mips: Check UNDEFWEAK_NO_DYNAMIC_RELOC
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2017 Free Software Foundation, Inc.
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
28
29 /* This file handles functionality common to the different MIPS ABI's. */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "libiberty.h"
35 #include "elf-bfd.h"
36 #include "elfxx-mips.h"
37 #include "elf/mips.h"
38 #include "elf-vxworks.h"
39 #include "dwarf2.h"
40
41 /* Get the ECOFF swapping routines. */
42 #include "coff/sym.h"
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46
47 #include "hashtab.h"
48
49 /* Types of TLS GOT entry. */
50 enum mips_got_tls_type {
51 GOT_TLS_NONE,
52 GOT_TLS_GD,
53 GOT_TLS_LDM,
54 GOT_TLS_IE
55 };
56
57 /* This structure is used to hold information about one GOT entry.
58 There are four types of entry:
59
60 (1) an absolute address
61 requires: abfd == NULL
62 fields: d.address
63
64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 fields: abfd, symndx, d.addend, tls_type
67
68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 requires: abfd != NULL, symndx == -1
70 fields: d.h, tls_type
71
72 (4) a TLS LDM slot
73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 fields: none; there's only one of these per GOT. */
75 struct mips_got_entry
76 {
77 /* One input bfd that needs the GOT entry. */
78 bfd *abfd;
79 /* The index of the symbol, as stored in the relocation r_info, if
80 we have a local symbol; -1 otherwise. */
81 long symndx;
82 union
83 {
84 /* If abfd == NULL, an address that must be stored in the got. */
85 bfd_vma address;
86 /* If abfd != NULL && symndx != -1, the addend of the relocation
87 that should be added to the symbol value. */
88 bfd_vma addend;
89 /* If abfd != NULL && symndx == -1, the hash table entry
90 corresponding to a symbol in the GOT. The symbol's entry
91 is in the local area if h->global_got_area is GGA_NONE,
92 otherwise it is in the global area. */
93 struct mips_elf_link_hash_entry *h;
94 } d;
95
96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
97 symbol entry with r_symndx == 0. */
98 unsigned char tls_type;
99
100 /* True if we have filled in the GOT contents for a TLS entry,
101 and created the associated relocations. */
102 unsigned char tls_initialized;
103
104 /* The offset from the beginning of the .got section to the entry
105 corresponding to this symbol+addend. If it's a global symbol
106 whose offset is yet to be decided, it's going to be -1. */
107 long gotidx;
108 };
109
110 /* This structure represents a GOT page reference from an input bfd.
111 Each instance represents a symbol + ADDEND, where the representation
112 of the symbol depends on whether it is local to the input bfd.
113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
115
116 Page references with SYMNDX >= 0 always become page references
117 in the output. Page references with SYMNDX < 0 only become page
118 references if the symbol binds locally; in other cases, the page
119 reference decays to a global GOT reference. */
120 struct mips_got_page_ref
121 {
122 long symndx;
123 union
124 {
125 struct mips_elf_link_hash_entry *h;
126 bfd *abfd;
127 } u;
128 bfd_vma addend;
129 };
130
131 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132 The structures form a non-overlapping list that is sorted by increasing
133 MIN_ADDEND. */
134 struct mips_got_page_range
135 {
136 struct mips_got_page_range *next;
137 bfd_signed_vma min_addend;
138 bfd_signed_vma max_addend;
139 };
140
141 /* This structure describes the range of addends that are applied to page
142 relocations against a given section. */
143 struct mips_got_page_entry
144 {
145 /* The section that these entries are based on. */
146 asection *sec;
147 /* The ranges for this page entry. */
148 struct mips_got_page_range *ranges;
149 /* The maximum number of page entries needed for RANGES. */
150 bfd_vma num_pages;
151 };
152
153 /* This structure is used to hold .got information when linking. */
154
155 struct mips_got_info
156 {
157 /* The number of global .got entries. */
158 unsigned int global_gotno;
159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
160 unsigned int reloc_only_gotno;
161 /* The number of .got slots used for TLS. */
162 unsigned int tls_gotno;
163 /* The first unused TLS .got entry. Used only during
164 mips_elf_initialize_tls_index. */
165 unsigned int tls_assigned_gotno;
166 /* The number of local .got entries, eventually including page entries. */
167 unsigned int local_gotno;
168 /* The maximum number of page entries needed. */
169 unsigned int page_gotno;
170 /* The number of relocations needed for the GOT entries. */
171 unsigned int relocs;
172 /* The first unused local .got entry. */
173 unsigned int assigned_low_gotno;
174 /* The last unused local .got entry. */
175 unsigned int assigned_high_gotno;
176 /* A hash table holding members of the got. */
177 struct htab *got_entries;
178 /* A hash table holding mips_got_page_ref structures. */
179 struct htab *got_page_refs;
180 /* A hash table of mips_got_page_entry structures. */
181 struct htab *got_page_entries;
182 /* In multi-got links, a pointer to the next got (err, rather, most
183 of the time, it points to the previous got). */
184 struct mips_got_info *next;
185 };
186
187 /* Structure passed when merging bfds' gots. */
188
189 struct mips_elf_got_per_bfd_arg
190 {
191 /* The output bfd. */
192 bfd *obfd;
193 /* The link information. */
194 struct bfd_link_info *info;
195 /* A pointer to the primary got, i.e., the one that's going to get
196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
197 DT_MIPS_GOTSYM. */
198 struct mips_got_info *primary;
199 /* A non-primary got we're trying to merge with other input bfd's
200 gots. */
201 struct mips_got_info *current;
202 /* The maximum number of got entries that can be addressed with a
203 16-bit offset. */
204 unsigned int max_count;
205 /* The maximum number of page entries needed by each got. */
206 unsigned int max_pages;
207 /* The total number of global entries which will live in the
208 primary got and be automatically relocated. This includes
209 those not referenced by the primary GOT but included in
210 the "master" GOT. */
211 unsigned int global_count;
212 };
213
214 /* A structure used to pass information to htab_traverse callbacks
215 when laying out the GOT. */
216
217 struct mips_elf_traverse_got_arg
218 {
219 struct bfd_link_info *info;
220 struct mips_got_info *g;
221 int value;
222 };
223
224 struct _mips_elf_section_data
225 {
226 struct bfd_elf_section_data elf;
227 union
228 {
229 bfd_byte *tdata;
230 } u;
231 };
232
233 #define mips_elf_section_data(sec) \
234 ((struct _mips_elf_section_data *) elf_section_data (sec))
235
236 #define is_mips_elf(bfd) \
237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
238 && elf_tdata (bfd) != NULL \
239 && elf_object_id (bfd) == MIPS_ELF_DATA)
240
241 /* The ABI says that every symbol used by dynamic relocations must have
242 a global GOT entry. Among other things, this provides the dynamic
243 linker with a free, directly-indexed cache. The GOT can therefore
244 contain symbols that are not referenced by GOT relocations themselves
245 (in other words, it may have symbols that are not referenced by things
246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
247
248 GOT relocations are less likely to overflow if we put the associated
249 GOT entries towards the beginning. We therefore divide the global
250 GOT entries into two areas: "normal" and "reloc-only". Entries in
251 the first area can be used for both dynamic relocations and GP-relative
252 accesses, while those in the "reloc-only" area are for dynamic
253 relocations only.
254
255 These GGA_* ("Global GOT Area") values are organised so that lower
256 values are more general than higher values. Also, non-GGA_NONE
257 values are ordered by the position of the area in the GOT. */
258 #define GGA_NORMAL 0
259 #define GGA_RELOC_ONLY 1
260 #define GGA_NONE 2
261
262 /* Information about a non-PIC interface to a PIC function. There are
263 two ways of creating these interfaces. The first is to add:
264
265 lui $25,%hi(func)
266 addiu $25,$25,%lo(func)
267
268 immediately before a PIC function "func". The second is to add:
269
270 lui $25,%hi(func)
271 j func
272 addiu $25,$25,%lo(func)
273
274 to a separate trampoline section.
275
276 Stubs of the first kind go in a new section immediately before the
277 target function. Stubs of the second kind go in a single section
278 pointed to by the hash table's "strampoline" field. */
279 struct mips_elf_la25_stub {
280 /* The generated section that contains this stub. */
281 asection *stub_section;
282
283 /* The offset of the stub from the start of STUB_SECTION. */
284 bfd_vma offset;
285
286 /* One symbol for the original function. Its location is available
287 in H->root.root.u.def. */
288 struct mips_elf_link_hash_entry *h;
289 };
290
291 /* Macros for populating a mips_elf_la25_stub. */
292
293 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
294 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
295 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
296 #define LA25_LUI_MICROMIPS(VAL) \
297 (0x41b90000 | (VAL)) /* lui t9,VAL */
298 #define LA25_J_MICROMIPS(VAL) \
299 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
300 #define LA25_ADDIU_MICROMIPS(VAL) \
301 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
302
303 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
304 the dynamic symbols. */
305
306 struct mips_elf_hash_sort_data
307 {
308 /* The symbol in the global GOT with the lowest dynamic symbol table
309 index. */
310 struct elf_link_hash_entry *low;
311 /* The least dynamic symbol table index corresponding to a non-TLS
312 symbol with a GOT entry. */
313 bfd_size_type min_got_dynindx;
314 /* The greatest dynamic symbol table index corresponding to a symbol
315 with a GOT entry that is not referenced (e.g., a dynamic symbol
316 with dynamic relocations pointing to it from non-primary GOTs). */
317 bfd_size_type max_unref_got_dynindx;
318 /* The greatest dynamic symbol table index corresponding to a local
319 symbol. */
320 bfd_size_type max_local_dynindx;
321 /* The greatest dynamic symbol table index corresponding to an external
322 symbol without a GOT entry. */
323 bfd_size_type max_non_got_dynindx;
324 };
325
326 /* We make up to two PLT entries if needed, one for standard MIPS code
327 and one for compressed code, either a MIPS16 or microMIPS one. We
328 keep a separate record of traditional lazy-binding stubs, for easier
329 processing. */
330
331 struct plt_entry
332 {
333 /* Traditional SVR4 stub offset, or -1 if none. */
334 bfd_vma stub_offset;
335
336 /* Standard PLT entry offset, or -1 if none. */
337 bfd_vma mips_offset;
338
339 /* Compressed PLT entry offset, or -1 if none. */
340 bfd_vma comp_offset;
341
342 /* The corresponding .got.plt index, or -1 if none. */
343 bfd_vma gotplt_index;
344
345 /* Whether we need a standard PLT entry. */
346 unsigned int need_mips : 1;
347
348 /* Whether we need a compressed PLT entry. */
349 unsigned int need_comp : 1;
350 };
351
352 /* The MIPS ELF linker needs additional information for each symbol in
353 the global hash table. */
354
355 struct mips_elf_link_hash_entry
356 {
357 struct elf_link_hash_entry root;
358
359 /* External symbol information. */
360 EXTR esym;
361
362 /* The la25 stub we have created for ths symbol, if any. */
363 struct mips_elf_la25_stub *la25_stub;
364
365 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
366 this symbol. */
367 unsigned int possibly_dynamic_relocs;
368
369 /* If there is a stub that 32 bit functions should use to call this
370 16 bit function, this points to the section containing the stub. */
371 asection *fn_stub;
372
373 /* If there is a stub that 16 bit functions should use to call this
374 32 bit function, this points to the section containing the stub. */
375 asection *call_stub;
376
377 /* This is like the call_stub field, but it is used if the function
378 being called returns a floating point value. */
379 asection *call_fp_stub;
380
381 /* The highest GGA_* value that satisfies all references to this symbol. */
382 unsigned int global_got_area : 2;
383
384 /* True if all GOT relocations against this symbol are for calls. This is
385 a looser condition than no_fn_stub below, because there may be other
386 non-call non-GOT relocations against the symbol. */
387 unsigned int got_only_for_calls : 1;
388
389 /* True if one of the relocations described by possibly_dynamic_relocs
390 is against a readonly section. */
391 unsigned int readonly_reloc : 1;
392
393 /* True if there is a relocation against this symbol that must be
394 resolved by the static linker (in other words, if the relocation
395 cannot possibly be made dynamic). */
396 unsigned int has_static_relocs : 1;
397
398 /* True if we must not create a .MIPS.stubs entry for this symbol.
399 This is set, for example, if there are relocations related to
400 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
401 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
402 unsigned int no_fn_stub : 1;
403
404 /* Whether we need the fn_stub; this is true if this symbol appears
405 in any relocs other than a 16 bit call. */
406 unsigned int need_fn_stub : 1;
407
408 /* True if this symbol is referenced by branch relocations from
409 any non-PIC input file. This is used to determine whether an
410 la25 stub is required. */
411 unsigned int has_nonpic_branches : 1;
412
413 /* Does this symbol need a traditional MIPS lazy-binding stub
414 (as opposed to a PLT entry)? */
415 unsigned int needs_lazy_stub : 1;
416
417 /* Does this symbol resolve to a PLT entry? */
418 unsigned int use_plt_entry : 1;
419 };
420
421 /* MIPS ELF linker hash table. */
422
423 struct mips_elf_link_hash_table
424 {
425 struct elf_link_hash_table root;
426
427 /* The number of .rtproc entries. */
428 bfd_size_type procedure_count;
429
430 /* The size of the .compact_rel section (if SGI_COMPAT). */
431 bfd_size_type compact_rel_size;
432
433 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
434 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
435 bfd_boolean use_rld_obj_head;
436
437 /* The __rld_map or __rld_obj_head symbol. */
438 struct elf_link_hash_entry *rld_symbol;
439
440 /* This is set if we see any mips16 stub sections. */
441 bfd_boolean mips16_stubs_seen;
442
443 /* True if we can generate copy relocs and PLTs. */
444 bfd_boolean use_plts_and_copy_relocs;
445
446 /* True if we can only use 32-bit microMIPS instructions. */
447 bfd_boolean insn32;
448
449 /* True if we suppress checks for invalid branches between ISA modes. */
450 bfd_boolean ignore_branch_isa;
451
452 /* True if we're generating code for VxWorks. */
453 bfd_boolean is_vxworks;
454
455 /* True if we already reported the small-data section overflow. */
456 bfd_boolean small_data_overflow_reported;
457
458 /* Shortcuts to some dynamic sections, or NULL if they are not
459 being used. */
460 asection *srelplt2;
461 asection *sstubs;
462
463 /* The master GOT information. */
464 struct mips_got_info *got_info;
465
466 /* The global symbol in the GOT with the lowest index in the dynamic
467 symbol table. */
468 struct elf_link_hash_entry *global_gotsym;
469
470 /* The size of the PLT header in bytes. */
471 bfd_vma plt_header_size;
472
473 /* The size of a standard PLT entry in bytes. */
474 bfd_vma plt_mips_entry_size;
475
476 /* The size of a compressed PLT entry in bytes. */
477 bfd_vma plt_comp_entry_size;
478
479 /* The offset of the next standard PLT entry to create. */
480 bfd_vma plt_mips_offset;
481
482 /* The offset of the next compressed PLT entry to create. */
483 bfd_vma plt_comp_offset;
484
485 /* The index of the next .got.plt entry to create. */
486 bfd_vma plt_got_index;
487
488 /* The number of functions that need a lazy-binding stub. */
489 bfd_vma lazy_stub_count;
490
491 /* The size of a function stub entry in bytes. */
492 bfd_vma function_stub_size;
493
494 /* The number of reserved entries at the beginning of the GOT. */
495 unsigned int reserved_gotno;
496
497 /* The section used for mips_elf_la25_stub trampolines.
498 See the comment above that structure for details. */
499 asection *strampoline;
500
501 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
502 pairs. */
503 htab_t la25_stubs;
504
505 /* A function FN (NAME, IS, OS) that creates a new input section
506 called NAME and links it to output section OS. If IS is nonnull,
507 the new section should go immediately before it, otherwise it
508 should go at the (current) beginning of OS.
509
510 The function returns the new section on success, otherwise it
511 returns null. */
512 asection *(*add_stub_section) (const char *, asection *, asection *);
513
514 /* Small local sym cache. */
515 struct sym_cache sym_cache;
516
517 /* Is the PLT header compressed? */
518 unsigned int plt_header_is_comp : 1;
519 };
520
521 /* Get the MIPS ELF linker hash table from a link_info structure. */
522
523 #define mips_elf_hash_table(p) \
524 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
525 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
526
527 /* A structure used to communicate with htab_traverse callbacks. */
528 struct mips_htab_traverse_info
529 {
530 /* The usual link-wide information. */
531 struct bfd_link_info *info;
532 bfd *output_bfd;
533
534 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
535 bfd_boolean error;
536 };
537
538 /* MIPS ELF private object data. */
539
540 struct mips_elf_obj_tdata
541 {
542 /* Generic ELF private object data. */
543 struct elf_obj_tdata root;
544
545 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
546 bfd *abi_fp_bfd;
547
548 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
549 bfd *abi_msa_bfd;
550
551 /* The abiflags for this object. */
552 Elf_Internal_ABIFlags_v0 abiflags;
553 bfd_boolean abiflags_valid;
554
555 /* The GOT requirements of input bfds. */
556 struct mips_got_info *got;
557
558 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
559 included directly in this one, but there's no point to wasting
560 the memory just for the infrequently called find_nearest_line. */
561 struct mips_elf_find_line *find_line_info;
562
563 /* An array of stub sections indexed by symbol number. */
564 asection **local_stubs;
565 asection **local_call_stubs;
566
567 /* The Irix 5 support uses two virtual sections, which represent
568 text/data symbols defined in dynamic objects. */
569 asymbol *elf_data_symbol;
570 asymbol *elf_text_symbol;
571 asection *elf_data_section;
572 asection *elf_text_section;
573 };
574
575 /* Get MIPS ELF private object data from BFD's tdata. */
576
577 #define mips_elf_tdata(bfd) \
578 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
579
580 #define TLS_RELOC_P(r_type) \
581 (r_type == R_MIPS_TLS_DTPMOD32 \
582 || r_type == R_MIPS_TLS_DTPMOD64 \
583 || r_type == R_MIPS_TLS_DTPREL32 \
584 || r_type == R_MIPS_TLS_DTPREL64 \
585 || r_type == R_MIPS_TLS_GD \
586 || r_type == R_MIPS_TLS_LDM \
587 || r_type == R_MIPS_TLS_DTPREL_HI16 \
588 || r_type == R_MIPS_TLS_DTPREL_LO16 \
589 || r_type == R_MIPS_TLS_GOTTPREL \
590 || r_type == R_MIPS_TLS_TPREL32 \
591 || r_type == R_MIPS_TLS_TPREL64 \
592 || r_type == R_MIPS_TLS_TPREL_HI16 \
593 || r_type == R_MIPS_TLS_TPREL_LO16 \
594 || r_type == R_MIPS16_TLS_GD \
595 || r_type == R_MIPS16_TLS_LDM \
596 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
597 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
598 || r_type == R_MIPS16_TLS_GOTTPREL \
599 || r_type == R_MIPS16_TLS_TPREL_HI16 \
600 || r_type == R_MIPS16_TLS_TPREL_LO16 \
601 || r_type == R_MICROMIPS_TLS_GD \
602 || r_type == R_MICROMIPS_TLS_LDM \
603 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
604 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
605 || r_type == R_MICROMIPS_TLS_GOTTPREL \
606 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
607 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
608
609 /* Structure used to pass information to mips_elf_output_extsym. */
610
611 struct extsym_info
612 {
613 bfd *abfd;
614 struct bfd_link_info *info;
615 struct ecoff_debug_info *debug;
616 const struct ecoff_debug_swap *swap;
617 bfd_boolean failed;
618 };
619
620 /* The names of the runtime procedure table symbols used on IRIX5. */
621
622 static const char * const mips_elf_dynsym_rtproc_names[] =
623 {
624 "_procedure_table",
625 "_procedure_string_table",
626 "_procedure_table_size",
627 NULL
628 };
629
630 /* These structures are used to generate the .compact_rel section on
631 IRIX5. */
632
633 typedef struct
634 {
635 unsigned long id1; /* Always one? */
636 unsigned long num; /* Number of compact relocation entries. */
637 unsigned long id2; /* Always two? */
638 unsigned long offset; /* The file offset of the first relocation. */
639 unsigned long reserved0; /* Zero? */
640 unsigned long reserved1; /* Zero? */
641 } Elf32_compact_rel;
642
643 typedef struct
644 {
645 bfd_byte id1[4];
646 bfd_byte num[4];
647 bfd_byte id2[4];
648 bfd_byte offset[4];
649 bfd_byte reserved0[4];
650 bfd_byte reserved1[4];
651 } Elf32_External_compact_rel;
652
653 typedef struct
654 {
655 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
656 unsigned int rtype : 4; /* Relocation types. See below. */
657 unsigned int dist2to : 8;
658 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
659 unsigned long konst; /* KONST field. See below. */
660 unsigned long vaddr; /* VADDR to be relocated. */
661 } Elf32_crinfo;
662
663 typedef struct
664 {
665 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
666 unsigned int rtype : 4; /* Relocation types. See below. */
667 unsigned int dist2to : 8;
668 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
669 unsigned long konst; /* KONST field. See below. */
670 } Elf32_crinfo2;
671
672 typedef struct
673 {
674 bfd_byte info[4];
675 bfd_byte konst[4];
676 bfd_byte vaddr[4];
677 } Elf32_External_crinfo;
678
679 typedef struct
680 {
681 bfd_byte info[4];
682 bfd_byte konst[4];
683 } Elf32_External_crinfo2;
684
685 /* These are the constants used to swap the bitfields in a crinfo. */
686
687 #define CRINFO_CTYPE (0x1)
688 #define CRINFO_CTYPE_SH (31)
689 #define CRINFO_RTYPE (0xf)
690 #define CRINFO_RTYPE_SH (27)
691 #define CRINFO_DIST2TO (0xff)
692 #define CRINFO_DIST2TO_SH (19)
693 #define CRINFO_RELVADDR (0x7ffff)
694 #define CRINFO_RELVADDR_SH (0)
695
696 /* A compact relocation info has long (3 words) or short (2 words)
697 formats. A short format doesn't have VADDR field and relvaddr
698 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
699 #define CRF_MIPS_LONG 1
700 #define CRF_MIPS_SHORT 0
701
702 /* There are 4 types of compact relocation at least. The value KONST
703 has different meaning for each type:
704
705 (type) (konst)
706 CT_MIPS_REL32 Address in data
707 CT_MIPS_WORD Address in word (XXX)
708 CT_MIPS_GPHI_LO GP - vaddr
709 CT_MIPS_JMPAD Address to jump
710 */
711
712 #define CRT_MIPS_REL32 0xa
713 #define CRT_MIPS_WORD 0xb
714 #define CRT_MIPS_GPHI_LO 0xc
715 #define CRT_MIPS_JMPAD 0xd
716
717 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
718 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
719 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
720 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
721 \f
722 /* The structure of the runtime procedure descriptor created by the
723 loader for use by the static exception system. */
724
725 typedef struct runtime_pdr {
726 bfd_vma adr; /* Memory address of start of procedure. */
727 long regmask; /* Save register mask. */
728 long regoffset; /* Save register offset. */
729 long fregmask; /* Save floating point register mask. */
730 long fregoffset; /* Save floating point register offset. */
731 long frameoffset; /* Frame size. */
732 short framereg; /* Frame pointer register. */
733 short pcreg; /* Offset or reg of return pc. */
734 long irpss; /* Index into the runtime string table. */
735 long reserved;
736 struct exception_info *exception_info;/* Pointer to exception array. */
737 } RPDR, *pRPDR;
738 #define cbRPDR sizeof (RPDR)
739 #define rpdNil ((pRPDR) 0)
740 \f
741 static struct mips_got_entry *mips_elf_create_local_got_entry
742 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
743 struct mips_elf_link_hash_entry *, int);
744 static bfd_boolean mips_elf_sort_hash_table_f
745 (struct mips_elf_link_hash_entry *, void *);
746 static bfd_vma mips_elf_high
747 (bfd_vma);
748 static bfd_boolean mips_elf_create_dynamic_relocation
749 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
750 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
751 bfd_vma *, asection *);
752 static bfd_vma mips_elf_adjust_gp
753 (bfd *, struct mips_got_info *, bfd *);
754
755 /* This will be used when we sort the dynamic relocation records. */
756 static bfd *reldyn_sorting_bfd;
757
758 /* True if ABFD is for CPUs with load interlocking that include
759 non-MIPS1 CPUs and R3900. */
760 #define LOAD_INTERLOCKS_P(abfd) \
761 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
762 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
763
764 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
765 This should be safe for all architectures. We enable this predicate
766 for RM9000 for now. */
767 #define JAL_TO_BAL_P(abfd) \
768 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
769
770 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
771 This should be safe for all architectures. We enable this predicate for
772 all CPUs. */
773 #define JALR_TO_BAL_P(abfd) 1
774
775 /* True if ABFD is for CPUs that are faster if JR is converted to B.
776 This should be safe for all architectures. We enable this predicate for
777 all CPUs. */
778 #define JR_TO_B_P(abfd) 1
779
780 /* True if ABFD is a PIC object. */
781 #define PIC_OBJECT_P(abfd) \
782 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
783
784 /* Nonzero if ABFD is using the O32 ABI. */
785 #define ABI_O32_P(abfd) \
786 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
787
788 /* Nonzero if ABFD is using the N32 ABI. */
789 #define ABI_N32_P(abfd) \
790 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
791
792 /* Nonzero if ABFD is using the N64 ABI. */
793 #define ABI_64_P(abfd) \
794 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
795
796 /* Nonzero if ABFD is using NewABI conventions. */
797 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
798
799 /* Nonzero if ABFD has microMIPS code. */
800 #define MICROMIPS_P(abfd) \
801 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
802
803 /* Nonzero if ABFD is MIPS R6. */
804 #define MIPSR6_P(abfd) \
805 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
806 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
807
808 /* The IRIX compatibility level we are striving for. */
809 #define IRIX_COMPAT(abfd) \
810 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
811
812 /* Whether we are trying to be compatible with IRIX at all. */
813 #define SGI_COMPAT(abfd) \
814 (IRIX_COMPAT (abfd) != ict_none)
815
816 /* The name of the options section. */
817 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
818 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
819
820 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
821 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
822 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
823 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
824
825 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
826 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
827 (strcmp (NAME, ".MIPS.abiflags") == 0)
828
829 /* Whether the section is readonly. */
830 #define MIPS_ELF_READONLY_SECTION(sec) \
831 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
832 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
833
834 /* The name of the stub section. */
835 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
836
837 /* The size of an external REL relocation. */
838 #define MIPS_ELF_REL_SIZE(abfd) \
839 (get_elf_backend_data (abfd)->s->sizeof_rel)
840
841 /* The size of an external RELA relocation. */
842 #define MIPS_ELF_RELA_SIZE(abfd) \
843 (get_elf_backend_data (abfd)->s->sizeof_rela)
844
845 /* The size of an external dynamic table entry. */
846 #define MIPS_ELF_DYN_SIZE(abfd) \
847 (get_elf_backend_data (abfd)->s->sizeof_dyn)
848
849 /* The size of a GOT entry. */
850 #define MIPS_ELF_GOT_SIZE(abfd) \
851 (get_elf_backend_data (abfd)->s->arch_size / 8)
852
853 /* The size of the .rld_map section. */
854 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
855 (get_elf_backend_data (abfd)->s->arch_size / 8)
856
857 /* The size of a symbol-table entry. */
858 #define MIPS_ELF_SYM_SIZE(abfd) \
859 (get_elf_backend_data (abfd)->s->sizeof_sym)
860
861 /* The default alignment for sections, as a power of two. */
862 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
863 (get_elf_backend_data (abfd)->s->log_file_align)
864
865 /* Get word-sized data. */
866 #define MIPS_ELF_GET_WORD(abfd, ptr) \
867 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
868
869 /* Put out word-sized data. */
870 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
871 (ABI_64_P (abfd) \
872 ? bfd_put_64 (abfd, val, ptr) \
873 : bfd_put_32 (abfd, val, ptr))
874
875 /* The opcode for word-sized loads (LW or LD). */
876 #define MIPS_ELF_LOAD_WORD(abfd) \
877 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
878
879 /* Add a dynamic symbol table-entry. */
880 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
881 _bfd_elf_add_dynamic_entry (info, tag, val)
882
883 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
884 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
885
886 /* The name of the dynamic relocation section. */
887 #define MIPS_ELF_REL_DYN_NAME(INFO) \
888 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
889
890 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
891 from smaller values. Start with zero, widen, *then* decrement. */
892 #define MINUS_ONE (((bfd_vma)0) - 1)
893 #define MINUS_TWO (((bfd_vma)0) - 2)
894
895 /* The value to write into got[1] for SVR4 targets, to identify it is
896 a GNU object. The dynamic linker can then use got[1] to store the
897 module pointer. */
898 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
899 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
900
901 /* The offset of $gp from the beginning of the .got section. */
902 #define ELF_MIPS_GP_OFFSET(INFO) \
903 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
904
905 /* The maximum size of the GOT for it to be addressable using 16-bit
906 offsets from $gp. */
907 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
908
909 /* Instructions which appear in a stub. */
910 #define STUB_LW(abfd) \
911 ((ABI_64_P (abfd) \
912 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
913 : 0x8f998010)) /* lw t9,0x8010(gp) */
914 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
915 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
916 #define STUB_JALR 0x0320f809 /* jalr ra,t9 */
917 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
918 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
919 #define STUB_LI16S(abfd, VAL) \
920 ((ABI_64_P (abfd) \
921 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
922 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
923
924 /* Likewise for the microMIPS ASE. */
925 #define STUB_LW_MICROMIPS(abfd) \
926 (ABI_64_P (abfd) \
927 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
928 : 0xff3c8010) /* lw t9,0x8010(gp) */
929 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
930 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
931 #define STUB_LUI_MICROMIPS(VAL) \
932 (0x41b80000 + (VAL)) /* lui t8,VAL */
933 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
934 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
935 #define STUB_ORI_MICROMIPS(VAL) \
936 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
937 #define STUB_LI16U_MICROMIPS(VAL) \
938 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
939 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
940 (ABI_64_P (abfd) \
941 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
942 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
943
944 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
945 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
946 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
947 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
948 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
949 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
950
951 /* The name of the dynamic interpreter. This is put in the .interp
952 section. */
953
954 #define ELF_DYNAMIC_INTERPRETER(abfd) \
955 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
956 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
957 : "/usr/lib/libc.so.1")
958
959 #ifdef BFD64
960 #define MNAME(bfd,pre,pos) \
961 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
962 #define ELF_R_SYM(bfd, i) \
963 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
964 #define ELF_R_TYPE(bfd, i) \
965 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
966 #define ELF_R_INFO(bfd, s, t) \
967 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
968 #else
969 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
970 #define ELF_R_SYM(bfd, i) \
971 (ELF32_R_SYM (i))
972 #define ELF_R_TYPE(bfd, i) \
973 (ELF32_R_TYPE (i))
974 #define ELF_R_INFO(bfd, s, t) \
975 (ELF32_R_INFO (s, t))
976 #endif
977 \f
978 /* The mips16 compiler uses a couple of special sections to handle
979 floating point arguments.
980
981 Section names that look like .mips16.fn.FNNAME contain stubs that
982 copy floating point arguments from the fp regs to the gp regs and
983 then jump to FNNAME. If any 32 bit function calls FNNAME, the
984 call should be redirected to the stub instead. If no 32 bit
985 function calls FNNAME, the stub should be discarded. We need to
986 consider any reference to the function, not just a call, because
987 if the address of the function is taken we will need the stub,
988 since the address might be passed to a 32 bit function.
989
990 Section names that look like .mips16.call.FNNAME contain stubs
991 that copy floating point arguments from the gp regs to the fp
992 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
993 then any 16 bit function that calls FNNAME should be redirected
994 to the stub instead. If FNNAME is not a 32 bit function, the
995 stub should be discarded.
996
997 .mips16.call.fp.FNNAME sections are similar, but contain stubs
998 which call FNNAME and then copy the return value from the fp regs
999 to the gp regs. These stubs store the return value in $18 while
1000 calling FNNAME; any function which might call one of these stubs
1001 must arrange to save $18 around the call. (This case is not
1002 needed for 32 bit functions that call 16 bit functions, because
1003 16 bit functions always return floating point values in both
1004 $f0/$f1 and $2/$3.)
1005
1006 Note that in all cases FNNAME might be defined statically.
1007 Therefore, FNNAME is not used literally. Instead, the relocation
1008 information will indicate which symbol the section is for.
1009
1010 We record any stubs that we find in the symbol table. */
1011
1012 #define FN_STUB ".mips16.fn."
1013 #define CALL_STUB ".mips16.call."
1014 #define CALL_FP_STUB ".mips16.call.fp."
1015
1016 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1017 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1018 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1019 \f
1020 /* The format of the first PLT entry in an O32 executable. */
1021 static const bfd_vma mips_o32_exec_plt0_entry[] =
1022 {
1023 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1024 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1025 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1026 0x031cc023, /* subu $24, $24, $28 */
1027 0x03e07825, /* or t7, ra, zero */
1028 0x0018c082, /* srl $24, $24, 2 */
1029 0x0320f809, /* jalr $25 */
1030 0x2718fffe /* subu $24, $24, 2 */
1031 };
1032
1033 /* The format of the first PLT entry in an N32 executable. Different
1034 because gp ($28) is not available; we use t2 ($14) instead. */
1035 static const bfd_vma mips_n32_exec_plt0_entry[] =
1036 {
1037 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1038 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1039 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1040 0x030ec023, /* subu $24, $24, $14 */
1041 0x03e07825, /* or t7, ra, zero */
1042 0x0018c082, /* srl $24, $24, 2 */
1043 0x0320f809, /* jalr $25 */
1044 0x2718fffe /* subu $24, $24, 2 */
1045 };
1046
1047 /* The format of the first PLT entry in an N64 executable. Different
1048 from N32 because of the increased size of GOT entries. */
1049 static const bfd_vma mips_n64_exec_plt0_entry[] =
1050 {
1051 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1052 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1053 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1054 0x030ec023, /* subu $24, $24, $14 */
1055 0x03e07825, /* or t7, ra, zero */
1056 0x0018c0c2, /* srl $24, $24, 3 */
1057 0x0320f809, /* jalr $25 */
1058 0x2718fffe /* subu $24, $24, 2 */
1059 };
1060
1061 /* The format of the microMIPS first PLT entry in an O32 executable.
1062 We rely on v0 ($2) rather than t8 ($24) to contain the address
1063 of the GOTPLT entry handled, so this stub may only be used when
1064 all the subsequent PLT entries are microMIPS code too.
1065
1066 The trailing NOP is for alignment and correct disassembly only. */
1067 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1068 {
1069 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1070 0xff23, 0x0000, /* lw $25, 0($3) */
1071 0x0535, /* subu $2, $2, $3 */
1072 0x2525, /* srl $2, $2, 2 */
1073 0x3302, 0xfffe, /* subu $24, $2, 2 */
1074 0x0dff, /* move $15, $31 */
1075 0x45f9, /* jalrs $25 */
1076 0x0f83, /* move $28, $3 */
1077 0x0c00 /* nop */
1078 };
1079
1080 /* The format of the microMIPS first PLT entry in an O32 executable
1081 in the insn32 mode. */
1082 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1083 {
1084 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1085 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1086 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1087 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1088 0x001f, 0x7a90, /* or $15, $31, zero */
1089 0x0318, 0x1040, /* srl $24, $24, 2 */
1090 0x03f9, 0x0f3c, /* jalr $25 */
1091 0x3318, 0xfffe /* subu $24, $24, 2 */
1092 };
1093
1094 /* The format of subsequent standard PLT entries. */
1095 static const bfd_vma mips_exec_plt_entry[] =
1096 {
1097 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1098 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1099 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1100 0x03200008 /* jr $25 */
1101 };
1102
1103 /* In the following PLT entry the JR and ADDIU instructions will
1104 be swapped in _bfd_mips_elf_finish_dynamic_symbol because
1105 LOAD_INTERLOCKS_P will be true for MIPS R6. */
1106 static const bfd_vma mipsr6_exec_plt_entry[] =
1107 {
1108 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1109 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1110 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1111 0x03200009 /* jr $25 */
1112 };
1113
1114 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1115 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1116 directly addressable. */
1117 static const bfd_vma mips16_o32_exec_plt_entry[] =
1118 {
1119 0xb203, /* lw $2, 12($pc) */
1120 0x9a60, /* lw $3, 0($2) */
1121 0x651a, /* move $24, $2 */
1122 0xeb00, /* jr $3 */
1123 0x653b, /* move $25, $3 */
1124 0x6500, /* nop */
1125 0x0000, 0x0000 /* .word (.got.plt entry) */
1126 };
1127
1128 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1129 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1130 static const bfd_vma micromips_o32_exec_plt_entry[] =
1131 {
1132 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1133 0xff22, 0x0000, /* lw $25, 0($2) */
1134 0x4599, /* jr $25 */
1135 0x0f02 /* move $24, $2 */
1136 };
1137
1138 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1139 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1140 {
1141 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1142 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1143 0x0019, 0x0f3c, /* jr $25 */
1144 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1145 };
1146
1147 /* The format of the first PLT entry in a VxWorks executable. */
1148 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1149 {
1150 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1151 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1152 0x8f390008, /* lw t9, 8(t9) */
1153 0x00000000, /* nop */
1154 0x03200008, /* jr t9 */
1155 0x00000000 /* nop */
1156 };
1157
1158 /* The format of subsequent PLT entries. */
1159 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1160 {
1161 0x10000000, /* b .PLT_resolver */
1162 0x24180000, /* li t8, <pltindex> */
1163 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1164 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1165 0x8f390000, /* lw t9, 0(t9) */
1166 0x00000000, /* nop */
1167 0x03200008, /* jr t9 */
1168 0x00000000 /* nop */
1169 };
1170
1171 /* The format of the first PLT entry in a VxWorks shared object. */
1172 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1173 {
1174 0x8f990008, /* lw t9, 8(gp) */
1175 0x00000000, /* nop */
1176 0x03200008, /* jr t9 */
1177 0x00000000, /* nop */
1178 0x00000000, /* nop */
1179 0x00000000 /* nop */
1180 };
1181
1182 /* The format of subsequent PLT entries. */
1183 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1184 {
1185 0x10000000, /* b .PLT_resolver */
1186 0x24180000 /* li t8, <pltindex> */
1187 };
1188 \f
1189 /* microMIPS 32-bit opcode helper installer. */
1190
1191 static void
1192 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1193 {
1194 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1195 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1196 }
1197
1198 /* microMIPS 32-bit opcode helper retriever. */
1199
1200 static bfd_vma
1201 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1202 {
1203 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1204 }
1205 \f
1206 /* Look up an entry in a MIPS ELF linker hash table. */
1207
1208 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1209 ((struct mips_elf_link_hash_entry *) \
1210 elf_link_hash_lookup (&(table)->root, (string), (create), \
1211 (copy), (follow)))
1212
1213 /* Traverse a MIPS ELF linker hash table. */
1214
1215 #define mips_elf_link_hash_traverse(table, func, info) \
1216 (elf_link_hash_traverse \
1217 (&(table)->root, \
1218 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1219 (info)))
1220
1221 /* Find the base offsets for thread-local storage in this object,
1222 for GD/LD and IE/LE respectively. */
1223
1224 #define TP_OFFSET 0x7000
1225 #define DTP_OFFSET 0x8000
1226
1227 static bfd_vma
1228 dtprel_base (struct bfd_link_info *info)
1229 {
1230 /* If tls_sec is NULL, we should have signalled an error already. */
1231 if (elf_hash_table (info)->tls_sec == NULL)
1232 return 0;
1233 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1234 }
1235
1236 static bfd_vma
1237 tprel_base (struct bfd_link_info *info)
1238 {
1239 /* If tls_sec is NULL, we should have signalled an error already. */
1240 if (elf_hash_table (info)->tls_sec == NULL)
1241 return 0;
1242 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1243 }
1244
1245 /* Create an entry in a MIPS ELF linker hash table. */
1246
1247 static struct bfd_hash_entry *
1248 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1249 struct bfd_hash_table *table, const char *string)
1250 {
1251 struct mips_elf_link_hash_entry *ret =
1252 (struct mips_elf_link_hash_entry *) entry;
1253
1254 /* Allocate the structure if it has not already been allocated by a
1255 subclass. */
1256 if (ret == NULL)
1257 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1258 if (ret == NULL)
1259 return (struct bfd_hash_entry *) ret;
1260
1261 /* Call the allocation method of the superclass. */
1262 ret = ((struct mips_elf_link_hash_entry *)
1263 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1264 table, string));
1265 if (ret != NULL)
1266 {
1267 /* Set local fields. */
1268 memset (&ret->esym, 0, sizeof (EXTR));
1269 /* We use -2 as a marker to indicate that the information has
1270 not been set. -1 means there is no associated ifd. */
1271 ret->esym.ifd = -2;
1272 ret->la25_stub = 0;
1273 ret->possibly_dynamic_relocs = 0;
1274 ret->fn_stub = NULL;
1275 ret->call_stub = NULL;
1276 ret->call_fp_stub = NULL;
1277 ret->global_got_area = GGA_NONE;
1278 ret->got_only_for_calls = TRUE;
1279 ret->readonly_reloc = FALSE;
1280 ret->has_static_relocs = FALSE;
1281 ret->no_fn_stub = FALSE;
1282 ret->need_fn_stub = FALSE;
1283 ret->has_nonpic_branches = FALSE;
1284 ret->needs_lazy_stub = FALSE;
1285 ret->use_plt_entry = FALSE;
1286 }
1287
1288 return (struct bfd_hash_entry *) ret;
1289 }
1290
1291 /* Allocate MIPS ELF private object data. */
1292
1293 bfd_boolean
1294 _bfd_mips_elf_mkobject (bfd *abfd)
1295 {
1296 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1297 MIPS_ELF_DATA);
1298 }
1299
1300 bfd_boolean
1301 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1302 {
1303 if (!sec->used_by_bfd)
1304 {
1305 struct _mips_elf_section_data *sdata;
1306 bfd_size_type amt = sizeof (*sdata);
1307
1308 sdata = bfd_zalloc (abfd, amt);
1309 if (sdata == NULL)
1310 return FALSE;
1311 sec->used_by_bfd = sdata;
1312 }
1313
1314 return _bfd_elf_new_section_hook (abfd, sec);
1315 }
1316 \f
1317 /* Read ECOFF debugging information from a .mdebug section into a
1318 ecoff_debug_info structure. */
1319
1320 bfd_boolean
1321 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1322 struct ecoff_debug_info *debug)
1323 {
1324 HDRR *symhdr;
1325 const struct ecoff_debug_swap *swap;
1326 char *ext_hdr;
1327
1328 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1329 memset (debug, 0, sizeof (*debug));
1330
1331 ext_hdr = bfd_malloc (swap->external_hdr_size);
1332 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1333 goto error_return;
1334
1335 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1336 swap->external_hdr_size))
1337 goto error_return;
1338
1339 symhdr = &debug->symbolic_header;
1340 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1341
1342 /* The symbolic header contains absolute file offsets and sizes to
1343 read. */
1344 #define READ(ptr, offset, count, size, type) \
1345 if (symhdr->count == 0) \
1346 debug->ptr = NULL; \
1347 else \
1348 { \
1349 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1350 debug->ptr = bfd_malloc (amt); \
1351 if (debug->ptr == NULL) \
1352 goto error_return; \
1353 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1354 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1355 goto error_return; \
1356 }
1357
1358 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1359 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1360 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1361 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1362 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1363 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1364 union aux_ext *);
1365 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1366 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1367 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1368 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1369 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1370 #undef READ
1371
1372 debug->fdr = NULL;
1373
1374 return TRUE;
1375
1376 error_return:
1377 if (ext_hdr != NULL)
1378 free (ext_hdr);
1379 if (debug->line != NULL)
1380 free (debug->line);
1381 if (debug->external_dnr != NULL)
1382 free (debug->external_dnr);
1383 if (debug->external_pdr != NULL)
1384 free (debug->external_pdr);
1385 if (debug->external_sym != NULL)
1386 free (debug->external_sym);
1387 if (debug->external_opt != NULL)
1388 free (debug->external_opt);
1389 if (debug->external_aux != NULL)
1390 free (debug->external_aux);
1391 if (debug->ss != NULL)
1392 free (debug->ss);
1393 if (debug->ssext != NULL)
1394 free (debug->ssext);
1395 if (debug->external_fdr != NULL)
1396 free (debug->external_fdr);
1397 if (debug->external_rfd != NULL)
1398 free (debug->external_rfd);
1399 if (debug->external_ext != NULL)
1400 free (debug->external_ext);
1401 return FALSE;
1402 }
1403 \f
1404 /* Swap RPDR (runtime procedure table entry) for output. */
1405
1406 static void
1407 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1408 {
1409 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1410 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1411 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1412 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1413 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1414 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1415
1416 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1417 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1418
1419 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1420 }
1421
1422 /* Create a runtime procedure table from the .mdebug section. */
1423
1424 static bfd_boolean
1425 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1426 struct bfd_link_info *info, asection *s,
1427 struct ecoff_debug_info *debug)
1428 {
1429 const struct ecoff_debug_swap *swap;
1430 HDRR *hdr = &debug->symbolic_header;
1431 RPDR *rpdr, *rp;
1432 struct rpdr_ext *erp;
1433 void *rtproc;
1434 struct pdr_ext *epdr;
1435 struct sym_ext *esym;
1436 char *ss, **sv;
1437 char *str;
1438 bfd_size_type size;
1439 bfd_size_type count;
1440 unsigned long sindex;
1441 unsigned long i;
1442 PDR pdr;
1443 SYMR sym;
1444 const char *no_name_func = _("static procedure (no name)");
1445
1446 epdr = NULL;
1447 rpdr = NULL;
1448 esym = NULL;
1449 ss = NULL;
1450 sv = NULL;
1451
1452 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1453
1454 sindex = strlen (no_name_func) + 1;
1455 count = hdr->ipdMax;
1456 if (count > 0)
1457 {
1458 size = swap->external_pdr_size;
1459
1460 epdr = bfd_malloc (size * count);
1461 if (epdr == NULL)
1462 goto error_return;
1463
1464 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1465 goto error_return;
1466
1467 size = sizeof (RPDR);
1468 rp = rpdr = bfd_malloc (size * count);
1469 if (rpdr == NULL)
1470 goto error_return;
1471
1472 size = sizeof (char *);
1473 sv = bfd_malloc (size * count);
1474 if (sv == NULL)
1475 goto error_return;
1476
1477 count = hdr->isymMax;
1478 size = swap->external_sym_size;
1479 esym = bfd_malloc (size * count);
1480 if (esym == NULL)
1481 goto error_return;
1482
1483 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1484 goto error_return;
1485
1486 count = hdr->issMax;
1487 ss = bfd_malloc (count);
1488 if (ss == NULL)
1489 goto error_return;
1490 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1491 goto error_return;
1492
1493 count = hdr->ipdMax;
1494 for (i = 0; i < (unsigned long) count; i++, rp++)
1495 {
1496 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1497 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1498 rp->adr = sym.value;
1499 rp->regmask = pdr.regmask;
1500 rp->regoffset = pdr.regoffset;
1501 rp->fregmask = pdr.fregmask;
1502 rp->fregoffset = pdr.fregoffset;
1503 rp->frameoffset = pdr.frameoffset;
1504 rp->framereg = pdr.framereg;
1505 rp->pcreg = pdr.pcreg;
1506 rp->irpss = sindex;
1507 sv[i] = ss + sym.iss;
1508 sindex += strlen (sv[i]) + 1;
1509 }
1510 }
1511
1512 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1513 size = BFD_ALIGN (size, 16);
1514 rtproc = bfd_alloc (abfd, size);
1515 if (rtproc == NULL)
1516 {
1517 mips_elf_hash_table (info)->procedure_count = 0;
1518 goto error_return;
1519 }
1520
1521 mips_elf_hash_table (info)->procedure_count = count + 2;
1522
1523 erp = rtproc;
1524 memset (erp, 0, sizeof (struct rpdr_ext));
1525 erp++;
1526 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1527 strcpy (str, no_name_func);
1528 str += strlen (no_name_func) + 1;
1529 for (i = 0; i < count; i++)
1530 {
1531 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1532 strcpy (str, sv[i]);
1533 str += strlen (sv[i]) + 1;
1534 }
1535 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1536
1537 /* Set the size and contents of .rtproc section. */
1538 s->size = size;
1539 s->contents = rtproc;
1540
1541 /* Skip this section later on (I don't think this currently
1542 matters, but someday it might). */
1543 s->map_head.link_order = NULL;
1544
1545 if (epdr != NULL)
1546 free (epdr);
1547 if (rpdr != NULL)
1548 free (rpdr);
1549 if (esym != NULL)
1550 free (esym);
1551 if (ss != NULL)
1552 free (ss);
1553 if (sv != NULL)
1554 free (sv);
1555
1556 return TRUE;
1557
1558 error_return:
1559 if (epdr != NULL)
1560 free (epdr);
1561 if (rpdr != NULL)
1562 free (rpdr);
1563 if (esym != NULL)
1564 free (esym);
1565 if (ss != NULL)
1566 free (ss);
1567 if (sv != NULL)
1568 free (sv);
1569 return FALSE;
1570 }
1571 \f
1572 /* We're going to create a stub for H. Create a symbol for the stub's
1573 value and size, to help make the disassembly easier to read. */
1574
1575 static bfd_boolean
1576 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1577 struct mips_elf_link_hash_entry *h,
1578 const char *prefix, asection *s, bfd_vma value,
1579 bfd_vma size)
1580 {
1581 bfd_boolean micromips_p = ELF_ST_IS_MICROMIPS (h->root.other);
1582 struct bfd_link_hash_entry *bh;
1583 struct elf_link_hash_entry *elfh;
1584 char *name;
1585 bfd_boolean res;
1586
1587 if (micromips_p)
1588 value |= 1;
1589
1590 /* Create a new symbol. */
1591 name = concat (prefix, h->root.root.root.string, NULL);
1592 bh = NULL;
1593 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1594 BSF_LOCAL, s, value, NULL,
1595 TRUE, FALSE, &bh);
1596 free (name);
1597 if (! res)
1598 return FALSE;
1599
1600 /* Make it a local function. */
1601 elfh = (struct elf_link_hash_entry *) bh;
1602 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1603 elfh->size = size;
1604 elfh->forced_local = 1;
1605 if (micromips_p)
1606 elfh->other = ELF_ST_SET_MICROMIPS (elfh->other);
1607 return TRUE;
1608 }
1609
1610 /* We're about to redefine H. Create a symbol to represent H's
1611 current value and size, to help make the disassembly easier
1612 to read. */
1613
1614 static bfd_boolean
1615 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1616 struct mips_elf_link_hash_entry *h,
1617 const char *prefix)
1618 {
1619 struct bfd_link_hash_entry *bh;
1620 struct elf_link_hash_entry *elfh;
1621 char *name;
1622 asection *s;
1623 bfd_vma value;
1624 bfd_boolean res;
1625
1626 /* Read the symbol's value. */
1627 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1628 || h->root.root.type == bfd_link_hash_defweak);
1629 s = h->root.root.u.def.section;
1630 value = h->root.root.u.def.value;
1631
1632 /* Create a new symbol. */
1633 name = concat (prefix, h->root.root.root.string, NULL);
1634 bh = NULL;
1635 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1636 BSF_LOCAL, s, value, NULL,
1637 TRUE, FALSE, &bh);
1638 free (name);
1639 if (! res)
1640 return FALSE;
1641
1642 /* Make it local and copy the other attributes from H. */
1643 elfh = (struct elf_link_hash_entry *) bh;
1644 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1645 elfh->other = h->root.other;
1646 elfh->size = h->root.size;
1647 elfh->forced_local = 1;
1648 return TRUE;
1649 }
1650
1651 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1652 function rather than to a hard-float stub. */
1653
1654 static bfd_boolean
1655 section_allows_mips16_refs_p (asection *section)
1656 {
1657 const char *name;
1658
1659 name = bfd_get_section_name (section->owner, section);
1660 return (FN_STUB_P (name)
1661 || CALL_STUB_P (name)
1662 || CALL_FP_STUB_P (name)
1663 || strcmp (name, ".pdr") == 0);
1664 }
1665
1666 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1667 stub section of some kind. Return the R_SYMNDX of the target
1668 function, or 0 if we can't decide which function that is. */
1669
1670 static unsigned long
1671 mips16_stub_symndx (const struct elf_backend_data *bed,
1672 asection *sec ATTRIBUTE_UNUSED,
1673 const Elf_Internal_Rela *relocs,
1674 const Elf_Internal_Rela *relend)
1675 {
1676 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1677 const Elf_Internal_Rela *rel;
1678
1679 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1680 one in a compound relocation. */
1681 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1682 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1683 return ELF_R_SYM (sec->owner, rel->r_info);
1684
1685 /* Otherwise trust the first relocation, whatever its kind. This is
1686 the traditional behavior. */
1687 if (relocs < relend)
1688 return ELF_R_SYM (sec->owner, relocs->r_info);
1689
1690 return 0;
1691 }
1692
1693 /* Check the mips16 stubs for a particular symbol, and see if we can
1694 discard them. */
1695
1696 static void
1697 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1698 struct mips_elf_link_hash_entry *h)
1699 {
1700 /* Dynamic symbols must use the standard call interface, in case other
1701 objects try to call them. */
1702 if (h->fn_stub != NULL
1703 && h->root.dynindx != -1)
1704 {
1705 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1706 h->need_fn_stub = TRUE;
1707 }
1708
1709 if (h->fn_stub != NULL
1710 && ! h->need_fn_stub)
1711 {
1712 /* We don't need the fn_stub; the only references to this symbol
1713 are 16 bit calls. Clobber the size to 0 to prevent it from
1714 being included in the link. */
1715 h->fn_stub->size = 0;
1716 h->fn_stub->flags &= ~SEC_RELOC;
1717 h->fn_stub->reloc_count = 0;
1718 h->fn_stub->flags |= SEC_EXCLUDE;
1719 h->fn_stub->output_section = bfd_abs_section_ptr;
1720 }
1721
1722 if (h->call_stub != NULL
1723 && ELF_ST_IS_MIPS16 (h->root.other))
1724 {
1725 /* We don't need the call_stub; this is a 16 bit function, so
1726 calls from other 16 bit functions are OK. Clobber the size
1727 to 0 to prevent it from being included in the link. */
1728 h->call_stub->size = 0;
1729 h->call_stub->flags &= ~SEC_RELOC;
1730 h->call_stub->reloc_count = 0;
1731 h->call_stub->flags |= SEC_EXCLUDE;
1732 h->call_stub->output_section = bfd_abs_section_ptr;
1733 }
1734
1735 if (h->call_fp_stub != NULL
1736 && ELF_ST_IS_MIPS16 (h->root.other))
1737 {
1738 /* We don't need the call_stub; this is a 16 bit function, so
1739 calls from other 16 bit functions are OK. Clobber the size
1740 to 0 to prevent it from being included in the link. */
1741 h->call_fp_stub->size = 0;
1742 h->call_fp_stub->flags &= ~SEC_RELOC;
1743 h->call_fp_stub->reloc_count = 0;
1744 h->call_fp_stub->flags |= SEC_EXCLUDE;
1745 h->call_fp_stub->output_section = bfd_abs_section_ptr;
1746 }
1747 }
1748
1749 /* Hashtable callbacks for mips_elf_la25_stubs. */
1750
1751 static hashval_t
1752 mips_elf_la25_stub_hash (const void *entry_)
1753 {
1754 const struct mips_elf_la25_stub *entry;
1755
1756 entry = (struct mips_elf_la25_stub *) entry_;
1757 return entry->h->root.root.u.def.section->id
1758 + entry->h->root.root.u.def.value;
1759 }
1760
1761 static int
1762 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1763 {
1764 const struct mips_elf_la25_stub *entry1, *entry2;
1765
1766 entry1 = (struct mips_elf_la25_stub *) entry1_;
1767 entry2 = (struct mips_elf_la25_stub *) entry2_;
1768 return ((entry1->h->root.root.u.def.section
1769 == entry2->h->root.root.u.def.section)
1770 && (entry1->h->root.root.u.def.value
1771 == entry2->h->root.root.u.def.value));
1772 }
1773
1774 /* Called by the linker to set up the la25 stub-creation code. FN is
1775 the linker's implementation of add_stub_function. Return true on
1776 success. */
1777
1778 bfd_boolean
1779 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1780 asection *(*fn) (const char *, asection *,
1781 asection *))
1782 {
1783 struct mips_elf_link_hash_table *htab;
1784
1785 htab = mips_elf_hash_table (info);
1786 if (htab == NULL)
1787 return FALSE;
1788
1789 htab->add_stub_section = fn;
1790 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1791 mips_elf_la25_stub_eq, NULL);
1792 if (htab->la25_stubs == NULL)
1793 return FALSE;
1794
1795 return TRUE;
1796 }
1797
1798 /* Return true if H is a locally-defined PIC function, in the sense
1799 that it or its fn_stub might need $25 to be valid on entry.
1800 Note that MIPS16 functions set up $gp using PC-relative instructions,
1801 so they themselves never need $25 to be valid. Only non-MIPS16
1802 entry points are of interest here. */
1803
1804 static bfd_boolean
1805 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1806 {
1807 return ((h->root.root.type == bfd_link_hash_defined
1808 || h->root.root.type == bfd_link_hash_defweak)
1809 && h->root.def_regular
1810 && !bfd_is_abs_section (h->root.root.u.def.section)
1811 && !bfd_is_und_section (h->root.root.u.def.section)
1812 && (!ELF_ST_IS_MIPS16 (h->root.other)
1813 || (h->fn_stub && h->need_fn_stub))
1814 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1815 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1816 }
1817
1818 /* Set *SEC to the input section that contains the target of STUB.
1819 Return the offset of the target from the start of that section. */
1820
1821 static bfd_vma
1822 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1823 asection **sec)
1824 {
1825 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1826 {
1827 BFD_ASSERT (stub->h->need_fn_stub);
1828 *sec = stub->h->fn_stub;
1829 return 0;
1830 }
1831 else
1832 {
1833 *sec = stub->h->root.root.u.def.section;
1834 return stub->h->root.root.u.def.value;
1835 }
1836 }
1837
1838 /* STUB describes an la25 stub that we have decided to implement
1839 by inserting an LUI/ADDIU pair before the target function.
1840 Create the section and redirect the function symbol to it. */
1841
1842 static bfd_boolean
1843 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1844 struct bfd_link_info *info)
1845 {
1846 struct mips_elf_link_hash_table *htab;
1847 char *name;
1848 asection *s, *input_section;
1849 unsigned int align;
1850
1851 htab = mips_elf_hash_table (info);
1852 if (htab == NULL)
1853 return FALSE;
1854
1855 /* Create a unique name for the new section. */
1856 name = bfd_malloc (11 + sizeof (".text.stub."));
1857 if (name == NULL)
1858 return FALSE;
1859 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1860
1861 /* Create the section. */
1862 mips_elf_get_la25_target (stub, &input_section);
1863 s = htab->add_stub_section (name, input_section,
1864 input_section->output_section);
1865 if (s == NULL)
1866 return FALSE;
1867
1868 /* Make sure that any padding goes before the stub. */
1869 align = input_section->alignment_power;
1870 if (!bfd_set_section_alignment (s->owner, s, align))
1871 return FALSE;
1872 if (align > 3)
1873 s->size = (1 << align) - 8;
1874
1875 /* Create a symbol for the stub. */
1876 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1877 stub->stub_section = s;
1878 stub->offset = s->size;
1879
1880 /* Allocate room for it. */
1881 s->size += 8;
1882 return TRUE;
1883 }
1884
1885 /* STUB describes an la25 stub that we have decided to implement
1886 with a separate trampoline. Allocate room for it and redirect
1887 the function symbol to it. */
1888
1889 static bfd_boolean
1890 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1891 struct bfd_link_info *info)
1892 {
1893 struct mips_elf_link_hash_table *htab;
1894 asection *s;
1895
1896 htab = mips_elf_hash_table (info);
1897 if (htab == NULL)
1898 return FALSE;
1899
1900 /* Create a trampoline section, if we haven't already. */
1901 s = htab->strampoline;
1902 if (s == NULL)
1903 {
1904 asection *input_section = stub->h->root.root.u.def.section;
1905 s = htab->add_stub_section (".text", NULL,
1906 input_section->output_section);
1907 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1908 return FALSE;
1909 htab->strampoline = s;
1910 }
1911
1912 /* Create a symbol for the stub. */
1913 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1914 stub->stub_section = s;
1915 stub->offset = s->size;
1916
1917 /* Allocate room for it. */
1918 s->size += 16;
1919 return TRUE;
1920 }
1921
1922 /* H describes a symbol that needs an la25 stub. Make sure that an
1923 appropriate stub exists and point H at it. */
1924
1925 static bfd_boolean
1926 mips_elf_add_la25_stub (struct bfd_link_info *info,
1927 struct mips_elf_link_hash_entry *h)
1928 {
1929 struct mips_elf_link_hash_table *htab;
1930 struct mips_elf_la25_stub search, *stub;
1931 bfd_boolean use_trampoline_p;
1932 asection *s;
1933 bfd_vma value;
1934 void **slot;
1935
1936 /* Describe the stub we want. */
1937 search.stub_section = NULL;
1938 search.offset = 0;
1939 search.h = h;
1940
1941 /* See if we've already created an equivalent stub. */
1942 htab = mips_elf_hash_table (info);
1943 if (htab == NULL)
1944 return FALSE;
1945
1946 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1947 if (slot == NULL)
1948 return FALSE;
1949
1950 stub = (struct mips_elf_la25_stub *) *slot;
1951 if (stub != NULL)
1952 {
1953 /* We can reuse the existing stub. */
1954 h->la25_stub = stub;
1955 return TRUE;
1956 }
1957
1958 /* Create a permanent copy of ENTRY and add it to the hash table. */
1959 stub = bfd_malloc (sizeof (search));
1960 if (stub == NULL)
1961 return FALSE;
1962 *stub = search;
1963 *slot = stub;
1964
1965 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1966 of the section and if we would need no more than 2 nops. */
1967 value = mips_elf_get_la25_target (stub, &s);
1968 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
1969 value &= ~1;
1970 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1971
1972 h->la25_stub = stub;
1973 return (use_trampoline_p
1974 ? mips_elf_add_la25_trampoline (stub, info)
1975 : mips_elf_add_la25_intro (stub, info));
1976 }
1977
1978 /* A mips_elf_link_hash_traverse callback that is called before sizing
1979 sections. DATA points to a mips_htab_traverse_info structure. */
1980
1981 static bfd_boolean
1982 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1983 {
1984 struct mips_htab_traverse_info *hti;
1985
1986 hti = (struct mips_htab_traverse_info *) data;
1987 if (!bfd_link_relocatable (hti->info))
1988 mips_elf_check_mips16_stubs (hti->info, h);
1989
1990 if (mips_elf_local_pic_function_p (h))
1991 {
1992 /* PR 12845: If H is in a section that has been garbage
1993 collected it will have its output section set to *ABS*. */
1994 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1995 return TRUE;
1996
1997 /* H is a function that might need $25 to be valid on entry.
1998 If we're creating a non-PIC relocatable object, mark H as
1999 being PIC. If we're creating a non-relocatable object with
2000 non-PIC branches and jumps to H, make sure that H has an la25
2001 stub. */
2002 if (bfd_link_relocatable (hti->info))
2003 {
2004 if (!PIC_OBJECT_P (hti->output_bfd))
2005 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2006 }
2007 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2008 {
2009 hti->error = TRUE;
2010 return FALSE;
2011 }
2012 }
2013 return TRUE;
2014 }
2015 \f
2016 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2017 Most mips16 instructions are 16 bits, but these instructions
2018 are 32 bits.
2019
2020 The format of these instructions is:
2021
2022 +--------------+--------------------------------+
2023 | JALX | X| Imm 20:16 | Imm 25:21 |
2024 +--------------+--------------------------------+
2025 | Immediate 15:0 |
2026 +-----------------------------------------------+
2027
2028 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2029 Note that the immediate value in the first word is swapped.
2030
2031 When producing a relocatable object file, R_MIPS16_26 is
2032 handled mostly like R_MIPS_26. In particular, the addend is
2033 stored as a straight 26-bit value in a 32-bit instruction.
2034 (gas makes life simpler for itself by never adjusting a
2035 R_MIPS16_26 reloc to be against a section, so the addend is
2036 always zero). However, the 32 bit instruction is stored as 2
2037 16-bit values, rather than a single 32-bit value. In a
2038 big-endian file, the result is the same; in a little-endian
2039 file, the two 16-bit halves of the 32 bit value are swapped.
2040 This is so that a disassembler can recognize the jal
2041 instruction.
2042
2043 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2044 instruction stored as two 16-bit values. The addend A is the
2045 contents of the targ26 field. The calculation is the same as
2046 R_MIPS_26. When storing the calculated value, reorder the
2047 immediate value as shown above, and don't forget to store the
2048 value as two 16-bit values.
2049
2050 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2051 defined as
2052
2053 big-endian:
2054 +--------+----------------------+
2055 | | |
2056 | | targ26-16 |
2057 |31 26|25 0|
2058 +--------+----------------------+
2059
2060 little-endian:
2061 +----------+------+-------------+
2062 | | | |
2063 | sub1 | | sub2 |
2064 |0 9|10 15|16 31|
2065 +----------+--------------------+
2066 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2067 ((sub1 << 16) | sub2)).
2068
2069 When producing a relocatable object file, the calculation is
2070 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2071 When producing a fully linked file, the calculation is
2072 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2073 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2074
2075 The table below lists the other MIPS16 instruction relocations.
2076 Each one is calculated in the same way as the non-MIPS16 relocation
2077 given on the right, but using the extended MIPS16 layout of 16-bit
2078 immediate fields:
2079
2080 R_MIPS16_GPREL R_MIPS_GPREL16
2081 R_MIPS16_GOT16 R_MIPS_GOT16
2082 R_MIPS16_CALL16 R_MIPS_CALL16
2083 R_MIPS16_HI16 R_MIPS_HI16
2084 R_MIPS16_LO16 R_MIPS_LO16
2085
2086 A typical instruction will have a format like this:
2087
2088 +--------------+--------------------------------+
2089 | EXTEND | Imm 10:5 | Imm 15:11 |
2090 +--------------+--------------------------------+
2091 | Major | rx | ry | Imm 4:0 |
2092 +--------------+--------------------------------+
2093
2094 EXTEND is the five bit value 11110. Major is the instruction
2095 opcode.
2096
2097 All we need to do here is shuffle the bits appropriately.
2098 As above, the two 16-bit halves must be swapped on a
2099 little-endian system.
2100
2101 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2102 relocatable field is shifted by 1 rather than 2 and the same bit
2103 shuffling is done as with the relocations above. */
2104
2105 static inline bfd_boolean
2106 mips16_reloc_p (int r_type)
2107 {
2108 switch (r_type)
2109 {
2110 case R_MIPS16_26:
2111 case R_MIPS16_GPREL:
2112 case R_MIPS16_GOT16:
2113 case R_MIPS16_CALL16:
2114 case R_MIPS16_HI16:
2115 case R_MIPS16_LO16:
2116 case R_MIPS16_TLS_GD:
2117 case R_MIPS16_TLS_LDM:
2118 case R_MIPS16_TLS_DTPREL_HI16:
2119 case R_MIPS16_TLS_DTPREL_LO16:
2120 case R_MIPS16_TLS_GOTTPREL:
2121 case R_MIPS16_TLS_TPREL_HI16:
2122 case R_MIPS16_TLS_TPREL_LO16:
2123 case R_MIPS16_PC16_S1:
2124 return TRUE;
2125
2126 default:
2127 return FALSE;
2128 }
2129 }
2130
2131 /* Check if a microMIPS reloc. */
2132
2133 static inline bfd_boolean
2134 micromips_reloc_p (unsigned int r_type)
2135 {
2136 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2137 }
2138
2139 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2140 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2141 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2142
2143 static inline bfd_boolean
2144 micromips_reloc_shuffle_p (unsigned int r_type)
2145 {
2146 return (micromips_reloc_p (r_type)
2147 && r_type != R_MICROMIPS_PC7_S1
2148 && r_type != R_MICROMIPS_PC10_S1);
2149 }
2150
2151 static inline bfd_boolean
2152 got16_reloc_p (int r_type)
2153 {
2154 return (r_type == R_MIPS_GOT16
2155 || r_type == R_MIPS16_GOT16
2156 || r_type == R_MICROMIPS_GOT16);
2157 }
2158
2159 static inline bfd_boolean
2160 call16_reloc_p (int r_type)
2161 {
2162 return (r_type == R_MIPS_CALL16
2163 || r_type == R_MIPS16_CALL16
2164 || r_type == R_MICROMIPS_CALL16);
2165 }
2166
2167 static inline bfd_boolean
2168 got_disp_reloc_p (unsigned int r_type)
2169 {
2170 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2171 }
2172
2173 static inline bfd_boolean
2174 got_page_reloc_p (unsigned int r_type)
2175 {
2176 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2177 }
2178
2179 static inline bfd_boolean
2180 got_lo16_reloc_p (unsigned int r_type)
2181 {
2182 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2183 }
2184
2185 static inline bfd_boolean
2186 call_hi16_reloc_p (unsigned int r_type)
2187 {
2188 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2189 }
2190
2191 static inline bfd_boolean
2192 call_lo16_reloc_p (unsigned int r_type)
2193 {
2194 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2195 }
2196
2197 static inline bfd_boolean
2198 hi16_reloc_p (int r_type)
2199 {
2200 return (r_type == R_MIPS_HI16
2201 || r_type == R_MIPS16_HI16
2202 || r_type == R_MICROMIPS_HI16
2203 || r_type == R_MIPS_PCHI16);
2204 }
2205
2206 static inline bfd_boolean
2207 lo16_reloc_p (int r_type)
2208 {
2209 return (r_type == R_MIPS_LO16
2210 || r_type == R_MIPS16_LO16
2211 || r_type == R_MICROMIPS_LO16
2212 || r_type == R_MIPS_PCLO16);
2213 }
2214
2215 static inline bfd_boolean
2216 mips16_call_reloc_p (int r_type)
2217 {
2218 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2219 }
2220
2221 static inline bfd_boolean
2222 jal_reloc_p (int r_type)
2223 {
2224 return (r_type == R_MIPS_26
2225 || r_type == R_MIPS16_26
2226 || r_type == R_MICROMIPS_26_S1);
2227 }
2228
2229 static inline bfd_boolean
2230 b_reloc_p (int r_type)
2231 {
2232 return (r_type == R_MIPS_PC26_S2
2233 || r_type == R_MIPS_PC21_S2
2234 || r_type == R_MIPS_PC16
2235 || r_type == R_MIPS_GNU_REL16_S2
2236 || r_type == R_MIPS16_PC16_S1
2237 || r_type == R_MICROMIPS_PC16_S1
2238 || r_type == R_MICROMIPS_PC10_S1
2239 || r_type == R_MICROMIPS_PC7_S1);
2240 }
2241
2242 static inline bfd_boolean
2243 aligned_pcrel_reloc_p (int r_type)
2244 {
2245 return (r_type == R_MIPS_PC18_S3
2246 || r_type == R_MIPS_PC19_S2);
2247 }
2248
2249 static inline bfd_boolean
2250 branch_reloc_p (int r_type)
2251 {
2252 return (r_type == R_MIPS_26
2253 || r_type == R_MIPS_PC26_S2
2254 || r_type == R_MIPS_PC21_S2
2255 || r_type == R_MIPS_PC16
2256 || r_type == R_MIPS_GNU_REL16_S2);
2257 }
2258
2259 static inline bfd_boolean
2260 mips16_branch_reloc_p (int r_type)
2261 {
2262 return (r_type == R_MIPS16_26
2263 || r_type == R_MIPS16_PC16_S1);
2264 }
2265
2266 static inline bfd_boolean
2267 micromips_branch_reloc_p (int r_type)
2268 {
2269 return (r_type == R_MICROMIPS_26_S1
2270 || r_type == R_MICROMIPS_PC16_S1
2271 || r_type == R_MICROMIPS_PC10_S1
2272 || r_type == R_MICROMIPS_PC7_S1);
2273 }
2274
2275 static inline bfd_boolean
2276 tls_gd_reloc_p (unsigned int r_type)
2277 {
2278 return (r_type == R_MIPS_TLS_GD
2279 || r_type == R_MIPS16_TLS_GD
2280 || r_type == R_MICROMIPS_TLS_GD);
2281 }
2282
2283 static inline bfd_boolean
2284 tls_ldm_reloc_p (unsigned int r_type)
2285 {
2286 return (r_type == R_MIPS_TLS_LDM
2287 || r_type == R_MIPS16_TLS_LDM
2288 || r_type == R_MICROMIPS_TLS_LDM);
2289 }
2290
2291 static inline bfd_boolean
2292 tls_gottprel_reloc_p (unsigned int r_type)
2293 {
2294 return (r_type == R_MIPS_TLS_GOTTPREL
2295 || r_type == R_MIPS16_TLS_GOTTPREL
2296 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2297 }
2298
2299 void
2300 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2301 bfd_boolean jal_shuffle, bfd_byte *data)
2302 {
2303 bfd_vma first, second, val;
2304
2305 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2306 return;
2307
2308 /* Pick up the first and second halfwords of the instruction. */
2309 first = bfd_get_16 (abfd, data);
2310 second = bfd_get_16 (abfd, data + 2);
2311 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2312 val = first << 16 | second;
2313 else if (r_type != R_MIPS16_26)
2314 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2315 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2316 else
2317 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2318 | ((first & 0x1f) << 21) | second);
2319 bfd_put_32 (abfd, val, data);
2320 }
2321
2322 void
2323 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2324 bfd_boolean jal_shuffle, bfd_byte *data)
2325 {
2326 bfd_vma first, second, val;
2327
2328 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2329 return;
2330
2331 val = bfd_get_32 (abfd, data);
2332 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2333 {
2334 second = val & 0xffff;
2335 first = val >> 16;
2336 }
2337 else if (r_type != R_MIPS16_26)
2338 {
2339 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2340 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2341 }
2342 else
2343 {
2344 second = val & 0xffff;
2345 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2346 | ((val >> 21) & 0x1f);
2347 }
2348 bfd_put_16 (abfd, second, data + 2);
2349 bfd_put_16 (abfd, first, data);
2350 }
2351
2352 bfd_reloc_status_type
2353 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2354 arelent *reloc_entry, asection *input_section,
2355 bfd_boolean relocatable, void *data, bfd_vma gp)
2356 {
2357 bfd_vma relocation;
2358 bfd_signed_vma val;
2359 bfd_reloc_status_type status;
2360
2361 if (bfd_is_com_section (symbol->section))
2362 relocation = 0;
2363 else
2364 relocation = symbol->value;
2365
2366 relocation += symbol->section->output_section->vma;
2367 relocation += symbol->section->output_offset;
2368
2369 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2370 return bfd_reloc_outofrange;
2371
2372 /* Set val to the offset into the section or symbol. */
2373 val = reloc_entry->addend;
2374
2375 _bfd_mips_elf_sign_extend (val, 16);
2376
2377 /* Adjust val for the final section location and GP value. If we
2378 are producing relocatable output, we don't want to do this for
2379 an external symbol. */
2380 if (! relocatable
2381 || (symbol->flags & BSF_SECTION_SYM) != 0)
2382 val += relocation - gp;
2383
2384 if (reloc_entry->howto->partial_inplace)
2385 {
2386 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2387 (bfd_byte *) data
2388 + reloc_entry->address);
2389 if (status != bfd_reloc_ok)
2390 return status;
2391 }
2392 else
2393 reloc_entry->addend = val;
2394
2395 if (relocatable)
2396 reloc_entry->address += input_section->output_offset;
2397
2398 return bfd_reloc_ok;
2399 }
2400
2401 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2402 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2403 that contains the relocation field and DATA points to the start of
2404 INPUT_SECTION. */
2405
2406 struct mips_hi16
2407 {
2408 struct mips_hi16 *next;
2409 bfd_byte *data;
2410 asection *input_section;
2411 arelent rel;
2412 };
2413
2414 /* FIXME: This should not be a static variable. */
2415
2416 static struct mips_hi16 *mips_hi16_list;
2417
2418 /* A howto special_function for REL *HI16 relocations. We can only
2419 calculate the correct value once we've seen the partnering
2420 *LO16 relocation, so just save the information for later.
2421
2422 The ABI requires that the *LO16 immediately follow the *HI16.
2423 However, as a GNU extension, we permit an arbitrary number of
2424 *HI16s to be associated with a single *LO16. This significantly
2425 simplies the relocation handling in gcc. */
2426
2427 bfd_reloc_status_type
2428 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2429 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2430 asection *input_section, bfd *output_bfd,
2431 char **error_message ATTRIBUTE_UNUSED)
2432 {
2433 struct mips_hi16 *n;
2434
2435 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2436 return bfd_reloc_outofrange;
2437
2438 n = bfd_malloc (sizeof *n);
2439 if (n == NULL)
2440 return bfd_reloc_outofrange;
2441
2442 n->next = mips_hi16_list;
2443 n->data = data;
2444 n->input_section = input_section;
2445 n->rel = *reloc_entry;
2446 mips_hi16_list = n;
2447
2448 if (output_bfd != NULL)
2449 reloc_entry->address += input_section->output_offset;
2450
2451 return bfd_reloc_ok;
2452 }
2453
2454 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2455 like any other 16-bit relocation when applied to global symbols, but is
2456 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2457
2458 bfd_reloc_status_type
2459 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2460 void *data, asection *input_section,
2461 bfd *output_bfd, char **error_message)
2462 {
2463 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2464 || bfd_is_und_section (bfd_get_section (symbol))
2465 || bfd_is_com_section (bfd_get_section (symbol)))
2466 /* The relocation is against a global symbol. */
2467 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2468 input_section, output_bfd,
2469 error_message);
2470
2471 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2472 input_section, output_bfd, error_message);
2473 }
2474
2475 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2476 is a straightforward 16 bit inplace relocation, but we must deal with
2477 any partnering high-part relocations as well. */
2478
2479 bfd_reloc_status_type
2480 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2481 void *data, asection *input_section,
2482 bfd *output_bfd, char **error_message)
2483 {
2484 bfd_vma vallo;
2485 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2486
2487 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2488 return bfd_reloc_outofrange;
2489
2490 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2491 location);
2492 vallo = bfd_get_32 (abfd, location);
2493 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2494 location);
2495
2496 while (mips_hi16_list != NULL)
2497 {
2498 bfd_reloc_status_type ret;
2499 struct mips_hi16 *hi;
2500
2501 hi = mips_hi16_list;
2502
2503 /* R_MIPS*_GOT16 relocations are something of a special case. We
2504 want to install the addend in the same way as for a R_MIPS*_HI16
2505 relocation (with a rightshift of 16). However, since GOT16
2506 relocations can also be used with global symbols, their howto
2507 has a rightshift of 0. */
2508 if (hi->rel.howto->type == R_MIPS_GOT16)
2509 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2510 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2511 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2512 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2513 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2514
2515 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2516 carry or borrow will induce a change of +1 or -1 in the high part. */
2517 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2518
2519 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2520 hi->input_section, output_bfd,
2521 error_message);
2522 if (ret != bfd_reloc_ok)
2523 return ret;
2524
2525 mips_hi16_list = hi->next;
2526 free (hi);
2527 }
2528
2529 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2530 input_section, output_bfd,
2531 error_message);
2532 }
2533
2534 /* A generic howto special_function. This calculates and installs the
2535 relocation itself, thus avoiding the oft-discussed problems in
2536 bfd_perform_relocation and bfd_install_relocation. */
2537
2538 bfd_reloc_status_type
2539 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2540 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2541 asection *input_section, bfd *output_bfd,
2542 char **error_message ATTRIBUTE_UNUSED)
2543 {
2544 bfd_signed_vma val;
2545 bfd_reloc_status_type status;
2546 bfd_boolean relocatable;
2547
2548 relocatable = (output_bfd != NULL);
2549
2550 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2551 return bfd_reloc_outofrange;
2552
2553 /* Build up the field adjustment in VAL. */
2554 val = 0;
2555 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2556 {
2557 /* Either we're calculating the final field value or we have a
2558 relocation against a section symbol. Add in the section's
2559 offset or address. */
2560 val += symbol->section->output_section->vma;
2561 val += symbol->section->output_offset;
2562 }
2563
2564 if (!relocatable)
2565 {
2566 /* We're calculating the final field value. Add in the symbol's value
2567 and, if pc-relative, subtract the address of the field itself. */
2568 val += symbol->value;
2569 if (reloc_entry->howto->pc_relative)
2570 {
2571 val -= input_section->output_section->vma;
2572 val -= input_section->output_offset;
2573 val -= reloc_entry->address;
2574 }
2575 }
2576
2577 /* VAL is now the final adjustment. If we're keeping this relocation
2578 in the output file, and if the relocation uses a separate addend,
2579 we just need to add VAL to that addend. Otherwise we need to add
2580 VAL to the relocation field itself. */
2581 if (relocatable && !reloc_entry->howto->partial_inplace)
2582 reloc_entry->addend += val;
2583 else
2584 {
2585 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2586
2587 /* Add in the separate addend, if any. */
2588 val += reloc_entry->addend;
2589
2590 /* Add VAL to the relocation field. */
2591 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2592 location);
2593 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2594 location);
2595 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2596 location);
2597
2598 if (status != bfd_reloc_ok)
2599 return status;
2600 }
2601
2602 if (relocatable)
2603 reloc_entry->address += input_section->output_offset;
2604
2605 return bfd_reloc_ok;
2606 }
2607 \f
2608 /* Swap an entry in a .gptab section. Note that these routines rely
2609 on the equivalence of the two elements of the union. */
2610
2611 static void
2612 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2613 Elf32_gptab *in)
2614 {
2615 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2616 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2617 }
2618
2619 static void
2620 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2621 Elf32_External_gptab *ex)
2622 {
2623 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2624 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2625 }
2626
2627 static void
2628 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2629 Elf32_External_compact_rel *ex)
2630 {
2631 H_PUT_32 (abfd, in->id1, ex->id1);
2632 H_PUT_32 (abfd, in->num, ex->num);
2633 H_PUT_32 (abfd, in->id2, ex->id2);
2634 H_PUT_32 (abfd, in->offset, ex->offset);
2635 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2636 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2637 }
2638
2639 static void
2640 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2641 Elf32_External_crinfo *ex)
2642 {
2643 unsigned long l;
2644
2645 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2646 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2647 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2648 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2649 H_PUT_32 (abfd, l, ex->info);
2650 H_PUT_32 (abfd, in->konst, ex->konst);
2651 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2652 }
2653 \f
2654 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2655 routines swap this structure in and out. They are used outside of
2656 BFD, so they are globally visible. */
2657
2658 void
2659 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2660 Elf32_RegInfo *in)
2661 {
2662 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2663 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2664 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2665 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2666 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2667 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2668 }
2669
2670 void
2671 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2672 Elf32_External_RegInfo *ex)
2673 {
2674 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2675 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2676 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2677 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2678 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2679 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2680 }
2681
2682 /* In the 64 bit ABI, the .MIPS.options section holds register
2683 information in an Elf64_Reginfo structure. These routines swap
2684 them in and out. They are globally visible because they are used
2685 outside of BFD. These routines are here so that gas can call them
2686 without worrying about whether the 64 bit ABI has been included. */
2687
2688 void
2689 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2690 Elf64_Internal_RegInfo *in)
2691 {
2692 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2693 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2694 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2695 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2696 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2697 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2698 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2699 }
2700
2701 void
2702 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2703 Elf64_External_RegInfo *ex)
2704 {
2705 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2706 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2707 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2708 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2709 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2710 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2711 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2712 }
2713
2714 /* Swap in an options header. */
2715
2716 void
2717 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2718 Elf_Internal_Options *in)
2719 {
2720 in->kind = H_GET_8 (abfd, ex->kind);
2721 in->size = H_GET_8 (abfd, ex->size);
2722 in->section = H_GET_16 (abfd, ex->section);
2723 in->info = H_GET_32 (abfd, ex->info);
2724 }
2725
2726 /* Swap out an options header. */
2727
2728 void
2729 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2730 Elf_External_Options *ex)
2731 {
2732 H_PUT_8 (abfd, in->kind, ex->kind);
2733 H_PUT_8 (abfd, in->size, ex->size);
2734 H_PUT_16 (abfd, in->section, ex->section);
2735 H_PUT_32 (abfd, in->info, ex->info);
2736 }
2737
2738 /* Swap in an abiflags structure. */
2739
2740 void
2741 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2742 const Elf_External_ABIFlags_v0 *ex,
2743 Elf_Internal_ABIFlags_v0 *in)
2744 {
2745 in->version = H_GET_16 (abfd, ex->version);
2746 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2747 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2748 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2749 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2750 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2751 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2752 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2753 in->ases = H_GET_32 (abfd, ex->ases);
2754 in->flags1 = H_GET_32 (abfd, ex->flags1);
2755 in->flags2 = H_GET_32 (abfd, ex->flags2);
2756 }
2757
2758 /* Swap out an abiflags structure. */
2759
2760 void
2761 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2762 const Elf_Internal_ABIFlags_v0 *in,
2763 Elf_External_ABIFlags_v0 *ex)
2764 {
2765 H_PUT_16 (abfd, in->version, ex->version);
2766 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2767 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2768 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2769 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2770 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2771 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2772 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2773 H_PUT_32 (abfd, in->ases, ex->ases);
2774 H_PUT_32 (abfd, in->flags1, ex->flags1);
2775 H_PUT_32 (abfd, in->flags2, ex->flags2);
2776 }
2777 \f
2778 /* This function is called via qsort() to sort the dynamic relocation
2779 entries by increasing r_symndx value. */
2780
2781 static int
2782 sort_dynamic_relocs (const void *arg1, const void *arg2)
2783 {
2784 Elf_Internal_Rela int_reloc1;
2785 Elf_Internal_Rela int_reloc2;
2786 int diff;
2787
2788 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2789 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2790
2791 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2792 if (diff != 0)
2793 return diff;
2794
2795 if (int_reloc1.r_offset < int_reloc2.r_offset)
2796 return -1;
2797 if (int_reloc1.r_offset > int_reloc2.r_offset)
2798 return 1;
2799 return 0;
2800 }
2801
2802 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2803
2804 static int
2805 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2806 const void *arg2 ATTRIBUTE_UNUSED)
2807 {
2808 #ifdef BFD64
2809 Elf_Internal_Rela int_reloc1[3];
2810 Elf_Internal_Rela int_reloc2[3];
2811
2812 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2813 (reldyn_sorting_bfd, arg1, int_reloc1);
2814 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2815 (reldyn_sorting_bfd, arg2, int_reloc2);
2816
2817 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2818 return -1;
2819 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2820 return 1;
2821
2822 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2823 return -1;
2824 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2825 return 1;
2826 return 0;
2827 #else
2828 abort ();
2829 #endif
2830 }
2831
2832
2833 /* This routine is used to write out ECOFF debugging external symbol
2834 information. It is called via mips_elf_link_hash_traverse. The
2835 ECOFF external symbol information must match the ELF external
2836 symbol information. Unfortunately, at this point we don't know
2837 whether a symbol is required by reloc information, so the two
2838 tables may wind up being different. We must sort out the external
2839 symbol information before we can set the final size of the .mdebug
2840 section, and we must set the size of the .mdebug section before we
2841 can relocate any sections, and we can't know which symbols are
2842 required by relocation until we relocate the sections.
2843 Fortunately, it is relatively unlikely that any symbol will be
2844 stripped but required by a reloc. In particular, it can not happen
2845 when generating a final executable. */
2846
2847 static bfd_boolean
2848 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2849 {
2850 struct extsym_info *einfo = data;
2851 bfd_boolean strip;
2852 asection *sec, *output_section;
2853
2854 if (h->root.indx == -2)
2855 strip = FALSE;
2856 else if ((h->root.def_dynamic
2857 || h->root.ref_dynamic
2858 || h->root.type == bfd_link_hash_new)
2859 && !h->root.def_regular
2860 && !h->root.ref_regular)
2861 strip = TRUE;
2862 else if (einfo->info->strip == strip_all
2863 || (einfo->info->strip == strip_some
2864 && bfd_hash_lookup (einfo->info->keep_hash,
2865 h->root.root.root.string,
2866 FALSE, FALSE) == NULL))
2867 strip = TRUE;
2868 else
2869 strip = FALSE;
2870
2871 if (strip)
2872 return TRUE;
2873
2874 if (h->esym.ifd == -2)
2875 {
2876 h->esym.jmptbl = 0;
2877 h->esym.cobol_main = 0;
2878 h->esym.weakext = 0;
2879 h->esym.reserved = 0;
2880 h->esym.ifd = ifdNil;
2881 h->esym.asym.value = 0;
2882 h->esym.asym.st = stGlobal;
2883
2884 if (h->root.root.type == bfd_link_hash_undefined
2885 || h->root.root.type == bfd_link_hash_undefweak)
2886 {
2887 const char *name;
2888
2889 /* Use undefined class. Also, set class and type for some
2890 special symbols. */
2891 name = h->root.root.root.string;
2892 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2893 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2894 {
2895 h->esym.asym.sc = scData;
2896 h->esym.asym.st = stLabel;
2897 h->esym.asym.value = 0;
2898 }
2899 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2900 {
2901 h->esym.asym.sc = scAbs;
2902 h->esym.asym.st = stLabel;
2903 h->esym.asym.value =
2904 mips_elf_hash_table (einfo->info)->procedure_count;
2905 }
2906 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2907 {
2908 h->esym.asym.sc = scAbs;
2909 h->esym.asym.st = stLabel;
2910 h->esym.asym.value = elf_gp (einfo->abfd);
2911 }
2912 else
2913 h->esym.asym.sc = scUndefined;
2914 }
2915 else if (h->root.root.type != bfd_link_hash_defined
2916 && h->root.root.type != bfd_link_hash_defweak)
2917 h->esym.asym.sc = scAbs;
2918 else
2919 {
2920 const char *name;
2921
2922 sec = h->root.root.u.def.section;
2923 output_section = sec->output_section;
2924
2925 /* When making a shared library and symbol h is the one from
2926 the another shared library, OUTPUT_SECTION may be null. */
2927 if (output_section == NULL)
2928 h->esym.asym.sc = scUndefined;
2929 else
2930 {
2931 name = bfd_section_name (output_section->owner, output_section);
2932
2933 if (strcmp (name, ".text") == 0)
2934 h->esym.asym.sc = scText;
2935 else if (strcmp (name, ".data") == 0)
2936 h->esym.asym.sc = scData;
2937 else if (strcmp (name, ".sdata") == 0)
2938 h->esym.asym.sc = scSData;
2939 else if (strcmp (name, ".rodata") == 0
2940 || strcmp (name, ".rdata") == 0)
2941 h->esym.asym.sc = scRData;
2942 else if (strcmp (name, ".bss") == 0)
2943 h->esym.asym.sc = scBss;
2944 else if (strcmp (name, ".sbss") == 0)
2945 h->esym.asym.sc = scSBss;
2946 else if (strcmp (name, ".init") == 0)
2947 h->esym.asym.sc = scInit;
2948 else if (strcmp (name, ".fini") == 0)
2949 h->esym.asym.sc = scFini;
2950 else
2951 h->esym.asym.sc = scAbs;
2952 }
2953 }
2954
2955 h->esym.asym.reserved = 0;
2956 h->esym.asym.index = indexNil;
2957 }
2958
2959 if (h->root.root.type == bfd_link_hash_common)
2960 h->esym.asym.value = h->root.root.u.c.size;
2961 else if (h->root.root.type == bfd_link_hash_defined
2962 || h->root.root.type == bfd_link_hash_defweak)
2963 {
2964 if (h->esym.asym.sc == scCommon)
2965 h->esym.asym.sc = scBss;
2966 else if (h->esym.asym.sc == scSCommon)
2967 h->esym.asym.sc = scSBss;
2968
2969 sec = h->root.root.u.def.section;
2970 output_section = sec->output_section;
2971 if (output_section != NULL)
2972 h->esym.asym.value = (h->root.root.u.def.value
2973 + sec->output_offset
2974 + output_section->vma);
2975 else
2976 h->esym.asym.value = 0;
2977 }
2978 else
2979 {
2980 struct mips_elf_link_hash_entry *hd = h;
2981
2982 while (hd->root.root.type == bfd_link_hash_indirect)
2983 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2984
2985 if (hd->needs_lazy_stub)
2986 {
2987 BFD_ASSERT (hd->root.plt.plist != NULL);
2988 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
2989 /* Set type and value for a symbol with a function stub. */
2990 h->esym.asym.st = stProc;
2991 sec = hd->root.root.u.def.section;
2992 if (sec == NULL)
2993 h->esym.asym.value = 0;
2994 else
2995 {
2996 output_section = sec->output_section;
2997 if (output_section != NULL)
2998 h->esym.asym.value = (hd->root.plt.plist->stub_offset
2999 + sec->output_offset
3000 + output_section->vma);
3001 else
3002 h->esym.asym.value = 0;
3003 }
3004 }
3005 }
3006
3007 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3008 h->root.root.root.string,
3009 &h->esym))
3010 {
3011 einfo->failed = TRUE;
3012 return FALSE;
3013 }
3014
3015 return TRUE;
3016 }
3017
3018 /* A comparison routine used to sort .gptab entries. */
3019
3020 static int
3021 gptab_compare (const void *p1, const void *p2)
3022 {
3023 const Elf32_gptab *a1 = p1;
3024 const Elf32_gptab *a2 = p2;
3025
3026 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3027 }
3028 \f
3029 /* Functions to manage the got entry hash table. */
3030
3031 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3032 hash number. */
3033
3034 static INLINE hashval_t
3035 mips_elf_hash_bfd_vma (bfd_vma addr)
3036 {
3037 #ifdef BFD64
3038 return addr + (addr >> 32);
3039 #else
3040 return addr;
3041 #endif
3042 }
3043
3044 static hashval_t
3045 mips_elf_got_entry_hash (const void *entry_)
3046 {
3047 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3048
3049 return (entry->symndx
3050 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3051 + (entry->tls_type == GOT_TLS_LDM ? 0
3052 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3053 : entry->symndx >= 0 ? (entry->abfd->id
3054 + mips_elf_hash_bfd_vma (entry->d.addend))
3055 : entry->d.h->root.root.root.hash));
3056 }
3057
3058 static int
3059 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3060 {
3061 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3062 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3063
3064 return (e1->symndx == e2->symndx
3065 && e1->tls_type == e2->tls_type
3066 && (e1->tls_type == GOT_TLS_LDM ? TRUE
3067 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3068 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3069 && e1->d.addend == e2->d.addend)
3070 : e2->abfd && e1->d.h == e2->d.h));
3071 }
3072
3073 static hashval_t
3074 mips_got_page_ref_hash (const void *ref_)
3075 {
3076 const struct mips_got_page_ref *ref;
3077
3078 ref = (const struct mips_got_page_ref *) ref_;
3079 return ((ref->symndx >= 0
3080 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3081 : ref->u.h->root.root.root.hash)
3082 + mips_elf_hash_bfd_vma (ref->addend));
3083 }
3084
3085 static int
3086 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3087 {
3088 const struct mips_got_page_ref *ref1, *ref2;
3089
3090 ref1 = (const struct mips_got_page_ref *) ref1_;
3091 ref2 = (const struct mips_got_page_ref *) ref2_;
3092 return (ref1->symndx == ref2->symndx
3093 && (ref1->symndx < 0
3094 ? ref1->u.h == ref2->u.h
3095 : ref1->u.abfd == ref2->u.abfd)
3096 && ref1->addend == ref2->addend);
3097 }
3098
3099 static hashval_t
3100 mips_got_page_entry_hash (const void *entry_)
3101 {
3102 const struct mips_got_page_entry *entry;
3103
3104 entry = (const struct mips_got_page_entry *) entry_;
3105 return entry->sec->id;
3106 }
3107
3108 static int
3109 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3110 {
3111 const struct mips_got_page_entry *entry1, *entry2;
3112
3113 entry1 = (const struct mips_got_page_entry *) entry1_;
3114 entry2 = (const struct mips_got_page_entry *) entry2_;
3115 return entry1->sec == entry2->sec;
3116 }
3117 \f
3118 /* Create and return a new mips_got_info structure. */
3119
3120 static struct mips_got_info *
3121 mips_elf_create_got_info (bfd *abfd)
3122 {
3123 struct mips_got_info *g;
3124
3125 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3126 if (g == NULL)
3127 return NULL;
3128
3129 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3130 mips_elf_got_entry_eq, NULL);
3131 if (g->got_entries == NULL)
3132 return NULL;
3133
3134 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3135 mips_got_page_ref_eq, NULL);
3136 if (g->got_page_refs == NULL)
3137 return NULL;
3138
3139 return g;
3140 }
3141
3142 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3143 CREATE_P and if ABFD doesn't already have a GOT. */
3144
3145 static struct mips_got_info *
3146 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3147 {
3148 struct mips_elf_obj_tdata *tdata;
3149
3150 if (!is_mips_elf (abfd))
3151 return NULL;
3152
3153 tdata = mips_elf_tdata (abfd);
3154 if (!tdata->got && create_p)
3155 tdata->got = mips_elf_create_got_info (abfd);
3156 return tdata->got;
3157 }
3158
3159 /* Record that ABFD should use output GOT G. */
3160
3161 static void
3162 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3163 {
3164 struct mips_elf_obj_tdata *tdata;
3165
3166 BFD_ASSERT (is_mips_elf (abfd));
3167 tdata = mips_elf_tdata (abfd);
3168 if (tdata->got)
3169 {
3170 /* The GOT structure itself and the hash table entries are
3171 allocated to a bfd, but the hash tables aren't. */
3172 htab_delete (tdata->got->got_entries);
3173 htab_delete (tdata->got->got_page_refs);
3174 if (tdata->got->got_page_entries)
3175 htab_delete (tdata->got->got_page_entries);
3176 }
3177 tdata->got = g;
3178 }
3179
3180 /* Return the dynamic relocation section. If it doesn't exist, try to
3181 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3182 if creation fails. */
3183
3184 static asection *
3185 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3186 {
3187 const char *dname;
3188 asection *sreloc;
3189 bfd *dynobj;
3190
3191 dname = MIPS_ELF_REL_DYN_NAME (info);
3192 dynobj = elf_hash_table (info)->dynobj;
3193 sreloc = bfd_get_linker_section (dynobj, dname);
3194 if (sreloc == NULL && create_p)
3195 {
3196 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3197 (SEC_ALLOC
3198 | SEC_LOAD
3199 | SEC_HAS_CONTENTS
3200 | SEC_IN_MEMORY
3201 | SEC_LINKER_CREATED
3202 | SEC_READONLY));
3203 if (sreloc == NULL
3204 || ! bfd_set_section_alignment (dynobj, sreloc,
3205 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3206 return NULL;
3207 }
3208 return sreloc;
3209 }
3210
3211 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3212
3213 static int
3214 mips_elf_reloc_tls_type (unsigned int r_type)
3215 {
3216 if (tls_gd_reloc_p (r_type))
3217 return GOT_TLS_GD;
3218
3219 if (tls_ldm_reloc_p (r_type))
3220 return GOT_TLS_LDM;
3221
3222 if (tls_gottprel_reloc_p (r_type))
3223 return GOT_TLS_IE;
3224
3225 return GOT_TLS_NONE;
3226 }
3227
3228 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3229
3230 static int
3231 mips_tls_got_entries (unsigned int type)
3232 {
3233 switch (type)
3234 {
3235 case GOT_TLS_GD:
3236 case GOT_TLS_LDM:
3237 return 2;
3238
3239 case GOT_TLS_IE:
3240 return 1;
3241
3242 case GOT_TLS_NONE:
3243 return 0;
3244 }
3245 abort ();
3246 }
3247
3248 /* Count the number of relocations needed for a TLS GOT entry, with
3249 access types from TLS_TYPE, and symbol H (or a local symbol if H
3250 is NULL). */
3251
3252 static int
3253 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3254 struct elf_link_hash_entry *h)
3255 {
3256 int indx = 0;
3257 bfd_boolean need_relocs = FALSE;
3258 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3259
3260 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3261 && (!bfd_link_pic (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
3262 indx = h->dynindx;
3263
3264 if ((bfd_link_pic (info) || indx != 0)
3265 && (h == NULL
3266 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3267 || h->root.type != bfd_link_hash_undefweak))
3268 need_relocs = TRUE;
3269
3270 if (!need_relocs)
3271 return 0;
3272
3273 switch (tls_type)
3274 {
3275 case GOT_TLS_GD:
3276 return indx != 0 ? 2 : 1;
3277
3278 case GOT_TLS_IE:
3279 return 1;
3280
3281 case GOT_TLS_LDM:
3282 return bfd_link_pic (info) ? 1 : 0;
3283
3284 default:
3285 return 0;
3286 }
3287 }
3288
3289 /* Add the number of GOT entries and TLS relocations required by ENTRY
3290 to G. */
3291
3292 static void
3293 mips_elf_count_got_entry (struct bfd_link_info *info,
3294 struct mips_got_info *g,
3295 struct mips_got_entry *entry)
3296 {
3297 if (entry->tls_type)
3298 {
3299 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3300 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3301 entry->symndx < 0
3302 ? &entry->d.h->root : NULL);
3303 }
3304 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3305 g->local_gotno += 1;
3306 else
3307 g->global_gotno += 1;
3308 }
3309
3310 /* Output a simple dynamic relocation into SRELOC. */
3311
3312 static void
3313 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3314 asection *sreloc,
3315 unsigned long reloc_index,
3316 unsigned long indx,
3317 int r_type,
3318 bfd_vma offset)
3319 {
3320 Elf_Internal_Rela rel[3];
3321
3322 memset (rel, 0, sizeof (rel));
3323
3324 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3325 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3326
3327 if (ABI_64_P (output_bfd))
3328 {
3329 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3330 (output_bfd, &rel[0],
3331 (sreloc->contents
3332 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3333 }
3334 else
3335 bfd_elf32_swap_reloc_out
3336 (output_bfd, &rel[0],
3337 (sreloc->contents
3338 + reloc_index * sizeof (Elf32_External_Rel)));
3339 }
3340
3341 /* Initialize a set of TLS GOT entries for one symbol. */
3342
3343 static void
3344 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3345 struct mips_got_entry *entry,
3346 struct mips_elf_link_hash_entry *h,
3347 bfd_vma value)
3348 {
3349 struct mips_elf_link_hash_table *htab;
3350 int indx;
3351 asection *sreloc, *sgot;
3352 bfd_vma got_offset, got_offset2;
3353 bfd_boolean need_relocs = FALSE;
3354
3355 htab = mips_elf_hash_table (info);
3356 if (htab == NULL)
3357 return;
3358
3359 sgot = htab->root.sgot;
3360
3361 indx = 0;
3362 if (h != NULL)
3363 {
3364 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3365
3366 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info),
3367 &h->root)
3368 && (!bfd_link_pic (info)
3369 || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3370 indx = h->root.dynindx;
3371 }
3372
3373 if (entry->tls_initialized)
3374 return;
3375
3376 if ((bfd_link_pic (info) || indx != 0)
3377 && (h == NULL
3378 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3379 || h->root.type != bfd_link_hash_undefweak))
3380 need_relocs = TRUE;
3381
3382 /* MINUS_ONE means the symbol is not defined in this object. It may not
3383 be defined at all; assume that the value doesn't matter in that
3384 case. Otherwise complain if we would use the value. */
3385 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3386 || h->root.root.type == bfd_link_hash_undefweak);
3387
3388 /* Emit necessary relocations. */
3389 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3390 got_offset = entry->gotidx;
3391
3392 switch (entry->tls_type)
3393 {
3394 case GOT_TLS_GD:
3395 /* General Dynamic. */
3396 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3397
3398 if (need_relocs)
3399 {
3400 mips_elf_output_dynamic_relocation
3401 (abfd, sreloc, sreloc->reloc_count++, indx,
3402 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3403 sgot->output_offset + sgot->output_section->vma + got_offset);
3404
3405 if (indx)
3406 mips_elf_output_dynamic_relocation
3407 (abfd, sreloc, sreloc->reloc_count++, indx,
3408 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3409 sgot->output_offset + sgot->output_section->vma + got_offset2);
3410 else
3411 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3412 sgot->contents + got_offset2);
3413 }
3414 else
3415 {
3416 MIPS_ELF_PUT_WORD (abfd, 1,
3417 sgot->contents + got_offset);
3418 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3419 sgot->contents + got_offset2);
3420 }
3421 break;
3422
3423 case GOT_TLS_IE:
3424 /* Initial Exec model. */
3425 if (need_relocs)
3426 {
3427 if (indx == 0)
3428 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3429 sgot->contents + got_offset);
3430 else
3431 MIPS_ELF_PUT_WORD (abfd, 0,
3432 sgot->contents + got_offset);
3433
3434 mips_elf_output_dynamic_relocation
3435 (abfd, sreloc, sreloc->reloc_count++, indx,
3436 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3437 sgot->output_offset + sgot->output_section->vma + got_offset);
3438 }
3439 else
3440 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3441 sgot->contents + got_offset);
3442 break;
3443
3444 case GOT_TLS_LDM:
3445 /* The initial offset is zero, and the LD offsets will include the
3446 bias by DTP_OFFSET. */
3447 MIPS_ELF_PUT_WORD (abfd, 0,
3448 sgot->contents + got_offset
3449 + MIPS_ELF_GOT_SIZE (abfd));
3450
3451 if (!bfd_link_pic (info))
3452 MIPS_ELF_PUT_WORD (abfd, 1,
3453 sgot->contents + got_offset);
3454 else
3455 mips_elf_output_dynamic_relocation
3456 (abfd, sreloc, sreloc->reloc_count++, indx,
3457 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3458 sgot->output_offset + sgot->output_section->vma + got_offset);
3459 break;
3460
3461 default:
3462 abort ();
3463 }
3464
3465 entry->tls_initialized = TRUE;
3466 }
3467
3468 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3469 for global symbol H. .got.plt comes before the GOT, so the offset
3470 will be negative. */
3471
3472 static bfd_vma
3473 mips_elf_gotplt_index (struct bfd_link_info *info,
3474 struct elf_link_hash_entry *h)
3475 {
3476 bfd_vma got_address, got_value;
3477 struct mips_elf_link_hash_table *htab;
3478
3479 htab = mips_elf_hash_table (info);
3480 BFD_ASSERT (htab != NULL);
3481
3482 BFD_ASSERT (h->plt.plist != NULL);
3483 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3484
3485 /* Calculate the address of the associated .got.plt entry. */
3486 got_address = (htab->root.sgotplt->output_section->vma
3487 + htab->root.sgotplt->output_offset
3488 + (h->plt.plist->gotplt_index
3489 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3490
3491 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3492 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3493 + htab->root.hgot->root.u.def.section->output_offset
3494 + htab->root.hgot->root.u.def.value);
3495
3496 return got_address - got_value;
3497 }
3498
3499 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3500 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3501 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3502 offset can be found. */
3503
3504 static bfd_vma
3505 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3506 bfd_vma value, unsigned long r_symndx,
3507 struct mips_elf_link_hash_entry *h, int r_type)
3508 {
3509 struct mips_elf_link_hash_table *htab;
3510 struct mips_got_entry *entry;
3511
3512 htab = mips_elf_hash_table (info);
3513 BFD_ASSERT (htab != NULL);
3514
3515 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3516 r_symndx, h, r_type);
3517 if (!entry)
3518 return MINUS_ONE;
3519
3520 if (entry->tls_type)
3521 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3522 return entry->gotidx;
3523 }
3524
3525 /* Return the GOT index of global symbol H in the primary GOT. */
3526
3527 static bfd_vma
3528 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3529 struct elf_link_hash_entry *h)
3530 {
3531 struct mips_elf_link_hash_table *htab;
3532 long global_got_dynindx;
3533 struct mips_got_info *g;
3534 bfd_vma got_index;
3535
3536 htab = mips_elf_hash_table (info);
3537 BFD_ASSERT (htab != NULL);
3538
3539 global_got_dynindx = 0;
3540 if (htab->global_gotsym != NULL)
3541 global_got_dynindx = htab->global_gotsym->dynindx;
3542
3543 /* Once we determine the global GOT entry with the lowest dynamic
3544 symbol table index, we must put all dynamic symbols with greater
3545 indices into the primary GOT. That makes it easy to calculate the
3546 GOT offset. */
3547 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3548 g = mips_elf_bfd_got (obfd, FALSE);
3549 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3550 * MIPS_ELF_GOT_SIZE (obfd));
3551 BFD_ASSERT (got_index < htab->root.sgot->size);
3552
3553 return got_index;
3554 }
3555
3556 /* Return the GOT index for the global symbol indicated by H, which is
3557 referenced by a relocation of type R_TYPE in IBFD. */
3558
3559 static bfd_vma
3560 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3561 struct elf_link_hash_entry *h, int r_type)
3562 {
3563 struct mips_elf_link_hash_table *htab;
3564 struct mips_got_info *g;
3565 struct mips_got_entry lookup, *entry;
3566 bfd_vma gotidx;
3567
3568 htab = mips_elf_hash_table (info);
3569 BFD_ASSERT (htab != NULL);
3570
3571 g = mips_elf_bfd_got (ibfd, FALSE);
3572 BFD_ASSERT (g);
3573
3574 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3575 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3576 return mips_elf_primary_global_got_index (obfd, info, h);
3577
3578 lookup.abfd = ibfd;
3579 lookup.symndx = -1;
3580 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3581 entry = htab_find (g->got_entries, &lookup);
3582 BFD_ASSERT (entry);
3583
3584 gotidx = entry->gotidx;
3585 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3586
3587 if (lookup.tls_type)
3588 {
3589 bfd_vma value = MINUS_ONE;
3590
3591 if ((h->root.type == bfd_link_hash_defined
3592 || h->root.type == bfd_link_hash_defweak)
3593 && h->root.u.def.section->output_section)
3594 value = (h->root.u.def.value
3595 + h->root.u.def.section->output_offset
3596 + h->root.u.def.section->output_section->vma);
3597
3598 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3599 }
3600 return gotidx;
3601 }
3602
3603 /* Find a GOT page entry that points to within 32KB of VALUE. These
3604 entries are supposed to be placed at small offsets in the GOT, i.e.,
3605 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3606 entry could be created. If OFFSETP is nonnull, use it to return the
3607 offset of the GOT entry from VALUE. */
3608
3609 static bfd_vma
3610 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3611 bfd_vma value, bfd_vma *offsetp)
3612 {
3613 bfd_vma page, got_index;
3614 struct mips_got_entry *entry;
3615
3616 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3617 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3618 NULL, R_MIPS_GOT_PAGE);
3619
3620 if (!entry)
3621 return MINUS_ONE;
3622
3623 got_index = entry->gotidx;
3624
3625 if (offsetp)
3626 *offsetp = value - entry->d.address;
3627
3628 return got_index;
3629 }
3630
3631 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3632 EXTERNAL is true if the relocation was originally against a global
3633 symbol that binds locally. */
3634
3635 static bfd_vma
3636 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3637 bfd_vma value, bfd_boolean external)
3638 {
3639 struct mips_got_entry *entry;
3640
3641 /* GOT16 relocations against local symbols are followed by a LO16
3642 relocation; those against global symbols are not. Thus if the
3643 symbol was originally local, the GOT16 relocation should load the
3644 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3645 if (! external)
3646 value = mips_elf_high (value) << 16;
3647
3648 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3649 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3650 same in all cases. */
3651 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3652 NULL, R_MIPS_GOT16);
3653 if (entry)
3654 return entry->gotidx;
3655 else
3656 return MINUS_ONE;
3657 }
3658
3659 /* Returns the offset for the entry at the INDEXth position
3660 in the GOT. */
3661
3662 static bfd_vma
3663 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3664 bfd *input_bfd, bfd_vma got_index)
3665 {
3666 struct mips_elf_link_hash_table *htab;
3667 asection *sgot;
3668 bfd_vma gp;
3669
3670 htab = mips_elf_hash_table (info);
3671 BFD_ASSERT (htab != NULL);
3672
3673 sgot = htab->root.sgot;
3674 gp = _bfd_get_gp_value (output_bfd)
3675 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3676
3677 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3678 }
3679
3680 /* Create and return a local GOT entry for VALUE, which was calculated
3681 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3682 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3683 instead. */
3684
3685 static struct mips_got_entry *
3686 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3687 bfd *ibfd, bfd_vma value,
3688 unsigned long r_symndx,
3689 struct mips_elf_link_hash_entry *h,
3690 int r_type)
3691 {
3692 struct mips_got_entry lookup, *entry;
3693 void **loc;
3694 struct mips_got_info *g;
3695 struct mips_elf_link_hash_table *htab;
3696 bfd_vma gotidx;
3697
3698 htab = mips_elf_hash_table (info);
3699 BFD_ASSERT (htab != NULL);
3700
3701 g = mips_elf_bfd_got (ibfd, FALSE);
3702 if (g == NULL)
3703 {
3704 g = mips_elf_bfd_got (abfd, FALSE);
3705 BFD_ASSERT (g != NULL);
3706 }
3707
3708 /* This function shouldn't be called for symbols that live in the global
3709 area of the GOT. */
3710 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3711
3712 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3713 if (lookup.tls_type)
3714 {
3715 lookup.abfd = ibfd;
3716 if (tls_ldm_reloc_p (r_type))
3717 {
3718 lookup.symndx = 0;
3719 lookup.d.addend = 0;
3720 }
3721 else if (h == NULL)
3722 {
3723 lookup.symndx = r_symndx;
3724 lookup.d.addend = 0;
3725 }
3726 else
3727 {
3728 lookup.symndx = -1;
3729 lookup.d.h = h;
3730 }
3731
3732 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3733 BFD_ASSERT (entry);
3734
3735 gotidx = entry->gotidx;
3736 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3737
3738 return entry;
3739 }
3740
3741 lookup.abfd = NULL;
3742 lookup.symndx = -1;
3743 lookup.d.address = value;
3744 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3745 if (!loc)
3746 return NULL;
3747
3748 entry = (struct mips_got_entry *) *loc;
3749 if (entry)
3750 return entry;
3751
3752 if (g->assigned_low_gotno > g->assigned_high_gotno)
3753 {
3754 /* We didn't allocate enough space in the GOT. */
3755 _bfd_error_handler
3756 (_("not enough GOT space for local GOT entries"));
3757 bfd_set_error (bfd_error_bad_value);
3758 return NULL;
3759 }
3760
3761 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3762 if (!entry)
3763 return NULL;
3764
3765 if (got16_reloc_p (r_type)
3766 || call16_reloc_p (r_type)
3767 || got_page_reloc_p (r_type)
3768 || got_disp_reloc_p (r_type))
3769 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3770 else
3771 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3772
3773 *entry = lookup;
3774 *loc = entry;
3775
3776 MIPS_ELF_PUT_WORD (abfd, value, htab->root.sgot->contents + entry->gotidx);
3777
3778 /* These GOT entries need a dynamic relocation on VxWorks. */
3779 if (htab->is_vxworks)
3780 {
3781 Elf_Internal_Rela outrel;
3782 asection *s;
3783 bfd_byte *rloc;
3784 bfd_vma got_address;
3785
3786 s = mips_elf_rel_dyn_section (info, FALSE);
3787 got_address = (htab->root.sgot->output_section->vma
3788 + htab->root.sgot->output_offset
3789 + entry->gotidx);
3790
3791 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3792 outrel.r_offset = got_address;
3793 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3794 outrel.r_addend = value;
3795 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3796 }
3797
3798 return entry;
3799 }
3800
3801 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3802 The number might be exact or a worst-case estimate, depending on how
3803 much information is available to elf_backend_omit_section_dynsym at
3804 the current linking stage. */
3805
3806 static bfd_size_type
3807 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3808 {
3809 bfd_size_type count;
3810
3811 count = 0;
3812 if (bfd_link_pic (info)
3813 || elf_hash_table (info)->is_relocatable_executable)
3814 {
3815 asection *p;
3816 const struct elf_backend_data *bed;
3817
3818 bed = get_elf_backend_data (output_bfd);
3819 for (p = output_bfd->sections; p ; p = p->next)
3820 if ((p->flags & SEC_EXCLUDE) == 0
3821 && (p->flags & SEC_ALLOC) != 0
3822 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3823 ++count;
3824 }
3825 return count;
3826 }
3827
3828 /* Sort the dynamic symbol table so that symbols that need GOT entries
3829 appear towards the end. */
3830
3831 static bfd_boolean
3832 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3833 {
3834 struct mips_elf_link_hash_table *htab;
3835 struct mips_elf_hash_sort_data hsd;
3836 struct mips_got_info *g;
3837
3838 htab = mips_elf_hash_table (info);
3839 BFD_ASSERT (htab != NULL);
3840
3841 if (htab->root.dynsymcount == 0)
3842 return TRUE;
3843
3844 g = htab->got_info;
3845 if (g == NULL)
3846 return TRUE;
3847
3848 hsd.low = NULL;
3849 hsd.max_unref_got_dynindx
3850 = hsd.min_got_dynindx
3851 = (htab->root.dynsymcount - g->reloc_only_gotno);
3852 /* Add 1 to local symbol indices to account for the mandatory NULL entry
3853 at the head of the table; see `_bfd_elf_link_renumber_dynsyms'. */
3854 hsd.max_local_dynindx = count_section_dynsyms (abfd, info) + 1;
3855 hsd.max_non_got_dynindx = htab->root.local_dynsymcount + 1;
3856 mips_elf_link_hash_traverse (htab, mips_elf_sort_hash_table_f, &hsd);
3857
3858 /* There should have been enough room in the symbol table to
3859 accommodate both the GOT and non-GOT symbols. */
3860 BFD_ASSERT (hsd.max_local_dynindx <= htab->root.local_dynsymcount + 1);
3861 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3862 BFD_ASSERT (hsd.max_unref_got_dynindx == htab->root.dynsymcount);
3863 BFD_ASSERT (htab->root.dynsymcount - hsd.min_got_dynindx == g->global_gotno);
3864
3865 /* Now we know which dynamic symbol has the lowest dynamic symbol
3866 table index in the GOT. */
3867 htab->global_gotsym = hsd.low;
3868
3869 return TRUE;
3870 }
3871
3872 /* If H needs a GOT entry, assign it the highest available dynamic
3873 index. Otherwise, assign it the lowest available dynamic
3874 index. */
3875
3876 static bfd_boolean
3877 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3878 {
3879 struct mips_elf_hash_sort_data *hsd = data;
3880
3881 /* Symbols without dynamic symbol table entries aren't interesting
3882 at all. */
3883 if (h->root.dynindx == -1)
3884 return TRUE;
3885
3886 switch (h->global_got_area)
3887 {
3888 case GGA_NONE:
3889 if (h->root.forced_local)
3890 h->root.dynindx = hsd->max_local_dynindx++;
3891 else
3892 h->root.dynindx = hsd->max_non_got_dynindx++;
3893 break;
3894
3895 case GGA_NORMAL:
3896 h->root.dynindx = --hsd->min_got_dynindx;
3897 hsd->low = (struct elf_link_hash_entry *) h;
3898 break;
3899
3900 case GGA_RELOC_ONLY:
3901 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3902 hsd->low = (struct elf_link_hash_entry *) h;
3903 h->root.dynindx = hsd->max_unref_got_dynindx++;
3904 break;
3905 }
3906
3907 return TRUE;
3908 }
3909
3910 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3911 (which is owned by the caller and shouldn't be added to the
3912 hash table directly). */
3913
3914 static bfd_boolean
3915 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3916 struct mips_got_entry *lookup)
3917 {
3918 struct mips_elf_link_hash_table *htab;
3919 struct mips_got_entry *entry;
3920 struct mips_got_info *g;
3921 void **loc, **bfd_loc;
3922
3923 /* Make sure there's a slot for this entry in the master GOT. */
3924 htab = mips_elf_hash_table (info);
3925 g = htab->got_info;
3926 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3927 if (!loc)
3928 return FALSE;
3929
3930 /* Populate the entry if it isn't already. */
3931 entry = (struct mips_got_entry *) *loc;
3932 if (!entry)
3933 {
3934 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3935 if (!entry)
3936 return FALSE;
3937
3938 lookup->tls_initialized = FALSE;
3939 lookup->gotidx = -1;
3940 *entry = *lookup;
3941 *loc = entry;
3942 }
3943
3944 /* Reuse the same GOT entry for the BFD's GOT. */
3945 g = mips_elf_bfd_got (abfd, TRUE);
3946 if (!g)
3947 return FALSE;
3948
3949 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3950 if (!bfd_loc)
3951 return FALSE;
3952
3953 if (!*bfd_loc)
3954 *bfd_loc = entry;
3955 return TRUE;
3956 }
3957
3958 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3959 entry for it. FOR_CALL is true if the caller is only interested in
3960 using the GOT entry for calls. */
3961
3962 static bfd_boolean
3963 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3964 bfd *abfd, struct bfd_link_info *info,
3965 bfd_boolean for_call, int r_type)
3966 {
3967 struct mips_elf_link_hash_table *htab;
3968 struct mips_elf_link_hash_entry *hmips;
3969 struct mips_got_entry entry;
3970 unsigned char tls_type;
3971
3972 htab = mips_elf_hash_table (info);
3973 BFD_ASSERT (htab != NULL);
3974
3975 hmips = (struct mips_elf_link_hash_entry *) h;
3976 if (!for_call)
3977 hmips->got_only_for_calls = FALSE;
3978
3979 /* A global symbol in the GOT must also be in the dynamic symbol
3980 table. */
3981 if (h->dynindx == -1)
3982 {
3983 switch (ELF_ST_VISIBILITY (h->other))
3984 {
3985 case STV_INTERNAL:
3986 case STV_HIDDEN:
3987 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3988 break;
3989 }
3990 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3991 return FALSE;
3992 }
3993
3994 tls_type = mips_elf_reloc_tls_type (r_type);
3995 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
3996 hmips->global_got_area = GGA_NORMAL;
3997
3998 entry.abfd = abfd;
3999 entry.symndx = -1;
4000 entry.d.h = (struct mips_elf_link_hash_entry *) h;
4001 entry.tls_type = tls_type;
4002 return mips_elf_record_got_entry (info, abfd, &entry);
4003 }
4004
4005 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
4006 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
4007
4008 static bfd_boolean
4009 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
4010 struct bfd_link_info *info, int r_type)
4011 {
4012 struct mips_elf_link_hash_table *htab;
4013 struct mips_got_info *g;
4014 struct mips_got_entry entry;
4015
4016 htab = mips_elf_hash_table (info);
4017 BFD_ASSERT (htab != NULL);
4018
4019 g = htab->got_info;
4020 BFD_ASSERT (g != NULL);
4021
4022 entry.abfd = abfd;
4023 entry.symndx = symndx;
4024 entry.d.addend = addend;
4025 entry.tls_type = mips_elf_reloc_tls_type (r_type);
4026 return mips_elf_record_got_entry (info, abfd, &entry);
4027 }
4028
4029 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4030 H is the symbol's hash table entry, or null if SYMNDX is local
4031 to ABFD. */
4032
4033 static bfd_boolean
4034 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4035 long symndx, struct elf_link_hash_entry *h,
4036 bfd_signed_vma addend)
4037 {
4038 struct mips_elf_link_hash_table *htab;
4039 struct mips_got_info *g1, *g2;
4040 struct mips_got_page_ref lookup, *entry;
4041 void **loc, **bfd_loc;
4042
4043 htab = mips_elf_hash_table (info);
4044 BFD_ASSERT (htab != NULL);
4045
4046 g1 = htab->got_info;
4047 BFD_ASSERT (g1 != NULL);
4048
4049 if (h)
4050 {
4051 lookup.symndx = -1;
4052 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4053 }
4054 else
4055 {
4056 lookup.symndx = symndx;
4057 lookup.u.abfd = abfd;
4058 }
4059 lookup.addend = addend;
4060 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4061 if (loc == NULL)
4062 return FALSE;
4063
4064 entry = (struct mips_got_page_ref *) *loc;
4065 if (!entry)
4066 {
4067 entry = bfd_alloc (abfd, sizeof (*entry));
4068 if (!entry)
4069 return FALSE;
4070
4071 *entry = lookup;
4072 *loc = entry;
4073 }
4074
4075 /* Add the same entry to the BFD's GOT. */
4076 g2 = mips_elf_bfd_got (abfd, TRUE);
4077 if (!g2)
4078 return FALSE;
4079
4080 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4081 if (!bfd_loc)
4082 return FALSE;
4083
4084 if (!*bfd_loc)
4085 *bfd_loc = entry;
4086
4087 return TRUE;
4088 }
4089
4090 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4091
4092 static void
4093 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4094 unsigned int n)
4095 {
4096 asection *s;
4097 struct mips_elf_link_hash_table *htab;
4098
4099 htab = mips_elf_hash_table (info);
4100 BFD_ASSERT (htab != NULL);
4101
4102 s = mips_elf_rel_dyn_section (info, FALSE);
4103 BFD_ASSERT (s != NULL);
4104
4105 if (htab->is_vxworks)
4106 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4107 else
4108 {
4109 if (s->size == 0)
4110 {
4111 /* Make room for a null element. */
4112 s->size += MIPS_ELF_REL_SIZE (abfd);
4113 ++s->reloc_count;
4114 }
4115 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4116 }
4117 }
4118 \f
4119 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4120 mips_elf_traverse_got_arg structure. Count the number of GOT
4121 entries and TLS relocs. Set DATA->value to true if we need
4122 to resolve indirect or warning symbols and then recreate the GOT. */
4123
4124 static int
4125 mips_elf_check_recreate_got (void **entryp, void *data)
4126 {
4127 struct mips_got_entry *entry;
4128 struct mips_elf_traverse_got_arg *arg;
4129
4130 entry = (struct mips_got_entry *) *entryp;
4131 arg = (struct mips_elf_traverse_got_arg *) data;
4132 if (entry->abfd != NULL && entry->symndx == -1)
4133 {
4134 struct mips_elf_link_hash_entry *h;
4135
4136 h = entry->d.h;
4137 if (h->root.root.type == bfd_link_hash_indirect
4138 || h->root.root.type == bfd_link_hash_warning)
4139 {
4140 arg->value = TRUE;
4141 return 0;
4142 }
4143 }
4144 mips_elf_count_got_entry (arg->info, arg->g, entry);
4145 return 1;
4146 }
4147
4148 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4149 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4150 converting entries for indirect and warning symbols into entries
4151 for the target symbol. Set DATA->g to null on error. */
4152
4153 static int
4154 mips_elf_recreate_got (void **entryp, void *data)
4155 {
4156 struct mips_got_entry new_entry, *entry;
4157 struct mips_elf_traverse_got_arg *arg;
4158 void **slot;
4159
4160 entry = (struct mips_got_entry *) *entryp;
4161 arg = (struct mips_elf_traverse_got_arg *) data;
4162 if (entry->abfd != NULL
4163 && entry->symndx == -1
4164 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4165 || entry->d.h->root.root.type == bfd_link_hash_warning))
4166 {
4167 struct mips_elf_link_hash_entry *h;
4168
4169 new_entry = *entry;
4170 entry = &new_entry;
4171 h = entry->d.h;
4172 do
4173 {
4174 BFD_ASSERT (h->global_got_area == GGA_NONE);
4175 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4176 }
4177 while (h->root.root.type == bfd_link_hash_indirect
4178 || h->root.root.type == bfd_link_hash_warning);
4179 entry->d.h = h;
4180 }
4181 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4182 if (slot == NULL)
4183 {
4184 arg->g = NULL;
4185 return 0;
4186 }
4187 if (*slot == NULL)
4188 {
4189 if (entry == &new_entry)
4190 {
4191 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4192 if (!entry)
4193 {
4194 arg->g = NULL;
4195 return 0;
4196 }
4197 *entry = new_entry;
4198 }
4199 *slot = entry;
4200 mips_elf_count_got_entry (arg->info, arg->g, entry);
4201 }
4202 return 1;
4203 }
4204
4205 /* Return the maximum number of GOT page entries required for RANGE. */
4206
4207 static bfd_vma
4208 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4209 {
4210 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4211 }
4212
4213 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4214
4215 static bfd_boolean
4216 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4217 asection *sec, bfd_signed_vma addend)
4218 {
4219 struct mips_got_info *g = arg->g;
4220 struct mips_got_page_entry lookup, *entry;
4221 struct mips_got_page_range **range_ptr, *range;
4222 bfd_vma old_pages, new_pages;
4223 void **loc;
4224
4225 /* Find the mips_got_page_entry hash table entry for this section. */
4226 lookup.sec = sec;
4227 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4228 if (loc == NULL)
4229 return FALSE;
4230
4231 /* Create a mips_got_page_entry if this is the first time we've
4232 seen the section. */
4233 entry = (struct mips_got_page_entry *) *loc;
4234 if (!entry)
4235 {
4236 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4237 if (!entry)
4238 return FALSE;
4239
4240 entry->sec = sec;
4241 *loc = entry;
4242 }
4243
4244 /* Skip over ranges whose maximum extent cannot share a page entry
4245 with ADDEND. */
4246 range_ptr = &entry->ranges;
4247 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4248 range_ptr = &(*range_ptr)->next;
4249
4250 /* If we scanned to the end of the list, or found a range whose
4251 minimum extent cannot share a page entry with ADDEND, create
4252 a new singleton range. */
4253 range = *range_ptr;
4254 if (!range || addend < range->min_addend - 0xffff)
4255 {
4256 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4257 if (!range)
4258 return FALSE;
4259
4260 range->next = *range_ptr;
4261 range->min_addend = addend;
4262 range->max_addend = addend;
4263
4264 *range_ptr = range;
4265 entry->num_pages++;
4266 g->page_gotno++;
4267 return TRUE;
4268 }
4269
4270 /* Remember how many pages the old range contributed. */
4271 old_pages = mips_elf_pages_for_range (range);
4272
4273 /* Update the ranges. */
4274 if (addend < range->min_addend)
4275 range->min_addend = addend;
4276 else if (addend > range->max_addend)
4277 {
4278 if (range->next && addend >= range->next->min_addend - 0xffff)
4279 {
4280 old_pages += mips_elf_pages_for_range (range->next);
4281 range->max_addend = range->next->max_addend;
4282 range->next = range->next->next;
4283 }
4284 else
4285 range->max_addend = addend;
4286 }
4287
4288 /* Record any change in the total estimate. */
4289 new_pages = mips_elf_pages_for_range (range);
4290 if (old_pages != new_pages)
4291 {
4292 entry->num_pages += new_pages - old_pages;
4293 g->page_gotno += new_pages - old_pages;
4294 }
4295
4296 return TRUE;
4297 }
4298
4299 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4300 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4301 whether the page reference described by *REFP needs a GOT page entry,
4302 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4303
4304 static bfd_boolean
4305 mips_elf_resolve_got_page_ref (void **refp, void *data)
4306 {
4307 struct mips_got_page_ref *ref;
4308 struct mips_elf_traverse_got_arg *arg;
4309 struct mips_elf_link_hash_table *htab;
4310 asection *sec;
4311 bfd_vma addend;
4312
4313 ref = (struct mips_got_page_ref *) *refp;
4314 arg = (struct mips_elf_traverse_got_arg *) data;
4315 htab = mips_elf_hash_table (arg->info);
4316
4317 if (ref->symndx < 0)
4318 {
4319 struct mips_elf_link_hash_entry *h;
4320
4321 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4322 h = ref->u.h;
4323 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4324 return 1;
4325
4326 /* Ignore undefined symbols; we'll issue an error later if
4327 appropriate. */
4328 if (!((h->root.root.type == bfd_link_hash_defined
4329 || h->root.root.type == bfd_link_hash_defweak)
4330 && h->root.root.u.def.section))
4331 return 1;
4332
4333 sec = h->root.root.u.def.section;
4334 addend = h->root.root.u.def.value + ref->addend;
4335 }
4336 else
4337 {
4338 Elf_Internal_Sym *isym;
4339
4340 /* Read in the symbol. */
4341 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4342 ref->symndx);
4343 if (isym == NULL)
4344 {
4345 arg->g = NULL;
4346 return 0;
4347 }
4348
4349 /* Get the associated input section. */
4350 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4351 if (sec == NULL)
4352 {
4353 arg->g = NULL;
4354 return 0;
4355 }
4356
4357 /* If this is a mergable section, work out the section and offset
4358 of the merged data. For section symbols, the addend specifies
4359 of the offset _of_ the first byte in the data, otherwise it
4360 specifies the offset _from_ the first byte. */
4361 if (sec->flags & SEC_MERGE)
4362 {
4363 void *secinfo;
4364
4365 secinfo = elf_section_data (sec)->sec_info;
4366 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4367 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4368 isym->st_value + ref->addend);
4369 else
4370 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4371 isym->st_value) + ref->addend;
4372 }
4373 else
4374 addend = isym->st_value + ref->addend;
4375 }
4376 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4377 {
4378 arg->g = NULL;
4379 return 0;
4380 }
4381 return 1;
4382 }
4383
4384 /* If any entries in G->got_entries are for indirect or warning symbols,
4385 replace them with entries for the target symbol. Convert g->got_page_refs
4386 into got_page_entry structures and estimate the number of page entries
4387 that they require. */
4388
4389 static bfd_boolean
4390 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4391 struct mips_got_info *g)
4392 {
4393 struct mips_elf_traverse_got_arg tga;
4394 struct mips_got_info oldg;
4395
4396 oldg = *g;
4397
4398 tga.info = info;
4399 tga.g = g;
4400 tga.value = FALSE;
4401 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4402 if (tga.value)
4403 {
4404 *g = oldg;
4405 g->got_entries = htab_create (htab_size (oldg.got_entries),
4406 mips_elf_got_entry_hash,
4407 mips_elf_got_entry_eq, NULL);
4408 if (!g->got_entries)
4409 return FALSE;
4410
4411 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4412 if (!tga.g)
4413 return FALSE;
4414
4415 htab_delete (oldg.got_entries);
4416 }
4417
4418 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4419 mips_got_page_entry_eq, NULL);
4420 if (g->got_page_entries == NULL)
4421 return FALSE;
4422
4423 tga.info = info;
4424 tga.g = g;
4425 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4426
4427 return TRUE;
4428 }
4429
4430 /* Return true if a GOT entry for H should live in the local rather than
4431 global GOT area. */
4432
4433 static bfd_boolean
4434 mips_use_local_got_p (struct bfd_link_info *info,
4435 struct mips_elf_link_hash_entry *h)
4436 {
4437 /* Symbols that aren't in the dynamic symbol table must live in the
4438 local GOT. This includes symbols that are completely undefined
4439 and which therefore don't bind locally. We'll report undefined
4440 symbols later if appropriate. */
4441 if (h->root.dynindx == -1)
4442 return TRUE;
4443
4444 /* Symbols that bind locally can (and in the case of forced-local
4445 symbols, must) live in the local GOT. */
4446 if (h->got_only_for_calls
4447 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4448 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4449 return TRUE;
4450
4451 /* If this is an executable that must provide a definition of the symbol,
4452 either though PLTs or copy relocations, then that address should go in
4453 the local rather than global GOT. */
4454 if (bfd_link_executable (info) && h->has_static_relocs)
4455 return TRUE;
4456
4457 return FALSE;
4458 }
4459
4460 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4461 link_info structure. Decide whether the hash entry needs an entry in
4462 the global part of the primary GOT, setting global_got_area accordingly.
4463 Count the number of global symbols that are in the primary GOT only
4464 because they have relocations against them (reloc_only_gotno). */
4465
4466 static int
4467 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4468 {
4469 struct bfd_link_info *info;
4470 struct mips_elf_link_hash_table *htab;
4471 struct mips_got_info *g;
4472
4473 info = (struct bfd_link_info *) data;
4474 htab = mips_elf_hash_table (info);
4475 g = htab->got_info;
4476 if (h->global_got_area != GGA_NONE)
4477 {
4478 /* Make a final decision about whether the symbol belongs in the
4479 local or global GOT. */
4480 if (mips_use_local_got_p (info, h))
4481 /* The symbol belongs in the local GOT. We no longer need this
4482 entry if it was only used for relocations; those relocations
4483 will be against the null or section symbol instead of H. */
4484 h->global_got_area = GGA_NONE;
4485 else if (htab->is_vxworks
4486 && h->got_only_for_calls
4487 && h->root.plt.plist->mips_offset != MINUS_ONE)
4488 /* On VxWorks, calls can refer directly to the .got.plt entry;
4489 they don't need entries in the regular GOT. .got.plt entries
4490 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4491 h->global_got_area = GGA_NONE;
4492 else if (h->global_got_area == GGA_RELOC_ONLY)
4493 {
4494 g->reloc_only_gotno++;
4495 g->global_gotno++;
4496 }
4497 }
4498 return 1;
4499 }
4500 \f
4501 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4502 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4503
4504 static int
4505 mips_elf_add_got_entry (void **entryp, void *data)
4506 {
4507 struct mips_got_entry *entry;
4508 struct mips_elf_traverse_got_arg *arg;
4509 void **slot;
4510
4511 entry = (struct mips_got_entry *) *entryp;
4512 arg = (struct mips_elf_traverse_got_arg *) data;
4513 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4514 if (!slot)
4515 {
4516 arg->g = NULL;
4517 return 0;
4518 }
4519 if (!*slot)
4520 {
4521 *slot = entry;
4522 mips_elf_count_got_entry (arg->info, arg->g, entry);
4523 }
4524 return 1;
4525 }
4526
4527 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4528 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4529
4530 static int
4531 mips_elf_add_got_page_entry (void **entryp, void *data)
4532 {
4533 struct mips_got_page_entry *entry;
4534 struct mips_elf_traverse_got_arg *arg;
4535 void **slot;
4536
4537 entry = (struct mips_got_page_entry *) *entryp;
4538 arg = (struct mips_elf_traverse_got_arg *) data;
4539 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4540 if (!slot)
4541 {
4542 arg->g = NULL;
4543 return 0;
4544 }
4545 if (!*slot)
4546 {
4547 *slot = entry;
4548 arg->g->page_gotno += entry->num_pages;
4549 }
4550 return 1;
4551 }
4552
4553 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4554 this would lead to overflow, 1 if they were merged successfully,
4555 and 0 if a merge failed due to lack of memory. (These values are chosen
4556 so that nonnegative return values can be returned by a htab_traverse
4557 callback.) */
4558
4559 static int
4560 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4561 struct mips_got_info *to,
4562 struct mips_elf_got_per_bfd_arg *arg)
4563 {
4564 struct mips_elf_traverse_got_arg tga;
4565 unsigned int estimate;
4566
4567 /* Work out how many page entries we would need for the combined GOT. */
4568 estimate = arg->max_pages;
4569 if (estimate >= from->page_gotno + to->page_gotno)
4570 estimate = from->page_gotno + to->page_gotno;
4571
4572 /* And conservatively estimate how many local and TLS entries
4573 would be needed. */
4574 estimate += from->local_gotno + to->local_gotno;
4575 estimate += from->tls_gotno + to->tls_gotno;
4576
4577 /* If we're merging with the primary got, any TLS relocations will
4578 come after the full set of global entries. Otherwise estimate those
4579 conservatively as well. */
4580 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4581 estimate += arg->global_count;
4582 else
4583 estimate += from->global_gotno + to->global_gotno;
4584
4585 /* Bail out if the combined GOT might be too big. */
4586 if (estimate > arg->max_count)
4587 return -1;
4588
4589 /* Transfer the bfd's got information from FROM to TO. */
4590 tga.info = arg->info;
4591 tga.g = to;
4592 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4593 if (!tga.g)
4594 return 0;
4595
4596 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4597 if (!tga.g)
4598 return 0;
4599
4600 mips_elf_replace_bfd_got (abfd, to);
4601 return 1;
4602 }
4603
4604 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4605 as possible of the primary got, since it doesn't require explicit
4606 dynamic relocations, but don't use bfds that would reference global
4607 symbols out of the addressable range. Failing the primary got,
4608 attempt to merge with the current got, or finish the current got
4609 and then make make the new got current. */
4610
4611 static bfd_boolean
4612 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4613 struct mips_elf_got_per_bfd_arg *arg)
4614 {
4615 unsigned int estimate;
4616 int result;
4617
4618 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4619 return FALSE;
4620
4621 /* Work out the number of page, local and TLS entries. */
4622 estimate = arg->max_pages;
4623 if (estimate > g->page_gotno)
4624 estimate = g->page_gotno;
4625 estimate += g->local_gotno + g->tls_gotno;
4626
4627 /* We place TLS GOT entries after both locals and globals. The globals
4628 for the primary GOT may overflow the normal GOT size limit, so be
4629 sure not to merge a GOT which requires TLS with the primary GOT in that
4630 case. This doesn't affect non-primary GOTs. */
4631 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4632
4633 if (estimate <= arg->max_count)
4634 {
4635 /* If we don't have a primary GOT, use it as
4636 a starting point for the primary GOT. */
4637 if (!arg->primary)
4638 {
4639 arg->primary = g;
4640 return TRUE;
4641 }
4642
4643 /* Try merging with the primary GOT. */
4644 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4645 if (result >= 0)
4646 return result;
4647 }
4648
4649 /* If we can merge with the last-created got, do it. */
4650 if (arg->current)
4651 {
4652 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4653 if (result >= 0)
4654 return result;
4655 }
4656
4657 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4658 fits; if it turns out that it doesn't, we'll get relocation
4659 overflows anyway. */
4660 g->next = arg->current;
4661 arg->current = g;
4662
4663 return TRUE;
4664 }
4665
4666 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4667 to GOTIDX, duplicating the entry if it has already been assigned
4668 an index in a different GOT. */
4669
4670 static bfd_boolean
4671 mips_elf_set_gotidx (void **entryp, long gotidx)
4672 {
4673 struct mips_got_entry *entry;
4674
4675 entry = (struct mips_got_entry *) *entryp;
4676 if (entry->gotidx > 0)
4677 {
4678 struct mips_got_entry *new_entry;
4679
4680 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4681 if (!new_entry)
4682 return FALSE;
4683
4684 *new_entry = *entry;
4685 *entryp = new_entry;
4686 entry = new_entry;
4687 }
4688 entry->gotidx = gotidx;
4689 return TRUE;
4690 }
4691
4692 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4693 mips_elf_traverse_got_arg in which DATA->value is the size of one
4694 GOT entry. Set DATA->g to null on failure. */
4695
4696 static int
4697 mips_elf_initialize_tls_index (void **entryp, void *data)
4698 {
4699 struct mips_got_entry *entry;
4700 struct mips_elf_traverse_got_arg *arg;
4701
4702 /* We're only interested in TLS symbols. */
4703 entry = (struct mips_got_entry *) *entryp;
4704 if (entry->tls_type == GOT_TLS_NONE)
4705 return 1;
4706
4707 arg = (struct mips_elf_traverse_got_arg *) data;
4708 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4709 {
4710 arg->g = NULL;
4711 return 0;
4712 }
4713
4714 /* Account for the entries we've just allocated. */
4715 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4716 return 1;
4717 }
4718
4719 /* A htab_traverse callback for GOT entries, where DATA points to a
4720 mips_elf_traverse_got_arg. Set the global_got_area of each global
4721 symbol to DATA->value. */
4722
4723 static int
4724 mips_elf_set_global_got_area (void **entryp, void *data)
4725 {
4726 struct mips_got_entry *entry;
4727 struct mips_elf_traverse_got_arg *arg;
4728
4729 entry = (struct mips_got_entry *) *entryp;
4730 arg = (struct mips_elf_traverse_got_arg *) data;
4731 if (entry->abfd != NULL
4732 && entry->symndx == -1
4733 && entry->d.h->global_got_area != GGA_NONE)
4734 entry->d.h->global_got_area = arg->value;
4735 return 1;
4736 }
4737
4738 /* A htab_traverse callback for secondary GOT entries, where DATA points
4739 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4740 and record the number of relocations they require. DATA->value is
4741 the size of one GOT entry. Set DATA->g to null on failure. */
4742
4743 static int
4744 mips_elf_set_global_gotidx (void **entryp, void *data)
4745 {
4746 struct mips_got_entry *entry;
4747 struct mips_elf_traverse_got_arg *arg;
4748
4749 entry = (struct mips_got_entry *) *entryp;
4750 arg = (struct mips_elf_traverse_got_arg *) data;
4751 if (entry->abfd != NULL
4752 && entry->symndx == -1
4753 && entry->d.h->global_got_area != GGA_NONE)
4754 {
4755 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4756 {
4757 arg->g = NULL;
4758 return 0;
4759 }
4760 arg->g->assigned_low_gotno += 1;
4761
4762 if (bfd_link_pic (arg->info)
4763 || (elf_hash_table (arg->info)->dynamic_sections_created
4764 && entry->d.h->root.def_dynamic
4765 && !entry->d.h->root.def_regular))
4766 arg->g->relocs += 1;
4767 }
4768
4769 return 1;
4770 }
4771
4772 /* A htab_traverse callback for GOT entries for which DATA is the
4773 bfd_link_info. Forbid any global symbols from having traditional
4774 lazy-binding stubs. */
4775
4776 static int
4777 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4778 {
4779 struct bfd_link_info *info;
4780 struct mips_elf_link_hash_table *htab;
4781 struct mips_got_entry *entry;
4782
4783 entry = (struct mips_got_entry *) *entryp;
4784 info = (struct bfd_link_info *) data;
4785 htab = mips_elf_hash_table (info);
4786 BFD_ASSERT (htab != NULL);
4787
4788 if (entry->abfd != NULL
4789 && entry->symndx == -1
4790 && entry->d.h->needs_lazy_stub)
4791 {
4792 entry->d.h->needs_lazy_stub = FALSE;
4793 htab->lazy_stub_count--;
4794 }
4795
4796 return 1;
4797 }
4798
4799 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4800 the primary GOT. */
4801 static bfd_vma
4802 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4803 {
4804 if (!g->next)
4805 return 0;
4806
4807 g = mips_elf_bfd_got (ibfd, FALSE);
4808 if (! g)
4809 return 0;
4810
4811 BFD_ASSERT (g->next);
4812
4813 g = g->next;
4814
4815 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4816 * MIPS_ELF_GOT_SIZE (abfd);
4817 }
4818
4819 /* Turn a single GOT that is too big for 16-bit addressing into
4820 a sequence of GOTs, each one 16-bit addressable. */
4821
4822 static bfd_boolean
4823 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4824 asection *got, bfd_size_type pages)
4825 {
4826 struct mips_elf_link_hash_table *htab;
4827 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4828 struct mips_elf_traverse_got_arg tga;
4829 struct mips_got_info *g, *gg;
4830 unsigned int assign, needed_relocs;
4831 bfd *dynobj, *ibfd;
4832
4833 dynobj = elf_hash_table (info)->dynobj;
4834 htab = mips_elf_hash_table (info);
4835 BFD_ASSERT (htab != NULL);
4836
4837 g = htab->got_info;
4838
4839 got_per_bfd_arg.obfd = abfd;
4840 got_per_bfd_arg.info = info;
4841 got_per_bfd_arg.current = NULL;
4842 got_per_bfd_arg.primary = NULL;
4843 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4844 / MIPS_ELF_GOT_SIZE (abfd))
4845 - htab->reserved_gotno);
4846 got_per_bfd_arg.max_pages = pages;
4847 /* The number of globals that will be included in the primary GOT.
4848 See the calls to mips_elf_set_global_got_area below for more
4849 information. */
4850 got_per_bfd_arg.global_count = g->global_gotno;
4851
4852 /* Try to merge the GOTs of input bfds together, as long as they
4853 don't seem to exceed the maximum GOT size, choosing one of them
4854 to be the primary GOT. */
4855 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4856 {
4857 gg = mips_elf_bfd_got (ibfd, FALSE);
4858 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4859 return FALSE;
4860 }
4861
4862 /* If we do not find any suitable primary GOT, create an empty one. */
4863 if (got_per_bfd_arg.primary == NULL)
4864 g->next = mips_elf_create_got_info (abfd);
4865 else
4866 g->next = got_per_bfd_arg.primary;
4867 g->next->next = got_per_bfd_arg.current;
4868
4869 /* GG is now the master GOT, and G is the primary GOT. */
4870 gg = g;
4871 g = g->next;
4872
4873 /* Map the output bfd to the primary got. That's what we're going
4874 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4875 didn't mark in check_relocs, and we want a quick way to find it.
4876 We can't just use gg->next because we're going to reverse the
4877 list. */
4878 mips_elf_replace_bfd_got (abfd, g);
4879
4880 /* Every symbol that is referenced in a dynamic relocation must be
4881 present in the primary GOT, so arrange for them to appear after
4882 those that are actually referenced. */
4883 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4884 g->global_gotno = gg->global_gotno;
4885
4886 tga.info = info;
4887 tga.value = GGA_RELOC_ONLY;
4888 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4889 tga.value = GGA_NORMAL;
4890 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4891
4892 /* Now go through the GOTs assigning them offset ranges.
4893 [assigned_low_gotno, local_gotno[ will be set to the range of local
4894 entries in each GOT. We can then compute the end of a GOT by
4895 adding local_gotno to global_gotno. We reverse the list and make
4896 it circular since then we'll be able to quickly compute the
4897 beginning of a GOT, by computing the end of its predecessor. To
4898 avoid special cases for the primary GOT, while still preserving
4899 assertions that are valid for both single- and multi-got links,
4900 we arrange for the main got struct to have the right number of
4901 global entries, but set its local_gotno such that the initial
4902 offset of the primary GOT is zero. Remember that the primary GOT
4903 will become the last item in the circular linked list, so it
4904 points back to the master GOT. */
4905 gg->local_gotno = -g->global_gotno;
4906 gg->global_gotno = g->global_gotno;
4907 gg->tls_gotno = 0;
4908 assign = 0;
4909 gg->next = gg;
4910
4911 do
4912 {
4913 struct mips_got_info *gn;
4914
4915 assign += htab->reserved_gotno;
4916 g->assigned_low_gotno = assign;
4917 g->local_gotno += assign;
4918 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4919 g->assigned_high_gotno = g->local_gotno - 1;
4920 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4921
4922 /* Take g out of the direct list, and push it onto the reversed
4923 list that gg points to. g->next is guaranteed to be nonnull after
4924 this operation, as required by mips_elf_initialize_tls_index. */
4925 gn = g->next;
4926 g->next = gg->next;
4927 gg->next = g;
4928
4929 /* Set up any TLS entries. We always place the TLS entries after
4930 all non-TLS entries. */
4931 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4932 tga.g = g;
4933 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4934 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4935 if (!tga.g)
4936 return FALSE;
4937 BFD_ASSERT (g->tls_assigned_gotno == assign);
4938
4939 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4940 g = gn;
4941
4942 /* Forbid global symbols in every non-primary GOT from having
4943 lazy-binding stubs. */
4944 if (g)
4945 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4946 }
4947 while (g);
4948
4949 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
4950
4951 needed_relocs = 0;
4952 for (g = gg->next; g && g->next != gg; g = g->next)
4953 {
4954 unsigned int save_assign;
4955
4956 /* Assign offsets to global GOT entries and count how many
4957 relocations they need. */
4958 save_assign = g->assigned_low_gotno;
4959 g->assigned_low_gotno = g->local_gotno;
4960 tga.info = info;
4961 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4962 tga.g = g;
4963 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
4964 if (!tga.g)
4965 return FALSE;
4966 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4967 g->assigned_low_gotno = save_assign;
4968
4969 if (bfd_link_pic (info))
4970 {
4971 g->relocs += g->local_gotno - g->assigned_low_gotno;
4972 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
4973 + g->next->global_gotno
4974 + g->next->tls_gotno
4975 + htab->reserved_gotno);
4976 }
4977 needed_relocs += g->relocs;
4978 }
4979 needed_relocs += g->relocs;
4980
4981 if (needed_relocs)
4982 mips_elf_allocate_dynamic_relocations (dynobj, info,
4983 needed_relocs);
4984
4985 return TRUE;
4986 }
4987
4988 \f
4989 /* Returns the first relocation of type r_type found, beginning with
4990 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4991
4992 static const Elf_Internal_Rela *
4993 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4994 const Elf_Internal_Rela *relocation,
4995 const Elf_Internal_Rela *relend)
4996 {
4997 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4998
4999 while (relocation < relend)
5000 {
5001 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
5002 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
5003 return relocation;
5004
5005 ++relocation;
5006 }
5007
5008 /* We didn't find it. */
5009 return NULL;
5010 }
5011
5012 /* Return whether an input relocation is against a local symbol. */
5013
5014 static bfd_boolean
5015 mips_elf_local_relocation_p (bfd *input_bfd,
5016 const Elf_Internal_Rela *relocation,
5017 asection **local_sections)
5018 {
5019 unsigned long r_symndx;
5020 Elf_Internal_Shdr *symtab_hdr;
5021 size_t extsymoff;
5022
5023 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5024 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5025 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5026
5027 if (r_symndx < extsymoff)
5028 return TRUE;
5029 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5030 return TRUE;
5031
5032 return FALSE;
5033 }
5034 \f
5035 /* Sign-extend VALUE, which has the indicated number of BITS. */
5036
5037 bfd_vma
5038 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
5039 {
5040 if (value & ((bfd_vma) 1 << (bits - 1)))
5041 /* VALUE is negative. */
5042 value |= ((bfd_vma) - 1) << bits;
5043
5044 return value;
5045 }
5046
5047 /* Return non-zero if the indicated VALUE has overflowed the maximum
5048 range expressible by a signed number with the indicated number of
5049 BITS. */
5050
5051 static bfd_boolean
5052 mips_elf_overflow_p (bfd_vma value, int bits)
5053 {
5054 bfd_signed_vma svalue = (bfd_signed_vma) value;
5055
5056 if (svalue > (1 << (bits - 1)) - 1)
5057 /* The value is too big. */
5058 return TRUE;
5059 else if (svalue < -(1 << (bits - 1)))
5060 /* The value is too small. */
5061 return TRUE;
5062
5063 /* All is well. */
5064 return FALSE;
5065 }
5066
5067 /* Calculate the %high function. */
5068
5069 static bfd_vma
5070 mips_elf_high (bfd_vma value)
5071 {
5072 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5073 }
5074
5075 /* Calculate the %higher function. */
5076
5077 static bfd_vma
5078 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5079 {
5080 #ifdef BFD64
5081 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5082 #else
5083 abort ();
5084 return MINUS_ONE;
5085 #endif
5086 }
5087
5088 /* Calculate the %highest function. */
5089
5090 static bfd_vma
5091 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5092 {
5093 #ifdef BFD64
5094 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5095 #else
5096 abort ();
5097 return MINUS_ONE;
5098 #endif
5099 }
5100 \f
5101 /* Create the .compact_rel section. */
5102
5103 static bfd_boolean
5104 mips_elf_create_compact_rel_section
5105 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5106 {
5107 flagword flags;
5108 register asection *s;
5109
5110 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5111 {
5112 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5113 | SEC_READONLY);
5114
5115 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5116 if (s == NULL
5117 || ! bfd_set_section_alignment (abfd, s,
5118 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5119 return FALSE;
5120
5121 s->size = sizeof (Elf32_External_compact_rel);
5122 }
5123
5124 return TRUE;
5125 }
5126
5127 /* Create the .got section to hold the global offset table. */
5128
5129 static bfd_boolean
5130 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5131 {
5132 flagword flags;
5133 register asection *s;
5134 struct elf_link_hash_entry *h;
5135 struct bfd_link_hash_entry *bh;
5136 struct mips_elf_link_hash_table *htab;
5137
5138 htab = mips_elf_hash_table (info);
5139 BFD_ASSERT (htab != NULL);
5140
5141 /* This function may be called more than once. */
5142 if (htab->root.sgot)
5143 return TRUE;
5144
5145 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5146 | SEC_LINKER_CREATED);
5147
5148 /* We have to use an alignment of 2**4 here because this is hardcoded
5149 in the function stub generation and in the linker script. */
5150 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5151 if (s == NULL
5152 || ! bfd_set_section_alignment (abfd, s, 4))
5153 return FALSE;
5154 htab->root.sgot = s;
5155
5156 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5157 linker script because we don't want to define the symbol if we
5158 are not creating a global offset table. */
5159 bh = NULL;
5160 if (! (_bfd_generic_link_add_one_symbol
5161 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5162 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5163 return FALSE;
5164
5165 h = (struct elf_link_hash_entry *) bh;
5166 h->non_elf = 0;
5167 h->def_regular = 1;
5168 h->type = STT_OBJECT;
5169 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5170 elf_hash_table (info)->hgot = h;
5171
5172 if (bfd_link_pic (info)
5173 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5174 return FALSE;
5175
5176 htab->got_info = mips_elf_create_got_info (abfd);
5177 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5178 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5179
5180 /* We also need a .got.plt section when generating PLTs. */
5181 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5182 SEC_ALLOC | SEC_LOAD
5183 | SEC_HAS_CONTENTS
5184 | SEC_IN_MEMORY
5185 | SEC_LINKER_CREATED);
5186 if (s == NULL)
5187 return FALSE;
5188 htab->root.sgotplt = s;
5189
5190 return TRUE;
5191 }
5192 \f
5193 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5194 __GOTT_INDEX__ symbols. These symbols are only special for
5195 shared objects; they are not used in executables. */
5196
5197 static bfd_boolean
5198 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5199 {
5200 return (mips_elf_hash_table (info)->is_vxworks
5201 && bfd_link_pic (info)
5202 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5203 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5204 }
5205
5206 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5207 require an la25 stub. See also mips_elf_local_pic_function_p,
5208 which determines whether the destination function ever requires a
5209 stub. */
5210
5211 static bfd_boolean
5212 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5213 bfd_boolean target_is_16_bit_code_p)
5214 {
5215 /* We specifically ignore branches and jumps from EF_PIC objects,
5216 where the onus is on the compiler or programmer to perform any
5217 necessary initialization of $25. Sometimes such initialization
5218 is unnecessary; for example, -mno-shared functions do not use
5219 the incoming value of $25, and may therefore be called directly. */
5220 if (PIC_OBJECT_P (input_bfd))
5221 return FALSE;
5222
5223 switch (r_type)
5224 {
5225 case R_MIPS_26:
5226 case R_MIPS_PC16:
5227 case R_MIPS_PC21_S2:
5228 case R_MIPS_PC26_S2:
5229 case R_MICROMIPS_26_S1:
5230 case R_MICROMIPS_PC7_S1:
5231 case R_MICROMIPS_PC10_S1:
5232 case R_MICROMIPS_PC16_S1:
5233 case R_MICROMIPS_PC23_S2:
5234 return TRUE;
5235
5236 case R_MIPS16_26:
5237 return !target_is_16_bit_code_p;
5238
5239 default:
5240 return FALSE;
5241 }
5242 }
5243 \f
5244 /* Calculate the value produced by the RELOCATION (which comes from
5245 the INPUT_BFD). The ADDEND is the addend to use for this
5246 RELOCATION; RELOCATION->R_ADDEND is ignored.
5247
5248 The result of the relocation calculation is stored in VALUEP.
5249 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5250 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5251
5252 This function returns bfd_reloc_continue if the caller need take no
5253 further action regarding this relocation, bfd_reloc_notsupported if
5254 something goes dramatically wrong, bfd_reloc_overflow if an
5255 overflow occurs, and bfd_reloc_ok to indicate success. */
5256
5257 static bfd_reloc_status_type
5258 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5259 asection *input_section,
5260 struct bfd_link_info *info,
5261 const Elf_Internal_Rela *relocation,
5262 bfd_vma addend, reloc_howto_type *howto,
5263 Elf_Internal_Sym *local_syms,
5264 asection **local_sections, bfd_vma *valuep,
5265 const char **namep,
5266 bfd_boolean *cross_mode_jump_p,
5267 bfd_boolean save_addend)
5268 {
5269 /* The eventual value we will return. */
5270 bfd_vma value;
5271 /* The address of the symbol against which the relocation is
5272 occurring. */
5273 bfd_vma symbol = 0;
5274 /* The final GP value to be used for the relocatable, executable, or
5275 shared object file being produced. */
5276 bfd_vma gp;
5277 /* The place (section offset or address) of the storage unit being
5278 relocated. */
5279 bfd_vma p;
5280 /* The value of GP used to create the relocatable object. */
5281 bfd_vma gp0;
5282 /* The offset into the global offset table at which the address of
5283 the relocation entry symbol, adjusted by the addend, resides
5284 during execution. */
5285 bfd_vma g = MINUS_ONE;
5286 /* The section in which the symbol referenced by the relocation is
5287 located. */
5288 asection *sec = NULL;
5289 struct mips_elf_link_hash_entry *h = NULL;
5290 /* TRUE if the symbol referred to by this relocation is a local
5291 symbol. */
5292 bfd_boolean local_p, was_local_p;
5293 /* TRUE if the symbol referred to by this relocation is a section
5294 symbol. */
5295 bfd_boolean section_p = FALSE;
5296 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5297 bfd_boolean gp_disp_p = FALSE;
5298 /* TRUE if the symbol referred to by this relocation is
5299 "__gnu_local_gp". */
5300 bfd_boolean gnu_local_gp_p = FALSE;
5301 Elf_Internal_Shdr *symtab_hdr;
5302 size_t extsymoff;
5303 unsigned long r_symndx;
5304 int r_type;
5305 /* TRUE if overflow occurred during the calculation of the
5306 relocation value. */
5307 bfd_boolean overflowed_p;
5308 /* TRUE if this relocation refers to a MIPS16 function. */
5309 bfd_boolean target_is_16_bit_code_p = FALSE;
5310 bfd_boolean target_is_micromips_code_p = FALSE;
5311 struct mips_elf_link_hash_table *htab;
5312 bfd *dynobj;
5313 bfd_boolean resolved_to_zero;
5314
5315 dynobj = elf_hash_table (info)->dynobj;
5316 htab = mips_elf_hash_table (info);
5317 BFD_ASSERT (htab != NULL);
5318
5319 /* Parse the relocation. */
5320 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5321 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5322 p = (input_section->output_section->vma
5323 + input_section->output_offset
5324 + relocation->r_offset);
5325
5326 /* Assume that there will be no overflow. */
5327 overflowed_p = FALSE;
5328
5329 /* Figure out whether or not the symbol is local, and get the offset
5330 used in the array of hash table entries. */
5331 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5332 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5333 local_sections);
5334 was_local_p = local_p;
5335 if (! elf_bad_symtab (input_bfd))
5336 extsymoff = symtab_hdr->sh_info;
5337 else
5338 {
5339 /* The symbol table does not follow the rule that local symbols
5340 must come before globals. */
5341 extsymoff = 0;
5342 }
5343
5344 /* Figure out the value of the symbol. */
5345 if (local_p)
5346 {
5347 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5348 Elf_Internal_Sym *sym;
5349
5350 sym = local_syms + r_symndx;
5351 sec = local_sections[r_symndx];
5352
5353 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5354
5355 symbol = sec->output_section->vma + sec->output_offset;
5356 if (!section_p || (sec->flags & SEC_MERGE))
5357 symbol += sym->st_value;
5358 if ((sec->flags & SEC_MERGE) && section_p)
5359 {
5360 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5361 addend -= symbol;
5362 addend += sec->output_section->vma + sec->output_offset;
5363 }
5364
5365 /* MIPS16/microMIPS text labels should be treated as odd. */
5366 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5367 ++symbol;
5368
5369 /* Record the name of this symbol, for our caller. */
5370 *namep = bfd_elf_string_from_elf_section (input_bfd,
5371 symtab_hdr->sh_link,
5372 sym->st_name);
5373 if (*namep == NULL || **namep == '\0')
5374 *namep = bfd_section_name (input_bfd, sec);
5375
5376 /* For relocations against a section symbol and ones against no
5377 symbol (absolute relocations) infer the ISA mode from the addend. */
5378 if (section_p || r_symndx == STN_UNDEF)
5379 {
5380 target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5381 target_is_micromips_code_p = (addend & 1) && micromips_p;
5382 }
5383 /* For relocations against an absolute symbol infer the ISA mode
5384 from the value of the symbol plus addend. */
5385 else if (bfd_is_abs_section (sec))
5386 {
5387 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5388 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5389 }
5390 /* Otherwise just use the regular symbol annotation available. */
5391 else
5392 {
5393 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5394 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5395 }
5396 }
5397 else
5398 {
5399 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5400
5401 /* For global symbols we look up the symbol in the hash-table. */
5402 h = ((struct mips_elf_link_hash_entry *)
5403 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5404 /* Find the real hash-table entry for this symbol. */
5405 while (h->root.root.type == bfd_link_hash_indirect
5406 || h->root.root.type == bfd_link_hash_warning)
5407 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5408
5409 /* Record the name of this symbol, for our caller. */
5410 *namep = h->root.root.root.string;
5411
5412 /* See if this is the special _gp_disp symbol. Note that such a
5413 symbol must always be a global symbol. */
5414 if (strcmp (*namep, "_gp_disp") == 0
5415 && ! NEWABI_P (input_bfd))
5416 {
5417 /* Relocations against _gp_disp are permitted only with
5418 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5419 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5420 return bfd_reloc_notsupported;
5421
5422 gp_disp_p = TRUE;
5423 }
5424 /* See if this is the special _gp symbol. Note that such a
5425 symbol must always be a global symbol. */
5426 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5427 gnu_local_gp_p = TRUE;
5428
5429
5430 /* If this symbol is defined, calculate its address. Note that
5431 _gp_disp is a magic symbol, always implicitly defined by the
5432 linker, so it's inappropriate to check to see whether or not
5433 its defined. */
5434 else if ((h->root.root.type == bfd_link_hash_defined
5435 || h->root.root.type == bfd_link_hash_defweak)
5436 && h->root.root.u.def.section)
5437 {
5438 sec = h->root.root.u.def.section;
5439 if (sec->output_section)
5440 symbol = (h->root.root.u.def.value
5441 + sec->output_section->vma
5442 + sec->output_offset);
5443 else
5444 symbol = h->root.root.u.def.value;
5445 }
5446 else if (h->root.root.type == bfd_link_hash_undefweak)
5447 /* We allow relocations against undefined weak symbols, giving
5448 it the value zero, so that you can undefined weak functions
5449 and check to see if they exist by looking at their
5450 addresses. */
5451 symbol = 0;
5452 else if (info->unresolved_syms_in_objects == RM_IGNORE
5453 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5454 symbol = 0;
5455 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5456 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5457 {
5458 /* If this is a dynamic link, we should have created a
5459 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5460 in _bfd_mips_elf_create_dynamic_sections.
5461 Otherwise, we should define the symbol with a value of 0.
5462 FIXME: It should probably get into the symbol table
5463 somehow as well. */
5464 BFD_ASSERT (! bfd_link_pic (info));
5465 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5466 symbol = 0;
5467 }
5468 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5469 {
5470 /* This is an optional symbol - an Irix specific extension to the
5471 ELF spec. Ignore it for now.
5472 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5473 than simply ignoring them, but we do not handle this for now.
5474 For information see the "64-bit ELF Object File Specification"
5475 which is available from here:
5476 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5477 symbol = 0;
5478 }
5479 else
5480 {
5481 (*info->callbacks->undefined_symbol)
5482 (info, h->root.root.root.string, input_bfd,
5483 input_section, relocation->r_offset,
5484 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5485 || ELF_ST_VISIBILITY (h->root.other));
5486 return bfd_reloc_undefined;
5487 }
5488
5489 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5490 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5491 }
5492
5493 /* If this is a reference to a 16-bit function with a stub, we need
5494 to redirect the relocation to the stub unless:
5495
5496 (a) the relocation is for a MIPS16 JAL;
5497
5498 (b) the relocation is for a MIPS16 PIC call, and there are no
5499 non-MIPS16 uses of the GOT slot; or
5500
5501 (c) the section allows direct references to MIPS16 functions. */
5502 if (r_type != R_MIPS16_26
5503 && !bfd_link_relocatable (info)
5504 && ((h != NULL
5505 && h->fn_stub != NULL
5506 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5507 || (local_p
5508 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5509 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5510 && !section_allows_mips16_refs_p (input_section))
5511 {
5512 /* This is a 32- or 64-bit call to a 16-bit function. We should
5513 have already noticed that we were going to need the
5514 stub. */
5515 if (local_p)
5516 {
5517 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5518 value = 0;
5519 }
5520 else
5521 {
5522 BFD_ASSERT (h->need_fn_stub);
5523 if (h->la25_stub)
5524 {
5525 /* If a LA25 header for the stub itself exists, point to the
5526 prepended LUI/ADDIU sequence. */
5527 sec = h->la25_stub->stub_section;
5528 value = h->la25_stub->offset;
5529 }
5530 else
5531 {
5532 sec = h->fn_stub;
5533 value = 0;
5534 }
5535 }
5536
5537 symbol = sec->output_section->vma + sec->output_offset + value;
5538 /* The target is 16-bit, but the stub isn't. */
5539 target_is_16_bit_code_p = FALSE;
5540 }
5541 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5542 to a standard MIPS function, we need to redirect the call to the stub.
5543 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5544 indirect calls should use an indirect stub instead. */
5545 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
5546 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5547 || (local_p
5548 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5549 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5550 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5551 {
5552 if (local_p)
5553 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5554 else
5555 {
5556 /* If both call_stub and call_fp_stub are defined, we can figure
5557 out which one to use by checking which one appears in the input
5558 file. */
5559 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5560 {
5561 asection *o;
5562
5563 sec = NULL;
5564 for (o = input_bfd->sections; o != NULL; o = o->next)
5565 {
5566 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5567 {
5568 sec = h->call_fp_stub;
5569 break;
5570 }
5571 }
5572 if (sec == NULL)
5573 sec = h->call_stub;
5574 }
5575 else if (h->call_stub != NULL)
5576 sec = h->call_stub;
5577 else
5578 sec = h->call_fp_stub;
5579 }
5580
5581 BFD_ASSERT (sec->size > 0);
5582 symbol = sec->output_section->vma + sec->output_offset;
5583 }
5584 /* If this is a direct call to a PIC function, redirect to the
5585 non-PIC stub. */
5586 else if (h != NULL && h->la25_stub
5587 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5588 target_is_16_bit_code_p))
5589 {
5590 symbol = (h->la25_stub->stub_section->output_section->vma
5591 + h->la25_stub->stub_section->output_offset
5592 + h->la25_stub->offset);
5593 if (ELF_ST_IS_MICROMIPS (h->root.other))
5594 symbol |= 1;
5595 }
5596 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5597 entry is used if a standard PLT entry has also been made. In this
5598 case the symbol will have been set by mips_elf_set_plt_sym_value
5599 to point to the standard PLT entry, so redirect to the compressed
5600 one. */
5601 else if ((mips16_branch_reloc_p (r_type)
5602 || micromips_branch_reloc_p (r_type))
5603 && !bfd_link_relocatable (info)
5604 && h != NULL
5605 && h->use_plt_entry
5606 && h->root.plt.plist->comp_offset != MINUS_ONE
5607 && h->root.plt.plist->mips_offset != MINUS_ONE)
5608 {
5609 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5610
5611 sec = htab->root.splt;
5612 symbol = (sec->output_section->vma
5613 + sec->output_offset
5614 + htab->plt_header_size
5615 + htab->plt_mips_offset
5616 + h->root.plt.plist->comp_offset
5617 + 1);
5618
5619 target_is_16_bit_code_p = !micromips_p;
5620 target_is_micromips_code_p = micromips_p;
5621 }
5622
5623 /* Make sure MIPS16 and microMIPS are not used together. */
5624 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
5625 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5626 {
5627 _bfd_error_handler
5628 (_("MIPS16 and microMIPS functions cannot call each other"));
5629 return bfd_reloc_notsupported;
5630 }
5631
5632 /* Calls from 16-bit code to 32-bit code and vice versa require the
5633 mode change. However, we can ignore calls to undefined weak symbols,
5634 which should never be executed at runtime. This exception is important
5635 because the assembly writer may have "known" that any definition of the
5636 symbol would be 16-bit code, and that direct jumps were therefore
5637 acceptable. */
5638 *cross_mode_jump_p = (!bfd_link_relocatable (info)
5639 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5640 && ((mips16_branch_reloc_p (r_type)
5641 && !target_is_16_bit_code_p)
5642 || (micromips_branch_reloc_p (r_type)
5643 && !target_is_micromips_code_p)
5644 || ((branch_reloc_p (r_type)
5645 || r_type == R_MIPS_JALR)
5646 && (target_is_16_bit_code_p
5647 || target_is_micromips_code_p))));
5648
5649 local_p = (h == NULL || mips_use_local_got_p (info, h));
5650
5651 gp0 = _bfd_get_gp_value (input_bfd);
5652 gp = _bfd_get_gp_value (abfd);
5653 if (htab->got_info)
5654 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5655
5656 if (gnu_local_gp_p)
5657 symbol = gp;
5658
5659 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5660 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5661 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5662 if (got_page_reloc_p (r_type) && !local_p)
5663 {
5664 r_type = (micromips_reloc_p (r_type)
5665 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5666 addend = 0;
5667 }
5668
5669 resolved_to_zero = (h != NULL
5670 && UNDEFWEAK_NO_DYNAMIC_RELOC (info,
5671 &h->root));
5672
5673 /* If we haven't already determined the GOT offset, and we're going
5674 to need it, get it now. */
5675 switch (r_type)
5676 {
5677 case R_MIPS16_CALL16:
5678 case R_MIPS16_GOT16:
5679 case R_MIPS_CALL16:
5680 case R_MIPS_GOT16:
5681 case R_MIPS_GOT_DISP:
5682 case R_MIPS_GOT_HI16:
5683 case R_MIPS_CALL_HI16:
5684 case R_MIPS_GOT_LO16:
5685 case R_MIPS_CALL_LO16:
5686 case R_MICROMIPS_CALL16:
5687 case R_MICROMIPS_GOT16:
5688 case R_MICROMIPS_GOT_DISP:
5689 case R_MICROMIPS_GOT_HI16:
5690 case R_MICROMIPS_CALL_HI16:
5691 case R_MICROMIPS_GOT_LO16:
5692 case R_MICROMIPS_CALL_LO16:
5693 case R_MIPS_TLS_GD:
5694 case R_MIPS_TLS_GOTTPREL:
5695 case R_MIPS_TLS_LDM:
5696 case R_MIPS16_TLS_GD:
5697 case R_MIPS16_TLS_GOTTPREL:
5698 case R_MIPS16_TLS_LDM:
5699 case R_MICROMIPS_TLS_GD:
5700 case R_MICROMIPS_TLS_GOTTPREL:
5701 case R_MICROMIPS_TLS_LDM:
5702 /* Find the index into the GOT where this value is located. */
5703 if (tls_ldm_reloc_p (r_type))
5704 {
5705 g = mips_elf_local_got_index (abfd, input_bfd, info,
5706 0, 0, NULL, r_type);
5707 if (g == MINUS_ONE)
5708 return bfd_reloc_outofrange;
5709 }
5710 else if (!local_p)
5711 {
5712 /* On VxWorks, CALL relocations should refer to the .got.plt
5713 entry, which is initialized to point at the PLT stub. */
5714 if (htab->is_vxworks
5715 && (call_hi16_reloc_p (r_type)
5716 || call_lo16_reloc_p (r_type)
5717 || call16_reloc_p (r_type)))
5718 {
5719 BFD_ASSERT (addend == 0);
5720 BFD_ASSERT (h->root.needs_plt);
5721 g = mips_elf_gotplt_index (info, &h->root);
5722 }
5723 else
5724 {
5725 BFD_ASSERT (addend == 0);
5726 g = mips_elf_global_got_index (abfd, info, input_bfd,
5727 &h->root, r_type);
5728 if (!TLS_RELOC_P (r_type)
5729 && !elf_hash_table (info)->dynamic_sections_created)
5730 /* This is a static link. We must initialize the GOT entry. */
5731 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->root.sgot->contents + g);
5732 }
5733 }
5734 else if (!htab->is_vxworks
5735 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5736 /* The calculation below does not involve "g". */
5737 break;
5738 else
5739 {
5740 g = mips_elf_local_got_index (abfd, input_bfd, info,
5741 symbol + addend, r_symndx, h, r_type);
5742 if (g == MINUS_ONE)
5743 return bfd_reloc_outofrange;
5744 }
5745
5746 /* Convert GOT indices to actual offsets. */
5747 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5748 break;
5749 }
5750
5751 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5752 symbols are resolved by the loader. Add them to .rela.dyn. */
5753 if (h != NULL && is_gott_symbol (info, &h->root))
5754 {
5755 Elf_Internal_Rela outrel;
5756 bfd_byte *loc;
5757 asection *s;
5758
5759 s = mips_elf_rel_dyn_section (info, FALSE);
5760 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5761
5762 outrel.r_offset = (input_section->output_section->vma
5763 + input_section->output_offset
5764 + relocation->r_offset);
5765 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5766 outrel.r_addend = addend;
5767 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5768
5769 /* If we've written this relocation for a readonly section,
5770 we need to set DF_TEXTREL again, so that we do not delete the
5771 DT_TEXTREL tag. */
5772 if (MIPS_ELF_READONLY_SECTION (input_section))
5773 info->flags |= DF_TEXTREL;
5774
5775 *valuep = 0;
5776 return bfd_reloc_ok;
5777 }
5778
5779 /* Figure out what kind of relocation is being performed. */
5780 switch (r_type)
5781 {
5782 case R_MIPS_NONE:
5783 return bfd_reloc_continue;
5784
5785 case R_MIPS_16:
5786 if (howto->partial_inplace)
5787 addend = _bfd_mips_elf_sign_extend (addend, 16);
5788 value = symbol + addend;
5789 overflowed_p = mips_elf_overflow_p (value, 16);
5790 break;
5791
5792 case R_MIPS_32:
5793 case R_MIPS_REL32:
5794 case R_MIPS_64:
5795 if ((bfd_link_pic (info)
5796 || (htab->root.dynamic_sections_created
5797 && h != NULL
5798 && h->root.def_dynamic
5799 && !h->root.def_regular
5800 && !h->has_static_relocs))
5801 && r_symndx != STN_UNDEF
5802 && (h == NULL
5803 || h->root.root.type != bfd_link_hash_undefweak
5804 || (ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
5805 && !resolved_to_zero))
5806 && (input_section->flags & SEC_ALLOC) != 0)
5807 {
5808 /* If we're creating a shared library, then we can't know
5809 where the symbol will end up. So, we create a relocation
5810 record in the output, and leave the job up to the dynamic
5811 linker. We must do the same for executable references to
5812 shared library symbols, unless we've decided to use copy
5813 relocs or PLTs instead. */
5814 value = addend;
5815 if (!mips_elf_create_dynamic_relocation (abfd,
5816 info,
5817 relocation,
5818 h,
5819 sec,
5820 symbol,
5821 &value,
5822 input_section))
5823 return bfd_reloc_undefined;
5824 }
5825 else
5826 {
5827 if (r_type != R_MIPS_REL32)
5828 value = symbol + addend;
5829 else
5830 value = addend;
5831 }
5832 value &= howto->dst_mask;
5833 break;
5834
5835 case R_MIPS_PC32:
5836 value = symbol + addend - p;
5837 value &= howto->dst_mask;
5838 break;
5839
5840 case R_MIPS16_26:
5841 /* The calculation for R_MIPS16_26 is just the same as for an
5842 R_MIPS_26. It's only the storage of the relocated field into
5843 the output file that's different. That's handled in
5844 mips_elf_perform_relocation. So, we just fall through to the
5845 R_MIPS_26 case here. */
5846 case R_MIPS_26:
5847 case R_MICROMIPS_26_S1:
5848 {
5849 unsigned int shift;
5850
5851 /* Shift is 2, unusually, for microMIPS JALX. */
5852 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5853
5854 if (howto->partial_inplace && !section_p)
5855 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5856 else
5857 value = addend;
5858 value += symbol;
5859
5860 /* Make sure the target of a jump is suitably aligned. Bit 0 must
5861 be the correct ISA mode selector except for weak undefined
5862 symbols. */
5863 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5864 && (*cross_mode_jump_p
5865 ? (value & 3) != (r_type == R_MIPS_26)
5866 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
5867 return bfd_reloc_outofrange;
5868
5869 value >>= shift;
5870 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5871 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5872 value &= howto->dst_mask;
5873 }
5874 break;
5875
5876 case R_MIPS_TLS_DTPREL_HI16:
5877 case R_MIPS16_TLS_DTPREL_HI16:
5878 case R_MICROMIPS_TLS_DTPREL_HI16:
5879 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5880 & howto->dst_mask);
5881 break;
5882
5883 case R_MIPS_TLS_DTPREL_LO16:
5884 case R_MIPS_TLS_DTPREL32:
5885 case R_MIPS_TLS_DTPREL64:
5886 case R_MIPS16_TLS_DTPREL_LO16:
5887 case R_MICROMIPS_TLS_DTPREL_LO16:
5888 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5889 break;
5890
5891 case R_MIPS_TLS_TPREL_HI16:
5892 case R_MIPS16_TLS_TPREL_HI16:
5893 case R_MICROMIPS_TLS_TPREL_HI16:
5894 value = (mips_elf_high (addend + symbol - tprel_base (info))
5895 & howto->dst_mask);
5896 break;
5897
5898 case R_MIPS_TLS_TPREL_LO16:
5899 case R_MIPS_TLS_TPREL32:
5900 case R_MIPS_TLS_TPREL64:
5901 case R_MIPS16_TLS_TPREL_LO16:
5902 case R_MICROMIPS_TLS_TPREL_LO16:
5903 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5904 break;
5905
5906 case R_MIPS_HI16:
5907 case R_MIPS16_HI16:
5908 case R_MICROMIPS_HI16:
5909 if (!gp_disp_p)
5910 {
5911 value = mips_elf_high (addend + symbol);
5912 value &= howto->dst_mask;
5913 }
5914 else
5915 {
5916 /* For MIPS16 ABI code we generate this sequence
5917 0: li $v0,%hi(_gp_disp)
5918 4: addiupc $v1,%lo(_gp_disp)
5919 8: sll $v0,16
5920 12: addu $v0,$v1
5921 14: move $gp,$v0
5922 So the offsets of hi and lo relocs are the same, but the
5923 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5924 ADDIUPC clears the low two bits of the instruction address,
5925 so the base is ($t9 + 4) & ~3. */
5926 if (r_type == R_MIPS16_HI16)
5927 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5928 /* The microMIPS .cpload sequence uses the same assembly
5929 instructions as the traditional psABI version, but the
5930 incoming $t9 has the low bit set. */
5931 else if (r_type == R_MICROMIPS_HI16)
5932 value = mips_elf_high (addend + gp - p - 1);
5933 else
5934 value = mips_elf_high (addend + gp - p);
5935 }
5936 break;
5937
5938 case R_MIPS_LO16:
5939 case R_MIPS16_LO16:
5940 case R_MICROMIPS_LO16:
5941 case R_MICROMIPS_HI0_LO16:
5942 if (!gp_disp_p)
5943 value = (symbol + addend) & howto->dst_mask;
5944 else
5945 {
5946 /* See the comment for R_MIPS16_HI16 above for the reason
5947 for this conditional. */
5948 if (r_type == R_MIPS16_LO16)
5949 value = addend + gp - (p & ~(bfd_vma) 0x3);
5950 else if (r_type == R_MICROMIPS_LO16
5951 || r_type == R_MICROMIPS_HI0_LO16)
5952 value = addend + gp - p + 3;
5953 else
5954 value = addend + gp - p + 4;
5955 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5956 for overflow. But, on, say, IRIX5, relocations against
5957 _gp_disp are normally generated from the .cpload
5958 pseudo-op. It generates code that normally looks like
5959 this:
5960
5961 lui $gp,%hi(_gp_disp)
5962 addiu $gp,$gp,%lo(_gp_disp)
5963 addu $gp,$gp,$t9
5964
5965 Here $t9 holds the address of the function being called,
5966 as required by the MIPS ELF ABI. The R_MIPS_LO16
5967 relocation can easily overflow in this situation, but the
5968 R_MIPS_HI16 relocation will handle the overflow.
5969 Therefore, we consider this a bug in the MIPS ABI, and do
5970 not check for overflow here. */
5971 }
5972 break;
5973
5974 case R_MIPS_LITERAL:
5975 case R_MICROMIPS_LITERAL:
5976 /* Because we don't merge literal sections, we can handle this
5977 just like R_MIPS_GPREL16. In the long run, we should merge
5978 shared literals, and then we will need to additional work
5979 here. */
5980
5981 /* Fall through. */
5982
5983 case R_MIPS16_GPREL:
5984 /* The R_MIPS16_GPREL performs the same calculation as
5985 R_MIPS_GPREL16, but stores the relocated bits in a different
5986 order. We don't need to do anything special here; the
5987 differences are handled in mips_elf_perform_relocation. */
5988 case R_MIPS_GPREL16:
5989 case R_MICROMIPS_GPREL7_S2:
5990 case R_MICROMIPS_GPREL16:
5991 /* Only sign-extend the addend if it was extracted from the
5992 instruction. If the addend was separate, leave it alone,
5993 otherwise we may lose significant bits. */
5994 if (howto->partial_inplace)
5995 addend = _bfd_mips_elf_sign_extend (addend, 16);
5996 value = symbol + addend - gp;
5997 /* If the symbol was local, any earlier relocatable links will
5998 have adjusted its addend with the gp offset, so compensate
5999 for that now. Don't do it for symbols forced local in this
6000 link, though, since they won't have had the gp offset applied
6001 to them before. */
6002 if (was_local_p)
6003 value += gp0;
6004 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6005 overflowed_p = mips_elf_overflow_p (value, 16);
6006 break;
6007
6008 case R_MIPS16_GOT16:
6009 case R_MIPS16_CALL16:
6010 case R_MIPS_GOT16:
6011 case R_MIPS_CALL16:
6012 case R_MICROMIPS_GOT16:
6013 case R_MICROMIPS_CALL16:
6014 /* VxWorks does not have separate local and global semantics for
6015 R_MIPS*_GOT16; every relocation evaluates to "G". */
6016 if (!htab->is_vxworks && local_p)
6017 {
6018 value = mips_elf_got16_entry (abfd, input_bfd, info,
6019 symbol + addend, !was_local_p);
6020 if (value == MINUS_ONE)
6021 return bfd_reloc_outofrange;
6022 value
6023 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6024 overflowed_p = mips_elf_overflow_p (value, 16);
6025 break;
6026 }
6027
6028 /* Fall through. */
6029
6030 case R_MIPS_TLS_GD:
6031 case R_MIPS_TLS_GOTTPREL:
6032 case R_MIPS_TLS_LDM:
6033 case R_MIPS_GOT_DISP:
6034 case R_MIPS16_TLS_GD:
6035 case R_MIPS16_TLS_GOTTPREL:
6036 case R_MIPS16_TLS_LDM:
6037 case R_MICROMIPS_TLS_GD:
6038 case R_MICROMIPS_TLS_GOTTPREL:
6039 case R_MICROMIPS_TLS_LDM:
6040 case R_MICROMIPS_GOT_DISP:
6041 value = g;
6042 overflowed_p = mips_elf_overflow_p (value, 16);
6043 break;
6044
6045 case R_MIPS_GPREL32:
6046 value = (addend + symbol + gp0 - gp);
6047 if (!save_addend)
6048 value &= howto->dst_mask;
6049 break;
6050
6051 case R_MIPS_PC16:
6052 case R_MIPS_GNU_REL16_S2:
6053 if (howto->partial_inplace)
6054 addend = _bfd_mips_elf_sign_extend (addend, 18);
6055
6056 /* No need to exclude weak undefined symbols here as they resolve
6057 to 0 and never set `*cross_mode_jump_p', so this alignment check
6058 will never trigger for them. */
6059 if (*cross_mode_jump_p
6060 ? ((symbol + addend) & 3) != 1
6061 : ((symbol + addend) & 3) != 0)
6062 return bfd_reloc_outofrange;
6063
6064 value = symbol + addend - p;
6065 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6066 overflowed_p = mips_elf_overflow_p (value, 18);
6067 value >>= howto->rightshift;
6068 value &= howto->dst_mask;
6069 break;
6070
6071 case R_MIPS16_PC16_S1:
6072 if (howto->partial_inplace)
6073 addend = _bfd_mips_elf_sign_extend (addend, 17);
6074
6075 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6076 && (*cross_mode_jump_p
6077 ? ((symbol + addend) & 3) != 0
6078 : ((symbol + addend) & 1) == 0))
6079 return bfd_reloc_outofrange;
6080
6081 value = symbol + addend - p;
6082 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6083 overflowed_p = mips_elf_overflow_p (value, 17);
6084 value >>= howto->rightshift;
6085 value &= howto->dst_mask;
6086 break;
6087
6088 case R_MIPS_PC21_S2:
6089 if (howto->partial_inplace)
6090 addend = _bfd_mips_elf_sign_extend (addend, 23);
6091
6092 if ((symbol + addend) & 3)
6093 return bfd_reloc_outofrange;
6094
6095 value = symbol + addend - p;
6096 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6097 overflowed_p = mips_elf_overflow_p (value, 23);
6098 value >>= howto->rightshift;
6099 value &= howto->dst_mask;
6100 break;
6101
6102 case R_MIPS_PC26_S2:
6103 if (howto->partial_inplace)
6104 addend = _bfd_mips_elf_sign_extend (addend, 28);
6105
6106 if ((symbol + addend) & 3)
6107 return bfd_reloc_outofrange;
6108
6109 value = symbol + addend - p;
6110 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6111 overflowed_p = mips_elf_overflow_p (value, 28);
6112 value >>= howto->rightshift;
6113 value &= howto->dst_mask;
6114 break;
6115
6116 case R_MIPS_PC18_S3:
6117 if (howto->partial_inplace)
6118 addend = _bfd_mips_elf_sign_extend (addend, 21);
6119
6120 if ((symbol + addend) & 7)
6121 return bfd_reloc_outofrange;
6122
6123 value = symbol + addend - ((p | 7) ^ 7);
6124 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6125 overflowed_p = mips_elf_overflow_p (value, 21);
6126 value >>= howto->rightshift;
6127 value &= howto->dst_mask;
6128 break;
6129
6130 case R_MIPS_PC19_S2:
6131 if (howto->partial_inplace)
6132 addend = _bfd_mips_elf_sign_extend (addend, 21);
6133
6134 if ((symbol + addend) & 3)
6135 return bfd_reloc_outofrange;
6136
6137 value = symbol + addend - p;
6138 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6139 overflowed_p = mips_elf_overflow_p (value, 21);
6140 value >>= howto->rightshift;
6141 value &= howto->dst_mask;
6142 break;
6143
6144 case R_MIPS_PCHI16:
6145 value = mips_elf_high (symbol + addend - p);
6146 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6147 overflowed_p = mips_elf_overflow_p (value, 16);
6148 value &= howto->dst_mask;
6149 break;
6150
6151 case R_MIPS_PCLO16:
6152 if (howto->partial_inplace)
6153 addend = _bfd_mips_elf_sign_extend (addend, 16);
6154 value = symbol + addend - p;
6155 value &= howto->dst_mask;
6156 break;
6157
6158 case R_MICROMIPS_PC7_S1:
6159 if (howto->partial_inplace)
6160 addend = _bfd_mips_elf_sign_extend (addend, 8);
6161
6162 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6163 && (*cross_mode_jump_p
6164 ? ((symbol + addend + 2) & 3) != 0
6165 : ((symbol + addend + 2) & 1) == 0))
6166 return bfd_reloc_outofrange;
6167
6168 value = symbol + addend - p;
6169 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6170 overflowed_p = mips_elf_overflow_p (value, 8);
6171 value >>= howto->rightshift;
6172 value &= howto->dst_mask;
6173 break;
6174
6175 case R_MICROMIPS_PC10_S1:
6176 if (howto->partial_inplace)
6177 addend = _bfd_mips_elf_sign_extend (addend, 11);
6178
6179 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6180 && (*cross_mode_jump_p
6181 ? ((symbol + addend + 2) & 3) != 0
6182 : ((symbol + addend + 2) & 1) == 0))
6183 return bfd_reloc_outofrange;
6184
6185 value = symbol + addend - p;
6186 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6187 overflowed_p = mips_elf_overflow_p (value, 11);
6188 value >>= howto->rightshift;
6189 value &= howto->dst_mask;
6190 break;
6191
6192 case R_MICROMIPS_PC16_S1:
6193 if (howto->partial_inplace)
6194 addend = _bfd_mips_elf_sign_extend (addend, 17);
6195
6196 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6197 && (*cross_mode_jump_p
6198 ? ((symbol + addend) & 3) != 0
6199 : ((symbol + addend) & 1) == 0))
6200 return bfd_reloc_outofrange;
6201
6202 value = symbol + addend - p;
6203 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6204 overflowed_p = mips_elf_overflow_p (value, 17);
6205 value >>= howto->rightshift;
6206 value &= howto->dst_mask;
6207 break;
6208
6209 case R_MICROMIPS_PC23_S2:
6210 if (howto->partial_inplace)
6211 addend = _bfd_mips_elf_sign_extend (addend, 25);
6212 value = symbol + addend - ((p | 3) ^ 3);
6213 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6214 overflowed_p = mips_elf_overflow_p (value, 25);
6215 value >>= howto->rightshift;
6216 value &= howto->dst_mask;
6217 break;
6218
6219 case R_MIPS_GOT_HI16:
6220 case R_MIPS_CALL_HI16:
6221 case R_MICROMIPS_GOT_HI16:
6222 case R_MICROMIPS_CALL_HI16:
6223 /* We're allowed to handle these two relocations identically.
6224 The dynamic linker is allowed to handle the CALL relocations
6225 differently by creating a lazy evaluation stub. */
6226 value = g;
6227 value = mips_elf_high (value);
6228 value &= howto->dst_mask;
6229 break;
6230
6231 case R_MIPS_GOT_LO16:
6232 case R_MIPS_CALL_LO16:
6233 case R_MICROMIPS_GOT_LO16:
6234 case R_MICROMIPS_CALL_LO16:
6235 value = g & howto->dst_mask;
6236 break;
6237
6238 case R_MIPS_GOT_PAGE:
6239 case R_MICROMIPS_GOT_PAGE:
6240 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6241 if (value == MINUS_ONE)
6242 return bfd_reloc_outofrange;
6243 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6244 overflowed_p = mips_elf_overflow_p (value, 16);
6245 break;
6246
6247 case R_MIPS_GOT_OFST:
6248 case R_MICROMIPS_GOT_OFST:
6249 if (local_p)
6250 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6251 else
6252 value = addend;
6253 overflowed_p = mips_elf_overflow_p (value, 16);
6254 break;
6255
6256 case R_MIPS_SUB:
6257 case R_MICROMIPS_SUB:
6258 value = symbol - addend;
6259 value &= howto->dst_mask;
6260 break;
6261
6262 case R_MIPS_HIGHER:
6263 case R_MICROMIPS_HIGHER:
6264 value = mips_elf_higher (addend + symbol);
6265 value &= howto->dst_mask;
6266 break;
6267
6268 case R_MIPS_HIGHEST:
6269 case R_MICROMIPS_HIGHEST:
6270 value = mips_elf_highest (addend + symbol);
6271 value &= howto->dst_mask;
6272 break;
6273
6274 case R_MIPS_SCN_DISP:
6275 case R_MICROMIPS_SCN_DISP:
6276 value = symbol + addend - sec->output_offset;
6277 value &= howto->dst_mask;
6278 break;
6279
6280 case R_MIPS_JALR:
6281 case R_MICROMIPS_JALR:
6282 /* This relocation is only a hint. In some cases, we optimize
6283 it into a bal instruction. But we don't try to optimize
6284 when the symbol does not resolve locally. */
6285 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6286 return bfd_reloc_continue;
6287 /* We can't optimize cross-mode jumps either. */
6288 if (*cross_mode_jump_p)
6289 return bfd_reloc_continue;
6290 value = symbol + addend;
6291 /* Neither we can non-instruction-aligned targets. */
6292 if (r_type == R_MIPS_JALR ? (value & 3) != 0 : (value & 1) == 0)
6293 return bfd_reloc_continue;
6294 break;
6295
6296 case R_MIPS_PJUMP:
6297 case R_MIPS_GNU_VTINHERIT:
6298 case R_MIPS_GNU_VTENTRY:
6299 /* We don't do anything with these at present. */
6300 return bfd_reloc_continue;
6301
6302 default:
6303 /* An unrecognized relocation type. */
6304 return bfd_reloc_notsupported;
6305 }
6306
6307 /* Store the VALUE for our caller. */
6308 *valuep = value;
6309 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6310 }
6311
6312 /* Obtain the field relocated by RELOCATION. */
6313
6314 static bfd_vma
6315 mips_elf_obtain_contents (reloc_howto_type *howto,
6316 const Elf_Internal_Rela *relocation,
6317 bfd *input_bfd, bfd_byte *contents)
6318 {
6319 bfd_vma x = 0;
6320 bfd_byte *location = contents + relocation->r_offset;
6321 unsigned int size = bfd_get_reloc_size (howto);
6322
6323 /* Obtain the bytes. */
6324 if (size != 0)
6325 x = bfd_get (8 * size, input_bfd, location);
6326
6327 return x;
6328 }
6329
6330 /* It has been determined that the result of the RELOCATION is the
6331 VALUE. Use HOWTO to place VALUE into the output file at the
6332 appropriate position. The SECTION is the section to which the
6333 relocation applies.
6334 CROSS_MODE_JUMP_P is true if the relocation field
6335 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6336
6337 Returns FALSE if anything goes wrong. */
6338
6339 static bfd_boolean
6340 mips_elf_perform_relocation (struct bfd_link_info *info,
6341 reloc_howto_type *howto,
6342 const Elf_Internal_Rela *relocation,
6343 bfd_vma value, bfd *input_bfd,
6344 asection *input_section, bfd_byte *contents,
6345 bfd_boolean cross_mode_jump_p)
6346 {
6347 bfd_vma x;
6348 bfd_byte *location;
6349 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6350 unsigned int size;
6351
6352 /* Figure out where the relocation is occurring. */
6353 location = contents + relocation->r_offset;
6354
6355 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6356
6357 /* Obtain the current value. */
6358 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6359
6360 /* Clear the field we are setting. */
6361 x &= ~howto->dst_mask;
6362
6363 /* Set the field. */
6364 x |= (value & howto->dst_mask);
6365
6366 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
6367 if (!cross_mode_jump_p && jal_reloc_p (r_type))
6368 {
6369 bfd_vma opcode = x >> 26;
6370
6371 if (r_type == R_MIPS16_26 ? opcode == 0x7
6372 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6373 : opcode == 0x1d)
6374 {
6375 info->callbacks->einfo
6376 (_("%X%H: Unsupported JALX to the same ISA mode\n"),
6377 input_bfd, input_section, relocation->r_offset);
6378 return TRUE;
6379 }
6380 }
6381 if (cross_mode_jump_p && jal_reloc_p (r_type))
6382 {
6383 bfd_boolean ok;
6384 bfd_vma opcode = x >> 26;
6385 bfd_vma jalx_opcode;
6386
6387 /* Check to see if the opcode is already JAL or JALX. */
6388 if (r_type == R_MIPS16_26)
6389 {
6390 ok = ((opcode == 0x6) || (opcode == 0x7));
6391 jalx_opcode = 0x7;
6392 }
6393 else if (r_type == R_MICROMIPS_26_S1)
6394 {
6395 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6396 jalx_opcode = 0x3c;
6397 }
6398 else
6399 {
6400 ok = ((opcode == 0x3) || (opcode == 0x1d));
6401 jalx_opcode = 0x1d;
6402 }
6403
6404 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6405 convert J or JALS to JALX. */
6406 if (!ok)
6407 {
6408 info->callbacks->einfo
6409 (_("%X%H: Unsupported jump between ISA modes; "
6410 "consider recompiling with interlinking enabled\n"),
6411 input_bfd, input_section, relocation->r_offset);
6412 return TRUE;
6413 }
6414
6415 /* Make this the JALX opcode. */
6416 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6417 }
6418 else if (cross_mode_jump_p && b_reloc_p (r_type))
6419 {
6420 bfd_boolean ok = FALSE;
6421 bfd_vma opcode = x >> 16;
6422 bfd_vma jalx_opcode = 0;
6423 bfd_vma sign_bit = 0;
6424 bfd_vma addr;
6425 bfd_vma dest;
6426
6427 if (r_type == R_MICROMIPS_PC16_S1)
6428 {
6429 ok = opcode == 0x4060;
6430 jalx_opcode = 0x3c;
6431 sign_bit = 0x10000;
6432 value <<= 1;
6433 }
6434 else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6435 {
6436 ok = opcode == 0x411;
6437 jalx_opcode = 0x1d;
6438 sign_bit = 0x20000;
6439 value <<= 2;
6440 }
6441
6442 if (ok && !bfd_link_pic (info))
6443 {
6444 addr = (input_section->output_section->vma
6445 + input_section->output_offset
6446 + relocation->r_offset
6447 + 4);
6448 dest = (addr
6449 + (((value & ((sign_bit << 1) - 1)) ^ sign_bit) - sign_bit));
6450
6451 if ((addr >> 28) << 28 != (dest >> 28) << 28)
6452 {
6453 info->callbacks->einfo
6454 (_("%X%H: Cannot convert branch between ISA modes "
6455 "to JALX: relocation out of range\n"),
6456 input_bfd, input_section, relocation->r_offset);
6457 return TRUE;
6458 }
6459
6460 /* Make this the JALX opcode. */
6461 x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
6462 }
6463 else if (!mips_elf_hash_table (info)->ignore_branch_isa)
6464 {
6465 info->callbacks->einfo
6466 (_("%X%H: Unsupported branch between ISA modes\n"),
6467 input_bfd, input_section, relocation->r_offset);
6468 return TRUE;
6469 }
6470 }
6471
6472 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6473 range. */
6474 if (!bfd_link_relocatable (info)
6475 && !cross_mode_jump_p
6476 && ((JAL_TO_BAL_P (input_bfd)
6477 && r_type == R_MIPS_26
6478 && (x >> 26) == 0x3) /* jal addr */
6479 || (JALR_TO_BAL_P (input_bfd)
6480 && r_type == R_MIPS_JALR
6481 && x == 0x0320f809) /* jalr t9 */
6482 || (JR_TO_B_P (input_bfd)
6483 && r_type == R_MIPS_JALR
6484 && (x & ~1) == 0x03200008))) /* jr t9 / jalr zero, t9 */
6485 {
6486 bfd_vma addr;
6487 bfd_vma dest;
6488 bfd_signed_vma off;
6489
6490 addr = (input_section->output_section->vma
6491 + input_section->output_offset
6492 + relocation->r_offset
6493 + 4);
6494 if (r_type == R_MIPS_26)
6495 dest = (value << 2) | ((addr >> 28) << 28);
6496 else
6497 dest = value;
6498 off = dest - addr;
6499 if (off <= 0x1ffff && off >= -0x20000)
6500 {
6501 if ((x & ~1) == 0x03200008) /* jr t9 / jalr zero, t9 */
6502 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6503 else
6504 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6505 }
6506 }
6507
6508 /* Put the value into the output. */
6509 size = bfd_get_reloc_size (howto);
6510 if (size != 0)
6511 bfd_put (8 * size, input_bfd, x, location);
6512
6513 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
6514 location);
6515
6516 return TRUE;
6517 }
6518 \f
6519 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6520 is the original relocation, which is now being transformed into a
6521 dynamic relocation. The ADDENDP is adjusted if necessary; the
6522 caller should store the result in place of the original addend. */
6523
6524 static bfd_boolean
6525 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6526 struct bfd_link_info *info,
6527 const Elf_Internal_Rela *rel,
6528 struct mips_elf_link_hash_entry *h,
6529 asection *sec, bfd_vma symbol,
6530 bfd_vma *addendp, asection *input_section)
6531 {
6532 Elf_Internal_Rela outrel[3];
6533 asection *sreloc;
6534 bfd *dynobj;
6535 int r_type;
6536 long indx;
6537 bfd_boolean defined_p;
6538 struct mips_elf_link_hash_table *htab;
6539
6540 htab = mips_elf_hash_table (info);
6541 BFD_ASSERT (htab != NULL);
6542
6543 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6544 dynobj = elf_hash_table (info)->dynobj;
6545 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6546 BFD_ASSERT (sreloc != NULL);
6547 BFD_ASSERT (sreloc->contents != NULL);
6548 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6549 < sreloc->size);
6550
6551 outrel[0].r_offset =
6552 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6553 if (ABI_64_P (output_bfd))
6554 {
6555 outrel[1].r_offset =
6556 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6557 outrel[2].r_offset =
6558 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6559 }
6560
6561 if (outrel[0].r_offset == MINUS_ONE)
6562 /* The relocation field has been deleted. */
6563 return TRUE;
6564
6565 if (outrel[0].r_offset == MINUS_TWO)
6566 {
6567 /* The relocation field has been converted into a relative value of
6568 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6569 the field to be fully relocated, so add in the symbol's value. */
6570 *addendp += symbol;
6571 return TRUE;
6572 }
6573
6574 /* We must now calculate the dynamic symbol table index to use
6575 in the relocation. */
6576 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6577 {
6578 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6579 indx = h->root.dynindx;
6580 if (SGI_COMPAT (output_bfd))
6581 defined_p = h->root.def_regular;
6582 else
6583 /* ??? glibc's ld.so just adds the final GOT entry to the
6584 relocation field. It therefore treats relocs against
6585 defined symbols in the same way as relocs against
6586 undefined symbols. */
6587 defined_p = FALSE;
6588 }
6589 else
6590 {
6591 if (sec != NULL && bfd_is_abs_section (sec))
6592 indx = 0;
6593 else if (sec == NULL || sec->owner == NULL)
6594 {
6595 bfd_set_error (bfd_error_bad_value);
6596 return FALSE;
6597 }
6598 else
6599 {
6600 indx = elf_section_data (sec->output_section)->dynindx;
6601 if (indx == 0)
6602 {
6603 asection *osec = htab->root.text_index_section;
6604 indx = elf_section_data (osec)->dynindx;
6605 }
6606 if (indx == 0)
6607 abort ();
6608 }
6609
6610 /* Instead of generating a relocation using the section
6611 symbol, we may as well make it a fully relative
6612 relocation. We want to avoid generating relocations to
6613 local symbols because we used to generate them
6614 incorrectly, without adding the original symbol value,
6615 which is mandated by the ABI for section symbols. In
6616 order to give dynamic loaders and applications time to
6617 phase out the incorrect use, we refrain from emitting
6618 section-relative relocations. It's not like they're
6619 useful, after all. This should be a bit more efficient
6620 as well. */
6621 /* ??? Although this behavior is compatible with glibc's ld.so,
6622 the ABI says that relocations against STN_UNDEF should have
6623 a symbol value of 0. Irix rld honors this, so relocations
6624 against STN_UNDEF have no effect. */
6625 if (!SGI_COMPAT (output_bfd))
6626 indx = 0;
6627 defined_p = TRUE;
6628 }
6629
6630 /* If the relocation was previously an absolute relocation and
6631 this symbol will not be referred to by the relocation, we must
6632 adjust it by the value we give it in the dynamic symbol table.
6633 Otherwise leave the job up to the dynamic linker. */
6634 if (defined_p && r_type != R_MIPS_REL32)
6635 *addendp += symbol;
6636
6637 if (htab->is_vxworks)
6638 /* VxWorks uses non-relative relocations for this. */
6639 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6640 else
6641 /* The relocation is always an REL32 relocation because we don't
6642 know where the shared library will wind up at load-time. */
6643 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6644 R_MIPS_REL32);
6645
6646 /* For strict adherence to the ABI specification, we should
6647 generate a R_MIPS_64 relocation record by itself before the
6648 _REL32/_64 record as well, such that the addend is read in as
6649 a 64-bit value (REL32 is a 32-bit relocation, after all).
6650 However, since none of the existing ELF64 MIPS dynamic
6651 loaders seems to care, we don't waste space with these
6652 artificial relocations. If this turns out to not be true,
6653 mips_elf_allocate_dynamic_relocation() should be tweaked so
6654 as to make room for a pair of dynamic relocations per
6655 invocation if ABI_64_P, and here we should generate an
6656 additional relocation record with R_MIPS_64 by itself for a
6657 NULL symbol before this relocation record. */
6658 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6659 ABI_64_P (output_bfd)
6660 ? R_MIPS_64
6661 : R_MIPS_NONE);
6662 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6663
6664 /* Adjust the output offset of the relocation to reference the
6665 correct location in the output file. */
6666 outrel[0].r_offset += (input_section->output_section->vma
6667 + input_section->output_offset);
6668 outrel[1].r_offset += (input_section->output_section->vma
6669 + input_section->output_offset);
6670 outrel[2].r_offset += (input_section->output_section->vma
6671 + input_section->output_offset);
6672
6673 /* Put the relocation back out. We have to use the special
6674 relocation outputter in the 64-bit case since the 64-bit
6675 relocation format is non-standard. */
6676 if (ABI_64_P (output_bfd))
6677 {
6678 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6679 (output_bfd, &outrel[0],
6680 (sreloc->contents
6681 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6682 }
6683 else if (htab->is_vxworks)
6684 {
6685 /* VxWorks uses RELA rather than REL dynamic relocations. */
6686 outrel[0].r_addend = *addendp;
6687 bfd_elf32_swap_reloca_out
6688 (output_bfd, &outrel[0],
6689 (sreloc->contents
6690 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6691 }
6692 else
6693 bfd_elf32_swap_reloc_out
6694 (output_bfd, &outrel[0],
6695 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6696
6697 /* We've now added another relocation. */
6698 ++sreloc->reloc_count;
6699
6700 /* Make sure the output section is writable. The dynamic linker
6701 will be writing to it. */
6702 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6703 |= SHF_WRITE;
6704
6705 /* On IRIX5, make an entry of compact relocation info. */
6706 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6707 {
6708 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6709 bfd_byte *cr;
6710
6711 if (scpt)
6712 {
6713 Elf32_crinfo cptrel;
6714
6715 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6716 cptrel.vaddr = (rel->r_offset
6717 + input_section->output_section->vma
6718 + input_section->output_offset);
6719 if (r_type == R_MIPS_REL32)
6720 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6721 else
6722 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6723 mips_elf_set_cr_dist2to (cptrel, 0);
6724 cptrel.konst = *addendp;
6725
6726 cr = (scpt->contents
6727 + sizeof (Elf32_External_compact_rel));
6728 mips_elf_set_cr_relvaddr (cptrel, 0);
6729 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6730 ((Elf32_External_crinfo *) cr
6731 + scpt->reloc_count));
6732 ++scpt->reloc_count;
6733 }
6734 }
6735
6736 /* If we've written this relocation for a readonly section,
6737 we need to set DF_TEXTREL again, so that we do not delete the
6738 DT_TEXTREL tag. */
6739 if (MIPS_ELF_READONLY_SECTION (input_section))
6740 info->flags |= DF_TEXTREL;
6741
6742 return TRUE;
6743 }
6744 \f
6745 /* Return the MACH for a MIPS e_flags value. */
6746
6747 unsigned long
6748 _bfd_elf_mips_mach (flagword flags)
6749 {
6750 switch (flags & EF_MIPS_MACH)
6751 {
6752 case E_MIPS_MACH_3900:
6753 return bfd_mach_mips3900;
6754
6755 case E_MIPS_MACH_4010:
6756 return bfd_mach_mips4010;
6757
6758 case E_MIPS_MACH_4100:
6759 return bfd_mach_mips4100;
6760
6761 case E_MIPS_MACH_4111:
6762 return bfd_mach_mips4111;
6763
6764 case E_MIPS_MACH_4120:
6765 return bfd_mach_mips4120;
6766
6767 case E_MIPS_MACH_4650:
6768 return bfd_mach_mips4650;
6769
6770 case E_MIPS_MACH_5400:
6771 return bfd_mach_mips5400;
6772
6773 case E_MIPS_MACH_5500:
6774 return bfd_mach_mips5500;
6775
6776 case E_MIPS_MACH_5900:
6777 return bfd_mach_mips5900;
6778
6779 case E_MIPS_MACH_9000:
6780 return bfd_mach_mips9000;
6781
6782 case E_MIPS_MACH_SB1:
6783 return bfd_mach_mips_sb1;
6784
6785 case E_MIPS_MACH_LS2E:
6786 return bfd_mach_mips_loongson_2e;
6787
6788 case E_MIPS_MACH_LS2F:
6789 return bfd_mach_mips_loongson_2f;
6790
6791 case E_MIPS_MACH_LS3A:
6792 return bfd_mach_mips_loongson_3a;
6793
6794 case E_MIPS_MACH_OCTEON3:
6795 return bfd_mach_mips_octeon3;
6796
6797 case E_MIPS_MACH_OCTEON2:
6798 return bfd_mach_mips_octeon2;
6799
6800 case E_MIPS_MACH_OCTEON:
6801 return bfd_mach_mips_octeon;
6802
6803 case E_MIPS_MACH_XLR:
6804 return bfd_mach_mips_xlr;
6805
6806 case E_MIPS_MACH_IAMR2:
6807 return bfd_mach_mips_interaptiv_mr2;
6808
6809 default:
6810 switch (flags & EF_MIPS_ARCH)
6811 {
6812 default:
6813 case E_MIPS_ARCH_1:
6814 return bfd_mach_mips3000;
6815
6816 case E_MIPS_ARCH_2:
6817 return bfd_mach_mips6000;
6818
6819 case E_MIPS_ARCH_3:
6820 return bfd_mach_mips4000;
6821
6822 case E_MIPS_ARCH_4:
6823 return bfd_mach_mips8000;
6824
6825 case E_MIPS_ARCH_5:
6826 return bfd_mach_mips5;
6827
6828 case E_MIPS_ARCH_32:
6829 return bfd_mach_mipsisa32;
6830
6831 case E_MIPS_ARCH_64:
6832 return bfd_mach_mipsisa64;
6833
6834 case E_MIPS_ARCH_32R2:
6835 return bfd_mach_mipsisa32r2;
6836
6837 case E_MIPS_ARCH_64R2:
6838 return bfd_mach_mipsisa64r2;
6839
6840 case E_MIPS_ARCH_32R6:
6841 return bfd_mach_mipsisa32r6;
6842
6843 case E_MIPS_ARCH_64R6:
6844 return bfd_mach_mipsisa64r6;
6845 }
6846 }
6847
6848 return 0;
6849 }
6850
6851 /* Return printable name for ABI. */
6852
6853 static INLINE char *
6854 elf_mips_abi_name (bfd *abfd)
6855 {
6856 flagword flags;
6857
6858 flags = elf_elfheader (abfd)->e_flags;
6859 switch (flags & EF_MIPS_ABI)
6860 {
6861 case 0:
6862 if (ABI_N32_P (abfd))
6863 return "N32";
6864 else if (ABI_64_P (abfd))
6865 return "64";
6866 else
6867 return "none";
6868 case E_MIPS_ABI_O32:
6869 return "O32";
6870 case E_MIPS_ABI_O64:
6871 return "O64";
6872 case E_MIPS_ABI_EABI32:
6873 return "EABI32";
6874 case E_MIPS_ABI_EABI64:
6875 return "EABI64";
6876 default:
6877 return "unknown abi";
6878 }
6879 }
6880 \f
6881 /* MIPS ELF uses two common sections. One is the usual one, and the
6882 other is for small objects. All the small objects are kept
6883 together, and then referenced via the gp pointer, which yields
6884 faster assembler code. This is what we use for the small common
6885 section. This approach is copied from ecoff.c. */
6886 static asection mips_elf_scom_section;
6887 static asymbol mips_elf_scom_symbol;
6888 static asymbol *mips_elf_scom_symbol_ptr;
6889
6890 /* MIPS ELF also uses an acommon section, which represents an
6891 allocated common symbol which may be overridden by a
6892 definition in a shared library. */
6893 static asection mips_elf_acom_section;
6894 static asymbol mips_elf_acom_symbol;
6895 static asymbol *mips_elf_acom_symbol_ptr;
6896
6897 /* This is used for both the 32-bit and the 64-bit ABI. */
6898
6899 void
6900 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6901 {
6902 elf_symbol_type *elfsym;
6903
6904 /* Handle the special MIPS section numbers that a symbol may use. */
6905 elfsym = (elf_symbol_type *) asym;
6906 switch (elfsym->internal_elf_sym.st_shndx)
6907 {
6908 case SHN_MIPS_ACOMMON:
6909 /* This section is used in a dynamically linked executable file.
6910 It is an allocated common section. The dynamic linker can
6911 either resolve these symbols to something in a shared
6912 library, or it can just leave them here. For our purposes,
6913 we can consider these symbols to be in a new section. */
6914 if (mips_elf_acom_section.name == NULL)
6915 {
6916 /* Initialize the acommon section. */
6917 mips_elf_acom_section.name = ".acommon";
6918 mips_elf_acom_section.flags = SEC_ALLOC;
6919 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6920 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6921 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6922 mips_elf_acom_symbol.name = ".acommon";
6923 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6924 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6925 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6926 }
6927 asym->section = &mips_elf_acom_section;
6928 break;
6929
6930 case SHN_COMMON:
6931 /* Common symbols less than the GP size are automatically
6932 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6933 if (asym->value > elf_gp_size (abfd)
6934 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6935 || IRIX_COMPAT (abfd) == ict_irix6)
6936 break;
6937 /* Fall through. */
6938 case SHN_MIPS_SCOMMON:
6939 if (mips_elf_scom_section.name == NULL)
6940 {
6941 /* Initialize the small common section. */
6942 mips_elf_scom_section.name = ".scommon";
6943 mips_elf_scom_section.flags = SEC_IS_COMMON;
6944 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6945 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6946 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6947 mips_elf_scom_symbol.name = ".scommon";
6948 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6949 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6950 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6951 }
6952 asym->section = &mips_elf_scom_section;
6953 asym->value = elfsym->internal_elf_sym.st_size;
6954 break;
6955
6956 case SHN_MIPS_SUNDEFINED:
6957 asym->section = bfd_und_section_ptr;
6958 break;
6959
6960 case SHN_MIPS_TEXT:
6961 {
6962 asection *section = bfd_get_section_by_name (abfd, ".text");
6963
6964 if (section != NULL)
6965 {
6966 asym->section = section;
6967 /* MIPS_TEXT is a bit special, the address is not an offset
6968 to the base of the .text section. So subtract the section
6969 base address to make it an offset. */
6970 asym->value -= section->vma;
6971 }
6972 }
6973 break;
6974
6975 case SHN_MIPS_DATA:
6976 {
6977 asection *section = bfd_get_section_by_name (abfd, ".data");
6978
6979 if (section != NULL)
6980 {
6981 asym->section = section;
6982 /* MIPS_DATA is a bit special, the address is not an offset
6983 to the base of the .data section. So subtract the section
6984 base address to make it an offset. */
6985 asym->value -= section->vma;
6986 }
6987 }
6988 break;
6989 }
6990
6991 /* If this is an odd-valued function symbol, assume it's a MIPS16
6992 or microMIPS one. */
6993 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6994 && (asym->value & 1) != 0)
6995 {
6996 asym->value--;
6997 if (MICROMIPS_P (abfd))
6998 elfsym->internal_elf_sym.st_other
6999 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
7000 else
7001 elfsym->internal_elf_sym.st_other
7002 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
7003 }
7004 }
7005 \f
7006 /* Implement elf_backend_eh_frame_address_size. This differs from
7007 the default in the way it handles EABI64.
7008
7009 EABI64 was originally specified as an LP64 ABI, and that is what
7010 -mabi=eabi normally gives on a 64-bit target. However, gcc has
7011 historically accepted the combination of -mabi=eabi and -mlong32,
7012 and this ILP32 variation has become semi-official over time.
7013 Both forms use elf32 and have pointer-sized FDE addresses.
7014
7015 If an EABI object was generated by GCC 4.0 or above, it will have
7016 an empty .gcc_compiled_longXX section, where XX is the size of longs
7017 in bits. Unfortunately, ILP32 objects generated by earlier compilers
7018 have no special marking to distinguish them from LP64 objects.
7019
7020 We don't want users of the official LP64 ABI to be punished for the
7021 existence of the ILP32 variant, but at the same time, we don't want
7022 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
7023 We therefore take the following approach:
7024
7025 - If ABFD contains a .gcc_compiled_longXX section, use it to
7026 determine the pointer size.
7027
7028 - Otherwise check the type of the first relocation. Assume that
7029 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
7030
7031 - Otherwise punt.
7032
7033 The second check is enough to detect LP64 objects generated by pre-4.0
7034 compilers because, in the kind of output generated by those compilers,
7035 the first relocation will be associated with either a CIE personality
7036 routine or an FDE start address. Furthermore, the compilers never
7037 used a special (non-pointer) encoding for this ABI.
7038
7039 Checking the relocation type should also be safe because there is no
7040 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7041 did so. */
7042
7043 unsigned int
7044 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, const asection *sec)
7045 {
7046 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7047 return 8;
7048 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7049 {
7050 bfd_boolean long32_p, long64_p;
7051
7052 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7053 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7054 if (long32_p && long64_p)
7055 return 0;
7056 if (long32_p)
7057 return 4;
7058 if (long64_p)
7059 return 8;
7060
7061 if (sec->reloc_count > 0
7062 && elf_section_data (sec)->relocs != NULL
7063 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7064 == R_MIPS_64))
7065 return 8;
7066
7067 return 0;
7068 }
7069 return 4;
7070 }
7071 \f
7072 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7073 relocations against two unnamed section symbols to resolve to the
7074 same address. For example, if we have code like:
7075
7076 lw $4,%got_disp(.data)($gp)
7077 lw $25,%got_disp(.text)($gp)
7078 jalr $25
7079
7080 then the linker will resolve both relocations to .data and the program
7081 will jump there rather than to .text.
7082
7083 We can work around this problem by giving names to local section symbols.
7084 This is also what the MIPSpro tools do. */
7085
7086 bfd_boolean
7087 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7088 {
7089 return SGI_COMPAT (abfd);
7090 }
7091 \f
7092 /* Work over a section just before writing it out. This routine is
7093 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7094 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7095 a better way. */
7096
7097 bfd_boolean
7098 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
7099 {
7100 if (hdr->sh_type == SHT_MIPS_REGINFO
7101 && hdr->sh_size > 0)
7102 {
7103 bfd_byte buf[4];
7104
7105 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
7106 BFD_ASSERT (hdr->contents == NULL);
7107
7108 if (bfd_seek (abfd,
7109 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7110 SEEK_SET) != 0)
7111 return FALSE;
7112 H_PUT_32 (abfd, elf_gp (abfd), buf);
7113 if (bfd_bwrite (buf, 4, abfd) != 4)
7114 return FALSE;
7115 }
7116
7117 if (hdr->sh_type == SHT_MIPS_OPTIONS
7118 && hdr->bfd_section != NULL
7119 && mips_elf_section_data (hdr->bfd_section) != NULL
7120 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
7121 {
7122 bfd_byte *contents, *l, *lend;
7123
7124 /* We stored the section contents in the tdata field in the
7125 set_section_contents routine. We save the section contents
7126 so that we don't have to read them again.
7127 At this point we know that elf_gp is set, so we can look
7128 through the section contents to see if there is an
7129 ODK_REGINFO structure. */
7130
7131 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
7132 l = contents;
7133 lend = contents + hdr->sh_size;
7134 while (l + sizeof (Elf_External_Options) <= lend)
7135 {
7136 Elf_Internal_Options intopt;
7137
7138 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7139 &intopt);
7140 if (intopt.size < sizeof (Elf_External_Options))
7141 {
7142 _bfd_error_handler
7143 /* xgettext:c-format */
7144 (_("%B: Warning: bad `%s' option size %u smaller than"
7145 " its header"),
7146 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7147 break;
7148 }
7149 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7150 {
7151 bfd_byte buf[8];
7152
7153 if (bfd_seek (abfd,
7154 (hdr->sh_offset
7155 + (l - contents)
7156 + sizeof (Elf_External_Options)
7157 + (sizeof (Elf64_External_RegInfo) - 8)),
7158 SEEK_SET) != 0)
7159 return FALSE;
7160 H_PUT_64 (abfd, elf_gp (abfd), buf);
7161 if (bfd_bwrite (buf, 8, abfd) != 8)
7162 return FALSE;
7163 }
7164 else if (intopt.kind == ODK_REGINFO)
7165 {
7166 bfd_byte buf[4];
7167
7168 if (bfd_seek (abfd,
7169 (hdr->sh_offset
7170 + (l - contents)
7171 + sizeof (Elf_External_Options)
7172 + (sizeof (Elf32_External_RegInfo) - 4)),
7173 SEEK_SET) != 0)
7174 return FALSE;
7175 H_PUT_32 (abfd, elf_gp (abfd), buf);
7176 if (bfd_bwrite (buf, 4, abfd) != 4)
7177 return FALSE;
7178 }
7179 l += intopt.size;
7180 }
7181 }
7182
7183 if (hdr->bfd_section != NULL)
7184 {
7185 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
7186
7187 /* .sbss is not handled specially here because the GNU/Linux
7188 prelinker can convert .sbss from NOBITS to PROGBITS and
7189 changing it back to NOBITS breaks the binary. The entry in
7190 _bfd_mips_elf_special_sections will ensure the correct flags
7191 are set on .sbss if BFD creates it without reading it from an
7192 input file, and without special handling here the flags set
7193 on it in an input file will be followed. */
7194 if (strcmp (name, ".sdata") == 0
7195 || strcmp (name, ".lit8") == 0
7196 || strcmp (name, ".lit4") == 0)
7197 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7198 else if (strcmp (name, ".srdata") == 0)
7199 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
7200 else if (strcmp (name, ".compact_rel") == 0)
7201 hdr->sh_flags = 0;
7202 else if (strcmp (name, ".rtproc") == 0)
7203 {
7204 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7205 {
7206 unsigned int adjust;
7207
7208 adjust = hdr->sh_size % hdr->sh_addralign;
7209 if (adjust != 0)
7210 hdr->sh_size += hdr->sh_addralign - adjust;
7211 }
7212 }
7213 }
7214
7215 return TRUE;
7216 }
7217
7218 /* Handle a MIPS specific section when reading an object file. This
7219 is called when elfcode.h finds a section with an unknown type.
7220 This routine supports both the 32-bit and 64-bit ELF ABI.
7221
7222 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7223 how to. */
7224
7225 bfd_boolean
7226 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7227 Elf_Internal_Shdr *hdr,
7228 const char *name,
7229 int shindex)
7230 {
7231 flagword flags = 0;
7232
7233 /* There ought to be a place to keep ELF backend specific flags, but
7234 at the moment there isn't one. We just keep track of the
7235 sections by their name, instead. Fortunately, the ABI gives
7236 suggested names for all the MIPS specific sections, so we will
7237 probably get away with this. */
7238 switch (hdr->sh_type)
7239 {
7240 case SHT_MIPS_LIBLIST:
7241 if (strcmp (name, ".liblist") != 0)
7242 return FALSE;
7243 break;
7244 case SHT_MIPS_MSYM:
7245 if (strcmp (name, ".msym") != 0)
7246 return FALSE;
7247 break;
7248 case SHT_MIPS_CONFLICT:
7249 if (strcmp (name, ".conflict") != 0)
7250 return FALSE;
7251 break;
7252 case SHT_MIPS_GPTAB:
7253 if (! CONST_STRNEQ (name, ".gptab."))
7254 return FALSE;
7255 break;
7256 case SHT_MIPS_UCODE:
7257 if (strcmp (name, ".ucode") != 0)
7258 return FALSE;
7259 break;
7260 case SHT_MIPS_DEBUG:
7261 if (strcmp (name, ".mdebug") != 0)
7262 return FALSE;
7263 flags = SEC_DEBUGGING;
7264 break;
7265 case SHT_MIPS_REGINFO:
7266 if (strcmp (name, ".reginfo") != 0
7267 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7268 return FALSE;
7269 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7270 break;
7271 case SHT_MIPS_IFACE:
7272 if (strcmp (name, ".MIPS.interfaces") != 0)
7273 return FALSE;
7274 break;
7275 case SHT_MIPS_CONTENT:
7276 if (! CONST_STRNEQ (name, ".MIPS.content"))
7277 return FALSE;
7278 break;
7279 case SHT_MIPS_OPTIONS:
7280 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7281 return FALSE;
7282 break;
7283 case SHT_MIPS_ABIFLAGS:
7284 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7285 return FALSE;
7286 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7287 break;
7288 case SHT_MIPS_DWARF:
7289 if (! CONST_STRNEQ (name, ".debug_")
7290 && ! CONST_STRNEQ (name, ".zdebug_"))
7291 return FALSE;
7292 break;
7293 case SHT_MIPS_SYMBOL_LIB:
7294 if (strcmp (name, ".MIPS.symlib") != 0)
7295 return FALSE;
7296 break;
7297 case SHT_MIPS_EVENTS:
7298 if (! CONST_STRNEQ (name, ".MIPS.events")
7299 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
7300 return FALSE;
7301 break;
7302 default:
7303 break;
7304 }
7305
7306 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7307 return FALSE;
7308
7309 if (flags)
7310 {
7311 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7312 (bfd_get_section_flags (abfd,
7313 hdr->bfd_section)
7314 | flags)))
7315 return FALSE;
7316 }
7317
7318 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7319 {
7320 Elf_External_ABIFlags_v0 ext;
7321
7322 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7323 &ext, 0, sizeof ext))
7324 return FALSE;
7325 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7326 &mips_elf_tdata (abfd)->abiflags);
7327 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7328 return FALSE;
7329 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7330 }
7331
7332 /* FIXME: We should record sh_info for a .gptab section. */
7333
7334 /* For a .reginfo section, set the gp value in the tdata information
7335 from the contents of this section. We need the gp value while
7336 processing relocs, so we just get it now. The .reginfo section
7337 is not used in the 64-bit MIPS ELF ABI. */
7338 if (hdr->sh_type == SHT_MIPS_REGINFO)
7339 {
7340 Elf32_External_RegInfo ext;
7341 Elf32_RegInfo s;
7342
7343 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7344 &ext, 0, sizeof ext))
7345 return FALSE;
7346 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7347 elf_gp (abfd) = s.ri_gp_value;
7348 }
7349
7350 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7351 set the gp value based on what we find. We may see both
7352 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7353 they should agree. */
7354 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7355 {
7356 bfd_byte *contents, *l, *lend;
7357
7358 contents = bfd_malloc (hdr->sh_size);
7359 if (contents == NULL)
7360 return FALSE;
7361 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7362 0, hdr->sh_size))
7363 {
7364 free (contents);
7365 return FALSE;
7366 }
7367 l = contents;
7368 lend = contents + hdr->sh_size;
7369 while (l + sizeof (Elf_External_Options) <= lend)
7370 {
7371 Elf_Internal_Options intopt;
7372
7373 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7374 &intopt);
7375 if (intopt.size < sizeof (Elf_External_Options))
7376 {
7377 _bfd_error_handler
7378 /* xgettext:c-format */
7379 (_("%B: Warning: bad `%s' option size %u smaller than"
7380 " its header"),
7381 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7382 break;
7383 }
7384 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7385 {
7386 Elf64_Internal_RegInfo intreg;
7387
7388 bfd_mips_elf64_swap_reginfo_in
7389 (abfd,
7390 ((Elf64_External_RegInfo *)
7391 (l + sizeof (Elf_External_Options))),
7392 &intreg);
7393 elf_gp (abfd) = intreg.ri_gp_value;
7394 }
7395 else if (intopt.kind == ODK_REGINFO)
7396 {
7397 Elf32_RegInfo intreg;
7398
7399 bfd_mips_elf32_swap_reginfo_in
7400 (abfd,
7401 ((Elf32_External_RegInfo *)
7402 (l + sizeof (Elf_External_Options))),
7403 &intreg);
7404 elf_gp (abfd) = intreg.ri_gp_value;
7405 }
7406 l += intopt.size;
7407 }
7408 free (contents);
7409 }
7410
7411 return TRUE;
7412 }
7413
7414 /* Set the correct type for a MIPS ELF section. We do this by the
7415 section name, which is a hack, but ought to work. This routine is
7416 used by both the 32-bit and the 64-bit ABI. */
7417
7418 bfd_boolean
7419 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7420 {
7421 const char *name = bfd_get_section_name (abfd, sec);
7422
7423 if (strcmp (name, ".liblist") == 0)
7424 {
7425 hdr->sh_type = SHT_MIPS_LIBLIST;
7426 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7427 /* The sh_link field is set in final_write_processing. */
7428 }
7429 else if (strcmp (name, ".conflict") == 0)
7430 hdr->sh_type = SHT_MIPS_CONFLICT;
7431 else if (CONST_STRNEQ (name, ".gptab."))
7432 {
7433 hdr->sh_type = SHT_MIPS_GPTAB;
7434 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7435 /* The sh_info field is set in final_write_processing. */
7436 }
7437 else if (strcmp (name, ".ucode") == 0)
7438 hdr->sh_type = SHT_MIPS_UCODE;
7439 else if (strcmp (name, ".mdebug") == 0)
7440 {
7441 hdr->sh_type = SHT_MIPS_DEBUG;
7442 /* In a shared object on IRIX 5.3, the .mdebug section has an
7443 entsize of 0. FIXME: Does this matter? */
7444 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7445 hdr->sh_entsize = 0;
7446 else
7447 hdr->sh_entsize = 1;
7448 }
7449 else if (strcmp (name, ".reginfo") == 0)
7450 {
7451 hdr->sh_type = SHT_MIPS_REGINFO;
7452 /* In a shared object on IRIX 5.3, the .reginfo section has an
7453 entsize of 0x18. FIXME: Does this matter? */
7454 if (SGI_COMPAT (abfd))
7455 {
7456 if ((abfd->flags & DYNAMIC) != 0)
7457 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7458 else
7459 hdr->sh_entsize = 1;
7460 }
7461 else
7462 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7463 }
7464 else if (SGI_COMPAT (abfd)
7465 && (strcmp (name, ".hash") == 0
7466 || strcmp (name, ".dynamic") == 0
7467 || strcmp (name, ".dynstr") == 0))
7468 {
7469 if (SGI_COMPAT (abfd))
7470 hdr->sh_entsize = 0;
7471 #if 0
7472 /* This isn't how the IRIX6 linker behaves. */
7473 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7474 #endif
7475 }
7476 else if (strcmp (name, ".got") == 0
7477 || strcmp (name, ".srdata") == 0
7478 || strcmp (name, ".sdata") == 0
7479 || strcmp (name, ".sbss") == 0
7480 || strcmp (name, ".lit4") == 0
7481 || strcmp (name, ".lit8") == 0)
7482 hdr->sh_flags |= SHF_MIPS_GPREL;
7483 else if (strcmp (name, ".MIPS.interfaces") == 0)
7484 {
7485 hdr->sh_type = SHT_MIPS_IFACE;
7486 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7487 }
7488 else if (CONST_STRNEQ (name, ".MIPS.content"))
7489 {
7490 hdr->sh_type = SHT_MIPS_CONTENT;
7491 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7492 /* The sh_info field is set in final_write_processing. */
7493 }
7494 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7495 {
7496 hdr->sh_type = SHT_MIPS_OPTIONS;
7497 hdr->sh_entsize = 1;
7498 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7499 }
7500 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7501 {
7502 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7503 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7504 }
7505 else if (CONST_STRNEQ (name, ".debug_")
7506 || CONST_STRNEQ (name, ".zdebug_"))
7507 {
7508 hdr->sh_type = SHT_MIPS_DWARF;
7509
7510 /* Irix facilities such as libexc expect a single .debug_frame
7511 per executable, the system ones have NOSTRIP set and the linker
7512 doesn't merge sections with different flags so ... */
7513 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7514 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7515 }
7516 else if (strcmp (name, ".MIPS.symlib") == 0)
7517 {
7518 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7519 /* The sh_link and sh_info fields are set in
7520 final_write_processing. */
7521 }
7522 else if (CONST_STRNEQ (name, ".MIPS.events")
7523 || CONST_STRNEQ (name, ".MIPS.post_rel"))
7524 {
7525 hdr->sh_type = SHT_MIPS_EVENTS;
7526 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7527 /* The sh_link field is set in final_write_processing. */
7528 }
7529 else if (strcmp (name, ".msym") == 0)
7530 {
7531 hdr->sh_type = SHT_MIPS_MSYM;
7532 hdr->sh_flags |= SHF_ALLOC;
7533 hdr->sh_entsize = 8;
7534 }
7535
7536 /* The generic elf_fake_sections will set up REL_HDR using the default
7537 kind of relocations. We used to set up a second header for the
7538 non-default kind of relocations here, but only NewABI would use
7539 these, and the IRIX ld doesn't like resulting empty RELA sections.
7540 Thus we create those header only on demand now. */
7541
7542 return TRUE;
7543 }
7544
7545 /* Given a BFD section, try to locate the corresponding ELF section
7546 index. This is used by both the 32-bit and the 64-bit ABI.
7547 Actually, it's not clear to me that the 64-bit ABI supports these,
7548 but for non-PIC objects we will certainly want support for at least
7549 the .scommon section. */
7550
7551 bfd_boolean
7552 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7553 asection *sec, int *retval)
7554 {
7555 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7556 {
7557 *retval = SHN_MIPS_SCOMMON;
7558 return TRUE;
7559 }
7560 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7561 {
7562 *retval = SHN_MIPS_ACOMMON;
7563 return TRUE;
7564 }
7565 return FALSE;
7566 }
7567 \f
7568 /* Hook called by the linker routine which adds symbols from an object
7569 file. We must handle the special MIPS section numbers here. */
7570
7571 bfd_boolean
7572 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7573 Elf_Internal_Sym *sym, const char **namep,
7574 flagword *flagsp ATTRIBUTE_UNUSED,
7575 asection **secp, bfd_vma *valp)
7576 {
7577 if (SGI_COMPAT (abfd)
7578 && (abfd->flags & DYNAMIC) != 0
7579 && strcmp (*namep, "_rld_new_interface") == 0)
7580 {
7581 /* Skip IRIX5 rld entry name. */
7582 *namep = NULL;
7583 return TRUE;
7584 }
7585
7586 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7587 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7588 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7589 a magic symbol resolved by the linker, we ignore this bogus definition
7590 of _gp_disp. New ABI objects do not suffer from this problem so this
7591 is not done for them. */
7592 if (!NEWABI_P(abfd)
7593 && (sym->st_shndx == SHN_ABS)
7594 && (strcmp (*namep, "_gp_disp") == 0))
7595 {
7596 *namep = NULL;
7597 return TRUE;
7598 }
7599
7600 switch (sym->st_shndx)
7601 {
7602 case SHN_COMMON:
7603 /* Common symbols less than the GP size are automatically
7604 treated as SHN_MIPS_SCOMMON symbols. */
7605 if (sym->st_size > elf_gp_size (abfd)
7606 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7607 || IRIX_COMPAT (abfd) == ict_irix6)
7608 break;
7609 /* Fall through. */
7610 case SHN_MIPS_SCOMMON:
7611 *secp = bfd_make_section_old_way (abfd, ".scommon");
7612 (*secp)->flags |= SEC_IS_COMMON;
7613 *valp = sym->st_size;
7614 break;
7615
7616 case SHN_MIPS_TEXT:
7617 /* This section is used in a shared object. */
7618 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7619 {
7620 asymbol *elf_text_symbol;
7621 asection *elf_text_section;
7622 bfd_size_type amt = sizeof (asection);
7623
7624 elf_text_section = bfd_zalloc (abfd, amt);
7625 if (elf_text_section == NULL)
7626 return FALSE;
7627
7628 amt = sizeof (asymbol);
7629 elf_text_symbol = bfd_zalloc (abfd, amt);
7630 if (elf_text_symbol == NULL)
7631 return FALSE;
7632
7633 /* Initialize the section. */
7634
7635 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7636 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7637
7638 elf_text_section->symbol = elf_text_symbol;
7639 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7640
7641 elf_text_section->name = ".text";
7642 elf_text_section->flags = SEC_NO_FLAGS;
7643 elf_text_section->output_section = NULL;
7644 elf_text_section->owner = abfd;
7645 elf_text_symbol->name = ".text";
7646 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7647 elf_text_symbol->section = elf_text_section;
7648 }
7649 /* This code used to do *secp = bfd_und_section_ptr if
7650 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7651 so I took it out. */
7652 *secp = mips_elf_tdata (abfd)->elf_text_section;
7653 break;
7654
7655 case SHN_MIPS_ACOMMON:
7656 /* Fall through. XXX Can we treat this as allocated data? */
7657 case SHN_MIPS_DATA:
7658 /* This section is used in a shared object. */
7659 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7660 {
7661 asymbol *elf_data_symbol;
7662 asection *elf_data_section;
7663 bfd_size_type amt = sizeof (asection);
7664
7665 elf_data_section = bfd_zalloc (abfd, amt);
7666 if (elf_data_section == NULL)
7667 return FALSE;
7668
7669 amt = sizeof (asymbol);
7670 elf_data_symbol = bfd_zalloc (abfd, amt);
7671 if (elf_data_symbol == NULL)
7672 return FALSE;
7673
7674 /* Initialize the section. */
7675
7676 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7677 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7678
7679 elf_data_section->symbol = elf_data_symbol;
7680 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7681
7682 elf_data_section->name = ".data";
7683 elf_data_section->flags = SEC_NO_FLAGS;
7684 elf_data_section->output_section = NULL;
7685 elf_data_section->owner = abfd;
7686 elf_data_symbol->name = ".data";
7687 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7688 elf_data_symbol->section = elf_data_section;
7689 }
7690 /* This code used to do *secp = bfd_und_section_ptr if
7691 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7692 so I took it out. */
7693 *secp = mips_elf_tdata (abfd)->elf_data_section;
7694 break;
7695
7696 case SHN_MIPS_SUNDEFINED:
7697 *secp = bfd_und_section_ptr;
7698 break;
7699 }
7700
7701 if (SGI_COMPAT (abfd)
7702 && ! bfd_link_pic (info)
7703 && info->output_bfd->xvec == abfd->xvec
7704 && strcmp (*namep, "__rld_obj_head") == 0)
7705 {
7706 struct elf_link_hash_entry *h;
7707 struct bfd_link_hash_entry *bh;
7708
7709 /* Mark __rld_obj_head as dynamic. */
7710 bh = NULL;
7711 if (! (_bfd_generic_link_add_one_symbol
7712 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7713 get_elf_backend_data (abfd)->collect, &bh)))
7714 return FALSE;
7715
7716 h = (struct elf_link_hash_entry *) bh;
7717 h->non_elf = 0;
7718 h->def_regular = 1;
7719 h->type = STT_OBJECT;
7720
7721 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7722 return FALSE;
7723
7724 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7725 mips_elf_hash_table (info)->rld_symbol = h;
7726 }
7727
7728 /* If this is a mips16 text symbol, add 1 to the value to make it
7729 odd. This will cause something like .word SYM to come up with
7730 the right value when it is loaded into the PC. */
7731 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7732 ++*valp;
7733
7734 return TRUE;
7735 }
7736
7737 /* This hook function is called before the linker writes out a global
7738 symbol. We mark symbols as small common if appropriate. This is
7739 also where we undo the increment of the value for a mips16 symbol. */
7740
7741 int
7742 _bfd_mips_elf_link_output_symbol_hook
7743 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7744 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7745 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7746 {
7747 /* If we see a common symbol, which implies a relocatable link, then
7748 if a symbol was small common in an input file, mark it as small
7749 common in the output file. */
7750 if (sym->st_shndx == SHN_COMMON
7751 && strcmp (input_sec->name, ".scommon") == 0)
7752 sym->st_shndx = SHN_MIPS_SCOMMON;
7753
7754 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7755 sym->st_value &= ~1;
7756
7757 return 1;
7758 }
7759 \f
7760 /* Functions for the dynamic linker. */
7761
7762 /* Create dynamic sections when linking against a dynamic object. */
7763
7764 bfd_boolean
7765 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7766 {
7767 struct elf_link_hash_entry *h;
7768 struct bfd_link_hash_entry *bh;
7769 flagword flags;
7770 register asection *s;
7771 const char * const *namep;
7772 struct mips_elf_link_hash_table *htab;
7773
7774 htab = mips_elf_hash_table (info);
7775 BFD_ASSERT (htab != NULL);
7776
7777 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7778 | SEC_LINKER_CREATED | SEC_READONLY);
7779
7780 /* The psABI requires a read-only .dynamic section, but the VxWorks
7781 EABI doesn't. */
7782 if (!htab->is_vxworks)
7783 {
7784 s = bfd_get_linker_section (abfd, ".dynamic");
7785 if (s != NULL)
7786 {
7787 if (! bfd_set_section_flags (abfd, s, flags))
7788 return FALSE;
7789 }
7790 }
7791
7792 /* We need to create .got section. */
7793 if (!mips_elf_create_got_section (abfd, info))
7794 return FALSE;
7795
7796 if (! mips_elf_rel_dyn_section (info, TRUE))
7797 return FALSE;
7798
7799 /* Create .stub section. */
7800 s = bfd_make_section_anyway_with_flags (abfd,
7801 MIPS_ELF_STUB_SECTION_NAME (abfd),
7802 flags | SEC_CODE);
7803 if (s == NULL
7804 || ! bfd_set_section_alignment (abfd, s,
7805 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7806 return FALSE;
7807 htab->sstubs = s;
7808
7809 if (!mips_elf_hash_table (info)->use_rld_obj_head
7810 && bfd_link_executable (info)
7811 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7812 {
7813 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7814 flags &~ (flagword) SEC_READONLY);
7815 if (s == NULL
7816 || ! bfd_set_section_alignment (abfd, s,
7817 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7818 return FALSE;
7819 }
7820
7821 /* On IRIX5, we adjust add some additional symbols and change the
7822 alignments of several sections. There is no ABI documentation
7823 indicating that this is necessary on IRIX6, nor any evidence that
7824 the linker takes such action. */
7825 if (IRIX_COMPAT (abfd) == ict_irix5)
7826 {
7827 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7828 {
7829 bh = NULL;
7830 if (! (_bfd_generic_link_add_one_symbol
7831 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7832 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7833 return FALSE;
7834
7835 h = (struct elf_link_hash_entry *) bh;
7836 h->non_elf = 0;
7837 h->def_regular = 1;
7838 h->type = STT_SECTION;
7839
7840 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7841 return FALSE;
7842 }
7843
7844 /* We need to create a .compact_rel section. */
7845 if (SGI_COMPAT (abfd))
7846 {
7847 if (!mips_elf_create_compact_rel_section (abfd, info))
7848 return FALSE;
7849 }
7850
7851 /* Change alignments of some sections. */
7852 s = bfd_get_linker_section (abfd, ".hash");
7853 if (s != NULL)
7854 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7855
7856 s = bfd_get_linker_section (abfd, ".dynsym");
7857 if (s != NULL)
7858 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7859
7860 s = bfd_get_linker_section (abfd, ".dynstr");
7861 if (s != NULL)
7862 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7863
7864 /* ??? */
7865 s = bfd_get_section_by_name (abfd, ".reginfo");
7866 if (s != NULL)
7867 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7868
7869 s = bfd_get_linker_section (abfd, ".dynamic");
7870 if (s != NULL)
7871 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7872 }
7873
7874 if (bfd_link_executable (info))
7875 {
7876 const char *name;
7877
7878 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7879 bh = NULL;
7880 if (!(_bfd_generic_link_add_one_symbol
7881 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7882 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7883 return FALSE;
7884
7885 h = (struct elf_link_hash_entry *) bh;
7886 h->non_elf = 0;
7887 h->def_regular = 1;
7888 h->type = STT_SECTION;
7889
7890 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7891 return FALSE;
7892
7893 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7894 {
7895 /* __rld_map is a four byte word located in the .data section
7896 and is filled in by the rtld to contain a pointer to
7897 the _r_debug structure. Its symbol value will be set in
7898 _bfd_mips_elf_finish_dynamic_symbol. */
7899 s = bfd_get_linker_section (abfd, ".rld_map");
7900 BFD_ASSERT (s != NULL);
7901
7902 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7903 bh = NULL;
7904 if (!(_bfd_generic_link_add_one_symbol
7905 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7906 get_elf_backend_data (abfd)->collect, &bh)))
7907 return FALSE;
7908
7909 h = (struct elf_link_hash_entry *) bh;
7910 h->non_elf = 0;
7911 h->def_regular = 1;
7912 h->type = STT_OBJECT;
7913
7914 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7915 return FALSE;
7916 mips_elf_hash_table (info)->rld_symbol = h;
7917 }
7918 }
7919
7920 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7921 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
7922 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7923 return FALSE;
7924
7925 /* Do the usual VxWorks handling. */
7926 if (htab->is_vxworks
7927 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7928 return FALSE;
7929
7930 return TRUE;
7931 }
7932 \f
7933 /* Return true if relocation REL against section SEC is a REL rather than
7934 RELA relocation. RELOCS is the first relocation in the section and
7935 ABFD is the bfd that contains SEC. */
7936
7937 static bfd_boolean
7938 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7939 const Elf_Internal_Rela *relocs,
7940 const Elf_Internal_Rela *rel)
7941 {
7942 Elf_Internal_Shdr *rel_hdr;
7943 const struct elf_backend_data *bed;
7944
7945 /* To determine which flavor of relocation this is, we depend on the
7946 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7947 rel_hdr = elf_section_data (sec)->rel.hdr;
7948 if (rel_hdr == NULL)
7949 return FALSE;
7950 bed = get_elf_backend_data (abfd);
7951 return ((size_t) (rel - relocs)
7952 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7953 }
7954
7955 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7956 HOWTO is the relocation's howto and CONTENTS points to the contents
7957 of the section that REL is against. */
7958
7959 static bfd_vma
7960 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7961 reloc_howto_type *howto, bfd_byte *contents)
7962 {
7963 bfd_byte *location;
7964 unsigned int r_type;
7965 bfd_vma addend;
7966 bfd_vma bytes;
7967
7968 r_type = ELF_R_TYPE (abfd, rel->r_info);
7969 location = contents + rel->r_offset;
7970
7971 /* Get the addend, which is stored in the input file. */
7972 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7973 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
7974 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7975
7976 addend = bytes & howto->src_mask;
7977
7978 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
7979 accordingly. */
7980 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
7981 addend <<= 1;
7982
7983 return addend;
7984 }
7985
7986 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7987 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7988 and update *ADDEND with the final addend. Return true on success
7989 or false if the LO16 could not be found. RELEND is the exclusive
7990 upper bound on the relocations for REL's section. */
7991
7992 static bfd_boolean
7993 mips_elf_add_lo16_rel_addend (bfd *abfd,
7994 const Elf_Internal_Rela *rel,
7995 const Elf_Internal_Rela *relend,
7996 bfd_byte *contents, bfd_vma *addend)
7997 {
7998 unsigned int r_type, lo16_type;
7999 const Elf_Internal_Rela *lo16_relocation;
8000 reloc_howto_type *lo16_howto;
8001 bfd_vma l;
8002
8003 r_type = ELF_R_TYPE (abfd, rel->r_info);
8004 if (mips16_reloc_p (r_type))
8005 lo16_type = R_MIPS16_LO16;
8006 else if (micromips_reloc_p (r_type))
8007 lo16_type = R_MICROMIPS_LO16;
8008 else if (r_type == R_MIPS_PCHI16)
8009 lo16_type = R_MIPS_PCLO16;
8010 else
8011 lo16_type = R_MIPS_LO16;
8012
8013 /* The combined value is the sum of the HI16 addend, left-shifted by
8014 sixteen bits, and the LO16 addend, sign extended. (Usually, the
8015 code does a `lui' of the HI16 value, and then an `addiu' of the
8016 LO16 value.)
8017
8018 Scan ahead to find a matching LO16 relocation.
8019
8020 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8021 be immediately following. However, for the IRIX6 ABI, the next
8022 relocation may be a composed relocation consisting of several
8023 relocations for the same address. In that case, the R_MIPS_LO16
8024 relocation may occur as one of these. We permit a similar
8025 extension in general, as that is useful for GCC.
8026
8027 In some cases GCC dead code elimination removes the LO16 but keeps
8028 the corresponding HI16. This is strictly speaking a violation of
8029 the ABI but not immediately harmful. */
8030 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8031 if (lo16_relocation == NULL)
8032 return FALSE;
8033
8034 /* Obtain the addend kept there. */
8035 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
8036 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8037
8038 l <<= lo16_howto->rightshift;
8039 l = _bfd_mips_elf_sign_extend (l, 16);
8040
8041 *addend <<= 16;
8042 *addend += l;
8043 return TRUE;
8044 }
8045
8046 /* Try to read the contents of section SEC in bfd ABFD. Return true and
8047 store the contents in *CONTENTS on success. Assume that *CONTENTS
8048 already holds the contents if it is nonull on entry. */
8049
8050 static bfd_boolean
8051 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8052 {
8053 if (*contents)
8054 return TRUE;
8055
8056 /* Get cached copy if it exists. */
8057 if (elf_section_data (sec)->this_hdr.contents != NULL)
8058 {
8059 *contents = elf_section_data (sec)->this_hdr.contents;
8060 return TRUE;
8061 }
8062
8063 return bfd_malloc_and_get_section (abfd, sec, contents);
8064 }
8065
8066 /* Make a new PLT record to keep internal data. */
8067
8068 static struct plt_entry *
8069 mips_elf_make_plt_record (bfd *abfd)
8070 {
8071 struct plt_entry *entry;
8072
8073 entry = bfd_zalloc (abfd, sizeof (*entry));
8074 if (entry == NULL)
8075 return NULL;
8076
8077 entry->stub_offset = MINUS_ONE;
8078 entry->mips_offset = MINUS_ONE;
8079 entry->comp_offset = MINUS_ONE;
8080 entry->gotplt_index = MINUS_ONE;
8081 return entry;
8082 }
8083
8084 /* Look through the relocs for a section during the first phase, and
8085 allocate space in the global offset table and record the need for
8086 standard MIPS and compressed procedure linkage table entries. */
8087
8088 bfd_boolean
8089 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8090 asection *sec, const Elf_Internal_Rela *relocs)
8091 {
8092 const char *name;
8093 bfd *dynobj;
8094 Elf_Internal_Shdr *symtab_hdr;
8095 struct elf_link_hash_entry **sym_hashes;
8096 size_t extsymoff;
8097 const Elf_Internal_Rela *rel;
8098 const Elf_Internal_Rela *rel_end;
8099 asection *sreloc;
8100 const struct elf_backend_data *bed;
8101 struct mips_elf_link_hash_table *htab;
8102 bfd_byte *contents;
8103 bfd_vma addend;
8104 reloc_howto_type *howto;
8105
8106 if (bfd_link_relocatable (info))
8107 return TRUE;
8108
8109 htab = mips_elf_hash_table (info);
8110 BFD_ASSERT (htab != NULL);
8111
8112 dynobj = elf_hash_table (info)->dynobj;
8113 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8114 sym_hashes = elf_sym_hashes (abfd);
8115 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8116
8117 bed = get_elf_backend_data (abfd);
8118 rel_end = relocs + sec->reloc_count;
8119
8120 /* Check for the mips16 stub sections. */
8121
8122 name = bfd_get_section_name (abfd, sec);
8123 if (FN_STUB_P (name))
8124 {
8125 unsigned long r_symndx;
8126
8127 /* Look at the relocation information to figure out which symbol
8128 this is for. */
8129
8130 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8131 if (r_symndx == 0)
8132 {
8133 _bfd_error_handler
8134 /* xgettext:c-format */
8135 (_("%B: Warning: cannot determine the target function for"
8136 " stub section `%s'"),
8137 abfd, name);
8138 bfd_set_error (bfd_error_bad_value);
8139 return FALSE;
8140 }
8141
8142 if (r_symndx < extsymoff
8143 || sym_hashes[r_symndx - extsymoff] == NULL)
8144 {
8145 asection *o;
8146
8147 /* This stub is for a local symbol. This stub will only be
8148 needed if there is some relocation in this BFD, other
8149 than a 16 bit function call, which refers to this symbol. */
8150 for (o = abfd->sections; o != NULL; o = o->next)
8151 {
8152 Elf_Internal_Rela *sec_relocs;
8153 const Elf_Internal_Rela *r, *rend;
8154
8155 /* We can ignore stub sections when looking for relocs. */
8156 if ((o->flags & SEC_RELOC) == 0
8157 || o->reloc_count == 0
8158 || section_allows_mips16_refs_p (o))
8159 continue;
8160
8161 sec_relocs
8162 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8163 info->keep_memory);
8164 if (sec_relocs == NULL)
8165 return FALSE;
8166
8167 rend = sec_relocs + o->reloc_count;
8168 for (r = sec_relocs; r < rend; r++)
8169 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8170 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
8171 break;
8172
8173 if (elf_section_data (o)->relocs != sec_relocs)
8174 free (sec_relocs);
8175
8176 if (r < rend)
8177 break;
8178 }
8179
8180 if (o == NULL)
8181 {
8182 /* There is no non-call reloc for this stub, so we do
8183 not need it. Since this function is called before
8184 the linker maps input sections to output sections, we
8185 can easily discard it by setting the SEC_EXCLUDE
8186 flag. */
8187 sec->flags |= SEC_EXCLUDE;
8188 return TRUE;
8189 }
8190
8191 /* Record this stub in an array of local symbol stubs for
8192 this BFD. */
8193 if (mips_elf_tdata (abfd)->local_stubs == NULL)
8194 {
8195 unsigned long symcount;
8196 asection **n;
8197 bfd_size_type amt;
8198
8199 if (elf_bad_symtab (abfd))
8200 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8201 else
8202 symcount = symtab_hdr->sh_info;
8203 amt = symcount * sizeof (asection *);
8204 n = bfd_zalloc (abfd, amt);
8205 if (n == NULL)
8206 return FALSE;
8207 mips_elf_tdata (abfd)->local_stubs = n;
8208 }
8209
8210 sec->flags |= SEC_KEEP;
8211 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8212
8213 /* We don't need to set mips16_stubs_seen in this case.
8214 That flag is used to see whether we need to look through
8215 the global symbol table for stubs. We don't need to set
8216 it here, because we just have a local stub. */
8217 }
8218 else
8219 {
8220 struct mips_elf_link_hash_entry *h;
8221
8222 h = ((struct mips_elf_link_hash_entry *)
8223 sym_hashes[r_symndx - extsymoff]);
8224
8225 while (h->root.root.type == bfd_link_hash_indirect
8226 || h->root.root.type == bfd_link_hash_warning)
8227 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8228
8229 /* H is the symbol this stub is for. */
8230
8231 /* If we already have an appropriate stub for this function, we
8232 don't need another one, so we can discard this one. Since
8233 this function is called before the linker maps input sections
8234 to output sections, we can easily discard it by setting the
8235 SEC_EXCLUDE flag. */
8236 if (h->fn_stub != NULL)
8237 {
8238 sec->flags |= SEC_EXCLUDE;
8239 return TRUE;
8240 }
8241
8242 sec->flags |= SEC_KEEP;
8243 h->fn_stub = sec;
8244 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8245 }
8246 }
8247 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8248 {
8249 unsigned long r_symndx;
8250 struct mips_elf_link_hash_entry *h;
8251 asection **loc;
8252
8253 /* Look at the relocation information to figure out which symbol
8254 this is for. */
8255
8256 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8257 if (r_symndx == 0)
8258 {
8259 _bfd_error_handler
8260 /* xgettext:c-format */
8261 (_("%B: Warning: cannot determine the target function for"
8262 " stub section `%s'"),
8263 abfd, name);
8264 bfd_set_error (bfd_error_bad_value);
8265 return FALSE;
8266 }
8267
8268 if (r_symndx < extsymoff
8269 || sym_hashes[r_symndx - extsymoff] == NULL)
8270 {
8271 asection *o;
8272
8273 /* This stub is for a local symbol. This stub will only be
8274 needed if there is some relocation (R_MIPS16_26) in this BFD
8275 that refers to this symbol. */
8276 for (o = abfd->sections; o != NULL; o = o->next)
8277 {
8278 Elf_Internal_Rela *sec_relocs;
8279 const Elf_Internal_Rela *r, *rend;
8280
8281 /* We can ignore stub sections when looking for relocs. */
8282 if ((o->flags & SEC_RELOC) == 0
8283 || o->reloc_count == 0
8284 || section_allows_mips16_refs_p (o))
8285 continue;
8286
8287 sec_relocs
8288 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8289 info->keep_memory);
8290 if (sec_relocs == NULL)
8291 return FALSE;
8292
8293 rend = sec_relocs + o->reloc_count;
8294 for (r = sec_relocs; r < rend; r++)
8295 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8296 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8297 break;
8298
8299 if (elf_section_data (o)->relocs != sec_relocs)
8300 free (sec_relocs);
8301
8302 if (r < rend)
8303 break;
8304 }
8305
8306 if (o == NULL)
8307 {
8308 /* There is no non-call reloc for this stub, so we do
8309 not need it. Since this function is called before
8310 the linker maps input sections to output sections, we
8311 can easily discard it by setting the SEC_EXCLUDE
8312 flag. */
8313 sec->flags |= SEC_EXCLUDE;
8314 return TRUE;
8315 }
8316
8317 /* Record this stub in an array of local symbol call_stubs for
8318 this BFD. */
8319 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8320 {
8321 unsigned long symcount;
8322 asection **n;
8323 bfd_size_type amt;
8324
8325 if (elf_bad_symtab (abfd))
8326 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8327 else
8328 symcount = symtab_hdr->sh_info;
8329 amt = symcount * sizeof (asection *);
8330 n = bfd_zalloc (abfd, amt);
8331 if (n == NULL)
8332 return FALSE;
8333 mips_elf_tdata (abfd)->local_call_stubs = n;
8334 }
8335
8336 sec->flags |= SEC_KEEP;
8337 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8338
8339 /* We don't need to set mips16_stubs_seen in this case.
8340 That flag is used to see whether we need to look through
8341 the global symbol table for stubs. We don't need to set
8342 it here, because we just have a local stub. */
8343 }
8344 else
8345 {
8346 h = ((struct mips_elf_link_hash_entry *)
8347 sym_hashes[r_symndx - extsymoff]);
8348
8349 /* H is the symbol this stub is for. */
8350
8351 if (CALL_FP_STUB_P (name))
8352 loc = &h->call_fp_stub;
8353 else
8354 loc = &h->call_stub;
8355
8356 /* If we already have an appropriate stub for this function, we
8357 don't need another one, so we can discard this one. Since
8358 this function is called before the linker maps input sections
8359 to output sections, we can easily discard it by setting the
8360 SEC_EXCLUDE flag. */
8361 if (*loc != NULL)
8362 {
8363 sec->flags |= SEC_EXCLUDE;
8364 return TRUE;
8365 }
8366
8367 sec->flags |= SEC_KEEP;
8368 *loc = sec;
8369 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8370 }
8371 }
8372
8373 sreloc = NULL;
8374 contents = NULL;
8375 for (rel = relocs; rel < rel_end; ++rel)
8376 {
8377 unsigned long r_symndx;
8378 unsigned int r_type;
8379 struct elf_link_hash_entry *h;
8380 bfd_boolean can_make_dynamic_p;
8381 bfd_boolean call_reloc_p;
8382 bfd_boolean constrain_symbol_p;
8383
8384 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8385 r_type = ELF_R_TYPE (abfd, rel->r_info);
8386
8387 if (r_symndx < extsymoff)
8388 h = NULL;
8389 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8390 {
8391 _bfd_error_handler
8392 /* xgettext:c-format */
8393 (_("%B: Malformed reloc detected for section %s"),
8394 abfd, name);
8395 bfd_set_error (bfd_error_bad_value);
8396 return FALSE;
8397 }
8398 else
8399 {
8400 h = sym_hashes[r_symndx - extsymoff];
8401 if (h != NULL)
8402 {
8403 while (h->root.type == bfd_link_hash_indirect
8404 || h->root.type == bfd_link_hash_warning)
8405 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8406
8407 /* PR15323, ref flags aren't set for references in the
8408 same object. */
8409 h->root.non_ir_ref_regular = 1;
8410 }
8411 }
8412
8413 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8414 relocation into a dynamic one. */
8415 can_make_dynamic_p = FALSE;
8416
8417 /* Set CALL_RELOC_P to true if the relocation is for a call,
8418 and if pointer equality therefore doesn't matter. */
8419 call_reloc_p = FALSE;
8420
8421 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8422 into account when deciding how to define the symbol.
8423 Relocations in nonallocatable sections such as .pdr and
8424 .debug* should have no effect. */
8425 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8426
8427 switch (r_type)
8428 {
8429 case R_MIPS_CALL16:
8430 case R_MIPS_CALL_HI16:
8431 case R_MIPS_CALL_LO16:
8432 case R_MIPS16_CALL16:
8433 case R_MICROMIPS_CALL16:
8434 case R_MICROMIPS_CALL_HI16:
8435 case R_MICROMIPS_CALL_LO16:
8436 call_reloc_p = TRUE;
8437 /* Fall through. */
8438
8439 case R_MIPS_GOT16:
8440 case R_MIPS_GOT_HI16:
8441 case R_MIPS_GOT_LO16:
8442 case R_MIPS_GOT_PAGE:
8443 case R_MIPS_GOT_OFST:
8444 case R_MIPS_GOT_DISP:
8445 case R_MIPS_TLS_GOTTPREL:
8446 case R_MIPS_TLS_GD:
8447 case R_MIPS_TLS_LDM:
8448 case R_MIPS16_GOT16:
8449 case R_MIPS16_TLS_GOTTPREL:
8450 case R_MIPS16_TLS_GD:
8451 case R_MIPS16_TLS_LDM:
8452 case R_MICROMIPS_GOT16:
8453 case R_MICROMIPS_GOT_HI16:
8454 case R_MICROMIPS_GOT_LO16:
8455 case R_MICROMIPS_GOT_PAGE:
8456 case R_MICROMIPS_GOT_OFST:
8457 case R_MICROMIPS_GOT_DISP:
8458 case R_MICROMIPS_TLS_GOTTPREL:
8459 case R_MICROMIPS_TLS_GD:
8460 case R_MICROMIPS_TLS_LDM:
8461 if (dynobj == NULL)
8462 elf_hash_table (info)->dynobj = dynobj = abfd;
8463 if (!mips_elf_create_got_section (dynobj, info))
8464 return FALSE;
8465 if (htab->is_vxworks && !bfd_link_pic (info))
8466 {
8467 _bfd_error_handler
8468 /* xgettext:c-format */
8469 (_("%B: GOT reloc at %#Lx not expected in executables"),
8470 abfd, rel->r_offset);
8471 bfd_set_error (bfd_error_bad_value);
8472 return FALSE;
8473 }
8474 can_make_dynamic_p = TRUE;
8475 break;
8476
8477 case R_MIPS_NONE:
8478 case R_MIPS_JALR:
8479 case R_MICROMIPS_JALR:
8480 /* These relocations have empty fields and are purely there to
8481 provide link information. The symbol value doesn't matter. */
8482 constrain_symbol_p = FALSE;
8483 break;
8484
8485 case R_MIPS_GPREL16:
8486 case R_MIPS_GPREL32:
8487 case R_MIPS16_GPREL:
8488 case R_MICROMIPS_GPREL16:
8489 /* GP-relative relocations always resolve to a definition in a
8490 regular input file, ignoring the one-definition rule. This is
8491 important for the GP setup sequence in NewABI code, which
8492 always resolves to a local function even if other relocations
8493 against the symbol wouldn't. */
8494 constrain_symbol_p = FALSE;
8495 break;
8496
8497 case R_MIPS_32:
8498 case R_MIPS_REL32:
8499 case R_MIPS_64:
8500 /* In VxWorks executables, references to external symbols
8501 must be handled using copy relocs or PLT entries; it is not
8502 possible to convert this relocation into a dynamic one.
8503
8504 For executables that use PLTs and copy-relocs, we have a
8505 choice between converting the relocation into a dynamic
8506 one or using copy relocations or PLT entries. It is
8507 usually better to do the former, unless the relocation is
8508 against a read-only section. */
8509 if ((bfd_link_pic (info)
8510 || (h != NULL
8511 && !htab->is_vxworks
8512 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8513 && !(!info->nocopyreloc
8514 && !PIC_OBJECT_P (abfd)
8515 && MIPS_ELF_READONLY_SECTION (sec))))
8516 && (sec->flags & SEC_ALLOC) != 0)
8517 {
8518 can_make_dynamic_p = TRUE;
8519 if (dynobj == NULL)
8520 elf_hash_table (info)->dynobj = dynobj = abfd;
8521 }
8522 break;
8523
8524 case R_MIPS_26:
8525 case R_MIPS_PC16:
8526 case R_MIPS_PC21_S2:
8527 case R_MIPS_PC26_S2:
8528 case R_MIPS16_26:
8529 case R_MIPS16_PC16_S1:
8530 case R_MICROMIPS_26_S1:
8531 case R_MICROMIPS_PC7_S1:
8532 case R_MICROMIPS_PC10_S1:
8533 case R_MICROMIPS_PC16_S1:
8534 case R_MICROMIPS_PC23_S2:
8535 call_reloc_p = TRUE;
8536 break;
8537 }
8538
8539 if (h)
8540 {
8541 if (constrain_symbol_p)
8542 {
8543 if (!can_make_dynamic_p)
8544 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8545
8546 if (!call_reloc_p)
8547 h->pointer_equality_needed = 1;
8548
8549 /* We must not create a stub for a symbol that has
8550 relocations related to taking the function's address.
8551 This doesn't apply to VxWorks, where CALL relocs refer
8552 to a .got.plt entry instead of a normal .got entry. */
8553 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8554 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8555 }
8556
8557 /* Relocations against the special VxWorks __GOTT_BASE__ and
8558 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8559 room for them in .rela.dyn. */
8560 if (is_gott_symbol (info, h))
8561 {
8562 if (sreloc == NULL)
8563 {
8564 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8565 if (sreloc == NULL)
8566 return FALSE;
8567 }
8568 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8569 if (MIPS_ELF_READONLY_SECTION (sec))
8570 /* We tell the dynamic linker that there are
8571 relocations against the text segment. */
8572 info->flags |= DF_TEXTREL;
8573 }
8574 }
8575 else if (call_lo16_reloc_p (r_type)
8576 || got_lo16_reloc_p (r_type)
8577 || got_disp_reloc_p (r_type)
8578 || (got16_reloc_p (r_type) && htab->is_vxworks))
8579 {
8580 /* We may need a local GOT entry for this relocation. We
8581 don't count R_MIPS_GOT_PAGE because we can estimate the
8582 maximum number of pages needed by looking at the size of
8583 the segment. Similar comments apply to R_MIPS*_GOT16 and
8584 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8585 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8586 R_MIPS_CALL_HI16 because these are always followed by an
8587 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8588 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8589 rel->r_addend, info, r_type))
8590 return FALSE;
8591 }
8592
8593 if (h != NULL
8594 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8595 ELF_ST_IS_MIPS16 (h->other)))
8596 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8597
8598 switch (r_type)
8599 {
8600 case R_MIPS_CALL16:
8601 case R_MIPS16_CALL16:
8602 case R_MICROMIPS_CALL16:
8603 if (h == NULL)
8604 {
8605 _bfd_error_handler
8606 /* xgettext:c-format */
8607 (_("%B: CALL16 reloc at %#Lx not against global symbol"),
8608 abfd, rel->r_offset);
8609 bfd_set_error (bfd_error_bad_value);
8610 return FALSE;
8611 }
8612 /* Fall through. */
8613
8614 case R_MIPS_CALL_HI16:
8615 case R_MIPS_CALL_LO16:
8616 case R_MICROMIPS_CALL_HI16:
8617 case R_MICROMIPS_CALL_LO16:
8618 if (h != NULL)
8619 {
8620 /* Make sure there is room in the regular GOT to hold the
8621 function's address. We may eliminate it in favour of
8622 a .got.plt entry later; see mips_elf_count_got_symbols. */
8623 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8624 r_type))
8625 return FALSE;
8626
8627 /* We need a stub, not a plt entry for the undefined
8628 function. But we record it as if it needs plt. See
8629 _bfd_elf_adjust_dynamic_symbol. */
8630 h->needs_plt = 1;
8631 h->type = STT_FUNC;
8632 }
8633 break;
8634
8635 case R_MIPS_GOT_PAGE:
8636 case R_MICROMIPS_GOT_PAGE:
8637 case R_MIPS16_GOT16:
8638 case R_MIPS_GOT16:
8639 case R_MIPS_GOT_HI16:
8640 case R_MIPS_GOT_LO16:
8641 case R_MICROMIPS_GOT16:
8642 case R_MICROMIPS_GOT_HI16:
8643 case R_MICROMIPS_GOT_LO16:
8644 if (!h || got_page_reloc_p (r_type))
8645 {
8646 /* This relocation needs (or may need, if h != NULL) a
8647 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8648 know for sure until we know whether the symbol is
8649 preemptible. */
8650 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8651 {
8652 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8653 return FALSE;
8654 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8655 addend = mips_elf_read_rel_addend (abfd, rel,
8656 howto, contents);
8657 if (got16_reloc_p (r_type))
8658 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8659 contents, &addend);
8660 else
8661 addend <<= howto->rightshift;
8662 }
8663 else
8664 addend = rel->r_addend;
8665 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8666 h, addend))
8667 return FALSE;
8668
8669 if (h)
8670 {
8671 struct mips_elf_link_hash_entry *hmips =
8672 (struct mips_elf_link_hash_entry *) h;
8673
8674 /* This symbol is definitely not overridable. */
8675 if (hmips->root.def_regular
8676 && ! (bfd_link_pic (info) && ! info->symbolic
8677 && ! hmips->root.forced_local))
8678 h = NULL;
8679 }
8680 }
8681 /* If this is a global, overridable symbol, GOT_PAGE will
8682 decay to GOT_DISP, so we'll need a GOT entry for it. */
8683 /* Fall through. */
8684
8685 case R_MIPS_GOT_DISP:
8686 case R_MICROMIPS_GOT_DISP:
8687 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8688 FALSE, r_type))
8689 return FALSE;
8690 break;
8691
8692 case R_MIPS_TLS_GOTTPREL:
8693 case R_MIPS16_TLS_GOTTPREL:
8694 case R_MICROMIPS_TLS_GOTTPREL:
8695 if (bfd_link_pic (info))
8696 info->flags |= DF_STATIC_TLS;
8697 /* Fall through */
8698
8699 case R_MIPS_TLS_LDM:
8700 case R_MIPS16_TLS_LDM:
8701 case R_MICROMIPS_TLS_LDM:
8702 if (tls_ldm_reloc_p (r_type))
8703 {
8704 r_symndx = STN_UNDEF;
8705 h = NULL;
8706 }
8707 /* Fall through */
8708
8709 case R_MIPS_TLS_GD:
8710 case R_MIPS16_TLS_GD:
8711 case R_MICROMIPS_TLS_GD:
8712 /* This symbol requires a global offset table entry, or two
8713 for TLS GD relocations. */
8714 if (h != NULL)
8715 {
8716 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8717 FALSE, r_type))
8718 return FALSE;
8719 }
8720 else
8721 {
8722 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8723 rel->r_addend,
8724 info, r_type))
8725 return FALSE;
8726 }
8727 break;
8728
8729 case R_MIPS_32:
8730 case R_MIPS_REL32:
8731 case R_MIPS_64:
8732 /* In VxWorks executables, references to external symbols
8733 are handled using copy relocs or PLT stubs, so there's
8734 no need to add a .rela.dyn entry for this relocation. */
8735 if (can_make_dynamic_p)
8736 {
8737 if (sreloc == NULL)
8738 {
8739 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8740 if (sreloc == NULL)
8741 return FALSE;
8742 }
8743 if (bfd_link_pic (info) && h == NULL)
8744 {
8745 /* When creating a shared object, we must copy these
8746 reloc types into the output file as R_MIPS_REL32
8747 relocs. Make room for this reloc in .rel(a).dyn. */
8748 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8749 if (MIPS_ELF_READONLY_SECTION (sec))
8750 /* We tell the dynamic linker that there are
8751 relocations against the text segment. */
8752 info->flags |= DF_TEXTREL;
8753 }
8754 else
8755 {
8756 struct mips_elf_link_hash_entry *hmips;
8757
8758 /* For a shared object, we must copy this relocation
8759 unless the symbol turns out to be undefined and
8760 weak with non-default visibility, in which case
8761 it will be left as zero.
8762
8763 We could elide R_MIPS_REL32 for locally binding symbols
8764 in shared libraries, but do not yet do so.
8765
8766 For an executable, we only need to copy this
8767 reloc if the symbol is defined in a dynamic
8768 object. */
8769 hmips = (struct mips_elf_link_hash_entry *) h;
8770 ++hmips->possibly_dynamic_relocs;
8771 if (MIPS_ELF_READONLY_SECTION (sec))
8772 /* We need it to tell the dynamic linker if there
8773 are relocations against the text segment. */
8774 hmips->readonly_reloc = TRUE;
8775 }
8776 }
8777
8778 if (SGI_COMPAT (abfd))
8779 mips_elf_hash_table (info)->compact_rel_size +=
8780 sizeof (Elf32_External_crinfo);
8781 break;
8782
8783 case R_MIPS_26:
8784 case R_MIPS_GPREL16:
8785 case R_MIPS_LITERAL:
8786 case R_MIPS_GPREL32:
8787 case R_MICROMIPS_26_S1:
8788 case R_MICROMIPS_GPREL16:
8789 case R_MICROMIPS_LITERAL:
8790 case R_MICROMIPS_GPREL7_S2:
8791 if (SGI_COMPAT (abfd))
8792 mips_elf_hash_table (info)->compact_rel_size +=
8793 sizeof (Elf32_External_crinfo);
8794 break;
8795
8796 /* This relocation describes the C++ object vtable hierarchy.
8797 Reconstruct it for later use during GC. */
8798 case R_MIPS_GNU_VTINHERIT:
8799 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8800 return FALSE;
8801 break;
8802
8803 /* This relocation describes which C++ vtable entries are actually
8804 used. Record for later use during GC. */
8805 case R_MIPS_GNU_VTENTRY:
8806 BFD_ASSERT (h != NULL);
8807 if (h != NULL
8808 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8809 return FALSE;
8810 break;
8811
8812 default:
8813 break;
8814 }
8815
8816 /* Record the need for a PLT entry. At this point we don't know
8817 yet if we are going to create a PLT in the first place, but
8818 we only record whether the relocation requires a standard MIPS
8819 or a compressed code entry anyway. If we don't make a PLT after
8820 all, then we'll just ignore these arrangements. Likewise if
8821 a PLT entry is not created because the symbol is satisfied
8822 locally. */
8823 if (h != NULL
8824 && (branch_reloc_p (r_type)
8825 || mips16_branch_reloc_p (r_type)
8826 || micromips_branch_reloc_p (r_type))
8827 && !SYMBOL_CALLS_LOCAL (info, h))
8828 {
8829 if (h->plt.plist == NULL)
8830 h->plt.plist = mips_elf_make_plt_record (abfd);
8831 if (h->plt.plist == NULL)
8832 return FALSE;
8833
8834 if (branch_reloc_p (r_type))
8835 h->plt.plist->need_mips = TRUE;
8836 else
8837 h->plt.plist->need_comp = TRUE;
8838 }
8839
8840 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8841 if there is one. We only need to handle global symbols here;
8842 we decide whether to keep or delete stubs for local symbols
8843 when processing the stub's relocations. */
8844 if (h != NULL
8845 && !mips16_call_reloc_p (r_type)
8846 && !section_allows_mips16_refs_p (sec))
8847 {
8848 struct mips_elf_link_hash_entry *mh;
8849
8850 mh = (struct mips_elf_link_hash_entry *) h;
8851 mh->need_fn_stub = TRUE;
8852 }
8853
8854 /* Refuse some position-dependent relocations when creating a
8855 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8856 not PIC, but we can create dynamic relocations and the result
8857 will be fine. Also do not refuse R_MIPS_LO16, which can be
8858 combined with R_MIPS_GOT16. */
8859 if (bfd_link_pic (info))
8860 {
8861 switch (r_type)
8862 {
8863 case R_MIPS16_HI16:
8864 case R_MIPS_HI16:
8865 case R_MIPS_HIGHER:
8866 case R_MIPS_HIGHEST:
8867 case R_MICROMIPS_HI16:
8868 case R_MICROMIPS_HIGHER:
8869 case R_MICROMIPS_HIGHEST:
8870 /* Don't refuse a high part relocation if it's against
8871 no symbol (e.g. part of a compound relocation). */
8872 if (r_symndx == STN_UNDEF)
8873 break;
8874
8875 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8876 and has a special meaning. */
8877 if (!NEWABI_P (abfd) && h != NULL
8878 && strcmp (h->root.root.string, "_gp_disp") == 0)
8879 break;
8880
8881 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8882 if (is_gott_symbol (info, h))
8883 break;
8884
8885 /* FALLTHROUGH */
8886
8887 case R_MIPS16_26:
8888 case R_MIPS_26:
8889 case R_MICROMIPS_26_S1:
8890 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8891 _bfd_error_handler
8892 /* xgettext:c-format */
8893 (_("%B: relocation %s against `%s' can not be used"
8894 " when making a shared object; recompile with -fPIC"),
8895 abfd, howto->name,
8896 (h) ? h->root.root.string : "a local symbol");
8897 bfd_set_error (bfd_error_bad_value);
8898 return FALSE;
8899 default:
8900 break;
8901 }
8902 }
8903 }
8904
8905 return TRUE;
8906 }
8907 \f
8908 /* Allocate space for global sym dynamic relocs. */
8909
8910 static bfd_boolean
8911 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8912 {
8913 struct bfd_link_info *info = inf;
8914 bfd *dynobj;
8915 struct mips_elf_link_hash_entry *hmips;
8916 struct mips_elf_link_hash_table *htab;
8917
8918 htab = mips_elf_hash_table (info);
8919 BFD_ASSERT (htab != NULL);
8920
8921 dynobj = elf_hash_table (info)->dynobj;
8922 hmips = (struct mips_elf_link_hash_entry *) h;
8923
8924 /* VxWorks executables are handled elsewhere; we only need to
8925 allocate relocations in shared objects. */
8926 if (htab->is_vxworks && !bfd_link_pic (info))
8927 return TRUE;
8928
8929 /* Ignore indirect symbols. All relocations against such symbols
8930 will be redirected to the target symbol. */
8931 if (h->root.type == bfd_link_hash_indirect)
8932 return TRUE;
8933
8934 /* If this symbol is defined in a dynamic object, or we are creating
8935 a shared library, we will need to copy any R_MIPS_32 or
8936 R_MIPS_REL32 relocs against it into the output file. */
8937 if (! bfd_link_relocatable (info)
8938 && hmips->possibly_dynamic_relocs != 0
8939 && (h->root.type == bfd_link_hash_defweak
8940 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
8941 || bfd_link_pic (info)))
8942 {
8943 bfd_boolean do_copy = TRUE;
8944
8945 if (h->root.type == bfd_link_hash_undefweak)
8946 {
8947 /* Do not copy relocations for undefined weak symbols with
8948 non-default visibility. */
8949 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8950 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8951 do_copy = FALSE;
8952
8953 /* Make sure undefined weak symbols are output as a dynamic
8954 symbol in PIEs. */
8955 else if (h->dynindx == -1 && !h->forced_local)
8956 {
8957 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8958 return FALSE;
8959 }
8960 }
8961
8962 if (do_copy)
8963 {
8964 /* Even though we don't directly need a GOT entry for this symbol,
8965 the SVR4 psABI requires it to have a dynamic symbol table
8966 index greater that DT_MIPS_GOTSYM if there are dynamic
8967 relocations against it.
8968
8969 VxWorks does not enforce the same mapping between the GOT
8970 and the symbol table, so the same requirement does not
8971 apply there. */
8972 if (!htab->is_vxworks)
8973 {
8974 if (hmips->global_got_area > GGA_RELOC_ONLY)
8975 hmips->global_got_area = GGA_RELOC_ONLY;
8976 hmips->got_only_for_calls = FALSE;
8977 }
8978
8979 mips_elf_allocate_dynamic_relocations
8980 (dynobj, info, hmips->possibly_dynamic_relocs);
8981 if (hmips->readonly_reloc)
8982 /* We tell the dynamic linker that there are relocations
8983 against the text segment. */
8984 info->flags |= DF_TEXTREL;
8985 }
8986 }
8987
8988 return TRUE;
8989 }
8990
8991 /* Adjust a symbol defined by a dynamic object and referenced by a
8992 regular object. The current definition is in some section of the
8993 dynamic object, but we're not including those sections. We have to
8994 change the definition to something the rest of the link can
8995 understand. */
8996
8997 bfd_boolean
8998 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8999 struct elf_link_hash_entry *h)
9000 {
9001 bfd *dynobj;
9002 struct mips_elf_link_hash_entry *hmips;
9003 struct mips_elf_link_hash_table *htab;
9004 asection *s, *srel;
9005
9006 htab = mips_elf_hash_table (info);
9007 BFD_ASSERT (htab != NULL);
9008
9009 dynobj = elf_hash_table (info)->dynobj;
9010 hmips = (struct mips_elf_link_hash_entry *) h;
9011
9012 /* Make sure we know what is going on here. */
9013 BFD_ASSERT (dynobj != NULL
9014 && (h->needs_plt
9015 || h->u.weakdef != NULL
9016 || (h->def_dynamic
9017 && h->ref_regular
9018 && !h->def_regular)));
9019
9020 hmips = (struct mips_elf_link_hash_entry *) h;
9021
9022 /* If there are call relocations against an externally-defined symbol,
9023 see whether we can create a MIPS lazy-binding stub for it. We can
9024 only do this if all references to the function are through call
9025 relocations, and in that case, the traditional lazy-binding stubs
9026 are much more efficient than PLT entries.
9027
9028 Traditional stubs are only available on SVR4 psABI-based systems;
9029 VxWorks always uses PLTs instead. */
9030 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
9031 {
9032 if (! elf_hash_table (info)->dynamic_sections_created)
9033 return TRUE;
9034
9035 /* If this symbol is not defined in a regular file, then set
9036 the symbol to the stub location. This is required to make
9037 function pointers compare as equal between the normal
9038 executable and the shared library. */
9039 if (!h->def_regular)
9040 {
9041 hmips->needs_lazy_stub = TRUE;
9042 htab->lazy_stub_count++;
9043 return TRUE;
9044 }
9045 }
9046 /* As above, VxWorks requires PLT entries for externally-defined
9047 functions that are only accessed through call relocations.
9048
9049 Both VxWorks and non-VxWorks targets also need PLT entries if there
9050 are static-only relocations against an externally-defined function.
9051 This can technically occur for shared libraries if there are
9052 branches to the symbol, although it is unlikely that this will be
9053 used in practice due to the short ranges involved. It can occur
9054 for any relative or absolute relocation in executables; in that
9055 case, the PLT entry becomes the function's canonical address. */
9056 else if (((h->needs_plt && !hmips->no_fn_stub)
9057 || (h->type == STT_FUNC && hmips->has_static_relocs))
9058 && htab->use_plts_and_copy_relocs
9059 && !SYMBOL_CALLS_LOCAL (info, h)
9060 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9061 && h->root.type == bfd_link_hash_undefweak))
9062 {
9063 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9064 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9065
9066 /* If this is the first symbol to need a PLT entry, then make some
9067 basic setup. Also work out PLT entry sizes. We'll need them
9068 for PLT offset calculations. */
9069 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9070 {
9071 BFD_ASSERT (htab->root.sgotplt->size == 0);
9072 BFD_ASSERT (htab->plt_got_index == 0);
9073
9074 /* If we're using the PLT additions to the psABI, each PLT
9075 entry is 16 bytes and the PLT0 entry is 32 bytes.
9076 Encourage better cache usage by aligning. We do this
9077 lazily to avoid pessimizing traditional objects. */
9078 if (!htab->is_vxworks
9079 && !bfd_set_section_alignment (dynobj, htab->root.splt, 5))
9080 return FALSE;
9081
9082 /* Make sure that .got.plt is word-aligned. We do this lazily
9083 for the same reason as above. */
9084 if (!bfd_set_section_alignment (dynobj, htab->root.sgotplt,
9085 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9086 return FALSE;
9087
9088 /* On non-VxWorks targets, the first two entries in .got.plt
9089 are reserved. */
9090 if (!htab->is_vxworks)
9091 htab->plt_got_index
9092 += (get_elf_backend_data (dynobj)->got_header_size
9093 / MIPS_ELF_GOT_SIZE (dynobj));
9094
9095 /* On VxWorks, also allocate room for the header's
9096 .rela.plt.unloaded entries. */
9097 if (htab->is_vxworks && !bfd_link_pic (info))
9098 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9099
9100 /* Now work out the sizes of individual PLT entries. */
9101 if (htab->is_vxworks && bfd_link_pic (info))
9102 htab->plt_mips_entry_size
9103 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9104 else if (htab->is_vxworks)
9105 htab->plt_mips_entry_size
9106 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9107 else if (newabi_p)
9108 htab->plt_mips_entry_size
9109 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9110 else if (!micromips_p)
9111 {
9112 htab->plt_mips_entry_size
9113 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9114 htab->plt_comp_entry_size
9115 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9116 }
9117 else if (htab->insn32)
9118 {
9119 htab->plt_mips_entry_size
9120 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9121 htab->plt_comp_entry_size
9122 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9123 }
9124 else
9125 {
9126 htab->plt_mips_entry_size
9127 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9128 htab->plt_comp_entry_size
9129 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9130 }
9131 }
9132
9133 if (h->plt.plist == NULL)
9134 h->plt.plist = mips_elf_make_plt_record (dynobj);
9135 if (h->plt.plist == NULL)
9136 return FALSE;
9137
9138 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9139 n32 or n64, so always use a standard entry there.
9140
9141 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9142 all MIPS16 calls will go via that stub, and there is no benefit
9143 to having a MIPS16 entry. And in the case of call_stub a
9144 standard entry actually has to be used as the stub ends with a J
9145 instruction. */
9146 if (newabi_p
9147 || htab->is_vxworks
9148 || hmips->call_stub
9149 || hmips->call_fp_stub)
9150 {
9151 h->plt.plist->need_mips = TRUE;
9152 h->plt.plist->need_comp = FALSE;
9153 }
9154
9155 /* Otherwise, if there are no direct calls to the function, we
9156 have a free choice of whether to use standard or compressed
9157 entries. Prefer microMIPS entries if the object is known to
9158 contain microMIPS code, so that it becomes possible to create
9159 pure microMIPS binaries. Prefer standard entries otherwise,
9160 because MIPS16 ones are no smaller and are usually slower. */
9161 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9162 {
9163 if (micromips_p)
9164 h->plt.plist->need_comp = TRUE;
9165 else
9166 h->plt.plist->need_mips = TRUE;
9167 }
9168
9169 if (h->plt.plist->need_mips)
9170 {
9171 h->plt.plist->mips_offset = htab->plt_mips_offset;
9172 htab->plt_mips_offset += htab->plt_mips_entry_size;
9173 }
9174 if (h->plt.plist->need_comp)
9175 {
9176 h->plt.plist->comp_offset = htab->plt_comp_offset;
9177 htab->plt_comp_offset += htab->plt_comp_entry_size;
9178 }
9179
9180 /* Reserve the corresponding .got.plt entry now too. */
9181 h->plt.plist->gotplt_index = htab->plt_got_index++;
9182
9183 /* If the output file has no definition of the symbol, set the
9184 symbol's value to the address of the stub. */
9185 if (!bfd_link_pic (info) && !h->def_regular)
9186 hmips->use_plt_entry = TRUE;
9187
9188 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9189 htab->root.srelplt->size += (htab->is_vxworks
9190 ? MIPS_ELF_RELA_SIZE (dynobj)
9191 : MIPS_ELF_REL_SIZE (dynobj));
9192
9193 /* Make room for the .rela.plt.unloaded relocations. */
9194 if (htab->is_vxworks && !bfd_link_pic (info))
9195 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9196
9197 /* All relocations against this symbol that could have been made
9198 dynamic will now refer to the PLT entry instead. */
9199 hmips->possibly_dynamic_relocs = 0;
9200
9201 return TRUE;
9202 }
9203
9204 /* If this is a weak symbol, and there is a real definition, the
9205 processor independent code will have arranged for us to see the
9206 real definition first, and we can just use the same value. */
9207 if (h->u.weakdef != NULL)
9208 {
9209 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
9210 || h->u.weakdef->root.type == bfd_link_hash_defweak);
9211 h->root.u.def.section = h->u.weakdef->root.u.def.section;
9212 h->root.u.def.value = h->u.weakdef->root.u.def.value;
9213 return TRUE;
9214 }
9215
9216 /* Otherwise, there is nothing further to do for symbols defined
9217 in regular objects. */
9218 if (h->def_regular)
9219 return TRUE;
9220
9221 /* There's also nothing more to do if we'll convert all relocations
9222 against this symbol into dynamic relocations. */
9223 if (!hmips->has_static_relocs)
9224 return TRUE;
9225
9226 /* We're now relying on copy relocations. Complain if we have
9227 some that we can't convert. */
9228 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
9229 {
9230 _bfd_error_handler (_("non-dynamic relocations refer to "
9231 "dynamic symbol %s"),
9232 h->root.root.string);
9233 bfd_set_error (bfd_error_bad_value);
9234 return FALSE;
9235 }
9236
9237 /* We must allocate the symbol in our .dynbss section, which will
9238 become part of the .bss section of the executable. There will be
9239 an entry for this symbol in the .dynsym section. The dynamic
9240 object will contain position independent code, so all references
9241 from the dynamic object to this symbol will go through the global
9242 offset table. The dynamic linker will use the .dynsym entry to
9243 determine the address it must put in the global offset table, so
9244 both the dynamic object and the regular object will refer to the
9245 same memory location for the variable. */
9246
9247 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
9248 {
9249 s = htab->root.sdynrelro;
9250 srel = htab->root.sreldynrelro;
9251 }
9252 else
9253 {
9254 s = htab->root.sdynbss;
9255 srel = htab->root.srelbss;
9256 }
9257 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9258 {
9259 if (htab->is_vxworks)
9260 srel->size += sizeof (Elf32_External_Rela);
9261 else
9262 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9263 h->needs_copy = 1;
9264 }
9265
9266 /* All relocations against this symbol that could have been made
9267 dynamic will now refer to the local copy instead. */
9268 hmips->possibly_dynamic_relocs = 0;
9269
9270 return _bfd_elf_adjust_dynamic_copy (info, h, s);
9271 }
9272 \f
9273 /* This function is called after all the input files have been read,
9274 and the input sections have been assigned to output sections. We
9275 check for any mips16 stub sections that we can discard. */
9276
9277 bfd_boolean
9278 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9279 struct bfd_link_info *info)
9280 {
9281 asection *sect;
9282 struct mips_elf_link_hash_table *htab;
9283 struct mips_htab_traverse_info hti;
9284
9285 htab = mips_elf_hash_table (info);
9286 BFD_ASSERT (htab != NULL);
9287
9288 /* The .reginfo section has a fixed size. */
9289 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9290 if (sect != NULL)
9291 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9292
9293 /* The .MIPS.abiflags section has a fixed size. */
9294 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9295 if (sect != NULL)
9296 bfd_set_section_size (output_bfd, sect, sizeof (Elf_External_ABIFlags_v0));
9297
9298 hti.info = info;
9299 hti.output_bfd = output_bfd;
9300 hti.error = FALSE;
9301 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9302 mips_elf_check_symbols, &hti);
9303 if (hti.error)
9304 return FALSE;
9305
9306 return TRUE;
9307 }
9308
9309 /* If the link uses a GOT, lay it out and work out its size. */
9310
9311 static bfd_boolean
9312 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9313 {
9314 bfd *dynobj;
9315 asection *s;
9316 struct mips_got_info *g;
9317 bfd_size_type loadable_size = 0;
9318 bfd_size_type page_gotno;
9319 bfd *ibfd;
9320 struct mips_elf_traverse_got_arg tga;
9321 struct mips_elf_link_hash_table *htab;
9322
9323 htab = mips_elf_hash_table (info);
9324 BFD_ASSERT (htab != NULL);
9325
9326 s = htab->root.sgot;
9327 if (s == NULL)
9328 return TRUE;
9329
9330 dynobj = elf_hash_table (info)->dynobj;
9331 g = htab->got_info;
9332
9333 /* Allocate room for the reserved entries. VxWorks always reserves
9334 3 entries; other objects only reserve 2 entries. */
9335 BFD_ASSERT (g->assigned_low_gotno == 0);
9336 if (htab->is_vxworks)
9337 htab->reserved_gotno = 3;
9338 else
9339 htab->reserved_gotno = 2;
9340 g->local_gotno += htab->reserved_gotno;
9341 g->assigned_low_gotno = htab->reserved_gotno;
9342
9343 /* Decide which symbols need to go in the global part of the GOT and
9344 count the number of reloc-only GOT symbols. */
9345 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9346
9347 if (!mips_elf_resolve_final_got_entries (info, g))
9348 return FALSE;
9349
9350 /* Calculate the total loadable size of the output. That
9351 will give us the maximum number of GOT_PAGE entries
9352 required. */
9353 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9354 {
9355 asection *subsection;
9356
9357 for (subsection = ibfd->sections;
9358 subsection;
9359 subsection = subsection->next)
9360 {
9361 if ((subsection->flags & SEC_ALLOC) == 0)
9362 continue;
9363 loadable_size += ((subsection->size + 0xf)
9364 &~ (bfd_size_type) 0xf);
9365 }
9366 }
9367
9368 if (htab->is_vxworks)
9369 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9370 relocations against local symbols evaluate to "G", and the EABI does
9371 not include R_MIPS_GOT_PAGE. */
9372 page_gotno = 0;
9373 else
9374 /* Assume there are two loadable segments consisting of contiguous
9375 sections. Is 5 enough? */
9376 page_gotno = (loadable_size >> 16) + 5;
9377
9378 /* Choose the smaller of the two page estimates; both are intended to be
9379 conservative. */
9380 if (page_gotno > g->page_gotno)
9381 page_gotno = g->page_gotno;
9382
9383 g->local_gotno += page_gotno;
9384 g->assigned_high_gotno = g->local_gotno - 1;
9385
9386 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9387 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9388 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9389
9390 /* VxWorks does not support multiple GOTs. It initializes $gp to
9391 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9392 dynamic loader. */
9393 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9394 {
9395 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9396 return FALSE;
9397 }
9398 else
9399 {
9400 /* Record that all bfds use G. This also has the effect of freeing
9401 the per-bfd GOTs, which we no longer need. */
9402 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9403 if (mips_elf_bfd_got (ibfd, FALSE))
9404 mips_elf_replace_bfd_got (ibfd, g);
9405 mips_elf_replace_bfd_got (output_bfd, g);
9406
9407 /* Set up TLS entries. */
9408 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9409 tga.info = info;
9410 tga.g = g;
9411 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9412 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9413 if (!tga.g)
9414 return FALSE;
9415 BFD_ASSERT (g->tls_assigned_gotno
9416 == g->global_gotno + g->local_gotno + g->tls_gotno);
9417
9418 /* Each VxWorks GOT entry needs an explicit relocation. */
9419 if (htab->is_vxworks && bfd_link_pic (info))
9420 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9421
9422 /* Allocate room for the TLS relocations. */
9423 if (g->relocs)
9424 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9425 }
9426
9427 return TRUE;
9428 }
9429
9430 /* Estimate the size of the .MIPS.stubs section. */
9431
9432 static void
9433 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9434 {
9435 struct mips_elf_link_hash_table *htab;
9436 bfd_size_type dynsymcount;
9437
9438 htab = mips_elf_hash_table (info);
9439 BFD_ASSERT (htab != NULL);
9440
9441 if (htab->lazy_stub_count == 0)
9442 return;
9443
9444 /* IRIX rld assumes that a function stub isn't at the end of the .text
9445 section, so add a dummy entry to the end. */
9446 htab->lazy_stub_count++;
9447
9448 /* Get a worst-case estimate of the number of dynamic symbols needed.
9449 At this point, dynsymcount does not account for section symbols
9450 and count_section_dynsyms may overestimate the number that will
9451 be needed. */
9452 dynsymcount = (elf_hash_table (info)->dynsymcount
9453 + count_section_dynsyms (output_bfd, info));
9454
9455 /* Determine the size of one stub entry. There's no disadvantage
9456 from using microMIPS code here, so for the sake of pure-microMIPS
9457 binaries we prefer it whenever there's any microMIPS code in
9458 output produced at all. This has a benefit of stubs being
9459 shorter by 4 bytes each too, unless in the insn32 mode. */
9460 if (!MICROMIPS_P (output_bfd))
9461 htab->function_stub_size = (dynsymcount > 0x10000
9462 ? MIPS_FUNCTION_STUB_BIG_SIZE
9463 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9464 else if (htab->insn32)
9465 htab->function_stub_size = (dynsymcount > 0x10000
9466 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9467 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9468 else
9469 htab->function_stub_size = (dynsymcount > 0x10000
9470 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9471 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9472
9473 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9474 }
9475
9476 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9477 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9478 stub, allocate an entry in the stubs section. */
9479
9480 static bfd_boolean
9481 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9482 {
9483 struct mips_htab_traverse_info *hti = data;
9484 struct mips_elf_link_hash_table *htab;
9485 struct bfd_link_info *info;
9486 bfd *output_bfd;
9487
9488 info = hti->info;
9489 output_bfd = hti->output_bfd;
9490 htab = mips_elf_hash_table (info);
9491 BFD_ASSERT (htab != NULL);
9492
9493 if (h->needs_lazy_stub)
9494 {
9495 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9496 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9497 bfd_vma isa_bit = micromips_p;
9498
9499 BFD_ASSERT (htab->root.dynobj != NULL);
9500 if (h->root.plt.plist == NULL)
9501 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9502 if (h->root.plt.plist == NULL)
9503 {
9504 hti->error = TRUE;
9505 return FALSE;
9506 }
9507 h->root.root.u.def.section = htab->sstubs;
9508 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9509 h->root.plt.plist->stub_offset = htab->sstubs->size;
9510 h->root.other = other;
9511 htab->sstubs->size += htab->function_stub_size;
9512 }
9513 return TRUE;
9514 }
9515
9516 /* Allocate offsets in the stubs section to each symbol that needs one.
9517 Set the final size of the .MIPS.stub section. */
9518
9519 static bfd_boolean
9520 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9521 {
9522 bfd *output_bfd = info->output_bfd;
9523 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9524 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9525 bfd_vma isa_bit = micromips_p;
9526 struct mips_elf_link_hash_table *htab;
9527 struct mips_htab_traverse_info hti;
9528 struct elf_link_hash_entry *h;
9529 bfd *dynobj;
9530
9531 htab = mips_elf_hash_table (info);
9532 BFD_ASSERT (htab != NULL);
9533
9534 if (htab->lazy_stub_count == 0)
9535 return TRUE;
9536
9537 htab->sstubs->size = 0;
9538 hti.info = info;
9539 hti.output_bfd = output_bfd;
9540 hti.error = FALSE;
9541 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9542 if (hti.error)
9543 return FALSE;
9544 htab->sstubs->size += htab->function_stub_size;
9545 BFD_ASSERT (htab->sstubs->size
9546 == htab->lazy_stub_count * htab->function_stub_size);
9547
9548 dynobj = elf_hash_table (info)->dynobj;
9549 BFD_ASSERT (dynobj != NULL);
9550 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9551 if (h == NULL)
9552 return FALSE;
9553 h->root.u.def.value = isa_bit;
9554 h->other = other;
9555 h->type = STT_FUNC;
9556
9557 return TRUE;
9558 }
9559
9560 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9561 bfd_link_info. If H uses the address of a PLT entry as the value
9562 of the symbol, then set the entry in the symbol table now. Prefer
9563 a standard MIPS PLT entry. */
9564
9565 static bfd_boolean
9566 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9567 {
9568 struct bfd_link_info *info = data;
9569 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9570 struct mips_elf_link_hash_table *htab;
9571 unsigned int other;
9572 bfd_vma isa_bit;
9573 bfd_vma val;
9574
9575 htab = mips_elf_hash_table (info);
9576 BFD_ASSERT (htab != NULL);
9577
9578 if (h->use_plt_entry)
9579 {
9580 BFD_ASSERT (h->root.plt.plist != NULL);
9581 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9582 || h->root.plt.plist->comp_offset != MINUS_ONE);
9583
9584 val = htab->plt_header_size;
9585 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9586 {
9587 isa_bit = 0;
9588 val += h->root.plt.plist->mips_offset;
9589 other = 0;
9590 }
9591 else
9592 {
9593 isa_bit = 1;
9594 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9595 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9596 }
9597 val += isa_bit;
9598 /* For VxWorks, point at the PLT load stub rather than the lazy
9599 resolution stub; this stub will become the canonical function
9600 address. */
9601 if (htab->is_vxworks)
9602 val += 8;
9603
9604 h->root.root.u.def.section = htab->root.splt;
9605 h->root.root.u.def.value = val;
9606 h->root.other = other;
9607 }
9608
9609 return TRUE;
9610 }
9611
9612 /* Set the sizes of the dynamic sections. */
9613
9614 bfd_boolean
9615 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9616 struct bfd_link_info *info)
9617 {
9618 bfd *dynobj;
9619 asection *s, *sreldyn;
9620 bfd_boolean reltext;
9621 struct mips_elf_link_hash_table *htab;
9622
9623 htab = mips_elf_hash_table (info);
9624 BFD_ASSERT (htab != NULL);
9625 dynobj = elf_hash_table (info)->dynobj;
9626 BFD_ASSERT (dynobj != NULL);
9627
9628 if (elf_hash_table (info)->dynamic_sections_created)
9629 {
9630 /* Set the contents of the .interp section to the interpreter. */
9631 if (bfd_link_executable (info) && !info->nointerp)
9632 {
9633 s = bfd_get_linker_section (dynobj, ".interp");
9634 BFD_ASSERT (s != NULL);
9635 s->size
9636 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9637 s->contents
9638 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9639 }
9640
9641 /* Figure out the size of the PLT header if we know that we
9642 are using it. For the sake of cache alignment always use
9643 a standard header whenever any standard entries are present
9644 even if microMIPS entries are present as well. This also
9645 lets the microMIPS header rely on the value of $v0 only set
9646 by microMIPS entries, for a small size reduction.
9647
9648 Set symbol table entry values for symbols that use the
9649 address of their PLT entry now that we can calculate it.
9650
9651 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9652 haven't already in _bfd_elf_create_dynamic_sections. */
9653 if (htab->root.splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9654 {
9655 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9656 && !htab->plt_mips_offset);
9657 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9658 bfd_vma isa_bit = micromips_p;
9659 struct elf_link_hash_entry *h;
9660 bfd_vma size;
9661
9662 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9663 BFD_ASSERT (htab->root.sgotplt->size == 0);
9664 BFD_ASSERT (htab->root.splt->size == 0);
9665
9666 if (htab->is_vxworks && bfd_link_pic (info))
9667 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9668 else if (htab->is_vxworks)
9669 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9670 else if (ABI_64_P (output_bfd))
9671 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9672 else if (ABI_N32_P (output_bfd))
9673 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9674 else if (!micromips_p)
9675 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9676 else if (htab->insn32)
9677 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9678 else
9679 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9680
9681 htab->plt_header_is_comp = micromips_p;
9682 htab->plt_header_size = size;
9683 htab->root.splt->size = (size
9684 + htab->plt_mips_offset
9685 + htab->plt_comp_offset);
9686 htab->root.sgotplt->size = (htab->plt_got_index
9687 * MIPS_ELF_GOT_SIZE (dynobj));
9688
9689 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9690
9691 if (htab->root.hplt == NULL)
9692 {
9693 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.splt,
9694 "_PROCEDURE_LINKAGE_TABLE_");
9695 htab->root.hplt = h;
9696 if (h == NULL)
9697 return FALSE;
9698 }
9699
9700 h = htab->root.hplt;
9701 h->root.u.def.value = isa_bit;
9702 h->other = other;
9703 h->type = STT_FUNC;
9704 }
9705 }
9706
9707 /* Allocate space for global sym dynamic relocs. */
9708 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9709
9710 mips_elf_estimate_stub_size (output_bfd, info);
9711
9712 if (!mips_elf_lay_out_got (output_bfd, info))
9713 return FALSE;
9714
9715 mips_elf_lay_out_lazy_stubs (info);
9716
9717 /* The check_relocs and adjust_dynamic_symbol entry points have
9718 determined the sizes of the various dynamic sections. Allocate
9719 memory for them. */
9720 reltext = FALSE;
9721 for (s = dynobj->sections; s != NULL; s = s->next)
9722 {
9723 const char *name;
9724
9725 /* It's OK to base decisions on the section name, because none
9726 of the dynobj section names depend upon the input files. */
9727 name = bfd_get_section_name (dynobj, s);
9728
9729 if ((s->flags & SEC_LINKER_CREATED) == 0)
9730 continue;
9731
9732 if (CONST_STRNEQ (name, ".rel"))
9733 {
9734 if (s->size != 0)
9735 {
9736 const char *outname;
9737 asection *target;
9738
9739 /* If this relocation section applies to a read only
9740 section, then we probably need a DT_TEXTREL entry.
9741 If the relocation section is .rel(a).dyn, we always
9742 assert a DT_TEXTREL entry rather than testing whether
9743 there exists a relocation to a read only section or
9744 not. */
9745 outname = bfd_get_section_name (output_bfd,
9746 s->output_section);
9747 target = bfd_get_section_by_name (output_bfd, outname + 4);
9748 if ((target != NULL
9749 && (target->flags & SEC_READONLY) != 0
9750 && (target->flags & SEC_ALLOC) != 0)
9751 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9752 reltext = TRUE;
9753
9754 /* We use the reloc_count field as a counter if we need
9755 to copy relocs into the output file. */
9756 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9757 s->reloc_count = 0;
9758
9759 /* If combreloc is enabled, elf_link_sort_relocs() will
9760 sort relocations, but in a different way than we do,
9761 and before we're done creating relocations. Also, it
9762 will move them around between input sections'
9763 relocation's contents, so our sorting would be
9764 broken, so don't let it run. */
9765 info->combreloc = 0;
9766 }
9767 }
9768 else if (bfd_link_executable (info)
9769 && ! mips_elf_hash_table (info)->use_rld_obj_head
9770 && CONST_STRNEQ (name, ".rld_map"))
9771 {
9772 /* We add a room for __rld_map. It will be filled in by the
9773 rtld to contain a pointer to the _r_debug structure. */
9774 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9775 }
9776 else if (SGI_COMPAT (output_bfd)
9777 && CONST_STRNEQ (name, ".compact_rel"))
9778 s->size += mips_elf_hash_table (info)->compact_rel_size;
9779 else if (s == htab->root.splt)
9780 {
9781 /* If the last PLT entry has a branch delay slot, allocate
9782 room for an extra nop to fill the delay slot. This is
9783 for CPUs without load interlocking. */
9784 if (! LOAD_INTERLOCKS_P (output_bfd)
9785 && ! htab->is_vxworks && s->size > 0)
9786 s->size += 4;
9787 }
9788 else if (! CONST_STRNEQ (name, ".init")
9789 && s != htab->root.sgot
9790 && s != htab->root.sgotplt
9791 && s != htab->sstubs
9792 && s != htab->root.sdynbss
9793 && s != htab->root.sdynrelro)
9794 {
9795 /* It's not one of our sections, so don't allocate space. */
9796 continue;
9797 }
9798
9799 if (s->size == 0)
9800 {
9801 s->flags |= SEC_EXCLUDE;
9802 continue;
9803 }
9804
9805 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9806 continue;
9807
9808 /* Allocate memory for the section contents. */
9809 s->contents = bfd_zalloc (dynobj, s->size);
9810 if (s->contents == NULL)
9811 {
9812 bfd_set_error (bfd_error_no_memory);
9813 return FALSE;
9814 }
9815 }
9816
9817 if (elf_hash_table (info)->dynamic_sections_created)
9818 {
9819 /* Add some entries to the .dynamic section. We fill in the
9820 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9821 must add the entries now so that we get the correct size for
9822 the .dynamic section. */
9823
9824 /* SGI object has the equivalence of DT_DEBUG in the
9825 DT_MIPS_RLD_MAP entry. This must come first because glibc
9826 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9827 may only look at the first one they see. */
9828 if (!bfd_link_pic (info)
9829 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9830 return FALSE;
9831
9832 if (bfd_link_executable (info)
9833 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
9834 return FALSE;
9835
9836 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9837 used by the debugger. */
9838 if (bfd_link_executable (info)
9839 && !SGI_COMPAT (output_bfd)
9840 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9841 return FALSE;
9842
9843 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9844 info->flags |= DF_TEXTREL;
9845
9846 if ((info->flags & DF_TEXTREL) != 0)
9847 {
9848 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9849 return FALSE;
9850
9851 /* Clear the DF_TEXTREL flag. It will be set again if we
9852 write out an actual text relocation; we may not, because
9853 at this point we do not know whether e.g. any .eh_frame
9854 absolute relocations have been converted to PC-relative. */
9855 info->flags &= ~DF_TEXTREL;
9856 }
9857
9858 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9859 return FALSE;
9860
9861 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9862 if (htab->is_vxworks)
9863 {
9864 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9865 use any of the DT_MIPS_* tags. */
9866 if (sreldyn && sreldyn->size > 0)
9867 {
9868 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9869 return FALSE;
9870
9871 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9872 return FALSE;
9873
9874 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9875 return FALSE;
9876 }
9877 }
9878 else
9879 {
9880 if (sreldyn && sreldyn->size > 0)
9881 {
9882 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9883 return FALSE;
9884
9885 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9886 return FALSE;
9887
9888 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9889 return FALSE;
9890 }
9891
9892 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9893 return FALSE;
9894
9895 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9896 return FALSE;
9897
9898 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9899 return FALSE;
9900
9901 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9902 return FALSE;
9903
9904 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9905 return FALSE;
9906
9907 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9908 return FALSE;
9909
9910 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9911 return FALSE;
9912
9913 if (IRIX_COMPAT (dynobj) == ict_irix5
9914 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9915 return FALSE;
9916
9917 if (IRIX_COMPAT (dynobj) == ict_irix6
9918 && (bfd_get_section_by_name
9919 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9920 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9921 return FALSE;
9922 }
9923 if (htab->root.splt->size > 0)
9924 {
9925 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9926 return FALSE;
9927
9928 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9929 return FALSE;
9930
9931 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9932 return FALSE;
9933
9934 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9935 return FALSE;
9936 }
9937 if (htab->is_vxworks
9938 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9939 return FALSE;
9940 }
9941
9942 return TRUE;
9943 }
9944 \f
9945 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9946 Adjust its R_ADDEND field so that it is correct for the output file.
9947 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9948 and sections respectively; both use symbol indexes. */
9949
9950 static void
9951 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9952 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9953 asection **local_sections, Elf_Internal_Rela *rel)
9954 {
9955 unsigned int r_type, r_symndx;
9956 Elf_Internal_Sym *sym;
9957 asection *sec;
9958
9959 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9960 {
9961 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9962 if (gprel16_reloc_p (r_type)
9963 || r_type == R_MIPS_GPREL32
9964 || literal_reloc_p (r_type))
9965 {
9966 rel->r_addend += _bfd_get_gp_value (input_bfd);
9967 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9968 }
9969
9970 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9971 sym = local_syms + r_symndx;
9972
9973 /* Adjust REL's addend to account for section merging. */
9974 if (!bfd_link_relocatable (info))
9975 {
9976 sec = local_sections[r_symndx];
9977 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9978 }
9979
9980 /* This would normally be done by the rela_normal code in elflink.c. */
9981 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9982 rel->r_addend += local_sections[r_symndx]->output_offset;
9983 }
9984 }
9985
9986 /* Handle relocations against symbols from removed linkonce sections,
9987 or sections discarded by a linker script. We use this wrapper around
9988 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
9989 on 64-bit ELF targets. In this case for any relocation handled, which
9990 always be the first in a triplet, the remaining two have to be processed
9991 together with the first, even if they are R_MIPS_NONE. It is the symbol
9992 index referred by the first reloc that applies to all the three and the
9993 remaining two never refer to an object symbol. And it is the final
9994 relocation (the last non-null one) that determines the output field of
9995 the whole relocation so retrieve the corresponding howto structure for
9996 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
9997
9998 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
9999 and therefore requires to be pasted in a loop. It also defines a block
10000 and does not protect any of its arguments, hence the extra brackets. */
10001
10002 static void
10003 mips_reloc_against_discarded_section (bfd *output_bfd,
10004 struct bfd_link_info *info,
10005 bfd *input_bfd, asection *input_section,
10006 Elf_Internal_Rela **rel,
10007 const Elf_Internal_Rela **relend,
10008 bfd_boolean rel_reloc,
10009 reloc_howto_type *howto,
10010 bfd_byte *contents)
10011 {
10012 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10013 int count = bed->s->int_rels_per_ext_rel;
10014 unsigned int r_type;
10015 int i;
10016
10017 for (i = count - 1; i > 0; i--)
10018 {
10019 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10020 if (r_type != R_MIPS_NONE)
10021 {
10022 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10023 break;
10024 }
10025 }
10026 do
10027 {
10028 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10029 (*rel), count, (*relend),
10030 howto, i, contents);
10031 }
10032 while (0);
10033 }
10034
10035 /* Relocate a MIPS ELF section. */
10036
10037 bfd_boolean
10038 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10039 bfd *input_bfd, asection *input_section,
10040 bfd_byte *contents, Elf_Internal_Rela *relocs,
10041 Elf_Internal_Sym *local_syms,
10042 asection **local_sections)
10043 {
10044 Elf_Internal_Rela *rel;
10045 const Elf_Internal_Rela *relend;
10046 bfd_vma addend = 0;
10047 bfd_boolean use_saved_addend_p = FALSE;
10048
10049 relend = relocs + input_section->reloc_count;
10050 for (rel = relocs; rel < relend; ++rel)
10051 {
10052 const char *name;
10053 bfd_vma value = 0;
10054 reloc_howto_type *howto;
10055 bfd_boolean cross_mode_jump_p = FALSE;
10056 /* TRUE if the relocation is a RELA relocation, rather than a
10057 REL relocation. */
10058 bfd_boolean rela_relocation_p = TRUE;
10059 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10060 const char *msg;
10061 unsigned long r_symndx;
10062 asection *sec;
10063 Elf_Internal_Shdr *symtab_hdr;
10064 struct elf_link_hash_entry *h;
10065 bfd_boolean rel_reloc;
10066
10067 rel_reloc = (NEWABI_P (input_bfd)
10068 && mips_elf_rel_relocation_p (input_bfd, input_section,
10069 relocs, rel));
10070 /* Find the relocation howto for this relocation. */
10071 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10072
10073 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10074 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10075 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10076 {
10077 sec = local_sections[r_symndx];
10078 h = NULL;
10079 }
10080 else
10081 {
10082 unsigned long extsymoff;
10083
10084 extsymoff = 0;
10085 if (!elf_bad_symtab (input_bfd))
10086 extsymoff = symtab_hdr->sh_info;
10087 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10088 while (h->root.type == bfd_link_hash_indirect
10089 || h->root.type == bfd_link_hash_warning)
10090 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10091
10092 sec = NULL;
10093 if (h->root.type == bfd_link_hash_defined
10094 || h->root.type == bfd_link_hash_defweak)
10095 sec = h->root.u.def.section;
10096 }
10097
10098 if (sec != NULL && discarded_section (sec))
10099 {
10100 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10101 input_section, &rel, &relend,
10102 rel_reloc, howto, contents);
10103 continue;
10104 }
10105
10106 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10107 {
10108 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10109 64-bit code, but make sure all their addresses are in the
10110 lowermost or uppermost 32-bit section of the 64-bit address
10111 space. Thus, when they use an R_MIPS_64 they mean what is
10112 usually meant by R_MIPS_32, with the exception that the
10113 stored value is sign-extended to 64 bits. */
10114 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
10115
10116 /* On big-endian systems, we need to lie about the position
10117 of the reloc. */
10118 if (bfd_big_endian (input_bfd))
10119 rel->r_offset += 4;
10120 }
10121
10122 if (!use_saved_addend_p)
10123 {
10124 /* If these relocations were originally of the REL variety,
10125 we must pull the addend out of the field that will be
10126 relocated. Otherwise, we simply use the contents of the
10127 RELA relocation. */
10128 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10129 relocs, rel))
10130 {
10131 rela_relocation_p = FALSE;
10132 addend = mips_elf_read_rel_addend (input_bfd, rel,
10133 howto, contents);
10134 if (hi16_reloc_p (r_type)
10135 || (got16_reloc_p (r_type)
10136 && mips_elf_local_relocation_p (input_bfd, rel,
10137 local_sections)))
10138 {
10139 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10140 contents, &addend))
10141 {
10142 if (h)
10143 name = h->root.root.string;
10144 else
10145 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10146 local_syms + r_symndx,
10147 sec);
10148 _bfd_error_handler
10149 /* xgettext:c-format */
10150 (_("%B: Can't find matching LO16 reloc against `%s'"
10151 " for %s at %#Lx in section `%A'"),
10152 input_bfd, name,
10153 howto->name, rel->r_offset, input_section);
10154 }
10155 }
10156 else
10157 addend <<= howto->rightshift;
10158 }
10159 else
10160 addend = rel->r_addend;
10161 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10162 local_syms, local_sections, rel);
10163 }
10164
10165 if (bfd_link_relocatable (info))
10166 {
10167 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10168 && bfd_big_endian (input_bfd))
10169 rel->r_offset -= 4;
10170
10171 if (!rela_relocation_p && rel->r_addend)
10172 {
10173 addend += rel->r_addend;
10174 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10175 addend = mips_elf_high (addend);
10176 else if (r_type == R_MIPS_HIGHER)
10177 addend = mips_elf_higher (addend);
10178 else if (r_type == R_MIPS_HIGHEST)
10179 addend = mips_elf_highest (addend);
10180 else
10181 addend >>= howto->rightshift;
10182
10183 /* We use the source mask, rather than the destination
10184 mask because the place to which we are writing will be
10185 source of the addend in the final link. */
10186 addend &= howto->src_mask;
10187
10188 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10189 /* See the comment above about using R_MIPS_64 in the 32-bit
10190 ABI. Here, we need to update the addend. It would be
10191 possible to get away with just using the R_MIPS_32 reloc
10192 but for endianness. */
10193 {
10194 bfd_vma sign_bits;
10195 bfd_vma low_bits;
10196 bfd_vma high_bits;
10197
10198 if (addend & ((bfd_vma) 1 << 31))
10199 #ifdef BFD64
10200 sign_bits = ((bfd_vma) 1 << 32) - 1;
10201 #else
10202 sign_bits = -1;
10203 #endif
10204 else
10205 sign_bits = 0;
10206
10207 /* If we don't know that we have a 64-bit type,
10208 do two separate stores. */
10209 if (bfd_big_endian (input_bfd))
10210 {
10211 /* Store the sign-bits (which are most significant)
10212 first. */
10213 low_bits = sign_bits;
10214 high_bits = addend;
10215 }
10216 else
10217 {
10218 low_bits = addend;
10219 high_bits = sign_bits;
10220 }
10221 bfd_put_32 (input_bfd, low_bits,
10222 contents + rel->r_offset);
10223 bfd_put_32 (input_bfd, high_bits,
10224 contents + rel->r_offset + 4);
10225 continue;
10226 }
10227
10228 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10229 input_bfd, input_section,
10230 contents, FALSE))
10231 return FALSE;
10232 }
10233
10234 /* Go on to the next relocation. */
10235 continue;
10236 }
10237
10238 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10239 relocations for the same offset. In that case we are
10240 supposed to treat the output of each relocation as the addend
10241 for the next. */
10242 if (rel + 1 < relend
10243 && rel->r_offset == rel[1].r_offset
10244 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10245 use_saved_addend_p = TRUE;
10246 else
10247 use_saved_addend_p = FALSE;
10248
10249 /* Figure out what value we are supposed to relocate. */
10250 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10251 input_section, info, rel,
10252 addend, howto, local_syms,
10253 local_sections, &value,
10254 &name, &cross_mode_jump_p,
10255 use_saved_addend_p))
10256 {
10257 case bfd_reloc_continue:
10258 /* There's nothing to do. */
10259 continue;
10260
10261 case bfd_reloc_undefined:
10262 /* mips_elf_calculate_relocation already called the
10263 undefined_symbol callback. There's no real point in
10264 trying to perform the relocation at this point, so we
10265 just skip ahead to the next relocation. */
10266 continue;
10267
10268 case bfd_reloc_notsupported:
10269 msg = _("internal error: unsupported relocation error");
10270 info->callbacks->warning
10271 (info, msg, name, input_bfd, input_section, rel->r_offset);
10272 return FALSE;
10273
10274 case bfd_reloc_overflow:
10275 if (use_saved_addend_p)
10276 /* Ignore overflow until we reach the last relocation for
10277 a given location. */
10278 ;
10279 else
10280 {
10281 struct mips_elf_link_hash_table *htab;
10282
10283 htab = mips_elf_hash_table (info);
10284 BFD_ASSERT (htab != NULL);
10285 BFD_ASSERT (name != NULL);
10286 if (!htab->small_data_overflow_reported
10287 && (gprel16_reloc_p (howto->type)
10288 || literal_reloc_p (howto->type)))
10289 {
10290 msg = _("small-data section exceeds 64KB;"
10291 " lower small-data size limit (see option -G)");
10292
10293 htab->small_data_overflow_reported = TRUE;
10294 (*info->callbacks->einfo) ("%P: %s\n", msg);
10295 }
10296 (*info->callbacks->reloc_overflow)
10297 (info, NULL, name, howto->name, (bfd_vma) 0,
10298 input_bfd, input_section, rel->r_offset);
10299 }
10300 break;
10301
10302 case bfd_reloc_ok:
10303 break;
10304
10305 case bfd_reloc_outofrange:
10306 msg = NULL;
10307 if (jal_reloc_p (howto->type))
10308 msg = (cross_mode_jump_p
10309 ? _("Cannot convert a jump to JALX "
10310 "for a non-word-aligned address")
10311 : (howto->type == R_MIPS16_26
10312 ? _("Jump to a non-word-aligned address")
10313 : _("Jump to a non-instruction-aligned address")));
10314 else if (b_reloc_p (howto->type))
10315 msg = (cross_mode_jump_p
10316 ? _("Cannot convert a branch to JALX "
10317 "for a non-word-aligned address")
10318 : _("Branch to a non-instruction-aligned address"));
10319 else if (aligned_pcrel_reloc_p (howto->type))
10320 msg = _("PC-relative load from unaligned address");
10321 if (msg)
10322 {
10323 info->callbacks->einfo
10324 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10325 break;
10326 }
10327 /* Fall through. */
10328
10329 default:
10330 abort ();
10331 break;
10332 }
10333
10334 /* If we've got another relocation for the address, keep going
10335 until we reach the last one. */
10336 if (use_saved_addend_p)
10337 {
10338 addend = value;
10339 continue;
10340 }
10341
10342 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10343 /* See the comment above about using R_MIPS_64 in the 32-bit
10344 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10345 that calculated the right value. Now, however, we
10346 sign-extend the 32-bit result to 64-bits, and store it as a
10347 64-bit value. We are especially generous here in that we
10348 go to extreme lengths to support this usage on systems with
10349 only a 32-bit VMA. */
10350 {
10351 bfd_vma sign_bits;
10352 bfd_vma low_bits;
10353 bfd_vma high_bits;
10354
10355 if (value & ((bfd_vma) 1 << 31))
10356 #ifdef BFD64
10357 sign_bits = ((bfd_vma) 1 << 32) - 1;
10358 #else
10359 sign_bits = -1;
10360 #endif
10361 else
10362 sign_bits = 0;
10363
10364 /* If we don't know that we have a 64-bit type,
10365 do two separate stores. */
10366 if (bfd_big_endian (input_bfd))
10367 {
10368 /* Undo what we did above. */
10369 rel->r_offset -= 4;
10370 /* Store the sign-bits (which are most significant)
10371 first. */
10372 low_bits = sign_bits;
10373 high_bits = value;
10374 }
10375 else
10376 {
10377 low_bits = value;
10378 high_bits = sign_bits;
10379 }
10380 bfd_put_32 (input_bfd, low_bits,
10381 contents + rel->r_offset);
10382 bfd_put_32 (input_bfd, high_bits,
10383 contents + rel->r_offset + 4);
10384 continue;
10385 }
10386
10387 /* Actually perform the relocation. */
10388 if (! mips_elf_perform_relocation (info, howto, rel, value,
10389 input_bfd, input_section,
10390 contents, cross_mode_jump_p))
10391 return FALSE;
10392 }
10393
10394 return TRUE;
10395 }
10396 \f
10397 /* A function that iterates over each entry in la25_stubs and fills
10398 in the code for each one. DATA points to a mips_htab_traverse_info. */
10399
10400 static int
10401 mips_elf_create_la25_stub (void **slot, void *data)
10402 {
10403 struct mips_htab_traverse_info *hti;
10404 struct mips_elf_link_hash_table *htab;
10405 struct mips_elf_la25_stub *stub;
10406 asection *s;
10407 bfd_byte *loc;
10408 bfd_vma offset, target, target_high, target_low;
10409
10410 stub = (struct mips_elf_la25_stub *) *slot;
10411 hti = (struct mips_htab_traverse_info *) data;
10412 htab = mips_elf_hash_table (hti->info);
10413 BFD_ASSERT (htab != NULL);
10414
10415 /* Create the section contents, if we haven't already. */
10416 s = stub->stub_section;
10417 loc = s->contents;
10418 if (loc == NULL)
10419 {
10420 loc = bfd_malloc (s->size);
10421 if (loc == NULL)
10422 {
10423 hti->error = TRUE;
10424 return FALSE;
10425 }
10426 s->contents = loc;
10427 }
10428
10429 /* Work out where in the section this stub should go. */
10430 offset = stub->offset;
10431
10432 /* Work out the target address. */
10433 target = mips_elf_get_la25_target (stub, &s);
10434 target += s->output_section->vma + s->output_offset;
10435
10436 target_high = ((target + 0x8000) >> 16) & 0xffff;
10437 target_low = (target & 0xffff);
10438
10439 if (stub->stub_section != htab->strampoline)
10440 {
10441 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10442 of the section and write the two instructions at the end. */
10443 memset (loc, 0, offset);
10444 loc += offset;
10445 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10446 {
10447 bfd_put_micromips_32 (hti->output_bfd,
10448 LA25_LUI_MICROMIPS (target_high),
10449 loc);
10450 bfd_put_micromips_32 (hti->output_bfd,
10451 LA25_ADDIU_MICROMIPS (target_low),
10452 loc + 4);
10453 }
10454 else
10455 {
10456 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10457 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10458 }
10459 }
10460 else
10461 {
10462 /* This is trampoline. */
10463 loc += offset;
10464 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10465 {
10466 bfd_put_micromips_32 (hti->output_bfd,
10467 LA25_LUI_MICROMIPS (target_high), loc);
10468 bfd_put_micromips_32 (hti->output_bfd,
10469 LA25_J_MICROMIPS (target), loc + 4);
10470 bfd_put_micromips_32 (hti->output_bfd,
10471 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10472 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10473 }
10474 else
10475 {
10476 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10477 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10478 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10479 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10480 }
10481 }
10482 return TRUE;
10483 }
10484
10485 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10486 adjust it appropriately now. */
10487
10488 static void
10489 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10490 const char *name, Elf_Internal_Sym *sym)
10491 {
10492 /* The linker script takes care of providing names and values for
10493 these, but we must place them into the right sections. */
10494 static const char* const text_section_symbols[] = {
10495 "_ftext",
10496 "_etext",
10497 "__dso_displacement",
10498 "__elf_header",
10499 "__program_header_table",
10500 NULL
10501 };
10502
10503 static const char* const data_section_symbols[] = {
10504 "_fdata",
10505 "_edata",
10506 "_end",
10507 "_fbss",
10508 NULL
10509 };
10510
10511 const char* const *p;
10512 int i;
10513
10514 for (i = 0; i < 2; ++i)
10515 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10516 *p;
10517 ++p)
10518 if (strcmp (*p, name) == 0)
10519 {
10520 /* All of these symbols are given type STT_SECTION by the
10521 IRIX6 linker. */
10522 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10523 sym->st_other = STO_PROTECTED;
10524
10525 /* The IRIX linker puts these symbols in special sections. */
10526 if (i == 0)
10527 sym->st_shndx = SHN_MIPS_TEXT;
10528 else
10529 sym->st_shndx = SHN_MIPS_DATA;
10530
10531 break;
10532 }
10533 }
10534
10535 /* Finish up dynamic symbol handling. We set the contents of various
10536 dynamic sections here. */
10537
10538 bfd_boolean
10539 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10540 struct bfd_link_info *info,
10541 struct elf_link_hash_entry *h,
10542 Elf_Internal_Sym *sym)
10543 {
10544 bfd *dynobj;
10545 asection *sgot;
10546 struct mips_got_info *g, *gg;
10547 const char *name;
10548 int idx;
10549 struct mips_elf_link_hash_table *htab;
10550 struct mips_elf_link_hash_entry *hmips;
10551
10552 htab = mips_elf_hash_table (info);
10553 BFD_ASSERT (htab != NULL);
10554 dynobj = elf_hash_table (info)->dynobj;
10555 hmips = (struct mips_elf_link_hash_entry *) h;
10556
10557 BFD_ASSERT (!htab->is_vxworks);
10558
10559 if (h->plt.plist != NULL
10560 && (h->plt.plist->mips_offset != MINUS_ONE
10561 || h->plt.plist->comp_offset != MINUS_ONE))
10562 {
10563 /* We've decided to create a PLT entry for this symbol. */
10564 bfd_byte *loc;
10565 bfd_vma header_address, got_address;
10566 bfd_vma got_address_high, got_address_low, load;
10567 bfd_vma got_index;
10568 bfd_vma isa_bit;
10569
10570 got_index = h->plt.plist->gotplt_index;
10571
10572 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10573 BFD_ASSERT (h->dynindx != -1);
10574 BFD_ASSERT (htab->root.splt != NULL);
10575 BFD_ASSERT (got_index != MINUS_ONE);
10576 BFD_ASSERT (!h->def_regular);
10577
10578 /* Calculate the address of the PLT header. */
10579 isa_bit = htab->plt_header_is_comp;
10580 header_address = (htab->root.splt->output_section->vma
10581 + htab->root.splt->output_offset + isa_bit);
10582
10583 /* Calculate the address of the .got.plt entry. */
10584 got_address = (htab->root.sgotplt->output_section->vma
10585 + htab->root.sgotplt->output_offset
10586 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10587
10588 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10589 got_address_low = got_address & 0xffff;
10590
10591 /* Initially point the .got.plt entry at the PLT header. */
10592 loc = (htab->root.sgotplt->contents + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10593 if (ABI_64_P (output_bfd))
10594 bfd_put_64 (output_bfd, header_address, loc);
10595 else
10596 bfd_put_32 (output_bfd, header_address, loc);
10597
10598 /* Now handle the PLT itself. First the standard entry (the order
10599 does not matter, we just have to pick one). */
10600 if (h->plt.plist->mips_offset != MINUS_ONE)
10601 {
10602 const bfd_vma *plt_entry;
10603 bfd_vma plt_offset;
10604
10605 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10606
10607 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10608
10609 /* Find out where the .plt entry should go. */
10610 loc = htab->root.splt->contents + plt_offset;
10611
10612 /* Pick the load opcode. */
10613 load = MIPS_ELF_LOAD_WORD (output_bfd);
10614
10615 /* Fill in the PLT entry itself. */
10616
10617 if (MIPSR6_P (output_bfd))
10618 plt_entry = mipsr6_exec_plt_entry;
10619 else
10620 plt_entry = mips_exec_plt_entry;
10621 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10622 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10623 loc + 4);
10624
10625 if (! LOAD_INTERLOCKS_P (output_bfd))
10626 {
10627 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10628 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10629 }
10630 else
10631 {
10632 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10633 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10634 loc + 12);
10635 }
10636 }
10637
10638 /* Now the compressed entry. They come after any standard ones. */
10639 if (h->plt.plist->comp_offset != MINUS_ONE)
10640 {
10641 bfd_vma plt_offset;
10642
10643 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10644 + h->plt.plist->comp_offset);
10645
10646 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10647
10648 /* Find out where the .plt entry should go. */
10649 loc = htab->root.splt->contents + plt_offset;
10650
10651 /* Fill in the PLT entry itself. */
10652 if (!MICROMIPS_P (output_bfd))
10653 {
10654 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10655
10656 bfd_put_16 (output_bfd, plt_entry[0], loc);
10657 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10658 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10659 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10660 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10661 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10662 bfd_put_32 (output_bfd, got_address, loc + 12);
10663 }
10664 else if (htab->insn32)
10665 {
10666 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10667
10668 bfd_put_16 (output_bfd, plt_entry[0], loc);
10669 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10670 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10671 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10672 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10673 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10674 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10675 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10676 }
10677 else
10678 {
10679 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10680 bfd_signed_vma gotpc_offset;
10681 bfd_vma loc_address;
10682
10683 BFD_ASSERT (got_address % 4 == 0);
10684
10685 loc_address = (htab->root.splt->output_section->vma
10686 + htab->root.splt->output_offset + plt_offset);
10687 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10688
10689 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10690 if (gotpc_offset + 0x1000000 >= 0x2000000)
10691 {
10692 _bfd_error_handler
10693 /* xgettext:c-format */
10694 (_("%B: `%A' offset of %Ld from `%A' "
10695 "beyond the range of ADDIUPC"),
10696 output_bfd,
10697 htab->root.sgotplt->output_section,
10698 gotpc_offset,
10699 htab->root.splt->output_section);
10700 bfd_set_error (bfd_error_no_error);
10701 return FALSE;
10702 }
10703 bfd_put_16 (output_bfd,
10704 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10705 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10706 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10707 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10708 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10709 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10710 }
10711 }
10712
10713 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10714 mips_elf_output_dynamic_relocation (output_bfd, htab->root.srelplt,
10715 got_index - 2, h->dynindx,
10716 R_MIPS_JUMP_SLOT, got_address);
10717
10718 /* We distinguish between PLT entries and lazy-binding stubs by
10719 giving the former an st_other value of STO_MIPS_PLT. Set the
10720 flag and leave the value if there are any relocations in the
10721 binary where pointer equality matters. */
10722 sym->st_shndx = SHN_UNDEF;
10723 if (h->pointer_equality_needed)
10724 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
10725 else
10726 {
10727 sym->st_value = 0;
10728 sym->st_other = 0;
10729 }
10730 }
10731
10732 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
10733 {
10734 /* We've decided to create a lazy-binding stub. */
10735 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10736 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10737 bfd_vma stub_size = htab->function_stub_size;
10738 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
10739 bfd_vma isa_bit = micromips_p;
10740 bfd_vma stub_big_size;
10741
10742 if (!micromips_p)
10743 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
10744 else if (htab->insn32)
10745 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10746 else
10747 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
10748
10749 /* This symbol has a stub. Set it up. */
10750
10751 BFD_ASSERT (h->dynindx != -1);
10752
10753 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
10754
10755 /* Values up to 2^31 - 1 are allowed. Larger values would cause
10756 sign extension at runtime in the stub, resulting in a negative
10757 index value. */
10758 if (h->dynindx & ~0x7fffffff)
10759 return FALSE;
10760
10761 /* Fill the stub. */
10762 if (micromips_p)
10763 {
10764 idx = 0;
10765 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10766 stub + idx);
10767 idx += 4;
10768 if (htab->insn32)
10769 {
10770 bfd_put_micromips_32 (output_bfd,
10771 STUB_MOVE32_MICROMIPS, stub + idx);
10772 idx += 4;
10773 }
10774 else
10775 {
10776 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10777 idx += 2;
10778 }
10779 if (stub_size == stub_big_size)
10780 {
10781 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10782
10783 bfd_put_micromips_32 (output_bfd,
10784 STUB_LUI_MICROMIPS (dynindx_hi),
10785 stub + idx);
10786 idx += 4;
10787 }
10788 if (htab->insn32)
10789 {
10790 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
10791 stub + idx);
10792 idx += 4;
10793 }
10794 else
10795 {
10796 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
10797 idx += 2;
10798 }
10799
10800 /* If a large stub is not required and sign extension is not a
10801 problem, then use legacy code in the stub. */
10802 if (stub_size == stub_big_size)
10803 bfd_put_micromips_32 (output_bfd,
10804 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
10805 stub + idx);
10806 else if (h->dynindx & ~0x7fff)
10807 bfd_put_micromips_32 (output_bfd,
10808 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
10809 stub + idx);
10810 else
10811 bfd_put_micromips_32 (output_bfd,
10812 STUB_LI16S_MICROMIPS (output_bfd,
10813 h->dynindx),
10814 stub + idx);
10815 }
10816 else
10817 {
10818 idx = 0;
10819 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10820 idx += 4;
10821 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
10822 idx += 4;
10823 if (stub_size == stub_big_size)
10824 {
10825 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10826 stub + idx);
10827 idx += 4;
10828 }
10829 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10830 idx += 4;
10831
10832 /* If a large stub is not required and sign extension is not a
10833 problem, then use legacy code in the stub. */
10834 if (stub_size == stub_big_size)
10835 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
10836 stub + idx);
10837 else if (h->dynindx & ~0x7fff)
10838 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
10839 stub + idx);
10840 else
10841 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10842 stub + idx);
10843 }
10844
10845 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
10846 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
10847 stub, stub_size);
10848
10849 /* Mark the symbol as undefined. stub_offset != -1 occurs
10850 only for the referenced symbol. */
10851 sym->st_shndx = SHN_UNDEF;
10852
10853 /* The run-time linker uses the st_value field of the symbol
10854 to reset the global offset table entry for this external
10855 to its stub address when unlinking a shared object. */
10856 sym->st_value = (htab->sstubs->output_section->vma
10857 + htab->sstubs->output_offset
10858 + h->plt.plist->stub_offset
10859 + isa_bit);
10860 sym->st_other = other;
10861 }
10862
10863 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10864 refer to the stub, since only the stub uses the standard calling
10865 conventions. */
10866 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10867 {
10868 BFD_ASSERT (hmips->need_fn_stub);
10869 sym->st_value = (hmips->fn_stub->output_section->vma
10870 + hmips->fn_stub->output_offset);
10871 sym->st_size = hmips->fn_stub->size;
10872 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10873 }
10874
10875 BFD_ASSERT (h->dynindx != -1
10876 || h->forced_local);
10877
10878 sgot = htab->root.sgot;
10879 g = htab->got_info;
10880 BFD_ASSERT (g != NULL);
10881
10882 /* Run through the global symbol table, creating GOT entries for all
10883 the symbols that need them. */
10884 if (hmips->global_got_area != GGA_NONE)
10885 {
10886 bfd_vma offset;
10887 bfd_vma value;
10888
10889 value = sym->st_value;
10890 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
10891 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10892 }
10893
10894 if (hmips->global_got_area != GGA_NONE && g->next)
10895 {
10896 struct mips_got_entry e, *p;
10897 bfd_vma entry;
10898 bfd_vma offset;
10899
10900 gg = g;
10901
10902 e.abfd = output_bfd;
10903 e.symndx = -1;
10904 e.d.h = hmips;
10905 e.tls_type = GOT_TLS_NONE;
10906
10907 for (g = g->next; g->next != gg; g = g->next)
10908 {
10909 if (g->got_entries
10910 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10911 &e)))
10912 {
10913 offset = p->gotidx;
10914 BFD_ASSERT (offset > 0 && offset < htab->root.sgot->size);
10915 if (bfd_link_pic (info)
10916 || (elf_hash_table (info)->dynamic_sections_created
10917 && p->d.h != NULL
10918 && p->d.h->root.def_dynamic
10919 && !p->d.h->root.def_regular))
10920 {
10921 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10922 the various compatibility problems, it's easier to mock
10923 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10924 mips_elf_create_dynamic_relocation to calculate the
10925 appropriate addend. */
10926 Elf_Internal_Rela rel[3];
10927
10928 memset (rel, 0, sizeof (rel));
10929 if (ABI_64_P (output_bfd))
10930 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10931 else
10932 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10933 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10934
10935 entry = 0;
10936 if (! (mips_elf_create_dynamic_relocation
10937 (output_bfd, info, rel,
10938 e.d.h, NULL, sym->st_value, &entry, sgot)))
10939 return FALSE;
10940 }
10941 else
10942 entry = sym->st_value;
10943 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
10944 }
10945 }
10946 }
10947
10948 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10949 name = h->root.root.string;
10950 if (h == elf_hash_table (info)->hdynamic
10951 || h == elf_hash_table (info)->hgot)
10952 sym->st_shndx = SHN_ABS;
10953 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10954 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10955 {
10956 sym->st_shndx = SHN_ABS;
10957 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10958 sym->st_value = 1;
10959 }
10960 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
10961 {
10962 sym->st_shndx = SHN_ABS;
10963 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10964 sym->st_value = elf_gp (output_bfd);
10965 }
10966 else if (SGI_COMPAT (output_bfd))
10967 {
10968 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10969 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10970 {
10971 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10972 sym->st_other = STO_PROTECTED;
10973 sym->st_value = 0;
10974 sym->st_shndx = SHN_MIPS_DATA;
10975 }
10976 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10977 {
10978 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10979 sym->st_other = STO_PROTECTED;
10980 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10981 sym->st_shndx = SHN_ABS;
10982 }
10983 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10984 {
10985 if (h->type == STT_FUNC)
10986 sym->st_shndx = SHN_MIPS_TEXT;
10987 else if (h->type == STT_OBJECT)
10988 sym->st_shndx = SHN_MIPS_DATA;
10989 }
10990 }
10991
10992 /* Emit a copy reloc, if needed. */
10993 if (h->needs_copy)
10994 {
10995 asection *s;
10996 bfd_vma symval;
10997
10998 BFD_ASSERT (h->dynindx != -1);
10999 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11000
11001 s = mips_elf_rel_dyn_section (info, FALSE);
11002 symval = (h->root.u.def.section->output_section->vma
11003 + h->root.u.def.section->output_offset
11004 + h->root.u.def.value);
11005 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
11006 h->dynindx, R_MIPS_COPY, symval);
11007 }
11008
11009 /* Handle the IRIX6-specific symbols. */
11010 if (IRIX_COMPAT (output_bfd) == ict_irix6)
11011 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11012
11013 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11014 to treat compressed symbols like any other. */
11015 if (ELF_ST_IS_MIPS16 (sym->st_other))
11016 {
11017 BFD_ASSERT (sym->st_value & 1);
11018 sym->st_other -= STO_MIPS16;
11019 }
11020 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11021 {
11022 BFD_ASSERT (sym->st_value & 1);
11023 sym->st_other -= STO_MICROMIPS;
11024 }
11025
11026 return TRUE;
11027 }
11028
11029 /* Likewise, for VxWorks. */
11030
11031 bfd_boolean
11032 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11033 struct bfd_link_info *info,
11034 struct elf_link_hash_entry *h,
11035 Elf_Internal_Sym *sym)
11036 {
11037 bfd *dynobj;
11038 asection *sgot;
11039 struct mips_got_info *g;
11040 struct mips_elf_link_hash_table *htab;
11041 struct mips_elf_link_hash_entry *hmips;
11042
11043 htab = mips_elf_hash_table (info);
11044 BFD_ASSERT (htab != NULL);
11045 dynobj = elf_hash_table (info)->dynobj;
11046 hmips = (struct mips_elf_link_hash_entry *) h;
11047
11048 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
11049 {
11050 bfd_byte *loc;
11051 bfd_vma plt_address, got_address, got_offset, branch_offset;
11052 Elf_Internal_Rela rel;
11053 static const bfd_vma *plt_entry;
11054 bfd_vma gotplt_index;
11055 bfd_vma plt_offset;
11056
11057 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11058 gotplt_index = h->plt.plist->gotplt_index;
11059
11060 BFD_ASSERT (h->dynindx != -1);
11061 BFD_ASSERT (htab->root.splt != NULL);
11062 BFD_ASSERT (gotplt_index != MINUS_ONE);
11063 BFD_ASSERT (plt_offset <= htab->root.splt->size);
11064
11065 /* Calculate the address of the .plt entry. */
11066 plt_address = (htab->root.splt->output_section->vma
11067 + htab->root.splt->output_offset
11068 + plt_offset);
11069
11070 /* Calculate the address of the .got.plt entry. */
11071 got_address = (htab->root.sgotplt->output_section->vma
11072 + htab->root.sgotplt->output_offset
11073 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11074
11075 /* Calculate the offset of the .got.plt entry from
11076 _GLOBAL_OFFSET_TABLE_. */
11077 got_offset = mips_elf_gotplt_index (info, h);
11078
11079 /* Calculate the offset for the branch at the start of the PLT
11080 entry. The branch jumps to the beginning of .plt. */
11081 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11082
11083 /* Fill in the initial value of the .got.plt entry. */
11084 bfd_put_32 (output_bfd, plt_address,
11085 (htab->root.sgotplt->contents
11086 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11087
11088 /* Find out where the .plt entry should go. */
11089 loc = htab->root.splt->contents + plt_offset;
11090
11091 if (bfd_link_pic (info))
11092 {
11093 plt_entry = mips_vxworks_shared_plt_entry;
11094 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11095 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11096 }
11097 else
11098 {
11099 bfd_vma got_address_high, got_address_low;
11100
11101 plt_entry = mips_vxworks_exec_plt_entry;
11102 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11103 got_address_low = got_address & 0xffff;
11104
11105 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11106 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11107 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11108 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11109 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11110 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11111 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11112 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11113
11114 loc = (htab->srelplt2->contents
11115 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11116
11117 /* Emit a relocation for the .got.plt entry. */
11118 rel.r_offset = got_address;
11119 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11120 rel.r_addend = plt_offset;
11121 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11122
11123 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11124 loc += sizeof (Elf32_External_Rela);
11125 rel.r_offset = plt_address + 8;
11126 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11127 rel.r_addend = got_offset;
11128 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11129
11130 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11131 loc += sizeof (Elf32_External_Rela);
11132 rel.r_offset += 4;
11133 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11134 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11135 }
11136
11137 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11138 loc = (htab->root.srelplt->contents
11139 + gotplt_index * sizeof (Elf32_External_Rela));
11140 rel.r_offset = got_address;
11141 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11142 rel.r_addend = 0;
11143 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11144
11145 if (!h->def_regular)
11146 sym->st_shndx = SHN_UNDEF;
11147 }
11148
11149 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11150
11151 sgot = htab->root.sgot;
11152 g = htab->got_info;
11153 BFD_ASSERT (g != NULL);
11154
11155 /* See if this symbol has an entry in the GOT. */
11156 if (hmips->global_got_area != GGA_NONE)
11157 {
11158 bfd_vma offset;
11159 Elf_Internal_Rela outrel;
11160 bfd_byte *loc;
11161 asection *s;
11162
11163 /* Install the symbol value in the GOT. */
11164 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11165 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11166
11167 /* Add a dynamic relocation for it. */
11168 s = mips_elf_rel_dyn_section (info, FALSE);
11169 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11170 outrel.r_offset = (sgot->output_section->vma
11171 + sgot->output_offset
11172 + offset);
11173 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11174 outrel.r_addend = 0;
11175 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11176 }
11177
11178 /* Emit a copy reloc, if needed. */
11179 if (h->needs_copy)
11180 {
11181 Elf_Internal_Rela rel;
11182 asection *srel;
11183 bfd_byte *loc;
11184
11185 BFD_ASSERT (h->dynindx != -1);
11186
11187 rel.r_offset = (h->root.u.def.section->output_section->vma
11188 + h->root.u.def.section->output_offset
11189 + h->root.u.def.value);
11190 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11191 rel.r_addend = 0;
11192 if (h->root.u.def.section == htab->root.sdynrelro)
11193 srel = htab->root.sreldynrelro;
11194 else
11195 srel = htab->root.srelbss;
11196 loc = srel->contents + srel->reloc_count * sizeof (Elf32_External_Rela);
11197 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11198 ++srel->reloc_count;
11199 }
11200
11201 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11202 if (ELF_ST_IS_COMPRESSED (sym->st_other))
11203 sym->st_value &= ~1;
11204
11205 return TRUE;
11206 }
11207
11208 /* Write out a plt0 entry to the beginning of .plt. */
11209
11210 static bfd_boolean
11211 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11212 {
11213 bfd_byte *loc;
11214 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11215 static const bfd_vma *plt_entry;
11216 struct mips_elf_link_hash_table *htab;
11217
11218 htab = mips_elf_hash_table (info);
11219 BFD_ASSERT (htab != NULL);
11220
11221 if (ABI_64_P (output_bfd))
11222 plt_entry = mips_n64_exec_plt0_entry;
11223 else if (ABI_N32_P (output_bfd))
11224 plt_entry = mips_n32_exec_plt0_entry;
11225 else if (!htab->plt_header_is_comp)
11226 plt_entry = mips_o32_exec_plt0_entry;
11227 else if (htab->insn32)
11228 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11229 else
11230 plt_entry = micromips_o32_exec_plt0_entry;
11231
11232 /* Calculate the value of .got.plt. */
11233 gotplt_value = (htab->root.sgotplt->output_section->vma
11234 + htab->root.sgotplt->output_offset);
11235 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11236 gotplt_value_low = gotplt_value & 0xffff;
11237
11238 /* The PLT sequence is not safe for N64 if .got.plt's address can
11239 not be loaded in two instructions. */
11240 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
11241 || ~(gotplt_value | 0x7fffffff) == 0);
11242
11243 /* Install the PLT header. */
11244 loc = htab->root.splt->contents;
11245 if (plt_entry == micromips_o32_exec_plt0_entry)
11246 {
11247 bfd_vma gotpc_offset;
11248 bfd_vma loc_address;
11249 size_t i;
11250
11251 BFD_ASSERT (gotplt_value % 4 == 0);
11252
11253 loc_address = (htab->root.splt->output_section->vma
11254 + htab->root.splt->output_offset);
11255 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11256
11257 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11258 if (gotpc_offset + 0x1000000 >= 0x2000000)
11259 {
11260 _bfd_error_handler
11261 /* xgettext:c-format */
11262 (_("%B: `%A' offset of %Ld from `%A' beyond the range of ADDIUPC"),
11263 output_bfd,
11264 htab->root.sgotplt->output_section,
11265 gotpc_offset,
11266 htab->root.splt->output_section);
11267 bfd_set_error (bfd_error_no_error);
11268 return FALSE;
11269 }
11270 bfd_put_16 (output_bfd,
11271 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11272 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11273 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11274 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11275 }
11276 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11277 {
11278 size_t i;
11279
11280 bfd_put_16 (output_bfd, plt_entry[0], loc);
11281 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11282 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11283 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11284 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11285 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11286 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11287 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11288 }
11289 else
11290 {
11291 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11292 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11293 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11294 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11295 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11296 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11297 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11298 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11299 }
11300
11301 return TRUE;
11302 }
11303
11304 /* Install the PLT header for a VxWorks executable and finalize the
11305 contents of .rela.plt.unloaded. */
11306
11307 static void
11308 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11309 {
11310 Elf_Internal_Rela rela;
11311 bfd_byte *loc;
11312 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11313 static const bfd_vma *plt_entry;
11314 struct mips_elf_link_hash_table *htab;
11315
11316 htab = mips_elf_hash_table (info);
11317 BFD_ASSERT (htab != NULL);
11318
11319 plt_entry = mips_vxworks_exec_plt0_entry;
11320
11321 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11322 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11323 + htab->root.hgot->root.u.def.section->output_offset
11324 + htab->root.hgot->root.u.def.value);
11325
11326 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11327 got_value_low = got_value & 0xffff;
11328
11329 /* Calculate the address of the PLT header. */
11330 plt_address = (htab->root.splt->output_section->vma
11331 + htab->root.splt->output_offset);
11332
11333 /* Install the PLT header. */
11334 loc = htab->root.splt->contents;
11335 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11336 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11337 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11338 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11339 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11340 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11341
11342 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11343 loc = htab->srelplt2->contents;
11344 rela.r_offset = plt_address;
11345 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11346 rela.r_addend = 0;
11347 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11348 loc += sizeof (Elf32_External_Rela);
11349
11350 /* Output the relocation for the following addiu of
11351 %lo(_GLOBAL_OFFSET_TABLE_). */
11352 rela.r_offset += 4;
11353 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11354 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11355 loc += sizeof (Elf32_External_Rela);
11356
11357 /* Fix up the remaining relocations. They may have the wrong
11358 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11359 in which symbols were output. */
11360 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11361 {
11362 Elf_Internal_Rela rel;
11363
11364 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11365 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11366 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11367 loc += sizeof (Elf32_External_Rela);
11368
11369 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11370 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11371 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11372 loc += sizeof (Elf32_External_Rela);
11373
11374 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11375 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11376 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11377 loc += sizeof (Elf32_External_Rela);
11378 }
11379 }
11380
11381 /* Install the PLT header for a VxWorks shared library. */
11382
11383 static void
11384 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11385 {
11386 unsigned int i;
11387 struct mips_elf_link_hash_table *htab;
11388
11389 htab = mips_elf_hash_table (info);
11390 BFD_ASSERT (htab != NULL);
11391
11392 /* We just need to copy the entry byte-by-byte. */
11393 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11394 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11395 htab->root.splt->contents + i * 4);
11396 }
11397
11398 /* Finish up the dynamic sections. */
11399
11400 bfd_boolean
11401 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11402 struct bfd_link_info *info)
11403 {
11404 bfd *dynobj;
11405 asection *sdyn;
11406 asection *sgot;
11407 struct mips_got_info *gg, *g;
11408 struct mips_elf_link_hash_table *htab;
11409
11410 htab = mips_elf_hash_table (info);
11411 BFD_ASSERT (htab != NULL);
11412
11413 dynobj = elf_hash_table (info)->dynobj;
11414
11415 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11416
11417 sgot = htab->root.sgot;
11418 gg = htab->got_info;
11419
11420 if (elf_hash_table (info)->dynamic_sections_created)
11421 {
11422 bfd_byte *b;
11423 int dyn_to_skip = 0, dyn_skipped = 0;
11424
11425 BFD_ASSERT (sdyn != NULL);
11426 BFD_ASSERT (gg != NULL);
11427
11428 g = mips_elf_bfd_got (output_bfd, FALSE);
11429 BFD_ASSERT (g != NULL);
11430
11431 for (b = sdyn->contents;
11432 b < sdyn->contents + sdyn->size;
11433 b += MIPS_ELF_DYN_SIZE (dynobj))
11434 {
11435 Elf_Internal_Dyn dyn;
11436 const char *name;
11437 size_t elemsize;
11438 asection *s;
11439 bfd_boolean swap_out_p;
11440
11441 /* Read in the current dynamic entry. */
11442 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11443
11444 /* Assume that we're going to modify it and write it out. */
11445 swap_out_p = TRUE;
11446
11447 switch (dyn.d_tag)
11448 {
11449 case DT_RELENT:
11450 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11451 break;
11452
11453 case DT_RELAENT:
11454 BFD_ASSERT (htab->is_vxworks);
11455 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11456 break;
11457
11458 case DT_STRSZ:
11459 /* Rewrite DT_STRSZ. */
11460 dyn.d_un.d_val =
11461 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11462 break;
11463
11464 case DT_PLTGOT:
11465 s = htab->root.sgot;
11466 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11467 break;
11468
11469 case DT_MIPS_PLTGOT:
11470 s = htab->root.sgotplt;
11471 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11472 break;
11473
11474 case DT_MIPS_RLD_VERSION:
11475 dyn.d_un.d_val = 1; /* XXX */
11476 break;
11477
11478 case DT_MIPS_FLAGS:
11479 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11480 break;
11481
11482 case DT_MIPS_TIME_STAMP:
11483 {
11484 time_t t;
11485 time (&t);
11486 dyn.d_un.d_val = t;
11487 }
11488 break;
11489
11490 case DT_MIPS_ICHECKSUM:
11491 /* XXX FIXME: */
11492 swap_out_p = FALSE;
11493 break;
11494
11495 case DT_MIPS_IVERSION:
11496 /* XXX FIXME: */
11497 swap_out_p = FALSE;
11498 break;
11499
11500 case DT_MIPS_BASE_ADDRESS:
11501 s = output_bfd->sections;
11502 BFD_ASSERT (s != NULL);
11503 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11504 break;
11505
11506 case DT_MIPS_LOCAL_GOTNO:
11507 dyn.d_un.d_val = g->local_gotno;
11508 break;
11509
11510 case DT_MIPS_UNREFEXTNO:
11511 /* The index into the dynamic symbol table which is the
11512 entry of the first external symbol that is not
11513 referenced within the same object. */
11514 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11515 break;
11516
11517 case DT_MIPS_GOTSYM:
11518 if (htab->global_gotsym)
11519 {
11520 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11521 break;
11522 }
11523 /* In case if we don't have global got symbols we default
11524 to setting DT_MIPS_GOTSYM to the same value as
11525 DT_MIPS_SYMTABNO. */
11526 /* Fall through. */
11527
11528 case DT_MIPS_SYMTABNO:
11529 name = ".dynsym";
11530 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11531 s = bfd_get_linker_section (dynobj, name);
11532
11533 if (s != NULL)
11534 dyn.d_un.d_val = s->size / elemsize;
11535 else
11536 dyn.d_un.d_val = 0;
11537 break;
11538
11539 case DT_MIPS_HIPAGENO:
11540 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11541 break;
11542
11543 case DT_MIPS_RLD_MAP:
11544 {
11545 struct elf_link_hash_entry *h;
11546 h = mips_elf_hash_table (info)->rld_symbol;
11547 if (!h)
11548 {
11549 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11550 swap_out_p = FALSE;
11551 break;
11552 }
11553 s = h->root.u.def.section;
11554
11555 /* The MIPS_RLD_MAP tag stores the absolute address of the
11556 debug pointer. */
11557 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11558 + h->root.u.def.value);
11559 }
11560 break;
11561
11562 case DT_MIPS_RLD_MAP_REL:
11563 {
11564 struct elf_link_hash_entry *h;
11565 bfd_vma dt_addr, rld_addr;
11566 h = mips_elf_hash_table (info)->rld_symbol;
11567 if (!h)
11568 {
11569 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11570 swap_out_p = FALSE;
11571 break;
11572 }
11573 s = h->root.u.def.section;
11574
11575 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11576 pointer, relative to the address of the tag. */
11577 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
11578 + (b - sdyn->contents));
11579 rld_addr = (s->output_section->vma + s->output_offset
11580 + h->root.u.def.value);
11581 dyn.d_un.d_ptr = rld_addr - dt_addr;
11582 }
11583 break;
11584
11585 case DT_MIPS_OPTIONS:
11586 s = (bfd_get_section_by_name
11587 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11588 dyn.d_un.d_ptr = s->vma;
11589 break;
11590
11591 case DT_PLTREL:
11592 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11593 if (htab->is_vxworks)
11594 dyn.d_un.d_val = DT_RELA;
11595 else
11596 dyn.d_un.d_val = DT_REL;
11597 break;
11598
11599 case DT_PLTRELSZ:
11600 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11601 dyn.d_un.d_val = htab->root.srelplt->size;
11602 break;
11603
11604 case DT_JMPREL:
11605 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11606 dyn.d_un.d_ptr = (htab->root.srelplt->output_section->vma
11607 + htab->root.srelplt->output_offset);
11608 break;
11609
11610 case DT_TEXTREL:
11611 /* If we didn't need any text relocations after all, delete
11612 the dynamic tag. */
11613 if (!(info->flags & DF_TEXTREL))
11614 {
11615 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11616 swap_out_p = FALSE;
11617 }
11618 break;
11619
11620 case DT_FLAGS:
11621 /* If we didn't need any text relocations after all, clear
11622 DF_TEXTREL from DT_FLAGS. */
11623 if (!(info->flags & DF_TEXTREL))
11624 dyn.d_un.d_val &= ~DF_TEXTREL;
11625 else
11626 swap_out_p = FALSE;
11627 break;
11628
11629 default:
11630 swap_out_p = FALSE;
11631 if (htab->is_vxworks
11632 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11633 swap_out_p = TRUE;
11634 break;
11635 }
11636
11637 if (swap_out_p || dyn_skipped)
11638 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11639 (dynobj, &dyn, b - dyn_skipped);
11640
11641 if (dyn_to_skip)
11642 {
11643 dyn_skipped += dyn_to_skip;
11644 dyn_to_skip = 0;
11645 }
11646 }
11647
11648 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11649 if (dyn_skipped > 0)
11650 memset (b - dyn_skipped, 0, dyn_skipped);
11651 }
11652
11653 if (sgot != NULL && sgot->size > 0
11654 && !bfd_is_abs_section (sgot->output_section))
11655 {
11656 if (htab->is_vxworks)
11657 {
11658 /* The first entry of the global offset table points to the
11659 ".dynamic" section. The second is initialized by the
11660 loader and contains the shared library identifier.
11661 The third is also initialized by the loader and points
11662 to the lazy resolution stub. */
11663 MIPS_ELF_PUT_WORD (output_bfd,
11664 sdyn->output_offset + sdyn->output_section->vma,
11665 sgot->contents);
11666 MIPS_ELF_PUT_WORD (output_bfd, 0,
11667 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11668 MIPS_ELF_PUT_WORD (output_bfd, 0,
11669 sgot->contents
11670 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11671 }
11672 else
11673 {
11674 /* The first entry of the global offset table will be filled at
11675 runtime. The second entry will be used by some runtime loaders.
11676 This isn't the case of IRIX rld. */
11677 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
11678 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11679 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11680 }
11681
11682 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11683 = MIPS_ELF_GOT_SIZE (output_bfd);
11684 }
11685
11686 /* Generate dynamic relocations for the non-primary gots. */
11687 if (gg != NULL && gg->next)
11688 {
11689 Elf_Internal_Rela rel[3];
11690 bfd_vma addend = 0;
11691
11692 memset (rel, 0, sizeof (rel));
11693 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11694
11695 for (g = gg->next; g->next != gg; g = g->next)
11696 {
11697 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
11698 + g->next->tls_gotno;
11699
11700 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
11701 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11702 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11703 sgot->contents
11704 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11705
11706 if (! bfd_link_pic (info))
11707 continue;
11708
11709 for (; got_index < g->local_gotno; got_index++)
11710 {
11711 if (got_index >= g->assigned_low_gotno
11712 && got_index <= g->assigned_high_gotno)
11713 continue;
11714
11715 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
11716 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
11717 if (!(mips_elf_create_dynamic_relocation
11718 (output_bfd, info, rel, NULL,
11719 bfd_abs_section_ptr,
11720 0, &addend, sgot)))
11721 return FALSE;
11722 BFD_ASSERT (addend == 0);
11723 }
11724 }
11725 }
11726
11727 /* The generation of dynamic relocations for the non-primary gots
11728 adds more dynamic relocations. We cannot count them until
11729 here. */
11730
11731 if (elf_hash_table (info)->dynamic_sections_created)
11732 {
11733 bfd_byte *b;
11734 bfd_boolean swap_out_p;
11735
11736 BFD_ASSERT (sdyn != NULL);
11737
11738 for (b = sdyn->contents;
11739 b < sdyn->contents + sdyn->size;
11740 b += MIPS_ELF_DYN_SIZE (dynobj))
11741 {
11742 Elf_Internal_Dyn dyn;
11743 asection *s;
11744
11745 /* Read in the current dynamic entry. */
11746 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11747
11748 /* Assume that we're going to modify it and write it out. */
11749 swap_out_p = TRUE;
11750
11751 switch (dyn.d_tag)
11752 {
11753 case DT_RELSZ:
11754 /* Reduce DT_RELSZ to account for any relocations we
11755 decided not to make. This is for the n64 irix rld,
11756 which doesn't seem to apply any relocations if there
11757 are trailing null entries. */
11758 s = mips_elf_rel_dyn_section (info, FALSE);
11759 dyn.d_un.d_val = (s->reloc_count
11760 * (ABI_64_P (output_bfd)
11761 ? sizeof (Elf64_Mips_External_Rel)
11762 : sizeof (Elf32_External_Rel)));
11763 /* Adjust the section size too. Tools like the prelinker
11764 can reasonably expect the values to the same. */
11765 elf_section_data (s->output_section)->this_hdr.sh_size
11766 = dyn.d_un.d_val;
11767 break;
11768
11769 default:
11770 swap_out_p = FALSE;
11771 break;
11772 }
11773
11774 if (swap_out_p)
11775 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11776 (dynobj, &dyn, b);
11777 }
11778 }
11779
11780 {
11781 asection *s;
11782 Elf32_compact_rel cpt;
11783
11784 if (SGI_COMPAT (output_bfd))
11785 {
11786 /* Write .compact_rel section out. */
11787 s = bfd_get_linker_section (dynobj, ".compact_rel");
11788 if (s != NULL)
11789 {
11790 cpt.id1 = 1;
11791 cpt.num = s->reloc_count;
11792 cpt.id2 = 2;
11793 cpt.offset = (s->output_section->filepos
11794 + sizeof (Elf32_External_compact_rel));
11795 cpt.reserved0 = 0;
11796 cpt.reserved1 = 0;
11797 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
11798 ((Elf32_External_compact_rel *)
11799 s->contents));
11800
11801 /* Clean up a dummy stub function entry in .text. */
11802 if (htab->sstubs != NULL)
11803 {
11804 file_ptr dummy_offset;
11805
11806 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
11807 dummy_offset = htab->sstubs->size - htab->function_stub_size;
11808 memset (htab->sstubs->contents + dummy_offset, 0,
11809 htab->function_stub_size);
11810 }
11811 }
11812 }
11813
11814 /* The psABI says that the dynamic relocations must be sorted in
11815 increasing order of r_symndx. The VxWorks EABI doesn't require
11816 this, and because the code below handles REL rather than RELA
11817 relocations, using it for VxWorks would be outright harmful. */
11818 if (!htab->is_vxworks)
11819 {
11820 s = mips_elf_rel_dyn_section (info, FALSE);
11821 if (s != NULL
11822 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
11823 {
11824 reldyn_sorting_bfd = output_bfd;
11825
11826 if (ABI_64_P (output_bfd))
11827 qsort ((Elf64_External_Rel *) s->contents + 1,
11828 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
11829 sort_dynamic_relocs_64);
11830 else
11831 qsort ((Elf32_External_Rel *) s->contents + 1,
11832 s->reloc_count - 1, sizeof (Elf32_External_Rel),
11833 sort_dynamic_relocs);
11834 }
11835 }
11836 }
11837
11838 if (htab->root.splt && htab->root.splt->size > 0)
11839 {
11840 if (htab->is_vxworks)
11841 {
11842 if (bfd_link_pic (info))
11843 mips_vxworks_finish_shared_plt (output_bfd, info);
11844 else
11845 mips_vxworks_finish_exec_plt (output_bfd, info);
11846 }
11847 else
11848 {
11849 BFD_ASSERT (!bfd_link_pic (info));
11850 if (!mips_finish_exec_plt (output_bfd, info))
11851 return FALSE;
11852 }
11853 }
11854 return TRUE;
11855 }
11856
11857
11858 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
11859
11860 static void
11861 mips_set_isa_flags (bfd *abfd)
11862 {
11863 flagword val;
11864
11865 switch (bfd_get_mach (abfd))
11866 {
11867 default:
11868 case bfd_mach_mips3000:
11869 val = E_MIPS_ARCH_1;
11870 break;
11871
11872 case bfd_mach_mips3900:
11873 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
11874 break;
11875
11876 case bfd_mach_mips6000:
11877 val = E_MIPS_ARCH_2;
11878 break;
11879
11880 case bfd_mach_mips4010:
11881 val = E_MIPS_ARCH_2 | E_MIPS_MACH_4010;
11882 break;
11883
11884 case bfd_mach_mips4000:
11885 case bfd_mach_mips4300:
11886 case bfd_mach_mips4400:
11887 case bfd_mach_mips4600:
11888 val = E_MIPS_ARCH_3;
11889 break;
11890
11891 case bfd_mach_mips4100:
11892 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
11893 break;
11894
11895 case bfd_mach_mips4111:
11896 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
11897 break;
11898
11899 case bfd_mach_mips4120:
11900 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
11901 break;
11902
11903 case bfd_mach_mips4650:
11904 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
11905 break;
11906
11907 case bfd_mach_mips5400:
11908 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
11909 break;
11910
11911 case bfd_mach_mips5500:
11912 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
11913 break;
11914
11915 case bfd_mach_mips5900:
11916 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
11917 break;
11918
11919 case bfd_mach_mips9000:
11920 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
11921 break;
11922
11923 case bfd_mach_mips5000:
11924 case bfd_mach_mips7000:
11925 case bfd_mach_mips8000:
11926 case bfd_mach_mips10000:
11927 case bfd_mach_mips12000:
11928 case bfd_mach_mips14000:
11929 case bfd_mach_mips16000:
11930 val = E_MIPS_ARCH_4;
11931 break;
11932
11933 case bfd_mach_mips5:
11934 val = E_MIPS_ARCH_5;
11935 break;
11936
11937 case bfd_mach_mips_loongson_2e:
11938 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
11939 break;
11940
11941 case bfd_mach_mips_loongson_2f:
11942 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
11943 break;
11944
11945 case bfd_mach_mips_sb1:
11946 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
11947 break;
11948
11949 case bfd_mach_mips_loongson_3a:
11950 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A;
11951 break;
11952
11953 case bfd_mach_mips_octeon:
11954 case bfd_mach_mips_octeonp:
11955 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
11956 break;
11957
11958 case bfd_mach_mips_octeon3:
11959 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
11960 break;
11961
11962 case bfd_mach_mips_xlr:
11963 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
11964 break;
11965
11966 case bfd_mach_mips_octeon2:
11967 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
11968 break;
11969
11970 case bfd_mach_mipsisa32:
11971 val = E_MIPS_ARCH_32;
11972 break;
11973
11974 case bfd_mach_mipsisa64:
11975 val = E_MIPS_ARCH_64;
11976 break;
11977
11978 case bfd_mach_mipsisa32r2:
11979 case bfd_mach_mipsisa32r3:
11980 case bfd_mach_mipsisa32r5:
11981 val = E_MIPS_ARCH_32R2;
11982 break;
11983
11984 case bfd_mach_mips_interaptiv_mr2:
11985 val = E_MIPS_ARCH_32R2 | E_MIPS_MACH_IAMR2;
11986 break;
11987
11988 case bfd_mach_mipsisa64r2:
11989 case bfd_mach_mipsisa64r3:
11990 case bfd_mach_mipsisa64r5:
11991 val = E_MIPS_ARCH_64R2;
11992 break;
11993
11994 case bfd_mach_mipsisa32r6:
11995 val = E_MIPS_ARCH_32R6;
11996 break;
11997
11998 case bfd_mach_mipsisa64r6:
11999 val = E_MIPS_ARCH_64R6;
12000 break;
12001 }
12002 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12003 elf_elfheader (abfd)->e_flags |= val;
12004
12005 }
12006
12007
12008 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12009 Don't do so for code sections. We want to keep ordering of HI16/LO16
12010 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12011 relocs to be sorted. */
12012
12013 bfd_boolean
12014 _bfd_mips_elf_sort_relocs_p (asection *sec)
12015 {
12016 return (sec->flags & SEC_CODE) == 0;
12017 }
12018
12019
12020 /* The final processing done just before writing out a MIPS ELF object
12021 file. This gets the MIPS architecture right based on the machine
12022 number. This is used by both the 32-bit and the 64-bit ABI. */
12023
12024 void
12025 _bfd_mips_elf_final_write_processing (bfd *abfd,
12026 bfd_boolean linker ATTRIBUTE_UNUSED)
12027 {
12028 unsigned int i;
12029 Elf_Internal_Shdr **hdrpp;
12030 const char *name;
12031 asection *sec;
12032
12033 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12034 is nonzero. This is for compatibility with old objects, which used
12035 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12036 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12037 mips_set_isa_flags (abfd);
12038
12039 /* Set the sh_info field for .gptab sections and other appropriate
12040 info for each special section. */
12041 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12042 i < elf_numsections (abfd);
12043 i++, hdrpp++)
12044 {
12045 switch ((*hdrpp)->sh_type)
12046 {
12047 case SHT_MIPS_MSYM:
12048 case SHT_MIPS_LIBLIST:
12049 sec = bfd_get_section_by_name (abfd, ".dynstr");
12050 if (sec != NULL)
12051 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12052 break;
12053
12054 case SHT_MIPS_GPTAB:
12055 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12056 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12057 BFD_ASSERT (name != NULL
12058 && CONST_STRNEQ (name, ".gptab."));
12059 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12060 BFD_ASSERT (sec != NULL);
12061 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12062 break;
12063
12064 case SHT_MIPS_CONTENT:
12065 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12066 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12067 BFD_ASSERT (name != NULL
12068 && CONST_STRNEQ (name, ".MIPS.content"));
12069 sec = bfd_get_section_by_name (abfd,
12070 name + sizeof ".MIPS.content" - 1);
12071 BFD_ASSERT (sec != NULL);
12072 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12073 break;
12074
12075 case SHT_MIPS_SYMBOL_LIB:
12076 sec = bfd_get_section_by_name (abfd, ".dynsym");
12077 if (sec != NULL)
12078 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12079 sec = bfd_get_section_by_name (abfd, ".liblist");
12080 if (sec != NULL)
12081 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12082 break;
12083
12084 case SHT_MIPS_EVENTS:
12085 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12086 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12087 BFD_ASSERT (name != NULL);
12088 if (CONST_STRNEQ (name, ".MIPS.events"))
12089 sec = bfd_get_section_by_name (abfd,
12090 name + sizeof ".MIPS.events" - 1);
12091 else
12092 {
12093 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
12094 sec = bfd_get_section_by_name (abfd,
12095 (name
12096 + sizeof ".MIPS.post_rel" - 1));
12097 }
12098 BFD_ASSERT (sec != NULL);
12099 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12100 break;
12101
12102 }
12103 }
12104 }
12105 \f
12106 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12107 segments. */
12108
12109 int
12110 _bfd_mips_elf_additional_program_headers (bfd *abfd,
12111 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12112 {
12113 asection *s;
12114 int ret = 0;
12115
12116 /* See if we need a PT_MIPS_REGINFO segment. */
12117 s = bfd_get_section_by_name (abfd, ".reginfo");
12118 if (s && (s->flags & SEC_LOAD))
12119 ++ret;
12120
12121 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12122 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12123 ++ret;
12124
12125 /* See if we need a PT_MIPS_OPTIONS segment. */
12126 if (IRIX_COMPAT (abfd) == ict_irix6
12127 && bfd_get_section_by_name (abfd,
12128 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12129 ++ret;
12130
12131 /* See if we need a PT_MIPS_RTPROC segment. */
12132 if (IRIX_COMPAT (abfd) == ict_irix5
12133 && bfd_get_section_by_name (abfd, ".dynamic")
12134 && bfd_get_section_by_name (abfd, ".mdebug"))
12135 ++ret;
12136
12137 /* Allocate a PT_NULL header in dynamic objects. See
12138 _bfd_mips_elf_modify_segment_map for details. */
12139 if (!SGI_COMPAT (abfd)
12140 && bfd_get_section_by_name (abfd, ".dynamic"))
12141 ++ret;
12142
12143 return ret;
12144 }
12145
12146 /* Modify the segment map for an IRIX5 executable. */
12147
12148 bfd_boolean
12149 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12150 struct bfd_link_info *info)
12151 {
12152 asection *s;
12153 struct elf_segment_map *m, **pm;
12154 bfd_size_type amt;
12155
12156 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12157 segment. */
12158 s = bfd_get_section_by_name (abfd, ".reginfo");
12159 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12160 {
12161 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12162 if (m->p_type == PT_MIPS_REGINFO)
12163 break;
12164 if (m == NULL)
12165 {
12166 amt = sizeof *m;
12167 m = bfd_zalloc (abfd, amt);
12168 if (m == NULL)
12169 return FALSE;
12170
12171 m->p_type = PT_MIPS_REGINFO;
12172 m->count = 1;
12173 m->sections[0] = s;
12174
12175 /* We want to put it after the PHDR and INTERP segments. */
12176 pm = &elf_seg_map (abfd);
12177 while (*pm != NULL
12178 && ((*pm)->p_type == PT_PHDR
12179 || (*pm)->p_type == PT_INTERP))
12180 pm = &(*pm)->next;
12181
12182 m->next = *pm;
12183 *pm = m;
12184 }
12185 }
12186
12187 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12188 segment. */
12189 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12190 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12191 {
12192 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12193 if (m->p_type == PT_MIPS_ABIFLAGS)
12194 break;
12195 if (m == NULL)
12196 {
12197 amt = sizeof *m;
12198 m = bfd_zalloc (abfd, amt);
12199 if (m == NULL)
12200 return FALSE;
12201
12202 m->p_type = PT_MIPS_ABIFLAGS;
12203 m->count = 1;
12204 m->sections[0] = s;
12205
12206 /* We want to put it after the PHDR and INTERP segments. */
12207 pm = &elf_seg_map (abfd);
12208 while (*pm != NULL
12209 && ((*pm)->p_type == PT_PHDR
12210 || (*pm)->p_type == PT_INTERP))
12211 pm = &(*pm)->next;
12212
12213 m->next = *pm;
12214 *pm = m;
12215 }
12216 }
12217
12218 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12219 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12220 PT_MIPS_OPTIONS segment immediately following the program header
12221 table. */
12222 if (NEWABI_P (abfd)
12223 /* On non-IRIX6 new abi, we'll have already created a segment
12224 for this section, so don't create another. I'm not sure this
12225 is not also the case for IRIX 6, but I can't test it right
12226 now. */
12227 && IRIX_COMPAT (abfd) == ict_irix6)
12228 {
12229 for (s = abfd->sections; s; s = s->next)
12230 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12231 break;
12232
12233 if (s)
12234 {
12235 struct elf_segment_map *options_segment;
12236
12237 pm = &elf_seg_map (abfd);
12238 while (*pm != NULL
12239 && ((*pm)->p_type == PT_PHDR
12240 || (*pm)->p_type == PT_INTERP))
12241 pm = &(*pm)->next;
12242
12243 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12244 {
12245 amt = sizeof (struct elf_segment_map);
12246 options_segment = bfd_zalloc (abfd, amt);
12247 options_segment->next = *pm;
12248 options_segment->p_type = PT_MIPS_OPTIONS;
12249 options_segment->p_flags = PF_R;
12250 options_segment->p_flags_valid = TRUE;
12251 options_segment->count = 1;
12252 options_segment->sections[0] = s;
12253 *pm = options_segment;
12254 }
12255 }
12256 }
12257 else
12258 {
12259 if (IRIX_COMPAT (abfd) == ict_irix5)
12260 {
12261 /* If there are .dynamic and .mdebug sections, we make a room
12262 for the RTPROC header. FIXME: Rewrite without section names. */
12263 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12264 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12265 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12266 {
12267 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12268 if (m->p_type == PT_MIPS_RTPROC)
12269 break;
12270 if (m == NULL)
12271 {
12272 amt = sizeof *m;
12273 m = bfd_zalloc (abfd, amt);
12274 if (m == NULL)
12275 return FALSE;
12276
12277 m->p_type = PT_MIPS_RTPROC;
12278
12279 s = bfd_get_section_by_name (abfd, ".rtproc");
12280 if (s == NULL)
12281 {
12282 m->count = 0;
12283 m->p_flags = 0;
12284 m->p_flags_valid = 1;
12285 }
12286 else
12287 {
12288 m->count = 1;
12289 m->sections[0] = s;
12290 }
12291
12292 /* We want to put it after the DYNAMIC segment. */
12293 pm = &elf_seg_map (abfd);
12294 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12295 pm = &(*pm)->next;
12296 if (*pm != NULL)
12297 pm = &(*pm)->next;
12298
12299 m->next = *pm;
12300 *pm = m;
12301 }
12302 }
12303 }
12304 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12305 .dynstr, .dynsym, and .hash sections, and everything in
12306 between. */
12307 for (pm = &elf_seg_map (abfd); *pm != NULL;
12308 pm = &(*pm)->next)
12309 if ((*pm)->p_type == PT_DYNAMIC)
12310 break;
12311 m = *pm;
12312 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12313 glibc's dynamic linker has traditionally derived the number of
12314 tags from the p_filesz field, and sometimes allocates stack
12315 arrays of that size. An overly-big PT_DYNAMIC segment can
12316 be actively harmful in such cases. Making PT_DYNAMIC contain
12317 other sections can also make life hard for the prelinker,
12318 which might move one of the other sections to a different
12319 PT_LOAD segment. */
12320 if (SGI_COMPAT (abfd)
12321 && m != NULL
12322 && m->count == 1
12323 && strcmp (m->sections[0]->name, ".dynamic") == 0)
12324 {
12325 static const char *sec_names[] =
12326 {
12327 ".dynamic", ".dynstr", ".dynsym", ".hash"
12328 };
12329 bfd_vma low, high;
12330 unsigned int i, c;
12331 struct elf_segment_map *n;
12332
12333 low = ~(bfd_vma) 0;
12334 high = 0;
12335 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12336 {
12337 s = bfd_get_section_by_name (abfd, sec_names[i]);
12338 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12339 {
12340 bfd_size_type sz;
12341
12342 if (low > s->vma)
12343 low = s->vma;
12344 sz = s->size;
12345 if (high < s->vma + sz)
12346 high = s->vma + sz;
12347 }
12348 }
12349
12350 c = 0;
12351 for (s = abfd->sections; s != NULL; s = s->next)
12352 if ((s->flags & SEC_LOAD) != 0
12353 && s->vma >= low
12354 && s->vma + s->size <= high)
12355 ++c;
12356
12357 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
12358 n = bfd_zalloc (abfd, amt);
12359 if (n == NULL)
12360 return FALSE;
12361 *n = *m;
12362 n->count = c;
12363
12364 i = 0;
12365 for (s = abfd->sections; s != NULL; s = s->next)
12366 {
12367 if ((s->flags & SEC_LOAD) != 0
12368 && s->vma >= low
12369 && s->vma + s->size <= high)
12370 {
12371 n->sections[i] = s;
12372 ++i;
12373 }
12374 }
12375
12376 *pm = n;
12377 }
12378 }
12379
12380 /* Allocate a spare program header in dynamic objects so that tools
12381 like the prelinker can add an extra PT_LOAD entry.
12382
12383 If the prelinker needs to make room for a new PT_LOAD entry, its
12384 standard procedure is to move the first (read-only) sections into
12385 the new (writable) segment. However, the MIPS ABI requires
12386 .dynamic to be in a read-only segment, and the section will often
12387 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12388
12389 Although the prelinker could in principle move .dynamic to a
12390 writable segment, it seems better to allocate a spare program
12391 header instead, and avoid the need to move any sections.
12392 There is a long tradition of allocating spare dynamic tags,
12393 so allocating a spare program header seems like a natural
12394 extension.
12395
12396 If INFO is NULL, we may be copying an already prelinked binary
12397 with objcopy or strip, so do not add this header. */
12398 if (info != NULL
12399 && !SGI_COMPAT (abfd)
12400 && bfd_get_section_by_name (abfd, ".dynamic"))
12401 {
12402 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12403 if ((*pm)->p_type == PT_NULL)
12404 break;
12405 if (*pm == NULL)
12406 {
12407 m = bfd_zalloc (abfd, sizeof (*m));
12408 if (m == NULL)
12409 return FALSE;
12410
12411 m->p_type = PT_NULL;
12412 *pm = m;
12413 }
12414 }
12415
12416 return TRUE;
12417 }
12418 \f
12419 /* Return the section that should be marked against GC for a given
12420 relocation. */
12421
12422 asection *
12423 _bfd_mips_elf_gc_mark_hook (asection *sec,
12424 struct bfd_link_info *info,
12425 Elf_Internal_Rela *rel,
12426 struct elf_link_hash_entry *h,
12427 Elf_Internal_Sym *sym)
12428 {
12429 /* ??? Do mips16 stub sections need to be handled special? */
12430
12431 if (h != NULL)
12432 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12433 {
12434 case R_MIPS_GNU_VTINHERIT:
12435 case R_MIPS_GNU_VTENTRY:
12436 return NULL;
12437 }
12438
12439 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12440 }
12441
12442 /* Update the got entry reference counts for the section being removed. */
12443
12444 bfd_boolean
12445 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
12446 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12447 asection *sec ATTRIBUTE_UNUSED,
12448 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
12449 {
12450 #if 0
12451 Elf_Internal_Shdr *symtab_hdr;
12452 struct elf_link_hash_entry **sym_hashes;
12453 bfd_signed_vma *local_got_refcounts;
12454 const Elf_Internal_Rela *rel, *relend;
12455 unsigned long r_symndx;
12456 struct elf_link_hash_entry *h;
12457
12458 if (bfd_link_relocatable (info))
12459 return TRUE;
12460
12461 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12462 sym_hashes = elf_sym_hashes (abfd);
12463 local_got_refcounts = elf_local_got_refcounts (abfd);
12464
12465 relend = relocs + sec->reloc_count;
12466 for (rel = relocs; rel < relend; rel++)
12467 switch (ELF_R_TYPE (abfd, rel->r_info))
12468 {
12469 case R_MIPS16_GOT16:
12470 case R_MIPS16_CALL16:
12471 case R_MIPS_GOT16:
12472 case R_MIPS_CALL16:
12473 case R_MIPS_CALL_HI16:
12474 case R_MIPS_CALL_LO16:
12475 case R_MIPS_GOT_HI16:
12476 case R_MIPS_GOT_LO16:
12477 case R_MIPS_GOT_DISP:
12478 case R_MIPS_GOT_PAGE:
12479 case R_MIPS_GOT_OFST:
12480 case R_MICROMIPS_GOT16:
12481 case R_MICROMIPS_CALL16:
12482 case R_MICROMIPS_CALL_HI16:
12483 case R_MICROMIPS_CALL_LO16:
12484 case R_MICROMIPS_GOT_HI16:
12485 case R_MICROMIPS_GOT_LO16:
12486 case R_MICROMIPS_GOT_DISP:
12487 case R_MICROMIPS_GOT_PAGE:
12488 case R_MICROMIPS_GOT_OFST:
12489 /* ??? It would seem that the existing MIPS code does no sort
12490 of reference counting or whatnot on its GOT and PLT entries,
12491 so it is not possible to garbage collect them at this time. */
12492 break;
12493
12494 default:
12495 break;
12496 }
12497 #endif
12498
12499 return TRUE;
12500 }
12501
12502 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12503
12504 bfd_boolean
12505 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12506 elf_gc_mark_hook_fn gc_mark_hook)
12507 {
12508 bfd *sub;
12509
12510 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12511
12512 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12513 {
12514 asection *o;
12515
12516 if (! is_mips_elf (sub))
12517 continue;
12518
12519 for (o = sub->sections; o != NULL; o = o->next)
12520 if (!o->gc_mark
12521 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12522 (bfd_get_section_name (sub, o)))
12523 {
12524 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12525 return FALSE;
12526 }
12527 }
12528
12529 return TRUE;
12530 }
12531 \f
12532 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12533 hiding the old indirect symbol. Process additional relocation
12534 information. Also called for weakdefs, in which case we just let
12535 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12536
12537 void
12538 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12539 struct elf_link_hash_entry *dir,
12540 struct elf_link_hash_entry *ind)
12541 {
12542 struct mips_elf_link_hash_entry *dirmips, *indmips;
12543
12544 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12545
12546 dirmips = (struct mips_elf_link_hash_entry *) dir;
12547 indmips = (struct mips_elf_link_hash_entry *) ind;
12548 /* Any absolute non-dynamic relocations against an indirect or weak
12549 definition will be against the target symbol. */
12550 if (indmips->has_static_relocs)
12551 dirmips->has_static_relocs = TRUE;
12552
12553 if (ind->root.type != bfd_link_hash_indirect)
12554 return;
12555
12556 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12557 if (indmips->readonly_reloc)
12558 dirmips->readonly_reloc = TRUE;
12559 if (indmips->no_fn_stub)
12560 dirmips->no_fn_stub = TRUE;
12561 if (indmips->fn_stub)
12562 {
12563 dirmips->fn_stub = indmips->fn_stub;
12564 indmips->fn_stub = NULL;
12565 }
12566 if (indmips->need_fn_stub)
12567 {
12568 dirmips->need_fn_stub = TRUE;
12569 indmips->need_fn_stub = FALSE;
12570 }
12571 if (indmips->call_stub)
12572 {
12573 dirmips->call_stub = indmips->call_stub;
12574 indmips->call_stub = NULL;
12575 }
12576 if (indmips->call_fp_stub)
12577 {
12578 dirmips->call_fp_stub = indmips->call_fp_stub;
12579 indmips->call_fp_stub = NULL;
12580 }
12581 if (indmips->global_got_area < dirmips->global_got_area)
12582 dirmips->global_got_area = indmips->global_got_area;
12583 if (indmips->global_got_area < GGA_NONE)
12584 indmips->global_got_area = GGA_NONE;
12585 if (indmips->has_nonpic_branches)
12586 dirmips->has_nonpic_branches = TRUE;
12587 }
12588 \f
12589 #define PDR_SIZE 32
12590
12591 bfd_boolean
12592 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12593 struct bfd_link_info *info)
12594 {
12595 asection *o;
12596 bfd_boolean ret = FALSE;
12597 unsigned char *tdata;
12598 size_t i, skip;
12599
12600 o = bfd_get_section_by_name (abfd, ".pdr");
12601 if (! o)
12602 return FALSE;
12603 if (o->size == 0)
12604 return FALSE;
12605 if (o->size % PDR_SIZE != 0)
12606 return FALSE;
12607 if (o->output_section != NULL
12608 && bfd_is_abs_section (o->output_section))
12609 return FALSE;
12610
12611 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12612 if (! tdata)
12613 return FALSE;
12614
12615 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12616 info->keep_memory);
12617 if (!cookie->rels)
12618 {
12619 free (tdata);
12620 return FALSE;
12621 }
12622
12623 cookie->rel = cookie->rels;
12624 cookie->relend = cookie->rels + o->reloc_count;
12625
12626 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12627 {
12628 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12629 {
12630 tdata[i] = 1;
12631 skip ++;
12632 }
12633 }
12634
12635 if (skip != 0)
12636 {
12637 mips_elf_section_data (o)->u.tdata = tdata;
12638 if (o->rawsize == 0)
12639 o->rawsize = o->size;
12640 o->size -= skip * PDR_SIZE;
12641 ret = TRUE;
12642 }
12643 else
12644 free (tdata);
12645
12646 if (! info->keep_memory)
12647 free (cookie->rels);
12648
12649 return ret;
12650 }
12651
12652 bfd_boolean
12653 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
12654 {
12655 if (strcmp (sec->name, ".pdr") == 0)
12656 return TRUE;
12657 return FALSE;
12658 }
12659
12660 bfd_boolean
12661 _bfd_mips_elf_write_section (bfd *output_bfd,
12662 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12663 asection *sec, bfd_byte *contents)
12664 {
12665 bfd_byte *to, *from, *end;
12666 int i;
12667
12668 if (strcmp (sec->name, ".pdr") != 0)
12669 return FALSE;
12670
12671 if (mips_elf_section_data (sec)->u.tdata == NULL)
12672 return FALSE;
12673
12674 to = contents;
12675 end = contents + sec->size;
12676 for (from = contents, i = 0;
12677 from < end;
12678 from += PDR_SIZE, i++)
12679 {
12680 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
12681 continue;
12682 if (to != from)
12683 memcpy (to, from, PDR_SIZE);
12684 to += PDR_SIZE;
12685 }
12686 bfd_set_section_contents (output_bfd, sec->output_section, contents,
12687 sec->output_offset, sec->size);
12688 return TRUE;
12689 }
12690 \f
12691 /* microMIPS code retains local labels for linker relaxation. Omit them
12692 from output by default for clarity. */
12693
12694 bfd_boolean
12695 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12696 {
12697 return _bfd_elf_is_local_label_name (abfd, sym->name);
12698 }
12699
12700 /* MIPS ELF uses a special find_nearest_line routine in order the
12701 handle the ECOFF debugging information. */
12702
12703 struct mips_elf_find_line
12704 {
12705 struct ecoff_debug_info d;
12706 struct ecoff_find_line i;
12707 };
12708
12709 bfd_boolean
12710 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
12711 asection *section, bfd_vma offset,
12712 const char **filename_ptr,
12713 const char **functionname_ptr,
12714 unsigned int *line_ptr,
12715 unsigned int *discriminator_ptr)
12716 {
12717 asection *msec;
12718
12719 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
12720 filename_ptr, functionname_ptr,
12721 line_ptr, discriminator_ptr,
12722 dwarf_debug_sections,
12723 ABI_64_P (abfd) ? 8 : 0,
12724 &elf_tdata (abfd)->dwarf2_find_line_info))
12725 return TRUE;
12726
12727 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
12728 filename_ptr, functionname_ptr,
12729 line_ptr))
12730 return TRUE;
12731
12732 msec = bfd_get_section_by_name (abfd, ".mdebug");
12733 if (msec != NULL)
12734 {
12735 flagword origflags;
12736 struct mips_elf_find_line *fi;
12737 const struct ecoff_debug_swap * const swap =
12738 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12739
12740 /* If we are called during a link, mips_elf_final_link may have
12741 cleared the SEC_HAS_CONTENTS field. We force it back on here
12742 if appropriate (which it normally will be). */
12743 origflags = msec->flags;
12744 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12745 msec->flags |= SEC_HAS_CONTENTS;
12746
12747 fi = mips_elf_tdata (abfd)->find_line_info;
12748 if (fi == NULL)
12749 {
12750 bfd_size_type external_fdr_size;
12751 char *fraw_src;
12752 char *fraw_end;
12753 struct fdr *fdr_ptr;
12754 bfd_size_type amt = sizeof (struct mips_elf_find_line);
12755
12756 fi = bfd_zalloc (abfd, amt);
12757 if (fi == NULL)
12758 {
12759 msec->flags = origflags;
12760 return FALSE;
12761 }
12762
12763 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12764 {
12765 msec->flags = origflags;
12766 return FALSE;
12767 }
12768
12769 /* Swap in the FDR information. */
12770 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
12771 fi->d.fdr = bfd_alloc (abfd, amt);
12772 if (fi->d.fdr == NULL)
12773 {
12774 msec->flags = origflags;
12775 return FALSE;
12776 }
12777 external_fdr_size = swap->external_fdr_size;
12778 fdr_ptr = fi->d.fdr;
12779 fraw_src = (char *) fi->d.external_fdr;
12780 fraw_end = (fraw_src
12781 + fi->d.symbolic_header.ifdMax * external_fdr_size);
12782 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
12783 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
12784
12785 mips_elf_tdata (abfd)->find_line_info = fi;
12786
12787 /* Note that we don't bother to ever free this information.
12788 find_nearest_line is either called all the time, as in
12789 objdump -l, so the information should be saved, or it is
12790 rarely called, as in ld error messages, so the memory
12791 wasted is unimportant. Still, it would probably be a
12792 good idea for free_cached_info to throw it away. */
12793 }
12794
12795 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
12796 &fi->i, filename_ptr, functionname_ptr,
12797 line_ptr))
12798 {
12799 msec->flags = origflags;
12800 return TRUE;
12801 }
12802
12803 msec->flags = origflags;
12804 }
12805
12806 /* Fall back on the generic ELF find_nearest_line routine. */
12807
12808 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
12809 filename_ptr, functionname_ptr,
12810 line_ptr, discriminator_ptr);
12811 }
12812
12813 bfd_boolean
12814 _bfd_mips_elf_find_inliner_info (bfd *abfd,
12815 const char **filename_ptr,
12816 const char **functionname_ptr,
12817 unsigned int *line_ptr)
12818 {
12819 bfd_boolean found;
12820 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12821 functionname_ptr, line_ptr,
12822 & elf_tdata (abfd)->dwarf2_find_line_info);
12823 return found;
12824 }
12825
12826 \f
12827 /* When are writing out the .options or .MIPS.options section,
12828 remember the bytes we are writing out, so that we can install the
12829 GP value in the section_processing routine. */
12830
12831 bfd_boolean
12832 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
12833 const void *location,
12834 file_ptr offset, bfd_size_type count)
12835 {
12836 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
12837 {
12838 bfd_byte *c;
12839
12840 if (elf_section_data (section) == NULL)
12841 {
12842 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
12843 section->used_by_bfd = bfd_zalloc (abfd, amt);
12844 if (elf_section_data (section) == NULL)
12845 return FALSE;
12846 }
12847 c = mips_elf_section_data (section)->u.tdata;
12848 if (c == NULL)
12849 {
12850 c = bfd_zalloc (abfd, section->size);
12851 if (c == NULL)
12852 return FALSE;
12853 mips_elf_section_data (section)->u.tdata = c;
12854 }
12855
12856 memcpy (c + offset, location, count);
12857 }
12858
12859 return _bfd_elf_set_section_contents (abfd, section, location, offset,
12860 count);
12861 }
12862
12863 /* This is almost identical to bfd_generic_get_... except that some
12864 MIPS relocations need to be handled specially. Sigh. */
12865
12866 bfd_byte *
12867 _bfd_elf_mips_get_relocated_section_contents
12868 (bfd *abfd,
12869 struct bfd_link_info *link_info,
12870 struct bfd_link_order *link_order,
12871 bfd_byte *data,
12872 bfd_boolean relocatable,
12873 asymbol **symbols)
12874 {
12875 /* Get enough memory to hold the stuff */
12876 bfd *input_bfd = link_order->u.indirect.section->owner;
12877 asection *input_section = link_order->u.indirect.section;
12878 bfd_size_type sz;
12879
12880 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
12881 arelent **reloc_vector = NULL;
12882 long reloc_count;
12883
12884 if (reloc_size < 0)
12885 goto error_return;
12886
12887 reloc_vector = bfd_malloc (reloc_size);
12888 if (reloc_vector == NULL && reloc_size != 0)
12889 goto error_return;
12890
12891 /* read in the section */
12892 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
12893 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
12894 goto error_return;
12895
12896 reloc_count = bfd_canonicalize_reloc (input_bfd,
12897 input_section,
12898 reloc_vector,
12899 symbols);
12900 if (reloc_count < 0)
12901 goto error_return;
12902
12903 if (reloc_count > 0)
12904 {
12905 arelent **parent;
12906 /* for mips */
12907 int gp_found;
12908 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
12909
12910 {
12911 struct bfd_hash_entry *h;
12912 struct bfd_link_hash_entry *lh;
12913 /* Skip all this stuff if we aren't mixing formats. */
12914 if (abfd && input_bfd
12915 && abfd->xvec == input_bfd->xvec)
12916 lh = 0;
12917 else
12918 {
12919 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
12920 lh = (struct bfd_link_hash_entry *) h;
12921 }
12922 lookup:
12923 if (lh)
12924 {
12925 switch (lh->type)
12926 {
12927 case bfd_link_hash_undefined:
12928 case bfd_link_hash_undefweak:
12929 case bfd_link_hash_common:
12930 gp_found = 0;
12931 break;
12932 case bfd_link_hash_defined:
12933 case bfd_link_hash_defweak:
12934 gp_found = 1;
12935 gp = lh->u.def.value;
12936 break;
12937 case bfd_link_hash_indirect:
12938 case bfd_link_hash_warning:
12939 lh = lh->u.i.link;
12940 /* @@FIXME ignoring warning for now */
12941 goto lookup;
12942 case bfd_link_hash_new:
12943 default:
12944 abort ();
12945 }
12946 }
12947 else
12948 gp_found = 0;
12949 }
12950 /* end mips */
12951 for (parent = reloc_vector; *parent != NULL; parent++)
12952 {
12953 char *error_message = NULL;
12954 bfd_reloc_status_type r;
12955
12956 /* Specific to MIPS: Deal with relocation types that require
12957 knowing the gp of the output bfd. */
12958 asymbol *sym = *(*parent)->sym_ptr_ptr;
12959
12960 /* If we've managed to find the gp and have a special
12961 function for the relocation then go ahead, else default
12962 to the generic handling. */
12963 if (gp_found
12964 && (*parent)->howto->special_function
12965 == _bfd_mips_elf32_gprel16_reloc)
12966 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
12967 input_section, relocatable,
12968 data, gp);
12969 else
12970 r = bfd_perform_relocation (input_bfd, *parent, data,
12971 input_section,
12972 relocatable ? abfd : NULL,
12973 &error_message);
12974
12975 if (relocatable)
12976 {
12977 asection *os = input_section->output_section;
12978
12979 /* A partial link, so keep the relocs */
12980 os->orelocation[os->reloc_count] = *parent;
12981 os->reloc_count++;
12982 }
12983
12984 if (r != bfd_reloc_ok)
12985 {
12986 switch (r)
12987 {
12988 case bfd_reloc_undefined:
12989 (*link_info->callbacks->undefined_symbol)
12990 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12991 input_bfd, input_section, (*parent)->address, TRUE);
12992 break;
12993 case bfd_reloc_dangerous:
12994 BFD_ASSERT (error_message != NULL);
12995 (*link_info->callbacks->reloc_dangerous)
12996 (link_info, error_message,
12997 input_bfd, input_section, (*parent)->address);
12998 break;
12999 case bfd_reloc_overflow:
13000 (*link_info->callbacks->reloc_overflow)
13001 (link_info, NULL,
13002 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13003 (*parent)->howto->name, (*parent)->addend,
13004 input_bfd, input_section, (*parent)->address);
13005 break;
13006 case bfd_reloc_outofrange:
13007 default:
13008 abort ();
13009 break;
13010 }
13011
13012 }
13013 }
13014 }
13015 if (reloc_vector != NULL)
13016 free (reloc_vector);
13017 return data;
13018
13019 error_return:
13020 if (reloc_vector != NULL)
13021 free (reloc_vector);
13022 return NULL;
13023 }
13024 \f
13025 static bfd_boolean
13026 mips_elf_relax_delete_bytes (bfd *abfd,
13027 asection *sec, bfd_vma addr, int count)
13028 {
13029 Elf_Internal_Shdr *symtab_hdr;
13030 unsigned int sec_shndx;
13031 bfd_byte *contents;
13032 Elf_Internal_Rela *irel, *irelend;
13033 Elf_Internal_Sym *isym;
13034 Elf_Internal_Sym *isymend;
13035 struct elf_link_hash_entry **sym_hashes;
13036 struct elf_link_hash_entry **end_hashes;
13037 struct elf_link_hash_entry **start_hashes;
13038 unsigned int symcount;
13039
13040 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13041 contents = elf_section_data (sec)->this_hdr.contents;
13042
13043 irel = elf_section_data (sec)->relocs;
13044 irelend = irel + sec->reloc_count;
13045
13046 /* Actually delete the bytes. */
13047 memmove (contents + addr, contents + addr + count,
13048 (size_t) (sec->size - addr - count));
13049 sec->size -= count;
13050
13051 /* Adjust all the relocs. */
13052 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13053 {
13054 /* Get the new reloc address. */
13055 if (irel->r_offset > addr)
13056 irel->r_offset -= count;
13057 }
13058
13059 BFD_ASSERT (addr % 2 == 0);
13060 BFD_ASSERT (count % 2 == 0);
13061
13062 /* Adjust the local symbols defined in this section. */
13063 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13064 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13065 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
13066 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
13067 isym->st_value -= count;
13068
13069 /* Now adjust the global symbols defined in this section. */
13070 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13071 - symtab_hdr->sh_info);
13072 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13073 end_hashes = sym_hashes + symcount;
13074
13075 for (; sym_hashes < end_hashes; sym_hashes++)
13076 {
13077 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13078
13079 if ((sym_hash->root.type == bfd_link_hash_defined
13080 || sym_hash->root.type == bfd_link_hash_defweak)
13081 && sym_hash->root.u.def.section == sec)
13082 {
13083 bfd_vma value = sym_hash->root.u.def.value;
13084
13085 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13086 value &= MINUS_TWO;
13087 if (value > addr)
13088 sym_hash->root.u.def.value -= count;
13089 }
13090 }
13091
13092 return TRUE;
13093 }
13094
13095
13096 /* Opcodes needed for microMIPS relaxation as found in
13097 opcodes/micromips-opc.c. */
13098
13099 struct opcode_descriptor {
13100 unsigned long match;
13101 unsigned long mask;
13102 };
13103
13104 /* The $ra register aka $31. */
13105
13106 #define RA 31
13107
13108 /* 32-bit instruction format register fields. */
13109
13110 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13111 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13112
13113 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
13114
13115 #define OP16_VALID_REG(r) \
13116 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13117
13118
13119 /* 32-bit and 16-bit branches. */
13120
13121 static const struct opcode_descriptor b_insns_32[] = {
13122 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13123 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13124 { 0, 0 } /* End marker for find_match(). */
13125 };
13126
13127 static const struct opcode_descriptor bc_insn_32 =
13128 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13129
13130 static const struct opcode_descriptor bz_insn_32 =
13131 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13132
13133 static const struct opcode_descriptor bzal_insn_32 =
13134 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13135
13136 static const struct opcode_descriptor beq_insn_32 =
13137 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13138
13139 static const struct opcode_descriptor b_insn_16 =
13140 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13141
13142 static const struct opcode_descriptor bz_insn_16 =
13143 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13144
13145
13146 /* 32-bit and 16-bit branch EQ and NE zero. */
13147
13148 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13149 eq and second the ne. This convention is used when replacing a
13150 32-bit BEQ/BNE with the 16-bit version. */
13151
13152 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13153
13154 static const struct opcode_descriptor bz_rs_insns_32[] = {
13155 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13156 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13157 { 0, 0 } /* End marker for find_match(). */
13158 };
13159
13160 static const struct opcode_descriptor bz_rt_insns_32[] = {
13161 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13162 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13163 { 0, 0 } /* End marker for find_match(). */
13164 };
13165
13166 static const struct opcode_descriptor bzc_insns_32[] = {
13167 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13168 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13169 { 0, 0 } /* End marker for find_match(). */
13170 };
13171
13172 static const struct opcode_descriptor bz_insns_16[] = {
13173 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13174 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13175 { 0, 0 } /* End marker for find_match(). */
13176 };
13177
13178 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13179
13180 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
13181 #define BZ16_REG_FIELD(r) (((r) & 7) << 7)
13182
13183
13184 /* 32-bit instructions with a delay slot. */
13185
13186 static const struct opcode_descriptor jal_insn_32_bd16 =
13187 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13188
13189 static const struct opcode_descriptor jal_insn_32_bd32 =
13190 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13191
13192 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13193 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13194
13195 static const struct opcode_descriptor j_insn_32 =
13196 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13197
13198 static const struct opcode_descriptor jalr_insn_32 =
13199 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13200
13201 /* This table can be compacted, because no opcode replacement is made. */
13202
13203 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13204 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13205
13206 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13207 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13208
13209 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13210 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13211 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13212 { 0, 0 } /* End marker for find_match(). */
13213 };
13214
13215 /* This table can be compacted, because no opcode replacement is made. */
13216
13217 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13218 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13219
13220 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13221 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13222 { 0, 0 } /* End marker for find_match(). */
13223 };
13224
13225
13226 /* 16-bit instructions with a delay slot. */
13227
13228 static const struct opcode_descriptor jalr_insn_16_bd16 =
13229 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13230
13231 static const struct opcode_descriptor jalr_insn_16_bd32 =
13232 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13233
13234 static const struct opcode_descriptor jr_insn_16 =
13235 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13236
13237 #define JR16_REG(opcode) ((opcode) & 0x1f)
13238
13239 /* This table can be compacted, because no opcode replacement is made. */
13240
13241 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13242 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13243
13244 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13245 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13246 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13247 { 0, 0 } /* End marker for find_match(). */
13248 };
13249
13250
13251 /* LUI instruction. */
13252
13253 static const struct opcode_descriptor lui_insn =
13254 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13255
13256
13257 /* ADDIU instruction. */
13258
13259 static const struct opcode_descriptor addiu_insn =
13260 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13261
13262 static const struct opcode_descriptor addiupc_insn =
13263 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13264
13265 #define ADDIUPC_REG_FIELD(r) \
13266 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13267
13268
13269 /* Relaxable instructions in a JAL delay slot: MOVE. */
13270
13271 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13272 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13273 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13274 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13275
13276 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13277 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13278
13279 static const struct opcode_descriptor move_insns_32[] = {
13280 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13281 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13282 { 0, 0 } /* End marker for find_match(). */
13283 };
13284
13285 static const struct opcode_descriptor move_insn_16 =
13286 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13287
13288
13289 /* NOP instructions. */
13290
13291 static const struct opcode_descriptor nop_insn_32 =
13292 { /* "nop", "", */ 0x00000000, 0xffffffff };
13293
13294 static const struct opcode_descriptor nop_insn_16 =
13295 { /* "nop", "", */ 0x0c00, 0xffff };
13296
13297
13298 /* Instruction match support. */
13299
13300 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13301
13302 static int
13303 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13304 {
13305 unsigned long indx;
13306
13307 for (indx = 0; insn[indx].mask != 0; indx++)
13308 if (MATCH (opcode, insn[indx]))
13309 return indx;
13310
13311 return -1;
13312 }
13313
13314
13315 /* Branch and delay slot decoding support. */
13316
13317 /* If PTR points to what *might* be a 16-bit branch or jump, then
13318 return the minimum length of its delay slot, otherwise return 0.
13319 Non-zero results are not definitive as we might be checking against
13320 the second half of another instruction. */
13321
13322 static int
13323 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13324 {
13325 unsigned long opcode;
13326 int bdsize;
13327
13328 opcode = bfd_get_16 (abfd, ptr);
13329 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13330 /* 16-bit branch/jump with a 32-bit delay slot. */
13331 bdsize = 4;
13332 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13333 || find_match (opcode, ds_insns_16_bd16) >= 0)
13334 /* 16-bit branch/jump with a 16-bit delay slot. */
13335 bdsize = 2;
13336 else
13337 /* No delay slot. */
13338 bdsize = 0;
13339
13340 return bdsize;
13341 }
13342
13343 /* If PTR points to what *might* be a 32-bit branch or jump, then
13344 return the minimum length of its delay slot, otherwise return 0.
13345 Non-zero results are not definitive as we might be checking against
13346 the second half of another instruction. */
13347
13348 static int
13349 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13350 {
13351 unsigned long opcode;
13352 int bdsize;
13353
13354 opcode = bfd_get_micromips_32 (abfd, ptr);
13355 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13356 /* 32-bit branch/jump with a 32-bit delay slot. */
13357 bdsize = 4;
13358 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13359 /* 32-bit branch/jump with a 16-bit delay slot. */
13360 bdsize = 2;
13361 else
13362 /* No delay slot. */
13363 bdsize = 0;
13364
13365 return bdsize;
13366 }
13367
13368 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13369 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13370
13371 static bfd_boolean
13372 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13373 {
13374 unsigned long opcode;
13375
13376 opcode = bfd_get_16 (abfd, ptr);
13377 if (MATCH (opcode, b_insn_16)
13378 /* B16 */
13379 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13380 /* JR16 */
13381 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13382 /* BEQZ16, BNEZ16 */
13383 || (MATCH (opcode, jalr_insn_16_bd32)
13384 /* JALR16 */
13385 && reg != JR16_REG (opcode) && reg != RA))
13386 return TRUE;
13387
13388 return FALSE;
13389 }
13390
13391 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13392 then return TRUE, otherwise FALSE. */
13393
13394 static bfd_boolean
13395 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13396 {
13397 unsigned long opcode;
13398
13399 opcode = bfd_get_micromips_32 (abfd, ptr);
13400 if (MATCH (opcode, j_insn_32)
13401 /* J */
13402 || MATCH (opcode, bc_insn_32)
13403 /* BC1F, BC1T, BC2F, BC2T */
13404 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13405 /* JAL, JALX */
13406 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13407 /* BGEZ, BGTZ, BLEZ, BLTZ */
13408 || (MATCH (opcode, bzal_insn_32)
13409 /* BGEZAL, BLTZAL */
13410 && reg != OP32_SREG (opcode) && reg != RA)
13411 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13412 /* JALR, JALR.HB, BEQ, BNE */
13413 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13414 return TRUE;
13415
13416 return FALSE;
13417 }
13418
13419 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13420 IRELEND) at OFFSET indicate that there must be a compact branch there,
13421 then return TRUE, otherwise FALSE. */
13422
13423 static bfd_boolean
13424 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13425 const Elf_Internal_Rela *internal_relocs,
13426 const Elf_Internal_Rela *irelend)
13427 {
13428 const Elf_Internal_Rela *irel;
13429 unsigned long opcode;
13430
13431 opcode = bfd_get_micromips_32 (abfd, ptr);
13432 if (find_match (opcode, bzc_insns_32) < 0)
13433 return FALSE;
13434
13435 for (irel = internal_relocs; irel < irelend; irel++)
13436 if (irel->r_offset == offset
13437 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13438 return TRUE;
13439
13440 return FALSE;
13441 }
13442
13443 /* Bitsize checking. */
13444 #define IS_BITSIZE(val, N) \
13445 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13446 - (1ULL << ((N) - 1))) == (val))
13447
13448 \f
13449 bfd_boolean
13450 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13451 struct bfd_link_info *link_info,
13452 bfd_boolean *again)
13453 {
13454 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13455 Elf_Internal_Shdr *symtab_hdr;
13456 Elf_Internal_Rela *internal_relocs;
13457 Elf_Internal_Rela *irel, *irelend;
13458 bfd_byte *contents = NULL;
13459 Elf_Internal_Sym *isymbuf = NULL;
13460
13461 /* Assume nothing changes. */
13462 *again = FALSE;
13463
13464 /* We don't have to do anything for a relocatable link, if
13465 this section does not have relocs, or if this is not a
13466 code section. */
13467
13468 if (bfd_link_relocatable (link_info)
13469 || (sec->flags & SEC_RELOC) == 0
13470 || sec->reloc_count == 0
13471 || (sec->flags & SEC_CODE) == 0)
13472 return TRUE;
13473
13474 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13475
13476 /* Get a copy of the native relocations. */
13477 internal_relocs = (_bfd_elf_link_read_relocs
13478 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13479 link_info->keep_memory));
13480 if (internal_relocs == NULL)
13481 goto error_return;
13482
13483 /* Walk through them looking for relaxing opportunities. */
13484 irelend = internal_relocs + sec->reloc_count;
13485 for (irel = internal_relocs; irel < irelend; irel++)
13486 {
13487 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13488 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13489 bfd_boolean target_is_micromips_code_p;
13490 unsigned long opcode;
13491 bfd_vma symval;
13492 bfd_vma pcrval;
13493 bfd_byte *ptr;
13494 int fndopc;
13495
13496 /* The number of bytes to delete for relaxation and from where
13497 to delete these bytes starting at irel->r_offset. */
13498 int delcnt = 0;
13499 int deloff = 0;
13500
13501 /* If this isn't something that can be relaxed, then ignore
13502 this reloc. */
13503 if (r_type != R_MICROMIPS_HI16
13504 && r_type != R_MICROMIPS_PC16_S1
13505 && r_type != R_MICROMIPS_26_S1)
13506 continue;
13507
13508 /* Get the section contents if we haven't done so already. */
13509 if (contents == NULL)
13510 {
13511 /* Get cached copy if it exists. */
13512 if (elf_section_data (sec)->this_hdr.contents != NULL)
13513 contents = elf_section_data (sec)->this_hdr.contents;
13514 /* Go get them off disk. */
13515 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13516 goto error_return;
13517 }
13518 ptr = contents + irel->r_offset;
13519
13520 /* Read this BFD's local symbols if we haven't done so already. */
13521 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13522 {
13523 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13524 if (isymbuf == NULL)
13525 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13526 symtab_hdr->sh_info, 0,
13527 NULL, NULL, NULL);
13528 if (isymbuf == NULL)
13529 goto error_return;
13530 }
13531
13532 /* Get the value of the symbol referred to by the reloc. */
13533 if (r_symndx < symtab_hdr->sh_info)
13534 {
13535 /* A local symbol. */
13536 Elf_Internal_Sym *isym;
13537 asection *sym_sec;
13538
13539 isym = isymbuf + r_symndx;
13540 if (isym->st_shndx == SHN_UNDEF)
13541 sym_sec = bfd_und_section_ptr;
13542 else if (isym->st_shndx == SHN_ABS)
13543 sym_sec = bfd_abs_section_ptr;
13544 else if (isym->st_shndx == SHN_COMMON)
13545 sym_sec = bfd_com_section_ptr;
13546 else
13547 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13548 symval = (isym->st_value
13549 + sym_sec->output_section->vma
13550 + sym_sec->output_offset);
13551 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13552 }
13553 else
13554 {
13555 unsigned long indx;
13556 struct elf_link_hash_entry *h;
13557
13558 /* An external symbol. */
13559 indx = r_symndx - symtab_hdr->sh_info;
13560 h = elf_sym_hashes (abfd)[indx];
13561 BFD_ASSERT (h != NULL);
13562
13563 if (h->root.type != bfd_link_hash_defined
13564 && h->root.type != bfd_link_hash_defweak)
13565 /* This appears to be a reference to an undefined
13566 symbol. Just ignore it -- it will be caught by the
13567 regular reloc processing. */
13568 continue;
13569
13570 symval = (h->root.u.def.value
13571 + h->root.u.def.section->output_section->vma
13572 + h->root.u.def.section->output_offset);
13573 target_is_micromips_code_p = (!h->needs_plt
13574 && ELF_ST_IS_MICROMIPS (h->other));
13575 }
13576
13577
13578 /* For simplicity of coding, we are going to modify the
13579 section contents, the section relocs, and the BFD symbol
13580 table. We must tell the rest of the code not to free up this
13581 information. It would be possible to instead create a table
13582 of changes which have to be made, as is done in coff-mips.c;
13583 that would be more work, but would require less memory when
13584 the linker is run. */
13585
13586 /* Only 32-bit instructions relaxed. */
13587 if (irel->r_offset + 4 > sec->size)
13588 continue;
13589
13590 opcode = bfd_get_micromips_32 (abfd, ptr);
13591
13592 /* This is the pc-relative distance from the instruction the
13593 relocation is applied to, to the symbol referred. */
13594 pcrval = (symval
13595 - (sec->output_section->vma + sec->output_offset)
13596 - irel->r_offset);
13597
13598 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13599 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13600 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13601
13602 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13603
13604 where pcrval has first to be adjusted to apply against the LO16
13605 location (we make the adjustment later on, when we have figured
13606 out the offset). */
13607 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13608 {
13609 bfd_boolean bzc = FALSE;
13610 unsigned long nextopc;
13611 unsigned long reg;
13612 bfd_vma offset;
13613
13614 /* Give up if the previous reloc was a HI16 against this symbol
13615 too. */
13616 if (irel > internal_relocs
13617 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13618 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13619 continue;
13620
13621 /* Or if the next reloc is not a LO16 against this symbol. */
13622 if (irel + 1 >= irelend
13623 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13624 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13625 continue;
13626
13627 /* Or if the second next reloc is a LO16 against this symbol too. */
13628 if (irel + 2 >= irelend
13629 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13630 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13631 continue;
13632
13633 /* See if the LUI instruction *might* be in a branch delay slot.
13634 We check whether what looks like a 16-bit branch or jump is
13635 actually an immediate argument to a compact branch, and let
13636 it through if so. */
13637 if (irel->r_offset >= 2
13638 && check_br16_dslot (abfd, ptr - 2)
13639 && !(irel->r_offset >= 4
13640 && (bzc = check_relocated_bzc (abfd,
13641 ptr - 4, irel->r_offset - 4,
13642 internal_relocs, irelend))))
13643 continue;
13644 if (irel->r_offset >= 4
13645 && !bzc
13646 && check_br32_dslot (abfd, ptr - 4))
13647 continue;
13648
13649 reg = OP32_SREG (opcode);
13650
13651 /* We only relax adjacent instructions or ones separated with
13652 a branch or jump that has a delay slot. The branch or jump
13653 must not fiddle with the register used to hold the address.
13654 Subtract 4 for the LUI itself. */
13655 offset = irel[1].r_offset - irel[0].r_offset;
13656 switch (offset - 4)
13657 {
13658 case 0:
13659 break;
13660 case 2:
13661 if (check_br16 (abfd, ptr + 4, reg))
13662 break;
13663 continue;
13664 case 4:
13665 if (check_br32 (abfd, ptr + 4, reg))
13666 break;
13667 continue;
13668 default:
13669 continue;
13670 }
13671
13672 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
13673
13674 /* Give up unless the same register is used with both
13675 relocations. */
13676 if (OP32_SREG (nextopc) != reg)
13677 continue;
13678
13679 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13680 and rounding up to take masking of the two LSBs into account. */
13681 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13682
13683 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13684 if (IS_BITSIZE (symval, 16))
13685 {
13686 /* Fix the relocation's type. */
13687 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13688
13689 /* Instructions using R_MICROMIPS_LO16 have the base or
13690 source register in bits 20:16. This register becomes $0
13691 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
13692 nextopc &= ~0x001f0000;
13693 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13694 contents + irel[1].r_offset);
13695 }
13696
13697 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13698 We add 4 to take LUI deletion into account while checking
13699 the PC-relative distance. */
13700 else if (symval % 4 == 0
13701 && IS_BITSIZE (pcrval + 4, 25)
13702 && MATCH (nextopc, addiu_insn)
13703 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13704 && OP16_VALID_REG (OP32_TREG (nextopc)))
13705 {
13706 /* Fix the relocation's type. */
13707 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13708
13709 /* Replace ADDIU with the ADDIUPC version. */
13710 nextopc = (addiupc_insn.match
13711 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13712
13713 bfd_put_micromips_32 (abfd, nextopc,
13714 contents + irel[1].r_offset);
13715 }
13716
13717 /* Can't do anything, give up, sigh... */
13718 else
13719 continue;
13720
13721 /* Fix the relocation's type. */
13722 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13723
13724 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
13725 delcnt = 4;
13726 deloff = 0;
13727 }
13728
13729 /* Compact branch relaxation -- due to the multitude of macros
13730 employed by the compiler/assembler, compact branches are not
13731 always generated. Obviously, this can/will be fixed elsewhere,
13732 but there is no drawback in double checking it here. */
13733 else if (r_type == R_MICROMIPS_PC16_S1
13734 && irel->r_offset + 5 < sec->size
13735 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13736 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
13737 && ((!insn32
13738 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13739 nop_insn_16) ? 2 : 0))
13740 || (irel->r_offset + 7 < sec->size
13741 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13742 ptr + 4),
13743 nop_insn_32) ? 4 : 0))))
13744 {
13745 unsigned long reg;
13746
13747 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13748
13749 /* Replace BEQZ/BNEZ with the compact version. */
13750 opcode = (bzc_insns_32[fndopc].match
13751 | BZC32_REG_FIELD (reg)
13752 | (opcode & 0xffff)); /* Addend value. */
13753
13754 bfd_put_micromips_32 (abfd, opcode, ptr);
13755
13756 /* Delete the delay slot NOP: two or four bytes from
13757 irel->offset + 4; delcnt has already been set above. */
13758 deloff = 4;
13759 }
13760
13761 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
13762 to check the distance from the next instruction, so subtract 2. */
13763 else if (!insn32
13764 && r_type == R_MICROMIPS_PC16_S1
13765 && IS_BITSIZE (pcrval - 2, 11)
13766 && find_match (opcode, b_insns_32) >= 0)
13767 {
13768 /* Fix the relocation's type. */
13769 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13770
13771 /* Replace the 32-bit opcode with a 16-bit opcode. */
13772 bfd_put_16 (abfd,
13773 (b_insn_16.match
13774 | (opcode & 0x3ff)), /* Addend value. */
13775 ptr);
13776
13777 /* Delete 2 bytes from irel->r_offset + 2. */
13778 delcnt = 2;
13779 deloff = 2;
13780 }
13781
13782 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
13783 to check the distance from the next instruction, so subtract 2. */
13784 else if (!insn32
13785 && r_type == R_MICROMIPS_PC16_S1
13786 && IS_BITSIZE (pcrval - 2, 8)
13787 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13788 && OP16_VALID_REG (OP32_SREG (opcode)))
13789 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13790 && OP16_VALID_REG (OP32_TREG (opcode)))))
13791 {
13792 unsigned long reg;
13793
13794 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13795
13796 /* Fix the relocation's type. */
13797 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
13798
13799 /* Replace the 32-bit opcode with a 16-bit opcode. */
13800 bfd_put_16 (abfd,
13801 (bz_insns_16[fndopc].match
13802 | BZ16_REG_FIELD (reg)
13803 | (opcode & 0x7f)), /* Addend value. */
13804 ptr);
13805
13806 /* Delete 2 bytes from irel->r_offset + 2. */
13807 delcnt = 2;
13808 deloff = 2;
13809 }
13810
13811 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
13812 else if (!insn32
13813 && r_type == R_MICROMIPS_26_S1
13814 && target_is_micromips_code_p
13815 && irel->r_offset + 7 < sec->size
13816 && MATCH (opcode, jal_insn_32_bd32))
13817 {
13818 unsigned long n32opc;
13819 bfd_boolean relaxed = FALSE;
13820
13821 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
13822
13823 if (MATCH (n32opc, nop_insn_32))
13824 {
13825 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
13826 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
13827
13828 relaxed = TRUE;
13829 }
13830 else if (find_match (n32opc, move_insns_32) >= 0)
13831 {
13832 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
13833 bfd_put_16 (abfd,
13834 (move_insn_16.match
13835 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
13836 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
13837 ptr + 4);
13838
13839 relaxed = TRUE;
13840 }
13841 /* Other 32-bit instructions relaxable to 16-bit
13842 instructions will be handled here later. */
13843
13844 if (relaxed)
13845 {
13846 /* JAL with 32-bit delay slot that is changed to a JALS
13847 with 16-bit delay slot. */
13848 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
13849
13850 /* Delete 2 bytes from irel->r_offset + 6. */
13851 delcnt = 2;
13852 deloff = 6;
13853 }
13854 }
13855
13856 if (delcnt != 0)
13857 {
13858 /* Note that we've changed the relocs, section contents, etc. */
13859 elf_section_data (sec)->relocs = internal_relocs;
13860 elf_section_data (sec)->this_hdr.contents = contents;
13861 symtab_hdr->contents = (unsigned char *) isymbuf;
13862
13863 /* Delete bytes depending on the delcnt and deloff. */
13864 if (!mips_elf_relax_delete_bytes (abfd, sec,
13865 irel->r_offset + deloff, delcnt))
13866 goto error_return;
13867
13868 /* That will change things, so we should relax again.
13869 Note that this is not required, and it may be slow. */
13870 *again = TRUE;
13871 }
13872 }
13873
13874 if (isymbuf != NULL
13875 && symtab_hdr->contents != (unsigned char *) isymbuf)
13876 {
13877 if (! link_info->keep_memory)
13878 free (isymbuf);
13879 else
13880 {
13881 /* Cache the symbols for elf_link_input_bfd. */
13882 symtab_hdr->contents = (unsigned char *) isymbuf;
13883 }
13884 }
13885
13886 if (contents != NULL
13887 && elf_section_data (sec)->this_hdr.contents != contents)
13888 {
13889 if (! link_info->keep_memory)
13890 free (contents);
13891 else
13892 {
13893 /* Cache the section contents for elf_link_input_bfd. */
13894 elf_section_data (sec)->this_hdr.contents = contents;
13895 }
13896 }
13897
13898 if (internal_relocs != NULL
13899 && elf_section_data (sec)->relocs != internal_relocs)
13900 free (internal_relocs);
13901
13902 return TRUE;
13903
13904 error_return:
13905 if (isymbuf != NULL
13906 && symtab_hdr->contents != (unsigned char *) isymbuf)
13907 free (isymbuf);
13908 if (contents != NULL
13909 && elf_section_data (sec)->this_hdr.contents != contents)
13910 free (contents);
13911 if (internal_relocs != NULL
13912 && elf_section_data (sec)->relocs != internal_relocs)
13913 free (internal_relocs);
13914
13915 return FALSE;
13916 }
13917 \f
13918 /* Create a MIPS ELF linker hash table. */
13919
13920 struct bfd_link_hash_table *
13921 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
13922 {
13923 struct mips_elf_link_hash_table *ret;
13924 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
13925
13926 ret = bfd_zmalloc (amt);
13927 if (ret == NULL)
13928 return NULL;
13929
13930 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
13931 mips_elf_link_hash_newfunc,
13932 sizeof (struct mips_elf_link_hash_entry),
13933 MIPS_ELF_DATA))
13934 {
13935 free (ret);
13936 return NULL;
13937 }
13938 ret->root.init_plt_refcount.plist = NULL;
13939 ret->root.init_plt_offset.plist = NULL;
13940
13941 return &ret->root.root;
13942 }
13943
13944 /* Likewise, but indicate that the target is VxWorks. */
13945
13946 struct bfd_link_hash_table *
13947 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
13948 {
13949 struct bfd_link_hash_table *ret;
13950
13951 ret = _bfd_mips_elf_link_hash_table_create (abfd);
13952 if (ret)
13953 {
13954 struct mips_elf_link_hash_table *htab;
13955
13956 htab = (struct mips_elf_link_hash_table *) ret;
13957 htab->use_plts_and_copy_relocs = TRUE;
13958 htab->is_vxworks = TRUE;
13959 }
13960 return ret;
13961 }
13962
13963 /* A function that the linker calls if we are allowed to use PLTs
13964 and copy relocs. */
13965
13966 void
13967 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
13968 {
13969 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
13970 }
13971
13972 /* A function that the linker calls to select between all or only
13973 32-bit microMIPS instructions, and between making or ignoring
13974 branch relocation checks for invalid transitions between ISA modes. */
13975
13976 void
13977 _bfd_mips_elf_linker_flags (struct bfd_link_info *info, bfd_boolean insn32,
13978 bfd_boolean ignore_branch_isa)
13979 {
13980 mips_elf_hash_table (info)->insn32 = insn32;
13981 mips_elf_hash_table (info)->ignore_branch_isa = ignore_branch_isa;
13982 }
13983 \f
13984 /* Structure for saying that BFD machine EXTENSION extends BASE. */
13985
13986 struct mips_mach_extension
13987 {
13988 unsigned long extension, base;
13989 };
13990
13991
13992 /* An array describing how BFD machines relate to one another. The entries
13993 are ordered topologically with MIPS I extensions listed last. */
13994
13995 static const struct mips_mach_extension mips_mach_extensions[] =
13996 {
13997 /* MIPS64r2 extensions. */
13998 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
13999 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
14000 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
14001 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
14002 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 },
14003
14004 /* MIPS64 extensions. */
14005 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
14006 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
14007 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
14008
14009 /* MIPS V extensions. */
14010 { bfd_mach_mipsisa64, bfd_mach_mips5 },
14011
14012 /* R10000 extensions. */
14013 { bfd_mach_mips12000, bfd_mach_mips10000 },
14014 { bfd_mach_mips14000, bfd_mach_mips10000 },
14015 { bfd_mach_mips16000, bfd_mach_mips10000 },
14016
14017 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14018 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14019 better to allow vr5400 and vr5500 code to be merged anyway, since
14020 many libraries will just use the core ISA. Perhaps we could add
14021 some sort of ASE flag if this ever proves a problem. */
14022 { bfd_mach_mips5500, bfd_mach_mips5400 },
14023 { bfd_mach_mips5400, bfd_mach_mips5000 },
14024
14025 /* MIPS IV extensions. */
14026 { bfd_mach_mips5, bfd_mach_mips8000 },
14027 { bfd_mach_mips10000, bfd_mach_mips8000 },
14028 { bfd_mach_mips5000, bfd_mach_mips8000 },
14029 { bfd_mach_mips7000, bfd_mach_mips8000 },
14030 { bfd_mach_mips9000, bfd_mach_mips8000 },
14031
14032 /* VR4100 extensions. */
14033 { bfd_mach_mips4120, bfd_mach_mips4100 },
14034 { bfd_mach_mips4111, bfd_mach_mips4100 },
14035
14036 /* MIPS III extensions. */
14037 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14038 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14039 { bfd_mach_mips8000, bfd_mach_mips4000 },
14040 { bfd_mach_mips4650, bfd_mach_mips4000 },
14041 { bfd_mach_mips4600, bfd_mach_mips4000 },
14042 { bfd_mach_mips4400, bfd_mach_mips4000 },
14043 { bfd_mach_mips4300, bfd_mach_mips4000 },
14044 { bfd_mach_mips4100, bfd_mach_mips4000 },
14045 { bfd_mach_mips5900, bfd_mach_mips4000 },
14046
14047 /* MIPS32r3 extensions. */
14048 { bfd_mach_mips_interaptiv_mr2, bfd_mach_mipsisa32r3 },
14049
14050 /* MIPS32r2 extensions. */
14051 { bfd_mach_mipsisa32r3, bfd_mach_mipsisa32r2 },
14052
14053 /* MIPS32 extensions. */
14054 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14055
14056 /* MIPS II extensions. */
14057 { bfd_mach_mips4000, bfd_mach_mips6000 },
14058 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14059 { bfd_mach_mips4010, bfd_mach_mips6000 },
14060
14061 /* MIPS I extensions. */
14062 { bfd_mach_mips6000, bfd_mach_mips3000 },
14063 { bfd_mach_mips3900, bfd_mach_mips3000 }
14064 };
14065
14066 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14067
14068 static bfd_boolean
14069 mips_mach_extends_p (unsigned long base, unsigned long extension)
14070 {
14071 size_t i;
14072
14073 if (extension == base)
14074 return TRUE;
14075
14076 if (base == bfd_mach_mipsisa32
14077 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14078 return TRUE;
14079
14080 if (base == bfd_mach_mipsisa32r2
14081 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14082 return TRUE;
14083
14084 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14085 if (extension == mips_mach_extensions[i].extension)
14086 {
14087 extension = mips_mach_extensions[i].base;
14088 if (extension == base)
14089 return TRUE;
14090 }
14091
14092 return FALSE;
14093 }
14094
14095 /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14096
14097 static unsigned long
14098 bfd_mips_isa_ext_mach (unsigned int isa_ext)
14099 {
14100 switch (isa_ext)
14101 {
14102 case AFL_EXT_3900: return bfd_mach_mips3900;
14103 case AFL_EXT_4010: return bfd_mach_mips4010;
14104 case AFL_EXT_4100: return bfd_mach_mips4100;
14105 case AFL_EXT_4111: return bfd_mach_mips4111;
14106 case AFL_EXT_4120: return bfd_mach_mips4120;
14107 case AFL_EXT_4650: return bfd_mach_mips4650;
14108 case AFL_EXT_5400: return bfd_mach_mips5400;
14109 case AFL_EXT_5500: return bfd_mach_mips5500;
14110 case AFL_EXT_5900: return bfd_mach_mips5900;
14111 case AFL_EXT_10000: return bfd_mach_mips10000;
14112 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14113 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14114 case AFL_EXT_LOONGSON_3A: return bfd_mach_mips_loongson_3a;
14115 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
14116 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14117 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14118 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
14119 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14120 default: return bfd_mach_mips3000;
14121 }
14122 }
14123
14124 /* Return the .MIPS.abiflags value representing each ISA Extension. */
14125
14126 unsigned int
14127 bfd_mips_isa_ext (bfd *abfd)
14128 {
14129 switch (bfd_get_mach (abfd))
14130 {
14131 case bfd_mach_mips3900: return AFL_EXT_3900;
14132 case bfd_mach_mips4010: return AFL_EXT_4010;
14133 case bfd_mach_mips4100: return AFL_EXT_4100;
14134 case bfd_mach_mips4111: return AFL_EXT_4111;
14135 case bfd_mach_mips4120: return AFL_EXT_4120;
14136 case bfd_mach_mips4650: return AFL_EXT_4650;
14137 case bfd_mach_mips5400: return AFL_EXT_5400;
14138 case bfd_mach_mips5500: return AFL_EXT_5500;
14139 case bfd_mach_mips5900: return AFL_EXT_5900;
14140 case bfd_mach_mips10000: return AFL_EXT_10000;
14141 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14142 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14143 case bfd_mach_mips_loongson_3a: return AFL_EXT_LOONGSON_3A;
14144 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14145 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14146 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14147 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14148 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14149 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
14150 case bfd_mach_mips_interaptiv_mr2:
14151 return AFL_EXT_INTERAPTIV_MR2;
14152 default: return 0;
14153 }
14154 }
14155
14156 /* Encode ISA level and revision as a single value. */
14157 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14158
14159 /* Decode a single value into level and revision. */
14160 #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14161 #define ISA_REV(LEVREV) ((LEVREV) & 0x7)
14162
14163 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14164
14165 static void
14166 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14167 {
14168 int new_isa = 0;
14169 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14170 {
14171 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14172 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14173 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14174 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14175 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14176 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14177 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14178 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14179 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14180 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14181 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
14182 default:
14183 _bfd_error_handler
14184 /* xgettext:c-format */
14185 (_("%B: Unknown architecture %s"),
14186 abfd, bfd_printable_name (abfd));
14187 }
14188
14189 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14190 {
14191 abiflags->isa_level = ISA_LEVEL (new_isa);
14192 abiflags->isa_rev = ISA_REV (new_isa);
14193 }
14194
14195 /* Update the isa_ext if ABFD describes a further extension. */
14196 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14197 bfd_get_mach (abfd)))
14198 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
14199 }
14200
14201 /* Return true if the given ELF header flags describe a 32-bit binary. */
14202
14203 static bfd_boolean
14204 mips_32bit_flags_p (flagword flags)
14205 {
14206 return ((flags & EF_MIPS_32BITMODE) != 0
14207 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14208 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14209 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14210 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14211 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14212 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14213 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14214 }
14215
14216 /* Infer the content of the ABI flags based on the elf header. */
14217
14218 static void
14219 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14220 {
14221 obj_attribute *in_attr;
14222
14223 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14224 update_mips_abiflags_isa (abfd, abiflags);
14225
14226 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14227 abiflags->gpr_size = AFL_REG_32;
14228 else
14229 abiflags->gpr_size = AFL_REG_64;
14230
14231 abiflags->cpr1_size = AFL_REG_NONE;
14232
14233 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14234 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14235
14236 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14237 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14238 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14239 && abiflags->gpr_size == AFL_REG_32))
14240 abiflags->cpr1_size = AFL_REG_32;
14241 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14242 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14243 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14244 abiflags->cpr1_size = AFL_REG_64;
14245
14246 abiflags->cpr2_size = AFL_REG_NONE;
14247
14248 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14249 abiflags->ases |= AFL_ASE_MDMX;
14250 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14251 abiflags->ases |= AFL_ASE_MIPS16;
14252 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14253 abiflags->ases |= AFL_ASE_MICROMIPS;
14254
14255 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14256 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14257 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14258 && abiflags->isa_level >= 32
14259 && abiflags->isa_ext != AFL_EXT_LOONGSON_3A)
14260 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14261 }
14262
14263 /* We need to use a special link routine to handle the .reginfo and
14264 the .mdebug sections. We need to merge all instances of these
14265 sections together, not write them all out sequentially. */
14266
14267 bfd_boolean
14268 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14269 {
14270 asection *o;
14271 struct bfd_link_order *p;
14272 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14273 asection *rtproc_sec, *abiflags_sec;
14274 Elf32_RegInfo reginfo;
14275 struct ecoff_debug_info debug;
14276 struct mips_htab_traverse_info hti;
14277 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14278 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14279 HDRR *symhdr = &debug.symbolic_header;
14280 void *mdebug_handle = NULL;
14281 asection *s;
14282 EXTR esym;
14283 unsigned int i;
14284 bfd_size_type amt;
14285 struct mips_elf_link_hash_table *htab;
14286
14287 static const char * const secname[] =
14288 {
14289 ".text", ".init", ".fini", ".data",
14290 ".rodata", ".sdata", ".sbss", ".bss"
14291 };
14292 static const int sc[] =
14293 {
14294 scText, scInit, scFini, scData,
14295 scRData, scSData, scSBss, scBss
14296 };
14297
14298 htab = mips_elf_hash_table (info);
14299 BFD_ASSERT (htab != NULL);
14300
14301 /* Sort the dynamic symbols so that those with GOT entries come after
14302 those without. */
14303 if (!mips_elf_sort_hash_table (abfd, info))
14304 return FALSE;
14305
14306 /* Create any scheduled LA25 stubs. */
14307 hti.info = info;
14308 hti.output_bfd = abfd;
14309 hti.error = FALSE;
14310 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14311 if (hti.error)
14312 return FALSE;
14313
14314 /* Get a value for the GP register. */
14315 if (elf_gp (abfd) == 0)
14316 {
14317 struct bfd_link_hash_entry *h;
14318
14319 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
14320 if (h != NULL && h->type == bfd_link_hash_defined)
14321 elf_gp (abfd) = (h->u.def.value
14322 + h->u.def.section->output_section->vma
14323 + h->u.def.section->output_offset);
14324 else if (htab->is_vxworks
14325 && (h = bfd_link_hash_lookup (info->hash,
14326 "_GLOBAL_OFFSET_TABLE_",
14327 FALSE, FALSE, TRUE))
14328 && h->type == bfd_link_hash_defined)
14329 elf_gp (abfd) = (h->u.def.section->output_section->vma
14330 + h->u.def.section->output_offset
14331 + h->u.def.value);
14332 else if (bfd_link_relocatable (info))
14333 {
14334 bfd_vma lo = MINUS_ONE;
14335
14336 /* Find the GP-relative section with the lowest offset. */
14337 for (o = abfd->sections; o != NULL; o = o->next)
14338 if (o->vma < lo
14339 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14340 lo = o->vma;
14341
14342 /* And calculate GP relative to that. */
14343 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14344 }
14345 else
14346 {
14347 /* If the relocate_section function needs to do a reloc
14348 involving the GP value, it should make a reloc_dangerous
14349 callback to warn that GP is not defined. */
14350 }
14351 }
14352
14353 /* Go through the sections and collect the .reginfo and .mdebug
14354 information. */
14355 abiflags_sec = NULL;
14356 reginfo_sec = NULL;
14357 mdebug_sec = NULL;
14358 gptab_data_sec = NULL;
14359 gptab_bss_sec = NULL;
14360 for (o = abfd->sections; o != NULL; o = o->next)
14361 {
14362 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14363 {
14364 /* We have found the .MIPS.abiflags section in the output file.
14365 Look through all the link_orders comprising it and remove them.
14366 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14367 for (p = o->map_head.link_order; p != NULL; p = p->next)
14368 {
14369 asection *input_section;
14370
14371 if (p->type != bfd_indirect_link_order)
14372 {
14373 if (p->type == bfd_data_link_order)
14374 continue;
14375 abort ();
14376 }
14377
14378 input_section = p->u.indirect.section;
14379
14380 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14381 elf_link_input_bfd ignores this section. */
14382 input_section->flags &= ~SEC_HAS_CONTENTS;
14383 }
14384
14385 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14386 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14387
14388 /* Skip this section later on (I don't think this currently
14389 matters, but someday it might). */
14390 o->map_head.link_order = NULL;
14391
14392 abiflags_sec = o;
14393 }
14394
14395 if (strcmp (o->name, ".reginfo") == 0)
14396 {
14397 memset (&reginfo, 0, sizeof reginfo);
14398
14399 /* We have found the .reginfo section in the output file.
14400 Look through all the link_orders comprising it and merge
14401 the information together. */
14402 for (p = o->map_head.link_order; p != NULL; p = p->next)
14403 {
14404 asection *input_section;
14405 bfd *input_bfd;
14406 Elf32_External_RegInfo ext;
14407 Elf32_RegInfo sub;
14408
14409 if (p->type != bfd_indirect_link_order)
14410 {
14411 if (p->type == bfd_data_link_order)
14412 continue;
14413 abort ();
14414 }
14415
14416 input_section = p->u.indirect.section;
14417 input_bfd = input_section->owner;
14418
14419 if (! bfd_get_section_contents (input_bfd, input_section,
14420 &ext, 0, sizeof ext))
14421 return FALSE;
14422
14423 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14424
14425 reginfo.ri_gprmask |= sub.ri_gprmask;
14426 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14427 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14428 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14429 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14430
14431 /* ri_gp_value is set by the function
14432 mips_elf32_section_processing when the section is
14433 finally written out. */
14434
14435 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14436 elf_link_input_bfd ignores this section. */
14437 input_section->flags &= ~SEC_HAS_CONTENTS;
14438 }
14439
14440 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14441 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14442
14443 /* Skip this section later on (I don't think this currently
14444 matters, but someday it might). */
14445 o->map_head.link_order = NULL;
14446
14447 reginfo_sec = o;
14448 }
14449
14450 if (strcmp (o->name, ".mdebug") == 0)
14451 {
14452 struct extsym_info einfo;
14453 bfd_vma last;
14454
14455 /* We have found the .mdebug section in the output file.
14456 Look through all the link_orders comprising it and merge
14457 the information together. */
14458 symhdr->magic = swap->sym_magic;
14459 /* FIXME: What should the version stamp be? */
14460 symhdr->vstamp = 0;
14461 symhdr->ilineMax = 0;
14462 symhdr->cbLine = 0;
14463 symhdr->idnMax = 0;
14464 symhdr->ipdMax = 0;
14465 symhdr->isymMax = 0;
14466 symhdr->ioptMax = 0;
14467 symhdr->iauxMax = 0;
14468 symhdr->issMax = 0;
14469 symhdr->issExtMax = 0;
14470 symhdr->ifdMax = 0;
14471 symhdr->crfd = 0;
14472 symhdr->iextMax = 0;
14473
14474 /* We accumulate the debugging information itself in the
14475 debug_info structure. */
14476 debug.line = NULL;
14477 debug.external_dnr = NULL;
14478 debug.external_pdr = NULL;
14479 debug.external_sym = NULL;
14480 debug.external_opt = NULL;
14481 debug.external_aux = NULL;
14482 debug.ss = NULL;
14483 debug.ssext = debug.ssext_end = NULL;
14484 debug.external_fdr = NULL;
14485 debug.external_rfd = NULL;
14486 debug.external_ext = debug.external_ext_end = NULL;
14487
14488 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14489 if (mdebug_handle == NULL)
14490 return FALSE;
14491
14492 esym.jmptbl = 0;
14493 esym.cobol_main = 0;
14494 esym.weakext = 0;
14495 esym.reserved = 0;
14496 esym.ifd = ifdNil;
14497 esym.asym.iss = issNil;
14498 esym.asym.st = stLocal;
14499 esym.asym.reserved = 0;
14500 esym.asym.index = indexNil;
14501 last = 0;
14502 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14503 {
14504 esym.asym.sc = sc[i];
14505 s = bfd_get_section_by_name (abfd, secname[i]);
14506 if (s != NULL)
14507 {
14508 esym.asym.value = s->vma;
14509 last = s->vma + s->size;
14510 }
14511 else
14512 esym.asym.value = last;
14513 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14514 secname[i], &esym))
14515 return FALSE;
14516 }
14517
14518 for (p = o->map_head.link_order; p != NULL; p = p->next)
14519 {
14520 asection *input_section;
14521 bfd *input_bfd;
14522 const struct ecoff_debug_swap *input_swap;
14523 struct ecoff_debug_info input_debug;
14524 char *eraw_src;
14525 char *eraw_end;
14526
14527 if (p->type != bfd_indirect_link_order)
14528 {
14529 if (p->type == bfd_data_link_order)
14530 continue;
14531 abort ();
14532 }
14533
14534 input_section = p->u.indirect.section;
14535 input_bfd = input_section->owner;
14536
14537 if (!is_mips_elf (input_bfd))
14538 {
14539 /* I don't know what a non MIPS ELF bfd would be
14540 doing with a .mdebug section, but I don't really
14541 want to deal with it. */
14542 continue;
14543 }
14544
14545 input_swap = (get_elf_backend_data (input_bfd)
14546 ->elf_backend_ecoff_debug_swap);
14547
14548 BFD_ASSERT (p->size == input_section->size);
14549
14550 /* The ECOFF linking code expects that we have already
14551 read in the debugging information and set up an
14552 ecoff_debug_info structure, so we do that now. */
14553 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14554 &input_debug))
14555 return FALSE;
14556
14557 if (! (bfd_ecoff_debug_accumulate
14558 (mdebug_handle, abfd, &debug, swap, input_bfd,
14559 &input_debug, input_swap, info)))
14560 return FALSE;
14561
14562 /* Loop through the external symbols. For each one with
14563 interesting information, try to find the symbol in
14564 the linker global hash table and save the information
14565 for the output external symbols. */
14566 eraw_src = input_debug.external_ext;
14567 eraw_end = (eraw_src
14568 + (input_debug.symbolic_header.iextMax
14569 * input_swap->external_ext_size));
14570 for (;
14571 eraw_src < eraw_end;
14572 eraw_src += input_swap->external_ext_size)
14573 {
14574 EXTR ext;
14575 const char *name;
14576 struct mips_elf_link_hash_entry *h;
14577
14578 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
14579 if (ext.asym.sc == scNil
14580 || ext.asym.sc == scUndefined
14581 || ext.asym.sc == scSUndefined)
14582 continue;
14583
14584 name = input_debug.ssext + ext.asym.iss;
14585 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
14586 name, FALSE, FALSE, TRUE);
14587 if (h == NULL || h->esym.ifd != -2)
14588 continue;
14589
14590 if (ext.ifd != -1)
14591 {
14592 BFD_ASSERT (ext.ifd
14593 < input_debug.symbolic_header.ifdMax);
14594 ext.ifd = input_debug.ifdmap[ext.ifd];
14595 }
14596
14597 h->esym = ext;
14598 }
14599
14600 /* Free up the information we just read. */
14601 free (input_debug.line);
14602 free (input_debug.external_dnr);
14603 free (input_debug.external_pdr);
14604 free (input_debug.external_sym);
14605 free (input_debug.external_opt);
14606 free (input_debug.external_aux);
14607 free (input_debug.ss);
14608 free (input_debug.ssext);
14609 free (input_debug.external_fdr);
14610 free (input_debug.external_rfd);
14611 free (input_debug.external_ext);
14612
14613 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14614 elf_link_input_bfd ignores this section. */
14615 input_section->flags &= ~SEC_HAS_CONTENTS;
14616 }
14617
14618 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
14619 {
14620 /* Create .rtproc section. */
14621 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
14622 if (rtproc_sec == NULL)
14623 {
14624 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14625 | SEC_LINKER_CREATED | SEC_READONLY);
14626
14627 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14628 ".rtproc",
14629 flags);
14630 if (rtproc_sec == NULL
14631 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
14632 return FALSE;
14633 }
14634
14635 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14636 info, rtproc_sec,
14637 &debug))
14638 return FALSE;
14639 }
14640
14641 /* Build the external symbol information. */
14642 einfo.abfd = abfd;
14643 einfo.info = info;
14644 einfo.debug = &debug;
14645 einfo.swap = swap;
14646 einfo.failed = FALSE;
14647 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
14648 mips_elf_output_extsym, &einfo);
14649 if (einfo.failed)
14650 return FALSE;
14651
14652 /* Set the size of the .mdebug section. */
14653 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
14654
14655 /* Skip this section later on (I don't think this currently
14656 matters, but someday it might). */
14657 o->map_head.link_order = NULL;
14658
14659 mdebug_sec = o;
14660 }
14661
14662 if (CONST_STRNEQ (o->name, ".gptab."))
14663 {
14664 const char *subname;
14665 unsigned int c;
14666 Elf32_gptab *tab;
14667 Elf32_External_gptab *ext_tab;
14668 unsigned int j;
14669
14670 /* The .gptab.sdata and .gptab.sbss sections hold
14671 information describing how the small data area would
14672 change depending upon the -G switch. These sections
14673 not used in executables files. */
14674 if (! bfd_link_relocatable (info))
14675 {
14676 for (p = o->map_head.link_order; p != NULL; p = p->next)
14677 {
14678 asection *input_section;
14679
14680 if (p->type != bfd_indirect_link_order)
14681 {
14682 if (p->type == bfd_data_link_order)
14683 continue;
14684 abort ();
14685 }
14686
14687 input_section = p->u.indirect.section;
14688
14689 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14690 elf_link_input_bfd ignores this section. */
14691 input_section->flags &= ~SEC_HAS_CONTENTS;
14692 }
14693
14694 /* Skip this section later on (I don't think this
14695 currently matters, but someday it might). */
14696 o->map_head.link_order = NULL;
14697
14698 /* Really remove the section. */
14699 bfd_section_list_remove (abfd, o);
14700 --abfd->section_count;
14701
14702 continue;
14703 }
14704
14705 /* There is one gptab for initialized data, and one for
14706 uninitialized data. */
14707 if (strcmp (o->name, ".gptab.sdata") == 0)
14708 gptab_data_sec = o;
14709 else if (strcmp (o->name, ".gptab.sbss") == 0)
14710 gptab_bss_sec = o;
14711 else
14712 {
14713 _bfd_error_handler
14714 /* xgettext:c-format */
14715 (_("%B: illegal section name `%A'"), abfd, o);
14716 bfd_set_error (bfd_error_nonrepresentable_section);
14717 return FALSE;
14718 }
14719
14720 /* The linker script always combines .gptab.data and
14721 .gptab.sdata into .gptab.sdata, and likewise for
14722 .gptab.bss and .gptab.sbss. It is possible that there is
14723 no .sdata or .sbss section in the output file, in which
14724 case we must change the name of the output section. */
14725 subname = o->name + sizeof ".gptab" - 1;
14726 if (bfd_get_section_by_name (abfd, subname) == NULL)
14727 {
14728 if (o == gptab_data_sec)
14729 o->name = ".gptab.data";
14730 else
14731 o->name = ".gptab.bss";
14732 subname = o->name + sizeof ".gptab" - 1;
14733 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14734 }
14735
14736 /* Set up the first entry. */
14737 c = 1;
14738 amt = c * sizeof (Elf32_gptab);
14739 tab = bfd_malloc (amt);
14740 if (tab == NULL)
14741 return FALSE;
14742 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14743 tab[0].gt_header.gt_unused = 0;
14744
14745 /* Combine the input sections. */
14746 for (p = o->map_head.link_order; p != NULL; p = p->next)
14747 {
14748 asection *input_section;
14749 bfd *input_bfd;
14750 bfd_size_type size;
14751 unsigned long last;
14752 bfd_size_type gpentry;
14753
14754 if (p->type != bfd_indirect_link_order)
14755 {
14756 if (p->type == bfd_data_link_order)
14757 continue;
14758 abort ();
14759 }
14760
14761 input_section = p->u.indirect.section;
14762 input_bfd = input_section->owner;
14763
14764 /* Combine the gptab entries for this input section one
14765 by one. We know that the input gptab entries are
14766 sorted by ascending -G value. */
14767 size = input_section->size;
14768 last = 0;
14769 for (gpentry = sizeof (Elf32_External_gptab);
14770 gpentry < size;
14771 gpentry += sizeof (Elf32_External_gptab))
14772 {
14773 Elf32_External_gptab ext_gptab;
14774 Elf32_gptab int_gptab;
14775 unsigned long val;
14776 unsigned long add;
14777 bfd_boolean exact;
14778 unsigned int look;
14779
14780 if (! (bfd_get_section_contents
14781 (input_bfd, input_section, &ext_gptab, gpentry,
14782 sizeof (Elf32_External_gptab))))
14783 {
14784 free (tab);
14785 return FALSE;
14786 }
14787
14788 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
14789 &int_gptab);
14790 val = int_gptab.gt_entry.gt_g_value;
14791 add = int_gptab.gt_entry.gt_bytes - last;
14792
14793 exact = FALSE;
14794 for (look = 1; look < c; look++)
14795 {
14796 if (tab[look].gt_entry.gt_g_value >= val)
14797 tab[look].gt_entry.gt_bytes += add;
14798
14799 if (tab[look].gt_entry.gt_g_value == val)
14800 exact = TRUE;
14801 }
14802
14803 if (! exact)
14804 {
14805 Elf32_gptab *new_tab;
14806 unsigned int max;
14807
14808 /* We need a new table entry. */
14809 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
14810 new_tab = bfd_realloc (tab, amt);
14811 if (new_tab == NULL)
14812 {
14813 free (tab);
14814 return FALSE;
14815 }
14816 tab = new_tab;
14817 tab[c].gt_entry.gt_g_value = val;
14818 tab[c].gt_entry.gt_bytes = add;
14819
14820 /* Merge in the size for the next smallest -G
14821 value, since that will be implied by this new
14822 value. */
14823 max = 0;
14824 for (look = 1; look < c; look++)
14825 {
14826 if (tab[look].gt_entry.gt_g_value < val
14827 && (max == 0
14828 || (tab[look].gt_entry.gt_g_value
14829 > tab[max].gt_entry.gt_g_value)))
14830 max = look;
14831 }
14832 if (max != 0)
14833 tab[c].gt_entry.gt_bytes +=
14834 tab[max].gt_entry.gt_bytes;
14835
14836 ++c;
14837 }
14838
14839 last = int_gptab.gt_entry.gt_bytes;
14840 }
14841
14842 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14843 elf_link_input_bfd ignores this section. */
14844 input_section->flags &= ~SEC_HAS_CONTENTS;
14845 }
14846
14847 /* The table must be sorted by -G value. */
14848 if (c > 2)
14849 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
14850
14851 /* Swap out the table. */
14852 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
14853 ext_tab = bfd_alloc (abfd, amt);
14854 if (ext_tab == NULL)
14855 {
14856 free (tab);
14857 return FALSE;
14858 }
14859
14860 for (j = 0; j < c; j++)
14861 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
14862 free (tab);
14863
14864 o->size = c * sizeof (Elf32_External_gptab);
14865 o->contents = (bfd_byte *) ext_tab;
14866
14867 /* Skip this section later on (I don't think this currently
14868 matters, but someday it might). */
14869 o->map_head.link_order = NULL;
14870 }
14871 }
14872
14873 /* Invoke the regular ELF backend linker to do all the work. */
14874 if (!bfd_elf_final_link (abfd, info))
14875 return FALSE;
14876
14877 /* Now write out the computed sections. */
14878
14879 if (abiflags_sec != NULL)
14880 {
14881 Elf_External_ABIFlags_v0 ext;
14882 Elf_Internal_ABIFlags_v0 *abiflags;
14883
14884 abiflags = &mips_elf_tdata (abfd)->abiflags;
14885
14886 /* Set up the abiflags if no valid input sections were found. */
14887 if (!mips_elf_tdata (abfd)->abiflags_valid)
14888 {
14889 infer_mips_abiflags (abfd, abiflags);
14890 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
14891 }
14892 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
14893 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
14894 return FALSE;
14895 }
14896
14897 if (reginfo_sec != NULL)
14898 {
14899 Elf32_External_RegInfo ext;
14900
14901 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
14902 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
14903 return FALSE;
14904 }
14905
14906 if (mdebug_sec != NULL)
14907 {
14908 BFD_ASSERT (abfd->output_has_begun);
14909 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
14910 swap, info,
14911 mdebug_sec->filepos))
14912 return FALSE;
14913
14914 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
14915 }
14916
14917 if (gptab_data_sec != NULL)
14918 {
14919 if (! bfd_set_section_contents (abfd, gptab_data_sec,
14920 gptab_data_sec->contents,
14921 0, gptab_data_sec->size))
14922 return FALSE;
14923 }
14924
14925 if (gptab_bss_sec != NULL)
14926 {
14927 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
14928 gptab_bss_sec->contents,
14929 0, gptab_bss_sec->size))
14930 return FALSE;
14931 }
14932
14933 if (SGI_COMPAT (abfd))
14934 {
14935 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
14936 if (rtproc_sec != NULL)
14937 {
14938 if (! bfd_set_section_contents (abfd, rtproc_sec,
14939 rtproc_sec->contents,
14940 0, rtproc_sec->size))
14941 return FALSE;
14942 }
14943 }
14944
14945 return TRUE;
14946 }
14947 \f
14948 /* Merge object file header flags from IBFD into OBFD. Raise an error
14949 if there are conflicting settings. */
14950
14951 static bfd_boolean
14952 mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info)
14953 {
14954 bfd *obfd = info->output_bfd;
14955 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
14956 flagword old_flags;
14957 flagword new_flags;
14958 bfd_boolean ok;
14959
14960 new_flags = elf_elfheader (ibfd)->e_flags;
14961 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
14962 old_flags = elf_elfheader (obfd)->e_flags;
14963
14964 /* Check flag compatibility. */
14965
14966 new_flags &= ~EF_MIPS_NOREORDER;
14967 old_flags &= ~EF_MIPS_NOREORDER;
14968
14969 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
14970 doesn't seem to matter. */
14971 new_flags &= ~EF_MIPS_XGOT;
14972 old_flags &= ~EF_MIPS_XGOT;
14973
14974 /* MIPSpro generates ucode info in n64 objects. Again, we should
14975 just be able to ignore this. */
14976 new_flags &= ~EF_MIPS_UCODE;
14977 old_flags &= ~EF_MIPS_UCODE;
14978
14979 /* DSOs should only be linked with CPIC code. */
14980 if ((ibfd->flags & DYNAMIC) != 0)
14981 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
14982
14983 if (new_flags == old_flags)
14984 return TRUE;
14985
14986 ok = TRUE;
14987
14988 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
14989 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
14990 {
14991 _bfd_error_handler
14992 (_("%B: warning: linking abicalls files with non-abicalls files"),
14993 ibfd);
14994 ok = TRUE;
14995 }
14996
14997 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
14998 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
14999 if (! (new_flags & EF_MIPS_PIC))
15000 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
15001
15002 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15003 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15004
15005 /* Compare the ISAs. */
15006 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
15007 {
15008 _bfd_error_handler
15009 (_("%B: linking 32-bit code with 64-bit code"),
15010 ibfd);
15011 ok = FALSE;
15012 }
15013 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15014 {
15015 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15016 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
15017 {
15018 /* Copy the architecture info from IBFD to OBFD. Also copy
15019 the 32-bit flag (if set) so that we continue to recognise
15020 OBFD as a 32-bit binary. */
15021 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15022 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15023 elf_elfheader (obfd)->e_flags
15024 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15025
15026 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15027 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15028
15029 /* Copy across the ABI flags if OBFD doesn't use them
15030 and if that was what caused us to treat IBFD as 32-bit. */
15031 if ((old_flags & EF_MIPS_ABI) == 0
15032 && mips_32bit_flags_p (new_flags)
15033 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15034 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15035 }
15036 else
15037 {
15038 /* The ISAs aren't compatible. */
15039 _bfd_error_handler
15040 /* xgettext:c-format */
15041 (_("%B: linking %s module with previous %s modules"),
15042 ibfd,
15043 bfd_printable_name (ibfd),
15044 bfd_printable_name (obfd));
15045 ok = FALSE;
15046 }
15047 }
15048
15049 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15050 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15051
15052 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15053 does set EI_CLASS differently from any 32-bit ABI. */
15054 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15055 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15056 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15057 {
15058 /* Only error if both are set (to different values). */
15059 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15060 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15061 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15062 {
15063 _bfd_error_handler
15064 /* xgettext:c-format */
15065 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
15066 ibfd,
15067 elf_mips_abi_name (ibfd),
15068 elf_mips_abi_name (obfd));
15069 ok = FALSE;
15070 }
15071 new_flags &= ~EF_MIPS_ABI;
15072 old_flags &= ~EF_MIPS_ABI;
15073 }
15074
15075 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15076 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15077 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15078 {
15079 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15080 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15081 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15082 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15083 int micro_mis = old_m16 && new_micro;
15084 int m16_mis = old_micro && new_m16;
15085
15086 if (m16_mis || micro_mis)
15087 {
15088 _bfd_error_handler
15089 /* xgettext:c-format */
15090 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
15091 ibfd,
15092 m16_mis ? "MIPS16" : "microMIPS",
15093 m16_mis ? "microMIPS" : "MIPS16");
15094 ok = FALSE;
15095 }
15096
15097 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15098
15099 new_flags &= ~ EF_MIPS_ARCH_ASE;
15100 old_flags &= ~ EF_MIPS_ARCH_ASE;
15101 }
15102
15103 /* Compare NaN encodings. */
15104 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15105 {
15106 /* xgettext:c-format */
15107 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15108 ibfd,
15109 (new_flags & EF_MIPS_NAN2008
15110 ? "-mnan=2008" : "-mnan=legacy"),
15111 (old_flags & EF_MIPS_NAN2008
15112 ? "-mnan=2008" : "-mnan=legacy"));
15113 ok = FALSE;
15114 new_flags &= ~EF_MIPS_NAN2008;
15115 old_flags &= ~EF_MIPS_NAN2008;
15116 }
15117
15118 /* Compare FP64 state. */
15119 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15120 {
15121 /* xgettext:c-format */
15122 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15123 ibfd,
15124 (new_flags & EF_MIPS_FP64
15125 ? "-mfp64" : "-mfp32"),
15126 (old_flags & EF_MIPS_FP64
15127 ? "-mfp64" : "-mfp32"));
15128 ok = FALSE;
15129 new_flags &= ~EF_MIPS_FP64;
15130 old_flags &= ~EF_MIPS_FP64;
15131 }
15132
15133 /* Warn about any other mismatches */
15134 if (new_flags != old_flags)
15135 {
15136 /* xgettext:c-format */
15137 _bfd_error_handler
15138 (_("%B: uses different e_flags (%#x) fields than previous modules "
15139 "(%#x)"),
15140 ibfd, new_flags, old_flags);
15141 ok = FALSE;
15142 }
15143
15144 return ok;
15145 }
15146
15147 /* Merge object attributes from IBFD into OBFD. Raise an error if
15148 there are conflicting attributes. */
15149 static bfd_boolean
15150 mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
15151 {
15152 bfd *obfd = info->output_bfd;
15153 obj_attribute *in_attr;
15154 obj_attribute *out_attr;
15155 bfd *abi_fp_bfd;
15156 bfd *abi_msa_bfd;
15157
15158 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15159 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15160 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
15161 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15162
15163 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15164 if (!abi_msa_bfd
15165 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15166 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15167
15168 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15169 {
15170 /* This is the first object. Copy the attributes. */
15171 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15172
15173 /* Use the Tag_null value to indicate the attributes have been
15174 initialized. */
15175 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15176
15177 return TRUE;
15178 }
15179
15180 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15181 non-conflicting ones. */
15182 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15183 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15184 {
15185 int out_fp, in_fp;
15186
15187 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15188 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15189 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15190 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15191 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
15192 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15193 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15194 || in_fp == Val_GNU_MIPS_ABI_FP_64
15195 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15196 {
15197 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15198 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15199 }
15200 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15201 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15202 || out_fp == Val_GNU_MIPS_ABI_FP_64
15203 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15204 /* Keep the current setting. */;
15205 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15206 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15207 {
15208 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15209 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15210 }
15211 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15212 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15213 /* Keep the current setting. */;
15214 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15215 {
15216 const char *out_string, *in_string;
15217
15218 out_string = _bfd_mips_fp_abi_string (out_fp);
15219 in_string = _bfd_mips_fp_abi_string (in_fp);
15220 /* First warn about cases involving unrecognised ABIs. */
15221 if (!out_string && !in_string)
15222 /* xgettext:c-format */
15223 _bfd_error_handler
15224 (_("Warning: %B uses unknown floating point ABI %d "
15225 "(set by %B), %B uses unknown floating point ABI %d"),
15226 obfd, out_fp, abi_fp_bfd, ibfd, in_fp);
15227 else if (!out_string)
15228 _bfd_error_handler
15229 /* xgettext:c-format */
15230 (_("Warning: %B uses unknown floating point ABI %d "
15231 "(set by %B), %B uses %s"),
15232 obfd, out_fp, abi_fp_bfd, ibfd, in_string);
15233 else if (!in_string)
15234 _bfd_error_handler
15235 /* xgettext:c-format */
15236 (_("Warning: %B uses %s (set by %B), "
15237 "%B uses unknown floating point ABI %d"),
15238 obfd, out_string, abi_fp_bfd, ibfd, in_fp);
15239 else
15240 {
15241 /* If one of the bfds is soft-float, the other must be
15242 hard-float. The exact choice of hard-float ABI isn't
15243 really relevant to the error message. */
15244 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15245 out_string = "-mhard-float";
15246 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15247 in_string = "-mhard-float";
15248 _bfd_error_handler
15249 /* xgettext:c-format */
15250 (_("Warning: %B uses %s (set by %B), %B uses %s"),
15251 obfd, out_string, abi_fp_bfd, ibfd, in_string);
15252 }
15253 }
15254 }
15255
15256 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15257 non-conflicting ones. */
15258 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15259 {
15260 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15261 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15262 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15263 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15264 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15265 {
15266 case Val_GNU_MIPS_ABI_MSA_128:
15267 _bfd_error_handler
15268 /* xgettext:c-format */
15269 (_("Warning: %B uses %s (set by %B), "
15270 "%B uses unknown MSA ABI %d"),
15271 obfd, "-mmsa", abi_msa_bfd,
15272 ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15273 break;
15274
15275 default:
15276 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15277 {
15278 case Val_GNU_MIPS_ABI_MSA_128:
15279 _bfd_error_handler
15280 /* xgettext:c-format */
15281 (_("Warning: %B uses unknown MSA ABI %d "
15282 "(set by %B), %B uses %s"),
15283 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15284 abi_msa_bfd, ibfd, "-mmsa");
15285 break;
15286
15287 default:
15288 _bfd_error_handler
15289 /* xgettext:c-format */
15290 (_("Warning: %B uses unknown MSA ABI %d "
15291 "(set by %B), %B uses unknown MSA ABI %d"),
15292 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15293 abi_msa_bfd, ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15294 break;
15295 }
15296 }
15297 }
15298
15299 /* Merge Tag_compatibility attributes and any common GNU ones. */
15300 return _bfd_elf_merge_object_attributes (ibfd, info);
15301 }
15302
15303 /* Merge object ABI flags from IBFD into OBFD. Raise an error if
15304 there are conflicting settings. */
15305
15306 static bfd_boolean
15307 mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15308 {
15309 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15310 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15311 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15312
15313 /* Update the output abiflags fp_abi using the computed fp_abi. */
15314 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15315
15316 #define max(a, b) ((a) > (b) ? (a) : (b))
15317 /* Merge abiflags. */
15318 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15319 in_tdata->abiflags.isa_level);
15320 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15321 in_tdata->abiflags.isa_rev);
15322 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15323 in_tdata->abiflags.gpr_size);
15324 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15325 in_tdata->abiflags.cpr1_size);
15326 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15327 in_tdata->abiflags.cpr2_size);
15328 #undef max
15329 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15330 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15331
15332 return TRUE;
15333 }
15334
15335 /* Merge backend specific data from an object file to the output
15336 object file when linking. */
15337
15338 bfd_boolean
15339 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
15340 {
15341 bfd *obfd = info->output_bfd;
15342 struct mips_elf_obj_tdata *out_tdata;
15343 struct mips_elf_obj_tdata *in_tdata;
15344 bfd_boolean null_input_bfd = TRUE;
15345 asection *sec;
15346 bfd_boolean ok;
15347
15348 /* Check if we have the same endianness. */
15349 if (! _bfd_generic_verify_endian_match (ibfd, info))
15350 {
15351 _bfd_error_handler
15352 (_("%B: endianness incompatible with that of the selected emulation"),
15353 ibfd);
15354 return FALSE;
15355 }
15356
15357 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15358 return TRUE;
15359
15360 in_tdata = mips_elf_tdata (ibfd);
15361 out_tdata = mips_elf_tdata (obfd);
15362
15363 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15364 {
15365 _bfd_error_handler
15366 (_("%B: ABI is incompatible with that of the selected emulation"),
15367 ibfd);
15368 return FALSE;
15369 }
15370
15371 /* Check to see if the input BFD actually contains any sections. If not,
15372 then it has no attributes, and its flags may not have been initialized
15373 either, but it cannot actually cause any incompatibility. */
15374 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15375 {
15376 /* Ignore synthetic sections and empty .text, .data and .bss sections
15377 which are automatically generated by gas. Also ignore fake
15378 (s)common sections, since merely defining a common symbol does
15379 not affect compatibility. */
15380 if ((sec->flags & SEC_IS_COMMON) == 0
15381 && strcmp (sec->name, ".reginfo")
15382 && strcmp (sec->name, ".mdebug")
15383 && (sec->size != 0
15384 || (strcmp (sec->name, ".text")
15385 && strcmp (sec->name, ".data")
15386 && strcmp (sec->name, ".bss"))))
15387 {
15388 null_input_bfd = FALSE;
15389 break;
15390 }
15391 }
15392 if (null_input_bfd)
15393 return TRUE;
15394
15395 /* Populate abiflags using existing information. */
15396 if (in_tdata->abiflags_valid)
15397 {
15398 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15399 Elf_Internal_ABIFlags_v0 in_abiflags;
15400 Elf_Internal_ABIFlags_v0 abiflags;
15401
15402 /* Set up the FP ABI attribute from the abiflags if it is not already
15403 set. */
15404 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15405 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
15406
15407 infer_mips_abiflags (ibfd, &abiflags);
15408 in_abiflags = in_tdata->abiflags;
15409
15410 /* It is not possible to infer the correct ISA revision
15411 for R3 or R5 so drop down to R2 for the checks. */
15412 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15413 in_abiflags.isa_rev = 2;
15414
15415 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15416 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
15417 _bfd_error_handler
15418 (_("%B: warning: Inconsistent ISA between e_flags and "
15419 ".MIPS.abiflags"), ibfd);
15420 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15421 && in_abiflags.fp_abi != abiflags.fp_abi)
15422 _bfd_error_handler
15423 (_("%B: warning: Inconsistent FP ABI between .gnu.attributes and "
15424 ".MIPS.abiflags"), ibfd);
15425 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15426 _bfd_error_handler
15427 (_("%B: warning: Inconsistent ASEs between e_flags and "
15428 ".MIPS.abiflags"), ibfd);
15429 /* The isa_ext is allowed to be an extension of what can be inferred
15430 from e_flags. */
15431 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15432 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
15433 _bfd_error_handler
15434 (_("%B: warning: Inconsistent ISA extensions between e_flags and "
15435 ".MIPS.abiflags"), ibfd);
15436 if (in_abiflags.flags2 != 0)
15437 _bfd_error_handler
15438 (_("%B: warning: Unexpected flag in the flags2 field of "
15439 ".MIPS.abiflags (0x%lx)"), ibfd,
15440 in_abiflags.flags2);
15441 }
15442 else
15443 {
15444 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15445 in_tdata->abiflags_valid = TRUE;
15446 }
15447
15448 if (!out_tdata->abiflags_valid)
15449 {
15450 /* Copy input abiflags if output abiflags are not already valid. */
15451 out_tdata->abiflags = in_tdata->abiflags;
15452 out_tdata->abiflags_valid = TRUE;
15453 }
15454
15455 if (! elf_flags_init (obfd))
15456 {
15457 elf_flags_init (obfd) = TRUE;
15458 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15459 elf_elfheader (obfd)->e_ident[EI_CLASS]
15460 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15461
15462 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15463 && (bfd_get_arch_info (obfd)->the_default
15464 || mips_mach_extends_p (bfd_get_mach (obfd),
15465 bfd_get_mach (ibfd))))
15466 {
15467 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15468 bfd_get_mach (ibfd)))
15469 return FALSE;
15470
15471 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15472 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15473 }
15474
15475 ok = TRUE;
15476 }
15477 else
15478 ok = mips_elf_merge_obj_e_flags (ibfd, info);
15479
15480 ok = mips_elf_merge_obj_attributes (ibfd, info) && ok;
15481
15482 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
15483
15484 if (!ok)
15485 {
15486 bfd_set_error (bfd_error_bad_value);
15487 return FALSE;
15488 }
15489
15490 return TRUE;
15491 }
15492
15493 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15494
15495 bfd_boolean
15496 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15497 {
15498 BFD_ASSERT (!elf_flags_init (abfd)
15499 || elf_elfheader (abfd)->e_flags == flags);
15500
15501 elf_elfheader (abfd)->e_flags = flags;
15502 elf_flags_init (abfd) = TRUE;
15503 return TRUE;
15504 }
15505
15506 char *
15507 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15508 {
15509 switch (dtag)
15510 {
15511 default: return "";
15512 case DT_MIPS_RLD_VERSION:
15513 return "MIPS_RLD_VERSION";
15514 case DT_MIPS_TIME_STAMP:
15515 return "MIPS_TIME_STAMP";
15516 case DT_MIPS_ICHECKSUM:
15517 return "MIPS_ICHECKSUM";
15518 case DT_MIPS_IVERSION:
15519 return "MIPS_IVERSION";
15520 case DT_MIPS_FLAGS:
15521 return "MIPS_FLAGS";
15522 case DT_MIPS_BASE_ADDRESS:
15523 return "MIPS_BASE_ADDRESS";
15524 case DT_MIPS_MSYM:
15525 return "MIPS_MSYM";
15526 case DT_MIPS_CONFLICT:
15527 return "MIPS_CONFLICT";
15528 case DT_MIPS_LIBLIST:
15529 return "MIPS_LIBLIST";
15530 case DT_MIPS_LOCAL_GOTNO:
15531 return "MIPS_LOCAL_GOTNO";
15532 case DT_MIPS_CONFLICTNO:
15533 return "MIPS_CONFLICTNO";
15534 case DT_MIPS_LIBLISTNO:
15535 return "MIPS_LIBLISTNO";
15536 case DT_MIPS_SYMTABNO:
15537 return "MIPS_SYMTABNO";
15538 case DT_MIPS_UNREFEXTNO:
15539 return "MIPS_UNREFEXTNO";
15540 case DT_MIPS_GOTSYM:
15541 return "MIPS_GOTSYM";
15542 case DT_MIPS_HIPAGENO:
15543 return "MIPS_HIPAGENO";
15544 case DT_MIPS_RLD_MAP:
15545 return "MIPS_RLD_MAP";
15546 case DT_MIPS_RLD_MAP_REL:
15547 return "MIPS_RLD_MAP_REL";
15548 case DT_MIPS_DELTA_CLASS:
15549 return "MIPS_DELTA_CLASS";
15550 case DT_MIPS_DELTA_CLASS_NO:
15551 return "MIPS_DELTA_CLASS_NO";
15552 case DT_MIPS_DELTA_INSTANCE:
15553 return "MIPS_DELTA_INSTANCE";
15554 case DT_MIPS_DELTA_INSTANCE_NO:
15555 return "MIPS_DELTA_INSTANCE_NO";
15556 case DT_MIPS_DELTA_RELOC:
15557 return "MIPS_DELTA_RELOC";
15558 case DT_MIPS_DELTA_RELOC_NO:
15559 return "MIPS_DELTA_RELOC_NO";
15560 case DT_MIPS_DELTA_SYM:
15561 return "MIPS_DELTA_SYM";
15562 case DT_MIPS_DELTA_SYM_NO:
15563 return "MIPS_DELTA_SYM_NO";
15564 case DT_MIPS_DELTA_CLASSSYM:
15565 return "MIPS_DELTA_CLASSSYM";
15566 case DT_MIPS_DELTA_CLASSSYM_NO:
15567 return "MIPS_DELTA_CLASSSYM_NO";
15568 case DT_MIPS_CXX_FLAGS:
15569 return "MIPS_CXX_FLAGS";
15570 case DT_MIPS_PIXIE_INIT:
15571 return "MIPS_PIXIE_INIT";
15572 case DT_MIPS_SYMBOL_LIB:
15573 return "MIPS_SYMBOL_LIB";
15574 case DT_MIPS_LOCALPAGE_GOTIDX:
15575 return "MIPS_LOCALPAGE_GOTIDX";
15576 case DT_MIPS_LOCAL_GOTIDX:
15577 return "MIPS_LOCAL_GOTIDX";
15578 case DT_MIPS_HIDDEN_GOTIDX:
15579 return "MIPS_HIDDEN_GOTIDX";
15580 case DT_MIPS_PROTECTED_GOTIDX:
15581 return "MIPS_PROTECTED_GOT_IDX";
15582 case DT_MIPS_OPTIONS:
15583 return "MIPS_OPTIONS";
15584 case DT_MIPS_INTERFACE:
15585 return "MIPS_INTERFACE";
15586 case DT_MIPS_DYNSTR_ALIGN:
15587 return "DT_MIPS_DYNSTR_ALIGN";
15588 case DT_MIPS_INTERFACE_SIZE:
15589 return "DT_MIPS_INTERFACE_SIZE";
15590 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15591 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15592 case DT_MIPS_PERF_SUFFIX:
15593 return "DT_MIPS_PERF_SUFFIX";
15594 case DT_MIPS_COMPACT_SIZE:
15595 return "DT_MIPS_COMPACT_SIZE";
15596 case DT_MIPS_GP_VALUE:
15597 return "DT_MIPS_GP_VALUE";
15598 case DT_MIPS_AUX_DYNAMIC:
15599 return "DT_MIPS_AUX_DYNAMIC";
15600 case DT_MIPS_PLTGOT:
15601 return "DT_MIPS_PLTGOT";
15602 case DT_MIPS_RWPLT:
15603 return "DT_MIPS_RWPLT";
15604 }
15605 }
15606
15607 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15608 not known. */
15609
15610 const char *
15611 _bfd_mips_fp_abi_string (int fp)
15612 {
15613 switch (fp)
15614 {
15615 /* These strings aren't translated because they're simply
15616 option lists. */
15617 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15618 return "-mdouble-float";
15619
15620 case Val_GNU_MIPS_ABI_FP_SINGLE:
15621 return "-msingle-float";
15622
15623 case Val_GNU_MIPS_ABI_FP_SOFT:
15624 return "-msoft-float";
15625
15626 case Val_GNU_MIPS_ABI_FP_OLD_64:
15627 return _("-mips32r2 -mfp64 (12 callee-saved)");
15628
15629 case Val_GNU_MIPS_ABI_FP_XX:
15630 return "-mfpxx";
15631
15632 case Val_GNU_MIPS_ABI_FP_64:
15633 return "-mgp32 -mfp64";
15634
15635 case Val_GNU_MIPS_ABI_FP_64A:
15636 return "-mgp32 -mfp64 -mno-odd-spreg";
15637
15638 default:
15639 return 0;
15640 }
15641 }
15642
15643 static void
15644 print_mips_ases (FILE *file, unsigned int mask)
15645 {
15646 if (mask & AFL_ASE_DSP)
15647 fputs ("\n\tDSP ASE", file);
15648 if (mask & AFL_ASE_DSPR2)
15649 fputs ("\n\tDSP R2 ASE", file);
15650 if (mask & AFL_ASE_DSPR3)
15651 fputs ("\n\tDSP R3 ASE", file);
15652 if (mask & AFL_ASE_EVA)
15653 fputs ("\n\tEnhanced VA Scheme", file);
15654 if (mask & AFL_ASE_MCU)
15655 fputs ("\n\tMCU (MicroController) ASE", file);
15656 if (mask & AFL_ASE_MDMX)
15657 fputs ("\n\tMDMX ASE", file);
15658 if (mask & AFL_ASE_MIPS3D)
15659 fputs ("\n\tMIPS-3D ASE", file);
15660 if (mask & AFL_ASE_MT)
15661 fputs ("\n\tMT ASE", file);
15662 if (mask & AFL_ASE_SMARTMIPS)
15663 fputs ("\n\tSmartMIPS ASE", file);
15664 if (mask & AFL_ASE_VIRT)
15665 fputs ("\n\tVZ ASE", file);
15666 if (mask & AFL_ASE_MSA)
15667 fputs ("\n\tMSA ASE", file);
15668 if (mask & AFL_ASE_MIPS16)
15669 fputs ("\n\tMIPS16 ASE", file);
15670 if (mask & AFL_ASE_MICROMIPS)
15671 fputs ("\n\tMICROMIPS ASE", file);
15672 if (mask & AFL_ASE_XPA)
15673 fputs ("\n\tXPA ASE", file);
15674 if (mask & AFL_ASE_MIPS16E2)
15675 fputs ("\n\tMIPS16e2 ASE", file);
15676 if (mask == 0)
15677 fprintf (file, "\n\t%s", _("None"));
15678 else if ((mask & ~AFL_ASE_MASK) != 0)
15679 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
15680 }
15681
15682 static void
15683 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15684 {
15685 switch (isa_ext)
15686 {
15687 case 0:
15688 fputs (_("None"), file);
15689 break;
15690 case AFL_EXT_XLR:
15691 fputs ("RMI XLR", file);
15692 break;
15693 case AFL_EXT_OCTEON3:
15694 fputs ("Cavium Networks Octeon3", file);
15695 break;
15696 case AFL_EXT_OCTEON2:
15697 fputs ("Cavium Networks Octeon2", file);
15698 break;
15699 case AFL_EXT_OCTEONP:
15700 fputs ("Cavium Networks OcteonP", file);
15701 break;
15702 case AFL_EXT_LOONGSON_3A:
15703 fputs ("Loongson 3A", file);
15704 break;
15705 case AFL_EXT_OCTEON:
15706 fputs ("Cavium Networks Octeon", file);
15707 break;
15708 case AFL_EXT_5900:
15709 fputs ("Toshiba R5900", file);
15710 break;
15711 case AFL_EXT_4650:
15712 fputs ("MIPS R4650", file);
15713 break;
15714 case AFL_EXT_4010:
15715 fputs ("LSI R4010", file);
15716 break;
15717 case AFL_EXT_4100:
15718 fputs ("NEC VR4100", file);
15719 break;
15720 case AFL_EXT_3900:
15721 fputs ("Toshiba R3900", file);
15722 break;
15723 case AFL_EXT_10000:
15724 fputs ("MIPS R10000", file);
15725 break;
15726 case AFL_EXT_SB1:
15727 fputs ("Broadcom SB-1", file);
15728 break;
15729 case AFL_EXT_4111:
15730 fputs ("NEC VR4111/VR4181", file);
15731 break;
15732 case AFL_EXT_4120:
15733 fputs ("NEC VR4120", file);
15734 break;
15735 case AFL_EXT_5400:
15736 fputs ("NEC VR5400", file);
15737 break;
15738 case AFL_EXT_5500:
15739 fputs ("NEC VR5500", file);
15740 break;
15741 case AFL_EXT_LOONGSON_2E:
15742 fputs ("ST Microelectronics Loongson 2E", file);
15743 break;
15744 case AFL_EXT_LOONGSON_2F:
15745 fputs ("ST Microelectronics Loongson 2F", file);
15746 break;
15747 case AFL_EXT_INTERAPTIV_MR2:
15748 fputs ("Imagination interAptiv MR2", file);
15749 break;
15750 default:
15751 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
15752 break;
15753 }
15754 }
15755
15756 static void
15757 print_mips_fp_abi_value (FILE *file, int val)
15758 {
15759 switch (val)
15760 {
15761 case Val_GNU_MIPS_ABI_FP_ANY:
15762 fprintf (file, _("Hard or soft float\n"));
15763 break;
15764 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15765 fprintf (file, _("Hard float (double precision)\n"));
15766 break;
15767 case Val_GNU_MIPS_ABI_FP_SINGLE:
15768 fprintf (file, _("Hard float (single precision)\n"));
15769 break;
15770 case Val_GNU_MIPS_ABI_FP_SOFT:
15771 fprintf (file, _("Soft float\n"));
15772 break;
15773 case Val_GNU_MIPS_ABI_FP_OLD_64:
15774 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15775 break;
15776 case Val_GNU_MIPS_ABI_FP_XX:
15777 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
15778 break;
15779 case Val_GNU_MIPS_ABI_FP_64:
15780 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
15781 break;
15782 case Val_GNU_MIPS_ABI_FP_64A:
15783 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
15784 break;
15785 default:
15786 fprintf (file, "??? (%d)\n", val);
15787 break;
15788 }
15789 }
15790
15791 static int
15792 get_mips_reg_size (int reg_size)
15793 {
15794 return (reg_size == AFL_REG_NONE) ? 0
15795 : (reg_size == AFL_REG_32) ? 32
15796 : (reg_size == AFL_REG_64) ? 64
15797 : (reg_size == AFL_REG_128) ? 128
15798 : -1;
15799 }
15800
15801 bfd_boolean
15802 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
15803 {
15804 FILE *file = ptr;
15805
15806 BFD_ASSERT (abfd != NULL && ptr != NULL);
15807
15808 /* Print normal ELF private data. */
15809 _bfd_elf_print_private_bfd_data (abfd, ptr);
15810
15811 /* xgettext:c-format */
15812 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15813
15814 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
15815 fprintf (file, _(" [abi=O32]"));
15816 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
15817 fprintf (file, _(" [abi=O64]"));
15818 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
15819 fprintf (file, _(" [abi=EABI32]"));
15820 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
15821 fprintf (file, _(" [abi=EABI64]"));
15822 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
15823 fprintf (file, _(" [abi unknown]"));
15824 else if (ABI_N32_P (abfd))
15825 fprintf (file, _(" [abi=N32]"));
15826 else if (ABI_64_P (abfd))
15827 fprintf (file, _(" [abi=64]"));
15828 else
15829 fprintf (file, _(" [no abi set]"));
15830
15831 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
15832 fprintf (file, " [mips1]");
15833 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
15834 fprintf (file, " [mips2]");
15835 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
15836 fprintf (file, " [mips3]");
15837 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
15838 fprintf (file, " [mips4]");
15839 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
15840 fprintf (file, " [mips5]");
15841 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
15842 fprintf (file, " [mips32]");
15843 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
15844 fprintf (file, " [mips64]");
15845 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
15846 fprintf (file, " [mips32r2]");
15847 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
15848 fprintf (file, " [mips64r2]");
15849 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
15850 fprintf (file, " [mips32r6]");
15851 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
15852 fprintf (file, " [mips64r6]");
15853 else
15854 fprintf (file, _(" [unknown ISA]"));
15855
15856 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
15857 fprintf (file, " [mdmx]");
15858
15859 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
15860 fprintf (file, " [mips16]");
15861
15862 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
15863 fprintf (file, " [micromips]");
15864
15865 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
15866 fprintf (file, " [nan2008]");
15867
15868 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
15869 fprintf (file, " [old fp64]");
15870
15871 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
15872 fprintf (file, " [32bitmode]");
15873 else
15874 fprintf (file, _(" [not 32bitmode]"));
15875
15876 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
15877 fprintf (file, " [noreorder]");
15878
15879 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
15880 fprintf (file, " [PIC]");
15881
15882 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
15883 fprintf (file, " [CPIC]");
15884
15885 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
15886 fprintf (file, " [XGOT]");
15887
15888 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
15889 fprintf (file, " [UCODE]");
15890
15891 fputc ('\n', file);
15892
15893 if (mips_elf_tdata (abfd)->abiflags_valid)
15894 {
15895 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
15896 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
15897 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
15898 if (abiflags->isa_rev > 1)
15899 fprintf (file, "r%d", abiflags->isa_rev);
15900 fprintf (file, "\nGPR size: %d",
15901 get_mips_reg_size (abiflags->gpr_size));
15902 fprintf (file, "\nCPR1 size: %d",
15903 get_mips_reg_size (abiflags->cpr1_size));
15904 fprintf (file, "\nCPR2 size: %d",
15905 get_mips_reg_size (abiflags->cpr2_size));
15906 fputs ("\nFP ABI: ", file);
15907 print_mips_fp_abi_value (file, abiflags->fp_abi);
15908 fputs ("ISA Extension: ", file);
15909 print_mips_isa_ext (file, abiflags->isa_ext);
15910 fputs ("\nASEs:", file);
15911 print_mips_ases (file, abiflags->ases);
15912 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
15913 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
15914 fputc ('\n', file);
15915 }
15916
15917 return TRUE;
15918 }
15919
15920 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
15921 {
15922 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15923 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15924 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
15925 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15926 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15927 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
15928 { NULL, 0, 0, 0, 0 }
15929 };
15930
15931 /* Merge non visibility st_other attributes. Ensure that the
15932 STO_OPTIONAL flag is copied into h->other, even if this is not a
15933 definiton of the symbol. */
15934 void
15935 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
15936 const Elf_Internal_Sym *isym,
15937 bfd_boolean definition,
15938 bfd_boolean dynamic ATTRIBUTE_UNUSED)
15939 {
15940 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
15941 {
15942 unsigned char other;
15943
15944 other = (definition ? isym->st_other : h->other);
15945 other &= ~ELF_ST_VISIBILITY (-1);
15946 h->other = other | ELF_ST_VISIBILITY (h->other);
15947 }
15948
15949 if (!definition
15950 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
15951 h->other |= STO_OPTIONAL;
15952 }
15953
15954 /* Decide whether an undefined symbol is special and can be ignored.
15955 This is the case for OPTIONAL symbols on IRIX. */
15956 bfd_boolean
15957 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
15958 {
15959 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
15960 }
15961
15962 bfd_boolean
15963 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
15964 {
15965 return (sym->st_shndx == SHN_COMMON
15966 || sym->st_shndx == SHN_MIPS_ACOMMON
15967 || sym->st_shndx == SHN_MIPS_SCOMMON);
15968 }
15969
15970 /* Return address for Ith PLT stub in section PLT, for relocation REL
15971 or (bfd_vma) -1 if it should not be included. */
15972
15973 bfd_vma
15974 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
15975 const arelent *rel ATTRIBUTE_UNUSED)
15976 {
15977 return (plt->vma
15978 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
15979 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
15980 }
15981
15982 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
15983 and microMIPS PLT slots we may have a many-to-one mapping between .plt
15984 and .got.plt and also the slots may be of a different size each we walk
15985 the PLT manually fetching instructions and matching them against known
15986 patterns. To make things easier standard MIPS slots, if any, always come
15987 first. As we don't create proper ELF symbols we use the UDATA.I member
15988 of ASYMBOL to carry ISA annotation. The encoding used is the same as
15989 with the ST_OTHER member of the ELF symbol. */
15990
15991 long
15992 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
15993 long symcount ATTRIBUTE_UNUSED,
15994 asymbol **syms ATTRIBUTE_UNUSED,
15995 long dynsymcount, asymbol **dynsyms,
15996 asymbol **ret)
15997 {
15998 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
15999 static const char microsuffix[] = "@micromipsplt";
16000 static const char m16suffix[] = "@mips16plt";
16001 static const char mipssuffix[] = "@plt";
16002
16003 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
16004 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
16005 bfd_boolean micromips_p = MICROMIPS_P (abfd);
16006 Elf_Internal_Shdr *hdr;
16007 bfd_byte *plt_data;
16008 bfd_vma plt_offset;
16009 unsigned int other;
16010 bfd_vma entry_size;
16011 bfd_vma plt0_size;
16012 asection *relplt;
16013 bfd_vma opcode;
16014 asection *plt;
16015 asymbol *send;
16016 size_t size;
16017 char *names;
16018 long counti;
16019 arelent *p;
16020 asymbol *s;
16021 char *nend;
16022 long count;
16023 long pi;
16024 long i;
16025 long n;
16026
16027 *ret = NULL;
16028
16029 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
16030 return 0;
16031
16032 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16033 if (relplt == NULL)
16034 return 0;
16035
16036 hdr = &elf_section_data (relplt)->this_hdr;
16037 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
16038 return 0;
16039
16040 plt = bfd_get_section_by_name (abfd, ".plt");
16041 if (plt == NULL)
16042 return 0;
16043
16044 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
16045 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
16046 return -1;
16047 p = relplt->relocation;
16048
16049 /* Calculating the exact amount of space required for symbols would
16050 require two passes over the PLT, so just pessimise assuming two
16051 PLT slots per relocation. */
16052 count = relplt->size / hdr->sh_entsize;
16053 counti = count * bed->s->int_rels_per_ext_rel;
16054 size = 2 * count * sizeof (asymbol);
16055 size += count * (sizeof (mipssuffix) +
16056 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16057 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16058 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16059
16060 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16061 size += sizeof (asymbol) + sizeof (pltname);
16062
16063 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16064 return -1;
16065
16066 if (plt->size < 16)
16067 return -1;
16068
16069 s = *ret = bfd_malloc (size);
16070 if (s == NULL)
16071 return -1;
16072 send = s + 2 * count + 1;
16073
16074 names = (char *) send;
16075 nend = (char *) s + size;
16076 n = 0;
16077
16078 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16079 if (opcode == 0x3302fffe)
16080 {
16081 if (!micromips_p)
16082 return -1;
16083 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16084 other = STO_MICROMIPS;
16085 }
16086 else if (opcode == 0x0398c1d0)
16087 {
16088 if (!micromips_p)
16089 return -1;
16090 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16091 other = STO_MICROMIPS;
16092 }
16093 else
16094 {
16095 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16096 other = 0;
16097 }
16098
16099 s->the_bfd = abfd;
16100 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16101 s->section = plt;
16102 s->value = 0;
16103 s->name = names;
16104 s->udata.i = other;
16105 memcpy (names, pltname, sizeof (pltname));
16106 names += sizeof (pltname);
16107 ++s, ++n;
16108
16109 pi = 0;
16110 for (plt_offset = plt0_size;
16111 plt_offset + 8 <= plt->size && s < send;
16112 plt_offset += entry_size)
16113 {
16114 bfd_vma gotplt_addr;
16115 const char *suffix;
16116 bfd_vma gotplt_hi;
16117 bfd_vma gotplt_lo;
16118 size_t suffixlen;
16119
16120 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16121
16122 /* Check if the second word matches the expected MIPS16 instruction. */
16123 if (opcode == 0x651aeb00)
16124 {
16125 if (micromips_p)
16126 return -1;
16127 /* Truncated table??? */
16128 if (plt_offset + 16 > plt->size)
16129 break;
16130 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16131 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16132 suffixlen = sizeof (m16suffix);
16133 suffix = m16suffix;
16134 other = STO_MIPS16;
16135 }
16136 /* Likewise the expected microMIPS instruction (no insn32 mode). */
16137 else if (opcode == 0xff220000)
16138 {
16139 if (!micromips_p)
16140 return -1;
16141 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16142 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16143 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16144 gotplt_lo <<= 2;
16145 gotplt_addr = gotplt_hi + gotplt_lo;
16146 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16147 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16148 suffixlen = sizeof (microsuffix);
16149 suffix = microsuffix;
16150 other = STO_MICROMIPS;
16151 }
16152 /* Likewise the expected microMIPS instruction (insn32 mode). */
16153 else if ((opcode & 0xffff0000) == 0xff2f0000)
16154 {
16155 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16156 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16157 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16158 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16159 gotplt_addr = gotplt_hi + gotplt_lo;
16160 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16161 suffixlen = sizeof (microsuffix);
16162 suffix = microsuffix;
16163 other = STO_MICROMIPS;
16164 }
16165 /* Otherwise assume standard MIPS code. */
16166 else
16167 {
16168 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16169 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16170 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16171 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16172 gotplt_addr = gotplt_hi + gotplt_lo;
16173 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16174 suffixlen = sizeof (mipssuffix);
16175 suffix = mipssuffix;
16176 other = 0;
16177 }
16178 /* Truncated table??? */
16179 if (plt_offset + entry_size > plt->size)
16180 break;
16181
16182 for (i = 0;
16183 i < count && p[pi].address != gotplt_addr;
16184 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16185
16186 if (i < count)
16187 {
16188 size_t namelen;
16189 size_t len;
16190
16191 *s = **p[pi].sym_ptr_ptr;
16192 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16193 we are defining a symbol, ensure one of them is set. */
16194 if ((s->flags & BSF_LOCAL) == 0)
16195 s->flags |= BSF_GLOBAL;
16196 s->flags |= BSF_SYNTHETIC;
16197 s->section = plt;
16198 s->value = plt_offset;
16199 s->name = names;
16200 s->udata.i = other;
16201
16202 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16203 namelen = len + suffixlen;
16204 if (names + namelen > nend)
16205 break;
16206
16207 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16208 names += len;
16209 memcpy (names, suffix, suffixlen);
16210 names += suffixlen;
16211
16212 ++s, ++n;
16213 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16214 }
16215 }
16216
16217 free (plt_data);
16218
16219 return n;
16220 }
16221
16222 /* Return the ABI flags associated with ABFD if available. */
16223
16224 Elf_Internal_ABIFlags_v0 *
16225 bfd_mips_elf_get_abiflags (bfd *abfd)
16226 {
16227 struct mips_elf_obj_tdata *tdata = mips_elf_tdata (abfd);
16228
16229 return tdata->abiflags_valid ? &tdata->abiflags : NULL;
16230 }
16231
16232 void
16233 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16234 {
16235 struct mips_elf_link_hash_table *htab;
16236 Elf_Internal_Ehdr *i_ehdrp;
16237
16238 i_ehdrp = elf_elfheader (abfd);
16239 if (link_info)
16240 {
16241 htab = mips_elf_hash_table (link_info);
16242 BFD_ASSERT (htab != NULL);
16243
16244 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16245 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
16246 }
16247
16248 _bfd_elf_post_process_headers (abfd, link_info);
16249
16250 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16251 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16252 i_ehdrp->e_ident[EI_ABIVERSION] = 3;
16253 }
16254
16255 int
16256 _bfd_mips_elf_compact_eh_encoding (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16257 {
16258 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16259 }
16260
16261 /* Return the opcode for can't unwind. */
16262
16263 int
16264 _bfd_mips_elf_cant_unwind_opcode (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16265 {
16266 return COMPACT_EH_CANT_UNWIND_OPCODE;
16267 }
This page took 0.575197 seconds and 5 git commands to generate.