PR ld/21900: MIPS: Fix relocation processing with undefined symbols
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2018 Free Software Foundation, Inc.
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
28
29 /* This file handles functionality common to the different MIPS ABI's. */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "libiberty.h"
35 #include "elf-bfd.h"
36 #include "elfxx-mips.h"
37 #include "elf/mips.h"
38 #include "elf-vxworks.h"
39 #include "dwarf2.h"
40
41 /* Get the ECOFF swapping routines. */
42 #include "coff/sym.h"
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46
47 #include "hashtab.h"
48
49 /* Types of TLS GOT entry. */
50 enum mips_got_tls_type {
51 GOT_TLS_NONE,
52 GOT_TLS_GD,
53 GOT_TLS_LDM,
54 GOT_TLS_IE
55 };
56
57 /* This structure is used to hold information about one GOT entry.
58 There are four types of entry:
59
60 (1) an absolute address
61 requires: abfd == NULL
62 fields: d.address
63
64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 fields: abfd, symndx, d.addend, tls_type
67
68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 requires: abfd != NULL, symndx == -1
70 fields: d.h, tls_type
71
72 (4) a TLS LDM slot
73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 fields: none; there's only one of these per GOT. */
75 struct mips_got_entry
76 {
77 /* One input bfd that needs the GOT entry. */
78 bfd *abfd;
79 /* The index of the symbol, as stored in the relocation r_info, if
80 we have a local symbol; -1 otherwise. */
81 long symndx;
82 union
83 {
84 /* If abfd == NULL, an address that must be stored in the got. */
85 bfd_vma address;
86 /* If abfd != NULL && symndx != -1, the addend of the relocation
87 that should be added to the symbol value. */
88 bfd_vma addend;
89 /* If abfd != NULL && symndx == -1, the hash table entry
90 corresponding to a symbol in the GOT. The symbol's entry
91 is in the local area if h->global_got_area is GGA_NONE,
92 otherwise it is in the global area. */
93 struct mips_elf_link_hash_entry *h;
94 } d;
95
96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
97 symbol entry with r_symndx == 0. */
98 unsigned char tls_type;
99
100 /* True if we have filled in the GOT contents for a TLS entry,
101 and created the associated relocations. */
102 unsigned char tls_initialized;
103
104 /* The offset from the beginning of the .got section to the entry
105 corresponding to this symbol+addend. If it's a global symbol
106 whose offset is yet to be decided, it's going to be -1. */
107 long gotidx;
108 };
109
110 /* This structure represents a GOT page reference from an input bfd.
111 Each instance represents a symbol + ADDEND, where the representation
112 of the symbol depends on whether it is local to the input bfd.
113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
115
116 Page references with SYMNDX >= 0 always become page references
117 in the output. Page references with SYMNDX < 0 only become page
118 references if the symbol binds locally; in other cases, the page
119 reference decays to a global GOT reference. */
120 struct mips_got_page_ref
121 {
122 long symndx;
123 union
124 {
125 struct mips_elf_link_hash_entry *h;
126 bfd *abfd;
127 } u;
128 bfd_vma addend;
129 };
130
131 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132 The structures form a non-overlapping list that is sorted by increasing
133 MIN_ADDEND. */
134 struct mips_got_page_range
135 {
136 struct mips_got_page_range *next;
137 bfd_signed_vma min_addend;
138 bfd_signed_vma max_addend;
139 };
140
141 /* This structure describes the range of addends that are applied to page
142 relocations against a given section. */
143 struct mips_got_page_entry
144 {
145 /* The section that these entries are based on. */
146 asection *sec;
147 /* The ranges for this page entry. */
148 struct mips_got_page_range *ranges;
149 /* The maximum number of page entries needed for RANGES. */
150 bfd_vma num_pages;
151 };
152
153 /* This structure is used to hold .got information when linking. */
154
155 struct mips_got_info
156 {
157 /* The number of global .got entries. */
158 unsigned int global_gotno;
159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
160 unsigned int reloc_only_gotno;
161 /* The number of .got slots used for TLS. */
162 unsigned int tls_gotno;
163 /* The first unused TLS .got entry. Used only during
164 mips_elf_initialize_tls_index. */
165 unsigned int tls_assigned_gotno;
166 /* The number of local .got entries, eventually including page entries. */
167 unsigned int local_gotno;
168 /* The maximum number of page entries needed. */
169 unsigned int page_gotno;
170 /* The number of relocations needed for the GOT entries. */
171 unsigned int relocs;
172 /* The first unused local .got entry. */
173 unsigned int assigned_low_gotno;
174 /* The last unused local .got entry. */
175 unsigned int assigned_high_gotno;
176 /* A hash table holding members of the got. */
177 struct htab *got_entries;
178 /* A hash table holding mips_got_page_ref structures. */
179 struct htab *got_page_refs;
180 /* A hash table of mips_got_page_entry structures. */
181 struct htab *got_page_entries;
182 /* In multi-got links, a pointer to the next got (err, rather, most
183 of the time, it points to the previous got). */
184 struct mips_got_info *next;
185 };
186
187 /* Structure passed when merging bfds' gots. */
188
189 struct mips_elf_got_per_bfd_arg
190 {
191 /* The output bfd. */
192 bfd *obfd;
193 /* The link information. */
194 struct bfd_link_info *info;
195 /* A pointer to the primary got, i.e., the one that's going to get
196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
197 DT_MIPS_GOTSYM. */
198 struct mips_got_info *primary;
199 /* A non-primary got we're trying to merge with other input bfd's
200 gots. */
201 struct mips_got_info *current;
202 /* The maximum number of got entries that can be addressed with a
203 16-bit offset. */
204 unsigned int max_count;
205 /* The maximum number of page entries needed by each got. */
206 unsigned int max_pages;
207 /* The total number of global entries which will live in the
208 primary got and be automatically relocated. This includes
209 those not referenced by the primary GOT but included in
210 the "master" GOT. */
211 unsigned int global_count;
212 };
213
214 /* A structure used to pass information to htab_traverse callbacks
215 when laying out the GOT. */
216
217 struct mips_elf_traverse_got_arg
218 {
219 struct bfd_link_info *info;
220 struct mips_got_info *g;
221 int value;
222 };
223
224 struct _mips_elf_section_data
225 {
226 struct bfd_elf_section_data elf;
227 union
228 {
229 bfd_byte *tdata;
230 } u;
231 };
232
233 #define mips_elf_section_data(sec) \
234 ((struct _mips_elf_section_data *) elf_section_data (sec))
235
236 #define is_mips_elf(bfd) \
237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
238 && elf_tdata (bfd) != NULL \
239 && elf_object_id (bfd) == MIPS_ELF_DATA)
240
241 /* The ABI says that every symbol used by dynamic relocations must have
242 a global GOT entry. Among other things, this provides the dynamic
243 linker with a free, directly-indexed cache. The GOT can therefore
244 contain symbols that are not referenced by GOT relocations themselves
245 (in other words, it may have symbols that are not referenced by things
246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
247
248 GOT relocations are less likely to overflow if we put the associated
249 GOT entries towards the beginning. We therefore divide the global
250 GOT entries into two areas: "normal" and "reloc-only". Entries in
251 the first area can be used for both dynamic relocations and GP-relative
252 accesses, while those in the "reloc-only" area are for dynamic
253 relocations only.
254
255 These GGA_* ("Global GOT Area") values are organised so that lower
256 values are more general than higher values. Also, non-GGA_NONE
257 values are ordered by the position of the area in the GOT. */
258 #define GGA_NORMAL 0
259 #define GGA_RELOC_ONLY 1
260 #define GGA_NONE 2
261
262 /* Information about a non-PIC interface to a PIC function. There are
263 two ways of creating these interfaces. The first is to add:
264
265 lui $25,%hi(func)
266 addiu $25,$25,%lo(func)
267
268 immediately before a PIC function "func". The second is to add:
269
270 lui $25,%hi(func)
271 j func
272 addiu $25,$25,%lo(func)
273
274 to a separate trampoline section.
275
276 Stubs of the first kind go in a new section immediately before the
277 target function. Stubs of the second kind go in a single section
278 pointed to by the hash table's "strampoline" field. */
279 struct mips_elf_la25_stub {
280 /* The generated section that contains this stub. */
281 asection *stub_section;
282
283 /* The offset of the stub from the start of STUB_SECTION. */
284 bfd_vma offset;
285
286 /* One symbol for the original function. Its location is available
287 in H->root.root.u.def. */
288 struct mips_elf_link_hash_entry *h;
289 };
290
291 /* Macros for populating a mips_elf_la25_stub. */
292
293 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
294 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
295 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
296 #define LA25_LUI_MICROMIPS(VAL) \
297 (0x41b90000 | (VAL)) /* lui t9,VAL */
298 #define LA25_J_MICROMIPS(VAL) \
299 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
300 #define LA25_ADDIU_MICROMIPS(VAL) \
301 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
302
303 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
304 the dynamic symbols. */
305
306 struct mips_elf_hash_sort_data
307 {
308 /* The symbol in the global GOT with the lowest dynamic symbol table
309 index. */
310 struct elf_link_hash_entry *low;
311 /* The least dynamic symbol table index corresponding to a non-TLS
312 symbol with a GOT entry. */
313 bfd_size_type min_got_dynindx;
314 /* The greatest dynamic symbol table index corresponding to a symbol
315 with a GOT entry that is not referenced (e.g., a dynamic symbol
316 with dynamic relocations pointing to it from non-primary GOTs). */
317 bfd_size_type max_unref_got_dynindx;
318 /* The greatest dynamic symbol table index corresponding to a local
319 symbol. */
320 bfd_size_type max_local_dynindx;
321 /* The greatest dynamic symbol table index corresponding to an external
322 symbol without a GOT entry. */
323 bfd_size_type max_non_got_dynindx;
324 };
325
326 /* We make up to two PLT entries if needed, one for standard MIPS code
327 and one for compressed code, either a MIPS16 or microMIPS one. We
328 keep a separate record of traditional lazy-binding stubs, for easier
329 processing. */
330
331 struct plt_entry
332 {
333 /* Traditional SVR4 stub offset, or -1 if none. */
334 bfd_vma stub_offset;
335
336 /* Standard PLT entry offset, or -1 if none. */
337 bfd_vma mips_offset;
338
339 /* Compressed PLT entry offset, or -1 if none. */
340 bfd_vma comp_offset;
341
342 /* The corresponding .got.plt index, or -1 if none. */
343 bfd_vma gotplt_index;
344
345 /* Whether we need a standard PLT entry. */
346 unsigned int need_mips : 1;
347
348 /* Whether we need a compressed PLT entry. */
349 unsigned int need_comp : 1;
350 };
351
352 /* The MIPS ELF linker needs additional information for each symbol in
353 the global hash table. */
354
355 struct mips_elf_link_hash_entry
356 {
357 struct elf_link_hash_entry root;
358
359 /* External symbol information. */
360 EXTR esym;
361
362 /* The la25 stub we have created for ths symbol, if any. */
363 struct mips_elf_la25_stub *la25_stub;
364
365 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
366 this symbol. */
367 unsigned int possibly_dynamic_relocs;
368
369 /* If there is a stub that 32 bit functions should use to call this
370 16 bit function, this points to the section containing the stub. */
371 asection *fn_stub;
372
373 /* If there is a stub that 16 bit functions should use to call this
374 32 bit function, this points to the section containing the stub. */
375 asection *call_stub;
376
377 /* This is like the call_stub field, but it is used if the function
378 being called returns a floating point value. */
379 asection *call_fp_stub;
380
381 /* The highest GGA_* value that satisfies all references to this symbol. */
382 unsigned int global_got_area : 2;
383
384 /* True if all GOT relocations against this symbol are for calls. This is
385 a looser condition than no_fn_stub below, because there may be other
386 non-call non-GOT relocations against the symbol. */
387 unsigned int got_only_for_calls : 1;
388
389 /* True if one of the relocations described by possibly_dynamic_relocs
390 is against a readonly section. */
391 unsigned int readonly_reloc : 1;
392
393 /* True if there is a relocation against this symbol that must be
394 resolved by the static linker (in other words, if the relocation
395 cannot possibly be made dynamic). */
396 unsigned int has_static_relocs : 1;
397
398 /* True if we must not create a .MIPS.stubs entry for this symbol.
399 This is set, for example, if there are relocations related to
400 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
401 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
402 unsigned int no_fn_stub : 1;
403
404 /* Whether we need the fn_stub; this is true if this symbol appears
405 in any relocs other than a 16 bit call. */
406 unsigned int need_fn_stub : 1;
407
408 /* True if this symbol is referenced by branch relocations from
409 any non-PIC input file. This is used to determine whether an
410 la25 stub is required. */
411 unsigned int has_nonpic_branches : 1;
412
413 /* Does this symbol need a traditional MIPS lazy-binding stub
414 (as opposed to a PLT entry)? */
415 unsigned int needs_lazy_stub : 1;
416
417 /* Does this symbol resolve to a PLT entry? */
418 unsigned int use_plt_entry : 1;
419 };
420
421 /* MIPS ELF linker hash table. */
422
423 struct mips_elf_link_hash_table
424 {
425 struct elf_link_hash_table root;
426
427 /* The number of .rtproc entries. */
428 bfd_size_type procedure_count;
429
430 /* The size of the .compact_rel section (if SGI_COMPAT). */
431 bfd_size_type compact_rel_size;
432
433 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
434 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
435 bfd_boolean use_rld_obj_head;
436
437 /* The __rld_map or __rld_obj_head symbol. */
438 struct elf_link_hash_entry *rld_symbol;
439
440 /* This is set if we see any mips16 stub sections. */
441 bfd_boolean mips16_stubs_seen;
442
443 /* True if we can generate copy relocs and PLTs. */
444 bfd_boolean use_plts_and_copy_relocs;
445
446 /* True if we can only use 32-bit microMIPS instructions. */
447 bfd_boolean insn32;
448
449 /* True if we suppress checks for invalid branches between ISA modes. */
450 bfd_boolean ignore_branch_isa;
451
452 /* True if we're generating code for VxWorks. */
453 bfd_boolean is_vxworks;
454
455 /* True if we already reported the small-data section overflow. */
456 bfd_boolean small_data_overflow_reported;
457
458 /* Shortcuts to some dynamic sections, or NULL if they are not
459 being used. */
460 asection *srelplt2;
461 asection *sstubs;
462
463 /* The master GOT information. */
464 struct mips_got_info *got_info;
465
466 /* The global symbol in the GOT with the lowest index in the dynamic
467 symbol table. */
468 struct elf_link_hash_entry *global_gotsym;
469
470 /* The size of the PLT header in bytes. */
471 bfd_vma plt_header_size;
472
473 /* The size of a standard PLT entry in bytes. */
474 bfd_vma plt_mips_entry_size;
475
476 /* The size of a compressed PLT entry in bytes. */
477 bfd_vma plt_comp_entry_size;
478
479 /* The offset of the next standard PLT entry to create. */
480 bfd_vma plt_mips_offset;
481
482 /* The offset of the next compressed PLT entry to create. */
483 bfd_vma plt_comp_offset;
484
485 /* The index of the next .got.plt entry to create. */
486 bfd_vma plt_got_index;
487
488 /* The number of functions that need a lazy-binding stub. */
489 bfd_vma lazy_stub_count;
490
491 /* The size of a function stub entry in bytes. */
492 bfd_vma function_stub_size;
493
494 /* The number of reserved entries at the beginning of the GOT. */
495 unsigned int reserved_gotno;
496
497 /* The section used for mips_elf_la25_stub trampolines.
498 See the comment above that structure for details. */
499 asection *strampoline;
500
501 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
502 pairs. */
503 htab_t la25_stubs;
504
505 /* A function FN (NAME, IS, OS) that creates a new input section
506 called NAME and links it to output section OS. If IS is nonnull,
507 the new section should go immediately before it, otherwise it
508 should go at the (current) beginning of OS.
509
510 The function returns the new section on success, otherwise it
511 returns null. */
512 asection *(*add_stub_section) (const char *, asection *, asection *);
513
514 /* Small local sym cache. */
515 struct sym_cache sym_cache;
516
517 /* Is the PLT header compressed? */
518 unsigned int plt_header_is_comp : 1;
519 };
520
521 /* Get the MIPS ELF linker hash table from a link_info structure. */
522
523 #define mips_elf_hash_table(p) \
524 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
525 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
526
527 /* A structure used to communicate with htab_traverse callbacks. */
528 struct mips_htab_traverse_info
529 {
530 /* The usual link-wide information. */
531 struct bfd_link_info *info;
532 bfd *output_bfd;
533
534 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
535 bfd_boolean error;
536 };
537
538 /* MIPS ELF private object data. */
539
540 struct mips_elf_obj_tdata
541 {
542 /* Generic ELF private object data. */
543 struct elf_obj_tdata root;
544
545 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
546 bfd *abi_fp_bfd;
547
548 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
549 bfd *abi_msa_bfd;
550
551 /* The abiflags for this object. */
552 Elf_Internal_ABIFlags_v0 abiflags;
553 bfd_boolean abiflags_valid;
554
555 /* The GOT requirements of input bfds. */
556 struct mips_got_info *got;
557
558 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
559 included directly in this one, but there's no point to wasting
560 the memory just for the infrequently called find_nearest_line. */
561 struct mips_elf_find_line *find_line_info;
562
563 /* An array of stub sections indexed by symbol number. */
564 asection **local_stubs;
565 asection **local_call_stubs;
566
567 /* The Irix 5 support uses two virtual sections, which represent
568 text/data symbols defined in dynamic objects. */
569 asymbol *elf_data_symbol;
570 asymbol *elf_text_symbol;
571 asection *elf_data_section;
572 asection *elf_text_section;
573 };
574
575 /* Get MIPS ELF private object data from BFD's tdata. */
576
577 #define mips_elf_tdata(bfd) \
578 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
579
580 #define TLS_RELOC_P(r_type) \
581 (r_type == R_MIPS_TLS_DTPMOD32 \
582 || r_type == R_MIPS_TLS_DTPMOD64 \
583 || r_type == R_MIPS_TLS_DTPREL32 \
584 || r_type == R_MIPS_TLS_DTPREL64 \
585 || r_type == R_MIPS_TLS_GD \
586 || r_type == R_MIPS_TLS_LDM \
587 || r_type == R_MIPS_TLS_DTPREL_HI16 \
588 || r_type == R_MIPS_TLS_DTPREL_LO16 \
589 || r_type == R_MIPS_TLS_GOTTPREL \
590 || r_type == R_MIPS_TLS_TPREL32 \
591 || r_type == R_MIPS_TLS_TPREL64 \
592 || r_type == R_MIPS_TLS_TPREL_HI16 \
593 || r_type == R_MIPS_TLS_TPREL_LO16 \
594 || r_type == R_MIPS16_TLS_GD \
595 || r_type == R_MIPS16_TLS_LDM \
596 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
597 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
598 || r_type == R_MIPS16_TLS_GOTTPREL \
599 || r_type == R_MIPS16_TLS_TPREL_HI16 \
600 || r_type == R_MIPS16_TLS_TPREL_LO16 \
601 || r_type == R_MICROMIPS_TLS_GD \
602 || r_type == R_MICROMIPS_TLS_LDM \
603 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
604 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
605 || r_type == R_MICROMIPS_TLS_GOTTPREL \
606 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
607 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
608
609 /* Structure used to pass information to mips_elf_output_extsym. */
610
611 struct extsym_info
612 {
613 bfd *abfd;
614 struct bfd_link_info *info;
615 struct ecoff_debug_info *debug;
616 const struct ecoff_debug_swap *swap;
617 bfd_boolean failed;
618 };
619
620 /* The names of the runtime procedure table symbols used on IRIX5. */
621
622 static const char * const mips_elf_dynsym_rtproc_names[] =
623 {
624 "_procedure_table",
625 "_procedure_string_table",
626 "_procedure_table_size",
627 NULL
628 };
629
630 /* These structures are used to generate the .compact_rel section on
631 IRIX5. */
632
633 typedef struct
634 {
635 unsigned long id1; /* Always one? */
636 unsigned long num; /* Number of compact relocation entries. */
637 unsigned long id2; /* Always two? */
638 unsigned long offset; /* The file offset of the first relocation. */
639 unsigned long reserved0; /* Zero? */
640 unsigned long reserved1; /* Zero? */
641 } Elf32_compact_rel;
642
643 typedef struct
644 {
645 bfd_byte id1[4];
646 bfd_byte num[4];
647 bfd_byte id2[4];
648 bfd_byte offset[4];
649 bfd_byte reserved0[4];
650 bfd_byte reserved1[4];
651 } Elf32_External_compact_rel;
652
653 typedef struct
654 {
655 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
656 unsigned int rtype : 4; /* Relocation types. See below. */
657 unsigned int dist2to : 8;
658 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
659 unsigned long konst; /* KONST field. See below. */
660 unsigned long vaddr; /* VADDR to be relocated. */
661 } Elf32_crinfo;
662
663 typedef struct
664 {
665 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
666 unsigned int rtype : 4; /* Relocation types. See below. */
667 unsigned int dist2to : 8;
668 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
669 unsigned long konst; /* KONST field. See below. */
670 } Elf32_crinfo2;
671
672 typedef struct
673 {
674 bfd_byte info[4];
675 bfd_byte konst[4];
676 bfd_byte vaddr[4];
677 } Elf32_External_crinfo;
678
679 typedef struct
680 {
681 bfd_byte info[4];
682 bfd_byte konst[4];
683 } Elf32_External_crinfo2;
684
685 /* These are the constants used to swap the bitfields in a crinfo. */
686
687 #define CRINFO_CTYPE (0x1)
688 #define CRINFO_CTYPE_SH (31)
689 #define CRINFO_RTYPE (0xf)
690 #define CRINFO_RTYPE_SH (27)
691 #define CRINFO_DIST2TO (0xff)
692 #define CRINFO_DIST2TO_SH (19)
693 #define CRINFO_RELVADDR (0x7ffff)
694 #define CRINFO_RELVADDR_SH (0)
695
696 /* A compact relocation info has long (3 words) or short (2 words)
697 formats. A short format doesn't have VADDR field and relvaddr
698 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
699 #define CRF_MIPS_LONG 1
700 #define CRF_MIPS_SHORT 0
701
702 /* There are 4 types of compact relocation at least. The value KONST
703 has different meaning for each type:
704
705 (type) (konst)
706 CT_MIPS_REL32 Address in data
707 CT_MIPS_WORD Address in word (XXX)
708 CT_MIPS_GPHI_LO GP - vaddr
709 CT_MIPS_JMPAD Address to jump
710 */
711
712 #define CRT_MIPS_REL32 0xa
713 #define CRT_MIPS_WORD 0xb
714 #define CRT_MIPS_GPHI_LO 0xc
715 #define CRT_MIPS_JMPAD 0xd
716
717 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
718 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
719 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
720 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
721 \f
722 /* The structure of the runtime procedure descriptor created by the
723 loader for use by the static exception system. */
724
725 typedef struct runtime_pdr {
726 bfd_vma adr; /* Memory address of start of procedure. */
727 long regmask; /* Save register mask. */
728 long regoffset; /* Save register offset. */
729 long fregmask; /* Save floating point register mask. */
730 long fregoffset; /* Save floating point register offset. */
731 long frameoffset; /* Frame size. */
732 short framereg; /* Frame pointer register. */
733 short pcreg; /* Offset or reg of return pc. */
734 long irpss; /* Index into the runtime string table. */
735 long reserved;
736 struct exception_info *exception_info;/* Pointer to exception array. */
737 } RPDR, *pRPDR;
738 #define cbRPDR sizeof (RPDR)
739 #define rpdNil ((pRPDR) 0)
740 \f
741 static struct mips_got_entry *mips_elf_create_local_got_entry
742 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
743 struct mips_elf_link_hash_entry *, int);
744 static bfd_boolean mips_elf_sort_hash_table_f
745 (struct mips_elf_link_hash_entry *, void *);
746 static bfd_vma mips_elf_high
747 (bfd_vma);
748 static bfd_boolean mips_elf_create_dynamic_relocation
749 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
750 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
751 bfd_vma *, asection *);
752 static bfd_vma mips_elf_adjust_gp
753 (bfd *, struct mips_got_info *, bfd *);
754
755 /* This will be used when we sort the dynamic relocation records. */
756 static bfd *reldyn_sorting_bfd;
757
758 /* True if ABFD is for CPUs with load interlocking that include
759 non-MIPS1 CPUs and R3900. */
760 #define LOAD_INTERLOCKS_P(abfd) \
761 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
762 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
763
764 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
765 This should be safe for all architectures. We enable this predicate
766 for RM9000 for now. */
767 #define JAL_TO_BAL_P(abfd) \
768 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
769
770 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
771 This should be safe for all architectures. We enable this predicate for
772 all CPUs. */
773 #define JALR_TO_BAL_P(abfd) 1
774
775 /* True if ABFD is for CPUs that are faster if JR is converted to B.
776 This should be safe for all architectures. We enable this predicate for
777 all CPUs. */
778 #define JR_TO_B_P(abfd) 1
779
780 /* True if ABFD is a PIC object. */
781 #define PIC_OBJECT_P(abfd) \
782 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
783
784 /* Nonzero if ABFD is using the O32 ABI. */
785 #define ABI_O32_P(abfd) \
786 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
787
788 /* Nonzero if ABFD is using the N32 ABI. */
789 #define ABI_N32_P(abfd) \
790 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
791
792 /* Nonzero if ABFD is using the N64 ABI. */
793 #define ABI_64_P(abfd) \
794 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
795
796 /* Nonzero if ABFD is using NewABI conventions. */
797 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
798
799 /* Nonzero if ABFD has microMIPS code. */
800 #define MICROMIPS_P(abfd) \
801 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
802
803 /* Nonzero if ABFD is MIPS R6. */
804 #define MIPSR6_P(abfd) \
805 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
806 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
807
808 /* The IRIX compatibility level we are striving for. */
809 #define IRIX_COMPAT(abfd) \
810 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
811
812 /* Whether we are trying to be compatible with IRIX at all. */
813 #define SGI_COMPAT(abfd) \
814 (IRIX_COMPAT (abfd) != ict_none)
815
816 /* The name of the options section. */
817 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
818 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
819
820 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
821 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
822 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
823 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
824
825 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
826 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
827 (strcmp (NAME, ".MIPS.abiflags") == 0)
828
829 /* Whether the section is readonly. */
830 #define MIPS_ELF_READONLY_SECTION(sec) \
831 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
832 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
833
834 /* The name of the stub section. */
835 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
836
837 /* The size of an external REL relocation. */
838 #define MIPS_ELF_REL_SIZE(abfd) \
839 (get_elf_backend_data (abfd)->s->sizeof_rel)
840
841 /* The size of an external RELA relocation. */
842 #define MIPS_ELF_RELA_SIZE(abfd) \
843 (get_elf_backend_data (abfd)->s->sizeof_rela)
844
845 /* The size of an external dynamic table entry. */
846 #define MIPS_ELF_DYN_SIZE(abfd) \
847 (get_elf_backend_data (abfd)->s->sizeof_dyn)
848
849 /* The size of a GOT entry. */
850 #define MIPS_ELF_GOT_SIZE(abfd) \
851 (get_elf_backend_data (abfd)->s->arch_size / 8)
852
853 /* The size of the .rld_map section. */
854 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
855 (get_elf_backend_data (abfd)->s->arch_size / 8)
856
857 /* The size of a symbol-table entry. */
858 #define MIPS_ELF_SYM_SIZE(abfd) \
859 (get_elf_backend_data (abfd)->s->sizeof_sym)
860
861 /* The default alignment for sections, as a power of two. */
862 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
863 (get_elf_backend_data (abfd)->s->log_file_align)
864
865 /* Get word-sized data. */
866 #define MIPS_ELF_GET_WORD(abfd, ptr) \
867 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
868
869 /* Put out word-sized data. */
870 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
871 (ABI_64_P (abfd) \
872 ? bfd_put_64 (abfd, val, ptr) \
873 : bfd_put_32 (abfd, val, ptr))
874
875 /* The opcode for word-sized loads (LW or LD). */
876 #define MIPS_ELF_LOAD_WORD(abfd) \
877 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
878
879 /* Add a dynamic symbol table-entry. */
880 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
881 _bfd_elf_add_dynamic_entry (info, tag, val)
882
883 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
884 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (abfd, rtype, rela))
885
886 /* The name of the dynamic relocation section. */
887 #define MIPS_ELF_REL_DYN_NAME(INFO) \
888 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
889
890 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
891 from smaller values. Start with zero, widen, *then* decrement. */
892 #define MINUS_ONE (((bfd_vma)0) - 1)
893 #define MINUS_TWO (((bfd_vma)0) - 2)
894
895 /* The value to write into got[1] for SVR4 targets, to identify it is
896 a GNU object. The dynamic linker can then use got[1] to store the
897 module pointer. */
898 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
899 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
900
901 /* The offset of $gp from the beginning of the .got section. */
902 #define ELF_MIPS_GP_OFFSET(INFO) \
903 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
904
905 /* The maximum size of the GOT for it to be addressable using 16-bit
906 offsets from $gp. */
907 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
908
909 /* Instructions which appear in a stub. */
910 #define STUB_LW(abfd) \
911 ((ABI_64_P (abfd) \
912 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
913 : 0x8f998010)) /* lw t9,0x8010(gp) */
914 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
915 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
916 #define STUB_JALR 0x0320f809 /* jalr ra,t9 */
917 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
918 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
919 #define STUB_LI16S(abfd, VAL) \
920 ((ABI_64_P (abfd) \
921 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
922 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
923
924 /* Likewise for the microMIPS ASE. */
925 #define STUB_LW_MICROMIPS(abfd) \
926 (ABI_64_P (abfd) \
927 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
928 : 0xff3c8010) /* lw t9,0x8010(gp) */
929 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
930 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
931 #define STUB_LUI_MICROMIPS(VAL) \
932 (0x41b80000 + (VAL)) /* lui t8,VAL */
933 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
934 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
935 #define STUB_ORI_MICROMIPS(VAL) \
936 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
937 #define STUB_LI16U_MICROMIPS(VAL) \
938 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
939 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
940 (ABI_64_P (abfd) \
941 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
942 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
943
944 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
945 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
946 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
947 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
948 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
949 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
950
951 /* The name of the dynamic interpreter. This is put in the .interp
952 section. */
953
954 #define ELF_DYNAMIC_INTERPRETER(abfd) \
955 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
956 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
957 : "/usr/lib/libc.so.1")
958
959 #ifdef BFD64
960 #define MNAME(bfd,pre,pos) \
961 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
962 #define ELF_R_SYM(bfd, i) \
963 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
964 #define ELF_R_TYPE(bfd, i) \
965 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
966 #define ELF_R_INFO(bfd, s, t) \
967 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
968 #else
969 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
970 #define ELF_R_SYM(bfd, i) \
971 (ELF32_R_SYM (i))
972 #define ELF_R_TYPE(bfd, i) \
973 (ELF32_R_TYPE (i))
974 #define ELF_R_INFO(bfd, s, t) \
975 (ELF32_R_INFO (s, t))
976 #endif
977 \f
978 /* The mips16 compiler uses a couple of special sections to handle
979 floating point arguments.
980
981 Section names that look like .mips16.fn.FNNAME contain stubs that
982 copy floating point arguments from the fp regs to the gp regs and
983 then jump to FNNAME. If any 32 bit function calls FNNAME, the
984 call should be redirected to the stub instead. If no 32 bit
985 function calls FNNAME, the stub should be discarded. We need to
986 consider any reference to the function, not just a call, because
987 if the address of the function is taken we will need the stub,
988 since the address might be passed to a 32 bit function.
989
990 Section names that look like .mips16.call.FNNAME contain stubs
991 that copy floating point arguments from the gp regs to the fp
992 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
993 then any 16 bit function that calls FNNAME should be redirected
994 to the stub instead. If FNNAME is not a 32 bit function, the
995 stub should be discarded.
996
997 .mips16.call.fp.FNNAME sections are similar, but contain stubs
998 which call FNNAME and then copy the return value from the fp regs
999 to the gp regs. These stubs store the return value in $18 while
1000 calling FNNAME; any function which might call one of these stubs
1001 must arrange to save $18 around the call. (This case is not
1002 needed for 32 bit functions that call 16 bit functions, because
1003 16 bit functions always return floating point values in both
1004 $f0/$f1 and $2/$3.)
1005
1006 Note that in all cases FNNAME might be defined statically.
1007 Therefore, FNNAME is not used literally. Instead, the relocation
1008 information will indicate which symbol the section is for.
1009
1010 We record any stubs that we find in the symbol table. */
1011
1012 #define FN_STUB ".mips16.fn."
1013 #define CALL_STUB ".mips16.call."
1014 #define CALL_FP_STUB ".mips16.call.fp."
1015
1016 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1017 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1018 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1019 \f
1020 /* The format of the first PLT entry in an O32 executable. */
1021 static const bfd_vma mips_o32_exec_plt0_entry[] =
1022 {
1023 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1024 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1025 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1026 0x031cc023, /* subu $24, $24, $28 */
1027 0x03e07825, /* or t7, ra, zero */
1028 0x0018c082, /* srl $24, $24, 2 */
1029 0x0320f809, /* jalr $25 */
1030 0x2718fffe /* subu $24, $24, 2 */
1031 };
1032
1033 /* The format of the first PLT entry in an N32 executable. Different
1034 because gp ($28) is not available; we use t2 ($14) instead. */
1035 static const bfd_vma mips_n32_exec_plt0_entry[] =
1036 {
1037 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1038 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1039 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1040 0x030ec023, /* subu $24, $24, $14 */
1041 0x03e07825, /* or t7, ra, zero */
1042 0x0018c082, /* srl $24, $24, 2 */
1043 0x0320f809, /* jalr $25 */
1044 0x2718fffe /* subu $24, $24, 2 */
1045 };
1046
1047 /* The format of the first PLT entry in an N64 executable. Different
1048 from N32 because of the increased size of GOT entries. */
1049 static const bfd_vma mips_n64_exec_plt0_entry[] =
1050 {
1051 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1052 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1053 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1054 0x030ec023, /* subu $24, $24, $14 */
1055 0x03e07825, /* or t7, ra, zero */
1056 0x0018c0c2, /* srl $24, $24, 3 */
1057 0x0320f809, /* jalr $25 */
1058 0x2718fffe /* subu $24, $24, 2 */
1059 };
1060
1061 /* The format of the microMIPS first PLT entry in an O32 executable.
1062 We rely on v0 ($2) rather than t8 ($24) to contain the address
1063 of the GOTPLT entry handled, so this stub may only be used when
1064 all the subsequent PLT entries are microMIPS code too.
1065
1066 The trailing NOP is for alignment and correct disassembly only. */
1067 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1068 {
1069 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1070 0xff23, 0x0000, /* lw $25, 0($3) */
1071 0x0535, /* subu $2, $2, $3 */
1072 0x2525, /* srl $2, $2, 2 */
1073 0x3302, 0xfffe, /* subu $24, $2, 2 */
1074 0x0dff, /* move $15, $31 */
1075 0x45f9, /* jalrs $25 */
1076 0x0f83, /* move $28, $3 */
1077 0x0c00 /* nop */
1078 };
1079
1080 /* The format of the microMIPS first PLT entry in an O32 executable
1081 in the insn32 mode. */
1082 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1083 {
1084 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1085 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1086 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1087 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1088 0x001f, 0x7a90, /* or $15, $31, zero */
1089 0x0318, 0x1040, /* srl $24, $24, 2 */
1090 0x03f9, 0x0f3c, /* jalr $25 */
1091 0x3318, 0xfffe /* subu $24, $24, 2 */
1092 };
1093
1094 /* The format of subsequent standard PLT entries. */
1095 static const bfd_vma mips_exec_plt_entry[] =
1096 {
1097 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1098 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1099 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1100 0x03200008 /* jr $25 */
1101 };
1102
1103 /* In the following PLT entry the JR and ADDIU instructions will
1104 be swapped in _bfd_mips_elf_finish_dynamic_symbol because
1105 LOAD_INTERLOCKS_P will be true for MIPS R6. */
1106 static const bfd_vma mipsr6_exec_plt_entry[] =
1107 {
1108 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1109 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1110 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1111 0x03200009 /* jr $25 */
1112 };
1113
1114 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1115 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1116 directly addressable. */
1117 static const bfd_vma mips16_o32_exec_plt_entry[] =
1118 {
1119 0xb203, /* lw $2, 12($pc) */
1120 0x9a60, /* lw $3, 0($2) */
1121 0x651a, /* move $24, $2 */
1122 0xeb00, /* jr $3 */
1123 0x653b, /* move $25, $3 */
1124 0x6500, /* nop */
1125 0x0000, 0x0000 /* .word (.got.plt entry) */
1126 };
1127
1128 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1129 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1130 static const bfd_vma micromips_o32_exec_plt_entry[] =
1131 {
1132 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1133 0xff22, 0x0000, /* lw $25, 0($2) */
1134 0x4599, /* jr $25 */
1135 0x0f02 /* move $24, $2 */
1136 };
1137
1138 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1139 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1140 {
1141 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1142 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1143 0x0019, 0x0f3c, /* jr $25 */
1144 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1145 };
1146
1147 /* The format of the first PLT entry in a VxWorks executable. */
1148 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1149 {
1150 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1151 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1152 0x8f390008, /* lw t9, 8(t9) */
1153 0x00000000, /* nop */
1154 0x03200008, /* jr t9 */
1155 0x00000000 /* nop */
1156 };
1157
1158 /* The format of subsequent PLT entries. */
1159 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1160 {
1161 0x10000000, /* b .PLT_resolver */
1162 0x24180000, /* li t8, <pltindex> */
1163 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1164 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1165 0x8f390000, /* lw t9, 0(t9) */
1166 0x00000000, /* nop */
1167 0x03200008, /* jr t9 */
1168 0x00000000 /* nop */
1169 };
1170
1171 /* The format of the first PLT entry in a VxWorks shared object. */
1172 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1173 {
1174 0x8f990008, /* lw t9, 8(gp) */
1175 0x00000000, /* nop */
1176 0x03200008, /* jr t9 */
1177 0x00000000, /* nop */
1178 0x00000000, /* nop */
1179 0x00000000 /* nop */
1180 };
1181
1182 /* The format of subsequent PLT entries. */
1183 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1184 {
1185 0x10000000, /* b .PLT_resolver */
1186 0x24180000 /* li t8, <pltindex> */
1187 };
1188 \f
1189 /* microMIPS 32-bit opcode helper installer. */
1190
1191 static void
1192 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1193 {
1194 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1195 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1196 }
1197
1198 /* microMIPS 32-bit opcode helper retriever. */
1199
1200 static bfd_vma
1201 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1202 {
1203 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1204 }
1205 \f
1206 /* Look up an entry in a MIPS ELF linker hash table. */
1207
1208 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1209 ((struct mips_elf_link_hash_entry *) \
1210 elf_link_hash_lookup (&(table)->root, (string), (create), \
1211 (copy), (follow)))
1212
1213 /* Traverse a MIPS ELF linker hash table. */
1214
1215 #define mips_elf_link_hash_traverse(table, func, info) \
1216 (elf_link_hash_traverse \
1217 (&(table)->root, \
1218 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1219 (info)))
1220
1221 /* Find the base offsets for thread-local storage in this object,
1222 for GD/LD and IE/LE respectively. */
1223
1224 #define TP_OFFSET 0x7000
1225 #define DTP_OFFSET 0x8000
1226
1227 static bfd_vma
1228 dtprel_base (struct bfd_link_info *info)
1229 {
1230 /* If tls_sec is NULL, we should have signalled an error already. */
1231 if (elf_hash_table (info)->tls_sec == NULL)
1232 return 0;
1233 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1234 }
1235
1236 static bfd_vma
1237 tprel_base (struct bfd_link_info *info)
1238 {
1239 /* If tls_sec is NULL, we should have signalled an error already. */
1240 if (elf_hash_table (info)->tls_sec == NULL)
1241 return 0;
1242 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1243 }
1244
1245 /* Create an entry in a MIPS ELF linker hash table. */
1246
1247 static struct bfd_hash_entry *
1248 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1249 struct bfd_hash_table *table, const char *string)
1250 {
1251 struct mips_elf_link_hash_entry *ret =
1252 (struct mips_elf_link_hash_entry *) entry;
1253
1254 /* Allocate the structure if it has not already been allocated by a
1255 subclass. */
1256 if (ret == NULL)
1257 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1258 if (ret == NULL)
1259 return (struct bfd_hash_entry *) ret;
1260
1261 /* Call the allocation method of the superclass. */
1262 ret = ((struct mips_elf_link_hash_entry *)
1263 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1264 table, string));
1265 if (ret != NULL)
1266 {
1267 /* Set local fields. */
1268 memset (&ret->esym, 0, sizeof (EXTR));
1269 /* We use -2 as a marker to indicate that the information has
1270 not been set. -1 means there is no associated ifd. */
1271 ret->esym.ifd = -2;
1272 ret->la25_stub = 0;
1273 ret->possibly_dynamic_relocs = 0;
1274 ret->fn_stub = NULL;
1275 ret->call_stub = NULL;
1276 ret->call_fp_stub = NULL;
1277 ret->global_got_area = GGA_NONE;
1278 ret->got_only_for_calls = TRUE;
1279 ret->readonly_reloc = FALSE;
1280 ret->has_static_relocs = FALSE;
1281 ret->no_fn_stub = FALSE;
1282 ret->need_fn_stub = FALSE;
1283 ret->has_nonpic_branches = FALSE;
1284 ret->needs_lazy_stub = FALSE;
1285 ret->use_plt_entry = FALSE;
1286 }
1287
1288 return (struct bfd_hash_entry *) ret;
1289 }
1290
1291 /* Allocate MIPS ELF private object data. */
1292
1293 bfd_boolean
1294 _bfd_mips_elf_mkobject (bfd *abfd)
1295 {
1296 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1297 MIPS_ELF_DATA);
1298 }
1299
1300 bfd_boolean
1301 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1302 {
1303 if (!sec->used_by_bfd)
1304 {
1305 struct _mips_elf_section_data *sdata;
1306 bfd_size_type amt = sizeof (*sdata);
1307
1308 sdata = bfd_zalloc (abfd, amt);
1309 if (sdata == NULL)
1310 return FALSE;
1311 sec->used_by_bfd = sdata;
1312 }
1313
1314 return _bfd_elf_new_section_hook (abfd, sec);
1315 }
1316 \f
1317 /* Read ECOFF debugging information from a .mdebug section into a
1318 ecoff_debug_info structure. */
1319
1320 bfd_boolean
1321 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1322 struct ecoff_debug_info *debug)
1323 {
1324 HDRR *symhdr;
1325 const struct ecoff_debug_swap *swap;
1326 char *ext_hdr;
1327
1328 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1329 memset (debug, 0, sizeof (*debug));
1330
1331 ext_hdr = bfd_malloc (swap->external_hdr_size);
1332 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1333 goto error_return;
1334
1335 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1336 swap->external_hdr_size))
1337 goto error_return;
1338
1339 symhdr = &debug->symbolic_header;
1340 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1341
1342 /* The symbolic header contains absolute file offsets and sizes to
1343 read. */
1344 #define READ(ptr, offset, count, size, type) \
1345 if (symhdr->count == 0) \
1346 debug->ptr = NULL; \
1347 else \
1348 { \
1349 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1350 debug->ptr = bfd_malloc (amt); \
1351 if (debug->ptr == NULL) \
1352 goto error_return; \
1353 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1354 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1355 goto error_return; \
1356 }
1357
1358 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1359 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1360 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1361 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1362 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1363 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1364 union aux_ext *);
1365 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1366 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1367 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1368 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1369 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1370 #undef READ
1371
1372 debug->fdr = NULL;
1373
1374 return TRUE;
1375
1376 error_return:
1377 if (ext_hdr != NULL)
1378 free (ext_hdr);
1379 if (debug->line != NULL)
1380 free (debug->line);
1381 if (debug->external_dnr != NULL)
1382 free (debug->external_dnr);
1383 if (debug->external_pdr != NULL)
1384 free (debug->external_pdr);
1385 if (debug->external_sym != NULL)
1386 free (debug->external_sym);
1387 if (debug->external_opt != NULL)
1388 free (debug->external_opt);
1389 if (debug->external_aux != NULL)
1390 free (debug->external_aux);
1391 if (debug->ss != NULL)
1392 free (debug->ss);
1393 if (debug->ssext != NULL)
1394 free (debug->ssext);
1395 if (debug->external_fdr != NULL)
1396 free (debug->external_fdr);
1397 if (debug->external_rfd != NULL)
1398 free (debug->external_rfd);
1399 if (debug->external_ext != NULL)
1400 free (debug->external_ext);
1401 return FALSE;
1402 }
1403 \f
1404 /* Swap RPDR (runtime procedure table entry) for output. */
1405
1406 static void
1407 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1408 {
1409 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1410 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1411 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1412 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1413 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1414 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1415
1416 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1417 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1418
1419 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1420 }
1421
1422 /* Create a runtime procedure table from the .mdebug section. */
1423
1424 static bfd_boolean
1425 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1426 struct bfd_link_info *info, asection *s,
1427 struct ecoff_debug_info *debug)
1428 {
1429 const struct ecoff_debug_swap *swap;
1430 HDRR *hdr = &debug->symbolic_header;
1431 RPDR *rpdr, *rp;
1432 struct rpdr_ext *erp;
1433 void *rtproc;
1434 struct pdr_ext *epdr;
1435 struct sym_ext *esym;
1436 char *ss, **sv;
1437 char *str;
1438 bfd_size_type size;
1439 bfd_size_type count;
1440 unsigned long sindex;
1441 unsigned long i;
1442 PDR pdr;
1443 SYMR sym;
1444 const char *no_name_func = _("static procedure (no name)");
1445
1446 epdr = NULL;
1447 rpdr = NULL;
1448 esym = NULL;
1449 ss = NULL;
1450 sv = NULL;
1451
1452 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1453
1454 sindex = strlen (no_name_func) + 1;
1455 count = hdr->ipdMax;
1456 if (count > 0)
1457 {
1458 size = swap->external_pdr_size;
1459
1460 epdr = bfd_malloc (size * count);
1461 if (epdr == NULL)
1462 goto error_return;
1463
1464 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1465 goto error_return;
1466
1467 size = sizeof (RPDR);
1468 rp = rpdr = bfd_malloc (size * count);
1469 if (rpdr == NULL)
1470 goto error_return;
1471
1472 size = sizeof (char *);
1473 sv = bfd_malloc (size * count);
1474 if (sv == NULL)
1475 goto error_return;
1476
1477 count = hdr->isymMax;
1478 size = swap->external_sym_size;
1479 esym = bfd_malloc (size * count);
1480 if (esym == NULL)
1481 goto error_return;
1482
1483 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1484 goto error_return;
1485
1486 count = hdr->issMax;
1487 ss = bfd_malloc (count);
1488 if (ss == NULL)
1489 goto error_return;
1490 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1491 goto error_return;
1492
1493 count = hdr->ipdMax;
1494 for (i = 0; i < (unsigned long) count; i++, rp++)
1495 {
1496 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1497 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1498 rp->adr = sym.value;
1499 rp->regmask = pdr.regmask;
1500 rp->regoffset = pdr.regoffset;
1501 rp->fregmask = pdr.fregmask;
1502 rp->fregoffset = pdr.fregoffset;
1503 rp->frameoffset = pdr.frameoffset;
1504 rp->framereg = pdr.framereg;
1505 rp->pcreg = pdr.pcreg;
1506 rp->irpss = sindex;
1507 sv[i] = ss + sym.iss;
1508 sindex += strlen (sv[i]) + 1;
1509 }
1510 }
1511
1512 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1513 size = BFD_ALIGN (size, 16);
1514 rtproc = bfd_alloc (abfd, size);
1515 if (rtproc == NULL)
1516 {
1517 mips_elf_hash_table (info)->procedure_count = 0;
1518 goto error_return;
1519 }
1520
1521 mips_elf_hash_table (info)->procedure_count = count + 2;
1522
1523 erp = rtproc;
1524 memset (erp, 0, sizeof (struct rpdr_ext));
1525 erp++;
1526 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1527 strcpy (str, no_name_func);
1528 str += strlen (no_name_func) + 1;
1529 for (i = 0; i < count; i++)
1530 {
1531 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1532 strcpy (str, sv[i]);
1533 str += strlen (sv[i]) + 1;
1534 }
1535 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1536
1537 /* Set the size and contents of .rtproc section. */
1538 s->size = size;
1539 s->contents = rtproc;
1540
1541 /* Skip this section later on (I don't think this currently
1542 matters, but someday it might). */
1543 s->map_head.link_order = NULL;
1544
1545 if (epdr != NULL)
1546 free (epdr);
1547 if (rpdr != NULL)
1548 free (rpdr);
1549 if (esym != NULL)
1550 free (esym);
1551 if (ss != NULL)
1552 free (ss);
1553 if (sv != NULL)
1554 free (sv);
1555
1556 return TRUE;
1557
1558 error_return:
1559 if (epdr != NULL)
1560 free (epdr);
1561 if (rpdr != NULL)
1562 free (rpdr);
1563 if (esym != NULL)
1564 free (esym);
1565 if (ss != NULL)
1566 free (ss);
1567 if (sv != NULL)
1568 free (sv);
1569 return FALSE;
1570 }
1571 \f
1572 /* We're going to create a stub for H. Create a symbol for the stub's
1573 value and size, to help make the disassembly easier to read. */
1574
1575 static bfd_boolean
1576 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1577 struct mips_elf_link_hash_entry *h,
1578 const char *prefix, asection *s, bfd_vma value,
1579 bfd_vma size)
1580 {
1581 bfd_boolean micromips_p = ELF_ST_IS_MICROMIPS (h->root.other);
1582 struct bfd_link_hash_entry *bh;
1583 struct elf_link_hash_entry *elfh;
1584 char *name;
1585 bfd_boolean res;
1586
1587 if (micromips_p)
1588 value |= 1;
1589
1590 /* Create a new symbol. */
1591 name = concat (prefix, h->root.root.root.string, NULL);
1592 bh = NULL;
1593 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1594 BSF_LOCAL, s, value, NULL,
1595 TRUE, FALSE, &bh);
1596 free (name);
1597 if (! res)
1598 return FALSE;
1599
1600 /* Make it a local function. */
1601 elfh = (struct elf_link_hash_entry *) bh;
1602 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1603 elfh->size = size;
1604 elfh->forced_local = 1;
1605 if (micromips_p)
1606 elfh->other = ELF_ST_SET_MICROMIPS (elfh->other);
1607 return TRUE;
1608 }
1609
1610 /* We're about to redefine H. Create a symbol to represent H's
1611 current value and size, to help make the disassembly easier
1612 to read. */
1613
1614 static bfd_boolean
1615 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1616 struct mips_elf_link_hash_entry *h,
1617 const char *prefix)
1618 {
1619 struct bfd_link_hash_entry *bh;
1620 struct elf_link_hash_entry *elfh;
1621 char *name;
1622 asection *s;
1623 bfd_vma value;
1624 bfd_boolean res;
1625
1626 /* Read the symbol's value. */
1627 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1628 || h->root.root.type == bfd_link_hash_defweak);
1629 s = h->root.root.u.def.section;
1630 value = h->root.root.u.def.value;
1631
1632 /* Create a new symbol. */
1633 name = concat (prefix, h->root.root.root.string, NULL);
1634 bh = NULL;
1635 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1636 BSF_LOCAL, s, value, NULL,
1637 TRUE, FALSE, &bh);
1638 free (name);
1639 if (! res)
1640 return FALSE;
1641
1642 /* Make it local and copy the other attributes from H. */
1643 elfh = (struct elf_link_hash_entry *) bh;
1644 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1645 elfh->other = h->root.other;
1646 elfh->size = h->root.size;
1647 elfh->forced_local = 1;
1648 return TRUE;
1649 }
1650
1651 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1652 function rather than to a hard-float stub. */
1653
1654 static bfd_boolean
1655 section_allows_mips16_refs_p (asection *section)
1656 {
1657 const char *name;
1658
1659 name = bfd_get_section_name (section->owner, section);
1660 return (FN_STUB_P (name)
1661 || CALL_STUB_P (name)
1662 || CALL_FP_STUB_P (name)
1663 || strcmp (name, ".pdr") == 0);
1664 }
1665
1666 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1667 stub section of some kind. Return the R_SYMNDX of the target
1668 function, or 0 if we can't decide which function that is. */
1669
1670 static unsigned long
1671 mips16_stub_symndx (const struct elf_backend_data *bed,
1672 asection *sec ATTRIBUTE_UNUSED,
1673 const Elf_Internal_Rela *relocs,
1674 const Elf_Internal_Rela *relend)
1675 {
1676 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1677 const Elf_Internal_Rela *rel;
1678
1679 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1680 one in a compound relocation. */
1681 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1682 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1683 return ELF_R_SYM (sec->owner, rel->r_info);
1684
1685 /* Otherwise trust the first relocation, whatever its kind. This is
1686 the traditional behavior. */
1687 if (relocs < relend)
1688 return ELF_R_SYM (sec->owner, relocs->r_info);
1689
1690 return 0;
1691 }
1692
1693 /* Check the mips16 stubs for a particular symbol, and see if we can
1694 discard them. */
1695
1696 static void
1697 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1698 struct mips_elf_link_hash_entry *h)
1699 {
1700 /* Dynamic symbols must use the standard call interface, in case other
1701 objects try to call them. */
1702 if (h->fn_stub != NULL
1703 && h->root.dynindx != -1)
1704 {
1705 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1706 h->need_fn_stub = TRUE;
1707 }
1708
1709 if (h->fn_stub != NULL
1710 && ! h->need_fn_stub)
1711 {
1712 /* We don't need the fn_stub; the only references to this symbol
1713 are 16 bit calls. Clobber the size to 0 to prevent it from
1714 being included in the link. */
1715 h->fn_stub->size = 0;
1716 h->fn_stub->flags &= ~SEC_RELOC;
1717 h->fn_stub->reloc_count = 0;
1718 h->fn_stub->flags |= SEC_EXCLUDE;
1719 h->fn_stub->output_section = bfd_abs_section_ptr;
1720 }
1721
1722 if (h->call_stub != NULL
1723 && ELF_ST_IS_MIPS16 (h->root.other))
1724 {
1725 /* We don't need the call_stub; this is a 16 bit function, so
1726 calls from other 16 bit functions are OK. Clobber the size
1727 to 0 to prevent it from being included in the link. */
1728 h->call_stub->size = 0;
1729 h->call_stub->flags &= ~SEC_RELOC;
1730 h->call_stub->reloc_count = 0;
1731 h->call_stub->flags |= SEC_EXCLUDE;
1732 h->call_stub->output_section = bfd_abs_section_ptr;
1733 }
1734
1735 if (h->call_fp_stub != NULL
1736 && ELF_ST_IS_MIPS16 (h->root.other))
1737 {
1738 /* We don't need the call_stub; this is a 16 bit function, so
1739 calls from other 16 bit functions are OK. Clobber the size
1740 to 0 to prevent it from being included in the link. */
1741 h->call_fp_stub->size = 0;
1742 h->call_fp_stub->flags &= ~SEC_RELOC;
1743 h->call_fp_stub->reloc_count = 0;
1744 h->call_fp_stub->flags |= SEC_EXCLUDE;
1745 h->call_fp_stub->output_section = bfd_abs_section_ptr;
1746 }
1747 }
1748
1749 /* Hashtable callbacks for mips_elf_la25_stubs. */
1750
1751 static hashval_t
1752 mips_elf_la25_stub_hash (const void *entry_)
1753 {
1754 const struct mips_elf_la25_stub *entry;
1755
1756 entry = (struct mips_elf_la25_stub *) entry_;
1757 return entry->h->root.root.u.def.section->id
1758 + entry->h->root.root.u.def.value;
1759 }
1760
1761 static int
1762 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1763 {
1764 const struct mips_elf_la25_stub *entry1, *entry2;
1765
1766 entry1 = (struct mips_elf_la25_stub *) entry1_;
1767 entry2 = (struct mips_elf_la25_stub *) entry2_;
1768 return ((entry1->h->root.root.u.def.section
1769 == entry2->h->root.root.u.def.section)
1770 && (entry1->h->root.root.u.def.value
1771 == entry2->h->root.root.u.def.value));
1772 }
1773
1774 /* Called by the linker to set up the la25 stub-creation code. FN is
1775 the linker's implementation of add_stub_function. Return true on
1776 success. */
1777
1778 bfd_boolean
1779 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1780 asection *(*fn) (const char *, asection *,
1781 asection *))
1782 {
1783 struct mips_elf_link_hash_table *htab;
1784
1785 htab = mips_elf_hash_table (info);
1786 if (htab == NULL)
1787 return FALSE;
1788
1789 htab->add_stub_section = fn;
1790 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1791 mips_elf_la25_stub_eq, NULL);
1792 if (htab->la25_stubs == NULL)
1793 return FALSE;
1794
1795 return TRUE;
1796 }
1797
1798 /* Return true if H is a locally-defined PIC function, in the sense
1799 that it or its fn_stub might need $25 to be valid on entry.
1800 Note that MIPS16 functions set up $gp using PC-relative instructions,
1801 so they themselves never need $25 to be valid. Only non-MIPS16
1802 entry points are of interest here. */
1803
1804 static bfd_boolean
1805 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1806 {
1807 return ((h->root.root.type == bfd_link_hash_defined
1808 || h->root.root.type == bfd_link_hash_defweak)
1809 && h->root.def_regular
1810 && !bfd_is_abs_section (h->root.root.u.def.section)
1811 && !bfd_is_und_section (h->root.root.u.def.section)
1812 && (!ELF_ST_IS_MIPS16 (h->root.other)
1813 || (h->fn_stub && h->need_fn_stub))
1814 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1815 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1816 }
1817
1818 /* Set *SEC to the input section that contains the target of STUB.
1819 Return the offset of the target from the start of that section. */
1820
1821 static bfd_vma
1822 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1823 asection **sec)
1824 {
1825 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1826 {
1827 BFD_ASSERT (stub->h->need_fn_stub);
1828 *sec = stub->h->fn_stub;
1829 return 0;
1830 }
1831 else
1832 {
1833 *sec = stub->h->root.root.u.def.section;
1834 return stub->h->root.root.u.def.value;
1835 }
1836 }
1837
1838 /* STUB describes an la25 stub that we have decided to implement
1839 by inserting an LUI/ADDIU pair before the target function.
1840 Create the section and redirect the function symbol to it. */
1841
1842 static bfd_boolean
1843 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1844 struct bfd_link_info *info)
1845 {
1846 struct mips_elf_link_hash_table *htab;
1847 char *name;
1848 asection *s, *input_section;
1849 unsigned int align;
1850
1851 htab = mips_elf_hash_table (info);
1852 if (htab == NULL)
1853 return FALSE;
1854
1855 /* Create a unique name for the new section. */
1856 name = bfd_malloc (11 + sizeof (".text.stub."));
1857 if (name == NULL)
1858 return FALSE;
1859 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1860
1861 /* Create the section. */
1862 mips_elf_get_la25_target (stub, &input_section);
1863 s = htab->add_stub_section (name, input_section,
1864 input_section->output_section);
1865 if (s == NULL)
1866 return FALSE;
1867
1868 /* Make sure that any padding goes before the stub. */
1869 align = input_section->alignment_power;
1870 if (!bfd_set_section_alignment (s->owner, s, align))
1871 return FALSE;
1872 if (align > 3)
1873 s->size = (1 << align) - 8;
1874
1875 /* Create a symbol for the stub. */
1876 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1877 stub->stub_section = s;
1878 stub->offset = s->size;
1879
1880 /* Allocate room for it. */
1881 s->size += 8;
1882 return TRUE;
1883 }
1884
1885 /* STUB describes an la25 stub that we have decided to implement
1886 with a separate trampoline. Allocate room for it and redirect
1887 the function symbol to it. */
1888
1889 static bfd_boolean
1890 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1891 struct bfd_link_info *info)
1892 {
1893 struct mips_elf_link_hash_table *htab;
1894 asection *s;
1895
1896 htab = mips_elf_hash_table (info);
1897 if (htab == NULL)
1898 return FALSE;
1899
1900 /* Create a trampoline section, if we haven't already. */
1901 s = htab->strampoline;
1902 if (s == NULL)
1903 {
1904 asection *input_section = stub->h->root.root.u.def.section;
1905 s = htab->add_stub_section (".text", NULL,
1906 input_section->output_section);
1907 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1908 return FALSE;
1909 htab->strampoline = s;
1910 }
1911
1912 /* Create a symbol for the stub. */
1913 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1914 stub->stub_section = s;
1915 stub->offset = s->size;
1916
1917 /* Allocate room for it. */
1918 s->size += 16;
1919 return TRUE;
1920 }
1921
1922 /* H describes a symbol that needs an la25 stub. Make sure that an
1923 appropriate stub exists and point H at it. */
1924
1925 static bfd_boolean
1926 mips_elf_add_la25_stub (struct bfd_link_info *info,
1927 struct mips_elf_link_hash_entry *h)
1928 {
1929 struct mips_elf_link_hash_table *htab;
1930 struct mips_elf_la25_stub search, *stub;
1931 bfd_boolean use_trampoline_p;
1932 asection *s;
1933 bfd_vma value;
1934 void **slot;
1935
1936 /* Describe the stub we want. */
1937 search.stub_section = NULL;
1938 search.offset = 0;
1939 search.h = h;
1940
1941 /* See if we've already created an equivalent stub. */
1942 htab = mips_elf_hash_table (info);
1943 if (htab == NULL)
1944 return FALSE;
1945
1946 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1947 if (slot == NULL)
1948 return FALSE;
1949
1950 stub = (struct mips_elf_la25_stub *) *slot;
1951 if (stub != NULL)
1952 {
1953 /* We can reuse the existing stub. */
1954 h->la25_stub = stub;
1955 return TRUE;
1956 }
1957
1958 /* Create a permanent copy of ENTRY and add it to the hash table. */
1959 stub = bfd_malloc (sizeof (search));
1960 if (stub == NULL)
1961 return FALSE;
1962 *stub = search;
1963 *slot = stub;
1964
1965 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1966 of the section and if we would need no more than 2 nops. */
1967 value = mips_elf_get_la25_target (stub, &s);
1968 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
1969 value &= ~1;
1970 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1971
1972 h->la25_stub = stub;
1973 return (use_trampoline_p
1974 ? mips_elf_add_la25_trampoline (stub, info)
1975 : mips_elf_add_la25_intro (stub, info));
1976 }
1977
1978 /* A mips_elf_link_hash_traverse callback that is called before sizing
1979 sections. DATA points to a mips_htab_traverse_info structure. */
1980
1981 static bfd_boolean
1982 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1983 {
1984 struct mips_htab_traverse_info *hti;
1985
1986 hti = (struct mips_htab_traverse_info *) data;
1987 if (!bfd_link_relocatable (hti->info))
1988 mips_elf_check_mips16_stubs (hti->info, h);
1989
1990 if (mips_elf_local_pic_function_p (h))
1991 {
1992 /* PR 12845: If H is in a section that has been garbage
1993 collected it will have its output section set to *ABS*. */
1994 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1995 return TRUE;
1996
1997 /* H is a function that might need $25 to be valid on entry.
1998 If we're creating a non-PIC relocatable object, mark H as
1999 being PIC. If we're creating a non-relocatable object with
2000 non-PIC branches and jumps to H, make sure that H has an la25
2001 stub. */
2002 if (bfd_link_relocatable (hti->info))
2003 {
2004 if (!PIC_OBJECT_P (hti->output_bfd))
2005 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2006 }
2007 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2008 {
2009 hti->error = TRUE;
2010 return FALSE;
2011 }
2012 }
2013 return TRUE;
2014 }
2015 \f
2016 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2017 Most mips16 instructions are 16 bits, but these instructions
2018 are 32 bits.
2019
2020 The format of these instructions is:
2021
2022 +--------------+--------------------------------+
2023 | JALX | X| Imm 20:16 | Imm 25:21 |
2024 +--------------+--------------------------------+
2025 | Immediate 15:0 |
2026 +-----------------------------------------------+
2027
2028 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2029 Note that the immediate value in the first word is swapped.
2030
2031 When producing a relocatable object file, R_MIPS16_26 is
2032 handled mostly like R_MIPS_26. In particular, the addend is
2033 stored as a straight 26-bit value in a 32-bit instruction.
2034 (gas makes life simpler for itself by never adjusting a
2035 R_MIPS16_26 reloc to be against a section, so the addend is
2036 always zero). However, the 32 bit instruction is stored as 2
2037 16-bit values, rather than a single 32-bit value. In a
2038 big-endian file, the result is the same; in a little-endian
2039 file, the two 16-bit halves of the 32 bit value are swapped.
2040 This is so that a disassembler can recognize the jal
2041 instruction.
2042
2043 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2044 instruction stored as two 16-bit values. The addend A is the
2045 contents of the targ26 field. The calculation is the same as
2046 R_MIPS_26. When storing the calculated value, reorder the
2047 immediate value as shown above, and don't forget to store the
2048 value as two 16-bit values.
2049
2050 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2051 defined as
2052
2053 big-endian:
2054 +--------+----------------------+
2055 | | |
2056 | | targ26-16 |
2057 |31 26|25 0|
2058 +--------+----------------------+
2059
2060 little-endian:
2061 +----------+------+-------------+
2062 | | | |
2063 | sub1 | | sub2 |
2064 |0 9|10 15|16 31|
2065 +----------+--------------------+
2066 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2067 ((sub1 << 16) | sub2)).
2068
2069 When producing a relocatable object file, the calculation is
2070 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2071 When producing a fully linked file, the calculation is
2072 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2073 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2074
2075 The table below lists the other MIPS16 instruction relocations.
2076 Each one is calculated in the same way as the non-MIPS16 relocation
2077 given on the right, but using the extended MIPS16 layout of 16-bit
2078 immediate fields:
2079
2080 R_MIPS16_GPREL R_MIPS_GPREL16
2081 R_MIPS16_GOT16 R_MIPS_GOT16
2082 R_MIPS16_CALL16 R_MIPS_CALL16
2083 R_MIPS16_HI16 R_MIPS_HI16
2084 R_MIPS16_LO16 R_MIPS_LO16
2085
2086 A typical instruction will have a format like this:
2087
2088 +--------------+--------------------------------+
2089 | EXTEND | Imm 10:5 | Imm 15:11 |
2090 +--------------+--------------------------------+
2091 | Major | rx | ry | Imm 4:0 |
2092 +--------------+--------------------------------+
2093
2094 EXTEND is the five bit value 11110. Major is the instruction
2095 opcode.
2096
2097 All we need to do here is shuffle the bits appropriately.
2098 As above, the two 16-bit halves must be swapped on a
2099 little-endian system.
2100
2101 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2102 relocatable field is shifted by 1 rather than 2 and the same bit
2103 shuffling is done as with the relocations above. */
2104
2105 static inline bfd_boolean
2106 mips16_reloc_p (int r_type)
2107 {
2108 switch (r_type)
2109 {
2110 case R_MIPS16_26:
2111 case R_MIPS16_GPREL:
2112 case R_MIPS16_GOT16:
2113 case R_MIPS16_CALL16:
2114 case R_MIPS16_HI16:
2115 case R_MIPS16_LO16:
2116 case R_MIPS16_TLS_GD:
2117 case R_MIPS16_TLS_LDM:
2118 case R_MIPS16_TLS_DTPREL_HI16:
2119 case R_MIPS16_TLS_DTPREL_LO16:
2120 case R_MIPS16_TLS_GOTTPREL:
2121 case R_MIPS16_TLS_TPREL_HI16:
2122 case R_MIPS16_TLS_TPREL_LO16:
2123 case R_MIPS16_PC16_S1:
2124 return TRUE;
2125
2126 default:
2127 return FALSE;
2128 }
2129 }
2130
2131 /* Check if a microMIPS reloc. */
2132
2133 static inline bfd_boolean
2134 micromips_reloc_p (unsigned int r_type)
2135 {
2136 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2137 }
2138
2139 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2140 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2141 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2142
2143 static inline bfd_boolean
2144 micromips_reloc_shuffle_p (unsigned int r_type)
2145 {
2146 return (micromips_reloc_p (r_type)
2147 && r_type != R_MICROMIPS_PC7_S1
2148 && r_type != R_MICROMIPS_PC10_S1);
2149 }
2150
2151 static inline bfd_boolean
2152 got16_reloc_p (int r_type)
2153 {
2154 return (r_type == R_MIPS_GOT16
2155 || r_type == R_MIPS16_GOT16
2156 || r_type == R_MICROMIPS_GOT16);
2157 }
2158
2159 static inline bfd_boolean
2160 call16_reloc_p (int r_type)
2161 {
2162 return (r_type == R_MIPS_CALL16
2163 || r_type == R_MIPS16_CALL16
2164 || r_type == R_MICROMIPS_CALL16);
2165 }
2166
2167 static inline bfd_boolean
2168 got_disp_reloc_p (unsigned int r_type)
2169 {
2170 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2171 }
2172
2173 static inline bfd_boolean
2174 got_page_reloc_p (unsigned int r_type)
2175 {
2176 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2177 }
2178
2179 static inline bfd_boolean
2180 got_lo16_reloc_p (unsigned int r_type)
2181 {
2182 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2183 }
2184
2185 static inline bfd_boolean
2186 call_hi16_reloc_p (unsigned int r_type)
2187 {
2188 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2189 }
2190
2191 static inline bfd_boolean
2192 call_lo16_reloc_p (unsigned int r_type)
2193 {
2194 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2195 }
2196
2197 static inline bfd_boolean
2198 hi16_reloc_p (int r_type)
2199 {
2200 return (r_type == R_MIPS_HI16
2201 || r_type == R_MIPS16_HI16
2202 || r_type == R_MICROMIPS_HI16
2203 || r_type == R_MIPS_PCHI16);
2204 }
2205
2206 static inline bfd_boolean
2207 lo16_reloc_p (int r_type)
2208 {
2209 return (r_type == R_MIPS_LO16
2210 || r_type == R_MIPS16_LO16
2211 || r_type == R_MICROMIPS_LO16
2212 || r_type == R_MIPS_PCLO16);
2213 }
2214
2215 static inline bfd_boolean
2216 mips16_call_reloc_p (int r_type)
2217 {
2218 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2219 }
2220
2221 static inline bfd_boolean
2222 jal_reloc_p (int r_type)
2223 {
2224 return (r_type == R_MIPS_26
2225 || r_type == R_MIPS16_26
2226 || r_type == R_MICROMIPS_26_S1);
2227 }
2228
2229 static inline bfd_boolean
2230 b_reloc_p (int r_type)
2231 {
2232 return (r_type == R_MIPS_PC26_S2
2233 || r_type == R_MIPS_PC21_S2
2234 || r_type == R_MIPS_PC16
2235 || r_type == R_MIPS_GNU_REL16_S2
2236 || r_type == R_MIPS16_PC16_S1
2237 || r_type == R_MICROMIPS_PC16_S1
2238 || r_type == R_MICROMIPS_PC10_S1
2239 || r_type == R_MICROMIPS_PC7_S1);
2240 }
2241
2242 static inline bfd_boolean
2243 aligned_pcrel_reloc_p (int r_type)
2244 {
2245 return (r_type == R_MIPS_PC18_S3
2246 || r_type == R_MIPS_PC19_S2);
2247 }
2248
2249 static inline bfd_boolean
2250 branch_reloc_p (int r_type)
2251 {
2252 return (r_type == R_MIPS_26
2253 || r_type == R_MIPS_PC26_S2
2254 || r_type == R_MIPS_PC21_S2
2255 || r_type == R_MIPS_PC16
2256 || r_type == R_MIPS_GNU_REL16_S2);
2257 }
2258
2259 static inline bfd_boolean
2260 mips16_branch_reloc_p (int r_type)
2261 {
2262 return (r_type == R_MIPS16_26
2263 || r_type == R_MIPS16_PC16_S1);
2264 }
2265
2266 static inline bfd_boolean
2267 micromips_branch_reloc_p (int r_type)
2268 {
2269 return (r_type == R_MICROMIPS_26_S1
2270 || r_type == R_MICROMIPS_PC16_S1
2271 || r_type == R_MICROMIPS_PC10_S1
2272 || r_type == R_MICROMIPS_PC7_S1);
2273 }
2274
2275 static inline bfd_boolean
2276 tls_gd_reloc_p (unsigned int r_type)
2277 {
2278 return (r_type == R_MIPS_TLS_GD
2279 || r_type == R_MIPS16_TLS_GD
2280 || r_type == R_MICROMIPS_TLS_GD);
2281 }
2282
2283 static inline bfd_boolean
2284 tls_ldm_reloc_p (unsigned int r_type)
2285 {
2286 return (r_type == R_MIPS_TLS_LDM
2287 || r_type == R_MIPS16_TLS_LDM
2288 || r_type == R_MICROMIPS_TLS_LDM);
2289 }
2290
2291 static inline bfd_boolean
2292 tls_gottprel_reloc_p (unsigned int r_type)
2293 {
2294 return (r_type == R_MIPS_TLS_GOTTPREL
2295 || r_type == R_MIPS16_TLS_GOTTPREL
2296 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2297 }
2298
2299 void
2300 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2301 bfd_boolean jal_shuffle, bfd_byte *data)
2302 {
2303 bfd_vma first, second, val;
2304
2305 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2306 return;
2307
2308 /* Pick up the first and second halfwords of the instruction. */
2309 first = bfd_get_16 (abfd, data);
2310 second = bfd_get_16 (abfd, data + 2);
2311 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2312 val = first << 16 | second;
2313 else if (r_type != R_MIPS16_26)
2314 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2315 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2316 else
2317 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2318 | ((first & 0x1f) << 21) | second);
2319 bfd_put_32 (abfd, val, data);
2320 }
2321
2322 void
2323 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2324 bfd_boolean jal_shuffle, bfd_byte *data)
2325 {
2326 bfd_vma first, second, val;
2327
2328 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2329 return;
2330
2331 val = bfd_get_32 (abfd, data);
2332 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2333 {
2334 second = val & 0xffff;
2335 first = val >> 16;
2336 }
2337 else if (r_type != R_MIPS16_26)
2338 {
2339 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2340 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2341 }
2342 else
2343 {
2344 second = val & 0xffff;
2345 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2346 | ((val >> 21) & 0x1f);
2347 }
2348 bfd_put_16 (abfd, second, data + 2);
2349 bfd_put_16 (abfd, first, data);
2350 }
2351
2352 bfd_reloc_status_type
2353 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2354 arelent *reloc_entry, asection *input_section,
2355 bfd_boolean relocatable, void *data, bfd_vma gp)
2356 {
2357 bfd_vma relocation;
2358 bfd_signed_vma val;
2359 bfd_reloc_status_type status;
2360
2361 if (bfd_is_com_section (symbol->section))
2362 relocation = 0;
2363 else
2364 relocation = symbol->value;
2365
2366 relocation += symbol->section->output_section->vma;
2367 relocation += symbol->section->output_offset;
2368
2369 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2370 return bfd_reloc_outofrange;
2371
2372 /* Set val to the offset into the section or symbol. */
2373 val = reloc_entry->addend;
2374
2375 _bfd_mips_elf_sign_extend (val, 16);
2376
2377 /* Adjust val for the final section location and GP value. If we
2378 are producing relocatable output, we don't want to do this for
2379 an external symbol. */
2380 if (! relocatable
2381 || (symbol->flags & BSF_SECTION_SYM) != 0)
2382 val += relocation - gp;
2383
2384 if (reloc_entry->howto->partial_inplace)
2385 {
2386 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2387 (bfd_byte *) data
2388 + reloc_entry->address);
2389 if (status != bfd_reloc_ok)
2390 return status;
2391 }
2392 else
2393 reloc_entry->addend = val;
2394
2395 if (relocatable)
2396 reloc_entry->address += input_section->output_offset;
2397
2398 return bfd_reloc_ok;
2399 }
2400
2401 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2402 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2403 that contains the relocation field and DATA points to the start of
2404 INPUT_SECTION. */
2405
2406 struct mips_hi16
2407 {
2408 struct mips_hi16 *next;
2409 bfd_byte *data;
2410 asection *input_section;
2411 arelent rel;
2412 };
2413
2414 /* FIXME: This should not be a static variable. */
2415
2416 static struct mips_hi16 *mips_hi16_list;
2417
2418 /* A howto special_function for REL *HI16 relocations. We can only
2419 calculate the correct value once we've seen the partnering
2420 *LO16 relocation, so just save the information for later.
2421
2422 The ABI requires that the *LO16 immediately follow the *HI16.
2423 However, as a GNU extension, we permit an arbitrary number of
2424 *HI16s to be associated with a single *LO16. This significantly
2425 simplies the relocation handling in gcc. */
2426
2427 bfd_reloc_status_type
2428 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2429 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2430 asection *input_section, bfd *output_bfd,
2431 char **error_message ATTRIBUTE_UNUSED)
2432 {
2433 struct mips_hi16 *n;
2434
2435 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2436 return bfd_reloc_outofrange;
2437
2438 n = bfd_malloc (sizeof *n);
2439 if (n == NULL)
2440 return bfd_reloc_outofrange;
2441
2442 n->next = mips_hi16_list;
2443 n->data = data;
2444 n->input_section = input_section;
2445 n->rel = *reloc_entry;
2446 mips_hi16_list = n;
2447
2448 if (output_bfd != NULL)
2449 reloc_entry->address += input_section->output_offset;
2450
2451 return bfd_reloc_ok;
2452 }
2453
2454 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2455 like any other 16-bit relocation when applied to global symbols, but is
2456 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2457
2458 bfd_reloc_status_type
2459 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2460 void *data, asection *input_section,
2461 bfd *output_bfd, char **error_message)
2462 {
2463 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2464 || bfd_is_und_section (bfd_get_section (symbol))
2465 || bfd_is_com_section (bfd_get_section (symbol)))
2466 /* The relocation is against a global symbol. */
2467 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2468 input_section, output_bfd,
2469 error_message);
2470
2471 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2472 input_section, output_bfd, error_message);
2473 }
2474
2475 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2476 is a straightforward 16 bit inplace relocation, but we must deal with
2477 any partnering high-part relocations as well. */
2478
2479 bfd_reloc_status_type
2480 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2481 void *data, asection *input_section,
2482 bfd *output_bfd, char **error_message)
2483 {
2484 bfd_vma vallo;
2485 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2486
2487 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2488 return bfd_reloc_outofrange;
2489
2490 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2491 location);
2492 vallo = bfd_get_32 (abfd, location);
2493 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2494 location);
2495
2496 while (mips_hi16_list != NULL)
2497 {
2498 bfd_reloc_status_type ret;
2499 struct mips_hi16 *hi;
2500
2501 hi = mips_hi16_list;
2502
2503 /* R_MIPS*_GOT16 relocations are something of a special case. We
2504 want to install the addend in the same way as for a R_MIPS*_HI16
2505 relocation (with a rightshift of 16). However, since GOT16
2506 relocations can also be used with global symbols, their howto
2507 has a rightshift of 0. */
2508 if (hi->rel.howto->type == R_MIPS_GOT16)
2509 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2510 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2511 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2512 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2513 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2514
2515 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2516 carry or borrow will induce a change of +1 or -1 in the high part. */
2517 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2518
2519 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2520 hi->input_section, output_bfd,
2521 error_message);
2522 if (ret != bfd_reloc_ok)
2523 return ret;
2524
2525 mips_hi16_list = hi->next;
2526 free (hi);
2527 }
2528
2529 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2530 input_section, output_bfd,
2531 error_message);
2532 }
2533
2534 /* A generic howto special_function. This calculates and installs the
2535 relocation itself, thus avoiding the oft-discussed problems in
2536 bfd_perform_relocation and bfd_install_relocation. */
2537
2538 bfd_reloc_status_type
2539 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2540 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2541 asection *input_section, bfd *output_bfd,
2542 char **error_message ATTRIBUTE_UNUSED)
2543 {
2544 bfd_signed_vma val;
2545 bfd_reloc_status_type status;
2546 bfd_boolean relocatable;
2547
2548 relocatable = (output_bfd != NULL);
2549
2550 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2551 return bfd_reloc_outofrange;
2552
2553 /* Build up the field adjustment in VAL. */
2554 val = 0;
2555 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2556 {
2557 /* Either we're calculating the final field value or we have a
2558 relocation against a section symbol. Add in the section's
2559 offset or address. */
2560 val += symbol->section->output_section->vma;
2561 val += symbol->section->output_offset;
2562 }
2563
2564 if (!relocatable)
2565 {
2566 /* We're calculating the final field value. Add in the symbol's value
2567 and, if pc-relative, subtract the address of the field itself. */
2568 val += symbol->value;
2569 if (reloc_entry->howto->pc_relative)
2570 {
2571 val -= input_section->output_section->vma;
2572 val -= input_section->output_offset;
2573 val -= reloc_entry->address;
2574 }
2575 }
2576
2577 /* VAL is now the final adjustment. If we're keeping this relocation
2578 in the output file, and if the relocation uses a separate addend,
2579 we just need to add VAL to that addend. Otherwise we need to add
2580 VAL to the relocation field itself. */
2581 if (relocatable && !reloc_entry->howto->partial_inplace)
2582 reloc_entry->addend += val;
2583 else
2584 {
2585 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2586
2587 /* Add in the separate addend, if any. */
2588 val += reloc_entry->addend;
2589
2590 /* Add VAL to the relocation field. */
2591 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2592 location);
2593 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2594 location);
2595 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2596 location);
2597
2598 if (status != bfd_reloc_ok)
2599 return status;
2600 }
2601
2602 if (relocatable)
2603 reloc_entry->address += input_section->output_offset;
2604
2605 return bfd_reloc_ok;
2606 }
2607 \f
2608 /* Swap an entry in a .gptab section. Note that these routines rely
2609 on the equivalence of the two elements of the union. */
2610
2611 static void
2612 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2613 Elf32_gptab *in)
2614 {
2615 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2616 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2617 }
2618
2619 static void
2620 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2621 Elf32_External_gptab *ex)
2622 {
2623 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2624 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2625 }
2626
2627 static void
2628 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2629 Elf32_External_compact_rel *ex)
2630 {
2631 H_PUT_32 (abfd, in->id1, ex->id1);
2632 H_PUT_32 (abfd, in->num, ex->num);
2633 H_PUT_32 (abfd, in->id2, ex->id2);
2634 H_PUT_32 (abfd, in->offset, ex->offset);
2635 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2636 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2637 }
2638
2639 static void
2640 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2641 Elf32_External_crinfo *ex)
2642 {
2643 unsigned long l;
2644
2645 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2646 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2647 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2648 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2649 H_PUT_32 (abfd, l, ex->info);
2650 H_PUT_32 (abfd, in->konst, ex->konst);
2651 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2652 }
2653 \f
2654 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2655 routines swap this structure in and out. They are used outside of
2656 BFD, so they are globally visible. */
2657
2658 void
2659 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2660 Elf32_RegInfo *in)
2661 {
2662 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2663 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2664 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2665 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2666 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2667 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2668 }
2669
2670 void
2671 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2672 Elf32_External_RegInfo *ex)
2673 {
2674 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2675 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2676 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2677 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2678 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2679 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2680 }
2681
2682 /* In the 64 bit ABI, the .MIPS.options section holds register
2683 information in an Elf64_Reginfo structure. These routines swap
2684 them in and out. They are globally visible because they are used
2685 outside of BFD. These routines are here so that gas can call them
2686 without worrying about whether the 64 bit ABI has been included. */
2687
2688 void
2689 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2690 Elf64_Internal_RegInfo *in)
2691 {
2692 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2693 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2694 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2695 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2696 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2697 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2698 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2699 }
2700
2701 void
2702 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2703 Elf64_External_RegInfo *ex)
2704 {
2705 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2706 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2707 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2708 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2709 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2710 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2711 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2712 }
2713
2714 /* Swap in an options header. */
2715
2716 void
2717 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2718 Elf_Internal_Options *in)
2719 {
2720 in->kind = H_GET_8 (abfd, ex->kind);
2721 in->size = H_GET_8 (abfd, ex->size);
2722 in->section = H_GET_16 (abfd, ex->section);
2723 in->info = H_GET_32 (abfd, ex->info);
2724 }
2725
2726 /* Swap out an options header. */
2727
2728 void
2729 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2730 Elf_External_Options *ex)
2731 {
2732 H_PUT_8 (abfd, in->kind, ex->kind);
2733 H_PUT_8 (abfd, in->size, ex->size);
2734 H_PUT_16 (abfd, in->section, ex->section);
2735 H_PUT_32 (abfd, in->info, ex->info);
2736 }
2737
2738 /* Swap in an abiflags structure. */
2739
2740 void
2741 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2742 const Elf_External_ABIFlags_v0 *ex,
2743 Elf_Internal_ABIFlags_v0 *in)
2744 {
2745 in->version = H_GET_16 (abfd, ex->version);
2746 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2747 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2748 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2749 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2750 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2751 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2752 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2753 in->ases = H_GET_32 (abfd, ex->ases);
2754 in->flags1 = H_GET_32 (abfd, ex->flags1);
2755 in->flags2 = H_GET_32 (abfd, ex->flags2);
2756 }
2757
2758 /* Swap out an abiflags structure. */
2759
2760 void
2761 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2762 const Elf_Internal_ABIFlags_v0 *in,
2763 Elf_External_ABIFlags_v0 *ex)
2764 {
2765 H_PUT_16 (abfd, in->version, ex->version);
2766 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2767 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2768 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2769 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2770 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2771 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2772 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2773 H_PUT_32 (abfd, in->ases, ex->ases);
2774 H_PUT_32 (abfd, in->flags1, ex->flags1);
2775 H_PUT_32 (abfd, in->flags2, ex->flags2);
2776 }
2777 \f
2778 /* This function is called via qsort() to sort the dynamic relocation
2779 entries by increasing r_symndx value. */
2780
2781 static int
2782 sort_dynamic_relocs (const void *arg1, const void *arg2)
2783 {
2784 Elf_Internal_Rela int_reloc1;
2785 Elf_Internal_Rela int_reloc2;
2786 int diff;
2787
2788 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2789 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2790
2791 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2792 if (diff != 0)
2793 return diff;
2794
2795 if (int_reloc1.r_offset < int_reloc2.r_offset)
2796 return -1;
2797 if (int_reloc1.r_offset > int_reloc2.r_offset)
2798 return 1;
2799 return 0;
2800 }
2801
2802 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2803
2804 static int
2805 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2806 const void *arg2 ATTRIBUTE_UNUSED)
2807 {
2808 #ifdef BFD64
2809 Elf_Internal_Rela int_reloc1[3];
2810 Elf_Internal_Rela int_reloc2[3];
2811
2812 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2813 (reldyn_sorting_bfd, arg1, int_reloc1);
2814 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2815 (reldyn_sorting_bfd, arg2, int_reloc2);
2816
2817 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2818 return -1;
2819 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2820 return 1;
2821
2822 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2823 return -1;
2824 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2825 return 1;
2826 return 0;
2827 #else
2828 abort ();
2829 #endif
2830 }
2831
2832
2833 /* This routine is used to write out ECOFF debugging external symbol
2834 information. It is called via mips_elf_link_hash_traverse. The
2835 ECOFF external symbol information must match the ELF external
2836 symbol information. Unfortunately, at this point we don't know
2837 whether a symbol is required by reloc information, so the two
2838 tables may wind up being different. We must sort out the external
2839 symbol information before we can set the final size of the .mdebug
2840 section, and we must set the size of the .mdebug section before we
2841 can relocate any sections, and we can't know which symbols are
2842 required by relocation until we relocate the sections.
2843 Fortunately, it is relatively unlikely that any symbol will be
2844 stripped but required by a reloc. In particular, it can not happen
2845 when generating a final executable. */
2846
2847 static bfd_boolean
2848 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2849 {
2850 struct extsym_info *einfo = data;
2851 bfd_boolean strip;
2852 asection *sec, *output_section;
2853
2854 if (h->root.indx == -2)
2855 strip = FALSE;
2856 else if ((h->root.def_dynamic
2857 || h->root.ref_dynamic
2858 || h->root.type == bfd_link_hash_new)
2859 && !h->root.def_regular
2860 && !h->root.ref_regular)
2861 strip = TRUE;
2862 else if (einfo->info->strip == strip_all
2863 || (einfo->info->strip == strip_some
2864 && bfd_hash_lookup (einfo->info->keep_hash,
2865 h->root.root.root.string,
2866 FALSE, FALSE) == NULL))
2867 strip = TRUE;
2868 else
2869 strip = FALSE;
2870
2871 if (strip)
2872 return TRUE;
2873
2874 if (h->esym.ifd == -2)
2875 {
2876 h->esym.jmptbl = 0;
2877 h->esym.cobol_main = 0;
2878 h->esym.weakext = 0;
2879 h->esym.reserved = 0;
2880 h->esym.ifd = ifdNil;
2881 h->esym.asym.value = 0;
2882 h->esym.asym.st = stGlobal;
2883
2884 if (h->root.root.type == bfd_link_hash_undefined
2885 || h->root.root.type == bfd_link_hash_undefweak)
2886 {
2887 const char *name;
2888
2889 /* Use undefined class. Also, set class and type for some
2890 special symbols. */
2891 name = h->root.root.root.string;
2892 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2893 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2894 {
2895 h->esym.asym.sc = scData;
2896 h->esym.asym.st = stLabel;
2897 h->esym.asym.value = 0;
2898 }
2899 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2900 {
2901 h->esym.asym.sc = scAbs;
2902 h->esym.asym.st = stLabel;
2903 h->esym.asym.value =
2904 mips_elf_hash_table (einfo->info)->procedure_count;
2905 }
2906 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2907 {
2908 h->esym.asym.sc = scAbs;
2909 h->esym.asym.st = stLabel;
2910 h->esym.asym.value = elf_gp (einfo->abfd);
2911 }
2912 else
2913 h->esym.asym.sc = scUndefined;
2914 }
2915 else if (h->root.root.type != bfd_link_hash_defined
2916 && h->root.root.type != bfd_link_hash_defweak)
2917 h->esym.asym.sc = scAbs;
2918 else
2919 {
2920 const char *name;
2921
2922 sec = h->root.root.u.def.section;
2923 output_section = sec->output_section;
2924
2925 /* When making a shared library and symbol h is the one from
2926 the another shared library, OUTPUT_SECTION may be null. */
2927 if (output_section == NULL)
2928 h->esym.asym.sc = scUndefined;
2929 else
2930 {
2931 name = bfd_section_name (output_section->owner, output_section);
2932
2933 if (strcmp (name, ".text") == 0)
2934 h->esym.asym.sc = scText;
2935 else if (strcmp (name, ".data") == 0)
2936 h->esym.asym.sc = scData;
2937 else if (strcmp (name, ".sdata") == 0)
2938 h->esym.asym.sc = scSData;
2939 else if (strcmp (name, ".rodata") == 0
2940 || strcmp (name, ".rdata") == 0)
2941 h->esym.asym.sc = scRData;
2942 else if (strcmp (name, ".bss") == 0)
2943 h->esym.asym.sc = scBss;
2944 else if (strcmp (name, ".sbss") == 0)
2945 h->esym.asym.sc = scSBss;
2946 else if (strcmp (name, ".init") == 0)
2947 h->esym.asym.sc = scInit;
2948 else if (strcmp (name, ".fini") == 0)
2949 h->esym.asym.sc = scFini;
2950 else
2951 h->esym.asym.sc = scAbs;
2952 }
2953 }
2954
2955 h->esym.asym.reserved = 0;
2956 h->esym.asym.index = indexNil;
2957 }
2958
2959 if (h->root.root.type == bfd_link_hash_common)
2960 h->esym.asym.value = h->root.root.u.c.size;
2961 else if (h->root.root.type == bfd_link_hash_defined
2962 || h->root.root.type == bfd_link_hash_defweak)
2963 {
2964 if (h->esym.asym.sc == scCommon)
2965 h->esym.asym.sc = scBss;
2966 else if (h->esym.asym.sc == scSCommon)
2967 h->esym.asym.sc = scSBss;
2968
2969 sec = h->root.root.u.def.section;
2970 output_section = sec->output_section;
2971 if (output_section != NULL)
2972 h->esym.asym.value = (h->root.root.u.def.value
2973 + sec->output_offset
2974 + output_section->vma);
2975 else
2976 h->esym.asym.value = 0;
2977 }
2978 else
2979 {
2980 struct mips_elf_link_hash_entry *hd = h;
2981
2982 while (hd->root.root.type == bfd_link_hash_indirect)
2983 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2984
2985 if (hd->needs_lazy_stub)
2986 {
2987 BFD_ASSERT (hd->root.plt.plist != NULL);
2988 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
2989 /* Set type and value for a symbol with a function stub. */
2990 h->esym.asym.st = stProc;
2991 sec = hd->root.root.u.def.section;
2992 if (sec == NULL)
2993 h->esym.asym.value = 0;
2994 else
2995 {
2996 output_section = sec->output_section;
2997 if (output_section != NULL)
2998 h->esym.asym.value = (hd->root.plt.plist->stub_offset
2999 + sec->output_offset
3000 + output_section->vma);
3001 else
3002 h->esym.asym.value = 0;
3003 }
3004 }
3005 }
3006
3007 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3008 h->root.root.root.string,
3009 &h->esym))
3010 {
3011 einfo->failed = TRUE;
3012 return FALSE;
3013 }
3014
3015 return TRUE;
3016 }
3017
3018 /* A comparison routine used to sort .gptab entries. */
3019
3020 static int
3021 gptab_compare (const void *p1, const void *p2)
3022 {
3023 const Elf32_gptab *a1 = p1;
3024 const Elf32_gptab *a2 = p2;
3025
3026 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3027 }
3028 \f
3029 /* Functions to manage the got entry hash table. */
3030
3031 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3032 hash number. */
3033
3034 static INLINE hashval_t
3035 mips_elf_hash_bfd_vma (bfd_vma addr)
3036 {
3037 #ifdef BFD64
3038 return addr + (addr >> 32);
3039 #else
3040 return addr;
3041 #endif
3042 }
3043
3044 static hashval_t
3045 mips_elf_got_entry_hash (const void *entry_)
3046 {
3047 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3048
3049 return (entry->symndx
3050 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3051 + (entry->tls_type == GOT_TLS_LDM ? 0
3052 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3053 : entry->symndx >= 0 ? (entry->abfd->id
3054 + mips_elf_hash_bfd_vma (entry->d.addend))
3055 : entry->d.h->root.root.root.hash));
3056 }
3057
3058 static int
3059 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3060 {
3061 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3062 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3063
3064 return (e1->symndx == e2->symndx
3065 && e1->tls_type == e2->tls_type
3066 && (e1->tls_type == GOT_TLS_LDM ? TRUE
3067 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3068 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3069 && e1->d.addend == e2->d.addend)
3070 : e2->abfd && e1->d.h == e2->d.h));
3071 }
3072
3073 static hashval_t
3074 mips_got_page_ref_hash (const void *ref_)
3075 {
3076 const struct mips_got_page_ref *ref;
3077
3078 ref = (const struct mips_got_page_ref *) ref_;
3079 return ((ref->symndx >= 0
3080 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3081 : ref->u.h->root.root.root.hash)
3082 + mips_elf_hash_bfd_vma (ref->addend));
3083 }
3084
3085 static int
3086 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3087 {
3088 const struct mips_got_page_ref *ref1, *ref2;
3089
3090 ref1 = (const struct mips_got_page_ref *) ref1_;
3091 ref2 = (const struct mips_got_page_ref *) ref2_;
3092 return (ref1->symndx == ref2->symndx
3093 && (ref1->symndx < 0
3094 ? ref1->u.h == ref2->u.h
3095 : ref1->u.abfd == ref2->u.abfd)
3096 && ref1->addend == ref2->addend);
3097 }
3098
3099 static hashval_t
3100 mips_got_page_entry_hash (const void *entry_)
3101 {
3102 const struct mips_got_page_entry *entry;
3103
3104 entry = (const struct mips_got_page_entry *) entry_;
3105 return entry->sec->id;
3106 }
3107
3108 static int
3109 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3110 {
3111 const struct mips_got_page_entry *entry1, *entry2;
3112
3113 entry1 = (const struct mips_got_page_entry *) entry1_;
3114 entry2 = (const struct mips_got_page_entry *) entry2_;
3115 return entry1->sec == entry2->sec;
3116 }
3117 \f
3118 /* Create and return a new mips_got_info structure. */
3119
3120 static struct mips_got_info *
3121 mips_elf_create_got_info (bfd *abfd)
3122 {
3123 struct mips_got_info *g;
3124
3125 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3126 if (g == NULL)
3127 return NULL;
3128
3129 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3130 mips_elf_got_entry_eq, NULL);
3131 if (g->got_entries == NULL)
3132 return NULL;
3133
3134 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3135 mips_got_page_ref_eq, NULL);
3136 if (g->got_page_refs == NULL)
3137 return NULL;
3138
3139 return g;
3140 }
3141
3142 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3143 CREATE_P and if ABFD doesn't already have a GOT. */
3144
3145 static struct mips_got_info *
3146 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3147 {
3148 struct mips_elf_obj_tdata *tdata;
3149
3150 if (!is_mips_elf (abfd))
3151 return NULL;
3152
3153 tdata = mips_elf_tdata (abfd);
3154 if (!tdata->got && create_p)
3155 tdata->got = mips_elf_create_got_info (abfd);
3156 return tdata->got;
3157 }
3158
3159 /* Record that ABFD should use output GOT G. */
3160
3161 static void
3162 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3163 {
3164 struct mips_elf_obj_tdata *tdata;
3165
3166 BFD_ASSERT (is_mips_elf (abfd));
3167 tdata = mips_elf_tdata (abfd);
3168 if (tdata->got)
3169 {
3170 /* The GOT structure itself and the hash table entries are
3171 allocated to a bfd, but the hash tables aren't. */
3172 htab_delete (tdata->got->got_entries);
3173 htab_delete (tdata->got->got_page_refs);
3174 if (tdata->got->got_page_entries)
3175 htab_delete (tdata->got->got_page_entries);
3176 }
3177 tdata->got = g;
3178 }
3179
3180 /* Return the dynamic relocation section. If it doesn't exist, try to
3181 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3182 if creation fails. */
3183
3184 static asection *
3185 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3186 {
3187 const char *dname;
3188 asection *sreloc;
3189 bfd *dynobj;
3190
3191 dname = MIPS_ELF_REL_DYN_NAME (info);
3192 dynobj = elf_hash_table (info)->dynobj;
3193 sreloc = bfd_get_linker_section (dynobj, dname);
3194 if (sreloc == NULL && create_p)
3195 {
3196 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3197 (SEC_ALLOC
3198 | SEC_LOAD
3199 | SEC_HAS_CONTENTS
3200 | SEC_IN_MEMORY
3201 | SEC_LINKER_CREATED
3202 | SEC_READONLY));
3203 if (sreloc == NULL
3204 || ! bfd_set_section_alignment (dynobj, sreloc,
3205 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3206 return NULL;
3207 }
3208 return sreloc;
3209 }
3210
3211 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3212
3213 static int
3214 mips_elf_reloc_tls_type (unsigned int r_type)
3215 {
3216 if (tls_gd_reloc_p (r_type))
3217 return GOT_TLS_GD;
3218
3219 if (tls_ldm_reloc_p (r_type))
3220 return GOT_TLS_LDM;
3221
3222 if (tls_gottprel_reloc_p (r_type))
3223 return GOT_TLS_IE;
3224
3225 return GOT_TLS_NONE;
3226 }
3227
3228 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3229
3230 static int
3231 mips_tls_got_entries (unsigned int type)
3232 {
3233 switch (type)
3234 {
3235 case GOT_TLS_GD:
3236 case GOT_TLS_LDM:
3237 return 2;
3238
3239 case GOT_TLS_IE:
3240 return 1;
3241
3242 case GOT_TLS_NONE:
3243 return 0;
3244 }
3245 abort ();
3246 }
3247
3248 /* Count the number of relocations needed for a TLS GOT entry, with
3249 access types from TLS_TYPE, and symbol H (or a local symbol if H
3250 is NULL). */
3251
3252 static int
3253 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3254 struct elf_link_hash_entry *h)
3255 {
3256 int indx = 0;
3257 bfd_boolean need_relocs = FALSE;
3258 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3259
3260 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3261 && (!bfd_link_pic (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
3262 indx = h->dynindx;
3263
3264 if ((bfd_link_pic (info) || indx != 0)
3265 && (h == NULL
3266 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3267 || h->root.type != bfd_link_hash_undefweak))
3268 need_relocs = TRUE;
3269
3270 if (!need_relocs)
3271 return 0;
3272
3273 switch (tls_type)
3274 {
3275 case GOT_TLS_GD:
3276 return indx != 0 ? 2 : 1;
3277
3278 case GOT_TLS_IE:
3279 return 1;
3280
3281 case GOT_TLS_LDM:
3282 return bfd_link_pic (info) ? 1 : 0;
3283
3284 default:
3285 return 0;
3286 }
3287 }
3288
3289 /* Add the number of GOT entries and TLS relocations required by ENTRY
3290 to G. */
3291
3292 static void
3293 mips_elf_count_got_entry (struct bfd_link_info *info,
3294 struct mips_got_info *g,
3295 struct mips_got_entry *entry)
3296 {
3297 if (entry->tls_type)
3298 {
3299 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3300 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3301 entry->symndx < 0
3302 ? &entry->d.h->root : NULL);
3303 }
3304 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3305 g->local_gotno += 1;
3306 else
3307 g->global_gotno += 1;
3308 }
3309
3310 /* Output a simple dynamic relocation into SRELOC. */
3311
3312 static void
3313 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3314 asection *sreloc,
3315 unsigned long reloc_index,
3316 unsigned long indx,
3317 int r_type,
3318 bfd_vma offset)
3319 {
3320 Elf_Internal_Rela rel[3];
3321
3322 memset (rel, 0, sizeof (rel));
3323
3324 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3325 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3326
3327 if (ABI_64_P (output_bfd))
3328 {
3329 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3330 (output_bfd, &rel[0],
3331 (sreloc->contents
3332 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3333 }
3334 else
3335 bfd_elf32_swap_reloc_out
3336 (output_bfd, &rel[0],
3337 (sreloc->contents
3338 + reloc_index * sizeof (Elf32_External_Rel)));
3339 }
3340
3341 /* Initialize a set of TLS GOT entries for one symbol. */
3342
3343 static void
3344 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3345 struct mips_got_entry *entry,
3346 struct mips_elf_link_hash_entry *h,
3347 bfd_vma value)
3348 {
3349 struct mips_elf_link_hash_table *htab;
3350 int indx;
3351 asection *sreloc, *sgot;
3352 bfd_vma got_offset, got_offset2;
3353 bfd_boolean need_relocs = FALSE;
3354
3355 htab = mips_elf_hash_table (info);
3356 if (htab == NULL)
3357 return;
3358
3359 sgot = htab->root.sgot;
3360
3361 indx = 0;
3362 if (h != NULL)
3363 {
3364 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3365
3366 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info),
3367 &h->root)
3368 && (!bfd_link_pic (info)
3369 || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3370 indx = h->root.dynindx;
3371 }
3372
3373 if (entry->tls_initialized)
3374 return;
3375
3376 if ((bfd_link_pic (info) || indx != 0)
3377 && (h == NULL
3378 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3379 || h->root.type != bfd_link_hash_undefweak))
3380 need_relocs = TRUE;
3381
3382 /* MINUS_ONE means the symbol is not defined in this object. It may not
3383 be defined at all; assume that the value doesn't matter in that
3384 case. Otherwise complain if we would use the value. */
3385 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3386 || h->root.root.type == bfd_link_hash_undefweak);
3387
3388 /* Emit necessary relocations. */
3389 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3390 got_offset = entry->gotidx;
3391
3392 switch (entry->tls_type)
3393 {
3394 case GOT_TLS_GD:
3395 /* General Dynamic. */
3396 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3397
3398 if (need_relocs)
3399 {
3400 mips_elf_output_dynamic_relocation
3401 (abfd, sreloc, sreloc->reloc_count++, indx,
3402 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3403 sgot->output_offset + sgot->output_section->vma + got_offset);
3404
3405 if (indx)
3406 mips_elf_output_dynamic_relocation
3407 (abfd, sreloc, sreloc->reloc_count++, indx,
3408 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3409 sgot->output_offset + sgot->output_section->vma + got_offset2);
3410 else
3411 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3412 sgot->contents + got_offset2);
3413 }
3414 else
3415 {
3416 MIPS_ELF_PUT_WORD (abfd, 1,
3417 sgot->contents + got_offset);
3418 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3419 sgot->contents + got_offset2);
3420 }
3421 break;
3422
3423 case GOT_TLS_IE:
3424 /* Initial Exec model. */
3425 if (need_relocs)
3426 {
3427 if (indx == 0)
3428 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3429 sgot->contents + got_offset);
3430 else
3431 MIPS_ELF_PUT_WORD (abfd, 0,
3432 sgot->contents + got_offset);
3433
3434 mips_elf_output_dynamic_relocation
3435 (abfd, sreloc, sreloc->reloc_count++, indx,
3436 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3437 sgot->output_offset + sgot->output_section->vma + got_offset);
3438 }
3439 else
3440 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3441 sgot->contents + got_offset);
3442 break;
3443
3444 case GOT_TLS_LDM:
3445 /* The initial offset is zero, and the LD offsets will include the
3446 bias by DTP_OFFSET. */
3447 MIPS_ELF_PUT_WORD (abfd, 0,
3448 sgot->contents + got_offset
3449 + MIPS_ELF_GOT_SIZE (abfd));
3450
3451 if (!bfd_link_pic (info))
3452 MIPS_ELF_PUT_WORD (abfd, 1,
3453 sgot->contents + got_offset);
3454 else
3455 mips_elf_output_dynamic_relocation
3456 (abfd, sreloc, sreloc->reloc_count++, indx,
3457 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3458 sgot->output_offset + sgot->output_section->vma + got_offset);
3459 break;
3460
3461 default:
3462 abort ();
3463 }
3464
3465 entry->tls_initialized = TRUE;
3466 }
3467
3468 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3469 for global symbol H. .got.plt comes before the GOT, so the offset
3470 will be negative. */
3471
3472 static bfd_vma
3473 mips_elf_gotplt_index (struct bfd_link_info *info,
3474 struct elf_link_hash_entry *h)
3475 {
3476 bfd_vma got_address, got_value;
3477 struct mips_elf_link_hash_table *htab;
3478
3479 htab = mips_elf_hash_table (info);
3480 BFD_ASSERT (htab != NULL);
3481
3482 BFD_ASSERT (h->plt.plist != NULL);
3483 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3484
3485 /* Calculate the address of the associated .got.plt entry. */
3486 got_address = (htab->root.sgotplt->output_section->vma
3487 + htab->root.sgotplt->output_offset
3488 + (h->plt.plist->gotplt_index
3489 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3490
3491 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3492 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3493 + htab->root.hgot->root.u.def.section->output_offset
3494 + htab->root.hgot->root.u.def.value);
3495
3496 return got_address - got_value;
3497 }
3498
3499 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3500 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3501 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3502 offset can be found. */
3503
3504 static bfd_vma
3505 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3506 bfd_vma value, unsigned long r_symndx,
3507 struct mips_elf_link_hash_entry *h, int r_type)
3508 {
3509 struct mips_elf_link_hash_table *htab;
3510 struct mips_got_entry *entry;
3511
3512 htab = mips_elf_hash_table (info);
3513 BFD_ASSERT (htab != NULL);
3514
3515 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3516 r_symndx, h, r_type);
3517 if (!entry)
3518 return MINUS_ONE;
3519
3520 if (entry->tls_type)
3521 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3522 return entry->gotidx;
3523 }
3524
3525 /* Return the GOT index of global symbol H in the primary GOT. */
3526
3527 static bfd_vma
3528 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3529 struct elf_link_hash_entry *h)
3530 {
3531 struct mips_elf_link_hash_table *htab;
3532 long global_got_dynindx;
3533 struct mips_got_info *g;
3534 bfd_vma got_index;
3535
3536 htab = mips_elf_hash_table (info);
3537 BFD_ASSERT (htab != NULL);
3538
3539 global_got_dynindx = 0;
3540 if (htab->global_gotsym != NULL)
3541 global_got_dynindx = htab->global_gotsym->dynindx;
3542
3543 /* Once we determine the global GOT entry with the lowest dynamic
3544 symbol table index, we must put all dynamic symbols with greater
3545 indices into the primary GOT. That makes it easy to calculate the
3546 GOT offset. */
3547 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3548 g = mips_elf_bfd_got (obfd, FALSE);
3549 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3550 * MIPS_ELF_GOT_SIZE (obfd));
3551 BFD_ASSERT (got_index < htab->root.sgot->size);
3552
3553 return got_index;
3554 }
3555
3556 /* Return the GOT index for the global symbol indicated by H, which is
3557 referenced by a relocation of type R_TYPE in IBFD. */
3558
3559 static bfd_vma
3560 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3561 struct elf_link_hash_entry *h, int r_type)
3562 {
3563 struct mips_elf_link_hash_table *htab;
3564 struct mips_got_info *g;
3565 struct mips_got_entry lookup, *entry;
3566 bfd_vma gotidx;
3567
3568 htab = mips_elf_hash_table (info);
3569 BFD_ASSERT (htab != NULL);
3570
3571 g = mips_elf_bfd_got (ibfd, FALSE);
3572 BFD_ASSERT (g);
3573
3574 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3575 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3576 return mips_elf_primary_global_got_index (obfd, info, h);
3577
3578 lookup.abfd = ibfd;
3579 lookup.symndx = -1;
3580 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3581 entry = htab_find (g->got_entries, &lookup);
3582 BFD_ASSERT (entry);
3583
3584 gotidx = entry->gotidx;
3585 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3586
3587 if (lookup.tls_type)
3588 {
3589 bfd_vma value = MINUS_ONE;
3590
3591 if ((h->root.type == bfd_link_hash_defined
3592 || h->root.type == bfd_link_hash_defweak)
3593 && h->root.u.def.section->output_section)
3594 value = (h->root.u.def.value
3595 + h->root.u.def.section->output_offset
3596 + h->root.u.def.section->output_section->vma);
3597
3598 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3599 }
3600 return gotidx;
3601 }
3602
3603 /* Find a GOT page entry that points to within 32KB of VALUE. These
3604 entries are supposed to be placed at small offsets in the GOT, i.e.,
3605 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3606 entry could be created. If OFFSETP is nonnull, use it to return the
3607 offset of the GOT entry from VALUE. */
3608
3609 static bfd_vma
3610 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3611 bfd_vma value, bfd_vma *offsetp)
3612 {
3613 bfd_vma page, got_index;
3614 struct mips_got_entry *entry;
3615
3616 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3617 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3618 NULL, R_MIPS_GOT_PAGE);
3619
3620 if (!entry)
3621 return MINUS_ONE;
3622
3623 got_index = entry->gotidx;
3624
3625 if (offsetp)
3626 *offsetp = value - entry->d.address;
3627
3628 return got_index;
3629 }
3630
3631 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3632 EXTERNAL is true if the relocation was originally against a global
3633 symbol that binds locally. */
3634
3635 static bfd_vma
3636 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3637 bfd_vma value, bfd_boolean external)
3638 {
3639 struct mips_got_entry *entry;
3640
3641 /* GOT16 relocations against local symbols are followed by a LO16
3642 relocation; those against global symbols are not. Thus if the
3643 symbol was originally local, the GOT16 relocation should load the
3644 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3645 if (! external)
3646 value = mips_elf_high (value) << 16;
3647
3648 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3649 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3650 same in all cases. */
3651 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3652 NULL, R_MIPS_GOT16);
3653 if (entry)
3654 return entry->gotidx;
3655 else
3656 return MINUS_ONE;
3657 }
3658
3659 /* Returns the offset for the entry at the INDEXth position
3660 in the GOT. */
3661
3662 static bfd_vma
3663 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3664 bfd *input_bfd, bfd_vma got_index)
3665 {
3666 struct mips_elf_link_hash_table *htab;
3667 asection *sgot;
3668 bfd_vma gp;
3669
3670 htab = mips_elf_hash_table (info);
3671 BFD_ASSERT (htab != NULL);
3672
3673 sgot = htab->root.sgot;
3674 gp = _bfd_get_gp_value (output_bfd)
3675 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3676
3677 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3678 }
3679
3680 /* Create and return a local GOT entry for VALUE, which was calculated
3681 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3682 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3683 instead. */
3684
3685 static struct mips_got_entry *
3686 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3687 bfd *ibfd, bfd_vma value,
3688 unsigned long r_symndx,
3689 struct mips_elf_link_hash_entry *h,
3690 int r_type)
3691 {
3692 struct mips_got_entry lookup, *entry;
3693 void **loc;
3694 struct mips_got_info *g;
3695 struct mips_elf_link_hash_table *htab;
3696 bfd_vma gotidx;
3697
3698 htab = mips_elf_hash_table (info);
3699 BFD_ASSERT (htab != NULL);
3700
3701 g = mips_elf_bfd_got (ibfd, FALSE);
3702 if (g == NULL)
3703 {
3704 g = mips_elf_bfd_got (abfd, FALSE);
3705 BFD_ASSERT (g != NULL);
3706 }
3707
3708 /* This function shouldn't be called for symbols that live in the global
3709 area of the GOT. */
3710 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3711
3712 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3713 if (lookup.tls_type)
3714 {
3715 lookup.abfd = ibfd;
3716 if (tls_ldm_reloc_p (r_type))
3717 {
3718 lookup.symndx = 0;
3719 lookup.d.addend = 0;
3720 }
3721 else if (h == NULL)
3722 {
3723 lookup.symndx = r_symndx;
3724 lookup.d.addend = 0;
3725 }
3726 else
3727 {
3728 lookup.symndx = -1;
3729 lookup.d.h = h;
3730 }
3731
3732 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3733 BFD_ASSERT (entry);
3734
3735 gotidx = entry->gotidx;
3736 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3737
3738 return entry;
3739 }
3740
3741 lookup.abfd = NULL;
3742 lookup.symndx = -1;
3743 lookup.d.address = value;
3744 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3745 if (!loc)
3746 return NULL;
3747
3748 entry = (struct mips_got_entry *) *loc;
3749 if (entry)
3750 return entry;
3751
3752 if (g->assigned_low_gotno > g->assigned_high_gotno)
3753 {
3754 /* We didn't allocate enough space in the GOT. */
3755 _bfd_error_handler
3756 (_("not enough GOT space for local GOT entries"));
3757 bfd_set_error (bfd_error_bad_value);
3758 return NULL;
3759 }
3760
3761 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3762 if (!entry)
3763 return NULL;
3764
3765 if (got16_reloc_p (r_type)
3766 || call16_reloc_p (r_type)
3767 || got_page_reloc_p (r_type)
3768 || got_disp_reloc_p (r_type))
3769 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3770 else
3771 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3772
3773 *entry = lookup;
3774 *loc = entry;
3775
3776 MIPS_ELF_PUT_WORD (abfd, value, htab->root.sgot->contents + entry->gotidx);
3777
3778 /* These GOT entries need a dynamic relocation on VxWorks. */
3779 if (htab->is_vxworks)
3780 {
3781 Elf_Internal_Rela outrel;
3782 asection *s;
3783 bfd_byte *rloc;
3784 bfd_vma got_address;
3785
3786 s = mips_elf_rel_dyn_section (info, FALSE);
3787 got_address = (htab->root.sgot->output_section->vma
3788 + htab->root.sgot->output_offset
3789 + entry->gotidx);
3790
3791 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3792 outrel.r_offset = got_address;
3793 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3794 outrel.r_addend = value;
3795 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3796 }
3797
3798 return entry;
3799 }
3800
3801 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3802 The number might be exact or a worst-case estimate, depending on how
3803 much information is available to elf_backend_omit_section_dynsym at
3804 the current linking stage. */
3805
3806 static bfd_size_type
3807 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3808 {
3809 bfd_size_type count;
3810
3811 count = 0;
3812 if (bfd_link_pic (info)
3813 || elf_hash_table (info)->is_relocatable_executable)
3814 {
3815 asection *p;
3816 const struct elf_backend_data *bed;
3817
3818 bed = get_elf_backend_data (output_bfd);
3819 for (p = output_bfd->sections; p ; p = p->next)
3820 if ((p->flags & SEC_EXCLUDE) == 0
3821 && (p->flags & SEC_ALLOC) != 0
3822 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3823 ++count;
3824 }
3825 return count;
3826 }
3827
3828 /* Sort the dynamic symbol table so that symbols that need GOT entries
3829 appear towards the end. */
3830
3831 static bfd_boolean
3832 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3833 {
3834 struct mips_elf_link_hash_table *htab;
3835 struct mips_elf_hash_sort_data hsd;
3836 struct mips_got_info *g;
3837
3838 htab = mips_elf_hash_table (info);
3839 BFD_ASSERT (htab != NULL);
3840
3841 if (htab->root.dynsymcount == 0)
3842 return TRUE;
3843
3844 g = htab->got_info;
3845 if (g == NULL)
3846 return TRUE;
3847
3848 hsd.low = NULL;
3849 hsd.max_unref_got_dynindx
3850 = hsd.min_got_dynindx
3851 = (htab->root.dynsymcount - g->reloc_only_gotno);
3852 /* Add 1 to local symbol indices to account for the mandatory NULL entry
3853 at the head of the table; see `_bfd_elf_link_renumber_dynsyms'. */
3854 hsd.max_local_dynindx = count_section_dynsyms (abfd, info) + 1;
3855 hsd.max_non_got_dynindx = htab->root.local_dynsymcount + 1;
3856 mips_elf_link_hash_traverse (htab, mips_elf_sort_hash_table_f, &hsd);
3857
3858 /* There should have been enough room in the symbol table to
3859 accommodate both the GOT and non-GOT symbols. */
3860 BFD_ASSERT (hsd.max_local_dynindx <= htab->root.local_dynsymcount + 1);
3861 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3862 BFD_ASSERT (hsd.max_unref_got_dynindx == htab->root.dynsymcount);
3863 BFD_ASSERT (htab->root.dynsymcount - hsd.min_got_dynindx == g->global_gotno);
3864
3865 /* Now we know which dynamic symbol has the lowest dynamic symbol
3866 table index in the GOT. */
3867 htab->global_gotsym = hsd.low;
3868
3869 return TRUE;
3870 }
3871
3872 /* If H needs a GOT entry, assign it the highest available dynamic
3873 index. Otherwise, assign it the lowest available dynamic
3874 index. */
3875
3876 static bfd_boolean
3877 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3878 {
3879 struct mips_elf_hash_sort_data *hsd = data;
3880
3881 /* Symbols without dynamic symbol table entries aren't interesting
3882 at all. */
3883 if (h->root.dynindx == -1)
3884 return TRUE;
3885
3886 switch (h->global_got_area)
3887 {
3888 case GGA_NONE:
3889 if (h->root.forced_local)
3890 h->root.dynindx = hsd->max_local_dynindx++;
3891 else
3892 h->root.dynindx = hsd->max_non_got_dynindx++;
3893 break;
3894
3895 case GGA_NORMAL:
3896 h->root.dynindx = --hsd->min_got_dynindx;
3897 hsd->low = (struct elf_link_hash_entry *) h;
3898 break;
3899
3900 case GGA_RELOC_ONLY:
3901 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3902 hsd->low = (struct elf_link_hash_entry *) h;
3903 h->root.dynindx = hsd->max_unref_got_dynindx++;
3904 break;
3905 }
3906
3907 return TRUE;
3908 }
3909
3910 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3911 (which is owned by the caller and shouldn't be added to the
3912 hash table directly). */
3913
3914 static bfd_boolean
3915 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3916 struct mips_got_entry *lookup)
3917 {
3918 struct mips_elf_link_hash_table *htab;
3919 struct mips_got_entry *entry;
3920 struct mips_got_info *g;
3921 void **loc, **bfd_loc;
3922
3923 /* Make sure there's a slot for this entry in the master GOT. */
3924 htab = mips_elf_hash_table (info);
3925 g = htab->got_info;
3926 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3927 if (!loc)
3928 return FALSE;
3929
3930 /* Populate the entry if it isn't already. */
3931 entry = (struct mips_got_entry *) *loc;
3932 if (!entry)
3933 {
3934 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3935 if (!entry)
3936 return FALSE;
3937
3938 lookup->tls_initialized = FALSE;
3939 lookup->gotidx = -1;
3940 *entry = *lookup;
3941 *loc = entry;
3942 }
3943
3944 /* Reuse the same GOT entry for the BFD's GOT. */
3945 g = mips_elf_bfd_got (abfd, TRUE);
3946 if (!g)
3947 return FALSE;
3948
3949 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3950 if (!bfd_loc)
3951 return FALSE;
3952
3953 if (!*bfd_loc)
3954 *bfd_loc = entry;
3955 return TRUE;
3956 }
3957
3958 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3959 entry for it. FOR_CALL is true if the caller is only interested in
3960 using the GOT entry for calls. */
3961
3962 static bfd_boolean
3963 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3964 bfd *abfd, struct bfd_link_info *info,
3965 bfd_boolean for_call, int r_type)
3966 {
3967 struct mips_elf_link_hash_table *htab;
3968 struct mips_elf_link_hash_entry *hmips;
3969 struct mips_got_entry entry;
3970 unsigned char tls_type;
3971
3972 htab = mips_elf_hash_table (info);
3973 BFD_ASSERT (htab != NULL);
3974
3975 hmips = (struct mips_elf_link_hash_entry *) h;
3976 if (!for_call)
3977 hmips->got_only_for_calls = FALSE;
3978
3979 /* A global symbol in the GOT must also be in the dynamic symbol
3980 table. */
3981 if (h->dynindx == -1)
3982 {
3983 switch (ELF_ST_VISIBILITY (h->other))
3984 {
3985 case STV_INTERNAL:
3986 case STV_HIDDEN:
3987 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3988 break;
3989 }
3990 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3991 return FALSE;
3992 }
3993
3994 tls_type = mips_elf_reloc_tls_type (r_type);
3995 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
3996 hmips->global_got_area = GGA_NORMAL;
3997
3998 entry.abfd = abfd;
3999 entry.symndx = -1;
4000 entry.d.h = (struct mips_elf_link_hash_entry *) h;
4001 entry.tls_type = tls_type;
4002 return mips_elf_record_got_entry (info, abfd, &entry);
4003 }
4004
4005 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
4006 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
4007
4008 static bfd_boolean
4009 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
4010 struct bfd_link_info *info, int r_type)
4011 {
4012 struct mips_elf_link_hash_table *htab;
4013 struct mips_got_info *g;
4014 struct mips_got_entry entry;
4015
4016 htab = mips_elf_hash_table (info);
4017 BFD_ASSERT (htab != NULL);
4018
4019 g = htab->got_info;
4020 BFD_ASSERT (g != NULL);
4021
4022 entry.abfd = abfd;
4023 entry.symndx = symndx;
4024 entry.d.addend = addend;
4025 entry.tls_type = mips_elf_reloc_tls_type (r_type);
4026 return mips_elf_record_got_entry (info, abfd, &entry);
4027 }
4028
4029 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4030 H is the symbol's hash table entry, or null if SYMNDX is local
4031 to ABFD. */
4032
4033 static bfd_boolean
4034 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4035 long symndx, struct elf_link_hash_entry *h,
4036 bfd_signed_vma addend)
4037 {
4038 struct mips_elf_link_hash_table *htab;
4039 struct mips_got_info *g1, *g2;
4040 struct mips_got_page_ref lookup, *entry;
4041 void **loc, **bfd_loc;
4042
4043 htab = mips_elf_hash_table (info);
4044 BFD_ASSERT (htab != NULL);
4045
4046 g1 = htab->got_info;
4047 BFD_ASSERT (g1 != NULL);
4048
4049 if (h)
4050 {
4051 lookup.symndx = -1;
4052 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4053 }
4054 else
4055 {
4056 lookup.symndx = symndx;
4057 lookup.u.abfd = abfd;
4058 }
4059 lookup.addend = addend;
4060 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4061 if (loc == NULL)
4062 return FALSE;
4063
4064 entry = (struct mips_got_page_ref *) *loc;
4065 if (!entry)
4066 {
4067 entry = bfd_alloc (abfd, sizeof (*entry));
4068 if (!entry)
4069 return FALSE;
4070
4071 *entry = lookup;
4072 *loc = entry;
4073 }
4074
4075 /* Add the same entry to the BFD's GOT. */
4076 g2 = mips_elf_bfd_got (abfd, TRUE);
4077 if (!g2)
4078 return FALSE;
4079
4080 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4081 if (!bfd_loc)
4082 return FALSE;
4083
4084 if (!*bfd_loc)
4085 *bfd_loc = entry;
4086
4087 return TRUE;
4088 }
4089
4090 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4091
4092 static void
4093 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4094 unsigned int n)
4095 {
4096 asection *s;
4097 struct mips_elf_link_hash_table *htab;
4098
4099 htab = mips_elf_hash_table (info);
4100 BFD_ASSERT (htab != NULL);
4101
4102 s = mips_elf_rel_dyn_section (info, FALSE);
4103 BFD_ASSERT (s != NULL);
4104
4105 if (htab->is_vxworks)
4106 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4107 else
4108 {
4109 if (s->size == 0)
4110 {
4111 /* Make room for a null element. */
4112 s->size += MIPS_ELF_REL_SIZE (abfd);
4113 ++s->reloc_count;
4114 }
4115 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4116 }
4117 }
4118 \f
4119 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4120 mips_elf_traverse_got_arg structure. Count the number of GOT
4121 entries and TLS relocs. Set DATA->value to true if we need
4122 to resolve indirect or warning symbols and then recreate the GOT. */
4123
4124 static int
4125 mips_elf_check_recreate_got (void **entryp, void *data)
4126 {
4127 struct mips_got_entry *entry;
4128 struct mips_elf_traverse_got_arg *arg;
4129
4130 entry = (struct mips_got_entry *) *entryp;
4131 arg = (struct mips_elf_traverse_got_arg *) data;
4132 if (entry->abfd != NULL && entry->symndx == -1)
4133 {
4134 struct mips_elf_link_hash_entry *h;
4135
4136 h = entry->d.h;
4137 if (h->root.root.type == bfd_link_hash_indirect
4138 || h->root.root.type == bfd_link_hash_warning)
4139 {
4140 arg->value = TRUE;
4141 return 0;
4142 }
4143 }
4144 mips_elf_count_got_entry (arg->info, arg->g, entry);
4145 return 1;
4146 }
4147
4148 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4149 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4150 converting entries for indirect and warning symbols into entries
4151 for the target symbol. Set DATA->g to null on error. */
4152
4153 static int
4154 mips_elf_recreate_got (void **entryp, void *data)
4155 {
4156 struct mips_got_entry new_entry, *entry;
4157 struct mips_elf_traverse_got_arg *arg;
4158 void **slot;
4159
4160 entry = (struct mips_got_entry *) *entryp;
4161 arg = (struct mips_elf_traverse_got_arg *) data;
4162 if (entry->abfd != NULL
4163 && entry->symndx == -1
4164 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4165 || entry->d.h->root.root.type == bfd_link_hash_warning))
4166 {
4167 struct mips_elf_link_hash_entry *h;
4168
4169 new_entry = *entry;
4170 entry = &new_entry;
4171 h = entry->d.h;
4172 do
4173 {
4174 BFD_ASSERT (h->global_got_area == GGA_NONE);
4175 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4176 }
4177 while (h->root.root.type == bfd_link_hash_indirect
4178 || h->root.root.type == bfd_link_hash_warning);
4179 entry->d.h = h;
4180 }
4181 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4182 if (slot == NULL)
4183 {
4184 arg->g = NULL;
4185 return 0;
4186 }
4187 if (*slot == NULL)
4188 {
4189 if (entry == &new_entry)
4190 {
4191 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4192 if (!entry)
4193 {
4194 arg->g = NULL;
4195 return 0;
4196 }
4197 *entry = new_entry;
4198 }
4199 *slot = entry;
4200 mips_elf_count_got_entry (arg->info, arg->g, entry);
4201 }
4202 return 1;
4203 }
4204
4205 /* Return the maximum number of GOT page entries required for RANGE. */
4206
4207 static bfd_vma
4208 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4209 {
4210 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4211 }
4212
4213 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4214
4215 static bfd_boolean
4216 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4217 asection *sec, bfd_signed_vma addend)
4218 {
4219 struct mips_got_info *g = arg->g;
4220 struct mips_got_page_entry lookup, *entry;
4221 struct mips_got_page_range **range_ptr, *range;
4222 bfd_vma old_pages, new_pages;
4223 void **loc;
4224
4225 /* Find the mips_got_page_entry hash table entry for this section. */
4226 lookup.sec = sec;
4227 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4228 if (loc == NULL)
4229 return FALSE;
4230
4231 /* Create a mips_got_page_entry if this is the first time we've
4232 seen the section. */
4233 entry = (struct mips_got_page_entry *) *loc;
4234 if (!entry)
4235 {
4236 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4237 if (!entry)
4238 return FALSE;
4239
4240 entry->sec = sec;
4241 *loc = entry;
4242 }
4243
4244 /* Skip over ranges whose maximum extent cannot share a page entry
4245 with ADDEND. */
4246 range_ptr = &entry->ranges;
4247 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4248 range_ptr = &(*range_ptr)->next;
4249
4250 /* If we scanned to the end of the list, or found a range whose
4251 minimum extent cannot share a page entry with ADDEND, create
4252 a new singleton range. */
4253 range = *range_ptr;
4254 if (!range || addend < range->min_addend - 0xffff)
4255 {
4256 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4257 if (!range)
4258 return FALSE;
4259
4260 range->next = *range_ptr;
4261 range->min_addend = addend;
4262 range->max_addend = addend;
4263
4264 *range_ptr = range;
4265 entry->num_pages++;
4266 g->page_gotno++;
4267 return TRUE;
4268 }
4269
4270 /* Remember how many pages the old range contributed. */
4271 old_pages = mips_elf_pages_for_range (range);
4272
4273 /* Update the ranges. */
4274 if (addend < range->min_addend)
4275 range->min_addend = addend;
4276 else if (addend > range->max_addend)
4277 {
4278 if (range->next && addend >= range->next->min_addend - 0xffff)
4279 {
4280 old_pages += mips_elf_pages_for_range (range->next);
4281 range->max_addend = range->next->max_addend;
4282 range->next = range->next->next;
4283 }
4284 else
4285 range->max_addend = addend;
4286 }
4287
4288 /* Record any change in the total estimate. */
4289 new_pages = mips_elf_pages_for_range (range);
4290 if (old_pages != new_pages)
4291 {
4292 entry->num_pages += new_pages - old_pages;
4293 g->page_gotno += new_pages - old_pages;
4294 }
4295
4296 return TRUE;
4297 }
4298
4299 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4300 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4301 whether the page reference described by *REFP needs a GOT page entry,
4302 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4303
4304 static bfd_boolean
4305 mips_elf_resolve_got_page_ref (void **refp, void *data)
4306 {
4307 struct mips_got_page_ref *ref;
4308 struct mips_elf_traverse_got_arg *arg;
4309 struct mips_elf_link_hash_table *htab;
4310 asection *sec;
4311 bfd_vma addend;
4312
4313 ref = (struct mips_got_page_ref *) *refp;
4314 arg = (struct mips_elf_traverse_got_arg *) data;
4315 htab = mips_elf_hash_table (arg->info);
4316
4317 if (ref->symndx < 0)
4318 {
4319 struct mips_elf_link_hash_entry *h;
4320
4321 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4322 h = ref->u.h;
4323 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4324 return 1;
4325
4326 /* Ignore undefined symbols; we'll issue an error later if
4327 appropriate. */
4328 if (!((h->root.root.type == bfd_link_hash_defined
4329 || h->root.root.type == bfd_link_hash_defweak)
4330 && h->root.root.u.def.section))
4331 return 1;
4332
4333 sec = h->root.root.u.def.section;
4334 addend = h->root.root.u.def.value + ref->addend;
4335 }
4336 else
4337 {
4338 Elf_Internal_Sym *isym;
4339
4340 /* Read in the symbol. */
4341 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4342 ref->symndx);
4343 if (isym == NULL)
4344 {
4345 arg->g = NULL;
4346 return 0;
4347 }
4348
4349 /* Get the associated input section. */
4350 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4351 if (sec == NULL)
4352 {
4353 arg->g = NULL;
4354 return 0;
4355 }
4356
4357 /* If this is a mergable section, work out the section and offset
4358 of the merged data. For section symbols, the addend specifies
4359 of the offset _of_ the first byte in the data, otherwise it
4360 specifies the offset _from_ the first byte. */
4361 if (sec->flags & SEC_MERGE)
4362 {
4363 void *secinfo;
4364
4365 secinfo = elf_section_data (sec)->sec_info;
4366 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4367 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4368 isym->st_value + ref->addend);
4369 else
4370 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4371 isym->st_value) + ref->addend;
4372 }
4373 else
4374 addend = isym->st_value + ref->addend;
4375 }
4376 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4377 {
4378 arg->g = NULL;
4379 return 0;
4380 }
4381 return 1;
4382 }
4383
4384 /* If any entries in G->got_entries are for indirect or warning symbols,
4385 replace them with entries for the target symbol. Convert g->got_page_refs
4386 into got_page_entry structures and estimate the number of page entries
4387 that they require. */
4388
4389 static bfd_boolean
4390 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4391 struct mips_got_info *g)
4392 {
4393 struct mips_elf_traverse_got_arg tga;
4394 struct mips_got_info oldg;
4395
4396 oldg = *g;
4397
4398 tga.info = info;
4399 tga.g = g;
4400 tga.value = FALSE;
4401 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4402 if (tga.value)
4403 {
4404 *g = oldg;
4405 g->got_entries = htab_create (htab_size (oldg.got_entries),
4406 mips_elf_got_entry_hash,
4407 mips_elf_got_entry_eq, NULL);
4408 if (!g->got_entries)
4409 return FALSE;
4410
4411 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4412 if (!tga.g)
4413 return FALSE;
4414
4415 htab_delete (oldg.got_entries);
4416 }
4417
4418 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4419 mips_got_page_entry_eq, NULL);
4420 if (g->got_page_entries == NULL)
4421 return FALSE;
4422
4423 tga.info = info;
4424 tga.g = g;
4425 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4426
4427 return TRUE;
4428 }
4429
4430 /* Return true if a GOT entry for H should live in the local rather than
4431 global GOT area. */
4432
4433 static bfd_boolean
4434 mips_use_local_got_p (struct bfd_link_info *info,
4435 struct mips_elf_link_hash_entry *h)
4436 {
4437 /* Symbols that aren't in the dynamic symbol table must live in the
4438 local GOT. This includes symbols that are completely undefined
4439 and which therefore don't bind locally. We'll report undefined
4440 symbols later if appropriate. */
4441 if (h->root.dynindx == -1)
4442 return TRUE;
4443
4444 /* Symbols that bind locally can (and in the case of forced-local
4445 symbols, must) live in the local GOT. */
4446 if (h->got_only_for_calls
4447 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4448 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4449 return TRUE;
4450
4451 /* If this is an executable that must provide a definition of the symbol,
4452 either though PLTs or copy relocations, then that address should go in
4453 the local rather than global GOT. */
4454 if (bfd_link_executable (info) && h->has_static_relocs)
4455 return TRUE;
4456
4457 return FALSE;
4458 }
4459
4460 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4461 link_info structure. Decide whether the hash entry needs an entry in
4462 the global part of the primary GOT, setting global_got_area accordingly.
4463 Count the number of global symbols that are in the primary GOT only
4464 because they have relocations against them (reloc_only_gotno). */
4465
4466 static int
4467 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4468 {
4469 struct bfd_link_info *info;
4470 struct mips_elf_link_hash_table *htab;
4471 struct mips_got_info *g;
4472
4473 info = (struct bfd_link_info *) data;
4474 htab = mips_elf_hash_table (info);
4475 g = htab->got_info;
4476 if (h->global_got_area != GGA_NONE)
4477 {
4478 /* Make a final decision about whether the symbol belongs in the
4479 local or global GOT. */
4480 if (mips_use_local_got_p (info, h))
4481 /* The symbol belongs in the local GOT. We no longer need this
4482 entry if it was only used for relocations; those relocations
4483 will be against the null or section symbol instead of H. */
4484 h->global_got_area = GGA_NONE;
4485 else if (htab->is_vxworks
4486 && h->got_only_for_calls
4487 && h->root.plt.plist->mips_offset != MINUS_ONE)
4488 /* On VxWorks, calls can refer directly to the .got.plt entry;
4489 they don't need entries in the regular GOT. .got.plt entries
4490 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4491 h->global_got_area = GGA_NONE;
4492 else if (h->global_got_area == GGA_RELOC_ONLY)
4493 {
4494 g->reloc_only_gotno++;
4495 g->global_gotno++;
4496 }
4497 }
4498 return 1;
4499 }
4500 \f
4501 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4502 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4503
4504 static int
4505 mips_elf_add_got_entry (void **entryp, void *data)
4506 {
4507 struct mips_got_entry *entry;
4508 struct mips_elf_traverse_got_arg *arg;
4509 void **slot;
4510
4511 entry = (struct mips_got_entry *) *entryp;
4512 arg = (struct mips_elf_traverse_got_arg *) data;
4513 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4514 if (!slot)
4515 {
4516 arg->g = NULL;
4517 return 0;
4518 }
4519 if (!*slot)
4520 {
4521 *slot = entry;
4522 mips_elf_count_got_entry (arg->info, arg->g, entry);
4523 }
4524 return 1;
4525 }
4526
4527 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4528 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4529
4530 static int
4531 mips_elf_add_got_page_entry (void **entryp, void *data)
4532 {
4533 struct mips_got_page_entry *entry;
4534 struct mips_elf_traverse_got_arg *arg;
4535 void **slot;
4536
4537 entry = (struct mips_got_page_entry *) *entryp;
4538 arg = (struct mips_elf_traverse_got_arg *) data;
4539 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4540 if (!slot)
4541 {
4542 arg->g = NULL;
4543 return 0;
4544 }
4545 if (!*slot)
4546 {
4547 *slot = entry;
4548 arg->g->page_gotno += entry->num_pages;
4549 }
4550 return 1;
4551 }
4552
4553 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4554 this would lead to overflow, 1 if they were merged successfully,
4555 and 0 if a merge failed due to lack of memory. (These values are chosen
4556 so that nonnegative return values can be returned by a htab_traverse
4557 callback.) */
4558
4559 static int
4560 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4561 struct mips_got_info *to,
4562 struct mips_elf_got_per_bfd_arg *arg)
4563 {
4564 struct mips_elf_traverse_got_arg tga;
4565 unsigned int estimate;
4566
4567 /* Work out how many page entries we would need for the combined GOT. */
4568 estimate = arg->max_pages;
4569 if (estimate >= from->page_gotno + to->page_gotno)
4570 estimate = from->page_gotno + to->page_gotno;
4571
4572 /* And conservatively estimate how many local and TLS entries
4573 would be needed. */
4574 estimate += from->local_gotno + to->local_gotno;
4575 estimate += from->tls_gotno + to->tls_gotno;
4576
4577 /* If we're merging with the primary got, any TLS relocations will
4578 come after the full set of global entries. Otherwise estimate those
4579 conservatively as well. */
4580 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4581 estimate += arg->global_count;
4582 else
4583 estimate += from->global_gotno + to->global_gotno;
4584
4585 /* Bail out if the combined GOT might be too big. */
4586 if (estimate > arg->max_count)
4587 return -1;
4588
4589 /* Transfer the bfd's got information from FROM to TO. */
4590 tga.info = arg->info;
4591 tga.g = to;
4592 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4593 if (!tga.g)
4594 return 0;
4595
4596 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4597 if (!tga.g)
4598 return 0;
4599
4600 mips_elf_replace_bfd_got (abfd, to);
4601 return 1;
4602 }
4603
4604 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4605 as possible of the primary got, since it doesn't require explicit
4606 dynamic relocations, but don't use bfds that would reference global
4607 symbols out of the addressable range. Failing the primary got,
4608 attempt to merge with the current got, or finish the current got
4609 and then make make the new got current. */
4610
4611 static bfd_boolean
4612 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4613 struct mips_elf_got_per_bfd_arg *arg)
4614 {
4615 unsigned int estimate;
4616 int result;
4617
4618 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4619 return FALSE;
4620
4621 /* Work out the number of page, local and TLS entries. */
4622 estimate = arg->max_pages;
4623 if (estimate > g->page_gotno)
4624 estimate = g->page_gotno;
4625 estimate += g->local_gotno + g->tls_gotno;
4626
4627 /* We place TLS GOT entries after both locals and globals. The globals
4628 for the primary GOT may overflow the normal GOT size limit, so be
4629 sure not to merge a GOT which requires TLS with the primary GOT in that
4630 case. This doesn't affect non-primary GOTs. */
4631 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4632
4633 if (estimate <= arg->max_count)
4634 {
4635 /* If we don't have a primary GOT, use it as
4636 a starting point for the primary GOT. */
4637 if (!arg->primary)
4638 {
4639 arg->primary = g;
4640 return TRUE;
4641 }
4642
4643 /* Try merging with the primary GOT. */
4644 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4645 if (result >= 0)
4646 return result;
4647 }
4648
4649 /* If we can merge with the last-created got, do it. */
4650 if (arg->current)
4651 {
4652 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4653 if (result >= 0)
4654 return result;
4655 }
4656
4657 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4658 fits; if it turns out that it doesn't, we'll get relocation
4659 overflows anyway. */
4660 g->next = arg->current;
4661 arg->current = g;
4662
4663 return TRUE;
4664 }
4665
4666 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4667 to GOTIDX, duplicating the entry if it has already been assigned
4668 an index in a different GOT. */
4669
4670 static bfd_boolean
4671 mips_elf_set_gotidx (void **entryp, long gotidx)
4672 {
4673 struct mips_got_entry *entry;
4674
4675 entry = (struct mips_got_entry *) *entryp;
4676 if (entry->gotidx > 0)
4677 {
4678 struct mips_got_entry *new_entry;
4679
4680 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4681 if (!new_entry)
4682 return FALSE;
4683
4684 *new_entry = *entry;
4685 *entryp = new_entry;
4686 entry = new_entry;
4687 }
4688 entry->gotidx = gotidx;
4689 return TRUE;
4690 }
4691
4692 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4693 mips_elf_traverse_got_arg in which DATA->value is the size of one
4694 GOT entry. Set DATA->g to null on failure. */
4695
4696 static int
4697 mips_elf_initialize_tls_index (void **entryp, void *data)
4698 {
4699 struct mips_got_entry *entry;
4700 struct mips_elf_traverse_got_arg *arg;
4701
4702 /* We're only interested in TLS symbols. */
4703 entry = (struct mips_got_entry *) *entryp;
4704 if (entry->tls_type == GOT_TLS_NONE)
4705 return 1;
4706
4707 arg = (struct mips_elf_traverse_got_arg *) data;
4708 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4709 {
4710 arg->g = NULL;
4711 return 0;
4712 }
4713
4714 /* Account for the entries we've just allocated. */
4715 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4716 return 1;
4717 }
4718
4719 /* A htab_traverse callback for GOT entries, where DATA points to a
4720 mips_elf_traverse_got_arg. Set the global_got_area of each global
4721 symbol to DATA->value. */
4722
4723 static int
4724 mips_elf_set_global_got_area (void **entryp, void *data)
4725 {
4726 struct mips_got_entry *entry;
4727 struct mips_elf_traverse_got_arg *arg;
4728
4729 entry = (struct mips_got_entry *) *entryp;
4730 arg = (struct mips_elf_traverse_got_arg *) data;
4731 if (entry->abfd != NULL
4732 && entry->symndx == -1
4733 && entry->d.h->global_got_area != GGA_NONE)
4734 entry->d.h->global_got_area = arg->value;
4735 return 1;
4736 }
4737
4738 /* A htab_traverse callback for secondary GOT entries, where DATA points
4739 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4740 and record the number of relocations they require. DATA->value is
4741 the size of one GOT entry. Set DATA->g to null on failure. */
4742
4743 static int
4744 mips_elf_set_global_gotidx (void **entryp, void *data)
4745 {
4746 struct mips_got_entry *entry;
4747 struct mips_elf_traverse_got_arg *arg;
4748
4749 entry = (struct mips_got_entry *) *entryp;
4750 arg = (struct mips_elf_traverse_got_arg *) data;
4751 if (entry->abfd != NULL
4752 && entry->symndx == -1
4753 && entry->d.h->global_got_area != GGA_NONE)
4754 {
4755 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4756 {
4757 arg->g = NULL;
4758 return 0;
4759 }
4760 arg->g->assigned_low_gotno += 1;
4761
4762 if (bfd_link_pic (arg->info)
4763 || (elf_hash_table (arg->info)->dynamic_sections_created
4764 && entry->d.h->root.def_dynamic
4765 && !entry->d.h->root.def_regular))
4766 arg->g->relocs += 1;
4767 }
4768
4769 return 1;
4770 }
4771
4772 /* A htab_traverse callback for GOT entries for which DATA is the
4773 bfd_link_info. Forbid any global symbols from having traditional
4774 lazy-binding stubs. */
4775
4776 static int
4777 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4778 {
4779 struct bfd_link_info *info;
4780 struct mips_elf_link_hash_table *htab;
4781 struct mips_got_entry *entry;
4782
4783 entry = (struct mips_got_entry *) *entryp;
4784 info = (struct bfd_link_info *) data;
4785 htab = mips_elf_hash_table (info);
4786 BFD_ASSERT (htab != NULL);
4787
4788 if (entry->abfd != NULL
4789 && entry->symndx == -1
4790 && entry->d.h->needs_lazy_stub)
4791 {
4792 entry->d.h->needs_lazy_stub = FALSE;
4793 htab->lazy_stub_count--;
4794 }
4795
4796 return 1;
4797 }
4798
4799 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4800 the primary GOT. */
4801 static bfd_vma
4802 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4803 {
4804 if (!g->next)
4805 return 0;
4806
4807 g = mips_elf_bfd_got (ibfd, FALSE);
4808 if (! g)
4809 return 0;
4810
4811 BFD_ASSERT (g->next);
4812
4813 g = g->next;
4814
4815 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4816 * MIPS_ELF_GOT_SIZE (abfd);
4817 }
4818
4819 /* Turn a single GOT that is too big for 16-bit addressing into
4820 a sequence of GOTs, each one 16-bit addressable. */
4821
4822 static bfd_boolean
4823 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4824 asection *got, bfd_size_type pages)
4825 {
4826 struct mips_elf_link_hash_table *htab;
4827 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4828 struct mips_elf_traverse_got_arg tga;
4829 struct mips_got_info *g, *gg;
4830 unsigned int assign, needed_relocs;
4831 bfd *dynobj, *ibfd;
4832
4833 dynobj = elf_hash_table (info)->dynobj;
4834 htab = mips_elf_hash_table (info);
4835 BFD_ASSERT (htab != NULL);
4836
4837 g = htab->got_info;
4838
4839 got_per_bfd_arg.obfd = abfd;
4840 got_per_bfd_arg.info = info;
4841 got_per_bfd_arg.current = NULL;
4842 got_per_bfd_arg.primary = NULL;
4843 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4844 / MIPS_ELF_GOT_SIZE (abfd))
4845 - htab->reserved_gotno);
4846 got_per_bfd_arg.max_pages = pages;
4847 /* The number of globals that will be included in the primary GOT.
4848 See the calls to mips_elf_set_global_got_area below for more
4849 information. */
4850 got_per_bfd_arg.global_count = g->global_gotno;
4851
4852 /* Try to merge the GOTs of input bfds together, as long as they
4853 don't seem to exceed the maximum GOT size, choosing one of them
4854 to be the primary GOT. */
4855 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4856 {
4857 gg = mips_elf_bfd_got (ibfd, FALSE);
4858 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4859 return FALSE;
4860 }
4861
4862 /* If we do not find any suitable primary GOT, create an empty one. */
4863 if (got_per_bfd_arg.primary == NULL)
4864 g->next = mips_elf_create_got_info (abfd);
4865 else
4866 g->next = got_per_bfd_arg.primary;
4867 g->next->next = got_per_bfd_arg.current;
4868
4869 /* GG is now the master GOT, and G is the primary GOT. */
4870 gg = g;
4871 g = g->next;
4872
4873 /* Map the output bfd to the primary got. That's what we're going
4874 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4875 didn't mark in check_relocs, and we want a quick way to find it.
4876 We can't just use gg->next because we're going to reverse the
4877 list. */
4878 mips_elf_replace_bfd_got (abfd, g);
4879
4880 /* Every symbol that is referenced in a dynamic relocation must be
4881 present in the primary GOT, so arrange for them to appear after
4882 those that are actually referenced. */
4883 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4884 g->global_gotno = gg->global_gotno;
4885
4886 tga.info = info;
4887 tga.value = GGA_RELOC_ONLY;
4888 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4889 tga.value = GGA_NORMAL;
4890 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4891
4892 /* Now go through the GOTs assigning them offset ranges.
4893 [assigned_low_gotno, local_gotno[ will be set to the range of local
4894 entries in each GOT. We can then compute the end of a GOT by
4895 adding local_gotno to global_gotno. We reverse the list and make
4896 it circular since then we'll be able to quickly compute the
4897 beginning of a GOT, by computing the end of its predecessor. To
4898 avoid special cases for the primary GOT, while still preserving
4899 assertions that are valid for both single- and multi-got links,
4900 we arrange for the main got struct to have the right number of
4901 global entries, but set its local_gotno such that the initial
4902 offset of the primary GOT is zero. Remember that the primary GOT
4903 will become the last item in the circular linked list, so it
4904 points back to the master GOT. */
4905 gg->local_gotno = -g->global_gotno;
4906 gg->global_gotno = g->global_gotno;
4907 gg->tls_gotno = 0;
4908 assign = 0;
4909 gg->next = gg;
4910
4911 do
4912 {
4913 struct mips_got_info *gn;
4914
4915 assign += htab->reserved_gotno;
4916 g->assigned_low_gotno = assign;
4917 g->local_gotno += assign;
4918 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4919 g->assigned_high_gotno = g->local_gotno - 1;
4920 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4921
4922 /* Take g out of the direct list, and push it onto the reversed
4923 list that gg points to. g->next is guaranteed to be nonnull after
4924 this operation, as required by mips_elf_initialize_tls_index. */
4925 gn = g->next;
4926 g->next = gg->next;
4927 gg->next = g;
4928
4929 /* Set up any TLS entries. We always place the TLS entries after
4930 all non-TLS entries. */
4931 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4932 tga.g = g;
4933 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4934 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4935 if (!tga.g)
4936 return FALSE;
4937 BFD_ASSERT (g->tls_assigned_gotno == assign);
4938
4939 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4940 g = gn;
4941
4942 /* Forbid global symbols in every non-primary GOT from having
4943 lazy-binding stubs. */
4944 if (g)
4945 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4946 }
4947 while (g);
4948
4949 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
4950
4951 needed_relocs = 0;
4952 for (g = gg->next; g && g->next != gg; g = g->next)
4953 {
4954 unsigned int save_assign;
4955
4956 /* Assign offsets to global GOT entries and count how many
4957 relocations they need. */
4958 save_assign = g->assigned_low_gotno;
4959 g->assigned_low_gotno = g->local_gotno;
4960 tga.info = info;
4961 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4962 tga.g = g;
4963 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
4964 if (!tga.g)
4965 return FALSE;
4966 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4967 g->assigned_low_gotno = save_assign;
4968
4969 if (bfd_link_pic (info))
4970 {
4971 g->relocs += g->local_gotno - g->assigned_low_gotno;
4972 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
4973 + g->next->global_gotno
4974 + g->next->tls_gotno
4975 + htab->reserved_gotno);
4976 }
4977 needed_relocs += g->relocs;
4978 }
4979 needed_relocs += g->relocs;
4980
4981 if (needed_relocs)
4982 mips_elf_allocate_dynamic_relocations (dynobj, info,
4983 needed_relocs);
4984
4985 return TRUE;
4986 }
4987
4988 \f
4989 /* Returns the first relocation of type r_type found, beginning with
4990 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4991
4992 static const Elf_Internal_Rela *
4993 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4994 const Elf_Internal_Rela *relocation,
4995 const Elf_Internal_Rela *relend)
4996 {
4997 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4998
4999 while (relocation < relend)
5000 {
5001 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
5002 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
5003 return relocation;
5004
5005 ++relocation;
5006 }
5007
5008 /* We didn't find it. */
5009 return NULL;
5010 }
5011
5012 /* Return whether an input relocation is against a local symbol. */
5013
5014 static bfd_boolean
5015 mips_elf_local_relocation_p (bfd *input_bfd,
5016 const Elf_Internal_Rela *relocation,
5017 asection **local_sections)
5018 {
5019 unsigned long r_symndx;
5020 Elf_Internal_Shdr *symtab_hdr;
5021 size_t extsymoff;
5022
5023 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5024 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5025 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5026
5027 if (r_symndx < extsymoff)
5028 return TRUE;
5029 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5030 return TRUE;
5031
5032 return FALSE;
5033 }
5034 \f
5035 /* Sign-extend VALUE, which has the indicated number of BITS. */
5036
5037 bfd_vma
5038 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
5039 {
5040 if (value & ((bfd_vma) 1 << (bits - 1)))
5041 /* VALUE is negative. */
5042 value |= ((bfd_vma) - 1) << bits;
5043
5044 return value;
5045 }
5046
5047 /* Return non-zero if the indicated VALUE has overflowed the maximum
5048 range expressible by a signed number with the indicated number of
5049 BITS. */
5050
5051 static bfd_boolean
5052 mips_elf_overflow_p (bfd_vma value, int bits)
5053 {
5054 bfd_signed_vma svalue = (bfd_signed_vma) value;
5055
5056 if (svalue > (1 << (bits - 1)) - 1)
5057 /* The value is too big. */
5058 return TRUE;
5059 else if (svalue < -(1 << (bits - 1)))
5060 /* The value is too small. */
5061 return TRUE;
5062
5063 /* All is well. */
5064 return FALSE;
5065 }
5066
5067 /* Calculate the %high function. */
5068
5069 static bfd_vma
5070 mips_elf_high (bfd_vma value)
5071 {
5072 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5073 }
5074
5075 /* Calculate the %higher function. */
5076
5077 static bfd_vma
5078 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5079 {
5080 #ifdef BFD64
5081 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5082 #else
5083 abort ();
5084 return MINUS_ONE;
5085 #endif
5086 }
5087
5088 /* Calculate the %highest function. */
5089
5090 static bfd_vma
5091 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5092 {
5093 #ifdef BFD64
5094 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5095 #else
5096 abort ();
5097 return MINUS_ONE;
5098 #endif
5099 }
5100 \f
5101 /* Create the .compact_rel section. */
5102
5103 static bfd_boolean
5104 mips_elf_create_compact_rel_section
5105 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5106 {
5107 flagword flags;
5108 register asection *s;
5109
5110 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5111 {
5112 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5113 | SEC_READONLY);
5114
5115 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5116 if (s == NULL
5117 || ! bfd_set_section_alignment (abfd, s,
5118 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5119 return FALSE;
5120
5121 s->size = sizeof (Elf32_External_compact_rel);
5122 }
5123
5124 return TRUE;
5125 }
5126
5127 /* Create the .got section to hold the global offset table. */
5128
5129 static bfd_boolean
5130 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5131 {
5132 flagword flags;
5133 register asection *s;
5134 struct elf_link_hash_entry *h;
5135 struct bfd_link_hash_entry *bh;
5136 struct mips_elf_link_hash_table *htab;
5137
5138 htab = mips_elf_hash_table (info);
5139 BFD_ASSERT (htab != NULL);
5140
5141 /* This function may be called more than once. */
5142 if (htab->root.sgot)
5143 return TRUE;
5144
5145 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5146 | SEC_LINKER_CREATED);
5147
5148 /* We have to use an alignment of 2**4 here because this is hardcoded
5149 in the function stub generation and in the linker script. */
5150 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5151 if (s == NULL
5152 || ! bfd_set_section_alignment (abfd, s, 4))
5153 return FALSE;
5154 htab->root.sgot = s;
5155
5156 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5157 linker script because we don't want to define the symbol if we
5158 are not creating a global offset table. */
5159 bh = NULL;
5160 if (! (_bfd_generic_link_add_one_symbol
5161 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5162 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5163 return FALSE;
5164
5165 h = (struct elf_link_hash_entry *) bh;
5166 h->non_elf = 0;
5167 h->def_regular = 1;
5168 h->type = STT_OBJECT;
5169 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5170 elf_hash_table (info)->hgot = h;
5171
5172 if (bfd_link_pic (info)
5173 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5174 return FALSE;
5175
5176 htab->got_info = mips_elf_create_got_info (abfd);
5177 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5178 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5179
5180 /* We also need a .got.plt section when generating PLTs. */
5181 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5182 SEC_ALLOC | SEC_LOAD
5183 | SEC_HAS_CONTENTS
5184 | SEC_IN_MEMORY
5185 | SEC_LINKER_CREATED);
5186 if (s == NULL)
5187 return FALSE;
5188 htab->root.sgotplt = s;
5189
5190 return TRUE;
5191 }
5192 \f
5193 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5194 __GOTT_INDEX__ symbols. These symbols are only special for
5195 shared objects; they are not used in executables. */
5196
5197 static bfd_boolean
5198 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5199 {
5200 return (mips_elf_hash_table (info)->is_vxworks
5201 && bfd_link_pic (info)
5202 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5203 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5204 }
5205
5206 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5207 require an la25 stub. See also mips_elf_local_pic_function_p,
5208 which determines whether the destination function ever requires a
5209 stub. */
5210
5211 static bfd_boolean
5212 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5213 bfd_boolean target_is_16_bit_code_p)
5214 {
5215 /* We specifically ignore branches and jumps from EF_PIC objects,
5216 where the onus is on the compiler or programmer to perform any
5217 necessary initialization of $25. Sometimes such initialization
5218 is unnecessary; for example, -mno-shared functions do not use
5219 the incoming value of $25, and may therefore be called directly. */
5220 if (PIC_OBJECT_P (input_bfd))
5221 return FALSE;
5222
5223 switch (r_type)
5224 {
5225 case R_MIPS_26:
5226 case R_MIPS_PC16:
5227 case R_MIPS_PC21_S2:
5228 case R_MIPS_PC26_S2:
5229 case R_MICROMIPS_26_S1:
5230 case R_MICROMIPS_PC7_S1:
5231 case R_MICROMIPS_PC10_S1:
5232 case R_MICROMIPS_PC16_S1:
5233 case R_MICROMIPS_PC23_S2:
5234 return TRUE;
5235
5236 case R_MIPS16_26:
5237 return !target_is_16_bit_code_p;
5238
5239 default:
5240 return FALSE;
5241 }
5242 }
5243 \f
5244 /* Calculate the value produced by the RELOCATION (which comes from
5245 the INPUT_BFD). The ADDEND is the addend to use for this
5246 RELOCATION; RELOCATION->R_ADDEND is ignored.
5247
5248 The result of the relocation calculation is stored in VALUEP.
5249 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5250 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5251
5252 This function returns bfd_reloc_continue if the caller need take no
5253 further action regarding this relocation, bfd_reloc_notsupported if
5254 something goes dramatically wrong, bfd_reloc_overflow if an
5255 overflow occurs, and bfd_reloc_ok to indicate success. */
5256
5257 static bfd_reloc_status_type
5258 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5259 asection *input_section,
5260 struct bfd_link_info *info,
5261 const Elf_Internal_Rela *relocation,
5262 bfd_vma addend, reloc_howto_type *howto,
5263 Elf_Internal_Sym *local_syms,
5264 asection **local_sections, bfd_vma *valuep,
5265 const char **namep,
5266 bfd_boolean *cross_mode_jump_p,
5267 bfd_boolean save_addend)
5268 {
5269 /* The eventual value we will return. */
5270 bfd_vma value;
5271 /* The address of the symbol against which the relocation is
5272 occurring. */
5273 bfd_vma symbol = 0;
5274 /* The final GP value to be used for the relocatable, executable, or
5275 shared object file being produced. */
5276 bfd_vma gp;
5277 /* The place (section offset or address) of the storage unit being
5278 relocated. */
5279 bfd_vma p;
5280 /* The value of GP used to create the relocatable object. */
5281 bfd_vma gp0;
5282 /* The offset into the global offset table at which the address of
5283 the relocation entry symbol, adjusted by the addend, resides
5284 during execution. */
5285 bfd_vma g = MINUS_ONE;
5286 /* The section in which the symbol referenced by the relocation is
5287 located. */
5288 asection *sec = NULL;
5289 struct mips_elf_link_hash_entry *h = NULL;
5290 /* TRUE if the symbol referred to by this relocation is a local
5291 symbol. */
5292 bfd_boolean local_p, was_local_p;
5293 /* TRUE if the symbol referred to by this relocation is a section
5294 symbol. */
5295 bfd_boolean section_p = FALSE;
5296 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5297 bfd_boolean gp_disp_p = FALSE;
5298 /* TRUE if the symbol referred to by this relocation is
5299 "__gnu_local_gp". */
5300 bfd_boolean gnu_local_gp_p = FALSE;
5301 Elf_Internal_Shdr *symtab_hdr;
5302 size_t extsymoff;
5303 unsigned long r_symndx;
5304 int r_type;
5305 /* TRUE if overflow occurred during the calculation of the
5306 relocation value. */
5307 bfd_boolean overflowed_p;
5308 /* TRUE if this relocation refers to a MIPS16 function. */
5309 bfd_boolean target_is_16_bit_code_p = FALSE;
5310 bfd_boolean target_is_micromips_code_p = FALSE;
5311 struct mips_elf_link_hash_table *htab;
5312 bfd *dynobj;
5313 bfd_boolean resolved_to_zero;
5314
5315 dynobj = elf_hash_table (info)->dynobj;
5316 htab = mips_elf_hash_table (info);
5317 BFD_ASSERT (htab != NULL);
5318
5319 /* Parse the relocation. */
5320 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5321 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5322 p = (input_section->output_section->vma
5323 + input_section->output_offset
5324 + relocation->r_offset);
5325
5326 /* Assume that there will be no overflow. */
5327 overflowed_p = FALSE;
5328
5329 /* Figure out whether or not the symbol is local, and get the offset
5330 used in the array of hash table entries. */
5331 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5332 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5333 local_sections);
5334 was_local_p = local_p;
5335 if (! elf_bad_symtab (input_bfd))
5336 extsymoff = symtab_hdr->sh_info;
5337 else
5338 {
5339 /* The symbol table does not follow the rule that local symbols
5340 must come before globals. */
5341 extsymoff = 0;
5342 }
5343
5344 /* Figure out the value of the symbol. */
5345 if (local_p)
5346 {
5347 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5348 Elf_Internal_Sym *sym;
5349
5350 sym = local_syms + r_symndx;
5351 sec = local_sections[r_symndx];
5352
5353 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5354
5355 symbol = sec->output_section->vma + sec->output_offset;
5356 if (!section_p || (sec->flags & SEC_MERGE))
5357 symbol += sym->st_value;
5358 if ((sec->flags & SEC_MERGE) && section_p)
5359 {
5360 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5361 addend -= symbol;
5362 addend += sec->output_section->vma + sec->output_offset;
5363 }
5364
5365 /* MIPS16/microMIPS text labels should be treated as odd. */
5366 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5367 ++symbol;
5368
5369 /* Record the name of this symbol, for our caller. */
5370 *namep = bfd_elf_string_from_elf_section (input_bfd,
5371 symtab_hdr->sh_link,
5372 sym->st_name);
5373 if (*namep == NULL || **namep == '\0')
5374 *namep = bfd_section_name (input_bfd, sec);
5375
5376 /* For relocations against a section symbol and ones against no
5377 symbol (absolute relocations) infer the ISA mode from the addend. */
5378 if (section_p || r_symndx == STN_UNDEF)
5379 {
5380 target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5381 target_is_micromips_code_p = (addend & 1) && micromips_p;
5382 }
5383 /* For relocations against an absolute symbol infer the ISA mode
5384 from the value of the symbol plus addend. */
5385 else if (bfd_is_abs_section (sec))
5386 {
5387 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5388 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5389 }
5390 /* Otherwise just use the regular symbol annotation available. */
5391 else
5392 {
5393 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5394 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5395 }
5396 }
5397 else
5398 {
5399 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5400
5401 /* For global symbols we look up the symbol in the hash-table. */
5402 h = ((struct mips_elf_link_hash_entry *)
5403 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5404 /* Find the real hash-table entry for this symbol. */
5405 while (h->root.root.type == bfd_link_hash_indirect
5406 || h->root.root.type == bfd_link_hash_warning)
5407 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5408
5409 /* Record the name of this symbol, for our caller. */
5410 *namep = h->root.root.root.string;
5411
5412 /* See if this is the special _gp_disp symbol. Note that such a
5413 symbol must always be a global symbol. */
5414 if (strcmp (*namep, "_gp_disp") == 0
5415 && ! NEWABI_P (input_bfd))
5416 {
5417 /* Relocations against _gp_disp are permitted only with
5418 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5419 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5420 return bfd_reloc_notsupported;
5421
5422 gp_disp_p = TRUE;
5423 }
5424 /* See if this is the special _gp symbol. Note that such a
5425 symbol must always be a global symbol. */
5426 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5427 gnu_local_gp_p = TRUE;
5428
5429
5430 /* If this symbol is defined, calculate its address. Note that
5431 _gp_disp is a magic symbol, always implicitly defined by the
5432 linker, so it's inappropriate to check to see whether or not
5433 its defined. */
5434 else if ((h->root.root.type == bfd_link_hash_defined
5435 || h->root.root.type == bfd_link_hash_defweak)
5436 && h->root.root.u.def.section)
5437 {
5438 sec = h->root.root.u.def.section;
5439 if (sec->output_section)
5440 symbol = (h->root.root.u.def.value
5441 + sec->output_section->vma
5442 + sec->output_offset);
5443 else
5444 symbol = h->root.root.u.def.value;
5445 }
5446 else if (h->root.root.type == bfd_link_hash_undefweak)
5447 /* We allow relocations against undefined weak symbols, giving
5448 it the value zero, so that you can undefined weak functions
5449 and check to see if they exist by looking at their
5450 addresses. */
5451 symbol = 0;
5452 else if (info->unresolved_syms_in_objects == RM_IGNORE
5453 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5454 symbol = 0;
5455 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5456 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5457 {
5458 /* If this is a dynamic link, we should have created a
5459 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5460 in _bfd_mips_elf_create_dynamic_sections.
5461 Otherwise, we should define the symbol with a value of 0.
5462 FIXME: It should probably get into the symbol table
5463 somehow as well. */
5464 BFD_ASSERT (! bfd_link_pic (info));
5465 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5466 symbol = 0;
5467 }
5468 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5469 {
5470 /* This is an optional symbol - an Irix specific extension to the
5471 ELF spec. Ignore it for now.
5472 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5473 than simply ignoring them, but we do not handle this for now.
5474 For information see the "64-bit ELF Object File Specification"
5475 which is available from here:
5476 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5477 symbol = 0;
5478 }
5479 else
5480 {
5481 bfd_boolean reject_undefined
5482 = (info->unresolved_syms_in_objects == RM_GENERATE_ERROR
5483 || ELF_ST_VISIBILITY (h->root.other) != STV_DEFAULT);
5484
5485 (*info->callbacks->undefined_symbol)
5486 (info, h->root.root.root.string, input_bfd,
5487 input_section, relocation->r_offset, reject_undefined);
5488
5489 if (reject_undefined)
5490 return bfd_reloc_undefined;
5491
5492 symbol = 0;
5493 }
5494
5495 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5496 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5497 }
5498
5499 /* If this is a reference to a 16-bit function with a stub, we need
5500 to redirect the relocation to the stub unless:
5501
5502 (a) the relocation is for a MIPS16 JAL;
5503
5504 (b) the relocation is for a MIPS16 PIC call, and there are no
5505 non-MIPS16 uses of the GOT slot; or
5506
5507 (c) the section allows direct references to MIPS16 functions. */
5508 if (r_type != R_MIPS16_26
5509 && !bfd_link_relocatable (info)
5510 && ((h != NULL
5511 && h->fn_stub != NULL
5512 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5513 || (local_p
5514 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5515 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5516 && !section_allows_mips16_refs_p (input_section))
5517 {
5518 /* This is a 32- or 64-bit call to a 16-bit function. We should
5519 have already noticed that we were going to need the
5520 stub. */
5521 if (local_p)
5522 {
5523 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5524 value = 0;
5525 }
5526 else
5527 {
5528 BFD_ASSERT (h->need_fn_stub);
5529 if (h->la25_stub)
5530 {
5531 /* If a LA25 header for the stub itself exists, point to the
5532 prepended LUI/ADDIU sequence. */
5533 sec = h->la25_stub->stub_section;
5534 value = h->la25_stub->offset;
5535 }
5536 else
5537 {
5538 sec = h->fn_stub;
5539 value = 0;
5540 }
5541 }
5542
5543 symbol = sec->output_section->vma + sec->output_offset + value;
5544 /* The target is 16-bit, but the stub isn't. */
5545 target_is_16_bit_code_p = FALSE;
5546 }
5547 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5548 to a standard MIPS function, we need to redirect the call to the stub.
5549 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5550 indirect calls should use an indirect stub instead. */
5551 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
5552 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5553 || (local_p
5554 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5555 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5556 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5557 {
5558 if (local_p)
5559 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5560 else
5561 {
5562 /* If both call_stub and call_fp_stub are defined, we can figure
5563 out which one to use by checking which one appears in the input
5564 file. */
5565 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5566 {
5567 asection *o;
5568
5569 sec = NULL;
5570 for (o = input_bfd->sections; o != NULL; o = o->next)
5571 {
5572 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5573 {
5574 sec = h->call_fp_stub;
5575 break;
5576 }
5577 }
5578 if (sec == NULL)
5579 sec = h->call_stub;
5580 }
5581 else if (h->call_stub != NULL)
5582 sec = h->call_stub;
5583 else
5584 sec = h->call_fp_stub;
5585 }
5586
5587 BFD_ASSERT (sec->size > 0);
5588 symbol = sec->output_section->vma + sec->output_offset;
5589 }
5590 /* If this is a direct call to a PIC function, redirect to the
5591 non-PIC stub. */
5592 else if (h != NULL && h->la25_stub
5593 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5594 target_is_16_bit_code_p))
5595 {
5596 symbol = (h->la25_stub->stub_section->output_section->vma
5597 + h->la25_stub->stub_section->output_offset
5598 + h->la25_stub->offset);
5599 if (ELF_ST_IS_MICROMIPS (h->root.other))
5600 symbol |= 1;
5601 }
5602 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5603 entry is used if a standard PLT entry has also been made. In this
5604 case the symbol will have been set by mips_elf_set_plt_sym_value
5605 to point to the standard PLT entry, so redirect to the compressed
5606 one. */
5607 else if ((mips16_branch_reloc_p (r_type)
5608 || micromips_branch_reloc_p (r_type))
5609 && !bfd_link_relocatable (info)
5610 && h != NULL
5611 && h->use_plt_entry
5612 && h->root.plt.plist->comp_offset != MINUS_ONE
5613 && h->root.plt.plist->mips_offset != MINUS_ONE)
5614 {
5615 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5616
5617 sec = htab->root.splt;
5618 symbol = (sec->output_section->vma
5619 + sec->output_offset
5620 + htab->plt_header_size
5621 + htab->plt_mips_offset
5622 + h->root.plt.plist->comp_offset
5623 + 1);
5624
5625 target_is_16_bit_code_p = !micromips_p;
5626 target_is_micromips_code_p = micromips_p;
5627 }
5628
5629 /* Make sure MIPS16 and microMIPS are not used together. */
5630 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
5631 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5632 {
5633 _bfd_error_handler
5634 (_("MIPS16 and microMIPS functions cannot call each other"));
5635 return bfd_reloc_notsupported;
5636 }
5637
5638 /* Calls from 16-bit code to 32-bit code and vice versa require the
5639 mode change. However, we can ignore calls to undefined weak symbols,
5640 which should never be executed at runtime. This exception is important
5641 because the assembly writer may have "known" that any definition of the
5642 symbol would be 16-bit code, and that direct jumps were therefore
5643 acceptable. */
5644 *cross_mode_jump_p = (!bfd_link_relocatable (info)
5645 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5646 && ((mips16_branch_reloc_p (r_type)
5647 && !target_is_16_bit_code_p)
5648 || (micromips_branch_reloc_p (r_type)
5649 && !target_is_micromips_code_p)
5650 || ((branch_reloc_p (r_type)
5651 || r_type == R_MIPS_JALR)
5652 && (target_is_16_bit_code_p
5653 || target_is_micromips_code_p))));
5654
5655 local_p = (h == NULL || mips_use_local_got_p (info, h));
5656
5657 gp0 = _bfd_get_gp_value (input_bfd);
5658 gp = _bfd_get_gp_value (abfd);
5659 if (htab->got_info)
5660 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5661
5662 if (gnu_local_gp_p)
5663 symbol = gp;
5664
5665 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5666 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5667 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5668 if (got_page_reloc_p (r_type) && !local_p)
5669 {
5670 r_type = (micromips_reloc_p (r_type)
5671 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5672 addend = 0;
5673 }
5674
5675 resolved_to_zero = (h != NULL
5676 && UNDEFWEAK_NO_DYNAMIC_RELOC (info,
5677 &h->root));
5678
5679 /* If we haven't already determined the GOT offset, and we're going
5680 to need it, get it now. */
5681 switch (r_type)
5682 {
5683 case R_MIPS16_CALL16:
5684 case R_MIPS16_GOT16:
5685 case R_MIPS_CALL16:
5686 case R_MIPS_GOT16:
5687 case R_MIPS_GOT_DISP:
5688 case R_MIPS_GOT_HI16:
5689 case R_MIPS_CALL_HI16:
5690 case R_MIPS_GOT_LO16:
5691 case R_MIPS_CALL_LO16:
5692 case R_MICROMIPS_CALL16:
5693 case R_MICROMIPS_GOT16:
5694 case R_MICROMIPS_GOT_DISP:
5695 case R_MICROMIPS_GOT_HI16:
5696 case R_MICROMIPS_CALL_HI16:
5697 case R_MICROMIPS_GOT_LO16:
5698 case R_MICROMIPS_CALL_LO16:
5699 case R_MIPS_TLS_GD:
5700 case R_MIPS_TLS_GOTTPREL:
5701 case R_MIPS_TLS_LDM:
5702 case R_MIPS16_TLS_GD:
5703 case R_MIPS16_TLS_GOTTPREL:
5704 case R_MIPS16_TLS_LDM:
5705 case R_MICROMIPS_TLS_GD:
5706 case R_MICROMIPS_TLS_GOTTPREL:
5707 case R_MICROMIPS_TLS_LDM:
5708 /* Find the index into the GOT where this value is located. */
5709 if (tls_ldm_reloc_p (r_type))
5710 {
5711 g = mips_elf_local_got_index (abfd, input_bfd, info,
5712 0, 0, NULL, r_type);
5713 if (g == MINUS_ONE)
5714 return bfd_reloc_outofrange;
5715 }
5716 else if (!local_p)
5717 {
5718 /* On VxWorks, CALL relocations should refer to the .got.plt
5719 entry, which is initialized to point at the PLT stub. */
5720 if (htab->is_vxworks
5721 && (call_hi16_reloc_p (r_type)
5722 || call_lo16_reloc_p (r_type)
5723 || call16_reloc_p (r_type)))
5724 {
5725 BFD_ASSERT (addend == 0);
5726 BFD_ASSERT (h->root.needs_plt);
5727 g = mips_elf_gotplt_index (info, &h->root);
5728 }
5729 else
5730 {
5731 BFD_ASSERT (addend == 0);
5732 g = mips_elf_global_got_index (abfd, info, input_bfd,
5733 &h->root, r_type);
5734 if (!TLS_RELOC_P (r_type)
5735 && !elf_hash_table (info)->dynamic_sections_created)
5736 /* This is a static link. We must initialize the GOT entry. */
5737 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->root.sgot->contents + g);
5738 }
5739 }
5740 else if (!htab->is_vxworks
5741 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5742 /* The calculation below does not involve "g". */
5743 break;
5744 else
5745 {
5746 g = mips_elf_local_got_index (abfd, input_bfd, info,
5747 symbol + addend, r_symndx, h, r_type);
5748 if (g == MINUS_ONE)
5749 return bfd_reloc_outofrange;
5750 }
5751
5752 /* Convert GOT indices to actual offsets. */
5753 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5754 break;
5755 }
5756
5757 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5758 symbols are resolved by the loader. Add them to .rela.dyn. */
5759 if (h != NULL && is_gott_symbol (info, &h->root))
5760 {
5761 Elf_Internal_Rela outrel;
5762 bfd_byte *loc;
5763 asection *s;
5764
5765 s = mips_elf_rel_dyn_section (info, FALSE);
5766 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5767
5768 outrel.r_offset = (input_section->output_section->vma
5769 + input_section->output_offset
5770 + relocation->r_offset);
5771 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5772 outrel.r_addend = addend;
5773 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5774
5775 /* If we've written this relocation for a readonly section,
5776 we need to set DF_TEXTREL again, so that we do not delete the
5777 DT_TEXTREL tag. */
5778 if (MIPS_ELF_READONLY_SECTION (input_section))
5779 info->flags |= DF_TEXTREL;
5780
5781 *valuep = 0;
5782 return bfd_reloc_ok;
5783 }
5784
5785 /* Figure out what kind of relocation is being performed. */
5786 switch (r_type)
5787 {
5788 case R_MIPS_NONE:
5789 return bfd_reloc_continue;
5790
5791 case R_MIPS_16:
5792 if (howto->partial_inplace)
5793 addend = _bfd_mips_elf_sign_extend (addend, 16);
5794 value = symbol + addend;
5795 overflowed_p = mips_elf_overflow_p (value, 16);
5796 break;
5797
5798 case R_MIPS_32:
5799 case R_MIPS_REL32:
5800 case R_MIPS_64:
5801 if ((bfd_link_pic (info)
5802 || (htab->root.dynamic_sections_created
5803 && h != NULL
5804 && h->root.def_dynamic
5805 && !h->root.def_regular
5806 && !h->has_static_relocs))
5807 && r_symndx != STN_UNDEF
5808 && (h == NULL
5809 || h->root.root.type != bfd_link_hash_undefweak
5810 || (ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
5811 && !resolved_to_zero))
5812 && (input_section->flags & SEC_ALLOC) != 0)
5813 {
5814 /* If we're creating a shared library, then we can't know
5815 where the symbol will end up. So, we create a relocation
5816 record in the output, and leave the job up to the dynamic
5817 linker. We must do the same for executable references to
5818 shared library symbols, unless we've decided to use copy
5819 relocs or PLTs instead. */
5820 value = addend;
5821 if (!mips_elf_create_dynamic_relocation (abfd,
5822 info,
5823 relocation,
5824 h,
5825 sec,
5826 symbol,
5827 &value,
5828 input_section))
5829 return bfd_reloc_undefined;
5830 }
5831 else
5832 {
5833 if (r_type != R_MIPS_REL32)
5834 value = symbol + addend;
5835 else
5836 value = addend;
5837 }
5838 value &= howto->dst_mask;
5839 break;
5840
5841 case R_MIPS_PC32:
5842 value = symbol + addend - p;
5843 value &= howto->dst_mask;
5844 break;
5845
5846 case R_MIPS16_26:
5847 /* The calculation for R_MIPS16_26 is just the same as for an
5848 R_MIPS_26. It's only the storage of the relocated field into
5849 the output file that's different. That's handled in
5850 mips_elf_perform_relocation. So, we just fall through to the
5851 R_MIPS_26 case here. */
5852 case R_MIPS_26:
5853 case R_MICROMIPS_26_S1:
5854 {
5855 unsigned int shift;
5856
5857 /* Shift is 2, unusually, for microMIPS JALX. */
5858 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5859
5860 if (howto->partial_inplace && !section_p)
5861 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5862 else
5863 value = addend;
5864 value += symbol;
5865
5866 /* Make sure the target of a jump is suitably aligned. Bit 0 must
5867 be the correct ISA mode selector except for weak undefined
5868 symbols. */
5869 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5870 && (*cross_mode_jump_p
5871 ? (value & 3) != (r_type == R_MIPS_26)
5872 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
5873 return bfd_reloc_outofrange;
5874
5875 value >>= shift;
5876 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5877 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5878 value &= howto->dst_mask;
5879 }
5880 break;
5881
5882 case R_MIPS_TLS_DTPREL_HI16:
5883 case R_MIPS16_TLS_DTPREL_HI16:
5884 case R_MICROMIPS_TLS_DTPREL_HI16:
5885 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5886 & howto->dst_mask);
5887 break;
5888
5889 case R_MIPS_TLS_DTPREL_LO16:
5890 case R_MIPS_TLS_DTPREL32:
5891 case R_MIPS_TLS_DTPREL64:
5892 case R_MIPS16_TLS_DTPREL_LO16:
5893 case R_MICROMIPS_TLS_DTPREL_LO16:
5894 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5895 break;
5896
5897 case R_MIPS_TLS_TPREL_HI16:
5898 case R_MIPS16_TLS_TPREL_HI16:
5899 case R_MICROMIPS_TLS_TPREL_HI16:
5900 value = (mips_elf_high (addend + symbol - tprel_base (info))
5901 & howto->dst_mask);
5902 break;
5903
5904 case R_MIPS_TLS_TPREL_LO16:
5905 case R_MIPS_TLS_TPREL32:
5906 case R_MIPS_TLS_TPREL64:
5907 case R_MIPS16_TLS_TPREL_LO16:
5908 case R_MICROMIPS_TLS_TPREL_LO16:
5909 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5910 break;
5911
5912 case R_MIPS_HI16:
5913 case R_MIPS16_HI16:
5914 case R_MICROMIPS_HI16:
5915 if (!gp_disp_p)
5916 {
5917 value = mips_elf_high (addend + symbol);
5918 value &= howto->dst_mask;
5919 }
5920 else
5921 {
5922 /* For MIPS16 ABI code we generate this sequence
5923 0: li $v0,%hi(_gp_disp)
5924 4: addiupc $v1,%lo(_gp_disp)
5925 8: sll $v0,16
5926 12: addu $v0,$v1
5927 14: move $gp,$v0
5928 So the offsets of hi and lo relocs are the same, but the
5929 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5930 ADDIUPC clears the low two bits of the instruction address,
5931 so the base is ($t9 + 4) & ~3. */
5932 if (r_type == R_MIPS16_HI16)
5933 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5934 /* The microMIPS .cpload sequence uses the same assembly
5935 instructions as the traditional psABI version, but the
5936 incoming $t9 has the low bit set. */
5937 else if (r_type == R_MICROMIPS_HI16)
5938 value = mips_elf_high (addend + gp - p - 1);
5939 else
5940 value = mips_elf_high (addend + gp - p);
5941 }
5942 break;
5943
5944 case R_MIPS_LO16:
5945 case R_MIPS16_LO16:
5946 case R_MICROMIPS_LO16:
5947 case R_MICROMIPS_HI0_LO16:
5948 if (!gp_disp_p)
5949 value = (symbol + addend) & howto->dst_mask;
5950 else
5951 {
5952 /* See the comment for R_MIPS16_HI16 above for the reason
5953 for this conditional. */
5954 if (r_type == R_MIPS16_LO16)
5955 value = addend + gp - (p & ~(bfd_vma) 0x3);
5956 else if (r_type == R_MICROMIPS_LO16
5957 || r_type == R_MICROMIPS_HI0_LO16)
5958 value = addend + gp - p + 3;
5959 else
5960 value = addend + gp - p + 4;
5961 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5962 for overflow. But, on, say, IRIX5, relocations against
5963 _gp_disp are normally generated from the .cpload
5964 pseudo-op. It generates code that normally looks like
5965 this:
5966
5967 lui $gp,%hi(_gp_disp)
5968 addiu $gp,$gp,%lo(_gp_disp)
5969 addu $gp,$gp,$t9
5970
5971 Here $t9 holds the address of the function being called,
5972 as required by the MIPS ELF ABI. The R_MIPS_LO16
5973 relocation can easily overflow in this situation, but the
5974 R_MIPS_HI16 relocation will handle the overflow.
5975 Therefore, we consider this a bug in the MIPS ABI, and do
5976 not check for overflow here. */
5977 }
5978 break;
5979
5980 case R_MIPS_LITERAL:
5981 case R_MICROMIPS_LITERAL:
5982 /* Because we don't merge literal sections, we can handle this
5983 just like R_MIPS_GPREL16. In the long run, we should merge
5984 shared literals, and then we will need to additional work
5985 here. */
5986
5987 /* Fall through. */
5988
5989 case R_MIPS16_GPREL:
5990 /* The R_MIPS16_GPREL performs the same calculation as
5991 R_MIPS_GPREL16, but stores the relocated bits in a different
5992 order. We don't need to do anything special here; the
5993 differences are handled in mips_elf_perform_relocation. */
5994 case R_MIPS_GPREL16:
5995 case R_MICROMIPS_GPREL7_S2:
5996 case R_MICROMIPS_GPREL16:
5997 /* Only sign-extend the addend if it was extracted from the
5998 instruction. If the addend was separate, leave it alone,
5999 otherwise we may lose significant bits. */
6000 if (howto->partial_inplace)
6001 addend = _bfd_mips_elf_sign_extend (addend, 16);
6002 value = symbol + addend - gp;
6003 /* If the symbol was local, any earlier relocatable links will
6004 have adjusted its addend with the gp offset, so compensate
6005 for that now. Don't do it for symbols forced local in this
6006 link, though, since they won't have had the gp offset applied
6007 to them before. */
6008 if (was_local_p)
6009 value += gp0;
6010 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6011 overflowed_p = mips_elf_overflow_p (value, 16);
6012 break;
6013
6014 case R_MIPS16_GOT16:
6015 case R_MIPS16_CALL16:
6016 case R_MIPS_GOT16:
6017 case R_MIPS_CALL16:
6018 case R_MICROMIPS_GOT16:
6019 case R_MICROMIPS_CALL16:
6020 /* VxWorks does not have separate local and global semantics for
6021 R_MIPS*_GOT16; every relocation evaluates to "G". */
6022 if (!htab->is_vxworks && local_p)
6023 {
6024 value = mips_elf_got16_entry (abfd, input_bfd, info,
6025 symbol + addend, !was_local_p);
6026 if (value == MINUS_ONE)
6027 return bfd_reloc_outofrange;
6028 value
6029 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6030 overflowed_p = mips_elf_overflow_p (value, 16);
6031 break;
6032 }
6033
6034 /* Fall through. */
6035
6036 case R_MIPS_TLS_GD:
6037 case R_MIPS_TLS_GOTTPREL:
6038 case R_MIPS_TLS_LDM:
6039 case R_MIPS_GOT_DISP:
6040 case R_MIPS16_TLS_GD:
6041 case R_MIPS16_TLS_GOTTPREL:
6042 case R_MIPS16_TLS_LDM:
6043 case R_MICROMIPS_TLS_GD:
6044 case R_MICROMIPS_TLS_GOTTPREL:
6045 case R_MICROMIPS_TLS_LDM:
6046 case R_MICROMIPS_GOT_DISP:
6047 value = g;
6048 overflowed_p = mips_elf_overflow_p (value, 16);
6049 break;
6050
6051 case R_MIPS_GPREL32:
6052 value = (addend + symbol + gp0 - gp);
6053 if (!save_addend)
6054 value &= howto->dst_mask;
6055 break;
6056
6057 case R_MIPS_PC16:
6058 case R_MIPS_GNU_REL16_S2:
6059 if (howto->partial_inplace)
6060 addend = _bfd_mips_elf_sign_extend (addend, 18);
6061
6062 /* No need to exclude weak undefined symbols here as they resolve
6063 to 0 and never set `*cross_mode_jump_p', so this alignment check
6064 will never trigger for them. */
6065 if (*cross_mode_jump_p
6066 ? ((symbol + addend) & 3) != 1
6067 : ((symbol + addend) & 3) != 0)
6068 return bfd_reloc_outofrange;
6069
6070 value = symbol + addend - p;
6071 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6072 overflowed_p = mips_elf_overflow_p (value, 18);
6073 value >>= howto->rightshift;
6074 value &= howto->dst_mask;
6075 break;
6076
6077 case R_MIPS16_PC16_S1:
6078 if (howto->partial_inplace)
6079 addend = _bfd_mips_elf_sign_extend (addend, 17);
6080
6081 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6082 && (*cross_mode_jump_p
6083 ? ((symbol + addend) & 3) != 0
6084 : ((symbol + addend) & 1) == 0))
6085 return bfd_reloc_outofrange;
6086
6087 value = symbol + addend - p;
6088 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6089 overflowed_p = mips_elf_overflow_p (value, 17);
6090 value >>= howto->rightshift;
6091 value &= howto->dst_mask;
6092 break;
6093
6094 case R_MIPS_PC21_S2:
6095 if (howto->partial_inplace)
6096 addend = _bfd_mips_elf_sign_extend (addend, 23);
6097
6098 if ((symbol + addend) & 3)
6099 return bfd_reloc_outofrange;
6100
6101 value = symbol + addend - p;
6102 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6103 overflowed_p = mips_elf_overflow_p (value, 23);
6104 value >>= howto->rightshift;
6105 value &= howto->dst_mask;
6106 break;
6107
6108 case R_MIPS_PC26_S2:
6109 if (howto->partial_inplace)
6110 addend = _bfd_mips_elf_sign_extend (addend, 28);
6111
6112 if ((symbol + addend) & 3)
6113 return bfd_reloc_outofrange;
6114
6115 value = symbol + addend - p;
6116 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6117 overflowed_p = mips_elf_overflow_p (value, 28);
6118 value >>= howto->rightshift;
6119 value &= howto->dst_mask;
6120 break;
6121
6122 case R_MIPS_PC18_S3:
6123 if (howto->partial_inplace)
6124 addend = _bfd_mips_elf_sign_extend (addend, 21);
6125
6126 if ((symbol + addend) & 7)
6127 return bfd_reloc_outofrange;
6128
6129 value = symbol + addend - ((p | 7) ^ 7);
6130 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6131 overflowed_p = mips_elf_overflow_p (value, 21);
6132 value >>= howto->rightshift;
6133 value &= howto->dst_mask;
6134 break;
6135
6136 case R_MIPS_PC19_S2:
6137 if (howto->partial_inplace)
6138 addend = _bfd_mips_elf_sign_extend (addend, 21);
6139
6140 if ((symbol + addend) & 3)
6141 return bfd_reloc_outofrange;
6142
6143 value = symbol + addend - p;
6144 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6145 overflowed_p = mips_elf_overflow_p (value, 21);
6146 value >>= howto->rightshift;
6147 value &= howto->dst_mask;
6148 break;
6149
6150 case R_MIPS_PCHI16:
6151 value = mips_elf_high (symbol + addend - p);
6152 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6153 overflowed_p = mips_elf_overflow_p (value, 16);
6154 value &= howto->dst_mask;
6155 break;
6156
6157 case R_MIPS_PCLO16:
6158 if (howto->partial_inplace)
6159 addend = _bfd_mips_elf_sign_extend (addend, 16);
6160 value = symbol + addend - p;
6161 value &= howto->dst_mask;
6162 break;
6163
6164 case R_MICROMIPS_PC7_S1:
6165 if (howto->partial_inplace)
6166 addend = _bfd_mips_elf_sign_extend (addend, 8);
6167
6168 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6169 && (*cross_mode_jump_p
6170 ? ((symbol + addend + 2) & 3) != 0
6171 : ((symbol + addend + 2) & 1) == 0))
6172 return bfd_reloc_outofrange;
6173
6174 value = symbol + addend - p;
6175 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6176 overflowed_p = mips_elf_overflow_p (value, 8);
6177 value >>= howto->rightshift;
6178 value &= howto->dst_mask;
6179 break;
6180
6181 case R_MICROMIPS_PC10_S1:
6182 if (howto->partial_inplace)
6183 addend = _bfd_mips_elf_sign_extend (addend, 11);
6184
6185 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6186 && (*cross_mode_jump_p
6187 ? ((symbol + addend + 2) & 3) != 0
6188 : ((symbol + addend + 2) & 1) == 0))
6189 return bfd_reloc_outofrange;
6190
6191 value = symbol + addend - p;
6192 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6193 overflowed_p = mips_elf_overflow_p (value, 11);
6194 value >>= howto->rightshift;
6195 value &= howto->dst_mask;
6196 break;
6197
6198 case R_MICROMIPS_PC16_S1:
6199 if (howto->partial_inplace)
6200 addend = _bfd_mips_elf_sign_extend (addend, 17);
6201
6202 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6203 && (*cross_mode_jump_p
6204 ? ((symbol + addend) & 3) != 0
6205 : ((symbol + addend) & 1) == 0))
6206 return bfd_reloc_outofrange;
6207
6208 value = symbol + addend - p;
6209 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6210 overflowed_p = mips_elf_overflow_p (value, 17);
6211 value >>= howto->rightshift;
6212 value &= howto->dst_mask;
6213 break;
6214
6215 case R_MICROMIPS_PC23_S2:
6216 if (howto->partial_inplace)
6217 addend = _bfd_mips_elf_sign_extend (addend, 25);
6218 value = symbol + addend - ((p | 3) ^ 3);
6219 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6220 overflowed_p = mips_elf_overflow_p (value, 25);
6221 value >>= howto->rightshift;
6222 value &= howto->dst_mask;
6223 break;
6224
6225 case R_MIPS_GOT_HI16:
6226 case R_MIPS_CALL_HI16:
6227 case R_MICROMIPS_GOT_HI16:
6228 case R_MICROMIPS_CALL_HI16:
6229 /* We're allowed to handle these two relocations identically.
6230 The dynamic linker is allowed to handle the CALL relocations
6231 differently by creating a lazy evaluation stub. */
6232 value = g;
6233 value = mips_elf_high (value);
6234 value &= howto->dst_mask;
6235 break;
6236
6237 case R_MIPS_GOT_LO16:
6238 case R_MIPS_CALL_LO16:
6239 case R_MICROMIPS_GOT_LO16:
6240 case R_MICROMIPS_CALL_LO16:
6241 value = g & howto->dst_mask;
6242 break;
6243
6244 case R_MIPS_GOT_PAGE:
6245 case R_MICROMIPS_GOT_PAGE:
6246 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6247 if (value == MINUS_ONE)
6248 return bfd_reloc_outofrange;
6249 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6250 overflowed_p = mips_elf_overflow_p (value, 16);
6251 break;
6252
6253 case R_MIPS_GOT_OFST:
6254 case R_MICROMIPS_GOT_OFST:
6255 if (local_p)
6256 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6257 else
6258 value = addend;
6259 overflowed_p = mips_elf_overflow_p (value, 16);
6260 break;
6261
6262 case R_MIPS_SUB:
6263 case R_MICROMIPS_SUB:
6264 value = symbol - addend;
6265 value &= howto->dst_mask;
6266 break;
6267
6268 case R_MIPS_HIGHER:
6269 case R_MICROMIPS_HIGHER:
6270 value = mips_elf_higher (addend + symbol);
6271 value &= howto->dst_mask;
6272 break;
6273
6274 case R_MIPS_HIGHEST:
6275 case R_MICROMIPS_HIGHEST:
6276 value = mips_elf_highest (addend + symbol);
6277 value &= howto->dst_mask;
6278 break;
6279
6280 case R_MIPS_SCN_DISP:
6281 case R_MICROMIPS_SCN_DISP:
6282 value = symbol + addend - sec->output_offset;
6283 value &= howto->dst_mask;
6284 break;
6285
6286 case R_MIPS_JALR:
6287 case R_MICROMIPS_JALR:
6288 /* This relocation is only a hint. In some cases, we optimize
6289 it into a bal instruction. But we don't try to optimize
6290 when the symbol does not resolve locally. */
6291 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6292 return bfd_reloc_continue;
6293 /* We can't optimize cross-mode jumps either. */
6294 if (*cross_mode_jump_p)
6295 return bfd_reloc_continue;
6296 value = symbol + addend;
6297 /* Neither we can non-instruction-aligned targets. */
6298 if (r_type == R_MIPS_JALR ? (value & 3) != 0 : (value & 1) == 0)
6299 return bfd_reloc_continue;
6300 break;
6301
6302 case R_MIPS_PJUMP:
6303 case R_MIPS_GNU_VTINHERIT:
6304 case R_MIPS_GNU_VTENTRY:
6305 /* We don't do anything with these at present. */
6306 return bfd_reloc_continue;
6307
6308 default:
6309 /* An unrecognized relocation type. */
6310 return bfd_reloc_notsupported;
6311 }
6312
6313 /* Store the VALUE for our caller. */
6314 *valuep = value;
6315 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6316 }
6317
6318 /* Obtain the field relocated by RELOCATION. */
6319
6320 static bfd_vma
6321 mips_elf_obtain_contents (reloc_howto_type *howto,
6322 const Elf_Internal_Rela *relocation,
6323 bfd *input_bfd, bfd_byte *contents)
6324 {
6325 bfd_vma x = 0;
6326 bfd_byte *location = contents + relocation->r_offset;
6327 unsigned int size = bfd_get_reloc_size (howto);
6328
6329 /* Obtain the bytes. */
6330 if (size != 0)
6331 x = bfd_get (8 * size, input_bfd, location);
6332
6333 return x;
6334 }
6335
6336 /* It has been determined that the result of the RELOCATION is the
6337 VALUE. Use HOWTO to place VALUE into the output file at the
6338 appropriate position. The SECTION is the section to which the
6339 relocation applies.
6340 CROSS_MODE_JUMP_P is true if the relocation field
6341 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6342
6343 Returns FALSE if anything goes wrong. */
6344
6345 static bfd_boolean
6346 mips_elf_perform_relocation (struct bfd_link_info *info,
6347 reloc_howto_type *howto,
6348 const Elf_Internal_Rela *relocation,
6349 bfd_vma value, bfd *input_bfd,
6350 asection *input_section, bfd_byte *contents,
6351 bfd_boolean cross_mode_jump_p)
6352 {
6353 bfd_vma x;
6354 bfd_byte *location;
6355 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6356 unsigned int size;
6357
6358 /* Figure out where the relocation is occurring. */
6359 location = contents + relocation->r_offset;
6360
6361 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6362
6363 /* Obtain the current value. */
6364 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6365
6366 /* Clear the field we are setting. */
6367 x &= ~howto->dst_mask;
6368
6369 /* Set the field. */
6370 x |= (value & howto->dst_mask);
6371
6372 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
6373 if (!cross_mode_jump_p && jal_reloc_p (r_type))
6374 {
6375 bfd_vma opcode = x >> 26;
6376
6377 if (r_type == R_MIPS16_26 ? opcode == 0x7
6378 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6379 : opcode == 0x1d)
6380 {
6381 info->callbacks->einfo
6382 (_("%X%H: unsupported JALX to the same ISA mode\n"),
6383 input_bfd, input_section, relocation->r_offset);
6384 return TRUE;
6385 }
6386 }
6387 if (cross_mode_jump_p && jal_reloc_p (r_type))
6388 {
6389 bfd_boolean ok;
6390 bfd_vma opcode = x >> 26;
6391 bfd_vma jalx_opcode;
6392
6393 /* Check to see if the opcode is already JAL or JALX. */
6394 if (r_type == R_MIPS16_26)
6395 {
6396 ok = ((opcode == 0x6) || (opcode == 0x7));
6397 jalx_opcode = 0x7;
6398 }
6399 else if (r_type == R_MICROMIPS_26_S1)
6400 {
6401 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6402 jalx_opcode = 0x3c;
6403 }
6404 else
6405 {
6406 ok = ((opcode == 0x3) || (opcode == 0x1d));
6407 jalx_opcode = 0x1d;
6408 }
6409
6410 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6411 convert J or JALS to JALX. */
6412 if (!ok)
6413 {
6414 info->callbacks->einfo
6415 (_("%X%H: unsupported jump between ISA modes; "
6416 "consider recompiling with interlinking enabled\n"),
6417 input_bfd, input_section, relocation->r_offset);
6418 return TRUE;
6419 }
6420
6421 /* Make this the JALX opcode. */
6422 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6423 }
6424 else if (cross_mode_jump_p && b_reloc_p (r_type))
6425 {
6426 bfd_boolean ok = FALSE;
6427 bfd_vma opcode = x >> 16;
6428 bfd_vma jalx_opcode = 0;
6429 bfd_vma sign_bit = 0;
6430 bfd_vma addr;
6431 bfd_vma dest;
6432
6433 if (r_type == R_MICROMIPS_PC16_S1)
6434 {
6435 ok = opcode == 0x4060;
6436 jalx_opcode = 0x3c;
6437 sign_bit = 0x10000;
6438 value <<= 1;
6439 }
6440 else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6441 {
6442 ok = opcode == 0x411;
6443 jalx_opcode = 0x1d;
6444 sign_bit = 0x20000;
6445 value <<= 2;
6446 }
6447
6448 if (ok && !bfd_link_pic (info))
6449 {
6450 addr = (input_section->output_section->vma
6451 + input_section->output_offset
6452 + relocation->r_offset
6453 + 4);
6454 dest = (addr
6455 + (((value & ((sign_bit << 1) - 1)) ^ sign_bit) - sign_bit));
6456
6457 if ((addr >> 28) << 28 != (dest >> 28) << 28)
6458 {
6459 info->callbacks->einfo
6460 (_("%X%H: cannot convert branch between ISA modes "
6461 "to JALX: relocation out of range\n"),
6462 input_bfd, input_section, relocation->r_offset);
6463 return TRUE;
6464 }
6465
6466 /* Make this the JALX opcode. */
6467 x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
6468 }
6469 else if (!mips_elf_hash_table (info)->ignore_branch_isa)
6470 {
6471 info->callbacks->einfo
6472 (_("%X%H: unsupported branch between ISA modes\n"),
6473 input_bfd, input_section, relocation->r_offset);
6474 return TRUE;
6475 }
6476 }
6477
6478 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6479 range. */
6480 if (!bfd_link_relocatable (info)
6481 && !cross_mode_jump_p
6482 && ((JAL_TO_BAL_P (input_bfd)
6483 && r_type == R_MIPS_26
6484 && (x >> 26) == 0x3) /* jal addr */
6485 || (JALR_TO_BAL_P (input_bfd)
6486 && r_type == R_MIPS_JALR
6487 && x == 0x0320f809) /* jalr t9 */
6488 || (JR_TO_B_P (input_bfd)
6489 && r_type == R_MIPS_JALR
6490 && (x & ~1) == 0x03200008))) /* jr t9 / jalr zero, t9 */
6491 {
6492 bfd_vma addr;
6493 bfd_vma dest;
6494 bfd_signed_vma off;
6495
6496 addr = (input_section->output_section->vma
6497 + input_section->output_offset
6498 + relocation->r_offset
6499 + 4);
6500 if (r_type == R_MIPS_26)
6501 dest = (value << 2) | ((addr >> 28) << 28);
6502 else
6503 dest = value;
6504 off = dest - addr;
6505 if (off <= 0x1ffff && off >= -0x20000)
6506 {
6507 if ((x & ~1) == 0x03200008) /* jr t9 / jalr zero, t9 */
6508 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6509 else
6510 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6511 }
6512 }
6513
6514 /* Put the value into the output. */
6515 size = bfd_get_reloc_size (howto);
6516 if (size != 0)
6517 bfd_put (8 * size, input_bfd, x, location);
6518
6519 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
6520 location);
6521
6522 return TRUE;
6523 }
6524 \f
6525 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6526 is the original relocation, which is now being transformed into a
6527 dynamic relocation. The ADDENDP is adjusted if necessary; the
6528 caller should store the result in place of the original addend. */
6529
6530 static bfd_boolean
6531 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6532 struct bfd_link_info *info,
6533 const Elf_Internal_Rela *rel,
6534 struct mips_elf_link_hash_entry *h,
6535 asection *sec, bfd_vma symbol,
6536 bfd_vma *addendp, asection *input_section)
6537 {
6538 Elf_Internal_Rela outrel[3];
6539 asection *sreloc;
6540 bfd *dynobj;
6541 int r_type;
6542 long indx;
6543 bfd_boolean defined_p;
6544 struct mips_elf_link_hash_table *htab;
6545
6546 htab = mips_elf_hash_table (info);
6547 BFD_ASSERT (htab != NULL);
6548
6549 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6550 dynobj = elf_hash_table (info)->dynobj;
6551 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6552 BFD_ASSERT (sreloc != NULL);
6553 BFD_ASSERT (sreloc->contents != NULL);
6554 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6555 < sreloc->size);
6556
6557 outrel[0].r_offset =
6558 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6559 if (ABI_64_P (output_bfd))
6560 {
6561 outrel[1].r_offset =
6562 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6563 outrel[2].r_offset =
6564 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6565 }
6566
6567 if (outrel[0].r_offset == MINUS_ONE)
6568 /* The relocation field has been deleted. */
6569 return TRUE;
6570
6571 if (outrel[0].r_offset == MINUS_TWO)
6572 {
6573 /* The relocation field has been converted into a relative value of
6574 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6575 the field to be fully relocated, so add in the symbol's value. */
6576 *addendp += symbol;
6577 return TRUE;
6578 }
6579
6580 /* We must now calculate the dynamic symbol table index to use
6581 in the relocation. */
6582 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6583 {
6584 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6585 indx = h->root.dynindx;
6586 if (SGI_COMPAT (output_bfd))
6587 defined_p = h->root.def_regular;
6588 else
6589 /* ??? glibc's ld.so just adds the final GOT entry to the
6590 relocation field. It therefore treats relocs against
6591 defined symbols in the same way as relocs against
6592 undefined symbols. */
6593 defined_p = FALSE;
6594 }
6595 else
6596 {
6597 if (sec != NULL && bfd_is_abs_section (sec))
6598 indx = 0;
6599 else if (sec == NULL || sec->owner == NULL)
6600 {
6601 bfd_set_error (bfd_error_bad_value);
6602 return FALSE;
6603 }
6604 else
6605 {
6606 indx = elf_section_data (sec->output_section)->dynindx;
6607 if (indx == 0)
6608 {
6609 asection *osec = htab->root.text_index_section;
6610 indx = elf_section_data (osec)->dynindx;
6611 }
6612 if (indx == 0)
6613 abort ();
6614 }
6615
6616 /* Instead of generating a relocation using the section
6617 symbol, we may as well make it a fully relative
6618 relocation. We want to avoid generating relocations to
6619 local symbols because we used to generate them
6620 incorrectly, without adding the original symbol value,
6621 which is mandated by the ABI for section symbols. In
6622 order to give dynamic loaders and applications time to
6623 phase out the incorrect use, we refrain from emitting
6624 section-relative relocations. It's not like they're
6625 useful, after all. This should be a bit more efficient
6626 as well. */
6627 /* ??? Although this behavior is compatible with glibc's ld.so,
6628 the ABI says that relocations against STN_UNDEF should have
6629 a symbol value of 0. Irix rld honors this, so relocations
6630 against STN_UNDEF have no effect. */
6631 if (!SGI_COMPAT (output_bfd))
6632 indx = 0;
6633 defined_p = TRUE;
6634 }
6635
6636 /* If the relocation was previously an absolute relocation and
6637 this symbol will not be referred to by the relocation, we must
6638 adjust it by the value we give it in the dynamic symbol table.
6639 Otherwise leave the job up to the dynamic linker. */
6640 if (defined_p && r_type != R_MIPS_REL32)
6641 *addendp += symbol;
6642
6643 if (htab->is_vxworks)
6644 /* VxWorks uses non-relative relocations for this. */
6645 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6646 else
6647 /* The relocation is always an REL32 relocation because we don't
6648 know where the shared library will wind up at load-time. */
6649 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6650 R_MIPS_REL32);
6651
6652 /* For strict adherence to the ABI specification, we should
6653 generate a R_MIPS_64 relocation record by itself before the
6654 _REL32/_64 record as well, such that the addend is read in as
6655 a 64-bit value (REL32 is a 32-bit relocation, after all).
6656 However, since none of the existing ELF64 MIPS dynamic
6657 loaders seems to care, we don't waste space with these
6658 artificial relocations. If this turns out to not be true,
6659 mips_elf_allocate_dynamic_relocation() should be tweaked so
6660 as to make room for a pair of dynamic relocations per
6661 invocation if ABI_64_P, and here we should generate an
6662 additional relocation record with R_MIPS_64 by itself for a
6663 NULL symbol before this relocation record. */
6664 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6665 ABI_64_P (output_bfd)
6666 ? R_MIPS_64
6667 : R_MIPS_NONE);
6668 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6669
6670 /* Adjust the output offset of the relocation to reference the
6671 correct location in the output file. */
6672 outrel[0].r_offset += (input_section->output_section->vma
6673 + input_section->output_offset);
6674 outrel[1].r_offset += (input_section->output_section->vma
6675 + input_section->output_offset);
6676 outrel[2].r_offset += (input_section->output_section->vma
6677 + input_section->output_offset);
6678
6679 /* Put the relocation back out. We have to use the special
6680 relocation outputter in the 64-bit case since the 64-bit
6681 relocation format is non-standard. */
6682 if (ABI_64_P (output_bfd))
6683 {
6684 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6685 (output_bfd, &outrel[0],
6686 (sreloc->contents
6687 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6688 }
6689 else if (htab->is_vxworks)
6690 {
6691 /* VxWorks uses RELA rather than REL dynamic relocations. */
6692 outrel[0].r_addend = *addendp;
6693 bfd_elf32_swap_reloca_out
6694 (output_bfd, &outrel[0],
6695 (sreloc->contents
6696 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6697 }
6698 else
6699 bfd_elf32_swap_reloc_out
6700 (output_bfd, &outrel[0],
6701 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6702
6703 /* We've now added another relocation. */
6704 ++sreloc->reloc_count;
6705
6706 /* Make sure the output section is writable. The dynamic linker
6707 will be writing to it. */
6708 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6709 |= SHF_WRITE;
6710
6711 /* On IRIX5, make an entry of compact relocation info. */
6712 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6713 {
6714 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6715 bfd_byte *cr;
6716
6717 if (scpt)
6718 {
6719 Elf32_crinfo cptrel;
6720
6721 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6722 cptrel.vaddr = (rel->r_offset
6723 + input_section->output_section->vma
6724 + input_section->output_offset);
6725 if (r_type == R_MIPS_REL32)
6726 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6727 else
6728 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6729 mips_elf_set_cr_dist2to (cptrel, 0);
6730 cptrel.konst = *addendp;
6731
6732 cr = (scpt->contents
6733 + sizeof (Elf32_External_compact_rel));
6734 mips_elf_set_cr_relvaddr (cptrel, 0);
6735 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6736 ((Elf32_External_crinfo *) cr
6737 + scpt->reloc_count));
6738 ++scpt->reloc_count;
6739 }
6740 }
6741
6742 /* If we've written this relocation for a readonly section,
6743 we need to set DF_TEXTREL again, so that we do not delete the
6744 DT_TEXTREL tag. */
6745 if (MIPS_ELF_READONLY_SECTION (input_section))
6746 info->flags |= DF_TEXTREL;
6747
6748 return TRUE;
6749 }
6750 \f
6751 /* Return the MACH for a MIPS e_flags value. */
6752
6753 unsigned long
6754 _bfd_elf_mips_mach (flagword flags)
6755 {
6756 switch (flags & EF_MIPS_MACH)
6757 {
6758 case E_MIPS_MACH_3900:
6759 return bfd_mach_mips3900;
6760
6761 case E_MIPS_MACH_4010:
6762 return bfd_mach_mips4010;
6763
6764 case E_MIPS_MACH_4100:
6765 return bfd_mach_mips4100;
6766
6767 case E_MIPS_MACH_4111:
6768 return bfd_mach_mips4111;
6769
6770 case E_MIPS_MACH_4120:
6771 return bfd_mach_mips4120;
6772
6773 case E_MIPS_MACH_4650:
6774 return bfd_mach_mips4650;
6775
6776 case E_MIPS_MACH_5400:
6777 return bfd_mach_mips5400;
6778
6779 case E_MIPS_MACH_5500:
6780 return bfd_mach_mips5500;
6781
6782 case E_MIPS_MACH_5900:
6783 return bfd_mach_mips5900;
6784
6785 case E_MIPS_MACH_9000:
6786 return bfd_mach_mips9000;
6787
6788 case E_MIPS_MACH_SB1:
6789 return bfd_mach_mips_sb1;
6790
6791 case E_MIPS_MACH_LS2E:
6792 return bfd_mach_mips_loongson_2e;
6793
6794 case E_MIPS_MACH_LS2F:
6795 return bfd_mach_mips_loongson_2f;
6796
6797 case E_MIPS_MACH_LS3A:
6798 return bfd_mach_mips_loongson_3a;
6799
6800 case E_MIPS_MACH_OCTEON3:
6801 return bfd_mach_mips_octeon3;
6802
6803 case E_MIPS_MACH_OCTEON2:
6804 return bfd_mach_mips_octeon2;
6805
6806 case E_MIPS_MACH_OCTEON:
6807 return bfd_mach_mips_octeon;
6808
6809 case E_MIPS_MACH_XLR:
6810 return bfd_mach_mips_xlr;
6811
6812 case E_MIPS_MACH_IAMR2:
6813 return bfd_mach_mips_interaptiv_mr2;
6814
6815 default:
6816 switch (flags & EF_MIPS_ARCH)
6817 {
6818 default:
6819 case E_MIPS_ARCH_1:
6820 return bfd_mach_mips3000;
6821
6822 case E_MIPS_ARCH_2:
6823 return bfd_mach_mips6000;
6824
6825 case E_MIPS_ARCH_3:
6826 return bfd_mach_mips4000;
6827
6828 case E_MIPS_ARCH_4:
6829 return bfd_mach_mips8000;
6830
6831 case E_MIPS_ARCH_5:
6832 return bfd_mach_mips5;
6833
6834 case E_MIPS_ARCH_32:
6835 return bfd_mach_mipsisa32;
6836
6837 case E_MIPS_ARCH_64:
6838 return bfd_mach_mipsisa64;
6839
6840 case E_MIPS_ARCH_32R2:
6841 return bfd_mach_mipsisa32r2;
6842
6843 case E_MIPS_ARCH_64R2:
6844 return bfd_mach_mipsisa64r2;
6845
6846 case E_MIPS_ARCH_32R6:
6847 return bfd_mach_mipsisa32r6;
6848
6849 case E_MIPS_ARCH_64R6:
6850 return bfd_mach_mipsisa64r6;
6851 }
6852 }
6853
6854 return 0;
6855 }
6856
6857 /* Return printable name for ABI. */
6858
6859 static INLINE char *
6860 elf_mips_abi_name (bfd *abfd)
6861 {
6862 flagword flags;
6863
6864 flags = elf_elfheader (abfd)->e_flags;
6865 switch (flags & EF_MIPS_ABI)
6866 {
6867 case 0:
6868 if (ABI_N32_P (abfd))
6869 return "N32";
6870 else if (ABI_64_P (abfd))
6871 return "64";
6872 else
6873 return "none";
6874 case E_MIPS_ABI_O32:
6875 return "O32";
6876 case E_MIPS_ABI_O64:
6877 return "O64";
6878 case E_MIPS_ABI_EABI32:
6879 return "EABI32";
6880 case E_MIPS_ABI_EABI64:
6881 return "EABI64";
6882 default:
6883 return "unknown abi";
6884 }
6885 }
6886 \f
6887 /* MIPS ELF uses two common sections. One is the usual one, and the
6888 other is for small objects. All the small objects are kept
6889 together, and then referenced via the gp pointer, which yields
6890 faster assembler code. This is what we use for the small common
6891 section. This approach is copied from ecoff.c. */
6892 static asection mips_elf_scom_section;
6893 static asymbol mips_elf_scom_symbol;
6894 static asymbol *mips_elf_scom_symbol_ptr;
6895
6896 /* MIPS ELF also uses an acommon section, which represents an
6897 allocated common symbol which may be overridden by a
6898 definition in a shared library. */
6899 static asection mips_elf_acom_section;
6900 static asymbol mips_elf_acom_symbol;
6901 static asymbol *mips_elf_acom_symbol_ptr;
6902
6903 /* This is used for both the 32-bit and the 64-bit ABI. */
6904
6905 void
6906 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6907 {
6908 elf_symbol_type *elfsym;
6909
6910 /* Handle the special MIPS section numbers that a symbol may use. */
6911 elfsym = (elf_symbol_type *) asym;
6912 switch (elfsym->internal_elf_sym.st_shndx)
6913 {
6914 case SHN_MIPS_ACOMMON:
6915 /* This section is used in a dynamically linked executable file.
6916 It is an allocated common section. The dynamic linker can
6917 either resolve these symbols to something in a shared
6918 library, or it can just leave them here. For our purposes,
6919 we can consider these symbols to be in a new section. */
6920 if (mips_elf_acom_section.name == NULL)
6921 {
6922 /* Initialize the acommon section. */
6923 mips_elf_acom_section.name = ".acommon";
6924 mips_elf_acom_section.flags = SEC_ALLOC;
6925 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6926 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6927 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6928 mips_elf_acom_symbol.name = ".acommon";
6929 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6930 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6931 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6932 }
6933 asym->section = &mips_elf_acom_section;
6934 break;
6935
6936 case SHN_COMMON:
6937 /* Common symbols less than the GP size are automatically
6938 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6939 if (asym->value > elf_gp_size (abfd)
6940 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6941 || IRIX_COMPAT (abfd) == ict_irix6)
6942 break;
6943 /* Fall through. */
6944 case SHN_MIPS_SCOMMON:
6945 if (mips_elf_scom_section.name == NULL)
6946 {
6947 /* Initialize the small common section. */
6948 mips_elf_scom_section.name = ".scommon";
6949 mips_elf_scom_section.flags = SEC_IS_COMMON;
6950 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6951 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6952 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6953 mips_elf_scom_symbol.name = ".scommon";
6954 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6955 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6956 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6957 }
6958 asym->section = &mips_elf_scom_section;
6959 asym->value = elfsym->internal_elf_sym.st_size;
6960 break;
6961
6962 case SHN_MIPS_SUNDEFINED:
6963 asym->section = bfd_und_section_ptr;
6964 break;
6965
6966 case SHN_MIPS_TEXT:
6967 {
6968 asection *section = bfd_get_section_by_name (abfd, ".text");
6969
6970 if (section != NULL)
6971 {
6972 asym->section = section;
6973 /* MIPS_TEXT is a bit special, the address is not an offset
6974 to the base of the .text section. So subtract the section
6975 base address to make it an offset. */
6976 asym->value -= section->vma;
6977 }
6978 }
6979 break;
6980
6981 case SHN_MIPS_DATA:
6982 {
6983 asection *section = bfd_get_section_by_name (abfd, ".data");
6984
6985 if (section != NULL)
6986 {
6987 asym->section = section;
6988 /* MIPS_DATA is a bit special, the address is not an offset
6989 to the base of the .data section. So subtract the section
6990 base address to make it an offset. */
6991 asym->value -= section->vma;
6992 }
6993 }
6994 break;
6995 }
6996
6997 /* If this is an odd-valued function symbol, assume it's a MIPS16
6998 or microMIPS one. */
6999 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
7000 && (asym->value & 1) != 0)
7001 {
7002 asym->value--;
7003 if (MICROMIPS_P (abfd))
7004 elfsym->internal_elf_sym.st_other
7005 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
7006 else
7007 elfsym->internal_elf_sym.st_other
7008 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
7009 }
7010 }
7011 \f
7012 /* Implement elf_backend_eh_frame_address_size. This differs from
7013 the default in the way it handles EABI64.
7014
7015 EABI64 was originally specified as an LP64 ABI, and that is what
7016 -mabi=eabi normally gives on a 64-bit target. However, gcc has
7017 historically accepted the combination of -mabi=eabi and -mlong32,
7018 and this ILP32 variation has become semi-official over time.
7019 Both forms use elf32 and have pointer-sized FDE addresses.
7020
7021 If an EABI object was generated by GCC 4.0 or above, it will have
7022 an empty .gcc_compiled_longXX section, where XX is the size of longs
7023 in bits. Unfortunately, ILP32 objects generated by earlier compilers
7024 have no special marking to distinguish them from LP64 objects.
7025
7026 We don't want users of the official LP64 ABI to be punished for the
7027 existence of the ILP32 variant, but at the same time, we don't want
7028 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
7029 We therefore take the following approach:
7030
7031 - If ABFD contains a .gcc_compiled_longXX section, use it to
7032 determine the pointer size.
7033
7034 - Otherwise check the type of the first relocation. Assume that
7035 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
7036
7037 - Otherwise punt.
7038
7039 The second check is enough to detect LP64 objects generated by pre-4.0
7040 compilers because, in the kind of output generated by those compilers,
7041 the first relocation will be associated with either a CIE personality
7042 routine or an FDE start address. Furthermore, the compilers never
7043 used a special (non-pointer) encoding for this ABI.
7044
7045 Checking the relocation type should also be safe because there is no
7046 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7047 did so. */
7048
7049 unsigned int
7050 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, const asection *sec)
7051 {
7052 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7053 return 8;
7054 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7055 {
7056 bfd_boolean long32_p, long64_p;
7057
7058 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7059 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7060 if (long32_p && long64_p)
7061 return 0;
7062 if (long32_p)
7063 return 4;
7064 if (long64_p)
7065 return 8;
7066
7067 if (sec->reloc_count > 0
7068 && elf_section_data (sec)->relocs != NULL
7069 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7070 == R_MIPS_64))
7071 return 8;
7072
7073 return 0;
7074 }
7075 return 4;
7076 }
7077 \f
7078 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7079 relocations against two unnamed section symbols to resolve to the
7080 same address. For example, if we have code like:
7081
7082 lw $4,%got_disp(.data)($gp)
7083 lw $25,%got_disp(.text)($gp)
7084 jalr $25
7085
7086 then the linker will resolve both relocations to .data and the program
7087 will jump there rather than to .text.
7088
7089 We can work around this problem by giving names to local section symbols.
7090 This is also what the MIPSpro tools do. */
7091
7092 bfd_boolean
7093 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7094 {
7095 return SGI_COMPAT (abfd);
7096 }
7097 \f
7098 /* Work over a section just before writing it out. This routine is
7099 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7100 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7101 a better way. */
7102
7103 bfd_boolean
7104 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
7105 {
7106 if (hdr->sh_type == SHT_MIPS_REGINFO
7107 && hdr->sh_size > 0)
7108 {
7109 bfd_byte buf[4];
7110
7111 BFD_ASSERT (hdr->contents == NULL);
7112
7113 if (hdr->sh_size != sizeof (Elf32_External_RegInfo))
7114 {
7115 _bfd_error_handler
7116 (_("%pB: incorrect `.reginfo' section size; "
7117 "expected %" PRIu64 ", got %" PRIu64),
7118 abfd, (uint64_t) sizeof (Elf32_External_RegInfo),
7119 (uint64_t) hdr->sh_size);
7120 bfd_set_error (bfd_error_bad_value);
7121 return FALSE;
7122 }
7123
7124 if (bfd_seek (abfd,
7125 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7126 SEEK_SET) != 0)
7127 return FALSE;
7128 H_PUT_32 (abfd, elf_gp (abfd), buf);
7129 if (bfd_bwrite (buf, 4, abfd) != 4)
7130 return FALSE;
7131 }
7132
7133 if (hdr->sh_type == SHT_MIPS_OPTIONS
7134 && hdr->bfd_section != NULL
7135 && mips_elf_section_data (hdr->bfd_section) != NULL
7136 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
7137 {
7138 bfd_byte *contents, *l, *lend;
7139
7140 /* We stored the section contents in the tdata field in the
7141 set_section_contents routine. We save the section contents
7142 so that we don't have to read them again.
7143 At this point we know that elf_gp is set, so we can look
7144 through the section contents to see if there is an
7145 ODK_REGINFO structure. */
7146
7147 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
7148 l = contents;
7149 lend = contents + hdr->sh_size;
7150 while (l + sizeof (Elf_External_Options) <= lend)
7151 {
7152 Elf_Internal_Options intopt;
7153
7154 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7155 &intopt);
7156 if (intopt.size < sizeof (Elf_External_Options))
7157 {
7158 _bfd_error_handler
7159 /* xgettext:c-format */
7160 (_("%pB: warning: bad `%s' option size %u smaller than"
7161 " its header"),
7162 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7163 break;
7164 }
7165 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7166 {
7167 bfd_byte buf[8];
7168
7169 if (bfd_seek (abfd,
7170 (hdr->sh_offset
7171 + (l - contents)
7172 + sizeof (Elf_External_Options)
7173 + (sizeof (Elf64_External_RegInfo) - 8)),
7174 SEEK_SET) != 0)
7175 return FALSE;
7176 H_PUT_64 (abfd, elf_gp (abfd), buf);
7177 if (bfd_bwrite (buf, 8, abfd) != 8)
7178 return FALSE;
7179 }
7180 else if (intopt.kind == ODK_REGINFO)
7181 {
7182 bfd_byte buf[4];
7183
7184 if (bfd_seek (abfd,
7185 (hdr->sh_offset
7186 + (l - contents)
7187 + sizeof (Elf_External_Options)
7188 + (sizeof (Elf32_External_RegInfo) - 4)),
7189 SEEK_SET) != 0)
7190 return FALSE;
7191 H_PUT_32 (abfd, elf_gp (abfd), buf);
7192 if (bfd_bwrite (buf, 4, abfd) != 4)
7193 return FALSE;
7194 }
7195 l += intopt.size;
7196 }
7197 }
7198
7199 if (hdr->bfd_section != NULL)
7200 {
7201 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
7202
7203 /* .sbss is not handled specially here because the GNU/Linux
7204 prelinker can convert .sbss from NOBITS to PROGBITS and
7205 changing it back to NOBITS breaks the binary. The entry in
7206 _bfd_mips_elf_special_sections will ensure the correct flags
7207 are set on .sbss if BFD creates it without reading it from an
7208 input file, and without special handling here the flags set
7209 on it in an input file will be followed. */
7210 if (strcmp (name, ".sdata") == 0
7211 || strcmp (name, ".lit8") == 0
7212 || strcmp (name, ".lit4") == 0)
7213 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7214 else if (strcmp (name, ".srdata") == 0)
7215 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
7216 else if (strcmp (name, ".compact_rel") == 0)
7217 hdr->sh_flags = 0;
7218 else if (strcmp (name, ".rtproc") == 0)
7219 {
7220 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7221 {
7222 unsigned int adjust;
7223
7224 adjust = hdr->sh_size % hdr->sh_addralign;
7225 if (adjust != 0)
7226 hdr->sh_size += hdr->sh_addralign - adjust;
7227 }
7228 }
7229 }
7230
7231 return TRUE;
7232 }
7233
7234 /* Handle a MIPS specific section when reading an object file. This
7235 is called when elfcode.h finds a section with an unknown type.
7236 This routine supports both the 32-bit and 64-bit ELF ABI.
7237
7238 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7239 how to. */
7240
7241 bfd_boolean
7242 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7243 Elf_Internal_Shdr *hdr,
7244 const char *name,
7245 int shindex)
7246 {
7247 flagword flags = 0;
7248
7249 /* There ought to be a place to keep ELF backend specific flags, but
7250 at the moment there isn't one. We just keep track of the
7251 sections by their name, instead. Fortunately, the ABI gives
7252 suggested names for all the MIPS specific sections, so we will
7253 probably get away with this. */
7254 switch (hdr->sh_type)
7255 {
7256 case SHT_MIPS_LIBLIST:
7257 if (strcmp (name, ".liblist") != 0)
7258 return FALSE;
7259 break;
7260 case SHT_MIPS_MSYM:
7261 if (strcmp (name, ".msym") != 0)
7262 return FALSE;
7263 break;
7264 case SHT_MIPS_CONFLICT:
7265 if (strcmp (name, ".conflict") != 0)
7266 return FALSE;
7267 break;
7268 case SHT_MIPS_GPTAB:
7269 if (! CONST_STRNEQ (name, ".gptab."))
7270 return FALSE;
7271 break;
7272 case SHT_MIPS_UCODE:
7273 if (strcmp (name, ".ucode") != 0)
7274 return FALSE;
7275 break;
7276 case SHT_MIPS_DEBUG:
7277 if (strcmp (name, ".mdebug") != 0)
7278 return FALSE;
7279 flags = SEC_DEBUGGING;
7280 break;
7281 case SHT_MIPS_REGINFO:
7282 if (strcmp (name, ".reginfo") != 0
7283 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7284 return FALSE;
7285 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7286 break;
7287 case SHT_MIPS_IFACE:
7288 if (strcmp (name, ".MIPS.interfaces") != 0)
7289 return FALSE;
7290 break;
7291 case SHT_MIPS_CONTENT:
7292 if (! CONST_STRNEQ (name, ".MIPS.content"))
7293 return FALSE;
7294 break;
7295 case SHT_MIPS_OPTIONS:
7296 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7297 return FALSE;
7298 break;
7299 case SHT_MIPS_ABIFLAGS:
7300 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7301 return FALSE;
7302 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7303 break;
7304 case SHT_MIPS_DWARF:
7305 if (! CONST_STRNEQ (name, ".debug_")
7306 && ! CONST_STRNEQ (name, ".zdebug_"))
7307 return FALSE;
7308 break;
7309 case SHT_MIPS_SYMBOL_LIB:
7310 if (strcmp (name, ".MIPS.symlib") != 0)
7311 return FALSE;
7312 break;
7313 case SHT_MIPS_EVENTS:
7314 if (! CONST_STRNEQ (name, ".MIPS.events")
7315 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
7316 return FALSE;
7317 break;
7318 default:
7319 break;
7320 }
7321
7322 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7323 return FALSE;
7324
7325 if (flags)
7326 {
7327 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7328 (bfd_get_section_flags (abfd,
7329 hdr->bfd_section)
7330 | flags)))
7331 return FALSE;
7332 }
7333
7334 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7335 {
7336 Elf_External_ABIFlags_v0 ext;
7337
7338 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7339 &ext, 0, sizeof ext))
7340 return FALSE;
7341 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7342 &mips_elf_tdata (abfd)->abiflags);
7343 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7344 return FALSE;
7345 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7346 }
7347
7348 /* FIXME: We should record sh_info for a .gptab section. */
7349
7350 /* For a .reginfo section, set the gp value in the tdata information
7351 from the contents of this section. We need the gp value while
7352 processing relocs, so we just get it now. The .reginfo section
7353 is not used in the 64-bit MIPS ELF ABI. */
7354 if (hdr->sh_type == SHT_MIPS_REGINFO)
7355 {
7356 Elf32_External_RegInfo ext;
7357 Elf32_RegInfo s;
7358
7359 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7360 &ext, 0, sizeof ext))
7361 return FALSE;
7362 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7363 elf_gp (abfd) = s.ri_gp_value;
7364 }
7365
7366 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7367 set the gp value based on what we find. We may see both
7368 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7369 they should agree. */
7370 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7371 {
7372 bfd_byte *contents, *l, *lend;
7373
7374 contents = bfd_malloc (hdr->sh_size);
7375 if (contents == NULL)
7376 return FALSE;
7377 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7378 0, hdr->sh_size))
7379 {
7380 free (contents);
7381 return FALSE;
7382 }
7383 l = contents;
7384 lend = contents + hdr->sh_size;
7385 while (l + sizeof (Elf_External_Options) <= lend)
7386 {
7387 Elf_Internal_Options intopt;
7388
7389 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7390 &intopt);
7391 if (intopt.size < sizeof (Elf_External_Options))
7392 {
7393 _bfd_error_handler
7394 /* xgettext:c-format */
7395 (_("%pB: warning: bad `%s' option size %u smaller than"
7396 " its header"),
7397 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7398 break;
7399 }
7400 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7401 {
7402 Elf64_Internal_RegInfo intreg;
7403
7404 bfd_mips_elf64_swap_reginfo_in
7405 (abfd,
7406 ((Elf64_External_RegInfo *)
7407 (l + sizeof (Elf_External_Options))),
7408 &intreg);
7409 elf_gp (abfd) = intreg.ri_gp_value;
7410 }
7411 else if (intopt.kind == ODK_REGINFO)
7412 {
7413 Elf32_RegInfo intreg;
7414
7415 bfd_mips_elf32_swap_reginfo_in
7416 (abfd,
7417 ((Elf32_External_RegInfo *)
7418 (l + sizeof (Elf_External_Options))),
7419 &intreg);
7420 elf_gp (abfd) = intreg.ri_gp_value;
7421 }
7422 l += intopt.size;
7423 }
7424 free (contents);
7425 }
7426
7427 return TRUE;
7428 }
7429
7430 /* Set the correct type for a MIPS ELF section. We do this by the
7431 section name, which is a hack, but ought to work. This routine is
7432 used by both the 32-bit and the 64-bit ABI. */
7433
7434 bfd_boolean
7435 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7436 {
7437 const char *name = bfd_get_section_name (abfd, sec);
7438
7439 if (strcmp (name, ".liblist") == 0)
7440 {
7441 hdr->sh_type = SHT_MIPS_LIBLIST;
7442 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7443 /* The sh_link field is set in final_write_processing. */
7444 }
7445 else if (strcmp (name, ".conflict") == 0)
7446 hdr->sh_type = SHT_MIPS_CONFLICT;
7447 else if (CONST_STRNEQ (name, ".gptab."))
7448 {
7449 hdr->sh_type = SHT_MIPS_GPTAB;
7450 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7451 /* The sh_info field is set in final_write_processing. */
7452 }
7453 else if (strcmp (name, ".ucode") == 0)
7454 hdr->sh_type = SHT_MIPS_UCODE;
7455 else if (strcmp (name, ".mdebug") == 0)
7456 {
7457 hdr->sh_type = SHT_MIPS_DEBUG;
7458 /* In a shared object on IRIX 5.3, the .mdebug section has an
7459 entsize of 0. FIXME: Does this matter? */
7460 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7461 hdr->sh_entsize = 0;
7462 else
7463 hdr->sh_entsize = 1;
7464 }
7465 else if (strcmp (name, ".reginfo") == 0)
7466 {
7467 hdr->sh_type = SHT_MIPS_REGINFO;
7468 /* In a shared object on IRIX 5.3, the .reginfo section has an
7469 entsize of 0x18. FIXME: Does this matter? */
7470 if (SGI_COMPAT (abfd))
7471 {
7472 if ((abfd->flags & DYNAMIC) != 0)
7473 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7474 else
7475 hdr->sh_entsize = 1;
7476 }
7477 else
7478 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7479 }
7480 else if (SGI_COMPAT (abfd)
7481 && (strcmp (name, ".hash") == 0
7482 || strcmp (name, ".dynamic") == 0
7483 || strcmp (name, ".dynstr") == 0))
7484 {
7485 if (SGI_COMPAT (abfd))
7486 hdr->sh_entsize = 0;
7487 #if 0
7488 /* This isn't how the IRIX6 linker behaves. */
7489 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7490 #endif
7491 }
7492 else if (strcmp (name, ".got") == 0
7493 || strcmp (name, ".srdata") == 0
7494 || strcmp (name, ".sdata") == 0
7495 || strcmp (name, ".sbss") == 0
7496 || strcmp (name, ".lit4") == 0
7497 || strcmp (name, ".lit8") == 0)
7498 hdr->sh_flags |= SHF_MIPS_GPREL;
7499 else if (strcmp (name, ".MIPS.interfaces") == 0)
7500 {
7501 hdr->sh_type = SHT_MIPS_IFACE;
7502 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7503 }
7504 else if (CONST_STRNEQ (name, ".MIPS.content"))
7505 {
7506 hdr->sh_type = SHT_MIPS_CONTENT;
7507 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7508 /* The sh_info field is set in final_write_processing. */
7509 }
7510 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7511 {
7512 hdr->sh_type = SHT_MIPS_OPTIONS;
7513 hdr->sh_entsize = 1;
7514 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7515 }
7516 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7517 {
7518 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7519 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7520 }
7521 else if (CONST_STRNEQ (name, ".debug_")
7522 || CONST_STRNEQ (name, ".zdebug_"))
7523 {
7524 hdr->sh_type = SHT_MIPS_DWARF;
7525
7526 /* Irix facilities such as libexc expect a single .debug_frame
7527 per executable, the system ones have NOSTRIP set and the linker
7528 doesn't merge sections with different flags so ... */
7529 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7530 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7531 }
7532 else if (strcmp (name, ".MIPS.symlib") == 0)
7533 {
7534 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7535 /* The sh_link and sh_info fields are set in
7536 final_write_processing. */
7537 }
7538 else if (CONST_STRNEQ (name, ".MIPS.events")
7539 || CONST_STRNEQ (name, ".MIPS.post_rel"))
7540 {
7541 hdr->sh_type = SHT_MIPS_EVENTS;
7542 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7543 /* The sh_link field is set in final_write_processing. */
7544 }
7545 else if (strcmp (name, ".msym") == 0)
7546 {
7547 hdr->sh_type = SHT_MIPS_MSYM;
7548 hdr->sh_flags |= SHF_ALLOC;
7549 hdr->sh_entsize = 8;
7550 }
7551
7552 /* The generic elf_fake_sections will set up REL_HDR using the default
7553 kind of relocations. We used to set up a second header for the
7554 non-default kind of relocations here, but only NewABI would use
7555 these, and the IRIX ld doesn't like resulting empty RELA sections.
7556 Thus we create those header only on demand now. */
7557
7558 return TRUE;
7559 }
7560
7561 /* Given a BFD section, try to locate the corresponding ELF section
7562 index. This is used by both the 32-bit and the 64-bit ABI.
7563 Actually, it's not clear to me that the 64-bit ABI supports these,
7564 but for non-PIC objects we will certainly want support for at least
7565 the .scommon section. */
7566
7567 bfd_boolean
7568 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7569 asection *sec, int *retval)
7570 {
7571 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7572 {
7573 *retval = SHN_MIPS_SCOMMON;
7574 return TRUE;
7575 }
7576 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7577 {
7578 *retval = SHN_MIPS_ACOMMON;
7579 return TRUE;
7580 }
7581 return FALSE;
7582 }
7583 \f
7584 /* Hook called by the linker routine which adds symbols from an object
7585 file. We must handle the special MIPS section numbers here. */
7586
7587 bfd_boolean
7588 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7589 Elf_Internal_Sym *sym, const char **namep,
7590 flagword *flagsp ATTRIBUTE_UNUSED,
7591 asection **secp, bfd_vma *valp)
7592 {
7593 if (SGI_COMPAT (abfd)
7594 && (abfd->flags & DYNAMIC) != 0
7595 && strcmp (*namep, "_rld_new_interface") == 0)
7596 {
7597 /* Skip IRIX5 rld entry name. */
7598 *namep = NULL;
7599 return TRUE;
7600 }
7601
7602 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7603 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7604 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7605 a magic symbol resolved by the linker, we ignore this bogus definition
7606 of _gp_disp. New ABI objects do not suffer from this problem so this
7607 is not done for them. */
7608 if (!NEWABI_P(abfd)
7609 && (sym->st_shndx == SHN_ABS)
7610 && (strcmp (*namep, "_gp_disp") == 0))
7611 {
7612 *namep = NULL;
7613 return TRUE;
7614 }
7615
7616 switch (sym->st_shndx)
7617 {
7618 case SHN_COMMON:
7619 /* Common symbols less than the GP size are automatically
7620 treated as SHN_MIPS_SCOMMON symbols. */
7621 if (sym->st_size > elf_gp_size (abfd)
7622 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7623 || IRIX_COMPAT (abfd) == ict_irix6)
7624 break;
7625 /* Fall through. */
7626 case SHN_MIPS_SCOMMON:
7627 *secp = bfd_make_section_old_way (abfd, ".scommon");
7628 (*secp)->flags |= SEC_IS_COMMON;
7629 *valp = sym->st_size;
7630 break;
7631
7632 case SHN_MIPS_TEXT:
7633 /* This section is used in a shared object. */
7634 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7635 {
7636 asymbol *elf_text_symbol;
7637 asection *elf_text_section;
7638 bfd_size_type amt = sizeof (asection);
7639
7640 elf_text_section = bfd_zalloc (abfd, amt);
7641 if (elf_text_section == NULL)
7642 return FALSE;
7643
7644 amt = sizeof (asymbol);
7645 elf_text_symbol = bfd_zalloc (abfd, amt);
7646 if (elf_text_symbol == NULL)
7647 return FALSE;
7648
7649 /* Initialize the section. */
7650
7651 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7652 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7653
7654 elf_text_section->symbol = elf_text_symbol;
7655 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7656
7657 elf_text_section->name = ".text";
7658 elf_text_section->flags = SEC_NO_FLAGS;
7659 elf_text_section->output_section = NULL;
7660 elf_text_section->owner = abfd;
7661 elf_text_symbol->name = ".text";
7662 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7663 elf_text_symbol->section = elf_text_section;
7664 }
7665 /* This code used to do *secp = bfd_und_section_ptr if
7666 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7667 so I took it out. */
7668 *secp = mips_elf_tdata (abfd)->elf_text_section;
7669 break;
7670
7671 case SHN_MIPS_ACOMMON:
7672 /* Fall through. XXX Can we treat this as allocated data? */
7673 case SHN_MIPS_DATA:
7674 /* This section is used in a shared object. */
7675 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7676 {
7677 asymbol *elf_data_symbol;
7678 asection *elf_data_section;
7679 bfd_size_type amt = sizeof (asection);
7680
7681 elf_data_section = bfd_zalloc (abfd, amt);
7682 if (elf_data_section == NULL)
7683 return FALSE;
7684
7685 amt = sizeof (asymbol);
7686 elf_data_symbol = bfd_zalloc (abfd, amt);
7687 if (elf_data_symbol == NULL)
7688 return FALSE;
7689
7690 /* Initialize the section. */
7691
7692 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7693 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7694
7695 elf_data_section->symbol = elf_data_symbol;
7696 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7697
7698 elf_data_section->name = ".data";
7699 elf_data_section->flags = SEC_NO_FLAGS;
7700 elf_data_section->output_section = NULL;
7701 elf_data_section->owner = abfd;
7702 elf_data_symbol->name = ".data";
7703 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7704 elf_data_symbol->section = elf_data_section;
7705 }
7706 /* This code used to do *secp = bfd_und_section_ptr if
7707 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7708 so I took it out. */
7709 *secp = mips_elf_tdata (abfd)->elf_data_section;
7710 break;
7711
7712 case SHN_MIPS_SUNDEFINED:
7713 *secp = bfd_und_section_ptr;
7714 break;
7715 }
7716
7717 if (SGI_COMPAT (abfd)
7718 && ! bfd_link_pic (info)
7719 && info->output_bfd->xvec == abfd->xvec
7720 && strcmp (*namep, "__rld_obj_head") == 0)
7721 {
7722 struct elf_link_hash_entry *h;
7723 struct bfd_link_hash_entry *bh;
7724
7725 /* Mark __rld_obj_head as dynamic. */
7726 bh = NULL;
7727 if (! (_bfd_generic_link_add_one_symbol
7728 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7729 get_elf_backend_data (abfd)->collect, &bh)))
7730 return FALSE;
7731
7732 h = (struct elf_link_hash_entry *) bh;
7733 h->non_elf = 0;
7734 h->def_regular = 1;
7735 h->type = STT_OBJECT;
7736
7737 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7738 return FALSE;
7739
7740 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7741 mips_elf_hash_table (info)->rld_symbol = h;
7742 }
7743
7744 /* If this is a mips16 text symbol, add 1 to the value to make it
7745 odd. This will cause something like .word SYM to come up with
7746 the right value when it is loaded into the PC. */
7747 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7748 ++*valp;
7749
7750 return TRUE;
7751 }
7752
7753 /* This hook function is called before the linker writes out a global
7754 symbol. We mark symbols as small common if appropriate. This is
7755 also where we undo the increment of the value for a mips16 symbol. */
7756
7757 int
7758 _bfd_mips_elf_link_output_symbol_hook
7759 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7760 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7761 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7762 {
7763 /* If we see a common symbol, which implies a relocatable link, then
7764 if a symbol was small common in an input file, mark it as small
7765 common in the output file. */
7766 if (sym->st_shndx == SHN_COMMON
7767 && strcmp (input_sec->name, ".scommon") == 0)
7768 sym->st_shndx = SHN_MIPS_SCOMMON;
7769
7770 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7771 sym->st_value &= ~1;
7772
7773 return 1;
7774 }
7775 \f
7776 /* Functions for the dynamic linker. */
7777
7778 /* Create dynamic sections when linking against a dynamic object. */
7779
7780 bfd_boolean
7781 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7782 {
7783 struct elf_link_hash_entry *h;
7784 struct bfd_link_hash_entry *bh;
7785 flagword flags;
7786 register asection *s;
7787 const char * const *namep;
7788 struct mips_elf_link_hash_table *htab;
7789
7790 htab = mips_elf_hash_table (info);
7791 BFD_ASSERT (htab != NULL);
7792
7793 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7794 | SEC_LINKER_CREATED | SEC_READONLY);
7795
7796 /* The psABI requires a read-only .dynamic section, but the VxWorks
7797 EABI doesn't. */
7798 if (!htab->is_vxworks)
7799 {
7800 s = bfd_get_linker_section (abfd, ".dynamic");
7801 if (s != NULL)
7802 {
7803 if (! bfd_set_section_flags (abfd, s, flags))
7804 return FALSE;
7805 }
7806 }
7807
7808 /* We need to create .got section. */
7809 if (!mips_elf_create_got_section (abfd, info))
7810 return FALSE;
7811
7812 if (! mips_elf_rel_dyn_section (info, TRUE))
7813 return FALSE;
7814
7815 /* Create .stub section. */
7816 s = bfd_make_section_anyway_with_flags (abfd,
7817 MIPS_ELF_STUB_SECTION_NAME (abfd),
7818 flags | SEC_CODE);
7819 if (s == NULL
7820 || ! bfd_set_section_alignment (abfd, s,
7821 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7822 return FALSE;
7823 htab->sstubs = s;
7824
7825 if (!mips_elf_hash_table (info)->use_rld_obj_head
7826 && bfd_link_executable (info)
7827 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7828 {
7829 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7830 flags &~ (flagword) SEC_READONLY);
7831 if (s == NULL
7832 || ! bfd_set_section_alignment (abfd, s,
7833 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7834 return FALSE;
7835 }
7836
7837 /* On IRIX5, we adjust add some additional symbols and change the
7838 alignments of several sections. There is no ABI documentation
7839 indicating that this is necessary on IRIX6, nor any evidence that
7840 the linker takes such action. */
7841 if (IRIX_COMPAT (abfd) == ict_irix5)
7842 {
7843 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7844 {
7845 bh = NULL;
7846 if (! (_bfd_generic_link_add_one_symbol
7847 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7848 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7849 return FALSE;
7850
7851 h = (struct elf_link_hash_entry *) bh;
7852 h->non_elf = 0;
7853 h->def_regular = 1;
7854 h->type = STT_SECTION;
7855
7856 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7857 return FALSE;
7858 }
7859
7860 /* We need to create a .compact_rel section. */
7861 if (SGI_COMPAT (abfd))
7862 {
7863 if (!mips_elf_create_compact_rel_section (abfd, info))
7864 return FALSE;
7865 }
7866
7867 /* Change alignments of some sections. */
7868 s = bfd_get_linker_section (abfd, ".hash");
7869 if (s != NULL)
7870 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7871
7872 s = bfd_get_linker_section (abfd, ".dynsym");
7873 if (s != NULL)
7874 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7875
7876 s = bfd_get_linker_section (abfd, ".dynstr");
7877 if (s != NULL)
7878 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7879
7880 /* ??? */
7881 s = bfd_get_section_by_name (abfd, ".reginfo");
7882 if (s != NULL)
7883 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7884
7885 s = bfd_get_linker_section (abfd, ".dynamic");
7886 if (s != NULL)
7887 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7888 }
7889
7890 if (bfd_link_executable (info))
7891 {
7892 const char *name;
7893
7894 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7895 bh = NULL;
7896 if (!(_bfd_generic_link_add_one_symbol
7897 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7898 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7899 return FALSE;
7900
7901 h = (struct elf_link_hash_entry *) bh;
7902 h->non_elf = 0;
7903 h->def_regular = 1;
7904 h->type = STT_SECTION;
7905
7906 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7907 return FALSE;
7908
7909 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7910 {
7911 /* __rld_map is a four byte word located in the .data section
7912 and is filled in by the rtld to contain a pointer to
7913 the _r_debug structure. Its symbol value will be set in
7914 _bfd_mips_elf_finish_dynamic_symbol. */
7915 s = bfd_get_linker_section (abfd, ".rld_map");
7916 BFD_ASSERT (s != NULL);
7917
7918 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7919 bh = NULL;
7920 if (!(_bfd_generic_link_add_one_symbol
7921 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7922 get_elf_backend_data (abfd)->collect, &bh)))
7923 return FALSE;
7924
7925 h = (struct elf_link_hash_entry *) bh;
7926 h->non_elf = 0;
7927 h->def_regular = 1;
7928 h->type = STT_OBJECT;
7929
7930 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7931 return FALSE;
7932 mips_elf_hash_table (info)->rld_symbol = h;
7933 }
7934 }
7935
7936 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7937 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
7938 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7939 return FALSE;
7940
7941 /* Do the usual VxWorks handling. */
7942 if (htab->is_vxworks
7943 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7944 return FALSE;
7945
7946 return TRUE;
7947 }
7948 \f
7949 /* Return true if relocation REL against section SEC is a REL rather than
7950 RELA relocation. RELOCS is the first relocation in the section and
7951 ABFD is the bfd that contains SEC. */
7952
7953 static bfd_boolean
7954 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7955 const Elf_Internal_Rela *relocs,
7956 const Elf_Internal_Rela *rel)
7957 {
7958 Elf_Internal_Shdr *rel_hdr;
7959 const struct elf_backend_data *bed;
7960
7961 /* To determine which flavor of relocation this is, we depend on the
7962 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7963 rel_hdr = elf_section_data (sec)->rel.hdr;
7964 if (rel_hdr == NULL)
7965 return FALSE;
7966 bed = get_elf_backend_data (abfd);
7967 return ((size_t) (rel - relocs)
7968 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7969 }
7970
7971 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7972 HOWTO is the relocation's howto and CONTENTS points to the contents
7973 of the section that REL is against. */
7974
7975 static bfd_vma
7976 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7977 reloc_howto_type *howto, bfd_byte *contents)
7978 {
7979 bfd_byte *location;
7980 unsigned int r_type;
7981 bfd_vma addend;
7982 bfd_vma bytes;
7983
7984 r_type = ELF_R_TYPE (abfd, rel->r_info);
7985 location = contents + rel->r_offset;
7986
7987 /* Get the addend, which is stored in the input file. */
7988 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7989 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
7990 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7991
7992 addend = bytes & howto->src_mask;
7993
7994 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
7995 accordingly. */
7996 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
7997 addend <<= 1;
7998
7999 return addend;
8000 }
8001
8002 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
8003 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
8004 and update *ADDEND with the final addend. Return true on success
8005 or false if the LO16 could not be found. RELEND is the exclusive
8006 upper bound on the relocations for REL's section. */
8007
8008 static bfd_boolean
8009 mips_elf_add_lo16_rel_addend (bfd *abfd,
8010 const Elf_Internal_Rela *rel,
8011 const Elf_Internal_Rela *relend,
8012 bfd_byte *contents, bfd_vma *addend)
8013 {
8014 unsigned int r_type, lo16_type;
8015 const Elf_Internal_Rela *lo16_relocation;
8016 reloc_howto_type *lo16_howto;
8017 bfd_vma l;
8018
8019 r_type = ELF_R_TYPE (abfd, rel->r_info);
8020 if (mips16_reloc_p (r_type))
8021 lo16_type = R_MIPS16_LO16;
8022 else if (micromips_reloc_p (r_type))
8023 lo16_type = R_MICROMIPS_LO16;
8024 else if (r_type == R_MIPS_PCHI16)
8025 lo16_type = R_MIPS_PCLO16;
8026 else
8027 lo16_type = R_MIPS_LO16;
8028
8029 /* The combined value is the sum of the HI16 addend, left-shifted by
8030 sixteen bits, and the LO16 addend, sign extended. (Usually, the
8031 code does a `lui' of the HI16 value, and then an `addiu' of the
8032 LO16 value.)
8033
8034 Scan ahead to find a matching LO16 relocation.
8035
8036 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8037 be immediately following. However, for the IRIX6 ABI, the next
8038 relocation may be a composed relocation consisting of several
8039 relocations for the same address. In that case, the R_MIPS_LO16
8040 relocation may occur as one of these. We permit a similar
8041 extension in general, as that is useful for GCC.
8042
8043 In some cases GCC dead code elimination removes the LO16 but keeps
8044 the corresponding HI16. This is strictly speaking a violation of
8045 the ABI but not immediately harmful. */
8046 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8047 if (lo16_relocation == NULL)
8048 return FALSE;
8049
8050 /* Obtain the addend kept there. */
8051 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
8052 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8053
8054 l <<= lo16_howto->rightshift;
8055 l = _bfd_mips_elf_sign_extend (l, 16);
8056
8057 *addend <<= 16;
8058 *addend += l;
8059 return TRUE;
8060 }
8061
8062 /* Try to read the contents of section SEC in bfd ABFD. Return true and
8063 store the contents in *CONTENTS on success. Assume that *CONTENTS
8064 already holds the contents if it is nonull on entry. */
8065
8066 static bfd_boolean
8067 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8068 {
8069 if (*contents)
8070 return TRUE;
8071
8072 /* Get cached copy if it exists. */
8073 if (elf_section_data (sec)->this_hdr.contents != NULL)
8074 {
8075 *contents = elf_section_data (sec)->this_hdr.contents;
8076 return TRUE;
8077 }
8078
8079 return bfd_malloc_and_get_section (abfd, sec, contents);
8080 }
8081
8082 /* Make a new PLT record to keep internal data. */
8083
8084 static struct plt_entry *
8085 mips_elf_make_plt_record (bfd *abfd)
8086 {
8087 struct plt_entry *entry;
8088
8089 entry = bfd_zalloc (abfd, sizeof (*entry));
8090 if (entry == NULL)
8091 return NULL;
8092
8093 entry->stub_offset = MINUS_ONE;
8094 entry->mips_offset = MINUS_ONE;
8095 entry->comp_offset = MINUS_ONE;
8096 entry->gotplt_index = MINUS_ONE;
8097 return entry;
8098 }
8099
8100 /* Look through the relocs for a section during the first phase, and
8101 allocate space in the global offset table and record the need for
8102 standard MIPS and compressed procedure linkage table entries. */
8103
8104 bfd_boolean
8105 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8106 asection *sec, const Elf_Internal_Rela *relocs)
8107 {
8108 const char *name;
8109 bfd *dynobj;
8110 Elf_Internal_Shdr *symtab_hdr;
8111 struct elf_link_hash_entry **sym_hashes;
8112 size_t extsymoff;
8113 const Elf_Internal_Rela *rel;
8114 const Elf_Internal_Rela *rel_end;
8115 asection *sreloc;
8116 const struct elf_backend_data *bed;
8117 struct mips_elf_link_hash_table *htab;
8118 bfd_byte *contents;
8119 bfd_vma addend;
8120 reloc_howto_type *howto;
8121
8122 if (bfd_link_relocatable (info))
8123 return TRUE;
8124
8125 htab = mips_elf_hash_table (info);
8126 BFD_ASSERT (htab != NULL);
8127
8128 dynobj = elf_hash_table (info)->dynobj;
8129 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8130 sym_hashes = elf_sym_hashes (abfd);
8131 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8132
8133 bed = get_elf_backend_data (abfd);
8134 rel_end = relocs + sec->reloc_count;
8135
8136 /* Check for the mips16 stub sections. */
8137
8138 name = bfd_get_section_name (abfd, sec);
8139 if (FN_STUB_P (name))
8140 {
8141 unsigned long r_symndx;
8142
8143 /* Look at the relocation information to figure out which symbol
8144 this is for. */
8145
8146 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8147 if (r_symndx == 0)
8148 {
8149 _bfd_error_handler
8150 /* xgettext:c-format */
8151 (_("%pB: warning: cannot determine the target function for"
8152 " stub section `%s'"),
8153 abfd, name);
8154 bfd_set_error (bfd_error_bad_value);
8155 return FALSE;
8156 }
8157
8158 if (r_symndx < extsymoff
8159 || sym_hashes[r_symndx - extsymoff] == NULL)
8160 {
8161 asection *o;
8162
8163 /* This stub is for a local symbol. This stub will only be
8164 needed if there is some relocation in this BFD, other
8165 than a 16 bit function call, which refers to this symbol. */
8166 for (o = abfd->sections; o != NULL; o = o->next)
8167 {
8168 Elf_Internal_Rela *sec_relocs;
8169 const Elf_Internal_Rela *r, *rend;
8170
8171 /* We can ignore stub sections when looking for relocs. */
8172 if ((o->flags & SEC_RELOC) == 0
8173 || o->reloc_count == 0
8174 || section_allows_mips16_refs_p (o))
8175 continue;
8176
8177 sec_relocs
8178 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8179 info->keep_memory);
8180 if (sec_relocs == NULL)
8181 return FALSE;
8182
8183 rend = sec_relocs + o->reloc_count;
8184 for (r = sec_relocs; r < rend; r++)
8185 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8186 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
8187 break;
8188
8189 if (elf_section_data (o)->relocs != sec_relocs)
8190 free (sec_relocs);
8191
8192 if (r < rend)
8193 break;
8194 }
8195
8196 if (o == NULL)
8197 {
8198 /* There is no non-call reloc for this stub, so we do
8199 not need it. Since this function is called before
8200 the linker maps input sections to output sections, we
8201 can easily discard it by setting the SEC_EXCLUDE
8202 flag. */
8203 sec->flags |= SEC_EXCLUDE;
8204 return TRUE;
8205 }
8206
8207 /* Record this stub in an array of local symbol stubs for
8208 this BFD. */
8209 if (mips_elf_tdata (abfd)->local_stubs == NULL)
8210 {
8211 unsigned long symcount;
8212 asection **n;
8213 bfd_size_type amt;
8214
8215 if (elf_bad_symtab (abfd))
8216 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8217 else
8218 symcount = symtab_hdr->sh_info;
8219 amt = symcount * sizeof (asection *);
8220 n = bfd_zalloc (abfd, amt);
8221 if (n == NULL)
8222 return FALSE;
8223 mips_elf_tdata (abfd)->local_stubs = n;
8224 }
8225
8226 sec->flags |= SEC_KEEP;
8227 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8228
8229 /* We don't need to set mips16_stubs_seen in this case.
8230 That flag is used to see whether we need to look through
8231 the global symbol table for stubs. We don't need to set
8232 it here, because we just have a local stub. */
8233 }
8234 else
8235 {
8236 struct mips_elf_link_hash_entry *h;
8237
8238 h = ((struct mips_elf_link_hash_entry *)
8239 sym_hashes[r_symndx - extsymoff]);
8240
8241 while (h->root.root.type == bfd_link_hash_indirect
8242 || h->root.root.type == bfd_link_hash_warning)
8243 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8244
8245 /* H is the symbol this stub is for. */
8246
8247 /* If we already have an appropriate stub for this function, we
8248 don't need another one, so we can discard this one. Since
8249 this function is called before the linker maps input sections
8250 to output sections, we can easily discard it by setting the
8251 SEC_EXCLUDE flag. */
8252 if (h->fn_stub != NULL)
8253 {
8254 sec->flags |= SEC_EXCLUDE;
8255 return TRUE;
8256 }
8257
8258 sec->flags |= SEC_KEEP;
8259 h->fn_stub = sec;
8260 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8261 }
8262 }
8263 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8264 {
8265 unsigned long r_symndx;
8266 struct mips_elf_link_hash_entry *h;
8267 asection **loc;
8268
8269 /* Look at the relocation information to figure out which symbol
8270 this is for. */
8271
8272 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8273 if (r_symndx == 0)
8274 {
8275 _bfd_error_handler
8276 /* xgettext:c-format */
8277 (_("%pB: warning: cannot determine the target function for"
8278 " stub section `%s'"),
8279 abfd, name);
8280 bfd_set_error (bfd_error_bad_value);
8281 return FALSE;
8282 }
8283
8284 if (r_symndx < extsymoff
8285 || sym_hashes[r_symndx - extsymoff] == NULL)
8286 {
8287 asection *o;
8288
8289 /* This stub is for a local symbol. This stub will only be
8290 needed if there is some relocation (R_MIPS16_26) in this BFD
8291 that refers to this symbol. */
8292 for (o = abfd->sections; o != NULL; o = o->next)
8293 {
8294 Elf_Internal_Rela *sec_relocs;
8295 const Elf_Internal_Rela *r, *rend;
8296
8297 /* We can ignore stub sections when looking for relocs. */
8298 if ((o->flags & SEC_RELOC) == 0
8299 || o->reloc_count == 0
8300 || section_allows_mips16_refs_p (o))
8301 continue;
8302
8303 sec_relocs
8304 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8305 info->keep_memory);
8306 if (sec_relocs == NULL)
8307 return FALSE;
8308
8309 rend = sec_relocs + o->reloc_count;
8310 for (r = sec_relocs; r < rend; r++)
8311 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8312 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8313 break;
8314
8315 if (elf_section_data (o)->relocs != sec_relocs)
8316 free (sec_relocs);
8317
8318 if (r < rend)
8319 break;
8320 }
8321
8322 if (o == NULL)
8323 {
8324 /* There is no non-call reloc for this stub, so we do
8325 not need it. Since this function is called before
8326 the linker maps input sections to output sections, we
8327 can easily discard it by setting the SEC_EXCLUDE
8328 flag. */
8329 sec->flags |= SEC_EXCLUDE;
8330 return TRUE;
8331 }
8332
8333 /* Record this stub in an array of local symbol call_stubs for
8334 this BFD. */
8335 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8336 {
8337 unsigned long symcount;
8338 asection **n;
8339 bfd_size_type amt;
8340
8341 if (elf_bad_symtab (abfd))
8342 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8343 else
8344 symcount = symtab_hdr->sh_info;
8345 amt = symcount * sizeof (asection *);
8346 n = bfd_zalloc (abfd, amt);
8347 if (n == NULL)
8348 return FALSE;
8349 mips_elf_tdata (abfd)->local_call_stubs = n;
8350 }
8351
8352 sec->flags |= SEC_KEEP;
8353 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8354
8355 /* We don't need to set mips16_stubs_seen in this case.
8356 That flag is used to see whether we need to look through
8357 the global symbol table for stubs. We don't need to set
8358 it here, because we just have a local stub. */
8359 }
8360 else
8361 {
8362 h = ((struct mips_elf_link_hash_entry *)
8363 sym_hashes[r_symndx - extsymoff]);
8364
8365 /* H is the symbol this stub is for. */
8366
8367 if (CALL_FP_STUB_P (name))
8368 loc = &h->call_fp_stub;
8369 else
8370 loc = &h->call_stub;
8371
8372 /* If we already have an appropriate stub for this function, we
8373 don't need another one, so we can discard this one. Since
8374 this function is called before the linker maps input sections
8375 to output sections, we can easily discard it by setting the
8376 SEC_EXCLUDE flag. */
8377 if (*loc != NULL)
8378 {
8379 sec->flags |= SEC_EXCLUDE;
8380 return TRUE;
8381 }
8382
8383 sec->flags |= SEC_KEEP;
8384 *loc = sec;
8385 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8386 }
8387 }
8388
8389 sreloc = NULL;
8390 contents = NULL;
8391 for (rel = relocs; rel < rel_end; ++rel)
8392 {
8393 unsigned long r_symndx;
8394 unsigned int r_type;
8395 struct elf_link_hash_entry *h;
8396 bfd_boolean can_make_dynamic_p;
8397 bfd_boolean call_reloc_p;
8398 bfd_boolean constrain_symbol_p;
8399
8400 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8401 r_type = ELF_R_TYPE (abfd, rel->r_info);
8402
8403 if (r_symndx < extsymoff)
8404 h = NULL;
8405 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8406 {
8407 _bfd_error_handler
8408 /* xgettext:c-format */
8409 (_("%pB: malformed reloc detected for section %s"),
8410 abfd, name);
8411 bfd_set_error (bfd_error_bad_value);
8412 return FALSE;
8413 }
8414 else
8415 {
8416 h = sym_hashes[r_symndx - extsymoff];
8417 if (h != NULL)
8418 {
8419 while (h->root.type == bfd_link_hash_indirect
8420 || h->root.type == bfd_link_hash_warning)
8421 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8422 }
8423 }
8424
8425 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8426 relocation into a dynamic one. */
8427 can_make_dynamic_p = FALSE;
8428
8429 /* Set CALL_RELOC_P to true if the relocation is for a call,
8430 and if pointer equality therefore doesn't matter. */
8431 call_reloc_p = FALSE;
8432
8433 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8434 into account when deciding how to define the symbol.
8435 Relocations in nonallocatable sections such as .pdr and
8436 .debug* should have no effect. */
8437 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8438
8439 switch (r_type)
8440 {
8441 case R_MIPS_CALL16:
8442 case R_MIPS_CALL_HI16:
8443 case R_MIPS_CALL_LO16:
8444 case R_MIPS16_CALL16:
8445 case R_MICROMIPS_CALL16:
8446 case R_MICROMIPS_CALL_HI16:
8447 case R_MICROMIPS_CALL_LO16:
8448 call_reloc_p = TRUE;
8449 /* Fall through. */
8450
8451 case R_MIPS_GOT16:
8452 case R_MIPS_GOT_HI16:
8453 case R_MIPS_GOT_LO16:
8454 case R_MIPS_GOT_PAGE:
8455 case R_MIPS_GOT_OFST:
8456 case R_MIPS_GOT_DISP:
8457 case R_MIPS_TLS_GOTTPREL:
8458 case R_MIPS_TLS_GD:
8459 case R_MIPS_TLS_LDM:
8460 case R_MIPS16_GOT16:
8461 case R_MIPS16_TLS_GOTTPREL:
8462 case R_MIPS16_TLS_GD:
8463 case R_MIPS16_TLS_LDM:
8464 case R_MICROMIPS_GOT16:
8465 case R_MICROMIPS_GOT_HI16:
8466 case R_MICROMIPS_GOT_LO16:
8467 case R_MICROMIPS_GOT_PAGE:
8468 case R_MICROMIPS_GOT_OFST:
8469 case R_MICROMIPS_GOT_DISP:
8470 case R_MICROMIPS_TLS_GOTTPREL:
8471 case R_MICROMIPS_TLS_GD:
8472 case R_MICROMIPS_TLS_LDM:
8473 if (dynobj == NULL)
8474 elf_hash_table (info)->dynobj = dynobj = abfd;
8475 if (!mips_elf_create_got_section (dynobj, info))
8476 return FALSE;
8477 if (htab->is_vxworks && !bfd_link_pic (info))
8478 {
8479 _bfd_error_handler
8480 /* xgettext:c-format */
8481 (_("%pB: GOT reloc at %#" PRIx64 " not expected in executables"),
8482 abfd, (uint64_t) rel->r_offset);
8483 bfd_set_error (bfd_error_bad_value);
8484 return FALSE;
8485 }
8486 can_make_dynamic_p = TRUE;
8487 break;
8488
8489 case R_MIPS_NONE:
8490 case R_MIPS_JALR:
8491 case R_MICROMIPS_JALR:
8492 /* These relocations have empty fields and are purely there to
8493 provide link information. The symbol value doesn't matter. */
8494 constrain_symbol_p = FALSE;
8495 break;
8496
8497 case R_MIPS_GPREL16:
8498 case R_MIPS_GPREL32:
8499 case R_MIPS16_GPREL:
8500 case R_MICROMIPS_GPREL16:
8501 /* GP-relative relocations always resolve to a definition in a
8502 regular input file, ignoring the one-definition rule. This is
8503 important for the GP setup sequence in NewABI code, which
8504 always resolves to a local function even if other relocations
8505 against the symbol wouldn't. */
8506 constrain_symbol_p = FALSE;
8507 break;
8508
8509 case R_MIPS_32:
8510 case R_MIPS_REL32:
8511 case R_MIPS_64:
8512 /* In VxWorks executables, references to external symbols
8513 must be handled using copy relocs or PLT entries; it is not
8514 possible to convert this relocation into a dynamic one.
8515
8516 For executables that use PLTs and copy-relocs, we have a
8517 choice between converting the relocation into a dynamic
8518 one or using copy relocations or PLT entries. It is
8519 usually better to do the former, unless the relocation is
8520 against a read-only section. */
8521 if ((bfd_link_pic (info)
8522 || (h != NULL
8523 && !htab->is_vxworks
8524 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8525 && !(!info->nocopyreloc
8526 && !PIC_OBJECT_P (abfd)
8527 && MIPS_ELF_READONLY_SECTION (sec))))
8528 && (sec->flags & SEC_ALLOC) != 0)
8529 {
8530 can_make_dynamic_p = TRUE;
8531 if (dynobj == NULL)
8532 elf_hash_table (info)->dynobj = dynobj = abfd;
8533 }
8534 break;
8535
8536 case R_MIPS_26:
8537 case R_MIPS_PC16:
8538 case R_MIPS_PC21_S2:
8539 case R_MIPS_PC26_S2:
8540 case R_MIPS16_26:
8541 case R_MIPS16_PC16_S1:
8542 case R_MICROMIPS_26_S1:
8543 case R_MICROMIPS_PC7_S1:
8544 case R_MICROMIPS_PC10_S1:
8545 case R_MICROMIPS_PC16_S1:
8546 case R_MICROMIPS_PC23_S2:
8547 call_reloc_p = TRUE;
8548 break;
8549 }
8550
8551 if (h)
8552 {
8553 if (constrain_symbol_p)
8554 {
8555 if (!can_make_dynamic_p)
8556 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8557
8558 if (!call_reloc_p)
8559 h->pointer_equality_needed = 1;
8560
8561 /* We must not create a stub for a symbol that has
8562 relocations related to taking the function's address.
8563 This doesn't apply to VxWorks, where CALL relocs refer
8564 to a .got.plt entry instead of a normal .got entry. */
8565 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8566 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8567 }
8568
8569 /* Relocations against the special VxWorks __GOTT_BASE__ and
8570 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8571 room for them in .rela.dyn. */
8572 if (is_gott_symbol (info, h))
8573 {
8574 if (sreloc == NULL)
8575 {
8576 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8577 if (sreloc == NULL)
8578 return FALSE;
8579 }
8580 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8581 if (MIPS_ELF_READONLY_SECTION (sec))
8582 /* We tell the dynamic linker that there are
8583 relocations against the text segment. */
8584 info->flags |= DF_TEXTREL;
8585 }
8586 }
8587 else if (call_lo16_reloc_p (r_type)
8588 || got_lo16_reloc_p (r_type)
8589 || got_disp_reloc_p (r_type)
8590 || (got16_reloc_p (r_type) && htab->is_vxworks))
8591 {
8592 /* We may need a local GOT entry for this relocation. We
8593 don't count R_MIPS_GOT_PAGE because we can estimate the
8594 maximum number of pages needed by looking at the size of
8595 the segment. Similar comments apply to R_MIPS*_GOT16 and
8596 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8597 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8598 R_MIPS_CALL_HI16 because these are always followed by an
8599 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8600 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8601 rel->r_addend, info, r_type))
8602 return FALSE;
8603 }
8604
8605 if (h != NULL
8606 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8607 ELF_ST_IS_MIPS16 (h->other)))
8608 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8609
8610 switch (r_type)
8611 {
8612 case R_MIPS_CALL16:
8613 case R_MIPS16_CALL16:
8614 case R_MICROMIPS_CALL16:
8615 if (h == NULL)
8616 {
8617 _bfd_error_handler
8618 /* xgettext:c-format */
8619 (_("%pB: CALL16 reloc at %#" PRIx64 " not against global symbol"),
8620 abfd, (uint64_t) rel->r_offset);
8621 bfd_set_error (bfd_error_bad_value);
8622 return FALSE;
8623 }
8624 /* Fall through. */
8625
8626 case R_MIPS_CALL_HI16:
8627 case R_MIPS_CALL_LO16:
8628 case R_MICROMIPS_CALL_HI16:
8629 case R_MICROMIPS_CALL_LO16:
8630 if (h != NULL)
8631 {
8632 /* Make sure there is room in the regular GOT to hold the
8633 function's address. We may eliminate it in favour of
8634 a .got.plt entry later; see mips_elf_count_got_symbols. */
8635 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8636 r_type))
8637 return FALSE;
8638
8639 /* We need a stub, not a plt entry for the undefined
8640 function. But we record it as if it needs plt. See
8641 _bfd_elf_adjust_dynamic_symbol. */
8642 h->needs_plt = 1;
8643 h->type = STT_FUNC;
8644 }
8645 break;
8646
8647 case R_MIPS_GOT_PAGE:
8648 case R_MICROMIPS_GOT_PAGE:
8649 case R_MIPS16_GOT16:
8650 case R_MIPS_GOT16:
8651 case R_MIPS_GOT_HI16:
8652 case R_MIPS_GOT_LO16:
8653 case R_MICROMIPS_GOT16:
8654 case R_MICROMIPS_GOT_HI16:
8655 case R_MICROMIPS_GOT_LO16:
8656 if (!h || got_page_reloc_p (r_type))
8657 {
8658 /* This relocation needs (or may need, if h != NULL) a
8659 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8660 know for sure until we know whether the symbol is
8661 preemptible. */
8662 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8663 {
8664 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8665 return FALSE;
8666 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8667 addend = mips_elf_read_rel_addend (abfd, rel,
8668 howto, contents);
8669 if (got16_reloc_p (r_type))
8670 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8671 contents, &addend);
8672 else
8673 addend <<= howto->rightshift;
8674 }
8675 else
8676 addend = rel->r_addend;
8677 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8678 h, addend))
8679 return FALSE;
8680
8681 if (h)
8682 {
8683 struct mips_elf_link_hash_entry *hmips =
8684 (struct mips_elf_link_hash_entry *) h;
8685
8686 /* This symbol is definitely not overridable. */
8687 if (hmips->root.def_regular
8688 && ! (bfd_link_pic (info) && ! info->symbolic
8689 && ! hmips->root.forced_local))
8690 h = NULL;
8691 }
8692 }
8693 /* If this is a global, overridable symbol, GOT_PAGE will
8694 decay to GOT_DISP, so we'll need a GOT entry for it. */
8695 /* Fall through. */
8696
8697 case R_MIPS_GOT_DISP:
8698 case R_MICROMIPS_GOT_DISP:
8699 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8700 FALSE, r_type))
8701 return FALSE;
8702 break;
8703
8704 case R_MIPS_TLS_GOTTPREL:
8705 case R_MIPS16_TLS_GOTTPREL:
8706 case R_MICROMIPS_TLS_GOTTPREL:
8707 if (bfd_link_pic (info))
8708 info->flags |= DF_STATIC_TLS;
8709 /* Fall through */
8710
8711 case R_MIPS_TLS_LDM:
8712 case R_MIPS16_TLS_LDM:
8713 case R_MICROMIPS_TLS_LDM:
8714 if (tls_ldm_reloc_p (r_type))
8715 {
8716 r_symndx = STN_UNDEF;
8717 h = NULL;
8718 }
8719 /* Fall through */
8720
8721 case R_MIPS_TLS_GD:
8722 case R_MIPS16_TLS_GD:
8723 case R_MICROMIPS_TLS_GD:
8724 /* This symbol requires a global offset table entry, or two
8725 for TLS GD relocations. */
8726 if (h != NULL)
8727 {
8728 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8729 FALSE, r_type))
8730 return FALSE;
8731 }
8732 else
8733 {
8734 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8735 rel->r_addend,
8736 info, r_type))
8737 return FALSE;
8738 }
8739 break;
8740
8741 case R_MIPS_32:
8742 case R_MIPS_REL32:
8743 case R_MIPS_64:
8744 /* In VxWorks executables, references to external symbols
8745 are handled using copy relocs or PLT stubs, so there's
8746 no need to add a .rela.dyn entry for this relocation. */
8747 if (can_make_dynamic_p)
8748 {
8749 if (sreloc == NULL)
8750 {
8751 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8752 if (sreloc == NULL)
8753 return FALSE;
8754 }
8755 if (bfd_link_pic (info) && h == NULL)
8756 {
8757 /* When creating a shared object, we must copy these
8758 reloc types into the output file as R_MIPS_REL32
8759 relocs. Make room for this reloc in .rel(a).dyn. */
8760 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8761 if (MIPS_ELF_READONLY_SECTION (sec))
8762 /* We tell the dynamic linker that there are
8763 relocations against the text segment. */
8764 info->flags |= DF_TEXTREL;
8765 }
8766 else
8767 {
8768 struct mips_elf_link_hash_entry *hmips;
8769
8770 /* For a shared object, we must copy this relocation
8771 unless the symbol turns out to be undefined and
8772 weak with non-default visibility, in which case
8773 it will be left as zero.
8774
8775 We could elide R_MIPS_REL32 for locally binding symbols
8776 in shared libraries, but do not yet do so.
8777
8778 For an executable, we only need to copy this
8779 reloc if the symbol is defined in a dynamic
8780 object. */
8781 hmips = (struct mips_elf_link_hash_entry *) h;
8782 ++hmips->possibly_dynamic_relocs;
8783 if (MIPS_ELF_READONLY_SECTION (sec))
8784 /* We need it to tell the dynamic linker if there
8785 are relocations against the text segment. */
8786 hmips->readonly_reloc = TRUE;
8787 }
8788 }
8789
8790 if (SGI_COMPAT (abfd))
8791 mips_elf_hash_table (info)->compact_rel_size +=
8792 sizeof (Elf32_External_crinfo);
8793 break;
8794
8795 case R_MIPS_26:
8796 case R_MIPS_GPREL16:
8797 case R_MIPS_LITERAL:
8798 case R_MIPS_GPREL32:
8799 case R_MICROMIPS_26_S1:
8800 case R_MICROMIPS_GPREL16:
8801 case R_MICROMIPS_LITERAL:
8802 case R_MICROMIPS_GPREL7_S2:
8803 if (SGI_COMPAT (abfd))
8804 mips_elf_hash_table (info)->compact_rel_size +=
8805 sizeof (Elf32_External_crinfo);
8806 break;
8807
8808 /* This relocation describes the C++ object vtable hierarchy.
8809 Reconstruct it for later use during GC. */
8810 case R_MIPS_GNU_VTINHERIT:
8811 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8812 return FALSE;
8813 break;
8814
8815 /* This relocation describes which C++ vtable entries are actually
8816 used. Record for later use during GC. */
8817 case R_MIPS_GNU_VTENTRY:
8818 BFD_ASSERT (h != NULL);
8819 if (h != NULL
8820 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8821 return FALSE;
8822 break;
8823
8824 default:
8825 break;
8826 }
8827
8828 /* Record the need for a PLT entry. At this point we don't know
8829 yet if we are going to create a PLT in the first place, but
8830 we only record whether the relocation requires a standard MIPS
8831 or a compressed code entry anyway. If we don't make a PLT after
8832 all, then we'll just ignore these arrangements. Likewise if
8833 a PLT entry is not created because the symbol is satisfied
8834 locally. */
8835 if (h != NULL
8836 && (branch_reloc_p (r_type)
8837 || mips16_branch_reloc_p (r_type)
8838 || micromips_branch_reloc_p (r_type))
8839 && !SYMBOL_CALLS_LOCAL (info, h))
8840 {
8841 if (h->plt.plist == NULL)
8842 h->plt.plist = mips_elf_make_plt_record (abfd);
8843 if (h->plt.plist == NULL)
8844 return FALSE;
8845
8846 if (branch_reloc_p (r_type))
8847 h->plt.plist->need_mips = TRUE;
8848 else
8849 h->plt.plist->need_comp = TRUE;
8850 }
8851
8852 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8853 if there is one. We only need to handle global symbols here;
8854 we decide whether to keep or delete stubs for local symbols
8855 when processing the stub's relocations. */
8856 if (h != NULL
8857 && !mips16_call_reloc_p (r_type)
8858 && !section_allows_mips16_refs_p (sec))
8859 {
8860 struct mips_elf_link_hash_entry *mh;
8861
8862 mh = (struct mips_elf_link_hash_entry *) h;
8863 mh->need_fn_stub = TRUE;
8864 }
8865
8866 /* Refuse some position-dependent relocations when creating a
8867 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8868 not PIC, but we can create dynamic relocations and the result
8869 will be fine. Also do not refuse R_MIPS_LO16, which can be
8870 combined with R_MIPS_GOT16. */
8871 if (bfd_link_pic (info))
8872 {
8873 switch (r_type)
8874 {
8875 case R_MIPS16_HI16:
8876 case R_MIPS_HI16:
8877 case R_MIPS_HIGHER:
8878 case R_MIPS_HIGHEST:
8879 case R_MICROMIPS_HI16:
8880 case R_MICROMIPS_HIGHER:
8881 case R_MICROMIPS_HIGHEST:
8882 /* Don't refuse a high part relocation if it's against
8883 no symbol (e.g. part of a compound relocation). */
8884 if (r_symndx == STN_UNDEF)
8885 break;
8886
8887 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8888 and has a special meaning. */
8889 if (!NEWABI_P (abfd) && h != NULL
8890 && strcmp (h->root.root.string, "_gp_disp") == 0)
8891 break;
8892
8893 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8894 if (is_gott_symbol (info, h))
8895 break;
8896
8897 /* FALLTHROUGH */
8898
8899 case R_MIPS16_26:
8900 case R_MIPS_26:
8901 case R_MICROMIPS_26_S1:
8902 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8903 _bfd_error_handler
8904 /* xgettext:c-format */
8905 (_("%pB: relocation %s against `%s' can not be used"
8906 " when making a shared object; recompile with -fPIC"),
8907 abfd, howto->name,
8908 (h) ? h->root.root.string : "a local symbol");
8909 bfd_set_error (bfd_error_bad_value);
8910 return FALSE;
8911 default:
8912 break;
8913 }
8914 }
8915 }
8916
8917 return TRUE;
8918 }
8919 \f
8920 /* Allocate space for global sym dynamic relocs. */
8921
8922 static bfd_boolean
8923 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8924 {
8925 struct bfd_link_info *info = inf;
8926 bfd *dynobj;
8927 struct mips_elf_link_hash_entry *hmips;
8928 struct mips_elf_link_hash_table *htab;
8929
8930 htab = mips_elf_hash_table (info);
8931 BFD_ASSERT (htab != NULL);
8932
8933 dynobj = elf_hash_table (info)->dynobj;
8934 hmips = (struct mips_elf_link_hash_entry *) h;
8935
8936 /* VxWorks executables are handled elsewhere; we only need to
8937 allocate relocations in shared objects. */
8938 if (htab->is_vxworks && !bfd_link_pic (info))
8939 return TRUE;
8940
8941 /* Ignore indirect symbols. All relocations against such symbols
8942 will be redirected to the target symbol. */
8943 if (h->root.type == bfd_link_hash_indirect)
8944 return TRUE;
8945
8946 /* If this symbol is defined in a dynamic object, or we are creating
8947 a shared library, we will need to copy any R_MIPS_32 or
8948 R_MIPS_REL32 relocs against it into the output file. */
8949 if (! bfd_link_relocatable (info)
8950 && hmips->possibly_dynamic_relocs != 0
8951 && (h->root.type == bfd_link_hash_defweak
8952 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
8953 || bfd_link_pic (info)))
8954 {
8955 bfd_boolean do_copy = TRUE;
8956
8957 if (h->root.type == bfd_link_hash_undefweak)
8958 {
8959 /* Do not copy relocations for undefined weak symbols with
8960 non-default visibility. */
8961 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8962 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8963 do_copy = FALSE;
8964
8965 /* Make sure undefined weak symbols are output as a dynamic
8966 symbol in PIEs. */
8967 else if (h->dynindx == -1 && !h->forced_local)
8968 {
8969 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8970 return FALSE;
8971 }
8972 }
8973
8974 if (do_copy)
8975 {
8976 /* Even though we don't directly need a GOT entry for this symbol,
8977 the SVR4 psABI requires it to have a dynamic symbol table
8978 index greater that DT_MIPS_GOTSYM if there are dynamic
8979 relocations against it.
8980
8981 VxWorks does not enforce the same mapping between the GOT
8982 and the symbol table, so the same requirement does not
8983 apply there. */
8984 if (!htab->is_vxworks)
8985 {
8986 if (hmips->global_got_area > GGA_RELOC_ONLY)
8987 hmips->global_got_area = GGA_RELOC_ONLY;
8988 hmips->got_only_for_calls = FALSE;
8989 }
8990
8991 mips_elf_allocate_dynamic_relocations
8992 (dynobj, info, hmips->possibly_dynamic_relocs);
8993 if (hmips->readonly_reloc)
8994 /* We tell the dynamic linker that there are relocations
8995 against the text segment. */
8996 info->flags |= DF_TEXTREL;
8997 }
8998 }
8999
9000 return TRUE;
9001 }
9002
9003 /* Adjust a symbol defined by a dynamic object and referenced by a
9004 regular object. The current definition is in some section of the
9005 dynamic object, but we're not including those sections. We have to
9006 change the definition to something the rest of the link can
9007 understand. */
9008
9009 bfd_boolean
9010 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
9011 struct elf_link_hash_entry *h)
9012 {
9013 bfd *dynobj;
9014 struct mips_elf_link_hash_entry *hmips;
9015 struct mips_elf_link_hash_table *htab;
9016 asection *s, *srel;
9017
9018 htab = mips_elf_hash_table (info);
9019 BFD_ASSERT (htab != NULL);
9020
9021 dynobj = elf_hash_table (info)->dynobj;
9022 hmips = (struct mips_elf_link_hash_entry *) h;
9023
9024 /* Make sure we know what is going on here. */
9025 BFD_ASSERT (dynobj != NULL
9026 && (h->needs_plt
9027 || h->is_weakalias
9028 || (h->def_dynamic
9029 && h->ref_regular
9030 && !h->def_regular)));
9031
9032 hmips = (struct mips_elf_link_hash_entry *) h;
9033
9034 /* If there are call relocations against an externally-defined symbol,
9035 see whether we can create a MIPS lazy-binding stub for it. We can
9036 only do this if all references to the function are through call
9037 relocations, and in that case, the traditional lazy-binding stubs
9038 are much more efficient than PLT entries.
9039
9040 Traditional stubs are only available on SVR4 psABI-based systems;
9041 VxWorks always uses PLTs instead. */
9042 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
9043 {
9044 if (! elf_hash_table (info)->dynamic_sections_created)
9045 return TRUE;
9046
9047 /* If this symbol is not defined in a regular file, then set
9048 the symbol to the stub location. This is required to make
9049 function pointers compare as equal between the normal
9050 executable and the shared library. */
9051 if (!h->def_regular)
9052 {
9053 hmips->needs_lazy_stub = TRUE;
9054 htab->lazy_stub_count++;
9055 return TRUE;
9056 }
9057 }
9058 /* As above, VxWorks requires PLT entries for externally-defined
9059 functions that are only accessed through call relocations.
9060
9061 Both VxWorks and non-VxWorks targets also need PLT entries if there
9062 are static-only relocations against an externally-defined function.
9063 This can technically occur for shared libraries if there are
9064 branches to the symbol, although it is unlikely that this will be
9065 used in practice due to the short ranges involved. It can occur
9066 for any relative or absolute relocation in executables; in that
9067 case, the PLT entry becomes the function's canonical address. */
9068 else if (((h->needs_plt && !hmips->no_fn_stub)
9069 || (h->type == STT_FUNC && hmips->has_static_relocs))
9070 && htab->use_plts_and_copy_relocs
9071 && !SYMBOL_CALLS_LOCAL (info, h)
9072 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9073 && h->root.type == bfd_link_hash_undefweak))
9074 {
9075 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9076 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9077
9078 /* If this is the first symbol to need a PLT entry, then make some
9079 basic setup. Also work out PLT entry sizes. We'll need them
9080 for PLT offset calculations. */
9081 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9082 {
9083 BFD_ASSERT (htab->root.sgotplt->size == 0);
9084 BFD_ASSERT (htab->plt_got_index == 0);
9085
9086 /* If we're using the PLT additions to the psABI, each PLT
9087 entry is 16 bytes and the PLT0 entry is 32 bytes.
9088 Encourage better cache usage by aligning. We do this
9089 lazily to avoid pessimizing traditional objects. */
9090 if (!htab->is_vxworks
9091 && !bfd_set_section_alignment (dynobj, htab->root.splt, 5))
9092 return FALSE;
9093
9094 /* Make sure that .got.plt is word-aligned. We do this lazily
9095 for the same reason as above. */
9096 if (!bfd_set_section_alignment (dynobj, htab->root.sgotplt,
9097 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9098 return FALSE;
9099
9100 /* On non-VxWorks targets, the first two entries in .got.plt
9101 are reserved. */
9102 if (!htab->is_vxworks)
9103 htab->plt_got_index
9104 += (get_elf_backend_data (dynobj)->got_header_size
9105 / MIPS_ELF_GOT_SIZE (dynobj));
9106
9107 /* On VxWorks, also allocate room for the header's
9108 .rela.plt.unloaded entries. */
9109 if (htab->is_vxworks && !bfd_link_pic (info))
9110 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9111
9112 /* Now work out the sizes of individual PLT entries. */
9113 if (htab->is_vxworks && bfd_link_pic (info))
9114 htab->plt_mips_entry_size
9115 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9116 else if (htab->is_vxworks)
9117 htab->plt_mips_entry_size
9118 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9119 else if (newabi_p)
9120 htab->plt_mips_entry_size
9121 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9122 else if (!micromips_p)
9123 {
9124 htab->plt_mips_entry_size
9125 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9126 htab->plt_comp_entry_size
9127 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9128 }
9129 else if (htab->insn32)
9130 {
9131 htab->plt_mips_entry_size
9132 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9133 htab->plt_comp_entry_size
9134 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9135 }
9136 else
9137 {
9138 htab->plt_mips_entry_size
9139 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9140 htab->plt_comp_entry_size
9141 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9142 }
9143 }
9144
9145 if (h->plt.plist == NULL)
9146 h->plt.plist = mips_elf_make_plt_record (dynobj);
9147 if (h->plt.plist == NULL)
9148 return FALSE;
9149
9150 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9151 n32 or n64, so always use a standard entry there.
9152
9153 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9154 all MIPS16 calls will go via that stub, and there is no benefit
9155 to having a MIPS16 entry. And in the case of call_stub a
9156 standard entry actually has to be used as the stub ends with a J
9157 instruction. */
9158 if (newabi_p
9159 || htab->is_vxworks
9160 || hmips->call_stub
9161 || hmips->call_fp_stub)
9162 {
9163 h->plt.plist->need_mips = TRUE;
9164 h->plt.plist->need_comp = FALSE;
9165 }
9166
9167 /* Otherwise, if there are no direct calls to the function, we
9168 have a free choice of whether to use standard or compressed
9169 entries. Prefer microMIPS entries if the object is known to
9170 contain microMIPS code, so that it becomes possible to create
9171 pure microMIPS binaries. Prefer standard entries otherwise,
9172 because MIPS16 ones are no smaller and are usually slower. */
9173 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9174 {
9175 if (micromips_p)
9176 h->plt.plist->need_comp = TRUE;
9177 else
9178 h->plt.plist->need_mips = TRUE;
9179 }
9180
9181 if (h->plt.plist->need_mips)
9182 {
9183 h->plt.plist->mips_offset = htab->plt_mips_offset;
9184 htab->plt_mips_offset += htab->plt_mips_entry_size;
9185 }
9186 if (h->plt.plist->need_comp)
9187 {
9188 h->plt.plist->comp_offset = htab->plt_comp_offset;
9189 htab->plt_comp_offset += htab->plt_comp_entry_size;
9190 }
9191
9192 /* Reserve the corresponding .got.plt entry now too. */
9193 h->plt.plist->gotplt_index = htab->plt_got_index++;
9194
9195 /* If the output file has no definition of the symbol, set the
9196 symbol's value to the address of the stub. */
9197 if (!bfd_link_pic (info) && !h->def_regular)
9198 hmips->use_plt_entry = TRUE;
9199
9200 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9201 htab->root.srelplt->size += (htab->is_vxworks
9202 ? MIPS_ELF_RELA_SIZE (dynobj)
9203 : MIPS_ELF_REL_SIZE (dynobj));
9204
9205 /* Make room for the .rela.plt.unloaded relocations. */
9206 if (htab->is_vxworks && !bfd_link_pic (info))
9207 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9208
9209 /* All relocations against this symbol that could have been made
9210 dynamic will now refer to the PLT entry instead. */
9211 hmips->possibly_dynamic_relocs = 0;
9212
9213 return TRUE;
9214 }
9215
9216 /* If this is a weak symbol, and there is a real definition, the
9217 processor independent code will have arranged for us to see the
9218 real definition first, and we can just use the same value. */
9219 if (h->is_weakalias)
9220 {
9221 struct elf_link_hash_entry *def = weakdef (h);
9222 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
9223 h->root.u.def.section = def->root.u.def.section;
9224 h->root.u.def.value = def->root.u.def.value;
9225 return TRUE;
9226 }
9227
9228 /* Otherwise, there is nothing further to do for symbols defined
9229 in regular objects. */
9230 if (h->def_regular)
9231 return TRUE;
9232
9233 /* There's also nothing more to do if we'll convert all relocations
9234 against this symbol into dynamic relocations. */
9235 if (!hmips->has_static_relocs)
9236 return TRUE;
9237
9238 /* We're now relying on copy relocations. Complain if we have
9239 some that we can't convert. */
9240 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
9241 {
9242 _bfd_error_handler (_("non-dynamic relocations refer to "
9243 "dynamic symbol %s"),
9244 h->root.root.string);
9245 bfd_set_error (bfd_error_bad_value);
9246 return FALSE;
9247 }
9248
9249 /* We must allocate the symbol in our .dynbss section, which will
9250 become part of the .bss section of the executable. There will be
9251 an entry for this symbol in the .dynsym section. The dynamic
9252 object will contain position independent code, so all references
9253 from the dynamic object to this symbol will go through the global
9254 offset table. The dynamic linker will use the .dynsym entry to
9255 determine the address it must put in the global offset table, so
9256 both the dynamic object and the regular object will refer to the
9257 same memory location for the variable. */
9258
9259 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
9260 {
9261 s = htab->root.sdynrelro;
9262 srel = htab->root.sreldynrelro;
9263 }
9264 else
9265 {
9266 s = htab->root.sdynbss;
9267 srel = htab->root.srelbss;
9268 }
9269 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9270 {
9271 if (htab->is_vxworks)
9272 srel->size += sizeof (Elf32_External_Rela);
9273 else
9274 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9275 h->needs_copy = 1;
9276 }
9277
9278 /* All relocations against this symbol that could have been made
9279 dynamic will now refer to the local copy instead. */
9280 hmips->possibly_dynamic_relocs = 0;
9281
9282 return _bfd_elf_adjust_dynamic_copy (info, h, s);
9283 }
9284 \f
9285 /* This function is called after all the input files have been read,
9286 and the input sections have been assigned to output sections. We
9287 check for any mips16 stub sections that we can discard. */
9288
9289 bfd_boolean
9290 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9291 struct bfd_link_info *info)
9292 {
9293 asection *sect;
9294 struct mips_elf_link_hash_table *htab;
9295 struct mips_htab_traverse_info hti;
9296
9297 htab = mips_elf_hash_table (info);
9298 BFD_ASSERT (htab != NULL);
9299
9300 /* The .reginfo section has a fixed size. */
9301 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9302 if (sect != NULL)
9303 {
9304 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9305 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9306 }
9307
9308 /* The .MIPS.abiflags section has a fixed size. */
9309 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9310 if (sect != NULL)
9311 {
9312 bfd_set_section_size (output_bfd, sect,
9313 sizeof (Elf_External_ABIFlags_v0));
9314 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9315 }
9316
9317 hti.info = info;
9318 hti.output_bfd = output_bfd;
9319 hti.error = FALSE;
9320 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9321 mips_elf_check_symbols, &hti);
9322 if (hti.error)
9323 return FALSE;
9324
9325 return TRUE;
9326 }
9327
9328 /* If the link uses a GOT, lay it out and work out its size. */
9329
9330 static bfd_boolean
9331 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9332 {
9333 bfd *dynobj;
9334 asection *s;
9335 struct mips_got_info *g;
9336 bfd_size_type loadable_size = 0;
9337 bfd_size_type page_gotno;
9338 bfd *ibfd;
9339 struct mips_elf_traverse_got_arg tga;
9340 struct mips_elf_link_hash_table *htab;
9341
9342 htab = mips_elf_hash_table (info);
9343 BFD_ASSERT (htab != NULL);
9344
9345 s = htab->root.sgot;
9346 if (s == NULL)
9347 return TRUE;
9348
9349 dynobj = elf_hash_table (info)->dynobj;
9350 g = htab->got_info;
9351
9352 /* Allocate room for the reserved entries. VxWorks always reserves
9353 3 entries; other objects only reserve 2 entries. */
9354 BFD_ASSERT (g->assigned_low_gotno == 0);
9355 if (htab->is_vxworks)
9356 htab->reserved_gotno = 3;
9357 else
9358 htab->reserved_gotno = 2;
9359 g->local_gotno += htab->reserved_gotno;
9360 g->assigned_low_gotno = htab->reserved_gotno;
9361
9362 /* Decide which symbols need to go in the global part of the GOT and
9363 count the number of reloc-only GOT symbols. */
9364 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9365
9366 if (!mips_elf_resolve_final_got_entries (info, g))
9367 return FALSE;
9368
9369 /* Calculate the total loadable size of the output. That
9370 will give us the maximum number of GOT_PAGE entries
9371 required. */
9372 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9373 {
9374 asection *subsection;
9375
9376 for (subsection = ibfd->sections;
9377 subsection;
9378 subsection = subsection->next)
9379 {
9380 if ((subsection->flags & SEC_ALLOC) == 0)
9381 continue;
9382 loadable_size += ((subsection->size + 0xf)
9383 &~ (bfd_size_type) 0xf);
9384 }
9385 }
9386
9387 if (htab->is_vxworks)
9388 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9389 relocations against local symbols evaluate to "G", and the EABI does
9390 not include R_MIPS_GOT_PAGE. */
9391 page_gotno = 0;
9392 else
9393 /* Assume there are two loadable segments consisting of contiguous
9394 sections. Is 5 enough? */
9395 page_gotno = (loadable_size >> 16) + 5;
9396
9397 /* Choose the smaller of the two page estimates; both are intended to be
9398 conservative. */
9399 if (page_gotno > g->page_gotno)
9400 page_gotno = g->page_gotno;
9401
9402 g->local_gotno += page_gotno;
9403 g->assigned_high_gotno = g->local_gotno - 1;
9404
9405 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9406 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9407 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9408
9409 /* VxWorks does not support multiple GOTs. It initializes $gp to
9410 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9411 dynamic loader. */
9412 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9413 {
9414 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9415 return FALSE;
9416 }
9417 else
9418 {
9419 /* Record that all bfds use G. This also has the effect of freeing
9420 the per-bfd GOTs, which we no longer need. */
9421 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9422 if (mips_elf_bfd_got (ibfd, FALSE))
9423 mips_elf_replace_bfd_got (ibfd, g);
9424 mips_elf_replace_bfd_got (output_bfd, g);
9425
9426 /* Set up TLS entries. */
9427 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9428 tga.info = info;
9429 tga.g = g;
9430 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9431 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9432 if (!tga.g)
9433 return FALSE;
9434 BFD_ASSERT (g->tls_assigned_gotno
9435 == g->global_gotno + g->local_gotno + g->tls_gotno);
9436
9437 /* Each VxWorks GOT entry needs an explicit relocation. */
9438 if (htab->is_vxworks && bfd_link_pic (info))
9439 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9440
9441 /* Allocate room for the TLS relocations. */
9442 if (g->relocs)
9443 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9444 }
9445
9446 return TRUE;
9447 }
9448
9449 /* Estimate the size of the .MIPS.stubs section. */
9450
9451 static void
9452 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9453 {
9454 struct mips_elf_link_hash_table *htab;
9455 bfd_size_type dynsymcount;
9456
9457 htab = mips_elf_hash_table (info);
9458 BFD_ASSERT (htab != NULL);
9459
9460 if (htab->lazy_stub_count == 0)
9461 return;
9462
9463 /* IRIX rld assumes that a function stub isn't at the end of the .text
9464 section, so add a dummy entry to the end. */
9465 htab->lazy_stub_count++;
9466
9467 /* Get a worst-case estimate of the number of dynamic symbols needed.
9468 At this point, dynsymcount does not account for section symbols
9469 and count_section_dynsyms may overestimate the number that will
9470 be needed. */
9471 dynsymcount = (elf_hash_table (info)->dynsymcount
9472 + count_section_dynsyms (output_bfd, info));
9473
9474 /* Determine the size of one stub entry. There's no disadvantage
9475 from using microMIPS code here, so for the sake of pure-microMIPS
9476 binaries we prefer it whenever there's any microMIPS code in
9477 output produced at all. This has a benefit of stubs being
9478 shorter by 4 bytes each too, unless in the insn32 mode. */
9479 if (!MICROMIPS_P (output_bfd))
9480 htab->function_stub_size = (dynsymcount > 0x10000
9481 ? MIPS_FUNCTION_STUB_BIG_SIZE
9482 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9483 else if (htab->insn32)
9484 htab->function_stub_size = (dynsymcount > 0x10000
9485 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9486 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9487 else
9488 htab->function_stub_size = (dynsymcount > 0x10000
9489 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9490 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9491
9492 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9493 }
9494
9495 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9496 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9497 stub, allocate an entry in the stubs section. */
9498
9499 static bfd_boolean
9500 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9501 {
9502 struct mips_htab_traverse_info *hti = data;
9503 struct mips_elf_link_hash_table *htab;
9504 struct bfd_link_info *info;
9505 bfd *output_bfd;
9506
9507 info = hti->info;
9508 output_bfd = hti->output_bfd;
9509 htab = mips_elf_hash_table (info);
9510 BFD_ASSERT (htab != NULL);
9511
9512 if (h->needs_lazy_stub)
9513 {
9514 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9515 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9516 bfd_vma isa_bit = micromips_p;
9517
9518 BFD_ASSERT (htab->root.dynobj != NULL);
9519 if (h->root.plt.plist == NULL)
9520 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9521 if (h->root.plt.plist == NULL)
9522 {
9523 hti->error = TRUE;
9524 return FALSE;
9525 }
9526 h->root.root.u.def.section = htab->sstubs;
9527 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9528 h->root.plt.plist->stub_offset = htab->sstubs->size;
9529 h->root.other = other;
9530 htab->sstubs->size += htab->function_stub_size;
9531 }
9532 return TRUE;
9533 }
9534
9535 /* Allocate offsets in the stubs section to each symbol that needs one.
9536 Set the final size of the .MIPS.stub section. */
9537
9538 static bfd_boolean
9539 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9540 {
9541 bfd *output_bfd = info->output_bfd;
9542 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9543 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9544 bfd_vma isa_bit = micromips_p;
9545 struct mips_elf_link_hash_table *htab;
9546 struct mips_htab_traverse_info hti;
9547 struct elf_link_hash_entry *h;
9548 bfd *dynobj;
9549
9550 htab = mips_elf_hash_table (info);
9551 BFD_ASSERT (htab != NULL);
9552
9553 if (htab->lazy_stub_count == 0)
9554 return TRUE;
9555
9556 htab->sstubs->size = 0;
9557 hti.info = info;
9558 hti.output_bfd = output_bfd;
9559 hti.error = FALSE;
9560 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9561 if (hti.error)
9562 return FALSE;
9563 htab->sstubs->size += htab->function_stub_size;
9564 BFD_ASSERT (htab->sstubs->size
9565 == htab->lazy_stub_count * htab->function_stub_size);
9566
9567 dynobj = elf_hash_table (info)->dynobj;
9568 BFD_ASSERT (dynobj != NULL);
9569 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9570 if (h == NULL)
9571 return FALSE;
9572 h->root.u.def.value = isa_bit;
9573 h->other = other;
9574 h->type = STT_FUNC;
9575
9576 return TRUE;
9577 }
9578
9579 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9580 bfd_link_info. If H uses the address of a PLT entry as the value
9581 of the symbol, then set the entry in the symbol table now. Prefer
9582 a standard MIPS PLT entry. */
9583
9584 static bfd_boolean
9585 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9586 {
9587 struct bfd_link_info *info = data;
9588 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9589 struct mips_elf_link_hash_table *htab;
9590 unsigned int other;
9591 bfd_vma isa_bit;
9592 bfd_vma val;
9593
9594 htab = mips_elf_hash_table (info);
9595 BFD_ASSERT (htab != NULL);
9596
9597 if (h->use_plt_entry)
9598 {
9599 BFD_ASSERT (h->root.plt.plist != NULL);
9600 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9601 || h->root.plt.plist->comp_offset != MINUS_ONE);
9602
9603 val = htab->plt_header_size;
9604 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9605 {
9606 isa_bit = 0;
9607 val += h->root.plt.plist->mips_offset;
9608 other = 0;
9609 }
9610 else
9611 {
9612 isa_bit = 1;
9613 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9614 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9615 }
9616 val += isa_bit;
9617 /* For VxWorks, point at the PLT load stub rather than the lazy
9618 resolution stub; this stub will become the canonical function
9619 address. */
9620 if (htab->is_vxworks)
9621 val += 8;
9622
9623 h->root.root.u.def.section = htab->root.splt;
9624 h->root.root.u.def.value = val;
9625 h->root.other = other;
9626 }
9627
9628 return TRUE;
9629 }
9630
9631 /* Set the sizes of the dynamic sections. */
9632
9633 bfd_boolean
9634 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9635 struct bfd_link_info *info)
9636 {
9637 bfd *dynobj;
9638 asection *s, *sreldyn;
9639 bfd_boolean reltext;
9640 struct mips_elf_link_hash_table *htab;
9641
9642 htab = mips_elf_hash_table (info);
9643 BFD_ASSERT (htab != NULL);
9644 dynobj = elf_hash_table (info)->dynobj;
9645 BFD_ASSERT (dynobj != NULL);
9646
9647 if (elf_hash_table (info)->dynamic_sections_created)
9648 {
9649 /* Set the contents of the .interp section to the interpreter. */
9650 if (bfd_link_executable (info) && !info->nointerp)
9651 {
9652 s = bfd_get_linker_section (dynobj, ".interp");
9653 BFD_ASSERT (s != NULL);
9654 s->size
9655 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9656 s->contents
9657 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9658 }
9659
9660 /* Figure out the size of the PLT header if we know that we
9661 are using it. For the sake of cache alignment always use
9662 a standard header whenever any standard entries are present
9663 even if microMIPS entries are present as well. This also
9664 lets the microMIPS header rely on the value of $v0 only set
9665 by microMIPS entries, for a small size reduction.
9666
9667 Set symbol table entry values for symbols that use the
9668 address of their PLT entry now that we can calculate it.
9669
9670 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9671 haven't already in _bfd_elf_create_dynamic_sections. */
9672 if (htab->root.splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9673 {
9674 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9675 && !htab->plt_mips_offset);
9676 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9677 bfd_vma isa_bit = micromips_p;
9678 struct elf_link_hash_entry *h;
9679 bfd_vma size;
9680
9681 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9682 BFD_ASSERT (htab->root.sgotplt->size == 0);
9683 BFD_ASSERT (htab->root.splt->size == 0);
9684
9685 if (htab->is_vxworks && bfd_link_pic (info))
9686 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9687 else if (htab->is_vxworks)
9688 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9689 else if (ABI_64_P (output_bfd))
9690 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9691 else if (ABI_N32_P (output_bfd))
9692 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9693 else if (!micromips_p)
9694 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9695 else if (htab->insn32)
9696 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9697 else
9698 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9699
9700 htab->plt_header_is_comp = micromips_p;
9701 htab->plt_header_size = size;
9702 htab->root.splt->size = (size
9703 + htab->plt_mips_offset
9704 + htab->plt_comp_offset);
9705 htab->root.sgotplt->size = (htab->plt_got_index
9706 * MIPS_ELF_GOT_SIZE (dynobj));
9707
9708 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9709
9710 if (htab->root.hplt == NULL)
9711 {
9712 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.splt,
9713 "_PROCEDURE_LINKAGE_TABLE_");
9714 htab->root.hplt = h;
9715 if (h == NULL)
9716 return FALSE;
9717 }
9718
9719 h = htab->root.hplt;
9720 h->root.u.def.value = isa_bit;
9721 h->other = other;
9722 h->type = STT_FUNC;
9723 }
9724 }
9725
9726 /* Allocate space for global sym dynamic relocs. */
9727 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9728
9729 mips_elf_estimate_stub_size (output_bfd, info);
9730
9731 if (!mips_elf_lay_out_got (output_bfd, info))
9732 return FALSE;
9733
9734 mips_elf_lay_out_lazy_stubs (info);
9735
9736 /* The check_relocs and adjust_dynamic_symbol entry points have
9737 determined the sizes of the various dynamic sections. Allocate
9738 memory for them. */
9739 reltext = FALSE;
9740 for (s = dynobj->sections; s != NULL; s = s->next)
9741 {
9742 const char *name;
9743
9744 /* It's OK to base decisions on the section name, because none
9745 of the dynobj section names depend upon the input files. */
9746 name = bfd_get_section_name (dynobj, s);
9747
9748 if ((s->flags & SEC_LINKER_CREATED) == 0)
9749 continue;
9750
9751 if (CONST_STRNEQ (name, ".rel"))
9752 {
9753 if (s->size != 0)
9754 {
9755 const char *outname;
9756 asection *target;
9757
9758 /* If this relocation section applies to a read only
9759 section, then we probably need a DT_TEXTREL entry.
9760 If the relocation section is .rel(a).dyn, we always
9761 assert a DT_TEXTREL entry rather than testing whether
9762 there exists a relocation to a read only section or
9763 not. */
9764 outname = bfd_get_section_name (output_bfd,
9765 s->output_section);
9766 target = bfd_get_section_by_name (output_bfd, outname + 4);
9767 if ((target != NULL
9768 && (target->flags & SEC_READONLY) != 0
9769 && (target->flags & SEC_ALLOC) != 0)
9770 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9771 reltext = TRUE;
9772
9773 /* We use the reloc_count field as a counter if we need
9774 to copy relocs into the output file. */
9775 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9776 s->reloc_count = 0;
9777
9778 /* If combreloc is enabled, elf_link_sort_relocs() will
9779 sort relocations, but in a different way than we do,
9780 and before we're done creating relocations. Also, it
9781 will move them around between input sections'
9782 relocation's contents, so our sorting would be
9783 broken, so don't let it run. */
9784 info->combreloc = 0;
9785 }
9786 }
9787 else if (bfd_link_executable (info)
9788 && ! mips_elf_hash_table (info)->use_rld_obj_head
9789 && CONST_STRNEQ (name, ".rld_map"))
9790 {
9791 /* We add a room for __rld_map. It will be filled in by the
9792 rtld to contain a pointer to the _r_debug structure. */
9793 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9794 }
9795 else if (SGI_COMPAT (output_bfd)
9796 && CONST_STRNEQ (name, ".compact_rel"))
9797 s->size += mips_elf_hash_table (info)->compact_rel_size;
9798 else if (s == htab->root.splt)
9799 {
9800 /* If the last PLT entry has a branch delay slot, allocate
9801 room for an extra nop to fill the delay slot. This is
9802 for CPUs without load interlocking. */
9803 if (! LOAD_INTERLOCKS_P (output_bfd)
9804 && ! htab->is_vxworks && s->size > 0)
9805 s->size += 4;
9806 }
9807 else if (! CONST_STRNEQ (name, ".init")
9808 && s != htab->root.sgot
9809 && s != htab->root.sgotplt
9810 && s != htab->sstubs
9811 && s != htab->root.sdynbss
9812 && s != htab->root.sdynrelro)
9813 {
9814 /* It's not one of our sections, so don't allocate space. */
9815 continue;
9816 }
9817
9818 if (s->size == 0)
9819 {
9820 s->flags |= SEC_EXCLUDE;
9821 continue;
9822 }
9823
9824 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9825 continue;
9826
9827 /* Allocate memory for the section contents. */
9828 s->contents = bfd_zalloc (dynobj, s->size);
9829 if (s->contents == NULL)
9830 {
9831 bfd_set_error (bfd_error_no_memory);
9832 return FALSE;
9833 }
9834 }
9835
9836 if (elf_hash_table (info)->dynamic_sections_created)
9837 {
9838 /* Add some entries to the .dynamic section. We fill in the
9839 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9840 must add the entries now so that we get the correct size for
9841 the .dynamic section. */
9842
9843 /* SGI object has the equivalence of DT_DEBUG in the
9844 DT_MIPS_RLD_MAP entry. This must come first because glibc
9845 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9846 may only look at the first one they see. */
9847 if (!bfd_link_pic (info)
9848 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9849 return FALSE;
9850
9851 if (bfd_link_executable (info)
9852 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
9853 return FALSE;
9854
9855 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9856 used by the debugger. */
9857 if (bfd_link_executable (info)
9858 && !SGI_COMPAT (output_bfd)
9859 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9860 return FALSE;
9861
9862 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9863 info->flags |= DF_TEXTREL;
9864
9865 if ((info->flags & DF_TEXTREL) != 0)
9866 {
9867 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9868 return FALSE;
9869
9870 /* Clear the DF_TEXTREL flag. It will be set again if we
9871 write out an actual text relocation; we may not, because
9872 at this point we do not know whether e.g. any .eh_frame
9873 absolute relocations have been converted to PC-relative. */
9874 info->flags &= ~DF_TEXTREL;
9875 }
9876
9877 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9878 return FALSE;
9879
9880 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9881 if (htab->is_vxworks)
9882 {
9883 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9884 use any of the DT_MIPS_* tags. */
9885 if (sreldyn && sreldyn->size > 0)
9886 {
9887 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9888 return FALSE;
9889
9890 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9891 return FALSE;
9892
9893 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9894 return FALSE;
9895 }
9896 }
9897 else
9898 {
9899 if (sreldyn && sreldyn->size > 0)
9900 {
9901 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9902 return FALSE;
9903
9904 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9905 return FALSE;
9906
9907 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9908 return FALSE;
9909 }
9910
9911 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9912 return FALSE;
9913
9914 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9915 return FALSE;
9916
9917 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9918 return FALSE;
9919
9920 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9921 return FALSE;
9922
9923 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9924 return FALSE;
9925
9926 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9927 return FALSE;
9928
9929 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9930 return FALSE;
9931
9932 if (IRIX_COMPAT (dynobj) == ict_irix5
9933 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9934 return FALSE;
9935
9936 if (IRIX_COMPAT (dynobj) == ict_irix6
9937 && (bfd_get_section_by_name
9938 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9939 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9940 return FALSE;
9941 }
9942 if (htab->root.splt->size > 0)
9943 {
9944 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9945 return FALSE;
9946
9947 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9948 return FALSE;
9949
9950 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9951 return FALSE;
9952
9953 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9954 return FALSE;
9955 }
9956 if (htab->is_vxworks
9957 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9958 return FALSE;
9959 }
9960
9961 return TRUE;
9962 }
9963 \f
9964 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9965 Adjust its R_ADDEND field so that it is correct for the output file.
9966 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9967 and sections respectively; both use symbol indexes. */
9968
9969 static void
9970 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9971 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9972 asection **local_sections, Elf_Internal_Rela *rel)
9973 {
9974 unsigned int r_type, r_symndx;
9975 Elf_Internal_Sym *sym;
9976 asection *sec;
9977
9978 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9979 {
9980 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9981 if (gprel16_reloc_p (r_type)
9982 || r_type == R_MIPS_GPREL32
9983 || literal_reloc_p (r_type))
9984 {
9985 rel->r_addend += _bfd_get_gp_value (input_bfd);
9986 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9987 }
9988
9989 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9990 sym = local_syms + r_symndx;
9991
9992 /* Adjust REL's addend to account for section merging. */
9993 if (!bfd_link_relocatable (info))
9994 {
9995 sec = local_sections[r_symndx];
9996 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9997 }
9998
9999 /* This would normally be done by the rela_normal code in elflink.c. */
10000 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10001 rel->r_addend += local_sections[r_symndx]->output_offset;
10002 }
10003 }
10004
10005 /* Handle relocations against symbols from removed linkonce sections,
10006 or sections discarded by a linker script. We use this wrapper around
10007 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
10008 on 64-bit ELF targets. In this case for any relocation handled, which
10009 always be the first in a triplet, the remaining two have to be processed
10010 together with the first, even if they are R_MIPS_NONE. It is the symbol
10011 index referred by the first reloc that applies to all the three and the
10012 remaining two never refer to an object symbol. And it is the final
10013 relocation (the last non-null one) that determines the output field of
10014 the whole relocation so retrieve the corresponding howto structure for
10015 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
10016
10017 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
10018 and therefore requires to be pasted in a loop. It also defines a block
10019 and does not protect any of its arguments, hence the extra brackets. */
10020
10021 static void
10022 mips_reloc_against_discarded_section (bfd *output_bfd,
10023 struct bfd_link_info *info,
10024 bfd *input_bfd, asection *input_section,
10025 Elf_Internal_Rela **rel,
10026 const Elf_Internal_Rela **relend,
10027 bfd_boolean rel_reloc,
10028 reloc_howto_type *howto,
10029 bfd_byte *contents)
10030 {
10031 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10032 int count = bed->s->int_rels_per_ext_rel;
10033 unsigned int r_type;
10034 int i;
10035
10036 for (i = count - 1; i > 0; i--)
10037 {
10038 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10039 if (r_type != R_MIPS_NONE)
10040 {
10041 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10042 break;
10043 }
10044 }
10045 do
10046 {
10047 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10048 (*rel), count, (*relend),
10049 howto, i, contents);
10050 }
10051 while (0);
10052 }
10053
10054 /* Relocate a MIPS ELF section. */
10055
10056 bfd_boolean
10057 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10058 bfd *input_bfd, asection *input_section,
10059 bfd_byte *contents, Elf_Internal_Rela *relocs,
10060 Elf_Internal_Sym *local_syms,
10061 asection **local_sections)
10062 {
10063 Elf_Internal_Rela *rel;
10064 const Elf_Internal_Rela *relend;
10065 bfd_vma addend = 0;
10066 bfd_boolean use_saved_addend_p = FALSE;
10067
10068 relend = relocs + input_section->reloc_count;
10069 for (rel = relocs; rel < relend; ++rel)
10070 {
10071 const char *name;
10072 bfd_vma value = 0;
10073 reloc_howto_type *howto;
10074 bfd_boolean cross_mode_jump_p = FALSE;
10075 /* TRUE if the relocation is a RELA relocation, rather than a
10076 REL relocation. */
10077 bfd_boolean rela_relocation_p = TRUE;
10078 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10079 const char *msg;
10080 unsigned long r_symndx;
10081 asection *sec;
10082 Elf_Internal_Shdr *symtab_hdr;
10083 struct elf_link_hash_entry *h;
10084 bfd_boolean rel_reloc;
10085
10086 rel_reloc = (NEWABI_P (input_bfd)
10087 && mips_elf_rel_relocation_p (input_bfd, input_section,
10088 relocs, rel));
10089 /* Find the relocation howto for this relocation. */
10090 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10091
10092 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10093 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10094 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10095 {
10096 sec = local_sections[r_symndx];
10097 h = NULL;
10098 }
10099 else
10100 {
10101 unsigned long extsymoff;
10102
10103 extsymoff = 0;
10104 if (!elf_bad_symtab (input_bfd))
10105 extsymoff = symtab_hdr->sh_info;
10106 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10107 while (h->root.type == bfd_link_hash_indirect
10108 || h->root.type == bfd_link_hash_warning)
10109 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10110
10111 sec = NULL;
10112 if (h->root.type == bfd_link_hash_defined
10113 || h->root.type == bfd_link_hash_defweak)
10114 sec = h->root.u.def.section;
10115 }
10116
10117 if (sec != NULL && discarded_section (sec))
10118 {
10119 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10120 input_section, &rel, &relend,
10121 rel_reloc, howto, contents);
10122 continue;
10123 }
10124
10125 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10126 {
10127 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10128 64-bit code, but make sure all their addresses are in the
10129 lowermost or uppermost 32-bit section of the 64-bit address
10130 space. Thus, when they use an R_MIPS_64 they mean what is
10131 usually meant by R_MIPS_32, with the exception that the
10132 stored value is sign-extended to 64 bits. */
10133 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
10134
10135 /* On big-endian systems, we need to lie about the position
10136 of the reloc. */
10137 if (bfd_big_endian (input_bfd))
10138 rel->r_offset += 4;
10139 }
10140
10141 if (!use_saved_addend_p)
10142 {
10143 /* If these relocations were originally of the REL variety,
10144 we must pull the addend out of the field that will be
10145 relocated. Otherwise, we simply use the contents of the
10146 RELA relocation. */
10147 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10148 relocs, rel))
10149 {
10150 rela_relocation_p = FALSE;
10151 addend = mips_elf_read_rel_addend (input_bfd, rel,
10152 howto, contents);
10153 if (hi16_reloc_p (r_type)
10154 || (got16_reloc_p (r_type)
10155 && mips_elf_local_relocation_p (input_bfd, rel,
10156 local_sections)))
10157 {
10158 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10159 contents, &addend))
10160 {
10161 if (h)
10162 name = h->root.root.string;
10163 else
10164 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10165 local_syms + r_symndx,
10166 sec);
10167 _bfd_error_handler
10168 /* xgettext:c-format */
10169 (_("%pB: can't find matching LO16 reloc against `%s'"
10170 " for %s at %#" PRIx64 " in section `%pA'"),
10171 input_bfd, name,
10172 howto->name, (uint64_t) rel->r_offset, input_section);
10173 }
10174 }
10175 else
10176 addend <<= howto->rightshift;
10177 }
10178 else
10179 addend = rel->r_addend;
10180 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10181 local_syms, local_sections, rel);
10182 }
10183
10184 if (bfd_link_relocatable (info))
10185 {
10186 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10187 && bfd_big_endian (input_bfd))
10188 rel->r_offset -= 4;
10189
10190 if (!rela_relocation_p && rel->r_addend)
10191 {
10192 addend += rel->r_addend;
10193 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10194 addend = mips_elf_high (addend);
10195 else if (r_type == R_MIPS_HIGHER)
10196 addend = mips_elf_higher (addend);
10197 else if (r_type == R_MIPS_HIGHEST)
10198 addend = mips_elf_highest (addend);
10199 else
10200 addend >>= howto->rightshift;
10201
10202 /* We use the source mask, rather than the destination
10203 mask because the place to which we are writing will be
10204 source of the addend in the final link. */
10205 addend &= howto->src_mask;
10206
10207 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10208 /* See the comment above about using R_MIPS_64 in the 32-bit
10209 ABI. Here, we need to update the addend. It would be
10210 possible to get away with just using the R_MIPS_32 reloc
10211 but for endianness. */
10212 {
10213 bfd_vma sign_bits;
10214 bfd_vma low_bits;
10215 bfd_vma high_bits;
10216
10217 if (addend & ((bfd_vma) 1 << 31))
10218 #ifdef BFD64
10219 sign_bits = ((bfd_vma) 1 << 32) - 1;
10220 #else
10221 sign_bits = -1;
10222 #endif
10223 else
10224 sign_bits = 0;
10225
10226 /* If we don't know that we have a 64-bit type,
10227 do two separate stores. */
10228 if (bfd_big_endian (input_bfd))
10229 {
10230 /* Store the sign-bits (which are most significant)
10231 first. */
10232 low_bits = sign_bits;
10233 high_bits = addend;
10234 }
10235 else
10236 {
10237 low_bits = addend;
10238 high_bits = sign_bits;
10239 }
10240 bfd_put_32 (input_bfd, low_bits,
10241 contents + rel->r_offset);
10242 bfd_put_32 (input_bfd, high_bits,
10243 contents + rel->r_offset + 4);
10244 continue;
10245 }
10246
10247 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10248 input_bfd, input_section,
10249 contents, FALSE))
10250 return FALSE;
10251 }
10252
10253 /* Go on to the next relocation. */
10254 continue;
10255 }
10256
10257 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10258 relocations for the same offset. In that case we are
10259 supposed to treat the output of each relocation as the addend
10260 for the next. */
10261 if (rel + 1 < relend
10262 && rel->r_offset == rel[1].r_offset
10263 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10264 use_saved_addend_p = TRUE;
10265 else
10266 use_saved_addend_p = FALSE;
10267
10268 /* Figure out what value we are supposed to relocate. */
10269 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10270 input_section, info, rel,
10271 addend, howto, local_syms,
10272 local_sections, &value,
10273 &name, &cross_mode_jump_p,
10274 use_saved_addend_p))
10275 {
10276 case bfd_reloc_continue:
10277 /* There's nothing to do. */
10278 continue;
10279
10280 case bfd_reloc_undefined:
10281 /* mips_elf_calculate_relocation already called the
10282 undefined_symbol callback. There's no real point in
10283 trying to perform the relocation at this point, so we
10284 just skip ahead to the next relocation. */
10285 continue;
10286
10287 case bfd_reloc_notsupported:
10288 msg = _("internal error: unsupported relocation error");
10289 info->callbacks->warning
10290 (info, msg, name, input_bfd, input_section, rel->r_offset);
10291 return FALSE;
10292
10293 case bfd_reloc_overflow:
10294 if (use_saved_addend_p)
10295 /* Ignore overflow until we reach the last relocation for
10296 a given location. */
10297 ;
10298 else
10299 {
10300 struct mips_elf_link_hash_table *htab;
10301
10302 htab = mips_elf_hash_table (info);
10303 BFD_ASSERT (htab != NULL);
10304 BFD_ASSERT (name != NULL);
10305 if (!htab->small_data_overflow_reported
10306 && (gprel16_reloc_p (howto->type)
10307 || literal_reloc_p (howto->type)))
10308 {
10309 msg = _("small-data section exceeds 64KB;"
10310 " lower small-data size limit (see option -G)");
10311
10312 htab->small_data_overflow_reported = TRUE;
10313 (*info->callbacks->einfo) ("%P: %s\n", msg);
10314 }
10315 (*info->callbacks->reloc_overflow)
10316 (info, NULL, name, howto->name, (bfd_vma) 0,
10317 input_bfd, input_section, rel->r_offset);
10318 }
10319 break;
10320
10321 case bfd_reloc_ok:
10322 break;
10323
10324 case bfd_reloc_outofrange:
10325 msg = NULL;
10326 if (jal_reloc_p (howto->type))
10327 msg = (cross_mode_jump_p
10328 ? _("cannot convert a jump to JALX "
10329 "for a non-word-aligned address")
10330 : (howto->type == R_MIPS16_26
10331 ? _("jump to a non-word-aligned address")
10332 : _("jump to a non-instruction-aligned address")));
10333 else if (b_reloc_p (howto->type))
10334 msg = (cross_mode_jump_p
10335 ? _("cannot convert a branch to JALX "
10336 "for a non-word-aligned address")
10337 : _("branch to a non-instruction-aligned address"));
10338 else if (aligned_pcrel_reloc_p (howto->type))
10339 msg = _("PC-relative load from unaligned address");
10340 if (msg)
10341 {
10342 info->callbacks->einfo
10343 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10344 break;
10345 }
10346 /* Fall through. */
10347
10348 default:
10349 abort ();
10350 break;
10351 }
10352
10353 /* If we've got another relocation for the address, keep going
10354 until we reach the last one. */
10355 if (use_saved_addend_p)
10356 {
10357 addend = value;
10358 continue;
10359 }
10360
10361 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10362 /* See the comment above about using R_MIPS_64 in the 32-bit
10363 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10364 that calculated the right value. Now, however, we
10365 sign-extend the 32-bit result to 64-bits, and store it as a
10366 64-bit value. We are especially generous here in that we
10367 go to extreme lengths to support this usage on systems with
10368 only a 32-bit VMA. */
10369 {
10370 bfd_vma sign_bits;
10371 bfd_vma low_bits;
10372 bfd_vma high_bits;
10373
10374 if (value & ((bfd_vma) 1 << 31))
10375 #ifdef BFD64
10376 sign_bits = ((bfd_vma) 1 << 32) - 1;
10377 #else
10378 sign_bits = -1;
10379 #endif
10380 else
10381 sign_bits = 0;
10382
10383 /* If we don't know that we have a 64-bit type,
10384 do two separate stores. */
10385 if (bfd_big_endian (input_bfd))
10386 {
10387 /* Undo what we did above. */
10388 rel->r_offset -= 4;
10389 /* Store the sign-bits (which are most significant)
10390 first. */
10391 low_bits = sign_bits;
10392 high_bits = value;
10393 }
10394 else
10395 {
10396 low_bits = value;
10397 high_bits = sign_bits;
10398 }
10399 bfd_put_32 (input_bfd, low_bits,
10400 contents + rel->r_offset);
10401 bfd_put_32 (input_bfd, high_bits,
10402 contents + rel->r_offset + 4);
10403 continue;
10404 }
10405
10406 /* Actually perform the relocation. */
10407 if (! mips_elf_perform_relocation (info, howto, rel, value,
10408 input_bfd, input_section,
10409 contents, cross_mode_jump_p))
10410 return FALSE;
10411 }
10412
10413 return TRUE;
10414 }
10415 \f
10416 /* A function that iterates over each entry in la25_stubs and fills
10417 in the code for each one. DATA points to a mips_htab_traverse_info. */
10418
10419 static int
10420 mips_elf_create_la25_stub (void **slot, void *data)
10421 {
10422 struct mips_htab_traverse_info *hti;
10423 struct mips_elf_link_hash_table *htab;
10424 struct mips_elf_la25_stub *stub;
10425 asection *s;
10426 bfd_byte *loc;
10427 bfd_vma offset, target, target_high, target_low;
10428
10429 stub = (struct mips_elf_la25_stub *) *slot;
10430 hti = (struct mips_htab_traverse_info *) data;
10431 htab = mips_elf_hash_table (hti->info);
10432 BFD_ASSERT (htab != NULL);
10433
10434 /* Create the section contents, if we haven't already. */
10435 s = stub->stub_section;
10436 loc = s->contents;
10437 if (loc == NULL)
10438 {
10439 loc = bfd_malloc (s->size);
10440 if (loc == NULL)
10441 {
10442 hti->error = TRUE;
10443 return FALSE;
10444 }
10445 s->contents = loc;
10446 }
10447
10448 /* Work out where in the section this stub should go. */
10449 offset = stub->offset;
10450
10451 /* Work out the target address. */
10452 target = mips_elf_get_la25_target (stub, &s);
10453 target += s->output_section->vma + s->output_offset;
10454
10455 target_high = ((target + 0x8000) >> 16) & 0xffff;
10456 target_low = (target & 0xffff);
10457
10458 if (stub->stub_section != htab->strampoline)
10459 {
10460 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10461 of the section and write the two instructions at the end. */
10462 memset (loc, 0, offset);
10463 loc += offset;
10464 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10465 {
10466 bfd_put_micromips_32 (hti->output_bfd,
10467 LA25_LUI_MICROMIPS (target_high),
10468 loc);
10469 bfd_put_micromips_32 (hti->output_bfd,
10470 LA25_ADDIU_MICROMIPS (target_low),
10471 loc + 4);
10472 }
10473 else
10474 {
10475 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10476 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10477 }
10478 }
10479 else
10480 {
10481 /* This is trampoline. */
10482 loc += offset;
10483 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10484 {
10485 bfd_put_micromips_32 (hti->output_bfd,
10486 LA25_LUI_MICROMIPS (target_high), loc);
10487 bfd_put_micromips_32 (hti->output_bfd,
10488 LA25_J_MICROMIPS (target), loc + 4);
10489 bfd_put_micromips_32 (hti->output_bfd,
10490 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10491 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10492 }
10493 else
10494 {
10495 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10496 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10497 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10498 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10499 }
10500 }
10501 return TRUE;
10502 }
10503
10504 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10505 adjust it appropriately now. */
10506
10507 static void
10508 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10509 const char *name, Elf_Internal_Sym *sym)
10510 {
10511 /* The linker script takes care of providing names and values for
10512 these, but we must place them into the right sections. */
10513 static const char* const text_section_symbols[] = {
10514 "_ftext",
10515 "_etext",
10516 "__dso_displacement",
10517 "__elf_header",
10518 "__program_header_table",
10519 NULL
10520 };
10521
10522 static const char* const data_section_symbols[] = {
10523 "_fdata",
10524 "_edata",
10525 "_end",
10526 "_fbss",
10527 NULL
10528 };
10529
10530 const char* const *p;
10531 int i;
10532
10533 for (i = 0; i < 2; ++i)
10534 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10535 *p;
10536 ++p)
10537 if (strcmp (*p, name) == 0)
10538 {
10539 /* All of these symbols are given type STT_SECTION by the
10540 IRIX6 linker. */
10541 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10542 sym->st_other = STO_PROTECTED;
10543
10544 /* The IRIX linker puts these symbols in special sections. */
10545 if (i == 0)
10546 sym->st_shndx = SHN_MIPS_TEXT;
10547 else
10548 sym->st_shndx = SHN_MIPS_DATA;
10549
10550 break;
10551 }
10552 }
10553
10554 /* Finish up dynamic symbol handling. We set the contents of various
10555 dynamic sections here. */
10556
10557 bfd_boolean
10558 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10559 struct bfd_link_info *info,
10560 struct elf_link_hash_entry *h,
10561 Elf_Internal_Sym *sym)
10562 {
10563 bfd *dynobj;
10564 asection *sgot;
10565 struct mips_got_info *g, *gg;
10566 const char *name;
10567 int idx;
10568 struct mips_elf_link_hash_table *htab;
10569 struct mips_elf_link_hash_entry *hmips;
10570
10571 htab = mips_elf_hash_table (info);
10572 BFD_ASSERT (htab != NULL);
10573 dynobj = elf_hash_table (info)->dynobj;
10574 hmips = (struct mips_elf_link_hash_entry *) h;
10575
10576 BFD_ASSERT (!htab->is_vxworks);
10577
10578 if (h->plt.plist != NULL
10579 && (h->plt.plist->mips_offset != MINUS_ONE
10580 || h->plt.plist->comp_offset != MINUS_ONE))
10581 {
10582 /* We've decided to create a PLT entry for this symbol. */
10583 bfd_byte *loc;
10584 bfd_vma header_address, got_address;
10585 bfd_vma got_address_high, got_address_low, load;
10586 bfd_vma got_index;
10587 bfd_vma isa_bit;
10588
10589 got_index = h->plt.plist->gotplt_index;
10590
10591 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10592 BFD_ASSERT (h->dynindx != -1);
10593 BFD_ASSERT (htab->root.splt != NULL);
10594 BFD_ASSERT (got_index != MINUS_ONE);
10595 BFD_ASSERT (!h->def_regular);
10596
10597 /* Calculate the address of the PLT header. */
10598 isa_bit = htab->plt_header_is_comp;
10599 header_address = (htab->root.splt->output_section->vma
10600 + htab->root.splt->output_offset + isa_bit);
10601
10602 /* Calculate the address of the .got.plt entry. */
10603 got_address = (htab->root.sgotplt->output_section->vma
10604 + htab->root.sgotplt->output_offset
10605 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10606
10607 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10608 got_address_low = got_address & 0xffff;
10609
10610 /* Initially point the .got.plt entry at the PLT header. */
10611 loc = (htab->root.sgotplt->contents + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10612 if (ABI_64_P (output_bfd))
10613 bfd_put_64 (output_bfd, header_address, loc);
10614 else
10615 bfd_put_32 (output_bfd, header_address, loc);
10616
10617 /* Now handle the PLT itself. First the standard entry (the order
10618 does not matter, we just have to pick one). */
10619 if (h->plt.plist->mips_offset != MINUS_ONE)
10620 {
10621 const bfd_vma *plt_entry;
10622 bfd_vma plt_offset;
10623
10624 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10625
10626 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10627
10628 /* Find out where the .plt entry should go. */
10629 loc = htab->root.splt->contents + plt_offset;
10630
10631 /* Pick the load opcode. */
10632 load = MIPS_ELF_LOAD_WORD (output_bfd);
10633
10634 /* Fill in the PLT entry itself. */
10635
10636 if (MIPSR6_P (output_bfd))
10637 plt_entry = mipsr6_exec_plt_entry;
10638 else
10639 plt_entry = mips_exec_plt_entry;
10640 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10641 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10642 loc + 4);
10643
10644 if (! LOAD_INTERLOCKS_P (output_bfd))
10645 {
10646 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10647 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10648 }
10649 else
10650 {
10651 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10652 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10653 loc + 12);
10654 }
10655 }
10656
10657 /* Now the compressed entry. They come after any standard ones. */
10658 if (h->plt.plist->comp_offset != MINUS_ONE)
10659 {
10660 bfd_vma plt_offset;
10661
10662 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10663 + h->plt.plist->comp_offset);
10664
10665 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10666
10667 /* Find out where the .plt entry should go. */
10668 loc = htab->root.splt->contents + plt_offset;
10669
10670 /* Fill in the PLT entry itself. */
10671 if (!MICROMIPS_P (output_bfd))
10672 {
10673 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10674
10675 bfd_put_16 (output_bfd, plt_entry[0], loc);
10676 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10677 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10678 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10679 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10680 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10681 bfd_put_32 (output_bfd, got_address, loc + 12);
10682 }
10683 else if (htab->insn32)
10684 {
10685 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10686
10687 bfd_put_16 (output_bfd, plt_entry[0], loc);
10688 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10689 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10690 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10691 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10692 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10693 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10694 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10695 }
10696 else
10697 {
10698 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10699 bfd_signed_vma gotpc_offset;
10700 bfd_vma loc_address;
10701
10702 BFD_ASSERT (got_address % 4 == 0);
10703
10704 loc_address = (htab->root.splt->output_section->vma
10705 + htab->root.splt->output_offset + plt_offset);
10706 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10707
10708 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10709 if (gotpc_offset + 0x1000000 >= 0x2000000)
10710 {
10711 _bfd_error_handler
10712 /* xgettext:c-format */
10713 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
10714 "beyond the range of ADDIUPC"),
10715 output_bfd,
10716 htab->root.sgotplt->output_section,
10717 (int64_t) gotpc_offset,
10718 htab->root.splt->output_section);
10719 bfd_set_error (bfd_error_no_error);
10720 return FALSE;
10721 }
10722 bfd_put_16 (output_bfd,
10723 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10724 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10725 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10726 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10727 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10728 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10729 }
10730 }
10731
10732 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10733 mips_elf_output_dynamic_relocation (output_bfd, htab->root.srelplt,
10734 got_index - 2, h->dynindx,
10735 R_MIPS_JUMP_SLOT, got_address);
10736
10737 /* We distinguish between PLT entries and lazy-binding stubs by
10738 giving the former an st_other value of STO_MIPS_PLT. Set the
10739 flag and leave the value if there are any relocations in the
10740 binary where pointer equality matters. */
10741 sym->st_shndx = SHN_UNDEF;
10742 if (h->pointer_equality_needed)
10743 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
10744 else
10745 {
10746 sym->st_value = 0;
10747 sym->st_other = 0;
10748 }
10749 }
10750
10751 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
10752 {
10753 /* We've decided to create a lazy-binding stub. */
10754 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10755 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10756 bfd_vma stub_size = htab->function_stub_size;
10757 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
10758 bfd_vma isa_bit = micromips_p;
10759 bfd_vma stub_big_size;
10760
10761 if (!micromips_p)
10762 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
10763 else if (htab->insn32)
10764 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10765 else
10766 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
10767
10768 /* This symbol has a stub. Set it up. */
10769
10770 BFD_ASSERT (h->dynindx != -1);
10771
10772 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
10773
10774 /* Values up to 2^31 - 1 are allowed. Larger values would cause
10775 sign extension at runtime in the stub, resulting in a negative
10776 index value. */
10777 if (h->dynindx & ~0x7fffffff)
10778 return FALSE;
10779
10780 /* Fill the stub. */
10781 if (micromips_p)
10782 {
10783 idx = 0;
10784 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10785 stub + idx);
10786 idx += 4;
10787 if (htab->insn32)
10788 {
10789 bfd_put_micromips_32 (output_bfd,
10790 STUB_MOVE32_MICROMIPS, stub + idx);
10791 idx += 4;
10792 }
10793 else
10794 {
10795 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10796 idx += 2;
10797 }
10798 if (stub_size == stub_big_size)
10799 {
10800 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10801
10802 bfd_put_micromips_32 (output_bfd,
10803 STUB_LUI_MICROMIPS (dynindx_hi),
10804 stub + idx);
10805 idx += 4;
10806 }
10807 if (htab->insn32)
10808 {
10809 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
10810 stub + idx);
10811 idx += 4;
10812 }
10813 else
10814 {
10815 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
10816 idx += 2;
10817 }
10818
10819 /* If a large stub is not required and sign extension is not a
10820 problem, then use legacy code in the stub. */
10821 if (stub_size == stub_big_size)
10822 bfd_put_micromips_32 (output_bfd,
10823 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
10824 stub + idx);
10825 else if (h->dynindx & ~0x7fff)
10826 bfd_put_micromips_32 (output_bfd,
10827 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
10828 stub + idx);
10829 else
10830 bfd_put_micromips_32 (output_bfd,
10831 STUB_LI16S_MICROMIPS (output_bfd,
10832 h->dynindx),
10833 stub + idx);
10834 }
10835 else
10836 {
10837 idx = 0;
10838 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10839 idx += 4;
10840 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
10841 idx += 4;
10842 if (stub_size == stub_big_size)
10843 {
10844 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10845 stub + idx);
10846 idx += 4;
10847 }
10848 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10849 idx += 4;
10850
10851 /* If a large stub is not required and sign extension is not a
10852 problem, then use legacy code in the stub. */
10853 if (stub_size == stub_big_size)
10854 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
10855 stub + idx);
10856 else if (h->dynindx & ~0x7fff)
10857 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
10858 stub + idx);
10859 else
10860 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10861 stub + idx);
10862 }
10863
10864 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
10865 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
10866 stub, stub_size);
10867
10868 /* Mark the symbol as undefined. stub_offset != -1 occurs
10869 only for the referenced symbol. */
10870 sym->st_shndx = SHN_UNDEF;
10871
10872 /* The run-time linker uses the st_value field of the symbol
10873 to reset the global offset table entry for this external
10874 to its stub address when unlinking a shared object. */
10875 sym->st_value = (htab->sstubs->output_section->vma
10876 + htab->sstubs->output_offset
10877 + h->plt.plist->stub_offset
10878 + isa_bit);
10879 sym->st_other = other;
10880 }
10881
10882 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10883 refer to the stub, since only the stub uses the standard calling
10884 conventions. */
10885 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10886 {
10887 BFD_ASSERT (hmips->need_fn_stub);
10888 sym->st_value = (hmips->fn_stub->output_section->vma
10889 + hmips->fn_stub->output_offset);
10890 sym->st_size = hmips->fn_stub->size;
10891 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10892 }
10893
10894 BFD_ASSERT (h->dynindx != -1
10895 || h->forced_local);
10896
10897 sgot = htab->root.sgot;
10898 g = htab->got_info;
10899 BFD_ASSERT (g != NULL);
10900
10901 /* Run through the global symbol table, creating GOT entries for all
10902 the symbols that need them. */
10903 if (hmips->global_got_area != GGA_NONE)
10904 {
10905 bfd_vma offset;
10906 bfd_vma value;
10907
10908 value = sym->st_value;
10909 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
10910 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10911 }
10912
10913 if (hmips->global_got_area != GGA_NONE && g->next)
10914 {
10915 struct mips_got_entry e, *p;
10916 bfd_vma entry;
10917 bfd_vma offset;
10918
10919 gg = g;
10920
10921 e.abfd = output_bfd;
10922 e.symndx = -1;
10923 e.d.h = hmips;
10924 e.tls_type = GOT_TLS_NONE;
10925
10926 for (g = g->next; g->next != gg; g = g->next)
10927 {
10928 if (g->got_entries
10929 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10930 &e)))
10931 {
10932 offset = p->gotidx;
10933 BFD_ASSERT (offset > 0 && offset < htab->root.sgot->size);
10934 if (bfd_link_pic (info)
10935 || (elf_hash_table (info)->dynamic_sections_created
10936 && p->d.h != NULL
10937 && p->d.h->root.def_dynamic
10938 && !p->d.h->root.def_regular))
10939 {
10940 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10941 the various compatibility problems, it's easier to mock
10942 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10943 mips_elf_create_dynamic_relocation to calculate the
10944 appropriate addend. */
10945 Elf_Internal_Rela rel[3];
10946
10947 memset (rel, 0, sizeof (rel));
10948 if (ABI_64_P (output_bfd))
10949 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10950 else
10951 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10952 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10953
10954 entry = 0;
10955 if (! (mips_elf_create_dynamic_relocation
10956 (output_bfd, info, rel,
10957 e.d.h, NULL, sym->st_value, &entry, sgot)))
10958 return FALSE;
10959 }
10960 else
10961 entry = sym->st_value;
10962 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
10963 }
10964 }
10965 }
10966
10967 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10968 name = h->root.root.string;
10969 if (h == elf_hash_table (info)->hdynamic
10970 || h == elf_hash_table (info)->hgot)
10971 sym->st_shndx = SHN_ABS;
10972 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10973 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10974 {
10975 sym->st_shndx = SHN_ABS;
10976 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10977 sym->st_value = 1;
10978 }
10979 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
10980 {
10981 sym->st_shndx = SHN_ABS;
10982 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10983 sym->st_value = elf_gp (output_bfd);
10984 }
10985 else if (SGI_COMPAT (output_bfd))
10986 {
10987 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10988 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10989 {
10990 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10991 sym->st_other = STO_PROTECTED;
10992 sym->st_value = 0;
10993 sym->st_shndx = SHN_MIPS_DATA;
10994 }
10995 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10996 {
10997 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10998 sym->st_other = STO_PROTECTED;
10999 sym->st_value = mips_elf_hash_table (info)->procedure_count;
11000 sym->st_shndx = SHN_ABS;
11001 }
11002 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
11003 {
11004 if (h->type == STT_FUNC)
11005 sym->st_shndx = SHN_MIPS_TEXT;
11006 else if (h->type == STT_OBJECT)
11007 sym->st_shndx = SHN_MIPS_DATA;
11008 }
11009 }
11010
11011 /* Emit a copy reloc, if needed. */
11012 if (h->needs_copy)
11013 {
11014 asection *s;
11015 bfd_vma symval;
11016
11017 BFD_ASSERT (h->dynindx != -1);
11018 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11019
11020 s = mips_elf_rel_dyn_section (info, FALSE);
11021 symval = (h->root.u.def.section->output_section->vma
11022 + h->root.u.def.section->output_offset
11023 + h->root.u.def.value);
11024 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
11025 h->dynindx, R_MIPS_COPY, symval);
11026 }
11027
11028 /* Handle the IRIX6-specific symbols. */
11029 if (IRIX_COMPAT (output_bfd) == ict_irix6)
11030 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11031
11032 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11033 to treat compressed symbols like any other. */
11034 if (ELF_ST_IS_MIPS16 (sym->st_other))
11035 {
11036 BFD_ASSERT (sym->st_value & 1);
11037 sym->st_other -= STO_MIPS16;
11038 }
11039 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11040 {
11041 BFD_ASSERT (sym->st_value & 1);
11042 sym->st_other -= STO_MICROMIPS;
11043 }
11044
11045 return TRUE;
11046 }
11047
11048 /* Likewise, for VxWorks. */
11049
11050 bfd_boolean
11051 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11052 struct bfd_link_info *info,
11053 struct elf_link_hash_entry *h,
11054 Elf_Internal_Sym *sym)
11055 {
11056 bfd *dynobj;
11057 asection *sgot;
11058 struct mips_got_info *g;
11059 struct mips_elf_link_hash_table *htab;
11060 struct mips_elf_link_hash_entry *hmips;
11061
11062 htab = mips_elf_hash_table (info);
11063 BFD_ASSERT (htab != NULL);
11064 dynobj = elf_hash_table (info)->dynobj;
11065 hmips = (struct mips_elf_link_hash_entry *) h;
11066
11067 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
11068 {
11069 bfd_byte *loc;
11070 bfd_vma plt_address, got_address, got_offset, branch_offset;
11071 Elf_Internal_Rela rel;
11072 static const bfd_vma *plt_entry;
11073 bfd_vma gotplt_index;
11074 bfd_vma plt_offset;
11075
11076 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11077 gotplt_index = h->plt.plist->gotplt_index;
11078
11079 BFD_ASSERT (h->dynindx != -1);
11080 BFD_ASSERT (htab->root.splt != NULL);
11081 BFD_ASSERT (gotplt_index != MINUS_ONE);
11082 BFD_ASSERT (plt_offset <= htab->root.splt->size);
11083
11084 /* Calculate the address of the .plt entry. */
11085 plt_address = (htab->root.splt->output_section->vma
11086 + htab->root.splt->output_offset
11087 + plt_offset);
11088
11089 /* Calculate the address of the .got.plt entry. */
11090 got_address = (htab->root.sgotplt->output_section->vma
11091 + htab->root.sgotplt->output_offset
11092 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11093
11094 /* Calculate the offset of the .got.plt entry from
11095 _GLOBAL_OFFSET_TABLE_. */
11096 got_offset = mips_elf_gotplt_index (info, h);
11097
11098 /* Calculate the offset for the branch at the start of the PLT
11099 entry. The branch jumps to the beginning of .plt. */
11100 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11101
11102 /* Fill in the initial value of the .got.plt entry. */
11103 bfd_put_32 (output_bfd, plt_address,
11104 (htab->root.sgotplt->contents
11105 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11106
11107 /* Find out where the .plt entry should go. */
11108 loc = htab->root.splt->contents + plt_offset;
11109
11110 if (bfd_link_pic (info))
11111 {
11112 plt_entry = mips_vxworks_shared_plt_entry;
11113 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11114 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11115 }
11116 else
11117 {
11118 bfd_vma got_address_high, got_address_low;
11119
11120 plt_entry = mips_vxworks_exec_plt_entry;
11121 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11122 got_address_low = got_address & 0xffff;
11123
11124 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11125 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11126 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11127 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11128 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11129 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11130 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11131 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11132
11133 loc = (htab->srelplt2->contents
11134 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11135
11136 /* Emit a relocation for the .got.plt entry. */
11137 rel.r_offset = got_address;
11138 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11139 rel.r_addend = plt_offset;
11140 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11141
11142 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11143 loc += sizeof (Elf32_External_Rela);
11144 rel.r_offset = plt_address + 8;
11145 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11146 rel.r_addend = got_offset;
11147 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11148
11149 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11150 loc += sizeof (Elf32_External_Rela);
11151 rel.r_offset += 4;
11152 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11153 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11154 }
11155
11156 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11157 loc = (htab->root.srelplt->contents
11158 + gotplt_index * sizeof (Elf32_External_Rela));
11159 rel.r_offset = got_address;
11160 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11161 rel.r_addend = 0;
11162 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11163
11164 if (!h->def_regular)
11165 sym->st_shndx = SHN_UNDEF;
11166 }
11167
11168 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11169
11170 sgot = htab->root.sgot;
11171 g = htab->got_info;
11172 BFD_ASSERT (g != NULL);
11173
11174 /* See if this symbol has an entry in the GOT. */
11175 if (hmips->global_got_area != GGA_NONE)
11176 {
11177 bfd_vma offset;
11178 Elf_Internal_Rela outrel;
11179 bfd_byte *loc;
11180 asection *s;
11181
11182 /* Install the symbol value in the GOT. */
11183 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11184 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11185
11186 /* Add a dynamic relocation for it. */
11187 s = mips_elf_rel_dyn_section (info, FALSE);
11188 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11189 outrel.r_offset = (sgot->output_section->vma
11190 + sgot->output_offset
11191 + offset);
11192 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11193 outrel.r_addend = 0;
11194 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11195 }
11196
11197 /* Emit a copy reloc, if needed. */
11198 if (h->needs_copy)
11199 {
11200 Elf_Internal_Rela rel;
11201 asection *srel;
11202 bfd_byte *loc;
11203
11204 BFD_ASSERT (h->dynindx != -1);
11205
11206 rel.r_offset = (h->root.u.def.section->output_section->vma
11207 + h->root.u.def.section->output_offset
11208 + h->root.u.def.value);
11209 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11210 rel.r_addend = 0;
11211 if (h->root.u.def.section == htab->root.sdynrelro)
11212 srel = htab->root.sreldynrelro;
11213 else
11214 srel = htab->root.srelbss;
11215 loc = srel->contents + srel->reloc_count * sizeof (Elf32_External_Rela);
11216 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11217 ++srel->reloc_count;
11218 }
11219
11220 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11221 if (ELF_ST_IS_COMPRESSED (sym->st_other))
11222 sym->st_value &= ~1;
11223
11224 return TRUE;
11225 }
11226
11227 /* Write out a plt0 entry to the beginning of .plt. */
11228
11229 static bfd_boolean
11230 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11231 {
11232 bfd_byte *loc;
11233 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11234 static const bfd_vma *plt_entry;
11235 struct mips_elf_link_hash_table *htab;
11236
11237 htab = mips_elf_hash_table (info);
11238 BFD_ASSERT (htab != NULL);
11239
11240 if (ABI_64_P (output_bfd))
11241 plt_entry = mips_n64_exec_plt0_entry;
11242 else if (ABI_N32_P (output_bfd))
11243 plt_entry = mips_n32_exec_plt0_entry;
11244 else if (!htab->plt_header_is_comp)
11245 plt_entry = mips_o32_exec_plt0_entry;
11246 else if (htab->insn32)
11247 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11248 else
11249 plt_entry = micromips_o32_exec_plt0_entry;
11250
11251 /* Calculate the value of .got.plt. */
11252 gotplt_value = (htab->root.sgotplt->output_section->vma
11253 + htab->root.sgotplt->output_offset);
11254 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11255 gotplt_value_low = gotplt_value & 0xffff;
11256
11257 /* The PLT sequence is not safe for N64 if .got.plt's address can
11258 not be loaded in two instructions. */
11259 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
11260 || ~(gotplt_value | 0x7fffffff) == 0);
11261
11262 /* Install the PLT header. */
11263 loc = htab->root.splt->contents;
11264 if (plt_entry == micromips_o32_exec_plt0_entry)
11265 {
11266 bfd_vma gotpc_offset;
11267 bfd_vma loc_address;
11268 size_t i;
11269
11270 BFD_ASSERT (gotplt_value % 4 == 0);
11271
11272 loc_address = (htab->root.splt->output_section->vma
11273 + htab->root.splt->output_offset);
11274 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11275
11276 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11277 if (gotpc_offset + 0x1000000 >= 0x2000000)
11278 {
11279 _bfd_error_handler
11280 /* xgettext:c-format */
11281 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
11282 "beyond the range of ADDIUPC"),
11283 output_bfd,
11284 htab->root.sgotplt->output_section,
11285 (int64_t) gotpc_offset,
11286 htab->root.splt->output_section);
11287 bfd_set_error (bfd_error_no_error);
11288 return FALSE;
11289 }
11290 bfd_put_16 (output_bfd,
11291 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11292 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11293 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11294 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11295 }
11296 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11297 {
11298 size_t i;
11299
11300 bfd_put_16 (output_bfd, plt_entry[0], loc);
11301 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11302 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11303 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11304 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11305 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11306 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11307 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11308 }
11309 else
11310 {
11311 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11312 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11313 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11314 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11315 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11316 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11317 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11318 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11319 }
11320
11321 return TRUE;
11322 }
11323
11324 /* Install the PLT header for a VxWorks executable and finalize the
11325 contents of .rela.plt.unloaded. */
11326
11327 static void
11328 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11329 {
11330 Elf_Internal_Rela rela;
11331 bfd_byte *loc;
11332 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11333 static const bfd_vma *plt_entry;
11334 struct mips_elf_link_hash_table *htab;
11335
11336 htab = mips_elf_hash_table (info);
11337 BFD_ASSERT (htab != NULL);
11338
11339 plt_entry = mips_vxworks_exec_plt0_entry;
11340
11341 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11342 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11343 + htab->root.hgot->root.u.def.section->output_offset
11344 + htab->root.hgot->root.u.def.value);
11345
11346 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11347 got_value_low = got_value & 0xffff;
11348
11349 /* Calculate the address of the PLT header. */
11350 plt_address = (htab->root.splt->output_section->vma
11351 + htab->root.splt->output_offset);
11352
11353 /* Install the PLT header. */
11354 loc = htab->root.splt->contents;
11355 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11356 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11357 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11358 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11359 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11360 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11361
11362 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11363 loc = htab->srelplt2->contents;
11364 rela.r_offset = plt_address;
11365 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11366 rela.r_addend = 0;
11367 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11368 loc += sizeof (Elf32_External_Rela);
11369
11370 /* Output the relocation for the following addiu of
11371 %lo(_GLOBAL_OFFSET_TABLE_). */
11372 rela.r_offset += 4;
11373 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11374 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11375 loc += sizeof (Elf32_External_Rela);
11376
11377 /* Fix up the remaining relocations. They may have the wrong
11378 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11379 in which symbols were output. */
11380 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11381 {
11382 Elf_Internal_Rela rel;
11383
11384 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11385 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11386 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11387 loc += sizeof (Elf32_External_Rela);
11388
11389 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11390 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11391 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11392 loc += sizeof (Elf32_External_Rela);
11393
11394 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11395 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11396 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11397 loc += sizeof (Elf32_External_Rela);
11398 }
11399 }
11400
11401 /* Install the PLT header for a VxWorks shared library. */
11402
11403 static void
11404 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11405 {
11406 unsigned int i;
11407 struct mips_elf_link_hash_table *htab;
11408
11409 htab = mips_elf_hash_table (info);
11410 BFD_ASSERT (htab != NULL);
11411
11412 /* We just need to copy the entry byte-by-byte. */
11413 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11414 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11415 htab->root.splt->contents + i * 4);
11416 }
11417
11418 /* Finish up the dynamic sections. */
11419
11420 bfd_boolean
11421 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11422 struct bfd_link_info *info)
11423 {
11424 bfd *dynobj;
11425 asection *sdyn;
11426 asection *sgot;
11427 struct mips_got_info *gg, *g;
11428 struct mips_elf_link_hash_table *htab;
11429
11430 htab = mips_elf_hash_table (info);
11431 BFD_ASSERT (htab != NULL);
11432
11433 dynobj = elf_hash_table (info)->dynobj;
11434
11435 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11436
11437 sgot = htab->root.sgot;
11438 gg = htab->got_info;
11439
11440 if (elf_hash_table (info)->dynamic_sections_created)
11441 {
11442 bfd_byte *b;
11443 int dyn_to_skip = 0, dyn_skipped = 0;
11444
11445 BFD_ASSERT (sdyn != NULL);
11446 BFD_ASSERT (gg != NULL);
11447
11448 g = mips_elf_bfd_got (output_bfd, FALSE);
11449 BFD_ASSERT (g != NULL);
11450
11451 for (b = sdyn->contents;
11452 b < sdyn->contents + sdyn->size;
11453 b += MIPS_ELF_DYN_SIZE (dynobj))
11454 {
11455 Elf_Internal_Dyn dyn;
11456 const char *name;
11457 size_t elemsize;
11458 asection *s;
11459 bfd_boolean swap_out_p;
11460
11461 /* Read in the current dynamic entry. */
11462 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11463
11464 /* Assume that we're going to modify it and write it out. */
11465 swap_out_p = TRUE;
11466
11467 switch (dyn.d_tag)
11468 {
11469 case DT_RELENT:
11470 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11471 break;
11472
11473 case DT_RELAENT:
11474 BFD_ASSERT (htab->is_vxworks);
11475 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11476 break;
11477
11478 case DT_STRSZ:
11479 /* Rewrite DT_STRSZ. */
11480 dyn.d_un.d_val =
11481 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11482 break;
11483
11484 case DT_PLTGOT:
11485 s = htab->root.sgot;
11486 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11487 break;
11488
11489 case DT_MIPS_PLTGOT:
11490 s = htab->root.sgotplt;
11491 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11492 break;
11493
11494 case DT_MIPS_RLD_VERSION:
11495 dyn.d_un.d_val = 1; /* XXX */
11496 break;
11497
11498 case DT_MIPS_FLAGS:
11499 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11500 break;
11501
11502 case DT_MIPS_TIME_STAMP:
11503 {
11504 time_t t;
11505 time (&t);
11506 dyn.d_un.d_val = t;
11507 }
11508 break;
11509
11510 case DT_MIPS_ICHECKSUM:
11511 /* XXX FIXME: */
11512 swap_out_p = FALSE;
11513 break;
11514
11515 case DT_MIPS_IVERSION:
11516 /* XXX FIXME: */
11517 swap_out_p = FALSE;
11518 break;
11519
11520 case DT_MIPS_BASE_ADDRESS:
11521 s = output_bfd->sections;
11522 BFD_ASSERT (s != NULL);
11523 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11524 break;
11525
11526 case DT_MIPS_LOCAL_GOTNO:
11527 dyn.d_un.d_val = g->local_gotno;
11528 break;
11529
11530 case DT_MIPS_UNREFEXTNO:
11531 /* The index into the dynamic symbol table which is the
11532 entry of the first external symbol that is not
11533 referenced within the same object. */
11534 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11535 break;
11536
11537 case DT_MIPS_GOTSYM:
11538 if (htab->global_gotsym)
11539 {
11540 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11541 break;
11542 }
11543 /* In case if we don't have global got symbols we default
11544 to setting DT_MIPS_GOTSYM to the same value as
11545 DT_MIPS_SYMTABNO. */
11546 /* Fall through. */
11547
11548 case DT_MIPS_SYMTABNO:
11549 name = ".dynsym";
11550 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11551 s = bfd_get_linker_section (dynobj, name);
11552
11553 if (s != NULL)
11554 dyn.d_un.d_val = s->size / elemsize;
11555 else
11556 dyn.d_un.d_val = 0;
11557 break;
11558
11559 case DT_MIPS_HIPAGENO:
11560 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11561 break;
11562
11563 case DT_MIPS_RLD_MAP:
11564 {
11565 struct elf_link_hash_entry *h;
11566 h = mips_elf_hash_table (info)->rld_symbol;
11567 if (!h)
11568 {
11569 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11570 swap_out_p = FALSE;
11571 break;
11572 }
11573 s = h->root.u.def.section;
11574
11575 /* The MIPS_RLD_MAP tag stores the absolute address of the
11576 debug pointer. */
11577 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11578 + h->root.u.def.value);
11579 }
11580 break;
11581
11582 case DT_MIPS_RLD_MAP_REL:
11583 {
11584 struct elf_link_hash_entry *h;
11585 bfd_vma dt_addr, rld_addr;
11586 h = mips_elf_hash_table (info)->rld_symbol;
11587 if (!h)
11588 {
11589 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11590 swap_out_p = FALSE;
11591 break;
11592 }
11593 s = h->root.u.def.section;
11594
11595 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11596 pointer, relative to the address of the tag. */
11597 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
11598 + (b - sdyn->contents));
11599 rld_addr = (s->output_section->vma + s->output_offset
11600 + h->root.u.def.value);
11601 dyn.d_un.d_ptr = rld_addr - dt_addr;
11602 }
11603 break;
11604
11605 case DT_MIPS_OPTIONS:
11606 s = (bfd_get_section_by_name
11607 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11608 dyn.d_un.d_ptr = s->vma;
11609 break;
11610
11611 case DT_PLTREL:
11612 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11613 if (htab->is_vxworks)
11614 dyn.d_un.d_val = DT_RELA;
11615 else
11616 dyn.d_un.d_val = DT_REL;
11617 break;
11618
11619 case DT_PLTRELSZ:
11620 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11621 dyn.d_un.d_val = htab->root.srelplt->size;
11622 break;
11623
11624 case DT_JMPREL:
11625 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11626 dyn.d_un.d_ptr = (htab->root.srelplt->output_section->vma
11627 + htab->root.srelplt->output_offset);
11628 break;
11629
11630 case DT_TEXTREL:
11631 /* If we didn't need any text relocations after all, delete
11632 the dynamic tag. */
11633 if (!(info->flags & DF_TEXTREL))
11634 {
11635 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11636 swap_out_p = FALSE;
11637 }
11638 break;
11639
11640 case DT_FLAGS:
11641 /* If we didn't need any text relocations after all, clear
11642 DF_TEXTREL from DT_FLAGS. */
11643 if (!(info->flags & DF_TEXTREL))
11644 dyn.d_un.d_val &= ~DF_TEXTREL;
11645 else
11646 swap_out_p = FALSE;
11647 break;
11648
11649 default:
11650 swap_out_p = FALSE;
11651 if (htab->is_vxworks
11652 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11653 swap_out_p = TRUE;
11654 break;
11655 }
11656
11657 if (swap_out_p || dyn_skipped)
11658 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11659 (dynobj, &dyn, b - dyn_skipped);
11660
11661 if (dyn_to_skip)
11662 {
11663 dyn_skipped += dyn_to_skip;
11664 dyn_to_skip = 0;
11665 }
11666 }
11667
11668 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11669 if (dyn_skipped > 0)
11670 memset (b - dyn_skipped, 0, dyn_skipped);
11671 }
11672
11673 if (sgot != NULL && sgot->size > 0
11674 && !bfd_is_abs_section (sgot->output_section))
11675 {
11676 if (htab->is_vxworks)
11677 {
11678 /* The first entry of the global offset table points to the
11679 ".dynamic" section. The second is initialized by the
11680 loader and contains the shared library identifier.
11681 The third is also initialized by the loader and points
11682 to the lazy resolution stub. */
11683 MIPS_ELF_PUT_WORD (output_bfd,
11684 sdyn->output_offset + sdyn->output_section->vma,
11685 sgot->contents);
11686 MIPS_ELF_PUT_WORD (output_bfd, 0,
11687 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11688 MIPS_ELF_PUT_WORD (output_bfd, 0,
11689 sgot->contents
11690 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11691 }
11692 else
11693 {
11694 /* The first entry of the global offset table will be filled at
11695 runtime. The second entry will be used by some runtime loaders.
11696 This isn't the case of IRIX rld. */
11697 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
11698 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11699 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11700 }
11701
11702 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11703 = MIPS_ELF_GOT_SIZE (output_bfd);
11704 }
11705
11706 /* Generate dynamic relocations for the non-primary gots. */
11707 if (gg != NULL && gg->next)
11708 {
11709 Elf_Internal_Rela rel[3];
11710 bfd_vma addend = 0;
11711
11712 memset (rel, 0, sizeof (rel));
11713 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11714
11715 for (g = gg->next; g->next != gg; g = g->next)
11716 {
11717 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
11718 + g->next->tls_gotno;
11719
11720 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
11721 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11722 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11723 sgot->contents
11724 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11725
11726 if (! bfd_link_pic (info))
11727 continue;
11728
11729 for (; got_index < g->local_gotno; got_index++)
11730 {
11731 if (got_index >= g->assigned_low_gotno
11732 && got_index <= g->assigned_high_gotno)
11733 continue;
11734
11735 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
11736 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
11737 if (!(mips_elf_create_dynamic_relocation
11738 (output_bfd, info, rel, NULL,
11739 bfd_abs_section_ptr,
11740 0, &addend, sgot)))
11741 return FALSE;
11742 BFD_ASSERT (addend == 0);
11743 }
11744 }
11745 }
11746
11747 /* The generation of dynamic relocations for the non-primary gots
11748 adds more dynamic relocations. We cannot count them until
11749 here. */
11750
11751 if (elf_hash_table (info)->dynamic_sections_created)
11752 {
11753 bfd_byte *b;
11754 bfd_boolean swap_out_p;
11755
11756 BFD_ASSERT (sdyn != NULL);
11757
11758 for (b = sdyn->contents;
11759 b < sdyn->contents + sdyn->size;
11760 b += MIPS_ELF_DYN_SIZE (dynobj))
11761 {
11762 Elf_Internal_Dyn dyn;
11763 asection *s;
11764
11765 /* Read in the current dynamic entry. */
11766 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11767
11768 /* Assume that we're going to modify it and write it out. */
11769 swap_out_p = TRUE;
11770
11771 switch (dyn.d_tag)
11772 {
11773 case DT_RELSZ:
11774 /* Reduce DT_RELSZ to account for any relocations we
11775 decided not to make. This is for the n64 irix rld,
11776 which doesn't seem to apply any relocations if there
11777 are trailing null entries. */
11778 s = mips_elf_rel_dyn_section (info, FALSE);
11779 dyn.d_un.d_val = (s->reloc_count
11780 * (ABI_64_P (output_bfd)
11781 ? sizeof (Elf64_Mips_External_Rel)
11782 : sizeof (Elf32_External_Rel)));
11783 /* Adjust the section size too. Tools like the prelinker
11784 can reasonably expect the values to the same. */
11785 elf_section_data (s->output_section)->this_hdr.sh_size
11786 = dyn.d_un.d_val;
11787 break;
11788
11789 default:
11790 swap_out_p = FALSE;
11791 break;
11792 }
11793
11794 if (swap_out_p)
11795 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11796 (dynobj, &dyn, b);
11797 }
11798 }
11799
11800 {
11801 asection *s;
11802 Elf32_compact_rel cpt;
11803
11804 if (SGI_COMPAT (output_bfd))
11805 {
11806 /* Write .compact_rel section out. */
11807 s = bfd_get_linker_section (dynobj, ".compact_rel");
11808 if (s != NULL)
11809 {
11810 cpt.id1 = 1;
11811 cpt.num = s->reloc_count;
11812 cpt.id2 = 2;
11813 cpt.offset = (s->output_section->filepos
11814 + sizeof (Elf32_External_compact_rel));
11815 cpt.reserved0 = 0;
11816 cpt.reserved1 = 0;
11817 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
11818 ((Elf32_External_compact_rel *)
11819 s->contents));
11820
11821 /* Clean up a dummy stub function entry in .text. */
11822 if (htab->sstubs != NULL)
11823 {
11824 file_ptr dummy_offset;
11825
11826 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
11827 dummy_offset = htab->sstubs->size - htab->function_stub_size;
11828 memset (htab->sstubs->contents + dummy_offset, 0,
11829 htab->function_stub_size);
11830 }
11831 }
11832 }
11833
11834 /* The psABI says that the dynamic relocations must be sorted in
11835 increasing order of r_symndx. The VxWorks EABI doesn't require
11836 this, and because the code below handles REL rather than RELA
11837 relocations, using it for VxWorks would be outright harmful. */
11838 if (!htab->is_vxworks)
11839 {
11840 s = mips_elf_rel_dyn_section (info, FALSE);
11841 if (s != NULL
11842 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
11843 {
11844 reldyn_sorting_bfd = output_bfd;
11845
11846 if (ABI_64_P (output_bfd))
11847 qsort ((Elf64_External_Rel *) s->contents + 1,
11848 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
11849 sort_dynamic_relocs_64);
11850 else
11851 qsort ((Elf32_External_Rel *) s->contents + 1,
11852 s->reloc_count - 1, sizeof (Elf32_External_Rel),
11853 sort_dynamic_relocs);
11854 }
11855 }
11856 }
11857
11858 if (htab->root.splt && htab->root.splt->size > 0)
11859 {
11860 if (htab->is_vxworks)
11861 {
11862 if (bfd_link_pic (info))
11863 mips_vxworks_finish_shared_plt (output_bfd, info);
11864 else
11865 mips_vxworks_finish_exec_plt (output_bfd, info);
11866 }
11867 else
11868 {
11869 BFD_ASSERT (!bfd_link_pic (info));
11870 if (!mips_finish_exec_plt (output_bfd, info))
11871 return FALSE;
11872 }
11873 }
11874 return TRUE;
11875 }
11876
11877
11878 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
11879
11880 static void
11881 mips_set_isa_flags (bfd *abfd)
11882 {
11883 flagword val;
11884
11885 switch (bfd_get_mach (abfd))
11886 {
11887 default:
11888 case bfd_mach_mips3000:
11889 val = E_MIPS_ARCH_1;
11890 break;
11891
11892 case bfd_mach_mips3900:
11893 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
11894 break;
11895
11896 case bfd_mach_mips6000:
11897 val = E_MIPS_ARCH_2;
11898 break;
11899
11900 case bfd_mach_mips4010:
11901 val = E_MIPS_ARCH_2 | E_MIPS_MACH_4010;
11902 break;
11903
11904 case bfd_mach_mips4000:
11905 case bfd_mach_mips4300:
11906 case bfd_mach_mips4400:
11907 case bfd_mach_mips4600:
11908 val = E_MIPS_ARCH_3;
11909 break;
11910
11911 case bfd_mach_mips4100:
11912 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
11913 break;
11914
11915 case bfd_mach_mips4111:
11916 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
11917 break;
11918
11919 case bfd_mach_mips4120:
11920 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
11921 break;
11922
11923 case bfd_mach_mips4650:
11924 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
11925 break;
11926
11927 case bfd_mach_mips5400:
11928 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
11929 break;
11930
11931 case bfd_mach_mips5500:
11932 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
11933 break;
11934
11935 case bfd_mach_mips5900:
11936 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
11937 break;
11938
11939 case bfd_mach_mips9000:
11940 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
11941 break;
11942
11943 case bfd_mach_mips5000:
11944 case bfd_mach_mips7000:
11945 case bfd_mach_mips8000:
11946 case bfd_mach_mips10000:
11947 case bfd_mach_mips12000:
11948 case bfd_mach_mips14000:
11949 case bfd_mach_mips16000:
11950 val = E_MIPS_ARCH_4;
11951 break;
11952
11953 case bfd_mach_mips5:
11954 val = E_MIPS_ARCH_5;
11955 break;
11956
11957 case bfd_mach_mips_loongson_2e:
11958 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
11959 break;
11960
11961 case bfd_mach_mips_loongson_2f:
11962 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
11963 break;
11964
11965 case bfd_mach_mips_sb1:
11966 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
11967 break;
11968
11969 case bfd_mach_mips_loongson_3a:
11970 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A;
11971 break;
11972
11973 case bfd_mach_mips_octeon:
11974 case bfd_mach_mips_octeonp:
11975 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
11976 break;
11977
11978 case bfd_mach_mips_octeon3:
11979 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
11980 break;
11981
11982 case bfd_mach_mips_xlr:
11983 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
11984 break;
11985
11986 case bfd_mach_mips_octeon2:
11987 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
11988 break;
11989
11990 case bfd_mach_mipsisa32:
11991 val = E_MIPS_ARCH_32;
11992 break;
11993
11994 case bfd_mach_mipsisa64:
11995 val = E_MIPS_ARCH_64;
11996 break;
11997
11998 case bfd_mach_mipsisa32r2:
11999 case bfd_mach_mipsisa32r3:
12000 case bfd_mach_mipsisa32r5:
12001 val = E_MIPS_ARCH_32R2;
12002 break;
12003
12004 case bfd_mach_mips_interaptiv_mr2:
12005 val = E_MIPS_ARCH_32R2 | E_MIPS_MACH_IAMR2;
12006 break;
12007
12008 case bfd_mach_mipsisa64r2:
12009 case bfd_mach_mipsisa64r3:
12010 case bfd_mach_mipsisa64r5:
12011 val = E_MIPS_ARCH_64R2;
12012 break;
12013
12014 case bfd_mach_mipsisa32r6:
12015 val = E_MIPS_ARCH_32R6;
12016 break;
12017
12018 case bfd_mach_mipsisa64r6:
12019 val = E_MIPS_ARCH_64R6;
12020 break;
12021 }
12022 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12023 elf_elfheader (abfd)->e_flags |= val;
12024
12025 }
12026
12027
12028 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12029 Don't do so for code sections. We want to keep ordering of HI16/LO16
12030 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12031 relocs to be sorted. */
12032
12033 bfd_boolean
12034 _bfd_mips_elf_sort_relocs_p (asection *sec)
12035 {
12036 return (sec->flags & SEC_CODE) == 0;
12037 }
12038
12039
12040 /* The final processing done just before writing out a MIPS ELF object
12041 file. This gets the MIPS architecture right based on the machine
12042 number. This is used by both the 32-bit and the 64-bit ABI. */
12043
12044 void
12045 _bfd_mips_elf_final_write_processing (bfd *abfd,
12046 bfd_boolean linker ATTRIBUTE_UNUSED)
12047 {
12048 unsigned int i;
12049 Elf_Internal_Shdr **hdrpp;
12050 const char *name;
12051 asection *sec;
12052
12053 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12054 is nonzero. This is for compatibility with old objects, which used
12055 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12056 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12057 mips_set_isa_flags (abfd);
12058
12059 /* Set the sh_info field for .gptab sections and other appropriate
12060 info for each special section. */
12061 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12062 i < elf_numsections (abfd);
12063 i++, hdrpp++)
12064 {
12065 switch ((*hdrpp)->sh_type)
12066 {
12067 case SHT_MIPS_MSYM:
12068 case SHT_MIPS_LIBLIST:
12069 sec = bfd_get_section_by_name (abfd, ".dynstr");
12070 if (sec != NULL)
12071 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12072 break;
12073
12074 case SHT_MIPS_GPTAB:
12075 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12076 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12077 BFD_ASSERT (name != NULL
12078 && CONST_STRNEQ (name, ".gptab."));
12079 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12080 BFD_ASSERT (sec != NULL);
12081 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12082 break;
12083
12084 case SHT_MIPS_CONTENT:
12085 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12086 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12087 BFD_ASSERT (name != NULL
12088 && CONST_STRNEQ (name, ".MIPS.content"));
12089 sec = bfd_get_section_by_name (abfd,
12090 name + sizeof ".MIPS.content" - 1);
12091 BFD_ASSERT (sec != NULL);
12092 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12093 break;
12094
12095 case SHT_MIPS_SYMBOL_LIB:
12096 sec = bfd_get_section_by_name (abfd, ".dynsym");
12097 if (sec != NULL)
12098 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12099 sec = bfd_get_section_by_name (abfd, ".liblist");
12100 if (sec != NULL)
12101 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12102 break;
12103
12104 case SHT_MIPS_EVENTS:
12105 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12106 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12107 BFD_ASSERT (name != NULL);
12108 if (CONST_STRNEQ (name, ".MIPS.events"))
12109 sec = bfd_get_section_by_name (abfd,
12110 name + sizeof ".MIPS.events" - 1);
12111 else
12112 {
12113 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
12114 sec = bfd_get_section_by_name (abfd,
12115 (name
12116 + sizeof ".MIPS.post_rel" - 1));
12117 }
12118 BFD_ASSERT (sec != NULL);
12119 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12120 break;
12121
12122 }
12123 }
12124 }
12125 \f
12126 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12127 segments. */
12128
12129 int
12130 _bfd_mips_elf_additional_program_headers (bfd *abfd,
12131 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12132 {
12133 asection *s;
12134 int ret = 0;
12135
12136 /* See if we need a PT_MIPS_REGINFO segment. */
12137 s = bfd_get_section_by_name (abfd, ".reginfo");
12138 if (s && (s->flags & SEC_LOAD))
12139 ++ret;
12140
12141 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12142 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12143 ++ret;
12144
12145 /* See if we need a PT_MIPS_OPTIONS segment. */
12146 if (IRIX_COMPAT (abfd) == ict_irix6
12147 && bfd_get_section_by_name (abfd,
12148 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12149 ++ret;
12150
12151 /* See if we need a PT_MIPS_RTPROC segment. */
12152 if (IRIX_COMPAT (abfd) == ict_irix5
12153 && bfd_get_section_by_name (abfd, ".dynamic")
12154 && bfd_get_section_by_name (abfd, ".mdebug"))
12155 ++ret;
12156
12157 /* Allocate a PT_NULL header in dynamic objects. See
12158 _bfd_mips_elf_modify_segment_map for details. */
12159 if (!SGI_COMPAT (abfd)
12160 && bfd_get_section_by_name (abfd, ".dynamic"))
12161 ++ret;
12162
12163 return ret;
12164 }
12165
12166 /* Modify the segment map for an IRIX5 executable. */
12167
12168 bfd_boolean
12169 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12170 struct bfd_link_info *info)
12171 {
12172 asection *s;
12173 struct elf_segment_map *m, **pm;
12174 bfd_size_type amt;
12175
12176 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12177 segment. */
12178 s = bfd_get_section_by_name (abfd, ".reginfo");
12179 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12180 {
12181 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12182 if (m->p_type == PT_MIPS_REGINFO)
12183 break;
12184 if (m == NULL)
12185 {
12186 amt = sizeof *m;
12187 m = bfd_zalloc (abfd, amt);
12188 if (m == NULL)
12189 return FALSE;
12190
12191 m->p_type = PT_MIPS_REGINFO;
12192 m->count = 1;
12193 m->sections[0] = s;
12194
12195 /* We want to put it after the PHDR and INTERP segments. */
12196 pm = &elf_seg_map (abfd);
12197 while (*pm != NULL
12198 && ((*pm)->p_type == PT_PHDR
12199 || (*pm)->p_type == PT_INTERP))
12200 pm = &(*pm)->next;
12201
12202 m->next = *pm;
12203 *pm = m;
12204 }
12205 }
12206
12207 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12208 segment. */
12209 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12210 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12211 {
12212 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12213 if (m->p_type == PT_MIPS_ABIFLAGS)
12214 break;
12215 if (m == NULL)
12216 {
12217 amt = sizeof *m;
12218 m = bfd_zalloc (abfd, amt);
12219 if (m == NULL)
12220 return FALSE;
12221
12222 m->p_type = PT_MIPS_ABIFLAGS;
12223 m->count = 1;
12224 m->sections[0] = s;
12225
12226 /* We want to put it after the PHDR and INTERP segments. */
12227 pm = &elf_seg_map (abfd);
12228 while (*pm != NULL
12229 && ((*pm)->p_type == PT_PHDR
12230 || (*pm)->p_type == PT_INTERP))
12231 pm = &(*pm)->next;
12232
12233 m->next = *pm;
12234 *pm = m;
12235 }
12236 }
12237
12238 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12239 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12240 PT_MIPS_OPTIONS segment immediately following the program header
12241 table. */
12242 if (NEWABI_P (abfd)
12243 /* On non-IRIX6 new abi, we'll have already created a segment
12244 for this section, so don't create another. I'm not sure this
12245 is not also the case for IRIX 6, but I can't test it right
12246 now. */
12247 && IRIX_COMPAT (abfd) == ict_irix6)
12248 {
12249 for (s = abfd->sections; s; s = s->next)
12250 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12251 break;
12252
12253 if (s)
12254 {
12255 struct elf_segment_map *options_segment;
12256
12257 pm = &elf_seg_map (abfd);
12258 while (*pm != NULL
12259 && ((*pm)->p_type == PT_PHDR
12260 || (*pm)->p_type == PT_INTERP))
12261 pm = &(*pm)->next;
12262
12263 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12264 {
12265 amt = sizeof (struct elf_segment_map);
12266 options_segment = bfd_zalloc (abfd, amt);
12267 options_segment->next = *pm;
12268 options_segment->p_type = PT_MIPS_OPTIONS;
12269 options_segment->p_flags = PF_R;
12270 options_segment->p_flags_valid = TRUE;
12271 options_segment->count = 1;
12272 options_segment->sections[0] = s;
12273 *pm = options_segment;
12274 }
12275 }
12276 }
12277 else
12278 {
12279 if (IRIX_COMPAT (abfd) == ict_irix5)
12280 {
12281 /* If there are .dynamic and .mdebug sections, we make a room
12282 for the RTPROC header. FIXME: Rewrite without section names. */
12283 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12284 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12285 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12286 {
12287 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12288 if (m->p_type == PT_MIPS_RTPROC)
12289 break;
12290 if (m == NULL)
12291 {
12292 amt = sizeof *m;
12293 m = bfd_zalloc (abfd, amt);
12294 if (m == NULL)
12295 return FALSE;
12296
12297 m->p_type = PT_MIPS_RTPROC;
12298
12299 s = bfd_get_section_by_name (abfd, ".rtproc");
12300 if (s == NULL)
12301 {
12302 m->count = 0;
12303 m->p_flags = 0;
12304 m->p_flags_valid = 1;
12305 }
12306 else
12307 {
12308 m->count = 1;
12309 m->sections[0] = s;
12310 }
12311
12312 /* We want to put it after the DYNAMIC segment. */
12313 pm = &elf_seg_map (abfd);
12314 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12315 pm = &(*pm)->next;
12316 if (*pm != NULL)
12317 pm = &(*pm)->next;
12318
12319 m->next = *pm;
12320 *pm = m;
12321 }
12322 }
12323 }
12324 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12325 .dynstr, .dynsym, and .hash sections, and everything in
12326 between. */
12327 for (pm = &elf_seg_map (abfd); *pm != NULL;
12328 pm = &(*pm)->next)
12329 if ((*pm)->p_type == PT_DYNAMIC)
12330 break;
12331 m = *pm;
12332 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12333 glibc's dynamic linker has traditionally derived the number of
12334 tags from the p_filesz field, and sometimes allocates stack
12335 arrays of that size. An overly-big PT_DYNAMIC segment can
12336 be actively harmful in such cases. Making PT_DYNAMIC contain
12337 other sections can also make life hard for the prelinker,
12338 which might move one of the other sections to a different
12339 PT_LOAD segment. */
12340 if (SGI_COMPAT (abfd)
12341 && m != NULL
12342 && m->count == 1
12343 && strcmp (m->sections[0]->name, ".dynamic") == 0)
12344 {
12345 static const char *sec_names[] =
12346 {
12347 ".dynamic", ".dynstr", ".dynsym", ".hash"
12348 };
12349 bfd_vma low, high;
12350 unsigned int i, c;
12351 struct elf_segment_map *n;
12352
12353 low = ~(bfd_vma) 0;
12354 high = 0;
12355 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12356 {
12357 s = bfd_get_section_by_name (abfd, sec_names[i]);
12358 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12359 {
12360 bfd_size_type sz;
12361
12362 if (low > s->vma)
12363 low = s->vma;
12364 sz = s->size;
12365 if (high < s->vma + sz)
12366 high = s->vma + sz;
12367 }
12368 }
12369
12370 c = 0;
12371 for (s = abfd->sections; s != NULL; s = s->next)
12372 if ((s->flags & SEC_LOAD) != 0
12373 && s->vma >= low
12374 && s->vma + s->size <= high)
12375 ++c;
12376
12377 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
12378 n = bfd_zalloc (abfd, amt);
12379 if (n == NULL)
12380 return FALSE;
12381 *n = *m;
12382 n->count = c;
12383
12384 i = 0;
12385 for (s = abfd->sections; s != NULL; s = s->next)
12386 {
12387 if ((s->flags & SEC_LOAD) != 0
12388 && s->vma >= low
12389 && s->vma + s->size <= high)
12390 {
12391 n->sections[i] = s;
12392 ++i;
12393 }
12394 }
12395
12396 *pm = n;
12397 }
12398 }
12399
12400 /* Allocate a spare program header in dynamic objects so that tools
12401 like the prelinker can add an extra PT_LOAD entry.
12402
12403 If the prelinker needs to make room for a new PT_LOAD entry, its
12404 standard procedure is to move the first (read-only) sections into
12405 the new (writable) segment. However, the MIPS ABI requires
12406 .dynamic to be in a read-only segment, and the section will often
12407 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12408
12409 Although the prelinker could in principle move .dynamic to a
12410 writable segment, it seems better to allocate a spare program
12411 header instead, and avoid the need to move any sections.
12412 There is a long tradition of allocating spare dynamic tags,
12413 so allocating a spare program header seems like a natural
12414 extension.
12415
12416 If INFO is NULL, we may be copying an already prelinked binary
12417 with objcopy or strip, so do not add this header. */
12418 if (info != NULL
12419 && !SGI_COMPAT (abfd)
12420 && bfd_get_section_by_name (abfd, ".dynamic"))
12421 {
12422 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12423 if ((*pm)->p_type == PT_NULL)
12424 break;
12425 if (*pm == NULL)
12426 {
12427 m = bfd_zalloc (abfd, sizeof (*m));
12428 if (m == NULL)
12429 return FALSE;
12430
12431 m->p_type = PT_NULL;
12432 *pm = m;
12433 }
12434 }
12435
12436 return TRUE;
12437 }
12438 \f
12439 /* Return the section that should be marked against GC for a given
12440 relocation. */
12441
12442 asection *
12443 _bfd_mips_elf_gc_mark_hook (asection *sec,
12444 struct bfd_link_info *info,
12445 Elf_Internal_Rela *rel,
12446 struct elf_link_hash_entry *h,
12447 Elf_Internal_Sym *sym)
12448 {
12449 /* ??? Do mips16 stub sections need to be handled special? */
12450
12451 if (h != NULL)
12452 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12453 {
12454 case R_MIPS_GNU_VTINHERIT:
12455 case R_MIPS_GNU_VTENTRY:
12456 return NULL;
12457 }
12458
12459 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12460 }
12461
12462 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12463
12464 bfd_boolean
12465 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12466 elf_gc_mark_hook_fn gc_mark_hook)
12467 {
12468 bfd *sub;
12469
12470 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12471
12472 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12473 {
12474 asection *o;
12475
12476 if (! is_mips_elf (sub))
12477 continue;
12478
12479 for (o = sub->sections; o != NULL; o = o->next)
12480 if (!o->gc_mark
12481 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12482 (bfd_get_section_name (sub, o)))
12483 {
12484 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12485 return FALSE;
12486 }
12487 }
12488
12489 return TRUE;
12490 }
12491 \f
12492 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12493 hiding the old indirect symbol. Process additional relocation
12494 information. Also called for weakdefs, in which case we just let
12495 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12496
12497 void
12498 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12499 struct elf_link_hash_entry *dir,
12500 struct elf_link_hash_entry *ind)
12501 {
12502 struct mips_elf_link_hash_entry *dirmips, *indmips;
12503
12504 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12505
12506 dirmips = (struct mips_elf_link_hash_entry *) dir;
12507 indmips = (struct mips_elf_link_hash_entry *) ind;
12508 /* Any absolute non-dynamic relocations against an indirect or weak
12509 definition will be against the target symbol. */
12510 if (indmips->has_static_relocs)
12511 dirmips->has_static_relocs = TRUE;
12512
12513 if (ind->root.type != bfd_link_hash_indirect)
12514 return;
12515
12516 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12517 if (indmips->readonly_reloc)
12518 dirmips->readonly_reloc = TRUE;
12519 if (indmips->no_fn_stub)
12520 dirmips->no_fn_stub = TRUE;
12521 if (indmips->fn_stub)
12522 {
12523 dirmips->fn_stub = indmips->fn_stub;
12524 indmips->fn_stub = NULL;
12525 }
12526 if (indmips->need_fn_stub)
12527 {
12528 dirmips->need_fn_stub = TRUE;
12529 indmips->need_fn_stub = FALSE;
12530 }
12531 if (indmips->call_stub)
12532 {
12533 dirmips->call_stub = indmips->call_stub;
12534 indmips->call_stub = NULL;
12535 }
12536 if (indmips->call_fp_stub)
12537 {
12538 dirmips->call_fp_stub = indmips->call_fp_stub;
12539 indmips->call_fp_stub = NULL;
12540 }
12541 if (indmips->global_got_area < dirmips->global_got_area)
12542 dirmips->global_got_area = indmips->global_got_area;
12543 if (indmips->global_got_area < GGA_NONE)
12544 indmips->global_got_area = GGA_NONE;
12545 if (indmips->has_nonpic_branches)
12546 dirmips->has_nonpic_branches = TRUE;
12547 }
12548 \f
12549 #define PDR_SIZE 32
12550
12551 bfd_boolean
12552 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12553 struct bfd_link_info *info)
12554 {
12555 asection *o;
12556 bfd_boolean ret = FALSE;
12557 unsigned char *tdata;
12558 size_t i, skip;
12559
12560 o = bfd_get_section_by_name (abfd, ".pdr");
12561 if (! o)
12562 return FALSE;
12563 if (o->size == 0)
12564 return FALSE;
12565 if (o->size % PDR_SIZE != 0)
12566 return FALSE;
12567 if (o->output_section != NULL
12568 && bfd_is_abs_section (o->output_section))
12569 return FALSE;
12570
12571 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12572 if (! tdata)
12573 return FALSE;
12574
12575 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12576 info->keep_memory);
12577 if (!cookie->rels)
12578 {
12579 free (tdata);
12580 return FALSE;
12581 }
12582
12583 cookie->rel = cookie->rels;
12584 cookie->relend = cookie->rels + o->reloc_count;
12585
12586 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12587 {
12588 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12589 {
12590 tdata[i] = 1;
12591 skip ++;
12592 }
12593 }
12594
12595 if (skip != 0)
12596 {
12597 mips_elf_section_data (o)->u.tdata = tdata;
12598 if (o->rawsize == 0)
12599 o->rawsize = o->size;
12600 o->size -= skip * PDR_SIZE;
12601 ret = TRUE;
12602 }
12603 else
12604 free (tdata);
12605
12606 if (! info->keep_memory)
12607 free (cookie->rels);
12608
12609 return ret;
12610 }
12611
12612 bfd_boolean
12613 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
12614 {
12615 if (strcmp (sec->name, ".pdr") == 0)
12616 return TRUE;
12617 return FALSE;
12618 }
12619
12620 bfd_boolean
12621 _bfd_mips_elf_write_section (bfd *output_bfd,
12622 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12623 asection *sec, bfd_byte *contents)
12624 {
12625 bfd_byte *to, *from, *end;
12626 int i;
12627
12628 if (strcmp (sec->name, ".pdr") != 0)
12629 return FALSE;
12630
12631 if (mips_elf_section_data (sec)->u.tdata == NULL)
12632 return FALSE;
12633
12634 to = contents;
12635 end = contents + sec->size;
12636 for (from = contents, i = 0;
12637 from < end;
12638 from += PDR_SIZE, i++)
12639 {
12640 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
12641 continue;
12642 if (to != from)
12643 memcpy (to, from, PDR_SIZE);
12644 to += PDR_SIZE;
12645 }
12646 bfd_set_section_contents (output_bfd, sec->output_section, contents,
12647 sec->output_offset, sec->size);
12648 return TRUE;
12649 }
12650 \f
12651 /* microMIPS code retains local labels for linker relaxation. Omit them
12652 from output by default for clarity. */
12653
12654 bfd_boolean
12655 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12656 {
12657 return _bfd_elf_is_local_label_name (abfd, sym->name);
12658 }
12659
12660 /* MIPS ELF uses a special find_nearest_line routine in order the
12661 handle the ECOFF debugging information. */
12662
12663 struct mips_elf_find_line
12664 {
12665 struct ecoff_debug_info d;
12666 struct ecoff_find_line i;
12667 };
12668
12669 bfd_boolean
12670 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
12671 asection *section, bfd_vma offset,
12672 const char **filename_ptr,
12673 const char **functionname_ptr,
12674 unsigned int *line_ptr,
12675 unsigned int *discriminator_ptr)
12676 {
12677 asection *msec;
12678
12679 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
12680 filename_ptr, functionname_ptr,
12681 line_ptr, discriminator_ptr,
12682 dwarf_debug_sections,
12683 ABI_64_P (abfd) ? 8 : 0,
12684 &elf_tdata (abfd)->dwarf2_find_line_info)
12685 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
12686 filename_ptr, functionname_ptr,
12687 line_ptr))
12688 {
12689 /* PR 22789: If the function name or filename was not found through
12690 the debug information, then try an ordinary lookup instead. */
12691 if ((functionname_ptr != NULL && *functionname_ptr == NULL)
12692 || (filename_ptr != NULL && *filename_ptr == NULL))
12693 {
12694 /* Do not override already discovered names. */
12695 if (functionname_ptr != NULL && *functionname_ptr != NULL)
12696 functionname_ptr = NULL;
12697
12698 if (filename_ptr != NULL && *filename_ptr != NULL)
12699 filename_ptr = NULL;
12700
12701 _bfd_elf_find_function (abfd, symbols, section, offset,
12702 filename_ptr, functionname_ptr);
12703 }
12704
12705 return TRUE;
12706 }
12707
12708 msec = bfd_get_section_by_name (abfd, ".mdebug");
12709 if (msec != NULL)
12710 {
12711 flagword origflags;
12712 struct mips_elf_find_line *fi;
12713 const struct ecoff_debug_swap * const swap =
12714 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12715
12716 /* If we are called during a link, mips_elf_final_link may have
12717 cleared the SEC_HAS_CONTENTS field. We force it back on here
12718 if appropriate (which it normally will be). */
12719 origflags = msec->flags;
12720 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12721 msec->flags |= SEC_HAS_CONTENTS;
12722
12723 fi = mips_elf_tdata (abfd)->find_line_info;
12724 if (fi == NULL)
12725 {
12726 bfd_size_type external_fdr_size;
12727 char *fraw_src;
12728 char *fraw_end;
12729 struct fdr *fdr_ptr;
12730 bfd_size_type amt = sizeof (struct mips_elf_find_line);
12731
12732 fi = bfd_zalloc (abfd, amt);
12733 if (fi == NULL)
12734 {
12735 msec->flags = origflags;
12736 return FALSE;
12737 }
12738
12739 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12740 {
12741 msec->flags = origflags;
12742 return FALSE;
12743 }
12744
12745 /* Swap in the FDR information. */
12746 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
12747 fi->d.fdr = bfd_alloc (abfd, amt);
12748 if (fi->d.fdr == NULL)
12749 {
12750 msec->flags = origflags;
12751 return FALSE;
12752 }
12753 external_fdr_size = swap->external_fdr_size;
12754 fdr_ptr = fi->d.fdr;
12755 fraw_src = (char *) fi->d.external_fdr;
12756 fraw_end = (fraw_src
12757 + fi->d.symbolic_header.ifdMax * external_fdr_size);
12758 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
12759 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
12760
12761 mips_elf_tdata (abfd)->find_line_info = fi;
12762
12763 /* Note that we don't bother to ever free this information.
12764 find_nearest_line is either called all the time, as in
12765 objdump -l, so the information should be saved, or it is
12766 rarely called, as in ld error messages, so the memory
12767 wasted is unimportant. Still, it would probably be a
12768 good idea for free_cached_info to throw it away. */
12769 }
12770
12771 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
12772 &fi->i, filename_ptr, functionname_ptr,
12773 line_ptr))
12774 {
12775 msec->flags = origflags;
12776 return TRUE;
12777 }
12778
12779 msec->flags = origflags;
12780 }
12781
12782 /* Fall back on the generic ELF find_nearest_line routine. */
12783
12784 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
12785 filename_ptr, functionname_ptr,
12786 line_ptr, discriminator_ptr);
12787 }
12788
12789 bfd_boolean
12790 _bfd_mips_elf_find_inliner_info (bfd *abfd,
12791 const char **filename_ptr,
12792 const char **functionname_ptr,
12793 unsigned int *line_ptr)
12794 {
12795 bfd_boolean found;
12796 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12797 functionname_ptr, line_ptr,
12798 & elf_tdata (abfd)->dwarf2_find_line_info);
12799 return found;
12800 }
12801
12802 \f
12803 /* When are writing out the .options or .MIPS.options section,
12804 remember the bytes we are writing out, so that we can install the
12805 GP value in the section_processing routine. */
12806
12807 bfd_boolean
12808 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
12809 const void *location,
12810 file_ptr offset, bfd_size_type count)
12811 {
12812 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
12813 {
12814 bfd_byte *c;
12815
12816 if (elf_section_data (section) == NULL)
12817 {
12818 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
12819 section->used_by_bfd = bfd_zalloc (abfd, amt);
12820 if (elf_section_data (section) == NULL)
12821 return FALSE;
12822 }
12823 c = mips_elf_section_data (section)->u.tdata;
12824 if (c == NULL)
12825 {
12826 c = bfd_zalloc (abfd, section->size);
12827 if (c == NULL)
12828 return FALSE;
12829 mips_elf_section_data (section)->u.tdata = c;
12830 }
12831
12832 memcpy (c + offset, location, count);
12833 }
12834
12835 return _bfd_elf_set_section_contents (abfd, section, location, offset,
12836 count);
12837 }
12838
12839 /* This is almost identical to bfd_generic_get_... except that some
12840 MIPS relocations need to be handled specially. Sigh. */
12841
12842 bfd_byte *
12843 _bfd_elf_mips_get_relocated_section_contents
12844 (bfd *abfd,
12845 struct bfd_link_info *link_info,
12846 struct bfd_link_order *link_order,
12847 bfd_byte *data,
12848 bfd_boolean relocatable,
12849 asymbol **symbols)
12850 {
12851 /* Get enough memory to hold the stuff */
12852 bfd *input_bfd = link_order->u.indirect.section->owner;
12853 asection *input_section = link_order->u.indirect.section;
12854 bfd_size_type sz;
12855
12856 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
12857 arelent **reloc_vector = NULL;
12858 long reloc_count;
12859
12860 if (reloc_size < 0)
12861 goto error_return;
12862
12863 reloc_vector = bfd_malloc (reloc_size);
12864 if (reloc_vector == NULL && reloc_size != 0)
12865 goto error_return;
12866
12867 /* read in the section */
12868 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
12869 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
12870 goto error_return;
12871
12872 reloc_count = bfd_canonicalize_reloc (input_bfd,
12873 input_section,
12874 reloc_vector,
12875 symbols);
12876 if (reloc_count < 0)
12877 goto error_return;
12878
12879 if (reloc_count > 0)
12880 {
12881 arelent **parent;
12882 /* for mips */
12883 int gp_found;
12884 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
12885
12886 {
12887 struct bfd_hash_entry *h;
12888 struct bfd_link_hash_entry *lh;
12889 /* Skip all this stuff if we aren't mixing formats. */
12890 if (abfd && input_bfd
12891 && abfd->xvec == input_bfd->xvec)
12892 lh = 0;
12893 else
12894 {
12895 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
12896 lh = (struct bfd_link_hash_entry *) h;
12897 }
12898 lookup:
12899 if (lh)
12900 {
12901 switch (lh->type)
12902 {
12903 case bfd_link_hash_undefined:
12904 case bfd_link_hash_undefweak:
12905 case bfd_link_hash_common:
12906 gp_found = 0;
12907 break;
12908 case bfd_link_hash_defined:
12909 case bfd_link_hash_defweak:
12910 gp_found = 1;
12911 gp = lh->u.def.value;
12912 break;
12913 case bfd_link_hash_indirect:
12914 case bfd_link_hash_warning:
12915 lh = lh->u.i.link;
12916 /* @@FIXME ignoring warning for now */
12917 goto lookup;
12918 case bfd_link_hash_new:
12919 default:
12920 abort ();
12921 }
12922 }
12923 else
12924 gp_found = 0;
12925 }
12926 /* end mips */
12927 for (parent = reloc_vector; *parent != NULL; parent++)
12928 {
12929 char *error_message = NULL;
12930 bfd_reloc_status_type r;
12931
12932 /* Specific to MIPS: Deal with relocation types that require
12933 knowing the gp of the output bfd. */
12934 asymbol *sym = *(*parent)->sym_ptr_ptr;
12935
12936 /* If we've managed to find the gp and have a special
12937 function for the relocation then go ahead, else default
12938 to the generic handling. */
12939 if (gp_found
12940 && (*parent)->howto->special_function
12941 == _bfd_mips_elf32_gprel16_reloc)
12942 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
12943 input_section, relocatable,
12944 data, gp);
12945 else
12946 r = bfd_perform_relocation (input_bfd, *parent, data,
12947 input_section,
12948 relocatable ? abfd : NULL,
12949 &error_message);
12950
12951 if (relocatable)
12952 {
12953 asection *os = input_section->output_section;
12954
12955 /* A partial link, so keep the relocs */
12956 os->orelocation[os->reloc_count] = *parent;
12957 os->reloc_count++;
12958 }
12959
12960 if (r != bfd_reloc_ok)
12961 {
12962 switch (r)
12963 {
12964 case bfd_reloc_undefined:
12965 (*link_info->callbacks->undefined_symbol)
12966 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12967 input_bfd, input_section, (*parent)->address, TRUE);
12968 break;
12969 case bfd_reloc_dangerous:
12970 BFD_ASSERT (error_message != NULL);
12971 (*link_info->callbacks->reloc_dangerous)
12972 (link_info, error_message,
12973 input_bfd, input_section, (*parent)->address);
12974 break;
12975 case bfd_reloc_overflow:
12976 (*link_info->callbacks->reloc_overflow)
12977 (link_info, NULL,
12978 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12979 (*parent)->howto->name, (*parent)->addend,
12980 input_bfd, input_section, (*parent)->address);
12981 break;
12982 case bfd_reloc_outofrange:
12983 default:
12984 abort ();
12985 break;
12986 }
12987
12988 }
12989 }
12990 }
12991 if (reloc_vector != NULL)
12992 free (reloc_vector);
12993 return data;
12994
12995 error_return:
12996 if (reloc_vector != NULL)
12997 free (reloc_vector);
12998 return NULL;
12999 }
13000 \f
13001 static bfd_boolean
13002 mips_elf_relax_delete_bytes (bfd *abfd,
13003 asection *sec, bfd_vma addr, int count)
13004 {
13005 Elf_Internal_Shdr *symtab_hdr;
13006 unsigned int sec_shndx;
13007 bfd_byte *contents;
13008 Elf_Internal_Rela *irel, *irelend;
13009 Elf_Internal_Sym *isym;
13010 Elf_Internal_Sym *isymend;
13011 struct elf_link_hash_entry **sym_hashes;
13012 struct elf_link_hash_entry **end_hashes;
13013 struct elf_link_hash_entry **start_hashes;
13014 unsigned int symcount;
13015
13016 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13017 contents = elf_section_data (sec)->this_hdr.contents;
13018
13019 irel = elf_section_data (sec)->relocs;
13020 irelend = irel + sec->reloc_count;
13021
13022 /* Actually delete the bytes. */
13023 memmove (contents + addr, contents + addr + count,
13024 (size_t) (sec->size - addr - count));
13025 sec->size -= count;
13026
13027 /* Adjust all the relocs. */
13028 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13029 {
13030 /* Get the new reloc address. */
13031 if (irel->r_offset > addr)
13032 irel->r_offset -= count;
13033 }
13034
13035 BFD_ASSERT (addr % 2 == 0);
13036 BFD_ASSERT (count % 2 == 0);
13037
13038 /* Adjust the local symbols defined in this section. */
13039 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13040 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13041 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
13042 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
13043 isym->st_value -= count;
13044
13045 /* Now adjust the global symbols defined in this section. */
13046 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13047 - symtab_hdr->sh_info);
13048 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13049 end_hashes = sym_hashes + symcount;
13050
13051 for (; sym_hashes < end_hashes; sym_hashes++)
13052 {
13053 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13054
13055 if ((sym_hash->root.type == bfd_link_hash_defined
13056 || sym_hash->root.type == bfd_link_hash_defweak)
13057 && sym_hash->root.u.def.section == sec)
13058 {
13059 bfd_vma value = sym_hash->root.u.def.value;
13060
13061 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13062 value &= MINUS_TWO;
13063 if (value > addr)
13064 sym_hash->root.u.def.value -= count;
13065 }
13066 }
13067
13068 return TRUE;
13069 }
13070
13071
13072 /* Opcodes needed for microMIPS relaxation as found in
13073 opcodes/micromips-opc.c. */
13074
13075 struct opcode_descriptor {
13076 unsigned long match;
13077 unsigned long mask;
13078 };
13079
13080 /* The $ra register aka $31. */
13081
13082 #define RA 31
13083
13084 /* 32-bit instruction format register fields. */
13085
13086 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13087 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13088
13089 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
13090
13091 #define OP16_VALID_REG(r) \
13092 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13093
13094
13095 /* 32-bit and 16-bit branches. */
13096
13097 static const struct opcode_descriptor b_insns_32[] = {
13098 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13099 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13100 { 0, 0 } /* End marker for find_match(). */
13101 };
13102
13103 static const struct opcode_descriptor bc_insn_32 =
13104 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13105
13106 static const struct opcode_descriptor bz_insn_32 =
13107 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13108
13109 static const struct opcode_descriptor bzal_insn_32 =
13110 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13111
13112 static const struct opcode_descriptor beq_insn_32 =
13113 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13114
13115 static const struct opcode_descriptor b_insn_16 =
13116 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13117
13118 static const struct opcode_descriptor bz_insn_16 =
13119 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13120
13121
13122 /* 32-bit and 16-bit branch EQ and NE zero. */
13123
13124 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13125 eq and second the ne. This convention is used when replacing a
13126 32-bit BEQ/BNE with the 16-bit version. */
13127
13128 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13129
13130 static const struct opcode_descriptor bz_rs_insns_32[] = {
13131 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13132 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13133 { 0, 0 } /* End marker for find_match(). */
13134 };
13135
13136 static const struct opcode_descriptor bz_rt_insns_32[] = {
13137 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13138 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13139 { 0, 0 } /* End marker for find_match(). */
13140 };
13141
13142 static const struct opcode_descriptor bzc_insns_32[] = {
13143 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13144 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13145 { 0, 0 } /* End marker for find_match(). */
13146 };
13147
13148 static const struct opcode_descriptor bz_insns_16[] = {
13149 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13150 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13151 { 0, 0 } /* End marker for find_match(). */
13152 };
13153
13154 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13155
13156 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
13157 #define BZ16_REG_FIELD(r) (((r) & 7) << 7)
13158
13159
13160 /* 32-bit instructions with a delay slot. */
13161
13162 static const struct opcode_descriptor jal_insn_32_bd16 =
13163 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13164
13165 static const struct opcode_descriptor jal_insn_32_bd32 =
13166 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13167
13168 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13169 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13170
13171 static const struct opcode_descriptor j_insn_32 =
13172 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13173
13174 static const struct opcode_descriptor jalr_insn_32 =
13175 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13176
13177 /* This table can be compacted, because no opcode replacement is made. */
13178
13179 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13180 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13181
13182 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13183 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13184
13185 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13186 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13187 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13188 { 0, 0 } /* End marker for find_match(). */
13189 };
13190
13191 /* This table can be compacted, because no opcode replacement is made. */
13192
13193 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13194 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13195
13196 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13197 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13198 { 0, 0 } /* End marker for find_match(). */
13199 };
13200
13201
13202 /* 16-bit instructions with a delay slot. */
13203
13204 static const struct opcode_descriptor jalr_insn_16_bd16 =
13205 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13206
13207 static const struct opcode_descriptor jalr_insn_16_bd32 =
13208 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13209
13210 static const struct opcode_descriptor jr_insn_16 =
13211 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13212
13213 #define JR16_REG(opcode) ((opcode) & 0x1f)
13214
13215 /* This table can be compacted, because no opcode replacement is made. */
13216
13217 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13218 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13219
13220 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13221 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13222 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13223 { 0, 0 } /* End marker for find_match(). */
13224 };
13225
13226
13227 /* LUI instruction. */
13228
13229 static const struct opcode_descriptor lui_insn =
13230 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13231
13232
13233 /* ADDIU instruction. */
13234
13235 static const struct opcode_descriptor addiu_insn =
13236 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13237
13238 static const struct opcode_descriptor addiupc_insn =
13239 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13240
13241 #define ADDIUPC_REG_FIELD(r) \
13242 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13243
13244
13245 /* Relaxable instructions in a JAL delay slot: MOVE. */
13246
13247 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13248 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13249 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13250 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13251
13252 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13253 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13254
13255 static const struct opcode_descriptor move_insns_32[] = {
13256 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13257 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13258 { 0, 0 } /* End marker for find_match(). */
13259 };
13260
13261 static const struct opcode_descriptor move_insn_16 =
13262 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13263
13264
13265 /* NOP instructions. */
13266
13267 static const struct opcode_descriptor nop_insn_32 =
13268 { /* "nop", "", */ 0x00000000, 0xffffffff };
13269
13270 static const struct opcode_descriptor nop_insn_16 =
13271 { /* "nop", "", */ 0x0c00, 0xffff };
13272
13273
13274 /* Instruction match support. */
13275
13276 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13277
13278 static int
13279 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13280 {
13281 unsigned long indx;
13282
13283 for (indx = 0; insn[indx].mask != 0; indx++)
13284 if (MATCH (opcode, insn[indx]))
13285 return indx;
13286
13287 return -1;
13288 }
13289
13290
13291 /* Branch and delay slot decoding support. */
13292
13293 /* If PTR points to what *might* be a 16-bit branch or jump, then
13294 return the minimum length of its delay slot, otherwise return 0.
13295 Non-zero results are not definitive as we might be checking against
13296 the second half of another instruction. */
13297
13298 static int
13299 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13300 {
13301 unsigned long opcode;
13302 int bdsize;
13303
13304 opcode = bfd_get_16 (abfd, ptr);
13305 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13306 /* 16-bit branch/jump with a 32-bit delay slot. */
13307 bdsize = 4;
13308 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13309 || find_match (opcode, ds_insns_16_bd16) >= 0)
13310 /* 16-bit branch/jump with a 16-bit delay slot. */
13311 bdsize = 2;
13312 else
13313 /* No delay slot. */
13314 bdsize = 0;
13315
13316 return bdsize;
13317 }
13318
13319 /* If PTR points to what *might* be a 32-bit branch or jump, then
13320 return the minimum length of its delay slot, otherwise return 0.
13321 Non-zero results are not definitive as we might be checking against
13322 the second half of another instruction. */
13323
13324 static int
13325 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13326 {
13327 unsigned long opcode;
13328 int bdsize;
13329
13330 opcode = bfd_get_micromips_32 (abfd, ptr);
13331 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13332 /* 32-bit branch/jump with a 32-bit delay slot. */
13333 bdsize = 4;
13334 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13335 /* 32-bit branch/jump with a 16-bit delay slot. */
13336 bdsize = 2;
13337 else
13338 /* No delay slot. */
13339 bdsize = 0;
13340
13341 return bdsize;
13342 }
13343
13344 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13345 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13346
13347 static bfd_boolean
13348 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13349 {
13350 unsigned long opcode;
13351
13352 opcode = bfd_get_16 (abfd, ptr);
13353 if (MATCH (opcode, b_insn_16)
13354 /* B16 */
13355 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13356 /* JR16 */
13357 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13358 /* BEQZ16, BNEZ16 */
13359 || (MATCH (opcode, jalr_insn_16_bd32)
13360 /* JALR16 */
13361 && reg != JR16_REG (opcode) && reg != RA))
13362 return TRUE;
13363
13364 return FALSE;
13365 }
13366
13367 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13368 then return TRUE, otherwise FALSE. */
13369
13370 static bfd_boolean
13371 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13372 {
13373 unsigned long opcode;
13374
13375 opcode = bfd_get_micromips_32 (abfd, ptr);
13376 if (MATCH (opcode, j_insn_32)
13377 /* J */
13378 || MATCH (opcode, bc_insn_32)
13379 /* BC1F, BC1T, BC2F, BC2T */
13380 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13381 /* JAL, JALX */
13382 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13383 /* BGEZ, BGTZ, BLEZ, BLTZ */
13384 || (MATCH (opcode, bzal_insn_32)
13385 /* BGEZAL, BLTZAL */
13386 && reg != OP32_SREG (opcode) && reg != RA)
13387 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13388 /* JALR, JALR.HB, BEQ, BNE */
13389 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13390 return TRUE;
13391
13392 return FALSE;
13393 }
13394
13395 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13396 IRELEND) at OFFSET indicate that there must be a compact branch there,
13397 then return TRUE, otherwise FALSE. */
13398
13399 static bfd_boolean
13400 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13401 const Elf_Internal_Rela *internal_relocs,
13402 const Elf_Internal_Rela *irelend)
13403 {
13404 const Elf_Internal_Rela *irel;
13405 unsigned long opcode;
13406
13407 opcode = bfd_get_micromips_32 (abfd, ptr);
13408 if (find_match (opcode, bzc_insns_32) < 0)
13409 return FALSE;
13410
13411 for (irel = internal_relocs; irel < irelend; irel++)
13412 if (irel->r_offset == offset
13413 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13414 return TRUE;
13415
13416 return FALSE;
13417 }
13418
13419 /* Bitsize checking. */
13420 #define IS_BITSIZE(val, N) \
13421 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13422 - (1ULL << ((N) - 1))) == (val))
13423
13424 \f
13425 bfd_boolean
13426 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13427 struct bfd_link_info *link_info,
13428 bfd_boolean *again)
13429 {
13430 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13431 Elf_Internal_Shdr *symtab_hdr;
13432 Elf_Internal_Rela *internal_relocs;
13433 Elf_Internal_Rela *irel, *irelend;
13434 bfd_byte *contents = NULL;
13435 Elf_Internal_Sym *isymbuf = NULL;
13436
13437 /* Assume nothing changes. */
13438 *again = FALSE;
13439
13440 /* We don't have to do anything for a relocatable link, if
13441 this section does not have relocs, or if this is not a
13442 code section. */
13443
13444 if (bfd_link_relocatable (link_info)
13445 || (sec->flags & SEC_RELOC) == 0
13446 || sec->reloc_count == 0
13447 || (sec->flags & SEC_CODE) == 0)
13448 return TRUE;
13449
13450 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13451
13452 /* Get a copy of the native relocations. */
13453 internal_relocs = (_bfd_elf_link_read_relocs
13454 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13455 link_info->keep_memory));
13456 if (internal_relocs == NULL)
13457 goto error_return;
13458
13459 /* Walk through them looking for relaxing opportunities. */
13460 irelend = internal_relocs + sec->reloc_count;
13461 for (irel = internal_relocs; irel < irelend; irel++)
13462 {
13463 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13464 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13465 bfd_boolean target_is_micromips_code_p;
13466 unsigned long opcode;
13467 bfd_vma symval;
13468 bfd_vma pcrval;
13469 bfd_byte *ptr;
13470 int fndopc;
13471
13472 /* The number of bytes to delete for relaxation and from where
13473 to delete these bytes starting at irel->r_offset. */
13474 int delcnt = 0;
13475 int deloff = 0;
13476
13477 /* If this isn't something that can be relaxed, then ignore
13478 this reloc. */
13479 if (r_type != R_MICROMIPS_HI16
13480 && r_type != R_MICROMIPS_PC16_S1
13481 && r_type != R_MICROMIPS_26_S1)
13482 continue;
13483
13484 /* Get the section contents if we haven't done so already. */
13485 if (contents == NULL)
13486 {
13487 /* Get cached copy if it exists. */
13488 if (elf_section_data (sec)->this_hdr.contents != NULL)
13489 contents = elf_section_data (sec)->this_hdr.contents;
13490 /* Go get them off disk. */
13491 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13492 goto error_return;
13493 }
13494 ptr = contents + irel->r_offset;
13495
13496 /* Read this BFD's local symbols if we haven't done so already. */
13497 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13498 {
13499 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13500 if (isymbuf == NULL)
13501 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13502 symtab_hdr->sh_info, 0,
13503 NULL, NULL, NULL);
13504 if (isymbuf == NULL)
13505 goto error_return;
13506 }
13507
13508 /* Get the value of the symbol referred to by the reloc. */
13509 if (r_symndx < symtab_hdr->sh_info)
13510 {
13511 /* A local symbol. */
13512 Elf_Internal_Sym *isym;
13513 asection *sym_sec;
13514
13515 isym = isymbuf + r_symndx;
13516 if (isym->st_shndx == SHN_UNDEF)
13517 sym_sec = bfd_und_section_ptr;
13518 else if (isym->st_shndx == SHN_ABS)
13519 sym_sec = bfd_abs_section_ptr;
13520 else if (isym->st_shndx == SHN_COMMON)
13521 sym_sec = bfd_com_section_ptr;
13522 else
13523 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13524 symval = (isym->st_value
13525 + sym_sec->output_section->vma
13526 + sym_sec->output_offset);
13527 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13528 }
13529 else
13530 {
13531 unsigned long indx;
13532 struct elf_link_hash_entry *h;
13533
13534 /* An external symbol. */
13535 indx = r_symndx - symtab_hdr->sh_info;
13536 h = elf_sym_hashes (abfd)[indx];
13537 BFD_ASSERT (h != NULL);
13538
13539 if (h->root.type != bfd_link_hash_defined
13540 && h->root.type != bfd_link_hash_defweak)
13541 /* This appears to be a reference to an undefined
13542 symbol. Just ignore it -- it will be caught by the
13543 regular reloc processing. */
13544 continue;
13545
13546 symval = (h->root.u.def.value
13547 + h->root.u.def.section->output_section->vma
13548 + h->root.u.def.section->output_offset);
13549 target_is_micromips_code_p = (!h->needs_plt
13550 && ELF_ST_IS_MICROMIPS (h->other));
13551 }
13552
13553
13554 /* For simplicity of coding, we are going to modify the
13555 section contents, the section relocs, and the BFD symbol
13556 table. We must tell the rest of the code not to free up this
13557 information. It would be possible to instead create a table
13558 of changes which have to be made, as is done in coff-mips.c;
13559 that would be more work, but would require less memory when
13560 the linker is run. */
13561
13562 /* Only 32-bit instructions relaxed. */
13563 if (irel->r_offset + 4 > sec->size)
13564 continue;
13565
13566 opcode = bfd_get_micromips_32 (abfd, ptr);
13567
13568 /* This is the pc-relative distance from the instruction the
13569 relocation is applied to, to the symbol referred. */
13570 pcrval = (symval
13571 - (sec->output_section->vma + sec->output_offset)
13572 - irel->r_offset);
13573
13574 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13575 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13576 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13577
13578 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13579
13580 where pcrval has first to be adjusted to apply against the LO16
13581 location (we make the adjustment later on, when we have figured
13582 out the offset). */
13583 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13584 {
13585 bfd_boolean bzc = FALSE;
13586 unsigned long nextopc;
13587 unsigned long reg;
13588 bfd_vma offset;
13589
13590 /* Give up if the previous reloc was a HI16 against this symbol
13591 too. */
13592 if (irel > internal_relocs
13593 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13594 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13595 continue;
13596
13597 /* Or if the next reloc is not a LO16 against this symbol. */
13598 if (irel + 1 >= irelend
13599 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13600 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13601 continue;
13602
13603 /* Or if the second next reloc is a LO16 against this symbol too. */
13604 if (irel + 2 >= irelend
13605 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13606 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13607 continue;
13608
13609 /* See if the LUI instruction *might* be in a branch delay slot.
13610 We check whether what looks like a 16-bit branch or jump is
13611 actually an immediate argument to a compact branch, and let
13612 it through if so. */
13613 if (irel->r_offset >= 2
13614 && check_br16_dslot (abfd, ptr - 2)
13615 && !(irel->r_offset >= 4
13616 && (bzc = check_relocated_bzc (abfd,
13617 ptr - 4, irel->r_offset - 4,
13618 internal_relocs, irelend))))
13619 continue;
13620 if (irel->r_offset >= 4
13621 && !bzc
13622 && check_br32_dslot (abfd, ptr - 4))
13623 continue;
13624
13625 reg = OP32_SREG (opcode);
13626
13627 /* We only relax adjacent instructions or ones separated with
13628 a branch or jump that has a delay slot. The branch or jump
13629 must not fiddle with the register used to hold the address.
13630 Subtract 4 for the LUI itself. */
13631 offset = irel[1].r_offset - irel[0].r_offset;
13632 switch (offset - 4)
13633 {
13634 case 0:
13635 break;
13636 case 2:
13637 if (check_br16 (abfd, ptr + 4, reg))
13638 break;
13639 continue;
13640 case 4:
13641 if (check_br32 (abfd, ptr + 4, reg))
13642 break;
13643 continue;
13644 default:
13645 continue;
13646 }
13647
13648 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
13649
13650 /* Give up unless the same register is used with both
13651 relocations. */
13652 if (OP32_SREG (nextopc) != reg)
13653 continue;
13654
13655 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13656 and rounding up to take masking of the two LSBs into account. */
13657 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13658
13659 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13660 if (IS_BITSIZE (symval, 16))
13661 {
13662 /* Fix the relocation's type. */
13663 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13664
13665 /* Instructions using R_MICROMIPS_LO16 have the base or
13666 source register in bits 20:16. This register becomes $0
13667 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
13668 nextopc &= ~0x001f0000;
13669 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13670 contents + irel[1].r_offset);
13671 }
13672
13673 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13674 We add 4 to take LUI deletion into account while checking
13675 the PC-relative distance. */
13676 else if (symval % 4 == 0
13677 && IS_BITSIZE (pcrval + 4, 25)
13678 && MATCH (nextopc, addiu_insn)
13679 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13680 && OP16_VALID_REG (OP32_TREG (nextopc)))
13681 {
13682 /* Fix the relocation's type. */
13683 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13684
13685 /* Replace ADDIU with the ADDIUPC version. */
13686 nextopc = (addiupc_insn.match
13687 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13688
13689 bfd_put_micromips_32 (abfd, nextopc,
13690 contents + irel[1].r_offset);
13691 }
13692
13693 /* Can't do anything, give up, sigh... */
13694 else
13695 continue;
13696
13697 /* Fix the relocation's type. */
13698 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13699
13700 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
13701 delcnt = 4;
13702 deloff = 0;
13703 }
13704
13705 /* Compact branch relaxation -- due to the multitude of macros
13706 employed by the compiler/assembler, compact branches are not
13707 always generated. Obviously, this can/will be fixed elsewhere,
13708 but there is no drawback in double checking it here. */
13709 else if (r_type == R_MICROMIPS_PC16_S1
13710 && irel->r_offset + 5 < sec->size
13711 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13712 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
13713 && ((!insn32
13714 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13715 nop_insn_16) ? 2 : 0))
13716 || (irel->r_offset + 7 < sec->size
13717 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13718 ptr + 4),
13719 nop_insn_32) ? 4 : 0))))
13720 {
13721 unsigned long reg;
13722
13723 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13724
13725 /* Replace BEQZ/BNEZ with the compact version. */
13726 opcode = (bzc_insns_32[fndopc].match
13727 | BZC32_REG_FIELD (reg)
13728 | (opcode & 0xffff)); /* Addend value. */
13729
13730 bfd_put_micromips_32 (abfd, opcode, ptr);
13731
13732 /* Delete the delay slot NOP: two or four bytes from
13733 irel->offset + 4; delcnt has already been set above. */
13734 deloff = 4;
13735 }
13736
13737 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
13738 to check the distance from the next instruction, so subtract 2. */
13739 else if (!insn32
13740 && r_type == R_MICROMIPS_PC16_S1
13741 && IS_BITSIZE (pcrval - 2, 11)
13742 && find_match (opcode, b_insns_32) >= 0)
13743 {
13744 /* Fix the relocation's type. */
13745 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13746
13747 /* Replace the 32-bit opcode with a 16-bit opcode. */
13748 bfd_put_16 (abfd,
13749 (b_insn_16.match
13750 | (opcode & 0x3ff)), /* Addend value. */
13751 ptr);
13752
13753 /* Delete 2 bytes from irel->r_offset + 2. */
13754 delcnt = 2;
13755 deloff = 2;
13756 }
13757
13758 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
13759 to check the distance from the next instruction, so subtract 2. */
13760 else if (!insn32
13761 && r_type == R_MICROMIPS_PC16_S1
13762 && IS_BITSIZE (pcrval - 2, 8)
13763 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13764 && OP16_VALID_REG (OP32_SREG (opcode)))
13765 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13766 && OP16_VALID_REG (OP32_TREG (opcode)))))
13767 {
13768 unsigned long reg;
13769
13770 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13771
13772 /* Fix the relocation's type. */
13773 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
13774
13775 /* Replace the 32-bit opcode with a 16-bit opcode. */
13776 bfd_put_16 (abfd,
13777 (bz_insns_16[fndopc].match
13778 | BZ16_REG_FIELD (reg)
13779 | (opcode & 0x7f)), /* Addend value. */
13780 ptr);
13781
13782 /* Delete 2 bytes from irel->r_offset + 2. */
13783 delcnt = 2;
13784 deloff = 2;
13785 }
13786
13787 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
13788 else if (!insn32
13789 && r_type == R_MICROMIPS_26_S1
13790 && target_is_micromips_code_p
13791 && irel->r_offset + 7 < sec->size
13792 && MATCH (opcode, jal_insn_32_bd32))
13793 {
13794 unsigned long n32opc;
13795 bfd_boolean relaxed = FALSE;
13796
13797 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
13798
13799 if (MATCH (n32opc, nop_insn_32))
13800 {
13801 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
13802 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
13803
13804 relaxed = TRUE;
13805 }
13806 else if (find_match (n32opc, move_insns_32) >= 0)
13807 {
13808 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
13809 bfd_put_16 (abfd,
13810 (move_insn_16.match
13811 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
13812 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
13813 ptr + 4);
13814
13815 relaxed = TRUE;
13816 }
13817 /* Other 32-bit instructions relaxable to 16-bit
13818 instructions will be handled here later. */
13819
13820 if (relaxed)
13821 {
13822 /* JAL with 32-bit delay slot that is changed to a JALS
13823 with 16-bit delay slot. */
13824 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
13825
13826 /* Delete 2 bytes from irel->r_offset + 6. */
13827 delcnt = 2;
13828 deloff = 6;
13829 }
13830 }
13831
13832 if (delcnt != 0)
13833 {
13834 /* Note that we've changed the relocs, section contents, etc. */
13835 elf_section_data (sec)->relocs = internal_relocs;
13836 elf_section_data (sec)->this_hdr.contents = contents;
13837 symtab_hdr->contents = (unsigned char *) isymbuf;
13838
13839 /* Delete bytes depending on the delcnt and deloff. */
13840 if (!mips_elf_relax_delete_bytes (abfd, sec,
13841 irel->r_offset + deloff, delcnt))
13842 goto error_return;
13843
13844 /* That will change things, so we should relax again.
13845 Note that this is not required, and it may be slow. */
13846 *again = TRUE;
13847 }
13848 }
13849
13850 if (isymbuf != NULL
13851 && symtab_hdr->contents != (unsigned char *) isymbuf)
13852 {
13853 if (! link_info->keep_memory)
13854 free (isymbuf);
13855 else
13856 {
13857 /* Cache the symbols for elf_link_input_bfd. */
13858 symtab_hdr->contents = (unsigned char *) isymbuf;
13859 }
13860 }
13861
13862 if (contents != NULL
13863 && elf_section_data (sec)->this_hdr.contents != contents)
13864 {
13865 if (! link_info->keep_memory)
13866 free (contents);
13867 else
13868 {
13869 /* Cache the section contents for elf_link_input_bfd. */
13870 elf_section_data (sec)->this_hdr.contents = contents;
13871 }
13872 }
13873
13874 if (internal_relocs != NULL
13875 && elf_section_data (sec)->relocs != internal_relocs)
13876 free (internal_relocs);
13877
13878 return TRUE;
13879
13880 error_return:
13881 if (isymbuf != NULL
13882 && symtab_hdr->contents != (unsigned char *) isymbuf)
13883 free (isymbuf);
13884 if (contents != NULL
13885 && elf_section_data (sec)->this_hdr.contents != contents)
13886 free (contents);
13887 if (internal_relocs != NULL
13888 && elf_section_data (sec)->relocs != internal_relocs)
13889 free (internal_relocs);
13890
13891 return FALSE;
13892 }
13893 \f
13894 /* Create a MIPS ELF linker hash table. */
13895
13896 struct bfd_link_hash_table *
13897 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
13898 {
13899 struct mips_elf_link_hash_table *ret;
13900 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
13901
13902 ret = bfd_zmalloc (amt);
13903 if (ret == NULL)
13904 return NULL;
13905
13906 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
13907 mips_elf_link_hash_newfunc,
13908 sizeof (struct mips_elf_link_hash_entry),
13909 MIPS_ELF_DATA))
13910 {
13911 free (ret);
13912 return NULL;
13913 }
13914 ret->root.init_plt_refcount.plist = NULL;
13915 ret->root.init_plt_offset.plist = NULL;
13916
13917 return &ret->root.root;
13918 }
13919
13920 /* Likewise, but indicate that the target is VxWorks. */
13921
13922 struct bfd_link_hash_table *
13923 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
13924 {
13925 struct bfd_link_hash_table *ret;
13926
13927 ret = _bfd_mips_elf_link_hash_table_create (abfd);
13928 if (ret)
13929 {
13930 struct mips_elf_link_hash_table *htab;
13931
13932 htab = (struct mips_elf_link_hash_table *) ret;
13933 htab->use_plts_and_copy_relocs = TRUE;
13934 htab->is_vxworks = TRUE;
13935 }
13936 return ret;
13937 }
13938
13939 /* A function that the linker calls if we are allowed to use PLTs
13940 and copy relocs. */
13941
13942 void
13943 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
13944 {
13945 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
13946 }
13947
13948 /* A function that the linker calls to select between all or only
13949 32-bit microMIPS instructions, and between making or ignoring
13950 branch relocation checks for invalid transitions between ISA modes. */
13951
13952 void
13953 _bfd_mips_elf_linker_flags (struct bfd_link_info *info, bfd_boolean insn32,
13954 bfd_boolean ignore_branch_isa)
13955 {
13956 mips_elf_hash_table (info)->insn32 = insn32;
13957 mips_elf_hash_table (info)->ignore_branch_isa = ignore_branch_isa;
13958 }
13959 \f
13960 /* Structure for saying that BFD machine EXTENSION extends BASE. */
13961
13962 struct mips_mach_extension
13963 {
13964 unsigned long extension, base;
13965 };
13966
13967
13968 /* An array describing how BFD machines relate to one another. The entries
13969 are ordered topologically with MIPS I extensions listed last. */
13970
13971 static const struct mips_mach_extension mips_mach_extensions[] =
13972 {
13973 /* MIPS64r2 extensions. */
13974 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
13975 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
13976 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
13977 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13978 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 },
13979
13980 /* MIPS64 extensions. */
13981 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
13982 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
13983 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
13984
13985 /* MIPS V extensions. */
13986 { bfd_mach_mipsisa64, bfd_mach_mips5 },
13987
13988 /* R10000 extensions. */
13989 { bfd_mach_mips12000, bfd_mach_mips10000 },
13990 { bfd_mach_mips14000, bfd_mach_mips10000 },
13991 { bfd_mach_mips16000, bfd_mach_mips10000 },
13992
13993 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
13994 vr5400 ISA, but doesn't include the multimedia stuff. It seems
13995 better to allow vr5400 and vr5500 code to be merged anyway, since
13996 many libraries will just use the core ISA. Perhaps we could add
13997 some sort of ASE flag if this ever proves a problem. */
13998 { bfd_mach_mips5500, bfd_mach_mips5400 },
13999 { bfd_mach_mips5400, bfd_mach_mips5000 },
14000
14001 /* MIPS IV extensions. */
14002 { bfd_mach_mips5, bfd_mach_mips8000 },
14003 { bfd_mach_mips10000, bfd_mach_mips8000 },
14004 { bfd_mach_mips5000, bfd_mach_mips8000 },
14005 { bfd_mach_mips7000, bfd_mach_mips8000 },
14006 { bfd_mach_mips9000, bfd_mach_mips8000 },
14007
14008 /* VR4100 extensions. */
14009 { bfd_mach_mips4120, bfd_mach_mips4100 },
14010 { bfd_mach_mips4111, bfd_mach_mips4100 },
14011
14012 /* MIPS III extensions. */
14013 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14014 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14015 { bfd_mach_mips8000, bfd_mach_mips4000 },
14016 { bfd_mach_mips4650, bfd_mach_mips4000 },
14017 { bfd_mach_mips4600, bfd_mach_mips4000 },
14018 { bfd_mach_mips4400, bfd_mach_mips4000 },
14019 { bfd_mach_mips4300, bfd_mach_mips4000 },
14020 { bfd_mach_mips4100, bfd_mach_mips4000 },
14021 { bfd_mach_mips5900, bfd_mach_mips4000 },
14022
14023 /* MIPS32r3 extensions. */
14024 { bfd_mach_mips_interaptiv_mr2, bfd_mach_mipsisa32r3 },
14025
14026 /* MIPS32r2 extensions. */
14027 { bfd_mach_mipsisa32r3, bfd_mach_mipsisa32r2 },
14028
14029 /* MIPS32 extensions. */
14030 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14031
14032 /* MIPS II extensions. */
14033 { bfd_mach_mips4000, bfd_mach_mips6000 },
14034 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14035 { bfd_mach_mips4010, bfd_mach_mips6000 },
14036
14037 /* MIPS I extensions. */
14038 { bfd_mach_mips6000, bfd_mach_mips3000 },
14039 { bfd_mach_mips3900, bfd_mach_mips3000 }
14040 };
14041
14042 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14043
14044 static bfd_boolean
14045 mips_mach_extends_p (unsigned long base, unsigned long extension)
14046 {
14047 size_t i;
14048
14049 if (extension == base)
14050 return TRUE;
14051
14052 if (base == bfd_mach_mipsisa32
14053 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14054 return TRUE;
14055
14056 if (base == bfd_mach_mipsisa32r2
14057 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14058 return TRUE;
14059
14060 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14061 if (extension == mips_mach_extensions[i].extension)
14062 {
14063 extension = mips_mach_extensions[i].base;
14064 if (extension == base)
14065 return TRUE;
14066 }
14067
14068 return FALSE;
14069 }
14070
14071 /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14072
14073 static unsigned long
14074 bfd_mips_isa_ext_mach (unsigned int isa_ext)
14075 {
14076 switch (isa_ext)
14077 {
14078 case AFL_EXT_3900: return bfd_mach_mips3900;
14079 case AFL_EXT_4010: return bfd_mach_mips4010;
14080 case AFL_EXT_4100: return bfd_mach_mips4100;
14081 case AFL_EXT_4111: return bfd_mach_mips4111;
14082 case AFL_EXT_4120: return bfd_mach_mips4120;
14083 case AFL_EXT_4650: return bfd_mach_mips4650;
14084 case AFL_EXT_5400: return bfd_mach_mips5400;
14085 case AFL_EXT_5500: return bfd_mach_mips5500;
14086 case AFL_EXT_5900: return bfd_mach_mips5900;
14087 case AFL_EXT_10000: return bfd_mach_mips10000;
14088 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14089 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14090 case AFL_EXT_LOONGSON_3A: return bfd_mach_mips_loongson_3a;
14091 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
14092 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14093 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14094 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
14095 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14096 default: return bfd_mach_mips3000;
14097 }
14098 }
14099
14100 /* Return the .MIPS.abiflags value representing each ISA Extension. */
14101
14102 unsigned int
14103 bfd_mips_isa_ext (bfd *abfd)
14104 {
14105 switch (bfd_get_mach (abfd))
14106 {
14107 case bfd_mach_mips3900: return AFL_EXT_3900;
14108 case bfd_mach_mips4010: return AFL_EXT_4010;
14109 case bfd_mach_mips4100: return AFL_EXT_4100;
14110 case bfd_mach_mips4111: return AFL_EXT_4111;
14111 case bfd_mach_mips4120: return AFL_EXT_4120;
14112 case bfd_mach_mips4650: return AFL_EXT_4650;
14113 case bfd_mach_mips5400: return AFL_EXT_5400;
14114 case bfd_mach_mips5500: return AFL_EXT_5500;
14115 case bfd_mach_mips5900: return AFL_EXT_5900;
14116 case bfd_mach_mips10000: return AFL_EXT_10000;
14117 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14118 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14119 case bfd_mach_mips_loongson_3a: return AFL_EXT_LOONGSON_3A;
14120 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14121 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14122 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14123 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14124 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14125 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
14126 case bfd_mach_mips_interaptiv_mr2:
14127 return AFL_EXT_INTERAPTIV_MR2;
14128 default: return 0;
14129 }
14130 }
14131
14132 /* Encode ISA level and revision as a single value. */
14133 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14134
14135 /* Decode a single value into level and revision. */
14136 #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14137 #define ISA_REV(LEVREV) ((LEVREV) & 0x7)
14138
14139 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14140
14141 static void
14142 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14143 {
14144 int new_isa = 0;
14145 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14146 {
14147 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14148 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14149 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14150 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14151 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14152 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14153 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14154 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14155 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14156 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14157 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
14158 default:
14159 _bfd_error_handler
14160 /* xgettext:c-format */
14161 (_("%pB: unknown architecture %s"),
14162 abfd, bfd_printable_name (abfd));
14163 }
14164
14165 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14166 {
14167 abiflags->isa_level = ISA_LEVEL (new_isa);
14168 abiflags->isa_rev = ISA_REV (new_isa);
14169 }
14170
14171 /* Update the isa_ext if ABFD describes a further extension. */
14172 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14173 bfd_get_mach (abfd)))
14174 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
14175 }
14176
14177 /* Return true if the given ELF header flags describe a 32-bit binary. */
14178
14179 static bfd_boolean
14180 mips_32bit_flags_p (flagword flags)
14181 {
14182 return ((flags & EF_MIPS_32BITMODE) != 0
14183 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14184 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14185 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14186 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14187 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14188 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14189 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14190 }
14191
14192 /* Infer the content of the ABI flags based on the elf header. */
14193
14194 static void
14195 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14196 {
14197 obj_attribute *in_attr;
14198
14199 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14200 update_mips_abiflags_isa (abfd, abiflags);
14201
14202 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14203 abiflags->gpr_size = AFL_REG_32;
14204 else
14205 abiflags->gpr_size = AFL_REG_64;
14206
14207 abiflags->cpr1_size = AFL_REG_NONE;
14208
14209 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14210 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14211
14212 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14213 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14214 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14215 && abiflags->gpr_size == AFL_REG_32))
14216 abiflags->cpr1_size = AFL_REG_32;
14217 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14218 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14219 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14220 abiflags->cpr1_size = AFL_REG_64;
14221
14222 abiflags->cpr2_size = AFL_REG_NONE;
14223
14224 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14225 abiflags->ases |= AFL_ASE_MDMX;
14226 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14227 abiflags->ases |= AFL_ASE_MIPS16;
14228 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14229 abiflags->ases |= AFL_ASE_MICROMIPS;
14230
14231 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14232 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14233 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14234 && abiflags->isa_level >= 32
14235 && abiflags->isa_ext != AFL_EXT_LOONGSON_3A)
14236 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14237 }
14238
14239 /* We need to use a special link routine to handle the .reginfo and
14240 the .mdebug sections. We need to merge all instances of these
14241 sections together, not write them all out sequentially. */
14242
14243 bfd_boolean
14244 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14245 {
14246 asection *o;
14247 struct bfd_link_order *p;
14248 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14249 asection *rtproc_sec, *abiflags_sec;
14250 Elf32_RegInfo reginfo;
14251 struct ecoff_debug_info debug;
14252 struct mips_htab_traverse_info hti;
14253 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14254 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14255 HDRR *symhdr = &debug.symbolic_header;
14256 void *mdebug_handle = NULL;
14257 asection *s;
14258 EXTR esym;
14259 unsigned int i;
14260 bfd_size_type amt;
14261 struct mips_elf_link_hash_table *htab;
14262
14263 static const char * const secname[] =
14264 {
14265 ".text", ".init", ".fini", ".data",
14266 ".rodata", ".sdata", ".sbss", ".bss"
14267 };
14268 static const int sc[] =
14269 {
14270 scText, scInit, scFini, scData,
14271 scRData, scSData, scSBss, scBss
14272 };
14273
14274 htab = mips_elf_hash_table (info);
14275 BFD_ASSERT (htab != NULL);
14276
14277 /* Sort the dynamic symbols so that those with GOT entries come after
14278 those without. */
14279 if (!mips_elf_sort_hash_table (abfd, info))
14280 return FALSE;
14281
14282 /* Create any scheduled LA25 stubs. */
14283 hti.info = info;
14284 hti.output_bfd = abfd;
14285 hti.error = FALSE;
14286 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14287 if (hti.error)
14288 return FALSE;
14289
14290 /* Get a value for the GP register. */
14291 if (elf_gp (abfd) == 0)
14292 {
14293 struct bfd_link_hash_entry *h;
14294
14295 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
14296 if (h != NULL && h->type == bfd_link_hash_defined)
14297 elf_gp (abfd) = (h->u.def.value
14298 + h->u.def.section->output_section->vma
14299 + h->u.def.section->output_offset);
14300 else if (htab->is_vxworks
14301 && (h = bfd_link_hash_lookup (info->hash,
14302 "_GLOBAL_OFFSET_TABLE_",
14303 FALSE, FALSE, TRUE))
14304 && h->type == bfd_link_hash_defined)
14305 elf_gp (abfd) = (h->u.def.section->output_section->vma
14306 + h->u.def.section->output_offset
14307 + h->u.def.value);
14308 else if (bfd_link_relocatable (info))
14309 {
14310 bfd_vma lo = MINUS_ONE;
14311
14312 /* Find the GP-relative section with the lowest offset. */
14313 for (o = abfd->sections; o != NULL; o = o->next)
14314 if (o->vma < lo
14315 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14316 lo = o->vma;
14317
14318 /* And calculate GP relative to that. */
14319 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14320 }
14321 else
14322 {
14323 /* If the relocate_section function needs to do a reloc
14324 involving the GP value, it should make a reloc_dangerous
14325 callback to warn that GP is not defined. */
14326 }
14327 }
14328
14329 /* Go through the sections and collect the .reginfo and .mdebug
14330 information. */
14331 abiflags_sec = NULL;
14332 reginfo_sec = NULL;
14333 mdebug_sec = NULL;
14334 gptab_data_sec = NULL;
14335 gptab_bss_sec = NULL;
14336 for (o = abfd->sections; o != NULL; o = o->next)
14337 {
14338 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14339 {
14340 /* We have found the .MIPS.abiflags section in the output file.
14341 Look through all the link_orders comprising it and remove them.
14342 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14343 for (p = o->map_head.link_order; p != NULL; p = p->next)
14344 {
14345 asection *input_section;
14346
14347 if (p->type != bfd_indirect_link_order)
14348 {
14349 if (p->type == bfd_data_link_order)
14350 continue;
14351 abort ();
14352 }
14353
14354 input_section = p->u.indirect.section;
14355
14356 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14357 elf_link_input_bfd ignores this section. */
14358 input_section->flags &= ~SEC_HAS_CONTENTS;
14359 }
14360
14361 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14362 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14363
14364 /* Skip this section later on (I don't think this currently
14365 matters, but someday it might). */
14366 o->map_head.link_order = NULL;
14367
14368 abiflags_sec = o;
14369 }
14370
14371 if (strcmp (o->name, ".reginfo") == 0)
14372 {
14373 memset (&reginfo, 0, sizeof reginfo);
14374
14375 /* We have found the .reginfo section in the output file.
14376 Look through all the link_orders comprising it and merge
14377 the information together. */
14378 for (p = o->map_head.link_order; p != NULL; p = p->next)
14379 {
14380 asection *input_section;
14381 bfd *input_bfd;
14382 Elf32_External_RegInfo ext;
14383 Elf32_RegInfo sub;
14384 bfd_size_type sz;
14385
14386 if (p->type != bfd_indirect_link_order)
14387 {
14388 if (p->type == bfd_data_link_order)
14389 continue;
14390 abort ();
14391 }
14392
14393 input_section = p->u.indirect.section;
14394 input_bfd = input_section->owner;
14395
14396 sz = (input_section->size < sizeof (ext)
14397 ? input_section->size : sizeof (ext));
14398 memset (&ext, 0, sizeof (ext));
14399 if (! bfd_get_section_contents (input_bfd, input_section,
14400 &ext, 0, sz))
14401 return FALSE;
14402
14403 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14404
14405 reginfo.ri_gprmask |= sub.ri_gprmask;
14406 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14407 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14408 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14409 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14410
14411 /* ri_gp_value is set by the function
14412 `_bfd_mips_elf_section_processing' when the section is
14413 finally written out. */
14414
14415 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14416 elf_link_input_bfd ignores this section. */
14417 input_section->flags &= ~SEC_HAS_CONTENTS;
14418 }
14419
14420 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14421 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14422
14423 /* Skip this section later on (I don't think this currently
14424 matters, but someday it might). */
14425 o->map_head.link_order = NULL;
14426
14427 reginfo_sec = o;
14428 }
14429
14430 if (strcmp (o->name, ".mdebug") == 0)
14431 {
14432 struct extsym_info einfo;
14433 bfd_vma last;
14434
14435 /* We have found the .mdebug section in the output file.
14436 Look through all the link_orders comprising it and merge
14437 the information together. */
14438 symhdr->magic = swap->sym_magic;
14439 /* FIXME: What should the version stamp be? */
14440 symhdr->vstamp = 0;
14441 symhdr->ilineMax = 0;
14442 symhdr->cbLine = 0;
14443 symhdr->idnMax = 0;
14444 symhdr->ipdMax = 0;
14445 symhdr->isymMax = 0;
14446 symhdr->ioptMax = 0;
14447 symhdr->iauxMax = 0;
14448 symhdr->issMax = 0;
14449 symhdr->issExtMax = 0;
14450 symhdr->ifdMax = 0;
14451 symhdr->crfd = 0;
14452 symhdr->iextMax = 0;
14453
14454 /* We accumulate the debugging information itself in the
14455 debug_info structure. */
14456 debug.line = NULL;
14457 debug.external_dnr = NULL;
14458 debug.external_pdr = NULL;
14459 debug.external_sym = NULL;
14460 debug.external_opt = NULL;
14461 debug.external_aux = NULL;
14462 debug.ss = NULL;
14463 debug.ssext = debug.ssext_end = NULL;
14464 debug.external_fdr = NULL;
14465 debug.external_rfd = NULL;
14466 debug.external_ext = debug.external_ext_end = NULL;
14467
14468 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14469 if (mdebug_handle == NULL)
14470 return FALSE;
14471
14472 esym.jmptbl = 0;
14473 esym.cobol_main = 0;
14474 esym.weakext = 0;
14475 esym.reserved = 0;
14476 esym.ifd = ifdNil;
14477 esym.asym.iss = issNil;
14478 esym.asym.st = stLocal;
14479 esym.asym.reserved = 0;
14480 esym.asym.index = indexNil;
14481 last = 0;
14482 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14483 {
14484 esym.asym.sc = sc[i];
14485 s = bfd_get_section_by_name (abfd, secname[i]);
14486 if (s != NULL)
14487 {
14488 esym.asym.value = s->vma;
14489 last = s->vma + s->size;
14490 }
14491 else
14492 esym.asym.value = last;
14493 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14494 secname[i], &esym))
14495 return FALSE;
14496 }
14497
14498 for (p = o->map_head.link_order; p != NULL; p = p->next)
14499 {
14500 asection *input_section;
14501 bfd *input_bfd;
14502 const struct ecoff_debug_swap *input_swap;
14503 struct ecoff_debug_info input_debug;
14504 char *eraw_src;
14505 char *eraw_end;
14506
14507 if (p->type != bfd_indirect_link_order)
14508 {
14509 if (p->type == bfd_data_link_order)
14510 continue;
14511 abort ();
14512 }
14513
14514 input_section = p->u.indirect.section;
14515 input_bfd = input_section->owner;
14516
14517 if (!is_mips_elf (input_bfd))
14518 {
14519 /* I don't know what a non MIPS ELF bfd would be
14520 doing with a .mdebug section, but I don't really
14521 want to deal with it. */
14522 continue;
14523 }
14524
14525 input_swap = (get_elf_backend_data (input_bfd)
14526 ->elf_backend_ecoff_debug_swap);
14527
14528 BFD_ASSERT (p->size == input_section->size);
14529
14530 /* The ECOFF linking code expects that we have already
14531 read in the debugging information and set up an
14532 ecoff_debug_info structure, so we do that now. */
14533 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14534 &input_debug))
14535 return FALSE;
14536
14537 if (! (bfd_ecoff_debug_accumulate
14538 (mdebug_handle, abfd, &debug, swap, input_bfd,
14539 &input_debug, input_swap, info)))
14540 return FALSE;
14541
14542 /* Loop through the external symbols. For each one with
14543 interesting information, try to find the symbol in
14544 the linker global hash table and save the information
14545 for the output external symbols. */
14546 eraw_src = input_debug.external_ext;
14547 eraw_end = (eraw_src
14548 + (input_debug.symbolic_header.iextMax
14549 * input_swap->external_ext_size));
14550 for (;
14551 eraw_src < eraw_end;
14552 eraw_src += input_swap->external_ext_size)
14553 {
14554 EXTR ext;
14555 const char *name;
14556 struct mips_elf_link_hash_entry *h;
14557
14558 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
14559 if (ext.asym.sc == scNil
14560 || ext.asym.sc == scUndefined
14561 || ext.asym.sc == scSUndefined)
14562 continue;
14563
14564 name = input_debug.ssext + ext.asym.iss;
14565 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
14566 name, FALSE, FALSE, TRUE);
14567 if (h == NULL || h->esym.ifd != -2)
14568 continue;
14569
14570 if (ext.ifd != -1)
14571 {
14572 BFD_ASSERT (ext.ifd
14573 < input_debug.symbolic_header.ifdMax);
14574 ext.ifd = input_debug.ifdmap[ext.ifd];
14575 }
14576
14577 h->esym = ext;
14578 }
14579
14580 /* Free up the information we just read. */
14581 free (input_debug.line);
14582 free (input_debug.external_dnr);
14583 free (input_debug.external_pdr);
14584 free (input_debug.external_sym);
14585 free (input_debug.external_opt);
14586 free (input_debug.external_aux);
14587 free (input_debug.ss);
14588 free (input_debug.ssext);
14589 free (input_debug.external_fdr);
14590 free (input_debug.external_rfd);
14591 free (input_debug.external_ext);
14592
14593 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14594 elf_link_input_bfd ignores this section. */
14595 input_section->flags &= ~SEC_HAS_CONTENTS;
14596 }
14597
14598 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
14599 {
14600 /* Create .rtproc section. */
14601 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
14602 if (rtproc_sec == NULL)
14603 {
14604 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14605 | SEC_LINKER_CREATED | SEC_READONLY);
14606
14607 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14608 ".rtproc",
14609 flags);
14610 if (rtproc_sec == NULL
14611 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
14612 return FALSE;
14613 }
14614
14615 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14616 info, rtproc_sec,
14617 &debug))
14618 return FALSE;
14619 }
14620
14621 /* Build the external symbol information. */
14622 einfo.abfd = abfd;
14623 einfo.info = info;
14624 einfo.debug = &debug;
14625 einfo.swap = swap;
14626 einfo.failed = FALSE;
14627 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
14628 mips_elf_output_extsym, &einfo);
14629 if (einfo.failed)
14630 return FALSE;
14631
14632 /* Set the size of the .mdebug section. */
14633 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
14634
14635 /* Skip this section later on (I don't think this currently
14636 matters, but someday it might). */
14637 o->map_head.link_order = NULL;
14638
14639 mdebug_sec = o;
14640 }
14641
14642 if (CONST_STRNEQ (o->name, ".gptab."))
14643 {
14644 const char *subname;
14645 unsigned int c;
14646 Elf32_gptab *tab;
14647 Elf32_External_gptab *ext_tab;
14648 unsigned int j;
14649
14650 /* The .gptab.sdata and .gptab.sbss sections hold
14651 information describing how the small data area would
14652 change depending upon the -G switch. These sections
14653 not used in executables files. */
14654 if (! bfd_link_relocatable (info))
14655 {
14656 for (p = o->map_head.link_order; p != NULL; p = p->next)
14657 {
14658 asection *input_section;
14659
14660 if (p->type != bfd_indirect_link_order)
14661 {
14662 if (p->type == bfd_data_link_order)
14663 continue;
14664 abort ();
14665 }
14666
14667 input_section = p->u.indirect.section;
14668
14669 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14670 elf_link_input_bfd ignores this section. */
14671 input_section->flags &= ~SEC_HAS_CONTENTS;
14672 }
14673
14674 /* Skip this section later on (I don't think this
14675 currently matters, but someday it might). */
14676 o->map_head.link_order = NULL;
14677
14678 /* Really remove the section. */
14679 bfd_section_list_remove (abfd, o);
14680 --abfd->section_count;
14681
14682 continue;
14683 }
14684
14685 /* There is one gptab for initialized data, and one for
14686 uninitialized data. */
14687 if (strcmp (o->name, ".gptab.sdata") == 0)
14688 gptab_data_sec = o;
14689 else if (strcmp (o->name, ".gptab.sbss") == 0)
14690 gptab_bss_sec = o;
14691 else
14692 {
14693 _bfd_error_handler
14694 /* xgettext:c-format */
14695 (_("%pB: illegal section name `%pA'"), abfd, o);
14696 bfd_set_error (bfd_error_nonrepresentable_section);
14697 return FALSE;
14698 }
14699
14700 /* The linker script always combines .gptab.data and
14701 .gptab.sdata into .gptab.sdata, and likewise for
14702 .gptab.bss and .gptab.sbss. It is possible that there is
14703 no .sdata or .sbss section in the output file, in which
14704 case we must change the name of the output section. */
14705 subname = o->name + sizeof ".gptab" - 1;
14706 if (bfd_get_section_by_name (abfd, subname) == NULL)
14707 {
14708 if (o == gptab_data_sec)
14709 o->name = ".gptab.data";
14710 else
14711 o->name = ".gptab.bss";
14712 subname = o->name + sizeof ".gptab" - 1;
14713 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14714 }
14715
14716 /* Set up the first entry. */
14717 c = 1;
14718 amt = c * sizeof (Elf32_gptab);
14719 tab = bfd_malloc (amt);
14720 if (tab == NULL)
14721 return FALSE;
14722 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14723 tab[0].gt_header.gt_unused = 0;
14724
14725 /* Combine the input sections. */
14726 for (p = o->map_head.link_order; p != NULL; p = p->next)
14727 {
14728 asection *input_section;
14729 bfd *input_bfd;
14730 bfd_size_type size;
14731 unsigned long last;
14732 bfd_size_type gpentry;
14733
14734 if (p->type != bfd_indirect_link_order)
14735 {
14736 if (p->type == bfd_data_link_order)
14737 continue;
14738 abort ();
14739 }
14740
14741 input_section = p->u.indirect.section;
14742 input_bfd = input_section->owner;
14743
14744 /* Combine the gptab entries for this input section one
14745 by one. We know that the input gptab entries are
14746 sorted by ascending -G value. */
14747 size = input_section->size;
14748 last = 0;
14749 for (gpentry = sizeof (Elf32_External_gptab);
14750 gpentry < size;
14751 gpentry += sizeof (Elf32_External_gptab))
14752 {
14753 Elf32_External_gptab ext_gptab;
14754 Elf32_gptab int_gptab;
14755 unsigned long val;
14756 unsigned long add;
14757 bfd_boolean exact;
14758 unsigned int look;
14759
14760 if (! (bfd_get_section_contents
14761 (input_bfd, input_section, &ext_gptab, gpentry,
14762 sizeof (Elf32_External_gptab))))
14763 {
14764 free (tab);
14765 return FALSE;
14766 }
14767
14768 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
14769 &int_gptab);
14770 val = int_gptab.gt_entry.gt_g_value;
14771 add = int_gptab.gt_entry.gt_bytes - last;
14772
14773 exact = FALSE;
14774 for (look = 1; look < c; look++)
14775 {
14776 if (tab[look].gt_entry.gt_g_value >= val)
14777 tab[look].gt_entry.gt_bytes += add;
14778
14779 if (tab[look].gt_entry.gt_g_value == val)
14780 exact = TRUE;
14781 }
14782
14783 if (! exact)
14784 {
14785 Elf32_gptab *new_tab;
14786 unsigned int max;
14787
14788 /* We need a new table entry. */
14789 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
14790 new_tab = bfd_realloc (tab, amt);
14791 if (new_tab == NULL)
14792 {
14793 free (tab);
14794 return FALSE;
14795 }
14796 tab = new_tab;
14797 tab[c].gt_entry.gt_g_value = val;
14798 tab[c].gt_entry.gt_bytes = add;
14799
14800 /* Merge in the size for the next smallest -G
14801 value, since that will be implied by this new
14802 value. */
14803 max = 0;
14804 for (look = 1; look < c; look++)
14805 {
14806 if (tab[look].gt_entry.gt_g_value < val
14807 && (max == 0
14808 || (tab[look].gt_entry.gt_g_value
14809 > tab[max].gt_entry.gt_g_value)))
14810 max = look;
14811 }
14812 if (max != 0)
14813 tab[c].gt_entry.gt_bytes +=
14814 tab[max].gt_entry.gt_bytes;
14815
14816 ++c;
14817 }
14818
14819 last = int_gptab.gt_entry.gt_bytes;
14820 }
14821
14822 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14823 elf_link_input_bfd ignores this section. */
14824 input_section->flags &= ~SEC_HAS_CONTENTS;
14825 }
14826
14827 /* The table must be sorted by -G value. */
14828 if (c > 2)
14829 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
14830
14831 /* Swap out the table. */
14832 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
14833 ext_tab = bfd_alloc (abfd, amt);
14834 if (ext_tab == NULL)
14835 {
14836 free (tab);
14837 return FALSE;
14838 }
14839
14840 for (j = 0; j < c; j++)
14841 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
14842 free (tab);
14843
14844 o->size = c * sizeof (Elf32_External_gptab);
14845 o->contents = (bfd_byte *) ext_tab;
14846
14847 /* Skip this section later on (I don't think this currently
14848 matters, but someday it might). */
14849 o->map_head.link_order = NULL;
14850 }
14851 }
14852
14853 /* Invoke the regular ELF backend linker to do all the work. */
14854 if (!bfd_elf_final_link (abfd, info))
14855 return FALSE;
14856
14857 /* Now write out the computed sections. */
14858
14859 if (abiflags_sec != NULL)
14860 {
14861 Elf_External_ABIFlags_v0 ext;
14862 Elf_Internal_ABIFlags_v0 *abiflags;
14863
14864 abiflags = &mips_elf_tdata (abfd)->abiflags;
14865
14866 /* Set up the abiflags if no valid input sections were found. */
14867 if (!mips_elf_tdata (abfd)->abiflags_valid)
14868 {
14869 infer_mips_abiflags (abfd, abiflags);
14870 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
14871 }
14872 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
14873 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
14874 return FALSE;
14875 }
14876
14877 if (reginfo_sec != NULL)
14878 {
14879 Elf32_External_RegInfo ext;
14880
14881 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
14882 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
14883 return FALSE;
14884 }
14885
14886 if (mdebug_sec != NULL)
14887 {
14888 BFD_ASSERT (abfd->output_has_begun);
14889 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
14890 swap, info,
14891 mdebug_sec->filepos))
14892 return FALSE;
14893
14894 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
14895 }
14896
14897 if (gptab_data_sec != NULL)
14898 {
14899 if (! bfd_set_section_contents (abfd, gptab_data_sec,
14900 gptab_data_sec->contents,
14901 0, gptab_data_sec->size))
14902 return FALSE;
14903 }
14904
14905 if (gptab_bss_sec != NULL)
14906 {
14907 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
14908 gptab_bss_sec->contents,
14909 0, gptab_bss_sec->size))
14910 return FALSE;
14911 }
14912
14913 if (SGI_COMPAT (abfd))
14914 {
14915 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
14916 if (rtproc_sec != NULL)
14917 {
14918 if (! bfd_set_section_contents (abfd, rtproc_sec,
14919 rtproc_sec->contents,
14920 0, rtproc_sec->size))
14921 return FALSE;
14922 }
14923 }
14924
14925 return TRUE;
14926 }
14927 \f
14928 /* Merge object file header flags from IBFD into OBFD. Raise an error
14929 if there are conflicting settings. */
14930
14931 static bfd_boolean
14932 mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info)
14933 {
14934 bfd *obfd = info->output_bfd;
14935 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
14936 flagword old_flags;
14937 flagword new_flags;
14938 bfd_boolean ok;
14939
14940 new_flags = elf_elfheader (ibfd)->e_flags;
14941 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
14942 old_flags = elf_elfheader (obfd)->e_flags;
14943
14944 /* Check flag compatibility. */
14945
14946 new_flags &= ~EF_MIPS_NOREORDER;
14947 old_flags &= ~EF_MIPS_NOREORDER;
14948
14949 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
14950 doesn't seem to matter. */
14951 new_flags &= ~EF_MIPS_XGOT;
14952 old_flags &= ~EF_MIPS_XGOT;
14953
14954 /* MIPSpro generates ucode info in n64 objects. Again, we should
14955 just be able to ignore this. */
14956 new_flags &= ~EF_MIPS_UCODE;
14957 old_flags &= ~EF_MIPS_UCODE;
14958
14959 /* DSOs should only be linked with CPIC code. */
14960 if ((ibfd->flags & DYNAMIC) != 0)
14961 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
14962
14963 if (new_flags == old_flags)
14964 return TRUE;
14965
14966 ok = TRUE;
14967
14968 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
14969 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
14970 {
14971 _bfd_error_handler
14972 (_("%pB: warning: linking abicalls files with non-abicalls files"),
14973 ibfd);
14974 ok = TRUE;
14975 }
14976
14977 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
14978 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
14979 if (! (new_flags & EF_MIPS_PIC))
14980 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
14981
14982 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14983 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14984
14985 /* Compare the ISAs. */
14986 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
14987 {
14988 _bfd_error_handler
14989 (_("%pB: linking 32-bit code with 64-bit code"),
14990 ibfd);
14991 ok = FALSE;
14992 }
14993 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
14994 {
14995 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
14996 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
14997 {
14998 /* Copy the architecture info from IBFD to OBFD. Also copy
14999 the 32-bit flag (if set) so that we continue to recognise
15000 OBFD as a 32-bit binary. */
15001 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15002 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15003 elf_elfheader (obfd)->e_flags
15004 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15005
15006 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15007 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15008
15009 /* Copy across the ABI flags if OBFD doesn't use them
15010 and if that was what caused us to treat IBFD as 32-bit. */
15011 if ((old_flags & EF_MIPS_ABI) == 0
15012 && mips_32bit_flags_p (new_flags)
15013 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15014 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15015 }
15016 else
15017 {
15018 /* The ISAs aren't compatible. */
15019 _bfd_error_handler
15020 /* xgettext:c-format */
15021 (_("%pB: linking %s module with previous %s modules"),
15022 ibfd,
15023 bfd_printable_name (ibfd),
15024 bfd_printable_name (obfd));
15025 ok = FALSE;
15026 }
15027 }
15028
15029 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15030 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15031
15032 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15033 does set EI_CLASS differently from any 32-bit ABI. */
15034 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15035 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15036 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15037 {
15038 /* Only error if both are set (to different values). */
15039 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15040 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15041 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15042 {
15043 _bfd_error_handler
15044 /* xgettext:c-format */
15045 (_("%pB: ABI mismatch: linking %s module with previous %s modules"),
15046 ibfd,
15047 elf_mips_abi_name (ibfd),
15048 elf_mips_abi_name (obfd));
15049 ok = FALSE;
15050 }
15051 new_flags &= ~EF_MIPS_ABI;
15052 old_flags &= ~EF_MIPS_ABI;
15053 }
15054
15055 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15056 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15057 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15058 {
15059 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15060 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15061 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15062 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15063 int micro_mis = old_m16 && new_micro;
15064 int m16_mis = old_micro && new_m16;
15065
15066 if (m16_mis || micro_mis)
15067 {
15068 _bfd_error_handler
15069 /* xgettext:c-format */
15070 (_("%pB: ASE mismatch: linking %s module with previous %s modules"),
15071 ibfd,
15072 m16_mis ? "MIPS16" : "microMIPS",
15073 m16_mis ? "microMIPS" : "MIPS16");
15074 ok = FALSE;
15075 }
15076
15077 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15078
15079 new_flags &= ~ EF_MIPS_ARCH_ASE;
15080 old_flags &= ~ EF_MIPS_ARCH_ASE;
15081 }
15082
15083 /* Compare NaN encodings. */
15084 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15085 {
15086 /* xgettext:c-format */
15087 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15088 ibfd,
15089 (new_flags & EF_MIPS_NAN2008
15090 ? "-mnan=2008" : "-mnan=legacy"),
15091 (old_flags & EF_MIPS_NAN2008
15092 ? "-mnan=2008" : "-mnan=legacy"));
15093 ok = FALSE;
15094 new_flags &= ~EF_MIPS_NAN2008;
15095 old_flags &= ~EF_MIPS_NAN2008;
15096 }
15097
15098 /* Compare FP64 state. */
15099 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15100 {
15101 /* xgettext:c-format */
15102 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15103 ibfd,
15104 (new_flags & EF_MIPS_FP64
15105 ? "-mfp64" : "-mfp32"),
15106 (old_flags & EF_MIPS_FP64
15107 ? "-mfp64" : "-mfp32"));
15108 ok = FALSE;
15109 new_flags &= ~EF_MIPS_FP64;
15110 old_flags &= ~EF_MIPS_FP64;
15111 }
15112
15113 /* Warn about any other mismatches */
15114 if (new_flags != old_flags)
15115 {
15116 /* xgettext:c-format */
15117 _bfd_error_handler
15118 (_("%pB: uses different e_flags (%#x) fields than previous modules "
15119 "(%#x)"),
15120 ibfd, new_flags, old_flags);
15121 ok = FALSE;
15122 }
15123
15124 return ok;
15125 }
15126
15127 /* Merge object attributes from IBFD into OBFD. Raise an error if
15128 there are conflicting attributes. */
15129 static bfd_boolean
15130 mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
15131 {
15132 bfd *obfd = info->output_bfd;
15133 obj_attribute *in_attr;
15134 obj_attribute *out_attr;
15135 bfd *abi_fp_bfd;
15136 bfd *abi_msa_bfd;
15137
15138 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15139 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15140 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
15141 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15142
15143 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15144 if (!abi_msa_bfd
15145 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15146 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15147
15148 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15149 {
15150 /* This is the first object. Copy the attributes. */
15151 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15152
15153 /* Use the Tag_null value to indicate the attributes have been
15154 initialized. */
15155 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15156
15157 return TRUE;
15158 }
15159
15160 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15161 non-conflicting ones. */
15162 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15163 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15164 {
15165 int out_fp, in_fp;
15166
15167 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15168 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15169 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15170 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15171 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
15172 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15173 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15174 || in_fp == Val_GNU_MIPS_ABI_FP_64
15175 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15176 {
15177 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15178 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15179 }
15180 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15181 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15182 || out_fp == Val_GNU_MIPS_ABI_FP_64
15183 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15184 /* Keep the current setting. */;
15185 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15186 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15187 {
15188 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15189 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15190 }
15191 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15192 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15193 /* Keep the current setting. */;
15194 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15195 {
15196 const char *out_string, *in_string;
15197
15198 out_string = _bfd_mips_fp_abi_string (out_fp);
15199 in_string = _bfd_mips_fp_abi_string (in_fp);
15200 /* First warn about cases involving unrecognised ABIs. */
15201 if (!out_string && !in_string)
15202 /* xgettext:c-format */
15203 _bfd_error_handler
15204 (_("warning: %pB uses unknown floating point ABI %d "
15205 "(set by %pB), %pB uses unknown floating point ABI %d"),
15206 obfd, out_fp, abi_fp_bfd, ibfd, in_fp);
15207 else if (!out_string)
15208 _bfd_error_handler
15209 /* xgettext:c-format */
15210 (_("warning: %pB uses unknown floating point ABI %d "
15211 "(set by %pB), %pB uses %s"),
15212 obfd, out_fp, abi_fp_bfd, ibfd, in_string);
15213 else if (!in_string)
15214 _bfd_error_handler
15215 /* xgettext:c-format */
15216 (_("warning: %pB uses %s (set by %pB), "
15217 "%pB uses unknown floating point ABI %d"),
15218 obfd, out_string, abi_fp_bfd, ibfd, in_fp);
15219 else
15220 {
15221 /* If one of the bfds is soft-float, the other must be
15222 hard-float. The exact choice of hard-float ABI isn't
15223 really relevant to the error message. */
15224 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15225 out_string = "-mhard-float";
15226 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15227 in_string = "-mhard-float";
15228 _bfd_error_handler
15229 /* xgettext:c-format */
15230 (_("warning: %pB uses %s (set by %pB), %pB uses %s"),
15231 obfd, out_string, abi_fp_bfd, ibfd, in_string);
15232 }
15233 }
15234 }
15235
15236 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15237 non-conflicting ones. */
15238 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15239 {
15240 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15241 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15242 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15243 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15244 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15245 {
15246 case Val_GNU_MIPS_ABI_MSA_128:
15247 _bfd_error_handler
15248 /* xgettext:c-format */
15249 (_("warning: %pB uses %s (set by %pB), "
15250 "%pB uses unknown MSA ABI %d"),
15251 obfd, "-mmsa", abi_msa_bfd,
15252 ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15253 break;
15254
15255 default:
15256 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15257 {
15258 case Val_GNU_MIPS_ABI_MSA_128:
15259 _bfd_error_handler
15260 /* xgettext:c-format */
15261 (_("warning: %pB uses unknown MSA ABI %d "
15262 "(set by %pB), %pB uses %s"),
15263 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15264 abi_msa_bfd, ibfd, "-mmsa");
15265 break;
15266
15267 default:
15268 _bfd_error_handler
15269 /* xgettext:c-format */
15270 (_("warning: %pB uses unknown MSA ABI %d "
15271 "(set by %pB), %pB uses unknown MSA ABI %d"),
15272 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15273 abi_msa_bfd, ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15274 break;
15275 }
15276 }
15277 }
15278
15279 /* Merge Tag_compatibility attributes and any common GNU ones. */
15280 return _bfd_elf_merge_object_attributes (ibfd, info);
15281 }
15282
15283 /* Merge object ABI flags from IBFD into OBFD. Raise an error if
15284 there are conflicting settings. */
15285
15286 static bfd_boolean
15287 mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15288 {
15289 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15290 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15291 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15292
15293 /* Update the output abiflags fp_abi using the computed fp_abi. */
15294 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15295
15296 #define max(a, b) ((a) > (b) ? (a) : (b))
15297 /* Merge abiflags. */
15298 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15299 in_tdata->abiflags.isa_level);
15300 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15301 in_tdata->abiflags.isa_rev);
15302 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15303 in_tdata->abiflags.gpr_size);
15304 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15305 in_tdata->abiflags.cpr1_size);
15306 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15307 in_tdata->abiflags.cpr2_size);
15308 #undef max
15309 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15310 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15311
15312 return TRUE;
15313 }
15314
15315 /* Merge backend specific data from an object file to the output
15316 object file when linking. */
15317
15318 bfd_boolean
15319 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
15320 {
15321 bfd *obfd = info->output_bfd;
15322 struct mips_elf_obj_tdata *out_tdata;
15323 struct mips_elf_obj_tdata *in_tdata;
15324 bfd_boolean null_input_bfd = TRUE;
15325 asection *sec;
15326 bfd_boolean ok;
15327
15328 /* Check if we have the same endianness. */
15329 if (! _bfd_generic_verify_endian_match (ibfd, info))
15330 {
15331 _bfd_error_handler
15332 (_("%pB: endianness incompatible with that of the selected emulation"),
15333 ibfd);
15334 return FALSE;
15335 }
15336
15337 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15338 return TRUE;
15339
15340 in_tdata = mips_elf_tdata (ibfd);
15341 out_tdata = mips_elf_tdata (obfd);
15342
15343 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15344 {
15345 _bfd_error_handler
15346 (_("%pB: ABI is incompatible with that of the selected emulation"),
15347 ibfd);
15348 return FALSE;
15349 }
15350
15351 /* Check to see if the input BFD actually contains any sections. If not,
15352 then it has no attributes, and its flags may not have been initialized
15353 either, but it cannot actually cause any incompatibility. */
15354 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15355 {
15356 /* Ignore synthetic sections and empty .text, .data and .bss sections
15357 which are automatically generated by gas. Also ignore fake
15358 (s)common sections, since merely defining a common symbol does
15359 not affect compatibility. */
15360 if ((sec->flags & SEC_IS_COMMON) == 0
15361 && strcmp (sec->name, ".reginfo")
15362 && strcmp (sec->name, ".mdebug")
15363 && (sec->size != 0
15364 || (strcmp (sec->name, ".text")
15365 && strcmp (sec->name, ".data")
15366 && strcmp (sec->name, ".bss"))))
15367 {
15368 null_input_bfd = FALSE;
15369 break;
15370 }
15371 }
15372 if (null_input_bfd)
15373 return TRUE;
15374
15375 /* Populate abiflags using existing information. */
15376 if (in_tdata->abiflags_valid)
15377 {
15378 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15379 Elf_Internal_ABIFlags_v0 in_abiflags;
15380 Elf_Internal_ABIFlags_v0 abiflags;
15381
15382 /* Set up the FP ABI attribute from the abiflags if it is not already
15383 set. */
15384 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15385 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
15386
15387 infer_mips_abiflags (ibfd, &abiflags);
15388 in_abiflags = in_tdata->abiflags;
15389
15390 /* It is not possible to infer the correct ISA revision
15391 for R3 or R5 so drop down to R2 for the checks. */
15392 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15393 in_abiflags.isa_rev = 2;
15394
15395 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15396 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
15397 _bfd_error_handler
15398 (_("%pB: warning: inconsistent ISA between e_flags and "
15399 ".MIPS.abiflags"), ibfd);
15400 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15401 && in_abiflags.fp_abi != abiflags.fp_abi)
15402 _bfd_error_handler
15403 (_("%pB: warning: inconsistent FP ABI between .gnu.attributes and "
15404 ".MIPS.abiflags"), ibfd);
15405 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15406 _bfd_error_handler
15407 (_("%pB: warning: inconsistent ASEs between e_flags and "
15408 ".MIPS.abiflags"), ibfd);
15409 /* The isa_ext is allowed to be an extension of what can be inferred
15410 from e_flags. */
15411 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15412 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
15413 _bfd_error_handler
15414 (_("%pB: warning: inconsistent ISA extensions between e_flags and "
15415 ".MIPS.abiflags"), ibfd);
15416 if (in_abiflags.flags2 != 0)
15417 _bfd_error_handler
15418 (_("%pB: warning: unexpected flag in the flags2 field of "
15419 ".MIPS.abiflags (0x%lx)"), ibfd,
15420 in_abiflags.flags2);
15421 }
15422 else
15423 {
15424 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15425 in_tdata->abiflags_valid = TRUE;
15426 }
15427
15428 if (!out_tdata->abiflags_valid)
15429 {
15430 /* Copy input abiflags if output abiflags are not already valid. */
15431 out_tdata->abiflags = in_tdata->abiflags;
15432 out_tdata->abiflags_valid = TRUE;
15433 }
15434
15435 if (! elf_flags_init (obfd))
15436 {
15437 elf_flags_init (obfd) = TRUE;
15438 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15439 elf_elfheader (obfd)->e_ident[EI_CLASS]
15440 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15441
15442 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15443 && (bfd_get_arch_info (obfd)->the_default
15444 || mips_mach_extends_p (bfd_get_mach (obfd),
15445 bfd_get_mach (ibfd))))
15446 {
15447 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15448 bfd_get_mach (ibfd)))
15449 return FALSE;
15450
15451 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15452 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15453 }
15454
15455 ok = TRUE;
15456 }
15457 else
15458 ok = mips_elf_merge_obj_e_flags (ibfd, info);
15459
15460 ok = mips_elf_merge_obj_attributes (ibfd, info) && ok;
15461
15462 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
15463
15464 if (!ok)
15465 {
15466 bfd_set_error (bfd_error_bad_value);
15467 return FALSE;
15468 }
15469
15470 return TRUE;
15471 }
15472
15473 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15474
15475 bfd_boolean
15476 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15477 {
15478 BFD_ASSERT (!elf_flags_init (abfd)
15479 || elf_elfheader (abfd)->e_flags == flags);
15480
15481 elf_elfheader (abfd)->e_flags = flags;
15482 elf_flags_init (abfd) = TRUE;
15483 return TRUE;
15484 }
15485
15486 char *
15487 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15488 {
15489 switch (dtag)
15490 {
15491 default: return "";
15492 case DT_MIPS_RLD_VERSION:
15493 return "MIPS_RLD_VERSION";
15494 case DT_MIPS_TIME_STAMP:
15495 return "MIPS_TIME_STAMP";
15496 case DT_MIPS_ICHECKSUM:
15497 return "MIPS_ICHECKSUM";
15498 case DT_MIPS_IVERSION:
15499 return "MIPS_IVERSION";
15500 case DT_MIPS_FLAGS:
15501 return "MIPS_FLAGS";
15502 case DT_MIPS_BASE_ADDRESS:
15503 return "MIPS_BASE_ADDRESS";
15504 case DT_MIPS_MSYM:
15505 return "MIPS_MSYM";
15506 case DT_MIPS_CONFLICT:
15507 return "MIPS_CONFLICT";
15508 case DT_MIPS_LIBLIST:
15509 return "MIPS_LIBLIST";
15510 case DT_MIPS_LOCAL_GOTNO:
15511 return "MIPS_LOCAL_GOTNO";
15512 case DT_MIPS_CONFLICTNO:
15513 return "MIPS_CONFLICTNO";
15514 case DT_MIPS_LIBLISTNO:
15515 return "MIPS_LIBLISTNO";
15516 case DT_MIPS_SYMTABNO:
15517 return "MIPS_SYMTABNO";
15518 case DT_MIPS_UNREFEXTNO:
15519 return "MIPS_UNREFEXTNO";
15520 case DT_MIPS_GOTSYM:
15521 return "MIPS_GOTSYM";
15522 case DT_MIPS_HIPAGENO:
15523 return "MIPS_HIPAGENO";
15524 case DT_MIPS_RLD_MAP:
15525 return "MIPS_RLD_MAP";
15526 case DT_MIPS_RLD_MAP_REL:
15527 return "MIPS_RLD_MAP_REL";
15528 case DT_MIPS_DELTA_CLASS:
15529 return "MIPS_DELTA_CLASS";
15530 case DT_MIPS_DELTA_CLASS_NO:
15531 return "MIPS_DELTA_CLASS_NO";
15532 case DT_MIPS_DELTA_INSTANCE:
15533 return "MIPS_DELTA_INSTANCE";
15534 case DT_MIPS_DELTA_INSTANCE_NO:
15535 return "MIPS_DELTA_INSTANCE_NO";
15536 case DT_MIPS_DELTA_RELOC:
15537 return "MIPS_DELTA_RELOC";
15538 case DT_MIPS_DELTA_RELOC_NO:
15539 return "MIPS_DELTA_RELOC_NO";
15540 case DT_MIPS_DELTA_SYM:
15541 return "MIPS_DELTA_SYM";
15542 case DT_MIPS_DELTA_SYM_NO:
15543 return "MIPS_DELTA_SYM_NO";
15544 case DT_MIPS_DELTA_CLASSSYM:
15545 return "MIPS_DELTA_CLASSSYM";
15546 case DT_MIPS_DELTA_CLASSSYM_NO:
15547 return "MIPS_DELTA_CLASSSYM_NO";
15548 case DT_MIPS_CXX_FLAGS:
15549 return "MIPS_CXX_FLAGS";
15550 case DT_MIPS_PIXIE_INIT:
15551 return "MIPS_PIXIE_INIT";
15552 case DT_MIPS_SYMBOL_LIB:
15553 return "MIPS_SYMBOL_LIB";
15554 case DT_MIPS_LOCALPAGE_GOTIDX:
15555 return "MIPS_LOCALPAGE_GOTIDX";
15556 case DT_MIPS_LOCAL_GOTIDX:
15557 return "MIPS_LOCAL_GOTIDX";
15558 case DT_MIPS_HIDDEN_GOTIDX:
15559 return "MIPS_HIDDEN_GOTIDX";
15560 case DT_MIPS_PROTECTED_GOTIDX:
15561 return "MIPS_PROTECTED_GOT_IDX";
15562 case DT_MIPS_OPTIONS:
15563 return "MIPS_OPTIONS";
15564 case DT_MIPS_INTERFACE:
15565 return "MIPS_INTERFACE";
15566 case DT_MIPS_DYNSTR_ALIGN:
15567 return "DT_MIPS_DYNSTR_ALIGN";
15568 case DT_MIPS_INTERFACE_SIZE:
15569 return "DT_MIPS_INTERFACE_SIZE";
15570 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15571 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15572 case DT_MIPS_PERF_SUFFIX:
15573 return "DT_MIPS_PERF_SUFFIX";
15574 case DT_MIPS_COMPACT_SIZE:
15575 return "DT_MIPS_COMPACT_SIZE";
15576 case DT_MIPS_GP_VALUE:
15577 return "DT_MIPS_GP_VALUE";
15578 case DT_MIPS_AUX_DYNAMIC:
15579 return "DT_MIPS_AUX_DYNAMIC";
15580 case DT_MIPS_PLTGOT:
15581 return "DT_MIPS_PLTGOT";
15582 case DT_MIPS_RWPLT:
15583 return "DT_MIPS_RWPLT";
15584 }
15585 }
15586
15587 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15588 not known. */
15589
15590 const char *
15591 _bfd_mips_fp_abi_string (int fp)
15592 {
15593 switch (fp)
15594 {
15595 /* These strings aren't translated because they're simply
15596 option lists. */
15597 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15598 return "-mdouble-float";
15599
15600 case Val_GNU_MIPS_ABI_FP_SINGLE:
15601 return "-msingle-float";
15602
15603 case Val_GNU_MIPS_ABI_FP_SOFT:
15604 return "-msoft-float";
15605
15606 case Val_GNU_MIPS_ABI_FP_OLD_64:
15607 return _("-mips32r2 -mfp64 (12 callee-saved)");
15608
15609 case Val_GNU_MIPS_ABI_FP_XX:
15610 return "-mfpxx";
15611
15612 case Val_GNU_MIPS_ABI_FP_64:
15613 return "-mgp32 -mfp64";
15614
15615 case Val_GNU_MIPS_ABI_FP_64A:
15616 return "-mgp32 -mfp64 -mno-odd-spreg";
15617
15618 default:
15619 return 0;
15620 }
15621 }
15622
15623 static void
15624 print_mips_ases (FILE *file, unsigned int mask)
15625 {
15626 if (mask & AFL_ASE_DSP)
15627 fputs ("\n\tDSP ASE", file);
15628 if (mask & AFL_ASE_DSPR2)
15629 fputs ("\n\tDSP R2 ASE", file);
15630 if (mask & AFL_ASE_DSPR3)
15631 fputs ("\n\tDSP R3 ASE", file);
15632 if (mask & AFL_ASE_EVA)
15633 fputs ("\n\tEnhanced VA Scheme", file);
15634 if (mask & AFL_ASE_MCU)
15635 fputs ("\n\tMCU (MicroController) ASE", file);
15636 if (mask & AFL_ASE_MDMX)
15637 fputs ("\n\tMDMX ASE", file);
15638 if (mask & AFL_ASE_MIPS3D)
15639 fputs ("\n\tMIPS-3D ASE", file);
15640 if (mask & AFL_ASE_MT)
15641 fputs ("\n\tMT ASE", file);
15642 if (mask & AFL_ASE_SMARTMIPS)
15643 fputs ("\n\tSmartMIPS ASE", file);
15644 if (mask & AFL_ASE_VIRT)
15645 fputs ("\n\tVZ ASE", file);
15646 if (mask & AFL_ASE_MSA)
15647 fputs ("\n\tMSA ASE", file);
15648 if (mask & AFL_ASE_MIPS16)
15649 fputs ("\n\tMIPS16 ASE", file);
15650 if (mask & AFL_ASE_MICROMIPS)
15651 fputs ("\n\tMICROMIPS ASE", file);
15652 if (mask & AFL_ASE_XPA)
15653 fputs ("\n\tXPA ASE", file);
15654 if (mask & AFL_ASE_MIPS16E2)
15655 fputs ("\n\tMIPS16e2 ASE", file);
15656 if (mask == 0)
15657 fprintf (file, "\n\t%s", _("None"));
15658 else if ((mask & ~AFL_ASE_MASK) != 0)
15659 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
15660 }
15661
15662 static void
15663 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15664 {
15665 switch (isa_ext)
15666 {
15667 case 0:
15668 fputs (_("None"), file);
15669 break;
15670 case AFL_EXT_XLR:
15671 fputs ("RMI XLR", file);
15672 break;
15673 case AFL_EXT_OCTEON3:
15674 fputs ("Cavium Networks Octeon3", file);
15675 break;
15676 case AFL_EXT_OCTEON2:
15677 fputs ("Cavium Networks Octeon2", file);
15678 break;
15679 case AFL_EXT_OCTEONP:
15680 fputs ("Cavium Networks OcteonP", file);
15681 break;
15682 case AFL_EXT_LOONGSON_3A:
15683 fputs ("Loongson 3A", file);
15684 break;
15685 case AFL_EXT_OCTEON:
15686 fputs ("Cavium Networks Octeon", file);
15687 break;
15688 case AFL_EXT_5900:
15689 fputs ("Toshiba R5900", file);
15690 break;
15691 case AFL_EXT_4650:
15692 fputs ("MIPS R4650", file);
15693 break;
15694 case AFL_EXT_4010:
15695 fputs ("LSI R4010", file);
15696 break;
15697 case AFL_EXT_4100:
15698 fputs ("NEC VR4100", file);
15699 break;
15700 case AFL_EXT_3900:
15701 fputs ("Toshiba R3900", file);
15702 break;
15703 case AFL_EXT_10000:
15704 fputs ("MIPS R10000", file);
15705 break;
15706 case AFL_EXT_SB1:
15707 fputs ("Broadcom SB-1", file);
15708 break;
15709 case AFL_EXT_4111:
15710 fputs ("NEC VR4111/VR4181", file);
15711 break;
15712 case AFL_EXT_4120:
15713 fputs ("NEC VR4120", file);
15714 break;
15715 case AFL_EXT_5400:
15716 fputs ("NEC VR5400", file);
15717 break;
15718 case AFL_EXT_5500:
15719 fputs ("NEC VR5500", file);
15720 break;
15721 case AFL_EXT_LOONGSON_2E:
15722 fputs ("ST Microelectronics Loongson 2E", file);
15723 break;
15724 case AFL_EXT_LOONGSON_2F:
15725 fputs ("ST Microelectronics Loongson 2F", file);
15726 break;
15727 case AFL_EXT_INTERAPTIV_MR2:
15728 fputs ("Imagination interAptiv MR2", file);
15729 break;
15730 default:
15731 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
15732 break;
15733 }
15734 }
15735
15736 static void
15737 print_mips_fp_abi_value (FILE *file, int val)
15738 {
15739 switch (val)
15740 {
15741 case Val_GNU_MIPS_ABI_FP_ANY:
15742 fprintf (file, _("Hard or soft float\n"));
15743 break;
15744 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15745 fprintf (file, _("Hard float (double precision)\n"));
15746 break;
15747 case Val_GNU_MIPS_ABI_FP_SINGLE:
15748 fprintf (file, _("Hard float (single precision)\n"));
15749 break;
15750 case Val_GNU_MIPS_ABI_FP_SOFT:
15751 fprintf (file, _("Soft float\n"));
15752 break;
15753 case Val_GNU_MIPS_ABI_FP_OLD_64:
15754 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15755 break;
15756 case Val_GNU_MIPS_ABI_FP_XX:
15757 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
15758 break;
15759 case Val_GNU_MIPS_ABI_FP_64:
15760 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
15761 break;
15762 case Val_GNU_MIPS_ABI_FP_64A:
15763 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
15764 break;
15765 default:
15766 fprintf (file, "??? (%d)\n", val);
15767 break;
15768 }
15769 }
15770
15771 static int
15772 get_mips_reg_size (int reg_size)
15773 {
15774 return (reg_size == AFL_REG_NONE) ? 0
15775 : (reg_size == AFL_REG_32) ? 32
15776 : (reg_size == AFL_REG_64) ? 64
15777 : (reg_size == AFL_REG_128) ? 128
15778 : -1;
15779 }
15780
15781 bfd_boolean
15782 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
15783 {
15784 FILE *file = ptr;
15785
15786 BFD_ASSERT (abfd != NULL && ptr != NULL);
15787
15788 /* Print normal ELF private data. */
15789 _bfd_elf_print_private_bfd_data (abfd, ptr);
15790
15791 /* xgettext:c-format */
15792 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15793
15794 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
15795 fprintf (file, _(" [abi=O32]"));
15796 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
15797 fprintf (file, _(" [abi=O64]"));
15798 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
15799 fprintf (file, _(" [abi=EABI32]"));
15800 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
15801 fprintf (file, _(" [abi=EABI64]"));
15802 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
15803 fprintf (file, _(" [abi unknown]"));
15804 else if (ABI_N32_P (abfd))
15805 fprintf (file, _(" [abi=N32]"));
15806 else if (ABI_64_P (abfd))
15807 fprintf (file, _(" [abi=64]"));
15808 else
15809 fprintf (file, _(" [no abi set]"));
15810
15811 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
15812 fprintf (file, " [mips1]");
15813 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
15814 fprintf (file, " [mips2]");
15815 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
15816 fprintf (file, " [mips3]");
15817 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
15818 fprintf (file, " [mips4]");
15819 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
15820 fprintf (file, " [mips5]");
15821 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
15822 fprintf (file, " [mips32]");
15823 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
15824 fprintf (file, " [mips64]");
15825 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
15826 fprintf (file, " [mips32r2]");
15827 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
15828 fprintf (file, " [mips64r2]");
15829 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
15830 fprintf (file, " [mips32r6]");
15831 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
15832 fprintf (file, " [mips64r6]");
15833 else
15834 fprintf (file, _(" [unknown ISA]"));
15835
15836 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
15837 fprintf (file, " [mdmx]");
15838
15839 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
15840 fprintf (file, " [mips16]");
15841
15842 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
15843 fprintf (file, " [micromips]");
15844
15845 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
15846 fprintf (file, " [nan2008]");
15847
15848 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
15849 fprintf (file, " [old fp64]");
15850
15851 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
15852 fprintf (file, " [32bitmode]");
15853 else
15854 fprintf (file, _(" [not 32bitmode]"));
15855
15856 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
15857 fprintf (file, " [noreorder]");
15858
15859 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
15860 fprintf (file, " [PIC]");
15861
15862 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
15863 fprintf (file, " [CPIC]");
15864
15865 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
15866 fprintf (file, " [XGOT]");
15867
15868 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
15869 fprintf (file, " [UCODE]");
15870
15871 fputc ('\n', file);
15872
15873 if (mips_elf_tdata (abfd)->abiflags_valid)
15874 {
15875 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
15876 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
15877 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
15878 if (abiflags->isa_rev > 1)
15879 fprintf (file, "r%d", abiflags->isa_rev);
15880 fprintf (file, "\nGPR size: %d",
15881 get_mips_reg_size (abiflags->gpr_size));
15882 fprintf (file, "\nCPR1 size: %d",
15883 get_mips_reg_size (abiflags->cpr1_size));
15884 fprintf (file, "\nCPR2 size: %d",
15885 get_mips_reg_size (abiflags->cpr2_size));
15886 fputs ("\nFP ABI: ", file);
15887 print_mips_fp_abi_value (file, abiflags->fp_abi);
15888 fputs ("ISA Extension: ", file);
15889 print_mips_isa_ext (file, abiflags->isa_ext);
15890 fputs ("\nASEs:", file);
15891 print_mips_ases (file, abiflags->ases);
15892 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
15893 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
15894 fputc ('\n', file);
15895 }
15896
15897 return TRUE;
15898 }
15899
15900 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
15901 {
15902 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15903 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15904 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
15905 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15906 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15907 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
15908 { NULL, 0, 0, 0, 0 }
15909 };
15910
15911 /* Merge non visibility st_other attributes. Ensure that the
15912 STO_OPTIONAL flag is copied into h->other, even if this is not a
15913 definiton of the symbol. */
15914 void
15915 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
15916 const Elf_Internal_Sym *isym,
15917 bfd_boolean definition,
15918 bfd_boolean dynamic ATTRIBUTE_UNUSED)
15919 {
15920 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
15921 {
15922 unsigned char other;
15923
15924 other = (definition ? isym->st_other : h->other);
15925 other &= ~ELF_ST_VISIBILITY (-1);
15926 h->other = other | ELF_ST_VISIBILITY (h->other);
15927 }
15928
15929 if (!definition
15930 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
15931 h->other |= STO_OPTIONAL;
15932 }
15933
15934 /* Decide whether an undefined symbol is special and can be ignored.
15935 This is the case for OPTIONAL symbols on IRIX. */
15936 bfd_boolean
15937 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
15938 {
15939 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
15940 }
15941
15942 bfd_boolean
15943 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
15944 {
15945 return (sym->st_shndx == SHN_COMMON
15946 || sym->st_shndx == SHN_MIPS_ACOMMON
15947 || sym->st_shndx == SHN_MIPS_SCOMMON);
15948 }
15949
15950 /* Return address for Ith PLT stub in section PLT, for relocation REL
15951 or (bfd_vma) -1 if it should not be included. */
15952
15953 bfd_vma
15954 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
15955 const arelent *rel ATTRIBUTE_UNUSED)
15956 {
15957 return (plt->vma
15958 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
15959 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
15960 }
15961
15962 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
15963 and microMIPS PLT slots we may have a many-to-one mapping between .plt
15964 and .got.plt and also the slots may be of a different size each we walk
15965 the PLT manually fetching instructions and matching them against known
15966 patterns. To make things easier standard MIPS slots, if any, always come
15967 first. As we don't create proper ELF symbols we use the UDATA.I member
15968 of ASYMBOL to carry ISA annotation. The encoding used is the same as
15969 with the ST_OTHER member of the ELF symbol. */
15970
15971 long
15972 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
15973 long symcount ATTRIBUTE_UNUSED,
15974 asymbol **syms ATTRIBUTE_UNUSED,
15975 long dynsymcount, asymbol **dynsyms,
15976 asymbol **ret)
15977 {
15978 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
15979 static const char microsuffix[] = "@micromipsplt";
15980 static const char m16suffix[] = "@mips16plt";
15981 static const char mipssuffix[] = "@plt";
15982
15983 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
15984 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
15985 bfd_boolean micromips_p = MICROMIPS_P (abfd);
15986 Elf_Internal_Shdr *hdr;
15987 bfd_byte *plt_data;
15988 bfd_vma plt_offset;
15989 unsigned int other;
15990 bfd_vma entry_size;
15991 bfd_vma plt0_size;
15992 asection *relplt;
15993 bfd_vma opcode;
15994 asection *plt;
15995 asymbol *send;
15996 size_t size;
15997 char *names;
15998 long counti;
15999 arelent *p;
16000 asymbol *s;
16001 char *nend;
16002 long count;
16003 long pi;
16004 long i;
16005 long n;
16006
16007 *ret = NULL;
16008
16009 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
16010 return 0;
16011
16012 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16013 if (relplt == NULL)
16014 return 0;
16015
16016 hdr = &elf_section_data (relplt)->this_hdr;
16017 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
16018 return 0;
16019
16020 plt = bfd_get_section_by_name (abfd, ".plt");
16021 if (plt == NULL)
16022 return 0;
16023
16024 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
16025 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
16026 return -1;
16027 p = relplt->relocation;
16028
16029 /* Calculating the exact amount of space required for symbols would
16030 require two passes over the PLT, so just pessimise assuming two
16031 PLT slots per relocation. */
16032 count = relplt->size / hdr->sh_entsize;
16033 counti = count * bed->s->int_rels_per_ext_rel;
16034 size = 2 * count * sizeof (asymbol);
16035 size += count * (sizeof (mipssuffix) +
16036 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16037 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16038 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16039
16040 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16041 size += sizeof (asymbol) + sizeof (pltname);
16042
16043 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16044 return -1;
16045
16046 if (plt->size < 16)
16047 return -1;
16048
16049 s = *ret = bfd_malloc (size);
16050 if (s == NULL)
16051 return -1;
16052 send = s + 2 * count + 1;
16053
16054 names = (char *) send;
16055 nend = (char *) s + size;
16056 n = 0;
16057
16058 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16059 if (opcode == 0x3302fffe)
16060 {
16061 if (!micromips_p)
16062 return -1;
16063 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16064 other = STO_MICROMIPS;
16065 }
16066 else if (opcode == 0x0398c1d0)
16067 {
16068 if (!micromips_p)
16069 return -1;
16070 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16071 other = STO_MICROMIPS;
16072 }
16073 else
16074 {
16075 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16076 other = 0;
16077 }
16078
16079 s->the_bfd = abfd;
16080 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16081 s->section = plt;
16082 s->value = 0;
16083 s->name = names;
16084 s->udata.i = other;
16085 memcpy (names, pltname, sizeof (pltname));
16086 names += sizeof (pltname);
16087 ++s, ++n;
16088
16089 pi = 0;
16090 for (plt_offset = plt0_size;
16091 plt_offset + 8 <= plt->size && s < send;
16092 plt_offset += entry_size)
16093 {
16094 bfd_vma gotplt_addr;
16095 const char *suffix;
16096 bfd_vma gotplt_hi;
16097 bfd_vma gotplt_lo;
16098 size_t suffixlen;
16099
16100 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16101
16102 /* Check if the second word matches the expected MIPS16 instruction. */
16103 if (opcode == 0x651aeb00)
16104 {
16105 if (micromips_p)
16106 return -1;
16107 /* Truncated table??? */
16108 if (plt_offset + 16 > plt->size)
16109 break;
16110 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16111 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16112 suffixlen = sizeof (m16suffix);
16113 suffix = m16suffix;
16114 other = STO_MIPS16;
16115 }
16116 /* Likewise the expected microMIPS instruction (no insn32 mode). */
16117 else if (opcode == 0xff220000)
16118 {
16119 if (!micromips_p)
16120 return -1;
16121 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16122 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16123 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16124 gotplt_lo <<= 2;
16125 gotplt_addr = gotplt_hi + gotplt_lo;
16126 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16127 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16128 suffixlen = sizeof (microsuffix);
16129 suffix = microsuffix;
16130 other = STO_MICROMIPS;
16131 }
16132 /* Likewise the expected microMIPS instruction (insn32 mode). */
16133 else if ((opcode & 0xffff0000) == 0xff2f0000)
16134 {
16135 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16136 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16137 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16138 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16139 gotplt_addr = gotplt_hi + gotplt_lo;
16140 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16141 suffixlen = sizeof (microsuffix);
16142 suffix = microsuffix;
16143 other = STO_MICROMIPS;
16144 }
16145 /* Otherwise assume standard MIPS code. */
16146 else
16147 {
16148 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16149 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16150 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16151 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16152 gotplt_addr = gotplt_hi + gotplt_lo;
16153 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16154 suffixlen = sizeof (mipssuffix);
16155 suffix = mipssuffix;
16156 other = 0;
16157 }
16158 /* Truncated table??? */
16159 if (plt_offset + entry_size > plt->size)
16160 break;
16161
16162 for (i = 0;
16163 i < count && p[pi].address != gotplt_addr;
16164 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16165
16166 if (i < count)
16167 {
16168 size_t namelen;
16169 size_t len;
16170
16171 *s = **p[pi].sym_ptr_ptr;
16172 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16173 we are defining a symbol, ensure one of them is set. */
16174 if ((s->flags & BSF_LOCAL) == 0)
16175 s->flags |= BSF_GLOBAL;
16176 s->flags |= BSF_SYNTHETIC;
16177 s->section = plt;
16178 s->value = plt_offset;
16179 s->name = names;
16180 s->udata.i = other;
16181
16182 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16183 namelen = len + suffixlen;
16184 if (names + namelen > nend)
16185 break;
16186
16187 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16188 names += len;
16189 memcpy (names, suffix, suffixlen);
16190 names += suffixlen;
16191
16192 ++s, ++n;
16193 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16194 }
16195 }
16196
16197 free (plt_data);
16198
16199 return n;
16200 }
16201
16202 /* Return the ABI flags associated with ABFD if available. */
16203
16204 Elf_Internal_ABIFlags_v0 *
16205 bfd_mips_elf_get_abiflags (bfd *abfd)
16206 {
16207 struct mips_elf_obj_tdata *tdata = mips_elf_tdata (abfd);
16208
16209 return tdata->abiflags_valid ? &tdata->abiflags : NULL;
16210 }
16211
16212 void
16213 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16214 {
16215 struct mips_elf_link_hash_table *htab;
16216 Elf_Internal_Ehdr *i_ehdrp;
16217
16218 i_ehdrp = elf_elfheader (abfd);
16219 if (link_info)
16220 {
16221 htab = mips_elf_hash_table (link_info);
16222 BFD_ASSERT (htab != NULL);
16223
16224 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16225 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
16226 }
16227
16228 _bfd_elf_post_process_headers (abfd, link_info);
16229
16230 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16231 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16232 i_ehdrp->e_ident[EI_ABIVERSION] = 3;
16233 }
16234
16235 int
16236 _bfd_mips_elf_compact_eh_encoding (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16237 {
16238 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16239 }
16240
16241 /* Return the opcode for can't unwind. */
16242
16243 int
16244 _bfd_mips_elf_cant_unwind_opcode (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16245 {
16246 return COMPACT_EH_CANT_UNWIND_OPCODE;
16247 }
This page took 0.402358 seconds and 5 git commands to generate.