should use output GOT G. */
3154
3155 static void
3156 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3157 {
3158 struct mips_elf_obj_tdata *tdata;
3159
3160 BFD_ASSERT (is_mips_elf (abfd));
3161 tdata = mips_elf_tdata (abfd);
3162 if (tdata->got)
3163 {
3164 /* The GOT structure itself and the hash table entries are
3165 allocated to a bfd, but the hash tables aren't. */
3166 htab_delete (tdata->got->got_entries);
3167 htab_delete (tdata->got->got_page_refs);
3168 if (tdata->got->got_page_entries)
3169 htab_delete (tdata->got->got_page_entries);
3170 }
3171 tdata->got = g;
3172 }
3173
3174 /* Return the dynamic relocation section. If it doesn't exist, try to
3175 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3176 if creation fails. */
3177
3178 static asection *
3179 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3180 {
3181 const char *dname;
3182 asection *sreloc;
3183 bfd *dynobj;
3184
3185 dname = MIPS_ELF_REL_DYN_NAME (info);
3186 dynobj = elf_hash_table (info)->dynobj;
3187 sreloc = bfd_get_linker_section (dynobj, dname);
3188 if (sreloc == NULL && create_p)
3189 {
3190 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3191 (SEC_ALLOC
3192 | SEC_LOAD
3193 | SEC_HAS_CONTENTS
3194 | SEC_IN_MEMORY
3195 | SEC_LINKER_CREATED
3196 | SEC_READONLY));
3197 if (sreloc == NULL
3198 || ! bfd_set_section_alignment (dynobj, sreloc,
3199 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3200 return NULL;
3201 }
3202 return sreloc;
3203 }
3204
3205 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3206
3207 static int
3208 mips_elf_reloc_tls_type (unsigned int r_type)
3209 {
3210 if (tls_gd_reloc_p (r_type))
3211 return GOT_TLS_GD;
3212
3213 if (tls_ldm_reloc_p (r_type))
3214 return GOT_TLS_LDM;
3215
3216 if (tls_gottprel_reloc_p (r_type))
3217 return GOT_TLS_IE;
3218
3219 return GOT_TLS_NONE;
3220 }
3221
3222 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3223
3224 static int
3225 mips_tls_got_entries (unsigned int type)
3226 {
3227 switch (type)
3228 {
3229 case GOT_TLS_GD:
3230 case GOT_TLS_LDM:
3231 return 2;
3232
3233 case GOT_TLS_IE:
3234 return 1;
3235
3236 case GOT_TLS_NONE:
3237 return 0;
3238 }
3239 abort ();
3240 }
3241
3242 /* Count the number of relocations needed for a TLS GOT entry, with
3243 access types from TLS_TYPE, and symbol H (or a local symbol if H
3244 is NULL). */
3245
3246 static int
3247 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3248 struct elf_link_hash_entry *h)
3249 {
3250 int indx = 0;
3251 bfd_boolean need_relocs = FALSE;
3252 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3253
3254 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3255 && (!bfd_link_pic (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
3256 indx = h->dynindx;
3257
3258 if ((bfd_link_pic (info) || indx != 0)
3259 && (h == NULL
3260 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3261 || h->root.type != bfd_link_hash_undefweak))
3262 need_relocs = TRUE;
3263
3264 if (!need_relocs)
3265 return 0;
3266
3267 switch (tls_type)
3268 {
3269 case GOT_TLS_GD:
3270 return indx != 0 ? 2 : 1;
3271
3272 case GOT_TLS_IE:
3273 return 1;
3274
3275 case GOT_TLS_LDM:
3276 return bfd_link_pic (info) ? 1 : 0;
3277
3278 default:
3279 return 0;
3280 }
3281 }
3282
3283 /* Add the number of GOT entries and TLS relocations required by ENTRY
3284 to G. */
3285
3286 static void
3287 mips_elf_count_got_entry (struct bfd_link_info *info,
3288 struct mips_got_info *g,
3289 struct mips_got_entry *entry)
3290 {
3291 if (entry->tls_type)
3292 {
3293 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3294 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3295 entry->symndx < 0
3296 ? &entry->d.h->root : NULL);
3297 }
3298 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3299 g->local_gotno += 1;
3300 else
3301 g->global_gotno += 1;
3302 }
3303
3304 /* Output a simple dynamic relocation into SRELOC. */
3305
3306 static void
3307 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3308 asection *sreloc,
3309 unsigned long reloc_index,
3310 unsigned long indx,
3311 int r_type,
3312 bfd_vma offset)
3313 {
3314 Elf_Internal_Rela rel[3];
3315
3316 memset (rel, 0, sizeof (rel));
3317
3318 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3319 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3320
3321 if (ABI_64_P (output_bfd))
3322 {
3323 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3324 (output_bfd, &rel[0],
3325 (sreloc->contents
3326 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3327 }
3328 else
3329 bfd_elf32_swap_reloc_out
3330 (output_bfd, &rel[0],
3331 (sreloc->contents
3332 + reloc_index * sizeof (Elf32_External_Rel)));
3333 }
3334
3335 /* Initialize a set of TLS GOT entries for one symbol. */
3336
3337 static void
3338 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3339 struct mips_got_entry *entry,
3340 struct mips_elf_link_hash_entry *h,
3341 bfd_vma value)
3342 {
3343 struct mips_elf_link_hash_table *htab;
3344 int indx;
3345 asection *sreloc, *sgot;
3346 bfd_vma got_offset, got_offset2;
3347 bfd_boolean need_relocs = FALSE;
3348
3349 htab = mips_elf_hash_table (info);
3350 if (htab == NULL)
3351 return;
3352
3353 sgot = htab->sgot;
3354
3355 indx = 0;
3356 if (h != NULL)
3357 {
3358 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3359
3360 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info),
3361 &h->root)
3362 && (!bfd_link_pic (info)
3363 || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3364 indx = h->root.dynindx;
3365 }
3366
3367 if (entry->tls_initialized)
3368 return;
3369
3370 if ((bfd_link_pic (info) || indx != 0)
3371 && (h == NULL
3372 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3373 || h->root.type != bfd_link_hash_undefweak))
3374 need_relocs = TRUE;
3375
3376 /* MINUS_ONE means the symbol is not defined in this object. It may not
3377 be defined at all; assume that the value doesn't matter in that
3378 case. Otherwise complain if we would use the value. */
3379 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3380 || h->root.root.type == bfd_link_hash_undefweak);
3381
3382 /* Emit necessary relocations. */
3383 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3384 got_offset = entry->gotidx;
3385
3386 switch (entry->tls_type)
3387 {
3388 case GOT_TLS_GD:
3389 /* General Dynamic. */
3390 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3391
3392 if (need_relocs)
3393 {
3394 mips_elf_output_dynamic_relocation
3395 (abfd, sreloc, sreloc->reloc_count++, indx,
3396 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3397 sgot->output_offset + sgot->output_section->vma + got_offset);
3398
3399 if (indx)
3400 mips_elf_output_dynamic_relocation
3401 (abfd, sreloc, sreloc->reloc_count++, indx,
3402 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3403 sgot->output_offset + sgot->output_section->vma + got_offset2);
3404 else
3405 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3406 sgot->contents + got_offset2);
3407 }
3408 else
3409 {
3410 MIPS_ELF_PUT_WORD (abfd, 1,
3411 sgot->contents + got_offset);
3412 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3413 sgot->contents + got_offset2);
3414 }
3415 break;
3416
3417 case GOT_TLS_IE:
3418 /* Initial Exec model. */
3419 if (need_relocs)
3420 {
3421 if (indx == 0)
3422 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3423 sgot->contents + got_offset);
3424 else
3425 MIPS_ELF_PUT_WORD (abfd, 0,
3426 sgot->contents + got_offset);
3427
3428 mips_elf_output_dynamic_relocation
3429 (abfd, sreloc, sreloc->reloc_count++, indx,
3430 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3431 sgot->output_offset + sgot->output_section->vma + got_offset);
3432 }
3433 else
3434 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3435 sgot->contents + got_offset);
3436 break;
3437
3438 case GOT_TLS_LDM:
3439 /* The initial offset is zero, and the LD offsets will include the
3440 bias by DTP_OFFSET. */
3441 MIPS_ELF_PUT_WORD (abfd, 0,
3442 sgot->contents + got_offset
3443 + MIPS_ELF_GOT_SIZE (abfd));
3444
3445 if (!bfd_link_pic (info))
3446 MIPS_ELF_PUT_WORD (abfd, 1,
3447 sgot->contents + got_offset);
3448 else
3449 mips_elf_output_dynamic_relocation
3450 (abfd, sreloc, sreloc->reloc_count++, indx,
3451 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3452 sgot->output_offset + sgot->output_section->vma + got_offset);
3453 break;
3454
3455 default:
3456 abort ();
3457 }
3458
3459 entry->tls_initialized = TRUE;
3460 }
3461
3462 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3463 for global symbol H. .got.plt comes before the GOT, so the offset
3464 will be negative. */
3465
3466 static bfd_vma
3467 mips_elf_gotplt_index (struct bfd_link_info *info,
3468 struct elf_link_hash_entry *h)
3469 {
3470 bfd_vma got_address, got_value;
3471 struct mips_elf_link_hash_table *htab;
3472
3473 htab = mips_elf_hash_table (info);
3474 BFD_ASSERT (htab != NULL);
3475
3476 BFD_ASSERT (h->plt.plist != NULL);
3477 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3478
3479 /* Calculate the address of the associated .got.plt entry. */
3480 got_address = (htab->sgotplt->output_section->vma
3481 + htab->sgotplt->output_offset
3482 + (h->plt.plist->gotplt_index
3483 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3484
3485 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3486 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3487 + htab->root.hgot->root.u.def.section->output_offset
3488 + htab->root.hgot->root.u.def.value);
3489
3490 return got_address - got_value;
3491 }
3492
3493 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3494 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3495 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3496 offset can be found. */
3497
3498 static bfd_vma
3499 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3500 bfd_vma value, unsigned long r_symndx,
3501 struct mips_elf_link_hash_entry *h, int r_type)
3502 {
3503 struct mips_elf_link_hash_table *htab;
3504 struct mips_got_entry *entry;
3505
3506 htab = mips_elf_hash_table (info);
3507 BFD_ASSERT (htab != NULL);
3508
3509 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3510 r_symndx, h, r_type);
3511 if (!entry)
3512 return MINUS_ONE;
3513
3514 if (entry->tls_type)
3515 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3516 return entry->gotidx;
3517 }
3518
3519 /* Return the GOT index of global symbol H in the primary GOT. */
3520
3521 static bfd_vma
3522 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3523 struct elf_link_hash_entry *h)
3524 {
3525 struct mips_elf_link_hash_table *htab;
3526 long global_got_dynindx;
3527 struct mips_got_info *g;
3528 bfd_vma got_index;
3529
3530 htab = mips_elf_hash_table (info);
3531 BFD_ASSERT (htab != NULL);
3532
3533 global_got_dynindx = 0;
3534 if (htab->global_gotsym != NULL)
3535 global_got_dynindx = htab->global_gotsym->dynindx;
3536
3537 /* Once we determine the global GOT entry with the lowest dynamic
3538 symbol table index, we must put all dynamic symbols with greater
3539 indices into the primary GOT. That makes it easy to calculate the
3540 GOT offset. */
3541 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3542 g = mips_elf_bfd_got (obfd, FALSE);
3543 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3544 * MIPS_ELF_GOT_SIZE (obfd));
3545 BFD_ASSERT (got_index < htab->sgot->size);
3546
3547 return got_index;
3548 }
3549
3550 /* Return the GOT index for the global symbol indicated by H, which is
3551 referenced by a relocation of type R_TYPE in IBFD. */
3552
3553 static bfd_vma
3554 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3555 struct elf_link_hash_entry *h, int r_type)
3556 {
3557 struct mips_elf_link_hash_table *htab;
3558 struct mips_got_info *g;
3559 struct mips_got_entry lookup, *entry;
3560 bfd_vma gotidx;
3561
3562 htab = mips_elf_hash_table (info);
3563 BFD_ASSERT (htab != NULL);
3564
3565 g = mips_elf_bfd_got (ibfd, FALSE);
3566 BFD_ASSERT (g);
3567
3568 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3569 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3570 return mips_elf_primary_global_got_index (obfd, info, h);
3571
3572 lookup.abfd = ibfd;
3573 lookup.symndx = -1;
3574 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3575 entry = htab_find (g->got_entries, &lookup);
3576 BFD_ASSERT (entry);
3577
3578 gotidx = entry->gotidx;
3579 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3580
3581 if (lookup.tls_type)
3582 {
3583 bfd_vma value = MINUS_ONE;
3584
3585 if ((h->root.type == bfd_link_hash_defined
3586 || h->root.type == bfd_link_hash_defweak)
3587 && h->root.u.def.section->output_section)
3588 value = (h->root.u.def.value
3589 + h->root.u.def.section->output_offset
3590 + h->root.u.def.section->output_section->vma);
3591
3592 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3593 }
3594 return gotidx;
3595 }
3596
3597 /* Find a GOT page entry that points to within 32KB of VALUE. These
3598 entries are supposed to be placed at small offsets in the GOT, i.e.,
3599 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3600 entry could be created. If OFFSETP is nonnull, use it to return the
3601 offset of the GOT entry from VALUE. */
3602
3603 static bfd_vma
3604 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3605 bfd_vma value, bfd_vma *offsetp)
3606 {
3607 bfd_vma page, got_index;
3608 struct mips_got_entry *entry;
3609
3610 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3611 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3612 NULL, R_MIPS_GOT_PAGE);
3613
3614 if (!entry)
3615 return MINUS_ONE;
3616
3617 got_index = entry->gotidx;
3618
3619 if (offsetp)
3620 *offsetp = value - entry->d.address;
3621
3622 return got_index;
3623 }
3624
3625 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3626 EXTERNAL is true if the relocation was originally against a global
3627 symbol that binds locally. */
3628
3629 static bfd_vma
3630 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3631 bfd_vma value, bfd_boolean external)
3632 {
3633 struct mips_got_entry *entry;
3634
3635 /* GOT16 relocations against local symbols are followed by a LO16
3636 relocation; those against global symbols are not. Thus if the
3637 symbol was originally local, the GOT16 relocation should load the
3638 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3639 if (! external)
3640 value = mips_elf_high (value) << 16;
3641
3642 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3643 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3644 same in all cases. */
3645 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3646 NULL, R_MIPS_GOT16);
3647 if (entry)
3648 return entry->gotidx;
3649 else
3650 return MINUS_ONE;
3651 }
3652
3653 /* Returns the offset for the entry at the INDEXth position
3654 in the GOT. */
3655
3656 static bfd_vma
3657 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3658 bfd *input_bfd, bfd_vma got_index)
3659 {
3660 struct mips_elf_link_hash_table *htab;
3661 asection *sgot;
3662 bfd_vma gp;
3663
3664 htab = mips_elf_hash_table (info);
3665 BFD_ASSERT (htab != NULL);
3666
3667 sgot = htab->sgot;
3668 gp = _bfd_get_gp_value (output_bfd)
3669 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3670
3671 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3672 }
3673
3674 /* Create and return a local GOT entry for VALUE, which was calculated
3675 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3676 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3677 instead. */
3678
3679 static struct mips_got_entry *
3680 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3681 bfd *ibfd, bfd_vma value,
3682 unsigned long r_symndx,
3683 struct mips_elf_link_hash_entry *h,
3684 int r_type)
3685 {
3686 struct mips_got_entry lookup, *entry;
3687 void **loc;
3688 struct mips_got_info *g;
3689 struct mips_elf_link_hash_table *htab;
3690 bfd_vma gotidx;
3691
3692 htab = mips_elf_hash_table (info);
3693 BFD_ASSERT (htab != NULL);
3694
3695 g = mips_elf_bfd_got (ibfd, FALSE);
3696 if (g == NULL)
3697 {
3698 g = mips_elf_bfd_got (abfd, FALSE);
3699 BFD_ASSERT (g != NULL);
3700 }
3701
3702 /* This function shouldn't be called for symbols that live in the global
3703 area of the GOT. */
3704 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3705
3706 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3707 if (lookup.tls_type)
3708 {
3709 lookup.abfd = ibfd;
3710 if (tls_ldm_reloc_p (r_type))
3711 {
3712 lookup.symndx = 0;
3713 lookup.d.addend = 0;
3714 }
3715 else if (h == NULL)
3716 {
3717 lookup.symndx = r_symndx;
3718 lookup.d.addend = 0;
3719 }
3720 else
3721 {
3722 lookup.symndx = -1;
3723 lookup.d.h = h;
3724 }
3725
3726 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3727 BFD_ASSERT (entry);
3728
3729 gotidx = entry->gotidx;
3730 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3731
3732 return entry;
3733 }
3734
3735 lookup.abfd = NULL;
3736 lookup.symndx = -1;
3737 lookup.d.address = value;
3738 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3739 if (!loc)
3740 return NULL;
3741
3742 entry = (struct mips_got_entry *) *loc;
3743 if (entry)
3744 return entry;
3745
3746 if (g->assigned_low_gotno > g->assigned_high_gotno)
3747 {
3748 /* We didn't allocate enough space in the GOT. */
3749 (*_bfd_error_handler)
3750 (_("not enough GOT space for local GOT entries"));
3751 bfd_set_error (bfd_error_bad_value);
3752 return NULL;
3753 }
3754
3755 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3756 if (!entry)
3757 return NULL;
3758
3759 if (got16_reloc_p (r_type)
3760 || call16_reloc_p (r_type)
3761 || got_page_reloc_p (r_type)
3762 || got_disp_reloc_p (r_type))
3763 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3764 else
3765 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3766
3767 *entry = lookup;
3768 *loc = entry;
3769
3770 MIPS_ELF_PUT_WORD (abfd, value, htab->sgot->contents + entry->gotidx);
3771
3772 /* These GOT entries need a dynamic relocation on VxWorks. */
3773 if (htab->is_vxworks)
3774 {
3775 Elf_Internal_Rela outrel;
3776 asection *s;
3777 bfd_byte *rloc;
3778 bfd_vma got_address;
3779
3780 s = mips_elf_rel_dyn_section (info, FALSE);
3781 got_address = (htab->sgot->output_section->vma
3782 + htab->sgot->output_offset
3783 + entry->gotidx);
3784
3785 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3786 outrel.r_offset = got_address;
3787 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3788 outrel.r_addend = value;
3789 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3790 }
3791
3792 return entry;
3793 }
3794
3795 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3796 The number might be exact or a worst-case estimate, depending on how
3797 much information is available to elf_backend_omit_section_dynsym at
3798 the current linking stage. */
3799
3800 static bfd_size_type
3801 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3802 {
3803 bfd_size_type count;
3804
3805 count = 0;
3806 if (bfd_link_pic (info)
3807 || elf_hash_table (info)->is_relocatable_executable)
3808 {
3809 asection *p;
3810 const struct elf_backend_data *bed;
3811
3812 bed = get_elf_backend_data (output_bfd);
3813 for (p = output_bfd->sections; p ; p = p->next)
3814 if ((p->flags & SEC_EXCLUDE) == 0
3815 && (p->flags & SEC_ALLOC) != 0
3816 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3817 ++count;
3818 }
3819 return count;
3820 }
3821
3822 /* Sort the dynamic symbol table so that symbols that need GOT entries
3823 appear towards the end. */
3824
3825 static bfd_boolean
3826 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3827 {
3828 struct mips_elf_link_hash_table *htab;
3829 struct mips_elf_hash_sort_data hsd;
3830 struct mips_got_info *g;
3831
3832 if (elf_hash_table (info)->dynsymcount == 0)
3833 return TRUE;
3834
3835 htab = mips_elf_hash_table (info);
3836 BFD_ASSERT (htab != NULL);
3837
3838 g = htab->got_info;
3839 if (g == NULL)
3840 return TRUE;
3841
3842 hsd.low = NULL;
3843 hsd.max_unref_got_dynindx
3844 = hsd.min_got_dynindx
3845 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3846 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3847 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3848 elf_hash_table (info)),
3849 mips_elf_sort_hash_table_f,
3850 &hsd);
3851
3852 /* There should have been enough room in the symbol table to
3853 accommodate both the GOT and non-GOT symbols. */
3854 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3855 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3856 == elf_hash_table (info)->dynsymcount);
3857 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3858 == g->global_gotno);
3859
3860 /* Now we know which dynamic symbol has the lowest dynamic symbol
3861 table index in the GOT. */
3862 htab->global_gotsym = hsd.low;
3863
3864 return TRUE;
3865 }
3866
3867 /* If H needs a GOT entry, assign it the highest available dynamic
3868 index. Otherwise, assign it the lowest available dynamic
3869 index. */
3870
3871 static bfd_boolean
3872 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3873 {
3874 struct mips_elf_hash_sort_data *hsd = data;
3875
3876 /* Symbols without dynamic symbol table entries aren't interesting
3877 at all. */
3878 if (h->root.dynindx == -1)
3879 return TRUE;
3880
3881 switch (h->global_got_area)
3882 {
3883 case GGA_NONE:
3884 h->root.dynindx = hsd->max_non_got_dynindx++;
3885 break;
3886
3887 case GGA_NORMAL:
3888 h->root.dynindx = --hsd->min_got_dynindx;
3889 hsd->low = (struct elf_link_hash_entry *) h;
3890 break;
3891
3892 case GGA_RELOC_ONLY:
3893 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3894 hsd->low = (struct elf_link_hash_entry *) h;
3895 h->root.dynindx = hsd->max_unref_got_dynindx++;
3896 break;
3897 }
3898
3899 return TRUE;
3900 }
3901
3902 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3903 (which is owned by the caller and shouldn't be added to the
3904 hash table directly). */
3905
3906 static bfd_boolean
3907 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3908 struct mips_got_entry *lookup)
3909 {
3910 struct mips_elf_link_hash_table *htab;
3911 struct mips_got_entry *entry;
3912 struct mips_got_info *g;
3913 void **loc, **bfd_loc;
3914
3915 /* Make sure there's a slot for this entry in the master GOT. */
3916 htab = mips_elf_hash_table (info);
3917 g = htab->got_info;
3918 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3919 if (!loc)
3920 return FALSE;
3921
3922 /* Populate the entry if it isn't already. */
3923 entry = (struct mips_got_entry *) *loc;
3924 if (!entry)
3925 {
3926 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3927 if (!entry)
3928 return FALSE;
3929
3930 lookup->tls_initialized = FALSE;
3931 lookup->gotidx = -1;
3932 *entry = *lookup;
3933 *loc = entry;
3934 }
3935
3936 /* Reuse the same GOT entry for the BFD's GOT. */
3937 g = mips_elf_bfd_got (abfd, TRUE);
3938 if (!g)
3939 return FALSE;
3940
3941 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3942 if (!bfd_loc)
3943 return FALSE;
3944
3945 if (!*bfd_loc)
3946 *bfd_loc = entry;
3947 return TRUE;
3948 }
3949
3950 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3951 entry for it. FOR_CALL is true if the caller is only interested in
3952 using the GOT entry for calls. */
3953
3954 static bfd_boolean
3955 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3956 bfd *abfd, struct bfd_link_info *info,
3957 bfd_boolean for_call, int r_type)
3958 {
3959 struct mips_elf_link_hash_table *htab;
3960 struct mips_elf_link_hash_entry *hmips;
3961 struct mips_got_entry entry;
3962 unsigned char tls_type;
3963
3964 htab = mips_elf_hash_table (info);
3965 BFD_ASSERT (htab != NULL);
3966
3967 hmips = (struct mips_elf_link_hash_entry *) h;
3968 if (!for_call)
3969 hmips->got_only_for_calls = FALSE;
3970
3971 /* A global symbol in the GOT must also be in the dynamic symbol
3972 table. */
3973 if (h->dynindx == -1)
3974 {
3975 switch (ELF_ST_VISIBILITY (h->other))
3976 {
3977 case STV_INTERNAL:
3978 case STV_HIDDEN:
3979 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3980 break;
3981 }
3982 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3983 return FALSE;
3984 }
3985
3986 tls_type = mips_elf_reloc_tls_type (r_type);
3987 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
3988 hmips->global_got_area = GGA_NORMAL;
3989
3990 entry.abfd = abfd;
3991 entry.symndx = -1;
3992 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3993 entry.tls_type = tls_type;
3994 return mips_elf_record_got_entry (info, abfd, &entry);
3995 }
3996
3997 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
3998 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
3999
4000 static bfd_boolean
4001 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
4002 struct bfd_link_info *info, int r_type)
4003 {
4004 struct mips_elf_link_hash_table *htab;
4005 struct mips_got_info *g;
4006 struct mips_got_entry entry;
4007
4008 htab = mips_elf_hash_table (info);
4009 BFD_ASSERT (htab != NULL);
4010
4011 g = htab->got_info;
4012 BFD_ASSERT (g != NULL);
4013
4014 entry.abfd = abfd;
4015 entry.symndx = symndx;
4016 entry.d.addend = addend;
4017 entry.tls_type = mips_elf_reloc_tls_type (r_type);
4018 return mips_elf_record_got_entry (info, abfd, &entry);
4019 }
4020
4021 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4022 H is the symbol's hash table entry, or null if SYMNDX is local
4023 to ABFD. */
4024
4025 static bfd_boolean
4026 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4027 long symndx, struct elf_link_hash_entry *h,
4028 bfd_signed_vma addend)
4029 {
4030 struct mips_elf_link_hash_table *htab;
4031 struct mips_got_info *g1, *g2;
4032 struct mips_got_page_ref lookup, *entry;
4033 void **loc, **bfd_loc;
4034
4035 htab = mips_elf_hash_table (info);
4036 BFD_ASSERT (htab != NULL);
4037
4038 g1 = htab->got_info;
4039 BFD_ASSERT (g1 != NULL);
4040
4041 if (h)
4042 {
4043 lookup.symndx = -1;
4044 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4045 }
4046 else
4047 {
4048 lookup.symndx = symndx;
4049 lookup.u.abfd = abfd;
4050 }
4051 lookup.addend = addend;
4052 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4053 if (loc == NULL)
4054 return FALSE;
4055
4056 entry = (struct mips_got_page_ref *) *loc;
4057 if (!entry)
4058 {
4059 entry = bfd_alloc (abfd, sizeof (*entry));
4060 if (!entry)
4061 return FALSE;
4062
4063 *entry = lookup;
4064 *loc = entry;
4065 }
4066
4067 /* Add the same entry to the BFD's GOT. */
4068 g2 = mips_elf_bfd_got (abfd, TRUE);
4069 if (!g2)
4070 return FALSE;
4071
4072 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4073 if (!bfd_loc)
4074 return FALSE;
4075
4076 if (!*bfd_loc)
4077 *bfd_loc = entry;
4078
4079 return TRUE;
4080 }
4081
4082 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4083
4084 static void
4085 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4086 unsigned int n)
4087 {
4088 asection *s;
4089 struct mips_elf_link_hash_table *htab;
4090
4091 htab = mips_elf_hash_table (info);
4092 BFD_ASSERT (htab != NULL);
4093
4094 s = mips_elf_rel_dyn_section (info, FALSE);
4095 BFD_ASSERT (s != NULL);
4096
4097 if (htab->is_vxworks)
4098 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4099 else
4100 {
4101 if (s->size == 0)
4102 {
4103 /* Make room for a null element. */
4104 s->size += MIPS_ELF_REL_SIZE (abfd);
4105 ++s->reloc_count;
4106 }
4107 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4108 }
4109 }
4110 \f
4111 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4112 mips_elf_traverse_got_arg structure. Count the number of GOT
4113 entries and TLS relocs. Set DATA->value to true if we need
4114 to resolve indirect or warning symbols and then recreate the GOT. */
4115
4116 static int
4117 mips_elf_check_recreate_got (void **entryp, void *data)
4118 {
4119 struct mips_got_entry *entry;
4120 struct mips_elf_traverse_got_arg *arg;
4121
4122 entry = (struct mips_got_entry *) *entryp;
4123 arg = (struct mips_elf_traverse_got_arg *) data;
4124 if (entry->abfd != NULL && entry->symndx == -1)
4125 {
4126 struct mips_elf_link_hash_entry *h;
4127
4128 h = entry->d.h;
4129 if (h->root.root.type == bfd_link_hash_indirect
4130 || h->root.root.type == bfd_link_hash_warning)
4131 {
4132 arg->value = TRUE;
4133 return 0;
4134 }
4135 }
4136 mips_elf_count_got_entry (arg->info, arg->g, entry);
4137 return 1;
4138 }
4139
4140 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4141 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4142 converting entries for indirect and warning symbols into entries
4143 for the target symbol. Set DATA->g to null on error. */
4144
4145 static int
4146 mips_elf_recreate_got (void **entryp, void *data)
4147 {
4148 struct mips_got_entry new_entry, *entry;
4149 struct mips_elf_traverse_got_arg *arg;
4150 void **slot;
4151
4152 entry = (struct mips_got_entry *) *entryp;
4153 arg = (struct mips_elf_traverse_got_arg *) data;
4154 if (entry->abfd != NULL
4155 && entry->symndx == -1
4156 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4157 || entry->d.h->root.root.type == bfd_link_hash_warning))
4158 {
4159 struct mips_elf_link_hash_entry *h;
4160
4161 new_entry = *entry;
4162 entry = &new_entry;
4163 h = entry->d.h;
4164 do
4165 {
4166 BFD_ASSERT (h->global_got_area == GGA_NONE);
4167 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4168 }
4169 while (h->root.root.type == bfd_link_hash_indirect
4170 || h->root.root.type == bfd_link_hash_warning);
4171 entry->d.h = h;
4172 }
4173 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4174 if (slot == NULL)
4175 {
4176 arg->g = NULL;
4177 return 0;
4178 }
4179 if (*slot == NULL)
4180 {
4181 if (entry == &new_entry)
4182 {
4183 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4184 if (!entry)
4185 {
4186 arg->g = NULL;
4187 return 0;
4188 }
4189 *entry = new_entry;
4190 }
4191 *slot = entry;
4192 mips_elf_count_got_entry (arg->info, arg->g, entry);
4193 }
4194 return 1;
4195 }
4196
4197 /* Return the maximum number of GOT page entries required for RANGE. */
4198
4199 static bfd_vma
4200 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4201 {
4202 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4203 }
4204
4205 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4206
4207 static bfd_boolean
4208 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4209 asection *sec, bfd_signed_vma addend)
4210 {
4211 struct mips_got_info *g = arg->g;
4212 struct mips_got_page_entry lookup, *entry;
4213 struct mips_got_page_range **range_ptr, *range;
4214 bfd_vma old_pages, new_pages;
4215 void **loc;
4216
4217 /* Find the mips_got_page_entry hash table entry for this section. */
4218 lookup.sec = sec;
4219 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4220 if (loc == NULL)
4221 return FALSE;
4222
4223 /* Create a mips_got_page_entry if this is the first time we've
4224 seen the section. */
4225 entry = (struct mips_got_page_entry *) *loc;
4226 if (!entry)
4227 {
4228 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4229 if (!entry)
4230 return FALSE;
4231
4232 entry->sec = sec;
4233 *loc = entry;
4234 }
4235
4236 /* Skip over ranges whose maximum extent cannot share a page entry
4237 with ADDEND. */
4238 range_ptr = &entry->ranges;
4239 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4240 range_ptr = &(*range_ptr)->next;
4241
4242 /* If we scanned to the end of the list, or found a range whose
4243 minimum extent cannot share a page entry with ADDEND, create
4244 a new singleton range. */
4245 range = *range_ptr;
4246 if (!range || addend < range->min_addend - 0xffff)
4247 {
4248 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4249 if (!range)
4250 return FALSE;
4251
4252 range->next = *range_ptr;
4253 range->min_addend = addend;
4254 range->max_addend = addend;
4255
4256 *range_ptr = range;
4257 entry->num_pages++;
4258 g->page_gotno++;
4259 return TRUE;
4260 }
4261
4262 /* Remember how many pages the old range contributed. */
4263 old_pages = mips_elf_pages_for_range (range);
4264
4265 /* Update the ranges. */
4266 if (addend < range->min_addend)
4267 range->min_addend = addend;
4268 else if (addend > range->max_addend)
4269 {
4270 if (range->next && addend >= range->next->min_addend - 0xffff)
4271 {
4272 old_pages += mips_elf_pages_for_range (range->next);
4273 range->max_addend = range->next->max_addend;
4274 range->next = range->next->next;
4275 }
4276 else
4277 range->max_addend = addend;
4278 }
4279
4280 /* Record any change in the total estimate. */
4281 new_pages = mips_elf_pages_for_range (range);
4282 if (old_pages != new_pages)
4283 {
4284 entry->num_pages += new_pages - old_pages;
4285 g->page_gotno += new_pages - old_pages;
4286 }
4287
4288 return TRUE;
4289 }
4290
4291 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4292 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4293 whether the page reference described by *REFP needs a GOT page entry,
4294 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4295
4296 static bfd_boolean
4297 mips_elf_resolve_got_page_ref (void **refp, void *data)
4298 {
4299 struct mips_got_page_ref *ref;
4300 struct mips_elf_traverse_got_arg *arg;
4301 struct mips_elf_link_hash_table *htab;
4302 asection *sec;
4303 bfd_vma addend;
4304
4305 ref = (struct mips_got_page_ref *) *refp;
4306 arg = (struct mips_elf_traverse_got_arg *) data;
4307 htab = mips_elf_hash_table (arg->info);
4308
4309 if (ref->symndx < 0)
4310 {
4311 struct mips_elf_link_hash_entry *h;
4312
4313 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4314 h = ref->u.h;
4315 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4316 return 1;
4317
4318 /* Ignore undefined symbols; we'll issue an error later if
4319 appropriate. */
4320 if (!((h->root.root.type == bfd_link_hash_defined
4321 || h->root.root.type == bfd_link_hash_defweak)
4322 && h->root.root.u.def.section))
4323 return 1;
4324
4325 sec = h->root.root.u.def.section;
4326 addend = h->root.root.u.def.value + ref->addend;
4327 }
4328 else
4329 {
4330 Elf_Internal_Sym *isym;
4331
4332 /* Read in the symbol. */
4333 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4334 ref->symndx);
4335 if (isym == NULL)
4336 {
4337 arg->g = NULL;
4338 return 0;
4339 }
4340
4341 /* Get the associated input section. */
4342 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4343 if (sec == NULL)
4344 {
4345 arg->g = NULL;
4346 return 0;
4347 }
4348
4349 /* If this is a mergable section, work out the section and offset
4350 of the merged data. For section symbols, the addend specifies
4351 of the offset _of_ the first byte in the data, otherwise it
4352 specifies the offset _from_ the first byte. */
4353 if (sec->flags & SEC_MERGE)
4354 {
4355 void *secinfo;
4356
4357 secinfo = elf_section_data (sec)->sec_info;
4358 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4359 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4360 isym->st_value + ref->addend);
4361 else
4362 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4363 isym->st_value) + ref->addend;
4364 }
4365 else
4366 addend = isym->st_value + ref->addend;
4367 }
4368 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4369 {
4370 arg->g = NULL;
4371 return 0;
4372 }
4373 return 1;
4374 }
4375
4376 /* If any entries in G->got_entries are for indirect or warning symbols,
4377 replace them with entries for the target symbol. Convert g->got_page_refs
4378 into got_page_entry structures and estimate the number of page entries
4379 that they require. */
4380
4381 static bfd_boolean
4382 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4383 struct mips_got_info *g)
4384 {
4385 struct mips_elf_traverse_got_arg tga;
4386 struct mips_got_info oldg;
4387
4388 oldg = *g;
4389
4390 tga.info = info;
4391 tga.g = g;
4392 tga.value = FALSE;
4393 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4394 if (tga.value)
4395 {
4396 *g = oldg;
4397 g->got_entries = htab_create (htab_size (oldg.got_entries),
4398 mips_elf_got_entry_hash,
4399 mips_elf_got_entry_eq, NULL);
4400 if (!g->got_entries)
4401 return FALSE;
4402
4403 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4404 if (!tga.g)
4405 return FALSE;
4406
4407 htab_delete (oldg.got_entries);
4408 }
4409
4410 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4411 mips_got_page_entry_eq, NULL);
4412 if (g->got_page_entries == NULL)
4413 return FALSE;
4414
4415 tga.info = info;
4416 tga.g = g;
4417 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4418
4419 return TRUE;
4420 }
4421
4422 /* Return true if a GOT entry for H should live in the local rather than
4423 global GOT area. */
4424
4425 static bfd_boolean
4426 mips_use_local_got_p (struct bfd_link_info *info,
4427 struct mips_elf_link_hash_entry *h)
4428 {
4429 /* Symbols that aren't in the dynamic symbol table must live in the
4430 local GOT. This includes symbols that are completely undefined
4431 and which therefore don't bind locally. We'll report undefined
4432 symbols later if appropriate. */
4433 if (h->root.dynindx == -1)
4434 return TRUE;
4435
4436 /* Symbols that bind locally can (and in the case of forced-local
4437 symbols, must) live in the local GOT. */
4438 if (h->got_only_for_calls
4439 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4440 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4441 return TRUE;
4442
4443 /* If this is an executable that must provide a definition of the symbol,
4444 either though PLTs or copy relocations, then that address should go in
4445 the local rather than global GOT. */
4446 if (bfd_link_executable (info) && h->has_static_relocs)
4447 return TRUE;
4448
4449 return FALSE;
4450 }
4451
4452 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4453 link_info structure. Decide whether the hash entry needs an entry in
4454 the global part of the primary GOT, setting global_got_area accordingly.
4455 Count the number of global symbols that are in the primary GOT only
4456 because they have relocations against them (reloc_only_gotno). */
4457
4458 static int
4459 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4460 {
4461 struct bfd_link_info *info;
4462 struct mips_elf_link_hash_table *htab;
4463 struct mips_got_info *g;
4464
4465 info = (struct bfd_link_info *) data;
4466 htab = mips_elf_hash_table (info);
4467 g = htab->got_info;
4468 if (h->global_got_area != GGA_NONE)
4469 {
4470 /* Make a final decision about whether the symbol belongs in the
4471 local or global GOT. */
4472 if (mips_use_local_got_p (info, h))
4473 /* The symbol belongs in the local GOT. We no longer need this
4474 entry if it was only used for relocations; those relocations
4475 will be against the null or section symbol instead of H. */
4476 h->global_got_area = GGA_NONE;
4477 else if (htab->is_vxworks
4478 && h->got_only_for_calls
4479 && h->root.plt.plist->mips_offset != MINUS_ONE)
4480 /* On VxWorks, calls can refer directly to the .got.plt entry;
4481 they don't need entries in the regular GOT. .got.plt entries
4482 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4483 h->global_got_area = GGA_NONE;
4484 else if (h->global_got_area == GGA_RELOC_ONLY)
4485 {
4486 g->reloc_only_gotno++;
4487 g->global_gotno++;
4488 }
4489 }
4490 return 1;
4491 }
4492 \f
4493 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4494 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4495
4496 static int
4497 mips_elf_add_got_entry (void **entryp, void *data)
4498 {
4499 struct mips_got_entry *entry;
4500 struct mips_elf_traverse_got_arg *arg;
4501 void **slot;
4502
4503 entry = (struct mips_got_entry *) *entryp;
4504 arg = (struct mips_elf_traverse_got_arg *) data;
4505 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4506 if (!slot)
4507 {
4508 arg->g = NULL;
4509 return 0;
4510 }
4511 if (!*slot)
4512 {
4513 *slot = entry;
4514 mips_elf_count_got_entry (arg->info, arg->g, entry);
4515 }
4516 return 1;
4517 }
4518
4519 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4520 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4521
4522 static int
4523 mips_elf_add_got_page_entry (void **entryp, void *data)
4524 {
4525 struct mips_got_page_entry *entry;
4526 struct mips_elf_traverse_got_arg *arg;
4527 void **slot;
4528
4529 entry = (struct mips_got_page_entry *) *entryp;
4530 arg = (struct mips_elf_traverse_got_arg *) data;
4531 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4532 if (!slot)
4533 {
4534 arg->g = NULL;
4535 return 0;
4536 }
4537 if (!*slot)
4538 {
4539 *slot = entry;
4540 arg->g->page_gotno += entry->num_pages;
4541 }
4542 return 1;
4543 }
4544
4545 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4546 this would lead to overflow, 1 if they were merged successfully,
4547 and 0 if a merge failed due to lack of memory. (These values are chosen
4548 so that nonnegative return values can be returned by a htab_traverse
4549 callback.) */
4550
4551 static int
4552 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4553 struct mips_got_info *to,
4554 struct mips_elf_got_per_bfd_arg *arg)
4555 {
4556 struct mips_elf_traverse_got_arg tga;
4557 unsigned int estimate;
4558
4559 /* Work out how many page entries we would need for the combined GOT. */
4560 estimate = arg->max_pages;
4561 if (estimate >= from->page_gotno + to->page_gotno)
4562 estimate = from->page_gotno + to->page_gotno;
4563
4564 /* And conservatively estimate how many local and TLS entries
4565 would be needed. */
4566 estimate += from->local_gotno + to->local_gotno;
4567 estimate += from->tls_gotno + to->tls_gotno;
4568
4569 /* If we're merging with the primary got, any TLS relocations will
4570 come after the full set of global entries. Otherwise estimate those
4571 conservatively as well. */
4572 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4573 estimate += arg->global_count;
4574 else
4575 estimate += from->global_gotno + to->global_gotno;
4576
4577 /* Bail out if the combined GOT might be too big. */
4578 if (estimate > arg->max_count)
4579 return -1;
4580
4581 /* Transfer the bfd's got information from FROM to TO. */
4582 tga.info = arg->info;
4583 tga.g = to;
4584 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4585 if (!tga.g)
4586 return 0;
4587
4588 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4589 if (!tga.g)
4590 return 0;
4591
4592 mips_elf_replace_bfd_got (abfd, to);
4593 return 1;
4594 }
4595
4596 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4597 as possible of the primary got, since it doesn't require explicit
4598 dynamic relocations, but don't use bfds that would reference global
4599 symbols out of the addressable range. Failing the primary got,
4600 attempt to merge with the current got, or finish the current got
4601 and then make make the new got current. */
4602
4603 static bfd_boolean
4604 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4605 struct mips_elf_got_per_bfd_arg *arg)
4606 {
4607 unsigned int estimate;
4608 int result;
4609
4610 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4611 return FALSE;
4612
4613 /* Work out the number of page, local and TLS entries. */
4614 estimate = arg->max_pages;
4615 if (estimate > g->page_gotno)
4616 estimate = g->page_gotno;
4617 estimate += g->local_gotno + g->tls_gotno;
4618
4619 /* We place TLS GOT entries after both locals and globals. The globals
4620 for the primary GOT may overflow the normal GOT size limit, so be
4621 sure not to merge a GOT which requires TLS with the primary GOT in that
4622 case. This doesn't affect non-primary GOTs. */
4623 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4624
4625 if (estimate <= arg->max_count)
4626 {
4627 /* If we don't have a primary GOT, use it as
4628 a starting point for the primary GOT. */
4629 if (!arg->primary)
4630 {
4631 arg->primary = g;
4632 return TRUE;
4633 }
4634
4635 /* Try merging with the primary GOT. */
4636 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4637 if (result >= 0)
4638 return result;
4639 }
4640
4641 /* If we can merge with the last-created got, do it. */
4642 if (arg->current)
4643 {
4644 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4645 if (result >= 0)
4646 return result;
4647 }
4648
4649 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4650 fits; if it turns out that it doesn't, we'll get relocation
4651 overflows anyway. */
4652 g->next = arg->current;
4653 arg->current = g;
4654
4655 return TRUE;
4656 }
4657
4658 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4659 to GOTIDX, duplicating the entry if it has already been assigned
4660 an index in a different GOT. */
4661
4662 static bfd_boolean
4663 mips_elf_set_gotidx (void **entryp, long gotidx)
4664 {
4665 struct mips_got_entry *entry;
4666
4667 entry = (struct mips_got_entry *) *entryp;
4668 if (entry->gotidx > 0)
4669 {
4670 struct mips_got_entry *new_entry;
4671
4672 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4673 if (!new_entry)
4674 return FALSE;
4675
4676 *new_entry = *entry;
4677 *entryp = new_entry;
4678 entry = new_entry;
4679 }
4680 entry->gotidx = gotidx;
4681 return TRUE;
4682 }
4683
4684 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4685 mips_elf_traverse_got_arg in which DATA->value is the size of one
4686 GOT entry. Set DATA->g to null on failure. */
4687
4688 static int
4689 mips_elf_initialize_tls_index (void **entryp, void *data)
4690 {
4691 struct mips_got_entry *entry;
4692 struct mips_elf_traverse_got_arg *arg;
4693
4694 /* We're only interested in TLS symbols. */
4695 entry = (struct mips_got_entry *) *entryp;
4696 if (entry->tls_type == GOT_TLS_NONE)
4697 return 1;
4698
4699 arg = (struct mips_elf_traverse_got_arg *) data;
4700 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4701 {
4702 arg->g = NULL;
4703 return 0;
4704 }
4705
4706 /* Account for the entries we've just allocated. */
4707 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4708 return 1;
4709 }
4710
4711 /* A htab_traverse callback for GOT entries, where DATA points to a
4712 mips_elf_traverse_got_arg. Set the global_got_area of each global
4713 symbol to DATA->value. */
4714
4715 static int
4716 mips_elf_set_global_got_area (void **entryp, void *data)
4717 {
4718 struct mips_got_entry *entry;
4719 struct mips_elf_traverse_got_arg *arg;
4720
4721 entry = (struct mips_got_entry *) *entryp;
4722 arg = (struct mips_elf_traverse_got_arg *) data;
4723 if (entry->abfd != NULL
4724 && entry->symndx == -1
4725 && entry->d.h->global_got_area != GGA_NONE)
4726 entry->d.h->global_got_area = arg->value;
4727 return 1;
4728 }
4729
4730 /* A htab_traverse callback for secondary GOT entries, where DATA points
4731 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4732 and record the number of relocations they require. DATA->value is
4733 the size of one GOT entry. Set DATA->g to null on failure. */
4734
4735 static int
4736 mips_elf_set_global_gotidx (void **entryp, void *data)
4737 {
4738 struct mips_got_entry *entry;
4739 struct mips_elf_traverse_got_arg *arg;
4740
4741 entry = (struct mips_got_entry *) *entryp;
4742 arg = (struct mips_elf_traverse_got_arg *) data;
4743 if (entry->abfd != NULL
4744 && entry->symndx == -1
4745 && entry->d.h->global_got_area != GGA_NONE)
4746 {
4747 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4748 {
4749 arg->g = NULL;
4750 return 0;
4751 }
4752 arg->g->assigned_low_gotno += 1;
4753
4754 if (bfd_link_pic (arg->info)
4755 || (elf_hash_table (arg->info)->dynamic_sections_created
4756 && entry->d.h->root.def_dynamic
4757 && !entry->d.h->root.def_regular))
4758 arg->g->relocs += 1;
4759 }
4760
4761 return 1;
4762 }
4763
4764 /* A htab_traverse callback for GOT entries for which DATA is the
4765 bfd_link_info. Forbid any global symbols from having traditional
4766 lazy-binding stubs. */
4767
4768 static int
4769 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4770 {
4771 struct bfd_link_info *info;
4772 struct mips_elf_link_hash_table *htab;
4773 struct mips_got_entry *entry;
4774
4775 entry = (struct mips_got_entry *) *entryp;
4776 info = (struct bfd_link_info *) data;
4777 htab = mips_elf_hash_table (info);
4778 BFD_ASSERT (htab != NULL);
4779
4780 if (entry->abfd != NULL
4781 && entry->symndx == -1
4782 && entry->d.h->needs_lazy_stub)
4783 {
4784 entry->d.h->needs_lazy_stub = FALSE;
4785 htab->lazy_stub_count--;
4786 }
4787
4788 return 1;
4789 }
4790
4791 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4792 the primary GOT. */
4793 static bfd_vma
4794 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4795 {
4796 if (!g->next)
4797 return 0;
4798
4799 g = mips_elf_bfd_got (ibfd, FALSE);
4800 if (! g)
4801 return 0;
4802
4803 BFD_ASSERT (g->next);
4804
4805 g = g->next;
4806
4807 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4808 * MIPS_ELF_GOT_SIZE (abfd);
4809 }
4810
4811 /* Turn a single GOT that is too big for 16-bit addressing into
4812 a sequence of GOTs, each one 16-bit addressable. */
4813
4814 static bfd_boolean
4815 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4816 asection *got, bfd_size_type pages)
4817 {
4818 struct mips_elf_link_hash_table *htab;
4819 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4820 struct mips_elf_traverse_got_arg tga;
4821 struct mips_got_info *g, *gg;
4822 unsigned int assign, needed_relocs;
4823 bfd *dynobj, *ibfd;
4824
4825 dynobj = elf_hash_table (info)->dynobj;
4826 htab = mips_elf_hash_table (info);
4827 BFD_ASSERT (htab != NULL);
4828
4829 g = htab->got_info;
4830
4831 got_per_bfd_arg.obfd = abfd;
4832 got_per_bfd_arg.info = info;
4833 got_per_bfd_arg.current = NULL;
4834 got_per_bfd_arg.primary = NULL;
4835 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4836 / MIPS_ELF_GOT_SIZE (abfd))
4837 - htab->reserved_gotno);
4838 got_per_bfd_arg.max_pages = pages;
4839 /* The number of globals that will be included in the primary GOT.
4840 See the calls to mips_elf_set_global_got_area below for more
4841 information. */
4842 got_per_bfd_arg.global_count = g->global_gotno;
4843
4844 /* Try to merge the GOTs of input bfds together, as long as they
4845 don't seem to exceed the maximum GOT size, choosing one of them
4846 to be the primary GOT. */
4847 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4848 {
4849 gg = mips_elf_bfd_got (ibfd, FALSE);
4850 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4851 return FALSE;
4852 }
4853
4854 /* If we do not find any suitable primary GOT, create an empty one. */
4855 if (got_per_bfd_arg.primary == NULL)
4856 g->next = mips_elf_create_got_info (abfd);
4857 else
4858 g->next = got_per_bfd_arg.primary;
4859 g->next->next = got_per_bfd_arg.current;
4860
4861 /* GG is now the master GOT, and G is the primary GOT. */
4862 gg = g;
4863 g = g->next;
4864
4865 /* Map the output bfd to the primary got. That's what we're going
4866 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4867 didn't mark in check_relocs, and we want a quick way to find it.
4868 We can't just use gg->next because we're going to reverse the
4869 list. */
4870 mips_elf_replace_bfd_got (abfd, g);
4871
4872 /* Every symbol that is referenced in a dynamic relocation must be
4873 present in the primary GOT, so arrange for them to appear after
4874 those that are actually referenced. */
4875 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4876 g->global_gotno = gg->global_gotno;
4877
4878 tga.info = info;
4879 tga.value = GGA_RELOC_ONLY;
4880 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4881 tga.value = GGA_NORMAL;
4882 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4883
4884 /* Now go through the GOTs assigning them offset ranges.
4885 [assigned_low_gotno, local_gotno[ will be set to the range of local
4886 entries in each GOT. We can then compute the end of a GOT by
4887 adding local_gotno to global_gotno. We reverse the list and make
4888 it circular since then we'll be able to quickly compute the
4889 beginning of a GOT, by computing the end of its predecessor. To
4890 avoid special cases for the primary GOT, while still preserving
4891 assertions that are valid for both single- and multi-got links,
4892 we arrange for the main got struct to have the right number of
4893 global entries, but set its local_gotno such that the initial
4894 offset of the primary GOT is zero. Remember that the primary GOT
4895 will become the last item in the circular linked list, so it
4896 points back to the master GOT. */
4897 gg->local_gotno = -g->global_gotno;
4898 gg->global_gotno = g->global_gotno;
4899 gg->tls_gotno = 0;
4900 assign = 0;
4901 gg->next = gg;
4902
4903 do
4904 {
4905 struct mips_got_info *gn;
4906
4907 assign += htab->reserved_gotno;
4908 g->assigned_low_gotno = assign;
4909 g->local_gotno += assign;
4910 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4911 g->assigned_high_gotno = g->local_gotno - 1;
4912 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4913
4914 /* Take g out of the direct list, and push it onto the reversed
4915 list that gg points to. g->next is guaranteed to be nonnull after
4916 this operation, as required by mips_elf_initialize_tls_index. */
4917 gn = g->next;
4918 g->next = gg->next;
4919 gg->next = g;
4920
4921 /* Set up any TLS entries. We always place the TLS entries after
4922 all non-TLS entries. */
4923 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4924 tga.g = g;
4925 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4926 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4927 if (!tga.g)
4928 return FALSE;
4929 BFD_ASSERT (g->tls_assigned_gotno == assign);
4930
4931 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4932 g = gn;
4933
4934 /* Forbid global symbols in every non-primary GOT from having
4935 lazy-binding stubs. */
4936 if (g)
4937 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4938 }
4939 while (g);
4940
4941 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
4942
4943 needed_relocs = 0;
4944 for (g = gg->next; g && g->next != gg; g = g->next)
4945 {
4946 unsigned int save_assign;
4947
4948 /* Assign offsets to global GOT entries and count how many
4949 relocations they need. */
4950 save_assign = g->assigned_low_gotno;
4951 g->assigned_low_gotno = g->local_gotno;
4952 tga.info = info;
4953 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4954 tga.g = g;
4955 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
4956 if (!tga.g)
4957 return FALSE;
4958 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4959 g->assigned_low_gotno = save_assign;
4960
4961 if (bfd_link_pic (info))
4962 {
4963 g->relocs += g->local_gotno - g->assigned_low_gotno;
4964 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
4965 + g->next->global_gotno
4966 + g->next->tls_gotno
4967 + htab->reserved_gotno);
4968 }
4969 needed_relocs += g->relocs;
4970 }
4971 needed_relocs += g->relocs;
4972
4973 if (needed_relocs)
4974 mips_elf_allocate_dynamic_relocations (dynobj, info,
4975 needed_relocs);
4976
4977 return TRUE;
4978 }
4979
4980 \f
4981 /* Returns the first relocation of type r_type found, beginning with
4982 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4983
4984 static const Elf_Internal_Rela *
4985 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4986 const Elf_Internal_Rela *relocation,
4987 const Elf_Internal_Rela *relend)
4988 {
4989 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4990
4991 while (relocation < relend)
4992 {
4993 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4994 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4995 return relocation;
4996
4997 ++relocation;
4998 }
4999
5000 /* We didn't find it. */
5001 return NULL;
5002 }
5003
5004 /* Return whether an input relocation is against a local symbol. */
5005
5006 static bfd_boolean
5007 mips_elf_local_relocation_p (bfd *input_bfd,
5008 const Elf_Internal_Rela *relocation,
5009 asection **local_sections)
5010 {
5011 unsigned long r_symndx;
5012 Elf_Internal_Shdr *symtab_hdr;
5013 size_t extsymoff;
5014
5015 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5016 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5017 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5018
5019 if (r_symndx < extsymoff)
5020 return TRUE;
5021 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5022 return TRUE;
5023
5024 return FALSE;
5025 }
5026 \f
5027 /* Sign-extend VALUE, which has the indicated number of BITS. */
5028
5029 bfd_vma
5030 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
5031 {
5032 if (value & ((bfd_vma) 1 << (bits - 1)))
5033 /* VALUE is negative. */
5034 value |= ((bfd_vma) - 1) << bits;
5035
5036 return value;
5037 }
5038
5039 /* Return non-zero if the indicated VALUE has overflowed the maximum
5040 range expressible by a signed number with the indicated number of
5041 BITS. */
5042
5043 static bfd_boolean
5044 mips_elf_overflow_p (bfd_vma value, int bits)
5045 {
5046 bfd_signed_vma svalue = (bfd_signed_vma) value;
5047
5048 if (svalue > (1 << (bits - 1)) - 1)
5049 /* The value is too big. */
5050 return TRUE;
5051 else if (svalue < -(1 << (bits - 1)))
5052 /* The value is too small. */
5053 return TRUE;
5054
5055 /* All is well. */
5056 return FALSE;
5057 }
5058
5059 /* Calculate the %high function. */
5060
5061 static bfd_vma
5062 mips_elf_high (bfd_vma value)
5063 {
5064 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5065 }
5066
5067 /* Calculate the %higher function. */
5068
5069 static bfd_vma
5070 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5071 {
5072 #ifdef BFD64
5073 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5074 #else
5075 abort ();
5076 return MINUS_ONE;
5077 #endif
5078 }
5079
5080 /* Calculate the %highest function. */
5081
5082 static bfd_vma
5083 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5084 {
5085 #ifdef BFD64
5086 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5087 #else
5088 abort ();
5089 return MINUS_ONE;
5090 #endif
5091 }
5092 \f
5093 /* Create the .compact_rel section. */
5094
5095 static bfd_boolean
5096 mips_elf_create_compact_rel_section
5097 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5098 {
5099 flagword flags;
5100 register asection *s;
5101
5102 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5103 {
5104 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5105 | SEC_READONLY);
5106
5107 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5108 if (s == NULL
5109 || ! bfd_set_section_alignment (abfd, s,
5110 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5111 return FALSE;
5112
5113 s->size = sizeof (Elf32_External_compact_rel);
5114 }
5115
5116 return TRUE;
5117 }
5118
5119 /* Create the .got section to hold the global offset table. */
5120
5121 static bfd_boolean
5122 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5123 {
5124 flagword flags;
5125 register asection *s;
5126 struct elf_link_hash_entry *h;
5127 struct bfd_link_hash_entry *bh;
5128 struct mips_elf_link_hash_table *htab;
5129
5130 htab = mips_elf_hash_table (info);
5131 BFD_ASSERT (htab != NULL);
5132
5133 /* This function may be called more than once. */
5134 if (htab->sgot)
5135 return TRUE;
5136
5137 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5138 | SEC_LINKER_CREATED);
5139
5140 /* We have to use an alignment of 2**4 here because this is hardcoded
5141 in the function stub generation and in the linker script. */
5142 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5143 if (s == NULL
5144 || ! bfd_set_section_alignment (abfd, s, 4))
5145 return FALSE;
5146 htab->sgot = s;
5147
5148 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5149 linker script because we don't want to define the symbol if we
5150 are not creating a global offset table. */
5151 bh = NULL;
5152 if (! (_bfd_generic_link_add_one_symbol
5153 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5154 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5155 return FALSE;
5156
5157 h = (struct elf_link_hash_entry *) bh;
5158 h->non_elf = 0;
5159 h->def_regular = 1;
5160 h->type = STT_OBJECT;
5161 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5162 elf_hash_table (info)->hgot = h;
5163
5164 if (bfd_link_pic (info)
5165 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5166 return FALSE;
5167
5168 htab->got_info = mips_elf_create_got_info (abfd);
5169 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5170 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5171
5172 /* We also need a .got.plt section when generating PLTs. */
5173 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5174 SEC_ALLOC | SEC_LOAD
5175 | SEC_HAS_CONTENTS
5176 | SEC_IN_MEMORY
5177 | SEC_LINKER_CREATED);
5178 if (s == NULL)
5179 return FALSE;
5180 htab->sgotplt = s;
5181
5182 return TRUE;
5183 }
5184 \f
5185 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5186 __GOTT_INDEX__ symbols. These symbols are only special for
5187 shared objects; they are not used in executables. */
5188
5189 static bfd_boolean
5190 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5191 {
5192 return (mips_elf_hash_table (info)->is_vxworks
5193 && bfd_link_pic (info)
5194 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5195 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5196 }
5197
5198 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5199 require an la25 stub. See also mips_elf_local_pic_function_p,
5200 which determines whether the destination function ever requires a
5201 stub. */
5202
5203 static bfd_boolean
5204 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5205 bfd_boolean target_is_16_bit_code_p)
5206 {
5207 /* We specifically ignore branches and jumps from EF_PIC objects,
5208 where the onus is on the compiler or programmer to perform any
5209 necessary initialization of $25. Sometimes such initialization
5210 is unnecessary; for example, -mno-shared functions do not use
5211 the incoming value of $25, and may therefore be called directly. */
5212 if (PIC_OBJECT_P (input_bfd))
5213 return FALSE;
5214
5215 switch (r_type)
5216 {
5217 case R_MIPS_26:
5218 case R_MIPS_PC16:
5219 case R_MIPS_PC21_S2:
5220 case R_MIPS_PC26_S2:
5221 case R_MICROMIPS_26_S1:
5222 case R_MICROMIPS_PC7_S1:
5223 case R_MICROMIPS_PC10_S1:
5224 case R_MICROMIPS_PC16_S1:
5225 case R_MICROMIPS_PC23_S2:
5226 return TRUE;
5227
5228 case R_MIPS16_26:
5229 return !target_is_16_bit_code_p;
5230
5231 default:
5232 return FALSE;
5233 }
5234 }
5235 \f
5236 /* Calculate the value produced by the RELOCATION (which comes from
5237 the INPUT_BFD). The ADDEND is the addend to use for this
5238 RELOCATION; RELOCATION->R_ADDEND is ignored.
5239
5240 The result of the relocation calculation is stored in VALUEP.
5241 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5242 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5243
5244 This function returns bfd_reloc_continue if the caller need take no
5245 further action regarding this relocation, bfd_reloc_notsupported if
5246 something goes dramatically wrong, bfd_reloc_overflow if an
5247 overflow occurs, and bfd_reloc_ok to indicate success. */
5248
5249 static bfd_reloc_status_type
5250 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5251 asection *input_section,
5252 struct bfd_link_info *info,
5253 const Elf_Internal_Rela *relocation,
5254 bfd_vma addend, reloc_howto_type *howto,
5255 Elf_Internal_Sym *local_syms,
5256 asection **local_sections, bfd_vma *valuep,
5257 const char **namep,
5258 bfd_boolean *cross_mode_jump_p,
5259 bfd_boolean save_addend)
5260 {
5261 /* The eventual value we will return. */
5262 bfd_vma value;
5263 /* The address of the symbol against which the relocation is
5264 occurring. */
5265 bfd_vma symbol = 0;
5266 /* The final GP value to be used for the relocatable, executable, or
5267 shared object file being produced. */
5268 bfd_vma gp;
5269 /* The place (section offset or address) of the storage unit being
5270 relocated. */
5271 bfd_vma p;
5272 /* The value of GP used to create the relocatable object. */
5273 bfd_vma gp0;
5274 /* The offset into the global offset table at which the address of
5275 the relocation entry symbol, adjusted by the addend, resides
5276 during execution. */
5277 bfd_vma g = MINUS_ONE;
5278 /* The section in which the symbol referenced by the relocation is
5279 located. */
5280 asection *sec = NULL;
5281 struct mips_elf_link_hash_entry *h = NULL;
5282 /* TRUE if the symbol referred to by this relocation is a local
5283 symbol. */
5284 bfd_boolean local_p, was_local_p;
5285 /* TRUE if the symbol referred to by this relocation is a section
5286 symbol. */
5287 bfd_boolean section_p = FALSE;
5288 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5289 bfd_boolean gp_disp_p = FALSE;
5290 /* TRUE if the symbol referred to by this relocation is
5291 "__gnu_local_gp". */
5292 bfd_boolean gnu_local_gp_p = FALSE;
5293 Elf_Internal_Shdr *symtab_hdr;
5294 size_t extsymoff;
5295 unsigned long r_symndx;
5296 int r_type;
5297 /* TRUE if overflow occurred during the calculation of the
5298 relocation value. */
5299 bfd_boolean overflowed_p;
5300 /* TRUE if this relocation refers to a MIPS16 function. */
5301 bfd_boolean target_is_16_bit_code_p = FALSE;
5302 bfd_boolean target_is_micromips_code_p = FALSE;
5303 struct mips_elf_link_hash_table *htab;
5304 bfd *dynobj;
5305
5306 dynobj = elf_hash_table (info)->dynobj;
5307 htab = mips_elf_hash_table (info);
5308 BFD_ASSERT (htab != NULL);
5309
5310 /* Parse the relocation. */
5311 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5312 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5313 p = (input_section->output_section->vma
5314 + input_section->output_offset
5315 + relocation->r_offset);
5316
5317 /* Assume that there will be no overflow. */
5318 overflowed_p = FALSE;
5319
5320 /* Figure out whether or not the symbol is local, and get the offset
5321 used in the array of hash table entries. */
5322 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5323 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5324 local_sections);
5325 was_local_p = local_p;
5326 if (! elf_bad_symtab (input_bfd))
5327 extsymoff = symtab_hdr->sh_info;
5328 else
5329 {
5330 /* The symbol table does not follow the rule that local symbols
5331 must come before globals. */
5332 extsymoff = 0;
5333 }
5334
5335 /* Figure out the value of the symbol. */
5336 if (local_p)
5337 {
5338 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5339 Elf_Internal_Sym *sym;
5340
5341 sym = local_syms + r_symndx;
5342 sec = local_sections[r_symndx];
5343
5344 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5345
5346 symbol = sec->output_section->vma + sec->output_offset;
5347 if (!section_p || (sec->flags & SEC_MERGE))
5348 symbol += sym->st_value;
5349 if ((sec->flags & SEC_MERGE) && section_p)
5350 {
5351 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5352 addend -= symbol;
5353 addend += sec->output_section->vma + sec->output_offset;
5354 }
5355
5356 /* MIPS16/microMIPS text labels should be treated as odd. */
5357 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5358 ++symbol;
5359
5360 /* Record the name of this symbol, for our caller. */
5361 *namep = bfd_elf_string_from_elf_section (input_bfd,
5362 symtab_hdr->sh_link,
5363 sym->st_name);
5364 if (*namep == NULL || **namep == '\0')
5365 *namep = bfd_section_name (input_bfd, sec);
5366
5367 /* For relocations against a section symbol and ones against no
5368 symbol (absolute relocations) infer the ISA mode from the addend. */
5369 if (section_p || r_symndx == STN_UNDEF)
5370 {
5371 target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5372 target_is_micromips_code_p = (addend & 1) && micromips_p;
5373 }
5374 /* For relocations against an absolute symbol infer the ISA mode
5375 from the value of the symbol plus addend. */
5376 else if (bfd_is_abs_section (sec))
5377 {
5378 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5379 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5380 }
5381 /* Otherwise just use the regular symbol annotation available. */
5382 else
5383 {
5384 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5385 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5386 }
5387 }
5388 else
5389 {
5390 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5391
5392 /* For global symbols we look up the symbol in the hash-table. */
5393 h = ((struct mips_elf_link_hash_entry *)
5394 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5395 /* Find the real hash-table entry for this symbol. */
5396 while (h->root.root.type == bfd_link_hash_indirect
5397 || h->root.root.type == bfd_link_hash_warning)
5398 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5399
5400 /* Record the name of this symbol, for our caller. */
5401 *namep = h->root.root.root.string;
5402
5403 /* See if this is the special _gp_disp symbol. Note that such a
5404 symbol must always be a global symbol. */
5405 if (strcmp (*namep, "_gp_disp") == 0
5406 && ! NEWABI_P (input_bfd))
5407 {
5408 /* Relocations against _gp_disp are permitted only with
5409 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5410 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5411 return bfd_reloc_notsupported;
5412
5413 gp_disp_p = TRUE;
5414 }
5415 /* See if this is the special _gp symbol. Note that such a
5416 symbol must always be a global symbol. */
5417 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5418 gnu_local_gp_p = TRUE;
5419
5420
5421 /* If this symbol is defined, calculate its address. Note that
5422 _gp_disp is a magic symbol, always implicitly defined by the
5423 linker, so it's inappropriate to check to see whether or not
5424 its defined. */
5425 else if ((h->root.root.type == bfd_link_hash_defined
5426 || h->root.root.type == bfd_link_hash_defweak)
5427 && h->root.root.u.def.section)
5428 {
5429 sec = h->root.root.u.def.section;
5430 if (sec->output_section)
5431 symbol = (h->root.root.u.def.value
5432 + sec->output_section->vma
5433 + sec->output_offset);
5434 else
5435 symbol = h->root.root.u.def.value;
5436 }
5437 else if (h->root.root.type == bfd_link_hash_undefweak)
5438 /* We allow relocations against undefined weak symbols, giving
5439 it the value zero, so that you can undefined weak functions
5440 and check to see if they exist by looking at their
5441 addresses. */
5442 symbol = 0;
5443 else if (info->unresolved_syms_in_objects == RM_IGNORE
5444 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5445 symbol = 0;
5446 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5447 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5448 {
5449 /* If this is a dynamic link, we should have created a
5450 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5451 in in _bfd_mips_elf_create_dynamic_sections.
5452 Otherwise, we should define the symbol with a value of 0.
5453 FIXME: It should probably get into the symbol table
5454 somehow as well. */
5455 BFD_ASSERT (! bfd_link_pic (info));
5456 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5457 symbol = 0;
5458 }
5459 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5460 {
5461 /* This is an optional symbol - an Irix specific extension to the
5462 ELF spec. Ignore it for now.
5463 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5464 than simply ignoring them, but we do not handle this for now.
5465 For information see the "64-bit ELF Object File Specification"
5466 which is available from here:
5467 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5468 symbol = 0;
5469 }
5470 else
5471 {
5472 (*info->callbacks->undefined_symbol)
5473 (info, h->root.root.root.string, input_bfd,
5474 input_section, relocation->r_offset,
5475 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5476 || ELF_ST_VISIBILITY (h->root.other));
5477 return bfd_reloc_undefined;
5478 }
5479
5480 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5481 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5482 }
5483
5484 /* If this is a reference to a 16-bit function with a stub, we need
5485 to redirect the relocation to the stub unless:
5486
5487 (a) the relocation is for a MIPS16 JAL;
5488
5489 (b) the relocation is for a MIPS16 PIC call, and there are no
5490 non-MIPS16 uses of the GOT slot; or
5491
5492 (c) the section allows direct references to MIPS16 functions. */
5493 if (r_type != R_MIPS16_26
5494 && !bfd_link_relocatable (info)
5495 && ((h != NULL
5496 && h->fn_stub != NULL
5497 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5498 || (local_p
5499 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5500 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5501 && !section_allows_mips16_refs_p (input_section))
5502 {
5503 /* This is a 32- or 64-bit call to a 16-bit function. We should
5504 have already noticed that we were going to need the
5505 stub. */
5506 if (local_p)
5507 {
5508 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5509 value = 0;
5510 }
5511 else
5512 {
5513 BFD_ASSERT (h->need_fn_stub);
5514 if (h->la25_stub)
5515 {
5516 /* If a LA25 header for the stub itself exists, point to the
5517 prepended LUI/ADDIU sequence. */
5518 sec = h->la25_stub->stub_section;
5519 value = h->la25_stub->offset;
5520 }
5521 else
5522 {
5523 sec = h->fn_stub;
5524 value = 0;
5525 }
5526 }
5527
5528 symbol = sec->output_section->vma + sec->output_offset + value;
5529 /* The target is 16-bit, but the stub isn't. */
5530 target_is_16_bit_code_p = FALSE;
5531 }
5532 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5533 to a standard MIPS function, we need to redirect the call to the stub.
5534 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5535 indirect calls should use an indirect stub instead. */
5536 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
5537 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5538 || (local_p
5539 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5540 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5541 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5542 {
5543 if (local_p)
5544 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5545 else
5546 {
5547 /* If both call_stub and call_fp_stub are defined, we can figure
5548 out which one to use by checking which one appears in the input
5549 file. */
5550 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5551 {
5552 asection *o;
5553
5554 sec = NULL;
5555 for (o = input_bfd->sections; o != NULL; o = o->next)
5556 {
5557 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5558 {
5559 sec = h->call_fp_stub;
5560 break;
5561 }
5562 }
5563 if (sec == NULL)
5564 sec = h->call_stub;
5565 }
5566 else if (h->call_stub != NULL)
5567 sec = h->call_stub;
5568 else
5569 sec = h->call_fp_stub;
5570 }
5571
5572 BFD_ASSERT (sec->size > 0);
5573 symbol = sec->output_section->vma + sec->output_offset;
5574 }
5575 /* If this is a direct call to a PIC function, redirect to the
5576 non-PIC stub. */
5577 else if (h != NULL && h->la25_stub
5578 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5579 target_is_16_bit_code_p))
5580 symbol = (h->la25_stub->stub_section->output_section->vma
5581 + h->la25_stub->stub_section->output_offset
5582 + h->la25_stub->offset);
5583 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5584 entry is used if a standard PLT entry has also been made. In this
5585 case the symbol will have been set by mips_elf_set_plt_sym_value
5586 to point to the standard PLT entry, so redirect to the compressed
5587 one. */
5588 else if ((r_type == R_MIPS16_26 || r_type == R_MICROMIPS_26_S1)
5589 && !bfd_link_relocatable (info)
5590 && h != NULL
5591 && h->use_plt_entry
5592 && h->root.plt.plist->comp_offset != MINUS_ONE
5593 && h->root.plt.plist->mips_offset != MINUS_ONE)
5594 {
5595 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5596
5597 sec = htab->splt;
5598 symbol = (sec->output_section->vma
5599 + sec->output_offset
5600 + htab->plt_header_size
5601 + htab->plt_mips_offset
5602 + h->root.plt.plist->comp_offset
5603 + 1);
5604
5605 target_is_16_bit_code_p = !micromips_p;
5606 target_is_micromips_code_p = micromips_p;
5607 }
5608
5609 /* Make sure MIPS16 and microMIPS are not used together. */
5610 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
5611 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5612 {
5613 (*_bfd_error_handler)
5614 (_("MIPS16 and microMIPS functions cannot call each other"));
5615 return bfd_reloc_notsupported;
5616 }
5617
5618 /* Calls from 16-bit code to 32-bit code and vice versa require the
5619 mode change. However, we can ignore calls to undefined weak symbols,
5620 which should never be executed at runtime. This exception is important
5621 because the assembly writer may have "known" that any definition of the
5622 symbol would be 16-bit code, and that direct jumps were therefore
5623 acceptable. */
5624 *cross_mode_jump_p = (!bfd_link_relocatable (info)
5625 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5626 && ((mips16_branch_reloc_p (r_type)
5627 && !target_is_16_bit_code_p)
5628 || (micromips_branch_reloc_p (r_type)
5629 && !target_is_micromips_code_p)
5630 || ((branch_reloc_p (r_type)
5631 || r_type == R_MIPS_JALR)
5632 && (target_is_16_bit_code_p
5633 || target_is_micromips_code_p))));
5634
5635 local_p = (h == NULL || mips_use_local_got_p (info, h));
5636
5637 gp0 = _bfd_get_gp_value (input_bfd);
5638 gp = _bfd_get_gp_value (abfd);
5639 if (htab->got_info)
5640 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5641
5642 if (gnu_local_gp_p)
5643 symbol = gp;
5644
5645 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5646 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5647 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5648 if (got_page_reloc_p (r_type) && !local_p)
5649 {
5650 r_type = (micromips_reloc_p (r_type)
5651 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5652 addend = 0;
5653 }
5654
5655 /* If we haven't already determined the GOT offset, and we're going
5656 to need it, get it now. */
5657 switch (r_type)
5658 {
5659 case R_MIPS16_CALL16:
5660 case R_MIPS16_GOT16:
5661 case R_MIPS_CALL16:
5662 case R_MIPS_GOT16:
5663 case R_MIPS_GOT_DISP:
5664 case R_MIPS_GOT_HI16:
5665 case R_MIPS_CALL_HI16:
5666 case R_MIPS_GOT_LO16:
5667 case R_MIPS_CALL_LO16:
5668 case R_MICROMIPS_CALL16:
5669 case R_MICROMIPS_GOT16:
5670 case R_MICROMIPS_GOT_DISP:
5671 case R_MICROMIPS_GOT_HI16:
5672 case R_MICROMIPS_CALL_HI16:
5673 case R_MICROMIPS_GOT_LO16:
5674 case R_MICROMIPS_CALL_LO16:
5675 case R_MIPS_TLS_GD:
5676 case R_MIPS_TLS_GOTTPREL:
5677 case R_MIPS_TLS_LDM:
5678 case R_MIPS16_TLS_GD:
5679 case R_MIPS16_TLS_GOTTPREL:
5680 case R_MIPS16_TLS_LDM:
5681 case R_MICROMIPS_TLS_GD:
5682 case R_MICROMIPS_TLS_GOTTPREL:
5683 case R_MICROMIPS_TLS_LDM:
5684 /* Find the index into the GOT where this value is located. */
5685 if (tls_ldm_reloc_p (r_type))
5686 {
5687 g = mips_elf_local_got_index (abfd, input_bfd, info,
5688 0, 0, NULL, r_type);
5689 if (g == MINUS_ONE)
5690 return bfd_reloc_outofrange;
5691 }
5692 else if (!local_p)
5693 {
5694 /* On VxWorks, CALL relocations should refer to the .got.plt
5695 entry, which is initialized to point at the PLT stub. */
5696 if (htab->is_vxworks
5697 && (call_hi16_reloc_p (r_type)
5698 || call_lo16_reloc_p (r_type)
5699 || call16_reloc_p (r_type)))
5700 {
5701 BFD_ASSERT (addend == 0);
5702 BFD_ASSERT (h->root.needs_plt);
5703 g = mips_elf_gotplt_index (info, &h->root);
5704 }
5705 else
5706 {
5707 BFD_ASSERT (addend == 0);
5708 g = mips_elf_global_got_index (abfd, info, input_bfd,
5709 &h->root, r_type);
5710 if (!TLS_RELOC_P (r_type)
5711 && !elf_hash_table (info)->dynamic_sections_created)
5712 /* This is a static link. We must initialize the GOT entry. */
5713 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5714 }
5715 }
5716 else if (!htab->is_vxworks
5717 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5718 /* The calculation below does not involve "g". */
5719 break;
5720 else
5721 {
5722 g = mips_elf_local_got_index (abfd, input_bfd, info,
5723 symbol + addend, r_symndx, h, r_type);
5724 if (g == MINUS_ONE)
5725 return bfd_reloc_outofrange;
5726 }
5727
5728 /* Convert GOT indices to actual offsets. */
5729 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5730 break;
5731 }
5732
5733 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5734 symbols are resolved by the loader. Add them to .rela.dyn. */
5735 if (h != NULL && is_gott_symbol (info, &h->root))
5736 {
5737 Elf_Internal_Rela outrel;
5738 bfd_byte *loc;
5739 asection *s;
5740
5741 s = mips_elf_rel_dyn_section (info, FALSE);
5742 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5743
5744 outrel.r_offset = (input_section->output_section->vma
5745 + input_section->output_offset
5746 + relocation->r_offset);
5747 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5748 outrel.r_addend = addend;
5749 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5750
5751 /* If we've written this relocation for a readonly section,
5752 we need to set DF_TEXTREL again, so that we do not delete the
5753 DT_TEXTREL tag. */
5754 if (MIPS_ELF_READONLY_SECTION (input_section))
5755 info->flags |= DF_TEXTREL;
5756
5757 *valuep = 0;
5758 return bfd_reloc_ok;
5759 }
5760
5761 /* Figure out what kind of relocation is being performed. */
5762 switch (r_type)
5763 {
5764 case R_MIPS_NONE:
5765 return bfd_reloc_continue;
5766
5767 case R_MIPS_16:
5768 if (howto->partial_inplace)
5769 addend = _bfd_mips_elf_sign_extend (addend, 16);
5770 value = symbol + addend;
5771 overflowed_p = mips_elf_overflow_p (value, 16);
5772 break;
5773
5774 case R_MIPS_32:
5775 case R_MIPS_REL32:
5776 case R_MIPS_64:
5777 if ((bfd_link_pic (info)
5778 || (htab->root.dynamic_sections_created
5779 && h != NULL
5780 && h->root.def_dynamic
5781 && !h->root.def_regular
5782 && !h->has_static_relocs))
5783 && r_symndx != STN_UNDEF
5784 && (h == NULL
5785 || h->root.root.type != bfd_link_hash_undefweak
5786 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5787 && (input_section->flags & SEC_ALLOC) != 0)
5788 {
5789 /* If we're creating a shared library, then we can't know
5790 where the symbol will end up. So, we create a relocation
5791 record in the output, and leave the job up to the dynamic
5792 linker. We must do the same for executable references to
5793 shared library symbols, unless we've decided to use copy
5794 relocs or PLTs instead. */
5795 value = addend;
5796 if (!mips_elf_create_dynamic_relocation (abfd,
5797 info,
5798 relocation,
5799 h,
5800 sec,
5801 symbol,
5802 &value,
5803 input_section))
5804 return bfd_reloc_undefined;
5805 }
5806 else
5807 {
5808 if (r_type != R_MIPS_REL32)
5809 value = symbol + addend;
5810 else
5811 value = addend;
5812 }
5813 value &= howto->dst_mask;
5814 break;
5815
5816 case R_MIPS_PC32:
5817 value = symbol + addend - p;
5818 value &= howto->dst_mask;
5819 break;
5820
5821 case R_MIPS16_26:
5822 /* The calculation for R_MIPS16_26 is just the same as for an
5823 R_MIPS_26. It's only the storage of the relocated field into
5824 the output file that's different. That's handled in
5825 mips_elf_perform_relocation. So, we just fall through to the
5826 R_MIPS_26 case here. */
5827 case R_MIPS_26:
5828 case R_MICROMIPS_26_S1:
5829 {
5830 unsigned int shift;
5831
5832 /* Shift is 2, unusually, for microMIPS JALX. */
5833 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5834
5835 if (howto->partial_inplace && !section_p)
5836 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5837 else
5838 value = addend;
5839 value += symbol;
5840
5841 /* Make sure the target of a jump is suitably aligned. Bit 0 must
5842 be the correct ISA mode selector except for weak undefined
5843 symbols. */
5844 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5845 && (*cross_mode_jump_p
5846 ? (value & 3) != (r_type == R_MIPS_26)
5847 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
5848 return bfd_reloc_outofrange;
5849
5850 value >>= shift;
5851 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5852 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5853 value &= howto->dst_mask;
5854 }
5855 break;
5856
5857 case R_MIPS_TLS_DTPREL_HI16:
5858 case R_MIPS16_TLS_DTPREL_HI16:
5859 case R_MICROMIPS_TLS_DTPREL_HI16:
5860 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5861 & howto->dst_mask);
5862 break;
5863
5864 case R_MIPS_TLS_DTPREL_LO16:
5865 case R_MIPS_TLS_DTPREL32:
5866 case R_MIPS_TLS_DTPREL64:
5867 case R_MIPS16_TLS_DTPREL_LO16:
5868 case R_MICROMIPS_TLS_DTPREL_LO16:
5869 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5870 break;
5871
5872 case R_MIPS_TLS_TPREL_HI16:
5873 case R_MIPS16_TLS_TPREL_HI16:
5874 case R_MICROMIPS_TLS_TPREL_HI16:
5875 value = (mips_elf_high (addend + symbol - tprel_base (info))
5876 & howto->dst_mask);
5877 break;
5878
5879 case R_MIPS_TLS_TPREL_LO16:
5880 case R_MIPS_TLS_TPREL32:
5881 case R_MIPS_TLS_TPREL64:
5882 case R_MIPS16_TLS_TPREL_LO16:
5883 case R_MICROMIPS_TLS_TPREL_LO16:
5884 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5885 break;
5886
5887 case R_MIPS_HI16:
5888 case R_MIPS16_HI16:
5889 case R_MICROMIPS_HI16:
5890 if (!gp_disp_p)
5891 {
5892 value = mips_elf_high (addend + symbol);
5893 value &= howto->dst_mask;
5894 }
5895 else
5896 {
5897 /* For MIPS16 ABI code we generate this sequence
5898 0: li $v0,%hi(_gp_disp)
5899 4: addiupc $v1,%lo(_gp_disp)
5900 8: sll $v0,16
5901 12: addu $v0,$v1
5902 14: move $gp,$v0
5903 So the offsets of hi and lo relocs are the same, but the
5904 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5905 ADDIUPC clears the low two bits of the instruction address,
5906 so the base is ($t9 + 4) & ~3. */
5907 if (r_type == R_MIPS16_HI16)
5908 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5909 /* The microMIPS .cpload sequence uses the same assembly
5910 instructions as the traditional psABI version, but the
5911 incoming $t9 has the low bit set. */
5912 else if (r_type == R_MICROMIPS_HI16)
5913 value = mips_elf_high (addend + gp - p - 1);
5914 else
5915 value = mips_elf_high (addend + gp - p);
5916 overflowed_p = mips_elf_overflow_p (value, 16);
5917 }
5918 break;
5919
5920 case R_MIPS_LO16:
5921 case R_MIPS16_LO16:
5922 case R_MICROMIPS_LO16:
5923 case R_MICROMIPS_HI0_LO16:
5924 if (!gp_disp_p)
5925 value = (symbol + addend) & howto->dst_mask;
5926 else
5927 {
5928 /* See the comment for R_MIPS16_HI16 above for the reason
5929 for this conditional. */
5930 if (r_type == R_MIPS16_LO16)
5931 value = addend + gp - (p & ~(bfd_vma) 0x3);
5932 else if (r_type == R_MICROMIPS_LO16
5933 || r_type == R_MICROMIPS_HI0_LO16)
5934 value = addend + gp - p + 3;
5935 else
5936 value = addend + gp - p + 4;
5937 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5938 for overflow. But, on, say, IRIX5, relocations against
5939 _gp_disp are normally generated from the .cpload
5940 pseudo-op. It generates code that normally looks like
5941 this:
5942
5943 lui $gp,%hi(_gp_disp)
5944 addiu $gp,$gp,%lo(_gp_disp)
5945 addu $gp,$gp,$t9
5946
5947 Here $t9 holds the address of the function being called,
5948 as required by the MIPS ELF ABI. The R_MIPS_LO16
5949 relocation can easily overflow in this situation, but the
5950 R_MIPS_HI16 relocation will handle the overflow.
5951 Therefore, we consider this a bug in the MIPS ABI, and do
5952 not check for overflow here. */
5953 }
5954 break;
5955
5956 case R_MIPS_LITERAL:
5957 case R_MICROMIPS_LITERAL:
5958 /* Because we don't merge literal sections, we can handle this
5959 just like R_MIPS_GPREL16. In the long run, we should merge
5960 shared literals, and then we will need to additional work
5961 here. */
5962
5963 /* Fall through. */
5964
5965 case R_MIPS16_GPREL:
5966 /* The R_MIPS16_GPREL performs the same calculation as
5967 R_MIPS_GPREL16, but stores the relocated bits in a different
5968 order. We don't need to do anything special here; the
5969 differences are handled in mips_elf_perform_relocation. */
5970 case R_MIPS_GPREL16:
5971 case R_MICROMIPS_GPREL7_S2:
5972 case R_MICROMIPS_GPREL16:
5973 /* Only sign-extend the addend if it was extracted from the
5974 instruction. If the addend was separate, leave it alone,
5975 otherwise we may lose significant bits. */
5976 if (howto->partial_inplace)
5977 addend = _bfd_mips_elf_sign_extend (addend, 16);
5978 value = symbol + addend - gp;
5979 /* If the symbol was local, any earlier relocatable links will
5980 have adjusted its addend with the gp offset, so compensate
5981 for that now. Don't do it for symbols forced local in this
5982 link, though, since they won't have had the gp offset applied
5983 to them before. */
5984 if (was_local_p)
5985 value += gp0;
5986 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5987 overflowed_p = mips_elf_overflow_p (value, 16);
5988 break;
5989
5990 case R_MIPS16_GOT16:
5991 case R_MIPS16_CALL16:
5992 case R_MIPS_GOT16:
5993 case R_MIPS_CALL16:
5994 case R_MICROMIPS_GOT16:
5995 case R_MICROMIPS_CALL16:
5996 /* VxWorks does not have separate local and global semantics for
5997 R_MIPS*_GOT16; every relocation evaluates to "G". */
5998 if (!htab->is_vxworks && local_p)
5999 {
6000 value = mips_elf_got16_entry (abfd, input_bfd, info,
6001 symbol + addend, !was_local_p);
6002 if (value == MINUS_ONE)
6003 return bfd_reloc_outofrange;
6004 value
6005 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6006 overflowed_p = mips_elf_overflow_p (value, 16);
6007 break;
6008 }
6009
6010 /* Fall through. */
6011
6012 case R_MIPS_TLS_GD:
6013 case R_MIPS_TLS_GOTTPREL:
6014 case R_MIPS_TLS_LDM:
6015 case R_MIPS_GOT_DISP:
6016 case R_MIPS16_TLS_GD:
6017 case R_MIPS16_TLS_GOTTPREL:
6018 case R_MIPS16_TLS_LDM:
6019 case R_MICROMIPS_TLS_GD:
6020 case R_MICROMIPS_TLS_GOTTPREL:
6021 case R_MICROMIPS_TLS_LDM:
6022 case R_MICROMIPS_GOT_DISP:
6023 value = g;
6024 overflowed_p = mips_elf_overflow_p (value, 16);
6025 break;
6026
6027 case R_MIPS_GPREL32:
6028 value = (addend + symbol + gp0 - gp);
6029 if (!save_addend)
6030 value &= howto->dst_mask;
6031 break;
6032
6033 case R_MIPS_PC16:
6034 case R_MIPS_GNU_REL16_S2:
6035 if (howto->partial_inplace)
6036 addend = _bfd_mips_elf_sign_extend (addend, 18);
6037
6038 /* No need to exclude weak undefined symbols here as they resolve
6039 to 0 and never set `*cross_mode_jump_p', so this alignment check
6040 will never trigger for them. */
6041 if (*cross_mode_jump_p
6042 ? ((symbol + addend) & 3) != 1
6043 : ((symbol + addend) & 3) != 0)
6044 return bfd_reloc_outofrange;
6045
6046 value = symbol + addend - p;
6047 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6048 overflowed_p = mips_elf_overflow_p (value, 18);
6049 value >>= howto->rightshift;
6050 value &= howto->dst_mask;
6051 break;
6052
6053 case R_MIPS16_PC16_S1:
6054 if (howto->partial_inplace)
6055 addend = _bfd_mips_elf_sign_extend (addend, 17);
6056
6057 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6058 && (*cross_mode_jump_p
6059 ? ((symbol + addend) & 3) != 0
6060 : ((symbol + addend) & 1) == 0))
6061 return bfd_reloc_outofrange;
6062
6063 value = symbol + addend - p;
6064 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6065 overflowed_p = mips_elf_overflow_p (value, 17);
6066 value >>= howto->rightshift;
6067 value &= howto->dst_mask;
6068 break;
6069
6070 case R_MIPS_PC21_S2:
6071 if (howto->partial_inplace)
6072 addend = _bfd_mips_elf_sign_extend (addend, 23);
6073
6074 if ((symbol + addend) & 3)
6075 return bfd_reloc_outofrange;
6076
6077 value = symbol + addend - p;
6078 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6079 overflowed_p = mips_elf_overflow_p (value, 23);
6080 value >>= howto->rightshift;
6081 value &= howto->dst_mask;
6082 break;
6083
6084 case R_MIPS_PC26_S2:
6085 if (howto->partial_inplace)
6086 addend = _bfd_mips_elf_sign_extend (addend, 28);
6087
6088 if ((symbol + addend) & 3)
6089 return bfd_reloc_outofrange;
6090
6091 value = symbol + addend - p;
6092 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6093 overflowed_p = mips_elf_overflow_p (value, 28);
6094 value >>= howto->rightshift;
6095 value &= howto->dst_mask;
6096 break;
6097
6098 case R_MIPS_PC18_S3:
6099 if (howto->partial_inplace)
6100 addend = _bfd_mips_elf_sign_extend (addend, 21);
6101
6102 if ((symbol + addend) & 7)
6103 return bfd_reloc_outofrange;
6104
6105 value = symbol + addend - ((p | 7) ^ 7);
6106 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6107 overflowed_p = mips_elf_overflow_p (value, 21);
6108 value >>= howto->rightshift;
6109 value &= howto->dst_mask;
6110 break;
6111
6112 case R_MIPS_PC19_S2:
6113 if (howto->partial_inplace)
6114 addend = _bfd_mips_elf_sign_extend (addend, 21);
6115
6116 if ((symbol + addend) & 3)
6117 return bfd_reloc_outofrange;
6118
6119 value = symbol + addend - p;
6120 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6121 overflowed_p = mips_elf_overflow_p (value, 21);
6122 value >>= howto->rightshift;
6123 value &= howto->dst_mask;
6124 break;
6125
6126 case R_MIPS_PCHI16:
6127 value = mips_elf_high (symbol + addend - p);
6128 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6129 overflowed_p = mips_elf_overflow_p (value, 16);
6130 value &= howto->dst_mask;
6131 break;
6132
6133 case R_MIPS_PCLO16:
6134 if (howto->partial_inplace)
6135 addend = _bfd_mips_elf_sign_extend (addend, 16);
6136 value = symbol + addend - p;
6137 value &= howto->dst_mask;
6138 break;
6139
6140 case R_MICROMIPS_PC7_S1:
6141 if (howto->partial_inplace)
6142 addend = _bfd_mips_elf_sign_extend (addend, 8);
6143
6144 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6145 && (*cross_mode_jump_p
6146 ? ((symbol + addend + 2) & 3) != 0
6147 : ((symbol + addend + 2) & 1) == 0))
6148 return bfd_reloc_outofrange;
6149
6150 value = symbol + addend - p;
6151 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6152 overflowed_p = mips_elf_overflow_p (value, 8);
6153 value >>= howto->rightshift;
6154 value &= howto->dst_mask;
6155 break;
6156
6157 case R_MICROMIPS_PC10_S1:
6158 if (howto->partial_inplace)
6159 addend = _bfd_mips_elf_sign_extend (addend, 11);
6160
6161 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6162 && (*cross_mode_jump_p
6163 ? ((symbol + addend + 2) & 3) != 0
6164 : ((symbol + addend + 2) & 1) == 0))
6165 return bfd_reloc_outofrange;
6166
6167 value = symbol + addend - p;
6168 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6169 overflowed_p = mips_elf_overflow_p (value, 11);
6170 value >>= howto->rightshift;
6171 value &= howto->dst_mask;
6172 break;
6173
6174 case R_MICROMIPS_PC16_S1:
6175 if (howto->partial_inplace)
6176 addend = _bfd_mips_elf_sign_extend (addend, 17);
6177
6178 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6179 && (*cross_mode_jump_p
6180 ? ((symbol + addend) & 3) != 0
6181 : ((symbol + addend) & 1) == 0))
6182 return bfd_reloc_outofrange;
6183
6184 value = symbol + addend - p;
6185 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6186 overflowed_p = mips_elf_overflow_p (value, 17);
6187 value >>= howto->rightshift;
6188 value &= howto->dst_mask;
6189 break;
6190
6191 case R_MICROMIPS_PC23_S2:
6192 if (howto->partial_inplace)
6193 addend = _bfd_mips_elf_sign_extend (addend, 25);
6194 value = symbol + addend - ((p | 3) ^ 3);
6195 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6196 overflowed_p = mips_elf_overflow_p (value, 25);
6197 value >>= howto->rightshift;
6198 value &= howto->dst_mask;
6199 break;
6200
6201 case R_MIPS_GOT_HI16:
6202 case R_MIPS_CALL_HI16:
6203 case R_MICROMIPS_GOT_HI16:
6204 case R_MICROMIPS_CALL_HI16:
6205 /* We're allowed to handle these two relocations identically.
6206 The dynamic linker is allowed to handle the CALL relocations
6207 differently by creating a lazy evaluation stub. */
6208 value = g;
6209 value = mips_elf_high (value);
6210 value &= howto->dst_mask;
6211 break;
6212
6213 case R_MIPS_GOT_LO16:
6214 case R_MIPS_CALL_LO16:
6215 case R_MICROMIPS_GOT_LO16:
6216 case R_MICROMIPS_CALL_LO16:
6217 value = g & howto->dst_mask;
6218 break;
6219
6220 case R_MIPS_GOT_PAGE:
6221 case R_MICROMIPS_GOT_PAGE:
6222 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6223 if (value == MINUS_ONE)
6224 return bfd_reloc_outofrange;
6225 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6226 overflowed_p = mips_elf_overflow_p (value, 16);
6227 break;
6228
6229 case R_MIPS_GOT_OFST:
6230 case R_MICROMIPS_GOT_OFST:
6231 if (local_p)
6232 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6233 else
6234 value = addend;
6235 overflowed_p = mips_elf_overflow_p (value, 16);
6236 break;
6237
6238 case R_MIPS_SUB:
6239 case R_MICROMIPS_SUB:
6240 value = symbol - addend;
6241 value &= howto->dst_mask;
6242 break;
6243
6244 case R_MIPS_HIGHER:
6245 case R_MICROMIPS_HIGHER:
6246 value = mips_elf_higher (addend + symbol);
6247 value &= howto->dst_mask;
6248 break;
6249
6250 case R_MIPS_HIGHEST:
6251 case R_MICROMIPS_HIGHEST:
6252 value = mips_elf_highest (addend + symbol);
6253 value &= howto->dst_mask;
6254 break;
6255
6256 case R_MIPS_SCN_DISP:
6257 case R_MICROMIPS_SCN_DISP:
6258 value = symbol + addend - sec->output_offset;
6259 value &= howto->dst_mask;
6260 break;
6261
6262 case R_MIPS_JALR:
6263 case R_MICROMIPS_JALR:
6264 /* This relocation is only a hint. In some cases, we optimize
6265 it into a bal instruction. But we don't try to optimize
6266 when the symbol does not resolve locally. */
6267 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6268 return bfd_reloc_continue;
6269 value = symbol + addend;
6270 break;
6271
6272 case R_MIPS_PJUMP:
6273 case R_MIPS_GNU_VTINHERIT:
6274 case R_MIPS_GNU_VTENTRY:
6275 /* We don't do anything with these at present. */
6276 return bfd_reloc_continue;
6277
6278 default:
6279 /* An unrecognized relocation type. */
6280 return bfd_reloc_notsupported;
6281 }
6282
6283 /* Store the VALUE for our caller. */
6284 *valuep = value;
6285 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6286 }
6287
6288 /* Obtain the field relocated by RELOCATION. */
6289
6290 static bfd_vma
6291 mips_elf_obtain_contents (reloc_howto_type *howto,
6292 const Elf_Internal_Rela *relocation,
6293 bfd *input_bfd, bfd_byte *contents)
6294 {
6295 bfd_vma x = 0;
6296 bfd_byte *location = contents + relocation->r_offset;
6297 unsigned int size = bfd_get_reloc_size (howto);
6298
6299 /* Obtain the bytes. */
6300 if (size != 0)
6301 x = bfd_get (8 * size, input_bfd, location);
6302
6303 return x;
6304 }
6305
6306 /* It has been determined that the result of the RELOCATION is the
6307 VALUE. Use HOWTO to place VALUE into the output file at the
6308 appropriate position. The SECTION is the section to which the
6309 relocation applies.
6310 CROSS_MODE_JUMP_P is true if the relocation field
6311 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6312
6313 Returns FALSE if anything goes wrong. */
6314
6315 static bfd_boolean
6316 mips_elf_perform_relocation (struct bfd_link_info *info,
6317 reloc_howto_type *howto,
6318 const Elf_Internal_Rela *relocation,
6319 bfd_vma value, bfd *input_bfd,
6320 asection *input_section, bfd_byte *contents,
6321 bfd_boolean cross_mode_jump_p)
6322 {
6323 bfd_vma x;
6324 bfd_byte *location;
6325 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6326 unsigned int size;
6327
6328 /* Figure out where the relocation is occurring. */
6329 location = contents + relocation->r_offset;
6330
6331 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6332
6333 /* Obtain the current value. */
6334 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6335
6336 /* Clear the field we are setting. */
6337 x &= ~howto->dst_mask;
6338
6339 /* Set the field. */
6340 x |= (value & howto->dst_mask);
6341
6342 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
6343 if (!cross_mode_jump_p && jal_reloc_p (r_type))
6344 {
6345 bfd_vma opcode = x >> 26;
6346
6347 if (r_type == R_MIPS16_26 ? opcode == 0x7
6348 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6349 : opcode == 0x1d)
6350 {
6351 info->callbacks->einfo
6352 (_("%X%H: Unsupported JALX to the same ISA mode\n"),
6353 input_bfd, input_section, relocation->r_offset);
6354 return TRUE;
6355 }
6356 }
6357 if (cross_mode_jump_p && jal_reloc_p (r_type))
6358 {
6359 bfd_boolean ok;
6360 bfd_vma opcode = x >> 26;
6361 bfd_vma jalx_opcode;
6362
6363 /* Check to see if the opcode is already JAL or JALX. */
6364 if (r_type == R_MIPS16_26)
6365 {
6366 ok = ((opcode == 0x6) || (opcode == 0x7));
6367 jalx_opcode = 0x7;
6368 }
6369 else if (r_type == R_MICROMIPS_26_S1)
6370 {
6371 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6372 jalx_opcode = 0x3c;
6373 }
6374 else
6375 {
6376 ok = ((opcode == 0x3) || (opcode == 0x1d));
6377 jalx_opcode = 0x1d;
6378 }
6379
6380 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6381 convert J or JALS to JALX. */
6382 if (!ok)
6383 {
6384 info->callbacks->einfo
6385 (_("%X%H: Unsupported jump between ISA modes; "
6386 "consider recompiling with interlinking enabled\n"),
6387 input_bfd, input_section, relocation->r_offset);
6388 return TRUE;
6389 }
6390
6391 /* Make this the JALX opcode. */
6392 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6393 }
6394 else if (cross_mode_jump_p && b_reloc_p (r_type))
6395 {
6396 bfd_boolean ok = FALSE;
6397 bfd_vma opcode = x >> 16;
6398 bfd_vma jalx_opcode = 0;
6399 bfd_vma addr;
6400 bfd_vma dest;
6401
6402 if (r_type == R_MICROMIPS_PC16_S1)
6403 {
6404 ok = opcode == 0x4060;
6405 jalx_opcode = 0x3c;
6406 value <<= 1;
6407 }
6408 else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6409 {
6410 ok = opcode == 0x411;
6411 jalx_opcode = 0x1d;
6412 value <<= 2;
6413 }
6414
6415 if (bfd_link_pic (info) || !ok)
6416 {
6417 info->callbacks->einfo
6418 (_("%X%H: Unsupported branch between ISA modes\n"),
6419 input_bfd, input_section, relocation->r_offset);
6420 return TRUE;
6421 }
6422
6423 addr = (input_section->output_section->vma
6424 + input_section->output_offset
6425 + relocation->r_offset
6426 + 4);
6427 dest = addr + (((value & 0x3ffff) ^ 0x20000) - 0x20000);
6428
6429 if ((addr >> 28) << 28 != (dest >> 28) << 28)
6430 {
6431 info->callbacks->einfo
6432 (_("%X%H: Cannot convert branch between ISA modes "
6433 "to JALX: relocation out of range\n"),
6434 input_bfd, input_section, relocation->r_offset);
6435 return TRUE;
6436 }
6437
6438 /* Make this the JALX opcode. */
6439 x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
6440 }
6441
6442 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6443 range. */
6444 if (!bfd_link_relocatable (info)
6445 && !cross_mode_jump_p
6446 && ((JAL_TO_BAL_P (input_bfd)
6447 && r_type == R_MIPS_26
6448 && (x >> 26) == 0x3) /* jal addr */
6449 || (JALR_TO_BAL_P (input_bfd)
6450 && r_type == R_MIPS_JALR
6451 && x == 0x0320f809) /* jalr t9 */
6452 || (JR_TO_B_P (input_bfd)
6453 && r_type == R_MIPS_JALR
6454 && x == 0x03200008))) /* jr t9 */
6455 {
6456 bfd_vma addr;
6457 bfd_vma dest;
6458 bfd_signed_vma off;
6459
6460 addr = (input_section->output_section->vma
6461 + input_section->output_offset
6462 + relocation->r_offset
6463 + 4);
6464 if (r_type == R_MIPS_26)
6465 dest = (value << 2) | ((addr >> 28) << 28);
6466 else
6467 dest = value;
6468 off = dest - addr;
6469 if (off <= 0x1ffff && off >= -0x20000)
6470 {
6471 if (x == 0x03200008) /* jr t9 */
6472 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6473 else
6474 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6475 }
6476 }
6477
6478 /* Put the value into the output. */
6479 size = bfd_get_reloc_size (howto);
6480 if (size != 0)
6481 bfd_put (8 * size, input_bfd, x, location);
6482
6483 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
6484 location);
6485
6486 return TRUE;
6487 }
6488 \f
6489 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6490 is the original relocation, which is now being transformed into a
6491 dynamic relocation. The ADDENDP is adjusted if necessary; the
6492 caller should store the result in place of the original addend. */
6493
6494 static bfd_boolean
6495 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6496 struct bfd_link_info *info,
6497 const Elf_Internal_Rela *rel,
6498 struct mips_elf_link_hash_entry *h,
6499 asection *sec, bfd_vma symbol,
6500 bfd_vma *addendp, asection *input_section)
6501 {
6502 Elf_Internal_Rela outrel[3];
6503 asection *sreloc;
6504 bfd *dynobj;
6505 int r_type;
6506 long indx;
6507 bfd_boolean defined_p;
6508 struct mips_elf_link_hash_table *htab;
6509
6510 htab = mips_elf_hash_table (info);
6511 BFD_ASSERT (htab != NULL);
6512
6513 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6514 dynobj = elf_hash_table (info)->dynobj;
6515 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6516 BFD_ASSERT (sreloc != NULL);
6517 BFD_ASSERT (sreloc->contents != NULL);
6518 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6519 < sreloc->size);
6520
6521 outrel[0].r_offset =
6522 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6523 if (ABI_64_P (output_bfd))
6524 {
6525 outrel[1].r_offset =
6526 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6527 outrel[2].r_offset =
6528 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6529 }
6530
6531 if (outrel[0].r_offset == MINUS_ONE)
6532 /* The relocation field has been deleted. */
6533 return TRUE;
6534
6535 if (outrel[0].r_offset == MINUS_TWO)
6536 {
6537 /* The relocation field has been converted into a relative value of
6538 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6539 the field to be fully relocated, so add in the symbol's value. */
6540 *addendp += symbol;
6541 return TRUE;
6542 }
6543
6544 /* We must now calculate the dynamic symbol table index to use
6545 in the relocation. */
6546 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6547 {
6548 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6549 indx = h->root.dynindx;
6550 if (SGI_COMPAT (output_bfd))
6551 defined_p = h->root.def_regular;
6552 else
6553 /* ??? glibc's ld.so just adds the final GOT entry to the
6554 relocation field. It therefore treats relocs against
6555 defined symbols in the same way as relocs against
6556 undefined symbols. */
6557 defined_p = FALSE;
6558 }
6559 else
6560 {
6561 if (sec != NULL && bfd_is_abs_section (sec))
6562 indx = 0;
6563 else if (sec == NULL || sec->owner == NULL)
6564 {
6565 bfd_set_error (bfd_error_bad_value);
6566 return FALSE;
6567 }
6568 else
6569 {
6570 indx = elf_section_data (sec->output_section)->dynindx;
6571 if (indx == 0)
6572 {
6573 asection *osec = htab->root.text_index_section;
6574 indx = elf_section_data (osec)->dynindx;
6575 }
6576 if (indx == 0)
6577 abort ();
6578 }
6579
6580 /* Instead of generating a relocation using the section
6581 symbol, we may as well make it a fully relative
6582 relocation. We want to avoid generating relocations to
6583 local symbols because we used to generate them
6584 incorrectly, without adding the original symbol value,
6585 which is mandated by the ABI for section symbols. In
6586 order to give dynamic loaders and applications time to
6587 phase out the incorrect use, we refrain from emitting
6588 section-relative relocations. It's not like they're
6589 useful, after all. This should be a bit more efficient
6590 as well. */
6591 /* ??? Although this behavior is compatible with glibc's ld.so,
6592 the ABI says that relocations against STN_UNDEF should have
6593 a symbol value of 0. Irix rld honors this, so relocations
6594 against STN_UNDEF have no effect. */
6595 if (!SGI_COMPAT (output_bfd))
6596 indx = 0;
6597 defined_p = TRUE;
6598 }
6599
6600 /* If the relocation was previously an absolute relocation and
6601 this symbol will not be referred to by the relocation, we must
6602 adjust it by the value we give it in the dynamic symbol table.
6603 Otherwise leave the job up to the dynamic linker. */
6604 if (defined_p && r_type != R_MIPS_REL32)
6605 *addendp += symbol;
6606
6607 if (htab->is_vxworks)
6608 /* VxWorks uses non-relative relocations for this. */
6609 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6610 else
6611 /* The relocation is always an REL32 relocation because we don't
6612 know where the shared library will wind up at load-time. */
6613 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6614 R_MIPS_REL32);
6615
6616 /* For strict adherence to the ABI specification, we should
6617 generate a R_MIPS_64 relocation record by itself before the
6618 _REL32/_64 record as well, such that the addend is read in as
6619 a 64-bit value (REL32 is a 32-bit relocation, after all).
6620 However, since none of the existing ELF64 MIPS dynamic
6621 loaders seems to care, we don't waste space with these
6622 artificial relocations. If this turns out to not be true,
6623 mips_elf_allocate_dynamic_relocation() should be tweaked so
6624 as to make room for a pair of dynamic relocations per
6625 invocation if ABI_64_P, and here we should generate an
6626 additional relocation record with R_MIPS_64 by itself for a
6627 NULL symbol before this relocation record. */
6628 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6629 ABI_64_P (output_bfd)
6630 ? R_MIPS_64
6631 : R_MIPS_NONE);
6632 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6633
6634 /* Adjust the output offset of the relocation to reference the
6635 correct location in the output file. */
6636 outrel[0].r_offset += (input_section->output_section->vma
6637 + input_section->output_offset);
6638 outrel[1].r_offset += (input_section->output_section->vma
6639 + input_section->output_offset);
6640 outrel[2].r_offset += (input_section->output_section->vma
6641 + input_section->output_offset);
6642
6643 /* Put the relocation back out. We have to use the special
6644 relocation outputter in the 64-bit case since the 64-bit
6645 relocation format is non-standard. */
6646 if (ABI_64_P (output_bfd))
6647 {
6648 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6649 (output_bfd, &outrel[0],
6650 (sreloc->contents
6651 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6652 }
6653 else if (htab->is_vxworks)
6654 {
6655 /* VxWorks uses RELA rather than REL dynamic relocations. */
6656 outrel[0].r_addend = *addendp;
6657 bfd_elf32_swap_reloca_out
6658 (output_bfd, &outrel[0],
6659 (sreloc->contents
6660 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6661 }
6662 else
6663 bfd_elf32_swap_reloc_out
6664 (output_bfd, &outrel[0],
6665 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6666
6667 /* We've now added another relocation. */
6668 ++sreloc->reloc_count;
6669
6670 /* Make sure the output section is writable. The dynamic linker
6671 will be writing to it. */
6672 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6673 |= SHF_WRITE;
6674
6675 /* On IRIX5, make an entry of compact relocation info. */
6676 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6677 {
6678 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6679 bfd_byte *cr;
6680
6681 if (scpt)
6682 {
6683 Elf32_crinfo cptrel;
6684
6685 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6686 cptrel.vaddr = (rel->r_offset
6687 + input_section->output_section->vma
6688 + input_section->output_offset);
6689 if (r_type == R_MIPS_REL32)
6690 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6691 else
6692 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6693 mips_elf_set_cr_dist2to (cptrel, 0);
6694 cptrel.konst = *addendp;
6695
6696 cr = (scpt->contents
6697 + sizeof (Elf32_External_compact_rel));
6698 mips_elf_set_cr_relvaddr (cptrel, 0);
6699 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6700 ((Elf32_External_crinfo *) cr
6701 + scpt->reloc_count));
6702 ++scpt->reloc_count;
6703 }
6704 }
6705
6706 /* If we've written this relocation for a readonly section,
6707 we need to set DF_TEXTREL again, so that we do not delete the
6708 DT_TEXTREL tag. */
6709 if (MIPS_ELF_READONLY_SECTION (input_section))
6710 info->flags |= DF_TEXTREL;
6711
6712 return TRUE;
6713 }
6714 \f
6715 /* Return the MACH for a MIPS e_flags value. */
6716
6717 unsigned long
6718 _bfd_elf_mips_mach (flagword flags)
6719 {
6720 switch (flags & EF_MIPS_MACH)
6721 {
6722 case E_MIPS_MACH_3900:
6723 return bfd_mach_mips3900;
6724
6725 case E_MIPS_MACH_4010:
6726 return bfd_mach_mips4010;
6727
6728 case E_MIPS_MACH_4100:
6729 return bfd_mach_mips4100;
6730
6731 case E_MIPS_MACH_4111:
6732 return bfd_mach_mips4111;
6733
6734 case E_MIPS_MACH_4120:
6735 return bfd_mach_mips4120;
6736
6737 case E_MIPS_MACH_4650:
6738 return bfd_mach_mips4650;
6739
6740 case E_MIPS_MACH_5400:
6741 return bfd_mach_mips5400;
6742
6743 case E_MIPS_MACH_5500:
6744 return bfd_mach_mips5500;
6745
6746 case E_MIPS_MACH_5900:
6747 return bfd_mach_mips5900;
6748
6749 case E_MIPS_MACH_9000:
6750 return bfd_mach_mips9000;
6751
6752 case E_MIPS_MACH_SB1:
6753 return bfd_mach_mips_sb1;
6754
6755 case E_MIPS_MACH_LS2E:
6756 return bfd_mach_mips_loongson_2e;
6757
6758 case E_MIPS_MACH_LS2F:
6759 return bfd_mach_mips_loongson_2f;
6760
6761 case E_MIPS_MACH_LS3A:
6762 return bfd_mach_mips_loongson_3a;
6763
6764 case E_MIPS_MACH_OCTEON3:
6765 return bfd_mach_mips_octeon3;
6766
6767 case E_MIPS_MACH_OCTEON2:
6768 return bfd_mach_mips_octeon2;
6769
6770 case E_MIPS_MACH_OCTEON:
6771 return bfd_mach_mips_octeon;
6772
6773 case E_MIPS_MACH_XLR:
6774 return bfd_mach_mips_xlr;
6775
6776 default:
6777 switch (flags & EF_MIPS_ARCH)
6778 {
6779 default:
6780 case E_MIPS_ARCH_1:
6781 return bfd_mach_mips3000;
6782
6783 case E_MIPS_ARCH_2:
6784 return bfd_mach_mips6000;
6785
6786 case E_MIPS_ARCH_3:
6787 return bfd_mach_mips4000;
6788
6789 case E_MIPS_ARCH_4:
6790 return bfd_mach_mips8000;
6791
6792 case E_MIPS_ARCH_5:
6793 return bfd_mach_mips5;
6794
6795 case E_MIPS_ARCH_32:
6796 return bfd_mach_mipsisa32;
6797
6798 case E_MIPS_ARCH_64:
6799 return bfd_mach_mipsisa64;
6800
6801 case E_MIPS_ARCH_32R2:
6802 return bfd_mach_mipsisa32r2;
6803
6804 case E_MIPS_ARCH_64R2:
6805 return bfd_mach_mipsisa64r2;
6806
6807 case E_MIPS_ARCH_32R6:
6808 return bfd_mach_mipsisa32r6;
6809
6810 case E_MIPS_ARCH_64R6:
6811 return bfd_mach_mipsisa64r6;
6812 }
6813 }
6814
6815 return 0;
6816 }
6817
6818 /* Return printable name for ABI. */
6819
6820 static INLINE char *
6821 elf_mips_abi_name (bfd *abfd)
6822 {
6823 flagword flags;
6824
6825 flags = elf_elfheader (abfd)->e_flags;
6826 switch (flags & EF_MIPS_ABI)
6827 {
6828 case 0:
6829 if (ABI_N32_P (abfd))
6830 return "N32";
6831 else if (ABI_64_P (abfd))
6832 return "64";
6833 else
6834 return "none";
6835 case E_MIPS_ABI_O32:
6836 return "O32";
6837 case E_MIPS_ABI_O64:
6838 return "O64";
6839 case E_MIPS_ABI_EABI32:
6840 return "EABI32";
6841 case E_MIPS_ABI_EABI64:
6842 return "EABI64";
6843 default:
6844 return "unknown abi";
6845 }
6846 }
6847 \f
6848 /* MIPS ELF uses two common sections. One is the usual one, and the
6849 other is for small objects. All the small objects are kept
6850 together, and then referenced via the gp pointer, which yields
6851 faster assembler code. This is what we use for the small common
6852 section. This approach is copied from ecoff.c. */
6853 static asection mips_elf_scom_section;
6854 static asymbol mips_elf_scom_symbol;
6855 static asymbol *mips_elf_scom_symbol_ptr;
6856
6857 /* MIPS ELF also uses an acommon section, which represents an
6858 allocated common symbol which may be overridden by a
6859 definition in a shared library. */
6860 static asection mips_elf_acom_section;
6861 static asymbol mips_elf_acom_symbol;
6862 static asymbol *mips_elf_acom_symbol_ptr;
6863
6864 /* This is used for both the 32-bit and the 64-bit ABI. */
6865
6866 void
6867 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6868 {
6869 elf_symbol_type *elfsym;
6870
6871 /* Handle the special MIPS section numbers that a symbol may use. */
6872 elfsym = (elf_symbol_type *) asym;
6873 switch (elfsym->internal_elf_sym.st_shndx)
6874 {
6875 case SHN_MIPS_ACOMMON:
6876 /* This section is used in a dynamically linked executable file.
6877 It is an allocated common section. The dynamic linker can
6878 either resolve these symbols to something in a shared
6879 library, or it can just leave them here. For our purposes,
6880 we can consider these symbols to be in a new section. */
6881 if (mips_elf_acom_section.name == NULL)
6882 {
6883 /* Initialize the acommon section. */
6884 mips_elf_acom_section.name = ".acommon";
6885 mips_elf_acom_section.flags = SEC_ALLOC;
6886 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6887 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6888 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6889 mips_elf_acom_symbol.name = ".acommon";
6890 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6891 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6892 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6893 }
6894 asym->section = &mips_elf_acom_section;
6895 break;
6896
6897 case SHN_COMMON:
6898 /* Common symbols less than the GP size are automatically
6899 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6900 if (asym->value > elf_gp_size (abfd)
6901 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6902 || IRIX_COMPAT (abfd) == ict_irix6)
6903 break;
6904 /* Fall through. */
6905 case SHN_MIPS_SCOMMON:
6906 if (mips_elf_scom_section.name == NULL)
6907 {
6908 /* Initialize the small common section. */
6909 mips_elf_scom_section.name = ".scommon";
6910 mips_elf_scom_section.flags = SEC_IS_COMMON;
6911 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6912 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6913 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6914 mips_elf_scom_symbol.name = ".scommon";
6915 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6916 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6917 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6918 }
6919 asym->section = &mips_elf_scom_section;
6920 asym->value = elfsym->internal_elf_sym.st_size;
6921 break;
6922
6923 case SHN_MIPS_SUNDEFINED:
6924 asym->section = bfd_und_section_ptr;
6925 break;
6926
6927 case SHN_MIPS_TEXT:
6928 {
6929 asection *section = bfd_get_section_by_name (abfd, ".text");
6930
6931 if (section != NULL)
6932 {
6933 asym->section = section;
6934 /* MIPS_TEXT is a bit special, the address is not an offset
6935 to the base of the .text section. So substract the section
6936 base address to make it an offset. */
6937 asym->value -= section->vma;
6938 }
6939 }
6940 break;
6941
6942 case SHN_MIPS_DATA:
6943 {
6944 asection *section = bfd_get_section_by_name (abfd, ".data");
6945
6946 if (section != NULL)
6947 {
6948 asym->section = section;
6949 /* MIPS_DATA is a bit special, the address is not an offset
6950 to the base of the .data section. So substract the section
6951 base address to make it an offset. */
6952 asym->value -= section->vma;
6953 }
6954 }
6955 break;
6956 }
6957
6958 /* If this is an odd-valued function symbol, assume it's a MIPS16
6959 or microMIPS one. */
6960 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6961 && (asym->value & 1) != 0)
6962 {
6963 asym->value--;
6964 if (MICROMIPS_P (abfd))
6965 elfsym->internal_elf_sym.st_other
6966 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6967 else
6968 elfsym->internal_elf_sym.st_other
6969 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6970 }
6971 }
6972 \f
6973 /* Implement elf_backend_eh_frame_address_size. This differs from
6974 the default in the way it handles EABI64.
6975
6976 EABI64 was originally specified as an LP64 ABI, and that is what
6977 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6978 historically accepted the combination of -mabi=eabi and -mlong32,
6979 and this ILP32 variation has become semi-official over time.
6980 Both forms use elf32 and have pointer-sized FDE addresses.
6981
6982 If an EABI object was generated by GCC 4.0 or above, it will have
6983 an empty .gcc_compiled_longXX section, where XX is the size of longs
6984 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6985 have no special marking to distinguish them from LP64 objects.
6986
6987 We don't want users of the official LP64 ABI to be punished for the
6988 existence of the ILP32 variant, but at the same time, we don't want
6989 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6990 We therefore take the following approach:
6991
6992 - If ABFD contains a .gcc_compiled_longXX section, use it to
6993 determine the pointer size.
6994
6995 - Otherwise check the type of the first relocation. Assume that
6996 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6997
6998 - Otherwise punt.
6999
7000 The second check is enough to detect LP64 objects generated by pre-4.0
7001 compilers because, in the kind of output generated by those compilers,
7002 the first relocation will be associated with either a CIE personality
7003 routine or an FDE start address. Furthermore, the compilers never
7004 used a special (non-pointer) encoding for this ABI.
7005
7006 Checking the relocation type should also be safe because there is no
7007 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7008 did so. */
7009
7010 unsigned int
7011 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
7012 {
7013 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7014 return 8;
7015 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7016 {
7017 bfd_boolean long32_p, long64_p;
7018
7019 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7020 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7021 if (long32_p && long64_p)
7022 return 0;
7023 if (long32_p)
7024 return 4;
7025 if (long64_p)
7026 return 8;
7027
7028 if (sec->reloc_count > 0
7029 && elf_section_data (sec)->relocs != NULL
7030 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7031 == R_MIPS_64))
7032 return 8;
7033
7034 return 0;
7035 }
7036 return 4;
7037 }
7038 \f
7039 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7040 relocations against two unnamed section symbols to resolve to the
7041 same address. For example, if we have code like:
7042
7043 lw $4,%got_disp(.data)($gp)
7044 lw $25,%got_disp(.text)($gp)
7045 jalr $25
7046
7047 then the linker will resolve both relocations to .data and the program
7048 will jump there rather than to .text.
7049
7050 We can work around this problem by giving names to local section symbols.
7051 This is also what the MIPSpro tools do. */
7052
7053 bfd_boolean
7054 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7055 {
7056 return SGI_COMPAT (abfd);
7057 }
7058 \f
7059 /* Work over a section just before writing it out. This routine is
7060 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7061 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7062 a better way. */
7063
7064 bfd_boolean
7065 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
7066 {
7067 if (hdr->sh_type == SHT_MIPS_REGINFO
7068 && hdr->sh_size > 0)
7069 {
7070 bfd_byte buf[4];
7071
7072 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
7073 BFD_ASSERT (hdr->contents == NULL);
7074
7075 if (bfd_seek (abfd,
7076 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7077 SEEK_SET) != 0)
7078 return FALSE;
7079 H_PUT_32 (abfd, elf_gp (abfd), buf);
7080 if (bfd_bwrite (buf, 4, abfd) != 4)
7081 return FALSE;
7082 }
7083
7084 if (hdr->sh_type == SHT_MIPS_OPTIONS
7085 && hdr->bfd_section != NULL
7086 && mips_elf_section_data (hdr->bfd_section) != NULL
7087 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
7088 {
7089 bfd_byte *contents, *l, *lend;
7090
7091 /* We stored the section contents in the tdata field in the
7092 set_section_contents routine. We save the section contents
7093 so that we don't have to read them again.
7094 At this point we know that elf_gp is set, so we can look
7095 through the section contents to see if there is an
7096 ODK_REGINFO structure. */
7097
7098 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
7099 l = contents;
7100 lend = contents + hdr->sh_size;
7101 while (l + sizeof (Elf_External_Options) <= lend)
7102 {
7103 Elf_Internal_Options intopt;
7104
7105 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7106 &intopt);
7107 if (intopt.size < sizeof (Elf_External_Options))
7108 {
7109 (*_bfd_error_handler)
7110 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
7111 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7112 break;
7113 }
7114 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7115 {
7116 bfd_byte buf[8];
7117
7118 if (bfd_seek (abfd,
7119 (hdr->sh_offset
7120 + (l - contents)
7121 + sizeof (Elf_External_Options)
7122 + (sizeof (Elf64_External_RegInfo) - 8)),
7123 SEEK_SET) != 0)
7124 return FALSE;
7125 H_PUT_64 (abfd, elf_gp (abfd), buf);
7126 if (bfd_bwrite (buf, 8, abfd) != 8)
7127 return FALSE;
7128 }
7129 else if (intopt.kind == ODK_REGINFO)
7130 {
7131 bfd_byte buf[4];
7132
7133 if (bfd_seek (abfd,
7134 (hdr->sh_offset
7135 + (l - contents)
7136 + sizeof (Elf_External_Options)
7137 + (sizeof (Elf32_External_RegInfo) - 4)),
7138 SEEK_SET) != 0)
7139 return FALSE;
7140 H_PUT_32 (abfd, elf_gp (abfd), buf);
7141 if (bfd_bwrite (buf, 4, abfd) != 4)
7142 return FALSE;
7143 }
7144 l += intopt.size;
7145 }
7146 }
7147
7148 if (hdr->bfd_section != NULL)
7149 {
7150 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
7151
7152 /* .sbss is not handled specially here because the GNU/Linux
7153 prelinker can convert .sbss from NOBITS to PROGBITS and
7154 changing it back to NOBITS breaks the binary. The entry in
7155 _bfd_mips_elf_special_sections will ensure the correct flags
7156 are set on .sbss if BFD creates it without reading it from an
7157 input file, and without special handling here the flags set
7158 on it in an input file will be followed. */
7159 if (strcmp (name, ".sdata") == 0
7160 || strcmp (name, ".lit8") == 0
7161 || strcmp (name, ".lit4") == 0)
7162 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7163 else if (strcmp (name, ".srdata") == 0)
7164 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
7165 else if (strcmp (name, ".compact_rel") == 0)
7166 hdr->sh_flags = 0;
7167 else if (strcmp (name, ".rtproc") == 0)
7168 {
7169 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7170 {
7171 unsigned int adjust;
7172
7173 adjust = hdr->sh_size % hdr->sh_addralign;
7174 if (adjust != 0)
7175 hdr->sh_size += hdr->sh_addralign - adjust;
7176 }
7177 }
7178 }
7179
7180 return TRUE;
7181 }
7182
7183 /* Handle a MIPS specific section when reading an object file. This
7184 is called when elfcode.h finds a section with an unknown type.
7185 This routine supports both the 32-bit and 64-bit ELF ABI.
7186
7187 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7188 how to. */
7189
7190 bfd_boolean
7191 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7192 Elf_Internal_Shdr *hdr,
7193 const char *name,
7194 int shindex)
7195 {
7196 flagword flags = 0;
7197
7198 /* There ought to be a place to keep ELF backend specific flags, but
7199 at the moment there isn't one. We just keep track of the
7200 sections by their name, instead. Fortunately, the ABI gives
7201 suggested names for all the MIPS specific sections, so we will
7202 probably get away with this. */
7203 switch (hdr->sh_type)
7204 {
7205 case SHT_MIPS_LIBLIST:
7206 if (strcmp (name, ".liblist") != 0)
7207 return FALSE;
7208 break;
7209 case SHT_MIPS_MSYM:
7210 if (strcmp (name, ".msym") != 0)
7211 return FALSE;
7212 break;
7213 case SHT_MIPS_CONFLICT:
7214 if (strcmp (name, ".conflict") != 0)
7215 return FALSE;
7216 break;
7217 case SHT_MIPS_GPTAB:
7218 if (! CONST_STRNEQ (name, ".gptab."))
7219 return FALSE;
7220 break;
7221 case SHT_MIPS_UCODE:
7222 if (strcmp (name, ".ucode") != 0)
7223 return FALSE;
7224 break;
7225 case SHT_MIPS_DEBUG:
7226 if (strcmp (name, ".mdebug") != 0)
7227 return FALSE;
7228 flags = SEC_DEBUGGING;
7229 break;
7230 case SHT_MIPS_REGINFO:
7231 if (strcmp (name, ".reginfo") != 0
7232 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7233 return FALSE;
7234 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7235 break;
7236 case SHT_MIPS_IFACE:
7237 if (strcmp (name, ".MIPS.interfaces") != 0)
7238 return FALSE;
7239 break;
7240 case SHT_MIPS_CONTENT:
7241 if (! CONST_STRNEQ (name, ".MIPS.content"))
7242 return FALSE;
7243 break;
7244 case SHT_MIPS_OPTIONS:
7245 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7246 return FALSE;
7247 break;
7248 case SHT_MIPS_ABIFLAGS:
7249 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7250 return FALSE;
7251 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7252 break;
7253 case SHT_MIPS_DWARF:
7254 if (! CONST_STRNEQ (name, ".debug_")
7255 && ! CONST_STRNEQ (name, ".zdebug_"))
7256 return FALSE;
7257 break;
7258 case SHT_MIPS_SYMBOL_LIB:
7259 if (strcmp (name, ".MIPS.symlib") != 0)
7260 return FALSE;
7261 break;
7262 case SHT_MIPS_EVENTS:
7263 if (! CONST_STRNEQ (name, ".MIPS.events")
7264 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
7265 return FALSE;
7266 break;
7267 default:
7268 break;
7269 }
7270
7271 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7272 return FALSE;
7273
7274 if (flags)
7275 {
7276 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7277 (bfd_get_section_flags (abfd,
7278 hdr->bfd_section)
7279 | flags)))
7280 return FALSE;
7281 }
7282
7283 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7284 {
7285 Elf_External_ABIFlags_v0 ext;
7286
7287 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7288 &ext, 0, sizeof ext))
7289 return FALSE;
7290 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7291 &mips_elf_tdata (abfd)->abiflags);
7292 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7293 return FALSE;
7294 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7295 }
7296
7297 /* FIXME: We should record sh_info for a .gptab section. */
7298
7299 /* For a .reginfo section, set the gp value in the tdata information
7300 from the contents of this section. We need the gp value while
7301 processing relocs, so we just get it now. The .reginfo section
7302 is not used in the 64-bit MIPS ELF ABI. */
7303 if (hdr->sh_type == SHT_MIPS_REGINFO)
7304 {
7305 Elf32_External_RegInfo ext;
7306 Elf32_RegInfo s;
7307
7308 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7309 &ext, 0, sizeof ext))
7310 return FALSE;
7311 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7312 elf_gp (abfd) = s.ri_gp_value;
7313 }
7314
7315 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7316 set the gp value based on what we find. We may see both
7317 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7318 they should agree. */
7319 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7320 {
7321 bfd_byte *contents, *l, *lend;
7322
7323 contents = bfd_malloc (hdr->sh_size);
7324 if (contents == NULL)
7325 return FALSE;
7326 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7327 0, hdr->sh_size))
7328 {
7329 free (contents);
7330 return FALSE;
7331 }
7332 l = contents;
7333 lend = contents + hdr->sh_size;
7334 while (l + sizeof (Elf_External_Options) <= lend)
7335 {
7336 Elf_Internal_Options intopt;
7337
7338 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7339 &intopt);
7340 if (intopt.size < sizeof (Elf_External_Options))
7341 {
7342 (*_bfd_error_handler)
7343 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
7344 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7345 break;
7346 }
7347 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7348 {
7349 Elf64_Internal_RegInfo intreg;
7350
7351 bfd_mips_elf64_swap_reginfo_in
7352 (abfd,
7353 ((Elf64_External_RegInfo *)
7354 (l + sizeof (Elf_External_Options))),
7355 &intreg);
7356 elf_gp (abfd) = intreg.ri_gp_value;
7357 }
7358 else if (intopt.kind == ODK_REGINFO)
7359 {
7360 Elf32_RegInfo intreg;
7361
7362 bfd_mips_elf32_swap_reginfo_in
7363 (abfd,
7364 ((Elf32_External_RegInfo *)
7365 (l + sizeof (Elf_External_Options))),
7366 &intreg);
7367 elf_gp (abfd) = intreg.ri_gp_value;
7368 }
7369 l += intopt.size;
7370 }
7371 free (contents);
7372 }
7373
7374 return TRUE;
7375 }
7376
7377 /* Set the correct type for a MIPS ELF section. We do this by the
7378 section name, which is a hack, but ought to work. This routine is
7379 used by both the 32-bit and the 64-bit ABI. */
7380
7381 bfd_boolean
7382 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7383 {
7384 const char *name = bfd_get_section_name (abfd, sec);
7385
7386 if (strcmp (name, ".liblist") == 0)
7387 {
7388 hdr->sh_type = SHT_MIPS_LIBLIST;
7389 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7390 /* The sh_link field is set in final_write_processing. */
7391 }
7392 else if (strcmp (name, ".conflict") == 0)
7393 hdr->sh_type = SHT_MIPS_CONFLICT;
7394 else if (CONST_STRNEQ (name, ".gptab."))
7395 {
7396 hdr->sh_type = SHT_MIPS_GPTAB;
7397 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7398 /* The sh_info field is set in final_write_processing. */
7399 }
7400 else if (strcmp (name, ".ucode") == 0)
7401 hdr->sh_type = SHT_MIPS_UCODE;
7402 else if (strcmp (name, ".mdebug") == 0)
7403 {
7404 hdr->sh_type = SHT_MIPS_DEBUG;
7405 /* In a shared object on IRIX 5.3, the .mdebug section has an
7406 entsize of 0. FIXME: Does this matter? */
7407 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7408 hdr->sh_entsize = 0;
7409 else
7410 hdr->sh_entsize = 1;
7411 }
7412 else if (strcmp (name, ".reginfo") == 0)
7413 {
7414 hdr->sh_type = SHT_MIPS_REGINFO;
7415 /* In a shared object on IRIX 5.3, the .reginfo section has an
7416 entsize of 0x18. FIXME: Does this matter? */
7417 if (SGI_COMPAT (abfd))
7418 {
7419 if ((abfd->flags & DYNAMIC) != 0)
7420 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7421 else
7422 hdr->sh_entsize = 1;
7423 }
7424 else
7425 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7426 }
7427 else if (SGI_COMPAT (abfd)
7428 && (strcmp (name, ".hash") == 0
7429 || strcmp (name, ".dynamic") == 0
7430 || strcmp (name, ".dynstr") == 0))
7431 {
7432 if (SGI_COMPAT (abfd))
7433 hdr->sh_entsize = 0;
7434 #if 0
7435 /* This isn't how the IRIX6 linker behaves. */
7436 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7437 #endif
7438 }
7439 else if (strcmp (name, ".got") == 0
7440 || strcmp (name, ".srdata") == 0
7441 || strcmp (name, ".sdata") == 0
7442 || strcmp (name, ".sbss") == 0
7443 || strcmp (name, ".lit4") == 0
7444 || strcmp (name, ".lit8") == 0)
7445 hdr->sh_flags |= SHF_MIPS_GPREL;
7446 else if (strcmp (name, ".MIPS.interfaces") == 0)
7447 {
7448 hdr->sh_type = SHT_MIPS_IFACE;
7449 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7450 }
7451 else if (CONST_STRNEQ (name, ".MIPS.content"))
7452 {
7453 hdr->sh_type = SHT_MIPS_CONTENT;
7454 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7455 /* The sh_info field is set in final_write_processing. */
7456 }
7457 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7458 {
7459 hdr->sh_type = SHT_MIPS_OPTIONS;
7460 hdr->sh_entsize = 1;
7461 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7462 }
7463 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7464 {
7465 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7466 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7467 }
7468 else if (CONST_STRNEQ (name, ".debug_")
7469 || CONST_STRNEQ (name, ".zdebug_"))
7470 {
7471 hdr->sh_type = SHT_MIPS_DWARF;
7472
7473 /* Irix facilities such as libexc expect a single .debug_frame
7474 per executable, the system ones have NOSTRIP set and the linker
7475 doesn't merge sections with different flags so ... */
7476 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7477 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7478 }
7479 else if (strcmp (name, ".MIPS.symlib") == 0)
7480 {
7481 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7482 /* The sh_link and sh_info fields are set in
7483 final_write_processing. */
7484 }
7485 else if (CONST_STRNEQ (name, ".MIPS.events")
7486 || CONST_STRNEQ (name, ".MIPS.post_rel"))
7487 {
7488 hdr->sh_type = SHT_MIPS_EVENTS;
7489 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7490 /* The sh_link field is set in final_write_processing. */
7491 }
7492 else if (strcmp (name, ".msym") == 0)
7493 {
7494 hdr->sh_type = SHT_MIPS_MSYM;
7495 hdr->sh_flags |= SHF_ALLOC;
7496 hdr->sh_entsize = 8;
7497 }
7498
7499 /* The generic elf_fake_sections will set up REL_HDR using the default
7500 kind of relocations. We used to set up a second header for the
7501 non-default kind of relocations here, but only NewABI would use
7502 these, and the IRIX ld doesn't like resulting empty RELA sections.
7503 Thus we create those header only on demand now. */
7504
7505 return TRUE;
7506 }
7507
7508 /* Given a BFD section, try to locate the corresponding ELF section
7509 index. This is used by both the 32-bit and the 64-bit ABI.
7510 Actually, it's not clear to me that the 64-bit ABI supports these,
7511 but for non-PIC objects we will certainly want support for at least
7512 the .scommon section. */
7513
7514 bfd_boolean
7515 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7516 asection *sec, int *retval)
7517 {
7518 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7519 {
7520 *retval = SHN_MIPS_SCOMMON;
7521 return TRUE;
7522 }
7523 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7524 {
7525 *retval = SHN_MIPS_ACOMMON;
7526 return TRUE;
7527 }
7528 return FALSE;
7529 }
7530 \f
7531 /* Hook called by the linker routine which adds symbols from an object
7532 file. We must handle the special MIPS section numbers here. */
7533
7534 bfd_boolean
7535 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7536 Elf_Internal_Sym *sym, const char **namep,
7537 flagword *flagsp ATTRIBUTE_UNUSED,
7538 asection **secp, bfd_vma *valp)
7539 {
7540 if (SGI_COMPAT (abfd)
7541 && (abfd->flags & DYNAMIC) != 0
7542 && strcmp (*namep, "_rld_new_interface") == 0)
7543 {
7544 /* Skip IRIX5 rld entry name. */
7545 *namep = NULL;
7546 return TRUE;
7547 }
7548
7549 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7550 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7551 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7552 a magic symbol resolved by the linker, we ignore this bogus definition
7553 of _gp_disp. New ABI objects do not suffer from this problem so this
7554 is not done for them. */
7555 if (!NEWABI_P(abfd)
7556 && (sym->st_shndx == SHN_ABS)
7557 && (strcmp (*namep, "_gp_disp") == 0))
7558 {
7559 *namep = NULL;
7560 return TRUE;
7561 }
7562
7563 switch (sym->st_shndx)
7564 {
7565 case SHN_COMMON:
7566 /* Common symbols less than the GP size are automatically
7567 treated as SHN_MIPS_SCOMMON symbols. */
7568 if (sym->st_size > elf_gp_size (abfd)
7569 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7570 || IRIX_COMPAT (abfd) == ict_irix6)
7571 break;
7572 /* Fall through. */
7573 case SHN_MIPS_SCOMMON:
7574 *secp = bfd_make_section_old_way (abfd, ".scommon");
7575 (*secp)->flags |= SEC_IS_COMMON;
7576 *valp = sym->st_size;
7577 break;
7578
7579 case SHN_MIPS_TEXT:
7580 /* This section is used in a shared object. */
7581 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7582 {
7583 asymbol *elf_text_symbol;
7584 asection *elf_text_section;
7585 bfd_size_type amt = sizeof (asection);
7586
7587 elf_text_section = bfd_zalloc (abfd, amt);
7588 if (elf_text_section == NULL)
7589 return FALSE;
7590
7591 amt = sizeof (asymbol);
7592 elf_text_symbol = bfd_zalloc (abfd, amt);
7593 if (elf_text_symbol == NULL)
7594 return FALSE;
7595
7596 /* Initialize the section. */
7597
7598 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7599 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7600
7601 elf_text_section->symbol = elf_text_symbol;
7602 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7603
7604 elf_text_section->name = ".text";
7605 elf_text_section->flags = SEC_NO_FLAGS;
7606 elf_text_section->output_section = NULL;
7607 elf_text_section->owner = abfd;
7608 elf_text_symbol->name = ".text";
7609 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7610 elf_text_symbol->section = elf_text_section;
7611 }
7612 /* This code used to do *secp = bfd_und_section_ptr if
7613 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7614 so I took it out. */
7615 *secp = mips_elf_tdata (abfd)->elf_text_section;
7616 break;
7617
7618 case SHN_MIPS_ACOMMON:
7619 /* Fall through. XXX Can we treat this as allocated data? */
7620 case SHN_MIPS_DATA:
7621 /* This section is used in a shared object. */
7622 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7623 {
7624 asymbol *elf_data_symbol;
7625 asection *elf_data_section;
7626 bfd_size_type amt = sizeof (asection);
7627
7628 elf_data_section = bfd_zalloc (abfd, amt);
7629 if (elf_data_section == NULL)
7630 return FALSE;
7631
7632 amt = sizeof (asymbol);
7633 elf_data_symbol = bfd_zalloc (abfd, amt);
7634 if (elf_data_symbol == NULL)
7635 return FALSE;
7636
7637 /* Initialize the section. */
7638
7639 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7640 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7641
7642 elf_data_section->symbol = elf_data_symbol;
7643 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7644
7645 elf_data_section->name = ".data";
7646 elf_data_section->flags = SEC_NO_FLAGS;
7647 elf_data_section->output_section = NULL;
7648 elf_data_section->owner = abfd;
7649 elf_data_symbol->name = ".data";
7650 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7651 elf_data_symbol->section = elf_data_section;
7652 }
7653 /* This code used to do *secp = bfd_und_section_ptr if
7654 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7655 so I took it out. */
7656 *secp = mips_elf_tdata (abfd)->elf_data_section;
7657 break;
7658
7659 case SHN_MIPS_SUNDEFINED:
7660 *secp = bfd_und_section_ptr;
7661 break;
7662 }
7663
7664 if (SGI_COMPAT (abfd)
7665 && ! bfd_link_pic (info)
7666 && info->output_bfd->xvec == abfd->xvec
7667 && strcmp (*namep, "__rld_obj_head") == 0)
7668 {
7669 struct elf_link_hash_entry *h;
7670 struct bfd_link_hash_entry *bh;
7671
7672 /* Mark __rld_obj_head as dynamic. */
7673 bh = NULL;
7674 if (! (_bfd_generic_link_add_one_symbol
7675 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7676 get_elf_backend_data (abfd)->collect, &bh)))
7677 return FALSE;
7678
7679 h = (struct elf_link_hash_entry *) bh;
7680 h->non_elf = 0;
7681 h->def_regular = 1;
7682 h->type = STT_OBJECT;
7683
7684 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7685 return FALSE;
7686
7687 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7688 mips_elf_hash_table (info)->rld_symbol = h;
7689 }
7690
7691 /* If this is a mips16 text symbol, add 1 to the value to make it
7692 odd. This will cause something like .word SYM to come up with
7693 the right value when it is loaded into the PC. */
7694 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7695 ++*valp;
7696
7697 return TRUE;
7698 }
7699
7700 /* This hook function is called before the linker writes out a global
7701 symbol. We mark symbols as small common if appropriate. This is
7702 also where we undo the increment of the value for a mips16 symbol. */
7703
7704 int
7705 _bfd_mips_elf_link_output_symbol_hook
7706 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7707 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7708 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7709 {
7710 /* If we see a common symbol, which implies a relocatable link, then
7711 if a symbol was small common in an input file, mark it as small
7712 common in the output file. */
7713 if (sym->st_shndx == SHN_COMMON
7714 && strcmp (input_sec->name, ".scommon") == 0)
7715 sym->st_shndx = SHN_MIPS_SCOMMON;
7716
7717 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7718 sym->st_value &= ~1;
7719
7720 return 1;
7721 }
7722 \f
7723 /* Functions for the dynamic linker. */
7724
7725 /* Create dynamic sections when linking against a dynamic object. */
7726
7727 bfd_boolean
7728 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7729 {
7730 struct elf_link_hash_entry *h;
7731 struct bfd_link_hash_entry *bh;
7732 flagword flags;
7733 register asection *s;
7734 const char * const *namep;
7735 struct mips_elf_link_hash_table *htab;
7736
7737 htab = mips_elf_hash_table (info);
7738 BFD_ASSERT (htab != NULL);
7739
7740 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7741 | SEC_LINKER_CREATED | SEC_READONLY);
7742
7743 /* The psABI requires a read-only .dynamic section, but the VxWorks
7744 EABI doesn't. */
7745 if (!htab->is_vxworks)
7746 {
7747 s = bfd_get_linker_section (abfd, ".dynamic");
7748 if (s != NULL)
7749 {
7750 if (! bfd_set_section_flags (abfd, s, flags))
7751 return FALSE;
7752 }
7753 }
7754
7755 /* We need to create .got section. */
7756 if (!mips_elf_create_got_section (abfd, info))
7757 return FALSE;
7758
7759 if (! mips_elf_rel_dyn_section (info, TRUE))
7760 return FALSE;
7761
7762 /* Create .stub section. */
7763 s = bfd_make_section_anyway_with_flags (abfd,
7764 MIPS_ELF_STUB_SECTION_NAME (abfd),
7765 flags | SEC_CODE);
7766 if (s == NULL
7767 || ! bfd_set_section_alignment (abfd, s,
7768 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7769 return FALSE;
7770 htab->sstubs = s;
7771
7772 if (!mips_elf_hash_table (info)->use_rld_obj_head
7773 && bfd_link_executable (info)
7774 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7775 {
7776 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7777 flags &~ (flagword) SEC_READONLY);
7778 if (s == NULL
7779 || ! bfd_set_section_alignment (abfd, s,
7780 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7781 return FALSE;
7782 }
7783
7784 /* On IRIX5, we adjust add some additional symbols and change the
7785 alignments of several sections. There is no ABI documentation
7786 indicating that this is necessary on IRIX6, nor any evidence that
7787 the linker takes such action. */
7788 if (IRIX_COMPAT (abfd) == ict_irix5)
7789 {
7790 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7791 {
7792 bh = NULL;
7793 if (! (_bfd_generic_link_add_one_symbol
7794 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7795 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7796 return FALSE;
7797
7798 h = (struct elf_link_hash_entry *) bh;
7799 h->non_elf = 0;
7800 h->def_regular = 1;
7801 h->type = STT_SECTION;
7802
7803 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7804 return FALSE;
7805 }
7806
7807 /* We need to create a .compact_rel section. */
7808 if (SGI_COMPAT (abfd))
7809 {
7810 if (!mips_elf_create_compact_rel_section (abfd, info))
7811 return FALSE;
7812 }
7813
7814 /* Change alignments of some sections. */
7815 s = bfd_get_linker_section (abfd, ".hash");
7816 if (s != NULL)
7817 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7818
7819 s = bfd_get_linker_section (abfd, ".dynsym");
7820 if (s != NULL)
7821 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7822
7823 s = bfd_get_linker_section (abfd, ".dynstr");
7824 if (s != NULL)
7825 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7826
7827 /* ??? */
7828 s = bfd_get_section_by_name (abfd, ".reginfo");
7829 if (s != NULL)
7830 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7831
7832 s = bfd_get_linker_section (abfd, ".dynamic");
7833 if (s != NULL)
7834 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7835 }
7836
7837 if (bfd_link_executable (info))
7838 {
7839 const char *name;
7840
7841 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7842 bh = NULL;
7843 if (!(_bfd_generic_link_add_one_symbol
7844 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7845 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7846 return FALSE;
7847
7848 h = (struct elf_link_hash_entry *) bh;
7849 h->non_elf = 0;
7850 h->def_regular = 1;
7851 h->type = STT_SECTION;
7852
7853 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7854 return FALSE;
7855
7856 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7857 {
7858 /* __rld_map is a four byte word located in the .data section
7859 and is filled in by the rtld to contain a pointer to
7860 the _r_debug structure. Its symbol value will be set in
7861 _bfd_mips_elf_finish_dynamic_symbol. */
7862 s = bfd_get_linker_section (abfd, ".rld_map");
7863 BFD_ASSERT (s != NULL);
7864
7865 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7866 bh = NULL;
7867 if (!(_bfd_generic_link_add_one_symbol
7868 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7869 get_elf_backend_data (abfd)->collect, &bh)))
7870 return FALSE;
7871
7872 h = (struct elf_link_hash_entry *) bh;
7873 h->non_elf = 0;
7874 h->def_regular = 1;
7875 h->type = STT_OBJECT;
7876
7877 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7878 return FALSE;
7879 mips_elf_hash_table (info)->rld_symbol = h;
7880 }
7881 }
7882
7883 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7884 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
7885 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7886 return FALSE;
7887
7888 /* Cache the sections created above. */
7889 htab->splt = bfd_get_linker_section (abfd, ".plt");
7890 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
7891 if (htab->is_vxworks)
7892 {
7893 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
7894 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
7895 }
7896 else
7897 htab->srelplt = bfd_get_linker_section (abfd, ".rel.plt");
7898 if (!htab->sdynbss
7899 || (htab->is_vxworks && !htab->srelbss && !bfd_link_pic (info))
7900 || !htab->srelplt
7901 || !htab->splt)
7902 abort ();
7903
7904 /* Do the usual VxWorks handling. */
7905 if (htab->is_vxworks
7906 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7907 return FALSE;
7908
7909 return TRUE;
7910 }
7911 \f
7912 /* Return true if relocation REL against section SEC is a REL rather than
7913 RELA relocation. RELOCS is the first relocation in the section and
7914 ABFD is the bfd that contains SEC. */
7915
7916 static bfd_boolean
7917 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7918 const Elf_Internal_Rela *relocs,
7919 const Elf_Internal_Rela *rel)
7920 {
7921 Elf_Internal_Shdr *rel_hdr;
7922 const struct elf_backend_data *bed;
7923
7924 /* To determine which flavor of relocation this is, we depend on the
7925 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7926 rel_hdr = elf_section_data (sec)->rel.hdr;
7927 if (rel_hdr == NULL)
7928 return FALSE;
7929 bed = get_elf_backend_data (abfd);
7930 return ((size_t) (rel - relocs)
7931 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7932 }
7933
7934 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7935 HOWTO is the relocation's howto and CONTENTS points to the contents
7936 of the section that REL is against. */
7937
7938 static bfd_vma
7939 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7940 reloc_howto_type *howto, bfd_byte *contents)
7941 {
7942 bfd_byte *location;
7943 unsigned int r_type;
7944 bfd_vma addend;
7945 bfd_vma bytes;
7946
7947 r_type = ELF_R_TYPE (abfd, rel->r_info);
7948 location = contents + rel->r_offset;
7949
7950 /* Get the addend, which is stored in the input file. */
7951 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7952 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
7953 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7954
7955 addend = bytes & howto->src_mask;
7956
7957 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
7958 accordingly. */
7959 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
7960 addend <<= 1;
7961
7962 return addend;
7963 }
7964
7965 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7966 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7967 and update *ADDEND with the final addend. Return true on success
7968 or false if the LO16 could not be found. RELEND is the exclusive
7969 upper bound on the relocations for REL's section. */
7970
7971 static bfd_boolean
7972 mips_elf_add_lo16_rel_addend (bfd *abfd,
7973 const Elf_Internal_Rela *rel,
7974 const Elf_Internal_Rela *relend,
7975 bfd_byte *contents, bfd_vma *addend)
7976 {
7977 unsigned int r_type, lo16_type;
7978 const Elf_Internal_Rela *lo16_relocation;
7979 reloc_howto_type *lo16_howto;
7980 bfd_vma l;
7981
7982 r_type = ELF_R_TYPE (abfd, rel->r_info);
7983 if (mips16_reloc_p (r_type))
7984 lo16_type = R_MIPS16_LO16;
7985 else if (micromips_reloc_p (r_type))
7986 lo16_type = R_MICROMIPS_LO16;
7987 else if (r_type == R_MIPS_PCHI16)
7988 lo16_type = R_MIPS_PCLO16;
7989 else
7990 lo16_type = R_MIPS_LO16;
7991
7992 /* The combined value is the sum of the HI16 addend, left-shifted by
7993 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7994 code does a `lui' of the HI16 value, and then an `addiu' of the
7995 LO16 value.)
7996
7997 Scan ahead to find a matching LO16 relocation.
7998
7999 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8000 be immediately following. However, for the IRIX6 ABI, the next
8001 relocation may be a composed relocation consisting of several
8002 relocations for the same address. In that case, the R_MIPS_LO16
8003 relocation may occur as one of these. We permit a similar
8004 extension in general, as that is useful for GCC.
8005
8006 In some cases GCC dead code elimination removes the LO16 but keeps
8007 the corresponding HI16. This is strictly speaking a violation of
8008 the ABI but not immediately harmful. */
8009 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8010 if (lo16_relocation == NULL)
8011 return FALSE;
8012
8013 /* Obtain the addend kept there. */
8014 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
8015 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8016
8017 l <<= lo16_howto->rightshift;
8018 l = _bfd_mips_elf_sign_extend (l, 16);
8019
8020 *addend <<= 16;
8021 *addend += l;
8022 return TRUE;
8023 }
8024
8025 /* Try to read the contents of section SEC in bfd ABFD. Return true and
8026 store the contents in *CONTENTS on success. Assume that *CONTENTS
8027 already holds the contents if it is nonull on entry. */
8028
8029 static bfd_boolean
8030 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8031 {
8032 if (*contents)
8033 return TRUE;
8034
8035 /* Get cached copy if it exists. */
8036 if (elf_section_data (sec)->this_hdr.contents != NULL)
8037 {
8038 *contents = elf_section_data (sec)->this_hdr.contents;
8039 return TRUE;
8040 }
8041
8042 return bfd_malloc_and_get_section (abfd, sec, contents);
8043 }
8044
8045 /* Make a new PLT record to keep internal data. */
8046
8047 static struct plt_entry *
8048 mips_elf_make_plt_record (bfd *abfd)
8049 {
8050 struct plt_entry *entry;
8051
8052 entry = bfd_zalloc (abfd, sizeof (*entry));
8053 if (entry == NULL)
8054 return NULL;
8055
8056 entry->stub_offset = MINUS_ONE;
8057 entry->mips_offset = MINUS_ONE;
8058 entry->comp_offset = MINUS_ONE;
8059 entry->gotplt_index = MINUS_ONE;
8060 return entry;
8061 }
8062
8063 /* Look through the relocs for a section during the first phase, and
8064 allocate space in the global offset table and record the need for
8065 standard MIPS and compressed procedure linkage table entries. */
8066
8067 bfd_boolean
8068 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8069 asection *sec, const Elf_Internal_Rela *relocs)
8070 {
8071 const char *name;
8072 bfd *dynobj;
8073 Elf_Internal_Shdr *symtab_hdr;
8074 struct elf_link_hash_entry **sym_hashes;
8075 size_t extsymoff;
8076 const Elf_Internal_Rela *rel;
8077 const Elf_Internal_Rela *rel_end;
8078 asection *sreloc;
8079 const struct elf_backend_data *bed;
8080 struct mips_elf_link_hash_table *htab;
8081 bfd_byte *contents;
8082 bfd_vma addend;
8083 reloc_howto_type *howto;
8084
8085 if (bfd_link_relocatable (info))
8086 return TRUE;
8087
8088 htab = mips_elf_hash_table (info);
8089 BFD_ASSERT (htab != NULL);
8090
8091 dynobj = elf_hash_table (info)->dynobj;
8092 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8093 sym_hashes = elf_sym_hashes (abfd);
8094 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8095
8096 bed = get_elf_backend_data (abfd);
8097 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
8098
8099 /* Check for the mips16 stub sections. */
8100
8101 name = bfd_get_section_name (abfd, sec);
8102 if (FN_STUB_P (name))
8103 {
8104 unsigned long r_symndx;
8105
8106 /* Look at the relocation information to figure out which symbol
8107 this is for. */
8108
8109 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8110 if (r_symndx == 0)
8111 {
8112 (*_bfd_error_handler)
8113 (_("%B: Warning: cannot determine the target function for"
8114 " stub section `%s'"),
8115 abfd, name);
8116 bfd_set_error (bfd_error_bad_value);
8117 return FALSE;
8118 }
8119
8120 if (r_symndx < extsymoff
8121 || sym_hashes[r_symndx - extsymoff] == NULL)
8122 {
8123 asection *o;
8124
8125 /* This stub is for a local symbol. This stub will only be
8126 needed if there is some relocation in this BFD, other
8127 than a 16 bit function call, which refers to this symbol. */
8128 for (o = abfd->sections; o != NULL; o = o->next)
8129 {
8130 Elf_Internal_Rela *sec_relocs;
8131 const Elf_Internal_Rela *r, *rend;
8132
8133 /* We can ignore stub sections when looking for relocs. */
8134 if ((o->flags & SEC_RELOC) == 0
8135 || o->reloc_count == 0
8136 || section_allows_mips16_refs_p (o))
8137 continue;
8138
8139 sec_relocs
8140 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8141 info->keep_memory);
8142 if (sec_relocs == NULL)
8143 return FALSE;
8144
8145 rend = sec_relocs + o->reloc_count;
8146 for (r = sec_relocs; r < rend; r++)
8147 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8148 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
8149 break;
8150
8151 if (elf_section_data (o)->relocs != sec_relocs)
8152 free (sec_relocs);
8153
8154 if (r < rend)
8155 break;
8156 }
8157
8158 if (o == NULL)
8159 {
8160 /* There is no non-call reloc for this stub, so we do
8161 not need it. Since this function is called before
8162 the linker maps input sections to output sections, we
8163 can easily discard it by setting the SEC_EXCLUDE
8164 flag. */
8165 sec->flags |= SEC_EXCLUDE;
8166 return TRUE;
8167 }
8168
8169 /* Record this stub in an array of local symbol stubs for
8170 this BFD. */
8171 if (mips_elf_tdata (abfd)->local_stubs == NULL)
8172 {
8173 unsigned long symcount;
8174 asection **n;
8175 bfd_size_type amt;
8176
8177 if (elf_bad_symtab (abfd))
8178 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8179 else
8180 symcount = symtab_hdr->sh_info;
8181 amt = symcount * sizeof (asection *);
8182 n = bfd_zalloc (abfd, amt);
8183 if (n == NULL)
8184 return FALSE;
8185 mips_elf_tdata (abfd)->local_stubs = n;
8186 }
8187
8188 sec->flags |= SEC_KEEP;
8189 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8190
8191 /* We don't need to set mips16_stubs_seen in this case.
8192 That flag is used to see whether we need to look through
8193 the global symbol table for stubs. We don't need to set
8194 it here, because we just have a local stub. */
8195 }
8196 else
8197 {
8198 struct mips_elf_link_hash_entry *h;
8199
8200 h = ((struct mips_elf_link_hash_entry *)
8201 sym_hashes[r_symndx - extsymoff]);
8202
8203 while (h->root.root.type == bfd_link_hash_indirect
8204 || h->root.root.type == bfd_link_hash_warning)
8205 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8206
8207 /* H is the symbol this stub is for. */
8208
8209 /* If we already have an appropriate stub for this function, we
8210 don't need another one, so we can discard this one. Since
8211 this function is called before the linker maps input sections
8212 to output sections, we can easily discard it by setting the
8213 SEC_EXCLUDE flag. */
8214 if (h->fn_stub != NULL)
8215 {
8216 sec->flags |= SEC_EXCLUDE;
8217 return TRUE;
8218 }
8219
8220 sec->flags |= SEC_KEEP;
8221 h->fn_stub = sec;
8222 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8223 }
8224 }
8225 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8226 {
8227 unsigned long r_symndx;
8228 struct mips_elf_link_hash_entry *h;
8229 asection **loc;
8230
8231 /* Look at the relocation information to figure out which symbol
8232 this is for. */
8233
8234 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8235 if (r_symndx == 0)
8236 {
8237 (*_bfd_error_handler)
8238 (_("%B: Warning: cannot determine the target function for"
8239 " stub section `%s'"),
8240 abfd, name);
8241 bfd_set_error (bfd_error_bad_value);
8242 return FALSE;
8243 }
8244
8245 if (r_symndx < extsymoff
8246 || sym_hashes[r_symndx - extsymoff] == NULL)
8247 {
8248 asection *o;
8249
8250 /* This stub is for a local symbol. This stub will only be
8251 needed if there is some relocation (R_MIPS16_26) in this BFD
8252 that refers to this symbol. */
8253 for (o = abfd->sections; o != NULL; o = o->next)
8254 {
8255 Elf_Internal_Rela *sec_relocs;
8256 const Elf_Internal_Rela *r, *rend;
8257
8258 /* We can ignore stub sections when looking for relocs. */
8259 if ((o->flags & SEC_RELOC) == 0
8260 || o->reloc_count == 0
8261 || section_allows_mips16_refs_p (o))
8262 continue;
8263
8264 sec_relocs
8265 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8266 info->keep_memory);
8267 if (sec_relocs == NULL)
8268 return FALSE;
8269
8270 rend = sec_relocs + o->reloc_count;
8271 for (r = sec_relocs; r < rend; r++)
8272 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8273 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8274 break;
8275
8276 if (elf_section_data (o)->relocs != sec_relocs)
8277 free (sec_relocs);
8278
8279 if (r < rend)
8280 break;
8281 }
8282
8283 if (o == NULL)
8284 {
8285 /* There is no non-call reloc for this stub, so we do
8286 not need it. Since this function is called before
8287 the linker maps input sections to output sections, we
8288 can easily discard it by setting the SEC_EXCLUDE
8289 flag. */
8290 sec->flags |= SEC_EXCLUDE;
8291 return TRUE;
8292 }
8293
8294 /* Record this stub in an array of local symbol call_stubs for
8295 this BFD. */
8296 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8297 {
8298 unsigned long symcount;
8299 asection **n;
8300 bfd_size_type amt;
8301
8302 if (elf_bad_symtab (abfd))
8303 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8304 else
8305 symcount = symtab_hdr->sh_info;
8306 amt = symcount * sizeof (asection *);
8307 n = bfd_zalloc (abfd, amt);
8308 if (n == NULL)
8309 return FALSE;
8310 mips_elf_tdata (abfd)->local_call_stubs = n;
8311 }
8312
8313 sec->flags |= SEC_KEEP;
8314 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8315
8316 /* We don't need to set mips16_stubs_seen in this case.
8317 That flag is used to see whether we need to look through
8318 the global symbol table for stubs. We don't need to set
8319 it here, because we just have a local stub. */
8320 }
8321 else
8322 {
8323 h = ((struct mips_elf_link_hash_entry *)
8324 sym_hashes[r_symndx - extsymoff]);
8325
8326 /* H is the symbol this stub is for. */
8327
8328 if (CALL_FP_STUB_P (name))
8329 loc = &h->call_fp_stub;
8330 else
8331 loc = &h->call_stub;
8332
8333 /* If we already have an appropriate stub for this function, we
8334 don't need another one, so we can discard this one. Since
8335 this function is called before the linker maps input sections
8336 to output sections, we can easily discard it by setting the
8337 SEC_EXCLUDE flag. */
8338 if (*loc != NULL)
8339 {
8340 sec->flags |= SEC_EXCLUDE;
8341 return TRUE;
8342 }
8343
8344 sec->flags |= SEC_KEEP;
8345 *loc = sec;
8346 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8347 }
8348 }
8349
8350 sreloc = NULL;
8351 contents = NULL;
8352 for (rel = relocs; rel < rel_end; ++rel)
8353 {
8354 unsigned long r_symndx;
8355 unsigned int r_type;
8356 struct elf_link_hash_entry *h;
8357 bfd_boolean can_make_dynamic_p;
8358 bfd_boolean call_reloc_p;
8359 bfd_boolean constrain_symbol_p;
8360
8361 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8362 r_type = ELF_R_TYPE (abfd, rel->r_info);
8363
8364 if (r_symndx < extsymoff)
8365 h = NULL;
8366 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8367 {
8368 (*_bfd_error_handler)
8369 (_("%B: Malformed reloc detected for section %s"),
8370 abfd, name);
8371 bfd_set_error (bfd_error_bad_value);
8372 return FALSE;
8373 }
8374 else
8375 {
8376 h = sym_hashes[r_symndx - extsymoff];
8377 if (h != NULL)
8378 {
8379 while (h->root.type == bfd_link_hash_indirect
8380 || h->root.type == bfd_link_hash_warning)
8381 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8382
8383 /* PR15323, ref flags aren't set for references in the
8384 same object. */
8385 h->root.non_ir_ref = 1;
8386 }
8387 }
8388
8389 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8390 relocation into a dynamic one. */
8391 can_make_dynamic_p = FALSE;
8392
8393 /* Set CALL_RELOC_P to true if the relocation is for a call,
8394 and if pointer equality therefore doesn't matter. */
8395 call_reloc_p = FALSE;
8396
8397 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8398 into account when deciding how to define the symbol.
8399 Relocations in nonallocatable sections such as .pdr and
8400 .debug* should have no effect. */
8401 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8402
8403 switch (r_type)
8404 {
8405 case R_MIPS_CALL16:
8406 case R_MIPS_CALL_HI16:
8407 case R_MIPS_CALL_LO16:
8408 case R_MIPS16_CALL16:
8409 case R_MICROMIPS_CALL16:
8410 case R_MICROMIPS_CALL_HI16:
8411 case R_MICROMIPS_CALL_LO16:
8412 call_reloc_p = TRUE;
8413 /* Fall through. */
8414
8415 case R_MIPS_GOT16:
8416 case R_MIPS_GOT_HI16:
8417 case R_MIPS_GOT_LO16:
8418 case R_MIPS_GOT_PAGE:
8419 case R_MIPS_GOT_OFST:
8420 case R_MIPS_GOT_DISP:
8421 case R_MIPS_TLS_GOTTPREL:
8422 case R_MIPS_TLS_GD:
8423 case R_MIPS_TLS_LDM:
8424 case R_MIPS16_GOT16:
8425 case R_MIPS16_TLS_GOTTPREL:
8426 case R_MIPS16_TLS_GD:
8427 case R_MIPS16_TLS_LDM:
8428 case R_MICROMIPS_GOT16:
8429 case R_MICROMIPS_GOT_HI16:
8430 case R_MICROMIPS_GOT_LO16:
8431 case R_MICROMIPS_GOT_PAGE:
8432 case R_MICROMIPS_GOT_OFST:
8433 case R_MICROMIPS_GOT_DISP:
8434 case R_MICROMIPS_TLS_GOTTPREL:
8435 case R_MICROMIPS_TLS_GD:
8436 case R_MICROMIPS_TLS_LDM:
8437 if (dynobj == NULL)
8438 elf_hash_table (info)->dynobj = dynobj = abfd;
8439 if (!mips_elf_create_got_section (dynobj, info))
8440 return FALSE;
8441 if (htab->is_vxworks && !bfd_link_pic (info))
8442 {
8443 (*_bfd_error_handler)
8444 (_("%B: GOT reloc at 0x%lx not expected in executables"),
8445 abfd, (unsigned long) rel->r_offset);
8446 bfd_set_error (bfd_error_bad_value);
8447 return FALSE;
8448 }
8449 can_make_dynamic_p = TRUE;
8450 break;
8451
8452 case R_MIPS_NONE:
8453 case R_MIPS_JALR:
8454 case R_MICROMIPS_JALR:
8455 /* These relocations have empty fields and are purely there to
8456 provide link information. The symbol value doesn't matter. */
8457 constrain_symbol_p = FALSE;
8458 break;
8459
8460 case R_MIPS_GPREL16:
8461 case R_MIPS_GPREL32:
8462 case R_MIPS16_GPREL:
8463 case R_MICROMIPS_GPREL16:
8464 /* GP-relative relocations always resolve to a definition in a
8465 regular input file, ignoring the one-definition rule. This is
8466 important for the GP setup sequence in NewABI code, which
8467 always resolves to a local function even if other relocations
8468 against the symbol wouldn't. */
8469 constrain_symbol_p = FALSE;
8470 break;
8471
8472 case R_MIPS_32:
8473 case R_MIPS_REL32:
8474 case R_MIPS_64:
8475 /* In VxWorks executables, references to external symbols
8476 must be handled using copy relocs or PLT entries; it is not
8477 possible to convert this relocation into a dynamic one.
8478
8479 For executables that use PLTs and copy-relocs, we have a
8480 choice between converting the relocation into a dynamic
8481 one or using copy relocations or PLT entries. It is
8482 usually better to do the former, unless the relocation is
8483 against a read-only section. */
8484 if ((bfd_link_pic (info)
8485 || (h != NULL
8486 && !htab->is_vxworks
8487 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8488 && !(!info->nocopyreloc
8489 && !PIC_OBJECT_P (abfd)
8490 && MIPS_ELF_READONLY_SECTION (sec))))
8491 && (sec->flags & SEC_ALLOC) != 0)
8492 {
8493 can_make_dynamic_p = TRUE;
8494 if (dynobj == NULL)
8495 elf_hash_table (info)->dynobj = dynobj = abfd;
8496 }
8497 break;
8498
8499 case R_MIPS_26:
8500 case R_MIPS_PC16:
8501 case R_MIPS_PC21_S2:
8502 case R_MIPS_PC26_S2:
8503 case R_MIPS16_26:
8504 case R_MIPS16_PC16_S1:
8505 case R_MICROMIPS_26_S1:
8506 case R_MICROMIPS_PC7_S1:
8507 case R_MICROMIPS_PC10_S1:
8508 case R_MICROMIPS_PC16_S1:
8509 case R_MICROMIPS_PC23_S2:
8510 call_reloc_p = TRUE;
8511 break;
8512 }
8513
8514 if (h)
8515 {
8516 if (constrain_symbol_p)
8517 {
8518 if (!can_make_dynamic_p)
8519 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8520
8521 if (!call_reloc_p)
8522 h->pointer_equality_needed = 1;
8523
8524 /* We must not create a stub for a symbol that has
8525 relocations related to taking the function's address.
8526 This doesn't apply to VxWorks, where CALL relocs refer
8527 to a .got.plt entry instead of a normal .got entry. */
8528 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8529 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8530 }
8531
8532 /* Relocations against the special VxWorks __GOTT_BASE__ and
8533 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8534 room for them in .rela.dyn. */
8535 if (is_gott_symbol (info, h))
8536 {
8537 if (sreloc == NULL)
8538 {
8539 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8540 if (sreloc == NULL)
8541 return FALSE;
8542 }
8543 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8544 if (MIPS_ELF_READONLY_SECTION (sec))
8545 /* We tell the dynamic linker that there are
8546 relocations against the text segment. */
8547 info->flags |= DF_TEXTREL;
8548 }
8549 }
8550 else if (call_lo16_reloc_p (r_type)
8551 || got_lo16_reloc_p (r_type)
8552 || got_disp_reloc_p (r_type)
8553 || (got16_reloc_p (r_type) && htab->is_vxworks))
8554 {
8555 /* We may need a local GOT entry for this relocation. We
8556 don't count R_MIPS_GOT_PAGE because we can estimate the
8557 maximum number of pages needed by looking at the size of
8558 the segment. Similar comments apply to R_MIPS*_GOT16 and
8559 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8560 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8561 R_MIPS_CALL_HI16 because these are always followed by an
8562 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8563 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8564 rel->r_addend, info, r_type))
8565 return FALSE;
8566 }
8567
8568 if (h != NULL
8569 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8570 ELF_ST_IS_MIPS16 (h->other)))
8571 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8572
8573 switch (r_type)
8574 {
8575 case R_MIPS_CALL16:
8576 case R_MIPS16_CALL16:
8577 case R_MICROMIPS_CALL16:
8578 if (h == NULL)
8579 {
8580 (*_bfd_error_handler)
8581 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
8582 abfd, (unsigned long) rel->r_offset);
8583 bfd_set_error (bfd_error_bad_value);
8584 return FALSE;
8585 }
8586 /* Fall through. */
8587
8588 case R_MIPS_CALL_HI16:
8589 case R_MIPS_CALL_LO16:
8590 case R_MICROMIPS_CALL_HI16:
8591 case R_MICROMIPS_CALL_LO16:
8592 if (h != NULL)
8593 {
8594 /* Make sure there is room in the regular GOT to hold the
8595 function's address. We may eliminate it in favour of
8596 a .got.plt entry later; see mips_elf_count_got_symbols. */
8597 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8598 r_type))
8599 return FALSE;
8600
8601 /* We need a stub, not a plt entry for the undefined
8602 function. But we record it as if it needs plt. See
8603 _bfd_elf_adjust_dynamic_symbol. */
8604 h->needs_plt = 1;
8605 h->type = STT_FUNC;
8606 }
8607 break;
8608
8609 case R_MIPS_GOT_PAGE:
8610 case R_MICROMIPS_GOT_PAGE:
8611 case R_MIPS16_GOT16:
8612 case R_MIPS_GOT16:
8613 case R_MIPS_GOT_HI16:
8614 case R_MIPS_GOT_LO16:
8615 case R_MICROMIPS_GOT16:
8616 case R_MICROMIPS_GOT_HI16:
8617 case R_MICROMIPS_GOT_LO16:
8618 if (!h || got_page_reloc_p (r_type))
8619 {
8620 /* This relocation needs (or may need, if h != NULL) a
8621 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8622 know for sure until we know whether the symbol is
8623 preemptible. */
8624 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8625 {
8626 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8627 return FALSE;
8628 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8629 addend = mips_elf_read_rel_addend (abfd, rel,
8630 howto, contents);
8631 if (got16_reloc_p (r_type))
8632 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8633 contents, &addend);
8634 else
8635 addend <<= howto->rightshift;
8636 }
8637 else
8638 addend = rel->r_addend;
8639 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8640 h, addend))
8641 return FALSE;
8642
8643 if (h)
8644 {
8645 struct mips_elf_link_hash_entry *hmips =
8646 (struct mips_elf_link_hash_entry *) h;
8647
8648 /* This symbol is definitely not overridable. */
8649 if (hmips->root.def_regular
8650 && ! (bfd_link_pic (info) && ! info->symbolic
8651 && ! hmips->root.forced_local))
8652 h = NULL;
8653 }
8654 }
8655 /* If this is a global, overridable symbol, GOT_PAGE will
8656 decay to GOT_DISP, so we'll need a GOT entry for it. */
8657 /* Fall through. */
8658
8659 case R_MIPS_GOT_DISP:
8660 case R_MICROMIPS_GOT_DISP:
8661 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8662 FALSE, r_type))
8663 return FALSE;
8664 break;
8665
8666 case R_MIPS_TLS_GOTTPREL:
8667 case R_MIPS16_TLS_GOTTPREL:
8668 case R_MICROMIPS_TLS_GOTTPREL:
8669 if (bfd_link_pic (info))
8670 info->flags |= DF_STATIC_TLS;
8671 /* Fall through */
8672
8673 case R_MIPS_TLS_LDM:
8674 case R_MIPS16_TLS_LDM:
8675 case R_MICROMIPS_TLS_LDM:
8676 if (tls_ldm_reloc_p (r_type))
8677 {
8678 r_symndx = STN_UNDEF;
8679 h = NULL;
8680 }
8681 /* Fall through */
8682
8683 case R_MIPS_TLS_GD:
8684 case R_MIPS16_TLS_GD:
8685 case R_MICROMIPS_TLS_GD:
8686 /* This symbol requires a global offset table entry, or two
8687 for TLS GD relocations. */
8688 if (h != NULL)
8689 {
8690 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8691 FALSE, r_type))
8692 return FALSE;
8693 }
8694 else
8695 {
8696 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8697 rel->r_addend,
8698 info, r_type))
8699 return FALSE;
8700 }
8701 break;
8702
8703 case R_MIPS_32:
8704 case R_MIPS_REL32:
8705 case R_MIPS_64:
8706 /* In VxWorks executables, references to external symbols
8707 are handled using copy relocs or PLT stubs, so there's
8708 no need to add a .rela.dyn entry for this relocation. */
8709 if (can_make_dynamic_p)
8710 {
8711 if (sreloc == NULL)
8712 {
8713 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8714 if (sreloc == NULL)
8715 return FALSE;
8716 }
8717 if (bfd_link_pic (info) && h == NULL)
8718 {
8719 /* When creating a shared object, we must copy these
8720 reloc types into the output file as R_MIPS_REL32
8721 relocs. Make room for this reloc in .rel(a).dyn. */
8722 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8723 if (MIPS_ELF_READONLY_SECTION (sec))
8724 /* We tell the dynamic linker that there are
8725 relocations against the text segment. */
8726 info->flags |= DF_TEXTREL;
8727 }
8728 else
8729 {
8730 struct mips_elf_link_hash_entry *hmips;
8731
8732 /* For a shared object, we must copy this relocation
8733 unless the symbol turns out to be undefined and
8734 weak with non-default visibility, in which case
8735 it will be left as zero.
8736
8737 We could elide R_MIPS_REL32 for locally binding symbols
8738 in shared libraries, but do not yet do so.
8739
8740 For an executable, we only need to copy this
8741 reloc if the symbol is defined in a dynamic
8742 object. */
8743 hmips = (struct mips_elf_link_hash_entry *) h;
8744 ++hmips->possibly_dynamic_relocs;
8745 if (MIPS_ELF_READONLY_SECTION (sec))
8746 /* We need it to tell the dynamic linker if there
8747 are relocations against the text segment. */
8748 hmips->readonly_reloc = TRUE;
8749 }
8750 }
8751
8752 if (SGI_COMPAT (abfd))
8753 mips_elf_hash_table (info)->compact_rel_size +=
8754 sizeof (Elf32_External_crinfo);
8755 break;
8756
8757 case R_MIPS_26:
8758 case R_MIPS_GPREL16:
8759 case R_MIPS_LITERAL:
8760 case R_MIPS_GPREL32:
8761 case R_MICROMIPS_26_S1:
8762 case R_MICROMIPS_GPREL16:
8763 case R_MICROMIPS_LITERAL:
8764 case R_MICROMIPS_GPREL7_S2:
8765 if (SGI_COMPAT (abfd))
8766 mips_elf_hash_table (info)->compact_rel_size +=
8767 sizeof (Elf32_External_crinfo);
8768 break;
8769
8770 /* This relocation describes the C++ object vtable hierarchy.
8771 Reconstruct it for later use during GC. */
8772 case R_MIPS_GNU_VTINHERIT:
8773 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8774 return FALSE;
8775 break;
8776
8777 /* This relocation describes which C++ vtable entries are actually
8778 used. Record for later use during GC. */
8779 case R_MIPS_GNU_VTENTRY:
8780 BFD_ASSERT (h != NULL);
8781 if (h != NULL
8782 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8783 return FALSE;
8784 break;
8785
8786 default:
8787 break;
8788 }
8789
8790 /* Record the need for a PLT entry. At this point we don't know
8791 yet if we are going to create a PLT in the first place, but
8792 we only record whether the relocation requires a standard MIPS
8793 or a compressed code entry anyway. If we don't make a PLT after
8794 all, then we'll just ignore these arrangements. Likewise if
8795 a PLT entry is not created because the symbol is satisfied
8796 locally. */
8797 if (h != NULL
8798 && jal_reloc_p (r_type)
8799 && !SYMBOL_CALLS_LOCAL (info, h))
8800 {
8801 if (h->plt.plist == NULL)
8802 h->plt.plist = mips_elf_make_plt_record (abfd);
8803 if (h->plt.plist == NULL)
8804 return FALSE;
8805
8806 if (r_type == R_MIPS_26)
8807 h->plt.plist->need_mips = TRUE;
8808 else
8809 h->plt.plist->need_comp = TRUE;
8810 }
8811
8812 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8813 if there is one. We only need to handle global symbols here;
8814 we decide whether to keep or delete stubs for local symbols
8815 when processing the stub's relocations. */
8816 if (h != NULL
8817 && !mips16_call_reloc_p (r_type)
8818 && !section_allows_mips16_refs_p (sec))
8819 {
8820 struct mips_elf_link_hash_entry *mh;
8821
8822 mh = (struct mips_elf_link_hash_entry *) h;
8823 mh->need_fn_stub = TRUE;
8824 }
8825
8826 /* Refuse some position-dependent relocations when creating a
8827 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8828 not PIC, but we can create dynamic relocations and the result
8829 will be fine. Also do not refuse R_MIPS_LO16, which can be
8830 combined with R_MIPS_GOT16. */
8831 if (bfd_link_pic (info))
8832 {
8833 switch (r_type)
8834 {
8835 case R_MIPS16_HI16:
8836 case R_MIPS_HI16:
8837 case R_MIPS_HIGHER:
8838 case R_MIPS_HIGHEST:
8839 case R_MICROMIPS_HI16:
8840 case R_MICROMIPS_HIGHER:
8841 case R_MICROMIPS_HIGHEST:
8842 /* Don't refuse a high part relocation if it's against
8843 no symbol (e.g. part of a compound relocation). */
8844 if (r_symndx == STN_UNDEF)
8845 break;
8846
8847 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8848 and has a special meaning. */
8849 if (!NEWABI_P (abfd) && h != NULL
8850 && strcmp (h->root.root.string, "_gp_disp") == 0)
8851 break;
8852
8853 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8854 if (is_gott_symbol (info, h))
8855 break;
8856
8857 /* FALLTHROUGH */
8858
8859 case R_MIPS16_26:
8860 case R_MIPS_26:
8861 case R_MICROMIPS_26_S1:
8862 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8863 (*_bfd_error_handler)
8864 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8865 abfd, howto->name,
8866 (h) ? h->root.root.string : "a local symbol");
8867 bfd_set_error (bfd_error_bad_value);
8868 return FALSE;
8869 default:
8870 break;
8871 }
8872 }
8873 }
8874
8875 return TRUE;
8876 }
8877 \f
8878 bfd_boolean
8879 _bfd_mips_relax_section (bfd *abfd, asection *sec,
8880 struct bfd_link_info *link_info,
8881 bfd_boolean *again)
8882 {
8883 Elf_Internal_Rela *internal_relocs;
8884 Elf_Internal_Rela *irel, *irelend;
8885 Elf_Internal_Shdr *symtab_hdr;
8886 bfd_byte *contents = NULL;
8887 size_t extsymoff;
8888 bfd_boolean changed_contents = FALSE;
8889 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8890 Elf_Internal_Sym *isymbuf = NULL;
8891
8892 /* We are not currently changing any sizes, so only one pass. */
8893 *again = FALSE;
8894
8895 if (bfd_link_relocatable (link_info))
8896 return TRUE;
8897
8898 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
8899 link_info->keep_memory);
8900 if (internal_relocs == NULL)
8901 return TRUE;
8902
8903 irelend = internal_relocs + sec->reloc_count
8904 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8905 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8906 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8907
8908 for (irel = internal_relocs; irel < irelend; irel++)
8909 {
8910 bfd_vma symval;
8911 bfd_signed_vma sym_offset;
8912 unsigned int r_type;
8913 unsigned long r_symndx;
8914 asection *sym_sec;
8915 unsigned long instruction;
8916
8917 /* Turn jalr into bgezal, and jr into beq, if they're marked
8918 with a JALR relocation, that indicate where they jump to.
8919 This saves some pipeline bubbles. */
8920 r_type = ELF_R_TYPE (abfd, irel->r_info);
8921 if (r_type != R_MIPS_JALR)
8922 continue;
8923
8924 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8925 /* Compute the address of the jump target. */
8926 if (r_symndx >= extsymoff)
8927 {
8928 struct mips_elf_link_hash_entry *h
8929 = ((struct mips_elf_link_hash_entry *)
8930 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8931
8932 while (h->root.root.type == bfd_link_hash_indirect
8933 || h->root.root.type == bfd_link_hash_warning)
8934 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8935
8936 /* If a symbol is undefined, or if it may be overridden,
8937 skip it. */
8938 if (! ((h->root.root.type == bfd_link_hash_defined
8939 || h->root.root.type == bfd_link_hash_defweak)
8940 && h->root.root.u.def.section)
8941 || (bfd_link_pic (link_info) && ! link_info->symbolic
8942 && !h->root.forced_local))
8943 continue;
8944
8945 sym_sec = h->root.root.u.def.section;
8946 if (sym_sec->output_section)
8947 symval = (h->root.root.u.def.value
8948 + sym_sec->output_section->vma
8949 + sym_sec->output_offset);
8950 else
8951 symval = h->root.root.u.def.value;
8952 }
8953 else
8954 {
8955 Elf_Internal_Sym *isym;
8956
8957 /* Read this BFD's symbols if we haven't done so already. */
8958 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8959 {
8960 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8961 if (isymbuf == NULL)
8962 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8963 symtab_hdr->sh_info, 0,
8964 NULL, NULL, NULL);
8965 if (isymbuf == NULL)
8966 goto relax_return;
8967 }
8968
8969 isym = isymbuf + r_symndx;
8970 if (isym->st_shndx == SHN_UNDEF)
8971 continue;
8972 else if (isym->st_shndx == SHN_ABS)
8973 sym_sec = bfd_abs_section_ptr;
8974 else if (isym->st_shndx == SHN_COMMON)
8975 sym_sec = bfd_com_section_ptr;
8976 else
8977 sym_sec
8978 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8979 symval = isym->st_value
8980 + sym_sec->output_section->vma
8981 + sym_sec->output_offset;
8982 }
8983
8984 /* Compute branch offset, from delay slot of the jump to the
8985 branch target. */
8986 sym_offset = (symval + irel->r_addend)
8987 - (sec_start + irel->r_offset + 4);
8988
8989 /* Branch offset must be properly aligned. */
8990 if ((sym_offset & 3) != 0)
8991 continue;
8992
8993 sym_offset >>= 2;
8994
8995 /* Check that it's in range. */
8996 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8997 continue;
8998
8999 /* Get the section contents if we haven't done so already. */
9000 if (!mips_elf_get_section_contents (abfd, sec, &contents))
9001 goto relax_return;
9002
9003 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
9004
9005 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
9006 if ((instruction & 0xfc1fffff) == 0x0000f809)
9007 instruction = 0x04110000;
9008 /* If it was jr <reg>, turn it into b <target>. */
9009 else if ((instruction & 0xfc1fffff) == 0x00000008)
9010 instruction = 0x10000000;
9011 else
9012 continue;
9013
9014 instruction |= (sym_offset & 0xffff);
9015 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
9016 changed_contents = TRUE;
9017 }
9018
9019 if (contents != NULL
9020 && elf_section_data (sec)->this_hdr.contents != contents)
9021 {
9022 if (!changed_contents && !link_info->keep_memory)
9023 free (contents);
9024 else
9025 {
9026 /* Cache the section contents for elf_link_input_bfd. */
9027 elf_section_data (sec)->this_hdr.contents = contents;
9028 }
9029 }
9030 return TRUE;
9031
9032 relax_return:
9033 if (contents != NULL
9034 && elf_section_data (sec)->this_hdr.contents != contents)
9035 free (contents);
9036 return FALSE;
9037 }
9038 \f
9039 /* Allocate space for global sym dynamic relocs. */
9040
9041 static bfd_boolean
9042 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9043 {
9044 struct bfd_link_info *info = inf;
9045 bfd *dynobj;
9046 struct mips_elf_link_hash_entry *hmips;
9047 struct mips_elf_link_hash_table *htab;
9048
9049 htab = mips_elf_hash_table (info);
9050 BFD_ASSERT (htab != NULL);
9051
9052 dynobj = elf_hash_table (info)->dynobj;
9053 hmips = (struct mips_elf_link_hash_entry *) h;
9054
9055 /* VxWorks executables are handled elsewhere; we only need to
9056 allocate relocations in shared objects. */
9057 if (htab->is_vxworks && !bfd_link_pic (info))
9058 return TRUE;
9059
9060 /* Ignore indirect symbols. All relocations against such symbols
9061 will be redirected to the target symbol. */
9062 if (h->root.type == bfd_link_hash_indirect)
9063 return TRUE;
9064
9065 /* If this symbol is defined in a dynamic object, or we are creating
9066 a shared library, we will need to copy any R_MIPS_32 or
9067 R_MIPS_REL32 relocs against it into the output file. */
9068 if (! bfd_link_relocatable (info)
9069 && hmips->possibly_dynamic_relocs != 0
9070 && (h->root.type == bfd_link_hash_defweak
9071 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
9072 || bfd_link_pic (info)))
9073 {
9074 bfd_boolean do_copy = TRUE;
9075
9076 if (h->root.type == bfd_link_hash_undefweak)
9077 {
9078 /* Do not copy relocations for undefined weak symbols with
9079 non-default visibility. */
9080 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9081 do_copy = FALSE;
9082
9083 /* Make sure undefined weak symbols are output as a dynamic
9084 symbol in PIEs. */
9085 else if (h->dynindx == -1 && !h->forced_local)
9086 {
9087 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9088 return FALSE;
9089 }
9090 }
9091
9092 if (do_copy)
9093 {
9094 /* Even though we don't directly need a GOT entry for this symbol,
9095 the SVR4 psABI requires it to have a dynamic symbol table
9096 index greater that DT_MIPS_GOTSYM if there are dynamic
9097 relocations against it.
9098
9099 VxWorks does not enforce the same mapping between the GOT
9100 and the symbol table, so the same requirement does not
9101 apply there. */
9102 if (!htab->is_vxworks)
9103 {
9104 if (hmips->global_got_area > GGA_RELOC_ONLY)
9105 hmips->global_got_area = GGA_RELOC_ONLY;
9106 hmips->got_only_for_calls = FALSE;
9107 }
9108
9109 mips_elf_allocate_dynamic_relocations
9110 (dynobj, info, hmips->possibly_dynamic_relocs);
9111 if (hmips->readonly_reloc)
9112 /* We tell the dynamic linker that there are relocations
9113 against the text segment. */
9114 info->flags |= DF_TEXTREL;
9115 }
9116 }
9117
9118 return TRUE;
9119 }
9120
9121 /* Adjust a symbol defined by a dynamic object and referenced by a
9122 regular object. The current definition is in some section of the
9123 dynamic object, but we're not including those sections. We have to
9124 change the definition to something the rest of the link can
9125 understand. */
9126
9127 bfd_boolean
9128 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
9129 struct elf_link_hash_entry *h)
9130 {
9131 bfd *dynobj;
9132 struct mips_elf_link_hash_entry *hmips;
9133 struct mips_elf_link_hash_table *htab;
9134
9135 htab = mips_elf_hash_table (info);
9136 BFD_ASSERT (htab != NULL);
9137
9138 dynobj = elf_hash_table (info)->dynobj;
9139 hmips = (struct mips_elf_link_hash_entry *) h;
9140
9141 /* Make sure we know what is going on here. */
9142 BFD_ASSERT (dynobj != NULL
9143 && (h->needs_plt
9144 || h->u.weakdef != NULL
9145 || (h->def_dynamic
9146 && h->ref_regular
9147 && !h->def_regular)));
9148
9149 hmips = (struct mips_elf_link_hash_entry *) h;
9150
9151 /* If there are call relocations against an externally-defined symbol,
9152 see whether we can create a MIPS lazy-binding stub for it. We can
9153 only do this if all references to the function are through call
9154 relocations, and in that case, the traditional lazy-binding stubs
9155 are much more efficient than PLT entries.
9156
9157 Traditional stubs are only available on SVR4 psABI-based systems;
9158 VxWorks always uses PLTs instead. */
9159 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
9160 {
9161 if (! elf_hash_table (info)->dynamic_sections_created)
9162 return TRUE;
9163
9164 /* If this symbol is not defined in a regular file, then set
9165 the symbol to the stub location. This is required to make
9166 function pointers compare as equal between the normal
9167 executable and the shared library. */
9168 if (!h->def_regular)
9169 {
9170 hmips->needs_lazy_stub = TRUE;
9171 htab->lazy_stub_count++;
9172 return TRUE;
9173 }
9174 }
9175 /* As above, VxWorks requires PLT entries for externally-defined
9176 functions that are only accessed through call relocations.
9177
9178 Both VxWorks and non-VxWorks targets also need PLT entries if there
9179 are static-only relocations against an externally-defined function.
9180 This can technically occur for shared libraries if there are
9181 branches to the symbol, although it is unlikely that this will be
9182 used in practice due to the short ranges involved. It can occur
9183 for any relative or absolute relocation in executables; in that
9184 case, the PLT entry becomes the function's canonical address. */
9185 else if (((h->needs_plt && !hmips->no_fn_stub)
9186 || (h->type == STT_FUNC && hmips->has_static_relocs))
9187 && htab->use_plts_and_copy_relocs
9188 && !SYMBOL_CALLS_LOCAL (info, h)
9189 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9190 && h->root.type == bfd_link_hash_undefweak))
9191 {
9192 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9193 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9194
9195 /* If this is the first symbol to need a PLT entry, then make some
9196 basic setup. Also work out PLT entry sizes. We'll need them
9197 for PLT offset calculations. */
9198 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9199 {
9200 BFD_ASSERT (htab->sgotplt->size == 0);
9201 BFD_ASSERT (htab->plt_got_index == 0);
9202
9203 /* If we're using the PLT additions to the psABI, each PLT
9204 entry is 16 bytes and the PLT0 entry is 32 bytes.
9205 Encourage better cache usage by aligning. We do this
9206 lazily to avoid pessimizing traditional objects. */
9207 if (!htab->is_vxworks
9208 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
9209 return FALSE;
9210
9211 /* Make sure that .got.plt is word-aligned. We do this lazily
9212 for the same reason as above. */
9213 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
9214 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9215 return FALSE;
9216
9217 /* On non-VxWorks targets, the first two entries in .got.plt
9218 are reserved. */
9219 if (!htab->is_vxworks)
9220 htab->plt_got_index
9221 += (get_elf_backend_data (dynobj)->got_header_size
9222 / MIPS_ELF_GOT_SIZE (dynobj));
9223
9224 /* On VxWorks, also allocate room for the header's
9225 .rela.plt.unloaded entries. */
9226 if (htab->is_vxworks && !bfd_link_pic (info))
9227 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9228
9229 /* Now work out the sizes of individual PLT entries. */
9230 if (htab->is_vxworks && bfd_link_pic (info))
9231 htab->plt_mips_entry_size
9232 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9233 else if (htab->is_vxworks)
9234 htab->plt_mips_entry_size
9235 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9236 else if (newabi_p)
9237 htab->plt_mips_entry_size
9238 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9239 else if (!micromips_p)
9240 {
9241 htab->plt_mips_entry_size
9242 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9243 htab->plt_comp_entry_size
9244 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9245 }
9246 else if (htab->insn32)
9247 {
9248 htab->plt_mips_entry_size
9249 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9250 htab->plt_comp_entry_size
9251 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9252 }
9253 else
9254 {
9255 htab->plt_mips_entry_size
9256 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9257 htab->plt_comp_entry_size
9258 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9259 }
9260 }
9261
9262 if (h->plt.plist == NULL)
9263 h->plt.plist = mips_elf_make_plt_record (dynobj);
9264 if (h->plt.plist == NULL)
9265 return FALSE;
9266
9267 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9268 n32 or n64, so always use a standard entry there.
9269
9270 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9271 all MIPS16 calls will go via that stub, and there is no benefit
9272 to having a MIPS16 entry. And in the case of call_stub a
9273 standard entry actually has to be used as the stub ends with a J
9274 instruction. */
9275 if (newabi_p
9276 || htab->is_vxworks
9277 || hmips->call_stub
9278 || hmips->call_fp_stub)
9279 {
9280 h->plt.plist->need_mips = TRUE;
9281 h->plt.plist->need_comp = FALSE;
9282 }
9283
9284 /* Otherwise, if there are no direct calls to the function, we
9285 have a free choice of whether to use standard or compressed
9286 entries. Prefer microMIPS entries if the object is known to
9287 contain microMIPS code, so that it becomes possible to create
9288 pure microMIPS binaries. Prefer standard entries otherwise,
9289 because MIPS16 ones are no smaller and are usually slower. */
9290 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9291 {
9292 if (micromips_p)
9293 h->plt.plist->need_comp = TRUE;
9294 else
9295 h->plt.plist->need_mips = TRUE;
9296 }
9297
9298 if (h->plt.plist->need_mips)
9299 {
9300 h->plt.plist->mips_offset = htab->plt_mips_offset;
9301 htab->plt_mips_offset += htab->plt_mips_entry_size;
9302 }
9303 if (h->plt.plist->need_comp)
9304 {
9305 h->plt.plist->comp_offset = htab->plt_comp_offset;
9306 htab->plt_comp_offset += htab->plt_comp_entry_size;
9307 }
9308
9309 /* Reserve the corresponding .got.plt entry now too. */
9310 h->plt.plist->gotplt_index = htab->plt_got_index++;
9311
9312 /* If the output file has no definition of the symbol, set the
9313 symbol's value to the address of the stub. */
9314 if (!bfd_link_pic (info) && !h->def_regular)
9315 hmips->use_plt_entry = TRUE;
9316
9317 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9318 htab->srelplt->size += (htab->is_vxworks
9319 ? MIPS_ELF_RELA_SIZE (dynobj)
9320 : MIPS_ELF_REL_SIZE (dynobj));
9321
9322 /* Make room for the .rela.plt.unloaded relocations. */
9323 if (htab->is_vxworks && !bfd_link_pic (info))
9324 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9325
9326 /* All relocations against this symbol that could have been made
9327 dynamic will now refer to the PLT entry instead. */
9328 hmips->possibly_dynamic_relocs = 0;
9329
9330 return TRUE;
9331 }
9332
9333 /* If this is a weak symbol, and there is a real definition, the
9334 processor independent code will have arranged for us to see the
9335 real definition first, and we can just use the same value. */
9336 if (h->u.weakdef != NULL)
9337 {
9338 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
9339 || h->u.weakdef->root.type == bfd_link_hash_defweak);
9340 h->root.u.def.section = h->u.weakdef->root.u.def.section;
9341 h->root.u.def.value = h->u.weakdef->root.u.def.value;
9342 return TRUE;
9343 }
9344
9345 /* Otherwise, there is nothing further to do for symbols defined
9346 in regular objects. */
9347 if (h->def_regular)
9348 return TRUE;
9349
9350 /* There's also nothing more to do if we'll convert all relocations
9351 against this symbol into dynamic relocations. */
9352 if (!hmips->has_static_relocs)
9353 return TRUE;
9354
9355 /* We're now relying on copy relocations. Complain if we have
9356 some that we can't convert. */
9357 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
9358 {
9359 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
9360 "dynamic symbol %s"),
9361 h->root.root.string);
9362 bfd_set_error (bfd_error_bad_value);
9363 return FALSE;
9364 }
9365
9366 /* We must allocate the symbol in our .dynbss section, which will
9367 become part of the .bss section of the executable. There will be
9368 an entry for this symbol in the .dynsym section. The dynamic
9369 object will contain position independent code, so all references
9370 from the dynamic object to this symbol will go through the global
9371 offset table. The dynamic linker will use the .dynsym entry to
9372 determine the address it must put in the global offset table, so
9373 both the dynamic object and the regular object will refer to the
9374 same memory location for the variable. */
9375
9376 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9377 {
9378 if (htab->is_vxworks)
9379 htab->srelbss->size += sizeof (Elf32_External_Rela);
9380 else
9381 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9382 h->needs_copy = 1;
9383 }
9384
9385 /* All relocations against this symbol that could have been made
9386 dynamic will now refer to the local copy instead. */
9387 hmips->possibly_dynamic_relocs = 0;
9388
9389 return _bfd_elf_adjust_dynamic_copy (info, h, htab->sdynbss);
9390 }
9391 \f
9392 /* This function is called after all the input files have been read,
9393 and the input sections have been assigned to output sections. We
9394 check for any mips16 stub sections that we can discard. */
9395
9396 bfd_boolean
9397 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9398 struct bfd_link_info *info)
9399 {
9400 asection *sect;
9401 struct mips_elf_link_hash_table *htab;
9402 struct mips_htab_traverse_info hti;
9403
9404 htab = mips_elf_hash_table (info);
9405 BFD_ASSERT (htab != NULL);
9406
9407 /* The .reginfo section has a fixed size. */
9408 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9409 if (sect != NULL)
9410 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9411
9412 /* The .MIPS.abiflags section has a fixed size. */
9413 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9414 if (sect != NULL)
9415 bfd_set_section_size (output_bfd, sect, sizeof (Elf_External_ABIFlags_v0));
9416
9417 hti.info = info;
9418 hti.output_bfd = output_bfd;
9419 hti.error = FALSE;
9420 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9421 mips_elf_check_symbols, &hti);
9422 if (hti.error)
9423 return FALSE;
9424
9425 return TRUE;
9426 }
9427
9428 /* If the link uses a GOT, lay it out and work out its size. */
9429
9430 static bfd_boolean
9431 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9432 {
9433 bfd *dynobj;
9434 asection *s;
9435 struct mips_got_info *g;
9436 bfd_size_type loadable_size = 0;
9437 bfd_size_type page_gotno;
9438 bfd *ibfd;
9439 struct mips_elf_traverse_got_arg tga;
9440 struct mips_elf_link_hash_table *htab;
9441
9442 htab = mips_elf_hash_table (info);
9443 BFD_ASSERT (htab != NULL);
9444
9445 s = htab->sgot;
9446 if (s == NULL)
9447 return TRUE;
9448
9449 dynobj = elf_hash_table (info)->dynobj;
9450 g = htab->got_info;
9451
9452 /* Allocate room for the reserved entries. VxWorks always reserves
9453 3 entries; other objects only reserve 2 entries. */
9454 BFD_ASSERT (g->assigned_low_gotno == 0);
9455 if (htab->is_vxworks)
9456 htab->reserved_gotno = 3;
9457 else
9458 htab->reserved_gotno = 2;
9459 g->local_gotno += htab->reserved_gotno;
9460 g->assigned_low_gotno = htab->reserved_gotno;
9461
9462 /* Decide which symbols need to go in the global part of the GOT and
9463 count the number of reloc-only GOT symbols. */
9464 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9465
9466 if (!mips_elf_resolve_final_got_entries (info, g))
9467 return FALSE;
9468
9469 /* Calculate the total loadable size of the output. That
9470 will give us the maximum number of GOT_PAGE entries
9471 required. */
9472 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9473 {
9474 asection *subsection;
9475
9476 for (subsection = ibfd->sections;
9477 subsection;
9478 subsection = subsection->next)
9479 {
9480 if ((subsection->flags & SEC_ALLOC) == 0)
9481 continue;
9482 loadable_size += ((subsection->size + 0xf)
9483 &~ (bfd_size_type) 0xf);
9484 }
9485 }
9486
9487 if (htab->is_vxworks)
9488 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9489 relocations against local symbols evaluate to "G", and the EABI does
9490 not include R_MIPS_GOT_PAGE. */
9491 page_gotno = 0;
9492 else
9493 /* Assume there are two loadable segments consisting of contiguous
9494 sections. Is 5 enough? */
9495 page_gotno = (loadable_size >> 16) + 5;
9496
9497 /* Choose the smaller of the two page estimates; both are intended to be
9498 conservative. */
9499 if (page_gotno > g->page_gotno)
9500 page_gotno = g->page_gotno;
9501
9502 g->local_gotno += page_gotno;
9503 g->assigned_high_gotno = g->local_gotno - 1;
9504
9505 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9506 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9507 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9508
9509 /* VxWorks does not support multiple GOTs. It initializes $gp to
9510 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9511 dynamic loader. */
9512 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9513 {
9514 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9515 return FALSE;
9516 }
9517 else
9518 {
9519 /* Record that all bfds use G. This also has the effect of freeing
9520 the per-bfd GOTs, which we no longer need. */
9521 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9522 if (mips_elf_bfd_got (ibfd, FALSE))
9523 mips_elf_replace_bfd_got (ibfd, g);
9524 mips_elf_replace_bfd_got (output_bfd, g);
9525
9526 /* Set up TLS entries. */
9527 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9528 tga.info = info;
9529 tga.g = g;
9530 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9531 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9532 if (!tga.g)
9533 return FALSE;
9534 BFD_ASSERT (g->tls_assigned_gotno
9535 == g->global_gotno + g->local_gotno + g->tls_gotno);
9536
9537 /* Each VxWorks GOT entry needs an explicit relocation. */
9538 if (htab->is_vxworks && bfd_link_pic (info))
9539 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9540
9541 /* Allocate room for the TLS relocations. */
9542 if (g->relocs)
9543 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9544 }
9545
9546 return TRUE;
9547 }
9548
9549 /* Estimate the size of the .MIPS.stubs section. */
9550
9551 static void
9552 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9553 {
9554 struct mips_elf_link_hash_table *htab;
9555 bfd_size_type dynsymcount;
9556
9557 htab = mips_elf_hash_table (info);
9558 BFD_ASSERT (htab != NULL);
9559
9560 if (htab->lazy_stub_count == 0)
9561 return;
9562
9563 /* IRIX rld assumes that a function stub isn't at the end of the .text
9564 section, so add a dummy entry to the end. */
9565 htab->lazy_stub_count++;
9566
9567 /* Get a worst-case estimate of the number of dynamic symbols needed.
9568 At this point, dynsymcount does not account for section symbols
9569 and count_section_dynsyms may overestimate the number that will
9570 be needed. */
9571 dynsymcount = (elf_hash_table (info)->dynsymcount
9572 + count_section_dynsyms (output_bfd, info));
9573
9574 /* Determine the size of one stub entry. There's no disadvantage
9575 from using microMIPS code here, so for the sake of pure-microMIPS
9576 binaries we prefer it whenever there's any microMIPS code in
9577 output produced at all. This has a benefit of stubs being
9578 shorter by 4 bytes each too, unless in the insn32 mode. */
9579 if (!MICROMIPS_P (output_bfd))
9580 htab->function_stub_size = (dynsymcount > 0x10000
9581 ? MIPS_FUNCTION_STUB_BIG_SIZE
9582 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9583 else if (htab->insn32)
9584 htab->function_stub_size = (dynsymcount > 0x10000
9585 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9586 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9587 else
9588 htab->function_stub_size = (dynsymcount > 0x10000
9589 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9590 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9591
9592 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9593 }
9594
9595 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9596 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9597 stub, allocate an entry in the stubs section. */
9598
9599 static bfd_boolean
9600 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9601 {
9602 struct mips_htab_traverse_info *hti = data;
9603 struct mips_elf_link_hash_table *htab;
9604 struct bfd_link_info *info;
9605 bfd *output_bfd;
9606
9607 info = hti->info;
9608 output_bfd = hti->output_bfd;
9609 htab = mips_elf_hash_table (info);
9610 BFD_ASSERT (htab != NULL);
9611
9612 if (h->needs_lazy_stub)
9613 {
9614 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9615 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9616 bfd_vma isa_bit = micromips_p;
9617
9618 BFD_ASSERT (htab->root.dynobj != NULL);
9619 if (h->root.plt.plist == NULL)
9620 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9621 if (h->root.plt.plist == NULL)
9622 {
9623 hti->error = TRUE;
9624 return FALSE;
9625 }
9626 h->root.root.u.def.section = htab->sstubs;
9627 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9628 h->root.plt.plist->stub_offset = htab->sstubs->size;
9629 h->root.other = other;
9630 htab->sstubs->size += htab->function_stub_size;
9631 }
9632 return TRUE;
9633 }
9634
9635 /* Allocate offsets in the stubs section to each symbol that needs one.
9636 Set the final size of the .MIPS.stub section. */
9637
9638 static bfd_boolean
9639 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9640 {
9641 bfd *output_bfd = info->output_bfd;
9642 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9643 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9644 bfd_vma isa_bit = micromips_p;
9645 struct mips_elf_link_hash_table *htab;
9646 struct mips_htab_traverse_info hti;
9647 struct elf_link_hash_entry *h;
9648 bfd *dynobj;
9649
9650 htab = mips_elf_hash_table (info);
9651 BFD_ASSERT (htab != NULL);
9652
9653 if (htab->lazy_stub_count == 0)
9654 return TRUE;
9655
9656 htab->sstubs->size = 0;
9657 hti.info = info;
9658 hti.output_bfd = output_bfd;
9659 hti.error = FALSE;
9660 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9661 if (hti.error)
9662 return FALSE;
9663 htab->sstubs->size += htab->function_stub_size;
9664 BFD_ASSERT (htab->sstubs->size
9665 == htab->lazy_stub_count * htab->function_stub_size);
9666
9667 dynobj = elf_hash_table (info)->dynobj;
9668 BFD_ASSERT (dynobj != NULL);
9669 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9670 if (h == NULL)
9671 return FALSE;
9672 h->root.u.def.value = isa_bit;
9673 h->other = other;
9674 h->type = STT_FUNC;
9675
9676 return TRUE;
9677 }
9678
9679 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9680 bfd_link_info. If H uses the address of a PLT entry as the value
9681 of the symbol, then set the entry in the symbol table now. Prefer
9682 a standard MIPS PLT entry. */
9683
9684 static bfd_boolean
9685 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9686 {
9687 struct bfd_link_info *info = data;
9688 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9689 struct mips_elf_link_hash_table *htab;
9690 unsigned int other;
9691 bfd_vma isa_bit;
9692 bfd_vma val;
9693
9694 htab = mips_elf_hash_table (info);
9695 BFD_ASSERT (htab != NULL);
9696
9697 if (h->use_plt_entry)
9698 {
9699 BFD_ASSERT (h->root.plt.plist != NULL);
9700 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9701 || h->root.plt.plist->comp_offset != MINUS_ONE);
9702
9703 val = htab->plt_header_size;
9704 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9705 {
9706 isa_bit = 0;
9707 val += h->root.plt.plist->mips_offset;
9708 other = 0;
9709 }
9710 else
9711 {
9712 isa_bit = 1;
9713 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9714 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9715 }
9716 val += isa_bit;
9717 /* For VxWorks, point at the PLT load stub rather than the lazy
9718 resolution stub; this stub will become the canonical function
9719 address. */
9720 if (htab->is_vxworks)
9721 val += 8;
9722
9723 h->root.root.u.def.section = htab->splt;
9724 h->root.root.u.def.value = val;
9725 h->root.other = other;
9726 }
9727
9728 return TRUE;
9729 }
9730
9731 /* Set the sizes of the dynamic sections. */
9732
9733 bfd_boolean
9734 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9735 struct bfd_link_info *info)
9736 {
9737 bfd *dynobj;
9738 asection *s, *sreldyn;
9739 bfd_boolean reltext;
9740 struct mips_elf_link_hash_table *htab;
9741
9742 htab = mips_elf_hash_table (info);
9743 BFD_ASSERT (htab != NULL);
9744 dynobj = elf_hash_table (info)->dynobj;
9745 BFD_ASSERT (dynobj != NULL);
9746
9747 if (elf_hash_table (info)->dynamic_sections_created)
9748 {
9749 /* Set the contents of the .interp section to the interpreter. */
9750 if (bfd_link_executable (info) && !info->nointerp)
9751 {
9752 s = bfd_get_linker_section (dynobj, ".interp");
9753 BFD_ASSERT (s != NULL);
9754 s->size
9755 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9756 s->contents
9757 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9758 }
9759
9760 /* Figure out the size of the PLT header if we know that we
9761 are using it. For the sake of cache alignment always use
9762 a standard header whenever any standard entries are present
9763 even if microMIPS entries are present as well. This also
9764 lets the microMIPS header rely on the value of $v0 only set
9765 by microMIPS entries, for a small size reduction.
9766
9767 Set symbol table entry values for symbols that use the
9768 address of their PLT entry now that we can calculate it.
9769
9770 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9771 haven't already in _bfd_elf_create_dynamic_sections. */
9772 if (htab->splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9773 {
9774 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9775 && !htab->plt_mips_offset);
9776 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9777 bfd_vma isa_bit = micromips_p;
9778 struct elf_link_hash_entry *h;
9779 bfd_vma size;
9780
9781 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9782 BFD_ASSERT (htab->sgotplt->size == 0);
9783 BFD_ASSERT (htab->splt->size == 0);
9784
9785 if (htab->is_vxworks && bfd_link_pic (info))
9786 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9787 else if (htab->is_vxworks)
9788 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9789 else if (ABI_64_P (output_bfd))
9790 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9791 else if (ABI_N32_P (output_bfd))
9792 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9793 else if (!micromips_p)
9794 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9795 else if (htab->insn32)
9796 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9797 else
9798 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9799
9800 htab->plt_header_is_comp = micromips_p;
9801 htab->plt_header_size = size;
9802 htab->splt->size = (size
9803 + htab->plt_mips_offset
9804 + htab->plt_comp_offset);
9805 htab->sgotplt->size = (htab->plt_got_index
9806 * MIPS_ELF_GOT_SIZE (dynobj));
9807
9808 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9809
9810 if (htab->root.hplt == NULL)
9811 {
9812 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
9813 "_PROCEDURE_LINKAGE_TABLE_");
9814 htab->root.hplt = h;
9815 if (h == NULL)
9816 return FALSE;
9817 }
9818
9819 h = htab->root.hplt;
9820 h->root.u.def.value = isa_bit;
9821 h->other = other;
9822 h->type = STT_FUNC;
9823 }
9824 }
9825
9826 /* Allocate space for global sym dynamic relocs. */
9827 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9828
9829 mips_elf_estimate_stub_size (output_bfd, info);
9830
9831 if (!mips_elf_lay_out_got (output_bfd, info))
9832 return FALSE;
9833
9834 mips_elf_lay_out_lazy_stubs (info);
9835
9836 /* The check_relocs and adjust_dynamic_symbol entry points have
9837 determined the sizes of the various dynamic sections. Allocate
9838 memory for them. */
9839 reltext = FALSE;
9840 for (s = dynobj->sections; s != NULL; s = s->next)
9841 {
9842 const char *name;
9843
9844 /* It's OK to base decisions on the section name, because none
9845 of the dynobj section names depend upon the input files. */
9846 name = bfd_get_section_name (dynobj, s);
9847
9848 if ((s->flags & SEC_LINKER_CREATED) == 0)
9849 continue;
9850
9851 if (CONST_STRNEQ (name, ".rel"))
9852 {
9853 if (s->size != 0)
9854 {
9855 const char *outname;
9856 asection *target;
9857
9858 /* If this relocation section applies to a read only
9859 section, then we probably need a DT_TEXTREL entry.
9860 If the relocation section is .rel(a).dyn, we always
9861 assert a DT_TEXTREL entry rather than testing whether
9862 there exists a relocation to a read only section or
9863 not. */
9864 outname = bfd_get_section_name (output_bfd,
9865 s->output_section);
9866 target = bfd_get_section_by_name (output_bfd, outname + 4);
9867 if ((target != NULL
9868 && (target->flags & SEC_READONLY) != 0
9869 && (target->flags & SEC_ALLOC) != 0)
9870 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9871 reltext = TRUE;
9872
9873 /* We use the reloc_count field as a counter if we need
9874 to copy relocs into the output file. */
9875 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9876 s->reloc_count = 0;
9877
9878 /* If combreloc is enabled, elf_link_sort_relocs() will
9879 sort relocations, but in a different way than we do,
9880 and before we're done creating relocations. Also, it
9881 will move them around between input sections'
9882 relocation's contents, so our sorting would be
9883 broken, so don't let it run. */
9884 info->combreloc = 0;
9885 }
9886 }
9887 else if (bfd_link_executable (info)
9888 && ! mips_elf_hash_table (info)->use_rld_obj_head
9889 && CONST_STRNEQ (name, ".rld_map"))
9890 {
9891 /* We add a room for __rld_map. It will be filled in by the
9892 rtld to contain a pointer to the _r_debug structure. */
9893 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9894 }
9895 else if (SGI_COMPAT (output_bfd)
9896 && CONST_STRNEQ (name, ".compact_rel"))
9897 s->size += mips_elf_hash_table (info)->compact_rel_size;
9898 else if (s == htab->splt)
9899 {
9900 /* If the last PLT entry has a branch delay slot, allocate
9901 room for an extra nop to fill the delay slot. This is
9902 for CPUs without load interlocking. */
9903 if (! LOAD_INTERLOCKS_P (output_bfd)
9904 && ! htab->is_vxworks && s->size > 0)
9905 s->size += 4;
9906 }
9907 else if (! CONST_STRNEQ (name, ".init")
9908 && s != htab->sgot
9909 && s != htab->sgotplt
9910 && s != htab->sstubs
9911 && s != htab->sdynbss)
9912 {
9913 /* It's not one of our sections, so don't allocate space. */
9914 continue;
9915 }
9916
9917 if (s->size == 0)
9918 {
9919 s->flags |= SEC_EXCLUDE;
9920 continue;
9921 }
9922
9923 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9924 continue;
9925
9926 /* Allocate memory for the section contents. */
9927 s->contents = bfd_zalloc (dynobj, s->size);
9928 if (s->contents == NULL)
9929 {
9930 bfd_set_error (bfd_error_no_memory);
9931 return FALSE;
9932 }
9933 }
9934
9935 if (elf_hash_table (info)->dynamic_sections_created)
9936 {
9937 /* Add some entries to the .dynamic section. We fill in the
9938 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9939 must add the entries now so that we get the correct size for
9940 the .dynamic section. */
9941
9942 /* SGI object has the equivalence of DT_DEBUG in the
9943 DT_MIPS_RLD_MAP entry. This must come first because glibc
9944 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9945 may only look at the first one they see. */
9946 if (!bfd_link_pic (info)
9947 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9948 return FALSE;
9949
9950 if (bfd_link_executable (info)
9951 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
9952 return FALSE;
9953
9954 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9955 used by the debugger. */
9956 if (bfd_link_executable (info)
9957 && !SGI_COMPAT (output_bfd)
9958 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9959 return FALSE;
9960
9961 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9962 info->flags |= DF_TEXTREL;
9963
9964 if ((info->flags & DF_TEXTREL) != 0)
9965 {
9966 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9967 return FALSE;
9968
9969 /* Clear the DF_TEXTREL flag. It will be set again if we
9970 write out an actual text relocation; we may not, because
9971 at this point we do not know whether e.g. any .eh_frame
9972 absolute relocations have been converted to PC-relative. */
9973 info->flags &= ~DF_TEXTREL;
9974 }
9975
9976 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9977 return FALSE;
9978
9979 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9980 if (htab->is_vxworks)
9981 {
9982 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9983 use any of the DT_MIPS_* tags. */
9984 if (sreldyn && sreldyn->size > 0)
9985 {
9986 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9987 return FALSE;
9988
9989 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9990 return FALSE;
9991
9992 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9993 return FALSE;
9994 }
9995 }
9996 else
9997 {
9998 if (sreldyn && sreldyn->size > 0)
9999 {
10000 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
10001 return FALSE;
10002
10003 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
10004 return FALSE;
10005
10006 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
10007 return FALSE;
10008 }
10009
10010 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
10011 return FALSE;
10012
10013 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
10014 return FALSE;
10015
10016 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
10017 return FALSE;
10018
10019 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
10020 return FALSE;
10021
10022 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
10023 return FALSE;
10024
10025 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
10026 return FALSE;
10027
10028 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
10029 return FALSE;
10030
10031 if (IRIX_COMPAT (dynobj) == ict_irix5
10032 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
10033 return FALSE;
10034
10035 if (IRIX_COMPAT (dynobj) == ict_irix6
10036 && (bfd_get_section_by_name
10037 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
10038 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
10039 return FALSE;
10040 }
10041 if (htab->splt->size > 0)
10042 {
10043 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
10044 return FALSE;
10045
10046 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
10047 return FALSE;
10048
10049 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
10050 return FALSE;
10051
10052 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
10053 return FALSE;
10054 }
10055 if (htab->is_vxworks
10056 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
10057 return FALSE;
10058 }
10059
10060 return TRUE;
10061 }
10062 \f
10063 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
10064 Adjust its R_ADDEND field so that it is correct for the output file.
10065 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
10066 and sections respectively; both use symbol indexes. */
10067
10068 static void
10069 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
10070 bfd *input_bfd, Elf_Internal_Sym *local_syms,
10071 asection **local_sections, Elf_Internal_Rela *rel)
10072 {
10073 unsigned int r_type, r_symndx;
10074 Elf_Internal_Sym *sym;
10075 asection *sec;
10076
10077 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10078 {
10079 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10080 if (gprel16_reloc_p (r_type)
10081 || r_type == R_MIPS_GPREL32
10082 || literal_reloc_p (r_type))
10083 {
10084 rel->r_addend += _bfd_get_gp_value (input_bfd);
10085 rel->r_addend -= _bfd_get_gp_value (output_bfd);
10086 }
10087
10088 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
10089 sym = local_syms + r_symndx;
10090
10091 /* Adjust REL's addend to account for section merging. */
10092 if (!bfd_link_relocatable (info))
10093 {
10094 sec = local_sections[r_symndx];
10095 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
10096 }
10097
10098 /* This would normally be done by the rela_normal code in elflink.c. */
10099 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10100 rel->r_addend += local_sections[r_symndx]->output_offset;
10101 }
10102 }
10103
10104 /* Handle relocations against symbols from removed linkonce sections,
10105 or sections discarded by a linker script. We use this wrapper around
10106 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
10107 on 64-bit ELF targets. In this case for any relocation handled, which
10108 always be the first in a triplet, the remaining two have to be processed
10109 together with the first, even if they are R_MIPS_NONE. It is the symbol
10110 index referred by the first reloc that applies to all the three and the
10111 remaining two never refer to an object symbol. And it is the final
10112 relocation (the last non-null one) that determines the output field of
10113 the whole relocation so retrieve the corresponding howto structure for
10114 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
10115
10116 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
10117 and therefore requires to be pasted in a loop. It also defines a block
10118 and does not protect any of its arguments, hence the extra brackets. */
10119
10120 static void
10121 mips_reloc_against_discarded_section (bfd *output_bfd,
10122 struct bfd_link_info *info,
10123 bfd *input_bfd, asection *input_section,
10124 Elf_Internal_Rela **rel,
10125 const Elf_Internal_Rela **relend,
10126 bfd_boolean rel_reloc,
10127 reloc_howto_type *howto,
10128 bfd_byte *contents)
10129 {
10130 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10131 int count = bed->s->int_rels_per_ext_rel;
10132 unsigned int r_type;
10133 int i;
10134
10135 for (i = count - 1; i > 0; i--)
10136 {
10137 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10138 if (r_type != R_MIPS_NONE)
10139 {
10140 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10141 break;
10142 }
10143 }
10144 do
10145 {
10146 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10147 (*rel), count, (*relend),
10148 howto, i, contents);
10149 }
10150 while (0);
10151 }
10152
10153 /* Relocate a MIPS ELF section. */
10154
10155 bfd_boolean
10156 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10157 bfd *input_bfd, asection *input_section,
10158 bfd_byte *contents, Elf_Internal_Rela *relocs,
10159 Elf_Internal_Sym *local_syms,
10160 asection **local_sections)
10161 {
10162 Elf_Internal_Rela *rel;
10163 const Elf_Internal_Rela *relend;
10164 bfd_vma addend = 0;
10165 bfd_boolean use_saved_addend_p = FALSE;
10166 const struct elf_backend_data *bed;
10167
10168 bed = get_elf_backend_data (output_bfd);
10169 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
10170 for (rel = relocs; rel < relend; ++rel)
10171 {
10172 const char *name;
10173 bfd_vma value = 0;
10174 reloc_howto_type *howto;
10175 bfd_boolean cross_mode_jump_p = FALSE;
10176 /* TRUE if the relocation is a RELA relocation, rather than a
10177 REL relocation. */
10178 bfd_boolean rela_relocation_p = TRUE;
10179 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10180 const char *msg;
10181 unsigned long r_symndx;
10182 asection *sec;
10183 Elf_Internal_Shdr *symtab_hdr;
10184 struct elf_link_hash_entry *h;
10185 bfd_boolean rel_reloc;
10186
10187 rel_reloc = (NEWABI_P (input_bfd)
10188 && mips_elf_rel_relocation_p (input_bfd, input_section,
10189 relocs, rel));
10190 /* Find the relocation howto for this relocation. */
10191 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10192
10193 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10194 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10195 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10196 {
10197 sec = local_sections[r_symndx];
10198 h = NULL;
10199 }
10200 else
10201 {
10202 unsigned long extsymoff;
10203
10204 extsymoff = 0;
10205 if (!elf_bad_symtab (input_bfd))
10206 extsymoff = symtab_hdr->sh_info;
10207 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10208 while (h->root.type == bfd_link_hash_indirect
10209 || h->root.type == bfd_link_hash_warning)
10210 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10211
10212 sec = NULL;
10213 if (h->root.type == bfd_link_hash_defined
10214 || h->root.type == bfd_link_hash_defweak)
10215 sec = h->root.u.def.section;
10216 }
10217
10218 if (sec != NULL && discarded_section (sec))
10219 {
10220 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10221 input_section, &rel, &relend,
10222 rel_reloc, howto, contents);
10223 continue;
10224 }
10225
10226 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10227 {
10228 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10229 64-bit code, but make sure all their addresses are in the
10230 lowermost or uppermost 32-bit section of the 64-bit address
10231 space. Thus, when they use an R_MIPS_64 they mean what is
10232 usually meant by R_MIPS_32, with the exception that the
10233 stored value is sign-extended to 64 bits. */
10234 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
10235
10236 /* On big-endian systems, we need to lie about the position
10237 of the reloc. */
10238 if (bfd_big_endian (input_bfd))
10239 rel->r_offset += 4;
10240 }
10241
10242 if (!use_saved_addend_p)
10243 {
10244 /* If these relocations were originally of the REL variety,
10245 we must pull the addend out of the field that will be
10246 relocated. Otherwise, we simply use the contents of the
10247 RELA relocation. */
10248 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10249 relocs, rel))
10250 {
10251 rela_relocation_p = FALSE;
10252 addend = mips_elf_read_rel_addend (input_bfd, rel,
10253 howto, contents);
10254 if (hi16_reloc_p (r_type)
10255 || (got16_reloc_p (r_type)
10256 && mips_elf_local_relocation_p (input_bfd, rel,
10257 local_sections)))
10258 {
10259 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10260 contents, &addend))
10261 {
10262 if (h)
10263 name = h->root.root.string;
10264 else
10265 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10266 local_syms + r_symndx,
10267 sec);
10268 (*_bfd_error_handler)
10269 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
10270 input_bfd, input_section, name, howto->name,
10271 rel->r_offset);
10272 }
10273 }
10274 else
10275 addend <<= howto->rightshift;
10276 }
10277 else
10278 addend = rel->r_addend;
10279 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10280 local_syms, local_sections, rel);
10281 }
10282
10283 if (bfd_link_relocatable (info))
10284 {
10285 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10286 && bfd_big_endian (input_bfd))
10287 rel->r_offset -= 4;
10288
10289 if (!rela_relocation_p && rel->r_addend)
10290 {
10291 addend += rel->r_addend;
10292 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10293 addend = mips_elf_high (addend);
10294 else if (r_type == R_MIPS_HIGHER)
10295 addend = mips_elf_higher (addend);
10296 else if (r_type == R_MIPS_HIGHEST)
10297 addend = mips_elf_highest (addend);
10298 else
10299 addend >>= howto->rightshift;
10300
10301 /* We use the source mask, rather than the destination
10302 mask because the place to which we are writing will be
10303 source of the addend in the final link. */
10304 addend &= howto->src_mask;
10305
10306 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10307 /* See the comment above about using R_MIPS_64 in the 32-bit
10308 ABI. Here, we need to update the addend. It would be
10309 possible to get away with just using the R_MIPS_32 reloc
10310 but for endianness. */
10311 {
10312 bfd_vma sign_bits;
10313 bfd_vma low_bits;
10314 bfd_vma high_bits;
10315
10316 if (addend & ((bfd_vma) 1 << 31))
10317 #ifdef BFD64
10318 sign_bits = ((bfd_vma) 1 << 32) - 1;
10319 #else
10320 sign_bits = -1;
10321 #endif
10322 else
10323 sign_bits = 0;
10324
10325 /* If we don't know that we have a 64-bit type,
10326 do two separate stores. */
10327 if (bfd_big_endian (input_bfd))
10328 {
10329 /* Store the sign-bits (which are most significant)
10330 first. */
10331 low_bits = sign_bits;
10332 high_bits = addend;
10333 }
10334 else
10335 {
10336 low_bits = addend;
10337 high_bits = sign_bits;
10338 }
10339 bfd_put_32 (input_bfd, low_bits,
10340 contents + rel->r_offset);
10341 bfd_put_32 (input_bfd, high_bits,
10342 contents + rel->r_offset + 4);
10343 continue;
10344 }
10345
10346 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10347 input_bfd, input_section,
10348 contents, FALSE))
10349 return FALSE;
10350 }
10351
10352 /* Go on to the next relocation. */
10353 continue;
10354 }
10355
10356 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10357 relocations for the same offset. In that case we are
10358 supposed to treat the output of each relocation as the addend
10359 for the next. */
10360 if (rel + 1 < relend
10361 && rel->r_offset == rel[1].r_offset
10362 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10363 use_saved_addend_p = TRUE;
10364 else
10365 use_saved_addend_p = FALSE;
10366
10367 /* Figure out what value we are supposed to relocate. */
10368 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10369 input_section, info, rel,
10370 addend, howto, local_syms,
10371 local_sections, &value,
10372 &name, &cross_mode_jump_p,
10373 use_saved_addend_p))
10374 {
10375 case bfd_reloc_continue:
10376 /* There's nothing to do. */
10377 continue;
10378
10379 case bfd_reloc_undefined:
10380 /* mips_elf_calculate_relocation already called the
10381 undefined_symbol callback. There's no real point in
10382 trying to perform the relocation at this point, so we
10383 just skip ahead to the next relocation. */
10384 continue;
10385
10386 case bfd_reloc_notsupported:
10387 msg = _("internal error: unsupported relocation error");
10388 info->callbacks->warning
10389 (info, msg, name, input_bfd, input_section, rel->r_offset);
10390 return FALSE;
10391
10392 case bfd_reloc_overflow:
10393 if (use_saved_addend_p)
10394 /* Ignore overflow until we reach the last relocation for
10395 a given location. */
10396 ;
10397 else
10398 {
10399 struct mips_elf_link_hash_table *htab;
10400
10401 htab = mips_elf_hash_table (info);
10402 BFD_ASSERT (htab != NULL);
10403 BFD_ASSERT (name != NULL);
10404 if (!htab->small_data_overflow_reported
10405 && (gprel16_reloc_p (howto->type)
10406 || literal_reloc_p (howto->type)))
10407 {
10408 msg = _("small-data section exceeds 64KB;"
10409 " lower small-data size limit (see option -G)");
10410
10411 htab->small_data_overflow_reported = TRUE;
10412 (*info->callbacks->einfo) ("%P: %s\n", msg);
10413 }
10414 (*info->callbacks->reloc_overflow)
10415 (info, NULL, name, howto->name, (bfd_vma) 0,
10416 input_bfd, input_section, rel->r_offset);
10417 }
10418 break;
10419
10420 case bfd_reloc_ok:
10421 break;
10422
10423 case bfd_reloc_outofrange:
10424 msg = NULL;
10425 if (jal_reloc_p (howto->type))
10426 msg = (cross_mode_jump_p
10427 ? _("Cannot convert a jump to JALX "
10428 "for a non-word-aligned address")
10429 : (howto->type == R_MIPS16_26
10430 ? _("Jump to a non-word-aligned address")
10431 : _("Jump to a non-instruction-aligned address")));
10432 else if (b_reloc_p (howto->type))
10433 msg = (cross_mode_jump_p
10434 ? _("Cannot convert a branch to JALX "
10435 "for a non-word-aligned address")
10436 : _("Branch to a non-instruction-aligned address"));
10437 else if (aligned_pcrel_reloc_p (howto->type))
10438 msg = _("PC-relative load from unaligned address");
10439 if (msg)
10440 {
10441 info->callbacks->einfo
10442 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10443 break;
10444 }
10445 /* Fall through. */
10446
10447 default:
10448 abort ();
10449 break;
10450 }
10451
10452 /* If we've got another relocation for the address, keep going
10453 until we reach the last one. */
10454 if (use_saved_addend_p)
10455 {
10456 addend = value;
10457 continue;
10458 }
10459
10460 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10461 /* See the comment above about using R_MIPS_64 in the 32-bit
10462 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10463 that calculated the right value. Now, however, we
10464 sign-extend the 32-bit result to 64-bits, and store it as a
10465 64-bit value. We are especially generous here in that we
10466 go to extreme lengths to support this usage on systems with
10467 only a 32-bit VMA. */
10468 {
10469 bfd_vma sign_bits;
10470 bfd_vma low_bits;
10471 bfd_vma high_bits;
10472
10473 if (value & ((bfd_vma) 1 << 31))
10474 #ifdef BFD64
10475 sign_bits = ((bfd_vma) 1 << 32) - 1;
10476 #else
10477 sign_bits = -1;
10478 #endif
10479 else
10480 sign_bits = 0;
10481
10482 /* If we don't know that we have a 64-bit type,
10483 do two separate stores. */
10484 if (bfd_big_endian (input_bfd))
10485 {
10486 /* Undo what we did above. */
10487 rel->r_offset -= 4;
10488 /* Store the sign-bits (which are most significant)
10489 first. */
10490 low_bits = sign_bits;
10491 high_bits = value;
10492 }
10493 else
10494 {
10495 low_bits = value;
10496 high_bits = sign_bits;
10497 }
10498 bfd_put_32 (input_bfd, low_bits,
10499 contents + rel->r_offset);
10500 bfd_put_32 (input_bfd, high_bits,
10501 contents + rel->r_offset + 4);
10502 continue;
10503 }
10504
10505 /* Actually perform the relocation. */
10506 if (! mips_elf_perform_relocation (info, howto, rel, value,
10507 input_bfd, input_section,
10508 contents, cross_mode_jump_p))
10509 return FALSE;
10510 }
10511
10512 return TRUE;
10513 }
10514 \f
10515 /* A function that iterates over each entry in la25_stubs and fills
10516 in the code for each one. DATA points to a mips_htab_traverse_info. */
10517
10518 static int
10519 mips_elf_create_la25_stub (void **slot, void *data)
10520 {
10521 struct mips_htab_traverse_info *hti;
10522 struct mips_elf_link_hash_table *htab;
10523 struct mips_elf_la25_stub *stub;
10524 asection *s;
10525 bfd_byte *loc;
10526 bfd_vma offset, target, target_high, target_low;
10527
10528 stub = (struct mips_elf_la25_stub *) *slot;
10529 hti = (struct mips_htab_traverse_info *) data;
10530 htab = mips_elf_hash_table (hti->info);
10531 BFD_ASSERT (htab != NULL);
10532
10533 /* Create the section contents, if we haven't already. */
10534 s = stub->stub_section;
10535 loc = s->contents;
10536 if (loc == NULL)
10537 {
10538 loc = bfd_malloc (s->size);
10539 if (loc == NULL)
10540 {
10541 hti->error = TRUE;
10542 return FALSE;
10543 }
10544 s->contents = loc;
10545 }
10546
10547 /* Work out where in the section this stub should go. */
10548 offset = stub->offset;
10549
10550 /* Work out the target address. */
10551 target = mips_elf_get_la25_target (stub, &s);
10552 target += s->output_section->vma + s->output_offset;
10553
10554 target_high = ((target + 0x8000) >> 16) & 0xffff;
10555 target_low = (target & 0xffff);
10556
10557 if (stub->stub_section != htab->strampoline)
10558 {
10559 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10560 of the section and write the two instructions at the end. */
10561 memset (loc, 0, offset);
10562 loc += offset;
10563 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10564 {
10565 bfd_put_micromips_32 (hti->output_bfd,
10566 LA25_LUI_MICROMIPS (target_high),
10567 loc);
10568 bfd_put_micromips_32 (hti->output_bfd,
10569 LA25_ADDIU_MICROMIPS (target_low),
10570 loc + 4);
10571 }
10572 else
10573 {
10574 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10575 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10576 }
10577 }
10578 else
10579 {
10580 /* This is trampoline. */
10581 loc += offset;
10582 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10583 {
10584 bfd_put_micromips_32 (hti->output_bfd,
10585 LA25_LUI_MICROMIPS (target_high), loc);
10586 bfd_put_micromips_32 (hti->output_bfd,
10587 LA25_J_MICROMIPS (target), loc + 4);
10588 bfd_put_micromips_32 (hti->output_bfd,
10589 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10590 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10591 }
10592 else
10593 {
10594 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10595 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10596 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10597 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10598 }
10599 }
10600 return TRUE;
10601 }
10602
10603 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10604 adjust it appropriately now. */
10605
10606 static void
10607 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10608 const char *name, Elf_Internal_Sym *sym)
10609 {
10610 /* The linker script takes care of providing names and values for
10611 these, but we must place them into the right sections. */
10612 static const char* const text_section_symbols[] = {
10613 "_ftext",
10614 "_etext",
10615 "__dso_displacement",
10616 "__elf_header",
10617 "__program_header_table",
10618 NULL
10619 };
10620
10621 static const char* const data_section_symbols[] = {
10622 "_fdata",
10623 "_edata",
10624 "_end",
10625 "_fbss",
10626 NULL
10627 };
10628
10629 const char* const *p;
10630 int i;
10631
10632 for (i = 0; i < 2; ++i)
10633 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10634 *p;
10635 ++p)
10636 if (strcmp (*p, name) == 0)
10637 {
10638 /* All of these symbols are given type STT_SECTION by the
10639 IRIX6 linker. */
10640 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10641 sym->st_other = STO_PROTECTED;
10642
10643 /* The IRIX linker puts these symbols in special sections. */
10644 if (i == 0)
10645 sym->st_shndx = SHN_MIPS_TEXT;
10646 else
10647 sym->st_shndx = SHN_MIPS_DATA;
10648
10649 break;
10650 }
10651 }
10652
10653 /* Finish up dynamic symbol handling. We set the contents of various
10654 dynamic sections here. */
10655
10656 bfd_boolean
10657 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10658 struct bfd_link_info *info,
10659 struct elf_link_hash_entry *h,
10660 Elf_Internal_Sym *sym)
10661 {
10662 bfd *dynobj;
10663 asection *sgot;
10664 struct mips_got_info *g, *gg;
10665 const char *name;
10666 int idx;
10667 struct mips_elf_link_hash_table *htab;
10668 struct mips_elf_link_hash_entry *hmips;
10669
10670 htab = mips_elf_hash_table (info);
10671 BFD_ASSERT (htab != NULL);
10672 dynobj = elf_hash_table (info)->dynobj;
10673 hmips = (struct mips_elf_link_hash_entry *) h;
10674
10675 BFD_ASSERT (!htab->is_vxworks);
10676
10677 if (h->plt.plist != NULL
10678 && (h->plt.plist->mips_offset != MINUS_ONE
10679 || h->plt.plist->comp_offset != MINUS_ONE))
10680 {
10681 /* We've decided to create a PLT entry for this symbol. */
10682 bfd_byte *loc;
10683 bfd_vma header_address, got_address;
10684 bfd_vma got_address_high, got_address_low, load;
10685 bfd_vma got_index;
10686 bfd_vma isa_bit;
10687
10688 got_index = h->plt.plist->gotplt_index;
10689
10690 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10691 BFD_ASSERT (h->dynindx != -1);
10692 BFD_ASSERT (htab->splt != NULL);
10693 BFD_ASSERT (got_index != MINUS_ONE);
10694 BFD_ASSERT (!h->def_regular);
10695
10696 /* Calculate the address of the PLT header. */
10697 isa_bit = htab->plt_header_is_comp;
10698 header_address = (htab->splt->output_section->vma
10699 + htab->splt->output_offset + isa_bit);
10700
10701 /* Calculate the address of the .got.plt entry. */
10702 got_address = (htab->sgotplt->output_section->vma
10703 + htab->sgotplt->output_offset
10704 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10705
10706 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10707 got_address_low = got_address & 0xffff;
10708
10709 /* Initially point the .got.plt entry at the PLT header. */
10710 loc = (htab->sgotplt->contents + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10711 if (ABI_64_P (output_bfd))
10712 bfd_put_64 (output_bfd, header_address, loc);
10713 else
10714 bfd_put_32 (output_bfd, header_address, loc);
10715
10716 /* Now handle the PLT itself. First the standard entry (the order
10717 does not matter, we just have to pick one). */
10718 if (h->plt.plist->mips_offset != MINUS_ONE)
10719 {
10720 const bfd_vma *plt_entry;
10721 bfd_vma plt_offset;
10722
10723 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10724
10725 BFD_ASSERT (plt_offset <= htab->splt->size);
10726
10727 /* Find out where the .plt entry should go. */
10728 loc = htab->splt->contents + plt_offset;
10729
10730 /* Pick the load opcode. */
10731 load = MIPS_ELF_LOAD_WORD (output_bfd);
10732
10733 /* Fill in the PLT entry itself. */
10734
10735 if (MIPSR6_P (output_bfd))
10736 plt_entry = mipsr6_exec_plt_entry;
10737 else
10738 plt_entry = mips_exec_plt_entry;
10739 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10740 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10741 loc + 4);
10742
10743 if (! LOAD_INTERLOCKS_P (output_bfd))
10744 {
10745 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10746 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10747 }
10748 else
10749 {
10750 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10751 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10752 loc + 12);
10753 }
10754 }
10755
10756 /* Now the compressed entry. They come after any standard ones. */
10757 if (h->plt.plist->comp_offset != MINUS_ONE)
10758 {
10759 bfd_vma plt_offset;
10760
10761 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10762 + h->plt.plist->comp_offset);
10763
10764 BFD_ASSERT (plt_offset <= htab->splt->size);
10765
10766 /* Find out where the .plt entry should go. */
10767 loc = htab->splt->contents + plt_offset;
10768
10769 /* Fill in the PLT entry itself. */
10770 if (!MICROMIPS_P (output_bfd))
10771 {
10772 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10773
10774 bfd_put_16 (output_bfd, plt_entry[0], loc);
10775 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10776 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10777 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10778 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10779 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10780 bfd_put_32 (output_bfd, got_address, loc + 12);
10781 }
10782 else if (htab->insn32)
10783 {
10784 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10785
10786 bfd_put_16 (output_bfd, plt_entry[0], loc);
10787 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10788 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10789 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10790 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10791 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10792 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10793 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10794 }
10795 else
10796 {
10797 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10798 bfd_signed_vma gotpc_offset;
10799 bfd_vma loc_address;
10800
10801 BFD_ASSERT (got_address % 4 == 0);
10802
10803 loc_address = (htab->splt->output_section->vma
10804 + htab->splt->output_offset + plt_offset);
10805 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10806
10807 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10808 if (gotpc_offset + 0x1000000 >= 0x2000000)
10809 {
10810 (*_bfd_error_handler)
10811 (_("%B: `%A' offset of %ld from `%A' "
10812 "beyond the range of ADDIUPC"),
10813 output_bfd,
10814 htab->sgotplt->output_section,
10815 htab->splt->output_section,
10816 (long) gotpc_offset);
10817 bfd_set_error (bfd_error_no_error);
10818 return FALSE;
10819 }
10820 bfd_put_16 (output_bfd,
10821 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10822 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10823 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10824 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10825 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10826 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10827 }
10828 }
10829
10830 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10831 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
10832 got_index - 2, h->dynindx,
10833 R_MIPS_JUMP_SLOT, got_address);
10834
10835 /* We distinguish between PLT entries and lazy-binding stubs by
10836 giving the former an st_other value of STO_MIPS_PLT. Set the
10837 flag and leave the value if there are any relocations in the
10838 binary where pointer equality matters. */
10839 sym->st_shndx = SHN_UNDEF;
10840 if (h->pointer_equality_needed)
10841 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
10842 else
10843 {
10844 sym->st_value = 0;
10845 sym->st_other = 0;
10846 }
10847 }
10848
10849 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
10850 {
10851 /* We've decided to create a lazy-binding stub. */
10852 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10853 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10854 bfd_vma stub_size = htab->function_stub_size;
10855 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
10856 bfd_vma isa_bit = micromips_p;
10857 bfd_vma stub_big_size;
10858
10859 if (!micromips_p)
10860 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
10861 else if (htab->insn32)
10862 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10863 else
10864 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
10865
10866 /* This symbol has a stub. Set it up. */
10867
10868 BFD_ASSERT (h->dynindx != -1);
10869
10870 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
10871
10872 /* Values up to 2^31 - 1 are allowed. Larger values would cause
10873 sign extension at runtime in the stub, resulting in a negative
10874 index value. */
10875 if (h->dynindx & ~0x7fffffff)
10876 return FALSE;
10877
10878 /* Fill the stub. */
10879 if (micromips_p)
10880 {
10881 idx = 0;
10882 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10883 stub + idx);
10884 idx += 4;
10885 if (htab->insn32)
10886 {
10887 bfd_put_micromips_32 (output_bfd,
10888 STUB_MOVE32_MICROMIPS, stub + idx);
10889 idx += 4;
10890 }
10891 else
10892 {
10893 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10894 idx += 2;
10895 }
10896 if (stub_size == stub_big_size)
10897 {
10898 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10899
10900 bfd_put_micromips_32 (output_bfd,
10901 STUB_LUI_MICROMIPS (dynindx_hi),
10902 stub + idx);
10903 idx += 4;
10904 }
10905 if (htab->insn32)
10906 {
10907 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
10908 stub + idx);
10909 idx += 4;
10910 }
10911 else
10912 {
10913 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
10914 idx += 2;
10915 }
10916
10917 /* If a large stub is not required and sign extension is not a
10918 problem, then use legacy code in the stub. */
10919 if (stub_size == stub_big_size)
10920 bfd_put_micromips_32 (output_bfd,
10921 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
10922 stub + idx);
10923 else if (h->dynindx & ~0x7fff)
10924 bfd_put_micromips_32 (output_bfd,
10925 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
10926 stub + idx);
10927 else
10928 bfd_put_micromips_32 (output_bfd,
10929 STUB_LI16S_MICROMIPS (output_bfd,
10930 h->dynindx),
10931 stub + idx);
10932 }
10933 else
10934 {
10935 idx = 0;
10936 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10937 idx += 4;
10938 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
10939 idx += 4;
10940 if (stub_size == stub_big_size)
10941 {
10942 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10943 stub + idx);
10944 idx += 4;
10945 }
10946 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10947 idx += 4;
10948
10949 /* If a large stub is not required and sign extension is not a
10950 problem, then use legacy code in the stub. */
10951 if (stub_size == stub_big_size)
10952 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
10953 stub + idx);
10954 else if (h->dynindx & ~0x7fff)
10955 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
10956 stub + idx);
10957 else
10958 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10959 stub + idx);
10960 }
10961
10962 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
10963 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
10964 stub, stub_size);
10965
10966 /* Mark the symbol as undefined. stub_offset != -1 occurs
10967 only for the referenced symbol. */
10968 sym->st_shndx = SHN_UNDEF;
10969
10970 /* The run-time linker uses the st_value field of the symbol
10971 to reset the global offset table entry for this external
10972 to its stub address when unlinking a shared object. */
10973 sym->st_value = (htab->sstubs->output_section->vma
10974 + htab->sstubs->output_offset
10975 + h->plt.plist->stub_offset
10976 + isa_bit);
10977 sym->st_other = other;
10978 }
10979
10980 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10981 refer to the stub, since only the stub uses the standard calling
10982 conventions. */
10983 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10984 {
10985 BFD_ASSERT (hmips->need_fn_stub);
10986 sym->st_value = (hmips->fn_stub->output_section->vma
10987 + hmips->fn_stub->output_offset);
10988 sym->st_size = hmips->fn_stub->size;
10989 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10990 }
10991
10992 BFD_ASSERT (h->dynindx != -1
10993 || h->forced_local);
10994
10995 sgot = htab->sgot;
10996 g = htab->got_info;
10997 BFD_ASSERT (g != NULL);
10998
10999 /* Run through the global symbol table, creating GOT entries for all
11000 the symbols that need them. */
11001 if (hmips->global_got_area != GGA_NONE)
11002 {
11003 bfd_vma offset;
11004 bfd_vma value;
11005
11006 value = sym->st_value;
11007 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11008 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
11009 }
11010
11011 if (hmips->global_got_area != GGA_NONE && g->next)
11012 {
11013 struct mips_got_entry e, *p;
11014 bfd_vma entry;
11015 bfd_vma offset;
11016
11017 gg = g;
11018
11019 e.abfd = output_bfd;
11020 e.symndx = -1;
11021 e.d.h = hmips;
11022 e.tls_type = GOT_TLS_NONE;
11023
11024 for (g = g->next; g->next != gg; g = g->next)
11025 {
11026 if (g->got_entries
11027 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
11028 &e)))
11029 {
11030 offset = p->gotidx;
11031 BFD_ASSERT (offset > 0 && offset < htab->sgot->size);
11032 if (bfd_link_pic (info)
11033 || (elf_hash_table (info)->dynamic_sections_created
11034 && p->d.h != NULL
11035 && p->d.h->root.def_dynamic
11036 && !p->d.h->root.def_regular))
11037 {
11038 /* Create an R_MIPS_REL32 relocation for this entry. Due to
11039 the various compatibility problems, it's easier to mock
11040 up an R_MIPS_32 or R_MIPS_64 relocation and leave
11041 mips_elf_create_dynamic_relocation to calculate the
11042 appropriate addend. */
11043 Elf_Internal_Rela rel[3];
11044
11045 memset (rel, 0, sizeof (rel));
11046 if (ABI_64_P (output_bfd))
11047 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
11048 else
11049 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
11050 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
11051
11052 entry = 0;
11053 if (! (mips_elf_create_dynamic_relocation
11054 (output_bfd, info, rel,
11055 e.d.h, NULL, sym->st_value, &entry, sgot)))
11056 return FALSE;
11057 }
11058 else
11059 entry = sym->st_value;
11060 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
11061 }
11062 }
11063 }
11064
11065 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
11066 name = h->root.root.string;
11067 if (h == elf_hash_table (info)->hdynamic
11068 || h == elf_hash_table (info)->hgot)
11069 sym->st_shndx = SHN_ABS;
11070 else if (strcmp (name, "_DYNAMIC_LINK") == 0
11071 || strcmp (name, "_DYNAMIC_LINKING") == 0)
11072 {
11073 sym->st_shndx = SHN_ABS;
11074 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11075 sym->st_value = 1;
11076 }
11077 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
11078 {
11079 sym->st_shndx = SHN_ABS;
11080 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11081 sym->st_value = elf_gp (output_bfd);
11082 }
11083 else if (SGI_COMPAT (output_bfd))
11084 {
11085 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
11086 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
11087 {
11088 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11089 sym->st_other = STO_PROTECTED;
11090 sym->st_value = 0;
11091 sym->st_shndx = SHN_MIPS_DATA;
11092 }
11093 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
11094 {
11095 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11096 sym->st_other = STO_PROTECTED;
11097 sym->st_value = mips_elf_hash_table (info)->procedure_count;
11098 sym->st_shndx = SHN_ABS;
11099 }
11100 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
11101 {
11102 if (h->type == STT_FUNC)
11103 sym->st_shndx = SHN_MIPS_TEXT;
11104 else if (h->type == STT_OBJECT)
11105 sym->st_shndx = SHN_MIPS_DATA;
11106 }
11107 }
11108
11109 /* Emit a copy reloc, if needed. */
11110 if (h->needs_copy)
11111 {
11112 asection *s;
11113 bfd_vma symval;
11114
11115 BFD_ASSERT (h->dynindx != -1);
11116 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11117
11118 s = mips_elf_rel_dyn_section (info, FALSE);
11119 symval = (h->root.u.def.section->output_section->vma
11120 + h->root.u.def.section->output_offset
11121 + h->root.u.def.value);
11122 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
11123 h->dynindx, R_MIPS_COPY, symval);
11124 }
11125
11126 /* Handle the IRIX6-specific symbols. */
11127 if (IRIX_COMPAT (output_bfd) == ict_irix6)
11128 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11129
11130 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11131 to treat compressed symbols like any other. */
11132 if (ELF_ST_IS_MIPS16 (sym->st_other))
11133 {
11134 BFD_ASSERT (sym->st_value & 1);
11135 sym->st_other -= STO_MIPS16;
11136 }
11137 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11138 {
11139 BFD_ASSERT (sym->st_value & 1);
11140 sym->st_other -= STO_MICROMIPS;
11141 }
11142
11143 return TRUE;
11144 }
11145
11146 /* Likewise, for VxWorks. */
11147
11148 bfd_boolean
11149 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11150 struct bfd_link_info *info,
11151 struct elf_link_hash_entry *h,
11152 Elf_Internal_Sym *sym)
11153 {
11154 bfd *dynobj;
11155 asection *sgot;
11156 struct mips_got_info *g;
11157 struct mips_elf_link_hash_table *htab;
11158 struct mips_elf_link_hash_entry *hmips;
11159
11160 htab = mips_elf_hash_table (info);
11161 BFD_ASSERT (htab != NULL);
11162 dynobj = elf_hash_table (info)->dynobj;
11163 hmips = (struct mips_elf_link_hash_entry *) h;
11164
11165 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
11166 {
11167 bfd_byte *loc;
11168 bfd_vma plt_address, got_address, got_offset, branch_offset;
11169 Elf_Internal_Rela rel;
11170 static const bfd_vma *plt_entry;
11171 bfd_vma gotplt_index;
11172 bfd_vma plt_offset;
11173
11174 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11175 gotplt_index = h->plt.plist->gotplt_index;
11176
11177 BFD_ASSERT (h->dynindx != -1);
11178 BFD_ASSERT (htab->splt != NULL);
11179 BFD_ASSERT (gotplt_index != MINUS_ONE);
11180 BFD_ASSERT (plt_offset <= htab->splt->size);
11181
11182 /* Calculate the address of the .plt entry. */
11183 plt_address = (htab->splt->output_section->vma
11184 + htab->splt->output_offset
11185 + plt_offset);
11186
11187 /* Calculate the address of the .got.plt entry. */
11188 got_address = (htab->sgotplt->output_section->vma
11189 + htab->sgotplt->output_offset
11190 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11191
11192 /* Calculate the offset of the .got.plt entry from
11193 _GLOBAL_OFFSET_TABLE_. */
11194 got_offset = mips_elf_gotplt_index (info, h);
11195
11196 /* Calculate the offset for the branch at the start of the PLT
11197 entry. The branch jumps to the beginning of .plt. */
11198 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11199
11200 /* Fill in the initial value of the .got.plt entry. */
11201 bfd_put_32 (output_bfd, plt_address,
11202 (htab->sgotplt->contents
11203 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11204
11205 /* Find out where the .plt entry should go. */
11206 loc = htab->splt->contents + plt_offset;
11207
11208 if (bfd_link_pic (info))
11209 {
11210 plt_entry = mips_vxworks_shared_plt_entry;
11211 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11212 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11213 }
11214 else
11215 {
11216 bfd_vma got_address_high, got_address_low;
11217
11218 plt_entry = mips_vxworks_exec_plt_entry;
11219 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11220 got_address_low = got_address & 0xffff;
11221
11222 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11223 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11224 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11225 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11226 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11227 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11228 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11229 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11230
11231 loc = (htab->srelplt2->contents
11232 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11233
11234 /* Emit a relocation for the .got.plt entry. */
11235 rel.r_offset = got_address;
11236 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11237 rel.r_addend = plt_offset;
11238 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11239
11240 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11241 loc += sizeof (Elf32_External_Rela);
11242 rel.r_offset = plt_address + 8;
11243 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11244 rel.r_addend = got_offset;
11245 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11246
11247 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11248 loc += sizeof (Elf32_External_Rela);
11249 rel.r_offset += 4;
11250 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11251 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11252 }
11253
11254 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11255 loc = (htab->srelplt->contents
11256 + gotplt_index * sizeof (Elf32_External_Rela));
11257 rel.r_offset = got_address;
11258 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11259 rel.r_addend = 0;
11260 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11261
11262 if (!h->def_regular)
11263 sym->st_shndx = SHN_UNDEF;
11264 }
11265
11266 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11267
11268 sgot = htab->sgot;
11269 g = htab->got_info;
11270 BFD_ASSERT (g != NULL);
11271
11272 /* See if this symbol has an entry in the GOT. */
11273 if (hmips->global_got_area != GGA_NONE)
11274 {
11275 bfd_vma offset;
11276 Elf_Internal_Rela outrel;
11277 bfd_byte *loc;
11278 asection *s;
11279
11280 /* Install the symbol value in the GOT. */
11281 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11282 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11283
11284 /* Add a dynamic relocation for it. */
11285 s = mips_elf_rel_dyn_section (info, FALSE);
11286 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11287 outrel.r_offset = (sgot->output_section->vma
11288 + sgot->output_offset
11289 + offset);
11290 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11291 outrel.r_addend = 0;
11292 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11293 }
11294
11295 /* Emit a copy reloc, if needed. */
11296 if (h->needs_copy)
11297 {
11298 Elf_Internal_Rela rel;
11299
11300 BFD_ASSERT (h->dynindx != -1);
11301
11302 rel.r_offset = (h->root.u.def.section->output_section->vma
11303 + h->root.u.def.section->output_offset
11304 + h->root.u.def.value);
11305 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11306 rel.r_addend = 0;
11307 bfd_elf32_swap_reloca_out (output_bfd, &rel,
11308 htab->srelbss->contents
11309 + (htab->srelbss->reloc_count
11310 * sizeof (Elf32_External_Rela)));
11311 ++htab->srelbss->reloc_count;
11312 }
11313
11314 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11315 if (ELF_ST_IS_COMPRESSED (sym->st_other))
11316 sym->st_value &= ~1;
11317
11318 return TRUE;
11319 }
11320
11321 /* Write out a plt0 entry to the beginning of .plt. */
11322
11323 static bfd_boolean
11324 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11325 {
11326 bfd_byte *loc;
11327 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11328 static const bfd_vma *plt_entry;
11329 struct mips_elf_link_hash_table *htab;
11330
11331 htab = mips_elf_hash_table (info);
11332 BFD_ASSERT (htab != NULL);
11333
11334 if (ABI_64_P (output_bfd))
11335 plt_entry = mips_n64_exec_plt0_entry;
11336 else if (ABI_N32_P (output_bfd))
11337 plt_entry = mips_n32_exec_plt0_entry;
11338 else if (!htab->plt_header_is_comp)
11339 plt_entry = mips_o32_exec_plt0_entry;
11340 else if (htab->insn32)
11341 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11342 else
11343 plt_entry = micromips_o32_exec_plt0_entry;
11344
11345 /* Calculate the value of .got.plt. */
11346 gotplt_value = (htab->sgotplt->output_section->vma
11347 + htab->sgotplt->output_offset);
11348 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11349 gotplt_value_low = gotplt_value & 0xffff;
11350
11351 /* The PLT sequence is not safe for N64 if .got.plt's address can
11352 not be loaded in two instructions. */
11353 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
11354 || ~(gotplt_value | 0x7fffffff) == 0);
11355
11356 /* Install the PLT header. */
11357 loc = htab->splt->contents;
11358 if (plt_entry == micromips_o32_exec_plt0_entry)
11359 {
11360 bfd_vma gotpc_offset;
11361 bfd_vma loc_address;
11362 size_t i;
11363
11364 BFD_ASSERT (gotplt_value % 4 == 0);
11365
11366 loc_address = (htab->splt->output_section->vma
11367 + htab->splt->output_offset);
11368 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11369
11370 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11371 if (gotpc_offset + 0x1000000 >= 0x2000000)
11372 {
11373 (*_bfd_error_handler)
11374 (_("%B: `%A' offset of %ld from `%A' beyond the range of ADDIUPC"),
11375 output_bfd,
11376 htab->sgotplt->output_section,
11377 htab->splt->output_section,
11378 (long) gotpc_offset);
11379 bfd_set_error (bfd_error_no_error);
11380 return FALSE;
11381 }
11382 bfd_put_16 (output_bfd,
11383 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11384 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11385 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11386 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11387 }
11388 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11389 {
11390 size_t i;
11391
11392 bfd_put_16 (output_bfd, plt_entry[0], loc);
11393 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11394 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11395 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11396 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11397 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11398 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11399 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11400 }
11401 else
11402 {
11403 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11404 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11405 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11406 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11407 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11408 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11409 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11410 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11411 }
11412
11413 return TRUE;
11414 }
11415
11416 /* Install the PLT header for a VxWorks executable and finalize the
11417 contents of .rela.plt.unloaded. */
11418
11419 static void
11420 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11421 {
11422 Elf_Internal_Rela rela;
11423 bfd_byte *loc;
11424 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11425 static const bfd_vma *plt_entry;
11426 struct mips_elf_link_hash_table *htab;
11427
11428 htab = mips_elf_hash_table (info);
11429 BFD_ASSERT (htab != NULL);
11430
11431 plt_entry = mips_vxworks_exec_plt0_entry;
11432
11433 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11434 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11435 + htab->root.hgot->root.u.def.section->output_offset
11436 + htab->root.hgot->root.u.def.value);
11437
11438 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11439 got_value_low = got_value & 0xffff;
11440
11441 /* Calculate the address of the PLT header. */
11442 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
11443
11444 /* Install the PLT header. */
11445 loc = htab->splt->contents;
11446 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11447 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11448 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11449 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11450 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11451 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11452
11453 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11454 loc = htab->srelplt2->contents;
11455 rela.r_offset = plt_address;
11456 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11457 rela.r_addend = 0;
11458 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11459 loc += sizeof (Elf32_External_Rela);
11460
11461 /* Output the relocation for the following addiu of
11462 %lo(_GLOBAL_OFFSET_TABLE_). */
11463 rela.r_offset += 4;
11464 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11465 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11466 loc += sizeof (Elf32_External_Rela);
11467
11468 /* Fix up the remaining relocations. They may have the wrong
11469 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11470 in which symbols were output. */
11471 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11472 {
11473 Elf_Internal_Rela rel;
11474
11475 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11476 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11477 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11478 loc += sizeof (Elf32_External_Rela);
11479
11480 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11481 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11482 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11483 loc += sizeof (Elf32_External_Rela);
11484
11485 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11486 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11487 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11488 loc += sizeof (Elf32_External_Rela);
11489 }
11490 }
11491
11492 /* Install the PLT header for a VxWorks shared library. */
11493
11494 static void
11495 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11496 {
11497 unsigned int i;
11498 struct mips_elf_link_hash_table *htab;
11499
11500 htab = mips_elf_hash_table (info);
11501 BFD_ASSERT (htab != NULL);
11502
11503 /* We just need to copy the entry byte-by-byte. */
11504 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11505 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11506 htab->splt->contents + i * 4);
11507 }
11508
11509 /* Finish up the dynamic sections. */
11510
11511 bfd_boolean
11512 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11513 struct bfd_link_info *info)
11514 {
11515 bfd *dynobj;
11516 asection *sdyn;
11517 asection *sgot;
11518 struct mips_got_info *gg, *g;
11519 struct mips_elf_link_hash_table *htab;
11520
11521 htab = mips_elf_hash_table (info);
11522 BFD_ASSERT (htab != NULL);
11523
11524 dynobj = elf_hash_table (info)->dynobj;
11525
11526 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11527
11528 sgot = htab->sgot;
11529 gg = htab->got_info;
11530
11531 if (elf_hash_table (info)->dynamic_sections_created)
11532 {
11533 bfd_byte *b;
11534 int dyn_to_skip = 0, dyn_skipped = 0;
11535
11536 BFD_ASSERT (sdyn != NULL);
11537 BFD_ASSERT (gg != NULL);
11538
11539 g = mips_elf_bfd_got (output_bfd, FALSE);
11540 BFD_ASSERT (g != NULL);
11541
11542 for (b = sdyn->contents;
11543 b < sdyn->contents + sdyn->size;
11544 b += MIPS_ELF_DYN_SIZE (dynobj))
11545 {
11546 Elf_Internal_Dyn dyn;
11547 const char *name;
11548 size_t elemsize;
11549 asection *s;
11550 bfd_boolean swap_out_p;
11551
11552 /* Read in the current dynamic entry. */
11553 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11554
11555 /* Assume that we're going to modify it and write it out. */
11556 swap_out_p = TRUE;
11557
11558 switch (dyn.d_tag)
11559 {
11560 case DT_RELENT:
11561 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11562 break;
11563
11564 case DT_RELAENT:
11565 BFD_ASSERT (htab->is_vxworks);
11566 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11567 break;
11568
11569 case DT_STRSZ:
11570 /* Rewrite DT_STRSZ. */
11571 dyn.d_un.d_val =
11572 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11573 break;
11574
11575 case DT_PLTGOT:
11576 s = htab->sgot;
11577 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11578 break;
11579
11580 case DT_MIPS_PLTGOT:
11581 s = htab->sgotplt;
11582 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11583 break;
11584
11585 case DT_MIPS_RLD_VERSION:
11586 dyn.d_un.d_val = 1; /* XXX */
11587 break;
11588
11589 case DT_MIPS_FLAGS:
11590 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11591 break;
11592
11593 case DT_MIPS_TIME_STAMP:
11594 {
11595 time_t t;
11596 time (&t);
11597 dyn.d_un.d_val = t;
11598 }
11599 break;
11600
11601 case DT_MIPS_ICHECKSUM:
11602 /* XXX FIXME: */
11603 swap_out_p = FALSE;
11604 break;
11605
11606 case DT_MIPS_IVERSION:
11607 /* XXX FIXME: */
11608 swap_out_p = FALSE;
11609 break;
11610
11611 case DT_MIPS_BASE_ADDRESS:
11612 s = output_bfd->sections;
11613 BFD_ASSERT (s != NULL);
11614 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11615 break;
11616
11617 case DT_MIPS_LOCAL_GOTNO:
11618 dyn.d_un.d_val = g->local_gotno;
11619 break;
11620
11621 case DT_MIPS_UNREFEXTNO:
11622 /* The index into the dynamic symbol table which is the
11623 entry of the first external symbol that is not
11624 referenced within the same object. */
11625 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11626 break;
11627
11628 case DT_MIPS_GOTSYM:
11629 if (htab->global_gotsym)
11630 {
11631 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11632 break;
11633 }
11634 /* In case if we don't have global got symbols we default
11635 to setting DT_MIPS_GOTSYM to the same value as
11636 DT_MIPS_SYMTABNO, so we just fall through. */
11637
11638 case DT_MIPS_SYMTABNO:
11639 name = ".dynsym";
11640 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11641 s = bfd_get_linker_section (dynobj, name);
11642
11643 if (s != NULL)
11644 dyn.d_un.d_val = s->size / elemsize;
11645 else
11646 dyn.d_un.d_val = 0;
11647 break;
11648
11649 case DT_MIPS_HIPAGENO:
11650 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11651 break;
11652
11653 case DT_MIPS_RLD_MAP:
11654 {
11655 struct elf_link_hash_entry *h;
11656 h = mips_elf_hash_table (info)->rld_symbol;
11657 if (!h)
11658 {
11659 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11660 swap_out_p = FALSE;
11661 break;
11662 }
11663 s = h->root.u.def.section;
11664
11665 /* The MIPS_RLD_MAP tag stores the absolute address of the
11666 debug pointer. */
11667 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11668 + h->root.u.def.value);
11669 }
11670 break;
11671
11672 case DT_MIPS_RLD_MAP_REL:
11673 {
11674 struct elf_link_hash_entry *h;
11675 bfd_vma dt_addr, rld_addr;
11676 h = mips_elf_hash_table (info)->rld_symbol;
11677 if (!h)
11678 {
11679 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11680 swap_out_p = FALSE;
11681 break;
11682 }
11683 s = h->root.u.def.section;
11684
11685 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11686 pointer, relative to the address of the tag. */
11687 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
11688 + (b - sdyn->contents));
11689 rld_addr = (s->output_section->vma + s->output_offset
11690 + h->root.u.def.value);
11691 dyn.d_un.d_ptr = rld_addr - dt_addr;
11692 }
11693 break;
11694
11695 case DT_MIPS_OPTIONS:
11696 s = (bfd_get_section_by_name
11697 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11698 dyn.d_un.d_ptr = s->vma;
11699 break;
11700
11701 case DT_RELASZ:
11702 BFD_ASSERT (htab->is_vxworks);
11703 /* The count does not include the JUMP_SLOT relocations. */
11704 if (htab->srelplt)
11705 dyn.d_un.d_val -= htab->srelplt->size;
11706 break;
11707
11708 case DT_PLTREL:
11709 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11710 if (htab->is_vxworks)
11711 dyn.d_un.d_val = DT_RELA;
11712 else
11713 dyn.d_un.d_val = DT_REL;
11714 break;
11715
11716 case DT_PLTRELSZ:
11717 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11718 dyn.d_un.d_val = htab->srelplt->size;
11719 break;
11720
11721 case DT_JMPREL:
11722 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11723 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
11724 + htab->srelplt->output_offset);
11725 break;
11726
11727 case DT_TEXTREL:
11728 /* If we didn't need any text relocations after all, delete
11729 the dynamic tag. */
11730 if (!(info->flags & DF_TEXTREL))
11731 {
11732 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11733 swap_out_p = FALSE;
11734 }
11735 break;
11736
11737 case DT_FLAGS:
11738 /* If we didn't need any text relocations after all, clear
11739 DF_TEXTREL from DT_FLAGS. */
11740 if (!(info->flags & DF_TEXTREL))
11741 dyn.d_un.d_val &= ~DF_TEXTREL;
11742 else
11743 swap_out_p = FALSE;
11744 break;
11745
11746 default:
11747 swap_out_p = FALSE;
11748 if (htab->is_vxworks
11749 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11750 swap_out_p = TRUE;
11751 break;
11752 }
11753
11754 if (swap_out_p || dyn_skipped)
11755 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11756 (dynobj, &dyn, b - dyn_skipped);
11757
11758 if (dyn_to_skip)
11759 {
11760 dyn_skipped += dyn_to_skip;
11761 dyn_to_skip = 0;
11762 }
11763 }
11764
11765 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11766 if (dyn_skipped > 0)
11767 memset (b - dyn_skipped, 0, dyn_skipped);
11768 }
11769
11770 if (sgot != NULL && sgot->size > 0
11771 && !bfd_is_abs_section (sgot->output_section))
11772 {
11773 if (htab->is_vxworks)
11774 {
11775 /* The first entry of the global offset table points to the
11776 ".dynamic" section. The second is initialized by the
11777 loader and contains the shared library identifier.
11778 The third is also initialized by the loader and points
11779 to the lazy resolution stub. */
11780 MIPS_ELF_PUT_WORD (output_bfd,
11781 sdyn->output_offset + sdyn->output_section->vma,
11782 sgot->contents);
11783 MIPS_ELF_PUT_WORD (output_bfd, 0,
11784 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11785 MIPS_ELF_PUT_WORD (output_bfd, 0,
11786 sgot->contents
11787 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11788 }
11789 else
11790 {
11791 /* The first entry of the global offset table will be filled at
11792 runtime. The second entry will be used by some runtime loaders.
11793 This isn't the case of IRIX rld. */
11794 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
11795 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11796 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11797 }
11798
11799 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11800 = MIPS_ELF_GOT_SIZE (output_bfd);
11801 }
11802
11803 /* Generate dynamic relocations for the non-primary gots. */
11804 if (gg != NULL && gg->next)
11805 {
11806 Elf_Internal_Rela rel[3];
11807 bfd_vma addend = 0;
11808
11809 memset (rel, 0, sizeof (rel));
11810 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11811
11812 for (g = gg->next; g->next != gg; g = g->next)
11813 {
11814 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
11815 + g->next->tls_gotno;
11816
11817 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
11818 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11819 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11820 sgot->contents
11821 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11822
11823 if (! bfd_link_pic (info))
11824 continue;
11825
11826 for (; got_index < g->local_gotno; got_index++)
11827 {
11828 if (got_index >= g->assigned_low_gotno
11829 && got_index <= g->assigned_high_gotno)
11830 continue;
11831
11832 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
11833 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
11834 if (!(mips_elf_create_dynamic_relocation
11835 (output_bfd, info, rel, NULL,
11836 bfd_abs_section_ptr,
11837 0, &addend, sgot)))
11838 return FALSE;
11839 BFD_ASSERT (addend == 0);
11840 }
11841 }
11842 }
11843
11844 /* The generation of dynamic relocations for the non-primary gots
11845 adds more dynamic relocations. We cannot count them until
11846 here. */
11847
11848 if (elf_hash_table (info)->dynamic_sections_created)
11849 {
11850 bfd_byte *b;
11851 bfd_boolean swap_out_p;
11852
11853 BFD_ASSERT (sdyn != NULL);
11854
11855 for (b = sdyn->contents;
11856 b < sdyn->contents + sdyn->size;
11857 b += MIPS_ELF_DYN_SIZE (dynobj))
11858 {
11859 Elf_Internal_Dyn dyn;
11860 asection *s;
11861
11862 /* Read in the current dynamic entry. */
11863 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11864
11865 /* Assume that we're going to modify it and write it out. */
11866 swap_out_p = TRUE;
11867
11868 switch (dyn.d_tag)
11869 {
11870 case DT_RELSZ:
11871 /* Reduce DT_RELSZ to account for any relocations we
11872 decided not to make. This is for the n64 irix rld,
11873 which doesn't seem to apply any relocations if there
11874 are trailing null entries. */
11875 s = mips_elf_rel_dyn_section (info, FALSE);
11876 dyn.d_un.d_val = (s->reloc_count
11877 * (ABI_64_P (output_bfd)
11878 ? sizeof (Elf64_Mips_External_Rel)
11879 : sizeof (Elf32_External_Rel)));
11880 /* Adjust the section size too. Tools like the prelinker
11881 can reasonably expect the values to the same. */
11882 elf_section_data (s->output_section)->this_hdr.sh_size
11883 = dyn.d_un.d_val;
11884 break;
11885
11886 default:
11887 swap_out_p = FALSE;
11888 break;
11889 }
11890
11891 if (swap_out_p)
11892 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11893 (dynobj, &dyn, b);
11894 }
11895 }
11896
11897 {
11898 asection *s;
11899 Elf32_compact_rel cpt;
11900
11901 if (SGI_COMPAT (output_bfd))
11902 {
11903 /* Write .compact_rel section out. */
11904 s = bfd_get_linker_section (dynobj, ".compact_rel");
11905 if (s != NULL)
11906 {
11907 cpt.id1 = 1;
11908 cpt.num = s->reloc_count;
11909 cpt.id2 = 2;
11910 cpt.offset = (s->output_section->filepos
11911 + sizeof (Elf32_External_compact_rel));
11912 cpt.reserved0 = 0;
11913 cpt.reserved1 = 0;
11914 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
11915 ((Elf32_External_compact_rel *)
11916 s->contents));
11917
11918 /* Clean up a dummy stub function entry in .text. */
11919 if (htab->sstubs != NULL)
11920 {
11921 file_ptr dummy_offset;
11922
11923 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
11924 dummy_offset = htab->sstubs->size - htab->function_stub_size;
11925 memset (htab->sstubs->contents + dummy_offset, 0,
11926 htab->function_stub_size);
11927 }
11928 }
11929 }
11930
11931 /* The psABI says that the dynamic relocations must be sorted in
11932 increasing order of r_symndx. The VxWorks EABI doesn't require
11933 this, and because the code below handles REL rather than RELA
11934 relocations, using it for VxWorks would be outright harmful. */
11935 if (!htab->is_vxworks)
11936 {
11937 s = mips_elf_rel_dyn_section (info, FALSE);
11938 if (s != NULL
11939 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
11940 {
11941 reldyn_sorting_bfd = output_bfd;
11942
11943 if (ABI_64_P (output_bfd))
11944 qsort ((Elf64_External_Rel *) s->contents + 1,
11945 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
11946 sort_dynamic_relocs_64);
11947 else
11948 qsort ((Elf32_External_Rel *) s->contents + 1,
11949 s->reloc_count - 1, sizeof (Elf32_External_Rel),
11950 sort_dynamic_relocs);
11951 }
11952 }
11953 }
11954
11955 if (htab->splt && htab->splt->size > 0)
11956 {
11957 if (htab->is_vxworks)
11958 {
11959 if (bfd_link_pic (info))
11960 mips_vxworks_finish_shared_plt (output_bfd, info);
11961 else
11962 mips_vxworks_finish_exec_plt (output_bfd, info);
11963 }
11964 else
11965 {
11966 BFD_ASSERT (!bfd_link_pic (info));
11967 if (!mips_finish_exec_plt (output_bfd, info))
11968 return FALSE;
11969 }
11970 }
11971 return TRUE;
11972 }
11973
11974
11975 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
11976
11977 static void
11978 mips_set_isa_flags (bfd *abfd)
11979 {
11980 flagword val;
11981
11982 switch (bfd_get_mach (abfd))
11983 {
11984 default:
11985 case bfd_mach_mips3000:
11986 val = E_MIPS_ARCH_1;
11987 break;
11988
11989 case bfd_mach_mips3900:
11990 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
11991 break;
11992
11993 case bfd_mach_mips6000:
11994 val = E_MIPS_ARCH_2;
11995 break;
11996
11997 case bfd_mach_mips4000:
11998 case bfd_mach_mips4300:
11999 case bfd_mach_mips4400:
12000 case bfd_mach_mips4600:
12001 val = E_MIPS_ARCH_3;
12002 break;
12003
12004 case bfd_mach_mips4010:
12005 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
12006 break;
12007
12008 case bfd_mach_mips4100:
12009 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
12010 break;
12011
12012 case bfd_mach_mips4111:
12013 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
12014 break;
12015
12016 case bfd_mach_mips4120:
12017 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
12018 break;
12019
12020 case bfd_mach_mips4650:
12021 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
12022 break;
12023
12024 case bfd_mach_mips5400:
12025 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
12026 break;
12027
12028 case bfd_mach_mips5500:
12029 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
12030 break;
12031
12032 case bfd_mach_mips5900:
12033 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
12034 break;
12035
12036 case bfd_mach_mips9000:
12037 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
12038 break;
12039
12040 case bfd_mach_mips5000:
12041 case bfd_mach_mips7000:
12042 case bfd_mach_mips8000:
12043 case bfd_mach_mips10000:
12044 case bfd_mach_mips12000:
12045 case bfd_mach_mips14000:
12046 case bfd_mach_mips16000:
12047 val = E_MIPS_ARCH_4;
12048 break;
12049
12050 case bfd_mach_mips5:
12051 val = E_MIPS_ARCH_5;
12052 break;
12053
12054 case bfd_mach_mips_loongson_2e:
12055 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
12056 break;
12057
12058 case bfd_mach_mips_loongson_2f:
12059 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
12060 break;
12061
12062 case bfd_mach_mips_sb1:
12063 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
12064 break;
12065
12066 case bfd_mach_mips_loongson_3a:
12067 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A;
12068 break;
12069
12070 case bfd_mach_mips_octeon:
12071 case bfd_mach_mips_octeonp:
12072 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
12073 break;
12074
12075 case bfd_mach_mips_octeon3:
12076 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
12077 break;
12078
12079 case bfd_mach_mips_xlr:
12080 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
12081 break;
12082
12083 case bfd_mach_mips_octeon2:
12084 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
12085 break;
12086
12087 case bfd_mach_mipsisa32:
12088 val = E_MIPS_ARCH_32;
12089 break;
12090
12091 case bfd_mach_mipsisa64:
12092 val = E_MIPS_ARCH_64;
12093 break;
12094
12095 case bfd_mach_mipsisa32r2:
12096 case bfd_mach_mipsisa32r3:
12097 case bfd_mach_mipsisa32r5:
12098 val = E_MIPS_ARCH_32R2;
12099 break;
12100
12101 case bfd_mach_mipsisa64r2:
12102 case bfd_mach_mipsisa64r3:
12103 case bfd_mach_mipsisa64r5:
12104 val = E_MIPS_ARCH_64R2;
12105 break;
12106
12107 case bfd_mach_mipsisa32r6:
12108 val = E_MIPS_ARCH_32R6;
12109 break;
12110
12111 case bfd_mach_mipsisa64r6:
12112 val = E_MIPS_ARCH_64R6;
12113 break;
12114 }
12115 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12116 elf_elfheader (abfd)->e_flags |= val;
12117
12118 }
12119
12120
12121 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12122 Don't do so for code sections. We want to keep ordering of HI16/LO16
12123 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12124 relocs to be sorted. */
12125
12126 bfd_boolean
12127 _bfd_mips_elf_sort_relocs_p (asection *sec)
12128 {
12129 return (sec->flags & SEC_CODE) == 0;
12130 }
12131
12132
12133 /* The final processing done just before writing out a MIPS ELF object
12134 file. This gets the MIPS architecture right based on the machine
12135 number. This is used by both the 32-bit and the 64-bit ABI. */
12136
12137 void
12138 _bfd_mips_elf_final_write_processing (bfd *abfd,
12139 bfd_boolean linker ATTRIBUTE_UNUSED)
12140 {
12141 unsigned int i;
12142 Elf_Internal_Shdr **hdrpp;
12143 const char *name;
12144 asection *sec;
12145
12146 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12147 is nonzero. This is for compatibility with old objects, which used
12148 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12149 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12150 mips_set_isa_flags (abfd);
12151
12152 /* Set the sh_info field for .gptab sections and other appropriate
12153 info for each special section. */
12154 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12155 i < elf_numsections (abfd);
12156 i++, hdrpp++)
12157 {
12158 switch ((*hdrpp)->sh_type)
12159 {
12160 case SHT_MIPS_MSYM:
12161 case SHT_MIPS_LIBLIST:
12162 sec = bfd_get_section_by_name (abfd, ".dynstr");
12163 if (sec != NULL)
12164 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12165 break;
12166
12167 case SHT_MIPS_GPTAB:
12168 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12169 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12170 BFD_ASSERT (name != NULL
12171 && CONST_STRNEQ (name, ".gptab."));
12172 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12173 BFD_ASSERT (sec != NULL);
12174 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12175 break;
12176
12177 case SHT_MIPS_CONTENT:
12178 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12179 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12180 BFD_ASSERT (name != NULL
12181 && CONST_STRNEQ (name, ".MIPS.content"));
12182 sec = bfd_get_section_by_name (abfd,
12183 name + sizeof ".MIPS.content" - 1);
12184 BFD_ASSERT (sec != NULL);
12185 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12186 break;
12187
12188 case SHT_MIPS_SYMBOL_LIB:
12189 sec = bfd_get_section_by_name (abfd, ".dynsym");
12190 if (sec != NULL)
12191 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12192 sec = bfd_get_section_by_name (abfd, ".liblist");
12193 if (sec != NULL)
12194 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12195 break;
12196
12197 case SHT_MIPS_EVENTS:
12198 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12199 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12200 BFD_ASSERT (name != NULL);
12201 if (CONST_STRNEQ (name, ".MIPS.events"))
12202 sec = bfd_get_section_by_name (abfd,
12203 name + sizeof ".MIPS.events" - 1);
12204 else
12205 {
12206 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
12207 sec = bfd_get_section_by_name (abfd,
12208 (name
12209 + sizeof ".MIPS.post_rel" - 1));
12210 }
12211 BFD_ASSERT (sec != NULL);
12212 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12213 break;
12214
12215 }
12216 }
12217 }
12218 \f
12219 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12220 segments. */
12221
12222 int
12223 _bfd_mips_elf_additional_program_headers (bfd *abfd,
12224 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12225 {
12226 asection *s;
12227 int ret = 0;
12228
12229 /* See if we need a PT_MIPS_REGINFO segment. */
12230 s = bfd_get_section_by_name (abfd, ".reginfo");
12231 if (s && (s->flags & SEC_LOAD))
12232 ++ret;
12233
12234 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12235 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12236 ++ret;
12237
12238 /* See if we need a PT_MIPS_OPTIONS segment. */
12239 if (IRIX_COMPAT (abfd) == ict_irix6
12240 && bfd_get_section_by_name (abfd,
12241 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12242 ++ret;
12243
12244 /* See if we need a PT_MIPS_RTPROC segment. */
12245 if (IRIX_COMPAT (abfd) == ict_irix5
12246 && bfd_get_section_by_name (abfd, ".dynamic")
12247 && bfd_get_section_by_name (abfd, ".mdebug"))
12248 ++ret;
12249
12250 /* Allocate a PT_NULL header in dynamic objects. See
12251 _bfd_mips_elf_modify_segment_map for details. */
12252 if (!SGI_COMPAT (abfd)
12253 && bfd_get_section_by_name (abfd, ".dynamic"))
12254 ++ret;
12255
12256 return ret;
12257 }
12258
12259 /* Modify the segment map for an IRIX5 executable. */
12260
12261 bfd_boolean
12262 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12263 struct bfd_link_info *info)
12264 {
12265 asection *s;
12266 struct elf_segment_map *m, **pm;
12267 bfd_size_type amt;
12268
12269 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12270 segment. */
12271 s = bfd_get_section_by_name (abfd, ".reginfo");
12272 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12273 {
12274 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12275 if (m->p_type == PT_MIPS_REGINFO)
12276 break;
12277 if (m == NULL)
12278 {
12279 amt = sizeof *m;
12280 m = bfd_zalloc (abfd, amt);
12281 if (m == NULL)
12282 return FALSE;
12283
12284 m->p_type = PT_MIPS_REGINFO;
12285 m->count = 1;
12286 m->sections[0] = s;
12287
12288 /* We want to put it after the PHDR and INTERP segments. */
12289 pm = &elf_seg_map (abfd);
12290 while (*pm != NULL
12291 && ((*pm)->p_type == PT_PHDR
12292 || (*pm)->p_type == PT_INTERP))
12293 pm = &(*pm)->next;
12294
12295 m->next = *pm;
12296 *pm = m;
12297 }
12298 }
12299
12300 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12301 segment. */
12302 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12303 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12304 {
12305 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12306 if (m->p_type == PT_MIPS_ABIFLAGS)
12307 break;
12308 if (m == NULL)
12309 {
12310 amt = sizeof *m;
12311 m = bfd_zalloc (abfd, amt);
12312 if (m == NULL)
12313 return FALSE;
12314
12315 m->p_type = PT_MIPS_ABIFLAGS;
12316 m->count = 1;
12317 m->sections[0] = s;
12318
12319 /* We want to put it after the PHDR and INTERP segments. */
12320 pm = &elf_seg_map (abfd);
12321 while (*pm != NULL
12322 && ((*pm)->p_type == PT_PHDR
12323 || (*pm)->p_type == PT_INTERP))
12324 pm = &(*pm)->next;
12325
12326 m->next = *pm;
12327 *pm = m;
12328 }
12329 }
12330
12331 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12332 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12333 PT_MIPS_OPTIONS segment immediately following the program header
12334 table. */
12335 if (NEWABI_P (abfd)
12336 /* On non-IRIX6 new abi, we'll have already created a segment
12337 for this section, so don't create another. I'm not sure this
12338 is not also the case for IRIX 6, but I can't test it right
12339 now. */
12340 && IRIX_COMPAT (abfd) == ict_irix6)
12341 {
12342 for (s = abfd->sections; s; s = s->next)
12343 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12344 break;
12345
12346 if (s)
12347 {
12348 struct elf_segment_map *options_segment;
12349
12350 pm = &elf_seg_map (abfd);
12351 while (*pm != NULL
12352 && ((*pm)->p_type == PT_PHDR
12353 || (*pm)->p_type == PT_INTERP))
12354 pm = &(*pm)->next;
12355
12356 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12357 {
12358 amt = sizeof (struct elf_segment_map);
12359 options_segment = bfd_zalloc (abfd, amt);
12360 options_segment->next = *pm;
12361 options_segment->p_type = PT_MIPS_OPTIONS;
12362 options_segment->p_flags = PF_R;
12363 options_segment->p_flags_valid = TRUE;
12364 options_segment->count = 1;
12365 options_segment->sections[0] = s;
12366 *pm = options_segment;
12367 }
12368 }
12369 }
12370 else
12371 {
12372 if (IRIX_COMPAT (abfd) == ict_irix5)
12373 {
12374 /* If there are .dynamic and .mdebug sections, we make a room
12375 for the RTPROC header. FIXME: Rewrite without section names. */
12376 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12377 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12378 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12379 {
12380 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12381 if (m->p_type == PT_MIPS_RTPROC)
12382 break;
12383 if (m == NULL)
12384 {
12385 amt = sizeof *m;
12386 m = bfd_zalloc (abfd, amt);
12387 if (m == NULL)
12388 return FALSE;
12389
12390 m->p_type = PT_MIPS_RTPROC;
12391
12392 s = bfd_get_section_by_name (abfd, ".rtproc");
12393 if (s == NULL)
12394 {
12395 m->count = 0;
12396 m->p_flags = 0;
12397 m->p_flags_valid = 1;
12398 }
12399 else
12400 {
12401 m->count = 1;
12402 m->sections[0] = s;
12403 }
12404
12405 /* We want to put it after the DYNAMIC segment. */
12406 pm = &elf_seg_map (abfd);
12407 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12408 pm = &(*pm)->next;
12409 if (*pm != NULL)
12410 pm = &(*pm)->next;
12411
12412 m->next = *pm;
12413 *pm = m;
12414 }
12415 }
12416 }
12417 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12418 .dynstr, .dynsym, and .hash sections, and everything in
12419 between. */
12420 for (pm = &elf_seg_map (abfd); *pm != NULL;
12421 pm = &(*pm)->next)
12422 if ((*pm)->p_type == PT_DYNAMIC)
12423 break;
12424 m = *pm;
12425 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12426 glibc's dynamic linker has traditionally derived the number of
12427 tags from the p_filesz field, and sometimes allocates stack
12428 arrays of that size. An overly-big PT_DYNAMIC segment can
12429 be actively harmful in such cases. Making PT_DYNAMIC contain
12430 other sections can also make life hard for the prelinker,
12431 which might move one of the other sections to a different
12432 PT_LOAD segment. */
12433 if (SGI_COMPAT (abfd)
12434 && m != NULL
12435 && m->count == 1
12436 && strcmp (m->sections[0]->name, ".dynamic") == 0)
12437 {
12438 static const char *sec_names[] =
12439 {
12440 ".dynamic", ".dynstr", ".dynsym", ".hash"
12441 };
12442 bfd_vma low, high;
12443 unsigned int i, c;
12444 struct elf_segment_map *n;
12445
12446 low = ~(bfd_vma) 0;
12447 high = 0;
12448 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12449 {
12450 s = bfd_get_section_by_name (abfd, sec_names[i]);
12451 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12452 {
12453 bfd_size_type sz;
12454
12455 if (low > s->vma)
12456 low = s->vma;
12457 sz = s->size;
12458 if (high < s->vma + sz)
12459 high = s->vma + sz;
12460 }
12461 }
12462
12463 c = 0;
12464 for (s = abfd->sections; s != NULL; s = s->next)
12465 if ((s->flags & SEC_LOAD) != 0
12466 && s->vma >= low
12467 && s->vma + s->size <= high)
12468 ++c;
12469
12470 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
12471 n = bfd_zalloc (abfd, amt);
12472 if (n == NULL)
12473 return FALSE;
12474 *n = *m;
12475 n->count = c;
12476
12477 i = 0;
12478 for (s = abfd->sections; s != NULL; s = s->next)
12479 {
12480 if ((s->flags & SEC_LOAD) != 0
12481 && s->vma >= low
12482 && s->vma + s->size <= high)
12483 {
12484 n->sections[i] = s;
12485 ++i;
12486 }
12487 }
12488
12489 *pm = n;
12490 }
12491 }
12492
12493 /* Allocate a spare program header in dynamic objects so that tools
12494 like the prelinker can add an extra PT_LOAD entry.
12495
12496 If the prelinker needs to make room for a new PT_LOAD entry, its
12497 standard procedure is to move the first (read-only) sections into
12498 the new (writable) segment. However, the MIPS ABI requires
12499 .dynamic to be in a read-only segment, and the section will often
12500 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12501
12502 Although the prelinker could in principle move .dynamic to a
12503 writable segment, it seems better to allocate a spare program
12504 header instead, and avoid the need to move any sections.
12505 There is a long tradition of allocating spare dynamic tags,
12506 so allocating a spare program header seems like a natural
12507 extension.
12508
12509 If INFO is NULL, we may be copying an already prelinked binary
12510 with objcopy or strip, so do not add this header. */
12511 if (info != NULL
12512 && !SGI_COMPAT (abfd)
12513 && bfd_get_section_by_name (abfd, ".dynamic"))
12514 {
12515 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12516 if ((*pm)->p_type == PT_NULL)
12517 break;
12518 if (*pm == NULL)
12519 {
12520 m = bfd_zalloc (abfd, sizeof (*m));
12521 if (m == NULL)
12522 return FALSE;
12523
12524 m->p_type = PT_NULL;
12525 *pm = m;
12526 }
12527 }
12528
12529 return TRUE;
12530 }
12531 \f
12532 /* Return the section that should be marked against GC for a given
12533 relocation. */
12534
12535 asection *
12536 _bfd_mips_elf_gc_mark_hook (asection *sec,
12537 struct bfd_link_info *info,
12538 Elf_Internal_Rela *rel,
12539 struct elf_link_hash_entry *h,
12540 Elf_Internal_Sym *sym)
12541 {
12542 /* ??? Do mips16 stub sections need to be handled special? */
12543
12544 if (h != NULL)
12545 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12546 {
12547 case R_MIPS_GNU_VTINHERIT:
12548 case R_MIPS_GNU_VTENTRY:
12549 return NULL;
12550 }
12551
12552 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12553 }
12554
12555 /* Update the got entry reference counts for the section being removed. */
12556
12557 bfd_boolean
12558 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
12559 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12560 asection *sec ATTRIBUTE_UNUSED,
12561 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
12562 {
12563 #if 0
12564 Elf_Internal_Shdr *symtab_hdr;
12565 struct elf_link_hash_entry **sym_hashes;
12566 bfd_signed_vma *local_got_refcounts;
12567 const Elf_Internal_Rela *rel, *relend;
12568 unsigned long r_symndx;
12569 struct elf_link_hash_entry *h;
12570
12571 if (bfd_link_relocatable (info))
12572 return TRUE;
12573
12574 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12575 sym_hashes = elf_sym_hashes (abfd);
12576 local_got_refcounts = elf_local_got_refcounts (abfd);
12577
12578 relend = relocs + sec->reloc_count;
12579 for (rel = relocs; rel < relend; rel++)
12580 switch (ELF_R_TYPE (abfd, rel->r_info))
12581 {
12582 case R_MIPS16_GOT16:
12583 case R_MIPS16_CALL16:
12584 case R_MIPS_GOT16:
12585 case R_MIPS_CALL16:
12586 case R_MIPS_CALL_HI16:
12587 case R_MIPS_CALL_LO16:
12588 case R_MIPS_GOT_HI16:
12589 case R_MIPS_GOT_LO16:
12590 case R_MIPS_GOT_DISP:
12591 case R_MIPS_GOT_PAGE:
12592 case R_MIPS_GOT_OFST:
12593 case R_MICROMIPS_GOT16:
12594 case R_MICROMIPS_CALL16:
12595 case R_MICROMIPS_CALL_HI16:
12596 case R_MICROMIPS_CALL_LO16:
12597 case R_MICROMIPS_GOT_HI16:
12598 case R_MICROMIPS_GOT_LO16:
12599 case R_MICROMIPS_GOT_DISP:
12600 case R_MICROMIPS_GOT_PAGE:
12601 case R_MICROMIPS_GOT_OFST:
12602 /* ??? It would seem that the existing MIPS code does no sort
12603 of reference counting or whatnot on its GOT and PLT entries,
12604 so it is not possible to garbage collect them at this time. */
12605 break;
12606
12607 default:
12608 break;
12609 }
12610 #endif
12611
12612 return TRUE;
12613 }
12614
12615 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12616
12617 bfd_boolean
12618 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12619 elf_gc_mark_hook_fn gc_mark_hook)
12620 {
12621 bfd *sub;
12622
12623 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12624
12625 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12626 {
12627 asection *o;
12628
12629 if (! is_mips_elf (sub))
12630 continue;
12631
12632 for (o = sub->sections; o != NULL; o = o->next)
12633 if (!o->gc_mark
12634 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12635 (bfd_get_section_name (sub, o)))
12636 {
12637 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12638 return FALSE;
12639 }
12640 }
12641
12642 return TRUE;
12643 }
12644 \f
12645 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12646 hiding the old indirect symbol. Process additional relocation
12647 information. Also called for weakdefs, in which case we just let
12648 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12649
12650 void
12651 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12652 struct elf_link_hash_entry *dir,
12653 struct elf_link_hash_entry *ind)
12654 {
12655 struct mips_elf_link_hash_entry *dirmips, *indmips;
12656
12657 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12658
12659 dirmips = (struct mips_elf_link_hash_entry *) dir;
12660 indmips = (struct mips_elf_link_hash_entry *) ind;
12661 /* Any absolute non-dynamic relocations against an indirect or weak
12662 definition will be against the target symbol. */
12663 if (indmips->has_static_relocs)
12664 dirmips->has_static_relocs = TRUE;
12665
12666 if (ind->root.type != bfd_link_hash_indirect)
12667 return;
12668
12669 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12670 if (indmips->readonly_reloc)
12671 dirmips->readonly_reloc = TRUE;
12672 if (indmips->no_fn_stub)
12673 dirmips->no_fn_stub = TRUE;
12674 if (indmips->fn_stub)
12675 {
12676 dirmips->fn_stub = indmips->fn_stub;
12677 indmips->fn_stub = NULL;
12678 }
12679 if (indmips->need_fn_stub)
12680 {
12681 dirmips->need_fn_stub = TRUE;
12682 indmips->need_fn_stub = FALSE;
12683 }
12684 if (indmips->call_stub)
12685 {
12686 dirmips->call_stub = indmips->call_stub;
12687 indmips->call_stub = NULL;
12688 }
12689 if (indmips->call_fp_stub)
12690 {
12691 dirmips->call_fp_stub = indmips->call_fp_stub;
12692 indmips->call_fp_stub = NULL;
12693 }
12694 if (indmips->global_got_area < dirmips->global_got_area)
12695 dirmips->global_got_area = indmips->global_got_area;
12696 if (indmips->global_got_area < GGA_NONE)
12697 indmips->global_got_area = GGA_NONE;
12698 if (indmips->has_nonpic_branches)
12699 dirmips->has_nonpic_branches = TRUE;
12700 }
12701 \f
12702 #define PDR_SIZE 32
12703
12704 bfd_boolean
12705 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12706 struct bfd_link_info *info)
12707 {
12708 asection *o;
12709 bfd_boolean ret = FALSE;
12710 unsigned char *tdata;
12711 size_t i, skip;
12712
12713 o = bfd_get_section_by_name (abfd, ".pdr");
12714 if (! o)
12715 return FALSE;
12716 if (o->size == 0)
12717 return FALSE;
12718 if (o->size % PDR_SIZE != 0)
12719 return FALSE;
12720 if (o->output_section != NULL
12721 && bfd_is_abs_section (o->output_section))
12722 return FALSE;
12723
12724 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12725 if (! tdata)
12726 return FALSE;
12727
12728 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12729 info->keep_memory);
12730 if (!cookie->rels)
12731 {
12732 free (tdata);
12733 return FALSE;
12734 }
12735
12736 cookie->rel = cookie->rels;
12737 cookie->relend = cookie->rels + o->reloc_count;
12738
12739 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12740 {
12741 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12742 {
12743 tdata[i] = 1;
12744 skip ++;
12745 }
12746 }
12747
12748 if (skip != 0)
12749 {
12750 mips_elf_section_data (o)->u.tdata = tdata;
12751 if (o->rawsize == 0)
12752 o->rawsize = o->size;
12753 o->size -= skip * PDR_SIZE;
12754 ret = TRUE;
12755 }
12756 else
12757 free (tdata);
12758
12759 if (! info->keep_memory)
12760 free (cookie->rels);
12761
12762 return ret;
12763 }
12764
12765 bfd_boolean
12766 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
12767 {
12768 if (strcmp (sec->name, ".pdr") == 0)
12769 return TRUE;
12770 return FALSE;
12771 }
12772
12773 bfd_boolean
12774 _bfd_mips_elf_write_section (bfd *output_bfd,
12775 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12776 asection *sec, bfd_byte *contents)
12777 {
12778 bfd_byte *to, *from, *end;
12779 int i;
12780
12781 if (strcmp (sec->name, ".pdr") != 0)
12782 return FALSE;
12783
12784 if (mips_elf_section_data (sec)->u.tdata == NULL)
12785 return FALSE;
12786
12787 to = contents;
12788 end = contents + sec->size;
12789 for (from = contents, i = 0;
12790 from < end;
12791 from += PDR_SIZE, i++)
12792 {
12793 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
12794 continue;
12795 if (to != from)
12796 memcpy (to, from, PDR_SIZE);
12797 to += PDR_SIZE;
12798 }
12799 bfd_set_section_contents (output_bfd, sec->output_section, contents,
12800 sec->output_offset, sec->size);
12801 return TRUE;
12802 }
12803 \f
12804 /* microMIPS code retains local labels for linker relaxation. Omit them
12805 from output by default for clarity. */
12806
12807 bfd_boolean
12808 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12809 {
12810 return _bfd_elf_is_local_label_name (abfd, sym->name);
12811 }
12812
12813 /* MIPS ELF uses a special find_nearest_line routine in order the
12814 handle the ECOFF debugging information. */
12815
12816 struct mips_elf_find_line
12817 {
12818 struct ecoff_debug_info d;
12819 struct ecoff_find_line i;
12820 };
12821
12822 bfd_boolean
12823 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
12824 asection *section, bfd_vma offset,
12825 const char **filename_ptr,
12826 const char **functionname_ptr,
12827 unsigned int *line_ptr,
12828 unsigned int *discriminator_ptr)
12829 {
12830 asection *msec;
12831
12832 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
12833 filename_ptr, functionname_ptr,
12834 line_ptr, discriminator_ptr,
12835 dwarf_debug_sections,
12836 ABI_64_P (abfd) ? 8 : 0,
12837 &elf_tdata (abfd)->dwarf2_find_line_info))
12838 return TRUE;
12839
12840 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
12841 filename_ptr, functionname_ptr,
12842 line_ptr))
12843 return TRUE;
12844
12845 msec = bfd_get_section_by_name (abfd, ".mdebug");
12846 if (msec != NULL)
12847 {
12848 flagword origflags;
12849 struct mips_elf_find_line *fi;
12850 const struct ecoff_debug_swap * const swap =
12851 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12852
12853 /* If we are called during a link, mips_elf_final_link may have
12854 cleared the SEC_HAS_CONTENTS field. We force it back on here
12855 if appropriate (which it normally will be). */
12856 origflags = msec->flags;
12857 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12858 msec->flags |= SEC_HAS_CONTENTS;
12859
12860 fi = mips_elf_tdata (abfd)->find_line_info;
12861 if (fi == NULL)
12862 {
12863 bfd_size_type external_fdr_size;
12864 char *fraw_src;
12865 char *fraw_end;
12866 struct fdr *fdr_ptr;
12867 bfd_size_type amt = sizeof (struct mips_elf_find_line);
12868
12869 fi = bfd_zalloc (abfd, amt);
12870 if (fi == NULL)
12871 {
12872 msec->flags = origflags;
12873 return FALSE;
12874 }
12875
12876 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12877 {
12878 msec->flags = origflags;
12879 return FALSE;
12880 }
12881
12882 /* Swap in the FDR information. */
12883 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
12884 fi->d.fdr = bfd_alloc (abfd, amt);
12885 if (fi->d.fdr == NULL)
12886 {
12887 msec->flags = origflags;
12888 return FALSE;
12889 }
12890 external_fdr_size = swap->external_fdr_size;
12891 fdr_ptr = fi->d.fdr;
12892 fraw_src = (char *) fi->d.external_fdr;
12893 fraw_end = (fraw_src
12894 + fi->d.symbolic_header.ifdMax * external_fdr_size);
12895 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
12896 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
12897
12898 mips_elf_tdata (abfd)->find_line_info = fi;
12899
12900 /* Note that we don't bother to ever free this information.
12901 find_nearest_line is either called all the time, as in
12902 objdump -l, so the information should be saved, or it is
12903 rarely called, as in ld error messages, so the memory
12904 wasted is unimportant. Still, it would probably be a
12905 good idea for free_cached_info to throw it away. */
12906 }
12907
12908 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
12909 &fi->i, filename_ptr, functionname_ptr,
12910 line_ptr))
12911 {
12912 msec->flags = origflags;
12913 return TRUE;
12914 }
12915
12916 msec->flags = origflags;
12917 }
12918
12919 /* Fall back on the generic ELF find_nearest_line routine. */
12920
12921 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
12922 filename_ptr, functionname_ptr,
12923 line_ptr, discriminator_ptr);
12924 }
12925
12926 bfd_boolean
12927 _bfd_mips_elf_find_inliner_info (bfd *abfd,
12928 const char **filename_ptr,
12929 const char **functionname_ptr,
12930 unsigned int *line_ptr)
12931 {
12932 bfd_boolean found;
12933 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12934 functionname_ptr, line_ptr,
12935 & elf_tdata (abfd)->dwarf2_find_line_info);
12936 return found;
12937 }
12938
12939 \f
12940 /* When are writing out the .options or .MIPS.options section,
12941 remember the bytes we are writing out, so that we can install the
12942 GP value in the section_processing routine. */
12943
12944 bfd_boolean
12945 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
12946 const void *location,
12947 file_ptr offset, bfd_size_type count)
12948 {
12949 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
12950 {
12951 bfd_byte *c;
12952
12953 if (elf_section_data (section) == NULL)
12954 {
12955 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
12956 section->used_by_bfd = bfd_zalloc (abfd, amt);
12957 if (elf_section_data (section) == NULL)
12958 return FALSE;
12959 }
12960 c = mips_elf_section_data (section)->u.tdata;
12961 if (c == NULL)
12962 {
12963 c = bfd_zalloc (abfd, section->size);
12964 if (c == NULL)
12965 return FALSE;
12966 mips_elf_section_data (section)->u.tdata = c;
12967 }
12968
12969 memcpy (c + offset, location, count);
12970 }
12971
12972 return _bfd_elf_set_section_contents (abfd, section, location, offset,
12973 count);
12974 }
12975
12976 /* This is almost identical to bfd_generic_get_... except that some
12977 MIPS relocations need to be handled specially. Sigh. */
12978
12979 bfd_byte *
12980 _bfd_elf_mips_get_relocated_section_contents
12981 (bfd *abfd,
12982 struct bfd_link_info *link_info,
12983 struct bfd_link_order *link_order,
12984 bfd_byte *data,
12985 bfd_boolean relocatable,
12986 asymbol **symbols)
12987 {
12988 /* Get enough memory to hold the stuff */
12989 bfd *input_bfd = link_order->u.indirect.section->owner;
12990 asection *input_section = link_order->u.indirect.section;
12991 bfd_size_type sz;
12992
12993 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
12994 arelent **reloc_vector = NULL;
12995 long reloc_count;
12996
12997 if (reloc_size < 0)
12998 goto error_return;
12999
13000 reloc_vector = bfd_malloc (reloc_size);
13001 if (reloc_vector == NULL && reloc_size != 0)
13002 goto error_return;
13003
13004 /* read in the section */
13005 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
13006 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
13007 goto error_return;
13008
13009 reloc_count = bfd_canonicalize_reloc (input_bfd,
13010 input_section,
13011 reloc_vector,
13012 symbols);
13013 if (reloc_count < 0)
13014 goto error_return;
13015
13016 if (reloc_count > 0)
13017 {
13018 arelent **parent;
13019 /* for mips */
13020 int gp_found;
13021 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
13022
13023 {
13024 struct bfd_hash_entry *h;
13025 struct bfd_link_hash_entry *lh;
13026 /* Skip all this stuff if we aren't mixing formats. */
13027 if (abfd && input_bfd
13028 && abfd->xvec == input_bfd->xvec)
13029 lh = 0;
13030 else
13031 {
13032 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
13033 lh = (struct bfd_link_hash_entry *) h;
13034 }
13035 lookup:
13036 if (lh)
13037 {
13038 switch (lh->type)
13039 {
13040 case bfd_link_hash_undefined:
13041 case bfd_link_hash_undefweak:
13042 case bfd_link_hash_common:
13043 gp_found = 0;
13044 break;
13045 case bfd_link_hash_defined:
13046 case bfd_link_hash_defweak:
13047 gp_found = 1;
13048 gp = lh->u.def.value;
13049 break;
13050 case bfd_link_hash_indirect:
13051 case bfd_link_hash_warning:
13052 lh = lh->u.i.link;
13053 /* @@FIXME ignoring warning for now */
13054 goto lookup;
13055 case bfd_link_hash_new:
13056 default:
13057 abort ();
13058 }
13059 }
13060 else
13061 gp_found = 0;
13062 }
13063 /* end mips */
13064 for (parent = reloc_vector; *parent != NULL; parent++)
13065 {
13066 char *error_message = NULL;
13067 bfd_reloc_status_type r;
13068
13069 /* Specific to MIPS: Deal with relocation types that require
13070 knowing the gp of the output bfd. */
13071 asymbol *sym = *(*parent)->sym_ptr_ptr;
13072
13073 /* If we've managed to find the gp and have a special
13074 function for the relocation then go ahead, else default
13075 to the generic handling. */
13076 if (gp_found
13077 && (*parent)->howto->special_function
13078 == _bfd_mips_elf32_gprel16_reloc)
13079 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
13080 input_section, relocatable,
13081 data, gp);
13082 else
13083 r = bfd_perform_relocation (input_bfd, *parent, data,
13084 input_section,
13085 relocatable ? abfd : NULL,
13086 &error_message);
13087
13088 if (relocatable)
13089 {
13090 asection *os = input_section->output_section;
13091
13092 /* A partial link, so keep the relocs */
13093 os->orelocation[os->reloc_count] = *parent;
13094 os->reloc_count++;
13095 }
13096
13097 if (r != bfd_reloc_ok)
13098 {
13099 switch (r)
13100 {
13101 case bfd_reloc_undefined:
13102 (*link_info->callbacks->undefined_symbol)
13103 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13104 input_bfd, input_section, (*parent)->address, TRUE);
13105 break;
13106 case bfd_reloc_dangerous:
13107 BFD_ASSERT (error_message != NULL);
13108 (*link_info->callbacks->reloc_dangerous)
13109 (link_info, error_message,
13110 input_bfd, input_section, (*parent)->address);
13111 break;
13112 case bfd_reloc_overflow:
13113 (*link_info->callbacks->reloc_overflow)
13114 (link_info, NULL,
13115 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13116 (*parent)->howto->name, (*parent)->addend,
13117 input_bfd, input_section, (*parent)->address);
13118 break;
13119 case bfd_reloc_outofrange:
13120 default:
13121 abort ();
13122 break;
13123 }
13124
13125 }
13126 }
13127 }
13128 if (reloc_vector != NULL)
13129 free (reloc_vector);
13130 return data;
13131
13132 error_return:
13133 if (reloc_vector != NULL)
13134 free (reloc_vector);
13135 return NULL;
13136 }
13137 \f
13138 static bfd_boolean
13139 mips_elf_relax_delete_bytes (bfd *abfd,
13140 asection *sec, bfd_vma addr, int count)
13141 {
13142 Elf_Internal_Shdr *symtab_hdr;
13143 unsigned int sec_shndx;
13144 bfd_byte *contents;
13145 Elf_Internal_Rela *irel, *irelend;
13146 Elf_Internal_Sym *isym;
13147 Elf_Internal_Sym *isymend;
13148 struct elf_link_hash_entry **sym_hashes;
13149 struct elf_link_hash_entry **end_hashes;
13150 struct elf_link_hash_entry **start_hashes;
13151 unsigned int symcount;
13152
13153 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13154 contents = elf_section_data (sec)->this_hdr.contents;
13155
13156 irel = elf_section_data (sec)->relocs;
13157 irelend = irel + sec->reloc_count;
13158
13159 /* Actually delete the bytes. */
13160 memmove (contents + addr, contents + addr + count,
13161 (size_t) (sec->size - addr - count));
13162 sec->size -= count;
13163
13164 /* Adjust all the relocs. */
13165 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13166 {
13167 /* Get the new reloc address. */
13168 if (irel->r_offset > addr)
13169 irel->r_offset -= count;
13170 }
13171
13172 BFD_ASSERT (addr % 2 == 0);
13173 BFD_ASSERT (count % 2 == 0);
13174
13175 /* Adjust the local symbols defined in this section. */
13176 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13177 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13178 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
13179 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
13180 isym->st_value -= count;
13181
13182 /* Now adjust the global symbols defined in this section. */
13183 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13184 - symtab_hdr->sh_info);
13185 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13186 end_hashes = sym_hashes + symcount;
13187
13188 for (; sym_hashes < end_hashes; sym_hashes++)
13189 {
13190 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13191
13192 if ((sym_hash->root.type == bfd_link_hash_defined
13193 || sym_hash->root.type == bfd_link_hash_defweak)
13194 && sym_hash->root.u.def.section == sec)
13195 {
13196 bfd_vma value = sym_hash->root.u.def.value;
13197
13198 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13199 value &= MINUS_TWO;
13200 if (value > addr)
13201 sym_hash->root.u.def.value -= count;
13202 }
13203 }
13204
13205 return TRUE;
13206 }
13207
13208
13209 /* Opcodes needed for microMIPS relaxation as found in
13210 opcodes/micromips-opc.c. */
13211
13212 struct opcode_descriptor {
13213 unsigned long match;
13214 unsigned long mask;
13215 };
13216
13217 /* The $ra register aka $31. */
13218
13219 #define RA 31
13220
13221 /* 32-bit instruction format register fields. */
13222
13223 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13224 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13225
13226 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
13227
13228 #define OP16_VALID_REG(r) \
13229 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13230
13231
13232 /* 32-bit and 16-bit branches. */
13233
13234 static const struct opcode_descriptor b_insns_32[] = {
13235 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13236 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13237 { 0, 0 } /* End marker for find_match(). */
13238 };
13239
13240 static const struct opcode_descriptor bc_insn_32 =
13241 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13242
13243 static const struct opcode_descriptor bz_insn_32 =
13244 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13245
13246 static const struct opcode_descriptor bzal_insn_32 =
13247 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13248
13249 static const struct opcode_descriptor beq_insn_32 =
13250 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13251
13252 static const struct opcode_descriptor b_insn_16 =
13253 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13254
13255 static const struct opcode_descriptor bz_insn_16 =
13256 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13257
13258
13259 /* 32-bit and 16-bit branch EQ and NE zero. */
13260
13261 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13262 eq and second the ne. This convention is used when replacing a
13263 32-bit BEQ/BNE with the 16-bit version. */
13264
13265 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13266
13267 static const struct opcode_descriptor bz_rs_insns_32[] = {
13268 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13269 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13270 { 0, 0 } /* End marker for find_match(). */
13271 };
13272
13273 static const struct opcode_descriptor bz_rt_insns_32[] = {
13274 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13275 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13276 { 0, 0 } /* End marker for find_match(). */
13277 };
13278
13279 static const struct opcode_descriptor bzc_insns_32[] = {
13280 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13281 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13282 { 0, 0 } /* End marker for find_match(). */
13283 };
13284
13285 static const struct opcode_descriptor bz_insns_16[] = {
13286 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13287 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13288 { 0, 0 } /* End marker for find_match(). */
13289 };
13290
13291 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13292
13293 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
13294 #define BZ16_REG_FIELD(r) (((r) & 7) << 7)
13295
13296
13297 /* 32-bit instructions with a delay slot. */
13298
13299 static const struct opcode_descriptor jal_insn_32_bd16 =
13300 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13301
13302 static const struct opcode_descriptor jal_insn_32_bd32 =
13303 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13304
13305 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13306 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13307
13308 static const struct opcode_descriptor j_insn_32 =
13309 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13310
13311 static const struct opcode_descriptor jalr_insn_32 =
13312 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13313
13314 /* This table can be compacted, because no opcode replacement is made. */
13315
13316 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13317 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13318
13319 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13320 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13321
13322 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13323 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13324 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13325 { 0, 0 } /* End marker for find_match(). */
13326 };
13327
13328 /* This table can be compacted, because no opcode replacement is made. */
13329
13330 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13331 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13332
13333 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13334 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13335 { 0, 0 } /* End marker for find_match(). */
13336 };
13337
13338
13339 /* 16-bit instructions with a delay slot. */
13340
13341 static const struct opcode_descriptor jalr_insn_16_bd16 =
13342 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13343
13344 static const struct opcode_descriptor jalr_insn_16_bd32 =
13345 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13346
13347 static const struct opcode_descriptor jr_insn_16 =
13348 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13349
13350 #define JR16_REG(opcode) ((opcode) & 0x1f)
13351
13352 /* This table can be compacted, because no opcode replacement is made. */
13353
13354 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13355 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13356
13357 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13358 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13359 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13360 { 0, 0 } /* End marker for find_match(). */
13361 };
13362
13363
13364 /* LUI instruction. */
13365
13366 static const struct opcode_descriptor lui_insn =
13367 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13368
13369
13370 /* ADDIU instruction. */
13371
13372 static const struct opcode_descriptor addiu_insn =
13373 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13374
13375 static const struct opcode_descriptor addiupc_insn =
13376 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13377
13378 #define ADDIUPC_REG_FIELD(r) \
13379 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13380
13381
13382 /* Relaxable instructions in a JAL delay slot: MOVE. */
13383
13384 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13385 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13386 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13387 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13388
13389 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13390 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13391
13392 static const struct opcode_descriptor move_insns_32[] = {
13393 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13394 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13395 { 0, 0 } /* End marker for find_match(). */
13396 };
13397
13398 static const struct opcode_descriptor move_insn_16 =
13399 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13400
13401
13402 /* NOP instructions. */
13403
13404 static const struct opcode_descriptor nop_insn_32 =
13405 { /* "nop", "", */ 0x00000000, 0xffffffff };
13406
13407 static const struct opcode_descriptor nop_insn_16 =
13408 { /* "nop", "", */ 0x0c00, 0xffff };
13409
13410
13411 /* Instruction match support. */
13412
13413 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13414
13415 static int
13416 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13417 {
13418 unsigned long indx;
13419
13420 for (indx = 0; insn[indx].mask != 0; indx++)
13421 if (MATCH (opcode, insn[indx]))
13422 return indx;
13423
13424 return -1;
13425 }
13426
13427
13428 /* Branch and delay slot decoding support. */
13429
13430 /* If PTR points to what *might* be a 16-bit branch or jump, then
13431 return the minimum length of its delay slot, otherwise return 0.
13432 Non-zero results are not definitive as we might be checking against
13433 the second half of another instruction. */
13434
13435 static int
13436 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13437 {
13438 unsigned long opcode;
13439 int bdsize;
13440
13441 opcode = bfd_get_16 (abfd, ptr);
13442 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13443 /* 16-bit branch/jump with a 32-bit delay slot. */
13444 bdsize = 4;
13445 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13446 || find_match (opcode, ds_insns_16_bd16) >= 0)
13447 /* 16-bit branch/jump with a 16-bit delay slot. */
13448 bdsize = 2;
13449 else
13450 /* No delay slot. */
13451 bdsize = 0;
13452
13453 return bdsize;
13454 }
13455
13456 /* If PTR points to what *might* be a 32-bit branch or jump, then
13457 return the minimum length of its delay slot, otherwise return 0.
13458 Non-zero results are not definitive as we might be checking against
13459 the second half of another instruction. */
13460
13461 static int
13462 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13463 {
13464 unsigned long opcode;
13465 int bdsize;
13466
13467 opcode = bfd_get_micromips_32 (abfd, ptr);
13468 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13469 /* 32-bit branch/jump with a 32-bit delay slot. */
13470 bdsize = 4;
13471 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13472 /* 32-bit branch/jump with a 16-bit delay slot. */
13473 bdsize = 2;
13474 else
13475 /* No delay slot. */
13476 bdsize = 0;
13477
13478 return bdsize;
13479 }
13480
13481 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13482 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13483
13484 static bfd_boolean
13485 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13486 {
13487 unsigned long opcode;
13488
13489 opcode = bfd_get_16 (abfd, ptr);
13490 if (MATCH (opcode, b_insn_16)
13491 /* B16 */
13492 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13493 /* JR16 */
13494 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13495 /* BEQZ16, BNEZ16 */
13496 || (MATCH (opcode, jalr_insn_16_bd32)
13497 /* JALR16 */
13498 && reg != JR16_REG (opcode) && reg != RA))
13499 return TRUE;
13500
13501 return FALSE;
13502 }
13503
13504 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13505 then return TRUE, otherwise FALSE. */
13506
13507 static bfd_boolean
13508 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13509 {
13510 unsigned long opcode;
13511
13512 opcode = bfd_get_micromips_32 (abfd, ptr);
13513 if (MATCH (opcode, j_insn_32)
13514 /* J */
13515 || MATCH (opcode, bc_insn_32)
13516 /* BC1F, BC1T, BC2F, BC2T */
13517 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13518 /* JAL, JALX */
13519 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13520 /* BGEZ, BGTZ, BLEZ, BLTZ */
13521 || (MATCH (opcode, bzal_insn_32)
13522 /* BGEZAL, BLTZAL */
13523 && reg != OP32_SREG (opcode) && reg != RA)
13524 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13525 /* JALR, JALR.HB, BEQ, BNE */
13526 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13527 return TRUE;
13528
13529 return FALSE;
13530 }
13531
13532 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13533 IRELEND) at OFFSET indicate that there must be a compact branch there,
13534 then return TRUE, otherwise FALSE. */
13535
13536 static bfd_boolean
13537 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13538 const Elf_Internal_Rela *internal_relocs,
13539 const Elf_Internal_Rela *irelend)
13540 {
13541 const Elf_Internal_Rela *irel;
13542 unsigned long opcode;
13543
13544 opcode = bfd_get_micromips_32 (abfd, ptr);
13545 if (find_match (opcode, bzc_insns_32) < 0)
13546 return FALSE;
13547
13548 for (irel = internal_relocs; irel < irelend; irel++)
13549 if (irel->r_offset == offset
13550 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13551 return TRUE;
13552
13553 return FALSE;
13554 }
13555
13556 /* Bitsize checking. */
13557 #define IS_BITSIZE(val, N) \
13558 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13559 - (1ULL << ((N) - 1))) == (val))
13560
13561 \f
13562 bfd_boolean
13563 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13564 struct bfd_link_info *link_info,
13565 bfd_boolean *again)
13566 {
13567 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13568 Elf_Internal_Shdr *symtab_hdr;
13569 Elf_Internal_Rela *internal_relocs;
13570 Elf_Internal_Rela *irel, *irelend;
13571 bfd_byte *contents = NULL;
13572 Elf_Internal_Sym *isymbuf = NULL;
13573
13574 /* Assume nothing changes. */
13575 *again = FALSE;
13576
13577 /* We don't have to do anything for a relocatable link, if
13578 this section does not have relocs, or if this is not a
13579 code section. */
13580
13581 if (bfd_link_relocatable (link_info)
13582 || (sec->flags & SEC_RELOC) == 0
13583 || sec->reloc_count == 0
13584 || (sec->flags & SEC_CODE) == 0)
13585 return TRUE;
13586
13587 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13588
13589 /* Get a copy of the native relocations. */
13590 internal_relocs = (_bfd_elf_link_read_relocs
13591 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13592 link_info->keep_memory));
13593 if (internal_relocs == NULL)
13594 goto error_return;
13595
13596 /* Walk through them looking for relaxing opportunities. */
13597 irelend = internal_relocs + sec->reloc_count;
13598 for (irel = internal_relocs; irel < irelend; irel++)
13599 {
13600 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13601 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13602 bfd_boolean target_is_micromips_code_p;
13603 unsigned long opcode;
13604 bfd_vma symval;
13605 bfd_vma pcrval;
13606 bfd_byte *ptr;
13607 int fndopc;
13608
13609 /* The number of bytes to delete for relaxation and from where
13610 to delete these bytes starting at irel->r_offset. */
13611 int delcnt = 0;
13612 int deloff = 0;
13613
13614 /* If this isn't something that can be relaxed, then ignore
13615 this reloc. */
13616 if (r_type != R_MICROMIPS_HI16
13617 && r_type != R_MICROMIPS_PC16_S1
13618 && r_type != R_MICROMIPS_26_S1)
13619 continue;
13620
13621 /* Get the section contents if we haven't done so already. */
13622 if (contents == NULL)
13623 {
13624 /* Get cached copy if it exists. */
13625 if (elf_section_data (sec)->this_hdr.contents != NULL)
13626 contents = elf_section_data (sec)->this_hdr.contents;
13627 /* Go get them off disk. */
13628 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13629 goto error_return;
13630 }
13631 ptr = contents + irel->r_offset;
13632
13633 /* Read this BFD's local symbols if we haven't done so already. */
13634 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13635 {
13636 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13637 if (isymbuf == NULL)
13638 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13639 symtab_hdr->sh_info, 0,
13640 NULL, NULL, NULL);
13641 if (isymbuf == NULL)
13642 goto error_return;
13643 }
13644
13645 /* Get the value of the symbol referred to by the reloc. */
13646 if (r_symndx < symtab_hdr->sh_info)
13647 {
13648 /* A local symbol. */
13649 Elf_Internal_Sym *isym;
13650 asection *sym_sec;
13651
13652 isym = isymbuf + r_symndx;
13653 if (isym->st_shndx == SHN_UNDEF)
13654 sym_sec = bfd_und_section_ptr;
13655 else if (isym->st_shndx == SHN_ABS)
13656 sym_sec = bfd_abs_section_ptr;
13657 else if (isym->st_shndx == SHN_COMMON)
13658 sym_sec = bfd_com_section_ptr;
13659 else
13660 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13661 symval = (isym->st_value
13662 + sym_sec->output_section->vma
13663 + sym_sec->output_offset);
13664 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13665 }
13666 else
13667 {
13668 unsigned long indx;
13669 struct elf_link_hash_entry *h;
13670
13671 /* An external symbol. */
13672 indx = r_symndx - symtab_hdr->sh_info;
13673 h = elf_sym_hashes (abfd)[indx];
13674 BFD_ASSERT (h != NULL);
13675
13676 if (h->root.type != bfd_link_hash_defined
13677 && h->root.type != bfd_link_hash_defweak)
13678 /* This appears to be a reference to an undefined
13679 symbol. Just ignore it -- it will be caught by the
13680 regular reloc processing. */
13681 continue;
13682
13683 symval = (h->root.u.def.value
13684 + h->root.u.def.section->output_section->vma
13685 + h->root.u.def.section->output_offset);
13686 target_is_micromips_code_p = (!h->needs_plt
13687 && ELF_ST_IS_MICROMIPS (h->other));
13688 }
13689
13690
13691 /* For simplicity of coding, we are going to modify the
13692 section contents, the section relocs, and the BFD symbol
13693 table. We must tell the rest of the code not to free up this
13694 information. It would be possible to instead create a table
13695 of changes which have to be made, as is done in coff-mips.c;
13696 that would be more work, but would require less memory when
13697 the linker is run. */
13698
13699 /* Only 32-bit instructions relaxed. */
13700 if (irel->r_offset + 4 > sec->size)
13701 continue;
13702
13703 opcode = bfd_get_micromips_32 (abfd, ptr);
13704
13705 /* This is the pc-relative distance from the instruction the
13706 relocation is applied to, to the symbol referred. */
13707 pcrval = (symval
13708 - (sec->output_section->vma + sec->output_offset)
13709 - irel->r_offset);
13710
13711 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13712 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13713 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13714
13715 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13716
13717 where pcrval has first to be adjusted to apply against the LO16
13718 location (we make the adjustment later on, when we have figured
13719 out the offset). */
13720 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13721 {
13722 bfd_boolean bzc = FALSE;
13723 unsigned long nextopc;
13724 unsigned long reg;
13725 bfd_vma offset;
13726
13727 /* Give up if the previous reloc was a HI16 against this symbol
13728 too. */
13729 if (irel > internal_relocs
13730 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13731 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13732 continue;
13733
13734 /* Or if the next reloc is not a LO16 against this symbol. */
13735 if (irel + 1 >= irelend
13736 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13737 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13738 continue;
13739
13740 /* Or if the second next reloc is a LO16 against this symbol too. */
13741 if (irel + 2 >= irelend
13742 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13743 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13744 continue;
13745
13746 /* See if the LUI instruction *might* be in a branch delay slot.
13747 We check whether what looks like a 16-bit branch or jump is
13748 actually an immediate argument to a compact branch, and let
13749 it through if so. */
13750 if (irel->r_offset >= 2
13751 && check_br16_dslot (abfd, ptr - 2)
13752 && !(irel->r_offset >= 4
13753 && (bzc = check_relocated_bzc (abfd,
13754 ptr - 4, irel->r_offset - 4,
13755 internal_relocs, irelend))))
13756 continue;
13757 if (irel->r_offset >= 4
13758 && !bzc
13759 && check_br32_dslot (abfd, ptr - 4))
13760 continue;
13761
13762 reg = OP32_SREG (opcode);
13763
13764 /* We only relax adjacent instructions or ones separated with
13765 a branch or jump that has a delay slot. The branch or jump
13766 must not fiddle with the register used to hold the address.
13767 Subtract 4 for the LUI itself. */
13768 offset = irel[1].r_offset - irel[0].r_offset;
13769 switch (offset - 4)
13770 {
13771 case 0:
13772 break;
13773 case 2:
13774 if (check_br16 (abfd, ptr + 4, reg))
13775 break;
13776 continue;
13777 case 4:
13778 if (check_br32 (abfd, ptr + 4, reg))
13779 break;
13780 continue;
13781 default:
13782 continue;
13783 }
13784
13785 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
13786
13787 /* Give up unless the same register is used with both
13788 relocations. */
13789 if (OP32_SREG (nextopc) != reg)
13790 continue;
13791
13792 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13793 and rounding up to take masking of the two LSBs into account. */
13794 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13795
13796 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13797 if (IS_BITSIZE (symval, 16))
13798 {
13799 /* Fix the relocation's type. */
13800 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13801
13802 /* Instructions using R_MICROMIPS_LO16 have the base or
13803 source register in bits 20:16. This register becomes $0
13804 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
13805 nextopc &= ~0x001f0000;
13806 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13807 contents + irel[1].r_offset);
13808 }
13809
13810 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13811 We add 4 to take LUI deletion into account while checking
13812 the PC-relative distance. */
13813 else if (symval % 4 == 0
13814 && IS_BITSIZE (pcrval + 4, 25)
13815 && MATCH (nextopc, addiu_insn)
13816 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13817 && OP16_VALID_REG (OP32_TREG (nextopc)))
13818 {
13819 /* Fix the relocation's type. */
13820 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13821
13822 /* Replace ADDIU with the ADDIUPC version. */
13823 nextopc = (addiupc_insn.match
13824 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13825
13826 bfd_put_micromips_32 (abfd, nextopc,
13827 contents + irel[1].r_offset);
13828 }
13829
13830 /* Can't do anything, give up, sigh... */
13831 else
13832 continue;
13833
13834 /* Fix the relocation's type. */
13835 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13836
13837 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
13838 delcnt = 4;
13839 deloff = 0;
13840 }
13841
13842 /* Compact branch relaxation -- due to the multitude of macros
13843 employed by the compiler/assembler, compact branches are not
13844 always generated. Obviously, this can/will be fixed elsewhere,
13845 but there is no drawback in double checking it here. */
13846 else if (r_type == R_MICROMIPS_PC16_S1
13847 && irel->r_offset + 5 < sec->size
13848 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13849 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
13850 && ((!insn32
13851 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13852 nop_insn_16) ? 2 : 0))
13853 || (irel->r_offset + 7 < sec->size
13854 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13855 ptr + 4),
13856 nop_insn_32) ? 4 : 0))))
13857 {
13858 unsigned long reg;
13859
13860 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13861
13862 /* Replace BEQZ/BNEZ with the compact version. */
13863 opcode = (bzc_insns_32[fndopc].match
13864 | BZC32_REG_FIELD (reg)
13865 | (opcode & 0xffff)); /* Addend value. */
13866
13867 bfd_put_micromips_32 (abfd, opcode, ptr);
13868
13869 /* Delete the delay slot NOP: two or four bytes from
13870 irel->offset + 4; delcnt has already been set above. */
13871 deloff = 4;
13872 }
13873
13874 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
13875 to check the distance from the next instruction, so subtract 2. */
13876 else if (!insn32
13877 && r_type == R_MICROMIPS_PC16_S1
13878 && IS_BITSIZE (pcrval - 2, 11)
13879 && find_match (opcode, b_insns_32) >= 0)
13880 {
13881 /* Fix the relocation's type. */
13882 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13883
13884 /* Replace the 32-bit opcode with a 16-bit opcode. */
13885 bfd_put_16 (abfd,
13886 (b_insn_16.match
13887 | (opcode & 0x3ff)), /* Addend value. */
13888 ptr);
13889
13890 /* Delete 2 bytes from irel->r_offset + 2. */
13891 delcnt = 2;
13892 deloff = 2;
13893 }
13894
13895 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
13896 to check the distance from the next instruction, so subtract 2. */
13897 else if (!insn32
13898 && r_type == R_MICROMIPS_PC16_S1
13899 && IS_BITSIZE (pcrval - 2, 8)
13900 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13901 && OP16_VALID_REG (OP32_SREG (opcode)))
13902 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13903 && OP16_VALID_REG (OP32_TREG (opcode)))))
13904 {
13905 unsigned long reg;
13906
13907 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13908
13909 /* Fix the relocation's type. */
13910 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
13911
13912 /* Replace the 32-bit opcode with a 16-bit opcode. */
13913 bfd_put_16 (abfd,
13914 (bz_insns_16[fndopc].match
13915 | BZ16_REG_FIELD (reg)
13916 | (opcode & 0x7f)), /* Addend value. */
13917 ptr);
13918
13919 /* Delete 2 bytes from irel->r_offset + 2. */
13920 delcnt = 2;
13921 deloff = 2;
13922 }
13923
13924 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
13925 else if (!insn32
13926 && r_type == R_MICROMIPS_26_S1
13927 && target_is_micromips_code_p
13928 && irel->r_offset + 7 < sec->size
13929 && MATCH (opcode, jal_insn_32_bd32))
13930 {
13931 unsigned long n32opc;
13932 bfd_boolean relaxed = FALSE;
13933
13934 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
13935
13936 if (MATCH (n32opc, nop_insn_32))
13937 {
13938 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
13939 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
13940
13941 relaxed = TRUE;
13942 }
13943 else if (find_match (n32opc, move_insns_32) >= 0)
13944 {
13945 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
13946 bfd_put_16 (abfd,
13947 (move_insn_16.match
13948 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
13949 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
13950 ptr + 4);
13951
13952 relaxed = TRUE;
13953 }
13954 /* Other 32-bit instructions relaxable to 16-bit
13955 instructions will be handled here later. */
13956
13957 if (relaxed)
13958 {
13959 /* JAL with 32-bit delay slot that is changed to a JALS
13960 with 16-bit delay slot. */
13961 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
13962
13963 /* Delete 2 bytes from irel->r_offset + 6. */
13964 delcnt = 2;
13965 deloff = 6;
13966 }
13967 }
13968
13969 if (delcnt != 0)
13970 {
13971 /* Note that we've changed the relocs, section contents, etc. */
13972 elf_section_data (sec)->relocs = internal_relocs;
13973 elf_section_data (sec)->this_hdr.contents = contents;
13974 symtab_hdr->contents = (unsigned char *) isymbuf;
13975
13976 /* Delete bytes depending on the delcnt and deloff. */
13977 if (!mips_elf_relax_delete_bytes (abfd, sec,
13978 irel->r_offset + deloff, delcnt))
13979 goto error_return;
13980
13981 /* That will change things, so we should relax again.
13982 Note that this is not required, and it may be slow. */
13983 *again = TRUE;
13984 }
13985 }
13986
13987 if (isymbuf != NULL
13988 && symtab_hdr->contents != (unsigned char *) isymbuf)
13989 {
13990 if (! link_info->keep_memory)
13991 free (isymbuf);
13992 else
13993 {
13994 /* Cache the symbols for elf_link_input_bfd. */
13995 symtab_hdr->contents = (unsigned char *) isymbuf;
13996 }
13997 }
13998
13999 if (contents != NULL
14000 && elf_section_data (sec)->this_hdr.contents != contents)
14001 {
14002 if (! link_info->keep_memory)
14003 free (contents);
14004 else
14005 {
14006 /* Cache the section contents for elf_link_input_bfd. */
14007 elf_section_data (sec)->this_hdr.contents = contents;
14008 }
14009 }
14010
14011 if (internal_relocs != NULL
14012 && elf_section_data (sec)->relocs != internal_relocs)
14013 free (internal_relocs);
14014
14015 return TRUE;
14016
14017 error_return:
14018 if (isymbuf != NULL
14019 && symtab_hdr->contents != (unsigned char *) isymbuf)
14020 free (isymbuf);
14021 if (contents != NULL
14022 && elf_section_data (sec)->this_hdr.contents != contents)
14023 free (contents);
14024 if (internal_relocs != NULL
14025 && elf_section_data (sec)->relocs != internal_relocs)
14026 free (internal_relocs);
14027
14028 return FALSE;
14029 }
14030 \f
14031 /* Create a MIPS ELF linker hash table. */
14032
14033 struct bfd_link_hash_table *
14034 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
14035 {
14036 struct mips_elf_link_hash_table *ret;
14037 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
14038
14039 ret = bfd_zmalloc (amt);
14040 if (ret == NULL)
14041 return NULL;
14042
14043 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
14044 mips_elf_link_hash_newfunc,
14045 sizeof (struct mips_elf_link_hash_entry),
14046 MIPS_ELF_DATA))
14047 {
14048 free (ret);
14049 return NULL;
14050 }
14051 ret->root.init_plt_refcount.plist = NULL;
14052 ret->root.init_plt_offset.plist = NULL;
14053
14054 return &ret->root.root;
14055 }
14056
14057 /* Likewise, but indicate that the target is VxWorks. */
14058
14059 struct bfd_link_hash_table *
14060 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
14061 {
14062 struct bfd_link_hash_table *ret;
14063
14064 ret = _bfd_mips_elf_link_hash_table_create (abfd);
14065 if (ret)
14066 {
14067 struct mips_elf_link_hash_table *htab;
14068
14069 htab = (struct mips_elf_link_hash_table *) ret;
14070 htab->use_plts_and_copy_relocs = TRUE;
14071 htab->is_vxworks = TRUE;
14072 }
14073 return ret;
14074 }
14075
14076 /* A function that the linker calls if we are allowed to use PLTs
14077 and copy relocs. */
14078
14079 void
14080 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
14081 {
14082 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
14083 }
14084
14085 /* A function that the linker calls to select between all or only
14086 32-bit microMIPS instructions. */
14087
14088 void
14089 _bfd_mips_elf_insn32 (struct bfd_link_info *info, bfd_boolean on)
14090 {
14091 mips_elf_hash_table (info)->insn32 = on;
14092 }
14093 \f
14094 /* Structure for saying that BFD machine EXTENSION extends BASE. */
14095
14096 struct mips_mach_extension
14097 {
14098 unsigned long extension, base;
14099 };
14100
14101
14102 /* An array describing how BFD machines relate to one another. The entries
14103 are ordered topologically with MIPS I extensions listed last. */
14104
14105 static const struct mips_mach_extension mips_mach_extensions[] =
14106 {
14107 /* MIPS64r2 extensions. */
14108 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
14109 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
14110 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
14111 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
14112 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 },
14113
14114 /* MIPS64 extensions. */
14115 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
14116 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
14117 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
14118
14119 /* MIPS V extensions. */
14120 { bfd_mach_mipsisa64, bfd_mach_mips5 },
14121
14122 /* R10000 extensions. */
14123 { bfd_mach_mips12000, bfd_mach_mips10000 },
14124 { bfd_mach_mips14000, bfd_mach_mips10000 },
14125 { bfd_mach_mips16000, bfd_mach_mips10000 },
14126
14127 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14128 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14129 better to allow vr5400 and vr5500 code to be merged anyway, since
14130 many libraries will just use the core ISA. Perhaps we could add
14131 some sort of ASE flag if this ever proves a problem. */
14132 { bfd_mach_mips5500, bfd_mach_mips5400 },
14133 { bfd_mach_mips5400, bfd_mach_mips5000 },
14134
14135 /* MIPS IV extensions. */
14136 { bfd_mach_mips5, bfd_mach_mips8000 },
14137 { bfd_mach_mips10000, bfd_mach_mips8000 },
14138 { bfd_mach_mips5000, bfd_mach_mips8000 },
14139 { bfd_mach_mips7000, bfd_mach_mips8000 },
14140 { bfd_mach_mips9000, bfd_mach_mips8000 },
14141
14142 /* VR4100 extensions. */
14143 { bfd_mach_mips4120, bfd_mach_mips4100 },
14144 { bfd_mach_mips4111, bfd_mach_mips4100 },
14145
14146 /* MIPS III extensions. */
14147 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14148 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14149 { bfd_mach_mips8000, bfd_mach_mips4000 },
14150 { bfd_mach_mips4650, bfd_mach_mips4000 },
14151 { bfd_mach_mips4600, bfd_mach_mips4000 },
14152 { bfd_mach_mips4400, bfd_mach_mips4000 },
14153 { bfd_mach_mips4300, bfd_mach_mips4000 },
14154 { bfd_mach_mips4100, bfd_mach_mips4000 },
14155 { bfd_mach_mips4010, bfd_mach_mips4000 },
14156 { bfd_mach_mips5900, bfd_mach_mips4000 },
14157
14158 /* MIPS32 extensions. */
14159 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14160
14161 /* MIPS II extensions. */
14162 { bfd_mach_mips4000, bfd_mach_mips6000 },
14163 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14164
14165 /* MIPS I extensions. */
14166 { bfd_mach_mips6000, bfd_mach_mips3000 },
14167 { bfd_mach_mips3900, bfd_mach_mips3000 }
14168 };
14169
14170 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14171
14172 static bfd_boolean
14173 mips_mach_extends_p (unsigned long base, unsigned long extension)
14174 {
14175 size_t i;
14176
14177 if (extension == base)
14178 return TRUE;
14179
14180 if (base == bfd_mach_mipsisa32
14181 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14182 return TRUE;
14183
14184 if (base == bfd_mach_mipsisa32r2
14185 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14186 return TRUE;
14187
14188 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14189 if (extension == mips_mach_extensions[i].extension)
14190 {
14191 extension = mips_mach_extensions[i].base;
14192 if (extension == base)
14193 return TRUE;
14194 }
14195
14196 return FALSE;
14197 }
14198
14199 /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14200
14201 static unsigned long
14202 bfd_mips_isa_ext_mach (unsigned int isa_ext)
14203 {
14204 switch (isa_ext)
14205 {
14206 case AFL_EXT_3900: return bfd_mach_mips3900;
14207 case AFL_EXT_4010: return bfd_mach_mips4010;
14208 case AFL_EXT_4100: return bfd_mach_mips4100;
14209 case AFL_EXT_4111: return bfd_mach_mips4111;
14210 case AFL_EXT_4120: return bfd_mach_mips4120;
14211 case AFL_EXT_4650: return bfd_mach_mips4650;
14212 case AFL_EXT_5400: return bfd_mach_mips5400;
14213 case AFL_EXT_5500: return bfd_mach_mips5500;
14214 case AFL_EXT_5900: return bfd_mach_mips5900;
14215 case AFL_EXT_10000: return bfd_mach_mips10000;
14216 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14217 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14218 case AFL_EXT_LOONGSON_3A: return bfd_mach_mips_loongson_3a;
14219 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
14220 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14221 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14222 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
14223 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14224 default: return bfd_mach_mips3000;
14225 }
14226 }
14227
14228 /* Return the .MIPS.abiflags value representing each ISA Extension. */
14229
14230 unsigned int
14231 bfd_mips_isa_ext (bfd *abfd)
14232 {
14233 switch (bfd_get_mach (abfd))
14234 {
14235 case bfd_mach_mips3900: return AFL_EXT_3900;
14236 case bfd_mach_mips4010: return AFL_EXT_4010;
14237 case bfd_mach_mips4100: return AFL_EXT_4100;
14238 case bfd_mach_mips4111: return AFL_EXT_4111;
14239 case bfd_mach_mips4120: return AFL_EXT_4120;
14240 case bfd_mach_mips4650: return AFL_EXT_4650;
14241 case bfd_mach_mips5400: return AFL_EXT_5400;
14242 case bfd_mach_mips5500: return AFL_EXT_5500;
14243 case bfd_mach_mips5900: return AFL_EXT_5900;
14244 case bfd_mach_mips10000: return AFL_EXT_10000;
14245 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14246 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14247 case bfd_mach_mips_loongson_3a: return AFL_EXT_LOONGSON_3A;
14248 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14249 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14250 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14251 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14252 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14253 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
14254 default: return 0;
14255 }
14256 }
14257
14258 /* Encode ISA level and revision as a single value. */
14259 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14260
14261 /* Decode a single value into level and revision. */
14262 #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14263 #define ISA_REV(LEVREV) ((LEVREV) & 0x7)
14264
14265 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14266
14267 static void
14268 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14269 {
14270 int new_isa = 0;
14271 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14272 {
14273 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14274 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14275 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14276 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14277 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14278 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14279 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14280 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14281 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14282 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14283 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
14284 default:
14285 (*_bfd_error_handler)
14286 (_("%B: Unknown architecture %s"),
14287 abfd, bfd_printable_name (abfd));
14288 }
14289
14290 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14291 {
14292 abiflags->isa_level = ISA_LEVEL (new_isa);
14293 abiflags->isa_rev = ISA_REV (new_isa);
14294 }
14295
14296 /* Update the isa_ext if ABFD describes a further extension. */
14297 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14298 bfd_get_mach (abfd)))
14299 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
14300 }
14301
14302 /* Return true if the given ELF header flags describe a 32-bit binary. */
14303
14304 static bfd_boolean
14305 mips_32bit_flags_p (flagword flags)
14306 {
14307 return ((flags & EF_MIPS_32BITMODE) != 0
14308 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14309 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14310 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14311 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14312 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14313 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14314 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14315 }
14316
14317 /* Infer the content of the ABI flags based on the elf header. */
14318
14319 static void
14320 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14321 {
14322 obj_attribute *in_attr;
14323
14324 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14325 update_mips_abiflags_isa (abfd, abiflags);
14326
14327 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14328 abiflags->gpr_size = AFL_REG_32;
14329 else
14330 abiflags->gpr_size = AFL_REG_64;
14331
14332 abiflags->cpr1_size = AFL_REG_NONE;
14333
14334 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14335 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14336
14337 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14338 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14339 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14340 && abiflags->gpr_size == AFL_REG_32))
14341 abiflags->cpr1_size = AFL_REG_32;
14342 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14343 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14344 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14345 abiflags->cpr1_size = AFL_REG_64;
14346
14347 abiflags->cpr2_size = AFL_REG_NONE;
14348
14349 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14350 abiflags->ases |= AFL_ASE_MDMX;
14351 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14352 abiflags->ases |= AFL_ASE_MIPS16;
14353 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14354 abiflags->ases |= AFL_ASE_MICROMIPS;
14355
14356 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14357 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14358 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14359 && abiflags->isa_level >= 32
14360 && abiflags->isa_ext != AFL_EXT_LOONGSON_3A)
14361 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14362 }
14363
14364 /* We need to use a special link routine to handle the .reginfo and
14365 the .mdebug sections. We need to merge all instances of these
14366 sections together, not write them all out sequentially. */
14367
14368 bfd_boolean
14369 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14370 {
14371 asection *o;
14372 struct bfd_link_order *p;
14373 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14374 asection *rtproc_sec, *abiflags_sec;
14375 Elf32_RegInfo reginfo;
14376 struct ecoff_debug_info debug;
14377 struct mips_htab_traverse_info hti;
14378 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14379 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14380 HDRR *symhdr = &debug.symbolic_header;
14381 void *mdebug_handle = NULL;
14382 asection *s;
14383 EXTR esym;
14384 unsigned int i;
14385 bfd_size_type amt;
14386 struct mips_elf_link_hash_table *htab;
14387
14388 static const char * const secname[] =
14389 {
14390 ".text", ".init", ".fini", ".data",
14391 ".rodata", ".sdata", ".sbss", ".bss"
14392 };
14393 static const int sc[] =
14394 {
14395 scText, scInit, scFini, scData,
14396 scRData, scSData, scSBss, scBss
14397 };
14398
14399 /* Sort the dynamic symbols so that those with GOT entries come after
14400 those without. */
14401 htab = mips_elf_hash_table (info);
14402 BFD_ASSERT (htab != NULL);
14403
14404 if (!mips_elf_sort_hash_table (abfd, info))
14405 return FALSE;
14406
14407 /* Create any scheduled LA25 stubs. */
14408 hti.info = info;
14409 hti.output_bfd = abfd;
14410 hti.error = FALSE;
14411 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14412 if (hti.error)
14413 return FALSE;
14414
14415 /* Get a value for the GP register. */
14416 if (elf_gp (abfd) == 0)
14417 {
14418 struct bfd_link_hash_entry *h;
14419
14420 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
14421 if (h != NULL && h->type == bfd_link_hash_defined)
14422 elf_gp (abfd) = (h->u.def.value
14423 + h->u.def.section->output_section->vma
14424 + h->u.def.section->output_offset);
14425 else if (htab->is_vxworks
14426 && (h = bfd_link_hash_lookup (info->hash,
14427 "_GLOBAL_OFFSET_TABLE_",
14428 FALSE, FALSE, TRUE))
14429 && h->type == bfd_link_hash_defined)
14430 elf_gp (abfd) = (h->u.def.section->output_section->vma
14431 + h->u.def.section->output_offset
14432 + h->u.def.value);
14433 else if (bfd_link_relocatable (info))
14434 {
14435 bfd_vma lo = MINUS_ONE;
14436
14437 /* Find the GP-relative section with the lowest offset. */
14438 for (o = abfd->sections; o != NULL; o = o->next)
14439 if (o->vma < lo
14440 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14441 lo = o->vma;
14442
14443 /* And calculate GP relative to that. */
14444 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14445 }
14446 else
14447 {
14448 /* If the relocate_section function needs to do a reloc
14449 involving the GP value, it should make a reloc_dangerous
14450 callback to warn that GP is not defined. */
14451 }
14452 }
14453
14454 /* Go through the sections and collect the .reginfo and .mdebug
14455 information. */
14456 abiflags_sec = NULL;
14457 reginfo_sec = NULL;
14458 mdebug_sec = NULL;
14459 gptab_data_sec = NULL;
14460 gptab_bss_sec = NULL;
14461 for (o = abfd->sections; o != NULL; o = o->next)
14462 {
14463 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14464 {
14465 /* We have found the .MIPS.abiflags section in the output file.
14466 Look through all the link_orders comprising it and remove them.
14467 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14468 for (p = o->map_head.link_order; p != NULL; p = p->next)
14469 {
14470 asection *input_section;
14471
14472 if (p->type != bfd_indirect_link_order)
14473 {
14474 if (p->type == bfd_data_link_order)
14475 continue;
14476 abort ();
14477 }
14478
14479 input_section = p->u.indirect.section;
14480
14481 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14482 elf_link_input_bfd ignores this section. */
14483 input_section->flags &= ~SEC_HAS_CONTENTS;
14484 }
14485
14486 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14487 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14488
14489 /* Skip this section later on (I don't think this currently
14490 matters, but someday it might). */
14491 o->map_head.link_order = NULL;
14492
14493 abiflags_sec = o;
14494 }
14495
14496 if (strcmp (o->name, ".reginfo") == 0)
14497 {
14498 memset (&reginfo, 0, sizeof reginfo);
14499
14500 /* We have found the .reginfo section in the output file.
14501 Look through all the link_orders comprising it and merge
14502 the information together. */
14503 for (p = o->map_head.link_order; p != NULL; p = p->next)
14504 {
14505 asection *input_section;
14506 bfd *input_bfd;
14507 Elf32_External_RegInfo ext;
14508 Elf32_RegInfo sub;
14509
14510 if (p->type != bfd_indirect_link_order)
14511 {
14512 if (p->type == bfd_data_link_order)
14513 continue;
14514 abort ();
14515 }
14516
14517 input_section = p->u.indirect.section;
14518 input_bfd = input_section->owner;
14519
14520 if (! bfd_get_section_contents (input_bfd, input_section,
14521 &ext, 0, sizeof ext))
14522 return FALSE;
14523
14524 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14525
14526 reginfo.ri_gprmask |= sub.ri_gprmask;
14527 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14528 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14529 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14530 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14531
14532 /* ri_gp_value is set by the function
14533 mips_elf32_section_processing when the section is
14534 finally written out. */
14535
14536 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14537 elf_link_input_bfd ignores this section. */
14538 input_section->flags &= ~SEC_HAS_CONTENTS;
14539 }
14540
14541 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14542 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14543
14544 /* Skip this section later on (I don't think this currently
14545 matters, but someday it might). */
14546 o->map_head.link_order = NULL;
14547
14548 reginfo_sec = o;
14549 }
14550
14551 if (strcmp (o->name, ".mdebug") == 0)
14552 {
14553 struct extsym_info einfo;
14554 bfd_vma last;
14555
14556 /* We have found the .mdebug section in the output file.
14557 Look through all the link_orders comprising it and merge
14558 the information together. */
14559 symhdr->magic = swap->sym_magic;
14560 /* FIXME: What should the version stamp be? */
14561 symhdr->vstamp = 0;
14562 symhdr->ilineMax = 0;
14563 symhdr->cbLine = 0;
14564 symhdr->idnMax = 0;
14565 symhdr->ipdMax = 0;
14566 symhdr->isymMax = 0;
14567 symhdr->ioptMax = 0;
14568 symhdr->iauxMax = 0;
14569 symhdr->issMax = 0;
14570 symhdr->issExtMax = 0;
14571 symhdr->ifdMax = 0;
14572 symhdr->crfd = 0;
14573 symhdr->iextMax = 0;
14574
14575 /* We accumulate the debugging information itself in the
14576 debug_info structure. */
14577 debug.line = NULL;
14578 debug.external_dnr = NULL;
14579 debug.external_pdr = NULL;
14580 debug.external_sym = NULL;
14581 debug.external_opt = NULL;
14582 debug.external_aux = NULL;
14583 debug.ss = NULL;
14584 debug.ssext = debug.ssext_end = NULL;
14585 debug.external_fdr = NULL;
14586 debug.external_rfd = NULL;
14587 debug.external_ext = debug.external_ext_end = NULL;
14588
14589 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14590 if (mdebug_handle == NULL)
14591 return FALSE;
14592
14593 esym.jmptbl = 0;
14594 esym.cobol_main = 0;
14595 esym.weakext = 0;
14596 esym.reserved = 0;
14597 esym.ifd = ifdNil;
14598 esym.asym.iss = issNil;
14599 esym.asym.st = stLocal;
14600 esym.asym.reserved = 0;
14601 esym.asym.index = indexNil;
14602 last = 0;
14603 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14604 {
14605 esym.asym.sc = sc[i];
14606 s = bfd_get_section_by_name (abfd, secname[i]);
14607 if (s != NULL)
14608 {
14609 esym.asym.value = s->vma;
14610 last = s->vma + s->size;
14611 }
14612 else
14613 esym.asym.value = last;
14614 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14615 secname[i], &esym))
14616 return FALSE;
14617 }
14618
14619 for (p = o->map_head.link_order; p != NULL; p = p->next)
14620 {
14621 asection *input_section;
14622 bfd *input_bfd;
14623 const struct ecoff_debug_swap *input_swap;
14624 struct ecoff_debug_info input_debug;
14625 char *eraw_src;
14626 char *eraw_end;
14627
14628 if (p->type != bfd_indirect_link_order)
14629 {
14630 if (p->type == bfd_data_link_order)
14631 continue;
14632 abort ();
14633 }
14634
14635 input_section = p->u.indirect.section;
14636 input_bfd = input_section->owner;
14637
14638 if (!is_mips_elf (input_bfd))
14639 {
14640 /* I don't know what a non MIPS ELF bfd would be
14641 doing with a .mdebug section, but I don't really
14642 want to deal with it. */
14643 continue;
14644 }
14645
14646 input_swap = (get_elf_backend_data (input_bfd)
14647 ->elf_backend_ecoff_debug_swap);
14648
14649 BFD_ASSERT (p->size == input_section->size);
14650
14651 /* The ECOFF linking code expects that we have already
14652 read in the debugging information and set up an
14653 ecoff_debug_info structure, so we do that now. */
14654 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14655 &input_debug))
14656 return FALSE;
14657
14658 if (! (bfd_ecoff_debug_accumulate
14659 (mdebug_handle, abfd, &debug, swap, input_bfd,
14660 &input_debug, input_swap, info)))
14661 return FALSE;
14662
14663 /* Loop through the external symbols. For each one with
14664 interesting information, try to find the symbol in
14665 the linker global hash table and save the information
14666 for the output external symbols. */
14667 eraw_src = input_debug.external_ext;
14668 eraw_end = (eraw_src
14669 + (input_debug.symbolic_header.iextMax
14670 * input_swap->external_ext_size));
14671 for (;
14672 eraw_src < eraw_end;
14673 eraw_src += input_swap->external_ext_size)
14674 {
14675 EXTR ext;
14676 const char *name;
14677 struct mips_elf_link_hash_entry *h;
14678
14679 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
14680 if (ext.asym.sc == scNil
14681 || ext.asym.sc == scUndefined
14682 || ext.asym.sc == scSUndefined)
14683 continue;
14684
14685 name = input_debug.ssext + ext.asym.iss;
14686 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
14687 name, FALSE, FALSE, TRUE);
14688 if (h == NULL || h->esym.ifd != -2)
14689 continue;
14690
14691 if (ext.ifd != -1)
14692 {
14693 BFD_ASSERT (ext.ifd
14694 < input_debug.symbolic_header.ifdMax);
14695 ext.ifd = input_debug.ifdmap[ext.ifd];
14696 }
14697
14698 h->esym = ext;
14699 }
14700
14701 /* Free up the information we just read. */
14702 free (input_debug.line);
14703 free (input_debug.external_dnr);
14704 free (input_debug.external_pdr);
14705 free (input_debug.external_sym);
14706 free (input_debug.external_opt);
14707 free (input_debug.external_aux);
14708 free (input_debug.ss);
14709 free (input_debug.ssext);
14710 free (input_debug.external_fdr);
14711 free (input_debug.external_rfd);
14712 free (input_debug.external_ext);
14713
14714 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14715 elf_link_input_bfd ignores this section. */
14716 input_section->flags &= ~SEC_HAS_CONTENTS;
14717 }
14718
14719 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
14720 {
14721 /* Create .rtproc section. */
14722 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
14723 if (rtproc_sec == NULL)
14724 {
14725 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14726 | SEC_LINKER_CREATED | SEC_READONLY);
14727
14728 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14729 ".rtproc",
14730 flags);
14731 if (rtproc_sec == NULL
14732 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
14733 return FALSE;
14734 }
14735
14736 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14737 info, rtproc_sec,
14738 &debug))
14739 return FALSE;
14740 }
14741
14742 /* Build the external symbol information. */
14743 einfo.abfd = abfd;
14744 einfo.info = info;
14745 einfo.debug = &debug;
14746 einfo.swap = swap;
14747 einfo.failed = FALSE;
14748 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
14749 mips_elf_output_extsym, &einfo);
14750 if (einfo.failed)
14751 return FALSE;
14752
14753 /* Set the size of the .mdebug section. */
14754 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
14755
14756 /* Skip this section later on (I don't think this currently
14757 matters, but someday it might). */
14758 o->map_head.link_order = NULL;
14759
14760 mdebug_sec = o;
14761 }
14762
14763 if (CONST_STRNEQ (o->name, ".gptab."))
14764 {
14765 const char *subname;
14766 unsigned int c;
14767 Elf32_gptab *tab;
14768 Elf32_External_gptab *ext_tab;
14769 unsigned int j;
14770
14771 /* The .gptab.sdata and .gptab.sbss sections hold
14772 information describing how the small data area would
14773 change depending upon the -G switch. These sections
14774 not used in executables files. */
14775 if (! bfd_link_relocatable (info))
14776 {
14777 for (p = o->map_head.link_order; p != NULL; p = p->next)
14778 {
14779 asection *input_section;
14780
14781 if (p->type != bfd_indirect_link_order)
14782 {
14783 if (p->type == bfd_data_link_order)
14784 continue;
14785 abort ();
14786 }
14787
14788 input_section = p->u.indirect.section;
14789
14790 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14791 elf_link_input_bfd ignores this section. */
14792 input_section->flags &= ~SEC_HAS_CONTENTS;
14793 }
14794
14795 /* Skip this section later on (I don't think this
14796 currently matters, but someday it might). */
14797 o->map_head.link_order = NULL;
14798
14799 /* Really remove the section. */
14800 bfd_section_list_remove (abfd, o);
14801 --abfd->section_count;
14802
14803 continue;
14804 }
14805
14806 /* There is one gptab for initialized data, and one for
14807 uninitialized data. */
14808 if (strcmp (o->name, ".gptab.sdata") == 0)
14809 gptab_data_sec = o;
14810 else if (strcmp (o->name, ".gptab.sbss") == 0)
14811 gptab_bss_sec = o;
14812 else
14813 {
14814 (*_bfd_error_handler)
14815 (_("%s: illegal section name `%s'"),
14816 bfd_get_filename (abfd), o->name);
14817 bfd_set_error (bfd_error_nonrepresentable_section);
14818 return FALSE;
14819 }
14820
14821 /* The linker script always combines .gptab.data and
14822 .gptab.sdata into .gptab.sdata, and likewise for
14823 .gptab.bss and .gptab.sbss. It is possible that there is
14824 no .sdata or .sbss section in the output file, in which
14825 case we must change the name of the output section. */
14826 subname = o->name + sizeof ".gptab" - 1;
14827 if (bfd_get_section_by_name (abfd, subname) == NULL)
14828 {
14829 if (o == gptab_data_sec)
14830 o->name = ".gptab.data";
14831 else
14832 o->name = ".gptab.bss";
14833 subname = o->name + sizeof ".gptab" - 1;
14834 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14835 }
14836
14837 /* Set up the first entry. */
14838 c = 1;
14839 amt = c * sizeof (Elf32_gptab);
14840 tab = bfd_malloc (amt);
14841 if (tab == NULL)
14842 return FALSE;
14843 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14844 tab[0].gt_header.gt_unused = 0;
14845
14846 /* Combine the input sections. */
14847 for (p = o->map_head.link_order; p != NULL; p = p->next)
14848 {
14849 asection *input_section;
14850 bfd *input_bfd;
14851 bfd_size_type size;
14852 unsigned long last;
14853 bfd_size_type gpentry;
14854
14855 if (p->type != bfd_indirect_link_order)
14856 {
14857 if (p->type == bfd_data_link_order)
14858 continue;
14859 abort ();
14860 }
14861
14862 input_section = p->u.indirect.section;
14863 input_bfd = input_section->owner;
14864
14865 /* Combine the gptab entries for this input section one
14866 by one. We know that the input gptab entries are
14867 sorted by ascending -G value. */
14868 size = input_section->size;
14869 last = 0;
14870 for (gpentry = sizeof (Elf32_External_gptab);
14871 gpentry < size;
14872 gpentry += sizeof (Elf32_External_gptab))
14873 {
14874 Elf32_External_gptab ext_gptab;
14875 Elf32_gptab int_gptab;
14876 unsigned long val;
14877 unsigned long add;
14878 bfd_boolean exact;
14879 unsigned int look;
14880
14881 if (! (bfd_get_section_contents
14882 (input_bfd, input_section, &ext_gptab, gpentry,
14883 sizeof (Elf32_External_gptab))))
14884 {
14885 free (tab);
14886 return FALSE;
14887 }
14888
14889 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
14890 &int_gptab);
14891 val = int_gptab.gt_entry.gt_g_value;
14892 add = int_gptab.gt_entry.gt_bytes - last;
14893
14894 exact = FALSE;
14895 for (look = 1; look < c; look++)
14896 {
14897 if (tab[look].gt_entry.gt_g_value >= val)
14898 tab[look].gt_entry.gt_bytes += add;
14899
14900 if (tab[look].gt_entry.gt_g_value == val)
14901 exact = TRUE;
14902 }
14903
14904 if (! exact)
14905 {
14906 Elf32_gptab *new_tab;
14907 unsigned int max;
14908
14909 /* We need a new table entry. */
14910 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
14911 new_tab = bfd_realloc (tab, amt);
14912 if (new_tab == NULL)
14913 {
14914 free (tab);
14915 return FALSE;
14916 }
14917 tab = new_tab;
14918 tab[c].gt_entry.gt_g_value = val;
14919 tab[c].gt_entry.gt_bytes = add;
14920
14921 /* Merge in the size for the next smallest -G
14922 value, since that will be implied by this new
14923 value. */
14924 max = 0;
14925 for (look = 1; look < c; look++)
14926 {
14927 if (tab[look].gt_entry.gt_g_value < val
14928 && (max == 0
14929 || (tab[look].gt_entry.gt_g_value
14930 > tab[max].gt_entry.gt_g_value)))
14931 max = look;
14932 }
14933 if (max != 0)
14934 tab[c].gt_entry.gt_bytes +=
14935 tab[max].gt_entry.gt_bytes;
14936
14937 ++c;
14938 }
14939
14940 last = int_gptab.gt_entry.gt_bytes;
14941 }
14942
14943 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14944 elf_link_input_bfd ignores this section. */
14945 input_section->flags &= ~SEC_HAS_CONTENTS;
14946 }
14947
14948 /* The table must be sorted by -G value. */
14949 if (c > 2)
14950 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
14951
14952 /* Swap out the table. */
14953 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
14954 ext_tab = bfd_alloc (abfd, amt);
14955 if (ext_tab == NULL)
14956 {
14957 free (tab);
14958 return FALSE;
14959 }
14960
14961 for (j = 0; j < c; j++)
14962 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
14963 free (tab);
14964
14965 o->size = c * sizeof (Elf32_External_gptab);
14966 o->contents = (bfd_byte *) ext_tab;
14967
14968 /* Skip this section later on (I don't think this currently
14969 matters, but someday it might). */
14970 o->map_head.link_order = NULL;
14971 }
14972 }
14973
14974 /* Invoke the regular ELF backend linker to do all the work. */
14975 if (!bfd_elf_final_link (abfd, info))
14976 return FALSE;
14977
14978 /* Now write out the computed sections. */
14979
14980 if (abiflags_sec != NULL)
14981 {
14982 Elf_External_ABIFlags_v0 ext;
14983 Elf_Internal_ABIFlags_v0 *abiflags;
14984
14985 abiflags = &mips_elf_tdata (abfd)->abiflags;
14986
14987 /* Set up the abiflags if no valid input sections were found. */
14988 if (!mips_elf_tdata (abfd)->abiflags_valid)
14989 {
14990 infer_mips_abiflags (abfd, abiflags);
14991 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
14992 }
14993 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
14994 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
14995 return FALSE;
14996 }
14997
14998 if (reginfo_sec != NULL)
14999 {
15000 Elf32_External_RegInfo ext;
15001
15002 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
15003 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
15004 return FALSE;
15005 }
15006
15007 if (mdebug_sec != NULL)
15008 {
15009 BFD_ASSERT (abfd->output_has_begun);
15010 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
15011 swap, info,
15012 mdebug_sec->filepos))
15013 return FALSE;
15014
15015 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
15016 }
15017
15018 if (gptab_data_sec != NULL)
15019 {
15020 if (! bfd_set_section_contents (abfd, gptab_data_sec,
15021 gptab_data_sec->contents,
15022 0, gptab_data_sec->size))
15023 return FALSE;
15024 }
15025
15026 if (gptab_bss_sec != NULL)
15027 {
15028 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
15029 gptab_bss_sec->contents,
15030 0, gptab_bss_sec->size))
15031 return FALSE;
15032 }
15033
15034 if (SGI_COMPAT (abfd))
15035 {
15036 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
15037 if (rtproc_sec != NULL)
15038 {
15039 if (! bfd_set_section_contents (abfd, rtproc_sec,
15040 rtproc_sec->contents,
15041 0, rtproc_sec->size))
15042 return FALSE;
15043 }
15044 }
15045
15046 return TRUE;
15047 }
15048 \f
15049 /* Merge object file header flags from IBFD into OBFD. Raise an error
15050 if there are conflicting settings. */
15051
15052 static bfd_boolean
15053 mips_elf_merge_obj_e_flags (bfd *ibfd, bfd *obfd)
15054 {
15055 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15056 flagword old_flags;
15057 flagword new_flags;
15058 bfd_boolean ok;
15059
15060 new_flags = elf_elfheader (ibfd)->e_flags;
15061 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
15062 old_flags = elf_elfheader (obfd)->e_flags;
15063
15064 /* Check flag compatibility. */
15065
15066 new_flags &= ~EF_MIPS_NOREORDER;
15067 old_flags &= ~EF_MIPS_NOREORDER;
15068
15069 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
15070 doesn't seem to matter. */
15071 new_flags &= ~EF_MIPS_XGOT;
15072 old_flags &= ~EF_MIPS_XGOT;
15073
15074 /* MIPSpro generates ucode info in n64 objects. Again, we should
15075 just be able to ignore this. */
15076 new_flags &= ~EF_MIPS_UCODE;
15077 old_flags &= ~EF_MIPS_UCODE;
15078
15079 /* DSOs should only be linked with CPIC code. */
15080 if ((ibfd->flags & DYNAMIC) != 0)
15081 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
15082
15083 if (new_flags == old_flags)
15084 return TRUE;
15085
15086 ok = TRUE;
15087
15088 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
15089 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
15090 {
15091 (*_bfd_error_handler)
15092 (_("%B: warning: linking abicalls files with non-abicalls files"),
15093 ibfd);
15094 ok = TRUE;
15095 }
15096
15097 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
15098 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
15099 if (! (new_flags & EF_MIPS_PIC))
15100 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
15101
15102 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15103 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15104
15105 /* Compare the ISAs. */
15106 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
15107 {
15108 (*_bfd_error_handler)
15109 (_("%B: linking 32-bit code with 64-bit code"),
15110 ibfd);
15111 ok = FALSE;
15112 }
15113 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15114 {
15115 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15116 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
15117 {
15118 /* Copy the architecture info from IBFD to OBFD. Also copy
15119 the 32-bit flag (if set) so that we continue to recognise
15120 OBFD as a 32-bit binary. */
15121 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15122 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15123 elf_elfheader (obfd)->e_flags
15124 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15125
15126 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15127 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15128
15129 /* Copy across the ABI flags if OBFD doesn't use them
15130 and if that was what caused us to treat IBFD as 32-bit. */
15131 if ((old_flags & EF_MIPS_ABI) == 0
15132 && mips_32bit_flags_p (new_flags)
15133 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15134 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15135 }
15136 else
15137 {
15138 /* The ISAs aren't compatible. */
15139 (*_bfd_error_handler)
15140 (_("%B: linking %s module with previous %s modules"),
15141 ibfd,
15142 bfd_printable_name (ibfd),
15143 bfd_printable_name (obfd));
15144 ok = FALSE;
15145 }
15146 }
15147
15148 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15149 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15150
15151 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15152 does set EI_CLASS differently from any 32-bit ABI. */
15153 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15154 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15155 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15156 {
15157 /* Only error if both are set (to different values). */
15158 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15159 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15160 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15161 {
15162 (*_bfd_error_handler)
15163 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
15164 ibfd,
15165 elf_mips_abi_name (ibfd),
15166 elf_mips_abi_name (obfd));
15167 ok = FALSE;
15168 }
15169 new_flags &= ~EF_MIPS_ABI;
15170 old_flags &= ~EF_MIPS_ABI;
15171 }
15172
15173 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15174 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15175 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15176 {
15177 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15178 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15179 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15180 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15181 int micro_mis = old_m16 && new_micro;
15182 int m16_mis = old_micro && new_m16;
15183
15184 if (m16_mis || micro_mis)
15185 {
15186 (*_bfd_error_handler)
15187 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
15188 ibfd,
15189 m16_mis ? "MIPS16" : "microMIPS",
15190 m16_mis ? "microMIPS" : "MIPS16");
15191 ok = FALSE;
15192 }
15193
15194 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15195
15196 new_flags &= ~ EF_MIPS_ARCH_ASE;
15197 old_flags &= ~ EF_MIPS_ARCH_ASE;
15198 }
15199
15200 /* Compare NaN encodings. */
15201 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15202 {
15203 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15204 ibfd,
15205 (new_flags & EF_MIPS_NAN2008
15206 ? "-mnan=2008" : "-mnan=legacy"),
15207 (old_flags & EF_MIPS_NAN2008
15208 ? "-mnan=2008" : "-mnan=legacy"));
15209 ok = FALSE;
15210 new_flags &= ~EF_MIPS_NAN2008;
15211 old_flags &= ~EF_MIPS_NAN2008;
15212 }
15213
15214 /* Compare FP64 state. */
15215 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15216 {
15217 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15218 ibfd,
15219 (new_flags & EF_MIPS_FP64
15220 ? "-mfp64" : "-mfp32"),
15221 (old_flags & EF_MIPS_FP64
15222 ? "-mfp64" : "-mfp32"));
15223 ok = FALSE;
15224 new_flags &= ~EF_MIPS_FP64;
15225 old_flags &= ~EF_MIPS_FP64;
15226 }
15227
15228 /* Warn about any other mismatches */
15229 if (new_flags != old_flags)
15230 {
15231 (*_bfd_error_handler)
15232 (_("%B: uses different e_flags (0x%lx) fields than previous modules "
15233 "(0x%lx)"),
15234 ibfd, (unsigned long) new_flags,
15235 (unsigned long) old_flags);
15236 ok = FALSE;
15237 }
15238
15239 return ok;
15240 }
15241
15242 /* Merge object attributes from IBFD into OBFD. Raise an error if
15243 there are conflicting attributes. */
15244 static bfd_boolean
15245 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
15246 {
15247 obj_attribute *in_attr;
15248 obj_attribute *out_attr;
15249 bfd *abi_fp_bfd;
15250 bfd *abi_msa_bfd;
15251
15252 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15253 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15254 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
15255 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15256
15257 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15258 if (!abi_msa_bfd
15259 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15260 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15261
15262 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15263 {
15264 /* This is the first object. Copy the attributes. */
15265 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15266
15267 /* Use the Tag_null value to indicate the attributes have been
15268 initialized. */
15269 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15270
15271 return TRUE;
15272 }
15273
15274 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15275 non-conflicting ones. */
15276 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15277 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15278 {
15279 int out_fp, in_fp;
15280
15281 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15282 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15283 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15284 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15285 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
15286 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15287 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15288 || in_fp == Val_GNU_MIPS_ABI_FP_64
15289 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15290 {
15291 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15292 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15293 }
15294 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15295 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15296 || out_fp == Val_GNU_MIPS_ABI_FP_64
15297 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15298 /* Keep the current setting. */;
15299 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15300 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15301 {
15302 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15303 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15304 }
15305 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15306 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15307 /* Keep the current setting. */;
15308 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15309 {
15310 const char *out_string, *in_string;
15311
15312 out_string = _bfd_mips_fp_abi_string (out_fp);
15313 in_string = _bfd_mips_fp_abi_string (in_fp);
15314 /* First warn about cases involving unrecognised ABIs. */
15315 if (!out_string && !in_string)
15316 _bfd_error_handler
15317 (_("Warning: %B uses unknown floating point ABI %d "
15318 "(set by %B), %B uses unknown floating point ABI %d"),
15319 obfd, abi_fp_bfd, ibfd, out_fp, in_fp);
15320 else if (!out_string)
15321 _bfd_error_handler
15322 (_("Warning: %B uses unknown floating point ABI %d "
15323 "(set by %B), %B uses %s"),
15324 obfd, abi_fp_bfd, ibfd, out_fp, in_string);
15325 else if (!in_string)
15326 _bfd_error_handler
15327 (_("Warning: %B uses %s (set by %B), "
15328 "%B uses unknown floating point ABI %d"),
15329 obfd, abi_fp_bfd, ibfd, out_string, in_fp);
15330 else
15331 {
15332 /* If one of the bfds is soft-float, the other must be
15333 hard-float. The exact choice of hard-float ABI isn't
15334 really relevant to the error message. */
15335 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15336 out_string = "-mhard-float";
15337 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15338 in_string = "-mhard-float";
15339 _bfd_error_handler
15340 (_("Warning: %B uses %s (set by %B), %B uses %s"),
15341 obfd, abi_fp_bfd, ibfd, out_string, in_string);
15342 }
15343 }
15344 }
15345
15346 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15347 non-conflicting ones. */
15348 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15349 {
15350 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15351 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15352 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15353 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15354 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15355 {
15356 case Val_GNU_MIPS_ABI_MSA_128:
15357 _bfd_error_handler
15358 (_("Warning: %B uses %s (set by %B), "
15359 "%B uses unknown MSA ABI %d"),
15360 obfd, abi_msa_bfd, ibfd,
15361 "-mmsa", in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15362 break;
15363
15364 default:
15365 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15366 {
15367 case Val_GNU_MIPS_ABI_MSA_128:
15368 _bfd_error_handler
15369 (_("Warning: %B uses unknown MSA ABI %d "
15370 "(set by %B), %B uses %s"),
15371 obfd, abi_msa_bfd, ibfd,
15372 out_attr[Tag_GNU_MIPS_ABI_MSA].i, "-mmsa");
15373 break;
15374
15375 default:
15376 _bfd_error_handler
15377 (_("Warning: %B uses unknown MSA ABI %d "
15378 "(set by %B), %B uses unknown MSA ABI %d"),
15379 obfd, abi_msa_bfd, ibfd,
15380 out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15381 in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15382 break;
15383 }
15384 }
15385 }
15386
15387 /* Merge Tag_compatibility attributes and any common GNU ones. */
15388 return _bfd_elf_merge_object_attributes (ibfd, obfd);
15389 }
15390
15391 /* Merge object ABI flags from IBFD into OBFD. Raise an error if
15392 there are conflicting settings. */
15393
15394 static bfd_boolean
15395 mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15396 {
15397 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15398 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15399 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15400
15401 /* Update the output abiflags fp_abi using the computed fp_abi. */
15402 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15403
15404 #define max(a, b) ((a) > (b) ? (a) : (b))
15405 /* Merge abiflags. */
15406 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15407 in_tdata->abiflags.isa_level);
15408 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15409 in_tdata->abiflags.isa_rev);
15410 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15411 in_tdata->abiflags.gpr_size);
15412 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15413 in_tdata->abiflags.cpr1_size);
15414 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15415 in_tdata->abiflags.cpr2_size);
15416 #undef max
15417 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15418 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15419
15420 return TRUE;
15421 }
15422
15423 /* Merge backend specific data from an object file to the output
15424 object file when linking. */
15425
15426 bfd_boolean
15427 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
15428 {
15429 struct mips_elf_obj_tdata *out_tdata;
15430 struct mips_elf_obj_tdata *in_tdata;
15431 bfd_boolean null_input_bfd = TRUE;
15432 asection *sec;
15433 bfd_boolean ok;
15434
15435 /* Check if we have the same endianness. */
15436 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
15437 {
15438 (*_bfd_error_handler)
15439 (_("%B: endianness incompatible with that of the selected emulation"),
15440 ibfd);
15441 return FALSE;
15442 }
15443
15444 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15445 return TRUE;
15446
15447 in_tdata = mips_elf_tdata (ibfd);
15448 out_tdata = mips_elf_tdata (obfd);
15449
15450 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15451 {
15452 (*_bfd_error_handler)
15453 (_("%B: ABI is incompatible with that of the selected emulation"),
15454 ibfd);
15455 return FALSE;
15456 }
15457
15458 /* Check to see if the input BFD actually contains any sections. If not,
15459 then it has no attributes, and its flags may not have been initialized
15460 either, but it cannot actually cause any incompatibility. */
15461 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15462 {
15463 /* Ignore synthetic sections and empty .text, .data and .bss sections
15464 which are automatically generated by gas. Also ignore fake
15465 (s)common sections, since merely defining a common symbol does
15466 not affect compatibility. */
15467 if ((sec->flags & SEC_IS_COMMON) == 0
15468 && strcmp (sec->name, ".reginfo")
15469 && strcmp (sec->name, ".mdebug")
15470 && (sec->size != 0
15471 || (strcmp (sec->name, ".text")
15472 && strcmp (sec->name, ".data")
15473 && strcmp (sec->name, ".bss"))))
15474 {
15475 null_input_bfd = FALSE;
15476 break;
15477 }
15478 }
15479 if (null_input_bfd)
15480 return TRUE;
15481
15482 /* Populate abiflags using existing information. */
15483 if (in_tdata->abiflags_valid)
15484 {
15485 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15486 Elf_Internal_ABIFlags_v0 in_abiflags;
15487 Elf_Internal_ABIFlags_v0 abiflags;
15488
15489 /* Set up the FP ABI attribute from the abiflags if it is not already
15490 set. */
15491 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15492 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
15493
15494 infer_mips_abiflags (ibfd, &abiflags);
15495 in_abiflags = in_tdata->abiflags;
15496
15497 /* It is not possible to infer the correct ISA revision
15498 for R3 or R5 so drop down to R2 for the checks. */
15499 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15500 in_abiflags.isa_rev = 2;
15501
15502 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15503 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
15504 (*_bfd_error_handler)
15505 (_("%B: warning: Inconsistent ISA between e_flags and "
15506 ".MIPS.abiflags"), ibfd);
15507 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15508 && in_abiflags.fp_abi != abiflags.fp_abi)
15509 (*_bfd_error_handler)
15510 (_("%B: warning: Inconsistent FP ABI between .gnu.attributes and "
15511 ".MIPS.abiflags"), ibfd);
15512 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15513 (*_bfd_error_handler)
15514 (_("%B: warning: Inconsistent ASEs between e_flags and "
15515 ".MIPS.abiflags"), ibfd);
15516 /* The isa_ext is allowed to be an extension of what can be inferred
15517 from e_flags. */
15518 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15519 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
15520 (*_bfd_error_handler)
15521 (_("%B: warning: Inconsistent ISA extensions between e_flags and "
15522 ".MIPS.abiflags"), ibfd);
15523 if (in_abiflags.flags2 != 0)
15524 (*_bfd_error_handler)
15525 (_("%B: warning: Unexpected flag in the flags2 field of "
15526 ".MIPS.abiflags (0x%lx)"), ibfd,
15527 (unsigned long) in_abiflags.flags2);
15528 }
15529 else
15530 {
15531 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15532 in_tdata->abiflags_valid = TRUE;
15533 }
15534
15535 if (!out_tdata->abiflags_valid)
15536 {
15537 /* Copy input abiflags if output abiflags are not already valid. */
15538 out_tdata->abiflags = in_tdata->abiflags;
15539 out_tdata->abiflags_valid = TRUE;
15540 }
15541
15542 if (! elf_flags_init (obfd))
15543 {
15544 elf_flags_init (obfd) = TRUE;
15545 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15546 elf_elfheader (obfd)->e_ident[EI_CLASS]
15547 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15548
15549 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15550 && (bfd_get_arch_info (obfd)->the_default
15551 || mips_mach_extends_p (bfd_get_mach (obfd),
15552 bfd_get_mach (ibfd))))
15553 {
15554 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15555 bfd_get_mach (ibfd)))
15556 return FALSE;
15557
15558 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15559 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15560 }
15561
15562 ok = TRUE;
15563 }
15564 else
15565 ok = mips_elf_merge_obj_e_flags (ibfd, obfd);
15566
15567 ok = mips_elf_merge_obj_attributes (ibfd, obfd) && ok;
15568
15569 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
15570
15571 if (!ok)
15572 {
15573 bfd_set_error (bfd_error_bad_value);
15574 return FALSE;
15575 }
15576
15577 return TRUE;
15578 }
15579
15580 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15581
15582 bfd_boolean
15583 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15584 {
15585 BFD_ASSERT (!elf_flags_init (abfd)
15586 || elf_elfheader (abfd)->e_flags == flags);
15587
15588 elf_elfheader (abfd)->e_flags = flags;
15589 elf_flags_init (abfd) = TRUE;
15590 return TRUE;
15591 }
15592
15593 char *
15594 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15595 {
15596 switch (dtag)
15597 {
15598 default: return "";
15599 case DT_MIPS_RLD_VERSION:
15600 return "MIPS_RLD_VERSION";
15601 case DT_MIPS_TIME_STAMP:
15602 return "MIPS_TIME_STAMP";
15603 case DT_MIPS_ICHECKSUM:
15604 return "MIPS_ICHECKSUM";
15605 case DT_MIPS_IVERSION:
15606 return "MIPS_IVERSION";
15607 case DT_MIPS_FLAGS:
15608 return "MIPS_FLAGS";
15609 case DT_MIPS_BASE_ADDRESS:
15610 return "MIPS_BASE_ADDRESS";
15611 case DT_MIPS_MSYM:
15612 return "MIPS_MSYM";
15613 case DT_MIPS_CONFLICT:
15614 return "MIPS_CONFLICT";
15615 case DT_MIPS_LIBLIST:
15616 return "MIPS_LIBLIST";
15617 case DT_MIPS_LOCAL_GOTNO:
15618 return "MIPS_LOCAL_GOTNO";
15619 case DT_MIPS_CONFLICTNO:
15620 return "MIPS_CONFLICTNO";
15621 case DT_MIPS_LIBLISTNO:
15622 return "MIPS_LIBLISTNO";
15623 case DT_MIPS_SYMTABNO:
15624 return "MIPS_SYMTABNO";
15625 case DT_MIPS_UNREFEXTNO:
15626 return "MIPS_UNREFEXTNO";
15627 case DT_MIPS_GOTSYM:
15628 return "MIPS_GOTSYM";
15629 case DT_MIPS_HIPAGENO:
15630 return "MIPS_HIPAGENO";
15631 case DT_MIPS_RLD_MAP:
15632 return "MIPS_RLD_MAP";
15633 case DT_MIPS_RLD_MAP_REL:
15634 return "MIPS_RLD_MAP_REL";
15635 case DT_MIPS_DELTA_CLASS:
15636 return "MIPS_DELTA_CLASS";
15637 case DT_MIPS_DELTA_CLASS_NO:
15638 return "MIPS_DELTA_CLASS_NO";
15639 case DT_MIPS_DELTA_INSTANCE:
15640 return "MIPS_DELTA_INSTANCE";
15641 case DT_MIPS_DELTA_INSTANCE_NO:
15642 return "MIPS_DELTA_INSTANCE_NO";
15643 case DT_MIPS_DELTA_RELOC:
15644 return "MIPS_DELTA_RELOC";
15645 case DT_MIPS_DELTA_RELOC_NO:
15646 return "MIPS_DELTA_RELOC_NO";
15647 case DT_MIPS_DELTA_SYM:
15648 return "MIPS_DELTA_SYM";
15649 case DT_MIPS_DELTA_SYM_NO:
15650 return "MIPS_DELTA_SYM_NO";
15651 case DT_MIPS_DELTA_CLASSSYM:
15652 return "MIPS_DELTA_CLASSSYM";
15653 case DT_MIPS_DELTA_CLASSSYM_NO:
15654 return "MIPS_DELTA_CLASSSYM_NO";
15655 case DT_MIPS_CXX_FLAGS:
15656 return "MIPS_CXX_FLAGS";
15657 case DT_MIPS_PIXIE_INIT:
15658 return "MIPS_PIXIE_INIT";
15659 case DT_MIPS_SYMBOL_LIB:
15660 return "MIPS_SYMBOL_LIB";
15661 case DT_MIPS_LOCALPAGE_GOTIDX:
15662 return "MIPS_LOCALPAGE_GOTIDX";
15663 case DT_MIPS_LOCAL_GOTIDX:
15664 return "MIPS_LOCAL_GOTIDX";
15665 case DT_MIPS_HIDDEN_GOTIDX:
15666 return "MIPS_HIDDEN_GOTIDX";
15667 case DT_MIPS_PROTECTED_GOTIDX:
15668 return "MIPS_PROTECTED_GOT_IDX";
15669 case DT_MIPS_OPTIONS:
15670 return "MIPS_OPTIONS";
15671 case DT_MIPS_INTERFACE:
15672 return "MIPS_INTERFACE";
15673 case DT_MIPS_DYNSTR_ALIGN:
15674 return "DT_MIPS_DYNSTR_ALIGN";
15675 case DT_MIPS_INTERFACE_SIZE:
15676 return "DT_MIPS_INTERFACE_SIZE";
15677 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15678 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15679 case DT_MIPS_PERF_SUFFIX:
15680 return "DT_MIPS_PERF_SUFFIX";
15681 case DT_MIPS_COMPACT_SIZE:
15682 return "DT_MIPS_COMPACT_SIZE";
15683 case DT_MIPS_GP_VALUE:
15684 return "DT_MIPS_GP_VALUE";
15685 case DT_MIPS_AUX_DYNAMIC:
15686 return "DT_MIPS_AUX_DYNAMIC";
15687 case DT_MIPS_PLTGOT:
15688 return "DT_MIPS_PLTGOT";
15689 case DT_MIPS_RWPLT:
15690 return "DT_MIPS_RWPLT";
15691 }
15692 }
15693
15694 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15695 not known. */
15696
15697 const char *
15698 _bfd_mips_fp_abi_string (int fp)
15699 {
15700 switch (fp)
15701 {
15702 /* These strings aren't translated because they're simply
15703 option lists. */
15704 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15705 return "-mdouble-float";
15706
15707 case Val_GNU_MIPS_ABI_FP_SINGLE:
15708 return "-msingle-float";
15709
15710 case Val_GNU_MIPS_ABI_FP_SOFT:
15711 return "-msoft-float";
15712
15713 case Val_GNU_MIPS_ABI_FP_OLD_64:
15714 return _("-mips32r2 -mfp64 (12 callee-saved)");
15715
15716 case Val_GNU_MIPS_ABI_FP_XX:
15717 return "-mfpxx";
15718
15719 case Val_GNU_MIPS_ABI_FP_64:
15720 return "-mgp32 -mfp64";
15721
15722 case Val_GNU_MIPS_ABI_FP_64A:
15723 return "-mgp32 -mfp64 -mno-odd-spreg";
15724
15725 default:
15726 return 0;
15727 }
15728 }
15729
15730 static void
15731 print_mips_ases (FILE *file, unsigned int mask)
15732 {
15733 if (mask & AFL_ASE_DSP)
15734 fputs ("\n\tDSP ASE", file);
15735 if (mask & AFL_ASE_DSPR2)
15736 fputs ("\n\tDSP R2 ASE", file);
15737 if (mask & AFL_ASE_DSPR3)
15738 fputs ("\n\tDSP R3 ASE", file);
15739 if (mask & AFL_ASE_EVA)
15740 fputs ("\n\tEnhanced VA Scheme", file);
15741 if (mask & AFL_ASE_MCU)
15742 fputs ("\n\tMCU (MicroController) ASE", file);
15743 if (mask & AFL_ASE_MDMX)
15744 fputs ("\n\tMDMX ASE", file);
15745 if (mask & AFL_ASE_MIPS3D)
15746 fputs ("\n\tMIPS-3D ASE", file);
15747 if (mask & AFL_ASE_MT)
15748 fputs ("\n\tMT ASE", file);
15749 if (mask & AFL_ASE_SMARTMIPS)
15750 fputs ("\n\tSmartMIPS ASE", file);
15751 if (mask & AFL_ASE_VIRT)
15752 fputs ("\n\tVZ ASE", file);
15753 if (mask & AFL_ASE_MSA)
15754 fputs ("\n\tMSA ASE", file);
15755 if (mask & AFL_ASE_MIPS16)
15756 fputs ("\n\tMIPS16 ASE", file);
15757 if (mask & AFL_ASE_MICROMIPS)
15758 fputs ("\n\tMICROMIPS ASE", file);
15759 if (mask & AFL_ASE_XPA)
15760 fputs ("\n\tXPA ASE", file);
15761 if (mask == 0)
15762 fprintf (file, "\n\t%s", _("None"));
15763 else if ((mask & ~AFL_ASE_MASK) != 0)
15764 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
15765 }
15766
15767 static void
15768 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15769 {
15770 switch (isa_ext)
15771 {
15772 case 0:
15773 fputs (_("None"), file);
15774 break;
15775 case AFL_EXT_XLR:
15776 fputs ("RMI XLR", file);
15777 break;
15778 case AFL_EXT_OCTEON3:
15779 fputs ("Cavium Networks Octeon3", file);
15780 break;
15781 case AFL_EXT_OCTEON2:
15782 fputs ("Cavium Networks Octeon2", file);
15783 break;
15784 case AFL_EXT_OCTEONP:
15785 fputs ("Cavium Networks OcteonP", file);
15786 break;
15787 case AFL_EXT_LOONGSON_3A:
15788 fputs ("Loongson 3A", file);
15789 break;
15790 case AFL_EXT_OCTEON:
15791 fputs ("Cavium Networks Octeon", file);
15792 break;
15793 case AFL_EXT_5900:
15794 fputs ("Toshiba R5900", file);
15795 break;
15796 case AFL_EXT_4650:
15797 fputs ("MIPS R4650", file);
15798 break;
15799 case AFL_EXT_4010:
15800 fputs ("LSI R4010", file);
15801 break;
15802 case AFL_EXT_4100:
15803 fputs ("NEC VR4100", file);
15804 break;
15805 case AFL_EXT_3900:
15806 fputs ("Toshiba R3900", file);
15807 break;
15808 case AFL_EXT_10000:
15809 fputs ("MIPS R10000", file);
15810 break;
15811 case AFL_EXT_SB1:
15812 fputs ("Broadcom SB-1", file);
15813 break;
15814 case AFL_EXT_4111:
15815 fputs ("NEC VR4111/VR4181", file);
15816 break;
15817 case AFL_EXT_4120:
15818 fputs ("NEC VR4120", file);
15819 break;
15820 case AFL_EXT_5400:
15821 fputs ("NEC VR5400", file);
15822 break;
15823 case AFL_EXT_5500:
15824 fputs ("NEC VR5500", file);
15825 break;
15826 case AFL_EXT_LOONGSON_2E:
15827 fputs ("ST Microelectronics Loongson 2E", file);
15828 break;
15829 case AFL_EXT_LOONGSON_2F:
15830 fputs ("ST Microelectronics Loongson 2F", file);
15831 break;
15832 default:
15833 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
15834 break;
15835 }
15836 }
15837
15838 static void
15839 print_mips_fp_abi_value (FILE *file, int val)
15840 {
15841 switch (val)
15842 {
15843 case Val_GNU_MIPS_ABI_FP_ANY:
15844 fprintf (file, _("Hard or soft float\n"));
15845 break;
15846 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15847 fprintf (file, _("Hard float (double precision)\n"));
15848 break;
15849 case Val_GNU_MIPS_ABI_FP_SINGLE:
15850 fprintf (file, _("Hard float (single precision)\n"));
15851 break;
15852 case Val_GNU_MIPS_ABI_FP_SOFT:
15853 fprintf (file, _("Soft float\n"));
15854 break;
15855 case Val_GNU_MIPS_ABI_FP_OLD_64:
15856 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15857 break;
15858 case Val_GNU_MIPS_ABI_FP_XX:
15859 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
15860 break;
15861 case Val_GNU_MIPS_ABI_FP_64:
15862 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
15863 break;
15864 case Val_GNU_MIPS_ABI_FP_64A:
15865 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
15866 break;
15867 default:
15868 fprintf (file, "??? (%d)\n", val);
15869 break;
15870 }
15871 }
15872
15873 static int
15874 get_mips_reg_size (int reg_size)
15875 {
15876 return (reg_size == AFL_REG_NONE) ? 0
15877 : (reg_size == AFL_REG_32) ? 32
15878 : (reg_size == AFL_REG_64) ? 64
15879 : (reg_size == AFL_REG_128) ? 128
15880 : -1;
15881 }
15882
15883 bfd_boolean
15884 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
15885 {
15886 FILE *file = ptr;
15887
15888 BFD_ASSERT (abfd != NULL && ptr != NULL);
15889
15890 /* Print normal ELF private data. */
15891 _bfd_elf_print_private_bfd_data (abfd, ptr);
15892
15893 /* xgettext:c-format */
15894 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15895
15896 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
15897 fprintf (file, _(" [abi=O32]"));
15898 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
15899 fprintf (file, _(" [abi=O64]"));
15900 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
15901 fprintf (file, _(" [abi=EABI32]"));
15902 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
15903 fprintf (file, _(" [abi=EABI64]"));
15904 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
15905 fprintf (file, _(" [abi unknown]"));
15906 else if (ABI_N32_P (abfd))
15907 fprintf (file, _(" [abi=N32]"));
15908 else if (ABI_64_P (abfd))
15909 fprintf (file, _(" [abi=64]"));
15910 else
15911 fprintf (file, _(" [no abi set]"));
15912
15913 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
15914 fprintf (file, " [mips1]");
15915 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
15916 fprintf (file, " [mips2]");
15917 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
15918 fprintf (file, " [mips3]");
15919 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
15920 fprintf (file, " [mips4]");
15921 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
15922 fprintf (file, " [mips5]");
15923 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
15924 fprintf (file, " [mips32]");
15925 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
15926 fprintf (file, " [mips64]");
15927 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
15928 fprintf (file, " [mips32r2]");
15929 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
15930 fprintf (file, " [mips64r2]");
15931 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
15932 fprintf (file, " [mips32r6]");
15933 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
15934 fprintf (file, " [mips64r6]");
15935 else
15936 fprintf (file, _(" [unknown ISA]"));
15937
15938 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
15939 fprintf (file, " [mdmx]");
15940
15941 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
15942 fprintf (file, " [mips16]");
15943
15944 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
15945 fprintf (file, " [micromips]");
15946
15947 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
15948 fprintf (file, " [nan2008]");
15949
15950 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
15951 fprintf (file, " [old fp64]");
15952
15953 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
15954 fprintf (file, " [32bitmode]");
15955 else
15956 fprintf (file, _(" [not 32bitmode]"));
15957
15958 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
15959 fprintf (file, " [noreorder]");
15960
15961 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
15962 fprintf (file, " [PIC]");
15963
15964 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
15965 fprintf (file, " [CPIC]");
15966
15967 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
15968 fprintf (file, " [XGOT]");
15969
15970 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
15971 fprintf (file, " [UCODE]");
15972
15973 fputc ('\n', file);
15974
15975 if (mips_elf_tdata (abfd)->abiflags_valid)
15976 {
15977 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
15978 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
15979 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
15980 if (abiflags->isa_rev > 1)
15981 fprintf (file, "r%d", abiflags->isa_rev);
15982 fprintf (file, "\nGPR size: %d",
15983 get_mips_reg_size (abiflags->gpr_size));
15984 fprintf (file, "\nCPR1 size: %d",
15985 get_mips_reg_size (abiflags->cpr1_size));
15986 fprintf (file, "\nCPR2 size: %d",
15987 get_mips_reg_size (abiflags->cpr2_size));
15988 fputs ("\nFP ABI: ", file);
15989 print_mips_fp_abi_value (file, abiflags->fp_abi);
15990 fputs ("ISA Extension: ", file);
15991 print_mips_isa_ext (file, abiflags->isa_ext);
15992 fputs ("\nASEs:", file);
15993 print_mips_ases (file, abiflags->ases);
15994 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
15995 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
15996 fputc ('\n', file);
15997 }
15998
15999 return TRUE;
16000 }
16001
16002 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
16003 {
16004 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16005 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16006 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
16007 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16008 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16009 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
16010 { NULL, 0, 0, 0, 0 }
16011 };
16012
16013 /* Merge non visibility st_other attributes. Ensure that the
16014 STO_OPTIONAL flag is copied into h->other, even if this is not a
16015 definiton of the symbol. */
16016 void
16017 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
16018 const Elf_Internal_Sym *isym,
16019 bfd_boolean definition,
16020 bfd_boolean dynamic ATTRIBUTE_UNUSED)
16021 {
16022 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
16023 {
16024 unsigned char other;
16025
16026 other = (definition ? isym->st_other : h->other);
16027 other &= ~ELF_ST_VISIBILITY (-1);
16028 h->other = other | ELF_ST_VISIBILITY (h->other);
16029 }
16030
16031 if (!definition
16032 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
16033 h->other |= STO_OPTIONAL;
16034 }
16035
16036 /* Decide whether an undefined symbol is special and can be ignored.
16037 This is the case for OPTIONAL symbols on IRIX. */
16038 bfd_boolean
16039 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
16040 {
16041 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
16042 }
16043
16044 bfd_boolean
16045 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
16046 {
16047 return (sym->st_shndx == SHN_COMMON
16048 || sym->st_shndx == SHN_MIPS_ACOMMON
16049 || sym->st_shndx == SHN_MIPS_SCOMMON);
16050 }
16051
16052 /* Return address for Ith PLT stub in section PLT, for relocation REL
16053 or (bfd_vma) -1 if it should not be included. */
16054
16055 bfd_vma
16056 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
16057 const arelent *rel ATTRIBUTE_UNUSED)
16058 {
16059 return (plt->vma
16060 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
16061 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
16062 }
16063
16064 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
16065 and microMIPS PLT slots we may have a many-to-one mapping between .plt
16066 and .got.plt and also the slots may be of a different size each we walk
16067 the PLT manually fetching instructions and matching them against known
16068 patterns. To make things easier standard MIPS slots, if any, always come
16069 first. As we don't create proper ELF symbols we use the UDATA.I member
16070 of ASYMBOL to carry ISA annotation. The encoding used is the same as
16071 with the ST_OTHER member of the ELF symbol. */
16072
16073 long
16074 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
16075 long symcount ATTRIBUTE_UNUSED,
16076 asymbol **syms ATTRIBUTE_UNUSED,
16077 long dynsymcount, asymbol **dynsyms,
16078 asymbol **ret)
16079 {
16080 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
16081 static const char microsuffix[] = "@micromipsplt";
16082 static const char m16suffix[] = "@mips16plt";
16083 static const char mipssuffix[] = "@plt";
16084
16085 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
16086 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
16087 bfd_boolean micromips_p = MICROMIPS_P (abfd);
16088 Elf_Internal_Shdr *hdr;
16089 bfd_byte *plt_data;
16090 bfd_vma plt_offset;
16091 unsigned int other;
16092 bfd_vma entry_size;
16093 bfd_vma plt0_size;
16094 asection *relplt;
16095 bfd_vma opcode;
16096 asection *plt;
16097 asymbol *send;
16098 size_t size;
16099 char *names;
16100 long counti;
16101 arelent *p;
16102 asymbol *s;
16103 char *nend;
16104 long count;
16105 long pi;
16106 long i;
16107 long n;
16108
16109 *ret = NULL;
16110
16111 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
16112 return 0;
16113
16114 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16115 if (relplt == NULL)
16116 return 0;
16117
16118 hdr = &elf_section_data (relplt)->this_hdr;
16119 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
16120 return 0;
16121
16122 plt = bfd_get_section_by_name (abfd, ".plt");
16123 if (plt == NULL)
16124 return 0;
16125
16126 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
16127 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
16128 return -1;
16129 p = relplt->relocation;
16130
16131 /* Calculating the exact amount of space required for symbols would
16132 require two passes over the PLT, so just pessimise assuming two
16133 PLT slots per relocation. */
16134 count = relplt->size / hdr->sh_entsize;
16135 counti = count * bed->s->int_rels_per_ext_rel;
16136 size = 2 * count * sizeof (asymbol);
16137 size += count * (sizeof (mipssuffix) +
16138 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16139 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16140 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16141
16142 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16143 size += sizeof (asymbol) + sizeof (pltname);
16144
16145 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16146 return -1;
16147
16148 if (plt->size < 16)
16149 return -1;
16150
16151 s = *ret = bfd_malloc (size);
16152 if (s == NULL)
16153 return -1;
16154 send = s + 2 * count + 1;
16155
16156 names = (char *) send;
16157 nend = (char *) s + size;
16158 n = 0;
16159
16160 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16161 if (opcode == 0x3302fffe)
16162 {
16163 if (!micromips_p)
16164 return -1;
16165 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16166 other = STO_MICROMIPS;
16167 }
16168 else if (opcode == 0x0398c1d0)
16169 {
16170 if (!micromips_p)
16171 return -1;
16172 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16173 other = STO_MICROMIPS;
16174 }
16175 else
16176 {
16177 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16178 other = 0;
16179 }
16180
16181 s->the_bfd = abfd;
16182 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16183 s->section = plt;
16184 s->value = 0;
16185 s->name = names;
16186 s->udata.i = other;
16187 memcpy (names, pltname, sizeof (pltname));
16188 names += sizeof (pltname);
16189 ++s, ++n;
16190
16191 pi = 0;
16192 for (plt_offset = plt0_size;
16193 plt_offset + 8 <= plt->size && s < send;
16194 plt_offset += entry_size)
16195 {
16196 bfd_vma gotplt_addr;
16197 const char *suffix;
16198 bfd_vma gotplt_hi;
16199 bfd_vma gotplt_lo;
16200 size_t suffixlen;
16201
16202 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16203
16204 /* Check if the second word matches the expected MIPS16 instruction. */
16205 if (opcode == 0x651aeb00)
16206 {
16207 if (micromips_p)
16208 return -1;
16209 /* Truncated table??? */
16210 if (plt_offset + 16 > plt->size)
16211 break;
16212 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16213 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16214 suffixlen = sizeof (m16suffix);
16215 suffix = m16suffix;
16216 other = STO_MIPS16;
16217 }
16218 /* Likewise the expected microMIPS instruction (no insn32 mode). */
16219 else if (opcode == 0xff220000)
16220 {
16221 if (!micromips_p)
16222 return -1;
16223 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16224 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16225 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16226 gotplt_lo <<= 2;
16227 gotplt_addr = gotplt_hi + gotplt_lo;
16228 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16229 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16230 suffixlen = sizeof (microsuffix);
16231 suffix = microsuffix;
16232 other = STO_MICROMIPS;
16233 }
16234 /* Likewise the expected microMIPS instruction (insn32 mode). */
16235 else if ((opcode & 0xffff0000) == 0xff2f0000)
16236 {
16237 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16238 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16239 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16240 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16241 gotplt_addr = gotplt_hi + gotplt_lo;
16242 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16243 suffixlen = sizeof (microsuffix);
16244 suffix = microsuffix;
16245 other = STO_MICROMIPS;
16246 }
16247 /* Otherwise assume standard MIPS code. */
16248 else
16249 {
16250 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16251 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16252 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16253 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16254 gotplt_addr = gotplt_hi + gotplt_lo;
16255 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16256 suffixlen = sizeof (mipssuffix);
16257 suffix = mipssuffix;
16258 other = 0;
16259 }
16260 /* Truncated table??? */
16261 if (plt_offset + entry_size > plt->size)
16262 break;
16263
16264 for (i = 0;
16265 i < count && p[pi].address != gotplt_addr;
16266 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16267
16268 if (i < count)
16269 {
16270 size_t namelen;
16271 size_t len;
16272
16273 *s = **p[pi].sym_ptr_ptr;
16274 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16275 we are defining a symbol, ensure one of them is set. */
16276 if ((s->flags & BSF_LOCAL) == 0)
16277 s->flags |= BSF_GLOBAL;
16278 s->flags |= BSF_SYNTHETIC;
16279 s->section = plt;
16280 s->value = plt_offset;
16281 s->name = names;
16282 s->udata.i = other;
16283
16284 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16285 namelen = len + suffixlen;
16286 if (names + namelen > nend)
16287 break;
16288
16289 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16290 names += len;
16291 memcpy (names, suffix, suffixlen);
16292 names += suffixlen;
16293
16294 ++s, ++n;
16295 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16296 }
16297 }
16298
16299 free (plt_data);
16300
16301 return n;
16302 }
16303
16304 void
16305 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16306 {
16307 struct mips_elf_link_hash_table *htab;
16308 Elf_Internal_Ehdr *i_ehdrp;
16309
16310 i_ehdrp = elf_elfheader (abfd);
16311 if (link_info)
16312 {
16313 htab = mips_elf_hash_table (link_info);
16314 BFD_ASSERT (htab != NULL);
16315
16316 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16317 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
16318 }
16319
16320 _bfd_elf_post_process_headers (abfd, link_info);
16321
16322 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16323 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16324 i_ehdrp->e_ident[EI_ABIVERSION] = 3;
16325
16326 if (elf_stack_flags (abfd) && !(elf_stack_flags (abfd) & PF_X))
16327 i_ehdrp->e_ident[EI_ABIVERSION] = 5;
16328 }
16329
16330 int
16331 _bfd_mips_elf_compact_eh_encoding (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16332 {
16333 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16334 }
16335
16336 /* Return the opcode for can't unwind. */
16337
16338 int
16339 _bfd_mips_elf_cant_unwind_opcode (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16340 {
16341 return COMPACT_EH_CANT_UNWIND_OPCODE;
16342 }
This page took 0.442004 seconds and 5 git commands to generate.