Always descend into output section statements in lang_do_assignments
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2016 Free Software Foundation, Inc.
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
28
29 /* This file handles functionality common to the different MIPS ABI's. */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "libiberty.h"
35 #include "elf-bfd.h"
36 #include "elfxx-mips.h"
37 #include "elf/mips.h"
38 #include "elf-vxworks.h"
39 #include "dwarf2.h"
40
41 /* Get the ECOFF swapping routines. */
42 #include "coff/sym.h"
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46
47 #include "hashtab.h"
48
49 /* Types of TLS GOT entry. */
50 enum mips_got_tls_type {
51 GOT_TLS_NONE,
52 GOT_TLS_GD,
53 GOT_TLS_LDM,
54 GOT_TLS_IE
55 };
56
57 /* This structure is used to hold information about one GOT entry.
58 There are four types of entry:
59
60 (1) an absolute address
61 requires: abfd == NULL
62 fields: d.address
63
64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 fields: abfd, symndx, d.addend, tls_type
67
68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 requires: abfd != NULL, symndx == -1
70 fields: d.h, tls_type
71
72 (4) a TLS LDM slot
73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 fields: none; there's only one of these per GOT. */
75 struct mips_got_entry
76 {
77 /* One input bfd that needs the GOT entry. */
78 bfd *abfd;
79 /* The index of the symbol, as stored in the relocation r_info, if
80 we have a local symbol; -1 otherwise. */
81 long symndx;
82 union
83 {
84 /* If abfd == NULL, an address that must be stored in the got. */
85 bfd_vma address;
86 /* If abfd != NULL && symndx != -1, the addend of the relocation
87 that should be added to the symbol value. */
88 bfd_vma addend;
89 /* If abfd != NULL && symndx == -1, the hash table entry
90 corresponding to a symbol in the GOT. The symbol's entry
91 is in the local area if h->global_got_area is GGA_NONE,
92 otherwise it is in the global area. */
93 struct mips_elf_link_hash_entry *h;
94 } d;
95
96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
97 symbol entry with r_symndx == 0. */
98 unsigned char tls_type;
99
100 /* True if we have filled in the GOT contents for a TLS entry,
101 and created the associated relocations. */
102 unsigned char tls_initialized;
103
104 /* The offset from the beginning of the .got section to the entry
105 corresponding to this symbol+addend. If it's a global symbol
106 whose offset is yet to be decided, it's going to be -1. */
107 long gotidx;
108 };
109
110 /* This structure represents a GOT page reference from an input bfd.
111 Each instance represents a symbol + ADDEND, where the representation
112 of the symbol depends on whether it is local to the input bfd.
113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
115
116 Page references with SYMNDX >= 0 always become page references
117 in the output. Page references with SYMNDX < 0 only become page
118 references if the symbol binds locally; in other cases, the page
119 reference decays to a global GOT reference. */
120 struct mips_got_page_ref
121 {
122 long symndx;
123 union
124 {
125 struct mips_elf_link_hash_entry *h;
126 bfd *abfd;
127 } u;
128 bfd_vma addend;
129 };
130
131 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132 The structures form a non-overlapping list that is sorted by increasing
133 MIN_ADDEND. */
134 struct mips_got_page_range
135 {
136 struct mips_got_page_range *next;
137 bfd_signed_vma min_addend;
138 bfd_signed_vma max_addend;
139 };
140
141 /* This structure describes the range of addends that are applied to page
142 relocations against a given section. */
143 struct mips_got_page_entry
144 {
145 /* The section that these entries are based on. */
146 asection *sec;
147 /* The ranges for this page entry. */
148 struct mips_got_page_range *ranges;
149 /* The maximum number of page entries needed for RANGES. */
150 bfd_vma num_pages;
151 };
152
153 /* This structure is used to hold .got information when linking. */
154
155 struct mips_got_info
156 {
157 /* The number of global .got entries. */
158 unsigned int global_gotno;
159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
160 unsigned int reloc_only_gotno;
161 /* The number of .got slots used for TLS. */
162 unsigned int tls_gotno;
163 /* The first unused TLS .got entry. Used only during
164 mips_elf_initialize_tls_index. */
165 unsigned int tls_assigned_gotno;
166 /* The number of local .got entries, eventually including page entries. */
167 unsigned int local_gotno;
168 /* The maximum number of page entries needed. */
169 unsigned int page_gotno;
170 /* The number of relocations needed for the GOT entries. */
171 unsigned int relocs;
172 /* The first unused local .got entry. */
173 unsigned int assigned_low_gotno;
174 /* The last unused local .got entry. */
175 unsigned int assigned_high_gotno;
176 /* A hash table holding members of the got. */
177 struct htab *got_entries;
178 /* A hash table holding mips_got_page_ref structures. */
179 struct htab *got_page_refs;
180 /* A hash table of mips_got_page_entry structures. */
181 struct htab *got_page_entries;
182 /* In multi-got links, a pointer to the next got (err, rather, most
183 of the time, it points to the previous got). */
184 struct mips_got_info *next;
185 };
186
187 /* Structure passed when merging bfds' gots. */
188
189 struct mips_elf_got_per_bfd_arg
190 {
191 /* The output bfd. */
192 bfd *obfd;
193 /* The link information. */
194 struct bfd_link_info *info;
195 /* A pointer to the primary got, i.e., the one that's going to get
196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
197 DT_MIPS_GOTSYM. */
198 struct mips_got_info *primary;
199 /* A non-primary got we're trying to merge with other input bfd's
200 gots. */
201 struct mips_got_info *current;
202 /* The maximum number of got entries that can be addressed with a
203 16-bit offset. */
204 unsigned int max_count;
205 /* The maximum number of page entries needed by each got. */
206 unsigned int max_pages;
207 /* The total number of global entries which will live in the
208 primary got and be automatically relocated. This includes
209 those not referenced by the primary GOT but included in
210 the "master" GOT. */
211 unsigned int global_count;
212 };
213
214 /* A structure used to pass information to htab_traverse callbacks
215 when laying out the GOT. */
216
217 struct mips_elf_traverse_got_arg
218 {
219 struct bfd_link_info *info;
220 struct mips_got_info *g;
221 int value;
222 };
223
224 struct _mips_elf_section_data
225 {
226 struct bfd_elf_section_data elf;
227 union
228 {
229 bfd_byte *tdata;
230 } u;
231 };
232
233 #define mips_elf_section_data(sec) \
234 ((struct _mips_elf_section_data *) elf_section_data (sec))
235
236 #define is_mips_elf(bfd) \
237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
238 && elf_tdata (bfd) != NULL \
239 && elf_object_id (bfd) == MIPS_ELF_DATA)
240
241 /* The ABI says that every symbol used by dynamic relocations must have
242 a global GOT entry. Among other things, this provides the dynamic
243 linker with a free, directly-indexed cache. The GOT can therefore
244 contain symbols that are not referenced by GOT relocations themselves
245 (in other words, it may have symbols that are not referenced by things
246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
247
248 GOT relocations are less likely to overflow if we put the associated
249 GOT entries towards the beginning. We therefore divide the global
250 GOT entries into two areas: "normal" and "reloc-only". Entries in
251 the first area can be used for both dynamic relocations and GP-relative
252 accesses, while those in the "reloc-only" area are for dynamic
253 relocations only.
254
255 These GGA_* ("Global GOT Area") values are organised so that lower
256 values are more general than higher values. Also, non-GGA_NONE
257 values are ordered by the position of the area in the GOT. */
258 #define GGA_NORMAL 0
259 #define GGA_RELOC_ONLY 1
260 #define GGA_NONE 2
261
262 /* Information about a non-PIC interface to a PIC function. There are
263 two ways of creating these interfaces. The first is to add:
264
265 lui $25,%hi(func)
266 addiu $25,$25,%lo(func)
267
268 immediately before a PIC function "func". The second is to add:
269
270 lui $25,%hi(func)
271 j func
272 addiu $25,$25,%lo(func)
273
274 to a separate trampoline section.
275
276 Stubs of the first kind go in a new section immediately before the
277 target function. Stubs of the second kind go in a single section
278 pointed to by the hash table's "strampoline" field. */
279 struct mips_elf_la25_stub {
280 /* The generated section that contains this stub. */
281 asection *stub_section;
282
283 /* The offset of the stub from the start of STUB_SECTION. */
284 bfd_vma offset;
285
286 /* One symbol for the original function. Its location is available
287 in H->root.root.u.def. */
288 struct mips_elf_link_hash_entry *h;
289 };
290
291 /* Macros for populating a mips_elf_la25_stub. */
292
293 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
294 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
295 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
296 #define LA25_LUI_MICROMIPS(VAL) \
297 (0x41b90000 | (VAL)) /* lui t9,VAL */
298 #define LA25_J_MICROMIPS(VAL) \
299 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
300 #define LA25_ADDIU_MICROMIPS(VAL) \
301 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
302
303 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
304 the dynamic symbols. */
305
306 struct mips_elf_hash_sort_data
307 {
308 /* The symbol in the global GOT with the lowest dynamic symbol table
309 index. */
310 struct elf_link_hash_entry *low;
311 /* The least dynamic symbol table index corresponding to a non-TLS
312 symbol with a GOT entry. */
313 long min_got_dynindx;
314 /* The greatest dynamic symbol table index corresponding to a symbol
315 with a GOT entry that is not referenced (e.g., a dynamic symbol
316 with dynamic relocations pointing to it from non-primary GOTs). */
317 long max_unref_got_dynindx;
318 /* The greatest dynamic symbol table index not corresponding to a
319 symbol without a GOT entry. */
320 long max_non_got_dynindx;
321 };
322
323 /* We make up to two PLT entries if needed, one for standard MIPS code
324 and one for compressed code, either a MIPS16 or microMIPS one. We
325 keep a separate record of traditional lazy-binding stubs, for easier
326 processing. */
327
328 struct plt_entry
329 {
330 /* Traditional SVR4 stub offset, or -1 if none. */
331 bfd_vma stub_offset;
332
333 /* Standard PLT entry offset, or -1 if none. */
334 bfd_vma mips_offset;
335
336 /* Compressed PLT entry offset, or -1 if none. */
337 bfd_vma comp_offset;
338
339 /* The corresponding .got.plt index, or -1 if none. */
340 bfd_vma gotplt_index;
341
342 /* Whether we need a standard PLT entry. */
343 unsigned int need_mips : 1;
344
345 /* Whether we need a compressed PLT entry. */
346 unsigned int need_comp : 1;
347 };
348
349 /* The MIPS ELF linker needs additional information for each symbol in
350 the global hash table. */
351
352 struct mips_elf_link_hash_entry
353 {
354 struct elf_link_hash_entry root;
355
356 /* External symbol information. */
357 EXTR esym;
358
359 /* The la25 stub we have created for ths symbol, if any. */
360 struct mips_elf_la25_stub *la25_stub;
361
362 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
363 this symbol. */
364 unsigned int possibly_dynamic_relocs;
365
366 /* If there is a stub that 32 bit functions should use to call this
367 16 bit function, this points to the section containing the stub. */
368 asection *fn_stub;
369
370 /* If there is a stub that 16 bit functions should use to call this
371 32 bit function, this points to the section containing the stub. */
372 asection *call_stub;
373
374 /* This is like the call_stub field, but it is used if the function
375 being called returns a floating point value. */
376 asection *call_fp_stub;
377
378 /* The highest GGA_* value that satisfies all references to this symbol. */
379 unsigned int global_got_area : 2;
380
381 /* True if all GOT relocations against this symbol are for calls. This is
382 a looser condition than no_fn_stub below, because there may be other
383 non-call non-GOT relocations against the symbol. */
384 unsigned int got_only_for_calls : 1;
385
386 /* True if one of the relocations described by possibly_dynamic_relocs
387 is against a readonly section. */
388 unsigned int readonly_reloc : 1;
389
390 /* True if there is a relocation against this symbol that must be
391 resolved by the static linker (in other words, if the relocation
392 cannot possibly be made dynamic). */
393 unsigned int has_static_relocs : 1;
394
395 /* True if we must not create a .MIPS.stubs entry for this symbol.
396 This is set, for example, if there are relocations related to
397 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
398 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
399 unsigned int no_fn_stub : 1;
400
401 /* Whether we need the fn_stub; this is true if this symbol appears
402 in any relocs other than a 16 bit call. */
403 unsigned int need_fn_stub : 1;
404
405 /* True if this symbol is referenced by branch relocations from
406 any non-PIC input file. This is used to determine whether an
407 la25 stub is required. */
408 unsigned int has_nonpic_branches : 1;
409
410 /* Does this symbol need a traditional MIPS lazy-binding stub
411 (as opposed to a PLT entry)? */
412 unsigned int needs_lazy_stub : 1;
413
414 /* Does this symbol resolve to a PLT entry? */
415 unsigned int use_plt_entry : 1;
416 };
417
418 /* MIPS ELF linker hash table. */
419
420 struct mips_elf_link_hash_table
421 {
422 struct elf_link_hash_table root;
423
424 /* The number of .rtproc entries. */
425 bfd_size_type procedure_count;
426
427 /* The size of the .compact_rel section (if SGI_COMPAT). */
428 bfd_size_type compact_rel_size;
429
430 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
431 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
432 bfd_boolean use_rld_obj_head;
433
434 /* The __rld_map or __rld_obj_head symbol. */
435 struct elf_link_hash_entry *rld_symbol;
436
437 /* This is set if we see any mips16 stub sections. */
438 bfd_boolean mips16_stubs_seen;
439
440 /* True if we can generate copy relocs and PLTs. */
441 bfd_boolean use_plts_and_copy_relocs;
442
443 /* True if we can only use 32-bit microMIPS instructions. */
444 bfd_boolean insn32;
445
446 /* True if we're generating code for VxWorks. */
447 bfd_boolean is_vxworks;
448
449 /* True if we already reported the small-data section overflow. */
450 bfd_boolean small_data_overflow_reported;
451
452 /* Shortcuts to some dynamic sections, or NULL if they are not
453 being used. */
454 asection *srelbss;
455 asection *sdynbss;
456 asection *srelplt;
457 asection *srelplt2;
458 asection *sgotplt;
459 asection *splt;
460 asection *sstubs;
461 asection *sgot;
462
463 /* The master GOT information. */
464 struct mips_got_info *got_info;
465
466 /* The global symbol in the GOT with the lowest index in the dynamic
467 symbol table. */
468 struct elf_link_hash_entry *global_gotsym;
469
470 /* The size of the PLT header in bytes. */
471 bfd_vma plt_header_size;
472
473 /* The size of a standard PLT entry in bytes. */
474 bfd_vma plt_mips_entry_size;
475
476 /* The size of a compressed PLT entry in bytes. */
477 bfd_vma plt_comp_entry_size;
478
479 /* The offset of the next standard PLT entry to create. */
480 bfd_vma plt_mips_offset;
481
482 /* The offset of the next compressed PLT entry to create. */
483 bfd_vma plt_comp_offset;
484
485 /* The index of the next .got.plt entry to create. */
486 bfd_vma plt_got_index;
487
488 /* The number of functions that need a lazy-binding stub. */
489 bfd_vma lazy_stub_count;
490
491 /* The size of a function stub entry in bytes. */
492 bfd_vma function_stub_size;
493
494 /* The number of reserved entries at the beginning of the GOT. */
495 unsigned int reserved_gotno;
496
497 /* The section used for mips_elf_la25_stub trampolines.
498 See the comment above that structure for details. */
499 asection *strampoline;
500
501 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
502 pairs. */
503 htab_t la25_stubs;
504
505 /* A function FN (NAME, IS, OS) that creates a new input section
506 called NAME and links it to output section OS. If IS is nonnull,
507 the new section should go immediately before it, otherwise it
508 should go at the (current) beginning of OS.
509
510 The function returns the new section on success, otherwise it
511 returns null. */
512 asection *(*add_stub_section) (const char *, asection *, asection *);
513
514 /* Small local sym cache. */
515 struct sym_cache sym_cache;
516
517 /* Is the PLT header compressed? */
518 unsigned int plt_header_is_comp : 1;
519 };
520
521 /* Get the MIPS ELF linker hash table from a link_info structure. */
522
523 #define mips_elf_hash_table(p) \
524 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
525 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
526
527 /* A structure used to communicate with htab_traverse callbacks. */
528 struct mips_htab_traverse_info
529 {
530 /* The usual link-wide information. */
531 struct bfd_link_info *info;
532 bfd *output_bfd;
533
534 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
535 bfd_boolean error;
536 };
537
538 /* MIPS ELF private object data. */
539
540 struct mips_elf_obj_tdata
541 {
542 /* Generic ELF private object data. */
543 struct elf_obj_tdata root;
544
545 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
546 bfd *abi_fp_bfd;
547
548 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
549 bfd *abi_msa_bfd;
550
551 /* The abiflags for this object. */
552 Elf_Internal_ABIFlags_v0 abiflags;
553 bfd_boolean abiflags_valid;
554
555 /* The GOT requirements of input bfds. */
556 struct mips_got_info *got;
557
558 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
559 included directly in this one, but there's no point to wasting
560 the memory just for the infrequently called find_nearest_line. */
561 struct mips_elf_find_line *find_line_info;
562
563 /* An array of stub sections indexed by symbol number. */
564 asection **local_stubs;
565 asection **local_call_stubs;
566
567 /* The Irix 5 support uses two virtual sections, which represent
568 text/data symbols defined in dynamic objects. */
569 asymbol *elf_data_symbol;
570 asymbol *elf_text_symbol;
571 asection *elf_data_section;
572 asection *elf_text_section;
573 };
574
575 /* Get MIPS ELF private object data from BFD's tdata. */
576
577 #define mips_elf_tdata(bfd) \
578 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
579
580 #define TLS_RELOC_P(r_type) \
581 (r_type == R_MIPS_TLS_DTPMOD32 \
582 || r_type == R_MIPS_TLS_DTPMOD64 \
583 || r_type == R_MIPS_TLS_DTPREL32 \
584 || r_type == R_MIPS_TLS_DTPREL64 \
585 || r_type == R_MIPS_TLS_GD \
586 || r_type == R_MIPS_TLS_LDM \
587 || r_type == R_MIPS_TLS_DTPREL_HI16 \
588 || r_type == R_MIPS_TLS_DTPREL_LO16 \
589 || r_type == R_MIPS_TLS_GOTTPREL \
590 || r_type == R_MIPS_TLS_TPREL32 \
591 || r_type == R_MIPS_TLS_TPREL64 \
592 || r_type == R_MIPS_TLS_TPREL_HI16 \
593 || r_type == R_MIPS_TLS_TPREL_LO16 \
594 || r_type == R_MIPS16_TLS_GD \
595 || r_type == R_MIPS16_TLS_LDM \
596 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
597 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
598 || r_type == R_MIPS16_TLS_GOTTPREL \
599 || r_type == R_MIPS16_TLS_TPREL_HI16 \
600 || r_type == R_MIPS16_TLS_TPREL_LO16 \
601 || r_type == R_MICROMIPS_TLS_GD \
602 || r_type == R_MICROMIPS_TLS_LDM \
603 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
604 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
605 || r_type == R_MICROMIPS_TLS_GOTTPREL \
606 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
607 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
608
609 /* Structure used to pass information to mips_elf_output_extsym. */
610
611 struct extsym_info
612 {
613 bfd *abfd;
614 struct bfd_link_info *info;
615 struct ecoff_debug_info *debug;
616 const struct ecoff_debug_swap *swap;
617 bfd_boolean failed;
618 };
619
620 /* The names of the runtime procedure table symbols used on IRIX5. */
621
622 static const char * const mips_elf_dynsym_rtproc_names[] =
623 {
624 "_procedure_table",
625 "_procedure_string_table",
626 "_procedure_table_size",
627 NULL
628 };
629
630 /* These structures are used to generate the .compact_rel section on
631 IRIX5. */
632
633 typedef struct
634 {
635 unsigned long id1; /* Always one? */
636 unsigned long num; /* Number of compact relocation entries. */
637 unsigned long id2; /* Always two? */
638 unsigned long offset; /* The file offset of the first relocation. */
639 unsigned long reserved0; /* Zero? */
640 unsigned long reserved1; /* Zero? */
641 } Elf32_compact_rel;
642
643 typedef struct
644 {
645 bfd_byte id1[4];
646 bfd_byte num[4];
647 bfd_byte id2[4];
648 bfd_byte offset[4];
649 bfd_byte reserved0[4];
650 bfd_byte reserved1[4];
651 } Elf32_External_compact_rel;
652
653 typedef struct
654 {
655 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
656 unsigned int rtype : 4; /* Relocation types. See below. */
657 unsigned int dist2to : 8;
658 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
659 unsigned long konst; /* KONST field. See below. */
660 unsigned long vaddr; /* VADDR to be relocated. */
661 } Elf32_crinfo;
662
663 typedef struct
664 {
665 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
666 unsigned int rtype : 4; /* Relocation types. See below. */
667 unsigned int dist2to : 8;
668 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
669 unsigned long konst; /* KONST field. See below. */
670 } Elf32_crinfo2;
671
672 typedef struct
673 {
674 bfd_byte info[4];
675 bfd_byte konst[4];
676 bfd_byte vaddr[4];
677 } Elf32_External_crinfo;
678
679 typedef struct
680 {
681 bfd_byte info[4];
682 bfd_byte konst[4];
683 } Elf32_External_crinfo2;
684
685 /* These are the constants used to swap the bitfields in a crinfo. */
686
687 #define CRINFO_CTYPE (0x1)
688 #define CRINFO_CTYPE_SH (31)
689 #define CRINFO_RTYPE (0xf)
690 #define CRINFO_RTYPE_SH (27)
691 #define CRINFO_DIST2TO (0xff)
692 #define CRINFO_DIST2TO_SH (19)
693 #define CRINFO_RELVADDR (0x7ffff)
694 #define CRINFO_RELVADDR_SH (0)
695
696 /* A compact relocation info has long (3 words) or short (2 words)
697 formats. A short format doesn't have VADDR field and relvaddr
698 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
699 #define CRF_MIPS_LONG 1
700 #define CRF_MIPS_SHORT 0
701
702 /* There are 4 types of compact relocation at least. The value KONST
703 has different meaning for each type:
704
705 (type) (konst)
706 CT_MIPS_REL32 Address in data
707 CT_MIPS_WORD Address in word (XXX)
708 CT_MIPS_GPHI_LO GP - vaddr
709 CT_MIPS_JMPAD Address to jump
710 */
711
712 #define CRT_MIPS_REL32 0xa
713 #define CRT_MIPS_WORD 0xb
714 #define CRT_MIPS_GPHI_LO 0xc
715 #define CRT_MIPS_JMPAD 0xd
716
717 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
718 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
719 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
720 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
721 \f
722 /* The structure of the runtime procedure descriptor created by the
723 loader for use by the static exception system. */
724
725 typedef struct runtime_pdr {
726 bfd_vma adr; /* Memory address of start of procedure. */
727 long regmask; /* Save register mask. */
728 long regoffset; /* Save register offset. */
729 long fregmask; /* Save floating point register mask. */
730 long fregoffset; /* Save floating point register offset. */
731 long frameoffset; /* Frame size. */
732 short framereg; /* Frame pointer register. */
733 short pcreg; /* Offset or reg of return pc. */
734 long irpss; /* Index into the runtime string table. */
735 long reserved;
736 struct exception_info *exception_info;/* Pointer to exception array. */
737 } RPDR, *pRPDR;
738 #define cbRPDR sizeof (RPDR)
739 #define rpdNil ((pRPDR) 0)
740 \f
741 static struct mips_got_entry *mips_elf_create_local_got_entry
742 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
743 struct mips_elf_link_hash_entry *, int);
744 static bfd_boolean mips_elf_sort_hash_table_f
745 (struct mips_elf_link_hash_entry *, void *);
746 static bfd_vma mips_elf_high
747 (bfd_vma);
748 static bfd_boolean mips_elf_create_dynamic_relocation
749 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
750 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
751 bfd_vma *, asection *);
752 static bfd_vma mips_elf_adjust_gp
753 (bfd *, struct mips_got_info *, bfd *);
754
755 /* This will be used when we sort the dynamic relocation records. */
756 static bfd *reldyn_sorting_bfd;
757
758 /* True if ABFD is for CPUs with load interlocking that include
759 non-MIPS1 CPUs and R3900. */
760 #define LOAD_INTERLOCKS_P(abfd) \
761 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
762 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
763
764 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
765 This should be safe for all architectures. We enable this predicate
766 for RM9000 for now. */
767 #define JAL_TO_BAL_P(abfd) \
768 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
769
770 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
771 This should be safe for all architectures. We enable this predicate for
772 all CPUs. */
773 #define JALR_TO_BAL_P(abfd) 1
774
775 /* True if ABFD is for CPUs that are faster if JR is converted to B.
776 This should be safe for all architectures. We enable this predicate for
777 all CPUs. */
778 #define JR_TO_B_P(abfd) 1
779
780 /* True if ABFD is a PIC object. */
781 #define PIC_OBJECT_P(abfd) \
782 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
783
784 /* Nonzero if ABFD is using the O32 ABI. */
785 #define ABI_O32_P(abfd) \
786 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
787
788 /* Nonzero if ABFD is using the N32 ABI. */
789 #define ABI_N32_P(abfd) \
790 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
791
792 /* Nonzero if ABFD is using the N64 ABI. */
793 #define ABI_64_P(abfd) \
794 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
795
796 /* Nonzero if ABFD is using NewABI conventions. */
797 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
798
799 /* Nonzero if ABFD has microMIPS code. */
800 #define MICROMIPS_P(abfd) \
801 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
802
803 /* Nonzero if ABFD is MIPS R6. */
804 #define MIPSR6_P(abfd) \
805 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
806 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
807
808 /* The IRIX compatibility level we are striving for. */
809 #define IRIX_COMPAT(abfd) \
810 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
811
812 /* Whether we are trying to be compatible with IRIX at all. */
813 #define SGI_COMPAT(abfd) \
814 (IRIX_COMPAT (abfd) != ict_none)
815
816 /* The name of the options section. */
817 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
818 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
819
820 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
821 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
822 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
823 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
824
825 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
826 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
827 (strcmp (NAME, ".MIPS.abiflags") == 0)
828
829 /* Whether the section is readonly. */
830 #define MIPS_ELF_READONLY_SECTION(sec) \
831 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
832 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
833
834 /* The name of the stub section. */
835 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
836
837 /* The size of an external REL relocation. */
838 #define MIPS_ELF_REL_SIZE(abfd) \
839 (get_elf_backend_data (abfd)->s->sizeof_rel)
840
841 /* The size of an external RELA relocation. */
842 #define MIPS_ELF_RELA_SIZE(abfd) \
843 (get_elf_backend_data (abfd)->s->sizeof_rela)
844
845 /* The size of an external dynamic table entry. */
846 #define MIPS_ELF_DYN_SIZE(abfd) \
847 (get_elf_backend_data (abfd)->s->sizeof_dyn)
848
849 /* The size of a GOT entry. */
850 #define MIPS_ELF_GOT_SIZE(abfd) \
851 (get_elf_backend_data (abfd)->s->arch_size / 8)
852
853 /* The size of the .rld_map section. */
854 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
855 (get_elf_backend_data (abfd)->s->arch_size / 8)
856
857 /* The size of a symbol-table entry. */
858 #define MIPS_ELF_SYM_SIZE(abfd) \
859 (get_elf_backend_data (abfd)->s->sizeof_sym)
860
861 /* The default alignment for sections, as a power of two. */
862 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
863 (get_elf_backend_data (abfd)->s->log_file_align)
864
865 /* Get word-sized data. */
866 #define MIPS_ELF_GET_WORD(abfd, ptr) \
867 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
868
869 /* Put out word-sized data. */
870 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
871 (ABI_64_P (abfd) \
872 ? bfd_put_64 (abfd, val, ptr) \
873 : bfd_put_32 (abfd, val, ptr))
874
875 /* The opcode for word-sized loads (LW or LD). */
876 #define MIPS_ELF_LOAD_WORD(abfd) \
877 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
878
879 /* Add a dynamic symbol table-entry. */
880 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
881 _bfd_elf_add_dynamic_entry (info, tag, val)
882
883 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
884 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
885
886 /* The name of the dynamic relocation section. */
887 #define MIPS_ELF_REL_DYN_NAME(INFO) \
888 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
889
890 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
891 from smaller values. Start with zero, widen, *then* decrement. */
892 #define MINUS_ONE (((bfd_vma)0) - 1)
893 #define MINUS_TWO (((bfd_vma)0) - 2)
894
895 /* The value to write into got[1] for SVR4 targets, to identify it is
896 a GNU object. The dynamic linker can then use got[1] to store the
897 module pointer. */
898 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
899 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
900
901 /* The offset of $gp from the beginning of the .got section. */
902 #define ELF_MIPS_GP_OFFSET(INFO) \
903 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
904
905 /* The maximum size of the GOT for it to be addressable using 16-bit
906 offsets from $gp. */
907 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
908
909 /* Instructions which appear in a stub. */
910 #define STUB_LW(abfd) \
911 ((ABI_64_P (abfd) \
912 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
913 : 0x8f998010)) /* lw t9,0x8010(gp) */
914 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
915 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
916 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
917 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
918 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
919 #define STUB_LI16S(abfd, VAL) \
920 ((ABI_64_P (abfd) \
921 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
922 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
923
924 /* Likewise for the microMIPS ASE. */
925 #define STUB_LW_MICROMIPS(abfd) \
926 (ABI_64_P (abfd) \
927 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
928 : 0xff3c8010) /* lw t9,0x8010(gp) */
929 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
930 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
931 #define STUB_LUI_MICROMIPS(VAL) \
932 (0x41b80000 + (VAL)) /* lui t8,VAL */
933 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
934 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
935 #define STUB_ORI_MICROMIPS(VAL) \
936 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
937 #define STUB_LI16U_MICROMIPS(VAL) \
938 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
939 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
940 (ABI_64_P (abfd) \
941 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
942 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
943
944 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
945 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
946 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
947 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
948 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
949 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
950
951 /* The name of the dynamic interpreter. This is put in the .interp
952 section. */
953
954 #define ELF_DYNAMIC_INTERPRETER(abfd) \
955 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
956 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
957 : "/usr/lib/libc.so.1")
958
959 #ifdef BFD64
960 #define MNAME(bfd,pre,pos) \
961 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
962 #define ELF_R_SYM(bfd, i) \
963 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
964 #define ELF_R_TYPE(bfd, i) \
965 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
966 #define ELF_R_INFO(bfd, s, t) \
967 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
968 #else
969 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
970 #define ELF_R_SYM(bfd, i) \
971 (ELF32_R_SYM (i))
972 #define ELF_R_TYPE(bfd, i) \
973 (ELF32_R_TYPE (i))
974 #define ELF_R_INFO(bfd, s, t) \
975 (ELF32_R_INFO (s, t))
976 #endif
977 \f
978 /* The mips16 compiler uses a couple of special sections to handle
979 floating point arguments.
980
981 Section names that look like .mips16.fn.FNNAME contain stubs that
982 copy floating point arguments from the fp regs to the gp regs and
983 then jump to FNNAME. If any 32 bit function calls FNNAME, the
984 call should be redirected to the stub instead. If no 32 bit
985 function calls FNNAME, the stub should be discarded. We need to
986 consider any reference to the function, not just a call, because
987 if the address of the function is taken we will need the stub,
988 since the address might be passed to a 32 bit function.
989
990 Section names that look like .mips16.call.FNNAME contain stubs
991 that copy floating point arguments from the gp regs to the fp
992 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
993 then any 16 bit function that calls FNNAME should be redirected
994 to the stub instead. If FNNAME is not a 32 bit function, the
995 stub should be discarded.
996
997 .mips16.call.fp.FNNAME sections are similar, but contain stubs
998 which call FNNAME and then copy the return value from the fp regs
999 to the gp regs. These stubs store the return value in $18 while
1000 calling FNNAME; any function which might call one of these stubs
1001 must arrange to save $18 around the call. (This case is not
1002 needed for 32 bit functions that call 16 bit functions, because
1003 16 bit functions always return floating point values in both
1004 $f0/$f1 and $2/$3.)
1005
1006 Note that in all cases FNNAME might be defined statically.
1007 Therefore, FNNAME is not used literally. Instead, the relocation
1008 information will indicate which symbol the section is for.
1009
1010 We record any stubs that we find in the symbol table. */
1011
1012 #define FN_STUB ".mips16.fn."
1013 #define CALL_STUB ".mips16.call."
1014 #define CALL_FP_STUB ".mips16.call.fp."
1015
1016 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1017 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1018 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1019 \f
1020 /* The format of the first PLT entry in an O32 executable. */
1021 static const bfd_vma mips_o32_exec_plt0_entry[] =
1022 {
1023 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1024 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1025 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1026 0x031cc023, /* subu $24, $24, $28 */
1027 0x03e07825, /* or t7, ra, zero */
1028 0x0018c082, /* srl $24, $24, 2 */
1029 0x0320f809, /* jalr $25 */
1030 0x2718fffe /* subu $24, $24, 2 */
1031 };
1032
1033 /* The format of the first PLT entry in an N32 executable. Different
1034 because gp ($28) is not available; we use t2 ($14) instead. */
1035 static const bfd_vma mips_n32_exec_plt0_entry[] =
1036 {
1037 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1038 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1039 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1040 0x030ec023, /* subu $24, $24, $14 */
1041 0x03e07825, /* or t7, ra, zero */
1042 0x0018c082, /* srl $24, $24, 2 */
1043 0x0320f809, /* jalr $25 */
1044 0x2718fffe /* subu $24, $24, 2 */
1045 };
1046
1047 /* The format of the first PLT entry in an N64 executable. Different
1048 from N32 because of the increased size of GOT entries. */
1049 static const bfd_vma mips_n64_exec_plt0_entry[] =
1050 {
1051 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1052 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1053 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1054 0x030ec023, /* subu $24, $24, $14 */
1055 0x03e07825, /* or t7, ra, zero */
1056 0x0018c0c2, /* srl $24, $24, 3 */
1057 0x0320f809, /* jalr $25 */
1058 0x2718fffe /* subu $24, $24, 2 */
1059 };
1060
1061 /* The format of the microMIPS first PLT entry in an O32 executable.
1062 We rely on v0 ($2) rather than t8 ($24) to contain the address
1063 of the GOTPLT entry handled, so this stub may only be used when
1064 all the subsequent PLT entries are microMIPS code too.
1065
1066 The trailing NOP is for alignment and correct disassembly only. */
1067 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1068 {
1069 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1070 0xff23, 0x0000, /* lw $25, 0($3) */
1071 0x0535, /* subu $2, $2, $3 */
1072 0x2525, /* srl $2, $2, 2 */
1073 0x3302, 0xfffe, /* subu $24, $2, 2 */
1074 0x0dff, /* move $15, $31 */
1075 0x45f9, /* jalrs $25 */
1076 0x0f83, /* move $28, $3 */
1077 0x0c00 /* nop */
1078 };
1079
1080 /* The format of the microMIPS first PLT entry in an O32 executable
1081 in the insn32 mode. */
1082 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1083 {
1084 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1085 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1086 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1087 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1088 0x001f, 0x7a90, /* or $15, $31, zero */
1089 0x0318, 0x1040, /* srl $24, $24, 2 */
1090 0x03f9, 0x0f3c, /* jalr $25 */
1091 0x3318, 0xfffe /* subu $24, $24, 2 */
1092 };
1093
1094 /* The format of subsequent standard PLT entries. */
1095 static const bfd_vma mips_exec_plt_entry[] =
1096 {
1097 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1098 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1099 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1100 0x03200008 /* jr $25 */
1101 };
1102
1103 /* In the following PLT entry the JR and ADDIU instructions will
1104 be swapped in _bfd_mips_elf_finish_dynamic_symbol because
1105 LOAD_INTERLOCKS_P will be true for MIPS R6. */
1106 static const bfd_vma mipsr6_exec_plt_entry[] =
1107 {
1108 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1109 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1110 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1111 0x03200009 /* jr $25 */
1112 };
1113
1114 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1115 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1116 directly addressable. */
1117 static const bfd_vma mips16_o32_exec_plt_entry[] =
1118 {
1119 0xb203, /* lw $2, 12($pc) */
1120 0x9a60, /* lw $3, 0($2) */
1121 0x651a, /* move $24, $2 */
1122 0xeb00, /* jr $3 */
1123 0x653b, /* move $25, $3 */
1124 0x6500, /* nop */
1125 0x0000, 0x0000 /* .word (.got.plt entry) */
1126 };
1127
1128 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1129 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1130 static const bfd_vma micromips_o32_exec_plt_entry[] =
1131 {
1132 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1133 0xff22, 0x0000, /* lw $25, 0($2) */
1134 0x4599, /* jr $25 */
1135 0x0f02 /* move $24, $2 */
1136 };
1137
1138 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1139 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1140 {
1141 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1142 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1143 0x0019, 0x0f3c, /* jr $25 */
1144 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1145 };
1146
1147 /* The format of the first PLT entry in a VxWorks executable. */
1148 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1149 {
1150 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1151 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1152 0x8f390008, /* lw t9, 8(t9) */
1153 0x00000000, /* nop */
1154 0x03200008, /* jr t9 */
1155 0x00000000 /* nop */
1156 };
1157
1158 /* The format of subsequent PLT entries. */
1159 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1160 {
1161 0x10000000, /* b .PLT_resolver */
1162 0x24180000, /* li t8, <pltindex> */
1163 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1164 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1165 0x8f390000, /* lw t9, 0(t9) */
1166 0x00000000, /* nop */
1167 0x03200008, /* jr t9 */
1168 0x00000000 /* nop */
1169 };
1170
1171 /* The format of the first PLT entry in a VxWorks shared object. */
1172 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1173 {
1174 0x8f990008, /* lw t9, 8(gp) */
1175 0x00000000, /* nop */
1176 0x03200008, /* jr t9 */
1177 0x00000000, /* nop */
1178 0x00000000, /* nop */
1179 0x00000000 /* nop */
1180 };
1181
1182 /* The format of subsequent PLT entries. */
1183 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1184 {
1185 0x10000000, /* b .PLT_resolver */
1186 0x24180000 /* li t8, <pltindex> */
1187 };
1188 \f
1189 /* microMIPS 32-bit opcode helper installer. */
1190
1191 static void
1192 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1193 {
1194 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1195 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1196 }
1197
1198 /* microMIPS 32-bit opcode helper retriever. */
1199
1200 static bfd_vma
1201 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1202 {
1203 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1204 }
1205 \f
1206 /* Look up an entry in a MIPS ELF linker hash table. */
1207
1208 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1209 ((struct mips_elf_link_hash_entry *) \
1210 elf_link_hash_lookup (&(table)->root, (string), (create), \
1211 (copy), (follow)))
1212
1213 /* Traverse a MIPS ELF linker hash table. */
1214
1215 #define mips_elf_link_hash_traverse(table, func, info) \
1216 (elf_link_hash_traverse \
1217 (&(table)->root, \
1218 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1219 (info)))
1220
1221 /* Find the base offsets for thread-local storage in this object,
1222 for GD/LD and IE/LE respectively. */
1223
1224 #define TP_OFFSET 0x7000
1225 #define DTP_OFFSET 0x8000
1226
1227 static bfd_vma
1228 dtprel_base (struct bfd_link_info *info)
1229 {
1230 /* If tls_sec is NULL, we should have signalled an error already. */
1231 if (elf_hash_table (info)->tls_sec == NULL)
1232 return 0;
1233 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1234 }
1235
1236 static bfd_vma
1237 tprel_base (struct bfd_link_info *info)
1238 {
1239 /* If tls_sec is NULL, we should have signalled an error already. */
1240 if (elf_hash_table (info)->tls_sec == NULL)
1241 return 0;
1242 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1243 }
1244
1245 /* Create an entry in a MIPS ELF linker hash table. */
1246
1247 static struct bfd_hash_entry *
1248 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1249 struct bfd_hash_table *table, const char *string)
1250 {
1251 struct mips_elf_link_hash_entry *ret =
1252 (struct mips_elf_link_hash_entry *) entry;
1253
1254 /* Allocate the structure if it has not already been allocated by a
1255 subclass. */
1256 if (ret == NULL)
1257 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1258 if (ret == NULL)
1259 return (struct bfd_hash_entry *) ret;
1260
1261 /* Call the allocation method of the superclass. */
1262 ret = ((struct mips_elf_link_hash_entry *)
1263 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1264 table, string));
1265 if (ret != NULL)
1266 {
1267 /* Set local fields. */
1268 memset (&ret->esym, 0, sizeof (EXTR));
1269 /* We use -2 as a marker to indicate that the information has
1270 not been set. -1 means there is no associated ifd. */
1271 ret->esym.ifd = -2;
1272 ret->la25_stub = 0;
1273 ret->possibly_dynamic_relocs = 0;
1274 ret->fn_stub = NULL;
1275 ret->call_stub = NULL;
1276 ret->call_fp_stub = NULL;
1277 ret->global_got_area = GGA_NONE;
1278 ret->got_only_for_calls = TRUE;
1279 ret->readonly_reloc = FALSE;
1280 ret->has_static_relocs = FALSE;
1281 ret->no_fn_stub = FALSE;
1282 ret->need_fn_stub = FALSE;
1283 ret->has_nonpic_branches = FALSE;
1284 ret->needs_lazy_stub = FALSE;
1285 ret->use_plt_entry = FALSE;
1286 }
1287
1288 return (struct bfd_hash_entry *) ret;
1289 }
1290
1291 /* Allocate MIPS ELF private object data. */
1292
1293 bfd_boolean
1294 _bfd_mips_elf_mkobject (bfd *abfd)
1295 {
1296 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1297 MIPS_ELF_DATA);
1298 }
1299
1300 bfd_boolean
1301 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1302 {
1303 if (!sec->used_by_bfd)
1304 {
1305 struct _mips_elf_section_data *sdata;
1306 bfd_size_type amt = sizeof (*sdata);
1307
1308 sdata = bfd_zalloc (abfd, amt);
1309 if (sdata == NULL)
1310 return FALSE;
1311 sec->used_by_bfd = sdata;
1312 }
1313
1314 return _bfd_elf_new_section_hook (abfd, sec);
1315 }
1316 \f
1317 /* Read ECOFF debugging information from a .mdebug section into a
1318 ecoff_debug_info structure. */
1319
1320 bfd_boolean
1321 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1322 struct ecoff_debug_info *debug)
1323 {
1324 HDRR *symhdr;
1325 const struct ecoff_debug_swap *swap;
1326 char *ext_hdr;
1327
1328 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1329 memset (debug, 0, sizeof (*debug));
1330
1331 ext_hdr = bfd_malloc (swap->external_hdr_size);
1332 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1333 goto error_return;
1334
1335 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1336 swap->external_hdr_size))
1337 goto error_return;
1338
1339 symhdr = &debug->symbolic_header;
1340 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1341
1342 /* The symbolic header contains absolute file offsets and sizes to
1343 read. */
1344 #define READ(ptr, offset, count, size, type) \
1345 if (symhdr->count == 0) \
1346 debug->ptr = NULL; \
1347 else \
1348 { \
1349 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1350 debug->ptr = bfd_malloc (amt); \
1351 if (debug->ptr == NULL) \
1352 goto error_return; \
1353 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1354 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1355 goto error_return; \
1356 }
1357
1358 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1359 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1360 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1361 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1362 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1363 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1364 union aux_ext *);
1365 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1366 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1367 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1368 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1369 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1370 #undef READ
1371
1372 debug->fdr = NULL;
1373
1374 return TRUE;
1375
1376 error_return:
1377 if (ext_hdr != NULL)
1378 free (ext_hdr);
1379 if (debug->line != NULL)
1380 free (debug->line);
1381 if (debug->external_dnr != NULL)
1382 free (debug->external_dnr);
1383 if (debug->external_pdr != NULL)
1384 free (debug->external_pdr);
1385 if (debug->external_sym != NULL)
1386 free (debug->external_sym);
1387 if (debug->external_opt != NULL)
1388 free (debug->external_opt);
1389 if (debug->external_aux != NULL)
1390 free (debug->external_aux);
1391 if (debug->ss != NULL)
1392 free (debug->ss);
1393 if (debug->ssext != NULL)
1394 free (debug->ssext);
1395 if (debug->external_fdr != NULL)
1396 free (debug->external_fdr);
1397 if (debug->external_rfd != NULL)
1398 free (debug->external_rfd);
1399 if (debug->external_ext != NULL)
1400 free (debug->external_ext);
1401 return FALSE;
1402 }
1403 \f
1404 /* Swap RPDR (runtime procedure table entry) for output. */
1405
1406 static void
1407 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1408 {
1409 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1410 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1411 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1412 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1413 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1414 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1415
1416 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1417 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1418
1419 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1420 }
1421
1422 /* Create a runtime procedure table from the .mdebug section. */
1423
1424 static bfd_boolean
1425 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1426 struct bfd_link_info *info, asection *s,
1427 struct ecoff_debug_info *debug)
1428 {
1429 const struct ecoff_debug_swap *swap;
1430 HDRR *hdr = &debug->symbolic_header;
1431 RPDR *rpdr, *rp;
1432 struct rpdr_ext *erp;
1433 void *rtproc;
1434 struct pdr_ext *epdr;
1435 struct sym_ext *esym;
1436 char *ss, **sv;
1437 char *str;
1438 bfd_size_type size;
1439 bfd_size_type count;
1440 unsigned long sindex;
1441 unsigned long i;
1442 PDR pdr;
1443 SYMR sym;
1444 const char *no_name_func = _("static procedure (no name)");
1445
1446 epdr = NULL;
1447 rpdr = NULL;
1448 esym = NULL;
1449 ss = NULL;
1450 sv = NULL;
1451
1452 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1453
1454 sindex = strlen (no_name_func) + 1;
1455 count = hdr->ipdMax;
1456 if (count > 0)
1457 {
1458 size = swap->external_pdr_size;
1459
1460 epdr = bfd_malloc (size * count);
1461 if (epdr == NULL)
1462 goto error_return;
1463
1464 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1465 goto error_return;
1466
1467 size = sizeof (RPDR);
1468 rp = rpdr = bfd_malloc (size * count);
1469 if (rpdr == NULL)
1470 goto error_return;
1471
1472 size = sizeof (char *);
1473 sv = bfd_malloc (size * count);
1474 if (sv == NULL)
1475 goto error_return;
1476
1477 count = hdr->isymMax;
1478 size = swap->external_sym_size;
1479 esym = bfd_malloc (size * count);
1480 if (esym == NULL)
1481 goto error_return;
1482
1483 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1484 goto error_return;
1485
1486 count = hdr->issMax;
1487 ss = bfd_malloc (count);
1488 if (ss == NULL)
1489 goto error_return;
1490 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1491 goto error_return;
1492
1493 count = hdr->ipdMax;
1494 for (i = 0; i < (unsigned long) count; i++, rp++)
1495 {
1496 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1497 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1498 rp->adr = sym.value;
1499 rp->regmask = pdr.regmask;
1500 rp->regoffset = pdr.regoffset;
1501 rp->fregmask = pdr.fregmask;
1502 rp->fregoffset = pdr.fregoffset;
1503 rp->frameoffset = pdr.frameoffset;
1504 rp->framereg = pdr.framereg;
1505 rp->pcreg = pdr.pcreg;
1506 rp->irpss = sindex;
1507 sv[i] = ss + sym.iss;
1508 sindex += strlen (sv[i]) + 1;
1509 }
1510 }
1511
1512 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1513 size = BFD_ALIGN (size, 16);
1514 rtproc = bfd_alloc (abfd, size);
1515 if (rtproc == NULL)
1516 {
1517 mips_elf_hash_table (info)->procedure_count = 0;
1518 goto error_return;
1519 }
1520
1521 mips_elf_hash_table (info)->procedure_count = count + 2;
1522
1523 erp = rtproc;
1524 memset (erp, 0, sizeof (struct rpdr_ext));
1525 erp++;
1526 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1527 strcpy (str, no_name_func);
1528 str += strlen (no_name_func) + 1;
1529 for (i = 0; i < count; i++)
1530 {
1531 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1532 strcpy (str, sv[i]);
1533 str += strlen (sv[i]) + 1;
1534 }
1535 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1536
1537 /* Set the size and contents of .rtproc section. */
1538 s->size = size;
1539 s->contents = rtproc;
1540
1541 /* Skip this section later on (I don't think this currently
1542 matters, but someday it might). */
1543 s->map_head.link_order = NULL;
1544
1545 if (epdr != NULL)
1546 free (epdr);
1547 if (rpdr != NULL)
1548 free (rpdr);
1549 if (esym != NULL)
1550 free (esym);
1551 if (ss != NULL)
1552 free (ss);
1553 if (sv != NULL)
1554 free (sv);
1555
1556 return TRUE;
1557
1558 error_return:
1559 if (epdr != NULL)
1560 free (epdr);
1561 if (rpdr != NULL)
1562 free (rpdr);
1563 if (esym != NULL)
1564 free (esym);
1565 if (ss != NULL)
1566 free (ss);
1567 if (sv != NULL)
1568 free (sv);
1569 return FALSE;
1570 }
1571 \f
1572 /* We're going to create a stub for H. Create a symbol for the stub's
1573 value and size, to help make the disassembly easier to read. */
1574
1575 static bfd_boolean
1576 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1577 struct mips_elf_link_hash_entry *h,
1578 const char *prefix, asection *s, bfd_vma value,
1579 bfd_vma size)
1580 {
1581 bfd_boolean micromips_p = ELF_ST_IS_MICROMIPS (h->root.other);
1582 struct bfd_link_hash_entry *bh;
1583 struct elf_link_hash_entry *elfh;
1584 char *name;
1585 bfd_boolean res;
1586
1587 if (micromips_p)
1588 value |= 1;
1589
1590 /* Create a new symbol. */
1591 name = concat (prefix, h->root.root.root.string, NULL);
1592 bh = NULL;
1593 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1594 BSF_LOCAL, s, value, NULL,
1595 TRUE, FALSE, &bh);
1596 free (name);
1597 if (! res)
1598 return FALSE;
1599
1600 /* Make it a local function. */
1601 elfh = (struct elf_link_hash_entry *) bh;
1602 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1603 elfh->size = size;
1604 elfh->forced_local = 1;
1605 if (micromips_p)
1606 elfh->other = ELF_ST_SET_MICROMIPS (elfh->other);
1607 return TRUE;
1608 }
1609
1610 /* We're about to redefine H. Create a symbol to represent H's
1611 current value and size, to help make the disassembly easier
1612 to read. */
1613
1614 static bfd_boolean
1615 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1616 struct mips_elf_link_hash_entry *h,
1617 const char *prefix)
1618 {
1619 struct bfd_link_hash_entry *bh;
1620 struct elf_link_hash_entry *elfh;
1621 char *name;
1622 asection *s;
1623 bfd_vma value;
1624 bfd_boolean res;
1625
1626 /* Read the symbol's value. */
1627 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1628 || h->root.root.type == bfd_link_hash_defweak);
1629 s = h->root.root.u.def.section;
1630 value = h->root.root.u.def.value;
1631
1632 /* Create a new symbol. */
1633 name = concat (prefix, h->root.root.root.string, NULL);
1634 bh = NULL;
1635 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1636 BSF_LOCAL, s, value, NULL,
1637 TRUE, FALSE, &bh);
1638 free (name);
1639 if (! res)
1640 return FALSE;
1641
1642 /* Make it local and copy the other attributes from H. */
1643 elfh = (struct elf_link_hash_entry *) bh;
1644 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1645 elfh->other = h->root.other;
1646 elfh->size = h->root.size;
1647 elfh->forced_local = 1;
1648 return TRUE;
1649 }
1650
1651 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1652 function rather than to a hard-float stub. */
1653
1654 static bfd_boolean
1655 section_allows_mips16_refs_p (asection *section)
1656 {
1657 const char *name;
1658
1659 name = bfd_get_section_name (section->owner, section);
1660 return (FN_STUB_P (name)
1661 || CALL_STUB_P (name)
1662 || CALL_FP_STUB_P (name)
1663 || strcmp (name, ".pdr") == 0);
1664 }
1665
1666 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1667 stub section of some kind. Return the R_SYMNDX of the target
1668 function, or 0 if we can't decide which function that is. */
1669
1670 static unsigned long
1671 mips16_stub_symndx (const struct elf_backend_data *bed,
1672 asection *sec ATTRIBUTE_UNUSED,
1673 const Elf_Internal_Rela *relocs,
1674 const Elf_Internal_Rela *relend)
1675 {
1676 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1677 const Elf_Internal_Rela *rel;
1678
1679 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1680 one in a compound relocation. */
1681 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1682 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1683 return ELF_R_SYM (sec->owner, rel->r_info);
1684
1685 /* Otherwise trust the first relocation, whatever its kind. This is
1686 the traditional behavior. */
1687 if (relocs < relend)
1688 return ELF_R_SYM (sec->owner, relocs->r_info);
1689
1690 return 0;
1691 }
1692
1693 /* Check the mips16 stubs for a particular symbol, and see if we can
1694 discard them. */
1695
1696 static void
1697 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1698 struct mips_elf_link_hash_entry *h)
1699 {
1700 /* Dynamic symbols must use the standard call interface, in case other
1701 objects try to call them. */
1702 if (h->fn_stub != NULL
1703 && h->root.dynindx != -1)
1704 {
1705 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1706 h->need_fn_stub = TRUE;
1707 }
1708
1709 if (h->fn_stub != NULL
1710 && ! h->need_fn_stub)
1711 {
1712 /* We don't need the fn_stub; the only references to this symbol
1713 are 16 bit calls. Clobber the size to 0 to prevent it from
1714 being included in the link. */
1715 h->fn_stub->size = 0;
1716 h->fn_stub->flags &= ~SEC_RELOC;
1717 h->fn_stub->reloc_count = 0;
1718 h->fn_stub->flags |= SEC_EXCLUDE;
1719 h->fn_stub->output_section = bfd_abs_section_ptr;
1720 }
1721
1722 if (h->call_stub != NULL
1723 && ELF_ST_IS_MIPS16 (h->root.other))
1724 {
1725 /* We don't need the call_stub; this is a 16 bit function, so
1726 calls from other 16 bit functions are OK. Clobber the size
1727 to 0 to prevent it from being included in the link. */
1728 h->call_stub->size = 0;
1729 h->call_stub->flags &= ~SEC_RELOC;
1730 h->call_stub->reloc_count = 0;
1731 h->call_stub->flags |= SEC_EXCLUDE;
1732 h->call_stub->output_section = bfd_abs_section_ptr;
1733 }
1734
1735 if (h->call_fp_stub != NULL
1736 && ELF_ST_IS_MIPS16 (h->root.other))
1737 {
1738 /* We don't need the call_stub; this is a 16 bit function, so
1739 calls from other 16 bit functions are OK. Clobber the size
1740 to 0 to prevent it from being included in the link. */
1741 h->call_fp_stub->size = 0;
1742 h->call_fp_stub->flags &= ~SEC_RELOC;
1743 h->call_fp_stub->reloc_count = 0;
1744 h->call_fp_stub->flags |= SEC_EXCLUDE;
1745 h->call_fp_stub->output_section = bfd_abs_section_ptr;
1746 }
1747 }
1748
1749 /* Hashtable callbacks for mips_elf_la25_stubs. */
1750
1751 static hashval_t
1752 mips_elf_la25_stub_hash (const void *entry_)
1753 {
1754 const struct mips_elf_la25_stub *entry;
1755
1756 entry = (struct mips_elf_la25_stub *) entry_;
1757 return entry->h->root.root.u.def.section->id
1758 + entry->h->root.root.u.def.value;
1759 }
1760
1761 static int
1762 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1763 {
1764 const struct mips_elf_la25_stub *entry1, *entry2;
1765
1766 entry1 = (struct mips_elf_la25_stub *) entry1_;
1767 entry2 = (struct mips_elf_la25_stub *) entry2_;
1768 return ((entry1->h->root.root.u.def.section
1769 == entry2->h->root.root.u.def.section)
1770 && (entry1->h->root.root.u.def.value
1771 == entry2->h->root.root.u.def.value));
1772 }
1773
1774 /* Called by the linker to set up the la25 stub-creation code. FN is
1775 the linker's implementation of add_stub_function. Return true on
1776 success. */
1777
1778 bfd_boolean
1779 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1780 asection *(*fn) (const char *, asection *,
1781 asection *))
1782 {
1783 struct mips_elf_link_hash_table *htab;
1784
1785 htab = mips_elf_hash_table (info);
1786 if (htab == NULL)
1787 return FALSE;
1788
1789 htab->add_stub_section = fn;
1790 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1791 mips_elf_la25_stub_eq, NULL);
1792 if (htab->la25_stubs == NULL)
1793 return FALSE;
1794
1795 return TRUE;
1796 }
1797
1798 /* Return true if H is a locally-defined PIC function, in the sense
1799 that it or its fn_stub might need $25 to be valid on entry.
1800 Note that MIPS16 functions set up $gp using PC-relative instructions,
1801 so they themselves never need $25 to be valid. Only non-MIPS16
1802 entry points are of interest here. */
1803
1804 static bfd_boolean
1805 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1806 {
1807 return ((h->root.root.type == bfd_link_hash_defined
1808 || h->root.root.type == bfd_link_hash_defweak)
1809 && h->root.def_regular
1810 && !bfd_is_abs_section (h->root.root.u.def.section)
1811 && !bfd_is_und_section (h->root.root.u.def.section)
1812 && (!ELF_ST_IS_MIPS16 (h->root.other)
1813 || (h->fn_stub && h->need_fn_stub))
1814 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1815 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1816 }
1817
1818 /* Set *SEC to the input section that contains the target of STUB.
1819 Return the offset of the target from the start of that section. */
1820
1821 static bfd_vma
1822 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1823 asection **sec)
1824 {
1825 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1826 {
1827 BFD_ASSERT (stub->h->need_fn_stub);
1828 *sec = stub->h->fn_stub;
1829 return 0;
1830 }
1831 else
1832 {
1833 *sec = stub->h->root.root.u.def.section;
1834 return stub->h->root.root.u.def.value;
1835 }
1836 }
1837
1838 /* STUB describes an la25 stub that we have decided to implement
1839 by inserting an LUI/ADDIU pair before the target function.
1840 Create the section and redirect the function symbol to it. */
1841
1842 static bfd_boolean
1843 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1844 struct bfd_link_info *info)
1845 {
1846 struct mips_elf_link_hash_table *htab;
1847 char *name;
1848 asection *s, *input_section;
1849 unsigned int align;
1850
1851 htab = mips_elf_hash_table (info);
1852 if (htab == NULL)
1853 return FALSE;
1854
1855 /* Create a unique name for the new section. */
1856 name = bfd_malloc (11 + sizeof (".text.stub."));
1857 if (name == NULL)
1858 return FALSE;
1859 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1860
1861 /* Create the section. */
1862 mips_elf_get_la25_target (stub, &input_section);
1863 s = htab->add_stub_section (name, input_section,
1864 input_section->output_section);
1865 if (s == NULL)
1866 return FALSE;
1867
1868 /* Make sure that any padding goes before the stub. */
1869 align = input_section->alignment_power;
1870 if (!bfd_set_section_alignment (s->owner, s, align))
1871 return FALSE;
1872 if (align > 3)
1873 s->size = (1 << align) - 8;
1874
1875 /* Create a symbol for the stub. */
1876 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1877 stub->stub_section = s;
1878 stub->offset = s->size;
1879
1880 /* Allocate room for it. */
1881 s->size += 8;
1882 return TRUE;
1883 }
1884
1885 /* STUB describes an la25 stub that we have decided to implement
1886 with a separate trampoline. Allocate room for it and redirect
1887 the function symbol to it. */
1888
1889 static bfd_boolean
1890 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1891 struct bfd_link_info *info)
1892 {
1893 struct mips_elf_link_hash_table *htab;
1894 asection *s;
1895
1896 htab = mips_elf_hash_table (info);
1897 if (htab == NULL)
1898 return FALSE;
1899
1900 /* Create a trampoline section, if we haven't already. */
1901 s = htab->strampoline;
1902 if (s == NULL)
1903 {
1904 asection *input_section = stub->h->root.root.u.def.section;
1905 s = htab->add_stub_section (".text", NULL,
1906 input_section->output_section);
1907 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1908 return FALSE;
1909 htab->strampoline = s;
1910 }
1911
1912 /* Create a symbol for the stub. */
1913 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1914 stub->stub_section = s;
1915 stub->offset = s->size;
1916
1917 /* Allocate room for it. */
1918 s->size += 16;
1919 return TRUE;
1920 }
1921
1922 /* H describes a symbol that needs an la25 stub. Make sure that an
1923 appropriate stub exists and point H at it. */
1924
1925 static bfd_boolean
1926 mips_elf_add_la25_stub (struct bfd_link_info *info,
1927 struct mips_elf_link_hash_entry *h)
1928 {
1929 struct mips_elf_link_hash_table *htab;
1930 struct mips_elf_la25_stub search, *stub;
1931 bfd_boolean use_trampoline_p;
1932 asection *s;
1933 bfd_vma value;
1934 void **slot;
1935
1936 /* Describe the stub we want. */
1937 search.stub_section = NULL;
1938 search.offset = 0;
1939 search.h = h;
1940
1941 /* See if we've already created an equivalent stub. */
1942 htab = mips_elf_hash_table (info);
1943 if (htab == NULL)
1944 return FALSE;
1945
1946 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1947 if (slot == NULL)
1948 return FALSE;
1949
1950 stub = (struct mips_elf_la25_stub *) *slot;
1951 if (stub != NULL)
1952 {
1953 /* We can reuse the existing stub. */
1954 h->la25_stub = stub;
1955 return TRUE;
1956 }
1957
1958 /* Create a permanent copy of ENTRY and add it to the hash table. */
1959 stub = bfd_malloc (sizeof (search));
1960 if (stub == NULL)
1961 return FALSE;
1962 *stub = search;
1963 *slot = stub;
1964
1965 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1966 of the section and if we would need no more than 2 nops. */
1967 value = mips_elf_get_la25_target (stub, &s);
1968 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
1969 value &= ~1;
1970 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1971
1972 h->la25_stub = stub;
1973 return (use_trampoline_p
1974 ? mips_elf_add_la25_trampoline (stub, info)
1975 : mips_elf_add_la25_intro (stub, info));
1976 }
1977
1978 /* A mips_elf_link_hash_traverse callback that is called before sizing
1979 sections. DATA points to a mips_htab_traverse_info structure. */
1980
1981 static bfd_boolean
1982 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1983 {
1984 struct mips_htab_traverse_info *hti;
1985
1986 hti = (struct mips_htab_traverse_info *) data;
1987 if (!bfd_link_relocatable (hti->info))
1988 mips_elf_check_mips16_stubs (hti->info, h);
1989
1990 if (mips_elf_local_pic_function_p (h))
1991 {
1992 /* PR 12845: If H is in a section that has been garbage
1993 collected it will have its output section set to *ABS*. */
1994 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1995 return TRUE;
1996
1997 /* H is a function that might need $25 to be valid on entry.
1998 If we're creating a non-PIC relocatable object, mark H as
1999 being PIC. If we're creating a non-relocatable object with
2000 non-PIC branches and jumps to H, make sure that H has an la25
2001 stub. */
2002 if (bfd_link_relocatable (hti->info))
2003 {
2004 if (!PIC_OBJECT_P (hti->output_bfd))
2005 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2006 }
2007 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2008 {
2009 hti->error = TRUE;
2010 return FALSE;
2011 }
2012 }
2013 return TRUE;
2014 }
2015 \f
2016 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2017 Most mips16 instructions are 16 bits, but these instructions
2018 are 32 bits.
2019
2020 The format of these instructions is:
2021
2022 +--------------+--------------------------------+
2023 | JALX | X| Imm 20:16 | Imm 25:21 |
2024 +--------------+--------------------------------+
2025 | Immediate 15:0 |
2026 +-----------------------------------------------+
2027
2028 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2029 Note that the immediate value in the first word is swapped.
2030
2031 When producing a relocatable object file, R_MIPS16_26 is
2032 handled mostly like R_MIPS_26. In particular, the addend is
2033 stored as a straight 26-bit value in a 32-bit instruction.
2034 (gas makes life simpler for itself by never adjusting a
2035 R_MIPS16_26 reloc to be against a section, so the addend is
2036 always zero). However, the 32 bit instruction is stored as 2
2037 16-bit values, rather than a single 32-bit value. In a
2038 big-endian file, the result is the same; in a little-endian
2039 file, the two 16-bit halves of the 32 bit value are swapped.
2040 This is so that a disassembler can recognize the jal
2041 instruction.
2042
2043 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2044 instruction stored as two 16-bit values. The addend A is the
2045 contents of the targ26 field. The calculation is the same as
2046 R_MIPS_26. When storing the calculated value, reorder the
2047 immediate value as shown above, and don't forget to store the
2048 value as two 16-bit values.
2049
2050 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2051 defined as
2052
2053 big-endian:
2054 +--------+----------------------+
2055 | | |
2056 | | targ26-16 |
2057 |31 26|25 0|
2058 +--------+----------------------+
2059
2060 little-endian:
2061 +----------+------+-------------+
2062 | | | |
2063 | sub1 | | sub2 |
2064 |0 9|10 15|16 31|
2065 +----------+--------------------+
2066 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2067 ((sub1 << 16) | sub2)).
2068
2069 When producing a relocatable object file, the calculation is
2070 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2071 When producing a fully linked file, the calculation is
2072 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2073 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2074
2075 The table below lists the other MIPS16 instruction relocations.
2076 Each one is calculated in the same way as the non-MIPS16 relocation
2077 given on the right, but using the extended MIPS16 layout of 16-bit
2078 immediate fields:
2079
2080 R_MIPS16_GPREL R_MIPS_GPREL16
2081 R_MIPS16_GOT16 R_MIPS_GOT16
2082 R_MIPS16_CALL16 R_MIPS_CALL16
2083 R_MIPS16_HI16 R_MIPS_HI16
2084 R_MIPS16_LO16 R_MIPS_LO16
2085
2086 A typical instruction will have a format like this:
2087
2088 +--------------+--------------------------------+
2089 | EXTEND | Imm 10:5 | Imm 15:11 |
2090 +--------------+--------------------------------+
2091 | Major | rx | ry | Imm 4:0 |
2092 +--------------+--------------------------------+
2093
2094 EXTEND is the five bit value 11110. Major is the instruction
2095 opcode.
2096
2097 All we need to do here is shuffle the bits appropriately.
2098 As above, the two 16-bit halves must be swapped on a
2099 little-endian system.
2100
2101 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2102 relocatable field is shifted by 1 rather than 2 and the same bit
2103 shuffling is done as with the relocations above. */
2104
2105 static inline bfd_boolean
2106 mips16_reloc_p (int r_type)
2107 {
2108 switch (r_type)
2109 {
2110 case R_MIPS16_26:
2111 case R_MIPS16_GPREL:
2112 case R_MIPS16_GOT16:
2113 case R_MIPS16_CALL16:
2114 case R_MIPS16_HI16:
2115 case R_MIPS16_LO16:
2116 case R_MIPS16_TLS_GD:
2117 case R_MIPS16_TLS_LDM:
2118 case R_MIPS16_TLS_DTPREL_HI16:
2119 case R_MIPS16_TLS_DTPREL_LO16:
2120 case R_MIPS16_TLS_GOTTPREL:
2121 case R_MIPS16_TLS_TPREL_HI16:
2122 case R_MIPS16_TLS_TPREL_LO16:
2123 case R_MIPS16_PC16_S1:
2124 return TRUE;
2125
2126 default:
2127 return FALSE;
2128 }
2129 }
2130
2131 /* Check if a microMIPS reloc. */
2132
2133 static inline bfd_boolean
2134 micromips_reloc_p (unsigned int r_type)
2135 {
2136 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2137 }
2138
2139 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2140 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2141 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2142
2143 static inline bfd_boolean
2144 micromips_reloc_shuffle_p (unsigned int r_type)
2145 {
2146 return (micromips_reloc_p (r_type)
2147 && r_type != R_MICROMIPS_PC7_S1
2148 && r_type != R_MICROMIPS_PC10_S1);
2149 }
2150
2151 static inline bfd_boolean
2152 got16_reloc_p (int r_type)
2153 {
2154 return (r_type == R_MIPS_GOT16
2155 || r_type == R_MIPS16_GOT16
2156 || r_type == R_MICROMIPS_GOT16);
2157 }
2158
2159 static inline bfd_boolean
2160 call16_reloc_p (int r_type)
2161 {
2162 return (r_type == R_MIPS_CALL16
2163 || r_type == R_MIPS16_CALL16
2164 || r_type == R_MICROMIPS_CALL16);
2165 }
2166
2167 static inline bfd_boolean
2168 got_disp_reloc_p (unsigned int r_type)
2169 {
2170 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2171 }
2172
2173 static inline bfd_boolean
2174 got_page_reloc_p (unsigned int r_type)
2175 {
2176 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2177 }
2178
2179 static inline bfd_boolean
2180 got_lo16_reloc_p (unsigned int r_type)
2181 {
2182 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2183 }
2184
2185 static inline bfd_boolean
2186 call_hi16_reloc_p (unsigned int r_type)
2187 {
2188 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2189 }
2190
2191 static inline bfd_boolean
2192 call_lo16_reloc_p (unsigned int r_type)
2193 {
2194 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2195 }
2196
2197 static inline bfd_boolean
2198 hi16_reloc_p (int r_type)
2199 {
2200 return (r_type == R_MIPS_HI16
2201 || r_type == R_MIPS16_HI16
2202 || r_type == R_MICROMIPS_HI16
2203 || r_type == R_MIPS_PCHI16);
2204 }
2205
2206 static inline bfd_boolean
2207 lo16_reloc_p (int r_type)
2208 {
2209 return (r_type == R_MIPS_LO16
2210 || r_type == R_MIPS16_LO16
2211 || r_type == R_MICROMIPS_LO16
2212 || r_type == R_MIPS_PCLO16);
2213 }
2214
2215 static inline bfd_boolean
2216 mips16_call_reloc_p (int r_type)
2217 {
2218 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2219 }
2220
2221 static inline bfd_boolean
2222 jal_reloc_p (int r_type)
2223 {
2224 return (r_type == R_MIPS_26
2225 || r_type == R_MIPS16_26
2226 || r_type == R_MICROMIPS_26_S1);
2227 }
2228
2229 static inline bfd_boolean
2230 b_reloc_p (int r_type)
2231 {
2232 return (r_type == R_MIPS_PC26_S2
2233 || r_type == R_MIPS_PC21_S2
2234 || r_type == R_MIPS_PC16
2235 || r_type == R_MIPS_GNU_REL16_S2
2236 || r_type == R_MIPS16_PC16_S1
2237 || r_type == R_MICROMIPS_PC16_S1
2238 || r_type == R_MICROMIPS_PC10_S1
2239 || r_type == R_MICROMIPS_PC7_S1);
2240 }
2241
2242 static inline bfd_boolean
2243 aligned_pcrel_reloc_p (int r_type)
2244 {
2245 return (r_type == R_MIPS_PC18_S3
2246 || r_type == R_MIPS_PC19_S2);
2247 }
2248
2249 static inline bfd_boolean
2250 branch_reloc_p (int r_type)
2251 {
2252 return (r_type == R_MIPS_26
2253 || r_type == R_MIPS_PC26_S2
2254 || r_type == R_MIPS_PC21_S2
2255 || r_type == R_MIPS_PC16
2256 || r_type == R_MIPS_GNU_REL16_S2);
2257 }
2258
2259 static inline bfd_boolean
2260 mips16_branch_reloc_p (int r_type)
2261 {
2262 return (r_type == R_MIPS16_26
2263 || r_type == R_MIPS16_PC16_S1);
2264 }
2265
2266 static inline bfd_boolean
2267 micromips_branch_reloc_p (int r_type)
2268 {
2269 return (r_type == R_MICROMIPS_26_S1
2270 || r_type == R_MICROMIPS_PC16_S1
2271 || r_type == R_MICROMIPS_PC10_S1
2272 || r_type == R_MICROMIPS_PC7_S1);
2273 }
2274
2275 static inline bfd_boolean
2276 tls_gd_reloc_p (unsigned int r_type)
2277 {
2278 return (r_type == R_MIPS_TLS_GD
2279 || r_type == R_MIPS16_TLS_GD
2280 || r_type == R_MICROMIPS_TLS_GD);
2281 }
2282
2283 static inline bfd_boolean
2284 tls_ldm_reloc_p (unsigned int r_type)
2285 {
2286 return (r_type == R_MIPS_TLS_LDM
2287 || r_type == R_MIPS16_TLS_LDM
2288 || r_type == R_MICROMIPS_TLS_LDM);
2289 }
2290
2291 static inline bfd_boolean
2292 tls_gottprel_reloc_p (unsigned int r_type)
2293 {
2294 return (r_type == R_MIPS_TLS_GOTTPREL
2295 || r_type == R_MIPS16_TLS_GOTTPREL
2296 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2297 }
2298
2299 void
2300 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2301 bfd_boolean jal_shuffle, bfd_byte *data)
2302 {
2303 bfd_vma first, second, val;
2304
2305 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2306 return;
2307
2308 /* Pick up the first and second halfwords of the instruction. */
2309 first = bfd_get_16 (abfd, data);
2310 second = bfd_get_16 (abfd, data + 2);
2311 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2312 val = first << 16 | second;
2313 else if (r_type != R_MIPS16_26)
2314 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2315 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2316 else
2317 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2318 | ((first & 0x1f) << 21) | second);
2319 bfd_put_32 (abfd, val, data);
2320 }
2321
2322 void
2323 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2324 bfd_boolean jal_shuffle, bfd_byte *data)
2325 {
2326 bfd_vma first, second, val;
2327
2328 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2329 return;
2330
2331 val = bfd_get_32 (abfd, data);
2332 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2333 {
2334 second = val & 0xffff;
2335 first = val >> 16;
2336 }
2337 else if (r_type != R_MIPS16_26)
2338 {
2339 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2340 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2341 }
2342 else
2343 {
2344 second = val & 0xffff;
2345 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2346 | ((val >> 21) & 0x1f);
2347 }
2348 bfd_put_16 (abfd, second, data + 2);
2349 bfd_put_16 (abfd, first, data);
2350 }
2351
2352 bfd_reloc_status_type
2353 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2354 arelent *reloc_entry, asection *input_section,
2355 bfd_boolean relocatable, void *data, bfd_vma gp)
2356 {
2357 bfd_vma relocation;
2358 bfd_signed_vma val;
2359 bfd_reloc_status_type status;
2360
2361 if (bfd_is_com_section (symbol->section))
2362 relocation = 0;
2363 else
2364 relocation = symbol->value;
2365
2366 relocation += symbol->section->output_section->vma;
2367 relocation += symbol->section->output_offset;
2368
2369 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2370 return bfd_reloc_outofrange;
2371
2372 /* Set val to the offset into the section or symbol. */
2373 val = reloc_entry->addend;
2374
2375 _bfd_mips_elf_sign_extend (val, 16);
2376
2377 /* Adjust val for the final section location and GP value. If we
2378 are producing relocatable output, we don't want to do this for
2379 an external symbol. */
2380 if (! relocatable
2381 || (symbol->flags & BSF_SECTION_SYM) != 0)
2382 val += relocation - gp;
2383
2384 if (reloc_entry->howto->partial_inplace)
2385 {
2386 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2387 (bfd_byte *) data
2388 + reloc_entry->address);
2389 if (status != bfd_reloc_ok)
2390 return status;
2391 }
2392 else
2393 reloc_entry->addend = val;
2394
2395 if (relocatable)
2396 reloc_entry->address += input_section->output_offset;
2397
2398 return bfd_reloc_ok;
2399 }
2400
2401 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2402 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2403 that contains the relocation field and DATA points to the start of
2404 INPUT_SECTION. */
2405
2406 struct mips_hi16
2407 {
2408 struct mips_hi16 *next;
2409 bfd_byte *data;
2410 asection *input_section;
2411 arelent rel;
2412 };
2413
2414 /* FIXME: This should not be a static variable. */
2415
2416 static struct mips_hi16 *mips_hi16_list;
2417
2418 /* A howto special_function for REL *HI16 relocations. We can only
2419 calculate the correct value once we've seen the partnering
2420 *LO16 relocation, so just save the information for later.
2421
2422 The ABI requires that the *LO16 immediately follow the *HI16.
2423 However, as a GNU extension, we permit an arbitrary number of
2424 *HI16s to be associated with a single *LO16. This significantly
2425 simplies the relocation handling in gcc. */
2426
2427 bfd_reloc_status_type
2428 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2429 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2430 asection *input_section, bfd *output_bfd,
2431 char **error_message ATTRIBUTE_UNUSED)
2432 {
2433 struct mips_hi16 *n;
2434
2435 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2436 return bfd_reloc_outofrange;
2437
2438 n = bfd_malloc (sizeof *n);
2439 if (n == NULL)
2440 return bfd_reloc_outofrange;
2441
2442 n->next = mips_hi16_list;
2443 n->data = data;
2444 n->input_section = input_section;
2445 n->rel = *reloc_entry;
2446 mips_hi16_list = n;
2447
2448 if (output_bfd != NULL)
2449 reloc_entry->address += input_section->output_offset;
2450
2451 return bfd_reloc_ok;
2452 }
2453
2454 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2455 like any other 16-bit relocation when applied to global symbols, but is
2456 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2457
2458 bfd_reloc_status_type
2459 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2460 void *data, asection *input_section,
2461 bfd *output_bfd, char **error_message)
2462 {
2463 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2464 || bfd_is_und_section (bfd_get_section (symbol))
2465 || bfd_is_com_section (bfd_get_section (symbol)))
2466 /* The relocation is against a global symbol. */
2467 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2468 input_section, output_bfd,
2469 error_message);
2470
2471 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2472 input_section, output_bfd, error_message);
2473 }
2474
2475 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2476 is a straightforward 16 bit inplace relocation, but we must deal with
2477 any partnering high-part relocations as well. */
2478
2479 bfd_reloc_status_type
2480 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2481 void *data, asection *input_section,
2482 bfd *output_bfd, char **error_message)
2483 {
2484 bfd_vma vallo;
2485 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2486
2487 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2488 return bfd_reloc_outofrange;
2489
2490 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2491 location);
2492 vallo = bfd_get_32 (abfd, location);
2493 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2494 location);
2495
2496 while (mips_hi16_list != NULL)
2497 {
2498 bfd_reloc_status_type ret;
2499 struct mips_hi16 *hi;
2500
2501 hi = mips_hi16_list;
2502
2503 /* R_MIPS*_GOT16 relocations are something of a special case. We
2504 want to install the addend in the same way as for a R_MIPS*_HI16
2505 relocation (with a rightshift of 16). However, since GOT16
2506 relocations can also be used with global symbols, their howto
2507 has a rightshift of 0. */
2508 if (hi->rel.howto->type == R_MIPS_GOT16)
2509 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2510 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2511 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2512 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2513 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2514
2515 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2516 carry or borrow will induce a change of +1 or -1 in the high part. */
2517 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2518
2519 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2520 hi->input_section, output_bfd,
2521 error_message);
2522 if (ret != bfd_reloc_ok)
2523 return ret;
2524
2525 mips_hi16_list = hi->next;
2526 free (hi);
2527 }
2528
2529 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2530 input_section, output_bfd,
2531 error_message);
2532 }
2533
2534 /* A generic howto special_function. This calculates and installs the
2535 relocation itself, thus avoiding the oft-discussed problems in
2536 bfd_perform_relocation and bfd_install_relocation. */
2537
2538 bfd_reloc_status_type
2539 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2540 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2541 asection *input_section, bfd *output_bfd,
2542 char **error_message ATTRIBUTE_UNUSED)
2543 {
2544 bfd_signed_vma val;
2545 bfd_reloc_status_type status;
2546 bfd_boolean relocatable;
2547
2548 relocatable = (output_bfd != NULL);
2549
2550 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2551 return bfd_reloc_outofrange;
2552
2553 /* Build up the field adjustment in VAL. */
2554 val = 0;
2555 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2556 {
2557 /* Either we're calculating the final field value or we have a
2558 relocation against a section symbol. Add in the section's
2559 offset or address. */
2560 val += symbol->section->output_section->vma;
2561 val += symbol->section->output_offset;
2562 }
2563
2564 if (!relocatable)
2565 {
2566 /* We're calculating the final field value. Add in the symbol's value
2567 and, if pc-relative, subtract the address of the field itself. */
2568 val += symbol->value;
2569 if (reloc_entry->howto->pc_relative)
2570 {
2571 val -= input_section->output_section->vma;
2572 val -= input_section->output_offset;
2573 val -= reloc_entry->address;
2574 }
2575 }
2576
2577 /* VAL is now the final adjustment. If we're keeping this relocation
2578 in the output file, and if the relocation uses a separate addend,
2579 we just need to add VAL to that addend. Otherwise we need to add
2580 VAL to the relocation field itself. */
2581 if (relocatable && !reloc_entry->howto->partial_inplace)
2582 reloc_entry->addend += val;
2583 else
2584 {
2585 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2586
2587 /* Add in the separate addend, if any. */
2588 val += reloc_entry->addend;
2589
2590 /* Add VAL to the relocation field. */
2591 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2592 location);
2593 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2594 location);
2595 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2596 location);
2597
2598 if (status != bfd_reloc_ok)
2599 return status;
2600 }
2601
2602 if (relocatable)
2603 reloc_entry->address += input_section->output_offset;
2604
2605 return bfd_reloc_ok;
2606 }
2607 \f
2608 /* Swap an entry in a .gptab section. Note that these routines rely
2609 on the equivalence of the two elements of the union. */
2610
2611 static void
2612 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2613 Elf32_gptab *in)
2614 {
2615 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2616 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2617 }
2618
2619 static void
2620 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2621 Elf32_External_gptab *ex)
2622 {
2623 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2624 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2625 }
2626
2627 static void
2628 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2629 Elf32_External_compact_rel *ex)
2630 {
2631 H_PUT_32 (abfd, in->id1, ex->id1);
2632 H_PUT_32 (abfd, in->num, ex->num);
2633 H_PUT_32 (abfd, in->id2, ex->id2);
2634 H_PUT_32 (abfd, in->offset, ex->offset);
2635 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2636 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2637 }
2638
2639 static void
2640 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2641 Elf32_External_crinfo *ex)
2642 {
2643 unsigned long l;
2644
2645 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2646 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2647 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2648 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2649 H_PUT_32 (abfd, l, ex->info);
2650 H_PUT_32 (abfd, in->konst, ex->konst);
2651 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2652 }
2653 \f
2654 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2655 routines swap this structure in and out. They are used outside of
2656 BFD, so they are globally visible. */
2657
2658 void
2659 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2660 Elf32_RegInfo *in)
2661 {
2662 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2663 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2664 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2665 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2666 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2667 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2668 }
2669
2670 void
2671 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2672 Elf32_External_RegInfo *ex)
2673 {
2674 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2675 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2676 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2677 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2678 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2679 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2680 }
2681
2682 /* In the 64 bit ABI, the .MIPS.options section holds register
2683 information in an Elf64_Reginfo structure. These routines swap
2684 them in and out. They are globally visible because they are used
2685 outside of BFD. These routines are here so that gas can call them
2686 without worrying about whether the 64 bit ABI has been included. */
2687
2688 void
2689 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2690 Elf64_Internal_RegInfo *in)
2691 {
2692 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2693 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2694 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2695 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2696 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2697 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2698 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2699 }
2700
2701 void
2702 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2703 Elf64_External_RegInfo *ex)
2704 {
2705 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2706 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2707 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2708 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2709 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2710 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2711 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2712 }
2713
2714 /* Swap in an options header. */
2715
2716 void
2717 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2718 Elf_Internal_Options *in)
2719 {
2720 in->kind = H_GET_8 (abfd, ex->kind);
2721 in->size = H_GET_8 (abfd, ex->size);
2722 in->section = H_GET_16 (abfd, ex->section);
2723 in->info = H_GET_32 (abfd, ex->info);
2724 }
2725
2726 /* Swap out an options header. */
2727
2728 void
2729 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2730 Elf_External_Options *ex)
2731 {
2732 H_PUT_8 (abfd, in->kind, ex->kind);
2733 H_PUT_8 (abfd, in->size, ex->size);
2734 H_PUT_16 (abfd, in->section, ex->section);
2735 H_PUT_32 (abfd, in->info, ex->info);
2736 }
2737
2738 /* Swap in an abiflags structure. */
2739
2740 void
2741 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2742 const Elf_External_ABIFlags_v0 *ex,
2743 Elf_Internal_ABIFlags_v0 *in)
2744 {
2745 in->version = H_GET_16 (abfd, ex->version);
2746 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2747 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2748 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2749 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2750 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2751 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2752 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2753 in->ases = H_GET_32 (abfd, ex->ases);
2754 in->flags1 = H_GET_32 (abfd, ex->flags1);
2755 in->flags2 = H_GET_32 (abfd, ex->flags2);
2756 }
2757
2758 /* Swap out an abiflags structure. */
2759
2760 void
2761 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2762 const Elf_Internal_ABIFlags_v0 *in,
2763 Elf_External_ABIFlags_v0 *ex)
2764 {
2765 H_PUT_16 (abfd, in->version, ex->version);
2766 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2767 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2768 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2769 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2770 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2771 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2772 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2773 H_PUT_32 (abfd, in->ases, ex->ases);
2774 H_PUT_32 (abfd, in->flags1, ex->flags1);
2775 H_PUT_32 (abfd, in->flags2, ex->flags2);
2776 }
2777 \f
2778 /* This function is called via qsort() to sort the dynamic relocation
2779 entries by increasing r_symndx value. */
2780
2781 static int
2782 sort_dynamic_relocs (const void *arg1, const void *arg2)
2783 {
2784 Elf_Internal_Rela int_reloc1;
2785 Elf_Internal_Rela int_reloc2;
2786 int diff;
2787
2788 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2789 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2790
2791 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2792 if (diff != 0)
2793 return diff;
2794
2795 if (int_reloc1.r_offset < int_reloc2.r_offset)
2796 return -1;
2797 if (int_reloc1.r_offset > int_reloc2.r_offset)
2798 return 1;
2799 return 0;
2800 }
2801
2802 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2803
2804 static int
2805 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2806 const void *arg2 ATTRIBUTE_UNUSED)
2807 {
2808 #ifdef BFD64
2809 Elf_Internal_Rela int_reloc1[3];
2810 Elf_Internal_Rela int_reloc2[3];
2811
2812 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2813 (reldyn_sorting_bfd, arg1, int_reloc1);
2814 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2815 (reldyn_sorting_bfd, arg2, int_reloc2);
2816
2817 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2818 return -1;
2819 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2820 return 1;
2821
2822 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2823 return -1;
2824 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2825 return 1;
2826 return 0;
2827 #else
2828 abort ();
2829 #endif
2830 }
2831
2832
2833 /* This routine is used to write out ECOFF debugging external symbol
2834 information. It is called via mips_elf_link_hash_traverse. The
2835 ECOFF external symbol information must match the ELF external
2836 symbol information. Unfortunately, at this point we don't know
2837 whether a symbol is required by reloc information, so the two
2838 tables may wind up being different. We must sort out the external
2839 symbol information before we can set the final size of the .mdebug
2840 section, and we must set the size of the .mdebug section before we
2841 can relocate any sections, and we can't know which symbols are
2842 required by relocation until we relocate the sections.
2843 Fortunately, it is relatively unlikely that any symbol will be
2844 stripped but required by a reloc. In particular, it can not happen
2845 when generating a final executable. */
2846
2847 static bfd_boolean
2848 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2849 {
2850 struct extsym_info *einfo = data;
2851 bfd_boolean strip;
2852 asection *sec, *output_section;
2853
2854 if (h->root.indx == -2)
2855 strip = FALSE;
2856 else if ((h->root.def_dynamic
2857 || h->root.ref_dynamic
2858 || h->root.type == bfd_link_hash_new)
2859 && !h->root.def_regular
2860 && !h->root.ref_regular)
2861 strip = TRUE;
2862 else if (einfo->info->strip == strip_all
2863 || (einfo->info->strip == strip_some
2864 && bfd_hash_lookup (einfo->info->keep_hash,
2865 h->root.root.root.string,
2866 FALSE, FALSE) == NULL))
2867 strip = TRUE;
2868 else
2869 strip = FALSE;
2870
2871 if (strip)
2872 return TRUE;
2873
2874 if (h->esym.ifd == -2)
2875 {
2876 h->esym.jmptbl = 0;
2877 h->esym.cobol_main = 0;
2878 h->esym.weakext = 0;
2879 h->esym.reserved = 0;
2880 h->esym.ifd = ifdNil;
2881 h->esym.asym.value = 0;
2882 h->esym.asym.st = stGlobal;
2883
2884 if (h->root.root.type == bfd_link_hash_undefined
2885 || h->root.root.type == bfd_link_hash_undefweak)
2886 {
2887 const char *name;
2888
2889 /* Use undefined class. Also, set class and type for some
2890 special symbols. */
2891 name = h->root.root.root.string;
2892 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2893 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2894 {
2895 h->esym.asym.sc = scData;
2896 h->esym.asym.st = stLabel;
2897 h->esym.asym.value = 0;
2898 }
2899 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2900 {
2901 h->esym.asym.sc = scAbs;
2902 h->esym.asym.st = stLabel;
2903 h->esym.asym.value =
2904 mips_elf_hash_table (einfo->info)->procedure_count;
2905 }
2906 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2907 {
2908 h->esym.asym.sc = scAbs;
2909 h->esym.asym.st = stLabel;
2910 h->esym.asym.value = elf_gp (einfo->abfd);
2911 }
2912 else
2913 h->esym.asym.sc = scUndefined;
2914 }
2915 else if (h->root.root.type != bfd_link_hash_defined
2916 && h->root.root.type != bfd_link_hash_defweak)
2917 h->esym.asym.sc = scAbs;
2918 else
2919 {
2920 const char *name;
2921
2922 sec = h->root.root.u.def.section;
2923 output_section = sec->output_section;
2924
2925 /* When making a shared library and symbol h is the one from
2926 the another shared library, OUTPUT_SECTION may be null. */
2927 if (output_section == NULL)
2928 h->esym.asym.sc = scUndefined;
2929 else
2930 {
2931 name = bfd_section_name (output_section->owner, output_section);
2932
2933 if (strcmp (name, ".text") == 0)
2934 h->esym.asym.sc = scText;
2935 else if (strcmp (name, ".data") == 0)
2936 h->esym.asym.sc = scData;
2937 else if (strcmp (name, ".sdata") == 0)
2938 h->esym.asym.sc = scSData;
2939 else if (strcmp (name, ".rodata") == 0
2940 || strcmp (name, ".rdata") == 0)
2941 h->esym.asym.sc = scRData;
2942 else if (strcmp (name, ".bss") == 0)
2943 h->esym.asym.sc = scBss;
2944 else if (strcmp (name, ".sbss") == 0)
2945 h->esym.asym.sc = scSBss;
2946 else if (strcmp (name, ".init") == 0)
2947 h->esym.asym.sc = scInit;
2948 else if (strcmp (name, ".fini") == 0)
2949 h->esym.asym.sc = scFini;
2950 else
2951 h->esym.asym.sc = scAbs;
2952 }
2953 }
2954
2955 h->esym.asym.reserved = 0;
2956 h->esym.asym.index = indexNil;
2957 }
2958
2959 if (h->root.root.type == bfd_link_hash_common)
2960 h->esym.asym.value = h->root.root.u.c.size;
2961 else if (h->root.root.type == bfd_link_hash_defined
2962 || h->root.root.type == bfd_link_hash_defweak)
2963 {
2964 if (h->esym.asym.sc == scCommon)
2965 h->esym.asym.sc = scBss;
2966 else if (h->esym.asym.sc == scSCommon)
2967 h->esym.asym.sc = scSBss;
2968
2969 sec = h->root.root.u.def.section;
2970 output_section = sec->output_section;
2971 if (output_section != NULL)
2972 h->esym.asym.value = (h->root.root.u.def.value
2973 + sec->output_offset
2974 + output_section->vma);
2975 else
2976 h->esym.asym.value = 0;
2977 }
2978 else
2979 {
2980 struct mips_elf_link_hash_entry *hd = h;
2981
2982 while (hd->root.root.type == bfd_link_hash_indirect)
2983 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2984
2985 if (hd->needs_lazy_stub)
2986 {
2987 BFD_ASSERT (hd->root.plt.plist != NULL);
2988 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
2989 /* Set type and value for a symbol with a function stub. */
2990 h->esym.asym.st = stProc;
2991 sec = hd->root.root.u.def.section;
2992 if (sec == NULL)
2993 h->esym.asym.value = 0;
2994 else
2995 {
2996 output_section = sec->output_section;
2997 if (output_section != NULL)
2998 h->esym.asym.value = (hd->root.plt.plist->stub_offset
2999 + sec->output_offset
3000 + output_section->vma);
3001 else
3002 h->esym.asym.value = 0;
3003 }
3004 }
3005 }
3006
3007 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3008 h->root.root.root.string,
3009 &h->esym))
3010 {
3011 einfo->failed = TRUE;
3012 return FALSE;
3013 }
3014
3015 return TRUE;
3016 }
3017
3018 /* A comparison routine used to sort .gptab entries. */
3019
3020 static int
3021 gptab_compare (const void *p1, const void *p2)
3022 {
3023 const Elf32_gptab *a1 = p1;
3024 const Elf32_gptab *a2 = p2;
3025
3026 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3027 }
3028 \f
3029 /* Functions to manage the got entry hash table. */
3030
3031 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3032 hash number. */
3033
3034 static INLINE hashval_t
3035 mips_elf_hash_bfd_vma (bfd_vma addr)
3036 {
3037 #ifdef BFD64
3038 return addr + (addr >> 32);
3039 #else
3040 return addr;
3041 #endif
3042 }
3043
3044 static hashval_t
3045 mips_elf_got_entry_hash (const void *entry_)
3046 {
3047 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3048
3049 return (entry->symndx
3050 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3051 + (entry->tls_type == GOT_TLS_LDM ? 0
3052 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3053 : entry->symndx >= 0 ? (entry->abfd->id
3054 + mips_elf_hash_bfd_vma (entry->d.addend))
3055 : entry->d.h->root.root.root.hash));
3056 }
3057
3058 static int
3059 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3060 {
3061 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3062 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3063
3064 return (e1->symndx == e2->symndx
3065 && e1->tls_type == e2->tls_type
3066 && (e1->tls_type == GOT_TLS_LDM ? TRUE
3067 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3068 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3069 && e1->d.addend == e2->d.addend)
3070 : e2->abfd && e1->d.h == e2->d.h));
3071 }
3072
3073 static hashval_t
3074 mips_got_page_ref_hash (const void *ref_)
3075 {
3076 const struct mips_got_page_ref *ref;
3077
3078 ref = (const struct mips_got_page_ref *) ref_;
3079 return ((ref->symndx >= 0
3080 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3081 : ref->u.h->root.root.root.hash)
3082 + mips_elf_hash_bfd_vma (ref->addend));
3083 }
3084
3085 static int
3086 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3087 {
3088 const struct mips_got_page_ref *ref1, *ref2;
3089
3090 ref1 = (const struct mips_got_page_ref *) ref1_;
3091 ref2 = (const struct mips_got_page_ref *) ref2_;
3092 return (ref1->symndx == ref2->symndx
3093 && (ref1->symndx < 0
3094 ? ref1->u.h == ref2->u.h
3095 : ref1->u.abfd == ref2->u.abfd)
3096 && ref1->addend == ref2->addend);
3097 }
3098
3099 static hashval_t
3100 mips_got_page_entry_hash (const void *entry_)
3101 {
3102 const struct mips_got_page_entry *entry;
3103
3104 entry = (const struct mips_got_page_entry *) entry_;
3105 return entry->sec->id;
3106 }
3107
3108 static int
3109 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3110 {
3111 const struct mips_got_page_entry *entry1, *entry2;
3112
3113 entry1 = (const struct mips_got_page_entry *) entry1_;
3114 entry2 = (const struct mips_got_page_entry *) entry2_;
3115 return entry1->sec == entry2->sec;
3116 }
3117 \f
3118 /* Create and return a new mips_got_info structure. */
3119
3120 static struct mips_got_info *
3121 mips_elf_create_got_info (bfd *abfd)
3122 {
3123 struct mips_got_info *g;
3124
3125 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3126 if (g == NULL)
3127 return NULL;
3128
3129 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3130 mips_elf_got_entry_eq, NULL);
3131 if (g->got_entries == NULL)
3132 return NULL;
3133
3134 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3135 mips_got_page_ref_eq, NULL);
3136 if (g->got_page_refs == NULL)
3137 return NULL;
3138
3139 return g;
3140 }
3141
3142 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3143 CREATE_P and if ABFD doesn't already have a GOT. */
3144
3145 static struct mips_got_info *
3146 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3147 {
3148 struct mips_elf_obj_tdata *tdata;
3149
3150 if (!is_mips_elf (abfd))
3151 return NULL;
3152
3153 tdata = mips_elf_tdata (abfd);
3154 if (!tdata->got && create_p)
3155 tdata->got = mips_elf_create_got_info (abfd);
3156 return tdata->got;
3157 }
3158
3159 /* Record that ABFD should use output GOT G. */
3160
3161 static void
3162 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3163 {
3164 struct mips_elf_obj_tdata *tdata;
3165
3166 BFD_ASSERT (is_mips_elf (abfd));
3167 tdata = mips_elf_tdata (abfd);
3168 if (tdata->got)
3169 {
3170 /* The GOT structure itself and the hash table entries are
3171 allocated to a bfd, but the hash tables aren't. */
3172 htab_delete (tdata->got->got_entries);
3173 htab_delete (tdata->got->got_page_refs);
3174 if (tdata->got->got_page_entries)
3175 htab_delete (tdata->got->got_page_entries);
3176 }
3177 tdata->got = g;
3178 }
3179
3180 /* Return the dynamic relocation section. If it doesn't exist, try to
3181 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3182 if creation fails. */
3183
3184 static asection *
3185 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3186 {
3187 const char *dname;
3188 asection *sreloc;
3189 bfd *dynobj;
3190
3191 dname = MIPS_ELF_REL_DYN_NAME (info);
3192 dynobj = elf_hash_table (info)->dynobj;
3193 sreloc = bfd_get_linker_section (dynobj, dname);
3194 if (sreloc == NULL && create_p)
3195 {
3196 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3197 (SEC_ALLOC
3198 | SEC_LOAD
3199 | SEC_HAS_CONTENTS
3200 | SEC_IN_MEMORY
3201 | SEC_LINKER_CREATED
3202 | SEC_READONLY));
3203 if (sreloc == NULL
3204 || ! bfd_set_section_alignment (dynobj, sreloc,
3205 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3206 return NULL;
3207 }
3208 return sreloc;
3209 }
3210
3211 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3212
3213 static int
3214 mips_elf_reloc_tls_type (unsigned int r_type)
3215 {
3216 if (tls_gd_reloc_p (r_type))
3217 return GOT_TLS_GD;
3218
3219 if (tls_ldm_reloc_p (r_type))
3220 return GOT_TLS_LDM;
3221
3222 if (tls_gottprel_reloc_p (r_type))
3223 return GOT_TLS_IE;
3224
3225 return GOT_TLS_NONE;
3226 }
3227
3228 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3229
3230 static int
3231 mips_tls_got_entries (unsigned int type)
3232 {
3233 switch (type)
3234 {
3235 case GOT_TLS_GD:
3236 case GOT_TLS_LDM:
3237 return 2;
3238
3239 case GOT_TLS_IE:
3240 return 1;
3241
3242 case GOT_TLS_NONE:
3243 return 0;
3244 }
3245 abort ();
3246 }
3247
3248 /* Count the number of relocations needed for a TLS GOT entry, with
3249 access types from TLS_TYPE, and symbol H (or a local symbol if H
3250 is NULL). */
3251
3252 static int
3253 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3254 struct elf_link_hash_entry *h)
3255 {
3256 int indx = 0;
3257 bfd_boolean need_relocs = FALSE;
3258 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3259
3260 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3261 && (!bfd_link_pic (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
3262 indx = h->dynindx;
3263
3264 if ((bfd_link_pic (info) || indx != 0)
3265 && (h == NULL
3266 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3267 || h->root.type != bfd_link_hash_undefweak))
3268 need_relocs = TRUE;
3269
3270 if (!need_relocs)
3271 return 0;
3272
3273 switch (tls_type)
3274 {
3275 case GOT_TLS_GD:
3276 return indx != 0 ? 2 : 1;
3277
3278 case GOT_TLS_IE:
3279 return 1;
3280
3281 case GOT_TLS_LDM:
3282 return bfd_link_pic (info) ? 1 : 0;
3283
3284 default:
3285 return 0;
3286 }
3287 }
3288
3289 /* Add the number of GOT entries and TLS relocations required by ENTRY
3290 to G. */
3291
3292 static void
3293 mips_elf_count_got_entry (struct bfd_link_info *info,
3294 struct mips_got_info *g,
3295 struct mips_got_entry *entry)
3296 {
3297 if (entry->tls_type)
3298 {
3299 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3300 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3301 entry->symndx < 0
3302 ? &entry->d.h->root : NULL);
3303 }
3304 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3305 g->local_gotno += 1;
3306 else
3307 g->global_gotno += 1;
3308 }
3309
3310 /* Output a simple dynamic relocation into SRELOC. */
3311
3312 static void
3313 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3314 asection *sreloc,
3315 unsigned long reloc_index,
3316 unsigned long indx,
3317 int r_type,
3318 bfd_vma offset)
3319 {
3320 Elf_Internal_Rela rel[3];
3321
3322 memset (rel, 0, sizeof (rel));
3323
3324 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3325 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3326
3327 if (ABI_64_P (output_bfd))
3328 {
3329 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3330 (output_bfd, &rel[0],
3331 (sreloc->contents
3332 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3333 }
3334 else
3335 bfd_elf32_swap_reloc_out
3336 (output_bfd, &rel[0],
3337 (sreloc->contents
3338 + reloc_index * sizeof (Elf32_External_Rel)));
3339 }
3340
3341 /* Initialize a set of TLS GOT entries for one symbol. */
3342
3343 static void
3344 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3345 struct mips_got_entry *entry,
3346 struct mips_elf_link_hash_entry *h,
3347 bfd_vma value)
3348 {
3349 struct mips_elf_link_hash_table *htab;
3350 int indx;
3351 asection *sreloc, *sgot;
3352 bfd_vma got_offset, got_offset2;
3353 bfd_boolean need_relocs = FALSE;
3354
3355 htab = mips_elf_hash_table (info);
3356 if (htab == NULL)
3357 return;
3358
3359 sgot = htab->sgot;
3360
3361 indx = 0;
3362 if (h != NULL)
3363 {
3364 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3365
3366 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info),
3367 &h->root)
3368 && (!bfd_link_pic (info)
3369 || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3370 indx = h->root.dynindx;
3371 }
3372
3373 if (entry->tls_initialized)
3374 return;
3375
3376 if ((bfd_link_pic (info) || indx != 0)
3377 && (h == NULL
3378 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3379 || h->root.type != bfd_link_hash_undefweak))
3380 need_relocs = TRUE;
3381
3382 /* MINUS_ONE means the symbol is not defined in this object. It may not
3383 be defined at all; assume that the value doesn't matter in that
3384 case. Otherwise complain if we would use the value. */
3385 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3386 || h->root.root.type == bfd_link_hash_undefweak);
3387
3388 /* Emit necessary relocations. */
3389 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3390 got_offset = entry->gotidx;
3391
3392 switch (entry->tls_type)
3393 {
3394 case GOT_TLS_GD:
3395 /* General Dynamic. */
3396 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3397
3398 if (need_relocs)
3399 {
3400 mips_elf_output_dynamic_relocation
3401 (abfd, sreloc, sreloc->reloc_count++, indx,
3402 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3403 sgot->output_offset + sgot->output_section->vma + got_offset);
3404
3405 if (indx)
3406 mips_elf_output_dynamic_relocation
3407 (abfd, sreloc, sreloc->reloc_count++, indx,
3408 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3409 sgot->output_offset + sgot->output_section->vma + got_offset2);
3410 else
3411 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3412 sgot->contents + got_offset2);
3413 }
3414 else
3415 {
3416 MIPS_ELF_PUT_WORD (abfd, 1,
3417 sgot->contents + got_offset);
3418 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3419 sgot->contents + got_offset2);
3420 }
3421 break;
3422
3423 case GOT_TLS_IE:
3424 /* Initial Exec model. */
3425 if (need_relocs)
3426 {
3427 if (indx == 0)
3428 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3429 sgot->contents + got_offset);
3430 else
3431 MIPS_ELF_PUT_WORD (abfd, 0,
3432 sgot->contents + got_offset);
3433
3434 mips_elf_output_dynamic_relocation
3435 (abfd, sreloc, sreloc->reloc_count++, indx,
3436 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3437 sgot->output_offset + sgot->output_section->vma + got_offset);
3438 }
3439 else
3440 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3441 sgot->contents + got_offset);
3442 break;
3443
3444 case GOT_TLS_LDM:
3445 /* The initial offset is zero, and the LD offsets will include the
3446 bias by DTP_OFFSET. */
3447 MIPS_ELF_PUT_WORD (abfd, 0,
3448 sgot->contents + got_offset
3449 + MIPS_ELF_GOT_SIZE (abfd));
3450
3451 if (!bfd_link_pic (info))
3452 MIPS_ELF_PUT_WORD (abfd, 1,
3453 sgot->contents + got_offset);
3454 else
3455 mips_elf_output_dynamic_relocation
3456 (abfd, sreloc, sreloc->reloc_count++, indx,
3457 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3458 sgot->output_offset + sgot->output_section->vma + got_offset);
3459 break;
3460
3461 default:
3462 abort ();
3463 }
3464
3465 entry->tls_initialized = TRUE;
3466 }
3467
3468 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3469 for global symbol H. .got.plt comes before the GOT, so the offset
3470 will be negative. */
3471
3472 static bfd_vma
3473 mips_elf_gotplt_index (struct bfd_link_info *info,
3474 struct elf_link_hash_entry *h)
3475 {
3476 bfd_vma got_address, got_value;
3477 struct mips_elf_link_hash_table *htab;
3478
3479 htab = mips_elf_hash_table (info);
3480 BFD_ASSERT (htab != NULL);
3481
3482 BFD_ASSERT (h->plt.plist != NULL);
3483 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3484
3485 /* Calculate the address of the associated .got.plt entry. */
3486 got_address = (htab->sgotplt->output_section->vma
3487 + htab->sgotplt->output_offset
3488 + (h->plt.plist->gotplt_index
3489 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3490
3491 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3492 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3493 + htab->root.hgot->root.u.def.section->output_offset
3494 + htab->root.hgot->root.u.def.value);
3495
3496 return got_address - got_value;
3497 }
3498
3499 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3500 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3501 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3502 offset can be found. */
3503
3504 static bfd_vma
3505 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3506 bfd_vma value, unsigned long r_symndx,
3507 struct mips_elf_link_hash_entry *h, int r_type)
3508 {
3509 struct mips_elf_link_hash_table *htab;
3510 struct mips_got_entry *entry;
3511
3512 htab = mips_elf_hash_table (info);
3513 BFD_ASSERT (htab != NULL);
3514
3515 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3516 r_symndx, h, r_type);
3517 if (!entry)
3518 return MINUS_ONE;
3519
3520 if (entry->tls_type)
3521 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3522 return entry->gotidx;
3523 }
3524
3525 /* Return the GOT index of global symbol H in the primary GOT. */
3526
3527 static bfd_vma
3528 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3529 struct elf_link_hash_entry *h)
3530 {
3531 struct mips_elf_link_hash_table *htab;
3532 long global_got_dynindx;
3533 struct mips_got_info *g;
3534 bfd_vma got_index;
3535
3536 htab = mips_elf_hash_table (info);
3537 BFD_ASSERT (htab != NULL);
3538
3539 global_got_dynindx = 0;
3540 if (htab->global_gotsym != NULL)
3541 global_got_dynindx = htab->global_gotsym->dynindx;
3542
3543 /* Once we determine the global GOT entry with the lowest dynamic
3544 symbol table index, we must put all dynamic symbols with greater
3545 indices into the primary GOT. That makes it easy to calculate the
3546 GOT offset. */
3547 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3548 g = mips_elf_bfd_got (obfd, FALSE);
3549 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3550 * MIPS_ELF_GOT_SIZE (obfd));
3551 BFD_ASSERT (got_index < htab->sgot->size);
3552
3553 return got_index;
3554 }
3555
3556 /* Return the GOT index for the global symbol indicated by H, which is
3557 referenced by a relocation of type R_TYPE in IBFD. */
3558
3559 static bfd_vma
3560 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3561 struct elf_link_hash_entry *h, int r_type)
3562 {
3563 struct mips_elf_link_hash_table *htab;
3564 struct mips_got_info *g;
3565 struct mips_got_entry lookup, *entry;
3566 bfd_vma gotidx;
3567
3568 htab = mips_elf_hash_table (info);
3569 BFD_ASSERT (htab != NULL);
3570
3571 g = mips_elf_bfd_got (ibfd, FALSE);
3572 BFD_ASSERT (g);
3573
3574 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3575 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3576 return mips_elf_primary_global_got_index (obfd, info, h);
3577
3578 lookup.abfd = ibfd;
3579 lookup.symndx = -1;
3580 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3581 entry = htab_find (g->got_entries, &lookup);
3582 BFD_ASSERT (entry);
3583
3584 gotidx = entry->gotidx;
3585 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3586
3587 if (lookup.tls_type)
3588 {
3589 bfd_vma value = MINUS_ONE;
3590
3591 if ((h->root.type == bfd_link_hash_defined
3592 || h->root.type == bfd_link_hash_defweak)
3593 && h->root.u.def.section->output_section)
3594 value = (h->root.u.def.value
3595 + h->root.u.def.section->output_offset
3596 + h->root.u.def.section->output_section->vma);
3597
3598 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3599 }
3600 return gotidx;
3601 }
3602
3603 /* Find a GOT page entry that points to within 32KB of VALUE. These
3604 entries are supposed to be placed at small offsets in the GOT, i.e.,
3605 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3606 entry could be created. If OFFSETP is nonnull, use it to return the
3607 offset of the GOT entry from VALUE. */
3608
3609 static bfd_vma
3610 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3611 bfd_vma value, bfd_vma *offsetp)
3612 {
3613 bfd_vma page, got_index;
3614 struct mips_got_entry *entry;
3615
3616 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3617 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3618 NULL, R_MIPS_GOT_PAGE);
3619
3620 if (!entry)
3621 return MINUS_ONE;
3622
3623 got_index = entry->gotidx;
3624
3625 if (offsetp)
3626 *offsetp = value - entry->d.address;
3627
3628 return got_index;
3629 }
3630
3631 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3632 EXTERNAL is true if the relocation was originally against a global
3633 symbol that binds locally. */
3634
3635 static bfd_vma
3636 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3637 bfd_vma value, bfd_boolean external)
3638 {
3639 struct mips_got_entry *entry;
3640
3641 /* GOT16 relocations against local symbols are followed by a LO16
3642 relocation; those against global symbols are not. Thus if the
3643 symbol was originally local, the GOT16 relocation should load the
3644 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3645 if (! external)
3646 value = mips_elf_high (value) << 16;
3647
3648 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3649 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3650 same in all cases. */
3651 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3652 NULL, R_MIPS_GOT16);
3653 if (entry)
3654 return entry->gotidx;
3655 else
3656 return MINUS_ONE;
3657 }
3658
3659 /* Returns the offset for the entry at the INDEXth position
3660 in the GOT. */
3661
3662 static bfd_vma
3663 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3664 bfd *input_bfd, bfd_vma got_index)
3665 {
3666 struct mips_elf_link_hash_table *htab;
3667 asection *sgot;
3668 bfd_vma gp;
3669
3670 htab = mips_elf_hash_table (info);
3671 BFD_ASSERT (htab != NULL);
3672
3673 sgot = htab->sgot;
3674 gp = _bfd_get_gp_value (output_bfd)
3675 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3676
3677 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3678 }
3679
3680 /* Create and return a local GOT entry for VALUE, which was calculated
3681 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3682 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3683 instead. */
3684
3685 static struct mips_got_entry *
3686 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3687 bfd *ibfd, bfd_vma value,
3688 unsigned long r_symndx,
3689 struct mips_elf_link_hash_entry *h,
3690 int r_type)
3691 {
3692 struct mips_got_entry lookup, *entry;
3693 void **loc;
3694 struct mips_got_info *g;
3695 struct mips_elf_link_hash_table *htab;
3696 bfd_vma gotidx;
3697
3698 htab = mips_elf_hash_table (info);
3699 BFD_ASSERT (htab != NULL);
3700
3701 g = mips_elf_bfd_got (ibfd, FALSE);
3702 if (g == NULL)
3703 {
3704 g = mips_elf_bfd_got (abfd, FALSE);
3705 BFD_ASSERT (g != NULL);
3706 }
3707
3708 /* This function shouldn't be called for symbols that live in the global
3709 area of the GOT. */
3710 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3711
3712 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3713 if (lookup.tls_type)
3714 {
3715 lookup.abfd = ibfd;
3716 if (tls_ldm_reloc_p (r_type))
3717 {
3718 lookup.symndx = 0;
3719 lookup.d.addend = 0;
3720 }
3721 else if (h == NULL)
3722 {
3723 lookup.symndx = r_symndx;
3724 lookup.d.addend = 0;
3725 }
3726 else
3727 {
3728 lookup.symndx = -1;
3729 lookup.d.h = h;
3730 }
3731
3732 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3733 BFD_ASSERT (entry);
3734
3735 gotidx = entry->gotidx;
3736 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3737
3738 return entry;
3739 }
3740
3741 lookup.abfd = NULL;
3742 lookup.symndx = -1;
3743 lookup.d.address = value;
3744 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3745 if (!loc)
3746 return NULL;
3747
3748 entry = (struct mips_got_entry *) *loc;
3749 if (entry)
3750 return entry;
3751
3752 if (g->assigned_low_gotno > g->assigned_high_gotno)
3753 {
3754 /* We didn't allocate enough space in the GOT. */
3755 _bfd_error_handler
3756 (_("not enough GOT space for local GOT entries"));
3757 bfd_set_error (bfd_error_bad_value);
3758 return NULL;
3759 }
3760
3761 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3762 if (!entry)
3763 return NULL;
3764
3765 if (got16_reloc_p (r_type)
3766 || call16_reloc_p (r_type)
3767 || got_page_reloc_p (r_type)
3768 || got_disp_reloc_p (r_type))
3769 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3770 else
3771 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3772
3773 *entry = lookup;
3774 *loc = entry;
3775
3776 MIPS_ELF_PUT_WORD (abfd, value, htab->sgot->contents + entry->gotidx);
3777
3778 /* These GOT entries need a dynamic relocation on VxWorks. */
3779 if (htab->is_vxworks)
3780 {
3781 Elf_Internal_Rela outrel;
3782 asection *s;
3783 bfd_byte *rloc;
3784 bfd_vma got_address;
3785
3786 s = mips_elf_rel_dyn_section (info, FALSE);
3787 got_address = (htab->sgot->output_section->vma
3788 + htab->sgot->output_offset
3789 + entry->gotidx);
3790
3791 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3792 outrel.r_offset = got_address;
3793 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3794 outrel.r_addend = value;
3795 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3796 }
3797
3798 return entry;
3799 }
3800
3801 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3802 The number might be exact or a worst-case estimate, depending on how
3803 much information is available to elf_backend_omit_section_dynsym at
3804 the current linking stage. */
3805
3806 static bfd_size_type
3807 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3808 {
3809 bfd_size_type count;
3810
3811 count = 0;
3812 if (bfd_link_pic (info)
3813 || elf_hash_table (info)->is_relocatable_executable)
3814 {
3815 asection *p;
3816 const struct elf_backend_data *bed;
3817
3818 bed = get_elf_backend_data (output_bfd);
3819 for (p = output_bfd->sections; p ; p = p->next)
3820 if ((p->flags & SEC_EXCLUDE) == 0
3821 && (p->flags & SEC_ALLOC) != 0
3822 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3823 ++count;
3824 }
3825 return count;
3826 }
3827
3828 /* Sort the dynamic symbol table so that symbols that need GOT entries
3829 appear towards the end. */
3830
3831 static bfd_boolean
3832 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3833 {
3834 struct mips_elf_link_hash_table *htab;
3835 struct mips_elf_hash_sort_data hsd;
3836 struct mips_got_info *g;
3837
3838 if (elf_hash_table (info)->dynsymcount == 0)
3839 return TRUE;
3840
3841 htab = mips_elf_hash_table (info);
3842 BFD_ASSERT (htab != NULL);
3843
3844 g = htab->got_info;
3845 if (g == NULL)
3846 return TRUE;
3847
3848 hsd.low = NULL;
3849 hsd.max_unref_got_dynindx
3850 = hsd.min_got_dynindx
3851 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3852 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3853 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3854 elf_hash_table (info)),
3855 mips_elf_sort_hash_table_f,
3856 &hsd);
3857
3858 /* There should have been enough room in the symbol table to
3859 accommodate both the GOT and non-GOT symbols. */
3860 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3861 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3862 == elf_hash_table (info)->dynsymcount);
3863 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3864 == g->global_gotno);
3865
3866 /* Now we know which dynamic symbol has the lowest dynamic symbol
3867 table index in the GOT. */
3868 htab->global_gotsym = hsd.low;
3869
3870 return TRUE;
3871 }
3872
3873 /* If H needs a GOT entry, assign it the highest available dynamic
3874 index. Otherwise, assign it the lowest available dynamic
3875 index. */
3876
3877 static bfd_boolean
3878 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3879 {
3880 struct mips_elf_hash_sort_data *hsd = data;
3881
3882 /* Symbols without dynamic symbol table entries aren't interesting
3883 at all. */
3884 if (h->root.dynindx == -1)
3885 return TRUE;
3886
3887 switch (h->global_got_area)
3888 {
3889 case GGA_NONE:
3890 h->root.dynindx = hsd->max_non_got_dynindx++;
3891 break;
3892
3893 case GGA_NORMAL:
3894 h->root.dynindx = --hsd->min_got_dynindx;
3895 hsd->low = (struct elf_link_hash_entry *) h;
3896 break;
3897
3898 case GGA_RELOC_ONLY:
3899 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3900 hsd->low = (struct elf_link_hash_entry *) h;
3901 h->root.dynindx = hsd->max_unref_got_dynindx++;
3902 break;
3903 }
3904
3905 return TRUE;
3906 }
3907
3908 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3909 (which is owned by the caller and shouldn't be added to the
3910 hash table directly). */
3911
3912 static bfd_boolean
3913 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3914 struct mips_got_entry *lookup)
3915 {
3916 struct mips_elf_link_hash_table *htab;
3917 struct mips_got_entry *entry;
3918 struct mips_got_info *g;
3919 void **loc, **bfd_loc;
3920
3921 /* Make sure there's a slot for this entry in the master GOT. */
3922 htab = mips_elf_hash_table (info);
3923 g = htab->got_info;
3924 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3925 if (!loc)
3926 return FALSE;
3927
3928 /* Populate the entry if it isn't already. */
3929 entry = (struct mips_got_entry *) *loc;
3930 if (!entry)
3931 {
3932 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3933 if (!entry)
3934 return FALSE;
3935
3936 lookup->tls_initialized = FALSE;
3937 lookup->gotidx = -1;
3938 *entry = *lookup;
3939 *loc = entry;
3940 }
3941
3942 /* Reuse the same GOT entry for the BFD's GOT. */
3943 g = mips_elf_bfd_got (abfd, TRUE);
3944 if (!g)
3945 return FALSE;
3946
3947 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3948 if (!bfd_loc)
3949 return FALSE;
3950
3951 if (!*bfd_loc)
3952 *bfd_loc = entry;
3953 return TRUE;
3954 }
3955
3956 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3957 entry for it. FOR_CALL is true if the caller is only interested in
3958 using the GOT entry for calls. */
3959
3960 static bfd_boolean
3961 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3962 bfd *abfd, struct bfd_link_info *info,
3963 bfd_boolean for_call, int r_type)
3964 {
3965 struct mips_elf_link_hash_table *htab;
3966 struct mips_elf_link_hash_entry *hmips;
3967 struct mips_got_entry entry;
3968 unsigned char tls_type;
3969
3970 htab = mips_elf_hash_table (info);
3971 BFD_ASSERT (htab != NULL);
3972
3973 hmips = (struct mips_elf_link_hash_entry *) h;
3974 if (!for_call)
3975 hmips->got_only_for_calls = FALSE;
3976
3977 /* A global symbol in the GOT must also be in the dynamic symbol
3978 table. */
3979 if (h->dynindx == -1)
3980 {
3981 switch (ELF_ST_VISIBILITY (h->other))
3982 {
3983 case STV_INTERNAL:
3984 case STV_HIDDEN:
3985 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3986 break;
3987 }
3988 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3989 return FALSE;
3990 }
3991
3992 tls_type = mips_elf_reloc_tls_type (r_type);
3993 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
3994 hmips->global_got_area = GGA_NORMAL;
3995
3996 entry.abfd = abfd;
3997 entry.symndx = -1;
3998 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3999 entry.tls_type = tls_type;
4000 return mips_elf_record_got_entry (info, abfd, &entry);
4001 }
4002
4003 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
4004 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
4005
4006 static bfd_boolean
4007 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
4008 struct bfd_link_info *info, int r_type)
4009 {
4010 struct mips_elf_link_hash_table *htab;
4011 struct mips_got_info *g;
4012 struct mips_got_entry entry;
4013
4014 htab = mips_elf_hash_table (info);
4015 BFD_ASSERT (htab != NULL);
4016
4017 g = htab->got_info;
4018 BFD_ASSERT (g != NULL);
4019
4020 entry.abfd = abfd;
4021 entry.symndx = symndx;
4022 entry.d.addend = addend;
4023 entry.tls_type = mips_elf_reloc_tls_type (r_type);
4024 return mips_elf_record_got_entry (info, abfd, &entry);
4025 }
4026
4027 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4028 H is the symbol's hash table entry, or null if SYMNDX is local
4029 to ABFD. */
4030
4031 static bfd_boolean
4032 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4033 long symndx, struct elf_link_hash_entry *h,
4034 bfd_signed_vma addend)
4035 {
4036 struct mips_elf_link_hash_table *htab;
4037 struct mips_got_info *g1, *g2;
4038 struct mips_got_page_ref lookup, *entry;
4039 void **loc, **bfd_loc;
4040
4041 htab = mips_elf_hash_table (info);
4042 BFD_ASSERT (htab != NULL);
4043
4044 g1 = htab->got_info;
4045 BFD_ASSERT (g1 != NULL);
4046
4047 if (h)
4048 {
4049 lookup.symndx = -1;
4050 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4051 }
4052 else
4053 {
4054 lookup.symndx = symndx;
4055 lookup.u.abfd = abfd;
4056 }
4057 lookup.addend = addend;
4058 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4059 if (loc == NULL)
4060 return FALSE;
4061
4062 entry = (struct mips_got_page_ref *) *loc;
4063 if (!entry)
4064 {
4065 entry = bfd_alloc (abfd, sizeof (*entry));
4066 if (!entry)
4067 return FALSE;
4068
4069 *entry = lookup;
4070 *loc = entry;
4071 }
4072
4073 /* Add the same entry to the BFD's GOT. */
4074 g2 = mips_elf_bfd_got (abfd, TRUE);
4075 if (!g2)
4076 return FALSE;
4077
4078 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4079 if (!bfd_loc)
4080 return FALSE;
4081
4082 if (!*bfd_loc)
4083 *bfd_loc = entry;
4084
4085 return TRUE;
4086 }
4087
4088 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4089
4090 static void
4091 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4092 unsigned int n)
4093 {
4094 asection *s;
4095 struct mips_elf_link_hash_table *htab;
4096
4097 htab = mips_elf_hash_table (info);
4098 BFD_ASSERT (htab != NULL);
4099
4100 s = mips_elf_rel_dyn_section (info, FALSE);
4101 BFD_ASSERT (s != NULL);
4102
4103 if (htab->is_vxworks)
4104 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4105 else
4106 {
4107 if (s->size == 0)
4108 {
4109 /* Make room for a null element. */
4110 s->size += MIPS_ELF_REL_SIZE (abfd);
4111 ++s->reloc_count;
4112 }
4113 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4114 }
4115 }
4116 \f
4117 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4118 mips_elf_traverse_got_arg structure. Count the number of GOT
4119 entries and TLS relocs. Set DATA->value to true if we need
4120 to resolve indirect or warning symbols and then recreate the GOT. */
4121
4122 static int
4123 mips_elf_check_recreate_got (void **entryp, void *data)
4124 {
4125 struct mips_got_entry *entry;
4126 struct mips_elf_traverse_got_arg *arg;
4127
4128 entry = (struct mips_got_entry *) *entryp;
4129 arg = (struct mips_elf_traverse_got_arg *) data;
4130 if (entry->abfd != NULL && entry->symndx == -1)
4131 {
4132 struct mips_elf_link_hash_entry *h;
4133
4134 h = entry->d.h;
4135 if (h->root.root.type == bfd_link_hash_indirect
4136 || h->root.root.type == bfd_link_hash_warning)
4137 {
4138 arg->value = TRUE;
4139 return 0;
4140 }
4141 }
4142 mips_elf_count_got_entry (arg->info, arg->g, entry);
4143 return 1;
4144 }
4145
4146 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4147 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4148 converting entries for indirect and warning symbols into entries
4149 for the target symbol. Set DATA->g to null on error. */
4150
4151 static int
4152 mips_elf_recreate_got (void **entryp, void *data)
4153 {
4154 struct mips_got_entry new_entry, *entry;
4155 struct mips_elf_traverse_got_arg *arg;
4156 void **slot;
4157
4158 entry = (struct mips_got_entry *) *entryp;
4159 arg = (struct mips_elf_traverse_got_arg *) data;
4160 if (entry->abfd != NULL
4161 && entry->symndx == -1
4162 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4163 || entry->d.h->root.root.type == bfd_link_hash_warning))
4164 {
4165 struct mips_elf_link_hash_entry *h;
4166
4167 new_entry = *entry;
4168 entry = &new_entry;
4169 h = entry->d.h;
4170 do
4171 {
4172 BFD_ASSERT (h->global_got_area == GGA_NONE);
4173 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4174 }
4175 while (h->root.root.type == bfd_link_hash_indirect
4176 || h->root.root.type == bfd_link_hash_warning);
4177 entry->d.h = h;
4178 }
4179 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4180 if (slot == NULL)
4181 {
4182 arg->g = NULL;
4183 return 0;
4184 }
4185 if (*slot == NULL)
4186 {
4187 if (entry == &new_entry)
4188 {
4189 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4190 if (!entry)
4191 {
4192 arg->g = NULL;
4193 return 0;
4194 }
4195 *entry = new_entry;
4196 }
4197 *slot = entry;
4198 mips_elf_count_got_entry (arg->info, arg->g, entry);
4199 }
4200 return 1;
4201 }
4202
4203 /* Return the maximum number of GOT page entries required for RANGE. */
4204
4205 static bfd_vma
4206 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4207 {
4208 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4209 }
4210
4211 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4212
4213 static bfd_boolean
4214 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4215 asection *sec, bfd_signed_vma addend)
4216 {
4217 struct mips_got_info *g = arg->g;
4218 struct mips_got_page_entry lookup, *entry;
4219 struct mips_got_page_range **range_ptr, *range;
4220 bfd_vma old_pages, new_pages;
4221 void **loc;
4222
4223 /* Find the mips_got_page_entry hash table entry for this section. */
4224 lookup.sec = sec;
4225 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4226 if (loc == NULL)
4227 return FALSE;
4228
4229 /* Create a mips_got_page_entry if this is the first time we've
4230 seen the section. */
4231 entry = (struct mips_got_page_entry *) *loc;
4232 if (!entry)
4233 {
4234 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4235 if (!entry)
4236 return FALSE;
4237
4238 entry->sec = sec;
4239 *loc = entry;
4240 }
4241
4242 /* Skip over ranges whose maximum extent cannot share a page entry
4243 with ADDEND. */
4244 range_ptr = &entry->ranges;
4245 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4246 range_ptr = &(*range_ptr)->next;
4247
4248 /* If we scanned to the end of the list, or found a range whose
4249 minimum extent cannot share a page entry with ADDEND, create
4250 a new singleton range. */
4251 range = *range_ptr;
4252 if (!range || addend < range->min_addend - 0xffff)
4253 {
4254 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4255 if (!range)
4256 return FALSE;
4257
4258 range->next = *range_ptr;
4259 range->min_addend = addend;
4260 range->max_addend = addend;
4261
4262 *range_ptr = range;
4263 entry->num_pages++;
4264 g->page_gotno++;
4265 return TRUE;
4266 }
4267
4268 /* Remember how many pages the old range contributed. */
4269 old_pages = mips_elf_pages_for_range (range);
4270
4271 /* Update the ranges. */
4272 if (addend < range->min_addend)
4273 range->min_addend = addend;
4274 else if (addend > range->max_addend)
4275 {
4276 if (range->next && addend >= range->next->min_addend - 0xffff)
4277 {
4278 old_pages += mips_elf_pages_for_range (range->next);
4279 range->max_addend = range->next->max_addend;
4280 range->next = range->next->next;
4281 }
4282 else
4283 range->max_addend = addend;
4284 }
4285
4286 /* Record any change in the total estimate. */
4287 new_pages = mips_elf_pages_for_range (range);
4288 if (old_pages != new_pages)
4289 {
4290 entry->num_pages += new_pages - old_pages;
4291 g->page_gotno += new_pages - old_pages;
4292 }
4293
4294 return TRUE;
4295 }
4296
4297 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4298 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4299 whether the page reference described by *REFP needs a GOT page entry,
4300 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4301
4302 static bfd_boolean
4303 mips_elf_resolve_got_page_ref (void **refp, void *data)
4304 {
4305 struct mips_got_page_ref *ref;
4306 struct mips_elf_traverse_got_arg *arg;
4307 struct mips_elf_link_hash_table *htab;
4308 asection *sec;
4309 bfd_vma addend;
4310
4311 ref = (struct mips_got_page_ref *) *refp;
4312 arg = (struct mips_elf_traverse_got_arg *) data;
4313 htab = mips_elf_hash_table (arg->info);
4314
4315 if (ref->symndx < 0)
4316 {
4317 struct mips_elf_link_hash_entry *h;
4318
4319 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4320 h = ref->u.h;
4321 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4322 return 1;
4323
4324 /* Ignore undefined symbols; we'll issue an error later if
4325 appropriate. */
4326 if (!((h->root.root.type == bfd_link_hash_defined
4327 || h->root.root.type == bfd_link_hash_defweak)
4328 && h->root.root.u.def.section))
4329 return 1;
4330
4331 sec = h->root.root.u.def.section;
4332 addend = h->root.root.u.def.value + ref->addend;
4333 }
4334 else
4335 {
4336 Elf_Internal_Sym *isym;
4337
4338 /* Read in the symbol. */
4339 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4340 ref->symndx);
4341 if (isym == NULL)
4342 {
4343 arg->g = NULL;
4344 return 0;
4345 }
4346
4347 /* Get the associated input section. */
4348 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4349 if (sec == NULL)
4350 {
4351 arg->g = NULL;
4352 return 0;
4353 }
4354
4355 /* If this is a mergable section, work out the section and offset
4356 of the merged data. For section symbols, the addend specifies
4357 of the offset _of_ the first byte in the data, otherwise it
4358 specifies the offset _from_ the first byte. */
4359 if (sec->flags & SEC_MERGE)
4360 {
4361 void *secinfo;
4362
4363 secinfo = elf_section_data (sec)->sec_info;
4364 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4365 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4366 isym->st_value + ref->addend);
4367 else
4368 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4369 isym->st_value) + ref->addend;
4370 }
4371 else
4372 addend = isym->st_value + ref->addend;
4373 }
4374 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4375 {
4376 arg->g = NULL;
4377 return 0;
4378 }
4379 return 1;
4380 }
4381
4382 /* If any entries in G->got_entries are for indirect or warning symbols,
4383 replace them with entries for the target symbol. Convert g->got_page_refs
4384 into got_page_entry structures and estimate the number of page entries
4385 that they require. */
4386
4387 static bfd_boolean
4388 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4389 struct mips_got_info *g)
4390 {
4391 struct mips_elf_traverse_got_arg tga;
4392 struct mips_got_info oldg;
4393
4394 oldg = *g;
4395
4396 tga.info = info;
4397 tga.g = g;
4398 tga.value = FALSE;
4399 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4400 if (tga.value)
4401 {
4402 *g = oldg;
4403 g->got_entries = htab_create (htab_size (oldg.got_entries),
4404 mips_elf_got_entry_hash,
4405 mips_elf_got_entry_eq, NULL);
4406 if (!g->got_entries)
4407 return FALSE;
4408
4409 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4410 if (!tga.g)
4411 return FALSE;
4412
4413 htab_delete (oldg.got_entries);
4414 }
4415
4416 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4417 mips_got_page_entry_eq, NULL);
4418 if (g->got_page_entries == NULL)
4419 return FALSE;
4420
4421 tga.info = info;
4422 tga.g = g;
4423 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4424
4425 return TRUE;
4426 }
4427
4428 /* Return true if a GOT entry for H should live in the local rather than
4429 global GOT area. */
4430
4431 static bfd_boolean
4432 mips_use_local_got_p (struct bfd_link_info *info,
4433 struct mips_elf_link_hash_entry *h)
4434 {
4435 /* Symbols that aren't in the dynamic symbol table must live in the
4436 local GOT. This includes symbols that are completely undefined
4437 and which therefore don't bind locally. We'll report undefined
4438 symbols later if appropriate. */
4439 if (h->root.dynindx == -1)
4440 return TRUE;
4441
4442 /* Symbols that bind locally can (and in the case of forced-local
4443 symbols, must) live in the local GOT. */
4444 if (h->got_only_for_calls
4445 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4446 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4447 return TRUE;
4448
4449 /* If this is an executable that must provide a definition of the symbol,
4450 either though PLTs or copy relocations, then that address should go in
4451 the local rather than global GOT. */
4452 if (bfd_link_executable (info) && h->has_static_relocs)
4453 return TRUE;
4454
4455 return FALSE;
4456 }
4457
4458 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4459 link_info structure. Decide whether the hash entry needs an entry in
4460 the global part of the primary GOT, setting global_got_area accordingly.
4461 Count the number of global symbols that are in the primary GOT only
4462 because they have relocations against them (reloc_only_gotno). */
4463
4464 static int
4465 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4466 {
4467 struct bfd_link_info *info;
4468 struct mips_elf_link_hash_table *htab;
4469 struct mips_got_info *g;
4470
4471 info = (struct bfd_link_info *) data;
4472 htab = mips_elf_hash_table (info);
4473 g = htab->got_info;
4474 if (h->global_got_area != GGA_NONE)
4475 {
4476 /* Make a final decision about whether the symbol belongs in the
4477 local or global GOT. */
4478 if (mips_use_local_got_p (info, h))
4479 /* The symbol belongs in the local GOT. We no longer need this
4480 entry if it was only used for relocations; those relocations
4481 will be against the null or section symbol instead of H. */
4482 h->global_got_area = GGA_NONE;
4483 else if (htab->is_vxworks
4484 && h->got_only_for_calls
4485 && h->root.plt.plist->mips_offset != MINUS_ONE)
4486 /* On VxWorks, calls can refer directly to the .got.plt entry;
4487 they don't need entries in the regular GOT. .got.plt entries
4488 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4489 h->global_got_area = GGA_NONE;
4490 else if (h->global_got_area == GGA_RELOC_ONLY)
4491 {
4492 g->reloc_only_gotno++;
4493 g->global_gotno++;
4494 }
4495 }
4496 return 1;
4497 }
4498 \f
4499 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4500 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4501
4502 static int
4503 mips_elf_add_got_entry (void **entryp, void *data)
4504 {
4505 struct mips_got_entry *entry;
4506 struct mips_elf_traverse_got_arg *arg;
4507 void **slot;
4508
4509 entry = (struct mips_got_entry *) *entryp;
4510 arg = (struct mips_elf_traverse_got_arg *) data;
4511 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4512 if (!slot)
4513 {
4514 arg->g = NULL;
4515 return 0;
4516 }
4517 if (!*slot)
4518 {
4519 *slot = entry;
4520 mips_elf_count_got_entry (arg->info, arg->g, entry);
4521 }
4522 return 1;
4523 }
4524
4525 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4526 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4527
4528 static int
4529 mips_elf_add_got_page_entry (void **entryp, void *data)
4530 {
4531 struct mips_got_page_entry *entry;
4532 struct mips_elf_traverse_got_arg *arg;
4533 void **slot;
4534
4535 entry = (struct mips_got_page_entry *) *entryp;
4536 arg = (struct mips_elf_traverse_got_arg *) data;
4537 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4538 if (!slot)
4539 {
4540 arg->g = NULL;
4541 return 0;
4542 }
4543 if (!*slot)
4544 {
4545 *slot = entry;
4546 arg->g->page_gotno += entry->num_pages;
4547 }
4548 return 1;
4549 }
4550
4551 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4552 this would lead to overflow, 1 if they were merged successfully,
4553 and 0 if a merge failed due to lack of memory. (These values are chosen
4554 so that nonnegative return values can be returned by a htab_traverse
4555 callback.) */
4556
4557 static int
4558 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4559 struct mips_got_info *to,
4560 struct mips_elf_got_per_bfd_arg *arg)
4561 {
4562 struct mips_elf_traverse_got_arg tga;
4563 unsigned int estimate;
4564
4565 /* Work out how many page entries we would need for the combined GOT. */
4566 estimate = arg->max_pages;
4567 if (estimate >= from->page_gotno + to->page_gotno)
4568 estimate = from->page_gotno + to->page_gotno;
4569
4570 /* And conservatively estimate how many local and TLS entries
4571 would be needed. */
4572 estimate += from->local_gotno + to->local_gotno;
4573 estimate += from->tls_gotno + to->tls_gotno;
4574
4575 /* If we're merging with the primary got, any TLS relocations will
4576 come after the full set of global entries. Otherwise estimate those
4577 conservatively as well. */
4578 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4579 estimate += arg->global_count;
4580 else
4581 estimate += from->global_gotno + to->global_gotno;
4582
4583 /* Bail out if the combined GOT might be too big. */
4584 if (estimate > arg->max_count)
4585 return -1;
4586
4587 /* Transfer the bfd's got information from FROM to TO. */
4588 tga.info = arg->info;
4589 tga.g = to;
4590 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4591 if (!tga.g)
4592 return 0;
4593
4594 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4595 if (!tga.g)
4596 return 0;
4597
4598 mips_elf_replace_bfd_got (abfd, to);
4599 return 1;
4600 }
4601
4602 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4603 as possible of the primary got, since it doesn't require explicit
4604 dynamic relocations, but don't use bfds that would reference global
4605 symbols out of the addressable range. Failing the primary got,
4606 attempt to merge with the current got, or finish the current got
4607 and then make make the new got current. */
4608
4609 static bfd_boolean
4610 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4611 struct mips_elf_got_per_bfd_arg *arg)
4612 {
4613 unsigned int estimate;
4614 int result;
4615
4616 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4617 return FALSE;
4618
4619 /* Work out the number of page, local and TLS entries. */
4620 estimate = arg->max_pages;
4621 if (estimate > g->page_gotno)
4622 estimate = g->page_gotno;
4623 estimate += g->local_gotno + g->tls_gotno;
4624
4625 /* We place TLS GOT entries after both locals and globals. The globals
4626 for the primary GOT may overflow the normal GOT size limit, so be
4627 sure not to merge a GOT which requires TLS with the primary GOT in that
4628 case. This doesn't affect non-primary GOTs. */
4629 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4630
4631 if (estimate <= arg->max_count)
4632 {
4633 /* If we don't have a primary GOT, use it as
4634 a starting point for the primary GOT. */
4635 if (!arg->primary)
4636 {
4637 arg->primary = g;
4638 return TRUE;
4639 }
4640
4641 /* Try merging with the primary GOT. */
4642 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4643 if (result >= 0)
4644 return result;
4645 }
4646
4647 /* If we can merge with the last-created got, do it. */
4648 if (arg->current)
4649 {
4650 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4651 if (result >= 0)
4652 return result;
4653 }
4654
4655 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4656 fits; if it turns out that it doesn't, we'll get relocation
4657 overflows anyway. */
4658 g->next = arg->current;
4659 arg->current = g;
4660
4661 return TRUE;
4662 }
4663
4664 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4665 to GOTIDX, duplicating the entry if it has already been assigned
4666 an index in a different GOT. */
4667
4668 static bfd_boolean
4669 mips_elf_set_gotidx (void **entryp, long gotidx)
4670 {
4671 struct mips_got_entry *entry;
4672
4673 entry = (struct mips_got_entry *) *entryp;
4674 if (entry->gotidx > 0)
4675 {
4676 struct mips_got_entry *new_entry;
4677
4678 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4679 if (!new_entry)
4680 return FALSE;
4681
4682 *new_entry = *entry;
4683 *entryp = new_entry;
4684 entry = new_entry;
4685 }
4686 entry->gotidx = gotidx;
4687 return TRUE;
4688 }
4689
4690 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4691 mips_elf_traverse_got_arg in which DATA->value is the size of one
4692 GOT entry. Set DATA->g to null on failure. */
4693
4694 static int
4695 mips_elf_initialize_tls_index (void **entryp, void *data)
4696 {
4697 struct mips_got_entry *entry;
4698 struct mips_elf_traverse_got_arg *arg;
4699
4700 /* We're only interested in TLS symbols. */
4701 entry = (struct mips_got_entry *) *entryp;
4702 if (entry->tls_type == GOT_TLS_NONE)
4703 return 1;
4704
4705 arg = (struct mips_elf_traverse_got_arg *) data;
4706 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4707 {
4708 arg->g = NULL;
4709 return 0;
4710 }
4711
4712 /* Account for the entries we've just allocated. */
4713 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4714 return 1;
4715 }
4716
4717 /* A htab_traverse callback for GOT entries, where DATA points to a
4718 mips_elf_traverse_got_arg. Set the global_got_area of each global
4719 symbol to DATA->value. */
4720
4721 static int
4722 mips_elf_set_global_got_area (void **entryp, void *data)
4723 {
4724 struct mips_got_entry *entry;
4725 struct mips_elf_traverse_got_arg *arg;
4726
4727 entry = (struct mips_got_entry *) *entryp;
4728 arg = (struct mips_elf_traverse_got_arg *) data;
4729 if (entry->abfd != NULL
4730 && entry->symndx == -1
4731 && entry->d.h->global_got_area != GGA_NONE)
4732 entry->d.h->global_got_area = arg->value;
4733 return 1;
4734 }
4735
4736 /* A htab_traverse callback for secondary GOT entries, where DATA points
4737 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4738 and record the number of relocations they require. DATA->value is
4739 the size of one GOT entry. Set DATA->g to null on failure. */
4740
4741 static int
4742 mips_elf_set_global_gotidx (void **entryp, void *data)
4743 {
4744 struct mips_got_entry *entry;
4745 struct mips_elf_traverse_got_arg *arg;
4746
4747 entry = (struct mips_got_entry *) *entryp;
4748 arg = (struct mips_elf_traverse_got_arg *) data;
4749 if (entry->abfd != NULL
4750 && entry->symndx == -1
4751 && entry->d.h->global_got_area != GGA_NONE)
4752 {
4753 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4754 {
4755 arg->g = NULL;
4756 return 0;
4757 }
4758 arg->g->assigned_low_gotno += 1;
4759
4760 if (bfd_link_pic (arg->info)
4761 || (elf_hash_table (arg->info)->dynamic_sections_created
4762 && entry->d.h->root.def_dynamic
4763 && !entry->d.h->root.def_regular))
4764 arg->g->relocs += 1;
4765 }
4766
4767 return 1;
4768 }
4769
4770 /* A htab_traverse callback for GOT entries for which DATA is the
4771 bfd_link_info. Forbid any global symbols from having traditional
4772 lazy-binding stubs. */
4773
4774 static int
4775 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4776 {
4777 struct bfd_link_info *info;
4778 struct mips_elf_link_hash_table *htab;
4779 struct mips_got_entry *entry;
4780
4781 entry = (struct mips_got_entry *) *entryp;
4782 info = (struct bfd_link_info *) data;
4783 htab = mips_elf_hash_table (info);
4784 BFD_ASSERT (htab != NULL);
4785
4786 if (entry->abfd != NULL
4787 && entry->symndx == -1
4788 && entry->d.h->needs_lazy_stub)
4789 {
4790 entry->d.h->needs_lazy_stub = FALSE;
4791 htab->lazy_stub_count--;
4792 }
4793
4794 return 1;
4795 }
4796
4797 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4798 the primary GOT. */
4799 static bfd_vma
4800 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4801 {
4802 if (!g->next)
4803 return 0;
4804
4805 g = mips_elf_bfd_got (ibfd, FALSE);
4806 if (! g)
4807 return 0;
4808
4809 BFD_ASSERT (g->next);
4810
4811 g = g->next;
4812
4813 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4814 * MIPS_ELF_GOT_SIZE (abfd);
4815 }
4816
4817 /* Turn a single GOT that is too big for 16-bit addressing into
4818 a sequence of GOTs, each one 16-bit addressable. */
4819
4820 static bfd_boolean
4821 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4822 asection *got, bfd_size_type pages)
4823 {
4824 struct mips_elf_link_hash_table *htab;
4825 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4826 struct mips_elf_traverse_got_arg tga;
4827 struct mips_got_info *g, *gg;
4828 unsigned int assign, needed_relocs;
4829 bfd *dynobj, *ibfd;
4830
4831 dynobj = elf_hash_table (info)->dynobj;
4832 htab = mips_elf_hash_table (info);
4833 BFD_ASSERT (htab != NULL);
4834
4835 g = htab->got_info;
4836
4837 got_per_bfd_arg.obfd = abfd;
4838 got_per_bfd_arg.info = info;
4839 got_per_bfd_arg.current = NULL;
4840 got_per_bfd_arg.primary = NULL;
4841 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4842 / MIPS_ELF_GOT_SIZE (abfd))
4843 - htab->reserved_gotno);
4844 got_per_bfd_arg.max_pages = pages;
4845 /* The number of globals that will be included in the primary GOT.
4846 See the calls to mips_elf_set_global_got_area below for more
4847 information. */
4848 got_per_bfd_arg.global_count = g->global_gotno;
4849
4850 /* Try to merge the GOTs of input bfds together, as long as they
4851 don't seem to exceed the maximum GOT size, choosing one of them
4852 to be the primary GOT. */
4853 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4854 {
4855 gg = mips_elf_bfd_got (ibfd, FALSE);
4856 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4857 return FALSE;
4858 }
4859
4860 /* If we do not find any suitable primary GOT, create an empty one. */
4861 if (got_per_bfd_arg.primary == NULL)
4862 g->next = mips_elf_create_got_info (abfd);
4863 else
4864 g->next = got_per_bfd_arg.primary;
4865 g->next->next = got_per_bfd_arg.current;
4866
4867 /* GG is now the master GOT, and G is the primary GOT. */
4868 gg = g;
4869 g = g->next;
4870
4871 /* Map the output bfd to the primary got. That's what we're going
4872 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4873 didn't mark in check_relocs, and we want a quick way to find it.
4874 We can't just use gg->next because we're going to reverse the
4875 list. */
4876 mips_elf_replace_bfd_got (abfd, g);
4877
4878 /* Every symbol that is referenced in a dynamic relocation must be
4879 present in the primary GOT, so arrange for them to appear after
4880 those that are actually referenced. */
4881 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4882 g->global_gotno = gg->global_gotno;
4883
4884 tga.info = info;
4885 tga.value = GGA_RELOC_ONLY;
4886 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4887 tga.value = GGA_NORMAL;
4888 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4889
4890 /* Now go through the GOTs assigning them offset ranges.
4891 [assigned_low_gotno, local_gotno[ will be set to the range of local
4892 entries in each GOT. We can then compute the end of a GOT by
4893 adding local_gotno to global_gotno. We reverse the list and make
4894 it circular since then we'll be able to quickly compute the
4895 beginning of a GOT, by computing the end of its predecessor. To
4896 avoid special cases for the primary GOT, while still preserving
4897 assertions that are valid for both single- and multi-got links,
4898 we arrange for the main got struct to have the right number of
4899 global entries, but set its local_gotno such that the initial
4900 offset of the primary GOT is zero. Remember that the primary GOT
4901 will become the last item in the circular linked list, so it
4902 points back to the master GOT. */
4903 gg->local_gotno = -g->global_gotno;
4904 gg->global_gotno = g->global_gotno;
4905 gg->tls_gotno = 0;
4906 assign = 0;
4907 gg->next = gg;
4908
4909 do
4910 {
4911 struct mips_got_info *gn;
4912
4913 assign += htab->reserved_gotno;
4914 g->assigned_low_gotno = assign;
4915 g->local_gotno += assign;
4916 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4917 g->assigned_high_gotno = g->local_gotno - 1;
4918 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4919
4920 /* Take g out of the direct list, and push it onto the reversed
4921 list that gg points to. g->next is guaranteed to be nonnull after
4922 this operation, as required by mips_elf_initialize_tls_index. */
4923 gn = g->next;
4924 g->next = gg->next;
4925 gg->next = g;
4926
4927 /* Set up any TLS entries. We always place the TLS entries after
4928 all non-TLS entries. */
4929 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4930 tga.g = g;
4931 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4932 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4933 if (!tga.g)
4934 return FALSE;
4935 BFD_ASSERT (g->tls_assigned_gotno == assign);
4936
4937 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4938 g = gn;
4939
4940 /* Forbid global symbols in every non-primary GOT from having
4941 lazy-binding stubs. */
4942 if (g)
4943 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4944 }
4945 while (g);
4946
4947 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
4948
4949 needed_relocs = 0;
4950 for (g = gg->next; g && g->next != gg; g = g->next)
4951 {
4952 unsigned int save_assign;
4953
4954 /* Assign offsets to global GOT entries and count how many
4955 relocations they need. */
4956 save_assign = g->assigned_low_gotno;
4957 g->assigned_low_gotno = g->local_gotno;
4958 tga.info = info;
4959 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4960 tga.g = g;
4961 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
4962 if (!tga.g)
4963 return FALSE;
4964 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4965 g->assigned_low_gotno = save_assign;
4966
4967 if (bfd_link_pic (info))
4968 {
4969 g->relocs += g->local_gotno - g->assigned_low_gotno;
4970 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
4971 + g->next->global_gotno
4972 + g->next->tls_gotno
4973 + htab->reserved_gotno);
4974 }
4975 needed_relocs += g->relocs;
4976 }
4977 needed_relocs += g->relocs;
4978
4979 if (needed_relocs)
4980 mips_elf_allocate_dynamic_relocations (dynobj, info,
4981 needed_relocs);
4982
4983 return TRUE;
4984 }
4985
4986 \f
4987 /* Returns the first relocation of type r_type found, beginning with
4988 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4989
4990 static const Elf_Internal_Rela *
4991 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4992 const Elf_Internal_Rela *relocation,
4993 const Elf_Internal_Rela *relend)
4994 {
4995 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4996
4997 while (relocation < relend)
4998 {
4999 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
5000 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
5001 return relocation;
5002
5003 ++relocation;
5004 }
5005
5006 /* We didn't find it. */
5007 return NULL;
5008 }
5009
5010 /* Return whether an input relocation is against a local symbol. */
5011
5012 static bfd_boolean
5013 mips_elf_local_relocation_p (bfd *input_bfd,
5014 const Elf_Internal_Rela *relocation,
5015 asection **local_sections)
5016 {
5017 unsigned long r_symndx;
5018 Elf_Internal_Shdr *symtab_hdr;
5019 size_t extsymoff;
5020
5021 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5022 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5023 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5024
5025 if (r_symndx < extsymoff)
5026 return TRUE;
5027 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5028 return TRUE;
5029
5030 return FALSE;
5031 }
5032 \f
5033 /* Sign-extend VALUE, which has the indicated number of BITS. */
5034
5035 bfd_vma
5036 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
5037 {
5038 if (value & ((bfd_vma) 1 << (bits - 1)))
5039 /* VALUE is negative. */
5040 value |= ((bfd_vma) - 1) << bits;
5041
5042 return value;
5043 }
5044
5045 /* Return non-zero if the indicated VALUE has overflowed the maximum
5046 range expressible by a signed number with the indicated number of
5047 BITS. */
5048
5049 static bfd_boolean
5050 mips_elf_overflow_p (bfd_vma value, int bits)
5051 {
5052 bfd_signed_vma svalue = (bfd_signed_vma) value;
5053
5054 if (svalue > (1 << (bits - 1)) - 1)
5055 /* The value is too big. */
5056 return TRUE;
5057 else if (svalue < -(1 << (bits - 1)))
5058 /* The value is too small. */
5059 return TRUE;
5060
5061 /* All is well. */
5062 return FALSE;
5063 }
5064
5065 /* Calculate the %high function. */
5066
5067 static bfd_vma
5068 mips_elf_high (bfd_vma value)
5069 {
5070 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5071 }
5072
5073 /* Calculate the %higher function. */
5074
5075 static bfd_vma
5076 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5077 {
5078 #ifdef BFD64
5079 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5080 #else
5081 abort ();
5082 return MINUS_ONE;
5083 #endif
5084 }
5085
5086 /* Calculate the %highest function. */
5087
5088 static bfd_vma
5089 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5090 {
5091 #ifdef BFD64
5092 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5093 #else
5094 abort ();
5095 return MINUS_ONE;
5096 #endif
5097 }
5098 \f
5099 /* Create the .compact_rel section. */
5100
5101 static bfd_boolean
5102 mips_elf_create_compact_rel_section
5103 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5104 {
5105 flagword flags;
5106 register asection *s;
5107
5108 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5109 {
5110 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5111 | SEC_READONLY);
5112
5113 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5114 if (s == NULL
5115 || ! bfd_set_section_alignment (abfd, s,
5116 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5117 return FALSE;
5118
5119 s->size = sizeof (Elf32_External_compact_rel);
5120 }
5121
5122 return TRUE;
5123 }
5124
5125 /* Create the .got section to hold the global offset table. */
5126
5127 static bfd_boolean
5128 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5129 {
5130 flagword flags;
5131 register asection *s;
5132 struct elf_link_hash_entry *h;
5133 struct bfd_link_hash_entry *bh;
5134 struct mips_elf_link_hash_table *htab;
5135
5136 htab = mips_elf_hash_table (info);
5137 BFD_ASSERT (htab != NULL);
5138
5139 /* This function may be called more than once. */
5140 if (htab->sgot)
5141 return TRUE;
5142
5143 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5144 | SEC_LINKER_CREATED);
5145
5146 /* We have to use an alignment of 2**4 here because this is hardcoded
5147 in the function stub generation and in the linker script. */
5148 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5149 if (s == NULL
5150 || ! bfd_set_section_alignment (abfd, s, 4))
5151 return FALSE;
5152 htab->sgot = s;
5153
5154 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5155 linker script because we don't want to define the symbol if we
5156 are not creating a global offset table. */
5157 bh = NULL;
5158 if (! (_bfd_generic_link_add_one_symbol
5159 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5160 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5161 return FALSE;
5162
5163 h = (struct elf_link_hash_entry *) bh;
5164 h->non_elf = 0;
5165 h->def_regular = 1;
5166 h->type = STT_OBJECT;
5167 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5168 elf_hash_table (info)->hgot = h;
5169
5170 if (bfd_link_pic (info)
5171 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5172 return FALSE;
5173
5174 htab->got_info = mips_elf_create_got_info (abfd);
5175 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5176 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5177
5178 /* We also need a .got.plt section when generating PLTs. */
5179 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5180 SEC_ALLOC | SEC_LOAD
5181 | SEC_HAS_CONTENTS
5182 | SEC_IN_MEMORY
5183 | SEC_LINKER_CREATED);
5184 if (s == NULL)
5185 return FALSE;
5186 htab->sgotplt = s;
5187
5188 return TRUE;
5189 }
5190 \f
5191 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5192 __GOTT_INDEX__ symbols. These symbols are only special for
5193 shared objects; they are not used in executables. */
5194
5195 static bfd_boolean
5196 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5197 {
5198 return (mips_elf_hash_table (info)->is_vxworks
5199 && bfd_link_pic (info)
5200 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5201 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5202 }
5203
5204 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5205 require an la25 stub. See also mips_elf_local_pic_function_p,
5206 which determines whether the destination function ever requires a
5207 stub. */
5208
5209 static bfd_boolean
5210 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5211 bfd_boolean target_is_16_bit_code_p)
5212 {
5213 /* We specifically ignore branches and jumps from EF_PIC objects,
5214 where the onus is on the compiler or programmer to perform any
5215 necessary initialization of $25. Sometimes such initialization
5216 is unnecessary; for example, -mno-shared functions do not use
5217 the incoming value of $25, and may therefore be called directly. */
5218 if (PIC_OBJECT_P (input_bfd))
5219 return FALSE;
5220
5221 switch (r_type)
5222 {
5223 case R_MIPS_26:
5224 case R_MIPS_PC16:
5225 case R_MIPS_PC21_S2:
5226 case R_MIPS_PC26_S2:
5227 case R_MICROMIPS_26_S1:
5228 case R_MICROMIPS_PC7_S1:
5229 case R_MICROMIPS_PC10_S1:
5230 case R_MICROMIPS_PC16_S1:
5231 case R_MICROMIPS_PC23_S2:
5232 return TRUE;
5233
5234 case R_MIPS16_26:
5235 return !target_is_16_bit_code_p;
5236
5237 default:
5238 return FALSE;
5239 }
5240 }
5241 \f
5242 /* Calculate the value produced by the RELOCATION (which comes from
5243 the INPUT_BFD). The ADDEND is the addend to use for this
5244 RELOCATION; RELOCATION->R_ADDEND is ignored.
5245
5246 The result of the relocation calculation is stored in VALUEP.
5247 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5248 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5249
5250 This function returns bfd_reloc_continue if the caller need take no
5251 further action regarding this relocation, bfd_reloc_notsupported if
5252 something goes dramatically wrong, bfd_reloc_overflow if an
5253 overflow occurs, and bfd_reloc_ok to indicate success. */
5254
5255 static bfd_reloc_status_type
5256 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5257 asection *input_section,
5258 struct bfd_link_info *info,
5259 const Elf_Internal_Rela *relocation,
5260 bfd_vma addend, reloc_howto_type *howto,
5261 Elf_Internal_Sym *local_syms,
5262 asection **local_sections, bfd_vma *valuep,
5263 const char **namep,
5264 bfd_boolean *cross_mode_jump_p,
5265 bfd_boolean save_addend)
5266 {
5267 /* The eventual value we will return. */
5268 bfd_vma value;
5269 /* The address of the symbol against which the relocation is
5270 occurring. */
5271 bfd_vma symbol = 0;
5272 /* The final GP value to be used for the relocatable, executable, or
5273 shared object file being produced. */
5274 bfd_vma gp;
5275 /* The place (section offset or address) of the storage unit being
5276 relocated. */
5277 bfd_vma p;
5278 /* The value of GP used to create the relocatable object. */
5279 bfd_vma gp0;
5280 /* The offset into the global offset table at which the address of
5281 the relocation entry symbol, adjusted by the addend, resides
5282 during execution. */
5283 bfd_vma g = MINUS_ONE;
5284 /* The section in which the symbol referenced by the relocation is
5285 located. */
5286 asection *sec = NULL;
5287 struct mips_elf_link_hash_entry *h = NULL;
5288 /* TRUE if the symbol referred to by this relocation is a local
5289 symbol. */
5290 bfd_boolean local_p, was_local_p;
5291 /* TRUE if the symbol referred to by this relocation is a section
5292 symbol. */
5293 bfd_boolean section_p = FALSE;
5294 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5295 bfd_boolean gp_disp_p = FALSE;
5296 /* TRUE if the symbol referred to by this relocation is
5297 "__gnu_local_gp". */
5298 bfd_boolean gnu_local_gp_p = FALSE;
5299 Elf_Internal_Shdr *symtab_hdr;
5300 size_t extsymoff;
5301 unsigned long r_symndx;
5302 int r_type;
5303 /* TRUE if overflow occurred during the calculation of the
5304 relocation value. */
5305 bfd_boolean overflowed_p;
5306 /* TRUE if this relocation refers to a MIPS16 function. */
5307 bfd_boolean target_is_16_bit_code_p = FALSE;
5308 bfd_boolean target_is_micromips_code_p = FALSE;
5309 struct mips_elf_link_hash_table *htab;
5310 bfd *dynobj;
5311
5312 dynobj = elf_hash_table (info)->dynobj;
5313 htab = mips_elf_hash_table (info);
5314 BFD_ASSERT (htab != NULL);
5315
5316 /* Parse the relocation. */
5317 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5318 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5319 p = (input_section->output_section->vma
5320 + input_section->output_offset
5321 + relocation->r_offset);
5322
5323 /* Assume that there will be no overflow. */
5324 overflowed_p = FALSE;
5325
5326 /* Figure out whether or not the symbol is local, and get the offset
5327 used in the array of hash table entries. */
5328 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5329 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5330 local_sections);
5331 was_local_p = local_p;
5332 if (! elf_bad_symtab (input_bfd))
5333 extsymoff = symtab_hdr->sh_info;
5334 else
5335 {
5336 /* The symbol table does not follow the rule that local symbols
5337 must come before globals. */
5338 extsymoff = 0;
5339 }
5340
5341 /* Figure out the value of the symbol. */
5342 if (local_p)
5343 {
5344 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5345 Elf_Internal_Sym *sym;
5346
5347 sym = local_syms + r_symndx;
5348 sec = local_sections[r_symndx];
5349
5350 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5351
5352 symbol = sec->output_section->vma + sec->output_offset;
5353 if (!section_p || (sec->flags & SEC_MERGE))
5354 symbol += sym->st_value;
5355 if ((sec->flags & SEC_MERGE) && section_p)
5356 {
5357 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5358 addend -= symbol;
5359 addend += sec->output_section->vma + sec->output_offset;
5360 }
5361
5362 /* MIPS16/microMIPS text labels should be treated as odd. */
5363 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5364 ++symbol;
5365
5366 /* Record the name of this symbol, for our caller. */
5367 *namep = bfd_elf_string_from_elf_section (input_bfd,
5368 symtab_hdr->sh_link,
5369 sym->st_name);
5370 if (*namep == NULL || **namep == '\0')
5371 *namep = bfd_section_name (input_bfd, sec);
5372
5373 /* For relocations against a section symbol and ones against no
5374 symbol (absolute relocations) infer the ISA mode from the addend. */
5375 if (section_p || r_symndx == STN_UNDEF)
5376 {
5377 target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5378 target_is_micromips_code_p = (addend & 1) && micromips_p;
5379 }
5380 /* For relocations against an absolute symbol infer the ISA mode
5381 from the value of the symbol plus addend. */
5382 else if (bfd_is_abs_section (sec))
5383 {
5384 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5385 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5386 }
5387 /* Otherwise just use the regular symbol annotation available. */
5388 else
5389 {
5390 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5391 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5392 }
5393 }
5394 else
5395 {
5396 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5397
5398 /* For global symbols we look up the symbol in the hash-table. */
5399 h = ((struct mips_elf_link_hash_entry *)
5400 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5401 /* Find the real hash-table entry for this symbol. */
5402 while (h->root.root.type == bfd_link_hash_indirect
5403 || h->root.root.type == bfd_link_hash_warning)
5404 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5405
5406 /* Record the name of this symbol, for our caller. */
5407 *namep = h->root.root.root.string;
5408
5409 /* See if this is the special _gp_disp symbol. Note that such a
5410 symbol must always be a global symbol. */
5411 if (strcmp (*namep, "_gp_disp") == 0
5412 && ! NEWABI_P (input_bfd))
5413 {
5414 /* Relocations against _gp_disp are permitted only with
5415 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5416 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5417 return bfd_reloc_notsupported;
5418
5419 gp_disp_p = TRUE;
5420 }
5421 /* See if this is the special _gp symbol. Note that such a
5422 symbol must always be a global symbol. */
5423 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5424 gnu_local_gp_p = TRUE;
5425
5426
5427 /* If this symbol is defined, calculate its address. Note that
5428 _gp_disp is a magic symbol, always implicitly defined by the
5429 linker, so it's inappropriate to check to see whether or not
5430 its defined. */
5431 else if ((h->root.root.type == bfd_link_hash_defined
5432 || h->root.root.type == bfd_link_hash_defweak)
5433 && h->root.root.u.def.section)
5434 {
5435 sec = h->root.root.u.def.section;
5436 if (sec->output_section)
5437 symbol = (h->root.root.u.def.value
5438 + sec->output_section->vma
5439 + sec->output_offset);
5440 else
5441 symbol = h->root.root.u.def.value;
5442 }
5443 else if (h->root.root.type == bfd_link_hash_undefweak)
5444 /* We allow relocations against undefined weak symbols, giving
5445 it the value zero, so that you can undefined weak functions
5446 and check to see if they exist by looking at their
5447 addresses. */
5448 symbol = 0;
5449 else if (info->unresolved_syms_in_objects == RM_IGNORE
5450 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5451 symbol = 0;
5452 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5453 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5454 {
5455 /* If this is a dynamic link, we should have created a
5456 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5457 in in _bfd_mips_elf_create_dynamic_sections.
5458 Otherwise, we should define the symbol with a value of 0.
5459 FIXME: It should probably get into the symbol table
5460 somehow as well. */
5461 BFD_ASSERT (! bfd_link_pic (info));
5462 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5463 symbol = 0;
5464 }
5465 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5466 {
5467 /* This is an optional symbol - an Irix specific extension to the
5468 ELF spec. Ignore it for now.
5469 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5470 than simply ignoring them, but we do not handle this for now.
5471 For information see the "64-bit ELF Object File Specification"
5472 which is available from here:
5473 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5474 symbol = 0;
5475 }
5476 else
5477 {
5478 (*info->callbacks->undefined_symbol)
5479 (info, h->root.root.root.string, input_bfd,
5480 input_section, relocation->r_offset,
5481 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5482 || ELF_ST_VISIBILITY (h->root.other));
5483 return bfd_reloc_undefined;
5484 }
5485
5486 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5487 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5488 }
5489
5490 /* If this is a reference to a 16-bit function with a stub, we need
5491 to redirect the relocation to the stub unless:
5492
5493 (a) the relocation is for a MIPS16 JAL;
5494
5495 (b) the relocation is for a MIPS16 PIC call, and there are no
5496 non-MIPS16 uses of the GOT slot; or
5497
5498 (c) the section allows direct references to MIPS16 functions. */
5499 if (r_type != R_MIPS16_26
5500 && !bfd_link_relocatable (info)
5501 && ((h != NULL
5502 && h->fn_stub != NULL
5503 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5504 || (local_p
5505 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5506 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5507 && !section_allows_mips16_refs_p (input_section))
5508 {
5509 /* This is a 32- or 64-bit call to a 16-bit function. We should
5510 have already noticed that we were going to need the
5511 stub. */
5512 if (local_p)
5513 {
5514 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5515 value = 0;
5516 }
5517 else
5518 {
5519 BFD_ASSERT (h->need_fn_stub);
5520 if (h->la25_stub)
5521 {
5522 /* If a LA25 header for the stub itself exists, point to the
5523 prepended LUI/ADDIU sequence. */
5524 sec = h->la25_stub->stub_section;
5525 value = h->la25_stub->offset;
5526 }
5527 else
5528 {
5529 sec = h->fn_stub;
5530 value = 0;
5531 }
5532 }
5533
5534 symbol = sec->output_section->vma + sec->output_offset + value;
5535 /* The target is 16-bit, but the stub isn't. */
5536 target_is_16_bit_code_p = FALSE;
5537 }
5538 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5539 to a standard MIPS function, we need to redirect the call to the stub.
5540 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5541 indirect calls should use an indirect stub instead. */
5542 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
5543 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5544 || (local_p
5545 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5546 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5547 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5548 {
5549 if (local_p)
5550 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5551 else
5552 {
5553 /* If both call_stub and call_fp_stub are defined, we can figure
5554 out which one to use by checking which one appears in the input
5555 file. */
5556 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5557 {
5558 asection *o;
5559
5560 sec = NULL;
5561 for (o = input_bfd->sections; o != NULL; o = o->next)
5562 {
5563 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5564 {
5565 sec = h->call_fp_stub;
5566 break;
5567 }
5568 }
5569 if (sec == NULL)
5570 sec = h->call_stub;
5571 }
5572 else if (h->call_stub != NULL)
5573 sec = h->call_stub;
5574 else
5575 sec = h->call_fp_stub;
5576 }
5577
5578 BFD_ASSERT (sec->size > 0);
5579 symbol = sec->output_section->vma + sec->output_offset;
5580 }
5581 /* If this is a direct call to a PIC function, redirect to the
5582 non-PIC stub. */
5583 else if (h != NULL && h->la25_stub
5584 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5585 target_is_16_bit_code_p))
5586 {
5587 symbol = (h->la25_stub->stub_section->output_section->vma
5588 + h->la25_stub->stub_section->output_offset
5589 + h->la25_stub->offset);
5590 if (ELF_ST_IS_MICROMIPS (h->root.other))
5591 symbol |= 1;
5592 }
5593 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5594 entry is used if a standard PLT entry has also been made. In this
5595 case the symbol will have been set by mips_elf_set_plt_sym_value
5596 to point to the standard PLT entry, so redirect to the compressed
5597 one. */
5598 else if ((mips16_branch_reloc_p (r_type)
5599 || micromips_branch_reloc_p (r_type))
5600 && !bfd_link_relocatable (info)
5601 && h != NULL
5602 && h->use_plt_entry
5603 && h->root.plt.plist->comp_offset != MINUS_ONE
5604 && h->root.plt.plist->mips_offset != MINUS_ONE)
5605 {
5606 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5607
5608 sec = htab->splt;
5609 symbol = (sec->output_section->vma
5610 + sec->output_offset
5611 + htab->plt_header_size
5612 + htab->plt_mips_offset
5613 + h->root.plt.plist->comp_offset
5614 + 1);
5615
5616 target_is_16_bit_code_p = !micromips_p;
5617 target_is_micromips_code_p = micromips_p;
5618 }
5619
5620 /* Make sure MIPS16 and microMIPS are not used together. */
5621 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
5622 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5623 {
5624 _bfd_error_handler
5625 (_("MIPS16 and microMIPS functions cannot call each other"));
5626 return bfd_reloc_notsupported;
5627 }
5628
5629 /* Calls from 16-bit code to 32-bit code and vice versa require the
5630 mode change. However, we can ignore calls to undefined weak symbols,
5631 which should never be executed at runtime. This exception is important
5632 because the assembly writer may have "known" that any definition of the
5633 symbol would be 16-bit code, and that direct jumps were therefore
5634 acceptable. */
5635 *cross_mode_jump_p = (!bfd_link_relocatable (info)
5636 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5637 && ((mips16_branch_reloc_p (r_type)
5638 && !target_is_16_bit_code_p)
5639 || (micromips_branch_reloc_p (r_type)
5640 && !target_is_micromips_code_p)
5641 || ((branch_reloc_p (r_type)
5642 || r_type == R_MIPS_JALR)
5643 && (target_is_16_bit_code_p
5644 || target_is_micromips_code_p))));
5645
5646 local_p = (h == NULL || mips_use_local_got_p (info, h));
5647
5648 gp0 = _bfd_get_gp_value (input_bfd);
5649 gp = _bfd_get_gp_value (abfd);
5650 if (htab->got_info)
5651 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5652
5653 if (gnu_local_gp_p)
5654 symbol = gp;
5655
5656 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5657 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5658 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5659 if (got_page_reloc_p (r_type) && !local_p)
5660 {
5661 r_type = (micromips_reloc_p (r_type)
5662 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5663 addend = 0;
5664 }
5665
5666 /* If we haven't already determined the GOT offset, and we're going
5667 to need it, get it now. */
5668 switch (r_type)
5669 {
5670 case R_MIPS16_CALL16:
5671 case R_MIPS16_GOT16:
5672 case R_MIPS_CALL16:
5673 case R_MIPS_GOT16:
5674 case R_MIPS_GOT_DISP:
5675 case R_MIPS_GOT_HI16:
5676 case R_MIPS_CALL_HI16:
5677 case R_MIPS_GOT_LO16:
5678 case R_MIPS_CALL_LO16:
5679 case R_MICROMIPS_CALL16:
5680 case R_MICROMIPS_GOT16:
5681 case R_MICROMIPS_GOT_DISP:
5682 case R_MICROMIPS_GOT_HI16:
5683 case R_MICROMIPS_CALL_HI16:
5684 case R_MICROMIPS_GOT_LO16:
5685 case R_MICROMIPS_CALL_LO16:
5686 case R_MIPS_TLS_GD:
5687 case R_MIPS_TLS_GOTTPREL:
5688 case R_MIPS_TLS_LDM:
5689 case R_MIPS16_TLS_GD:
5690 case R_MIPS16_TLS_GOTTPREL:
5691 case R_MIPS16_TLS_LDM:
5692 case R_MICROMIPS_TLS_GD:
5693 case R_MICROMIPS_TLS_GOTTPREL:
5694 case R_MICROMIPS_TLS_LDM:
5695 /* Find the index into the GOT where this value is located. */
5696 if (tls_ldm_reloc_p (r_type))
5697 {
5698 g = mips_elf_local_got_index (abfd, input_bfd, info,
5699 0, 0, NULL, r_type);
5700 if (g == MINUS_ONE)
5701 return bfd_reloc_outofrange;
5702 }
5703 else if (!local_p)
5704 {
5705 /* On VxWorks, CALL relocations should refer to the .got.plt
5706 entry, which is initialized to point at the PLT stub. */
5707 if (htab->is_vxworks
5708 && (call_hi16_reloc_p (r_type)
5709 || call_lo16_reloc_p (r_type)
5710 || call16_reloc_p (r_type)))
5711 {
5712 BFD_ASSERT (addend == 0);
5713 BFD_ASSERT (h->root.needs_plt);
5714 g = mips_elf_gotplt_index (info, &h->root);
5715 }
5716 else
5717 {
5718 BFD_ASSERT (addend == 0);
5719 g = mips_elf_global_got_index (abfd, info, input_bfd,
5720 &h->root, r_type);
5721 if (!TLS_RELOC_P (r_type)
5722 && !elf_hash_table (info)->dynamic_sections_created)
5723 /* This is a static link. We must initialize the GOT entry. */
5724 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5725 }
5726 }
5727 else if (!htab->is_vxworks
5728 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5729 /* The calculation below does not involve "g". */
5730 break;
5731 else
5732 {
5733 g = mips_elf_local_got_index (abfd, input_bfd, info,
5734 symbol + addend, r_symndx, h, r_type);
5735 if (g == MINUS_ONE)
5736 return bfd_reloc_outofrange;
5737 }
5738
5739 /* Convert GOT indices to actual offsets. */
5740 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5741 break;
5742 }
5743
5744 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5745 symbols are resolved by the loader. Add them to .rela.dyn. */
5746 if (h != NULL && is_gott_symbol (info, &h->root))
5747 {
5748 Elf_Internal_Rela outrel;
5749 bfd_byte *loc;
5750 asection *s;
5751
5752 s = mips_elf_rel_dyn_section (info, FALSE);
5753 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5754
5755 outrel.r_offset = (input_section->output_section->vma
5756 + input_section->output_offset
5757 + relocation->r_offset);
5758 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5759 outrel.r_addend = addend;
5760 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5761
5762 /* If we've written this relocation for a readonly section,
5763 we need to set DF_TEXTREL again, so that we do not delete the
5764 DT_TEXTREL tag. */
5765 if (MIPS_ELF_READONLY_SECTION (input_section))
5766 info->flags |= DF_TEXTREL;
5767
5768 *valuep = 0;
5769 return bfd_reloc_ok;
5770 }
5771
5772 /* Figure out what kind of relocation is being performed. */
5773 switch (r_type)
5774 {
5775 case R_MIPS_NONE:
5776 return bfd_reloc_continue;
5777
5778 case R_MIPS_16:
5779 if (howto->partial_inplace)
5780 addend = _bfd_mips_elf_sign_extend (addend, 16);
5781 value = symbol + addend;
5782 overflowed_p = mips_elf_overflow_p (value, 16);
5783 break;
5784
5785 case R_MIPS_32:
5786 case R_MIPS_REL32:
5787 case R_MIPS_64:
5788 if ((bfd_link_pic (info)
5789 || (htab->root.dynamic_sections_created
5790 && h != NULL
5791 && h->root.def_dynamic
5792 && !h->root.def_regular
5793 && !h->has_static_relocs))
5794 && r_symndx != STN_UNDEF
5795 && (h == NULL
5796 || h->root.root.type != bfd_link_hash_undefweak
5797 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5798 && (input_section->flags & SEC_ALLOC) != 0)
5799 {
5800 /* If we're creating a shared library, then we can't know
5801 where the symbol will end up. So, we create a relocation
5802 record in the output, and leave the job up to the dynamic
5803 linker. We must do the same for executable references to
5804 shared library symbols, unless we've decided to use copy
5805 relocs or PLTs instead. */
5806 value = addend;
5807 if (!mips_elf_create_dynamic_relocation (abfd,
5808 info,
5809 relocation,
5810 h,
5811 sec,
5812 symbol,
5813 &value,
5814 input_section))
5815 return bfd_reloc_undefined;
5816 }
5817 else
5818 {
5819 if (r_type != R_MIPS_REL32)
5820 value = symbol + addend;
5821 else
5822 value = addend;
5823 }
5824 value &= howto->dst_mask;
5825 break;
5826
5827 case R_MIPS_PC32:
5828 value = symbol + addend - p;
5829 value &= howto->dst_mask;
5830 break;
5831
5832 case R_MIPS16_26:
5833 /* The calculation for R_MIPS16_26 is just the same as for an
5834 R_MIPS_26. It's only the storage of the relocated field into
5835 the output file that's different. That's handled in
5836 mips_elf_perform_relocation. So, we just fall through to the
5837 R_MIPS_26 case here. */
5838 case R_MIPS_26:
5839 case R_MICROMIPS_26_S1:
5840 {
5841 unsigned int shift;
5842
5843 /* Shift is 2, unusually, for microMIPS JALX. */
5844 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5845
5846 if (howto->partial_inplace && !section_p)
5847 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5848 else
5849 value = addend;
5850 value += symbol;
5851
5852 /* Make sure the target of a jump is suitably aligned. Bit 0 must
5853 be the correct ISA mode selector except for weak undefined
5854 symbols. */
5855 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5856 && (*cross_mode_jump_p
5857 ? (value & 3) != (r_type == R_MIPS_26)
5858 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
5859 return bfd_reloc_outofrange;
5860
5861 value >>= shift;
5862 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5863 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5864 value &= howto->dst_mask;
5865 }
5866 break;
5867
5868 case R_MIPS_TLS_DTPREL_HI16:
5869 case R_MIPS16_TLS_DTPREL_HI16:
5870 case R_MICROMIPS_TLS_DTPREL_HI16:
5871 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5872 & howto->dst_mask);
5873 break;
5874
5875 case R_MIPS_TLS_DTPREL_LO16:
5876 case R_MIPS_TLS_DTPREL32:
5877 case R_MIPS_TLS_DTPREL64:
5878 case R_MIPS16_TLS_DTPREL_LO16:
5879 case R_MICROMIPS_TLS_DTPREL_LO16:
5880 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5881 break;
5882
5883 case R_MIPS_TLS_TPREL_HI16:
5884 case R_MIPS16_TLS_TPREL_HI16:
5885 case R_MICROMIPS_TLS_TPREL_HI16:
5886 value = (mips_elf_high (addend + symbol - tprel_base (info))
5887 & howto->dst_mask);
5888 break;
5889
5890 case R_MIPS_TLS_TPREL_LO16:
5891 case R_MIPS_TLS_TPREL32:
5892 case R_MIPS_TLS_TPREL64:
5893 case R_MIPS16_TLS_TPREL_LO16:
5894 case R_MICROMIPS_TLS_TPREL_LO16:
5895 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5896 break;
5897
5898 case R_MIPS_HI16:
5899 case R_MIPS16_HI16:
5900 case R_MICROMIPS_HI16:
5901 if (!gp_disp_p)
5902 {
5903 value = mips_elf_high (addend + symbol);
5904 value &= howto->dst_mask;
5905 }
5906 else
5907 {
5908 /* For MIPS16 ABI code we generate this sequence
5909 0: li $v0,%hi(_gp_disp)
5910 4: addiupc $v1,%lo(_gp_disp)
5911 8: sll $v0,16
5912 12: addu $v0,$v1
5913 14: move $gp,$v0
5914 So the offsets of hi and lo relocs are the same, but the
5915 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5916 ADDIUPC clears the low two bits of the instruction address,
5917 so the base is ($t9 + 4) & ~3. */
5918 if (r_type == R_MIPS16_HI16)
5919 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5920 /* The microMIPS .cpload sequence uses the same assembly
5921 instructions as the traditional psABI version, but the
5922 incoming $t9 has the low bit set. */
5923 else if (r_type == R_MICROMIPS_HI16)
5924 value = mips_elf_high (addend + gp - p - 1);
5925 else
5926 value = mips_elf_high (addend + gp - p);
5927 overflowed_p = mips_elf_overflow_p (value, 16);
5928 }
5929 break;
5930
5931 case R_MIPS_LO16:
5932 case R_MIPS16_LO16:
5933 case R_MICROMIPS_LO16:
5934 case R_MICROMIPS_HI0_LO16:
5935 if (!gp_disp_p)
5936 value = (symbol + addend) & howto->dst_mask;
5937 else
5938 {
5939 /* See the comment for R_MIPS16_HI16 above for the reason
5940 for this conditional. */
5941 if (r_type == R_MIPS16_LO16)
5942 value = addend + gp - (p & ~(bfd_vma) 0x3);
5943 else if (r_type == R_MICROMIPS_LO16
5944 || r_type == R_MICROMIPS_HI0_LO16)
5945 value = addend + gp - p + 3;
5946 else
5947 value = addend + gp - p + 4;
5948 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5949 for overflow. But, on, say, IRIX5, relocations against
5950 _gp_disp are normally generated from the .cpload
5951 pseudo-op. It generates code that normally looks like
5952 this:
5953
5954 lui $gp,%hi(_gp_disp)
5955 addiu $gp,$gp,%lo(_gp_disp)
5956 addu $gp,$gp,$t9
5957
5958 Here $t9 holds the address of the function being called,
5959 as required by the MIPS ELF ABI. The R_MIPS_LO16
5960 relocation can easily overflow in this situation, but the
5961 R_MIPS_HI16 relocation will handle the overflow.
5962 Therefore, we consider this a bug in the MIPS ABI, and do
5963 not check for overflow here. */
5964 }
5965 break;
5966
5967 case R_MIPS_LITERAL:
5968 case R_MICROMIPS_LITERAL:
5969 /* Because we don't merge literal sections, we can handle this
5970 just like R_MIPS_GPREL16. In the long run, we should merge
5971 shared literals, and then we will need to additional work
5972 here. */
5973
5974 /* Fall through. */
5975
5976 case R_MIPS16_GPREL:
5977 /* The R_MIPS16_GPREL performs the same calculation as
5978 R_MIPS_GPREL16, but stores the relocated bits in a different
5979 order. We don't need to do anything special here; the
5980 differences are handled in mips_elf_perform_relocation. */
5981 case R_MIPS_GPREL16:
5982 case R_MICROMIPS_GPREL7_S2:
5983 case R_MICROMIPS_GPREL16:
5984 /* Only sign-extend the addend if it was extracted from the
5985 instruction. If the addend was separate, leave it alone,
5986 otherwise we may lose significant bits. */
5987 if (howto->partial_inplace)
5988 addend = _bfd_mips_elf_sign_extend (addend, 16);
5989 value = symbol + addend - gp;
5990 /* If the symbol was local, any earlier relocatable links will
5991 have adjusted its addend with the gp offset, so compensate
5992 for that now. Don't do it for symbols forced local in this
5993 link, though, since they won't have had the gp offset applied
5994 to them before. */
5995 if (was_local_p)
5996 value += gp0;
5997 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5998 overflowed_p = mips_elf_overflow_p (value, 16);
5999 break;
6000
6001 case R_MIPS16_GOT16:
6002 case R_MIPS16_CALL16:
6003 case R_MIPS_GOT16:
6004 case R_MIPS_CALL16:
6005 case R_MICROMIPS_GOT16:
6006 case R_MICROMIPS_CALL16:
6007 /* VxWorks does not have separate local and global semantics for
6008 R_MIPS*_GOT16; every relocation evaluates to "G". */
6009 if (!htab->is_vxworks && local_p)
6010 {
6011 value = mips_elf_got16_entry (abfd, input_bfd, info,
6012 symbol + addend, !was_local_p);
6013 if (value == MINUS_ONE)
6014 return bfd_reloc_outofrange;
6015 value
6016 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6017 overflowed_p = mips_elf_overflow_p (value, 16);
6018 break;
6019 }
6020
6021 /* Fall through. */
6022
6023 case R_MIPS_TLS_GD:
6024 case R_MIPS_TLS_GOTTPREL:
6025 case R_MIPS_TLS_LDM:
6026 case R_MIPS_GOT_DISP:
6027 case R_MIPS16_TLS_GD:
6028 case R_MIPS16_TLS_GOTTPREL:
6029 case R_MIPS16_TLS_LDM:
6030 case R_MICROMIPS_TLS_GD:
6031 case R_MICROMIPS_TLS_GOTTPREL:
6032 case R_MICROMIPS_TLS_LDM:
6033 case R_MICROMIPS_GOT_DISP:
6034 value = g;
6035 overflowed_p = mips_elf_overflow_p (value, 16);
6036 break;
6037
6038 case R_MIPS_GPREL32:
6039 value = (addend + symbol + gp0 - gp);
6040 if (!save_addend)
6041 value &= howto->dst_mask;
6042 break;
6043
6044 case R_MIPS_PC16:
6045 case R_MIPS_GNU_REL16_S2:
6046 if (howto->partial_inplace)
6047 addend = _bfd_mips_elf_sign_extend (addend, 18);
6048
6049 /* No need to exclude weak undefined symbols here as they resolve
6050 to 0 and never set `*cross_mode_jump_p', so this alignment check
6051 will never trigger for them. */
6052 if (*cross_mode_jump_p
6053 ? ((symbol + addend) & 3) != 1
6054 : ((symbol + addend) & 3) != 0)
6055 return bfd_reloc_outofrange;
6056
6057 value = symbol + addend - p;
6058 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6059 overflowed_p = mips_elf_overflow_p (value, 18);
6060 value >>= howto->rightshift;
6061 value &= howto->dst_mask;
6062 break;
6063
6064 case R_MIPS16_PC16_S1:
6065 if (howto->partial_inplace)
6066 addend = _bfd_mips_elf_sign_extend (addend, 17);
6067
6068 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6069 && (*cross_mode_jump_p
6070 ? ((symbol + addend) & 3) != 0
6071 : ((symbol + addend) & 1) == 0))
6072 return bfd_reloc_outofrange;
6073
6074 value = symbol + addend - p;
6075 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6076 overflowed_p = mips_elf_overflow_p (value, 17);
6077 value >>= howto->rightshift;
6078 value &= howto->dst_mask;
6079 break;
6080
6081 case R_MIPS_PC21_S2:
6082 if (howto->partial_inplace)
6083 addend = _bfd_mips_elf_sign_extend (addend, 23);
6084
6085 if ((symbol + addend) & 3)
6086 return bfd_reloc_outofrange;
6087
6088 value = symbol + addend - p;
6089 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6090 overflowed_p = mips_elf_overflow_p (value, 23);
6091 value >>= howto->rightshift;
6092 value &= howto->dst_mask;
6093 break;
6094
6095 case R_MIPS_PC26_S2:
6096 if (howto->partial_inplace)
6097 addend = _bfd_mips_elf_sign_extend (addend, 28);
6098
6099 if ((symbol + addend) & 3)
6100 return bfd_reloc_outofrange;
6101
6102 value = symbol + addend - p;
6103 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6104 overflowed_p = mips_elf_overflow_p (value, 28);
6105 value >>= howto->rightshift;
6106 value &= howto->dst_mask;
6107 break;
6108
6109 case R_MIPS_PC18_S3:
6110 if (howto->partial_inplace)
6111 addend = _bfd_mips_elf_sign_extend (addend, 21);
6112
6113 if ((symbol + addend) & 7)
6114 return bfd_reloc_outofrange;
6115
6116 value = symbol + addend - ((p | 7) ^ 7);
6117 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6118 overflowed_p = mips_elf_overflow_p (value, 21);
6119 value >>= howto->rightshift;
6120 value &= howto->dst_mask;
6121 break;
6122
6123 case R_MIPS_PC19_S2:
6124 if (howto->partial_inplace)
6125 addend = _bfd_mips_elf_sign_extend (addend, 21);
6126
6127 if ((symbol + addend) & 3)
6128 return bfd_reloc_outofrange;
6129
6130 value = symbol + addend - p;
6131 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6132 overflowed_p = mips_elf_overflow_p (value, 21);
6133 value >>= howto->rightshift;
6134 value &= howto->dst_mask;
6135 break;
6136
6137 case R_MIPS_PCHI16:
6138 value = mips_elf_high (symbol + addend - p);
6139 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6140 overflowed_p = mips_elf_overflow_p (value, 16);
6141 value &= howto->dst_mask;
6142 break;
6143
6144 case R_MIPS_PCLO16:
6145 if (howto->partial_inplace)
6146 addend = _bfd_mips_elf_sign_extend (addend, 16);
6147 value = symbol + addend - p;
6148 value &= howto->dst_mask;
6149 break;
6150
6151 case R_MICROMIPS_PC7_S1:
6152 if (howto->partial_inplace)
6153 addend = _bfd_mips_elf_sign_extend (addend, 8);
6154
6155 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6156 && (*cross_mode_jump_p
6157 ? ((symbol + addend + 2) & 3) != 0
6158 : ((symbol + addend + 2) & 1) == 0))
6159 return bfd_reloc_outofrange;
6160
6161 value = symbol + addend - p;
6162 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6163 overflowed_p = mips_elf_overflow_p (value, 8);
6164 value >>= howto->rightshift;
6165 value &= howto->dst_mask;
6166 break;
6167
6168 case R_MICROMIPS_PC10_S1:
6169 if (howto->partial_inplace)
6170 addend = _bfd_mips_elf_sign_extend (addend, 11);
6171
6172 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6173 && (*cross_mode_jump_p
6174 ? ((symbol + addend + 2) & 3) != 0
6175 : ((symbol + addend + 2) & 1) == 0))
6176 return bfd_reloc_outofrange;
6177
6178 value = symbol + addend - p;
6179 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6180 overflowed_p = mips_elf_overflow_p (value, 11);
6181 value >>= howto->rightshift;
6182 value &= howto->dst_mask;
6183 break;
6184
6185 case R_MICROMIPS_PC16_S1:
6186 if (howto->partial_inplace)
6187 addend = _bfd_mips_elf_sign_extend (addend, 17);
6188
6189 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6190 && (*cross_mode_jump_p
6191 ? ((symbol + addend) & 3) != 0
6192 : ((symbol + addend) & 1) == 0))
6193 return bfd_reloc_outofrange;
6194
6195 value = symbol + addend - p;
6196 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6197 overflowed_p = mips_elf_overflow_p (value, 17);
6198 value >>= howto->rightshift;
6199 value &= howto->dst_mask;
6200 break;
6201
6202 case R_MICROMIPS_PC23_S2:
6203 if (howto->partial_inplace)
6204 addend = _bfd_mips_elf_sign_extend (addend, 25);
6205 value = symbol + addend - ((p | 3) ^ 3);
6206 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6207 overflowed_p = mips_elf_overflow_p (value, 25);
6208 value >>= howto->rightshift;
6209 value &= howto->dst_mask;
6210 break;
6211
6212 case R_MIPS_GOT_HI16:
6213 case R_MIPS_CALL_HI16:
6214 case R_MICROMIPS_GOT_HI16:
6215 case R_MICROMIPS_CALL_HI16:
6216 /* We're allowed to handle these two relocations identically.
6217 The dynamic linker is allowed to handle the CALL relocations
6218 differently by creating a lazy evaluation stub. */
6219 value = g;
6220 value = mips_elf_high (value);
6221 value &= howto->dst_mask;
6222 break;
6223
6224 case R_MIPS_GOT_LO16:
6225 case R_MIPS_CALL_LO16:
6226 case R_MICROMIPS_GOT_LO16:
6227 case R_MICROMIPS_CALL_LO16:
6228 value = g & howto->dst_mask;
6229 break;
6230
6231 case R_MIPS_GOT_PAGE:
6232 case R_MICROMIPS_GOT_PAGE:
6233 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6234 if (value == MINUS_ONE)
6235 return bfd_reloc_outofrange;
6236 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6237 overflowed_p = mips_elf_overflow_p (value, 16);
6238 break;
6239
6240 case R_MIPS_GOT_OFST:
6241 case R_MICROMIPS_GOT_OFST:
6242 if (local_p)
6243 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6244 else
6245 value = addend;
6246 overflowed_p = mips_elf_overflow_p (value, 16);
6247 break;
6248
6249 case R_MIPS_SUB:
6250 case R_MICROMIPS_SUB:
6251 value = symbol - addend;
6252 value &= howto->dst_mask;
6253 break;
6254
6255 case R_MIPS_HIGHER:
6256 case R_MICROMIPS_HIGHER:
6257 value = mips_elf_higher (addend + symbol);
6258 value &= howto->dst_mask;
6259 break;
6260
6261 case R_MIPS_HIGHEST:
6262 case R_MICROMIPS_HIGHEST:
6263 value = mips_elf_highest (addend + symbol);
6264 value &= howto->dst_mask;
6265 break;
6266
6267 case R_MIPS_SCN_DISP:
6268 case R_MICROMIPS_SCN_DISP:
6269 value = symbol + addend - sec->output_offset;
6270 value &= howto->dst_mask;
6271 break;
6272
6273 case R_MIPS_JALR:
6274 case R_MICROMIPS_JALR:
6275 /* This relocation is only a hint. In some cases, we optimize
6276 it into a bal instruction. But we don't try to optimize
6277 when the symbol does not resolve locally. */
6278 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6279 return bfd_reloc_continue;
6280 value = symbol + addend;
6281 break;
6282
6283 case R_MIPS_PJUMP:
6284 case R_MIPS_GNU_VTINHERIT:
6285 case R_MIPS_GNU_VTENTRY:
6286 /* We don't do anything with these at present. */
6287 return bfd_reloc_continue;
6288
6289 default:
6290 /* An unrecognized relocation type. */
6291 return bfd_reloc_notsupported;
6292 }
6293
6294 /* Store the VALUE for our caller. */
6295 *valuep = value;
6296 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6297 }
6298
6299 /* Obtain the field relocated by RELOCATION. */
6300
6301 static bfd_vma
6302 mips_elf_obtain_contents (reloc_howto_type *howto,
6303 const Elf_Internal_Rela *relocation,
6304 bfd *input_bfd, bfd_byte *contents)
6305 {
6306 bfd_vma x = 0;
6307 bfd_byte *location = contents + relocation->r_offset;
6308 unsigned int size = bfd_get_reloc_size (howto);
6309
6310 /* Obtain the bytes. */
6311 if (size != 0)
6312 x = bfd_get (8 * size, input_bfd, location);
6313
6314 return x;
6315 }
6316
6317 /* It has been determined that the result of the RELOCATION is the
6318 VALUE. Use HOWTO to place VALUE into the output file at the
6319 appropriate position. The SECTION is the section to which the
6320 relocation applies.
6321 CROSS_MODE_JUMP_P is true if the relocation field
6322 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6323
6324 Returns FALSE if anything goes wrong. */
6325
6326 static bfd_boolean
6327 mips_elf_perform_relocation (struct bfd_link_info *info,
6328 reloc_howto_type *howto,
6329 const Elf_Internal_Rela *relocation,
6330 bfd_vma value, bfd *input_bfd,
6331 asection *input_section, bfd_byte *contents,
6332 bfd_boolean cross_mode_jump_p)
6333 {
6334 bfd_vma x;
6335 bfd_byte *location;
6336 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6337 unsigned int size;
6338
6339 /* Figure out where the relocation is occurring. */
6340 location = contents + relocation->r_offset;
6341
6342 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6343
6344 /* Obtain the current value. */
6345 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6346
6347 /* Clear the field we are setting. */
6348 x &= ~howto->dst_mask;
6349
6350 /* Set the field. */
6351 x |= (value & howto->dst_mask);
6352
6353 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
6354 if (!cross_mode_jump_p && jal_reloc_p (r_type))
6355 {
6356 bfd_vma opcode = x >> 26;
6357
6358 if (r_type == R_MIPS16_26 ? opcode == 0x7
6359 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6360 : opcode == 0x1d)
6361 {
6362 info->callbacks->einfo
6363 (_("%X%H: Unsupported JALX to the same ISA mode\n"),
6364 input_bfd, input_section, relocation->r_offset);
6365 return TRUE;
6366 }
6367 }
6368 if (cross_mode_jump_p && jal_reloc_p (r_type))
6369 {
6370 bfd_boolean ok;
6371 bfd_vma opcode = x >> 26;
6372 bfd_vma jalx_opcode;
6373
6374 /* Check to see if the opcode is already JAL or JALX. */
6375 if (r_type == R_MIPS16_26)
6376 {
6377 ok = ((opcode == 0x6) || (opcode == 0x7));
6378 jalx_opcode = 0x7;
6379 }
6380 else if (r_type == R_MICROMIPS_26_S1)
6381 {
6382 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6383 jalx_opcode = 0x3c;
6384 }
6385 else
6386 {
6387 ok = ((opcode == 0x3) || (opcode == 0x1d));
6388 jalx_opcode = 0x1d;
6389 }
6390
6391 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6392 convert J or JALS to JALX. */
6393 if (!ok)
6394 {
6395 info->callbacks->einfo
6396 (_("%X%H: Unsupported jump between ISA modes; "
6397 "consider recompiling with interlinking enabled\n"),
6398 input_bfd, input_section, relocation->r_offset);
6399 return TRUE;
6400 }
6401
6402 /* Make this the JALX opcode. */
6403 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6404 }
6405 else if (cross_mode_jump_p && b_reloc_p (r_type))
6406 {
6407 bfd_boolean ok = FALSE;
6408 bfd_vma opcode = x >> 16;
6409 bfd_vma jalx_opcode = 0;
6410 bfd_vma addr;
6411 bfd_vma dest;
6412
6413 if (r_type == R_MICROMIPS_PC16_S1)
6414 {
6415 ok = opcode == 0x4060;
6416 jalx_opcode = 0x3c;
6417 value <<= 1;
6418 }
6419 else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6420 {
6421 ok = opcode == 0x411;
6422 jalx_opcode = 0x1d;
6423 value <<= 2;
6424 }
6425
6426 if (bfd_link_pic (info) || !ok)
6427 {
6428 info->callbacks->einfo
6429 (_("%X%H: Unsupported branch between ISA modes\n"),
6430 input_bfd, input_section, relocation->r_offset);
6431 return TRUE;
6432 }
6433
6434 addr = (input_section->output_section->vma
6435 + input_section->output_offset
6436 + relocation->r_offset
6437 + 4);
6438 dest = addr + (((value & 0x3ffff) ^ 0x20000) - 0x20000);
6439
6440 if ((addr >> 28) << 28 != (dest >> 28) << 28)
6441 {
6442 info->callbacks->einfo
6443 (_("%X%H: Cannot convert branch between ISA modes "
6444 "to JALX: relocation out of range\n"),
6445 input_bfd, input_section, relocation->r_offset);
6446 return TRUE;
6447 }
6448
6449 /* Make this the JALX opcode. */
6450 x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
6451 }
6452
6453 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6454 range. */
6455 if (!bfd_link_relocatable (info)
6456 && !cross_mode_jump_p
6457 && ((JAL_TO_BAL_P (input_bfd)
6458 && r_type == R_MIPS_26
6459 && (x >> 26) == 0x3) /* jal addr */
6460 || (JALR_TO_BAL_P (input_bfd)
6461 && r_type == R_MIPS_JALR
6462 && x == 0x0320f809) /* jalr t9 */
6463 || (JR_TO_B_P (input_bfd)
6464 && r_type == R_MIPS_JALR
6465 && x == 0x03200008))) /* jr t9 */
6466 {
6467 bfd_vma addr;
6468 bfd_vma dest;
6469 bfd_signed_vma off;
6470
6471 addr = (input_section->output_section->vma
6472 + input_section->output_offset
6473 + relocation->r_offset
6474 + 4);
6475 if (r_type == R_MIPS_26)
6476 dest = (value << 2) | ((addr >> 28) << 28);
6477 else
6478 dest = value;
6479 off = dest - addr;
6480 if (off <= 0x1ffff && off >= -0x20000)
6481 {
6482 if (x == 0x03200008) /* jr t9 */
6483 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6484 else
6485 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6486 }
6487 }
6488
6489 /* Put the value into the output. */
6490 size = bfd_get_reloc_size (howto);
6491 if (size != 0)
6492 bfd_put (8 * size, input_bfd, x, location);
6493
6494 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
6495 location);
6496
6497 return TRUE;
6498 }
6499 \f
6500 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6501 is the original relocation, which is now being transformed into a
6502 dynamic relocation. The ADDENDP is adjusted if necessary; the
6503 caller should store the result in place of the original addend. */
6504
6505 static bfd_boolean
6506 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6507 struct bfd_link_info *info,
6508 const Elf_Internal_Rela *rel,
6509 struct mips_elf_link_hash_entry *h,
6510 asection *sec, bfd_vma symbol,
6511 bfd_vma *addendp, asection *input_section)
6512 {
6513 Elf_Internal_Rela outrel[3];
6514 asection *sreloc;
6515 bfd *dynobj;
6516 int r_type;
6517 long indx;
6518 bfd_boolean defined_p;
6519 struct mips_elf_link_hash_table *htab;
6520
6521 htab = mips_elf_hash_table (info);
6522 BFD_ASSERT (htab != NULL);
6523
6524 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6525 dynobj = elf_hash_table (info)->dynobj;
6526 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6527 BFD_ASSERT (sreloc != NULL);
6528 BFD_ASSERT (sreloc->contents != NULL);
6529 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6530 < sreloc->size);
6531
6532 outrel[0].r_offset =
6533 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6534 if (ABI_64_P (output_bfd))
6535 {
6536 outrel[1].r_offset =
6537 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6538 outrel[2].r_offset =
6539 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6540 }
6541
6542 if (outrel[0].r_offset == MINUS_ONE)
6543 /* The relocation field has been deleted. */
6544 return TRUE;
6545
6546 if (outrel[0].r_offset == MINUS_TWO)
6547 {
6548 /* The relocation field has been converted into a relative value of
6549 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6550 the field to be fully relocated, so add in the symbol's value. */
6551 *addendp += symbol;
6552 return TRUE;
6553 }
6554
6555 /* We must now calculate the dynamic symbol table index to use
6556 in the relocation. */
6557 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6558 {
6559 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6560 indx = h->root.dynindx;
6561 if (SGI_COMPAT (output_bfd))
6562 defined_p = h->root.def_regular;
6563 else
6564 /* ??? glibc's ld.so just adds the final GOT entry to the
6565 relocation field. It therefore treats relocs against
6566 defined symbols in the same way as relocs against
6567 undefined symbols. */
6568 defined_p = FALSE;
6569 }
6570 else
6571 {
6572 if (sec != NULL && bfd_is_abs_section (sec))
6573 indx = 0;
6574 else if (sec == NULL || sec->owner == NULL)
6575 {
6576 bfd_set_error (bfd_error_bad_value);
6577 return FALSE;
6578 }
6579 else
6580 {
6581 indx = elf_section_data (sec->output_section)->dynindx;
6582 if (indx == 0)
6583 {
6584 asection *osec = htab->root.text_index_section;
6585 indx = elf_section_data (osec)->dynindx;
6586 }
6587 if (indx == 0)
6588 abort ();
6589 }
6590
6591 /* Instead of generating a relocation using the section
6592 symbol, we may as well make it a fully relative
6593 relocation. We want to avoid generating relocations to
6594 local symbols because we used to generate them
6595 incorrectly, without adding the original symbol value,
6596 which is mandated by the ABI for section symbols. In
6597 order to give dynamic loaders and applications time to
6598 phase out the incorrect use, we refrain from emitting
6599 section-relative relocations. It's not like they're
6600 useful, after all. This should be a bit more efficient
6601 as well. */
6602 /* ??? Although this behavior is compatible with glibc's ld.so,
6603 the ABI says that relocations against STN_UNDEF should have
6604 a symbol value of 0. Irix rld honors this, so relocations
6605 against STN_UNDEF have no effect. */
6606 if (!SGI_COMPAT (output_bfd))
6607 indx = 0;
6608 defined_p = TRUE;
6609 }
6610
6611 /* If the relocation was previously an absolute relocation and
6612 this symbol will not be referred to by the relocation, we must
6613 adjust it by the value we give it in the dynamic symbol table.
6614 Otherwise leave the job up to the dynamic linker. */
6615 if (defined_p && r_type != R_MIPS_REL32)
6616 *addendp += symbol;
6617
6618 if (htab->is_vxworks)
6619 /* VxWorks uses non-relative relocations for this. */
6620 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6621 else
6622 /* The relocation is always an REL32 relocation because we don't
6623 know where the shared library will wind up at load-time. */
6624 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6625 R_MIPS_REL32);
6626
6627 /* For strict adherence to the ABI specification, we should
6628 generate a R_MIPS_64 relocation record by itself before the
6629 _REL32/_64 record as well, such that the addend is read in as
6630 a 64-bit value (REL32 is a 32-bit relocation, after all).
6631 However, since none of the existing ELF64 MIPS dynamic
6632 loaders seems to care, we don't waste space with these
6633 artificial relocations. If this turns out to not be true,
6634 mips_elf_allocate_dynamic_relocation() should be tweaked so
6635 as to make room for a pair of dynamic relocations per
6636 invocation if ABI_64_P, and here we should generate an
6637 additional relocation record with R_MIPS_64 by itself for a
6638 NULL symbol before this relocation record. */
6639 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6640 ABI_64_P (output_bfd)
6641 ? R_MIPS_64
6642 : R_MIPS_NONE);
6643 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6644
6645 /* Adjust the output offset of the relocation to reference the
6646 correct location in the output file. */
6647 outrel[0].r_offset += (input_section->output_section->vma
6648 + input_section->output_offset);
6649 outrel[1].r_offset += (input_section->output_section->vma
6650 + input_section->output_offset);
6651 outrel[2].r_offset += (input_section->output_section->vma
6652 + input_section->output_offset);
6653
6654 /* Put the relocation back out. We have to use the special
6655 relocation outputter in the 64-bit case since the 64-bit
6656 relocation format is non-standard. */
6657 if (ABI_64_P (output_bfd))
6658 {
6659 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6660 (output_bfd, &outrel[0],
6661 (sreloc->contents
6662 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6663 }
6664 else if (htab->is_vxworks)
6665 {
6666 /* VxWorks uses RELA rather than REL dynamic relocations. */
6667 outrel[0].r_addend = *addendp;
6668 bfd_elf32_swap_reloca_out
6669 (output_bfd, &outrel[0],
6670 (sreloc->contents
6671 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6672 }
6673 else
6674 bfd_elf32_swap_reloc_out
6675 (output_bfd, &outrel[0],
6676 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6677
6678 /* We've now added another relocation. */
6679 ++sreloc->reloc_count;
6680
6681 /* Make sure the output section is writable. The dynamic linker
6682 will be writing to it. */
6683 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6684 |= SHF_WRITE;
6685
6686 /* On IRIX5, make an entry of compact relocation info. */
6687 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6688 {
6689 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6690 bfd_byte *cr;
6691
6692 if (scpt)
6693 {
6694 Elf32_crinfo cptrel;
6695
6696 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6697 cptrel.vaddr = (rel->r_offset
6698 + input_section->output_section->vma
6699 + input_section->output_offset);
6700 if (r_type == R_MIPS_REL32)
6701 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6702 else
6703 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6704 mips_elf_set_cr_dist2to (cptrel, 0);
6705 cptrel.konst = *addendp;
6706
6707 cr = (scpt->contents
6708 + sizeof (Elf32_External_compact_rel));
6709 mips_elf_set_cr_relvaddr (cptrel, 0);
6710 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6711 ((Elf32_External_crinfo *) cr
6712 + scpt->reloc_count));
6713 ++scpt->reloc_count;
6714 }
6715 }
6716
6717 /* If we've written this relocation for a readonly section,
6718 we need to set DF_TEXTREL again, so that we do not delete the
6719 DT_TEXTREL tag. */
6720 if (MIPS_ELF_READONLY_SECTION (input_section))
6721 info->flags |= DF_TEXTREL;
6722
6723 return TRUE;
6724 }
6725 \f
6726 /* Return the MACH for a MIPS e_flags value. */
6727
6728 unsigned long
6729 _bfd_elf_mips_mach (flagword flags)
6730 {
6731 switch (flags & EF_MIPS_MACH)
6732 {
6733 case E_MIPS_MACH_3900:
6734 return bfd_mach_mips3900;
6735
6736 case E_MIPS_MACH_4010:
6737 return bfd_mach_mips4010;
6738
6739 case E_MIPS_MACH_4100:
6740 return bfd_mach_mips4100;
6741
6742 case E_MIPS_MACH_4111:
6743 return bfd_mach_mips4111;
6744
6745 case E_MIPS_MACH_4120:
6746 return bfd_mach_mips4120;
6747
6748 case E_MIPS_MACH_4650:
6749 return bfd_mach_mips4650;
6750
6751 case E_MIPS_MACH_5400:
6752 return bfd_mach_mips5400;
6753
6754 case E_MIPS_MACH_5500:
6755 return bfd_mach_mips5500;
6756
6757 case E_MIPS_MACH_5900:
6758 return bfd_mach_mips5900;
6759
6760 case E_MIPS_MACH_9000:
6761 return bfd_mach_mips9000;
6762
6763 case E_MIPS_MACH_SB1:
6764 return bfd_mach_mips_sb1;
6765
6766 case E_MIPS_MACH_LS2E:
6767 return bfd_mach_mips_loongson_2e;
6768
6769 case E_MIPS_MACH_LS2F:
6770 return bfd_mach_mips_loongson_2f;
6771
6772 case E_MIPS_MACH_LS3A:
6773 return bfd_mach_mips_loongson_3a;
6774
6775 case E_MIPS_MACH_OCTEON3:
6776 return bfd_mach_mips_octeon3;
6777
6778 case E_MIPS_MACH_OCTEON2:
6779 return bfd_mach_mips_octeon2;
6780
6781 case E_MIPS_MACH_OCTEON:
6782 return bfd_mach_mips_octeon;
6783
6784 case E_MIPS_MACH_XLR:
6785 return bfd_mach_mips_xlr;
6786
6787 default:
6788 switch (flags & EF_MIPS_ARCH)
6789 {
6790 default:
6791 case E_MIPS_ARCH_1:
6792 return bfd_mach_mips3000;
6793
6794 case E_MIPS_ARCH_2:
6795 return bfd_mach_mips6000;
6796
6797 case E_MIPS_ARCH_3:
6798 return bfd_mach_mips4000;
6799
6800 case E_MIPS_ARCH_4:
6801 return bfd_mach_mips8000;
6802
6803 case E_MIPS_ARCH_5:
6804 return bfd_mach_mips5;
6805
6806 case E_MIPS_ARCH_32:
6807 return bfd_mach_mipsisa32;
6808
6809 case E_MIPS_ARCH_64:
6810 return bfd_mach_mipsisa64;
6811
6812 case E_MIPS_ARCH_32R2:
6813 return bfd_mach_mipsisa32r2;
6814
6815 case E_MIPS_ARCH_64R2:
6816 return bfd_mach_mipsisa64r2;
6817
6818 case E_MIPS_ARCH_32R6:
6819 return bfd_mach_mipsisa32r6;
6820
6821 case E_MIPS_ARCH_64R6:
6822 return bfd_mach_mipsisa64r6;
6823 }
6824 }
6825
6826 return 0;
6827 }
6828
6829 /* Return printable name for ABI. */
6830
6831 static INLINE char *
6832 elf_mips_abi_name (bfd *abfd)
6833 {
6834 flagword flags;
6835
6836 flags = elf_elfheader (abfd)->e_flags;
6837 switch (flags & EF_MIPS_ABI)
6838 {
6839 case 0:
6840 if (ABI_N32_P (abfd))
6841 return "N32";
6842 else if (ABI_64_P (abfd))
6843 return "64";
6844 else
6845 return "none";
6846 case E_MIPS_ABI_O32:
6847 return "O32";
6848 case E_MIPS_ABI_O64:
6849 return "O64";
6850 case E_MIPS_ABI_EABI32:
6851 return "EABI32";
6852 case E_MIPS_ABI_EABI64:
6853 return "EABI64";
6854 default:
6855 return "unknown abi";
6856 }
6857 }
6858 \f
6859 /* MIPS ELF uses two common sections. One is the usual one, and the
6860 other is for small objects. All the small objects are kept
6861 together, and then referenced via the gp pointer, which yields
6862 faster assembler code. This is what we use for the small common
6863 section. This approach is copied from ecoff.c. */
6864 static asection mips_elf_scom_section;
6865 static asymbol mips_elf_scom_symbol;
6866 static asymbol *mips_elf_scom_symbol_ptr;
6867
6868 /* MIPS ELF also uses an acommon section, which represents an
6869 allocated common symbol which may be overridden by a
6870 definition in a shared library. */
6871 static asection mips_elf_acom_section;
6872 static asymbol mips_elf_acom_symbol;
6873 static asymbol *mips_elf_acom_symbol_ptr;
6874
6875 /* This is used for both the 32-bit and the 64-bit ABI. */
6876
6877 void
6878 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6879 {
6880 elf_symbol_type *elfsym;
6881
6882 /* Handle the special MIPS section numbers that a symbol may use. */
6883 elfsym = (elf_symbol_type *) asym;
6884 switch (elfsym->internal_elf_sym.st_shndx)
6885 {
6886 case SHN_MIPS_ACOMMON:
6887 /* This section is used in a dynamically linked executable file.
6888 It is an allocated common section. The dynamic linker can
6889 either resolve these symbols to something in a shared
6890 library, or it can just leave them here. For our purposes,
6891 we can consider these symbols to be in a new section. */
6892 if (mips_elf_acom_section.name == NULL)
6893 {
6894 /* Initialize the acommon section. */
6895 mips_elf_acom_section.name = ".acommon";
6896 mips_elf_acom_section.flags = SEC_ALLOC;
6897 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6898 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6899 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6900 mips_elf_acom_symbol.name = ".acommon";
6901 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6902 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6903 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6904 }
6905 asym->section = &mips_elf_acom_section;
6906 break;
6907
6908 case SHN_COMMON:
6909 /* Common symbols less than the GP size are automatically
6910 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6911 if (asym->value > elf_gp_size (abfd)
6912 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6913 || IRIX_COMPAT (abfd) == ict_irix6)
6914 break;
6915 /* Fall through. */
6916 case SHN_MIPS_SCOMMON:
6917 if (mips_elf_scom_section.name == NULL)
6918 {
6919 /* Initialize the small common section. */
6920 mips_elf_scom_section.name = ".scommon";
6921 mips_elf_scom_section.flags = SEC_IS_COMMON;
6922 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6923 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6924 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6925 mips_elf_scom_symbol.name = ".scommon";
6926 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6927 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6928 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6929 }
6930 asym->section = &mips_elf_scom_section;
6931 asym->value = elfsym->internal_elf_sym.st_size;
6932 break;
6933
6934 case SHN_MIPS_SUNDEFINED:
6935 asym->section = bfd_und_section_ptr;
6936 break;
6937
6938 case SHN_MIPS_TEXT:
6939 {
6940 asection *section = bfd_get_section_by_name (abfd, ".text");
6941
6942 if (section != NULL)
6943 {
6944 asym->section = section;
6945 /* MIPS_TEXT is a bit special, the address is not an offset
6946 to the base of the .text section. So substract the section
6947 base address to make it an offset. */
6948 asym->value -= section->vma;
6949 }
6950 }
6951 break;
6952
6953 case SHN_MIPS_DATA:
6954 {
6955 asection *section = bfd_get_section_by_name (abfd, ".data");
6956
6957 if (section != NULL)
6958 {
6959 asym->section = section;
6960 /* MIPS_DATA is a bit special, the address is not an offset
6961 to the base of the .data section. So substract the section
6962 base address to make it an offset. */
6963 asym->value -= section->vma;
6964 }
6965 }
6966 break;
6967 }
6968
6969 /* If this is an odd-valued function symbol, assume it's a MIPS16
6970 or microMIPS one. */
6971 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6972 && (asym->value & 1) != 0)
6973 {
6974 asym->value--;
6975 if (MICROMIPS_P (abfd))
6976 elfsym->internal_elf_sym.st_other
6977 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6978 else
6979 elfsym->internal_elf_sym.st_other
6980 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6981 }
6982 }
6983 \f
6984 /* Implement elf_backend_eh_frame_address_size. This differs from
6985 the default in the way it handles EABI64.
6986
6987 EABI64 was originally specified as an LP64 ABI, and that is what
6988 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6989 historically accepted the combination of -mabi=eabi and -mlong32,
6990 and this ILP32 variation has become semi-official over time.
6991 Both forms use elf32 and have pointer-sized FDE addresses.
6992
6993 If an EABI object was generated by GCC 4.0 or above, it will have
6994 an empty .gcc_compiled_longXX section, where XX is the size of longs
6995 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6996 have no special marking to distinguish them from LP64 objects.
6997
6998 We don't want users of the official LP64 ABI to be punished for the
6999 existence of the ILP32 variant, but at the same time, we don't want
7000 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
7001 We therefore take the following approach:
7002
7003 - If ABFD contains a .gcc_compiled_longXX section, use it to
7004 determine the pointer size.
7005
7006 - Otherwise check the type of the first relocation. Assume that
7007 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
7008
7009 - Otherwise punt.
7010
7011 The second check is enough to detect LP64 objects generated by pre-4.0
7012 compilers because, in the kind of output generated by those compilers,
7013 the first relocation will be associated with either a CIE personality
7014 routine or an FDE start address. Furthermore, the compilers never
7015 used a special (non-pointer) encoding for this ABI.
7016
7017 Checking the relocation type should also be safe because there is no
7018 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7019 did so. */
7020
7021 unsigned int
7022 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
7023 {
7024 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7025 return 8;
7026 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7027 {
7028 bfd_boolean long32_p, long64_p;
7029
7030 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7031 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7032 if (long32_p && long64_p)
7033 return 0;
7034 if (long32_p)
7035 return 4;
7036 if (long64_p)
7037 return 8;
7038
7039 if (sec->reloc_count > 0
7040 && elf_section_data (sec)->relocs != NULL
7041 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7042 == R_MIPS_64))
7043 return 8;
7044
7045 return 0;
7046 }
7047 return 4;
7048 }
7049 \f
7050 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7051 relocations against two unnamed section symbols to resolve to the
7052 same address. For example, if we have code like:
7053
7054 lw $4,%got_disp(.data)($gp)
7055 lw $25,%got_disp(.text)($gp)
7056 jalr $25
7057
7058 then the linker will resolve both relocations to .data and the program
7059 will jump there rather than to .text.
7060
7061 We can work around this problem by giving names to local section symbols.
7062 This is also what the MIPSpro tools do. */
7063
7064 bfd_boolean
7065 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7066 {
7067 return SGI_COMPAT (abfd);
7068 }
7069 \f
7070 /* Work over a section just before writing it out. This routine is
7071 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7072 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7073 a better way. */
7074
7075 bfd_boolean
7076 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
7077 {
7078 if (hdr->sh_type == SHT_MIPS_REGINFO
7079 && hdr->sh_size > 0)
7080 {
7081 bfd_byte buf[4];
7082
7083 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
7084 BFD_ASSERT (hdr->contents == NULL);
7085
7086 if (bfd_seek (abfd,
7087 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7088 SEEK_SET) != 0)
7089 return FALSE;
7090 H_PUT_32 (abfd, elf_gp (abfd), buf);
7091 if (bfd_bwrite (buf, 4, abfd) != 4)
7092 return FALSE;
7093 }
7094
7095 if (hdr->sh_type == SHT_MIPS_OPTIONS
7096 && hdr->bfd_section != NULL
7097 && mips_elf_section_data (hdr->bfd_section) != NULL
7098 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
7099 {
7100 bfd_byte *contents, *l, *lend;
7101
7102 /* We stored the section contents in the tdata field in the
7103 set_section_contents routine. We save the section contents
7104 so that we don't have to read them again.
7105 At this point we know that elf_gp is set, so we can look
7106 through the section contents to see if there is an
7107 ODK_REGINFO structure. */
7108
7109 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
7110 l = contents;
7111 lend = contents + hdr->sh_size;
7112 while (l + sizeof (Elf_External_Options) <= lend)
7113 {
7114 Elf_Internal_Options intopt;
7115
7116 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7117 &intopt);
7118 if (intopt.size < sizeof (Elf_External_Options))
7119 {
7120 _bfd_error_handler
7121 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
7122 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7123 break;
7124 }
7125 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7126 {
7127 bfd_byte buf[8];
7128
7129 if (bfd_seek (abfd,
7130 (hdr->sh_offset
7131 + (l - contents)
7132 + sizeof (Elf_External_Options)
7133 + (sizeof (Elf64_External_RegInfo) - 8)),
7134 SEEK_SET) != 0)
7135 return FALSE;
7136 H_PUT_64 (abfd, elf_gp (abfd), buf);
7137 if (bfd_bwrite (buf, 8, abfd) != 8)
7138 return FALSE;
7139 }
7140 else if (intopt.kind == ODK_REGINFO)
7141 {
7142 bfd_byte buf[4];
7143
7144 if (bfd_seek (abfd,
7145 (hdr->sh_offset
7146 + (l - contents)
7147 + sizeof (Elf_External_Options)
7148 + (sizeof (Elf32_External_RegInfo) - 4)),
7149 SEEK_SET) != 0)
7150 return FALSE;
7151 H_PUT_32 (abfd, elf_gp (abfd), buf);
7152 if (bfd_bwrite (buf, 4, abfd) != 4)
7153 return FALSE;
7154 }
7155 l += intopt.size;
7156 }
7157 }
7158
7159 if (hdr->bfd_section != NULL)
7160 {
7161 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
7162
7163 /* .sbss is not handled specially here because the GNU/Linux
7164 prelinker can convert .sbss from NOBITS to PROGBITS and
7165 changing it back to NOBITS breaks the binary. The entry in
7166 _bfd_mips_elf_special_sections will ensure the correct flags
7167 are set on .sbss if BFD creates it without reading it from an
7168 input file, and without special handling here the flags set
7169 on it in an input file will be followed. */
7170 if (strcmp (name, ".sdata") == 0
7171 || strcmp (name, ".lit8") == 0
7172 || strcmp (name, ".lit4") == 0)
7173 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7174 else if (strcmp (name, ".srdata") == 0)
7175 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
7176 else if (strcmp (name, ".compact_rel") == 0)
7177 hdr->sh_flags = 0;
7178 else if (strcmp (name, ".rtproc") == 0)
7179 {
7180 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7181 {
7182 unsigned int adjust;
7183
7184 adjust = hdr->sh_size % hdr->sh_addralign;
7185 if (adjust != 0)
7186 hdr->sh_size += hdr->sh_addralign - adjust;
7187 }
7188 }
7189 }
7190
7191 return TRUE;
7192 }
7193
7194 /* Handle a MIPS specific section when reading an object file. This
7195 is called when elfcode.h finds a section with an unknown type.
7196 This routine supports both the 32-bit and 64-bit ELF ABI.
7197
7198 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7199 how to. */
7200
7201 bfd_boolean
7202 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7203 Elf_Internal_Shdr *hdr,
7204 const char *name,
7205 int shindex)
7206 {
7207 flagword flags = 0;
7208
7209 /* There ought to be a place to keep ELF backend specific flags, but
7210 at the moment there isn't one. We just keep track of the
7211 sections by their name, instead. Fortunately, the ABI gives
7212 suggested names for all the MIPS specific sections, so we will
7213 probably get away with this. */
7214 switch (hdr->sh_type)
7215 {
7216 case SHT_MIPS_LIBLIST:
7217 if (strcmp (name, ".liblist") != 0)
7218 return FALSE;
7219 break;
7220 case SHT_MIPS_MSYM:
7221 if (strcmp (name, ".msym") != 0)
7222 return FALSE;
7223 break;
7224 case SHT_MIPS_CONFLICT:
7225 if (strcmp (name, ".conflict") != 0)
7226 return FALSE;
7227 break;
7228 case SHT_MIPS_GPTAB:
7229 if (! CONST_STRNEQ (name, ".gptab."))
7230 return FALSE;
7231 break;
7232 case SHT_MIPS_UCODE:
7233 if (strcmp (name, ".ucode") != 0)
7234 return FALSE;
7235 break;
7236 case SHT_MIPS_DEBUG:
7237 if (strcmp (name, ".mdebug") != 0)
7238 return FALSE;
7239 flags = SEC_DEBUGGING;
7240 break;
7241 case SHT_MIPS_REGINFO:
7242 if (strcmp (name, ".reginfo") != 0
7243 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7244 return FALSE;
7245 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7246 break;
7247 case SHT_MIPS_IFACE:
7248 if (strcmp (name, ".MIPS.interfaces") != 0)
7249 return FALSE;
7250 break;
7251 case SHT_MIPS_CONTENT:
7252 if (! CONST_STRNEQ (name, ".MIPS.content"))
7253 return FALSE;
7254 break;
7255 case SHT_MIPS_OPTIONS:
7256 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7257 return FALSE;
7258 break;
7259 case SHT_MIPS_ABIFLAGS:
7260 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7261 return FALSE;
7262 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7263 break;
7264 case SHT_MIPS_DWARF:
7265 if (! CONST_STRNEQ (name, ".debug_")
7266 && ! CONST_STRNEQ (name, ".zdebug_"))
7267 return FALSE;
7268 break;
7269 case SHT_MIPS_SYMBOL_LIB:
7270 if (strcmp (name, ".MIPS.symlib") != 0)
7271 return FALSE;
7272 break;
7273 case SHT_MIPS_EVENTS:
7274 if (! CONST_STRNEQ (name, ".MIPS.events")
7275 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
7276 return FALSE;
7277 break;
7278 default:
7279 break;
7280 }
7281
7282 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7283 return FALSE;
7284
7285 if (flags)
7286 {
7287 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7288 (bfd_get_section_flags (abfd,
7289 hdr->bfd_section)
7290 | flags)))
7291 return FALSE;
7292 }
7293
7294 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7295 {
7296 Elf_External_ABIFlags_v0 ext;
7297
7298 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7299 &ext, 0, sizeof ext))
7300 return FALSE;
7301 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7302 &mips_elf_tdata (abfd)->abiflags);
7303 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7304 return FALSE;
7305 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7306 }
7307
7308 /* FIXME: We should record sh_info for a .gptab section. */
7309
7310 /* For a .reginfo section, set the gp value in the tdata information
7311 from the contents of this section. We need the gp value while
7312 processing relocs, so we just get it now. The .reginfo section
7313 is not used in the 64-bit MIPS ELF ABI. */
7314 if (hdr->sh_type == SHT_MIPS_REGINFO)
7315 {
7316 Elf32_External_RegInfo ext;
7317 Elf32_RegInfo s;
7318
7319 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7320 &ext, 0, sizeof ext))
7321 return FALSE;
7322 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7323 elf_gp (abfd) = s.ri_gp_value;
7324 }
7325
7326 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7327 set the gp value based on what we find. We may see both
7328 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7329 they should agree. */
7330 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7331 {
7332 bfd_byte *contents, *l, *lend;
7333
7334 contents = bfd_malloc (hdr->sh_size);
7335 if (contents == NULL)
7336 return FALSE;
7337 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7338 0, hdr->sh_size))
7339 {
7340 free (contents);
7341 return FALSE;
7342 }
7343 l = contents;
7344 lend = contents + hdr->sh_size;
7345 while (l + sizeof (Elf_External_Options) <= lend)
7346 {
7347 Elf_Internal_Options intopt;
7348
7349 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7350 &intopt);
7351 if (intopt.size < sizeof (Elf_External_Options))
7352 {
7353 _bfd_error_handler
7354 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
7355 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7356 break;
7357 }
7358 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7359 {
7360 Elf64_Internal_RegInfo intreg;
7361
7362 bfd_mips_elf64_swap_reginfo_in
7363 (abfd,
7364 ((Elf64_External_RegInfo *)
7365 (l + sizeof (Elf_External_Options))),
7366 &intreg);
7367 elf_gp (abfd) = intreg.ri_gp_value;
7368 }
7369 else if (intopt.kind == ODK_REGINFO)
7370 {
7371 Elf32_RegInfo intreg;
7372
7373 bfd_mips_elf32_swap_reginfo_in
7374 (abfd,
7375 ((Elf32_External_RegInfo *)
7376 (l + sizeof (Elf_External_Options))),
7377 &intreg);
7378 elf_gp (abfd) = intreg.ri_gp_value;
7379 }
7380 l += intopt.size;
7381 }
7382 free (contents);
7383 }
7384
7385 return TRUE;
7386 }
7387
7388 /* Set the correct type for a MIPS ELF section. We do this by the
7389 section name, which is a hack, but ought to work. This routine is
7390 used by both the 32-bit and the 64-bit ABI. */
7391
7392 bfd_boolean
7393 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7394 {
7395 const char *name = bfd_get_section_name (abfd, sec);
7396
7397 if (strcmp (name, ".liblist") == 0)
7398 {
7399 hdr->sh_type = SHT_MIPS_LIBLIST;
7400 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7401 /* The sh_link field is set in final_write_processing. */
7402 }
7403 else if (strcmp (name, ".conflict") == 0)
7404 hdr->sh_type = SHT_MIPS_CONFLICT;
7405 else if (CONST_STRNEQ (name, ".gptab."))
7406 {
7407 hdr->sh_type = SHT_MIPS_GPTAB;
7408 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7409 /* The sh_info field is set in final_write_processing. */
7410 }
7411 else if (strcmp (name, ".ucode") == 0)
7412 hdr->sh_type = SHT_MIPS_UCODE;
7413 else if (strcmp (name, ".mdebug") == 0)
7414 {
7415 hdr->sh_type = SHT_MIPS_DEBUG;
7416 /* In a shared object on IRIX 5.3, the .mdebug section has an
7417 entsize of 0. FIXME: Does this matter? */
7418 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7419 hdr->sh_entsize = 0;
7420 else
7421 hdr->sh_entsize = 1;
7422 }
7423 else if (strcmp (name, ".reginfo") == 0)
7424 {
7425 hdr->sh_type = SHT_MIPS_REGINFO;
7426 /* In a shared object on IRIX 5.3, the .reginfo section has an
7427 entsize of 0x18. FIXME: Does this matter? */
7428 if (SGI_COMPAT (abfd))
7429 {
7430 if ((abfd->flags & DYNAMIC) != 0)
7431 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7432 else
7433 hdr->sh_entsize = 1;
7434 }
7435 else
7436 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7437 }
7438 else if (SGI_COMPAT (abfd)
7439 && (strcmp (name, ".hash") == 0
7440 || strcmp (name, ".dynamic") == 0
7441 || strcmp (name, ".dynstr") == 0))
7442 {
7443 if (SGI_COMPAT (abfd))
7444 hdr->sh_entsize = 0;
7445 #if 0
7446 /* This isn't how the IRIX6 linker behaves. */
7447 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7448 #endif
7449 }
7450 else if (strcmp (name, ".got") == 0
7451 || strcmp (name, ".srdata") == 0
7452 || strcmp (name, ".sdata") == 0
7453 || strcmp (name, ".sbss") == 0
7454 || strcmp (name, ".lit4") == 0
7455 || strcmp (name, ".lit8") == 0)
7456 hdr->sh_flags |= SHF_MIPS_GPREL;
7457 else if (strcmp (name, ".MIPS.interfaces") == 0)
7458 {
7459 hdr->sh_type = SHT_MIPS_IFACE;
7460 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7461 }
7462 else if (CONST_STRNEQ (name, ".MIPS.content"))
7463 {
7464 hdr->sh_type = SHT_MIPS_CONTENT;
7465 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7466 /* The sh_info field is set in final_write_processing. */
7467 }
7468 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7469 {
7470 hdr->sh_type = SHT_MIPS_OPTIONS;
7471 hdr->sh_entsize = 1;
7472 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7473 }
7474 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7475 {
7476 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7477 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7478 }
7479 else if (CONST_STRNEQ (name, ".debug_")
7480 || CONST_STRNEQ (name, ".zdebug_"))
7481 {
7482 hdr->sh_type = SHT_MIPS_DWARF;
7483
7484 /* Irix facilities such as libexc expect a single .debug_frame
7485 per executable, the system ones have NOSTRIP set and the linker
7486 doesn't merge sections with different flags so ... */
7487 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7488 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7489 }
7490 else if (strcmp (name, ".MIPS.symlib") == 0)
7491 {
7492 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7493 /* The sh_link and sh_info fields are set in
7494 final_write_processing. */
7495 }
7496 else if (CONST_STRNEQ (name, ".MIPS.events")
7497 || CONST_STRNEQ (name, ".MIPS.post_rel"))
7498 {
7499 hdr->sh_type = SHT_MIPS_EVENTS;
7500 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7501 /* The sh_link field is set in final_write_processing. */
7502 }
7503 else if (strcmp (name, ".msym") == 0)
7504 {
7505 hdr->sh_type = SHT_MIPS_MSYM;
7506 hdr->sh_flags |= SHF_ALLOC;
7507 hdr->sh_entsize = 8;
7508 }
7509
7510 /* The generic elf_fake_sections will set up REL_HDR using the default
7511 kind of relocations. We used to set up a second header for the
7512 non-default kind of relocations here, but only NewABI would use
7513 these, and the IRIX ld doesn't like resulting empty RELA sections.
7514 Thus we create those header only on demand now. */
7515
7516 return TRUE;
7517 }
7518
7519 /* Given a BFD section, try to locate the corresponding ELF section
7520 index. This is used by both the 32-bit and the 64-bit ABI.
7521 Actually, it's not clear to me that the 64-bit ABI supports these,
7522 but for non-PIC objects we will certainly want support for at least
7523 the .scommon section. */
7524
7525 bfd_boolean
7526 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7527 asection *sec, int *retval)
7528 {
7529 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7530 {
7531 *retval = SHN_MIPS_SCOMMON;
7532 return TRUE;
7533 }
7534 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7535 {
7536 *retval = SHN_MIPS_ACOMMON;
7537 return TRUE;
7538 }
7539 return FALSE;
7540 }
7541 \f
7542 /* Hook called by the linker routine which adds symbols from an object
7543 file. We must handle the special MIPS section numbers here. */
7544
7545 bfd_boolean
7546 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7547 Elf_Internal_Sym *sym, const char **namep,
7548 flagword *flagsp ATTRIBUTE_UNUSED,
7549 asection **secp, bfd_vma *valp)
7550 {
7551 if (SGI_COMPAT (abfd)
7552 && (abfd->flags & DYNAMIC) != 0
7553 && strcmp (*namep, "_rld_new_interface") == 0)
7554 {
7555 /* Skip IRIX5 rld entry name. */
7556 *namep = NULL;
7557 return TRUE;
7558 }
7559
7560 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7561 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7562 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7563 a magic symbol resolved by the linker, we ignore this bogus definition
7564 of _gp_disp. New ABI objects do not suffer from this problem so this
7565 is not done for them. */
7566 if (!NEWABI_P(abfd)
7567 && (sym->st_shndx == SHN_ABS)
7568 && (strcmp (*namep, "_gp_disp") == 0))
7569 {
7570 *namep = NULL;
7571 return TRUE;
7572 }
7573
7574 switch (sym->st_shndx)
7575 {
7576 case SHN_COMMON:
7577 /* Common symbols less than the GP size are automatically
7578 treated as SHN_MIPS_SCOMMON symbols. */
7579 if (sym->st_size > elf_gp_size (abfd)
7580 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7581 || IRIX_COMPAT (abfd) == ict_irix6)
7582 break;
7583 /* Fall through. */
7584 case SHN_MIPS_SCOMMON:
7585 *secp = bfd_make_section_old_way (abfd, ".scommon");
7586 (*secp)->flags |= SEC_IS_COMMON;
7587 *valp = sym->st_size;
7588 break;
7589
7590 case SHN_MIPS_TEXT:
7591 /* This section is used in a shared object. */
7592 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7593 {
7594 asymbol *elf_text_symbol;
7595 asection *elf_text_section;
7596 bfd_size_type amt = sizeof (asection);
7597
7598 elf_text_section = bfd_zalloc (abfd, amt);
7599 if (elf_text_section == NULL)
7600 return FALSE;
7601
7602 amt = sizeof (asymbol);
7603 elf_text_symbol = bfd_zalloc (abfd, amt);
7604 if (elf_text_symbol == NULL)
7605 return FALSE;
7606
7607 /* Initialize the section. */
7608
7609 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7610 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7611
7612 elf_text_section->symbol = elf_text_symbol;
7613 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7614
7615 elf_text_section->name = ".text";
7616 elf_text_section->flags = SEC_NO_FLAGS;
7617 elf_text_section->output_section = NULL;
7618 elf_text_section->owner = abfd;
7619 elf_text_symbol->name = ".text";
7620 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7621 elf_text_symbol->section = elf_text_section;
7622 }
7623 /* This code used to do *secp = bfd_und_section_ptr if
7624 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7625 so I took it out. */
7626 *secp = mips_elf_tdata (abfd)->elf_text_section;
7627 break;
7628
7629 case SHN_MIPS_ACOMMON:
7630 /* Fall through. XXX Can we treat this as allocated data? */
7631 case SHN_MIPS_DATA:
7632 /* This section is used in a shared object. */
7633 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7634 {
7635 asymbol *elf_data_symbol;
7636 asection *elf_data_section;
7637 bfd_size_type amt = sizeof (asection);
7638
7639 elf_data_section = bfd_zalloc (abfd, amt);
7640 if (elf_data_section == NULL)
7641 return FALSE;
7642
7643 amt = sizeof (asymbol);
7644 elf_data_symbol = bfd_zalloc (abfd, amt);
7645 if (elf_data_symbol == NULL)
7646 return FALSE;
7647
7648 /* Initialize the section. */
7649
7650 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7651 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7652
7653 elf_data_section->symbol = elf_data_symbol;
7654 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7655
7656 elf_data_section->name = ".data";
7657 elf_data_section->flags = SEC_NO_FLAGS;
7658 elf_data_section->output_section = NULL;
7659 elf_data_section->owner = abfd;
7660 elf_data_symbol->name = ".data";
7661 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7662 elf_data_symbol->section = elf_data_section;
7663 }
7664 /* This code used to do *secp = bfd_und_section_ptr if
7665 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7666 so I took it out. */
7667 *secp = mips_elf_tdata (abfd)->elf_data_section;
7668 break;
7669
7670 case SHN_MIPS_SUNDEFINED:
7671 *secp = bfd_und_section_ptr;
7672 break;
7673 }
7674
7675 if (SGI_COMPAT (abfd)
7676 && ! bfd_link_pic (info)
7677 && info->output_bfd->xvec == abfd->xvec
7678 && strcmp (*namep, "__rld_obj_head") == 0)
7679 {
7680 struct elf_link_hash_entry *h;
7681 struct bfd_link_hash_entry *bh;
7682
7683 /* Mark __rld_obj_head as dynamic. */
7684 bh = NULL;
7685 if (! (_bfd_generic_link_add_one_symbol
7686 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7687 get_elf_backend_data (abfd)->collect, &bh)))
7688 return FALSE;
7689
7690 h = (struct elf_link_hash_entry *) bh;
7691 h->non_elf = 0;
7692 h->def_regular = 1;
7693 h->type = STT_OBJECT;
7694
7695 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7696 return FALSE;
7697
7698 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7699 mips_elf_hash_table (info)->rld_symbol = h;
7700 }
7701
7702 /* If this is a mips16 text symbol, add 1 to the value to make it
7703 odd. This will cause something like .word SYM to come up with
7704 the right value when it is loaded into the PC. */
7705 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7706 ++*valp;
7707
7708 return TRUE;
7709 }
7710
7711 /* This hook function is called before the linker writes out a global
7712 symbol. We mark symbols as small common if appropriate. This is
7713 also where we undo the increment of the value for a mips16 symbol. */
7714
7715 int
7716 _bfd_mips_elf_link_output_symbol_hook
7717 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7718 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7719 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7720 {
7721 /* If we see a common symbol, which implies a relocatable link, then
7722 if a symbol was small common in an input file, mark it as small
7723 common in the output file. */
7724 if (sym->st_shndx == SHN_COMMON
7725 && strcmp (input_sec->name, ".scommon") == 0)
7726 sym->st_shndx = SHN_MIPS_SCOMMON;
7727
7728 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7729 sym->st_value &= ~1;
7730
7731 return 1;
7732 }
7733 \f
7734 /* Functions for the dynamic linker. */
7735
7736 /* Create dynamic sections when linking against a dynamic object. */
7737
7738 bfd_boolean
7739 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7740 {
7741 struct elf_link_hash_entry *h;
7742 struct bfd_link_hash_entry *bh;
7743 flagword flags;
7744 register asection *s;
7745 const char * const *namep;
7746 struct mips_elf_link_hash_table *htab;
7747
7748 htab = mips_elf_hash_table (info);
7749 BFD_ASSERT (htab != NULL);
7750
7751 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7752 | SEC_LINKER_CREATED | SEC_READONLY);
7753
7754 /* The psABI requires a read-only .dynamic section, but the VxWorks
7755 EABI doesn't. */
7756 if (!htab->is_vxworks)
7757 {
7758 s = bfd_get_linker_section (abfd, ".dynamic");
7759 if (s != NULL)
7760 {
7761 if (! bfd_set_section_flags (abfd, s, flags))
7762 return FALSE;
7763 }
7764 }
7765
7766 /* We need to create .got section. */
7767 if (!mips_elf_create_got_section (abfd, info))
7768 return FALSE;
7769
7770 if (! mips_elf_rel_dyn_section (info, TRUE))
7771 return FALSE;
7772
7773 /* Create .stub section. */
7774 s = bfd_make_section_anyway_with_flags (abfd,
7775 MIPS_ELF_STUB_SECTION_NAME (abfd),
7776 flags | SEC_CODE);
7777 if (s == NULL
7778 || ! bfd_set_section_alignment (abfd, s,
7779 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7780 return FALSE;
7781 htab->sstubs = s;
7782
7783 if (!mips_elf_hash_table (info)->use_rld_obj_head
7784 && bfd_link_executable (info)
7785 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7786 {
7787 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7788 flags &~ (flagword) SEC_READONLY);
7789 if (s == NULL
7790 || ! bfd_set_section_alignment (abfd, s,
7791 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7792 return FALSE;
7793 }
7794
7795 /* On IRIX5, we adjust add some additional symbols and change the
7796 alignments of several sections. There is no ABI documentation
7797 indicating that this is necessary on IRIX6, nor any evidence that
7798 the linker takes such action. */
7799 if (IRIX_COMPAT (abfd) == ict_irix5)
7800 {
7801 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7802 {
7803 bh = NULL;
7804 if (! (_bfd_generic_link_add_one_symbol
7805 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7806 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7807 return FALSE;
7808
7809 h = (struct elf_link_hash_entry *) bh;
7810 h->non_elf = 0;
7811 h->def_regular = 1;
7812 h->type = STT_SECTION;
7813
7814 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7815 return FALSE;
7816 }
7817
7818 /* We need to create a .compact_rel section. */
7819 if (SGI_COMPAT (abfd))
7820 {
7821 if (!mips_elf_create_compact_rel_section (abfd, info))
7822 return FALSE;
7823 }
7824
7825 /* Change alignments of some sections. */
7826 s = bfd_get_linker_section (abfd, ".hash");
7827 if (s != NULL)
7828 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7829
7830 s = bfd_get_linker_section (abfd, ".dynsym");
7831 if (s != NULL)
7832 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7833
7834 s = bfd_get_linker_section (abfd, ".dynstr");
7835 if (s != NULL)
7836 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7837
7838 /* ??? */
7839 s = bfd_get_section_by_name (abfd, ".reginfo");
7840 if (s != NULL)
7841 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7842
7843 s = bfd_get_linker_section (abfd, ".dynamic");
7844 if (s != NULL)
7845 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7846 }
7847
7848 if (bfd_link_executable (info))
7849 {
7850 const char *name;
7851
7852 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7853 bh = NULL;
7854 if (!(_bfd_generic_link_add_one_symbol
7855 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7856 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7857 return FALSE;
7858
7859 h = (struct elf_link_hash_entry *) bh;
7860 h->non_elf = 0;
7861 h->def_regular = 1;
7862 h->type = STT_SECTION;
7863
7864 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7865 return FALSE;
7866
7867 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7868 {
7869 /* __rld_map is a four byte word located in the .data section
7870 and is filled in by the rtld to contain a pointer to
7871 the _r_debug structure. Its symbol value will be set in
7872 _bfd_mips_elf_finish_dynamic_symbol. */
7873 s = bfd_get_linker_section (abfd, ".rld_map");
7874 BFD_ASSERT (s != NULL);
7875
7876 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7877 bh = NULL;
7878 if (!(_bfd_generic_link_add_one_symbol
7879 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7880 get_elf_backend_data (abfd)->collect, &bh)))
7881 return FALSE;
7882
7883 h = (struct elf_link_hash_entry *) bh;
7884 h->non_elf = 0;
7885 h->def_regular = 1;
7886 h->type = STT_OBJECT;
7887
7888 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7889 return FALSE;
7890 mips_elf_hash_table (info)->rld_symbol = h;
7891 }
7892 }
7893
7894 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7895 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
7896 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7897 return FALSE;
7898
7899 /* Cache the sections created above. */
7900 htab->splt = bfd_get_linker_section (abfd, ".plt");
7901 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
7902 if (htab->is_vxworks)
7903 {
7904 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
7905 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
7906 }
7907 else
7908 htab->srelplt = bfd_get_linker_section (abfd, ".rel.plt");
7909 if (!htab->sdynbss
7910 || (htab->is_vxworks && !htab->srelbss && !bfd_link_pic (info))
7911 || !htab->srelplt
7912 || !htab->splt)
7913 abort ();
7914
7915 /* Do the usual VxWorks handling. */
7916 if (htab->is_vxworks
7917 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7918 return FALSE;
7919
7920 return TRUE;
7921 }
7922 \f
7923 /* Return true if relocation REL against section SEC is a REL rather than
7924 RELA relocation. RELOCS is the first relocation in the section and
7925 ABFD is the bfd that contains SEC. */
7926
7927 static bfd_boolean
7928 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7929 const Elf_Internal_Rela *relocs,
7930 const Elf_Internal_Rela *rel)
7931 {
7932 Elf_Internal_Shdr *rel_hdr;
7933 const struct elf_backend_data *bed;
7934
7935 /* To determine which flavor of relocation this is, we depend on the
7936 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7937 rel_hdr = elf_section_data (sec)->rel.hdr;
7938 if (rel_hdr == NULL)
7939 return FALSE;
7940 bed = get_elf_backend_data (abfd);
7941 return ((size_t) (rel - relocs)
7942 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7943 }
7944
7945 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7946 HOWTO is the relocation's howto and CONTENTS points to the contents
7947 of the section that REL is against. */
7948
7949 static bfd_vma
7950 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7951 reloc_howto_type *howto, bfd_byte *contents)
7952 {
7953 bfd_byte *location;
7954 unsigned int r_type;
7955 bfd_vma addend;
7956 bfd_vma bytes;
7957
7958 r_type = ELF_R_TYPE (abfd, rel->r_info);
7959 location = contents + rel->r_offset;
7960
7961 /* Get the addend, which is stored in the input file. */
7962 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7963 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
7964 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7965
7966 addend = bytes & howto->src_mask;
7967
7968 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
7969 accordingly. */
7970 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
7971 addend <<= 1;
7972
7973 return addend;
7974 }
7975
7976 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7977 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7978 and update *ADDEND with the final addend. Return true on success
7979 or false if the LO16 could not be found. RELEND is the exclusive
7980 upper bound on the relocations for REL's section. */
7981
7982 static bfd_boolean
7983 mips_elf_add_lo16_rel_addend (bfd *abfd,
7984 const Elf_Internal_Rela *rel,
7985 const Elf_Internal_Rela *relend,
7986 bfd_byte *contents, bfd_vma *addend)
7987 {
7988 unsigned int r_type, lo16_type;
7989 const Elf_Internal_Rela *lo16_relocation;
7990 reloc_howto_type *lo16_howto;
7991 bfd_vma l;
7992
7993 r_type = ELF_R_TYPE (abfd, rel->r_info);
7994 if (mips16_reloc_p (r_type))
7995 lo16_type = R_MIPS16_LO16;
7996 else if (micromips_reloc_p (r_type))
7997 lo16_type = R_MICROMIPS_LO16;
7998 else if (r_type == R_MIPS_PCHI16)
7999 lo16_type = R_MIPS_PCLO16;
8000 else
8001 lo16_type = R_MIPS_LO16;
8002
8003 /* The combined value is the sum of the HI16 addend, left-shifted by
8004 sixteen bits, and the LO16 addend, sign extended. (Usually, the
8005 code does a `lui' of the HI16 value, and then an `addiu' of the
8006 LO16 value.)
8007
8008 Scan ahead to find a matching LO16 relocation.
8009
8010 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8011 be immediately following. However, for the IRIX6 ABI, the next
8012 relocation may be a composed relocation consisting of several
8013 relocations for the same address. In that case, the R_MIPS_LO16
8014 relocation may occur as one of these. We permit a similar
8015 extension in general, as that is useful for GCC.
8016
8017 In some cases GCC dead code elimination removes the LO16 but keeps
8018 the corresponding HI16. This is strictly speaking a violation of
8019 the ABI but not immediately harmful. */
8020 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8021 if (lo16_relocation == NULL)
8022 return FALSE;
8023
8024 /* Obtain the addend kept there. */
8025 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
8026 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8027
8028 l <<= lo16_howto->rightshift;
8029 l = _bfd_mips_elf_sign_extend (l, 16);
8030
8031 *addend <<= 16;
8032 *addend += l;
8033 return TRUE;
8034 }
8035
8036 /* Try to read the contents of section SEC in bfd ABFD. Return true and
8037 store the contents in *CONTENTS on success. Assume that *CONTENTS
8038 already holds the contents if it is nonull on entry. */
8039
8040 static bfd_boolean
8041 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8042 {
8043 if (*contents)
8044 return TRUE;
8045
8046 /* Get cached copy if it exists. */
8047 if (elf_section_data (sec)->this_hdr.contents != NULL)
8048 {
8049 *contents = elf_section_data (sec)->this_hdr.contents;
8050 return TRUE;
8051 }
8052
8053 return bfd_malloc_and_get_section (abfd, sec, contents);
8054 }
8055
8056 /* Make a new PLT record to keep internal data. */
8057
8058 static struct plt_entry *
8059 mips_elf_make_plt_record (bfd *abfd)
8060 {
8061 struct plt_entry *entry;
8062
8063 entry = bfd_zalloc (abfd, sizeof (*entry));
8064 if (entry == NULL)
8065 return NULL;
8066
8067 entry->stub_offset = MINUS_ONE;
8068 entry->mips_offset = MINUS_ONE;
8069 entry->comp_offset = MINUS_ONE;
8070 entry->gotplt_index = MINUS_ONE;
8071 return entry;
8072 }
8073
8074 /* Look through the relocs for a section during the first phase, and
8075 allocate space in the global offset table and record the need for
8076 standard MIPS and compressed procedure linkage table entries. */
8077
8078 bfd_boolean
8079 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8080 asection *sec, const Elf_Internal_Rela *relocs)
8081 {
8082 const char *name;
8083 bfd *dynobj;
8084 Elf_Internal_Shdr *symtab_hdr;
8085 struct elf_link_hash_entry **sym_hashes;
8086 size_t extsymoff;
8087 const Elf_Internal_Rela *rel;
8088 const Elf_Internal_Rela *rel_end;
8089 asection *sreloc;
8090 const struct elf_backend_data *bed;
8091 struct mips_elf_link_hash_table *htab;
8092 bfd_byte *contents;
8093 bfd_vma addend;
8094 reloc_howto_type *howto;
8095
8096 if (bfd_link_relocatable (info))
8097 return TRUE;
8098
8099 htab = mips_elf_hash_table (info);
8100 BFD_ASSERT (htab != NULL);
8101
8102 dynobj = elf_hash_table (info)->dynobj;
8103 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8104 sym_hashes = elf_sym_hashes (abfd);
8105 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8106
8107 bed = get_elf_backend_data (abfd);
8108 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
8109
8110 /* Check for the mips16 stub sections. */
8111
8112 name = bfd_get_section_name (abfd, sec);
8113 if (FN_STUB_P (name))
8114 {
8115 unsigned long r_symndx;
8116
8117 /* Look at the relocation information to figure out which symbol
8118 this is for. */
8119
8120 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8121 if (r_symndx == 0)
8122 {
8123 _bfd_error_handler
8124 (_("%B: Warning: cannot determine the target function for"
8125 " stub section `%s'"),
8126 abfd, name);
8127 bfd_set_error (bfd_error_bad_value);
8128 return FALSE;
8129 }
8130
8131 if (r_symndx < extsymoff
8132 || sym_hashes[r_symndx - extsymoff] == NULL)
8133 {
8134 asection *o;
8135
8136 /* This stub is for a local symbol. This stub will only be
8137 needed if there is some relocation in this BFD, other
8138 than a 16 bit function call, which refers to this symbol. */
8139 for (o = abfd->sections; o != NULL; o = o->next)
8140 {
8141 Elf_Internal_Rela *sec_relocs;
8142 const Elf_Internal_Rela *r, *rend;
8143
8144 /* We can ignore stub sections when looking for relocs. */
8145 if ((o->flags & SEC_RELOC) == 0
8146 || o->reloc_count == 0
8147 || section_allows_mips16_refs_p (o))
8148 continue;
8149
8150 sec_relocs
8151 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8152 info->keep_memory);
8153 if (sec_relocs == NULL)
8154 return FALSE;
8155
8156 rend = sec_relocs + o->reloc_count;
8157 for (r = sec_relocs; r < rend; r++)
8158 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8159 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
8160 break;
8161
8162 if (elf_section_data (o)->relocs != sec_relocs)
8163 free (sec_relocs);
8164
8165 if (r < rend)
8166 break;
8167 }
8168
8169 if (o == NULL)
8170 {
8171 /* There is no non-call reloc for this stub, so we do
8172 not need it. Since this function is called before
8173 the linker maps input sections to output sections, we
8174 can easily discard it by setting the SEC_EXCLUDE
8175 flag. */
8176 sec->flags |= SEC_EXCLUDE;
8177 return TRUE;
8178 }
8179
8180 /* Record this stub in an array of local symbol stubs for
8181 this BFD. */
8182 if (mips_elf_tdata (abfd)->local_stubs == NULL)
8183 {
8184 unsigned long symcount;
8185 asection **n;
8186 bfd_size_type amt;
8187
8188 if (elf_bad_symtab (abfd))
8189 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8190 else
8191 symcount = symtab_hdr->sh_info;
8192 amt = symcount * sizeof (asection *);
8193 n = bfd_zalloc (abfd, amt);
8194 if (n == NULL)
8195 return FALSE;
8196 mips_elf_tdata (abfd)->local_stubs = n;
8197 }
8198
8199 sec->flags |= SEC_KEEP;
8200 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8201
8202 /* We don't need to set mips16_stubs_seen in this case.
8203 That flag is used to see whether we need to look through
8204 the global symbol table for stubs. We don't need to set
8205 it here, because we just have a local stub. */
8206 }
8207 else
8208 {
8209 struct mips_elf_link_hash_entry *h;
8210
8211 h = ((struct mips_elf_link_hash_entry *)
8212 sym_hashes[r_symndx - extsymoff]);
8213
8214 while (h->root.root.type == bfd_link_hash_indirect
8215 || h->root.root.type == bfd_link_hash_warning)
8216 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8217
8218 /* H is the symbol this stub is for. */
8219
8220 /* If we already have an appropriate stub for this function, we
8221 don't need another one, so we can discard this one. Since
8222 this function is called before the linker maps input sections
8223 to output sections, we can easily discard it by setting the
8224 SEC_EXCLUDE flag. */
8225 if (h->fn_stub != NULL)
8226 {
8227 sec->flags |= SEC_EXCLUDE;
8228 return TRUE;
8229 }
8230
8231 sec->flags |= SEC_KEEP;
8232 h->fn_stub = sec;
8233 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8234 }
8235 }
8236 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8237 {
8238 unsigned long r_symndx;
8239 struct mips_elf_link_hash_entry *h;
8240 asection **loc;
8241
8242 /* Look at the relocation information to figure out which symbol
8243 this is for. */
8244
8245 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8246 if (r_symndx == 0)
8247 {
8248 _bfd_error_handler
8249 (_("%B: Warning: cannot determine the target function for"
8250 " stub section `%s'"),
8251 abfd, name);
8252 bfd_set_error (bfd_error_bad_value);
8253 return FALSE;
8254 }
8255
8256 if (r_symndx < extsymoff
8257 || sym_hashes[r_symndx - extsymoff] == NULL)
8258 {
8259 asection *o;
8260
8261 /* This stub is for a local symbol. This stub will only be
8262 needed if there is some relocation (R_MIPS16_26) in this BFD
8263 that refers to this symbol. */
8264 for (o = abfd->sections; o != NULL; o = o->next)
8265 {
8266 Elf_Internal_Rela *sec_relocs;
8267 const Elf_Internal_Rela *r, *rend;
8268
8269 /* We can ignore stub sections when looking for relocs. */
8270 if ((o->flags & SEC_RELOC) == 0
8271 || o->reloc_count == 0
8272 || section_allows_mips16_refs_p (o))
8273 continue;
8274
8275 sec_relocs
8276 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8277 info->keep_memory);
8278 if (sec_relocs == NULL)
8279 return FALSE;
8280
8281 rend = sec_relocs + o->reloc_count;
8282 for (r = sec_relocs; r < rend; r++)
8283 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8284 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8285 break;
8286
8287 if (elf_section_data (o)->relocs != sec_relocs)
8288 free (sec_relocs);
8289
8290 if (r < rend)
8291 break;
8292 }
8293
8294 if (o == NULL)
8295 {
8296 /* There is no non-call reloc for this stub, so we do
8297 not need it. Since this function is called before
8298 the linker maps input sections to output sections, we
8299 can easily discard it by setting the SEC_EXCLUDE
8300 flag. */
8301 sec->flags |= SEC_EXCLUDE;
8302 return TRUE;
8303 }
8304
8305 /* Record this stub in an array of local symbol call_stubs for
8306 this BFD. */
8307 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8308 {
8309 unsigned long symcount;
8310 asection **n;
8311 bfd_size_type amt;
8312
8313 if (elf_bad_symtab (abfd))
8314 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8315 else
8316 symcount = symtab_hdr->sh_info;
8317 amt = symcount * sizeof (asection *);
8318 n = bfd_zalloc (abfd, amt);
8319 if (n == NULL)
8320 return FALSE;
8321 mips_elf_tdata (abfd)->local_call_stubs = n;
8322 }
8323
8324 sec->flags |= SEC_KEEP;
8325 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8326
8327 /* We don't need to set mips16_stubs_seen in this case.
8328 That flag is used to see whether we need to look through
8329 the global symbol table for stubs. We don't need to set
8330 it here, because we just have a local stub. */
8331 }
8332 else
8333 {
8334 h = ((struct mips_elf_link_hash_entry *)
8335 sym_hashes[r_symndx - extsymoff]);
8336
8337 /* H is the symbol this stub is for. */
8338
8339 if (CALL_FP_STUB_P (name))
8340 loc = &h->call_fp_stub;
8341 else
8342 loc = &h->call_stub;
8343
8344 /* If we already have an appropriate stub for this function, we
8345 don't need another one, so we can discard this one. Since
8346 this function is called before the linker maps input sections
8347 to output sections, we can easily discard it by setting the
8348 SEC_EXCLUDE flag. */
8349 if (*loc != NULL)
8350 {
8351 sec->flags |= SEC_EXCLUDE;
8352 return TRUE;
8353 }
8354
8355 sec->flags |= SEC_KEEP;
8356 *loc = sec;
8357 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8358 }
8359 }
8360
8361 sreloc = NULL;
8362 contents = NULL;
8363 for (rel = relocs; rel < rel_end; ++rel)
8364 {
8365 unsigned long r_symndx;
8366 unsigned int r_type;
8367 struct elf_link_hash_entry *h;
8368 bfd_boolean can_make_dynamic_p;
8369 bfd_boolean call_reloc_p;
8370 bfd_boolean constrain_symbol_p;
8371
8372 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8373 r_type = ELF_R_TYPE (abfd, rel->r_info);
8374
8375 if (r_symndx < extsymoff)
8376 h = NULL;
8377 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8378 {
8379 _bfd_error_handler
8380 (_("%B: Malformed reloc detected for section %s"),
8381 abfd, name);
8382 bfd_set_error (bfd_error_bad_value);
8383 return FALSE;
8384 }
8385 else
8386 {
8387 h = sym_hashes[r_symndx - extsymoff];
8388 if (h != NULL)
8389 {
8390 while (h->root.type == bfd_link_hash_indirect
8391 || h->root.type == bfd_link_hash_warning)
8392 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8393
8394 /* PR15323, ref flags aren't set for references in the
8395 same object. */
8396 h->root.non_ir_ref = 1;
8397 }
8398 }
8399
8400 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8401 relocation into a dynamic one. */
8402 can_make_dynamic_p = FALSE;
8403
8404 /* Set CALL_RELOC_P to true if the relocation is for a call,
8405 and if pointer equality therefore doesn't matter. */
8406 call_reloc_p = FALSE;
8407
8408 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8409 into account when deciding how to define the symbol.
8410 Relocations in nonallocatable sections such as .pdr and
8411 .debug* should have no effect. */
8412 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8413
8414 switch (r_type)
8415 {
8416 case R_MIPS_CALL16:
8417 case R_MIPS_CALL_HI16:
8418 case R_MIPS_CALL_LO16:
8419 case R_MIPS16_CALL16:
8420 case R_MICROMIPS_CALL16:
8421 case R_MICROMIPS_CALL_HI16:
8422 case R_MICROMIPS_CALL_LO16:
8423 call_reloc_p = TRUE;
8424 /* Fall through. */
8425
8426 case R_MIPS_GOT16:
8427 case R_MIPS_GOT_HI16:
8428 case R_MIPS_GOT_LO16:
8429 case R_MIPS_GOT_PAGE:
8430 case R_MIPS_GOT_OFST:
8431 case R_MIPS_GOT_DISP:
8432 case R_MIPS_TLS_GOTTPREL:
8433 case R_MIPS_TLS_GD:
8434 case R_MIPS_TLS_LDM:
8435 case R_MIPS16_GOT16:
8436 case R_MIPS16_TLS_GOTTPREL:
8437 case R_MIPS16_TLS_GD:
8438 case R_MIPS16_TLS_LDM:
8439 case R_MICROMIPS_GOT16:
8440 case R_MICROMIPS_GOT_HI16:
8441 case R_MICROMIPS_GOT_LO16:
8442 case R_MICROMIPS_GOT_PAGE:
8443 case R_MICROMIPS_GOT_OFST:
8444 case R_MICROMIPS_GOT_DISP:
8445 case R_MICROMIPS_TLS_GOTTPREL:
8446 case R_MICROMIPS_TLS_GD:
8447 case R_MICROMIPS_TLS_LDM:
8448 if (dynobj == NULL)
8449 elf_hash_table (info)->dynobj = dynobj = abfd;
8450 if (!mips_elf_create_got_section (dynobj, info))
8451 return FALSE;
8452 if (htab->is_vxworks && !bfd_link_pic (info))
8453 {
8454 _bfd_error_handler
8455 (_("%B: GOT reloc at 0x%lx not expected in executables"),
8456 abfd, (unsigned long) rel->r_offset);
8457 bfd_set_error (bfd_error_bad_value);
8458 return FALSE;
8459 }
8460 can_make_dynamic_p = TRUE;
8461 break;
8462
8463 case R_MIPS_NONE:
8464 case R_MIPS_JALR:
8465 case R_MICROMIPS_JALR:
8466 /* These relocations have empty fields and are purely there to
8467 provide link information. The symbol value doesn't matter. */
8468 constrain_symbol_p = FALSE;
8469 break;
8470
8471 case R_MIPS_GPREL16:
8472 case R_MIPS_GPREL32:
8473 case R_MIPS16_GPREL:
8474 case R_MICROMIPS_GPREL16:
8475 /* GP-relative relocations always resolve to a definition in a
8476 regular input file, ignoring the one-definition rule. This is
8477 important for the GP setup sequence in NewABI code, which
8478 always resolves to a local function even if other relocations
8479 against the symbol wouldn't. */
8480 constrain_symbol_p = FALSE;
8481 break;
8482
8483 case R_MIPS_32:
8484 case R_MIPS_REL32:
8485 case R_MIPS_64:
8486 /* In VxWorks executables, references to external symbols
8487 must be handled using copy relocs or PLT entries; it is not
8488 possible to convert this relocation into a dynamic one.
8489
8490 For executables that use PLTs and copy-relocs, we have a
8491 choice between converting the relocation into a dynamic
8492 one or using copy relocations or PLT entries. It is
8493 usually better to do the former, unless the relocation is
8494 against a read-only section. */
8495 if ((bfd_link_pic (info)
8496 || (h != NULL
8497 && !htab->is_vxworks
8498 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8499 && !(!info->nocopyreloc
8500 && !PIC_OBJECT_P (abfd)
8501 && MIPS_ELF_READONLY_SECTION (sec))))
8502 && (sec->flags & SEC_ALLOC) != 0)
8503 {
8504 can_make_dynamic_p = TRUE;
8505 if (dynobj == NULL)
8506 elf_hash_table (info)->dynobj = dynobj = abfd;
8507 }
8508 break;
8509
8510 case R_MIPS_26:
8511 case R_MIPS_PC16:
8512 case R_MIPS_PC21_S2:
8513 case R_MIPS_PC26_S2:
8514 case R_MIPS16_26:
8515 case R_MIPS16_PC16_S1:
8516 case R_MICROMIPS_26_S1:
8517 case R_MICROMIPS_PC7_S1:
8518 case R_MICROMIPS_PC10_S1:
8519 case R_MICROMIPS_PC16_S1:
8520 case R_MICROMIPS_PC23_S2:
8521 call_reloc_p = TRUE;
8522 break;
8523 }
8524
8525 if (h)
8526 {
8527 if (constrain_symbol_p)
8528 {
8529 if (!can_make_dynamic_p)
8530 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8531
8532 if (!call_reloc_p)
8533 h->pointer_equality_needed = 1;
8534
8535 /* We must not create a stub for a symbol that has
8536 relocations related to taking the function's address.
8537 This doesn't apply to VxWorks, where CALL relocs refer
8538 to a .got.plt entry instead of a normal .got entry. */
8539 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8540 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8541 }
8542
8543 /* Relocations against the special VxWorks __GOTT_BASE__ and
8544 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8545 room for them in .rela.dyn. */
8546 if (is_gott_symbol (info, h))
8547 {
8548 if (sreloc == NULL)
8549 {
8550 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8551 if (sreloc == NULL)
8552 return FALSE;
8553 }
8554 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8555 if (MIPS_ELF_READONLY_SECTION (sec))
8556 /* We tell the dynamic linker that there are
8557 relocations against the text segment. */
8558 info->flags |= DF_TEXTREL;
8559 }
8560 }
8561 else if (call_lo16_reloc_p (r_type)
8562 || got_lo16_reloc_p (r_type)
8563 || got_disp_reloc_p (r_type)
8564 || (got16_reloc_p (r_type) && htab->is_vxworks))
8565 {
8566 /* We may need a local GOT entry for this relocation. We
8567 don't count R_MIPS_GOT_PAGE because we can estimate the
8568 maximum number of pages needed by looking at the size of
8569 the segment. Similar comments apply to R_MIPS*_GOT16 and
8570 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8571 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8572 R_MIPS_CALL_HI16 because these are always followed by an
8573 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8574 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8575 rel->r_addend, info, r_type))
8576 return FALSE;
8577 }
8578
8579 if (h != NULL
8580 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8581 ELF_ST_IS_MIPS16 (h->other)))
8582 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8583
8584 switch (r_type)
8585 {
8586 case R_MIPS_CALL16:
8587 case R_MIPS16_CALL16:
8588 case R_MICROMIPS_CALL16:
8589 if (h == NULL)
8590 {
8591 _bfd_error_handler
8592 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
8593 abfd, (unsigned long) rel->r_offset);
8594 bfd_set_error (bfd_error_bad_value);
8595 return FALSE;
8596 }
8597 /* Fall through. */
8598
8599 case R_MIPS_CALL_HI16:
8600 case R_MIPS_CALL_LO16:
8601 case R_MICROMIPS_CALL_HI16:
8602 case R_MICROMIPS_CALL_LO16:
8603 if (h != NULL)
8604 {
8605 /* Make sure there is room in the regular GOT to hold the
8606 function's address. We may eliminate it in favour of
8607 a .got.plt entry later; see mips_elf_count_got_symbols. */
8608 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8609 r_type))
8610 return FALSE;
8611
8612 /* We need a stub, not a plt entry for the undefined
8613 function. But we record it as if it needs plt. See
8614 _bfd_elf_adjust_dynamic_symbol. */
8615 h->needs_plt = 1;
8616 h->type = STT_FUNC;
8617 }
8618 break;
8619
8620 case R_MIPS_GOT_PAGE:
8621 case R_MICROMIPS_GOT_PAGE:
8622 case R_MIPS16_GOT16:
8623 case R_MIPS_GOT16:
8624 case R_MIPS_GOT_HI16:
8625 case R_MIPS_GOT_LO16:
8626 case R_MICROMIPS_GOT16:
8627 case R_MICROMIPS_GOT_HI16:
8628 case R_MICROMIPS_GOT_LO16:
8629 if (!h || got_page_reloc_p (r_type))
8630 {
8631 /* This relocation needs (or may need, if h != NULL) a
8632 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8633 know for sure until we know whether the symbol is
8634 preemptible. */
8635 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8636 {
8637 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8638 return FALSE;
8639 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8640 addend = mips_elf_read_rel_addend (abfd, rel,
8641 howto, contents);
8642 if (got16_reloc_p (r_type))
8643 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8644 contents, &addend);
8645 else
8646 addend <<= howto->rightshift;
8647 }
8648 else
8649 addend = rel->r_addend;
8650 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8651 h, addend))
8652 return FALSE;
8653
8654 if (h)
8655 {
8656 struct mips_elf_link_hash_entry *hmips =
8657 (struct mips_elf_link_hash_entry *) h;
8658
8659 /* This symbol is definitely not overridable. */
8660 if (hmips->root.def_regular
8661 && ! (bfd_link_pic (info) && ! info->symbolic
8662 && ! hmips->root.forced_local))
8663 h = NULL;
8664 }
8665 }
8666 /* If this is a global, overridable symbol, GOT_PAGE will
8667 decay to GOT_DISP, so we'll need a GOT entry for it. */
8668 /* Fall through. */
8669
8670 case R_MIPS_GOT_DISP:
8671 case R_MICROMIPS_GOT_DISP:
8672 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8673 FALSE, r_type))
8674 return FALSE;
8675 break;
8676
8677 case R_MIPS_TLS_GOTTPREL:
8678 case R_MIPS16_TLS_GOTTPREL:
8679 case R_MICROMIPS_TLS_GOTTPREL:
8680 if (bfd_link_pic (info))
8681 info->flags |= DF_STATIC_TLS;
8682 /* Fall through */
8683
8684 case R_MIPS_TLS_LDM:
8685 case R_MIPS16_TLS_LDM:
8686 case R_MICROMIPS_TLS_LDM:
8687 if (tls_ldm_reloc_p (r_type))
8688 {
8689 r_symndx = STN_UNDEF;
8690 h = NULL;
8691 }
8692 /* Fall through */
8693
8694 case R_MIPS_TLS_GD:
8695 case R_MIPS16_TLS_GD:
8696 case R_MICROMIPS_TLS_GD:
8697 /* This symbol requires a global offset table entry, or two
8698 for TLS GD relocations. */
8699 if (h != NULL)
8700 {
8701 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8702 FALSE, r_type))
8703 return FALSE;
8704 }
8705 else
8706 {
8707 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8708 rel->r_addend,
8709 info, r_type))
8710 return FALSE;
8711 }
8712 break;
8713
8714 case R_MIPS_32:
8715 case R_MIPS_REL32:
8716 case R_MIPS_64:
8717 /* In VxWorks executables, references to external symbols
8718 are handled using copy relocs or PLT stubs, so there's
8719 no need to add a .rela.dyn entry for this relocation. */
8720 if (can_make_dynamic_p)
8721 {
8722 if (sreloc == NULL)
8723 {
8724 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8725 if (sreloc == NULL)
8726 return FALSE;
8727 }
8728 if (bfd_link_pic (info) && h == NULL)
8729 {
8730 /* When creating a shared object, we must copy these
8731 reloc types into the output file as R_MIPS_REL32
8732 relocs. Make room for this reloc in .rel(a).dyn. */
8733 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8734 if (MIPS_ELF_READONLY_SECTION (sec))
8735 /* We tell the dynamic linker that there are
8736 relocations against the text segment. */
8737 info->flags |= DF_TEXTREL;
8738 }
8739 else
8740 {
8741 struct mips_elf_link_hash_entry *hmips;
8742
8743 /* For a shared object, we must copy this relocation
8744 unless the symbol turns out to be undefined and
8745 weak with non-default visibility, in which case
8746 it will be left as zero.
8747
8748 We could elide R_MIPS_REL32 for locally binding symbols
8749 in shared libraries, but do not yet do so.
8750
8751 For an executable, we only need to copy this
8752 reloc if the symbol is defined in a dynamic
8753 object. */
8754 hmips = (struct mips_elf_link_hash_entry *) h;
8755 ++hmips->possibly_dynamic_relocs;
8756 if (MIPS_ELF_READONLY_SECTION (sec))
8757 /* We need it to tell the dynamic linker if there
8758 are relocations against the text segment. */
8759 hmips->readonly_reloc = TRUE;
8760 }
8761 }
8762
8763 if (SGI_COMPAT (abfd))
8764 mips_elf_hash_table (info)->compact_rel_size +=
8765 sizeof (Elf32_External_crinfo);
8766 break;
8767
8768 case R_MIPS_26:
8769 case R_MIPS_GPREL16:
8770 case R_MIPS_LITERAL:
8771 case R_MIPS_GPREL32:
8772 case R_MICROMIPS_26_S1:
8773 case R_MICROMIPS_GPREL16:
8774 case R_MICROMIPS_LITERAL:
8775 case R_MICROMIPS_GPREL7_S2:
8776 if (SGI_COMPAT (abfd))
8777 mips_elf_hash_table (info)->compact_rel_size +=
8778 sizeof (Elf32_External_crinfo);
8779 break;
8780
8781 /* This relocation describes the C++ object vtable hierarchy.
8782 Reconstruct it for later use during GC. */
8783 case R_MIPS_GNU_VTINHERIT:
8784 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8785 return FALSE;
8786 break;
8787
8788 /* This relocation describes which C++ vtable entries are actually
8789 used. Record for later use during GC. */
8790 case R_MIPS_GNU_VTENTRY:
8791 BFD_ASSERT (h != NULL);
8792 if (h != NULL
8793 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8794 return FALSE;
8795 break;
8796
8797 default:
8798 break;
8799 }
8800
8801 /* Record the need for a PLT entry. At this point we don't know
8802 yet if we are going to create a PLT in the first place, but
8803 we only record whether the relocation requires a standard MIPS
8804 or a compressed code entry anyway. If we don't make a PLT after
8805 all, then we'll just ignore these arrangements. Likewise if
8806 a PLT entry is not created because the symbol is satisfied
8807 locally. */
8808 if (h != NULL
8809 && (branch_reloc_p (r_type)
8810 || mips16_branch_reloc_p (r_type)
8811 || micromips_branch_reloc_p (r_type))
8812 && !SYMBOL_CALLS_LOCAL (info, h))
8813 {
8814 if (h->plt.plist == NULL)
8815 h->plt.plist = mips_elf_make_plt_record (abfd);
8816 if (h->plt.plist == NULL)
8817 return FALSE;
8818
8819 if (branch_reloc_p (r_type))
8820 h->plt.plist->need_mips = TRUE;
8821 else
8822 h->plt.plist->need_comp = TRUE;
8823 }
8824
8825 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8826 if there is one. We only need to handle global symbols here;
8827 we decide whether to keep or delete stubs for local symbols
8828 when processing the stub's relocations. */
8829 if (h != NULL
8830 && !mips16_call_reloc_p (r_type)
8831 && !section_allows_mips16_refs_p (sec))
8832 {
8833 struct mips_elf_link_hash_entry *mh;
8834
8835 mh = (struct mips_elf_link_hash_entry *) h;
8836 mh->need_fn_stub = TRUE;
8837 }
8838
8839 /* Refuse some position-dependent relocations when creating a
8840 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8841 not PIC, but we can create dynamic relocations and the result
8842 will be fine. Also do not refuse R_MIPS_LO16, which can be
8843 combined with R_MIPS_GOT16. */
8844 if (bfd_link_pic (info))
8845 {
8846 switch (r_type)
8847 {
8848 case R_MIPS16_HI16:
8849 case R_MIPS_HI16:
8850 case R_MIPS_HIGHER:
8851 case R_MIPS_HIGHEST:
8852 case R_MICROMIPS_HI16:
8853 case R_MICROMIPS_HIGHER:
8854 case R_MICROMIPS_HIGHEST:
8855 /* Don't refuse a high part relocation if it's against
8856 no symbol (e.g. part of a compound relocation). */
8857 if (r_symndx == STN_UNDEF)
8858 break;
8859
8860 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8861 and has a special meaning. */
8862 if (!NEWABI_P (abfd) && h != NULL
8863 && strcmp (h->root.root.string, "_gp_disp") == 0)
8864 break;
8865
8866 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8867 if (is_gott_symbol (info, h))
8868 break;
8869
8870 /* FALLTHROUGH */
8871
8872 case R_MIPS16_26:
8873 case R_MIPS_26:
8874 case R_MICROMIPS_26_S1:
8875 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8876 _bfd_error_handler
8877 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8878 abfd, howto->name,
8879 (h) ? h->root.root.string : "a local symbol");
8880 bfd_set_error (bfd_error_bad_value);
8881 return FALSE;
8882 default:
8883 break;
8884 }
8885 }
8886 }
8887
8888 return TRUE;
8889 }
8890 \f
8891 bfd_boolean
8892 _bfd_mips_relax_section (bfd *abfd, asection *sec,
8893 struct bfd_link_info *link_info,
8894 bfd_boolean *again)
8895 {
8896 Elf_Internal_Rela *internal_relocs;
8897 Elf_Internal_Rela *irel, *irelend;
8898 Elf_Internal_Shdr *symtab_hdr;
8899 bfd_byte *contents = NULL;
8900 size_t extsymoff;
8901 bfd_boolean changed_contents = FALSE;
8902 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8903 Elf_Internal_Sym *isymbuf = NULL;
8904
8905 /* We are not currently changing any sizes, so only one pass. */
8906 *again = FALSE;
8907
8908 if (bfd_link_relocatable (link_info))
8909 return TRUE;
8910
8911 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
8912 link_info->keep_memory);
8913 if (internal_relocs == NULL)
8914 return TRUE;
8915
8916 irelend = internal_relocs + sec->reloc_count
8917 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8918 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8919 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8920
8921 for (irel = internal_relocs; irel < irelend; irel++)
8922 {
8923 bfd_vma symval;
8924 bfd_signed_vma sym_offset;
8925 unsigned int r_type;
8926 unsigned long r_symndx;
8927 asection *sym_sec;
8928 unsigned long instruction;
8929
8930 /* Turn jalr into bgezal, and jr into beq, if they're marked
8931 with a JALR relocation, that indicate where they jump to.
8932 This saves some pipeline bubbles. */
8933 r_type = ELF_R_TYPE (abfd, irel->r_info);
8934 if (r_type != R_MIPS_JALR)
8935 continue;
8936
8937 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8938 /* Compute the address of the jump target. */
8939 if (r_symndx >= extsymoff)
8940 {
8941 struct mips_elf_link_hash_entry *h
8942 = ((struct mips_elf_link_hash_entry *)
8943 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8944
8945 while (h->root.root.type == bfd_link_hash_indirect
8946 || h->root.root.type == bfd_link_hash_warning)
8947 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8948
8949 /* If a symbol is undefined, or if it may be overridden,
8950 skip it. */
8951 if (! ((h->root.root.type == bfd_link_hash_defined
8952 || h->root.root.type == bfd_link_hash_defweak)
8953 && h->root.root.u.def.section)
8954 || (bfd_link_pic (link_info) && ! link_info->symbolic
8955 && !h->root.forced_local))
8956 continue;
8957
8958 sym_sec = h->root.root.u.def.section;
8959 if (sym_sec->output_section)
8960 symval = (h->root.root.u.def.value
8961 + sym_sec->output_section->vma
8962 + sym_sec->output_offset);
8963 else
8964 symval = h->root.root.u.def.value;
8965 }
8966 else
8967 {
8968 Elf_Internal_Sym *isym;
8969
8970 /* Read this BFD's symbols if we haven't done so already. */
8971 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8972 {
8973 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8974 if (isymbuf == NULL)
8975 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8976 symtab_hdr->sh_info, 0,
8977 NULL, NULL, NULL);
8978 if (isymbuf == NULL)
8979 goto relax_return;
8980 }
8981
8982 isym = isymbuf + r_symndx;
8983 if (isym->st_shndx == SHN_UNDEF)
8984 continue;
8985 else if (isym->st_shndx == SHN_ABS)
8986 sym_sec = bfd_abs_section_ptr;
8987 else if (isym->st_shndx == SHN_COMMON)
8988 sym_sec = bfd_com_section_ptr;
8989 else
8990 sym_sec
8991 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8992 symval = isym->st_value
8993 + sym_sec->output_section->vma
8994 + sym_sec->output_offset;
8995 }
8996
8997 /* Compute branch offset, from delay slot of the jump to the
8998 branch target. */
8999 sym_offset = (symval + irel->r_addend)
9000 - (sec_start + irel->r_offset + 4);
9001
9002 /* Branch offset must be properly aligned. */
9003 if ((sym_offset & 3) != 0)
9004 continue;
9005
9006 sym_offset >>= 2;
9007
9008 /* Check that it's in range. */
9009 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
9010 continue;
9011
9012 /* Get the section contents if we haven't done so already. */
9013 if (!mips_elf_get_section_contents (abfd, sec, &contents))
9014 goto relax_return;
9015
9016 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
9017
9018 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
9019 if ((instruction & 0xfc1fffff) == 0x0000f809)
9020 instruction = 0x04110000;
9021 /* If it was jr <reg>, turn it into b <target>. */
9022 else if ((instruction & 0xfc1fffff) == 0x00000008)
9023 instruction = 0x10000000;
9024 else
9025 continue;
9026
9027 instruction |= (sym_offset & 0xffff);
9028 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
9029 changed_contents = TRUE;
9030 }
9031
9032 if (contents != NULL
9033 && elf_section_data (sec)->this_hdr.contents != contents)
9034 {
9035 if (!changed_contents && !link_info->keep_memory)
9036 free (contents);
9037 else
9038 {
9039 /* Cache the section contents for elf_link_input_bfd. */
9040 elf_section_data (sec)->this_hdr.contents = contents;
9041 }
9042 }
9043 return TRUE;
9044
9045 relax_return:
9046 if (contents != NULL
9047 && elf_section_data (sec)->this_hdr.contents != contents)
9048 free (contents);
9049 return FALSE;
9050 }
9051 \f
9052 /* Allocate space for global sym dynamic relocs. */
9053
9054 static bfd_boolean
9055 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9056 {
9057 struct bfd_link_info *info = inf;
9058 bfd *dynobj;
9059 struct mips_elf_link_hash_entry *hmips;
9060 struct mips_elf_link_hash_table *htab;
9061
9062 htab = mips_elf_hash_table (info);
9063 BFD_ASSERT (htab != NULL);
9064
9065 dynobj = elf_hash_table (info)->dynobj;
9066 hmips = (struct mips_elf_link_hash_entry *) h;
9067
9068 /* VxWorks executables are handled elsewhere; we only need to
9069 allocate relocations in shared objects. */
9070 if (htab->is_vxworks && !bfd_link_pic (info))
9071 return TRUE;
9072
9073 /* Ignore indirect symbols. All relocations against such symbols
9074 will be redirected to the target symbol. */
9075 if (h->root.type == bfd_link_hash_indirect)
9076 return TRUE;
9077
9078 /* If this symbol is defined in a dynamic object, or we are creating
9079 a shared library, we will need to copy any R_MIPS_32 or
9080 R_MIPS_REL32 relocs against it into the output file. */
9081 if (! bfd_link_relocatable (info)
9082 && hmips->possibly_dynamic_relocs != 0
9083 && (h->root.type == bfd_link_hash_defweak
9084 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
9085 || bfd_link_pic (info)))
9086 {
9087 bfd_boolean do_copy = TRUE;
9088
9089 if (h->root.type == bfd_link_hash_undefweak)
9090 {
9091 /* Do not copy relocations for undefined weak symbols with
9092 non-default visibility. */
9093 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9094 do_copy = FALSE;
9095
9096 /* Make sure undefined weak symbols are output as a dynamic
9097 symbol in PIEs. */
9098 else if (h->dynindx == -1 && !h->forced_local)
9099 {
9100 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9101 return FALSE;
9102 }
9103 }
9104
9105 if (do_copy)
9106 {
9107 /* Even though we don't directly need a GOT entry for this symbol,
9108 the SVR4 psABI requires it to have a dynamic symbol table
9109 index greater that DT_MIPS_GOTSYM if there are dynamic
9110 relocations against it.
9111
9112 VxWorks does not enforce the same mapping between the GOT
9113 and the symbol table, so the same requirement does not
9114 apply there. */
9115 if (!htab->is_vxworks)
9116 {
9117 if (hmips->global_got_area > GGA_RELOC_ONLY)
9118 hmips->global_got_area = GGA_RELOC_ONLY;
9119 hmips->got_only_for_calls = FALSE;
9120 }
9121
9122 mips_elf_allocate_dynamic_relocations
9123 (dynobj, info, hmips->possibly_dynamic_relocs);
9124 if (hmips->readonly_reloc)
9125 /* We tell the dynamic linker that there are relocations
9126 against the text segment. */
9127 info->flags |= DF_TEXTREL;
9128 }
9129 }
9130
9131 return TRUE;
9132 }
9133
9134 /* Adjust a symbol defined by a dynamic object and referenced by a
9135 regular object. The current definition is in some section of the
9136 dynamic object, but we're not including those sections. We have to
9137 change the definition to something the rest of the link can
9138 understand. */
9139
9140 bfd_boolean
9141 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
9142 struct elf_link_hash_entry *h)
9143 {
9144 bfd *dynobj;
9145 struct mips_elf_link_hash_entry *hmips;
9146 struct mips_elf_link_hash_table *htab;
9147
9148 htab = mips_elf_hash_table (info);
9149 BFD_ASSERT (htab != NULL);
9150
9151 dynobj = elf_hash_table (info)->dynobj;
9152 hmips = (struct mips_elf_link_hash_entry *) h;
9153
9154 /* Make sure we know what is going on here. */
9155 BFD_ASSERT (dynobj != NULL
9156 && (h->needs_plt
9157 || h->u.weakdef != NULL
9158 || (h->def_dynamic
9159 && h->ref_regular
9160 && !h->def_regular)));
9161
9162 hmips = (struct mips_elf_link_hash_entry *) h;
9163
9164 /* If there are call relocations against an externally-defined symbol,
9165 see whether we can create a MIPS lazy-binding stub for it. We can
9166 only do this if all references to the function are through call
9167 relocations, and in that case, the traditional lazy-binding stubs
9168 are much more efficient than PLT entries.
9169
9170 Traditional stubs are only available on SVR4 psABI-based systems;
9171 VxWorks always uses PLTs instead. */
9172 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
9173 {
9174 if (! elf_hash_table (info)->dynamic_sections_created)
9175 return TRUE;
9176
9177 /* If this symbol is not defined in a regular file, then set
9178 the symbol to the stub location. This is required to make
9179 function pointers compare as equal between the normal
9180 executable and the shared library. */
9181 if (!h->def_regular)
9182 {
9183 hmips->needs_lazy_stub = TRUE;
9184 htab->lazy_stub_count++;
9185 return TRUE;
9186 }
9187 }
9188 /* As above, VxWorks requires PLT entries for externally-defined
9189 functions that are only accessed through call relocations.
9190
9191 Both VxWorks and non-VxWorks targets also need PLT entries if there
9192 are static-only relocations against an externally-defined function.
9193 This can technically occur for shared libraries if there are
9194 branches to the symbol, although it is unlikely that this will be
9195 used in practice due to the short ranges involved. It can occur
9196 for any relative or absolute relocation in executables; in that
9197 case, the PLT entry becomes the function's canonical address. */
9198 else if (((h->needs_plt && !hmips->no_fn_stub)
9199 || (h->type == STT_FUNC && hmips->has_static_relocs))
9200 && htab->use_plts_and_copy_relocs
9201 && !SYMBOL_CALLS_LOCAL (info, h)
9202 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9203 && h->root.type == bfd_link_hash_undefweak))
9204 {
9205 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9206 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9207
9208 /* If this is the first symbol to need a PLT entry, then make some
9209 basic setup. Also work out PLT entry sizes. We'll need them
9210 for PLT offset calculations. */
9211 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9212 {
9213 BFD_ASSERT (htab->sgotplt->size == 0);
9214 BFD_ASSERT (htab->plt_got_index == 0);
9215
9216 /* If we're using the PLT additions to the psABI, each PLT
9217 entry is 16 bytes and the PLT0 entry is 32 bytes.
9218 Encourage better cache usage by aligning. We do this
9219 lazily to avoid pessimizing traditional objects. */
9220 if (!htab->is_vxworks
9221 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
9222 return FALSE;
9223
9224 /* Make sure that .got.plt is word-aligned. We do this lazily
9225 for the same reason as above. */
9226 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
9227 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9228 return FALSE;
9229
9230 /* On non-VxWorks targets, the first two entries in .got.plt
9231 are reserved. */
9232 if (!htab->is_vxworks)
9233 htab->plt_got_index
9234 += (get_elf_backend_data (dynobj)->got_header_size
9235 / MIPS_ELF_GOT_SIZE (dynobj));
9236
9237 /* On VxWorks, also allocate room for the header's
9238 .rela.plt.unloaded entries. */
9239 if (htab->is_vxworks && !bfd_link_pic (info))
9240 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9241
9242 /* Now work out the sizes of individual PLT entries. */
9243 if (htab->is_vxworks && bfd_link_pic (info))
9244 htab->plt_mips_entry_size
9245 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9246 else if (htab->is_vxworks)
9247 htab->plt_mips_entry_size
9248 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9249 else if (newabi_p)
9250 htab->plt_mips_entry_size
9251 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9252 else if (!micromips_p)
9253 {
9254 htab->plt_mips_entry_size
9255 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9256 htab->plt_comp_entry_size
9257 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9258 }
9259 else if (htab->insn32)
9260 {
9261 htab->plt_mips_entry_size
9262 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9263 htab->plt_comp_entry_size
9264 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9265 }
9266 else
9267 {
9268 htab->plt_mips_entry_size
9269 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9270 htab->plt_comp_entry_size
9271 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9272 }
9273 }
9274
9275 if (h->plt.plist == NULL)
9276 h->plt.plist = mips_elf_make_plt_record (dynobj);
9277 if (h->plt.plist == NULL)
9278 return FALSE;
9279
9280 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9281 n32 or n64, so always use a standard entry there.
9282
9283 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9284 all MIPS16 calls will go via that stub, and there is no benefit
9285 to having a MIPS16 entry. And in the case of call_stub a
9286 standard entry actually has to be used as the stub ends with a J
9287 instruction. */
9288 if (newabi_p
9289 || htab->is_vxworks
9290 || hmips->call_stub
9291 || hmips->call_fp_stub)
9292 {
9293 h->plt.plist->need_mips = TRUE;
9294 h->plt.plist->need_comp = FALSE;
9295 }
9296
9297 /* Otherwise, if there are no direct calls to the function, we
9298 have a free choice of whether to use standard or compressed
9299 entries. Prefer microMIPS entries if the object is known to
9300 contain microMIPS code, so that it becomes possible to create
9301 pure microMIPS binaries. Prefer standard entries otherwise,
9302 because MIPS16 ones are no smaller and are usually slower. */
9303 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9304 {
9305 if (micromips_p)
9306 h->plt.plist->need_comp = TRUE;
9307 else
9308 h->plt.plist->need_mips = TRUE;
9309 }
9310
9311 if (h->plt.plist->need_mips)
9312 {
9313 h->plt.plist->mips_offset = htab->plt_mips_offset;
9314 htab->plt_mips_offset += htab->plt_mips_entry_size;
9315 }
9316 if (h->plt.plist->need_comp)
9317 {
9318 h->plt.plist->comp_offset = htab->plt_comp_offset;
9319 htab->plt_comp_offset += htab->plt_comp_entry_size;
9320 }
9321
9322 /* Reserve the corresponding .got.plt entry now too. */
9323 h->plt.plist->gotplt_index = htab->plt_got_index++;
9324
9325 /* If the output file has no definition of the symbol, set the
9326 symbol's value to the address of the stub. */
9327 if (!bfd_link_pic (info) && !h->def_regular)
9328 hmips->use_plt_entry = TRUE;
9329
9330 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9331 htab->srelplt->size += (htab->is_vxworks
9332 ? MIPS_ELF_RELA_SIZE (dynobj)
9333 : MIPS_ELF_REL_SIZE (dynobj));
9334
9335 /* Make room for the .rela.plt.unloaded relocations. */
9336 if (htab->is_vxworks && !bfd_link_pic (info))
9337 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9338
9339 /* All relocations against this symbol that could have been made
9340 dynamic will now refer to the PLT entry instead. */
9341 hmips->possibly_dynamic_relocs = 0;
9342
9343 return TRUE;
9344 }
9345
9346 /* If this is a weak symbol, and there is a real definition, the
9347 processor independent code will have arranged for us to see the
9348 real definition first, and we can just use the same value. */
9349 if (h->u.weakdef != NULL)
9350 {
9351 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
9352 || h->u.weakdef->root.type == bfd_link_hash_defweak);
9353 h->root.u.def.section = h->u.weakdef->root.u.def.section;
9354 h->root.u.def.value = h->u.weakdef->root.u.def.value;
9355 return TRUE;
9356 }
9357
9358 /* Otherwise, there is nothing further to do for symbols defined
9359 in regular objects. */
9360 if (h->def_regular)
9361 return TRUE;
9362
9363 /* There's also nothing more to do if we'll convert all relocations
9364 against this symbol into dynamic relocations. */
9365 if (!hmips->has_static_relocs)
9366 return TRUE;
9367
9368 /* We're now relying on copy relocations. Complain if we have
9369 some that we can't convert. */
9370 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
9371 {
9372 _bfd_error_handler (_("non-dynamic relocations refer to "
9373 "dynamic symbol %s"),
9374 h->root.root.string);
9375 bfd_set_error (bfd_error_bad_value);
9376 return FALSE;
9377 }
9378
9379 /* We must allocate the symbol in our .dynbss section, which will
9380 become part of the .bss section of the executable. There will be
9381 an entry for this symbol in the .dynsym section. The dynamic
9382 object will contain position independent code, so all references
9383 from the dynamic object to this symbol will go through the global
9384 offset table. The dynamic linker will use the .dynsym entry to
9385 determine the address it must put in the global offset table, so
9386 both the dynamic object and the regular object will refer to the
9387 same memory location for the variable. */
9388
9389 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9390 {
9391 if (htab->is_vxworks)
9392 htab->srelbss->size += sizeof (Elf32_External_Rela);
9393 else
9394 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9395 h->needs_copy = 1;
9396 }
9397
9398 /* All relocations against this symbol that could have been made
9399 dynamic will now refer to the local copy instead. */
9400 hmips->possibly_dynamic_relocs = 0;
9401
9402 return _bfd_elf_adjust_dynamic_copy (info, h, htab->sdynbss);
9403 }
9404 \f
9405 /* This function is called after all the input files have been read,
9406 and the input sections have been assigned to output sections. We
9407 check for any mips16 stub sections that we can discard. */
9408
9409 bfd_boolean
9410 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9411 struct bfd_link_info *info)
9412 {
9413 asection *sect;
9414 struct mips_elf_link_hash_table *htab;
9415 struct mips_htab_traverse_info hti;
9416
9417 htab = mips_elf_hash_table (info);
9418 BFD_ASSERT (htab != NULL);
9419
9420 /* The .reginfo section has a fixed size. */
9421 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9422 if (sect != NULL)
9423 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9424
9425 /* The .MIPS.abiflags section has a fixed size. */
9426 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9427 if (sect != NULL)
9428 bfd_set_section_size (output_bfd, sect, sizeof (Elf_External_ABIFlags_v0));
9429
9430 hti.info = info;
9431 hti.output_bfd = output_bfd;
9432 hti.error = FALSE;
9433 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9434 mips_elf_check_symbols, &hti);
9435 if (hti.error)
9436 return FALSE;
9437
9438 return TRUE;
9439 }
9440
9441 /* If the link uses a GOT, lay it out and work out its size. */
9442
9443 static bfd_boolean
9444 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9445 {
9446 bfd *dynobj;
9447 asection *s;
9448 struct mips_got_info *g;
9449 bfd_size_type loadable_size = 0;
9450 bfd_size_type page_gotno;
9451 bfd *ibfd;
9452 struct mips_elf_traverse_got_arg tga;
9453 struct mips_elf_link_hash_table *htab;
9454
9455 htab = mips_elf_hash_table (info);
9456 BFD_ASSERT (htab != NULL);
9457
9458 s = htab->sgot;
9459 if (s == NULL)
9460 return TRUE;
9461
9462 dynobj = elf_hash_table (info)->dynobj;
9463 g = htab->got_info;
9464
9465 /* Allocate room for the reserved entries. VxWorks always reserves
9466 3 entries; other objects only reserve 2 entries. */
9467 BFD_ASSERT (g->assigned_low_gotno == 0);
9468 if (htab->is_vxworks)
9469 htab->reserved_gotno = 3;
9470 else
9471 htab->reserved_gotno = 2;
9472 g->local_gotno += htab->reserved_gotno;
9473 g->assigned_low_gotno = htab->reserved_gotno;
9474
9475 /* Decide which symbols need to go in the global part of the GOT and
9476 count the number of reloc-only GOT symbols. */
9477 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9478
9479 if (!mips_elf_resolve_final_got_entries (info, g))
9480 return FALSE;
9481
9482 /* Calculate the total loadable size of the output. That
9483 will give us the maximum number of GOT_PAGE entries
9484 required. */
9485 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9486 {
9487 asection *subsection;
9488
9489 for (subsection = ibfd->sections;
9490 subsection;
9491 subsection = subsection->next)
9492 {
9493 if ((subsection->flags & SEC_ALLOC) == 0)
9494 continue;
9495 loadable_size += ((subsection->size + 0xf)
9496 &~ (bfd_size_type) 0xf);
9497 }
9498 }
9499
9500 if (htab->is_vxworks)
9501 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9502 relocations against local symbols evaluate to "G", and the EABI does
9503 not include R_MIPS_GOT_PAGE. */
9504 page_gotno = 0;
9505 else
9506 /* Assume there are two loadable segments consisting of contiguous
9507 sections. Is 5 enough? */
9508 page_gotno = (loadable_size >> 16) + 5;
9509
9510 /* Choose the smaller of the two page estimates; both are intended to be
9511 conservative. */
9512 if (page_gotno > g->page_gotno)
9513 page_gotno = g->page_gotno;
9514
9515 g->local_gotno += page_gotno;
9516 g->assigned_high_gotno = g->local_gotno - 1;
9517
9518 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9519 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9520 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9521
9522 /* VxWorks does not support multiple GOTs. It initializes $gp to
9523 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9524 dynamic loader. */
9525 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9526 {
9527 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9528 return FALSE;
9529 }
9530 else
9531 {
9532 /* Record that all bfds use G. This also has the effect of freeing
9533 the per-bfd GOTs, which we no longer need. */
9534 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9535 if (mips_elf_bfd_got (ibfd, FALSE))
9536 mips_elf_replace_bfd_got (ibfd, g);
9537 mips_elf_replace_bfd_got (output_bfd, g);
9538
9539 /* Set up TLS entries. */
9540 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9541 tga.info = info;
9542 tga.g = g;
9543 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9544 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9545 if (!tga.g)
9546 return FALSE;
9547 BFD_ASSERT (g->tls_assigned_gotno
9548 == g->global_gotno + g->local_gotno + g->tls_gotno);
9549
9550 /* Each VxWorks GOT entry needs an explicit relocation. */
9551 if (htab->is_vxworks && bfd_link_pic (info))
9552 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9553
9554 /* Allocate room for the TLS relocations. */
9555 if (g->relocs)
9556 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9557 }
9558
9559 return TRUE;
9560 }
9561
9562 /* Estimate the size of the .MIPS.stubs section. */
9563
9564 static void
9565 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9566 {
9567 struct mips_elf_link_hash_table *htab;
9568 bfd_size_type dynsymcount;
9569
9570 htab = mips_elf_hash_table (info);
9571 BFD_ASSERT (htab != NULL);
9572
9573 if (htab->lazy_stub_count == 0)
9574 return;
9575
9576 /* IRIX rld assumes that a function stub isn't at the end of the .text
9577 section, so add a dummy entry to the end. */
9578 htab->lazy_stub_count++;
9579
9580 /* Get a worst-case estimate of the number of dynamic symbols needed.
9581 At this point, dynsymcount does not account for section symbols
9582 and count_section_dynsyms may overestimate the number that will
9583 be needed. */
9584 dynsymcount = (elf_hash_table (info)->dynsymcount
9585 + count_section_dynsyms (output_bfd, info));
9586
9587 /* Determine the size of one stub entry. There's no disadvantage
9588 from using microMIPS code here, so for the sake of pure-microMIPS
9589 binaries we prefer it whenever there's any microMIPS code in
9590 output produced at all. This has a benefit of stubs being
9591 shorter by 4 bytes each too, unless in the insn32 mode. */
9592 if (!MICROMIPS_P (output_bfd))
9593 htab->function_stub_size = (dynsymcount > 0x10000
9594 ? MIPS_FUNCTION_STUB_BIG_SIZE
9595 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9596 else if (htab->insn32)
9597 htab->function_stub_size = (dynsymcount > 0x10000
9598 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9599 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9600 else
9601 htab->function_stub_size = (dynsymcount > 0x10000
9602 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9603 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9604
9605 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9606 }
9607
9608 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9609 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9610 stub, allocate an entry in the stubs section. */
9611
9612 static bfd_boolean
9613 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9614 {
9615 struct mips_htab_traverse_info *hti = data;
9616 struct mips_elf_link_hash_table *htab;
9617 struct bfd_link_info *info;
9618 bfd *output_bfd;
9619
9620 info = hti->info;
9621 output_bfd = hti->output_bfd;
9622 htab = mips_elf_hash_table (info);
9623 BFD_ASSERT (htab != NULL);
9624
9625 if (h->needs_lazy_stub)
9626 {
9627 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9628 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9629 bfd_vma isa_bit = micromips_p;
9630
9631 BFD_ASSERT (htab->root.dynobj != NULL);
9632 if (h->root.plt.plist == NULL)
9633 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9634 if (h->root.plt.plist == NULL)
9635 {
9636 hti->error = TRUE;
9637 return FALSE;
9638 }
9639 h->root.root.u.def.section = htab->sstubs;
9640 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9641 h->root.plt.plist->stub_offset = htab->sstubs->size;
9642 h->root.other = other;
9643 htab->sstubs->size += htab->function_stub_size;
9644 }
9645 return TRUE;
9646 }
9647
9648 /* Allocate offsets in the stubs section to each symbol that needs one.
9649 Set the final size of the .MIPS.stub section. */
9650
9651 static bfd_boolean
9652 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9653 {
9654 bfd *output_bfd = info->output_bfd;
9655 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9656 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9657 bfd_vma isa_bit = micromips_p;
9658 struct mips_elf_link_hash_table *htab;
9659 struct mips_htab_traverse_info hti;
9660 struct elf_link_hash_entry *h;
9661 bfd *dynobj;
9662
9663 htab = mips_elf_hash_table (info);
9664 BFD_ASSERT (htab != NULL);
9665
9666 if (htab->lazy_stub_count == 0)
9667 return TRUE;
9668
9669 htab->sstubs->size = 0;
9670 hti.info = info;
9671 hti.output_bfd = output_bfd;
9672 hti.error = FALSE;
9673 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9674 if (hti.error)
9675 return FALSE;
9676 htab->sstubs->size += htab->function_stub_size;
9677 BFD_ASSERT (htab->sstubs->size
9678 == htab->lazy_stub_count * htab->function_stub_size);
9679
9680 dynobj = elf_hash_table (info)->dynobj;
9681 BFD_ASSERT (dynobj != NULL);
9682 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9683 if (h == NULL)
9684 return FALSE;
9685 h->root.u.def.value = isa_bit;
9686 h->other = other;
9687 h->type = STT_FUNC;
9688
9689 return TRUE;
9690 }
9691
9692 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9693 bfd_link_info. If H uses the address of a PLT entry as the value
9694 of the symbol, then set the entry in the symbol table now. Prefer
9695 a standard MIPS PLT entry. */
9696
9697 static bfd_boolean
9698 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9699 {
9700 struct bfd_link_info *info = data;
9701 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9702 struct mips_elf_link_hash_table *htab;
9703 unsigned int other;
9704 bfd_vma isa_bit;
9705 bfd_vma val;
9706
9707 htab = mips_elf_hash_table (info);
9708 BFD_ASSERT (htab != NULL);
9709
9710 if (h->use_plt_entry)
9711 {
9712 BFD_ASSERT (h->root.plt.plist != NULL);
9713 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9714 || h->root.plt.plist->comp_offset != MINUS_ONE);
9715
9716 val = htab->plt_header_size;
9717 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9718 {
9719 isa_bit = 0;
9720 val += h->root.plt.plist->mips_offset;
9721 other = 0;
9722 }
9723 else
9724 {
9725 isa_bit = 1;
9726 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9727 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9728 }
9729 val += isa_bit;
9730 /* For VxWorks, point at the PLT load stub rather than the lazy
9731 resolution stub; this stub will become the canonical function
9732 address. */
9733 if (htab->is_vxworks)
9734 val += 8;
9735
9736 h->root.root.u.def.section = htab->splt;
9737 h->root.root.u.def.value = val;
9738 h->root.other = other;
9739 }
9740
9741 return TRUE;
9742 }
9743
9744 /* Set the sizes of the dynamic sections. */
9745
9746 bfd_boolean
9747 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9748 struct bfd_link_info *info)
9749 {
9750 bfd *dynobj;
9751 asection *s, *sreldyn;
9752 bfd_boolean reltext;
9753 struct mips_elf_link_hash_table *htab;
9754
9755 htab = mips_elf_hash_table (info);
9756 BFD_ASSERT (htab != NULL);
9757 dynobj = elf_hash_table (info)->dynobj;
9758 BFD_ASSERT (dynobj != NULL);
9759
9760 if (elf_hash_table (info)->dynamic_sections_created)
9761 {
9762 /* Set the contents of the .interp section to the interpreter. */
9763 if (bfd_link_executable (info) && !info->nointerp)
9764 {
9765 s = bfd_get_linker_section (dynobj, ".interp");
9766 BFD_ASSERT (s != NULL);
9767 s->size
9768 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9769 s->contents
9770 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9771 }
9772
9773 /* Figure out the size of the PLT header if we know that we
9774 are using it. For the sake of cache alignment always use
9775 a standard header whenever any standard entries are present
9776 even if microMIPS entries are present as well. This also
9777 lets the microMIPS header rely on the value of $v0 only set
9778 by microMIPS entries, for a small size reduction.
9779
9780 Set symbol table entry values for symbols that use the
9781 address of their PLT entry now that we can calculate it.
9782
9783 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9784 haven't already in _bfd_elf_create_dynamic_sections. */
9785 if (htab->splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9786 {
9787 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9788 && !htab->plt_mips_offset);
9789 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9790 bfd_vma isa_bit = micromips_p;
9791 struct elf_link_hash_entry *h;
9792 bfd_vma size;
9793
9794 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9795 BFD_ASSERT (htab->sgotplt->size == 0);
9796 BFD_ASSERT (htab->splt->size == 0);
9797
9798 if (htab->is_vxworks && bfd_link_pic (info))
9799 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9800 else if (htab->is_vxworks)
9801 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9802 else if (ABI_64_P (output_bfd))
9803 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9804 else if (ABI_N32_P (output_bfd))
9805 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9806 else if (!micromips_p)
9807 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9808 else if (htab->insn32)
9809 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9810 else
9811 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9812
9813 htab->plt_header_is_comp = micromips_p;
9814 htab->plt_header_size = size;
9815 htab->splt->size = (size
9816 + htab->plt_mips_offset
9817 + htab->plt_comp_offset);
9818 htab->sgotplt->size = (htab->plt_got_index
9819 * MIPS_ELF_GOT_SIZE (dynobj));
9820
9821 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9822
9823 if (htab->root.hplt == NULL)
9824 {
9825 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
9826 "_PROCEDURE_LINKAGE_TABLE_");
9827 htab->root.hplt = h;
9828 if (h == NULL)
9829 return FALSE;
9830 }
9831
9832 h = htab->root.hplt;
9833 h->root.u.def.value = isa_bit;
9834 h->other = other;
9835 h->type = STT_FUNC;
9836 }
9837 }
9838
9839 /* Allocate space for global sym dynamic relocs. */
9840 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9841
9842 mips_elf_estimate_stub_size (output_bfd, info);
9843
9844 if (!mips_elf_lay_out_got (output_bfd, info))
9845 return FALSE;
9846
9847 mips_elf_lay_out_lazy_stubs (info);
9848
9849 /* The check_relocs and adjust_dynamic_symbol entry points have
9850 determined the sizes of the various dynamic sections. Allocate
9851 memory for them. */
9852 reltext = FALSE;
9853 for (s = dynobj->sections; s != NULL; s = s->next)
9854 {
9855 const char *name;
9856
9857 /* It's OK to base decisions on the section name, because none
9858 of the dynobj section names depend upon the input files. */
9859 name = bfd_get_section_name (dynobj, s);
9860
9861 if ((s->flags & SEC_LINKER_CREATED) == 0)
9862 continue;
9863
9864 if (CONST_STRNEQ (name, ".rel"))
9865 {
9866 if (s->size != 0)
9867 {
9868 const char *outname;
9869 asection *target;
9870
9871 /* If this relocation section applies to a read only
9872 section, then we probably need a DT_TEXTREL entry.
9873 If the relocation section is .rel(a).dyn, we always
9874 assert a DT_TEXTREL entry rather than testing whether
9875 there exists a relocation to a read only section or
9876 not. */
9877 outname = bfd_get_section_name (output_bfd,
9878 s->output_section);
9879 target = bfd_get_section_by_name (output_bfd, outname + 4);
9880 if ((target != NULL
9881 && (target->flags & SEC_READONLY) != 0
9882 && (target->flags & SEC_ALLOC) != 0)
9883 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9884 reltext = TRUE;
9885
9886 /* We use the reloc_count field as a counter if we need
9887 to copy relocs into the output file. */
9888 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9889 s->reloc_count = 0;
9890
9891 /* If combreloc is enabled, elf_link_sort_relocs() will
9892 sort relocations, but in a different way than we do,
9893 and before we're done creating relocations. Also, it
9894 will move them around between input sections'
9895 relocation's contents, so our sorting would be
9896 broken, so don't let it run. */
9897 info->combreloc = 0;
9898 }
9899 }
9900 else if (bfd_link_executable (info)
9901 && ! mips_elf_hash_table (info)->use_rld_obj_head
9902 && CONST_STRNEQ (name, ".rld_map"))
9903 {
9904 /* We add a room for __rld_map. It will be filled in by the
9905 rtld to contain a pointer to the _r_debug structure. */
9906 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9907 }
9908 else if (SGI_COMPAT (output_bfd)
9909 && CONST_STRNEQ (name, ".compact_rel"))
9910 s->size += mips_elf_hash_table (info)->compact_rel_size;
9911 else if (s == htab->splt)
9912 {
9913 /* If the last PLT entry has a branch delay slot, allocate
9914 room for an extra nop to fill the delay slot. This is
9915 for CPUs without load interlocking. */
9916 if (! LOAD_INTERLOCKS_P (output_bfd)
9917 && ! htab->is_vxworks && s->size > 0)
9918 s->size += 4;
9919 }
9920 else if (! CONST_STRNEQ (name, ".init")
9921 && s != htab->sgot
9922 && s != htab->sgotplt
9923 && s != htab->sstubs
9924 && s != htab->sdynbss)
9925 {
9926 /* It's not one of our sections, so don't allocate space. */
9927 continue;
9928 }
9929
9930 if (s->size == 0)
9931 {
9932 s->flags |= SEC_EXCLUDE;
9933 continue;
9934 }
9935
9936 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9937 continue;
9938
9939 /* Allocate memory for the section contents. */
9940 s->contents = bfd_zalloc (dynobj, s->size);
9941 if (s->contents == NULL)
9942 {
9943 bfd_set_error (bfd_error_no_memory);
9944 return FALSE;
9945 }
9946 }
9947
9948 if (elf_hash_table (info)->dynamic_sections_created)
9949 {
9950 /* Add some entries to the .dynamic section. We fill in the
9951 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9952 must add the entries now so that we get the correct size for
9953 the .dynamic section. */
9954
9955 /* SGI object has the equivalence of DT_DEBUG in the
9956 DT_MIPS_RLD_MAP entry. This must come first because glibc
9957 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9958 may only look at the first one they see. */
9959 if (!bfd_link_pic (info)
9960 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9961 return FALSE;
9962
9963 if (bfd_link_executable (info)
9964 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
9965 return FALSE;
9966
9967 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9968 used by the debugger. */
9969 if (bfd_link_executable (info)
9970 && !SGI_COMPAT (output_bfd)
9971 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9972 return FALSE;
9973
9974 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9975 info->flags |= DF_TEXTREL;
9976
9977 if ((info->flags & DF_TEXTREL) != 0)
9978 {
9979 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9980 return FALSE;
9981
9982 /* Clear the DF_TEXTREL flag. It will be set again if we
9983 write out an actual text relocation; we may not, because
9984 at this point we do not know whether e.g. any .eh_frame
9985 absolute relocations have been converted to PC-relative. */
9986 info->flags &= ~DF_TEXTREL;
9987 }
9988
9989 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9990 return FALSE;
9991
9992 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9993 if (htab->is_vxworks)
9994 {
9995 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9996 use any of the DT_MIPS_* tags. */
9997 if (sreldyn && sreldyn->size > 0)
9998 {
9999 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
10000 return FALSE;
10001
10002 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
10003 return FALSE;
10004
10005 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
10006 return FALSE;
10007 }
10008 }
10009 else
10010 {
10011 if (sreldyn && sreldyn->size > 0)
10012 {
10013 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
10014 return FALSE;
10015
10016 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
10017 return FALSE;
10018
10019 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
10020 return FALSE;
10021 }
10022
10023 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
10024 return FALSE;
10025
10026 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
10027 return FALSE;
10028
10029 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
10030 return FALSE;
10031
10032 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
10033 return FALSE;
10034
10035 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
10036 return FALSE;
10037
10038 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
10039 return FALSE;
10040
10041 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
10042 return FALSE;
10043
10044 if (IRIX_COMPAT (dynobj) == ict_irix5
10045 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
10046 return FALSE;
10047
10048 if (IRIX_COMPAT (dynobj) == ict_irix6
10049 && (bfd_get_section_by_name
10050 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
10051 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
10052 return FALSE;
10053 }
10054 if (htab->splt->size > 0)
10055 {
10056 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
10057 return FALSE;
10058
10059 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
10060 return FALSE;
10061
10062 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
10063 return FALSE;
10064
10065 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
10066 return FALSE;
10067 }
10068 if (htab->is_vxworks
10069 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
10070 return FALSE;
10071 }
10072
10073 return TRUE;
10074 }
10075 \f
10076 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
10077 Adjust its R_ADDEND field so that it is correct for the output file.
10078 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
10079 and sections respectively; both use symbol indexes. */
10080
10081 static void
10082 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
10083 bfd *input_bfd, Elf_Internal_Sym *local_syms,
10084 asection **local_sections, Elf_Internal_Rela *rel)
10085 {
10086 unsigned int r_type, r_symndx;
10087 Elf_Internal_Sym *sym;
10088 asection *sec;
10089
10090 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10091 {
10092 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10093 if (gprel16_reloc_p (r_type)
10094 || r_type == R_MIPS_GPREL32
10095 || literal_reloc_p (r_type))
10096 {
10097 rel->r_addend += _bfd_get_gp_value (input_bfd);
10098 rel->r_addend -= _bfd_get_gp_value (output_bfd);
10099 }
10100
10101 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
10102 sym = local_syms + r_symndx;
10103
10104 /* Adjust REL's addend to account for section merging. */
10105 if (!bfd_link_relocatable (info))
10106 {
10107 sec = local_sections[r_symndx];
10108 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
10109 }
10110
10111 /* This would normally be done by the rela_normal code in elflink.c. */
10112 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10113 rel->r_addend += local_sections[r_symndx]->output_offset;
10114 }
10115 }
10116
10117 /* Handle relocations against symbols from removed linkonce sections,
10118 or sections discarded by a linker script. We use this wrapper around
10119 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
10120 on 64-bit ELF targets. In this case for any relocation handled, which
10121 always be the first in a triplet, the remaining two have to be processed
10122 together with the first, even if they are R_MIPS_NONE. It is the symbol
10123 index referred by the first reloc that applies to all the three and the
10124 remaining two never refer to an object symbol. And it is the final
10125 relocation (the last non-null one) that determines the output field of
10126 the whole relocation so retrieve the corresponding howto structure for
10127 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
10128
10129 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
10130 and therefore requires to be pasted in a loop. It also defines a block
10131 and does not protect any of its arguments, hence the extra brackets. */
10132
10133 static void
10134 mips_reloc_against_discarded_section (bfd *output_bfd,
10135 struct bfd_link_info *info,
10136 bfd *input_bfd, asection *input_section,
10137 Elf_Internal_Rela **rel,
10138 const Elf_Internal_Rela **relend,
10139 bfd_boolean rel_reloc,
10140 reloc_howto_type *howto,
10141 bfd_byte *contents)
10142 {
10143 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10144 int count = bed->s->int_rels_per_ext_rel;
10145 unsigned int r_type;
10146 int i;
10147
10148 for (i = count - 1; i > 0; i--)
10149 {
10150 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10151 if (r_type != R_MIPS_NONE)
10152 {
10153 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10154 break;
10155 }
10156 }
10157 do
10158 {
10159 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10160 (*rel), count, (*relend),
10161 howto, i, contents);
10162 }
10163 while (0);
10164 }
10165
10166 /* Relocate a MIPS ELF section. */
10167
10168 bfd_boolean
10169 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10170 bfd *input_bfd, asection *input_section,
10171 bfd_byte *contents, Elf_Internal_Rela *relocs,
10172 Elf_Internal_Sym *local_syms,
10173 asection **local_sections)
10174 {
10175 Elf_Internal_Rela *rel;
10176 const Elf_Internal_Rela *relend;
10177 bfd_vma addend = 0;
10178 bfd_boolean use_saved_addend_p = FALSE;
10179 const struct elf_backend_data *bed;
10180
10181 bed = get_elf_backend_data (output_bfd);
10182 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
10183 for (rel = relocs; rel < relend; ++rel)
10184 {
10185 const char *name;
10186 bfd_vma value = 0;
10187 reloc_howto_type *howto;
10188 bfd_boolean cross_mode_jump_p = FALSE;
10189 /* TRUE if the relocation is a RELA relocation, rather than a
10190 REL relocation. */
10191 bfd_boolean rela_relocation_p = TRUE;
10192 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10193 const char *msg;
10194 unsigned long r_symndx;
10195 asection *sec;
10196 Elf_Internal_Shdr *symtab_hdr;
10197 struct elf_link_hash_entry *h;
10198 bfd_boolean rel_reloc;
10199
10200 rel_reloc = (NEWABI_P (input_bfd)
10201 && mips_elf_rel_relocation_p (input_bfd, input_section,
10202 relocs, rel));
10203 /* Find the relocation howto for this relocation. */
10204 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10205
10206 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10207 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10208 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10209 {
10210 sec = local_sections[r_symndx];
10211 h = NULL;
10212 }
10213 else
10214 {
10215 unsigned long extsymoff;
10216
10217 extsymoff = 0;
10218 if (!elf_bad_symtab (input_bfd))
10219 extsymoff = symtab_hdr->sh_info;
10220 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10221 while (h->root.type == bfd_link_hash_indirect
10222 || h->root.type == bfd_link_hash_warning)
10223 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10224
10225 sec = NULL;
10226 if (h->root.type == bfd_link_hash_defined
10227 || h->root.type == bfd_link_hash_defweak)
10228 sec = h->root.u.def.section;
10229 }
10230
10231 if (sec != NULL && discarded_section (sec))
10232 {
10233 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10234 input_section, &rel, &relend,
10235 rel_reloc, howto, contents);
10236 continue;
10237 }
10238
10239 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10240 {
10241 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10242 64-bit code, but make sure all their addresses are in the
10243 lowermost or uppermost 32-bit section of the 64-bit address
10244 space. Thus, when they use an R_MIPS_64 they mean what is
10245 usually meant by R_MIPS_32, with the exception that the
10246 stored value is sign-extended to 64 bits. */
10247 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
10248
10249 /* On big-endian systems, we need to lie about the position
10250 of the reloc. */
10251 if (bfd_big_endian (input_bfd))
10252 rel->r_offset += 4;
10253 }
10254
10255 if (!use_saved_addend_p)
10256 {
10257 /* If these relocations were originally of the REL variety,
10258 we must pull the addend out of the field that will be
10259 relocated. Otherwise, we simply use the contents of the
10260 RELA relocation. */
10261 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10262 relocs, rel))
10263 {
10264 rela_relocation_p = FALSE;
10265 addend = mips_elf_read_rel_addend (input_bfd, rel,
10266 howto, contents);
10267 if (hi16_reloc_p (r_type)
10268 || (got16_reloc_p (r_type)
10269 && mips_elf_local_relocation_p (input_bfd, rel,
10270 local_sections)))
10271 {
10272 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10273 contents, &addend))
10274 {
10275 if (h)
10276 name = h->root.root.string;
10277 else
10278 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10279 local_syms + r_symndx,
10280 sec);
10281 _bfd_error_handler
10282 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
10283 input_bfd, input_section, name, howto->name,
10284 rel->r_offset);
10285 }
10286 }
10287 else
10288 addend <<= howto->rightshift;
10289 }
10290 else
10291 addend = rel->r_addend;
10292 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10293 local_syms, local_sections, rel);
10294 }
10295
10296 if (bfd_link_relocatable (info))
10297 {
10298 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10299 && bfd_big_endian (input_bfd))
10300 rel->r_offset -= 4;
10301
10302 if (!rela_relocation_p && rel->r_addend)
10303 {
10304 addend += rel->r_addend;
10305 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10306 addend = mips_elf_high (addend);
10307 else if (r_type == R_MIPS_HIGHER)
10308 addend = mips_elf_higher (addend);
10309 else if (r_type == R_MIPS_HIGHEST)
10310 addend = mips_elf_highest (addend);
10311 else
10312 addend >>= howto->rightshift;
10313
10314 /* We use the source mask, rather than the destination
10315 mask because the place to which we are writing will be
10316 source of the addend in the final link. */
10317 addend &= howto->src_mask;
10318
10319 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10320 /* See the comment above about using R_MIPS_64 in the 32-bit
10321 ABI. Here, we need to update the addend. It would be
10322 possible to get away with just using the R_MIPS_32 reloc
10323 but for endianness. */
10324 {
10325 bfd_vma sign_bits;
10326 bfd_vma low_bits;
10327 bfd_vma high_bits;
10328
10329 if (addend & ((bfd_vma) 1 << 31))
10330 #ifdef BFD64
10331 sign_bits = ((bfd_vma) 1 << 32) - 1;
10332 #else
10333 sign_bits = -1;
10334 #endif
10335 else
10336 sign_bits = 0;
10337
10338 /* If we don't know that we have a 64-bit type,
10339 do two separate stores. */
10340 if (bfd_big_endian (input_bfd))
10341 {
10342 /* Store the sign-bits (which are most significant)
10343 first. */
10344 low_bits = sign_bits;
10345 high_bits = addend;
10346 }
10347 else
10348 {
10349 low_bits = addend;
10350 high_bits = sign_bits;
10351 }
10352 bfd_put_32 (input_bfd, low_bits,
10353 contents + rel->r_offset);
10354 bfd_put_32 (input_bfd, high_bits,
10355 contents + rel->r_offset + 4);
10356 continue;
10357 }
10358
10359 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10360 input_bfd, input_section,
10361 contents, FALSE))
10362 return FALSE;
10363 }
10364
10365 /* Go on to the next relocation. */
10366 continue;
10367 }
10368
10369 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10370 relocations for the same offset. In that case we are
10371 supposed to treat the output of each relocation as the addend
10372 for the next. */
10373 if (rel + 1 < relend
10374 && rel->r_offset == rel[1].r_offset
10375 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10376 use_saved_addend_p = TRUE;
10377 else
10378 use_saved_addend_p = FALSE;
10379
10380 /* Figure out what value we are supposed to relocate. */
10381 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10382 input_section, info, rel,
10383 addend, howto, local_syms,
10384 local_sections, &value,
10385 &name, &cross_mode_jump_p,
10386 use_saved_addend_p))
10387 {
10388 case bfd_reloc_continue:
10389 /* There's nothing to do. */
10390 continue;
10391
10392 case bfd_reloc_undefined:
10393 /* mips_elf_calculate_relocation already called the
10394 undefined_symbol callback. There's no real point in
10395 trying to perform the relocation at this point, so we
10396 just skip ahead to the next relocation. */
10397 continue;
10398
10399 case bfd_reloc_notsupported:
10400 msg = _("internal error: unsupported relocation error");
10401 info->callbacks->warning
10402 (info, msg, name, input_bfd, input_section, rel->r_offset);
10403 return FALSE;
10404
10405 case bfd_reloc_overflow:
10406 if (use_saved_addend_p)
10407 /* Ignore overflow until we reach the last relocation for
10408 a given location. */
10409 ;
10410 else
10411 {
10412 struct mips_elf_link_hash_table *htab;
10413
10414 htab = mips_elf_hash_table (info);
10415 BFD_ASSERT (htab != NULL);
10416 BFD_ASSERT (name != NULL);
10417 if (!htab->small_data_overflow_reported
10418 && (gprel16_reloc_p (howto->type)
10419 || literal_reloc_p (howto->type)))
10420 {
10421 msg = _("small-data section exceeds 64KB;"
10422 " lower small-data size limit (see option -G)");
10423
10424 htab->small_data_overflow_reported = TRUE;
10425 (*info->callbacks->einfo) ("%P: %s\n", msg);
10426 }
10427 (*info->callbacks->reloc_overflow)
10428 (info, NULL, name, howto->name, (bfd_vma) 0,
10429 input_bfd, input_section, rel->r_offset);
10430 }
10431 break;
10432
10433 case bfd_reloc_ok:
10434 break;
10435
10436 case bfd_reloc_outofrange:
10437 msg = NULL;
10438 if (jal_reloc_p (howto->type))
10439 msg = (cross_mode_jump_p
10440 ? _("Cannot convert a jump to JALX "
10441 "for a non-word-aligned address")
10442 : (howto->type == R_MIPS16_26
10443 ? _("Jump to a non-word-aligned address")
10444 : _("Jump to a non-instruction-aligned address")));
10445 else if (b_reloc_p (howto->type))
10446 msg = (cross_mode_jump_p
10447 ? _("Cannot convert a branch to JALX "
10448 "for a non-word-aligned address")
10449 : _("Branch to a non-instruction-aligned address"));
10450 else if (aligned_pcrel_reloc_p (howto->type))
10451 msg = _("PC-relative load from unaligned address");
10452 if (msg)
10453 {
10454 info->callbacks->einfo
10455 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10456 break;
10457 }
10458 /* Fall through. */
10459
10460 default:
10461 abort ();
10462 break;
10463 }
10464
10465 /* If we've got another relocation for the address, keep going
10466 until we reach the last one. */
10467 if (use_saved_addend_p)
10468 {
10469 addend = value;
10470 continue;
10471 }
10472
10473 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10474 /* See the comment above about using R_MIPS_64 in the 32-bit
10475 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10476 that calculated the right value. Now, however, we
10477 sign-extend the 32-bit result to 64-bits, and store it as a
10478 64-bit value. We are especially generous here in that we
10479 go to extreme lengths to support this usage on systems with
10480 only a 32-bit VMA. */
10481 {
10482 bfd_vma sign_bits;
10483 bfd_vma low_bits;
10484 bfd_vma high_bits;
10485
10486 if (value & ((bfd_vma) 1 << 31))
10487 #ifdef BFD64
10488 sign_bits = ((bfd_vma) 1 << 32) - 1;
10489 #else
10490 sign_bits = -1;
10491 #endif
10492 else
10493 sign_bits = 0;
10494
10495 /* If we don't know that we have a 64-bit type,
10496 do two separate stores. */
10497 if (bfd_big_endian (input_bfd))
10498 {
10499 /* Undo what we did above. */
10500 rel->r_offset -= 4;
10501 /* Store the sign-bits (which are most significant)
10502 first. */
10503 low_bits = sign_bits;
10504 high_bits = value;
10505 }
10506 else
10507 {
10508 low_bits = value;
10509 high_bits = sign_bits;
10510 }
10511 bfd_put_32 (input_bfd, low_bits,
10512 contents + rel->r_offset);
10513 bfd_put_32 (input_bfd, high_bits,
10514 contents + rel->r_offset + 4);
10515 continue;
10516 }
10517
10518 /* Actually perform the relocation. */
10519 if (! mips_elf_perform_relocation (info, howto, rel, value,
10520 input_bfd, input_section,
10521 contents, cross_mode_jump_p))
10522 return FALSE;
10523 }
10524
10525 return TRUE;
10526 }
10527 \f
10528 /* A function that iterates over each entry in la25_stubs and fills
10529 in the code for each one. DATA points to a mips_htab_traverse_info. */
10530
10531 static int
10532 mips_elf_create_la25_stub (void **slot, void *data)
10533 {
10534 struct mips_htab_traverse_info *hti;
10535 struct mips_elf_link_hash_table *htab;
10536 struct mips_elf_la25_stub *stub;
10537 asection *s;
10538 bfd_byte *loc;
10539 bfd_vma offset, target, target_high, target_low;
10540
10541 stub = (struct mips_elf_la25_stub *) *slot;
10542 hti = (struct mips_htab_traverse_info *) data;
10543 htab = mips_elf_hash_table (hti->info);
10544 BFD_ASSERT (htab != NULL);
10545
10546 /* Create the section contents, if we haven't already. */
10547 s = stub->stub_section;
10548 loc = s->contents;
10549 if (loc == NULL)
10550 {
10551 loc = bfd_malloc (s->size);
10552 if (loc == NULL)
10553 {
10554 hti->error = TRUE;
10555 return FALSE;
10556 }
10557 s->contents = loc;
10558 }
10559
10560 /* Work out where in the section this stub should go. */
10561 offset = stub->offset;
10562
10563 /* Work out the target address. */
10564 target = mips_elf_get_la25_target (stub, &s);
10565 target += s->output_section->vma + s->output_offset;
10566
10567 target_high = ((target + 0x8000) >> 16) & 0xffff;
10568 target_low = (target & 0xffff);
10569
10570 if (stub->stub_section != htab->strampoline)
10571 {
10572 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10573 of the section and write the two instructions at the end. */
10574 memset (loc, 0, offset);
10575 loc += offset;
10576 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10577 {
10578 bfd_put_micromips_32 (hti->output_bfd,
10579 LA25_LUI_MICROMIPS (target_high),
10580 loc);
10581 bfd_put_micromips_32 (hti->output_bfd,
10582 LA25_ADDIU_MICROMIPS (target_low),
10583 loc + 4);
10584 }
10585 else
10586 {
10587 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10588 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10589 }
10590 }
10591 else
10592 {
10593 /* This is trampoline. */
10594 loc += offset;
10595 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10596 {
10597 bfd_put_micromips_32 (hti->output_bfd,
10598 LA25_LUI_MICROMIPS (target_high), loc);
10599 bfd_put_micromips_32 (hti->output_bfd,
10600 LA25_J_MICROMIPS (target), loc + 4);
10601 bfd_put_micromips_32 (hti->output_bfd,
10602 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10603 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10604 }
10605 else
10606 {
10607 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10608 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10609 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10610 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10611 }
10612 }
10613 return TRUE;
10614 }
10615
10616 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10617 adjust it appropriately now. */
10618
10619 static void
10620 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10621 const char *name, Elf_Internal_Sym *sym)
10622 {
10623 /* The linker script takes care of providing names and values for
10624 these, but we must place them into the right sections. */
10625 static const char* const text_section_symbols[] = {
10626 "_ftext",
10627 "_etext",
10628 "__dso_displacement",
10629 "__elf_header",
10630 "__program_header_table",
10631 NULL
10632 };
10633
10634 static const char* const data_section_symbols[] = {
10635 "_fdata",
10636 "_edata",
10637 "_end",
10638 "_fbss",
10639 NULL
10640 };
10641
10642 const char* const *p;
10643 int i;
10644
10645 for (i = 0; i < 2; ++i)
10646 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10647 *p;
10648 ++p)
10649 if (strcmp (*p, name) == 0)
10650 {
10651 /* All of these symbols are given type STT_SECTION by the
10652 IRIX6 linker. */
10653 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10654 sym->st_other = STO_PROTECTED;
10655
10656 /* The IRIX linker puts these symbols in special sections. */
10657 if (i == 0)
10658 sym->st_shndx = SHN_MIPS_TEXT;
10659 else
10660 sym->st_shndx = SHN_MIPS_DATA;
10661
10662 break;
10663 }
10664 }
10665
10666 /* Finish up dynamic symbol handling. We set the contents of various
10667 dynamic sections here. */
10668
10669 bfd_boolean
10670 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10671 struct bfd_link_info *info,
10672 struct elf_link_hash_entry *h,
10673 Elf_Internal_Sym *sym)
10674 {
10675 bfd *dynobj;
10676 asection *sgot;
10677 struct mips_got_info *g, *gg;
10678 const char *name;
10679 int idx;
10680 struct mips_elf_link_hash_table *htab;
10681 struct mips_elf_link_hash_entry *hmips;
10682
10683 htab = mips_elf_hash_table (info);
10684 BFD_ASSERT (htab != NULL);
10685 dynobj = elf_hash_table (info)->dynobj;
10686 hmips = (struct mips_elf_link_hash_entry *) h;
10687
10688 BFD_ASSERT (!htab->is_vxworks);
10689
10690 if (h->plt.plist != NULL
10691 && (h->plt.plist->mips_offset != MINUS_ONE
10692 || h->plt.plist->comp_offset != MINUS_ONE))
10693 {
10694 /* We've decided to create a PLT entry for this symbol. */
10695 bfd_byte *loc;
10696 bfd_vma header_address, got_address;
10697 bfd_vma got_address_high, got_address_low, load;
10698 bfd_vma got_index;
10699 bfd_vma isa_bit;
10700
10701 got_index = h->plt.plist->gotplt_index;
10702
10703 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10704 BFD_ASSERT (h->dynindx != -1);
10705 BFD_ASSERT (htab->splt != NULL);
10706 BFD_ASSERT (got_index != MINUS_ONE);
10707 BFD_ASSERT (!h->def_regular);
10708
10709 /* Calculate the address of the PLT header. */
10710 isa_bit = htab->plt_header_is_comp;
10711 header_address = (htab->splt->output_section->vma
10712 + htab->splt->output_offset + isa_bit);
10713
10714 /* Calculate the address of the .got.plt entry. */
10715 got_address = (htab->sgotplt->output_section->vma
10716 + htab->sgotplt->output_offset
10717 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10718
10719 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10720 got_address_low = got_address & 0xffff;
10721
10722 /* Initially point the .got.plt entry at the PLT header. */
10723 loc = (htab->sgotplt->contents + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10724 if (ABI_64_P (output_bfd))
10725 bfd_put_64 (output_bfd, header_address, loc);
10726 else
10727 bfd_put_32 (output_bfd, header_address, loc);
10728
10729 /* Now handle the PLT itself. First the standard entry (the order
10730 does not matter, we just have to pick one). */
10731 if (h->plt.plist->mips_offset != MINUS_ONE)
10732 {
10733 const bfd_vma *plt_entry;
10734 bfd_vma plt_offset;
10735
10736 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10737
10738 BFD_ASSERT (plt_offset <= htab->splt->size);
10739
10740 /* Find out where the .plt entry should go. */
10741 loc = htab->splt->contents + plt_offset;
10742
10743 /* Pick the load opcode. */
10744 load = MIPS_ELF_LOAD_WORD (output_bfd);
10745
10746 /* Fill in the PLT entry itself. */
10747
10748 if (MIPSR6_P (output_bfd))
10749 plt_entry = mipsr6_exec_plt_entry;
10750 else
10751 plt_entry = mips_exec_plt_entry;
10752 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10753 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10754 loc + 4);
10755
10756 if (! LOAD_INTERLOCKS_P (output_bfd))
10757 {
10758 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10759 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10760 }
10761 else
10762 {
10763 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10764 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10765 loc + 12);
10766 }
10767 }
10768
10769 /* Now the compressed entry. They come after any standard ones. */
10770 if (h->plt.plist->comp_offset != MINUS_ONE)
10771 {
10772 bfd_vma plt_offset;
10773
10774 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10775 + h->plt.plist->comp_offset);
10776
10777 BFD_ASSERT (plt_offset <= htab->splt->size);
10778
10779 /* Find out where the .plt entry should go. */
10780 loc = htab->splt->contents + plt_offset;
10781
10782 /* Fill in the PLT entry itself. */
10783 if (!MICROMIPS_P (output_bfd))
10784 {
10785 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10786
10787 bfd_put_16 (output_bfd, plt_entry[0], loc);
10788 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10789 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10790 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10791 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10792 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10793 bfd_put_32 (output_bfd, got_address, loc + 12);
10794 }
10795 else if (htab->insn32)
10796 {
10797 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10798
10799 bfd_put_16 (output_bfd, plt_entry[0], loc);
10800 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10801 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10802 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10803 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10804 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10805 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10806 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10807 }
10808 else
10809 {
10810 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10811 bfd_signed_vma gotpc_offset;
10812 bfd_vma loc_address;
10813
10814 BFD_ASSERT (got_address % 4 == 0);
10815
10816 loc_address = (htab->splt->output_section->vma
10817 + htab->splt->output_offset + plt_offset);
10818 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10819
10820 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10821 if (gotpc_offset + 0x1000000 >= 0x2000000)
10822 {
10823 _bfd_error_handler
10824 (_("%B: `%A' offset of %ld from `%A' "
10825 "beyond the range of ADDIUPC"),
10826 output_bfd,
10827 htab->sgotplt->output_section,
10828 htab->splt->output_section,
10829 (long) gotpc_offset);
10830 bfd_set_error (bfd_error_no_error);
10831 return FALSE;
10832 }
10833 bfd_put_16 (output_bfd,
10834 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10835 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10836 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10837 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10838 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10839 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10840 }
10841 }
10842
10843 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10844 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
10845 got_index - 2, h->dynindx,
10846 R_MIPS_JUMP_SLOT, got_address);
10847
10848 /* We distinguish between PLT entries and lazy-binding stubs by
10849 giving the former an st_other value of STO_MIPS_PLT. Set the
10850 flag and leave the value if there are any relocations in the
10851 binary where pointer equality matters. */
10852 sym->st_shndx = SHN_UNDEF;
10853 if (h->pointer_equality_needed)
10854 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
10855 else
10856 {
10857 sym->st_value = 0;
10858 sym->st_other = 0;
10859 }
10860 }
10861
10862 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
10863 {
10864 /* We've decided to create a lazy-binding stub. */
10865 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10866 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10867 bfd_vma stub_size = htab->function_stub_size;
10868 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
10869 bfd_vma isa_bit = micromips_p;
10870 bfd_vma stub_big_size;
10871
10872 if (!micromips_p)
10873 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
10874 else if (htab->insn32)
10875 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10876 else
10877 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
10878
10879 /* This symbol has a stub. Set it up. */
10880
10881 BFD_ASSERT (h->dynindx != -1);
10882
10883 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
10884
10885 /* Values up to 2^31 - 1 are allowed. Larger values would cause
10886 sign extension at runtime in the stub, resulting in a negative
10887 index value. */
10888 if (h->dynindx & ~0x7fffffff)
10889 return FALSE;
10890
10891 /* Fill the stub. */
10892 if (micromips_p)
10893 {
10894 idx = 0;
10895 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10896 stub + idx);
10897 idx += 4;
10898 if (htab->insn32)
10899 {
10900 bfd_put_micromips_32 (output_bfd,
10901 STUB_MOVE32_MICROMIPS, stub + idx);
10902 idx += 4;
10903 }
10904 else
10905 {
10906 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10907 idx += 2;
10908 }
10909 if (stub_size == stub_big_size)
10910 {
10911 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10912
10913 bfd_put_micromips_32 (output_bfd,
10914 STUB_LUI_MICROMIPS (dynindx_hi),
10915 stub + idx);
10916 idx += 4;
10917 }
10918 if (htab->insn32)
10919 {
10920 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
10921 stub + idx);
10922 idx += 4;
10923 }
10924 else
10925 {
10926 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
10927 idx += 2;
10928 }
10929
10930 /* If a large stub is not required and sign extension is not a
10931 problem, then use legacy code in the stub. */
10932 if (stub_size == stub_big_size)
10933 bfd_put_micromips_32 (output_bfd,
10934 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
10935 stub + idx);
10936 else if (h->dynindx & ~0x7fff)
10937 bfd_put_micromips_32 (output_bfd,
10938 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
10939 stub + idx);
10940 else
10941 bfd_put_micromips_32 (output_bfd,
10942 STUB_LI16S_MICROMIPS (output_bfd,
10943 h->dynindx),
10944 stub + idx);
10945 }
10946 else
10947 {
10948 idx = 0;
10949 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10950 idx += 4;
10951 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
10952 idx += 4;
10953 if (stub_size == stub_big_size)
10954 {
10955 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10956 stub + idx);
10957 idx += 4;
10958 }
10959 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10960 idx += 4;
10961
10962 /* If a large stub is not required and sign extension is not a
10963 problem, then use legacy code in the stub. */
10964 if (stub_size == stub_big_size)
10965 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
10966 stub + idx);
10967 else if (h->dynindx & ~0x7fff)
10968 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
10969 stub + idx);
10970 else
10971 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10972 stub + idx);
10973 }
10974
10975 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
10976 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
10977 stub, stub_size);
10978
10979 /* Mark the symbol as undefined. stub_offset != -1 occurs
10980 only for the referenced symbol. */
10981 sym->st_shndx = SHN_UNDEF;
10982
10983 /* The run-time linker uses the st_value field of the symbol
10984 to reset the global offset table entry for this external
10985 to its stub address when unlinking a shared object. */
10986 sym->st_value = (htab->sstubs->output_section->vma
10987 + htab->sstubs->output_offset
10988 + h->plt.plist->stub_offset
10989 + isa_bit);
10990 sym->st_other = other;
10991 }
10992
10993 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10994 refer to the stub, since only the stub uses the standard calling
10995 conventions. */
10996 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10997 {
10998 BFD_ASSERT (hmips->need_fn_stub);
10999 sym->st_value = (hmips->fn_stub->output_section->vma
11000 + hmips->fn_stub->output_offset);
11001 sym->st_size = hmips->fn_stub->size;
11002 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
11003 }
11004
11005 BFD_ASSERT (h->dynindx != -1
11006 || h->forced_local);
11007
11008 sgot = htab->sgot;
11009 g = htab->got_info;
11010 BFD_ASSERT (g != NULL);
11011
11012 /* Run through the global symbol table, creating GOT entries for all
11013 the symbols that need them. */
11014 if (hmips->global_got_area != GGA_NONE)
11015 {
11016 bfd_vma offset;
11017 bfd_vma value;
11018
11019 value = sym->st_value;
11020 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11021 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
11022 }
11023
11024 if (hmips->global_got_area != GGA_NONE && g->next)
11025 {
11026 struct mips_got_entry e, *p;
11027 bfd_vma entry;
11028 bfd_vma offset;
11029
11030 gg = g;
11031
11032 e.abfd = output_bfd;
11033 e.symndx = -1;
11034 e.d.h = hmips;
11035 e.tls_type = GOT_TLS_NONE;
11036
11037 for (g = g->next; g->next != gg; g = g->next)
11038 {
11039 if (g->got_entries
11040 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
11041 &e)))
11042 {
11043 offset = p->gotidx;
11044 BFD_ASSERT (offset > 0 && offset < htab->sgot->size);
11045 if (bfd_link_pic (info)
11046 || (elf_hash_table (info)->dynamic_sections_created
11047 && p->d.h != NULL
11048 && p->d.h->root.def_dynamic
11049 && !p->d.h->root.def_regular))
11050 {
11051 /* Create an R_MIPS_REL32 relocation for this entry. Due to
11052 the various compatibility problems, it's easier to mock
11053 up an R_MIPS_32 or R_MIPS_64 relocation and leave
11054 mips_elf_create_dynamic_relocation to calculate the
11055 appropriate addend. */
11056 Elf_Internal_Rela rel[3];
11057
11058 memset (rel, 0, sizeof (rel));
11059 if (ABI_64_P (output_bfd))
11060 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
11061 else
11062 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
11063 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
11064
11065 entry = 0;
11066 if (! (mips_elf_create_dynamic_relocation
11067 (output_bfd, info, rel,
11068 e.d.h, NULL, sym->st_value, &entry, sgot)))
11069 return FALSE;
11070 }
11071 else
11072 entry = sym->st_value;
11073 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
11074 }
11075 }
11076 }
11077
11078 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
11079 name = h->root.root.string;
11080 if (h == elf_hash_table (info)->hdynamic
11081 || h == elf_hash_table (info)->hgot)
11082 sym->st_shndx = SHN_ABS;
11083 else if (strcmp (name, "_DYNAMIC_LINK") == 0
11084 || strcmp (name, "_DYNAMIC_LINKING") == 0)
11085 {
11086 sym->st_shndx = SHN_ABS;
11087 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11088 sym->st_value = 1;
11089 }
11090 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
11091 {
11092 sym->st_shndx = SHN_ABS;
11093 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11094 sym->st_value = elf_gp (output_bfd);
11095 }
11096 else if (SGI_COMPAT (output_bfd))
11097 {
11098 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
11099 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
11100 {
11101 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11102 sym->st_other = STO_PROTECTED;
11103 sym->st_value = 0;
11104 sym->st_shndx = SHN_MIPS_DATA;
11105 }
11106 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
11107 {
11108 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11109 sym->st_other = STO_PROTECTED;
11110 sym->st_value = mips_elf_hash_table (info)->procedure_count;
11111 sym->st_shndx = SHN_ABS;
11112 }
11113 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
11114 {
11115 if (h->type == STT_FUNC)
11116 sym->st_shndx = SHN_MIPS_TEXT;
11117 else if (h->type == STT_OBJECT)
11118 sym->st_shndx = SHN_MIPS_DATA;
11119 }
11120 }
11121
11122 /* Emit a copy reloc, if needed. */
11123 if (h->needs_copy)
11124 {
11125 asection *s;
11126 bfd_vma symval;
11127
11128 BFD_ASSERT (h->dynindx != -1);
11129 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11130
11131 s = mips_elf_rel_dyn_section (info, FALSE);
11132 symval = (h->root.u.def.section->output_section->vma
11133 + h->root.u.def.section->output_offset
11134 + h->root.u.def.value);
11135 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
11136 h->dynindx, R_MIPS_COPY, symval);
11137 }
11138
11139 /* Handle the IRIX6-specific symbols. */
11140 if (IRIX_COMPAT (output_bfd) == ict_irix6)
11141 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11142
11143 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11144 to treat compressed symbols like any other. */
11145 if (ELF_ST_IS_MIPS16 (sym->st_other))
11146 {
11147 BFD_ASSERT (sym->st_value & 1);
11148 sym->st_other -= STO_MIPS16;
11149 }
11150 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11151 {
11152 BFD_ASSERT (sym->st_value & 1);
11153 sym->st_other -= STO_MICROMIPS;
11154 }
11155
11156 return TRUE;
11157 }
11158
11159 /* Likewise, for VxWorks. */
11160
11161 bfd_boolean
11162 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11163 struct bfd_link_info *info,
11164 struct elf_link_hash_entry *h,
11165 Elf_Internal_Sym *sym)
11166 {
11167 bfd *dynobj;
11168 asection *sgot;
11169 struct mips_got_info *g;
11170 struct mips_elf_link_hash_table *htab;
11171 struct mips_elf_link_hash_entry *hmips;
11172
11173 htab = mips_elf_hash_table (info);
11174 BFD_ASSERT (htab != NULL);
11175 dynobj = elf_hash_table (info)->dynobj;
11176 hmips = (struct mips_elf_link_hash_entry *) h;
11177
11178 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
11179 {
11180 bfd_byte *loc;
11181 bfd_vma plt_address, got_address, got_offset, branch_offset;
11182 Elf_Internal_Rela rel;
11183 static const bfd_vma *plt_entry;
11184 bfd_vma gotplt_index;
11185 bfd_vma plt_offset;
11186
11187 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11188 gotplt_index = h->plt.plist->gotplt_index;
11189
11190 BFD_ASSERT (h->dynindx != -1);
11191 BFD_ASSERT (htab->splt != NULL);
11192 BFD_ASSERT (gotplt_index != MINUS_ONE);
11193 BFD_ASSERT (plt_offset <= htab->splt->size);
11194
11195 /* Calculate the address of the .plt entry. */
11196 plt_address = (htab->splt->output_section->vma
11197 + htab->splt->output_offset
11198 + plt_offset);
11199
11200 /* Calculate the address of the .got.plt entry. */
11201 got_address = (htab->sgotplt->output_section->vma
11202 + htab->sgotplt->output_offset
11203 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11204
11205 /* Calculate the offset of the .got.plt entry from
11206 _GLOBAL_OFFSET_TABLE_. */
11207 got_offset = mips_elf_gotplt_index (info, h);
11208
11209 /* Calculate the offset for the branch at the start of the PLT
11210 entry. The branch jumps to the beginning of .plt. */
11211 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11212
11213 /* Fill in the initial value of the .got.plt entry. */
11214 bfd_put_32 (output_bfd, plt_address,
11215 (htab->sgotplt->contents
11216 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11217
11218 /* Find out where the .plt entry should go. */
11219 loc = htab->splt->contents + plt_offset;
11220
11221 if (bfd_link_pic (info))
11222 {
11223 plt_entry = mips_vxworks_shared_plt_entry;
11224 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11225 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11226 }
11227 else
11228 {
11229 bfd_vma got_address_high, got_address_low;
11230
11231 plt_entry = mips_vxworks_exec_plt_entry;
11232 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11233 got_address_low = got_address & 0xffff;
11234
11235 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11236 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11237 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11238 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11239 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11240 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11241 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11242 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11243
11244 loc = (htab->srelplt2->contents
11245 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11246
11247 /* Emit a relocation for the .got.plt entry. */
11248 rel.r_offset = got_address;
11249 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11250 rel.r_addend = plt_offset;
11251 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11252
11253 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11254 loc += sizeof (Elf32_External_Rela);
11255 rel.r_offset = plt_address + 8;
11256 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11257 rel.r_addend = got_offset;
11258 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11259
11260 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11261 loc += sizeof (Elf32_External_Rela);
11262 rel.r_offset += 4;
11263 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11264 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11265 }
11266
11267 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11268 loc = (htab->srelplt->contents
11269 + gotplt_index * sizeof (Elf32_External_Rela));
11270 rel.r_offset = got_address;
11271 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11272 rel.r_addend = 0;
11273 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11274
11275 if (!h->def_regular)
11276 sym->st_shndx = SHN_UNDEF;
11277 }
11278
11279 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11280
11281 sgot = htab->sgot;
11282 g = htab->got_info;
11283 BFD_ASSERT (g != NULL);
11284
11285 /* See if this symbol has an entry in the GOT. */
11286 if (hmips->global_got_area != GGA_NONE)
11287 {
11288 bfd_vma offset;
11289 Elf_Internal_Rela outrel;
11290 bfd_byte *loc;
11291 asection *s;
11292
11293 /* Install the symbol value in the GOT. */
11294 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11295 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11296
11297 /* Add a dynamic relocation for it. */
11298 s = mips_elf_rel_dyn_section (info, FALSE);
11299 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11300 outrel.r_offset = (sgot->output_section->vma
11301 + sgot->output_offset
11302 + offset);
11303 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11304 outrel.r_addend = 0;
11305 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11306 }
11307
11308 /* Emit a copy reloc, if needed. */
11309 if (h->needs_copy)
11310 {
11311 Elf_Internal_Rela rel;
11312
11313 BFD_ASSERT (h->dynindx != -1);
11314
11315 rel.r_offset = (h->root.u.def.section->output_section->vma
11316 + h->root.u.def.section->output_offset
11317 + h->root.u.def.value);
11318 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11319 rel.r_addend = 0;
11320 bfd_elf32_swap_reloca_out (output_bfd, &rel,
11321 htab->srelbss->contents
11322 + (htab->srelbss->reloc_count
11323 * sizeof (Elf32_External_Rela)));
11324 ++htab->srelbss->reloc_count;
11325 }
11326
11327 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11328 if (ELF_ST_IS_COMPRESSED (sym->st_other))
11329 sym->st_value &= ~1;
11330
11331 return TRUE;
11332 }
11333
11334 /* Write out a plt0 entry to the beginning of .plt. */
11335
11336 static bfd_boolean
11337 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11338 {
11339 bfd_byte *loc;
11340 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11341 static const bfd_vma *plt_entry;
11342 struct mips_elf_link_hash_table *htab;
11343
11344 htab = mips_elf_hash_table (info);
11345 BFD_ASSERT (htab != NULL);
11346
11347 if (ABI_64_P (output_bfd))
11348 plt_entry = mips_n64_exec_plt0_entry;
11349 else if (ABI_N32_P (output_bfd))
11350 plt_entry = mips_n32_exec_plt0_entry;
11351 else if (!htab->plt_header_is_comp)
11352 plt_entry = mips_o32_exec_plt0_entry;
11353 else if (htab->insn32)
11354 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11355 else
11356 plt_entry = micromips_o32_exec_plt0_entry;
11357
11358 /* Calculate the value of .got.plt. */
11359 gotplt_value = (htab->sgotplt->output_section->vma
11360 + htab->sgotplt->output_offset);
11361 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11362 gotplt_value_low = gotplt_value & 0xffff;
11363
11364 /* The PLT sequence is not safe for N64 if .got.plt's address can
11365 not be loaded in two instructions. */
11366 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
11367 || ~(gotplt_value | 0x7fffffff) == 0);
11368
11369 /* Install the PLT header. */
11370 loc = htab->splt->contents;
11371 if (plt_entry == micromips_o32_exec_plt0_entry)
11372 {
11373 bfd_vma gotpc_offset;
11374 bfd_vma loc_address;
11375 size_t i;
11376
11377 BFD_ASSERT (gotplt_value % 4 == 0);
11378
11379 loc_address = (htab->splt->output_section->vma
11380 + htab->splt->output_offset);
11381 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11382
11383 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11384 if (gotpc_offset + 0x1000000 >= 0x2000000)
11385 {
11386 _bfd_error_handler
11387 (_("%B: `%A' offset of %ld from `%A' beyond the range of ADDIUPC"),
11388 output_bfd,
11389 htab->sgotplt->output_section,
11390 htab->splt->output_section,
11391 (long) gotpc_offset);
11392 bfd_set_error (bfd_error_no_error);
11393 return FALSE;
11394 }
11395 bfd_put_16 (output_bfd,
11396 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11397 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11398 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11399 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11400 }
11401 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11402 {
11403 size_t i;
11404
11405 bfd_put_16 (output_bfd, plt_entry[0], loc);
11406 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11407 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11408 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11409 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11410 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11411 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11412 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11413 }
11414 else
11415 {
11416 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11417 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11418 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11419 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11420 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11421 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11422 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11423 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11424 }
11425
11426 return TRUE;
11427 }
11428
11429 /* Install the PLT header for a VxWorks executable and finalize the
11430 contents of .rela.plt.unloaded. */
11431
11432 static void
11433 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11434 {
11435 Elf_Internal_Rela rela;
11436 bfd_byte *loc;
11437 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11438 static const bfd_vma *plt_entry;
11439 struct mips_elf_link_hash_table *htab;
11440
11441 htab = mips_elf_hash_table (info);
11442 BFD_ASSERT (htab != NULL);
11443
11444 plt_entry = mips_vxworks_exec_plt0_entry;
11445
11446 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11447 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11448 + htab->root.hgot->root.u.def.section->output_offset
11449 + htab->root.hgot->root.u.def.value);
11450
11451 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11452 got_value_low = got_value & 0xffff;
11453
11454 /* Calculate the address of the PLT header. */
11455 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
11456
11457 /* Install the PLT header. */
11458 loc = htab->splt->contents;
11459 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11460 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11461 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11462 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11463 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11464 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11465
11466 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11467 loc = htab->srelplt2->contents;
11468 rela.r_offset = plt_address;
11469 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11470 rela.r_addend = 0;
11471 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11472 loc += sizeof (Elf32_External_Rela);
11473
11474 /* Output the relocation for the following addiu of
11475 %lo(_GLOBAL_OFFSET_TABLE_). */
11476 rela.r_offset += 4;
11477 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11478 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11479 loc += sizeof (Elf32_External_Rela);
11480
11481 /* Fix up the remaining relocations. They may have the wrong
11482 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11483 in which symbols were output. */
11484 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11485 {
11486 Elf_Internal_Rela rel;
11487
11488 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11489 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11490 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11491 loc += sizeof (Elf32_External_Rela);
11492
11493 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11494 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11495 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11496 loc += sizeof (Elf32_External_Rela);
11497
11498 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11499 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11500 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11501 loc += sizeof (Elf32_External_Rela);
11502 }
11503 }
11504
11505 /* Install the PLT header for a VxWorks shared library. */
11506
11507 static void
11508 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11509 {
11510 unsigned int i;
11511 struct mips_elf_link_hash_table *htab;
11512
11513 htab = mips_elf_hash_table (info);
11514 BFD_ASSERT (htab != NULL);
11515
11516 /* We just need to copy the entry byte-by-byte. */
11517 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11518 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11519 htab->splt->contents + i * 4);
11520 }
11521
11522 /* Finish up the dynamic sections. */
11523
11524 bfd_boolean
11525 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11526 struct bfd_link_info *info)
11527 {
11528 bfd *dynobj;
11529 asection *sdyn;
11530 asection *sgot;
11531 struct mips_got_info *gg, *g;
11532 struct mips_elf_link_hash_table *htab;
11533
11534 htab = mips_elf_hash_table (info);
11535 BFD_ASSERT (htab != NULL);
11536
11537 dynobj = elf_hash_table (info)->dynobj;
11538
11539 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11540
11541 sgot = htab->sgot;
11542 gg = htab->got_info;
11543
11544 if (elf_hash_table (info)->dynamic_sections_created)
11545 {
11546 bfd_byte *b;
11547 int dyn_to_skip = 0, dyn_skipped = 0;
11548
11549 BFD_ASSERT (sdyn != NULL);
11550 BFD_ASSERT (gg != NULL);
11551
11552 g = mips_elf_bfd_got (output_bfd, FALSE);
11553 BFD_ASSERT (g != NULL);
11554
11555 for (b = sdyn->contents;
11556 b < sdyn->contents + sdyn->size;
11557 b += MIPS_ELF_DYN_SIZE (dynobj))
11558 {
11559 Elf_Internal_Dyn dyn;
11560 const char *name;
11561 size_t elemsize;
11562 asection *s;
11563 bfd_boolean swap_out_p;
11564
11565 /* Read in the current dynamic entry. */
11566 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11567
11568 /* Assume that we're going to modify it and write it out. */
11569 swap_out_p = TRUE;
11570
11571 switch (dyn.d_tag)
11572 {
11573 case DT_RELENT:
11574 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11575 break;
11576
11577 case DT_RELAENT:
11578 BFD_ASSERT (htab->is_vxworks);
11579 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11580 break;
11581
11582 case DT_STRSZ:
11583 /* Rewrite DT_STRSZ. */
11584 dyn.d_un.d_val =
11585 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11586 break;
11587
11588 case DT_PLTGOT:
11589 s = htab->sgot;
11590 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11591 break;
11592
11593 case DT_MIPS_PLTGOT:
11594 s = htab->sgotplt;
11595 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11596 break;
11597
11598 case DT_MIPS_RLD_VERSION:
11599 dyn.d_un.d_val = 1; /* XXX */
11600 break;
11601
11602 case DT_MIPS_FLAGS:
11603 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11604 break;
11605
11606 case DT_MIPS_TIME_STAMP:
11607 {
11608 time_t t;
11609 time (&t);
11610 dyn.d_un.d_val = t;
11611 }
11612 break;
11613
11614 case DT_MIPS_ICHECKSUM:
11615 /* XXX FIXME: */
11616 swap_out_p = FALSE;
11617 break;
11618
11619 case DT_MIPS_IVERSION:
11620 /* XXX FIXME: */
11621 swap_out_p = FALSE;
11622 break;
11623
11624 case DT_MIPS_BASE_ADDRESS:
11625 s = output_bfd->sections;
11626 BFD_ASSERT (s != NULL);
11627 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11628 break;
11629
11630 case DT_MIPS_LOCAL_GOTNO:
11631 dyn.d_un.d_val = g->local_gotno;
11632 break;
11633
11634 case DT_MIPS_UNREFEXTNO:
11635 /* The index into the dynamic symbol table which is the
11636 entry of the first external symbol that is not
11637 referenced within the same object. */
11638 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11639 break;
11640
11641 case DT_MIPS_GOTSYM:
11642 if (htab->global_gotsym)
11643 {
11644 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11645 break;
11646 }
11647 /* In case if we don't have global got symbols we default
11648 to setting DT_MIPS_GOTSYM to the same value as
11649 DT_MIPS_SYMTABNO. */
11650 /* Fall through. */
11651
11652 case DT_MIPS_SYMTABNO:
11653 name = ".dynsym";
11654 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11655 s = bfd_get_linker_section (dynobj, name);
11656
11657 if (s != NULL)
11658 dyn.d_un.d_val = s->size / elemsize;
11659 else
11660 dyn.d_un.d_val = 0;
11661 break;
11662
11663 case DT_MIPS_HIPAGENO:
11664 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11665 break;
11666
11667 case DT_MIPS_RLD_MAP:
11668 {
11669 struct elf_link_hash_entry *h;
11670 h = mips_elf_hash_table (info)->rld_symbol;
11671 if (!h)
11672 {
11673 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11674 swap_out_p = FALSE;
11675 break;
11676 }
11677 s = h->root.u.def.section;
11678
11679 /* The MIPS_RLD_MAP tag stores the absolute address of the
11680 debug pointer. */
11681 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11682 + h->root.u.def.value);
11683 }
11684 break;
11685
11686 case DT_MIPS_RLD_MAP_REL:
11687 {
11688 struct elf_link_hash_entry *h;
11689 bfd_vma dt_addr, rld_addr;
11690 h = mips_elf_hash_table (info)->rld_symbol;
11691 if (!h)
11692 {
11693 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11694 swap_out_p = FALSE;
11695 break;
11696 }
11697 s = h->root.u.def.section;
11698
11699 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11700 pointer, relative to the address of the tag. */
11701 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
11702 + (b - sdyn->contents));
11703 rld_addr = (s->output_section->vma + s->output_offset
11704 + h->root.u.def.value);
11705 dyn.d_un.d_ptr = rld_addr - dt_addr;
11706 }
11707 break;
11708
11709 case DT_MIPS_OPTIONS:
11710 s = (bfd_get_section_by_name
11711 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11712 dyn.d_un.d_ptr = s->vma;
11713 break;
11714
11715 case DT_RELASZ:
11716 BFD_ASSERT (htab->is_vxworks);
11717 /* The count does not include the JUMP_SLOT relocations. */
11718 if (htab->srelplt)
11719 dyn.d_un.d_val -= htab->srelplt->size;
11720 break;
11721
11722 case DT_PLTREL:
11723 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11724 if (htab->is_vxworks)
11725 dyn.d_un.d_val = DT_RELA;
11726 else
11727 dyn.d_un.d_val = DT_REL;
11728 break;
11729
11730 case DT_PLTRELSZ:
11731 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11732 dyn.d_un.d_val = htab->srelplt->size;
11733 break;
11734
11735 case DT_JMPREL:
11736 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11737 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
11738 + htab->srelplt->output_offset);
11739 break;
11740
11741 case DT_TEXTREL:
11742 /* If we didn't need any text relocations after all, delete
11743 the dynamic tag. */
11744 if (!(info->flags & DF_TEXTREL))
11745 {
11746 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11747 swap_out_p = FALSE;
11748 }
11749 break;
11750
11751 case DT_FLAGS:
11752 /* If we didn't need any text relocations after all, clear
11753 DF_TEXTREL from DT_FLAGS. */
11754 if (!(info->flags & DF_TEXTREL))
11755 dyn.d_un.d_val &= ~DF_TEXTREL;
11756 else
11757 swap_out_p = FALSE;
11758 break;
11759
11760 default:
11761 swap_out_p = FALSE;
11762 if (htab->is_vxworks
11763 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11764 swap_out_p = TRUE;
11765 break;
11766 }
11767
11768 if (swap_out_p || dyn_skipped)
11769 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11770 (dynobj, &dyn, b - dyn_skipped);
11771
11772 if (dyn_to_skip)
11773 {
11774 dyn_skipped += dyn_to_skip;
11775 dyn_to_skip = 0;
11776 }
11777 }
11778
11779 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11780 if (dyn_skipped > 0)
11781 memset (b - dyn_skipped, 0, dyn_skipped);
11782 }
11783
11784 if (sgot != NULL && sgot->size > 0
11785 && !bfd_is_abs_section (sgot->output_section))
11786 {
11787 if (htab->is_vxworks)
11788 {
11789 /* The first entry of the global offset table points to the
11790 ".dynamic" section. The second is initialized by the
11791 loader and contains the shared library identifier.
11792 The third is also initialized by the loader and points
11793 to the lazy resolution stub. */
11794 MIPS_ELF_PUT_WORD (output_bfd,
11795 sdyn->output_offset + sdyn->output_section->vma,
11796 sgot->contents);
11797 MIPS_ELF_PUT_WORD (output_bfd, 0,
11798 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11799 MIPS_ELF_PUT_WORD (output_bfd, 0,
11800 sgot->contents
11801 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11802 }
11803 else
11804 {
11805 /* The first entry of the global offset table will be filled at
11806 runtime. The second entry will be used by some runtime loaders.
11807 This isn't the case of IRIX rld. */
11808 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
11809 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11810 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11811 }
11812
11813 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11814 = MIPS_ELF_GOT_SIZE (output_bfd);
11815 }
11816
11817 /* Generate dynamic relocations for the non-primary gots. */
11818 if (gg != NULL && gg->next)
11819 {
11820 Elf_Internal_Rela rel[3];
11821 bfd_vma addend = 0;
11822
11823 memset (rel, 0, sizeof (rel));
11824 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11825
11826 for (g = gg->next; g->next != gg; g = g->next)
11827 {
11828 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
11829 + g->next->tls_gotno;
11830
11831 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
11832 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11833 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11834 sgot->contents
11835 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11836
11837 if (! bfd_link_pic (info))
11838 continue;
11839
11840 for (; got_index < g->local_gotno; got_index++)
11841 {
11842 if (got_index >= g->assigned_low_gotno
11843 && got_index <= g->assigned_high_gotno)
11844 continue;
11845
11846 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
11847 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
11848 if (!(mips_elf_create_dynamic_relocation
11849 (output_bfd, info, rel, NULL,
11850 bfd_abs_section_ptr,
11851 0, &addend, sgot)))
11852 return FALSE;
11853 BFD_ASSERT (addend == 0);
11854 }
11855 }
11856 }
11857
11858 /* The generation of dynamic relocations for the non-primary gots
11859 adds more dynamic relocations. We cannot count them until
11860 here. */
11861
11862 if (elf_hash_table (info)->dynamic_sections_created)
11863 {
11864 bfd_byte *b;
11865 bfd_boolean swap_out_p;
11866
11867 BFD_ASSERT (sdyn != NULL);
11868
11869 for (b = sdyn->contents;
11870 b < sdyn->contents + sdyn->size;
11871 b += MIPS_ELF_DYN_SIZE (dynobj))
11872 {
11873 Elf_Internal_Dyn dyn;
11874 asection *s;
11875
11876 /* Read in the current dynamic entry. */
11877 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11878
11879 /* Assume that we're going to modify it and write it out. */
11880 swap_out_p = TRUE;
11881
11882 switch (dyn.d_tag)
11883 {
11884 case DT_RELSZ:
11885 /* Reduce DT_RELSZ to account for any relocations we
11886 decided not to make. This is for the n64 irix rld,
11887 which doesn't seem to apply any relocations if there
11888 are trailing null entries. */
11889 s = mips_elf_rel_dyn_section (info, FALSE);
11890 dyn.d_un.d_val = (s->reloc_count
11891 * (ABI_64_P (output_bfd)
11892 ? sizeof (Elf64_Mips_External_Rel)
11893 : sizeof (Elf32_External_Rel)));
11894 /* Adjust the section size too. Tools like the prelinker
11895 can reasonably expect the values to the same. */
11896 elf_section_data (s->output_section)->this_hdr.sh_size
11897 = dyn.d_un.d_val;
11898 break;
11899
11900 default:
11901 swap_out_p = FALSE;
11902 break;
11903 }
11904
11905 if (swap_out_p)
11906 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11907 (dynobj, &dyn, b);
11908 }
11909 }
11910
11911 {
11912 asection *s;
11913 Elf32_compact_rel cpt;
11914
11915 if (SGI_COMPAT (output_bfd))
11916 {
11917 /* Write .compact_rel section out. */
11918 s = bfd_get_linker_section (dynobj, ".compact_rel");
11919 if (s != NULL)
11920 {
11921 cpt.id1 = 1;
11922 cpt.num = s->reloc_count;
11923 cpt.id2 = 2;
11924 cpt.offset = (s->output_section->filepos
11925 + sizeof (Elf32_External_compact_rel));
11926 cpt.reserved0 = 0;
11927 cpt.reserved1 = 0;
11928 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
11929 ((Elf32_External_compact_rel *)
11930 s->contents));
11931
11932 /* Clean up a dummy stub function entry in .text. */
11933 if (htab->sstubs != NULL)
11934 {
11935 file_ptr dummy_offset;
11936
11937 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
11938 dummy_offset = htab->sstubs->size - htab->function_stub_size;
11939 memset (htab->sstubs->contents + dummy_offset, 0,
11940 htab->function_stub_size);
11941 }
11942 }
11943 }
11944
11945 /* The psABI says that the dynamic relocations must be sorted in
11946 increasing order of r_symndx. The VxWorks EABI doesn't require
11947 this, and because the code below handles REL rather than RELA
11948 relocations, using it for VxWorks would be outright harmful. */
11949 if (!htab->is_vxworks)
11950 {
11951 s = mips_elf_rel_dyn_section (info, FALSE);
11952 if (s != NULL
11953 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
11954 {
11955 reldyn_sorting_bfd = output_bfd;
11956
11957 if (ABI_64_P (output_bfd))
11958 qsort ((Elf64_External_Rel *) s->contents + 1,
11959 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
11960 sort_dynamic_relocs_64);
11961 else
11962 qsort ((Elf32_External_Rel *) s->contents + 1,
11963 s->reloc_count - 1, sizeof (Elf32_External_Rel),
11964 sort_dynamic_relocs);
11965 }
11966 }
11967 }
11968
11969 if (htab->splt && htab->splt->size > 0)
11970 {
11971 if (htab->is_vxworks)
11972 {
11973 if (bfd_link_pic (info))
11974 mips_vxworks_finish_shared_plt (output_bfd, info);
11975 else
11976 mips_vxworks_finish_exec_plt (output_bfd, info);
11977 }
11978 else
11979 {
11980 BFD_ASSERT (!bfd_link_pic (info));
11981 if (!mips_finish_exec_plt (output_bfd, info))
11982 return FALSE;
11983 }
11984 }
11985 return TRUE;
11986 }
11987
11988
11989 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
11990
11991 static void
11992 mips_set_isa_flags (bfd *abfd)
11993 {
11994 flagword val;
11995
11996 switch (bfd_get_mach (abfd))
11997 {
11998 default:
11999 case bfd_mach_mips3000:
12000 val = E_MIPS_ARCH_1;
12001 break;
12002
12003 case bfd_mach_mips3900:
12004 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
12005 break;
12006
12007 case bfd_mach_mips6000:
12008 val = E_MIPS_ARCH_2;
12009 break;
12010
12011 case bfd_mach_mips4000:
12012 case bfd_mach_mips4300:
12013 case bfd_mach_mips4400:
12014 case bfd_mach_mips4600:
12015 val = E_MIPS_ARCH_3;
12016 break;
12017
12018 case bfd_mach_mips4010:
12019 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
12020 break;
12021
12022 case bfd_mach_mips4100:
12023 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
12024 break;
12025
12026 case bfd_mach_mips4111:
12027 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
12028 break;
12029
12030 case bfd_mach_mips4120:
12031 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
12032 break;
12033
12034 case bfd_mach_mips4650:
12035 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
12036 break;
12037
12038 case bfd_mach_mips5400:
12039 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
12040 break;
12041
12042 case bfd_mach_mips5500:
12043 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
12044 break;
12045
12046 case bfd_mach_mips5900:
12047 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
12048 break;
12049
12050 case bfd_mach_mips9000:
12051 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
12052 break;
12053
12054 case bfd_mach_mips5000:
12055 case bfd_mach_mips7000:
12056 case bfd_mach_mips8000:
12057 case bfd_mach_mips10000:
12058 case bfd_mach_mips12000:
12059 case bfd_mach_mips14000:
12060 case bfd_mach_mips16000:
12061 val = E_MIPS_ARCH_4;
12062 break;
12063
12064 case bfd_mach_mips5:
12065 val = E_MIPS_ARCH_5;
12066 break;
12067
12068 case bfd_mach_mips_loongson_2e:
12069 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
12070 break;
12071
12072 case bfd_mach_mips_loongson_2f:
12073 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
12074 break;
12075
12076 case bfd_mach_mips_sb1:
12077 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
12078 break;
12079
12080 case bfd_mach_mips_loongson_3a:
12081 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A;
12082 break;
12083
12084 case bfd_mach_mips_octeon:
12085 case bfd_mach_mips_octeonp:
12086 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
12087 break;
12088
12089 case bfd_mach_mips_octeon3:
12090 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
12091 break;
12092
12093 case bfd_mach_mips_xlr:
12094 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
12095 break;
12096
12097 case bfd_mach_mips_octeon2:
12098 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
12099 break;
12100
12101 case bfd_mach_mipsisa32:
12102 val = E_MIPS_ARCH_32;
12103 break;
12104
12105 case bfd_mach_mipsisa64:
12106 val = E_MIPS_ARCH_64;
12107 break;
12108
12109 case bfd_mach_mipsisa32r2:
12110 case bfd_mach_mipsisa32r3:
12111 case bfd_mach_mipsisa32r5:
12112 val = E_MIPS_ARCH_32R2;
12113 break;
12114
12115 case bfd_mach_mipsisa64r2:
12116 case bfd_mach_mipsisa64r3:
12117 case bfd_mach_mipsisa64r5:
12118 val = E_MIPS_ARCH_64R2;
12119 break;
12120
12121 case bfd_mach_mipsisa32r6:
12122 val = E_MIPS_ARCH_32R6;
12123 break;
12124
12125 case bfd_mach_mipsisa64r6:
12126 val = E_MIPS_ARCH_64R6;
12127 break;
12128 }
12129 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12130 elf_elfheader (abfd)->e_flags |= val;
12131
12132 }
12133
12134
12135 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12136 Don't do so for code sections. We want to keep ordering of HI16/LO16
12137 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12138 relocs to be sorted. */
12139
12140 bfd_boolean
12141 _bfd_mips_elf_sort_relocs_p (asection *sec)
12142 {
12143 return (sec->flags & SEC_CODE) == 0;
12144 }
12145
12146
12147 /* The final processing done just before writing out a MIPS ELF object
12148 file. This gets the MIPS architecture right based on the machine
12149 number. This is used by both the 32-bit and the 64-bit ABI. */
12150
12151 void
12152 _bfd_mips_elf_final_write_processing (bfd *abfd,
12153 bfd_boolean linker ATTRIBUTE_UNUSED)
12154 {
12155 unsigned int i;
12156 Elf_Internal_Shdr **hdrpp;
12157 const char *name;
12158 asection *sec;
12159
12160 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12161 is nonzero. This is for compatibility with old objects, which used
12162 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12163 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12164 mips_set_isa_flags (abfd);
12165
12166 /* Set the sh_info field for .gptab sections and other appropriate
12167 info for each special section. */
12168 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12169 i < elf_numsections (abfd);
12170 i++, hdrpp++)
12171 {
12172 switch ((*hdrpp)->sh_type)
12173 {
12174 case SHT_MIPS_MSYM:
12175 case SHT_MIPS_LIBLIST:
12176 sec = bfd_get_section_by_name (abfd, ".dynstr");
12177 if (sec != NULL)
12178 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12179 break;
12180
12181 case SHT_MIPS_GPTAB:
12182 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12183 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12184 BFD_ASSERT (name != NULL
12185 && CONST_STRNEQ (name, ".gptab."));
12186 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12187 BFD_ASSERT (sec != NULL);
12188 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12189 break;
12190
12191 case SHT_MIPS_CONTENT:
12192 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12193 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12194 BFD_ASSERT (name != NULL
12195 && CONST_STRNEQ (name, ".MIPS.content"));
12196 sec = bfd_get_section_by_name (abfd,
12197 name + sizeof ".MIPS.content" - 1);
12198 BFD_ASSERT (sec != NULL);
12199 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12200 break;
12201
12202 case SHT_MIPS_SYMBOL_LIB:
12203 sec = bfd_get_section_by_name (abfd, ".dynsym");
12204 if (sec != NULL)
12205 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12206 sec = bfd_get_section_by_name (abfd, ".liblist");
12207 if (sec != NULL)
12208 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12209 break;
12210
12211 case SHT_MIPS_EVENTS:
12212 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12213 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12214 BFD_ASSERT (name != NULL);
12215 if (CONST_STRNEQ (name, ".MIPS.events"))
12216 sec = bfd_get_section_by_name (abfd,
12217 name + sizeof ".MIPS.events" - 1);
12218 else
12219 {
12220 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
12221 sec = bfd_get_section_by_name (abfd,
12222 (name
12223 + sizeof ".MIPS.post_rel" - 1));
12224 }
12225 BFD_ASSERT (sec != NULL);
12226 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12227 break;
12228
12229 }
12230 }
12231 }
12232 \f
12233 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12234 segments. */
12235
12236 int
12237 _bfd_mips_elf_additional_program_headers (bfd *abfd,
12238 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12239 {
12240 asection *s;
12241 int ret = 0;
12242
12243 /* See if we need a PT_MIPS_REGINFO segment. */
12244 s = bfd_get_section_by_name (abfd, ".reginfo");
12245 if (s && (s->flags & SEC_LOAD))
12246 ++ret;
12247
12248 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12249 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12250 ++ret;
12251
12252 /* See if we need a PT_MIPS_OPTIONS segment. */
12253 if (IRIX_COMPAT (abfd) == ict_irix6
12254 && bfd_get_section_by_name (abfd,
12255 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12256 ++ret;
12257
12258 /* See if we need a PT_MIPS_RTPROC segment. */
12259 if (IRIX_COMPAT (abfd) == ict_irix5
12260 && bfd_get_section_by_name (abfd, ".dynamic")
12261 && bfd_get_section_by_name (abfd, ".mdebug"))
12262 ++ret;
12263
12264 /* Allocate a PT_NULL header in dynamic objects. See
12265 _bfd_mips_elf_modify_segment_map for details. */
12266 if (!SGI_COMPAT (abfd)
12267 && bfd_get_section_by_name (abfd, ".dynamic"))
12268 ++ret;
12269
12270 return ret;
12271 }
12272
12273 /* Modify the segment map for an IRIX5 executable. */
12274
12275 bfd_boolean
12276 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12277 struct bfd_link_info *info)
12278 {
12279 asection *s;
12280 struct elf_segment_map *m, **pm;
12281 bfd_size_type amt;
12282
12283 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12284 segment. */
12285 s = bfd_get_section_by_name (abfd, ".reginfo");
12286 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12287 {
12288 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12289 if (m->p_type == PT_MIPS_REGINFO)
12290 break;
12291 if (m == NULL)
12292 {
12293 amt = sizeof *m;
12294 m = bfd_zalloc (abfd, amt);
12295 if (m == NULL)
12296 return FALSE;
12297
12298 m->p_type = PT_MIPS_REGINFO;
12299 m->count = 1;
12300 m->sections[0] = s;
12301
12302 /* We want to put it after the PHDR and INTERP segments. */
12303 pm = &elf_seg_map (abfd);
12304 while (*pm != NULL
12305 && ((*pm)->p_type == PT_PHDR
12306 || (*pm)->p_type == PT_INTERP))
12307 pm = &(*pm)->next;
12308
12309 m->next = *pm;
12310 *pm = m;
12311 }
12312 }
12313
12314 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12315 segment. */
12316 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12317 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12318 {
12319 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12320 if (m->p_type == PT_MIPS_ABIFLAGS)
12321 break;
12322 if (m == NULL)
12323 {
12324 amt = sizeof *m;
12325 m = bfd_zalloc (abfd, amt);
12326 if (m == NULL)
12327 return FALSE;
12328
12329 m->p_type = PT_MIPS_ABIFLAGS;
12330 m->count = 1;
12331 m->sections[0] = s;
12332
12333 /* We want to put it after the PHDR and INTERP segments. */
12334 pm = &elf_seg_map (abfd);
12335 while (*pm != NULL
12336 && ((*pm)->p_type == PT_PHDR
12337 || (*pm)->p_type == PT_INTERP))
12338 pm = &(*pm)->next;
12339
12340 m->next = *pm;
12341 *pm = m;
12342 }
12343 }
12344
12345 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12346 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12347 PT_MIPS_OPTIONS segment immediately following the program header
12348 table. */
12349 if (NEWABI_P (abfd)
12350 /* On non-IRIX6 new abi, we'll have already created a segment
12351 for this section, so don't create another. I'm not sure this
12352 is not also the case for IRIX 6, but I can't test it right
12353 now. */
12354 && IRIX_COMPAT (abfd) == ict_irix6)
12355 {
12356 for (s = abfd->sections; s; s = s->next)
12357 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12358 break;
12359
12360 if (s)
12361 {
12362 struct elf_segment_map *options_segment;
12363
12364 pm = &elf_seg_map (abfd);
12365 while (*pm != NULL
12366 && ((*pm)->p_type == PT_PHDR
12367 || (*pm)->p_type == PT_INTERP))
12368 pm = &(*pm)->next;
12369
12370 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12371 {
12372 amt = sizeof (struct elf_segment_map);
12373 options_segment = bfd_zalloc (abfd, amt);
12374 options_segment->next = *pm;
12375 options_segment->p_type = PT_MIPS_OPTIONS;
12376 options_segment->p_flags = PF_R;
12377 options_segment->p_flags_valid = TRUE;
12378 options_segment->count = 1;
12379 options_segment->sections[0] = s;
12380 *pm = options_segment;
12381 }
12382 }
12383 }
12384 else
12385 {
12386 if (IRIX_COMPAT (abfd) == ict_irix5)
12387 {
12388 /* If there are .dynamic and .mdebug sections, we make a room
12389 for the RTPROC header. FIXME: Rewrite without section names. */
12390 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12391 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12392 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12393 {
12394 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12395 if (m->p_type == PT_MIPS_RTPROC)
12396 break;
12397 if (m == NULL)
12398 {
12399 amt = sizeof *m;
12400 m = bfd_zalloc (abfd, amt);
12401 if (m == NULL)
12402 return FALSE;
12403
12404 m->p_type = PT_MIPS_RTPROC;
12405
12406 s = bfd_get_section_by_name (abfd, ".rtproc");
12407 if (s == NULL)
12408 {
12409 m->count = 0;
12410 m->p_flags = 0;
12411 m->p_flags_valid = 1;
12412 }
12413 else
12414 {
12415 m->count = 1;
12416 m->sections[0] = s;
12417 }
12418
12419 /* We want to put it after the DYNAMIC segment. */
12420 pm = &elf_seg_map (abfd);
12421 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12422 pm = &(*pm)->next;
12423 if (*pm != NULL)
12424 pm = &(*pm)->next;
12425
12426 m->next = *pm;
12427 *pm = m;
12428 }
12429 }
12430 }
12431 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12432 .dynstr, .dynsym, and .hash sections, and everything in
12433 between. */
12434 for (pm = &elf_seg_map (abfd); *pm != NULL;
12435 pm = &(*pm)->next)
12436 if ((*pm)->p_type == PT_DYNAMIC)
12437 break;
12438 m = *pm;
12439 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12440 glibc's dynamic linker has traditionally derived the number of
12441 tags from the p_filesz field, and sometimes allocates stack
12442 arrays of that size. An overly-big PT_DYNAMIC segment can
12443 be actively harmful in such cases. Making PT_DYNAMIC contain
12444 other sections can also make life hard for the prelinker,
12445 which might move one of the other sections to a different
12446 PT_LOAD segment. */
12447 if (SGI_COMPAT (abfd)
12448 && m != NULL
12449 && m->count == 1
12450 && strcmp (m->sections[0]->name, ".dynamic") == 0)
12451 {
12452 static const char *sec_names[] =
12453 {
12454 ".dynamic", ".dynstr", ".dynsym", ".hash"
12455 };
12456 bfd_vma low, high;
12457 unsigned int i, c;
12458 struct elf_segment_map *n;
12459
12460 low = ~(bfd_vma) 0;
12461 high = 0;
12462 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12463 {
12464 s = bfd_get_section_by_name (abfd, sec_names[i]);
12465 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12466 {
12467 bfd_size_type sz;
12468
12469 if (low > s->vma)
12470 low = s->vma;
12471 sz = s->size;
12472 if (high < s->vma + sz)
12473 high = s->vma + sz;
12474 }
12475 }
12476
12477 c = 0;
12478 for (s = abfd->sections; s != NULL; s = s->next)
12479 if ((s->flags & SEC_LOAD) != 0
12480 && s->vma >= low
12481 && s->vma + s->size <= high)
12482 ++c;
12483
12484 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
12485 n = bfd_zalloc (abfd, amt);
12486 if (n == NULL)
12487 return FALSE;
12488 *n = *m;
12489 n->count = c;
12490
12491 i = 0;
12492 for (s = abfd->sections; s != NULL; s = s->next)
12493 {
12494 if ((s->flags & SEC_LOAD) != 0
12495 && s->vma >= low
12496 && s->vma + s->size <= high)
12497 {
12498 n->sections[i] = s;
12499 ++i;
12500 }
12501 }
12502
12503 *pm = n;
12504 }
12505 }
12506
12507 /* Allocate a spare program header in dynamic objects so that tools
12508 like the prelinker can add an extra PT_LOAD entry.
12509
12510 If the prelinker needs to make room for a new PT_LOAD entry, its
12511 standard procedure is to move the first (read-only) sections into
12512 the new (writable) segment. However, the MIPS ABI requires
12513 .dynamic to be in a read-only segment, and the section will often
12514 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12515
12516 Although the prelinker could in principle move .dynamic to a
12517 writable segment, it seems better to allocate a spare program
12518 header instead, and avoid the need to move any sections.
12519 There is a long tradition of allocating spare dynamic tags,
12520 so allocating a spare program header seems like a natural
12521 extension.
12522
12523 If INFO is NULL, we may be copying an already prelinked binary
12524 with objcopy or strip, so do not add this header. */
12525 if (info != NULL
12526 && !SGI_COMPAT (abfd)
12527 && bfd_get_section_by_name (abfd, ".dynamic"))
12528 {
12529 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12530 if ((*pm)->p_type == PT_NULL)
12531 break;
12532 if (*pm == NULL)
12533 {
12534 m = bfd_zalloc (abfd, sizeof (*m));
12535 if (m == NULL)
12536 return FALSE;
12537
12538 m->p_type = PT_NULL;
12539 *pm = m;
12540 }
12541 }
12542
12543 return TRUE;
12544 }
12545 \f
12546 /* Return the section that should be marked against GC for a given
12547 relocation. */
12548
12549 asection *
12550 _bfd_mips_elf_gc_mark_hook (asection *sec,
12551 struct bfd_link_info *info,
12552 Elf_Internal_Rela *rel,
12553 struct elf_link_hash_entry *h,
12554 Elf_Internal_Sym *sym)
12555 {
12556 /* ??? Do mips16 stub sections need to be handled special? */
12557
12558 if (h != NULL)
12559 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12560 {
12561 case R_MIPS_GNU_VTINHERIT:
12562 case R_MIPS_GNU_VTENTRY:
12563 return NULL;
12564 }
12565
12566 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12567 }
12568
12569 /* Update the got entry reference counts for the section being removed. */
12570
12571 bfd_boolean
12572 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
12573 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12574 asection *sec ATTRIBUTE_UNUSED,
12575 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
12576 {
12577 #if 0
12578 Elf_Internal_Shdr *symtab_hdr;
12579 struct elf_link_hash_entry **sym_hashes;
12580 bfd_signed_vma *local_got_refcounts;
12581 const Elf_Internal_Rela *rel, *relend;
12582 unsigned long r_symndx;
12583 struct elf_link_hash_entry *h;
12584
12585 if (bfd_link_relocatable (info))
12586 return TRUE;
12587
12588 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12589 sym_hashes = elf_sym_hashes (abfd);
12590 local_got_refcounts = elf_local_got_refcounts (abfd);
12591
12592 relend = relocs + sec->reloc_count;
12593 for (rel = relocs; rel < relend; rel++)
12594 switch (ELF_R_TYPE (abfd, rel->r_info))
12595 {
12596 case R_MIPS16_GOT16:
12597 case R_MIPS16_CALL16:
12598 case R_MIPS_GOT16:
12599 case R_MIPS_CALL16:
12600 case R_MIPS_CALL_HI16:
12601 case R_MIPS_CALL_LO16:
12602 case R_MIPS_GOT_HI16:
12603 case R_MIPS_GOT_LO16:
12604 case R_MIPS_GOT_DISP:
12605 case R_MIPS_GOT_PAGE:
12606 case R_MIPS_GOT_OFST:
12607 case R_MICROMIPS_GOT16:
12608 case R_MICROMIPS_CALL16:
12609 case R_MICROMIPS_CALL_HI16:
12610 case R_MICROMIPS_CALL_LO16:
12611 case R_MICROMIPS_GOT_HI16:
12612 case R_MICROMIPS_GOT_LO16:
12613 case R_MICROMIPS_GOT_DISP:
12614 case R_MICROMIPS_GOT_PAGE:
12615 case R_MICROMIPS_GOT_OFST:
12616 /* ??? It would seem that the existing MIPS code does no sort
12617 of reference counting or whatnot on its GOT and PLT entries,
12618 so it is not possible to garbage collect them at this time. */
12619 break;
12620
12621 default:
12622 break;
12623 }
12624 #endif
12625
12626 return TRUE;
12627 }
12628
12629 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12630
12631 bfd_boolean
12632 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12633 elf_gc_mark_hook_fn gc_mark_hook)
12634 {
12635 bfd *sub;
12636
12637 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12638
12639 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12640 {
12641 asection *o;
12642
12643 if (! is_mips_elf (sub))
12644 continue;
12645
12646 for (o = sub->sections; o != NULL; o = o->next)
12647 if (!o->gc_mark
12648 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12649 (bfd_get_section_name (sub, o)))
12650 {
12651 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12652 return FALSE;
12653 }
12654 }
12655
12656 return TRUE;
12657 }
12658 \f
12659 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12660 hiding the old indirect symbol. Process additional relocation
12661 information. Also called for weakdefs, in which case we just let
12662 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12663
12664 void
12665 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12666 struct elf_link_hash_entry *dir,
12667 struct elf_link_hash_entry *ind)
12668 {
12669 struct mips_elf_link_hash_entry *dirmips, *indmips;
12670
12671 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12672
12673 dirmips = (struct mips_elf_link_hash_entry *) dir;
12674 indmips = (struct mips_elf_link_hash_entry *) ind;
12675 /* Any absolute non-dynamic relocations against an indirect or weak
12676 definition will be against the target symbol. */
12677 if (indmips->has_static_relocs)
12678 dirmips->has_static_relocs = TRUE;
12679
12680 if (ind->root.type != bfd_link_hash_indirect)
12681 return;
12682
12683 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12684 if (indmips->readonly_reloc)
12685 dirmips->readonly_reloc = TRUE;
12686 if (indmips->no_fn_stub)
12687 dirmips->no_fn_stub = TRUE;
12688 if (indmips->fn_stub)
12689 {
12690 dirmips->fn_stub = indmips->fn_stub;
12691 indmips->fn_stub = NULL;
12692 }
12693 if (indmips->need_fn_stub)
12694 {
12695 dirmips->need_fn_stub = TRUE;
12696 indmips->need_fn_stub = FALSE;
12697 }
12698 if (indmips->call_stub)
12699 {
12700 dirmips->call_stub = indmips->call_stub;
12701 indmips->call_stub = NULL;
12702 }
12703 if (indmips->call_fp_stub)
12704 {
12705 dirmips->call_fp_stub = indmips->call_fp_stub;
12706 indmips->call_fp_stub = NULL;
12707 }
12708 if (indmips->global_got_area < dirmips->global_got_area)
12709 dirmips->global_got_area = indmips->global_got_area;
12710 if (indmips->global_got_area < GGA_NONE)
12711 indmips->global_got_area = GGA_NONE;
12712 if (indmips->has_nonpic_branches)
12713 dirmips->has_nonpic_branches = TRUE;
12714 }
12715 \f
12716 #define PDR_SIZE 32
12717
12718 bfd_boolean
12719 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12720 struct bfd_link_info *info)
12721 {
12722 asection *o;
12723 bfd_boolean ret = FALSE;
12724 unsigned char *tdata;
12725 size_t i, skip;
12726
12727 o = bfd_get_section_by_name (abfd, ".pdr");
12728 if (! o)
12729 return FALSE;
12730 if (o->size == 0)
12731 return FALSE;
12732 if (o->size % PDR_SIZE != 0)
12733 return FALSE;
12734 if (o->output_section != NULL
12735 && bfd_is_abs_section (o->output_section))
12736 return FALSE;
12737
12738 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12739 if (! tdata)
12740 return FALSE;
12741
12742 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12743 info->keep_memory);
12744 if (!cookie->rels)
12745 {
12746 free (tdata);
12747 return FALSE;
12748 }
12749
12750 cookie->rel = cookie->rels;
12751 cookie->relend = cookie->rels + o->reloc_count;
12752
12753 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12754 {
12755 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12756 {
12757 tdata[i] = 1;
12758 skip ++;
12759 }
12760 }
12761
12762 if (skip != 0)
12763 {
12764 mips_elf_section_data (o)->u.tdata = tdata;
12765 if (o->rawsize == 0)
12766 o->rawsize = o->size;
12767 o->size -= skip * PDR_SIZE;
12768 ret = TRUE;
12769 }
12770 else
12771 free (tdata);
12772
12773 if (! info->keep_memory)
12774 free (cookie->rels);
12775
12776 return ret;
12777 }
12778
12779 bfd_boolean
12780 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
12781 {
12782 if (strcmp (sec->name, ".pdr") == 0)
12783 return TRUE;
12784 return FALSE;
12785 }
12786
12787 bfd_boolean
12788 _bfd_mips_elf_write_section (bfd *output_bfd,
12789 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12790 asection *sec, bfd_byte *contents)
12791 {
12792 bfd_byte *to, *from, *end;
12793 int i;
12794
12795 if (strcmp (sec->name, ".pdr") != 0)
12796 return FALSE;
12797
12798 if (mips_elf_section_data (sec)->u.tdata == NULL)
12799 return FALSE;
12800
12801 to = contents;
12802 end = contents + sec->size;
12803 for (from = contents, i = 0;
12804 from < end;
12805 from += PDR_SIZE, i++)
12806 {
12807 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
12808 continue;
12809 if (to != from)
12810 memcpy (to, from, PDR_SIZE);
12811 to += PDR_SIZE;
12812 }
12813 bfd_set_section_contents (output_bfd, sec->output_section, contents,
12814 sec->output_offset, sec->size);
12815 return TRUE;
12816 }
12817 \f
12818 /* microMIPS code retains local labels for linker relaxation. Omit them
12819 from output by default for clarity. */
12820
12821 bfd_boolean
12822 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12823 {
12824 return _bfd_elf_is_local_label_name (abfd, sym->name);
12825 }
12826
12827 /* MIPS ELF uses a special find_nearest_line routine in order the
12828 handle the ECOFF debugging information. */
12829
12830 struct mips_elf_find_line
12831 {
12832 struct ecoff_debug_info d;
12833 struct ecoff_find_line i;
12834 };
12835
12836 bfd_boolean
12837 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
12838 asection *section, bfd_vma offset,
12839 const char **filename_ptr,
12840 const char **functionname_ptr,
12841 unsigned int *line_ptr,
12842 unsigned int *discriminator_ptr)
12843 {
12844 asection *msec;
12845
12846 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
12847 filename_ptr, functionname_ptr,
12848 line_ptr, discriminator_ptr,
12849 dwarf_debug_sections,
12850 ABI_64_P (abfd) ? 8 : 0,
12851 &elf_tdata (abfd)->dwarf2_find_line_info))
12852 return TRUE;
12853
12854 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
12855 filename_ptr, functionname_ptr,
12856 line_ptr))
12857 return TRUE;
12858
12859 msec = bfd_get_section_by_name (abfd, ".mdebug");
12860 if (msec != NULL)
12861 {
12862 flagword origflags;
12863 struct mips_elf_find_line *fi;
12864 const struct ecoff_debug_swap * const swap =
12865 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12866
12867 /* If we are called during a link, mips_elf_final_link may have
12868 cleared the SEC_HAS_CONTENTS field. We force it back on here
12869 if appropriate (which it normally will be). */
12870 origflags = msec->flags;
12871 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12872 msec->flags |= SEC_HAS_CONTENTS;
12873
12874 fi = mips_elf_tdata (abfd)->find_line_info;
12875 if (fi == NULL)
12876 {
12877 bfd_size_type external_fdr_size;
12878 char *fraw_src;
12879 char *fraw_end;
12880 struct fdr *fdr_ptr;
12881 bfd_size_type amt = sizeof (struct mips_elf_find_line);
12882
12883 fi = bfd_zalloc (abfd, amt);
12884 if (fi == NULL)
12885 {
12886 msec->flags = origflags;
12887 return FALSE;
12888 }
12889
12890 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12891 {
12892 msec->flags = origflags;
12893 return FALSE;
12894 }
12895
12896 /* Swap in the FDR information. */
12897 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
12898 fi->d.fdr = bfd_alloc (abfd, amt);
12899 if (fi->d.fdr == NULL)
12900 {
12901 msec->flags = origflags;
12902 return FALSE;
12903 }
12904 external_fdr_size = swap->external_fdr_size;
12905 fdr_ptr = fi->d.fdr;
12906 fraw_src = (char *) fi->d.external_fdr;
12907 fraw_end = (fraw_src
12908 + fi->d.symbolic_header.ifdMax * external_fdr_size);
12909 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
12910 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
12911
12912 mips_elf_tdata (abfd)->find_line_info = fi;
12913
12914 /* Note that we don't bother to ever free this information.
12915 find_nearest_line is either called all the time, as in
12916 objdump -l, so the information should be saved, or it is
12917 rarely called, as in ld error messages, so the memory
12918 wasted is unimportant. Still, it would probably be a
12919 good idea for free_cached_info to throw it away. */
12920 }
12921
12922 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
12923 &fi->i, filename_ptr, functionname_ptr,
12924 line_ptr))
12925 {
12926 msec->flags = origflags;
12927 return TRUE;
12928 }
12929
12930 msec->flags = origflags;
12931 }
12932
12933 /* Fall back on the generic ELF find_nearest_line routine. */
12934
12935 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
12936 filename_ptr, functionname_ptr,
12937 line_ptr, discriminator_ptr);
12938 }
12939
12940 bfd_boolean
12941 _bfd_mips_elf_find_inliner_info (bfd *abfd,
12942 const char **filename_ptr,
12943 const char **functionname_ptr,
12944 unsigned int *line_ptr)
12945 {
12946 bfd_boolean found;
12947 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12948 functionname_ptr, line_ptr,
12949 & elf_tdata (abfd)->dwarf2_find_line_info);
12950 return found;
12951 }
12952
12953 \f
12954 /* When are writing out the .options or .MIPS.options section,
12955 remember the bytes we are writing out, so that we can install the
12956 GP value in the section_processing routine. */
12957
12958 bfd_boolean
12959 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
12960 const void *location,
12961 file_ptr offset, bfd_size_type count)
12962 {
12963 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
12964 {
12965 bfd_byte *c;
12966
12967 if (elf_section_data (section) == NULL)
12968 {
12969 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
12970 section->used_by_bfd = bfd_zalloc (abfd, amt);
12971 if (elf_section_data (section) == NULL)
12972 return FALSE;
12973 }
12974 c = mips_elf_section_data (section)->u.tdata;
12975 if (c == NULL)
12976 {
12977 c = bfd_zalloc (abfd, section->size);
12978 if (c == NULL)
12979 return FALSE;
12980 mips_elf_section_data (section)->u.tdata = c;
12981 }
12982
12983 memcpy (c + offset, location, count);
12984 }
12985
12986 return _bfd_elf_set_section_contents (abfd, section, location, offset,
12987 count);
12988 }
12989
12990 /* This is almost identical to bfd_generic_get_... except that some
12991 MIPS relocations need to be handled specially. Sigh. */
12992
12993 bfd_byte *
12994 _bfd_elf_mips_get_relocated_section_contents
12995 (bfd *abfd,
12996 struct bfd_link_info *link_info,
12997 struct bfd_link_order *link_order,
12998 bfd_byte *data,
12999 bfd_boolean relocatable,
13000 asymbol **symbols)
13001 {
13002 /* Get enough memory to hold the stuff */
13003 bfd *input_bfd = link_order->u.indirect.section->owner;
13004 asection *input_section = link_order->u.indirect.section;
13005 bfd_size_type sz;
13006
13007 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
13008 arelent **reloc_vector = NULL;
13009 long reloc_count;
13010
13011 if (reloc_size < 0)
13012 goto error_return;
13013
13014 reloc_vector = bfd_malloc (reloc_size);
13015 if (reloc_vector == NULL && reloc_size != 0)
13016 goto error_return;
13017
13018 /* read in the section */
13019 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
13020 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
13021 goto error_return;
13022
13023 reloc_count = bfd_canonicalize_reloc (input_bfd,
13024 input_section,
13025 reloc_vector,
13026 symbols);
13027 if (reloc_count < 0)
13028 goto error_return;
13029
13030 if (reloc_count > 0)
13031 {
13032 arelent **parent;
13033 /* for mips */
13034 int gp_found;
13035 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
13036
13037 {
13038 struct bfd_hash_entry *h;
13039 struct bfd_link_hash_entry *lh;
13040 /* Skip all this stuff if we aren't mixing formats. */
13041 if (abfd && input_bfd
13042 && abfd->xvec == input_bfd->xvec)
13043 lh = 0;
13044 else
13045 {
13046 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
13047 lh = (struct bfd_link_hash_entry *) h;
13048 }
13049 lookup:
13050 if (lh)
13051 {
13052 switch (lh->type)
13053 {
13054 case bfd_link_hash_undefined:
13055 case bfd_link_hash_undefweak:
13056 case bfd_link_hash_common:
13057 gp_found = 0;
13058 break;
13059 case bfd_link_hash_defined:
13060 case bfd_link_hash_defweak:
13061 gp_found = 1;
13062 gp = lh->u.def.value;
13063 break;
13064 case bfd_link_hash_indirect:
13065 case bfd_link_hash_warning:
13066 lh = lh->u.i.link;
13067 /* @@FIXME ignoring warning for now */
13068 goto lookup;
13069 case bfd_link_hash_new:
13070 default:
13071 abort ();
13072 }
13073 }
13074 else
13075 gp_found = 0;
13076 }
13077 /* end mips */
13078 for (parent = reloc_vector; *parent != NULL; parent++)
13079 {
13080 char *error_message = NULL;
13081 bfd_reloc_status_type r;
13082
13083 /* Specific to MIPS: Deal with relocation types that require
13084 knowing the gp of the output bfd. */
13085 asymbol *sym = *(*parent)->sym_ptr_ptr;
13086
13087 /* If we've managed to find the gp and have a special
13088 function for the relocation then go ahead, else default
13089 to the generic handling. */
13090 if (gp_found
13091 && (*parent)->howto->special_function
13092 == _bfd_mips_elf32_gprel16_reloc)
13093 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
13094 input_section, relocatable,
13095 data, gp);
13096 else
13097 r = bfd_perform_relocation (input_bfd, *parent, data,
13098 input_section,
13099 relocatable ? abfd : NULL,
13100 &error_message);
13101
13102 if (relocatable)
13103 {
13104 asection *os = input_section->output_section;
13105
13106 /* A partial link, so keep the relocs */
13107 os->orelocation[os->reloc_count] = *parent;
13108 os->reloc_count++;
13109 }
13110
13111 if (r != bfd_reloc_ok)
13112 {
13113 switch (r)
13114 {
13115 case bfd_reloc_undefined:
13116 (*link_info->callbacks->undefined_symbol)
13117 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13118 input_bfd, input_section, (*parent)->address, TRUE);
13119 break;
13120 case bfd_reloc_dangerous:
13121 BFD_ASSERT (error_message != NULL);
13122 (*link_info->callbacks->reloc_dangerous)
13123 (link_info, error_message,
13124 input_bfd, input_section, (*parent)->address);
13125 break;
13126 case bfd_reloc_overflow:
13127 (*link_info->callbacks->reloc_overflow)
13128 (link_info, NULL,
13129 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13130 (*parent)->howto->name, (*parent)->addend,
13131 input_bfd, input_section, (*parent)->address);
13132 break;
13133 case bfd_reloc_outofrange:
13134 default:
13135 abort ();
13136 break;
13137 }
13138
13139 }
13140 }
13141 }
13142 if (reloc_vector != NULL)
13143 free (reloc_vector);
13144 return data;
13145
13146 error_return:
13147 if (reloc_vector != NULL)
13148 free (reloc_vector);
13149 return NULL;
13150 }
13151 \f
13152 static bfd_boolean
13153 mips_elf_relax_delete_bytes (bfd *abfd,
13154 asection *sec, bfd_vma addr, int count)
13155 {
13156 Elf_Internal_Shdr *symtab_hdr;
13157 unsigned int sec_shndx;
13158 bfd_byte *contents;
13159 Elf_Internal_Rela *irel, *irelend;
13160 Elf_Internal_Sym *isym;
13161 Elf_Internal_Sym *isymend;
13162 struct elf_link_hash_entry **sym_hashes;
13163 struct elf_link_hash_entry **end_hashes;
13164 struct elf_link_hash_entry **start_hashes;
13165 unsigned int symcount;
13166
13167 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13168 contents = elf_section_data (sec)->this_hdr.contents;
13169
13170 irel = elf_section_data (sec)->relocs;
13171 irelend = irel + sec->reloc_count;
13172
13173 /* Actually delete the bytes. */
13174 memmove (contents + addr, contents + addr + count,
13175 (size_t) (sec->size - addr - count));
13176 sec->size -= count;
13177
13178 /* Adjust all the relocs. */
13179 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13180 {
13181 /* Get the new reloc address. */
13182 if (irel->r_offset > addr)
13183 irel->r_offset -= count;
13184 }
13185
13186 BFD_ASSERT (addr % 2 == 0);
13187 BFD_ASSERT (count % 2 == 0);
13188
13189 /* Adjust the local symbols defined in this section. */
13190 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13191 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13192 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
13193 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
13194 isym->st_value -= count;
13195
13196 /* Now adjust the global symbols defined in this section. */
13197 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13198 - symtab_hdr->sh_info);
13199 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13200 end_hashes = sym_hashes + symcount;
13201
13202 for (; sym_hashes < end_hashes; sym_hashes++)
13203 {
13204 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13205
13206 if ((sym_hash->root.type == bfd_link_hash_defined
13207 || sym_hash->root.type == bfd_link_hash_defweak)
13208 && sym_hash->root.u.def.section == sec)
13209 {
13210 bfd_vma value = sym_hash->root.u.def.value;
13211
13212 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13213 value &= MINUS_TWO;
13214 if (value > addr)
13215 sym_hash->root.u.def.value -= count;
13216 }
13217 }
13218
13219 return TRUE;
13220 }
13221
13222
13223 /* Opcodes needed for microMIPS relaxation as found in
13224 opcodes/micromips-opc.c. */
13225
13226 struct opcode_descriptor {
13227 unsigned long match;
13228 unsigned long mask;
13229 };
13230
13231 /* The $ra register aka $31. */
13232
13233 #define RA 31
13234
13235 /* 32-bit instruction format register fields. */
13236
13237 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13238 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13239
13240 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
13241
13242 #define OP16_VALID_REG(r) \
13243 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13244
13245
13246 /* 32-bit and 16-bit branches. */
13247
13248 static const struct opcode_descriptor b_insns_32[] = {
13249 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13250 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13251 { 0, 0 } /* End marker for find_match(). */
13252 };
13253
13254 static const struct opcode_descriptor bc_insn_32 =
13255 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13256
13257 static const struct opcode_descriptor bz_insn_32 =
13258 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13259
13260 static const struct opcode_descriptor bzal_insn_32 =
13261 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13262
13263 static const struct opcode_descriptor beq_insn_32 =
13264 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13265
13266 static const struct opcode_descriptor b_insn_16 =
13267 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13268
13269 static const struct opcode_descriptor bz_insn_16 =
13270 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13271
13272
13273 /* 32-bit and 16-bit branch EQ and NE zero. */
13274
13275 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13276 eq and second the ne. This convention is used when replacing a
13277 32-bit BEQ/BNE with the 16-bit version. */
13278
13279 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13280
13281 static const struct opcode_descriptor bz_rs_insns_32[] = {
13282 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13283 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13284 { 0, 0 } /* End marker for find_match(). */
13285 };
13286
13287 static const struct opcode_descriptor bz_rt_insns_32[] = {
13288 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13289 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13290 { 0, 0 } /* End marker for find_match(). */
13291 };
13292
13293 static const struct opcode_descriptor bzc_insns_32[] = {
13294 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13295 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13296 { 0, 0 } /* End marker for find_match(). */
13297 };
13298
13299 static const struct opcode_descriptor bz_insns_16[] = {
13300 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13301 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13302 { 0, 0 } /* End marker for find_match(). */
13303 };
13304
13305 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13306
13307 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
13308 #define BZ16_REG_FIELD(r) (((r) & 7) << 7)
13309
13310
13311 /* 32-bit instructions with a delay slot. */
13312
13313 static const struct opcode_descriptor jal_insn_32_bd16 =
13314 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13315
13316 static const struct opcode_descriptor jal_insn_32_bd32 =
13317 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13318
13319 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13320 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13321
13322 static const struct opcode_descriptor j_insn_32 =
13323 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13324
13325 static const struct opcode_descriptor jalr_insn_32 =
13326 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13327
13328 /* This table can be compacted, because no opcode replacement is made. */
13329
13330 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13331 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13332
13333 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13334 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13335
13336 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13337 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13338 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13339 { 0, 0 } /* End marker for find_match(). */
13340 };
13341
13342 /* This table can be compacted, because no opcode replacement is made. */
13343
13344 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13345 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13346
13347 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13348 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13349 { 0, 0 } /* End marker for find_match(). */
13350 };
13351
13352
13353 /* 16-bit instructions with a delay slot. */
13354
13355 static const struct opcode_descriptor jalr_insn_16_bd16 =
13356 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13357
13358 static const struct opcode_descriptor jalr_insn_16_bd32 =
13359 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13360
13361 static const struct opcode_descriptor jr_insn_16 =
13362 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13363
13364 #define JR16_REG(opcode) ((opcode) & 0x1f)
13365
13366 /* This table can be compacted, because no opcode replacement is made. */
13367
13368 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13369 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13370
13371 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13372 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13373 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13374 { 0, 0 } /* End marker for find_match(). */
13375 };
13376
13377
13378 /* LUI instruction. */
13379
13380 static const struct opcode_descriptor lui_insn =
13381 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13382
13383
13384 /* ADDIU instruction. */
13385
13386 static const struct opcode_descriptor addiu_insn =
13387 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13388
13389 static const struct opcode_descriptor addiupc_insn =
13390 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13391
13392 #define ADDIUPC_REG_FIELD(r) \
13393 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13394
13395
13396 /* Relaxable instructions in a JAL delay slot: MOVE. */
13397
13398 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13399 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13400 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13401 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13402
13403 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13404 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13405
13406 static const struct opcode_descriptor move_insns_32[] = {
13407 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13408 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13409 { 0, 0 } /* End marker for find_match(). */
13410 };
13411
13412 static const struct opcode_descriptor move_insn_16 =
13413 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13414
13415
13416 /* NOP instructions. */
13417
13418 static const struct opcode_descriptor nop_insn_32 =
13419 { /* "nop", "", */ 0x00000000, 0xffffffff };
13420
13421 static const struct opcode_descriptor nop_insn_16 =
13422 { /* "nop", "", */ 0x0c00, 0xffff };
13423
13424
13425 /* Instruction match support. */
13426
13427 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13428
13429 static int
13430 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13431 {
13432 unsigned long indx;
13433
13434 for (indx = 0; insn[indx].mask != 0; indx++)
13435 if (MATCH (opcode, insn[indx]))
13436 return indx;
13437
13438 return -1;
13439 }
13440
13441
13442 /* Branch and delay slot decoding support. */
13443
13444 /* If PTR points to what *might* be a 16-bit branch or jump, then
13445 return the minimum length of its delay slot, otherwise return 0.
13446 Non-zero results are not definitive as we might be checking against
13447 the second half of another instruction. */
13448
13449 static int
13450 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13451 {
13452 unsigned long opcode;
13453 int bdsize;
13454
13455 opcode = bfd_get_16 (abfd, ptr);
13456 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13457 /* 16-bit branch/jump with a 32-bit delay slot. */
13458 bdsize = 4;
13459 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13460 || find_match (opcode, ds_insns_16_bd16) >= 0)
13461 /* 16-bit branch/jump with a 16-bit delay slot. */
13462 bdsize = 2;
13463 else
13464 /* No delay slot. */
13465 bdsize = 0;
13466
13467 return bdsize;
13468 }
13469
13470 /* If PTR points to what *might* be a 32-bit branch or jump, then
13471 return the minimum length of its delay slot, otherwise return 0.
13472 Non-zero results are not definitive as we might be checking against
13473 the second half of another instruction. */
13474
13475 static int
13476 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13477 {
13478 unsigned long opcode;
13479 int bdsize;
13480
13481 opcode = bfd_get_micromips_32 (abfd, ptr);
13482 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13483 /* 32-bit branch/jump with a 32-bit delay slot. */
13484 bdsize = 4;
13485 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13486 /* 32-bit branch/jump with a 16-bit delay slot. */
13487 bdsize = 2;
13488 else
13489 /* No delay slot. */
13490 bdsize = 0;
13491
13492 return bdsize;
13493 }
13494
13495 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13496 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13497
13498 static bfd_boolean
13499 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13500 {
13501 unsigned long opcode;
13502
13503 opcode = bfd_get_16 (abfd, ptr);
13504 if (MATCH (opcode, b_insn_16)
13505 /* B16 */
13506 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13507 /* JR16 */
13508 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13509 /* BEQZ16, BNEZ16 */
13510 || (MATCH (opcode, jalr_insn_16_bd32)
13511 /* JALR16 */
13512 && reg != JR16_REG (opcode) && reg != RA))
13513 return TRUE;
13514
13515 return FALSE;
13516 }
13517
13518 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13519 then return TRUE, otherwise FALSE. */
13520
13521 static bfd_boolean
13522 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13523 {
13524 unsigned long opcode;
13525
13526 opcode = bfd_get_micromips_32 (abfd, ptr);
13527 if (MATCH (opcode, j_insn_32)
13528 /* J */
13529 || MATCH (opcode, bc_insn_32)
13530 /* BC1F, BC1T, BC2F, BC2T */
13531 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13532 /* JAL, JALX */
13533 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13534 /* BGEZ, BGTZ, BLEZ, BLTZ */
13535 || (MATCH (opcode, bzal_insn_32)
13536 /* BGEZAL, BLTZAL */
13537 && reg != OP32_SREG (opcode) && reg != RA)
13538 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13539 /* JALR, JALR.HB, BEQ, BNE */
13540 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13541 return TRUE;
13542
13543 return FALSE;
13544 }
13545
13546 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13547 IRELEND) at OFFSET indicate that there must be a compact branch there,
13548 then return TRUE, otherwise FALSE. */
13549
13550 static bfd_boolean
13551 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13552 const Elf_Internal_Rela *internal_relocs,
13553 const Elf_Internal_Rela *irelend)
13554 {
13555 const Elf_Internal_Rela *irel;
13556 unsigned long opcode;
13557
13558 opcode = bfd_get_micromips_32 (abfd, ptr);
13559 if (find_match (opcode, bzc_insns_32) < 0)
13560 return FALSE;
13561
13562 for (irel = internal_relocs; irel < irelend; irel++)
13563 if (irel->r_offset == offset
13564 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13565 return TRUE;
13566
13567 return FALSE;
13568 }
13569
13570 /* Bitsize checking. */
13571 #define IS_BITSIZE(val, N) \
13572 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13573 - (1ULL << ((N) - 1))) == (val))
13574
13575 \f
13576 bfd_boolean
13577 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13578 struct bfd_link_info *link_info,
13579 bfd_boolean *again)
13580 {
13581 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13582 Elf_Internal_Shdr *symtab_hdr;
13583 Elf_Internal_Rela *internal_relocs;
13584 Elf_Internal_Rela *irel, *irelend;
13585 bfd_byte *contents = NULL;
13586 Elf_Internal_Sym *isymbuf = NULL;
13587
13588 /* Assume nothing changes. */
13589 *again = FALSE;
13590
13591 /* We don't have to do anything for a relocatable link, if
13592 this section does not have relocs, or if this is not a
13593 code section. */
13594
13595 if (bfd_link_relocatable (link_info)
13596 || (sec->flags & SEC_RELOC) == 0
13597 || sec->reloc_count == 0
13598 || (sec->flags & SEC_CODE) == 0)
13599 return TRUE;
13600
13601 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13602
13603 /* Get a copy of the native relocations. */
13604 internal_relocs = (_bfd_elf_link_read_relocs
13605 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13606 link_info->keep_memory));
13607 if (internal_relocs == NULL)
13608 goto error_return;
13609
13610 /* Walk through them looking for relaxing opportunities. */
13611 irelend = internal_relocs + sec->reloc_count;
13612 for (irel = internal_relocs; irel < irelend; irel++)
13613 {
13614 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13615 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13616 bfd_boolean target_is_micromips_code_p;
13617 unsigned long opcode;
13618 bfd_vma symval;
13619 bfd_vma pcrval;
13620 bfd_byte *ptr;
13621 int fndopc;
13622
13623 /* The number of bytes to delete for relaxation and from where
13624 to delete these bytes starting at irel->r_offset. */
13625 int delcnt = 0;
13626 int deloff = 0;
13627
13628 /* If this isn't something that can be relaxed, then ignore
13629 this reloc. */
13630 if (r_type != R_MICROMIPS_HI16
13631 && r_type != R_MICROMIPS_PC16_S1
13632 && r_type != R_MICROMIPS_26_S1)
13633 continue;
13634
13635 /* Get the section contents if we haven't done so already. */
13636 if (contents == NULL)
13637 {
13638 /* Get cached copy if it exists. */
13639 if (elf_section_data (sec)->this_hdr.contents != NULL)
13640 contents = elf_section_data (sec)->this_hdr.contents;
13641 /* Go get them off disk. */
13642 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13643 goto error_return;
13644 }
13645 ptr = contents + irel->r_offset;
13646
13647 /* Read this BFD's local symbols if we haven't done so already. */
13648 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13649 {
13650 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13651 if (isymbuf == NULL)
13652 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13653 symtab_hdr->sh_info, 0,
13654 NULL, NULL, NULL);
13655 if (isymbuf == NULL)
13656 goto error_return;
13657 }
13658
13659 /* Get the value of the symbol referred to by the reloc. */
13660 if (r_symndx < symtab_hdr->sh_info)
13661 {
13662 /* A local symbol. */
13663 Elf_Internal_Sym *isym;
13664 asection *sym_sec;
13665
13666 isym = isymbuf + r_symndx;
13667 if (isym->st_shndx == SHN_UNDEF)
13668 sym_sec = bfd_und_section_ptr;
13669 else if (isym->st_shndx == SHN_ABS)
13670 sym_sec = bfd_abs_section_ptr;
13671 else if (isym->st_shndx == SHN_COMMON)
13672 sym_sec = bfd_com_section_ptr;
13673 else
13674 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13675 symval = (isym->st_value
13676 + sym_sec->output_section->vma
13677 + sym_sec->output_offset);
13678 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13679 }
13680 else
13681 {
13682 unsigned long indx;
13683 struct elf_link_hash_entry *h;
13684
13685 /* An external symbol. */
13686 indx = r_symndx - symtab_hdr->sh_info;
13687 h = elf_sym_hashes (abfd)[indx];
13688 BFD_ASSERT (h != NULL);
13689
13690 if (h->root.type != bfd_link_hash_defined
13691 && h->root.type != bfd_link_hash_defweak)
13692 /* This appears to be a reference to an undefined
13693 symbol. Just ignore it -- it will be caught by the
13694 regular reloc processing. */
13695 continue;
13696
13697 symval = (h->root.u.def.value
13698 + h->root.u.def.section->output_section->vma
13699 + h->root.u.def.section->output_offset);
13700 target_is_micromips_code_p = (!h->needs_plt
13701 && ELF_ST_IS_MICROMIPS (h->other));
13702 }
13703
13704
13705 /* For simplicity of coding, we are going to modify the
13706 section contents, the section relocs, and the BFD symbol
13707 table. We must tell the rest of the code not to free up this
13708 information. It would be possible to instead create a table
13709 of changes which have to be made, as is done in coff-mips.c;
13710 that would be more work, but would require less memory when
13711 the linker is run. */
13712
13713 /* Only 32-bit instructions relaxed. */
13714 if (irel->r_offset + 4 > sec->size)
13715 continue;
13716
13717 opcode = bfd_get_micromips_32 (abfd, ptr);
13718
13719 /* This is the pc-relative distance from the instruction the
13720 relocation is applied to, to the symbol referred. */
13721 pcrval = (symval
13722 - (sec->output_section->vma + sec->output_offset)
13723 - irel->r_offset);
13724
13725 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13726 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13727 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13728
13729 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13730
13731 where pcrval has first to be adjusted to apply against the LO16
13732 location (we make the adjustment later on, when we have figured
13733 out the offset). */
13734 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13735 {
13736 bfd_boolean bzc = FALSE;
13737 unsigned long nextopc;
13738 unsigned long reg;
13739 bfd_vma offset;
13740
13741 /* Give up if the previous reloc was a HI16 against this symbol
13742 too. */
13743 if (irel > internal_relocs
13744 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13745 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13746 continue;
13747
13748 /* Or if the next reloc is not a LO16 against this symbol. */
13749 if (irel + 1 >= irelend
13750 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13751 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13752 continue;
13753
13754 /* Or if the second next reloc is a LO16 against this symbol too. */
13755 if (irel + 2 >= irelend
13756 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13757 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13758 continue;
13759
13760 /* See if the LUI instruction *might* be in a branch delay slot.
13761 We check whether what looks like a 16-bit branch or jump is
13762 actually an immediate argument to a compact branch, and let
13763 it through if so. */
13764 if (irel->r_offset >= 2
13765 && check_br16_dslot (abfd, ptr - 2)
13766 && !(irel->r_offset >= 4
13767 && (bzc = check_relocated_bzc (abfd,
13768 ptr - 4, irel->r_offset - 4,
13769 internal_relocs, irelend))))
13770 continue;
13771 if (irel->r_offset >= 4
13772 && !bzc
13773 && check_br32_dslot (abfd, ptr - 4))
13774 continue;
13775
13776 reg = OP32_SREG (opcode);
13777
13778 /* We only relax adjacent instructions or ones separated with
13779 a branch or jump that has a delay slot. The branch or jump
13780 must not fiddle with the register used to hold the address.
13781 Subtract 4 for the LUI itself. */
13782 offset = irel[1].r_offset - irel[0].r_offset;
13783 switch (offset - 4)
13784 {
13785 case 0:
13786 break;
13787 case 2:
13788 if (check_br16 (abfd, ptr + 4, reg))
13789 break;
13790 continue;
13791 case 4:
13792 if (check_br32 (abfd, ptr + 4, reg))
13793 break;
13794 continue;
13795 default:
13796 continue;
13797 }
13798
13799 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
13800
13801 /* Give up unless the same register is used with both
13802 relocations. */
13803 if (OP32_SREG (nextopc) != reg)
13804 continue;
13805
13806 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13807 and rounding up to take masking of the two LSBs into account. */
13808 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13809
13810 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13811 if (IS_BITSIZE (symval, 16))
13812 {
13813 /* Fix the relocation's type. */
13814 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13815
13816 /* Instructions using R_MICROMIPS_LO16 have the base or
13817 source register in bits 20:16. This register becomes $0
13818 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
13819 nextopc &= ~0x001f0000;
13820 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13821 contents + irel[1].r_offset);
13822 }
13823
13824 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13825 We add 4 to take LUI deletion into account while checking
13826 the PC-relative distance. */
13827 else if (symval % 4 == 0
13828 && IS_BITSIZE (pcrval + 4, 25)
13829 && MATCH (nextopc, addiu_insn)
13830 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13831 && OP16_VALID_REG (OP32_TREG (nextopc)))
13832 {
13833 /* Fix the relocation's type. */
13834 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13835
13836 /* Replace ADDIU with the ADDIUPC version. */
13837 nextopc = (addiupc_insn.match
13838 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13839
13840 bfd_put_micromips_32 (abfd, nextopc,
13841 contents + irel[1].r_offset);
13842 }
13843
13844 /* Can't do anything, give up, sigh... */
13845 else
13846 continue;
13847
13848 /* Fix the relocation's type. */
13849 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13850
13851 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
13852 delcnt = 4;
13853 deloff = 0;
13854 }
13855
13856 /* Compact branch relaxation -- due to the multitude of macros
13857 employed by the compiler/assembler, compact branches are not
13858 always generated. Obviously, this can/will be fixed elsewhere,
13859 but there is no drawback in double checking it here. */
13860 else if (r_type == R_MICROMIPS_PC16_S1
13861 && irel->r_offset + 5 < sec->size
13862 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13863 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
13864 && ((!insn32
13865 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13866 nop_insn_16) ? 2 : 0))
13867 || (irel->r_offset + 7 < sec->size
13868 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13869 ptr + 4),
13870 nop_insn_32) ? 4 : 0))))
13871 {
13872 unsigned long reg;
13873
13874 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13875
13876 /* Replace BEQZ/BNEZ with the compact version. */
13877 opcode = (bzc_insns_32[fndopc].match
13878 | BZC32_REG_FIELD (reg)
13879 | (opcode & 0xffff)); /* Addend value. */
13880
13881 bfd_put_micromips_32 (abfd, opcode, ptr);
13882
13883 /* Delete the delay slot NOP: two or four bytes from
13884 irel->offset + 4; delcnt has already been set above. */
13885 deloff = 4;
13886 }
13887
13888 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
13889 to check the distance from the next instruction, so subtract 2. */
13890 else if (!insn32
13891 && r_type == R_MICROMIPS_PC16_S1
13892 && IS_BITSIZE (pcrval - 2, 11)
13893 && find_match (opcode, b_insns_32) >= 0)
13894 {
13895 /* Fix the relocation's type. */
13896 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13897
13898 /* Replace the 32-bit opcode with a 16-bit opcode. */
13899 bfd_put_16 (abfd,
13900 (b_insn_16.match
13901 | (opcode & 0x3ff)), /* Addend value. */
13902 ptr);
13903
13904 /* Delete 2 bytes from irel->r_offset + 2. */
13905 delcnt = 2;
13906 deloff = 2;
13907 }
13908
13909 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
13910 to check the distance from the next instruction, so subtract 2. */
13911 else if (!insn32
13912 && r_type == R_MICROMIPS_PC16_S1
13913 && IS_BITSIZE (pcrval - 2, 8)
13914 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13915 && OP16_VALID_REG (OP32_SREG (opcode)))
13916 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13917 && OP16_VALID_REG (OP32_TREG (opcode)))))
13918 {
13919 unsigned long reg;
13920
13921 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13922
13923 /* Fix the relocation's type. */
13924 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
13925
13926 /* Replace the 32-bit opcode with a 16-bit opcode. */
13927 bfd_put_16 (abfd,
13928 (bz_insns_16[fndopc].match
13929 | BZ16_REG_FIELD (reg)
13930 | (opcode & 0x7f)), /* Addend value. */
13931 ptr);
13932
13933 /* Delete 2 bytes from irel->r_offset + 2. */
13934 delcnt = 2;
13935 deloff = 2;
13936 }
13937
13938 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
13939 else if (!insn32
13940 && r_type == R_MICROMIPS_26_S1
13941 && target_is_micromips_code_p
13942 && irel->r_offset + 7 < sec->size
13943 && MATCH (opcode, jal_insn_32_bd32))
13944 {
13945 unsigned long n32opc;
13946 bfd_boolean relaxed = FALSE;
13947
13948 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
13949
13950 if (MATCH (n32opc, nop_insn_32))
13951 {
13952 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
13953 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
13954
13955 relaxed = TRUE;
13956 }
13957 else if (find_match (n32opc, move_insns_32) >= 0)
13958 {
13959 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
13960 bfd_put_16 (abfd,
13961 (move_insn_16.match
13962 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
13963 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
13964 ptr + 4);
13965
13966 relaxed = TRUE;
13967 }
13968 /* Other 32-bit instructions relaxable to 16-bit
13969 instructions will be handled here later. */
13970
13971 if (relaxed)
13972 {
13973 /* JAL with 32-bit delay slot that is changed to a JALS
13974 with 16-bit delay slot. */
13975 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
13976
13977 /* Delete 2 bytes from irel->r_offset + 6. */
13978 delcnt = 2;
13979 deloff = 6;
13980 }
13981 }
13982
13983 if (delcnt != 0)
13984 {
13985 /* Note that we've changed the relocs, section contents, etc. */
13986 elf_section_data (sec)->relocs = internal_relocs;
13987 elf_section_data (sec)->this_hdr.contents = contents;
13988 symtab_hdr->contents = (unsigned char *) isymbuf;
13989
13990 /* Delete bytes depending on the delcnt and deloff. */
13991 if (!mips_elf_relax_delete_bytes (abfd, sec,
13992 irel->r_offset + deloff, delcnt))
13993 goto error_return;
13994
13995 /* That will change things, so we should relax again.
13996 Note that this is not required, and it may be slow. */
13997 *again = TRUE;
13998 }
13999 }
14000
14001 if (isymbuf != NULL
14002 && symtab_hdr->contents != (unsigned char *) isymbuf)
14003 {
14004 if (! link_info->keep_memory)
14005 free (isymbuf);
14006 else
14007 {
14008 /* Cache the symbols for elf_link_input_bfd. */
14009 symtab_hdr->contents = (unsigned char *) isymbuf;
14010 }
14011 }
14012
14013 if (contents != NULL
14014 && elf_section_data (sec)->this_hdr.contents != contents)
14015 {
14016 if (! link_info->keep_memory)
14017 free (contents);
14018 else
14019 {
14020 /* Cache the section contents for elf_link_input_bfd. */
14021 elf_section_data (sec)->this_hdr.contents = contents;
14022 }
14023 }
14024
14025 if (internal_relocs != NULL
14026 && elf_section_data (sec)->relocs != internal_relocs)
14027 free (internal_relocs);
14028
14029 return TRUE;
14030
14031 error_return:
14032 if (isymbuf != NULL
14033 && symtab_hdr->contents != (unsigned char *) isymbuf)
14034 free (isymbuf);
14035 if (contents != NULL
14036 && elf_section_data (sec)->this_hdr.contents != contents)
14037 free (contents);
14038 if (internal_relocs != NULL
14039 && elf_section_data (sec)->relocs != internal_relocs)
14040 free (internal_relocs);
14041
14042 return FALSE;
14043 }
14044 \f
14045 /* Create a MIPS ELF linker hash table. */
14046
14047 struct bfd_link_hash_table *
14048 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
14049 {
14050 struct mips_elf_link_hash_table *ret;
14051 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
14052
14053 ret = bfd_zmalloc (amt);
14054 if (ret == NULL)
14055 return NULL;
14056
14057 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
14058 mips_elf_link_hash_newfunc,
14059 sizeof (struct mips_elf_link_hash_entry),
14060 MIPS_ELF_DATA))
14061 {
14062 free (ret);
14063 return NULL;
14064 }
14065 ret->root.init_plt_refcount.plist = NULL;
14066 ret->root.init_plt_offset.plist = NULL;
14067
14068 return &ret->root.root;
14069 }
14070
14071 /* Likewise, but indicate that the target is VxWorks. */
14072
14073 struct bfd_link_hash_table *
14074 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
14075 {
14076 struct bfd_link_hash_table *ret;
14077
14078 ret = _bfd_mips_elf_link_hash_table_create (abfd);
14079 if (ret)
14080 {
14081 struct mips_elf_link_hash_table *htab;
14082
14083 htab = (struct mips_elf_link_hash_table *) ret;
14084 htab->use_plts_and_copy_relocs = TRUE;
14085 htab->is_vxworks = TRUE;
14086 }
14087 return ret;
14088 }
14089
14090 /* A function that the linker calls if we are allowed to use PLTs
14091 and copy relocs. */
14092
14093 void
14094 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
14095 {
14096 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
14097 }
14098
14099 /* A function that the linker calls to select between all or only
14100 32-bit microMIPS instructions. */
14101
14102 void
14103 _bfd_mips_elf_insn32 (struct bfd_link_info *info, bfd_boolean on)
14104 {
14105 mips_elf_hash_table (info)->insn32 = on;
14106 }
14107 \f
14108 /* Structure for saying that BFD machine EXTENSION extends BASE. */
14109
14110 struct mips_mach_extension
14111 {
14112 unsigned long extension, base;
14113 };
14114
14115
14116 /* An array describing how BFD machines relate to one another. The entries
14117 are ordered topologically with MIPS I extensions listed last. */
14118
14119 static const struct mips_mach_extension mips_mach_extensions[] =
14120 {
14121 /* MIPS64r2 extensions. */
14122 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
14123 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
14124 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
14125 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
14126 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 },
14127
14128 /* MIPS64 extensions. */
14129 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
14130 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
14131 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
14132
14133 /* MIPS V extensions. */
14134 { bfd_mach_mipsisa64, bfd_mach_mips5 },
14135
14136 /* R10000 extensions. */
14137 { bfd_mach_mips12000, bfd_mach_mips10000 },
14138 { bfd_mach_mips14000, bfd_mach_mips10000 },
14139 { bfd_mach_mips16000, bfd_mach_mips10000 },
14140
14141 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14142 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14143 better to allow vr5400 and vr5500 code to be merged anyway, since
14144 many libraries will just use the core ISA. Perhaps we could add
14145 some sort of ASE flag if this ever proves a problem. */
14146 { bfd_mach_mips5500, bfd_mach_mips5400 },
14147 { bfd_mach_mips5400, bfd_mach_mips5000 },
14148
14149 /* MIPS IV extensions. */
14150 { bfd_mach_mips5, bfd_mach_mips8000 },
14151 { bfd_mach_mips10000, bfd_mach_mips8000 },
14152 { bfd_mach_mips5000, bfd_mach_mips8000 },
14153 { bfd_mach_mips7000, bfd_mach_mips8000 },
14154 { bfd_mach_mips9000, bfd_mach_mips8000 },
14155
14156 /* VR4100 extensions. */
14157 { bfd_mach_mips4120, bfd_mach_mips4100 },
14158 { bfd_mach_mips4111, bfd_mach_mips4100 },
14159
14160 /* MIPS III extensions. */
14161 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14162 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14163 { bfd_mach_mips8000, bfd_mach_mips4000 },
14164 { bfd_mach_mips4650, bfd_mach_mips4000 },
14165 { bfd_mach_mips4600, bfd_mach_mips4000 },
14166 { bfd_mach_mips4400, bfd_mach_mips4000 },
14167 { bfd_mach_mips4300, bfd_mach_mips4000 },
14168 { bfd_mach_mips4100, bfd_mach_mips4000 },
14169 { bfd_mach_mips4010, bfd_mach_mips4000 },
14170 { bfd_mach_mips5900, bfd_mach_mips4000 },
14171
14172 /* MIPS32 extensions. */
14173 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14174
14175 /* MIPS II extensions. */
14176 { bfd_mach_mips4000, bfd_mach_mips6000 },
14177 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14178
14179 /* MIPS I extensions. */
14180 { bfd_mach_mips6000, bfd_mach_mips3000 },
14181 { bfd_mach_mips3900, bfd_mach_mips3000 }
14182 };
14183
14184 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14185
14186 static bfd_boolean
14187 mips_mach_extends_p (unsigned long base, unsigned long extension)
14188 {
14189 size_t i;
14190
14191 if (extension == base)
14192 return TRUE;
14193
14194 if (base == bfd_mach_mipsisa32
14195 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14196 return TRUE;
14197
14198 if (base == bfd_mach_mipsisa32r2
14199 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14200 return TRUE;
14201
14202 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14203 if (extension == mips_mach_extensions[i].extension)
14204 {
14205 extension = mips_mach_extensions[i].base;
14206 if (extension == base)
14207 return TRUE;
14208 }
14209
14210 return FALSE;
14211 }
14212
14213 /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14214
14215 static unsigned long
14216 bfd_mips_isa_ext_mach (unsigned int isa_ext)
14217 {
14218 switch (isa_ext)
14219 {
14220 case AFL_EXT_3900: return bfd_mach_mips3900;
14221 case AFL_EXT_4010: return bfd_mach_mips4010;
14222 case AFL_EXT_4100: return bfd_mach_mips4100;
14223 case AFL_EXT_4111: return bfd_mach_mips4111;
14224 case AFL_EXT_4120: return bfd_mach_mips4120;
14225 case AFL_EXT_4650: return bfd_mach_mips4650;
14226 case AFL_EXT_5400: return bfd_mach_mips5400;
14227 case AFL_EXT_5500: return bfd_mach_mips5500;
14228 case AFL_EXT_5900: return bfd_mach_mips5900;
14229 case AFL_EXT_10000: return bfd_mach_mips10000;
14230 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14231 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14232 case AFL_EXT_LOONGSON_3A: return bfd_mach_mips_loongson_3a;
14233 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
14234 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14235 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14236 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
14237 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14238 default: return bfd_mach_mips3000;
14239 }
14240 }
14241
14242 /* Return the .MIPS.abiflags value representing each ISA Extension. */
14243
14244 unsigned int
14245 bfd_mips_isa_ext (bfd *abfd)
14246 {
14247 switch (bfd_get_mach (abfd))
14248 {
14249 case bfd_mach_mips3900: return AFL_EXT_3900;
14250 case bfd_mach_mips4010: return AFL_EXT_4010;
14251 case bfd_mach_mips4100: return AFL_EXT_4100;
14252 case bfd_mach_mips4111: return AFL_EXT_4111;
14253 case bfd_mach_mips4120: return AFL_EXT_4120;
14254 case bfd_mach_mips4650: return AFL_EXT_4650;
14255 case bfd_mach_mips5400: return AFL_EXT_5400;
14256 case bfd_mach_mips5500: return AFL_EXT_5500;
14257 case bfd_mach_mips5900: return AFL_EXT_5900;
14258 case bfd_mach_mips10000: return AFL_EXT_10000;
14259 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14260 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14261 case bfd_mach_mips_loongson_3a: return AFL_EXT_LOONGSON_3A;
14262 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14263 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14264 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14265 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14266 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14267 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
14268 default: return 0;
14269 }
14270 }
14271
14272 /* Encode ISA level and revision as a single value. */
14273 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14274
14275 /* Decode a single value into level and revision. */
14276 #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14277 #define ISA_REV(LEVREV) ((LEVREV) & 0x7)
14278
14279 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14280
14281 static void
14282 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14283 {
14284 int new_isa = 0;
14285 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14286 {
14287 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14288 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14289 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14290 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14291 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14292 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14293 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14294 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14295 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14296 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14297 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
14298 default:
14299 _bfd_error_handler
14300 (_("%B: Unknown architecture %s"),
14301 abfd, bfd_printable_name (abfd));
14302 }
14303
14304 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14305 {
14306 abiflags->isa_level = ISA_LEVEL (new_isa);
14307 abiflags->isa_rev = ISA_REV (new_isa);
14308 }
14309
14310 /* Update the isa_ext if ABFD describes a further extension. */
14311 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14312 bfd_get_mach (abfd)))
14313 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
14314 }
14315
14316 /* Return true if the given ELF header flags describe a 32-bit binary. */
14317
14318 static bfd_boolean
14319 mips_32bit_flags_p (flagword flags)
14320 {
14321 return ((flags & EF_MIPS_32BITMODE) != 0
14322 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14323 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14324 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14325 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14326 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14327 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14328 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14329 }
14330
14331 /* Infer the content of the ABI flags based on the elf header. */
14332
14333 static void
14334 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14335 {
14336 obj_attribute *in_attr;
14337
14338 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14339 update_mips_abiflags_isa (abfd, abiflags);
14340
14341 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14342 abiflags->gpr_size = AFL_REG_32;
14343 else
14344 abiflags->gpr_size = AFL_REG_64;
14345
14346 abiflags->cpr1_size = AFL_REG_NONE;
14347
14348 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14349 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14350
14351 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14352 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14353 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14354 && abiflags->gpr_size == AFL_REG_32))
14355 abiflags->cpr1_size = AFL_REG_32;
14356 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14357 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14358 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14359 abiflags->cpr1_size = AFL_REG_64;
14360
14361 abiflags->cpr2_size = AFL_REG_NONE;
14362
14363 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14364 abiflags->ases |= AFL_ASE_MDMX;
14365 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14366 abiflags->ases |= AFL_ASE_MIPS16;
14367 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14368 abiflags->ases |= AFL_ASE_MICROMIPS;
14369
14370 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14371 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14372 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14373 && abiflags->isa_level >= 32
14374 && abiflags->isa_ext != AFL_EXT_LOONGSON_3A)
14375 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14376 }
14377
14378 /* We need to use a special link routine to handle the .reginfo and
14379 the .mdebug sections. We need to merge all instances of these
14380 sections together, not write them all out sequentially. */
14381
14382 bfd_boolean
14383 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14384 {
14385 asection *o;
14386 struct bfd_link_order *p;
14387 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14388 asection *rtproc_sec, *abiflags_sec;
14389 Elf32_RegInfo reginfo;
14390 struct ecoff_debug_info debug;
14391 struct mips_htab_traverse_info hti;
14392 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14393 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14394 HDRR *symhdr = &debug.symbolic_header;
14395 void *mdebug_handle = NULL;
14396 asection *s;
14397 EXTR esym;
14398 unsigned int i;
14399 bfd_size_type amt;
14400 struct mips_elf_link_hash_table *htab;
14401
14402 static const char * const secname[] =
14403 {
14404 ".text", ".init", ".fini", ".data",
14405 ".rodata", ".sdata", ".sbss", ".bss"
14406 };
14407 static const int sc[] =
14408 {
14409 scText, scInit, scFini, scData,
14410 scRData, scSData, scSBss, scBss
14411 };
14412
14413 /* Sort the dynamic symbols so that those with GOT entries come after
14414 those without. */
14415 htab = mips_elf_hash_table (info);
14416 BFD_ASSERT (htab != NULL);
14417
14418 if (!mips_elf_sort_hash_table (abfd, info))
14419 return FALSE;
14420
14421 /* Create any scheduled LA25 stubs. */
14422 hti.info = info;
14423 hti.output_bfd = abfd;
14424 hti.error = FALSE;
14425 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14426 if (hti.error)
14427 return FALSE;
14428
14429 /* Get a value for the GP register. */
14430 if (elf_gp (abfd) == 0)
14431 {
14432 struct bfd_link_hash_entry *h;
14433
14434 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
14435 if (h != NULL && h->type == bfd_link_hash_defined)
14436 elf_gp (abfd) = (h->u.def.value
14437 + h->u.def.section->output_section->vma
14438 + h->u.def.section->output_offset);
14439 else if (htab->is_vxworks
14440 && (h = bfd_link_hash_lookup (info->hash,
14441 "_GLOBAL_OFFSET_TABLE_",
14442 FALSE, FALSE, TRUE))
14443 && h->type == bfd_link_hash_defined)
14444 elf_gp (abfd) = (h->u.def.section->output_section->vma
14445 + h->u.def.section->output_offset
14446 + h->u.def.value);
14447 else if (bfd_link_relocatable (info))
14448 {
14449 bfd_vma lo = MINUS_ONE;
14450
14451 /* Find the GP-relative section with the lowest offset. */
14452 for (o = abfd->sections; o != NULL; o = o->next)
14453 if (o->vma < lo
14454 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14455 lo = o->vma;
14456
14457 /* And calculate GP relative to that. */
14458 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14459 }
14460 else
14461 {
14462 /* If the relocate_section function needs to do a reloc
14463 involving the GP value, it should make a reloc_dangerous
14464 callback to warn that GP is not defined. */
14465 }
14466 }
14467
14468 /* Go through the sections and collect the .reginfo and .mdebug
14469 information. */
14470 abiflags_sec = NULL;
14471 reginfo_sec = NULL;
14472 mdebug_sec = NULL;
14473 gptab_data_sec = NULL;
14474 gptab_bss_sec = NULL;
14475 for (o = abfd->sections; o != NULL; o = o->next)
14476 {
14477 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14478 {
14479 /* We have found the .MIPS.abiflags section in the output file.
14480 Look through all the link_orders comprising it and remove them.
14481 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14482 for (p = o->map_head.link_order; p != NULL; p = p->next)
14483 {
14484 asection *input_section;
14485
14486 if (p->type != bfd_indirect_link_order)
14487 {
14488 if (p->type == bfd_data_link_order)
14489 continue;
14490 abort ();
14491 }
14492
14493 input_section = p->u.indirect.section;
14494
14495 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14496 elf_link_input_bfd ignores this section. */
14497 input_section->flags &= ~SEC_HAS_CONTENTS;
14498 }
14499
14500 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14501 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14502
14503 /* Skip this section later on (I don't think this currently
14504 matters, but someday it might). */
14505 o->map_head.link_order = NULL;
14506
14507 abiflags_sec = o;
14508 }
14509
14510 if (strcmp (o->name, ".reginfo") == 0)
14511 {
14512 memset (&reginfo, 0, sizeof reginfo);
14513
14514 /* We have found the .reginfo section in the output file.
14515 Look through all the link_orders comprising it and merge
14516 the information together. */
14517 for (p = o->map_head.link_order; p != NULL; p = p->next)
14518 {
14519 asection *input_section;
14520 bfd *input_bfd;
14521 Elf32_External_RegInfo ext;
14522 Elf32_RegInfo sub;
14523
14524 if (p->type != bfd_indirect_link_order)
14525 {
14526 if (p->type == bfd_data_link_order)
14527 continue;
14528 abort ();
14529 }
14530
14531 input_section = p->u.indirect.section;
14532 input_bfd = input_section->owner;
14533
14534 if (! bfd_get_section_contents (input_bfd, input_section,
14535 &ext, 0, sizeof ext))
14536 return FALSE;
14537
14538 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14539
14540 reginfo.ri_gprmask |= sub.ri_gprmask;
14541 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14542 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14543 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14544 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14545
14546 /* ri_gp_value is set by the function
14547 mips_elf32_section_processing when the section is
14548 finally written out. */
14549
14550 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14551 elf_link_input_bfd ignores this section. */
14552 input_section->flags &= ~SEC_HAS_CONTENTS;
14553 }
14554
14555 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14556 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14557
14558 /* Skip this section later on (I don't think this currently
14559 matters, but someday it might). */
14560 o->map_head.link_order = NULL;
14561
14562 reginfo_sec = o;
14563 }
14564
14565 if (strcmp (o->name, ".mdebug") == 0)
14566 {
14567 struct extsym_info einfo;
14568 bfd_vma last;
14569
14570 /* We have found the .mdebug section in the output file.
14571 Look through all the link_orders comprising it and merge
14572 the information together. */
14573 symhdr->magic = swap->sym_magic;
14574 /* FIXME: What should the version stamp be? */
14575 symhdr->vstamp = 0;
14576 symhdr->ilineMax = 0;
14577 symhdr->cbLine = 0;
14578 symhdr->idnMax = 0;
14579 symhdr->ipdMax = 0;
14580 symhdr->isymMax = 0;
14581 symhdr->ioptMax = 0;
14582 symhdr->iauxMax = 0;
14583 symhdr->issMax = 0;
14584 symhdr->issExtMax = 0;
14585 symhdr->ifdMax = 0;
14586 symhdr->crfd = 0;
14587 symhdr->iextMax = 0;
14588
14589 /* We accumulate the debugging information itself in the
14590 debug_info structure. */
14591 debug.line = NULL;
14592 debug.external_dnr = NULL;
14593 debug.external_pdr = NULL;
14594 debug.external_sym = NULL;
14595 debug.external_opt = NULL;
14596 debug.external_aux = NULL;
14597 debug.ss = NULL;
14598 debug.ssext = debug.ssext_end = NULL;
14599 debug.external_fdr = NULL;
14600 debug.external_rfd = NULL;
14601 debug.external_ext = debug.external_ext_end = NULL;
14602
14603 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14604 if (mdebug_handle == NULL)
14605 return FALSE;
14606
14607 esym.jmptbl = 0;
14608 esym.cobol_main = 0;
14609 esym.weakext = 0;
14610 esym.reserved = 0;
14611 esym.ifd = ifdNil;
14612 esym.asym.iss = issNil;
14613 esym.asym.st = stLocal;
14614 esym.asym.reserved = 0;
14615 esym.asym.index = indexNil;
14616 last = 0;
14617 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14618 {
14619 esym.asym.sc = sc[i];
14620 s = bfd_get_section_by_name (abfd, secname[i]);
14621 if (s != NULL)
14622 {
14623 esym.asym.value = s->vma;
14624 last = s->vma + s->size;
14625 }
14626 else
14627 esym.asym.value = last;
14628 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14629 secname[i], &esym))
14630 return FALSE;
14631 }
14632
14633 for (p = o->map_head.link_order; p != NULL; p = p->next)
14634 {
14635 asection *input_section;
14636 bfd *input_bfd;
14637 const struct ecoff_debug_swap *input_swap;
14638 struct ecoff_debug_info input_debug;
14639 char *eraw_src;
14640 char *eraw_end;
14641
14642 if (p->type != bfd_indirect_link_order)
14643 {
14644 if (p->type == bfd_data_link_order)
14645 continue;
14646 abort ();
14647 }
14648
14649 input_section = p->u.indirect.section;
14650 input_bfd = input_section->owner;
14651
14652 if (!is_mips_elf (input_bfd))
14653 {
14654 /* I don't know what a non MIPS ELF bfd would be
14655 doing with a .mdebug section, but I don't really
14656 want to deal with it. */
14657 continue;
14658 }
14659
14660 input_swap = (get_elf_backend_data (input_bfd)
14661 ->elf_backend_ecoff_debug_swap);
14662
14663 BFD_ASSERT (p->size == input_section->size);
14664
14665 /* The ECOFF linking code expects that we have already
14666 read in the debugging information and set up an
14667 ecoff_debug_info structure, so we do that now. */
14668 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14669 &input_debug))
14670 return FALSE;
14671
14672 if (! (bfd_ecoff_debug_accumulate
14673 (mdebug_handle, abfd, &debug, swap, input_bfd,
14674 &input_debug, input_swap, info)))
14675 return FALSE;
14676
14677 /* Loop through the external symbols. For each one with
14678 interesting information, try to find the symbol in
14679 the linker global hash table and save the information
14680 for the output external symbols. */
14681 eraw_src = input_debug.external_ext;
14682 eraw_end = (eraw_src
14683 + (input_debug.symbolic_header.iextMax
14684 * input_swap->external_ext_size));
14685 for (;
14686 eraw_src < eraw_end;
14687 eraw_src += input_swap->external_ext_size)
14688 {
14689 EXTR ext;
14690 const char *name;
14691 struct mips_elf_link_hash_entry *h;
14692
14693 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
14694 if (ext.asym.sc == scNil
14695 || ext.asym.sc == scUndefined
14696 || ext.asym.sc == scSUndefined)
14697 continue;
14698
14699 name = input_debug.ssext + ext.asym.iss;
14700 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
14701 name, FALSE, FALSE, TRUE);
14702 if (h == NULL || h->esym.ifd != -2)
14703 continue;
14704
14705 if (ext.ifd != -1)
14706 {
14707 BFD_ASSERT (ext.ifd
14708 < input_debug.symbolic_header.ifdMax);
14709 ext.ifd = input_debug.ifdmap[ext.ifd];
14710 }
14711
14712 h->esym = ext;
14713 }
14714
14715 /* Free up the information we just read. */
14716 free (input_debug.line);
14717 free (input_debug.external_dnr);
14718 free (input_debug.external_pdr);
14719 free (input_debug.external_sym);
14720 free (input_debug.external_opt);
14721 free (input_debug.external_aux);
14722 free (input_debug.ss);
14723 free (input_debug.ssext);
14724 free (input_debug.external_fdr);
14725 free (input_debug.external_rfd);
14726 free (input_debug.external_ext);
14727
14728 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14729 elf_link_input_bfd ignores this section. */
14730 input_section->flags &= ~SEC_HAS_CONTENTS;
14731 }
14732
14733 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
14734 {
14735 /* Create .rtproc section. */
14736 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
14737 if (rtproc_sec == NULL)
14738 {
14739 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14740 | SEC_LINKER_CREATED | SEC_READONLY);
14741
14742 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14743 ".rtproc",
14744 flags);
14745 if (rtproc_sec == NULL
14746 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
14747 return FALSE;
14748 }
14749
14750 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14751 info, rtproc_sec,
14752 &debug))
14753 return FALSE;
14754 }
14755
14756 /* Build the external symbol information. */
14757 einfo.abfd = abfd;
14758 einfo.info = info;
14759 einfo.debug = &debug;
14760 einfo.swap = swap;
14761 einfo.failed = FALSE;
14762 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
14763 mips_elf_output_extsym, &einfo);
14764 if (einfo.failed)
14765 return FALSE;
14766
14767 /* Set the size of the .mdebug section. */
14768 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
14769
14770 /* Skip this section later on (I don't think this currently
14771 matters, but someday it might). */
14772 o->map_head.link_order = NULL;
14773
14774 mdebug_sec = o;
14775 }
14776
14777 if (CONST_STRNEQ (o->name, ".gptab."))
14778 {
14779 const char *subname;
14780 unsigned int c;
14781 Elf32_gptab *tab;
14782 Elf32_External_gptab *ext_tab;
14783 unsigned int j;
14784
14785 /* The .gptab.sdata and .gptab.sbss sections hold
14786 information describing how the small data area would
14787 change depending upon the -G switch. These sections
14788 not used in executables files. */
14789 if (! bfd_link_relocatable (info))
14790 {
14791 for (p = o->map_head.link_order; p != NULL; p = p->next)
14792 {
14793 asection *input_section;
14794
14795 if (p->type != bfd_indirect_link_order)
14796 {
14797 if (p->type == bfd_data_link_order)
14798 continue;
14799 abort ();
14800 }
14801
14802 input_section = p->u.indirect.section;
14803
14804 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14805 elf_link_input_bfd ignores this section. */
14806 input_section->flags &= ~SEC_HAS_CONTENTS;
14807 }
14808
14809 /* Skip this section later on (I don't think this
14810 currently matters, but someday it might). */
14811 o->map_head.link_order = NULL;
14812
14813 /* Really remove the section. */
14814 bfd_section_list_remove (abfd, o);
14815 --abfd->section_count;
14816
14817 continue;
14818 }
14819
14820 /* There is one gptab for initialized data, and one for
14821 uninitialized data. */
14822 if (strcmp (o->name, ".gptab.sdata") == 0)
14823 gptab_data_sec = o;
14824 else if (strcmp (o->name, ".gptab.sbss") == 0)
14825 gptab_bss_sec = o;
14826 else
14827 {
14828 _bfd_error_handler
14829 (_("%s: illegal section name `%s'"),
14830 bfd_get_filename (abfd), o->name);
14831 bfd_set_error (bfd_error_nonrepresentable_section);
14832 return FALSE;
14833 }
14834
14835 /* The linker script always combines .gptab.data and
14836 .gptab.sdata into .gptab.sdata, and likewise for
14837 .gptab.bss and .gptab.sbss. It is possible that there is
14838 no .sdata or .sbss section in the output file, in which
14839 case we must change the name of the output section. */
14840 subname = o->name + sizeof ".gptab" - 1;
14841 if (bfd_get_section_by_name (abfd, subname) == NULL)
14842 {
14843 if (o == gptab_data_sec)
14844 o->name = ".gptab.data";
14845 else
14846 o->name = ".gptab.bss";
14847 subname = o->name + sizeof ".gptab" - 1;
14848 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14849 }
14850
14851 /* Set up the first entry. */
14852 c = 1;
14853 amt = c * sizeof (Elf32_gptab);
14854 tab = bfd_malloc (amt);
14855 if (tab == NULL)
14856 return FALSE;
14857 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14858 tab[0].gt_header.gt_unused = 0;
14859
14860 /* Combine the input sections. */
14861 for (p = o->map_head.link_order; p != NULL; p = p->next)
14862 {
14863 asection *input_section;
14864 bfd *input_bfd;
14865 bfd_size_type size;
14866 unsigned long last;
14867 bfd_size_type gpentry;
14868
14869 if (p->type != bfd_indirect_link_order)
14870 {
14871 if (p->type == bfd_data_link_order)
14872 continue;
14873 abort ();
14874 }
14875
14876 input_section = p->u.indirect.section;
14877 input_bfd = input_section->owner;
14878
14879 /* Combine the gptab entries for this input section one
14880 by one. We know that the input gptab entries are
14881 sorted by ascending -G value. */
14882 size = input_section->size;
14883 last = 0;
14884 for (gpentry = sizeof (Elf32_External_gptab);
14885 gpentry < size;
14886 gpentry += sizeof (Elf32_External_gptab))
14887 {
14888 Elf32_External_gptab ext_gptab;
14889 Elf32_gptab int_gptab;
14890 unsigned long val;
14891 unsigned long add;
14892 bfd_boolean exact;
14893 unsigned int look;
14894
14895 if (! (bfd_get_section_contents
14896 (input_bfd, input_section, &ext_gptab, gpentry,
14897 sizeof (Elf32_External_gptab))))
14898 {
14899 free (tab);
14900 return FALSE;
14901 }
14902
14903 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
14904 &int_gptab);
14905 val = int_gptab.gt_entry.gt_g_value;
14906 add = int_gptab.gt_entry.gt_bytes - last;
14907
14908 exact = FALSE;
14909 for (look = 1; look < c; look++)
14910 {
14911 if (tab[look].gt_entry.gt_g_value >= val)
14912 tab[look].gt_entry.gt_bytes += add;
14913
14914 if (tab[look].gt_entry.gt_g_value == val)
14915 exact = TRUE;
14916 }
14917
14918 if (! exact)
14919 {
14920 Elf32_gptab *new_tab;
14921 unsigned int max;
14922
14923 /* We need a new table entry. */
14924 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
14925 new_tab = bfd_realloc (tab, amt);
14926 if (new_tab == NULL)
14927 {
14928 free (tab);
14929 return FALSE;
14930 }
14931 tab = new_tab;
14932 tab[c].gt_entry.gt_g_value = val;
14933 tab[c].gt_entry.gt_bytes = add;
14934
14935 /* Merge in the size for the next smallest -G
14936 value, since that will be implied by this new
14937 value. */
14938 max = 0;
14939 for (look = 1; look < c; look++)
14940 {
14941 if (tab[look].gt_entry.gt_g_value < val
14942 && (max == 0
14943 || (tab[look].gt_entry.gt_g_value
14944 > tab[max].gt_entry.gt_g_value)))
14945 max = look;
14946 }
14947 if (max != 0)
14948 tab[c].gt_entry.gt_bytes +=
14949 tab[max].gt_entry.gt_bytes;
14950
14951 ++c;
14952 }
14953
14954 last = int_gptab.gt_entry.gt_bytes;
14955 }
14956
14957 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14958 elf_link_input_bfd ignores this section. */
14959 input_section->flags &= ~SEC_HAS_CONTENTS;
14960 }
14961
14962 /* The table must be sorted by -G value. */
14963 if (c > 2)
14964 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
14965
14966 /* Swap out the table. */
14967 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
14968 ext_tab = bfd_alloc (abfd, amt);
14969 if (ext_tab == NULL)
14970 {
14971 free (tab);
14972 return FALSE;
14973 }
14974
14975 for (j = 0; j < c; j++)
14976 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
14977 free (tab);
14978
14979 o->size = c * sizeof (Elf32_External_gptab);
14980 o->contents = (bfd_byte *) ext_tab;
14981
14982 /* Skip this section later on (I don't think this currently
14983 matters, but someday it might). */
14984 o->map_head.link_order = NULL;
14985 }
14986 }
14987
14988 /* Invoke the regular ELF backend linker to do all the work. */
14989 if (!bfd_elf_final_link (abfd, info))
14990 return FALSE;
14991
14992 /* Now write out the computed sections. */
14993
14994 if (abiflags_sec != NULL)
14995 {
14996 Elf_External_ABIFlags_v0 ext;
14997 Elf_Internal_ABIFlags_v0 *abiflags;
14998
14999 abiflags = &mips_elf_tdata (abfd)->abiflags;
15000
15001 /* Set up the abiflags if no valid input sections were found. */
15002 if (!mips_elf_tdata (abfd)->abiflags_valid)
15003 {
15004 infer_mips_abiflags (abfd, abiflags);
15005 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
15006 }
15007 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
15008 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
15009 return FALSE;
15010 }
15011
15012 if (reginfo_sec != NULL)
15013 {
15014 Elf32_External_RegInfo ext;
15015
15016 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
15017 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
15018 return FALSE;
15019 }
15020
15021 if (mdebug_sec != NULL)
15022 {
15023 BFD_ASSERT (abfd->output_has_begun);
15024 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
15025 swap, info,
15026 mdebug_sec->filepos))
15027 return FALSE;
15028
15029 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
15030 }
15031
15032 if (gptab_data_sec != NULL)
15033 {
15034 if (! bfd_set_section_contents (abfd, gptab_data_sec,
15035 gptab_data_sec->contents,
15036 0, gptab_data_sec->size))
15037 return FALSE;
15038 }
15039
15040 if (gptab_bss_sec != NULL)
15041 {
15042 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
15043 gptab_bss_sec->contents,
15044 0, gptab_bss_sec->size))
15045 return FALSE;
15046 }
15047
15048 if (SGI_COMPAT (abfd))
15049 {
15050 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
15051 if (rtproc_sec != NULL)
15052 {
15053 if (! bfd_set_section_contents (abfd, rtproc_sec,
15054 rtproc_sec->contents,
15055 0, rtproc_sec->size))
15056 return FALSE;
15057 }
15058 }
15059
15060 return TRUE;
15061 }
15062 \f
15063 /* Merge object file header flags from IBFD into OBFD. Raise an error
15064 if there are conflicting settings. */
15065
15066 static bfd_boolean
15067 mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info)
15068 {
15069 bfd *obfd = info->output_bfd;
15070 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15071 flagword old_flags;
15072 flagword new_flags;
15073 bfd_boolean ok;
15074
15075 new_flags = elf_elfheader (ibfd)->e_flags;
15076 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
15077 old_flags = elf_elfheader (obfd)->e_flags;
15078
15079 /* Check flag compatibility. */
15080
15081 new_flags &= ~EF_MIPS_NOREORDER;
15082 old_flags &= ~EF_MIPS_NOREORDER;
15083
15084 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
15085 doesn't seem to matter. */
15086 new_flags &= ~EF_MIPS_XGOT;
15087 old_flags &= ~EF_MIPS_XGOT;
15088
15089 /* MIPSpro generates ucode info in n64 objects. Again, we should
15090 just be able to ignore this. */
15091 new_flags &= ~EF_MIPS_UCODE;
15092 old_flags &= ~EF_MIPS_UCODE;
15093
15094 /* DSOs should only be linked with CPIC code. */
15095 if ((ibfd->flags & DYNAMIC) != 0)
15096 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
15097
15098 if (new_flags == old_flags)
15099 return TRUE;
15100
15101 ok = TRUE;
15102
15103 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
15104 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
15105 {
15106 _bfd_error_handler
15107 (_("%B: warning: linking abicalls files with non-abicalls files"),
15108 ibfd);
15109 ok = TRUE;
15110 }
15111
15112 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
15113 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
15114 if (! (new_flags & EF_MIPS_PIC))
15115 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
15116
15117 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15118 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15119
15120 /* Compare the ISAs. */
15121 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
15122 {
15123 _bfd_error_handler
15124 (_("%B: linking 32-bit code with 64-bit code"),
15125 ibfd);
15126 ok = FALSE;
15127 }
15128 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15129 {
15130 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15131 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
15132 {
15133 /* Copy the architecture info from IBFD to OBFD. Also copy
15134 the 32-bit flag (if set) so that we continue to recognise
15135 OBFD as a 32-bit binary. */
15136 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15137 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15138 elf_elfheader (obfd)->e_flags
15139 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15140
15141 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15142 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15143
15144 /* Copy across the ABI flags if OBFD doesn't use them
15145 and if that was what caused us to treat IBFD as 32-bit. */
15146 if ((old_flags & EF_MIPS_ABI) == 0
15147 && mips_32bit_flags_p (new_flags)
15148 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15149 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15150 }
15151 else
15152 {
15153 /* The ISAs aren't compatible. */
15154 _bfd_error_handler
15155 (_("%B: linking %s module with previous %s modules"),
15156 ibfd,
15157 bfd_printable_name (ibfd),
15158 bfd_printable_name (obfd));
15159 ok = FALSE;
15160 }
15161 }
15162
15163 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15164 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15165
15166 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15167 does set EI_CLASS differently from any 32-bit ABI. */
15168 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15169 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15170 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15171 {
15172 /* Only error if both are set (to different values). */
15173 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15174 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15175 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15176 {
15177 _bfd_error_handler
15178 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
15179 ibfd,
15180 elf_mips_abi_name (ibfd),
15181 elf_mips_abi_name (obfd));
15182 ok = FALSE;
15183 }
15184 new_flags &= ~EF_MIPS_ABI;
15185 old_flags &= ~EF_MIPS_ABI;
15186 }
15187
15188 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15189 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15190 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15191 {
15192 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15193 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15194 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15195 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15196 int micro_mis = old_m16 && new_micro;
15197 int m16_mis = old_micro && new_m16;
15198
15199 if (m16_mis || micro_mis)
15200 {
15201 _bfd_error_handler
15202 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
15203 ibfd,
15204 m16_mis ? "MIPS16" : "microMIPS",
15205 m16_mis ? "microMIPS" : "MIPS16");
15206 ok = FALSE;
15207 }
15208
15209 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15210
15211 new_flags &= ~ EF_MIPS_ARCH_ASE;
15212 old_flags &= ~ EF_MIPS_ARCH_ASE;
15213 }
15214
15215 /* Compare NaN encodings. */
15216 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15217 {
15218 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15219 ibfd,
15220 (new_flags & EF_MIPS_NAN2008
15221 ? "-mnan=2008" : "-mnan=legacy"),
15222 (old_flags & EF_MIPS_NAN2008
15223 ? "-mnan=2008" : "-mnan=legacy"));
15224 ok = FALSE;
15225 new_flags &= ~EF_MIPS_NAN2008;
15226 old_flags &= ~EF_MIPS_NAN2008;
15227 }
15228
15229 /* Compare FP64 state. */
15230 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15231 {
15232 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15233 ibfd,
15234 (new_flags & EF_MIPS_FP64
15235 ? "-mfp64" : "-mfp32"),
15236 (old_flags & EF_MIPS_FP64
15237 ? "-mfp64" : "-mfp32"));
15238 ok = FALSE;
15239 new_flags &= ~EF_MIPS_FP64;
15240 old_flags &= ~EF_MIPS_FP64;
15241 }
15242
15243 /* Warn about any other mismatches */
15244 if (new_flags != old_flags)
15245 {
15246 _bfd_error_handler
15247 (_("%B: uses different e_flags (0x%lx) fields than previous modules "
15248 "(0x%lx)"),
15249 ibfd, (unsigned long) new_flags,
15250 (unsigned long) old_flags);
15251 ok = FALSE;
15252 }
15253
15254 return ok;
15255 }
15256
15257 /* Merge object attributes from IBFD into OBFD. Raise an error if
15258 there are conflicting attributes. */
15259 static bfd_boolean
15260 mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
15261 {
15262 bfd *obfd = info->output_bfd;
15263 obj_attribute *in_attr;
15264 obj_attribute *out_attr;
15265 bfd *abi_fp_bfd;
15266 bfd *abi_msa_bfd;
15267
15268 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15269 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15270 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
15271 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15272
15273 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15274 if (!abi_msa_bfd
15275 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15276 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15277
15278 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15279 {
15280 /* This is the first object. Copy the attributes. */
15281 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15282
15283 /* Use the Tag_null value to indicate the attributes have been
15284 initialized. */
15285 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15286
15287 return TRUE;
15288 }
15289
15290 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15291 non-conflicting ones. */
15292 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15293 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15294 {
15295 int out_fp, in_fp;
15296
15297 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15298 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15299 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15300 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15301 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
15302 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15303 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15304 || in_fp == Val_GNU_MIPS_ABI_FP_64
15305 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15306 {
15307 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15308 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15309 }
15310 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15311 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15312 || out_fp == Val_GNU_MIPS_ABI_FP_64
15313 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15314 /* Keep the current setting. */;
15315 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15316 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15317 {
15318 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15319 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15320 }
15321 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15322 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15323 /* Keep the current setting. */;
15324 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15325 {
15326 const char *out_string, *in_string;
15327
15328 out_string = _bfd_mips_fp_abi_string (out_fp);
15329 in_string = _bfd_mips_fp_abi_string (in_fp);
15330 /* First warn about cases involving unrecognised ABIs. */
15331 if (!out_string && !in_string)
15332 _bfd_error_handler
15333 (_("Warning: %B uses unknown floating point ABI %d "
15334 "(set by %B), %B uses unknown floating point ABI %d"),
15335 obfd, abi_fp_bfd, ibfd, out_fp, in_fp);
15336 else if (!out_string)
15337 _bfd_error_handler
15338 (_("Warning: %B uses unknown floating point ABI %d "
15339 "(set by %B), %B uses %s"),
15340 obfd, abi_fp_bfd, ibfd, out_fp, in_string);
15341 else if (!in_string)
15342 _bfd_error_handler
15343 (_("Warning: %B uses %s (set by %B), "
15344 "%B uses unknown floating point ABI %d"),
15345 obfd, abi_fp_bfd, ibfd, out_string, in_fp);
15346 else
15347 {
15348 /* If one of the bfds is soft-float, the other must be
15349 hard-float. The exact choice of hard-float ABI isn't
15350 really relevant to the error message. */
15351 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15352 out_string = "-mhard-float";
15353 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15354 in_string = "-mhard-float";
15355 _bfd_error_handler
15356 (_("Warning: %B uses %s (set by %B), %B uses %s"),
15357 obfd, abi_fp_bfd, ibfd, out_string, in_string);
15358 }
15359 }
15360 }
15361
15362 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15363 non-conflicting ones. */
15364 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15365 {
15366 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15367 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15368 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15369 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15370 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15371 {
15372 case Val_GNU_MIPS_ABI_MSA_128:
15373 _bfd_error_handler
15374 (_("Warning: %B uses %s (set by %B), "
15375 "%B uses unknown MSA ABI %d"),
15376 obfd, abi_msa_bfd, ibfd,
15377 "-mmsa", in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15378 break;
15379
15380 default:
15381 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15382 {
15383 case Val_GNU_MIPS_ABI_MSA_128:
15384 _bfd_error_handler
15385 (_("Warning: %B uses unknown MSA ABI %d "
15386 "(set by %B), %B uses %s"),
15387 obfd, abi_msa_bfd, ibfd,
15388 out_attr[Tag_GNU_MIPS_ABI_MSA].i, "-mmsa");
15389 break;
15390
15391 default:
15392 _bfd_error_handler
15393 (_("Warning: %B uses unknown MSA ABI %d "
15394 "(set by %B), %B uses unknown MSA ABI %d"),
15395 obfd, abi_msa_bfd, ibfd,
15396 out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15397 in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15398 break;
15399 }
15400 }
15401 }
15402
15403 /* Merge Tag_compatibility attributes and any common GNU ones. */
15404 return _bfd_elf_merge_object_attributes (ibfd, info);
15405 }
15406
15407 /* Merge object ABI flags from IBFD into OBFD. Raise an error if
15408 there are conflicting settings. */
15409
15410 static bfd_boolean
15411 mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15412 {
15413 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15414 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15415 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15416
15417 /* Update the output abiflags fp_abi using the computed fp_abi. */
15418 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15419
15420 #define max(a, b) ((a) > (b) ? (a) : (b))
15421 /* Merge abiflags. */
15422 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15423 in_tdata->abiflags.isa_level);
15424 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15425 in_tdata->abiflags.isa_rev);
15426 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15427 in_tdata->abiflags.gpr_size);
15428 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15429 in_tdata->abiflags.cpr1_size);
15430 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15431 in_tdata->abiflags.cpr2_size);
15432 #undef max
15433 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15434 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15435
15436 return TRUE;
15437 }
15438
15439 /* Merge backend specific data from an object file to the output
15440 object file when linking. */
15441
15442 bfd_boolean
15443 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
15444 {
15445 bfd *obfd = info->output_bfd;
15446 struct mips_elf_obj_tdata *out_tdata;
15447 struct mips_elf_obj_tdata *in_tdata;
15448 bfd_boolean null_input_bfd = TRUE;
15449 asection *sec;
15450 bfd_boolean ok;
15451
15452 /* Check if we have the same endianness. */
15453 if (! _bfd_generic_verify_endian_match (ibfd, info))
15454 {
15455 _bfd_error_handler
15456 (_("%B: endianness incompatible with that of the selected emulation"),
15457 ibfd);
15458 return FALSE;
15459 }
15460
15461 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15462 return TRUE;
15463
15464 in_tdata = mips_elf_tdata (ibfd);
15465 out_tdata = mips_elf_tdata (obfd);
15466
15467 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15468 {
15469 _bfd_error_handler
15470 (_("%B: ABI is incompatible with that of the selected emulation"),
15471 ibfd);
15472 return FALSE;
15473 }
15474
15475 /* Check to see if the input BFD actually contains any sections. If not,
15476 then it has no attributes, and its flags may not have been initialized
15477 either, but it cannot actually cause any incompatibility. */
15478 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15479 {
15480 /* Ignore synthetic sections and empty .text, .data and .bss sections
15481 which are automatically generated by gas. Also ignore fake
15482 (s)common sections, since merely defining a common symbol does
15483 not affect compatibility. */
15484 if ((sec->flags & SEC_IS_COMMON) == 0
15485 && strcmp (sec->name, ".reginfo")
15486 && strcmp (sec->name, ".mdebug")
15487 && (sec->size != 0
15488 || (strcmp (sec->name, ".text")
15489 && strcmp (sec->name, ".data")
15490 && strcmp (sec->name, ".bss"))))
15491 {
15492 null_input_bfd = FALSE;
15493 break;
15494 }
15495 }
15496 if (null_input_bfd)
15497 return TRUE;
15498
15499 /* Populate abiflags using existing information. */
15500 if (in_tdata->abiflags_valid)
15501 {
15502 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15503 Elf_Internal_ABIFlags_v0 in_abiflags;
15504 Elf_Internal_ABIFlags_v0 abiflags;
15505
15506 /* Set up the FP ABI attribute from the abiflags if it is not already
15507 set. */
15508 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15509 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
15510
15511 infer_mips_abiflags (ibfd, &abiflags);
15512 in_abiflags = in_tdata->abiflags;
15513
15514 /* It is not possible to infer the correct ISA revision
15515 for R3 or R5 so drop down to R2 for the checks. */
15516 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15517 in_abiflags.isa_rev = 2;
15518
15519 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15520 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
15521 _bfd_error_handler
15522 (_("%B: warning: Inconsistent ISA between e_flags and "
15523 ".MIPS.abiflags"), ibfd);
15524 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15525 && in_abiflags.fp_abi != abiflags.fp_abi)
15526 _bfd_error_handler
15527 (_("%B: warning: Inconsistent FP ABI between .gnu.attributes and "
15528 ".MIPS.abiflags"), ibfd);
15529 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15530 _bfd_error_handler
15531 (_("%B: warning: Inconsistent ASEs between e_flags and "
15532 ".MIPS.abiflags"), ibfd);
15533 /* The isa_ext is allowed to be an extension of what can be inferred
15534 from e_flags. */
15535 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15536 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
15537 _bfd_error_handler
15538 (_("%B: warning: Inconsistent ISA extensions between e_flags and "
15539 ".MIPS.abiflags"), ibfd);
15540 if (in_abiflags.flags2 != 0)
15541 _bfd_error_handler
15542 (_("%B: warning: Unexpected flag in the flags2 field of "
15543 ".MIPS.abiflags (0x%lx)"), ibfd,
15544 (unsigned long) in_abiflags.flags2);
15545 }
15546 else
15547 {
15548 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15549 in_tdata->abiflags_valid = TRUE;
15550 }
15551
15552 if (!out_tdata->abiflags_valid)
15553 {
15554 /* Copy input abiflags if output abiflags are not already valid. */
15555 out_tdata->abiflags = in_tdata->abiflags;
15556 out_tdata->abiflags_valid = TRUE;
15557 }
15558
15559 if (! elf_flags_init (obfd))
15560 {
15561 elf_flags_init (obfd) = TRUE;
15562 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15563 elf_elfheader (obfd)->e_ident[EI_CLASS]
15564 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15565
15566 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15567 && (bfd_get_arch_info (obfd)->the_default
15568 || mips_mach_extends_p (bfd_get_mach (obfd),
15569 bfd_get_mach (ibfd))))
15570 {
15571 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15572 bfd_get_mach (ibfd)))
15573 return FALSE;
15574
15575 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15576 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15577 }
15578
15579 ok = TRUE;
15580 }
15581 else
15582 ok = mips_elf_merge_obj_e_flags (ibfd, info);
15583
15584 ok = mips_elf_merge_obj_attributes (ibfd, info) && ok;
15585
15586 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
15587
15588 if (!ok)
15589 {
15590 bfd_set_error (bfd_error_bad_value);
15591 return FALSE;
15592 }
15593
15594 return TRUE;
15595 }
15596
15597 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15598
15599 bfd_boolean
15600 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15601 {
15602 BFD_ASSERT (!elf_flags_init (abfd)
15603 || elf_elfheader (abfd)->e_flags == flags);
15604
15605 elf_elfheader (abfd)->e_flags = flags;
15606 elf_flags_init (abfd) = TRUE;
15607 return TRUE;
15608 }
15609
15610 char *
15611 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15612 {
15613 switch (dtag)
15614 {
15615 default: return "";
15616 case DT_MIPS_RLD_VERSION:
15617 return "MIPS_RLD_VERSION";
15618 case DT_MIPS_TIME_STAMP:
15619 return "MIPS_TIME_STAMP";
15620 case DT_MIPS_ICHECKSUM:
15621 return "MIPS_ICHECKSUM";
15622 case DT_MIPS_IVERSION:
15623 return "MIPS_IVERSION";
15624 case DT_MIPS_FLAGS:
15625 return "MIPS_FLAGS";
15626 case DT_MIPS_BASE_ADDRESS:
15627 return "MIPS_BASE_ADDRESS";
15628 case DT_MIPS_MSYM:
15629 return "MIPS_MSYM";
15630 case DT_MIPS_CONFLICT:
15631 return "MIPS_CONFLICT";
15632 case DT_MIPS_LIBLIST:
15633 return "MIPS_LIBLIST";
15634 case DT_MIPS_LOCAL_GOTNO:
15635 return "MIPS_LOCAL_GOTNO";
15636 case DT_MIPS_CONFLICTNO:
15637 return "MIPS_CONFLICTNO";
15638 case DT_MIPS_LIBLISTNO:
15639 return "MIPS_LIBLISTNO";
15640 case DT_MIPS_SYMTABNO:
15641 return "MIPS_SYMTABNO";
15642 case DT_MIPS_UNREFEXTNO:
15643 return "MIPS_UNREFEXTNO";
15644 case DT_MIPS_GOTSYM:
15645 return "MIPS_GOTSYM";
15646 case DT_MIPS_HIPAGENO:
15647 return "MIPS_HIPAGENO";
15648 case DT_MIPS_RLD_MAP:
15649 return "MIPS_RLD_MAP";
15650 case DT_MIPS_RLD_MAP_REL:
15651 return "MIPS_RLD_MAP_REL";
15652 case DT_MIPS_DELTA_CLASS:
15653 return "MIPS_DELTA_CLASS";
15654 case DT_MIPS_DELTA_CLASS_NO:
15655 return "MIPS_DELTA_CLASS_NO";
15656 case DT_MIPS_DELTA_INSTANCE:
15657 return "MIPS_DELTA_INSTANCE";
15658 case DT_MIPS_DELTA_INSTANCE_NO:
15659 return "MIPS_DELTA_INSTANCE_NO";
15660 case DT_MIPS_DELTA_RELOC:
15661 return "MIPS_DELTA_RELOC";
15662 case DT_MIPS_DELTA_RELOC_NO:
15663 return "MIPS_DELTA_RELOC_NO";
15664 case DT_MIPS_DELTA_SYM:
15665 return "MIPS_DELTA_SYM";
15666 case DT_MIPS_DELTA_SYM_NO:
15667 return "MIPS_DELTA_SYM_NO";
15668 case DT_MIPS_DELTA_CLASSSYM:
15669 return "MIPS_DELTA_CLASSSYM";
15670 case DT_MIPS_DELTA_CLASSSYM_NO:
15671 return "MIPS_DELTA_CLASSSYM_NO";
15672 case DT_MIPS_CXX_FLAGS:
15673 return "MIPS_CXX_FLAGS";
15674 case DT_MIPS_PIXIE_INIT:
15675 return "MIPS_PIXIE_INIT";
15676 case DT_MIPS_SYMBOL_LIB:
15677 return "MIPS_SYMBOL_LIB";
15678 case DT_MIPS_LOCALPAGE_GOTIDX:
15679 return "MIPS_LOCALPAGE_GOTIDX";
15680 case DT_MIPS_LOCAL_GOTIDX:
15681 return "MIPS_LOCAL_GOTIDX";
15682 case DT_MIPS_HIDDEN_GOTIDX:
15683 return "MIPS_HIDDEN_GOTIDX";
15684 case DT_MIPS_PROTECTED_GOTIDX:
15685 return "MIPS_PROTECTED_GOT_IDX";
15686 case DT_MIPS_OPTIONS:
15687 return "MIPS_OPTIONS";
15688 case DT_MIPS_INTERFACE:
15689 return "MIPS_INTERFACE";
15690 case DT_MIPS_DYNSTR_ALIGN:
15691 return "DT_MIPS_DYNSTR_ALIGN";
15692 case DT_MIPS_INTERFACE_SIZE:
15693 return "DT_MIPS_INTERFACE_SIZE";
15694 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15695 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15696 case DT_MIPS_PERF_SUFFIX:
15697 return "DT_MIPS_PERF_SUFFIX";
15698 case DT_MIPS_COMPACT_SIZE:
15699 return "DT_MIPS_COMPACT_SIZE";
15700 case DT_MIPS_GP_VALUE:
15701 return "DT_MIPS_GP_VALUE";
15702 case DT_MIPS_AUX_DYNAMIC:
15703 return "DT_MIPS_AUX_DYNAMIC";
15704 case DT_MIPS_PLTGOT:
15705 return "DT_MIPS_PLTGOT";
15706 case DT_MIPS_RWPLT:
15707 return "DT_MIPS_RWPLT";
15708 }
15709 }
15710
15711 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15712 not known. */
15713
15714 const char *
15715 _bfd_mips_fp_abi_string (int fp)
15716 {
15717 switch (fp)
15718 {
15719 /* These strings aren't translated because they're simply
15720 option lists. */
15721 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15722 return "-mdouble-float";
15723
15724 case Val_GNU_MIPS_ABI_FP_SINGLE:
15725 return "-msingle-float";
15726
15727 case Val_GNU_MIPS_ABI_FP_SOFT:
15728 return "-msoft-float";
15729
15730 case Val_GNU_MIPS_ABI_FP_OLD_64:
15731 return _("-mips32r2 -mfp64 (12 callee-saved)");
15732
15733 case Val_GNU_MIPS_ABI_FP_XX:
15734 return "-mfpxx";
15735
15736 case Val_GNU_MIPS_ABI_FP_64:
15737 return "-mgp32 -mfp64";
15738
15739 case Val_GNU_MIPS_ABI_FP_64A:
15740 return "-mgp32 -mfp64 -mno-odd-spreg";
15741
15742 default:
15743 return 0;
15744 }
15745 }
15746
15747 static void
15748 print_mips_ases (FILE *file, unsigned int mask)
15749 {
15750 if (mask & AFL_ASE_DSP)
15751 fputs ("\n\tDSP ASE", file);
15752 if (mask & AFL_ASE_DSPR2)
15753 fputs ("\n\tDSP R2 ASE", file);
15754 if (mask & AFL_ASE_DSPR3)
15755 fputs ("\n\tDSP R3 ASE", file);
15756 if (mask & AFL_ASE_EVA)
15757 fputs ("\n\tEnhanced VA Scheme", file);
15758 if (mask & AFL_ASE_MCU)
15759 fputs ("\n\tMCU (MicroController) ASE", file);
15760 if (mask & AFL_ASE_MDMX)
15761 fputs ("\n\tMDMX ASE", file);
15762 if (mask & AFL_ASE_MIPS3D)
15763 fputs ("\n\tMIPS-3D ASE", file);
15764 if (mask & AFL_ASE_MT)
15765 fputs ("\n\tMT ASE", file);
15766 if (mask & AFL_ASE_SMARTMIPS)
15767 fputs ("\n\tSmartMIPS ASE", file);
15768 if (mask & AFL_ASE_VIRT)
15769 fputs ("\n\tVZ ASE", file);
15770 if (mask & AFL_ASE_MSA)
15771 fputs ("\n\tMSA ASE", file);
15772 if (mask & AFL_ASE_MIPS16)
15773 fputs ("\n\tMIPS16 ASE", file);
15774 if (mask & AFL_ASE_MICROMIPS)
15775 fputs ("\n\tMICROMIPS ASE", file);
15776 if (mask & AFL_ASE_XPA)
15777 fputs ("\n\tXPA ASE", file);
15778 if (mask == 0)
15779 fprintf (file, "\n\t%s", _("None"));
15780 else if ((mask & ~AFL_ASE_MASK) != 0)
15781 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
15782 }
15783
15784 static void
15785 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15786 {
15787 switch (isa_ext)
15788 {
15789 case 0:
15790 fputs (_("None"), file);
15791 break;
15792 case AFL_EXT_XLR:
15793 fputs ("RMI XLR", file);
15794 break;
15795 case AFL_EXT_OCTEON3:
15796 fputs ("Cavium Networks Octeon3", file);
15797 break;
15798 case AFL_EXT_OCTEON2:
15799 fputs ("Cavium Networks Octeon2", file);
15800 break;
15801 case AFL_EXT_OCTEONP:
15802 fputs ("Cavium Networks OcteonP", file);
15803 break;
15804 case AFL_EXT_LOONGSON_3A:
15805 fputs ("Loongson 3A", file);
15806 break;
15807 case AFL_EXT_OCTEON:
15808 fputs ("Cavium Networks Octeon", file);
15809 break;
15810 case AFL_EXT_5900:
15811 fputs ("Toshiba R5900", file);
15812 break;
15813 case AFL_EXT_4650:
15814 fputs ("MIPS R4650", file);
15815 break;
15816 case AFL_EXT_4010:
15817 fputs ("LSI R4010", file);
15818 break;
15819 case AFL_EXT_4100:
15820 fputs ("NEC VR4100", file);
15821 break;
15822 case AFL_EXT_3900:
15823 fputs ("Toshiba R3900", file);
15824 break;
15825 case AFL_EXT_10000:
15826 fputs ("MIPS R10000", file);
15827 break;
15828 case AFL_EXT_SB1:
15829 fputs ("Broadcom SB-1", file);
15830 break;
15831 case AFL_EXT_4111:
15832 fputs ("NEC VR4111/VR4181", file);
15833 break;
15834 case AFL_EXT_4120:
15835 fputs ("NEC VR4120", file);
15836 break;
15837 case AFL_EXT_5400:
15838 fputs ("NEC VR5400", file);
15839 break;
15840 case AFL_EXT_5500:
15841 fputs ("NEC VR5500", file);
15842 break;
15843 case AFL_EXT_LOONGSON_2E:
15844 fputs ("ST Microelectronics Loongson 2E", file);
15845 break;
15846 case AFL_EXT_LOONGSON_2F:
15847 fputs ("ST Microelectronics Loongson 2F", file);
15848 break;
15849 default:
15850 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
15851 break;
15852 }
15853 }
15854
15855 static void
15856 print_mips_fp_abi_value (FILE *file, int val)
15857 {
15858 switch (val)
15859 {
15860 case Val_GNU_MIPS_ABI_FP_ANY:
15861 fprintf (file, _("Hard or soft float\n"));
15862 break;
15863 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15864 fprintf (file, _("Hard float (double precision)\n"));
15865 break;
15866 case Val_GNU_MIPS_ABI_FP_SINGLE:
15867 fprintf (file, _("Hard float (single precision)\n"));
15868 break;
15869 case Val_GNU_MIPS_ABI_FP_SOFT:
15870 fprintf (file, _("Soft float\n"));
15871 break;
15872 case Val_GNU_MIPS_ABI_FP_OLD_64:
15873 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15874 break;
15875 case Val_GNU_MIPS_ABI_FP_XX:
15876 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
15877 break;
15878 case Val_GNU_MIPS_ABI_FP_64:
15879 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
15880 break;
15881 case Val_GNU_MIPS_ABI_FP_64A:
15882 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
15883 break;
15884 default:
15885 fprintf (file, "??? (%d)\n", val);
15886 break;
15887 }
15888 }
15889
15890 static int
15891 get_mips_reg_size (int reg_size)
15892 {
15893 return (reg_size == AFL_REG_NONE) ? 0
15894 : (reg_size == AFL_REG_32) ? 32
15895 : (reg_size == AFL_REG_64) ? 64
15896 : (reg_size == AFL_REG_128) ? 128
15897 : -1;
15898 }
15899
15900 bfd_boolean
15901 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
15902 {
15903 FILE *file = ptr;
15904
15905 BFD_ASSERT (abfd != NULL && ptr != NULL);
15906
15907 /* Print normal ELF private data. */
15908 _bfd_elf_print_private_bfd_data (abfd, ptr);
15909
15910 /* xgettext:c-format */
15911 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15912
15913 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
15914 fprintf (file, _(" [abi=O32]"));
15915 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
15916 fprintf (file, _(" [abi=O64]"));
15917 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
15918 fprintf (file, _(" [abi=EABI32]"));
15919 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
15920 fprintf (file, _(" [abi=EABI64]"));
15921 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
15922 fprintf (file, _(" [abi unknown]"));
15923 else if (ABI_N32_P (abfd))
15924 fprintf (file, _(" [abi=N32]"));
15925 else if (ABI_64_P (abfd))
15926 fprintf (file, _(" [abi=64]"));
15927 else
15928 fprintf (file, _(" [no abi set]"));
15929
15930 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
15931 fprintf (file, " [mips1]");
15932 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
15933 fprintf (file, " [mips2]");
15934 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
15935 fprintf (file, " [mips3]");
15936 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
15937 fprintf (file, " [mips4]");
15938 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
15939 fprintf (file, " [mips5]");
15940 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
15941 fprintf (file, " [mips32]");
15942 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
15943 fprintf (file, " [mips64]");
15944 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
15945 fprintf (file, " [mips32r2]");
15946 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
15947 fprintf (file, " [mips64r2]");
15948 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
15949 fprintf (file, " [mips32r6]");
15950 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
15951 fprintf (file, " [mips64r6]");
15952 else
15953 fprintf (file, _(" [unknown ISA]"));
15954
15955 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
15956 fprintf (file, " [mdmx]");
15957
15958 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
15959 fprintf (file, " [mips16]");
15960
15961 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
15962 fprintf (file, " [micromips]");
15963
15964 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
15965 fprintf (file, " [nan2008]");
15966
15967 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
15968 fprintf (file, " [old fp64]");
15969
15970 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
15971 fprintf (file, " [32bitmode]");
15972 else
15973 fprintf (file, _(" [not 32bitmode]"));
15974
15975 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
15976 fprintf (file, " [noreorder]");
15977
15978 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
15979 fprintf (file, " [PIC]");
15980
15981 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
15982 fprintf (file, " [CPIC]");
15983
15984 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
15985 fprintf (file, " [XGOT]");
15986
15987 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
15988 fprintf (file, " [UCODE]");
15989
15990 fputc ('\n', file);
15991
15992 if (mips_elf_tdata (abfd)->abiflags_valid)
15993 {
15994 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
15995 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
15996 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
15997 if (abiflags->isa_rev > 1)
15998 fprintf (file, "r%d", abiflags->isa_rev);
15999 fprintf (file, "\nGPR size: %d",
16000 get_mips_reg_size (abiflags->gpr_size));
16001 fprintf (file, "\nCPR1 size: %d",
16002 get_mips_reg_size (abiflags->cpr1_size));
16003 fprintf (file, "\nCPR2 size: %d",
16004 get_mips_reg_size (abiflags->cpr2_size));
16005 fputs ("\nFP ABI: ", file);
16006 print_mips_fp_abi_value (file, abiflags->fp_abi);
16007 fputs ("ISA Extension: ", file);
16008 print_mips_isa_ext (file, abiflags->isa_ext);
16009 fputs ("\nASEs:", file);
16010 print_mips_ases (file, abiflags->ases);
16011 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
16012 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
16013 fputc ('\n', file);
16014 }
16015
16016 return TRUE;
16017 }
16018
16019 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
16020 {
16021 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16022 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16023 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
16024 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16025 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16026 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
16027 { NULL, 0, 0, 0, 0 }
16028 };
16029
16030 /* Merge non visibility st_other attributes. Ensure that the
16031 STO_OPTIONAL flag is copied into h->other, even if this is not a
16032 definiton of the symbol. */
16033 void
16034 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
16035 const Elf_Internal_Sym *isym,
16036 bfd_boolean definition,
16037 bfd_boolean dynamic ATTRIBUTE_UNUSED)
16038 {
16039 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
16040 {
16041 unsigned char other;
16042
16043 other = (definition ? isym->st_other : h->other);
16044 other &= ~ELF_ST_VISIBILITY (-1);
16045 h->other = other | ELF_ST_VISIBILITY (h->other);
16046 }
16047
16048 if (!definition
16049 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
16050 h->other |= STO_OPTIONAL;
16051 }
16052
16053 /* Decide whether an undefined symbol is special and can be ignored.
16054 This is the case for OPTIONAL symbols on IRIX. */
16055 bfd_boolean
16056 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
16057 {
16058 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
16059 }
16060
16061 bfd_boolean
16062 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
16063 {
16064 return (sym->st_shndx == SHN_COMMON
16065 || sym->st_shndx == SHN_MIPS_ACOMMON
16066 || sym->st_shndx == SHN_MIPS_SCOMMON);
16067 }
16068
16069 /* Return address for Ith PLT stub in section PLT, for relocation REL
16070 or (bfd_vma) -1 if it should not be included. */
16071
16072 bfd_vma
16073 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
16074 const arelent *rel ATTRIBUTE_UNUSED)
16075 {
16076 return (plt->vma
16077 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
16078 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
16079 }
16080
16081 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
16082 and microMIPS PLT slots we may have a many-to-one mapping between .plt
16083 and .got.plt and also the slots may be of a different size each we walk
16084 the PLT manually fetching instructions and matching them against known
16085 patterns. To make things easier standard MIPS slots, if any, always come
16086 first. As we don't create proper ELF symbols we use the UDATA.I member
16087 of ASYMBOL to carry ISA annotation. The encoding used is the same as
16088 with the ST_OTHER member of the ELF symbol. */
16089
16090 long
16091 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
16092 long symcount ATTRIBUTE_UNUSED,
16093 asymbol **syms ATTRIBUTE_UNUSED,
16094 long dynsymcount, asymbol **dynsyms,
16095 asymbol **ret)
16096 {
16097 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
16098 static const char microsuffix[] = "@micromipsplt";
16099 static const char m16suffix[] = "@mips16plt";
16100 static const char mipssuffix[] = "@plt";
16101
16102 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
16103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
16104 bfd_boolean micromips_p = MICROMIPS_P (abfd);
16105 Elf_Internal_Shdr *hdr;
16106 bfd_byte *plt_data;
16107 bfd_vma plt_offset;
16108 unsigned int other;
16109 bfd_vma entry_size;
16110 bfd_vma plt0_size;
16111 asection *relplt;
16112 bfd_vma opcode;
16113 asection *plt;
16114 asymbol *send;
16115 size_t size;
16116 char *names;
16117 long counti;
16118 arelent *p;
16119 asymbol *s;
16120 char *nend;
16121 long count;
16122 long pi;
16123 long i;
16124 long n;
16125
16126 *ret = NULL;
16127
16128 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
16129 return 0;
16130
16131 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16132 if (relplt == NULL)
16133 return 0;
16134
16135 hdr = &elf_section_data (relplt)->this_hdr;
16136 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
16137 return 0;
16138
16139 plt = bfd_get_section_by_name (abfd, ".plt");
16140 if (plt == NULL)
16141 return 0;
16142
16143 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
16144 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
16145 return -1;
16146 p = relplt->relocation;
16147
16148 /* Calculating the exact amount of space required for symbols would
16149 require two passes over the PLT, so just pessimise assuming two
16150 PLT slots per relocation. */
16151 count = relplt->size / hdr->sh_entsize;
16152 counti = count * bed->s->int_rels_per_ext_rel;
16153 size = 2 * count * sizeof (asymbol);
16154 size += count * (sizeof (mipssuffix) +
16155 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16156 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16157 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16158
16159 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16160 size += sizeof (asymbol) + sizeof (pltname);
16161
16162 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16163 return -1;
16164
16165 if (plt->size < 16)
16166 return -1;
16167
16168 s = *ret = bfd_malloc (size);
16169 if (s == NULL)
16170 return -1;
16171 send = s + 2 * count + 1;
16172
16173 names = (char *) send;
16174 nend = (char *) s + size;
16175 n = 0;
16176
16177 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16178 if (opcode == 0x3302fffe)
16179 {
16180 if (!micromips_p)
16181 return -1;
16182 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16183 other = STO_MICROMIPS;
16184 }
16185 else if (opcode == 0x0398c1d0)
16186 {
16187 if (!micromips_p)
16188 return -1;
16189 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16190 other = STO_MICROMIPS;
16191 }
16192 else
16193 {
16194 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16195 other = 0;
16196 }
16197
16198 s->the_bfd = abfd;
16199 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16200 s->section = plt;
16201 s->value = 0;
16202 s->name = names;
16203 s->udata.i = other;
16204 memcpy (names, pltname, sizeof (pltname));
16205 names += sizeof (pltname);
16206 ++s, ++n;
16207
16208 pi = 0;
16209 for (plt_offset = plt0_size;
16210 plt_offset + 8 <= plt->size && s < send;
16211 plt_offset += entry_size)
16212 {
16213 bfd_vma gotplt_addr;
16214 const char *suffix;
16215 bfd_vma gotplt_hi;
16216 bfd_vma gotplt_lo;
16217 size_t suffixlen;
16218
16219 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16220
16221 /* Check if the second word matches the expected MIPS16 instruction. */
16222 if (opcode == 0x651aeb00)
16223 {
16224 if (micromips_p)
16225 return -1;
16226 /* Truncated table??? */
16227 if (plt_offset + 16 > plt->size)
16228 break;
16229 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16230 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16231 suffixlen = sizeof (m16suffix);
16232 suffix = m16suffix;
16233 other = STO_MIPS16;
16234 }
16235 /* Likewise the expected microMIPS instruction (no insn32 mode). */
16236 else if (opcode == 0xff220000)
16237 {
16238 if (!micromips_p)
16239 return -1;
16240 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16241 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16242 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16243 gotplt_lo <<= 2;
16244 gotplt_addr = gotplt_hi + gotplt_lo;
16245 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16246 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16247 suffixlen = sizeof (microsuffix);
16248 suffix = microsuffix;
16249 other = STO_MICROMIPS;
16250 }
16251 /* Likewise the expected microMIPS instruction (insn32 mode). */
16252 else if ((opcode & 0xffff0000) == 0xff2f0000)
16253 {
16254 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16255 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16256 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16257 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16258 gotplt_addr = gotplt_hi + gotplt_lo;
16259 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16260 suffixlen = sizeof (microsuffix);
16261 suffix = microsuffix;
16262 other = STO_MICROMIPS;
16263 }
16264 /* Otherwise assume standard MIPS code. */
16265 else
16266 {
16267 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16268 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16269 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16270 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16271 gotplt_addr = gotplt_hi + gotplt_lo;
16272 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16273 suffixlen = sizeof (mipssuffix);
16274 suffix = mipssuffix;
16275 other = 0;
16276 }
16277 /* Truncated table??? */
16278 if (plt_offset + entry_size > plt->size)
16279 break;
16280
16281 for (i = 0;
16282 i < count && p[pi].address != gotplt_addr;
16283 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16284
16285 if (i < count)
16286 {
16287 size_t namelen;
16288 size_t len;
16289
16290 *s = **p[pi].sym_ptr_ptr;
16291 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16292 we are defining a symbol, ensure one of them is set. */
16293 if ((s->flags & BSF_LOCAL) == 0)
16294 s->flags |= BSF_GLOBAL;
16295 s->flags |= BSF_SYNTHETIC;
16296 s->section = plt;
16297 s->value = plt_offset;
16298 s->name = names;
16299 s->udata.i = other;
16300
16301 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16302 namelen = len + suffixlen;
16303 if (names + namelen > nend)
16304 break;
16305
16306 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16307 names += len;
16308 memcpy (names, suffix, suffixlen);
16309 names += suffixlen;
16310
16311 ++s, ++n;
16312 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16313 }
16314 }
16315
16316 free (plt_data);
16317
16318 return n;
16319 }
16320
16321 void
16322 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16323 {
16324 struct mips_elf_link_hash_table *htab;
16325 Elf_Internal_Ehdr *i_ehdrp;
16326
16327 i_ehdrp = elf_elfheader (abfd);
16328 if (link_info)
16329 {
16330 htab = mips_elf_hash_table (link_info);
16331 BFD_ASSERT (htab != NULL);
16332
16333 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16334 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
16335 }
16336
16337 _bfd_elf_post_process_headers (abfd, link_info);
16338
16339 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16340 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16341 i_ehdrp->e_ident[EI_ABIVERSION] = 3;
16342
16343 if (elf_stack_flags (abfd) && !(elf_stack_flags (abfd) & PF_X))
16344 i_ehdrp->e_ident[EI_ABIVERSION] = 5;
16345 }
16346
16347 int
16348 _bfd_mips_elf_compact_eh_encoding (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16349 {
16350 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16351 }
16352
16353 /* Return the opcode for can't unwind. */
16354
16355 int
16356 _bfd_mips_elf_cant_unwind_opcode (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16357 {
16358 return COMPACT_EH_CANT_UNWIND_OPCODE;
16359 }
This page took 0.648667 seconds and 5 git commands to generate.