MIPS: Fix a .pdr section linker buffer overrun
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2014 Free Software Foundation, Inc.
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
28
29 /* This file handles functionality common to the different MIPS ABI's. */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "libiberty.h"
35 #include "elf-bfd.h"
36 #include "elfxx-mips.h"
37 #include "elf/mips.h"
38 #include "elf-vxworks.h"
39
40 /* Get the ECOFF swapping routines. */
41 #include "coff/sym.h"
42 #include "coff/symconst.h"
43 #include "coff/ecoff.h"
44 #include "coff/mips.h"
45
46 #include "hashtab.h"
47
48 /* Types of TLS GOT entry. */
49 enum mips_got_tls_type {
50 GOT_TLS_NONE,
51 GOT_TLS_GD,
52 GOT_TLS_LDM,
53 GOT_TLS_IE
54 };
55
56 /* This structure is used to hold information about one GOT entry.
57 There are four types of entry:
58
59 (1) an absolute address
60 requires: abfd == NULL
61 fields: d.address
62
63 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
64 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
65 fields: abfd, symndx, d.addend, tls_type
66
67 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
68 requires: abfd != NULL, symndx == -1
69 fields: d.h, tls_type
70
71 (4) a TLS LDM slot
72 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
73 fields: none; there's only one of these per GOT. */
74 struct mips_got_entry
75 {
76 /* One input bfd that needs the GOT entry. */
77 bfd *abfd;
78 /* The index of the symbol, as stored in the relocation r_info, if
79 we have a local symbol; -1 otherwise. */
80 long symndx;
81 union
82 {
83 /* If abfd == NULL, an address that must be stored in the got. */
84 bfd_vma address;
85 /* If abfd != NULL && symndx != -1, the addend of the relocation
86 that should be added to the symbol value. */
87 bfd_vma addend;
88 /* If abfd != NULL && symndx == -1, the hash table entry
89 corresponding to a symbol in the GOT. The symbol's entry
90 is in the local area if h->global_got_area is GGA_NONE,
91 otherwise it is in the global area. */
92 struct mips_elf_link_hash_entry *h;
93 } d;
94
95 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
96 symbol entry with r_symndx == 0. */
97 unsigned char tls_type;
98
99 /* True if we have filled in the GOT contents for a TLS entry,
100 and created the associated relocations. */
101 unsigned char tls_initialized;
102
103 /* The offset from the beginning of the .got section to the entry
104 corresponding to this symbol+addend. If it's a global symbol
105 whose offset is yet to be decided, it's going to be -1. */
106 long gotidx;
107 };
108
109 /* This structure represents a GOT page reference from an input bfd.
110 Each instance represents a symbol + ADDEND, where the representation
111 of the symbol depends on whether it is local to the input bfd.
112 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
113 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
114
115 Page references with SYMNDX >= 0 always become page references
116 in the output. Page references with SYMNDX < 0 only become page
117 references if the symbol binds locally; in other cases, the page
118 reference decays to a global GOT reference. */
119 struct mips_got_page_ref
120 {
121 long symndx;
122 union
123 {
124 struct mips_elf_link_hash_entry *h;
125 bfd *abfd;
126 } u;
127 bfd_vma addend;
128 };
129
130 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
131 The structures form a non-overlapping list that is sorted by increasing
132 MIN_ADDEND. */
133 struct mips_got_page_range
134 {
135 struct mips_got_page_range *next;
136 bfd_signed_vma min_addend;
137 bfd_signed_vma max_addend;
138 };
139
140 /* This structure describes the range of addends that are applied to page
141 relocations against a given section. */
142 struct mips_got_page_entry
143 {
144 /* The section that these entries are based on. */
145 asection *sec;
146 /* The ranges for this page entry. */
147 struct mips_got_page_range *ranges;
148 /* The maximum number of page entries needed for RANGES. */
149 bfd_vma num_pages;
150 };
151
152 /* This structure is used to hold .got information when linking. */
153
154 struct mips_got_info
155 {
156 /* The number of global .got entries. */
157 unsigned int global_gotno;
158 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
159 unsigned int reloc_only_gotno;
160 /* The number of .got slots used for TLS. */
161 unsigned int tls_gotno;
162 /* The first unused TLS .got entry. Used only during
163 mips_elf_initialize_tls_index. */
164 unsigned int tls_assigned_gotno;
165 /* The number of local .got entries, eventually including page entries. */
166 unsigned int local_gotno;
167 /* The maximum number of page entries needed. */
168 unsigned int page_gotno;
169 /* The number of relocations needed for the GOT entries. */
170 unsigned int relocs;
171 /* The first unused local .got entry. */
172 unsigned int assigned_low_gotno;
173 /* The last unused local .got entry. */
174 unsigned int assigned_high_gotno;
175 /* A hash table holding members of the got. */
176 struct htab *got_entries;
177 /* A hash table holding mips_got_page_ref structures. */
178 struct htab *got_page_refs;
179 /* A hash table of mips_got_page_entry structures. */
180 struct htab *got_page_entries;
181 /* In multi-got links, a pointer to the next got (err, rather, most
182 of the time, it points to the previous got). */
183 struct mips_got_info *next;
184 };
185
186 /* Structure passed when merging bfds' gots. */
187
188 struct mips_elf_got_per_bfd_arg
189 {
190 /* The output bfd. */
191 bfd *obfd;
192 /* The link information. */
193 struct bfd_link_info *info;
194 /* A pointer to the primary got, i.e., the one that's going to get
195 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
196 DT_MIPS_GOTSYM. */
197 struct mips_got_info *primary;
198 /* A non-primary got we're trying to merge with other input bfd's
199 gots. */
200 struct mips_got_info *current;
201 /* The maximum number of got entries that can be addressed with a
202 16-bit offset. */
203 unsigned int max_count;
204 /* The maximum number of page entries needed by each got. */
205 unsigned int max_pages;
206 /* The total number of global entries which will live in the
207 primary got and be automatically relocated. This includes
208 those not referenced by the primary GOT but included in
209 the "master" GOT. */
210 unsigned int global_count;
211 };
212
213 /* A structure used to pass information to htab_traverse callbacks
214 when laying out the GOT. */
215
216 struct mips_elf_traverse_got_arg
217 {
218 struct bfd_link_info *info;
219 struct mips_got_info *g;
220 int value;
221 };
222
223 struct _mips_elf_section_data
224 {
225 struct bfd_elf_section_data elf;
226 union
227 {
228 bfd_byte *tdata;
229 } u;
230 };
231
232 #define mips_elf_section_data(sec) \
233 ((struct _mips_elf_section_data *) elf_section_data (sec))
234
235 #define is_mips_elf(bfd) \
236 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
237 && elf_tdata (bfd) != NULL \
238 && elf_object_id (bfd) == MIPS_ELF_DATA)
239
240 /* The ABI says that every symbol used by dynamic relocations must have
241 a global GOT entry. Among other things, this provides the dynamic
242 linker with a free, directly-indexed cache. The GOT can therefore
243 contain symbols that are not referenced by GOT relocations themselves
244 (in other words, it may have symbols that are not referenced by things
245 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
246
247 GOT relocations are less likely to overflow if we put the associated
248 GOT entries towards the beginning. We therefore divide the global
249 GOT entries into two areas: "normal" and "reloc-only". Entries in
250 the first area can be used for both dynamic relocations and GP-relative
251 accesses, while those in the "reloc-only" area are for dynamic
252 relocations only.
253
254 These GGA_* ("Global GOT Area") values are organised so that lower
255 values are more general than higher values. Also, non-GGA_NONE
256 values are ordered by the position of the area in the GOT. */
257 #define GGA_NORMAL 0
258 #define GGA_RELOC_ONLY 1
259 #define GGA_NONE 2
260
261 /* Information about a non-PIC interface to a PIC function. There are
262 two ways of creating these interfaces. The first is to add:
263
264 lui $25,%hi(func)
265 addiu $25,$25,%lo(func)
266
267 immediately before a PIC function "func". The second is to add:
268
269 lui $25,%hi(func)
270 j func
271 addiu $25,$25,%lo(func)
272
273 to a separate trampoline section.
274
275 Stubs of the first kind go in a new section immediately before the
276 target function. Stubs of the second kind go in a single section
277 pointed to by the hash table's "strampoline" field. */
278 struct mips_elf_la25_stub {
279 /* The generated section that contains this stub. */
280 asection *stub_section;
281
282 /* The offset of the stub from the start of STUB_SECTION. */
283 bfd_vma offset;
284
285 /* One symbol for the original function. Its location is available
286 in H->root.root.u.def. */
287 struct mips_elf_link_hash_entry *h;
288 };
289
290 /* Macros for populating a mips_elf_la25_stub. */
291
292 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
293 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
294 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
295 #define LA25_LUI_MICROMIPS(VAL) \
296 (0x41b90000 | (VAL)) /* lui t9,VAL */
297 #define LA25_J_MICROMIPS(VAL) \
298 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
299 #define LA25_ADDIU_MICROMIPS(VAL) \
300 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
301
302 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
303 the dynamic symbols. */
304
305 struct mips_elf_hash_sort_data
306 {
307 /* The symbol in the global GOT with the lowest dynamic symbol table
308 index. */
309 struct elf_link_hash_entry *low;
310 /* The least dynamic symbol table index corresponding to a non-TLS
311 symbol with a GOT entry. */
312 long min_got_dynindx;
313 /* The greatest dynamic symbol table index corresponding to a symbol
314 with a GOT entry that is not referenced (e.g., a dynamic symbol
315 with dynamic relocations pointing to it from non-primary GOTs). */
316 long max_unref_got_dynindx;
317 /* The greatest dynamic symbol table index not corresponding to a
318 symbol without a GOT entry. */
319 long max_non_got_dynindx;
320 };
321
322 /* We make up to two PLT entries if needed, one for standard MIPS code
323 and one for compressed code, either a MIPS16 or microMIPS one. We
324 keep a separate record of traditional lazy-binding stubs, for easier
325 processing. */
326
327 struct plt_entry
328 {
329 /* Traditional SVR4 stub offset, or -1 if none. */
330 bfd_vma stub_offset;
331
332 /* Standard PLT entry offset, or -1 if none. */
333 bfd_vma mips_offset;
334
335 /* Compressed PLT entry offset, or -1 if none. */
336 bfd_vma comp_offset;
337
338 /* The corresponding .got.plt index, or -1 if none. */
339 bfd_vma gotplt_index;
340
341 /* Whether we need a standard PLT entry. */
342 unsigned int need_mips : 1;
343
344 /* Whether we need a compressed PLT entry. */
345 unsigned int need_comp : 1;
346 };
347
348 /* The MIPS ELF linker needs additional information for each symbol in
349 the global hash table. */
350
351 struct mips_elf_link_hash_entry
352 {
353 struct elf_link_hash_entry root;
354
355 /* External symbol information. */
356 EXTR esym;
357
358 /* The la25 stub we have created for ths symbol, if any. */
359 struct mips_elf_la25_stub *la25_stub;
360
361 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
362 this symbol. */
363 unsigned int possibly_dynamic_relocs;
364
365 /* If there is a stub that 32 bit functions should use to call this
366 16 bit function, this points to the section containing the stub. */
367 asection *fn_stub;
368
369 /* If there is a stub that 16 bit functions should use to call this
370 32 bit function, this points to the section containing the stub. */
371 asection *call_stub;
372
373 /* This is like the call_stub field, but it is used if the function
374 being called returns a floating point value. */
375 asection *call_fp_stub;
376
377 /* The highest GGA_* value that satisfies all references to this symbol. */
378 unsigned int global_got_area : 2;
379
380 /* True if all GOT relocations against this symbol are for calls. This is
381 a looser condition than no_fn_stub below, because there may be other
382 non-call non-GOT relocations against the symbol. */
383 unsigned int got_only_for_calls : 1;
384
385 /* True if one of the relocations described by possibly_dynamic_relocs
386 is against a readonly section. */
387 unsigned int readonly_reloc : 1;
388
389 /* True if there is a relocation against this symbol that must be
390 resolved by the static linker (in other words, if the relocation
391 cannot possibly be made dynamic). */
392 unsigned int has_static_relocs : 1;
393
394 /* True if we must not create a .MIPS.stubs entry for this symbol.
395 This is set, for example, if there are relocations related to
396 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
397 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
398 unsigned int no_fn_stub : 1;
399
400 /* Whether we need the fn_stub; this is true if this symbol appears
401 in any relocs other than a 16 bit call. */
402 unsigned int need_fn_stub : 1;
403
404 /* True if this symbol is referenced by branch relocations from
405 any non-PIC input file. This is used to determine whether an
406 la25 stub is required. */
407 unsigned int has_nonpic_branches : 1;
408
409 /* Does this symbol need a traditional MIPS lazy-binding stub
410 (as opposed to a PLT entry)? */
411 unsigned int needs_lazy_stub : 1;
412
413 /* Does this symbol resolve to a PLT entry? */
414 unsigned int use_plt_entry : 1;
415 };
416
417 /* MIPS ELF linker hash table. */
418
419 struct mips_elf_link_hash_table
420 {
421 struct elf_link_hash_table root;
422
423 /* The number of .rtproc entries. */
424 bfd_size_type procedure_count;
425
426 /* The size of the .compact_rel section (if SGI_COMPAT). */
427 bfd_size_type compact_rel_size;
428
429 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
430 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
431 bfd_boolean use_rld_obj_head;
432
433 /* The __rld_map or __rld_obj_head symbol. */
434 struct elf_link_hash_entry *rld_symbol;
435
436 /* This is set if we see any mips16 stub sections. */
437 bfd_boolean mips16_stubs_seen;
438
439 /* True if we can generate copy relocs and PLTs. */
440 bfd_boolean use_plts_and_copy_relocs;
441
442 /* True if we can only use 32-bit microMIPS instructions. */
443 bfd_boolean insn32;
444
445 /* True if we're generating code for VxWorks. */
446 bfd_boolean is_vxworks;
447
448 /* True if we already reported the small-data section overflow. */
449 bfd_boolean small_data_overflow_reported;
450
451 /* Shortcuts to some dynamic sections, or NULL if they are not
452 being used. */
453 asection *srelbss;
454 asection *sdynbss;
455 asection *srelplt;
456 asection *srelplt2;
457 asection *sgotplt;
458 asection *splt;
459 asection *sstubs;
460 asection *sgot;
461
462 /* The master GOT information. */
463 struct mips_got_info *got_info;
464
465 /* The global symbol in the GOT with the lowest index in the dynamic
466 symbol table. */
467 struct elf_link_hash_entry *global_gotsym;
468
469 /* The size of the PLT header in bytes. */
470 bfd_vma plt_header_size;
471
472 /* The size of a standard PLT entry in bytes. */
473 bfd_vma plt_mips_entry_size;
474
475 /* The size of a compressed PLT entry in bytes. */
476 bfd_vma plt_comp_entry_size;
477
478 /* The offset of the next standard PLT entry to create. */
479 bfd_vma plt_mips_offset;
480
481 /* The offset of the next compressed PLT entry to create. */
482 bfd_vma plt_comp_offset;
483
484 /* The index of the next .got.plt entry to create. */
485 bfd_vma plt_got_index;
486
487 /* The number of functions that need a lazy-binding stub. */
488 bfd_vma lazy_stub_count;
489
490 /* The size of a function stub entry in bytes. */
491 bfd_vma function_stub_size;
492
493 /* The number of reserved entries at the beginning of the GOT. */
494 unsigned int reserved_gotno;
495
496 /* The section used for mips_elf_la25_stub trampolines.
497 See the comment above that structure for details. */
498 asection *strampoline;
499
500 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
501 pairs. */
502 htab_t la25_stubs;
503
504 /* A function FN (NAME, IS, OS) that creates a new input section
505 called NAME and links it to output section OS. If IS is nonnull,
506 the new section should go immediately before it, otherwise it
507 should go at the (current) beginning of OS.
508
509 The function returns the new section on success, otherwise it
510 returns null. */
511 asection *(*add_stub_section) (const char *, asection *, asection *);
512
513 /* Small local sym cache. */
514 struct sym_cache sym_cache;
515
516 /* Is the PLT header compressed? */
517 unsigned int plt_header_is_comp : 1;
518 };
519
520 /* Get the MIPS ELF linker hash table from a link_info structure. */
521
522 #define mips_elf_hash_table(p) \
523 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
524 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
525
526 /* A structure used to communicate with htab_traverse callbacks. */
527 struct mips_htab_traverse_info
528 {
529 /* The usual link-wide information. */
530 struct bfd_link_info *info;
531 bfd *output_bfd;
532
533 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
534 bfd_boolean error;
535 };
536
537 /* MIPS ELF private object data. */
538
539 struct mips_elf_obj_tdata
540 {
541 /* Generic ELF private object data. */
542 struct elf_obj_tdata root;
543
544 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
545 bfd *abi_fp_bfd;
546
547 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
548 bfd *abi_msa_bfd;
549
550 /* The abiflags for this object. */
551 Elf_Internal_ABIFlags_v0 abiflags;
552 bfd_boolean abiflags_valid;
553
554 /* The GOT requirements of input bfds. */
555 struct mips_got_info *got;
556
557 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
558 included directly in this one, but there's no point to wasting
559 the memory just for the infrequently called find_nearest_line. */
560 struct mips_elf_find_line *find_line_info;
561
562 /* An array of stub sections indexed by symbol number. */
563 asection **local_stubs;
564 asection **local_call_stubs;
565
566 /* The Irix 5 support uses two virtual sections, which represent
567 text/data symbols defined in dynamic objects. */
568 asymbol *elf_data_symbol;
569 asymbol *elf_text_symbol;
570 asection *elf_data_section;
571 asection *elf_text_section;
572 };
573
574 /* Get MIPS ELF private object data from BFD's tdata. */
575
576 #define mips_elf_tdata(bfd) \
577 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
578
579 #define TLS_RELOC_P(r_type) \
580 (r_type == R_MIPS_TLS_DTPMOD32 \
581 || r_type == R_MIPS_TLS_DTPMOD64 \
582 || r_type == R_MIPS_TLS_DTPREL32 \
583 || r_type == R_MIPS_TLS_DTPREL64 \
584 || r_type == R_MIPS_TLS_GD \
585 || r_type == R_MIPS_TLS_LDM \
586 || r_type == R_MIPS_TLS_DTPREL_HI16 \
587 || r_type == R_MIPS_TLS_DTPREL_LO16 \
588 || r_type == R_MIPS_TLS_GOTTPREL \
589 || r_type == R_MIPS_TLS_TPREL32 \
590 || r_type == R_MIPS_TLS_TPREL64 \
591 || r_type == R_MIPS_TLS_TPREL_HI16 \
592 || r_type == R_MIPS_TLS_TPREL_LO16 \
593 || r_type == R_MIPS16_TLS_GD \
594 || r_type == R_MIPS16_TLS_LDM \
595 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
596 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
597 || r_type == R_MIPS16_TLS_GOTTPREL \
598 || r_type == R_MIPS16_TLS_TPREL_HI16 \
599 || r_type == R_MIPS16_TLS_TPREL_LO16 \
600 || r_type == R_MICROMIPS_TLS_GD \
601 || r_type == R_MICROMIPS_TLS_LDM \
602 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
603 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
604 || r_type == R_MICROMIPS_TLS_GOTTPREL \
605 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
606 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
607
608 /* Structure used to pass information to mips_elf_output_extsym. */
609
610 struct extsym_info
611 {
612 bfd *abfd;
613 struct bfd_link_info *info;
614 struct ecoff_debug_info *debug;
615 const struct ecoff_debug_swap *swap;
616 bfd_boolean failed;
617 };
618
619 /* The names of the runtime procedure table symbols used on IRIX5. */
620
621 static const char * const mips_elf_dynsym_rtproc_names[] =
622 {
623 "_procedure_table",
624 "_procedure_string_table",
625 "_procedure_table_size",
626 NULL
627 };
628
629 /* These structures are used to generate the .compact_rel section on
630 IRIX5. */
631
632 typedef struct
633 {
634 unsigned long id1; /* Always one? */
635 unsigned long num; /* Number of compact relocation entries. */
636 unsigned long id2; /* Always two? */
637 unsigned long offset; /* The file offset of the first relocation. */
638 unsigned long reserved0; /* Zero? */
639 unsigned long reserved1; /* Zero? */
640 } Elf32_compact_rel;
641
642 typedef struct
643 {
644 bfd_byte id1[4];
645 bfd_byte num[4];
646 bfd_byte id2[4];
647 bfd_byte offset[4];
648 bfd_byte reserved0[4];
649 bfd_byte reserved1[4];
650 } Elf32_External_compact_rel;
651
652 typedef struct
653 {
654 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
655 unsigned int rtype : 4; /* Relocation types. See below. */
656 unsigned int dist2to : 8;
657 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
658 unsigned long konst; /* KONST field. See below. */
659 unsigned long vaddr; /* VADDR to be relocated. */
660 } Elf32_crinfo;
661
662 typedef struct
663 {
664 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
665 unsigned int rtype : 4; /* Relocation types. See below. */
666 unsigned int dist2to : 8;
667 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
668 unsigned long konst; /* KONST field. See below. */
669 } Elf32_crinfo2;
670
671 typedef struct
672 {
673 bfd_byte info[4];
674 bfd_byte konst[4];
675 bfd_byte vaddr[4];
676 } Elf32_External_crinfo;
677
678 typedef struct
679 {
680 bfd_byte info[4];
681 bfd_byte konst[4];
682 } Elf32_External_crinfo2;
683
684 /* These are the constants used to swap the bitfields in a crinfo. */
685
686 #define CRINFO_CTYPE (0x1)
687 #define CRINFO_CTYPE_SH (31)
688 #define CRINFO_RTYPE (0xf)
689 #define CRINFO_RTYPE_SH (27)
690 #define CRINFO_DIST2TO (0xff)
691 #define CRINFO_DIST2TO_SH (19)
692 #define CRINFO_RELVADDR (0x7ffff)
693 #define CRINFO_RELVADDR_SH (0)
694
695 /* A compact relocation info has long (3 words) or short (2 words)
696 formats. A short format doesn't have VADDR field and relvaddr
697 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
698 #define CRF_MIPS_LONG 1
699 #define CRF_MIPS_SHORT 0
700
701 /* There are 4 types of compact relocation at least. The value KONST
702 has different meaning for each type:
703
704 (type) (konst)
705 CT_MIPS_REL32 Address in data
706 CT_MIPS_WORD Address in word (XXX)
707 CT_MIPS_GPHI_LO GP - vaddr
708 CT_MIPS_JMPAD Address to jump
709 */
710
711 #define CRT_MIPS_REL32 0xa
712 #define CRT_MIPS_WORD 0xb
713 #define CRT_MIPS_GPHI_LO 0xc
714 #define CRT_MIPS_JMPAD 0xd
715
716 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
717 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
718 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
719 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
720 \f
721 /* The structure of the runtime procedure descriptor created by the
722 loader for use by the static exception system. */
723
724 typedef struct runtime_pdr {
725 bfd_vma adr; /* Memory address of start of procedure. */
726 long regmask; /* Save register mask. */
727 long regoffset; /* Save register offset. */
728 long fregmask; /* Save floating point register mask. */
729 long fregoffset; /* Save floating point register offset. */
730 long frameoffset; /* Frame size. */
731 short framereg; /* Frame pointer register. */
732 short pcreg; /* Offset or reg of return pc. */
733 long irpss; /* Index into the runtime string table. */
734 long reserved;
735 struct exception_info *exception_info;/* Pointer to exception array. */
736 } RPDR, *pRPDR;
737 #define cbRPDR sizeof (RPDR)
738 #define rpdNil ((pRPDR) 0)
739 \f
740 static struct mips_got_entry *mips_elf_create_local_got_entry
741 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
742 struct mips_elf_link_hash_entry *, int);
743 static bfd_boolean mips_elf_sort_hash_table_f
744 (struct mips_elf_link_hash_entry *, void *);
745 static bfd_vma mips_elf_high
746 (bfd_vma);
747 static bfd_boolean mips_elf_create_dynamic_relocation
748 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
749 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
750 bfd_vma *, asection *);
751 static bfd_vma mips_elf_adjust_gp
752 (bfd *, struct mips_got_info *, bfd *);
753
754 /* This will be used when we sort the dynamic relocation records. */
755 static bfd *reldyn_sorting_bfd;
756
757 /* True if ABFD is for CPUs with load interlocking that include
758 non-MIPS1 CPUs and R3900. */
759 #define LOAD_INTERLOCKS_P(abfd) \
760 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
761 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
762
763 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
764 This should be safe for all architectures. We enable this predicate
765 for RM9000 for now. */
766 #define JAL_TO_BAL_P(abfd) \
767 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
768
769 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
770 This should be safe for all architectures. We enable this predicate for
771 all CPUs. */
772 #define JALR_TO_BAL_P(abfd) 1
773
774 /* True if ABFD is for CPUs that are faster if JR is converted to B.
775 This should be safe for all architectures. We enable this predicate for
776 all CPUs. */
777 #define JR_TO_B_P(abfd) 1
778
779 /* True if ABFD is a PIC object. */
780 #define PIC_OBJECT_P(abfd) \
781 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
782
783 /* Nonzero if ABFD is using the O32 ABI. */
784 #define ABI_O32_P(abfd) \
785 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
786
787 /* Nonzero if ABFD is using the N32 ABI. */
788 #define ABI_N32_P(abfd) \
789 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
790
791 /* Nonzero if ABFD is using the N64 ABI. */
792 #define ABI_64_P(abfd) \
793 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
794
795 /* Nonzero if ABFD is using NewABI conventions. */
796 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
797
798 /* Nonzero if ABFD has microMIPS code. */
799 #define MICROMIPS_P(abfd) \
800 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
801
802 /* The IRIX compatibility level we are striving for. */
803 #define IRIX_COMPAT(abfd) \
804 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
805
806 /* Whether we are trying to be compatible with IRIX at all. */
807 #define SGI_COMPAT(abfd) \
808 (IRIX_COMPAT (abfd) != ict_none)
809
810 /* The name of the options section. */
811 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
812 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
813
814 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
815 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
816 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
817 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
818
819 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
820 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
821 (strcmp (NAME, ".MIPS.abiflags") == 0)
822
823 /* Whether the section is readonly. */
824 #define MIPS_ELF_READONLY_SECTION(sec) \
825 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
826 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
827
828 /* The name of the stub section. */
829 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
830
831 /* The size of an external REL relocation. */
832 #define MIPS_ELF_REL_SIZE(abfd) \
833 (get_elf_backend_data (abfd)->s->sizeof_rel)
834
835 /* The size of an external RELA relocation. */
836 #define MIPS_ELF_RELA_SIZE(abfd) \
837 (get_elf_backend_data (abfd)->s->sizeof_rela)
838
839 /* The size of an external dynamic table entry. */
840 #define MIPS_ELF_DYN_SIZE(abfd) \
841 (get_elf_backend_data (abfd)->s->sizeof_dyn)
842
843 /* The size of a GOT entry. */
844 #define MIPS_ELF_GOT_SIZE(abfd) \
845 (get_elf_backend_data (abfd)->s->arch_size / 8)
846
847 /* The size of the .rld_map section. */
848 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
849 (get_elf_backend_data (abfd)->s->arch_size / 8)
850
851 /* The size of a symbol-table entry. */
852 #define MIPS_ELF_SYM_SIZE(abfd) \
853 (get_elf_backend_data (abfd)->s->sizeof_sym)
854
855 /* The default alignment for sections, as a power of two. */
856 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
857 (get_elf_backend_data (abfd)->s->log_file_align)
858
859 /* Get word-sized data. */
860 #define MIPS_ELF_GET_WORD(abfd, ptr) \
861 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
862
863 /* Put out word-sized data. */
864 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
865 (ABI_64_P (abfd) \
866 ? bfd_put_64 (abfd, val, ptr) \
867 : bfd_put_32 (abfd, val, ptr))
868
869 /* The opcode for word-sized loads (LW or LD). */
870 #define MIPS_ELF_LOAD_WORD(abfd) \
871 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
872
873 /* Add a dynamic symbol table-entry. */
874 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
875 _bfd_elf_add_dynamic_entry (info, tag, val)
876
877 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
878 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
879
880 /* The name of the dynamic relocation section. */
881 #define MIPS_ELF_REL_DYN_NAME(INFO) \
882 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
883
884 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
885 from smaller values. Start with zero, widen, *then* decrement. */
886 #define MINUS_ONE (((bfd_vma)0) - 1)
887 #define MINUS_TWO (((bfd_vma)0) - 2)
888
889 /* The value to write into got[1] for SVR4 targets, to identify it is
890 a GNU object. The dynamic linker can then use got[1] to store the
891 module pointer. */
892 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
893 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
894
895 /* The offset of $gp from the beginning of the .got section. */
896 #define ELF_MIPS_GP_OFFSET(INFO) \
897 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
898
899 /* The maximum size of the GOT for it to be addressable using 16-bit
900 offsets from $gp. */
901 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
902
903 /* Instructions which appear in a stub. */
904 #define STUB_LW(abfd) \
905 ((ABI_64_P (abfd) \
906 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
907 : 0x8f998010)) /* lw t9,0x8010(gp) */
908 #define STUB_MOVE(abfd) \
909 ((ABI_64_P (abfd) \
910 ? 0x03e0782d /* daddu t7,ra */ \
911 : 0x03e07821)) /* addu t7,ra */
912 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
913 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
914 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
915 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
916 #define STUB_LI16S(abfd, VAL) \
917 ((ABI_64_P (abfd) \
918 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
919 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
920
921 /* Likewise for the microMIPS ASE. */
922 #define STUB_LW_MICROMIPS(abfd) \
923 (ABI_64_P (abfd) \
924 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
925 : 0xff3c8010) /* lw t9,0x8010(gp) */
926 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
927 #define STUB_MOVE32_MICROMIPS(abfd) \
928 (ABI_64_P (abfd) \
929 ? 0x581f7950 /* daddu t7,ra,zero */ \
930 : 0x001f7950) /* addu t7,ra,zero */
931 #define STUB_LUI_MICROMIPS(VAL) \
932 (0x41b80000 + (VAL)) /* lui t8,VAL */
933 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
934 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
935 #define STUB_ORI_MICROMIPS(VAL) \
936 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
937 #define STUB_LI16U_MICROMIPS(VAL) \
938 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
939 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
940 (ABI_64_P (abfd) \
941 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
942 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
943
944 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
945 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
946 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
947 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
948 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
949 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
950
951 /* The name of the dynamic interpreter. This is put in the .interp
952 section. */
953
954 #define ELF_DYNAMIC_INTERPRETER(abfd) \
955 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
956 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
957 : "/usr/lib/libc.so.1")
958
959 #ifdef BFD64
960 #define MNAME(bfd,pre,pos) \
961 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
962 #define ELF_R_SYM(bfd, i) \
963 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
964 #define ELF_R_TYPE(bfd, i) \
965 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
966 #define ELF_R_INFO(bfd, s, t) \
967 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
968 #else
969 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
970 #define ELF_R_SYM(bfd, i) \
971 (ELF32_R_SYM (i))
972 #define ELF_R_TYPE(bfd, i) \
973 (ELF32_R_TYPE (i))
974 #define ELF_R_INFO(bfd, s, t) \
975 (ELF32_R_INFO (s, t))
976 #endif
977 \f
978 /* The mips16 compiler uses a couple of special sections to handle
979 floating point arguments.
980
981 Section names that look like .mips16.fn.FNNAME contain stubs that
982 copy floating point arguments from the fp regs to the gp regs and
983 then jump to FNNAME. If any 32 bit function calls FNNAME, the
984 call should be redirected to the stub instead. If no 32 bit
985 function calls FNNAME, the stub should be discarded. We need to
986 consider any reference to the function, not just a call, because
987 if the address of the function is taken we will need the stub,
988 since the address might be passed to a 32 bit function.
989
990 Section names that look like .mips16.call.FNNAME contain stubs
991 that copy floating point arguments from the gp regs to the fp
992 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
993 then any 16 bit function that calls FNNAME should be redirected
994 to the stub instead. If FNNAME is not a 32 bit function, the
995 stub should be discarded.
996
997 .mips16.call.fp.FNNAME sections are similar, but contain stubs
998 which call FNNAME and then copy the return value from the fp regs
999 to the gp regs. These stubs store the return value in $18 while
1000 calling FNNAME; any function which might call one of these stubs
1001 must arrange to save $18 around the call. (This case is not
1002 needed for 32 bit functions that call 16 bit functions, because
1003 16 bit functions always return floating point values in both
1004 $f0/$f1 and $2/$3.)
1005
1006 Note that in all cases FNNAME might be defined statically.
1007 Therefore, FNNAME is not used literally. Instead, the relocation
1008 information will indicate which symbol the section is for.
1009
1010 We record any stubs that we find in the symbol table. */
1011
1012 #define FN_STUB ".mips16.fn."
1013 #define CALL_STUB ".mips16.call."
1014 #define CALL_FP_STUB ".mips16.call.fp."
1015
1016 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1017 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1018 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1019 \f
1020 /* The format of the first PLT entry in an O32 executable. */
1021 static const bfd_vma mips_o32_exec_plt0_entry[] =
1022 {
1023 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1024 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1025 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1026 0x031cc023, /* subu $24, $24, $28 */
1027 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
1028 0x0018c082, /* srl $24, $24, 2 */
1029 0x0320f809, /* jalr $25 */
1030 0x2718fffe /* subu $24, $24, 2 */
1031 };
1032
1033 /* The format of the first PLT entry in an N32 executable. Different
1034 because gp ($28) is not available; we use t2 ($14) instead. */
1035 static const bfd_vma mips_n32_exec_plt0_entry[] =
1036 {
1037 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1038 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1039 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1040 0x030ec023, /* subu $24, $24, $14 */
1041 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
1042 0x0018c082, /* srl $24, $24, 2 */
1043 0x0320f809, /* jalr $25 */
1044 0x2718fffe /* subu $24, $24, 2 */
1045 };
1046
1047 /* The format of the first PLT entry in an N64 executable. Different
1048 from N32 because of the increased size of GOT entries. */
1049 static const bfd_vma mips_n64_exec_plt0_entry[] =
1050 {
1051 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1052 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1053 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1054 0x030ec023, /* subu $24, $24, $14 */
1055 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
1056 0x0018c0c2, /* srl $24, $24, 3 */
1057 0x0320f809, /* jalr $25 */
1058 0x2718fffe /* subu $24, $24, 2 */
1059 };
1060
1061 /* The format of the microMIPS first PLT entry in an O32 executable.
1062 We rely on v0 ($2) rather than t8 ($24) to contain the address
1063 of the GOTPLT entry handled, so this stub may only be used when
1064 all the subsequent PLT entries are microMIPS code too.
1065
1066 The trailing NOP is for alignment and correct disassembly only. */
1067 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1068 {
1069 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1070 0xff23, 0x0000, /* lw $25, 0($3) */
1071 0x0535, /* subu $2, $2, $3 */
1072 0x2525, /* srl $2, $2, 2 */
1073 0x3302, 0xfffe, /* subu $24, $2, 2 */
1074 0x0dff, /* move $15, $31 */
1075 0x45f9, /* jalrs $25 */
1076 0x0f83, /* move $28, $3 */
1077 0x0c00 /* nop */
1078 };
1079
1080 /* The format of the microMIPS first PLT entry in an O32 executable
1081 in the insn32 mode. */
1082 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1083 {
1084 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1085 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1086 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1087 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1088 0x001f, 0x7950, /* move $15, $31 */
1089 0x0318, 0x1040, /* srl $24, $24, 2 */
1090 0x03f9, 0x0f3c, /* jalr $25 */
1091 0x3318, 0xfffe /* subu $24, $24, 2 */
1092 };
1093
1094 /* The format of subsequent standard PLT entries. */
1095 static const bfd_vma mips_exec_plt_entry[] =
1096 {
1097 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1098 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1099 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1100 0x03200008 /* jr $25 */
1101 };
1102
1103 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1104 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1105 directly addressable. */
1106 static const bfd_vma mips16_o32_exec_plt_entry[] =
1107 {
1108 0xb203, /* lw $2, 12($pc) */
1109 0x9a60, /* lw $3, 0($2) */
1110 0x651a, /* move $24, $2 */
1111 0xeb00, /* jr $3 */
1112 0x653b, /* move $25, $3 */
1113 0x6500, /* nop */
1114 0x0000, 0x0000 /* .word (.got.plt entry) */
1115 };
1116
1117 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1118 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1119 static const bfd_vma micromips_o32_exec_plt_entry[] =
1120 {
1121 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1122 0xff22, 0x0000, /* lw $25, 0($2) */
1123 0x4599, /* jr $25 */
1124 0x0f02 /* move $24, $2 */
1125 };
1126
1127 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1128 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1129 {
1130 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1131 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1132 0x0019, 0x0f3c, /* jr $25 */
1133 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1134 };
1135
1136 /* The format of the first PLT entry in a VxWorks executable. */
1137 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1138 {
1139 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1140 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1141 0x8f390008, /* lw t9, 8(t9) */
1142 0x00000000, /* nop */
1143 0x03200008, /* jr t9 */
1144 0x00000000 /* nop */
1145 };
1146
1147 /* The format of subsequent PLT entries. */
1148 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1149 {
1150 0x10000000, /* b .PLT_resolver */
1151 0x24180000, /* li t8, <pltindex> */
1152 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1153 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1154 0x8f390000, /* lw t9, 0(t9) */
1155 0x00000000, /* nop */
1156 0x03200008, /* jr t9 */
1157 0x00000000 /* nop */
1158 };
1159
1160 /* The format of the first PLT entry in a VxWorks shared object. */
1161 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1162 {
1163 0x8f990008, /* lw t9, 8(gp) */
1164 0x00000000, /* nop */
1165 0x03200008, /* jr t9 */
1166 0x00000000, /* nop */
1167 0x00000000, /* nop */
1168 0x00000000 /* nop */
1169 };
1170
1171 /* The format of subsequent PLT entries. */
1172 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1173 {
1174 0x10000000, /* b .PLT_resolver */
1175 0x24180000 /* li t8, <pltindex> */
1176 };
1177 \f
1178 /* microMIPS 32-bit opcode helper installer. */
1179
1180 static void
1181 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1182 {
1183 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1184 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1185 }
1186
1187 /* microMIPS 32-bit opcode helper retriever. */
1188
1189 static bfd_vma
1190 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1191 {
1192 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1193 }
1194 \f
1195 /* Look up an entry in a MIPS ELF linker hash table. */
1196
1197 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1198 ((struct mips_elf_link_hash_entry *) \
1199 elf_link_hash_lookup (&(table)->root, (string), (create), \
1200 (copy), (follow)))
1201
1202 /* Traverse a MIPS ELF linker hash table. */
1203
1204 #define mips_elf_link_hash_traverse(table, func, info) \
1205 (elf_link_hash_traverse \
1206 (&(table)->root, \
1207 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1208 (info)))
1209
1210 /* Find the base offsets for thread-local storage in this object,
1211 for GD/LD and IE/LE respectively. */
1212
1213 #define TP_OFFSET 0x7000
1214 #define DTP_OFFSET 0x8000
1215
1216 static bfd_vma
1217 dtprel_base (struct bfd_link_info *info)
1218 {
1219 /* If tls_sec is NULL, we should have signalled an error already. */
1220 if (elf_hash_table (info)->tls_sec == NULL)
1221 return 0;
1222 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1223 }
1224
1225 static bfd_vma
1226 tprel_base (struct bfd_link_info *info)
1227 {
1228 /* If tls_sec is NULL, we should have signalled an error already. */
1229 if (elf_hash_table (info)->tls_sec == NULL)
1230 return 0;
1231 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1232 }
1233
1234 /* Create an entry in a MIPS ELF linker hash table. */
1235
1236 static struct bfd_hash_entry *
1237 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1238 struct bfd_hash_table *table, const char *string)
1239 {
1240 struct mips_elf_link_hash_entry *ret =
1241 (struct mips_elf_link_hash_entry *) entry;
1242
1243 /* Allocate the structure if it has not already been allocated by a
1244 subclass. */
1245 if (ret == NULL)
1246 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1247 if (ret == NULL)
1248 return (struct bfd_hash_entry *) ret;
1249
1250 /* Call the allocation method of the superclass. */
1251 ret = ((struct mips_elf_link_hash_entry *)
1252 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1253 table, string));
1254 if (ret != NULL)
1255 {
1256 /* Set local fields. */
1257 memset (&ret->esym, 0, sizeof (EXTR));
1258 /* We use -2 as a marker to indicate that the information has
1259 not been set. -1 means there is no associated ifd. */
1260 ret->esym.ifd = -2;
1261 ret->la25_stub = 0;
1262 ret->possibly_dynamic_relocs = 0;
1263 ret->fn_stub = NULL;
1264 ret->call_stub = NULL;
1265 ret->call_fp_stub = NULL;
1266 ret->global_got_area = GGA_NONE;
1267 ret->got_only_for_calls = TRUE;
1268 ret->readonly_reloc = FALSE;
1269 ret->has_static_relocs = FALSE;
1270 ret->no_fn_stub = FALSE;
1271 ret->need_fn_stub = FALSE;
1272 ret->has_nonpic_branches = FALSE;
1273 ret->needs_lazy_stub = FALSE;
1274 ret->use_plt_entry = FALSE;
1275 }
1276
1277 return (struct bfd_hash_entry *) ret;
1278 }
1279
1280 /* Allocate MIPS ELF private object data. */
1281
1282 bfd_boolean
1283 _bfd_mips_elf_mkobject (bfd *abfd)
1284 {
1285 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1286 MIPS_ELF_DATA);
1287 }
1288
1289 bfd_boolean
1290 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1291 {
1292 if (!sec->used_by_bfd)
1293 {
1294 struct _mips_elf_section_data *sdata;
1295 bfd_size_type amt = sizeof (*sdata);
1296
1297 sdata = bfd_zalloc (abfd, amt);
1298 if (sdata == NULL)
1299 return FALSE;
1300 sec->used_by_bfd = sdata;
1301 }
1302
1303 return _bfd_elf_new_section_hook (abfd, sec);
1304 }
1305 \f
1306 /* Read ECOFF debugging information from a .mdebug section into a
1307 ecoff_debug_info structure. */
1308
1309 bfd_boolean
1310 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1311 struct ecoff_debug_info *debug)
1312 {
1313 HDRR *symhdr;
1314 const struct ecoff_debug_swap *swap;
1315 char *ext_hdr;
1316
1317 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1318 memset (debug, 0, sizeof (*debug));
1319
1320 ext_hdr = bfd_malloc (swap->external_hdr_size);
1321 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1322 goto error_return;
1323
1324 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1325 swap->external_hdr_size))
1326 goto error_return;
1327
1328 symhdr = &debug->symbolic_header;
1329 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1330
1331 /* The symbolic header contains absolute file offsets and sizes to
1332 read. */
1333 #define READ(ptr, offset, count, size, type) \
1334 if (symhdr->count == 0) \
1335 debug->ptr = NULL; \
1336 else \
1337 { \
1338 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1339 debug->ptr = bfd_malloc (amt); \
1340 if (debug->ptr == NULL) \
1341 goto error_return; \
1342 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1343 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1344 goto error_return; \
1345 }
1346
1347 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1348 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1349 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1350 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1351 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1352 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1353 union aux_ext *);
1354 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1355 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1356 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1357 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1358 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1359 #undef READ
1360
1361 debug->fdr = NULL;
1362
1363 return TRUE;
1364
1365 error_return:
1366 if (ext_hdr != NULL)
1367 free (ext_hdr);
1368 if (debug->line != NULL)
1369 free (debug->line);
1370 if (debug->external_dnr != NULL)
1371 free (debug->external_dnr);
1372 if (debug->external_pdr != NULL)
1373 free (debug->external_pdr);
1374 if (debug->external_sym != NULL)
1375 free (debug->external_sym);
1376 if (debug->external_opt != NULL)
1377 free (debug->external_opt);
1378 if (debug->external_aux != NULL)
1379 free (debug->external_aux);
1380 if (debug->ss != NULL)
1381 free (debug->ss);
1382 if (debug->ssext != NULL)
1383 free (debug->ssext);
1384 if (debug->external_fdr != NULL)
1385 free (debug->external_fdr);
1386 if (debug->external_rfd != NULL)
1387 free (debug->external_rfd);
1388 if (debug->external_ext != NULL)
1389 free (debug->external_ext);
1390 return FALSE;
1391 }
1392 \f
1393 /* Swap RPDR (runtime procedure table entry) for output. */
1394
1395 static void
1396 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1397 {
1398 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1399 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1400 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1401 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1402 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1403 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1404
1405 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1406 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1407
1408 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1409 }
1410
1411 /* Create a runtime procedure table from the .mdebug section. */
1412
1413 static bfd_boolean
1414 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1415 struct bfd_link_info *info, asection *s,
1416 struct ecoff_debug_info *debug)
1417 {
1418 const struct ecoff_debug_swap *swap;
1419 HDRR *hdr = &debug->symbolic_header;
1420 RPDR *rpdr, *rp;
1421 struct rpdr_ext *erp;
1422 void *rtproc;
1423 struct pdr_ext *epdr;
1424 struct sym_ext *esym;
1425 char *ss, **sv;
1426 char *str;
1427 bfd_size_type size;
1428 bfd_size_type count;
1429 unsigned long sindex;
1430 unsigned long i;
1431 PDR pdr;
1432 SYMR sym;
1433 const char *no_name_func = _("static procedure (no name)");
1434
1435 epdr = NULL;
1436 rpdr = NULL;
1437 esym = NULL;
1438 ss = NULL;
1439 sv = NULL;
1440
1441 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1442
1443 sindex = strlen (no_name_func) + 1;
1444 count = hdr->ipdMax;
1445 if (count > 0)
1446 {
1447 size = swap->external_pdr_size;
1448
1449 epdr = bfd_malloc (size * count);
1450 if (epdr == NULL)
1451 goto error_return;
1452
1453 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1454 goto error_return;
1455
1456 size = sizeof (RPDR);
1457 rp = rpdr = bfd_malloc (size * count);
1458 if (rpdr == NULL)
1459 goto error_return;
1460
1461 size = sizeof (char *);
1462 sv = bfd_malloc (size * count);
1463 if (sv == NULL)
1464 goto error_return;
1465
1466 count = hdr->isymMax;
1467 size = swap->external_sym_size;
1468 esym = bfd_malloc (size * count);
1469 if (esym == NULL)
1470 goto error_return;
1471
1472 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1473 goto error_return;
1474
1475 count = hdr->issMax;
1476 ss = bfd_malloc (count);
1477 if (ss == NULL)
1478 goto error_return;
1479 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1480 goto error_return;
1481
1482 count = hdr->ipdMax;
1483 for (i = 0; i < (unsigned long) count; i++, rp++)
1484 {
1485 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1486 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1487 rp->adr = sym.value;
1488 rp->regmask = pdr.regmask;
1489 rp->regoffset = pdr.regoffset;
1490 rp->fregmask = pdr.fregmask;
1491 rp->fregoffset = pdr.fregoffset;
1492 rp->frameoffset = pdr.frameoffset;
1493 rp->framereg = pdr.framereg;
1494 rp->pcreg = pdr.pcreg;
1495 rp->irpss = sindex;
1496 sv[i] = ss + sym.iss;
1497 sindex += strlen (sv[i]) + 1;
1498 }
1499 }
1500
1501 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1502 size = BFD_ALIGN (size, 16);
1503 rtproc = bfd_alloc (abfd, size);
1504 if (rtproc == NULL)
1505 {
1506 mips_elf_hash_table (info)->procedure_count = 0;
1507 goto error_return;
1508 }
1509
1510 mips_elf_hash_table (info)->procedure_count = count + 2;
1511
1512 erp = rtproc;
1513 memset (erp, 0, sizeof (struct rpdr_ext));
1514 erp++;
1515 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1516 strcpy (str, no_name_func);
1517 str += strlen (no_name_func) + 1;
1518 for (i = 0; i < count; i++)
1519 {
1520 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1521 strcpy (str, sv[i]);
1522 str += strlen (sv[i]) + 1;
1523 }
1524 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1525
1526 /* Set the size and contents of .rtproc section. */
1527 s->size = size;
1528 s->contents = rtproc;
1529
1530 /* Skip this section later on (I don't think this currently
1531 matters, but someday it might). */
1532 s->map_head.link_order = NULL;
1533
1534 if (epdr != NULL)
1535 free (epdr);
1536 if (rpdr != NULL)
1537 free (rpdr);
1538 if (esym != NULL)
1539 free (esym);
1540 if (ss != NULL)
1541 free (ss);
1542 if (sv != NULL)
1543 free (sv);
1544
1545 return TRUE;
1546
1547 error_return:
1548 if (epdr != NULL)
1549 free (epdr);
1550 if (rpdr != NULL)
1551 free (rpdr);
1552 if (esym != NULL)
1553 free (esym);
1554 if (ss != NULL)
1555 free (ss);
1556 if (sv != NULL)
1557 free (sv);
1558 return FALSE;
1559 }
1560 \f
1561 /* We're going to create a stub for H. Create a symbol for the stub's
1562 value and size, to help make the disassembly easier to read. */
1563
1564 static bfd_boolean
1565 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1566 struct mips_elf_link_hash_entry *h,
1567 const char *prefix, asection *s, bfd_vma value,
1568 bfd_vma size)
1569 {
1570 struct bfd_link_hash_entry *bh;
1571 struct elf_link_hash_entry *elfh;
1572 const char *name;
1573
1574 if (ELF_ST_IS_MICROMIPS (h->root.other))
1575 value |= 1;
1576
1577 /* Create a new symbol. */
1578 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1579 bh = NULL;
1580 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1581 BSF_LOCAL, s, value, NULL,
1582 TRUE, FALSE, &bh))
1583 return FALSE;
1584
1585 /* Make it a local function. */
1586 elfh = (struct elf_link_hash_entry *) bh;
1587 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1588 elfh->size = size;
1589 elfh->forced_local = 1;
1590 return TRUE;
1591 }
1592
1593 /* We're about to redefine H. Create a symbol to represent H's
1594 current value and size, to help make the disassembly easier
1595 to read. */
1596
1597 static bfd_boolean
1598 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1599 struct mips_elf_link_hash_entry *h,
1600 const char *prefix)
1601 {
1602 struct bfd_link_hash_entry *bh;
1603 struct elf_link_hash_entry *elfh;
1604 const char *name;
1605 asection *s;
1606 bfd_vma value;
1607
1608 /* Read the symbol's value. */
1609 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1610 || h->root.root.type == bfd_link_hash_defweak);
1611 s = h->root.root.u.def.section;
1612 value = h->root.root.u.def.value;
1613
1614 /* Create a new symbol. */
1615 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1616 bh = NULL;
1617 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1618 BSF_LOCAL, s, value, NULL,
1619 TRUE, FALSE, &bh))
1620 return FALSE;
1621
1622 /* Make it local and copy the other attributes from H. */
1623 elfh = (struct elf_link_hash_entry *) bh;
1624 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1625 elfh->other = h->root.other;
1626 elfh->size = h->root.size;
1627 elfh->forced_local = 1;
1628 return TRUE;
1629 }
1630
1631 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1632 function rather than to a hard-float stub. */
1633
1634 static bfd_boolean
1635 section_allows_mips16_refs_p (asection *section)
1636 {
1637 const char *name;
1638
1639 name = bfd_get_section_name (section->owner, section);
1640 return (FN_STUB_P (name)
1641 || CALL_STUB_P (name)
1642 || CALL_FP_STUB_P (name)
1643 || strcmp (name, ".pdr") == 0);
1644 }
1645
1646 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1647 stub section of some kind. Return the R_SYMNDX of the target
1648 function, or 0 if we can't decide which function that is. */
1649
1650 static unsigned long
1651 mips16_stub_symndx (const struct elf_backend_data *bed,
1652 asection *sec ATTRIBUTE_UNUSED,
1653 const Elf_Internal_Rela *relocs,
1654 const Elf_Internal_Rela *relend)
1655 {
1656 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1657 const Elf_Internal_Rela *rel;
1658
1659 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1660 one in a compound relocation. */
1661 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1662 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1663 return ELF_R_SYM (sec->owner, rel->r_info);
1664
1665 /* Otherwise trust the first relocation, whatever its kind. This is
1666 the traditional behavior. */
1667 if (relocs < relend)
1668 return ELF_R_SYM (sec->owner, relocs->r_info);
1669
1670 return 0;
1671 }
1672
1673 /* Check the mips16 stubs for a particular symbol, and see if we can
1674 discard them. */
1675
1676 static void
1677 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1678 struct mips_elf_link_hash_entry *h)
1679 {
1680 /* Dynamic symbols must use the standard call interface, in case other
1681 objects try to call them. */
1682 if (h->fn_stub != NULL
1683 && h->root.dynindx != -1)
1684 {
1685 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1686 h->need_fn_stub = TRUE;
1687 }
1688
1689 if (h->fn_stub != NULL
1690 && ! h->need_fn_stub)
1691 {
1692 /* We don't need the fn_stub; the only references to this symbol
1693 are 16 bit calls. Clobber the size to 0 to prevent it from
1694 being included in the link. */
1695 h->fn_stub->size = 0;
1696 h->fn_stub->flags &= ~SEC_RELOC;
1697 h->fn_stub->reloc_count = 0;
1698 h->fn_stub->flags |= SEC_EXCLUDE;
1699 }
1700
1701 if (h->call_stub != NULL
1702 && ELF_ST_IS_MIPS16 (h->root.other))
1703 {
1704 /* We don't need the call_stub; this is a 16 bit function, so
1705 calls from other 16 bit functions are OK. Clobber the size
1706 to 0 to prevent it from being included in the link. */
1707 h->call_stub->size = 0;
1708 h->call_stub->flags &= ~SEC_RELOC;
1709 h->call_stub->reloc_count = 0;
1710 h->call_stub->flags |= SEC_EXCLUDE;
1711 }
1712
1713 if (h->call_fp_stub != NULL
1714 && ELF_ST_IS_MIPS16 (h->root.other))
1715 {
1716 /* We don't need the call_stub; this is a 16 bit function, so
1717 calls from other 16 bit functions are OK. Clobber the size
1718 to 0 to prevent it from being included in the link. */
1719 h->call_fp_stub->size = 0;
1720 h->call_fp_stub->flags &= ~SEC_RELOC;
1721 h->call_fp_stub->reloc_count = 0;
1722 h->call_fp_stub->flags |= SEC_EXCLUDE;
1723 }
1724 }
1725
1726 /* Hashtable callbacks for mips_elf_la25_stubs. */
1727
1728 static hashval_t
1729 mips_elf_la25_stub_hash (const void *entry_)
1730 {
1731 const struct mips_elf_la25_stub *entry;
1732
1733 entry = (struct mips_elf_la25_stub *) entry_;
1734 return entry->h->root.root.u.def.section->id
1735 + entry->h->root.root.u.def.value;
1736 }
1737
1738 static int
1739 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1740 {
1741 const struct mips_elf_la25_stub *entry1, *entry2;
1742
1743 entry1 = (struct mips_elf_la25_stub *) entry1_;
1744 entry2 = (struct mips_elf_la25_stub *) entry2_;
1745 return ((entry1->h->root.root.u.def.section
1746 == entry2->h->root.root.u.def.section)
1747 && (entry1->h->root.root.u.def.value
1748 == entry2->h->root.root.u.def.value));
1749 }
1750
1751 /* Called by the linker to set up the la25 stub-creation code. FN is
1752 the linker's implementation of add_stub_function. Return true on
1753 success. */
1754
1755 bfd_boolean
1756 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1757 asection *(*fn) (const char *, asection *,
1758 asection *))
1759 {
1760 struct mips_elf_link_hash_table *htab;
1761
1762 htab = mips_elf_hash_table (info);
1763 if (htab == NULL)
1764 return FALSE;
1765
1766 htab->add_stub_section = fn;
1767 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1768 mips_elf_la25_stub_eq, NULL);
1769 if (htab->la25_stubs == NULL)
1770 return FALSE;
1771
1772 return TRUE;
1773 }
1774
1775 /* Return true if H is a locally-defined PIC function, in the sense
1776 that it or its fn_stub might need $25 to be valid on entry.
1777 Note that MIPS16 functions set up $gp using PC-relative instructions,
1778 so they themselves never need $25 to be valid. Only non-MIPS16
1779 entry points are of interest here. */
1780
1781 static bfd_boolean
1782 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1783 {
1784 return ((h->root.root.type == bfd_link_hash_defined
1785 || h->root.root.type == bfd_link_hash_defweak)
1786 && h->root.def_regular
1787 && !bfd_is_abs_section (h->root.root.u.def.section)
1788 && (!ELF_ST_IS_MIPS16 (h->root.other)
1789 || (h->fn_stub && h->need_fn_stub))
1790 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1791 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1792 }
1793
1794 /* Set *SEC to the input section that contains the target of STUB.
1795 Return the offset of the target from the start of that section. */
1796
1797 static bfd_vma
1798 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1799 asection **sec)
1800 {
1801 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1802 {
1803 BFD_ASSERT (stub->h->need_fn_stub);
1804 *sec = stub->h->fn_stub;
1805 return 0;
1806 }
1807 else
1808 {
1809 *sec = stub->h->root.root.u.def.section;
1810 return stub->h->root.root.u.def.value;
1811 }
1812 }
1813
1814 /* STUB describes an la25 stub that we have decided to implement
1815 by inserting an LUI/ADDIU pair before the target function.
1816 Create the section and redirect the function symbol to it. */
1817
1818 static bfd_boolean
1819 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1820 struct bfd_link_info *info)
1821 {
1822 struct mips_elf_link_hash_table *htab;
1823 char *name;
1824 asection *s, *input_section;
1825 unsigned int align;
1826
1827 htab = mips_elf_hash_table (info);
1828 if (htab == NULL)
1829 return FALSE;
1830
1831 /* Create a unique name for the new section. */
1832 name = bfd_malloc (11 + sizeof (".text.stub."));
1833 if (name == NULL)
1834 return FALSE;
1835 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1836
1837 /* Create the section. */
1838 mips_elf_get_la25_target (stub, &input_section);
1839 s = htab->add_stub_section (name, input_section,
1840 input_section->output_section);
1841 if (s == NULL)
1842 return FALSE;
1843
1844 /* Make sure that any padding goes before the stub. */
1845 align = input_section->alignment_power;
1846 if (!bfd_set_section_alignment (s->owner, s, align))
1847 return FALSE;
1848 if (align > 3)
1849 s->size = (1 << align) - 8;
1850
1851 /* Create a symbol for the stub. */
1852 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1853 stub->stub_section = s;
1854 stub->offset = s->size;
1855
1856 /* Allocate room for it. */
1857 s->size += 8;
1858 return TRUE;
1859 }
1860
1861 /* STUB describes an la25 stub that we have decided to implement
1862 with a separate trampoline. Allocate room for it and redirect
1863 the function symbol to it. */
1864
1865 static bfd_boolean
1866 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1867 struct bfd_link_info *info)
1868 {
1869 struct mips_elf_link_hash_table *htab;
1870 asection *s;
1871
1872 htab = mips_elf_hash_table (info);
1873 if (htab == NULL)
1874 return FALSE;
1875
1876 /* Create a trampoline section, if we haven't already. */
1877 s = htab->strampoline;
1878 if (s == NULL)
1879 {
1880 asection *input_section = stub->h->root.root.u.def.section;
1881 s = htab->add_stub_section (".text", NULL,
1882 input_section->output_section);
1883 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1884 return FALSE;
1885 htab->strampoline = s;
1886 }
1887
1888 /* Create a symbol for the stub. */
1889 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1890 stub->stub_section = s;
1891 stub->offset = s->size;
1892
1893 /* Allocate room for it. */
1894 s->size += 16;
1895 return TRUE;
1896 }
1897
1898 /* H describes a symbol that needs an la25 stub. Make sure that an
1899 appropriate stub exists and point H at it. */
1900
1901 static bfd_boolean
1902 mips_elf_add_la25_stub (struct bfd_link_info *info,
1903 struct mips_elf_link_hash_entry *h)
1904 {
1905 struct mips_elf_link_hash_table *htab;
1906 struct mips_elf_la25_stub search, *stub;
1907 bfd_boolean use_trampoline_p;
1908 asection *s;
1909 bfd_vma value;
1910 void **slot;
1911
1912 /* Describe the stub we want. */
1913 search.stub_section = NULL;
1914 search.offset = 0;
1915 search.h = h;
1916
1917 /* See if we've already created an equivalent stub. */
1918 htab = mips_elf_hash_table (info);
1919 if (htab == NULL)
1920 return FALSE;
1921
1922 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1923 if (slot == NULL)
1924 return FALSE;
1925
1926 stub = (struct mips_elf_la25_stub *) *slot;
1927 if (stub != NULL)
1928 {
1929 /* We can reuse the existing stub. */
1930 h->la25_stub = stub;
1931 return TRUE;
1932 }
1933
1934 /* Create a permanent copy of ENTRY and add it to the hash table. */
1935 stub = bfd_malloc (sizeof (search));
1936 if (stub == NULL)
1937 return FALSE;
1938 *stub = search;
1939 *slot = stub;
1940
1941 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1942 of the section and if we would need no more than 2 nops. */
1943 value = mips_elf_get_la25_target (stub, &s);
1944 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1945
1946 h->la25_stub = stub;
1947 return (use_trampoline_p
1948 ? mips_elf_add_la25_trampoline (stub, info)
1949 : mips_elf_add_la25_intro (stub, info));
1950 }
1951
1952 /* A mips_elf_link_hash_traverse callback that is called before sizing
1953 sections. DATA points to a mips_htab_traverse_info structure. */
1954
1955 static bfd_boolean
1956 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1957 {
1958 struct mips_htab_traverse_info *hti;
1959
1960 hti = (struct mips_htab_traverse_info *) data;
1961 if (!hti->info->relocatable)
1962 mips_elf_check_mips16_stubs (hti->info, h);
1963
1964 if (mips_elf_local_pic_function_p (h))
1965 {
1966 /* PR 12845: If H is in a section that has been garbage
1967 collected it will have its output section set to *ABS*. */
1968 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1969 return TRUE;
1970
1971 /* H is a function that might need $25 to be valid on entry.
1972 If we're creating a non-PIC relocatable object, mark H as
1973 being PIC. If we're creating a non-relocatable object with
1974 non-PIC branches and jumps to H, make sure that H has an la25
1975 stub. */
1976 if (hti->info->relocatable)
1977 {
1978 if (!PIC_OBJECT_P (hti->output_bfd))
1979 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
1980 }
1981 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
1982 {
1983 hti->error = TRUE;
1984 return FALSE;
1985 }
1986 }
1987 return TRUE;
1988 }
1989 \f
1990 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1991 Most mips16 instructions are 16 bits, but these instructions
1992 are 32 bits.
1993
1994 The format of these instructions is:
1995
1996 +--------------+--------------------------------+
1997 | JALX | X| Imm 20:16 | Imm 25:21 |
1998 +--------------+--------------------------------+
1999 | Immediate 15:0 |
2000 +-----------------------------------------------+
2001
2002 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2003 Note that the immediate value in the first word is swapped.
2004
2005 When producing a relocatable object file, R_MIPS16_26 is
2006 handled mostly like R_MIPS_26. In particular, the addend is
2007 stored as a straight 26-bit value in a 32-bit instruction.
2008 (gas makes life simpler for itself by never adjusting a
2009 R_MIPS16_26 reloc to be against a section, so the addend is
2010 always zero). However, the 32 bit instruction is stored as 2
2011 16-bit values, rather than a single 32-bit value. In a
2012 big-endian file, the result is the same; in a little-endian
2013 file, the two 16-bit halves of the 32 bit value are swapped.
2014 This is so that a disassembler can recognize the jal
2015 instruction.
2016
2017 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2018 instruction stored as two 16-bit values. The addend A is the
2019 contents of the targ26 field. The calculation is the same as
2020 R_MIPS_26. When storing the calculated value, reorder the
2021 immediate value as shown above, and don't forget to store the
2022 value as two 16-bit values.
2023
2024 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2025 defined as
2026
2027 big-endian:
2028 +--------+----------------------+
2029 | | |
2030 | | targ26-16 |
2031 |31 26|25 0|
2032 +--------+----------------------+
2033
2034 little-endian:
2035 +----------+------+-------------+
2036 | | | |
2037 | sub1 | | sub2 |
2038 |0 9|10 15|16 31|
2039 +----------+--------------------+
2040 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2041 ((sub1 << 16) | sub2)).
2042
2043 When producing a relocatable object file, the calculation is
2044 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2045 When producing a fully linked file, the calculation is
2046 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2047 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2048
2049 The table below lists the other MIPS16 instruction relocations.
2050 Each one is calculated in the same way as the non-MIPS16 relocation
2051 given on the right, but using the extended MIPS16 layout of 16-bit
2052 immediate fields:
2053
2054 R_MIPS16_GPREL R_MIPS_GPREL16
2055 R_MIPS16_GOT16 R_MIPS_GOT16
2056 R_MIPS16_CALL16 R_MIPS_CALL16
2057 R_MIPS16_HI16 R_MIPS_HI16
2058 R_MIPS16_LO16 R_MIPS_LO16
2059
2060 A typical instruction will have a format like this:
2061
2062 +--------------+--------------------------------+
2063 | EXTEND | Imm 10:5 | Imm 15:11 |
2064 +--------------+--------------------------------+
2065 | Major | rx | ry | Imm 4:0 |
2066 +--------------+--------------------------------+
2067
2068 EXTEND is the five bit value 11110. Major is the instruction
2069 opcode.
2070
2071 All we need to do here is shuffle the bits appropriately.
2072 As above, the two 16-bit halves must be swapped on a
2073 little-endian system. */
2074
2075 static inline bfd_boolean
2076 mips16_reloc_p (int r_type)
2077 {
2078 switch (r_type)
2079 {
2080 case R_MIPS16_26:
2081 case R_MIPS16_GPREL:
2082 case R_MIPS16_GOT16:
2083 case R_MIPS16_CALL16:
2084 case R_MIPS16_HI16:
2085 case R_MIPS16_LO16:
2086 case R_MIPS16_TLS_GD:
2087 case R_MIPS16_TLS_LDM:
2088 case R_MIPS16_TLS_DTPREL_HI16:
2089 case R_MIPS16_TLS_DTPREL_LO16:
2090 case R_MIPS16_TLS_GOTTPREL:
2091 case R_MIPS16_TLS_TPREL_HI16:
2092 case R_MIPS16_TLS_TPREL_LO16:
2093 return TRUE;
2094
2095 default:
2096 return FALSE;
2097 }
2098 }
2099
2100 /* Check if a microMIPS reloc. */
2101
2102 static inline bfd_boolean
2103 micromips_reloc_p (unsigned int r_type)
2104 {
2105 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2106 }
2107
2108 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2109 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2110 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2111
2112 static inline bfd_boolean
2113 micromips_reloc_shuffle_p (unsigned int r_type)
2114 {
2115 return (micromips_reloc_p (r_type)
2116 && r_type != R_MICROMIPS_PC7_S1
2117 && r_type != R_MICROMIPS_PC10_S1);
2118 }
2119
2120 static inline bfd_boolean
2121 got16_reloc_p (int r_type)
2122 {
2123 return (r_type == R_MIPS_GOT16
2124 || r_type == R_MIPS16_GOT16
2125 || r_type == R_MICROMIPS_GOT16);
2126 }
2127
2128 static inline bfd_boolean
2129 call16_reloc_p (int r_type)
2130 {
2131 return (r_type == R_MIPS_CALL16
2132 || r_type == R_MIPS16_CALL16
2133 || r_type == R_MICROMIPS_CALL16);
2134 }
2135
2136 static inline bfd_boolean
2137 got_disp_reloc_p (unsigned int r_type)
2138 {
2139 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2140 }
2141
2142 static inline bfd_boolean
2143 got_page_reloc_p (unsigned int r_type)
2144 {
2145 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2146 }
2147
2148 static inline bfd_boolean
2149 got_ofst_reloc_p (unsigned int r_type)
2150 {
2151 return r_type == R_MIPS_GOT_OFST || r_type == R_MICROMIPS_GOT_OFST;
2152 }
2153
2154 static inline bfd_boolean
2155 got_hi16_reloc_p (unsigned int r_type)
2156 {
2157 return r_type == R_MIPS_GOT_HI16 || r_type == R_MICROMIPS_GOT_HI16;
2158 }
2159
2160 static inline bfd_boolean
2161 got_lo16_reloc_p (unsigned int r_type)
2162 {
2163 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2164 }
2165
2166 static inline bfd_boolean
2167 call_hi16_reloc_p (unsigned int r_type)
2168 {
2169 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2170 }
2171
2172 static inline bfd_boolean
2173 call_lo16_reloc_p (unsigned int r_type)
2174 {
2175 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2176 }
2177
2178 static inline bfd_boolean
2179 hi16_reloc_p (int r_type)
2180 {
2181 return (r_type == R_MIPS_HI16
2182 || r_type == R_MIPS16_HI16
2183 || r_type == R_MICROMIPS_HI16);
2184 }
2185
2186 static inline bfd_boolean
2187 lo16_reloc_p (int r_type)
2188 {
2189 return (r_type == R_MIPS_LO16
2190 || r_type == R_MIPS16_LO16
2191 || r_type == R_MICROMIPS_LO16);
2192 }
2193
2194 static inline bfd_boolean
2195 mips16_call_reloc_p (int r_type)
2196 {
2197 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2198 }
2199
2200 static inline bfd_boolean
2201 jal_reloc_p (int r_type)
2202 {
2203 return (r_type == R_MIPS_26
2204 || r_type == R_MIPS16_26
2205 || r_type == R_MICROMIPS_26_S1);
2206 }
2207
2208 static inline bfd_boolean
2209 micromips_branch_reloc_p (int r_type)
2210 {
2211 return (r_type == R_MICROMIPS_26_S1
2212 || r_type == R_MICROMIPS_PC16_S1
2213 || r_type == R_MICROMIPS_PC10_S1
2214 || r_type == R_MICROMIPS_PC7_S1);
2215 }
2216
2217 static inline bfd_boolean
2218 tls_gd_reloc_p (unsigned int r_type)
2219 {
2220 return (r_type == R_MIPS_TLS_GD
2221 || r_type == R_MIPS16_TLS_GD
2222 || r_type == R_MICROMIPS_TLS_GD);
2223 }
2224
2225 static inline bfd_boolean
2226 tls_ldm_reloc_p (unsigned int r_type)
2227 {
2228 return (r_type == R_MIPS_TLS_LDM
2229 || r_type == R_MIPS16_TLS_LDM
2230 || r_type == R_MICROMIPS_TLS_LDM);
2231 }
2232
2233 static inline bfd_boolean
2234 tls_gottprel_reloc_p (unsigned int r_type)
2235 {
2236 return (r_type == R_MIPS_TLS_GOTTPREL
2237 || r_type == R_MIPS16_TLS_GOTTPREL
2238 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2239 }
2240
2241 void
2242 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2243 bfd_boolean jal_shuffle, bfd_byte *data)
2244 {
2245 bfd_vma first, second, val;
2246
2247 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2248 return;
2249
2250 /* Pick up the first and second halfwords of the instruction. */
2251 first = bfd_get_16 (abfd, data);
2252 second = bfd_get_16 (abfd, data + 2);
2253 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2254 val = first << 16 | second;
2255 else if (r_type != R_MIPS16_26)
2256 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2257 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2258 else
2259 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2260 | ((first & 0x1f) << 21) | second);
2261 bfd_put_32 (abfd, val, data);
2262 }
2263
2264 void
2265 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2266 bfd_boolean jal_shuffle, bfd_byte *data)
2267 {
2268 bfd_vma first, second, val;
2269
2270 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2271 return;
2272
2273 val = bfd_get_32 (abfd, data);
2274 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2275 {
2276 second = val & 0xffff;
2277 first = val >> 16;
2278 }
2279 else if (r_type != R_MIPS16_26)
2280 {
2281 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2282 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2283 }
2284 else
2285 {
2286 second = val & 0xffff;
2287 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2288 | ((val >> 21) & 0x1f);
2289 }
2290 bfd_put_16 (abfd, second, data + 2);
2291 bfd_put_16 (abfd, first, data);
2292 }
2293
2294 bfd_reloc_status_type
2295 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2296 arelent *reloc_entry, asection *input_section,
2297 bfd_boolean relocatable, void *data, bfd_vma gp)
2298 {
2299 bfd_vma relocation;
2300 bfd_signed_vma val;
2301 bfd_reloc_status_type status;
2302
2303 if (bfd_is_com_section (symbol->section))
2304 relocation = 0;
2305 else
2306 relocation = symbol->value;
2307
2308 relocation += symbol->section->output_section->vma;
2309 relocation += symbol->section->output_offset;
2310
2311 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2312 return bfd_reloc_outofrange;
2313
2314 /* Set val to the offset into the section or symbol. */
2315 val = reloc_entry->addend;
2316
2317 _bfd_mips_elf_sign_extend (val, 16);
2318
2319 /* Adjust val for the final section location and GP value. If we
2320 are producing relocatable output, we don't want to do this for
2321 an external symbol. */
2322 if (! relocatable
2323 || (symbol->flags & BSF_SECTION_SYM) != 0)
2324 val += relocation - gp;
2325
2326 if (reloc_entry->howto->partial_inplace)
2327 {
2328 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2329 (bfd_byte *) data
2330 + reloc_entry->address);
2331 if (status != bfd_reloc_ok)
2332 return status;
2333 }
2334 else
2335 reloc_entry->addend = val;
2336
2337 if (relocatable)
2338 reloc_entry->address += input_section->output_offset;
2339
2340 return bfd_reloc_ok;
2341 }
2342
2343 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2344 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2345 that contains the relocation field and DATA points to the start of
2346 INPUT_SECTION. */
2347
2348 struct mips_hi16
2349 {
2350 struct mips_hi16 *next;
2351 bfd_byte *data;
2352 asection *input_section;
2353 arelent rel;
2354 };
2355
2356 /* FIXME: This should not be a static variable. */
2357
2358 static struct mips_hi16 *mips_hi16_list;
2359
2360 /* A howto special_function for REL *HI16 relocations. We can only
2361 calculate the correct value once we've seen the partnering
2362 *LO16 relocation, so just save the information for later.
2363
2364 The ABI requires that the *LO16 immediately follow the *HI16.
2365 However, as a GNU extension, we permit an arbitrary number of
2366 *HI16s to be associated with a single *LO16. This significantly
2367 simplies the relocation handling in gcc. */
2368
2369 bfd_reloc_status_type
2370 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2371 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2372 asection *input_section, bfd *output_bfd,
2373 char **error_message ATTRIBUTE_UNUSED)
2374 {
2375 struct mips_hi16 *n;
2376
2377 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2378 return bfd_reloc_outofrange;
2379
2380 n = bfd_malloc (sizeof *n);
2381 if (n == NULL)
2382 return bfd_reloc_outofrange;
2383
2384 n->next = mips_hi16_list;
2385 n->data = data;
2386 n->input_section = input_section;
2387 n->rel = *reloc_entry;
2388 mips_hi16_list = n;
2389
2390 if (output_bfd != NULL)
2391 reloc_entry->address += input_section->output_offset;
2392
2393 return bfd_reloc_ok;
2394 }
2395
2396 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2397 like any other 16-bit relocation when applied to global symbols, but is
2398 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2399
2400 bfd_reloc_status_type
2401 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2402 void *data, asection *input_section,
2403 bfd *output_bfd, char **error_message)
2404 {
2405 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2406 || bfd_is_und_section (bfd_get_section (symbol))
2407 || bfd_is_com_section (bfd_get_section (symbol)))
2408 /* The relocation is against a global symbol. */
2409 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2410 input_section, output_bfd,
2411 error_message);
2412
2413 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2414 input_section, output_bfd, error_message);
2415 }
2416
2417 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2418 is a straightforward 16 bit inplace relocation, but we must deal with
2419 any partnering high-part relocations as well. */
2420
2421 bfd_reloc_status_type
2422 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2423 void *data, asection *input_section,
2424 bfd *output_bfd, char **error_message)
2425 {
2426 bfd_vma vallo;
2427 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2428
2429 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2430 return bfd_reloc_outofrange;
2431
2432 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2433 location);
2434 vallo = bfd_get_32 (abfd, location);
2435 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2436 location);
2437
2438 while (mips_hi16_list != NULL)
2439 {
2440 bfd_reloc_status_type ret;
2441 struct mips_hi16 *hi;
2442
2443 hi = mips_hi16_list;
2444
2445 /* R_MIPS*_GOT16 relocations are something of a special case. We
2446 want to install the addend in the same way as for a R_MIPS*_HI16
2447 relocation (with a rightshift of 16). However, since GOT16
2448 relocations can also be used with global symbols, their howto
2449 has a rightshift of 0. */
2450 if (hi->rel.howto->type == R_MIPS_GOT16)
2451 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2452 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2453 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2454 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2455 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2456
2457 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2458 carry or borrow will induce a change of +1 or -1 in the high part. */
2459 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2460
2461 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2462 hi->input_section, output_bfd,
2463 error_message);
2464 if (ret != bfd_reloc_ok)
2465 return ret;
2466
2467 mips_hi16_list = hi->next;
2468 free (hi);
2469 }
2470
2471 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2472 input_section, output_bfd,
2473 error_message);
2474 }
2475
2476 /* A generic howto special_function. This calculates and installs the
2477 relocation itself, thus avoiding the oft-discussed problems in
2478 bfd_perform_relocation and bfd_install_relocation. */
2479
2480 bfd_reloc_status_type
2481 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2482 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2483 asection *input_section, bfd *output_bfd,
2484 char **error_message ATTRIBUTE_UNUSED)
2485 {
2486 bfd_signed_vma val;
2487 bfd_reloc_status_type status;
2488 bfd_boolean relocatable;
2489
2490 relocatable = (output_bfd != NULL);
2491
2492 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2493 return bfd_reloc_outofrange;
2494
2495 /* Build up the field adjustment in VAL. */
2496 val = 0;
2497 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2498 {
2499 /* Either we're calculating the final field value or we have a
2500 relocation against a section symbol. Add in the section's
2501 offset or address. */
2502 val += symbol->section->output_section->vma;
2503 val += symbol->section->output_offset;
2504 }
2505
2506 if (!relocatable)
2507 {
2508 /* We're calculating the final field value. Add in the symbol's value
2509 and, if pc-relative, subtract the address of the field itself. */
2510 val += symbol->value;
2511 if (reloc_entry->howto->pc_relative)
2512 {
2513 val -= input_section->output_section->vma;
2514 val -= input_section->output_offset;
2515 val -= reloc_entry->address;
2516 }
2517 }
2518
2519 /* VAL is now the final adjustment. If we're keeping this relocation
2520 in the output file, and if the relocation uses a separate addend,
2521 we just need to add VAL to that addend. Otherwise we need to add
2522 VAL to the relocation field itself. */
2523 if (relocatable && !reloc_entry->howto->partial_inplace)
2524 reloc_entry->addend += val;
2525 else
2526 {
2527 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2528
2529 /* Add in the separate addend, if any. */
2530 val += reloc_entry->addend;
2531
2532 /* Add VAL to the relocation field. */
2533 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2534 location);
2535 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2536 location);
2537 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2538 location);
2539
2540 if (status != bfd_reloc_ok)
2541 return status;
2542 }
2543
2544 if (relocatable)
2545 reloc_entry->address += input_section->output_offset;
2546
2547 return bfd_reloc_ok;
2548 }
2549 \f
2550 /* Swap an entry in a .gptab section. Note that these routines rely
2551 on the equivalence of the two elements of the union. */
2552
2553 static void
2554 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2555 Elf32_gptab *in)
2556 {
2557 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2558 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2559 }
2560
2561 static void
2562 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2563 Elf32_External_gptab *ex)
2564 {
2565 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2566 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2567 }
2568
2569 static void
2570 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2571 Elf32_External_compact_rel *ex)
2572 {
2573 H_PUT_32 (abfd, in->id1, ex->id1);
2574 H_PUT_32 (abfd, in->num, ex->num);
2575 H_PUT_32 (abfd, in->id2, ex->id2);
2576 H_PUT_32 (abfd, in->offset, ex->offset);
2577 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2578 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2579 }
2580
2581 static void
2582 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2583 Elf32_External_crinfo *ex)
2584 {
2585 unsigned long l;
2586
2587 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2588 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2589 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2590 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2591 H_PUT_32 (abfd, l, ex->info);
2592 H_PUT_32 (abfd, in->konst, ex->konst);
2593 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2594 }
2595 \f
2596 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2597 routines swap this structure in and out. They are used outside of
2598 BFD, so they are globally visible. */
2599
2600 void
2601 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2602 Elf32_RegInfo *in)
2603 {
2604 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2605 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2606 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2607 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2608 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2609 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2610 }
2611
2612 void
2613 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2614 Elf32_External_RegInfo *ex)
2615 {
2616 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2617 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2618 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2619 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2620 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2621 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2622 }
2623
2624 /* In the 64 bit ABI, the .MIPS.options section holds register
2625 information in an Elf64_Reginfo structure. These routines swap
2626 them in and out. They are globally visible because they are used
2627 outside of BFD. These routines are here so that gas can call them
2628 without worrying about whether the 64 bit ABI has been included. */
2629
2630 void
2631 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2632 Elf64_Internal_RegInfo *in)
2633 {
2634 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2635 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2636 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2637 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2638 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2639 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2640 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2641 }
2642
2643 void
2644 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2645 Elf64_External_RegInfo *ex)
2646 {
2647 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2648 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2649 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2650 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2651 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2652 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2653 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2654 }
2655
2656 /* Swap in an options header. */
2657
2658 void
2659 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2660 Elf_Internal_Options *in)
2661 {
2662 in->kind = H_GET_8 (abfd, ex->kind);
2663 in->size = H_GET_8 (abfd, ex->size);
2664 in->section = H_GET_16 (abfd, ex->section);
2665 in->info = H_GET_32 (abfd, ex->info);
2666 }
2667
2668 /* Swap out an options header. */
2669
2670 void
2671 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2672 Elf_External_Options *ex)
2673 {
2674 H_PUT_8 (abfd, in->kind, ex->kind);
2675 H_PUT_8 (abfd, in->size, ex->size);
2676 H_PUT_16 (abfd, in->section, ex->section);
2677 H_PUT_32 (abfd, in->info, ex->info);
2678 }
2679
2680 /* Swap in an abiflags structure. */
2681
2682 void
2683 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2684 const Elf_External_ABIFlags_v0 *ex,
2685 Elf_Internal_ABIFlags_v0 *in)
2686 {
2687 in->version = H_GET_16 (abfd, ex->version);
2688 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2689 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2690 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2691 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2692 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2693 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2694 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2695 in->ases = H_GET_32 (abfd, ex->ases);
2696 in->flags1 = H_GET_32 (abfd, ex->flags1);
2697 in->flags2 = H_GET_32 (abfd, ex->flags2);
2698 }
2699
2700 /* Swap out an abiflags structure. */
2701
2702 void
2703 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2704 const Elf_Internal_ABIFlags_v0 *in,
2705 Elf_External_ABIFlags_v0 *ex)
2706 {
2707 H_PUT_16 (abfd, in->version, ex->version);
2708 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2709 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2710 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2711 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2712 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2713 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2714 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2715 H_PUT_32 (abfd, in->ases, ex->ases);
2716 H_PUT_32 (abfd, in->flags1, ex->flags1);
2717 H_PUT_32 (abfd, in->flags2, ex->flags2);
2718 }
2719 \f
2720 /* This function is called via qsort() to sort the dynamic relocation
2721 entries by increasing r_symndx value. */
2722
2723 static int
2724 sort_dynamic_relocs (const void *arg1, const void *arg2)
2725 {
2726 Elf_Internal_Rela int_reloc1;
2727 Elf_Internal_Rela int_reloc2;
2728 int diff;
2729
2730 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2731 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2732
2733 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2734 if (diff != 0)
2735 return diff;
2736
2737 if (int_reloc1.r_offset < int_reloc2.r_offset)
2738 return -1;
2739 if (int_reloc1.r_offset > int_reloc2.r_offset)
2740 return 1;
2741 return 0;
2742 }
2743
2744 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2745
2746 static int
2747 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2748 const void *arg2 ATTRIBUTE_UNUSED)
2749 {
2750 #ifdef BFD64
2751 Elf_Internal_Rela int_reloc1[3];
2752 Elf_Internal_Rela int_reloc2[3];
2753
2754 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2755 (reldyn_sorting_bfd, arg1, int_reloc1);
2756 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2757 (reldyn_sorting_bfd, arg2, int_reloc2);
2758
2759 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2760 return -1;
2761 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2762 return 1;
2763
2764 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2765 return -1;
2766 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2767 return 1;
2768 return 0;
2769 #else
2770 abort ();
2771 #endif
2772 }
2773
2774
2775 /* This routine is used to write out ECOFF debugging external symbol
2776 information. It is called via mips_elf_link_hash_traverse. The
2777 ECOFF external symbol information must match the ELF external
2778 symbol information. Unfortunately, at this point we don't know
2779 whether a symbol is required by reloc information, so the two
2780 tables may wind up being different. We must sort out the external
2781 symbol information before we can set the final size of the .mdebug
2782 section, and we must set the size of the .mdebug section before we
2783 can relocate any sections, and we can't know which symbols are
2784 required by relocation until we relocate the sections.
2785 Fortunately, it is relatively unlikely that any symbol will be
2786 stripped but required by a reloc. In particular, it can not happen
2787 when generating a final executable. */
2788
2789 static bfd_boolean
2790 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2791 {
2792 struct extsym_info *einfo = data;
2793 bfd_boolean strip;
2794 asection *sec, *output_section;
2795
2796 if (h->root.indx == -2)
2797 strip = FALSE;
2798 else if ((h->root.def_dynamic
2799 || h->root.ref_dynamic
2800 || h->root.type == bfd_link_hash_new)
2801 && !h->root.def_regular
2802 && !h->root.ref_regular)
2803 strip = TRUE;
2804 else if (einfo->info->strip == strip_all
2805 || (einfo->info->strip == strip_some
2806 && bfd_hash_lookup (einfo->info->keep_hash,
2807 h->root.root.root.string,
2808 FALSE, FALSE) == NULL))
2809 strip = TRUE;
2810 else
2811 strip = FALSE;
2812
2813 if (strip)
2814 return TRUE;
2815
2816 if (h->esym.ifd == -2)
2817 {
2818 h->esym.jmptbl = 0;
2819 h->esym.cobol_main = 0;
2820 h->esym.weakext = 0;
2821 h->esym.reserved = 0;
2822 h->esym.ifd = ifdNil;
2823 h->esym.asym.value = 0;
2824 h->esym.asym.st = stGlobal;
2825
2826 if (h->root.root.type == bfd_link_hash_undefined
2827 || h->root.root.type == bfd_link_hash_undefweak)
2828 {
2829 const char *name;
2830
2831 /* Use undefined class. Also, set class and type for some
2832 special symbols. */
2833 name = h->root.root.root.string;
2834 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2835 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2836 {
2837 h->esym.asym.sc = scData;
2838 h->esym.asym.st = stLabel;
2839 h->esym.asym.value = 0;
2840 }
2841 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2842 {
2843 h->esym.asym.sc = scAbs;
2844 h->esym.asym.st = stLabel;
2845 h->esym.asym.value =
2846 mips_elf_hash_table (einfo->info)->procedure_count;
2847 }
2848 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2849 {
2850 h->esym.asym.sc = scAbs;
2851 h->esym.asym.st = stLabel;
2852 h->esym.asym.value = elf_gp (einfo->abfd);
2853 }
2854 else
2855 h->esym.asym.sc = scUndefined;
2856 }
2857 else if (h->root.root.type != bfd_link_hash_defined
2858 && h->root.root.type != bfd_link_hash_defweak)
2859 h->esym.asym.sc = scAbs;
2860 else
2861 {
2862 const char *name;
2863
2864 sec = h->root.root.u.def.section;
2865 output_section = sec->output_section;
2866
2867 /* When making a shared library and symbol h is the one from
2868 the another shared library, OUTPUT_SECTION may be null. */
2869 if (output_section == NULL)
2870 h->esym.asym.sc = scUndefined;
2871 else
2872 {
2873 name = bfd_section_name (output_section->owner, output_section);
2874
2875 if (strcmp (name, ".text") == 0)
2876 h->esym.asym.sc = scText;
2877 else if (strcmp (name, ".data") == 0)
2878 h->esym.asym.sc = scData;
2879 else if (strcmp (name, ".sdata") == 0)
2880 h->esym.asym.sc = scSData;
2881 else if (strcmp (name, ".rodata") == 0
2882 || strcmp (name, ".rdata") == 0)
2883 h->esym.asym.sc = scRData;
2884 else if (strcmp (name, ".bss") == 0)
2885 h->esym.asym.sc = scBss;
2886 else if (strcmp (name, ".sbss") == 0)
2887 h->esym.asym.sc = scSBss;
2888 else if (strcmp (name, ".init") == 0)
2889 h->esym.asym.sc = scInit;
2890 else if (strcmp (name, ".fini") == 0)
2891 h->esym.asym.sc = scFini;
2892 else
2893 h->esym.asym.sc = scAbs;
2894 }
2895 }
2896
2897 h->esym.asym.reserved = 0;
2898 h->esym.asym.index = indexNil;
2899 }
2900
2901 if (h->root.root.type == bfd_link_hash_common)
2902 h->esym.asym.value = h->root.root.u.c.size;
2903 else if (h->root.root.type == bfd_link_hash_defined
2904 || h->root.root.type == bfd_link_hash_defweak)
2905 {
2906 if (h->esym.asym.sc == scCommon)
2907 h->esym.asym.sc = scBss;
2908 else if (h->esym.asym.sc == scSCommon)
2909 h->esym.asym.sc = scSBss;
2910
2911 sec = h->root.root.u.def.section;
2912 output_section = sec->output_section;
2913 if (output_section != NULL)
2914 h->esym.asym.value = (h->root.root.u.def.value
2915 + sec->output_offset
2916 + output_section->vma);
2917 else
2918 h->esym.asym.value = 0;
2919 }
2920 else
2921 {
2922 struct mips_elf_link_hash_entry *hd = h;
2923
2924 while (hd->root.root.type == bfd_link_hash_indirect)
2925 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2926
2927 if (hd->needs_lazy_stub)
2928 {
2929 BFD_ASSERT (hd->root.plt.plist != NULL);
2930 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
2931 /* Set type and value for a symbol with a function stub. */
2932 h->esym.asym.st = stProc;
2933 sec = hd->root.root.u.def.section;
2934 if (sec == NULL)
2935 h->esym.asym.value = 0;
2936 else
2937 {
2938 output_section = sec->output_section;
2939 if (output_section != NULL)
2940 h->esym.asym.value = (hd->root.plt.plist->stub_offset
2941 + sec->output_offset
2942 + output_section->vma);
2943 else
2944 h->esym.asym.value = 0;
2945 }
2946 }
2947 }
2948
2949 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2950 h->root.root.root.string,
2951 &h->esym))
2952 {
2953 einfo->failed = TRUE;
2954 return FALSE;
2955 }
2956
2957 return TRUE;
2958 }
2959
2960 /* A comparison routine used to sort .gptab entries. */
2961
2962 static int
2963 gptab_compare (const void *p1, const void *p2)
2964 {
2965 const Elf32_gptab *a1 = p1;
2966 const Elf32_gptab *a2 = p2;
2967
2968 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2969 }
2970 \f
2971 /* Functions to manage the got entry hash table. */
2972
2973 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2974 hash number. */
2975
2976 static INLINE hashval_t
2977 mips_elf_hash_bfd_vma (bfd_vma addr)
2978 {
2979 #ifdef BFD64
2980 return addr + (addr >> 32);
2981 #else
2982 return addr;
2983 #endif
2984 }
2985
2986 static hashval_t
2987 mips_elf_got_entry_hash (const void *entry_)
2988 {
2989 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2990
2991 return (entry->symndx
2992 + ((entry->tls_type == GOT_TLS_LDM) << 18)
2993 + (entry->tls_type == GOT_TLS_LDM ? 0
2994 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
2995 : entry->symndx >= 0 ? (entry->abfd->id
2996 + mips_elf_hash_bfd_vma (entry->d.addend))
2997 : entry->d.h->root.root.root.hash));
2998 }
2999
3000 static int
3001 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3002 {
3003 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3004 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3005
3006 return (e1->symndx == e2->symndx
3007 && e1->tls_type == e2->tls_type
3008 && (e1->tls_type == GOT_TLS_LDM ? TRUE
3009 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3010 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3011 && e1->d.addend == e2->d.addend)
3012 : e2->abfd && e1->d.h == e2->d.h));
3013 }
3014
3015 static hashval_t
3016 mips_got_page_ref_hash (const void *ref_)
3017 {
3018 const struct mips_got_page_ref *ref;
3019
3020 ref = (const struct mips_got_page_ref *) ref_;
3021 return ((ref->symndx >= 0
3022 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3023 : ref->u.h->root.root.root.hash)
3024 + mips_elf_hash_bfd_vma (ref->addend));
3025 }
3026
3027 static int
3028 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3029 {
3030 const struct mips_got_page_ref *ref1, *ref2;
3031
3032 ref1 = (const struct mips_got_page_ref *) ref1_;
3033 ref2 = (const struct mips_got_page_ref *) ref2_;
3034 return (ref1->symndx == ref2->symndx
3035 && (ref1->symndx < 0
3036 ? ref1->u.h == ref2->u.h
3037 : ref1->u.abfd == ref2->u.abfd)
3038 && ref1->addend == ref2->addend);
3039 }
3040
3041 static hashval_t
3042 mips_got_page_entry_hash (const void *entry_)
3043 {
3044 const struct mips_got_page_entry *entry;
3045
3046 entry = (const struct mips_got_page_entry *) entry_;
3047 return entry->sec->id;
3048 }
3049
3050 static int
3051 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3052 {
3053 const struct mips_got_page_entry *entry1, *entry2;
3054
3055 entry1 = (const struct mips_got_page_entry *) entry1_;
3056 entry2 = (const struct mips_got_page_entry *) entry2_;
3057 return entry1->sec == entry2->sec;
3058 }
3059 \f
3060 /* Create and return a new mips_got_info structure. */
3061
3062 static struct mips_got_info *
3063 mips_elf_create_got_info (bfd *abfd)
3064 {
3065 struct mips_got_info *g;
3066
3067 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3068 if (g == NULL)
3069 return NULL;
3070
3071 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3072 mips_elf_got_entry_eq, NULL);
3073 if (g->got_entries == NULL)
3074 return NULL;
3075
3076 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3077 mips_got_page_ref_eq, NULL);
3078 if (g->got_page_refs == NULL)
3079 return NULL;
3080
3081 return g;
3082 }
3083
3084 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3085 CREATE_P and if ABFD doesn't already have a GOT. */
3086
3087 static struct mips_got_info *
3088 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3089 {
3090 struct mips_elf_obj_tdata *tdata;
3091
3092 if (!is_mips_elf (abfd))
3093 return NULL;
3094
3095 tdata = mips_elf_tdata (abfd);
3096 if (!tdata->got && create_p)
3097 tdata->got = mips_elf_create_got_info (abfd);
3098 return tdata->got;
3099 }
3100
3101 /* Record that ABFD should use output GOT G. */
3102
3103 static void
3104 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3105 {
3106 struct mips_elf_obj_tdata *tdata;
3107
3108 BFD_ASSERT (is_mips_elf (abfd));
3109 tdata = mips_elf_tdata (abfd);
3110 if (tdata->got)
3111 {
3112 /* The GOT structure itself and the hash table entries are
3113 allocated to a bfd, but the hash tables aren't. */
3114 htab_delete (tdata->got->got_entries);
3115 htab_delete (tdata->got->got_page_refs);
3116 if (tdata->got->got_page_entries)
3117 htab_delete (tdata->got->got_page_entries);
3118 }
3119 tdata->got = g;
3120 }
3121
3122 /* Return the dynamic relocation section. If it doesn't exist, try to
3123 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3124 if creation fails. */
3125
3126 static asection *
3127 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3128 {
3129 const char *dname;
3130 asection *sreloc;
3131 bfd *dynobj;
3132
3133 dname = MIPS_ELF_REL_DYN_NAME (info);
3134 dynobj = elf_hash_table (info)->dynobj;
3135 sreloc = bfd_get_linker_section (dynobj, dname);
3136 if (sreloc == NULL && create_p)
3137 {
3138 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3139 (SEC_ALLOC
3140 | SEC_LOAD
3141 | SEC_HAS_CONTENTS
3142 | SEC_IN_MEMORY
3143 | SEC_LINKER_CREATED
3144 | SEC_READONLY));
3145 if (sreloc == NULL
3146 || ! bfd_set_section_alignment (dynobj, sreloc,
3147 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3148 return NULL;
3149 }
3150 return sreloc;
3151 }
3152
3153 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3154
3155 static int
3156 mips_elf_reloc_tls_type (unsigned int r_type)
3157 {
3158 if (tls_gd_reloc_p (r_type))
3159 return GOT_TLS_GD;
3160
3161 if (tls_ldm_reloc_p (r_type))
3162 return GOT_TLS_LDM;
3163
3164 if (tls_gottprel_reloc_p (r_type))
3165 return GOT_TLS_IE;
3166
3167 return GOT_TLS_NONE;
3168 }
3169
3170 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3171
3172 static int
3173 mips_tls_got_entries (unsigned int type)
3174 {
3175 switch (type)
3176 {
3177 case GOT_TLS_GD:
3178 case GOT_TLS_LDM:
3179 return 2;
3180
3181 case GOT_TLS_IE:
3182 return 1;
3183
3184 case GOT_TLS_NONE:
3185 return 0;
3186 }
3187 abort ();
3188 }
3189
3190 /* Count the number of relocations needed for a TLS GOT entry, with
3191 access types from TLS_TYPE, and symbol H (or a local symbol if H
3192 is NULL). */
3193
3194 static int
3195 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3196 struct elf_link_hash_entry *h)
3197 {
3198 int indx = 0;
3199 bfd_boolean need_relocs = FALSE;
3200 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3201
3202 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3203 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
3204 indx = h->dynindx;
3205
3206 if ((info->shared || indx != 0)
3207 && (h == NULL
3208 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3209 || h->root.type != bfd_link_hash_undefweak))
3210 need_relocs = TRUE;
3211
3212 if (!need_relocs)
3213 return 0;
3214
3215 switch (tls_type)
3216 {
3217 case GOT_TLS_GD:
3218 return indx != 0 ? 2 : 1;
3219
3220 case GOT_TLS_IE:
3221 return 1;
3222
3223 case GOT_TLS_LDM:
3224 return info->shared ? 1 : 0;
3225
3226 default:
3227 return 0;
3228 }
3229 }
3230
3231 /* Add the number of GOT entries and TLS relocations required by ENTRY
3232 to G. */
3233
3234 static void
3235 mips_elf_count_got_entry (struct bfd_link_info *info,
3236 struct mips_got_info *g,
3237 struct mips_got_entry *entry)
3238 {
3239 if (entry->tls_type)
3240 {
3241 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3242 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3243 entry->symndx < 0
3244 ? &entry->d.h->root : NULL);
3245 }
3246 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3247 g->local_gotno += 1;
3248 else
3249 g->global_gotno += 1;
3250 }
3251
3252 /* Output a simple dynamic relocation into SRELOC. */
3253
3254 static void
3255 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3256 asection *sreloc,
3257 unsigned long reloc_index,
3258 unsigned long indx,
3259 int r_type,
3260 bfd_vma offset)
3261 {
3262 Elf_Internal_Rela rel[3];
3263
3264 memset (rel, 0, sizeof (rel));
3265
3266 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3267 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3268
3269 if (ABI_64_P (output_bfd))
3270 {
3271 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3272 (output_bfd, &rel[0],
3273 (sreloc->contents
3274 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3275 }
3276 else
3277 bfd_elf32_swap_reloc_out
3278 (output_bfd, &rel[0],
3279 (sreloc->contents
3280 + reloc_index * sizeof (Elf32_External_Rel)));
3281 }
3282
3283 /* Initialize a set of TLS GOT entries for one symbol. */
3284
3285 static void
3286 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3287 struct mips_got_entry *entry,
3288 struct mips_elf_link_hash_entry *h,
3289 bfd_vma value)
3290 {
3291 struct mips_elf_link_hash_table *htab;
3292 int indx;
3293 asection *sreloc, *sgot;
3294 bfd_vma got_offset, got_offset2;
3295 bfd_boolean need_relocs = FALSE;
3296
3297 htab = mips_elf_hash_table (info);
3298 if (htab == NULL)
3299 return;
3300
3301 sgot = htab->sgot;
3302
3303 indx = 0;
3304 if (h != NULL)
3305 {
3306 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3307
3308 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
3309 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3310 indx = h->root.dynindx;
3311 }
3312
3313 if (entry->tls_initialized)
3314 return;
3315
3316 if ((info->shared || indx != 0)
3317 && (h == NULL
3318 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3319 || h->root.type != bfd_link_hash_undefweak))
3320 need_relocs = TRUE;
3321
3322 /* MINUS_ONE means the symbol is not defined in this object. It may not
3323 be defined at all; assume that the value doesn't matter in that
3324 case. Otherwise complain if we would use the value. */
3325 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3326 || h->root.root.type == bfd_link_hash_undefweak);
3327
3328 /* Emit necessary relocations. */
3329 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3330 got_offset = entry->gotidx;
3331
3332 switch (entry->tls_type)
3333 {
3334 case GOT_TLS_GD:
3335 /* General Dynamic. */
3336 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3337
3338 if (need_relocs)
3339 {
3340 mips_elf_output_dynamic_relocation
3341 (abfd, sreloc, sreloc->reloc_count++, indx,
3342 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3343 sgot->output_offset + sgot->output_section->vma + got_offset);
3344
3345 if (indx)
3346 mips_elf_output_dynamic_relocation
3347 (abfd, sreloc, sreloc->reloc_count++, indx,
3348 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3349 sgot->output_offset + sgot->output_section->vma + got_offset2);
3350 else
3351 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3352 sgot->contents + got_offset2);
3353 }
3354 else
3355 {
3356 MIPS_ELF_PUT_WORD (abfd, 1,
3357 sgot->contents + got_offset);
3358 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3359 sgot->contents + got_offset2);
3360 }
3361 break;
3362
3363 case GOT_TLS_IE:
3364 /* Initial Exec model. */
3365 if (need_relocs)
3366 {
3367 if (indx == 0)
3368 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3369 sgot->contents + got_offset);
3370 else
3371 MIPS_ELF_PUT_WORD (abfd, 0,
3372 sgot->contents + got_offset);
3373
3374 mips_elf_output_dynamic_relocation
3375 (abfd, sreloc, sreloc->reloc_count++, indx,
3376 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3377 sgot->output_offset + sgot->output_section->vma + got_offset);
3378 }
3379 else
3380 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3381 sgot->contents + got_offset);
3382 break;
3383
3384 case GOT_TLS_LDM:
3385 /* The initial offset is zero, and the LD offsets will include the
3386 bias by DTP_OFFSET. */
3387 MIPS_ELF_PUT_WORD (abfd, 0,
3388 sgot->contents + got_offset
3389 + MIPS_ELF_GOT_SIZE (abfd));
3390
3391 if (!info->shared)
3392 MIPS_ELF_PUT_WORD (abfd, 1,
3393 sgot->contents + got_offset);
3394 else
3395 mips_elf_output_dynamic_relocation
3396 (abfd, sreloc, sreloc->reloc_count++, indx,
3397 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3398 sgot->output_offset + sgot->output_section->vma + got_offset);
3399 break;
3400
3401 default:
3402 abort ();
3403 }
3404
3405 entry->tls_initialized = TRUE;
3406 }
3407
3408 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3409 for global symbol H. .got.plt comes before the GOT, so the offset
3410 will be negative. */
3411
3412 static bfd_vma
3413 mips_elf_gotplt_index (struct bfd_link_info *info,
3414 struct elf_link_hash_entry *h)
3415 {
3416 bfd_vma got_address, got_value;
3417 struct mips_elf_link_hash_table *htab;
3418
3419 htab = mips_elf_hash_table (info);
3420 BFD_ASSERT (htab != NULL);
3421
3422 BFD_ASSERT (h->plt.plist != NULL);
3423 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3424
3425 /* Calculate the address of the associated .got.plt entry. */
3426 got_address = (htab->sgotplt->output_section->vma
3427 + htab->sgotplt->output_offset
3428 + (h->plt.plist->gotplt_index
3429 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3430
3431 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3432 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3433 + htab->root.hgot->root.u.def.section->output_offset
3434 + htab->root.hgot->root.u.def.value);
3435
3436 return got_address - got_value;
3437 }
3438
3439 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3440 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3441 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3442 offset can be found. */
3443
3444 static bfd_vma
3445 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3446 bfd_vma value, unsigned long r_symndx,
3447 struct mips_elf_link_hash_entry *h, int r_type)
3448 {
3449 struct mips_elf_link_hash_table *htab;
3450 struct mips_got_entry *entry;
3451
3452 htab = mips_elf_hash_table (info);
3453 BFD_ASSERT (htab != NULL);
3454
3455 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3456 r_symndx, h, r_type);
3457 if (!entry)
3458 return MINUS_ONE;
3459
3460 if (entry->tls_type)
3461 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3462 return entry->gotidx;
3463 }
3464
3465 /* Return the GOT index of global symbol H in the primary GOT. */
3466
3467 static bfd_vma
3468 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3469 struct elf_link_hash_entry *h)
3470 {
3471 struct mips_elf_link_hash_table *htab;
3472 long global_got_dynindx;
3473 struct mips_got_info *g;
3474 bfd_vma got_index;
3475
3476 htab = mips_elf_hash_table (info);
3477 BFD_ASSERT (htab != NULL);
3478
3479 global_got_dynindx = 0;
3480 if (htab->global_gotsym != NULL)
3481 global_got_dynindx = htab->global_gotsym->dynindx;
3482
3483 /* Once we determine the global GOT entry with the lowest dynamic
3484 symbol table index, we must put all dynamic symbols with greater
3485 indices into the primary GOT. That makes it easy to calculate the
3486 GOT offset. */
3487 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3488 g = mips_elf_bfd_got (obfd, FALSE);
3489 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3490 * MIPS_ELF_GOT_SIZE (obfd));
3491 BFD_ASSERT (got_index < htab->sgot->size);
3492
3493 return got_index;
3494 }
3495
3496 /* Return the GOT index for the global symbol indicated by H, which is
3497 referenced by a relocation of type R_TYPE in IBFD. */
3498
3499 static bfd_vma
3500 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3501 struct elf_link_hash_entry *h, int r_type)
3502 {
3503 struct mips_elf_link_hash_table *htab;
3504 struct mips_got_info *g;
3505 struct mips_got_entry lookup, *entry;
3506 bfd_vma gotidx;
3507
3508 htab = mips_elf_hash_table (info);
3509 BFD_ASSERT (htab != NULL);
3510
3511 g = mips_elf_bfd_got (ibfd, FALSE);
3512 BFD_ASSERT (g);
3513
3514 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3515 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3516 return mips_elf_primary_global_got_index (obfd, info, h);
3517
3518 lookup.abfd = ibfd;
3519 lookup.symndx = -1;
3520 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3521 entry = htab_find (g->got_entries, &lookup);
3522 BFD_ASSERT (entry);
3523
3524 gotidx = entry->gotidx;
3525 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3526
3527 if (lookup.tls_type)
3528 {
3529 bfd_vma value = MINUS_ONE;
3530
3531 if ((h->root.type == bfd_link_hash_defined
3532 || h->root.type == bfd_link_hash_defweak)
3533 && h->root.u.def.section->output_section)
3534 value = (h->root.u.def.value
3535 + h->root.u.def.section->output_offset
3536 + h->root.u.def.section->output_section->vma);
3537
3538 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3539 }
3540 return gotidx;
3541 }
3542
3543 /* Find a GOT page entry that points to within 32KB of VALUE. These
3544 entries are supposed to be placed at small offsets in the GOT, i.e.,
3545 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3546 entry could be created. If OFFSETP is nonnull, use it to return the
3547 offset of the GOT entry from VALUE. */
3548
3549 static bfd_vma
3550 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3551 bfd_vma value, bfd_vma *offsetp)
3552 {
3553 bfd_vma page, got_index;
3554 struct mips_got_entry *entry;
3555
3556 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3557 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3558 NULL, R_MIPS_GOT_PAGE);
3559
3560 if (!entry)
3561 return MINUS_ONE;
3562
3563 got_index = entry->gotidx;
3564
3565 if (offsetp)
3566 *offsetp = value - entry->d.address;
3567
3568 return got_index;
3569 }
3570
3571 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3572 EXTERNAL is true if the relocation was originally against a global
3573 symbol that binds locally. */
3574
3575 static bfd_vma
3576 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3577 bfd_vma value, bfd_boolean external)
3578 {
3579 struct mips_got_entry *entry;
3580
3581 /* GOT16 relocations against local symbols are followed by a LO16
3582 relocation; those against global symbols are not. Thus if the
3583 symbol was originally local, the GOT16 relocation should load the
3584 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3585 if (! external)
3586 value = mips_elf_high (value) << 16;
3587
3588 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3589 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3590 same in all cases. */
3591 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3592 NULL, R_MIPS_GOT16);
3593 if (entry)
3594 return entry->gotidx;
3595 else
3596 return MINUS_ONE;
3597 }
3598
3599 /* Returns the offset for the entry at the INDEXth position
3600 in the GOT. */
3601
3602 static bfd_vma
3603 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3604 bfd *input_bfd, bfd_vma got_index)
3605 {
3606 struct mips_elf_link_hash_table *htab;
3607 asection *sgot;
3608 bfd_vma gp;
3609
3610 htab = mips_elf_hash_table (info);
3611 BFD_ASSERT (htab != NULL);
3612
3613 sgot = htab->sgot;
3614 gp = _bfd_get_gp_value (output_bfd)
3615 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3616
3617 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3618 }
3619
3620 /* Create and return a local GOT entry for VALUE, which was calculated
3621 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3622 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3623 instead. */
3624
3625 static struct mips_got_entry *
3626 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3627 bfd *ibfd, bfd_vma value,
3628 unsigned long r_symndx,
3629 struct mips_elf_link_hash_entry *h,
3630 int r_type)
3631 {
3632 struct mips_got_entry lookup, *entry;
3633 void **loc;
3634 struct mips_got_info *g;
3635 struct mips_elf_link_hash_table *htab;
3636 bfd_vma gotidx;
3637
3638 htab = mips_elf_hash_table (info);
3639 BFD_ASSERT (htab != NULL);
3640
3641 g = mips_elf_bfd_got (ibfd, FALSE);
3642 if (g == NULL)
3643 {
3644 g = mips_elf_bfd_got (abfd, FALSE);
3645 BFD_ASSERT (g != NULL);
3646 }
3647
3648 /* This function shouldn't be called for symbols that live in the global
3649 area of the GOT. */
3650 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3651
3652 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3653 if (lookup.tls_type)
3654 {
3655 lookup.abfd = ibfd;
3656 if (tls_ldm_reloc_p (r_type))
3657 {
3658 lookup.symndx = 0;
3659 lookup.d.addend = 0;
3660 }
3661 else if (h == NULL)
3662 {
3663 lookup.symndx = r_symndx;
3664 lookup.d.addend = 0;
3665 }
3666 else
3667 {
3668 lookup.symndx = -1;
3669 lookup.d.h = h;
3670 }
3671
3672 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3673 BFD_ASSERT (entry);
3674
3675 gotidx = entry->gotidx;
3676 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3677
3678 return entry;
3679 }
3680
3681 lookup.abfd = NULL;
3682 lookup.symndx = -1;
3683 lookup.d.address = value;
3684 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3685 if (!loc)
3686 return NULL;
3687
3688 entry = (struct mips_got_entry *) *loc;
3689 if (entry)
3690 return entry;
3691
3692 if (g->assigned_low_gotno > g->assigned_high_gotno)
3693 {
3694 /* We didn't allocate enough space in the GOT. */
3695 (*_bfd_error_handler)
3696 (_("not enough GOT space for local GOT entries"));
3697 bfd_set_error (bfd_error_bad_value);
3698 return NULL;
3699 }
3700
3701 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3702 if (!entry)
3703 return NULL;
3704
3705 if (got16_reloc_p (r_type)
3706 || call16_reloc_p (r_type)
3707 || got_page_reloc_p (r_type)
3708 || got_disp_reloc_p (r_type))
3709 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3710 else
3711 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3712
3713 *entry = lookup;
3714 *loc = entry;
3715
3716 MIPS_ELF_PUT_WORD (abfd, value, htab->sgot->contents + entry->gotidx);
3717
3718 /* These GOT entries need a dynamic relocation on VxWorks. */
3719 if (htab->is_vxworks)
3720 {
3721 Elf_Internal_Rela outrel;
3722 asection *s;
3723 bfd_byte *rloc;
3724 bfd_vma got_address;
3725
3726 s = mips_elf_rel_dyn_section (info, FALSE);
3727 got_address = (htab->sgot->output_section->vma
3728 + htab->sgot->output_offset
3729 + entry->gotidx);
3730
3731 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3732 outrel.r_offset = got_address;
3733 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3734 outrel.r_addend = value;
3735 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3736 }
3737
3738 return entry;
3739 }
3740
3741 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3742 The number might be exact or a worst-case estimate, depending on how
3743 much information is available to elf_backend_omit_section_dynsym at
3744 the current linking stage. */
3745
3746 static bfd_size_type
3747 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3748 {
3749 bfd_size_type count;
3750
3751 count = 0;
3752 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
3753 {
3754 asection *p;
3755 const struct elf_backend_data *bed;
3756
3757 bed = get_elf_backend_data (output_bfd);
3758 for (p = output_bfd->sections; p ; p = p->next)
3759 if ((p->flags & SEC_EXCLUDE) == 0
3760 && (p->flags & SEC_ALLOC) != 0
3761 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3762 ++count;
3763 }
3764 return count;
3765 }
3766
3767 /* Sort the dynamic symbol table so that symbols that need GOT entries
3768 appear towards the end. */
3769
3770 static bfd_boolean
3771 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3772 {
3773 struct mips_elf_link_hash_table *htab;
3774 struct mips_elf_hash_sort_data hsd;
3775 struct mips_got_info *g;
3776
3777 if (elf_hash_table (info)->dynsymcount == 0)
3778 return TRUE;
3779
3780 htab = mips_elf_hash_table (info);
3781 BFD_ASSERT (htab != NULL);
3782
3783 g = htab->got_info;
3784 if (g == NULL)
3785 return TRUE;
3786
3787 hsd.low = NULL;
3788 hsd.max_unref_got_dynindx
3789 = hsd.min_got_dynindx
3790 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3791 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3792 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3793 elf_hash_table (info)),
3794 mips_elf_sort_hash_table_f,
3795 &hsd);
3796
3797 /* There should have been enough room in the symbol table to
3798 accommodate both the GOT and non-GOT symbols. */
3799 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3800 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3801 == elf_hash_table (info)->dynsymcount);
3802 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3803 == g->global_gotno);
3804
3805 /* Now we know which dynamic symbol has the lowest dynamic symbol
3806 table index in the GOT. */
3807 htab->global_gotsym = hsd.low;
3808
3809 return TRUE;
3810 }
3811
3812 /* If H needs a GOT entry, assign it the highest available dynamic
3813 index. Otherwise, assign it the lowest available dynamic
3814 index. */
3815
3816 static bfd_boolean
3817 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3818 {
3819 struct mips_elf_hash_sort_data *hsd = data;
3820
3821 /* Symbols without dynamic symbol table entries aren't interesting
3822 at all. */
3823 if (h->root.dynindx == -1)
3824 return TRUE;
3825
3826 switch (h->global_got_area)
3827 {
3828 case GGA_NONE:
3829 h->root.dynindx = hsd->max_non_got_dynindx++;
3830 break;
3831
3832 case GGA_NORMAL:
3833 h->root.dynindx = --hsd->min_got_dynindx;
3834 hsd->low = (struct elf_link_hash_entry *) h;
3835 break;
3836
3837 case GGA_RELOC_ONLY:
3838 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3839 hsd->low = (struct elf_link_hash_entry *) h;
3840 h->root.dynindx = hsd->max_unref_got_dynindx++;
3841 break;
3842 }
3843
3844 return TRUE;
3845 }
3846
3847 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3848 (which is owned by the caller and shouldn't be added to the
3849 hash table directly). */
3850
3851 static bfd_boolean
3852 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3853 struct mips_got_entry *lookup)
3854 {
3855 struct mips_elf_link_hash_table *htab;
3856 struct mips_got_entry *entry;
3857 struct mips_got_info *g;
3858 void **loc, **bfd_loc;
3859
3860 /* Make sure there's a slot for this entry in the master GOT. */
3861 htab = mips_elf_hash_table (info);
3862 g = htab->got_info;
3863 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3864 if (!loc)
3865 return FALSE;
3866
3867 /* Populate the entry if it isn't already. */
3868 entry = (struct mips_got_entry *) *loc;
3869 if (!entry)
3870 {
3871 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3872 if (!entry)
3873 return FALSE;
3874
3875 lookup->tls_initialized = FALSE;
3876 lookup->gotidx = -1;
3877 *entry = *lookup;
3878 *loc = entry;
3879 }
3880
3881 /* Reuse the same GOT entry for the BFD's GOT. */
3882 g = mips_elf_bfd_got (abfd, TRUE);
3883 if (!g)
3884 return FALSE;
3885
3886 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3887 if (!bfd_loc)
3888 return FALSE;
3889
3890 if (!*bfd_loc)
3891 *bfd_loc = entry;
3892 return TRUE;
3893 }
3894
3895 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3896 entry for it. FOR_CALL is true if the caller is only interested in
3897 using the GOT entry for calls. */
3898
3899 static bfd_boolean
3900 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3901 bfd *abfd, struct bfd_link_info *info,
3902 bfd_boolean for_call, int r_type)
3903 {
3904 struct mips_elf_link_hash_table *htab;
3905 struct mips_elf_link_hash_entry *hmips;
3906 struct mips_got_entry entry;
3907 unsigned char tls_type;
3908
3909 htab = mips_elf_hash_table (info);
3910 BFD_ASSERT (htab != NULL);
3911
3912 hmips = (struct mips_elf_link_hash_entry *) h;
3913 if (!for_call)
3914 hmips->got_only_for_calls = FALSE;
3915
3916 /* A global symbol in the GOT must also be in the dynamic symbol
3917 table. */
3918 if (h->dynindx == -1)
3919 {
3920 switch (ELF_ST_VISIBILITY (h->other))
3921 {
3922 case STV_INTERNAL:
3923 case STV_HIDDEN:
3924 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3925 break;
3926 }
3927 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3928 return FALSE;
3929 }
3930
3931 tls_type = mips_elf_reloc_tls_type (r_type);
3932 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
3933 hmips->global_got_area = GGA_NORMAL;
3934
3935 entry.abfd = abfd;
3936 entry.symndx = -1;
3937 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3938 entry.tls_type = tls_type;
3939 return mips_elf_record_got_entry (info, abfd, &entry);
3940 }
3941
3942 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
3943 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
3944
3945 static bfd_boolean
3946 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
3947 struct bfd_link_info *info, int r_type)
3948 {
3949 struct mips_elf_link_hash_table *htab;
3950 struct mips_got_info *g;
3951 struct mips_got_entry entry;
3952
3953 htab = mips_elf_hash_table (info);
3954 BFD_ASSERT (htab != NULL);
3955
3956 g = htab->got_info;
3957 BFD_ASSERT (g != NULL);
3958
3959 entry.abfd = abfd;
3960 entry.symndx = symndx;
3961 entry.d.addend = addend;
3962 entry.tls_type = mips_elf_reloc_tls_type (r_type);
3963 return mips_elf_record_got_entry (info, abfd, &entry);
3964 }
3965
3966 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
3967 H is the symbol's hash table entry, or null if SYMNDX is local
3968 to ABFD. */
3969
3970 static bfd_boolean
3971 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
3972 long symndx, struct elf_link_hash_entry *h,
3973 bfd_signed_vma addend)
3974 {
3975 struct mips_elf_link_hash_table *htab;
3976 struct mips_got_info *g1, *g2;
3977 struct mips_got_page_ref lookup, *entry;
3978 void **loc, **bfd_loc;
3979
3980 htab = mips_elf_hash_table (info);
3981 BFD_ASSERT (htab != NULL);
3982
3983 g1 = htab->got_info;
3984 BFD_ASSERT (g1 != NULL);
3985
3986 if (h)
3987 {
3988 lookup.symndx = -1;
3989 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
3990 }
3991 else
3992 {
3993 lookup.symndx = symndx;
3994 lookup.u.abfd = abfd;
3995 }
3996 lookup.addend = addend;
3997 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
3998 if (loc == NULL)
3999 return FALSE;
4000
4001 entry = (struct mips_got_page_ref *) *loc;
4002 if (!entry)
4003 {
4004 entry = bfd_alloc (abfd, sizeof (*entry));
4005 if (!entry)
4006 return FALSE;
4007
4008 *entry = lookup;
4009 *loc = entry;
4010 }
4011
4012 /* Add the same entry to the BFD's GOT. */
4013 g2 = mips_elf_bfd_got (abfd, TRUE);
4014 if (!g2)
4015 return FALSE;
4016
4017 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4018 if (!bfd_loc)
4019 return FALSE;
4020
4021 if (!*bfd_loc)
4022 *bfd_loc = entry;
4023
4024 return TRUE;
4025 }
4026
4027 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4028
4029 static void
4030 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4031 unsigned int n)
4032 {
4033 asection *s;
4034 struct mips_elf_link_hash_table *htab;
4035
4036 htab = mips_elf_hash_table (info);
4037 BFD_ASSERT (htab != NULL);
4038
4039 s = mips_elf_rel_dyn_section (info, FALSE);
4040 BFD_ASSERT (s != NULL);
4041
4042 if (htab->is_vxworks)
4043 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4044 else
4045 {
4046 if (s->size == 0)
4047 {
4048 /* Make room for a null element. */
4049 s->size += MIPS_ELF_REL_SIZE (abfd);
4050 ++s->reloc_count;
4051 }
4052 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4053 }
4054 }
4055 \f
4056 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4057 mips_elf_traverse_got_arg structure. Count the number of GOT
4058 entries and TLS relocs. Set DATA->value to true if we need
4059 to resolve indirect or warning symbols and then recreate the GOT. */
4060
4061 static int
4062 mips_elf_check_recreate_got (void **entryp, void *data)
4063 {
4064 struct mips_got_entry *entry;
4065 struct mips_elf_traverse_got_arg *arg;
4066
4067 entry = (struct mips_got_entry *) *entryp;
4068 arg = (struct mips_elf_traverse_got_arg *) data;
4069 if (entry->abfd != NULL && entry->symndx == -1)
4070 {
4071 struct mips_elf_link_hash_entry *h;
4072
4073 h = entry->d.h;
4074 if (h->root.root.type == bfd_link_hash_indirect
4075 || h->root.root.type == bfd_link_hash_warning)
4076 {
4077 arg->value = TRUE;
4078 return 0;
4079 }
4080 }
4081 mips_elf_count_got_entry (arg->info, arg->g, entry);
4082 return 1;
4083 }
4084
4085 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4086 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4087 converting entries for indirect and warning symbols into entries
4088 for the target symbol. Set DATA->g to null on error. */
4089
4090 static int
4091 mips_elf_recreate_got (void **entryp, void *data)
4092 {
4093 struct mips_got_entry new_entry, *entry;
4094 struct mips_elf_traverse_got_arg *arg;
4095 void **slot;
4096
4097 entry = (struct mips_got_entry *) *entryp;
4098 arg = (struct mips_elf_traverse_got_arg *) data;
4099 if (entry->abfd != NULL
4100 && entry->symndx == -1
4101 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4102 || entry->d.h->root.root.type == bfd_link_hash_warning))
4103 {
4104 struct mips_elf_link_hash_entry *h;
4105
4106 new_entry = *entry;
4107 entry = &new_entry;
4108 h = entry->d.h;
4109 do
4110 {
4111 BFD_ASSERT (h->global_got_area == GGA_NONE);
4112 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4113 }
4114 while (h->root.root.type == bfd_link_hash_indirect
4115 || h->root.root.type == bfd_link_hash_warning);
4116 entry->d.h = h;
4117 }
4118 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4119 if (slot == NULL)
4120 {
4121 arg->g = NULL;
4122 return 0;
4123 }
4124 if (*slot == NULL)
4125 {
4126 if (entry == &new_entry)
4127 {
4128 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4129 if (!entry)
4130 {
4131 arg->g = NULL;
4132 return 0;
4133 }
4134 *entry = new_entry;
4135 }
4136 *slot = entry;
4137 mips_elf_count_got_entry (arg->info, arg->g, entry);
4138 }
4139 return 1;
4140 }
4141
4142 /* Return the maximum number of GOT page entries required for RANGE. */
4143
4144 static bfd_vma
4145 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4146 {
4147 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4148 }
4149
4150 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4151
4152 static bfd_boolean
4153 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4154 asection *sec, bfd_signed_vma addend)
4155 {
4156 struct mips_got_info *g = arg->g;
4157 struct mips_got_page_entry lookup, *entry;
4158 struct mips_got_page_range **range_ptr, *range;
4159 bfd_vma old_pages, new_pages;
4160 void **loc;
4161
4162 /* Find the mips_got_page_entry hash table entry for this section. */
4163 lookup.sec = sec;
4164 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4165 if (loc == NULL)
4166 return FALSE;
4167
4168 /* Create a mips_got_page_entry if this is the first time we've
4169 seen the section. */
4170 entry = (struct mips_got_page_entry *) *loc;
4171 if (!entry)
4172 {
4173 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4174 if (!entry)
4175 return FALSE;
4176
4177 entry->sec = sec;
4178 *loc = entry;
4179 }
4180
4181 /* Skip over ranges whose maximum extent cannot share a page entry
4182 with ADDEND. */
4183 range_ptr = &entry->ranges;
4184 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4185 range_ptr = &(*range_ptr)->next;
4186
4187 /* If we scanned to the end of the list, or found a range whose
4188 minimum extent cannot share a page entry with ADDEND, create
4189 a new singleton range. */
4190 range = *range_ptr;
4191 if (!range || addend < range->min_addend - 0xffff)
4192 {
4193 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4194 if (!range)
4195 return FALSE;
4196
4197 range->next = *range_ptr;
4198 range->min_addend = addend;
4199 range->max_addend = addend;
4200
4201 *range_ptr = range;
4202 entry->num_pages++;
4203 g->page_gotno++;
4204 return TRUE;
4205 }
4206
4207 /* Remember how many pages the old range contributed. */
4208 old_pages = mips_elf_pages_for_range (range);
4209
4210 /* Update the ranges. */
4211 if (addend < range->min_addend)
4212 range->min_addend = addend;
4213 else if (addend > range->max_addend)
4214 {
4215 if (range->next && addend >= range->next->min_addend - 0xffff)
4216 {
4217 old_pages += mips_elf_pages_for_range (range->next);
4218 range->max_addend = range->next->max_addend;
4219 range->next = range->next->next;
4220 }
4221 else
4222 range->max_addend = addend;
4223 }
4224
4225 /* Record any change in the total estimate. */
4226 new_pages = mips_elf_pages_for_range (range);
4227 if (old_pages != new_pages)
4228 {
4229 entry->num_pages += new_pages - old_pages;
4230 g->page_gotno += new_pages - old_pages;
4231 }
4232
4233 return TRUE;
4234 }
4235
4236 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4237 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4238 whether the page reference described by *REFP needs a GOT page entry,
4239 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4240
4241 static bfd_boolean
4242 mips_elf_resolve_got_page_ref (void **refp, void *data)
4243 {
4244 struct mips_got_page_ref *ref;
4245 struct mips_elf_traverse_got_arg *arg;
4246 struct mips_elf_link_hash_table *htab;
4247 asection *sec;
4248 bfd_vma addend;
4249
4250 ref = (struct mips_got_page_ref *) *refp;
4251 arg = (struct mips_elf_traverse_got_arg *) data;
4252 htab = mips_elf_hash_table (arg->info);
4253
4254 if (ref->symndx < 0)
4255 {
4256 struct mips_elf_link_hash_entry *h;
4257
4258 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4259 h = ref->u.h;
4260 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4261 return 1;
4262
4263 /* Ignore undefined symbols; we'll issue an error later if
4264 appropriate. */
4265 if (!((h->root.root.type == bfd_link_hash_defined
4266 || h->root.root.type == bfd_link_hash_defweak)
4267 && h->root.root.u.def.section))
4268 return 1;
4269
4270 sec = h->root.root.u.def.section;
4271 addend = h->root.root.u.def.value + ref->addend;
4272 }
4273 else
4274 {
4275 Elf_Internal_Sym *isym;
4276
4277 /* Read in the symbol. */
4278 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4279 ref->symndx);
4280 if (isym == NULL)
4281 {
4282 arg->g = NULL;
4283 return 0;
4284 }
4285
4286 /* Get the associated input section. */
4287 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4288 if (sec == NULL)
4289 {
4290 arg->g = NULL;
4291 return 0;
4292 }
4293
4294 /* If this is a mergable section, work out the section and offset
4295 of the merged data. For section symbols, the addend specifies
4296 of the offset _of_ the first byte in the data, otherwise it
4297 specifies the offset _from_ the first byte. */
4298 if (sec->flags & SEC_MERGE)
4299 {
4300 void *secinfo;
4301
4302 secinfo = elf_section_data (sec)->sec_info;
4303 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4304 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4305 isym->st_value + ref->addend);
4306 else
4307 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4308 isym->st_value) + ref->addend;
4309 }
4310 else
4311 addend = isym->st_value + ref->addend;
4312 }
4313 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4314 {
4315 arg->g = NULL;
4316 return 0;
4317 }
4318 return 1;
4319 }
4320
4321 /* If any entries in G->got_entries are for indirect or warning symbols,
4322 replace them with entries for the target symbol. Convert g->got_page_refs
4323 into got_page_entry structures and estimate the number of page entries
4324 that they require. */
4325
4326 static bfd_boolean
4327 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4328 struct mips_got_info *g)
4329 {
4330 struct mips_elf_traverse_got_arg tga;
4331 struct mips_got_info oldg;
4332
4333 oldg = *g;
4334
4335 tga.info = info;
4336 tga.g = g;
4337 tga.value = FALSE;
4338 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4339 if (tga.value)
4340 {
4341 *g = oldg;
4342 g->got_entries = htab_create (htab_size (oldg.got_entries),
4343 mips_elf_got_entry_hash,
4344 mips_elf_got_entry_eq, NULL);
4345 if (!g->got_entries)
4346 return FALSE;
4347
4348 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4349 if (!tga.g)
4350 return FALSE;
4351
4352 htab_delete (oldg.got_entries);
4353 }
4354
4355 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4356 mips_got_page_entry_eq, NULL);
4357 if (g->got_page_entries == NULL)
4358 return FALSE;
4359
4360 tga.info = info;
4361 tga.g = g;
4362 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4363
4364 return TRUE;
4365 }
4366
4367 /* Return true if a GOT entry for H should live in the local rather than
4368 global GOT area. */
4369
4370 static bfd_boolean
4371 mips_use_local_got_p (struct bfd_link_info *info,
4372 struct mips_elf_link_hash_entry *h)
4373 {
4374 /* Symbols that aren't in the dynamic symbol table must live in the
4375 local GOT. This includes symbols that are completely undefined
4376 and which therefore don't bind locally. We'll report undefined
4377 symbols later if appropriate. */
4378 if (h->root.dynindx == -1)
4379 return TRUE;
4380
4381 /* Symbols that bind locally can (and in the case of forced-local
4382 symbols, must) live in the local GOT. */
4383 if (h->got_only_for_calls
4384 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4385 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4386 return TRUE;
4387
4388 /* If this is an executable that must provide a definition of the symbol,
4389 either though PLTs or copy relocations, then that address should go in
4390 the local rather than global GOT. */
4391 if (info->executable && h->has_static_relocs)
4392 return TRUE;
4393
4394 return FALSE;
4395 }
4396
4397 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4398 link_info structure. Decide whether the hash entry needs an entry in
4399 the global part of the primary GOT, setting global_got_area accordingly.
4400 Count the number of global symbols that are in the primary GOT only
4401 because they have relocations against them (reloc_only_gotno). */
4402
4403 static int
4404 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4405 {
4406 struct bfd_link_info *info;
4407 struct mips_elf_link_hash_table *htab;
4408 struct mips_got_info *g;
4409
4410 info = (struct bfd_link_info *) data;
4411 htab = mips_elf_hash_table (info);
4412 g = htab->got_info;
4413 if (h->global_got_area != GGA_NONE)
4414 {
4415 /* Make a final decision about whether the symbol belongs in the
4416 local or global GOT. */
4417 if (mips_use_local_got_p (info, h))
4418 /* The symbol belongs in the local GOT. We no longer need this
4419 entry if it was only used for relocations; those relocations
4420 will be against the null or section symbol instead of H. */
4421 h->global_got_area = GGA_NONE;
4422 else if (htab->is_vxworks
4423 && h->got_only_for_calls
4424 && h->root.plt.plist->mips_offset != MINUS_ONE)
4425 /* On VxWorks, calls can refer directly to the .got.plt entry;
4426 they don't need entries in the regular GOT. .got.plt entries
4427 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4428 h->global_got_area = GGA_NONE;
4429 else if (h->global_got_area == GGA_RELOC_ONLY)
4430 {
4431 g->reloc_only_gotno++;
4432 g->global_gotno++;
4433 }
4434 }
4435 return 1;
4436 }
4437 \f
4438 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4439 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4440
4441 static int
4442 mips_elf_add_got_entry (void **entryp, void *data)
4443 {
4444 struct mips_got_entry *entry;
4445 struct mips_elf_traverse_got_arg *arg;
4446 void **slot;
4447
4448 entry = (struct mips_got_entry *) *entryp;
4449 arg = (struct mips_elf_traverse_got_arg *) data;
4450 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4451 if (!slot)
4452 {
4453 arg->g = NULL;
4454 return 0;
4455 }
4456 if (!*slot)
4457 {
4458 *slot = entry;
4459 mips_elf_count_got_entry (arg->info, arg->g, entry);
4460 }
4461 return 1;
4462 }
4463
4464 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4465 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4466
4467 static int
4468 mips_elf_add_got_page_entry (void **entryp, void *data)
4469 {
4470 struct mips_got_page_entry *entry;
4471 struct mips_elf_traverse_got_arg *arg;
4472 void **slot;
4473
4474 entry = (struct mips_got_page_entry *) *entryp;
4475 arg = (struct mips_elf_traverse_got_arg *) data;
4476 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4477 if (!slot)
4478 {
4479 arg->g = NULL;
4480 return 0;
4481 }
4482 if (!*slot)
4483 {
4484 *slot = entry;
4485 arg->g->page_gotno += entry->num_pages;
4486 }
4487 return 1;
4488 }
4489
4490 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4491 this would lead to overflow, 1 if they were merged successfully,
4492 and 0 if a merge failed due to lack of memory. (These values are chosen
4493 so that nonnegative return values can be returned by a htab_traverse
4494 callback.) */
4495
4496 static int
4497 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4498 struct mips_got_info *to,
4499 struct mips_elf_got_per_bfd_arg *arg)
4500 {
4501 struct mips_elf_traverse_got_arg tga;
4502 unsigned int estimate;
4503
4504 /* Work out how many page entries we would need for the combined GOT. */
4505 estimate = arg->max_pages;
4506 if (estimate >= from->page_gotno + to->page_gotno)
4507 estimate = from->page_gotno + to->page_gotno;
4508
4509 /* And conservatively estimate how many local and TLS entries
4510 would be needed. */
4511 estimate += from->local_gotno + to->local_gotno;
4512 estimate += from->tls_gotno + to->tls_gotno;
4513
4514 /* If we're merging with the primary got, any TLS relocations will
4515 come after the full set of global entries. Otherwise estimate those
4516 conservatively as well. */
4517 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4518 estimate += arg->global_count;
4519 else
4520 estimate += from->global_gotno + to->global_gotno;
4521
4522 /* Bail out if the combined GOT might be too big. */
4523 if (estimate > arg->max_count)
4524 return -1;
4525
4526 /* Transfer the bfd's got information from FROM to TO. */
4527 tga.info = arg->info;
4528 tga.g = to;
4529 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4530 if (!tga.g)
4531 return 0;
4532
4533 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4534 if (!tga.g)
4535 return 0;
4536
4537 mips_elf_replace_bfd_got (abfd, to);
4538 return 1;
4539 }
4540
4541 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4542 as possible of the primary got, since it doesn't require explicit
4543 dynamic relocations, but don't use bfds that would reference global
4544 symbols out of the addressable range. Failing the primary got,
4545 attempt to merge with the current got, or finish the current got
4546 and then make make the new got current. */
4547
4548 static bfd_boolean
4549 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4550 struct mips_elf_got_per_bfd_arg *arg)
4551 {
4552 unsigned int estimate;
4553 int result;
4554
4555 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4556 return FALSE;
4557
4558 /* Work out the number of page, local and TLS entries. */
4559 estimate = arg->max_pages;
4560 if (estimate > g->page_gotno)
4561 estimate = g->page_gotno;
4562 estimate += g->local_gotno + g->tls_gotno;
4563
4564 /* We place TLS GOT entries after both locals and globals. The globals
4565 for the primary GOT may overflow the normal GOT size limit, so be
4566 sure not to merge a GOT which requires TLS with the primary GOT in that
4567 case. This doesn't affect non-primary GOTs. */
4568 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4569
4570 if (estimate <= arg->max_count)
4571 {
4572 /* If we don't have a primary GOT, use it as
4573 a starting point for the primary GOT. */
4574 if (!arg->primary)
4575 {
4576 arg->primary = g;
4577 return TRUE;
4578 }
4579
4580 /* Try merging with the primary GOT. */
4581 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4582 if (result >= 0)
4583 return result;
4584 }
4585
4586 /* If we can merge with the last-created got, do it. */
4587 if (arg->current)
4588 {
4589 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4590 if (result >= 0)
4591 return result;
4592 }
4593
4594 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4595 fits; if it turns out that it doesn't, we'll get relocation
4596 overflows anyway. */
4597 g->next = arg->current;
4598 arg->current = g;
4599
4600 return TRUE;
4601 }
4602
4603 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4604 to GOTIDX, duplicating the entry if it has already been assigned
4605 an index in a different GOT. */
4606
4607 static bfd_boolean
4608 mips_elf_set_gotidx (void **entryp, long gotidx)
4609 {
4610 struct mips_got_entry *entry;
4611
4612 entry = (struct mips_got_entry *) *entryp;
4613 if (entry->gotidx > 0)
4614 {
4615 struct mips_got_entry *new_entry;
4616
4617 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4618 if (!new_entry)
4619 return FALSE;
4620
4621 *new_entry = *entry;
4622 *entryp = new_entry;
4623 entry = new_entry;
4624 }
4625 entry->gotidx = gotidx;
4626 return TRUE;
4627 }
4628
4629 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4630 mips_elf_traverse_got_arg in which DATA->value is the size of one
4631 GOT entry. Set DATA->g to null on failure. */
4632
4633 static int
4634 mips_elf_initialize_tls_index (void **entryp, void *data)
4635 {
4636 struct mips_got_entry *entry;
4637 struct mips_elf_traverse_got_arg *arg;
4638
4639 /* We're only interested in TLS symbols. */
4640 entry = (struct mips_got_entry *) *entryp;
4641 if (entry->tls_type == GOT_TLS_NONE)
4642 return 1;
4643
4644 arg = (struct mips_elf_traverse_got_arg *) data;
4645 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4646 {
4647 arg->g = NULL;
4648 return 0;
4649 }
4650
4651 /* Account for the entries we've just allocated. */
4652 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4653 return 1;
4654 }
4655
4656 /* A htab_traverse callback for GOT entries, where DATA points to a
4657 mips_elf_traverse_got_arg. Set the global_got_area of each global
4658 symbol to DATA->value. */
4659
4660 static int
4661 mips_elf_set_global_got_area (void **entryp, void *data)
4662 {
4663 struct mips_got_entry *entry;
4664 struct mips_elf_traverse_got_arg *arg;
4665
4666 entry = (struct mips_got_entry *) *entryp;
4667 arg = (struct mips_elf_traverse_got_arg *) data;
4668 if (entry->abfd != NULL
4669 && entry->symndx == -1
4670 && entry->d.h->global_got_area != GGA_NONE)
4671 entry->d.h->global_got_area = arg->value;
4672 return 1;
4673 }
4674
4675 /* A htab_traverse callback for secondary GOT entries, where DATA points
4676 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4677 and record the number of relocations they require. DATA->value is
4678 the size of one GOT entry. Set DATA->g to null on failure. */
4679
4680 static int
4681 mips_elf_set_global_gotidx (void **entryp, void *data)
4682 {
4683 struct mips_got_entry *entry;
4684 struct mips_elf_traverse_got_arg *arg;
4685
4686 entry = (struct mips_got_entry *) *entryp;
4687 arg = (struct mips_elf_traverse_got_arg *) data;
4688 if (entry->abfd != NULL
4689 && entry->symndx == -1
4690 && entry->d.h->global_got_area != GGA_NONE)
4691 {
4692 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4693 {
4694 arg->g = NULL;
4695 return 0;
4696 }
4697 arg->g->assigned_low_gotno += 1;
4698
4699 if (arg->info->shared
4700 || (elf_hash_table (arg->info)->dynamic_sections_created
4701 && entry->d.h->root.def_dynamic
4702 && !entry->d.h->root.def_regular))
4703 arg->g->relocs += 1;
4704 }
4705
4706 return 1;
4707 }
4708
4709 /* A htab_traverse callback for GOT entries for which DATA is the
4710 bfd_link_info. Forbid any global symbols from having traditional
4711 lazy-binding stubs. */
4712
4713 static int
4714 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4715 {
4716 struct bfd_link_info *info;
4717 struct mips_elf_link_hash_table *htab;
4718 struct mips_got_entry *entry;
4719
4720 entry = (struct mips_got_entry *) *entryp;
4721 info = (struct bfd_link_info *) data;
4722 htab = mips_elf_hash_table (info);
4723 BFD_ASSERT (htab != NULL);
4724
4725 if (entry->abfd != NULL
4726 && entry->symndx == -1
4727 && entry->d.h->needs_lazy_stub)
4728 {
4729 entry->d.h->needs_lazy_stub = FALSE;
4730 htab->lazy_stub_count--;
4731 }
4732
4733 return 1;
4734 }
4735
4736 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4737 the primary GOT. */
4738 static bfd_vma
4739 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4740 {
4741 if (!g->next)
4742 return 0;
4743
4744 g = mips_elf_bfd_got (ibfd, FALSE);
4745 if (! g)
4746 return 0;
4747
4748 BFD_ASSERT (g->next);
4749
4750 g = g->next;
4751
4752 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4753 * MIPS_ELF_GOT_SIZE (abfd);
4754 }
4755
4756 /* Turn a single GOT that is too big for 16-bit addressing into
4757 a sequence of GOTs, each one 16-bit addressable. */
4758
4759 static bfd_boolean
4760 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4761 asection *got, bfd_size_type pages)
4762 {
4763 struct mips_elf_link_hash_table *htab;
4764 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4765 struct mips_elf_traverse_got_arg tga;
4766 struct mips_got_info *g, *gg;
4767 unsigned int assign, needed_relocs;
4768 bfd *dynobj, *ibfd;
4769
4770 dynobj = elf_hash_table (info)->dynobj;
4771 htab = mips_elf_hash_table (info);
4772 BFD_ASSERT (htab != NULL);
4773
4774 g = htab->got_info;
4775
4776 got_per_bfd_arg.obfd = abfd;
4777 got_per_bfd_arg.info = info;
4778 got_per_bfd_arg.current = NULL;
4779 got_per_bfd_arg.primary = NULL;
4780 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4781 / MIPS_ELF_GOT_SIZE (abfd))
4782 - htab->reserved_gotno);
4783 got_per_bfd_arg.max_pages = pages;
4784 /* The number of globals that will be included in the primary GOT.
4785 See the calls to mips_elf_set_global_got_area below for more
4786 information. */
4787 got_per_bfd_arg.global_count = g->global_gotno;
4788
4789 /* Try to merge the GOTs of input bfds together, as long as they
4790 don't seem to exceed the maximum GOT size, choosing one of them
4791 to be the primary GOT. */
4792 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4793 {
4794 gg = mips_elf_bfd_got (ibfd, FALSE);
4795 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4796 return FALSE;
4797 }
4798
4799 /* If we do not find any suitable primary GOT, create an empty one. */
4800 if (got_per_bfd_arg.primary == NULL)
4801 g->next = mips_elf_create_got_info (abfd);
4802 else
4803 g->next = got_per_bfd_arg.primary;
4804 g->next->next = got_per_bfd_arg.current;
4805
4806 /* GG is now the master GOT, and G is the primary GOT. */
4807 gg = g;
4808 g = g->next;
4809
4810 /* Map the output bfd to the primary got. That's what we're going
4811 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4812 didn't mark in check_relocs, and we want a quick way to find it.
4813 We can't just use gg->next because we're going to reverse the
4814 list. */
4815 mips_elf_replace_bfd_got (abfd, g);
4816
4817 /* Every symbol that is referenced in a dynamic relocation must be
4818 present in the primary GOT, so arrange for them to appear after
4819 those that are actually referenced. */
4820 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4821 g->global_gotno = gg->global_gotno;
4822
4823 tga.info = info;
4824 tga.value = GGA_RELOC_ONLY;
4825 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4826 tga.value = GGA_NORMAL;
4827 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4828
4829 /* Now go through the GOTs assigning them offset ranges.
4830 [assigned_low_gotno, local_gotno[ will be set to the range of local
4831 entries in each GOT. We can then compute the end of a GOT by
4832 adding local_gotno to global_gotno. We reverse the list and make
4833 it circular since then we'll be able to quickly compute the
4834 beginning of a GOT, by computing the end of its predecessor. To
4835 avoid special cases for the primary GOT, while still preserving
4836 assertions that are valid for both single- and multi-got links,
4837 we arrange for the main got struct to have the right number of
4838 global entries, but set its local_gotno such that the initial
4839 offset of the primary GOT is zero. Remember that the primary GOT
4840 will become the last item in the circular linked list, so it
4841 points back to the master GOT. */
4842 gg->local_gotno = -g->global_gotno;
4843 gg->global_gotno = g->global_gotno;
4844 gg->tls_gotno = 0;
4845 assign = 0;
4846 gg->next = gg;
4847
4848 do
4849 {
4850 struct mips_got_info *gn;
4851
4852 assign += htab->reserved_gotno;
4853 g->assigned_low_gotno = assign;
4854 g->local_gotno += assign;
4855 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4856 g->assigned_high_gotno = g->local_gotno - 1;
4857 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4858
4859 /* Take g out of the direct list, and push it onto the reversed
4860 list that gg points to. g->next is guaranteed to be nonnull after
4861 this operation, as required by mips_elf_initialize_tls_index. */
4862 gn = g->next;
4863 g->next = gg->next;
4864 gg->next = g;
4865
4866 /* Set up any TLS entries. We always place the TLS entries after
4867 all non-TLS entries. */
4868 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4869 tga.g = g;
4870 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4871 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4872 if (!tga.g)
4873 return FALSE;
4874 BFD_ASSERT (g->tls_assigned_gotno == assign);
4875
4876 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4877 g = gn;
4878
4879 /* Forbid global symbols in every non-primary GOT from having
4880 lazy-binding stubs. */
4881 if (g)
4882 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4883 }
4884 while (g);
4885
4886 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
4887
4888 needed_relocs = 0;
4889 for (g = gg->next; g && g->next != gg; g = g->next)
4890 {
4891 unsigned int save_assign;
4892
4893 /* Assign offsets to global GOT entries and count how many
4894 relocations they need. */
4895 save_assign = g->assigned_low_gotno;
4896 g->assigned_low_gotno = g->local_gotno;
4897 tga.info = info;
4898 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4899 tga.g = g;
4900 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
4901 if (!tga.g)
4902 return FALSE;
4903 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4904 g->assigned_low_gotno = save_assign;
4905
4906 if (info->shared)
4907 {
4908 g->relocs += g->local_gotno - g->assigned_low_gotno;
4909 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
4910 + g->next->global_gotno
4911 + g->next->tls_gotno
4912 + htab->reserved_gotno);
4913 }
4914 needed_relocs += g->relocs;
4915 }
4916 needed_relocs += g->relocs;
4917
4918 if (needed_relocs)
4919 mips_elf_allocate_dynamic_relocations (dynobj, info,
4920 needed_relocs);
4921
4922 return TRUE;
4923 }
4924
4925 \f
4926 /* Returns the first relocation of type r_type found, beginning with
4927 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4928
4929 static const Elf_Internal_Rela *
4930 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4931 const Elf_Internal_Rela *relocation,
4932 const Elf_Internal_Rela *relend)
4933 {
4934 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4935
4936 while (relocation < relend)
4937 {
4938 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4939 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4940 return relocation;
4941
4942 ++relocation;
4943 }
4944
4945 /* We didn't find it. */
4946 return NULL;
4947 }
4948
4949 /* Return whether an input relocation is against a local symbol. */
4950
4951 static bfd_boolean
4952 mips_elf_local_relocation_p (bfd *input_bfd,
4953 const Elf_Internal_Rela *relocation,
4954 asection **local_sections)
4955 {
4956 unsigned long r_symndx;
4957 Elf_Internal_Shdr *symtab_hdr;
4958 size_t extsymoff;
4959
4960 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4961 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4962 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4963
4964 if (r_symndx < extsymoff)
4965 return TRUE;
4966 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
4967 return TRUE;
4968
4969 return FALSE;
4970 }
4971 \f
4972 /* Sign-extend VALUE, which has the indicated number of BITS. */
4973
4974 bfd_vma
4975 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
4976 {
4977 if (value & ((bfd_vma) 1 << (bits - 1)))
4978 /* VALUE is negative. */
4979 value |= ((bfd_vma) - 1) << bits;
4980
4981 return value;
4982 }
4983
4984 /* Return non-zero if the indicated VALUE has overflowed the maximum
4985 range expressible by a signed number with the indicated number of
4986 BITS. */
4987
4988 static bfd_boolean
4989 mips_elf_overflow_p (bfd_vma value, int bits)
4990 {
4991 bfd_signed_vma svalue = (bfd_signed_vma) value;
4992
4993 if (svalue > (1 << (bits - 1)) - 1)
4994 /* The value is too big. */
4995 return TRUE;
4996 else if (svalue < -(1 << (bits - 1)))
4997 /* The value is too small. */
4998 return TRUE;
4999
5000 /* All is well. */
5001 return FALSE;
5002 }
5003
5004 /* Calculate the %high function. */
5005
5006 static bfd_vma
5007 mips_elf_high (bfd_vma value)
5008 {
5009 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5010 }
5011
5012 /* Calculate the %higher function. */
5013
5014 static bfd_vma
5015 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5016 {
5017 #ifdef BFD64
5018 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5019 #else
5020 abort ();
5021 return MINUS_ONE;
5022 #endif
5023 }
5024
5025 /* Calculate the %highest function. */
5026
5027 static bfd_vma
5028 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5029 {
5030 #ifdef BFD64
5031 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5032 #else
5033 abort ();
5034 return MINUS_ONE;
5035 #endif
5036 }
5037 \f
5038 /* Create the .compact_rel section. */
5039
5040 static bfd_boolean
5041 mips_elf_create_compact_rel_section
5042 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5043 {
5044 flagword flags;
5045 register asection *s;
5046
5047 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5048 {
5049 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5050 | SEC_READONLY);
5051
5052 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5053 if (s == NULL
5054 || ! bfd_set_section_alignment (abfd, s,
5055 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5056 return FALSE;
5057
5058 s->size = sizeof (Elf32_External_compact_rel);
5059 }
5060
5061 return TRUE;
5062 }
5063
5064 /* Create the .got section to hold the global offset table. */
5065
5066 static bfd_boolean
5067 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5068 {
5069 flagword flags;
5070 register asection *s;
5071 struct elf_link_hash_entry *h;
5072 struct bfd_link_hash_entry *bh;
5073 struct mips_elf_link_hash_table *htab;
5074
5075 htab = mips_elf_hash_table (info);
5076 BFD_ASSERT (htab != NULL);
5077
5078 /* This function may be called more than once. */
5079 if (htab->sgot)
5080 return TRUE;
5081
5082 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5083 | SEC_LINKER_CREATED);
5084
5085 /* We have to use an alignment of 2**4 here because this is hardcoded
5086 in the function stub generation and in the linker script. */
5087 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5088 if (s == NULL
5089 || ! bfd_set_section_alignment (abfd, s, 4))
5090 return FALSE;
5091 htab->sgot = s;
5092
5093 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5094 linker script because we don't want to define the symbol if we
5095 are not creating a global offset table. */
5096 bh = NULL;
5097 if (! (_bfd_generic_link_add_one_symbol
5098 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5099 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5100 return FALSE;
5101
5102 h = (struct elf_link_hash_entry *) bh;
5103 h->non_elf = 0;
5104 h->def_regular = 1;
5105 h->type = STT_OBJECT;
5106 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5107 elf_hash_table (info)->hgot = h;
5108
5109 if (info->shared
5110 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5111 return FALSE;
5112
5113 htab->got_info = mips_elf_create_got_info (abfd);
5114 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5115 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5116
5117 /* We also need a .got.plt section when generating PLTs. */
5118 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5119 SEC_ALLOC | SEC_LOAD
5120 | SEC_HAS_CONTENTS
5121 | SEC_IN_MEMORY
5122 | SEC_LINKER_CREATED);
5123 if (s == NULL)
5124 return FALSE;
5125 htab->sgotplt = s;
5126
5127 return TRUE;
5128 }
5129 \f
5130 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5131 __GOTT_INDEX__ symbols. These symbols are only special for
5132 shared objects; they are not used in executables. */
5133
5134 static bfd_boolean
5135 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5136 {
5137 return (mips_elf_hash_table (info)->is_vxworks
5138 && info->shared
5139 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5140 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5141 }
5142
5143 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5144 require an la25 stub. See also mips_elf_local_pic_function_p,
5145 which determines whether the destination function ever requires a
5146 stub. */
5147
5148 static bfd_boolean
5149 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5150 bfd_boolean target_is_16_bit_code_p)
5151 {
5152 /* We specifically ignore branches and jumps from EF_PIC objects,
5153 where the onus is on the compiler or programmer to perform any
5154 necessary initialization of $25. Sometimes such initialization
5155 is unnecessary; for example, -mno-shared functions do not use
5156 the incoming value of $25, and may therefore be called directly. */
5157 if (PIC_OBJECT_P (input_bfd))
5158 return FALSE;
5159
5160 switch (r_type)
5161 {
5162 case R_MIPS_26:
5163 case R_MIPS_PC16:
5164 case R_MICROMIPS_26_S1:
5165 case R_MICROMIPS_PC7_S1:
5166 case R_MICROMIPS_PC10_S1:
5167 case R_MICROMIPS_PC16_S1:
5168 case R_MICROMIPS_PC23_S2:
5169 return TRUE;
5170
5171 case R_MIPS16_26:
5172 return !target_is_16_bit_code_p;
5173
5174 default:
5175 return FALSE;
5176 }
5177 }
5178 \f
5179 /* Calculate the value produced by the RELOCATION (which comes from
5180 the INPUT_BFD). The ADDEND is the addend to use for this
5181 RELOCATION; RELOCATION->R_ADDEND is ignored.
5182
5183 The result of the relocation calculation is stored in VALUEP.
5184 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5185 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5186
5187 This function returns bfd_reloc_continue if the caller need take no
5188 further action regarding this relocation, bfd_reloc_notsupported if
5189 something goes dramatically wrong, bfd_reloc_overflow if an
5190 overflow occurs, and bfd_reloc_ok to indicate success. */
5191
5192 static bfd_reloc_status_type
5193 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5194 asection *input_section,
5195 struct bfd_link_info *info,
5196 const Elf_Internal_Rela *relocation,
5197 bfd_vma addend, reloc_howto_type *howto,
5198 Elf_Internal_Sym *local_syms,
5199 asection **local_sections, bfd_vma *valuep,
5200 const char **namep,
5201 bfd_boolean *cross_mode_jump_p,
5202 bfd_boolean save_addend)
5203 {
5204 /* The eventual value we will return. */
5205 bfd_vma value;
5206 /* The address of the symbol against which the relocation is
5207 occurring. */
5208 bfd_vma symbol = 0;
5209 /* The final GP value to be used for the relocatable, executable, or
5210 shared object file being produced. */
5211 bfd_vma gp;
5212 /* The place (section offset or address) of the storage unit being
5213 relocated. */
5214 bfd_vma p;
5215 /* The value of GP used to create the relocatable object. */
5216 bfd_vma gp0;
5217 /* The offset into the global offset table at which the address of
5218 the relocation entry symbol, adjusted by the addend, resides
5219 during execution. */
5220 bfd_vma g = MINUS_ONE;
5221 /* The section in which the symbol referenced by the relocation is
5222 located. */
5223 asection *sec = NULL;
5224 struct mips_elf_link_hash_entry *h = NULL;
5225 /* TRUE if the symbol referred to by this relocation is a local
5226 symbol. */
5227 bfd_boolean local_p, was_local_p;
5228 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5229 bfd_boolean gp_disp_p = FALSE;
5230 /* TRUE if the symbol referred to by this relocation is
5231 "__gnu_local_gp". */
5232 bfd_boolean gnu_local_gp_p = FALSE;
5233 Elf_Internal_Shdr *symtab_hdr;
5234 size_t extsymoff;
5235 unsigned long r_symndx;
5236 int r_type;
5237 /* TRUE if overflow occurred during the calculation of the
5238 relocation value. */
5239 bfd_boolean overflowed_p;
5240 /* TRUE if this relocation refers to a MIPS16 function. */
5241 bfd_boolean target_is_16_bit_code_p = FALSE;
5242 bfd_boolean target_is_micromips_code_p = FALSE;
5243 struct mips_elf_link_hash_table *htab;
5244 bfd *dynobj;
5245
5246 dynobj = elf_hash_table (info)->dynobj;
5247 htab = mips_elf_hash_table (info);
5248 BFD_ASSERT (htab != NULL);
5249
5250 /* Parse the relocation. */
5251 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5252 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5253 p = (input_section->output_section->vma
5254 + input_section->output_offset
5255 + relocation->r_offset);
5256
5257 /* Assume that there will be no overflow. */
5258 overflowed_p = FALSE;
5259
5260 /* Figure out whether or not the symbol is local, and get the offset
5261 used in the array of hash table entries. */
5262 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5263 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5264 local_sections);
5265 was_local_p = local_p;
5266 if (! elf_bad_symtab (input_bfd))
5267 extsymoff = symtab_hdr->sh_info;
5268 else
5269 {
5270 /* The symbol table does not follow the rule that local symbols
5271 must come before globals. */
5272 extsymoff = 0;
5273 }
5274
5275 /* Figure out the value of the symbol. */
5276 if (local_p)
5277 {
5278 Elf_Internal_Sym *sym;
5279
5280 sym = local_syms + r_symndx;
5281 sec = local_sections[r_symndx];
5282
5283 symbol = sec->output_section->vma + sec->output_offset;
5284 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
5285 || (sec->flags & SEC_MERGE))
5286 symbol += sym->st_value;
5287 if ((sec->flags & SEC_MERGE)
5288 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5289 {
5290 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5291 addend -= symbol;
5292 addend += sec->output_section->vma + sec->output_offset;
5293 }
5294
5295 /* MIPS16/microMIPS text labels should be treated as odd. */
5296 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5297 ++symbol;
5298
5299 /* Record the name of this symbol, for our caller. */
5300 *namep = bfd_elf_string_from_elf_section (input_bfd,
5301 symtab_hdr->sh_link,
5302 sym->st_name);
5303 if (*namep == '\0')
5304 *namep = bfd_section_name (input_bfd, sec);
5305
5306 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5307 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5308 }
5309 else
5310 {
5311 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5312
5313 /* For global symbols we look up the symbol in the hash-table. */
5314 h = ((struct mips_elf_link_hash_entry *)
5315 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5316 /* Find the real hash-table entry for this symbol. */
5317 while (h->root.root.type == bfd_link_hash_indirect
5318 || h->root.root.type == bfd_link_hash_warning)
5319 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5320
5321 /* Record the name of this symbol, for our caller. */
5322 *namep = h->root.root.root.string;
5323
5324 /* See if this is the special _gp_disp symbol. Note that such a
5325 symbol must always be a global symbol. */
5326 if (strcmp (*namep, "_gp_disp") == 0
5327 && ! NEWABI_P (input_bfd))
5328 {
5329 /* Relocations against _gp_disp are permitted only with
5330 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5331 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5332 return bfd_reloc_notsupported;
5333
5334 gp_disp_p = TRUE;
5335 }
5336 /* See if this is the special _gp symbol. Note that such a
5337 symbol must always be a global symbol. */
5338 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5339 gnu_local_gp_p = TRUE;
5340
5341
5342 /* If this symbol is defined, calculate its address. Note that
5343 _gp_disp is a magic symbol, always implicitly defined by the
5344 linker, so it's inappropriate to check to see whether or not
5345 its defined. */
5346 else if ((h->root.root.type == bfd_link_hash_defined
5347 || h->root.root.type == bfd_link_hash_defweak)
5348 && h->root.root.u.def.section)
5349 {
5350 sec = h->root.root.u.def.section;
5351 if (sec->output_section)
5352 symbol = (h->root.root.u.def.value
5353 + sec->output_section->vma
5354 + sec->output_offset);
5355 else
5356 symbol = h->root.root.u.def.value;
5357 }
5358 else if (h->root.root.type == bfd_link_hash_undefweak)
5359 /* We allow relocations against undefined weak symbols, giving
5360 it the value zero, so that you can undefined weak functions
5361 and check to see if they exist by looking at their
5362 addresses. */
5363 symbol = 0;
5364 else if (info->unresolved_syms_in_objects == RM_IGNORE
5365 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5366 symbol = 0;
5367 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5368 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5369 {
5370 /* If this is a dynamic link, we should have created a
5371 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5372 in in _bfd_mips_elf_create_dynamic_sections.
5373 Otherwise, we should define the symbol with a value of 0.
5374 FIXME: It should probably get into the symbol table
5375 somehow as well. */
5376 BFD_ASSERT (! info->shared);
5377 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5378 symbol = 0;
5379 }
5380 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5381 {
5382 /* This is an optional symbol - an Irix specific extension to the
5383 ELF spec. Ignore it for now.
5384 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5385 than simply ignoring them, but we do not handle this for now.
5386 For information see the "64-bit ELF Object File Specification"
5387 which is available from here:
5388 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5389 symbol = 0;
5390 }
5391 else if ((*info->callbacks->undefined_symbol)
5392 (info, h->root.root.root.string, input_bfd,
5393 input_section, relocation->r_offset,
5394 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5395 || ELF_ST_VISIBILITY (h->root.other)))
5396 {
5397 return bfd_reloc_undefined;
5398 }
5399 else
5400 {
5401 return bfd_reloc_notsupported;
5402 }
5403
5404 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5405 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5406 }
5407
5408 /* If this is a reference to a 16-bit function with a stub, we need
5409 to redirect the relocation to the stub unless:
5410
5411 (a) the relocation is for a MIPS16 JAL;
5412
5413 (b) the relocation is for a MIPS16 PIC call, and there are no
5414 non-MIPS16 uses of the GOT slot; or
5415
5416 (c) the section allows direct references to MIPS16 functions. */
5417 if (r_type != R_MIPS16_26
5418 && !info->relocatable
5419 && ((h != NULL
5420 && h->fn_stub != NULL
5421 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5422 || (local_p
5423 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5424 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5425 && !section_allows_mips16_refs_p (input_section))
5426 {
5427 /* This is a 32- or 64-bit call to a 16-bit function. We should
5428 have already noticed that we were going to need the
5429 stub. */
5430 if (local_p)
5431 {
5432 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5433 value = 0;
5434 }
5435 else
5436 {
5437 BFD_ASSERT (h->need_fn_stub);
5438 if (h->la25_stub)
5439 {
5440 /* If a LA25 header for the stub itself exists, point to the
5441 prepended LUI/ADDIU sequence. */
5442 sec = h->la25_stub->stub_section;
5443 value = h->la25_stub->offset;
5444 }
5445 else
5446 {
5447 sec = h->fn_stub;
5448 value = 0;
5449 }
5450 }
5451
5452 symbol = sec->output_section->vma + sec->output_offset + value;
5453 /* The target is 16-bit, but the stub isn't. */
5454 target_is_16_bit_code_p = FALSE;
5455 }
5456 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5457 to a standard MIPS function, we need to redirect the call to the stub.
5458 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5459 indirect calls should use an indirect stub instead. */
5460 else if (r_type == R_MIPS16_26 && !info->relocatable
5461 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5462 || (local_p
5463 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5464 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5465 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5466 {
5467 if (local_p)
5468 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5469 else
5470 {
5471 /* If both call_stub and call_fp_stub are defined, we can figure
5472 out which one to use by checking which one appears in the input
5473 file. */
5474 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5475 {
5476 asection *o;
5477
5478 sec = NULL;
5479 for (o = input_bfd->sections; o != NULL; o = o->next)
5480 {
5481 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5482 {
5483 sec = h->call_fp_stub;
5484 break;
5485 }
5486 }
5487 if (sec == NULL)
5488 sec = h->call_stub;
5489 }
5490 else if (h->call_stub != NULL)
5491 sec = h->call_stub;
5492 else
5493 sec = h->call_fp_stub;
5494 }
5495
5496 BFD_ASSERT (sec->size > 0);
5497 symbol = sec->output_section->vma + sec->output_offset;
5498 }
5499 /* If this is a direct call to a PIC function, redirect to the
5500 non-PIC stub. */
5501 else if (h != NULL && h->la25_stub
5502 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5503 target_is_16_bit_code_p))
5504 symbol = (h->la25_stub->stub_section->output_section->vma
5505 + h->la25_stub->stub_section->output_offset
5506 + h->la25_stub->offset);
5507 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5508 entry is used if a standard PLT entry has also been made. In this
5509 case the symbol will have been set by mips_elf_set_plt_sym_value
5510 to point to the standard PLT entry, so redirect to the compressed
5511 one. */
5512 else if ((r_type == R_MIPS16_26 || r_type == R_MICROMIPS_26_S1)
5513 && !info->relocatable
5514 && h != NULL
5515 && h->use_plt_entry
5516 && h->root.plt.plist->comp_offset != MINUS_ONE
5517 && h->root.plt.plist->mips_offset != MINUS_ONE)
5518 {
5519 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5520
5521 sec = htab->splt;
5522 symbol = (sec->output_section->vma
5523 + sec->output_offset
5524 + htab->plt_header_size
5525 + htab->plt_mips_offset
5526 + h->root.plt.plist->comp_offset
5527 + 1);
5528
5529 target_is_16_bit_code_p = !micromips_p;
5530 target_is_micromips_code_p = micromips_p;
5531 }
5532
5533 /* Make sure MIPS16 and microMIPS are not used together. */
5534 if ((r_type == R_MIPS16_26 && target_is_micromips_code_p)
5535 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5536 {
5537 (*_bfd_error_handler)
5538 (_("MIPS16 and microMIPS functions cannot call each other"));
5539 return bfd_reloc_notsupported;
5540 }
5541
5542 /* Calls from 16-bit code to 32-bit code and vice versa require the
5543 mode change. However, we can ignore calls to undefined weak symbols,
5544 which should never be executed at runtime. This exception is important
5545 because the assembly writer may have "known" that any definition of the
5546 symbol would be 16-bit code, and that direct jumps were therefore
5547 acceptable. */
5548 *cross_mode_jump_p = (!info->relocatable
5549 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5550 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5551 || (r_type == R_MICROMIPS_26_S1
5552 && !target_is_micromips_code_p)
5553 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5554 && (target_is_16_bit_code_p
5555 || target_is_micromips_code_p))));
5556
5557 local_p = (h == NULL || mips_use_local_got_p (info, h));
5558
5559 gp0 = _bfd_get_gp_value (input_bfd);
5560 gp = _bfd_get_gp_value (abfd);
5561 if (htab->got_info)
5562 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5563
5564 if (gnu_local_gp_p)
5565 symbol = gp;
5566
5567 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5568 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5569 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5570 if (got_page_reloc_p (r_type) && !local_p)
5571 {
5572 r_type = (micromips_reloc_p (r_type)
5573 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5574 addend = 0;
5575 }
5576
5577 /* If we haven't already determined the GOT offset, and we're going
5578 to need it, get it now. */
5579 switch (r_type)
5580 {
5581 case R_MIPS16_CALL16:
5582 case R_MIPS16_GOT16:
5583 case R_MIPS_CALL16:
5584 case R_MIPS_GOT16:
5585 case R_MIPS_GOT_DISP:
5586 case R_MIPS_GOT_HI16:
5587 case R_MIPS_CALL_HI16:
5588 case R_MIPS_GOT_LO16:
5589 case R_MIPS_CALL_LO16:
5590 case R_MICROMIPS_CALL16:
5591 case R_MICROMIPS_GOT16:
5592 case R_MICROMIPS_GOT_DISP:
5593 case R_MICROMIPS_GOT_HI16:
5594 case R_MICROMIPS_CALL_HI16:
5595 case R_MICROMIPS_GOT_LO16:
5596 case R_MICROMIPS_CALL_LO16:
5597 case R_MIPS_TLS_GD:
5598 case R_MIPS_TLS_GOTTPREL:
5599 case R_MIPS_TLS_LDM:
5600 case R_MIPS16_TLS_GD:
5601 case R_MIPS16_TLS_GOTTPREL:
5602 case R_MIPS16_TLS_LDM:
5603 case R_MICROMIPS_TLS_GD:
5604 case R_MICROMIPS_TLS_GOTTPREL:
5605 case R_MICROMIPS_TLS_LDM:
5606 /* Find the index into the GOT where this value is located. */
5607 if (tls_ldm_reloc_p (r_type))
5608 {
5609 g = mips_elf_local_got_index (abfd, input_bfd, info,
5610 0, 0, NULL, r_type);
5611 if (g == MINUS_ONE)
5612 return bfd_reloc_outofrange;
5613 }
5614 else if (!local_p)
5615 {
5616 /* On VxWorks, CALL relocations should refer to the .got.plt
5617 entry, which is initialized to point at the PLT stub. */
5618 if (htab->is_vxworks
5619 && (call_hi16_reloc_p (r_type)
5620 || call_lo16_reloc_p (r_type)
5621 || call16_reloc_p (r_type)))
5622 {
5623 BFD_ASSERT (addend == 0);
5624 BFD_ASSERT (h->root.needs_plt);
5625 g = mips_elf_gotplt_index (info, &h->root);
5626 }
5627 else
5628 {
5629 BFD_ASSERT (addend == 0);
5630 g = mips_elf_global_got_index (abfd, info, input_bfd,
5631 &h->root, r_type);
5632 if (!TLS_RELOC_P (r_type)
5633 && !elf_hash_table (info)->dynamic_sections_created)
5634 /* This is a static link. We must initialize the GOT entry. */
5635 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5636 }
5637 }
5638 else if (!htab->is_vxworks
5639 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5640 /* The calculation below does not involve "g". */
5641 break;
5642 else
5643 {
5644 g = mips_elf_local_got_index (abfd, input_bfd, info,
5645 symbol + addend, r_symndx, h, r_type);
5646 if (g == MINUS_ONE)
5647 return bfd_reloc_outofrange;
5648 }
5649
5650 /* Convert GOT indices to actual offsets. */
5651 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5652 break;
5653 }
5654
5655 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5656 symbols are resolved by the loader. Add them to .rela.dyn. */
5657 if (h != NULL && is_gott_symbol (info, &h->root))
5658 {
5659 Elf_Internal_Rela outrel;
5660 bfd_byte *loc;
5661 asection *s;
5662
5663 s = mips_elf_rel_dyn_section (info, FALSE);
5664 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5665
5666 outrel.r_offset = (input_section->output_section->vma
5667 + input_section->output_offset
5668 + relocation->r_offset);
5669 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5670 outrel.r_addend = addend;
5671 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5672
5673 /* If we've written this relocation for a readonly section,
5674 we need to set DF_TEXTREL again, so that we do not delete the
5675 DT_TEXTREL tag. */
5676 if (MIPS_ELF_READONLY_SECTION (input_section))
5677 info->flags |= DF_TEXTREL;
5678
5679 *valuep = 0;
5680 return bfd_reloc_ok;
5681 }
5682
5683 /* Figure out what kind of relocation is being performed. */
5684 switch (r_type)
5685 {
5686 case R_MIPS_NONE:
5687 return bfd_reloc_continue;
5688
5689 case R_MIPS_16:
5690 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
5691 overflowed_p = mips_elf_overflow_p (value, 16);
5692 break;
5693
5694 case R_MIPS_32:
5695 case R_MIPS_REL32:
5696 case R_MIPS_64:
5697 if ((info->shared
5698 || (htab->root.dynamic_sections_created
5699 && h != NULL
5700 && h->root.def_dynamic
5701 && !h->root.def_regular
5702 && !h->has_static_relocs))
5703 && r_symndx != STN_UNDEF
5704 && (h == NULL
5705 || h->root.root.type != bfd_link_hash_undefweak
5706 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5707 && (input_section->flags & SEC_ALLOC) != 0)
5708 {
5709 /* If we're creating a shared library, then we can't know
5710 where the symbol will end up. So, we create a relocation
5711 record in the output, and leave the job up to the dynamic
5712 linker. We must do the same for executable references to
5713 shared library symbols, unless we've decided to use copy
5714 relocs or PLTs instead. */
5715 value = addend;
5716 if (!mips_elf_create_dynamic_relocation (abfd,
5717 info,
5718 relocation,
5719 h,
5720 sec,
5721 symbol,
5722 &value,
5723 input_section))
5724 return bfd_reloc_undefined;
5725 }
5726 else
5727 {
5728 if (r_type != R_MIPS_REL32)
5729 value = symbol + addend;
5730 else
5731 value = addend;
5732 }
5733 value &= howto->dst_mask;
5734 break;
5735
5736 case R_MIPS_PC32:
5737 value = symbol + addend - p;
5738 value &= howto->dst_mask;
5739 break;
5740
5741 case R_MIPS16_26:
5742 /* The calculation for R_MIPS16_26 is just the same as for an
5743 R_MIPS_26. It's only the storage of the relocated field into
5744 the output file that's different. That's handled in
5745 mips_elf_perform_relocation. So, we just fall through to the
5746 R_MIPS_26 case here. */
5747 case R_MIPS_26:
5748 case R_MICROMIPS_26_S1:
5749 {
5750 unsigned int shift;
5751
5752 /* Make sure the target of JALX is word-aligned. Bit 0 must be
5753 the correct ISA mode selector and bit 1 must be 0. */
5754 if (*cross_mode_jump_p && (symbol & 3) != (r_type == R_MIPS_26))
5755 return bfd_reloc_outofrange;
5756
5757 /* Shift is 2, unusually, for microMIPS JALX. */
5758 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5759
5760 if (was_local_p)
5761 value = addend | ((p + 4) & (0xfc000000 << shift));
5762 else
5763 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5764 value = (value + symbol) >> shift;
5765 if (!was_local_p && h->root.root.type != bfd_link_hash_undefweak)
5766 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5767 value &= howto->dst_mask;
5768 }
5769 break;
5770
5771 case R_MIPS_TLS_DTPREL_HI16:
5772 case R_MIPS16_TLS_DTPREL_HI16:
5773 case R_MICROMIPS_TLS_DTPREL_HI16:
5774 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5775 & howto->dst_mask);
5776 break;
5777
5778 case R_MIPS_TLS_DTPREL_LO16:
5779 case R_MIPS_TLS_DTPREL32:
5780 case R_MIPS_TLS_DTPREL64:
5781 case R_MIPS16_TLS_DTPREL_LO16:
5782 case R_MICROMIPS_TLS_DTPREL_LO16:
5783 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5784 break;
5785
5786 case R_MIPS_TLS_TPREL_HI16:
5787 case R_MIPS16_TLS_TPREL_HI16:
5788 case R_MICROMIPS_TLS_TPREL_HI16:
5789 value = (mips_elf_high (addend + symbol - tprel_base (info))
5790 & howto->dst_mask);
5791 break;
5792
5793 case R_MIPS_TLS_TPREL_LO16:
5794 case R_MIPS_TLS_TPREL32:
5795 case R_MIPS_TLS_TPREL64:
5796 case R_MIPS16_TLS_TPREL_LO16:
5797 case R_MICROMIPS_TLS_TPREL_LO16:
5798 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5799 break;
5800
5801 case R_MIPS_HI16:
5802 case R_MIPS16_HI16:
5803 case R_MICROMIPS_HI16:
5804 if (!gp_disp_p)
5805 {
5806 value = mips_elf_high (addend + symbol);
5807 value &= howto->dst_mask;
5808 }
5809 else
5810 {
5811 /* For MIPS16 ABI code we generate this sequence
5812 0: li $v0,%hi(_gp_disp)
5813 4: addiupc $v1,%lo(_gp_disp)
5814 8: sll $v0,16
5815 12: addu $v0,$v1
5816 14: move $gp,$v0
5817 So the offsets of hi and lo relocs are the same, but the
5818 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5819 ADDIUPC clears the low two bits of the instruction address,
5820 so the base is ($t9 + 4) & ~3. */
5821 if (r_type == R_MIPS16_HI16)
5822 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5823 /* The microMIPS .cpload sequence uses the same assembly
5824 instructions as the traditional psABI version, but the
5825 incoming $t9 has the low bit set. */
5826 else if (r_type == R_MICROMIPS_HI16)
5827 value = mips_elf_high (addend + gp - p - 1);
5828 else
5829 value = mips_elf_high (addend + gp - p);
5830 overflowed_p = mips_elf_overflow_p (value, 16);
5831 }
5832 break;
5833
5834 case R_MIPS_LO16:
5835 case R_MIPS16_LO16:
5836 case R_MICROMIPS_LO16:
5837 case R_MICROMIPS_HI0_LO16:
5838 if (!gp_disp_p)
5839 value = (symbol + addend) & howto->dst_mask;
5840 else
5841 {
5842 /* See the comment for R_MIPS16_HI16 above for the reason
5843 for this conditional. */
5844 if (r_type == R_MIPS16_LO16)
5845 value = addend + gp - (p & ~(bfd_vma) 0x3);
5846 else if (r_type == R_MICROMIPS_LO16
5847 || r_type == R_MICROMIPS_HI0_LO16)
5848 value = addend + gp - p + 3;
5849 else
5850 value = addend + gp - p + 4;
5851 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5852 for overflow. But, on, say, IRIX5, relocations against
5853 _gp_disp are normally generated from the .cpload
5854 pseudo-op. It generates code that normally looks like
5855 this:
5856
5857 lui $gp,%hi(_gp_disp)
5858 addiu $gp,$gp,%lo(_gp_disp)
5859 addu $gp,$gp,$t9
5860
5861 Here $t9 holds the address of the function being called,
5862 as required by the MIPS ELF ABI. The R_MIPS_LO16
5863 relocation can easily overflow in this situation, but the
5864 R_MIPS_HI16 relocation will handle the overflow.
5865 Therefore, we consider this a bug in the MIPS ABI, and do
5866 not check for overflow here. */
5867 }
5868 break;
5869
5870 case R_MIPS_LITERAL:
5871 case R_MICROMIPS_LITERAL:
5872 /* Because we don't merge literal sections, we can handle this
5873 just like R_MIPS_GPREL16. In the long run, we should merge
5874 shared literals, and then we will need to additional work
5875 here. */
5876
5877 /* Fall through. */
5878
5879 case R_MIPS16_GPREL:
5880 /* The R_MIPS16_GPREL performs the same calculation as
5881 R_MIPS_GPREL16, but stores the relocated bits in a different
5882 order. We don't need to do anything special here; the
5883 differences are handled in mips_elf_perform_relocation. */
5884 case R_MIPS_GPREL16:
5885 case R_MICROMIPS_GPREL7_S2:
5886 case R_MICROMIPS_GPREL16:
5887 /* Only sign-extend the addend if it was extracted from the
5888 instruction. If the addend was separate, leave it alone,
5889 otherwise we may lose significant bits. */
5890 if (howto->partial_inplace)
5891 addend = _bfd_mips_elf_sign_extend (addend, 16);
5892 value = symbol + addend - gp;
5893 /* If the symbol was local, any earlier relocatable links will
5894 have adjusted its addend with the gp offset, so compensate
5895 for that now. Don't do it for symbols forced local in this
5896 link, though, since they won't have had the gp offset applied
5897 to them before. */
5898 if (was_local_p)
5899 value += gp0;
5900 overflowed_p = mips_elf_overflow_p (value, 16);
5901 break;
5902
5903 case R_MIPS16_GOT16:
5904 case R_MIPS16_CALL16:
5905 case R_MIPS_GOT16:
5906 case R_MIPS_CALL16:
5907 case R_MICROMIPS_GOT16:
5908 case R_MICROMIPS_CALL16:
5909 /* VxWorks does not have separate local and global semantics for
5910 R_MIPS*_GOT16; every relocation evaluates to "G". */
5911 if (!htab->is_vxworks && local_p)
5912 {
5913 value = mips_elf_got16_entry (abfd, input_bfd, info,
5914 symbol + addend, !was_local_p);
5915 if (value == MINUS_ONE)
5916 return bfd_reloc_outofrange;
5917 value
5918 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5919 overflowed_p = mips_elf_overflow_p (value, 16);
5920 break;
5921 }
5922
5923 /* Fall through. */
5924
5925 case R_MIPS_TLS_GD:
5926 case R_MIPS_TLS_GOTTPREL:
5927 case R_MIPS_TLS_LDM:
5928 case R_MIPS_GOT_DISP:
5929 case R_MIPS16_TLS_GD:
5930 case R_MIPS16_TLS_GOTTPREL:
5931 case R_MIPS16_TLS_LDM:
5932 case R_MICROMIPS_TLS_GD:
5933 case R_MICROMIPS_TLS_GOTTPREL:
5934 case R_MICROMIPS_TLS_LDM:
5935 case R_MICROMIPS_GOT_DISP:
5936 value = g;
5937 overflowed_p = mips_elf_overflow_p (value, 16);
5938 break;
5939
5940 case R_MIPS_GPREL32:
5941 value = (addend + symbol + gp0 - gp);
5942 if (!save_addend)
5943 value &= howto->dst_mask;
5944 break;
5945
5946 case R_MIPS_PC16:
5947 case R_MIPS_GNU_REL16_S2:
5948 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
5949 overflowed_p = mips_elf_overflow_p (value, 18);
5950 value >>= howto->rightshift;
5951 value &= howto->dst_mask;
5952 break;
5953
5954 case R_MICROMIPS_PC7_S1:
5955 value = symbol + _bfd_mips_elf_sign_extend (addend, 8) - p;
5956 overflowed_p = mips_elf_overflow_p (value, 8);
5957 value >>= howto->rightshift;
5958 value &= howto->dst_mask;
5959 break;
5960
5961 case R_MICROMIPS_PC10_S1:
5962 value = symbol + _bfd_mips_elf_sign_extend (addend, 11) - p;
5963 overflowed_p = mips_elf_overflow_p (value, 11);
5964 value >>= howto->rightshift;
5965 value &= howto->dst_mask;
5966 break;
5967
5968 case R_MICROMIPS_PC16_S1:
5969 value = symbol + _bfd_mips_elf_sign_extend (addend, 17) - p;
5970 overflowed_p = mips_elf_overflow_p (value, 17);
5971 value >>= howto->rightshift;
5972 value &= howto->dst_mask;
5973 break;
5974
5975 case R_MICROMIPS_PC23_S2:
5976 value = symbol + _bfd_mips_elf_sign_extend (addend, 25) - ((p | 3) ^ 3);
5977 overflowed_p = mips_elf_overflow_p (value, 25);
5978 value >>= howto->rightshift;
5979 value &= howto->dst_mask;
5980 break;
5981
5982 case R_MIPS_GOT_HI16:
5983 case R_MIPS_CALL_HI16:
5984 case R_MICROMIPS_GOT_HI16:
5985 case R_MICROMIPS_CALL_HI16:
5986 /* We're allowed to handle these two relocations identically.
5987 The dynamic linker is allowed to handle the CALL relocations
5988 differently by creating a lazy evaluation stub. */
5989 value = g;
5990 value = mips_elf_high (value);
5991 value &= howto->dst_mask;
5992 break;
5993
5994 case R_MIPS_GOT_LO16:
5995 case R_MIPS_CALL_LO16:
5996 case R_MICROMIPS_GOT_LO16:
5997 case R_MICROMIPS_CALL_LO16:
5998 value = g & howto->dst_mask;
5999 break;
6000
6001 case R_MIPS_GOT_PAGE:
6002 case R_MICROMIPS_GOT_PAGE:
6003 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6004 if (value == MINUS_ONE)
6005 return bfd_reloc_outofrange;
6006 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6007 overflowed_p = mips_elf_overflow_p (value, 16);
6008 break;
6009
6010 case R_MIPS_GOT_OFST:
6011 case R_MICROMIPS_GOT_OFST:
6012 if (local_p)
6013 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6014 else
6015 value = addend;
6016 overflowed_p = mips_elf_overflow_p (value, 16);
6017 break;
6018
6019 case R_MIPS_SUB:
6020 case R_MICROMIPS_SUB:
6021 value = symbol - addend;
6022 value &= howto->dst_mask;
6023 break;
6024
6025 case R_MIPS_HIGHER:
6026 case R_MICROMIPS_HIGHER:
6027 value = mips_elf_higher (addend + symbol);
6028 value &= howto->dst_mask;
6029 break;
6030
6031 case R_MIPS_HIGHEST:
6032 case R_MICROMIPS_HIGHEST:
6033 value = mips_elf_highest (addend + symbol);
6034 value &= howto->dst_mask;
6035 break;
6036
6037 case R_MIPS_SCN_DISP:
6038 case R_MICROMIPS_SCN_DISP:
6039 value = symbol + addend - sec->output_offset;
6040 value &= howto->dst_mask;
6041 break;
6042
6043 case R_MIPS_JALR:
6044 case R_MICROMIPS_JALR:
6045 /* This relocation is only a hint. In some cases, we optimize
6046 it into a bal instruction. But we don't try to optimize
6047 when the symbol does not resolve locally. */
6048 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6049 return bfd_reloc_continue;
6050 value = symbol + addend;
6051 break;
6052
6053 case R_MIPS_PJUMP:
6054 case R_MIPS_GNU_VTINHERIT:
6055 case R_MIPS_GNU_VTENTRY:
6056 /* We don't do anything with these at present. */
6057 return bfd_reloc_continue;
6058
6059 default:
6060 /* An unrecognized relocation type. */
6061 return bfd_reloc_notsupported;
6062 }
6063
6064 /* Store the VALUE for our caller. */
6065 *valuep = value;
6066 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6067 }
6068
6069 /* Obtain the field relocated by RELOCATION. */
6070
6071 static bfd_vma
6072 mips_elf_obtain_contents (reloc_howto_type *howto,
6073 const Elf_Internal_Rela *relocation,
6074 bfd *input_bfd, bfd_byte *contents)
6075 {
6076 bfd_vma x;
6077 bfd_byte *location = contents + relocation->r_offset;
6078
6079 /* Obtain the bytes. */
6080 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
6081
6082 return x;
6083 }
6084
6085 /* It has been determined that the result of the RELOCATION is the
6086 VALUE. Use HOWTO to place VALUE into the output file at the
6087 appropriate position. The SECTION is the section to which the
6088 relocation applies.
6089 CROSS_MODE_JUMP_P is true if the relocation field
6090 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6091
6092 Returns FALSE if anything goes wrong. */
6093
6094 static bfd_boolean
6095 mips_elf_perform_relocation (struct bfd_link_info *info,
6096 reloc_howto_type *howto,
6097 const Elf_Internal_Rela *relocation,
6098 bfd_vma value, bfd *input_bfd,
6099 asection *input_section, bfd_byte *contents,
6100 bfd_boolean cross_mode_jump_p)
6101 {
6102 bfd_vma x;
6103 bfd_byte *location;
6104 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6105
6106 /* Figure out where the relocation is occurring. */
6107 location = contents + relocation->r_offset;
6108
6109 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6110
6111 /* Obtain the current value. */
6112 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6113
6114 /* Clear the field we are setting. */
6115 x &= ~howto->dst_mask;
6116
6117 /* Set the field. */
6118 x |= (value & howto->dst_mask);
6119
6120 /* If required, turn JAL into JALX. */
6121 if (cross_mode_jump_p && jal_reloc_p (r_type))
6122 {
6123 bfd_boolean ok;
6124 bfd_vma opcode = x >> 26;
6125 bfd_vma jalx_opcode;
6126
6127 /* Check to see if the opcode is already JAL or JALX. */
6128 if (r_type == R_MIPS16_26)
6129 {
6130 ok = ((opcode == 0x6) || (opcode == 0x7));
6131 jalx_opcode = 0x7;
6132 }
6133 else if (r_type == R_MICROMIPS_26_S1)
6134 {
6135 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6136 jalx_opcode = 0x3c;
6137 }
6138 else
6139 {
6140 ok = ((opcode == 0x3) || (opcode == 0x1d));
6141 jalx_opcode = 0x1d;
6142 }
6143
6144 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6145 convert J or JALS to JALX. */
6146 if (!ok)
6147 {
6148 (*_bfd_error_handler)
6149 (_("%B: %A+0x%lx: Unsupported jump between ISA modes; consider recompiling with interlinking enabled."),
6150 input_bfd,
6151 input_section,
6152 (unsigned long) relocation->r_offset);
6153 bfd_set_error (bfd_error_bad_value);
6154 return FALSE;
6155 }
6156
6157 /* Make this the JALX opcode. */
6158 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6159 }
6160
6161 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6162 range. */
6163 if (!info->relocatable
6164 && !cross_mode_jump_p
6165 && ((JAL_TO_BAL_P (input_bfd)
6166 && r_type == R_MIPS_26
6167 && (x >> 26) == 0x3) /* jal addr */
6168 || (JALR_TO_BAL_P (input_bfd)
6169 && r_type == R_MIPS_JALR
6170 && x == 0x0320f809) /* jalr t9 */
6171 || (JR_TO_B_P (input_bfd)
6172 && r_type == R_MIPS_JALR
6173 && x == 0x03200008))) /* jr t9 */
6174 {
6175 bfd_vma addr;
6176 bfd_vma dest;
6177 bfd_signed_vma off;
6178
6179 addr = (input_section->output_section->vma
6180 + input_section->output_offset
6181 + relocation->r_offset
6182 + 4);
6183 if (r_type == R_MIPS_26)
6184 dest = (value << 2) | ((addr >> 28) << 28);
6185 else
6186 dest = value;
6187 off = dest - addr;
6188 if (off <= 0x1ffff && off >= -0x20000)
6189 {
6190 if (x == 0x03200008) /* jr t9 */
6191 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6192 else
6193 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6194 }
6195 }
6196
6197 /* Put the value into the output. */
6198 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
6199
6200 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !info->relocatable,
6201 location);
6202
6203 return TRUE;
6204 }
6205 \f
6206 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6207 is the original relocation, which is now being transformed into a
6208 dynamic relocation. The ADDENDP is adjusted if necessary; the
6209 caller should store the result in place of the original addend. */
6210
6211 static bfd_boolean
6212 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6213 struct bfd_link_info *info,
6214 const Elf_Internal_Rela *rel,
6215 struct mips_elf_link_hash_entry *h,
6216 asection *sec, bfd_vma symbol,
6217 bfd_vma *addendp, asection *input_section)
6218 {
6219 Elf_Internal_Rela outrel[3];
6220 asection *sreloc;
6221 bfd *dynobj;
6222 int r_type;
6223 long indx;
6224 bfd_boolean defined_p;
6225 struct mips_elf_link_hash_table *htab;
6226
6227 htab = mips_elf_hash_table (info);
6228 BFD_ASSERT (htab != NULL);
6229
6230 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6231 dynobj = elf_hash_table (info)->dynobj;
6232 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6233 BFD_ASSERT (sreloc != NULL);
6234 BFD_ASSERT (sreloc->contents != NULL);
6235 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6236 < sreloc->size);
6237
6238 outrel[0].r_offset =
6239 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6240 if (ABI_64_P (output_bfd))
6241 {
6242 outrel[1].r_offset =
6243 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6244 outrel[2].r_offset =
6245 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6246 }
6247
6248 if (outrel[0].r_offset == MINUS_ONE)
6249 /* The relocation field has been deleted. */
6250 return TRUE;
6251
6252 if (outrel[0].r_offset == MINUS_TWO)
6253 {
6254 /* The relocation field has been converted into a relative value of
6255 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6256 the field to be fully relocated, so add in the symbol's value. */
6257 *addendp += symbol;
6258 return TRUE;
6259 }
6260
6261 /* We must now calculate the dynamic symbol table index to use
6262 in the relocation. */
6263 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6264 {
6265 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6266 indx = h->root.dynindx;
6267 if (SGI_COMPAT (output_bfd))
6268 defined_p = h->root.def_regular;
6269 else
6270 /* ??? glibc's ld.so just adds the final GOT entry to the
6271 relocation field. It therefore treats relocs against
6272 defined symbols in the same way as relocs against
6273 undefined symbols. */
6274 defined_p = FALSE;
6275 }
6276 else
6277 {
6278 if (sec != NULL && bfd_is_abs_section (sec))
6279 indx = 0;
6280 else if (sec == NULL || sec->owner == NULL)
6281 {
6282 bfd_set_error (bfd_error_bad_value);
6283 return FALSE;
6284 }
6285 else
6286 {
6287 indx = elf_section_data (sec->output_section)->dynindx;
6288 if (indx == 0)
6289 {
6290 asection *osec = htab->root.text_index_section;
6291 indx = elf_section_data (osec)->dynindx;
6292 }
6293 if (indx == 0)
6294 abort ();
6295 }
6296
6297 /* Instead of generating a relocation using the section
6298 symbol, we may as well make it a fully relative
6299 relocation. We want to avoid generating relocations to
6300 local symbols because we used to generate them
6301 incorrectly, without adding the original symbol value,
6302 which is mandated by the ABI for section symbols. In
6303 order to give dynamic loaders and applications time to
6304 phase out the incorrect use, we refrain from emitting
6305 section-relative relocations. It's not like they're
6306 useful, after all. This should be a bit more efficient
6307 as well. */
6308 /* ??? Although this behavior is compatible with glibc's ld.so,
6309 the ABI says that relocations against STN_UNDEF should have
6310 a symbol value of 0. Irix rld honors this, so relocations
6311 against STN_UNDEF have no effect. */
6312 if (!SGI_COMPAT (output_bfd))
6313 indx = 0;
6314 defined_p = TRUE;
6315 }
6316
6317 /* If the relocation was previously an absolute relocation and
6318 this symbol will not be referred to by the relocation, we must
6319 adjust it by the value we give it in the dynamic symbol table.
6320 Otherwise leave the job up to the dynamic linker. */
6321 if (defined_p && r_type != R_MIPS_REL32)
6322 *addendp += symbol;
6323
6324 if (htab->is_vxworks)
6325 /* VxWorks uses non-relative relocations for this. */
6326 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6327 else
6328 /* The relocation is always an REL32 relocation because we don't
6329 know where the shared library will wind up at load-time. */
6330 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6331 R_MIPS_REL32);
6332
6333 /* For strict adherence to the ABI specification, we should
6334 generate a R_MIPS_64 relocation record by itself before the
6335 _REL32/_64 record as well, such that the addend is read in as
6336 a 64-bit value (REL32 is a 32-bit relocation, after all).
6337 However, since none of the existing ELF64 MIPS dynamic
6338 loaders seems to care, we don't waste space with these
6339 artificial relocations. If this turns out to not be true,
6340 mips_elf_allocate_dynamic_relocation() should be tweaked so
6341 as to make room for a pair of dynamic relocations per
6342 invocation if ABI_64_P, and here we should generate an
6343 additional relocation record with R_MIPS_64 by itself for a
6344 NULL symbol before this relocation record. */
6345 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6346 ABI_64_P (output_bfd)
6347 ? R_MIPS_64
6348 : R_MIPS_NONE);
6349 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6350
6351 /* Adjust the output offset of the relocation to reference the
6352 correct location in the output file. */
6353 outrel[0].r_offset += (input_section->output_section->vma
6354 + input_section->output_offset);
6355 outrel[1].r_offset += (input_section->output_section->vma
6356 + input_section->output_offset);
6357 outrel[2].r_offset += (input_section->output_section->vma
6358 + input_section->output_offset);
6359
6360 /* Put the relocation back out. We have to use the special
6361 relocation outputter in the 64-bit case since the 64-bit
6362 relocation format is non-standard. */
6363 if (ABI_64_P (output_bfd))
6364 {
6365 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6366 (output_bfd, &outrel[0],
6367 (sreloc->contents
6368 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6369 }
6370 else if (htab->is_vxworks)
6371 {
6372 /* VxWorks uses RELA rather than REL dynamic relocations. */
6373 outrel[0].r_addend = *addendp;
6374 bfd_elf32_swap_reloca_out
6375 (output_bfd, &outrel[0],
6376 (sreloc->contents
6377 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6378 }
6379 else
6380 bfd_elf32_swap_reloc_out
6381 (output_bfd, &outrel[0],
6382 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6383
6384 /* We've now added another relocation. */
6385 ++sreloc->reloc_count;
6386
6387 /* Make sure the output section is writable. The dynamic linker
6388 will be writing to it. */
6389 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6390 |= SHF_WRITE;
6391
6392 /* On IRIX5, make an entry of compact relocation info. */
6393 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6394 {
6395 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6396 bfd_byte *cr;
6397
6398 if (scpt)
6399 {
6400 Elf32_crinfo cptrel;
6401
6402 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6403 cptrel.vaddr = (rel->r_offset
6404 + input_section->output_section->vma
6405 + input_section->output_offset);
6406 if (r_type == R_MIPS_REL32)
6407 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6408 else
6409 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6410 mips_elf_set_cr_dist2to (cptrel, 0);
6411 cptrel.konst = *addendp;
6412
6413 cr = (scpt->contents
6414 + sizeof (Elf32_External_compact_rel));
6415 mips_elf_set_cr_relvaddr (cptrel, 0);
6416 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6417 ((Elf32_External_crinfo *) cr
6418 + scpt->reloc_count));
6419 ++scpt->reloc_count;
6420 }
6421 }
6422
6423 /* If we've written this relocation for a readonly section,
6424 we need to set DF_TEXTREL again, so that we do not delete the
6425 DT_TEXTREL tag. */
6426 if (MIPS_ELF_READONLY_SECTION (input_section))
6427 info->flags |= DF_TEXTREL;
6428
6429 return TRUE;
6430 }
6431 \f
6432 /* Return the MACH for a MIPS e_flags value. */
6433
6434 unsigned long
6435 _bfd_elf_mips_mach (flagword flags)
6436 {
6437 switch (flags & EF_MIPS_MACH)
6438 {
6439 case E_MIPS_MACH_3900:
6440 return bfd_mach_mips3900;
6441
6442 case E_MIPS_MACH_4010:
6443 return bfd_mach_mips4010;
6444
6445 case E_MIPS_MACH_4100:
6446 return bfd_mach_mips4100;
6447
6448 case E_MIPS_MACH_4111:
6449 return bfd_mach_mips4111;
6450
6451 case E_MIPS_MACH_4120:
6452 return bfd_mach_mips4120;
6453
6454 case E_MIPS_MACH_4650:
6455 return bfd_mach_mips4650;
6456
6457 case E_MIPS_MACH_5400:
6458 return bfd_mach_mips5400;
6459
6460 case E_MIPS_MACH_5500:
6461 return bfd_mach_mips5500;
6462
6463 case E_MIPS_MACH_5900:
6464 return bfd_mach_mips5900;
6465
6466 case E_MIPS_MACH_9000:
6467 return bfd_mach_mips9000;
6468
6469 case E_MIPS_MACH_SB1:
6470 return bfd_mach_mips_sb1;
6471
6472 case E_MIPS_MACH_LS2E:
6473 return bfd_mach_mips_loongson_2e;
6474
6475 case E_MIPS_MACH_LS2F:
6476 return bfd_mach_mips_loongson_2f;
6477
6478 case E_MIPS_MACH_LS3A:
6479 return bfd_mach_mips_loongson_3a;
6480
6481 case E_MIPS_MACH_OCTEON2:
6482 return bfd_mach_mips_octeon2;
6483
6484 case E_MIPS_MACH_OCTEON:
6485 return bfd_mach_mips_octeon;
6486
6487 case E_MIPS_MACH_XLR:
6488 return bfd_mach_mips_xlr;
6489
6490 default:
6491 switch (flags & EF_MIPS_ARCH)
6492 {
6493 default:
6494 case E_MIPS_ARCH_1:
6495 return bfd_mach_mips3000;
6496
6497 case E_MIPS_ARCH_2:
6498 return bfd_mach_mips6000;
6499
6500 case E_MIPS_ARCH_3:
6501 return bfd_mach_mips4000;
6502
6503 case E_MIPS_ARCH_4:
6504 return bfd_mach_mips8000;
6505
6506 case E_MIPS_ARCH_5:
6507 return bfd_mach_mips5;
6508
6509 case E_MIPS_ARCH_32:
6510 return bfd_mach_mipsisa32;
6511
6512 case E_MIPS_ARCH_64:
6513 return bfd_mach_mipsisa64;
6514
6515 case E_MIPS_ARCH_32R2:
6516 return bfd_mach_mipsisa32r2;
6517
6518 case E_MIPS_ARCH_64R2:
6519 return bfd_mach_mipsisa64r2;
6520 }
6521 }
6522
6523 return 0;
6524 }
6525
6526 /* Return printable name for ABI. */
6527
6528 static INLINE char *
6529 elf_mips_abi_name (bfd *abfd)
6530 {
6531 flagword flags;
6532
6533 flags = elf_elfheader (abfd)->e_flags;
6534 switch (flags & EF_MIPS_ABI)
6535 {
6536 case 0:
6537 if (ABI_N32_P (abfd))
6538 return "N32";
6539 else if (ABI_64_P (abfd))
6540 return "64";
6541 else
6542 return "none";
6543 case E_MIPS_ABI_O32:
6544 return "O32";
6545 case E_MIPS_ABI_O64:
6546 return "O64";
6547 case E_MIPS_ABI_EABI32:
6548 return "EABI32";
6549 case E_MIPS_ABI_EABI64:
6550 return "EABI64";
6551 default:
6552 return "unknown abi";
6553 }
6554 }
6555 \f
6556 /* MIPS ELF uses two common sections. One is the usual one, and the
6557 other is for small objects. All the small objects are kept
6558 together, and then referenced via the gp pointer, which yields
6559 faster assembler code. This is what we use for the small common
6560 section. This approach is copied from ecoff.c. */
6561 static asection mips_elf_scom_section;
6562 static asymbol mips_elf_scom_symbol;
6563 static asymbol *mips_elf_scom_symbol_ptr;
6564
6565 /* MIPS ELF also uses an acommon section, which represents an
6566 allocated common symbol which may be overridden by a
6567 definition in a shared library. */
6568 static asection mips_elf_acom_section;
6569 static asymbol mips_elf_acom_symbol;
6570 static asymbol *mips_elf_acom_symbol_ptr;
6571
6572 /* This is used for both the 32-bit and the 64-bit ABI. */
6573
6574 void
6575 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6576 {
6577 elf_symbol_type *elfsym;
6578
6579 /* Handle the special MIPS section numbers that a symbol may use. */
6580 elfsym = (elf_symbol_type *) asym;
6581 switch (elfsym->internal_elf_sym.st_shndx)
6582 {
6583 case SHN_MIPS_ACOMMON:
6584 /* This section is used in a dynamically linked executable file.
6585 It is an allocated common section. The dynamic linker can
6586 either resolve these symbols to something in a shared
6587 library, or it can just leave them here. For our purposes,
6588 we can consider these symbols to be in a new section. */
6589 if (mips_elf_acom_section.name == NULL)
6590 {
6591 /* Initialize the acommon section. */
6592 mips_elf_acom_section.name = ".acommon";
6593 mips_elf_acom_section.flags = SEC_ALLOC;
6594 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6595 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6596 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6597 mips_elf_acom_symbol.name = ".acommon";
6598 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6599 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6600 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6601 }
6602 asym->section = &mips_elf_acom_section;
6603 break;
6604
6605 case SHN_COMMON:
6606 /* Common symbols less than the GP size are automatically
6607 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6608 if (asym->value > elf_gp_size (abfd)
6609 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6610 || IRIX_COMPAT (abfd) == ict_irix6)
6611 break;
6612 /* Fall through. */
6613 case SHN_MIPS_SCOMMON:
6614 if (mips_elf_scom_section.name == NULL)
6615 {
6616 /* Initialize the small common section. */
6617 mips_elf_scom_section.name = ".scommon";
6618 mips_elf_scom_section.flags = SEC_IS_COMMON;
6619 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6620 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6621 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6622 mips_elf_scom_symbol.name = ".scommon";
6623 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6624 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6625 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6626 }
6627 asym->section = &mips_elf_scom_section;
6628 asym->value = elfsym->internal_elf_sym.st_size;
6629 break;
6630
6631 case SHN_MIPS_SUNDEFINED:
6632 asym->section = bfd_und_section_ptr;
6633 break;
6634
6635 case SHN_MIPS_TEXT:
6636 {
6637 asection *section = bfd_get_section_by_name (abfd, ".text");
6638
6639 if (section != NULL)
6640 {
6641 asym->section = section;
6642 /* MIPS_TEXT is a bit special, the address is not an offset
6643 to the base of the .text section. So substract the section
6644 base address to make it an offset. */
6645 asym->value -= section->vma;
6646 }
6647 }
6648 break;
6649
6650 case SHN_MIPS_DATA:
6651 {
6652 asection *section = bfd_get_section_by_name (abfd, ".data");
6653
6654 if (section != NULL)
6655 {
6656 asym->section = section;
6657 /* MIPS_DATA is a bit special, the address is not an offset
6658 to the base of the .data section. So substract the section
6659 base address to make it an offset. */
6660 asym->value -= section->vma;
6661 }
6662 }
6663 break;
6664 }
6665
6666 /* If this is an odd-valued function symbol, assume it's a MIPS16
6667 or microMIPS one. */
6668 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6669 && (asym->value & 1) != 0)
6670 {
6671 asym->value--;
6672 if (MICROMIPS_P (abfd))
6673 elfsym->internal_elf_sym.st_other
6674 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6675 else
6676 elfsym->internal_elf_sym.st_other
6677 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6678 }
6679 }
6680 \f
6681 /* Implement elf_backend_eh_frame_address_size. This differs from
6682 the default in the way it handles EABI64.
6683
6684 EABI64 was originally specified as an LP64 ABI, and that is what
6685 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6686 historically accepted the combination of -mabi=eabi and -mlong32,
6687 and this ILP32 variation has become semi-official over time.
6688 Both forms use elf32 and have pointer-sized FDE addresses.
6689
6690 If an EABI object was generated by GCC 4.0 or above, it will have
6691 an empty .gcc_compiled_longXX section, where XX is the size of longs
6692 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6693 have no special marking to distinguish them from LP64 objects.
6694
6695 We don't want users of the official LP64 ABI to be punished for the
6696 existence of the ILP32 variant, but at the same time, we don't want
6697 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6698 We therefore take the following approach:
6699
6700 - If ABFD contains a .gcc_compiled_longXX section, use it to
6701 determine the pointer size.
6702
6703 - Otherwise check the type of the first relocation. Assume that
6704 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6705
6706 - Otherwise punt.
6707
6708 The second check is enough to detect LP64 objects generated by pre-4.0
6709 compilers because, in the kind of output generated by those compilers,
6710 the first relocation will be associated with either a CIE personality
6711 routine or an FDE start address. Furthermore, the compilers never
6712 used a special (non-pointer) encoding for this ABI.
6713
6714 Checking the relocation type should also be safe because there is no
6715 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6716 did so. */
6717
6718 unsigned int
6719 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6720 {
6721 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6722 return 8;
6723 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6724 {
6725 bfd_boolean long32_p, long64_p;
6726
6727 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6728 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6729 if (long32_p && long64_p)
6730 return 0;
6731 if (long32_p)
6732 return 4;
6733 if (long64_p)
6734 return 8;
6735
6736 if (sec->reloc_count > 0
6737 && elf_section_data (sec)->relocs != NULL
6738 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6739 == R_MIPS_64))
6740 return 8;
6741
6742 return 0;
6743 }
6744 return 4;
6745 }
6746 \f
6747 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6748 relocations against two unnamed section symbols to resolve to the
6749 same address. For example, if we have code like:
6750
6751 lw $4,%got_disp(.data)($gp)
6752 lw $25,%got_disp(.text)($gp)
6753 jalr $25
6754
6755 then the linker will resolve both relocations to .data and the program
6756 will jump there rather than to .text.
6757
6758 We can work around this problem by giving names to local section symbols.
6759 This is also what the MIPSpro tools do. */
6760
6761 bfd_boolean
6762 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6763 {
6764 return SGI_COMPAT (abfd);
6765 }
6766 \f
6767 /* Work over a section just before writing it out. This routine is
6768 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6769 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6770 a better way. */
6771
6772 bfd_boolean
6773 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
6774 {
6775 if (hdr->sh_type == SHT_MIPS_REGINFO
6776 && hdr->sh_size > 0)
6777 {
6778 bfd_byte buf[4];
6779
6780 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6781 BFD_ASSERT (hdr->contents == NULL);
6782
6783 if (bfd_seek (abfd,
6784 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6785 SEEK_SET) != 0)
6786 return FALSE;
6787 H_PUT_32 (abfd, elf_gp (abfd), buf);
6788 if (bfd_bwrite (buf, 4, abfd) != 4)
6789 return FALSE;
6790 }
6791
6792 if (hdr->sh_type == SHT_MIPS_OPTIONS
6793 && hdr->bfd_section != NULL
6794 && mips_elf_section_data (hdr->bfd_section) != NULL
6795 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
6796 {
6797 bfd_byte *contents, *l, *lend;
6798
6799 /* We stored the section contents in the tdata field in the
6800 set_section_contents routine. We save the section contents
6801 so that we don't have to read them again.
6802 At this point we know that elf_gp is set, so we can look
6803 through the section contents to see if there is an
6804 ODK_REGINFO structure. */
6805
6806 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
6807 l = contents;
6808 lend = contents + hdr->sh_size;
6809 while (l + sizeof (Elf_External_Options) <= lend)
6810 {
6811 Elf_Internal_Options intopt;
6812
6813 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6814 &intopt);
6815 if (intopt.size < sizeof (Elf_External_Options))
6816 {
6817 (*_bfd_error_handler)
6818 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6819 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6820 break;
6821 }
6822 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6823 {
6824 bfd_byte buf[8];
6825
6826 if (bfd_seek (abfd,
6827 (hdr->sh_offset
6828 + (l - contents)
6829 + sizeof (Elf_External_Options)
6830 + (sizeof (Elf64_External_RegInfo) - 8)),
6831 SEEK_SET) != 0)
6832 return FALSE;
6833 H_PUT_64 (abfd, elf_gp (abfd), buf);
6834 if (bfd_bwrite (buf, 8, abfd) != 8)
6835 return FALSE;
6836 }
6837 else if (intopt.kind == ODK_REGINFO)
6838 {
6839 bfd_byte buf[4];
6840
6841 if (bfd_seek (abfd,
6842 (hdr->sh_offset
6843 + (l - contents)
6844 + sizeof (Elf_External_Options)
6845 + (sizeof (Elf32_External_RegInfo) - 4)),
6846 SEEK_SET) != 0)
6847 return FALSE;
6848 H_PUT_32 (abfd, elf_gp (abfd), buf);
6849 if (bfd_bwrite (buf, 4, abfd) != 4)
6850 return FALSE;
6851 }
6852 l += intopt.size;
6853 }
6854 }
6855
6856 if (hdr->bfd_section != NULL)
6857 {
6858 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6859
6860 /* .sbss is not handled specially here because the GNU/Linux
6861 prelinker can convert .sbss from NOBITS to PROGBITS and
6862 changing it back to NOBITS breaks the binary. The entry in
6863 _bfd_mips_elf_special_sections will ensure the correct flags
6864 are set on .sbss if BFD creates it without reading it from an
6865 input file, and without special handling here the flags set
6866 on it in an input file will be followed. */
6867 if (strcmp (name, ".sdata") == 0
6868 || strcmp (name, ".lit8") == 0
6869 || strcmp (name, ".lit4") == 0)
6870 {
6871 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
6872 hdr->sh_type = SHT_PROGBITS;
6873 }
6874 else if (strcmp (name, ".srdata") == 0)
6875 {
6876 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
6877 hdr->sh_type = SHT_PROGBITS;
6878 }
6879 else if (strcmp (name, ".compact_rel") == 0)
6880 {
6881 hdr->sh_flags = 0;
6882 hdr->sh_type = SHT_PROGBITS;
6883 }
6884 else if (strcmp (name, ".rtproc") == 0)
6885 {
6886 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
6887 {
6888 unsigned int adjust;
6889
6890 adjust = hdr->sh_size % hdr->sh_addralign;
6891 if (adjust != 0)
6892 hdr->sh_size += hdr->sh_addralign - adjust;
6893 }
6894 }
6895 }
6896
6897 return TRUE;
6898 }
6899
6900 /* Handle a MIPS specific section when reading an object file. This
6901 is called when elfcode.h finds a section with an unknown type.
6902 This routine supports both the 32-bit and 64-bit ELF ABI.
6903
6904 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
6905 how to. */
6906
6907 bfd_boolean
6908 _bfd_mips_elf_section_from_shdr (bfd *abfd,
6909 Elf_Internal_Shdr *hdr,
6910 const char *name,
6911 int shindex)
6912 {
6913 flagword flags = 0;
6914
6915 /* There ought to be a place to keep ELF backend specific flags, but
6916 at the moment there isn't one. We just keep track of the
6917 sections by their name, instead. Fortunately, the ABI gives
6918 suggested names for all the MIPS specific sections, so we will
6919 probably get away with this. */
6920 switch (hdr->sh_type)
6921 {
6922 case SHT_MIPS_LIBLIST:
6923 if (strcmp (name, ".liblist") != 0)
6924 return FALSE;
6925 break;
6926 case SHT_MIPS_MSYM:
6927 if (strcmp (name, ".msym") != 0)
6928 return FALSE;
6929 break;
6930 case SHT_MIPS_CONFLICT:
6931 if (strcmp (name, ".conflict") != 0)
6932 return FALSE;
6933 break;
6934 case SHT_MIPS_GPTAB:
6935 if (! CONST_STRNEQ (name, ".gptab."))
6936 return FALSE;
6937 break;
6938 case SHT_MIPS_UCODE:
6939 if (strcmp (name, ".ucode") != 0)
6940 return FALSE;
6941 break;
6942 case SHT_MIPS_DEBUG:
6943 if (strcmp (name, ".mdebug") != 0)
6944 return FALSE;
6945 flags = SEC_DEBUGGING;
6946 break;
6947 case SHT_MIPS_REGINFO:
6948 if (strcmp (name, ".reginfo") != 0
6949 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
6950 return FALSE;
6951 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
6952 break;
6953 case SHT_MIPS_IFACE:
6954 if (strcmp (name, ".MIPS.interfaces") != 0)
6955 return FALSE;
6956 break;
6957 case SHT_MIPS_CONTENT:
6958 if (! CONST_STRNEQ (name, ".MIPS.content"))
6959 return FALSE;
6960 break;
6961 case SHT_MIPS_OPTIONS:
6962 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6963 return FALSE;
6964 break;
6965 case SHT_MIPS_ABIFLAGS:
6966 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
6967 return FALSE;
6968 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
6969 break;
6970 case SHT_MIPS_DWARF:
6971 if (! CONST_STRNEQ (name, ".debug_")
6972 && ! CONST_STRNEQ (name, ".zdebug_"))
6973 return FALSE;
6974 break;
6975 case SHT_MIPS_SYMBOL_LIB:
6976 if (strcmp (name, ".MIPS.symlib") != 0)
6977 return FALSE;
6978 break;
6979 case SHT_MIPS_EVENTS:
6980 if (! CONST_STRNEQ (name, ".MIPS.events")
6981 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
6982 return FALSE;
6983 break;
6984 default:
6985 break;
6986 }
6987
6988 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
6989 return FALSE;
6990
6991 if (flags)
6992 {
6993 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
6994 (bfd_get_section_flags (abfd,
6995 hdr->bfd_section)
6996 | flags)))
6997 return FALSE;
6998 }
6999
7000 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7001 {
7002 Elf_External_ABIFlags_v0 ext;
7003
7004 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7005 &ext, 0, sizeof ext))
7006 return FALSE;
7007 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7008 &mips_elf_tdata (abfd)->abiflags);
7009 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7010 return FALSE;
7011 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7012 }
7013
7014 /* FIXME: We should record sh_info for a .gptab section. */
7015
7016 /* For a .reginfo section, set the gp value in the tdata information
7017 from the contents of this section. We need the gp value while
7018 processing relocs, so we just get it now. The .reginfo section
7019 is not used in the 64-bit MIPS ELF ABI. */
7020 if (hdr->sh_type == SHT_MIPS_REGINFO)
7021 {
7022 Elf32_External_RegInfo ext;
7023 Elf32_RegInfo s;
7024
7025 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7026 &ext, 0, sizeof ext))
7027 return FALSE;
7028 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7029 elf_gp (abfd) = s.ri_gp_value;
7030 }
7031
7032 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7033 set the gp value based on what we find. We may see both
7034 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7035 they should agree. */
7036 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7037 {
7038 bfd_byte *contents, *l, *lend;
7039
7040 contents = bfd_malloc (hdr->sh_size);
7041 if (contents == NULL)
7042 return FALSE;
7043 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7044 0, hdr->sh_size))
7045 {
7046 free (contents);
7047 return FALSE;
7048 }
7049 l = contents;
7050 lend = contents + hdr->sh_size;
7051 while (l + sizeof (Elf_External_Options) <= lend)
7052 {
7053 Elf_Internal_Options intopt;
7054
7055 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7056 &intopt);
7057 if (intopt.size < sizeof (Elf_External_Options))
7058 {
7059 (*_bfd_error_handler)
7060 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
7061 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7062 break;
7063 }
7064 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7065 {
7066 Elf64_Internal_RegInfo intreg;
7067
7068 bfd_mips_elf64_swap_reginfo_in
7069 (abfd,
7070 ((Elf64_External_RegInfo *)
7071 (l + sizeof (Elf_External_Options))),
7072 &intreg);
7073 elf_gp (abfd) = intreg.ri_gp_value;
7074 }
7075 else if (intopt.kind == ODK_REGINFO)
7076 {
7077 Elf32_RegInfo intreg;
7078
7079 bfd_mips_elf32_swap_reginfo_in
7080 (abfd,
7081 ((Elf32_External_RegInfo *)
7082 (l + sizeof (Elf_External_Options))),
7083 &intreg);
7084 elf_gp (abfd) = intreg.ri_gp_value;
7085 }
7086 l += intopt.size;
7087 }
7088 free (contents);
7089 }
7090
7091 return TRUE;
7092 }
7093
7094 /* Set the correct type for a MIPS ELF section. We do this by the
7095 section name, which is a hack, but ought to work. This routine is
7096 used by both the 32-bit and the 64-bit ABI. */
7097
7098 bfd_boolean
7099 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7100 {
7101 const char *name = bfd_get_section_name (abfd, sec);
7102
7103 if (strcmp (name, ".liblist") == 0)
7104 {
7105 hdr->sh_type = SHT_MIPS_LIBLIST;
7106 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7107 /* The sh_link field is set in final_write_processing. */
7108 }
7109 else if (strcmp (name, ".conflict") == 0)
7110 hdr->sh_type = SHT_MIPS_CONFLICT;
7111 else if (CONST_STRNEQ (name, ".gptab."))
7112 {
7113 hdr->sh_type = SHT_MIPS_GPTAB;
7114 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7115 /* The sh_info field is set in final_write_processing. */
7116 }
7117 else if (strcmp (name, ".ucode") == 0)
7118 hdr->sh_type = SHT_MIPS_UCODE;
7119 else if (strcmp (name, ".mdebug") == 0)
7120 {
7121 hdr->sh_type = SHT_MIPS_DEBUG;
7122 /* In a shared object on IRIX 5.3, the .mdebug section has an
7123 entsize of 0. FIXME: Does this matter? */
7124 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7125 hdr->sh_entsize = 0;
7126 else
7127 hdr->sh_entsize = 1;
7128 }
7129 else if (strcmp (name, ".reginfo") == 0)
7130 {
7131 hdr->sh_type = SHT_MIPS_REGINFO;
7132 /* In a shared object on IRIX 5.3, the .reginfo section has an
7133 entsize of 0x18. FIXME: Does this matter? */
7134 if (SGI_COMPAT (abfd))
7135 {
7136 if ((abfd->flags & DYNAMIC) != 0)
7137 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7138 else
7139 hdr->sh_entsize = 1;
7140 }
7141 else
7142 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7143 }
7144 else if (SGI_COMPAT (abfd)
7145 && (strcmp (name, ".hash") == 0
7146 || strcmp (name, ".dynamic") == 0
7147 || strcmp (name, ".dynstr") == 0))
7148 {
7149 if (SGI_COMPAT (abfd))
7150 hdr->sh_entsize = 0;
7151 #if 0
7152 /* This isn't how the IRIX6 linker behaves. */
7153 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7154 #endif
7155 }
7156 else if (strcmp (name, ".got") == 0
7157 || strcmp (name, ".srdata") == 0
7158 || strcmp (name, ".sdata") == 0
7159 || strcmp (name, ".sbss") == 0
7160 || strcmp (name, ".lit4") == 0
7161 || strcmp (name, ".lit8") == 0)
7162 hdr->sh_flags |= SHF_MIPS_GPREL;
7163 else if (strcmp (name, ".MIPS.interfaces") == 0)
7164 {
7165 hdr->sh_type = SHT_MIPS_IFACE;
7166 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7167 }
7168 else if (CONST_STRNEQ (name, ".MIPS.content"))
7169 {
7170 hdr->sh_type = SHT_MIPS_CONTENT;
7171 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7172 /* The sh_info field is set in final_write_processing. */
7173 }
7174 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7175 {
7176 hdr->sh_type = SHT_MIPS_OPTIONS;
7177 hdr->sh_entsize = 1;
7178 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7179 }
7180 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7181 {
7182 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7183 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7184 }
7185 else if (CONST_STRNEQ (name, ".debug_")
7186 || CONST_STRNEQ (name, ".zdebug_"))
7187 {
7188 hdr->sh_type = SHT_MIPS_DWARF;
7189
7190 /* Irix facilities such as libexc expect a single .debug_frame
7191 per executable, the system ones have NOSTRIP set and the linker
7192 doesn't merge sections with different flags so ... */
7193 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7194 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7195 }
7196 else if (strcmp (name, ".MIPS.symlib") == 0)
7197 {
7198 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7199 /* The sh_link and sh_info fields are set in
7200 final_write_processing. */
7201 }
7202 else if (CONST_STRNEQ (name, ".MIPS.events")
7203 || CONST_STRNEQ (name, ".MIPS.post_rel"))
7204 {
7205 hdr->sh_type = SHT_MIPS_EVENTS;
7206 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7207 /* The sh_link field is set in final_write_processing. */
7208 }
7209 else if (strcmp (name, ".msym") == 0)
7210 {
7211 hdr->sh_type = SHT_MIPS_MSYM;
7212 hdr->sh_flags |= SHF_ALLOC;
7213 hdr->sh_entsize = 8;
7214 }
7215
7216 /* The generic elf_fake_sections will set up REL_HDR using the default
7217 kind of relocations. We used to set up a second header for the
7218 non-default kind of relocations here, but only NewABI would use
7219 these, and the IRIX ld doesn't like resulting empty RELA sections.
7220 Thus we create those header only on demand now. */
7221
7222 return TRUE;
7223 }
7224
7225 /* Given a BFD section, try to locate the corresponding ELF section
7226 index. This is used by both the 32-bit and the 64-bit ABI.
7227 Actually, it's not clear to me that the 64-bit ABI supports these,
7228 but for non-PIC objects we will certainly want support for at least
7229 the .scommon section. */
7230
7231 bfd_boolean
7232 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7233 asection *sec, int *retval)
7234 {
7235 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7236 {
7237 *retval = SHN_MIPS_SCOMMON;
7238 return TRUE;
7239 }
7240 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7241 {
7242 *retval = SHN_MIPS_ACOMMON;
7243 return TRUE;
7244 }
7245 return FALSE;
7246 }
7247 \f
7248 /* Hook called by the linker routine which adds symbols from an object
7249 file. We must handle the special MIPS section numbers here. */
7250
7251 bfd_boolean
7252 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7253 Elf_Internal_Sym *sym, const char **namep,
7254 flagword *flagsp ATTRIBUTE_UNUSED,
7255 asection **secp, bfd_vma *valp)
7256 {
7257 if (SGI_COMPAT (abfd)
7258 && (abfd->flags & DYNAMIC) != 0
7259 && strcmp (*namep, "_rld_new_interface") == 0)
7260 {
7261 /* Skip IRIX5 rld entry name. */
7262 *namep = NULL;
7263 return TRUE;
7264 }
7265
7266 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7267 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7268 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7269 a magic symbol resolved by the linker, we ignore this bogus definition
7270 of _gp_disp. New ABI objects do not suffer from this problem so this
7271 is not done for them. */
7272 if (!NEWABI_P(abfd)
7273 && (sym->st_shndx == SHN_ABS)
7274 && (strcmp (*namep, "_gp_disp") == 0))
7275 {
7276 *namep = NULL;
7277 return TRUE;
7278 }
7279
7280 switch (sym->st_shndx)
7281 {
7282 case SHN_COMMON:
7283 /* Common symbols less than the GP size are automatically
7284 treated as SHN_MIPS_SCOMMON symbols. */
7285 if (sym->st_size > elf_gp_size (abfd)
7286 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7287 || IRIX_COMPAT (abfd) == ict_irix6)
7288 break;
7289 /* Fall through. */
7290 case SHN_MIPS_SCOMMON:
7291 *secp = bfd_make_section_old_way (abfd, ".scommon");
7292 (*secp)->flags |= SEC_IS_COMMON;
7293 *valp = sym->st_size;
7294 break;
7295
7296 case SHN_MIPS_TEXT:
7297 /* This section is used in a shared object. */
7298 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7299 {
7300 asymbol *elf_text_symbol;
7301 asection *elf_text_section;
7302 bfd_size_type amt = sizeof (asection);
7303
7304 elf_text_section = bfd_zalloc (abfd, amt);
7305 if (elf_text_section == NULL)
7306 return FALSE;
7307
7308 amt = sizeof (asymbol);
7309 elf_text_symbol = bfd_zalloc (abfd, amt);
7310 if (elf_text_symbol == NULL)
7311 return FALSE;
7312
7313 /* Initialize the section. */
7314
7315 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7316 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7317
7318 elf_text_section->symbol = elf_text_symbol;
7319 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7320
7321 elf_text_section->name = ".text";
7322 elf_text_section->flags = SEC_NO_FLAGS;
7323 elf_text_section->output_section = NULL;
7324 elf_text_section->owner = abfd;
7325 elf_text_symbol->name = ".text";
7326 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7327 elf_text_symbol->section = elf_text_section;
7328 }
7329 /* This code used to do *secp = bfd_und_section_ptr if
7330 info->shared. I don't know why, and that doesn't make sense,
7331 so I took it out. */
7332 *secp = mips_elf_tdata (abfd)->elf_text_section;
7333 break;
7334
7335 case SHN_MIPS_ACOMMON:
7336 /* Fall through. XXX Can we treat this as allocated data? */
7337 case SHN_MIPS_DATA:
7338 /* This section is used in a shared object. */
7339 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7340 {
7341 asymbol *elf_data_symbol;
7342 asection *elf_data_section;
7343 bfd_size_type amt = sizeof (asection);
7344
7345 elf_data_section = bfd_zalloc (abfd, amt);
7346 if (elf_data_section == NULL)
7347 return FALSE;
7348
7349 amt = sizeof (asymbol);
7350 elf_data_symbol = bfd_zalloc (abfd, amt);
7351 if (elf_data_symbol == NULL)
7352 return FALSE;
7353
7354 /* Initialize the section. */
7355
7356 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7357 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7358
7359 elf_data_section->symbol = elf_data_symbol;
7360 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7361
7362 elf_data_section->name = ".data";
7363 elf_data_section->flags = SEC_NO_FLAGS;
7364 elf_data_section->output_section = NULL;
7365 elf_data_section->owner = abfd;
7366 elf_data_symbol->name = ".data";
7367 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7368 elf_data_symbol->section = elf_data_section;
7369 }
7370 /* This code used to do *secp = bfd_und_section_ptr if
7371 info->shared. I don't know why, and that doesn't make sense,
7372 so I took it out. */
7373 *secp = mips_elf_tdata (abfd)->elf_data_section;
7374 break;
7375
7376 case SHN_MIPS_SUNDEFINED:
7377 *secp = bfd_und_section_ptr;
7378 break;
7379 }
7380
7381 if (SGI_COMPAT (abfd)
7382 && ! info->shared
7383 && info->output_bfd->xvec == abfd->xvec
7384 && strcmp (*namep, "__rld_obj_head") == 0)
7385 {
7386 struct elf_link_hash_entry *h;
7387 struct bfd_link_hash_entry *bh;
7388
7389 /* Mark __rld_obj_head as dynamic. */
7390 bh = NULL;
7391 if (! (_bfd_generic_link_add_one_symbol
7392 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7393 get_elf_backend_data (abfd)->collect, &bh)))
7394 return FALSE;
7395
7396 h = (struct elf_link_hash_entry *) bh;
7397 h->non_elf = 0;
7398 h->def_regular = 1;
7399 h->type = STT_OBJECT;
7400
7401 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7402 return FALSE;
7403
7404 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7405 mips_elf_hash_table (info)->rld_symbol = h;
7406 }
7407
7408 /* If this is a mips16 text symbol, add 1 to the value to make it
7409 odd. This will cause something like .word SYM to come up with
7410 the right value when it is loaded into the PC. */
7411 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7412 ++*valp;
7413
7414 return TRUE;
7415 }
7416
7417 /* This hook function is called before the linker writes out a global
7418 symbol. We mark symbols as small common if appropriate. This is
7419 also where we undo the increment of the value for a mips16 symbol. */
7420
7421 int
7422 _bfd_mips_elf_link_output_symbol_hook
7423 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7424 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7425 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7426 {
7427 /* If we see a common symbol, which implies a relocatable link, then
7428 if a symbol was small common in an input file, mark it as small
7429 common in the output file. */
7430 if (sym->st_shndx == SHN_COMMON
7431 && strcmp (input_sec->name, ".scommon") == 0)
7432 sym->st_shndx = SHN_MIPS_SCOMMON;
7433
7434 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7435 sym->st_value &= ~1;
7436
7437 return 1;
7438 }
7439 \f
7440 /* Functions for the dynamic linker. */
7441
7442 /* Create dynamic sections when linking against a dynamic object. */
7443
7444 bfd_boolean
7445 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7446 {
7447 struct elf_link_hash_entry *h;
7448 struct bfd_link_hash_entry *bh;
7449 flagword flags;
7450 register asection *s;
7451 const char * const *namep;
7452 struct mips_elf_link_hash_table *htab;
7453
7454 htab = mips_elf_hash_table (info);
7455 BFD_ASSERT (htab != NULL);
7456
7457 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7458 | SEC_LINKER_CREATED | SEC_READONLY);
7459
7460 /* The psABI requires a read-only .dynamic section, but the VxWorks
7461 EABI doesn't. */
7462 if (!htab->is_vxworks)
7463 {
7464 s = bfd_get_linker_section (abfd, ".dynamic");
7465 if (s != NULL)
7466 {
7467 if (! bfd_set_section_flags (abfd, s, flags))
7468 return FALSE;
7469 }
7470 }
7471
7472 /* We need to create .got section. */
7473 if (!mips_elf_create_got_section (abfd, info))
7474 return FALSE;
7475
7476 if (! mips_elf_rel_dyn_section (info, TRUE))
7477 return FALSE;
7478
7479 /* Create .stub section. */
7480 s = bfd_make_section_anyway_with_flags (abfd,
7481 MIPS_ELF_STUB_SECTION_NAME (abfd),
7482 flags | SEC_CODE);
7483 if (s == NULL
7484 || ! bfd_set_section_alignment (abfd, s,
7485 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7486 return FALSE;
7487 htab->sstubs = s;
7488
7489 if (!mips_elf_hash_table (info)->use_rld_obj_head
7490 && !info->shared
7491 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7492 {
7493 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7494 flags &~ (flagword) SEC_READONLY);
7495 if (s == NULL
7496 || ! bfd_set_section_alignment (abfd, s,
7497 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7498 return FALSE;
7499 }
7500
7501 /* On IRIX5, we adjust add some additional symbols and change the
7502 alignments of several sections. There is no ABI documentation
7503 indicating that this is necessary on IRIX6, nor any evidence that
7504 the linker takes such action. */
7505 if (IRIX_COMPAT (abfd) == ict_irix5)
7506 {
7507 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7508 {
7509 bh = NULL;
7510 if (! (_bfd_generic_link_add_one_symbol
7511 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7512 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7513 return FALSE;
7514
7515 h = (struct elf_link_hash_entry *) bh;
7516 h->non_elf = 0;
7517 h->def_regular = 1;
7518 h->type = STT_SECTION;
7519
7520 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7521 return FALSE;
7522 }
7523
7524 /* We need to create a .compact_rel section. */
7525 if (SGI_COMPAT (abfd))
7526 {
7527 if (!mips_elf_create_compact_rel_section (abfd, info))
7528 return FALSE;
7529 }
7530
7531 /* Change alignments of some sections. */
7532 s = bfd_get_linker_section (abfd, ".hash");
7533 if (s != NULL)
7534 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7535
7536 s = bfd_get_linker_section (abfd, ".dynsym");
7537 if (s != NULL)
7538 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7539
7540 s = bfd_get_linker_section (abfd, ".dynstr");
7541 if (s != NULL)
7542 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7543
7544 /* ??? */
7545 s = bfd_get_section_by_name (abfd, ".reginfo");
7546 if (s != NULL)
7547 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7548
7549 s = bfd_get_linker_section (abfd, ".dynamic");
7550 if (s != NULL)
7551 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7552 }
7553
7554 if (!info->shared)
7555 {
7556 const char *name;
7557
7558 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7559 bh = NULL;
7560 if (!(_bfd_generic_link_add_one_symbol
7561 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7562 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7563 return FALSE;
7564
7565 h = (struct elf_link_hash_entry *) bh;
7566 h->non_elf = 0;
7567 h->def_regular = 1;
7568 h->type = STT_SECTION;
7569
7570 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7571 return FALSE;
7572
7573 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7574 {
7575 /* __rld_map is a four byte word located in the .data section
7576 and is filled in by the rtld to contain a pointer to
7577 the _r_debug structure. Its symbol value will be set in
7578 _bfd_mips_elf_finish_dynamic_symbol. */
7579 s = bfd_get_linker_section (abfd, ".rld_map");
7580 BFD_ASSERT (s != NULL);
7581
7582 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7583 bh = NULL;
7584 if (!(_bfd_generic_link_add_one_symbol
7585 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7586 get_elf_backend_data (abfd)->collect, &bh)))
7587 return FALSE;
7588
7589 h = (struct elf_link_hash_entry *) bh;
7590 h->non_elf = 0;
7591 h->def_regular = 1;
7592 h->type = STT_OBJECT;
7593
7594 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7595 return FALSE;
7596 mips_elf_hash_table (info)->rld_symbol = h;
7597 }
7598 }
7599
7600 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7601 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
7602 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7603 return FALSE;
7604
7605 /* Cache the sections created above. */
7606 htab->splt = bfd_get_linker_section (abfd, ".plt");
7607 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
7608 if (htab->is_vxworks)
7609 {
7610 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
7611 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
7612 }
7613 else
7614 htab->srelplt = bfd_get_linker_section (abfd, ".rel.plt");
7615 if (!htab->sdynbss
7616 || (htab->is_vxworks && !htab->srelbss && !info->shared)
7617 || !htab->srelplt
7618 || !htab->splt)
7619 abort ();
7620
7621 /* Do the usual VxWorks handling. */
7622 if (htab->is_vxworks
7623 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7624 return FALSE;
7625
7626 return TRUE;
7627 }
7628 \f
7629 /* Return true if relocation REL against section SEC is a REL rather than
7630 RELA relocation. RELOCS is the first relocation in the section and
7631 ABFD is the bfd that contains SEC. */
7632
7633 static bfd_boolean
7634 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7635 const Elf_Internal_Rela *relocs,
7636 const Elf_Internal_Rela *rel)
7637 {
7638 Elf_Internal_Shdr *rel_hdr;
7639 const struct elf_backend_data *bed;
7640
7641 /* To determine which flavor of relocation this is, we depend on the
7642 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7643 rel_hdr = elf_section_data (sec)->rel.hdr;
7644 if (rel_hdr == NULL)
7645 return FALSE;
7646 bed = get_elf_backend_data (abfd);
7647 return ((size_t) (rel - relocs)
7648 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7649 }
7650
7651 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7652 HOWTO is the relocation's howto and CONTENTS points to the contents
7653 of the section that REL is against. */
7654
7655 static bfd_vma
7656 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7657 reloc_howto_type *howto, bfd_byte *contents)
7658 {
7659 bfd_byte *location;
7660 unsigned int r_type;
7661 bfd_vma addend;
7662
7663 r_type = ELF_R_TYPE (abfd, rel->r_info);
7664 location = contents + rel->r_offset;
7665
7666 /* Get the addend, which is stored in the input file. */
7667 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7668 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
7669 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7670
7671 return addend & howto->src_mask;
7672 }
7673
7674 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7675 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7676 and update *ADDEND with the final addend. Return true on success
7677 or false if the LO16 could not be found. RELEND is the exclusive
7678 upper bound on the relocations for REL's section. */
7679
7680 static bfd_boolean
7681 mips_elf_add_lo16_rel_addend (bfd *abfd,
7682 const Elf_Internal_Rela *rel,
7683 const Elf_Internal_Rela *relend,
7684 bfd_byte *contents, bfd_vma *addend)
7685 {
7686 unsigned int r_type, lo16_type;
7687 const Elf_Internal_Rela *lo16_relocation;
7688 reloc_howto_type *lo16_howto;
7689 bfd_vma l;
7690
7691 r_type = ELF_R_TYPE (abfd, rel->r_info);
7692 if (mips16_reloc_p (r_type))
7693 lo16_type = R_MIPS16_LO16;
7694 else if (micromips_reloc_p (r_type))
7695 lo16_type = R_MICROMIPS_LO16;
7696 else
7697 lo16_type = R_MIPS_LO16;
7698
7699 /* The combined value is the sum of the HI16 addend, left-shifted by
7700 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7701 code does a `lui' of the HI16 value, and then an `addiu' of the
7702 LO16 value.)
7703
7704 Scan ahead to find a matching LO16 relocation.
7705
7706 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7707 be immediately following. However, for the IRIX6 ABI, the next
7708 relocation may be a composed relocation consisting of several
7709 relocations for the same address. In that case, the R_MIPS_LO16
7710 relocation may occur as one of these. We permit a similar
7711 extension in general, as that is useful for GCC.
7712
7713 In some cases GCC dead code elimination removes the LO16 but keeps
7714 the corresponding HI16. This is strictly speaking a violation of
7715 the ABI but not immediately harmful. */
7716 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7717 if (lo16_relocation == NULL)
7718 return FALSE;
7719
7720 /* Obtain the addend kept there. */
7721 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7722 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7723
7724 l <<= lo16_howto->rightshift;
7725 l = _bfd_mips_elf_sign_extend (l, 16);
7726
7727 *addend <<= 16;
7728 *addend += l;
7729 return TRUE;
7730 }
7731
7732 /* Try to read the contents of section SEC in bfd ABFD. Return true and
7733 store the contents in *CONTENTS on success. Assume that *CONTENTS
7734 already holds the contents if it is nonull on entry. */
7735
7736 static bfd_boolean
7737 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7738 {
7739 if (*contents)
7740 return TRUE;
7741
7742 /* Get cached copy if it exists. */
7743 if (elf_section_data (sec)->this_hdr.contents != NULL)
7744 {
7745 *contents = elf_section_data (sec)->this_hdr.contents;
7746 return TRUE;
7747 }
7748
7749 return bfd_malloc_and_get_section (abfd, sec, contents);
7750 }
7751
7752 /* Make a new PLT record to keep internal data. */
7753
7754 static struct plt_entry *
7755 mips_elf_make_plt_record (bfd *abfd)
7756 {
7757 struct plt_entry *entry;
7758
7759 entry = bfd_zalloc (abfd, sizeof (*entry));
7760 if (entry == NULL)
7761 return NULL;
7762
7763 entry->stub_offset = MINUS_ONE;
7764 entry->mips_offset = MINUS_ONE;
7765 entry->comp_offset = MINUS_ONE;
7766 entry->gotplt_index = MINUS_ONE;
7767 return entry;
7768 }
7769
7770 /* Look through the relocs for a section during the first phase, and
7771 allocate space in the global offset table and record the need for
7772 standard MIPS and compressed procedure linkage table entries. */
7773
7774 bfd_boolean
7775 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7776 asection *sec, const Elf_Internal_Rela *relocs)
7777 {
7778 const char *name;
7779 bfd *dynobj;
7780 Elf_Internal_Shdr *symtab_hdr;
7781 struct elf_link_hash_entry **sym_hashes;
7782 size_t extsymoff;
7783 const Elf_Internal_Rela *rel;
7784 const Elf_Internal_Rela *rel_end;
7785 asection *sreloc;
7786 const struct elf_backend_data *bed;
7787 struct mips_elf_link_hash_table *htab;
7788 bfd_byte *contents;
7789 bfd_vma addend;
7790 reloc_howto_type *howto;
7791
7792 if (info->relocatable)
7793 return TRUE;
7794
7795 htab = mips_elf_hash_table (info);
7796 BFD_ASSERT (htab != NULL);
7797
7798 dynobj = elf_hash_table (info)->dynobj;
7799 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7800 sym_hashes = elf_sym_hashes (abfd);
7801 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7802
7803 bed = get_elf_backend_data (abfd);
7804 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7805
7806 /* Check for the mips16 stub sections. */
7807
7808 name = bfd_get_section_name (abfd, sec);
7809 if (FN_STUB_P (name))
7810 {
7811 unsigned long r_symndx;
7812
7813 /* Look at the relocation information to figure out which symbol
7814 this is for. */
7815
7816 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
7817 if (r_symndx == 0)
7818 {
7819 (*_bfd_error_handler)
7820 (_("%B: Warning: cannot determine the target function for"
7821 " stub section `%s'"),
7822 abfd, name);
7823 bfd_set_error (bfd_error_bad_value);
7824 return FALSE;
7825 }
7826
7827 if (r_symndx < extsymoff
7828 || sym_hashes[r_symndx - extsymoff] == NULL)
7829 {
7830 asection *o;
7831
7832 /* This stub is for a local symbol. This stub will only be
7833 needed if there is some relocation in this BFD, other
7834 than a 16 bit function call, which refers to this symbol. */
7835 for (o = abfd->sections; o != NULL; o = o->next)
7836 {
7837 Elf_Internal_Rela *sec_relocs;
7838 const Elf_Internal_Rela *r, *rend;
7839
7840 /* We can ignore stub sections when looking for relocs. */
7841 if ((o->flags & SEC_RELOC) == 0
7842 || o->reloc_count == 0
7843 || section_allows_mips16_refs_p (o))
7844 continue;
7845
7846 sec_relocs
7847 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7848 info->keep_memory);
7849 if (sec_relocs == NULL)
7850 return FALSE;
7851
7852 rend = sec_relocs + o->reloc_count;
7853 for (r = sec_relocs; r < rend; r++)
7854 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7855 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
7856 break;
7857
7858 if (elf_section_data (o)->relocs != sec_relocs)
7859 free (sec_relocs);
7860
7861 if (r < rend)
7862 break;
7863 }
7864
7865 if (o == NULL)
7866 {
7867 /* There is no non-call reloc for this stub, so we do
7868 not need it. Since this function is called before
7869 the linker maps input sections to output sections, we
7870 can easily discard it by setting the SEC_EXCLUDE
7871 flag. */
7872 sec->flags |= SEC_EXCLUDE;
7873 return TRUE;
7874 }
7875
7876 /* Record this stub in an array of local symbol stubs for
7877 this BFD. */
7878 if (mips_elf_tdata (abfd)->local_stubs == NULL)
7879 {
7880 unsigned long symcount;
7881 asection **n;
7882 bfd_size_type amt;
7883
7884 if (elf_bad_symtab (abfd))
7885 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7886 else
7887 symcount = symtab_hdr->sh_info;
7888 amt = symcount * sizeof (asection *);
7889 n = bfd_zalloc (abfd, amt);
7890 if (n == NULL)
7891 return FALSE;
7892 mips_elf_tdata (abfd)->local_stubs = n;
7893 }
7894
7895 sec->flags |= SEC_KEEP;
7896 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7897
7898 /* We don't need to set mips16_stubs_seen in this case.
7899 That flag is used to see whether we need to look through
7900 the global symbol table for stubs. We don't need to set
7901 it here, because we just have a local stub. */
7902 }
7903 else
7904 {
7905 struct mips_elf_link_hash_entry *h;
7906
7907 h = ((struct mips_elf_link_hash_entry *)
7908 sym_hashes[r_symndx - extsymoff]);
7909
7910 while (h->root.root.type == bfd_link_hash_indirect
7911 || h->root.root.type == bfd_link_hash_warning)
7912 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
7913
7914 /* H is the symbol this stub is for. */
7915
7916 /* If we already have an appropriate stub for this function, we
7917 don't need another one, so we can discard this one. Since
7918 this function is called before the linker maps input sections
7919 to output sections, we can easily discard it by setting the
7920 SEC_EXCLUDE flag. */
7921 if (h->fn_stub != NULL)
7922 {
7923 sec->flags |= SEC_EXCLUDE;
7924 return TRUE;
7925 }
7926
7927 sec->flags |= SEC_KEEP;
7928 h->fn_stub = sec;
7929 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7930 }
7931 }
7932 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
7933 {
7934 unsigned long r_symndx;
7935 struct mips_elf_link_hash_entry *h;
7936 asection **loc;
7937
7938 /* Look at the relocation information to figure out which symbol
7939 this is for. */
7940
7941 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
7942 if (r_symndx == 0)
7943 {
7944 (*_bfd_error_handler)
7945 (_("%B: Warning: cannot determine the target function for"
7946 " stub section `%s'"),
7947 abfd, name);
7948 bfd_set_error (bfd_error_bad_value);
7949 return FALSE;
7950 }
7951
7952 if (r_symndx < extsymoff
7953 || sym_hashes[r_symndx - extsymoff] == NULL)
7954 {
7955 asection *o;
7956
7957 /* This stub is for a local symbol. This stub will only be
7958 needed if there is some relocation (R_MIPS16_26) in this BFD
7959 that refers to this symbol. */
7960 for (o = abfd->sections; o != NULL; o = o->next)
7961 {
7962 Elf_Internal_Rela *sec_relocs;
7963 const Elf_Internal_Rela *r, *rend;
7964
7965 /* We can ignore stub sections when looking for relocs. */
7966 if ((o->flags & SEC_RELOC) == 0
7967 || o->reloc_count == 0
7968 || section_allows_mips16_refs_p (o))
7969 continue;
7970
7971 sec_relocs
7972 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7973 info->keep_memory);
7974 if (sec_relocs == NULL)
7975 return FALSE;
7976
7977 rend = sec_relocs + o->reloc_count;
7978 for (r = sec_relocs; r < rend; r++)
7979 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7980 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
7981 break;
7982
7983 if (elf_section_data (o)->relocs != sec_relocs)
7984 free (sec_relocs);
7985
7986 if (r < rend)
7987 break;
7988 }
7989
7990 if (o == NULL)
7991 {
7992 /* There is no non-call reloc for this stub, so we do
7993 not need it. Since this function is called before
7994 the linker maps input sections to output sections, we
7995 can easily discard it by setting the SEC_EXCLUDE
7996 flag. */
7997 sec->flags |= SEC_EXCLUDE;
7998 return TRUE;
7999 }
8000
8001 /* Record this stub in an array of local symbol call_stubs for
8002 this BFD. */
8003 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8004 {
8005 unsigned long symcount;
8006 asection **n;
8007 bfd_size_type amt;
8008
8009 if (elf_bad_symtab (abfd))
8010 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8011 else
8012 symcount = symtab_hdr->sh_info;
8013 amt = symcount * sizeof (asection *);
8014 n = bfd_zalloc (abfd, amt);
8015 if (n == NULL)
8016 return FALSE;
8017 mips_elf_tdata (abfd)->local_call_stubs = n;
8018 }
8019
8020 sec->flags |= SEC_KEEP;
8021 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8022
8023 /* We don't need to set mips16_stubs_seen in this case.
8024 That flag is used to see whether we need to look through
8025 the global symbol table for stubs. We don't need to set
8026 it here, because we just have a local stub. */
8027 }
8028 else
8029 {
8030 h = ((struct mips_elf_link_hash_entry *)
8031 sym_hashes[r_symndx - extsymoff]);
8032
8033 /* H is the symbol this stub is for. */
8034
8035 if (CALL_FP_STUB_P (name))
8036 loc = &h->call_fp_stub;
8037 else
8038 loc = &h->call_stub;
8039
8040 /* If we already have an appropriate stub for this function, we
8041 don't need another one, so we can discard this one. Since
8042 this function is called before the linker maps input sections
8043 to output sections, we can easily discard it by setting the
8044 SEC_EXCLUDE flag. */
8045 if (*loc != NULL)
8046 {
8047 sec->flags |= SEC_EXCLUDE;
8048 return TRUE;
8049 }
8050
8051 sec->flags |= SEC_KEEP;
8052 *loc = sec;
8053 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8054 }
8055 }
8056
8057 sreloc = NULL;
8058 contents = NULL;
8059 for (rel = relocs; rel < rel_end; ++rel)
8060 {
8061 unsigned long r_symndx;
8062 unsigned int r_type;
8063 struct elf_link_hash_entry *h;
8064 bfd_boolean can_make_dynamic_p;
8065 bfd_boolean call_reloc_p;
8066 bfd_boolean constrain_symbol_p;
8067
8068 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8069 r_type = ELF_R_TYPE (abfd, rel->r_info);
8070
8071 if (r_symndx < extsymoff)
8072 h = NULL;
8073 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8074 {
8075 (*_bfd_error_handler)
8076 (_("%B: Malformed reloc detected for section %s"),
8077 abfd, name);
8078 bfd_set_error (bfd_error_bad_value);
8079 return FALSE;
8080 }
8081 else
8082 {
8083 h = sym_hashes[r_symndx - extsymoff];
8084 if (h != NULL)
8085 {
8086 while (h->root.type == bfd_link_hash_indirect
8087 || h->root.type == bfd_link_hash_warning)
8088 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8089
8090 /* PR15323, ref flags aren't set for references in the
8091 same object. */
8092 h->root.non_ir_ref = 1;
8093 }
8094 }
8095
8096 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8097 relocation into a dynamic one. */
8098 can_make_dynamic_p = FALSE;
8099
8100 /* Set CALL_RELOC_P to true if the relocation is for a call,
8101 and if pointer equality therefore doesn't matter. */
8102 call_reloc_p = FALSE;
8103
8104 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8105 into account when deciding how to define the symbol.
8106 Relocations in nonallocatable sections such as .pdr and
8107 .debug* should have no effect. */
8108 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8109
8110 switch (r_type)
8111 {
8112 case R_MIPS_CALL16:
8113 case R_MIPS_CALL_HI16:
8114 case R_MIPS_CALL_LO16:
8115 case R_MIPS16_CALL16:
8116 case R_MICROMIPS_CALL16:
8117 case R_MICROMIPS_CALL_HI16:
8118 case R_MICROMIPS_CALL_LO16:
8119 call_reloc_p = TRUE;
8120 /* Fall through. */
8121
8122 case R_MIPS_GOT16:
8123 case R_MIPS_GOT_HI16:
8124 case R_MIPS_GOT_LO16:
8125 case R_MIPS_GOT_PAGE:
8126 case R_MIPS_GOT_OFST:
8127 case R_MIPS_GOT_DISP:
8128 case R_MIPS_TLS_GOTTPREL:
8129 case R_MIPS_TLS_GD:
8130 case R_MIPS_TLS_LDM:
8131 case R_MIPS16_GOT16:
8132 case R_MIPS16_TLS_GOTTPREL:
8133 case R_MIPS16_TLS_GD:
8134 case R_MIPS16_TLS_LDM:
8135 case R_MICROMIPS_GOT16:
8136 case R_MICROMIPS_GOT_HI16:
8137 case R_MICROMIPS_GOT_LO16:
8138 case R_MICROMIPS_GOT_PAGE:
8139 case R_MICROMIPS_GOT_OFST:
8140 case R_MICROMIPS_GOT_DISP:
8141 case R_MICROMIPS_TLS_GOTTPREL:
8142 case R_MICROMIPS_TLS_GD:
8143 case R_MICROMIPS_TLS_LDM:
8144 if (dynobj == NULL)
8145 elf_hash_table (info)->dynobj = dynobj = abfd;
8146 if (!mips_elf_create_got_section (dynobj, info))
8147 return FALSE;
8148 if (htab->is_vxworks && !info->shared)
8149 {
8150 (*_bfd_error_handler)
8151 (_("%B: GOT reloc at 0x%lx not expected in executables"),
8152 abfd, (unsigned long) rel->r_offset);
8153 bfd_set_error (bfd_error_bad_value);
8154 return FALSE;
8155 }
8156 can_make_dynamic_p = TRUE;
8157 break;
8158
8159 case R_MIPS_NONE:
8160 case R_MIPS_JALR:
8161 case R_MICROMIPS_JALR:
8162 /* These relocations have empty fields and are purely there to
8163 provide link information. The symbol value doesn't matter. */
8164 constrain_symbol_p = FALSE;
8165 break;
8166
8167 case R_MIPS_GPREL16:
8168 case R_MIPS_GPREL32:
8169 case R_MIPS16_GPREL:
8170 case R_MICROMIPS_GPREL16:
8171 /* GP-relative relocations always resolve to a definition in a
8172 regular input file, ignoring the one-definition rule. This is
8173 important for the GP setup sequence in NewABI code, which
8174 always resolves to a local function even if other relocations
8175 against the symbol wouldn't. */
8176 constrain_symbol_p = FALSE;
8177 break;
8178
8179 case R_MIPS_32:
8180 case R_MIPS_REL32:
8181 case R_MIPS_64:
8182 /* In VxWorks executables, references to external symbols
8183 must be handled using copy relocs or PLT entries; it is not
8184 possible to convert this relocation into a dynamic one.
8185
8186 For executables that use PLTs and copy-relocs, we have a
8187 choice between converting the relocation into a dynamic
8188 one or using copy relocations or PLT entries. It is
8189 usually better to do the former, unless the relocation is
8190 against a read-only section. */
8191 if ((info->shared
8192 || (h != NULL
8193 && !htab->is_vxworks
8194 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8195 && !(!info->nocopyreloc
8196 && !PIC_OBJECT_P (abfd)
8197 && MIPS_ELF_READONLY_SECTION (sec))))
8198 && (sec->flags & SEC_ALLOC) != 0)
8199 {
8200 can_make_dynamic_p = TRUE;
8201 if (dynobj == NULL)
8202 elf_hash_table (info)->dynobj = dynobj = abfd;
8203 }
8204 break;
8205
8206 case R_MIPS_26:
8207 case R_MIPS_PC16:
8208 case R_MIPS16_26:
8209 case R_MICROMIPS_26_S1:
8210 case R_MICROMIPS_PC7_S1:
8211 case R_MICROMIPS_PC10_S1:
8212 case R_MICROMIPS_PC16_S1:
8213 case R_MICROMIPS_PC23_S2:
8214 call_reloc_p = TRUE;
8215 break;
8216 }
8217
8218 if (h)
8219 {
8220 if (constrain_symbol_p)
8221 {
8222 if (!can_make_dynamic_p)
8223 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8224
8225 if (!call_reloc_p)
8226 h->pointer_equality_needed = 1;
8227
8228 /* We must not create a stub for a symbol that has
8229 relocations related to taking the function's address.
8230 This doesn't apply to VxWorks, where CALL relocs refer
8231 to a .got.plt entry instead of a normal .got entry. */
8232 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8233 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8234 }
8235
8236 /* Relocations against the special VxWorks __GOTT_BASE__ and
8237 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8238 room for them in .rela.dyn. */
8239 if (is_gott_symbol (info, h))
8240 {
8241 if (sreloc == NULL)
8242 {
8243 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8244 if (sreloc == NULL)
8245 return FALSE;
8246 }
8247 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8248 if (MIPS_ELF_READONLY_SECTION (sec))
8249 /* We tell the dynamic linker that there are
8250 relocations against the text segment. */
8251 info->flags |= DF_TEXTREL;
8252 }
8253 }
8254 else if (call_lo16_reloc_p (r_type)
8255 || got_lo16_reloc_p (r_type)
8256 || got_disp_reloc_p (r_type)
8257 || (got16_reloc_p (r_type) && htab->is_vxworks))
8258 {
8259 /* We may need a local GOT entry for this relocation. We
8260 don't count R_MIPS_GOT_PAGE because we can estimate the
8261 maximum number of pages needed by looking at the size of
8262 the segment. Similar comments apply to R_MIPS*_GOT16 and
8263 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8264 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8265 R_MIPS_CALL_HI16 because these are always followed by an
8266 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8267 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8268 rel->r_addend, info, r_type))
8269 return FALSE;
8270 }
8271
8272 if (h != NULL
8273 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8274 ELF_ST_IS_MIPS16 (h->other)))
8275 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8276
8277 switch (r_type)
8278 {
8279 case R_MIPS_CALL16:
8280 case R_MIPS16_CALL16:
8281 case R_MICROMIPS_CALL16:
8282 if (h == NULL)
8283 {
8284 (*_bfd_error_handler)
8285 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
8286 abfd, (unsigned long) rel->r_offset);
8287 bfd_set_error (bfd_error_bad_value);
8288 return FALSE;
8289 }
8290 /* Fall through. */
8291
8292 case R_MIPS_CALL_HI16:
8293 case R_MIPS_CALL_LO16:
8294 case R_MICROMIPS_CALL_HI16:
8295 case R_MICROMIPS_CALL_LO16:
8296 if (h != NULL)
8297 {
8298 /* Make sure there is room in the regular GOT to hold the
8299 function's address. We may eliminate it in favour of
8300 a .got.plt entry later; see mips_elf_count_got_symbols. */
8301 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8302 r_type))
8303 return FALSE;
8304
8305 /* We need a stub, not a plt entry for the undefined
8306 function. But we record it as if it needs plt. See
8307 _bfd_elf_adjust_dynamic_symbol. */
8308 h->needs_plt = 1;
8309 h->type = STT_FUNC;
8310 }
8311 break;
8312
8313 case R_MIPS_GOT_PAGE:
8314 case R_MICROMIPS_GOT_PAGE:
8315 case R_MIPS16_GOT16:
8316 case R_MIPS_GOT16:
8317 case R_MIPS_GOT_HI16:
8318 case R_MIPS_GOT_LO16:
8319 case R_MICROMIPS_GOT16:
8320 case R_MICROMIPS_GOT_HI16:
8321 case R_MICROMIPS_GOT_LO16:
8322 if (!h || got_page_reloc_p (r_type))
8323 {
8324 /* This relocation needs (or may need, if h != NULL) a
8325 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8326 know for sure until we know whether the symbol is
8327 preemptible. */
8328 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8329 {
8330 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8331 return FALSE;
8332 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8333 addend = mips_elf_read_rel_addend (abfd, rel,
8334 howto, contents);
8335 if (got16_reloc_p (r_type))
8336 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8337 contents, &addend);
8338 else
8339 addend <<= howto->rightshift;
8340 }
8341 else
8342 addend = rel->r_addend;
8343 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8344 h, addend))
8345 return FALSE;
8346
8347 if (h)
8348 {
8349 struct mips_elf_link_hash_entry *hmips =
8350 (struct mips_elf_link_hash_entry *) h;
8351
8352 /* This symbol is definitely not overridable. */
8353 if (hmips->root.def_regular
8354 && ! (info->shared && ! info->symbolic
8355 && ! hmips->root.forced_local))
8356 h = NULL;
8357 }
8358 }
8359 /* If this is a global, overridable symbol, GOT_PAGE will
8360 decay to GOT_DISP, so we'll need a GOT entry for it. */
8361 /* Fall through. */
8362
8363 case R_MIPS_GOT_DISP:
8364 case R_MICROMIPS_GOT_DISP:
8365 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8366 FALSE, r_type))
8367 return FALSE;
8368 break;
8369
8370 case R_MIPS_TLS_GOTTPREL:
8371 case R_MIPS16_TLS_GOTTPREL:
8372 case R_MICROMIPS_TLS_GOTTPREL:
8373 if (info->shared)
8374 info->flags |= DF_STATIC_TLS;
8375 /* Fall through */
8376
8377 case R_MIPS_TLS_LDM:
8378 case R_MIPS16_TLS_LDM:
8379 case R_MICROMIPS_TLS_LDM:
8380 if (tls_ldm_reloc_p (r_type))
8381 {
8382 r_symndx = STN_UNDEF;
8383 h = NULL;
8384 }
8385 /* Fall through */
8386
8387 case R_MIPS_TLS_GD:
8388 case R_MIPS16_TLS_GD:
8389 case R_MICROMIPS_TLS_GD:
8390 /* This symbol requires a global offset table entry, or two
8391 for TLS GD relocations. */
8392 if (h != NULL)
8393 {
8394 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8395 FALSE, r_type))
8396 return FALSE;
8397 }
8398 else
8399 {
8400 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8401 rel->r_addend,
8402 info, r_type))
8403 return FALSE;
8404 }
8405 break;
8406
8407 case R_MIPS_32:
8408 case R_MIPS_REL32:
8409 case R_MIPS_64:
8410 /* In VxWorks executables, references to external symbols
8411 are handled using copy relocs or PLT stubs, so there's
8412 no need to add a .rela.dyn entry for this relocation. */
8413 if (can_make_dynamic_p)
8414 {
8415 if (sreloc == NULL)
8416 {
8417 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8418 if (sreloc == NULL)
8419 return FALSE;
8420 }
8421 if (info->shared && h == NULL)
8422 {
8423 /* When creating a shared object, we must copy these
8424 reloc types into the output file as R_MIPS_REL32
8425 relocs. Make room for this reloc in .rel(a).dyn. */
8426 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8427 if (MIPS_ELF_READONLY_SECTION (sec))
8428 /* We tell the dynamic linker that there are
8429 relocations against the text segment. */
8430 info->flags |= DF_TEXTREL;
8431 }
8432 else
8433 {
8434 struct mips_elf_link_hash_entry *hmips;
8435
8436 /* For a shared object, we must copy this relocation
8437 unless the symbol turns out to be undefined and
8438 weak with non-default visibility, in which case
8439 it will be left as zero.
8440
8441 We could elide R_MIPS_REL32 for locally binding symbols
8442 in shared libraries, but do not yet do so.
8443
8444 For an executable, we only need to copy this
8445 reloc if the symbol is defined in a dynamic
8446 object. */
8447 hmips = (struct mips_elf_link_hash_entry *) h;
8448 ++hmips->possibly_dynamic_relocs;
8449 if (MIPS_ELF_READONLY_SECTION (sec))
8450 /* We need it to tell the dynamic linker if there
8451 are relocations against the text segment. */
8452 hmips->readonly_reloc = TRUE;
8453 }
8454 }
8455
8456 if (SGI_COMPAT (abfd))
8457 mips_elf_hash_table (info)->compact_rel_size +=
8458 sizeof (Elf32_External_crinfo);
8459 break;
8460
8461 case R_MIPS_26:
8462 case R_MIPS_GPREL16:
8463 case R_MIPS_LITERAL:
8464 case R_MIPS_GPREL32:
8465 case R_MICROMIPS_26_S1:
8466 case R_MICROMIPS_GPREL16:
8467 case R_MICROMIPS_LITERAL:
8468 case R_MICROMIPS_GPREL7_S2:
8469 if (SGI_COMPAT (abfd))
8470 mips_elf_hash_table (info)->compact_rel_size +=
8471 sizeof (Elf32_External_crinfo);
8472 break;
8473
8474 /* This relocation describes the C++ object vtable hierarchy.
8475 Reconstruct it for later use during GC. */
8476 case R_MIPS_GNU_VTINHERIT:
8477 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8478 return FALSE;
8479 break;
8480
8481 /* This relocation describes which C++ vtable entries are actually
8482 used. Record for later use during GC. */
8483 case R_MIPS_GNU_VTENTRY:
8484 BFD_ASSERT (h != NULL);
8485 if (h != NULL
8486 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8487 return FALSE;
8488 break;
8489
8490 default:
8491 break;
8492 }
8493
8494 /* Record the need for a PLT entry. At this point we don't know
8495 yet if we are going to create a PLT in the first place, but
8496 we only record whether the relocation requires a standard MIPS
8497 or a compressed code entry anyway. If we don't make a PLT after
8498 all, then we'll just ignore these arrangements. Likewise if
8499 a PLT entry is not created because the symbol is satisfied
8500 locally. */
8501 if (h != NULL
8502 && jal_reloc_p (r_type)
8503 && !SYMBOL_CALLS_LOCAL (info, h))
8504 {
8505 if (h->plt.plist == NULL)
8506 h->plt.plist = mips_elf_make_plt_record (abfd);
8507 if (h->plt.plist == NULL)
8508 return FALSE;
8509
8510 if (r_type == R_MIPS_26)
8511 h->plt.plist->need_mips = TRUE;
8512 else
8513 h->plt.plist->need_comp = TRUE;
8514 }
8515
8516 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8517 if there is one. We only need to handle global symbols here;
8518 we decide whether to keep or delete stubs for local symbols
8519 when processing the stub's relocations. */
8520 if (h != NULL
8521 && !mips16_call_reloc_p (r_type)
8522 && !section_allows_mips16_refs_p (sec))
8523 {
8524 struct mips_elf_link_hash_entry *mh;
8525
8526 mh = (struct mips_elf_link_hash_entry *) h;
8527 mh->need_fn_stub = TRUE;
8528 }
8529
8530 /* Refuse some position-dependent relocations when creating a
8531 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8532 not PIC, but we can create dynamic relocations and the result
8533 will be fine. Also do not refuse R_MIPS_LO16, which can be
8534 combined with R_MIPS_GOT16. */
8535 if (info->shared)
8536 {
8537 switch (r_type)
8538 {
8539 case R_MIPS16_HI16:
8540 case R_MIPS_HI16:
8541 case R_MIPS_HIGHER:
8542 case R_MIPS_HIGHEST:
8543 case R_MICROMIPS_HI16:
8544 case R_MICROMIPS_HIGHER:
8545 case R_MICROMIPS_HIGHEST:
8546 /* Don't refuse a high part relocation if it's against
8547 no symbol (e.g. part of a compound relocation). */
8548 if (r_symndx == STN_UNDEF)
8549 break;
8550
8551 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8552 and has a special meaning. */
8553 if (!NEWABI_P (abfd) && h != NULL
8554 && strcmp (h->root.root.string, "_gp_disp") == 0)
8555 break;
8556
8557 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8558 if (is_gott_symbol (info, h))
8559 break;
8560
8561 /* FALLTHROUGH */
8562
8563 case R_MIPS16_26:
8564 case R_MIPS_26:
8565 case R_MICROMIPS_26_S1:
8566 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8567 (*_bfd_error_handler)
8568 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8569 abfd, howto->name,
8570 (h) ? h->root.root.string : "a local symbol");
8571 bfd_set_error (bfd_error_bad_value);
8572 return FALSE;
8573 default:
8574 break;
8575 }
8576 }
8577 }
8578
8579 return TRUE;
8580 }
8581 \f
8582 bfd_boolean
8583 _bfd_mips_relax_section (bfd *abfd, asection *sec,
8584 struct bfd_link_info *link_info,
8585 bfd_boolean *again)
8586 {
8587 Elf_Internal_Rela *internal_relocs;
8588 Elf_Internal_Rela *irel, *irelend;
8589 Elf_Internal_Shdr *symtab_hdr;
8590 bfd_byte *contents = NULL;
8591 size_t extsymoff;
8592 bfd_boolean changed_contents = FALSE;
8593 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8594 Elf_Internal_Sym *isymbuf = NULL;
8595
8596 /* We are not currently changing any sizes, so only one pass. */
8597 *again = FALSE;
8598
8599 if (link_info->relocatable)
8600 return TRUE;
8601
8602 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
8603 link_info->keep_memory);
8604 if (internal_relocs == NULL)
8605 return TRUE;
8606
8607 irelend = internal_relocs + sec->reloc_count
8608 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8609 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8610 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8611
8612 for (irel = internal_relocs; irel < irelend; irel++)
8613 {
8614 bfd_vma symval;
8615 bfd_signed_vma sym_offset;
8616 unsigned int r_type;
8617 unsigned long r_symndx;
8618 asection *sym_sec;
8619 unsigned long instruction;
8620
8621 /* Turn jalr into bgezal, and jr into beq, if they're marked
8622 with a JALR relocation, that indicate where they jump to.
8623 This saves some pipeline bubbles. */
8624 r_type = ELF_R_TYPE (abfd, irel->r_info);
8625 if (r_type != R_MIPS_JALR)
8626 continue;
8627
8628 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8629 /* Compute the address of the jump target. */
8630 if (r_symndx >= extsymoff)
8631 {
8632 struct mips_elf_link_hash_entry *h
8633 = ((struct mips_elf_link_hash_entry *)
8634 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8635
8636 while (h->root.root.type == bfd_link_hash_indirect
8637 || h->root.root.type == bfd_link_hash_warning)
8638 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8639
8640 /* If a symbol is undefined, or if it may be overridden,
8641 skip it. */
8642 if (! ((h->root.root.type == bfd_link_hash_defined
8643 || h->root.root.type == bfd_link_hash_defweak)
8644 && h->root.root.u.def.section)
8645 || (link_info->shared && ! link_info->symbolic
8646 && !h->root.forced_local))
8647 continue;
8648
8649 sym_sec = h->root.root.u.def.section;
8650 if (sym_sec->output_section)
8651 symval = (h->root.root.u.def.value
8652 + sym_sec->output_section->vma
8653 + sym_sec->output_offset);
8654 else
8655 symval = h->root.root.u.def.value;
8656 }
8657 else
8658 {
8659 Elf_Internal_Sym *isym;
8660
8661 /* Read this BFD's symbols if we haven't done so already. */
8662 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8663 {
8664 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8665 if (isymbuf == NULL)
8666 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8667 symtab_hdr->sh_info, 0,
8668 NULL, NULL, NULL);
8669 if (isymbuf == NULL)
8670 goto relax_return;
8671 }
8672
8673 isym = isymbuf + r_symndx;
8674 if (isym->st_shndx == SHN_UNDEF)
8675 continue;
8676 else if (isym->st_shndx == SHN_ABS)
8677 sym_sec = bfd_abs_section_ptr;
8678 else if (isym->st_shndx == SHN_COMMON)
8679 sym_sec = bfd_com_section_ptr;
8680 else
8681 sym_sec
8682 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8683 symval = isym->st_value
8684 + sym_sec->output_section->vma
8685 + sym_sec->output_offset;
8686 }
8687
8688 /* Compute branch offset, from delay slot of the jump to the
8689 branch target. */
8690 sym_offset = (symval + irel->r_addend)
8691 - (sec_start + irel->r_offset + 4);
8692
8693 /* Branch offset must be properly aligned. */
8694 if ((sym_offset & 3) != 0)
8695 continue;
8696
8697 sym_offset >>= 2;
8698
8699 /* Check that it's in range. */
8700 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8701 continue;
8702
8703 /* Get the section contents if we haven't done so already. */
8704 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8705 goto relax_return;
8706
8707 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8708
8709 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8710 if ((instruction & 0xfc1fffff) == 0x0000f809)
8711 instruction = 0x04110000;
8712 /* If it was jr <reg>, turn it into b <target>. */
8713 else if ((instruction & 0xfc1fffff) == 0x00000008)
8714 instruction = 0x10000000;
8715 else
8716 continue;
8717
8718 instruction |= (sym_offset & 0xffff);
8719 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8720 changed_contents = TRUE;
8721 }
8722
8723 if (contents != NULL
8724 && elf_section_data (sec)->this_hdr.contents != contents)
8725 {
8726 if (!changed_contents && !link_info->keep_memory)
8727 free (contents);
8728 else
8729 {
8730 /* Cache the section contents for elf_link_input_bfd. */
8731 elf_section_data (sec)->this_hdr.contents = contents;
8732 }
8733 }
8734 return TRUE;
8735
8736 relax_return:
8737 if (contents != NULL
8738 && elf_section_data (sec)->this_hdr.contents != contents)
8739 free (contents);
8740 return FALSE;
8741 }
8742 \f
8743 /* Allocate space for global sym dynamic relocs. */
8744
8745 static bfd_boolean
8746 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8747 {
8748 struct bfd_link_info *info = inf;
8749 bfd *dynobj;
8750 struct mips_elf_link_hash_entry *hmips;
8751 struct mips_elf_link_hash_table *htab;
8752
8753 htab = mips_elf_hash_table (info);
8754 BFD_ASSERT (htab != NULL);
8755
8756 dynobj = elf_hash_table (info)->dynobj;
8757 hmips = (struct mips_elf_link_hash_entry *) h;
8758
8759 /* VxWorks executables are handled elsewhere; we only need to
8760 allocate relocations in shared objects. */
8761 if (htab->is_vxworks && !info->shared)
8762 return TRUE;
8763
8764 /* Ignore indirect symbols. All relocations against such symbols
8765 will be redirected to the target symbol. */
8766 if (h->root.type == bfd_link_hash_indirect)
8767 return TRUE;
8768
8769 /* If this symbol is defined in a dynamic object, or we are creating
8770 a shared library, we will need to copy any R_MIPS_32 or
8771 R_MIPS_REL32 relocs against it into the output file. */
8772 if (! info->relocatable
8773 && hmips->possibly_dynamic_relocs != 0
8774 && (h->root.type == bfd_link_hash_defweak
8775 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
8776 || info->shared))
8777 {
8778 bfd_boolean do_copy = TRUE;
8779
8780 if (h->root.type == bfd_link_hash_undefweak)
8781 {
8782 /* Do not copy relocations for undefined weak symbols with
8783 non-default visibility. */
8784 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8785 do_copy = FALSE;
8786
8787 /* Make sure undefined weak symbols are output as a dynamic
8788 symbol in PIEs. */
8789 else if (h->dynindx == -1 && !h->forced_local)
8790 {
8791 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8792 return FALSE;
8793 }
8794 }
8795
8796 if (do_copy)
8797 {
8798 /* Even though we don't directly need a GOT entry for this symbol,
8799 the SVR4 psABI requires it to have a dynamic symbol table
8800 index greater that DT_MIPS_GOTSYM if there are dynamic
8801 relocations against it.
8802
8803 VxWorks does not enforce the same mapping between the GOT
8804 and the symbol table, so the same requirement does not
8805 apply there. */
8806 if (!htab->is_vxworks)
8807 {
8808 if (hmips->global_got_area > GGA_RELOC_ONLY)
8809 hmips->global_got_area = GGA_RELOC_ONLY;
8810 hmips->got_only_for_calls = FALSE;
8811 }
8812
8813 mips_elf_allocate_dynamic_relocations
8814 (dynobj, info, hmips->possibly_dynamic_relocs);
8815 if (hmips->readonly_reloc)
8816 /* We tell the dynamic linker that there are relocations
8817 against the text segment. */
8818 info->flags |= DF_TEXTREL;
8819 }
8820 }
8821
8822 return TRUE;
8823 }
8824
8825 /* Adjust a symbol defined by a dynamic object and referenced by a
8826 regular object. The current definition is in some section of the
8827 dynamic object, but we're not including those sections. We have to
8828 change the definition to something the rest of the link can
8829 understand. */
8830
8831 bfd_boolean
8832 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8833 struct elf_link_hash_entry *h)
8834 {
8835 bfd *dynobj;
8836 struct mips_elf_link_hash_entry *hmips;
8837 struct mips_elf_link_hash_table *htab;
8838
8839 htab = mips_elf_hash_table (info);
8840 BFD_ASSERT (htab != NULL);
8841
8842 dynobj = elf_hash_table (info)->dynobj;
8843 hmips = (struct mips_elf_link_hash_entry *) h;
8844
8845 /* Make sure we know what is going on here. */
8846 BFD_ASSERT (dynobj != NULL
8847 && (h->needs_plt
8848 || h->u.weakdef != NULL
8849 || (h->def_dynamic
8850 && h->ref_regular
8851 && !h->def_regular)));
8852
8853 hmips = (struct mips_elf_link_hash_entry *) h;
8854
8855 /* If there are call relocations against an externally-defined symbol,
8856 see whether we can create a MIPS lazy-binding stub for it. We can
8857 only do this if all references to the function are through call
8858 relocations, and in that case, the traditional lazy-binding stubs
8859 are much more efficient than PLT entries.
8860
8861 Traditional stubs are only available on SVR4 psABI-based systems;
8862 VxWorks always uses PLTs instead. */
8863 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
8864 {
8865 if (! elf_hash_table (info)->dynamic_sections_created)
8866 return TRUE;
8867
8868 /* If this symbol is not defined in a regular file, then set
8869 the symbol to the stub location. This is required to make
8870 function pointers compare as equal between the normal
8871 executable and the shared library. */
8872 if (!h->def_regular)
8873 {
8874 hmips->needs_lazy_stub = TRUE;
8875 htab->lazy_stub_count++;
8876 return TRUE;
8877 }
8878 }
8879 /* As above, VxWorks requires PLT entries for externally-defined
8880 functions that are only accessed through call relocations.
8881
8882 Both VxWorks and non-VxWorks targets also need PLT entries if there
8883 are static-only relocations against an externally-defined function.
8884 This can technically occur for shared libraries if there are
8885 branches to the symbol, although it is unlikely that this will be
8886 used in practice due to the short ranges involved. It can occur
8887 for any relative or absolute relocation in executables; in that
8888 case, the PLT entry becomes the function's canonical address. */
8889 else if (((h->needs_plt && !hmips->no_fn_stub)
8890 || (h->type == STT_FUNC && hmips->has_static_relocs))
8891 && htab->use_plts_and_copy_relocs
8892 && !SYMBOL_CALLS_LOCAL (info, h)
8893 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8894 && h->root.type == bfd_link_hash_undefweak))
8895 {
8896 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
8897 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
8898
8899 /* If this is the first symbol to need a PLT entry, then make some
8900 basic setup. Also work out PLT entry sizes. We'll need them
8901 for PLT offset calculations. */
8902 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
8903 {
8904 BFD_ASSERT (htab->sgotplt->size == 0);
8905 BFD_ASSERT (htab->plt_got_index == 0);
8906
8907 /* If we're using the PLT additions to the psABI, each PLT
8908 entry is 16 bytes and the PLT0 entry is 32 bytes.
8909 Encourage better cache usage by aligning. We do this
8910 lazily to avoid pessimizing traditional objects. */
8911 if (!htab->is_vxworks
8912 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
8913 return FALSE;
8914
8915 /* Make sure that .got.plt is word-aligned. We do this lazily
8916 for the same reason as above. */
8917 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
8918 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
8919 return FALSE;
8920
8921 /* On non-VxWorks targets, the first two entries in .got.plt
8922 are reserved. */
8923 if (!htab->is_vxworks)
8924 htab->plt_got_index
8925 += (get_elf_backend_data (dynobj)->got_header_size
8926 / MIPS_ELF_GOT_SIZE (dynobj));
8927
8928 /* On VxWorks, also allocate room for the header's
8929 .rela.plt.unloaded entries. */
8930 if (htab->is_vxworks && !info->shared)
8931 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
8932
8933 /* Now work out the sizes of individual PLT entries. */
8934 if (htab->is_vxworks && info->shared)
8935 htab->plt_mips_entry_size
8936 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
8937 else if (htab->is_vxworks)
8938 htab->plt_mips_entry_size
8939 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
8940 else if (newabi_p)
8941 htab->plt_mips_entry_size
8942 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
8943 else if (!micromips_p)
8944 {
8945 htab->plt_mips_entry_size
8946 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
8947 htab->plt_comp_entry_size
8948 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
8949 }
8950 else if (htab->insn32)
8951 {
8952 htab->plt_mips_entry_size
8953 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
8954 htab->plt_comp_entry_size
8955 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
8956 }
8957 else
8958 {
8959 htab->plt_mips_entry_size
8960 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
8961 htab->plt_comp_entry_size
8962 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
8963 }
8964 }
8965
8966 if (h->plt.plist == NULL)
8967 h->plt.plist = mips_elf_make_plt_record (dynobj);
8968 if (h->plt.plist == NULL)
8969 return FALSE;
8970
8971 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
8972 n32 or n64, so always use a standard entry there.
8973
8974 If the symbol has a MIPS16 call stub and gets a PLT entry, then
8975 all MIPS16 calls will go via that stub, and there is no benefit
8976 to having a MIPS16 entry. And in the case of call_stub a
8977 standard entry actually has to be used as the stub ends with a J
8978 instruction. */
8979 if (newabi_p
8980 || htab->is_vxworks
8981 || hmips->call_stub
8982 || hmips->call_fp_stub)
8983 {
8984 h->plt.plist->need_mips = TRUE;
8985 h->plt.plist->need_comp = FALSE;
8986 }
8987
8988 /* Otherwise, if there are no direct calls to the function, we
8989 have a free choice of whether to use standard or compressed
8990 entries. Prefer microMIPS entries if the object is known to
8991 contain microMIPS code, so that it becomes possible to create
8992 pure microMIPS binaries. Prefer standard entries otherwise,
8993 because MIPS16 ones are no smaller and are usually slower. */
8994 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
8995 {
8996 if (micromips_p)
8997 h->plt.plist->need_comp = TRUE;
8998 else
8999 h->plt.plist->need_mips = TRUE;
9000 }
9001
9002 if (h->plt.plist->need_mips)
9003 {
9004 h->plt.plist->mips_offset = htab->plt_mips_offset;
9005 htab->plt_mips_offset += htab->plt_mips_entry_size;
9006 }
9007 if (h->plt.plist->need_comp)
9008 {
9009 h->plt.plist->comp_offset = htab->plt_comp_offset;
9010 htab->plt_comp_offset += htab->plt_comp_entry_size;
9011 }
9012
9013 /* Reserve the corresponding .got.plt entry now too. */
9014 h->plt.plist->gotplt_index = htab->plt_got_index++;
9015
9016 /* If the output file has no definition of the symbol, set the
9017 symbol's value to the address of the stub. */
9018 if (!info->shared && !h->def_regular)
9019 hmips->use_plt_entry = TRUE;
9020
9021 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9022 htab->srelplt->size += (htab->is_vxworks
9023 ? MIPS_ELF_RELA_SIZE (dynobj)
9024 : MIPS_ELF_REL_SIZE (dynobj));
9025
9026 /* Make room for the .rela.plt.unloaded relocations. */
9027 if (htab->is_vxworks && !info->shared)
9028 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9029
9030 /* All relocations against this symbol that could have been made
9031 dynamic will now refer to the PLT entry instead. */
9032 hmips->possibly_dynamic_relocs = 0;
9033
9034 return TRUE;
9035 }
9036
9037 /* If this is a weak symbol, and there is a real definition, the
9038 processor independent code will have arranged for us to see the
9039 real definition first, and we can just use the same value. */
9040 if (h->u.weakdef != NULL)
9041 {
9042 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
9043 || h->u.weakdef->root.type == bfd_link_hash_defweak);
9044 h->root.u.def.section = h->u.weakdef->root.u.def.section;
9045 h->root.u.def.value = h->u.weakdef->root.u.def.value;
9046 return TRUE;
9047 }
9048
9049 /* Otherwise, there is nothing further to do for symbols defined
9050 in regular objects. */
9051 if (h->def_regular)
9052 return TRUE;
9053
9054 /* There's also nothing more to do if we'll convert all relocations
9055 against this symbol into dynamic relocations. */
9056 if (!hmips->has_static_relocs)
9057 return TRUE;
9058
9059 /* We're now relying on copy relocations. Complain if we have
9060 some that we can't convert. */
9061 if (!htab->use_plts_and_copy_relocs || info->shared)
9062 {
9063 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
9064 "dynamic symbol %s"),
9065 h->root.root.string);
9066 bfd_set_error (bfd_error_bad_value);
9067 return FALSE;
9068 }
9069
9070 /* We must allocate the symbol in our .dynbss section, which will
9071 become part of the .bss section of the executable. There will be
9072 an entry for this symbol in the .dynsym section. The dynamic
9073 object will contain position independent code, so all references
9074 from the dynamic object to this symbol will go through the global
9075 offset table. The dynamic linker will use the .dynsym entry to
9076 determine the address it must put in the global offset table, so
9077 both the dynamic object and the regular object will refer to the
9078 same memory location for the variable. */
9079
9080 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9081 {
9082 if (htab->is_vxworks)
9083 htab->srelbss->size += sizeof (Elf32_External_Rela);
9084 else
9085 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9086 h->needs_copy = 1;
9087 }
9088
9089 /* All relocations against this symbol that could have been made
9090 dynamic will now refer to the local copy instead. */
9091 hmips->possibly_dynamic_relocs = 0;
9092
9093 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
9094 }
9095 \f
9096 /* This function is called after all the input files have been read,
9097 and the input sections have been assigned to output sections. We
9098 check for any mips16 stub sections that we can discard. */
9099
9100 bfd_boolean
9101 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9102 struct bfd_link_info *info)
9103 {
9104 asection *sect;
9105 struct mips_elf_link_hash_table *htab;
9106 struct mips_htab_traverse_info hti;
9107
9108 htab = mips_elf_hash_table (info);
9109 BFD_ASSERT (htab != NULL);
9110
9111 /* The .reginfo section has a fixed size. */
9112 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9113 if (sect != NULL)
9114 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9115
9116 /* The .MIPS.abiflags section has a fixed size. */
9117 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9118 if (sect != NULL)
9119 bfd_set_section_size (output_bfd, sect, sizeof (Elf_External_ABIFlags_v0));
9120
9121 hti.info = info;
9122 hti.output_bfd = output_bfd;
9123 hti.error = FALSE;
9124 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9125 mips_elf_check_symbols, &hti);
9126 if (hti.error)
9127 return FALSE;
9128
9129 return TRUE;
9130 }
9131
9132 /* If the link uses a GOT, lay it out and work out its size. */
9133
9134 static bfd_boolean
9135 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9136 {
9137 bfd *dynobj;
9138 asection *s;
9139 struct mips_got_info *g;
9140 bfd_size_type loadable_size = 0;
9141 bfd_size_type page_gotno;
9142 bfd *ibfd;
9143 struct mips_elf_traverse_got_arg tga;
9144 struct mips_elf_link_hash_table *htab;
9145
9146 htab = mips_elf_hash_table (info);
9147 BFD_ASSERT (htab != NULL);
9148
9149 s = htab->sgot;
9150 if (s == NULL)
9151 return TRUE;
9152
9153 dynobj = elf_hash_table (info)->dynobj;
9154 g = htab->got_info;
9155
9156 /* Allocate room for the reserved entries. VxWorks always reserves
9157 3 entries; other objects only reserve 2 entries. */
9158 BFD_ASSERT (g->assigned_low_gotno == 0);
9159 if (htab->is_vxworks)
9160 htab->reserved_gotno = 3;
9161 else
9162 htab->reserved_gotno = 2;
9163 g->local_gotno += htab->reserved_gotno;
9164 g->assigned_low_gotno = htab->reserved_gotno;
9165
9166 /* Decide which symbols need to go in the global part of the GOT and
9167 count the number of reloc-only GOT symbols. */
9168 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9169
9170 if (!mips_elf_resolve_final_got_entries (info, g))
9171 return FALSE;
9172
9173 /* Calculate the total loadable size of the output. That
9174 will give us the maximum number of GOT_PAGE entries
9175 required. */
9176 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9177 {
9178 asection *subsection;
9179
9180 for (subsection = ibfd->sections;
9181 subsection;
9182 subsection = subsection->next)
9183 {
9184 if ((subsection->flags & SEC_ALLOC) == 0)
9185 continue;
9186 loadable_size += ((subsection->size + 0xf)
9187 &~ (bfd_size_type) 0xf);
9188 }
9189 }
9190
9191 if (htab->is_vxworks)
9192 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9193 relocations against local symbols evaluate to "G", and the EABI does
9194 not include R_MIPS_GOT_PAGE. */
9195 page_gotno = 0;
9196 else
9197 /* Assume there are two loadable segments consisting of contiguous
9198 sections. Is 5 enough? */
9199 page_gotno = (loadable_size >> 16) + 5;
9200
9201 /* Choose the smaller of the two page estimates; both are intended to be
9202 conservative. */
9203 if (page_gotno > g->page_gotno)
9204 page_gotno = g->page_gotno;
9205
9206 g->local_gotno += page_gotno;
9207 g->assigned_high_gotno = g->local_gotno - 1;
9208
9209 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9210 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9211 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9212
9213 /* VxWorks does not support multiple GOTs. It initializes $gp to
9214 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9215 dynamic loader. */
9216 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9217 {
9218 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9219 return FALSE;
9220 }
9221 else
9222 {
9223 /* Record that all bfds use G. This also has the effect of freeing
9224 the per-bfd GOTs, which we no longer need. */
9225 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9226 if (mips_elf_bfd_got (ibfd, FALSE))
9227 mips_elf_replace_bfd_got (ibfd, g);
9228 mips_elf_replace_bfd_got (output_bfd, g);
9229
9230 /* Set up TLS entries. */
9231 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9232 tga.info = info;
9233 tga.g = g;
9234 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9235 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9236 if (!tga.g)
9237 return FALSE;
9238 BFD_ASSERT (g->tls_assigned_gotno
9239 == g->global_gotno + g->local_gotno + g->tls_gotno);
9240
9241 /* Each VxWorks GOT entry needs an explicit relocation. */
9242 if (htab->is_vxworks && info->shared)
9243 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9244
9245 /* Allocate room for the TLS relocations. */
9246 if (g->relocs)
9247 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9248 }
9249
9250 return TRUE;
9251 }
9252
9253 /* Estimate the size of the .MIPS.stubs section. */
9254
9255 static void
9256 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9257 {
9258 struct mips_elf_link_hash_table *htab;
9259 bfd_size_type dynsymcount;
9260
9261 htab = mips_elf_hash_table (info);
9262 BFD_ASSERT (htab != NULL);
9263
9264 if (htab->lazy_stub_count == 0)
9265 return;
9266
9267 /* IRIX rld assumes that a function stub isn't at the end of the .text
9268 section, so add a dummy entry to the end. */
9269 htab->lazy_stub_count++;
9270
9271 /* Get a worst-case estimate of the number of dynamic symbols needed.
9272 At this point, dynsymcount does not account for section symbols
9273 and count_section_dynsyms may overestimate the number that will
9274 be needed. */
9275 dynsymcount = (elf_hash_table (info)->dynsymcount
9276 + count_section_dynsyms (output_bfd, info));
9277
9278 /* Determine the size of one stub entry. There's no disadvantage
9279 from using microMIPS code here, so for the sake of pure-microMIPS
9280 binaries we prefer it whenever there's any microMIPS code in
9281 output produced at all. This has a benefit of stubs being
9282 shorter by 4 bytes each too, unless in the insn32 mode. */
9283 if (!MICROMIPS_P (output_bfd))
9284 htab->function_stub_size = (dynsymcount > 0x10000
9285 ? MIPS_FUNCTION_STUB_BIG_SIZE
9286 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9287 else if (htab->insn32)
9288 htab->function_stub_size = (dynsymcount > 0x10000
9289 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9290 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9291 else
9292 htab->function_stub_size = (dynsymcount > 0x10000
9293 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9294 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9295
9296 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9297 }
9298
9299 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9300 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9301 stub, allocate an entry in the stubs section. */
9302
9303 static bfd_boolean
9304 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9305 {
9306 struct mips_htab_traverse_info *hti = data;
9307 struct mips_elf_link_hash_table *htab;
9308 struct bfd_link_info *info;
9309 bfd *output_bfd;
9310
9311 info = hti->info;
9312 output_bfd = hti->output_bfd;
9313 htab = mips_elf_hash_table (info);
9314 BFD_ASSERT (htab != NULL);
9315
9316 if (h->needs_lazy_stub)
9317 {
9318 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9319 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9320 bfd_vma isa_bit = micromips_p;
9321
9322 BFD_ASSERT (htab->root.dynobj != NULL);
9323 if (h->root.plt.plist == NULL)
9324 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9325 if (h->root.plt.plist == NULL)
9326 {
9327 hti->error = TRUE;
9328 return FALSE;
9329 }
9330 h->root.root.u.def.section = htab->sstubs;
9331 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9332 h->root.plt.plist->stub_offset = htab->sstubs->size;
9333 h->root.other = other;
9334 htab->sstubs->size += htab->function_stub_size;
9335 }
9336 return TRUE;
9337 }
9338
9339 /* Allocate offsets in the stubs section to each symbol that needs one.
9340 Set the final size of the .MIPS.stub section. */
9341
9342 static bfd_boolean
9343 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9344 {
9345 bfd *output_bfd = info->output_bfd;
9346 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9347 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9348 bfd_vma isa_bit = micromips_p;
9349 struct mips_elf_link_hash_table *htab;
9350 struct mips_htab_traverse_info hti;
9351 struct elf_link_hash_entry *h;
9352 bfd *dynobj;
9353
9354 htab = mips_elf_hash_table (info);
9355 BFD_ASSERT (htab != NULL);
9356
9357 if (htab->lazy_stub_count == 0)
9358 return TRUE;
9359
9360 htab->sstubs->size = 0;
9361 hti.info = info;
9362 hti.output_bfd = output_bfd;
9363 hti.error = FALSE;
9364 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9365 if (hti.error)
9366 return FALSE;
9367 htab->sstubs->size += htab->function_stub_size;
9368 BFD_ASSERT (htab->sstubs->size
9369 == htab->lazy_stub_count * htab->function_stub_size);
9370
9371 dynobj = elf_hash_table (info)->dynobj;
9372 BFD_ASSERT (dynobj != NULL);
9373 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9374 if (h == NULL)
9375 return FALSE;
9376 h->root.u.def.value = isa_bit;
9377 h->other = other;
9378 h->type = STT_FUNC;
9379
9380 return TRUE;
9381 }
9382
9383 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9384 bfd_link_info. If H uses the address of a PLT entry as the value
9385 of the symbol, then set the entry in the symbol table now. Prefer
9386 a standard MIPS PLT entry. */
9387
9388 static bfd_boolean
9389 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9390 {
9391 struct bfd_link_info *info = data;
9392 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9393 struct mips_elf_link_hash_table *htab;
9394 unsigned int other;
9395 bfd_vma isa_bit;
9396 bfd_vma val;
9397
9398 htab = mips_elf_hash_table (info);
9399 BFD_ASSERT (htab != NULL);
9400
9401 if (h->use_plt_entry)
9402 {
9403 BFD_ASSERT (h->root.plt.plist != NULL);
9404 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9405 || h->root.plt.plist->comp_offset != MINUS_ONE);
9406
9407 val = htab->plt_header_size;
9408 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9409 {
9410 isa_bit = 0;
9411 val += h->root.plt.plist->mips_offset;
9412 other = 0;
9413 }
9414 else
9415 {
9416 isa_bit = 1;
9417 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9418 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9419 }
9420 val += isa_bit;
9421 /* For VxWorks, point at the PLT load stub rather than the lazy
9422 resolution stub; this stub will become the canonical function
9423 address. */
9424 if (htab->is_vxworks)
9425 val += 8;
9426
9427 h->root.root.u.def.section = htab->splt;
9428 h->root.root.u.def.value = val;
9429 h->root.other = other;
9430 }
9431
9432 return TRUE;
9433 }
9434
9435 /* Set the sizes of the dynamic sections. */
9436
9437 bfd_boolean
9438 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9439 struct bfd_link_info *info)
9440 {
9441 bfd *dynobj;
9442 asection *s, *sreldyn;
9443 bfd_boolean reltext;
9444 struct mips_elf_link_hash_table *htab;
9445
9446 htab = mips_elf_hash_table (info);
9447 BFD_ASSERT (htab != NULL);
9448 dynobj = elf_hash_table (info)->dynobj;
9449 BFD_ASSERT (dynobj != NULL);
9450
9451 if (elf_hash_table (info)->dynamic_sections_created)
9452 {
9453 /* Set the contents of the .interp section to the interpreter. */
9454 if (info->executable)
9455 {
9456 s = bfd_get_linker_section (dynobj, ".interp");
9457 BFD_ASSERT (s != NULL);
9458 s->size
9459 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9460 s->contents
9461 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9462 }
9463
9464 /* Figure out the size of the PLT header if we know that we
9465 are using it. For the sake of cache alignment always use
9466 a standard header whenever any standard entries are present
9467 even if microMIPS entries are present as well. This also
9468 lets the microMIPS header rely on the value of $v0 only set
9469 by microMIPS entries, for a small size reduction.
9470
9471 Set symbol table entry values for symbols that use the
9472 address of their PLT entry now that we can calculate it.
9473
9474 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9475 haven't already in _bfd_elf_create_dynamic_sections. */
9476 if (htab->splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9477 {
9478 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9479 && !htab->plt_mips_offset);
9480 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9481 bfd_vma isa_bit = micromips_p;
9482 struct elf_link_hash_entry *h;
9483 bfd_vma size;
9484
9485 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9486 BFD_ASSERT (htab->sgotplt->size == 0);
9487 BFD_ASSERT (htab->splt->size == 0);
9488
9489 if (htab->is_vxworks && info->shared)
9490 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9491 else if (htab->is_vxworks)
9492 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9493 else if (ABI_64_P (output_bfd))
9494 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9495 else if (ABI_N32_P (output_bfd))
9496 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9497 else if (!micromips_p)
9498 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9499 else if (htab->insn32)
9500 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9501 else
9502 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9503
9504 htab->plt_header_is_comp = micromips_p;
9505 htab->plt_header_size = size;
9506 htab->splt->size = (size
9507 + htab->plt_mips_offset
9508 + htab->plt_comp_offset);
9509 htab->sgotplt->size = (htab->plt_got_index
9510 * MIPS_ELF_GOT_SIZE (dynobj));
9511
9512 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9513
9514 if (htab->root.hplt == NULL)
9515 {
9516 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
9517 "_PROCEDURE_LINKAGE_TABLE_");
9518 htab->root.hplt = h;
9519 if (h == NULL)
9520 return FALSE;
9521 }
9522
9523 h = htab->root.hplt;
9524 h->root.u.def.value = isa_bit;
9525 h->other = other;
9526 h->type = STT_FUNC;
9527 }
9528 }
9529
9530 /* Allocate space for global sym dynamic relocs. */
9531 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9532
9533 mips_elf_estimate_stub_size (output_bfd, info);
9534
9535 if (!mips_elf_lay_out_got (output_bfd, info))
9536 return FALSE;
9537
9538 mips_elf_lay_out_lazy_stubs (info);
9539
9540 /* The check_relocs and adjust_dynamic_symbol entry points have
9541 determined the sizes of the various dynamic sections. Allocate
9542 memory for them. */
9543 reltext = FALSE;
9544 for (s = dynobj->sections; s != NULL; s = s->next)
9545 {
9546 const char *name;
9547
9548 /* It's OK to base decisions on the section name, because none
9549 of the dynobj section names depend upon the input files. */
9550 name = bfd_get_section_name (dynobj, s);
9551
9552 if ((s->flags & SEC_LINKER_CREATED) == 0)
9553 continue;
9554
9555 if (CONST_STRNEQ (name, ".rel"))
9556 {
9557 if (s->size != 0)
9558 {
9559 const char *outname;
9560 asection *target;
9561
9562 /* If this relocation section applies to a read only
9563 section, then we probably need a DT_TEXTREL entry.
9564 If the relocation section is .rel(a).dyn, we always
9565 assert a DT_TEXTREL entry rather than testing whether
9566 there exists a relocation to a read only section or
9567 not. */
9568 outname = bfd_get_section_name (output_bfd,
9569 s->output_section);
9570 target = bfd_get_section_by_name (output_bfd, outname + 4);
9571 if ((target != NULL
9572 && (target->flags & SEC_READONLY) != 0
9573 && (target->flags & SEC_ALLOC) != 0)
9574 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9575 reltext = TRUE;
9576
9577 /* We use the reloc_count field as a counter if we need
9578 to copy relocs into the output file. */
9579 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9580 s->reloc_count = 0;
9581
9582 /* If combreloc is enabled, elf_link_sort_relocs() will
9583 sort relocations, but in a different way than we do,
9584 and before we're done creating relocations. Also, it
9585 will move them around between input sections'
9586 relocation's contents, so our sorting would be
9587 broken, so don't let it run. */
9588 info->combreloc = 0;
9589 }
9590 }
9591 else if (! info->shared
9592 && ! mips_elf_hash_table (info)->use_rld_obj_head
9593 && CONST_STRNEQ (name, ".rld_map"))
9594 {
9595 /* We add a room for __rld_map. It will be filled in by the
9596 rtld to contain a pointer to the _r_debug structure. */
9597 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9598 }
9599 else if (SGI_COMPAT (output_bfd)
9600 && CONST_STRNEQ (name, ".compact_rel"))
9601 s->size += mips_elf_hash_table (info)->compact_rel_size;
9602 else if (s == htab->splt)
9603 {
9604 /* If the last PLT entry has a branch delay slot, allocate
9605 room for an extra nop to fill the delay slot. This is
9606 for CPUs without load interlocking. */
9607 if (! LOAD_INTERLOCKS_P (output_bfd)
9608 && ! htab->is_vxworks && s->size > 0)
9609 s->size += 4;
9610 }
9611 else if (! CONST_STRNEQ (name, ".init")
9612 && s != htab->sgot
9613 && s != htab->sgotplt
9614 && s != htab->sstubs
9615 && s != htab->sdynbss)
9616 {
9617 /* It's not one of our sections, so don't allocate space. */
9618 continue;
9619 }
9620
9621 if (s->size == 0)
9622 {
9623 s->flags |= SEC_EXCLUDE;
9624 continue;
9625 }
9626
9627 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9628 continue;
9629
9630 /* Allocate memory for the section contents. */
9631 s->contents = bfd_zalloc (dynobj, s->size);
9632 if (s->contents == NULL)
9633 {
9634 bfd_set_error (bfd_error_no_memory);
9635 return FALSE;
9636 }
9637 }
9638
9639 if (elf_hash_table (info)->dynamic_sections_created)
9640 {
9641 /* Add some entries to the .dynamic section. We fill in the
9642 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9643 must add the entries now so that we get the correct size for
9644 the .dynamic section. */
9645
9646 /* SGI object has the equivalence of DT_DEBUG in the
9647 DT_MIPS_RLD_MAP entry. This must come first because glibc
9648 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9649 may only look at the first one they see. */
9650 if (!info->shared
9651 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9652 return FALSE;
9653
9654 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9655 used by the debugger. */
9656 if (info->executable
9657 && !SGI_COMPAT (output_bfd)
9658 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9659 return FALSE;
9660
9661 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9662 info->flags |= DF_TEXTREL;
9663
9664 if ((info->flags & DF_TEXTREL) != 0)
9665 {
9666 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9667 return FALSE;
9668
9669 /* Clear the DF_TEXTREL flag. It will be set again if we
9670 write out an actual text relocation; we may not, because
9671 at this point we do not know whether e.g. any .eh_frame
9672 absolute relocations have been converted to PC-relative. */
9673 info->flags &= ~DF_TEXTREL;
9674 }
9675
9676 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9677 return FALSE;
9678
9679 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9680 if (htab->is_vxworks)
9681 {
9682 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9683 use any of the DT_MIPS_* tags. */
9684 if (sreldyn && sreldyn->size > 0)
9685 {
9686 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9687 return FALSE;
9688
9689 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9690 return FALSE;
9691
9692 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9693 return FALSE;
9694 }
9695 }
9696 else
9697 {
9698 if (sreldyn && sreldyn->size > 0)
9699 {
9700 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9701 return FALSE;
9702
9703 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9704 return FALSE;
9705
9706 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9707 return FALSE;
9708 }
9709
9710 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9711 return FALSE;
9712
9713 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9714 return FALSE;
9715
9716 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9717 return FALSE;
9718
9719 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9720 return FALSE;
9721
9722 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9723 return FALSE;
9724
9725 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9726 return FALSE;
9727
9728 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9729 return FALSE;
9730
9731 if (IRIX_COMPAT (dynobj) == ict_irix5
9732 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9733 return FALSE;
9734
9735 if (IRIX_COMPAT (dynobj) == ict_irix6
9736 && (bfd_get_section_by_name
9737 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9738 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9739 return FALSE;
9740 }
9741 if (htab->splt->size > 0)
9742 {
9743 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9744 return FALSE;
9745
9746 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9747 return FALSE;
9748
9749 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9750 return FALSE;
9751
9752 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9753 return FALSE;
9754 }
9755 if (htab->is_vxworks
9756 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9757 return FALSE;
9758 }
9759
9760 return TRUE;
9761 }
9762 \f
9763 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9764 Adjust its R_ADDEND field so that it is correct for the output file.
9765 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9766 and sections respectively; both use symbol indexes. */
9767
9768 static void
9769 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9770 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9771 asection **local_sections, Elf_Internal_Rela *rel)
9772 {
9773 unsigned int r_type, r_symndx;
9774 Elf_Internal_Sym *sym;
9775 asection *sec;
9776
9777 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9778 {
9779 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9780 if (gprel16_reloc_p (r_type)
9781 || r_type == R_MIPS_GPREL32
9782 || literal_reloc_p (r_type))
9783 {
9784 rel->r_addend += _bfd_get_gp_value (input_bfd);
9785 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9786 }
9787
9788 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9789 sym = local_syms + r_symndx;
9790
9791 /* Adjust REL's addend to account for section merging. */
9792 if (!info->relocatable)
9793 {
9794 sec = local_sections[r_symndx];
9795 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9796 }
9797
9798 /* This would normally be done by the rela_normal code in elflink.c. */
9799 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9800 rel->r_addend += local_sections[r_symndx]->output_offset;
9801 }
9802 }
9803
9804 /* Handle relocations against symbols from removed linkonce sections,
9805 or sections discarded by a linker script. We use this wrapper around
9806 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
9807 on 64-bit ELF targets. In this case for any relocation handled, which
9808 always be the first in a triplet, the remaining two have to be processed
9809 together with the first, even if they are R_MIPS_NONE. It is the symbol
9810 index referred by the first reloc that applies to all the three and the
9811 remaining two never refer to an object symbol. And it is the final
9812 relocation (the last non-null one) that determines the output field of
9813 the whole relocation so retrieve the corresponding howto structure for
9814 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
9815
9816 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
9817 and therefore requires to be pasted in a loop. It also defines a block
9818 and does not protect any of its arguments, hence the extra brackets. */
9819
9820 static void
9821 mips_reloc_against_discarded_section (bfd *output_bfd,
9822 struct bfd_link_info *info,
9823 bfd *input_bfd, asection *input_section,
9824 Elf_Internal_Rela **rel,
9825 const Elf_Internal_Rela **relend,
9826 bfd_boolean rel_reloc,
9827 reloc_howto_type *howto,
9828 bfd_byte *contents)
9829 {
9830 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9831 int count = bed->s->int_rels_per_ext_rel;
9832 unsigned int r_type;
9833 int i;
9834
9835 for (i = count - 1; i > 0; i--)
9836 {
9837 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
9838 if (r_type != R_MIPS_NONE)
9839 {
9840 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9841 break;
9842 }
9843 }
9844 do
9845 {
9846 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9847 (*rel), count, (*relend),
9848 howto, i, contents);
9849 }
9850 while (0);
9851 }
9852
9853 /* Relocate a MIPS ELF section. */
9854
9855 bfd_boolean
9856 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
9857 bfd *input_bfd, asection *input_section,
9858 bfd_byte *contents, Elf_Internal_Rela *relocs,
9859 Elf_Internal_Sym *local_syms,
9860 asection **local_sections)
9861 {
9862 Elf_Internal_Rela *rel;
9863 const Elf_Internal_Rela *relend;
9864 bfd_vma addend = 0;
9865 bfd_boolean use_saved_addend_p = FALSE;
9866 const struct elf_backend_data *bed;
9867
9868 bed = get_elf_backend_data (output_bfd);
9869 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
9870 for (rel = relocs; rel < relend; ++rel)
9871 {
9872 const char *name;
9873 bfd_vma value = 0;
9874 reloc_howto_type *howto;
9875 bfd_boolean cross_mode_jump_p = FALSE;
9876 /* TRUE if the relocation is a RELA relocation, rather than a
9877 REL relocation. */
9878 bfd_boolean rela_relocation_p = TRUE;
9879 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9880 const char *msg;
9881 unsigned long r_symndx;
9882 asection *sec;
9883 Elf_Internal_Shdr *symtab_hdr;
9884 struct elf_link_hash_entry *h;
9885 bfd_boolean rel_reloc;
9886
9887 rel_reloc = (NEWABI_P (input_bfd)
9888 && mips_elf_rel_relocation_p (input_bfd, input_section,
9889 relocs, rel));
9890 /* Find the relocation howto for this relocation. */
9891 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9892
9893 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
9894 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9895 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9896 {
9897 sec = local_sections[r_symndx];
9898 h = NULL;
9899 }
9900 else
9901 {
9902 unsigned long extsymoff;
9903
9904 extsymoff = 0;
9905 if (!elf_bad_symtab (input_bfd))
9906 extsymoff = symtab_hdr->sh_info;
9907 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
9908 while (h->root.type == bfd_link_hash_indirect
9909 || h->root.type == bfd_link_hash_warning)
9910 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9911
9912 sec = NULL;
9913 if (h->root.type == bfd_link_hash_defined
9914 || h->root.type == bfd_link_hash_defweak)
9915 sec = h->root.u.def.section;
9916 }
9917
9918 if (sec != NULL && discarded_section (sec))
9919 {
9920 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
9921 input_section, &rel, &relend,
9922 rel_reloc, howto, contents);
9923 continue;
9924 }
9925
9926 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
9927 {
9928 /* Some 32-bit code uses R_MIPS_64. In particular, people use
9929 64-bit code, but make sure all their addresses are in the
9930 lowermost or uppermost 32-bit section of the 64-bit address
9931 space. Thus, when they use an R_MIPS_64 they mean what is
9932 usually meant by R_MIPS_32, with the exception that the
9933 stored value is sign-extended to 64 bits. */
9934 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
9935
9936 /* On big-endian systems, we need to lie about the position
9937 of the reloc. */
9938 if (bfd_big_endian (input_bfd))
9939 rel->r_offset += 4;
9940 }
9941
9942 if (!use_saved_addend_p)
9943 {
9944 /* If these relocations were originally of the REL variety,
9945 we must pull the addend out of the field that will be
9946 relocated. Otherwise, we simply use the contents of the
9947 RELA relocation. */
9948 if (mips_elf_rel_relocation_p (input_bfd, input_section,
9949 relocs, rel))
9950 {
9951 rela_relocation_p = FALSE;
9952 addend = mips_elf_read_rel_addend (input_bfd, rel,
9953 howto, contents);
9954 if (hi16_reloc_p (r_type)
9955 || (got16_reloc_p (r_type)
9956 && mips_elf_local_relocation_p (input_bfd, rel,
9957 local_sections)))
9958 {
9959 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
9960 contents, &addend))
9961 {
9962 if (h)
9963 name = h->root.root.string;
9964 else
9965 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9966 local_syms + r_symndx,
9967 sec);
9968 (*_bfd_error_handler)
9969 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
9970 input_bfd, input_section, name, howto->name,
9971 rel->r_offset);
9972 }
9973 }
9974 else
9975 addend <<= howto->rightshift;
9976 }
9977 else
9978 addend = rel->r_addend;
9979 mips_elf_adjust_addend (output_bfd, info, input_bfd,
9980 local_syms, local_sections, rel);
9981 }
9982
9983 if (info->relocatable)
9984 {
9985 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
9986 && bfd_big_endian (input_bfd))
9987 rel->r_offset -= 4;
9988
9989 if (!rela_relocation_p && rel->r_addend)
9990 {
9991 addend += rel->r_addend;
9992 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
9993 addend = mips_elf_high (addend);
9994 else if (r_type == R_MIPS_HIGHER)
9995 addend = mips_elf_higher (addend);
9996 else if (r_type == R_MIPS_HIGHEST)
9997 addend = mips_elf_highest (addend);
9998 else
9999 addend >>= howto->rightshift;
10000
10001 /* We use the source mask, rather than the destination
10002 mask because the place to which we are writing will be
10003 source of the addend in the final link. */
10004 addend &= howto->src_mask;
10005
10006 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10007 /* See the comment above about using R_MIPS_64 in the 32-bit
10008 ABI. Here, we need to update the addend. It would be
10009 possible to get away with just using the R_MIPS_32 reloc
10010 but for endianness. */
10011 {
10012 bfd_vma sign_bits;
10013 bfd_vma low_bits;
10014 bfd_vma high_bits;
10015
10016 if (addend & ((bfd_vma) 1 << 31))
10017 #ifdef BFD64
10018 sign_bits = ((bfd_vma) 1 << 32) - 1;
10019 #else
10020 sign_bits = -1;
10021 #endif
10022 else
10023 sign_bits = 0;
10024
10025 /* If we don't know that we have a 64-bit type,
10026 do two separate stores. */
10027 if (bfd_big_endian (input_bfd))
10028 {
10029 /* Store the sign-bits (which are most significant)
10030 first. */
10031 low_bits = sign_bits;
10032 high_bits = addend;
10033 }
10034 else
10035 {
10036 low_bits = addend;
10037 high_bits = sign_bits;
10038 }
10039 bfd_put_32 (input_bfd, low_bits,
10040 contents + rel->r_offset);
10041 bfd_put_32 (input_bfd, high_bits,
10042 contents + rel->r_offset + 4);
10043 continue;
10044 }
10045
10046 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10047 input_bfd, input_section,
10048 contents, FALSE))
10049 return FALSE;
10050 }
10051
10052 /* Go on to the next relocation. */
10053 continue;
10054 }
10055
10056 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10057 relocations for the same offset. In that case we are
10058 supposed to treat the output of each relocation as the addend
10059 for the next. */
10060 if (rel + 1 < relend
10061 && rel->r_offset == rel[1].r_offset
10062 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10063 use_saved_addend_p = TRUE;
10064 else
10065 use_saved_addend_p = FALSE;
10066
10067 /* Figure out what value we are supposed to relocate. */
10068 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10069 input_section, info, rel,
10070 addend, howto, local_syms,
10071 local_sections, &value,
10072 &name, &cross_mode_jump_p,
10073 use_saved_addend_p))
10074 {
10075 case bfd_reloc_continue:
10076 /* There's nothing to do. */
10077 continue;
10078
10079 case bfd_reloc_undefined:
10080 /* mips_elf_calculate_relocation already called the
10081 undefined_symbol callback. There's no real point in
10082 trying to perform the relocation at this point, so we
10083 just skip ahead to the next relocation. */
10084 continue;
10085
10086 case bfd_reloc_notsupported:
10087 msg = _("internal error: unsupported relocation error");
10088 info->callbacks->warning
10089 (info, msg, name, input_bfd, input_section, rel->r_offset);
10090 return FALSE;
10091
10092 case bfd_reloc_overflow:
10093 if (use_saved_addend_p)
10094 /* Ignore overflow until we reach the last relocation for
10095 a given location. */
10096 ;
10097 else
10098 {
10099 struct mips_elf_link_hash_table *htab;
10100
10101 htab = mips_elf_hash_table (info);
10102 BFD_ASSERT (htab != NULL);
10103 BFD_ASSERT (name != NULL);
10104 if (!htab->small_data_overflow_reported
10105 && (gprel16_reloc_p (howto->type)
10106 || literal_reloc_p (howto->type)))
10107 {
10108 msg = _("small-data section exceeds 64KB;"
10109 " lower small-data size limit (see option -G)");
10110
10111 htab->small_data_overflow_reported = TRUE;
10112 (*info->callbacks->einfo) ("%P: %s\n", msg);
10113 }
10114 if (! ((*info->callbacks->reloc_overflow)
10115 (info, NULL, name, howto->name, (bfd_vma) 0,
10116 input_bfd, input_section, rel->r_offset)))
10117 return FALSE;
10118 }
10119 break;
10120
10121 case bfd_reloc_ok:
10122 break;
10123
10124 case bfd_reloc_outofrange:
10125 if (jal_reloc_p (howto->type))
10126 {
10127 msg = _("JALX to a non-word-aligned address");
10128 info->callbacks->warning
10129 (info, msg, name, input_bfd, input_section, rel->r_offset);
10130 return FALSE;
10131 }
10132 /* Fall through. */
10133
10134 default:
10135 abort ();
10136 break;
10137 }
10138
10139 /* If we've got another relocation for the address, keep going
10140 until we reach the last one. */
10141 if (use_saved_addend_p)
10142 {
10143 addend = value;
10144 continue;
10145 }
10146
10147 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10148 /* See the comment above about using R_MIPS_64 in the 32-bit
10149 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10150 that calculated the right value. Now, however, we
10151 sign-extend the 32-bit result to 64-bits, and store it as a
10152 64-bit value. We are especially generous here in that we
10153 go to extreme lengths to support this usage on systems with
10154 only a 32-bit VMA. */
10155 {
10156 bfd_vma sign_bits;
10157 bfd_vma low_bits;
10158 bfd_vma high_bits;
10159
10160 if (value & ((bfd_vma) 1 << 31))
10161 #ifdef BFD64
10162 sign_bits = ((bfd_vma) 1 << 32) - 1;
10163 #else
10164 sign_bits = -1;
10165 #endif
10166 else
10167 sign_bits = 0;
10168
10169 /* If we don't know that we have a 64-bit type,
10170 do two separate stores. */
10171 if (bfd_big_endian (input_bfd))
10172 {
10173 /* Undo what we did above. */
10174 rel->r_offset -= 4;
10175 /* Store the sign-bits (which are most significant)
10176 first. */
10177 low_bits = sign_bits;
10178 high_bits = value;
10179 }
10180 else
10181 {
10182 low_bits = value;
10183 high_bits = sign_bits;
10184 }
10185 bfd_put_32 (input_bfd, low_bits,
10186 contents + rel->r_offset);
10187 bfd_put_32 (input_bfd, high_bits,
10188 contents + rel->r_offset + 4);
10189 continue;
10190 }
10191
10192 /* Actually perform the relocation. */
10193 if (! mips_elf_perform_relocation (info, howto, rel, value,
10194 input_bfd, input_section,
10195 contents, cross_mode_jump_p))
10196 return FALSE;
10197 }
10198
10199 return TRUE;
10200 }
10201 \f
10202 /* A function that iterates over each entry in la25_stubs and fills
10203 in the code for each one. DATA points to a mips_htab_traverse_info. */
10204
10205 static int
10206 mips_elf_create_la25_stub (void **slot, void *data)
10207 {
10208 struct mips_htab_traverse_info *hti;
10209 struct mips_elf_link_hash_table *htab;
10210 struct mips_elf_la25_stub *stub;
10211 asection *s;
10212 bfd_byte *loc;
10213 bfd_vma offset, target, target_high, target_low;
10214
10215 stub = (struct mips_elf_la25_stub *) *slot;
10216 hti = (struct mips_htab_traverse_info *) data;
10217 htab = mips_elf_hash_table (hti->info);
10218 BFD_ASSERT (htab != NULL);
10219
10220 /* Create the section contents, if we haven't already. */
10221 s = stub->stub_section;
10222 loc = s->contents;
10223 if (loc == NULL)
10224 {
10225 loc = bfd_malloc (s->size);
10226 if (loc == NULL)
10227 {
10228 hti->error = TRUE;
10229 return FALSE;
10230 }
10231 s->contents = loc;
10232 }
10233
10234 /* Work out where in the section this stub should go. */
10235 offset = stub->offset;
10236
10237 /* Work out the target address. */
10238 target = mips_elf_get_la25_target (stub, &s);
10239 target += s->output_section->vma + s->output_offset;
10240
10241 target_high = ((target + 0x8000) >> 16) & 0xffff;
10242 target_low = (target & 0xffff);
10243
10244 if (stub->stub_section != htab->strampoline)
10245 {
10246 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10247 of the section and write the two instructions at the end. */
10248 memset (loc, 0, offset);
10249 loc += offset;
10250 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10251 {
10252 bfd_put_micromips_32 (hti->output_bfd,
10253 LA25_LUI_MICROMIPS (target_high),
10254 loc);
10255 bfd_put_micromips_32 (hti->output_bfd,
10256 LA25_ADDIU_MICROMIPS (target_low),
10257 loc + 4);
10258 }
10259 else
10260 {
10261 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10262 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10263 }
10264 }
10265 else
10266 {
10267 /* This is trampoline. */
10268 loc += offset;
10269 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10270 {
10271 bfd_put_micromips_32 (hti->output_bfd,
10272 LA25_LUI_MICROMIPS (target_high), loc);
10273 bfd_put_micromips_32 (hti->output_bfd,
10274 LA25_J_MICROMIPS (target), loc + 4);
10275 bfd_put_micromips_32 (hti->output_bfd,
10276 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10277 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10278 }
10279 else
10280 {
10281 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10282 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10283 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10284 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10285 }
10286 }
10287 return TRUE;
10288 }
10289
10290 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10291 adjust it appropriately now. */
10292
10293 static void
10294 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10295 const char *name, Elf_Internal_Sym *sym)
10296 {
10297 /* The linker script takes care of providing names and values for
10298 these, but we must place them into the right sections. */
10299 static const char* const text_section_symbols[] = {
10300 "_ftext",
10301 "_etext",
10302 "__dso_displacement",
10303 "__elf_header",
10304 "__program_header_table",
10305 NULL
10306 };
10307
10308 static const char* const data_section_symbols[] = {
10309 "_fdata",
10310 "_edata",
10311 "_end",
10312 "_fbss",
10313 NULL
10314 };
10315
10316 const char* const *p;
10317 int i;
10318
10319 for (i = 0; i < 2; ++i)
10320 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10321 *p;
10322 ++p)
10323 if (strcmp (*p, name) == 0)
10324 {
10325 /* All of these symbols are given type STT_SECTION by the
10326 IRIX6 linker. */
10327 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10328 sym->st_other = STO_PROTECTED;
10329
10330 /* The IRIX linker puts these symbols in special sections. */
10331 if (i == 0)
10332 sym->st_shndx = SHN_MIPS_TEXT;
10333 else
10334 sym->st_shndx = SHN_MIPS_DATA;
10335
10336 break;
10337 }
10338 }
10339
10340 /* Finish up dynamic symbol handling. We set the contents of various
10341 dynamic sections here. */
10342
10343 bfd_boolean
10344 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10345 struct bfd_link_info *info,
10346 struct elf_link_hash_entry *h,
10347 Elf_Internal_Sym *sym)
10348 {
10349 bfd *dynobj;
10350 asection *sgot;
10351 struct mips_got_info *g, *gg;
10352 const char *name;
10353 int idx;
10354 struct mips_elf_link_hash_table *htab;
10355 struct mips_elf_link_hash_entry *hmips;
10356
10357 htab = mips_elf_hash_table (info);
10358 BFD_ASSERT (htab != NULL);
10359 dynobj = elf_hash_table (info)->dynobj;
10360 hmips = (struct mips_elf_link_hash_entry *) h;
10361
10362 BFD_ASSERT (!htab->is_vxworks);
10363
10364 if (h->plt.plist != NULL
10365 && (h->plt.plist->mips_offset != MINUS_ONE
10366 || h->plt.plist->comp_offset != MINUS_ONE))
10367 {
10368 /* We've decided to create a PLT entry for this symbol. */
10369 bfd_byte *loc;
10370 bfd_vma header_address, got_address;
10371 bfd_vma got_address_high, got_address_low, load;
10372 bfd_vma got_index;
10373 bfd_vma isa_bit;
10374
10375 got_index = h->plt.plist->gotplt_index;
10376
10377 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10378 BFD_ASSERT (h->dynindx != -1);
10379 BFD_ASSERT (htab->splt != NULL);
10380 BFD_ASSERT (got_index != MINUS_ONE);
10381 BFD_ASSERT (!h->def_regular);
10382
10383 /* Calculate the address of the PLT header. */
10384 isa_bit = htab->plt_header_is_comp;
10385 header_address = (htab->splt->output_section->vma
10386 + htab->splt->output_offset + isa_bit);
10387
10388 /* Calculate the address of the .got.plt entry. */
10389 got_address = (htab->sgotplt->output_section->vma
10390 + htab->sgotplt->output_offset
10391 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10392
10393 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10394 got_address_low = got_address & 0xffff;
10395
10396 /* Initially point the .got.plt entry at the PLT header. */
10397 loc = (htab->sgotplt->contents + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10398 if (ABI_64_P (output_bfd))
10399 bfd_put_64 (output_bfd, header_address, loc);
10400 else
10401 bfd_put_32 (output_bfd, header_address, loc);
10402
10403 /* Now handle the PLT itself. First the standard entry (the order
10404 does not matter, we just have to pick one). */
10405 if (h->plt.plist->mips_offset != MINUS_ONE)
10406 {
10407 const bfd_vma *plt_entry;
10408 bfd_vma plt_offset;
10409
10410 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10411
10412 BFD_ASSERT (plt_offset <= htab->splt->size);
10413
10414 /* Find out where the .plt entry should go. */
10415 loc = htab->splt->contents + plt_offset;
10416
10417 /* Pick the load opcode. */
10418 load = MIPS_ELF_LOAD_WORD (output_bfd);
10419
10420 /* Fill in the PLT entry itself. */
10421 plt_entry = mips_exec_plt_entry;
10422 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10423 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10424 loc + 4);
10425
10426 if (! LOAD_INTERLOCKS_P (output_bfd))
10427 {
10428 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10429 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10430 }
10431 else
10432 {
10433 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10434 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10435 loc + 12);
10436 }
10437 }
10438
10439 /* Now the compressed entry. They come after any standard ones. */
10440 if (h->plt.plist->comp_offset != MINUS_ONE)
10441 {
10442 bfd_vma plt_offset;
10443
10444 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10445 + h->plt.plist->comp_offset);
10446
10447 BFD_ASSERT (plt_offset <= htab->splt->size);
10448
10449 /* Find out where the .plt entry should go. */
10450 loc = htab->splt->contents + plt_offset;
10451
10452 /* Fill in the PLT entry itself. */
10453 if (!MICROMIPS_P (output_bfd))
10454 {
10455 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10456
10457 bfd_put_16 (output_bfd, plt_entry[0], loc);
10458 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10459 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10460 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10461 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10462 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10463 bfd_put_32 (output_bfd, got_address, loc + 12);
10464 }
10465 else if (htab->insn32)
10466 {
10467 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10468
10469 bfd_put_16 (output_bfd, plt_entry[0], loc);
10470 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10471 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10472 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10473 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10474 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10475 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10476 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10477 }
10478 else
10479 {
10480 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10481 bfd_signed_vma gotpc_offset;
10482 bfd_vma loc_address;
10483
10484 BFD_ASSERT (got_address % 4 == 0);
10485
10486 loc_address = (htab->splt->output_section->vma
10487 + htab->splt->output_offset + plt_offset);
10488 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10489
10490 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10491 if (gotpc_offset + 0x1000000 >= 0x2000000)
10492 {
10493 (*_bfd_error_handler)
10494 (_("%B: `%A' offset of %ld from `%A' "
10495 "beyond the range of ADDIUPC"),
10496 output_bfd,
10497 htab->sgotplt->output_section,
10498 htab->splt->output_section,
10499 (long) gotpc_offset);
10500 bfd_set_error (bfd_error_no_error);
10501 return FALSE;
10502 }
10503 bfd_put_16 (output_bfd,
10504 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10505 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10506 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10507 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10508 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10509 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10510 }
10511 }
10512
10513 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10514 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
10515 got_index - 2, h->dynindx,
10516 R_MIPS_JUMP_SLOT, got_address);
10517
10518 /* We distinguish between PLT entries and lazy-binding stubs by
10519 giving the former an st_other value of STO_MIPS_PLT. Set the
10520 flag and leave the value if there are any relocations in the
10521 binary where pointer equality matters. */
10522 sym->st_shndx = SHN_UNDEF;
10523 if (h->pointer_equality_needed)
10524 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
10525 else
10526 {
10527 sym->st_value = 0;
10528 sym->st_other = 0;
10529 }
10530 }
10531
10532 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
10533 {
10534 /* We've decided to create a lazy-binding stub. */
10535 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10536 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10537 bfd_vma stub_size = htab->function_stub_size;
10538 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
10539 bfd_vma isa_bit = micromips_p;
10540 bfd_vma stub_big_size;
10541
10542 if (!micromips_p)
10543 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
10544 else if (htab->insn32)
10545 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10546 else
10547 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
10548
10549 /* This symbol has a stub. Set it up. */
10550
10551 BFD_ASSERT (h->dynindx != -1);
10552
10553 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
10554
10555 /* Values up to 2^31 - 1 are allowed. Larger values would cause
10556 sign extension at runtime in the stub, resulting in a negative
10557 index value. */
10558 if (h->dynindx & ~0x7fffffff)
10559 return FALSE;
10560
10561 /* Fill the stub. */
10562 if (micromips_p)
10563 {
10564 idx = 0;
10565 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10566 stub + idx);
10567 idx += 4;
10568 if (htab->insn32)
10569 {
10570 bfd_put_micromips_32 (output_bfd,
10571 STUB_MOVE32_MICROMIPS (output_bfd),
10572 stub + idx);
10573 idx += 4;
10574 }
10575 else
10576 {
10577 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10578 idx += 2;
10579 }
10580 if (stub_size == stub_big_size)
10581 {
10582 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10583
10584 bfd_put_micromips_32 (output_bfd,
10585 STUB_LUI_MICROMIPS (dynindx_hi),
10586 stub + idx);
10587 idx += 4;
10588 }
10589 if (htab->insn32)
10590 {
10591 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
10592 stub + idx);
10593 idx += 4;
10594 }
10595 else
10596 {
10597 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
10598 idx += 2;
10599 }
10600
10601 /* If a large stub is not required and sign extension is not a
10602 problem, then use legacy code in the stub. */
10603 if (stub_size == stub_big_size)
10604 bfd_put_micromips_32 (output_bfd,
10605 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
10606 stub + idx);
10607 else if (h->dynindx & ~0x7fff)
10608 bfd_put_micromips_32 (output_bfd,
10609 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
10610 stub + idx);
10611 else
10612 bfd_put_micromips_32 (output_bfd,
10613 STUB_LI16S_MICROMIPS (output_bfd,
10614 h->dynindx),
10615 stub + idx);
10616 }
10617 else
10618 {
10619 idx = 0;
10620 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10621 idx += 4;
10622 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
10623 idx += 4;
10624 if (stub_size == stub_big_size)
10625 {
10626 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10627 stub + idx);
10628 idx += 4;
10629 }
10630 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10631 idx += 4;
10632
10633 /* If a large stub is not required and sign extension is not a
10634 problem, then use legacy code in the stub. */
10635 if (stub_size == stub_big_size)
10636 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
10637 stub + idx);
10638 else if (h->dynindx & ~0x7fff)
10639 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
10640 stub + idx);
10641 else
10642 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10643 stub + idx);
10644 }
10645
10646 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
10647 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
10648 stub, stub_size);
10649
10650 /* Mark the symbol as undefined. stub_offset != -1 occurs
10651 only for the referenced symbol. */
10652 sym->st_shndx = SHN_UNDEF;
10653
10654 /* The run-time linker uses the st_value field of the symbol
10655 to reset the global offset table entry for this external
10656 to its stub address when unlinking a shared object. */
10657 sym->st_value = (htab->sstubs->output_section->vma
10658 + htab->sstubs->output_offset
10659 + h->plt.plist->stub_offset
10660 + isa_bit);
10661 sym->st_other = other;
10662 }
10663
10664 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10665 refer to the stub, since only the stub uses the standard calling
10666 conventions. */
10667 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10668 {
10669 BFD_ASSERT (hmips->need_fn_stub);
10670 sym->st_value = (hmips->fn_stub->output_section->vma
10671 + hmips->fn_stub->output_offset);
10672 sym->st_size = hmips->fn_stub->size;
10673 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10674 }
10675
10676 BFD_ASSERT (h->dynindx != -1
10677 || h->forced_local);
10678
10679 sgot = htab->sgot;
10680 g = htab->got_info;
10681 BFD_ASSERT (g != NULL);
10682
10683 /* Run through the global symbol table, creating GOT entries for all
10684 the symbols that need them. */
10685 if (hmips->global_got_area != GGA_NONE)
10686 {
10687 bfd_vma offset;
10688 bfd_vma value;
10689
10690 value = sym->st_value;
10691 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
10692 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10693 }
10694
10695 if (hmips->global_got_area != GGA_NONE && g->next)
10696 {
10697 struct mips_got_entry e, *p;
10698 bfd_vma entry;
10699 bfd_vma offset;
10700
10701 gg = g;
10702
10703 e.abfd = output_bfd;
10704 e.symndx = -1;
10705 e.d.h = hmips;
10706 e.tls_type = GOT_TLS_NONE;
10707
10708 for (g = g->next; g->next != gg; g = g->next)
10709 {
10710 if (g->got_entries
10711 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10712 &e)))
10713 {
10714 offset = p->gotidx;
10715 BFD_ASSERT (offset > 0 && offset < htab->sgot->size);
10716 if (info->shared
10717 || (elf_hash_table (info)->dynamic_sections_created
10718 && p->d.h != NULL
10719 && p->d.h->root.def_dynamic
10720 && !p->d.h->root.def_regular))
10721 {
10722 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10723 the various compatibility problems, it's easier to mock
10724 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10725 mips_elf_create_dynamic_relocation to calculate the
10726 appropriate addend. */
10727 Elf_Internal_Rela rel[3];
10728
10729 memset (rel, 0, sizeof (rel));
10730 if (ABI_64_P (output_bfd))
10731 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10732 else
10733 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10734 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10735
10736 entry = 0;
10737 if (! (mips_elf_create_dynamic_relocation
10738 (output_bfd, info, rel,
10739 e.d.h, NULL, sym->st_value, &entry, sgot)))
10740 return FALSE;
10741 }
10742 else
10743 entry = sym->st_value;
10744 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
10745 }
10746 }
10747 }
10748
10749 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10750 name = h->root.root.string;
10751 if (h == elf_hash_table (info)->hdynamic
10752 || h == elf_hash_table (info)->hgot)
10753 sym->st_shndx = SHN_ABS;
10754 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10755 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10756 {
10757 sym->st_shndx = SHN_ABS;
10758 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10759 sym->st_value = 1;
10760 }
10761 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
10762 {
10763 sym->st_shndx = SHN_ABS;
10764 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10765 sym->st_value = elf_gp (output_bfd);
10766 }
10767 else if (SGI_COMPAT (output_bfd))
10768 {
10769 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10770 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10771 {
10772 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10773 sym->st_other = STO_PROTECTED;
10774 sym->st_value = 0;
10775 sym->st_shndx = SHN_MIPS_DATA;
10776 }
10777 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10778 {
10779 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10780 sym->st_other = STO_PROTECTED;
10781 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10782 sym->st_shndx = SHN_ABS;
10783 }
10784 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10785 {
10786 if (h->type == STT_FUNC)
10787 sym->st_shndx = SHN_MIPS_TEXT;
10788 else if (h->type == STT_OBJECT)
10789 sym->st_shndx = SHN_MIPS_DATA;
10790 }
10791 }
10792
10793 /* Emit a copy reloc, if needed. */
10794 if (h->needs_copy)
10795 {
10796 asection *s;
10797 bfd_vma symval;
10798
10799 BFD_ASSERT (h->dynindx != -1);
10800 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10801
10802 s = mips_elf_rel_dyn_section (info, FALSE);
10803 symval = (h->root.u.def.section->output_section->vma
10804 + h->root.u.def.section->output_offset
10805 + h->root.u.def.value);
10806 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
10807 h->dynindx, R_MIPS_COPY, symval);
10808 }
10809
10810 /* Handle the IRIX6-specific symbols. */
10811 if (IRIX_COMPAT (output_bfd) == ict_irix6)
10812 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
10813
10814 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
10815 to treat compressed symbols like any other. */
10816 if (ELF_ST_IS_MIPS16 (sym->st_other))
10817 {
10818 BFD_ASSERT (sym->st_value & 1);
10819 sym->st_other -= STO_MIPS16;
10820 }
10821 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
10822 {
10823 BFD_ASSERT (sym->st_value & 1);
10824 sym->st_other -= STO_MICROMIPS;
10825 }
10826
10827 return TRUE;
10828 }
10829
10830 /* Likewise, for VxWorks. */
10831
10832 bfd_boolean
10833 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
10834 struct bfd_link_info *info,
10835 struct elf_link_hash_entry *h,
10836 Elf_Internal_Sym *sym)
10837 {
10838 bfd *dynobj;
10839 asection *sgot;
10840 struct mips_got_info *g;
10841 struct mips_elf_link_hash_table *htab;
10842 struct mips_elf_link_hash_entry *hmips;
10843
10844 htab = mips_elf_hash_table (info);
10845 BFD_ASSERT (htab != NULL);
10846 dynobj = elf_hash_table (info)->dynobj;
10847 hmips = (struct mips_elf_link_hash_entry *) h;
10848
10849 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
10850 {
10851 bfd_byte *loc;
10852 bfd_vma plt_address, got_address, got_offset, branch_offset;
10853 Elf_Internal_Rela rel;
10854 static const bfd_vma *plt_entry;
10855 bfd_vma gotplt_index;
10856 bfd_vma plt_offset;
10857
10858 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10859 gotplt_index = h->plt.plist->gotplt_index;
10860
10861 BFD_ASSERT (h->dynindx != -1);
10862 BFD_ASSERT (htab->splt != NULL);
10863 BFD_ASSERT (gotplt_index != MINUS_ONE);
10864 BFD_ASSERT (plt_offset <= htab->splt->size);
10865
10866 /* Calculate the address of the .plt entry. */
10867 plt_address = (htab->splt->output_section->vma
10868 + htab->splt->output_offset
10869 + plt_offset);
10870
10871 /* Calculate the address of the .got.plt entry. */
10872 got_address = (htab->sgotplt->output_section->vma
10873 + htab->sgotplt->output_offset
10874 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
10875
10876 /* Calculate the offset of the .got.plt entry from
10877 _GLOBAL_OFFSET_TABLE_. */
10878 got_offset = mips_elf_gotplt_index (info, h);
10879
10880 /* Calculate the offset for the branch at the start of the PLT
10881 entry. The branch jumps to the beginning of .plt. */
10882 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
10883
10884 /* Fill in the initial value of the .got.plt entry. */
10885 bfd_put_32 (output_bfd, plt_address,
10886 (htab->sgotplt->contents
10887 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
10888
10889 /* Find out where the .plt entry should go. */
10890 loc = htab->splt->contents + plt_offset;
10891
10892 if (info->shared)
10893 {
10894 plt_entry = mips_vxworks_shared_plt_entry;
10895 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10896 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
10897 }
10898 else
10899 {
10900 bfd_vma got_address_high, got_address_low;
10901
10902 plt_entry = mips_vxworks_exec_plt_entry;
10903 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10904 got_address_low = got_address & 0xffff;
10905
10906 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10907 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
10908 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
10909 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
10910 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10911 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10912 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10913 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10914
10915 loc = (htab->srelplt2->contents
10916 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
10917
10918 /* Emit a relocation for the .got.plt entry. */
10919 rel.r_offset = got_address;
10920 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10921 rel.r_addend = plt_offset;
10922 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10923
10924 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
10925 loc += sizeof (Elf32_External_Rela);
10926 rel.r_offset = plt_address + 8;
10927 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10928 rel.r_addend = got_offset;
10929 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10930
10931 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
10932 loc += sizeof (Elf32_External_Rela);
10933 rel.r_offset += 4;
10934 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10935 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10936 }
10937
10938 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10939 loc = (htab->srelplt->contents
10940 + gotplt_index * sizeof (Elf32_External_Rela));
10941 rel.r_offset = got_address;
10942 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
10943 rel.r_addend = 0;
10944 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10945
10946 if (!h->def_regular)
10947 sym->st_shndx = SHN_UNDEF;
10948 }
10949
10950 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
10951
10952 sgot = htab->sgot;
10953 g = htab->got_info;
10954 BFD_ASSERT (g != NULL);
10955
10956 /* See if this symbol has an entry in the GOT. */
10957 if (hmips->global_got_area != GGA_NONE)
10958 {
10959 bfd_vma offset;
10960 Elf_Internal_Rela outrel;
10961 bfd_byte *loc;
10962 asection *s;
10963
10964 /* Install the symbol value in the GOT. */
10965 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
10966 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
10967
10968 /* Add a dynamic relocation for it. */
10969 s = mips_elf_rel_dyn_section (info, FALSE);
10970 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
10971 outrel.r_offset = (sgot->output_section->vma
10972 + sgot->output_offset
10973 + offset);
10974 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
10975 outrel.r_addend = 0;
10976 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
10977 }
10978
10979 /* Emit a copy reloc, if needed. */
10980 if (h->needs_copy)
10981 {
10982 Elf_Internal_Rela rel;
10983
10984 BFD_ASSERT (h->dynindx != -1);
10985
10986 rel.r_offset = (h->root.u.def.section->output_section->vma
10987 + h->root.u.def.section->output_offset
10988 + h->root.u.def.value);
10989 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
10990 rel.r_addend = 0;
10991 bfd_elf32_swap_reloca_out (output_bfd, &rel,
10992 htab->srelbss->contents
10993 + (htab->srelbss->reloc_count
10994 * sizeof (Elf32_External_Rela)));
10995 ++htab->srelbss->reloc_count;
10996 }
10997
10998 /* If this is a mips16/microMIPS symbol, force the value to be even. */
10999 if (ELF_ST_IS_COMPRESSED (sym->st_other))
11000 sym->st_value &= ~1;
11001
11002 return TRUE;
11003 }
11004
11005 /* Write out a plt0 entry to the beginning of .plt. */
11006
11007 static bfd_boolean
11008 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11009 {
11010 bfd_byte *loc;
11011 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11012 static const bfd_vma *plt_entry;
11013 struct mips_elf_link_hash_table *htab;
11014
11015 htab = mips_elf_hash_table (info);
11016 BFD_ASSERT (htab != NULL);
11017
11018 if (ABI_64_P (output_bfd))
11019 plt_entry = mips_n64_exec_plt0_entry;
11020 else if (ABI_N32_P (output_bfd))
11021 plt_entry = mips_n32_exec_plt0_entry;
11022 else if (!htab->plt_header_is_comp)
11023 plt_entry = mips_o32_exec_plt0_entry;
11024 else if (htab->insn32)
11025 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11026 else
11027 plt_entry = micromips_o32_exec_plt0_entry;
11028
11029 /* Calculate the value of .got.plt. */
11030 gotplt_value = (htab->sgotplt->output_section->vma
11031 + htab->sgotplt->output_offset);
11032 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11033 gotplt_value_low = gotplt_value & 0xffff;
11034
11035 /* The PLT sequence is not safe for N64 if .got.plt's address can
11036 not be loaded in two instructions. */
11037 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
11038 || ~(gotplt_value | 0x7fffffff) == 0);
11039
11040 /* Install the PLT header. */
11041 loc = htab->splt->contents;
11042 if (plt_entry == micromips_o32_exec_plt0_entry)
11043 {
11044 bfd_vma gotpc_offset;
11045 bfd_vma loc_address;
11046 size_t i;
11047
11048 BFD_ASSERT (gotplt_value % 4 == 0);
11049
11050 loc_address = (htab->splt->output_section->vma
11051 + htab->splt->output_offset);
11052 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11053
11054 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11055 if (gotpc_offset + 0x1000000 >= 0x2000000)
11056 {
11057 (*_bfd_error_handler)
11058 (_("%B: `%A' offset of %ld from `%A' beyond the range of ADDIUPC"),
11059 output_bfd,
11060 htab->sgotplt->output_section,
11061 htab->splt->output_section,
11062 (long) gotpc_offset);
11063 bfd_set_error (bfd_error_no_error);
11064 return FALSE;
11065 }
11066 bfd_put_16 (output_bfd,
11067 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11068 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11069 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11070 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11071 }
11072 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11073 {
11074 size_t i;
11075
11076 bfd_put_16 (output_bfd, plt_entry[0], loc);
11077 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11078 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11079 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11080 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11081 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11082 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11083 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11084 }
11085 else
11086 {
11087 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11088 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11089 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11090 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11091 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11092 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11093 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11094 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11095 }
11096
11097 return TRUE;
11098 }
11099
11100 /* Install the PLT header for a VxWorks executable and finalize the
11101 contents of .rela.plt.unloaded. */
11102
11103 static void
11104 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11105 {
11106 Elf_Internal_Rela rela;
11107 bfd_byte *loc;
11108 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11109 static const bfd_vma *plt_entry;
11110 struct mips_elf_link_hash_table *htab;
11111
11112 htab = mips_elf_hash_table (info);
11113 BFD_ASSERT (htab != NULL);
11114
11115 plt_entry = mips_vxworks_exec_plt0_entry;
11116
11117 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11118 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11119 + htab->root.hgot->root.u.def.section->output_offset
11120 + htab->root.hgot->root.u.def.value);
11121
11122 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11123 got_value_low = got_value & 0xffff;
11124
11125 /* Calculate the address of the PLT header. */
11126 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
11127
11128 /* Install the PLT header. */
11129 loc = htab->splt->contents;
11130 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11131 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11132 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11133 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11134 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11135 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11136
11137 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11138 loc = htab->srelplt2->contents;
11139 rela.r_offset = plt_address;
11140 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11141 rela.r_addend = 0;
11142 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11143 loc += sizeof (Elf32_External_Rela);
11144
11145 /* Output the relocation for the following addiu of
11146 %lo(_GLOBAL_OFFSET_TABLE_). */
11147 rela.r_offset += 4;
11148 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11149 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11150 loc += sizeof (Elf32_External_Rela);
11151
11152 /* Fix up the remaining relocations. They may have the wrong
11153 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11154 in which symbols were output. */
11155 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11156 {
11157 Elf_Internal_Rela rel;
11158
11159 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11160 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11161 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11162 loc += sizeof (Elf32_External_Rela);
11163
11164 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11165 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11166 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11167 loc += sizeof (Elf32_External_Rela);
11168
11169 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11170 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11171 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11172 loc += sizeof (Elf32_External_Rela);
11173 }
11174 }
11175
11176 /* Install the PLT header for a VxWorks shared library. */
11177
11178 static void
11179 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11180 {
11181 unsigned int i;
11182 struct mips_elf_link_hash_table *htab;
11183
11184 htab = mips_elf_hash_table (info);
11185 BFD_ASSERT (htab != NULL);
11186
11187 /* We just need to copy the entry byte-by-byte. */
11188 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11189 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11190 htab->splt->contents + i * 4);
11191 }
11192
11193 /* Finish up the dynamic sections. */
11194
11195 bfd_boolean
11196 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11197 struct bfd_link_info *info)
11198 {
11199 bfd *dynobj;
11200 asection *sdyn;
11201 asection *sgot;
11202 struct mips_got_info *gg, *g;
11203 struct mips_elf_link_hash_table *htab;
11204
11205 htab = mips_elf_hash_table (info);
11206 BFD_ASSERT (htab != NULL);
11207
11208 dynobj = elf_hash_table (info)->dynobj;
11209
11210 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11211
11212 sgot = htab->sgot;
11213 gg = htab->got_info;
11214
11215 if (elf_hash_table (info)->dynamic_sections_created)
11216 {
11217 bfd_byte *b;
11218 int dyn_to_skip = 0, dyn_skipped = 0;
11219
11220 BFD_ASSERT (sdyn != NULL);
11221 BFD_ASSERT (gg != NULL);
11222
11223 g = mips_elf_bfd_got (output_bfd, FALSE);
11224 BFD_ASSERT (g != NULL);
11225
11226 for (b = sdyn->contents;
11227 b < sdyn->contents + sdyn->size;
11228 b += MIPS_ELF_DYN_SIZE (dynobj))
11229 {
11230 Elf_Internal_Dyn dyn;
11231 const char *name;
11232 size_t elemsize;
11233 asection *s;
11234 bfd_boolean swap_out_p;
11235
11236 /* Read in the current dynamic entry. */
11237 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11238
11239 /* Assume that we're going to modify it and write it out. */
11240 swap_out_p = TRUE;
11241
11242 switch (dyn.d_tag)
11243 {
11244 case DT_RELENT:
11245 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11246 break;
11247
11248 case DT_RELAENT:
11249 BFD_ASSERT (htab->is_vxworks);
11250 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11251 break;
11252
11253 case DT_STRSZ:
11254 /* Rewrite DT_STRSZ. */
11255 dyn.d_un.d_val =
11256 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11257 break;
11258
11259 case DT_PLTGOT:
11260 s = htab->sgot;
11261 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11262 break;
11263
11264 case DT_MIPS_PLTGOT:
11265 s = htab->sgotplt;
11266 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11267 break;
11268
11269 case DT_MIPS_RLD_VERSION:
11270 dyn.d_un.d_val = 1; /* XXX */
11271 break;
11272
11273 case DT_MIPS_FLAGS:
11274 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11275 break;
11276
11277 case DT_MIPS_TIME_STAMP:
11278 {
11279 time_t t;
11280 time (&t);
11281 dyn.d_un.d_val = t;
11282 }
11283 break;
11284
11285 case DT_MIPS_ICHECKSUM:
11286 /* XXX FIXME: */
11287 swap_out_p = FALSE;
11288 break;
11289
11290 case DT_MIPS_IVERSION:
11291 /* XXX FIXME: */
11292 swap_out_p = FALSE;
11293 break;
11294
11295 case DT_MIPS_BASE_ADDRESS:
11296 s = output_bfd->sections;
11297 BFD_ASSERT (s != NULL);
11298 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11299 break;
11300
11301 case DT_MIPS_LOCAL_GOTNO:
11302 dyn.d_un.d_val = g->local_gotno;
11303 break;
11304
11305 case DT_MIPS_UNREFEXTNO:
11306 /* The index into the dynamic symbol table which is the
11307 entry of the first external symbol that is not
11308 referenced within the same object. */
11309 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11310 break;
11311
11312 case DT_MIPS_GOTSYM:
11313 if (htab->global_gotsym)
11314 {
11315 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11316 break;
11317 }
11318 /* In case if we don't have global got symbols we default
11319 to setting DT_MIPS_GOTSYM to the same value as
11320 DT_MIPS_SYMTABNO, so we just fall through. */
11321
11322 case DT_MIPS_SYMTABNO:
11323 name = ".dynsym";
11324 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11325 s = bfd_get_section_by_name (output_bfd, name);
11326 BFD_ASSERT (s != NULL);
11327
11328 dyn.d_un.d_val = s->size / elemsize;
11329 break;
11330
11331 case DT_MIPS_HIPAGENO:
11332 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11333 break;
11334
11335 case DT_MIPS_RLD_MAP:
11336 {
11337 struct elf_link_hash_entry *h;
11338 h = mips_elf_hash_table (info)->rld_symbol;
11339 if (!h)
11340 {
11341 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11342 swap_out_p = FALSE;
11343 break;
11344 }
11345 s = h->root.u.def.section;
11346 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11347 + h->root.u.def.value);
11348 }
11349 break;
11350
11351 case DT_MIPS_OPTIONS:
11352 s = (bfd_get_section_by_name
11353 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11354 dyn.d_un.d_ptr = s->vma;
11355 break;
11356
11357 case DT_RELASZ:
11358 BFD_ASSERT (htab->is_vxworks);
11359 /* The count does not include the JUMP_SLOT relocations. */
11360 if (htab->srelplt)
11361 dyn.d_un.d_val -= htab->srelplt->size;
11362 break;
11363
11364 case DT_PLTREL:
11365 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11366 if (htab->is_vxworks)
11367 dyn.d_un.d_val = DT_RELA;
11368 else
11369 dyn.d_un.d_val = DT_REL;
11370 break;
11371
11372 case DT_PLTRELSZ:
11373 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11374 dyn.d_un.d_val = htab->srelplt->size;
11375 break;
11376
11377 case DT_JMPREL:
11378 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11379 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
11380 + htab->srelplt->output_offset);
11381 break;
11382
11383 case DT_TEXTREL:
11384 /* If we didn't need any text relocations after all, delete
11385 the dynamic tag. */
11386 if (!(info->flags & DF_TEXTREL))
11387 {
11388 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11389 swap_out_p = FALSE;
11390 }
11391 break;
11392
11393 case DT_FLAGS:
11394 /* If we didn't need any text relocations after all, clear
11395 DF_TEXTREL from DT_FLAGS. */
11396 if (!(info->flags & DF_TEXTREL))
11397 dyn.d_un.d_val &= ~DF_TEXTREL;
11398 else
11399 swap_out_p = FALSE;
11400 break;
11401
11402 default:
11403 swap_out_p = FALSE;
11404 if (htab->is_vxworks
11405 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11406 swap_out_p = TRUE;
11407 break;
11408 }
11409
11410 if (swap_out_p || dyn_skipped)
11411 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11412 (dynobj, &dyn, b - dyn_skipped);
11413
11414 if (dyn_to_skip)
11415 {
11416 dyn_skipped += dyn_to_skip;
11417 dyn_to_skip = 0;
11418 }
11419 }
11420
11421 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11422 if (dyn_skipped > 0)
11423 memset (b - dyn_skipped, 0, dyn_skipped);
11424 }
11425
11426 if (sgot != NULL && sgot->size > 0
11427 && !bfd_is_abs_section (sgot->output_section))
11428 {
11429 if (htab->is_vxworks)
11430 {
11431 /* The first entry of the global offset table points to the
11432 ".dynamic" section. The second is initialized by the
11433 loader and contains the shared library identifier.
11434 The third is also initialized by the loader and points
11435 to the lazy resolution stub. */
11436 MIPS_ELF_PUT_WORD (output_bfd,
11437 sdyn->output_offset + sdyn->output_section->vma,
11438 sgot->contents);
11439 MIPS_ELF_PUT_WORD (output_bfd, 0,
11440 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11441 MIPS_ELF_PUT_WORD (output_bfd, 0,
11442 sgot->contents
11443 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11444 }
11445 else
11446 {
11447 /* The first entry of the global offset table will be filled at
11448 runtime. The second entry will be used by some runtime loaders.
11449 This isn't the case of IRIX rld. */
11450 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
11451 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11452 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11453 }
11454
11455 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11456 = MIPS_ELF_GOT_SIZE (output_bfd);
11457 }
11458
11459 /* Generate dynamic relocations for the non-primary gots. */
11460 if (gg != NULL && gg->next)
11461 {
11462 Elf_Internal_Rela rel[3];
11463 bfd_vma addend = 0;
11464
11465 memset (rel, 0, sizeof (rel));
11466 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11467
11468 for (g = gg->next; g->next != gg; g = g->next)
11469 {
11470 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
11471 + g->next->tls_gotno;
11472
11473 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
11474 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11475 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11476 sgot->contents
11477 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11478
11479 if (! info->shared)
11480 continue;
11481
11482 for (; got_index < g->local_gotno; got_index++)
11483 {
11484 if (got_index >= g->assigned_low_gotno
11485 && got_index <= g->assigned_high_gotno)
11486 continue;
11487
11488 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
11489 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
11490 if (!(mips_elf_create_dynamic_relocation
11491 (output_bfd, info, rel, NULL,
11492 bfd_abs_section_ptr,
11493 0, &addend, sgot)))
11494 return FALSE;
11495 BFD_ASSERT (addend == 0);
11496 }
11497 }
11498 }
11499
11500 /* The generation of dynamic relocations for the non-primary gots
11501 adds more dynamic relocations. We cannot count them until
11502 here. */
11503
11504 if (elf_hash_table (info)->dynamic_sections_created)
11505 {
11506 bfd_byte *b;
11507 bfd_boolean swap_out_p;
11508
11509 BFD_ASSERT (sdyn != NULL);
11510
11511 for (b = sdyn->contents;
11512 b < sdyn->contents + sdyn->size;
11513 b += MIPS_ELF_DYN_SIZE (dynobj))
11514 {
11515 Elf_Internal_Dyn dyn;
11516 asection *s;
11517
11518 /* Read in the current dynamic entry. */
11519 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11520
11521 /* Assume that we're going to modify it and write it out. */
11522 swap_out_p = TRUE;
11523
11524 switch (dyn.d_tag)
11525 {
11526 case DT_RELSZ:
11527 /* Reduce DT_RELSZ to account for any relocations we
11528 decided not to make. This is for the n64 irix rld,
11529 which doesn't seem to apply any relocations if there
11530 are trailing null entries. */
11531 s = mips_elf_rel_dyn_section (info, FALSE);
11532 dyn.d_un.d_val = (s->reloc_count
11533 * (ABI_64_P (output_bfd)
11534 ? sizeof (Elf64_Mips_External_Rel)
11535 : sizeof (Elf32_External_Rel)));
11536 /* Adjust the section size too. Tools like the prelinker
11537 can reasonably expect the values to the same. */
11538 elf_section_data (s->output_section)->this_hdr.sh_size
11539 = dyn.d_un.d_val;
11540 break;
11541
11542 default:
11543 swap_out_p = FALSE;
11544 break;
11545 }
11546
11547 if (swap_out_p)
11548 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11549 (dynobj, &dyn, b);
11550 }
11551 }
11552
11553 {
11554 asection *s;
11555 Elf32_compact_rel cpt;
11556
11557 if (SGI_COMPAT (output_bfd))
11558 {
11559 /* Write .compact_rel section out. */
11560 s = bfd_get_linker_section (dynobj, ".compact_rel");
11561 if (s != NULL)
11562 {
11563 cpt.id1 = 1;
11564 cpt.num = s->reloc_count;
11565 cpt.id2 = 2;
11566 cpt.offset = (s->output_section->filepos
11567 + sizeof (Elf32_External_compact_rel));
11568 cpt.reserved0 = 0;
11569 cpt.reserved1 = 0;
11570 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
11571 ((Elf32_External_compact_rel *)
11572 s->contents));
11573
11574 /* Clean up a dummy stub function entry in .text. */
11575 if (htab->sstubs != NULL)
11576 {
11577 file_ptr dummy_offset;
11578
11579 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
11580 dummy_offset = htab->sstubs->size - htab->function_stub_size;
11581 memset (htab->sstubs->contents + dummy_offset, 0,
11582 htab->function_stub_size);
11583 }
11584 }
11585 }
11586
11587 /* The psABI says that the dynamic relocations must be sorted in
11588 increasing order of r_symndx. The VxWorks EABI doesn't require
11589 this, and because the code below handles REL rather than RELA
11590 relocations, using it for VxWorks would be outright harmful. */
11591 if (!htab->is_vxworks)
11592 {
11593 s = mips_elf_rel_dyn_section (info, FALSE);
11594 if (s != NULL
11595 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
11596 {
11597 reldyn_sorting_bfd = output_bfd;
11598
11599 if (ABI_64_P (output_bfd))
11600 qsort ((Elf64_External_Rel *) s->contents + 1,
11601 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
11602 sort_dynamic_relocs_64);
11603 else
11604 qsort ((Elf32_External_Rel *) s->contents + 1,
11605 s->reloc_count - 1, sizeof (Elf32_External_Rel),
11606 sort_dynamic_relocs);
11607 }
11608 }
11609 }
11610
11611 if (htab->splt && htab->splt->size > 0)
11612 {
11613 if (htab->is_vxworks)
11614 {
11615 if (info->shared)
11616 mips_vxworks_finish_shared_plt (output_bfd, info);
11617 else
11618 mips_vxworks_finish_exec_plt (output_bfd, info);
11619 }
11620 else
11621 {
11622 BFD_ASSERT (!info->shared);
11623 if (!mips_finish_exec_plt (output_bfd, info))
11624 return FALSE;
11625 }
11626 }
11627 return TRUE;
11628 }
11629
11630
11631 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
11632
11633 static void
11634 mips_set_isa_flags (bfd *abfd)
11635 {
11636 flagword val;
11637
11638 switch (bfd_get_mach (abfd))
11639 {
11640 default:
11641 case bfd_mach_mips3000:
11642 val = E_MIPS_ARCH_1;
11643 break;
11644
11645 case bfd_mach_mips3900:
11646 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
11647 break;
11648
11649 case bfd_mach_mips6000:
11650 val = E_MIPS_ARCH_2;
11651 break;
11652
11653 case bfd_mach_mips4000:
11654 case bfd_mach_mips4300:
11655 case bfd_mach_mips4400:
11656 case bfd_mach_mips4600:
11657 val = E_MIPS_ARCH_3;
11658 break;
11659
11660 case bfd_mach_mips4010:
11661 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
11662 break;
11663
11664 case bfd_mach_mips4100:
11665 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
11666 break;
11667
11668 case bfd_mach_mips4111:
11669 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
11670 break;
11671
11672 case bfd_mach_mips4120:
11673 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
11674 break;
11675
11676 case bfd_mach_mips4650:
11677 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
11678 break;
11679
11680 case bfd_mach_mips5400:
11681 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
11682 break;
11683
11684 case bfd_mach_mips5500:
11685 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
11686 break;
11687
11688 case bfd_mach_mips5900:
11689 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
11690 break;
11691
11692 case bfd_mach_mips9000:
11693 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
11694 break;
11695
11696 case bfd_mach_mips5000:
11697 case bfd_mach_mips7000:
11698 case bfd_mach_mips8000:
11699 case bfd_mach_mips10000:
11700 case bfd_mach_mips12000:
11701 case bfd_mach_mips14000:
11702 case bfd_mach_mips16000:
11703 val = E_MIPS_ARCH_4;
11704 break;
11705
11706 case bfd_mach_mips5:
11707 val = E_MIPS_ARCH_5;
11708 break;
11709
11710 case bfd_mach_mips_loongson_2e:
11711 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
11712 break;
11713
11714 case bfd_mach_mips_loongson_2f:
11715 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
11716 break;
11717
11718 case bfd_mach_mips_sb1:
11719 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
11720 break;
11721
11722 case bfd_mach_mips_loongson_3a:
11723 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A;
11724 break;
11725
11726 case bfd_mach_mips_octeon:
11727 case bfd_mach_mips_octeonp:
11728 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
11729 break;
11730
11731 case bfd_mach_mips_xlr:
11732 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
11733 break;
11734
11735 case bfd_mach_mips_octeon2:
11736 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
11737 break;
11738
11739 case bfd_mach_mipsisa32:
11740 val = E_MIPS_ARCH_32;
11741 break;
11742
11743 case bfd_mach_mipsisa64:
11744 val = E_MIPS_ARCH_64;
11745 break;
11746
11747 case bfd_mach_mipsisa32r2:
11748 case bfd_mach_mipsisa32r3:
11749 case bfd_mach_mipsisa32r5:
11750 val = E_MIPS_ARCH_32R2;
11751 break;
11752
11753 case bfd_mach_mipsisa64r2:
11754 case bfd_mach_mipsisa64r3:
11755 case bfd_mach_mipsisa64r5:
11756 val = E_MIPS_ARCH_64R2;
11757 break;
11758 }
11759 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11760 elf_elfheader (abfd)->e_flags |= val;
11761
11762 }
11763
11764
11765 /* The final processing done just before writing out a MIPS ELF object
11766 file. This gets the MIPS architecture right based on the machine
11767 number. This is used by both the 32-bit and the 64-bit ABI. */
11768
11769 void
11770 _bfd_mips_elf_final_write_processing (bfd *abfd,
11771 bfd_boolean linker ATTRIBUTE_UNUSED)
11772 {
11773 unsigned int i;
11774 Elf_Internal_Shdr **hdrpp;
11775 const char *name;
11776 asection *sec;
11777
11778 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
11779 is nonzero. This is for compatibility with old objects, which used
11780 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
11781 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
11782 mips_set_isa_flags (abfd);
11783
11784 /* Set the sh_info field for .gptab sections and other appropriate
11785 info for each special section. */
11786 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
11787 i < elf_numsections (abfd);
11788 i++, hdrpp++)
11789 {
11790 switch ((*hdrpp)->sh_type)
11791 {
11792 case SHT_MIPS_MSYM:
11793 case SHT_MIPS_LIBLIST:
11794 sec = bfd_get_section_by_name (abfd, ".dynstr");
11795 if (sec != NULL)
11796 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11797 break;
11798
11799 case SHT_MIPS_GPTAB:
11800 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11801 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11802 BFD_ASSERT (name != NULL
11803 && CONST_STRNEQ (name, ".gptab."));
11804 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
11805 BFD_ASSERT (sec != NULL);
11806 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11807 break;
11808
11809 case SHT_MIPS_CONTENT:
11810 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11811 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11812 BFD_ASSERT (name != NULL
11813 && CONST_STRNEQ (name, ".MIPS.content"));
11814 sec = bfd_get_section_by_name (abfd,
11815 name + sizeof ".MIPS.content" - 1);
11816 BFD_ASSERT (sec != NULL);
11817 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11818 break;
11819
11820 case SHT_MIPS_SYMBOL_LIB:
11821 sec = bfd_get_section_by_name (abfd, ".dynsym");
11822 if (sec != NULL)
11823 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11824 sec = bfd_get_section_by_name (abfd, ".liblist");
11825 if (sec != NULL)
11826 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11827 break;
11828
11829 case SHT_MIPS_EVENTS:
11830 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11831 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11832 BFD_ASSERT (name != NULL);
11833 if (CONST_STRNEQ (name, ".MIPS.events"))
11834 sec = bfd_get_section_by_name (abfd,
11835 name + sizeof ".MIPS.events" - 1);
11836 else
11837 {
11838 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
11839 sec = bfd_get_section_by_name (abfd,
11840 (name
11841 + sizeof ".MIPS.post_rel" - 1));
11842 }
11843 BFD_ASSERT (sec != NULL);
11844 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11845 break;
11846
11847 }
11848 }
11849 }
11850 \f
11851 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
11852 segments. */
11853
11854 int
11855 _bfd_mips_elf_additional_program_headers (bfd *abfd,
11856 struct bfd_link_info *info ATTRIBUTE_UNUSED)
11857 {
11858 asection *s;
11859 int ret = 0;
11860
11861 /* See if we need a PT_MIPS_REGINFO segment. */
11862 s = bfd_get_section_by_name (abfd, ".reginfo");
11863 if (s && (s->flags & SEC_LOAD))
11864 ++ret;
11865
11866 /* See if we need a PT_MIPS_ABIFLAGS segment. */
11867 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
11868 ++ret;
11869
11870 /* See if we need a PT_MIPS_OPTIONS segment. */
11871 if (IRIX_COMPAT (abfd) == ict_irix6
11872 && bfd_get_section_by_name (abfd,
11873 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
11874 ++ret;
11875
11876 /* See if we need a PT_MIPS_RTPROC segment. */
11877 if (IRIX_COMPAT (abfd) == ict_irix5
11878 && bfd_get_section_by_name (abfd, ".dynamic")
11879 && bfd_get_section_by_name (abfd, ".mdebug"))
11880 ++ret;
11881
11882 /* Allocate a PT_NULL header in dynamic objects. See
11883 _bfd_mips_elf_modify_segment_map for details. */
11884 if (!SGI_COMPAT (abfd)
11885 && bfd_get_section_by_name (abfd, ".dynamic"))
11886 ++ret;
11887
11888 return ret;
11889 }
11890
11891 /* Modify the segment map for an IRIX5 executable. */
11892
11893 bfd_boolean
11894 _bfd_mips_elf_modify_segment_map (bfd *abfd,
11895 struct bfd_link_info *info)
11896 {
11897 asection *s;
11898 struct elf_segment_map *m, **pm;
11899 bfd_size_type amt;
11900
11901 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
11902 segment. */
11903 s = bfd_get_section_by_name (abfd, ".reginfo");
11904 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11905 {
11906 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
11907 if (m->p_type == PT_MIPS_REGINFO)
11908 break;
11909 if (m == NULL)
11910 {
11911 amt = sizeof *m;
11912 m = bfd_zalloc (abfd, amt);
11913 if (m == NULL)
11914 return FALSE;
11915
11916 m->p_type = PT_MIPS_REGINFO;
11917 m->count = 1;
11918 m->sections[0] = s;
11919
11920 /* We want to put it after the PHDR and INTERP segments. */
11921 pm = &elf_seg_map (abfd);
11922 while (*pm != NULL
11923 && ((*pm)->p_type == PT_PHDR
11924 || (*pm)->p_type == PT_INTERP))
11925 pm = &(*pm)->next;
11926
11927 m->next = *pm;
11928 *pm = m;
11929 }
11930 }
11931
11932 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
11933 segment. */
11934 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
11935 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11936 {
11937 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
11938 if (m->p_type == PT_MIPS_ABIFLAGS)
11939 break;
11940 if (m == NULL)
11941 {
11942 amt = sizeof *m;
11943 m = bfd_zalloc (abfd, amt);
11944 if (m == NULL)
11945 return FALSE;
11946
11947 m->p_type = PT_MIPS_ABIFLAGS;
11948 m->count = 1;
11949 m->sections[0] = s;
11950
11951 /* We want to put it after the PHDR and INTERP segments. */
11952 pm = &elf_seg_map (abfd);
11953 while (*pm != NULL
11954 && ((*pm)->p_type == PT_PHDR
11955 || (*pm)->p_type == PT_INTERP))
11956 pm = &(*pm)->next;
11957
11958 m->next = *pm;
11959 *pm = m;
11960 }
11961 }
11962
11963 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
11964 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
11965 PT_MIPS_OPTIONS segment immediately following the program header
11966 table. */
11967 if (NEWABI_P (abfd)
11968 /* On non-IRIX6 new abi, we'll have already created a segment
11969 for this section, so don't create another. I'm not sure this
11970 is not also the case for IRIX 6, but I can't test it right
11971 now. */
11972 && IRIX_COMPAT (abfd) == ict_irix6)
11973 {
11974 for (s = abfd->sections; s; s = s->next)
11975 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
11976 break;
11977
11978 if (s)
11979 {
11980 struct elf_segment_map *options_segment;
11981
11982 pm = &elf_seg_map (abfd);
11983 while (*pm != NULL
11984 && ((*pm)->p_type == PT_PHDR
11985 || (*pm)->p_type == PT_INTERP))
11986 pm = &(*pm)->next;
11987
11988 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
11989 {
11990 amt = sizeof (struct elf_segment_map);
11991 options_segment = bfd_zalloc (abfd, amt);
11992 options_segment->next = *pm;
11993 options_segment->p_type = PT_MIPS_OPTIONS;
11994 options_segment->p_flags = PF_R;
11995 options_segment->p_flags_valid = TRUE;
11996 options_segment->count = 1;
11997 options_segment->sections[0] = s;
11998 *pm = options_segment;
11999 }
12000 }
12001 }
12002 else
12003 {
12004 if (IRIX_COMPAT (abfd) == ict_irix5)
12005 {
12006 /* If there are .dynamic and .mdebug sections, we make a room
12007 for the RTPROC header. FIXME: Rewrite without section names. */
12008 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12009 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12010 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12011 {
12012 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12013 if (m->p_type == PT_MIPS_RTPROC)
12014 break;
12015 if (m == NULL)
12016 {
12017 amt = sizeof *m;
12018 m = bfd_zalloc (abfd, amt);
12019 if (m == NULL)
12020 return FALSE;
12021
12022 m->p_type = PT_MIPS_RTPROC;
12023
12024 s = bfd_get_section_by_name (abfd, ".rtproc");
12025 if (s == NULL)
12026 {
12027 m->count = 0;
12028 m->p_flags = 0;
12029 m->p_flags_valid = 1;
12030 }
12031 else
12032 {
12033 m->count = 1;
12034 m->sections[0] = s;
12035 }
12036
12037 /* We want to put it after the DYNAMIC segment. */
12038 pm = &elf_seg_map (abfd);
12039 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12040 pm = &(*pm)->next;
12041 if (*pm != NULL)
12042 pm = &(*pm)->next;
12043
12044 m->next = *pm;
12045 *pm = m;
12046 }
12047 }
12048 }
12049 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12050 .dynstr, .dynsym, and .hash sections, and everything in
12051 between. */
12052 for (pm = &elf_seg_map (abfd); *pm != NULL;
12053 pm = &(*pm)->next)
12054 if ((*pm)->p_type == PT_DYNAMIC)
12055 break;
12056 m = *pm;
12057 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12058 glibc's dynamic linker has traditionally derived the number of
12059 tags from the p_filesz field, and sometimes allocates stack
12060 arrays of that size. An overly-big PT_DYNAMIC segment can
12061 be actively harmful in such cases. Making PT_DYNAMIC contain
12062 other sections can also make life hard for the prelinker,
12063 which might move one of the other sections to a different
12064 PT_LOAD segment. */
12065 if (SGI_COMPAT (abfd)
12066 && m != NULL
12067 && m->count == 1
12068 && strcmp (m->sections[0]->name, ".dynamic") == 0)
12069 {
12070 static const char *sec_names[] =
12071 {
12072 ".dynamic", ".dynstr", ".dynsym", ".hash"
12073 };
12074 bfd_vma low, high;
12075 unsigned int i, c;
12076 struct elf_segment_map *n;
12077
12078 low = ~(bfd_vma) 0;
12079 high = 0;
12080 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12081 {
12082 s = bfd_get_section_by_name (abfd, sec_names[i]);
12083 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12084 {
12085 bfd_size_type sz;
12086
12087 if (low > s->vma)
12088 low = s->vma;
12089 sz = s->size;
12090 if (high < s->vma + sz)
12091 high = s->vma + sz;
12092 }
12093 }
12094
12095 c = 0;
12096 for (s = abfd->sections; s != NULL; s = s->next)
12097 if ((s->flags & SEC_LOAD) != 0
12098 && s->vma >= low
12099 && s->vma + s->size <= high)
12100 ++c;
12101
12102 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
12103 n = bfd_zalloc (abfd, amt);
12104 if (n == NULL)
12105 return FALSE;
12106 *n = *m;
12107 n->count = c;
12108
12109 i = 0;
12110 for (s = abfd->sections; s != NULL; s = s->next)
12111 {
12112 if ((s->flags & SEC_LOAD) != 0
12113 && s->vma >= low
12114 && s->vma + s->size <= high)
12115 {
12116 n->sections[i] = s;
12117 ++i;
12118 }
12119 }
12120
12121 *pm = n;
12122 }
12123 }
12124
12125 /* Allocate a spare program header in dynamic objects so that tools
12126 like the prelinker can add an extra PT_LOAD entry.
12127
12128 If the prelinker needs to make room for a new PT_LOAD entry, its
12129 standard procedure is to move the first (read-only) sections into
12130 the new (writable) segment. However, the MIPS ABI requires
12131 .dynamic to be in a read-only segment, and the section will often
12132 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12133
12134 Although the prelinker could in principle move .dynamic to a
12135 writable segment, it seems better to allocate a spare program
12136 header instead, and avoid the need to move any sections.
12137 There is a long tradition of allocating spare dynamic tags,
12138 so allocating a spare program header seems like a natural
12139 extension.
12140
12141 If INFO is NULL, we may be copying an already prelinked binary
12142 with objcopy or strip, so do not add this header. */
12143 if (info != NULL
12144 && !SGI_COMPAT (abfd)
12145 && bfd_get_section_by_name (abfd, ".dynamic"))
12146 {
12147 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12148 if ((*pm)->p_type == PT_NULL)
12149 break;
12150 if (*pm == NULL)
12151 {
12152 m = bfd_zalloc (abfd, sizeof (*m));
12153 if (m == NULL)
12154 return FALSE;
12155
12156 m->p_type = PT_NULL;
12157 *pm = m;
12158 }
12159 }
12160
12161 return TRUE;
12162 }
12163 \f
12164 /* Return the section that should be marked against GC for a given
12165 relocation. */
12166
12167 asection *
12168 _bfd_mips_elf_gc_mark_hook (asection *sec,
12169 struct bfd_link_info *info,
12170 Elf_Internal_Rela *rel,
12171 struct elf_link_hash_entry *h,
12172 Elf_Internal_Sym *sym)
12173 {
12174 /* ??? Do mips16 stub sections need to be handled special? */
12175
12176 if (h != NULL)
12177 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12178 {
12179 case R_MIPS_GNU_VTINHERIT:
12180 case R_MIPS_GNU_VTENTRY:
12181 return NULL;
12182 }
12183
12184 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12185 }
12186
12187 /* Update the got entry reference counts for the section being removed. */
12188
12189 bfd_boolean
12190 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
12191 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12192 asection *sec ATTRIBUTE_UNUSED,
12193 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
12194 {
12195 #if 0
12196 Elf_Internal_Shdr *symtab_hdr;
12197 struct elf_link_hash_entry **sym_hashes;
12198 bfd_signed_vma *local_got_refcounts;
12199 const Elf_Internal_Rela *rel, *relend;
12200 unsigned long r_symndx;
12201 struct elf_link_hash_entry *h;
12202
12203 if (info->relocatable)
12204 return TRUE;
12205
12206 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12207 sym_hashes = elf_sym_hashes (abfd);
12208 local_got_refcounts = elf_local_got_refcounts (abfd);
12209
12210 relend = relocs + sec->reloc_count;
12211 for (rel = relocs; rel < relend; rel++)
12212 switch (ELF_R_TYPE (abfd, rel->r_info))
12213 {
12214 case R_MIPS16_GOT16:
12215 case R_MIPS16_CALL16:
12216 case R_MIPS_GOT16:
12217 case R_MIPS_CALL16:
12218 case R_MIPS_CALL_HI16:
12219 case R_MIPS_CALL_LO16:
12220 case R_MIPS_GOT_HI16:
12221 case R_MIPS_GOT_LO16:
12222 case R_MIPS_GOT_DISP:
12223 case R_MIPS_GOT_PAGE:
12224 case R_MIPS_GOT_OFST:
12225 case R_MICROMIPS_GOT16:
12226 case R_MICROMIPS_CALL16:
12227 case R_MICROMIPS_CALL_HI16:
12228 case R_MICROMIPS_CALL_LO16:
12229 case R_MICROMIPS_GOT_HI16:
12230 case R_MICROMIPS_GOT_LO16:
12231 case R_MICROMIPS_GOT_DISP:
12232 case R_MICROMIPS_GOT_PAGE:
12233 case R_MICROMIPS_GOT_OFST:
12234 /* ??? It would seem that the existing MIPS code does no sort
12235 of reference counting or whatnot on its GOT and PLT entries,
12236 so it is not possible to garbage collect them at this time. */
12237 break;
12238
12239 default:
12240 break;
12241 }
12242 #endif
12243
12244 return TRUE;
12245 }
12246
12247 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12248
12249 bfd_boolean
12250 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12251 elf_gc_mark_hook_fn gc_mark_hook)
12252 {
12253 bfd *sub;
12254
12255 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12256
12257 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12258 {
12259 asection *o;
12260
12261 if (! is_mips_elf (sub))
12262 continue;
12263
12264 for (o = sub->sections; o != NULL; o = o->next)
12265 if (!o->gc_mark
12266 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12267 (bfd_get_section_name (sub, o)))
12268 {
12269 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12270 return FALSE;
12271 }
12272 }
12273
12274 return TRUE;
12275 }
12276 \f
12277 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12278 hiding the old indirect symbol. Process additional relocation
12279 information. Also called for weakdefs, in which case we just let
12280 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12281
12282 void
12283 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12284 struct elf_link_hash_entry *dir,
12285 struct elf_link_hash_entry *ind)
12286 {
12287 struct mips_elf_link_hash_entry *dirmips, *indmips;
12288
12289 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12290
12291 dirmips = (struct mips_elf_link_hash_entry *) dir;
12292 indmips = (struct mips_elf_link_hash_entry *) ind;
12293 /* Any absolute non-dynamic relocations against an indirect or weak
12294 definition will be against the target symbol. */
12295 if (indmips->has_static_relocs)
12296 dirmips->has_static_relocs = TRUE;
12297
12298 if (ind->root.type != bfd_link_hash_indirect)
12299 return;
12300
12301 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12302 if (indmips->readonly_reloc)
12303 dirmips->readonly_reloc = TRUE;
12304 if (indmips->no_fn_stub)
12305 dirmips->no_fn_stub = TRUE;
12306 if (indmips->fn_stub)
12307 {
12308 dirmips->fn_stub = indmips->fn_stub;
12309 indmips->fn_stub = NULL;
12310 }
12311 if (indmips->need_fn_stub)
12312 {
12313 dirmips->need_fn_stub = TRUE;
12314 indmips->need_fn_stub = FALSE;
12315 }
12316 if (indmips->call_stub)
12317 {
12318 dirmips->call_stub = indmips->call_stub;
12319 indmips->call_stub = NULL;
12320 }
12321 if (indmips->call_fp_stub)
12322 {
12323 dirmips->call_fp_stub = indmips->call_fp_stub;
12324 indmips->call_fp_stub = NULL;
12325 }
12326 if (indmips->global_got_area < dirmips->global_got_area)
12327 dirmips->global_got_area = indmips->global_got_area;
12328 if (indmips->global_got_area < GGA_NONE)
12329 indmips->global_got_area = GGA_NONE;
12330 if (indmips->has_nonpic_branches)
12331 dirmips->has_nonpic_branches = TRUE;
12332 }
12333 \f
12334 #define PDR_SIZE 32
12335
12336 bfd_boolean
12337 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12338 struct bfd_link_info *info)
12339 {
12340 asection *o;
12341 bfd_boolean ret = FALSE;
12342 unsigned char *tdata;
12343 size_t i, skip;
12344
12345 o = bfd_get_section_by_name (abfd, ".pdr");
12346 if (! o)
12347 return FALSE;
12348 if (o->size == 0)
12349 return FALSE;
12350 if (o->size % PDR_SIZE != 0)
12351 return FALSE;
12352 if (o->output_section != NULL
12353 && bfd_is_abs_section (o->output_section))
12354 return FALSE;
12355
12356 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12357 if (! tdata)
12358 return FALSE;
12359
12360 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12361 info->keep_memory);
12362 if (!cookie->rels)
12363 {
12364 free (tdata);
12365 return FALSE;
12366 }
12367
12368 cookie->rel = cookie->rels;
12369 cookie->relend = cookie->rels + o->reloc_count;
12370
12371 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12372 {
12373 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12374 {
12375 tdata[i] = 1;
12376 skip ++;
12377 }
12378 }
12379
12380 if (skip != 0)
12381 {
12382 mips_elf_section_data (o)->u.tdata = tdata;
12383 if (o->rawsize == 0)
12384 o->rawsize = o->size;
12385 o->size -= skip * PDR_SIZE;
12386 ret = TRUE;
12387 }
12388 else
12389 free (tdata);
12390
12391 if (! info->keep_memory)
12392 free (cookie->rels);
12393
12394 return ret;
12395 }
12396
12397 bfd_boolean
12398 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
12399 {
12400 if (strcmp (sec->name, ".pdr") == 0)
12401 return TRUE;
12402 return FALSE;
12403 }
12404
12405 bfd_boolean
12406 _bfd_mips_elf_write_section (bfd *output_bfd,
12407 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12408 asection *sec, bfd_byte *contents)
12409 {
12410 bfd_byte *to, *from, *end;
12411 int i;
12412
12413 if (strcmp (sec->name, ".pdr") != 0)
12414 return FALSE;
12415
12416 if (mips_elf_section_data (sec)->u.tdata == NULL)
12417 return FALSE;
12418
12419 to = contents;
12420 end = contents + sec->size;
12421 for (from = contents, i = 0;
12422 from < end;
12423 from += PDR_SIZE, i++)
12424 {
12425 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
12426 continue;
12427 if (to != from)
12428 memcpy (to, from, PDR_SIZE);
12429 to += PDR_SIZE;
12430 }
12431 bfd_set_section_contents (output_bfd, sec->output_section, contents,
12432 sec->output_offset, sec->size);
12433 return TRUE;
12434 }
12435 \f
12436 /* microMIPS code retains local labels for linker relaxation. Omit them
12437 from output by default for clarity. */
12438
12439 bfd_boolean
12440 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12441 {
12442 return _bfd_elf_is_local_label_name (abfd, sym->name);
12443 }
12444
12445 /* MIPS ELF uses a special find_nearest_line routine in order the
12446 handle the ECOFF debugging information. */
12447
12448 struct mips_elf_find_line
12449 {
12450 struct ecoff_debug_info d;
12451 struct ecoff_find_line i;
12452 };
12453
12454 bfd_boolean
12455 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
12456 asymbol **symbols, bfd_vma offset,
12457 const char **filename_ptr,
12458 const char **functionname_ptr,
12459 unsigned int *line_ptr)
12460 {
12461 asection *msec;
12462
12463 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
12464 filename_ptr, functionname_ptr,
12465 line_ptr))
12466 return TRUE;
12467
12468 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
12469 section, symbols, offset,
12470 filename_ptr, functionname_ptr,
12471 line_ptr, NULL, ABI_64_P (abfd) ? 8 : 0,
12472 &elf_tdata (abfd)->dwarf2_find_line_info))
12473 return TRUE;
12474
12475 msec = bfd_get_section_by_name (abfd, ".mdebug");
12476 if (msec != NULL)
12477 {
12478 flagword origflags;
12479 struct mips_elf_find_line *fi;
12480 const struct ecoff_debug_swap * const swap =
12481 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12482
12483 /* If we are called during a link, mips_elf_final_link may have
12484 cleared the SEC_HAS_CONTENTS field. We force it back on here
12485 if appropriate (which it normally will be). */
12486 origflags = msec->flags;
12487 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12488 msec->flags |= SEC_HAS_CONTENTS;
12489
12490 fi = mips_elf_tdata (abfd)->find_line_info;
12491 if (fi == NULL)
12492 {
12493 bfd_size_type external_fdr_size;
12494 char *fraw_src;
12495 char *fraw_end;
12496 struct fdr *fdr_ptr;
12497 bfd_size_type amt = sizeof (struct mips_elf_find_line);
12498
12499 fi = bfd_zalloc (abfd, amt);
12500 if (fi == NULL)
12501 {
12502 msec->flags = origflags;
12503 return FALSE;
12504 }
12505
12506 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12507 {
12508 msec->flags = origflags;
12509 return FALSE;
12510 }
12511
12512 /* Swap in the FDR information. */
12513 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
12514 fi->d.fdr = bfd_alloc (abfd, amt);
12515 if (fi->d.fdr == NULL)
12516 {
12517 msec->flags = origflags;
12518 return FALSE;
12519 }
12520 external_fdr_size = swap->external_fdr_size;
12521 fdr_ptr = fi->d.fdr;
12522 fraw_src = (char *) fi->d.external_fdr;
12523 fraw_end = (fraw_src
12524 + fi->d.symbolic_header.ifdMax * external_fdr_size);
12525 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
12526 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
12527
12528 mips_elf_tdata (abfd)->find_line_info = fi;
12529
12530 /* Note that we don't bother to ever free this information.
12531 find_nearest_line is either called all the time, as in
12532 objdump -l, so the information should be saved, or it is
12533 rarely called, as in ld error messages, so the memory
12534 wasted is unimportant. Still, it would probably be a
12535 good idea for free_cached_info to throw it away. */
12536 }
12537
12538 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
12539 &fi->i, filename_ptr, functionname_ptr,
12540 line_ptr))
12541 {
12542 msec->flags = origflags;
12543 return TRUE;
12544 }
12545
12546 msec->flags = origflags;
12547 }
12548
12549 /* Fall back on the generic ELF find_nearest_line routine. */
12550
12551 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
12552 filename_ptr, functionname_ptr,
12553 line_ptr);
12554 }
12555
12556 bfd_boolean
12557 _bfd_mips_elf_find_inliner_info (bfd *abfd,
12558 const char **filename_ptr,
12559 const char **functionname_ptr,
12560 unsigned int *line_ptr)
12561 {
12562 bfd_boolean found;
12563 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12564 functionname_ptr, line_ptr,
12565 & elf_tdata (abfd)->dwarf2_find_line_info);
12566 return found;
12567 }
12568
12569 \f
12570 /* When are writing out the .options or .MIPS.options section,
12571 remember the bytes we are writing out, so that we can install the
12572 GP value in the section_processing routine. */
12573
12574 bfd_boolean
12575 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
12576 const void *location,
12577 file_ptr offset, bfd_size_type count)
12578 {
12579 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
12580 {
12581 bfd_byte *c;
12582
12583 if (elf_section_data (section) == NULL)
12584 {
12585 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
12586 section->used_by_bfd = bfd_zalloc (abfd, amt);
12587 if (elf_section_data (section) == NULL)
12588 return FALSE;
12589 }
12590 c = mips_elf_section_data (section)->u.tdata;
12591 if (c == NULL)
12592 {
12593 c = bfd_zalloc (abfd, section->size);
12594 if (c == NULL)
12595 return FALSE;
12596 mips_elf_section_data (section)->u.tdata = c;
12597 }
12598
12599 memcpy (c + offset, location, count);
12600 }
12601
12602 return _bfd_elf_set_section_contents (abfd, section, location, offset,
12603 count);
12604 }
12605
12606 /* This is almost identical to bfd_generic_get_... except that some
12607 MIPS relocations need to be handled specially. Sigh. */
12608
12609 bfd_byte *
12610 _bfd_elf_mips_get_relocated_section_contents
12611 (bfd *abfd,
12612 struct bfd_link_info *link_info,
12613 struct bfd_link_order *link_order,
12614 bfd_byte *data,
12615 bfd_boolean relocatable,
12616 asymbol **symbols)
12617 {
12618 /* Get enough memory to hold the stuff */
12619 bfd *input_bfd = link_order->u.indirect.section->owner;
12620 asection *input_section = link_order->u.indirect.section;
12621 bfd_size_type sz;
12622
12623 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
12624 arelent **reloc_vector = NULL;
12625 long reloc_count;
12626
12627 if (reloc_size < 0)
12628 goto error_return;
12629
12630 reloc_vector = bfd_malloc (reloc_size);
12631 if (reloc_vector == NULL && reloc_size != 0)
12632 goto error_return;
12633
12634 /* read in the section */
12635 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
12636 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
12637 goto error_return;
12638
12639 reloc_count = bfd_canonicalize_reloc (input_bfd,
12640 input_section,
12641 reloc_vector,
12642 symbols);
12643 if (reloc_count < 0)
12644 goto error_return;
12645
12646 if (reloc_count > 0)
12647 {
12648 arelent **parent;
12649 /* for mips */
12650 int gp_found;
12651 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
12652
12653 {
12654 struct bfd_hash_entry *h;
12655 struct bfd_link_hash_entry *lh;
12656 /* Skip all this stuff if we aren't mixing formats. */
12657 if (abfd && input_bfd
12658 && abfd->xvec == input_bfd->xvec)
12659 lh = 0;
12660 else
12661 {
12662 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
12663 lh = (struct bfd_link_hash_entry *) h;
12664 }
12665 lookup:
12666 if (lh)
12667 {
12668 switch (lh->type)
12669 {
12670 case bfd_link_hash_undefined:
12671 case bfd_link_hash_undefweak:
12672 case bfd_link_hash_common:
12673 gp_found = 0;
12674 break;
12675 case bfd_link_hash_defined:
12676 case bfd_link_hash_defweak:
12677 gp_found = 1;
12678 gp = lh->u.def.value;
12679 break;
12680 case bfd_link_hash_indirect:
12681 case bfd_link_hash_warning:
12682 lh = lh->u.i.link;
12683 /* @@FIXME ignoring warning for now */
12684 goto lookup;
12685 case bfd_link_hash_new:
12686 default:
12687 abort ();
12688 }
12689 }
12690 else
12691 gp_found = 0;
12692 }
12693 /* end mips */
12694 for (parent = reloc_vector; *parent != NULL; parent++)
12695 {
12696 char *error_message = NULL;
12697 bfd_reloc_status_type r;
12698
12699 /* Specific to MIPS: Deal with relocation types that require
12700 knowing the gp of the output bfd. */
12701 asymbol *sym = *(*parent)->sym_ptr_ptr;
12702
12703 /* If we've managed to find the gp and have a special
12704 function for the relocation then go ahead, else default
12705 to the generic handling. */
12706 if (gp_found
12707 && (*parent)->howto->special_function
12708 == _bfd_mips_elf32_gprel16_reloc)
12709 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
12710 input_section, relocatable,
12711 data, gp);
12712 else
12713 r = bfd_perform_relocation (input_bfd, *parent, data,
12714 input_section,
12715 relocatable ? abfd : NULL,
12716 &error_message);
12717
12718 if (relocatable)
12719 {
12720 asection *os = input_section->output_section;
12721
12722 /* A partial link, so keep the relocs */
12723 os->orelocation[os->reloc_count] = *parent;
12724 os->reloc_count++;
12725 }
12726
12727 if (r != bfd_reloc_ok)
12728 {
12729 switch (r)
12730 {
12731 case bfd_reloc_undefined:
12732 if (!((*link_info->callbacks->undefined_symbol)
12733 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12734 input_bfd, input_section, (*parent)->address, TRUE)))
12735 goto error_return;
12736 break;
12737 case bfd_reloc_dangerous:
12738 BFD_ASSERT (error_message != NULL);
12739 if (!((*link_info->callbacks->reloc_dangerous)
12740 (link_info, error_message, input_bfd, input_section,
12741 (*parent)->address)))
12742 goto error_return;
12743 break;
12744 case bfd_reloc_overflow:
12745 if (!((*link_info->callbacks->reloc_overflow)
12746 (link_info, NULL,
12747 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12748 (*parent)->howto->name, (*parent)->addend,
12749 input_bfd, input_section, (*parent)->address)))
12750 goto error_return;
12751 break;
12752 case bfd_reloc_outofrange:
12753 default:
12754 abort ();
12755 break;
12756 }
12757
12758 }
12759 }
12760 }
12761 if (reloc_vector != NULL)
12762 free (reloc_vector);
12763 return data;
12764
12765 error_return:
12766 if (reloc_vector != NULL)
12767 free (reloc_vector);
12768 return NULL;
12769 }
12770 \f
12771 static bfd_boolean
12772 mips_elf_relax_delete_bytes (bfd *abfd,
12773 asection *sec, bfd_vma addr, int count)
12774 {
12775 Elf_Internal_Shdr *symtab_hdr;
12776 unsigned int sec_shndx;
12777 bfd_byte *contents;
12778 Elf_Internal_Rela *irel, *irelend;
12779 Elf_Internal_Sym *isym;
12780 Elf_Internal_Sym *isymend;
12781 struct elf_link_hash_entry **sym_hashes;
12782 struct elf_link_hash_entry **end_hashes;
12783 struct elf_link_hash_entry **start_hashes;
12784 unsigned int symcount;
12785
12786 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
12787 contents = elf_section_data (sec)->this_hdr.contents;
12788
12789 irel = elf_section_data (sec)->relocs;
12790 irelend = irel + sec->reloc_count;
12791
12792 /* Actually delete the bytes. */
12793 memmove (contents + addr, contents + addr + count,
12794 (size_t) (sec->size - addr - count));
12795 sec->size -= count;
12796
12797 /* Adjust all the relocs. */
12798 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
12799 {
12800 /* Get the new reloc address. */
12801 if (irel->r_offset > addr)
12802 irel->r_offset -= count;
12803 }
12804
12805 BFD_ASSERT (addr % 2 == 0);
12806 BFD_ASSERT (count % 2 == 0);
12807
12808 /* Adjust the local symbols defined in this section. */
12809 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12810 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
12811 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
12812 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
12813 isym->st_value -= count;
12814
12815 /* Now adjust the global symbols defined in this section. */
12816 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
12817 - symtab_hdr->sh_info);
12818 sym_hashes = start_hashes = elf_sym_hashes (abfd);
12819 end_hashes = sym_hashes + symcount;
12820
12821 for (; sym_hashes < end_hashes; sym_hashes++)
12822 {
12823 struct elf_link_hash_entry *sym_hash = *sym_hashes;
12824
12825 if ((sym_hash->root.type == bfd_link_hash_defined
12826 || sym_hash->root.type == bfd_link_hash_defweak)
12827 && sym_hash->root.u.def.section == sec)
12828 {
12829 bfd_vma value = sym_hash->root.u.def.value;
12830
12831 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
12832 value &= MINUS_TWO;
12833 if (value > addr)
12834 sym_hash->root.u.def.value -= count;
12835 }
12836 }
12837
12838 return TRUE;
12839 }
12840
12841
12842 /* Opcodes needed for microMIPS relaxation as found in
12843 opcodes/micromips-opc.c. */
12844
12845 struct opcode_descriptor {
12846 unsigned long match;
12847 unsigned long mask;
12848 };
12849
12850 /* The $ra register aka $31. */
12851
12852 #define RA 31
12853
12854 /* 32-bit instruction format register fields. */
12855
12856 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
12857 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
12858
12859 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
12860
12861 #define OP16_VALID_REG(r) \
12862 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
12863
12864
12865 /* 32-bit and 16-bit branches. */
12866
12867 static const struct opcode_descriptor b_insns_32[] = {
12868 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
12869 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
12870 { 0, 0 } /* End marker for find_match(). */
12871 };
12872
12873 static const struct opcode_descriptor bc_insn_32 =
12874 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
12875
12876 static const struct opcode_descriptor bz_insn_32 =
12877 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
12878
12879 static const struct opcode_descriptor bzal_insn_32 =
12880 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
12881
12882 static const struct opcode_descriptor beq_insn_32 =
12883 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
12884
12885 static const struct opcode_descriptor b_insn_16 =
12886 { /* "b", "mD", */ 0xcc00, 0xfc00 };
12887
12888 static const struct opcode_descriptor bz_insn_16 =
12889 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
12890
12891
12892 /* 32-bit and 16-bit branch EQ and NE zero. */
12893
12894 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
12895 eq and second the ne. This convention is used when replacing a
12896 32-bit BEQ/BNE with the 16-bit version. */
12897
12898 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
12899
12900 static const struct opcode_descriptor bz_rs_insns_32[] = {
12901 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
12902 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
12903 { 0, 0 } /* End marker for find_match(). */
12904 };
12905
12906 static const struct opcode_descriptor bz_rt_insns_32[] = {
12907 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
12908 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
12909 { 0, 0 } /* End marker for find_match(). */
12910 };
12911
12912 static const struct opcode_descriptor bzc_insns_32[] = {
12913 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
12914 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
12915 { 0, 0 } /* End marker for find_match(). */
12916 };
12917
12918 static const struct opcode_descriptor bz_insns_16[] = {
12919 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
12920 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
12921 { 0, 0 } /* End marker for find_match(). */
12922 };
12923
12924 /* Switch between a 5-bit register index and its 3-bit shorthand. */
12925
12926 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0x17) + 2)
12927 #define BZ16_REG_FIELD(r) \
12928 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 7)
12929
12930
12931 /* 32-bit instructions with a delay slot. */
12932
12933 static const struct opcode_descriptor jal_insn_32_bd16 =
12934 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
12935
12936 static const struct opcode_descriptor jal_insn_32_bd32 =
12937 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
12938
12939 static const struct opcode_descriptor jal_x_insn_32_bd32 =
12940 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
12941
12942 static const struct opcode_descriptor j_insn_32 =
12943 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
12944
12945 static const struct opcode_descriptor jalr_insn_32 =
12946 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
12947
12948 /* This table can be compacted, because no opcode replacement is made. */
12949
12950 static const struct opcode_descriptor ds_insns_32_bd16[] = {
12951 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
12952
12953 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
12954 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
12955
12956 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
12957 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
12958 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
12959 { 0, 0 } /* End marker for find_match(). */
12960 };
12961
12962 /* This table can be compacted, because no opcode replacement is made. */
12963
12964 static const struct opcode_descriptor ds_insns_32_bd32[] = {
12965 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
12966
12967 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
12968 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
12969 { 0, 0 } /* End marker for find_match(). */
12970 };
12971
12972
12973 /* 16-bit instructions with a delay slot. */
12974
12975 static const struct opcode_descriptor jalr_insn_16_bd16 =
12976 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
12977
12978 static const struct opcode_descriptor jalr_insn_16_bd32 =
12979 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
12980
12981 static const struct opcode_descriptor jr_insn_16 =
12982 { /* "jr", "mj", */ 0x4580, 0xffe0 };
12983
12984 #define JR16_REG(opcode) ((opcode) & 0x1f)
12985
12986 /* This table can be compacted, because no opcode replacement is made. */
12987
12988 static const struct opcode_descriptor ds_insns_16_bd16[] = {
12989 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
12990
12991 { /* "b", "mD", */ 0xcc00, 0xfc00 },
12992 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
12993 { /* "jr", "mj", */ 0x4580, 0xffe0 },
12994 { 0, 0 } /* End marker for find_match(). */
12995 };
12996
12997
12998 /* LUI instruction. */
12999
13000 static const struct opcode_descriptor lui_insn =
13001 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13002
13003
13004 /* ADDIU instruction. */
13005
13006 static const struct opcode_descriptor addiu_insn =
13007 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13008
13009 static const struct opcode_descriptor addiupc_insn =
13010 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13011
13012 #define ADDIUPC_REG_FIELD(r) \
13013 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13014
13015
13016 /* Relaxable instructions in a JAL delay slot: MOVE. */
13017
13018 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13019 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13020 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13021 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13022
13023 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13024 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13025
13026 static const struct opcode_descriptor move_insns_32[] = {
13027 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13028 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13029 { 0, 0 } /* End marker for find_match(). */
13030 };
13031
13032 static const struct opcode_descriptor move_insn_16 =
13033 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13034
13035
13036 /* NOP instructions. */
13037
13038 static const struct opcode_descriptor nop_insn_32 =
13039 { /* "nop", "", */ 0x00000000, 0xffffffff };
13040
13041 static const struct opcode_descriptor nop_insn_16 =
13042 { /* "nop", "", */ 0x0c00, 0xffff };
13043
13044
13045 /* Instruction match support. */
13046
13047 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13048
13049 static int
13050 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13051 {
13052 unsigned long indx;
13053
13054 for (indx = 0; insn[indx].mask != 0; indx++)
13055 if (MATCH (opcode, insn[indx]))
13056 return indx;
13057
13058 return -1;
13059 }
13060
13061
13062 /* Branch and delay slot decoding support. */
13063
13064 /* If PTR points to what *might* be a 16-bit branch or jump, then
13065 return the minimum length of its delay slot, otherwise return 0.
13066 Non-zero results are not definitive as we might be checking against
13067 the second half of another instruction. */
13068
13069 static int
13070 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13071 {
13072 unsigned long opcode;
13073 int bdsize;
13074
13075 opcode = bfd_get_16 (abfd, ptr);
13076 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13077 /* 16-bit branch/jump with a 32-bit delay slot. */
13078 bdsize = 4;
13079 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13080 || find_match (opcode, ds_insns_16_bd16) >= 0)
13081 /* 16-bit branch/jump with a 16-bit delay slot. */
13082 bdsize = 2;
13083 else
13084 /* No delay slot. */
13085 bdsize = 0;
13086
13087 return bdsize;
13088 }
13089
13090 /* If PTR points to what *might* be a 32-bit branch or jump, then
13091 return the minimum length of its delay slot, otherwise return 0.
13092 Non-zero results are not definitive as we might be checking against
13093 the second half of another instruction. */
13094
13095 static int
13096 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13097 {
13098 unsigned long opcode;
13099 int bdsize;
13100
13101 opcode = bfd_get_micromips_32 (abfd, ptr);
13102 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13103 /* 32-bit branch/jump with a 32-bit delay slot. */
13104 bdsize = 4;
13105 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13106 /* 32-bit branch/jump with a 16-bit delay slot. */
13107 bdsize = 2;
13108 else
13109 /* No delay slot. */
13110 bdsize = 0;
13111
13112 return bdsize;
13113 }
13114
13115 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13116 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13117
13118 static bfd_boolean
13119 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13120 {
13121 unsigned long opcode;
13122
13123 opcode = bfd_get_16 (abfd, ptr);
13124 if (MATCH (opcode, b_insn_16)
13125 /* B16 */
13126 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13127 /* JR16 */
13128 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13129 /* BEQZ16, BNEZ16 */
13130 || (MATCH (opcode, jalr_insn_16_bd32)
13131 /* JALR16 */
13132 && reg != JR16_REG (opcode) && reg != RA))
13133 return TRUE;
13134
13135 return FALSE;
13136 }
13137
13138 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13139 then return TRUE, otherwise FALSE. */
13140
13141 static bfd_boolean
13142 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13143 {
13144 unsigned long opcode;
13145
13146 opcode = bfd_get_micromips_32 (abfd, ptr);
13147 if (MATCH (opcode, j_insn_32)
13148 /* J */
13149 || MATCH (opcode, bc_insn_32)
13150 /* BC1F, BC1T, BC2F, BC2T */
13151 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13152 /* JAL, JALX */
13153 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13154 /* BGEZ, BGTZ, BLEZ, BLTZ */
13155 || (MATCH (opcode, bzal_insn_32)
13156 /* BGEZAL, BLTZAL */
13157 && reg != OP32_SREG (opcode) && reg != RA)
13158 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13159 /* JALR, JALR.HB, BEQ, BNE */
13160 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13161 return TRUE;
13162
13163 return FALSE;
13164 }
13165
13166 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13167 IRELEND) at OFFSET indicate that there must be a compact branch there,
13168 then return TRUE, otherwise FALSE. */
13169
13170 static bfd_boolean
13171 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13172 const Elf_Internal_Rela *internal_relocs,
13173 const Elf_Internal_Rela *irelend)
13174 {
13175 const Elf_Internal_Rela *irel;
13176 unsigned long opcode;
13177
13178 opcode = bfd_get_micromips_32 (abfd, ptr);
13179 if (find_match (opcode, bzc_insns_32) < 0)
13180 return FALSE;
13181
13182 for (irel = internal_relocs; irel < irelend; irel++)
13183 if (irel->r_offset == offset
13184 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13185 return TRUE;
13186
13187 return FALSE;
13188 }
13189
13190 /* Bitsize checking. */
13191 #define IS_BITSIZE(val, N) \
13192 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13193 - (1ULL << ((N) - 1))) == (val))
13194
13195 \f
13196 bfd_boolean
13197 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13198 struct bfd_link_info *link_info,
13199 bfd_boolean *again)
13200 {
13201 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13202 Elf_Internal_Shdr *symtab_hdr;
13203 Elf_Internal_Rela *internal_relocs;
13204 Elf_Internal_Rela *irel, *irelend;
13205 bfd_byte *contents = NULL;
13206 Elf_Internal_Sym *isymbuf = NULL;
13207
13208 /* Assume nothing changes. */
13209 *again = FALSE;
13210
13211 /* We don't have to do anything for a relocatable link, if
13212 this section does not have relocs, or if this is not a
13213 code section. */
13214
13215 if (link_info->relocatable
13216 || (sec->flags & SEC_RELOC) == 0
13217 || sec->reloc_count == 0
13218 || (sec->flags & SEC_CODE) == 0)
13219 return TRUE;
13220
13221 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13222
13223 /* Get a copy of the native relocations. */
13224 internal_relocs = (_bfd_elf_link_read_relocs
13225 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13226 link_info->keep_memory));
13227 if (internal_relocs == NULL)
13228 goto error_return;
13229
13230 /* Walk through them looking for relaxing opportunities. */
13231 irelend = internal_relocs + sec->reloc_count;
13232 for (irel = internal_relocs; irel < irelend; irel++)
13233 {
13234 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13235 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13236 bfd_boolean target_is_micromips_code_p;
13237 unsigned long opcode;
13238 bfd_vma symval;
13239 bfd_vma pcrval;
13240 bfd_byte *ptr;
13241 int fndopc;
13242
13243 /* The number of bytes to delete for relaxation and from where
13244 to delete these bytes starting at irel->r_offset. */
13245 int delcnt = 0;
13246 int deloff = 0;
13247
13248 /* If this isn't something that can be relaxed, then ignore
13249 this reloc. */
13250 if (r_type != R_MICROMIPS_HI16
13251 && r_type != R_MICROMIPS_PC16_S1
13252 && r_type != R_MICROMIPS_26_S1)
13253 continue;
13254
13255 /* Get the section contents if we haven't done so already. */
13256 if (contents == NULL)
13257 {
13258 /* Get cached copy if it exists. */
13259 if (elf_section_data (sec)->this_hdr.contents != NULL)
13260 contents = elf_section_data (sec)->this_hdr.contents;
13261 /* Go get them off disk. */
13262 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13263 goto error_return;
13264 }
13265 ptr = contents + irel->r_offset;
13266
13267 /* Read this BFD's local symbols if we haven't done so already. */
13268 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13269 {
13270 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13271 if (isymbuf == NULL)
13272 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13273 symtab_hdr->sh_info, 0,
13274 NULL, NULL, NULL);
13275 if (isymbuf == NULL)
13276 goto error_return;
13277 }
13278
13279 /* Get the value of the symbol referred to by the reloc. */
13280 if (r_symndx < symtab_hdr->sh_info)
13281 {
13282 /* A local symbol. */
13283 Elf_Internal_Sym *isym;
13284 asection *sym_sec;
13285
13286 isym = isymbuf + r_symndx;
13287 if (isym->st_shndx == SHN_UNDEF)
13288 sym_sec = bfd_und_section_ptr;
13289 else if (isym->st_shndx == SHN_ABS)
13290 sym_sec = bfd_abs_section_ptr;
13291 else if (isym->st_shndx == SHN_COMMON)
13292 sym_sec = bfd_com_section_ptr;
13293 else
13294 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13295 symval = (isym->st_value
13296 + sym_sec->output_section->vma
13297 + sym_sec->output_offset);
13298 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13299 }
13300 else
13301 {
13302 unsigned long indx;
13303 struct elf_link_hash_entry *h;
13304
13305 /* An external symbol. */
13306 indx = r_symndx - symtab_hdr->sh_info;
13307 h = elf_sym_hashes (abfd)[indx];
13308 BFD_ASSERT (h != NULL);
13309
13310 if (h->root.type != bfd_link_hash_defined
13311 && h->root.type != bfd_link_hash_defweak)
13312 /* This appears to be a reference to an undefined
13313 symbol. Just ignore it -- it will be caught by the
13314 regular reloc processing. */
13315 continue;
13316
13317 symval = (h->root.u.def.value
13318 + h->root.u.def.section->output_section->vma
13319 + h->root.u.def.section->output_offset);
13320 target_is_micromips_code_p = (!h->needs_plt
13321 && ELF_ST_IS_MICROMIPS (h->other));
13322 }
13323
13324
13325 /* For simplicity of coding, we are going to modify the
13326 section contents, the section relocs, and the BFD symbol
13327 table. We must tell the rest of the code not to free up this
13328 information. It would be possible to instead create a table
13329 of changes which have to be made, as is done in coff-mips.c;
13330 that would be more work, but would require less memory when
13331 the linker is run. */
13332
13333 /* Only 32-bit instructions relaxed. */
13334 if (irel->r_offset + 4 > sec->size)
13335 continue;
13336
13337 opcode = bfd_get_micromips_32 (abfd, ptr);
13338
13339 /* This is the pc-relative distance from the instruction the
13340 relocation is applied to, to the symbol referred. */
13341 pcrval = (symval
13342 - (sec->output_section->vma + sec->output_offset)
13343 - irel->r_offset);
13344
13345 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13346 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13347 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13348
13349 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13350
13351 where pcrval has first to be adjusted to apply against the LO16
13352 location (we make the adjustment later on, when we have figured
13353 out the offset). */
13354 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13355 {
13356 bfd_boolean bzc = FALSE;
13357 unsigned long nextopc;
13358 unsigned long reg;
13359 bfd_vma offset;
13360
13361 /* Give up if the previous reloc was a HI16 against this symbol
13362 too. */
13363 if (irel > internal_relocs
13364 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13365 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13366 continue;
13367
13368 /* Or if the next reloc is not a LO16 against this symbol. */
13369 if (irel + 1 >= irelend
13370 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13371 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13372 continue;
13373
13374 /* Or if the second next reloc is a LO16 against this symbol too. */
13375 if (irel + 2 >= irelend
13376 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13377 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13378 continue;
13379
13380 /* See if the LUI instruction *might* be in a branch delay slot.
13381 We check whether what looks like a 16-bit branch or jump is
13382 actually an immediate argument to a compact branch, and let
13383 it through if so. */
13384 if (irel->r_offset >= 2
13385 && check_br16_dslot (abfd, ptr - 2)
13386 && !(irel->r_offset >= 4
13387 && (bzc = check_relocated_bzc (abfd,
13388 ptr - 4, irel->r_offset - 4,
13389 internal_relocs, irelend))))
13390 continue;
13391 if (irel->r_offset >= 4
13392 && !bzc
13393 && check_br32_dslot (abfd, ptr - 4))
13394 continue;
13395
13396 reg = OP32_SREG (opcode);
13397
13398 /* We only relax adjacent instructions or ones separated with
13399 a branch or jump that has a delay slot. The branch or jump
13400 must not fiddle with the register used to hold the address.
13401 Subtract 4 for the LUI itself. */
13402 offset = irel[1].r_offset - irel[0].r_offset;
13403 switch (offset - 4)
13404 {
13405 case 0:
13406 break;
13407 case 2:
13408 if (check_br16 (abfd, ptr + 4, reg))
13409 break;
13410 continue;
13411 case 4:
13412 if (check_br32 (abfd, ptr + 4, reg))
13413 break;
13414 continue;
13415 default:
13416 continue;
13417 }
13418
13419 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
13420
13421 /* Give up unless the same register is used with both
13422 relocations. */
13423 if (OP32_SREG (nextopc) != reg)
13424 continue;
13425
13426 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13427 and rounding up to take masking of the two LSBs into account. */
13428 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13429
13430 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13431 if (IS_BITSIZE (symval, 16))
13432 {
13433 /* Fix the relocation's type. */
13434 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13435
13436 /* Instructions using R_MICROMIPS_LO16 have the base or
13437 source register in bits 20:16. This register becomes $0
13438 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
13439 nextopc &= ~0x001f0000;
13440 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13441 contents + irel[1].r_offset);
13442 }
13443
13444 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13445 We add 4 to take LUI deletion into account while checking
13446 the PC-relative distance. */
13447 else if (symval % 4 == 0
13448 && IS_BITSIZE (pcrval + 4, 25)
13449 && MATCH (nextopc, addiu_insn)
13450 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13451 && OP16_VALID_REG (OP32_TREG (nextopc)))
13452 {
13453 /* Fix the relocation's type. */
13454 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13455
13456 /* Replace ADDIU with the ADDIUPC version. */
13457 nextopc = (addiupc_insn.match
13458 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13459
13460 bfd_put_micromips_32 (abfd, nextopc,
13461 contents + irel[1].r_offset);
13462 }
13463
13464 /* Can't do anything, give up, sigh... */
13465 else
13466 continue;
13467
13468 /* Fix the relocation's type. */
13469 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13470
13471 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
13472 delcnt = 4;
13473 deloff = 0;
13474 }
13475
13476 /* Compact branch relaxation -- due to the multitude of macros
13477 employed by the compiler/assembler, compact branches are not
13478 always generated. Obviously, this can/will be fixed elsewhere,
13479 but there is no drawback in double checking it here. */
13480 else if (r_type == R_MICROMIPS_PC16_S1
13481 && irel->r_offset + 5 < sec->size
13482 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13483 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
13484 && ((!insn32
13485 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13486 nop_insn_16) ? 2 : 0))
13487 || (irel->r_offset + 7 < sec->size
13488 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13489 ptr + 4),
13490 nop_insn_32) ? 4 : 0))))
13491 {
13492 unsigned long reg;
13493
13494 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13495
13496 /* Replace BEQZ/BNEZ with the compact version. */
13497 opcode = (bzc_insns_32[fndopc].match
13498 | BZC32_REG_FIELD (reg)
13499 | (opcode & 0xffff)); /* Addend value. */
13500
13501 bfd_put_micromips_32 (abfd, opcode, ptr);
13502
13503 /* Delete the delay slot NOP: two or four bytes from
13504 irel->offset + 4; delcnt has already been set above. */
13505 deloff = 4;
13506 }
13507
13508 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
13509 to check the distance from the next instruction, so subtract 2. */
13510 else if (!insn32
13511 && r_type == R_MICROMIPS_PC16_S1
13512 && IS_BITSIZE (pcrval - 2, 11)
13513 && find_match (opcode, b_insns_32) >= 0)
13514 {
13515 /* Fix the relocation's type. */
13516 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13517
13518 /* Replace the 32-bit opcode with a 16-bit opcode. */
13519 bfd_put_16 (abfd,
13520 (b_insn_16.match
13521 | (opcode & 0x3ff)), /* Addend value. */
13522 ptr);
13523
13524 /* Delete 2 bytes from irel->r_offset + 2. */
13525 delcnt = 2;
13526 deloff = 2;
13527 }
13528
13529 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
13530 to check the distance from the next instruction, so subtract 2. */
13531 else if (!insn32
13532 && r_type == R_MICROMIPS_PC16_S1
13533 && IS_BITSIZE (pcrval - 2, 8)
13534 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13535 && OP16_VALID_REG (OP32_SREG (opcode)))
13536 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13537 && OP16_VALID_REG (OP32_TREG (opcode)))))
13538 {
13539 unsigned long reg;
13540
13541 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13542
13543 /* Fix the relocation's type. */
13544 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
13545
13546 /* Replace the 32-bit opcode with a 16-bit opcode. */
13547 bfd_put_16 (abfd,
13548 (bz_insns_16[fndopc].match
13549 | BZ16_REG_FIELD (reg)
13550 | (opcode & 0x7f)), /* Addend value. */
13551 ptr);
13552
13553 /* Delete 2 bytes from irel->r_offset + 2. */
13554 delcnt = 2;
13555 deloff = 2;
13556 }
13557
13558 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
13559 else if (!insn32
13560 && r_type == R_MICROMIPS_26_S1
13561 && target_is_micromips_code_p
13562 && irel->r_offset + 7 < sec->size
13563 && MATCH (opcode, jal_insn_32_bd32))
13564 {
13565 unsigned long n32opc;
13566 bfd_boolean relaxed = FALSE;
13567
13568 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
13569
13570 if (MATCH (n32opc, nop_insn_32))
13571 {
13572 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
13573 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
13574
13575 relaxed = TRUE;
13576 }
13577 else if (find_match (n32opc, move_insns_32) >= 0)
13578 {
13579 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
13580 bfd_put_16 (abfd,
13581 (move_insn_16.match
13582 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
13583 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
13584 ptr + 4);
13585
13586 relaxed = TRUE;
13587 }
13588 /* Other 32-bit instructions relaxable to 16-bit
13589 instructions will be handled here later. */
13590
13591 if (relaxed)
13592 {
13593 /* JAL with 32-bit delay slot that is changed to a JALS
13594 with 16-bit delay slot. */
13595 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
13596
13597 /* Delete 2 bytes from irel->r_offset + 6. */
13598 delcnt = 2;
13599 deloff = 6;
13600 }
13601 }
13602
13603 if (delcnt != 0)
13604 {
13605 /* Note that we've changed the relocs, section contents, etc. */
13606 elf_section_data (sec)->relocs = internal_relocs;
13607 elf_section_data (sec)->this_hdr.contents = contents;
13608 symtab_hdr->contents = (unsigned char *) isymbuf;
13609
13610 /* Delete bytes depending on the delcnt and deloff. */
13611 if (!mips_elf_relax_delete_bytes (abfd, sec,
13612 irel->r_offset + deloff, delcnt))
13613 goto error_return;
13614
13615 /* That will change things, so we should relax again.
13616 Note that this is not required, and it may be slow. */
13617 *again = TRUE;
13618 }
13619 }
13620
13621 if (isymbuf != NULL
13622 && symtab_hdr->contents != (unsigned char *) isymbuf)
13623 {
13624 if (! link_info->keep_memory)
13625 free (isymbuf);
13626 else
13627 {
13628 /* Cache the symbols for elf_link_input_bfd. */
13629 symtab_hdr->contents = (unsigned char *) isymbuf;
13630 }
13631 }
13632
13633 if (contents != NULL
13634 && elf_section_data (sec)->this_hdr.contents != contents)
13635 {
13636 if (! link_info->keep_memory)
13637 free (contents);
13638 else
13639 {
13640 /* Cache the section contents for elf_link_input_bfd. */
13641 elf_section_data (sec)->this_hdr.contents = contents;
13642 }
13643 }
13644
13645 if (internal_relocs != NULL
13646 && elf_section_data (sec)->relocs != internal_relocs)
13647 free (internal_relocs);
13648
13649 return TRUE;
13650
13651 error_return:
13652 if (isymbuf != NULL
13653 && symtab_hdr->contents != (unsigned char *) isymbuf)
13654 free (isymbuf);
13655 if (contents != NULL
13656 && elf_section_data (sec)->this_hdr.contents != contents)
13657 free (contents);
13658 if (internal_relocs != NULL
13659 && elf_section_data (sec)->relocs != internal_relocs)
13660 free (internal_relocs);
13661
13662 return FALSE;
13663 }
13664 \f
13665 /* Create a MIPS ELF linker hash table. */
13666
13667 struct bfd_link_hash_table *
13668 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
13669 {
13670 struct mips_elf_link_hash_table *ret;
13671 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
13672
13673 ret = bfd_zmalloc (amt);
13674 if (ret == NULL)
13675 return NULL;
13676
13677 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
13678 mips_elf_link_hash_newfunc,
13679 sizeof (struct mips_elf_link_hash_entry),
13680 MIPS_ELF_DATA))
13681 {
13682 free (ret);
13683 return NULL;
13684 }
13685 ret->root.init_plt_refcount.plist = NULL;
13686 ret->root.init_plt_offset.plist = NULL;
13687
13688 return &ret->root.root;
13689 }
13690
13691 /* Likewise, but indicate that the target is VxWorks. */
13692
13693 struct bfd_link_hash_table *
13694 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
13695 {
13696 struct bfd_link_hash_table *ret;
13697
13698 ret = _bfd_mips_elf_link_hash_table_create (abfd);
13699 if (ret)
13700 {
13701 struct mips_elf_link_hash_table *htab;
13702
13703 htab = (struct mips_elf_link_hash_table *) ret;
13704 htab->use_plts_and_copy_relocs = TRUE;
13705 htab->is_vxworks = TRUE;
13706 }
13707 return ret;
13708 }
13709
13710 /* A function that the linker calls if we are allowed to use PLTs
13711 and copy relocs. */
13712
13713 void
13714 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
13715 {
13716 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
13717 }
13718
13719 /* A function that the linker calls to select between all or only
13720 32-bit microMIPS instructions. */
13721
13722 void
13723 _bfd_mips_elf_insn32 (struct bfd_link_info *info, bfd_boolean on)
13724 {
13725 mips_elf_hash_table (info)->insn32 = on;
13726 }
13727 \f
13728 /* Return the .MIPS.abiflags value representing each ISA Extension. */
13729
13730 unsigned int
13731 bfd_mips_isa_ext (bfd *abfd)
13732 {
13733 switch (bfd_get_mach (abfd))
13734 {
13735 case bfd_mach_mips3900:
13736 return AFL_EXT_3900;
13737 case bfd_mach_mips4010:
13738 return AFL_EXT_4010;
13739 case bfd_mach_mips4100:
13740 return AFL_EXT_4100;
13741 case bfd_mach_mips4111:
13742 return AFL_EXT_4111;
13743 case bfd_mach_mips4120:
13744 return AFL_EXT_4120;
13745 case bfd_mach_mips4650:
13746 return AFL_EXT_4650;
13747 case bfd_mach_mips5400:
13748 return AFL_EXT_5400;
13749 case bfd_mach_mips5500:
13750 return AFL_EXT_5500;
13751 case bfd_mach_mips5900:
13752 return AFL_EXT_5900;
13753 case bfd_mach_mips10000:
13754 return AFL_EXT_10000;
13755 case bfd_mach_mips_loongson_2e:
13756 return AFL_EXT_LOONGSON_2E;
13757 case bfd_mach_mips_loongson_2f:
13758 return AFL_EXT_LOONGSON_2F;
13759 case bfd_mach_mips_loongson_3a:
13760 return AFL_EXT_LOONGSON_3A;
13761 case bfd_mach_mips_sb1:
13762 return AFL_EXT_SB1;
13763 case bfd_mach_mips_octeon:
13764 return AFL_EXT_OCTEON;
13765 case bfd_mach_mips_octeonp:
13766 return AFL_EXT_OCTEONP;
13767 case bfd_mach_mips_octeon2:
13768 return AFL_EXT_OCTEON2;
13769 case bfd_mach_mips_xlr:
13770 return AFL_EXT_XLR;
13771 }
13772 return 0;
13773 }
13774
13775 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
13776
13777 static void
13778 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
13779 {
13780 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
13781 {
13782 case E_MIPS_ARCH_1:
13783 abiflags->isa_level = 1;
13784 abiflags->isa_rev = 0;
13785 break;
13786 case E_MIPS_ARCH_2:
13787 abiflags->isa_level = 2;
13788 abiflags->isa_rev = 0;
13789 break;
13790 case E_MIPS_ARCH_3:
13791 abiflags->isa_level = 3;
13792 abiflags->isa_rev = 0;
13793 break;
13794 case E_MIPS_ARCH_4:
13795 abiflags->isa_level = 4;
13796 abiflags->isa_rev = 0;
13797 break;
13798 case E_MIPS_ARCH_5:
13799 abiflags->isa_level = 5;
13800 abiflags->isa_rev = 0;
13801 break;
13802 case E_MIPS_ARCH_32:
13803 abiflags->isa_level = 32;
13804 abiflags->isa_rev = 1;
13805 break;
13806 case E_MIPS_ARCH_32R2:
13807 abiflags->isa_level = 32;
13808 /* Handle MIPS32r3 and MIPS32r5 which do not have a header flag. */
13809 if (abiflags->isa_rev < 2)
13810 abiflags->isa_rev = 2;
13811 break;
13812 case E_MIPS_ARCH_64:
13813 abiflags->isa_level = 64;
13814 abiflags->isa_rev = 1;
13815 break;
13816 case E_MIPS_ARCH_64R2:
13817 /* Handle MIPS64r3 and MIPS64r5 which do not have a header flag. */
13818 abiflags->isa_level = 64;
13819 if (abiflags->isa_rev < 2)
13820 abiflags->isa_rev = 2;
13821 break;
13822 default:
13823 (*_bfd_error_handler)
13824 (_("%B: Unknown architecture %s"),
13825 abfd, bfd_printable_name (abfd));
13826 }
13827
13828 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
13829 }
13830
13831 /* Return true if the given ELF header flags describe a 32-bit binary. */
13832
13833 static bfd_boolean
13834 mips_32bit_flags_p (flagword flags)
13835 {
13836 return ((flags & EF_MIPS_32BITMODE) != 0
13837 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
13838 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
13839 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
13840 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
13841 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
13842 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
13843 }
13844
13845 /* Infer the content of the ABI flags based on the elf header. */
13846
13847 static void
13848 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
13849 {
13850 obj_attribute *in_attr;
13851
13852 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
13853 update_mips_abiflags_isa (abfd, abiflags);
13854
13855 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
13856 abiflags->gpr_size = AFL_REG_32;
13857 else
13858 abiflags->gpr_size = AFL_REG_64;
13859
13860 abiflags->cpr1_size = AFL_REG_NONE;
13861
13862 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
13863 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
13864
13865 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
13866 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
13867 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
13868 && abiflags->gpr_size == AFL_REG_32))
13869 abiflags->cpr1_size = AFL_REG_32;
13870 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
13871 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
13872 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
13873 abiflags->cpr1_size = AFL_REG_64;
13874
13875 abiflags->cpr2_size = AFL_REG_NONE;
13876
13877 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
13878 abiflags->ases |= AFL_ASE_MDMX;
13879 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
13880 abiflags->ases |= AFL_ASE_MIPS16;
13881 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
13882 abiflags->ases |= AFL_ASE_MICROMIPS;
13883
13884 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
13885 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
13886 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
13887 && abiflags->isa_level >= 32
13888 && abiflags->isa_ext != AFL_EXT_LOONGSON_3A)
13889 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
13890 }
13891
13892 /* We need to use a special link routine to handle the .reginfo and
13893 the .mdebug sections. We need to merge all instances of these
13894 sections together, not write them all out sequentially. */
13895
13896 bfd_boolean
13897 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
13898 {
13899 asection *o;
13900 struct bfd_link_order *p;
13901 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
13902 asection *rtproc_sec, *abiflags_sec;
13903 Elf32_RegInfo reginfo;
13904 struct ecoff_debug_info debug;
13905 struct mips_htab_traverse_info hti;
13906 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13907 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
13908 HDRR *symhdr = &debug.symbolic_header;
13909 void *mdebug_handle = NULL;
13910 asection *s;
13911 EXTR esym;
13912 unsigned int i;
13913 bfd_size_type amt;
13914 struct mips_elf_link_hash_table *htab;
13915
13916 static const char * const secname[] =
13917 {
13918 ".text", ".init", ".fini", ".data",
13919 ".rodata", ".sdata", ".sbss", ".bss"
13920 };
13921 static const int sc[] =
13922 {
13923 scText, scInit, scFini, scData,
13924 scRData, scSData, scSBss, scBss
13925 };
13926
13927 /* Sort the dynamic symbols so that those with GOT entries come after
13928 those without. */
13929 htab = mips_elf_hash_table (info);
13930 BFD_ASSERT (htab != NULL);
13931
13932 if (!mips_elf_sort_hash_table (abfd, info))
13933 return FALSE;
13934
13935 /* Create any scheduled LA25 stubs. */
13936 hti.info = info;
13937 hti.output_bfd = abfd;
13938 hti.error = FALSE;
13939 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
13940 if (hti.error)
13941 return FALSE;
13942
13943 /* Get a value for the GP register. */
13944 if (elf_gp (abfd) == 0)
13945 {
13946 struct bfd_link_hash_entry *h;
13947
13948 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
13949 if (h != NULL && h->type == bfd_link_hash_defined)
13950 elf_gp (abfd) = (h->u.def.value
13951 + h->u.def.section->output_section->vma
13952 + h->u.def.section->output_offset);
13953 else if (htab->is_vxworks
13954 && (h = bfd_link_hash_lookup (info->hash,
13955 "_GLOBAL_OFFSET_TABLE_",
13956 FALSE, FALSE, TRUE))
13957 && h->type == bfd_link_hash_defined)
13958 elf_gp (abfd) = (h->u.def.section->output_section->vma
13959 + h->u.def.section->output_offset
13960 + h->u.def.value);
13961 else if (info->relocatable)
13962 {
13963 bfd_vma lo = MINUS_ONE;
13964
13965 /* Find the GP-relative section with the lowest offset. */
13966 for (o = abfd->sections; o != NULL; o = o->next)
13967 if (o->vma < lo
13968 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
13969 lo = o->vma;
13970
13971 /* And calculate GP relative to that. */
13972 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
13973 }
13974 else
13975 {
13976 /* If the relocate_section function needs to do a reloc
13977 involving the GP value, it should make a reloc_dangerous
13978 callback to warn that GP is not defined. */
13979 }
13980 }
13981
13982 /* Go through the sections and collect the .reginfo and .mdebug
13983 information. */
13984 abiflags_sec = NULL;
13985 reginfo_sec = NULL;
13986 mdebug_sec = NULL;
13987 gptab_data_sec = NULL;
13988 gptab_bss_sec = NULL;
13989 for (o = abfd->sections; o != NULL; o = o->next)
13990 {
13991 if (strcmp (o->name, ".MIPS.abiflags") == 0)
13992 {
13993 /* We have found the .MIPS.abiflags section in the output file.
13994 Look through all the link_orders comprising it and remove them.
13995 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
13996 for (p = o->map_head.link_order; p != NULL; p = p->next)
13997 {
13998 asection *input_section;
13999
14000 if (p->type != bfd_indirect_link_order)
14001 {
14002 if (p->type == bfd_data_link_order)
14003 continue;
14004 abort ();
14005 }
14006
14007 input_section = p->u.indirect.section;
14008
14009 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14010 elf_link_input_bfd ignores this section. */
14011 input_section->flags &= ~SEC_HAS_CONTENTS;
14012 }
14013
14014 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14015 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14016
14017 /* Skip this section later on (I don't think this currently
14018 matters, but someday it might). */
14019 o->map_head.link_order = NULL;
14020
14021 abiflags_sec = o;
14022 }
14023
14024 if (strcmp (o->name, ".reginfo") == 0)
14025 {
14026 memset (&reginfo, 0, sizeof reginfo);
14027
14028 /* We have found the .reginfo section in the output file.
14029 Look through all the link_orders comprising it and merge
14030 the information together. */
14031 for (p = o->map_head.link_order; p != NULL; p = p->next)
14032 {
14033 asection *input_section;
14034 bfd *input_bfd;
14035 Elf32_External_RegInfo ext;
14036 Elf32_RegInfo sub;
14037
14038 if (p->type != bfd_indirect_link_order)
14039 {
14040 if (p->type == bfd_data_link_order)
14041 continue;
14042 abort ();
14043 }
14044
14045 input_section = p->u.indirect.section;
14046 input_bfd = input_section->owner;
14047
14048 if (! bfd_get_section_contents (input_bfd, input_section,
14049 &ext, 0, sizeof ext))
14050 return FALSE;
14051
14052 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14053
14054 reginfo.ri_gprmask |= sub.ri_gprmask;
14055 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14056 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14057 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14058 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14059
14060 /* ri_gp_value is set by the function
14061 mips_elf32_section_processing when the section is
14062 finally written out. */
14063
14064 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14065 elf_link_input_bfd ignores this section. */
14066 input_section->flags &= ~SEC_HAS_CONTENTS;
14067 }
14068
14069 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14070 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14071
14072 /* Skip this section later on (I don't think this currently
14073 matters, but someday it might). */
14074 o->map_head.link_order = NULL;
14075
14076 reginfo_sec = o;
14077 }
14078
14079 if (strcmp (o->name, ".mdebug") == 0)
14080 {
14081 struct extsym_info einfo;
14082 bfd_vma last;
14083
14084 /* We have found the .mdebug section in the output file.
14085 Look through all the link_orders comprising it and merge
14086 the information together. */
14087 symhdr->magic = swap->sym_magic;
14088 /* FIXME: What should the version stamp be? */
14089 symhdr->vstamp = 0;
14090 symhdr->ilineMax = 0;
14091 symhdr->cbLine = 0;
14092 symhdr->idnMax = 0;
14093 symhdr->ipdMax = 0;
14094 symhdr->isymMax = 0;
14095 symhdr->ioptMax = 0;
14096 symhdr->iauxMax = 0;
14097 symhdr->issMax = 0;
14098 symhdr->issExtMax = 0;
14099 symhdr->ifdMax = 0;
14100 symhdr->crfd = 0;
14101 symhdr->iextMax = 0;
14102
14103 /* We accumulate the debugging information itself in the
14104 debug_info structure. */
14105 debug.line = NULL;
14106 debug.external_dnr = NULL;
14107 debug.external_pdr = NULL;
14108 debug.external_sym = NULL;
14109 debug.external_opt = NULL;
14110 debug.external_aux = NULL;
14111 debug.ss = NULL;
14112 debug.ssext = debug.ssext_end = NULL;
14113 debug.external_fdr = NULL;
14114 debug.external_rfd = NULL;
14115 debug.external_ext = debug.external_ext_end = NULL;
14116
14117 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14118 if (mdebug_handle == NULL)
14119 return FALSE;
14120
14121 esym.jmptbl = 0;
14122 esym.cobol_main = 0;
14123 esym.weakext = 0;
14124 esym.reserved = 0;
14125 esym.ifd = ifdNil;
14126 esym.asym.iss = issNil;
14127 esym.asym.st = stLocal;
14128 esym.asym.reserved = 0;
14129 esym.asym.index = indexNil;
14130 last = 0;
14131 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14132 {
14133 esym.asym.sc = sc[i];
14134 s = bfd_get_section_by_name (abfd, secname[i]);
14135 if (s != NULL)
14136 {
14137 esym.asym.value = s->vma;
14138 last = s->vma + s->size;
14139 }
14140 else
14141 esym.asym.value = last;
14142 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14143 secname[i], &esym))
14144 return FALSE;
14145 }
14146
14147 for (p = o->map_head.link_order; p != NULL; p = p->next)
14148 {
14149 asection *input_section;
14150 bfd *input_bfd;
14151 const struct ecoff_debug_swap *input_swap;
14152 struct ecoff_debug_info input_debug;
14153 char *eraw_src;
14154 char *eraw_end;
14155
14156 if (p->type != bfd_indirect_link_order)
14157 {
14158 if (p->type == bfd_data_link_order)
14159 continue;
14160 abort ();
14161 }
14162
14163 input_section = p->u.indirect.section;
14164 input_bfd = input_section->owner;
14165
14166 if (!is_mips_elf (input_bfd))
14167 {
14168 /* I don't know what a non MIPS ELF bfd would be
14169 doing with a .mdebug section, but I don't really
14170 want to deal with it. */
14171 continue;
14172 }
14173
14174 input_swap = (get_elf_backend_data (input_bfd)
14175 ->elf_backend_ecoff_debug_swap);
14176
14177 BFD_ASSERT (p->size == input_section->size);
14178
14179 /* The ECOFF linking code expects that we have already
14180 read in the debugging information and set up an
14181 ecoff_debug_info structure, so we do that now. */
14182 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14183 &input_debug))
14184 return FALSE;
14185
14186 if (! (bfd_ecoff_debug_accumulate
14187 (mdebug_handle, abfd, &debug, swap, input_bfd,
14188 &input_debug, input_swap, info)))
14189 return FALSE;
14190
14191 /* Loop through the external symbols. For each one with
14192 interesting information, try to find the symbol in
14193 the linker global hash table and save the information
14194 for the output external symbols. */
14195 eraw_src = input_debug.external_ext;
14196 eraw_end = (eraw_src
14197 + (input_debug.symbolic_header.iextMax
14198 * input_swap->external_ext_size));
14199 for (;
14200 eraw_src < eraw_end;
14201 eraw_src += input_swap->external_ext_size)
14202 {
14203 EXTR ext;
14204 const char *name;
14205 struct mips_elf_link_hash_entry *h;
14206
14207 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
14208 if (ext.asym.sc == scNil
14209 || ext.asym.sc == scUndefined
14210 || ext.asym.sc == scSUndefined)
14211 continue;
14212
14213 name = input_debug.ssext + ext.asym.iss;
14214 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
14215 name, FALSE, FALSE, TRUE);
14216 if (h == NULL || h->esym.ifd != -2)
14217 continue;
14218
14219 if (ext.ifd != -1)
14220 {
14221 BFD_ASSERT (ext.ifd
14222 < input_debug.symbolic_header.ifdMax);
14223 ext.ifd = input_debug.ifdmap[ext.ifd];
14224 }
14225
14226 h->esym = ext;
14227 }
14228
14229 /* Free up the information we just read. */
14230 free (input_debug.line);
14231 free (input_debug.external_dnr);
14232 free (input_debug.external_pdr);
14233 free (input_debug.external_sym);
14234 free (input_debug.external_opt);
14235 free (input_debug.external_aux);
14236 free (input_debug.ss);
14237 free (input_debug.ssext);
14238 free (input_debug.external_fdr);
14239 free (input_debug.external_rfd);
14240 free (input_debug.external_ext);
14241
14242 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14243 elf_link_input_bfd ignores this section. */
14244 input_section->flags &= ~SEC_HAS_CONTENTS;
14245 }
14246
14247 if (SGI_COMPAT (abfd) && info->shared)
14248 {
14249 /* Create .rtproc section. */
14250 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
14251 if (rtproc_sec == NULL)
14252 {
14253 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14254 | SEC_LINKER_CREATED | SEC_READONLY);
14255
14256 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14257 ".rtproc",
14258 flags);
14259 if (rtproc_sec == NULL
14260 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
14261 return FALSE;
14262 }
14263
14264 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14265 info, rtproc_sec,
14266 &debug))
14267 return FALSE;
14268 }
14269
14270 /* Build the external symbol information. */
14271 einfo.abfd = abfd;
14272 einfo.info = info;
14273 einfo.debug = &debug;
14274 einfo.swap = swap;
14275 einfo.failed = FALSE;
14276 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
14277 mips_elf_output_extsym, &einfo);
14278 if (einfo.failed)
14279 return FALSE;
14280
14281 /* Set the size of the .mdebug section. */
14282 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
14283
14284 /* Skip this section later on (I don't think this currently
14285 matters, but someday it might). */
14286 o->map_head.link_order = NULL;
14287
14288 mdebug_sec = o;
14289 }
14290
14291 if (CONST_STRNEQ (o->name, ".gptab."))
14292 {
14293 const char *subname;
14294 unsigned int c;
14295 Elf32_gptab *tab;
14296 Elf32_External_gptab *ext_tab;
14297 unsigned int j;
14298
14299 /* The .gptab.sdata and .gptab.sbss sections hold
14300 information describing how the small data area would
14301 change depending upon the -G switch. These sections
14302 not used in executables files. */
14303 if (! info->relocatable)
14304 {
14305 for (p = o->map_head.link_order; p != NULL; p = p->next)
14306 {
14307 asection *input_section;
14308
14309 if (p->type != bfd_indirect_link_order)
14310 {
14311 if (p->type == bfd_data_link_order)
14312 continue;
14313 abort ();
14314 }
14315
14316 input_section = p->u.indirect.section;
14317
14318 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14319 elf_link_input_bfd ignores this section. */
14320 input_section->flags &= ~SEC_HAS_CONTENTS;
14321 }
14322
14323 /* Skip this section later on (I don't think this
14324 currently matters, but someday it might). */
14325 o->map_head.link_order = NULL;
14326
14327 /* Really remove the section. */
14328 bfd_section_list_remove (abfd, o);
14329 --abfd->section_count;
14330
14331 continue;
14332 }
14333
14334 /* There is one gptab for initialized data, and one for
14335 uninitialized data. */
14336 if (strcmp (o->name, ".gptab.sdata") == 0)
14337 gptab_data_sec = o;
14338 else if (strcmp (o->name, ".gptab.sbss") == 0)
14339 gptab_bss_sec = o;
14340 else
14341 {
14342 (*_bfd_error_handler)
14343 (_("%s: illegal section name `%s'"),
14344 bfd_get_filename (abfd), o->name);
14345 bfd_set_error (bfd_error_nonrepresentable_section);
14346 return FALSE;
14347 }
14348
14349 /* The linker script always combines .gptab.data and
14350 .gptab.sdata into .gptab.sdata, and likewise for
14351 .gptab.bss and .gptab.sbss. It is possible that there is
14352 no .sdata or .sbss section in the output file, in which
14353 case we must change the name of the output section. */
14354 subname = o->name + sizeof ".gptab" - 1;
14355 if (bfd_get_section_by_name (abfd, subname) == NULL)
14356 {
14357 if (o == gptab_data_sec)
14358 o->name = ".gptab.data";
14359 else
14360 o->name = ".gptab.bss";
14361 subname = o->name + sizeof ".gptab" - 1;
14362 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14363 }
14364
14365 /* Set up the first entry. */
14366 c = 1;
14367 amt = c * sizeof (Elf32_gptab);
14368 tab = bfd_malloc (amt);
14369 if (tab == NULL)
14370 return FALSE;
14371 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14372 tab[0].gt_header.gt_unused = 0;
14373
14374 /* Combine the input sections. */
14375 for (p = o->map_head.link_order; p != NULL; p = p->next)
14376 {
14377 asection *input_section;
14378 bfd *input_bfd;
14379 bfd_size_type size;
14380 unsigned long last;
14381 bfd_size_type gpentry;
14382
14383 if (p->type != bfd_indirect_link_order)
14384 {
14385 if (p->type == bfd_data_link_order)
14386 continue;
14387 abort ();
14388 }
14389
14390 input_section = p->u.indirect.section;
14391 input_bfd = input_section->owner;
14392
14393 /* Combine the gptab entries for this input section one
14394 by one. We know that the input gptab entries are
14395 sorted by ascending -G value. */
14396 size = input_section->size;
14397 last = 0;
14398 for (gpentry = sizeof (Elf32_External_gptab);
14399 gpentry < size;
14400 gpentry += sizeof (Elf32_External_gptab))
14401 {
14402 Elf32_External_gptab ext_gptab;
14403 Elf32_gptab int_gptab;
14404 unsigned long val;
14405 unsigned long add;
14406 bfd_boolean exact;
14407 unsigned int look;
14408
14409 if (! (bfd_get_section_contents
14410 (input_bfd, input_section, &ext_gptab, gpentry,
14411 sizeof (Elf32_External_gptab))))
14412 {
14413 free (tab);
14414 return FALSE;
14415 }
14416
14417 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
14418 &int_gptab);
14419 val = int_gptab.gt_entry.gt_g_value;
14420 add = int_gptab.gt_entry.gt_bytes - last;
14421
14422 exact = FALSE;
14423 for (look = 1; look < c; look++)
14424 {
14425 if (tab[look].gt_entry.gt_g_value >= val)
14426 tab[look].gt_entry.gt_bytes += add;
14427
14428 if (tab[look].gt_entry.gt_g_value == val)
14429 exact = TRUE;
14430 }
14431
14432 if (! exact)
14433 {
14434 Elf32_gptab *new_tab;
14435 unsigned int max;
14436
14437 /* We need a new table entry. */
14438 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
14439 new_tab = bfd_realloc (tab, amt);
14440 if (new_tab == NULL)
14441 {
14442 free (tab);
14443 return FALSE;
14444 }
14445 tab = new_tab;
14446 tab[c].gt_entry.gt_g_value = val;
14447 tab[c].gt_entry.gt_bytes = add;
14448
14449 /* Merge in the size for the next smallest -G
14450 value, since that will be implied by this new
14451 value. */
14452 max = 0;
14453 for (look = 1; look < c; look++)
14454 {
14455 if (tab[look].gt_entry.gt_g_value < val
14456 && (max == 0
14457 || (tab[look].gt_entry.gt_g_value
14458 > tab[max].gt_entry.gt_g_value)))
14459 max = look;
14460 }
14461 if (max != 0)
14462 tab[c].gt_entry.gt_bytes +=
14463 tab[max].gt_entry.gt_bytes;
14464
14465 ++c;
14466 }
14467
14468 last = int_gptab.gt_entry.gt_bytes;
14469 }
14470
14471 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14472 elf_link_input_bfd ignores this section. */
14473 input_section->flags &= ~SEC_HAS_CONTENTS;
14474 }
14475
14476 /* The table must be sorted by -G value. */
14477 if (c > 2)
14478 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
14479
14480 /* Swap out the table. */
14481 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
14482 ext_tab = bfd_alloc (abfd, amt);
14483 if (ext_tab == NULL)
14484 {
14485 free (tab);
14486 return FALSE;
14487 }
14488
14489 for (j = 0; j < c; j++)
14490 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
14491 free (tab);
14492
14493 o->size = c * sizeof (Elf32_External_gptab);
14494 o->contents = (bfd_byte *) ext_tab;
14495
14496 /* Skip this section later on (I don't think this currently
14497 matters, but someday it might). */
14498 o->map_head.link_order = NULL;
14499 }
14500 }
14501
14502 /* Invoke the regular ELF backend linker to do all the work. */
14503 if (!bfd_elf_final_link (abfd, info))
14504 return FALSE;
14505
14506 /* Now write out the computed sections. */
14507
14508 if (abiflags_sec != NULL)
14509 {
14510 Elf_External_ABIFlags_v0 ext;
14511 Elf_Internal_ABIFlags_v0 *abiflags;
14512
14513 abiflags = &mips_elf_tdata (abfd)->abiflags;
14514
14515 /* Set up the abiflags if no valid input sections were found. */
14516 if (!mips_elf_tdata (abfd)->abiflags_valid)
14517 {
14518 infer_mips_abiflags (abfd, abiflags);
14519 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
14520 }
14521 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
14522 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
14523 return FALSE;
14524 }
14525
14526 if (reginfo_sec != NULL)
14527 {
14528 Elf32_External_RegInfo ext;
14529
14530 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
14531 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
14532 return FALSE;
14533 }
14534
14535 if (mdebug_sec != NULL)
14536 {
14537 BFD_ASSERT (abfd->output_has_begun);
14538 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
14539 swap, info,
14540 mdebug_sec->filepos))
14541 return FALSE;
14542
14543 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
14544 }
14545
14546 if (gptab_data_sec != NULL)
14547 {
14548 if (! bfd_set_section_contents (abfd, gptab_data_sec,
14549 gptab_data_sec->contents,
14550 0, gptab_data_sec->size))
14551 return FALSE;
14552 }
14553
14554 if (gptab_bss_sec != NULL)
14555 {
14556 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
14557 gptab_bss_sec->contents,
14558 0, gptab_bss_sec->size))
14559 return FALSE;
14560 }
14561
14562 if (SGI_COMPAT (abfd))
14563 {
14564 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
14565 if (rtproc_sec != NULL)
14566 {
14567 if (! bfd_set_section_contents (abfd, rtproc_sec,
14568 rtproc_sec->contents,
14569 0, rtproc_sec->size))
14570 return FALSE;
14571 }
14572 }
14573
14574 return TRUE;
14575 }
14576 \f
14577 /* Structure for saying that BFD machine EXTENSION extends BASE. */
14578
14579 struct mips_mach_extension
14580 {
14581 unsigned long extension, base;
14582 };
14583
14584
14585 /* An array describing how BFD machines relate to one another. The entries
14586 are ordered topologically with MIPS I extensions listed last. */
14587
14588 static const struct mips_mach_extension mips_mach_extensions[] =
14589 {
14590 /* MIPS64r2 extensions. */
14591 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
14592 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
14593 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
14594 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 },
14595
14596 /* MIPS64 extensions. */
14597 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
14598 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
14599 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
14600
14601 /* MIPS V extensions. */
14602 { bfd_mach_mipsisa64, bfd_mach_mips5 },
14603
14604 /* R10000 extensions. */
14605 { bfd_mach_mips12000, bfd_mach_mips10000 },
14606 { bfd_mach_mips14000, bfd_mach_mips10000 },
14607 { bfd_mach_mips16000, bfd_mach_mips10000 },
14608
14609 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14610 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14611 better to allow vr5400 and vr5500 code to be merged anyway, since
14612 many libraries will just use the core ISA. Perhaps we could add
14613 some sort of ASE flag if this ever proves a problem. */
14614 { bfd_mach_mips5500, bfd_mach_mips5400 },
14615 { bfd_mach_mips5400, bfd_mach_mips5000 },
14616
14617 /* MIPS IV extensions. */
14618 { bfd_mach_mips5, bfd_mach_mips8000 },
14619 { bfd_mach_mips10000, bfd_mach_mips8000 },
14620 { bfd_mach_mips5000, bfd_mach_mips8000 },
14621 { bfd_mach_mips7000, bfd_mach_mips8000 },
14622 { bfd_mach_mips9000, bfd_mach_mips8000 },
14623
14624 /* VR4100 extensions. */
14625 { bfd_mach_mips4120, bfd_mach_mips4100 },
14626 { bfd_mach_mips4111, bfd_mach_mips4100 },
14627
14628 /* MIPS III extensions. */
14629 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14630 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14631 { bfd_mach_mips8000, bfd_mach_mips4000 },
14632 { bfd_mach_mips4650, bfd_mach_mips4000 },
14633 { bfd_mach_mips4600, bfd_mach_mips4000 },
14634 { bfd_mach_mips4400, bfd_mach_mips4000 },
14635 { bfd_mach_mips4300, bfd_mach_mips4000 },
14636 { bfd_mach_mips4100, bfd_mach_mips4000 },
14637 { bfd_mach_mips4010, bfd_mach_mips4000 },
14638 { bfd_mach_mips5900, bfd_mach_mips4000 },
14639
14640 /* MIPS32 extensions. */
14641 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14642
14643 /* MIPS II extensions. */
14644 { bfd_mach_mips4000, bfd_mach_mips6000 },
14645 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14646
14647 /* MIPS I extensions. */
14648 { bfd_mach_mips6000, bfd_mach_mips3000 },
14649 { bfd_mach_mips3900, bfd_mach_mips3000 }
14650 };
14651
14652
14653 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14654
14655 static bfd_boolean
14656 mips_mach_extends_p (unsigned long base, unsigned long extension)
14657 {
14658 size_t i;
14659
14660 if (extension == base)
14661 return TRUE;
14662
14663 if (base == bfd_mach_mipsisa32
14664 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14665 return TRUE;
14666
14667 if (base == bfd_mach_mipsisa32r2
14668 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14669 return TRUE;
14670
14671 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14672 if (extension == mips_mach_extensions[i].extension)
14673 {
14674 extension = mips_mach_extensions[i].base;
14675 if (extension == base)
14676 return TRUE;
14677 }
14678
14679 return FALSE;
14680 }
14681
14682
14683 /* Merge object attributes from IBFD into OBFD. Raise an error if
14684 there are conflicting attributes. */
14685 static bfd_boolean
14686 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
14687 {
14688 obj_attribute *in_attr;
14689 obj_attribute *out_attr;
14690 bfd *abi_fp_bfd;
14691 bfd *abi_msa_bfd;
14692
14693 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
14694 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
14695 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
14696 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
14697
14698 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
14699 if (!abi_msa_bfd
14700 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
14701 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
14702
14703 if (!elf_known_obj_attributes_proc (obfd)[0].i)
14704 {
14705 /* This is the first object. Copy the attributes. */
14706 _bfd_elf_copy_obj_attributes (ibfd, obfd);
14707
14708 /* Use the Tag_null value to indicate the attributes have been
14709 initialized. */
14710 elf_known_obj_attributes_proc (obfd)[0].i = 1;
14711
14712 return TRUE;
14713 }
14714
14715 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
14716 non-conflicting ones. */
14717 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
14718 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
14719 {
14720 int out_fp, in_fp;
14721
14722 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
14723 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14724 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
14725 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
14726 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
14727 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
14728 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
14729 || in_fp == Val_GNU_MIPS_ABI_FP_64
14730 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
14731 {
14732 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
14733 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14734 }
14735 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
14736 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
14737 || out_fp == Val_GNU_MIPS_ABI_FP_64
14738 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
14739 /* Keep the current setting. */;
14740 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
14741 && in_fp == Val_GNU_MIPS_ABI_FP_64)
14742 {
14743 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
14744 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14745 }
14746 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
14747 && out_fp == Val_GNU_MIPS_ABI_FP_64)
14748 /* Keep the current setting. */;
14749 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
14750 {
14751 const char *out_string, *in_string;
14752
14753 out_string = _bfd_mips_fp_abi_string (out_fp);
14754 in_string = _bfd_mips_fp_abi_string (in_fp);
14755 /* First warn about cases involving unrecognised ABIs. */
14756 if (!out_string && !in_string)
14757 _bfd_error_handler
14758 (_("Warning: %B uses unknown floating point ABI %d "
14759 "(set by %B), %B uses unknown floating point ABI %d"),
14760 obfd, abi_fp_bfd, ibfd, out_fp, in_fp);
14761 else if (!out_string)
14762 _bfd_error_handler
14763 (_("Warning: %B uses unknown floating point ABI %d "
14764 "(set by %B), %B uses %s"),
14765 obfd, abi_fp_bfd, ibfd, out_fp, in_string);
14766 else if (!in_string)
14767 _bfd_error_handler
14768 (_("Warning: %B uses %s (set by %B), "
14769 "%B uses unknown floating point ABI %d"),
14770 obfd, abi_fp_bfd, ibfd, out_string, in_fp);
14771 else
14772 {
14773 /* If one of the bfds is soft-float, the other must be
14774 hard-float. The exact choice of hard-float ABI isn't
14775 really relevant to the error message. */
14776 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
14777 out_string = "-mhard-float";
14778 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
14779 in_string = "-mhard-float";
14780 _bfd_error_handler
14781 (_("Warning: %B uses %s (set by %B), %B uses %s"),
14782 obfd, abi_fp_bfd, ibfd, out_string, in_string);
14783 }
14784 }
14785 }
14786
14787 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
14788 non-conflicting ones. */
14789 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
14790 {
14791 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
14792 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
14793 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
14794 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
14795 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
14796 {
14797 case Val_GNU_MIPS_ABI_MSA_128:
14798 _bfd_error_handler
14799 (_("Warning: %B uses %s (set by %B), "
14800 "%B uses unknown MSA ABI %d"),
14801 obfd, abi_msa_bfd, ibfd,
14802 "-mmsa", in_attr[Tag_GNU_MIPS_ABI_MSA].i);
14803 break;
14804
14805 default:
14806 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
14807 {
14808 case Val_GNU_MIPS_ABI_MSA_128:
14809 _bfd_error_handler
14810 (_("Warning: %B uses unknown MSA ABI %d "
14811 "(set by %B), %B uses %s"),
14812 obfd, abi_msa_bfd, ibfd,
14813 out_attr[Tag_GNU_MIPS_ABI_MSA].i, "-mmsa");
14814 break;
14815
14816 default:
14817 _bfd_error_handler
14818 (_("Warning: %B uses unknown MSA ABI %d "
14819 "(set by %B), %B uses unknown MSA ABI %d"),
14820 obfd, abi_msa_bfd, ibfd,
14821 out_attr[Tag_GNU_MIPS_ABI_MSA].i,
14822 in_attr[Tag_GNU_MIPS_ABI_MSA].i);
14823 break;
14824 }
14825 }
14826 }
14827
14828 /* Merge Tag_compatibility attributes and any common GNU ones. */
14829 _bfd_elf_merge_object_attributes (ibfd, obfd);
14830
14831 return TRUE;
14832 }
14833
14834 /* Merge backend specific data from an object file to the output
14835 object file when linking. */
14836
14837 bfd_boolean
14838 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
14839 {
14840 flagword old_flags;
14841 flagword new_flags;
14842 bfd_boolean ok;
14843 bfd_boolean null_input_bfd = TRUE;
14844 asection *sec;
14845 obj_attribute *out_attr;
14846
14847 /* Check if we have the same endianness. */
14848 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
14849 {
14850 (*_bfd_error_handler)
14851 (_("%B: endianness incompatible with that of the selected emulation"),
14852 ibfd);
14853 return FALSE;
14854 }
14855
14856 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
14857 return TRUE;
14858
14859 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
14860 {
14861 (*_bfd_error_handler)
14862 (_("%B: ABI is incompatible with that of the selected emulation"),
14863 ibfd);
14864 return FALSE;
14865 }
14866
14867 /* Set up the FP ABI attribute from the abiflags if it is not already
14868 set. */
14869 if (mips_elf_tdata (ibfd)->abiflags_valid)
14870 {
14871 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
14872 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
14873 in_attr[Tag_GNU_MIPS_ABI_FP].i =
14874 mips_elf_tdata (ibfd)->abiflags.fp_abi;
14875 }
14876
14877 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
14878 return FALSE;
14879
14880 /* Check to see if the input BFD actually contains any sections.
14881 If not, its flags may not have been initialised either, but it cannot
14882 actually cause any incompatibility. */
14883 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
14884 {
14885 /* Ignore synthetic sections and empty .text, .data and .bss sections
14886 which are automatically generated by gas. Also ignore fake
14887 (s)common sections, since merely defining a common symbol does
14888 not affect compatibility. */
14889 if ((sec->flags & SEC_IS_COMMON) == 0
14890 && strcmp (sec->name, ".reginfo")
14891 && strcmp (sec->name, ".mdebug")
14892 && (sec->size != 0
14893 || (strcmp (sec->name, ".text")
14894 && strcmp (sec->name, ".data")
14895 && strcmp (sec->name, ".bss"))))
14896 {
14897 null_input_bfd = FALSE;
14898 break;
14899 }
14900 }
14901 if (null_input_bfd)
14902 return TRUE;
14903
14904 /* Populate abiflags using existing information. */
14905 if (!mips_elf_tdata (ibfd)->abiflags_valid)
14906 {
14907 infer_mips_abiflags (ibfd, &mips_elf_tdata (ibfd)->abiflags);
14908 mips_elf_tdata (ibfd)->abiflags_valid = TRUE;
14909 }
14910 else
14911 {
14912 Elf_Internal_ABIFlags_v0 abiflags;
14913 Elf_Internal_ABIFlags_v0 in_abiflags;
14914 infer_mips_abiflags (ibfd, &abiflags);
14915 in_abiflags = mips_elf_tdata (ibfd)->abiflags;
14916
14917 /* It is not possible to infer the correct ISA revision
14918 for R3 or R5 so drop down to R2 for the checks. */
14919 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
14920 in_abiflags.isa_rev = 2;
14921
14922 if (in_abiflags.isa_level != abiflags.isa_level
14923 || in_abiflags.isa_rev != abiflags.isa_rev
14924 || in_abiflags.isa_ext != abiflags.isa_ext)
14925 (*_bfd_error_handler)
14926 (_("%B: warning: Inconsistent ISA between e_flags and "
14927 ".MIPS.abiflags"), ibfd);
14928 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14929 && in_abiflags.fp_abi != abiflags.fp_abi)
14930 (*_bfd_error_handler)
14931 (_("%B: warning: Inconsistent FP ABI between e_flags and "
14932 ".MIPS.abiflags"), ibfd);
14933 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
14934 (*_bfd_error_handler)
14935 (_("%B: warning: Inconsistent ASEs between e_flags and "
14936 ".MIPS.abiflags"), ibfd);
14937 if (in_abiflags.isa_ext != abiflags.isa_ext)
14938 (*_bfd_error_handler)
14939 (_("%B: warning: Inconsistent ISA extensions between e_flags and "
14940 ".MIPS.abiflags"), ibfd);
14941 if (in_abiflags.flags2 != 0)
14942 (*_bfd_error_handler)
14943 (_("%B: warning: Unexpected flag in the flags2 field of "
14944 ".MIPS.abiflags (0x%lx)"), ibfd,
14945 (unsigned long) in_abiflags.flags2);
14946 }
14947
14948 if (!mips_elf_tdata (obfd)->abiflags_valid)
14949 {
14950 /* Copy input abiflags if output abiflags are not already valid. */
14951 mips_elf_tdata (obfd)->abiflags = mips_elf_tdata (ibfd)->abiflags;
14952 mips_elf_tdata (obfd)->abiflags_valid = TRUE;
14953 }
14954
14955 if (! elf_flags_init (obfd))
14956 {
14957 elf_flags_init (obfd) = TRUE;
14958 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
14959 elf_elfheader (obfd)->e_ident[EI_CLASS]
14960 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
14961
14962 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
14963 && (bfd_get_arch_info (obfd)->the_default
14964 || mips_mach_extends_p (bfd_get_mach (obfd),
14965 bfd_get_mach (ibfd))))
14966 {
14967 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
14968 bfd_get_mach (ibfd)))
14969 return FALSE;
14970
14971 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
14972 update_mips_abiflags_isa (obfd, &mips_elf_tdata (obfd)->abiflags);
14973 }
14974
14975 return TRUE;
14976 }
14977
14978 /* Update the output abiflags fp_abi using the computed fp_abi. */
14979 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
14980 mips_elf_tdata (obfd)->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
14981
14982 #define max(a,b) ((a) > (b) ? (a) : (b))
14983 /* Merge abiflags. */
14984 mips_elf_tdata (obfd)->abiflags.isa_rev
14985 = max (mips_elf_tdata (obfd)->abiflags.isa_rev,
14986 mips_elf_tdata (ibfd)->abiflags.isa_rev);
14987 mips_elf_tdata (obfd)->abiflags.gpr_size
14988 = max (mips_elf_tdata (obfd)->abiflags.gpr_size,
14989 mips_elf_tdata (ibfd)->abiflags.gpr_size);
14990 mips_elf_tdata (obfd)->abiflags.cpr1_size
14991 = max (mips_elf_tdata (obfd)->abiflags.cpr1_size,
14992 mips_elf_tdata (ibfd)->abiflags.cpr1_size);
14993 mips_elf_tdata (obfd)->abiflags.cpr2_size
14994 = max (mips_elf_tdata (obfd)->abiflags.cpr2_size,
14995 mips_elf_tdata (ibfd)->abiflags.cpr2_size);
14996 #undef max
14997 mips_elf_tdata (obfd)->abiflags.ases
14998 |= mips_elf_tdata (ibfd)->abiflags.ases;
14999 mips_elf_tdata (obfd)->abiflags.flags1
15000 |= mips_elf_tdata (ibfd)->abiflags.flags1;
15001
15002 new_flags = elf_elfheader (ibfd)->e_flags;
15003 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
15004 old_flags = elf_elfheader (obfd)->e_flags;
15005
15006 /* Check flag compatibility. */
15007
15008 new_flags &= ~EF_MIPS_NOREORDER;
15009 old_flags &= ~EF_MIPS_NOREORDER;
15010
15011 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
15012 doesn't seem to matter. */
15013 new_flags &= ~EF_MIPS_XGOT;
15014 old_flags &= ~EF_MIPS_XGOT;
15015
15016 /* MIPSpro generates ucode info in n64 objects. Again, we should
15017 just be able to ignore this. */
15018 new_flags &= ~EF_MIPS_UCODE;
15019 old_flags &= ~EF_MIPS_UCODE;
15020
15021 /* DSOs should only be linked with CPIC code. */
15022 if ((ibfd->flags & DYNAMIC) != 0)
15023 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
15024
15025 if (new_flags == old_flags)
15026 return TRUE;
15027
15028 ok = TRUE;
15029
15030 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
15031 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
15032 {
15033 (*_bfd_error_handler)
15034 (_("%B: warning: linking abicalls files with non-abicalls files"),
15035 ibfd);
15036 ok = TRUE;
15037 }
15038
15039 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
15040 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
15041 if (! (new_flags & EF_MIPS_PIC))
15042 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
15043
15044 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15045 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15046
15047 /* Compare the ISAs. */
15048 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
15049 {
15050 (*_bfd_error_handler)
15051 (_("%B: linking 32-bit code with 64-bit code"),
15052 ibfd);
15053 ok = FALSE;
15054 }
15055 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15056 {
15057 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15058 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
15059 {
15060 /* Copy the architecture info from IBFD to OBFD. Also copy
15061 the 32-bit flag (if set) so that we continue to recognise
15062 OBFD as a 32-bit binary. */
15063 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15064 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15065 elf_elfheader (obfd)->e_flags
15066 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15067
15068 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15069 update_mips_abiflags_isa (obfd, &mips_elf_tdata (obfd)->abiflags);
15070
15071 /* Copy across the ABI flags if OBFD doesn't use them
15072 and if that was what caused us to treat IBFD as 32-bit. */
15073 if ((old_flags & EF_MIPS_ABI) == 0
15074 && mips_32bit_flags_p (new_flags)
15075 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15076 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15077 }
15078 else
15079 {
15080 /* The ISAs aren't compatible. */
15081 (*_bfd_error_handler)
15082 (_("%B: linking %s module with previous %s modules"),
15083 ibfd,
15084 bfd_printable_name (ibfd),
15085 bfd_printable_name (obfd));
15086 ok = FALSE;
15087 }
15088 }
15089
15090 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15091 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15092
15093 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15094 does set EI_CLASS differently from any 32-bit ABI. */
15095 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15096 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15097 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15098 {
15099 /* Only error if both are set (to different values). */
15100 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15101 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15102 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15103 {
15104 (*_bfd_error_handler)
15105 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
15106 ibfd,
15107 elf_mips_abi_name (ibfd),
15108 elf_mips_abi_name (obfd));
15109 ok = FALSE;
15110 }
15111 new_flags &= ~EF_MIPS_ABI;
15112 old_flags &= ~EF_MIPS_ABI;
15113 }
15114
15115 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15116 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15117 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15118 {
15119 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15120 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15121 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15122 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15123 int micro_mis = old_m16 && new_micro;
15124 int m16_mis = old_micro && new_m16;
15125
15126 if (m16_mis || micro_mis)
15127 {
15128 (*_bfd_error_handler)
15129 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
15130 ibfd,
15131 m16_mis ? "MIPS16" : "microMIPS",
15132 m16_mis ? "microMIPS" : "MIPS16");
15133 ok = FALSE;
15134 }
15135
15136 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15137
15138 new_flags &= ~ EF_MIPS_ARCH_ASE;
15139 old_flags &= ~ EF_MIPS_ARCH_ASE;
15140 }
15141
15142 /* Compare NaN encodings. */
15143 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15144 {
15145 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15146 ibfd,
15147 (new_flags & EF_MIPS_NAN2008
15148 ? "-mnan=2008" : "-mnan=legacy"),
15149 (old_flags & EF_MIPS_NAN2008
15150 ? "-mnan=2008" : "-mnan=legacy"));
15151 ok = FALSE;
15152 new_flags &= ~EF_MIPS_NAN2008;
15153 old_flags &= ~EF_MIPS_NAN2008;
15154 }
15155
15156 /* Compare FP64 state. */
15157 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15158 {
15159 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15160 ibfd,
15161 (new_flags & EF_MIPS_FP64
15162 ? "-mfp64" : "-mfp32"),
15163 (old_flags & EF_MIPS_FP64
15164 ? "-mfp64" : "-mfp32"));
15165 ok = FALSE;
15166 new_flags &= ~EF_MIPS_FP64;
15167 old_flags &= ~EF_MIPS_FP64;
15168 }
15169
15170 /* Warn about any other mismatches */
15171 if (new_flags != old_flags)
15172 {
15173 (*_bfd_error_handler)
15174 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
15175 ibfd, (unsigned long) new_flags,
15176 (unsigned long) old_flags);
15177 ok = FALSE;
15178 }
15179
15180 if (! ok)
15181 {
15182 bfd_set_error (bfd_error_bad_value);
15183 return FALSE;
15184 }
15185
15186 return TRUE;
15187 }
15188
15189 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15190
15191 bfd_boolean
15192 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15193 {
15194 BFD_ASSERT (!elf_flags_init (abfd)
15195 || elf_elfheader (abfd)->e_flags == flags);
15196
15197 elf_elfheader (abfd)->e_flags = flags;
15198 elf_flags_init (abfd) = TRUE;
15199 return TRUE;
15200 }
15201
15202 char *
15203 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15204 {
15205 switch (dtag)
15206 {
15207 default: return "";
15208 case DT_MIPS_RLD_VERSION:
15209 return "MIPS_RLD_VERSION";
15210 case DT_MIPS_TIME_STAMP:
15211 return "MIPS_TIME_STAMP";
15212 case DT_MIPS_ICHECKSUM:
15213 return "MIPS_ICHECKSUM";
15214 case DT_MIPS_IVERSION:
15215 return "MIPS_IVERSION";
15216 case DT_MIPS_FLAGS:
15217 return "MIPS_FLAGS";
15218 case DT_MIPS_BASE_ADDRESS:
15219 return "MIPS_BASE_ADDRESS";
15220 case DT_MIPS_MSYM:
15221 return "MIPS_MSYM";
15222 case DT_MIPS_CONFLICT:
15223 return "MIPS_CONFLICT";
15224 case DT_MIPS_LIBLIST:
15225 return "MIPS_LIBLIST";
15226 case DT_MIPS_LOCAL_GOTNO:
15227 return "MIPS_LOCAL_GOTNO";
15228 case DT_MIPS_CONFLICTNO:
15229 return "MIPS_CONFLICTNO";
15230 case DT_MIPS_LIBLISTNO:
15231 return "MIPS_LIBLISTNO";
15232 case DT_MIPS_SYMTABNO:
15233 return "MIPS_SYMTABNO";
15234 case DT_MIPS_UNREFEXTNO:
15235 return "MIPS_UNREFEXTNO";
15236 case DT_MIPS_GOTSYM:
15237 return "MIPS_GOTSYM";
15238 case DT_MIPS_HIPAGENO:
15239 return "MIPS_HIPAGENO";
15240 case DT_MIPS_RLD_MAP:
15241 return "MIPS_RLD_MAP";
15242 case DT_MIPS_DELTA_CLASS:
15243 return "MIPS_DELTA_CLASS";
15244 case DT_MIPS_DELTA_CLASS_NO:
15245 return "MIPS_DELTA_CLASS_NO";
15246 case DT_MIPS_DELTA_INSTANCE:
15247 return "MIPS_DELTA_INSTANCE";
15248 case DT_MIPS_DELTA_INSTANCE_NO:
15249 return "MIPS_DELTA_INSTANCE_NO";
15250 case DT_MIPS_DELTA_RELOC:
15251 return "MIPS_DELTA_RELOC";
15252 case DT_MIPS_DELTA_RELOC_NO:
15253 return "MIPS_DELTA_RELOC_NO";
15254 case DT_MIPS_DELTA_SYM:
15255 return "MIPS_DELTA_SYM";
15256 case DT_MIPS_DELTA_SYM_NO:
15257 return "MIPS_DELTA_SYM_NO";
15258 case DT_MIPS_DELTA_CLASSSYM:
15259 return "MIPS_DELTA_CLASSSYM";
15260 case DT_MIPS_DELTA_CLASSSYM_NO:
15261 return "MIPS_DELTA_CLASSSYM_NO";
15262 case DT_MIPS_CXX_FLAGS:
15263 return "MIPS_CXX_FLAGS";
15264 case DT_MIPS_PIXIE_INIT:
15265 return "MIPS_PIXIE_INIT";
15266 case DT_MIPS_SYMBOL_LIB:
15267 return "MIPS_SYMBOL_LIB";
15268 case DT_MIPS_LOCALPAGE_GOTIDX:
15269 return "MIPS_LOCALPAGE_GOTIDX";
15270 case DT_MIPS_LOCAL_GOTIDX:
15271 return "MIPS_LOCAL_GOTIDX";
15272 case DT_MIPS_HIDDEN_GOTIDX:
15273 return "MIPS_HIDDEN_GOTIDX";
15274 case DT_MIPS_PROTECTED_GOTIDX:
15275 return "MIPS_PROTECTED_GOT_IDX";
15276 case DT_MIPS_OPTIONS:
15277 return "MIPS_OPTIONS";
15278 case DT_MIPS_INTERFACE:
15279 return "MIPS_INTERFACE";
15280 case DT_MIPS_DYNSTR_ALIGN:
15281 return "DT_MIPS_DYNSTR_ALIGN";
15282 case DT_MIPS_INTERFACE_SIZE:
15283 return "DT_MIPS_INTERFACE_SIZE";
15284 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15285 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15286 case DT_MIPS_PERF_SUFFIX:
15287 return "DT_MIPS_PERF_SUFFIX";
15288 case DT_MIPS_COMPACT_SIZE:
15289 return "DT_MIPS_COMPACT_SIZE";
15290 case DT_MIPS_GP_VALUE:
15291 return "DT_MIPS_GP_VALUE";
15292 case DT_MIPS_AUX_DYNAMIC:
15293 return "DT_MIPS_AUX_DYNAMIC";
15294 case DT_MIPS_PLTGOT:
15295 return "DT_MIPS_PLTGOT";
15296 case DT_MIPS_RWPLT:
15297 return "DT_MIPS_RWPLT";
15298 }
15299 }
15300
15301 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15302 not known. */
15303
15304 const char *
15305 _bfd_mips_fp_abi_string (int fp)
15306 {
15307 switch (fp)
15308 {
15309 /* These strings aren't translated because they're simply
15310 option lists. */
15311 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15312 return "-mdouble-float";
15313
15314 case Val_GNU_MIPS_ABI_FP_SINGLE:
15315 return "-msingle-float";
15316
15317 case Val_GNU_MIPS_ABI_FP_SOFT:
15318 return "-msoft-float";
15319
15320 case Val_GNU_MIPS_ABI_FP_OLD_64:
15321 return _("-mips32r2 -mfp64 (12 callee-saved)");
15322
15323 case Val_GNU_MIPS_ABI_FP_XX:
15324 return "-mfpxx";
15325
15326 case Val_GNU_MIPS_ABI_FP_64:
15327 return "-mgp32 -mfp64";
15328
15329 case Val_GNU_MIPS_ABI_FP_64A:
15330 return "-mgp32 -mfp64 -mno-odd-spreg";
15331
15332 default:
15333 return 0;
15334 }
15335 }
15336
15337 static void
15338 print_mips_ases (FILE *file, unsigned int mask)
15339 {
15340 if (mask & AFL_ASE_DSP)
15341 fputs ("\n\tDSP ASE", file);
15342 if (mask & AFL_ASE_DSPR2)
15343 fputs ("\n\tDSP R2 ASE", file);
15344 if (mask & AFL_ASE_EVA)
15345 fputs ("\n\tEnhanced VA Scheme", file);
15346 if (mask & AFL_ASE_MCU)
15347 fputs ("\n\tMCU (MicroController) ASE", file);
15348 if (mask & AFL_ASE_MDMX)
15349 fputs ("\n\tMDMX ASE", file);
15350 if (mask & AFL_ASE_MIPS3D)
15351 fputs ("\n\tMIPS-3D ASE", file);
15352 if (mask & AFL_ASE_MT)
15353 fputs ("\n\tMT ASE", file);
15354 if (mask & AFL_ASE_SMARTMIPS)
15355 fputs ("\n\tSmartMIPS ASE", file);
15356 if (mask & AFL_ASE_VIRT)
15357 fputs ("\n\tVZ ASE", file);
15358 if (mask & AFL_ASE_MSA)
15359 fputs ("\n\tMSA ASE", file);
15360 if (mask & AFL_ASE_MIPS16)
15361 fputs ("\n\tMIPS16 ASE", file);
15362 if (mask & AFL_ASE_MICROMIPS)
15363 fputs ("\n\tMICROMIPS ASE", file);
15364 if (mask & AFL_ASE_XPA)
15365 fputs ("\n\tXPA ASE", file);
15366 if (mask == 0)
15367 fprintf (file, "\n\t%s", _("None"));
15368 }
15369
15370 static void
15371 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15372 {
15373 switch (isa_ext)
15374 {
15375 case 0:
15376 fputs (_("None"), file);
15377 break;
15378 case AFL_EXT_XLR:
15379 fputs ("RMI XLR", file);
15380 break;
15381 case AFL_EXT_OCTEON2:
15382 fputs ("Cavium Networks Octeon2", file);
15383 break;
15384 case AFL_EXT_OCTEONP:
15385 fputs ("Cavium Networks OcteonP", file);
15386 break;
15387 case AFL_EXT_LOONGSON_3A:
15388 fputs ("Loongson 3A", file);
15389 break;
15390 case AFL_EXT_OCTEON:
15391 fputs ("Cavium Networks Octeon", file);
15392 break;
15393 case AFL_EXT_5900:
15394 fputs ("Toshiba R5900", file);
15395 break;
15396 case AFL_EXT_4650:
15397 fputs ("MIPS R4650", file);
15398 break;
15399 case AFL_EXT_4010:
15400 fputs ("LSI R4010", file);
15401 break;
15402 case AFL_EXT_4100:
15403 fputs ("NEC VR4100", file);
15404 break;
15405 case AFL_EXT_3900:
15406 fputs ("Toshiba R3900", file);
15407 break;
15408 case AFL_EXT_10000:
15409 fputs ("MIPS R10000", file);
15410 break;
15411 case AFL_EXT_SB1:
15412 fputs ("Broadcom SB-1", file);
15413 break;
15414 case AFL_EXT_4111:
15415 fputs ("NEC VR4111/VR4181", file);
15416 break;
15417 case AFL_EXT_4120:
15418 fputs ("NEC VR4120", file);
15419 break;
15420 case AFL_EXT_5400:
15421 fputs ("NEC VR5400", file);
15422 break;
15423 case AFL_EXT_5500:
15424 fputs ("NEC VR5500", file);
15425 break;
15426 case AFL_EXT_LOONGSON_2E:
15427 fputs ("ST Microelectronics Loongson 2E", file);
15428 break;
15429 case AFL_EXT_LOONGSON_2F:
15430 fputs ("ST Microelectronics Loongson 2F", file);
15431 break;
15432 default:
15433 fputs (_("Unknown"), file);
15434 break;
15435 }
15436 }
15437
15438 static void
15439 print_mips_fp_abi_value (FILE *file, int val)
15440 {
15441 switch (val)
15442 {
15443 case Val_GNU_MIPS_ABI_FP_ANY:
15444 fprintf (file, _("Hard or soft float\n"));
15445 break;
15446 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15447 fprintf (file, _("Hard float (double precision)\n"));
15448 break;
15449 case Val_GNU_MIPS_ABI_FP_SINGLE:
15450 fprintf (file, _("Hard float (single precision)\n"));
15451 break;
15452 case Val_GNU_MIPS_ABI_FP_SOFT:
15453 fprintf (file, _("Soft float\n"));
15454 break;
15455 case Val_GNU_MIPS_ABI_FP_OLD_64:
15456 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15457 break;
15458 case Val_GNU_MIPS_ABI_FP_XX:
15459 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
15460 break;
15461 case Val_GNU_MIPS_ABI_FP_64:
15462 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
15463 break;
15464 case Val_GNU_MIPS_ABI_FP_64A:
15465 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
15466 break;
15467 default:
15468 fprintf (file, "??? (%d)\n", val);
15469 break;
15470 }
15471 }
15472
15473 static int
15474 get_mips_reg_size (int reg_size)
15475 {
15476 return (reg_size == AFL_REG_NONE) ? 0
15477 : (reg_size == AFL_REG_32) ? 32
15478 : (reg_size == AFL_REG_64) ? 64
15479 : (reg_size == AFL_REG_128) ? 128
15480 : -1;
15481 }
15482
15483 bfd_boolean
15484 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
15485 {
15486 FILE *file = ptr;
15487
15488 BFD_ASSERT (abfd != NULL && ptr != NULL);
15489
15490 /* Print normal ELF private data. */
15491 _bfd_elf_print_private_bfd_data (abfd, ptr);
15492
15493 /* xgettext:c-format */
15494 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15495
15496 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
15497 fprintf (file, _(" [abi=O32]"));
15498 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
15499 fprintf (file, _(" [abi=O64]"));
15500 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
15501 fprintf (file, _(" [abi=EABI32]"));
15502 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
15503 fprintf (file, _(" [abi=EABI64]"));
15504 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
15505 fprintf (file, _(" [abi unknown]"));
15506 else if (ABI_N32_P (abfd))
15507 fprintf (file, _(" [abi=N32]"));
15508 else if (ABI_64_P (abfd))
15509 fprintf (file, _(" [abi=64]"));
15510 else
15511 fprintf (file, _(" [no abi set]"));
15512
15513 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
15514 fprintf (file, " [mips1]");
15515 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
15516 fprintf (file, " [mips2]");
15517 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
15518 fprintf (file, " [mips3]");
15519 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
15520 fprintf (file, " [mips4]");
15521 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
15522 fprintf (file, " [mips5]");
15523 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
15524 fprintf (file, " [mips32]");
15525 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
15526 fprintf (file, " [mips64]");
15527 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
15528 fprintf (file, " [mips32r2]");
15529 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
15530 fprintf (file, " [mips64r2]");
15531 else
15532 fprintf (file, _(" [unknown ISA]"));
15533
15534 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
15535 fprintf (file, " [mdmx]");
15536
15537 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
15538 fprintf (file, " [mips16]");
15539
15540 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
15541 fprintf (file, " [micromips]");
15542
15543 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
15544 fprintf (file, " [nan2008]");
15545
15546 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
15547 fprintf (file, " [old fp64]");
15548
15549 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
15550 fprintf (file, " [32bitmode]");
15551 else
15552 fprintf (file, _(" [not 32bitmode]"));
15553
15554 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
15555 fprintf (file, " [noreorder]");
15556
15557 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
15558 fprintf (file, " [PIC]");
15559
15560 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
15561 fprintf (file, " [CPIC]");
15562
15563 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
15564 fprintf (file, " [XGOT]");
15565
15566 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
15567 fprintf (file, " [UCODE]");
15568
15569 fputc ('\n', file);
15570
15571 if (mips_elf_tdata (abfd)->abiflags_valid)
15572 {
15573 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
15574 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
15575 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
15576 if (abiflags->isa_rev > 1)
15577 fprintf (file, "r%d", abiflags->isa_rev);
15578 fprintf (file, "\nGPR size: %d",
15579 get_mips_reg_size (abiflags->gpr_size));
15580 fprintf (file, "\nCPR1 size: %d",
15581 get_mips_reg_size (abiflags->cpr1_size));
15582 fprintf (file, "\nCPR2 size: %d",
15583 get_mips_reg_size (abiflags->cpr2_size));
15584 fputs ("\nFP ABI: ", file);
15585 print_mips_fp_abi_value (file, abiflags->fp_abi);
15586 fputs ("ISA Extension: ", file);
15587 print_mips_isa_ext (file, abiflags->isa_ext);
15588 fputs ("\nASEs:", file);
15589 print_mips_ases (file, abiflags->ases);
15590 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
15591 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
15592 fputc ('\n', file);
15593 }
15594
15595 return TRUE;
15596 }
15597
15598 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
15599 {
15600 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15601 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15602 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
15603 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15604 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15605 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
15606 { NULL, 0, 0, 0, 0 }
15607 };
15608
15609 /* Merge non visibility st_other attributes. Ensure that the
15610 STO_OPTIONAL flag is copied into h->other, even if this is not a
15611 definiton of the symbol. */
15612 void
15613 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
15614 const Elf_Internal_Sym *isym,
15615 bfd_boolean definition,
15616 bfd_boolean dynamic ATTRIBUTE_UNUSED)
15617 {
15618 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
15619 {
15620 unsigned char other;
15621
15622 other = (definition ? isym->st_other : h->other);
15623 other &= ~ELF_ST_VISIBILITY (-1);
15624 h->other = other | ELF_ST_VISIBILITY (h->other);
15625 }
15626
15627 if (!definition
15628 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
15629 h->other |= STO_OPTIONAL;
15630 }
15631
15632 /* Decide whether an undefined symbol is special and can be ignored.
15633 This is the case for OPTIONAL symbols on IRIX. */
15634 bfd_boolean
15635 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
15636 {
15637 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
15638 }
15639
15640 bfd_boolean
15641 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
15642 {
15643 return (sym->st_shndx == SHN_COMMON
15644 || sym->st_shndx == SHN_MIPS_ACOMMON
15645 || sym->st_shndx == SHN_MIPS_SCOMMON);
15646 }
15647
15648 /* Return address for Ith PLT stub in section PLT, for relocation REL
15649 or (bfd_vma) -1 if it should not be included. */
15650
15651 bfd_vma
15652 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
15653 const arelent *rel ATTRIBUTE_UNUSED)
15654 {
15655 return (plt->vma
15656 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
15657 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
15658 }
15659
15660 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
15661 and microMIPS PLT slots we may have a many-to-one mapping between .plt
15662 and .got.plt and also the slots may be of a different size each we walk
15663 the PLT manually fetching instructions and matching them against known
15664 patterns. To make things easier standard MIPS slots, if any, always come
15665 first. As we don't create proper ELF symbols we use the UDATA.I member
15666 of ASYMBOL to carry ISA annotation. The encoding used is the same as
15667 with the ST_OTHER member of the ELF symbol. */
15668
15669 long
15670 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
15671 long symcount ATTRIBUTE_UNUSED,
15672 asymbol **syms ATTRIBUTE_UNUSED,
15673 long dynsymcount, asymbol **dynsyms,
15674 asymbol **ret)
15675 {
15676 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
15677 static const char microsuffix[] = "@micromipsplt";
15678 static const char m16suffix[] = "@mips16plt";
15679 static const char mipssuffix[] = "@plt";
15680
15681 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
15682 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
15683 bfd_boolean micromips_p = MICROMIPS_P (abfd);
15684 Elf_Internal_Shdr *hdr;
15685 bfd_byte *plt_data;
15686 bfd_vma plt_offset;
15687 unsigned int other;
15688 bfd_vma entry_size;
15689 bfd_vma plt0_size;
15690 asection *relplt;
15691 bfd_vma opcode;
15692 asection *plt;
15693 asymbol *send;
15694 size_t size;
15695 char *names;
15696 long counti;
15697 arelent *p;
15698 asymbol *s;
15699 char *nend;
15700 long count;
15701 long pi;
15702 long i;
15703 long n;
15704
15705 *ret = NULL;
15706
15707 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
15708 return 0;
15709
15710 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
15711 if (relplt == NULL)
15712 return 0;
15713
15714 hdr = &elf_section_data (relplt)->this_hdr;
15715 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
15716 return 0;
15717
15718 plt = bfd_get_section_by_name (abfd, ".plt");
15719 if (plt == NULL)
15720 return 0;
15721
15722 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
15723 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
15724 return -1;
15725 p = relplt->relocation;
15726
15727 /* Calculating the exact amount of space required for symbols would
15728 require two passes over the PLT, so just pessimise assuming two
15729 PLT slots per relocation. */
15730 count = relplt->size / hdr->sh_entsize;
15731 counti = count * bed->s->int_rels_per_ext_rel;
15732 size = 2 * count * sizeof (asymbol);
15733 size += count * (sizeof (mipssuffix) +
15734 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
15735 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
15736 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
15737
15738 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
15739 size += sizeof (asymbol) + sizeof (pltname);
15740
15741 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
15742 return -1;
15743
15744 if (plt->size < 16)
15745 return -1;
15746
15747 s = *ret = bfd_malloc (size);
15748 if (s == NULL)
15749 return -1;
15750 send = s + 2 * count + 1;
15751
15752 names = (char *) send;
15753 nend = (char *) s + size;
15754 n = 0;
15755
15756 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
15757 if (opcode == 0x3302fffe)
15758 {
15759 if (!micromips_p)
15760 return -1;
15761 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
15762 other = STO_MICROMIPS;
15763 }
15764 else if (opcode == 0x0398c1d0)
15765 {
15766 if (!micromips_p)
15767 return -1;
15768 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
15769 other = STO_MICROMIPS;
15770 }
15771 else
15772 {
15773 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
15774 other = 0;
15775 }
15776
15777 s->the_bfd = abfd;
15778 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
15779 s->section = plt;
15780 s->value = 0;
15781 s->name = names;
15782 s->udata.i = other;
15783 memcpy (names, pltname, sizeof (pltname));
15784 names += sizeof (pltname);
15785 ++s, ++n;
15786
15787 pi = 0;
15788 for (plt_offset = plt0_size;
15789 plt_offset + 8 <= plt->size && s < send;
15790 plt_offset += entry_size)
15791 {
15792 bfd_vma gotplt_addr;
15793 const char *suffix;
15794 bfd_vma gotplt_hi;
15795 bfd_vma gotplt_lo;
15796 size_t suffixlen;
15797
15798 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
15799
15800 /* Check if the second word matches the expected MIPS16 instruction. */
15801 if (opcode == 0x651aeb00)
15802 {
15803 if (micromips_p)
15804 return -1;
15805 /* Truncated table??? */
15806 if (plt_offset + 16 > plt->size)
15807 break;
15808 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
15809 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
15810 suffixlen = sizeof (m16suffix);
15811 suffix = m16suffix;
15812 other = STO_MIPS16;
15813 }
15814 /* Likewise the expected microMIPS instruction (no insn32 mode). */
15815 else if (opcode == 0xff220000)
15816 {
15817 if (!micromips_p)
15818 return -1;
15819 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
15820 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
15821 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
15822 gotplt_lo <<= 2;
15823 gotplt_addr = gotplt_hi + gotplt_lo;
15824 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
15825 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
15826 suffixlen = sizeof (microsuffix);
15827 suffix = microsuffix;
15828 other = STO_MICROMIPS;
15829 }
15830 /* Likewise the expected microMIPS instruction (insn32 mode). */
15831 else if ((opcode & 0xffff0000) == 0xff2f0000)
15832 {
15833 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
15834 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
15835 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
15836 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
15837 gotplt_addr = gotplt_hi + gotplt_lo;
15838 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
15839 suffixlen = sizeof (microsuffix);
15840 suffix = microsuffix;
15841 other = STO_MICROMIPS;
15842 }
15843 /* Otherwise assume standard MIPS code. */
15844 else
15845 {
15846 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
15847 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
15848 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
15849 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
15850 gotplt_addr = gotplt_hi + gotplt_lo;
15851 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
15852 suffixlen = sizeof (mipssuffix);
15853 suffix = mipssuffix;
15854 other = 0;
15855 }
15856 /* Truncated table??? */
15857 if (plt_offset + entry_size > plt->size)
15858 break;
15859
15860 for (i = 0;
15861 i < count && p[pi].address != gotplt_addr;
15862 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
15863
15864 if (i < count)
15865 {
15866 size_t namelen;
15867 size_t len;
15868
15869 *s = **p[pi].sym_ptr_ptr;
15870 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
15871 we are defining a symbol, ensure one of them is set. */
15872 if ((s->flags & BSF_LOCAL) == 0)
15873 s->flags |= BSF_GLOBAL;
15874 s->flags |= BSF_SYNTHETIC;
15875 s->section = plt;
15876 s->value = plt_offset;
15877 s->name = names;
15878 s->udata.i = other;
15879
15880 len = strlen ((*p[pi].sym_ptr_ptr)->name);
15881 namelen = len + suffixlen;
15882 if (names + namelen > nend)
15883 break;
15884
15885 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
15886 names += len;
15887 memcpy (names, suffix, suffixlen);
15888 names += suffixlen;
15889
15890 ++s, ++n;
15891 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
15892 }
15893 }
15894
15895 free (plt_data);
15896
15897 return n;
15898 }
15899
15900 void
15901 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
15902 {
15903 struct mips_elf_link_hash_table *htab;
15904 Elf_Internal_Ehdr *i_ehdrp;
15905
15906 i_ehdrp = elf_elfheader (abfd);
15907 if (link_info)
15908 {
15909 htab = mips_elf_hash_table (link_info);
15910 BFD_ASSERT (htab != NULL);
15911
15912 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
15913 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
15914 }
15915
15916 _bfd_elf_post_process_headers (abfd, link_info);
15917
15918 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
15919 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
15920 i_ehdrp->e_ident[EI_ABIVERSION] = 3;
15921 }
This page took 1.147508 seconds and 5 git commands to generate.