typo fixes
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 Free Software Foundation, Inc.
5
6 Most of the information added by Ian Lance Taylor, Cygnus Support,
7 <ian@cygnus.com>.
8 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
9 <mark@codesourcery.com>
10 Traditional MIPS targets support added by Koundinya.K, Dansk Data
11 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
12
13 This file is part of BFD, the Binary File Descriptor library.
14
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
17 the Free Software Foundation; either version 3 of the License, or
18 (at your option) any later version.
19
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
24
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
27 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
28 MA 02110-1301, USA. */
29
30
31 /* This file handles functionality common to the different MIPS ABI's. */
32
33 #include "sysdep.h"
34 #include "bfd.h"
35 #include "libbfd.h"
36 #include "libiberty.h"
37 #include "elf-bfd.h"
38 #include "elfxx-mips.h"
39 #include "elf/mips.h"
40 #include "elf-vxworks.h"
41
42 /* Get the ECOFF swapping routines. */
43 #include "coff/sym.h"
44 #include "coff/symconst.h"
45 #include "coff/ecoff.h"
46 #include "coff/mips.h"
47
48 #include "hashtab.h"
49
50 /* This structure is used to hold information about one GOT entry.
51 There are three types of entry:
52
53 (1) absolute addresses
54 (abfd == NULL)
55 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
56 (abfd != NULL, symndx >= 0)
57 (3) SYMBOL addresses, where SYMBOL is not local to an input bfd
58 (abfd != NULL, symndx == -1)
59
60 Type (3) entries are treated differently for different types of GOT.
61 In the "master" GOT -- i.e. the one that describes every GOT
62 reference needed in the link -- the mips_got_entry is keyed on both
63 the symbol and the input bfd that references it. If it turns out
64 that we need multiple GOTs, we can then use this information to
65 create separate GOTs for each input bfd.
66
67 However, we want each of these separate GOTs to have at most one
68 entry for a given symbol, so their type (3) entries are keyed only
69 on the symbol. The input bfd given by the "abfd" field is somewhat
70 arbitrary in this case.
71
72 This means that when there are multiple GOTs, each GOT has a unique
73 mips_got_entry for every symbol within it. We can therefore use the
74 mips_got_entry fields (tls_type and gotidx) to track the symbol's
75 GOT index.
76
77 However, if it turns out that we need only a single GOT, we continue
78 to use the master GOT to describe it. There may therefore be several
79 mips_got_entries for the same symbol, each with a different input bfd.
80 We want to make sure that each symbol gets a unique GOT entry, so when
81 there's a single GOT, we use the symbol's hash entry, not the
82 mips_got_entry fields, to track a symbol's GOT index. */
83 struct mips_got_entry
84 {
85 /* The input bfd in which the symbol is defined. */
86 bfd *abfd;
87 /* The index of the symbol, as stored in the relocation r_info, if
88 we have a local symbol; -1 otherwise. */
89 long symndx;
90 union
91 {
92 /* If abfd == NULL, an address that must be stored in the got. */
93 bfd_vma address;
94 /* If abfd != NULL && symndx != -1, the addend of the relocation
95 that should be added to the symbol value. */
96 bfd_vma addend;
97 /* If abfd != NULL && symndx == -1, the hash table entry
98 corresponding to symbol in the GOT. The symbol's entry
99 is in the local area if h->global_got_area is GGA_NONE,
100 otherwise it is in the global area. */
101 struct mips_elf_link_hash_entry *h;
102 } d;
103
104 /* The TLS types included in this GOT entry (specifically, GD and
105 IE). The GD and IE flags can be added as we encounter new
106 relocations. LDM can also be set; it will always be alone, not
107 combined with any GD or IE flags. An LDM GOT entry will be
108 a local symbol entry with r_symndx == 0. */
109 unsigned char tls_type;
110
111 /* The offset from the beginning of the .got section to the entry
112 corresponding to this symbol+addend. If it's a global symbol
113 whose offset is yet to be decided, it's going to be -1. */
114 long gotidx;
115 };
116
117 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
118 The structures form a non-overlapping list that is sorted by increasing
119 MIN_ADDEND. */
120 struct mips_got_page_range
121 {
122 struct mips_got_page_range *next;
123 bfd_signed_vma min_addend;
124 bfd_signed_vma max_addend;
125 };
126
127 /* This structure describes the range of addends that are applied to page
128 relocations against a given symbol. */
129 struct mips_got_page_entry
130 {
131 /* The input bfd in which the symbol is defined. */
132 bfd *abfd;
133 /* The index of the symbol, as stored in the relocation r_info. */
134 long symndx;
135 /* The ranges for this page entry. */
136 struct mips_got_page_range *ranges;
137 /* The maximum number of page entries needed for RANGES. */
138 bfd_vma num_pages;
139 };
140
141 /* This structure is used to hold .got information when linking. */
142
143 struct mips_got_info
144 {
145 /* The global symbol in the GOT with the lowest index in the dynamic
146 symbol table. */
147 struct elf_link_hash_entry *global_gotsym;
148 /* The number of global .got entries. */
149 unsigned int global_gotno;
150 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
151 unsigned int reloc_only_gotno;
152 /* The number of .got slots used for TLS. */
153 unsigned int tls_gotno;
154 /* The first unused TLS .got entry. Used only during
155 mips_elf_initialize_tls_index. */
156 unsigned int tls_assigned_gotno;
157 /* The number of local .got entries, eventually including page entries. */
158 unsigned int local_gotno;
159 /* The maximum number of page entries needed. */
160 unsigned int page_gotno;
161 /* The number of local .got entries we have used. */
162 unsigned int assigned_gotno;
163 /* A hash table holding members of the got. */
164 struct htab *got_entries;
165 /* A hash table of mips_got_page_entry structures. */
166 struct htab *got_page_entries;
167 /* A hash table mapping input bfds to other mips_got_info. NULL
168 unless multi-got was necessary. */
169 struct htab *bfd2got;
170 /* In multi-got links, a pointer to the next got (err, rather, most
171 of the time, it points to the previous got). */
172 struct mips_got_info *next;
173 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
174 for none, or MINUS_TWO for not yet assigned. This is needed
175 because a single-GOT link may have multiple hash table entries
176 for the LDM. It does not get initialized in multi-GOT mode. */
177 bfd_vma tls_ldm_offset;
178 };
179
180 /* Map an input bfd to a got in a multi-got link. */
181
182 struct mips_elf_bfd2got_hash
183 {
184 bfd *bfd;
185 struct mips_got_info *g;
186 };
187
188 /* Structure passed when traversing the bfd2got hash table, used to
189 create and merge bfd's gots. */
190
191 struct mips_elf_got_per_bfd_arg
192 {
193 /* A hashtable that maps bfds to gots. */
194 htab_t bfd2got;
195 /* The output bfd. */
196 bfd *obfd;
197 /* The link information. */
198 struct bfd_link_info *info;
199 /* A pointer to the primary got, i.e., the one that's going to get
200 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
201 DT_MIPS_GOTSYM. */
202 struct mips_got_info *primary;
203 /* A non-primary got we're trying to merge with other input bfd's
204 gots. */
205 struct mips_got_info *current;
206 /* The maximum number of got entries that can be addressed with a
207 16-bit offset. */
208 unsigned int max_count;
209 /* The maximum number of page entries needed by each got. */
210 unsigned int max_pages;
211 /* The total number of global entries which will live in the
212 primary got and be automatically relocated. This includes
213 those not referenced by the primary GOT but included in
214 the "master" GOT. */
215 unsigned int global_count;
216 };
217
218 /* Another structure used to pass arguments for got entries traversal. */
219
220 struct mips_elf_set_global_got_offset_arg
221 {
222 struct mips_got_info *g;
223 int value;
224 unsigned int needed_relocs;
225 struct bfd_link_info *info;
226 };
227
228 /* A structure used to count TLS relocations or GOT entries, for GOT
229 entry or ELF symbol table traversal. */
230
231 struct mips_elf_count_tls_arg
232 {
233 struct bfd_link_info *info;
234 unsigned int needed;
235 };
236
237 struct _mips_elf_section_data
238 {
239 struct bfd_elf_section_data elf;
240 union
241 {
242 bfd_byte *tdata;
243 } u;
244 };
245
246 #define mips_elf_section_data(sec) \
247 ((struct _mips_elf_section_data *) elf_section_data (sec))
248
249 #define is_mips_elf(bfd) \
250 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
251 && elf_tdata (bfd) != NULL \
252 && elf_object_id (bfd) == MIPS_ELF_DATA)
253
254 /* The ABI says that every symbol used by dynamic relocations must have
255 a global GOT entry. Among other things, this provides the dynamic
256 linker with a free, directly-indexed cache. The GOT can therefore
257 contain symbols that are not referenced by GOT relocations themselves
258 (in other words, it may have symbols that are not referenced by things
259 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
260
261 GOT relocations are less likely to overflow if we put the associated
262 GOT entries towards the beginning. We therefore divide the global
263 GOT entries into two areas: "normal" and "reloc-only". Entries in
264 the first area can be used for both dynamic relocations and GP-relative
265 accesses, while those in the "reloc-only" area are for dynamic
266 relocations only.
267
268 These GGA_* ("Global GOT Area") values are organised so that lower
269 values are more general than higher values. Also, non-GGA_NONE
270 values are ordered by the position of the area in the GOT. */
271 #define GGA_NORMAL 0
272 #define GGA_RELOC_ONLY 1
273 #define GGA_NONE 2
274
275 /* Information about a non-PIC interface to a PIC function. There are
276 two ways of creating these interfaces. The first is to add:
277
278 lui $25,%hi(func)
279 addiu $25,$25,%lo(func)
280
281 immediately before a PIC function "func". The second is to add:
282
283 lui $25,%hi(func)
284 j func
285 addiu $25,$25,%lo(func)
286
287 to a separate trampoline section.
288
289 Stubs of the first kind go in a new section immediately before the
290 target function. Stubs of the second kind go in a single section
291 pointed to by the hash table's "strampoline" field. */
292 struct mips_elf_la25_stub {
293 /* The generated section that contains this stub. */
294 asection *stub_section;
295
296 /* The offset of the stub from the start of STUB_SECTION. */
297 bfd_vma offset;
298
299 /* One symbol for the original function. Its location is available
300 in H->root.root.u.def. */
301 struct mips_elf_link_hash_entry *h;
302 };
303
304 /* Macros for populating a mips_elf_la25_stub. */
305
306 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
307 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
308 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
309 #define LA25_LUI_MICROMIPS(VAL) \
310 (0x41b90000 | (VAL)) /* lui t9,VAL */
311 #define LA25_J_MICROMIPS(VAL) \
312 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
313 #define LA25_ADDIU_MICROMIPS(VAL) \
314 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
315
316 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
317 the dynamic symbols. */
318
319 struct mips_elf_hash_sort_data
320 {
321 /* The symbol in the global GOT with the lowest dynamic symbol table
322 index. */
323 struct elf_link_hash_entry *low;
324 /* The least dynamic symbol table index corresponding to a non-TLS
325 symbol with a GOT entry. */
326 long min_got_dynindx;
327 /* The greatest dynamic symbol table index corresponding to a symbol
328 with a GOT entry that is not referenced (e.g., a dynamic symbol
329 with dynamic relocations pointing to it from non-primary GOTs). */
330 long max_unref_got_dynindx;
331 /* The greatest dynamic symbol table index not corresponding to a
332 symbol without a GOT entry. */
333 long max_non_got_dynindx;
334 };
335
336 /* The MIPS ELF linker needs additional information for each symbol in
337 the global hash table. */
338
339 struct mips_elf_link_hash_entry
340 {
341 struct elf_link_hash_entry root;
342
343 /* External symbol information. */
344 EXTR esym;
345
346 /* The la25 stub we have created for ths symbol, if any. */
347 struct mips_elf_la25_stub *la25_stub;
348
349 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
350 this symbol. */
351 unsigned int possibly_dynamic_relocs;
352
353 /* If there is a stub that 32 bit functions should use to call this
354 16 bit function, this points to the section containing the stub. */
355 asection *fn_stub;
356
357 /* If there is a stub that 16 bit functions should use to call this
358 32 bit function, this points to the section containing the stub. */
359 asection *call_stub;
360
361 /* This is like the call_stub field, but it is used if the function
362 being called returns a floating point value. */
363 asection *call_fp_stub;
364
365 #define GOT_NORMAL 0
366 #define GOT_TLS_GD 1
367 #define GOT_TLS_LDM 2
368 #define GOT_TLS_IE 4
369 #define GOT_TLS_OFFSET_DONE 0x40
370 #define GOT_TLS_DONE 0x80
371 unsigned char tls_type;
372
373 /* This is only used in single-GOT mode; in multi-GOT mode there
374 is one mips_got_entry per GOT entry, so the offset is stored
375 there. In single-GOT mode there may be many mips_got_entry
376 structures all referring to the same GOT slot. It might be
377 possible to use root.got.offset instead, but that field is
378 overloaded already. */
379 bfd_vma tls_got_offset;
380
381 /* The highest GGA_* value that satisfies all references to this symbol. */
382 unsigned int global_got_area : 2;
383
384 /* True if all GOT relocations against this symbol are for calls. This is
385 a looser condition than no_fn_stub below, because there may be other
386 non-call non-GOT relocations against the symbol. */
387 unsigned int got_only_for_calls : 1;
388
389 /* True if one of the relocations described by possibly_dynamic_relocs
390 is against a readonly section. */
391 unsigned int readonly_reloc : 1;
392
393 /* True if there is a relocation against this symbol that must be
394 resolved by the static linker (in other words, if the relocation
395 cannot possibly be made dynamic). */
396 unsigned int has_static_relocs : 1;
397
398 /* True if we must not create a .MIPS.stubs entry for this symbol.
399 This is set, for example, if there are relocations related to
400 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
401 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
402 unsigned int no_fn_stub : 1;
403
404 /* Whether we need the fn_stub; this is true if this symbol appears
405 in any relocs other than a 16 bit call. */
406 unsigned int need_fn_stub : 1;
407
408 /* True if this symbol is referenced by branch relocations from
409 any non-PIC input file. This is used to determine whether an
410 la25 stub is required. */
411 unsigned int has_nonpic_branches : 1;
412
413 /* Does this symbol need a traditional MIPS lazy-binding stub
414 (as opposed to a PLT entry)? */
415 unsigned int needs_lazy_stub : 1;
416 };
417
418 /* MIPS ELF linker hash table. */
419
420 struct mips_elf_link_hash_table
421 {
422 struct elf_link_hash_table root;
423 #if 0
424 /* We no longer use this. */
425 /* String section indices for the dynamic section symbols. */
426 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
427 #endif
428
429 /* The number of .rtproc entries. */
430 bfd_size_type procedure_count;
431
432 /* The size of the .compact_rel section (if SGI_COMPAT). */
433 bfd_size_type compact_rel_size;
434
435 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
436 entry is set to the address of __rld_obj_head as in IRIX5. */
437 bfd_boolean use_rld_obj_head;
438
439 /* The __rld_map or __rld_obj_head symbol. */
440 struct elf_link_hash_entry *rld_symbol;
441
442 /* This is set if we see any mips16 stub sections. */
443 bfd_boolean mips16_stubs_seen;
444
445 /* True if we can generate copy relocs and PLTs. */
446 bfd_boolean use_plts_and_copy_relocs;
447
448 /* True if we're generating code for VxWorks. */
449 bfd_boolean is_vxworks;
450
451 /* True if we already reported the small-data section overflow. */
452 bfd_boolean small_data_overflow_reported;
453
454 /* Shortcuts to some dynamic sections, or NULL if they are not
455 being used. */
456 asection *srelbss;
457 asection *sdynbss;
458 asection *srelplt;
459 asection *srelplt2;
460 asection *sgotplt;
461 asection *splt;
462 asection *sstubs;
463 asection *sgot;
464
465 /* The master GOT information. */
466 struct mips_got_info *got_info;
467
468 /* The size of the PLT header in bytes. */
469 bfd_vma plt_header_size;
470
471 /* The size of a PLT entry in bytes. */
472 bfd_vma plt_entry_size;
473
474 /* The number of functions that need a lazy-binding stub. */
475 bfd_vma lazy_stub_count;
476
477 /* The size of a function stub entry in bytes. */
478 bfd_vma function_stub_size;
479
480 /* The number of reserved entries at the beginning of the GOT. */
481 unsigned int reserved_gotno;
482
483 /* The section used for mips_elf_la25_stub trampolines.
484 See the comment above that structure for details. */
485 asection *strampoline;
486
487 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
488 pairs. */
489 htab_t la25_stubs;
490
491 /* A function FN (NAME, IS, OS) that creates a new input section
492 called NAME and links it to output section OS. If IS is nonnull,
493 the new section should go immediately before it, otherwise it
494 should go at the (current) beginning of OS.
495
496 The function returns the new section on success, otherwise it
497 returns null. */
498 asection *(*add_stub_section) (const char *, asection *, asection *);
499 };
500
501 /* Get the MIPS ELF linker hash table from a link_info structure. */
502
503 #define mips_elf_hash_table(p) \
504 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
505 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
506
507 /* A structure used to communicate with htab_traverse callbacks. */
508 struct mips_htab_traverse_info
509 {
510 /* The usual link-wide information. */
511 struct bfd_link_info *info;
512 bfd *output_bfd;
513
514 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
515 bfd_boolean error;
516 };
517
518 #define TLS_RELOC_P(r_type) \
519 (r_type == R_MIPS_TLS_DTPMOD32 \
520 || r_type == R_MIPS_TLS_DTPMOD64 \
521 || r_type == R_MIPS_TLS_DTPREL32 \
522 || r_type == R_MIPS_TLS_DTPREL64 \
523 || r_type == R_MIPS_TLS_GD \
524 || r_type == R_MIPS_TLS_LDM \
525 || r_type == R_MIPS_TLS_DTPREL_HI16 \
526 || r_type == R_MIPS_TLS_DTPREL_LO16 \
527 || r_type == R_MIPS_TLS_GOTTPREL \
528 || r_type == R_MIPS_TLS_TPREL32 \
529 || r_type == R_MIPS_TLS_TPREL64 \
530 || r_type == R_MIPS_TLS_TPREL_HI16 \
531 || r_type == R_MIPS_TLS_TPREL_LO16 \
532 || r_type == R_MIPS16_TLS_GD \
533 || r_type == R_MIPS16_TLS_LDM \
534 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
535 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
536 || r_type == R_MIPS16_TLS_GOTTPREL \
537 || r_type == R_MIPS16_TLS_TPREL_HI16 \
538 || r_type == R_MIPS16_TLS_TPREL_LO16 \
539 || r_type == R_MICROMIPS_TLS_GD \
540 || r_type == R_MICROMIPS_TLS_LDM \
541 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
542 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
543 || r_type == R_MICROMIPS_TLS_GOTTPREL \
544 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
545 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
546
547 /* Structure used to pass information to mips_elf_output_extsym. */
548
549 struct extsym_info
550 {
551 bfd *abfd;
552 struct bfd_link_info *info;
553 struct ecoff_debug_info *debug;
554 const struct ecoff_debug_swap *swap;
555 bfd_boolean failed;
556 };
557
558 /* The names of the runtime procedure table symbols used on IRIX5. */
559
560 static const char * const mips_elf_dynsym_rtproc_names[] =
561 {
562 "_procedure_table",
563 "_procedure_string_table",
564 "_procedure_table_size",
565 NULL
566 };
567
568 /* These structures are used to generate the .compact_rel section on
569 IRIX5. */
570
571 typedef struct
572 {
573 unsigned long id1; /* Always one? */
574 unsigned long num; /* Number of compact relocation entries. */
575 unsigned long id2; /* Always two? */
576 unsigned long offset; /* The file offset of the first relocation. */
577 unsigned long reserved0; /* Zero? */
578 unsigned long reserved1; /* Zero? */
579 } Elf32_compact_rel;
580
581 typedef struct
582 {
583 bfd_byte id1[4];
584 bfd_byte num[4];
585 bfd_byte id2[4];
586 bfd_byte offset[4];
587 bfd_byte reserved0[4];
588 bfd_byte reserved1[4];
589 } Elf32_External_compact_rel;
590
591 typedef struct
592 {
593 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
594 unsigned int rtype : 4; /* Relocation types. See below. */
595 unsigned int dist2to : 8;
596 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
597 unsigned long konst; /* KONST field. See below. */
598 unsigned long vaddr; /* VADDR to be relocated. */
599 } Elf32_crinfo;
600
601 typedef struct
602 {
603 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
604 unsigned int rtype : 4; /* Relocation types. See below. */
605 unsigned int dist2to : 8;
606 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
607 unsigned long konst; /* KONST field. See below. */
608 } Elf32_crinfo2;
609
610 typedef struct
611 {
612 bfd_byte info[4];
613 bfd_byte konst[4];
614 bfd_byte vaddr[4];
615 } Elf32_External_crinfo;
616
617 typedef struct
618 {
619 bfd_byte info[4];
620 bfd_byte konst[4];
621 } Elf32_External_crinfo2;
622
623 /* These are the constants used to swap the bitfields in a crinfo. */
624
625 #define CRINFO_CTYPE (0x1)
626 #define CRINFO_CTYPE_SH (31)
627 #define CRINFO_RTYPE (0xf)
628 #define CRINFO_RTYPE_SH (27)
629 #define CRINFO_DIST2TO (0xff)
630 #define CRINFO_DIST2TO_SH (19)
631 #define CRINFO_RELVADDR (0x7ffff)
632 #define CRINFO_RELVADDR_SH (0)
633
634 /* A compact relocation info has long (3 words) or short (2 words)
635 formats. A short format doesn't have VADDR field and relvaddr
636 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
637 #define CRF_MIPS_LONG 1
638 #define CRF_MIPS_SHORT 0
639
640 /* There are 4 types of compact relocation at least. The value KONST
641 has different meaning for each type:
642
643 (type) (konst)
644 CT_MIPS_REL32 Address in data
645 CT_MIPS_WORD Address in word (XXX)
646 CT_MIPS_GPHI_LO GP - vaddr
647 CT_MIPS_JMPAD Address to jump
648 */
649
650 #define CRT_MIPS_REL32 0xa
651 #define CRT_MIPS_WORD 0xb
652 #define CRT_MIPS_GPHI_LO 0xc
653 #define CRT_MIPS_JMPAD 0xd
654
655 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
656 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
657 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
658 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
659 \f
660 /* The structure of the runtime procedure descriptor created by the
661 loader for use by the static exception system. */
662
663 typedef struct runtime_pdr {
664 bfd_vma adr; /* Memory address of start of procedure. */
665 long regmask; /* Save register mask. */
666 long regoffset; /* Save register offset. */
667 long fregmask; /* Save floating point register mask. */
668 long fregoffset; /* Save floating point register offset. */
669 long frameoffset; /* Frame size. */
670 short framereg; /* Frame pointer register. */
671 short pcreg; /* Offset or reg of return pc. */
672 long irpss; /* Index into the runtime string table. */
673 long reserved;
674 struct exception_info *exception_info;/* Pointer to exception array. */
675 } RPDR, *pRPDR;
676 #define cbRPDR sizeof (RPDR)
677 #define rpdNil ((pRPDR) 0)
678 \f
679 static struct mips_got_entry *mips_elf_create_local_got_entry
680 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
681 struct mips_elf_link_hash_entry *, int);
682 static bfd_boolean mips_elf_sort_hash_table_f
683 (struct mips_elf_link_hash_entry *, void *);
684 static bfd_vma mips_elf_high
685 (bfd_vma);
686 static bfd_boolean mips_elf_create_dynamic_relocation
687 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
688 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
689 bfd_vma *, asection *);
690 static hashval_t mips_elf_got_entry_hash
691 (const void *);
692 static bfd_vma mips_elf_adjust_gp
693 (bfd *, struct mips_got_info *, bfd *);
694 static struct mips_got_info *mips_elf_got_for_ibfd
695 (struct mips_got_info *, bfd *);
696
697 /* This will be used when we sort the dynamic relocation records. */
698 static bfd *reldyn_sorting_bfd;
699
700 /* True if ABFD is for CPUs with load interlocking that include
701 non-MIPS1 CPUs and R3900. */
702 #define LOAD_INTERLOCKS_P(abfd) \
703 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
704 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
705
706 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
707 This should be safe for all architectures. We enable this predicate
708 for RM9000 for now. */
709 #define JAL_TO_BAL_P(abfd) \
710 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
711
712 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
713 This should be safe for all architectures. We enable this predicate for
714 all CPUs. */
715 #define JALR_TO_BAL_P(abfd) 1
716
717 /* True if ABFD is for CPUs that are faster if JR is converted to B.
718 This should be safe for all architectures. We enable this predicate for
719 all CPUs. */
720 #define JR_TO_B_P(abfd) 1
721
722 /* True if ABFD is a PIC object. */
723 #define PIC_OBJECT_P(abfd) \
724 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
725
726 /* Nonzero if ABFD is using the N32 ABI. */
727 #define ABI_N32_P(abfd) \
728 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
729
730 /* Nonzero if ABFD is using the N64 ABI. */
731 #define ABI_64_P(abfd) \
732 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
733
734 /* Nonzero if ABFD is using NewABI conventions. */
735 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
736
737 /* The IRIX compatibility level we are striving for. */
738 #define IRIX_COMPAT(abfd) \
739 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
740
741 /* Whether we are trying to be compatible with IRIX at all. */
742 #define SGI_COMPAT(abfd) \
743 (IRIX_COMPAT (abfd) != ict_none)
744
745 /* The name of the options section. */
746 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
747 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
748
749 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
750 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
751 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
752 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
753
754 /* Whether the section is readonly. */
755 #define MIPS_ELF_READONLY_SECTION(sec) \
756 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
757 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
758
759 /* The name of the stub section. */
760 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
761
762 /* The size of an external REL relocation. */
763 #define MIPS_ELF_REL_SIZE(abfd) \
764 (get_elf_backend_data (abfd)->s->sizeof_rel)
765
766 /* The size of an external RELA relocation. */
767 #define MIPS_ELF_RELA_SIZE(abfd) \
768 (get_elf_backend_data (abfd)->s->sizeof_rela)
769
770 /* The size of an external dynamic table entry. */
771 #define MIPS_ELF_DYN_SIZE(abfd) \
772 (get_elf_backend_data (abfd)->s->sizeof_dyn)
773
774 /* The size of a GOT entry. */
775 #define MIPS_ELF_GOT_SIZE(abfd) \
776 (get_elf_backend_data (abfd)->s->arch_size / 8)
777
778 /* The size of the .rld_map section. */
779 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
780 (get_elf_backend_data (abfd)->s->arch_size / 8)
781
782 /* The size of a symbol-table entry. */
783 #define MIPS_ELF_SYM_SIZE(abfd) \
784 (get_elf_backend_data (abfd)->s->sizeof_sym)
785
786 /* The default alignment for sections, as a power of two. */
787 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
788 (get_elf_backend_data (abfd)->s->log_file_align)
789
790 /* Get word-sized data. */
791 #define MIPS_ELF_GET_WORD(abfd, ptr) \
792 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
793
794 /* Put out word-sized data. */
795 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
796 (ABI_64_P (abfd) \
797 ? bfd_put_64 (abfd, val, ptr) \
798 : bfd_put_32 (abfd, val, ptr))
799
800 /* The opcode for word-sized loads (LW or LD). */
801 #define MIPS_ELF_LOAD_WORD(abfd) \
802 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
803
804 /* Add a dynamic symbol table-entry. */
805 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
806 _bfd_elf_add_dynamic_entry (info, tag, val)
807
808 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
809 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
810
811 /* The name of the dynamic relocation section. */
812 #define MIPS_ELF_REL_DYN_NAME(INFO) \
813 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
814
815 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
816 from smaller values. Start with zero, widen, *then* decrement. */
817 #define MINUS_ONE (((bfd_vma)0) - 1)
818 #define MINUS_TWO (((bfd_vma)0) - 2)
819
820 /* The value to write into got[1] for SVR4 targets, to identify it is
821 a GNU object. The dynamic linker can then use got[1] to store the
822 module pointer. */
823 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
824 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
825
826 /* The offset of $gp from the beginning of the .got section. */
827 #define ELF_MIPS_GP_OFFSET(INFO) \
828 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
829
830 /* The maximum size of the GOT for it to be addressable using 16-bit
831 offsets from $gp. */
832 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
833
834 /* Instructions which appear in a stub. */
835 #define STUB_LW(abfd) \
836 ((ABI_64_P (abfd) \
837 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
838 : 0x8f998010)) /* lw t9,0x8010(gp) */
839 #define STUB_MOVE(abfd) \
840 ((ABI_64_P (abfd) \
841 ? 0x03e0782d /* daddu t7,ra */ \
842 : 0x03e07821)) /* addu t7,ra */
843 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
844 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
845 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
846 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
847 #define STUB_LI16S(abfd, VAL) \
848 ((ABI_64_P (abfd) \
849 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
850 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
851
852 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
853 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
854
855 /* The name of the dynamic interpreter. This is put in the .interp
856 section. */
857
858 #define ELF_DYNAMIC_INTERPRETER(abfd) \
859 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
860 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
861 : "/usr/lib/libc.so.1")
862
863 #ifdef BFD64
864 #define MNAME(bfd,pre,pos) \
865 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
866 #define ELF_R_SYM(bfd, i) \
867 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
868 #define ELF_R_TYPE(bfd, i) \
869 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
870 #define ELF_R_INFO(bfd, s, t) \
871 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
872 #else
873 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
874 #define ELF_R_SYM(bfd, i) \
875 (ELF32_R_SYM (i))
876 #define ELF_R_TYPE(bfd, i) \
877 (ELF32_R_TYPE (i))
878 #define ELF_R_INFO(bfd, s, t) \
879 (ELF32_R_INFO (s, t))
880 #endif
881 \f
882 /* The mips16 compiler uses a couple of special sections to handle
883 floating point arguments.
884
885 Section names that look like .mips16.fn.FNNAME contain stubs that
886 copy floating point arguments from the fp regs to the gp regs and
887 then jump to FNNAME. If any 32 bit function calls FNNAME, the
888 call should be redirected to the stub instead. If no 32 bit
889 function calls FNNAME, the stub should be discarded. We need to
890 consider any reference to the function, not just a call, because
891 if the address of the function is taken we will need the stub,
892 since the address might be passed to a 32 bit function.
893
894 Section names that look like .mips16.call.FNNAME contain stubs
895 that copy floating point arguments from the gp regs to the fp
896 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
897 then any 16 bit function that calls FNNAME should be redirected
898 to the stub instead. If FNNAME is not a 32 bit function, the
899 stub should be discarded.
900
901 .mips16.call.fp.FNNAME sections are similar, but contain stubs
902 which call FNNAME and then copy the return value from the fp regs
903 to the gp regs. These stubs store the return value in $18 while
904 calling FNNAME; any function which might call one of these stubs
905 must arrange to save $18 around the call. (This case is not
906 needed for 32 bit functions that call 16 bit functions, because
907 16 bit functions always return floating point values in both
908 $f0/$f1 and $2/$3.)
909
910 Note that in all cases FNNAME might be defined statically.
911 Therefore, FNNAME is not used literally. Instead, the relocation
912 information will indicate which symbol the section is for.
913
914 We record any stubs that we find in the symbol table. */
915
916 #define FN_STUB ".mips16.fn."
917 #define CALL_STUB ".mips16.call."
918 #define CALL_FP_STUB ".mips16.call.fp."
919
920 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
921 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
922 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
923 \f
924 /* The format of the first PLT entry in an O32 executable. */
925 static const bfd_vma mips_o32_exec_plt0_entry[] =
926 {
927 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
928 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
929 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
930 0x031cc023, /* subu $24, $24, $28 */
931 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
932 0x0018c082, /* srl $24, $24, 2 */
933 0x0320f809, /* jalr $25 */
934 0x2718fffe /* subu $24, $24, 2 */
935 };
936
937 /* The format of the first PLT entry in an N32 executable. Different
938 because gp ($28) is not available; we use t2 ($14) instead. */
939 static const bfd_vma mips_n32_exec_plt0_entry[] =
940 {
941 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
942 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
943 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
944 0x030ec023, /* subu $24, $24, $14 */
945 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
946 0x0018c082, /* srl $24, $24, 2 */
947 0x0320f809, /* jalr $25 */
948 0x2718fffe /* subu $24, $24, 2 */
949 };
950
951 /* The format of the first PLT entry in an N64 executable. Different
952 from N32 because of the increased size of GOT entries. */
953 static const bfd_vma mips_n64_exec_plt0_entry[] =
954 {
955 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
956 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
957 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
958 0x030ec023, /* subu $24, $24, $14 */
959 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
960 0x0018c0c2, /* srl $24, $24, 3 */
961 0x0320f809, /* jalr $25 */
962 0x2718fffe /* subu $24, $24, 2 */
963 };
964
965 /* The format of subsequent PLT entries. */
966 static const bfd_vma mips_exec_plt_entry[] =
967 {
968 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
969 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
970 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
971 0x03200008 /* jr $25 */
972 };
973
974 /* The format of the first PLT entry in a VxWorks executable. */
975 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
976 {
977 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
978 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
979 0x8f390008, /* lw t9, 8(t9) */
980 0x00000000, /* nop */
981 0x03200008, /* jr t9 */
982 0x00000000 /* nop */
983 };
984
985 /* The format of subsequent PLT entries. */
986 static const bfd_vma mips_vxworks_exec_plt_entry[] =
987 {
988 0x10000000, /* b .PLT_resolver */
989 0x24180000, /* li t8, <pltindex> */
990 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
991 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
992 0x8f390000, /* lw t9, 0(t9) */
993 0x00000000, /* nop */
994 0x03200008, /* jr t9 */
995 0x00000000 /* nop */
996 };
997
998 /* The format of the first PLT entry in a VxWorks shared object. */
999 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1000 {
1001 0x8f990008, /* lw t9, 8(gp) */
1002 0x00000000, /* nop */
1003 0x03200008, /* jr t9 */
1004 0x00000000, /* nop */
1005 0x00000000, /* nop */
1006 0x00000000 /* nop */
1007 };
1008
1009 /* The format of subsequent PLT entries. */
1010 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1011 {
1012 0x10000000, /* b .PLT_resolver */
1013 0x24180000 /* li t8, <pltindex> */
1014 };
1015 \f
1016 /* microMIPS 32-bit opcode helper installer. */
1017
1018 static void
1019 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1020 {
1021 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1022 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1023 }
1024
1025 /* microMIPS 32-bit opcode helper retriever. */
1026
1027 static bfd_vma
1028 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1029 {
1030 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1031 }
1032 \f
1033 /* Look up an entry in a MIPS ELF linker hash table. */
1034
1035 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1036 ((struct mips_elf_link_hash_entry *) \
1037 elf_link_hash_lookup (&(table)->root, (string), (create), \
1038 (copy), (follow)))
1039
1040 /* Traverse a MIPS ELF linker hash table. */
1041
1042 #define mips_elf_link_hash_traverse(table, func, info) \
1043 (elf_link_hash_traverse \
1044 (&(table)->root, \
1045 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1046 (info)))
1047
1048 /* Find the base offsets for thread-local storage in this object,
1049 for GD/LD and IE/LE respectively. */
1050
1051 #define TP_OFFSET 0x7000
1052 #define DTP_OFFSET 0x8000
1053
1054 static bfd_vma
1055 dtprel_base (struct bfd_link_info *info)
1056 {
1057 /* If tls_sec is NULL, we should have signalled an error already. */
1058 if (elf_hash_table (info)->tls_sec == NULL)
1059 return 0;
1060 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1061 }
1062
1063 static bfd_vma
1064 tprel_base (struct bfd_link_info *info)
1065 {
1066 /* If tls_sec is NULL, we should have signalled an error already. */
1067 if (elf_hash_table (info)->tls_sec == NULL)
1068 return 0;
1069 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1070 }
1071
1072 /* Create an entry in a MIPS ELF linker hash table. */
1073
1074 static struct bfd_hash_entry *
1075 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1076 struct bfd_hash_table *table, const char *string)
1077 {
1078 struct mips_elf_link_hash_entry *ret =
1079 (struct mips_elf_link_hash_entry *) entry;
1080
1081 /* Allocate the structure if it has not already been allocated by a
1082 subclass. */
1083 if (ret == NULL)
1084 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1085 if (ret == NULL)
1086 return (struct bfd_hash_entry *) ret;
1087
1088 /* Call the allocation method of the superclass. */
1089 ret = ((struct mips_elf_link_hash_entry *)
1090 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1091 table, string));
1092 if (ret != NULL)
1093 {
1094 /* Set local fields. */
1095 memset (&ret->esym, 0, sizeof (EXTR));
1096 /* We use -2 as a marker to indicate that the information has
1097 not been set. -1 means there is no associated ifd. */
1098 ret->esym.ifd = -2;
1099 ret->la25_stub = 0;
1100 ret->possibly_dynamic_relocs = 0;
1101 ret->fn_stub = NULL;
1102 ret->call_stub = NULL;
1103 ret->call_fp_stub = NULL;
1104 ret->tls_type = GOT_NORMAL;
1105 ret->global_got_area = GGA_NONE;
1106 ret->got_only_for_calls = TRUE;
1107 ret->readonly_reloc = FALSE;
1108 ret->has_static_relocs = FALSE;
1109 ret->no_fn_stub = FALSE;
1110 ret->need_fn_stub = FALSE;
1111 ret->has_nonpic_branches = FALSE;
1112 ret->needs_lazy_stub = FALSE;
1113 }
1114
1115 return (struct bfd_hash_entry *) ret;
1116 }
1117
1118 bfd_boolean
1119 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1120 {
1121 if (!sec->used_by_bfd)
1122 {
1123 struct _mips_elf_section_data *sdata;
1124 bfd_size_type amt = sizeof (*sdata);
1125
1126 sdata = bfd_zalloc (abfd, amt);
1127 if (sdata == NULL)
1128 return FALSE;
1129 sec->used_by_bfd = sdata;
1130 }
1131
1132 return _bfd_elf_new_section_hook (abfd, sec);
1133 }
1134 \f
1135 /* Read ECOFF debugging information from a .mdebug section into a
1136 ecoff_debug_info structure. */
1137
1138 bfd_boolean
1139 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1140 struct ecoff_debug_info *debug)
1141 {
1142 HDRR *symhdr;
1143 const struct ecoff_debug_swap *swap;
1144 char *ext_hdr;
1145
1146 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1147 memset (debug, 0, sizeof (*debug));
1148
1149 ext_hdr = bfd_malloc (swap->external_hdr_size);
1150 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1151 goto error_return;
1152
1153 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1154 swap->external_hdr_size))
1155 goto error_return;
1156
1157 symhdr = &debug->symbolic_header;
1158 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1159
1160 /* The symbolic header contains absolute file offsets and sizes to
1161 read. */
1162 #define READ(ptr, offset, count, size, type) \
1163 if (symhdr->count == 0) \
1164 debug->ptr = NULL; \
1165 else \
1166 { \
1167 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1168 debug->ptr = bfd_malloc (amt); \
1169 if (debug->ptr == NULL) \
1170 goto error_return; \
1171 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1172 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1173 goto error_return; \
1174 }
1175
1176 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1177 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1178 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1179 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1180 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1181 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1182 union aux_ext *);
1183 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1184 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1185 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1186 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1187 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1188 #undef READ
1189
1190 debug->fdr = NULL;
1191
1192 return TRUE;
1193
1194 error_return:
1195 if (ext_hdr != NULL)
1196 free (ext_hdr);
1197 if (debug->line != NULL)
1198 free (debug->line);
1199 if (debug->external_dnr != NULL)
1200 free (debug->external_dnr);
1201 if (debug->external_pdr != NULL)
1202 free (debug->external_pdr);
1203 if (debug->external_sym != NULL)
1204 free (debug->external_sym);
1205 if (debug->external_opt != NULL)
1206 free (debug->external_opt);
1207 if (debug->external_aux != NULL)
1208 free (debug->external_aux);
1209 if (debug->ss != NULL)
1210 free (debug->ss);
1211 if (debug->ssext != NULL)
1212 free (debug->ssext);
1213 if (debug->external_fdr != NULL)
1214 free (debug->external_fdr);
1215 if (debug->external_rfd != NULL)
1216 free (debug->external_rfd);
1217 if (debug->external_ext != NULL)
1218 free (debug->external_ext);
1219 return FALSE;
1220 }
1221 \f
1222 /* Swap RPDR (runtime procedure table entry) for output. */
1223
1224 static void
1225 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1226 {
1227 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1228 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1229 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1230 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1231 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1232 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1233
1234 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1235 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1236
1237 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1238 }
1239
1240 /* Create a runtime procedure table from the .mdebug section. */
1241
1242 static bfd_boolean
1243 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1244 struct bfd_link_info *info, asection *s,
1245 struct ecoff_debug_info *debug)
1246 {
1247 const struct ecoff_debug_swap *swap;
1248 HDRR *hdr = &debug->symbolic_header;
1249 RPDR *rpdr, *rp;
1250 struct rpdr_ext *erp;
1251 void *rtproc;
1252 struct pdr_ext *epdr;
1253 struct sym_ext *esym;
1254 char *ss, **sv;
1255 char *str;
1256 bfd_size_type size;
1257 bfd_size_type count;
1258 unsigned long sindex;
1259 unsigned long i;
1260 PDR pdr;
1261 SYMR sym;
1262 const char *no_name_func = _("static procedure (no name)");
1263
1264 epdr = NULL;
1265 rpdr = NULL;
1266 esym = NULL;
1267 ss = NULL;
1268 sv = NULL;
1269
1270 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1271
1272 sindex = strlen (no_name_func) + 1;
1273 count = hdr->ipdMax;
1274 if (count > 0)
1275 {
1276 size = swap->external_pdr_size;
1277
1278 epdr = bfd_malloc (size * count);
1279 if (epdr == NULL)
1280 goto error_return;
1281
1282 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1283 goto error_return;
1284
1285 size = sizeof (RPDR);
1286 rp = rpdr = bfd_malloc (size * count);
1287 if (rpdr == NULL)
1288 goto error_return;
1289
1290 size = sizeof (char *);
1291 sv = bfd_malloc (size * count);
1292 if (sv == NULL)
1293 goto error_return;
1294
1295 count = hdr->isymMax;
1296 size = swap->external_sym_size;
1297 esym = bfd_malloc (size * count);
1298 if (esym == NULL)
1299 goto error_return;
1300
1301 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1302 goto error_return;
1303
1304 count = hdr->issMax;
1305 ss = bfd_malloc (count);
1306 if (ss == NULL)
1307 goto error_return;
1308 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1309 goto error_return;
1310
1311 count = hdr->ipdMax;
1312 for (i = 0; i < (unsigned long) count; i++, rp++)
1313 {
1314 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1315 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1316 rp->adr = sym.value;
1317 rp->regmask = pdr.regmask;
1318 rp->regoffset = pdr.regoffset;
1319 rp->fregmask = pdr.fregmask;
1320 rp->fregoffset = pdr.fregoffset;
1321 rp->frameoffset = pdr.frameoffset;
1322 rp->framereg = pdr.framereg;
1323 rp->pcreg = pdr.pcreg;
1324 rp->irpss = sindex;
1325 sv[i] = ss + sym.iss;
1326 sindex += strlen (sv[i]) + 1;
1327 }
1328 }
1329
1330 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1331 size = BFD_ALIGN (size, 16);
1332 rtproc = bfd_alloc (abfd, size);
1333 if (rtproc == NULL)
1334 {
1335 mips_elf_hash_table (info)->procedure_count = 0;
1336 goto error_return;
1337 }
1338
1339 mips_elf_hash_table (info)->procedure_count = count + 2;
1340
1341 erp = rtproc;
1342 memset (erp, 0, sizeof (struct rpdr_ext));
1343 erp++;
1344 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1345 strcpy (str, no_name_func);
1346 str += strlen (no_name_func) + 1;
1347 for (i = 0; i < count; i++)
1348 {
1349 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1350 strcpy (str, sv[i]);
1351 str += strlen (sv[i]) + 1;
1352 }
1353 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1354
1355 /* Set the size and contents of .rtproc section. */
1356 s->size = size;
1357 s->contents = rtproc;
1358
1359 /* Skip this section later on (I don't think this currently
1360 matters, but someday it might). */
1361 s->map_head.link_order = NULL;
1362
1363 if (epdr != NULL)
1364 free (epdr);
1365 if (rpdr != NULL)
1366 free (rpdr);
1367 if (esym != NULL)
1368 free (esym);
1369 if (ss != NULL)
1370 free (ss);
1371 if (sv != NULL)
1372 free (sv);
1373
1374 return TRUE;
1375
1376 error_return:
1377 if (epdr != NULL)
1378 free (epdr);
1379 if (rpdr != NULL)
1380 free (rpdr);
1381 if (esym != NULL)
1382 free (esym);
1383 if (ss != NULL)
1384 free (ss);
1385 if (sv != NULL)
1386 free (sv);
1387 return FALSE;
1388 }
1389 \f
1390 /* We're going to create a stub for H. Create a symbol for the stub's
1391 value and size, to help make the disassembly easier to read. */
1392
1393 static bfd_boolean
1394 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1395 struct mips_elf_link_hash_entry *h,
1396 const char *prefix, asection *s, bfd_vma value,
1397 bfd_vma size)
1398 {
1399 struct bfd_link_hash_entry *bh;
1400 struct elf_link_hash_entry *elfh;
1401 const char *name;
1402
1403 if (ELF_ST_IS_MICROMIPS (h->root.other))
1404 value |= 1;
1405
1406 /* Create a new symbol. */
1407 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1408 bh = NULL;
1409 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1410 BSF_LOCAL, s, value, NULL,
1411 TRUE, FALSE, &bh))
1412 return FALSE;
1413
1414 /* Make it a local function. */
1415 elfh = (struct elf_link_hash_entry *) bh;
1416 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1417 elfh->size = size;
1418 elfh->forced_local = 1;
1419 return TRUE;
1420 }
1421
1422 /* We're about to redefine H. Create a symbol to represent H's
1423 current value and size, to help make the disassembly easier
1424 to read. */
1425
1426 static bfd_boolean
1427 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1428 struct mips_elf_link_hash_entry *h,
1429 const char *prefix)
1430 {
1431 struct bfd_link_hash_entry *bh;
1432 struct elf_link_hash_entry *elfh;
1433 const char *name;
1434 asection *s;
1435 bfd_vma value;
1436
1437 /* Read the symbol's value. */
1438 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1439 || h->root.root.type == bfd_link_hash_defweak);
1440 s = h->root.root.u.def.section;
1441 value = h->root.root.u.def.value;
1442
1443 /* Create a new symbol. */
1444 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1445 bh = NULL;
1446 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1447 BSF_LOCAL, s, value, NULL,
1448 TRUE, FALSE, &bh))
1449 return FALSE;
1450
1451 /* Make it local and copy the other attributes from H. */
1452 elfh = (struct elf_link_hash_entry *) bh;
1453 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1454 elfh->other = h->root.other;
1455 elfh->size = h->root.size;
1456 elfh->forced_local = 1;
1457 return TRUE;
1458 }
1459
1460 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1461 function rather than to a hard-float stub. */
1462
1463 static bfd_boolean
1464 section_allows_mips16_refs_p (asection *section)
1465 {
1466 const char *name;
1467
1468 name = bfd_get_section_name (section->owner, section);
1469 return (FN_STUB_P (name)
1470 || CALL_STUB_P (name)
1471 || CALL_FP_STUB_P (name)
1472 || strcmp (name, ".pdr") == 0);
1473 }
1474
1475 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1476 stub section of some kind. Return the R_SYMNDX of the target
1477 function, or 0 if we can't decide which function that is. */
1478
1479 static unsigned long
1480 mips16_stub_symndx (const struct elf_backend_data *bed,
1481 asection *sec ATTRIBUTE_UNUSED,
1482 const Elf_Internal_Rela *relocs,
1483 const Elf_Internal_Rela *relend)
1484 {
1485 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1486 const Elf_Internal_Rela *rel;
1487
1488 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1489 one in a compound relocation. */
1490 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1491 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1492 return ELF_R_SYM (sec->owner, rel->r_info);
1493
1494 /* Otherwise trust the first relocation, whatever its kind. This is
1495 the traditional behavior. */
1496 if (relocs < relend)
1497 return ELF_R_SYM (sec->owner, relocs->r_info);
1498
1499 return 0;
1500 }
1501
1502 /* Check the mips16 stubs for a particular symbol, and see if we can
1503 discard them. */
1504
1505 static void
1506 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1507 struct mips_elf_link_hash_entry *h)
1508 {
1509 /* Dynamic symbols must use the standard call interface, in case other
1510 objects try to call them. */
1511 if (h->fn_stub != NULL
1512 && h->root.dynindx != -1)
1513 {
1514 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1515 h->need_fn_stub = TRUE;
1516 }
1517
1518 if (h->fn_stub != NULL
1519 && ! h->need_fn_stub)
1520 {
1521 /* We don't need the fn_stub; the only references to this symbol
1522 are 16 bit calls. Clobber the size to 0 to prevent it from
1523 being included in the link. */
1524 h->fn_stub->size = 0;
1525 h->fn_stub->flags &= ~SEC_RELOC;
1526 h->fn_stub->reloc_count = 0;
1527 h->fn_stub->flags |= SEC_EXCLUDE;
1528 }
1529
1530 if (h->call_stub != NULL
1531 && ELF_ST_IS_MIPS16 (h->root.other))
1532 {
1533 /* We don't need the call_stub; this is a 16 bit function, so
1534 calls from other 16 bit functions are OK. Clobber the size
1535 to 0 to prevent it from being included in the link. */
1536 h->call_stub->size = 0;
1537 h->call_stub->flags &= ~SEC_RELOC;
1538 h->call_stub->reloc_count = 0;
1539 h->call_stub->flags |= SEC_EXCLUDE;
1540 }
1541
1542 if (h->call_fp_stub != NULL
1543 && ELF_ST_IS_MIPS16 (h->root.other))
1544 {
1545 /* We don't need the call_stub; this is a 16 bit function, so
1546 calls from other 16 bit functions are OK. Clobber the size
1547 to 0 to prevent it from being included in the link. */
1548 h->call_fp_stub->size = 0;
1549 h->call_fp_stub->flags &= ~SEC_RELOC;
1550 h->call_fp_stub->reloc_count = 0;
1551 h->call_fp_stub->flags |= SEC_EXCLUDE;
1552 }
1553 }
1554
1555 /* Hashtable callbacks for mips_elf_la25_stubs. */
1556
1557 static hashval_t
1558 mips_elf_la25_stub_hash (const void *entry_)
1559 {
1560 const struct mips_elf_la25_stub *entry;
1561
1562 entry = (struct mips_elf_la25_stub *) entry_;
1563 return entry->h->root.root.u.def.section->id
1564 + entry->h->root.root.u.def.value;
1565 }
1566
1567 static int
1568 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1569 {
1570 const struct mips_elf_la25_stub *entry1, *entry2;
1571
1572 entry1 = (struct mips_elf_la25_stub *) entry1_;
1573 entry2 = (struct mips_elf_la25_stub *) entry2_;
1574 return ((entry1->h->root.root.u.def.section
1575 == entry2->h->root.root.u.def.section)
1576 && (entry1->h->root.root.u.def.value
1577 == entry2->h->root.root.u.def.value));
1578 }
1579
1580 /* Called by the linker to set up the la25 stub-creation code. FN is
1581 the linker's implementation of add_stub_function. Return true on
1582 success. */
1583
1584 bfd_boolean
1585 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1586 asection *(*fn) (const char *, asection *,
1587 asection *))
1588 {
1589 struct mips_elf_link_hash_table *htab;
1590
1591 htab = mips_elf_hash_table (info);
1592 if (htab == NULL)
1593 return FALSE;
1594
1595 htab->add_stub_section = fn;
1596 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1597 mips_elf_la25_stub_eq, NULL);
1598 if (htab->la25_stubs == NULL)
1599 return FALSE;
1600
1601 return TRUE;
1602 }
1603
1604 /* Return true if H is a locally-defined PIC function, in the sense
1605 that it or its fn_stub might need $25 to be valid on entry.
1606 Note that MIPS16 functions set up $gp using PC-relative instructions,
1607 so they themselves never need $25 to be valid. Only non-MIPS16
1608 entry points are of interest here. */
1609
1610 static bfd_boolean
1611 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1612 {
1613 return ((h->root.root.type == bfd_link_hash_defined
1614 || h->root.root.type == bfd_link_hash_defweak)
1615 && h->root.def_regular
1616 && !bfd_is_abs_section (h->root.root.u.def.section)
1617 && (!ELF_ST_IS_MIPS16 (h->root.other)
1618 || (h->fn_stub && h->need_fn_stub))
1619 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1620 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1621 }
1622
1623 /* Set *SEC to the input section that contains the target of STUB.
1624 Return the offset of the target from the start of that section. */
1625
1626 static bfd_vma
1627 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1628 asection **sec)
1629 {
1630 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1631 {
1632 BFD_ASSERT (stub->h->need_fn_stub);
1633 *sec = stub->h->fn_stub;
1634 return 0;
1635 }
1636 else
1637 {
1638 *sec = stub->h->root.root.u.def.section;
1639 return stub->h->root.root.u.def.value;
1640 }
1641 }
1642
1643 /* STUB describes an la25 stub that we have decided to implement
1644 by inserting an LUI/ADDIU pair before the target function.
1645 Create the section and redirect the function symbol to it. */
1646
1647 static bfd_boolean
1648 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1649 struct bfd_link_info *info)
1650 {
1651 struct mips_elf_link_hash_table *htab;
1652 char *name;
1653 asection *s, *input_section;
1654 unsigned int align;
1655
1656 htab = mips_elf_hash_table (info);
1657 if (htab == NULL)
1658 return FALSE;
1659
1660 /* Create a unique name for the new section. */
1661 name = bfd_malloc (11 + sizeof (".text.stub."));
1662 if (name == NULL)
1663 return FALSE;
1664 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1665
1666 /* Create the section. */
1667 mips_elf_get_la25_target (stub, &input_section);
1668 s = htab->add_stub_section (name, input_section,
1669 input_section->output_section);
1670 if (s == NULL)
1671 return FALSE;
1672
1673 /* Make sure that any padding goes before the stub. */
1674 align = input_section->alignment_power;
1675 if (!bfd_set_section_alignment (s->owner, s, align))
1676 return FALSE;
1677 if (align > 3)
1678 s->size = (1 << align) - 8;
1679
1680 /* Create a symbol for the stub. */
1681 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1682 stub->stub_section = s;
1683 stub->offset = s->size;
1684
1685 /* Allocate room for it. */
1686 s->size += 8;
1687 return TRUE;
1688 }
1689
1690 /* STUB describes an la25 stub that we have decided to implement
1691 with a separate trampoline. Allocate room for it and redirect
1692 the function symbol to it. */
1693
1694 static bfd_boolean
1695 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1696 struct bfd_link_info *info)
1697 {
1698 struct mips_elf_link_hash_table *htab;
1699 asection *s;
1700
1701 htab = mips_elf_hash_table (info);
1702 if (htab == NULL)
1703 return FALSE;
1704
1705 /* Create a trampoline section, if we haven't already. */
1706 s = htab->strampoline;
1707 if (s == NULL)
1708 {
1709 asection *input_section = stub->h->root.root.u.def.section;
1710 s = htab->add_stub_section (".text", NULL,
1711 input_section->output_section);
1712 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1713 return FALSE;
1714 htab->strampoline = s;
1715 }
1716
1717 /* Create a symbol for the stub. */
1718 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1719 stub->stub_section = s;
1720 stub->offset = s->size;
1721
1722 /* Allocate room for it. */
1723 s->size += 16;
1724 return TRUE;
1725 }
1726
1727 /* H describes a symbol that needs an la25 stub. Make sure that an
1728 appropriate stub exists and point H at it. */
1729
1730 static bfd_boolean
1731 mips_elf_add_la25_stub (struct bfd_link_info *info,
1732 struct mips_elf_link_hash_entry *h)
1733 {
1734 struct mips_elf_link_hash_table *htab;
1735 struct mips_elf_la25_stub search, *stub;
1736 bfd_boolean use_trampoline_p;
1737 asection *s;
1738 bfd_vma value;
1739 void **slot;
1740
1741 /* Describe the stub we want. */
1742 search.stub_section = NULL;
1743 search.offset = 0;
1744 search.h = h;
1745
1746 /* See if we've already created an equivalent stub. */
1747 htab = mips_elf_hash_table (info);
1748 if (htab == NULL)
1749 return FALSE;
1750
1751 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1752 if (slot == NULL)
1753 return FALSE;
1754
1755 stub = (struct mips_elf_la25_stub *) *slot;
1756 if (stub != NULL)
1757 {
1758 /* We can reuse the existing stub. */
1759 h->la25_stub = stub;
1760 return TRUE;
1761 }
1762
1763 /* Create a permanent copy of ENTRY and add it to the hash table. */
1764 stub = bfd_malloc (sizeof (search));
1765 if (stub == NULL)
1766 return FALSE;
1767 *stub = search;
1768 *slot = stub;
1769
1770 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1771 of the section and if we would need no more than 2 nops. */
1772 value = mips_elf_get_la25_target (stub, &s);
1773 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1774
1775 h->la25_stub = stub;
1776 return (use_trampoline_p
1777 ? mips_elf_add_la25_trampoline (stub, info)
1778 : mips_elf_add_la25_intro (stub, info));
1779 }
1780
1781 /* A mips_elf_link_hash_traverse callback that is called before sizing
1782 sections. DATA points to a mips_htab_traverse_info structure. */
1783
1784 static bfd_boolean
1785 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1786 {
1787 struct mips_htab_traverse_info *hti;
1788
1789 hti = (struct mips_htab_traverse_info *) data;
1790 if (!hti->info->relocatable)
1791 mips_elf_check_mips16_stubs (hti->info, h);
1792
1793 if (mips_elf_local_pic_function_p (h))
1794 {
1795 /* PR 12845: If H is in a section that has been garbage
1796 collected it will have its output section set to *ABS*. */
1797 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1798 return TRUE;
1799
1800 /* H is a function that might need $25 to be valid on entry.
1801 If we're creating a non-PIC relocatable object, mark H as
1802 being PIC. If we're creating a non-relocatable object with
1803 non-PIC branches and jumps to H, make sure that H has an la25
1804 stub. */
1805 if (hti->info->relocatable)
1806 {
1807 if (!PIC_OBJECT_P (hti->output_bfd))
1808 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
1809 }
1810 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
1811 {
1812 hti->error = TRUE;
1813 return FALSE;
1814 }
1815 }
1816 return TRUE;
1817 }
1818 \f
1819 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1820 Most mips16 instructions are 16 bits, but these instructions
1821 are 32 bits.
1822
1823 The format of these instructions is:
1824
1825 +--------------+--------------------------------+
1826 | JALX | X| Imm 20:16 | Imm 25:21 |
1827 +--------------+--------------------------------+
1828 | Immediate 15:0 |
1829 +-----------------------------------------------+
1830
1831 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1832 Note that the immediate value in the first word is swapped.
1833
1834 When producing a relocatable object file, R_MIPS16_26 is
1835 handled mostly like R_MIPS_26. In particular, the addend is
1836 stored as a straight 26-bit value in a 32-bit instruction.
1837 (gas makes life simpler for itself by never adjusting a
1838 R_MIPS16_26 reloc to be against a section, so the addend is
1839 always zero). However, the 32 bit instruction is stored as 2
1840 16-bit values, rather than a single 32-bit value. In a
1841 big-endian file, the result is the same; in a little-endian
1842 file, the two 16-bit halves of the 32 bit value are swapped.
1843 This is so that a disassembler can recognize the jal
1844 instruction.
1845
1846 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1847 instruction stored as two 16-bit values. The addend A is the
1848 contents of the targ26 field. The calculation is the same as
1849 R_MIPS_26. When storing the calculated value, reorder the
1850 immediate value as shown above, and don't forget to store the
1851 value as two 16-bit values.
1852
1853 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1854 defined as
1855
1856 big-endian:
1857 +--------+----------------------+
1858 | | |
1859 | | targ26-16 |
1860 |31 26|25 0|
1861 +--------+----------------------+
1862
1863 little-endian:
1864 +----------+------+-------------+
1865 | | | |
1866 | sub1 | | sub2 |
1867 |0 9|10 15|16 31|
1868 +----------+--------------------+
1869 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1870 ((sub1 << 16) | sub2)).
1871
1872 When producing a relocatable object file, the calculation is
1873 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1874 When producing a fully linked file, the calculation is
1875 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1876 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1877
1878 The table below lists the other MIPS16 instruction relocations.
1879 Each one is calculated in the same way as the non-MIPS16 relocation
1880 given on the right, but using the extended MIPS16 layout of 16-bit
1881 immediate fields:
1882
1883 R_MIPS16_GPREL R_MIPS_GPREL16
1884 R_MIPS16_GOT16 R_MIPS_GOT16
1885 R_MIPS16_CALL16 R_MIPS_CALL16
1886 R_MIPS16_HI16 R_MIPS_HI16
1887 R_MIPS16_LO16 R_MIPS_LO16
1888
1889 A typical instruction will have a format like this:
1890
1891 +--------------+--------------------------------+
1892 | EXTEND | Imm 10:5 | Imm 15:11 |
1893 +--------------+--------------------------------+
1894 | Major | rx | ry | Imm 4:0 |
1895 +--------------+--------------------------------+
1896
1897 EXTEND is the five bit value 11110. Major is the instruction
1898 opcode.
1899
1900 All we need to do here is shuffle the bits appropriately.
1901 As above, the two 16-bit halves must be swapped on a
1902 little-endian system. */
1903
1904 static inline bfd_boolean
1905 mips16_reloc_p (int r_type)
1906 {
1907 switch (r_type)
1908 {
1909 case R_MIPS16_26:
1910 case R_MIPS16_GPREL:
1911 case R_MIPS16_GOT16:
1912 case R_MIPS16_CALL16:
1913 case R_MIPS16_HI16:
1914 case R_MIPS16_LO16:
1915 case R_MIPS16_TLS_GD:
1916 case R_MIPS16_TLS_LDM:
1917 case R_MIPS16_TLS_DTPREL_HI16:
1918 case R_MIPS16_TLS_DTPREL_LO16:
1919 case R_MIPS16_TLS_GOTTPREL:
1920 case R_MIPS16_TLS_TPREL_HI16:
1921 case R_MIPS16_TLS_TPREL_LO16:
1922 return TRUE;
1923
1924 default:
1925 return FALSE;
1926 }
1927 }
1928
1929 /* Check if a microMIPS reloc. */
1930
1931 static inline bfd_boolean
1932 micromips_reloc_p (unsigned int r_type)
1933 {
1934 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
1935 }
1936
1937 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
1938 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
1939 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
1940
1941 static inline bfd_boolean
1942 micromips_reloc_shuffle_p (unsigned int r_type)
1943 {
1944 return (micromips_reloc_p (r_type)
1945 && r_type != R_MICROMIPS_PC7_S1
1946 && r_type != R_MICROMIPS_PC10_S1);
1947 }
1948
1949 static inline bfd_boolean
1950 got16_reloc_p (int r_type)
1951 {
1952 return (r_type == R_MIPS_GOT16
1953 || r_type == R_MIPS16_GOT16
1954 || r_type == R_MICROMIPS_GOT16);
1955 }
1956
1957 static inline bfd_boolean
1958 call16_reloc_p (int r_type)
1959 {
1960 return (r_type == R_MIPS_CALL16
1961 || r_type == R_MIPS16_CALL16
1962 || r_type == R_MICROMIPS_CALL16);
1963 }
1964
1965 static inline bfd_boolean
1966 got_disp_reloc_p (unsigned int r_type)
1967 {
1968 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
1969 }
1970
1971 static inline bfd_boolean
1972 got_page_reloc_p (unsigned int r_type)
1973 {
1974 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
1975 }
1976
1977 static inline bfd_boolean
1978 got_ofst_reloc_p (unsigned int r_type)
1979 {
1980 return r_type == R_MIPS_GOT_OFST || r_type == R_MICROMIPS_GOT_OFST;
1981 }
1982
1983 static inline bfd_boolean
1984 got_hi16_reloc_p (unsigned int r_type)
1985 {
1986 return r_type == R_MIPS_GOT_HI16 || r_type == R_MICROMIPS_GOT_HI16;
1987 }
1988
1989 static inline bfd_boolean
1990 got_lo16_reloc_p (unsigned int r_type)
1991 {
1992 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
1993 }
1994
1995 static inline bfd_boolean
1996 call_hi16_reloc_p (unsigned int r_type)
1997 {
1998 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
1999 }
2000
2001 static inline bfd_boolean
2002 call_lo16_reloc_p (unsigned int r_type)
2003 {
2004 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2005 }
2006
2007 static inline bfd_boolean
2008 hi16_reloc_p (int r_type)
2009 {
2010 return (r_type == R_MIPS_HI16
2011 || r_type == R_MIPS16_HI16
2012 || r_type == R_MICROMIPS_HI16);
2013 }
2014
2015 static inline bfd_boolean
2016 lo16_reloc_p (int r_type)
2017 {
2018 return (r_type == R_MIPS_LO16
2019 || r_type == R_MIPS16_LO16
2020 || r_type == R_MICROMIPS_LO16);
2021 }
2022
2023 static inline bfd_boolean
2024 mips16_call_reloc_p (int r_type)
2025 {
2026 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2027 }
2028
2029 static inline bfd_boolean
2030 jal_reloc_p (int r_type)
2031 {
2032 return (r_type == R_MIPS_26
2033 || r_type == R_MIPS16_26
2034 || r_type == R_MICROMIPS_26_S1);
2035 }
2036
2037 static inline bfd_boolean
2038 micromips_branch_reloc_p (int r_type)
2039 {
2040 return (r_type == R_MICROMIPS_26_S1
2041 || r_type == R_MICROMIPS_PC16_S1
2042 || r_type == R_MICROMIPS_PC10_S1
2043 || r_type == R_MICROMIPS_PC7_S1);
2044 }
2045
2046 static inline bfd_boolean
2047 tls_gd_reloc_p (unsigned int r_type)
2048 {
2049 return (r_type == R_MIPS_TLS_GD
2050 || r_type == R_MIPS16_TLS_GD
2051 || r_type == R_MICROMIPS_TLS_GD);
2052 }
2053
2054 static inline bfd_boolean
2055 tls_ldm_reloc_p (unsigned int r_type)
2056 {
2057 return (r_type == R_MIPS_TLS_LDM
2058 || r_type == R_MIPS16_TLS_LDM
2059 || r_type == R_MICROMIPS_TLS_LDM);
2060 }
2061
2062 static inline bfd_boolean
2063 tls_gottprel_reloc_p (unsigned int r_type)
2064 {
2065 return (r_type == R_MIPS_TLS_GOTTPREL
2066 || r_type == R_MIPS16_TLS_GOTTPREL
2067 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2068 }
2069
2070 void
2071 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2072 bfd_boolean jal_shuffle, bfd_byte *data)
2073 {
2074 bfd_vma first, second, val;
2075
2076 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2077 return;
2078
2079 /* Pick up the first and second halfwords of the instruction. */
2080 first = bfd_get_16 (abfd, data);
2081 second = bfd_get_16 (abfd, data + 2);
2082 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2083 val = first << 16 | second;
2084 else if (r_type != R_MIPS16_26)
2085 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2086 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2087 else
2088 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2089 | ((first & 0x1f) << 21) | second);
2090 bfd_put_32 (abfd, val, data);
2091 }
2092
2093 void
2094 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2095 bfd_boolean jal_shuffle, bfd_byte *data)
2096 {
2097 bfd_vma first, second, val;
2098
2099 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2100 return;
2101
2102 val = bfd_get_32 (abfd, data);
2103 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2104 {
2105 second = val & 0xffff;
2106 first = val >> 16;
2107 }
2108 else if (r_type != R_MIPS16_26)
2109 {
2110 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2111 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2112 }
2113 else
2114 {
2115 second = val & 0xffff;
2116 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2117 | ((val >> 21) & 0x1f);
2118 }
2119 bfd_put_16 (abfd, second, data + 2);
2120 bfd_put_16 (abfd, first, data);
2121 }
2122
2123 bfd_reloc_status_type
2124 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2125 arelent *reloc_entry, asection *input_section,
2126 bfd_boolean relocatable, void *data, bfd_vma gp)
2127 {
2128 bfd_vma relocation;
2129 bfd_signed_vma val;
2130 bfd_reloc_status_type status;
2131
2132 if (bfd_is_com_section (symbol->section))
2133 relocation = 0;
2134 else
2135 relocation = symbol->value;
2136
2137 relocation += symbol->section->output_section->vma;
2138 relocation += symbol->section->output_offset;
2139
2140 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2141 return bfd_reloc_outofrange;
2142
2143 /* Set val to the offset into the section or symbol. */
2144 val = reloc_entry->addend;
2145
2146 _bfd_mips_elf_sign_extend (val, 16);
2147
2148 /* Adjust val for the final section location and GP value. If we
2149 are producing relocatable output, we don't want to do this for
2150 an external symbol. */
2151 if (! relocatable
2152 || (symbol->flags & BSF_SECTION_SYM) != 0)
2153 val += relocation - gp;
2154
2155 if (reloc_entry->howto->partial_inplace)
2156 {
2157 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2158 (bfd_byte *) data
2159 + reloc_entry->address);
2160 if (status != bfd_reloc_ok)
2161 return status;
2162 }
2163 else
2164 reloc_entry->addend = val;
2165
2166 if (relocatable)
2167 reloc_entry->address += input_section->output_offset;
2168
2169 return bfd_reloc_ok;
2170 }
2171
2172 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2173 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2174 that contains the relocation field and DATA points to the start of
2175 INPUT_SECTION. */
2176
2177 struct mips_hi16
2178 {
2179 struct mips_hi16 *next;
2180 bfd_byte *data;
2181 asection *input_section;
2182 arelent rel;
2183 };
2184
2185 /* FIXME: This should not be a static variable. */
2186
2187 static struct mips_hi16 *mips_hi16_list;
2188
2189 /* A howto special_function for REL *HI16 relocations. We can only
2190 calculate the correct value once we've seen the partnering
2191 *LO16 relocation, so just save the information for later.
2192
2193 The ABI requires that the *LO16 immediately follow the *HI16.
2194 However, as a GNU extension, we permit an arbitrary number of
2195 *HI16s to be associated with a single *LO16. This significantly
2196 simplies the relocation handling in gcc. */
2197
2198 bfd_reloc_status_type
2199 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2200 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2201 asection *input_section, bfd *output_bfd,
2202 char **error_message ATTRIBUTE_UNUSED)
2203 {
2204 struct mips_hi16 *n;
2205
2206 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2207 return bfd_reloc_outofrange;
2208
2209 n = bfd_malloc (sizeof *n);
2210 if (n == NULL)
2211 return bfd_reloc_outofrange;
2212
2213 n->next = mips_hi16_list;
2214 n->data = data;
2215 n->input_section = input_section;
2216 n->rel = *reloc_entry;
2217 mips_hi16_list = n;
2218
2219 if (output_bfd != NULL)
2220 reloc_entry->address += input_section->output_offset;
2221
2222 return bfd_reloc_ok;
2223 }
2224
2225 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2226 like any other 16-bit relocation when applied to global symbols, but is
2227 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2228
2229 bfd_reloc_status_type
2230 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2231 void *data, asection *input_section,
2232 bfd *output_bfd, char **error_message)
2233 {
2234 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2235 || bfd_is_und_section (bfd_get_section (symbol))
2236 || bfd_is_com_section (bfd_get_section (symbol)))
2237 /* The relocation is against a global symbol. */
2238 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2239 input_section, output_bfd,
2240 error_message);
2241
2242 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2243 input_section, output_bfd, error_message);
2244 }
2245
2246 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2247 is a straightforward 16 bit inplace relocation, but we must deal with
2248 any partnering high-part relocations as well. */
2249
2250 bfd_reloc_status_type
2251 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2252 void *data, asection *input_section,
2253 bfd *output_bfd, char **error_message)
2254 {
2255 bfd_vma vallo;
2256 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2257
2258 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2259 return bfd_reloc_outofrange;
2260
2261 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2262 location);
2263 vallo = bfd_get_32 (abfd, location);
2264 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2265 location);
2266
2267 while (mips_hi16_list != NULL)
2268 {
2269 bfd_reloc_status_type ret;
2270 struct mips_hi16 *hi;
2271
2272 hi = mips_hi16_list;
2273
2274 /* R_MIPS*_GOT16 relocations are something of a special case. We
2275 want to install the addend in the same way as for a R_MIPS*_HI16
2276 relocation (with a rightshift of 16). However, since GOT16
2277 relocations can also be used with global symbols, their howto
2278 has a rightshift of 0. */
2279 if (hi->rel.howto->type == R_MIPS_GOT16)
2280 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2281 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2282 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2283 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2284 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2285
2286 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2287 carry or borrow will induce a change of +1 or -1 in the high part. */
2288 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2289
2290 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2291 hi->input_section, output_bfd,
2292 error_message);
2293 if (ret != bfd_reloc_ok)
2294 return ret;
2295
2296 mips_hi16_list = hi->next;
2297 free (hi);
2298 }
2299
2300 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2301 input_section, output_bfd,
2302 error_message);
2303 }
2304
2305 /* A generic howto special_function. This calculates and installs the
2306 relocation itself, thus avoiding the oft-discussed problems in
2307 bfd_perform_relocation and bfd_install_relocation. */
2308
2309 bfd_reloc_status_type
2310 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2311 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2312 asection *input_section, bfd *output_bfd,
2313 char **error_message ATTRIBUTE_UNUSED)
2314 {
2315 bfd_signed_vma val;
2316 bfd_reloc_status_type status;
2317 bfd_boolean relocatable;
2318
2319 relocatable = (output_bfd != NULL);
2320
2321 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2322 return bfd_reloc_outofrange;
2323
2324 /* Build up the field adjustment in VAL. */
2325 val = 0;
2326 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2327 {
2328 /* Either we're calculating the final field value or we have a
2329 relocation against a section symbol. Add in the section's
2330 offset or address. */
2331 val += symbol->section->output_section->vma;
2332 val += symbol->section->output_offset;
2333 }
2334
2335 if (!relocatable)
2336 {
2337 /* We're calculating the final field value. Add in the symbol's value
2338 and, if pc-relative, subtract the address of the field itself. */
2339 val += symbol->value;
2340 if (reloc_entry->howto->pc_relative)
2341 {
2342 val -= input_section->output_section->vma;
2343 val -= input_section->output_offset;
2344 val -= reloc_entry->address;
2345 }
2346 }
2347
2348 /* VAL is now the final adjustment. If we're keeping this relocation
2349 in the output file, and if the relocation uses a separate addend,
2350 we just need to add VAL to that addend. Otherwise we need to add
2351 VAL to the relocation field itself. */
2352 if (relocatable && !reloc_entry->howto->partial_inplace)
2353 reloc_entry->addend += val;
2354 else
2355 {
2356 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2357
2358 /* Add in the separate addend, if any. */
2359 val += reloc_entry->addend;
2360
2361 /* Add VAL to the relocation field. */
2362 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2363 location);
2364 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2365 location);
2366 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2367 location);
2368
2369 if (status != bfd_reloc_ok)
2370 return status;
2371 }
2372
2373 if (relocatable)
2374 reloc_entry->address += input_section->output_offset;
2375
2376 return bfd_reloc_ok;
2377 }
2378 \f
2379 /* Swap an entry in a .gptab section. Note that these routines rely
2380 on the equivalence of the two elements of the union. */
2381
2382 static void
2383 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2384 Elf32_gptab *in)
2385 {
2386 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2387 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2388 }
2389
2390 static void
2391 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2392 Elf32_External_gptab *ex)
2393 {
2394 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2395 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2396 }
2397
2398 static void
2399 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2400 Elf32_External_compact_rel *ex)
2401 {
2402 H_PUT_32 (abfd, in->id1, ex->id1);
2403 H_PUT_32 (abfd, in->num, ex->num);
2404 H_PUT_32 (abfd, in->id2, ex->id2);
2405 H_PUT_32 (abfd, in->offset, ex->offset);
2406 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2407 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2408 }
2409
2410 static void
2411 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2412 Elf32_External_crinfo *ex)
2413 {
2414 unsigned long l;
2415
2416 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2417 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2418 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2419 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2420 H_PUT_32 (abfd, l, ex->info);
2421 H_PUT_32 (abfd, in->konst, ex->konst);
2422 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2423 }
2424 \f
2425 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2426 routines swap this structure in and out. They are used outside of
2427 BFD, so they are globally visible. */
2428
2429 void
2430 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2431 Elf32_RegInfo *in)
2432 {
2433 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2434 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2435 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2436 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2437 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2438 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2439 }
2440
2441 void
2442 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2443 Elf32_External_RegInfo *ex)
2444 {
2445 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2446 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2447 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2448 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2449 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2450 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2451 }
2452
2453 /* In the 64 bit ABI, the .MIPS.options section holds register
2454 information in an Elf64_Reginfo structure. These routines swap
2455 them in and out. They are globally visible because they are used
2456 outside of BFD. These routines are here so that gas can call them
2457 without worrying about whether the 64 bit ABI has been included. */
2458
2459 void
2460 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2461 Elf64_Internal_RegInfo *in)
2462 {
2463 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2464 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2465 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2466 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2467 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2468 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2469 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2470 }
2471
2472 void
2473 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2474 Elf64_External_RegInfo *ex)
2475 {
2476 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2477 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2478 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2479 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2480 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2481 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2482 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2483 }
2484
2485 /* Swap in an options header. */
2486
2487 void
2488 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2489 Elf_Internal_Options *in)
2490 {
2491 in->kind = H_GET_8 (abfd, ex->kind);
2492 in->size = H_GET_8 (abfd, ex->size);
2493 in->section = H_GET_16 (abfd, ex->section);
2494 in->info = H_GET_32 (abfd, ex->info);
2495 }
2496
2497 /* Swap out an options header. */
2498
2499 void
2500 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2501 Elf_External_Options *ex)
2502 {
2503 H_PUT_8 (abfd, in->kind, ex->kind);
2504 H_PUT_8 (abfd, in->size, ex->size);
2505 H_PUT_16 (abfd, in->section, ex->section);
2506 H_PUT_32 (abfd, in->info, ex->info);
2507 }
2508 \f
2509 /* This function is called via qsort() to sort the dynamic relocation
2510 entries by increasing r_symndx value. */
2511
2512 static int
2513 sort_dynamic_relocs (const void *arg1, const void *arg2)
2514 {
2515 Elf_Internal_Rela int_reloc1;
2516 Elf_Internal_Rela int_reloc2;
2517 int diff;
2518
2519 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2520 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2521
2522 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2523 if (diff != 0)
2524 return diff;
2525
2526 if (int_reloc1.r_offset < int_reloc2.r_offset)
2527 return -1;
2528 if (int_reloc1.r_offset > int_reloc2.r_offset)
2529 return 1;
2530 return 0;
2531 }
2532
2533 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2534
2535 static int
2536 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2537 const void *arg2 ATTRIBUTE_UNUSED)
2538 {
2539 #ifdef BFD64
2540 Elf_Internal_Rela int_reloc1[3];
2541 Elf_Internal_Rela int_reloc2[3];
2542
2543 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2544 (reldyn_sorting_bfd, arg1, int_reloc1);
2545 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2546 (reldyn_sorting_bfd, arg2, int_reloc2);
2547
2548 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2549 return -1;
2550 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2551 return 1;
2552
2553 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2554 return -1;
2555 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2556 return 1;
2557 return 0;
2558 #else
2559 abort ();
2560 #endif
2561 }
2562
2563
2564 /* This routine is used to write out ECOFF debugging external symbol
2565 information. It is called via mips_elf_link_hash_traverse. The
2566 ECOFF external symbol information must match the ELF external
2567 symbol information. Unfortunately, at this point we don't know
2568 whether a symbol is required by reloc information, so the two
2569 tables may wind up being different. We must sort out the external
2570 symbol information before we can set the final size of the .mdebug
2571 section, and we must set the size of the .mdebug section before we
2572 can relocate any sections, and we can't know which symbols are
2573 required by relocation until we relocate the sections.
2574 Fortunately, it is relatively unlikely that any symbol will be
2575 stripped but required by a reloc. In particular, it can not happen
2576 when generating a final executable. */
2577
2578 static bfd_boolean
2579 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2580 {
2581 struct extsym_info *einfo = data;
2582 bfd_boolean strip;
2583 asection *sec, *output_section;
2584
2585 if (h->root.indx == -2)
2586 strip = FALSE;
2587 else if ((h->root.def_dynamic
2588 || h->root.ref_dynamic
2589 || h->root.type == bfd_link_hash_new)
2590 && !h->root.def_regular
2591 && !h->root.ref_regular)
2592 strip = TRUE;
2593 else if (einfo->info->strip == strip_all
2594 || (einfo->info->strip == strip_some
2595 && bfd_hash_lookup (einfo->info->keep_hash,
2596 h->root.root.root.string,
2597 FALSE, FALSE) == NULL))
2598 strip = TRUE;
2599 else
2600 strip = FALSE;
2601
2602 if (strip)
2603 return TRUE;
2604
2605 if (h->esym.ifd == -2)
2606 {
2607 h->esym.jmptbl = 0;
2608 h->esym.cobol_main = 0;
2609 h->esym.weakext = 0;
2610 h->esym.reserved = 0;
2611 h->esym.ifd = ifdNil;
2612 h->esym.asym.value = 0;
2613 h->esym.asym.st = stGlobal;
2614
2615 if (h->root.root.type == bfd_link_hash_undefined
2616 || h->root.root.type == bfd_link_hash_undefweak)
2617 {
2618 const char *name;
2619
2620 /* Use undefined class. Also, set class and type for some
2621 special symbols. */
2622 name = h->root.root.root.string;
2623 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2624 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2625 {
2626 h->esym.asym.sc = scData;
2627 h->esym.asym.st = stLabel;
2628 h->esym.asym.value = 0;
2629 }
2630 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2631 {
2632 h->esym.asym.sc = scAbs;
2633 h->esym.asym.st = stLabel;
2634 h->esym.asym.value =
2635 mips_elf_hash_table (einfo->info)->procedure_count;
2636 }
2637 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2638 {
2639 h->esym.asym.sc = scAbs;
2640 h->esym.asym.st = stLabel;
2641 h->esym.asym.value = elf_gp (einfo->abfd);
2642 }
2643 else
2644 h->esym.asym.sc = scUndefined;
2645 }
2646 else if (h->root.root.type != bfd_link_hash_defined
2647 && h->root.root.type != bfd_link_hash_defweak)
2648 h->esym.asym.sc = scAbs;
2649 else
2650 {
2651 const char *name;
2652
2653 sec = h->root.root.u.def.section;
2654 output_section = sec->output_section;
2655
2656 /* When making a shared library and symbol h is the one from
2657 the another shared library, OUTPUT_SECTION may be null. */
2658 if (output_section == NULL)
2659 h->esym.asym.sc = scUndefined;
2660 else
2661 {
2662 name = bfd_section_name (output_section->owner, output_section);
2663
2664 if (strcmp (name, ".text") == 0)
2665 h->esym.asym.sc = scText;
2666 else if (strcmp (name, ".data") == 0)
2667 h->esym.asym.sc = scData;
2668 else if (strcmp (name, ".sdata") == 0)
2669 h->esym.asym.sc = scSData;
2670 else if (strcmp (name, ".rodata") == 0
2671 || strcmp (name, ".rdata") == 0)
2672 h->esym.asym.sc = scRData;
2673 else if (strcmp (name, ".bss") == 0)
2674 h->esym.asym.sc = scBss;
2675 else if (strcmp (name, ".sbss") == 0)
2676 h->esym.asym.sc = scSBss;
2677 else if (strcmp (name, ".init") == 0)
2678 h->esym.asym.sc = scInit;
2679 else if (strcmp (name, ".fini") == 0)
2680 h->esym.asym.sc = scFini;
2681 else
2682 h->esym.asym.sc = scAbs;
2683 }
2684 }
2685
2686 h->esym.asym.reserved = 0;
2687 h->esym.asym.index = indexNil;
2688 }
2689
2690 if (h->root.root.type == bfd_link_hash_common)
2691 h->esym.asym.value = h->root.root.u.c.size;
2692 else if (h->root.root.type == bfd_link_hash_defined
2693 || h->root.root.type == bfd_link_hash_defweak)
2694 {
2695 if (h->esym.asym.sc == scCommon)
2696 h->esym.asym.sc = scBss;
2697 else if (h->esym.asym.sc == scSCommon)
2698 h->esym.asym.sc = scSBss;
2699
2700 sec = h->root.root.u.def.section;
2701 output_section = sec->output_section;
2702 if (output_section != NULL)
2703 h->esym.asym.value = (h->root.root.u.def.value
2704 + sec->output_offset
2705 + output_section->vma);
2706 else
2707 h->esym.asym.value = 0;
2708 }
2709 else
2710 {
2711 struct mips_elf_link_hash_entry *hd = h;
2712
2713 while (hd->root.root.type == bfd_link_hash_indirect)
2714 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2715
2716 if (hd->needs_lazy_stub)
2717 {
2718 /* Set type and value for a symbol with a function stub. */
2719 h->esym.asym.st = stProc;
2720 sec = hd->root.root.u.def.section;
2721 if (sec == NULL)
2722 h->esym.asym.value = 0;
2723 else
2724 {
2725 output_section = sec->output_section;
2726 if (output_section != NULL)
2727 h->esym.asym.value = (hd->root.plt.offset
2728 + sec->output_offset
2729 + output_section->vma);
2730 else
2731 h->esym.asym.value = 0;
2732 }
2733 }
2734 }
2735
2736 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2737 h->root.root.root.string,
2738 &h->esym))
2739 {
2740 einfo->failed = TRUE;
2741 return FALSE;
2742 }
2743
2744 return TRUE;
2745 }
2746
2747 /* A comparison routine used to sort .gptab entries. */
2748
2749 static int
2750 gptab_compare (const void *p1, const void *p2)
2751 {
2752 const Elf32_gptab *a1 = p1;
2753 const Elf32_gptab *a2 = p2;
2754
2755 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2756 }
2757 \f
2758 /* Functions to manage the got entry hash table. */
2759
2760 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2761 hash number. */
2762
2763 static INLINE hashval_t
2764 mips_elf_hash_bfd_vma (bfd_vma addr)
2765 {
2766 #ifdef BFD64
2767 return addr + (addr >> 32);
2768 #else
2769 return addr;
2770 #endif
2771 }
2772
2773 /* got_entries only match if they're identical, except for gotidx, so
2774 use all fields to compute the hash, and compare the appropriate
2775 union members. */
2776
2777 static hashval_t
2778 mips_elf_got_entry_hash (const void *entry_)
2779 {
2780 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2781
2782 return entry->symndx
2783 + ((entry->tls_type & GOT_TLS_LDM) << 17)
2784 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
2785 : entry->abfd->id
2786 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
2787 : entry->d.h->root.root.root.hash));
2788 }
2789
2790 static int
2791 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
2792 {
2793 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2794 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2795
2796 /* An LDM entry can only match another LDM entry. */
2797 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2798 return 0;
2799
2800 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
2801 && (! e1->abfd ? e1->d.address == e2->d.address
2802 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
2803 : e1->d.h == e2->d.h);
2804 }
2805
2806 /* multi_got_entries are still a match in the case of global objects,
2807 even if the input bfd in which they're referenced differs, so the
2808 hash computation and compare functions are adjusted
2809 accordingly. */
2810
2811 static hashval_t
2812 mips_elf_multi_got_entry_hash (const void *entry_)
2813 {
2814 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2815
2816 return entry->symndx
2817 + (! entry->abfd
2818 ? mips_elf_hash_bfd_vma (entry->d.address)
2819 : entry->symndx >= 0
2820 ? ((entry->tls_type & GOT_TLS_LDM)
2821 ? (GOT_TLS_LDM << 17)
2822 : (entry->abfd->id
2823 + mips_elf_hash_bfd_vma (entry->d.addend)))
2824 : entry->d.h->root.root.root.hash);
2825 }
2826
2827 static int
2828 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
2829 {
2830 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2831 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2832
2833 /* Any two LDM entries match. */
2834 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2835 return 1;
2836
2837 /* Nothing else matches an LDM entry. */
2838 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2839 return 0;
2840
2841 return e1->symndx == e2->symndx
2842 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2843 : e1->abfd == NULL || e2->abfd == NULL
2844 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2845 : e1->d.h == e2->d.h);
2846 }
2847
2848 static hashval_t
2849 mips_got_page_entry_hash (const void *entry_)
2850 {
2851 const struct mips_got_page_entry *entry;
2852
2853 entry = (const struct mips_got_page_entry *) entry_;
2854 return entry->abfd->id + entry->symndx;
2855 }
2856
2857 static int
2858 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
2859 {
2860 const struct mips_got_page_entry *entry1, *entry2;
2861
2862 entry1 = (const struct mips_got_page_entry *) entry1_;
2863 entry2 = (const struct mips_got_page_entry *) entry2_;
2864 return entry1->abfd == entry2->abfd && entry1->symndx == entry2->symndx;
2865 }
2866 \f
2867 /* Return the dynamic relocation section. If it doesn't exist, try to
2868 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2869 if creation fails. */
2870
2871 static asection *
2872 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2873 {
2874 const char *dname;
2875 asection *sreloc;
2876 bfd *dynobj;
2877
2878 dname = MIPS_ELF_REL_DYN_NAME (info);
2879 dynobj = elf_hash_table (info)->dynobj;
2880 sreloc = bfd_get_linker_section (dynobj, dname);
2881 if (sreloc == NULL && create_p)
2882 {
2883 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
2884 (SEC_ALLOC
2885 | SEC_LOAD
2886 | SEC_HAS_CONTENTS
2887 | SEC_IN_MEMORY
2888 | SEC_LINKER_CREATED
2889 | SEC_READONLY));
2890 if (sreloc == NULL
2891 || ! bfd_set_section_alignment (dynobj, sreloc,
2892 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2893 return NULL;
2894 }
2895 return sreloc;
2896 }
2897
2898 /* Count the number of relocations needed for a TLS GOT entry, with
2899 access types from TLS_TYPE, and symbol H (or a local symbol if H
2900 is NULL). */
2901
2902 static int
2903 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2904 struct elf_link_hash_entry *h)
2905 {
2906 int indx = 0;
2907 int ret = 0;
2908 bfd_boolean need_relocs = FALSE;
2909 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2910
2911 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2912 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2913 indx = h->dynindx;
2914
2915 if ((info->shared || indx != 0)
2916 && (h == NULL
2917 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2918 || h->root.type != bfd_link_hash_undefweak))
2919 need_relocs = TRUE;
2920
2921 if (!need_relocs)
2922 return FALSE;
2923
2924 if (tls_type & GOT_TLS_GD)
2925 {
2926 ret++;
2927 if (indx != 0)
2928 ret++;
2929 }
2930
2931 if (tls_type & GOT_TLS_IE)
2932 ret++;
2933
2934 if ((tls_type & GOT_TLS_LDM) && info->shared)
2935 ret++;
2936
2937 return ret;
2938 }
2939
2940 /* Count the number of TLS relocations required for the GOT entry in
2941 ARG1, if it describes a local symbol. */
2942
2943 static int
2944 mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2945 {
2946 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2947 struct mips_elf_count_tls_arg *arg = arg2;
2948
2949 if (entry->abfd != NULL && entry->symndx != -1)
2950 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2951
2952 return 1;
2953 }
2954
2955 /* Count the number of TLS GOT entries required for the global (or
2956 forced-local) symbol in ARG1. */
2957
2958 static int
2959 mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2960 {
2961 struct mips_elf_link_hash_entry *hm
2962 = (struct mips_elf_link_hash_entry *) arg1;
2963 struct mips_elf_count_tls_arg *arg = arg2;
2964
2965 if (hm->tls_type & GOT_TLS_GD)
2966 arg->needed += 2;
2967 if (hm->tls_type & GOT_TLS_IE)
2968 arg->needed += 1;
2969
2970 return 1;
2971 }
2972
2973 /* Count the number of TLS relocations required for the global (or
2974 forced-local) symbol in ARG1. */
2975
2976 static int
2977 mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2978 {
2979 struct mips_elf_link_hash_entry *hm
2980 = (struct mips_elf_link_hash_entry *) arg1;
2981 struct mips_elf_count_tls_arg *arg = arg2;
2982
2983 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2984
2985 return 1;
2986 }
2987
2988 /* Output a simple dynamic relocation into SRELOC. */
2989
2990 static void
2991 mips_elf_output_dynamic_relocation (bfd *output_bfd,
2992 asection *sreloc,
2993 unsigned long reloc_index,
2994 unsigned long indx,
2995 int r_type,
2996 bfd_vma offset)
2997 {
2998 Elf_Internal_Rela rel[3];
2999
3000 memset (rel, 0, sizeof (rel));
3001
3002 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3003 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3004
3005 if (ABI_64_P (output_bfd))
3006 {
3007 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3008 (output_bfd, &rel[0],
3009 (sreloc->contents
3010 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3011 }
3012 else
3013 bfd_elf32_swap_reloc_out
3014 (output_bfd, &rel[0],
3015 (sreloc->contents
3016 + reloc_index * sizeof (Elf32_External_Rel)));
3017 }
3018
3019 /* Initialize a set of TLS GOT entries for one symbol. */
3020
3021 static void
3022 mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
3023 unsigned char *tls_type_p,
3024 struct bfd_link_info *info,
3025 struct mips_elf_link_hash_entry *h,
3026 bfd_vma value)
3027 {
3028 struct mips_elf_link_hash_table *htab;
3029 int indx;
3030 asection *sreloc, *sgot;
3031 bfd_vma offset, offset2;
3032 bfd_boolean need_relocs = FALSE;
3033
3034 htab = mips_elf_hash_table (info);
3035 if (htab == NULL)
3036 return;
3037
3038 sgot = htab->sgot;
3039
3040 indx = 0;
3041 if (h != NULL)
3042 {
3043 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3044
3045 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
3046 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3047 indx = h->root.dynindx;
3048 }
3049
3050 if (*tls_type_p & GOT_TLS_DONE)
3051 return;
3052
3053 if ((info->shared || indx != 0)
3054 && (h == NULL
3055 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3056 || h->root.type != bfd_link_hash_undefweak))
3057 need_relocs = TRUE;
3058
3059 /* MINUS_ONE means the symbol is not defined in this object. It may not
3060 be defined at all; assume that the value doesn't matter in that
3061 case. Otherwise complain if we would use the value. */
3062 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3063 || h->root.root.type == bfd_link_hash_undefweak);
3064
3065 /* Emit necessary relocations. */
3066 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3067
3068 /* General Dynamic. */
3069 if (*tls_type_p & GOT_TLS_GD)
3070 {
3071 offset = got_offset;
3072 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
3073
3074 if (need_relocs)
3075 {
3076 mips_elf_output_dynamic_relocation
3077 (abfd, sreloc, sreloc->reloc_count++, indx,
3078 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3079 sgot->output_offset + sgot->output_section->vma + offset);
3080
3081 if (indx)
3082 mips_elf_output_dynamic_relocation
3083 (abfd, sreloc, sreloc->reloc_count++, indx,
3084 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3085 sgot->output_offset + sgot->output_section->vma + offset2);
3086 else
3087 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3088 sgot->contents + offset2);
3089 }
3090 else
3091 {
3092 MIPS_ELF_PUT_WORD (abfd, 1,
3093 sgot->contents + offset);
3094 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3095 sgot->contents + offset2);
3096 }
3097
3098 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
3099 }
3100
3101 /* Initial Exec model. */
3102 if (*tls_type_p & GOT_TLS_IE)
3103 {
3104 offset = got_offset;
3105
3106 if (need_relocs)
3107 {
3108 if (indx == 0)
3109 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3110 sgot->contents + offset);
3111 else
3112 MIPS_ELF_PUT_WORD (abfd, 0,
3113 sgot->contents + offset);
3114
3115 mips_elf_output_dynamic_relocation
3116 (abfd, sreloc, sreloc->reloc_count++, indx,
3117 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3118 sgot->output_offset + sgot->output_section->vma + offset);
3119 }
3120 else
3121 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3122 sgot->contents + offset);
3123 }
3124
3125 if (*tls_type_p & GOT_TLS_LDM)
3126 {
3127 /* The initial offset is zero, and the LD offsets will include the
3128 bias by DTP_OFFSET. */
3129 MIPS_ELF_PUT_WORD (abfd, 0,
3130 sgot->contents + got_offset
3131 + MIPS_ELF_GOT_SIZE (abfd));
3132
3133 if (!info->shared)
3134 MIPS_ELF_PUT_WORD (abfd, 1,
3135 sgot->contents + got_offset);
3136 else
3137 mips_elf_output_dynamic_relocation
3138 (abfd, sreloc, sreloc->reloc_count++, indx,
3139 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3140 sgot->output_offset + sgot->output_section->vma + got_offset);
3141 }
3142
3143 *tls_type_p |= GOT_TLS_DONE;
3144 }
3145
3146 /* Return the GOT index to use for a relocation of type R_TYPE against
3147 a symbol accessed using TLS_TYPE models. The GOT entries for this
3148 symbol in this GOT start at GOT_INDEX. This function initializes the
3149 GOT entries and corresponding relocations. */
3150
3151 static bfd_vma
3152 mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
3153 int r_type, struct bfd_link_info *info,
3154 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
3155 {
3156 BFD_ASSERT (tls_gottprel_reloc_p (r_type)
3157 || tls_gd_reloc_p (r_type)
3158 || tls_ldm_reloc_p (r_type));
3159
3160 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
3161
3162 if (tls_gottprel_reloc_p (r_type))
3163 {
3164 BFD_ASSERT (*tls_type & GOT_TLS_IE);
3165 if (*tls_type & GOT_TLS_GD)
3166 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
3167 else
3168 return got_index;
3169 }
3170
3171 if (tls_gd_reloc_p (r_type))
3172 {
3173 BFD_ASSERT (*tls_type & GOT_TLS_GD);
3174 return got_index;
3175 }
3176
3177 if (tls_ldm_reloc_p (r_type))
3178 {
3179 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
3180 return got_index;
3181 }
3182
3183 return got_index;
3184 }
3185
3186 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3187 for global symbol H. .got.plt comes before the GOT, so the offset
3188 will be negative. */
3189
3190 static bfd_vma
3191 mips_elf_gotplt_index (struct bfd_link_info *info,
3192 struct elf_link_hash_entry *h)
3193 {
3194 bfd_vma plt_index, got_address, got_value;
3195 struct mips_elf_link_hash_table *htab;
3196
3197 htab = mips_elf_hash_table (info);
3198 BFD_ASSERT (htab != NULL);
3199
3200 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
3201
3202 /* This function only works for VxWorks, because a non-VxWorks .got.plt
3203 section starts with reserved entries. */
3204 BFD_ASSERT (htab->is_vxworks);
3205
3206 /* Calculate the index of the symbol's PLT entry. */
3207 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
3208
3209 /* Calculate the address of the associated .got.plt entry. */
3210 got_address = (htab->sgotplt->output_section->vma
3211 + htab->sgotplt->output_offset
3212 + plt_index * 4);
3213
3214 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3215 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3216 + htab->root.hgot->root.u.def.section->output_offset
3217 + htab->root.hgot->root.u.def.value);
3218
3219 return got_address - got_value;
3220 }
3221
3222 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3223 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3224 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3225 offset can be found. */
3226
3227 static bfd_vma
3228 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3229 bfd_vma value, unsigned long r_symndx,
3230 struct mips_elf_link_hash_entry *h, int r_type)
3231 {
3232 struct mips_elf_link_hash_table *htab;
3233 struct mips_got_entry *entry;
3234
3235 htab = mips_elf_hash_table (info);
3236 BFD_ASSERT (htab != NULL);
3237
3238 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3239 r_symndx, h, r_type);
3240 if (!entry)
3241 return MINUS_ONE;
3242
3243 if (TLS_RELOC_P (r_type))
3244 {
3245 if (entry->symndx == -1 && htab->got_info->next == NULL)
3246 /* A type (3) entry in the single-GOT case. We use the symbol's
3247 hash table entry to track the index. */
3248 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
3249 r_type, info, h, value);
3250 else
3251 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
3252 r_type, info, h, value);
3253 }
3254 else
3255 return entry->gotidx;
3256 }
3257
3258 /* Returns the GOT index for the global symbol indicated by H. */
3259
3260 static bfd_vma
3261 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
3262 int r_type, struct bfd_link_info *info)
3263 {
3264 struct mips_elf_link_hash_table *htab;
3265 bfd_vma got_index;
3266 struct mips_got_info *g, *gg;
3267 long global_got_dynindx = 0;
3268
3269 htab = mips_elf_hash_table (info);
3270 BFD_ASSERT (htab != NULL);
3271
3272 gg = g = htab->got_info;
3273 if (g->bfd2got && ibfd)
3274 {
3275 struct mips_got_entry e, *p;
3276
3277 BFD_ASSERT (h->dynindx >= 0);
3278
3279 g = mips_elf_got_for_ibfd (g, ibfd);
3280 if (g->next != gg || TLS_RELOC_P (r_type))
3281 {
3282 e.abfd = ibfd;
3283 e.symndx = -1;
3284 e.d.h = (struct mips_elf_link_hash_entry *)h;
3285 e.tls_type = 0;
3286
3287 p = htab_find (g->got_entries, &e);
3288
3289 BFD_ASSERT (p->gotidx > 0);
3290
3291 if (TLS_RELOC_P (r_type))
3292 {
3293 bfd_vma value = MINUS_ONE;
3294 if ((h->root.type == bfd_link_hash_defined
3295 || h->root.type == bfd_link_hash_defweak)
3296 && h->root.u.def.section->output_section)
3297 value = (h->root.u.def.value
3298 + h->root.u.def.section->output_offset
3299 + h->root.u.def.section->output_section->vma);
3300
3301 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
3302 info, e.d.h, value);
3303 }
3304 else
3305 return p->gotidx;
3306 }
3307 }
3308
3309 if (gg->global_gotsym != NULL)
3310 global_got_dynindx = gg->global_gotsym->dynindx;
3311
3312 if (TLS_RELOC_P (r_type))
3313 {
3314 struct mips_elf_link_hash_entry *hm
3315 = (struct mips_elf_link_hash_entry *) h;
3316 bfd_vma value = MINUS_ONE;
3317
3318 if ((h->root.type == bfd_link_hash_defined
3319 || h->root.type == bfd_link_hash_defweak)
3320 && h->root.u.def.section->output_section)
3321 value = (h->root.u.def.value
3322 + h->root.u.def.section->output_offset
3323 + h->root.u.def.section->output_section->vma);
3324
3325 got_index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
3326 r_type, info, hm, value);
3327 }
3328 else
3329 {
3330 /* Once we determine the global GOT entry with the lowest dynamic
3331 symbol table index, we must put all dynamic symbols with greater
3332 indices into the GOT. That makes it easy to calculate the GOT
3333 offset. */
3334 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3335 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3336 * MIPS_ELF_GOT_SIZE (abfd));
3337 }
3338 BFD_ASSERT (got_index < htab->sgot->size);
3339
3340 return got_index;
3341 }
3342
3343 /* Find a GOT page entry that points to within 32KB of VALUE. These
3344 entries are supposed to be placed at small offsets in the GOT, i.e.,
3345 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3346 entry could be created. If OFFSETP is nonnull, use it to return the
3347 offset of the GOT entry from VALUE. */
3348
3349 static bfd_vma
3350 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3351 bfd_vma value, bfd_vma *offsetp)
3352 {
3353 bfd_vma page, got_index;
3354 struct mips_got_entry *entry;
3355
3356 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3357 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3358 NULL, R_MIPS_GOT_PAGE);
3359
3360 if (!entry)
3361 return MINUS_ONE;
3362
3363 got_index = entry->gotidx;
3364
3365 if (offsetp)
3366 *offsetp = value - entry->d.address;
3367
3368 return got_index;
3369 }
3370
3371 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3372 EXTERNAL is true if the relocation was originally against a global
3373 symbol that binds locally. */
3374
3375 static bfd_vma
3376 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3377 bfd_vma value, bfd_boolean external)
3378 {
3379 struct mips_got_entry *entry;
3380
3381 /* GOT16 relocations against local symbols are followed by a LO16
3382 relocation; those against global symbols are not. Thus if the
3383 symbol was originally local, the GOT16 relocation should load the
3384 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3385 if (! external)
3386 value = mips_elf_high (value) << 16;
3387
3388 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3389 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3390 same in all cases. */
3391 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3392 NULL, R_MIPS_GOT16);
3393 if (entry)
3394 return entry->gotidx;
3395 else
3396 return MINUS_ONE;
3397 }
3398
3399 /* Returns the offset for the entry at the INDEXth position
3400 in the GOT. */
3401
3402 static bfd_vma
3403 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3404 bfd *input_bfd, bfd_vma got_index)
3405 {
3406 struct mips_elf_link_hash_table *htab;
3407 asection *sgot;
3408 bfd_vma gp;
3409
3410 htab = mips_elf_hash_table (info);
3411 BFD_ASSERT (htab != NULL);
3412
3413 sgot = htab->sgot;
3414 gp = _bfd_get_gp_value (output_bfd)
3415 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3416
3417 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3418 }
3419
3420 /* Create and return a local GOT entry for VALUE, which was calculated
3421 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3422 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3423 instead. */
3424
3425 static struct mips_got_entry *
3426 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3427 bfd *ibfd, bfd_vma value,
3428 unsigned long r_symndx,
3429 struct mips_elf_link_hash_entry *h,
3430 int r_type)
3431 {
3432 struct mips_got_entry entry, **loc;
3433 struct mips_got_info *g;
3434 struct mips_elf_link_hash_table *htab;
3435
3436 htab = mips_elf_hash_table (info);
3437 BFD_ASSERT (htab != NULL);
3438
3439 entry.abfd = NULL;
3440 entry.symndx = -1;
3441 entry.d.address = value;
3442 entry.tls_type = 0;
3443
3444 g = mips_elf_got_for_ibfd (htab->got_info, ibfd);
3445 if (g == NULL)
3446 {
3447 g = mips_elf_got_for_ibfd (htab->got_info, abfd);
3448 BFD_ASSERT (g != NULL);
3449 }
3450
3451 /* This function shouldn't be called for symbols that live in the global
3452 area of the GOT. */
3453 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3454 if (TLS_RELOC_P (r_type))
3455 {
3456 struct mips_got_entry *p;
3457
3458 entry.abfd = ibfd;
3459 if (tls_ldm_reloc_p (r_type))
3460 {
3461 entry.tls_type = GOT_TLS_LDM;
3462 entry.symndx = 0;
3463 entry.d.addend = 0;
3464 }
3465 else if (h == NULL)
3466 {
3467 entry.symndx = r_symndx;
3468 entry.d.addend = 0;
3469 }
3470 else
3471 entry.d.h = h;
3472
3473 p = (struct mips_got_entry *)
3474 htab_find (g->got_entries, &entry);
3475
3476 BFD_ASSERT (p);
3477 return p;
3478 }
3479
3480 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3481 INSERT);
3482 if (*loc)
3483 return *loc;
3484
3485 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
3486 entry.tls_type = 0;
3487
3488 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3489
3490 if (! *loc)
3491 return NULL;
3492
3493 memcpy (*loc, &entry, sizeof entry);
3494
3495 if (g->assigned_gotno > g->local_gotno)
3496 {
3497 (*loc)->gotidx = -1;
3498 /* We didn't allocate enough space in the GOT. */
3499 (*_bfd_error_handler)
3500 (_("not enough GOT space for local GOT entries"));
3501 bfd_set_error (bfd_error_bad_value);
3502 return NULL;
3503 }
3504
3505 MIPS_ELF_PUT_WORD (abfd, value,
3506 (htab->sgot->contents + entry.gotidx));
3507
3508 /* These GOT entries need a dynamic relocation on VxWorks. */
3509 if (htab->is_vxworks)
3510 {
3511 Elf_Internal_Rela outrel;
3512 asection *s;
3513 bfd_byte *rloc;
3514 bfd_vma got_address;
3515
3516 s = mips_elf_rel_dyn_section (info, FALSE);
3517 got_address = (htab->sgot->output_section->vma
3518 + htab->sgot->output_offset
3519 + entry.gotidx);
3520
3521 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3522 outrel.r_offset = got_address;
3523 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3524 outrel.r_addend = value;
3525 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3526 }
3527
3528 return *loc;
3529 }
3530
3531 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3532 The number might be exact or a worst-case estimate, depending on how
3533 much information is available to elf_backend_omit_section_dynsym at
3534 the current linking stage. */
3535
3536 static bfd_size_type
3537 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3538 {
3539 bfd_size_type count;
3540
3541 count = 0;
3542 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
3543 {
3544 asection *p;
3545 const struct elf_backend_data *bed;
3546
3547 bed = get_elf_backend_data (output_bfd);
3548 for (p = output_bfd->sections; p ; p = p->next)
3549 if ((p->flags & SEC_EXCLUDE) == 0
3550 && (p->flags & SEC_ALLOC) != 0
3551 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3552 ++count;
3553 }
3554 return count;
3555 }
3556
3557 /* Sort the dynamic symbol table so that symbols that need GOT entries
3558 appear towards the end. */
3559
3560 static bfd_boolean
3561 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3562 {
3563 struct mips_elf_link_hash_table *htab;
3564 struct mips_elf_hash_sort_data hsd;
3565 struct mips_got_info *g;
3566
3567 if (elf_hash_table (info)->dynsymcount == 0)
3568 return TRUE;
3569
3570 htab = mips_elf_hash_table (info);
3571 BFD_ASSERT (htab != NULL);
3572
3573 g = htab->got_info;
3574 if (g == NULL)
3575 return TRUE;
3576
3577 hsd.low = NULL;
3578 hsd.max_unref_got_dynindx
3579 = hsd.min_got_dynindx
3580 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3581 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3582 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3583 elf_hash_table (info)),
3584 mips_elf_sort_hash_table_f,
3585 &hsd);
3586
3587 /* There should have been enough room in the symbol table to
3588 accommodate both the GOT and non-GOT symbols. */
3589 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3590 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3591 == elf_hash_table (info)->dynsymcount);
3592 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3593 == g->global_gotno);
3594
3595 /* Now we know which dynamic symbol has the lowest dynamic symbol
3596 table index in the GOT. */
3597 g->global_gotsym = hsd.low;
3598
3599 return TRUE;
3600 }
3601
3602 /* If H needs a GOT entry, assign it the highest available dynamic
3603 index. Otherwise, assign it the lowest available dynamic
3604 index. */
3605
3606 static bfd_boolean
3607 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3608 {
3609 struct mips_elf_hash_sort_data *hsd = data;
3610
3611 /* Symbols without dynamic symbol table entries aren't interesting
3612 at all. */
3613 if (h->root.dynindx == -1)
3614 return TRUE;
3615
3616 switch (h->global_got_area)
3617 {
3618 case GGA_NONE:
3619 h->root.dynindx = hsd->max_non_got_dynindx++;
3620 break;
3621
3622 case GGA_NORMAL:
3623 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3624
3625 h->root.dynindx = --hsd->min_got_dynindx;
3626 hsd->low = (struct elf_link_hash_entry *) h;
3627 break;
3628
3629 case GGA_RELOC_ONLY:
3630 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3631
3632 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3633 hsd->low = (struct elf_link_hash_entry *) h;
3634 h->root.dynindx = hsd->max_unref_got_dynindx++;
3635 break;
3636 }
3637
3638 return TRUE;
3639 }
3640
3641 /* If H is a symbol that needs a global GOT entry, but has a dynamic
3642 symbol table index lower than any we've seen to date, record it for
3643 posterity. FOR_CALL is true if the caller is only interested in
3644 using the GOT entry for calls. */
3645
3646 static bfd_boolean
3647 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3648 bfd *abfd, struct bfd_link_info *info,
3649 bfd_boolean for_call,
3650 unsigned char tls_flag)
3651 {
3652 struct mips_elf_link_hash_table *htab;
3653 struct mips_elf_link_hash_entry *hmips;
3654 struct mips_got_entry entry, **loc;
3655 struct mips_got_info *g;
3656
3657 htab = mips_elf_hash_table (info);
3658 BFD_ASSERT (htab != NULL);
3659
3660 hmips = (struct mips_elf_link_hash_entry *) h;
3661 if (!for_call)
3662 hmips->got_only_for_calls = FALSE;
3663
3664 /* A global symbol in the GOT must also be in the dynamic symbol
3665 table. */
3666 if (h->dynindx == -1)
3667 {
3668 switch (ELF_ST_VISIBILITY (h->other))
3669 {
3670 case STV_INTERNAL:
3671 case STV_HIDDEN:
3672 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3673 break;
3674 }
3675 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3676 return FALSE;
3677 }
3678
3679 /* Make sure we have a GOT to put this entry into. */
3680 g = htab->got_info;
3681 BFD_ASSERT (g != NULL);
3682
3683 entry.abfd = abfd;
3684 entry.symndx = -1;
3685 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3686 entry.tls_type = 0;
3687
3688 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3689 INSERT);
3690
3691 /* If we've already marked this entry as needing GOT space, we don't
3692 need to do it again. */
3693 if (*loc)
3694 {
3695 (*loc)->tls_type |= tls_flag;
3696 return TRUE;
3697 }
3698
3699 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3700
3701 if (! *loc)
3702 return FALSE;
3703
3704 entry.gotidx = -1;
3705 entry.tls_type = tls_flag;
3706
3707 memcpy (*loc, &entry, sizeof entry);
3708
3709 if (tls_flag == 0)
3710 hmips->global_got_area = GGA_NORMAL;
3711
3712 return TRUE;
3713 }
3714
3715 /* Reserve space in G for a GOT entry containing the value of symbol
3716 SYMNDX in input bfd ABDF, plus ADDEND. */
3717
3718 static bfd_boolean
3719 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
3720 struct bfd_link_info *info,
3721 unsigned char tls_flag)
3722 {
3723 struct mips_elf_link_hash_table *htab;
3724 struct mips_got_info *g;
3725 struct mips_got_entry entry, **loc;
3726
3727 htab = mips_elf_hash_table (info);
3728 BFD_ASSERT (htab != NULL);
3729
3730 g = htab->got_info;
3731 BFD_ASSERT (g != NULL);
3732
3733 entry.abfd = abfd;
3734 entry.symndx = symndx;
3735 entry.d.addend = addend;
3736 entry.tls_type = tls_flag;
3737 loc = (struct mips_got_entry **)
3738 htab_find_slot (g->got_entries, &entry, INSERT);
3739
3740 if (*loc)
3741 {
3742 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
3743 {
3744 g->tls_gotno += 2;
3745 (*loc)->tls_type |= tls_flag;
3746 }
3747 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
3748 {
3749 g->tls_gotno += 1;
3750 (*loc)->tls_type |= tls_flag;
3751 }
3752 return TRUE;
3753 }
3754
3755 if (tls_flag != 0)
3756 {
3757 entry.gotidx = -1;
3758 entry.tls_type = tls_flag;
3759 if (tls_flag == GOT_TLS_IE)
3760 g->tls_gotno += 1;
3761 else if (tls_flag == GOT_TLS_GD)
3762 g->tls_gotno += 2;
3763 else if (g->tls_ldm_offset == MINUS_ONE)
3764 {
3765 g->tls_ldm_offset = MINUS_TWO;
3766 g->tls_gotno += 2;
3767 }
3768 }
3769 else
3770 {
3771 entry.gotidx = g->local_gotno++;
3772 entry.tls_type = 0;
3773 }
3774
3775 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3776
3777 if (! *loc)
3778 return FALSE;
3779
3780 memcpy (*loc, &entry, sizeof entry);
3781
3782 return TRUE;
3783 }
3784
3785 /* Return the maximum number of GOT page entries required for RANGE. */
3786
3787 static bfd_vma
3788 mips_elf_pages_for_range (const struct mips_got_page_range *range)
3789 {
3790 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
3791 }
3792
3793 /* Record that ABFD has a page relocation against symbol SYMNDX and
3794 that ADDEND is the addend for that relocation.
3795
3796 This function creates an upper bound on the number of GOT slots
3797 required; no attempt is made to combine references to non-overridable
3798 global symbols across multiple input files. */
3799
3800 static bfd_boolean
3801 mips_elf_record_got_page_entry (struct bfd_link_info *info, bfd *abfd,
3802 long symndx, bfd_signed_vma addend)
3803 {
3804 struct mips_elf_link_hash_table *htab;
3805 struct mips_got_info *g;
3806 struct mips_got_page_entry lookup, *entry;
3807 struct mips_got_page_range **range_ptr, *range;
3808 bfd_vma old_pages, new_pages;
3809 void **loc;
3810
3811 htab = mips_elf_hash_table (info);
3812 BFD_ASSERT (htab != NULL);
3813
3814 g = htab->got_info;
3815 BFD_ASSERT (g != NULL);
3816
3817 /* Find the mips_got_page_entry hash table entry for this symbol. */
3818 lookup.abfd = abfd;
3819 lookup.symndx = symndx;
3820 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
3821 if (loc == NULL)
3822 return FALSE;
3823
3824 /* Create a mips_got_page_entry if this is the first time we've
3825 seen the symbol. */
3826 entry = (struct mips_got_page_entry *) *loc;
3827 if (!entry)
3828 {
3829 entry = bfd_alloc (abfd, sizeof (*entry));
3830 if (!entry)
3831 return FALSE;
3832
3833 entry->abfd = abfd;
3834 entry->symndx = symndx;
3835 entry->ranges = NULL;
3836 entry->num_pages = 0;
3837 *loc = entry;
3838 }
3839
3840 /* Skip over ranges whose maximum extent cannot share a page entry
3841 with ADDEND. */
3842 range_ptr = &entry->ranges;
3843 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
3844 range_ptr = &(*range_ptr)->next;
3845
3846 /* If we scanned to the end of the list, or found a range whose
3847 minimum extent cannot share a page entry with ADDEND, create
3848 a new singleton range. */
3849 range = *range_ptr;
3850 if (!range || addend < range->min_addend - 0xffff)
3851 {
3852 range = bfd_alloc (abfd, sizeof (*range));
3853 if (!range)
3854 return FALSE;
3855
3856 range->next = *range_ptr;
3857 range->min_addend = addend;
3858 range->max_addend = addend;
3859
3860 *range_ptr = range;
3861 entry->num_pages++;
3862 g->page_gotno++;
3863 return TRUE;
3864 }
3865
3866 /* Remember how many pages the old range contributed. */
3867 old_pages = mips_elf_pages_for_range (range);
3868
3869 /* Update the ranges. */
3870 if (addend < range->min_addend)
3871 range->min_addend = addend;
3872 else if (addend > range->max_addend)
3873 {
3874 if (range->next && addend >= range->next->min_addend - 0xffff)
3875 {
3876 old_pages += mips_elf_pages_for_range (range->next);
3877 range->max_addend = range->next->max_addend;
3878 range->next = range->next->next;
3879 }
3880 else
3881 range->max_addend = addend;
3882 }
3883
3884 /* Record any change in the total estimate. */
3885 new_pages = mips_elf_pages_for_range (range);
3886 if (old_pages != new_pages)
3887 {
3888 entry->num_pages += new_pages - old_pages;
3889 g->page_gotno += new_pages - old_pages;
3890 }
3891
3892 return TRUE;
3893 }
3894
3895 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
3896
3897 static void
3898 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
3899 unsigned int n)
3900 {
3901 asection *s;
3902 struct mips_elf_link_hash_table *htab;
3903
3904 htab = mips_elf_hash_table (info);
3905 BFD_ASSERT (htab != NULL);
3906
3907 s = mips_elf_rel_dyn_section (info, FALSE);
3908 BFD_ASSERT (s != NULL);
3909
3910 if (htab->is_vxworks)
3911 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
3912 else
3913 {
3914 if (s->size == 0)
3915 {
3916 /* Make room for a null element. */
3917 s->size += MIPS_ELF_REL_SIZE (abfd);
3918 ++s->reloc_count;
3919 }
3920 s->size += n * MIPS_ELF_REL_SIZE (abfd);
3921 }
3922 }
3923 \f
3924 /* A htab_traverse callback for GOT entries. Set boolean *DATA to true
3925 if the GOT entry is for an indirect or warning symbol. */
3926
3927 static int
3928 mips_elf_check_recreate_got (void **entryp, void *data)
3929 {
3930 struct mips_got_entry *entry;
3931 bfd_boolean *must_recreate;
3932
3933 entry = (struct mips_got_entry *) *entryp;
3934 must_recreate = (bfd_boolean *) data;
3935 if (entry->abfd != NULL && entry->symndx == -1)
3936 {
3937 struct mips_elf_link_hash_entry *h;
3938
3939 h = entry->d.h;
3940 if (h->root.root.type == bfd_link_hash_indirect
3941 || h->root.root.type == bfd_link_hash_warning)
3942 {
3943 *must_recreate = TRUE;
3944 return 0;
3945 }
3946 }
3947 return 1;
3948 }
3949
3950 /* A htab_traverse callback for GOT entries. Add all entries to
3951 hash table *DATA, converting entries for indirect and warning
3952 symbols into entries for the target symbol. Set *DATA to null
3953 on error. */
3954
3955 static int
3956 mips_elf_recreate_got (void **entryp, void *data)
3957 {
3958 htab_t *new_got;
3959 struct mips_got_entry *entry;
3960 void **slot;
3961
3962 new_got = (htab_t *) data;
3963 entry = (struct mips_got_entry *) *entryp;
3964 if (entry->abfd != NULL && entry->symndx == -1)
3965 {
3966 struct mips_elf_link_hash_entry *h;
3967
3968 h = entry->d.h;
3969 while (h->root.root.type == bfd_link_hash_indirect
3970 || h->root.root.type == bfd_link_hash_warning)
3971 {
3972 BFD_ASSERT (h->global_got_area == GGA_NONE);
3973 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3974 }
3975 entry->d.h = h;
3976 }
3977 slot = htab_find_slot (*new_got, entry, INSERT);
3978 if (slot == NULL)
3979 {
3980 *new_got = NULL;
3981 return 0;
3982 }
3983 if (*slot == NULL)
3984 *slot = entry;
3985 else
3986 free (entry);
3987 return 1;
3988 }
3989
3990 /* If any entries in G->got_entries are for indirect or warning symbols,
3991 replace them with entries for the target symbol. */
3992
3993 static bfd_boolean
3994 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
3995 {
3996 bfd_boolean must_recreate;
3997 htab_t new_got;
3998
3999 must_recreate = FALSE;
4000 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &must_recreate);
4001 if (must_recreate)
4002 {
4003 new_got = htab_create (htab_size (g->got_entries),
4004 mips_elf_got_entry_hash,
4005 mips_elf_got_entry_eq, NULL);
4006 htab_traverse (g->got_entries, mips_elf_recreate_got, &new_got);
4007 if (new_got == NULL)
4008 return FALSE;
4009
4010 /* Each entry in g->got_entries has either been copied to new_got
4011 or freed. Now delete the hash table itself. */
4012 htab_delete (g->got_entries);
4013 g->got_entries = new_got;
4014 }
4015 return TRUE;
4016 }
4017
4018 /* A mips_elf_link_hash_traverse callback for which DATA points
4019 to the link_info structure. Count the number of type (3) entries
4020 in the master GOT. */
4021
4022 static int
4023 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4024 {
4025 struct bfd_link_info *info;
4026 struct mips_elf_link_hash_table *htab;
4027 struct mips_got_info *g;
4028
4029 info = (struct bfd_link_info *) data;
4030 htab = mips_elf_hash_table (info);
4031 g = htab->got_info;
4032 if (h->global_got_area != GGA_NONE)
4033 {
4034 /* Make a final decision about whether the symbol belongs in the
4035 local or global GOT. Symbols that bind locally can (and in the
4036 case of forced-local symbols, must) live in the local GOT.
4037 Those that are aren't in the dynamic symbol table must also
4038 live in the local GOT.
4039
4040 Note that the former condition does not always imply the
4041 latter: symbols do not bind locally if they are completely
4042 undefined. We'll report undefined symbols later if appropriate. */
4043 if (h->root.dynindx == -1
4044 || (h->got_only_for_calls
4045 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4046 : SYMBOL_REFERENCES_LOCAL (info, &h->root)))
4047 {
4048 /* The symbol belongs in the local GOT. We no longer need this
4049 entry if it was only used for relocations; those relocations
4050 will be against the null or section symbol instead of H. */
4051 if (h->global_got_area != GGA_RELOC_ONLY)
4052 g->local_gotno++;
4053 h->global_got_area = GGA_NONE;
4054 }
4055 else if (htab->is_vxworks
4056 && h->got_only_for_calls
4057 && h->root.plt.offset != MINUS_ONE)
4058 /* On VxWorks, calls can refer directly to the .got.plt entry;
4059 they don't need entries in the regular GOT. .got.plt entries
4060 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4061 h->global_got_area = GGA_NONE;
4062 else
4063 {
4064 g->global_gotno++;
4065 if (h->global_got_area == GGA_RELOC_ONLY)
4066 g->reloc_only_gotno++;
4067 }
4068 }
4069 return 1;
4070 }
4071 \f
4072 /* Compute the hash value of the bfd in a bfd2got hash entry. */
4073
4074 static hashval_t
4075 mips_elf_bfd2got_entry_hash (const void *entry_)
4076 {
4077 const struct mips_elf_bfd2got_hash *entry
4078 = (struct mips_elf_bfd2got_hash *)entry_;
4079
4080 return entry->bfd->id;
4081 }
4082
4083 /* Check whether two hash entries have the same bfd. */
4084
4085 static int
4086 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
4087 {
4088 const struct mips_elf_bfd2got_hash *e1
4089 = (const struct mips_elf_bfd2got_hash *)entry1;
4090 const struct mips_elf_bfd2got_hash *e2
4091 = (const struct mips_elf_bfd2got_hash *)entry2;
4092
4093 return e1->bfd == e2->bfd;
4094 }
4095
4096 /* In a multi-got link, determine the GOT to be used for IBFD. G must
4097 be the master GOT data. */
4098
4099 static struct mips_got_info *
4100 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
4101 {
4102 struct mips_elf_bfd2got_hash e, *p;
4103
4104 if (! g->bfd2got)
4105 return g;
4106
4107 e.bfd = ibfd;
4108 p = htab_find (g->bfd2got, &e);
4109 return p ? p->g : NULL;
4110 }
4111
4112 /* Use BFD2GOT to find ABFD's got entry, creating one if none exists.
4113 Return NULL if an error occured. */
4114
4115 static struct mips_got_info *
4116 mips_elf_get_got_for_bfd (struct htab *bfd2got, bfd *output_bfd,
4117 bfd *input_bfd)
4118 {
4119 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
4120 struct mips_got_info *g;
4121 void **bfdgotp;
4122
4123 bfdgot_entry.bfd = input_bfd;
4124 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
4125 bfdgot = (struct mips_elf_bfd2got_hash *) *bfdgotp;
4126
4127 if (bfdgot == NULL)
4128 {
4129 bfdgot = ((struct mips_elf_bfd2got_hash *)
4130 bfd_alloc (output_bfd, sizeof (struct mips_elf_bfd2got_hash)));
4131 if (bfdgot == NULL)
4132 return NULL;
4133
4134 *bfdgotp = bfdgot;
4135
4136 g = ((struct mips_got_info *)
4137 bfd_alloc (output_bfd, sizeof (struct mips_got_info)));
4138 if (g == NULL)
4139 return NULL;
4140
4141 bfdgot->bfd = input_bfd;
4142 bfdgot->g = g;
4143
4144 g->global_gotsym = NULL;
4145 g->global_gotno = 0;
4146 g->reloc_only_gotno = 0;
4147 g->local_gotno = 0;
4148 g->page_gotno = 0;
4149 g->assigned_gotno = -1;
4150 g->tls_gotno = 0;
4151 g->tls_assigned_gotno = 0;
4152 g->tls_ldm_offset = MINUS_ONE;
4153 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
4154 mips_elf_multi_got_entry_eq, NULL);
4155 if (g->got_entries == NULL)
4156 return NULL;
4157
4158 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4159 mips_got_page_entry_eq, NULL);
4160 if (g->got_page_entries == NULL)
4161 return NULL;
4162
4163 g->bfd2got = NULL;
4164 g->next = NULL;
4165 }
4166
4167 return bfdgot->g;
4168 }
4169
4170 /* A htab_traverse callback for the entries in the master got.
4171 Create one separate got for each bfd that has entries in the global
4172 got, such that we can tell how many local and global entries each
4173 bfd requires. */
4174
4175 static int
4176 mips_elf_make_got_per_bfd (void **entryp, void *p)
4177 {
4178 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4179 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
4180 struct mips_got_info *g;
4181
4182 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4183 if (g == NULL)
4184 {
4185 arg->obfd = NULL;
4186 return 0;
4187 }
4188
4189 /* Insert the GOT entry in the bfd's got entry hash table. */
4190 entryp = htab_find_slot (g->got_entries, entry, INSERT);
4191 if (*entryp != NULL)
4192 return 1;
4193
4194 *entryp = entry;
4195
4196 if (entry->tls_type)
4197 {
4198 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
4199 g->tls_gotno += 2;
4200 if (entry->tls_type & GOT_TLS_IE)
4201 g->tls_gotno += 1;
4202 }
4203 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
4204 ++g->local_gotno;
4205 else
4206 ++g->global_gotno;
4207
4208 return 1;
4209 }
4210
4211 /* A htab_traverse callback for the page entries in the master got.
4212 Associate each page entry with the bfd's got. */
4213
4214 static int
4215 mips_elf_make_got_pages_per_bfd (void **entryp, void *p)
4216 {
4217 struct mips_got_page_entry *entry = (struct mips_got_page_entry *) *entryp;
4218 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *) p;
4219 struct mips_got_info *g;
4220
4221 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4222 if (g == NULL)
4223 {
4224 arg->obfd = NULL;
4225 return 0;
4226 }
4227
4228 /* Insert the GOT entry in the bfd's got entry hash table. */
4229 entryp = htab_find_slot (g->got_page_entries, entry, INSERT);
4230 if (*entryp != NULL)
4231 return 1;
4232
4233 *entryp = entry;
4234 g->page_gotno += entry->num_pages;
4235 return 1;
4236 }
4237
4238 /* Consider merging the got described by BFD2GOT with TO, using the
4239 information given by ARG. Return -1 if this would lead to overflow,
4240 1 if they were merged successfully, and 0 if a merge failed due to
4241 lack of memory. (These values are chosen so that nonnegative return
4242 values can be returned by a htab_traverse callback.) */
4243
4244 static int
4245 mips_elf_merge_got_with (struct mips_elf_bfd2got_hash *bfd2got,
4246 struct mips_got_info *to,
4247 struct mips_elf_got_per_bfd_arg *arg)
4248 {
4249 struct mips_got_info *from = bfd2got->g;
4250 unsigned int estimate;
4251
4252 /* Work out how many page entries we would need for the combined GOT. */
4253 estimate = arg->max_pages;
4254 if (estimate >= from->page_gotno + to->page_gotno)
4255 estimate = from->page_gotno + to->page_gotno;
4256
4257 /* And conservatively estimate how many local and TLS entries
4258 would be needed. */
4259 estimate += from->local_gotno + to->local_gotno;
4260 estimate += from->tls_gotno + to->tls_gotno;
4261
4262 /* If we're merging with the primary got, we will always have
4263 the full set of global entries. Otherwise estimate those
4264 conservatively as well. */
4265 if (to == arg->primary)
4266 estimate += arg->global_count;
4267 else
4268 estimate += from->global_gotno + to->global_gotno;
4269
4270 /* Bail out if the combined GOT might be too big. */
4271 if (estimate > arg->max_count)
4272 return -1;
4273
4274 /* Commit to the merge. Record that TO is now the bfd for this got. */
4275 bfd2got->g = to;
4276
4277 /* Transfer the bfd's got information from FROM to TO. */
4278 htab_traverse (from->got_entries, mips_elf_make_got_per_bfd, arg);
4279 if (arg->obfd == NULL)
4280 return 0;
4281
4282 htab_traverse (from->got_page_entries, mips_elf_make_got_pages_per_bfd, arg);
4283 if (arg->obfd == NULL)
4284 return 0;
4285
4286 /* We don't have to worry about releasing memory of the actual
4287 got entries, since they're all in the master got_entries hash
4288 table anyway. */
4289 htab_delete (from->got_entries);
4290 htab_delete (from->got_page_entries);
4291 return 1;
4292 }
4293
4294 /* Attempt to merge gots of different input bfds. Try to use as much
4295 as possible of the primary got, since it doesn't require explicit
4296 dynamic relocations, but don't use bfds that would reference global
4297 symbols out of the addressable range. Failing the primary got,
4298 attempt to merge with the current got, or finish the current got
4299 and then make make the new got current. */
4300
4301 static int
4302 mips_elf_merge_gots (void **bfd2got_, void *p)
4303 {
4304 struct mips_elf_bfd2got_hash *bfd2got
4305 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
4306 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
4307 struct mips_got_info *g;
4308 unsigned int estimate;
4309 int result;
4310
4311 g = bfd2got->g;
4312
4313 /* Work out the number of page, local and TLS entries. */
4314 estimate = arg->max_pages;
4315 if (estimate > g->page_gotno)
4316 estimate = g->page_gotno;
4317 estimate += g->local_gotno + g->tls_gotno;
4318
4319 /* We place TLS GOT entries after both locals and globals. The globals
4320 for the primary GOT may overflow the normal GOT size limit, so be
4321 sure not to merge a GOT which requires TLS with the primary GOT in that
4322 case. This doesn't affect non-primary GOTs. */
4323 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4324
4325 if (estimate <= arg->max_count)
4326 {
4327 /* If we don't have a primary GOT, use it as
4328 a starting point for the primary GOT. */
4329 if (!arg->primary)
4330 {
4331 arg->primary = bfd2got->g;
4332 return 1;
4333 }
4334
4335 /* Try merging with the primary GOT. */
4336 result = mips_elf_merge_got_with (bfd2got, arg->primary, arg);
4337 if (result >= 0)
4338 return result;
4339 }
4340
4341 /* If we can merge with the last-created got, do it. */
4342 if (arg->current)
4343 {
4344 result = mips_elf_merge_got_with (bfd2got, arg->current, arg);
4345 if (result >= 0)
4346 return result;
4347 }
4348
4349 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4350 fits; if it turns out that it doesn't, we'll get relocation
4351 overflows anyway. */
4352 g->next = arg->current;
4353 arg->current = g;
4354
4355 return 1;
4356 }
4357
4358 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
4359 is null iff there is just a single GOT. */
4360
4361 static int
4362 mips_elf_initialize_tls_index (void **entryp, void *p)
4363 {
4364 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4365 struct mips_got_info *g = p;
4366 bfd_vma next_index;
4367 unsigned char tls_type;
4368
4369 /* We're only interested in TLS symbols. */
4370 if (entry->tls_type == 0)
4371 return 1;
4372
4373 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
4374
4375 if (entry->symndx == -1 && g->next == NULL)
4376 {
4377 /* A type (3) got entry in the single-GOT case. We use the symbol's
4378 hash table entry to track its index. */
4379 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
4380 return 1;
4381 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
4382 entry->d.h->tls_got_offset = next_index;
4383 tls_type = entry->d.h->tls_type;
4384 }
4385 else
4386 {
4387 if (entry->tls_type & GOT_TLS_LDM)
4388 {
4389 /* There are separate mips_got_entry objects for each input bfd
4390 that requires an LDM entry. Make sure that all LDM entries in
4391 a GOT resolve to the same index. */
4392 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
4393 {
4394 entry->gotidx = g->tls_ldm_offset;
4395 return 1;
4396 }
4397 g->tls_ldm_offset = next_index;
4398 }
4399 entry->gotidx = next_index;
4400 tls_type = entry->tls_type;
4401 }
4402
4403 /* Account for the entries we've just allocated. */
4404 if (tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
4405 g->tls_assigned_gotno += 2;
4406 if (tls_type & GOT_TLS_IE)
4407 g->tls_assigned_gotno += 1;
4408
4409 return 1;
4410 }
4411
4412 /* If passed a NULL mips_got_info in the argument, set the marker used
4413 to tell whether a global symbol needs a got entry (in the primary
4414 got) to the given VALUE.
4415
4416 If passed a pointer G to a mips_got_info in the argument (it must
4417 not be the primary GOT), compute the offset from the beginning of
4418 the (primary) GOT section to the entry in G corresponding to the
4419 global symbol. G's assigned_gotno must contain the index of the
4420 first available global GOT entry in G. VALUE must contain the size
4421 of a GOT entry in bytes. For each global GOT entry that requires a
4422 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4423 marked as not eligible for lazy resolution through a function
4424 stub. */
4425 static int
4426 mips_elf_set_global_got_offset (void **entryp, void *p)
4427 {
4428 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4429 struct mips_elf_set_global_got_offset_arg *arg
4430 = (struct mips_elf_set_global_got_offset_arg *)p;
4431 struct mips_got_info *g = arg->g;
4432
4433 if (g && entry->tls_type != GOT_NORMAL)
4434 arg->needed_relocs +=
4435 mips_tls_got_relocs (arg->info, entry->tls_type,
4436 entry->symndx == -1 ? &entry->d.h->root : NULL);
4437
4438 if (entry->abfd != NULL
4439 && entry->symndx == -1
4440 && entry->d.h->global_got_area != GGA_NONE)
4441 {
4442 if (g)
4443 {
4444 BFD_ASSERT (g->global_gotsym == NULL);
4445
4446 entry->gotidx = arg->value * (long) g->assigned_gotno++;
4447 if (arg->info->shared
4448 || (elf_hash_table (arg->info)->dynamic_sections_created
4449 && entry->d.h->root.def_dynamic
4450 && !entry->d.h->root.def_regular))
4451 ++arg->needed_relocs;
4452 }
4453 else
4454 entry->d.h->global_got_area = arg->value;
4455 }
4456
4457 return 1;
4458 }
4459
4460 /* A htab_traverse callback for GOT entries for which DATA is the
4461 bfd_link_info. Forbid any global symbols from having traditional
4462 lazy-binding stubs. */
4463
4464 static int
4465 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4466 {
4467 struct bfd_link_info *info;
4468 struct mips_elf_link_hash_table *htab;
4469 struct mips_got_entry *entry;
4470
4471 entry = (struct mips_got_entry *) *entryp;
4472 info = (struct bfd_link_info *) data;
4473 htab = mips_elf_hash_table (info);
4474 BFD_ASSERT (htab != NULL);
4475
4476 if (entry->abfd != NULL
4477 && entry->symndx == -1
4478 && entry->d.h->needs_lazy_stub)
4479 {
4480 entry->d.h->needs_lazy_stub = FALSE;
4481 htab->lazy_stub_count--;
4482 }
4483
4484 return 1;
4485 }
4486
4487 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4488 the primary GOT. */
4489 static bfd_vma
4490 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4491 {
4492 if (g->bfd2got == NULL)
4493 return 0;
4494
4495 g = mips_elf_got_for_ibfd (g, ibfd);
4496 if (! g)
4497 return 0;
4498
4499 BFD_ASSERT (g->next);
4500
4501 g = g->next;
4502
4503 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4504 * MIPS_ELF_GOT_SIZE (abfd);
4505 }
4506
4507 /* Turn a single GOT that is too big for 16-bit addressing into
4508 a sequence of GOTs, each one 16-bit addressable. */
4509
4510 static bfd_boolean
4511 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4512 asection *got, bfd_size_type pages)
4513 {
4514 struct mips_elf_link_hash_table *htab;
4515 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4516 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
4517 struct mips_got_info *g, *gg;
4518 unsigned int assign, needed_relocs;
4519 bfd *dynobj;
4520
4521 dynobj = elf_hash_table (info)->dynobj;
4522 htab = mips_elf_hash_table (info);
4523 BFD_ASSERT (htab != NULL);
4524
4525 g = htab->got_info;
4526 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
4527 mips_elf_bfd2got_entry_eq, NULL);
4528 if (g->bfd2got == NULL)
4529 return FALSE;
4530
4531 got_per_bfd_arg.bfd2got = g->bfd2got;
4532 got_per_bfd_arg.obfd = abfd;
4533 got_per_bfd_arg.info = info;
4534
4535 /* Count how many GOT entries each input bfd requires, creating a
4536 map from bfd to got info while at that. */
4537 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
4538 if (got_per_bfd_arg.obfd == NULL)
4539 return FALSE;
4540
4541 /* Also count how many page entries each input bfd requires. */
4542 htab_traverse (g->got_page_entries, mips_elf_make_got_pages_per_bfd,
4543 &got_per_bfd_arg);
4544 if (got_per_bfd_arg.obfd == NULL)
4545 return FALSE;
4546
4547 got_per_bfd_arg.current = NULL;
4548 got_per_bfd_arg.primary = NULL;
4549 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4550 / MIPS_ELF_GOT_SIZE (abfd))
4551 - htab->reserved_gotno);
4552 got_per_bfd_arg.max_pages = pages;
4553 /* The number of globals that will be included in the primary GOT.
4554 See the calls to mips_elf_set_global_got_offset below for more
4555 information. */
4556 got_per_bfd_arg.global_count = g->global_gotno;
4557
4558 /* Try to merge the GOTs of input bfds together, as long as they
4559 don't seem to exceed the maximum GOT size, choosing one of them
4560 to be the primary GOT. */
4561 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
4562 if (got_per_bfd_arg.obfd == NULL)
4563 return FALSE;
4564
4565 /* If we do not find any suitable primary GOT, create an empty one. */
4566 if (got_per_bfd_arg.primary == NULL)
4567 {
4568 g->next = (struct mips_got_info *)
4569 bfd_alloc (abfd, sizeof (struct mips_got_info));
4570 if (g->next == NULL)
4571 return FALSE;
4572
4573 g->next->global_gotsym = NULL;
4574 g->next->global_gotno = 0;
4575 g->next->reloc_only_gotno = 0;
4576 g->next->local_gotno = 0;
4577 g->next->page_gotno = 0;
4578 g->next->tls_gotno = 0;
4579 g->next->assigned_gotno = 0;
4580 g->next->tls_assigned_gotno = 0;
4581 g->next->tls_ldm_offset = MINUS_ONE;
4582 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
4583 mips_elf_multi_got_entry_eq,
4584 NULL);
4585 if (g->next->got_entries == NULL)
4586 return FALSE;
4587 g->next->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4588 mips_got_page_entry_eq,
4589 NULL);
4590 if (g->next->got_page_entries == NULL)
4591 return FALSE;
4592 g->next->bfd2got = NULL;
4593 }
4594 else
4595 g->next = got_per_bfd_arg.primary;
4596 g->next->next = got_per_bfd_arg.current;
4597
4598 /* GG is now the master GOT, and G is the primary GOT. */
4599 gg = g;
4600 g = g->next;
4601
4602 /* Map the output bfd to the primary got. That's what we're going
4603 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4604 didn't mark in check_relocs, and we want a quick way to find it.
4605 We can't just use gg->next because we're going to reverse the
4606 list. */
4607 {
4608 struct mips_elf_bfd2got_hash *bfdgot;
4609 void **bfdgotp;
4610
4611 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
4612 (abfd, sizeof (struct mips_elf_bfd2got_hash));
4613
4614 if (bfdgot == NULL)
4615 return FALSE;
4616
4617 bfdgot->bfd = abfd;
4618 bfdgot->g = g;
4619 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
4620
4621 BFD_ASSERT (*bfdgotp == NULL);
4622 *bfdgotp = bfdgot;
4623 }
4624
4625 /* Every symbol that is referenced in a dynamic relocation must be
4626 present in the primary GOT, so arrange for them to appear after
4627 those that are actually referenced. */
4628 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4629 g->global_gotno = gg->global_gotno;
4630
4631 set_got_offset_arg.g = NULL;
4632 set_got_offset_arg.value = GGA_RELOC_ONLY;
4633 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
4634 &set_got_offset_arg);
4635 set_got_offset_arg.value = GGA_NORMAL;
4636 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
4637 &set_got_offset_arg);
4638
4639 /* Now go through the GOTs assigning them offset ranges.
4640 [assigned_gotno, local_gotno[ will be set to the range of local
4641 entries in each GOT. We can then compute the end of a GOT by
4642 adding local_gotno to global_gotno. We reverse the list and make
4643 it circular since then we'll be able to quickly compute the
4644 beginning of a GOT, by computing the end of its predecessor. To
4645 avoid special cases for the primary GOT, while still preserving
4646 assertions that are valid for both single- and multi-got links,
4647 we arrange for the main got struct to have the right number of
4648 global entries, but set its local_gotno such that the initial
4649 offset of the primary GOT is zero. Remember that the primary GOT
4650 will become the last item in the circular linked list, so it
4651 points back to the master GOT. */
4652 gg->local_gotno = -g->global_gotno;
4653 gg->global_gotno = g->global_gotno;
4654 gg->tls_gotno = 0;
4655 assign = 0;
4656 gg->next = gg;
4657
4658 do
4659 {
4660 struct mips_got_info *gn;
4661
4662 assign += htab->reserved_gotno;
4663 g->assigned_gotno = assign;
4664 g->local_gotno += assign;
4665 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4666 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4667
4668 /* Take g out of the direct list, and push it onto the reversed
4669 list that gg points to. g->next is guaranteed to be nonnull after
4670 this operation, as required by mips_elf_initialize_tls_index. */
4671 gn = g->next;
4672 g->next = gg->next;
4673 gg->next = g;
4674
4675 /* Set up any TLS entries. We always place the TLS entries after
4676 all non-TLS entries. */
4677 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4678 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
4679
4680 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4681 g = gn;
4682
4683 /* Forbid global symbols in every non-primary GOT from having
4684 lazy-binding stubs. */
4685 if (g)
4686 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4687 }
4688 while (g);
4689
4690 got->size = (gg->next->local_gotno
4691 + gg->next->global_gotno
4692 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
4693
4694 needed_relocs = 0;
4695 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (abfd);
4696 set_got_offset_arg.info = info;
4697 for (g = gg->next; g && g->next != gg; g = g->next)
4698 {
4699 unsigned int save_assign;
4700
4701 /* Assign offsets to global GOT entries. */
4702 save_assign = g->assigned_gotno;
4703 g->assigned_gotno = g->local_gotno;
4704 set_got_offset_arg.g = g;
4705 set_got_offset_arg.needed_relocs = 0;
4706 htab_traverse (g->got_entries,
4707 mips_elf_set_global_got_offset,
4708 &set_got_offset_arg);
4709 needed_relocs += set_got_offset_arg.needed_relocs;
4710 BFD_ASSERT (g->assigned_gotno - g->local_gotno <= g->global_gotno);
4711
4712 g->assigned_gotno = save_assign;
4713 if (info->shared)
4714 {
4715 needed_relocs += g->local_gotno - g->assigned_gotno;
4716 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
4717 + g->next->global_gotno
4718 + g->next->tls_gotno
4719 + htab->reserved_gotno);
4720 }
4721 }
4722
4723 if (needed_relocs)
4724 mips_elf_allocate_dynamic_relocations (dynobj, info,
4725 needed_relocs);
4726
4727 return TRUE;
4728 }
4729
4730 \f
4731 /* Returns the first relocation of type r_type found, beginning with
4732 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4733
4734 static const Elf_Internal_Rela *
4735 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4736 const Elf_Internal_Rela *relocation,
4737 const Elf_Internal_Rela *relend)
4738 {
4739 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4740
4741 while (relocation < relend)
4742 {
4743 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4744 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4745 return relocation;
4746
4747 ++relocation;
4748 }
4749
4750 /* We didn't find it. */
4751 return NULL;
4752 }
4753
4754 /* Return whether an input relocation is against a local symbol. */
4755
4756 static bfd_boolean
4757 mips_elf_local_relocation_p (bfd *input_bfd,
4758 const Elf_Internal_Rela *relocation,
4759 asection **local_sections)
4760 {
4761 unsigned long r_symndx;
4762 Elf_Internal_Shdr *symtab_hdr;
4763 size_t extsymoff;
4764
4765 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4766 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4767 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4768
4769 if (r_symndx < extsymoff)
4770 return TRUE;
4771 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
4772 return TRUE;
4773
4774 return FALSE;
4775 }
4776 \f
4777 /* Sign-extend VALUE, which has the indicated number of BITS. */
4778
4779 bfd_vma
4780 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
4781 {
4782 if (value & ((bfd_vma) 1 << (bits - 1)))
4783 /* VALUE is negative. */
4784 value |= ((bfd_vma) - 1) << bits;
4785
4786 return value;
4787 }
4788
4789 /* Return non-zero if the indicated VALUE has overflowed the maximum
4790 range expressible by a signed number with the indicated number of
4791 BITS. */
4792
4793 static bfd_boolean
4794 mips_elf_overflow_p (bfd_vma value, int bits)
4795 {
4796 bfd_signed_vma svalue = (bfd_signed_vma) value;
4797
4798 if (svalue > (1 << (bits - 1)) - 1)
4799 /* The value is too big. */
4800 return TRUE;
4801 else if (svalue < -(1 << (bits - 1)))
4802 /* The value is too small. */
4803 return TRUE;
4804
4805 /* All is well. */
4806 return FALSE;
4807 }
4808
4809 /* Calculate the %high function. */
4810
4811 static bfd_vma
4812 mips_elf_high (bfd_vma value)
4813 {
4814 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
4815 }
4816
4817 /* Calculate the %higher function. */
4818
4819 static bfd_vma
4820 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
4821 {
4822 #ifdef BFD64
4823 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
4824 #else
4825 abort ();
4826 return MINUS_ONE;
4827 #endif
4828 }
4829
4830 /* Calculate the %highest function. */
4831
4832 static bfd_vma
4833 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
4834 {
4835 #ifdef BFD64
4836 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
4837 #else
4838 abort ();
4839 return MINUS_ONE;
4840 #endif
4841 }
4842 \f
4843 /* Create the .compact_rel section. */
4844
4845 static bfd_boolean
4846 mips_elf_create_compact_rel_section
4847 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
4848 {
4849 flagword flags;
4850 register asection *s;
4851
4852 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
4853 {
4854 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
4855 | SEC_READONLY);
4856
4857 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
4858 if (s == NULL
4859 || ! bfd_set_section_alignment (abfd, s,
4860 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4861 return FALSE;
4862
4863 s->size = sizeof (Elf32_External_compact_rel);
4864 }
4865
4866 return TRUE;
4867 }
4868
4869 /* Create the .got section to hold the global offset table. */
4870
4871 static bfd_boolean
4872 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
4873 {
4874 flagword flags;
4875 register asection *s;
4876 struct elf_link_hash_entry *h;
4877 struct bfd_link_hash_entry *bh;
4878 struct mips_got_info *g;
4879 bfd_size_type amt;
4880 struct mips_elf_link_hash_table *htab;
4881
4882 htab = mips_elf_hash_table (info);
4883 BFD_ASSERT (htab != NULL);
4884
4885 /* This function may be called more than once. */
4886 if (htab->sgot)
4887 return TRUE;
4888
4889 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4890 | SEC_LINKER_CREATED);
4891
4892 /* We have to use an alignment of 2**4 here because this is hardcoded
4893 in the function stub generation and in the linker script. */
4894 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
4895 if (s == NULL
4896 || ! bfd_set_section_alignment (abfd, s, 4))
4897 return FALSE;
4898 htab->sgot = s;
4899
4900 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
4901 linker script because we don't want to define the symbol if we
4902 are not creating a global offset table. */
4903 bh = NULL;
4904 if (! (_bfd_generic_link_add_one_symbol
4905 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
4906 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
4907 return FALSE;
4908
4909 h = (struct elf_link_hash_entry *) bh;
4910 h->non_elf = 0;
4911 h->def_regular = 1;
4912 h->type = STT_OBJECT;
4913 elf_hash_table (info)->hgot = h;
4914
4915 if (info->shared
4916 && ! bfd_elf_link_record_dynamic_symbol (info, h))
4917 return FALSE;
4918
4919 amt = sizeof (struct mips_got_info);
4920 g = bfd_alloc (abfd, amt);
4921 if (g == NULL)
4922 return FALSE;
4923 g->global_gotsym = NULL;
4924 g->global_gotno = 0;
4925 g->reloc_only_gotno = 0;
4926 g->tls_gotno = 0;
4927 g->local_gotno = 0;
4928 g->page_gotno = 0;
4929 g->assigned_gotno = 0;
4930 g->bfd2got = NULL;
4931 g->next = NULL;
4932 g->tls_ldm_offset = MINUS_ONE;
4933 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
4934 mips_elf_got_entry_eq, NULL);
4935 if (g->got_entries == NULL)
4936 return FALSE;
4937 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4938 mips_got_page_entry_eq, NULL);
4939 if (g->got_page_entries == NULL)
4940 return FALSE;
4941 htab->got_info = g;
4942 mips_elf_section_data (s)->elf.this_hdr.sh_flags
4943 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4944
4945 /* We also need a .got.plt section when generating PLTs. */
4946 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
4947 SEC_ALLOC | SEC_LOAD
4948 | SEC_HAS_CONTENTS
4949 | SEC_IN_MEMORY
4950 | SEC_LINKER_CREATED);
4951 if (s == NULL)
4952 return FALSE;
4953 htab->sgotplt = s;
4954
4955 return TRUE;
4956 }
4957 \f
4958 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
4959 __GOTT_INDEX__ symbols. These symbols are only special for
4960 shared objects; they are not used in executables. */
4961
4962 static bfd_boolean
4963 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
4964 {
4965 return (mips_elf_hash_table (info)->is_vxworks
4966 && info->shared
4967 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
4968 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
4969 }
4970
4971 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
4972 require an la25 stub. See also mips_elf_local_pic_function_p,
4973 which determines whether the destination function ever requires a
4974 stub. */
4975
4976 static bfd_boolean
4977 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
4978 bfd_boolean target_is_16_bit_code_p)
4979 {
4980 /* We specifically ignore branches and jumps from EF_PIC objects,
4981 where the onus is on the compiler or programmer to perform any
4982 necessary initialization of $25. Sometimes such initialization
4983 is unnecessary; for example, -mno-shared functions do not use
4984 the incoming value of $25, and may therefore be called directly. */
4985 if (PIC_OBJECT_P (input_bfd))
4986 return FALSE;
4987
4988 switch (r_type)
4989 {
4990 case R_MIPS_26:
4991 case R_MIPS_PC16:
4992 case R_MICROMIPS_26_S1:
4993 case R_MICROMIPS_PC7_S1:
4994 case R_MICROMIPS_PC10_S1:
4995 case R_MICROMIPS_PC16_S1:
4996 case R_MICROMIPS_PC23_S2:
4997 return TRUE;
4998
4999 case R_MIPS16_26:
5000 return !target_is_16_bit_code_p;
5001
5002 default:
5003 return FALSE;
5004 }
5005 }
5006 \f
5007 /* Calculate the value produced by the RELOCATION (which comes from
5008 the INPUT_BFD). The ADDEND is the addend to use for this
5009 RELOCATION; RELOCATION->R_ADDEND is ignored.
5010
5011 The result of the relocation calculation is stored in VALUEP.
5012 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5013 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5014
5015 This function returns bfd_reloc_continue if the caller need take no
5016 further action regarding this relocation, bfd_reloc_notsupported if
5017 something goes dramatically wrong, bfd_reloc_overflow if an
5018 overflow occurs, and bfd_reloc_ok to indicate success. */
5019
5020 static bfd_reloc_status_type
5021 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5022 asection *input_section,
5023 struct bfd_link_info *info,
5024 const Elf_Internal_Rela *relocation,
5025 bfd_vma addend, reloc_howto_type *howto,
5026 Elf_Internal_Sym *local_syms,
5027 asection **local_sections, bfd_vma *valuep,
5028 const char **namep,
5029 bfd_boolean *cross_mode_jump_p,
5030 bfd_boolean save_addend)
5031 {
5032 /* The eventual value we will return. */
5033 bfd_vma value;
5034 /* The address of the symbol against which the relocation is
5035 occurring. */
5036 bfd_vma symbol = 0;
5037 /* The final GP value to be used for the relocatable, executable, or
5038 shared object file being produced. */
5039 bfd_vma gp;
5040 /* The place (section offset or address) of the storage unit being
5041 relocated. */
5042 bfd_vma p;
5043 /* The value of GP used to create the relocatable object. */
5044 bfd_vma gp0;
5045 /* The offset into the global offset table at which the address of
5046 the relocation entry symbol, adjusted by the addend, resides
5047 during execution. */
5048 bfd_vma g = MINUS_ONE;
5049 /* The section in which the symbol referenced by the relocation is
5050 located. */
5051 asection *sec = NULL;
5052 struct mips_elf_link_hash_entry *h = NULL;
5053 /* TRUE if the symbol referred to by this relocation is a local
5054 symbol. */
5055 bfd_boolean local_p, was_local_p;
5056 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5057 bfd_boolean gp_disp_p = FALSE;
5058 /* TRUE if the symbol referred to by this relocation is
5059 "__gnu_local_gp". */
5060 bfd_boolean gnu_local_gp_p = FALSE;
5061 Elf_Internal_Shdr *symtab_hdr;
5062 size_t extsymoff;
5063 unsigned long r_symndx;
5064 int r_type;
5065 /* TRUE if overflow occurred during the calculation of the
5066 relocation value. */
5067 bfd_boolean overflowed_p;
5068 /* TRUE if this relocation refers to a MIPS16 function. */
5069 bfd_boolean target_is_16_bit_code_p = FALSE;
5070 bfd_boolean target_is_micromips_code_p = FALSE;
5071 struct mips_elf_link_hash_table *htab;
5072 bfd *dynobj;
5073
5074 dynobj = elf_hash_table (info)->dynobj;
5075 htab = mips_elf_hash_table (info);
5076 BFD_ASSERT (htab != NULL);
5077
5078 /* Parse the relocation. */
5079 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5080 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5081 p = (input_section->output_section->vma
5082 + input_section->output_offset
5083 + relocation->r_offset);
5084
5085 /* Assume that there will be no overflow. */
5086 overflowed_p = FALSE;
5087
5088 /* Figure out whether or not the symbol is local, and get the offset
5089 used in the array of hash table entries. */
5090 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5091 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5092 local_sections);
5093 was_local_p = local_p;
5094 if (! elf_bad_symtab (input_bfd))
5095 extsymoff = symtab_hdr->sh_info;
5096 else
5097 {
5098 /* The symbol table does not follow the rule that local symbols
5099 must come before globals. */
5100 extsymoff = 0;
5101 }
5102
5103 /* Figure out the value of the symbol. */
5104 if (local_p)
5105 {
5106 Elf_Internal_Sym *sym;
5107
5108 sym = local_syms + r_symndx;
5109 sec = local_sections[r_symndx];
5110
5111 symbol = sec->output_section->vma + sec->output_offset;
5112 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
5113 || (sec->flags & SEC_MERGE))
5114 symbol += sym->st_value;
5115 if ((sec->flags & SEC_MERGE)
5116 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5117 {
5118 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5119 addend -= symbol;
5120 addend += sec->output_section->vma + sec->output_offset;
5121 }
5122
5123 /* MIPS16/microMIPS text labels should be treated as odd. */
5124 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5125 ++symbol;
5126
5127 /* Record the name of this symbol, for our caller. */
5128 *namep = bfd_elf_string_from_elf_section (input_bfd,
5129 symtab_hdr->sh_link,
5130 sym->st_name);
5131 if (*namep == '\0')
5132 *namep = bfd_section_name (input_bfd, sec);
5133
5134 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5135 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5136 }
5137 else
5138 {
5139 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5140
5141 /* For global symbols we look up the symbol in the hash-table. */
5142 h = ((struct mips_elf_link_hash_entry *)
5143 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5144 /* Find the real hash-table entry for this symbol. */
5145 while (h->root.root.type == bfd_link_hash_indirect
5146 || h->root.root.type == bfd_link_hash_warning)
5147 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5148
5149 /* Record the name of this symbol, for our caller. */
5150 *namep = h->root.root.root.string;
5151
5152 /* See if this is the special _gp_disp symbol. Note that such a
5153 symbol must always be a global symbol. */
5154 if (strcmp (*namep, "_gp_disp") == 0
5155 && ! NEWABI_P (input_bfd))
5156 {
5157 /* Relocations against _gp_disp are permitted only with
5158 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5159 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5160 return bfd_reloc_notsupported;
5161
5162 gp_disp_p = TRUE;
5163 }
5164 /* See if this is the special _gp symbol. Note that such a
5165 symbol must always be a global symbol. */
5166 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5167 gnu_local_gp_p = TRUE;
5168
5169
5170 /* If this symbol is defined, calculate its address. Note that
5171 _gp_disp is a magic symbol, always implicitly defined by the
5172 linker, so it's inappropriate to check to see whether or not
5173 its defined. */
5174 else if ((h->root.root.type == bfd_link_hash_defined
5175 || h->root.root.type == bfd_link_hash_defweak)
5176 && h->root.root.u.def.section)
5177 {
5178 sec = h->root.root.u.def.section;
5179 if (sec->output_section)
5180 symbol = (h->root.root.u.def.value
5181 + sec->output_section->vma
5182 + sec->output_offset);
5183 else
5184 symbol = h->root.root.u.def.value;
5185 }
5186 else if (h->root.root.type == bfd_link_hash_undefweak)
5187 /* We allow relocations against undefined weak symbols, giving
5188 it the value zero, so that you can undefined weak functions
5189 and check to see if they exist by looking at their
5190 addresses. */
5191 symbol = 0;
5192 else if (info->unresolved_syms_in_objects == RM_IGNORE
5193 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5194 symbol = 0;
5195 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5196 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5197 {
5198 /* If this is a dynamic link, we should have created a
5199 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5200 in in _bfd_mips_elf_create_dynamic_sections.
5201 Otherwise, we should define the symbol with a value of 0.
5202 FIXME: It should probably get into the symbol table
5203 somehow as well. */
5204 BFD_ASSERT (! info->shared);
5205 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5206 symbol = 0;
5207 }
5208 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5209 {
5210 /* This is an optional symbol - an Irix specific extension to the
5211 ELF spec. Ignore it for now.
5212 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5213 than simply ignoring them, but we do not handle this for now.
5214 For information see the "64-bit ELF Object File Specification"
5215 which is available from here:
5216 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5217 symbol = 0;
5218 }
5219 else if ((*info->callbacks->undefined_symbol)
5220 (info, h->root.root.root.string, input_bfd,
5221 input_section, relocation->r_offset,
5222 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5223 || ELF_ST_VISIBILITY (h->root.other)))
5224 {
5225 return bfd_reloc_undefined;
5226 }
5227 else
5228 {
5229 return bfd_reloc_notsupported;
5230 }
5231
5232 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5233 /* If the output section is the PLT section,
5234 then the target is not microMIPS. */
5235 target_is_micromips_code_p = (htab->splt != sec
5236 && ELF_ST_IS_MICROMIPS (h->root.other));
5237 }
5238
5239 /* If this is a reference to a 16-bit function with a stub, we need
5240 to redirect the relocation to the stub unless:
5241
5242 (a) the relocation is for a MIPS16 JAL;
5243
5244 (b) the relocation is for a MIPS16 PIC call, and there are no
5245 non-MIPS16 uses of the GOT slot; or
5246
5247 (c) the section allows direct references to MIPS16 functions. */
5248 if (r_type != R_MIPS16_26
5249 && !info->relocatable
5250 && ((h != NULL
5251 && h->fn_stub != NULL
5252 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5253 || (local_p
5254 && elf_tdata (input_bfd)->local_stubs != NULL
5255 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5256 && !section_allows_mips16_refs_p (input_section))
5257 {
5258 /* This is a 32- or 64-bit call to a 16-bit function. We should
5259 have already noticed that we were going to need the
5260 stub. */
5261 if (local_p)
5262 {
5263 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
5264 value = 0;
5265 }
5266 else
5267 {
5268 BFD_ASSERT (h->need_fn_stub);
5269 if (h->la25_stub)
5270 {
5271 /* If a LA25 header for the stub itself exists, point to the
5272 prepended LUI/ADDIU sequence. */
5273 sec = h->la25_stub->stub_section;
5274 value = h->la25_stub->offset;
5275 }
5276 else
5277 {
5278 sec = h->fn_stub;
5279 value = 0;
5280 }
5281 }
5282
5283 symbol = sec->output_section->vma + sec->output_offset + value;
5284 /* The target is 16-bit, but the stub isn't. */
5285 target_is_16_bit_code_p = FALSE;
5286 }
5287 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
5288 need to redirect the call to the stub. Note that we specifically
5289 exclude R_MIPS16_CALL16 from this behavior; indirect calls should
5290 use an indirect stub instead. */
5291 else if (r_type == R_MIPS16_26 && !info->relocatable
5292 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5293 || (local_p
5294 && elf_tdata (input_bfd)->local_call_stubs != NULL
5295 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5296 && !target_is_16_bit_code_p)
5297 {
5298 if (local_p)
5299 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5300 else
5301 {
5302 /* If both call_stub and call_fp_stub are defined, we can figure
5303 out which one to use by checking which one appears in the input
5304 file. */
5305 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5306 {
5307 asection *o;
5308
5309 sec = NULL;
5310 for (o = input_bfd->sections; o != NULL; o = o->next)
5311 {
5312 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5313 {
5314 sec = h->call_fp_stub;
5315 break;
5316 }
5317 }
5318 if (sec == NULL)
5319 sec = h->call_stub;
5320 }
5321 else if (h->call_stub != NULL)
5322 sec = h->call_stub;
5323 else
5324 sec = h->call_fp_stub;
5325 }
5326
5327 BFD_ASSERT (sec->size > 0);
5328 symbol = sec->output_section->vma + sec->output_offset;
5329 }
5330 /* If this is a direct call to a PIC function, redirect to the
5331 non-PIC stub. */
5332 else if (h != NULL && h->la25_stub
5333 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5334 target_is_16_bit_code_p))
5335 symbol = (h->la25_stub->stub_section->output_section->vma
5336 + h->la25_stub->stub_section->output_offset
5337 + h->la25_stub->offset);
5338
5339 /* Make sure MIPS16 and microMIPS are not used together. */
5340 if ((r_type == R_MIPS16_26 && target_is_micromips_code_p)
5341 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5342 {
5343 (*_bfd_error_handler)
5344 (_("MIPS16 and microMIPS functions cannot call each other"));
5345 return bfd_reloc_notsupported;
5346 }
5347
5348 /* Calls from 16-bit code to 32-bit code and vice versa require the
5349 mode change. However, we can ignore calls to undefined weak symbols,
5350 which should never be executed at runtime. This exception is important
5351 because the assembly writer may have "known" that any definition of the
5352 symbol would be 16-bit code, and that direct jumps were therefore
5353 acceptable. */
5354 *cross_mode_jump_p = (!info->relocatable
5355 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5356 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5357 || (r_type == R_MICROMIPS_26_S1
5358 && !target_is_micromips_code_p)
5359 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5360 && (target_is_16_bit_code_p
5361 || target_is_micromips_code_p))));
5362
5363 local_p = (h == NULL
5364 || (h->got_only_for_calls
5365 ? SYMBOL_CALLS_LOCAL (info, &h->root)
5366 : SYMBOL_REFERENCES_LOCAL (info, &h->root)));
5367
5368 gp0 = _bfd_get_gp_value (input_bfd);
5369 gp = _bfd_get_gp_value (abfd);
5370 if (htab->got_info)
5371 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5372
5373 if (gnu_local_gp_p)
5374 symbol = gp;
5375
5376 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5377 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5378 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5379 if (got_page_reloc_p (r_type) && !local_p)
5380 {
5381 r_type = (micromips_reloc_p (r_type)
5382 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5383 addend = 0;
5384 }
5385
5386 /* If we haven't already determined the GOT offset, and we're going
5387 to need it, get it now. */
5388 switch (r_type)
5389 {
5390 case R_MIPS16_CALL16:
5391 case R_MIPS16_GOT16:
5392 case R_MIPS_CALL16:
5393 case R_MIPS_GOT16:
5394 case R_MIPS_GOT_DISP:
5395 case R_MIPS_GOT_HI16:
5396 case R_MIPS_CALL_HI16:
5397 case R_MIPS_GOT_LO16:
5398 case R_MIPS_CALL_LO16:
5399 case R_MICROMIPS_CALL16:
5400 case R_MICROMIPS_GOT16:
5401 case R_MICROMIPS_GOT_DISP:
5402 case R_MICROMIPS_GOT_HI16:
5403 case R_MICROMIPS_CALL_HI16:
5404 case R_MICROMIPS_GOT_LO16:
5405 case R_MICROMIPS_CALL_LO16:
5406 case R_MIPS_TLS_GD:
5407 case R_MIPS_TLS_GOTTPREL:
5408 case R_MIPS_TLS_LDM:
5409 case R_MIPS16_TLS_GD:
5410 case R_MIPS16_TLS_GOTTPREL:
5411 case R_MIPS16_TLS_LDM:
5412 case R_MICROMIPS_TLS_GD:
5413 case R_MICROMIPS_TLS_GOTTPREL:
5414 case R_MICROMIPS_TLS_LDM:
5415 /* Find the index into the GOT where this value is located. */
5416 if (tls_ldm_reloc_p (r_type))
5417 {
5418 g = mips_elf_local_got_index (abfd, input_bfd, info,
5419 0, 0, NULL, r_type);
5420 if (g == MINUS_ONE)
5421 return bfd_reloc_outofrange;
5422 }
5423 else if (!local_p)
5424 {
5425 /* On VxWorks, CALL relocations should refer to the .got.plt
5426 entry, which is initialized to point at the PLT stub. */
5427 if (htab->is_vxworks
5428 && (call_hi16_reloc_p (r_type)
5429 || call_lo16_reloc_p (r_type)
5430 || call16_reloc_p (r_type)))
5431 {
5432 BFD_ASSERT (addend == 0);
5433 BFD_ASSERT (h->root.needs_plt);
5434 g = mips_elf_gotplt_index (info, &h->root);
5435 }
5436 else
5437 {
5438 BFD_ASSERT (addend == 0);
5439 g = mips_elf_global_got_index (dynobj, input_bfd,
5440 &h->root, r_type, info);
5441 if (h->tls_type == GOT_NORMAL
5442 && !elf_hash_table (info)->dynamic_sections_created)
5443 /* This is a static link. We must initialize the GOT entry. */
5444 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5445 }
5446 }
5447 else if (!htab->is_vxworks
5448 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5449 /* The calculation below does not involve "g". */
5450 break;
5451 else
5452 {
5453 g = mips_elf_local_got_index (abfd, input_bfd, info,
5454 symbol + addend, r_symndx, h, r_type);
5455 if (g == MINUS_ONE)
5456 return bfd_reloc_outofrange;
5457 }
5458
5459 /* Convert GOT indices to actual offsets. */
5460 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5461 break;
5462 }
5463
5464 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5465 symbols are resolved by the loader. Add them to .rela.dyn. */
5466 if (h != NULL && is_gott_symbol (info, &h->root))
5467 {
5468 Elf_Internal_Rela outrel;
5469 bfd_byte *loc;
5470 asection *s;
5471
5472 s = mips_elf_rel_dyn_section (info, FALSE);
5473 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5474
5475 outrel.r_offset = (input_section->output_section->vma
5476 + input_section->output_offset
5477 + relocation->r_offset);
5478 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5479 outrel.r_addend = addend;
5480 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5481
5482 /* If we've written this relocation for a readonly section,
5483 we need to set DF_TEXTREL again, so that we do not delete the
5484 DT_TEXTREL tag. */
5485 if (MIPS_ELF_READONLY_SECTION (input_section))
5486 info->flags |= DF_TEXTREL;
5487
5488 *valuep = 0;
5489 return bfd_reloc_ok;
5490 }
5491
5492 /* Figure out what kind of relocation is being performed. */
5493 switch (r_type)
5494 {
5495 case R_MIPS_NONE:
5496 return bfd_reloc_continue;
5497
5498 case R_MIPS_16:
5499 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
5500 overflowed_p = mips_elf_overflow_p (value, 16);
5501 break;
5502
5503 case R_MIPS_32:
5504 case R_MIPS_REL32:
5505 case R_MIPS_64:
5506 if ((info->shared
5507 || (htab->root.dynamic_sections_created
5508 && h != NULL
5509 && h->root.def_dynamic
5510 && !h->root.def_regular
5511 && !h->has_static_relocs))
5512 && r_symndx != STN_UNDEF
5513 && (h == NULL
5514 || h->root.root.type != bfd_link_hash_undefweak
5515 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5516 && (input_section->flags & SEC_ALLOC) != 0)
5517 {
5518 /* If we're creating a shared library, then we can't know
5519 where the symbol will end up. So, we create a relocation
5520 record in the output, and leave the job up to the dynamic
5521 linker. We must do the same for executable references to
5522 shared library symbols, unless we've decided to use copy
5523 relocs or PLTs instead. */
5524 value = addend;
5525 if (!mips_elf_create_dynamic_relocation (abfd,
5526 info,
5527 relocation,
5528 h,
5529 sec,
5530 symbol,
5531 &value,
5532 input_section))
5533 return bfd_reloc_undefined;
5534 }
5535 else
5536 {
5537 if (r_type != R_MIPS_REL32)
5538 value = symbol + addend;
5539 else
5540 value = addend;
5541 }
5542 value &= howto->dst_mask;
5543 break;
5544
5545 case R_MIPS_PC32:
5546 value = symbol + addend - p;
5547 value &= howto->dst_mask;
5548 break;
5549
5550 case R_MIPS16_26:
5551 /* The calculation for R_MIPS16_26 is just the same as for an
5552 R_MIPS_26. It's only the storage of the relocated field into
5553 the output file that's different. That's handled in
5554 mips_elf_perform_relocation. So, we just fall through to the
5555 R_MIPS_26 case here. */
5556 case R_MIPS_26:
5557 case R_MICROMIPS_26_S1:
5558 {
5559 unsigned int shift;
5560
5561 /* Make sure the target of JALX is word-aligned. Bit 0 must be
5562 the correct ISA mode selector and bit 1 must be 0. */
5563 if (*cross_mode_jump_p && (symbol & 3) != (r_type == R_MIPS_26))
5564 return bfd_reloc_outofrange;
5565
5566 /* Shift is 2, unusually, for microMIPS JALX. */
5567 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5568
5569 if (was_local_p)
5570 value = addend | ((p + 4) & (0xfc000000 << shift));
5571 else
5572 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5573 value = (value + symbol) >> shift;
5574 if (!was_local_p && h->root.root.type != bfd_link_hash_undefweak)
5575 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5576 value &= howto->dst_mask;
5577 }
5578 break;
5579
5580 case R_MIPS_TLS_DTPREL_HI16:
5581 case R_MIPS16_TLS_DTPREL_HI16:
5582 case R_MICROMIPS_TLS_DTPREL_HI16:
5583 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5584 & howto->dst_mask);
5585 break;
5586
5587 case R_MIPS_TLS_DTPREL_LO16:
5588 case R_MIPS_TLS_DTPREL32:
5589 case R_MIPS_TLS_DTPREL64:
5590 case R_MIPS16_TLS_DTPREL_LO16:
5591 case R_MICROMIPS_TLS_DTPREL_LO16:
5592 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5593 break;
5594
5595 case R_MIPS_TLS_TPREL_HI16:
5596 case R_MIPS16_TLS_TPREL_HI16:
5597 case R_MICROMIPS_TLS_TPREL_HI16:
5598 value = (mips_elf_high (addend + symbol - tprel_base (info))
5599 & howto->dst_mask);
5600 break;
5601
5602 case R_MIPS_TLS_TPREL_LO16:
5603 case R_MIPS_TLS_TPREL32:
5604 case R_MIPS_TLS_TPREL64:
5605 case R_MIPS16_TLS_TPREL_LO16:
5606 case R_MICROMIPS_TLS_TPREL_LO16:
5607 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5608 break;
5609
5610 case R_MIPS_HI16:
5611 case R_MIPS16_HI16:
5612 case R_MICROMIPS_HI16:
5613 if (!gp_disp_p)
5614 {
5615 value = mips_elf_high (addend + symbol);
5616 value &= howto->dst_mask;
5617 }
5618 else
5619 {
5620 /* For MIPS16 ABI code we generate this sequence
5621 0: li $v0,%hi(_gp_disp)
5622 4: addiupc $v1,%lo(_gp_disp)
5623 8: sll $v0,16
5624 12: addu $v0,$v1
5625 14: move $gp,$v0
5626 So the offsets of hi and lo relocs are the same, but the
5627 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5628 ADDIUPC clears the low two bits of the instruction address,
5629 so the base is ($t9 + 4) & ~3. */
5630 if (r_type == R_MIPS16_HI16)
5631 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5632 /* The microMIPS .cpload sequence uses the same assembly
5633 instructions as the traditional psABI version, but the
5634 incoming $t9 has the low bit set. */
5635 else if (r_type == R_MICROMIPS_HI16)
5636 value = mips_elf_high (addend + gp - p - 1);
5637 else
5638 value = mips_elf_high (addend + gp - p);
5639 overflowed_p = mips_elf_overflow_p (value, 16);
5640 }
5641 break;
5642
5643 case R_MIPS_LO16:
5644 case R_MIPS16_LO16:
5645 case R_MICROMIPS_LO16:
5646 case R_MICROMIPS_HI0_LO16:
5647 if (!gp_disp_p)
5648 value = (symbol + addend) & howto->dst_mask;
5649 else
5650 {
5651 /* See the comment for R_MIPS16_HI16 above for the reason
5652 for this conditional. */
5653 if (r_type == R_MIPS16_LO16)
5654 value = addend + gp - (p & ~(bfd_vma) 0x3);
5655 else if (r_type == R_MICROMIPS_LO16
5656 || r_type == R_MICROMIPS_HI0_LO16)
5657 value = addend + gp - p + 3;
5658 else
5659 value = addend + gp - p + 4;
5660 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5661 for overflow. But, on, say, IRIX5, relocations against
5662 _gp_disp are normally generated from the .cpload
5663 pseudo-op. It generates code that normally looks like
5664 this:
5665
5666 lui $gp,%hi(_gp_disp)
5667 addiu $gp,$gp,%lo(_gp_disp)
5668 addu $gp,$gp,$t9
5669
5670 Here $t9 holds the address of the function being called,
5671 as required by the MIPS ELF ABI. The R_MIPS_LO16
5672 relocation can easily overflow in this situation, but the
5673 R_MIPS_HI16 relocation will handle the overflow.
5674 Therefore, we consider this a bug in the MIPS ABI, and do
5675 not check for overflow here. */
5676 }
5677 break;
5678
5679 case R_MIPS_LITERAL:
5680 case R_MICROMIPS_LITERAL:
5681 /* Because we don't merge literal sections, we can handle this
5682 just like R_MIPS_GPREL16. In the long run, we should merge
5683 shared literals, and then we will need to additional work
5684 here. */
5685
5686 /* Fall through. */
5687
5688 case R_MIPS16_GPREL:
5689 /* The R_MIPS16_GPREL performs the same calculation as
5690 R_MIPS_GPREL16, but stores the relocated bits in a different
5691 order. We don't need to do anything special here; the
5692 differences are handled in mips_elf_perform_relocation. */
5693 case R_MIPS_GPREL16:
5694 case R_MICROMIPS_GPREL7_S2:
5695 case R_MICROMIPS_GPREL16:
5696 /* Only sign-extend the addend if it was extracted from the
5697 instruction. If the addend was separate, leave it alone,
5698 otherwise we may lose significant bits. */
5699 if (howto->partial_inplace)
5700 addend = _bfd_mips_elf_sign_extend (addend, 16);
5701 value = symbol + addend - gp;
5702 /* If the symbol was local, any earlier relocatable links will
5703 have adjusted its addend with the gp offset, so compensate
5704 for that now. Don't do it for symbols forced local in this
5705 link, though, since they won't have had the gp offset applied
5706 to them before. */
5707 if (was_local_p)
5708 value += gp0;
5709 overflowed_p = mips_elf_overflow_p (value, 16);
5710 break;
5711
5712 case R_MIPS16_GOT16:
5713 case R_MIPS16_CALL16:
5714 case R_MIPS_GOT16:
5715 case R_MIPS_CALL16:
5716 case R_MICROMIPS_GOT16:
5717 case R_MICROMIPS_CALL16:
5718 /* VxWorks does not have separate local and global semantics for
5719 R_MIPS*_GOT16; every relocation evaluates to "G". */
5720 if (!htab->is_vxworks && local_p)
5721 {
5722 value = mips_elf_got16_entry (abfd, input_bfd, info,
5723 symbol + addend, !was_local_p);
5724 if (value == MINUS_ONE)
5725 return bfd_reloc_outofrange;
5726 value
5727 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5728 overflowed_p = mips_elf_overflow_p (value, 16);
5729 break;
5730 }
5731
5732 /* Fall through. */
5733
5734 case R_MIPS_TLS_GD:
5735 case R_MIPS_TLS_GOTTPREL:
5736 case R_MIPS_TLS_LDM:
5737 case R_MIPS_GOT_DISP:
5738 case R_MIPS16_TLS_GD:
5739 case R_MIPS16_TLS_GOTTPREL:
5740 case R_MIPS16_TLS_LDM:
5741 case R_MICROMIPS_TLS_GD:
5742 case R_MICROMIPS_TLS_GOTTPREL:
5743 case R_MICROMIPS_TLS_LDM:
5744 case R_MICROMIPS_GOT_DISP:
5745 value = g;
5746 overflowed_p = mips_elf_overflow_p (value, 16);
5747 break;
5748
5749 case R_MIPS_GPREL32:
5750 value = (addend + symbol + gp0 - gp);
5751 if (!save_addend)
5752 value &= howto->dst_mask;
5753 break;
5754
5755 case R_MIPS_PC16:
5756 case R_MIPS_GNU_REL16_S2:
5757 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
5758 overflowed_p = mips_elf_overflow_p (value, 18);
5759 value >>= howto->rightshift;
5760 value &= howto->dst_mask;
5761 break;
5762
5763 case R_MICROMIPS_PC7_S1:
5764 value = symbol + _bfd_mips_elf_sign_extend (addend, 8) - p;
5765 overflowed_p = mips_elf_overflow_p (value, 8);
5766 value >>= howto->rightshift;
5767 value &= howto->dst_mask;
5768 break;
5769
5770 case R_MICROMIPS_PC10_S1:
5771 value = symbol + _bfd_mips_elf_sign_extend (addend, 11) - p;
5772 overflowed_p = mips_elf_overflow_p (value, 11);
5773 value >>= howto->rightshift;
5774 value &= howto->dst_mask;
5775 break;
5776
5777 case R_MICROMIPS_PC16_S1:
5778 value = symbol + _bfd_mips_elf_sign_extend (addend, 17) - p;
5779 overflowed_p = mips_elf_overflow_p (value, 17);
5780 value >>= howto->rightshift;
5781 value &= howto->dst_mask;
5782 break;
5783
5784 case R_MICROMIPS_PC23_S2:
5785 value = symbol + _bfd_mips_elf_sign_extend (addend, 25) - ((p | 3) ^ 3);
5786 overflowed_p = mips_elf_overflow_p (value, 25);
5787 value >>= howto->rightshift;
5788 value &= howto->dst_mask;
5789 break;
5790
5791 case R_MIPS_GOT_HI16:
5792 case R_MIPS_CALL_HI16:
5793 case R_MICROMIPS_GOT_HI16:
5794 case R_MICROMIPS_CALL_HI16:
5795 /* We're allowed to handle these two relocations identically.
5796 The dynamic linker is allowed to handle the CALL relocations
5797 differently by creating a lazy evaluation stub. */
5798 value = g;
5799 value = mips_elf_high (value);
5800 value &= howto->dst_mask;
5801 break;
5802
5803 case R_MIPS_GOT_LO16:
5804 case R_MIPS_CALL_LO16:
5805 case R_MICROMIPS_GOT_LO16:
5806 case R_MICROMIPS_CALL_LO16:
5807 value = g & howto->dst_mask;
5808 break;
5809
5810 case R_MIPS_GOT_PAGE:
5811 case R_MICROMIPS_GOT_PAGE:
5812 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
5813 if (value == MINUS_ONE)
5814 return bfd_reloc_outofrange;
5815 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5816 overflowed_p = mips_elf_overflow_p (value, 16);
5817 break;
5818
5819 case R_MIPS_GOT_OFST:
5820 case R_MICROMIPS_GOT_OFST:
5821 if (local_p)
5822 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
5823 else
5824 value = addend;
5825 overflowed_p = mips_elf_overflow_p (value, 16);
5826 break;
5827
5828 case R_MIPS_SUB:
5829 case R_MICROMIPS_SUB:
5830 value = symbol - addend;
5831 value &= howto->dst_mask;
5832 break;
5833
5834 case R_MIPS_HIGHER:
5835 case R_MICROMIPS_HIGHER:
5836 value = mips_elf_higher (addend + symbol);
5837 value &= howto->dst_mask;
5838 break;
5839
5840 case R_MIPS_HIGHEST:
5841 case R_MICROMIPS_HIGHEST:
5842 value = mips_elf_highest (addend + symbol);
5843 value &= howto->dst_mask;
5844 break;
5845
5846 case R_MIPS_SCN_DISP:
5847 case R_MICROMIPS_SCN_DISP:
5848 value = symbol + addend - sec->output_offset;
5849 value &= howto->dst_mask;
5850 break;
5851
5852 case R_MIPS_JALR:
5853 case R_MICROMIPS_JALR:
5854 /* This relocation is only a hint. In some cases, we optimize
5855 it into a bal instruction. But we don't try to optimize
5856 when the symbol does not resolve locally. */
5857 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
5858 return bfd_reloc_continue;
5859 value = symbol + addend;
5860 break;
5861
5862 case R_MIPS_PJUMP:
5863 case R_MIPS_GNU_VTINHERIT:
5864 case R_MIPS_GNU_VTENTRY:
5865 /* We don't do anything with these at present. */
5866 return bfd_reloc_continue;
5867
5868 default:
5869 /* An unrecognized relocation type. */
5870 return bfd_reloc_notsupported;
5871 }
5872
5873 /* Store the VALUE for our caller. */
5874 *valuep = value;
5875 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
5876 }
5877
5878 /* Obtain the field relocated by RELOCATION. */
5879
5880 static bfd_vma
5881 mips_elf_obtain_contents (reloc_howto_type *howto,
5882 const Elf_Internal_Rela *relocation,
5883 bfd *input_bfd, bfd_byte *contents)
5884 {
5885 bfd_vma x;
5886 bfd_byte *location = contents + relocation->r_offset;
5887
5888 /* Obtain the bytes. */
5889 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
5890
5891 return x;
5892 }
5893
5894 /* It has been determined that the result of the RELOCATION is the
5895 VALUE. Use HOWTO to place VALUE into the output file at the
5896 appropriate position. The SECTION is the section to which the
5897 relocation applies.
5898 CROSS_MODE_JUMP_P is true if the relocation field
5899 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5900
5901 Returns FALSE if anything goes wrong. */
5902
5903 static bfd_boolean
5904 mips_elf_perform_relocation (struct bfd_link_info *info,
5905 reloc_howto_type *howto,
5906 const Elf_Internal_Rela *relocation,
5907 bfd_vma value, bfd *input_bfd,
5908 asection *input_section, bfd_byte *contents,
5909 bfd_boolean cross_mode_jump_p)
5910 {
5911 bfd_vma x;
5912 bfd_byte *location;
5913 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5914
5915 /* Figure out where the relocation is occurring. */
5916 location = contents + relocation->r_offset;
5917
5918 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5919
5920 /* Obtain the current value. */
5921 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5922
5923 /* Clear the field we are setting. */
5924 x &= ~howto->dst_mask;
5925
5926 /* Set the field. */
5927 x |= (value & howto->dst_mask);
5928
5929 /* If required, turn JAL into JALX. */
5930 if (cross_mode_jump_p && jal_reloc_p (r_type))
5931 {
5932 bfd_boolean ok;
5933 bfd_vma opcode = x >> 26;
5934 bfd_vma jalx_opcode;
5935
5936 /* Check to see if the opcode is already JAL or JALX. */
5937 if (r_type == R_MIPS16_26)
5938 {
5939 ok = ((opcode == 0x6) || (opcode == 0x7));
5940 jalx_opcode = 0x7;
5941 }
5942 else if (r_type == R_MICROMIPS_26_S1)
5943 {
5944 ok = ((opcode == 0x3d) || (opcode == 0x3c));
5945 jalx_opcode = 0x3c;
5946 }
5947 else
5948 {
5949 ok = ((opcode == 0x3) || (opcode == 0x1d));
5950 jalx_opcode = 0x1d;
5951 }
5952
5953 /* If the opcode is not JAL or JALX, there's a problem. We cannot
5954 convert J or JALS to JALX. */
5955 if (!ok)
5956 {
5957 (*_bfd_error_handler)
5958 (_("%B: %A+0x%lx: Unsupported jump between ISA modes; consider recompiling with interlinking enabled."),
5959 input_bfd,
5960 input_section,
5961 (unsigned long) relocation->r_offset);
5962 bfd_set_error (bfd_error_bad_value);
5963 return FALSE;
5964 }
5965
5966 /* Make this the JALX opcode. */
5967 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
5968 }
5969
5970 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
5971 range. */
5972 if (!info->relocatable
5973 && !cross_mode_jump_p
5974 && ((JAL_TO_BAL_P (input_bfd)
5975 && r_type == R_MIPS_26
5976 && (x >> 26) == 0x3) /* jal addr */
5977 || (JALR_TO_BAL_P (input_bfd)
5978 && r_type == R_MIPS_JALR
5979 && x == 0x0320f809) /* jalr t9 */
5980 || (JR_TO_B_P (input_bfd)
5981 && r_type == R_MIPS_JALR
5982 && x == 0x03200008))) /* jr t9 */
5983 {
5984 bfd_vma addr;
5985 bfd_vma dest;
5986 bfd_signed_vma off;
5987
5988 addr = (input_section->output_section->vma
5989 + input_section->output_offset
5990 + relocation->r_offset
5991 + 4);
5992 if (r_type == R_MIPS_26)
5993 dest = (value << 2) | ((addr >> 28) << 28);
5994 else
5995 dest = value;
5996 off = dest - addr;
5997 if (off <= 0x1ffff && off >= -0x20000)
5998 {
5999 if (x == 0x03200008) /* jr t9 */
6000 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6001 else
6002 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6003 }
6004 }
6005
6006 /* Put the value into the output. */
6007 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
6008
6009 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !info->relocatable,
6010 location);
6011
6012 return TRUE;
6013 }
6014 \f
6015 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6016 is the original relocation, which is now being transformed into a
6017 dynamic relocation. The ADDENDP is adjusted if necessary; the
6018 caller should store the result in place of the original addend. */
6019
6020 static bfd_boolean
6021 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6022 struct bfd_link_info *info,
6023 const Elf_Internal_Rela *rel,
6024 struct mips_elf_link_hash_entry *h,
6025 asection *sec, bfd_vma symbol,
6026 bfd_vma *addendp, asection *input_section)
6027 {
6028 Elf_Internal_Rela outrel[3];
6029 asection *sreloc;
6030 bfd *dynobj;
6031 int r_type;
6032 long indx;
6033 bfd_boolean defined_p;
6034 struct mips_elf_link_hash_table *htab;
6035
6036 htab = mips_elf_hash_table (info);
6037 BFD_ASSERT (htab != NULL);
6038
6039 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6040 dynobj = elf_hash_table (info)->dynobj;
6041 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6042 BFD_ASSERT (sreloc != NULL);
6043 BFD_ASSERT (sreloc->contents != NULL);
6044 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6045 < sreloc->size);
6046
6047 outrel[0].r_offset =
6048 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6049 if (ABI_64_P (output_bfd))
6050 {
6051 outrel[1].r_offset =
6052 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6053 outrel[2].r_offset =
6054 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6055 }
6056
6057 if (outrel[0].r_offset == MINUS_ONE)
6058 /* The relocation field has been deleted. */
6059 return TRUE;
6060
6061 if (outrel[0].r_offset == MINUS_TWO)
6062 {
6063 /* The relocation field has been converted into a relative value of
6064 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6065 the field to be fully relocated, so add in the symbol's value. */
6066 *addendp += symbol;
6067 return TRUE;
6068 }
6069
6070 /* We must now calculate the dynamic symbol table index to use
6071 in the relocation. */
6072 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6073 {
6074 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6075 indx = h->root.dynindx;
6076 if (SGI_COMPAT (output_bfd))
6077 defined_p = h->root.def_regular;
6078 else
6079 /* ??? glibc's ld.so just adds the final GOT entry to the
6080 relocation field. It therefore treats relocs against
6081 defined symbols in the same way as relocs against
6082 undefined symbols. */
6083 defined_p = FALSE;
6084 }
6085 else
6086 {
6087 if (sec != NULL && bfd_is_abs_section (sec))
6088 indx = 0;
6089 else if (sec == NULL || sec->owner == NULL)
6090 {
6091 bfd_set_error (bfd_error_bad_value);
6092 return FALSE;
6093 }
6094 else
6095 {
6096 indx = elf_section_data (sec->output_section)->dynindx;
6097 if (indx == 0)
6098 {
6099 asection *osec = htab->root.text_index_section;
6100 indx = elf_section_data (osec)->dynindx;
6101 }
6102 if (indx == 0)
6103 abort ();
6104 }
6105
6106 /* Instead of generating a relocation using the section
6107 symbol, we may as well make it a fully relative
6108 relocation. We want to avoid generating relocations to
6109 local symbols because we used to generate them
6110 incorrectly, without adding the original symbol value,
6111 which is mandated by the ABI for section symbols. In
6112 order to give dynamic loaders and applications time to
6113 phase out the incorrect use, we refrain from emitting
6114 section-relative relocations. It's not like they're
6115 useful, after all. This should be a bit more efficient
6116 as well. */
6117 /* ??? Although this behavior is compatible with glibc's ld.so,
6118 the ABI says that relocations against STN_UNDEF should have
6119 a symbol value of 0. Irix rld honors this, so relocations
6120 against STN_UNDEF have no effect. */
6121 if (!SGI_COMPAT (output_bfd))
6122 indx = 0;
6123 defined_p = TRUE;
6124 }
6125
6126 /* If the relocation was previously an absolute relocation and
6127 this symbol will not be referred to by the relocation, we must
6128 adjust it by the value we give it in the dynamic symbol table.
6129 Otherwise leave the job up to the dynamic linker. */
6130 if (defined_p && r_type != R_MIPS_REL32)
6131 *addendp += symbol;
6132
6133 if (htab->is_vxworks)
6134 /* VxWorks uses non-relative relocations for this. */
6135 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6136 else
6137 /* The relocation is always an REL32 relocation because we don't
6138 know where the shared library will wind up at load-time. */
6139 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6140 R_MIPS_REL32);
6141
6142 /* For strict adherence to the ABI specification, we should
6143 generate a R_MIPS_64 relocation record by itself before the
6144 _REL32/_64 record as well, such that the addend is read in as
6145 a 64-bit value (REL32 is a 32-bit relocation, after all).
6146 However, since none of the existing ELF64 MIPS dynamic
6147 loaders seems to care, we don't waste space with these
6148 artificial relocations. If this turns out to not be true,
6149 mips_elf_allocate_dynamic_relocation() should be tweaked so
6150 as to make room for a pair of dynamic relocations per
6151 invocation if ABI_64_P, and here we should generate an
6152 additional relocation record with R_MIPS_64 by itself for a
6153 NULL symbol before this relocation record. */
6154 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6155 ABI_64_P (output_bfd)
6156 ? R_MIPS_64
6157 : R_MIPS_NONE);
6158 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6159
6160 /* Adjust the output offset of the relocation to reference the
6161 correct location in the output file. */
6162 outrel[0].r_offset += (input_section->output_section->vma
6163 + input_section->output_offset);
6164 outrel[1].r_offset += (input_section->output_section->vma
6165 + input_section->output_offset);
6166 outrel[2].r_offset += (input_section->output_section->vma
6167 + input_section->output_offset);
6168
6169 /* Put the relocation back out. We have to use the special
6170 relocation outputter in the 64-bit case since the 64-bit
6171 relocation format is non-standard. */
6172 if (ABI_64_P (output_bfd))
6173 {
6174 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6175 (output_bfd, &outrel[0],
6176 (sreloc->contents
6177 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6178 }
6179 else if (htab->is_vxworks)
6180 {
6181 /* VxWorks uses RELA rather than REL dynamic relocations. */
6182 outrel[0].r_addend = *addendp;
6183 bfd_elf32_swap_reloca_out
6184 (output_bfd, &outrel[0],
6185 (sreloc->contents
6186 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6187 }
6188 else
6189 bfd_elf32_swap_reloc_out
6190 (output_bfd, &outrel[0],
6191 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6192
6193 /* We've now added another relocation. */
6194 ++sreloc->reloc_count;
6195
6196 /* Make sure the output section is writable. The dynamic linker
6197 will be writing to it. */
6198 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6199 |= SHF_WRITE;
6200
6201 /* On IRIX5, make an entry of compact relocation info. */
6202 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6203 {
6204 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6205 bfd_byte *cr;
6206
6207 if (scpt)
6208 {
6209 Elf32_crinfo cptrel;
6210
6211 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6212 cptrel.vaddr = (rel->r_offset
6213 + input_section->output_section->vma
6214 + input_section->output_offset);
6215 if (r_type == R_MIPS_REL32)
6216 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6217 else
6218 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6219 mips_elf_set_cr_dist2to (cptrel, 0);
6220 cptrel.konst = *addendp;
6221
6222 cr = (scpt->contents
6223 + sizeof (Elf32_External_compact_rel));
6224 mips_elf_set_cr_relvaddr (cptrel, 0);
6225 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6226 ((Elf32_External_crinfo *) cr
6227 + scpt->reloc_count));
6228 ++scpt->reloc_count;
6229 }
6230 }
6231
6232 /* If we've written this relocation for a readonly section,
6233 we need to set DF_TEXTREL again, so that we do not delete the
6234 DT_TEXTREL tag. */
6235 if (MIPS_ELF_READONLY_SECTION (input_section))
6236 info->flags |= DF_TEXTREL;
6237
6238 return TRUE;
6239 }
6240 \f
6241 /* Return the MACH for a MIPS e_flags value. */
6242
6243 unsigned long
6244 _bfd_elf_mips_mach (flagword flags)
6245 {
6246 switch (flags & EF_MIPS_MACH)
6247 {
6248 case E_MIPS_MACH_3900:
6249 return bfd_mach_mips3900;
6250
6251 case E_MIPS_MACH_4010:
6252 return bfd_mach_mips4010;
6253
6254 case E_MIPS_MACH_4100:
6255 return bfd_mach_mips4100;
6256
6257 case E_MIPS_MACH_4111:
6258 return bfd_mach_mips4111;
6259
6260 case E_MIPS_MACH_4120:
6261 return bfd_mach_mips4120;
6262
6263 case E_MIPS_MACH_4650:
6264 return bfd_mach_mips4650;
6265
6266 case E_MIPS_MACH_5400:
6267 return bfd_mach_mips5400;
6268
6269 case E_MIPS_MACH_5500:
6270 return bfd_mach_mips5500;
6271
6272 case E_MIPS_MACH_9000:
6273 return bfd_mach_mips9000;
6274
6275 case E_MIPS_MACH_SB1:
6276 return bfd_mach_mips_sb1;
6277
6278 case E_MIPS_MACH_LS2E:
6279 return bfd_mach_mips_loongson_2e;
6280
6281 case E_MIPS_MACH_LS2F:
6282 return bfd_mach_mips_loongson_2f;
6283
6284 case E_MIPS_MACH_LS3A:
6285 return bfd_mach_mips_loongson_3a;
6286
6287 case E_MIPS_MACH_OCTEON2:
6288 return bfd_mach_mips_octeon2;
6289
6290 case E_MIPS_MACH_OCTEON:
6291 return bfd_mach_mips_octeon;
6292
6293 case E_MIPS_MACH_XLR:
6294 return bfd_mach_mips_xlr;
6295
6296 default:
6297 switch (flags & EF_MIPS_ARCH)
6298 {
6299 default:
6300 case E_MIPS_ARCH_1:
6301 return bfd_mach_mips3000;
6302
6303 case E_MIPS_ARCH_2:
6304 return bfd_mach_mips6000;
6305
6306 case E_MIPS_ARCH_3:
6307 return bfd_mach_mips4000;
6308
6309 case E_MIPS_ARCH_4:
6310 return bfd_mach_mips8000;
6311
6312 case E_MIPS_ARCH_5:
6313 return bfd_mach_mips5;
6314
6315 case E_MIPS_ARCH_32:
6316 return bfd_mach_mipsisa32;
6317
6318 case E_MIPS_ARCH_64:
6319 return bfd_mach_mipsisa64;
6320
6321 case E_MIPS_ARCH_32R2:
6322 return bfd_mach_mipsisa32r2;
6323
6324 case E_MIPS_ARCH_64R2:
6325 return bfd_mach_mipsisa64r2;
6326 }
6327 }
6328
6329 return 0;
6330 }
6331
6332 /* Return printable name for ABI. */
6333
6334 static INLINE char *
6335 elf_mips_abi_name (bfd *abfd)
6336 {
6337 flagword flags;
6338
6339 flags = elf_elfheader (abfd)->e_flags;
6340 switch (flags & EF_MIPS_ABI)
6341 {
6342 case 0:
6343 if (ABI_N32_P (abfd))
6344 return "N32";
6345 else if (ABI_64_P (abfd))
6346 return "64";
6347 else
6348 return "none";
6349 case E_MIPS_ABI_O32:
6350 return "O32";
6351 case E_MIPS_ABI_O64:
6352 return "O64";
6353 case E_MIPS_ABI_EABI32:
6354 return "EABI32";
6355 case E_MIPS_ABI_EABI64:
6356 return "EABI64";
6357 default:
6358 return "unknown abi";
6359 }
6360 }
6361 \f
6362 /* MIPS ELF uses two common sections. One is the usual one, and the
6363 other is for small objects. All the small objects are kept
6364 together, and then referenced via the gp pointer, which yields
6365 faster assembler code. This is what we use for the small common
6366 section. This approach is copied from ecoff.c. */
6367 static asection mips_elf_scom_section;
6368 static asymbol mips_elf_scom_symbol;
6369 static asymbol *mips_elf_scom_symbol_ptr;
6370
6371 /* MIPS ELF also uses an acommon section, which represents an
6372 allocated common symbol which may be overridden by a
6373 definition in a shared library. */
6374 static asection mips_elf_acom_section;
6375 static asymbol mips_elf_acom_symbol;
6376 static asymbol *mips_elf_acom_symbol_ptr;
6377
6378 /* This is used for both the 32-bit and the 64-bit ABI. */
6379
6380 void
6381 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6382 {
6383 elf_symbol_type *elfsym;
6384
6385 /* Handle the special MIPS section numbers that a symbol may use. */
6386 elfsym = (elf_symbol_type *) asym;
6387 switch (elfsym->internal_elf_sym.st_shndx)
6388 {
6389 case SHN_MIPS_ACOMMON:
6390 /* This section is used in a dynamically linked executable file.
6391 It is an allocated common section. The dynamic linker can
6392 either resolve these symbols to something in a shared
6393 library, or it can just leave them here. For our purposes,
6394 we can consider these symbols to be in a new section. */
6395 if (mips_elf_acom_section.name == NULL)
6396 {
6397 /* Initialize the acommon section. */
6398 mips_elf_acom_section.name = ".acommon";
6399 mips_elf_acom_section.flags = SEC_ALLOC;
6400 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6401 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6402 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6403 mips_elf_acom_symbol.name = ".acommon";
6404 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6405 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6406 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6407 }
6408 asym->section = &mips_elf_acom_section;
6409 break;
6410
6411 case SHN_COMMON:
6412 /* Common symbols less than the GP size are automatically
6413 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6414 if (asym->value > elf_gp_size (abfd)
6415 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6416 || IRIX_COMPAT (abfd) == ict_irix6)
6417 break;
6418 /* Fall through. */
6419 case SHN_MIPS_SCOMMON:
6420 if (mips_elf_scom_section.name == NULL)
6421 {
6422 /* Initialize the small common section. */
6423 mips_elf_scom_section.name = ".scommon";
6424 mips_elf_scom_section.flags = SEC_IS_COMMON;
6425 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6426 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6427 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6428 mips_elf_scom_symbol.name = ".scommon";
6429 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6430 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6431 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6432 }
6433 asym->section = &mips_elf_scom_section;
6434 asym->value = elfsym->internal_elf_sym.st_size;
6435 break;
6436
6437 case SHN_MIPS_SUNDEFINED:
6438 asym->section = bfd_und_section_ptr;
6439 break;
6440
6441 case SHN_MIPS_TEXT:
6442 {
6443 asection *section = bfd_get_section_by_name (abfd, ".text");
6444
6445 if (section != NULL)
6446 {
6447 asym->section = section;
6448 /* MIPS_TEXT is a bit special, the address is not an offset
6449 to the base of the .text section. So substract the section
6450 base address to make it an offset. */
6451 asym->value -= section->vma;
6452 }
6453 }
6454 break;
6455
6456 case SHN_MIPS_DATA:
6457 {
6458 asection *section = bfd_get_section_by_name (abfd, ".data");
6459
6460 if (section != NULL)
6461 {
6462 asym->section = section;
6463 /* MIPS_DATA is a bit special, the address is not an offset
6464 to the base of the .data section. So substract the section
6465 base address to make it an offset. */
6466 asym->value -= section->vma;
6467 }
6468 }
6469 break;
6470 }
6471
6472 /* If this is an odd-valued function symbol, assume it's a MIPS16
6473 or microMIPS one. */
6474 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6475 && (asym->value & 1) != 0)
6476 {
6477 asym->value--;
6478 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
6479 elfsym->internal_elf_sym.st_other
6480 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6481 else
6482 elfsym->internal_elf_sym.st_other
6483 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6484 }
6485 }
6486 \f
6487 /* Implement elf_backend_eh_frame_address_size. This differs from
6488 the default in the way it handles EABI64.
6489
6490 EABI64 was originally specified as an LP64 ABI, and that is what
6491 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6492 historically accepted the combination of -mabi=eabi and -mlong32,
6493 and this ILP32 variation has become semi-official over time.
6494 Both forms use elf32 and have pointer-sized FDE addresses.
6495
6496 If an EABI object was generated by GCC 4.0 or above, it will have
6497 an empty .gcc_compiled_longXX section, where XX is the size of longs
6498 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6499 have no special marking to distinguish them from LP64 objects.
6500
6501 We don't want users of the official LP64 ABI to be punished for the
6502 existence of the ILP32 variant, but at the same time, we don't want
6503 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6504 We therefore take the following approach:
6505
6506 - If ABFD contains a .gcc_compiled_longXX section, use it to
6507 determine the pointer size.
6508
6509 - Otherwise check the type of the first relocation. Assume that
6510 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6511
6512 - Otherwise punt.
6513
6514 The second check is enough to detect LP64 objects generated by pre-4.0
6515 compilers because, in the kind of output generated by those compilers,
6516 the first relocation will be associated with either a CIE personality
6517 routine or an FDE start address. Furthermore, the compilers never
6518 used a special (non-pointer) encoding for this ABI.
6519
6520 Checking the relocation type should also be safe because there is no
6521 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6522 did so. */
6523
6524 unsigned int
6525 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6526 {
6527 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6528 return 8;
6529 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6530 {
6531 bfd_boolean long32_p, long64_p;
6532
6533 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6534 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6535 if (long32_p && long64_p)
6536 return 0;
6537 if (long32_p)
6538 return 4;
6539 if (long64_p)
6540 return 8;
6541
6542 if (sec->reloc_count > 0
6543 && elf_section_data (sec)->relocs != NULL
6544 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6545 == R_MIPS_64))
6546 return 8;
6547
6548 return 0;
6549 }
6550 return 4;
6551 }
6552 \f
6553 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6554 relocations against two unnamed section symbols to resolve to the
6555 same address. For example, if we have code like:
6556
6557 lw $4,%got_disp(.data)($gp)
6558 lw $25,%got_disp(.text)($gp)
6559 jalr $25
6560
6561 then the linker will resolve both relocations to .data and the program
6562 will jump there rather than to .text.
6563
6564 We can work around this problem by giving names to local section symbols.
6565 This is also what the MIPSpro tools do. */
6566
6567 bfd_boolean
6568 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6569 {
6570 return SGI_COMPAT (abfd);
6571 }
6572 \f
6573 /* Work over a section just before writing it out. This routine is
6574 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6575 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6576 a better way. */
6577
6578 bfd_boolean
6579 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
6580 {
6581 if (hdr->sh_type == SHT_MIPS_REGINFO
6582 && hdr->sh_size > 0)
6583 {
6584 bfd_byte buf[4];
6585
6586 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6587 BFD_ASSERT (hdr->contents == NULL);
6588
6589 if (bfd_seek (abfd,
6590 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6591 SEEK_SET) != 0)
6592 return FALSE;
6593 H_PUT_32 (abfd, elf_gp (abfd), buf);
6594 if (bfd_bwrite (buf, 4, abfd) != 4)
6595 return FALSE;
6596 }
6597
6598 if (hdr->sh_type == SHT_MIPS_OPTIONS
6599 && hdr->bfd_section != NULL
6600 && mips_elf_section_data (hdr->bfd_section) != NULL
6601 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
6602 {
6603 bfd_byte *contents, *l, *lend;
6604
6605 /* We stored the section contents in the tdata field in the
6606 set_section_contents routine. We save the section contents
6607 so that we don't have to read them again.
6608 At this point we know that elf_gp is set, so we can look
6609 through the section contents to see if there is an
6610 ODK_REGINFO structure. */
6611
6612 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
6613 l = contents;
6614 lend = contents + hdr->sh_size;
6615 while (l + sizeof (Elf_External_Options) <= lend)
6616 {
6617 Elf_Internal_Options intopt;
6618
6619 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6620 &intopt);
6621 if (intopt.size < sizeof (Elf_External_Options))
6622 {
6623 (*_bfd_error_handler)
6624 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6625 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6626 break;
6627 }
6628 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6629 {
6630 bfd_byte buf[8];
6631
6632 if (bfd_seek (abfd,
6633 (hdr->sh_offset
6634 + (l - contents)
6635 + sizeof (Elf_External_Options)
6636 + (sizeof (Elf64_External_RegInfo) - 8)),
6637 SEEK_SET) != 0)
6638 return FALSE;
6639 H_PUT_64 (abfd, elf_gp (abfd), buf);
6640 if (bfd_bwrite (buf, 8, abfd) != 8)
6641 return FALSE;
6642 }
6643 else if (intopt.kind == ODK_REGINFO)
6644 {
6645 bfd_byte buf[4];
6646
6647 if (bfd_seek (abfd,
6648 (hdr->sh_offset
6649 + (l - contents)
6650 + sizeof (Elf_External_Options)
6651 + (sizeof (Elf32_External_RegInfo) - 4)),
6652 SEEK_SET) != 0)
6653 return FALSE;
6654 H_PUT_32 (abfd, elf_gp (abfd), buf);
6655 if (bfd_bwrite (buf, 4, abfd) != 4)
6656 return FALSE;
6657 }
6658 l += intopt.size;
6659 }
6660 }
6661
6662 if (hdr->bfd_section != NULL)
6663 {
6664 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6665
6666 /* .sbss is not handled specially here because the GNU/Linux
6667 prelinker can convert .sbss from NOBITS to PROGBITS and
6668 changing it back to NOBITS breaks the binary. The entry in
6669 _bfd_mips_elf_special_sections will ensure the correct flags
6670 are set on .sbss if BFD creates it without reading it from an
6671 input file, and without special handling here the flags set
6672 on it in an input file will be followed. */
6673 if (strcmp (name, ".sdata") == 0
6674 || strcmp (name, ".lit8") == 0
6675 || strcmp (name, ".lit4") == 0)
6676 {
6677 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
6678 hdr->sh_type = SHT_PROGBITS;
6679 }
6680 else if (strcmp (name, ".srdata") == 0)
6681 {
6682 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
6683 hdr->sh_type = SHT_PROGBITS;
6684 }
6685 else if (strcmp (name, ".compact_rel") == 0)
6686 {
6687 hdr->sh_flags = 0;
6688 hdr->sh_type = SHT_PROGBITS;
6689 }
6690 else if (strcmp (name, ".rtproc") == 0)
6691 {
6692 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
6693 {
6694 unsigned int adjust;
6695
6696 adjust = hdr->sh_size % hdr->sh_addralign;
6697 if (adjust != 0)
6698 hdr->sh_size += hdr->sh_addralign - adjust;
6699 }
6700 }
6701 }
6702
6703 return TRUE;
6704 }
6705
6706 /* Handle a MIPS specific section when reading an object file. This
6707 is called when elfcode.h finds a section with an unknown type.
6708 This routine supports both the 32-bit and 64-bit ELF ABI.
6709
6710 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
6711 how to. */
6712
6713 bfd_boolean
6714 _bfd_mips_elf_section_from_shdr (bfd *abfd,
6715 Elf_Internal_Shdr *hdr,
6716 const char *name,
6717 int shindex)
6718 {
6719 flagword flags = 0;
6720
6721 /* There ought to be a place to keep ELF backend specific flags, but
6722 at the moment there isn't one. We just keep track of the
6723 sections by their name, instead. Fortunately, the ABI gives
6724 suggested names for all the MIPS specific sections, so we will
6725 probably get away with this. */
6726 switch (hdr->sh_type)
6727 {
6728 case SHT_MIPS_LIBLIST:
6729 if (strcmp (name, ".liblist") != 0)
6730 return FALSE;
6731 break;
6732 case SHT_MIPS_MSYM:
6733 if (strcmp (name, ".msym") != 0)
6734 return FALSE;
6735 break;
6736 case SHT_MIPS_CONFLICT:
6737 if (strcmp (name, ".conflict") != 0)
6738 return FALSE;
6739 break;
6740 case SHT_MIPS_GPTAB:
6741 if (! CONST_STRNEQ (name, ".gptab."))
6742 return FALSE;
6743 break;
6744 case SHT_MIPS_UCODE:
6745 if (strcmp (name, ".ucode") != 0)
6746 return FALSE;
6747 break;
6748 case SHT_MIPS_DEBUG:
6749 if (strcmp (name, ".mdebug") != 0)
6750 return FALSE;
6751 flags = SEC_DEBUGGING;
6752 break;
6753 case SHT_MIPS_REGINFO:
6754 if (strcmp (name, ".reginfo") != 0
6755 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
6756 return FALSE;
6757 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
6758 break;
6759 case SHT_MIPS_IFACE:
6760 if (strcmp (name, ".MIPS.interfaces") != 0)
6761 return FALSE;
6762 break;
6763 case SHT_MIPS_CONTENT:
6764 if (! CONST_STRNEQ (name, ".MIPS.content"))
6765 return FALSE;
6766 break;
6767 case SHT_MIPS_OPTIONS:
6768 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6769 return FALSE;
6770 break;
6771 case SHT_MIPS_DWARF:
6772 if (! CONST_STRNEQ (name, ".debug_")
6773 && ! CONST_STRNEQ (name, ".zdebug_"))
6774 return FALSE;
6775 break;
6776 case SHT_MIPS_SYMBOL_LIB:
6777 if (strcmp (name, ".MIPS.symlib") != 0)
6778 return FALSE;
6779 break;
6780 case SHT_MIPS_EVENTS:
6781 if (! CONST_STRNEQ (name, ".MIPS.events")
6782 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
6783 return FALSE;
6784 break;
6785 default:
6786 break;
6787 }
6788
6789 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
6790 return FALSE;
6791
6792 if (flags)
6793 {
6794 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
6795 (bfd_get_section_flags (abfd,
6796 hdr->bfd_section)
6797 | flags)))
6798 return FALSE;
6799 }
6800
6801 /* FIXME: We should record sh_info for a .gptab section. */
6802
6803 /* For a .reginfo section, set the gp value in the tdata information
6804 from the contents of this section. We need the gp value while
6805 processing relocs, so we just get it now. The .reginfo section
6806 is not used in the 64-bit MIPS ELF ABI. */
6807 if (hdr->sh_type == SHT_MIPS_REGINFO)
6808 {
6809 Elf32_External_RegInfo ext;
6810 Elf32_RegInfo s;
6811
6812 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
6813 &ext, 0, sizeof ext))
6814 return FALSE;
6815 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
6816 elf_gp (abfd) = s.ri_gp_value;
6817 }
6818
6819 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
6820 set the gp value based on what we find. We may see both
6821 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
6822 they should agree. */
6823 if (hdr->sh_type == SHT_MIPS_OPTIONS)
6824 {
6825 bfd_byte *contents, *l, *lend;
6826
6827 contents = bfd_malloc (hdr->sh_size);
6828 if (contents == NULL)
6829 return FALSE;
6830 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
6831 0, hdr->sh_size))
6832 {
6833 free (contents);
6834 return FALSE;
6835 }
6836 l = contents;
6837 lend = contents + hdr->sh_size;
6838 while (l + sizeof (Elf_External_Options) <= lend)
6839 {
6840 Elf_Internal_Options intopt;
6841
6842 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6843 &intopt);
6844 if (intopt.size < sizeof (Elf_External_Options))
6845 {
6846 (*_bfd_error_handler)
6847 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6848 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6849 break;
6850 }
6851 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6852 {
6853 Elf64_Internal_RegInfo intreg;
6854
6855 bfd_mips_elf64_swap_reginfo_in
6856 (abfd,
6857 ((Elf64_External_RegInfo *)
6858 (l + sizeof (Elf_External_Options))),
6859 &intreg);
6860 elf_gp (abfd) = intreg.ri_gp_value;
6861 }
6862 else if (intopt.kind == ODK_REGINFO)
6863 {
6864 Elf32_RegInfo intreg;
6865
6866 bfd_mips_elf32_swap_reginfo_in
6867 (abfd,
6868 ((Elf32_External_RegInfo *)
6869 (l + sizeof (Elf_External_Options))),
6870 &intreg);
6871 elf_gp (abfd) = intreg.ri_gp_value;
6872 }
6873 l += intopt.size;
6874 }
6875 free (contents);
6876 }
6877
6878 return TRUE;
6879 }
6880
6881 /* Set the correct type for a MIPS ELF section. We do this by the
6882 section name, which is a hack, but ought to work. This routine is
6883 used by both the 32-bit and the 64-bit ABI. */
6884
6885 bfd_boolean
6886 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
6887 {
6888 const char *name = bfd_get_section_name (abfd, sec);
6889
6890 if (strcmp (name, ".liblist") == 0)
6891 {
6892 hdr->sh_type = SHT_MIPS_LIBLIST;
6893 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
6894 /* The sh_link field is set in final_write_processing. */
6895 }
6896 else if (strcmp (name, ".conflict") == 0)
6897 hdr->sh_type = SHT_MIPS_CONFLICT;
6898 else if (CONST_STRNEQ (name, ".gptab."))
6899 {
6900 hdr->sh_type = SHT_MIPS_GPTAB;
6901 hdr->sh_entsize = sizeof (Elf32_External_gptab);
6902 /* The sh_info field is set in final_write_processing. */
6903 }
6904 else if (strcmp (name, ".ucode") == 0)
6905 hdr->sh_type = SHT_MIPS_UCODE;
6906 else if (strcmp (name, ".mdebug") == 0)
6907 {
6908 hdr->sh_type = SHT_MIPS_DEBUG;
6909 /* In a shared object on IRIX 5.3, the .mdebug section has an
6910 entsize of 0. FIXME: Does this matter? */
6911 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
6912 hdr->sh_entsize = 0;
6913 else
6914 hdr->sh_entsize = 1;
6915 }
6916 else if (strcmp (name, ".reginfo") == 0)
6917 {
6918 hdr->sh_type = SHT_MIPS_REGINFO;
6919 /* In a shared object on IRIX 5.3, the .reginfo section has an
6920 entsize of 0x18. FIXME: Does this matter? */
6921 if (SGI_COMPAT (abfd))
6922 {
6923 if ((abfd->flags & DYNAMIC) != 0)
6924 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6925 else
6926 hdr->sh_entsize = 1;
6927 }
6928 else
6929 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6930 }
6931 else if (SGI_COMPAT (abfd)
6932 && (strcmp (name, ".hash") == 0
6933 || strcmp (name, ".dynamic") == 0
6934 || strcmp (name, ".dynstr") == 0))
6935 {
6936 if (SGI_COMPAT (abfd))
6937 hdr->sh_entsize = 0;
6938 #if 0
6939 /* This isn't how the IRIX6 linker behaves. */
6940 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
6941 #endif
6942 }
6943 else if (strcmp (name, ".got") == 0
6944 || strcmp (name, ".srdata") == 0
6945 || strcmp (name, ".sdata") == 0
6946 || strcmp (name, ".sbss") == 0
6947 || strcmp (name, ".lit4") == 0
6948 || strcmp (name, ".lit8") == 0)
6949 hdr->sh_flags |= SHF_MIPS_GPREL;
6950 else if (strcmp (name, ".MIPS.interfaces") == 0)
6951 {
6952 hdr->sh_type = SHT_MIPS_IFACE;
6953 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6954 }
6955 else if (CONST_STRNEQ (name, ".MIPS.content"))
6956 {
6957 hdr->sh_type = SHT_MIPS_CONTENT;
6958 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6959 /* The sh_info field is set in final_write_processing. */
6960 }
6961 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6962 {
6963 hdr->sh_type = SHT_MIPS_OPTIONS;
6964 hdr->sh_entsize = 1;
6965 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6966 }
6967 else if (CONST_STRNEQ (name, ".debug_")
6968 || CONST_STRNEQ (name, ".zdebug_"))
6969 {
6970 hdr->sh_type = SHT_MIPS_DWARF;
6971
6972 /* Irix facilities such as libexc expect a single .debug_frame
6973 per executable, the system ones have NOSTRIP set and the linker
6974 doesn't merge sections with different flags so ... */
6975 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
6976 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6977 }
6978 else if (strcmp (name, ".MIPS.symlib") == 0)
6979 {
6980 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
6981 /* The sh_link and sh_info fields are set in
6982 final_write_processing. */
6983 }
6984 else if (CONST_STRNEQ (name, ".MIPS.events")
6985 || CONST_STRNEQ (name, ".MIPS.post_rel"))
6986 {
6987 hdr->sh_type = SHT_MIPS_EVENTS;
6988 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6989 /* The sh_link field is set in final_write_processing. */
6990 }
6991 else if (strcmp (name, ".msym") == 0)
6992 {
6993 hdr->sh_type = SHT_MIPS_MSYM;
6994 hdr->sh_flags |= SHF_ALLOC;
6995 hdr->sh_entsize = 8;
6996 }
6997
6998 /* The generic elf_fake_sections will set up REL_HDR using the default
6999 kind of relocations. We used to set up a second header for the
7000 non-default kind of relocations here, but only NewABI would use
7001 these, and the IRIX ld doesn't like resulting empty RELA sections.
7002 Thus we create those header only on demand now. */
7003
7004 return TRUE;
7005 }
7006
7007 /* Given a BFD section, try to locate the corresponding ELF section
7008 index. This is used by both the 32-bit and the 64-bit ABI.
7009 Actually, it's not clear to me that the 64-bit ABI supports these,
7010 but for non-PIC objects we will certainly want support for at least
7011 the .scommon section. */
7012
7013 bfd_boolean
7014 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7015 asection *sec, int *retval)
7016 {
7017 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7018 {
7019 *retval = SHN_MIPS_SCOMMON;
7020 return TRUE;
7021 }
7022 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7023 {
7024 *retval = SHN_MIPS_ACOMMON;
7025 return TRUE;
7026 }
7027 return FALSE;
7028 }
7029 \f
7030 /* Hook called by the linker routine which adds symbols from an object
7031 file. We must handle the special MIPS section numbers here. */
7032
7033 bfd_boolean
7034 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7035 Elf_Internal_Sym *sym, const char **namep,
7036 flagword *flagsp ATTRIBUTE_UNUSED,
7037 asection **secp, bfd_vma *valp)
7038 {
7039 if (SGI_COMPAT (abfd)
7040 && (abfd->flags & DYNAMIC) != 0
7041 && strcmp (*namep, "_rld_new_interface") == 0)
7042 {
7043 /* Skip IRIX5 rld entry name. */
7044 *namep = NULL;
7045 return TRUE;
7046 }
7047
7048 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7049 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7050 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7051 a magic symbol resolved by the linker, we ignore this bogus definition
7052 of _gp_disp. New ABI objects do not suffer from this problem so this
7053 is not done for them. */
7054 if (!NEWABI_P(abfd)
7055 && (sym->st_shndx == SHN_ABS)
7056 && (strcmp (*namep, "_gp_disp") == 0))
7057 {
7058 *namep = NULL;
7059 return TRUE;
7060 }
7061
7062 switch (sym->st_shndx)
7063 {
7064 case SHN_COMMON:
7065 /* Common symbols less than the GP size are automatically
7066 treated as SHN_MIPS_SCOMMON symbols. */
7067 if (sym->st_size > elf_gp_size (abfd)
7068 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7069 || IRIX_COMPAT (abfd) == ict_irix6)
7070 break;
7071 /* Fall through. */
7072 case SHN_MIPS_SCOMMON:
7073 *secp = bfd_make_section_old_way (abfd, ".scommon");
7074 (*secp)->flags |= SEC_IS_COMMON;
7075 *valp = sym->st_size;
7076 break;
7077
7078 case SHN_MIPS_TEXT:
7079 /* This section is used in a shared object. */
7080 if (elf_tdata (abfd)->elf_text_section == NULL)
7081 {
7082 asymbol *elf_text_symbol;
7083 asection *elf_text_section;
7084 bfd_size_type amt = sizeof (asection);
7085
7086 elf_text_section = bfd_zalloc (abfd, amt);
7087 if (elf_text_section == NULL)
7088 return FALSE;
7089
7090 amt = sizeof (asymbol);
7091 elf_text_symbol = bfd_zalloc (abfd, amt);
7092 if (elf_text_symbol == NULL)
7093 return FALSE;
7094
7095 /* Initialize the section. */
7096
7097 elf_tdata (abfd)->elf_text_section = elf_text_section;
7098 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7099
7100 elf_text_section->symbol = elf_text_symbol;
7101 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
7102
7103 elf_text_section->name = ".text";
7104 elf_text_section->flags = SEC_NO_FLAGS;
7105 elf_text_section->output_section = NULL;
7106 elf_text_section->owner = abfd;
7107 elf_text_symbol->name = ".text";
7108 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7109 elf_text_symbol->section = elf_text_section;
7110 }
7111 /* This code used to do *secp = bfd_und_section_ptr if
7112 info->shared. I don't know why, and that doesn't make sense,
7113 so I took it out. */
7114 *secp = elf_tdata (abfd)->elf_text_section;
7115 break;
7116
7117 case SHN_MIPS_ACOMMON:
7118 /* Fall through. XXX Can we treat this as allocated data? */
7119 case SHN_MIPS_DATA:
7120 /* This section is used in a shared object. */
7121 if (elf_tdata (abfd)->elf_data_section == NULL)
7122 {
7123 asymbol *elf_data_symbol;
7124 asection *elf_data_section;
7125 bfd_size_type amt = sizeof (asection);
7126
7127 elf_data_section = bfd_zalloc (abfd, amt);
7128 if (elf_data_section == NULL)
7129 return FALSE;
7130
7131 amt = sizeof (asymbol);
7132 elf_data_symbol = bfd_zalloc (abfd, amt);
7133 if (elf_data_symbol == NULL)
7134 return FALSE;
7135
7136 /* Initialize the section. */
7137
7138 elf_tdata (abfd)->elf_data_section = elf_data_section;
7139 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7140
7141 elf_data_section->symbol = elf_data_symbol;
7142 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
7143
7144 elf_data_section->name = ".data";
7145 elf_data_section->flags = SEC_NO_FLAGS;
7146 elf_data_section->output_section = NULL;
7147 elf_data_section->owner = abfd;
7148 elf_data_symbol->name = ".data";
7149 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7150 elf_data_symbol->section = elf_data_section;
7151 }
7152 /* This code used to do *secp = bfd_und_section_ptr if
7153 info->shared. I don't know why, and that doesn't make sense,
7154 so I took it out. */
7155 *secp = elf_tdata (abfd)->elf_data_section;
7156 break;
7157
7158 case SHN_MIPS_SUNDEFINED:
7159 *secp = bfd_und_section_ptr;
7160 break;
7161 }
7162
7163 if (SGI_COMPAT (abfd)
7164 && ! info->shared
7165 && info->output_bfd->xvec == abfd->xvec
7166 && strcmp (*namep, "__rld_obj_head") == 0)
7167 {
7168 struct elf_link_hash_entry *h;
7169 struct bfd_link_hash_entry *bh;
7170
7171 /* Mark __rld_obj_head as dynamic. */
7172 bh = NULL;
7173 if (! (_bfd_generic_link_add_one_symbol
7174 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7175 get_elf_backend_data (abfd)->collect, &bh)))
7176 return FALSE;
7177
7178 h = (struct elf_link_hash_entry *) bh;
7179 h->non_elf = 0;
7180 h->def_regular = 1;
7181 h->type = STT_OBJECT;
7182
7183 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7184 return FALSE;
7185
7186 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7187 mips_elf_hash_table (info)->rld_symbol = h;
7188 }
7189
7190 /* If this is a mips16 text symbol, add 1 to the value to make it
7191 odd. This will cause something like .word SYM to come up with
7192 the right value when it is loaded into the PC. */
7193 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7194 ++*valp;
7195
7196 return TRUE;
7197 }
7198
7199 /* This hook function is called before the linker writes out a global
7200 symbol. We mark symbols as small common if appropriate. This is
7201 also where we undo the increment of the value for a mips16 symbol. */
7202
7203 int
7204 _bfd_mips_elf_link_output_symbol_hook
7205 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7206 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7207 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7208 {
7209 /* If we see a common symbol, which implies a relocatable link, then
7210 if a symbol was small common in an input file, mark it as small
7211 common in the output file. */
7212 if (sym->st_shndx == SHN_COMMON
7213 && strcmp (input_sec->name, ".scommon") == 0)
7214 sym->st_shndx = SHN_MIPS_SCOMMON;
7215
7216 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7217 sym->st_value &= ~1;
7218
7219 return 1;
7220 }
7221 \f
7222 /* Functions for the dynamic linker. */
7223
7224 /* Create dynamic sections when linking against a dynamic object. */
7225
7226 bfd_boolean
7227 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7228 {
7229 struct elf_link_hash_entry *h;
7230 struct bfd_link_hash_entry *bh;
7231 flagword flags;
7232 register asection *s;
7233 const char * const *namep;
7234 struct mips_elf_link_hash_table *htab;
7235
7236 htab = mips_elf_hash_table (info);
7237 BFD_ASSERT (htab != NULL);
7238
7239 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7240 | SEC_LINKER_CREATED | SEC_READONLY);
7241
7242 /* The psABI requires a read-only .dynamic section, but the VxWorks
7243 EABI doesn't. */
7244 if (!htab->is_vxworks)
7245 {
7246 s = bfd_get_linker_section (abfd, ".dynamic");
7247 if (s != NULL)
7248 {
7249 if (! bfd_set_section_flags (abfd, s, flags))
7250 return FALSE;
7251 }
7252 }
7253
7254 /* We need to create .got section. */
7255 if (!mips_elf_create_got_section (abfd, info))
7256 return FALSE;
7257
7258 if (! mips_elf_rel_dyn_section (info, TRUE))
7259 return FALSE;
7260
7261 /* Create .stub section. */
7262 s = bfd_make_section_anyway_with_flags (abfd,
7263 MIPS_ELF_STUB_SECTION_NAME (abfd),
7264 flags | SEC_CODE);
7265 if (s == NULL
7266 || ! bfd_set_section_alignment (abfd, s,
7267 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7268 return FALSE;
7269 htab->sstubs = s;
7270
7271 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
7272 && !info->shared
7273 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7274 {
7275 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7276 flags &~ (flagword) SEC_READONLY);
7277 if (s == NULL
7278 || ! bfd_set_section_alignment (abfd, s,
7279 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7280 return FALSE;
7281 }
7282
7283 /* On IRIX5, we adjust add some additional symbols and change the
7284 alignments of several sections. There is no ABI documentation
7285 indicating that this is necessary on IRIX6, nor any evidence that
7286 the linker takes such action. */
7287 if (IRIX_COMPAT (abfd) == ict_irix5)
7288 {
7289 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7290 {
7291 bh = NULL;
7292 if (! (_bfd_generic_link_add_one_symbol
7293 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7294 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7295 return FALSE;
7296
7297 h = (struct elf_link_hash_entry *) bh;
7298 h->non_elf = 0;
7299 h->def_regular = 1;
7300 h->type = STT_SECTION;
7301
7302 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7303 return FALSE;
7304 }
7305
7306 /* We need to create a .compact_rel section. */
7307 if (SGI_COMPAT (abfd))
7308 {
7309 if (!mips_elf_create_compact_rel_section (abfd, info))
7310 return FALSE;
7311 }
7312
7313 /* Change alignments of some sections. */
7314 s = bfd_get_linker_section (abfd, ".hash");
7315 if (s != NULL)
7316 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7317 s = bfd_get_linker_section (abfd, ".dynsym");
7318 if (s != NULL)
7319 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7320 s = bfd_get_linker_section (abfd, ".dynstr");
7321 if (s != NULL)
7322 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7323 /* ??? */
7324 s = bfd_get_section_by_name (abfd, ".reginfo");
7325 if (s != NULL)
7326 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7327 s = bfd_get_linker_section (abfd, ".dynamic");
7328 if (s != NULL)
7329 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7330 }
7331
7332 if (!info->shared)
7333 {
7334 const char *name;
7335
7336 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7337 bh = NULL;
7338 if (!(_bfd_generic_link_add_one_symbol
7339 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7340 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7341 return FALSE;
7342
7343 h = (struct elf_link_hash_entry *) bh;
7344 h->non_elf = 0;
7345 h->def_regular = 1;
7346 h->type = STT_SECTION;
7347
7348 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7349 return FALSE;
7350
7351 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7352 {
7353 /* __rld_map is a four byte word located in the .data section
7354 and is filled in by the rtld to contain a pointer to
7355 the _r_debug structure. Its symbol value will be set in
7356 _bfd_mips_elf_finish_dynamic_symbol. */
7357 s = bfd_get_linker_section (abfd, ".rld_map");
7358 BFD_ASSERT (s != NULL);
7359
7360 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7361 bh = NULL;
7362 if (!(_bfd_generic_link_add_one_symbol
7363 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7364 get_elf_backend_data (abfd)->collect, &bh)))
7365 return FALSE;
7366
7367 h = (struct elf_link_hash_entry *) bh;
7368 h->non_elf = 0;
7369 h->def_regular = 1;
7370 h->type = STT_OBJECT;
7371
7372 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7373 return FALSE;
7374 mips_elf_hash_table (info)->rld_symbol = h;
7375 }
7376 }
7377
7378 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7379 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
7380 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7381 return FALSE;
7382
7383 /* Cache the sections created above. */
7384 htab->splt = bfd_get_linker_section (abfd, ".plt");
7385 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
7386 if (htab->is_vxworks)
7387 {
7388 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
7389 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
7390 }
7391 else
7392 htab->srelplt = bfd_get_linker_section (abfd, ".rel.plt");
7393 if (!htab->sdynbss
7394 || (htab->is_vxworks && !htab->srelbss && !info->shared)
7395 || !htab->srelplt
7396 || !htab->splt)
7397 abort ();
7398
7399 if (htab->is_vxworks)
7400 {
7401 /* Do the usual VxWorks handling. */
7402 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7403 return FALSE;
7404
7405 /* Work out the PLT sizes. */
7406 if (info->shared)
7407 {
7408 htab->plt_header_size
7409 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
7410 htab->plt_entry_size
7411 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
7412 }
7413 else
7414 {
7415 htab->plt_header_size
7416 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
7417 htab->plt_entry_size
7418 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
7419 }
7420 }
7421 else if (!info->shared)
7422 {
7423 /* All variants of the plt0 entry are the same size. */
7424 htab->plt_header_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
7425 htab->plt_entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
7426 }
7427
7428 return TRUE;
7429 }
7430 \f
7431 /* Return true if relocation REL against section SEC is a REL rather than
7432 RELA relocation. RELOCS is the first relocation in the section and
7433 ABFD is the bfd that contains SEC. */
7434
7435 static bfd_boolean
7436 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7437 const Elf_Internal_Rela *relocs,
7438 const Elf_Internal_Rela *rel)
7439 {
7440 Elf_Internal_Shdr *rel_hdr;
7441 const struct elf_backend_data *bed;
7442
7443 /* To determine which flavor of relocation this is, we depend on the
7444 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7445 rel_hdr = elf_section_data (sec)->rel.hdr;
7446 if (rel_hdr == NULL)
7447 return FALSE;
7448 bed = get_elf_backend_data (abfd);
7449 return ((size_t) (rel - relocs)
7450 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7451 }
7452
7453 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7454 HOWTO is the relocation's howto and CONTENTS points to the contents
7455 of the section that REL is against. */
7456
7457 static bfd_vma
7458 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7459 reloc_howto_type *howto, bfd_byte *contents)
7460 {
7461 bfd_byte *location;
7462 unsigned int r_type;
7463 bfd_vma addend;
7464
7465 r_type = ELF_R_TYPE (abfd, rel->r_info);
7466 location = contents + rel->r_offset;
7467
7468 /* Get the addend, which is stored in the input file. */
7469 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7470 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
7471 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7472
7473 return addend & howto->src_mask;
7474 }
7475
7476 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7477 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7478 and update *ADDEND with the final addend. Return true on success
7479 or false if the LO16 could not be found. RELEND is the exclusive
7480 upper bound on the relocations for REL's section. */
7481
7482 static bfd_boolean
7483 mips_elf_add_lo16_rel_addend (bfd *abfd,
7484 const Elf_Internal_Rela *rel,
7485 const Elf_Internal_Rela *relend,
7486 bfd_byte *contents, bfd_vma *addend)
7487 {
7488 unsigned int r_type, lo16_type;
7489 const Elf_Internal_Rela *lo16_relocation;
7490 reloc_howto_type *lo16_howto;
7491 bfd_vma l;
7492
7493 r_type = ELF_R_TYPE (abfd, rel->r_info);
7494 if (mips16_reloc_p (r_type))
7495 lo16_type = R_MIPS16_LO16;
7496 else if (micromips_reloc_p (r_type))
7497 lo16_type = R_MICROMIPS_LO16;
7498 else
7499 lo16_type = R_MIPS_LO16;
7500
7501 /* The combined value is the sum of the HI16 addend, left-shifted by
7502 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7503 code does a `lui' of the HI16 value, and then an `addiu' of the
7504 LO16 value.)
7505
7506 Scan ahead to find a matching LO16 relocation.
7507
7508 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7509 be immediately following. However, for the IRIX6 ABI, the next
7510 relocation may be a composed relocation consisting of several
7511 relocations for the same address. In that case, the R_MIPS_LO16
7512 relocation may occur as one of these. We permit a similar
7513 extension in general, as that is useful for GCC.
7514
7515 In some cases GCC dead code elimination removes the LO16 but keeps
7516 the corresponding HI16. This is strictly speaking a violation of
7517 the ABI but not immediately harmful. */
7518 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7519 if (lo16_relocation == NULL)
7520 return FALSE;
7521
7522 /* Obtain the addend kept there. */
7523 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7524 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7525
7526 l <<= lo16_howto->rightshift;
7527 l = _bfd_mips_elf_sign_extend (l, 16);
7528
7529 *addend <<= 16;
7530 *addend += l;
7531 return TRUE;
7532 }
7533
7534 /* Try to read the contents of section SEC in bfd ABFD. Return true and
7535 store the contents in *CONTENTS on success. Assume that *CONTENTS
7536 already holds the contents if it is nonull on entry. */
7537
7538 static bfd_boolean
7539 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7540 {
7541 if (*contents)
7542 return TRUE;
7543
7544 /* Get cached copy if it exists. */
7545 if (elf_section_data (sec)->this_hdr.contents != NULL)
7546 {
7547 *contents = elf_section_data (sec)->this_hdr.contents;
7548 return TRUE;
7549 }
7550
7551 return bfd_malloc_and_get_section (abfd, sec, contents);
7552 }
7553
7554 /* Look through the relocs for a section during the first phase, and
7555 allocate space in the global offset table. */
7556
7557 bfd_boolean
7558 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7559 asection *sec, const Elf_Internal_Rela *relocs)
7560 {
7561 const char *name;
7562 bfd *dynobj;
7563 Elf_Internal_Shdr *symtab_hdr;
7564 struct elf_link_hash_entry **sym_hashes;
7565 size_t extsymoff;
7566 const Elf_Internal_Rela *rel;
7567 const Elf_Internal_Rela *rel_end;
7568 asection *sreloc;
7569 const struct elf_backend_data *bed;
7570 struct mips_elf_link_hash_table *htab;
7571 bfd_byte *contents;
7572 bfd_vma addend;
7573 reloc_howto_type *howto;
7574
7575 if (info->relocatable)
7576 return TRUE;
7577
7578 htab = mips_elf_hash_table (info);
7579 BFD_ASSERT (htab != NULL);
7580
7581 dynobj = elf_hash_table (info)->dynobj;
7582 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7583 sym_hashes = elf_sym_hashes (abfd);
7584 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7585
7586 bed = get_elf_backend_data (abfd);
7587 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7588
7589 /* Check for the mips16 stub sections. */
7590
7591 name = bfd_get_section_name (abfd, sec);
7592 if (FN_STUB_P (name))
7593 {
7594 unsigned long r_symndx;
7595
7596 /* Look at the relocation information to figure out which symbol
7597 this is for. */
7598
7599 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
7600 if (r_symndx == 0)
7601 {
7602 (*_bfd_error_handler)
7603 (_("%B: Warning: cannot determine the target function for"
7604 " stub section `%s'"),
7605 abfd, name);
7606 bfd_set_error (bfd_error_bad_value);
7607 return FALSE;
7608 }
7609
7610 if (r_symndx < extsymoff
7611 || sym_hashes[r_symndx - extsymoff] == NULL)
7612 {
7613 asection *o;
7614
7615 /* This stub is for a local symbol. This stub will only be
7616 needed if there is some relocation in this BFD, other
7617 than a 16 bit function call, which refers to this symbol. */
7618 for (o = abfd->sections; o != NULL; o = o->next)
7619 {
7620 Elf_Internal_Rela *sec_relocs;
7621 const Elf_Internal_Rela *r, *rend;
7622
7623 /* We can ignore stub sections when looking for relocs. */
7624 if ((o->flags & SEC_RELOC) == 0
7625 || o->reloc_count == 0
7626 || section_allows_mips16_refs_p (o))
7627 continue;
7628
7629 sec_relocs
7630 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7631 info->keep_memory);
7632 if (sec_relocs == NULL)
7633 return FALSE;
7634
7635 rend = sec_relocs + o->reloc_count;
7636 for (r = sec_relocs; r < rend; r++)
7637 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7638 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
7639 break;
7640
7641 if (elf_section_data (o)->relocs != sec_relocs)
7642 free (sec_relocs);
7643
7644 if (r < rend)
7645 break;
7646 }
7647
7648 if (o == NULL)
7649 {
7650 /* There is no non-call reloc for this stub, so we do
7651 not need it. Since this function is called before
7652 the linker maps input sections to output sections, we
7653 can easily discard it by setting the SEC_EXCLUDE
7654 flag. */
7655 sec->flags |= SEC_EXCLUDE;
7656 return TRUE;
7657 }
7658
7659 /* Record this stub in an array of local symbol stubs for
7660 this BFD. */
7661 if (elf_tdata (abfd)->local_stubs == NULL)
7662 {
7663 unsigned long symcount;
7664 asection **n;
7665 bfd_size_type amt;
7666
7667 if (elf_bad_symtab (abfd))
7668 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7669 else
7670 symcount = symtab_hdr->sh_info;
7671 amt = symcount * sizeof (asection *);
7672 n = bfd_zalloc (abfd, amt);
7673 if (n == NULL)
7674 return FALSE;
7675 elf_tdata (abfd)->local_stubs = n;
7676 }
7677
7678 sec->flags |= SEC_KEEP;
7679 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7680
7681 /* We don't need to set mips16_stubs_seen in this case.
7682 That flag is used to see whether we need to look through
7683 the global symbol table for stubs. We don't need to set
7684 it here, because we just have a local stub. */
7685 }
7686 else
7687 {
7688 struct mips_elf_link_hash_entry *h;
7689
7690 h = ((struct mips_elf_link_hash_entry *)
7691 sym_hashes[r_symndx - extsymoff]);
7692
7693 while (h->root.root.type == bfd_link_hash_indirect
7694 || h->root.root.type == bfd_link_hash_warning)
7695 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
7696
7697 /* H is the symbol this stub is for. */
7698
7699 /* If we already have an appropriate stub for this function, we
7700 don't need another one, so we can discard this one. Since
7701 this function is called before the linker maps input sections
7702 to output sections, we can easily discard it by setting the
7703 SEC_EXCLUDE flag. */
7704 if (h->fn_stub != NULL)
7705 {
7706 sec->flags |= SEC_EXCLUDE;
7707 return TRUE;
7708 }
7709
7710 sec->flags |= SEC_KEEP;
7711 h->fn_stub = sec;
7712 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7713 }
7714 }
7715 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
7716 {
7717 unsigned long r_symndx;
7718 struct mips_elf_link_hash_entry *h;
7719 asection **loc;
7720
7721 /* Look at the relocation information to figure out which symbol
7722 this is for. */
7723
7724 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
7725 if (r_symndx == 0)
7726 {
7727 (*_bfd_error_handler)
7728 (_("%B: Warning: cannot determine the target function for"
7729 " stub section `%s'"),
7730 abfd, name);
7731 bfd_set_error (bfd_error_bad_value);
7732 return FALSE;
7733 }
7734
7735 if (r_symndx < extsymoff
7736 || sym_hashes[r_symndx - extsymoff] == NULL)
7737 {
7738 asection *o;
7739
7740 /* This stub is for a local symbol. This stub will only be
7741 needed if there is some relocation (R_MIPS16_26) in this BFD
7742 that refers to this symbol. */
7743 for (o = abfd->sections; o != NULL; o = o->next)
7744 {
7745 Elf_Internal_Rela *sec_relocs;
7746 const Elf_Internal_Rela *r, *rend;
7747
7748 /* We can ignore stub sections when looking for relocs. */
7749 if ((o->flags & SEC_RELOC) == 0
7750 || o->reloc_count == 0
7751 || section_allows_mips16_refs_p (o))
7752 continue;
7753
7754 sec_relocs
7755 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7756 info->keep_memory);
7757 if (sec_relocs == NULL)
7758 return FALSE;
7759
7760 rend = sec_relocs + o->reloc_count;
7761 for (r = sec_relocs; r < rend; r++)
7762 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7763 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
7764 break;
7765
7766 if (elf_section_data (o)->relocs != sec_relocs)
7767 free (sec_relocs);
7768
7769 if (r < rend)
7770 break;
7771 }
7772
7773 if (o == NULL)
7774 {
7775 /* There is no non-call reloc for this stub, so we do
7776 not need it. Since this function is called before
7777 the linker maps input sections to output sections, we
7778 can easily discard it by setting the SEC_EXCLUDE
7779 flag. */
7780 sec->flags |= SEC_EXCLUDE;
7781 return TRUE;
7782 }
7783
7784 /* Record this stub in an array of local symbol call_stubs for
7785 this BFD. */
7786 if (elf_tdata (abfd)->local_call_stubs == NULL)
7787 {
7788 unsigned long symcount;
7789 asection **n;
7790 bfd_size_type amt;
7791
7792 if (elf_bad_symtab (abfd))
7793 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7794 else
7795 symcount = symtab_hdr->sh_info;
7796 amt = symcount * sizeof (asection *);
7797 n = bfd_zalloc (abfd, amt);
7798 if (n == NULL)
7799 return FALSE;
7800 elf_tdata (abfd)->local_call_stubs = n;
7801 }
7802
7803 sec->flags |= SEC_KEEP;
7804 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
7805
7806 /* We don't need to set mips16_stubs_seen in this case.
7807 That flag is used to see whether we need to look through
7808 the global symbol table for stubs. We don't need to set
7809 it here, because we just have a local stub. */
7810 }
7811 else
7812 {
7813 h = ((struct mips_elf_link_hash_entry *)
7814 sym_hashes[r_symndx - extsymoff]);
7815
7816 /* H is the symbol this stub is for. */
7817
7818 if (CALL_FP_STUB_P (name))
7819 loc = &h->call_fp_stub;
7820 else
7821 loc = &h->call_stub;
7822
7823 /* If we already have an appropriate stub for this function, we
7824 don't need another one, so we can discard this one. Since
7825 this function is called before the linker maps input sections
7826 to output sections, we can easily discard it by setting the
7827 SEC_EXCLUDE flag. */
7828 if (*loc != NULL)
7829 {
7830 sec->flags |= SEC_EXCLUDE;
7831 return TRUE;
7832 }
7833
7834 sec->flags |= SEC_KEEP;
7835 *loc = sec;
7836 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7837 }
7838 }
7839
7840 sreloc = NULL;
7841 contents = NULL;
7842 for (rel = relocs; rel < rel_end; ++rel)
7843 {
7844 unsigned long r_symndx;
7845 unsigned int r_type;
7846 struct elf_link_hash_entry *h;
7847 bfd_boolean can_make_dynamic_p;
7848
7849 r_symndx = ELF_R_SYM (abfd, rel->r_info);
7850 r_type = ELF_R_TYPE (abfd, rel->r_info);
7851
7852 if (r_symndx < extsymoff)
7853 h = NULL;
7854 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
7855 {
7856 (*_bfd_error_handler)
7857 (_("%B: Malformed reloc detected for section %s"),
7858 abfd, name);
7859 bfd_set_error (bfd_error_bad_value);
7860 return FALSE;
7861 }
7862 else
7863 {
7864 h = sym_hashes[r_symndx - extsymoff];
7865 while (h != NULL
7866 && (h->root.type == bfd_link_hash_indirect
7867 || h->root.type == bfd_link_hash_warning))
7868 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7869 }
7870
7871 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
7872 relocation into a dynamic one. */
7873 can_make_dynamic_p = FALSE;
7874 switch (r_type)
7875 {
7876 case R_MIPS_GOT16:
7877 case R_MIPS_CALL16:
7878 case R_MIPS_CALL_HI16:
7879 case R_MIPS_CALL_LO16:
7880 case R_MIPS_GOT_HI16:
7881 case R_MIPS_GOT_LO16:
7882 case R_MIPS_GOT_PAGE:
7883 case R_MIPS_GOT_OFST:
7884 case R_MIPS_GOT_DISP:
7885 case R_MIPS_TLS_GOTTPREL:
7886 case R_MIPS_TLS_GD:
7887 case R_MIPS_TLS_LDM:
7888 case R_MIPS16_GOT16:
7889 case R_MIPS16_CALL16:
7890 case R_MIPS16_TLS_GOTTPREL:
7891 case R_MIPS16_TLS_GD:
7892 case R_MIPS16_TLS_LDM:
7893 case R_MICROMIPS_GOT16:
7894 case R_MICROMIPS_CALL16:
7895 case R_MICROMIPS_CALL_HI16:
7896 case R_MICROMIPS_CALL_LO16:
7897 case R_MICROMIPS_GOT_HI16:
7898 case R_MICROMIPS_GOT_LO16:
7899 case R_MICROMIPS_GOT_PAGE:
7900 case R_MICROMIPS_GOT_OFST:
7901 case R_MICROMIPS_GOT_DISP:
7902 case R_MICROMIPS_TLS_GOTTPREL:
7903 case R_MICROMIPS_TLS_GD:
7904 case R_MICROMIPS_TLS_LDM:
7905 if (dynobj == NULL)
7906 elf_hash_table (info)->dynobj = dynobj = abfd;
7907 if (!mips_elf_create_got_section (dynobj, info))
7908 return FALSE;
7909 if (htab->is_vxworks && !info->shared)
7910 {
7911 (*_bfd_error_handler)
7912 (_("%B: GOT reloc at 0x%lx not expected in executables"),
7913 abfd, (unsigned long) rel->r_offset);
7914 bfd_set_error (bfd_error_bad_value);
7915 return FALSE;
7916 }
7917 break;
7918
7919 /* This is just a hint; it can safely be ignored. Don't set
7920 has_static_relocs for the corresponding symbol. */
7921 case R_MIPS_JALR:
7922 case R_MICROMIPS_JALR:
7923 break;
7924
7925 case R_MIPS_32:
7926 case R_MIPS_REL32:
7927 case R_MIPS_64:
7928 /* In VxWorks executables, references to external symbols
7929 must be handled using copy relocs or PLT entries; it is not
7930 possible to convert this relocation into a dynamic one.
7931
7932 For executables that use PLTs and copy-relocs, we have a
7933 choice between converting the relocation into a dynamic
7934 one or using copy relocations or PLT entries. It is
7935 usually better to do the former, unless the relocation is
7936 against a read-only section. */
7937 if ((info->shared
7938 || (h != NULL
7939 && !htab->is_vxworks
7940 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
7941 && !(!info->nocopyreloc
7942 && !PIC_OBJECT_P (abfd)
7943 && MIPS_ELF_READONLY_SECTION (sec))))
7944 && (sec->flags & SEC_ALLOC) != 0)
7945 {
7946 can_make_dynamic_p = TRUE;
7947 if (dynobj == NULL)
7948 elf_hash_table (info)->dynobj = dynobj = abfd;
7949 break;
7950 }
7951 /* For sections that are not SEC_ALLOC a copy reloc would be
7952 output if possible (implying questionable semantics for
7953 read-only data objects) or otherwise the final link would
7954 fail as ld.so will not process them and could not therefore
7955 handle any outstanding dynamic relocations.
7956
7957 For such sections that are also SEC_DEBUGGING, we can avoid
7958 these problems by simply ignoring any relocs as these
7959 sections have a predefined use and we know it is safe to do
7960 so.
7961
7962 This is needed in cases such as a global symbol definition
7963 in a shared library causing a common symbol from an object
7964 file to be converted to an undefined reference. If that
7965 happens, then all the relocations against this symbol from
7966 SEC_DEBUGGING sections in the object file will resolve to
7967 nil. */
7968 if ((sec->flags & SEC_DEBUGGING) != 0)
7969 break;
7970 /* Fall through. */
7971
7972 default:
7973 /* Most static relocations require pointer equality, except
7974 for branches. */
7975 if (h)
7976 h->pointer_equality_needed = TRUE;
7977 /* Fall through. */
7978
7979 case R_MIPS_26:
7980 case R_MIPS_PC16:
7981 case R_MIPS16_26:
7982 case R_MICROMIPS_26_S1:
7983 case R_MICROMIPS_PC7_S1:
7984 case R_MICROMIPS_PC10_S1:
7985 case R_MICROMIPS_PC16_S1:
7986 case R_MICROMIPS_PC23_S2:
7987 if (h)
7988 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = TRUE;
7989 break;
7990 }
7991
7992 if (h)
7993 {
7994 /* Relocations against the special VxWorks __GOTT_BASE__ and
7995 __GOTT_INDEX__ symbols must be left to the loader. Allocate
7996 room for them in .rela.dyn. */
7997 if (is_gott_symbol (info, h))
7998 {
7999 if (sreloc == NULL)
8000 {
8001 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8002 if (sreloc == NULL)
8003 return FALSE;
8004 }
8005 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8006 if (MIPS_ELF_READONLY_SECTION (sec))
8007 /* We tell the dynamic linker that there are
8008 relocations against the text segment. */
8009 info->flags |= DF_TEXTREL;
8010 }
8011 }
8012 else if (call_lo16_reloc_p (r_type)
8013 || got_lo16_reloc_p (r_type)
8014 || got_disp_reloc_p (r_type)
8015 || (got16_reloc_p (r_type) && htab->is_vxworks))
8016 {
8017 /* We may need a local GOT entry for this relocation. We
8018 don't count R_MIPS_GOT_PAGE because we can estimate the
8019 maximum number of pages needed by looking at the size of
8020 the segment. Similar comments apply to R_MIPS*_GOT16 and
8021 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8022 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8023 R_MIPS_CALL_HI16 because these are always followed by an
8024 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8025 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8026 rel->r_addend, info, 0))
8027 return FALSE;
8028 }
8029
8030 if (h != NULL
8031 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8032 ELF_ST_IS_MIPS16 (h->other)))
8033 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8034
8035 switch (r_type)
8036 {
8037 case R_MIPS_CALL16:
8038 case R_MIPS16_CALL16:
8039 case R_MICROMIPS_CALL16:
8040 if (h == NULL)
8041 {
8042 (*_bfd_error_handler)
8043 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
8044 abfd, (unsigned long) rel->r_offset);
8045 bfd_set_error (bfd_error_bad_value);
8046 return FALSE;
8047 }
8048 /* Fall through. */
8049
8050 case R_MIPS_CALL_HI16:
8051 case R_MIPS_CALL_LO16:
8052 case R_MICROMIPS_CALL_HI16:
8053 case R_MICROMIPS_CALL_LO16:
8054 if (h != NULL)
8055 {
8056 /* Make sure there is room in the regular GOT to hold the
8057 function's address. We may eliminate it in favour of
8058 a .got.plt entry later; see mips_elf_count_got_symbols. */
8059 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE, 0))
8060 return FALSE;
8061
8062 /* We need a stub, not a plt entry for the undefined
8063 function. But we record it as if it needs plt. See
8064 _bfd_elf_adjust_dynamic_symbol. */
8065 h->needs_plt = 1;
8066 h->type = STT_FUNC;
8067 }
8068 break;
8069
8070 case R_MIPS_GOT_PAGE:
8071 case R_MICROMIPS_GOT_PAGE:
8072 /* If this is a global, overridable symbol, GOT_PAGE will
8073 decay to GOT_DISP, so we'll need a GOT entry for it. */
8074 if (h)
8075 {
8076 struct mips_elf_link_hash_entry *hmips =
8077 (struct mips_elf_link_hash_entry *) h;
8078
8079 /* This symbol is definitely not overridable. */
8080 if (hmips->root.def_regular
8081 && ! (info->shared && ! info->symbolic
8082 && ! hmips->root.forced_local))
8083 h = NULL;
8084 }
8085 /* Fall through. */
8086
8087 case R_MIPS16_GOT16:
8088 case R_MIPS_GOT16:
8089 case R_MIPS_GOT_HI16:
8090 case R_MIPS_GOT_LO16:
8091 case R_MICROMIPS_GOT16:
8092 case R_MICROMIPS_GOT_HI16:
8093 case R_MICROMIPS_GOT_LO16:
8094 if (!h || got_page_reloc_p (r_type))
8095 {
8096 /* This relocation needs (or may need, if h != NULL) a
8097 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8098 know for sure until we know whether the symbol is
8099 preemptible. */
8100 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8101 {
8102 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8103 return FALSE;
8104 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8105 addend = mips_elf_read_rel_addend (abfd, rel,
8106 howto, contents);
8107 if (got16_reloc_p (r_type))
8108 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8109 contents, &addend);
8110 else
8111 addend <<= howto->rightshift;
8112 }
8113 else
8114 addend = rel->r_addend;
8115 if (!mips_elf_record_got_page_entry (info, abfd, r_symndx,
8116 addend))
8117 return FALSE;
8118 }
8119 /* Fall through. */
8120
8121 case R_MIPS_GOT_DISP:
8122 case R_MICROMIPS_GOT_DISP:
8123 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8124 FALSE, 0))
8125 return FALSE;
8126 break;
8127
8128 case R_MIPS_TLS_GOTTPREL:
8129 case R_MIPS16_TLS_GOTTPREL:
8130 case R_MICROMIPS_TLS_GOTTPREL:
8131 if (info->shared)
8132 info->flags |= DF_STATIC_TLS;
8133 /* Fall through */
8134
8135 case R_MIPS_TLS_LDM:
8136 case R_MIPS16_TLS_LDM:
8137 case R_MICROMIPS_TLS_LDM:
8138 if (tls_ldm_reloc_p (r_type))
8139 {
8140 r_symndx = STN_UNDEF;
8141 h = NULL;
8142 }
8143 /* Fall through */
8144
8145 case R_MIPS_TLS_GD:
8146 case R_MIPS16_TLS_GD:
8147 case R_MICROMIPS_TLS_GD:
8148 /* This symbol requires a global offset table entry, or two
8149 for TLS GD relocations. */
8150 {
8151 unsigned char flag;
8152
8153 flag = (tls_gd_reloc_p (r_type)
8154 ? GOT_TLS_GD
8155 : tls_ldm_reloc_p (r_type) ? GOT_TLS_LDM : GOT_TLS_IE);
8156 if (h != NULL)
8157 {
8158 struct mips_elf_link_hash_entry *hmips =
8159 (struct mips_elf_link_hash_entry *) h;
8160 hmips->tls_type |= flag;
8161
8162 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8163 FALSE, flag))
8164 return FALSE;
8165 }
8166 else
8167 {
8168 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != STN_UNDEF);
8169
8170 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8171 rel->r_addend,
8172 info, flag))
8173 return FALSE;
8174 }
8175 }
8176 break;
8177
8178 case R_MIPS_32:
8179 case R_MIPS_REL32:
8180 case R_MIPS_64:
8181 /* In VxWorks executables, references to external symbols
8182 are handled using copy relocs or PLT stubs, so there's
8183 no need to add a .rela.dyn entry for this relocation. */
8184 if (can_make_dynamic_p)
8185 {
8186 if (sreloc == NULL)
8187 {
8188 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8189 if (sreloc == NULL)
8190 return FALSE;
8191 }
8192 if (info->shared && h == NULL)
8193 {
8194 /* When creating a shared object, we must copy these
8195 reloc types into the output file as R_MIPS_REL32
8196 relocs. Make room for this reloc in .rel(a).dyn. */
8197 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8198 if (MIPS_ELF_READONLY_SECTION (sec))
8199 /* We tell the dynamic linker that there are
8200 relocations against the text segment. */
8201 info->flags |= DF_TEXTREL;
8202 }
8203 else
8204 {
8205 struct mips_elf_link_hash_entry *hmips;
8206
8207 /* For a shared object, we must copy this relocation
8208 unless the symbol turns out to be undefined and
8209 weak with non-default visibility, in which case
8210 it will be left as zero.
8211
8212 We could elide R_MIPS_REL32 for locally binding symbols
8213 in shared libraries, but do not yet do so.
8214
8215 For an executable, we only need to copy this
8216 reloc if the symbol is defined in a dynamic
8217 object. */
8218 hmips = (struct mips_elf_link_hash_entry *) h;
8219 ++hmips->possibly_dynamic_relocs;
8220 if (MIPS_ELF_READONLY_SECTION (sec))
8221 /* We need it to tell the dynamic linker if there
8222 are relocations against the text segment. */
8223 hmips->readonly_reloc = TRUE;
8224 }
8225 }
8226
8227 if (SGI_COMPAT (abfd))
8228 mips_elf_hash_table (info)->compact_rel_size +=
8229 sizeof (Elf32_External_crinfo);
8230 break;
8231
8232 case R_MIPS_26:
8233 case R_MIPS_GPREL16:
8234 case R_MIPS_LITERAL:
8235 case R_MIPS_GPREL32:
8236 case R_MICROMIPS_26_S1:
8237 case R_MICROMIPS_GPREL16:
8238 case R_MICROMIPS_LITERAL:
8239 case R_MICROMIPS_GPREL7_S2:
8240 if (SGI_COMPAT (abfd))
8241 mips_elf_hash_table (info)->compact_rel_size +=
8242 sizeof (Elf32_External_crinfo);
8243 break;
8244
8245 /* This relocation describes the C++ object vtable hierarchy.
8246 Reconstruct it for later use during GC. */
8247 case R_MIPS_GNU_VTINHERIT:
8248 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8249 return FALSE;
8250 break;
8251
8252 /* This relocation describes which C++ vtable entries are actually
8253 used. Record for later use during GC. */
8254 case R_MIPS_GNU_VTENTRY:
8255 BFD_ASSERT (h != NULL);
8256 if (h != NULL
8257 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8258 return FALSE;
8259 break;
8260
8261 default:
8262 break;
8263 }
8264
8265 /* We must not create a stub for a symbol that has relocations
8266 related to taking the function's address. This doesn't apply to
8267 VxWorks, where CALL relocs refer to a .got.plt entry instead of
8268 a normal .got entry. */
8269 if (!htab->is_vxworks && h != NULL)
8270 switch (r_type)
8271 {
8272 default:
8273 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8274 break;
8275 case R_MIPS16_CALL16:
8276 case R_MIPS_CALL16:
8277 case R_MIPS_CALL_HI16:
8278 case R_MIPS_CALL_LO16:
8279 case R_MIPS_JALR:
8280 case R_MICROMIPS_CALL16:
8281 case R_MICROMIPS_CALL_HI16:
8282 case R_MICROMIPS_CALL_LO16:
8283 case R_MICROMIPS_JALR:
8284 break;
8285 }
8286
8287 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8288 if there is one. We only need to handle global symbols here;
8289 we decide whether to keep or delete stubs for local symbols
8290 when processing the stub's relocations. */
8291 if (h != NULL
8292 && !mips16_call_reloc_p (r_type)
8293 && !section_allows_mips16_refs_p (sec))
8294 {
8295 struct mips_elf_link_hash_entry *mh;
8296
8297 mh = (struct mips_elf_link_hash_entry *) h;
8298 mh->need_fn_stub = TRUE;
8299 }
8300
8301 /* Refuse some position-dependent relocations when creating a
8302 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8303 not PIC, but we can create dynamic relocations and the result
8304 will be fine. Also do not refuse R_MIPS_LO16, which can be
8305 combined with R_MIPS_GOT16. */
8306 if (info->shared)
8307 {
8308 switch (r_type)
8309 {
8310 case R_MIPS16_HI16:
8311 case R_MIPS_HI16:
8312 case R_MIPS_HIGHER:
8313 case R_MIPS_HIGHEST:
8314 case R_MICROMIPS_HI16:
8315 case R_MICROMIPS_HIGHER:
8316 case R_MICROMIPS_HIGHEST:
8317 /* Don't refuse a high part relocation if it's against
8318 no symbol (e.g. part of a compound relocation). */
8319 if (r_symndx == STN_UNDEF)
8320 break;
8321
8322 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8323 and has a special meaning. */
8324 if (!NEWABI_P (abfd) && h != NULL
8325 && strcmp (h->root.root.string, "_gp_disp") == 0)
8326 break;
8327
8328 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8329 if (is_gott_symbol (info, h))
8330 break;
8331
8332 /* FALLTHROUGH */
8333
8334 case R_MIPS16_26:
8335 case R_MIPS_26:
8336 case R_MICROMIPS_26_S1:
8337 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8338 (*_bfd_error_handler)
8339 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8340 abfd, howto->name,
8341 (h) ? h->root.root.string : "a local symbol");
8342 bfd_set_error (bfd_error_bad_value);
8343 return FALSE;
8344 default:
8345 break;
8346 }
8347 }
8348 }
8349
8350 return TRUE;
8351 }
8352 \f
8353 bfd_boolean
8354 _bfd_mips_relax_section (bfd *abfd, asection *sec,
8355 struct bfd_link_info *link_info,
8356 bfd_boolean *again)
8357 {
8358 Elf_Internal_Rela *internal_relocs;
8359 Elf_Internal_Rela *irel, *irelend;
8360 Elf_Internal_Shdr *symtab_hdr;
8361 bfd_byte *contents = NULL;
8362 size_t extsymoff;
8363 bfd_boolean changed_contents = FALSE;
8364 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8365 Elf_Internal_Sym *isymbuf = NULL;
8366
8367 /* We are not currently changing any sizes, so only one pass. */
8368 *again = FALSE;
8369
8370 if (link_info->relocatable)
8371 return TRUE;
8372
8373 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
8374 link_info->keep_memory);
8375 if (internal_relocs == NULL)
8376 return TRUE;
8377
8378 irelend = internal_relocs + sec->reloc_count
8379 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8380 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8381 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8382
8383 for (irel = internal_relocs; irel < irelend; irel++)
8384 {
8385 bfd_vma symval;
8386 bfd_signed_vma sym_offset;
8387 unsigned int r_type;
8388 unsigned long r_symndx;
8389 asection *sym_sec;
8390 unsigned long instruction;
8391
8392 /* Turn jalr into bgezal, and jr into beq, if they're marked
8393 with a JALR relocation, that indicate where they jump to.
8394 This saves some pipeline bubbles. */
8395 r_type = ELF_R_TYPE (abfd, irel->r_info);
8396 if (r_type != R_MIPS_JALR)
8397 continue;
8398
8399 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8400 /* Compute the address of the jump target. */
8401 if (r_symndx >= extsymoff)
8402 {
8403 struct mips_elf_link_hash_entry *h
8404 = ((struct mips_elf_link_hash_entry *)
8405 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8406
8407 while (h->root.root.type == bfd_link_hash_indirect
8408 || h->root.root.type == bfd_link_hash_warning)
8409 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8410
8411 /* If a symbol is undefined, or if it may be overridden,
8412 skip it. */
8413 if (! ((h->root.root.type == bfd_link_hash_defined
8414 || h->root.root.type == bfd_link_hash_defweak)
8415 && h->root.root.u.def.section)
8416 || (link_info->shared && ! link_info->symbolic
8417 && !h->root.forced_local))
8418 continue;
8419
8420 sym_sec = h->root.root.u.def.section;
8421 if (sym_sec->output_section)
8422 symval = (h->root.root.u.def.value
8423 + sym_sec->output_section->vma
8424 + sym_sec->output_offset);
8425 else
8426 symval = h->root.root.u.def.value;
8427 }
8428 else
8429 {
8430 Elf_Internal_Sym *isym;
8431
8432 /* Read this BFD's symbols if we haven't done so already. */
8433 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8434 {
8435 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8436 if (isymbuf == NULL)
8437 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8438 symtab_hdr->sh_info, 0,
8439 NULL, NULL, NULL);
8440 if (isymbuf == NULL)
8441 goto relax_return;
8442 }
8443
8444 isym = isymbuf + r_symndx;
8445 if (isym->st_shndx == SHN_UNDEF)
8446 continue;
8447 else if (isym->st_shndx == SHN_ABS)
8448 sym_sec = bfd_abs_section_ptr;
8449 else if (isym->st_shndx == SHN_COMMON)
8450 sym_sec = bfd_com_section_ptr;
8451 else
8452 sym_sec
8453 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8454 symval = isym->st_value
8455 + sym_sec->output_section->vma
8456 + sym_sec->output_offset;
8457 }
8458
8459 /* Compute branch offset, from delay slot of the jump to the
8460 branch target. */
8461 sym_offset = (symval + irel->r_addend)
8462 - (sec_start + irel->r_offset + 4);
8463
8464 /* Branch offset must be properly aligned. */
8465 if ((sym_offset & 3) != 0)
8466 continue;
8467
8468 sym_offset >>= 2;
8469
8470 /* Check that it's in range. */
8471 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8472 continue;
8473
8474 /* Get the section contents if we haven't done so already. */
8475 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8476 goto relax_return;
8477
8478 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8479
8480 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8481 if ((instruction & 0xfc1fffff) == 0x0000f809)
8482 instruction = 0x04110000;
8483 /* If it was jr <reg>, turn it into b <target>. */
8484 else if ((instruction & 0xfc1fffff) == 0x00000008)
8485 instruction = 0x10000000;
8486 else
8487 continue;
8488
8489 instruction |= (sym_offset & 0xffff);
8490 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8491 changed_contents = TRUE;
8492 }
8493
8494 if (contents != NULL
8495 && elf_section_data (sec)->this_hdr.contents != contents)
8496 {
8497 if (!changed_contents && !link_info->keep_memory)
8498 free (contents);
8499 else
8500 {
8501 /* Cache the section contents for elf_link_input_bfd. */
8502 elf_section_data (sec)->this_hdr.contents = contents;
8503 }
8504 }
8505 return TRUE;
8506
8507 relax_return:
8508 if (contents != NULL
8509 && elf_section_data (sec)->this_hdr.contents != contents)
8510 free (contents);
8511 return FALSE;
8512 }
8513 \f
8514 /* Allocate space for global sym dynamic relocs. */
8515
8516 static bfd_boolean
8517 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8518 {
8519 struct bfd_link_info *info = inf;
8520 bfd *dynobj;
8521 struct mips_elf_link_hash_entry *hmips;
8522 struct mips_elf_link_hash_table *htab;
8523
8524 htab = mips_elf_hash_table (info);
8525 BFD_ASSERT (htab != NULL);
8526
8527 dynobj = elf_hash_table (info)->dynobj;
8528 hmips = (struct mips_elf_link_hash_entry *) h;
8529
8530 /* VxWorks executables are handled elsewhere; we only need to
8531 allocate relocations in shared objects. */
8532 if (htab->is_vxworks && !info->shared)
8533 return TRUE;
8534
8535 /* Ignore indirect symbols. All relocations against such symbols
8536 will be redirected to the target symbol. */
8537 if (h->root.type == bfd_link_hash_indirect)
8538 return TRUE;
8539
8540 /* If this symbol is defined in a dynamic object, or we are creating
8541 a shared library, we will need to copy any R_MIPS_32 or
8542 R_MIPS_REL32 relocs against it into the output file. */
8543 if (! info->relocatable
8544 && hmips->possibly_dynamic_relocs != 0
8545 && (h->root.type == bfd_link_hash_defweak
8546 || !h->def_regular
8547 || info->shared))
8548 {
8549 bfd_boolean do_copy = TRUE;
8550
8551 if (h->root.type == bfd_link_hash_undefweak)
8552 {
8553 /* Do not copy relocations for undefined weak symbols with
8554 non-default visibility. */
8555 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8556 do_copy = FALSE;
8557
8558 /* Make sure undefined weak symbols are output as a dynamic
8559 symbol in PIEs. */
8560 else if (h->dynindx == -1 && !h->forced_local)
8561 {
8562 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8563 return FALSE;
8564 }
8565 }
8566
8567 if (do_copy)
8568 {
8569 /* Even though we don't directly need a GOT entry for this symbol,
8570 the SVR4 psABI requires it to have a dynamic symbol table
8571 index greater that DT_MIPS_GOTSYM if there are dynamic
8572 relocations against it.
8573
8574 VxWorks does not enforce the same mapping between the GOT
8575 and the symbol table, so the same requirement does not
8576 apply there. */
8577 if (!htab->is_vxworks)
8578 {
8579 if (hmips->global_got_area > GGA_RELOC_ONLY)
8580 hmips->global_got_area = GGA_RELOC_ONLY;
8581 hmips->got_only_for_calls = FALSE;
8582 }
8583
8584 mips_elf_allocate_dynamic_relocations
8585 (dynobj, info, hmips->possibly_dynamic_relocs);
8586 if (hmips->readonly_reloc)
8587 /* We tell the dynamic linker that there are relocations
8588 against the text segment. */
8589 info->flags |= DF_TEXTREL;
8590 }
8591 }
8592
8593 return TRUE;
8594 }
8595
8596 /* Adjust a symbol defined by a dynamic object and referenced by a
8597 regular object. The current definition is in some section of the
8598 dynamic object, but we're not including those sections. We have to
8599 change the definition to something the rest of the link can
8600 understand. */
8601
8602 bfd_boolean
8603 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8604 struct elf_link_hash_entry *h)
8605 {
8606 bfd *dynobj;
8607 struct mips_elf_link_hash_entry *hmips;
8608 struct mips_elf_link_hash_table *htab;
8609
8610 htab = mips_elf_hash_table (info);
8611 BFD_ASSERT (htab != NULL);
8612
8613 dynobj = elf_hash_table (info)->dynobj;
8614 hmips = (struct mips_elf_link_hash_entry *) h;
8615
8616 /* Make sure we know what is going on here. */
8617 BFD_ASSERT (dynobj != NULL
8618 && (h->needs_plt
8619 || h->u.weakdef != NULL
8620 || (h->def_dynamic
8621 && h->ref_regular
8622 && !h->def_regular)));
8623
8624 hmips = (struct mips_elf_link_hash_entry *) h;
8625
8626 /* If there are call relocations against an externally-defined symbol,
8627 see whether we can create a MIPS lazy-binding stub for it. We can
8628 only do this if all references to the function are through call
8629 relocations, and in that case, the traditional lazy-binding stubs
8630 are much more efficient than PLT entries.
8631
8632 Traditional stubs are only available on SVR4 psABI-based systems;
8633 VxWorks always uses PLTs instead. */
8634 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
8635 {
8636 if (! elf_hash_table (info)->dynamic_sections_created)
8637 return TRUE;
8638
8639 /* If this symbol is not defined in a regular file, then set
8640 the symbol to the stub location. This is required to make
8641 function pointers compare as equal between the normal
8642 executable and the shared library. */
8643 if (!h->def_regular)
8644 {
8645 hmips->needs_lazy_stub = TRUE;
8646 htab->lazy_stub_count++;
8647 return TRUE;
8648 }
8649 }
8650 /* As above, VxWorks requires PLT entries for externally-defined
8651 functions that are only accessed through call relocations.
8652
8653 Both VxWorks and non-VxWorks targets also need PLT entries if there
8654 are static-only relocations against an externally-defined function.
8655 This can technically occur for shared libraries if there are
8656 branches to the symbol, although it is unlikely that this will be
8657 used in practice due to the short ranges involved. It can occur
8658 for any relative or absolute relocation in executables; in that
8659 case, the PLT entry becomes the function's canonical address. */
8660 else if (((h->needs_plt && !hmips->no_fn_stub)
8661 || (h->type == STT_FUNC && hmips->has_static_relocs))
8662 && htab->use_plts_and_copy_relocs
8663 && !SYMBOL_CALLS_LOCAL (info, h)
8664 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8665 && h->root.type == bfd_link_hash_undefweak))
8666 {
8667 /* If this is the first symbol to need a PLT entry, allocate room
8668 for the header. */
8669 if (htab->splt->size == 0)
8670 {
8671 BFD_ASSERT (htab->sgotplt->size == 0);
8672
8673 /* If we're using the PLT additions to the psABI, each PLT
8674 entry is 16 bytes and the PLT0 entry is 32 bytes.
8675 Encourage better cache usage by aligning. We do this
8676 lazily to avoid pessimizing traditional objects. */
8677 if (!htab->is_vxworks
8678 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
8679 return FALSE;
8680
8681 /* Make sure that .got.plt is word-aligned. We do this lazily
8682 for the same reason as above. */
8683 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
8684 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
8685 return FALSE;
8686
8687 htab->splt->size += htab->plt_header_size;
8688
8689 /* On non-VxWorks targets, the first two entries in .got.plt
8690 are reserved. */
8691 if (!htab->is_vxworks)
8692 htab->sgotplt->size
8693 += get_elf_backend_data (dynobj)->got_header_size;
8694
8695 /* On VxWorks, also allocate room for the header's
8696 .rela.plt.unloaded entries. */
8697 if (htab->is_vxworks && !info->shared)
8698 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
8699 }
8700
8701 /* Assign the next .plt entry to this symbol. */
8702 h->plt.offset = htab->splt->size;
8703 htab->splt->size += htab->plt_entry_size;
8704
8705 /* If the output file has no definition of the symbol, set the
8706 symbol's value to the address of the stub. */
8707 if (!info->shared && !h->def_regular)
8708 {
8709 h->root.u.def.section = htab->splt;
8710 h->root.u.def.value = h->plt.offset;
8711 /* For VxWorks, point at the PLT load stub rather than the
8712 lazy resolution stub; this stub will become the canonical
8713 function address. */
8714 if (htab->is_vxworks)
8715 h->root.u.def.value += 8;
8716 }
8717
8718 /* Make room for the .got.plt entry and the R_MIPS_JUMP_SLOT
8719 relocation. */
8720 htab->sgotplt->size += MIPS_ELF_GOT_SIZE (dynobj);
8721 htab->srelplt->size += (htab->is_vxworks
8722 ? MIPS_ELF_RELA_SIZE (dynobj)
8723 : MIPS_ELF_REL_SIZE (dynobj));
8724
8725 /* Make room for the .rela.plt.unloaded relocations. */
8726 if (htab->is_vxworks && !info->shared)
8727 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
8728
8729 /* All relocations against this symbol that could have been made
8730 dynamic will now refer to the PLT entry instead. */
8731 hmips->possibly_dynamic_relocs = 0;
8732
8733 return TRUE;
8734 }
8735
8736 /* If this is a weak symbol, and there is a real definition, the
8737 processor independent code will have arranged for us to see the
8738 real definition first, and we can just use the same value. */
8739 if (h->u.weakdef != NULL)
8740 {
8741 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
8742 || h->u.weakdef->root.type == bfd_link_hash_defweak);
8743 h->root.u.def.section = h->u.weakdef->root.u.def.section;
8744 h->root.u.def.value = h->u.weakdef->root.u.def.value;
8745 return TRUE;
8746 }
8747
8748 /* Otherwise, there is nothing further to do for symbols defined
8749 in regular objects. */
8750 if (h->def_regular)
8751 return TRUE;
8752
8753 /* There's also nothing more to do if we'll convert all relocations
8754 against this symbol into dynamic relocations. */
8755 if (!hmips->has_static_relocs)
8756 return TRUE;
8757
8758 /* We're now relying on copy relocations. Complain if we have
8759 some that we can't convert. */
8760 if (!htab->use_plts_and_copy_relocs || info->shared)
8761 {
8762 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
8763 "dynamic symbol %s"),
8764 h->root.root.string);
8765 bfd_set_error (bfd_error_bad_value);
8766 return FALSE;
8767 }
8768
8769 /* We must allocate the symbol in our .dynbss section, which will
8770 become part of the .bss section of the executable. There will be
8771 an entry for this symbol in the .dynsym section. The dynamic
8772 object will contain position independent code, so all references
8773 from the dynamic object to this symbol will go through the global
8774 offset table. The dynamic linker will use the .dynsym entry to
8775 determine the address it must put in the global offset table, so
8776 both the dynamic object and the regular object will refer to the
8777 same memory location for the variable. */
8778
8779 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
8780 {
8781 if (htab->is_vxworks)
8782 htab->srelbss->size += sizeof (Elf32_External_Rela);
8783 else
8784 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8785 h->needs_copy = 1;
8786 }
8787
8788 /* All relocations against this symbol that could have been made
8789 dynamic will now refer to the local copy instead. */
8790 hmips->possibly_dynamic_relocs = 0;
8791
8792 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
8793 }
8794 \f
8795 /* This function is called after all the input files have been read,
8796 and the input sections have been assigned to output sections. We
8797 check for any mips16 stub sections that we can discard. */
8798
8799 bfd_boolean
8800 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
8801 struct bfd_link_info *info)
8802 {
8803 asection *ri;
8804 struct mips_elf_link_hash_table *htab;
8805 struct mips_htab_traverse_info hti;
8806
8807 htab = mips_elf_hash_table (info);
8808 BFD_ASSERT (htab != NULL);
8809
8810 /* The .reginfo section has a fixed size. */
8811 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
8812 if (ri != NULL)
8813 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
8814
8815 hti.info = info;
8816 hti.output_bfd = output_bfd;
8817 hti.error = FALSE;
8818 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8819 mips_elf_check_symbols, &hti);
8820 if (hti.error)
8821 return FALSE;
8822
8823 return TRUE;
8824 }
8825
8826 /* If the link uses a GOT, lay it out and work out its size. */
8827
8828 static bfd_boolean
8829 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
8830 {
8831 bfd *dynobj;
8832 asection *s;
8833 struct mips_got_info *g;
8834 bfd_size_type loadable_size = 0;
8835 bfd_size_type page_gotno;
8836 bfd *sub;
8837 struct mips_elf_count_tls_arg count_tls_arg;
8838 struct mips_elf_link_hash_table *htab;
8839
8840 htab = mips_elf_hash_table (info);
8841 BFD_ASSERT (htab != NULL);
8842
8843 s = htab->sgot;
8844 if (s == NULL)
8845 return TRUE;
8846
8847 dynobj = elf_hash_table (info)->dynobj;
8848 g = htab->got_info;
8849
8850 /* Allocate room for the reserved entries. VxWorks always reserves
8851 3 entries; other objects only reserve 2 entries. */
8852 BFD_ASSERT (g->assigned_gotno == 0);
8853 if (htab->is_vxworks)
8854 htab->reserved_gotno = 3;
8855 else
8856 htab->reserved_gotno = 2;
8857 g->local_gotno += htab->reserved_gotno;
8858 g->assigned_gotno = htab->reserved_gotno;
8859
8860 /* Replace entries for indirect and warning symbols with entries for
8861 the target symbol. */
8862 if (!mips_elf_resolve_final_got_entries (g))
8863 return FALSE;
8864
8865 /* Count the number of GOT symbols. */
8866 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
8867
8868 /* Calculate the total loadable size of the output. That
8869 will give us the maximum number of GOT_PAGE entries
8870 required. */
8871 for (sub = info->input_bfds; sub; sub = sub->link_next)
8872 {
8873 asection *subsection;
8874
8875 for (subsection = sub->sections;
8876 subsection;
8877 subsection = subsection->next)
8878 {
8879 if ((subsection->flags & SEC_ALLOC) == 0)
8880 continue;
8881 loadable_size += ((subsection->size + 0xf)
8882 &~ (bfd_size_type) 0xf);
8883 }
8884 }
8885
8886 if (htab->is_vxworks)
8887 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
8888 relocations against local symbols evaluate to "G", and the EABI does
8889 not include R_MIPS_GOT_PAGE. */
8890 page_gotno = 0;
8891 else
8892 /* Assume there are two loadable segments consisting of contiguous
8893 sections. Is 5 enough? */
8894 page_gotno = (loadable_size >> 16) + 5;
8895
8896 /* Choose the smaller of the two estimates; both are intended to be
8897 conservative. */
8898 if (page_gotno > g->page_gotno)
8899 page_gotno = g->page_gotno;
8900
8901 g->local_gotno += page_gotno;
8902 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8903 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8904
8905 /* We need to calculate tls_gotno for global symbols at this point
8906 instead of building it up earlier, to avoid doublecounting
8907 entries for one global symbol from multiple input files. */
8908 count_tls_arg.info = info;
8909 count_tls_arg.needed = 0;
8910 elf_link_hash_traverse (elf_hash_table (info),
8911 mips_elf_count_global_tls_entries,
8912 &count_tls_arg);
8913 g->tls_gotno += count_tls_arg.needed;
8914 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8915
8916 /* VxWorks does not support multiple GOTs. It initializes $gp to
8917 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
8918 dynamic loader. */
8919 if (htab->is_vxworks)
8920 {
8921 /* VxWorks executables do not need a GOT. */
8922 if (info->shared)
8923 {
8924 /* Each VxWorks GOT entry needs an explicit relocation. */
8925 unsigned int count;
8926
8927 count = g->global_gotno + g->local_gotno - htab->reserved_gotno;
8928 if (count)
8929 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
8930 }
8931 }
8932 else if (s->size > MIPS_ELF_GOT_MAX_SIZE (info))
8933 {
8934 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
8935 return FALSE;
8936 }
8937 else
8938 {
8939 struct mips_elf_count_tls_arg arg;
8940
8941 /* Set up TLS entries. */
8942 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
8943 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
8944
8945 /* Allocate room for the TLS relocations. */
8946 arg.info = info;
8947 arg.needed = 0;
8948 htab_traverse (g->got_entries, mips_elf_count_local_tls_relocs, &arg);
8949 elf_link_hash_traverse (elf_hash_table (info),
8950 mips_elf_count_global_tls_relocs,
8951 &arg);
8952 if (arg.needed)
8953 mips_elf_allocate_dynamic_relocations (dynobj, info, arg.needed);
8954 }
8955
8956 return TRUE;
8957 }
8958
8959 /* Estimate the size of the .MIPS.stubs section. */
8960
8961 static void
8962 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
8963 {
8964 struct mips_elf_link_hash_table *htab;
8965 bfd_size_type dynsymcount;
8966
8967 htab = mips_elf_hash_table (info);
8968 BFD_ASSERT (htab != NULL);
8969
8970 if (htab->lazy_stub_count == 0)
8971 return;
8972
8973 /* IRIX rld assumes that a function stub isn't at the end of the .text
8974 section, so add a dummy entry to the end. */
8975 htab->lazy_stub_count++;
8976
8977 /* Get a worst-case estimate of the number of dynamic symbols needed.
8978 At this point, dynsymcount does not account for section symbols
8979 and count_section_dynsyms may overestimate the number that will
8980 be needed. */
8981 dynsymcount = (elf_hash_table (info)->dynsymcount
8982 + count_section_dynsyms (output_bfd, info));
8983
8984 /* Determine the size of one stub entry. */
8985 htab->function_stub_size = (dynsymcount > 0x10000
8986 ? MIPS_FUNCTION_STUB_BIG_SIZE
8987 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
8988
8989 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
8990 }
8991
8992 /* A mips_elf_link_hash_traverse callback for which DATA points to the
8993 MIPS hash table. If H needs a traditional MIPS lazy-binding stub,
8994 allocate an entry in the stubs section. */
8995
8996 static bfd_boolean
8997 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void **data)
8998 {
8999 struct mips_elf_link_hash_table *htab;
9000
9001 htab = (struct mips_elf_link_hash_table *) data;
9002 if (h->needs_lazy_stub)
9003 {
9004 h->root.root.u.def.section = htab->sstubs;
9005 h->root.root.u.def.value = htab->sstubs->size;
9006 h->root.plt.offset = htab->sstubs->size;
9007 htab->sstubs->size += htab->function_stub_size;
9008 }
9009 return TRUE;
9010 }
9011
9012 /* Allocate offsets in the stubs section to each symbol that needs one.
9013 Set the final size of the .MIPS.stub section. */
9014
9015 static void
9016 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9017 {
9018 struct mips_elf_link_hash_table *htab;
9019
9020 htab = mips_elf_hash_table (info);
9021 BFD_ASSERT (htab != NULL);
9022
9023 if (htab->lazy_stub_count == 0)
9024 return;
9025
9026 htab->sstubs->size = 0;
9027 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, htab);
9028 htab->sstubs->size += htab->function_stub_size;
9029 BFD_ASSERT (htab->sstubs->size
9030 == htab->lazy_stub_count * htab->function_stub_size);
9031 }
9032
9033 /* Set the sizes of the dynamic sections. */
9034
9035 bfd_boolean
9036 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9037 struct bfd_link_info *info)
9038 {
9039 bfd *dynobj;
9040 asection *s, *sreldyn;
9041 bfd_boolean reltext;
9042 struct mips_elf_link_hash_table *htab;
9043
9044 htab = mips_elf_hash_table (info);
9045 BFD_ASSERT (htab != NULL);
9046 dynobj = elf_hash_table (info)->dynobj;
9047 BFD_ASSERT (dynobj != NULL);
9048
9049 if (elf_hash_table (info)->dynamic_sections_created)
9050 {
9051 /* Set the contents of the .interp section to the interpreter. */
9052 if (info->executable)
9053 {
9054 s = bfd_get_linker_section (dynobj, ".interp");
9055 BFD_ASSERT (s != NULL);
9056 s->size
9057 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9058 s->contents
9059 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9060 }
9061
9062 /* Create a symbol for the PLT, if we know that we are using it. */
9063 if (htab->splt && htab->splt->size > 0 && htab->root.hplt == NULL)
9064 {
9065 struct elf_link_hash_entry *h;
9066
9067 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9068
9069 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
9070 "_PROCEDURE_LINKAGE_TABLE_");
9071 htab->root.hplt = h;
9072 if (h == NULL)
9073 return FALSE;
9074 h->type = STT_FUNC;
9075 }
9076 }
9077
9078 /* Allocate space for global sym dynamic relocs. */
9079 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9080
9081 mips_elf_estimate_stub_size (output_bfd, info);
9082
9083 if (!mips_elf_lay_out_got (output_bfd, info))
9084 return FALSE;
9085
9086 mips_elf_lay_out_lazy_stubs (info);
9087
9088 /* The check_relocs and adjust_dynamic_symbol entry points have
9089 determined the sizes of the various dynamic sections. Allocate
9090 memory for them. */
9091 reltext = FALSE;
9092 for (s = dynobj->sections; s != NULL; s = s->next)
9093 {
9094 const char *name;
9095
9096 /* It's OK to base decisions on the section name, because none
9097 of the dynobj section names depend upon the input files. */
9098 name = bfd_get_section_name (dynobj, s);
9099
9100 if ((s->flags & SEC_LINKER_CREATED) == 0)
9101 continue;
9102
9103 if (CONST_STRNEQ (name, ".rel"))
9104 {
9105 if (s->size != 0)
9106 {
9107 const char *outname;
9108 asection *target;
9109
9110 /* If this relocation section applies to a read only
9111 section, then we probably need a DT_TEXTREL entry.
9112 If the relocation section is .rel(a).dyn, we always
9113 assert a DT_TEXTREL entry rather than testing whether
9114 there exists a relocation to a read only section or
9115 not. */
9116 outname = bfd_get_section_name (output_bfd,
9117 s->output_section);
9118 target = bfd_get_section_by_name (output_bfd, outname + 4);
9119 if ((target != NULL
9120 && (target->flags & SEC_READONLY) != 0
9121 && (target->flags & SEC_ALLOC) != 0)
9122 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9123 reltext = TRUE;
9124
9125 /* We use the reloc_count field as a counter if we need
9126 to copy relocs into the output file. */
9127 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9128 s->reloc_count = 0;
9129
9130 /* If combreloc is enabled, elf_link_sort_relocs() will
9131 sort relocations, but in a different way than we do,
9132 and before we're done creating relocations. Also, it
9133 will move them around between input sections'
9134 relocation's contents, so our sorting would be
9135 broken, so don't let it run. */
9136 info->combreloc = 0;
9137 }
9138 }
9139 else if (! info->shared
9140 && ! mips_elf_hash_table (info)->use_rld_obj_head
9141 && CONST_STRNEQ (name, ".rld_map"))
9142 {
9143 /* We add a room for __rld_map. It will be filled in by the
9144 rtld to contain a pointer to the _r_debug structure. */
9145 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9146 }
9147 else if (SGI_COMPAT (output_bfd)
9148 && CONST_STRNEQ (name, ".compact_rel"))
9149 s->size += mips_elf_hash_table (info)->compact_rel_size;
9150 else if (s == htab->splt)
9151 {
9152 /* If the last PLT entry has a branch delay slot, allocate
9153 room for an extra nop to fill the delay slot. This is
9154 for CPUs without load interlocking. */
9155 if (! LOAD_INTERLOCKS_P (output_bfd)
9156 && ! htab->is_vxworks && s->size > 0)
9157 s->size += 4;
9158 }
9159 else if (! CONST_STRNEQ (name, ".init")
9160 && s != htab->sgot
9161 && s != htab->sgotplt
9162 && s != htab->sstubs
9163 && s != htab->sdynbss)
9164 {
9165 /* It's not one of our sections, so don't allocate space. */
9166 continue;
9167 }
9168
9169 if (s->size == 0)
9170 {
9171 s->flags |= SEC_EXCLUDE;
9172 continue;
9173 }
9174
9175 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9176 continue;
9177
9178 /* Allocate memory for the section contents. */
9179 s->contents = bfd_zalloc (dynobj, s->size);
9180 if (s->contents == NULL)
9181 {
9182 bfd_set_error (bfd_error_no_memory);
9183 return FALSE;
9184 }
9185 }
9186
9187 if (elf_hash_table (info)->dynamic_sections_created)
9188 {
9189 /* Add some entries to the .dynamic section. We fill in the
9190 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9191 must add the entries now so that we get the correct size for
9192 the .dynamic section. */
9193
9194 /* SGI object has the equivalence of DT_DEBUG in the
9195 DT_MIPS_RLD_MAP entry. This must come first because glibc
9196 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9197 may only look at the first one they see. */
9198 if (!info->shared
9199 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9200 return FALSE;
9201
9202 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9203 used by the debugger. */
9204 if (info->executable
9205 && !SGI_COMPAT (output_bfd)
9206 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9207 return FALSE;
9208
9209 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9210 info->flags |= DF_TEXTREL;
9211
9212 if ((info->flags & DF_TEXTREL) != 0)
9213 {
9214 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9215 return FALSE;
9216
9217 /* Clear the DF_TEXTREL flag. It will be set again if we
9218 write out an actual text relocation; we may not, because
9219 at this point we do not know whether e.g. any .eh_frame
9220 absolute relocations have been converted to PC-relative. */
9221 info->flags &= ~DF_TEXTREL;
9222 }
9223
9224 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9225 return FALSE;
9226
9227 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9228 if (htab->is_vxworks)
9229 {
9230 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9231 use any of the DT_MIPS_* tags. */
9232 if (sreldyn && sreldyn->size > 0)
9233 {
9234 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9235 return FALSE;
9236
9237 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9238 return FALSE;
9239
9240 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9241 return FALSE;
9242 }
9243 }
9244 else
9245 {
9246 if (sreldyn && sreldyn->size > 0)
9247 {
9248 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9249 return FALSE;
9250
9251 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9252 return FALSE;
9253
9254 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9255 return FALSE;
9256 }
9257
9258 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9259 return FALSE;
9260
9261 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9262 return FALSE;
9263
9264 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9265 return FALSE;
9266
9267 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9268 return FALSE;
9269
9270 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9271 return FALSE;
9272
9273 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9274 return FALSE;
9275
9276 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9277 return FALSE;
9278
9279 if (IRIX_COMPAT (dynobj) == ict_irix5
9280 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9281 return FALSE;
9282
9283 if (IRIX_COMPAT (dynobj) == ict_irix6
9284 && (bfd_get_section_by_name
9285 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9286 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9287 return FALSE;
9288 }
9289 if (htab->splt->size > 0)
9290 {
9291 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9292 return FALSE;
9293
9294 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9295 return FALSE;
9296
9297 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9298 return FALSE;
9299
9300 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9301 return FALSE;
9302 }
9303 if (htab->is_vxworks
9304 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9305 return FALSE;
9306 }
9307
9308 return TRUE;
9309 }
9310 \f
9311 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9312 Adjust its R_ADDEND field so that it is correct for the output file.
9313 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9314 and sections respectively; both use symbol indexes. */
9315
9316 static void
9317 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9318 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9319 asection **local_sections, Elf_Internal_Rela *rel)
9320 {
9321 unsigned int r_type, r_symndx;
9322 Elf_Internal_Sym *sym;
9323 asection *sec;
9324
9325 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9326 {
9327 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9328 if (gprel16_reloc_p (r_type)
9329 || r_type == R_MIPS_GPREL32
9330 || literal_reloc_p (r_type))
9331 {
9332 rel->r_addend += _bfd_get_gp_value (input_bfd);
9333 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9334 }
9335
9336 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9337 sym = local_syms + r_symndx;
9338
9339 /* Adjust REL's addend to account for section merging. */
9340 if (!info->relocatable)
9341 {
9342 sec = local_sections[r_symndx];
9343 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9344 }
9345
9346 /* This would normally be done by the rela_normal code in elflink.c. */
9347 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9348 rel->r_addend += local_sections[r_symndx]->output_offset;
9349 }
9350 }
9351
9352 /* Handle relocations against symbols from removed linkonce sections,
9353 or sections discarded by a linker script. We use this wrapper around
9354 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
9355 on 64-bit ELF targets. In this case for any relocation handled, which
9356 always be the first in a triplet, the remaining two have to be processed
9357 together with the first, even if they are R_MIPS_NONE. It is the symbol
9358 index referred by the first reloc that applies to all the three and the
9359 remaining two never refer to an object symbol. And it is the final
9360 relocation (the last non-null one) that determines the output field of
9361 the whole relocation so retrieve the corresponding howto structure for
9362 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
9363
9364 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
9365 and therefore requires to be pasted in a loop. It also defines a block
9366 and does not protect any of its arguments, hence the extra brackets. */
9367
9368 static void
9369 mips_reloc_against_discarded_section (bfd *output_bfd,
9370 struct bfd_link_info *info,
9371 bfd *input_bfd, asection *input_section,
9372 Elf_Internal_Rela **rel,
9373 const Elf_Internal_Rela **relend,
9374 bfd_boolean rel_reloc,
9375 reloc_howto_type *howto,
9376 bfd_byte *contents)
9377 {
9378 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9379 int count = bed->s->int_rels_per_ext_rel;
9380 unsigned int r_type;
9381 int i;
9382
9383 for (i = count - 1; i > 0; i--)
9384 {
9385 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
9386 if (r_type != R_MIPS_NONE)
9387 {
9388 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9389 break;
9390 }
9391 }
9392 do
9393 {
9394 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9395 (*rel), count, (*relend),
9396 howto, i, contents);
9397 }
9398 while (0);
9399 }
9400
9401 /* Relocate a MIPS ELF section. */
9402
9403 bfd_boolean
9404 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
9405 bfd *input_bfd, asection *input_section,
9406 bfd_byte *contents, Elf_Internal_Rela *relocs,
9407 Elf_Internal_Sym *local_syms,
9408 asection **local_sections)
9409 {
9410 Elf_Internal_Rela *rel;
9411 const Elf_Internal_Rela *relend;
9412 bfd_vma addend = 0;
9413 bfd_boolean use_saved_addend_p = FALSE;
9414 const struct elf_backend_data *bed;
9415
9416 bed = get_elf_backend_data (output_bfd);
9417 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
9418 for (rel = relocs; rel < relend; ++rel)
9419 {
9420 const char *name;
9421 bfd_vma value = 0;
9422 reloc_howto_type *howto;
9423 bfd_boolean cross_mode_jump_p;
9424 /* TRUE if the relocation is a RELA relocation, rather than a
9425 REL relocation. */
9426 bfd_boolean rela_relocation_p = TRUE;
9427 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9428 const char *msg;
9429 unsigned long r_symndx;
9430 asection *sec;
9431 Elf_Internal_Shdr *symtab_hdr;
9432 struct elf_link_hash_entry *h;
9433 bfd_boolean rel_reloc;
9434
9435 rel_reloc = (NEWABI_P (input_bfd)
9436 && mips_elf_rel_relocation_p (input_bfd, input_section,
9437 relocs, rel));
9438 /* Find the relocation howto for this relocation. */
9439 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9440
9441 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
9442 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9443 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9444 {
9445 sec = local_sections[r_symndx];
9446 h = NULL;
9447 }
9448 else
9449 {
9450 unsigned long extsymoff;
9451
9452 extsymoff = 0;
9453 if (!elf_bad_symtab (input_bfd))
9454 extsymoff = symtab_hdr->sh_info;
9455 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
9456 while (h->root.type == bfd_link_hash_indirect
9457 || h->root.type == bfd_link_hash_warning)
9458 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9459
9460 sec = NULL;
9461 if (h->root.type == bfd_link_hash_defined
9462 || h->root.type == bfd_link_hash_defweak)
9463 sec = h->root.u.def.section;
9464 }
9465
9466 if (sec != NULL && discarded_section (sec))
9467 {
9468 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
9469 input_section, &rel, &relend,
9470 rel_reloc, howto, contents);
9471 continue;
9472 }
9473
9474 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
9475 {
9476 /* Some 32-bit code uses R_MIPS_64. In particular, people use
9477 64-bit code, but make sure all their addresses are in the
9478 lowermost or uppermost 32-bit section of the 64-bit address
9479 space. Thus, when they use an R_MIPS_64 they mean what is
9480 usually meant by R_MIPS_32, with the exception that the
9481 stored value is sign-extended to 64 bits. */
9482 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
9483
9484 /* On big-endian systems, we need to lie about the position
9485 of the reloc. */
9486 if (bfd_big_endian (input_bfd))
9487 rel->r_offset += 4;
9488 }
9489
9490 if (!use_saved_addend_p)
9491 {
9492 /* If these relocations were originally of the REL variety,
9493 we must pull the addend out of the field that will be
9494 relocated. Otherwise, we simply use the contents of the
9495 RELA relocation. */
9496 if (mips_elf_rel_relocation_p (input_bfd, input_section,
9497 relocs, rel))
9498 {
9499 rela_relocation_p = FALSE;
9500 addend = mips_elf_read_rel_addend (input_bfd, rel,
9501 howto, contents);
9502 if (hi16_reloc_p (r_type)
9503 || (got16_reloc_p (r_type)
9504 && mips_elf_local_relocation_p (input_bfd, rel,
9505 local_sections)))
9506 {
9507 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
9508 contents, &addend))
9509 {
9510 if (h)
9511 name = h->root.root.string;
9512 else
9513 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9514 local_syms + r_symndx,
9515 sec);
9516 (*_bfd_error_handler)
9517 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
9518 input_bfd, input_section, name, howto->name,
9519 rel->r_offset);
9520 }
9521 }
9522 else
9523 addend <<= howto->rightshift;
9524 }
9525 else
9526 addend = rel->r_addend;
9527 mips_elf_adjust_addend (output_bfd, info, input_bfd,
9528 local_syms, local_sections, rel);
9529 }
9530
9531 if (info->relocatable)
9532 {
9533 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
9534 && bfd_big_endian (input_bfd))
9535 rel->r_offset -= 4;
9536
9537 if (!rela_relocation_p && rel->r_addend)
9538 {
9539 addend += rel->r_addend;
9540 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
9541 addend = mips_elf_high (addend);
9542 else if (r_type == R_MIPS_HIGHER)
9543 addend = mips_elf_higher (addend);
9544 else if (r_type == R_MIPS_HIGHEST)
9545 addend = mips_elf_highest (addend);
9546 else
9547 addend >>= howto->rightshift;
9548
9549 /* We use the source mask, rather than the destination
9550 mask because the place to which we are writing will be
9551 source of the addend in the final link. */
9552 addend &= howto->src_mask;
9553
9554 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9555 /* See the comment above about using R_MIPS_64 in the 32-bit
9556 ABI. Here, we need to update the addend. It would be
9557 possible to get away with just using the R_MIPS_32 reloc
9558 but for endianness. */
9559 {
9560 bfd_vma sign_bits;
9561 bfd_vma low_bits;
9562 bfd_vma high_bits;
9563
9564 if (addend & ((bfd_vma) 1 << 31))
9565 #ifdef BFD64
9566 sign_bits = ((bfd_vma) 1 << 32) - 1;
9567 #else
9568 sign_bits = -1;
9569 #endif
9570 else
9571 sign_bits = 0;
9572
9573 /* If we don't know that we have a 64-bit type,
9574 do two separate stores. */
9575 if (bfd_big_endian (input_bfd))
9576 {
9577 /* Store the sign-bits (which are most significant)
9578 first. */
9579 low_bits = sign_bits;
9580 high_bits = addend;
9581 }
9582 else
9583 {
9584 low_bits = addend;
9585 high_bits = sign_bits;
9586 }
9587 bfd_put_32 (input_bfd, low_bits,
9588 contents + rel->r_offset);
9589 bfd_put_32 (input_bfd, high_bits,
9590 contents + rel->r_offset + 4);
9591 continue;
9592 }
9593
9594 if (! mips_elf_perform_relocation (info, howto, rel, addend,
9595 input_bfd, input_section,
9596 contents, FALSE))
9597 return FALSE;
9598 }
9599
9600 /* Go on to the next relocation. */
9601 continue;
9602 }
9603
9604 /* In the N32 and 64-bit ABIs there may be multiple consecutive
9605 relocations for the same offset. In that case we are
9606 supposed to treat the output of each relocation as the addend
9607 for the next. */
9608 if (rel + 1 < relend
9609 && rel->r_offset == rel[1].r_offset
9610 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
9611 use_saved_addend_p = TRUE;
9612 else
9613 use_saved_addend_p = FALSE;
9614
9615 /* Figure out what value we are supposed to relocate. */
9616 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
9617 input_section, info, rel,
9618 addend, howto, local_syms,
9619 local_sections, &value,
9620 &name, &cross_mode_jump_p,
9621 use_saved_addend_p))
9622 {
9623 case bfd_reloc_continue:
9624 /* There's nothing to do. */
9625 continue;
9626
9627 case bfd_reloc_undefined:
9628 /* mips_elf_calculate_relocation already called the
9629 undefined_symbol callback. There's no real point in
9630 trying to perform the relocation at this point, so we
9631 just skip ahead to the next relocation. */
9632 continue;
9633
9634 case bfd_reloc_notsupported:
9635 msg = _("internal error: unsupported relocation error");
9636 info->callbacks->warning
9637 (info, msg, name, input_bfd, input_section, rel->r_offset);
9638 return FALSE;
9639
9640 case bfd_reloc_overflow:
9641 if (use_saved_addend_p)
9642 /* Ignore overflow until we reach the last relocation for
9643 a given location. */
9644 ;
9645 else
9646 {
9647 struct mips_elf_link_hash_table *htab;
9648
9649 htab = mips_elf_hash_table (info);
9650 BFD_ASSERT (htab != NULL);
9651 BFD_ASSERT (name != NULL);
9652 if (!htab->small_data_overflow_reported
9653 && (gprel16_reloc_p (howto->type)
9654 || literal_reloc_p (howto->type)))
9655 {
9656 msg = _("small-data section exceeds 64KB;"
9657 " lower small-data size limit (see option -G)");
9658
9659 htab->small_data_overflow_reported = TRUE;
9660 (*info->callbacks->einfo) ("%P: %s\n", msg);
9661 }
9662 if (! ((*info->callbacks->reloc_overflow)
9663 (info, NULL, name, howto->name, (bfd_vma) 0,
9664 input_bfd, input_section, rel->r_offset)))
9665 return FALSE;
9666 }
9667 break;
9668
9669 case bfd_reloc_ok:
9670 break;
9671
9672 case bfd_reloc_outofrange:
9673 if (jal_reloc_p (howto->type))
9674 {
9675 msg = _("JALX to a non-word-aligned address");
9676 info->callbacks->warning
9677 (info, msg, name, input_bfd, input_section, rel->r_offset);
9678 return FALSE;
9679 }
9680 /* Fall through. */
9681
9682 default:
9683 abort ();
9684 break;
9685 }
9686
9687 /* If we've got another relocation for the address, keep going
9688 until we reach the last one. */
9689 if (use_saved_addend_p)
9690 {
9691 addend = value;
9692 continue;
9693 }
9694
9695 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9696 /* See the comment above about using R_MIPS_64 in the 32-bit
9697 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
9698 that calculated the right value. Now, however, we
9699 sign-extend the 32-bit result to 64-bits, and store it as a
9700 64-bit value. We are especially generous here in that we
9701 go to extreme lengths to support this usage on systems with
9702 only a 32-bit VMA. */
9703 {
9704 bfd_vma sign_bits;
9705 bfd_vma low_bits;
9706 bfd_vma high_bits;
9707
9708 if (value & ((bfd_vma) 1 << 31))
9709 #ifdef BFD64
9710 sign_bits = ((bfd_vma) 1 << 32) - 1;
9711 #else
9712 sign_bits = -1;
9713 #endif
9714 else
9715 sign_bits = 0;
9716
9717 /* If we don't know that we have a 64-bit type,
9718 do two separate stores. */
9719 if (bfd_big_endian (input_bfd))
9720 {
9721 /* Undo what we did above. */
9722 rel->r_offset -= 4;
9723 /* Store the sign-bits (which are most significant)
9724 first. */
9725 low_bits = sign_bits;
9726 high_bits = value;
9727 }
9728 else
9729 {
9730 low_bits = value;
9731 high_bits = sign_bits;
9732 }
9733 bfd_put_32 (input_bfd, low_bits,
9734 contents + rel->r_offset);
9735 bfd_put_32 (input_bfd, high_bits,
9736 contents + rel->r_offset + 4);
9737 continue;
9738 }
9739
9740 /* Actually perform the relocation. */
9741 if (! mips_elf_perform_relocation (info, howto, rel, value,
9742 input_bfd, input_section,
9743 contents, cross_mode_jump_p))
9744 return FALSE;
9745 }
9746
9747 return TRUE;
9748 }
9749 \f
9750 /* A function that iterates over each entry in la25_stubs and fills
9751 in the code for each one. DATA points to a mips_htab_traverse_info. */
9752
9753 static int
9754 mips_elf_create_la25_stub (void **slot, void *data)
9755 {
9756 struct mips_htab_traverse_info *hti;
9757 struct mips_elf_link_hash_table *htab;
9758 struct mips_elf_la25_stub *stub;
9759 asection *s;
9760 bfd_byte *loc;
9761 bfd_vma offset, target, target_high, target_low;
9762
9763 stub = (struct mips_elf_la25_stub *) *slot;
9764 hti = (struct mips_htab_traverse_info *) data;
9765 htab = mips_elf_hash_table (hti->info);
9766 BFD_ASSERT (htab != NULL);
9767
9768 /* Create the section contents, if we haven't already. */
9769 s = stub->stub_section;
9770 loc = s->contents;
9771 if (loc == NULL)
9772 {
9773 loc = bfd_malloc (s->size);
9774 if (loc == NULL)
9775 {
9776 hti->error = TRUE;
9777 return FALSE;
9778 }
9779 s->contents = loc;
9780 }
9781
9782 /* Work out where in the section this stub should go. */
9783 offset = stub->offset;
9784
9785 /* Work out the target address. */
9786 target = mips_elf_get_la25_target (stub, &s);
9787 target += s->output_section->vma + s->output_offset;
9788
9789 target_high = ((target + 0x8000) >> 16) & 0xffff;
9790 target_low = (target & 0xffff);
9791
9792 if (stub->stub_section != htab->strampoline)
9793 {
9794 /* This is a simple LUI/ADDIU stub. Zero out the beginning
9795 of the section and write the two instructions at the end. */
9796 memset (loc, 0, offset);
9797 loc += offset;
9798 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9799 {
9800 bfd_put_micromips_32 (hti->output_bfd,
9801 LA25_LUI_MICROMIPS (target_high),
9802 loc);
9803 bfd_put_micromips_32 (hti->output_bfd,
9804 LA25_ADDIU_MICROMIPS (target_low),
9805 loc + 4);
9806 }
9807 else
9808 {
9809 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9810 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
9811 }
9812 }
9813 else
9814 {
9815 /* This is trampoline. */
9816 loc += offset;
9817 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9818 {
9819 bfd_put_micromips_32 (hti->output_bfd,
9820 LA25_LUI_MICROMIPS (target_high), loc);
9821 bfd_put_micromips_32 (hti->output_bfd,
9822 LA25_J_MICROMIPS (target), loc + 4);
9823 bfd_put_micromips_32 (hti->output_bfd,
9824 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
9825 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9826 }
9827 else
9828 {
9829 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9830 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
9831 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
9832 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9833 }
9834 }
9835 return TRUE;
9836 }
9837
9838 /* If NAME is one of the special IRIX6 symbols defined by the linker,
9839 adjust it appropriately now. */
9840
9841 static void
9842 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
9843 const char *name, Elf_Internal_Sym *sym)
9844 {
9845 /* The linker script takes care of providing names and values for
9846 these, but we must place them into the right sections. */
9847 static const char* const text_section_symbols[] = {
9848 "_ftext",
9849 "_etext",
9850 "__dso_displacement",
9851 "__elf_header",
9852 "__program_header_table",
9853 NULL
9854 };
9855
9856 static const char* const data_section_symbols[] = {
9857 "_fdata",
9858 "_edata",
9859 "_end",
9860 "_fbss",
9861 NULL
9862 };
9863
9864 const char* const *p;
9865 int i;
9866
9867 for (i = 0; i < 2; ++i)
9868 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
9869 *p;
9870 ++p)
9871 if (strcmp (*p, name) == 0)
9872 {
9873 /* All of these symbols are given type STT_SECTION by the
9874 IRIX6 linker. */
9875 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9876 sym->st_other = STO_PROTECTED;
9877
9878 /* The IRIX linker puts these symbols in special sections. */
9879 if (i == 0)
9880 sym->st_shndx = SHN_MIPS_TEXT;
9881 else
9882 sym->st_shndx = SHN_MIPS_DATA;
9883
9884 break;
9885 }
9886 }
9887
9888 /* Finish up dynamic symbol handling. We set the contents of various
9889 dynamic sections here. */
9890
9891 bfd_boolean
9892 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
9893 struct bfd_link_info *info,
9894 struct elf_link_hash_entry *h,
9895 Elf_Internal_Sym *sym)
9896 {
9897 bfd *dynobj;
9898 asection *sgot;
9899 struct mips_got_info *g, *gg;
9900 const char *name;
9901 int idx;
9902 struct mips_elf_link_hash_table *htab;
9903 struct mips_elf_link_hash_entry *hmips;
9904
9905 htab = mips_elf_hash_table (info);
9906 BFD_ASSERT (htab != NULL);
9907 dynobj = elf_hash_table (info)->dynobj;
9908 hmips = (struct mips_elf_link_hash_entry *) h;
9909
9910 BFD_ASSERT (!htab->is_vxworks);
9911
9912 if (h->plt.offset != MINUS_ONE && hmips->no_fn_stub)
9913 {
9914 /* We've decided to create a PLT entry for this symbol. */
9915 bfd_byte *loc;
9916 bfd_vma header_address, plt_index, got_address;
9917 bfd_vma got_address_high, got_address_low, load;
9918 const bfd_vma *plt_entry;
9919
9920 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9921 BFD_ASSERT (h->dynindx != -1);
9922 BFD_ASSERT (htab->splt != NULL);
9923 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9924 BFD_ASSERT (!h->def_regular);
9925
9926 /* Calculate the address of the PLT header. */
9927 header_address = (htab->splt->output_section->vma
9928 + htab->splt->output_offset);
9929
9930 /* Calculate the index of the entry. */
9931 plt_index = ((h->plt.offset - htab->plt_header_size)
9932 / htab->plt_entry_size);
9933
9934 /* Calculate the address of the .got.plt entry. */
9935 got_address = (htab->sgotplt->output_section->vma
9936 + htab->sgotplt->output_offset
9937 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9938 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9939 got_address_low = got_address & 0xffff;
9940
9941 /* Initially point the .got.plt entry at the PLT header. */
9942 loc = (htab->sgotplt->contents
9943 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9944 if (ABI_64_P (output_bfd))
9945 bfd_put_64 (output_bfd, header_address, loc);
9946 else
9947 bfd_put_32 (output_bfd, header_address, loc);
9948
9949 /* Find out where the .plt entry should go. */
9950 loc = htab->splt->contents + h->plt.offset;
9951
9952 /* Pick the load opcode. */
9953 load = MIPS_ELF_LOAD_WORD (output_bfd);
9954
9955 /* Fill in the PLT entry itself. */
9956 plt_entry = mips_exec_plt_entry;
9957 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
9958 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, loc + 4);
9959
9960 if (! LOAD_INTERLOCKS_P (output_bfd))
9961 {
9962 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
9963 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9964 }
9965 else
9966 {
9967 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
9968 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 12);
9969 }
9970
9971 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9972 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
9973 plt_index, h->dynindx,
9974 R_MIPS_JUMP_SLOT, got_address);
9975
9976 /* We distinguish between PLT entries and lazy-binding stubs by
9977 giving the former an st_other value of STO_MIPS_PLT. Set the
9978 flag and leave the value if there are any relocations in the
9979 binary where pointer equality matters. */
9980 sym->st_shndx = SHN_UNDEF;
9981 if (h->pointer_equality_needed)
9982 sym->st_other = STO_MIPS_PLT;
9983 else
9984 sym->st_value = 0;
9985 }
9986 else if (h->plt.offset != MINUS_ONE)
9987 {
9988 /* We've decided to create a lazy-binding stub. */
9989 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
9990
9991 /* This symbol has a stub. Set it up. */
9992
9993 BFD_ASSERT (h->dynindx != -1);
9994
9995 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9996 || (h->dynindx <= 0xffff));
9997
9998 /* Values up to 2^31 - 1 are allowed. Larger values would cause
9999 sign extension at runtime in the stub, resulting in a negative
10000 index value. */
10001 if (h->dynindx & ~0x7fffffff)
10002 return FALSE;
10003
10004 /* Fill the stub. */
10005 idx = 0;
10006 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10007 idx += 4;
10008 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
10009 idx += 4;
10010 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
10011 {
10012 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10013 stub + idx);
10014 idx += 4;
10015 }
10016 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10017 idx += 4;
10018
10019 /* If a large stub is not required and sign extension is not a
10020 problem, then use legacy code in the stub. */
10021 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
10022 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
10023 else if (h->dynindx & ~0x7fff)
10024 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
10025 else
10026 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10027 stub + idx);
10028
10029 BFD_ASSERT (h->plt.offset <= htab->sstubs->size);
10030 memcpy (htab->sstubs->contents + h->plt.offset,
10031 stub, htab->function_stub_size);
10032
10033 /* Mark the symbol as undefined. plt.offset != -1 occurs
10034 only for the referenced symbol. */
10035 sym->st_shndx = SHN_UNDEF;
10036
10037 /* The run-time linker uses the st_value field of the symbol
10038 to reset the global offset table entry for this external
10039 to its stub address when unlinking a shared object. */
10040 sym->st_value = (htab->sstubs->output_section->vma
10041 + htab->sstubs->output_offset
10042 + h->plt.offset);
10043 }
10044
10045 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10046 refer to the stub, since only the stub uses the standard calling
10047 conventions. */
10048 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10049 {
10050 BFD_ASSERT (hmips->need_fn_stub);
10051 sym->st_value = (hmips->fn_stub->output_section->vma
10052 + hmips->fn_stub->output_offset);
10053 sym->st_size = hmips->fn_stub->size;
10054 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10055 }
10056
10057 BFD_ASSERT (h->dynindx != -1
10058 || h->forced_local);
10059
10060 sgot = htab->sgot;
10061 g = htab->got_info;
10062 BFD_ASSERT (g != NULL);
10063
10064 /* Run through the global symbol table, creating GOT entries for all
10065 the symbols that need them. */
10066 if (hmips->global_got_area != GGA_NONE)
10067 {
10068 bfd_vma offset;
10069 bfd_vma value;
10070
10071 value = sym->st_value;
10072 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
10073 R_MIPS_GOT16, info);
10074 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10075 }
10076
10077 if (hmips->global_got_area != GGA_NONE && g->next && h->type != STT_TLS)
10078 {
10079 struct mips_got_entry e, *p;
10080 bfd_vma entry;
10081 bfd_vma offset;
10082
10083 gg = g;
10084
10085 e.abfd = output_bfd;
10086 e.symndx = -1;
10087 e.d.h = hmips;
10088 e.tls_type = 0;
10089
10090 for (g = g->next; g->next != gg; g = g->next)
10091 {
10092 if (g->got_entries
10093 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10094 &e)))
10095 {
10096 offset = p->gotidx;
10097 if (info->shared
10098 || (elf_hash_table (info)->dynamic_sections_created
10099 && p->d.h != NULL
10100 && p->d.h->root.def_dynamic
10101 && !p->d.h->root.def_regular))
10102 {
10103 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10104 the various compatibility problems, it's easier to mock
10105 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10106 mips_elf_create_dynamic_relocation to calculate the
10107 appropriate addend. */
10108 Elf_Internal_Rela rel[3];
10109
10110 memset (rel, 0, sizeof (rel));
10111 if (ABI_64_P (output_bfd))
10112 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10113 else
10114 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10115 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10116
10117 entry = 0;
10118 if (! (mips_elf_create_dynamic_relocation
10119 (output_bfd, info, rel,
10120 e.d.h, NULL, sym->st_value, &entry, sgot)))
10121 return FALSE;
10122 }
10123 else
10124 entry = sym->st_value;
10125 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
10126 }
10127 }
10128 }
10129
10130 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10131 name = h->root.root.string;
10132 if (strcmp (name, "_DYNAMIC") == 0
10133 || h == elf_hash_table (info)->hgot)
10134 sym->st_shndx = SHN_ABS;
10135 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10136 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10137 {
10138 sym->st_shndx = SHN_ABS;
10139 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10140 sym->st_value = 1;
10141 }
10142 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
10143 {
10144 sym->st_shndx = SHN_ABS;
10145 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10146 sym->st_value = elf_gp (output_bfd);
10147 }
10148 else if (SGI_COMPAT (output_bfd))
10149 {
10150 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10151 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10152 {
10153 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10154 sym->st_other = STO_PROTECTED;
10155 sym->st_value = 0;
10156 sym->st_shndx = SHN_MIPS_DATA;
10157 }
10158 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10159 {
10160 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10161 sym->st_other = STO_PROTECTED;
10162 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10163 sym->st_shndx = SHN_ABS;
10164 }
10165 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10166 {
10167 if (h->type == STT_FUNC)
10168 sym->st_shndx = SHN_MIPS_TEXT;
10169 else if (h->type == STT_OBJECT)
10170 sym->st_shndx = SHN_MIPS_DATA;
10171 }
10172 }
10173
10174 /* Emit a copy reloc, if needed. */
10175 if (h->needs_copy)
10176 {
10177 asection *s;
10178 bfd_vma symval;
10179
10180 BFD_ASSERT (h->dynindx != -1);
10181 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10182
10183 s = mips_elf_rel_dyn_section (info, FALSE);
10184 symval = (h->root.u.def.section->output_section->vma
10185 + h->root.u.def.section->output_offset
10186 + h->root.u.def.value);
10187 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
10188 h->dynindx, R_MIPS_COPY, symval);
10189 }
10190
10191 /* Handle the IRIX6-specific symbols. */
10192 if (IRIX_COMPAT (output_bfd) == ict_irix6)
10193 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
10194
10195 /* Keep dynamic MIPS16 symbols odd. This allows the dynamic linker to
10196 treat MIPS16 symbols like any other. */
10197 if (ELF_ST_IS_MIPS16 (sym->st_other))
10198 {
10199 BFD_ASSERT (sym->st_value & 1);
10200 sym->st_other -= STO_MIPS16;
10201 }
10202
10203 return TRUE;
10204 }
10205
10206 /* Likewise, for VxWorks. */
10207
10208 bfd_boolean
10209 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
10210 struct bfd_link_info *info,
10211 struct elf_link_hash_entry *h,
10212 Elf_Internal_Sym *sym)
10213 {
10214 bfd *dynobj;
10215 asection *sgot;
10216 struct mips_got_info *g;
10217 struct mips_elf_link_hash_table *htab;
10218 struct mips_elf_link_hash_entry *hmips;
10219
10220 htab = mips_elf_hash_table (info);
10221 BFD_ASSERT (htab != NULL);
10222 dynobj = elf_hash_table (info)->dynobj;
10223 hmips = (struct mips_elf_link_hash_entry *) h;
10224
10225 if (h->plt.offset != (bfd_vma) -1)
10226 {
10227 bfd_byte *loc;
10228 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
10229 Elf_Internal_Rela rel;
10230 static const bfd_vma *plt_entry;
10231
10232 BFD_ASSERT (h->dynindx != -1);
10233 BFD_ASSERT (htab->splt != NULL);
10234 BFD_ASSERT (h->plt.offset <= htab->splt->size);
10235
10236 /* Calculate the address of the .plt entry. */
10237 plt_address = (htab->splt->output_section->vma
10238 + htab->splt->output_offset
10239 + h->plt.offset);
10240
10241 /* Calculate the index of the entry. */
10242 plt_index = ((h->plt.offset - htab->plt_header_size)
10243 / htab->plt_entry_size);
10244
10245 /* Calculate the address of the .got.plt entry. */
10246 got_address = (htab->sgotplt->output_section->vma
10247 + htab->sgotplt->output_offset
10248 + plt_index * 4);
10249
10250 /* Calculate the offset of the .got.plt entry from
10251 _GLOBAL_OFFSET_TABLE_. */
10252 got_offset = mips_elf_gotplt_index (info, h);
10253
10254 /* Calculate the offset for the branch at the start of the PLT
10255 entry. The branch jumps to the beginning of .plt. */
10256 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
10257
10258 /* Fill in the initial value of the .got.plt entry. */
10259 bfd_put_32 (output_bfd, plt_address,
10260 htab->sgotplt->contents + plt_index * 4);
10261
10262 /* Find out where the .plt entry should go. */
10263 loc = htab->splt->contents + h->plt.offset;
10264
10265 if (info->shared)
10266 {
10267 plt_entry = mips_vxworks_shared_plt_entry;
10268 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10269 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10270 }
10271 else
10272 {
10273 bfd_vma got_address_high, got_address_low;
10274
10275 plt_entry = mips_vxworks_exec_plt_entry;
10276 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10277 got_address_low = got_address & 0xffff;
10278
10279 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10280 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10281 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
10282 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
10283 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10284 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10285 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10286 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10287
10288 loc = (htab->srelplt2->contents
10289 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
10290
10291 /* Emit a relocation for the .got.plt entry. */
10292 rel.r_offset = got_address;
10293 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10294 rel.r_addend = h->plt.offset;
10295 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10296
10297 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
10298 loc += sizeof (Elf32_External_Rela);
10299 rel.r_offset = plt_address + 8;
10300 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10301 rel.r_addend = got_offset;
10302 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10303
10304 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
10305 loc += sizeof (Elf32_External_Rela);
10306 rel.r_offset += 4;
10307 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10308 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10309 }
10310
10311 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10312 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
10313 rel.r_offset = got_address;
10314 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
10315 rel.r_addend = 0;
10316 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10317
10318 if (!h->def_regular)
10319 sym->st_shndx = SHN_UNDEF;
10320 }
10321
10322 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
10323
10324 sgot = htab->sgot;
10325 g = htab->got_info;
10326 BFD_ASSERT (g != NULL);
10327
10328 /* See if this symbol has an entry in the GOT. */
10329 if (hmips->global_got_area != GGA_NONE)
10330 {
10331 bfd_vma offset;
10332 Elf_Internal_Rela outrel;
10333 bfd_byte *loc;
10334 asection *s;
10335
10336 /* Install the symbol value in the GOT. */
10337 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
10338 R_MIPS_GOT16, info);
10339 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
10340
10341 /* Add a dynamic relocation for it. */
10342 s = mips_elf_rel_dyn_section (info, FALSE);
10343 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
10344 outrel.r_offset = (sgot->output_section->vma
10345 + sgot->output_offset
10346 + offset);
10347 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
10348 outrel.r_addend = 0;
10349 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
10350 }
10351
10352 /* Emit a copy reloc, if needed. */
10353 if (h->needs_copy)
10354 {
10355 Elf_Internal_Rela rel;
10356
10357 BFD_ASSERT (h->dynindx != -1);
10358
10359 rel.r_offset = (h->root.u.def.section->output_section->vma
10360 + h->root.u.def.section->output_offset
10361 + h->root.u.def.value);
10362 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
10363 rel.r_addend = 0;
10364 bfd_elf32_swap_reloca_out (output_bfd, &rel,
10365 htab->srelbss->contents
10366 + (htab->srelbss->reloc_count
10367 * sizeof (Elf32_External_Rela)));
10368 ++htab->srelbss->reloc_count;
10369 }
10370
10371 /* If this is a mips16/microMIPS symbol, force the value to be even. */
10372 if (ELF_ST_IS_COMPRESSED (sym->st_other))
10373 sym->st_value &= ~1;
10374
10375 return TRUE;
10376 }
10377
10378 /* Write out a plt0 entry to the beginning of .plt. */
10379
10380 static void
10381 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10382 {
10383 bfd_byte *loc;
10384 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
10385 static const bfd_vma *plt_entry;
10386 struct mips_elf_link_hash_table *htab;
10387
10388 htab = mips_elf_hash_table (info);
10389 BFD_ASSERT (htab != NULL);
10390
10391 if (ABI_64_P (output_bfd))
10392 plt_entry = mips_n64_exec_plt0_entry;
10393 else if (ABI_N32_P (output_bfd))
10394 plt_entry = mips_n32_exec_plt0_entry;
10395 else
10396 plt_entry = mips_o32_exec_plt0_entry;
10397
10398 /* Calculate the value of .got.plt. */
10399 gotplt_value = (htab->sgotplt->output_section->vma
10400 + htab->sgotplt->output_offset);
10401 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
10402 gotplt_value_low = gotplt_value & 0xffff;
10403
10404 /* The PLT sequence is not safe for N64 if .got.plt's address can
10405 not be loaded in two instructions. */
10406 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
10407 || ~(gotplt_value | 0x7fffffff) == 0);
10408
10409 /* Install the PLT header. */
10410 loc = htab->splt->contents;
10411 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
10412 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
10413 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
10414 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10415 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10416 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10417 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10418 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10419 }
10420
10421 /* Install the PLT header for a VxWorks executable and finalize the
10422 contents of .rela.plt.unloaded. */
10423
10424 static void
10425 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10426 {
10427 Elf_Internal_Rela rela;
10428 bfd_byte *loc;
10429 bfd_vma got_value, got_value_high, got_value_low, plt_address;
10430 static const bfd_vma *plt_entry;
10431 struct mips_elf_link_hash_table *htab;
10432
10433 htab = mips_elf_hash_table (info);
10434 BFD_ASSERT (htab != NULL);
10435
10436 plt_entry = mips_vxworks_exec_plt0_entry;
10437
10438 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
10439 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
10440 + htab->root.hgot->root.u.def.section->output_offset
10441 + htab->root.hgot->root.u.def.value);
10442
10443 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
10444 got_value_low = got_value & 0xffff;
10445
10446 /* Calculate the address of the PLT header. */
10447 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
10448
10449 /* Install the PLT header. */
10450 loc = htab->splt->contents;
10451 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
10452 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
10453 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
10454 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10455 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10456 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10457
10458 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
10459 loc = htab->srelplt2->contents;
10460 rela.r_offset = plt_address;
10461 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10462 rela.r_addend = 0;
10463 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10464 loc += sizeof (Elf32_External_Rela);
10465
10466 /* Output the relocation for the following addiu of
10467 %lo(_GLOBAL_OFFSET_TABLE_). */
10468 rela.r_offset += 4;
10469 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10470 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10471 loc += sizeof (Elf32_External_Rela);
10472
10473 /* Fix up the remaining relocations. They may have the wrong
10474 symbol index for _G_O_T_ or _P_L_T_ depending on the order
10475 in which symbols were output. */
10476 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
10477 {
10478 Elf_Internal_Rela rel;
10479
10480 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10481 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10482 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10483 loc += sizeof (Elf32_External_Rela);
10484
10485 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10486 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10487 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10488 loc += sizeof (Elf32_External_Rela);
10489
10490 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10491 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10492 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10493 loc += sizeof (Elf32_External_Rela);
10494 }
10495 }
10496
10497 /* Install the PLT header for a VxWorks shared library. */
10498
10499 static void
10500 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
10501 {
10502 unsigned int i;
10503 struct mips_elf_link_hash_table *htab;
10504
10505 htab = mips_elf_hash_table (info);
10506 BFD_ASSERT (htab != NULL);
10507
10508 /* We just need to copy the entry byte-by-byte. */
10509 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
10510 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
10511 htab->splt->contents + i * 4);
10512 }
10513
10514 /* Finish up the dynamic sections. */
10515
10516 bfd_boolean
10517 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
10518 struct bfd_link_info *info)
10519 {
10520 bfd *dynobj;
10521 asection *sdyn;
10522 asection *sgot;
10523 struct mips_got_info *gg, *g;
10524 struct mips_elf_link_hash_table *htab;
10525
10526 htab = mips_elf_hash_table (info);
10527 BFD_ASSERT (htab != NULL);
10528
10529 dynobj = elf_hash_table (info)->dynobj;
10530
10531 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
10532
10533 sgot = htab->sgot;
10534 gg = htab->got_info;
10535
10536 if (elf_hash_table (info)->dynamic_sections_created)
10537 {
10538 bfd_byte *b;
10539 int dyn_to_skip = 0, dyn_skipped = 0;
10540
10541 BFD_ASSERT (sdyn != NULL);
10542 BFD_ASSERT (gg != NULL);
10543
10544 g = mips_elf_got_for_ibfd (gg, output_bfd);
10545 BFD_ASSERT (g != NULL);
10546
10547 for (b = sdyn->contents;
10548 b < sdyn->contents + sdyn->size;
10549 b += MIPS_ELF_DYN_SIZE (dynobj))
10550 {
10551 Elf_Internal_Dyn dyn;
10552 const char *name;
10553 size_t elemsize;
10554 asection *s;
10555 bfd_boolean swap_out_p;
10556
10557 /* Read in the current dynamic entry. */
10558 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10559
10560 /* Assume that we're going to modify it and write it out. */
10561 swap_out_p = TRUE;
10562
10563 switch (dyn.d_tag)
10564 {
10565 case DT_RELENT:
10566 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
10567 break;
10568
10569 case DT_RELAENT:
10570 BFD_ASSERT (htab->is_vxworks);
10571 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
10572 break;
10573
10574 case DT_STRSZ:
10575 /* Rewrite DT_STRSZ. */
10576 dyn.d_un.d_val =
10577 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
10578 break;
10579
10580 case DT_PLTGOT:
10581 s = htab->sgot;
10582 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10583 break;
10584
10585 case DT_MIPS_PLTGOT:
10586 s = htab->sgotplt;
10587 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10588 break;
10589
10590 case DT_MIPS_RLD_VERSION:
10591 dyn.d_un.d_val = 1; /* XXX */
10592 break;
10593
10594 case DT_MIPS_FLAGS:
10595 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
10596 break;
10597
10598 case DT_MIPS_TIME_STAMP:
10599 {
10600 time_t t;
10601 time (&t);
10602 dyn.d_un.d_val = t;
10603 }
10604 break;
10605
10606 case DT_MIPS_ICHECKSUM:
10607 /* XXX FIXME: */
10608 swap_out_p = FALSE;
10609 break;
10610
10611 case DT_MIPS_IVERSION:
10612 /* XXX FIXME: */
10613 swap_out_p = FALSE;
10614 break;
10615
10616 case DT_MIPS_BASE_ADDRESS:
10617 s = output_bfd->sections;
10618 BFD_ASSERT (s != NULL);
10619 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
10620 break;
10621
10622 case DT_MIPS_LOCAL_GOTNO:
10623 dyn.d_un.d_val = g->local_gotno;
10624 break;
10625
10626 case DT_MIPS_UNREFEXTNO:
10627 /* The index into the dynamic symbol table which is the
10628 entry of the first external symbol that is not
10629 referenced within the same object. */
10630 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
10631 break;
10632
10633 case DT_MIPS_GOTSYM:
10634 if (gg->global_gotsym)
10635 {
10636 dyn.d_un.d_val = gg->global_gotsym->dynindx;
10637 break;
10638 }
10639 /* In case if we don't have global got symbols we default
10640 to setting DT_MIPS_GOTSYM to the same value as
10641 DT_MIPS_SYMTABNO, so we just fall through. */
10642
10643 case DT_MIPS_SYMTABNO:
10644 name = ".dynsym";
10645 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
10646 s = bfd_get_section_by_name (output_bfd, name);
10647 BFD_ASSERT (s != NULL);
10648
10649 dyn.d_un.d_val = s->size / elemsize;
10650 break;
10651
10652 case DT_MIPS_HIPAGENO:
10653 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
10654 break;
10655
10656 case DT_MIPS_RLD_MAP:
10657 {
10658 struct elf_link_hash_entry *h;
10659 h = mips_elf_hash_table (info)->rld_symbol;
10660 if (!h)
10661 {
10662 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10663 swap_out_p = FALSE;
10664 break;
10665 }
10666 s = h->root.u.def.section;
10667 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
10668 + h->root.u.def.value);
10669 }
10670 break;
10671
10672 case DT_MIPS_OPTIONS:
10673 s = (bfd_get_section_by_name
10674 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
10675 dyn.d_un.d_ptr = s->vma;
10676 break;
10677
10678 case DT_RELASZ:
10679 BFD_ASSERT (htab->is_vxworks);
10680 /* The count does not include the JUMP_SLOT relocations. */
10681 if (htab->srelplt)
10682 dyn.d_un.d_val -= htab->srelplt->size;
10683 break;
10684
10685 case DT_PLTREL:
10686 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10687 if (htab->is_vxworks)
10688 dyn.d_un.d_val = DT_RELA;
10689 else
10690 dyn.d_un.d_val = DT_REL;
10691 break;
10692
10693 case DT_PLTRELSZ:
10694 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10695 dyn.d_un.d_val = htab->srelplt->size;
10696 break;
10697
10698 case DT_JMPREL:
10699 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10700 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
10701 + htab->srelplt->output_offset);
10702 break;
10703
10704 case DT_TEXTREL:
10705 /* If we didn't need any text relocations after all, delete
10706 the dynamic tag. */
10707 if (!(info->flags & DF_TEXTREL))
10708 {
10709 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10710 swap_out_p = FALSE;
10711 }
10712 break;
10713
10714 case DT_FLAGS:
10715 /* If we didn't need any text relocations after all, clear
10716 DF_TEXTREL from DT_FLAGS. */
10717 if (!(info->flags & DF_TEXTREL))
10718 dyn.d_un.d_val &= ~DF_TEXTREL;
10719 else
10720 swap_out_p = FALSE;
10721 break;
10722
10723 default:
10724 swap_out_p = FALSE;
10725 if (htab->is_vxworks
10726 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
10727 swap_out_p = TRUE;
10728 break;
10729 }
10730
10731 if (swap_out_p || dyn_skipped)
10732 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10733 (dynobj, &dyn, b - dyn_skipped);
10734
10735 if (dyn_to_skip)
10736 {
10737 dyn_skipped += dyn_to_skip;
10738 dyn_to_skip = 0;
10739 }
10740 }
10741
10742 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
10743 if (dyn_skipped > 0)
10744 memset (b - dyn_skipped, 0, dyn_skipped);
10745 }
10746
10747 if (sgot != NULL && sgot->size > 0
10748 && !bfd_is_abs_section (sgot->output_section))
10749 {
10750 if (htab->is_vxworks)
10751 {
10752 /* The first entry of the global offset table points to the
10753 ".dynamic" section. The second is initialized by the
10754 loader and contains the shared library identifier.
10755 The third is also initialized by the loader and points
10756 to the lazy resolution stub. */
10757 MIPS_ELF_PUT_WORD (output_bfd,
10758 sdyn->output_offset + sdyn->output_section->vma,
10759 sgot->contents);
10760 MIPS_ELF_PUT_WORD (output_bfd, 0,
10761 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10762 MIPS_ELF_PUT_WORD (output_bfd, 0,
10763 sgot->contents
10764 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
10765 }
10766 else
10767 {
10768 /* The first entry of the global offset table will be filled at
10769 runtime. The second entry will be used by some runtime loaders.
10770 This isn't the case of IRIX rld. */
10771 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
10772 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10773 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10774 }
10775
10776 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
10777 = MIPS_ELF_GOT_SIZE (output_bfd);
10778 }
10779
10780 /* Generate dynamic relocations for the non-primary gots. */
10781 if (gg != NULL && gg->next)
10782 {
10783 Elf_Internal_Rela rel[3];
10784 bfd_vma addend = 0;
10785
10786 memset (rel, 0, sizeof (rel));
10787 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
10788
10789 for (g = gg->next; g->next != gg; g = g->next)
10790 {
10791 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
10792 + g->next->tls_gotno;
10793
10794 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
10795 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10796 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10797 sgot->contents
10798 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10799
10800 if (! info->shared)
10801 continue;
10802
10803 while (got_index < g->assigned_gotno)
10804 {
10805 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
10806 = got_index++ * MIPS_ELF_GOT_SIZE (output_bfd);
10807 if (!(mips_elf_create_dynamic_relocation
10808 (output_bfd, info, rel, NULL,
10809 bfd_abs_section_ptr,
10810 0, &addend, sgot)))
10811 return FALSE;
10812 BFD_ASSERT (addend == 0);
10813 }
10814 }
10815 }
10816
10817 /* The generation of dynamic relocations for the non-primary gots
10818 adds more dynamic relocations. We cannot count them until
10819 here. */
10820
10821 if (elf_hash_table (info)->dynamic_sections_created)
10822 {
10823 bfd_byte *b;
10824 bfd_boolean swap_out_p;
10825
10826 BFD_ASSERT (sdyn != NULL);
10827
10828 for (b = sdyn->contents;
10829 b < sdyn->contents + sdyn->size;
10830 b += MIPS_ELF_DYN_SIZE (dynobj))
10831 {
10832 Elf_Internal_Dyn dyn;
10833 asection *s;
10834
10835 /* Read in the current dynamic entry. */
10836 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10837
10838 /* Assume that we're going to modify it and write it out. */
10839 swap_out_p = TRUE;
10840
10841 switch (dyn.d_tag)
10842 {
10843 case DT_RELSZ:
10844 /* Reduce DT_RELSZ to account for any relocations we
10845 decided not to make. This is for the n64 irix rld,
10846 which doesn't seem to apply any relocations if there
10847 are trailing null entries. */
10848 s = mips_elf_rel_dyn_section (info, FALSE);
10849 dyn.d_un.d_val = (s->reloc_count
10850 * (ABI_64_P (output_bfd)
10851 ? sizeof (Elf64_Mips_External_Rel)
10852 : sizeof (Elf32_External_Rel)));
10853 /* Adjust the section size too. Tools like the prelinker
10854 can reasonably expect the values to the same. */
10855 elf_section_data (s->output_section)->this_hdr.sh_size
10856 = dyn.d_un.d_val;
10857 break;
10858
10859 default:
10860 swap_out_p = FALSE;
10861 break;
10862 }
10863
10864 if (swap_out_p)
10865 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10866 (dynobj, &dyn, b);
10867 }
10868 }
10869
10870 {
10871 asection *s;
10872 Elf32_compact_rel cpt;
10873
10874 if (SGI_COMPAT (output_bfd))
10875 {
10876 /* Write .compact_rel section out. */
10877 s = bfd_get_linker_section (dynobj, ".compact_rel");
10878 if (s != NULL)
10879 {
10880 cpt.id1 = 1;
10881 cpt.num = s->reloc_count;
10882 cpt.id2 = 2;
10883 cpt.offset = (s->output_section->filepos
10884 + sizeof (Elf32_External_compact_rel));
10885 cpt.reserved0 = 0;
10886 cpt.reserved1 = 0;
10887 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
10888 ((Elf32_External_compact_rel *)
10889 s->contents));
10890
10891 /* Clean up a dummy stub function entry in .text. */
10892 if (htab->sstubs != NULL)
10893 {
10894 file_ptr dummy_offset;
10895
10896 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
10897 dummy_offset = htab->sstubs->size - htab->function_stub_size;
10898 memset (htab->sstubs->contents + dummy_offset, 0,
10899 htab->function_stub_size);
10900 }
10901 }
10902 }
10903
10904 /* The psABI says that the dynamic relocations must be sorted in
10905 increasing order of r_symndx. The VxWorks EABI doesn't require
10906 this, and because the code below handles REL rather than RELA
10907 relocations, using it for VxWorks would be outright harmful. */
10908 if (!htab->is_vxworks)
10909 {
10910 s = mips_elf_rel_dyn_section (info, FALSE);
10911 if (s != NULL
10912 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
10913 {
10914 reldyn_sorting_bfd = output_bfd;
10915
10916 if (ABI_64_P (output_bfd))
10917 qsort ((Elf64_External_Rel *) s->contents + 1,
10918 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
10919 sort_dynamic_relocs_64);
10920 else
10921 qsort ((Elf32_External_Rel *) s->contents + 1,
10922 s->reloc_count - 1, sizeof (Elf32_External_Rel),
10923 sort_dynamic_relocs);
10924 }
10925 }
10926 }
10927
10928 if (htab->splt && htab->splt->size > 0)
10929 {
10930 if (htab->is_vxworks)
10931 {
10932 if (info->shared)
10933 mips_vxworks_finish_shared_plt (output_bfd, info);
10934 else
10935 mips_vxworks_finish_exec_plt (output_bfd, info);
10936 }
10937 else
10938 {
10939 BFD_ASSERT (!info->shared);
10940 mips_finish_exec_plt (output_bfd, info);
10941 }
10942 }
10943 return TRUE;
10944 }
10945
10946
10947 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
10948
10949 static void
10950 mips_set_isa_flags (bfd *abfd)
10951 {
10952 flagword val;
10953
10954 switch (bfd_get_mach (abfd))
10955 {
10956 default:
10957 case bfd_mach_mips3000:
10958 val = E_MIPS_ARCH_1;
10959 break;
10960
10961 case bfd_mach_mips3900:
10962 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
10963 break;
10964
10965 case bfd_mach_mips6000:
10966 val = E_MIPS_ARCH_2;
10967 break;
10968
10969 case bfd_mach_mips4000:
10970 case bfd_mach_mips4300:
10971 case bfd_mach_mips4400:
10972 case bfd_mach_mips4600:
10973 val = E_MIPS_ARCH_3;
10974 break;
10975
10976 case bfd_mach_mips4010:
10977 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
10978 break;
10979
10980 case bfd_mach_mips4100:
10981 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
10982 break;
10983
10984 case bfd_mach_mips4111:
10985 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
10986 break;
10987
10988 case bfd_mach_mips4120:
10989 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
10990 break;
10991
10992 case bfd_mach_mips4650:
10993 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
10994 break;
10995
10996 case bfd_mach_mips5400:
10997 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
10998 break;
10999
11000 case bfd_mach_mips5500:
11001 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
11002 break;
11003
11004 case bfd_mach_mips9000:
11005 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
11006 break;
11007
11008 case bfd_mach_mips5000:
11009 case bfd_mach_mips7000:
11010 case bfd_mach_mips8000:
11011 case bfd_mach_mips10000:
11012 case bfd_mach_mips12000:
11013 case bfd_mach_mips14000:
11014 case bfd_mach_mips16000:
11015 val = E_MIPS_ARCH_4;
11016 break;
11017
11018 case bfd_mach_mips5:
11019 val = E_MIPS_ARCH_5;
11020 break;
11021
11022 case bfd_mach_mips_loongson_2e:
11023 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
11024 break;
11025
11026 case bfd_mach_mips_loongson_2f:
11027 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
11028 break;
11029
11030 case bfd_mach_mips_sb1:
11031 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
11032 break;
11033
11034 case bfd_mach_mips_loongson_3a:
11035 val = E_MIPS_ARCH_64 | E_MIPS_MACH_LS3A;
11036 break;
11037
11038 case bfd_mach_mips_octeon:
11039 case bfd_mach_mips_octeonp:
11040 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
11041 break;
11042
11043 case bfd_mach_mips_xlr:
11044 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
11045 break;
11046
11047 case bfd_mach_mips_octeon2:
11048 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
11049 break;
11050
11051 case bfd_mach_mipsisa32:
11052 val = E_MIPS_ARCH_32;
11053 break;
11054
11055 case bfd_mach_mipsisa64:
11056 val = E_MIPS_ARCH_64;
11057 break;
11058
11059 case bfd_mach_mipsisa32r2:
11060 val = E_MIPS_ARCH_32R2;
11061 break;
11062
11063 case bfd_mach_mipsisa64r2:
11064 val = E_MIPS_ARCH_64R2;
11065 break;
11066 }
11067 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11068 elf_elfheader (abfd)->e_flags |= val;
11069
11070 }
11071
11072
11073 /* The final processing done just before writing out a MIPS ELF object
11074 file. This gets the MIPS architecture right based on the machine
11075 number. This is used by both the 32-bit and the 64-bit ABI. */
11076
11077 void
11078 _bfd_mips_elf_final_write_processing (bfd *abfd,
11079 bfd_boolean linker ATTRIBUTE_UNUSED)
11080 {
11081 unsigned int i;
11082 Elf_Internal_Shdr **hdrpp;
11083 const char *name;
11084 asection *sec;
11085
11086 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
11087 is nonzero. This is for compatibility with old objects, which used
11088 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
11089 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
11090 mips_set_isa_flags (abfd);
11091
11092 /* Set the sh_info field for .gptab sections and other appropriate
11093 info for each special section. */
11094 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
11095 i < elf_numsections (abfd);
11096 i++, hdrpp++)
11097 {
11098 switch ((*hdrpp)->sh_type)
11099 {
11100 case SHT_MIPS_MSYM:
11101 case SHT_MIPS_LIBLIST:
11102 sec = bfd_get_section_by_name (abfd, ".dynstr");
11103 if (sec != NULL)
11104 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11105 break;
11106
11107 case SHT_MIPS_GPTAB:
11108 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11109 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11110 BFD_ASSERT (name != NULL
11111 && CONST_STRNEQ (name, ".gptab."));
11112 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
11113 BFD_ASSERT (sec != NULL);
11114 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11115 break;
11116
11117 case SHT_MIPS_CONTENT:
11118 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11119 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11120 BFD_ASSERT (name != NULL
11121 && CONST_STRNEQ (name, ".MIPS.content"));
11122 sec = bfd_get_section_by_name (abfd,
11123 name + sizeof ".MIPS.content" - 1);
11124 BFD_ASSERT (sec != NULL);
11125 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11126 break;
11127
11128 case SHT_MIPS_SYMBOL_LIB:
11129 sec = bfd_get_section_by_name (abfd, ".dynsym");
11130 if (sec != NULL)
11131 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11132 sec = bfd_get_section_by_name (abfd, ".liblist");
11133 if (sec != NULL)
11134 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11135 break;
11136
11137 case SHT_MIPS_EVENTS:
11138 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11139 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11140 BFD_ASSERT (name != NULL);
11141 if (CONST_STRNEQ (name, ".MIPS.events"))
11142 sec = bfd_get_section_by_name (abfd,
11143 name + sizeof ".MIPS.events" - 1);
11144 else
11145 {
11146 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
11147 sec = bfd_get_section_by_name (abfd,
11148 (name
11149 + sizeof ".MIPS.post_rel" - 1));
11150 }
11151 BFD_ASSERT (sec != NULL);
11152 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11153 break;
11154
11155 }
11156 }
11157 }
11158 \f
11159 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
11160 segments. */
11161
11162 int
11163 _bfd_mips_elf_additional_program_headers (bfd *abfd,
11164 struct bfd_link_info *info ATTRIBUTE_UNUSED)
11165 {
11166 asection *s;
11167 int ret = 0;
11168
11169 /* See if we need a PT_MIPS_REGINFO segment. */
11170 s = bfd_get_section_by_name (abfd, ".reginfo");
11171 if (s && (s->flags & SEC_LOAD))
11172 ++ret;
11173
11174 /* See if we need a PT_MIPS_OPTIONS segment. */
11175 if (IRIX_COMPAT (abfd) == ict_irix6
11176 && bfd_get_section_by_name (abfd,
11177 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
11178 ++ret;
11179
11180 /* See if we need a PT_MIPS_RTPROC segment. */
11181 if (IRIX_COMPAT (abfd) == ict_irix5
11182 && bfd_get_section_by_name (abfd, ".dynamic")
11183 && bfd_get_section_by_name (abfd, ".mdebug"))
11184 ++ret;
11185
11186 /* Allocate a PT_NULL header in dynamic objects. See
11187 _bfd_mips_elf_modify_segment_map for details. */
11188 if (!SGI_COMPAT (abfd)
11189 && bfd_get_section_by_name (abfd, ".dynamic"))
11190 ++ret;
11191
11192 return ret;
11193 }
11194
11195 /* Modify the segment map for an IRIX5 executable. */
11196
11197 bfd_boolean
11198 _bfd_mips_elf_modify_segment_map (bfd *abfd,
11199 struct bfd_link_info *info)
11200 {
11201 asection *s;
11202 struct elf_segment_map *m, **pm;
11203 bfd_size_type amt;
11204
11205 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
11206 segment. */
11207 s = bfd_get_section_by_name (abfd, ".reginfo");
11208 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11209 {
11210 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11211 if (m->p_type == PT_MIPS_REGINFO)
11212 break;
11213 if (m == NULL)
11214 {
11215 amt = sizeof *m;
11216 m = bfd_zalloc (abfd, amt);
11217 if (m == NULL)
11218 return FALSE;
11219
11220 m->p_type = PT_MIPS_REGINFO;
11221 m->count = 1;
11222 m->sections[0] = s;
11223
11224 /* We want to put it after the PHDR and INTERP segments. */
11225 pm = &elf_tdata (abfd)->segment_map;
11226 while (*pm != NULL
11227 && ((*pm)->p_type == PT_PHDR
11228 || (*pm)->p_type == PT_INTERP))
11229 pm = &(*pm)->next;
11230
11231 m->next = *pm;
11232 *pm = m;
11233 }
11234 }
11235
11236 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
11237 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
11238 PT_MIPS_OPTIONS segment immediately following the program header
11239 table. */
11240 if (NEWABI_P (abfd)
11241 /* On non-IRIX6 new abi, we'll have already created a segment
11242 for this section, so don't create another. I'm not sure this
11243 is not also the case for IRIX 6, but I can't test it right
11244 now. */
11245 && IRIX_COMPAT (abfd) == ict_irix6)
11246 {
11247 for (s = abfd->sections; s; s = s->next)
11248 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
11249 break;
11250
11251 if (s)
11252 {
11253 struct elf_segment_map *options_segment;
11254
11255 pm = &elf_tdata (abfd)->segment_map;
11256 while (*pm != NULL
11257 && ((*pm)->p_type == PT_PHDR
11258 || (*pm)->p_type == PT_INTERP))
11259 pm = &(*pm)->next;
11260
11261 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
11262 {
11263 amt = sizeof (struct elf_segment_map);
11264 options_segment = bfd_zalloc (abfd, amt);
11265 options_segment->next = *pm;
11266 options_segment->p_type = PT_MIPS_OPTIONS;
11267 options_segment->p_flags = PF_R;
11268 options_segment->p_flags_valid = TRUE;
11269 options_segment->count = 1;
11270 options_segment->sections[0] = s;
11271 *pm = options_segment;
11272 }
11273 }
11274 }
11275 else
11276 {
11277 if (IRIX_COMPAT (abfd) == ict_irix5)
11278 {
11279 /* If there are .dynamic and .mdebug sections, we make a room
11280 for the RTPROC header. FIXME: Rewrite without section names. */
11281 if (bfd_get_section_by_name (abfd, ".interp") == NULL
11282 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
11283 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
11284 {
11285 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11286 if (m->p_type == PT_MIPS_RTPROC)
11287 break;
11288 if (m == NULL)
11289 {
11290 amt = sizeof *m;
11291 m = bfd_zalloc (abfd, amt);
11292 if (m == NULL)
11293 return FALSE;
11294
11295 m->p_type = PT_MIPS_RTPROC;
11296
11297 s = bfd_get_section_by_name (abfd, ".rtproc");
11298 if (s == NULL)
11299 {
11300 m->count = 0;
11301 m->p_flags = 0;
11302 m->p_flags_valid = 1;
11303 }
11304 else
11305 {
11306 m->count = 1;
11307 m->sections[0] = s;
11308 }
11309
11310 /* We want to put it after the DYNAMIC segment. */
11311 pm = &elf_tdata (abfd)->segment_map;
11312 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
11313 pm = &(*pm)->next;
11314 if (*pm != NULL)
11315 pm = &(*pm)->next;
11316
11317 m->next = *pm;
11318 *pm = m;
11319 }
11320 }
11321 }
11322 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
11323 .dynstr, .dynsym, and .hash sections, and everything in
11324 between. */
11325 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
11326 pm = &(*pm)->next)
11327 if ((*pm)->p_type == PT_DYNAMIC)
11328 break;
11329 m = *pm;
11330 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
11331 {
11332 /* For a normal mips executable the permissions for the PT_DYNAMIC
11333 segment are read, write and execute. We do that here since
11334 the code in elf.c sets only the read permission. This matters
11335 sometimes for the dynamic linker. */
11336 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
11337 {
11338 m->p_flags = PF_R | PF_W | PF_X;
11339 m->p_flags_valid = 1;
11340 }
11341 }
11342 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
11343 glibc's dynamic linker has traditionally derived the number of
11344 tags from the p_filesz field, and sometimes allocates stack
11345 arrays of that size. An overly-big PT_DYNAMIC segment can
11346 be actively harmful in such cases. Making PT_DYNAMIC contain
11347 other sections can also make life hard for the prelinker,
11348 which might move one of the other sections to a different
11349 PT_LOAD segment. */
11350 if (SGI_COMPAT (abfd)
11351 && m != NULL
11352 && m->count == 1
11353 && strcmp (m->sections[0]->name, ".dynamic") == 0)
11354 {
11355 static const char *sec_names[] =
11356 {
11357 ".dynamic", ".dynstr", ".dynsym", ".hash"
11358 };
11359 bfd_vma low, high;
11360 unsigned int i, c;
11361 struct elf_segment_map *n;
11362
11363 low = ~(bfd_vma) 0;
11364 high = 0;
11365 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
11366 {
11367 s = bfd_get_section_by_name (abfd, sec_names[i]);
11368 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11369 {
11370 bfd_size_type sz;
11371
11372 if (low > s->vma)
11373 low = s->vma;
11374 sz = s->size;
11375 if (high < s->vma + sz)
11376 high = s->vma + sz;
11377 }
11378 }
11379
11380 c = 0;
11381 for (s = abfd->sections; s != NULL; s = s->next)
11382 if ((s->flags & SEC_LOAD) != 0
11383 && s->vma >= low
11384 && s->vma + s->size <= high)
11385 ++c;
11386
11387 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
11388 n = bfd_zalloc (abfd, amt);
11389 if (n == NULL)
11390 return FALSE;
11391 *n = *m;
11392 n->count = c;
11393
11394 i = 0;
11395 for (s = abfd->sections; s != NULL; s = s->next)
11396 {
11397 if ((s->flags & SEC_LOAD) != 0
11398 && s->vma >= low
11399 && s->vma + s->size <= high)
11400 {
11401 n->sections[i] = s;
11402 ++i;
11403 }
11404 }
11405
11406 *pm = n;
11407 }
11408 }
11409
11410 /* Allocate a spare program header in dynamic objects so that tools
11411 like the prelinker can add an extra PT_LOAD entry.
11412
11413 If the prelinker needs to make room for a new PT_LOAD entry, its
11414 standard procedure is to move the first (read-only) sections into
11415 the new (writable) segment. However, the MIPS ABI requires
11416 .dynamic to be in a read-only segment, and the section will often
11417 start within sizeof (ElfNN_Phdr) bytes of the last program header.
11418
11419 Although the prelinker could in principle move .dynamic to a
11420 writable segment, it seems better to allocate a spare program
11421 header instead, and avoid the need to move any sections.
11422 There is a long tradition of allocating spare dynamic tags,
11423 so allocating a spare program header seems like a natural
11424 extension.
11425
11426 If INFO is NULL, we may be copying an already prelinked binary
11427 with objcopy or strip, so do not add this header. */
11428 if (info != NULL
11429 && !SGI_COMPAT (abfd)
11430 && bfd_get_section_by_name (abfd, ".dynamic"))
11431 {
11432 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
11433 if ((*pm)->p_type == PT_NULL)
11434 break;
11435 if (*pm == NULL)
11436 {
11437 m = bfd_zalloc (abfd, sizeof (*m));
11438 if (m == NULL)
11439 return FALSE;
11440
11441 m->p_type = PT_NULL;
11442 *pm = m;
11443 }
11444 }
11445
11446 return TRUE;
11447 }
11448 \f
11449 /* Return the section that should be marked against GC for a given
11450 relocation. */
11451
11452 asection *
11453 _bfd_mips_elf_gc_mark_hook (asection *sec,
11454 struct bfd_link_info *info,
11455 Elf_Internal_Rela *rel,
11456 struct elf_link_hash_entry *h,
11457 Elf_Internal_Sym *sym)
11458 {
11459 /* ??? Do mips16 stub sections need to be handled special? */
11460
11461 if (h != NULL)
11462 switch (ELF_R_TYPE (sec->owner, rel->r_info))
11463 {
11464 case R_MIPS_GNU_VTINHERIT:
11465 case R_MIPS_GNU_VTENTRY:
11466 return NULL;
11467 }
11468
11469 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
11470 }
11471
11472 /* Update the got entry reference counts for the section being removed. */
11473
11474 bfd_boolean
11475 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
11476 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11477 asection *sec ATTRIBUTE_UNUSED,
11478 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
11479 {
11480 #if 0
11481 Elf_Internal_Shdr *symtab_hdr;
11482 struct elf_link_hash_entry **sym_hashes;
11483 bfd_signed_vma *local_got_refcounts;
11484 const Elf_Internal_Rela *rel, *relend;
11485 unsigned long r_symndx;
11486 struct elf_link_hash_entry *h;
11487
11488 if (info->relocatable)
11489 return TRUE;
11490
11491 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11492 sym_hashes = elf_sym_hashes (abfd);
11493 local_got_refcounts = elf_local_got_refcounts (abfd);
11494
11495 relend = relocs + sec->reloc_count;
11496 for (rel = relocs; rel < relend; rel++)
11497 switch (ELF_R_TYPE (abfd, rel->r_info))
11498 {
11499 case R_MIPS16_GOT16:
11500 case R_MIPS16_CALL16:
11501 case R_MIPS_GOT16:
11502 case R_MIPS_CALL16:
11503 case R_MIPS_CALL_HI16:
11504 case R_MIPS_CALL_LO16:
11505 case R_MIPS_GOT_HI16:
11506 case R_MIPS_GOT_LO16:
11507 case R_MIPS_GOT_DISP:
11508 case R_MIPS_GOT_PAGE:
11509 case R_MIPS_GOT_OFST:
11510 case R_MICROMIPS_GOT16:
11511 case R_MICROMIPS_CALL16:
11512 case R_MICROMIPS_CALL_HI16:
11513 case R_MICROMIPS_CALL_LO16:
11514 case R_MICROMIPS_GOT_HI16:
11515 case R_MICROMIPS_GOT_LO16:
11516 case R_MICROMIPS_GOT_DISP:
11517 case R_MICROMIPS_GOT_PAGE:
11518 case R_MICROMIPS_GOT_OFST:
11519 /* ??? It would seem that the existing MIPS code does no sort
11520 of reference counting or whatnot on its GOT and PLT entries,
11521 so it is not possible to garbage collect them at this time. */
11522 break;
11523
11524 default:
11525 break;
11526 }
11527 #endif
11528
11529 return TRUE;
11530 }
11531 \f
11532 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
11533 hiding the old indirect symbol. Process additional relocation
11534 information. Also called for weakdefs, in which case we just let
11535 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
11536
11537 void
11538 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
11539 struct elf_link_hash_entry *dir,
11540 struct elf_link_hash_entry *ind)
11541 {
11542 struct mips_elf_link_hash_entry *dirmips, *indmips;
11543
11544 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
11545
11546 dirmips = (struct mips_elf_link_hash_entry *) dir;
11547 indmips = (struct mips_elf_link_hash_entry *) ind;
11548 /* Any absolute non-dynamic relocations against an indirect or weak
11549 definition will be against the target symbol. */
11550 if (indmips->has_static_relocs)
11551 dirmips->has_static_relocs = TRUE;
11552
11553 if (ind->root.type != bfd_link_hash_indirect)
11554 return;
11555
11556 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
11557 if (indmips->readonly_reloc)
11558 dirmips->readonly_reloc = TRUE;
11559 if (indmips->no_fn_stub)
11560 dirmips->no_fn_stub = TRUE;
11561 if (indmips->fn_stub)
11562 {
11563 dirmips->fn_stub = indmips->fn_stub;
11564 indmips->fn_stub = NULL;
11565 }
11566 if (indmips->need_fn_stub)
11567 {
11568 dirmips->need_fn_stub = TRUE;
11569 indmips->need_fn_stub = FALSE;
11570 }
11571 if (indmips->call_stub)
11572 {
11573 dirmips->call_stub = indmips->call_stub;
11574 indmips->call_stub = NULL;
11575 }
11576 if (indmips->call_fp_stub)
11577 {
11578 dirmips->call_fp_stub = indmips->call_fp_stub;
11579 indmips->call_fp_stub = NULL;
11580 }
11581 if (indmips->global_got_area < dirmips->global_got_area)
11582 dirmips->global_got_area = indmips->global_got_area;
11583 if (indmips->global_got_area < GGA_NONE)
11584 indmips->global_got_area = GGA_NONE;
11585 if (indmips->has_nonpic_branches)
11586 dirmips->has_nonpic_branches = TRUE;
11587
11588 if (dirmips->tls_type == 0)
11589 dirmips->tls_type = indmips->tls_type;
11590 }
11591 \f
11592 #define PDR_SIZE 32
11593
11594 bfd_boolean
11595 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
11596 struct bfd_link_info *info)
11597 {
11598 asection *o;
11599 bfd_boolean ret = FALSE;
11600 unsigned char *tdata;
11601 size_t i, skip;
11602
11603 o = bfd_get_section_by_name (abfd, ".pdr");
11604 if (! o)
11605 return FALSE;
11606 if (o->size == 0)
11607 return FALSE;
11608 if (o->size % PDR_SIZE != 0)
11609 return FALSE;
11610 if (o->output_section != NULL
11611 && bfd_is_abs_section (o->output_section))
11612 return FALSE;
11613
11614 tdata = bfd_zmalloc (o->size / PDR_SIZE);
11615 if (! tdata)
11616 return FALSE;
11617
11618 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
11619 info->keep_memory);
11620 if (!cookie->rels)
11621 {
11622 free (tdata);
11623 return FALSE;
11624 }
11625
11626 cookie->rel = cookie->rels;
11627 cookie->relend = cookie->rels + o->reloc_count;
11628
11629 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
11630 {
11631 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
11632 {
11633 tdata[i] = 1;
11634 skip ++;
11635 }
11636 }
11637
11638 if (skip != 0)
11639 {
11640 mips_elf_section_data (o)->u.tdata = tdata;
11641 o->size -= skip * PDR_SIZE;
11642 ret = TRUE;
11643 }
11644 else
11645 free (tdata);
11646
11647 if (! info->keep_memory)
11648 free (cookie->rels);
11649
11650 return ret;
11651 }
11652
11653 bfd_boolean
11654 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
11655 {
11656 if (strcmp (sec->name, ".pdr") == 0)
11657 return TRUE;
11658 return FALSE;
11659 }
11660
11661 bfd_boolean
11662 _bfd_mips_elf_write_section (bfd *output_bfd,
11663 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
11664 asection *sec, bfd_byte *contents)
11665 {
11666 bfd_byte *to, *from, *end;
11667 int i;
11668
11669 if (strcmp (sec->name, ".pdr") != 0)
11670 return FALSE;
11671
11672 if (mips_elf_section_data (sec)->u.tdata == NULL)
11673 return FALSE;
11674
11675 to = contents;
11676 end = contents + sec->size;
11677 for (from = contents, i = 0;
11678 from < end;
11679 from += PDR_SIZE, i++)
11680 {
11681 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
11682 continue;
11683 if (to != from)
11684 memcpy (to, from, PDR_SIZE);
11685 to += PDR_SIZE;
11686 }
11687 bfd_set_section_contents (output_bfd, sec->output_section, contents,
11688 sec->output_offset, sec->size);
11689 return TRUE;
11690 }
11691 \f
11692 /* microMIPS code retains local labels for linker relaxation. Omit them
11693 from output by default for clarity. */
11694
11695 bfd_boolean
11696 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
11697 {
11698 return _bfd_elf_is_local_label_name (abfd, sym->name);
11699 }
11700
11701 /* MIPS ELF uses a special find_nearest_line routine in order the
11702 handle the ECOFF debugging information. */
11703
11704 struct mips_elf_find_line
11705 {
11706 struct ecoff_debug_info d;
11707 struct ecoff_find_line i;
11708 };
11709
11710 bfd_boolean
11711 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
11712 asymbol **symbols, bfd_vma offset,
11713 const char **filename_ptr,
11714 const char **functionname_ptr,
11715 unsigned int *line_ptr)
11716 {
11717 asection *msec;
11718
11719 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
11720 filename_ptr, functionname_ptr,
11721 line_ptr))
11722 return TRUE;
11723
11724 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
11725 section, symbols, offset,
11726 filename_ptr, functionname_ptr,
11727 line_ptr, NULL, ABI_64_P (abfd) ? 8 : 0,
11728 &elf_tdata (abfd)->dwarf2_find_line_info))
11729 return TRUE;
11730
11731 msec = bfd_get_section_by_name (abfd, ".mdebug");
11732 if (msec != NULL)
11733 {
11734 flagword origflags;
11735 struct mips_elf_find_line *fi;
11736 const struct ecoff_debug_swap * const swap =
11737 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
11738
11739 /* If we are called during a link, mips_elf_final_link may have
11740 cleared the SEC_HAS_CONTENTS field. We force it back on here
11741 if appropriate (which it normally will be). */
11742 origflags = msec->flags;
11743 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
11744 msec->flags |= SEC_HAS_CONTENTS;
11745
11746 fi = elf_tdata (abfd)->find_line_info;
11747 if (fi == NULL)
11748 {
11749 bfd_size_type external_fdr_size;
11750 char *fraw_src;
11751 char *fraw_end;
11752 struct fdr *fdr_ptr;
11753 bfd_size_type amt = sizeof (struct mips_elf_find_line);
11754
11755 fi = bfd_zalloc (abfd, amt);
11756 if (fi == NULL)
11757 {
11758 msec->flags = origflags;
11759 return FALSE;
11760 }
11761
11762 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
11763 {
11764 msec->flags = origflags;
11765 return FALSE;
11766 }
11767
11768 /* Swap in the FDR information. */
11769 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
11770 fi->d.fdr = bfd_alloc (abfd, amt);
11771 if (fi->d.fdr == NULL)
11772 {
11773 msec->flags = origflags;
11774 return FALSE;
11775 }
11776 external_fdr_size = swap->external_fdr_size;
11777 fdr_ptr = fi->d.fdr;
11778 fraw_src = (char *) fi->d.external_fdr;
11779 fraw_end = (fraw_src
11780 + fi->d.symbolic_header.ifdMax * external_fdr_size);
11781 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
11782 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
11783
11784 elf_tdata (abfd)->find_line_info = fi;
11785
11786 /* Note that we don't bother to ever free this information.
11787 find_nearest_line is either called all the time, as in
11788 objdump -l, so the information should be saved, or it is
11789 rarely called, as in ld error messages, so the memory
11790 wasted is unimportant. Still, it would probably be a
11791 good idea for free_cached_info to throw it away. */
11792 }
11793
11794 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
11795 &fi->i, filename_ptr, functionname_ptr,
11796 line_ptr))
11797 {
11798 msec->flags = origflags;
11799 return TRUE;
11800 }
11801
11802 msec->flags = origflags;
11803 }
11804
11805 /* Fall back on the generic ELF find_nearest_line routine. */
11806
11807 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
11808 filename_ptr, functionname_ptr,
11809 line_ptr);
11810 }
11811
11812 bfd_boolean
11813 _bfd_mips_elf_find_inliner_info (bfd *abfd,
11814 const char **filename_ptr,
11815 const char **functionname_ptr,
11816 unsigned int *line_ptr)
11817 {
11818 bfd_boolean found;
11819 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
11820 functionname_ptr, line_ptr,
11821 & elf_tdata (abfd)->dwarf2_find_line_info);
11822 return found;
11823 }
11824
11825 \f
11826 /* When are writing out the .options or .MIPS.options section,
11827 remember the bytes we are writing out, so that we can install the
11828 GP value in the section_processing routine. */
11829
11830 bfd_boolean
11831 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
11832 const void *location,
11833 file_ptr offset, bfd_size_type count)
11834 {
11835 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
11836 {
11837 bfd_byte *c;
11838
11839 if (elf_section_data (section) == NULL)
11840 {
11841 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
11842 section->used_by_bfd = bfd_zalloc (abfd, amt);
11843 if (elf_section_data (section) == NULL)
11844 return FALSE;
11845 }
11846 c = mips_elf_section_data (section)->u.tdata;
11847 if (c == NULL)
11848 {
11849 c = bfd_zalloc (abfd, section->size);
11850 if (c == NULL)
11851 return FALSE;
11852 mips_elf_section_data (section)->u.tdata = c;
11853 }
11854
11855 memcpy (c + offset, location, count);
11856 }
11857
11858 return _bfd_elf_set_section_contents (abfd, section, location, offset,
11859 count);
11860 }
11861
11862 /* This is almost identical to bfd_generic_get_... except that some
11863 MIPS relocations need to be handled specially. Sigh. */
11864
11865 bfd_byte *
11866 _bfd_elf_mips_get_relocated_section_contents
11867 (bfd *abfd,
11868 struct bfd_link_info *link_info,
11869 struct bfd_link_order *link_order,
11870 bfd_byte *data,
11871 bfd_boolean relocatable,
11872 asymbol **symbols)
11873 {
11874 /* Get enough memory to hold the stuff */
11875 bfd *input_bfd = link_order->u.indirect.section->owner;
11876 asection *input_section = link_order->u.indirect.section;
11877 bfd_size_type sz;
11878
11879 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
11880 arelent **reloc_vector = NULL;
11881 long reloc_count;
11882
11883 if (reloc_size < 0)
11884 goto error_return;
11885
11886 reloc_vector = bfd_malloc (reloc_size);
11887 if (reloc_vector == NULL && reloc_size != 0)
11888 goto error_return;
11889
11890 /* read in the section */
11891 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
11892 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
11893 goto error_return;
11894
11895 reloc_count = bfd_canonicalize_reloc (input_bfd,
11896 input_section,
11897 reloc_vector,
11898 symbols);
11899 if (reloc_count < 0)
11900 goto error_return;
11901
11902 if (reloc_count > 0)
11903 {
11904 arelent **parent;
11905 /* for mips */
11906 int gp_found;
11907 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
11908
11909 {
11910 struct bfd_hash_entry *h;
11911 struct bfd_link_hash_entry *lh;
11912 /* Skip all this stuff if we aren't mixing formats. */
11913 if (abfd && input_bfd
11914 && abfd->xvec == input_bfd->xvec)
11915 lh = 0;
11916 else
11917 {
11918 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
11919 lh = (struct bfd_link_hash_entry *) h;
11920 }
11921 lookup:
11922 if (lh)
11923 {
11924 switch (lh->type)
11925 {
11926 case bfd_link_hash_undefined:
11927 case bfd_link_hash_undefweak:
11928 case bfd_link_hash_common:
11929 gp_found = 0;
11930 break;
11931 case bfd_link_hash_defined:
11932 case bfd_link_hash_defweak:
11933 gp_found = 1;
11934 gp = lh->u.def.value;
11935 break;
11936 case bfd_link_hash_indirect:
11937 case bfd_link_hash_warning:
11938 lh = lh->u.i.link;
11939 /* @@FIXME ignoring warning for now */
11940 goto lookup;
11941 case bfd_link_hash_new:
11942 default:
11943 abort ();
11944 }
11945 }
11946 else
11947 gp_found = 0;
11948 }
11949 /* end mips */
11950 for (parent = reloc_vector; *parent != NULL; parent++)
11951 {
11952 char *error_message = NULL;
11953 bfd_reloc_status_type r;
11954
11955 /* Specific to MIPS: Deal with relocation types that require
11956 knowing the gp of the output bfd. */
11957 asymbol *sym = *(*parent)->sym_ptr_ptr;
11958
11959 /* If we've managed to find the gp and have a special
11960 function for the relocation then go ahead, else default
11961 to the generic handling. */
11962 if (gp_found
11963 && (*parent)->howto->special_function
11964 == _bfd_mips_elf32_gprel16_reloc)
11965 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
11966 input_section, relocatable,
11967 data, gp);
11968 else
11969 r = bfd_perform_relocation (input_bfd, *parent, data,
11970 input_section,
11971 relocatable ? abfd : NULL,
11972 &error_message);
11973
11974 if (relocatable)
11975 {
11976 asection *os = input_section->output_section;
11977
11978 /* A partial link, so keep the relocs */
11979 os->orelocation[os->reloc_count] = *parent;
11980 os->reloc_count++;
11981 }
11982
11983 if (r != bfd_reloc_ok)
11984 {
11985 switch (r)
11986 {
11987 case bfd_reloc_undefined:
11988 if (!((*link_info->callbacks->undefined_symbol)
11989 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11990 input_bfd, input_section, (*parent)->address, TRUE)))
11991 goto error_return;
11992 break;
11993 case bfd_reloc_dangerous:
11994 BFD_ASSERT (error_message != NULL);
11995 if (!((*link_info->callbacks->reloc_dangerous)
11996 (link_info, error_message, input_bfd, input_section,
11997 (*parent)->address)))
11998 goto error_return;
11999 break;
12000 case bfd_reloc_overflow:
12001 if (!((*link_info->callbacks->reloc_overflow)
12002 (link_info, NULL,
12003 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12004 (*parent)->howto->name, (*parent)->addend,
12005 input_bfd, input_section, (*parent)->address)))
12006 goto error_return;
12007 break;
12008 case bfd_reloc_outofrange:
12009 default:
12010 abort ();
12011 break;
12012 }
12013
12014 }
12015 }
12016 }
12017 if (reloc_vector != NULL)
12018 free (reloc_vector);
12019 return data;
12020
12021 error_return:
12022 if (reloc_vector != NULL)
12023 free (reloc_vector);
12024 return NULL;
12025 }
12026 \f
12027 static bfd_boolean
12028 mips_elf_relax_delete_bytes (bfd *abfd,
12029 asection *sec, bfd_vma addr, int count)
12030 {
12031 Elf_Internal_Shdr *symtab_hdr;
12032 unsigned int sec_shndx;
12033 bfd_byte *contents;
12034 Elf_Internal_Rela *irel, *irelend;
12035 Elf_Internal_Sym *isym;
12036 Elf_Internal_Sym *isymend;
12037 struct elf_link_hash_entry **sym_hashes;
12038 struct elf_link_hash_entry **end_hashes;
12039 struct elf_link_hash_entry **start_hashes;
12040 unsigned int symcount;
12041
12042 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
12043 contents = elf_section_data (sec)->this_hdr.contents;
12044
12045 irel = elf_section_data (sec)->relocs;
12046 irelend = irel + sec->reloc_count;
12047
12048 /* Actually delete the bytes. */
12049 memmove (contents + addr, contents + addr + count,
12050 (size_t) (sec->size - addr - count));
12051 sec->size -= count;
12052
12053 /* Adjust all the relocs. */
12054 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
12055 {
12056 /* Get the new reloc address. */
12057 if (irel->r_offset > addr)
12058 irel->r_offset -= count;
12059 }
12060
12061 BFD_ASSERT (addr % 2 == 0);
12062 BFD_ASSERT (count % 2 == 0);
12063
12064 /* Adjust the local symbols defined in this section. */
12065 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12066 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
12067 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
12068 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
12069 isym->st_value -= count;
12070
12071 /* Now adjust the global symbols defined in this section. */
12072 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
12073 - symtab_hdr->sh_info);
12074 sym_hashes = start_hashes = elf_sym_hashes (abfd);
12075 end_hashes = sym_hashes + symcount;
12076
12077 for (; sym_hashes < end_hashes; sym_hashes++)
12078 {
12079 struct elf_link_hash_entry *sym_hash = *sym_hashes;
12080
12081 if ((sym_hash->root.type == bfd_link_hash_defined
12082 || sym_hash->root.type == bfd_link_hash_defweak)
12083 && sym_hash->root.u.def.section == sec)
12084 {
12085 bfd_vma value = sym_hash->root.u.def.value;
12086
12087 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
12088 value &= MINUS_TWO;
12089 if (value > addr)
12090 sym_hash->root.u.def.value -= count;
12091 }
12092 }
12093
12094 return TRUE;
12095 }
12096
12097
12098 /* Opcodes needed for microMIPS relaxation as found in
12099 opcodes/micromips-opc.c. */
12100
12101 struct opcode_descriptor {
12102 unsigned long match;
12103 unsigned long mask;
12104 };
12105
12106 /* The $ra register aka $31. */
12107
12108 #define RA 31
12109
12110 /* 32-bit instruction format register fields. */
12111
12112 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
12113 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
12114
12115 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
12116
12117 #define OP16_VALID_REG(r) \
12118 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
12119
12120
12121 /* 32-bit and 16-bit branches. */
12122
12123 static const struct opcode_descriptor b_insns_32[] = {
12124 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
12125 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
12126 { 0, 0 } /* End marker for find_match(). */
12127 };
12128
12129 static const struct opcode_descriptor bc_insn_32 =
12130 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
12131
12132 static const struct opcode_descriptor bz_insn_32 =
12133 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
12134
12135 static const struct opcode_descriptor bzal_insn_32 =
12136 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
12137
12138 static const struct opcode_descriptor beq_insn_32 =
12139 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
12140
12141 static const struct opcode_descriptor b_insn_16 =
12142 { /* "b", "mD", */ 0xcc00, 0xfc00 };
12143
12144 static const struct opcode_descriptor bz_insn_16 =
12145 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
12146
12147
12148 /* 32-bit and 16-bit branch EQ and NE zero. */
12149
12150 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
12151 eq and second the ne. This convention is used when replacing a
12152 32-bit BEQ/BNE with the 16-bit version. */
12153
12154 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
12155
12156 static const struct opcode_descriptor bz_rs_insns_32[] = {
12157 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
12158 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
12159 { 0, 0 } /* End marker for find_match(). */
12160 };
12161
12162 static const struct opcode_descriptor bz_rt_insns_32[] = {
12163 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
12164 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
12165 { 0, 0 } /* End marker for find_match(). */
12166 };
12167
12168 static const struct opcode_descriptor bzc_insns_32[] = {
12169 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
12170 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
12171 { 0, 0 } /* End marker for find_match(). */
12172 };
12173
12174 static const struct opcode_descriptor bz_insns_16[] = {
12175 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
12176 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
12177 { 0, 0 } /* End marker for find_match(). */
12178 };
12179
12180 /* Switch between a 5-bit register index and its 3-bit shorthand. */
12181
12182 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0x17) + 2)
12183 #define BZ16_REG_FIELD(r) \
12184 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 7)
12185
12186
12187 /* 32-bit instructions with a delay slot. */
12188
12189 static const struct opcode_descriptor jal_insn_32_bd16 =
12190 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
12191
12192 static const struct opcode_descriptor jal_insn_32_bd32 =
12193 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
12194
12195 static const struct opcode_descriptor jal_x_insn_32_bd32 =
12196 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
12197
12198 static const struct opcode_descriptor j_insn_32 =
12199 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
12200
12201 static const struct opcode_descriptor jalr_insn_32 =
12202 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
12203
12204 /* This table can be compacted, because no opcode replacement is made. */
12205
12206 static const struct opcode_descriptor ds_insns_32_bd16[] = {
12207 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
12208
12209 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
12210 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
12211
12212 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
12213 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
12214 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
12215 { 0, 0 } /* End marker for find_match(). */
12216 };
12217
12218 /* This table can be compacted, because no opcode replacement is made. */
12219
12220 static const struct opcode_descriptor ds_insns_32_bd32[] = {
12221 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
12222
12223 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
12224 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
12225 { 0, 0 } /* End marker for find_match(). */
12226 };
12227
12228
12229 /* 16-bit instructions with a delay slot. */
12230
12231 static const struct opcode_descriptor jalr_insn_16_bd16 =
12232 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
12233
12234 static const struct opcode_descriptor jalr_insn_16_bd32 =
12235 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
12236
12237 static const struct opcode_descriptor jr_insn_16 =
12238 { /* "jr", "mj", */ 0x4580, 0xffe0 };
12239
12240 #define JR16_REG(opcode) ((opcode) & 0x1f)
12241
12242 /* This table can be compacted, because no opcode replacement is made. */
12243
12244 static const struct opcode_descriptor ds_insns_16_bd16[] = {
12245 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
12246
12247 { /* "b", "mD", */ 0xcc00, 0xfc00 },
12248 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
12249 { /* "jr", "mj", */ 0x4580, 0xffe0 },
12250 { 0, 0 } /* End marker for find_match(). */
12251 };
12252
12253
12254 /* LUI instruction. */
12255
12256 static const struct opcode_descriptor lui_insn =
12257 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
12258
12259
12260 /* ADDIU instruction. */
12261
12262 static const struct opcode_descriptor addiu_insn =
12263 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
12264
12265 static const struct opcode_descriptor addiupc_insn =
12266 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
12267
12268 #define ADDIUPC_REG_FIELD(r) \
12269 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
12270
12271
12272 /* Relaxable instructions in a JAL delay slot: MOVE. */
12273
12274 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
12275 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
12276 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
12277 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
12278
12279 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
12280 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
12281
12282 static const struct opcode_descriptor move_insns_32[] = {
12283 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
12284 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
12285 { 0, 0 } /* End marker for find_match(). */
12286 };
12287
12288 static const struct opcode_descriptor move_insn_16 =
12289 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
12290
12291
12292 /* NOP instructions. */
12293
12294 static const struct opcode_descriptor nop_insn_32 =
12295 { /* "nop", "", */ 0x00000000, 0xffffffff };
12296
12297 static const struct opcode_descriptor nop_insn_16 =
12298 { /* "nop", "", */ 0x0c00, 0xffff };
12299
12300
12301 /* Instruction match support. */
12302
12303 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
12304
12305 static int
12306 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
12307 {
12308 unsigned long indx;
12309
12310 for (indx = 0; insn[indx].mask != 0; indx++)
12311 if (MATCH (opcode, insn[indx]))
12312 return indx;
12313
12314 return -1;
12315 }
12316
12317
12318 /* Branch and delay slot decoding support. */
12319
12320 /* If PTR points to what *might* be a 16-bit branch or jump, then
12321 return the minimum length of its delay slot, otherwise return 0.
12322 Non-zero results are not definitive as we might be checking against
12323 the second half of another instruction. */
12324
12325 static int
12326 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
12327 {
12328 unsigned long opcode;
12329 int bdsize;
12330
12331 opcode = bfd_get_16 (abfd, ptr);
12332 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
12333 /* 16-bit branch/jump with a 32-bit delay slot. */
12334 bdsize = 4;
12335 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
12336 || find_match (opcode, ds_insns_16_bd16) >= 0)
12337 /* 16-bit branch/jump with a 16-bit delay slot. */
12338 bdsize = 2;
12339 else
12340 /* No delay slot. */
12341 bdsize = 0;
12342
12343 return bdsize;
12344 }
12345
12346 /* If PTR points to what *might* be a 32-bit branch or jump, then
12347 return the minimum length of its delay slot, otherwise return 0.
12348 Non-zero results are not definitive as we might be checking against
12349 the second half of another instruction. */
12350
12351 static int
12352 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
12353 {
12354 unsigned long opcode;
12355 int bdsize;
12356
12357 opcode = bfd_get_micromips_32 (abfd, ptr);
12358 if (find_match (opcode, ds_insns_32_bd32) >= 0)
12359 /* 32-bit branch/jump with a 32-bit delay slot. */
12360 bdsize = 4;
12361 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
12362 /* 32-bit branch/jump with a 16-bit delay slot. */
12363 bdsize = 2;
12364 else
12365 /* No delay slot. */
12366 bdsize = 0;
12367
12368 return bdsize;
12369 }
12370
12371 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
12372 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
12373
12374 static bfd_boolean
12375 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12376 {
12377 unsigned long opcode;
12378
12379 opcode = bfd_get_16 (abfd, ptr);
12380 if (MATCH (opcode, b_insn_16)
12381 /* B16 */
12382 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
12383 /* JR16 */
12384 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
12385 /* BEQZ16, BNEZ16 */
12386 || (MATCH (opcode, jalr_insn_16_bd32)
12387 /* JALR16 */
12388 && reg != JR16_REG (opcode) && reg != RA))
12389 return TRUE;
12390
12391 return FALSE;
12392 }
12393
12394 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
12395 then return TRUE, otherwise FALSE. */
12396
12397 static bfd_boolean
12398 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12399 {
12400 unsigned long opcode;
12401
12402 opcode = bfd_get_micromips_32 (abfd, ptr);
12403 if (MATCH (opcode, j_insn_32)
12404 /* J */
12405 || MATCH (opcode, bc_insn_32)
12406 /* BC1F, BC1T, BC2F, BC2T */
12407 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
12408 /* JAL, JALX */
12409 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
12410 /* BGEZ, BGTZ, BLEZ, BLTZ */
12411 || (MATCH (opcode, bzal_insn_32)
12412 /* BGEZAL, BLTZAL */
12413 && reg != OP32_SREG (opcode) && reg != RA)
12414 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
12415 /* JALR, JALR.HB, BEQ, BNE */
12416 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
12417 return TRUE;
12418
12419 return FALSE;
12420 }
12421
12422 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
12423 IRELEND) at OFFSET indicate that there must be a compact branch there,
12424 then return TRUE, otherwise FALSE. */
12425
12426 static bfd_boolean
12427 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
12428 const Elf_Internal_Rela *internal_relocs,
12429 const Elf_Internal_Rela *irelend)
12430 {
12431 const Elf_Internal_Rela *irel;
12432 unsigned long opcode;
12433
12434 opcode = bfd_get_micromips_32 (abfd, ptr);
12435 if (find_match (opcode, bzc_insns_32) < 0)
12436 return FALSE;
12437
12438 for (irel = internal_relocs; irel < irelend; irel++)
12439 if (irel->r_offset == offset
12440 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
12441 return TRUE;
12442
12443 return FALSE;
12444 }
12445
12446 /* Bitsize checking. */
12447 #define IS_BITSIZE(val, N) \
12448 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
12449 - (1ULL << ((N) - 1))) == (val))
12450
12451 \f
12452 bfd_boolean
12453 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
12454 struct bfd_link_info *link_info,
12455 bfd_boolean *again)
12456 {
12457 Elf_Internal_Shdr *symtab_hdr;
12458 Elf_Internal_Rela *internal_relocs;
12459 Elf_Internal_Rela *irel, *irelend;
12460 bfd_byte *contents = NULL;
12461 Elf_Internal_Sym *isymbuf = NULL;
12462
12463 /* Assume nothing changes. */
12464 *again = FALSE;
12465
12466 /* We don't have to do anything for a relocatable link, if
12467 this section does not have relocs, or if this is not a
12468 code section. */
12469
12470 if (link_info->relocatable
12471 || (sec->flags & SEC_RELOC) == 0
12472 || sec->reloc_count == 0
12473 || (sec->flags & SEC_CODE) == 0)
12474 return TRUE;
12475
12476 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12477
12478 /* Get a copy of the native relocations. */
12479 internal_relocs = (_bfd_elf_link_read_relocs
12480 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
12481 link_info->keep_memory));
12482 if (internal_relocs == NULL)
12483 goto error_return;
12484
12485 /* Walk through them looking for relaxing opportunities. */
12486 irelend = internal_relocs + sec->reloc_count;
12487 for (irel = internal_relocs; irel < irelend; irel++)
12488 {
12489 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
12490 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
12491 bfd_boolean target_is_micromips_code_p;
12492 unsigned long opcode;
12493 bfd_vma symval;
12494 bfd_vma pcrval;
12495 bfd_byte *ptr;
12496 int fndopc;
12497
12498 /* The number of bytes to delete for relaxation and from where
12499 to delete these bytes starting at irel->r_offset. */
12500 int delcnt = 0;
12501 int deloff = 0;
12502
12503 /* If this isn't something that can be relaxed, then ignore
12504 this reloc. */
12505 if (r_type != R_MICROMIPS_HI16
12506 && r_type != R_MICROMIPS_PC16_S1
12507 && r_type != R_MICROMIPS_26_S1)
12508 continue;
12509
12510 /* Get the section contents if we haven't done so already. */
12511 if (contents == NULL)
12512 {
12513 /* Get cached copy if it exists. */
12514 if (elf_section_data (sec)->this_hdr.contents != NULL)
12515 contents = elf_section_data (sec)->this_hdr.contents;
12516 /* Go get them off disk. */
12517 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
12518 goto error_return;
12519 }
12520 ptr = contents + irel->r_offset;
12521
12522 /* Read this BFD's local symbols if we haven't done so already. */
12523 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
12524 {
12525 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
12526 if (isymbuf == NULL)
12527 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12528 symtab_hdr->sh_info, 0,
12529 NULL, NULL, NULL);
12530 if (isymbuf == NULL)
12531 goto error_return;
12532 }
12533
12534 /* Get the value of the symbol referred to by the reloc. */
12535 if (r_symndx < symtab_hdr->sh_info)
12536 {
12537 /* A local symbol. */
12538 Elf_Internal_Sym *isym;
12539 asection *sym_sec;
12540
12541 isym = isymbuf + r_symndx;
12542 if (isym->st_shndx == SHN_UNDEF)
12543 sym_sec = bfd_und_section_ptr;
12544 else if (isym->st_shndx == SHN_ABS)
12545 sym_sec = bfd_abs_section_ptr;
12546 else if (isym->st_shndx == SHN_COMMON)
12547 sym_sec = bfd_com_section_ptr;
12548 else
12549 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
12550 symval = (isym->st_value
12551 + sym_sec->output_section->vma
12552 + sym_sec->output_offset);
12553 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
12554 }
12555 else
12556 {
12557 unsigned long indx;
12558 struct elf_link_hash_entry *h;
12559
12560 /* An external symbol. */
12561 indx = r_symndx - symtab_hdr->sh_info;
12562 h = elf_sym_hashes (abfd)[indx];
12563 BFD_ASSERT (h != NULL);
12564
12565 if (h->root.type != bfd_link_hash_defined
12566 && h->root.type != bfd_link_hash_defweak)
12567 /* This appears to be a reference to an undefined
12568 symbol. Just ignore it -- it will be caught by the
12569 regular reloc processing. */
12570 continue;
12571
12572 symval = (h->root.u.def.value
12573 + h->root.u.def.section->output_section->vma
12574 + h->root.u.def.section->output_offset);
12575 target_is_micromips_code_p = (!h->needs_plt
12576 && ELF_ST_IS_MICROMIPS (h->other));
12577 }
12578
12579
12580 /* For simplicity of coding, we are going to modify the
12581 section contents, the section relocs, and the BFD symbol
12582 table. We must tell the rest of the code not to free up this
12583 information. It would be possible to instead create a table
12584 of changes which have to be made, as is done in coff-mips.c;
12585 that would be more work, but would require less memory when
12586 the linker is run. */
12587
12588 /* Only 32-bit instructions relaxed. */
12589 if (irel->r_offset + 4 > sec->size)
12590 continue;
12591
12592 opcode = bfd_get_micromips_32 (abfd, ptr);
12593
12594 /* This is the pc-relative distance from the instruction the
12595 relocation is applied to, to the symbol referred. */
12596 pcrval = (symval
12597 - (sec->output_section->vma + sec->output_offset)
12598 - irel->r_offset);
12599
12600 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
12601 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
12602 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
12603
12604 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
12605
12606 where pcrval has first to be adjusted to apply against the LO16
12607 location (we make the adjustment later on, when we have figured
12608 out the offset). */
12609 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
12610 {
12611 bfd_boolean bzc = FALSE;
12612 unsigned long nextopc;
12613 unsigned long reg;
12614 bfd_vma offset;
12615
12616 /* Give up if the previous reloc was a HI16 against this symbol
12617 too. */
12618 if (irel > internal_relocs
12619 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
12620 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
12621 continue;
12622
12623 /* Or if the next reloc is not a LO16 against this symbol. */
12624 if (irel + 1 >= irelend
12625 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
12626 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
12627 continue;
12628
12629 /* Or if the second next reloc is a LO16 against this symbol too. */
12630 if (irel + 2 >= irelend
12631 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
12632 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
12633 continue;
12634
12635 /* See if the LUI instruction *might* be in a branch delay slot.
12636 We check whether what looks like a 16-bit branch or jump is
12637 actually an immediate argument to a compact branch, and let
12638 it through if so. */
12639 if (irel->r_offset >= 2
12640 && check_br16_dslot (abfd, ptr - 2)
12641 && !(irel->r_offset >= 4
12642 && (bzc = check_relocated_bzc (abfd,
12643 ptr - 4, irel->r_offset - 4,
12644 internal_relocs, irelend))))
12645 continue;
12646 if (irel->r_offset >= 4
12647 && !bzc
12648 && check_br32_dslot (abfd, ptr - 4))
12649 continue;
12650
12651 reg = OP32_SREG (opcode);
12652
12653 /* We only relax adjacent instructions or ones separated with
12654 a branch or jump that has a delay slot. The branch or jump
12655 must not fiddle with the register used to hold the address.
12656 Subtract 4 for the LUI itself. */
12657 offset = irel[1].r_offset - irel[0].r_offset;
12658 switch (offset - 4)
12659 {
12660 case 0:
12661 break;
12662 case 2:
12663 if (check_br16 (abfd, ptr + 4, reg))
12664 break;
12665 continue;
12666 case 4:
12667 if (check_br32 (abfd, ptr + 4, reg))
12668 break;
12669 continue;
12670 default:
12671 continue;
12672 }
12673
12674 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
12675
12676 /* Give up unless the same register is used with both
12677 relocations. */
12678 if (OP32_SREG (nextopc) != reg)
12679 continue;
12680
12681 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
12682 and rounding up to take masking of the two LSBs into account. */
12683 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
12684
12685 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
12686 if (IS_BITSIZE (symval, 16))
12687 {
12688 /* Fix the relocation's type. */
12689 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
12690
12691 /* Instructions using R_MICROMIPS_LO16 have the base or
12692 source register in bits 20:16. This register becomes $0
12693 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
12694 nextopc &= ~0x001f0000;
12695 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
12696 contents + irel[1].r_offset);
12697 }
12698
12699 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
12700 We add 4 to take LUI deletion into account while checking
12701 the PC-relative distance. */
12702 else if (symval % 4 == 0
12703 && IS_BITSIZE (pcrval + 4, 25)
12704 && MATCH (nextopc, addiu_insn)
12705 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
12706 && OP16_VALID_REG (OP32_TREG (nextopc)))
12707 {
12708 /* Fix the relocation's type. */
12709 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
12710
12711 /* Replace ADDIU with the ADDIUPC version. */
12712 nextopc = (addiupc_insn.match
12713 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
12714
12715 bfd_put_micromips_32 (abfd, nextopc,
12716 contents + irel[1].r_offset);
12717 }
12718
12719 /* Can't do anything, give up, sigh... */
12720 else
12721 continue;
12722
12723 /* Fix the relocation's type. */
12724 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
12725
12726 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
12727 delcnt = 4;
12728 deloff = 0;
12729 }
12730
12731 /* Compact branch relaxation -- due to the multitude of macros
12732 employed by the compiler/assembler, compact branches are not
12733 always generated. Obviously, this can/will be fixed elsewhere,
12734 but there is no drawback in double checking it here. */
12735 else if (r_type == R_MICROMIPS_PC16_S1
12736 && irel->r_offset + 5 < sec->size
12737 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12738 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
12739 && MATCH (bfd_get_16 (abfd, ptr + 4), nop_insn_16))
12740 {
12741 unsigned long reg;
12742
12743 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12744
12745 /* Replace BEQZ/BNEZ with the compact version. */
12746 opcode = (bzc_insns_32[fndopc].match
12747 | BZC32_REG_FIELD (reg)
12748 | (opcode & 0xffff)); /* Addend value. */
12749
12750 bfd_put_micromips_32 (abfd, opcode, ptr);
12751
12752 /* Delete the 16-bit delay slot NOP: two bytes from
12753 irel->offset + 4. */
12754 delcnt = 2;
12755 deloff = 4;
12756 }
12757
12758 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
12759 to check the distance from the next instruction, so subtract 2. */
12760 else if (r_type == R_MICROMIPS_PC16_S1
12761 && IS_BITSIZE (pcrval - 2, 11)
12762 && find_match (opcode, b_insns_32) >= 0)
12763 {
12764 /* Fix the relocation's type. */
12765 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
12766
12767 /* Replace the 32-bit opcode with a 16-bit opcode. */
12768 bfd_put_16 (abfd,
12769 (b_insn_16.match
12770 | (opcode & 0x3ff)), /* Addend value. */
12771 ptr);
12772
12773 /* Delete 2 bytes from irel->r_offset + 2. */
12774 delcnt = 2;
12775 deloff = 2;
12776 }
12777
12778 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
12779 to check the distance from the next instruction, so subtract 2. */
12780 else if (r_type == R_MICROMIPS_PC16_S1
12781 && IS_BITSIZE (pcrval - 2, 8)
12782 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12783 && OP16_VALID_REG (OP32_SREG (opcode)))
12784 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
12785 && OP16_VALID_REG (OP32_TREG (opcode)))))
12786 {
12787 unsigned long reg;
12788
12789 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12790
12791 /* Fix the relocation's type. */
12792 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
12793
12794 /* Replace the 32-bit opcode with a 16-bit opcode. */
12795 bfd_put_16 (abfd,
12796 (bz_insns_16[fndopc].match
12797 | BZ16_REG_FIELD (reg)
12798 | (opcode & 0x7f)), /* Addend value. */
12799 ptr);
12800
12801 /* Delete 2 bytes from irel->r_offset + 2. */
12802 delcnt = 2;
12803 deloff = 2;
12804 }
12805
12806 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
12807 else if (r_type == R_MICROMIPS_26_S1
12808 && target_is_micromips_code_p
12809 && irel->r_offset + 7 < sec->size
12810 && MATCH (opcode, jal_insn_32_bd32))
12811 {
12812 unsigned long n32opc;
12813 bfd_boolean relaxed = FALSE;
12814
12815 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
12816
12817 if (MATCH (n32opc, nop_insn_32))
12818 {
12819 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
12820 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
12821
12822 relaxed = TRUE;
12823 }
12824 else if (find_match (n32opc, move_insns_32) >= 0)
12825 {
12826 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
12827 bfd_put_16 (abfd,
12828 (move_insn_16.match
12829 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
12830 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
12831 ptr + 4);
12832
12833 relaxed = TRUE;
12834 }
12835 /* Other 32-bit instructions relaxable to 16-bit
12836 instructions will be handled here later. */
12837
12838 if (relaxed)
12839 {
12840 /* JAL with 32-bit delay slot that is changed to a JALS
12841 with 16-bit delay slot. */
12842 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
12843
12844 /* Delete 2 bytes from irel->r_offset + 6. */
12845 delcnt = 2;
12846 deloff = 6;
12847 }
12848 }
12849
12850 if (delcnt != 0)
12851 {
12852 /* Note that we've changed the relocs, section contents, etc. */
12853 elf_section_data (sec)->relocs = internal_relocs;
12854 elf_section_data (sec)->this_hdr.contents = contents;
12855 symtab_hdr->contents = (unsigned char *) isymbuf;
12856
12857 /* Delete bytes depending on the delcnt and deloff. */
12858 if (!mips_elf_relax_delete_bytes (abfd, sec,
12859 irel->r_offset + deloff, delcnt))
12860 goto error_return;
12861
12862 /* That will change things, so we should relax again.
12863 Note that this is not required, and it may be slow. */
12864 *again = TRUE;
12865 }
12866 }
12867
12868 if (isymbuf != NULL
12869 && symtab_hdr->contents != (unsigned char *) isymbuf)
12870 {
12871 if (! link_info->keep_memory)
12872 free (isymbuf);
12873 else
12874 {
12875 /* Cache the symbols for elf_link_input_bfd. */
12876 symtab_hdr->contents = (unsigned char *) isymbuf;
12877 }
12878 }
12879
12880 if (contents != NULL
12881 && elf_section_data (sec)->this_hdr.contents != contents)
12882 {
12883 if (! link_info->keep_memory)
12884 free (contents);
12885 else
12886 {
12887 /* Cache the section contents for elf_link_input_bfd. */
12888 elf_section_data (sec)->this_hdr.contents = contents;
12889 }
12890 }
12891
12892 if (internal_relocs != NULL
12893 && elf_section_data (sec)->relocs != internal_relocs)
12894 free (internal_relocs);
12895
12896 return TRUE;
12897
12898 error_return:
12899 if (isymbuf != NULL
12900 && symtab_hdr->contents != (unsigned char *) isymbuf)
12901 free (isymbuf);
12902 if (contents != NULL
12903 && elf_section_data (sec)->this_hdr.contents != contents)
12904 free (contents);
12905 if (internal_relocs != NULL
12906 && elf_section_data (sec)->relocs != internal_relocs)
12907 free (internal_relocs);
12908
12909 return FALSE;
12910 }
12911 \f
12912 /* Create a MIPS ELF linker hash table. */
12913
12914 struct bfd_link_hash_table *
12915 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
12916 {
12917 struct mips_elf_link_hash_table *ret;
12918 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
12919
12920 ret = bfd_malloc (amt);
12921 if (ret == NULL)
12922 return NULL;
12923
12924 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
12925 mips_elf_link_hash_newfunc,
12926 sizeof (struct mips_elf_link_hash_entry),
12927 MIPS_ELF_DATA))
12928 {
12929 free (ret);
12930 return NULL;
12931 }
12932
12933 #if 0
12934 /* We no longer use this. */
12935 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
12936 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
12937 #endif
12938 ret->procedure_count = 0;
12939 ret->compact_rel_size = 0;
12940 ret->use_rld_obj_head = FALSE;
12941 ret->rld_symbol = NULL;
12942 ret->mips16_stubs_seen = FALSE;
12943 ret->use_plts_and_copy_relocs = FALSE;
12944 ret->is_vxworks = FALSE;
12945 ret->small_data_overflow_reported = FALSE;
12946 ret->srelbss = NULL;
12947 ret->sdynbss = NULL;
12948 ret->srelplt = NULL;
12949 ret->srelplt2 = NULL;
12950 ret->sgotplt = NULL;
12951 ret->splt = NULL;
12952 ret->sstubs = NULL;
12953 ret->sgot = NULL;
12954 ret->got_info = NULL;
12955 ret->plt_header_size = 0;
12956 ret->plt_entry_size = 0;
12957 ret->lazy_stub_count = 0;
12958 ret->function_stub_size = 0;
12959 ret->strampoline = NULL;
12960 ret->la25_stubs = NULL;
12961 ret->add_stub_section = NULL;
12962
12963 return &ret->root.root;
12964 }
12965
12966 /* Likewise, but indicate that the target is VxWorks. */
12967
12968 struct bfd_link_hash_table *
12969 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
12970 {
12971 struct bfd_link_hash_table *ret;
12972
12973 ret = _bfd_mips_elf_link_hash_table_create (abfd);
12974 if (ret)
12975 {
12976 struct mips_elf_link_hash_table *htab;
12977
12978 htab = (struct mips_elf_link_hash_table *) ret;
12979 htab->use_plts_and_copy_relocs = TRUE;
12980 htab->is_vxworks = TRUE;
12981 }
12982 return ret;
12983 }
12984
12985 /* A function that the linker calls if we are allowed to use PLTs
12986 and copy relocs. */
12987
12988 void
12989 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
12990 {
12991 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
12992 }
12993 \f
12994 /* We need to use a special link routine to handle the .reginfo and
12995 the .mdebug sections. We need to merge all instances of these
12996 sections together, not write them all out sequentially. */
12997
12998 bfd_boolean
12999 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
13000 {
13001 asection *o;
13002 struct bfd_link_order *p;
13003 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
13004 asection *rtproc_sec;
13005 Elf32_RegInfo reginfo;
13006 struct ecoff_debug_info debug;
13007 struct mips_htab_traverse_info hti;
13008 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13009 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
13010 HDRR *symhdr = &debug.symbolic_header;
13011 void *mdebug_handle = NULL;
13012 asection *s;
13013 EXTR esym;
13014 unsigned int i;
13015 bfd_size_type amt;
13016 struct mips_elf_link_hash_table *htab;
13017
13018 static const char * const secname[] =
13019 {
13020 ".text", ".init", ".fini", ".data",
13021 ".rodata", ".sdata", ".sbss", ".bss"
13022 };
13023 static const int sc[] =
13024 {
13025 scText, scInit, scFini, scData,
13026 scRData, scSData, scSBss, scBss
13027 };
13028
13029 /* Sort the dynamic symbols so that those with GOT entries come after
13030 those without. */
13031 htab = mips_elf_hash_table (info);
13032 BFD_ASSERT (htab != NULL);
13033
13034 if (!mips_elf_sort_hash_table (abfd, info))
13035 return FALSE;
13036
13037 /* Create any scheduled LA25 stubs. */
13038 hti.info = info;
13039 hti.output_bfd = abfd;
13040 hti.error = FALSE;
13041 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
13042 if (hti.error)
13043 return FALSE;
13044
13045 /* Get a value for the GP register. */
13046 if (elf_gp (abfd) == 0)
13047 {
13048 struct bfd_link_hash_entry *h;
13049
13050 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
13051 if (h != NULL && h->type == bfd_link_hash_defined)
13052 elf_gp (abfd) = (h->u.def.value
13053 + h->u.def.section->output_section->vma
13054 + h->u.def.section->output_offset);
13055 else if (htab->is_vxworks
13056 && (h = bfd_link_hash_lookup (info->hash,
13057 "_GLOBAL_OFFSET_TABLE_",
13058 FALSE, FALSE, TRUE))
13059 && h->type == bfd_link_hash_defined)
13060 elf_gp (abfd) = (h->u.def.section->output_section->vma
13061 + h->u.def.section->output_offset
13062 + h->u.def.value);
13063 else if (info->relocatable)
13064 {
13065 bfd_vma lo = MINUS_ONE;
13066
13067 /* Find the GP-relative section with the lowest offset. */
13068 for (o = abfd->sections; o != NULL; o = o->next)
13069 if (o->vma < lo
13070 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
13071 lo = o->vma;
13072
13073 /* And calculate GP relative to that. */
13074 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
13075 }
13076 else
13077 {
13078 /* If the relocate_section function needs to do a reloc
13079 involving the GP value, it should make a reloc_dangerous
13080 callback to warn that GP is not defined. */
13081 }
13082 }
13083
13084 /* Go through the sections and collect the .reginfo and .mdebug
13085 information. */
13086 reginfo_sec = NULL;
13087 mdebug_sec = NULL;
13088 gptab_data_sec = NULL;
13089 gptab_bss_sec = NULL;
13090 for (o = abfd->sections; o != NULL; o = o->next)
13091 {
13092 if (strcmp (o->name, ".reginfo") == 0)
13093 {
13094 memset (&reginfo, 0, sizeof reginfo);
13095
13096 /* We have found the .reginfo section in the output file.
13097 Look through all the link_orders comprising it and merge
13098 the information together. */
13099 for (p = o->map_head.link_order; p != NULL; p = p->next)
13100 {
13101 asection *input_section;
13102 bfd *input_bfd;
13103 Elf32_External_RegInfo ext;
13104 Elf32_RegInfo sub;
13105
13106 if (p->type != bfd_indirect_link_order)
13107 {
13108 if (p->type == bfd_data_link_order)
13109 continue;
13110 abort ();
13111 }
13112
13113 input_section = p->u.indirect.section;
13114 input_bfd = input_section->owner;
13115
13116 if (! bfd_get_section_contents (input_bfd, input_section,
13117 &ext, 0, sizeof ext))
13118 return FALSE;
13119
13120 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
13121
13122 reginfo.ri_gprmask |= sub.ri_gprmask;
13123 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
13124 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
13125 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
13126 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
13127
13128 /* ri_gp_value is set by the function
13129 mips_elf32_section_processing when the section is
13130 finally written out. */
13131
13132 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13133 elf_link_input_bfd ignores this section. */
13134 input_section->flags &= ~SEC_HAS_CONTENTS;
13135 }
13136
13137 /* Size has been set in _bfd_mips_elf_always_size_sections. */
13138 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
13139
13140 /* Skip this section later on (I don't think this currently
13141 matters, but someday it might). */
13142 o->map_head.link_order = NULL;
13143
13144 reginfo_sec = o;
13145 }
13146
13147 if (strcmp (o->name, ".mdebug") == 0)
13148 {
13149 struct extsym_info einfo;
13150 bfd_vma last;
13151
13152 /* We have found the .mdebug section in the output file.
13153 Look through all the link_orders comprising it and merge
13154 the information together. */
13155 symhdr->magic = swap->sym_magic;
13156 /* FIXME: What should the version stamp be? */
13157 symhdr->vstamp = 0;
13158 symhdr->ilineMax = 0;
13159 symhdr->cbLine = 0;
13160 symhdr->idnMax = 0;
13161 symhdr->ipdMax = 0;
13162 symhdr->isymMax = 0;
13163 symhdr->ioptMax = 0;
13164 symhdr->iauxMax = 0;
13165 symhdr->issMax = 0;
13166 symhdr->issExtMax = 0;
13167 symhdr->ifdMax = 0;
13168 symhdr->crfd = 0;
13169 symhdr->iextMax = 0;
13170
13171 /* We accumulate the debugging information itself in the
13172 debug_info structure. */
13173 debug.line = NULL;
13174 debug.external_dnr = NULL;
13175 debug.external_pdr = NULL;
13176 debug.external_sym = NULL;
13177 debug.external_opt = NULL;
13178 debug.external_aux = NULL;
13179 debug.ss = NULL;
13180 debug.ssext = debug.ssext_end = NULL;
13181 debug.external_fdr = NULL;
13182 debug.external_rfd = NULL;
13183 debug.external_ext = debug.external_ext_end = NULL;
13184
13185 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
13186 if (mdebug_handle == NULL)
13187 return FALSE;
13188
13189 esym.jmptbl = 0;
13190 esym.cobol_main = 0;
13191 esym.weakext = 0;
13192 esym.reserved = 0;
13193 esym.ifd = ifdNil;
13194 esym.asym.iss = issNil;
13195 esym.asym.st = stLocal;
13196 esym.asym.reserved = 0;
13197 esym.asym.index = indexNil;
13198 last = 0;
13199 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
13200 {
13201 esym.asym.sc = sc[i];
13202 s = bfd_get_section_by_name (abfd, secname[i]);
13203 if (s != NULL)
13204 {
13205 esym.asym.value = s->vma;
13206 last = s->vma + s->size;
13207 }
13208 else
13209 esym.asym.value = last;
13210 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
13211 secname[i], &esym))
13212 return FALSE;
13213 }
13214
13215 for (p = o->map_head.link_order; p != NULL; p = p->next)
13216 {
13217 asection *input_section;
13218 bfd *input_bfd;
13219 const struct ecoff_debug_swap *input_swap;
13220 struct ecoff_debug_info input_debug;
13221 char *eraw_src;
13222 char *eraw_end;
13223
13224 if (p->type != bfd_indirect_link_order)
13225 {
13226 if (p->type == bfd_data_link_order)
13227 continue;
13228 abort ();
13229 }
13230
13231 input_section = p->u.indirect.section;
13232 input_bfd = input_section->owner;
13233
13234 if (!is_mips_elf (input_bfd))
13235 {
13236 /* I don't know what a non MIPS ELF bfd would be
13237 doing with a .mdebug section, but I don't really
13238 want to deal with it. */
13239 continue;
13240 }
13241
13242 input_swap = (get_elf_backend_data (input_bfd)
13243 ->elf_backend_ecoff_debug_swap);
13244
13245 BFD_ASSERT (p->size == input_section->size);
13246
13247 /* The ECOFF linking code expects that we have already
13248 read in the debugging information and set up an
13249 ecoff_debug_info structure, so we do that now. */
13250 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
13251 &input_debug))
13252 return FALSE;
13253
13254 if (! (bfd_ecoff_debug_accumulate
13255 (mdebug_handle, abfd, &debug, swap, input_bfd,
13256 &input_debug, input_swap, info)))
13257 return FALSE;
13258
13259 /* Loop through the external symbols. For each one with
13260 interesting information, try to find the symbol in
13261 the linker global hash table and save the information
13262 for the output external symbols. */
13263 eraw_src = input_debug.external_ext;
13264 eraw_end = (eraw_src
13265 + (input_debug.symbolic_header.iextMax
13266 * input_swap->external_ext_size));
13267 for (;
13268 eraw_src < eraw_end;
13269 eraw_src += input_swap->external_ext_size)
13270 {
13271 EXTR ext;
13272 const char *name;
13273 struct mips_elf_link_hash_entry *h;
13274
13275 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
13276 if (ext.asym.sc == scNil
13277 || ext.asym.sc == scUndefined
13278 || ext.asym.sc == scSUndefined)
13279 continue;
13280
13281 name = input_debug.ssext + ext.asym.iss;
13282 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
13283 name, FALSE, FALSE, TRUE);
13284 if (h == NULL || h->esym.ifd != -2)
13285 continue;
13286
13287 if (ext.ifd != -1)
13288 {
13289 BFD_ASSERT (ext.ifd
13290 < input_debug.symbolic_header.ifdMax);
13291 ext.ifd = input_debug.ifdmap[ext.ifd];
13292 }
13293
13294 h->esym = ext;
13295 }
13296
13297 /* Free up the information we just read. */
13298 free (input_debug.line);
13299 free (input_debug.external_dnr);
13300 free (input_debug.external_pdr);
13301 free (input_debug.external_sym);
13302 free (input_debug.external_opt);
13303 free (input_debug.external_aux);
13304 free (input_debug.ss);
13305 free (input_debug.ssext);
13306 free (input_debug.external_fdr);
13307 free (input_debug.external_rfd);
13308 free (input_debug.external_ext);
13309
13310 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13311 elf_link_input_bfd ignores this section. */
13312 input_section->flags &= ~SEC_HAS_CONTENTS;
13313 }
13314
13315 if (SGI_COMPAT (abfd) && info->shared)
13316 {
13317 /* Create .rtproc section. */
13318 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
13319 if (rtproc_sec == NULL)
13320 {
13321 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
13322 | SEC_LINKER_CREATED | SEC_READONLY);
13323
13324 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
13325 ".rtproc",
13326 flags);
13327 if (rtproc_sec == NULL
13328 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
13329 return FALSE;
13330 }
13331
13332 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
13333 info, rtproc_sec,
13334 &debug))
13335 return FALSE;
13336 }
13337
13338 /* Build the external symbol information. */
13339 einfo.abfd = abfd;
13340 einfo.info = info;
13341 einfo.debug = &debug;
13342 einfo.swap = swap;
13343 einfo.failed = FALSE;
13344 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
13345 mips_elf_output_extsym, &einfo);
13346 if (einfo.failed)
13347 return FALSE;
13348
13349 /* Set the size of the .mdebug section. */
13350 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
13351
13352 /* Skip this section later on (I don't think this currently
13353 matters, but someday it might). */
13354 o->map_head.link_order = NULL;
13355
13356 mdebug_sec = o;
13357 }
13358
13359 if (CONST_STRNEQ (o->name, ".gptab."))
13360 {
13361 const char *subname;
13362 unsigned int c;
13363 Elf32_gptab *tab;
13364 Elf32_External_gptab *ext_tab;
13365 unsigned int j;
13366
13367 /* The .gptab.sdata and .gptab.sbss sections hold
13368 information describing how the small data area would
13369 change depending upon the -G switch. These sections
13370 not used in executables files. */
13371 if (! info->relocatable)
13372 {
13373 for (p = o->map_head.link_order; p != NULL; p = p->next)
13374 {
13375 asection *input_section;
13376
13377 if (p->type != bfd_indirect_link_order)
13378 {
13379 if (p->type == bfd_data_link_order)
13380 continue;
13381 abort ();
13382 }
13383
13384 input_section = p->u.indirect.section;
13385
13386 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13387 elf_link_input_bfd ignores this section. */
13388 input_section->flags &= ~SEC_HAS_CONTENTS;
13389 }
13390
13391 /* Skip this section later on (I don't think this
13392 currently matters, but someday it might). */
13393 o->map_head.link_order = NULL;
13394
13395 /* Really remove the section. */
13396 bfd_section_list_remove (abfd, o);
13397 --abfd->section_count;
13398
13399 continue;
13400 }
13401
13402 /* There is one gptab for initialized data, and one for
13403 uninitialized data. */
13404 if (strcmp (o->name, ".gptab.sdata") == 0)
13405 gptab_data_sec = o;
13406 else if (strcmp (o->name, ".gptab.sbss") == 0)
13407 gptab_bss_sec = o;
13408 else
13409 {
13410 (*_bfd_error_handler)
13411 (_("%s: illegal section name `%s'"),
13412 bfd_get_filename (abfd), o->name);
13413 bfd_set_error (bfd_error_nonrepresentable_section);
13414 return FALSE;
13415 }
13416
13417 /* The linker script always combines .gptab.data and
13418 .gptab.sdata into .gptab.sdata, and likewise for
13419 .gptab.bss and .gptab.sbss. It is possible that there is
13420 no .sdata or .sbss section in the output file, in which
13421 case we must change the name of the output section. */
13422 subname = o->name + sizeof ".gptab" - 1;
13423 if (bfd_get_section_by_name (abfd, subname) == NULL)
13424 {
13425 if (o == gptab_data_sec)
13426 o->name = ".gptab.data";
13427 else
13428 o->name = ".gptab.bss";
13429 subname = o->name + sizeof ".gptab" - 1;
13430 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
13431 }
13432
13433 /* Set up the first entry. */
13434 c = 1;
13435 amt = c * sizeof (Elf32_gptab);
13436 tab = bfd_malloc (amt);
13437 if (tab == NULL)
13438 return FALSE;
13439 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
13440 tab[0].gt_header.gt_unused = 0;
13441
13442 /* Combine the input sections. */
13443 for (p = o->map_head.link_order; p != NULL; p = p->next)
13444 {
13445 asection *input_section;
13446 bfd *input_bfd;
13447 bfd_size_type size;
13448 unsigned long last;
13449 bfd_size_type gpentry;
13450
13451 if (p->type != bfd_indirect_link_order)
13452 {
13453 if (p->type == bfd_data_link_order)
13454 continue;
13455 abort ();
13456 }
13457
13458 input_section = p->u.indirect.section;
13459 input_bfd = input_section->owner;
13460
13461 /* Combine the gptab entries for this input section one
13462 by one. We know that the input gptab entries are
13463 sorted by ascending -G value. */
13464 size = input_section->size;
13465 last = 0;
13466 for (gpentry = sizeof (Elf32_External_gptab);
13467 gpentry < size;
13468 gpentry += sizeof (Elf32_External_gptab))
13469 {
13470 Elf32_External_gptab ext_gptab;
13471 Elf32_gptab int_gptab;
13472 unsigned long val;
13473 unsigned long add;
13474 bfd_boolean exact;
13475 unsigned int look;
13476
13477 if (! (bfd_get_section_contents
13478 (input_bfd, input_section, &ext_gptab, gpentry,
13479 sizeof (Elf32_External_gptab))))
13480 {
13481 free (tab);
13482 return FALSE;
13483 }
13484
13485 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
13486 &int_gptab);
13487 val = int_gptab.gt_entry.gt_g_value;
13488 add = int_gptab.gt_entry.gt_bytes - last;
13489
13490 exact = FALSE;
13491 for (look = 1; look < c; look++)
13492 {
13493 if (tab[look].gt_entry.gt_g_value >= val)
13494 tab[look].gt_entry.gt_bytes += add;
13495
13496 if (tab[look].gt_entry.gt_g_value == val)
13497 exact = TRUE;
13498 }
13499
13500 if (! exact)
13501 {
13502 Elf32_gptab *new_tab;
13503 unsigned int max;
13504
13505 /* We need a new table entry. */
13506 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
13507 new_tab = bfd_realloc (tab, amt);
13508 if (new_tab == NULL)
13509 {
13510 free (tab);
13511 return FALSE;
13512 }
13513 tab = new_tab;
13514 tab[c].gt_entry.gt_g_value = val;
13515 tab[c].gt_entry.gt_bytes = add;
13516
13517 /* Merge in the size for the next smallest -G
13518 value, since that will be implied by this new
13519 value. */
13520 max = 0;
13521 for (look = 1; look < c; look++)
13522 {
13523 if (tab[look].gt_entry.gt_g_value < val
13524 && (max == 0
13525 || (tab[look].gt_entry.gt_g_value
13526 > tab[max].gt_entry.gt_g_value)))
13527 max = look;
13528 }
13529 if (max != 0)
13530 tab[c].gt_entry.gt_bytes +=
13531 tab[max].gt_entry.gt_bytes;
13532
13533 ++c;
13534 }
13535
13536 last = int_gptab.gt_entry.gt_bytes;
13537 }
13538
13539 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13540 elf_link_input_bfd ignores this section. */
13541 input_section->flags &= ~SEC_HAS_CONTENTS;
13542 }
13543
13544 /* The table must be sorted by -G value. */
13545 if (c > 2)
13546 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
13547
13548 /* Swap out the table. */
13549 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
13550 ext_tab = bfd_alloc (abfd, amt);
13551 if (ext_tab == NULL)
13552 {
13553 free (tab);
13554 return FALSE;
13555 }
13556
13557 for (j = 0; j < c; j++)
13558 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
13559 free (tab);
13560
13561 o->size = c * sizeof (Elf32_External_gptab);
13562 o->contents = (bfd_byte *) ext_tab;
13563
13564 /* Skip this section later on (I don't think this currently
13565 matters, but someday it might). */
13566 o->map_head.link_order = NULL;
13567 }
13568 }
13569
13570 /* Invoke the regular ELF backend linker to do all the work. */
13571 if (!bfd_elf_final_link (abfd, info))
13572 return FALSE;
13573
13574 /* Now write out the computed sections. */
13575
13576 if (reginfo_sec != NULL)
13577 {
13578 Elf32_External_RegInfo ext;
13579
13580 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
13581 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
13582 return FALSE;
13583 }
13584
13585 if (mdebug_sec != NULL)
13586 {
13587 BFD_ASSERT (abfd->output_has_begun);
13588 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
13589 swap, info,
13590 mdebug_sec->filepos))
13591 return FALSE;
13592
13593 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
13594 }
13595
13596 if (gptab_data_sec != NULL)
13597 {
13598 if (! bfd_set_section_contents (abfd, gptab_data_sec,
13599 gptab_data_sec->contents,
13600 0, gptab_data_sec->size))
13601 return FALSE;
13602 }
13603
13604 if (gptab_bss_sec != NULL)
13605 {
13606 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
13607 gptab_bss_sec->contents,
13608 0, gptab_bss_sec->size))
13609 return FALSE;
13610 }
13611
13612 if (SGI_COMPAT (abfd))
13613 {
13614 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
13615 if (rtproc_sec != NULL)
13616 {
13617 if (! bfd_set_section_contents (abfd, rtproc_sec,
13618 rtproc_sec->contents,
13619 0, rtproc_sec->size))
13620 return FALSE;
13621 }
13622 }
13623
13624 return TRUE;
13625 }
13626 \f
13627 /* Structure for saying that BFD machine EXTENSION extends BASE. */
13628
13629 struct mips_mach_extension {
13630 unsigned long extension, base;
13631 };
13632
13633
13634 /* An array describing how BFD machines relate to one another. The entries
13635 are ordered topologically with MIPS I extensions listed last. */
13636
13637 static const struct mips_mach_extension mips_mach_extensions[] = {
13638 /* MIPS64r2 extensions. */
13639 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
13640 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
13641 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13642
13643 /* MIPS64 extensions. */
13644 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
13645 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
13646 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
13647 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64 },
13648
13649 /* MIPS V extensions. */
13650 { bfd_mach_mipsisa64, bfd_mach_mips5 },
13651
13652 /* R10000 extensions. */
13653 { bfd_mach_mips12000, bfd_mach_mips10000 },
13654 { bfd_mach_mips14000, bfd_mach_mips10000 },
13655 { bfd_mach_mips16000, bfd_mach_mips10000 },
13656
13657 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
13658 vr5400 ISA, but doesn't include the multimedia stuff. It seems
13659 better to allow vr5400 and vr5500 code to be merged anyway, since
13660 many libraries will just use the core ISA. Perhaps we could add
13661 some sort of ASE flag if this ever proves a problem. */
13662 { bfd_mach_mips5500, bfd_mach_mips5400 },
13663 { bfd_mach_mips5400, bfd_mach_mips5000 },
13664
13665 /* MIPS IV extensions. */
13666 { bfd_mach_mips5, bfd_mach_mips8000 },
13667 { bfd_mach_mips10000, bfd_mach_mips8000 },
13668 { bfd_mach_mips5000, bfd_mach_mips8000 },
13669 { bfd_mach_mips7000, bfd_mach_mips8000 },
13670 { bfd_mach_mips9000, bfd_mach_mips8000 },
13671
13672 /* VR4100 extensions. */
13673 { bfd_mach_mips4120, bfd_mach_mips4100 },
13674 { bfd_mach_mips4111, bfd_mach_mips4100 },
13675
13676 /* MIPS III extensions. */
13677 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
13678 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
13679 { bfd_mach_mips8000, bfd_mach_mips4000 },
13680 { bfd_mach_mips4650, bfd_mach_mips4000 },
13681 { bfd_mach_mips4600, bfd_mach_mips4000 },
13682 { bfd_mach_mips4400, bfd_mach_mips4000 },
13683 { bfd_mach_mips4300, bfd_mach_mips4000 },
13684 { bfd_mach_mips4100, bfd_mach_mips4000 },
13685 { bfd_mach_mips4010, bfd_mach_mips4000 },
13686
13687 /* MIPS32 extensions. */
13688 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
13689
13690 /* MIPS II extensions. */
13691 { bfd_mach_mips4000, bfd_mach_mips6000 },
13692 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
13693
13694 /* MIPS I extensions. */
13695 { bfd_mach_mips6000, bfd_mach_mips3000 },
13696 { bfd_mach_mips3900, bfd_mach_mips3000 }
13697 };
13698
13699
13700 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
13701
13702 static bfd_boolean
13703 mips_mach_extends_p (unsigned long base, unsigned long extension)
13704 {
13705 size_t i;
13706
13707 if (extension == base)
13708 return TRUE;
13709
13710 if (base == bfd_mach_mipsisa32
13711 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
13712 return TRUE;
13713
13714 if (base == bfd_mach_mipsisa32r2
13715 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
13716 return TRUE;
13717
13718 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
13719 if (extension == mips_mach_extensions[i].extension)
13720 {
13721 extension = mips_mach_extensions[i].base;
13722 if (extension == base)
13723 return TRUE;
13724 }
13725
13726 return FALSE;
13727 }
13728
13729
13730 /* Return true if the given ELF header flags describe a 32-bit binary. */
13731
13732 static bfd_boolean
13733 mips_32bit_flags_p (flagword flags)
13734 {
13735 return ((flags & EF_MIPS_32BITMODE) != 0
13736 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
13737 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
13738 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
13739 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
13740 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
13741 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
13742 }
13743
13744
13745 /* Merge object attributes from IBFD into OBFD. Raise an error if
13746 there are conflicting attributes. */
13747 static bfd_boolean
13748 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
13749 {
13750 obj_attribute *in_attr;
13751 obj_attribute *out_attr;
13752
13753 if (!elf_known_obj_attributes_proc (obfd)[0].i)
13754 {
13755 /* This is the first object. Copy the attributes. */
13756 _bfd_elf_copy_obj_attributes (ibfd, obfd);
13757
13758 /* Use the Tag_null value to indicate the attributes have been
13759 initialized. */
13760 elf_known_obj_attributes_proc (obfd)[0].i = 1;
13761
13762 return TRUE;
13763 }
13764
13765 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
13766 non-conflicting ones. */
13767 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
13768 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
13769 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
13770 {
13771 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
13772 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
13773 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
13774 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
13775 ;
13776 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
13777 _bfd_error_handler
13778 (_("Warning: %B uses unknown floating point ABI %d"), ibfd,
13779 in_attr[Tag_GNU_MIPS_ABI_FP].i);
13780 else if (out_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
13781 _bfd_error_handler
13782 (_("Warning: %B uses unknown floating point ABI %d"), obfd,
13783 out_attr[Tag_GNU_MIPS_ABI_FP].i);
13784 else
13785 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
13786 {
13787 case 1:
13788 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13789 {
13790 case 2:
13791 _bfd_error_handler
13792 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
13793 obfd, ibfd);
13794 break;
13795
13796 case 3:
13797 _bfd_error_handler
13798 (_("Warning: %B uses hard float, %B uses soft float"),
13799 obfd, ibfd);
13800 break;
13801
13802 case 4:
13803 _bfd_error_handler
13804 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
13805 obfd, ibfd);
13806 break;
13807
13808 default:
13809 abort ();
13810 }
13811 break;
13812
13813 case 2:
13814 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13815 {
13816 case 1:
13817 _bfd_error_handler
13818 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
13819 ibfd, obfd);
13820 break;
13821
13822 case 3:
13823 _bfd_error_handler
13824 (_("Warning: %B uses hard float, %B uses soft float"),
13825 obfd, ibfd);
13826 break;
13827
13828 case 4:
13829 _bfd_error_handler
13830 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
13831 obfd, ibfd);
13832 break;
13833
13834 default:
13835 abort ();
13836 }
13837 break;
13838
13839 case 3:
13840 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13841 {
13842 case 1:
13843 case 2:
13844 case 4:
13845 _bfd_error_handler
13846 (_("Warning: %B uses hard float, %B uses soft float"),
13847 ibfd, obfd);
13848 break;
13849
13850 default:
13851 abort ();
13852 }
13853 break;
13854
13855 case 4:
13856 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13857 {
13858 case 1:
13859 _bfd_error_handler
13860 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
13861 ibfd, obfd);
13862 break;
13863
13864 case 2:
13865 _bfd_error_handler
13866 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
13867 ibfd, obfd);
13868 break;
13869
13870 case 3:
13871 _bfd_error_handler
13872 (_("Warning: %B uses hard float, %B uses soft float"),
13873 obfd, ibfd);
13874 break;
13875
13876 default:
13877 abort ();
13878 }
13879 break;
13880
13881 default:
13882 abort ();
13883 }
13884 }
13885
13886 /* Merge Tag_compatibility attributes and any common GNU ones. */
13887 _bfd_elf_merge_object_attributes (ibfd, obfd);
13888
13889 return TRUE;
13890 }
13891
13892 /* Merge backend specific data from an object file to the output
13893 object file when linking. */
13894
13895 bfd_boolean
13896 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
13897 {
13898 flagword old_flags;
13899 flagword new_flags;
13900 bfd_boolean ok;
13901 bfd_boolean null_input_bfd = TRUE;
13902 asection *sec;
13903
13904 /* Check if we have the same endianness. */
13905 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
13906 {
13907 (*_bfd_error_handler)
13908 (_("%B: endianness incompatible with that of the selected emulation"),
13909 ibfd);
13910 return FALSE;
13911 }
13912
13913 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
13914 return TRUE;
13915
13916 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
13917 {
13918 (*_bfd_error_handler)
13919 (_("%B: ABI is incompatible with that of the selected emulation"),
13920 ibfd);
13921 return FALSE;
13922 }
13923
13924 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
13925 return FALSE;
13926
13927 new_flags = elf_elfheader (ibfd)->e_flags;
13928 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
13929 old_flags = elf_elfheader (obfd)->e_flags;
13930
13931 if (! elf_flags_init (obfd))
13932 {
13933 elf_flags_init (obfd) = TRUE;
13934 elf_elfheader (obfd)->e_flags = new_flags;
13935 elf_elfheader (obfd)->e_ident[EI_CLASS]
13936 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
13937
13938 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
13939 && (bfd_get_arch_info (obfd)->the_default
13940 || mips_mach_extends_p (bfd_get_mach (obfd),
13941 bfd_get_mach (ibfd))))
13942 {
13943 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
13944 bfd_get_mach (ibfd)))
13945 return FALSE;
13946 }
13947
13948 return TRUE;
13949 }
13950
13951 /* Check flag compatibility. */
13952
13953 new_flags &= ~EF_MIPS_NOREORDER;
13954 old_flags &= ~EF_MIPS_NOREORDER;
13955
13956 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
13957 doesn't seem to matter. */
13958 new_flags &= ~EF_MIPS_XGOT;
13959 old_flags &= ~EF_MIPS_XGOT;
13960
13961 /* MIPSpro generates ucode info in n64 objects. Again, we should
13962 just be able to ignore this. */
13963 new_flags &= ~EF_MIPS_UCODE;
13964 old_flags &= ~EF_MIPS_UCODE;
13965
13966 /* DSOs should only be linked with CPIC code. */
13967 if ((ibfd->flags & DYNAMIC) != 0)
13968 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
13969
13970 if (new_flags == old_flags)
13971 return TRUE;
13972
13973 /* Check to see if the input BFD actually contains any sections.
13974 If not, its flags may not have been initialised either, but it cannot
13975 actually cause any incompatibility. */
13976 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
13977 {
13978 /* Ignore synthetic sections and empty .text, .data and .bss sections
13979 which are automatically generated by gas. Also ignore fake
13980 (s)common sections, since merely defining a common symbol does
13981 not affect compatibility. */
13982 if ((sec->flags & SEC_IS_COMMON) == 0
13983 && strcmp (sec->name, ".reginfo")
13984 && strcmp (sec->name, ".mdebug")
13985 && (sec->size != 0
13986 || (strcmp (sec->name, ".text")
13987 && strcmp (sec->name, ".data")
13988 && strcmp (sec->name, ".bss"))))
13989 {
13990 null_input_bfd = FALSE;
13991 break;
13992 }
13993 }
13994 if (null_input_bfd)
13995 return TRUE;
13996
13997 ok = TRUE;
13998
13999 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
14000 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
14001 {
14002 (*_bfd_error_handler)
14003 (_("%B: warning: linking abicalls files with non-abicalls files"),
14004 ibfd);
14005 ok = TRUE;
14006 }
14007
14008 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
14009 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
14010 if (! (new_flags & EF_MIPS_PIC))
14011 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
14012
14013 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14014 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14015
14016 /* Compare the ISAs. */
14017 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
14018 {
14019 (*_bfd_error_handler)
14020 (_("%B: linking 32-bit code with 64-bit code"),
14021 ibfd);
14022 ok = FALSE;
14023 }
14024 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
14025 {
14026 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
14027 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
14028 {
14029 /* Copy the architecture info from IBFD to OBFD. Also copy
14030 the 32-bit flag (if set) so that we continue to recognise
14031 OBFD as a 32-bit binary. */
14032 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
14033 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
14034 elf_elfheader (obfd)->e_flags
14035 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14036
14037 /* Copy across the ABI flags if OBFD doesn't use them
14038 and if that was what caused us to treat IBFD as 32-bit. */
14039 if ((old_flags & EF_MIPS_ABI) == 0
14040 && mips_32bit_flags_p (new_flags)
14041 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
14042 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
14043 }
14044 else
14045 {
14046 /* The ISAs aren't compatible. */
14047 (*_bfd_error_handler)
14048 (_("%B: linking %s module with previous %s modules"),
14049 ibfd,
14050 bfd_printable_name (ibfd),
14051 bfd_printable_name (obfd));
14052 ok = FALSE;
14053 }
14054 }
14055
14056 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14057 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14058
14059 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
14060 does set EI_CLASS differently from any 32-bit ABI. */
14061 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
14062 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14063 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14064 {
14065 /* Only error if both are set (to different values). */
14066 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
14067 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14068 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14069 {
14070 (*_bfd_error_handler)
14071 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
14072 ibfd,
14073 elf_mips_abi_name (ibfd),
14074 elf_mips_abi_name (obfd));
14075 ok = FALSE;
14076 }
14077 new_flags &= ~EF_MIPS_ABI;
14078 old_flags &= ~EF_MIPS_ABI;
14079 }
14080
14081 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
14082 and allow arbitrary mixing of the remaining ASEs (retain the union). */
14083 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
14084 {
14085 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
14086 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
14087 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
14088 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
14089 int micro_mis = old_m16 && new_micro;
14090 int m16_mis = old_micro && new_m16;
14091
14092 if (m16_mis || micro_mis)
14093 {
14094 (*_bfd_error_handler)
14095 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
14096 ibfd,
14097 m16_mis ? "MIPS16" : "microMIPS",
14098 m16_mis ? "microMIPS" : "MIPS16");
14099 ok = FALSE;
14100 }
14101
14102 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
14103
14104 new_flags &= ~ EF_MIPS_ARCH_ASE;
14105 old_flags &= ~ EF_MIPS_ARCH_ASE;
14106 }
14107
14108 /* Warn about any other mismatches */
14109 if (new_flags != old_flags)
14110 {
14111 (*_bfd_error_handler)
14112 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
14113 ibfd, (unsigned long) new_flags,
14114 (unsigned long) old_flags);
14115 ok = FALSE;
14116 }
14117
14118 if (! ok)
14119 {
14120 bfd_set_error (bfd_error_bad_value);
14121 return FALSE;
14122 }
14123
14124 return TRUE;
14125 }
14126
14127 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
14128
14129 bfd_boolean
14130 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
14131 {
14132 BFD_ASSERT (!elf_flags_init (abfd)
14133 || elf_elfheader (abfd)->e_flags == flags);
14134
14135 elf_elfheader (abfd)->e_flags = flags;
14136 elf_flags_init (abfd) = TRUE;
14137 return TRUE;
14138 }
14139
14140 char *
14141 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
14142 {
14143 switch (dtag)
14144 {
14145 default: return "";
14146 case DT_MIPS_RLD_VERSION:
14147 return "MIPS_RLD_VERSION";
14148 case DT_MIPS_TIME_STAMP:
14149 return "MIPS_TIME_STAMP";
14150 case DT_MIPS_ICHECKSUM:
14151 return "MIPS_ICHECKSUM";
14152 case DT_MIPS_IVERSION:
14153 return "MIPS_IVERSION";
14154 case DT_MIPS_FLAGS:
14155 return "MIPS_FLAGS";
14156 case DT_MIPS_BASE_ADDRESS:
14157 return "MIPS_BASE_ADDRESS";
14158 case DT_MIPS_MSYM:
14159 return "MIPS_MSYM";
14160 case DT_MIPS_CONFLICT:
14161 return "MIPS_CONFLICT";
14162 case DT_MIPS_LIBLIST:
14163 return "MIPS_LIBLIST";
14164 case DT_MIPS_LOCAL_GOTNO:
14165 return "MIPS_LOCAL_GOTNO";
14166 case DT_MIPS_CONFLICTNO:
14167 return "MIPS_CONFLICTNO";
14168 case DT_MIPS_LIBLISTNO:
14169 return "MIPS_LIBLISTNO";
14170 case DT_MIPS_SYMTABNO:
14171 return "MIPS_SYMTABNO";
14172 case DT_MIPS_UNREFEXTNO:
14173 return "MIPS_UNREFEXTNO";
14174 case DT_MIPS_GOTSYM:
14175 return "MIPS_GOTSYM";
14176 case DT_MIPS_HIPAGENO:
14177 return "MIPS_HIPAGENO";
14178 case DT_MIPS_RLD_MAP:
14179 return "MIPS_RLD_MAP";
14180 case DT_MIPS_DELTA_CLASS:
14181 return "MIPS_DELTA_CLASS";
14182 case DT_MIPS_DELTA_CLASS_NO:
14183 return "MIPS_DELTA_CLASS_NO";
14184 case DT_MIPS_DELTA_INSTANCE:
14185 return "MIPS_DELTA_INSTANCE";
14186 case DT_MIPS_DELTA_INSTANCE_NO:
14187 return "MIPS_DELTA_INSTANCE_NO";
14188 case DT_MIPS_DELTA_RELOC:
14189 return "MIPS_DELTA_RELOC";
14190 case DT_MIPS_DELTA_RELOC_NO:
14191 return "MIPS_DELTA_RELOC_NO";
14192 case DT_MIPS_DELTA_SYM:
14193 return "MIPS_DELTA_SYM";
14194 case DT_MIPS_DELTA_SYM_NO:
14195 return "MIPS_DELTA_SYM_NO";
14196 case DT_MIPS_DELTA_CLASSSYM:
14197 return "MIPS_DELTA_CLASSSYM";
14198 case DT_MIPS_DELTA_CLASSSYM_NO:
14199 return "MIPS_DELTA_CLASSSYM_NO";
14200 case DT_MIPS_CXX_FLAGS:
14201 return "MIPS_CXX_FLAGS";
14202 case DT_MIPS_PIXIE_INIT:
14203 return "MIPS_PIXIE_INIT";
14204 case DT_MIPS_SYMBOL_LIB:
14205 return "MIPS_SYMBOL_LIB";
14206 case DT_MIPS_LOCALPAGE_GOTIDX:
14207 return "MIPS_LOCALPAGE_GOTIDX";
14208 case DT_MIPS_LOCAL_GOTIDX:
14209 return "MIPS_LOCAL_GOTIDX";
14210 case DT_MIPS_HIDDEN_GOTIDX:
14211 return "MIPS_HIDDEN_GOTIDX";
14212 case DT_MIPS_PROTECTED_GOTIDX:
14213 return "MIPS_PROTECTED_GOT_IDX";
14214 case DT_MIPS_OPTIONS:
14215 return "MIPS_OPTIONS";
14216 case DT_MIPS_INTERFACE:
14217 return "MIPS_INTERFACE";
14218 case DT_MIPS_DYNSTR_ALIGN:
14219 return "DT_MIPS_DYNSTR_ALIGN";
14220 case DT_MIPS_INTERFACE_SIZE:
14221 return "DT_MIPS_INTERFACE_SIZE";
14222 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
14223 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
14224 case DT_MIPS_PERF_SUFFIX:
14225 return "DT_MIPS_PERF_SUFFIX";
14226 case DT_MIPS_COMPACT_SIZE:
14227 return "DT_MIPS_COMPACT_SIZE";
14228 case DT_MIPS_GP_VALUE:
14229 return "DT_MIPS_GP_VALUE";
14230 case DT_MIPS_AUX_DYNAMIC:
14231 return "DT_MIPS_AUX_DYNAMIC";
14232 case DT_MIPS_PLTGOT:
14233 return "DT_MIPS_PLTGOT";
14234 case DT_MIPS_RWPLT:
14235 return "DT_MIPS_RWPLT";
14236 }
14237 }
14238
14239 bfd_boolean
14240 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
14241 {
14242 FILE *file = ptr;
14243
14244 BFD_ASSERT (abfd != NULL && ptr != NULL);
14245
14246 /* Print normal ELF private data. */
14247 _bfd_elf_print_private_bfd_data (abfd, ptr);
14248
14249 /* xgettext:c-format */
14250 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
14251
14252 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
14253 fprintf (file, _(" [abi=O32]"));
14254 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
14255 fprintf (file, _(" [abi=O64]"));
14256 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
14257 fprintf (file, _(" [abi=EABI32]"));
14258 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
14259 fprintf (file, _(" [abi=EABI64]"));
14260 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
14261 fprintf (file, _(" [abi unknown]"));
14262 else if (ABI_N32_P (abfd))
14263 fprintf (file, _(" [abi=N32]"));
14264 else if (ABI_64_P (abfd))
14265 fprintf (file, _(" [abi=64]"));
14266 else
14267 fprintf (file, _(" [no abi set]"));
14268
14269 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
14270 fprintf (file, " [mips1]");
14271 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
14272 fprintf (file, " [mips2]");
14273 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
14274 fprintf (file, " [mips3]");
14275 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
14276 fprintf (file, " [mips4]");
14277 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
14278 fprintf (file, " [mips5]");
14279 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
14280 fprintf (file, " [mips32]");
14281 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
14282 fprintf (file, " [mips64]");
14283 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
14284 fprintf (file, " [mips32r2]");
14285 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
14286 fprintf (file, " [mips64r2]");
14287 else
14288 fprintf (file, _(" [unknown ISA]"));
14289
14290 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14291 fprintf (file, " [mdmx]");
14292
14293 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14294 fprintf (file, " [mips16]");
14295
14296 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14297 fprintf (file, " [micromips]");
14298
14299 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
14300 fprintf (file, " [32bitmode]");
14301 else
14302 fprintf (file, _(" [not 32bitmode]"));
14303
14304 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
14305 fprintf (file, " [noreorder]");
14306
14307 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
14308 fprintf (file, " [PIC]");
14309
14310 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
14311 fprintf (file, " [CPIC]");
14312
14313 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
14314 fprintf (file, " [XGOT]");
14315
14316 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
14317 fprintf (file, " [UCODE]");
14318
14319 fputc ('\n', file);
14320
14321 return TRUE;
14322 }
14323
14324 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
14325 {
14326 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14327 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14328 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
14329 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14330 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14331 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
14332 { NULL, 0, 0, 0, 0 }
14333 };
14334
14335 /* Merge non visibility st_other attributes. Ensure that the
14336 STO_OPTIONAL flag is copied into h->other, even if this is not a
14337 definiton of the symbol. */
14338 void
14339 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
14340 const Elf_Internal_Sym *isym,
14341 bfd_boolean definition,
14342 bfd_boolean dynamic ATTRIBUTE_UNUSED)
14343 {
14344 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
14345 {
14346 unsigned char other;
14347
14348 other = (definition ? isym->st_other : h->other);
14349 other &= ~ELF_ST_VISIBILITY (-1);
14350 h->other = other | ELF_ST_VISIBILITY (h->other);
14351 }
14352
14353 if (!definition
14354 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
14355 h->other |= STO_OPTIONAL;
14356 }
14357
14358 /* Decide whether an undefined symbol is special and can be ignored.
14359 This is the case for OPTIONAL symbols on IRIX. */
14360 bfd_boolean
14361 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
14362 {
14363 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
14364 }
14365
14366 bfd_boolean
14367 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
14368 {
14369 return (sym->st_shndx == SHN_COMMON
14370 || sym->st_shndx == SHN_MIPS_ACOMMON
14371 || sym->st_shndx == SHN_MIPS_SCOMMON);
14372 }
14373
14374 /* Return address for Ith PLT stub in section PLT, for relocation REL
14375 or (bfd_vma) -1 if it should not be included. */
14376
14377 bfd_vma
14378 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
14379 const arelent *rel ATTRIBUTE_UNUSED)
14380 {
14381 return (plt->vma
14382 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
14383 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
14384 }
14385
14386 void
14387 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
14388 {
14389 struct mips_elf_link_hash_table *htab;
14390 Elf_Internal_Ehdr *i_ehdrp;
14391
14392 i_ehdrp = elf_elfheader (abfd);
14393 if (link_info)
14394 {
14395 htab = mips_elf_hash_table (link_info);
14396 BFD_ASSERT (htab != NULL);
14397
14398 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
14399 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
14400 }
14401 }
This page took 0.31345 seconds and 5 git commands to generate.