Add attribute printf to _bfd_error_handler
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2018 Free Software Foundation, Inc.
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
28
29 /* This file handles functionality common to the different MIPS ABI's. */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "libiberty.h"
35 #include "elf-bfd.h"
36 #include "elfxx-mips.h"
37 #include "elf/mips.h"
38 #include "elf-vxworks.h"
39 #include "dwarf2.h"
40
41 /* Get the ECOFF swapping routines. */
42 #include "coff/sym.h"
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46
47 #include "hashtab.h"
48
49 /* Types of TLS GOT entry. */
50 enum mips_got_tls_type {
51 GOT_TLS_NONE,
52 GOT_TLS_GD,
53 GOT_TLS_LDM,
54 GOT_TLS_IE
55 };
56
57 /* This structure is used to hold information about one GOT entry.
58 There are four types of entry:
59
60 (1) an absolute address
61 requires: abfd == NULL
62 fields: d.address
63
64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 fields: abfd, symndx, d.addend, tls_type
67
68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 requires: abfd != NULL, symndx == -1
70 fields: d.h, tls_type
71
72 (4) a TLS LDM slot
73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 fields: none; there's only one of these per GOT. */
75 struct mips_got_entry
76 {
77 /* One input bfd that needs the GOT entry. */
78 bfd *abfd;
79 /* The index of the symbol, as stored in the relocation r_info, if
80 we have a local symbol; -1 otherwise. */
81 long symndx;
82 union
83 {
84 /* If abfd == NULL, an address that must be stored in the got. */
85 bfd_vma address;
86 /* If abfd != NULL && symndx != -1, the addend of the relocation
87 that should be added to the symbol value. */
88 bfd_vma addend;
89 /* If abfd != NULL && symndx == -1, the hash table entry
90 corresponding to a symbol in the GOT. The symbol's entry
91 is in the local area if h->global_got_area is GGA_NONE,
92 otherwise it is in the global area. */
93 struct mips_elf_link_hash_entry *h;
94 } d;
95
96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
97 symbol entry with r_symndx == 0. */
98 unsigned char tls_type;
99
100 /* True if we have filled in the GOT contents for a TLS entry,
101 and created the associated relocations. */
102 unsigned char tls_initialized;
103
104 /* The offset from the beginning of the .got section to the entry
105 corresponding to this symbol+addend. If it's a global symbol
106 whose offset is yet to be decided, it's going to be -1. */
107 long gotidx;
108 };
109
110 /* This structure represents a GOT page reference from an input bfd.
111 Each instance represents a symbol + ADDEND, where the representation
112 of the symbol depends on whether it is local to the input bfd.
113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
115
116 Page references with SYMNDX >= 0 always become page references
117 in the output. Page references with SYMNDX < 0 only become page
118 references if the symbol binds locally; in other cases, the page
119 reference decays to a global GOT reference. */
120 struct mips_got_page_ref
121 {
122 long symndx;
123 union
124 {
125 struct mips_elf_link_hash_entry *h;
126 bfd *abfd;
127 } u;
128 bfd_vma addend;
129 };
130
131 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132 The structures form a non-overlapping list that is sorted by increasing
133 MIN_ADDEND. */
134 struct mips_got_page_range
135 {
136 struct mips_got_page_range *next;
137 bfd_signed_vma min_addend;
138 bfd_signed_vma max_addend;
139 };
140
141 /* This structure describes the range of addends that are applied to page
142 relocations against a given section. */
143 struct mips_got_page_entry
144 {
145 /* The section that these entries are based on. */
146 asection *sec;
147 /* The ranges for this page entry. */
148 struct mips_got_page_range *ranges;
149 /* The maximum number of page entries needed for RANGES. */
150 bfd_vma num_pages;
151 };
152
153 /* This structure is used to hold .got information when linking. */
154
155 struct mips_got_info
156 {
157 /* The number of global .got entries. */
158 unsigned int global_gotno;
159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
160 unsigned int reloc_only_gotno;
161 /* The number of .got slots used for TLS. */
162 unsigned int tls_gotno;
163 /* The first unused TLS .got entry. Used only during
164 mips_elf_initialize_tls_index. */
165 unsigned int tls_assigned_gotno;
166 /* The number of local .got entries, eventually including page entries. */
167 unsigned int local_gotno;
168 /* The maximum number of page entries needed. */
169 unsigned int page_gotno;
170 /* The number of relocations needed for the GOT entries. */
171 unsigned int relocs;
172 /* The first unused local .got entry. */
173 unsigned int assigned_low_gotno;
174 /* The last unused local .got entry. */
175 unsigned int assigned_high_gotno;
176 /* A hash table holding members of the got. */
177 struct htab *got_entries;
178 /* A hash table holding mips_got_page_ref structures. */
179 struct htab *got_page_refs;
180 /* A hash table of mips_got_page_entry structures. */
181 struct htab *got_page_entries;
182 /* In multi-got links, a pointer to the next got (err, rather, most
183 of the time, it points to the previous got). */
184 struct mips_got_info *next;
185 };
186
187 /* Structure passed when merging bfds' gots. */
188
189 struct mips_elf_got_per_bfd_arg
190 {
191 /* The output bfd. */
192 bfd *obfd;
193 /* The link information. */
194 struct bfd_link_info *info;
195 /* A pointer to the primary got, i.e., the one that's going to get
196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
197 DT_MIPS_GOTSYM. */
198 struct mips_got_info *primary;
199 /* A non-primary got we're trying to merge with other input bfd's
200 gots. */
201 struct mips_got_info *current;
202 /* The maximum number of got entries that can be addressed with a
203 16-bit offset. */
204 unsigned int max_count;
205 /* The maximum number of page entries needed by each got. */
206 unsigned int max_pages;
207 /* The total number of global entries which will live in the
208 primary got and be automatically relocated. This includes
209 those not referenced by the primary GOT but included in
210 the "master" GOT. */
211 unsigned int global_count;
212 };
213
214 /* A structure used to pass information to htab_traverse callbacks
215 when laying out the GOT. */
216
217 struct mips_elf_traverse_got_arg
218 {
219 struct bfd_link_info *info;
220 struct mips_got_info *g;
221 int value;
222 };
223
224 struct _mips_elf_section_data
225 {
226 struct bfd_elf_section_data elf;
227 union
228 {
229 bfd_byte *tdata;
230 } u;
231 };
232
233 #define mips_elf_section_data(sec) \
234 ((struct _mips_elf_section_data *) elf_section_data (sec))
235
236 #define is_mips_elf(bfd) \
237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
238 && elf_tdata (bfd) != NULL \
239 && elf_object_id (bfd) == MIPS_ELF_DATA)
240
241 /* The ABI says that every symbol used by dynamic relocations must have
242 a global GOT entry. Among other things, this provides the dynamic
243 linker with a free, directly-indexed cache. The GOT can therefore
244 contain symbols that are not referenced by GOT relocations themselves
245 (in other words, it may have symbols that are not referenced by things
246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
247
248 GOT relocations are less likely to overflow if we put the associated
249 GOT entries towards the beginning. We therefore divide the global
250 GOT entries into two areas: "normal" and "reloc-only". Entries in
251 the first area can be used for both dynamic relocations and GP-relative
252 accesses, while those in the "reloc-only" area are for dynamic
253 relocations only.
254
255 These GGA_* ("Global GOT Area") values are organised so that lower
256 values are more general than higher values. Also, non-GGA_NONE
257 values are ordered by the position of the area in the GOT. */
258 #define GGA_NORMAL 0
259 #define GGA_RELOC_ONLY 1
260 #define GGA_NONE 2
261
262 /* Information about a non-PIC interface to a PIC function. There are
263 two ways of creating these interfaces. The first is to add:
264
265 lui $25,%hi(func)
266 addiu $25,$25,%lo(func)
267
268 immediately before a PIC function "func". The second is to add:
269
270 lui $25,%hi(func)
271 j func
272 addiu $25,$25,%lo(func)
273
274 to a separate trampoline section.
275
276 Stubs of the first kind go in a new section immediately before the
277 target function. Stubs of the second kind go in a single section
278 pointed to by the hash table's "strampoline" field. */
279 struct mips_elf_la25_stub {
280 /* The generated section that contains this stub. */
281 asection *stub_section;
282
283 /* The offset of the stub from the start of STUB_SECTION. */
284 bfd_vma offset;
285
286 /* One symbol for the original function. Its location is available
287 in H->root.root.u.def. */
288 struct mips_elf_link_hash_entry *h;
289 };
290
291 /* Macros for populating a mips_elf_la25_stub. */
292
293 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
294 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
295 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
296 #define LA25_LUI_MICROMIPS(VAL) \
297 (0x41b90000 | (VAL)) /* lui t9,VAL */
298 #define LA25_J_MICROMIPS(VAL) \
299 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
300 #define LA25_ADDIU_MICROMIPS(VAL) \
301 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
302
303 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
304 the dynamic symbols. */
305
306 struct mips_elf_hash_sort_data
307 {
308 /* The symbol in the global GOT with the lowest dynamic symbol table
309 index. */
310 struct elf_link_hash_entry *low;
311 /* The least dynamic symbol table index corresponding to a non-TLS
312 symbol with a GOT entry. */
313 bfd_size_type min_got_dynindx;
314 /* The greatest dynamic symbol table index corresponding to a symbol
315 with a GOT entry that is not referenced (e.g., a dynamic symbol
316 with dynamic relocations pointing to it from non-primary GOTs). */
317 bfd_size_type max_unref_got_dynindx;
318 /* The greatest dynamic symbol table index corresponding to a local
319 symbol. */
320 bfd_size_type max_local_dynindx;
321 /* The greatest dynamic symbol table index corresponding to an external
322 symbol without a GOT entry. */
323 bfd_size_type max_non_got_dynindx;
324 };
325
326 /* We make up to two PLT entries if needed, one for standard MIPS code
327 and one for compressed code, either a MIPS16 or microMIPS one. We
328 keep a separate record of traditional lazy-binding stubs, for easier
329 processing. */
330
331 struct plt_entry
332 {
333 /* Traditional SVR4 stub offset, or -1 if none. */
334 bfd_vma stub_offset;
335
336 /* Standard PLT entry offset, or -1 if none. */
337 bfd_vma mips_offset;
338
339 /* Compressed PLT entry offset, or -1 if none. */
340 bfd_vma comp_offset;
341
342 /* The corresponding .got.plt index, or -1 if none. */
343 bfd_vma gotplt_index;
344
345 /* Whether we need a standard PLT entry. */
346 unsigned int need_mips : 1;
347
348 /* Whether we need a compressed PLT entry. */
349 unsigned int need_comp : 1;
350 };
351
352 /* The MIPS ELF linker needs additional information for each symbol in
353 the global hash table. */
354
355 struct mips_elf_link_hash_entry
356 {
357 struct elf_link_hash_entry root;
358
359 /* External symbol information. */
360 EXTR esym;
361
362 /* The la25 stub we have created for ths symbol, if any. */
363 struct mips_elf_la25_stub *la25_stub;
364
365 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
366 this symbol. */
367 unsigned int possibly_dynamic_relocs;
368
369 /* If there is a stub that 32 bit functions should use to call this
370 16 bit function, this points to the section containing the stub. */
371 asection *fn_stub;
372
373 /* If there is a stub that 16 bit functions should use to call this
374 32 bit function, this points to the section containing the stub. */
375 asection *call_stub;
376
377 /* This is like the call_stub field, but it is used if the function
378 being called returns a floating point value. */
379 asection *call_fp_stub;
380
381 /* The highest GGA_* value that satisfies all references to this symbol. */
382 unsigned int global_got_area : 2;
383
384 /* True if all GOT relocations against this symbol are for calls. This is
385 a looser condition than no_fn_stub below, because there may be other
386 non-call non-GOT relocations against the symbol. */
387 unsigned int got_only_for_calls : 1;
388
389 /* True if one of the relocations described by possibly_dynamic_relocs
390 is against a readonly section. */
391 unsigned int readonly_reloc : 1;
392
393 /* True if there is a relocation against this symbol that must be
394 resolved by the static linker (in other words, if the relocation
395 cannot possibly be made dynamic). */
396 unsigned int has_static_relocs : 1;
397
398 /* True if we must not create a .MIPS.stubs entry for this symbol.
399 This is set, for example, if there are relocations related to
400 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
401 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
402 unsigned int no_fn_stub : 1;
403
404 /* Whether we need the fn_stub; this is true if this symbol appears
405 in any relocs other than a 16 bit call. */
406 unsigned int need_fn_stub : 1;
407
408 /* True if this symbol is referenced by branch relocations from
409 any non-PIC input file. This is used to determine whether an
410 la25 stub is required. */
411 unsigned int has_nonpic_branches : 1;
412
413 /* Does this symbol need a traditional MIPS lazy-binding stub
414 (as opposed to a PLT entry)? */
415 unsigned int needs_lazy_stub : 1;
416
417 /* Does this symbol resolve to a PLT entry? */
418 unsigned int use_plt_entry : 1;
419 };
420
421 /* MIPS ELF linker hash table. */
422
423 struct mips_elf_link_hash_table
424 {
425 struct elf_link_hash_table root;
426
427 /* The number of .rtproc entries. */
428 bfd_size_type procedure_count;
429
430 /* The size of the .compact_rel section (if SGI_COMPAT). */
431 bfd_size_type compact_rel_size;
432
433 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
434 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
435 bfd_boolean use_rld_obj_head;
436
437 /* The __rld_map or __rld_obj_head symbol. */
438 struct elf_link_hash_entry *rld_symbol;
439
440 /* This is set if we see any mips16 stub sections. */
441 bfd_boolean mips16_stubs_seen;
442
443 /* True if we can generate copy relocs and PLTs. */
444 bfd_boolean use_plts_and_copy_relocs;
445
446 /* True if we can only use 32-bit microMIPS instructions. */
447 bfd_boolean insn32;
448
449 /* True if we suppress checks for invalid branches between ISA modes. */
450 bfd_boolean ignore_branch_isa;
451
452 /* True if we're generating code for VxWorks. */
453 bfd_boolean is_vxworks;
454
455 /* True if we already reported the small-data section overflow. */
456 bfd_boolean small_data_overflow_reported;
457
458 /* Shortcuts to some dynamic sections, or NULL if they are not
459 being used. */
460 asection *srelplt2;
461 asection *sstubs;
462
463 /* The master GOT information. */
464 struct mips_got_info *got_info;
465
466 /* The global symbol in the GOT with the lowest index in the dynamic
467 symbol table. */
468 struct elf_link_hash_entry *global_gotsym;
469
470 /* The size of the PLT header in bytes. */
471 bfd_vma plt_header_size;
472
473 /* The size of a standard PLT entry in bytes. */
474 bfd_vma plt_mips_entry_size;
475
476 /* The size of a compressed PLT entry in bytes. */
477 bfd_vma plt_comp_entry_size;
478
479 /* The offset of the next standard PLT entry to create. */
480 bfd_vma plt_mips_offset;
481
482 /* The offset of the next compressed PLT entry to create. */
483 bfd_vma plt_comp_offset;
484
485 /* The index of the next .got.plt entry to create. */
486 bfd_vma plt_got_index;
487
488 /* The number of functions that need a lazy-binding stub. */
489 bfd_vma lazy_stub_count;
490
491 /* The size of a function stub entry in bytes. */
492 bfd_vma function_stub_size;
493
494 /* The number of reserved entries at the beginning of the GOT. */
495 unsigned int reserved_gotno;
496
497 /* The section used for mips_elf_la25_stub trampolines.
498 See the comment above that structure for details. */
499 asection *strampoline;
500
501 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
502 pairs. */
503 htab_t la25_stubs;
504
505 /* A function FN (NAME, IS, OS) that creates a new input section
506 called NAME and links it to output section OS. If IS is nonnull,
507 the new section should go immediately before it, otherwise it
508 should go at the (current) beginning of OS.
509
510 The function returns the new section on success, otherwise it
511 returns null. */
512 asection *(*add_stub_section) (const char *, asection *, asection *);
513
514 /* Small local sym cache. */
515 struct sym_cache sym_cache;
516
517 /* Is the PLT header compressed? */
518 unsigned int plt_header_is_comp : 1;
519 };
520
521 /* Get the MIPS ELF linker hash table from a link_info structure. */
522
523 #define mips_elf_hash_table(p) \
524 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
525 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
526
527 /* A structure used to communicate with htab_traverse callbacks. */
528 struct mips_htab_traverse_info
529 {
530 /* The usual link-wide information. */
531 struct bfd_link_info *info;
532 bfd *output_bfd;
533
534 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
535 bfd_boolean error;
536 };
537
538 /* MIPS ELF private object data. */
539
540 struct mips_elf_obj_tdata
541 {
542 /* Generic ELF private object data. */
543 struct elf_obj_tdata root;
544
545 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
546 bfd *abi_fp_bfd;
547
548 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
549 bfd *abi_msa_bfd;
550
551 /* The abiflags for this object. */
552 Elf_Internal_ABIFlags_v0 abiflags;
553 bfd_boolean abiflags_valid;
554
555 /* The GOT requirements of input bfds. */
556 struct mips_got_info *got;
557
558 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
559 included directly in this one, but there's no point to wasting
560 the memory just for the infrequently called find_nearest_line. */
561 struct mips_elf_find_line *find_line_info;
562
563 /* An array of stub sections indexed by symbol number. */
564 asection **local_stubs;
565 asection **local_call_stubs;
566
567 /* The Irix 5 support uses two virtual sections, which represent
568 text/data symbols defined in dynamic objects. */
569 asymbol *elf_data_symbol;
570 asymbol *elf_text_symbol;
571 asection *elf_data_section;
572 asection *elf_text_section;
573 };
574
575 /* Get MIPS ELF private object data from BFD's tdata. */
576
577 #define mips_elf_tdata(bfd) \
578 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
579
580 #define TLS_RELOC_P(r_type) \
581 (r_type == R_MIPS_TLS_DTPMOD32 \
582 || r_type == R_MIPS_TLS_DTPMOD64 \
583 || r_type == R_MIPS_TLS_DTPREL32 \
584 || r_type == R_MIPS_TLS_DTPREL64 \
585 || r_type == R_MIPS_TLS_GD \
586 || r_type == R_MIPS_TLS_LDM \
587 || r_type == R_MIPS_TLS_DTPREL_HI16 \
588 || r_type == R_MIPS_TLS_DTPREL_LO16 \
589 || r_type == R_MIPS_TLS_GOTTPREL \
590 || r_type == R_MIPS_TLS_TPREL32 \
591 || r_type == R_MIPS_TLS_TPREL64 \
592 || r_type == R_MIPS_TLS_TPREL_HI16 \
593 || r_type == R_MIPS_TLS_TPREL_LO16 \
594 || r_type == R_MIPS16_TLS_GD \
595 || r_type == R_MIPS16_TLS_LDM \
596 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
597 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
598 || r_type == R_MIPS16_TLS_GOTTPREL \
599 || r_type == R_MIPS16_TLS_TPREL_HI16 \
600 || r_type == R_MIPS16_TLS_TPREL_LO16 \
601 || r_type == R_MICROMIPS_TLS_GD \
602 || r_type == R_MICROMIPS_TLS_LDM \
603 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
604 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
605 || r_type == R_MICROMIPS_TLS_GOTTPREL \
606 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
607 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
608
609 /* Structure used to pass information to mips_elf_output_extsym. */
610
611 struct extsym_info
612 {
613 bfd *abfd;
614 struct bfd_link_info *info;
615 struct ecoff_debug_info *debug;
616 const struct ecoff_debug_swap *swap;
617 bfd_boolean failed;
618 };
619
620 /* The names of the runtime procedure table symbols used on IRIX5. */
621
622 static const char * const mips_elf_dynsym_rtproc_names[] =
623 {
624 "_procedure_table",
625 "_procedure_string_table",
626 "_procedure_table_size",
627 NULL
628 };
629
630 /* These structures are used to generate the .compact_rel section on
631 IRIX5. */
632
633 typedef struct
634 {
635 unsigned long id1; /* Always one? */
636 unsigned long num; /* Number of compact relocation entries. */
637 unsigned long id2; /* Always two? */
638 unsigned long offset; /* The file offset of the first relocation. */
639 unsigned long reserved0; /* Zero? */
640 unsigned long reserved1; /* Zero? */
641 } Elf32_compact_rel;
642
643 typedef struct
644 {
645 bfd_byte id1[4];
646 bfd_byte num[4];
647 bfd_byte id2[4];
648 bfd_byte offset[4];
649 bfd_byte reserved0[4];
650 bfd_byte reserved1[4];
651 } Elf32_External_compact_rel;
652
653 typedef struct
654 {
655 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
656 unsigned int rtype : 4; /* Relocation types. See below. */
657 unsigned int dist2to : 8;
658 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
659 unsigned long konst; /* KONST field. See below. */
660 unsigned long vaddr; /* VADDR to be relocated. */
661 } Elf32_crinfo;
662
663 typedef struct
664 {
665 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
666 unsigned int rtype : 4; /* Relocation types. See below. */
667 unsigned int dist2to : 8;
668 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
669 unsigned long konst; /* KONST field. See below. */
670 } Elf32_crinfo2;
671
672 typedef struct
673 {
674 bfd_byte info[4];
675 bfd_byte konst[4];
676 bfd_byte vaddr[4];
677 } Elf32_External_crinfo;
678
679 typedef struct
680 {
681 bfd_byte info[4];
682 bfd_byte konst[4];
683 } Elf32_External_crinfo2;
684
685 /* These are the constants used to swap the bitfields in a crinfo. */
686
687 #define CRINFO_CTYPE (0x1)
688 #define CRINFO_CTYPE_SH (31)
689 #define CRINFO_RTYPE (0xf)
690 #define CRINFO_RTYPE_SH (27)
691 #define CRINFO_DIST2TO (0xff)
692 #define CRINFO_DIST2TO_SH (19)
693 #define CRINFO_RELVADDR (0x7ffff)
694 #define CRINFO_RELVADDR_SH (0)
695
696 /* A compact relocation info has long (3 words) or short (2 words)
697 formats. A short format doesn't have VADDR field and relvaddr
698 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
699 #define CRF_MIPS_LONG 1
700 #define CRF_MIPS_SHORT 0
701
702 /* There are 4 types of compact relocation at least. The value KONST
703 has different meaning for each type:
704
705 (type) (konst)
706 CT_MIPS_REL32 Address in data
707 CT_MIPS_WORD Address in word (XXX)
708 CT_MIPS_GPHI_LO GP - vaddr
709 CT_MIPS_JMPAD Address to jump
710 */
711
712 #define CRT_MIPS_REL32 0xa
713 #define CRT_MIPS_WORD 0xb
714 #define CRT_MIPS_GPHI_LO 0xc
715 #define CRT_MIPS_JMPAD 0xd
716
717 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
718 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
719 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
720 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
721 \f
722 /* The structure of the runtime procedure descriptor created by the
723 loader for use by the static exception system. */
724
725 typedef struct runtime_pdr {
726 bfd_vma adr; /* Memory address of start of procedure. */
727 long regmask; /* Save register mask. */
728 long regoffset; /* Save register offset. */
729 long fregmask; /* Save floating point register mask. */
730 long fregoffset; /* Save floating point register offset. */
731 long frameoffset; /* Frame size. */
732 short framereg; /* Frame pointer register. */
733 short pcreg; /* Offset or reg of return pc. */
734 long irpss; /* Index into the runtime string table. */
735 long reserved;
736 struct exception_info *exception_info;/* Pointer to exception array. */
737 } RPDR, *pRPDR;
738 #define cbRPDR sizeof (RPDR)
739 #define rpdNil ((pRPDR) 0)
740 \f
741 static struct mips_got_entry *mips_elf_create_local_got_entry
742 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
743 struct mips_elf_link_hash_entry *, int);
744 static bfd_boolean mips_elf_sort_hash_table_f
745 (struct mips_elf_link_hash_entry *, void *);
746 static bfd_vma mips_elf_high
747 (bfd_vma);
748 static bfd_boolean mips_elf_create_dynamic_relocation
749 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
750 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
751 bfd_vma *, asection *);
752 static bfd_vma mips_elf_adjust_gp
753 (bfd *, struct mips_got_info *, bfd *);
754
755 /* This will be used when we sort the dynamic relocation records. */
756 static bfd *reldyn_sorting_bfd;
757
758 /* True if ABFD is for CPUs with load interlocking that include
759 non-MIPS1 CPUs and R3900. */
760 #define LOAD_INTERLOCKS_P(abfd) \
761 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
762 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
763
764 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
765 This should be safe for all architectures. We enable this predicate
766 for RM9000 for now. */
767 #define JAL_TO_BAL_P(abfd) \
768 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
769
770 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
771 This should be safe for all architectures. We enable this predicate for
772 all CPUs. */
773 #define JALR_TO_BAL_P(abfd) 1
774
775 /* True if ABFD is for CPUs that are faster if JR is converted to B.
776 This should be safe for all architectures. We enable this predicate for
777 all CPUs. */
778 #define JR_TO_B_P(abfd) 1
779
780 /* True if ABFD is a PIC object. */
781 #define PIC_OBJECT_P(abfd) \
782 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
783
784 /* Nonzero if ABFD is using the O32 ABI. */
785 #define ABI_O32_P(abfd) \
786 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
787
788 /* Nonzero if ABFD is using the N32 ABI. */
789 #define ABI_N32_P(abfd) \
790 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
791
792 /* Nonzero if ABFD is using the N64 ABI. */
793 #define ABI_64_P(abfd) \
794 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
795
796 /* Nonzero if ABFD is using NewABI conventions. */
797 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
798
799 /* Nonzero if ABFD has microMIPS code. */
800 #define MICROMIPS_P(abfd) \
801 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
802
803 /* Nonzero if ABFD is MIPS R6. */
804 #define MIPSR6_P(abfd) \
805 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
806 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
807
808 /* The IRIX compatibility level we are striving for. */
809 #define IRIX_COMPAT(abfd) \
810 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
811
812 /* Whether we are trying to be compatible with IRIX at all. */
813 #define SGI_COMPAT(abfd) \
814 (IRIX_COMPAT (abfd) != ict_none)
815
816 /* The name of the options section. */
817 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
818 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
819
820 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
821 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
822 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
823 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
824
825 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
826 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
827 (strcmp (NAME, ".MIPS.abiflags") == 0)
828
829 /* Whether the section is readonly. */
830 #define MIPS_ELF_READONLY_SECTION(sec) \
831 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
832 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
833
834 /* The name of the stub section. */
835 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
836
837 /* The size of an external REL relocation. */
838 #define MIPS_ELF_REL_SIZE(abfd) \
839 (get_elf_backend_data (abfd)->s->sizeof_rel)
840
841 /* The size of an external RELA relocation. */
842 #define MIPS_ELF_RELA_SIZE(abfd) \
843 (get_elf_backend_data (abfd)->s->sizeof_rela)
844
845 /* The size of an external dynamic table entry. */
846 #define MIPS_ELF_DYN_SIZE(abfd) \
847 (get_elf_backend_data (abfd)->s->sizeof_dyn)
848
849 /* The size of a GOT entry. */
850 #define MIPS_ELF_GOT_SIZE(abfd) \
851 (get_elf_backend_data (abfd)->s->arch_size / 8)
852
853 /* The size of the .rld_map section. */
854 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
855 (get_elf_backend_data (abfd)->s->arch_size / 8)
856
857 /* The size of a symbol-table entry. */
858 #define MIPS_ELF_SYM_SIZE(abfd) \
859 (get_elf_backend_data (abfd)->s->sizeof_sym)
860
861 /* The default alignment for sections, as a power of two. */
862 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
863 (get_elf_backend_data (abfd)->s->log_file_align)
864
865 /* Get word-sized data. */
866 #define MIPS_ELF_GET_WORD(abfd, ptr) \
867 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
868
869 /* Put out word-sized data. */
870 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
871 (ABI_64_P (abfd) \
872 ? bfd_put_64 (abfd, val, ptr) \
873 : bfd_put_32 (abfd, val, ptr))
874
875 /* The opcode for word-sized loads (LW or LD). */
876 #define MIPS_ELF_LOAD_WORD(abfd) \
877 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
878
879 /* Add a dynamic symbol table-entry. */
880 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
881 _bfd_elf_add_dynamic_entry (info, tag, val)
882
883 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
884 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
885
886 /* The name of the dynamic relocation section. */
887 #define MIPS_ELF_REL_DYN_NAME(INFO) \
888 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
889
890 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
891 from smaller values. Start with zero, widen, *then* decrement. */
892 #define MINUS_ONE (((bfd_vma)0) - 1)
893 #define MINUS_TWO (((bfd_vma)0) - 2)
894
895 /* The value to write into got[1] for SVR4 targets, to identify it is
896 a GNU object. The dynamic linker can then use got[1] to store the
897 module pointer. */
898 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
899 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
900
901 /* The offset of $gp from the beginning of the .got section. */
902 #define ELF_MIPS_GP_OFFSET(INFO) \
903 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
904
905 /* The maximum size of the GOT for it to be addressable using 16-bit
906 offsets from $gp. */
907 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
908
909 /* Instructions which appear in a stub. */
910 #define STUB_LW(abfd) \
911 ((ABI_64_P (abfd) \
912 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
913 : 0x8f998010)) /* lw t9,0x8010(gp) */
914 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
915 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
916 #define STUB_JALR 0x0320f809 /* jalr ra,t9 */
917 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
918 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
919 #define STUB_LI16S(abfd, VAL) \
920 ((ABI_64_P (abfd) \
921 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
922 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
923
924 /* Likewise for the microMIPS ASE. */
925 #define STUB_LW_MICROMIPS(abfd) \
926 (ABI_64_P (abfd) \
927 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
928 : 0xff3c8010) /* lw t9,0x8010(gp) */
929 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
930 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
931 #define STUB_LUI_MICROMIPS(VAL) \
932 (0x41b80000 + (VAL)) /* lui t8,VAL */
933 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
934 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
935 #define STUB_ORI_MICROMIPS(VAL) \
936 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
937 #define STUB_LI16U_MICROMIPS(VAL) \
938 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
939 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
940 (ABI_64_P (abfd) \
941 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
942 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
943
944 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
945 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
946 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
947 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
948 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
949 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
950
951 /* The name of the dynamic interpreter. This is put in the .interp
952 section. */
953
954 #define ELF_DYNAMIC_INTERPRETER(abfd) \
955 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
956 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
957 : "/usr/lib/libc.so.1")
958
959 #ifdef BFD64
960 #define MNAME(bfd,pre,pos) \
961 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
962 #define ELF_R_SYM(bfd, i) \
963 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
964 #define ELF_R_TYPE(bfd, i) \
965 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
966 #define ELF_R_INFO(bfd, s, t) \
967 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
968 #else
969 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
970 #define ELF_R_SYM(bfd, i) \
971 (ELF32_R_SYM (i))
972 #define ELF_R_TYPE(bfd, i) \
973 (ELF32_R_TYPE (i))
974 #define ELF_R_INFO(bfd, s, t) \
975 (ELF32_R_INFO (s, t))
976 #endif
977 \f
978 /* The mips16 compiler uses a couple of special sections to handle
979 floating point arguments.
980
981 Section names that look like .mips16.fn.FNNAME contain stubs that
982 copy floating point arguments from the fp regs to the gp regs and
983 then jump to FNNAME. If any 32 bit function calls FNNAME, the
984 call should be redirected to the stub instead. If no 32 bit
985 function calls FNNAME, the stub should be discarded. We need to
986 consider any reference to the function, not just a call, because
987 if the address of the function is taken we will need the stub,
988 since the address might be passed to a 32 bit function.
989
990 Section names that look like .mips16.call.FNNAME contain stubs
991 that copy floating point arguments from the gp regs to the fp
992 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
993 then any 16 bit function that calls FNNAME should be redirected
994 to the stub instead. If FNNAME is not a 32 bit function, the
995 stub should be discarded.
996
997 .mips16.call.fp.FNNAME sections are similar, but contain stubs
998 which call FNNAME and then copy the return value from the fp regs
999 to the gp regs. These stubs store the return value in $18 while
1000 calling FNNAME; any function which might call one of these stubs
1001 must arrange to save $18 around the call. (This case is not
1002 needed for 32 bit functions that call 16 bit functions, because
1003 16 bit functions always return floating point values in both
1004 $f0/$f1 and $2/$3.)
1005
1006 Note that in all cases FNNAME might be defined statically.
1007 Therefore, FNNAME is not used literally. Instead, the relocation
1008 information will indicate which symbol the section is for.
1009
1010 We record any stubs that we find in the symbol table. */
1011
1012 #define FN_STUB ".mips16.fn."
1013 #define CALL_STUB ".mips16.call."
1014 #define CALL_FP_STUB ".mips16.call.fp."
1015
1016 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1017 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1018 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1019 \f
1020 /* The format of the first PLT entry in an O32 executable. */
1021 static const bfd_vma mips_o32_exec_plt0_entry[] =
1022 {
1023 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1024 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1025 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1026 0x031cc023, /* subu $24, $24, $28 */
1027 0x03e07825, /* or t7, ra, zero */
1028 0x0018c082, /* srl $24, $24, 2 */
1029 0x0320f809, /* jalr $25 */
1030 0x2718fffe /* subu $24, $24, 2 */
1031 };
1032
1033 /* The format of the first PLT entry in an N32 executable. Different
1034 because gp ($28) is not available; we use t2 ($14) instead. */
1035 static const bfd_vma mips_n32_exec_plt0_entry[] =
1036 {
1037 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1038 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1039 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1040 0x030ec023, /* subu $24, $24, $14 */
1041 0x03e07825, /* or t7, ra, zero */
1042 0x0018c082, /* srl $24, $24, 2 */
1043 0x0320f809, /* jalr $25 */
1044 0x2718fffe /* subu $24, $24, 2 */
1045 };
1046
1047 /* The format of the first PLT entry in an N64 executable. Different
1048 from N32 because of the increased size of GOT entries. */
1049 static const bfd_vma mips_n64_exec_plt0_entry[] =
1050 {
1051 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1052 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1053 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1054 0x030ec023, /* subu $24, $24, $14 */
1055 0x03e07825, /* or t7, ra, zero */
1056 0x0018c0c2, /* srl $24, $24, 3 */
1057 0x0320f809, /* jalr $25 */
1058 0x2718fffe /* subu $24, $24, 2 */
1059 };
1060
1061 /* The format of the microMIPS first PLT entry in an O32 executable.
1062 We rely on v0 ($2) rather than t8 ($24) to contain the address
1063 of the GOTPLT entry handled, so this stub may only be used when
1064 all the subsequent PLT entries are microMIPS code too.
1065
1066 The trailing NOP is for alignment and correct disassembly only. */
1067 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1068 {
1069 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1070 0xff23, 0x0000, /* lw $25, 0($3) */
1071 0x0535, /* subu $2, $2, $3 */
1072 0x2525, /* srl $2, $2, 2 */
1073 0x3302, 0xfffe, /* subu $24, $2, 2 */
1074 0x0dff, /* move $15, $31 */
1075 0x45f9, /* jalrs $25 */
1076 0x0f83, /* move $28, $3 */
1077 0x0c00 /* nop */
1078 };
1079
1080 /* The format of the microMIPS first PLT entry in an O32 executable
1081 in the insn32 mode. */
1082 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1083 {
1084 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1085 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1086 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1087 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1088 0x001f, 0x7a90, /* or $15, $31, zero */
1089 0x0318, 0x1040, /* srl $24, $24, 2 */
1090 0x03f9, 0x0f3c, /* jalr $25 */
1091 0x3318, 0xfffe /* subu $24, $24, 2 */
1092 };
1093
1094 /* The format of subsequent standard PLT entries. */
1095 static const bfd_vma mips_exec_plt_entry[] =
1096 {
1097 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1098 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1099 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1100 0x03200008 /* jr $25 */
1101 };
1102
1103 /* In the following PLT entry the JR and ADDIU instructions will
1104 be swapped in _bfd_mips_elf_finish_dynamic_symbol because
1105 LOAD_INTERLOCKS_P will be true for MIPS R6. */
1106 static const bfd_vma mipsr6_exec_plt_entry[] =
1107 {
1108 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1109 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1110 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1111 0x03200009 /* jr $25 */
1112 };
1113
1114 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1115 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1116 directly addressable. */
1117 static const bfd_vma mips16_o32_exec_plt_entry[] =
1118 {
1119 0xb203, /* lw $2, 12($pc) */
1120 0x9a60, /* lw $3, 0($2) */
1121 0x651a, /* move $24, $2 */
1122 0xeb00, /* jr $3 */
1123 0x653b, /* move $25, $3 */
1124 0x6500, /* nop */
1125 0x0000, 0x0000 /* .word (.got.plt entry) */
1126 };
1127
1128 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1129 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1130 static const bfd_vma micromips_o32_exec_plt_entry[] =
1131 {
1132 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1133 0xff22, 0x0000, /* lw $25, 0($2) */
1134 0x4599, /* jr $25 */
1135 0x0f02 /* move $24, $2 */
1136 };
1137
1138 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1139 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1140 {
1141 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1142 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1143 0x0019, 0x0f3c, /* jr $25 */
1144 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1145 };
1146
1147 /* The format of the first PLT entry in a VxWorks executable. */
1148 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1149 {
1150 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1151 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1152 0x8f390008, /* lw t9, 8(t9) */
1153 0x00000000, /* nop */
1154 0x03200008, /* jr t9 */
1155 0x00000000 /* nop */
1156 };
1157
1158 /* The format of subsequent PLT entries. */
1159 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1160 {
1161 0x10000000, /* b .PLT_resolver */
1162 0x24180000, /* li t8, <pltindex> */
1163 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1164 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1165 0x8f390000, /* lw t9, 0(t9) */
1166 0x00000000, /* nop */
1167 0x03200008, /* jr t9 */
1168 0x00000000 /* nop */
1169 };
1170
1171 /* The format of the first PLT entry in a VxWorks shared object. */
1172 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1173 {
1174 0x8f990008, /* lw t9, 8(gp) */
1175 0x00000000, /* nop */
1176 0x03200008, /* jr t9 */
1177 0x00000000, /* nop */
1178 0x00000000, /* nop */
1179 0x00000000 /* nop */
1180 };
1181
1182 /* The format of subsequent PLT entries. */
1183 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1184 {
1185 0x10000000, /* b .PLT_resolver */
1186 0x24180000 /* li t8, <pltindex> */
1187 };
1188 \f
1189 /* microMIPS 32-bit opcode helper installer. */
1190
1191 static void
1192 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1193 {
1194 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1195 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1196 }
1197
1198 /* microMIPS 32-bit opcode helper retriever. */
1199
1200 static bfd_vma
1201 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1202 {
1203 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1204 }
1205 \f
1206 /* Look up an entry in a MIPS ELF linker hash table. */
1207
1208 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1209 ((struct mips_elf_link_hash_entry *) \
1210 elf_link_hash_lookup (&(table)->root, (string), (create), \
1211 (copy), (follow)))
1212
1213 /* Traverse a MIPS ELF linker hash table. */
1214
1215 #define mips_elf_link_hash_traverse(table, func, info) \
1216 (elf_link_hash_traverse \
1217 (&(table)->root, \
1218 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1219 (info)))
1220
1221 /* Find the base offsets for thread-local storage in this object,
1222 for GD/LD and IE/LE respectively. */
1223
1224 #define TP_OFFSET 0x7000
1225 #define DTP_OFFSET 0x8000
1226
1227 static bfd_vma
1228 dtprel_base (struct bfd_link_info *info)
1229 {
1230 /* If tls_sec is NULL, we should have signalled an error already. */
1231 if (elf_hash_table (info)->tls_sec == NULL)
1232 return 0;
1233 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1234 }
1235
1236 static bfd_vma
1237 tprel_base (struct bfd_link_info *info)
1238 {
1239 /* If tls_sec is NULL, we should have signalled an error already. */
1240 if (elf_hash_table (info)->tls_sec == NULL)
1241 return 0;
1242 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1243 }
1244
1245 /* Create an entry in a MIPS ELF linker hash table. */
1246
1247 static struct bfd_hash_entry *
1248 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1249 struct bfd_hash_table *table, const char *string)
1250 {
1251 struct mips_elf_link_hash_entry *ret =
1252 (struct mips_elf_link_hash_entry *) entry;
1253
1254 /* Allocate the structure if it has not already been allocated by a
1255 subclass. */
1256 if (ret == NULL)
1257 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1258 if (ret == NULL)
1259 return (struct bfd_hash_entry *) ret;
1260
1261 /* Call the allocation method of the superclass. */
1262 ret = ((struct mips_elf_link_hash_entry *)
1263 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1264 table, string));
1265 if (ret != NULL)
1266 {
1267 /* Set local fields. */
1268 memset (&ret->esym, 0, sizeof (EXTR));
1269 /* We use -2 as a marker to indicate that the information has
1270 not been set. -1 means there is no associated ifd. */
1271 ret->esym.ifd = -2;
1272 ret->la25_stub = 0;
1273 ret->possibly_dynamic_relocs = 0;
1274 ret->fn_stub = NULL;
1275 ret->call_stub = NULL;
1276 ret->call_fp_stub = NULL;
1277 ret->global_got_area = GGA_NONE;
1278 ret->got_only_for_calls = TRUE;
1279 ret->readonly_reloc = FALSE;
1280 ret->has_static_relocs = FALSE;
1281 ret->no_fn_stub = FALSE;
1282 ret->need_fn_stub = FALSE;
1283 ret->has_nonpic_branches = FALSE;
1284 ret->needs_lazy_stub = FALSE;
1285 ret->use_plt_entry = FALSE;
1286 }
1287
1288 return (struct bfd_hash_entry *) ret;
1289 }
1290
1291 /* Allocate MIPS ELF private object data. */
1292
1293 bfd_boolean
1294 _bfd_mips_elf_mkobject (bfd *abfd)
1295 {
1296 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1297 MIPS_ELF_DATA);
1298 }
1299
1300 bfd_boolean
1301 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1302 {
1303 if (!sec->used_by_bfd)
1304 {
1305 struct _mips_elf_section_data *sdata;
1306 bfd_size_type amt = sizeof (*sdata);
1307
1308 sdata = bfd_zalloc (abfd, amt);
1309 if (sdata == NULL)
1310 return FALSE;
1311 sec->used_by_bfd = sdata;
1312 }
1313
1314 return _bfd_elf_new_section_hook (abfd, sec);
1315 }
1316 \f
1317 /* Read ECOFF debugging information from a .mdebug section into a
1318 ecoff_debug_info structure. */
1319
1320 bfd_boolean
1321 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1322 struct ecoff_debug_info *debug)
1323 {
1324 HDRR *symhdr;
1325 const struct ecoff_debug_swap *swap;
1326 char *ext_hdr;
1327
1328 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1329 memset (debug, 0, sizeof (*debug));
1330
1331 ext_hdr = bfd_malloc (swap->external_hdr_size);
1332 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1333 goto error_return;
1334
1335 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1336 swap->external_hdr_size))
1337 goto error_return;
1338
1339 symhdr = &debug->symbolic_header;
1340 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1341
1342 /* The symbolic header contains absolute file offsets and sizes to
1343 read. */
1344 #define READ(ptr, offset, count, size, type) \
1345 if (symhdr->count == 0) \
1346 debug->ptr = NULL; \
1347 else \
1348 { \
1349 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1350 debug->ptr = bfd_malloc (amt); \
1351 if (debug->ptr == NULL) \
1352 goto error_return; \
1353 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1354 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1355 goto error_return; \
1356 }
1357
1358 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1359 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1360 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1361 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1362 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1363 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1364 union aux_ext *);
1365 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1366 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1367 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1368 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1369 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1370 #undef READ
1371
1372 debug->fdr = NULL;
1373
1374 return TRUE;
1375
1376 error_return:
1377 if (ext_hdr != NULL)
1378 free (ext_hdr);
1379 if (debug->line != NULL)
1380 free (debug->line);
1381 if (debug->external_dnr != NULL)
1382 free (debug->external_dnr);
1383 if (debug->external_pdr != NULL)
1384 free (debug->external_pdr);
1385 if (debug->external_sym != NULL)
1386 free (debug->external_sym);
1387 if (debug->external_opt != NULL)
1388 free (debug->external_opt);
1389 if (debug->external_aux != NULL)
1390 free (debug->external_aux);
1391 if (debug->ss != NULL)
1392 free (debug->ss);
1393 if (debug->ssext != NULL)
1394 free (debug->ssext);
1395 if (debug->external_fdr != NULL)
1396 free (debug->external_fdr);
1397 if (debug->external_rfd != NULL)
1398 free (debug->external_rfd);
1399 if (debug->external_ext != NULL)
1400 free (debug->external_ext);
1401 return FALSE;
1402 }
1403 \f
1404 /* Swap RPDR (runtime procedure table entry) for output. */
1405
1406 static void
1407 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1408 {
1409 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1410 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1411 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1412 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1413 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1414 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1415
1416 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1417 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1418
1419 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1420 }
1421
1422 /* Create a runtime procedure table from the .mdebug section. */
1423
1424 static bfd_boolean
1425 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1426 struct bfd_link_info *info, asection *s,
1427 struct ecoff_debug_info *debug)
1428 {
1429 const struct ecoff_debug_swap *swap;
1430 HDRR *hdr = &debug->symbolic_header;
1431 RPDR *rpdr, *rp;
1432 struct rpdr_ext *erp;
1433 void *rtproc;
1434 struct pdr_ext *epdr;
1435 struct sym_ext *esym;
1436 char *ss, **sv;
1437 char *str;
1438 bfd_size_type size;
1439 bfd_size_type count;
1440 unsigned long sindex;
1441 unsigned long i;
1442 PDR pdr;
1443 SYMR sym;
1444 const char *no_name_func = _("static procedure (no name)");
1445
1446 epdr = NULL;
1447 rpdr = NULL;
1448 esym = NULL;
1449 ss = NULL;
1450 sv = NULL;
1451
1452 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1453
1454 sindex = strlen (no_name_func) + 1;
1455 count = hdr->ipdMax;
1456 if (count > 0)
1457 {
1458 size = swap->external_pdr_size;
1459
1460 epdr = bfd_malloc (size * count);
1461 if (epdr == NULL)
1462 goto error_return;
1463
1464 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1465 goto error_return;
1466
1467 size = sizeof (RPDR);
1468 rp = rpdr = bfd_malloc (size * count);
1469 if (rpdr == NULL)
1470 goto error_return;
1471
1472 size = sizeof (char *);
1473 sv = bfd_malloc (size * count);
1474 if (sv == NULL)
1475 goto error_return;
1476
1477 count = hdr->isymMax;
1478 size = swap->external_sym_size;
1479 esym = bfd_malloc (size * count);
1480 if (esym == NULL)
1481 goto error_return;
1482
1483 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1484 goto error_return;
1485
1486 count = hdr->issMax;
1487 ss = bfd_malloc (count);
1488 if (ss == NULL)
1489 goto error_return;
1490 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1491 goto error_return;
1492
1493 count = hdr->ipdMax;
1494 for (i = 0; i < (unsigned long) count; i++, rp++)
1495 {
1496 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1497 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1498 rp->adr = sym.value;
1499 rp->regmask = pdr.regmask;
1500 rp->regoffset = pdr.regoffset;
1501 rp->fregmask = pdr.fregmask;
1502 rp->fregoffset = pdr.fregoffset;
1503 rp->frameoffset = pdr.frameoffset;
1504 rp->framereg = pdr.framereg;
1505 rp->pcreg = pdr.pcreg;
1506 rp->irpss = sindex;
1507 sv[i] = ss + sym.iss;
1508 sindex += strlen (sv[i]) + 1;
1509 }
1510 }
1511
1512 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1513 size = BFD_ALIGN (size, 16);
1514 rtproc = bfd_alloc (abfd, size);
1515 if (rtproc == NULL)
1516 {
1517 mips_elf_hash_table (info)->procedure_count = 0;
1518 goto error_return;
1519 }
1520
1521 mips_elf_hash_table (info)->procedure_count = count + 2;
1522
1523 erp = rtproc;
1524 memset (erp, 0, sizeof (struct rpdr_ext));
1525 erp++;
1526 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1527 strcpy (str, no_name_func);
1528 str += strlen (no_name_func) + 1;
1529 for (i = 0; i < count; i++)
1530 {
1531 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1532 strcpy (str, sv[i]);
1533 str += strlen (sv[i]) + 1;
1534 }
1535 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1536
1537 /* Set the size and contents of .rtproc section. */
1538 s->size = size;
1539 s->contents = rtproc;
1540
1541 /* Skip this section later on (I don't think this currently
1542 matters, but someday it might). */
1543 s->map_head.link_order = NULL;
1544
1545 if (epdr != NULL)
1546 free (epdr);
1547 if (rpdr != NULL)
1548 free (rpdr);
1549 if (esym != NULL)
1550 free (esym);
1551 if (ss != NULL)
1552 free (ss);
1553 if (sv != NULL)
1554 free (sv);
1555
1556 return TRUE;
1557
1558 error_return:
1559 if (epdr != NULL)
1560 free (epdr);
1561 if (rpdr != NULL)
1562 free (rpdr);
1563 if (esym != NULL)
1564 free (esym);
1565 if (ss != NULL)
1566 free (ss);
1567 if (sv != NULL)
1568 free (sv);
1569 return FALSE;
1570 }
1571 \f
1572 /* We're going to create a stub for H. Create a symbol for the stub's
1573 value and size, to help make the disassembly easier to read. */
1574
1575 static bfd_boolean
1576 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1577 struct mips_elf_link_hash_entry *h,
1578 const char *prefix, asection *s, bfd_vma value,
1579 bfd_vma size)
1580 {
1581 bfd_boolean micromips_p = ELF_ST_IS_MICROMIPS (h->root.other);
1582 struct bfd_link_hash_entry *bh;
1583 struct elf_link_hash_entry *elfh;
1584 char *name;
1585 bfd_boolean res;
1586
1587 if (micromips_p)
1588 value |= 1;
1589
1590 /* Create a new symbol. */
1591 name = concat (prefix, h->root.root.root.string, NULL);
1592 bh = NULL;
1593 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1594 BSF_LOCAL, s, value, NULL,
1595 TRUE, FALSE, &bh);
1596 free (name);
1597 if (! res)
1598 return FALSE;
1599
1600 /* Make it a local function. */
1601 elfh = (struct elf_link_hash_entry *) bh;
1602 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1603 elfh->size = size;
1604 elfh->forced_local = 1;
1605 if (micromips_p)
1606 elfh->other = ELF_ST_SET_MICROMIPS (elfh->other);
1607 return TRUE;
1608 }
1609
1610 /* We're about to redefine H. Create a symbol to represent H's
1611 current value and size, to help make the disassembly easier
1612 to read. */
1613
1614 static bfd_boolean
1615 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1616 struct mips_elf_link_hash_entry *h,
1617 const char *prefix)
1618 {
1619 struct bfd_link_hash_entry *bh;
1620 struct elf_link_hash_entry *elfh;
1621 char *name;
1622 asection *s;
1623 bfd_vma value;
1624 bfd_boolean res;
1625
1626 /* Read the symbol's value. */
1627 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1628 || h->root.root.type == bfd_link_hash_defweak);
1629 s = h->root.root.u.def.section;
1630 value = h->root.root.u.def.value;
1631
1632 /* Create a new symbol. */
1633 name = concat (prefix, h->root.root.root.string, NULL);
1634 bh = NULL;
1635 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1636 BSF_LOCAL, s, value, NULL,
1637 TRUE, FALSE, &bh);
1638 free (name);
1639 if (! res)
1640 return FALSE;
1641
1642 /* Make it local and copy the other attributes from H. */
1643 elfh = (struct elf_link_hash_entry *) bh;
1644 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1645 elfh->other = h->root.other;
1646 elfh->size = h->root.size;
1647 elfh->forced_local = 1;
1648 return TRUE;
1649 }
1650
1651 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1652 function rather than to a hard-float stub. */
1653
1654 static bfd_boolean
1655 section_allows_mips16_refs_p (asection *section)
1656 {
1657 const char *name;
1658
1659 name = bfd_get_section_name (section->owner, section);
1660 return (FN_STUB_P (name)
1661 || CALL_STUB_P (name)
1662 || CALL_FP_STUB_P (name)
1663 || strcmp (name, ".pdr") == 0);
1664 }
1665
1666 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1667 stub section of some kind. Return the R_SYMNDX of the target
1668 function, or 0 if we can't decide which function that is. */
1669
1670 static unsigned long
1671 mips16_stub_symndx (const struct elf_backend_data *bed,
1672 asection *sec ATTRIBUTE_UNUSED,
1673 const Elf_Internal_Rela *relocs,
1674 const Elf_Internal_Rela *relend)
1675 {
1676 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1677 const Elf_Internal_Rela *rel;
1678
1679 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1680 one in a compound relocation. */
1681 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1682 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1683 return ELF_R_SYM (sec->owner, rel->r_info);
1684
1685 /* Otherwise trust the first relocation, whatever its kind. This is
1686 the traditional behavior. */
1687 if (relocs < relend)
1688 return ELF_R_SYM (sec->owner, relocs->r_info);
1689
1690 return 0;
1691 }
1692
1693 /* Check the mips16 stubs for a particular symbol, and see if we can
1694 discard them. */
1695
1696 static void
1697 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1698 struct mips_elf_link_hash_entry *h)
1699 {
1700 /* Dynamic symbols must use the standard call interface, in case other
1701 objects try to call them. */
1702 if (h->fn_stub != NULL
1703 && h->root.dynindx != -1)
1704 {
1705 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1706 h->need_fn_stub = TRUE;
1707 }
1708
1709 if (h->fn_stub != NULL
1710 && ! h->need_fn_stub)
1711 {
1712 /* We don't need the fn_stub; the only references to this symbol
1713 are 16 bit calls. Clobber the size to 0 to prevent it from
1714 being included in the link. */
1715 h->fn_stub->size = 0;
1716 h->fn_stub->flags &= ~SEC_RELOC;
1717 h->fn_stub->reloc_count = 0;
1718 h->fn_stub->flags |= SEC_EXCLUDE;
1719 h->fn_stub->output_section = bfd_abs_section_ptr;
1720 }
1721
1722 if (h->call_stub != NULL
1723 && ELF_ST_IS_MIPS16 (h->root.other))
1724 {
1725 /* We don't need the call_stub; this is a 16 bit function, so
1726 calls from other 16 bit functions are OK. Clobber the size
1727 to 0 to prevent it from being included in the link. */
1728 h->call_stub->size = 0;
1729 h->call_stub->flags &= ~SEC_RELOC;
1730 h->call_stub->reloc_count = 0;
1731 h->call_stub->flags |= SEC_EXCLUDE;
1732 h->call_stub->output_section = bfd_abs_section_ptr;
1733 }
1734
1735 if (h->call_fp_stub != NULL
1736 && ELF_ST_IS_MIPS16 (h->root.other))
1737 {
1738 /* We don't need the call_stub; this is a 16 bit function, so
1739 calls from other 16 bit functions are OK. Clobber the size
1740 to 0 to prevent it from being included in the link. */
1741 h->call_fp_stub->size = 0;
1742 h->call_fp_stub->flags &= ~SEC_RELOC;
1743 h->call_fp_stub->reloc_count = 0;
1744 h->call_fp_stub->flags |= SEC_EXCLUDE;
1745 h->call_fp_stub->output_section = bfd_abs_section_ptr;
1746 }
1747 }
1748
1749 /* Hashtable callbacks for mips_elf_la25_stubs. */
1750
1751 static hashval_t
1752 mips_elf_la25_stub_hash (const void *entry_)
1753 {
1754 const struct mips_elf_la25_stub *entry;
1755
1756 entry = (struct mips_elf_la25_stub *) entry_;
1757 return entry->h->root.root.u.def.section->id
1758 + entry->h->root.root.u.def.value;
1759 }
1760
1761 static int
1762 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1763 {
1764 const struct mips_elf_la25_stub *entry1, *entry2;
1765
1766 entry1 = (struct mips_elf_la25_stub *) entry1_;
1767 entry2 = (struct mips_elf_la25_stub *) entry2_;
1768 return ((entry1->h->root.root.u.def.section
1769 == entry2->h->root.root.u.def.section)
1770 && (entry1->h->root.root.u.def.value
1771 == entry2->h->root.root.u.def.value));
1772 }
1773
1774 /* Called by the linker to set up the la25 stub-creation code. FN is
1775 the linker's implementation of add_stub_function. Return true on
1776 success. */
1777
1778 bfd_boolean
1779 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1780 asection *(*fn) (const char *, asection *,
1781 asection *))
1782 {
1783 struct mips_elf_link_hash_table *htab;
1784
1785 htab = mips_elf_hash_table (info);
1786 if (htab == NULL)
1787 return FALSE;
1788
1789 htab->add_stub_section = fn;
1790 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1791 mips_elf_la25_stub_eq, NULL);
1792 if (htab->la25_stubs == NULL)
1793 return FALSE;
1794
1795 return TRUE;
1796 }
1797
1798 /* Return true if H is a locally-defined PIC function, in the sense
1799 that it or its fn_stub might need $25 to be valid on entry.
1800 Note that MIPS16 functions set up $gp using PC-relative instructions,
1801 so they themselves never need $25 to be valid. Only non-MIPS16
1802 entry points are of interest here. */
1803
1804 static bfd_boolean
1805 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1806 {
1807 return ((h->root.root.type == bfd_link_hash_defined
1808 || h->root.root.type == bfd_link_hash_defweak)
1809 && h->root.def_regular
1810 && !bfd_is_abs_section (h->root.root.u.def.section)
1811 && !bfd_is_und_section (h->root.root.u.def.section)
1812 && (!ELF_ST_IS_MIPS16 (h->root.other)
1813 || (h->fn_stub && h->need_fn_stub))
1814 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1815 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1816 }
1817
1818 /* Set *SEC to the input section that contains the target of STUB.
1819 Return the offset of the target from the start of that section. */
1820
1821 static bfd_vma
1822 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1823 asection **sec)
1824 {
1825 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1826 {
1827 BFD_ASSERT (stub->h->need_fn_stub);
1828 *sec = stub->h->fn_stub;
1829 return 0;
1830 }
1831 else
1832 {
1833 *sec = stub->h->root.root.u.def.section;
1834 return stub->h->root.root.u.def.value;
1835 }
1836 }
1837
1838 /* STUB describes an la25 stub that we have decided to implement
1839 by inserting an LUI/ADDIU pair before the target function.
1840 Create the section and redirect the function symbol to it. */
1841
1842 static bfd_boolean
1843 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1844 struct bfd_link_info *info)
1845 {
1846 struct mips_elf_link_hash_table *htab;
1847 char *name;
1848 asection *s, *input_section;
1849 unsigned int align;
1850
1851 htab = mips_elf_hash_table (info);
1852 if (htab == NULL)
1853 return FALSE;
1854
1855 /* Create a unique name for the new section. */
1856 name = bfd_malloc (11 + sizeof (".text.stub."));
1857 if (name == NULL)
1858 return FALSE;
1859 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1860
1861 /* Create the section. */
1862 mips_elf_get_la25_target (stub, &input_section);
1863 s = htab->add_stub_section (name, input_section,
1864 input_section->output_section);
1865 if (s == NULL)
1866 return FALSE;
1867
1868 /* Make sure that any padding goes before the stub. */
1869 align = input_section->alignment_power;
1870 if (!bfd_set_section_alignment (s->owner, s, align))
1871 return FALSE;
1872 if (align > 3)
1873 s->size = (1 << align) - 8;
1874
1875 /* Create a symbol for the stub. */
1876 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1877 stub->stub_section = s;
1878 stub->offset = s->size;
1879
1880 /* Allocate room for it. */
1881 s->size += 8;
1882 return TRUE;
1883 }
1884
1885 /* STUB describes an la25 stub that we have decided to implement
1886 with a separate trampoline. Allocate room for it and redirect
1887 the function symbol to it. */
1888
1889 static bfd_boolean
1890 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1891 struct bfd_link_info *info)
1892 {
1893 struct mips_elf_link_hash_table *htab;
1894 asection *s;
1895
1896 htab = mips_elf_hash_table (info);
1897 if (htab == NULL)
1898 return FALSE;
1899
1900 /* Create a trampoline section, if we haven't already. */
1901 s = htab->strampoline;
1902 if (s == NULL)
1903 {
1904 asection *input_section = stub->h->root.root.u.def.section;
1905 s = htab->add_stub_section (".text", NULL,
1906 input_section->output_section);
1907 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1908 return FALSE;
1909 htab->strampoline = s;
1910 }
1911
1912 /* Create a symbol for the stub. */
1913 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1914 stub->stub_section = s;
1915 stub->offset = s->size;
1916
1917 /* Allocate room for it. */
1918 s->size += 16;
1919 return TRUE;
1920 }
1921
1922 /* H describes a symbol that needs an la25 stub. Make sure that an
1923 appropriate stub exists and point H at it. */
1924
1925 static bfd_boolean
1926 mips_elf_add_la25_stub (struct bfd_link_info *info,
1927 struct mips_elf_link_hash_entry *h)
1928 {
1929 struct mips_elf_link_hash_table *htab;
1930 struct mips_elf_la25_stub search, *stub;
1931 bfd_boolean use_trampoline_p;
1932 asection *s;
1933 bfd_vma value;
1934 void **slot;
1935
1936 /* Describe the stub we want. */
1937 search.stub_section = NULL;
1938 search.offset = 0;
1939 search.h = h;
1940
1941 /* See if we've already created an equivalent stub. */
1942 htab = mips_elf_hash_table (info);
1943 if (htab == NULL)
1944 return FALSE;
1945
1946 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1947 if (slot == NULL)
1948 return FALSE;
1949
1950 stub = (struct mips_elf_la25_stub *) *slot;
1951 if (stub != NULL)
1952 {
1953 /* We can reuse the existing stub. */
1954 h->la25_stub = stub;
1955 return TRUE;
1956 }
1957
1958 /* Create a permanent copy of ENTRY and add it to the hash table. */
1959 stub = bfd_malloc (sizeof (search));
1960 if (stub == NULL)
1961 return FALSE;
1962 *stub = search;
1963 *slot = stub;
1964
1965 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1966 of the section and if we would need no more than 2 nops. */
1967 value = mips_elf_get_la25_target (stub, &s);
1968 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
1969 value &= ~1;
1970 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1971
1972 h->la25_stub = stub;
1973 return (use_trampoline_p
1974 ? mips_elf_add_la25_trampoline (stub, info)
1975 : mips_elf_add_la25_intro (stub, info));
1976 }
1977
1978 /* A mips_elf_link_hash_traverse callback that is called before sizing
1979 sections. DATA points to a mips_htab_traverse_info structure. */
1980
1981 static bfd_boolean
1982 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1983 {
1984 struct mips_htab_traverse_info *hti;
1985
1986 hti = (struct mips_htab_traverse_info *) data;
1987 if (!bfd_link_relocatable (hti->info))
1988 mips_elf_check_mips16_stubs (hti->info, h);
1989
1990 if (mips_elf_local_pic_function_p (h))
1991 {
1992 /* PR 12845: If H is in a section that has been garbage
1993 collected it will have its output section set to *ABS*. */
1994 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1995 return TRUE;
1996
1997 /* H is a function that might need $25 to be valid on entry.
1998 If we're creating a non-PIC relocatable object, mark H as
1999 being PIC. If we're creating a non-relocatable object with
2000 non-PIC branches and jumps to H, make sure that H has an la25
2001 stub. */
2002 if (bfd_link_relocatable (hti->info))
2003 {
2004 if (!PIC_OBJECT_P (hti->output_bfd))
2005 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2006 }
2007 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2008 {
2009 hti->error = TRUE;
2010 return FALSE;
2011 }
2012 }
2013 return TRUE;
2014 }
2015 \f
2016 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2017 Most mips16 instructions are 16 bits, but these instructions
2018 are 32 bits.
2019
2020 The format of these instructions is:
2021
2022 +--------------+--------------------------------+
2023 | JALX | X| Imm 20:16 | Imm 25:21 |
2024 +--------------+--------------------------------+
2025 | Immediate 15:0 |
2026 +-----------------------------------------------+
2027
2028 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2029 Note that the immediate value in the first word is swapped.
2030
2031 When producing a relocatable object file, R_MIPS16_26 is
2032 handled mostly like R_MIPS_26. In particular, the addend is
2033 stored as a straight 26-bit value in a 32-bit instruction.
2034 (gas makes life simpler for itself by never adjusting a
2035 R_MIPS16_26 reloc to be against a section, so the addend is
2036 always zero). However, the 32 bit instruction is stored as 2
2037 16-bit values, rather than a single 32-bit value. In a
2038 big-endian file, the result is the same; in a little-endian
2039 file, the two 16-bit halves of the 32 bit value are swapped.
2040 This is so that a disassembler can recognize the jal
2041 instruction.
2042
2043 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2044 instruction stored as two 16-bit values. The addend A is the
2045 contents of the targ26 field. The calculation is the same as
2046 R_MIPS_26. When storing the calculated value, reorder the
2047 immediate value as shown above, and don't forget to store the
2048 value as two 16-bit values.
2049
2050 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2051 defined as
2052
2053 big-endian:
2054 +--------+----------------------+
2055 | | |
2056 | | targ26-16 |
2057 |31 26|25 0|
2058 +--------+----------------------+
2059
2060 little-endian:
2061 +----------+------+-------------+
2062 | | | |
2063 | sub1 | | sub2 |
2064 |0 9|10 15|16 31|
2065 +----------+--------------------+
2066 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2067 ((sub1 << 16) | sub2)).
2068
2069 When producing a relocatable object file, the calculation is
2070 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2071 When producing a fully linked file, the calculation is
2072 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2073 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2074
2075 The table below lists the other MIPS16 instruction relocations.
2076 Each one is calculated in the same way as the non-MIPS16 relocation
2077 given on the right, but using the extended MIPS16 layout of 16-bit
2078 immediate fields:
2079
2080 R_MIPS16_GPREL R_MIPS_GPREL16
2081 R_MIPS16_GOT16 R_MIPS_GOT16
2082 R_MIPS16_CALL16 R_MIPS_CALL16
2083 R_MIPS16_HI16 R_MIPS_HI16
2084 R_MIPS16_LO16 R_MIPS_LO16
2085
2086 A typical instruction will have a format like this:
2087
2088 +--------------+--------------------------------+
2089 | EXTEND | Imm 10:5 | Imm 15:11 |
2090 +--------------+--------------------------------+
2091 | Major | rx | ry | Imm 4:0 |
2092 +--------------+--------------------------------+
2093
2094 EXTEND is the five bit value 11110. Major is the instruction
2095 opcode.
2096
2097 All we need to do here is shuffle the bits appropriately.
2098 As above, the two 16-bit halves must be swapped on a
2099 little-endian system.
2100
2101 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2102 relocatable field is shifted by 1 rather than 2 and the same bit
2103 shuffling is done as with the relocations above. */
2104
2105 static inline bfd_boolean
2106 mips16_reloc_p (int r_type)
2107 {
2108 switch (r_type)
2109 {
2110 case R_MIPS16_26:
2111 case R_MIPS16_GPREL:
2112 case R_MIPS16_GOT16:
2113 case R_MIPS16_CALL16:
2114 case R_MIPS16_HI16:
2115 case R_MIPS16_LO16:
2116 case R_MIPS16_TLS_GD:
2117 case R_MIPS16_TLS_LDM:
2118 case R_MIPS16_TLS_DTPREL_HI16:
2119 case R_MIPS16_TLS_DTPREL_LO16:
2120 case R_MIPS16_TLS_GOTTPREL:
2121 case R_MIPS16_TLS_TPREL_HI16:
2122 case R_MIPS16_TLS_TPREL_LO16:
2123 case R_MIPS16_PC16_S1:
2124 return TRUE;
2125
2126 default:
2127 return FALSE;
2128 }
2129 }
2130
2131 /* Check if a microMIPS reloc. */
2132
2133 static inline bfd_boolean
2134 micromips_reloc_p (unsigned int r_type)
2135 {
2136 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2137 }
2138
2139 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2140 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2141 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2142
2143 static inline bfd_boolean
2144 micromips_reloc_shuffle_p (unsigned int r_type)
2145 {
2146 return (micromips_reloc_p (r_type)
2147 && r_type != R_MICROMIPS_PC7_S1
2148 && r_type != R_MICROMIPS_PC10_S1);
2149 }
2150
2151 static inline bfd_boolean
2152 got16_reloc_p (int r_type)
2153 {
2154 return (r_type == R_MIPS_GOT16
2155 || r_type == R_MIPS16_GOT16
2156 || r_type == R_MICROMIPS_GOT16);
2157 }
2158
2159 static inline bfd_boolean
2160 call16_reloc_p (int r_type)
2161 {
2162 return (r_type == R_MIPS_CALL16
2163 || r_type == R_MIPS16_CALL16
2164 || r_type == R_MICROMIPS_CALL16);
2165 }
2166
2167 static inline bfd_boolean
2168 got_disp_reloc_p (unsigned int r_type)
2169 {
2170 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2171 }
2172
2173 static inline bfd_boolean
2174 got_page_reloc_p (unsigned int r_type)
2175 {
2176 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2177 }
2178
2179 static inline bfd_boolean
2180 got_lo16_reloc_p (unsigned int r_type)
2181 {
2182 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2183 }
2184
2185 static inline bfd_boolean
2186 call_hi16_reloc_p (unsigned int r_type)
2187 {
2188 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2189 }
2190
2191 static inline bfd_boolean
2192 call_lo16_reloc_p (unsigned int r_type)
2193 {
2194 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2195 }
2196
2197 static inline bfd_boolean
2198 hi16_reloc_p (int r_type)
2199 {
2200 return (r_type == R_MIPS_HI16
2201 || r_type == R_MIPS16_HI16
2202 || r_type == R_MICROMIPS_HI16
2203 || r_type == R_MIPS_PCHI16);
2204 }
2205
2206 static inline bfd_boolean
2207 lo16_reloc_p (int r_type)
2208 {
2209 return (r_type == R_MIPS_LO16
2210 || r_type == R_MIPS16_LO16
2211 || r_type == R_MICROMIPS_LO16
2212 || r_type == R_MIPS_PCLO16);
2213 }
2214
2215 static inline bfd_boolean
2216 mips16_call_reloc_p (int r_type)
2217 {
2218 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2219 }
2220
2221 static inline bfd_boolean
2222 jal_reloc_p (int r_type)
2223 {
2224 return (r_type == R_MIPS_26
2225 || r_type == R_MIPS16_26
2226 || r_type == R_MICROMIPS_26_S1);
2227 }
2228
2229 static inline bfd_boolean
2230 b_reloc_p (int r_type)
2231 {
2232 return (r_type == R_MIPS_PC26_S2
2233 || r_type == R_MIPS_PC21_S2
2234 || r_type == R_MIPS_PC16
2235 || r_type == R_MIPS_GNU_REL16_S2
2236 || r_type == R_MIPS16_PC16_S1
2237 || r_type == R_MICROMIPS_PC16_S1
2238 || r_type == R_MICROMIPS_PC10_S1
2239 || r_type == R_MICROMIPS_PC7_S1);
2240 }
2241
2242 static inline bfd_boolean
2243 aligned_pcrel_reloc_p (int r_type)
2244 {
2245 return (r_type == R_MIPS_PC18_S3
2246 || r_type == R_MIPS_PC19_S2);
2247 }
2248
2249 static inline bfd_boolean
2250 branch_reloc_p (int r_type)
2251 {
2252 return (r_type == R_MIPS_26
2253 || r_type == R_MIPS_PC26_S2
2254 || r_type == R_MIPS_PC21_S2
2255 || r_type == R_MIPS_PC16
2256 || r_type == R_MIPS_GNU_REL16_S2);
2257 }
2258
2259 static inline bfd_boolean
2260 mips16_branch_reloc_p (int r_type)
2261 {
2262 return (r_type == R_MIPS16_26
2263 || r_type == R_MIPS16_PC16_S1);
2264 }
2265
2266 static inline bfd_boolean
2267 micromips_branch_reloc_p (int r_type)
2268 {
2269 return (r_type == R_MICROMIPS_26_S1
2270 || r_type == R_MICROMIPS_PC16_S1
2271 || r_type == R_MICROMIPS_PC10_S1
2272 || r_type == R_MICROMIPS_PC7_S1);
2273 }
2274
2275 static inline bfd_boolean
2276 tls_gd_reloc_p (unsigned int r_type)
2277 {
2278 return (r_type == R_MIPS_TLS_GD
2279 || r_type == R_MIPS16_TLS_GD
2280 || r_type == R_MICROMIPS_TLS_GD);
2281 }
2282
2283 static inline bfd_boolean
2284 tls_ldm_reloc_p (unsigned int r_type)
2285 {
2286 return (r_type == R_MIPS_TLS_LDM
2287 || r_type == R_MIPS16_TLS_LDM
2288 || r_type == R_MICROMIPS_TLS_LDM);
2289 }
2290
2291 static inline bfd_boolean
2292 tls_gottprel_reloc_p (unsigned int r_type)
2293 {
2294 return (r_type == R_MIPS_TLS_GOTTPREL
2295 || r_type == R_MIPS16_TLS_GOTTPREL
2296 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2297 }
2298
2299 void
2300 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2301 bfd_boolean jal_shuffle, bfd_byte *data)
2302 {
2303 bfd_vma first, second, val;
2304
2305 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2306 return;
2307
2308 /* Pick up the first and second halfwords of the instruction. */
2309 first = bfd_get_16 (abfd, data);
2310 second = bfd_get_16 (abfd, data + 2);
2311 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2312 val = first << 16 | second;
2313 else if (r_type != R_MIPS16_26)
2314 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2315 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2316 else
2317 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2318 | ((first & 0x1f) << 21) | second);
2319 bfd_put_32 (abfd, val, data);
2320 }
2321
2322 void
2323 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2324 bfd_boolean jal_shuffle, bfd_byte *data)
2325 {
2326 bfd_vma first, second, val;
2327
2328 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2329 return;
2330
2331 val = bfd_get_32 (abfd, data);
2332 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2333 {
2334 second = val & 0xffff;
2335 first = val >> 16;
2336 }
2337 else if (r_type != R_MIPS16_26)
2338 {
2339 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2340 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2341 }
2342 else
2343 {
2344 second = val & 0xffff;
2345 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2346 | ((val >> 21) & 0x1f);
2347 }
2348 bfd_put_16 (abfd, second, data + 2);
2349 bfd_put_16 (abfd, first, data);
2350 }
2351
2352 bfd_reloc_status_type
2353 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2354 arelent *reloc_entry, asection *input_section,
2355 bfd_boolean relocatable, void *data, bfd_vma gp)
2356 {
2357 bfd_vma relocation;
2358 bfd_signed_vma val;
2359 bfd_reloc_status_type status;
2360
2361 if (bfd_is_com_section (symbol->section))
2362 relocation = 0;
2363 else
2364 relocation = symbol->value;
2365
2366 relocation += symbol->section->output_section->vma;
2367 relocation += symbol->section->output_offset;
2368
2369 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2370 return bfd_reloc_outofrange;
2371
2372 /* Set val to the offset into the section or symbol. */
2373 val = reloc_entry->addend;
2374
2375 _bfd_mips_elf_sign_extend (val, 16);
2376
2377 /* Adjust val for the final section location and GP value. If we
2378 are producing relocatable output, we don't want to do this for
2379 an external symbol. */
2380 if (! relocatable
2381 || (symbol->flags & BSF_SECTION_SYM) != 0)
2382 val += relocation - gp;
2383
2384 if (reloc_entry->howto->partial_inplace)
2385 {
2386 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2387 (bfd_byte *) data
2388 + reloc_entry->address);
2389 if (status != bfd_reloc_ok)
2390 return status;
2391 }
2392 else
2393 reloc_entry->addend = val;
2394
2395 if (relocatable)
2396 reloc_entry->address += input_section->output_offset;
2397
2398 return bfd_reloc_ok;
2399 }
2400
2401 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2402 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2403 that contains the relocation field and DATA points to the start of
2404 INPUT_SECTION. */
2405
2406 struct mips_hi16
2407 {
2408 struct mips_hi16 *next;
2409 bfd_byte *data;
2410 asection *input_section;
2411 arelent rel;
2412 };
2413
2414 /* FIXME: This should not be a static variable. */
2415
2416 static struct mips_hi16 *mips_hi16_list;
2417
2418 /* A howto special_function for REL *HI16 relocations. We can only
2419 calculate the correct value once we've seen the partnering
2420 *LO16 relocation, so just save the information for later.
2421
2422 The ABI requires that the *LO16 immediately follow the *HI16.
2423 However, as a GNU extension, we permit an arbitrary number of
2424 *HI16s to be associated with a single *LO16. This significantly
2425 simplies the relocation handling in gcc. */
2426
2427 bfd_reloc_status_type
2428 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2429 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2430 asection *input_section, bfd *output_bfd,
2431 char **error_message ATTRIBUTE_UNUSED)
2432 {
2433 struct mips_hi16 *n;
2434
2435 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2436 return bfd_reloc_outofrange;
2437
2438 n = bfd_malloc (sizeof *n);
2439 if (n == NULL)
2440 return bfd_reloc_outofrange;
2441
2442 n->next = mips_hi16_list;
2443 n->data = data;
2444 n->input_section = input_section;
2445 n->rel = *reloc_entry;
2446 mips_hi16_list = n;
2447
2448 if (output_bfd != NULL)
2449 reloc_entry->address += input_section->output_offset;
2450
2451 return bfd_reloc_ok;
2452 }
2453
2454 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2455 like any other 16-bit relocation when applied to global symbols, but is
2456 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2457
2458 bfd_reloc_status_type
2459 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2460 void *data, asection *input_section,
2461 bfd *output_bfd, char **error_message)
2462 {
2463 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2464 || bfd_is_und_section (bfd_get_section (symbol))
2465 || bfd_is_com_section (bfd_get_section (symbol)))
2466 /* The relocation is against a global symbol. */
2467 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2468 input_section, output_bfd,
2469 error_message);
2470
2471 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2472 input_section, output_bfd, error_message);
2473 }
2474
2475 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2476 is a straightforward 16 bit inplace relocation, but we must deal with
2477 any partnering high-part relocations as well. */
2478
2479 bfd_reloc_status_type
2480 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2481 void *data, asection *input_section,
2482 bfd *output_bfd, char **error_message)
2483 {
2484 bfd_vma vallo;
2485 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2486
2487 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2488 return bfd_reloc_outofrange;
2489
2490 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2491 location);
2492 vallo = bfd_get_32 (abfd, location);
2493 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2494 location);
2495
2496 while (mips_hi16_list != NULL)
2497 {
2498 bfd_reloc_status_type ret;
2499 struct mips_hi16 *hi;
2500
2501 hi = mips_hi16_list;
2502
2503 /* R_MIPS*_GOT16 relocations are something of a special case. We
2504 want to install the addend in the same way as for a R_MIPS*_HI16
2505 relocation (with a rightshift of 16). However, since GOT16
2506 relocations can also be used with global symbols, their howto
2507 has a rightshift of 0. */
2508 if (hi->rel.howto->type == R_MIPS_GOT16)
2509 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2510 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2511 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2512 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2513 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2514
2515 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2516 carry or borrow will induce a change of +1 or -1 in the high part. */
2517 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2518
2519 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2520 hi->input_section, output_bfd,
2521 error_message);
2522 if (ret != bfd_reloc_ok)
2523 return ret;
2524
2525 mips_hi16_list = hi->next;
2526 free (hi);
2527 }
2528
2529 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2530 input_section, output_bfd,
2531 error_message);
2532 }
2533
2534 /* A generic howto special_function. This calculates and installs the
2535 relocation itself, thus avoiding the oft-discussed problems in
2536 bfd_perform_relocation and bfd_install_relocation. */
2537
2538 bfd_reloc_status_type
2539 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2540 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2541 asection *input_section, bfd *output_bfd,
2542 char **error_message ATTRIBUTE_UNUSED)
2543 {
2544 bfd_signed_vma val;
2545 bfd_reloc_status_type status;
2546 bfd_boolean relocatable;
2547
2548 relocatable = (output_bfd != NULL);
2549
2550 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2551 return bfd_reloc_outofrange;
2552
2553 /* Build up the field adjustment in VAL. */
2554 val = 0;
2555 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2556 {
2557 /* Either we're calculating the final field value or we have a
2558 relocation against a section symbol. Add in the section's
2559 offset or address. */
2560 val += symbol->section->output_section->vma;
2561 val += symbol->section->output_offset;
2562 }
2563
2564 if (!relocatable)
2565 {
2566 /* We're calculating the final field value. Add in the symbol's value
2567 and, if pc-relative, subtract the address of the field itself. */
2568 val += symbol->value;
2569 if (reloc_entry->howto->pc_relative)
2570 {
2571 val -= input_section->output_section->vma;
2572 val -= input_section->output_offset;
2573 val -= reloc_entry->address;
2574 }
2575 }
2576
2577 /* VAL is now the final adjustment. If we're keeping this relocation
2578 in the output file, and if the relocation uses a separate addend,
2579 we just need to add VAL to that addend. Otherwise we need to add
2580 VAL to the relocation field itself. */
2581 if (relocatable && !reloc_entry->howto->partial_inplace)
2582 reloc_entry->addend += val;
2583 else
2584 {
2585 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2586
2587 /* Add in the separate addend, if any. */
2588 val += reloc_entry->addend;
2589
2590 /* Add VAL to the relocation field. */
2591 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2592 location);
2593 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2594 location);
2595 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2596 location);
2597
2598 if (status != bfd_reloc_ok)
2599 return status;
2600 }
2601
2602 if (relocatable)
2603 reloc_entry->address += input_section->output_offset;
2604
2605 return bfd_reloc_ok;
2606 }
2607 \f
2608 /* Swap an entry in a .gptab section. Note that these routines rely
2609 on the equivalence of the two elements of the union. */
2610
2611 static void
2612 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2613 Elf32_gptab *in)
2614 {
2615 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2616 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2617 }
2618
2619 static void
2620 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2621 Elf32_External_gptab *ex)
2622 {
2623 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2624 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2625 }
2626
2627 static void
2628 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2629 Elf32_External_compact_rel *ex)
2630 {
2631 H_PUT_32 (abfd, in->id1, ex->id1);
2632 H_PUT_32 (abfd, in->num, ex->num);
2633 H_PUT_32 (abfd, in->id2, ex->id2);
2634 H_PUT_32 (abfd, in->offset, ex->offset);
2635 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2636 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2637 }
2638
2639 static void
2640 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2641 Elf32_External_crinfo *ex)
2642 {
2643 unsigned long l;
2644
2645 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2646 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2647 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2648 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2649 H_PUT_32 (abfd, l, ex->info);
2650 H_PUT_32 (abfd, in->konst, ex->konst);
2651 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2652 }
2653 \f
2654 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2655 routines swap this structure in and out. They are used outside of
2656 BFD, so they are globally visible. */
2657
2658 void
2659 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2660 Elf32_RegInfo *in)
2661 {
2662 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2663 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2664 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2665 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2666 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2667 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2668 }
2669
2670 void
2671 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2672 Elf32_External_RegInfo *ex)
2673 {
2674 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2675 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2676 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2677 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2678 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2679 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2680 }
2681
2682 /* In the 64 bit ABI, the .MIPS.options section holds register
2683 information in an Elf64_Reginfo structure. These routines swap
2684 them in and out. They are globally visible because they are used
2685 outside of BFD. These routines are here so that gas can call them
2686 without worrying about whether the 64 bit ABI has been included. */
2687
2688 void
2689 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2690 Elf64_Internal_RegInfo *in)
2691 {
2692 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2693 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2694 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2695 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2696 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2697 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2698 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2699 }
2700
2701 void
2702 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2703 Elf64_External_RegInfo *ex)
2704 {
2705 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2706 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2707 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2708 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2709 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2710 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2711 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2712 }
2713
2714 /* Swap in an options header. */
2715
2716 void
2717 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2718 Elf_Internal_Options *in)
2719 {
2720 in->kind = H_GET_8 (abfd, ex->kind);
2721 in->size = H_GET_8 (abfd, ex->size);
2722 in->section = H_GET_16 (abfd, ex->section);
2723 in->info = H_GET_32 (abfd, ex->info);
2724 }
2725
2726 /* Swap out an options header. */
2727
2728 void
2729 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2730 Elf_External_Options *ex)
2731 {
2732 H_PUT_8 (abfd, in->kind, ex->kind);
2733 H_PUT_8 (abfd, in->size, ex->size);
2734 H_PUT_16 (abfd, in->section, ex->section);
2735 H_PUT_32 (abfd, in->info, ex->info);
2736 }
2737
2738 /* Swap in an abiflags structure. */
2739
2740 void
2741 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2742 const Elf_External_ABIFlags_v0 *ex,
2743 Elf_Internal_ABIFlags_v0 *in)
2744 {
2745 in->version = H_GET_16 (abfd, ex->version);
2746 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2747 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2748 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2749 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2750 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2751 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2752 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2753 in->ases = H_GET_32 (abfd, ex->ases);
2754 in->flags1 = H_GET_32 (abfd, ex->flags1);
2755 in->flags2 = H_GET_32 (abfd, ex->flags2);
2756 }
2757
2758 /* Swap out an abiflags structure. */
2759
2760 void
2761 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2762 const Elf_Internal_ABIFlags_v0 *in,
2763 Elf_External_ABIFlags_v0 *ex)
2764 {
2765 H_PUT_16 (abfd, in->version, ex->version);
2766 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2767 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2768 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2769 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2770 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2771 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2772 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2773 H_PUT_32 (abfd, in->ases, ex->ases);
2774 H_PUT_32 (abfd, in->flags1, ex->flags1);
2775 H_PUT_32 (abfd, in->flags2, ex->flags2);
2776 }
2777 \f
2778 /* This function is called via qsort() to sort the dynamic relocation
2779 entries by increasing r_symndx value. */
2780
2781 static int
2782 sort_dynamic_relocs (const void *arg1, const void *arg2)
2783 {
2784 Elf_Internal_Rela int_reloc1;
2785 Elf_Internal_Rela int_reloc2;
2786 int diff;
2787
2788 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2789 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2790
2791 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2792 if (diff != 0)
2793 return diff;
2794
2795 if (int_reloc1.r_offset < int_reloc2.r_offset)
2796 return -1;
2797 if (int_reloc1.r_offset > int_reloc2.r_offset)
2798 return 1;
2799 return 0;
2800 }
2801
2802 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2803
2804 static int
2805 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2806 const void *arg2 ATTRIBUTE_UNUSED)
2807 {
2808 #ifdef BFD64
2809 Elf_Internal_Rela int_reloc1[3];
2810 Elf_Internal_Rela int_reloc2[3];
2811
2812 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2813 (reldyn_sorting_bfd, arg1, int_reloc1);
2814 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2815 (reldyn_sorting_bfd, arg2, int_reloc2);
2816
2817 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2818 return -1;
2819 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2820 return 1;
2821
2822 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2823 return -1;
2824 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2825 return 1;
2826 return 0;
2827 #else
2828 abort ();
2829 #endif
2830 }
2831
2832
2833 /* This routine is used to write out ECOFF debugging external symbol
2834 information. It is called via mips_elf_link_hash_traverse. The
2835 ECOFF external symbol information must match the ELF external
2836 symbol information. Unfortunately, at this point we don't know
2837 whether a symbol is required by reloc information, so the two
2838 tables may wind up being different. We must sort out the external
2839 symbol information before we can set the final size of the .mdebug
2840 section, and we must set the size of the .mdebug section before we
2841 can relocate any sections, and we can't know which symbols are
2842 required by relocation until we relocate the sections.
2843 Fortunately, it is relatively unlikely that any symbol will be
2844 stripped but required by a reloc. In particular, it can not happen
2845 when generating a final executable. */
2846
2847 static bfd_boolean
2848 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2849 {
2850 struct extsym_info *einfo = data;
2851 bfd_boolean strip;
2852 asection *sec, *output_section;
2853
2854 if (h->root.indx == -2)
2855 strip = FALSE;
2856 else if ((h->root.def_dynamic
2857 || h->root.ref_dynamic
2858 || h->root.type == bfd_link_hash_new)
2859 && !h->root.def_regular
2860 && !h->root.ref_regular)
2861 strip = TRUE;
2862 else if (einfo->info->strip == strip_all
2863 || (einfo->info->strip == strip_some
2864 && bfd_hash_lookup (einfo->info->keep_hash,
2865 h->root.root.root.string,
2866 FALSE, FALSE) == NULL))
2867 strip = TRUE;
2868 else
2869 strip = FALSE;
2870
2871 if (strip)
2872 return TRUE;
2873
2874 if (h->esym.ifd == -2)
2875 {
2876 h->esym.jmptbl = 0;
2877 h->esym.cobol_main = 0;
2878 h->esym.weakext = 0;
2879 h->esym.reserved = 0;
2880 h->esym.ifd = ifdNil;
2881 h->esym.asym.value = 0;
2882 h->esym.asym.st = stGlobal;
2883
2884 if (h->root.root.type == bfd_link_hash_undefined
2885 || h->root.root.type == bfd_link_hash_undefweak)
2886 {
2887 const char *name;
2888
2889 /* Use undefined class. Also, set class and type for some
2890 special symbols. */
2891 name = h->root.root.root.string;
2892 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2893 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2894 {
2895 h->esym.asym.sc = scData;
2896 h->esym.asym.st = stLabel;
2897 h->esym.asym.value = 0;
2898 }
2899 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2900 {
2901 h->esym.asym.sc = scAbs;
2902 h->esym.asym.st = stLabel;
2903 h->esym.asym.value =
2904 mips_elf_hash_table (einfo->info)->procedure_count;
2905 }
2906 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2907 {
2908 h->esym.asym.sc = scAbs;
2909 h->esym.asym.st = stLabel;
2910 h->esym.asym.value = elf_gp (einfo->abfd);
2911 }
2912 else
2913 h->esym.asym.sc = scUndefined;
2914 }
2915 else if (h->root.root.type != bfd_link_hash_defined
2916 && h->root.root.type != bfd_link_hash_defweak)
2917 h->esym.asym.sc = scAbs;
2918 else
2919 {
2920 const char *name;
2921
2922 sec = h->root.root.u.def.section;
2923 output_section = sec->output_section;
2924
2925 /* When making a shared library and symbol h is the one from
2926 the another shared library, OUTPUT_SECTION may be null. */
2927 if (output_section == NULL)
2928 h->esym.asym.sc = scUndefined;
2929 else
2930 {
2931 name = bfd_section_name (output_section->owner, output_section);
2932
2933 if (strcmp (name, ".text") == 0)
2934 h->esym.asym.sc = scText;
2935 else if (strcmp (name, ".data") == 0)
2936 h->esym.asym.sc = scData;
2937 else if (strcmp (name, ".sdata") == 0)
2938 h->esym.asym.sc = scSData;
2939 else if (strcmp (name, ".rodata") == 0
2940 || strcmp (name, ".rdata") == 0)
2941 h->esym.asym.sc = scRData;
2942 else if (strcmp (name, ".bss") == 0)
2943 h->esym.asym.sc = scBss;
2944 else if (strcmp (name, ".sbss") == 0)
2945 h->esym.asym.sc = scSBss;
2946 else if (strcmp (name, ".init") == 0)
2947 h->esym.asym.sc = scInit;
2948 else if (strcmp (name, ".fini") == 0)
2949 h->esym.asym.sc = scFini;
2950 else
2951 h->esym.asym.sc = scAbs;
2952 }
2953 }
2954
2955 h->esym.asym.reserved = 0;
2956 h->esym.asym.index = indexNil;
2957 }
2958
2959 if (h->root.root.type == bfd_link_hash_common)
2960 h->esym.asym.value = h->root.root.u.c.size;
2961 else if (h->root.root.type == bfd_link_hash_defined
2962 || h->root.root.type == bfd_link_hash_defweak)
2963 {
2964 if (h->esym.asym.sc == scCommon)
2965 h->esym.asym.sc = scBss;
2966 else if (h->esym.asym.sc == scSCommon)
2967 h->esym.asym.sc = scSBss;
2968
2969 sec = h->root.root.u.def.section;
2970 output_section = sec->output_section;
2971 if (output_section != NULL)
2972 h->esym.asym.value = (h->root.root.u.def.value
2973 + sec->output_offset
2974 + output_section->vma);
2975 else
2976 h->esym.asym.value = 0;
2977 }
2978 else
2979 {
2980 struct mips_elf_link_hash_entry *hd = h;
2981
2982 while (hd->root.root.type == bfd_link_hash_indirect)
2983 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2984
2985 if (hd->needs_lazy_stub)
2986 {
2987 BFD_ASSERT (hd->root.plt.plist != NULL);
2988 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
2989 /* Set type and value for a symbol with a function stub. */
2990 h->esym.asym.st = stProc;
2991 sec = hd->root.root.u.def.section;
2992 if (sec == NULL)
2993 h->esym.asym.value = 0;
2994 else
2995 {
2996 output_section = sec->output_section;
2997 if (output_section != NULL)
2998 h->esym.asym.value = (hd->root.plt.plist->stub_offset
2999 + sec->output_offset
3000 + output_section->vma);
3001 else
3002 h->esym.asym.value = 0;
3003 }
3004 }
3005 }
3006
3007 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3008 h->root.root.root.string,
3009 &h->esym))
3010 {
3011 einfo->failed = TRUE;
3012 return FALSE;
3013 }
3014
3015 return TRUE;
3016 }
3017
3018 /* A comparison routine used to sort .gptab entries. */
3019
3020 static int
3021 gptab_compare (const void *p1, const void *p2)
3022 {
3023 const Elf32_gptab *a1 = p1;
3024 const Elf32_gptab *a2 = p2;
3025
3026 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3027 }
3028 \f
3029 /* Functions to manage the got entry hash table. */
3030
3031 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3032 hash number. */
3033
3034 static INLINE hashval_t
3035 mips_elf_hash_bfd_vma (bfd_vma addr)
3036 {
3037 #ifdef BFD64
3038 return addr + (addr >> 32);
3039 #else
3040 return addr;
3041 #endif
3042 }
3043
3044 static hashval_t
3045 mips_elf_got_entry_hash (const void *entry_)
3046 {
3047 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3048
3049 return (entry->symndx
3050 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3051 + (entry->tls_type == GOT_TLS_LDM ? 0
3052 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3053 : entry->symndx >= 0 ? (entry->abfd->id
3054 + mips_elf_hash_bfd_vma (entry->d.addend))
3055 : entry->d.h->root.root.root.hash));
3056 }
3057
3058 static int
3059 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3060 {
3061 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3062 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3063
3064 return (e1->symndx == e2->symndx
3065 && e1->tls_type == e2->tls_type
3066 && (e1->tls_type == GOT_TLS_LDM ? TRUE
3067 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3068 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3069 && e1->d.addend == e2->d.addend)
3070 : e2->abfd && e1->d.h == e2->d.h));
3071 }
3072
3073 static hashval_t
3074 mips_got_page_ref_hash (const void *ref_)
3075 {
3076 const struct mips_got_page_ref *ref;
3077
3078 ref = (const struct mips_got_page_ref *) ref_;
3079 return ((ref->symndx >= 0
3080 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3081 : ref->u.h->root.root.root.hash)
3082 + mips_elf_hash_bfd_vma (ref->addend));
3083 }
3084
3085 static int
3086 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3087 {
3088 const struct mips_got_page_ref *ref1, *ref2;
3089
3090 ref1 = (const struct mips_got_page_ref *) ref1_;
3091 ref2 = (const struct mips_got_page_ref *) ref2_;
3092 return (ref1->symndx == ref2->symndx
3093 && (ref1->symndx < 0
3094 ? ref1->u.h == ref2->u.h
3095 : ref1->u.abfd == ref2->u.abfd)
3096 && ref1->addend == ref2->addend);
3097 }
3098
3099 static hashval_t
3100 mips_got_page_entry_hash (const void *entry_)
3101 {
3102 const struct mips_got_page_entry *entry;
3103
3104 entry = (const struct mips_got_page_entry *) entry_;
3105 return entry->sec->id;
3106 }
3107
3108 static int
3109 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3110 {
3111 const struct mips_got_page_entry *entry1, *entry2;
3112
3113 entry1 = (const struct mips_got_page_entry *) entry1_;
3114 entry2 = (const struct mips_got_page_entry *) entry2_;
3115 return entry1->sec == entry2->sec;
3116 }
3117 \f
3118 /* Create and return a new mips_got_info structure. */
3119
3120 static struct mips_got_info *
3121 mips_elf_create_got_info (bfd *abfd)
3122 {
3123 struct mips_got_info *g;
3124
3125 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3126 if (g == NULL)
3127 return NULL;
3128
3129 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3130 mips_elf_got_entry_eq, NULL);
3131 if (g->got_entries == NULL)
3132 return NULL;
3133
3134 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3135 mips_got_page_ref_eq, NULL);
3136 if (g->got_page_refs == NULL)
3137 return NULL;
3138
3139 return g;
3140 }
3141
3142 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3143 CREATE_P and if ABFD doesn't already have a GOT. */
3144
3145 static struct mips_got_info *
3146 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3147 {
3148 struct mips_elf_obj_tdata *tdata;
3149
3150 if (!is_mips_elf (abfd))
3151 return NULL;
3152
3153 tdata = mips_elf_tdata (abfd);
3154 if (!tdata->got && create_p)
3155 tdata->got = mips_elf_create_got_info (abfd);
3156 return tdata->got;
3157 }
3158
3159 /* Record that ABFD should use output GOT G. */
3160
3161 static void
3162 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3163 {
3164 struct mips_elf_obj_tdata *tdata;
3165
3166 BFD_ASSERT (is_mips_elf (abfd));
3167 tdata = mips_elf_tdata (abfd);
3168 if (tdata->got)
3169 {
3170 /* The GOT structure itself and the hash table entries are
3171 allocated to a bfd, but the hash tables aren't. */
3172 htab_delete (tdata->got->got_entries);
3173 htab_delete (tdata->got->got_page_refs);
3174 if (tdata->got->got_page_entries)
3175 htab_delete (tdata->got->got_page_entries);
3176 }
3177 tdata->got = g;
3178 }
3179
3180 /* Return the dynamic relocation section. If it doesn't exist, try to
3181 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3182 if creation fails. */
3183
3184 static asection *
3185 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3186 {
3187 const char *dname;
3188 asection *sreloc;
3189 bfd *dynobj;
3190
3191 dname = MIPS_ELF_REL_DYN_NAME (info);
3192 dynobj = elf_hash_table (info)->dynobj;
3193 sreloc = bfd_get_linker_section (dynobj, dname);
3194 if (sreloc == NULL && create_p)
3195 {
3196 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3197 (SEC_ALLOC
3198 | SEC_LOAD
3199 | SEC_HAS_CONTENTS
3200 | SEC_IN_MEMORY
3201 | SEC_LINKER_CREATED
3202 | SEC_READONLY));
3203 if (sreloc == NULL
3204 || ! bfd_set_section_alignment (dynobj, sreloc,
3205 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3206 return NULL;
3207 }
3208 return sreloc;
3209 }
3210
3211 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3212
3213 static int
3214 mips_elf_reloc_tls_type (unsigned int r_type)
3215 {
3216 if (tls_gd_reloc_p (r_type))
3217 return GOT_TLS_GD;
3218
3219 if (tls_ldm_reloc_p (r_type))
3220 return GOT_TLS_LDM;
3221
3222 if (tls_gottprel_reloc_p (r_type))
3223 return GOT_TLS_IE;
3224
3225 return GOT_TLS_NONE;
3226 }
3227
3228 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3229
3230 static int
3231 mips_tls_got_entries (unsigned int type)
3232 {
3233 switch (type)
3234 {
3235 case GOT_TLS_GD:
3236 case GOT_TLS_LDM:
3237 return 2;
3238
3239 case GOT_TLS_IE:
3240 return 1;
3241
3242 case GOT_TLS_NONE:
3243 return 0;
3244 }
3245 abort ();
3246 }
3247
3248 /* Count the number of relocations needed for a TLS GOT entry, with
3249 access types from TLS_TYPE, and symbol H (or a local symbol if H
3250 is NULL). */
3251
3252 static int
3253 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3254 struct elf_link_hash_entry *h)
3255 {
3256 int indx = 0;
3257 bfd_boolean need_relocs = FALSE;
3258 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3259
3260 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3261 && (!bfd_link_pic (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
3262 indx = h->dynindx;
3263
3264 if ((bfd_link_pic (info) || indx != 0)
3265 && (h == NULL
3266 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3267 || h->root.type != bfd_link_hash_undefweak))
3268 need_relocs = TRUE;
3269
3270 if (!need_relocs)
3271 return 0;
3272
3273 switch (tls_type)
3274 {
3275 case GOT_TLS_GD:
3276 return indx != 0 ? 2 : 1;
3277
3278 case GOT_TLS_IE:
3279 return 1;
3280
3281 case GOT_TLS_LDM:
3282 return bfd_link_pic (info) ? 1 : 0;
3283
3284 default:
3285 return 0;
3286 }
3287 }
3288
3289 /* Add the number of GOT entries and TLS relocations required by ENTRY
3290 to G. */
3291
3292 static void
3293 mips_elf_count_got_entry (struct bfd_link_info *info,
3294 struct mips_got_info *g,
3295 struct mips_got_entry *entry)
3296 {
3297 if (entry->tls_type)
3298 {
3299 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3300 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3301 entry->symndx < 0
3302 ? &entry->d.h->root : NULL);
3303 }
3304 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3305 g->local_gotno += 1;
3306 else
3307 g->global_gotno += 1;
3308 }
3309
3310 /* Output a simple dynamic relocation into SRELOC. */
3311
3312 static void
3313 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3314 asection *sreloc,
3315 unsigned long reloc_index,
3316 unsigned long indx,
3317 int r_type,
3318 bfd_vma offset)
3319 {
3320 Elf_Internal_Rela rel[3];
3321
3322 memset (rel, 0, sizeof (rel));
3323
3324 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3325 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3326
3327 if (ABI_64_P (output_bfd))
3328 {
3329 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3330 (output_bfd, &rel[0],
3331 (sreloc->contents
3332 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3333 }
3334 else
3335 bfd_elf32_swap_reloc_out
3336 (output_bfd, &rel[0],
3337 (sreloc->contents
3338 + reloc_index * sizeof (Elf32_External_Rel)));
3339 }
3340
3341 /* Initialize a set of TLS GOT entries for one symbol. */
3342
3343 static void
3344 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3345 struct mips_got_entry *entry,
3346 struct mips_elf_link_hash_entry *h,
3347 bfd_vma value)
3348 {
3349 struct mips_elf_link_hash_table *htab;
3350 int indx;
3351 asection *sreloc, *sgot;
3352 bfd_vma got_offset, got_offset2;
3353 bfd_boolean need_relocs = FALSE;
3354
3355 htab = mips_elf_hash_table (info);
3356 if (htab == NULL)
3357 return;
3358
3359 sgot = htab->root.sgot;
3360
3361 indx = 0;
3362 if (h != NULL)
3363 {
3364 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3365
3366 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info),
3367 &h->root)
3368 && (!bfd_link_pic (info)
3369 || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3370 indx = h->root.dynindx;
3371 }
3372
3373 if (entry->tls_initialized)
3374 return;
3375
3376 if ((bfd_link_pic (info) || indx != 0)
3377 && (h == NULL
3378 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3379 || h->root.type != bfd_link_hash_undefweak))
3380 need_relocs = TRUE;
3381
3382 /* MINUS_ONE means the symbol is not defined in this object. It may not
3383 be defined at all; assume that the value doesn't matter in that
3384 case. Otherwise complain if we would use the value. */
3385 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3386 || h->root.root.type == bfd_link_hash_undefweak);
3387
3388 /* Emit necessary relocations. */
3389 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3390 got_offset = entry->gotidx;
3391
3392 switch (entry->tls_type)
3393 {
3394 case GOT_TLS_GD:
3395 /* General Dynamic. */
3396 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3397
3398 if (need_relocs)
3399 {
3400 mips_elf_output_dynamic_relocation
3401 (abfd, sreloc, sreloc->reloc_count++, indx,
3402 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3403 sgot->output_offset + sgot->output_section->vma + got_offset);
3404
3405 if (indx)
3406 mips_elf_output_dynamic_relocation
3407 (abfd, sreloc, sreloc->reloc_count++, indx,
3408 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3409 sgot->output_offset + sgot->output_section->vma + got_offset2);
3410 else
3411 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3412 sgot->contents + got_offset2);
3413 }
3414 else
3415 {
3416 MIPS_ELF_PUT_WORD (abfd, 1,
3417 sgot->contents + got_offset);
3418 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3419 sgot->contents + got_offset2);
3420 }
3421 break;
3422
3423 case GOT_TLS_IE:
3424 /* Initial Exec model. */
3425 if (need_relocs)
3426 {
3427 if (indx == 0)
3428 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3429 sgot->contents + got_offset);
3430 else
3431 MIPS_ELF_PUT_WORD (abfd, 0,
3432 sgot->contents + got_offset);
3433
3434 mips_elf_output_dynamic_relocation
3435 (abfd, sreloc, sreloc->reloc_count++, indx,
3436 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3437 sgot->output_offset + sgot->output_section->vma + got_offset);
3438 }
3439 else
3440 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3441 sgot->contents + got_offset);
3442 break;
3443
3444 case GOT_TLS_LDM:
3445 /* The initial offset is zero, and the LD offsets will include the
3446 bias by DTP_OFFSET. */
3447 MIPS_ELF_PUT_WORD (abfd, 0,
3448 sgot->contents + got_offset
3449 + MIPS_ELF_GOT_SIZE (abfd));
3450
3451 if (!bfd_link_pic (info))
3452 MIPS_ELF_PUT_WORD (abfd, 1,
3453 sgot->contents + got_offset);
3454 else
3455 mips_elf_output_dynamic_relocation
3456 (abfd, sreloc, sreloc->reloc_count++, indx,
3457 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3458 sgot->output_offset + sgot->output_section->vma + got_offset);
3459 break;
3460
3461 default:
3462 abort ();
3463 }
3464
3465 entry->tls_initialized = TRUE;
3466 }
3467
3468 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3469 for global symbol H. .got.plt comes before the GOT, so the offset
3470 will be negative. */
3471
3472 static bfd_vma
3473 mips_elf_gotplt_index (struct bfd_link_info *info,
3474 struct elf_link_hash_entry *h)
3475 {
3476 bfd_vma got_address, got_value;
3477 struct mips_elf_link_hash_table *htab;
3478
3479 htab = mips_elf_hash_table (info);
3480 BFD_ASSERT (htab != NULL);
3481
3482 BFD_ASSERT (h->plt.plist != NULL);
3483 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3484
3485 /* Calculate the address of the associated .got.plt entry. */
3486 got_address = (htab->root.sgotplt->output_section->vma
3487 + htab->root.sgotplt->output_offset
3488 + (h->plt.plist->gotplt_index
3489 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3490
3491 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3492 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3493 + htab->root.hgot->root.u.def.section->output_offset
3494 + htab->root.hgot->root.u.def.value);
3495
3496 return got_address - got_value;
3497 }
3498
3499 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3500 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3501 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3502 offset can be found. */
3503
3504 static bfd_vma
3505 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3506 bfd_vma value, unsigned long r_symndx,
3507 struct mips_elf_link_hash_entry *h, int r_type)
3508 {
3509 struct mips_elf_link_hash_table *htab;
3510 struct mips_got_entry *entry;
3511
3512 htab = mips_elf_hash_table (info);
3513 BFD_ASSERT (htab != NULL);
3514
3515 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3516 r_symndx, h, r_type);
3517 if (!entry)
3518 return MINUS_ONE;
3519
3520 if (entry->tls_type)
3521 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3522 return entry->gotidx;
3523 }
3524
3525 /* Return the GOT index of global symbol H in the primary GOT. */
3526
3527 static bfd_vma
3528 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3529 struct elf_link_hash_entry *h)
3530 {
3531 struct mips_elf_link_hash_table *htab;
3532 long global_got_dynindx;
3533 struct mips_got_info *g;
3534 bfd_vma got_index;
3535
3536 htab = mips_elf_hash_table (info);
3537 BFD_ASSERT (htab != NULL);
3538
3539 global_got_dynindx = 0;
3540 if (htab->global_gotsym != NULL)
3541 global_got_dynindx = htab->global_gotsym->dynindx;
3542
3543 /* Once we determine the global GOT entry with the lowest dynamic
3544 symbol table index, we must put all dynamic symbols with greater
3545 indices into the primary GOT. That makes it easy to calculate the
3546 GOT offset. */
3547 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3548 g = mips_elf_bfd_got (obfd, FALSE);
3549 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3550 * MIPS_ELF_GOT_SIZE (obfd));
3551 BFD_ASSERT (got_index < htab->root.sgot->size);
3552
3553 return got_index;
3554 }
3555
3556 /* Return the GOT index for the global symbol indicated by H, which is
3557 referenced by a relocation of type R_TYPE in IBFD. */
3558
3559 static bfd_vma
3560 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3561 struct elf_link_hash_entry *h, int r_type)
3562 {
3563 struct mips_elf_link_hash_table *htab;
3564 struct mips_got_info *g;
3565 struct mips_got_entry lookup, *entry;
3566 bfd_vma gotidx;
3567
3568 htab = mips_elf_hash_table (info);
3569 BFD_ASSERT (htab != NULL);
3570
3571 g = mips_elf_bfd_got (ibfd, FALSE);
3572 BFD_ASSERT (g);
3573
3574 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3575 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3576 return mips_elf_primary_global_got_index (obfd, info, h);
3577
3578 lookup.abfd = ibfd;
3579 lookup.symndx = -1;
3580 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3581 entry = htab_find (g->got_entries, &lookup);
3582 BFD_ASSERT (entry);
3583
3584 gotidx = entry->gotidx;
3585 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3586
3587 if (lookup.tls_type)
3588 {
3589 bfd_vma value = MINUS_ONE;
3590
3591 if ((h->root.type == bfd_link_hash_defined
3592 || h->root.type == bfd_link_hash_defweak)
3593 && h->root.u.def.section->output_section)
3594 value = (h->root.u.def.value
3595 + h->root.u.def.section->output_offset
3596 + h->root.u.def.section->output_section->vma);
3597
3598 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3599 }
3600 return gotidx;
3601 }
3602
3603 /* Find a GOT page entry that points to within 32KB of VALUE. These
3604 entries are supposed to be placed at small offsets in the GOT, i.e.,
3605 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3606 entry could be created. If OFFSETP is nonnull, use it to return the
3607 offset of the GOT entry from VALUE. */
3608
3609 static bfd_vma
3610 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3611 bfd_vma value, bfd_vma *offsetp)
3612 {
3613 bfd_vma page, got_index;
3614 struct mips_got_entry *entry;
3615
3616 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3617 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3618 NULL, R_MIPS_GOT_PAGE);
3619
3620 if (!entry)
3621 return MINUS_ONE;
3622
3623 got_index = entry->gotidx;
3624
3625 if (offsetp)
3626 *offsetp = value - entry->d.address;
3627
3628 return got_index;
3629 }
3630
3631 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3632 EXTERNAL is true if the relocation was originally against a global
3633 symbol that binds locally. */
3634
3635 static bfd_vma
3636 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3637 bfd_vma value, bfd_boolean external)
3638 {
3639 struct mips_got_entry *entry;
3640
3641 /* GOT16 relocations against local symbols are followed by a LO16
3642 relocation; those against global symbols are not. Thus if the
3643 symbol was originally local, the GOT16 relocation should load the
3644 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3645 if (! external)
3646 value = mips_elf_high (value) << 16;
3647
3648 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3649 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3650 same in all cases. */
3651 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3652 NULL, R_MIPS_GOT16);
3653 if (entry)
3654 return entry->gotidx;
3655 else
3656 return MINUS_ONE;
3657 }
3658
3659 /* Returns the offset for the entry at the INDEXth position
3660 in the GOT. */
3661
3662 static bfd_vma
3663 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3664 bfd *input_bfd, bfd_vma got_index)
3665 {
3666 struct mips_elf_link_hash_table *htab;
3667 asection *sgot;
3668 bfd_vma gp;
3669
3670 htab = mips_elf_hash_table (info);
3671 BFD_ASSERT (htab != NULL);
3672
3673 sgot = htab->root.sgot;
3674 gp = _bfd_get_gp_value (output_bfd)
3675 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3676
3677 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3678 }
3679
3680 /* Create and return a local GOT entry for VALUE, which was calculated
3681 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3682 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3683 instead. */
3684
3685 static struct mips_got_entry *
3686 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3687 bfd *ibfd, bfd_vma value,
3688 unsigned long r_symndx,
3689 struct mips_elf_link_hash_entry *h,
3690 int r_type)
3691 {
3692 struct mips_got_entry lookup, *entry;
3693 void **loc;
3694 struct mips_got_info *g;
3695 struct mips_elf_link_hash_table *htab;
3696 bfd_vma gotidx;
3697
3698 htab = mips_elf_hash_table (info);
3699 BFD_ASSERT (htab != NULL);
3700
3701 g = mips_elf_bfd_got (ibfd, FALSE);
3702 if (g == NULL)
3703 {
3704 g = mips_elf_bfd_got (abfd, FALSE);
3705 BFD_ASSERT (g != NULL);
3706 }
3707
3708 /* This function shouldn't be called for symbols that live in the global
3709 area of the GOT. */
3710 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3711
3712 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3713 if (lookup.tls_type)
3714 {
3715 lookup.abfd = ibfd;
3716 if (tls_ldm_reloc_p (r_type))
3717 {
3718 lookup.symndx = 0;
3719 lookup.d.addend = 0;
3720 }
3721 else if (h == NULL)
3722 {
3723 lookup.symndx = r_symndx;
3724 lookup.d.addend = 0;
3725 }
3726 else
3727 {
3728 lookup.symndx = -1;
3729 lookup.d.h = h;
3730 }
3731
3732 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3733 BFD_ASSERT (entry);
3734
3735 gotidx = entry->gotidx;
3736 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3737
3738 return entry;
3739 }
3740
3741 lookup.abfd = NULL;
3742 lookup.symndx = -1;
3743 lookup.d.address = value;
3744 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3745 if (!loc)
3746 return NULL;
3747
3748 entry = (struct mips_got_entry *) *loc;
3749 if (entry)
3750 return entry;
3751
3752 if (g->assigned_low_gotno > g->assigned_high_gotno)
3753 {
3754 /* We didn't allocate enough space in the GOT. */
3755 _bfd_error_handler
3756 (_("not enough GOT space for local GOT entries"));
3757 bfd_set_error (bfd_error_bad_value);
3758 return NULL;
3759 }
3760
3761 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3762 if (!entry)
3763 return NULL;
3764
3765 if (got16_reloc_p (r_type)
3766 || call16_reloc_p (r_type)
3767 || got_page_reloc_p (r_type)
3768 || got_disp_reloc_p (r_type))
3769 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3770 else
3771 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3772
3773 *entry = lookup;
3774 *loc = entry;
3775
3776 MIPS_ELF_PUT_WORD (abfd, value, htab->root.sgot->contents + entry->gotidx);
3777
3778 /* These GOT entries need a dynamic relocation on VxWorks. */
3779 if (htab->is_vxworks)
3780 {
3781 Elf_Internal_Rela outrel;
3782 asection *s;
3783 bfd_byte *rloc;
3784 bfd_vma got_address;
3785
3786 s = mips_elf_rel_dyn_section (info, FALSE);
3787 got_address = (htab->root.sgot->output_section->vma
3788 + htab->root.sgot->output_offset
3789 + entry->gotidx);
3790
3791 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3792 outrel.r_offset = got_address;
3793 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3794 outrel.r_addend = value;
3795 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3796 }
3797
3798 return entry;
3799 }
3800
3801 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3802 The number might be exact or a worst-case estimate, depending on how
3803 much information is available to elf_backend_omit_section_dynsym at
3804 the current linking stage. */
3805
3806 static bfd_size_type
3807 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3808 {
3809 bfd_size_type count;
3810
3811 count = 0;
3812 if (bfd_link_pic (info)
3813 || elf_hash_table (info)->is_relocatable_executable)
3814 {
3815 asection *p;
3816 const struct elf_backend_data *bed;
3817
3818 bed = get_elf_backend_data (output_bfd);
3819 for (p = output_bfd->sections; p ; p = p->next)
3820 if ((p->flags & SEC_EXCLUDE) == 0
3821 && (p->flags & SEC_ALLOC) != 0
3822 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3823 ++count;
3824 }
3825 return count;
3826 }
3827
3828 /* Sort the dynamic symbol table so that symbols that need GOT entries
3829 appear towards the end. */
3830
3831 static bfd_boolean
3832 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3833 {
3834 struct mips_elf_link_hash_table *htab;
3835 struct mips_elf_hash_sort_data hsd;
3836 struct mips_got_info *g;
3837
3838 htab = mips_elf_hash_table (info);
3839 BFD_ASSERT (htab != NULL);
3840
3841 if (htab->root.dynsymcount == 0)
3842 return TRUE;
3843
3844 g = htab->got_info;
3845 if (g == NULL)
3846 return TRUE;
3847
3848 hsd.low = NULL;
3849 hsd.max_unref_got_dynindx
3850 = hsd.min_got_dynindx
3851 = (htab->root.dynsymcount - g->reloc_only_gotno);
3852 /* Add 1 to local symbol indices to account for the mandatory NULL entry
3853 at the head of the table; see `_bfd_elf_link_renumber_dynsyms'. */
3854 hsd.max_local_dynindx = count_section_dynsyms (abfd, info) + 1;
3855 hsd.max_non_got_dynindx = htab->root.local_dynsymcount + 1;
3856 mips_elf_link_hash_traverse (htab, mips_elf_sort_hash_table_f, &hsd);
3857
3858 /* There should have been enough room in the symbol table to
3859 accommodate both the GOT and non-GOT symbols. */
3860 BFD_ASSERT (hsd.max_local_dynindx <= htab->root.local_dynsymcount + 1);
3861 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3862 BFD_ASSERT (hsd.max_unref_got_dynindx == htab->root.dynsymcount);
3863 BFD_ASSERT (htab->root.dynsymcount - hsd.min_got_dynindx == g->global_gotno);
3864
3865 /* Now we know which dynamic symbol has the lowest dynamic symbol
3866 table index in the GOT. */
3867 htab->global_gotsym = hsd.low;
3868
3869 return TRUE;
3870 }
3871
3872 /* If H needs a GOT entry, assign it the highest available dynamic
3873 index. Otherwise, assign it the lowest available dynamic
3874 index. */
3875
3876 static bfd_boolean
3877 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3878 {
3879 struct mips_elf_hash_sort_data *hsd = data;
3880
3881 /* Symbols without dynamic symbol table entries aren't interesting
3882 at all. */
3883 if (h->root.dynindx == -1)
3884 return TRUE;
3885
3886 switch (h->global_got_area)
3887 {
3888 case GGA_NONE:
3889 if (h->root.forced_local)
3890 h->root.dynindx = hsd->max_local_dynindx++;
3891 else
3892 h->root.dynindx = hsd->max_non_got_dynindx++;
3893 break;
3894
3895 case GGA_NORMAL:
3896 h->root.dynindx = --hsd->min_got_dynindx;
3897 hsd->low = (struct elf_link_hash_entry *) h;
3898 break;
3899
3900 case GGA_RELOC_ONLY:
3901 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3902 hsd->low = (struct elf_link_hash_entry *) h;
3903 h->root.dynindx = hsd->max_unref_got_dynindx++;
3904 break;
3905 }
3906
3907 return TRUE;
3908 }
3909
3910 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3911 (which is owned by the caller and shouldn't be added to the
3912 hash table directly). */
3913
3914 static bfd_boolean
3915 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3916 struct mips_got_entry *lookup)
3917 {
3918 struct mips_elf_link_hash_table *htab;
3919 struct mips_got_entry *entry;
3920 struct mips_got_info *g;
3921 void **loc, **bfd_loc;
3922
3923 /* Make sure there's a slot for this entry in the master GOT. */
3924 htab = mips_elf_hash_table (info);
3925 g = htab->got_info;
3926 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3927 if (!loc)
3928 return FALSE;
3929
3930 /* Populate the entry if it isn't already. */
3931 entry = (struct mips_got_entry *) *loc;
3932 if (!entry)
3933 {
3934 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3935 if (!entry)
3936 return FALSE;
3937
3938 lookup->tls_initialized = FALSE;
3939 lookup->gotidx = -1;
3940 *entry = *lookup;
3941 *loc = entry;
3942 }
3943
3944 /* Reuse the same GOT entry for the BFD's GOT. */
3945 g = mips_elf_bfd_got (abfd, TRUE);
3946 if (!g)
3947 return FALSE;
3948
3949 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3950 if (!bfd_loc)
3951 return FALSE;
3952
3953 if (!*bfd_loc)
3954 *bfd_loc = entry;
3955 return TRUE;
3956 }
3957
3958 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3959 entry for it. FOR_CALL is true if the caller is only interested in
3960 using the GOT entry for calls. */
3961
3962 static bfd_boolean
3963 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3964 bfd *abfd, struct bfd_link_info *info,
3965 bfd_boolean for_call, int r_type)
3966 {
3967 struct mips_elf_link_hash_table *htab;
3968 struct mips_elf_link_hash_entry *hmips;
3969 struct mips_got_entry entry;
3970 unsigned char tls_type;
3971
3972 htab = mips_elf_hash_table (info);
3973 BFD_ASSERT (htab != NULL);
3974
3975 hmips = (struct mips_elf_link_hash_entry *) h;
3976 if (!for_call)
3977 hmips->got_only_for_calls = FALSE;
3978
3979 /* A global symbol in the GOT must also be in the dynamic symbol
3980 table. */
3981 if (h->dynindx == -1)
3982 {
3983 switch (ELF_ST_VISIBILITY (h->other))
3984 {
3985 case STV_INTERNAL:
3986 case STV_HIDDEN:
3987 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3988 break;
3989 }
3990 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3991 return FALSE;
3992 }
3993
3994 tls_type = mips_elf_reloc_tls_type (r_type);
3995 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
3996 hmips->global_got_area = GGA_NORMAL;
3997
3998 entry.abfd = abfd;
3999 entry.symndx = -1;
4000 entry.d.h = (struct mips_elf_link_hash_entry *) h;
4001 entry.tls_type = tls_type;
4002 return mips_elf_record_got_entry (info, abfd, &entry);
4003 }
4004
4005 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
4006 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
4007
4008 static bfd_boolean
4009 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
4010 struct bfd_link_info *info, int r_type)
4011 {
4012 struct mips_elf_link_hash_table *htab;
4013 struct mips_got_info *g;
4014 struct mips_got_entry entry;
4015
4016 htab = mips_elf_hash_table (info);
4017 BFD_ASSERT (htab != NULL);
4018
4019 g = htab->got_info;
4020 BFD_ASSERT (g != NULL);
4021
4022 entry.abfd = abfd;
4023 entry.symndx = symndx;
4024 entry.d.addend = addend;
4025 entry.tls_type = mips_elf_reloc_tls_type (r_type);
4026 return mips_elf_record_got_entry (info, abfd, &entry);
4027 }
4028
4029 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4030 H is the symbol's hash table entry, or null if SYMNDX is local
4031 to ABFD. */
4032
4033 static bfd_boolean
4034 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4035 long symndx, struct elf_link_hash_entry *h,
4036 bfd_signed_vma addend)
4037 {
4038 struct mips_elf_link_hash_table *htab;
4039 struct mips_got_info *g1, *g2;
4040 struct mips_got_page_ref lookup, *entry;
4041 void **loc, **bfd_loc;
4042
4043 htab = mips_elf_hash_table (info);
4044 BFD_ASSERT (htab != NULL);
4045
4046 g1 = htab->got_info;
4047 BFD_ASSERT (g1 != NULL);
4048
4049 if (h)
4050 {
4051 lookup.symndx = -1;
4052 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4053 }
4054 else
4055 {
4056 lookup.symndx = symndx;
4057 lookup.u.abfd = abfd;
4058 }
4059 lookup.addend = addend;
4060 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4061 if (loc == NULL)
4062 return FALSE;
4063
4064 entry = (struct mips_got_page_ref *) *loc;
4065 if (!entry)
4066 {
4067 entry = bfd_alloc (abfd, sizeof (*entry));
4068 if (!entry)
4069 return FALSE;
4070
4071 *entry = lookup;
4072 *loc = entry;
4073 }
4074
4075 /* Add the same entry to the BFD's GOT. */
4076 g2 = mips_elf_bfd_got (abfd, TRUE);
4077 if (!g2)
4078 return FALSE;
4079
4080 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4081 if (!bfd_loc)
4082 return FALSE;
4083
4084 if (!*bfd_loc)
4085 *bfd_loc = entry;
4086
4087 return TRUE;
4088 }
4089
4090 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4091
4092 static void
4093 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4094 unsigned int n)
4095 {
4096 asection *s;
4097 struct mips_elf_link_hash_table *htab;
4098
4099 htab = mips_elf_hash_table (info);
4100 BFD_ASSERT (htab != NULL);
4101
4102 s = mips_elf_rel_dyn_section (info, FALSE);
4103 BFD_ASSERT (s != NULL);
4104
4105 if (htab->is_vxworks)
4106 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4107 else
4108 {
4109 if (s->size == 0)
4110 {
4111 /* Make room for a null element. */
4112 s->size += MIPS_ELF_REL_SIZE (abfd);
4113 ++s->reloc_count;
4114 }
4115 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4116 }
4117 }
4118 \f
4119 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4120 mips_elf_traverse_got_arg structure. Count the number of GOT
4121 entries and TLS relocs. Set DATA->value to true if we need
4122 to resolve indirect or warning symbols and then recreate the GOT. */
4123
4124 static int
4125 mips_elf_check_recreate_got (void **entryp, void *data)
4126 {
4127 struct mips_got_entry *entry;
4128 struct mips_elf_traverse_got_arg *arg;
4129
4130 entry = (struct mips_got_entry *) *entryp;
4131 arg = (struct mips_elf_traverse_got_arg *) data;
4132 if (entry->abfd != NULL && entry->symndx == -1)
4133 {
4134 struct mips_elf_link_hash_entry *h;
4135
4136 h = entry->d.h;
4137 if (h->root.root.type == bfd_link_hash_indirect
4138 || h->root.root.type == bfd_link_hash_warning)
4139 {
4140 arg->value = TRUE;
4141 return 0;
4142 }
4143 }
4144 mips_elf_count_got_entry (arg->info, arg->g, entry);
4145 return 1;
4146 }
4147
4148 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4149 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4150 converting entries for indirect and warning symbols into entries
4151 for the target symbol. Set DATA->g to null on error. */
4152
4153 static int
4154 mips_elf_recreate_got (void **entryp, void *data)
4155 {
4156 struct mips_got_entry new_entry, *entry;
4157 struct mips_elf_traverse_got_arg *arg;
4158 void **slot;
4159
4160 entry = (struct mips_got_entry *) *entryp;
4161 arg = (struct mips_elf_traverse_got_arg *) data;
4162 if (entry->abfd != NULL
4163 && entry->symndx == -1
4164 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4165 || entry->d.h->root.root.type == bfd_link_hash_warning))
4166 {
4167 struct mips_elf_link_hash_entry *h;
4168
4169 new_entry = *entry;
4170 entry = &new_entry;
4171 h = entry->d.h;
4172 do
4173 {
4174 BFD_ASSERT (h->global_got_area == GGA_NONE);
4175 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4176 }
4177 while (h->root.root.type == bfd_link_hash_indirect
4178 || h->root.root.type == bfd_link_hash_warning);
4179 entry->d.h = h;
4180 }
4181 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4182 if (slot == NULL)
4183 {
4184 arg->g = NULL;
4185 return 0;
4186 }
4187 if (*slot == NULL)
4188 {
4189 if (entry == &new_entry)
4190 {
4191 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4192 if (!entry)
4193 {
4194 arg->g = NULL;
4195 return 0;
4196 }
4197 *entry = new_entry;
4198 }
4199 *slot = entry;
4200 mips_elf_count_got_entry (arg->info, arg->g, entry);
4201 }
4202 return 1;
4203 }
4204
4205 /* Return the maximum number of GOT page entries required for RANGE. */
4206
4207 static bfd_vma
4208 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4209 {
4210 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4211 }
4212
4213 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4214
4215 static bfd_boolean
4216 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4217 asection *sec, bfd_signed_vma addend)
4218 {
4219 struct mips_got_info *g = arg->g;
4220 struct mips_got_page_entry lookup, *entry;
4221 struct mips_got_page_range **range_ptr, *range;
4222 bfd_vma old_pages, new_pages;
4223 void **loc;
4224
4225 /* Find the mips_got_page_entry hash table entry for this section. */
4226 lookup.sec = sec;
4227 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4228 if (loc == NULL)
4229 return FALSE;
4230
4231 /* Create a mips_got_page_entry if this is the first time we've
4232 seen the section. */
4233 entry = (struct mips_got_page_entry *) *loc;
4234 if (!entry)
4235 {
4236 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4237 if (!entry)
4238 return FALSE;
4239
4240 entry->sec = sec;
4241 *loc = entry;
4242 }
4243
4244 /* Skip over ranges whose maximum extent cannot share a page entry
4245 with ADDEND. */
4246 range_ptr = &entry->ranges;
4247 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4248 range_ptr = &(*range_ptr)->next;
4249
4250 /* If we scanned to the end of the list, or found a range whose
4251 minimum extent cannot share a page entry with ADDEND, create
4252 a new singleton range. */
4253 range = *range_ptr;
4254 if (!range || addend < range->min_addend - 0xffff)
4255 {
4256 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4257 if (!range)
4258 return FALSE;
4259
4260 range->next = *range_ptr;
4261 range->min_addend = addend;
4262 range->max_addend = addend;
4263
4264 *range_ptr = range;
4265 entry->num_pages++;
4266 g->page_gotno++;
4267 return TRUE;
4268 }
4269
4270 /* Remember how many pages the old range contributed. */
4271 old_pages = mips_elf_pages_for_range (range);
4272
4273 /* Update the ranges. */
4274 if (addend < range->min_addend)
4275 range->min_addend = addend;
4276 else if (addend > range->max_addend)
4277 {
4278 if (range->next && addend >= range->next->min_addend - 0xffff)
4279 {
4280 old_pages += mips_elf_pages_for_range (range->next);
4281 range->max_addend = range->next->max_addend;
4282 range->next = range->next->next;
4283 }
4284 else
4285 range->max_addend = addend;
4286 }
4287
4288 /* Record any change in the total estimate. */
4289 new_pages = mips_elf_pages_for_range (range);
4290 if (old_pages != new_pages)
4291 {
4292 entry->num_pages += new_pages - old_pages;
4293 g->page_gotno += new_pages - old_pages;
4294 }
4295
4296 return TRUE;
4297 }
4298
4299 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4300 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4301 whether the page reference described by *REFP needs a GOT page entry,
4302 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4303
4304 static bfd_boolean
4305 mips_elf_resolve_got_page_ref (void **refp, void *data)
4306 {
4307 struct mips_got_page_ref *ref;
4308 struct mips_elf_traverse_got_arg *arg;
4309 struct mips_elf_link_hash_table *htab;
4310 asection *sec;
4311 bfd_vma addend;
4312
4313 ref = (struct mips_got_page_ref *) *refp;
4314 arg = (struct mips_elf_traverse_got_arg *) data;
4315 htab = mips_elf_hash_table (arg->info);
4316
4317 if (ref->symndx < 0)
4318 {
4319 struct mips_elf_link_hash_entry *h;
4320
4321 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4322 h = ref->u.h;
4323 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4324 return 1;
4325
4326 /* Ignore undefined symbols; we'll issue an error later if
4327 appropriate. */
4328 if (!((h->root.root.type == bfd_link_hash_defined
4329 || h->root.root.type == bfd_link_hash_defweak)
4330 && h->root.root.u.def.section))
4331 return 1;
4332
4333 sec = h->root.root.u.def.section;
4334 addend = h->root.root.u.def.value + ref->addend;
4335 }
4336 else
4337 {
4338 Elf_Internal_Sym *isym;
4339
4340 /* Read in the symbol. */
4341 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4342 ref->symndx);
4343 if (isym == NULL)
4344 {
4345 arg->g = NULL;
4346 return 0;
4347 }
4348
4349 /* Get the associated input section. */
4350 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4351 if (sec == NULL)
4352 {
4353 arg->g = NULL;
4354 return 0;
4355 }
4356
4357 /* If this is a mergable section, work out the section and offset
4358 of the merged data. For section symbols, the addend specifies
4359 of the offset _of_ the first byte in the data, otherwise it
4360 specifies the offset _from_ the first byte. */
4361 if (sec->flags & SEC_MERGE)
4362 {
4363 void *secinfo;
4364
4365 secinfo = elf_section_data (sec)->sec_info;
4366 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4367 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4368 isym->st_value + ref->addend);
4369 else
4370 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4371 isym->st_value) + ref->addend;
4372 }
4373 else
4374 addend = isym->st_value + ref->addend;
4375 }
4376 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4377 {
4378 arg->g = NULL;
4379 return 0;
4380 }
4381 return 1;
4382 }
4383
4384 /* If any entries in G->got_entries are for indirect or warning symbols,
4385 replace them with entries for the target symbol. Convert g->got_page_refs
4386 into got_page_entry structures and estimate the number of page entries
4387 that they require. */
4388
4389 static bfd_boolean
4390 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4391 struct mips_got_info *g)
4392 {
4393 struct mips_elf_traverse_got_arg tga;
4394 struct mips_got_info oldg;
4395
4396 oldg = *g;
4397
4398 tga.info = info;
4399 tga.g = g;
4400 tga.value = FALSE;
4401 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4402 if (tga.value)
4403 {
4404 *g = oldg;
4405 g->got_entries = htab_create (htab_size (oldg.got_entries),
4406 mips_elf_got_entry_hash,
4407 mips_elf_got_entry_eq, NULL);
4408 if (!g->got_entries)
4409 return FALSE;
4410
4411 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4412 if (!tga.g)
4413 return FALSE;
4414
4415 htab_delete (oldg.got_entries);
4416 }
4417
4418 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4419 mips_got_page_entry_eq, NULL);
4420 if (g->got_page_entries == NULL)
4421 return FALSE;
4422
4423 tga.info = info;
4424 tga.g = g;
4425 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4426
4427 return TRUE;
4428 }
4429
4430 /* Return true if a GOT entry for H should live in the local rather than
4431 global GOT area. */
4432
4433 static bfd_boolean
4434 mips_use_local_got_p (struct bfd_link_info *info,
4435 struct mips_elf_link_hash_entry *h)
4436 {
4437 /* Symbols that aren't in the dynamic symbol table must live in the
4438 local GOT. This includes symbols that are completely undefined
4439 and which therefore don't bind locally. We'll report undefined
4440 symbols later if appropriate. */
4441 if (h->root.dynindx == -1)
4442 return TRUE;
4443
4444 /* Symbols that bind locally can (and in the case of forced-local
4445 symbols, must) live in the local GOT. */
4446 if (h->got_only_for_calls
4447 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4448 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4449 return TRUE;
4450
4451 /* If this is an executable that must provide a definition of the symbol,
4452 either though PLTs or copy relocations, then that address should go in
4453 the local rather than global GOT. */
4454 if (bfd_link_executable (info) && h->has_static_relocs)
4455 return TRUE;
4456
4457 return FALSE;
4458 }
4459
4460 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4461 link_info structure. Decide whether the hash entry needs an entry in
4462 the global part of the primary GOT, setting global_got_area accordingly.
4463 Count the number of global symbols that are in the primary GOT only
4464 because they have relocations against them (reloc_only_gotno). */
4465
4466 static int
4467 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4468 {
4469 struct bfd_link_info *info;
4470 struct mips_elf_link_hash_table *htab;
4471 struct mips_got_info *g;
4472
4473 info = (struct bfd_link_info *) data;
4474 htab = mips_elf_hash_table (info);
4475 g = htab->got_info;
4476 if (h->global_got_area != GGA_NONE)
4477 {
4478 /* Make a final decision about whether the symbol belongs in the
4479 local or global GOT. */
4480 if (mips_use_local_got_p (info, h))
4481 /* The symbol belongs in the local GOT. We no longer need this
4482 entry if it was only used for relocations; those relocations
4483 will be against the null or section symbol instead of H. */
4484 h->global_got_area = GGA_NONE;
4485 else if (htab->is_vxworks
4486 && h->got_only_for_calls
4487 && h->root.plt.plist->mips_offset != MINUS_ONE)
4488 /* On VxWorks, calls can refer directly to the .got.plt entry;
4489 they don't need entries in the regular GOT. .got.plt entries
4490 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4491 h->global_got_area = GGA_NONE;
4492 else if (h->global_got_area == GGA_RELOC_ONLY)
4493 {
4494 g->reloc_only_gotno++;
4495 g->global_gotno++;
4496 }
4497 }
4498 return 1;
4499 }
4500 \f
4501 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4502 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4503
4504 static int
4505 mips_elf_add_got_entry (void **entryp, void *data)
4506 {
4507 struct mips_got_entry *entry;
4508 struct mips_elf_traverse_got_arg *arg;
4509 void **slot;
4510
4511 entry = (struct mips_got_entry *) *entryp;
4512 arg = (struct mips_elf_traverse_got_arg *) data;
4513 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4514 if (!slot)
4515 {
4516 arg->g = NULL;
4517 return 0;
4518 }
4519 if (!*slot)
4520 {
4521 *slot = entry;
4522 mips_elf_count_got_entry (arg->info, arg->g, entry);
4523 }
4524 return 1;
4525 }
4526
4527 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4528 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4529
4530 static int
4531 mips_elf_add_got_page_entry (void **entryp, void *data)
4532 {
4533 struct mips_got_page_entry *entry;
4534 struct mips_elf_traverse_got_arg *arg;
4535 void **slot;
4536
4537 entry = (struct mips_got_page_entry *) *entryp;
4538 arg = (struct mips_elf_traverse_got_arg *) data;
4539 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4540 if (!slot)
4541 {
4542 arg->g = NULL;
4543 return 0;
4544 }
4545 if (!*slot)
4546 {
4547 *slot = entry;
4548 arg->g->page_gotno += entry->num_pages;
4549 }
4550 return 1;
4551 }
4552
4553 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4554 this would lead to overflow, 1 if they were merged successfully,
4555 and 0 if a merge failed due to lack of memory. (These values are chosen
4556 so that nonnegative return values can be returned by a htab_traverse
4557 callback.) */
4558
4559 static int
4560 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4561 struct mips_got_info *to,
4562 struct mips_elf_got_per_bfd_arg *arg)
4563 {
4564 struct mips_elf_traverse_got_arg tga;
4565 unsigned int estimate;
4566
4567 /* Work out how many page entries we would need for the combined GOT. */
4568 estimate = arg->max_pages;
4569 if (estimate >= from->page_gotno + to->page_gotno)
4570 estimate = from->page_gotno + to->page_gotno;
4571
4572 /* And conservatively estimate how many local and TLS entries
4573 would be needed. */
4574 estimate += from->local_gotno + to->local_gotno;
4575 estimate += from->tls_gotno + to->tls_gotno;
4576
4577 /* If we're merging with the primary got, any TLS relocations will
4578 come after the full set of global entries. Otherwise estimate those
4579 conservatively as well. */
4580 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4581 estimate += arg->global_count;
4582 else
4583 estimate += from->global_gotno + to->global_gotno;
4584
4585 /* Bail out if the combined GOT might be too big. */
4586 if (estimate > arg->max_count)
4587 return -1;
4588
4589 /* Transfer the bfd's got information from FROM to TO. */
4590 tga.info = arg->info;
4591 tga.g = to;
4592 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4593 if (!tga.g)
4594 return 0;
4595
4596 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4597 if (!tga.g)
4598 return 0;
4599
4600 mips_elf_replace_bfd_got (abfd, to);
4601 return 1;
4602 }
4603
4604 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4605 as possible of the primary got, since it doesn't require explicit
4606 dynamic relocations, but don't use bfds that would reference global
4607 symbols out of the addressable range. Failing the primary got,
4608 attempt to merge with the current got, or finish the current got
4609 and then make make the new got current. */
4610
4611 static bfd_boolean
4612 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4613 struct mips_elf_got_per_bfd_arg *arg)
4614 {
4615 unsigned int estimate;
4616 int result;
4617
4618 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4619 return FALSE;
4620
4621 /* Work out the number of page, local and TLS entries. */
4622 estimate = arg->max_pages;
4623 if (estimate > g->page_gotno)
4624 estimate = g->page_gotno;
4625 estimate += g->local_gotno + g->tls_gotno;
4626
4627 /* We place TLS GOT entries after both locals and globals. The globals
4628 for the primary GOT may overflow the normal GOT size limit, so be
4629 sure not to merge a GOT which requires TLS with the primary GOT in that
4630 case. This doesn't affect non-primary GOTs. */
4631 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4632
4633 if (estimate <= arg->max_count)
4634 {
4635 /* If we don't have a primary GOT, use it as
4636 a starting point for the primary GOT. */
4637 if (!arg->primary)
4638 {
4639 arg->primary = g;
4640 return TRUE;
4641 }
4642
4643 /* Try merging with the primary GOT. */
4644 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4645 if (result >= 0)
4646 return result;
4647 }
4648
4649 /* If we can merge with the last-created got, do it. */
4650 if (arg->current)
4651 {
4652 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4653 if (result >= 0)
4654 return result;
4655 }
4656
4657 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4658 fits; if it turns out that it doesn't, we'll get relocation
4659 overflows anyway. */
4660 g->next = arg->current;
4661 arg->current = g;
4662
4663 return TRUE;
4664 }
4665
4666 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4667 to GOTIDX, duplicating the entry if it has already been assigned
4668 an index in a different GOT. */
4669
4670 static bfd_boolean
4671 mips_elf_set_gotidx (void **entryp, long gotidx)
4672 {
4673 struct mips_got_entry *entry;
4674
4675 entry = (struct mips_got_entry *) *entryp;
4676 if (entry->gotidx > 0)
4677 {
4678 struct mips_got_entry *new_entry;
4679
4680 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4681 if (!new_entry)
4682 return FALSE;
4683
4684 *new_entry = *entry;
4685 *entryp = new_entry;
4686 entry = new_entry;
4687 }
4688 entry->gotidx = gotidx;
4689 return TRUE;
4690 }
4691
4692 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4693 mips_elf_traverse_got_arg in which DATA->value is the size of one
4694 GOT entry. Set DATA->g to null on failure. */
4695
4696 static int
4697 mips_elf_initialize_tls_index (void **entryp, void *data)
4698 {
4699 struct mips_got_entry *entry;
4700 struct mips_elf_traverse_got_arg *arg;
4701
4702 /* We're only interested in TLS symbols. */
4703 entry = (struct mips_got_entry *) *entryp;
4704 if (entry->tls_type == GOT_TLS_NONE)
4705 return 1;
4706
4707 arg = (struct mips_elf_traverse_got_arg *) data;
4708 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4709 {
4710 arg->g = NULL;
4711 return 0;
4712 }
4713
4714 /* Account for the entries we've just allocated. */
4715 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4716 return 1;
4717 }
4718
4719 /* A htab_traverse callback for GOT entries, where DATA points to a
4720 mips_elf_traverse_got_arg. Set the global_got_area of each global
4721 symbol to DATA->value. */
4722
4723 static int
4724 mips_elf_set_global_got_area (void **entryp, void *data)
4725 {
4726 struct mips_got_entry *entry;
4727 struct mips_elf_traverse_got_arg *arg;
4728
4729 entry = (struct mips_got_entry *) *entryp;
4730 arg = (struct mips_elf_traverse_got_arg *) data;
4731 if (entry->abfd != NULL
4732 && entry->symndx == -1
4733 && entry->d.h->global_got_area != GGA_NONE)
4734 entry->d.h->global_got_area = arg->value;
4735 return 1;
4736 }
4737
4738 /* A htab_traverse callback for secondary GOT entries, where DATA points
4739 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4740 and record the number of relocations they require. DATA->value is
4741 the size of one GOT entry. Set DATA->g to null on failure. */
4742
4743 static int
4744 mips_elf_set_global_gotidx (void **entryp, void *data)
4745 {
4746 struct mips_got_entry *entry;
4747 struct mips_elf_traverse_got_arg *arg;
4748
4749 entry = (struct mips_got_entry *) *entryp;
4750 arg = (struct mips_elf_traverse_got_arg *) data;
4751 if (entry->abfd != NULL
4752 && entry->symndx == -1
4753 && entry->d.h->global_got_area != GGA_NONE)
4754 {
4755 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4756 {
4757 arg->g = NULL;
4758 return 0;
4759 }
4760 arg->g->assigned_low_gotno += 1;
4761
4762 if (bfd_link_pic (arg->info)
4763 || (elf_hash_table (arg->info)->dynamic_sections_created
4764 && entry->d.h->root.def_dynamic
4765 && !entry->d.h->root.def_regular))
4766 arg->g->relocs += 1;
4767 }
4768
4769 return 1;
4770 }
4771
4772 /* A htab_traverse callback for GOT entries for which DATA is the
4773 bfd_link_info. Forbid any global symbols from having traditional
4774 lazy-binding stubs. */
4775
4776 static int
4777 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4778 {
4779 struct bfd_link_info *info;
4780 struct mips_elf_link_hash_table *htab;
4781 struct mips_got_entry *entry;
4782
4783 entry = (struct mips_got_entry *) *entryp;
4784 info = (struct bfd_link_info *) data;
4785 htab = mips_elf_hash_table (info);
4786 BFD_ASSERT (htab != NULL);
4787
4788 if (entry->abfd != NULL
4789 && entry->symndx == -1
4790 && entry->d.h->needs_lazy_stub)
4791 {
4792 entry->d.h->needs_lazy_stub = FALSE;
4793 htab->lazy_stub_count--;
4794 }
4795
4796 return 1;
4797 }
4798
4799 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4800 the primary GOT. */
4801 static bfd_vma
4802 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4803 {
4804 if (!g->next)
4805 return 0;
4806
4807 g = mips_elf_bfd_got (ibfd, FALSE);
4808 if (! g)
4809 return 0;
4810
4811 BFD_ASSERT (g->next);
4812
4813 g = g->next;
4814
4815 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4816 * MIPS_ELF_GOT_SIZE (abfd);
4817 }
4818
4819 /* Turn a single GOT that is too big for 16-bit addressing into
4820 a sequence of GOTs, each one 16-bit addressable. */
4821
4822 static bfd_boolean
4823 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4824 asection *got, bfd_size_type pages)
4825 {
4826 struct mips_elf_link_hash_table *htab;
4827 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4828 struct mips_elf_traverse_got_arg tga;
4829 struct mips_got_info *g, *gg;
4830 unsigned int assign, needed_relocs;
4831 bfd *dynobj, *ibfd;
4832
4833 dynobj = elf_hash_table (info)->dynobj;
4834 htab = mips_elf_hash_table (info);
4835 BFD_ASSERT (htab != NULL);
4836
4837 g = htab->got_info;
4838
4839 got_per_bfd_arg.obfd = abfd;
4840 got_per_bfd_arg.info = info;
4841 got_per_bfd_arg.current = NULL;
4842 got_per_bfd_arg.primary = NULL;
4843 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4844 / MIPS_ELF_GOT_SIZE (abfd))
4845 - htab->reserved_gotno);
4846 got_per_bfd_arg.max_pages = pages;
4847 /* The number of globals that will be included in the primary GOT.
4848 See the calls to mips_elf_set_global_got_area below for more
4849 information. */
4850 got_per_bfd_arg.global_count = g->global_gotno;
4851
4852 /* Try to merge the GOTs of input bfds together, as long as they
4853 don't seem to exceed the maximum GOT size, choosing one of them
4854 to be the primary GOT. */
4855 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4856 {
4857 gg = mips_elf_bfd_got (ibfd, FALSE);
4858 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4859 return FALSE;
4860 }
4861
4862 /* If we do not find any suitable primary GOT, create an empty one. */
4863 if (got_per_bfd_arg.primary == NULL)
4864 g->next = mips_elf_create_got_info (abfd);
4865 else
4866 g->next = got_per_bfd_arg.primary;
4867 g->next->next = got_per_bfd_arg.current;
4868
4869 /* GG is now the master GOT, and G is the primary GOT. */
4870 gg = g;
4871 g = g->next;
4872
4873 /* Map the output bfd to the primary got. That's what we're going
4874 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4875 didn't mark in check_relocs, and we want a quick way to find it.
4876 We can't just use gg->next because we're going to reverse the
4877 list. */
4878 mips_elf_replace_bfd_got (abfd, g);
4879
4880 /* Every symbol that is referenced in a dynamic relocation must be
4881 present in the primary GOT, so arrange for them to appear after
4882 those that are actually referenced. */
4883 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4884 g->global_gotno = gg->global_gotno;
4885
4886 tga.info = info;
4887 tga.value = GGA_RELOC_ONLY;
4888 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4889 tga.value = GGA_NORMAL;
4890 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4891
4892 /* Now go through the GOTs assigning them offset ranges.
4893 [assigned_low_gotno, local_gotno[ will be set to the range of local
4894 entries in each GOT. We can then compute the end of a GOT by
4895 adding local_gotno to global_gotno. We reverse the list and make
4896 it circular since then we'll be able to quickly compute the
4897 beginning of a GOT, by computing the end of its predecessor. To
4898 avoid special cases for the primary GOT, while still preserving
4899 assertions that are valid for both single- and multi-got links,
4900 we arrange for the main got struct to have the right number of
4901 global entries, but set its local_gotno such that the initial
4902 offset of the primary GOT is zero. Remember that the primary GOT
4903 will become the last item in the circular linked list, so it
4904 points back to the master GOT. */
4905 gg->local_gotno = -g->global_gotno;
4906 gg->global_gotno = g->global_gotno;
4907 gg->tls_gotno = 0;
4908 assign = 0;
4909 gg->next = gg;
4910
4911 do
4912 {
4913 struct mips_got_info *gn;
4914
4915 assign += htab->reserved_gotno;
4916 g->assigned_low_gotno = assign;
4917 g->local_gotno += assign;
4918 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4919 g->assigned_high_gotno = g->local_gotno - 1;
4920 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4921
4922 /* Take g out of the direct list, and push it onto the reversed
4923 list that gg points to. g->next is guaranteed to be nonnull after
4924 this operation, as required by mips_elf_initialize_tls_index. */
4925 gn = g->next;
4926 g->next = gg->next;
4927 gg->next = g;
4928
4929 /* Set up any TLS entries. We always place the TLS entries after
4930 all non-TLS entries. */
4931 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4932 tga.g = g;
4933 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4934 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4935 if (!tga.g)
4936 return FALSE;
4937 BFD_ASSERT (g->tls_assigned_gotno == assign);
4938
4939 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4940 g = gn;
4941
4942 /* Forbid global symbols in every non-primary GOT from having
4943 lazy-binding stubs. */
4944 if (g)
4945 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4946 }
4947 while (g);
4948
4949 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
4950
4951 needed_relocs = 0;
4952 for (g = gg->next; g && g->next != gg; g = g->next)
4953 {
4954 unsigned int save_assign;
4955
4956 /* Assign offsets to global GOT entries and count how many
4957 relocations they need. */
4958 save_assign = g->assigned_low_gotno;
4959 g->assigned_low_gotno = g->local_gotno;
4960 tga.info = info;
4961 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4962 tga.g = g;
4963 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
4964 if (!tga.g)
4965 return FALSE;
4966 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4967 g->assigned_low_gotno = save_assign;
4968
4969 if (bfd_link_pic (info))
4970 {
4971 g->relocs += g->local_gotno - g->assigned_low_gotno;
4972 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
4973 + g->next->global_gotno
4974 + g->next->tls_gotno
4975 + htab->reserved_gotno);
4976 }
4977 needed_relocs += g->relocs;
4978 }
4979 needed_relocs += g->relocs;
4980
4981 if (needed_relocs)
4982 mips_elf_allocate_dynamic_relocations (dynobj, info,
4983 needed_relocs);
4984
4985 return TRUE;
4986 }
4987
4988 \f
4989 /* Returns the first relocation of type r_type found, beginning with
4990 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4991
4992 static const Elf_Internal_Rela *
4993 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4994 const Elf_Internal_Rela *relocation,
4995 const Elf_Internal_Rela *relend)
4996 {
4997 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4998
4999 while (relocation < relend)
5000 {
5001 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
5002 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
5003 return relocation;
5004
5005 ++relocation;
5006 }
5007
5008 /* We didn't find it. */
5009 return NULL;
5010 }
5011
5012 /* Return whether an input relocation is against a local symbol. */
5013
5014 static bfd_boolean
5015 mips_elf_local_relocation_p (bfd *input_bfd,
5016 const Elf_Internal_Rela *relocation,
5017 asection **local_sections)
5018 {
5019 unsigned long r_symndx;
5020 Elf_Internal_Shdr *symtab_hdr;
5021 size_t extsymoff;
5022
5023 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5024 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5025 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5026
5027 if (r_symndx < extsymoff)
5028 return TRUE;
5029 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5030 return TRUE;
5031
5032 return FALSE;
5033 }
5034 \f
5035 /* Sign-extend VALUE, which has the indicated number of BITS. */
5036
5037 bfd_vma
5038 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
5039 {
5040 if (value & ((bfd_vma) 1 << (bits - 1)))
5041 /* VALUE is negative. */
5042 value |= ((bfd_vma) - 1) << bits;
5043
5044 return value;
5045 }
5046
5047 /* Return non-zero if the indicated VALUE has overflowed the maximum
5048 range expressible by a signed number with the indicated number of
5049 BITS. */
5050
5051 static bfd_boolean
5052 mips_elf_overflow_p (bfd_vma value, int bits)
5053 {
5054 bfd_signed_vma svalue = (bfd_signed_vma) value;
5055
5056 if (svalue > (1 << (bits - 1)) - 1)
5057 /* The value is too big. */
5058 return TRUE;
5059 else if (svalue < -(1 << (bits - 1)))
5060 /* The value is too small. */
5061 return TRUE;
5062
5063 /* All is well. */
5064 return FALSE;
5065 }
5066
5067 /* Calculate the %high function. */
5068
5069 static bfd_vma
5070 mips_elf_high (bfd_vma value)
5071 {
5072 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5073 }
5074
5075 /* Calculate the %higher function. */
5076
5077 static bfd_vma
5078 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5079 {
5080 #ifdef BFD64
5081 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5082 #else
5083 abort ();
5084 return MINUS_ONE;
5085 #endif
5086 }
5087
5088 /* Calculate the %highest function. */
5089
5090 static bfd_vma
5091 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5092 {
5093 #ifdef BFD64
5094 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5095 #else
5096 abort ();
5097 return MINUS_ONE;
5098 #endif
5099 }
5100 \f
5101 /* Create the .compact_rel section. */
5102
5103 static bfd_boolean
5104 mips_elf_create_compact_rel_section
5105 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5106 {
5107 flagword flags;
5108 register asection *s;
5109
5110 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5111 {
5112 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5113 | SEC_READONLY);
5114
5115 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5116 if (s == NULL
5117 || ! bfd_set_section_alignment (abfd, s,
5118 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5119 return FALSE;
5120
5121 s->size = sizeof (Elf32_External_compact_rel);
5122 }
5123
5124 return TRUE;
5125 }
5126
5127 /* Create the .got section to hold the global offset table. */
5128
5129 static bfd_boolean
5130 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5131 {
5132 flagword flags;
5133 register asection *s;
5134 struct elf_link_hash_entry *h;
5135 struct bfd_link_hash_entry *bh;
5136 struct mips_elf_link_hash_table *htab;
5137
5138 htab = mips_elf_hash_table (info);
5139 BFD_ASSERT (htab != NULL);
5140
5141 /* This function may be called more than once. */
5142 if (htab->root.sgot)
5143 return TRUE;
5144
5145 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5146 | SEC_LINKER_CREATED);
5147
5148 /* We have to use an alignment of 2**4 here because this is hardcoded
5149 in the function stub generation and in the linker script. */
5150 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5151 if (s == NULL
5152 || ! bfd_set_section_alignment (abfd, s, 4))
5153 return FALSE;
5154 htab->root.sgot = s;
5155
5156 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5157 linker script because we don't want to define the symbol if we
5158 are not creating a global offset table. */
5159 bh = NULL;
5160 if (! (_bfd_generic_link_add_one_symbol
5161 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5162 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5163 return FALSE;
5164
5165 h = (struct elf_link_hash_entry *) bh;
5166 h->non_elf = 0;
5167 h->def_regular = 1;
5168 h->type = STT_OBJECT;
5169 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5170 elf_hash_table (info)->hgot = h;
5171
5172 if (bfd_link_pic (info)
5173 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5174 return FALSE;
5175
5176 htab->got_info = mips_elf_create_got_info (abfd);
5177 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5178 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5179
5180 /* We also need a .got.plt section when generating PLTs. */
5181 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5182 SEC_ALLOC | SEC_LOAD
5183 | SEC_HAS_CONTENTS
5184 | SEC_IN_MEMORY
5185 | SEC_LINKER_CREATED);
5186 if (s == NULL)
5187 return FALSE;
5188 htab->root.sgotplt = s;
5189
5190 return TRUE;
5191 }
5192 \f
5193 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5194 __GOTT_INDEX__ symbols. These symbols are only special for
5195 shared objects; they are not used in executables. */
5196
5197 static bfd_boolean
5198 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5199 {
5200 return (mips_elf_hash_table (info)->is_vxworks
5201 && bfd_link_pic (info)
5202 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5203 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5204 }
5205
5206 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5207 require an la25 stub. See also mips_elf_local_pic_function_p,
5208 which determines whether the destination function ever requires a
5209 stub. */
5210
5211 static bfd_boolean
5212 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5213 bfd_boolean target_is_16_bit_code_p)
5214 {
5215 /* We specifically ignore branches and jumps from EF_PIC objects,
5216 where the onus is on the compiler or programmer to perform any
5217 necessary initialization of $25. Sometimes such initialization
5218 is unnecessary; for example, -mno-shared functions do not use
5219 the incoming value of $25, and may therefore be called directly. */
5220 if (PIC_OBJECT_P (input_bfd))
5221 return FALSE;
5222
5223 switch (r_type)
5224 {
5225 case R_MIPS_26:
5226 case R_MIPS_PC16:
5227 case R_MIPS_PC21_S2:
5228 case R_MIPS_PC26_S2:
5229 case R_MICROMIPS_26_S1:
5230 case R_MICROMIPS_PC7_S1:
5231 case R_MICROMIPS_PC10_S1:
5232 case R_MICROMIPS_PC16_S1:
5233 case R_MICROMIPS_PC23_S2:
5234 return TRUE;
5235
5236 case R_MIPS16_26:
5237 return !target_is_16_bit_code_p;
5238
5239 default:
5240 return FALSE;
5241 }
5242 }
5243 \f
5244 /* Calculate the value produced by the RELOCATION (which comes from
5245 the INPUT_BFD). The ADDEND is the addend to use for this
5246 RELOCATION; RELOCATION->R_ADDEND is ignored.
5247
5248 The result of the relocation calculation is stored in VALUEP.
5249 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5250 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5251
5252 This function returns bfd_reloc_continue if the caller need take no
5253 further action regarding this relocation, bfd_reloc_notsupported if
5254 something goes dramatically wrong, bfd_reloc_overflow if an
5255 overflow occurs, and bfd_reloc_ok to indicate success. */
5256
5257 static bfd_reloc_status_type
5258 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5259 asection *input_section,
5260 struct bfd_link_info *info,
5261 const Elf_Internal_Rela *relocation,
5262 bfd_vma addend, reloc_howto_type *howto,
5263 Elf_Internal_Sym *local_syms,
5264 asection **local_sections, bfd_vma *valuep,
5265 const char **namep,
5266 bfd_boolean *cross_mode_jump_p,
5267 bfd_boolean save_addend)
5268 {
5269 /* The eventual value we will return. */
5270 bfd_vma value;
5271 /* The address of the symbol against which the relocation is
5272 occurring. */
5273 bfd_vma symbol = 0;
5274 /* The final GP value to be used for the relocatable, executable, or
5275 shared object file being produced. */
5276 bfd_vma gp;
5277 /* The place (section offset or address) of the storage unit being
5278 relocated. */
5279 bfd_vma p;
5280 /* The value of GP used to create the relocatable object. */
5281 bfd_vma gp0;
5282 /* The offset into the global offset table at which the address of
5283 the relocation entry symbol, adjusted by the addend, resides
5284 during execution. */
5285 bfd_vma g = MINUS_ONE;
5286 /* The section in which the symbol referenced by the relocation is
5287 located. */
5288 asection *sec = NULL;
5289 struct mips_elf_link_hash_entry *h = NULL;
5290 /* TRUE if the symbol referred to by this relocation is a local
5291 symbol. */
5292 bfd_boolean local_p, was_local_p;
5293 /* TRUE if the symbol referred to by this relocation is a section
5294 symbol. */
5295 bfd_boolean section_p = FALSE;
5296 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5297 bfd_boolean gp_disp_p = FALSE;
5298 /* TRUE if the symbol referred to by this relocation is
5299 "__gnu_local_gp". */
5300 bfd_boolean gnu_local_gp_p = FALSE;
5301 Elf_Internal_Shdr *symtab_hdr;
5302 size_t extsymoff;
5303 unsigned long r_symndx;
5304 int r_type;
5305 /* TRUE if overflow occurred during the calculation of the
5306 relocation value. */
5307 bfd_boolean overflowed_p;
5308 /* TRUE if this relocation refers to a MIPS16 function. */
5309 bfd_boolean target_is_16_bit_code_p = FALSE;
5310 bfd_boolean target_is_micromips_code_p = FALSE;
5311 struct mips_elf_link_hash_table *htab;
5312 bfd *dynobj;
5313 bfd_boolean resolved_to_zero;
5314
5315 dynobj = elf_hash_table (info)->dynobj;
5316 htab = mips_elf_hash_table (info);
5317 BFD_ASSERT (htab != NULL);
5318
5319 /* Parse the relocation. */
5320 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5321 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5322 p = (input_section->output_section->vma
5323 + input_section->output_offset
5324 + relocation->r_offset);
5325
5326 /* Assume that there will be no overflow. */
5327 overflowed_p = FALSE;
5328
5329 /* Figure out whether or not the symbol is local, and get the offset
5330 used in the array of hash table entries. */
5331 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5332 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5333 local_sections);
5334 was_local_p = local_p;
5335 if (! elf_bad_symtab (input_bfd))
5336 extsymoff = symtab_hdr->sh_info;
5337 else
5338 {
5339 /* The symbol table does not follow the rule that local symbols
5340 must come before globals. */
5341 extsymoff = 0;
5342 }
5343
5344 /* Figure out the value of the symbol. */
5345 if (local_p)
5346 {
5347 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5348 Elf_Internal_Sym *sym;
5349
5350 sym = local_syms + r_symndx;
5351 sec = local_sections[r_symndx];
5352
5353 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5354
5355 symbol = sec->output_section->vma + sec->output_offset;
5356 if (!section_p || (sec->flags & SEC_MERGE))
5357 symbol += sym->st_value;
5358 if ((sec->flags & SEC_MERGE) && section_p)
5359 {
5360 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5361 addend -= symbol;
5362 addend += sec->output_section->vma + sec->output_offset;
5363 }
5364
5365 /* MIPS16/microMIPS text labels should be treated as odd. */
5366 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5367 ++symbol;
5368
5369 /* Record the name of this symbol, for our caller. */
5370 *namep = bfd_elf_string_from_elf_section (input_bfd,
5371 symtab_hdr->sh_link,
5372 sym->st_name);
5373 if (*namep == NULL || **namep == '\0')
5374 *namep = bfd_section_name (input_bfd, sec);
5375
5376 /* For relocations against a section symbol and ones against no
5377 symbol (absolute relocations) infer the ISA mode from the addend. */
5378 if (section_p || r_symndx == STN_UNDEF)
5379 {
5380 target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5381 target_is_micromips_code_p = (addend & 1) && micromips_p;
5382 }
5383 /* For relocations against an absolute symbol infer the ISA mode
5384 from the value of the symbol plus addend. */
5385 else if (bfd_is_abs_section (sec))
5386 {
5387 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5388 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5389 }
5390 /* Otherwise just use the regular symbol annotation available. */
5391 else
5392 {
5393 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5394 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5395 }
5396 }
5397 else
5398 {
5399 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5400
5401 /* For global symbols we look up the symbol in the hash-table. */
5402 h = ((struct mips_elf_link_hash_entry *)
5403 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5404 /* Find the real hash-table entry for this symbol. */
5405 while (h->root.root.type == bfd_link_hash_indirect
5406 || h->root.root.type == bfd_link_hash_warning)
5407 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5408
5409 /* Record the name of this symbol, for our caller. */
5410 *namep = h->root.root.root.string;
5411
5412 /* See if this is the special _gp_disp symbol. Note that such a
5413 symbol must always be a global symbol. */
5414 if (strcmp (*namep, "_gp_disp") == 0
5415 && ! NEWABI_P (input_bfd))
5416 {
5417 /* Relocations against _gp_disp are permitted only with
5418 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5419 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5420 return bfd_reloc_notsupported;
5421
5422 gp_disp_p = TRUE;
5423 }
5424 /* See if this is the special _gp symbol. Note that such a
5425 symbol must always be a global symbol. */
5426 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5427 gnu_local_gp_p = TRUE;
5428
5429
5430 /* If this symbol is defined, calculate its address. Note that
5431 _gp_disp is a magic symbol, always implicitly defined by the
5432 linker, so it's inappropriate to check to see whether or not
5433 its defined. */
5434 else if ((h->root.root.type == bfd_link_hash_defined
5435 || h->root.root.type == bfd_link_hash_defweak)
5436 && h->root.root.u.def.section)
5437 {
5438 sec = h->root.root.u.def.section;
5439 if (sec->output_section)
5440 symbol = (h->root.root.u.def.value
5441 + sec->output_section->vma
5442 + sec->output_offset);
5443 else
5444 symbol = h->root.root.u.def.value;
5445 }
5446 else if (h->root.root.type == bfd_link_hash_undefweak)
5447 /* We allow relocations against undefined weak symbols, giving
5448 it the value zero, so that you can undefined weak functions
5449 and check to see if they exist by looking at their
5450 addresses. */
5451 symbol = 0;
5452 else if (info->unresolved_syms_in_objects == RM_IGNORE
5453 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5454 symbol = 0;
5455 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5456 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5457 {
5458 /* If this is a dynamic link, we should have created a
5459 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5460 in _bfd_mips_elf_create_dynamic_sections.
5461 Otherwise, we should define the symbol with a value of 0.
5462 FIXME: It should probably get into the symbol table
5463 somehow as well. */
5464 BFD_ASSERT (! bfd_link_pic (info));
5465 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5466 symbol = 0;
5467 }
5468 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5469 {
5470 /* This is an optional symbol - an Irix specific extension to the
5471 ELF spec. Ignore it for now.
5472 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5473 than simply ignoring them, but we do not handle this for now.
5474 For information see the "64-bit ELF Object File Specification"
5475 which is available from here:
5476 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5477 symbol = 0;
5478 }
5479 else
5480 {
5481 (*info->callbacks->undefined_symbol)
5482 (info, h->root.root.root.string, input_bfd,
5483 input_section, relocation->r_offset,
5484 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5485 || ELF_ST_VISIBILITY (h->root.other));
5486 return bfd_reloc_undefined;
5487 }
5488
5489 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5490 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5491 }
5492
5493 /* If this is a reference to a 16-bit function with a stub, we need
5494 to redirect the relocation to the stub unless:
5495
5496 (a) the relocation is for a MIPS16 JAL;
5497
5498 (b) the relocation is for a MIPS16 PIC call, and there are no
5499 non-MIPS16 uses of the GOT slot; or
5500
5501 (c) the section allows direct references to MIPS16 functions. */
5502 if (r_type != R_MIPS16_26
5503 && !bfd_link_relocatable (info)
5504 && ((h != NULL
5505 && h->fn_stub != NULL
5506 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5507 || (local_p
5508 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5509 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5510 && !section_allows_mips16_refs_p (input_section))
5511 {
5512 /* This is a 32- or 64-bit call to a 16-bit function. We should
5513 have already noticed that we were going to need the
5514 stub. */
5515 if (local_p)
5516 {
5517 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5518 value = 0;
5519 }
5520 else
5521 {
5522 BFD_ASSERT (h->need_fn_stub);
5523 if (h->la25_stub)
5524 {
5525 /* If a LA25 header for the stub itself exists, point to the
5526 prepended LUI/ADDIU sequence. */
5527 sec = h->la25_stub->stub_section;
5528 value = h->la25_stub->offset;
5529 }
5530 else
5531 {
5532 sec = h->fn_stub;
5533 value = 0;
5534 }
5535 }
5536
5537 symbol = sec->output_section->vma + sec->output_offset + value;
5538 /* The target is 16-bit, but the stub isn't. */
5539 target_is_16_bit_code_p = FALSE;
5540 }
5541 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5542 to a standard MIPS function, we need to redirect the call to the stub.
5543 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5544 indirect calls should use an indirect stub instead. */
5545 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
5546 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5547 || (local_p
5548 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5549 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5550 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5551 {
5552 if (local_p)
5553 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5554 else
5555 {
5556 /* If both call_stub and call_fp_stub are defined, we can figure
5557 out which one to use by checking which one appears in the input
5558 file. */
5559 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5560 {
5561 asection *o;
5562
5563 sec = NULL;
5564 for (o = input_bfd->sections; o != NULL; o = o->next)
5565 {
5566 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5567 {
5568 sec = h->call_fp_stub;
5569 break;
5570 }
5571 }
5572 if (sec == NULL)
5573 sec = h->call_stub;
5574 }
5575 else if (h->call_stub != NULL)
5576 sec = h->call_stub;
5577 else
5578 sec = h->call_fp_stub;
5579 }
5580
5581 BFD_ASSERT (sec->size > 0);
5582 symbol = sec->output_section->vma + sec->output_offset;
5583 }
5584 /* If this is a direct call to a PIC function, redirect to the
5585 non-PIC stub. */
5586 else if (h != NULL && h->la25_stub
5587 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5588 target_is_16_bit_code_p))
5589 {
5590 symbol = (h->la25_stub->stub_section->output_section->vma
5591 + h->la25_stub->stub_section->output_offset
5592 + h->la25_stub->offset);
5593 if (ELF_ST_IS_MICROMIPS (h->root.other))
5594 symbol |= 1;
5595 }
5596 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5597 entry is used if a standard PLT entry has also been made. In this
5598 case the symbol will have been set by mips_elf_set_plt_sym_value
5599 to point to the standard PLT entry, so redirect to the compressed
5600 one. */
5601 else if ((mips16_branch_reloc_p (r_type)
5602 || micromips_branch_reloc_p (r_type))
5603 && !bfd_link_relocatable (info)
5604 && h != NULL
5605 && h->use_plt_entry
5606 && h->root.plt.plist->comp_offset != MINUS_ONE
5607 && h->root.plt.plist->mips_offset != MINUS_ONE)
5608 {
5609 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5610
5611 sec = htab->root.splt;
5612 symbol = (sec->output_section->vma
5613 + sec->output_offset
5614 + htab->plt_header_size
5615 + htab->plt_mips_offset
5616 + h->root.plt.plist->comp_offset
5617 + 1);
5618
5619 target_is_16_bit_code_p = !micromips_p;
5620 target_is_micromips_code_p = micromips_p;
5621 }
5622
5623 /* Make sure MIPS16 and microMIPS are not used together. */
5624 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
5625 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5626 {
5627 _bfd_error_handler
5628 (_("MIPS16 and microMIPS functions cannot call each other"));
5629 return bfd_reloc_notsupported;
5630 }
5631
5632 /* Calls from 16-bit code to 32-bit code and vice versa require the
5633 mode change. However, we can ignore calls to undefined weak symbols,
5634 which should never be executed at runtime. This exception is important
5635 because the assembly writer may have "known" that any definition of the
5636 symbol would be 16-bit code, and that direct jumps were therefore
5637 acceptable. */
5638 *cross_mode_jump_p = (!bfd_link_relocatable (info)
5639 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5640 && ((mips16_branch_reloc_p (r_type)
5641 && !target_is_16_bit_code_p)
5642 || (micromips_branch_reloc_p (r_type)
5643 && !target_is_micromips_code_p)
5644 || ((branch_reloc_p (r_type)
5645 || r_type == R_MIPS_JALR)
5646 && (target_is_16_bit_code_p
5647 || target_is_micromips_code_p))));
5648
5649 local_p = (h == NULL || mips_use_local_got_p (info, h));
5650
5651 gp0 = _bfd_get_gp_value (input_bfd);
5652 gp = _bfd_get_gp_value (abfd);
5653 if (htab->got_info)
5654 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5655
5656 if (gnu_local_gp_p)
5657 symbol = gp;
5658
5659 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5660 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5661 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5662 if (got_page_reloc_p (r_type) && !local_p)
5663 {
5664 r_type = (micromips_reloc_p (r_type)
5665 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5666 addend = 0;
5667 }
5668
5669 resolved_to_zero = (h != NULL
5670 && UNDEFWEAK_NO_DYNAMIC_RELOC (info,
5671 &h->root));
5672
5673 /* If we haven't already determined the GOT offset, and we're going
5674 to need it, get it now. */
5675 switch (r_type)
5676 {
5677 case R_MIPS16_CALL16:
5678 case R_MIPS16_GOT16:
5679 case R_MIPS_CALL16:
5680 case R_MIPS_GOT16:
5681 case R_MIPS_GOT_DISP:
5682 case R_MIPS_GOT_HI16:
5683 case R_MIPS_CALL_HI16:
5684 case R_MIPS_GOT_LO16:
5685 case R_MIPS_CALL_LO16:
5686 case R_MICROMIPS_CALL16:
5687 case R_MICROMIPS_GOT16:
5688 case R_MICROMIPS_GOT_DISP:
5689 case R_MICROMIPS_GOT_HI16:
5690 case R_MICROMIPS_CALL_HI16:
5691 case R_MICROMIPS_GOT_LO16:
5692 case R_MICROMIPS_CALL_LO16:
5693 case R_MIPS_TLS_GD:
5694 case R_MIPS_TLS_GOTTPREL:
5695 case R_MIPS_TLS_LDM:
5696 case R_MIPS16_TLS_GD:
5697 case R_MIPS16_TLS_GOTTPREL:
5698 case R_MIPS16_TLS_LDM:
5699 case R_MICROMIPS_TLS_GD:
5700 case R_MICROMIPS_TLS_GOTTPREL:
5701 case R_MICROMIPS_TLS_LDM:
5702 /* Find the index into the GOT where this value is located. */
5703 if (tls_ldm_reloc_p (r_type))
5704 {
5705 g = mips_elf_local_got_index (abfd, input_bfd, info,
5706 0, 0, NULL, r_type);
5707 if (g == MINUS_ONE)
5708 return bfd_reloc_outofrange;
5709 }
5710 else if (!local_p)
5711 {
5712 /* On VxWorks, CALL relocations should refer to the .got.plt
5713 entry, which is initialized to point at the PLT stub. */
5714 if (htab->is_vxworks
5715 && (call_hi16_reloc_p (r_type)
5716 || call_lo16_reloc_p (r_type)
5717 || call16_reloc_p (r_type)))
5718 {
5719 BFD_ASSERT (addend == 0);
5720 BFD_ASSERT (h->root.needs_plt);
5721 g = mips_elf_gotplt_index (info, &h->root);
5722 }
5723 else
5724 {
5725 BFD_ASSERT (addend == 0);
5726 g = mips_elf_global_got_index (abfd, info, input_bfd,
5727 &h->root, r_type);
5728 if (!TLS_RELOC_P (r_type)
5729 && !elf_hash_table (info)->dynamic_sections_created)
5730 /* This is a static link. We must initialize the GOT entry. */
5731 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->root.sgot->contents + g);
5732 }
5733 }
5734 else if (!htab->is_vxworks
5735 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5736 /* The calculation below does not involve "g". */
5737 break;
5738 else
5739 {
5740 g = mips_elf_local_got_index (abfd, input_bfd, info,
5741 symbol + addend, r_symndx, h, r_type);
5742 if (g == MINUS_ONE)
5743 return bfd_reloc_outofrange;
5744 }
5745
5746 /* Convert GOT indices to actual offsets. */
5747 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5748 break;
5749 }
5750
5751 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5752 symbols are resolved by the loader. Add them to .rela.dyn. */
5753 if (h != NULL && is_gott_symbol (info, &h->root))
5754 {
5755 Elf_Internal_Rela outrel;
5756 bfd_byte *loc;
5757 asection *s;
5758
5759 s = mips_elf_rel_dyn_section (info, FALSE);
5760 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5761
5762 outrel.r_offset = (input_section->output_section->vma
5763 + input_section->output_offset
5764 + relocation->r_offset);
5765 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5766 outrel.r_addend = addend;
5767 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5768
5769 /* If we've written this relocation for a readonly section,
5770 we need to set DF_TEXTREL again, so that we do not delete the
5771 DT_TEXTREL tag. */
5772 if (MIPS_ELF_READONLY_SECTION (input_section))
5773 info->flags |= DF_TEXTREL;
5774
5775 *valuep = 0;
5776 return bfd_reloc_ok;
5777 }
5778
5779 /* Figure out what kind of relocation is being performed. */
5780 switch (r_type)
5781 {
5782 case R_MIPS_NONE:
5783 return bfd_reloc_continue;
5784
5785 case R_MIPS_16:
5786 if (howto->partial_inplace)
5787 addend = _bfd_mips_elf_sign_extend (addend, 16);
5788 value = symbol + addend;
5789 overflowed_p = mips_elf_overflow_p (value, 16);
5790 break;
5791
5792 case R_MIPS_32:
5793 case R_MIPS_REL32:
5794 case R_MIPS_64:
5795 if ((bfd_link_pic (info)
5796 || (htab->root.dynamic_sections_created
5797 && h != NULL
5798 && h->root.def_dynamic
5799 && !h->root.def_regular
5800 && !h->has_static_relocs))
5801 && r_symndx != STN_UNDEF
5802 && (h == NULL
5803 || h->root.root.type != bfd_link_hash_undefweak
5804 || (ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
5805 && !resolved_to_zero))
5806 && (input_section->flags & SEC_ALLOC) != 0)
5807 {
5808 /* If we're creating a shared library, then we can't know
5809 where the symbol will end up. So, we create a relocation
5810 record in the output, and leave the job up to the dynamic
5811 linker. We must do the same for executable references to
5812 shared library symbols, unless we've decided to use copy
5813 relocs or PLTs instead. */
5814 value = addend;
5815 if (!mips_elf_create_dynamic_relocation (abfd,
5816 info,
5817 relocation,
5818 h,
5819 sec,
5820 symbol,
5821 &value,
5822 input_section))
5823 return bfd_reloc_undefined;
5824 }
5825 else
5826 {
5827 if (r_type != R_MIPS_REL32)
5828 value = symbol + addend;
5829 else
5830 value = addend;
5831 }
5832 value &= howto->dst_mask;
5833 break;
5834
5835 case R_MIPS_PC32:
5836 value = symbol + addend - p;
5837 value &= howto->dst_mask;
5838 break;
5839
5840 case R_MIPS16_26:
5841 /* The calculation for R_MIPS16_26 is just the same as for an
5842 R_MIPS_26. It's only the storage of the relocated field into
5843 the output file that's different. That's handled in
5844 mips_elf_perform_relocation. So, we just fall through to the
5845 R_MIPS_26 case here. */
5846 case R_MIPS_26:
5847 case R_MICROMIPS_26_S1:
5848 {
5849 unsigned int shift;
5850
5851 /* Shift is 2, unusually, for microMIPS JALX. */
5852 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5853
5854 if (howto->partial_inplace && !section_p)
5855 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5856 else
5857 value = addend;
5858 value += symbol;
5859
5860 /* Make sure the target of a jump is suitably aligned. Bit 0 must
5861 be the correct ISA mode selector except for weak undefined
5862 symbols. */
5863 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5864 && (*cross_mode_jump_p
5865 ? (value & 3) != (r_type == R_MIPS_26)
5866 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
5867 return bfd_reloc_outofrange;
5868
5869 value >>= shift;
5870 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5871 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5872 value &= howto->dst_mask;
5873 }
5874 break;
5875
5876 case R_MIPS_TLS_DTPREL_HI16:
5877 case R_MIPS16_TLS_DTPREL_HI16:
5878 case R_MICROMIPS_TLS_DTPREL_HI16:
5879 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5880 & howto->dst_mask);
5881 break;
5882
5883 case R_MIPS_TLS_DTPREL_LO16:
5884 case R_MIPS_TLS_DTPREL32:
5885 case R_MIPS_TLS_DTPREL64:
5886 case R_MIPS16_TLS_DTPREL_LO16:
5887 case R_MICROMIPS_TLS_DTPREL_LO16:
5888 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5889 break;
5890
5891 case R_MIPS_TLS_TPREL_HI16:
5892 case R_MIPS16_TLS_TPREL_HI16:
5893 case R_MICROMIPS_TLS_TPREL_HI16:
5894 value = (mips_elf_high (addend + symbol - tprel_base (info))
5895 & howto->dst_mask);
5896 break;
5897
5898 case R_MIPS_TLS_TPREL_LO16:
5899 case R_MIPS_TLS_TPREL32:
5900 case R_MIPS_TLS_TPREL64:
5901 case R_MIPS16_TLS_TPREL_LO16:
5902 case R_MICROMIPS_TLS_TPREL_LO16:
5903 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5904 break;
5905
5906 case R_MIPS_HI16:
5907 case R_MIPS16_HI16:
5908 case R_MICROMIPS_HI16:
5909 if (!gp_disp_p)
5910 {
5911 value = mips_elf_high (addend + symbol);
5912 value &= howto->dst_mask;
5913 }
5914 else
5915 {
5916 /* For MIPS16 ABI code we generate this sequence
5917 0: li $v0,%hi(_gp_disp)
5918 4: addiupc $v1,%lo(_gp_disp)
5919 8: sll $v0,16
5920 12: addu $v0,$v1
5921 14: move $gp,$v0
5922 So the offsets of hi and lo relocs are the same, but the
5923 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5924 ADDIUPC clears the low two bits of the instruction address,
5925 so the base is ($t9 + 4) & ~3. */
5926 if (r_type == R_MIPS16_HI16)
5927 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5928 /* The microMIPS .cpload sequence uses the same assembly
5929 instructions as the traditional psABI version, but the
5930 incoming $t9 has the low bit set. */
5931 else if (r_type == R_MICROMIPS_HI16)
5932 value = mips_elf_high (addend + gp - p - 1);
5933 else
5934 value = mips_elf_high (addend + gp - p);
5935 }
5936 break;
5937
5938 case R_MIPS_LO16:
5939 case R_MIPS16_LO16:
5940 case R_MICROMIPS_LO16:
5941 case R_MICROMIPS_HI0_LO16:
5942 if (!gp_disp_p)
5943 value = (symbol + addend) & howto->dst_mask;
5944 else
5945 {
5946 /* See the comment for R_MIPS16_HI16 above for the reason
5947 for this conditional. */
5948 if (r_type == R_MIPS16_LO16)
5949 value = addend + gp - (p & ~(bfd_vma) 0x3);
5950 else if (r_type == R_MICROMIPS_LO16
5951 || r_type == R_MICROMIPS_HI0_LO16)
5952 value = addend + gp - p + 3;
5953 else
5954 value = addend + gp - p + 4;
5955 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5956 for overflow. But, on, say, IRIX5, relocations against
5957 _gp_disp are normally generated from the .cpload
5958 pseudo-op. It generates code that normally looks like
5959 this:
5960
5961 lui $gp,%hi(_gp_disp)
5962 addiu $gp,$gp,%lo(_gp_disp)
5963 addu $gp,$gp,$t9
5964
5965 Here $t9 holds the address of the function being called,
5966 as required by the MIPS ELF ABI. The R_MIPS_LO16
5967 relocation can easily overflow in this situation, but the
5968 R_MIPS_HI16 relocation will handle the overflow.
5969 Therefore, we consider this a bug in the MIPS ABI, and do
5970 not check for overflow here. */
5971 }
5972 break;
5973
5974 case R_MIPS_LITERAL:
5975 case R_MICROMIPS_LITERAL:
5976 /* Because we don't merge literal sections, we can handle this
5977 just like R_MIPS_GPREL16. In the long run, we should merge
5978 shared literals, and then we will need to additional work
5979 here. */
5980
5981 /* Fall through. */
5982
5983 case R_MIPS16_GPREL:
5984 /* The R_MIPS16_GPREL performs the same calculation as
5985 R_MIPS_GPREL16, but stores the relocated bits in a different
5986 order. We don't need to do anything special here; the
5987 differences are handled in mips_elf_perform_relocation. */
5988 case R_MIPS_GPREL16:
5989 case R_MICROMIPS_GPREL7_S2:
5990 case R_MICROMIPS_GPREL16:
5991 /* Only sign-extend the addend if it was extracted from the
5992 instruction. If the addend was separate, leave it alone,
5993 otherwise we may lose significant bits. */
5994 if (howto->partial_inplace)
5995 addend = _bfd_mips_elf_sign_extend (addend, 16);
5996 value = symbol + addend - gp;
5997 /* If the symbol was local, any earlier relocatable links will
5998 have adjusted its addend with the gp offset, so compensate
5999 for that now. Don't do it for symbols forced local in this
6000 link, though, since they won't have had the gp offset applied
6001 to them before. */
6002 if (was_local_p)
6003 value += gp0;
6004 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6005 overflowed_p = mips_elf_overflow_p (value, 16);
6006 break;
6007
6008 case R_MIPS16_GOT16:
6009 case R_MIPS16_CALL16:
6010 case R_MIPS_GOT16:
6011 case R_MIPS_CALL16:
6012 case R_MICROMIPS_GOT16:
6013 case R_MICROMIPS_CALL16:
6014 /* VxWorks does not have separate local and global semantics for
6015 R_MIPS*_GOT16; every relocation evaluates to "G". */
6016 if (!htab->is_vxworks && local_p)
6017 {
6018 value = mips_elf_got16_entry (abfd, input_bfd, info,
6019 symbol + addend, !was_local_p);
6020 if (value == MINUS_ONE)
6021 return bfd_reloc_outofrange;
6022 value
6023 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6024 overflowed_p = mips_elf_overflow_p (value, 16);
6025 break;
6026 }
6027
6028 /* Fall through. */
6029
6030 case R_MIPS_TLS_GD:
6031 case R_MIPS_TLS_GOTTPREL:
6032 case R_MIPS_TLS_LDM:
6033 case R_MIPS_GOT_DISP:
6034 case R_MIPS16_TLS_GD:
6035 case R_MIPS16_TLS_GOTTPREL:
6036 case R_MIPS16_TLS_LDM:
6037 case R_MICROMIPS_TLS_GD:
6038 case R_MICROMIPS_TLS_GOTTPREL:
6039 case R_MICROMIPS_TLS_LDM:
6040 case R_MICROMIPS_GOT_DISP:
6041 value = g;
6042 overflowed_p = mips_elf_overflow_p (value, 16);
6043 break;
6044
6045 case R_MIPS_GPREL32:
6046 value = (addend + symbol + gp0 - gp);
6047 if (!save_addend)
6048 value &= howto->dst_mask;
6049 break;
6050
6051 case R_MIPS_PC16:
6052 case R_MIPS_GNU_REL16_S2:
6053 if (howto->partial_inplace)
6054 addend = _bfd_mips_elf_sign_extend (addend, 18);
6055
6056 /* No need to exclude weak undefined symbols here as they resolve
6057 to 0 and never set `*cross_mode_jump_p', so this alignment check
6058 will never trigger for them. */
6059 if (*cross_mode_jump_p
6060 ? ((symbol + addend) & 3) != 1
6061 : ((symbol + addend) & 3) != 0)
6062 return bfd_reloc_outofrange;
6063
6064 value = symbol + addend - p;
6065 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6066 overflowed_p = mips_elf_overflow_p (value, 18);
6067 value >>= howto->rightshift;
6068 value &= howto->dst_mask;
6069 break;
6070
6071 case R_MIPS16_PC16_S1:
6072 if (howto->partial_inplace)
6073 addend = _bfd_mips_elf_sign_extend (addend, 17);
6074
6075 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6076 && (*cross_mode_jump_p
6077 ? ((symbol + addend) & 3) != 0
6078 : ((symbol + addend) & 1) == 0))
6079 return bfd_reloc_outofrange;
6080
6081 value = symbol + addend - p;
6082 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6083 overflowed_p = mips_elf_overflow_p (value, 17);
6084 value >>= howto->rightshift;
6085 value &= howto->dst_mask;
6086 break;
6087
6088 case R_MIPS_PC21_S2:
6089 if (howto->partial_inplace)
6090 addend = _bfd_mips_elf_sign_extend (addend, 23);
6091
6092 if ((symbol + addend) & 3)
6093 return bfd_reloc_outofrange;
6094
6095 value = symbol + addend - p;
6096 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6097 overflowed_p = mips_elf_overflow_p (value, 23);
6098 value >>= howto->rightshift;
6099 value &= howto->dst_mask;
6100 break;
6101
6102 case R_MIPS_PC26_S2:
6103 if (howto->partial_inplace)
6104 addend = _bfd_mips_elf_sign_extend (addend, 28);
6105
6106 if ((symbol + addend) & 3)
6107 return bfd_reloc_outofrange;
6108
6109 value = symbol + addend - p;
6110 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6111 overflowed_p = mips_elf_overflow_p (value, 28);
6112 value >>= howto->rightshift;
6113 value &= howto->dst_mask;
6114 break;
6115
6116 case R_MIPS_PC18_S3:
6117 if (howto->partial_inplace)
6118 addend = _bfd_mips_elf_sign_extend (addend, 21);
6119
6120 if ((symbol + addend) & 7)
6121 return bfd_reloc_outofrange;
6122
6123 value = symbol + addend - ((p | 7) ^ 7);
6124 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6125 overflowed_p = mips_elf_overflow_p (value, 21);
6126 value >>= howto->rightshift;
6127 value &= howto->dst_mask;
6128 break;
6129
6130 case R_MIPS_PC19_S2:
6131 if (howto->partial_inplace)
6132 addend = _bfd_mips_elf_sign_extend (addend, 21);
6133
6134 if ((symbol + addend) & 3)
6135 return bfd_reloc_outofrange;
6136
6137 value = symbol + addend - p;
6138 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6139 overflowed_p = mips_elf_overflow_p (value, 21);
6140 value >>= howto->rightshift;
6141 value &= howto->dst_mask;
6142 break;
6143
6144 case R_MIPS_PCHI16:
6145 value = mips_elf_high (symbol + addend - p);
6146 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6147 overflowed_p = mips_elf_overflow_p (value, 16);
6148 value &= howto->dst_mask;
6149 break;
6150
6151 case R_MIPS_PCLO16:
6152 if (howto->partial_inplace)
6153 addend = _bfd_mips_elf_sign_extend (addend, 16);
6154 value = symbol + addend - p;
6155 value &= howto->dst_mask;
6156 break;
6157
6158 case R_MICROMIPS_PC7_S1:
6159 if (howto->partial_inplace)
6160 addend = _bfd_mips_elf_sign_extend (addend, 8);
6161
6162 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6163 && (*cross_mode_jump_p
6164 ? ((symbol + addend + 2) & 3) != 0
6165 : ((symbol + addend + 2) & 1) == 0))
6166 return bfd_reloc_outofrange;
6167
6168 value = symbol + addend - p;
6169 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6170 overflowed_p = mips_elf_overflow_p (value, 8);
6171 value >>= howto->rightshift;
6172 value &= howto->dst_mask;
6173 break;
6174
6175 case R_MICROMIPS_PC10_S1:
6176 if (howto->partial_inplace)
6177 addend = _bfd_mips_elf_sign_extend (addend, 11);
6178
6179 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6180 && (*cross_mode_jump_p
6181 ? ((symbol + addend + 2) & 3) != 0
6182 : ((symbol + addend + 2) & 1) == 0))
6183 return bfd_reloc_outofrange;
6184
6185 value = symbol + addend - p;
6186 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6187 overflowed_p = mips_elf_overflow_p (value, 11);
6188 value >>= howto->rightshift;
6189 value &= howto->dst_mask;
6190 break;
6191
6192 case R_MICROMIPS_PC16_S1:
6193 if (howto->partial_inplace)
6194 addend = _bfd_mips_elf_sign_extend (addend, 17);
6195
6196 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6197 && (*cross_mode_jump_p
6198 ? ((symbol + addend) & 3) != 0
6199 : ((symbol + addend) & 1) == 0))
6200 return bfd_reloc_outofrange;
6201
6202 value = symbol + addend - p;
6203 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6204 overflowed_p = mips_elf_overflow_p (value, 17);
6205 value >>= howto->rightshift;
6206 value &= howto->dst_mask;
6207 break;
6208
6209 case R_MICROMIPS_PC23_S2:
6210 if (howto->partial_inplace)
6211 addend = _bfd_mips_elf_sign_extend (addend, 25);
6212 value = symbol + addend - ((p | 3) ^ 3);
6213 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6214 overflowed_p = mips_elf_overflow_p (value, 25);
6215 value >>= howto->rightshift;
6216 value &= howto->dst_mask;
6217 break;
6218
6219 case R_MIPS_GOT_HI16:
6220 case R_MIPS_CALL_HI16:
6221 case R_MICROMIPS_GOT_HI16:
6222 case R_MICROMIPS_CALL_HI16:
6223 /* We're allowed to handle these two relocations identically.
6224 The dynamic linker is allowed to handle the CALL relocations
6225 differently by creating a lazy evaluation stub. */
6226 value = g;
6227 value = mips_elf_high (value);
6228 value &= howto->dst_mask;
6229 break;
6230
6231 case R_MIPS_GOT_LO16:
6232 case R_MIPS_CALL_LO16:
6233 case R_MICROMIPS_GOT_LO16:
6234 case R_MICROMIPS_CALL_LO16:
6235 value = g & howto->dst_mask;
6236 break;
6237
6238 case R_MIPS_GOT_PAGE:
6239 case R_MICROMIPS_GOT_PAGE:
6240 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6241 if (value == MINUS_ONE)
6242 return bfd_reloc_outofrange;
6243 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6244 overflowed_p = mips_elf_overflow_p (value, 16);
6245 break;
6246
6247 case R_MIPS_GOT_OFST:
6248 case R_MICROMIPS_GOT_OFST:
6249 if (local_p)
6250 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6251 else
6252 value = addend;
6253 overflowed_p = mips_elf_overflow_p (value, 16);
6254 break;
6255
6256 case R_MIPS_SUB:
6257 case R_MICROMIPS_SUB:
6258 value = symbol - addend;
6259 value &= howto->dst_mask;
6260 break;
6261
6262 case R_MIPS_HIGHER:
6263 case R_MICROMIPS_HIGHER:
6264 value = mips_elf_higher (addend + symbol);
6265 value &= howto->dst_mask;
6266 break;
6267
6268 case R_MIPS_HIGHEST:
6269 case R_MICROMIPS_HIGHEST:
6270 value = mips_elf_highest (addend + symbol);
6271 value &= howto->dst_mask;
6272 break;
6273
6274 case R_MIPS_SCN_DISP:
6275 case R_MICROMIPS_SCN_DISP:
6276 value = symbol + addend - sec->output_offset;
6277 value &= howto->dst_mask;
6278 break;
6279
6280 case R_MIPS_JALR:
6281 case R_MICROMIPS_JALR:
6282 /* This relocation is only a hint. In some cases, we optimize
6283 it into a bal instruction. But we don't try to optimize
6284 when the symbol does not resolve locally. */
6285 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6286 return bfd_reloc_continue;
6287 /* We can't optimize cross-mode jumps either. */
6288 if (*cross_mode_jump_p)
6289 return bfd_reloc_continue;
6290 value = symbol + addend;
6291 /* Neither we can non-instruction-aligned targets. */
6292 if (r_type == R_MIPS_JALR ? (value & 3) != 0 : (value & 1) == 0)
6293 return bfd_reloc_continue;
6294 break;
6295
6296 case R_MIPS_PJUMP:
6297 case R_MIPS_GNU_VTINHERIT:
6298 case R_MIPS_GNU_VTENTRY:
6299 /* We don't do anything with these at present. */
6300 return bfd_reloc_continue;
6301
6302 default:
6303 /* An unrecognized relocation type. */
6304 return bfd_reloc_notsupported;
6305 }
6306
6307 /* Store the VALUE for our caller. */
6308 *valuep = value;
6309 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6310 }
6311
6312 /* Obtain the field relocated by RELOCATION. */
6313
6314 static bfd_vma
6315 mips_elf_obtain_contents (reloc_howto_type *howto,
6316 const Elf_Internal_Rela *relocation,
6317 bfd *input_bfd, bfd_byte *contents)
6318 {
6319 bfd_vma x = 0;
6320 bfd_byte *location = contents + relocation->r_offset;
6321 unsigned int size = bfd_get_reloc_size (howto);
6322
6323 /* Obtain the bytes. */
6324 if (size != 0)
6325 x = bfd_get (8 * size, input_bfd, location);
6326
6327 return x;
6328 }
6329
6330 /* It has been determined that the result of the RELOCATION is the
6331 VALUE. Use HOWTO to place VALUE into the output file at the
6332 appropriate position. The SECTION is the section to which the
6333 relocation applies.
6334 CROSS_MODE_JUMP_P is true if the relocation field
6335 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6336
6337 Returns FALSE if anything goes wrong. */
6338
6339 static bfd_boolean
6340 mips_elf_perform_relocation (struct bfd_link_info *info,
6341 reloc_howto_type *howto,
6342 const Elf_Internal_Rela *relocation,
6343 bfd_vma value, bfd *input_bfd,
6344 asection *input_section, bfd_byte *contents,
6345 bfd_boolean cross_mode_jump_p)
6346 {
6347 bfd_vma x;
6348 bfd_byte *location;
6349 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6350 unsigned int size;
6351
6352 /* Figure out where the relocation is occurring. */
6353 location = contents + relocation->r_offset;
6354
6355 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6356
6357 /* Obtain the current value. */
6358 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6359
6360 /* Clear the field we are setting. */
6361 x &= ~howto->dst_mask;
6362
6363 /* Set the field. */
6364 x |= (value & howto->dst_mask);
6365
6366 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
6367 if (!cross_mode_jump_p && jal_reloc_p (r_type))
6368 {
6369 bfd_vma opcode = x >> 26;
6370
6371 if (r_type == R_MIPS16_26 ? opcode == 0x7
6372 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6373 : opcode == 0x1d)
6374 {
6375 info->callbacks->einfo
6376 (_("%X%H: Unsupported JALX to the same ISA mode\n"),
6377 input_bfd, input_section, relocation->r_offset);
6378 return TRUE;
6379 }
6380 }
6381 if (cross_mode_jump_p && jal_reloc_p (r_type))
6382 {
6383 bfd_boolean ok;
6384 bfd_vma opcode = x >> 26;
6385 bfd_vma jalx_opcode;
6386
6387 /* Check to see if the opcode is already JAL or JALX. */
6388 if (r_type == R_MIPS16_26)
6389 {
6390 ok = ((opcode == 0x6) || (opcode == 0x7));
6391 jalx_opcode = 0x7;
6392 }
6393 else if (r_type == R_MICROMIPS_26_S1)
6394 {
6395 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6396 jalx_opcode = 0x3c;
6397 }
6398 else
6399 {
6400 ok = ((opcode == 0x3) || (opcode == 0x1d));
6401 jalx_opcode = 0x1d;
6402 }
6403
6404 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6405 convert J or JALS to JALX. */
6406 if (!ok)
6407 {
6408 info->callbacks->einfo
6409 (_("%X%H: Unsupported jump between ISA modes; "
6410 "consider recompiling with interlinking enabled\n"),
6411 input_bfd, input_section, relocation->r_offset);
6412 return TRUE;
6413 }
6414
6415 /* Make this the JALX opcode. */
6416 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6417 }
6418 else if (cross_mode_jump_p && b_reloc_p (r_type))
6419 {
6420 bfd_boolean ok = FALSE;
6421 bfd_vma opcode = x >> 16;
6422 bfd_vma jalx_opcode = 0;
6423 bfd_vma sign_bit = 0;
6424 bfd_vma addr;
6425 bfd_vma dest;
6426
6427 if (r_type == R_MICROMIPS_PC16_S1)
6428 {
6429 ok = opcode == 0x4060;
6430 jalx_opcode = 0x3c;
6431 sign_bit = 0x10000;
6432 value <<= 1;
6433 }
6434 else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6435 {
6436 ok = opcode == 0x411;
6437 jalx_opcode = 0x1d;
6438 sign_bit = 0x20000;
6439 value <<= 2;
6440 }
6441
6442 if (ok && !bfd_link_pic (info))
6443 {
6444 addr = (input_section->output_section->vma
6445 + input_section->output_offset
6446 + relocation->r_offset
6447 + 4);
6448 dest = (addr
6449 + (((value & ((sign_bit << 1) - 1)) ^ sign_bit) - sign_bit));
6450
6451 if ((addr >> 28) << 28 != (dest >> 28) << 28)
6452 {
6453 info->callbacks->einfo
6454 (_("%X%H: Cannot convert branch between ISA modes "
6455 "to JALX: relocation out of range\n"),
6456 input_bfd, input_section, relocation->r_offset);
6457 return TRUE;
6458 }
6459
6460 /* Make this the JALX opcode. */
6461 x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
6462 }
6463 else if (!mips_elf_hash_table (info)->ignore_branch_isa)
6464 {
6465 info->callbacks->einfo
6466 (_("%X%H: Unsupported branch between ISA modes\n"),
6467 input_bfd, input_section, relocation->r_offset);
6468 return TRUE;
6469 }
6470 }
6471
6472 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6473 range. */
6474 if (!bfd_link_relocatable (info)
6475 && !cross_mode_jump_p
6476 && ((JAL_TO_BAL_P (input_bfd)
6477 && r_type == R_MIPS_26
6478 && (x >> 26) == 0x3) /* jal addr */
6479 || (JALR_TO_BAL_P (input_bfd)
6480 && r_type == R_MIPS_JALR
6481 && x == 0x0320f809) /* jalr t9 */
6482 || (JR_TO_B_P (input_bfd)
6483 && r_type == R_MIPS_JALR
6484 && (x & ~1) == 0x03200008))) /* jr t9 / jalr zero, t9 */
6485 {
6486 bfd_vma addr;
6487 bfd_vma dest;
6488 bfd_signed_vma off;
6489
6490 addr = (input_section->output_section->vma
6491 + input_section->output_offset
6492 + relocation->r_offset
6493 + 4);
6494 if (r_type == R_MIPS_26)
6495 dest = (value << 2) | ((addr >> 28) << 28);
6496 else
6497 dest = value;
6498 off = dest - addr;
6499 if (off <= 0x1ffff && off >= -0x20000)
6500 {
6501 if ((x & ~1) == 0x03200008) /* jr t9 / jalr zero, t9 */
6502 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6503 else
6504 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6505 }
6506 }
6507
6508 /* Put the value into the output. */
6509 size = bfd_get_reloc_size (howto);
6510 if (size != 0)
6511 bfd_put (8 * size, input_bfd, x, location);
6512
6513 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
6514 location);
6515
6516 return TRUE;
6517 }
6518 \f
6519 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6520 is the original relocation, which is now being transformed into a
6521 dynamic relocation. The ADDENDP is adjusted if necessary; the
6522 caller should store the result in place of the original addend. */
6523
6524 static bfd_boolean
6525 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6526 struct bfd_link_info *info,
6527 const Elf_Internal_Rela *rel,
6528 struct mips_elf_link_hash_entry *h,
6529 asection *sec, bfd_vma symbol,
6530 bfd_vma *addendp, asection *input_section)
6531 {
6532 Elf_Internal_Rela outrel[3];
6533 asection *sreloc;
6534 bfd *dynobj;
6535 int r_type;
6536 long indx;
6537 bfd_boolean defined_p;
6538 struct mips_elf_link_hash_table *htab;
6539
6540 htab = mips_elf_hash_table (info);
6541 BFD_ASSERT (htab != NULL);
6542
6543 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6544 dynobj = elf_hash_table (info)->dynobj;
6545 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6546 BFD_ASSERT (sreloc != NULL);
6547 BFD_ASSERT (sreloc->contents != NULL);
6548 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6549 < sreloc->size);
6550
6551 outrel[0].r_offset =
6552 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6553 if (ABI_64_P (output_bfd))
6554 {
6555 outrel[1].r_offset =
6556 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6557 outrel[2].r_offset =
6558 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6559 }
6560
6561 if (outrel[0].r_offset == MINUS_ONE)
6562 /* The relocation field has been deleted. */
6563 return TRUE;
6564
6565 if (outrel[0].r_offset == MINUS_TWO)
6566 {
6567 /* The relocation field has been converted into a relative value of
6568 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6569 the field to be fully relocated, so add in the symbol's value. */
6570 *addendp += symbol;
6571 return TRUE;
6572 }
6573
6574 /* We must now calculate the dynamic symbol table index to use
6575 in the relocation. */
6576 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6577 {
6578 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6579 indx = h->root.dynindx;
6580 if (SGI_COMPAT (output_bfd))
6581 defined_p = h->root.def_regular;
6582 else
6583 /* ??? glibc's ld.so just adds the final GOT entry to the
6584 relocation field. It therefore treats relocs against
6585 defined symbols in the same way as relocs against
6586 undefined symbols. */
6587 defined_p = FALSE;
6588 }
6589 else
6590 {
6591 if (sec != NULL && bfd_is_abs_section (sec))
6592 indx = 0;
6593 else if (sec == NULL || sec->owner == NULL)
6594 {
6595 bfd_set_error (bfd_error_bad_value);
6596 return FALSE;
6597 }
6598 else
6599 {
6600 indx = elf_section_data (sec->output_section)->dynindx;
6601 if (indx == 0)
6602 {
6603 asection *osec = htab->root.text_index_section;
6604 indx = elf_section_data (osec)->dynindx;
6605 }
6606 if (indx == 0)
6607 abort ();
6608 }
6609
6610 /* Instead of generating a relocation using the section
6611 symbol, we may as well make it a fully relative
6612 relocation. We want to avoid generating relocations to
6613 local symbols because we used to generate them
6614 incorrectly, without adding the original symbol value,
6615 which is mandated by the ABI for section symbols. In
6616 order to give dynamic loaders and applications time to
6617 phase out the incorrect use, we refrain from emitting
6618 section-relative relocations. It's not like they're
6619 useful, after all. This should be a bit more efficient
6620 as well. */
6621 /* ??? Although this behavior is compatible with glibc's ld.so,
6622 the ABI says that relocations against STN_UNDEF should have
6623 a symbol value of 0. Irix rld honors this, so relocations
6624 against STN_UNDEF have no effect. */
6625 if (!SGI_COMPAT (output_bfd))
6626 indx = 0;
6627 defined_p = TRUE;
6628 }
6629
6630 /* If the relocation was previously an absolute relocation and
6631 this symbol will not be referred to by the relocation, we must
6632 adjust it by the value we give it in the dynamic symbol table.
6633 Otherwise leave the job up to the dynamic linker. */
6634 if (defined_p && r_type != R_MIPS_REL32)
6635 *addendp += symbol;
6636
6637 if (htab->is_vxworks)
6638 /* VxWorks uses non-relative relocations for this. */
6639 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6640 else
6641 /* The relocation is always an REL32 relocation because we don't
6642 know where the shared library will wind up at load-time. */
6643 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6644 R_MIPS_REL32);
6645
6646 /* For strict adherence to the ABI specification, we should
6647 generate a R_MIPS_64 relocation record by itself before the
6648 _REL32/_64 record as well, such that the addend is read in as
6649 a 64-bit value (REL32 is a 32-bit relocation, after all).
6650 However, since none of the existing ELF64 MIPS dynamic
6651 loaders seems to care, we don't waste space with these
6652 artificial relocations. If this turns out to not be true,
6653 mips_elf_allocate_dynamic_relocation() should be tweaked so
6654 as to make room for a pair of dynamic relocations per
6655 invocation if ABI_64_P, and here we should generate an
6656 additional relocation record with R_MIPS_64 by itself for a
6657 NULL symbol before this relocation record. */
6658 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6659 ABI_64_P (output_bfd)
6660 ? R_MIPS_64
6661 : R_MIPS_NONE);
6662 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6663
6664 /* Adjust the output offset of the relocation to reference the
6665 correct location in the output file. */
6666 outrel[0].r_offset += (input_section->output_section->vma
6667 + input_section->output_offset);
6668 outrel[1].r_offset += (input_section->output_section->vma
6669 + input_section->output_offset);
6670 outrel[2].r_offset += (input_section->output_section->vma
6671 + input_section->output_offset);
6672
6673 /* Put the relocation back out. We have to use the special
6674 relocation outputter in the 64-bit case since the 64-bit
6675 relocation format is non-standard. */
6676 if (ABI_64_P (output_bfd))
6677 {
6678 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6679 (output_bfd, &outrel[0],
6680 (sreloc->contents
6681 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6682 }
6683 else if (htab->is_vxworks)
6684 {
6685 /* VxWorks uses RELA rather than REL dynamic relocations. */
6686 outrel[0].r_addend = *addendp;
6687 bfd_elf32_swap_reloca_out
6688 (output_bfd, &outrel[0],
6689 (sreloc->contents
6690 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6691 }
6692 else
6693 bfd_elf32_swap_reloc_out
6694 (output_bfd, &outrel[0],
6695 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6696
6697 /* We've now added another relocation. */
6698 ++sreloc->reloc_count;
6699
6700 /* Make sure the output section is writable. The dynamic linker
6701 will be writing to it. */
6702 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6703 |= SHF_WRITE;
6704
6705 /* On IRIX5, make an entry of compact relocation info. */
6706 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6707 {
6708 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6709 bfd_byte *cr;
6710
6711 if (scpt)
6712 {
6713 Elf32_crinfo cptrel;
6714
6715 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6716 cptrel.vaddr = (rel->r_offset
6717 + input_section->output_section->vma
6718 + input_section->output_offset);
6719 if (r_type == R_MIPS_REL32)
6720 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6721 else
6722 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6723 mips_elf_set_cr_dist2to (cptrel, 0);
6724 cptrel.konst = *addendp;
6725
6726 cr = (scpt->contents
6727 + sizeof (Elf32_External_compact_rel));
6728 mips_elf_set_cr_relvaddr (cptrel, 0);
6729 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6730 ((Elf32_External_crinfo *) cr
6731 + scpt->reloc_count));
6732 ++scpt->reloc_count;
6733 }
6734 }
6735
6736 /* If we've written this relocation for a readonly section,
6737 we need to set DF_TEXTREL again, so that we do not delete the
6738 DT_TEXTREL tag. */
6739 if (MIPS_ELF_READONLY_SECTION (input_section))
6740 info->flags |= DF_TEXTREL;
6741
6742 return TRUE;
6743 }
6744 \f
6745 /* Return the MACH for a MIPS e_flags value. */
6746
6747 unsigned long
6748 _bfd_elf_mips_mach (flagword flags)
6749 {
6750 switch (flags & EF_MIPS_MACH)
6751 {
6752 case E_MIPS_MACH_3900:
6753 return bfd_mach_mips3900;
6754
6755 case E_MIPS_MACH_4010:
6756 return bfd_mach_mips4010;
6757
6758 case E_MIPS_MACH_4100:
6759 return bfd_mach_mips4100;
6760
6761 case E_MIPS_MACH_4111:
6762 return bfd_mach_mips4111;
6763
6764 case E_MIPS_MACH_4120:
6765 return bfd_mach_mips4120;
6766
6767 case E_MIPS_MACH_4650:
6768 return bfd_mach_mips4650;
6769
6770 case E_MIPS_MACH_5400:
6771 return bfd_mach_mips5400;
6772
6773 case E_MIPS_MACH_5500:
6774 return bfd_mach_mips5500;
6775
6776 case E_MIPS_MACH_5900:
6777 return bfd_mach_mips5900;
6778
6779 case E_MIPS_MACH_9000:
6780 return bfd_mach_mips9000;
6781
6782 case E_MIPS_MACH_SB1:
6783 return bfd_mach_mips_sb1;
6784
6785 case E_MIPS_MACH_LS2E:
6786 return bfd_mach_mips_loongson_2e;
6787
6788 case E_MIPS_MACH_LS2F:
6789 return bfd_mach_mips_loongson_2f;
6790
6791 case E_MIPS_MACH_LS3A:
6792 return bfd_mach_mips_loongson_3a;
6793
6794 case E_MIPS_MACH_OCTEON3:
6795 return bfd_mach_mips_octeon3;
6796
6797 case E_MIPS_MACH_OCTEON2:
6798 return bfd_mach_mips_octeon2;
6799
6800 case E_MIPS_MACH_OCTEON:
6801 return bfd_mach_mips_octeon;
6802
6803 case E_MIPS_MACH_XLR:
6804 return bfd_mach_mips_xlr;
6805
6806 case E_MIPS_MACH_IAMR2:
6807 return bfd_mach_mips_interaptiv_mr2;
6808
6809 default:
6810 switch (flags & EF_MIPS_ARCH)
6811 {
6812 default:
6813 case E_MIPS_ARCH_1:
6814 return bfd_mach_mips3000;
6815
6816 case E_MIPS_ARCH_2:
6817 return bfd_mach_mips6000;
6818
6819 case E_MIPS_ARCH_3:
6820 return bfd_mach_mips4000;
6821
6822 case E_MIPS_ARCH_4:
6823 return bfd_mach_mips8000;
6824
6825 case E_MIPS_ARCH_5:
6826 return bfd_mach_mips5;
6827
6828 case E_MIPS_ARCH_32:
6829 return bfd_mach_mipsisa32;
6830
6831 case E_MIPS_ARCH_64:
6832 return bfd_mach_mipsisa64;
6833
6834 case E_MIPS_ARCH_32R2:
6835 return bfd_mach_mipsisa32r2;
6836
6837 case E_MIPS_ARCH_64R2:
6838 return bfd_mach_mipsisa64r2;
6839
6840 case E_MIPS_ARCH_32R6:
6841 return bfd_mach_mipsisa32r6;
6842
6843 case E_MIPS_ARCH_64R6:
6844 return bfd_mach_mipsisa64r6;
6845 }
6846 }
6847
6848 return 0;
6849 }
6850
6851 /* Return printable name for ABI. */
6852
6853 static INLINE char *
6854 elf_mips_abi_name (bfd *abfd)
6855 {
6856 flagword flags;
6857
6858 flags = elf_elfheader (abfd)->e_flags;
6859 switch (flags & EF_MIPS_ABI)
6860 {
6861 case 0:
6862 if (ABI_N32_P (abfd))
6863 return "N32";
6864 else if (ABI_64_P (abfd))
6865 return "64";
6866 else
6867 return "none";
6868 case E_MIPS_ABI_O32:
6869 return "O32";
6870 case E_MIPS_ABI_O64:
6871 return "O64";
6872 case E_MIPS_ABI_EABI32:
6873 return "EABI32";
6874 case E_MIPS_ABI_EABI64:
6875 return "EABI64";
6876 default:
6877 return "unknown abi";
6878 }
6879 }
6880 \f
6881 /* MIPS ELF uses two common sections. One is the usual one, and the
6882 other is for small objects. All the small objects are kept
6883 together, and then referenced via the gp pointer, which yields
6884 faster assembler code. This is what we use for the small common
6885 section. This approach is copied from ecoff.c. */
6886 static asection mips_elf_scom_section;
6887 static asymbol mips_elf_scom_symbol;
6888 static asymbol *mips_elf_scom_symbol_ptr;
6889
6890 /* MIPS ELF also uses an acommon section, which represents an
6891 allocated common symbol which may be overridden by a
6892 definition in a shared library. */
6893 static asection mips_elf_acom_section;
6894 static asymbol mips_elf_acom_symbol;
6895 static asymbol *mips_elf_acom_symbol_ptr;
6896
6897 /* This is used for both the 32-bit and the 64-bit ABI. */
6898
6899 void
6900 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6901 {
6902 elf_symbol_type *elfsym;
6903
6904 /* Handle the special MIPS section numbers that a symbol may use. */
6905 elfsym = (elf_symbol_type *) asym;
6906 switch (elfsym->internal_elf_sym.st_shndx)
6907 {
6908 case SHN_MIPS_ACOMMON:
6909 /* This section is used in a dynamically linked executable file.
6910 It is an allocated common section. The dynamic linker can
6911 either resolve these symbols to something in a shared
6912 library, or it can just leave them here. For our purposes,
6913 we can consider these symbols to be in a new section. */
6914 if (mips_elf_acom_section.name == NULL)
6915 {
6916 /* Initialize the acommon section. */
6917 mips_elf_acom_section.name = ".acommon";
6918 mips_elf_acom_section.flags = SEC_ALLOC;
6919 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6920 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6921 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6922 mips_elf_acom_symbol.name = ".acommon";
6923 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6924 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6925 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6926 }
6927 asym->section = &mips_elf_acom_section;
6928 break;
6929
6930 case SHN_COMMON:
6931 /* Common symbols less than the GP size are automatically
6932 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6933 if (asym->value > elf_gp_size (abfd)
6934 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6935 || IRIX_COMPAT (abfd) == ict_irix6)
6936 break;
6937 /* Fall through. */
6938 case SHN_MIPS_SCOMMON:
6939 if (mips_elf_scom_section.name == NULL)
6940 {
6941 /* Initialize the small common section. */
6942 mips_elf_scom_section.name = ".scommon";
6943 mips_elf_scom_section.flags = SEC_IS_COMMON;
6944 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6945 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6946 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6947 mips_elf_scom_symbol.name = ".scommon";
6948 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6949 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6950 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6951 }
6952 asym->section = &mips_elf_scom_section;
6953 asym->value = elfsym->internal_elf_sym.st_size;
6954 break;
6955
6956 case SHN_MIPS_SUNDEFINED:
6957 asym->section = bfd_und_section_ptr;
6958 break;
6959
6960 case SHN_MIPS_TEXT:
6961 {
6962 asection *section = bfd_get_section_by_name (abfd, ".text");
6963
6964 if (section != NULL)
6965 {
6966 asym->section = section;
6967 /* MIPS_TEXT is a bit special, the address is not an offset
6968 to the base of the .text section. So subtract the section
6969 base address to make it an offset. */
6970 asym->value -= section->vma;
6971 }
6972 }
6973 break;
6974
6975 case SHN_MIPS_DATA:
6976 {
6977 asection *section = bfd_get_section_by_name (abfd, ".data");
6978
6979 if (section != NULL)
6980 {
6981 asym->section = section;
6982 /* MIPS_DATA is a bit special, the address is not an offset
6983 to the base of the .data section. So subtract the section
6984 base address to make it an offset. */
6985 asym->value -= section->vma;
6986 }
6987 }
6988 break;
6989 }
6990
6991 /* If this is an odd-valued function symbol, assume it's a MIPS16
6992 or microMIPS one. */
6993 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6994 && (asym->value & 1) != 0)
6995 {
6996 asym->value--;
6997 if (MICROMIPS_P (abfd))
6998 elfsym->internal_elf_sym.st_other
6999 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
7000 else
7001 elfsym->internal_elf_sym.st_other
7002 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
7003 }
7004 }
7005 \f
7006 /* Implement elf_backend_eh_frame_address_size. This differs from
7007 the default in the way it handles EABI64.
7008
7009 EABI64 was originally specified as an LP64 ABI, and that is what
7010 -mabi=eabi normally gives on a 64-bit target. However, gcc has
7011 historically accepted the combination of -mabi=eabi and -mlong32,
7012 and this ILP32 variation has become semi-official over time.
7013 Both forms use elf32 and have pointer-sized FDE addresses.
7014
7015 If an EABI object was generated by GCC 4.0 or above, it will have
7016 an empty .gcc_compiled_longXX section, where XX is the size of longs
7017 in bits. Unfortunately, ILP32 objects generated by earlier compilers
7018 have no special marking to distinguish them from LP64 objects.
7019
7020 We don't want users of the official LP64 ABI to be punished for the
7021 existence of the ILP32 variant, but at the same time, we don't want
7022 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
7023 We therefore take the following approach:
7024
7025 - If ABFD contains a .gcc_compiled_longXX section, use it to
7026 determine the pointer size.
7027
7028 - Otherwise check the type of the first relocation. Assume that
7029 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
7030
7031 - Otherwise punt.
7032
7033 The second check is enough to detect LP64 objects generated by pre-4.0
7034 compilers because, in the kind of output generated by those compilers,
7035 the first relocation will be associated with either a CIE personality
7036 routine or an FDE start address. Furthermore, the compilers never
7037 used a special (non-pointer) encoding for this ABI.
7038
7039 Checking the relocation type should also be safe because there is no
7040 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7041 did so. */
7042
7043 unsigned int
7044 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, const asection *sec)
7045 {
7046 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7047 return 8;
7048 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7049 {
7050 bfd_boolean long32_p, long64_p;
7051
7052 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7053 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7054 if (long32_p && long64_p)
7055 return 0;
7056 if (long32_p)
7057 return 4;
7058 if (long64_p)
7059 return 8;
7060
7061 if (sec->reloc_count > 0
7062 && elf_section_data (sec)->relocs != NULL
7063 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7064 == R_MIPS_64))
7065 return 8;
7066
7067 return 0;
7068 }
7069 return 4;
7070 }
7071 \f
7072 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7073 relocations against two unnamed section symbols to resolve to the
7074 same address. For example, if we have code like:
7075
7076 lw $4,%got_disp(.data)($gp)
7077 lw $25,%got_disp(.text)($gp)
7078 jalr $25
7079
7080 then the linker will resolve both relocations to .data and the program
7081 will jump there rather than to .text.
7082
7083 We can work around this problem by giving names to local section symbols.
7084 This is also what the MIPSpro tools do. */
7085
7086 bfd_boolean
7087 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7088 {
7089 return SGI_COMPAT (abfd);
7090 }
7091 \f
7092 /* Work over a section just before writing it out. This routine is
7093 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7094 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7095 a better way. */
7096
7097 bfd_boolean
7098 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
7099 {
7100 if (hdr->sh_type == SHT_MIPS_REGINFO
7101 && hdr->sh_size > 0)
7102 {
7103 bfd_byte buf[4];
7104
7105 BFD_ASSERT (hdr->contents == NULL);
7106
7107 if (hdr->sh_size != sizeof (Elf32_External_RegInfo))
7108 {
7109 _bfd_error_handler
7110 (_("%pB: Incorrect `.reginfo' section size; "
7111 "expected %" PRIu64 ", got %" PRIu64),
7112 abfd, (uint64_t) sizeof (Elf32_External_RegInfo),
7113 (uint64_t) hdr->sh_size);
7114 bfd_set_error (bfd_error_bad_value);
7115 return FALSE;
7116 }
7117
7118 if (bfd_seek (abfd,
7119 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7120 SEEK_SET) != 0)
7121 return FALSE;
7122 H_PUT_32 (abfd, elf_gp (abfd), buf);
7123 if (bfd_bwrite (buf, 4, abfd) != 4)
7124 return FALSE;
7125 }
7126
7127 if (hdr->sh_type == SHT_MIPS_OPTIONS
7128 && hdr->bfd_section != NULL
7129 && mips_elf_section_data (hdr->bfd_section) != NULL
7130 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
7131 {
7132 bfd_byte *contents, *l, *lend;
7133
7134 /* We stored the section contents in the tdata field in the
7135 set_section_contents routine. We save the section contents
7136 so that we don't have to read them again.
7137 At this point we know that elf_gp is set, so we can look
7138 through the section contents to see if there is an
7139 ODK_REGINFO structure. */
7140
7141 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
7142 l = contents;
7143 lend = contents + hdr->sh_size;
7144 while (l + sizeof (Elf_External_Options) <= lend)
7145 {
7146 Elf_Internal_Options intopt;
7147
7148 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7149 &intopt);
7150 if (intopt.size < sizeof (Elf_External_Options))
7151 {
7152 _bfd_error_handler
7153 /* xgettext:c-format */
7154 (_("%pB: Warning: bad `%s' option size %u smaller than"
7155 " its header"),
7156 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7157 break;
7158 }
7159 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7160 {
7161 bfd_byte buf[8];
7162
7163 if (bfd_seek (abfd,
7164 (hdr->sh_offset
7165 + (l - contents)
7166 + sizeof (Elf_External_Options)
7167 + (sizeof (Elf64_External_RegInfo) - 8)),
7168 SEEK_SET) != 0)
7169 return FALSE;
7170 H_PUT_64 (abfd, elf_gp (abfd), buf);
7171 if (bfd_bwrite (buf, 8, abfd) != 8)
7172 return FALSE;
7173 }
7174 else if (intopt.kind == ODK_REGINFO)
7175 {
7176 bfd_byte buf[4];
7177
7178 if (bfd_seek (abfd,
7179 (hdr->sh_offset
7180 + (l - contents)
7181 + sizeof (Elf_External_Options)
7182 + (sizeof (Elf32_External_RegInfo) - 4)),
7183 SEEK_SET) != 0)
7184 return FALSE;
7185 H_PUT_32 (abfd, elf_gp (abfd), buf);
7186 if (bfd_bwrite (buf, 4, abfd) != 4)
7187 return FALSE;
7188 }
7189 l += intopt.size;
7190 }
7191 }
7192
7193 if (hdr->bfd_section != NULL)
7194 {
7195 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
7196
7197 /* .sbss is not handled specially here because the GNU/Linux
7198 prelinker can convert .sbss from NOBITS to PROGBITS and
7199 changing it back to NOBITS breaks the binary. The entry in
7200 _bfd_mips_elf_special_sections will ensure the correct flags
7201 are set on .sbss if BFD creates it without reading it from an
7202 input file, and without special handling here the flags set
7203 on it in an input file will be followed. */
7204 if (strcmp (name, ".sdata") == 0
7205 || strcmp (name, ".lit8") == 0
7206 || strcmp (name, ".lit4") == 0)
7207 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7208 else if (strcmp (name, ".srdata") == 0)
7209 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
7210 else if (strcmp (name, ".compact_rel") == 0)
7211 hdr->sh_flags = 0;
7212 else if (strcmp (name, ".rtproc") == 0)
7213 {
7214 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7215 {
7216 unsigned int adjust;
7217
7218 adjust = hdr->sh_size % hdr->sh_addralign;
7219 if (adjust != 0)
7220 hdr->sh_size += hdr->sh_addralign - adjust;
7221 }
7222 }
7223 }
7224
7225 return TRUE;
7226 }
7227
7228 /* Handle a MIPS specific section when reading an object file. This
7229 is called when elfcode.h finds a section with an unknown type.
7230 This routine supports both the 32-bit and 64-bit ELF ABI.
7231
7232 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7233 how to. */
7234
7235 bfd_boolean
7236 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7237 Elf_Internal_Shdr *hdr,
7238 const char *name,
7239 int shindex)
7240 {
7241 flagword flags = 0;
7242
7243 /* There ought to be a place to keep ELF backend specific flags, but
7244 at the moment there isn't one. We just keep track of the
7245 sections by their name, instead. Fortunately, the ABI gives
7246 suggested names for all the MIPS specific sections, so we will
7247 probably get away with this. */
7248 switch (hdr->sh_type)
7249 {
7250 case SHT_MIPS_LIBLIST:
7251 if (strcmp (name, ".liblist") != 0)
7252 return FALSE;
7253 break;
7254 case SHT_MIPS_MSYM:
7255 if (strcmp (name, ".msym") != 0)
7256 return FALSE;
7257 break;
7258 case SHT_MIPS_CONFLICT:
7259 if (strcmp (name, ".conflict") != 0)
7260 return FALSE;
7261 break;
7262 case SHT_MIPS_GPTAB:
7263 if (! CONST_STRNEQ (name, ".gptab."))
7264 return FALSE;
7265 break;
7266 case SHT_MIPS_UCODE:
7267 if (strcmp (name, ".ucode") != 0)
7268 return FALSE;
7269 break;
7270 case SHT_MIPS_DEBUG:
7271 if (strcmp (name, ".mdebug") != 0)
7272 return FALSE;
7273 flags = SEC_DEBUGGING;
7274 break;
7275 case SHT_MIPS_REGINFO:
7276 if (strcmp (name, ".reginfo") != 0
7277 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7278 return FALSE;
7279 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7280 break;
7281 case SHT_MIPS_IFACE:
7282 if (strcmp (name, ".MIPS.interfaces") != 0)
7283 return FALSE;
7284 break;
7285 case SHT_MIPS_CONTENT:
7286 if (! CONST_STRNEQ (name, ".MIPS.content"))
7287 return FALSE;
7288 break;
7289 case SHT_MIPS_OPTIONS:
7290 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7291 return FALSE;
7292 break;
7293 case SHT_MIPS_ABIFLAGS:
7294 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7295 return FALSE;
7296 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7297 break;
7298 case SHT_MIPS_DWARF:
7299 if (! CONST_STRNEQ (name, ".debug_")
7300 && ! CONST_STRNEQ (name, ".zdebug_"))
7301 return FALSE;
7302 break;
7303 case SHT_MIPS_SYMBOL_LIB:
7304 if (strcmp (name, ".MIPS.symlib") != 0)
7305 return FALSE;
7306 break;
7307 case SHT_MIPS_EVENTS:
7308 if (! CONST_STRNEQ (name, ".MIPS.events")
7309 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
7310 return FALSE;
7311 break;
7312 default:
7313 break;
7314 }
7315
7316 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7317 return FALSE;
7318
7319 if (flags)
7320 {
7321 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7322 (bfd_get_section_flags (abfd,
7323 hdr->bfd_section)
7324 | flags)))
7325 return FALSE;
7326 }
7327
7328 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7329 {
7330 Elf_External_ABIFlags_v0 ext;
7331
7332 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7333 &ext, 0, sizeof ext))
7334 return FALSE;
7335 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7336 &mips_elf_tdata (abfd)->abiflags);
7337 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7338 return FALSE;
7339 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7340 }
7341
7342 /* FIXME: We should record sh_info for a .gptab section. */
7343
7344 /* For a .reginfo section, set the gp value in the tdata information
7345 from the contents of this section. We need the gp value while
7346 processing relocs, so we just get it now. The .reginfo section
7347 is not used in the 64-bit MIPS ELF ABI. */
7348 if (hdr->sh_type == SHT_MIPS_REGINFO)
7349 {
7350 Elf32_External_RegInfo ext;
7351 Elf32_RegInfo s;
7352
7353 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7354 &ext, 0, sizeof ext))
7355 return FALSE;
7356 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7357 elf_gp (abfd) = s.ri_gp_value;
7358 }
7359
7360 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7361 set the gp value based on what we find. We may see both
7362 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7363 they should agree. */
7364 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7365 {
7366 bfd_byte *contents, *l, *lend;
7367
7368 contents = bfd_malloc (hdr->sh_size);
7369 if (contents == NULL)
7370 return FALSE;
7371 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7372 0, hdr->sh_size))
7373 {
7374 free (contents);
7375 return FALSE;
7376 }
7377 l = contents;
7378 lend = contents + hdr->sh_size;
7379 while (l + sizeof (Elf_External_Options) <= lend)
7380 {
7381 Elf_Internal_Options intopt;
7382
7383 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7384 &intopt);
7385 if (intopt.size < sizeof (Elf_External_Options))
7386 {
7387 _bfd_error_handler
7388 /* xgettext:c-format */
7389 (_("%pB: Warning: bad `%s' option size %u smaller than"
7390 " its header"),
7391 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7392 break;
7393 }
7394 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7395 {
7396 Elf64_Internal_RegInfo intreg;
7397
7398 bfd_mips_elf64_swap_reginfo_in
7399 (abfd,
7400 ((Elf64_External_RegInfo *)
7401 (l + sizeof (Elf_External_Options))),
7402 &intreg);
7403 elf_gp (abfd) = intreg.ri_gp_value;
7404 }
7405 else if (intopt.kind == ODK_REGINFO)
7406 {
7407 Elf32_RegInfo intreg;
7408
7409 bfd_mips_elf32_swap_reginfo_in
7410 (abfd,
7411 ((Elf32_External_RegInfo *)
7412 (l + sizeof (Elf_External_Options))),
7413 &intreg);
7414 elf_gp (abfd) = intreg.ri_gp_value;
7415 }
7416 l += intopt.size;
7417 }
7418 free (contents);
7419 }
7420
7421 return TRUE;
7422 }
7423
7424 /* Set the correct type for a MIPS ELF section. We do this by the
7425 section name, which is a hack, but ought to work. This routine is
7426 used by both the 32-bit and the 64-bit ABI. */
7427
7428 bfd_boolean
7429 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7430 {
7431 const char *name = bfd_get_section_name (abfd, sec);
7432
7433 if (strcmp (name, ".liblist") == 0)
7434 {
7435 hdr->sh_type = SHT_MIPS_LIBLIST;
7436 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7437 /* The sh_link field is set in final_write_processing. */
7438 }
7439 else if (strcmp (name, ".conflict") == 0)
7440 hdr->sh_type = SHT_MIPS_CONFLICT;
7441 else if (CONST_STRNEQ (name, ".gptab."))
7442 {
7443 hdr->sh_type = SHT_MIPS_GPTAB;
7444 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7445 /* The sh_info field is set in final_write_processing. */
7446 }
7447 else if (strcmp (name, ".ucode") == 0)
7448 hdr->sh_type = SHT_MIPS_UCODE;
7449 else if (strcmp (name, ".mdebug") == 0)
7450 {
7451 hdr->sh_type = SHT_MIPS_DEBUG;
7452 /* In a shared object on IRIX 5.3, the .mdebug section has an
7453 entsize of 0. FIXME: Does this matter? */
7454 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7455 hdr->sh_entsize = 0;
7456 else
7457 hdr->sh_entsize = 1;
7458 }
7459 else if (strcmp (name, ".reginfo") == 0)
7460 {
7461 hdr->sh_type = SHT_MIPS_REGINFO;
7462 /* In a shared object on IRIX 5.3, the .reginfo section has an
7463 entsize of 0x18. FIXME: Does this matter? */
7464 if (SGI_COMPAT (abfd))
7465 {
7466 if ((abfd->flags & DYNAMIC) != 0)
7467 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7468 else
7469 hdr->sh_entsize = 1;
7470 }
7471 else
7472 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7473 }
7474 else if (SGI_COMPAT (abfd)
7475 && (strcmp (name, ".hash") == 0
7476 || strcmp (name, ".dynamic") == 0
7477 || strcmp (name, ".dynstr") == 0))
7478 {
7479 if (SGI_COMPAT (abfd))
7480 hdr->sh_entsize = 0;
7481 #if 0
7482 /* This isn't how the IRIX6 linker behaves. */
7483 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7484 #endif
7485 }
7486 else if (strcmp (name, ".got") == 0
7487 || strcmp (name, ".srdata") == 0
7488 || strcmp (name, ".sdata") == 0
7489 || strcmp (name, ".sbss") == 0
7490 || strcmp (name, ".lit4") == 0
7491 || strcmp (name, ".lit8") == 0)
7492 hdr->sh_flags |= SHF_MIPS_GPREL;
7493 else if (strcmp (name, ".MIPS.interfaces") == 0)
7494 {
7495 hdr->sh_type = SHT_MIPS_IFACE;
7496 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7497 }
7498 else if (CONST_STRNEQ (name, ".MIPS.content"))
7499 {
7500 hdr->sh_type = SHT_MIPS_CONTENT;
7501 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7502 /* The sh_info field is set in final_write_processing. */
7503 }
7504 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7505 {
7506 hdr->sh_type = SHT_MIPS_OPTIONS;
7507 hdr->sh_entsize = 1;
7508 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7509 }
7510 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7511 {
7512 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7513 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7514 }
7515 else if (CONST_STRNEQ (name, ".debug_")
7516 || CONST_STRNEQ (name, ".zdebug_"))
7517 {
7518 hdr->sh_type = SHT_MIPS_DWARF;
7519
7520 /* Irix facilities such as libexc expect a single .debug_frame
7521 per executable, the system ones have NOSTRIP set and the linker
7522 doesn't merge sections with different flags so ... */
7523 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7524 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7525 }
7526 else if (strcmp (name, ".MIPS.symlib") == 0)
7527 {
7528 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7529 /* The sh_link and sh_info fields are set in
7530 final_write_processing. */
7531 }
7532 else if (CONST_STRNEQ (name, ".MIPS.events")
7533 || CONST_STRNEQ (name, ".MIPS.post_rel"))
7534 {
7535 hdr->sh_type = SHT_MIPS_EVENTS;
7536 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7537 /* The sh_link field is set in final_write_processing. */
7538 }
7539 else if (strcmp (name, ".msym") == 0)
7540 {
7541 hdr->sh_type = SHT_MIPS_MSYM;
7542 hdr->sh_flags |= SHF_ALLOC;
7543 hdr->sh_entsize = 8;
7544 }
7545
7546 /* The generic elf_fake_sections will set up REL_HDR using the default
7547 kind of relocations. We used to set up a second header for the
7548 non-default kind of relocations here, but only NewABI would use
7549 these, and the IRIX ld doesn't like resulting empty RELA sections.
7550 Thus we create those header only on demand now. */
7551
7552 return TRUE;
7553 }
7554
7555 /* Given a BFD section, try to locate the corresponding ELF section
7556 index. This is used by both the 32-bit and the 64-bit ABI.
7557 Actually, it's not clear to me that the 64-bit ABI supports these,
7558 but for non-PIC objects we will certainly want support for at least
7559 the .scommon section. */
7560
7561 bfd_boolean
7562 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7563 asection *sec, int *retval)
7564 {
7565 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7566 {
7567 *retval = SHN_MIPS_SCOMMON;
7568 return TRUE;
7569 }
7570 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7571 {
7572 *retval = SHN_MIPS_ACOMMON;
7573 return TRUE;
7574 }
7575 return FALSE;
7576 }
7577 \f
7578 /* Hook called by the linker routine which adds symbols from an object
7579 file. We must handle the special MIPS section numbers here. */
7580
7581 bfd_boolean
7582 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7583 Elf_Internal_Sym *sym, const char **namep,
7584 flagword *flagsp ATTRIBUTE_UNUSED,
7585 asection **secp, bfd_vma *valp)
7586 {
7587 if (SGI_COMPAT (abfd)
7588 && (abfd->flags & DYNAMIC) != 0
7589 && strcmp (*namep, "_rld_new_interface") == 0)
7590 {
7591 /* Skip IRIX5 rld entry name. */
7592 *namep = NULL;
7593 return TRUE;
7594 }
7595
7596 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7597 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7598 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7599 a magic symbol resolved by the linker, we ignore this bogus definition
7600 of _gp_disp. New ABI objects do not suffer from this problem so this
7601 is not done for them. */
7602 if (!NEWABI_P(abfd)
7603 && (sym->st_shndx == SHN_ABS)
7604 && (strcmp (*namep, "_gp_disp") == 0))
7605 {
7606 *namep = NULL;
7607 return TRUE;
7608 }
7609
7610 switch (sym->st_shndx)
7611 {
7612 case SHN_COMMON:
7613 /* Common symbols less than the GP size are automatically
7614 treated as SHN_MIPS_SCOMMON symbols. */
7615 if (sym->st_size > elf_gp_size (abfd)
7616 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7617 || IRIX_COMPAT (abfd) == ict_irix6)
7618 break;
7619 /* Fall through. */
7620 case SHN_MIPS_SCOMMON:
7621 *secp = bfd_make_section_old_way (abfd, ".scommon");
7622 (*secp)->flags |= SEC_IS_COMMON;
7623 *valp = sym->st_size;
7624 break;
7625
7626 case SHN_MIPS_TEXT:
7627 /* This section is used in a shared object. */
7628 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7629 {
7630 asymbol *elf_text_symbol;
7631 asection *elf_text_section;
7632 bfd_size_type amt = sizeof (asection);
7633
7634 elf_text_section = bfd_zalloc (abfd, amt);
7635 if (elf_text_section == NULL)
7636 return FALSE;
7637
7638 amt = sizeof (asymbol);
7639 elf_text_symbol = bfd_zalloc (abfd, amt);
7640 if (elf_text_symbol == NULL)
7641 return FALSE;
7642
7643 /* Initialize the section. */
7644
7645 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7646 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7647
7648 elf_text_section->symbol = elf_text_symbol;
7649 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7650
7651 elf_text_section->name = ".text";
7652 elf_text_section->flags = SEC_NO_FLAGS;
7653 elf_text_section->output_section = NULL;
7654 elf_text_section->owner = abfd;
7655 elf_text_symbol->name = ".text";
7656 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7657 elf_text_symbol->section = elf_text_section;
7658 }
7659 /* This code used to do *secp = bfd_und_section_ptr if
7660 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7661 so I took it out. */
7662 *secp = mips_elf_tdata (abfd)->elf_text_section;
7663 break;
7664
7665 case SHN_MIPS_ACOMMON:
7666 /* Fall through. XXX Can we treat this as allocated data? */
7667 case SHN_MIPS_DATA:
7668 /* This section is used in a shared object. */
7669 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7670 {
7671 asymbol *elf_data_symbol;
7672 asection *elf_data_section;
7673 bfd_size_type amt = sizeof (asection);
7674
7675 elf_data_section = bfd_zalloc (abfd, amt);
7676 if (elf_data_section == NULL)
7677 return FALSE;
7678
7679 amt = sizeof (asymbol);
7680 elf_data_symbol = bfd_zalloc (abfd, amt);
7681 if (elf_data_symbol == NULL)
7682 return FALSE;
7683
7684 /* Initialize the section. */
7685
7686 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7687 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7688
7689 elf_data_section->symbol = elf_data_symbol;
7690 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7691
7692 elf_data_section->name = ".data";
7693 elf_data_section->flags = SEC_NO_FLAGS;
7694 elf_data_section->output_section = NULL;
7695 elf_data_section->owner = abfd;
7696 elf_data_symbol->name = ".data";
7697 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7698 elf_data_symbol->section = elf_data_section;
7699 }
7700 /* This code used to do *secp = bfd_und_section_ptr if
7701 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7702 so I took it out. */
7703 *secp = mips_elf_tdata (abfd)->elf_data_section;
7704 break;
7705
7706 case SHN_MIPS_SUNDEFINED:
7707 *secp = bfd_und_section_ptr;
7708 break;
7709 }
7710
7711 if (SGI_COMPAT (abfd)
7712 && ! bfd_link_pic (info)
7713 && info->output_bfd->xvec == abfd->xvec
7714 && strcmp (*namep, "__rld_obj_head") == 0)
7715 {
7716 struct elf_link_hash_entry *h;
7717 struct bfd_link_hash_entry *bh;
7718
7719 /* Mark __rld_obj_head as dynamic. */
7720 bh = NULL;
7721 if (! (_bfd_generic_link_add_one_symbol
7722 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7723 get_elf_backend_data (abfd)->collect, &bh)))
7724 return FALSE;
7725
7726 h = (struct elf_link_hash_entry *) bh;
7727 h->non_elf = 0;
7728 h->def_regular = 1;
7729 h->type = STT_OBJECT;
7730
7731 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7732 return FALSE;
7733
7734 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7735 mips_elf_hash_table (info)->rld_symbol = h;
7736 }
7737
7738 /* If this is a mips16 text symbol, add 1 to the value to make it
7739 odd. This will cause something like .word SYM to come up with
7740 the right value when it is loaded into the PC. */
7741 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7742 ++*valp;
7743
7744 return TRUE;
7745 }
7746
7747 /* This hook function is called before the linker writes out a global
7748 symbol. We mark symbols as small common if appropriate. This is
7749 also where we undo the increment of the value for a mips16 symbol. */
7750
7751 int
7752 _bfd_mips_elf_link_output_symbol_hook
7753 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7754 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7755 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7756 {
7757 /* If we see a common symbol, which implies a relocatable link, then
7758 if a symbol was small common in an input file, mark it as small
7759 common in the output file. */
7760 if (sym->st_shndx == SHN_COMMON
7761 && strcmp (input_sec->name, ".scommon") == 0)
7762 sym->st_shndx = SHN_MIPS_SCOMMON;
7763
7764 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7765 sym->st_value &= ~1;
7766
7767 return 1;
7768 }
7769 \f
7770 /* Functions for the dynamic linker. */
7771
7772 /* Create dynamic sections when linking against a dynamic object. */
7773
7774 bfd_boolean
7775 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7776 {
7777 struct elf_link_hash_entry *h;
7778 struct bfd_link_hash_entry *bh;
7779 flagword flags;
7780 register asection *s;
7781 const char * const *namep;
7782 struct mips_elf_link_hash_table *htab;
7783
7784 htab = mips_elf_hash_table (info);
7785 BFD_ASSERT (htab != NULL);
7786
7787 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7788 | SEC_LINKER_CREATED | SEC_READONLY);
7789
7790 /* The psABI requires a read-only .dynamic section, but the VxWorks
7791 EABI doesn't. */
7792 if (!htab->is_vxworks)
7793 {
7794 s = bfd_get_linker_section (abfd, ".dynamic");
7795 if (s != NULL)
7796 {
7797 if (! bfd_set_section_flags (abfd, s, flags))
7798 return FALSE;
7799 }
7800 }
7801
7802 /* We need to create .got section. */
7803 if (!mips_elf_create_got_section (abfd, info))
7804 return FALSE;
7805
7806 if (! mips_elf_rel_dyn_section (info, TRUE))
7807 return FALSE;
7808
7809 /* Create .stub section. */
7810 s = bfd_make_section_anyway_with_flags (abfd,
7811 MIPS_ELF_STUB_SECTION_NAME (abfd),
7812 flags | SEC_CODE);
7813 if (s == NULL
7814 || ! bfd_set_section_alignment (abfd, s,
7815 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7816 return FALSE;
7817 htab->sstubs = s;
7818
7819 if (!mips_elf_hash_table (info)->use_rld_obj_head
7820 && bfd_link_executable (info)
7821 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7822 {
7823 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7824 flags &~ (flagword) SEC_READONLY);
7825 if (s == NULL
7826 || ! bfd_set_section_alignment (abfd, s,
7827 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7828 return FALSE;
7829 }
7830
7831 /* On IRIX5, we adjust add some additional symbols and change the
7832 alignments of several sections. There is no ABI documentation
7833 indicating that this is necessary on IRIX6, nor any evidence that
7834 the linker takes such action. */
7835 if (IRIX_COMPAT (abfd) == ict_irix5)
7836 {
7837 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7838 {
7839 bh = NULL;
7840 if (! (_bfd_generic_link_add_one_symbol
7841 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7842 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7843 return FALSE;
7844
7845 h = (struct elf_link_hash_entry *) bh;
7846 h->non_elf = 0;
7847 h->def_regular = 1;
7848 h->type = STT_SECTION;
7849
7850 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7851 return FALSE;
7852 }
7853
7854 /* We need to create a .compact_rel section. */
7855 if (SGI_COMPAT (abfd))
7856 {
7857 if (!mips_elf_create_compact_rel_section (abfd, info))
7858 return FALSE;
7859 }
7860
7861 /* Change alignments of some sections. */
7862 s = bfd_get_linker_section (abfd, ".hash");
7863 if (s != NULL)
7864 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7865
7866 s = bfd_get_linker_section (abfd, ".dynsym");
7867 if (s != NULL)
7868 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7869
7870 s = bfd_get_linker_section (abfd, ".dynstr");
7871 if (s != NULL)
7872 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7873
7874 /* ??? */
7875 s = bfd_get_section_by_name (abfd, ".reginfo");
7876 if (s != NULL)
7877 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7878
7879 s = bfd_get_linker_section (abfd, ".dynamic");
7880 if (s != NULL)
7881 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7882 }
7883
7884 if (bfd_link_executable (info))
7885 {
7886 const char *name;
7887
7888 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7889 bh = NULL;
7890 if (!(_bfd_generic_link_add_one_symbol
7891 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7892 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7893 return FALSE;
7894
7895 h = (struct elf_link_hash_entry *) bh;
7896 h->non_elf = 0;
7897 h->def_regular = 1;
7898 h->type = STT_SECTION;
7899
7900 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7901 return FALSE;
7902
7903 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7904 {
7905 /* __rld_map is a four byte word located in the .data section
7906 and is filled in by the rtld to contain a pointer to
7907 the _r_debug structure. Its symbol value will be set in
7908 _bfd_mips_elf_finish_dynamic_symbol. */
7909 s = bfd_get_linker_section (abfd, ".rld_map");
7910 BFD_ASSERT (s != NULL);
7911
7912 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7913 bh = NULL;
7914 if (!(_bfd_generic_link_add_one_symbol
7915 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7916 get_elf_backend_data (abfd)->collect, &bh)))
7917 return FALSE;
7918
7919 h = (struct elf_link_hash_entry *) bh;
7920 h->non_elf = 0;
7921 h->def_regular = 1;
7922 h->type = STT_OBJECT;
7923
7924 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7925 return FALSE;
7926 mips_elf_hash_table (info)->rld_symbol = h;
7927 }
7928 }
7929
7930 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7931 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
7932 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7933 return FALSE;
7934
7935 /* Do the usual VxWorks handling. */
7936 if (htab->is_vxworks
7937 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7938 return FALSE;
7939
7940 return TRUE;
7941 }
7942 \f
7943 /* Return true if relocation REL against section SEC is a REL rather than
7944 RELA relocation. RELOCS is the first relocation in the section and
7945 ABFD is the bfd that contains SEC. */
7946
7947 static bfd_boolean
7948 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7949 const Elf_Internal_Rela *relocs,
7950 const Elf_Internal_Rela *rel)
7951 {
7952 Elf_Internal_Shdr *rel_hdr;
7953 const struct elf_backend_data *bed;
7954
7955 /* To determine which flavor of relocation this is, we depend on the
7956 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7957 rel_hdr = elf_section_data (sec)->rel.hdr;
7958 if (rel_hdr == NULL)
7959 return FALSE;
7960 bed = get_elf_backend_data (abfd);
7961 return ((size_t) (rel - relocs)
7962 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7963 }
7964
7965 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7966 HOWTO is the relocation's howto and CONTENTS points to the contents
7967 of the section that REL is against. */
7968
7969 static bfd_vma
7970 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7971 reloc_howto_type *howto, bfd_byte *contents)
7972 {
7973 bfd_byte *location;
7974 unsigned int r_type;
7975 bfd_vma addend;
7976 bfd_vma bytes;
7977
7978 r_type = ELF_R_TYPE (abfd, rel->r_info);
7979 location = contents + rel->r_offset;
7980
7981 /* Get the addend, which is stored in the input file. */
7982 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7983 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
7984 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7985
7986 addend = bytes & howto->src_mask;
7987
7988 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
7989 accordingly. */
7990 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
7991 addend <<= 1;
7992
7993 return addend;
7994 }
7995
7996 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7997 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7998 and update *ADDEND with the final addend. Return true on success
7999 or false if the LO16 could not be found. RELEND is the exclusive
8000 upper bound on the relocations for REL's section. */
8001
8002 static bfd_boolean
8003 mips_elf_add_lo16_rel_addend (bfd *abfd,
8004 const Elf_Internal_Rela *rel,
8005 const Elf_Internal_Rela *relend,
8006 bfd_byte *contents, bfd_vma *addend)
8007 {
8008 unsigned int r_type, lo16_type;
8009 const Elf_Internal_Rela *lo16_relocation;
8010 reloc_howto_type *lo16_howto;
8011 bfd_vma l;
8012
8013 r_type = ELF_R_TYPE (abfd, rel->r_info);
8014 if (mips16_reloc_p (r_type))
8015 lo16_type = R_MIPS16_LO16;
8016 else if (micromips_reloc_p (r_type))
8017 lo16_type = R_MICROMIPS_LO16;
8018 else if (r_type == R_MIPS_PCHI16)
8019 lo16_type = R_MIPS_PCLO16;
8020 else
8021 lo16_type = R_MIPS_LO16;
8022
8023 /* The combined value is the sum of the HI16 addend, left-shifted by
8024 sixteen bits, and the LO16 addend, sign extended. (Usually, the
8025 code does a `lui' of the HI16 value, and then an `addiu' of the
8026 LO16 value.)
8027
8028 Scan ahead to find a matching LO16 relocation.
8029
8030 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8031 be immediately following. However, for the IRIX6 ABI, the next
8032 relocation may be a composed relocation consisting of several
8033 relocations for the same address. In that case, the R_MIPS_LO16
8034 relocation may occur as one of these. We permit a similar
8035 extension in general, as that is useful for GCC.
8036
8037 In some cases GCC dead code elimination removes the LO16 but keeps
8038 the corresponding HI16. This is strictly speaking a violation of
8039 the ABI but not immediately harmful. */
8040 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8041 if (lo16_relocation == NULL)
8042 return FALSE;
8043
8044 /* Obtain the addend kept there. */
8045 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
8046 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8047
8048 l <<= lo16_howto->rightshift;
8049 l = _bfd_mips_elf_sign_extend (l, 16);
8050
8051 *addend <<= 16;
8052 *addend += l;
8053 return TRUE;
8054 }
8055
8056 /* Try to read the contents of section SEC in bfd ABFD. Return true and
8057 store the contents in *CONTENTS on success. Assume that *CONTENTS
8058 already holds the contents if it is nonull on entry. */
8059
8060 static bfd_boolean
8061 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8062 {
8063 if (*contents)
8064 return TRUE;
8065
8066 /* Get cached copy if it exists. */
8067 if (elf_section_data (sec)->this_hdr.contents != NULL)
8068 {
8069 *contents = elf_section_data (sec)->this_hdr.contents;
8070 return TRUE;
8071 }
8072
8073 return bfd_malloc_and_get_section (abfd, sec, contents);
8074 }
8075
8076 /* Make a new PLT record to keep internal data. */
8077
8078 static struct plt_entry *
8079 mips_elf_make_plt_record (bfd *abfd)
8080 {
8081 struct plt_entry *entry;
8082
8083 entry = bfd_zalloc (abfd, sizeof (*entry));
8084 if (entry == NULL)
8085 return NULL;
8086
8087 entry->stub_offset = MINUS_ONE;
8088 entry->mips_offset = MINUS_ONE;
8089 entry->comp_offset = MINUS_ONE;
8090 entry->gotplt_index = MINUS_ONE;
8091 return entry;
8092 }
8093
8094 /* Look through the relocs for a section during the first phase, and
8095 allocate space in the global offset table and record the need for
8096 standard MIPS and compressed procedure linkage table entries. */
8097
8098 bfd_boolean
8099 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8100 asection *sec, const Elf_Internal_Rela *relocs)
8101 {
8102 const char *name;
8103 bfd *dynobj;
8104 Elf_Internal_Shdr *symtab_hdr;
8105 struct elf_link_hash_entry **sym_hashes;
8106 size_t extsymoff;
8107 const Elf_Internal_Rela *rel;
8108 const Elf_Internal_Rela *rel_end;
8109 asection *sreloc;
8110 const struct elf_backend_data *bed;
8111 struct mips_elf_link_hash_table *htab;
8112 bfd_byte *contents;
8113 bfd_vma addend;
8114 reloc_howto_type *howto;
8115
8116 if (bfd_link_relocatable (info))
8117 return TRUE;
8118
8119 htab = mips_elf_hash_table (info);
8120 BFD_ASSERT (htab != NULL);
8121
8122 dynobj = elf_hash_table (info)->dynobj;
8123 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8124 sym_hashes = elf_sym_hashes (abfd);
8125 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8126
8127 bed = get_elf_backend_data (abfd);
8128 rel_end = relocs + sec->reloc_count;
8129
8130 /* Check for the mips16 stub sections. */
8131
8132 name = bfd_get_section_name (abfd, sec);
8133 if (FN_STUB_P (name))
8134 {
8135 unsigned long r_symndx;
8136
8137 /* Look at the relocation information to figure out which symbol
8138 this is for. */
8139
8140 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8141 if (r_symndx == 0)
8142 {
8143 _bfd_error_handler
8144 /* xgettext:c-format */
8145 (_("%pB: Warning: cannot determine the target function for"
8146 " stub section `%s'"),
8147 abfd, name);
8148 bfd_set_error (bfd_error_bad_value);
8149 return FALSE;
8150 }
8151
8152 if (r_symndx < extsymoff
8153 || sym_hashes[r_symndx - extsymoff] == NULL)
8154 {
8155 asection *o;
8156
8157 /* This stub is for a local symbol. This stub will only be
8158 needed if there is some relocation in this BFD, other
8159 than a 16 bit function call, which refers to this symbol. */
8160 for (o = abfd->sections; o != NULL; o = o->next)
8161 {
8162 Elf_Internal_Rela *sec_relocs;
8163 const Elf_Internal_Rela *r, *rend;
8164
8165 /* We can ignore stub sections when looking for relocs. */
8166 if ((o->flags & SEC_RELOC) == 0
8167 || o->reloc_count == 0
8168 || section_allows_mips16_refs_p (o))
8169 continue;
8170
8171 sec_relocs
8172 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8173 info->keep_memory);
8174 if (sec_relocs == NULL)
8175 return FALSE;
8176
8177 rend = sec_relocs + o->reloc_count;
8178 for (r = sec_relocs; r < rend; r++)
8179 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8180 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
8181 break;
8182
8183 if (elf_section_data (o)->relocs != sec_relocs)
8184 free (sec_relocs);
8185
8186 if (r < rend)
8187 break;
8188 }
8189
8190 if (o == NULL)
8191 {
8192 /* There is no non-call reloc for this stub, so we do
8193 not need it. Since this function is called before
8194 the linker maps input sections to output sections, we
8195 can easily discard it by setting the SEC_EXCLUDE
8196 flag. */
8197 sec->flags |= SEC_EXCLUDE;
8198 return TRUE;
8199 }
8200
8201 /* Record this stub in an array of local symbol stubs for
8202 this BFD. */
8203 if (mips_elf_tdata (abfd)->local_stubs == NULL)
8204 {
8205 unsigned long symcount;
8206 asection **n;
8207 bfd_size_type amt;
8208
8209 if (elf_bad_symtab (abfd))
8210 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8211 else
8212 symcount = symtab_hdr->sh_info;
8213 amt = symcount * sizeof (asection *);
8214 n = bfd_zalloc (abfd, amt);
8215 if (n == NULL)
8216 return FALSE;
8217 mips_elf_tdata (abfd)->local_stubs = n;
8218 }
8219
8220 sec->flags |= SEC_KEEP;
8221 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8222
8223 /* We don't need to set mips16_stubs_seen in this case.
8224 That flag is used to see whether we need to look through
8225 the global symbol table for stubs. We don't need to set
8226 it here, because we just have a local stub. */
8227 }
8228 else
8229 {
8230 struct mips_elf_link_hash_entry *h;
8231
8232 h = ((struct mips_elf_link_hash_entry *)
8233 sym_hashes[r_symndx - extsymoff]);
8234
8235 while (h->root.root.type == bfd_link_hash_indirect
8236 || h->root.root.type == bfd_link_hash_warning)
8237 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8238
8239 /* H is the symbol this stub is for. */
8240
8241 /* If we already have an appropriate stub for this function, we
8242 don't need another one, so we can discard this one. Since
8243 this function is called before the linker maps input sections
8244 to output sections, we can easily discard it by setting the
8245 SEC_EXCLUDE flag. */
8246 if (h->fn_stub != NULL)
8247 {
8248 sec->flags |= SEC_EXCLUDE;
8249 return TRUE;
8250 }
8251
8252 sec->flags |= SEC_KEEP;
8253 h->fn_stub = sec;
8254 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8255 }
8256 }
8257 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8258 {
8259 unsigned long r_symndx;
8260 struct mips_elf_link_hash_entry *h;
8261 asection **loc;
8262
8263 /* Look at the relocation information to figure out which symbol
8264 this is for. */
8265
8266 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8267 if (r_symndx == 0)
8268 {
8269 _bfd_error_handler
8270 /* xgettext:c-format */
8271 (_("%pB: Warning: cannot determine the target function for"
8272 " stub section `%s'"),
8273 abfd, name);
8274 bfd_set_error (bfd_error_bad_value);
8275 return FALSE;
8276 }
8277
8278 if (r_symndx < extsymoff
8279 || sym_hashes[r_symndx - extsymoff] == NULL)
8280 {
8281 asection *o;
8282
8283 /* This stub is for a local symbol. This stub will only be
8284 needed if there is some relocation (R_MIPS16_26) in this BFD
8285 that refers to this symbol. */
8286 for (o = abfd->sections; o != NULL; o = o->next)
8287 {
8288 Elf_Internal_Rela *sec_relocs;
8289 const Elf_Internal_Rela *r, *rend;
8290
8291 /* We can ignore stub sections when looking for relocs. */
8292 if ((o->flags & SEC_RELOC) == 0
8293 || o->reloc_count == 0
8294 || section_allows_mips16_refs_p (o))
8295 continue;
8296
8297 sec_relocs
8298 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8299 info->keep_memory);
8300 if (sec_relocs == NULL)
8301 return FALSE;
8302
8303 rend = sec_relocs + o->reloc_count;
8304 for (r = sec_relocs; r < rend; r++)
8305 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8306 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8307 break;
8308
8309 if (elf_section_data (o)->relocs != sec_relocs)
8310 free (sec_relocs);
8311
8312 if (r < rend)
8313 break;
8314 }
8315
8316 if (o == NULL)
8317 {
8318 /* There is no non-call reloc for this stub, so we do
8319 not need it. Since this function is called before
8320 the linker maps input sections to output sections, we
8321 can easily discard it by setting the SEC_EXCLUDE
8322 flag. */
8323 sec->flags |= SEC_EXCLUDE;
8324 return TRUE;
8325 }
8326
8327 /* Record this stub in an array of local symbol call_stubs for
8328 this BFD. */
8329 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8330 {
8331 unsigned long symcount;
8332 asection **n;
8333 bfd_size_type amt;
8334
8335 if (elf_bad_symtab (abfd))
8336 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8337 else
8338 symcount = symtab_hdr->sh_info;
8339 amt = symcount * sizeof (asection *);
8340 n = bfd_zalloc (abfd, amt);
8341 if (n == NULL)
8342 return FALSE;
8343 mips_elf_tdata (abfd)->local_call_stubs = n;
8344 }
8345
8346 sec->flags |= SEC_KEEP;
8347 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8348
8349 /* We don't need to set mips16_stubs_seen in this case.
8350 That flag is used to see whether we need to look through
8351 the global symbol table for stubs. We don't need to set
8352 it here, because we just have a local stub. */
8353 }
8354 else
8355 {
8356 h = ((struct mips_elf_link_hash_entry *)
8357 sym_hashes[r_symndx - extsymoff]);
8358
8359 /* H is the symbol this stub is for. */
8360
8361 if (CALL_FP_STUB_P (name))
8362 loc = &h->call_fp_stub;
8363 else
8364 loc = &h->call_stub;
8365
8366 /* If we already have an appropriate stub for this function, we
8367 don't need another one, so we can discard this one. Since
8368 this function is called before the linker maps input sections
8369 to output sections, we can easily discard it by setting the
8370 SEC_EXCLUDE flag. */
8371 if (*loc != NULL)
8372 {
8373 sec->flags |= SEC_EXCLUDE;
8374 return TRUE;
8375 }
8376
8377 sec->flags |= SEC_KEEP;
8378 *loc = sec;
8379 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8380 }
8381 }
8382
8383 sreloc = NULL;
8384 contents = NULL;
8385 for (rel = relocs; rel < rel_end; ++rel)
8386 {
8387 unsigned long r_symndx;
8388 unsigned int r_type;
8389 struct elf_link_hash_entry *h;
8390 bfd_boolean can_make_dynamic_p;
8391 bfd_boolean call_reloc_p;
8392 bfd_boolean constrain_symbol_p;
8393
8394 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8395 r_type = ELF_R_TYPE (abfd, rel->r_info);
8396
8397 if (r_symndx < extsymoff)
8398 h = NULL;
8399 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8400 {
8401 _bfd_error_handler
8402 /* xgettext:c-format */
8403 (_("%pB: Malformed reloc detected for section %s"),
8404 abfd, name);
8405 bfd_set_error (bfd_error_bad_value);
8406 return FALSE;
8407 }
8408 else
8409 {
8410 h = sym_hashes[r_symndx - extsymoff];
8411 if (h != NULL)
8412 {
8413 while (h->root.type == bfd_link_hash_indirect
8414 || h->root.type == bfd_link_hash_warning)
8415 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8416 }
8417 }
8418
8419 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8420 relocation into a dynamic one. */
8421 can_make_dynamic_p = FALSE;
8422
8423 /* Set CALL_RELOC_P to true if the relocation is for a call,
8424 and if pointer equality therefore doesn't matter. */
8425 call_reloc_p = FALSE;
8426
8427 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8428 into account when deciding how to define the symbol.
8429 Relocations in nonallocatable sections such as .pdr and
8430 .debug* should have no effect. */
8431 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8432
8433 switch (r_type)
8434 {
8435 case R_MIPS_CALL16:
8436 case R_MIPS_CALL_HI16:
8437 case R_MIPS_CALL_LO16:
8438 case R_MIPS16_CALL16:
8439 case R_MICROMIPS_CALL16:
8440 case R_MICROMIPS_CALL_HI16:
8441 case R_MICROMIPS_CALL_LO16:
8442 call_reloc_p = TRUE;
8443 /* Fall through. */
8444
8445 case R_MIPS_GOT16:
8446 case R_MIPS_GOT_HI16:
8447 case R_MIPS_GOT_LO16:
8448 case R_MIPS_GOT_PAGE:
8449 case R_MIPS_GOT_OFST:
8450 case R_MIPS_GOT_DISP:
8451 case R_MIPS_TLS_GOTTPREL:
8452 case R_MIPS_TLS_GD:
8453 case R_MIPS_TLS_LDM:
8454 case R_MIPS16_GOT16:
8455 case R_MIPS16_TLS_GOTTPREL:
8456 case R_MIPS16_TLS_GD:
8457 case R_MIPS16_TLS_LDM:
8458 case R_MICROMIPS_GOT16:
8459 case R_MICROMIPS_GOT_HI16:
8460 case R_MICROMIPS_GOT_LO16:
8461 case R_MICROMIPS_GOT_PAGE:
8462 case R_MICROMIPS_GOT_OFST:
8463 case R_MICROMIPS_GOT_DISP:
8464 case R_MICROMIPS_TLS_GOTTPREL:
8465 case R_MICROMIPS_TLS_GD:
8466 case R_MICROMIPS_TLS_LDM:
8467 if (dynobj == NULL)
8468 elf_hash_table (info)->dynobj = dynobj = abfd;
8469 if (!mips_elf_create_got_section (dynobj, info))
8470 return FALSE;
8471 if (htab->is_vxworks && !bfd_link_pic (info))
8472 {
8473 _bfd_error_handler
8474 /* xgettext:c-format */
8475 (_("%pB: GOT reloc at %#" PRIx64 " not expected in executables"),
8476 abfd, (uint64_t) rel->r_offset);
8477 bfd_set_error (bfd_error_bad_value);
8478 return FALSE;
8479 }
8480 can_make_dynamic_p = TRUE;
8481 break;
8482
8483 case R_MIPS_NONE:
8484 case R_MIPS_JALR:
8485 case R_MICROMIPS_JALR:
8486 /* These relocations have empty fields and are purely there to
8487 provide link information. The symbol value doesn't matter. */
8488 constrain_symbol_p = FALSE;
8489 break;
8490
8491 case R_MIPS_GPREL16:
8492 case R_MIPS_GPREL32:
8493 case R_MIPS16_GPREL:
8494 case R_MICROMIPS_GPREL16:
8495 /* GP-relative relocations always resolve to a definition in a
8496 regular input file, ignoring the one-definition rule. This is
8497 important for the GP setup sequence in NewABI code, which
8498 always resolves to a local function even if other relocations
8499 against the symbol wouldn't. */
8500 constrain_symbol_p = FALSE;
8501 break;
8502
8503 case R_MIPS_32:
8504 case R_MIPS_REL32:
8505 case R_MIPS_64:
8506 /* In VxWorks executables, references to external symbols
8507 must be handled using copy relocs or PLT entries; it is not
8508 possible to convert this relocation into a dynamic one.
8509
8510 For executables that use PLTs and copy-relocs, we have a
8511 choice between converting the relocation into a dynamic
8512 one or using copy relocations or PLT entries. It is
8513 usually better to do the former, unless the relocation is
8514 against a read-only section. */
8515 if ((bfd_link_pic (info)
8516 || (h != NULL
8517 && !htab->is_vxworks
8518 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8519 && !(!info->nocopyreloc
8520 && !PIC_OBJECT_P (abfd)
8521 && MIPS_ELF_READONLY_SECTION (sec))))
8522 && (sec->flags & SEC_ALLOC) != 0)
8523 {
8524 can_make_dynamic_p = TRUE;
8525 if (dynobj == NULL)
8526 elf_hash_table (info)->dynobj = dynobj = abfd;
8527 }
8528 break;
8529
8530 case R_MIPS_26:
8531 case R_MIPS_PC16:
8532 case R_MIPS_PC21_S2:
8533 case R_MIPS_PC26_S2:
8534 case R_MIPS16_26:
8535 case R_MIPS16_PC16_S1:
8536 case R_MICROMIPS_26_S1:
8537 case R_MICROMIPS_PC7_S1:
8538 case R_MICROMIPS_PC10_S1:
8539 case R_MICROMIPS_PC16_S1:
8540 case R_MICROMIPS_PC23_S2:
8541 call_reloc_p = TRUE;
8542 break;
8543 }
8544
8545 if (h)
8546 {
8547 if (constrain_symbol_p)
8548 {
8549 if (!can_make_dynamic_p)
8550 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8551
8552 if (!call_reloc_p)
8553 h->pointer_equality_needed = 1;
8554
8555 /* We must not create a stub for a symbol that has
8556 relocations related to taking the function's address.
8557 This doesn't apply to VxWorks, where CALL relocs refer
8558 to a .got.plt entry instead of a normal .got entry. */
8559 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8560 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8561 }
8562
8563 /* Relocations against the special VxWorks __GOTT_BASE__ and
8564 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8565 room for them in .rela.dyn. */
8566 if (is_gott_symbol (info, h))
8567 {
8568 if (sreloc == NULL)
8569 {
8570 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8571 if (sreloc == NULL)
8572 return FALSE;
8573 }
8574 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8575 if (MIPS_ELF_READONLY_SECTION (sec))
8576 /* We tell the dynamic linker that there are
8577 relocations against the text segment. */
8578 info->flags |= DF_TEXTREL;
8579 }
8580 }
8581 else if (call_lo16_reloc_p (r_type)
8582 || got_lo16_reloc_p (r_type)
8583 || got_disp_reloc_p (r_type)
8584 || (got16_reloc_p (r_type) && htab->is_vxworks))
8585 {
8586 /* We may need a local GOT entry for this relocation. We
8587 don't count R_MIPS_GOT_PAGE because we can estimate the
8588 maximum number of pages needed by looking at the size of
8589 the segment. Similar comments apply to R_MIPS*_GOT16 and
8590 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8591 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8592 R_MIPS_CALL_HI16 because these are always followed by an
8593 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8594 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8595 rel->r_addend, info, r_type))
8596 return FALSE;
8597 }
8598
8599 if (h != NULL
8600 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8601 ELF_ST_IS_MIPS16 (h->other)))
8602 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8603
8604 switch (r_type)
8605 {
8606 case R_MIPS_CALL16:
8607 case R_MIPS16_CALL16:
8608 case R_MICROMIPS_CALL16:
8609 if (h == NULL)
8610 {
8611 _bfd_error_handler
8612 /* xgettext:c-format */
8613 (_("%pB: CALL16 reloc at %#" PRIx64 " not against global symbol"),
8614 abfd, (uint64_t) rel->r_offset);
8615 bfd_set_error (bfd_error_bad_value);
8616 return FALSE;
8617 }
8618 /* Fall through. */
8619
8620 case R_MIPS_CALL_HI16:
8621 case R_MIPS_CALL_LO16:
8622 case R_MICROMIPS_CALL_HI16:
8623 case R_MICROMIPS_CALL_LO16:
8624 if (h != NULL)
8625 {
8626 /* Make sure there is room in the regular GOT to hold the
8627 function's address. We may eliminate it in favour of
8628 a .got.plt entry later; see mips_elf_count_got_symbols. */
8629 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8630 r_type))
8631 return FALSE;
8632
8633 /* We need a stub, not a plt entry for the undefined
8634 function. But we record it as if it needs plt. See
8635 _bfd_elf_adjust_dynamic_symbol. */
8636 h->needs_plt = 1;
8637 h->type = STT_FUNC;
8638 }
8639 break;
8640
8641 case R_MIPS_GOT_PAGE:
8642 case R_MICROMIPS_GOT_PAGE:
8643 case R_MIPS16_GOT16:
8644 case R_MIPS_GOT16:
8645 case R_MIPS_GOT_HI16:
8646 case R_MIPS_GOT_LO16:
8647 case R_MICROMIPS_GOT16:
8648 case R_MICROMIPS_GOT_HI16:
8649 case R_MICROMIPS_GOT_LO16:
8650 if (!h || got_page_reloc_p (r_type))
8651 {
8652 /* This relocation needs (or may need, if h != NULL) a
8653 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8654 know for sure until we know whether the symbol is
8655 preemptible. */
8656 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8657 {
8658 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8659 return FALSE;
8660 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8661 addend = mips_elf_read_rel_addend (abfd, rel,
8662 howto, contents);
8663 if (got16_reloc_p (r_type))
8664 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8665 contents, &addend);
8666 else
8667 addend <<= howto->rightshift;
8668 }
8669 else
8670 addend = rel->r_addend;
8671 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8672 h, addend))
8673 return FALSE;
8674
8675 if (h)
8676 {
8677 struct mips_elf_link_hash_entry *hmips =
8678 (struct mips_elf_link_hash_entry *) h;
8679
8680 /* This symbol is definitely not overridable. */
8681 if (hmips->root.def_regular
8682 && ! (bfd_link_pic (info) && ! info->symbolic
8683 && ! hmips->root.forced_local))
8684 h = NULL;
8685 }
8686 }
8687 /* If this is a global, overridable symbol, GOT_PAGE will
8688 decay to GOT_DISP, so we'll need a GOT entry for it. */
8689 /* Fall through. */
8690
8691 case R_MIPS_GOT_DISP:
8692 case R_MICROMIPS_GOT_DISP:
8693 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8694 FALSE, r_type))
8695 return FALSE;
8696 break;
8697
8698 case R_MIPS_TLS_GOTTPREL:
8699 case R_MIPS16_TLS_GOTTPREL:
8700 case R_MICROMIPS_TLS_GOTTPREL:
8701 if (bfd_link_pic (info))
8702 info->flags |= DF_STATIC_TLS;
8703 /* Fall through */
8704
8705 case R_MIPS_TLS_LDM:
8706 case R_MIPS16_TLS_LDM:
8707 case R_MICROMIPS_TLS_LDM:
8708 if (tls_ldm_reloc_p (r_type))
8709 {
8710 r_symndx = STN_UNDEF;
8711 h = NULL;
8712 }
8713 /* Fall through */
8714
8715 case R_MIPS_TLS_GD:
8716 case R_MIPS16_TLS_GD:
8717 case R_MICROMIPS_TLS_GD:
8718 /* This symbol requires a global offset table entry, or two
8719 for TLS GD relocations. */
8720 if (h != NULL)
8721 {
8722 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8723 FALSE, r_type))
8724 return FALSE;
8725 }
8726 else
8727 {
8728 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8729 rel->r_addend,
8730 info, r_type))
8731 return FALSE;
8732 }
8733 break;
8734
8735 case R_MIPS_32:
8736 case R_MIPS_REL32:
8737 case R_MIPS_64:
8738 /* In VxWorks executables, references to external symbols
8739 are handled using copy relocs or PLT stubs, so there's
8740 no need to add a .rela.dyn entry for this relocation. */
8741 if (can_make_dynamic_p)
8742 {
8743 if (sreloc == NULL)
8744 {
8745 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8746 if (sreloc == NULL)
8747 return FALSE;
8748 }
8749 if (bfd_link_pic (info) && h == NULL)
8750 {
8751 /* When creating a shared object, we must copy these
8752 reloc types into the output file as R_MIPS_REL32
8753 relocs. Make room for this reloc in .rel(a).dyn. */
8754 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8755 if (MIPS_ELF_READONLY_SECTION (sec))
8756 /* We tell the dynamic linker that there are
8757 relocations against the text segment. */
8758 info->flags |= DF_TEXTREL;
8759 }
8760 else
8761 {
8762 struct mips_elf_link_hash_entry *hmips;
8763
8764 /* For a shared object, we must copy this relocation
8765 unless the symbol turns out to be undefined and
8766 weak with non-default visibility, in which case
8767 it will be left as zero.
8768
8769 We could elide R_MIPS_REL32 for locally binding symbols
8770 in shared libraries, but do not yet do so.
8771
8772 For an executable, we only need to copy this
8773 reloc if the symbol is defined in a dynamic
8774 object. */
8775 hmips = (struct mips_elf_link_hash_entry *) h;
8776 ++hmips->possibly_dynamic_relocs;
8777 if (MIPS_ELF_READONLY_SECTION (sec))
8778 /* We need it to tell the dynamic linker if there
8779 are relocations against the text segment. */
8780 hmips->readonly_reloc = TRUE;
8781 }
8782 }
8783
8784 if (SGI_COMPAT (abfd))
8785 mips_elf_hash_table (info)->compact_rel_size +=
8786 sizeof (Elf32_External_crinfo);
8787 break;
8788
8789 case R_MIPS_26:
8790 case R_MIPS_GPREL16:
8791 case R_MIPS_LITERAL:
8792 case R_MIPS_GPREL32:
8793 case R_MICROMIPS_26_S1:
8794 case R_MICROMIPS_GPREL16:
8795 case R_MICROMIPS_LITERAL:
8796 case R_MICROMIPS_GPREL7_S2:
8797 if (SGI_COMPAT (abfd))
8798 mips_elf_hash_table (info)->compact_rel_size +=
8799 sizeof (Elf32_External_crinfo);
8800 break;
8801
8802 /* This relocation describes the C++ object vtable hierarchy.
8803 Reconstruct it for later use during GC. */
8804 case R_MIPS_GNU_VTINHERIT:
8805 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8806 return FALSE;
8807 break;
8808
8809 /* This relocation describes which C++ vtable entries are actually
8810 used. Record for later use during GC. */
8811 case R_MIPS_GNU_VTENTRY:
8812 BFD_ASSERT (h != NULL);
8813 if (h != NULL
8814 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8815 return FALSE;
8816 break;
8817
8818 default:
8819 break;
8820 }
8821
8822 /* Record the need for a PLT entry. At this point we don't know
8823 yet if we are going to create a PLT in the first place, but
8824 we only record whether the relocation requires a standard MIPS
8825 or a compressed code entry anyway. If we don't make a PLT after
8826 all, then we'll just ignore these arrangements. Likewise if
8827 a PLT entry is not created because the symbol is satisfied
8828 locally. */
8829 if (h != NULL
8830 && (branch_reloc_p (r_type)
8831 || mips16_branch_reloc_p (r_type)
8832 || micromips_branch_reloc_p (r_type))
8833 && !SYMBOL_CALLS_LOCAL (info, h))
8834 {
8835 if (h->plt.plist == NULL)
8836 h->plt.plist = mips_elf_make_plt_record (abfd);
8837 if (h->plt.plist == NULL)
8838 return FALSE;
8839
8840 if (branch_reloc_p (r_type))
8841 h->plt.plist->need_mips = TRUE;
8842 else
8843 h->plt.plist->need_comp = TRUE;
8844 }
8845
8846 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8847 if there is one. We only need to handle global symbols here;
8848 we decide whether to keep or delete stubs for local symbols
8849 when processing the stub's relocations. */
8850 if (h != NULL
8851 && !mips16_call_reloc_p (r_type)
8852 && !section_allows_mips16_refs_p (sec))
8853 {
8854 struct mips_elf_link_hash_entry *mh;
8855
8856 mh = (struct mips_elf_link_hash_entry *) h;
8857 mh->need_fn_stub = TRUE;
8858 }
8859
8860 /* Refuse some position-dependent relocations when creating a
8861 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8862 not PIC, but we can create dynamic relocations and the result
8863 will be fine. Also do not refuse R_MIPS_LO16, which can be
8864 combined with R_MIPS_GOT16. */
8865 if (bfd_link_pic (info))
8866 {
8867 switch (r_type)
8868 {
8869 case R_MIPS16_HI16:
8870 case R_MIPS_HI16:
8871 case R_MIPS_HIGHER:
8872 case R_MIPS_HIGHEST:
8873 case R_MICROMIPS_HI16:
8874 case R_MICROMIPS_HIGHER:
8875 case R_MICROMIPS_HIGHEST:
8876 /* Don't refuse a high part relocation if it's against
8877 no symbol (e.g. part of a compound relocation). */
8878 if (r_symndx == STN_UNDEF)
8879 break;
8880
8881 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8882 and has a special meaning. */
8883 if (!NEWABI_P (abfd) && h != NULL
8884 && strcmp (h->root.root.string, "_gp_disp") == 0)
8885 break;
8886
8887 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8888 if (is_gott_symbol (info, h))
8889 break;
8890
8891 /* FALLTHROUGH */
8892
8893 case R_MIPS16_26:
8894 case R_MIPS_26:
8895 case R_MICROMIPS_26_S1:
8896 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8897 _bfd_error_handler
8898 /* xgettext:c-format */
8899 (_("%pB: relocation %s against `%s' can not be used"
8900 " when making a shared object; recompile with -fPIC"),
8901 abfd, howto->name,
8902 (h) ? h->root.root.string : "a local symbol");
8903 bfd_set_error (bfd_error_bad_value);
8904 return FALSE;
8905 default:
8906 break;
8907 }
8908 }
8909 }
8910
8911 return TRUE;
8912 }
8913 \f
8914 /* Allocate space for global sym dynamic relocs. */
8915
8916 static bfd_boolean
8917 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8918 {
8919 struct bfd_link_info *info = inf;
8920 bfd *dynobj;
8921 struct mips_elf_link_hash_entry *hmips;
8922 struct mips_elf_link_hash_table *htab;
8923
8924 htab = mips_elf_hash_table (info);
8925 BFD_ASSERT (htab != NULL);
8926
8927 dynobj = elf_hash_table (info)->dynobj;
8928 hmips = (struct mips_elf_link_hash_entry *) h;
8929
8930 /* VxWorks executables are handled elsewhere; we only need to
8931 allocate relocations in shared objects. */
8932 if (htab->is_vxworks && !bfd_link_pic (info))
8933 return TRUE;
8934
8935 /* Ignore indirect symbols. All relocations against such symbols
8936 will be redirected to the target symbol. */
8937 if (h->root.type == bfd_link_hash_indirect)
8938 return TRUE;
8939
8940 /* If this symbol is defined in a dynamic object, or we are creating
8941 a shared library, we will need to copy any R_MIPS_32 or
8942 R_MIPS_REL32 relocs against it into the output file. */
8943 if (! bfd_link_relocatable (info)
8944 && hmips->possibly_dynamic_relocs != 0
8945 && (h->root.type == bfd_link_hash_defweak
8946 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
8947 || bfd_link_pic (info)))
8948 {
8949 bfd_boolean do_copy = TRUE;
8950
8951 if (h->root.type == bfd_link_hash_undefweak)
8952 {
8953 /* Do not copy relocations for undefined weak symbols with
8954 non-default visibility. */
8955 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8956 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8957 do_copy = FALSE;
8958
8959 /* Make sure undefined weak symbols are output as a dynamic
8960 symbol in PIEs. */
8961 else if (h->dynindx == -1 && !h->forced_local)
8962 {
8963 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8964 return FALSE;
8965 }
8966 }
8967
8968 if (do_copy)
8969 {
8970 /* Even though we don't directly need a GOT entry for this symbol,
8971 the SVR4 psABI requires it to have a dynamic symbol table
8972 index greater that DT_MIPS_GOTSYM if there are dynamic
8973 relocations against it.
8974
8975 VxWorks does not enforce the same mapping between the GOT
8976 and the symbol table, so the same requirement does not
8977 apply there. */
8978 if (!htab->is_vxworks)
8979 {
8980 if (hmips->global_got_area > GGA_RELOC_ONLY)
8981 hmips->global_got_area = GGA_RELOC_ONLY;
8982 hmips->got_only_for_calls = FALSE;
8983 }
8984
8985 mips_elf_allocate_dynamic_relocations
8986 (dynobj, info, hmips->possibly_dynamic_relocs);
8987 if (hmips->readonly_reloc)
8988 /* We tell the dynamic linker that there are relocations
8989 against the text segment. */
8990 info->flags |= DF_TEXTREL;
8991 }
8992 }
8993
8994 return TRUE;
8995 }
8996
8997 /* Adjust a symbol defined by a dynamic object and referenced by a
8998 regular object. The current definition is in some section of the
8999 dynamic object, but we're not including those sections. We have to
9000 change the definition to something the rest of the link can
9001 understand. */
9002
9003 bfd_boolean
9004 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
9005 struct elf_link_hash_entry *h)
9006 {
9007 bfd *dynobj;
9008 struct mips_elf_link_hash_entry *hmips;
9009 struct mips_elf_link_hash_table *htab;
9010 asection *s, *srel;
9011
9012 htab = mips_elf_hash_table (info);
9013 BFD_ASSERT (htab != NULL);
9014
9015 dynobj = elf_hash_table (info)->dynobj;
9016 hmips = (struct mips_elf_link_hash_entry *) h;
9017
9018 /* Make sure we know what is going on here. */
9019 BFD_ASSERT (dynobj != NULL
9020 && (h->needs_plt
9021 || h->is_weakalias
9022 || (h->def_dynamic
9023 && h->ref_regular
9024 && !h->def_regular)));
9025
9026 hmips = (struct mips_elf_link_hash_entry *) h;
9027
9028 /* If there are call relocations against an externally-defined symbol,
9029 see whether we can create a MIPS lazy-binding stub for it. We can
9030 only do this if all references to the function are through call
9031 relocations, and in that case, the traditional lazy-binding stubs
9032 are much more efficient than PLT entries.
9033
9034 Traditional stubs are only available on SVR4 psABI-based systems;
9035 VxWorks always uses PLTs instead. */
9036 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
9037 {
9038 if (! elf_hash_table (info)->dynamic_sections_created)
9039 return TRUE;
9040
9041 /* If this symbol is not defined in a regular file, then set
9042 the symbol to the stub location. This is required to make
9043 function pointers compare as equal between the normal
9044 executable and the shared library. */
9045 if (!h->def_regular)
9046 {
9047 hmips->needs_lazy_stub = TRUE;
9048 htab->lazy_stub_count++;
9049 return TRUE;
9050 }
9051 }
9052 /* As above, VxWorks requires PLT entries for externally-defined
9053 functions that are only accessed through call relocations.
9054
9055 Both VxWorks and non-VxWorks targets also need PLT entries if there
9056 are static-only relocations against an externally-defined function.
9057 This can technically occur for shared libraries if there are
9058 branches to the symbol, although it is unlikely that this will be
9059 used in practice due to the short ranges involved. It can occur
9060 for any relative or absolute relocation in executables; in that
9061 case, the PLT entry becomes the function's canonical address. */
9062 else if (((h->needs_plt && !hmips->no_fn_stub)
9063 || (h->type == STT_FUNC && hmips->has_static_relocs))
9064 && htab->use_plts_and_copy_relocs
9065 && !SYMBOL_CALLS_LOCAL (info, h)
9066 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9067 && h->root.type == bfd_link_hash_undefweak))
9068 {
9069 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9070 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9071
9072 /* If this is the first symbol to need a PLT entry, then make some
9073 basic setup. Also work out PLT entry sizes. We'll need them
9074 for PLT offset calculations. */
9075 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9076 {
9077 BFD_ASSERT (htab->root.sgotplt->size == 0);
9078 BFD_ASSERT (htab->plt_got_index == 0);
9079
9080 /* If we're using the PLT additions to the psABI, each PLT
9081 entry is 16 bytes and the PLT0 entry is 32 bytes.
9082 Encourage better cache usage by aligning. We do this
9083 lazily to avoid pessimizing traditional objects. */
9084 if (!htab->is_vxworks
9085 && !bfd_set_section_alignment (dynobj, htab->root.splt, 5))
9086 return FALSE;
9087
9088 /* Make sure that .got.plt is word-aligned. We do this lazily
9089 for the same reason as above. */
9090 if (!bfd_set_section_alignment (dynobj, htab->root.sgotplt,
9091 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9092 return FALSE;
9093
9094 /* On non-VxWorks targets, the first two entries in .got.plt
9095 are reserved. */
9096 if (!htab->is_vxworks)
9097 htab->plt_got_index
9098 += (get_elf_backend_data (dynobj)->got_header_size
9099 / MIPS_ELF_GOT_SIZE (dynobj));
9100
9101 /* On VxWorks, also allocate room for the header's
9102 .rela.plt.unloaded entries. */
9103 if (htab->is_vxworks && !bfd_link_pic (info))
9104 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9105
9106 /* Now work out the sizes of individual PLT entries. */
9107 if (htab->is_vxworks && bfd_link_pic (info))
9108 htab->plt_mips_entry_size
9109 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9110 else if (htab->is_vxworks)
9111 htab->plt_mips_entry_size
9112 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9113 else if (newabi_p)
9114 htab->plt_mips_entry_size
9115 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9116 else if (!micromips_p)
9117 {
9118 htab->plt_mips_entry_size
9119 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9120 htab->plt_comp_entry_size
9121 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9122 }
9123 else if (htab->insn32)
9124 {
9125 htab->plt_mips_entry_size
9126 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9127 htab->plt_comp_entry_size
9128 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9129 }
9130 else
9131 {
9132 htab->plt_mips_entry_size
9133 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9134 htab->plt_comp_entry_size
9135 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9136 }
9137 }
9138
9139 if (h->plt.plist == NULL)
9140 h->plt.plist = mips_elf_make_plt_record (dynobj);
9141 if (h->plt.plist == NULL)
9142 return FALSE;
9143
9144 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9145 n32 or n64, so always use a standard entry there.
9146
9147 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9148 all MIPS16 calls will go via that stub, and there is no benefit
9149 to having a MIPS16 entry. And in the case of call_stub a
9150 standard entry actually has to be used as the stub ends with a J
9151 instruction. */
9152 if (newabi_p
9153 || htab->is_vxworks
9154 || hmips->call_stub
9155 || hmips->call_fp_stub)
9156 {
9157 h->plt.plist->need_mips = TRUE;
9158 h->plt.plist->need_comp = FALSE;
9159 }
9160
9161 /* Otherwise, if there are no direct calls to the function, we
9162 have a free choice of whether to use standard or compressed
9163 entries. Prefer microMIPS entries if the object is known to
9164 contain microMIPS code, so that it becomes possible to create
9165 pure microMIPS binaries. Prefer standard entries otherwise,
9166 because MIPS16 ones are no smaller and are usually slower. */
9167 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9168 {
9169 if (micromips_p)
9170 h->plt.plist->need_comp = TRUE;
9171 else
9172 h->plt.plist->need_mips = TRUE;
9173 }
9174
9175 if (h->plt.plist->need_mips)
9176 {
9177 h->plt.plist->mips_offset = htab->plt_mips_offset;
9178 htab->plt_mips_offset += htab->plt_mips_entry_size;
9179 }
9180 if (h->plt.plist->need_comp)
9181 {
9182 h->plt.plist->comp_offset = htab->plt_comp_offset;
9183 htab->plt_comp_offset += htab->plt_comp_entry_size;
9184 }
9185
9186 /* Reserve the corresponding .got.plt entry now too. */
9187 h->plt.plist->gotplt_index = htab->plt_got_index++;
9188
9189 /* If the output file has no definition of the symbol, set the
9190 symbol's value to the address of the stub. */
9191 if (!bfd_link_pic (info) && !h->def_regular)
9192 hmips->use_plt_entry = TRUE;
9193
9194 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9195 htab->root.srelplt->size += (htab->is_vxworks
9196 ? MIPS_ELF_RELA_SIZE (dynobj)
9197 : MIPS_ELF_REL_SIZE (dynobj));
9198
9199 /* Make room for the .rela.plt.unloaded relocations. */
9200 if (htab->is_vxworks && !bfd_link_pic (info))
9201 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9202
9203 /* All relocations against this symbol that could have been made
9204 dynamic will now refer to the PLT entry instead. */
9205 hmips->possibly_dynamic_relocs = 0;
9206
9207 return TRUE;
9208 }
9209
9210 /* If this is a weak symbol, and there is a real definition, the
9211 processor independent code will have arranged for us to see the
9212 real definition first, and we can just use the same value. */
9213 if (h->is_weakalias)
9214 {
9215 struct elf_link_hash_entry *def = weakdef (h);
9216 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
9217 h->root.u.def.section = def->root.u.def.section;
9218 h->root.u.def.value = def->root.u.def.value;
9219 return TRUE;
9220 }
9221
9222 /* Otherwise, there is nothing further to do for symbols defined
9223 in regular objects. */
9224 if (h->def_regular)
9225 return TRUE;
9226
9227 /* There's also nothing more to do if we'll convert all relocations
9228 against this symbol into dynamic relocations. */
9229 if (!hmips->has_static_relocs)
9230 return TRUE;
9231
9232 /* We're now relying on copy relocations. Complain if we have
9233 some that we can't convert. */
9234 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
9235 {
9236 _bfd_error_handler (_("non-dynamic relocations refer to "
9237 "dynamic symbol %s"),
9238 h->root.root.string);
9239 bfd_set_error (bfd_error_bad_value);
9240 return FALSE;
9241 }
9242
9243 /* We must allocate the symbol in our .dynbss section, which will
9244 become part of the .bss section of the executable. There will be
9245 an entry for this symbol in the .dynsym section. The dynamic
9246 object will contain position independent code, so all references
9247 from the dynamic object to this symbol will go through the global
9248 offset table. The dynamic linker will use the .dynsym entry to
9249 determine the address it must put in the global offset table, so
9250 both the dynamic object and the regular object will refer to the
9251 same memory location for the variable. */
9252
9253 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
9254 {
9255 s = htab->root.sdynrelro;
9256 srel = htab->root.sreldynrelro;
9257 }
9258 else
9259 {
9260 s = htab->root.sdynbss;
9261 srel = htab->root.srelbss;
9262 }
9263 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9264 {
9265 if (htab->is_vxworks)
9266 srel->size += sizeof (Elf32_External_Rela);
9267 else
9268 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9269 h->needs_copy = 1;
9270 }
9271
9272 /* All relocations against this symbol that could have been made
9273 dynamic will now refer to the local copy instead. */
9274 hmips->possibly_dynamic_relocs = 0;
9275
9276 return _bfd_elf_adjust_dynamic_copy (info, h, s);
9277 }
9278 \f
9279 /* This function is called after all the input files have been read,
9280 and the input sections have been assigned to output sections. We
9281 check for any mips16 stub sections that we can discard. */
9282
9283 bfd_boolean
9284 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9285 struct bfd_link_info *info)
9286 {
9287 asection *sect;
9288 struct mips_elf_link_hash_table *htab;
9289 struct mips_htab_traverse_info hti;
9290
9291 htab = mips_elf_hash_table (info);
9292 BFD_ASSERT (htab != NULL);
9293
9294 /* The .reginfo section has a fixed size. */
9295 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9296 if (sect != NULL)
9297 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9298
9299 /* The .MIPS.abiflags section has a fixed size. */
9300 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9301 if (sect != NULL)
9302 bfd_set_section_size (output_bfd, sect, sizeof (Elf_External_ABIFlags_v0));
9303
9304 hti.info = info;
9305 hti.output_bfd = output_bfd;
9306 hti.error = FALSE;
9307 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9308 mips_elf_check_symbols, &hti);
9309 if (hti.error)
9310 return FALSE;
9311
9312 return TRUE;
9313 }
9314
9315 /* If the link uses a GOT, lay it out and work out its size. */
9316
9317 static bfd_boolean
9318 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9319 {
9320 bfd *dynobj;
9321 asection *s;
9322 struct mips_got_info *g;
9323 bfd_size_type loadable_size = 0;
9324 bfd_size_type page_gotno;
9325 bfd *ibfd;
9326 struct mips_elf_traverse_got_arg tga;
9327 struct mips_elf_link_hash_table *htab;
9328
9329 htab = mips_elf_hash_table (info);
9330 BFD_ASSERT (htab != NULL);
9331
9332 s = htab->root.sgot;
9333 if (s == NULL)
9334 return TRUE;
9335
9336 dynobj = elf_hash_table (info)->dynobj;
9337 g = htab->got_info;
9338
9339 /* Allocate room for the reserved entries. VxWorks always reserves
9340 3 entries; other objects only reserve 2 entries. */
9341 BFD_ASSERT (g->assigned_low_gotno == 0);
9342 if (htab->is_vxworks)
9343 htab->reserved_gotno = 3;
9344 else
9345 htab->reserved_gotno = 2;
9346 g->local_gotno += htab->reserved_gotno;
9347 g->assigned_low_gotno = htab->reserved_gotno;
9348
9349 /* Decide which symbols need to go in the global part of the GOT and
9350 count the number of reloc-only GOT symbols. */
9351 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9352
9353 if (!mips_elf_resolve_final_got_entries (info, g))
9354 return FALSE;
9355
9356 /* Calculate the total loadable size of the output. That
9357 will give us the maximum number of GOT_PAGE entries
9358 required. */
9359 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9360 {
9361 asection *subsection;
9362
9363 for (subsection = ibfd->sections;
9364 subsection;
9365 subsection = subsection->next)
9366 {
9367 if ((subsection->flags & SEC_ALLOC) == 0)
9368 continue;
9369 loadable_size += ((subsection->size + 0xf)
9370 &~ (bfd_size_type) 0xf);
9371 }
9372 }
9373
9374 if (htab->is_vxworks)
9375 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9376 relocations against local symbols evaluate to "G", and the EABI does
9377 not include R_MIPS_GOT_PAGE. */
9378 page_gotno = 0;
9379 else
9380 /* Assume there are two loadable segments consisting of contiguous
9381 sections. Is 5 enough? */
9382 page_gotno = (loadable_size >> 16) + 5;
9383
9384 /* Choose the smaller of the two page estimates; both are intended to be
9385 conservative. */
9386 if (page_gotno > g->page_gotno)
9387 page_gotno = g->page_gotno;
9388
9389 g->local_gotno += page_gotno;
9390 g->assigned_high_gotno = g->local_gotno - 1;
9391
9392 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9393 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9394 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9395
9396 /* VxWorks does not support multiple GOTs. It initializes $gp to
9397 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9398 dynamic loader. */
9399 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9400 {
9401 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9402 return FALSE;
9403 }
9404 else
9405 {
9406 /* Record that all bfds use G. This also has the effect of freeing
9407 the per-bfd GOTs, which we no longer need. */
9408 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9409 if (mips_elf_bfd_got (ibfd, FALSE))
9410 mips_elf_replace_bfd_got (ibfd, g);
9411 mips_elf_replace_bfd_got (output_bfd, g);
9412
9413 /* Set up TLS entries. */
9414 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9415 tga.info = info;
9416 tga.g = g;
9417 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9418 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9419 if (!tga.g)
9420 return FALSE;
9421 BFD_ASSERT (g->tls_assigned_gotno
9422 == g->global_gotno + g->local_gotno + g->tls_gotno);
9423
9424 /* Each VxWorks GOT entry needs an explicit relocation. */
9425 if (htab->is_vxworks && bfd_link_pic (info))
9426 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9427
9428 /* Allocate room for the TLS relocations. */
9429 if (g->relocs)
9430 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9431 }
9432
9433 return TRUE;
9434 }
9435
9436 /* Estimate the size of the .MIPS.stubs section. */
9437
9438 static void
9439 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9440 {
9441 struct mips_elf_link_hash_table *htab;
9442 bfd_size_type dynsymcount;
9443
9444 htab = mips_elf_hash_table (info);
9445 BFD_ASSERT (htab != NULL);
9446
9447 if (htab->lazy_stub_count == 0)
9448 return;
9449
9450 /* IRIX rld assumes that a function stub isn't at the end of the .text
9451 section, so add a dummy entry to the end. */
9452 htab->lazy_stub_count++;
9453
9454 /* Get a worst-case estimate of the number of dynamic symbols needed.
9455 At this point, dynsymcount does not account for section symbols
9456 and count_section_dynsyms may overestimate the number that will
9457 be needed. */
9458 dynsymcount = (elf_hash_table (info)->dynsymcount
9459 + count_section_dynsyms (output_bfd, info));
9460
9461 /* Determine the size of one stub entry. There's no disadvantage
9462 from using microMIPS code here, so for the sake of pure-microMIPS
9463 binaries we prefer it whenever there's any microMIPS code in
9464 output produced at all. This has a benefit of stubs being
9465 shorter by 4 bytes each too, unless in the insn32 mode. */
9466 if (!MICROMIPS_P (output_bfd))
9467 htab->function_stub_size = (dynsymcount > 0x10000
9468 ? MIPS_FUNCTION_STUB_BIG_SIZE
9469 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9470 else if (htab->insn32)
9471 htab->function_stub_size = (dynsymcount > 0x10000
9472 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9473 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9474 else
9475 htab->function_stub_size = (dynsymcount > 0x10000
9476 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9477 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9478
9479 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9480 }
9481
9482 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9483 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9484 stub, allocate an entry in the stubs section. */
9485
9486 static bfd_boolean
9487 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9488 {
9489 struct mips_htab_traverse_info *hti = data;
9490 struct mips_elf_link_hash_table *htab;
9491 struct bfd_link_info *info;
9492 bfd *output_bfd;
9493
9494 info = hti->info;
9495 output_bfd = hti->output_bfd;
9496 htab = mips_elf_hash_table (info);
9497 BFD_ASSERT (htab != NULL);
9498
9499 if (h->needs_lazy_stub)
9500 {
9501 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9502 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9503 bfd_vma isa_bit = micromips_p;
9504
9505 BFD_ASSERT (htab->root.dynobj != NULL);
9506 if (h->root.plt.plist == NULL)
9507 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9508 if (h->root.plt.plist == NULL)
9509 {
9510 hti->error = TRUE;
9511 return FALSE;
9512 }
9513 h->root.root.u.def.section = htab->sstubs;
9514 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9515 h->root.plt.plist->stub_offset = htab->sstubs->size;
9516 h->root.other = other;
9517 htab->sstubs->size += htab->function_stub_size;
9518 }
9519 return TRUE;
9520 }
9521
9522 /* Allocate offsets in the stubs section to each symbol that needs one.
9523 Set the final size of the .MIPS.stub section. */
9524
9525 static bfd_boolean
9526 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9527 {
9528 bfd *output_bfd = info->output_bfd;
9529 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9530 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9531 bfd_vma isa_bit = micromips_p;
9532 struct mips_elf_link_hash_table *htab;
9533 struct mips_htab_traverse_info hti;
9534 struct elf_link_hash_entry *h;
9535 bfd *dynobj;
9536
9537 htab = mips_elf_hash_table (info);
9538 BFD_ASSERT (htab != NULL);
9539
9540 if (htab->lazy_stub_count == 0)
9541 return TRUE;
9542
9543 htab->sstubs->size = 0;
9544 hti.info = info;
9545 hti.output_bfd = output_bfd;
9546 hti.error = FALSE;
9547 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9548 if (hti.error)
9549 return FALSE;
9550 htab->sstubs->size += htab->function_stub_size;
9551 BFD_ASSERT (htab->sstubs->size
9552 == htab->lazy_stub_count * htab->function_stub_size);
9553
9554 dynobj = elf_hash_table (info)->dynobj;
9555 BFD_ASSERT (dynobj != NULL);
9556 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9557 if (h == NULL)
9558 return FALSE;
9559 h->root.u.def.value = isa_bit;
9560 h->other = other;
9561 h->type = STT_FUNC;
9562
9563 return TRUE;
9564 }
9565
9566 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9567 bfd_link_info. If H uses the address of a PLT entry as the value
9568 of the symbol, then set the entry in the symbol table now. Prefer
9569 a standard MIPS PLT entry. */
9570
9571 static bfd_boolean
9572 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9573 {
9574 struct bfd_link_info *info = data;
9575 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9576 struct mips_elf_link_hash_table *htab;
9577 unsigned int other;
9578 bfd_vma isa_bit;
9579 bfd_vma val;
9580
9581 htab = mips_elf_hash_table (info);
9582 BFD_ASSERT (htab != NULL);
9583
9584 if (h->use_plt_entry)
9585 {
9586 BFD_ASSERT (h->root.plt.plist != NULL);
9587 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9588 || h->root.plt.plist->comp_offset != MINUS_ONE);
9589
9590 val = htab->plt_header_size;
9591 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9592 {
9593 isa_bit = 0;
9594 val += h->root.plt.plist->mips_offset;
9595 other = 0;
9596 }
9597 else
9598 {
9599 isa_bit = 1;
9600 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9601 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9602 }
9603 val += isa_bit;
9604 /* For VxWorks, point at the PLT load stub rather than the lazy
9605 resolution stub; this stub will become the canonical function
9606 address. */
9607 if (htab->is_vxworks)
9608 val += 8;
9609
9610 h->root.root.u.def.section = htab->root.splt;
9611 h->root.root.u.def.value = val;
9612 h->root.other = other;
9613 }
9614
9615 return TRUE;
9616 }
9617
9618 /* Set the sizes of the dynamic sections. */
9619
9620 bfd_boolean
9621 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9622 struct bfd_link_info *info)
9623 {
9624 bfd *dynobj;
9625 asection *s, *sreldyn;
9626 bfd_boolean reltext;
9627 struct mips_elf_link_hash_table *htab;
9628
9629 htab = mips_elf_hash_table (info);
9630 BFD_ASSERT (htab != NULL);
9631 dynobj = elf_hash_table (info)->dynobj;
9632 BFD_ASSERT (dynobj != NULL);
9633
9634 if (elf_hash_table (info)->dynamic_sections_created)
9635 {
9636 /* Set the contents of the .interp section to the interpreter. */
9637 if (bfd_link_executable (info) && !info->nointerp)
9638 {
9639 s = bfd_get_linker_section (dynobj, ".interp");
9640 BFD_ASSERT (s != NULL);
9641 s->size
9642 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9643 s->contents
9644 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9645 }
9646
9647 /* Figure out the size of the PLT header if we know that we
9648 are using it. For the sake of cache alignment always use
9649 a standard header whenever any standard entries are present
9650 even if microMIPS entries are present as well. This also
9651 lets the microMIPS header rely on the value of $v0 only set
9652 by microMIPS entries, for a small size reduction.
9653
9654 Set symbol table entry values for symbols that use the
9655 address of their PLT entry now that we can calculate it.
9656
9657 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9658 haven't already in _bfd_elf_create_dynamic_sections. */
9659 if (htab->root.splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9660 {
9661 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9662 && !htab->plt_mips_offset);
9663 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9664 bfd_vma isa_bit = micromips_p;
9665 struct elf_link_hash_entry *h;
9666 bfd_vma size;
9667
9668 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9669 BFD_ASSERT (htab->root.sgotplt->size == 0);
9670 BFD_ASSERT (htab->root.splt->size == 0);
9671
9672 if (htab->is_vxworks && bfd_link_pic (info))
9673 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9674 else if (htab->is_vxworks)
9675 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9676 else if (ABI_64_P (output_bfd))
9677 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9678 else if (ABI_N32_P (output_bfd))
9679 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9680 else if (!micromips_p)
9681 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9682 else if (htab->insn32)
9683 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9684 else
9685 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9686
9687 htab->plt_header_is_comp = micromips_p;
9688 htab->plt_header_size = size;
9689 htab->root.splt->size = (size
9690 + htab->plt_mips_offset
9691 + htab->plt_comp_offset);
9692 htab->root.sgotplt->size = (htab->plt_got_index
9693 * MIPS_ELF_GOT_SIZE (dynobj));
9694
9695 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9696
9697 if (htab->root.hplt == NULL)
9698 {
9699 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.splt,
9700 "_PROCEDURE_LINKAGE_TABLE_");
9701 htab->root.hplt = h;
9702 if (h == NULL)
9703 return FALSE;
9704 }
9705
9706 h = htab->root.hplt;
9707 h->root.u.def.value = isa_bit;
9708 h->other = other;
9709 h->type = STT_FUNC;
9710 }
9711 }
9712
9713 /* Allocate space for global sym dynamic relocs. */
9714 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9715
9716 mips_elf_estimate_stub_size (output_bfd, info);
9717
9718 if (!mips_elf_lay_out_got (output_bfd, info))
9719 return FALSE;
9720
9721 mips_elf_lay_out_lazy_stubs (info);
9722
9723 /* The check_relocs and adjust_dynamic_symbol entry points have
9724 determined the sizes of the various dynamic sections. Allocate
9725 memory for them. */
9726 reltext = FALSE;
9727 for (s = dynobj->sections; s != NULL; s = s->next)
9728 {
9729 const char *name;
9730
9731 /* It's OK to base decisions on the section name, because none
9732 of the dynobj section names depend upon the input files. */
9733 name = bfd_get_section_name (dynobj, s);
9734
9735 if ((s->flags & SEC_LINKER_CREATED) == 0)
9736 continue;
9737
9738 if (CONST_STRNEQ (name, ".rel"))
9739 {
9740 if (s->size != 0)
9741 {
9742 const char *outname;
9743 asection *target;
9744
9745 /* If this relocation section applies to a read only
9746 section, then we probably need a DT_TEXTREL entry.
9747 If the relocation section is .rel(a).dyn, we always
9748 assert a DT_TEXTREL entry rather than testing whether
9749 there exists a relocation to a read only section or
9750 not. */
9751 outname = bfd_get_section_name (output_bfd,
9752 s->output_section);
9753 target = bfd_get_section_by_name (output_bfd, outname + 4);
9754 if ((target != NULL
9755 && (target->flags & SEC_READONLY) != 0
9756 && (target->flags & SEC_ALLOC) != 0)
9757 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9758 reltext = TRUE;
9759
9760 /* We use the reloc_count field as a counter if we need
9761 to copy relocs into the output file. */
9762 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9763 s->reloc_count = 0;
9764
9765 /* If combreloc is enabled, elf_link_sort_relocs() will
9766 sort relocations, but in a different way than we do,
9767 and before we're done creating relocations. Also, it
9768 will move them around between input sections'
9769 relocation's contents, so our sorting would be
9770 broken, so don't let it run. */
9771 info->combreloc = 0;
9772 }
9773 }
9774 else if (bfd_link_executable (info)
9775 && ! mips_elf_hash_table (info)->use_rld_obj_head
9776 && CONST_STRNEQ (name, ".rld_map"))
9777 {
9778 /* We add a room for __rld_map. It will be filled in by the
9779 rtld to contain a pointer to the _r_debug structure. */
9780 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9781 }
9782 else if (SGI_COMPAT (output_bfd)
9783 && CONST_STRNEQ (name, ".compact_rel"))
9784 s->size += mips_elf_hash_table (info)->compact_rel_size;
9785 else if (s == htab->root.splt)
9786 {
9787 /* If the last PLT entry has a branch delay slot, allocate
9788 room for an extra nop to fill the delay slot. This is
9789 for CPUs without load interlocking. */
9790 if (! LOAD_INTERLOCKS_P (output_bfd)
9791 && ! htab->is_vxworks && s->size > 0)
9792 s->size += 4;
9793 }
9794 else if (! CONST_STRNEQ (name, ".init")
9795 && s != htab->root.sgot
9796 && s != htab->root.sgotplt
9797 && s != htab->sstubs
9798 && s != htab->root.sdynbss
9799 && s != htab->root.sdynrelro)
9800 {
9801 /* It's not one of our sections, so don't allocate space. */
9802 continue;
9803 }
9804
9805 if (s->size == 0)
9806 {
9807 s->flags |= SEC_EXCLUDE;
9808 continue;
9809 }
9810
9811 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9812 continue;
9813
9814 /* Allocate memory for the section contents. */
9815 s->contents = bfd_zalloc (dynobj, s->size);
9816 if (s->contents == NULL)
9817 {
9818 bfd_set_error (bfd_error_no_memory);
9819 return FALSE;
9820 }
9821 }
9822
9823 if (elf_hash_table (info)->dynamic_sections_created)
9824 {
9825 /* Add some entries to the .dynamic section. We fill in the
9826 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9827 must add the entries now so that we get the correct size for
9828 the .dynamic section. */
9829
9830 /* SGI object has the equivalence of DT_DEBUG in the
9831 DT_MIPS_RLD_MAP entry. This must come first because glibc
9832 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9833 may only look at the first one they see. */
9834 if (!bfd_link_pic (info)
9835 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9836 return FALSE;
9837
9838 if (bfd_link_executable (info)
9839 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
9840 return FALSE;
9841
9842 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9843 used by the debugger. */
9844 if (bfd_link_executable (info)
9845 && !SGI_COMPAT (output_bfd)
9846 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9847 return FALSE;
9848
9849 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9850 info->flags |= DF_TEXTREL;
9851
9852 if ((info->flags & DF_TEXTREL) != 0)
9853 {
9854 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9855 return FALSE;
9856
9857 /* Clear the DF_TEXTREL flag. It will be set again if we
9858 write out an actual text relocation; we may not, because
9859 at this point we do not know whether e.g. any .eh_frame
9860 absolute relocations have been converted to PC-relative. */
9861 info->flags &= ~DF_TEXTREL;
9862 }
9863
9864 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9865 return FALSE;
9866
9867 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9868 if (htab->is_vxworks)
9869 {
9870 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9871 use any of the DT_MIPS_* tags. */
9872 if (sreldyn && sreldyn->size > 0)
9873 {
9874 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9875 return FALSE;
9876
9877 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9878 return FALSE;
9879
9880 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9881 return FALSE;
9882 }
9883 }
9884 else
9885 {
9886 if (sreldyn && sreldyn->size > 0)
9887 {
9888 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9889 return FALSE;
9890
9891 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9892 return FALSE;
9893
9894 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9895 return FALSE;
9896 }
9897
9898 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9899 return FALSE;
9900
9901 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9902 return FALSE;
9903
9904 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9905 return FALSE;
9906
9907 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9908 return FALSE;
9909
9910 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9911 return FALSE;
9912
9913 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9914 return FALSE;
9915
9916 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9917 return FALSE;
9918
9919 if (IRIX_COMPAT (dynobj) == ict_irix5
9920 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9921 return FALSE;
9922
9923 if (IRIX_COMPAT (dynobj) == ict_irix6
9924 && (bfd_get_section_by_name
9925 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9926 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9927 return FALSE;
9928 }
9929 if (htab->root.splt->size > 0)
9930 {
9931 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9932 return FALSE;
9933
9934 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9935 return FALSE;
9936
9937 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9938 return FALSE;
9939
9940 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9941 return FALSE;
9942 }
9943 if (htab->is_vxworks
9944 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9945 return FALSE;
9946 }
9947
9948 return TRUE;
9949 }
9950 \f
9951 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9952 Adjust its R_ADDEND field so that it is correct for the output file.
9953 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9954 and sections respectively; both use symbol indexes. */
9955
9956 static void
9957 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9958 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9959 asection **local_sections, Elf_Internal_Rela *rel)
9960 {
9961 unsigned int r_type, r_symndx;
9962 Elf_Internal_Sym *sym;
9963 asection *sec;
9964
9965 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9966 {
9967 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9968 if (gprel16_reloc_p (r_type)
9969 || r_type == R_MIPS_GPREL32
9970 || literal_reloc_p (r_type))
9971 {
9972 rel->r_addend += _bfd_get_gp_value (input_bfd);
9973 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9974 }
9975
9976 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9977 sym = local_syms + r_symndx;
9978
9979 /* Adjust REL's addend to account for section merging. */
9980 if (!bfd_link_relocatable (info))
9981 {
9982 sec = local_sections[r_symndx];
9983 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9984 }
9985
9986 /* This would normally be done by the rela_normal code in elflink.c. */
9987 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9988 rel->r_addend += local_sections[r_symndx]->output_offset;
9989 }
9990 }
9991
9992 /* Handle relocations against symbols from removed linkonce sections,
9993 or sections discarded by a linker script. We use this wrapper around
9994 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
9995 on 64-bit ELF targets. In this case for any relocation handled, which
9996 always be the first in a triplet, the remaining two have to be processed
9997 together with the first, even if they are R_MIPS_NONE. It is the symbol
9998 index referred by the first reloc that applies to all the three and the
9999 remaining two never refer to an object symbol. And it is the final
10000 relocation (the last non-null one) that determines the output field of
10001 the whole relocation so retrieve the corresponding howto structure for
10002 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
10003
10004 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
10005 and therefore requires to be pasted in a loop. It also defines a block
10006 and does not protect any of its arguments, hence the extra brackets. */
10007
10008 static void
10009 mips_reloc_against_discarded_section (bfd *output_bfd,
10010 struct bfd_link_info *info,
10011 bfd *input_bfd, asection *input_section,
10012 Elf_Internal_Rela **rel,
10013 const Elf_Internal_Rela **relend,
10014 bfd_boolean rel_reloc,
10015 reloc_howto_type *howto,
10016 bfd_byte *contents)
10017 {
10018 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10019 int count = bed->s->int_rels_per_ext_rel;
10020 unsigned int r_type;
10021 int i;
10022
10023 for (i = count - 1; i > 0; i--)
10024 {
10025 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10026 if (r_type != R_MIPS_NONE)
10027 {
10028 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10029 break;
10030 }
10031 }
10032 do
10033 {
10034 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10035 (*rel), count, (*relend),
10036 howto, i, contents);
10037 }
10038 while (0);
10039 }
10040
10041 /* Relocate a MIPS ELF section. */
10042
10043 bfd_boolean
10044 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10045 bfd *input_bfd, asection *input_section,
10046 bfd_byte *contents, Elf_Internal_Rela *relocs,
10047 Elf_Internal_Sym *local_syms,
10048 asection **local_sections)
10049 {
10050 Elf_Internal_Rela *rel;
10051 const Elf_Internal_Rela *relend;
10052 bfd_vma addend = 0;
10053 bfd_boolean use_saved_addend_p = FALSE;
10054
10055 relend = relocs + input_section->reloc_count;
10056 for (rel = relocs; rel < relend; ++rel)
10057 {
10058 const char *name;
10059 bfd_vma value = 0;
10060 reloc_howto_type *howto;
10061 bfd_boolean cross_mode_jump_p = FALSE;
10062 /* TRUE if the relocation is a RELA relocation, rather than a
10063 REL relocation. */
10064 bfd_boolean rela_relocation_p = TRUE;
10065 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10066 const char *msg;
10067 unsigned long r_symndx;
10068 asection *sec;
10069 Elf_Internal_Shdr *symtab_hdr;
10070 struct elf_link_hash_entry *h;
10071 bfd_boolean rel_reloc;
10072
10073 rel_reloc = (NEWABI_P (input_bfd)
10074 && mips_elf_rel_relocation_p (input_bfd, input_section,
10075 relocs, rel));
10076 /* Find the relocation howto for this relocation. */
10077 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10078
10079 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10080 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10081 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10082 {
10083 sec = local_sections[r_symndx];
10084 h = NULL;
10085 }
10086 else
10087 {
10088 unsigned long extsymoff;
10089
10090 extsymoff = 0;
10091 if (!elf_bad_symtab (input_bfd))
10092 extsymoff = symtab_hdr->sh_info;
10093 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10094 while (h->root.type == bfd_link_hash_indirect
10095 || h->root.type == bfd_link_hash_warning)
10096 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10097
10098 sec = NULL;
10099 if (h->root.type == bfd_link_hash_defined
10100 || h->root.type == bfd_link_hash_defweak)
10101 sec = h->root.u.def.section;
10102 }
10103
10104 if (sec != NULL && discarded_section (sec))
10105 {
10106 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10107 input_section, &rel, &relend,
10108 rel_reloc, howto, contents);
10109 continue;
10110 }
10111
10112 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10113 {
10114 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10115 64-bit code, but make sure all their addresses are in the
10116 lowermost or uppermost 32-bit section of the 64-bit address
10117 space. Thus, when they use an R_MIPS_64 they mean what is
10118 usually meant by R_MIPS_32, with the exception that the
10119 stored value is sign-extended to 64 bits. */
10120 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
10121
10122 /* On big-endian systems, we need to lie about the position
10123 of the reloc. */
10124 if (bfd_big_endian (input_bfd))
10125 rel->r_offset += 4;
10126 }
10127
10128 if (!use_saved_addend_p)
10129 {
10130 /* If these relocations were originally of the REL variety,
10131 we must pull the addend out of the field that will be
10132 relocated. Otherwise, we simply use the contents of the
10133 RELA relocation. */
10134 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10135 relocs, rel))
10136 {
10137 rela_relocation_p = FALSE;
10138 addend = mips_elf_read_rel_addend (input_bfd, rel,
10139 howto, contents);
10140 if (hi16_reloc_p (r_type)
10141 || (got16_reloc_p (r_type)
10142 && mips_elf_local_relocation_p (input_bfd, rel,
10143 local_sections)))
10144 {
10145 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10146 contents, &addend))
10147 {
10148 if (h)
10149 name = h->root.root.string;
10150 else
10151 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10152 local_syms + r_symndx,
10153 sec);
10154 _bfd_error_handler
10155 /* xgettext:c-format */
10156 (_("%pB: Can't find matching LO16 reloc against `%s'"
10157 " for %s at %#" PRIx64 " in section `%pA'"),
10158 input_bfd, name,
10159 howto->name, (uint64_t) rel->r_offset, input_section);
10160 }
10161 }
10162 else
10163 addend <<= howto->rightshift;
10164 }
10165 else
10166 addend = rel->r_addend;
10167 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10168 local_syms, local_sections, rel);
10169 }
10170
10171 if (bfd_link_relocatable (info))
10172 {
10173 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10174 && bfd_big_endian (input_bfd))
10175 rel->r_offset -= 4;
10176
10177 if (!rela_relocation_p && rel->r_addend)
10178 {
10179 addend += rel->r_addend;
10180 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10181 addend = mips_elf_high (addend);
10182 else if (r_type == R_MIPS_HIGHER)
10183 addend = mips_elf_higher (addend);
10184 else if (r_type == R_MIPS_HIGHEST)
10185 addend = mips_elf_highest (addend);
10186 else
10187 addend >>= howto->rightshift;
10188
10189 /* We use the source mask, rather than the destination
10190 mask because the place to which we are writing will be
10191 source of the addend in the final link. */
10192 addend &= howto->src_mask;
10193
10194 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10195 /* See the comment above about using R_MIPS_64 in the 32-bit
10196 ABI. Here, we need to update the addend. It would be
10197 possible to get away with just using the R_MIPS_32 reloc
10198 but for endianness. */
10199 {
10200 bfd_vma sign_bits;
10201 bfd_vma low_bits;
10202 bfd_vma high_bits;
10203
10204 if (addend & ((bfd_vma) 1 << 31))
10205 #ifdef BFD64
10206 sign_bits = ((bfd_vma) 1 << 32) - 1;
10207 #else
10208 sign_bits = -1;
10209 #endif
10210 else
10211 sign_bits = 0;
10212
10213 /* If we don't know that we have a 64-bit type,
10214 do two separate stores. */
10215 if (bfd_big_endian (input_bfd))
10216 {
10217 /* Store the sign-bits (which are most significant)
10218 first. */
10219 low_bits = sign_bits;
10220 high_bits = addend;
10221 }
10222 else
10223 {
10224 low_bits = addend;
10225 high_bits = sign_bits;
10226 }
10227 bfd_put_32 (input_bfd, low_bits,
10228 contents + rel->r_offset);
10229 bfd_put_32 (input_bfd, high_bits,
10230 contents + rel->r_offset + 4);
10231 continue;
10232 }
10233
10234 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10235 input_bfd, input_section,
10236 contents, FALSE))
10237 return FALSE;
10238 }
10239
10240 /* Go on to the next relocation. */
10241 continue;
10242 }
10243
10244 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10245 relocations for the same offset. In that case we are
10246 supposed to treat the output of each relocation as the addend
10247 for the next. */
10248 if (rel + 1 < relend
10249 && rel->r_offset == rel[1].r_offset
10250 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10251 use_saved_addend_p = TRUE;
10252 else
10253 use_saved_addend_p = FALSE;
10254
10255 /* Figure out what value we are supposed to relocate. */
10256 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10257 input_section, info, rel,
10258 addend, howto, local_syms,
10259 local_sections, &value,
10260 &name, &cross_mode_jump_p,
10261 use_saved_addend_p))
10262 {
10263 case bfd_reloc_continue:
10264 /* There's nothing to do. */
10265 continue;
10266
10267 case bfd_reloc_undefined:
10268 /* mips_elf_calculate_relocation already called the
10269 undefined_symbol callback. There's no real point in
10270 trying to perform the relocation at this point, so we
10271 just skip ahead to the next relocation. */
10272 continue;
10273
10274 case bfd_reloc_notsupported:
10275 msg = _("internal error: unsupported relocation error");
10276 info->callbacks->warning
10277 (info, msg, name, input_bfd, input_section, rel->r_offset);
10278 return FALSE;
10279
10280 case bfd_reloc_overflow:
10281 if (use_saved_addend_p)
10282 /* Ignore overflow until we reach the last relocation for
10283 a given location. */
10284 ;
10285 else
10286 {
10287 struct mips_elf_link_hash_table *htab;
10288
10289 htab = mips_elf_hash_table (info);
10290 BFD_ASSERT (htab != NULL);
10291 BFD_ASSERT (name != NULL);
10292 if (!htab->small_data_overflow_reported
10293 && (gprel16_reloc_p (howto->type)
10294 || literal_reloc_p (howto->type)))
10295 {
10296 msg = _("small-data section exceeds 64KB;"
10297 " lower small-data size limit (see option -G)");
10298
10299 htab->small_data_overflow_reported = TRUE;
10300 (*info->callbacks->einfo) ("%P: %s\n", msg);
10301 }
10302 (*info->callbacks->reloc_overflow)
10303 (info, NULL, name, howto->name, (bfd_vma) 0,
10304 input_bfd, input_section, rel->r_offset);
10305 }
10306 break;
10307
10308 case bfd_reloc_ok:
10309 break;
10310
10311 case bfd_reloc_outofrange:
10312 msg = NULL;
10313 if (jal_reloc_p (howto->type))
10314 msg = (cross_mode_jump_p
10315 ? _("Cannot convert a jump to JALX "
10316 "for a non-word-aligned address")
10317 : (howto->type == R_MIPS16_26
10318 ? _("Jump to a non-word-aligned address")
10319 : _("Jump to a non-instruction-aligned address")));
10320 else if (b_reloc_p (howto->type))
10321 msg = (cross_mode_jump_p
10322 ? _("Cannot convert a branch to JALX "
10323 "for a non-word-aligned address")
10324 : _("Branch to a non-instruction-aligned address"));
10325 else if (aligned_pcrel_reloc_p (howto->type))
10326 msg = _("PC-relative load from unaligned address");
10327 if (msg)
10328 {
10329 info->callbacks->einfo
10330 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10331 break;
10332 }
10333 /* Fall through. */
10334
10335 default:
10336 abort ();
10337 break;
10338 }
10339
10340 /* If we've got another relocation for the address, keep going
10341 until we reach the last one. */
10342 if (use_saved_addend_p)
10343 {
10344 addend = value;
10345 continue;
10346 }
10347
10348 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10349 /* See the comment above about using R_MIPS_64 in the 32-bit
10350 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10351 that calculated the right value. Now, however, we
10352 sign-extend the 32-bit result to 64-bits, and store it as a
10353 64-bit value. We are especially generous here in that we
10354 go to extreme lengths to support this usage on systems with
10355 only a 32-bit VMA. */
10356 {
10357 bfd_vma sign_bits;
10358 bfd_vma low_bits;
10359 bfd_vma high_bits;
10360
10361 if (value & ((bfd_vma) 1 << 31))
10362 #ifdef BFD64
10363 sign_bits = ((bfd_vma) 1 << 32) - 1;
10364 #else
10365 sign_bits = -1;
10366 #endif
10367 else
10368 sign_bits = 0;
10369
10370 /* If we don't know that we have a 64-bit type,
10371 do two separate stores. */
10372 if (bfd_big_endian (input_bfd))
10373 {
10374 /* Undo what we did above. */
10375 rel->r_offset -= 4;
10376 /* Store the sign-bits (which are most significant)
10377 first. */
10378 low_bits = sign_bits;
10379 high_bits = value;
10380 }
10381 else
10382 {
10383 low_bits = value;
10384 high_bits = sign_bits;
10385 }
10386 bfd_put_32 (input_bfd, low_bits,
10387 contents + rel->r_offset);
10388 bfd_put_32 (input_bfd, high_bits,
10389 contents + rel->r_offset + 4);
10390 continue;
10391 }
10392
10393 /* Actually perform the relocation. */
10394 if (! mips_elf_perform_relocation (info, howto, rel, value,
10395 input_bfd, input_section,
10396 contents, cross_mode_jump_p))
10397 return FALSE;
10398 }
10399
10400 return TRUE;
10401 }
10402 \f
10403 /* A function that iterates over each entry in la25_stubs and fills
10404 in the code for each one. DATA points to a mips_htab_traverse_info. */
10405
10406 static int
10407 mips_elf_create_la25_stub (void **slot, void *data)
10408 {
10409 struct mips_htab_traverse_info *hti;
10410 struct mips_elf_link_hash_table *htab;
10411 struct mips_elf_la25_stub *stub;
10412 asection *s;
10413 bfd_byte *loc;
10414 bfd_vma offset, target, target_high, target_low;
10415
10416 stub = (struct mips_elf_la25_stub *) *slot;
10417 hti = (struct mips_htab_traverse_info *) data;
10418 htab = mips_elf_hash_table (hti->info);
10419 BFD_ASSERT (htab != NULL);
10420
10421 /* Create the section contents, if we haven't already. */
10422 s = stub->stub_section;
10423 loc = s->contents;
10424 if (loc == NULL)
10425 {
10426 loc = bfd_malloc (s->size);
10427 if (loc == NULL)
10428 {
10429 hti->error = TRUE;
10430 return FALSE;
10431 }
10432 s->contents = loc;
10433 }
10434
10435 /* Work out where in the section this stub should go. */
10436 offset = stub->offset;
10437
10438 /* Work out the target address. */
10439 target = mips_elf_get_la25_target (stub, &s);
10440 target += s->output_section->vma + s->output_offset;
10441
10442 target_high = ((target + 0x8000) >> 16) & 0xffff;
10443 target_low = (target & 0xffff);
10444
10445 if (stub->stub_section != htab->strampoline)
10446 {
10447 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10448 of the section and write the two instructions at the end. */
10449 memset (loc, 0, offset);
10450 loc += offset;
10451 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10452 {
10453 bfd_put_micromips_32 (hti->output_bfd,
10454 LA25_LUI_MICROMIPS (target_high),
10455 loc);
10456 bfd_put_micromips_32 (hti->output_bfd,
10457 LA25_ADDIU_MICROMIPS (target_low),
10458 loc + 4);
10459 }
10460 else
10461 {
10462 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10463 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10464 }
10465 }
10466 else
10467 {
10468 /* This is trampoline. */
10469 loc += offset;
10470 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10471 {
10472 bfd_put_micromips_32 (hti->output_bfd,
10473 LA25_LUI_MICROMIPS (target_high), loc);
10474 bfd_put_micromips_32 (hti->output_bfd,
10475 LA25_J_MICROMIPS (target), loc + 4);
10476 bfd_put_micromips_32 (hti->output_bfd,
10477 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10478 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10479 }
10480 else
10481 {
10482 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10483 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10484 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10485 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10486 }
10487 }
10488 return TRUE;
10489 }
10490
10491 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10492 adjust it appropriately now. */
10493
10494 static void
10495 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10496 const char *name, Elf_Internal_Sym *sym)
10497 {
10498 /* The linker script takes care of providing names and values for
10499 these, but we must place them into the right sections. */
10500 static const char* const text_section_symbols[] = {
10501 "_ftext",
10502 "_etext",
10503 "__dso_displacement",
10504 "__elf_header",
10505 "__program_header_table",
10506 NULL
10507 };
10508
10509 static const char* const data_section_symbols[] = {
10510 "_fdata",
10511 "_edata",
10512 "_end",
10513 "_fbss",
10514 NULL
10515 };
10516
10517 const char* const *p;
10518 int i;
10519
10520 for (i = 0; i < 2; ++i)
10521 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10522 *p;
10523 ++p)
10524 if (strcmp (*p, name) == 0)
10525 {
10526 /* All of these symbols are given type STT_SECTION by the
10527 IRIX6 linker. */
10528 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10529 sym->st_other = STO_PROTECTED;
10530
10531 /* The IRIX linker puts these symbols in special sections. */
10532 if (i == 0)
10533 sym->st_shndx = SHN_MIPS_TEXT;
10534 else
10535 sym->st_shndx = SHN_MIPS_DATA;
10536
10537 break;
10538 }
10539 }
10540
10541 /* Finish up dynamic symbol handling. We set the contents of various
10542 dynamic sections here. */
10543
10544 bfd_boolean
10545 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10546 struct bfd_link_info *info,
10547 struct elf_link_hash_entry *h,
10548 Elf_Internal_Sym *sym)
10549 {
10550 bfd *dynobj;
10551 asection *sgot;
10552 struct mips_got_info *g, *gg;
10553 const char *name;
10554 int idx;
10555 struct mips_elf_link_hash_table *htab;
10556 struct mips_elf_link_hash_entry *hmips;
10557
10558 htab = mips_elf_hash_table (info);
10559 BFD_ASSERT (htab != NULL);
10560 dynobj = elf_hash_table (info)->dynobj;
10561 hmips = (struct mips_elf_link_hash_entry *) h;
10562
10563 BFD_ASSERT (!htab->is_vxworks);
10564
10565 if (h->plt.plist != NULL
10566 && (h->plt.plist->mips_offset != MINUS_ONE
10567 || h->plt.plist->comp_offset != MINUS_ONE))
10568 {
10569 /* We've decided to create a PLT entry for this symbol. */
10570 bfd_byte *loc;
10571 bfd_vma header_address, got_address;
10572 bfd_vma got_address_high, got_address_low, load;
10573 bfd_vma got_index;
10574 bfd_vma isa_bit;
10575
10576 got_index = h->plt.plist->gotplt_index;
10577
10578 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10579 BFD_ASSERT (h->dynindx != -1);
10580 BFD_ASSERT (htab->root.splt != NULL);
10581 BFD_ASSERT (got_index != MINUS_ONE);
10582 BFD_ASSERT (!h->def_regular);
10583
10584 /* Calculate the address of the PLT header. */
10585 isa_bit = htab->plt_header_is_comp;
10586 header_address = (htab->root.splt->output_section->vma
10587 + htab->root.splt->output_offset + isa_bit);
10588
10589 /* Calculate the address of the .got.plt entry. */
10590 got_address = (htab->root.sgotplt->output_section->vma
10591 + htab->root.sgotplt->output_offset
10592 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10593
10594 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10595 got_address_low = got_address & 0xffff;
10596
10597 /* Initially point the .got.plt entry at the PLT header. */
10598 loc = (htab->root.sgotplt->contents + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10599 if (ABI_64_P (output_bfd))
10600 bfd_put_64 (output_bfd, header_address, loc);
10601 else
10602 bfd_put_32 (output_bfd, header_address, loc);
10603
10604 /* Now handle the PLT itself. First the standard entry (the order
10605 does not matter, we just have to pick one). */
10606 if (h->plt.plist->mips_offset != MINUS_ONE)
10607 {
10608 const bfd_vma *plt_entry;
10609 bfd_vma plt_offset;
10610
10611 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10612
10613 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10614
10615 /* Find out where the .plt entry should go. */
10616 loc = htab->root.splt->contents + plt_offset;
10617
10618 /* Pick the load opcode. */
10619 load = MIPS_ELF_LOAD_WORD (output_bfd);
10620
10621 /* Fill in the PLT entry itself. */
10622
10623 if (MIPSR6_P (output_bfd))
10624 plt_entry = mipsr6_exec_plt_entry;
10625 else
10626 plt_entry = mips_exec_plt_entry;
10627 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10628 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10629 loc + 4);
10630
10631 if (! LOAD_INTERLOCKS_P (output_bfd))
10632 {
10633 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10634 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10635 }
10636 else
10637 {
10638 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10639 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10640 loc + 12);
10641 }
10642 }
10643
10644 /* Now the compressed entry. They come after any standard ones. */
10645 if (h->plt.plist->comp_offset != MINUS_ONE)
10646 {
10647 bfd_vma plt_offset;
10648
10649 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10650 + h->plt.plist->comp_offset);
10651
10652 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10653
10654 /* Find out where the .plt entry should go. */
10655 loc = htab->root.splt->contents + plt_offset;
10656
10657 /* Fill in the PLT entry itself. */
10658 if (!MICROMIPS_P (output_bfd))
10659 {
10660 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10661
10662 bfd_put_16 (output_bfd, plt_entry[0], loc);
10663 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10664 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10665 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10666 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10667 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10668 bfd_put_32 (output_bfd, got_address, loc + 12);
10669 }
10670 else if (htab->insn32)
10671 {
10672 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10673
10674 bfd_put_16 (output_bfd, plt_entry[0], loc);
10675 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10676 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10677 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10678 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10679 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10680 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10681 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10682 }
10683 else
10684 {
10685 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10686 bfd_signed_vma gotpc_offset;
10687 bfd_vma loc_address;
10688
10689 BFD_ASSERT (got_address % 4 == 0);
10690
10691 loc_address = (htab->root.splt->output_section->vma
10692 + htab->root.splt->output_offset + plt_offset);
10693 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10694
10695 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10696 if (gotpc_offset + 0x1000000 >= 0x2000000)
10697 {
10698 _bfd_error_handler
10699 /* xgettext:c-format */
10700 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
10701 "beyond the range of ADDIUPC"),
10702 output_bfd,
10703 htab->root.sgotplt->output_section,
10704 (int64_t) gotpc_offset,
10705 htab->root.splt->output_section);
10706 bfd_set_error (bfd_error_no_error);
10707 return FALSE;
10708 }
10709 bfd_put_16 (output_bfd,
10710 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10711 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10712 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10713 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10714 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10715 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10716 }
10717 }
10718
10719 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10720 mips_elf_output_dynamic_relocation (output_bfd, htab->root.srelplt,
10721 got_index - 2, h->dynindx,
10722 R_MIPS_JUMP_SLOT, got_address);
10723
10724 /* We distinguish between PLT entries and lazy-binding stubs by
10725 giving the former an st_other value of STO_MIPS_PLT. Set the
10726 flag and leave the value if there are any relocations in the
10727 binary where pointer equality matters. */
10728 sym->st_shndx = SHN_UNDEF;
10729 if (h->pointer_equality_needed)
10730 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
10731 else
10732 {
10733 sym->st_value = 0;
10734 sym->st_other = 0;
10735 }
10736 }
10737
10738 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
10739 {
10740 /* We've decided to create a lazy-binding stub. */
10741 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10742 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10743 bfd_vma stub_size = htab->function_stub_size;
10744 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
10745 bfd_vma isa_bit = micromips_p;
10746 bfd_vma stub_big_size;
10747
10748 if (!micromips_p)
10749 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
10750 else if (htab->insn32)
10751 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10752 else
10753 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
10754
10755 /* This symbol has a stub. Set it up. */
10756
10757 BFD_ASSERT (h->dynindx != -1);
10758
10759 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
10760
10761 /* Values up to 2^31 - 1 are allowed. Larger values would cause
10762 sign extension at runtime in the stub, resulting in a negative
10763 index value. */
10764 if (h->dynindx & ~0x7fffffff)
10765 return FALSE;
10766
10767 /* Fill the stub. */
10768 if (micromips_p)
10769 {
10770 idx = 0;
10771 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10772 stub + idx);
10773 idx += 4;
10774 if (htab->insn32)
10775 {
10776 bfd_put_micromips_32 (output_bfd,
10777 STUB_MOVE32_MICROMIPS, stub + idx);
10778 idx += 4;
10779 }
10780 else
10781 {
10782 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10783 idx += 2;
10784 }
10785 if (stub_size == stub_big_size)
10786 {
10787 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10788
10789 bfd_put_micromips_32 (output_bfd,
10790 STUB_LUI_MICROMIPS (dynindx_hi),
10791 stub + idx);
10792 idx += 4;
10793 }
10794 if (htab->insn32)
10795 {
10796 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
10797 stub + idx);
10798 idx += 4;
10799 }
10800 else
10801 {
10802 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
10803 idx += 2;
10804 }
10805
10806 /* If a large stub is not required and sign extension is not a
10807 problem, then use legacy code in the stub. */
10808 if (stub_size == stub_big_size)
10809 bfd_put_micromips_32 (output_bfd,
10810 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
10811 stub + idx);
10812 else if (h->dynindx & ~0x7fff)
10813 bfd_put_micromips_32 (output_bfd,
10814 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
10815 stub + idx);
10816 else
10817 bfd_put_micromips_32 (output_bfd,
10818 STUB_LI16S_MICROMIPS (output_bfd,
10819 h->dynindx),
10820 stub + idx);
10821 }
10822 else
10823 {
10824 idx = 0;
10825 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10826 idx += 4;
10827 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
10828 idx += 4;
10829 if (stub_size == stub_big_size)
10830 {
10831 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10832 stub + idx);
10833 idx += 4;
10834 }
10835 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10836 idx += 4;
10837
10838 /* If a large stub is not required and sign extension is not a
10839 problem, then use legacy code in the stub. */
10840 if (stub_size == stub_big_size)
10841 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
10842 stub + idx);
10843 else if (h->dynindx & ~0x7fff)
10844 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
10845 stub + idx);
10846 else
10847 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10848 stub + idx);
10849 }
10850
10851 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
10852 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
10853 stub, stub_size);
10854
10855 /* Mark the symbol as undefined. stub_offset != -1 occurs
10856 only for the referenced symbol. */
10857 sym->st_shndx = SHN_UNDEF;
10858
10859 /* The run-time linker uses the st_value field of the symbol
10860 to reset the global offset table entry for this external
10861 to its stub address when unlinking a shared object. */
10862 sym->st_value = (htab->sstubs->output_section->vma
10863 + htab->sstubs->output_offset
10864 + h->plt.plist->stub_offset
10865 + isa_bit);
10866 sym->st_other = other;
10867 }
10868
10869 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10870 refer to the stub, since only the stub uses the standard calling
10871 conventions. */
10872 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10873 {
10874 BFD_ASSERT (hmips->need_fn_stub);
10875 sym->st_value = (hmips->fn_stub->output_section->vma
10876 + hmips->fn_stub->output_offset);
10877 sym->st_size = hmips->fn_stub->size;
10878 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10879 }
10880
10881 BFD_ASSERT (h->dynindx != -1
10882 || h->forced_local);
10883
10884 sgot = htab->root.sgot;
10885 g = htab->got_info;
10886 BFD_ASSERT (g != NULL);
10887
10888 /* Run through the global symbol table, creating GOT entries for all
10889 the symbols that need them. */
10890 if (hmips->global_got_area != GGA_NONE)
10891 {
10892 bfd_vma offset;
10893 bfd_vma value;
10894
10895 value = sym->st_value;
10896 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
10897 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10898 }
10899
10900 if (hmips->global_got_area != GGA_NONE && g->next)
10901 {
10902 struct mips_got_entry e, *p;
10903 bfd_vma entry;
10904 bfd_vma offset;
10905
10906 gg = g;
10907
10908 e.abfd = output_bfd;
10909 e.symndx = -1;
10910 e.d.h = hmips;
10911 e.tls_type = GOT_TLS_NONE;
10912
10913 for (g = g->next; g->next != gg; g = g->next)
10914 {
10915 if (g->got_entries
10916 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10917 &e)))
10918 {
10919 offset = p->gotidx;
10920 BFD_ASSERT (offset > 0 && offset < htab->root.sgot->size);
10921 if (bfd_link_pic (info)
10922 || (elf_hash_table (info)->dynamic_sections_created
10923 && p->d.h != NULL
10924 && p->d.h->root.def_dynamic
10925 && !p->d.h->root.def_regular))
10926 {
10927 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10928 the various compatibility problems, it's easier to mock
10929 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10930 mips_elf_create_dynamic_relocation to calculate the
10931 appropriate addend. */
10932 Elf_Internal_Rela rel[3];
10933
10934 memset (rel, 0, sizeof (rel));
10935 if (ABI_64_P (output_bfd))
10936 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10937 else
10938 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10939 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10940
10941 entry = 0;
10942 if (! (mips_elf_create_dynamic_relocation
10943 (output_bfd, info, rel,
10944 e.d.h, NULL, sym->st_value, &entry, sgot)))
10945 return FALSE;
10946 }
10947 else
10948 entry = sym->st_value;
10949 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
10950 }
10951 }
10952 }
10953
10954 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10955 name = h->root.root.string;
10956 if (h == elf_hash_table (info)->hdynamic
10957 || h == elf_hash_table (info)->hgot)
10958 sym->st_shndx = SHN_ABS;
10959 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10960 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10961 {
10962 sym->st_shndx = SHN_ABS;
10963 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10964 sym->st_value = 1;
10965 }
10966 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
10967 {
10968 sym->st_shndx = SHN_ABS;
10969 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10970 sym->st_value = elf_gp (output_bfd);
10971 }
10972 else if (SGI_COMPAT (output_bfd))
10973 {
10974 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10975 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10976 {
10977 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10978 sym->st_other = STO_PROTECTED;
10979 sym->st_value = 0;
10980 sym->st_shndx = SHN_MIPS_DATA;
10981 }
10982 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10983 {
10984 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10985 sym->st_other = STO_PROTECTED;
10986 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10987 sym->st_shndx = SHN_ABS;
10988 }
10989 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10990 {
10991 if (h->type == STT_FUNC)
10992 sym->st_shndx = SHN_MIPS_TEXT;
10993 else if (h->type == STT_OBJECT)
10994 sym->st_shndx = SHN_MIPS_DATA;
10995 }
10996 }
10997
10998 /* Emit a copy reloc, if needed. */
10999 if (h->needs_copy)
11000 {
11001 asection *s;
11002 bfd_vma symval;
11003
11004 BFD_ASSERT (h->dynindx != -1);
11005 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11006
11007 s = mips_elf_rel_dyn_section (info, FALSE);
11008 symval = (h->root.u.def.section->output_section->vma
11009 + h->root.u.def.section->output_offset
11010 + h->root.u.def.value);
11011 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
11012 h->dynindx, R_MIPS_COPY, symval);
11013 }
11014
11015 /* Handle the IRIX6-specific symbols. */
11016 if (IRIX_COMPAT (output_bfd) == ict_irix6)
11017 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11018
11019 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11020 to treat compressed symbols like any other. */
11021 if (ELF_ST_IS_MIPS16 (sym->st_other))
11022 {
11023 BFD_ASSERT (sym->st_value & 1);
11024 sym->st_other -= STO_MIPS16;
11025 }
11026 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11027 {
11028 BFD_ASSERT (sym->st_value & 1);
11029 sym->st_other -= STO_MICROMIPS;
11030 }
11031
11032 return TRUE;
11033 }
11034
11035 /* Likewise, for VxWorks. */
11036
11037 bfd_boolean
11038 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11039 struct bfd_link_info *info,
11040 struct elf_link_hash_entry *h,
11041 Elf_Internal_Sym *sym)
11042 {
11043 bfd *dynobj;
11044 asection *sgot;
11045 struct mips_got_info *g;
11046 struct mips_elf_link_hash_table *htab;
11047 struct mips_elf_link_hash_entry *hmips;
11048
11049 htab = mips_elf_hash_table (info);
11050 BFD_ASSERT (htab != NULL);
11051 dynobj = elf_hash_table (info)->dynobj;
11052 hmips = (struct mips_elf_link_hash_entry *) h;
11053
11054 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
11055 {
11056 bfd_byte *loc;
11057 bfd_vma plt_address, got_address, got_offset, branch_offset;
11058 Elf_Internal_Rela rel;
11059 static const bfd_vma *plt_entry;
11060 bfd_vma gotplt_index;
11061 bfd_vma plt_offset;
11062
11063 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11064 gotplt_index = h->plt.plist->gotplt_index;
11065
11066 BFD_ASSERT (h->dynindx != -1);
11067 BFD_ASSERT (htab->root.splt != NULL);
11068 BFD_ASSERT (gotplt_index != MINUS_ONE);
11069 BFD_ASSERT (plt_offset <= htab->root.splt->size);
11070
11071 /* Calculate the address of the .plt entry. */
11072 plt_address = (htab->root.splt->output_section->vma
11073 + htab->root.splt->output_offset
11074 + plt_offset);
11075
11076 /* Calculate the address of the .got.plt entry. */
11077 got_address = (htab->root.sgotplt->output_section->vma
11078 + htab->root.sgotplt->output_offset
11079 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11080
11081 /* Calculate the offset of the .got.plt entry from
11082 _GLOBAL_OFFSET_TABLE_. */
11083 got_offset = mips_elf_gotplt_index (info, h);
11084
11085 /* Calculate the offset for the branch at the start of the PLT
11086 entry. The branch jumps to the beginning of .plt. */
11087 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11088
11089 /* Fill in the initial value of the .got.plt entry. */
11090 bfd_put_32 (output_bfd, plt_address,
11091 (htab->root.sgotplt->contents
11092 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11093
11094 /* Find out where the .plt entry should go. */
11095 loc = htab->root.splt->contents + plt_offset;
11096
11097 if (bfd_link_pic (info))
11098 {
11099 plt_entry = mips_vxworks_shared_plt_entry;
11100 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11101 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11102 }
11103 else
11104 {
11105 bfd_vma got_address_high, got_address_low;
11106
11107 plt_entry = mips_vxworks_exec_plt_entry;
11108 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11109 got_address_low = got_address & 0xffff;
11110
11111 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11112 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11113 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11114 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11115 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11116 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11117 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11118 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11119
11120 loc = (htab->srelplt2->contents
11121 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11122
11123 /* Emit a relocation for the .got.plt entry. */
11124 rel.r_offset = got_address;
11125 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11126 rel.r_addend = plt_offset;
11127 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11128
11129 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11130 loc += sizeof (Elf32_External_Rela);
11131 rel.r_offset = plt_address + 8;
11132 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11133 rel.r_addend = got_offset;
11134 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11135
11136 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11137 loc += sizeof (Elf32_External_Rela);
11138 rel.r_offset += 4;
11139 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11140 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11141 }
11142
11143 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11144 loc = (htab->root.srelplt->contents
11145 + gotplt_index * sizeof (Elf32_External_Rela));
11146 rel.r_offset = got_address;
11147 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11148 rel.r_addend = 0;
11149 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11150
11151 if (!h->def_regular)
11152 sym->st_shndx = SHN_UNDEF;
11153 }
11154
11155 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11156
11157 sgot = htab->root.sgot;
11158 g = htab->got_info;
11159 BFD_ASSERT (g != NULL);
11160
11161 /* See if this symbol has an entry in the GOT. */
11162 if (hmips->global_got_area != GGA_NONE)
11163 {
11164 bfd_vma offset;
11165 Elf_Internal_Rela outrel;
11166 bfd_byte *loc;
11167 asection *s;
11168
11169 /* Install the symbol value in the GOT. */
11170 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11171 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11172
11173 /* Add a dynamic relocation for it. */
11174 s = mips_elf_rel_dyn_section (info, FALSE);
11175 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11176 outrel.r_offset = (sgot->output_section->vma
11177 + sgot->output_offset
11178 + offset);
11179 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11180 outrel.r_addend = 0;
11181 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11182 }
11183
11184 /* Emit a copy reloc, if needed. */
11185 if (h->needs_copy)
11186 {
11187 Elf_Internal_Rela rel;
11188 asection *srel;
11189 bfd_byte *loc;
11190
11191 BFD_ASSERT (h->dynindx != -1);
11192
11193 rel.r_offset = (h->root.u.def.section->output_section->vma
11194 + h->root.u.def.section->output_offset
11195 + h->root.u.def.value);
11196 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11197 rel.r_addend = 0;
11198 if (h->root.u.def.section == htab->root.sdynrelro)
11199 srel = htab->root.sreldynrelro;
11200 else
11201 srel = htab->root.srelbss;
11202 loc = srel->contents + srel->reloc_count * sizeof (Elf32_External_Rela);
11203 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11204 ++srel->reloc_count;
11205 }
11206
11207 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11208 if (ELF_ST_IS_COMPRESSED (sym->st_other))
11209 sym->st_value &= ~1;
11210
11211 return TRUE;
11212 }
11213
11214 /* Write out a plt0 entry to the beginning of .plt. */
11215
11216 static bfd_boolean
11217 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11218 {
11219 bfd_byte *loc;
11220 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11221 static const bfd_vma *plt_entry;
11222 struct mips_elf_link_hash_table *htab;
11223
11224 htab = mips_elf_hash_table (info);
11225 BFD_ASSERT (htab != NULL);
11226
11227 if (ABI_64_P (output_bfd))
11228 plt_entry = mips_n64_exec_plt0_entry;
11229 else if (ABI_N32_P (output_bfd))
11230 plt_entry = mips_n32_exec_plt0_entry;
11231 else if (!htab->plt_header_is_comp)
11232 plt_entry = mips_o32_exec_plt0_entry;
11233 else if (htab->insn32)
11234 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11235 else
11236 plt_entry = micromips_o32_exec_plt0_entry;
11237
11238 /* Calculate the value of .got.plt. */
11239 gotplt_value = (htab->root.sgotplt->output_section->vma
11240 + htab->root.sgotplt->output_offset);
11241 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11242 gotplt_value_low = gotplt_value & 0xffff;
11243
11244 /* The PLT sequence is not safe for N64 if .got.plt's address can
11245 not be loaded in two instructions. */
11246 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
11247 || ~(gotplt_value | 0x7fffffff) == 0);
11248
11249 /* Install the PLT header. */
11250 loc = htab->root.splt->contents;
11251 if (plt_entry == micromips_o32_exec_plt0_entry)
11252 {
11253 bfd_vma gotpc_offset;
11254 bfd_vma loc_address;
11255 size_t i;
11256
11257 BFD_ASSERT (gotplt_value % 4 == 0);
11258
11259 loc_address = (htab->root.splt->output_section->vma
11260 + htab->root.splt->output_offset);
11261 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11262
11263 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11264 if (gotpc_offset + 0x1000000 >= 0x2000000)
11265 {
11266 _bfd_error_handler
11267 /* xgettext:c-format */
11268 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
11269 "beyond the range of ADDIUPC"),
11270 output_bfd,
11271 htab->root.sgotplt->output_section,
11272 (int64_t) gotpc_offset,
11273 htab->root.splt->output_section);
11274 bfd_set_error (bfd_error_no_error);
11275 return FALSE;
11276 }
11277 bfd_put_16 (output_bfd,
11278 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11279 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11280 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11281 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11282 }
11283 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11284 {
11285 size_t i;
11286
11287 bfd_put_16 (output_bfd, plt_entry[0], loc);
11288 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11289 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11290 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11291 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11292 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11293 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11294 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11295 }
11296 else
11297 {
11298 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11299 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11300 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11301 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11302 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11303 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11304 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11305 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11306 }
11307
11308 return TRUE;
11309 }
11310
11311 /* Install the PLT header for a VxWorks executable and finalize the
11312 contents of .rela.plt.unloaded. */
11313
11314 static void
11315 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11316 {
11317 Elf_Internal_Rela rela;
11318 bfd_byte *loc;
11319 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11320 static const bfd_vma *plt_entry;
11321 struct mips_elf_link_hash_table *htab;
11322
11323 htab = mips_elf_hash_table (info);
11324 BFD_ASSERT (htab != NULL);
11325
11326 plt_entry = mips_vxworks_exec_plt0_entry;
11327
11328 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11329 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11330 + htab->root.hgot->root.u.def.section->output_offset
11331 + htab->root.hgot->root.u.def.value);
11332
11333 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11334 got_value_low = got_value & 0xffff;
11335
11336 /* Calculate the address of the PLT header. */
11337 plt_address = (htab->root.splt->output_section->vma
11338 + htab->root.splt->output_offset);
11339
11340 /* Install the PLT header. */
11341 loc = htab->root.splt->contents;
11342 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11343 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11344 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11345 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11346 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11347 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11348
11349 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11350 loc = htab->srelplt2->contents;
11351 rela.r_offset = plt_address;
11352 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11353 rela.r_addend = 0;
11354 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11355 loc += sizeof (Elf32_External_Rela);
11356
11357 /* Output the relocation for the following addiu of
11358 %lo(_GLOBAL_OFFSET_TABLE_). */
11359 rela.r_offset += 4;
11360 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11361 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11362 loc += sizeof (Elf32_External_Rela);
11363
11364 /* Fix up the remaining relocations. They may have the wrong
11365 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11366 in which symbols were output. */
11367 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11368 {
11369 Elf_Internal_Rela rel;
11370
11371 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11372 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11373 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11374 loc += sizeof (Elf32_External_Rela);
11375
11376 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11377 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11378 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11379 loc += sizeof (Elf32_External_Rela);
11380
11381 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11382 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11383 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11384 loc += sizeof (Elf32_External_Rela);
11385 }
11386 }
11387
11388 /* Install the PLT header for a VxWorks shared library. */
11389
11390 static void
11391 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11392 {
11393 unsigned int i;
11394 struct mips_elf_link_hash_table *htab;
11395
11396 htab = mips_elf_hash_table (info);
11397 BFD_ASSERT (htab != NULL);
11398
11399 /* We just need to copy the entry byte-by-byte. */
11400 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11401 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11402 htab->root.splt->contents + i * 4);
11403 }
11404
11405 /* Finish up the dynamic sections. */
11406
11407 bfd_boolean
11408 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11409 struct bfd_link_info *info)
11410 {
11411 bfd *dynobj;
11412 asection *sdyn;
11413 asection *sgot;
11414 struct mips_got_info *gg, *g;
11415 struct mips_elf_link_hash_table *htab;
11416
11417 htab = mips_elf_hash_table (info);
11418 BFD_ASSERT (htab != NULL);
11419
11420 dynobj = elf_hash_table (info)->dynobj;
11421
11422 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11423
11424 sgot = htab->root.sgot;
11425 gg = htab->got_info;
11426
11427 if (elf_hash_table (info)->dynamic_sections_created)
11428 {
11429 bfd_byte *b;
11430 int dyn_to_skip = 0, dyn_skipped = 0;
11431
11432 BFD_ASSERT (sdyn != NULL);
11433 BFD_ASSERT (gg != NULL);
11434
11435 g = mips_elf_bfd_got (output_bfd, FALSE);
11436 BFD_ASSERT (g != NULL);
11437
11438 for (b = sdyn->contents;
11439 b < sdyn->contents + sdyn->size;
11440 b += MIPS_ELF_DYN_SIZE (dynobj))
11441 {
11442 Elf_Internal_Dyn dyn;
11443 const char *name;
11444 size_t elemsize;
11445 asection *s;
11446 bfd_boolean swap_out_p;
11447
11448 /* Read in the current dynamic entry. */
11449 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11450
11451 /* Assume that we're going to modify it and write it out. */
11452 swap_out_p = TRUE;
11453
11454 switch (dyn.d_tag)
11455 {
11456 case DT_RELENT:
11457 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11458 break;
11459
11460 case DT_RELAENT:
11461 BFD_ASSERT (htab->is_vxworks);
11462 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11463 break;
11464
11465 case DT_STRSZ:
11466 /* Rewrite DT_STRSZ. */
11467 dyn.d_un.d_val =
11468 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11469 break;
11470
11471 case DT_PLTGOT:
11472 s = htab->root.sgot;
11473 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11474 break;
11475
11476 case DT_MIPS_PLTGOT:
11477 s = htab->root.sgotplt;
11478 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11479 break;
11480
11481 case DT_MIPS_RLD_VERSION:
11482 dyn.d_un.d_val = 1; /* XXX */
11483 break;
11484
11485 case DT_MIPS_FLAGS:
11486 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11487 break;
11488
11489 case DT_MIPS_TIME_STAMP:
11490 {
11491 time_t t;
11492 time (&t);
11493 dyn.d_un.d_val = t;
11494 }
11495 break;
11496
11497 case DT_MIPS_ICHECKSUM:
11498 /* XXX FIXME: */
11499 swap_out_p = FALSE;
11500 break;
11501
11502 case DT_MIPS_IVERSION:
11503 /* XXX FIXME: */
11504 swap_out_p = FALSE;
11505 break;
11506
11507 case DT_MIPS_BASE_ADDRESS:
11508 s = output_bfd->sections;
11509 BFD_ASSERT (s != NULL);
11510 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11511 break;
11512
11513 case DT_MIPS_LOCAL_GOTNO:
11514 dyn.d_un.d_val = g->local_gotno;
11515 break;
11516
11517 case DT_MIPS_UNREFEXTNO:
11518 /* The index into the dynamic symbol table which is the
11519 entry of the first external symbol that is not
11520 referenced within the same object. */
11521 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11522 break;
11523
11524 case DT_MIPS_GOTSYM:
11525 if (htab->global_gotsym)
11526 {
11527 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11528 break;
11529 }
11530 /* In case if we don't have global got symbols we default
11531 to setting DT_MIPS_GOTSYM to the same value as
11532 DT_MIPS_SYMTABNO. */
11533 /* Fall through. */
11534
11535 case DT_MIPS_SYMTABNO:
11536 name = ".dynsym";
11537 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11538 s = bfd_get_linker_section (dynobj, name);
11539
11540 if (s != NULL)
11541 dyn.d_un.d_val = s->size / elemsize;
11542 else
11543 dyn.d_un.d_val = 0;
11544 break;
11545
11546 case DT_MIPS_HIPAGENO:
11547 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11548 break;
11549
11550 case DT_MIPS_RLD_MAP:
11551 {
11552 struct elf_link_hash_entry *h;
11553 h = mips_elf_hash_table (info)->rld_symbol;
11554 if (!h)
11555 {
11556 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11557 swap_out_p = FALSE;
11558 break;
11559 }
11560 s = h->root.u.def.section;
11561
11562 /* The MIPS_RLD_MAP tag stores the absolute address of the
11563 debug pointer. */
11564 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11565 + h->root.u.def.value);
11566 }
11567 break;
11568
11569 case DT_MIPS_RLD_MAP_REL:
11570 {
11571 struct elf_link_hash_entry *h;
11572 bfd_vma dt_addr, rld_addr;
11573 h = mips_elf_hash_table (info)->rld_symbol;
11574 if (!h)
11575 {
11576 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11577 swap_out_p = FALSE;
11578 break;
11579 }
11580 s = h->root.u.def.section;
11581
11582 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11583 pointer, relative to the address of the tag. */
11584 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
11585 + (b - sdyn->contents));
11586 rld_addr = (s->output_section->vma + s->output_offset
11587 + h->root.u.def.value);
11588 dyn.d_un.d_ptr = rld_addr - dt_addr;
11589 }
11590 break;
11591
11592 case DT_MIPS_OPTIONS:
11593 s = (bfd_get_section_by_name
11594 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11595 dyn.d_un.d_ptr = s->vma;
11596 break;
11597
11598 case DT_PLTREL:
11599 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11600 if (htab->is_vxworks)
11601 dyn.d_un.d_val = DT_RELA;
11602 else
11603 dyn.d_un.d_val = DT_REL;
11604 break;
11605
11606 case DT_PLTRELSZ:
11607 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11608 dyn.d_un.d_val = htab->root.srelplt->size;
11609 break;
11610
11611 case DT_JMPREL:
11612 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11613 dyn.d_un.d_ptr = (htab->root.srelplt->output_section->vma
11614 + htab->root.srelplt->output_offset);
11615 break;
11616
11617 case DT_TEXTREL:
11618 /* If we didn't need any text relocations after all, delete
11619 the dynamic tag. */
11620 if (!(info->flags & DF_TEXTREL))
11621 {
11622 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11623 swap_out_p = FALSE;
11624 }
11625 break;
11626
11627 case DT_FLAGS:
11628 /* If we didn't need any text relocations after all, clear
11629 DF_TEXTREL from DT_FLAGS. */
11630 if (!(info->flags & DF_TEXTREL))
11631 dyn.d_un.d_val &= ~DF_TEXTREL;
11632 else
11633 swap_out_p = FALSE;
11634 break;
11635
11636 default:
11637 swap_out_p = FALSE;
11638 if (htab->is_vxworks
11639 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11640 swap_out_p = TRUE;
11641 break;
11642 }
11643
11644 if (swap_out_p || dyn_skipped)
11645 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11646 (dynobj, &dyn, b - dyn_skipped);
11647
11648 if (dyn_to_skip)
11649 {
11650 dyn_skipped += dyn_to_skip;
11651 dyn_to_skip = 0;
11652 }
11653 }
11654
11655 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11656 if (dyn_skipped > 0)
11657 memset (b - dyn_skipped, 0, dyn_skipped);
11658 }
11659
11660 if (sgot != NULL && sgot->size > 0
11661 && !bfd_is_abs_section (sgot->output_section))
11662 {
11663 if (htab->is_vxworks)
11664 {
11665 /* The first entry of the global offset table points to the
11666 ".dynamic" section. The second is initialized by the
11667 loader and contains the shared library identifier.
11668 The third is also initialized by the loader and points
11669 to the lazy resolution stub. */
11670 MIPS_ELF_PUT_WORD (output_bfd,
11671 sdyn->output_offset + sdyn->output_section->vma,
11672 sgot->contents);
11673 MIPS_ELF_PUT_WORD (output_bfd, 0,
11674 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11675 MIPS_ELF_PUT_WORD (output_bfd, 0,
11676 sgot->contents
11677 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11678 }
11679 else
11680 {
11681 /* The first entry of the global offset table will be filled at
11682 runtime. The second entry will be used by some runtime loaders.
11683 This isn't the case of IRIX rld. */
11684 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
11685 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11686 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11687 }
11688
11689 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11690 = MIPS_ELF_GOT_SIZE (output_bfd);
11691 }
11692
11693 /* Generate dynamic relocations for the non-primary gots. */
11694 if (gg != NULL && gg->next)
11695 {
11696 Elf_Internal_Rela rel[3];
11697 bfd_vma addend = 0;
11698
11699 memset (rel, 0, sizeof (rel));
11700 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11701
11702 for (g = gg->next; g->next != gg; g = g->next)
11703 {
11704 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
11705 + g->next->tls_gotno;
11706
11707 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
11708 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11709 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11710 sgot->contents
11711 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11712
11713 if (! bfd_link_pic (info))
11714 continue;
11715
11716 for (; got_index < g->local_gotno; got_index++)
11717 {
11718 if (got_index >= g->assigned_low_gotno
11719 && got_index <= g->assigned_high_gotno)
11720 continue;
11721
11722 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
11723 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
11724 if (!(mips_elf_create_dynamic_relocation
11725 (output_bfd, info, rel, NULL,
11726 bfd_abs_section_ptr,
11727 0, &addend, sgot)))
11728 return FALSE;
11729 BFD_ASSERT (addend == 0);
11730 }
11731 }
11732 }
11733
11734 /* The generation of dynamic relocations for the non-primary gots
11735 adds more dynamic relocations. We cannot count them until
11736 here. */
11737
11738 if (elf_hash_table (info)->dynamic_sections_created)
11739 {
11740 bfd_byte *b;
11741 bfd_boolean swap_out_p;
11742
11743 BFD_ASSERT (sdyn != NULL);
11744
11745 for (b = sdyn->contents;
11746 b < sdyn->contents + sdyn->size;
11747 b += MIPS_ELF_DYN_SIZE (dynobj))
11748 {
11749 Elf_Internal_Dyn dyn;
11750 asection *s;
11751
11752 /* Read in the current dynamic entry. */
11753 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11754
11755 /* Assume that we're going to modify it and write it out. */
11756 swap_out_p = TRUE;
11757
11758 switch (dyn.d_tag)
11759 {
11760 case DT_RELSZ:
11761 /* Reduce DT_RELSZ to account for any relocations we
11762 decided not to make. This is for the n64 irix rld,
11763 which doesn't seem to apply any relocations if there
11764 are trailing null entries. */
11765 s = mips_elf_rel_dyn_section (info, FALSE);
11766 dyn.d_un.d_val = (s->reloc_count
11767 * (ABI_64_P (output_bfd)
11768 ? sizeof (Elf64_Mips_External_Rel)
11769 : sizeof (Elf32_External_Rel)));
11770 /* Adjust the section size too. Tools like the prelinker
11771 can reasonably expect the values to the same. */
11772 elf_section_data (s->output_section)->this_hdr.sh_size
11773 = dyn.d_un.d_val;
11774 break;
11775
11776 default:
11777 swap_out_p = FALSE;
11778 break;
11779 }
11780
11781 if (swap_out_p)
11782 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11783 (dynobj, &dyn, b);
11784 }
11785 }
11786
11787 {
11788 asection *s;
11789 Elf32_compact_rel cpt;
11790
11791 if (SGI_COMPAT (output_bfd))
11792 {
11793 /* Write .compact_rel section out. */
11794 s = bfd_get_linker_section (dynobj, ".compact_rel");
11795 if (s != NULL)
11796 {
11797 cpt.id1 = 1;
11798 cpt.num = s->reloc_count;
11799 cpt.id2 = 2;
11800 cpt.offset = (s->output_section->filepos
11801 + sizeof (Elf32_External_compact_rel));
11802 cpt.reserved0 = 0;
11803 cpt.reserved1 = 0;
11804 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
11805 ((Elf32_External_compact_rel *)
11806 s->contents));
11807
11808 /* Clean up a dummy stub function entry in .text. */
11809 if (htab->sstubs != NULL)
11810 {
11811 file_ptr dummy_offset;
11812
11813 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
11814 dummy_offset = htab->sstubs->size - htab->function_stub_size;
11815 memset (htab->sstubs->contents + dummy_offset, 0,
11816 htab->function_stub_size);
11817 }
11818 }
11819 }
11820
11821 /* The psABI says that the dynamic relocations must be sorted in
11822 increasing order of r_symndx. The VxWorks EABI doesn't require
11823 this, and because the code below handles REL rather than RELA
11824 relocations, using it for VxWorks would be outright harmful. */
11825 if (!htab->is_vxworks)
11826 {
11827 s = mips_elf_rel_dyn_section (info, FALSE);
11828 if (s != NULL
11829 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
11830 {
11831 reldyn_sorting_bfd = output_bfd;
11832
11833 if (ABI_64_P (output_bfd))
11834 qsort ((Elf64_External_Rel *) s->contents + 1,
11835 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
11836 sort_dynamic_relocs_64);
11837 else
11838 qsort ((Elf32_External_Rel *) s->contents + 1,
11839 s->reloc_count - 1, sizeof (Elf32_External_Rel),
11840 sort_dynamic_relocs);
11841 }
11842 }
11843 }
11844
11845 if (htab->root.splt && htab->root.splt->size > 0)
11846 {
11847 if (htab->is_vxworks)
11848 {
11849 if (bfd_link_pic (info))
11850 mips_vxworks_finish_shared_plt (output_bfd, info);
11851 else
11852 mips_vxworks_finish_exec_plt (output_bfd, info);
11853 }
11854 else
11855 {
11856 BFD_ASSERT (!bfd_link_pic (info));
11857 if (!mips_finish_exec_plt (output_bfd, info))
11858 return FALSE;
11859 }
11860 }
11861 return TRUE;
11862 }
11863
11864
11865 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
11866
11867 static void
11868 mips_set_isa_flags (bfd *abfd)
11869 {
11870 flagword val;
11871
11872 switch (bfd_get_mach (abfd))
11873 {
11874 default:
11875 case bfd_mach_mips3000:
11876 val = E_MIPS_ARCH_1;
11877 break;
11878
11879 case bfd_mach_mips3900:
11880 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
11881 break;
11882
11883 case bfd_mach_mips6000:
11884 val = E_MIPS_ARCH_2;
11885 break;
11886
11887 case bfd_mach_mips4010:
11888 val = E_MIPS_ARCH_2 | E_MIPS_MACH_4010;
11889 break;
11890
11891 case bfd_mach_mips4000:
11892 case bfd_mach_mips4300:
11893 case bfd_mach_mips4400:
11894 case bfd_mach_mips4600:
11895 val = E_MIPS_ARCH_3;
11896 break;
11897
11898 case bfd_mach_mips4100:
11899 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
11900 break;
11901
11902 case bfd_mach_mips4111:
11903 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
11904 break;
11905
11906 case bfd_mach_mips4120:
11907 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
11908 break;
11909
11910 case bfd_mach_mips4650:
11911 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
11912 break;
11913
11914 case bfd_mach_mips5400:
11915 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
11916 break;
11917
11918 case bfd_mach_mips5500:
11919 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
11920 break;
11921
11922 case bfd_mach_mips5900:
11923 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
11924 break;
11925
11926 case bfd_mach_mips9000:
11927 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
11928 break;
11929
11930 case bfd_mach_mips5000:
11931 case bfd_mach_mips7000:
11932 case bfd_mach_mips8000:
11933 case bfd_mach_mips10000:
11934 case bfd_mach_mips12000:
11935 case bfd_mach_mips14000:
11936 case bfd_mach_mips16000:
11937 val = E_MIPS_ARCH_4;
11938 break;
11939
11940 case bfd_mach_mips5:
11941 val = E_MIPS_ARCH_5;
11942 break;
11943
11944 case bfd_mach_mips_loongson_2e:
11945 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
11946 break;
11947
11948 case bfd_mach_mips_loongson_2f:
11949 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
11950 break;
11951
11952 case bfd_mach_mips_sb1:
11953 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
11954 break;
11955
11956 case bfd_mach_mips_loongson_3a:
11957 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A;
11958 break;
11959
11960 case bfd_mach_mips_octeon:
11961 case bfd_mach_mips_octeonp:
11962 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
11963 break;
11964
11965 case bfd_mach_mips_octeon3:
11966 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
11967 break;
11968
11969 case bfd_mach_mips_xlr:
11970 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
11971 break;
11972
11973 case bfd_mach_mips_octeon2:
11974 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
11975 break;
11976
11977 case bfd_mach_mipsisa32:
11978 val = E_MIPS_ARCH_32;
11979 break;
11980
11981 case bfd_mach_mipsisa64:
11982 val = E_MIPS_ARCH_64;
11983 break;
11984
11985 case bfd_mach_mipsisa32r2:
11986 case bfd_mach_mipsisa32r3:
11987 case bfd_mach_mipsisa32r5:
11988 val = E_MIPS_ARCH_32R2;
11989 break;
11990
11991 case bfd_mach_mips_interaptiv_mr2:
11992 val = E_MIPS_ARCH_32R2 | E_MIPS_MACH_IAMR2;
11993 break;
11994
11995 case bfd_mach_mipsisa64r2:
11996 case bfd_mach_mipsisa64r3:
11997 case bfd_mach_mipsisa64r5:
11998 val = E_MIPS_ARCH_64R2;
11999 break;
12000
12001 case bfd_mach_mipsisa32r6:
12002 val = E_MIPS_ARCH_32R6;
12003 break;
12004
12005 case bfd_mach_mipsisa64r6:
12006 val = E_MIPS_ARCH_64R6;
12007 break;
12008 }
12009 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12010 elf_elfheader (abfd)->e_flags |= val;
12011
12012 }
12013
12014
12015 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12016 Don't do so for code sections. We want to keep ordering of HI16/LO16
12017 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12018 relocs to be sorted. */
12019
12020 bfd_boolean
12021 _bfd_mips_elf_sort_relocs_p (asection *sec)
12022 {
12023 return (sec->flags & SEC_CODE) == 0;
12024 }
12025
12026
12027 /* The final processing done just before writing out a MIPS ELF object
12028 file. This gets the MIPS architecture right based on the machine
12029 number. This is used by both the 32-bit and the 64-bit ABI. */
12030
12031 void
12032 _bfd_mips_elf_final_write_processing (bfd *abfd,
12033 bfd_boolean linker ATTRIBUTE_UNUSED)
12034 {
12035 unsigned int i;
12036 Elf_Internal_Shdr **hdrpp;
12037 const char *name;
12038 asection *sec;
12039
12040 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12041 is nonzero. This is for compatibility with old objects, which used
12042 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12043 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12044 mips_set_isa_flags (abfd);
12045
12046 /* Set the sh_info field for .gptab sections and other appropriate
12047 info for each special section. */
12048 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12049 i < elf_numsections (abfd);
12050 i++, hdrpp++)
12051 {
12052 switch ((*hdrpp)->sh_type)
12053 {
12054 case SHT_MIPS_MSYM:
12055 case SHT_MIPS_LIBLIST:
12056 sec = bfd_get_section_by_name (abfd, ".dynstr");
12057 if (sec != NULL)
12058 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12059 break;
12060
12061 case SHT_MIPS_GPTAB:
12062 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12063 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12064 BFD_ASSERT (name != NULL
12065 && CONST_STRNEQ (name, ".gptab."));
12066 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12067 BFD_ASSERT (sec != NULL);
12068 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12069 break;
12070
12071 case SHT_MIPS_CONTENT:
12072 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12073 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12074 BFD_ASSERT (name != NULL
12075 && CONST_STRNEQ (name, ".MIPS.content"));
12076 sec = bfd_get_section_by_name (abfd,
12077 name + sizeof ".MIPS.content" - 1);
12078 BFD_ASSERT (sec != NULL);
12079 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12080 break;
12081
12082 case SHT_MIPS_SYMBOL_LIB:
12083 sec = bfd_get_section_by_name (abfd, ".dynsym");
12084 if (sec != NULL)
12085 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12086 sec = bfd_get_section_by_name (abfd, ".liblist");
12087 if (sec != NULL)
12088 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12089 break;
12090
12091 case SHT_MIPS_EVENTS:
12092 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12093 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12094 BFD_ASSERT (name != NULL);
12095 if (CONST_STRNEQ (name, ".MIPS.events"))
12096 sec = bfd_get_section_by_name (abfd,
12097 name + sizeof ".MIPS.events" - 1);
12098 else
12099 {
12100 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
12101 sec = bfd_get_section_by_name (abfd,
12102 (name
12103 + sizeof ".MIPS.post_rel" - 1));
12104 }
12105 BFD_ASSERT (sec != NULL);
12106 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12107 break;
12108
12109 }
12110 }
12111 }
12112 \f
12113 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12114 segments. */
12115
12116 int
12117 _bfd_mips_elf_additional_program_headers (bfd *abfd,
12118 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12119 {
12120 asection *s;
12121 int ret = 0;
12122
12123 /* See if we need a PT_MIPS_REGINFO segment. */
12124 s = bfd_get_section_by_name (abfd, ".reginfo");
12125 if (s && (s->flags & SEC_LOAD))
12126 ++ret;
12127
12128 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12129 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12130 ++ret;
12131
12132 /* See if we need a PT_MIPS_OPTIONS segment. */
12133 if (IRIX_COMPAT (abfd) == ict_irix6
12134 && bfd_get_section_by_name (abfd,
12135 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12136 ++ret;
12137
12138 /* See if we need a PT_MIPS_RTPROC segment. */
12139 if (IRIX_COMPAT (abfd) == ict_irix5
12140 && bfd_get_section_by_name (abfd, ".dynamic")
12141 && bfd_get_section_by_name (abfd, ".mdebug"))
12142 ++ret;
12143
12144 /* Allocate a PT_NULL header in dynamic objects. See
12145 _bfd_mips_elf_modify_segment_map for details. */
12146 if (!SGI_COMPAT (abfd)
12147 && bfd_get_section_by_name (abfd, ".dynamic"))
12148 ++ret;
12149
12150 return ret;
12151 }
12152
12153 /* Modify the segment map for an IRIX5 executable. */
12154
12155 bfd_boolean
12156 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12157 struct bfd_link_info *info)
12158 {
12159 asection *s;
12160 struct elf_segment_map *m, **pm;
12161 bfd_size_type amt;
12162
12163 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12164 segment. */
12165 s = bfd_get_section_by_name (abfd, ".reginfo");
12166 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12167 {
12168 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12169 if (m->p_type == PT_MIPS_REGINFO)
12170 break;
12171 if (m == NULL)
12172 {
12173 amt = sizeof *m;
12174 m = bfd_zalloc (abfd, amt);
12175 if (m == NULL)
12176 return FALSE;
12177
12178 m->p_type = PT_MIPS_REGINFO;
12179 m->count = 1;
12180 m->sections[0] = s;
12181
12182 /* We want to put it after the PHDR and INTERP segments. */
12183 pm = &elf_seg_map (abfd);
12184 while (*pm != NULL
12185 && ((*pm)->p_type == PT_PHDR
12186 || (*pm)->p_type == PT_INTERP))
12187 pm = &(*pm)->next;
12188
12189 m->next = *pm;
12190 *pm = m;
12191 }
12192 }
12193
12194 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12195 segment. */
12196 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12197 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12198 {
12199 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12200 if (m->p_type == PT_MIPS_ABIFLAGS)
12201 break;
12202 if (m == NULL)
12203 {
12204 amt = sizeof *m;
12205 m = bfd_zalloc (abfd, amt);
12206 if (m == NULL)
12207 return FALSE;
12208
12209 m->p_type = PT_MIPS_ABIFLAGS;
12210 m->count = 1;
12211 m->sections[0] = s;
12212
12213 /* We want to put it after the PHDR and INTERP segments. */
12214 pm = &elf_seg_map (abfd);
12215 while (*pm != NULL
12216 && ((*pm)->p_type == PT_PHDR
12217 || (*pm)->p_type == PT_INTERP))
12218 pm = &(*pm)->next;
12219
12220 m->next = *pm;
12221 *pm = m;
12222 }
12223 }
12224
12225 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12226 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12227 PT_MIPS_OPTIONS segment immediately following the program header
12228 table. */
12229 if (NEWABI_P (abfd)
12230 /* On non-IRIX6 new abi, we'll have already created a segment
12231 for this section, so don't create another. I'm not sure this
12232 is not also the case for IRIX 6, but I can't test it right
12233 now. */
12234 && IRIX_COMPAT (abfd) == ict_irix6)
12235 {
12236 for (s = abfd->sections; s; s = s->next)
12237 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12238 break;
12239
12240 if (s)
12241 {
12242 struct elf_segment_map *options_segment;
12243
12244 pm = &elf_seg_map (abfd);
12245 while (*pm != NULL
12246 && ((*pm)->p_type == PT_PHDR
12247 || (*pm)->p_type == PT_INTERP))
12248 pm = &(*pm)->next;
12249
12250 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12251 {
12252 amt = sizeof (struct elf_segment_map);
12253 options_segment = bfd_zalloc (abfd, amt);
12254 options_segment->next = *pm;
12255 options_segment->p_type = PT_MIPS_OPTIONS;
12256 options_segment->p_flags = PF_R;
12257 options_segment->p_flags_valid = TRUE;
12258 options_segment->count = 1;
12259 options_segment->sections[0] = s;
12260 *pm = options_segment;
12261 }
12262 }
12263 }
12264 else
12265 {
12266 if (IRIX_COMPAT (abfd) == ict_irix5)
12267 {
12268 /* If there are .dynamic and .mdebug sections, we make a room
12269 for the RTPROC header. FIXME: Rewrite without section names. */
12270 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12271 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12272 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12273 {
12274 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12275 if (m->p_type == PT_MIPS_RTPROC)
12276 break;
12277 if (m == NULL)
12278 {
12279 amt = sizeof *m;
12280 m = bfd_zalloc (abfd, amt);
12281 if (m == NULL)
12282 return FALSE;
12283
12284 m->p_type = PT_MIPS_RTPROC;
12285
12286 s = bfd_get_section_by_name (abfd, ".rtproc");
12287 if (s == NULL)
12288 {
12289 m->count = 0;
12290 m->p_flags = 0;
12291 m->p_flags_valid = 1;
12292 }
12293 else
12294 {
12295 m->count = 1;
12296 m->sections[0] = s;
12297 }
12298
12299 /* We want to put it after the DYNAMIC segment. */
12300 pm = &elf_seg_map (abfd);
12301 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12302 pm = &(*pm)->next;
12303 if (*pm != NULL)
12304 pm = &(*pm)->next;
12305
12306 m->next = *pm;
12307 *pm = m;
12308 }
12309 }
12310 }
12311 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12312 .dynstr, .dynsym, and .hash sections, and everything in
12313 between. */
12314 for (pm = &elf_seg_map (abfd); *pm != NULL;
12315 pm = &(*pm)->next)
12316 if ((*pm)->p_type == PT_DYNAMIC)
12317 break;
12318 m = *pm;
12319 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12320 glibc's dynamic linker has traditionally derived the number of
12321 tags from the p_filesz field, and sometimes allocates stack
12322 arrays of that size. An overly-big PT_DYNAMIC segment can
12323 be actively harmful in such cases. Making PT_DYNAMIC contain
12324 other sections can also make life hard for the prelinker,
12325 which might move one of the other sections to a different
12326 PT_LOAD segment. */
12327 if (SGI_COMPAT (abfd)
12328 && m != NULL
12329 && m->count == 1
12330 && strcmp (m->sections[0]->name, ".dynamic") == 0)
12331 {
12332 static const char *sec_names[] =
12333 {
12334 ".dynamic", ".dynstr", ".dynsym", ".hash"
12335 };
12336 bfd_vma low, high;
12337 unsigned int i, c;
12338 struct elf_segment_map *n;
12339
12340 low = ~(bfd_vma) 0;
12341 high = 0;
12342 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12343 {
12344 s = bfd_get_section_by_name (abfd, sec_names[i]);
12345 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12346 {
12347 bfd_size_type sz;
12348
12349 if (low > s->vma)
12350 low = s->vma;
12351 sz = s->size;
12352 if (high < s->vma + sz)
12353 high = s->vma + sz;
12354 }
12355 }
12356
12357 c = 0;
12358 for (s = abfd->sections; s != NULL; s = s->next)
12359 if ((s->flags & SEC_LOAD) != 0
12360 && s->vma >= low
12361 && s->vma + s->size <= high)
12362 ++c;
12363
12364 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
12365 n = bfd_zalloc (abfd, amt);
12366 if (n == NULL)
12367 return FALSE;
12368 *n = *m;
12369 n->count = c;
12370
12371 i = 0;
12372 for (s = abfd->sections; s != NULL; s = s->next)
12373 {
12374 if ((s->flags & SEC_LOAD) != 0
12375 && s->vma >= low
12376 && s->vma + s->size <= high)
12377 {
12378 n->sections[i] = s;
12379 ++i;
12380 }
12381 }
12382
12383 *pm = n;
12384 }
12385 }
12386
12387 /* Allocate a spare program header in dynamic objects so that tools
12388 like the prelinker can add an extra PT_LOAD entry.
12389
12390 If the prelinker needs to make room for a new PT_LOAD entry, its
12391 standard procedure is to move the first (read-only) sections into
12392 the new (writable) segment. However, the MIPS ABI requires
12393 .dynamic to be in a read-only segment, and the section will often
12394 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12395
12396 Although the prelinker could in principle move .dynamic to a
12397 writable segment, it seems better to allocate a spare program
12398 header instead, and avoid the need to move any sections.
12399 There is a long tradition of allocating spare dynamic tags,
12400 so allocating a spare program header seems like a natural
12401 extension.
12402
12403 If INFO is NULL, we may be copying an already prelinked binary
12404 with objcopy or strip, so do not add this header. */
12405 if (info != NULL
12406 && !SGI_COMPAT (abfd)
12407 && bfd_get_section_by_name (abfd, ".dynamic"))
12408 {
12409 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12410 if ((*pm)->p_type == PT_NULL)
12411 break;
12412 if (*pm == NULL)
12413 {
12414 m = bfd_zalloc (abfd, sizeof (*m));
12415 if (m == NULL)
12416 return FALSE;
12417
12418 m->p_type = PT_NULL;
12419 *pm = m;
12420 }
12421 }
12422
12423 return TRUE;
12424 }
12425 \f
12426 /* Return the section that should be marked against GC for a given
12427 relocation. */
12428
12429 asection *
12430 _bfd_mips_elf_gc_mark_hook (asection *sec,
12431 struct bfd_link_info *info,
12432 Elf_Internal_Rela *rel,
12433 struct elf_link_hash_entry *h,
12434 Elf_Internal_Sym *sym)
12435 {
12436 /* ??? Do mips16 stub sections need to be handled special? */
12437
12438 if (h != NULL)
12439 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12440 {
12441 case R_MIPS_GNU_VTINHERIT:
12442 case R_MIPS_GNU_VTENTRY:
12443 return NULL;
12444 }
12445
12446 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12447 }
12448
12449 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12450
12451 bfd_boolean
12452 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12453 elf_gc_mark_hook_fn gc_mark_hook)
12454 {
12455 bfd *sub;
12456
12457 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12458
12459 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12460 {
12461 asection *o;
12462
12463 if (! is_mips_elf (sub))
12464 continue;
12465
12466 for (o = sub->sections; o != NULL; o = o->next)
12467 if (!o->gc_mark
12468 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12469 (bfd_get_section_name (sub, o)))
12470 {
12471 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12472 return FALSE;
12473 }
12474 }
12475
12476 return TRUE;
12477 }
12478 \f
12479 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12480 hiding the old indirect symbol. Process additional relocation
12481 information. Also called for weakdefs, in which case we just let
12482 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12483
12484 void
12485 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12486 struct elf_link_hash_entry *dir,
12487 struct elf_link_hash_entry *ind)
12488 {
12489 struct mips_elf_link_hash_entry *dirmips, *indmips;
12490
12491 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12492
12493 dirmips = (struct mips_elf_link_hash_entry *) dir;
12494 indmips = (struct mips_elf_link_hash_entry *) ind;
12495 /* Any absolute non-dynamic relocations against an indirect or weak
12496 definition will be against the target symbol. */
12497 if (indmips->has_static_relocs)
12498 dirmips->has_static_relocs = TRUE;
12499
12500 if (ind->root.type != bfd_link_hash_indirect)
12501 return;
12502
12503 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12504 if (indmips->readonly_reloc)
12505 dirmips->readonly_reloc = TRUE;
12506 if (indmips->no_fn_stub)
12507 dirmips->no_fn_stub = TRUE;
12508 if (indmips->fn_stub)
12509 {
12510 dirmips->fn_stub = indmips->fn_stub;
12511 indmips->fn_stub = NULL;
12512 }
12513 if (indmips->need_fn_stub)
12514 {
12515 dirmips->need_fn_stub = TRUE;
12516 indmips->need_fn_stub = FALSE;
12517 }
12518 if (indmips->call_stub)
12519 {
12520 dirmips->call_stub = indmips->call_stub;
12521 indmips->call_stub = NULL;
12522 }
12523 if (indmips->call_fp_stub)
12524 {
12525 dirmips->call_fp_stub = indmips->call_fp_stub;
12526 indmips->call_fp_stub = NULL;
12527 }
12528 if (indmips->global_got_area < dirmips->global_got_area)
12529 dirmips->global_got_area = indmips->global_got_area;
12530 if (indmips->global_got_area < GGA_NONE)
12531 indmips->global_got_area = GGA_NONE;
12532 if (indmips->has_nonpic_branches)
12533 dirmips->has_nonpic_branches = TRUE;
12534 }
12535 \f
12536 #define PDR_SIZE 32
12537
12538 bfd_boolean
12539 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12540 struct bfd_link_info *info)
12541 {
12542 asection *o;
12543 bfd_boolean ret = FALSE;
12544 unsigned char *tdata;
12545 size_t i, skip;
12546
12547 o = bfd_get_section_by_name (abfd, ".pdr");
12548 if (! o)
12549 return FALSE;
12550 if (o->size == 0)
12551 return FALSE;
12552 if (o->size % PDR_SIZE != 0)
12553 return FALSE;
12554 if (o->output_section != NULL
12555 && bfd_is_abs_section (o->output_section))
12556 return FALSE;
12557
12558 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12559 if (! tdata)
12560 return FALSE;
12561
12562 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12563 info->keep_memory);
12564 if (!cookie->rels)
12565 {
12566 free (tdata);
12567 return FALSE;
12568 }
12569
12570 cookie->rel = cookie->rels;
12571 cookie->relend = cookie->rels + o->reloc_count;
12572
12573 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12574 {
12575 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12576 {
12577 tdata[i] = 1;
12578 skip ++;
12579 }
12580 }
12581
12582 if (skip != 0)
12583 {
12584 mips_elf_section_data (o)->u.tdata = tdata;
12585 if (o->rawsize == 0)
12586 o->rawsize = o->size;
12587 o->size -= skip * PDR_SIZE;
12588 ret = TRUE;
12589 }
12590 else
12591 free (tdata);
12592
12593 if (! info->keep_memory)
12594 free (cookie->rels);
12595
12596 return ret;
12597 }
12598
12599 bfd_boolean
12600 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
12601 {
12602 if (strcmp (sec->name, ".pdr") == 0)
12603 return TRUE;
12604 return FALSE;
12605 }
12606
12607 bfd_boolean
12608 _bfd_mips_elf_write_section (bfd *output_bfd,
12609 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12610 asection *sec, bfd_byte *contents)
12611 {
12612 bfd_byte *to, *from, *end;
12613 int i;
12614
12615 if (strcmp (sec->name, ".pdr") != 0)
12616 return FALSE;
12617
12618 if (mips_elf_section_data (sec)->u.tdata == NULL)
12619 return FALSE;
12620
12621 to = contents;
12622 end = contents + sec->size;
12623 for (from = contents, i = 0;
12624 from < end;
12625 from += PDR_SIZE, i++)
12626 {
12627 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
12628 continue;
12629 if (to != from)
12630 memcpy (to, from, PDR_SIZE);
12631 to += PDR_SIZE;
12632 }
12633 bfd_set_section_contents (output_bfd, sec->output_section, contents,
12634 sec->output_offset, sec->size);
12635 return TRUE;
12636 }
12637 \f
12638 /* microMIPS code retains local labels for linker relaxation. Omit them
12639 from output by default for clarity. */
12640
12641 bfd_boolean
12642 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12643 {
12644 return _bfd_elf_is_local_label_name (abfd, sym->name);
12645 }
12646
12647 /* MIPS ELF uses a special find_nearest_line routine in order the
12648 handle the ECOFF debugging information. */
12649
12650 struct mips_elf_find_line
12651 {
12652 struct ecoff_debug_info d;
12653 struct ecoff_find_line i;
12654 };
12655
12656 bfd_boolean
12657 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
12658 asection *section, bfd_vma offset,
12659 const char **filename_ptr,
12660 const char **functionname_ptr,
12661 unsigned int *line_ptr,
12662 unsigned int *discriminator_ptr)
12663 {
12664 asection *msec;
12665
12666 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
12667 filename_ptr, functionname_ptr,
12668 line_ptr, discriminator_ptr,
12669 dwarf_debug_sections,
12670 ABI_64_P (abfd) ? 8 : 0,
12671 &elf_tdata (abfd)->dwarf2_find_line_info)
12672 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
12673 filename_ptr, functionname_ptr,
12674 line_ptr))
12675 {
12676 /* PR 22789: If the function name or filename was not found through
12677 the debug information, then try an ordinary lookup instead. */
12678 if ((functionname_ptr != NULL && *functionname_ptr == NULL)
12679 || (filename_ptr != NULL && *filename_ptr == NULL))
12680 {
12681 /* Do not override already discovered names. */
12682 if (functionname_ptr != NULL && *functionname_ptr != NULL)
12683 functionname_ptr = NULL;
12684
12685 if (filename_ptr != NULL && *filename_ptr != NULL)
12686 filename_ptr = NULL;
12687
12688 _bfd_elf_find_function (abfd, symbols, section, offset,
12689 filename_ptr, functionname_ptr);
12690 }
12691
12692 return TRUE;
12693 }
12694
12695 msec = bfd_get_section_by_name (abfd, ".mdebug");
12696 if (msec != NULL)
12697 {
12698 flagword origflags;
12699 struct mips_elf_find_line *fi;
12700 const struct ecoff_debug_swap * const swap =
12701 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12702
12703 /* If we are called during a link, mips_elf_final_link may have
12704 cleared the SEC_HAS_CONTENTS field. We force it back on here
12705 if appropriate (which it normally will be). */
12706 origflags = msec->flags;
12707 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12708 msec->flags |= SEC_HAS_CONTENTS;
12709
12710 fi = mips_elf_tdata (abfd)->find_line_info;
12711 if (fi == NULL)
12712 {
12713 bfd_size_type external_fdr_size;
12714 char *fraw_src;
12715 char *fraw_end;
12716 struct fdr *fdr_ptr;
12717 bfd_size_type amt = sizeof (struct mips_elf_find_line);
12718
12719 fi = bfd_zalloc (abfd, amt);
12720 if (fi == NULL)
12721 {
12722 msec->flags = origflags;
12723 return FALSE;
12724 }
12725
12726 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12727 {
12728 msec->flags = origflags;
12729 return FALSE;
12730 }
12731
12732 /* Swap in the FDR information. */
12733 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
12734 fi->d.fdr = bfd_alloc (abfd, amt);
12735 if (fi->d.fdr == NULL)
12736 {
12737 msec->flags = origflags;
12738 return FALSE;
12739 }
12740 external_fdr_size = swap->external_fdr_size;
12741 fdr_ptr = fi->d.fdr;
12742 fraw_src = (char *) fi->d.external_fdr;
12743 fraw_end = (fraw_src
12744 + fi->d.symbolic_header.ifdMax * external_fdr_size);
12745 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
12746 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
12747
12748 mips_elf_tdata (abfd)->find_line_info = fi;
12749
12750 /* Note that we don't bother to ever free this information.
12751 find_nearest_line is either called all the time, as in
12752 objdump -l, so the information should be saved, or it is
12753 rarely called, as in ld error messages, so the memory
12754 wasted is unimportant. Still, it would probably be a
12755 good idea for free_cached_info to throw it away. */
12756 }
12757
12758 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
12759 &fi->i, filename_ptr, functionname_ptr,
12760 line_ptr))
12761 {
12762 msec->flags = origflags;
12763 return TRUE;
12764 }
12765
12766 msec->flags = origflags;
12767 }
12768
12769 /* Fall back on the generic ELF find_nearest_line routine. */
12770
12771 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
12772 filename_ptr, functionname_ptr,
12773 line_ptr, discriminator_ptr);
12774 }
12775
12776 bfd_boolean
12777 _bfd_mips_elf_find_inliner_info (bfd *abfd,
12778 const char **filename_ptr,
12779 const char **functionname_ptr,
12780 unsigned int *line_ptr)
12781 {
12782 bfd_boolean found;
12783 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12784 functionname_ptr, line_ptr,
12785 & elf_tdata (abfd)->dwarf2_find_line_info);
12786 return found;
12787 }
12788
12789 \f
12790 /* When are writing out the .options or .MIPS.options section,
12791 remember the bytes we are writing out, so that we can install the
12792 GP value in the section_processing routine. */
12793
12794 bfd_boolean
12795 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
12796 const void *location,
12797 file_ptr offset, bfd_size_type count)
12798 {
12799 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
12800 {
12801 bfd_byte *c;
12802
12803 if (elf_section_data (section) == NULL)
12804 {
12805 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
12806 section->used_by_bfd = bfd_zalloc (abfd, amt);
12807 if (elf_section_data (section) == NULL)
12808 return FALSE;
12809 }
12810 c = mips_elf_section_data (section)->u.tdata;
12811 if (c == NULL)
12812 {
12813 c = bfd_zalloc (abfd, section->size);
12814 if (c == NULL)
12815 return FALSE;
12816 mips_elf_section_data (section)->u.tdata = c;
12817 }
12818
12819 memcpy (c + offset, location, count);
12820 }
12821
12822 return _bfd_elf_set_section_contents (abfd, section, location, offset,
12823 count);
12824 }
12825
12826 /* This is almost identical to bfd_generic_get_... except that some
12827 MIPS relocations need to be handled specially. Sigh. */
12828
12829 bfd_byte *
12830 _bfd_elf_mips_get_relocated_section_contents
12831 (bfd *abfd,
12832 struct bfd_link_info *link_info,
12833 struct bfd_link_order *link_order,
12834 bfd_byte *data,
12835 bfd_boolean relocatable,
12836 asymbol **symbols)
12837 {
12838 /* Get enough memory to hold the stuff */
12839 bfd *input_bfd = link_order->u.indirect.section->owner;
12840 asection *input_section = link_order->u.indirect.section;
12841 bfd_size_type sz;
12842
12843 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
12844 arelent **reloc_vector = NULL;
12845 long reloc_count;
12846
12847 if (reloc_size < 0)
12848 goto error_return;
12849
12850 reloc_vector = bfd_malloc (reloc_size);
12851 if (reloc_vector == NULL && reloc_size != 0)
12852 goto error_return;
12853
12854 /* read in the section */
12855 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
12856 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
12857 goto error_return;
12858
12859 reloc_count = bfd_canonicalize_reloc (input_bfd,
12860 input_section,
12861 reloc_vector,
12862 symbols);
12863 if (reloc_count < 0)
12864 goto error_return;
12865
12866 if (reloc_count > 0)
12867 {
12868 arelent **parent;
12869 /* for mips */
12870 int gp_found;
12871 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
12872
12873 {
12874 struct bfd_hash_entry *h;
12875 struct bfd_link_hash_entry *lh;
12876 /* Skip all this stuff if we aren't mixing formats. */
12877 if (abfd && input_bfd
12878 && abfd->xvec == input_bfd->xvec)
12879 lh = 0;
12880 else
12881 {
12882 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
12883 lh = (struct bfd_link_hash_entry *) h;
12884 }
12885 lookup:
12886 if (lh)
12887 {
12888 switch (lh->type)
12889 {
12890 case bfd_link_hash_undefined:
12891 case bfd_link_hash_undefweak:
12892 case bfd_link_hash_common:
12893 gp_found = 0;
12894 break;
12895 case bfd_link_hash_defined:
12896 case bfd_link_hash_defweak:
12897 gp_found = 1;
12898 gp = lh->u.def.value;
12899 break;
12900 case bfd_link_hash_indirect:
12901 case bfd_link_hash_warning:
12902 lh = lh->u.i.link;
12903 /* @@FIXME ignoring warning for now */
12904 goto lookup;
12905 case bfd_link_hash_new:
12906 default:
12907 abort ();
12908 }
12909 }
12910 else
12911 gp_found = 0;
12912 }
12913 /* end mips */
12914 for (parent = reloc_vector; *parent != NULL; parent++)
12915 {
12916 char *error_message = NULL;
12917 bfd_reloc_status_type r;
12918
12919 /* Specific to MIPS: Deal with relocation types that require
12920 knowing the gp of the output bfd. */
12921 asymbol *sym = *(*parent)->sym_ptr_ptr;
12922
12923 /* If we've managed to find the gp and have a special
12924 function for the relocation then go ahead, else default
12925 to the generic handling. */
12926 if (gp_found
12927 && (*parent)->howto->special_function
12928 == _bfd_mips_elf32_gprel16_reloc)
12929 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
12930 input_section, relocatable,
12931 data, gp);
12932 else
12933 r = bfd_perform_relocation (input_bfd, *parent, data,
12934 input_section,
12935 relocatable ? abfd : NULL,
12936 &error_message);
12937
12938 if (relocatable)
12939 {
12940 asection *os = input_section->output_section;
12941
12942 /* A partial link, so keep the relocs */
12943 os->orelocation[os->reloc_count] = *parent;
12944 os->reloc_count++;
12945 }
12946
12947 if (r != bfd_reloc_ok)
12948 {
12949 switch (r)
12950 {
12951 case bfd_reloc_undefined:
12952 (*link_info->callbacks->undefined_symbol)
12953 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12954 input_bfd, input_section, (*parent)->address, TRUE);
12955 break;
12956 case bfd_reloc_dangerous:
12957 BFD_ASSERT (error_message != NULL);
12958 (*link_info->callbacks->reloc_dangerous)
12959 (link_info, error_message,
12960 input_bfd, input_section, (*parent)->address);
12961 break;
12962 case bfd_reloc_overflow:
12963 (*link_info->callbacks->reloc_overflow)
12964 (link_info, NULL,
12965 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12966 (*parent)->howto->name, (*parent)->addend,
12967 input_bfd, input_section, (*parent)->address);
12968 break;
12969 case bfd_reloc_outofrange:
12970 default:
12971 abort ();
12972 break;
12973 }
12974
12975 }
12976 }
12977 }
12978 if (reloc_vector != NULL)
12979 free (reloc_vector);
12980 return data;
12981
12982 error_return:
12983 if (reloc_vector != NULL)
12984 free (reloc_vector);
12985 return NULL;
12986 }
12987 \f
12988 static bfd_boolean
12989 mips_elf_relax_delete_bytes (bfd *abfd,
12990 asection *sec, bfd_vma addr, int count)
12991 {
12992 Elf_Internal_Shdr *symtab_hdr;
12993 unsigned int sec_shndx;
12994 bfd_byte *contents;
12995 Elf_Internal_Rela *irel, *irelend;
12996 Elf_Internal_Sym *isym;
12997 Elf_Internal_Sym *isymend;
12998 struct elf_link_hash_entry **sym_hashes;
12999 struct elf_link_hash_entry **end_hashes;
13000 struct elf_link_hash_entry **start_hashes;
13001 unsigned int symcount;
13002
13003 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13004 contents = elf_section_data (sec)->this_hdr.contents;
13005
13006 irel = elf_section_data (sec)->relocs;
13007 irelend = irel + sec->reloc_count;
13008
13009 /* Actually delete the bytes. */
13010 memmove (contents + addr, contents + addr + count,
13011 (size_t) (sec->size - addr - count));
13012 sec->size -= count;
13013
13014 /* Adjust all the relocs. */
13015 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13016 {
13017 /* Get the new reloc address. */
13018 if (irel->r_offset > addr)
13019 irel->r_offset -= count;
13020 }
13021
13022 BFD_ASSERT (addr % 2 == 0);
13023 BFD_ASSERT (count % 2 == 0);
13024
13025 /* Adjust the local symbols defined in this section. */
13026 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13027 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13028 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
13029 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
13030 isym->st_value -= count;
13031
13032 /* Now adjust the global symbols defined in this section. */
13033 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13034 - symtab_hdr->sh_info);
13035 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13036 end_hashes = sym_hashes + symcount;
13037
13038 for (; sym_hashes < end_hashes; sym_hashes++)
13039 {
13040 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13041
13042 if ((sym_hash->root.type == bfd_link_hash_defined
13043 || sym_hash->root.type == bfd_link_hash_defweak)
13044 && sym_hash->root.u.def.section == sec)
13045 {
13046 bfd_vma value = sym_hash->root.u.def.value;
13047
13048 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13049 value &= MINUS_TWO;
13050 if (value > addr)
13051 sym_hash->root.u.def.value -= count;
13052 }
13053 }
13054
13055 return TRUE;
13056 }
13057
13058
13059 /* Opcodes needed for microMIPS relaxation as found in
13060 opcodes/micromips-opc.c. */
13061
13062 struct opcode_descriptor {
13063 unsigned long match;
13064 unsigned long mask;
13065 };
13066
13067 /* The $ra register aka $31. */
13068
13069 #define RA 31
13070
13071 /* 32-bit instruction format register fields. */
13072
13073 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13074 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13075
13076 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
13077
13078 #define OP16_VALID_REG(r) \
13079 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13080
13081
13082 /* 32-bit and 16-bit branches. */
13083
13084 static const struct opcode_descriptor b_insns_32[] = {
13085 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13086 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13087 { 0, 0 } /* End marker for find_match(). */
13088 };
13089
13090 static const struct opcode_descriptor bc_insn_32 =
13091 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13092
13093 static const struct opcode_descriptor bz_insn_32 =
13094 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13095
13096 static const struct opcode_descriptor bzal_insn_32 =
13097 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13098
13099 static const struct opcode_descriptor beq_insn_32 =
13100 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13101
13102 static const struct opcode_descriptor b_insn_16 =
13103 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13104
13105 static const struct opcode_descriptor bz_insn_16 =
13106 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13107
13108
13109 /* 32-bit and 16-bit branch EQ and NE zero. */
13110
13111 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13112 eq and second the ne. This convention is used when replacing a
13113 32-bit BEQ/BNE with the 16-bit version. */
13114
13115 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13116
13117 static const struct opcode_descriptor bz_rs_insns_32[] = {
13118 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13119 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13120 { 0, 0 } /* End marker for find_match(). */
13121 };
13122
13123 static const struct opcode_descriptor bz_rt_insns_32[] = {
13124 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13125 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13126 { 0, 0 } /* End marker for find_match(). */
13127 };
13128
13129 static const struct opcode_descriptor bzc_insns_32[] = {
13130 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13131 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13132 { 0, 0 } /* End marker for find_match(). */
13133 };
13134
13135 static const struct opcode_descriptor bz_insns_16[] = {
13136 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13137 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13138 { 0, 0 } /* End marker for find_match(). */
13139 };
13140
13141 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13142
13143 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
13144 #define BZ16_REG_FIELD(r) (((r) & 7) << 7)
13145
13146
13147 /* 32-bit instructions with a delay slot. */
13148
13149 static const struct opcode_descriptor jal_insn_32_bd16 =
13150 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13151
13152 static const struct opcode_descriptor jal_insn_32_bd32 =
13153 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13154
13155 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13156 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13157
13158 static const struct opcode_descriptor j_insn_32 =
13159 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13160
13161 static const struct opcode_descriptor jalr_insn_32 =
13162 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13163
13164 /* This table can be compacted, because no opcode replacement is made. */
13165
13166 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13167 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13168
13169 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13170 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13171
13172 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13173 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13174 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13175 { 0, 0 } /* End marker for find_match(). */
13176 };
13177
13178 /* This table can be compacted, because no opcode replacement is made. */
13179
13180 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13181 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13182
13183 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13184 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13185 { 0, 0 } /* End marker for find_match(). */
13186 };
13187
13188
13189 /* 16-bit instructions with a delay slot. */
13190
13191 static const struct opcode_descriptor jalr_insn_16_bd16 =
13192 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13193
13194 static const struct opcode_descriptor jalr_insn_16_bd32 =
13195 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13196
13197 static const struct opcode_descriptor jr_insn_16 =
13198 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13199
13200 #define JR16_REG(opcode) ((opcode) & 0x1f)
13201
13202 /* This table can be compacted, because no opcode replacement is made. */
13203
13204 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13205 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13206
13207 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13208 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13209 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13210 { 0, 0 } /* End marker for find_match(). */
13211 };
13212
13213
13214 /* LUI instruction. */
13215
13216 static const struct opcode_descriptor lui_insn =
13217 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13218
13219
13220 /* ADDIU instruction. */
13221
13222 static const struct opcode_descriptor addiu_insn =
13223 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13224
13225 static const struct opcode_descriptor addiupc_insn =
13226 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13227
13228 #define ADDIUPC_REG_FIELD(r) \
13229 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13230
13231
13232 /* Relaxable instructions in a JAL delay slot: MOVE. */
13233
13234 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13235 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13236 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13237 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13238
13239 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13240 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13241
13242 static const struct opcode_descriptor move_insns_32[] = {
13243 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13244 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13245 { 0, 0 } /* End marker for find_match(). */
13246 };
13247
13248 static const struct opcode_descriptor move_insn_16 =
13249 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13250
13251
13252 /* NOP instructions. */
13253
13254 static const struct opcode_descriptor nop_insn_32 =
13255 { /* "nop", "", */ 0x00000000, 0xffffffff };
13256
13257 static const struct opcode_descriptor nop_insn_16 =
13258 { /* "nop", "", */ 0x0c00, 0xffff };
13259
13260
13261 /* Instruction match support. */
13262
13263 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13264
13265 static int
13266 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13267 {
13268 unsigned long indx;
13269
13270 for (indx = 0; insn[indx].mask != 0; indx++)
13271 if (MATCH (opcode, insn[indx]))
13272 return indx;
13273
13274 return -1;
13275 }
13276
13277
13278 /* Branch and delay slot decoding support. */
13279
13280 /* If PTR points to what *might* be a 16-bit branch or jump, then
13281 return the minimum length of its delay slot, otherwise return 0.
13282 Non-zero results are not definitive as we might be checking against
13283 the second half of another instruction. */
13284
13285 static int
13286 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13287 {
13288 unsigned long opcode;
13289 int bdsize;
13290
13291 opcode = bfd_get_16 (abfd, ptr);
13292 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13293 /* 16-bit branch/jump with a 32-bit delay slot. */
13294 bdsize = 4;
13295 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13296 || find_match (opcode, ds_insns_16_bd16) >= 0)
13297 /* 16-bit branch/jump with a 16-bit delay slot. */
13298 bdsize = 2;
13299 else
13300 /* No delay slot. */
13301 bdsize = 0;
13302
13303 return bdsize;
13304 }
13305
13306 /* If PTR points to what *might* be a 32-bit branch or jump, then
13307 return the minimum length of its delay slot, otherwise return 0.
13308 Non-zero results are not definitive as we might be checking against
13309 the second half of another instruction. */
13310
13311 static int
13312 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13313 {
13314 unsigned long opcode;
13315 int bdsize;
13316
13317 opcode = bfd_get_micromips_32 (abfd, ptr);
13318 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13319 /* 32-bit branch/jump with a 32-bit delay slot. */
13320 bdsize = 4;
13321 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13322 /* 32-bit branch/jump with a 16-bit delay slot. */
13323 bdsize = 2;
13324 else
13325 /* No delay slot. */
13326 bdsize = 0;
13327
13328 return bdsize;
13329 }
13330
13331 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13332 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13333
13334 static bfd_boolean
13335 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13336 {
13337 unsigned long opcode;
13338
13339 opcode = bfd_get_16 (abfd, ptr);
13340 if (MATCH (opcode, b_insn_16)
13341 /* B16 */
13342 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13343 /* JR16 */
13344 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13345 /* BEQZ16, BNEZ16 */
13346 || (MATCH (opcode, jalr_insn_16_bd32)
13347 /* JALR16 */
13348 && reg != JR16_REG (opcode) && reg != RA))
13349 return TRUE;
13350
13351 return FALSE;
13352 }
13353
13354 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13355 then return TRUE, otherwise FALSE. */
13356
13357 static bfd_boolean
13358 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13359 {
13360 unsigned long opcode;
13361
13362 opcode = bfd_get_micromips_32 (abfd, ptr);
13363 if (MATCH (opcode, j_insn_32)
13364 /* J */
13365 || MATCH (opcode, bc_insn_32)
13366 /* BC1F, BC1T, BC2F, BC2T */
13367 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13368 /* JAL, JALX */
13369 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13370 /* BGEZ, BGTZ, BLEZ, BLTZ */
13371 || (MATCH (opcode, bzal_insn_32)
13372 /* BGEZAL, BLTZAL */
13373 && reg != OP32_SREG (opcode) && reg != RA)
13374 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13375 /* JALR, JALR.HB, BEQ, BNE */
13376 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13377 return TRUE;
13378
13379 return FALSE;
13380 }
13381
13382 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13383 IRELEND) at OFFSET indicate that there must be a compact branch there,
13384 then return TRUE, otherwise FALSE. */
13385
13386 static bfd_boolean
13387 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13388 const Elf_Internal_Rela *internal_relocs,
13389 const Elf_Internal_Rela *irelend)
13390 {
13391 const Elf_Internal_Rela *irel;
13392 unsigned long opcode;
13393
13394 opcode = bfd_get_micromips_32 (abfd, ptr);
13395 if (find_match (opcode, bzc_insns_32) < 0)
13396 return FALSE;
13397
13398 for (irel = internal_relocs; irel < irelend; irel++)
13399 if (irel->r_offset == offset
13400 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13401 return TRUE;
13402
13403 return FALSE;
13404 }
13405
13406 /* Bitsize checking. */
13407 #define IS_BITSIZE(val, N) \
13408 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13409 - (1ULL << ((N) - 1))) == (val))
13410
13411 \f
13412 bfd_boolean
13413 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13414 struct bfd_link_info *link_info,
13415 bfd_boolean *again)
13416 {
13417 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13418 Elf_Internal_Shdr *symtab_hdr;
13419 Elf_Internal_Rela *internal_relocs;
13420 Elf_Internal_Rela *irel, *irelend;
13421 bfd_byte *contents = NULL;
13422 Elf_Internal_Sym *isymbuf = NULL;
13423
13424 /* Assume nothing changes. */
13425 *again = FALSE;
13426
13427 /* We don't have to do anything for a relocatable link, if
13428 this section does not have relocs, or if this is not a
13429 code section. */
13430
13431 if (bfd_link_relocatable (link_info)
13432 || (sec->flags & SEC_RELOC) == 0
13433 || sec->reloc_count == 0
13434 || (sec->flags & SEC_CODE) == 0)
13435 return TRUE;
13436
13437 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13438
13439 /* Get a copy of the native relocations. */
13440 internal_relocs = (_bfd_elf_link_read_relocs
13441 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13442 link_info->keep_memory));
13443 if (internal_relocs == NULL)
13444 goto error_return;
13445
13446 /* Walk through them looking for relaxing opportunities. */
13447 irelend = internal_relocs + sec->reloc_count;
13448 for (irel = internal_relocs; irel < irelend; irel++)
13449 {
13450 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13451 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13452 bfd_boolean target_is_micromips_code_p;
13453 unsigned long opcode;
13454 bfd_vma symval;
13455 bfd_vma pcrval;
13456 bfd_byte *ptr;
13457 int fndopc;
13458
13459 /* The number of bytes to delete for relaxation and from where
13460 to delete these bytes starting at irel->r_offset. */
13461 int delcnt = 0;
13462 int deloff = 0;
13463
13464 /* If this isn't something that can be relaxed, then ignore
13465 this reloc. */
13466 if (r_type != R_MICROMIPS_HI16
13467 && r_type != R_MICROMIPS_PC16_S1
13468 && r_type != R_MICROMIPS_26_S1)
13469 continue;
13470
13471 /* Get the section contents if we haven't done so already. */
13472 if (contents == NULL)
13473 {
13474 /* Get cached copy if it exists. */
13475 if (elf_section_data (sec)->this_hdr.contents != NULL)
13476 contents = elf_section_data (sec)->this_hdr.contents;
13477 /* Go get them off disk. */
13478 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13479 goto error_return;
13480 }
13481 ptr = contents + irel->r_offset;
13482
13483 /* Read this BFD's local symbols if we haven't done so already. */
13484 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13485 {
13486 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13487 if (isymbuf == NULL)
13488 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13489 symtab_hdr->sh_info, 0,
13490 NULL, NULL, NULL);
13491 if (isymbuf == NULL)
13492 goto error_return;
13493 }
13494
13495 /* Get the value of the symbol referred to by the reloc. */
13496 if (r_symndx < symtab_hdr->sh_info)
13497 {
13498 /* A local symbol. */
13499 Elf_Internal_Sym *isym;
13500 asection *sym_sec;
13501
13502 isym = isymbuf + r_symndx;
13503 if (isym->st_shndx == SHN_UNDEF)
13504 sym_sec = bfd_und_section_ptr;
13505 else if (isym->st_shndx == SHN_ABS)
13506 sym_sec = bfd_abs_section_ptr;
13507 else if (isym->st_shndx == SHN_COMMON)
13508 sym_sec = bfd_com_section_ptr;
13509 else
13510 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13511 symval = (isym->st_value
13512 + sym_sec->output_section->vma
13513 + sym_sec->output_offset);
13514 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13515 }
13516 else
13517 {
13518 unsigned long indx;
13519 struct elf_link_hash_entry *h;
13520
13521 /* An external symbol. */
13522 indx = r_symndx - symtab_hdr->sh_info;
13523 h = elf_sym_hashes (abfd)[indx];
13524 BFD_ASSERT (h != NULL);
13525
13526 if (h->root.type != bfd_link_hash_defined
13527 && h->root.type != bfd_link_hash_defweak)
13528 /* This appears to be a reference to an undefined
13529 symbol. Just ignore it -- it will be caught by the
13530 regular reloc processing. */
13531 continue;
13532
13533 symval = (h->root.u.def.value
13534 + h->root.u.def.section->output_section->vma
13535 + h->root.u.def.section->output_offset);
13536 target_is_micromips_code_p = (!h->needs_plt
13537 && ELF_ST_IS_MICROMIPS (h->other));
13538 }
13539
13540
13541 /* For simplicity of coding, we are going to modify the
13542 section contents, the section relocs, and the BFD symbol
13543 table. We must tell the rest of the code not to free up this
13544 information. It would be possible to instead create a table
13545 of changes which have to be made, as is done in coff-mips.c;
13546 that would be more work, but would require less memory when
13547 the linker is run. */
13548
13549 /* Only 32-bit instructions relaxed. */
13550 if (irel->r_offset + 4 > sec->size)
13551 continue;
13552
13553 opcode = bfd_get_micromips_32 (abfd, ptr);
13554
13555 /* This is the pc-relative distance from the instruction the
13556 relocation is applied to, to the symbol referred. */
13557 pcrval = (symval
13558 - (sec->output_section->vma + sec->output_offset)
13559 - irel->r_offset);
13560
13561 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13562 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13563 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13564
13565 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13566
13567 where pcrval has first to be adjusted to apply against the LO16
13568 location (we make the adjustment later on, when we have figured
13569 out the offset). */
13570 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13571 {
13572 bfd_boolean bzc = FALSE;
13573 unsigned long nextopc;
13574 unsigned long reg;
13575 bfd_vma offset;
13576
13577 /* Give up if the previous reloc was a HI16 against this symbol
13578 too. */
13579 if (irel > internal_relocs
13580 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13581 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13582 continue;
13583
13584 /* Or if the next reloc is not a LO16 against this symbol. */
13585 if (irel + 1 >= irelend
13586 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13587 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13588 continue;
13589
13590 /* Or if the second next reloc is a LO16 against this symbol too. */
13591 if (irel + 2 >= irelend
13592 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13593 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13594 continue;
13595
13596 /* See if the LUI instruction *might* be in a branch delay slot.
13597 We check whether what looks like a 16-bit branch or jump is
13598 actually an immediate argument to a compact branch, and let
13599 it through if so. */
13600 if (irel->r_offset >= 2
13601 && check_br16_dslot (abfd, ptr - 2)
13602 && !(irel->r_offset >= 4
13603 && (bzc = check_relocated_bzc (abfd,
13604 ptr - 4, irel->r_offset - 4,
13605 internal_relocs, irelend))))
13606 continue;
13607 if (irel->r_offset >= 4
13608 && !bzc
13609 && check_br32_dslot (abfd, ptr - 4))
13610 continue;
13611
13612 reg = OP32_SREG (opcode);
13613
13614 /* We only relax adjacent instructions or ones separated with
13615 a branch or jump that has a delay slot. The branch or jump
13616 must not fiddle with the register used to hold the address.
13617 Subtract 4 for the LUI itself. */
13618 offset = irel[1].r_offset - irel[0].r_offset;
13619 switch (offset - 4)
13620 {
13621 case 0:
13622 break;
13623 case 2:
13624 if (check_br16 (abfd, ptr + 4, reg))
13625 break;
13626 continue;
13627 case 4:
13628 if (check_br32 (abfd, ptr + 4, reg))
13629 break;
13630 continue;
13631 default:
13632 continue;
13633 }
13634
13635 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
13636
13637 /* Give up unless the same register is used with both
13638 relocations. */
13639 if (OP32_SREG (nextopc) != reg)
13640 continue;
13641
13642 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13643 and rounding up to take masking of the two LSBs into account. */
13644 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13645
13646 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13647 if (IS_BITSIZE (symval, 16))
13648 {
13649 /* Fix the relocation's type. */
13650 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13651
13652 /* Instructions using R_MICROMIPS_LO16 have the base or
13653 source register in bits 20:16. This register becomes $0
13654 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
13655 nextopc &= ~0x001f0000;
13656 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13657 contents + irel[1].r_offset);
13658 }
13659
13660 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13661 We add 4 to take LUI deletion into account while checking
13662 the PC-relative distance. */
13663 else if (symval % 4 == 0
13664 && IS_BITSIZE (pcrval + 4, 25)
13665 && MATCH (nextopc, addiu_insn)
13666 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13667 && OP16_VALID_REG (OP32_TREG (nextopc)))
13668 {
13669 /* Fix the relocation's type. */
13670 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13671
13672 /* Replace ADDIU with the ADDIUPC version. */
13673 nextopc = (addiupc_insn.match
13674 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13675
13676 bfd_put_micromips_32 (abfd, nextopc,
13677 contents + irel[1].r_offset);
13678 }
13679
13680 /* Can't do anything, give up, sigh... */
13681 else
13682 continue;
13683
13684 /* Fix the relocation's type. */
13685 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13686
13687 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
13688 delcnt = 4;
13689 deloff = 0;
13690 }
13691
13692 /* Compact branch relaxation -- due to the multitude of macros
13693 employed by the compiler/assembler, compact branches are not
13694 always generated. Obviously, this can/will be fixed elsewhere,
13695 but there is no drawback in double checking it here. */
13696 else if (r_type == R_MICROMIPS_PC16_S1
13697 && irel->r_offset + 5 < sec->size
13698 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13699 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
13700 && ((!insn32
13701 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13702 nop_insn_16) ? 2 : 0))
13703 || (irel->r_offset + 7 < sec->size
13704 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13705 ptr + 4),
13706 nop_insn_32) ? 4 : 0))))
13707 {
13708 unsigned long reg;
13709
13710 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13711
13712 /* Replace BEQZ/BNEZ with the compact version. */
13713 opcode = (bzc_insns_32[fndopc].match
13714 | BZC32_REG_FIELD (reg)
13715 | (opcode & 0xffff)); /* Addend value. */
13716
13717 bfd_put_micromips_32 (abfd, opcode, ptr);
13718
13719 /* Delete the delay slot NOP: two or four bytes from
13720 irel->offset + 4; delcnt has already been set above. */
13721 deloff = 4;
13722 }
13723
13724 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
13725 to check the distance from the next instruction, so subtract 2. */
13726 else if (!insn32
13727 && r_type == R_MICROMIPS_PC16_S1
13728 && IS_BITSIZE (pcrval - 2, 11)
13729 && find_match (opcode, b_insns_32) >= 0)
13730 {
13731 /* Fix the relocation's type. */
13732 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13733
13734 /* Replace the 32-bit opcode with a 16-bit opcode. */
13735 bfd_put_16 (abfd,
13736 (b_insn_16.match
13737 | (opcode & 0x3ff)), /* Addend value. */
13738 ptr);
13739
13740 /* Delete 2 bytes from irel->r_offset + 2. */
13741 delcnt = 2;
13742 deloff = 2;
13743 }
13744
13745 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
13746 to check the distance from the next instruction, so subtract 2. */
13747 else if (!insn32
13748 && r_type == R_MICROMIPS_PC16_S1
13749 && IS_BITSIZE (pcrval - 2, 8)
13750 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13751 && OP16_VALID_REG (OP32_SREG (opcode)))
13752 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13753 && OP16_VALID_REG (OP32_TREG (opcode)))))
13754 {
13755 unsigned long reg;
13756
13757 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13758
13759 /* Fix the relocation's type. */
13760 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
13761
13762 /* Replace the 32-bit opcode with a 16-bit opcode. */
13763 bfd_put_16 (abfd,
13764 (bz_insns_16[fndopc].match
13765 | BZ16_REG_FIELD (reg)
13766 | (opcode & 0x7f)), /* Addend value. */
13767 ptr);
13768
13769 /* Delete 2 bytes from irel->r_offset + 2. */
13770 delcnt = 2;
13771 deloff = 2;
13772 }
13773
13774 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
13775 else if (!insn32
13776 && r_type == R_MICROMIPS_26_S1
13777 && target_is_micromips_code_p
13778 && irel->r_offset + 7 < sec->size
13779 && MATCH (opcode, jal_insn_32_bd32))
13780 {
13781 unsigned long n32opc;
13782 bfd_boolean relaxed = FALSE;
13783
13784 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
13785
13786 if (MATCH (n32opc, nop_insn_32))
13787 {
13788 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
13789 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
13790
13791 relaxed = TRUE;
13792 }
13793 else if (find_match (n32opc, move_insns_32) >= 0)
13794 {
13795 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
13796 bfd_put_16 (abfd,
13797 (move_insn_16.match
13798 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
13799 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
13800 ptr + 4);
13801
13802 relaxed = TRUE;
13803 }
13804 /* Other 32-bit instructions relaxable to 16-bit
13805 instructions will be handled here later. */
13806
13807 if (relaxed)
13808 {
13809 /* JAL with 32-bit delay slot that is changed to a JALS
13810 with 16-bit delay slot. */
13811 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
13812
13813 /* Delete 2 bytes from irel->r_offset + 6. */
13814 delcnt = 2;
13815 deloff = 6;
13816 }
13817 }
13818
13819 if (delcnt != 0)
13820 {
13821 /* Note that we've changed the relocs, section contents, etc. */
13822 elf_section_data (sec)->relocs = internal_relocs;
13823 elf_section_data (sec)->this_hdr.contents = contents;
13824 symtab_hdr->contents = (unsigned char *) isymbuf;
13825
13826 /* Delete bytes depending on the delcnt and deloff. */
13827 if (!mips_elf_relax_delete_bytes (abfd, sec,
13828 irel->r_offset + deloff, delcnt))
13829 goto error_return;
13830
13831 /* That will change things, so we should relax again.
13832 Note that this is not required, and it may be slow. */
13833 *again = TRUE;
13834 }
13835 }
13836
13837 if (isymbuf != NULL
13838 && symtab_hdr->contents != (unsigned char *) isymbuf)
13839 {
13840 if (! link_info->keep_memory)
13841 free (isymbuf);
13842 else
13843 {
13844 /* Cache the symbols for elf_link_input_bfd. */
13845 symtab_hdr->contents = (unsigned char *) isymbuf;
13846 }
13847 }
13848
13849 if (contents != NULL
13850 && elf_section_data (sec)->this_hdr.contents != contents)
13851 {
13852 if (! link_info->keep_memory)
13853 free (contents);
13854 else
13855 {
13856 /* Cache the section contents for elf_link_input_bfd. */
13857 elf_section_data (sec)->this_hdr.contents = contents;
13858 }
13859 }
13860
13861 if (internal_relocs != NULL
13862 && elf_section_data (sec)->relocs != internal_relocs)
13863 free (internal_relocs);
13864
13865 return TRUE;
13866
13867 error_return:
13868 if (isymbuf != NULL
13869 && symtab_hdr->contents != (unsigned char *) isymbuf)
13870 free (isymbuf);
13871 if (contents != NULL
13872 && elf_section_data (sec)->this_hdr.contents != contents)
13873 free (contents);
13874 if (internal_relocs != NULL
13875 && elf_section_data (sec)->relocs != internal_relocs)
13876 free (internal_relocs);
13877
13878 return FALSE;
13879 }
13880 \f
13881 /* Create a MIPS ELF linker hash table. */
13882
13883 struct bfd_link_hash_table *
13884 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
13885 {
13886 struct mips_elf_link_hash_table *ret;
13887 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
13888
13889 ret = bfd_zmalloc (amt);
13890 if (ret == NULL)
13891 return NULL;
13892
13893 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
13894 mips_elf_link_hash_newfunc,
13895 sizeof (struct mips_elf_link_hash_entry),
13896 MIPS_ELF_DATA))
13897 {
13898 free (ret);
13899 return NULL;
13900 }
13901 ret->root.init_plt_refcount.plist = NULL;
13902 ret->root.init_plt_offset.plist = NULL;
13903
13904 return &ret->root.root;
13905 }
13906
13907 /* Likewise, but indicate that the target is VxWorks. */
13908
13909 struct bfd_link_hash_table *
13910 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
13911 {
13912 struct bfd_link_hash_table *ret;
13913
13914 ret = _bfd_mips_elf_link_hash_table_create (abfd);
13915 if (ret)
13916 {
13917 struct mips_elf_link_hash_table *htab;
13918
13919 htab = (struct mips_elf_link_hash_table *) ret;
13920 htab->use_plts_and_copy_relocs = TRUE;
13921 htab->is_vxworks = TRUE;
13922 }
13923 return ret;
13924 }
13925
13926 /* A function that the linker calls if we are allowed to use PLTs
13927 and copy relocs. */
13928
13929 void
13930 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
13931 {
13932 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
13933 }
13934
13935 /* A function that the linker calls to select between all or only
13936 32-bit microMIPS instructions, and between making or ignoring
13937 branch relocation checks for invalid transitions between ISA modes. */
13938
13939 void
13940 _bfd_mips_elf_linker_flags (struct bfd_link_info *info, bfd_boolean insn32,
13941 bfd_boolean ignore_branch_isa)
13942 {
13943 mips_elf_hash_table (info)->insn32 = insn32;
13944 mips_elf_hash_table (info)->ignore_branch_isa = ignore_branch_isa;
13945 }
13946 \f
13947 /* Structure for saying that BFD machine EXTENSION extends BASE. */
13948
13949 struct mips_mach_extension
13950 {
13951 unsigned long extension, base;
13952 };
13953
13954
13955 /* An array describing how BFD machines relate to one another. The entries
13956 are ordered topologically with MIPS I extensions listed last. */
13957
13958 static const struct mips_mach_extension mips_mach_extensions[] =
13959 {
13960 /* MIPS64r2 extensions. */
13961 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
13962 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
13963 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
13964 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13965 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 },
13966
13967 /* MIPS64 extensions. */
13968 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
13969 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
13970 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
13971
13972 /* MIPS V extensions. */
13973 { bfd_mach_mipsisa64, bfd_mach_mips5 },
13974
13975 /* R10000 extensions. */
13976 { bfd_mach_mips12000, bfd_mach_mips10000 },
13977 { bfd_mach_mips14000, bfd_mach_mips10000 },
13978 { bfd_mach_mips16000, bfd_mach_mips10000 },
13979
13980 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
13981 vr5400 ISA, but doesn't include the multimedia stuff. It seems
13982 better to allow vr5400 and vr5500 code to be merged anyway, since
13983 many libraries will just use the core ISA. Perhaps we could add
13984 some sort of ASE flag if this ever proves a problem. */
13985 { bfd_mach_mips5500, bfd_mach_mips5400 },
13986 { bfd_mach_mips5400, bfd_mach_mips5000 },
13987
13988 /* MIPS IV extensions. */
13989 { bfd_mach_mips5, bfd_mach_mips8000 },
13990 { bfd_mach_mips10000, bfd_mach_mips8000 },
13991 { bfd_mach_mips5000, bfd_mach_mips8000 },
13992 { bfd_mach_mips7000, bfd_mach_mips8000 },
13993 { bfd_mach_mips9000, bfd_mach_mips8000 },
13994
13995 /* VR4100 extensions. */
13996 { bfd_mach_mips4120, bfd_mach_mips4100 },
13997 { bfd_mach_mips4111, bfd_mach_mips4100 },
13998
13999 /* MIPS III extensions. */
14000 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14001 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14002 { bfd_mach_mips8000, bfd_mach_mips4000 },
14003 { bfd_mach_mips4650, bfd_mach_mips4000 },
14004 { bfd_mach_mips4600, bfd_mach_mips4000 },
14005 { bfd_mach_mips4400, bfd_mach_mips4000 },
14006 { bfd_mach_mips4300, bfd_mach_mips4000 },
14007 { bfd_mach_mips4100, bfd_mach_mips4000 },
14008 { bfd_mach_mips5900, bfd_mach_mips4000 },
14009
14010 /* MIPS32r3 extensions. */
14011 { bfd_mach_mips_interaptiv_mr2, bfd_mach_mipsisa32r3 },
14012
14013 /* MIPS32r2 extensions. */
14014 { bfd_mach_mipsisa32r3, bfd_mach_mipsisa32r2 },
14015
14016 /* MIPS32 extensions. */
14017 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14018
14019 /* MIPS II extensions. */
14020 { bfd_mach_mips4000, bfd_mach_mips6000 },
14021 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14022 { bfd_mach_mips4010, bfd_mach_mips6000 },
14023
14024 /* MIPS I extensions. */
14025 { bfd_mach_mips6000, bfd_mach_mips3000 },
14026 { bfd_mach_mips3900, bfd_mach_mips3000 }
14027 };
14028
14029 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14030
14031 static bfd_boolean
14032 mips_mach_extends_p (unsigned long base, unsigned long extension)
14033 {
14034 size_t i;
14035
14036 if (extension == base)
14037 return TRUE;
14038
14039 if (base == bfd_mach_mipsisa32
14040 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14041 return TRUE;
14042
14043 if (base == bfd_mach_mipsisa32r2
14044 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14045 return TRUE;
14046
14047 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14048 if (extension == mips_mach_extensions[i].extension)
14049 {
14050 extension = mips_mach_extensions[i].base;
14051 if (extension == base)
14052 return TRUE;
14053 }
14054
14055 return FALSE;
14056 }
14057
14058 /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14059
14060 static unsigned long
14061 bfd_mips_isa_ext_mach (unsigned int isa_ext)
14062 {
14063 switch (isa_ext)
14064 {
14065 case AFL_EXT_3900: return bfd_mach_mips3900;
14066 case AFL_EXT_4010: return bfd_mach_mips4010;
14067 case AFL_EXT_4100: return bfd_mach_mips4100;
14068 case AFL_EXT_4111: return bfd_mach_mips4111;
14069 case AFL_EXT_4120: return bfd_mach_mips4120;
14070 case AFL_EXT_4650: return bfd_mach_mips4650;
14071 case AFL_EXT_5400: return bfd_mach_mips5400;
14072 case AFL_EXT_5500: return bfd_mach_mips5500;
14073 case AFL_EXT_5900: return bfd_mach_mips5900;
14074 case AFL_EXT_10000: return bfd_mach_mips10000;
14075 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14076 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14077 case AFL_EXT_LOONGSON_3A: return bfd_mach_mips_loongson_3a;
14078 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
14079 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14080 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14081 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
14082 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14083 default: return bfd_mach_mips3000;
14084 }
14085 }
14086
14087 /* Return the .MIPS.abiflags value representing each ISA Extension. */
14088
14089 unsigned int
14090 bfd_mips_isa_ext (bfd *abfd)
14091 {
14092 switch (bfd_get_mach (abfd))
14093 {
14094 case bfd_mach_mips3900: return AFL_EXT_3900;
14095 case bfd_mach_mips4010: return AFL_EXT_4010;
14096 case bfd_mach_mips4100: return AFL_EXT_4100;
14097 case bfd_mach_mips4111: return AFL_EXT_4111;
14098 case bfd_mach_mips4120: return AFL_EXT_4120;
14099 case bfd_mach_mips4650: return AFL_EXT_4650;
14100 case bfd_mach_mips5400: return AFL_EXT_5400;
14101 case bfd_mach_mips5500: return AFL_EXT_5500;
14102 case bfd_mach_mips5900: return AFL_EXT_5900;
14103 case bfd_mach_mips10000: return AFL_EXT_10000;
14104 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14105 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14106 case bfd_mach_mips_loongson_3a: return AFL_EXT_LOONGSON_3A;
14107 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14108 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14109 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14110 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14111 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14112 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
14113 case bfd_mach_mips_interaptiv_mr2:
14114 return AFL_EXT_INTERAPTIV_MR2;
14115 default: return 0;
14116 }
14117 }
14118
14119 /* Encode ISA level and revision as a single value. */
14120 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14121
14122 /* Decode a single value into level and revision. */
14123 #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14124 #define ISA_REV(LEVREV) ((LEVREV) & 0x7)
14125
14126 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14127
14128 static void
14129 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14130 {
14131 int new_isa = 0;
14132 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14133 {
14134 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14135 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14136 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14137 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14138 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14139 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14140 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14141 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14142 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14143 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14144 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
14145 default:
14146 _bfd_error_handler
14147 /* xgettext:c-format */
14148 (_("%pB: Unknown architecture %s"),
14149 abfd, bfd_printable_name (abfd));
14150 }
14151
14152 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14153 {
14154 abiflags->isa_level = ISA_LEVEL (new_isa);
14155 abiflags->isa_rev = ISA_REV (new_isa);
14156 }
14157
14158 /* Update the isa_ext if ABFD describes a further extension. */
14159 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14160 bfd_get_mach (abfd)))
14161 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
14162 }
14163
14164 /* Return true if the given ELF header flags describe a 32-bit binary. */
14165
14166 static bfd_boolean
14167 mips_32bit_flags_p (flagword flags)
14168 {
14169 return ((flags & EF_MIPS_32BITMODE) != 0
14170 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14171 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14172 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14173 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14174 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14175 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14176 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14177 }
14178
14179 /* Infer the content of the ABI flags based on the elf header. */
14180
14181 static void
14182 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14183 {
14184 obj_attribute *in_attr;
14185
14186 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14187 update_mips_abiflags_isa (abfd, abiflags);
14188
14189 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14190 abiflags->gpr_size = AFL_REG_32;
14191 else
14192 abiflags->gpr_size = AFL_REG_64;
14193
14194 abiflags->cpr1_size = AFL_REG_NONE;
14195
14196 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14197 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14198
14199 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14200 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14201 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14202 && abiflags->gpr_size == AFL_REG_32))
14203 abiflags->cpr1_size = AFL_REG_32;
14204 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14205 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14206 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14207 abiflags->cpr1_size = AFL_REG_64;
14208
14209 abiflags->cpr2_size = AFL_REG_NONE;
14210
14211 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14212 abiflags->ases |= AFL_ASE_MDMX;
14213 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14214 abiflags->ases |= AFL_ASE_MIPS16;
14215 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14216 abiflags->ases |= AFL_ASE_MICROMIPS;
14217
14218 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14219 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14220 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14221 && abiflags->isa_level >= 32
14222 && abiflags->isa_ext != AFL_EXT_LOONGSON_3A)
14223 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14224 }
14225
14226 /* We need to use a special link routine to handle the .reginfo and
14227 the .mdebug sections. We need to merge all instances of these
14228 sections together, not write them all out sequentially. */
14229
14230 bfd_boolean
14231 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14232 {
14233 asection *o;
14234 struct bfd_link_order *p;
14235 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14236 asection *rtproc_sec, *abiflags_sec;
14237 Elf32_RegInfo reginfo;
14238 struct ecoff_debug_info debug;
14239 struct mips_htab_traverse_info hti;
14240 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14241 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14242 HDRR *symhdr = &debug.symbolic_header;
14243 void *mdebug_handle = NULL;
14244 asection *s;
14245 EXTR esym;
14246 unsigned int i;
14247 bfd_size_type amt;
14248 struct mips_elf_link_hash_table *htab;
14249
14250 static const char * const secname[] =
14251 {
14252 ".text", ".init", ".fini", ".data",
14253 ".rodata", ".sdata", ".sbss", ".bss"
14254 };
14255 static const int sc[] =
14256 {
14257 scText, scInit, scFini, scData,
14258 scRData, scSData, scSBss, scBss
14259 };
14260
14261 htab = mips_elf_hash_table (info);
14262 BFD_ASSERT (htab != NULL);
14263
14264 /* Sort the dynamic symbols so that those with GOT entries come after
14265 those without. */
14266 if (!mips_elf_sort_hash_table (abfd, info))
14267 return FALSE;
14268
14269 /* Create any scheduled LA25 stubs. */
14270 hti.info = info;
14271 hti.output_bfd = abfd;
14272 hti.error = FALSE;
14273 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14274 if (hti.error)
14275 return FALSE;
14276
14277 /* Get a value for the GP register. */
14278 if (elf_gp (abfd) == 0)
14279 {
14280 struct bfd_link_hash_entry *h;
14281
14282 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
14283 if (h != NULL && h->type == bfd_link_hash_defined)
14284 elf_gp (abfd) = (h->u.def.value
14285 + h->u.def.section->output_section->vma
14286 + h->u.def.section->output_offset);
14287 else if (htab->is_vxworks
14288 && (h = bfd_link_hash_lookup (info->hash,
14289 "_GLOBAL_OFFSET_TABLE_",
14290 FALSE, FALSE, TRUE))
14291 && h->type == bfd_link_hash_defined)
14292 elf_gp (abfd) = (h->u.def.section->output_section->vma
14293 + h->u.def.section->output_offset
14294 + h->u.def.value);
14295 else if (bfd_link_relocatable (info))
14296 {
14297 bfd_vma lo = MINUS_ONE;
14298
14299 /* Find the GP-relative section with the lowest offset. */
14300 for (o = abfd->sections; o != NULL; o = o->next)
14301 if (o->vma < lo
14302 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14303 lo = o->vma;
14304
14305 /* And calculate GP relative to that. */
14306 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14307 }
14308 else
14309 {
14310 /* If the relocate_section function needs to do a reloc
14311 involving the GP value, it should make a reloc_dangerous
14312 callback to warn that GP is not defined. */
14313 }
14314 }
14315
14316 /* Go through the sections and collect the .reginfo and .mdebug
14317 information. */
14318 abiflags_sec = NULL;
14319 reginfo_sec = NULL;
14320 mdebug_sec = NULL;
14321 gptab_data_sec = NULL;
14322 gptab_bss_sec = NULL;
14323 for (o = abfd->sections; o != NULL; o = o->next)
14324 {
14325 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14326 {
14327 /* We have found the .MIPS.abiflags section in the output file.
14328 Look through all the link_orders comprising it and remove them.
14329 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14330 for (p = o->map_head.link_order; p != NULL; p = p->next)
14331 {
14332 asection *input_section;
14333
14334 if (p->type != bfd_indirect_link_order)
14335 {
14336 if (p->type == bfd_data_link_order)
14337 continue;
14338 abort ();
14339 }
14340
14341 input_section = p->u.indirect.section;
14342
14343 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14344 elf_link_input_bfd ignores this section. */
14345 input_section->flags &= ~SEC_HAS_CONTENTS;
14346 }
14347
14348 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14349 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14350
14351 /* Skip this section later on (I don't think this currently
14352 matters, but someday it might). */
14353 o->map_head.link_order = NULL;
14354
14355 abiflags_sec = o;
14356 }
14357
14358 if (strcmp (o->name, ".reginfo") == 0)
14359 {
14360 memset (&reginfo, 0, sizeof reginfo);
14361
14362 /* We have found the .reginfo section in the output file.
14363 Look through all the link_orders comprising it and merge
14364 the information together. */
14365 for (p = o->map_head.link_order; p != NULL; p = p->next)
14366 {
14367 asection *input_section;
14368 bfd *input_bfd;
14369 Elf32_External_RegInfo ext;
14370 Elf32_RegInfo sub;
14371
14372 if (p->type != bfd_indirect_link_order)
14373 {
14374 if (p->type == bfd_data_link_order)
14375 continue;
14376 abort ();
14377 }
14378
14379 input_section = p->u.indirect.section;
14380 input_bfd = input_section->owner;
14381
14382 if (! bfd_get_section_contents (input_bfd, input_section,
14383 &ext, 0, sizeof ext))
14384 return FALSE;
14385
14386 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14387
14388 reginfo.ri_gprmask |= sub.ri_gprmask;
14389 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14390 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14391 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14392 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14393
14394 /* ri_gp_value is set by the function
14395 `_bfd_mips_elf_section_processing' when the section is
14396 finally written out. */
14397
14398 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14399 elf_link_input_bfd ignores this section. */
14400 input_section->flags &= ~SEC_HAS_CONTENTS;
14401 }
14402
14403 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14404 if (o->size != sizeof (Elf32_External_RegInfo))
14405 {
14406 _bfd_error_handler
14407 (_("%pB: .reginfo section size should be %ld bytes, "
14408 "actual size is %" PRId64),
14409 abfd, (unsigned long) sizeof (Elf32_External_RegInfo),
14410 (int64_t) o->size);
14411
14412 return FALSE;
14413 }
14414
14415 /* Skip this section later on (I don't think this currently
14416 matters, but someday it might). */
14417 o->map_head.link_order = NULL;
14418
14419 reginfo_sec = o;
14420 }
14421
14422 if (strcmp (o->name, ".mdebug") == 0)
14423 {
14424 struct extsym_info einfo;
14425 bfd_vma last;
14426
14427 /* We have found the .mdebug section in the output file.
14428 Look through all the link_orders comprising it and merge
14429 the information together. */
14430 symhdr->magic = swap->sym_magic;
14431 /* FIXME: What should the version stamp be? */
14432 symhdr->vstamp = 0;
14433 symhdr->ilineMax = 0;
14434 symhdr->cbLine = 0;
14435 symhdr->idnMax = 0;
14436 symhdr->ipdMax = 0;
14437 symhdr->isymMax = 0;
14438 symhdr->ioptMax = 0;
14439 symhdr->iauxMax = 0;
14440 symhdr->issMax = 0;
14441 symhdr->issExtMax = 0;
14442 symhdr->ifdMax = 0;
14443 symhdr->crfd = 0;
14444 symhdr->iextMax = 0;
14445
14446 /* We accumulate the debugging information itself in the
14447 debug_info structure. */
14448 debug.line = NULL;
14449 debug.external_dnr = NULL;
14450 debug.external_pdr = NULL;
14451 debug.external_sym = NULL;
14452 debug.external_opt = NULL;
14453 debug.external_aux = NULL;
14454 debug.ss = NULL;
14455 debug.ssext = debug.ssext_end = NULL;
14456 debug.external_fdr = NULL;
14457 debug.external_rfd = NULL;
14458 debug.external_ext = debug.external_ext_end = NULL;
14459
14460 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14461 if (mdebug_handle == NULL)
14462 return FALSE;
14463
14464 esym.jmptbl = 0;
14465 esym.cobol_main = 0;
14466 esym.weakext = 0;
14467 esym.reserved = 0;
14468 esym.ifd = ifdNil;
14469 esym.asym.iss = issNil;
14470 esym.asym.st = stLocal;
14471 esym.asym.reserved = 0;
14472 esym.asym.index = indexNil;
14473 last = 0;
14474 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14475 {
14476 esym.asym.sc = sc[i];
14477 s = bfd_get_section_by_name (abfd, secname[i]);
14478 if (s != NULL)
14479 {
14480 esym.asym.value = s->vma;
14481 last = s->vma + s->size;
14482 }
14483 else
14484 esym.asym.value = last;
14485 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14486 secname[i], &esym))
14487 return FALSE;
14488 }
14489
14490 for (p = o->map_head.link_order; p != NULL; p = p->next)
14491 {
14492 asection *input_section;
14493 bfd *input_bfd;
14494 const struct ecoff_debug_swap *input_swap;
14495 struct ecoff_debug_info input_debug;
14496 char *eraw_src;
14497 char *eraw_end;
14498
14499 if (p->type != bfd_indirect_link_order)
14500 {
14501 if (p->type == bfd_data_link_order)
14502 continue;
14503 abort ();
14504 }
14505
14506 input_section = p->u.indirect.section;
14507 input_bfd = input_section->owner;
14508
14509 if (!is_mips_elf (input_bfd))
14510 {
14511 /* I don't know what a non MIPS ELF bfd would be
14512 doing with a .mdebug section, but I don't really
14513 want to deal with it. */
14514 continue;
14515 }
14516
14517 input_swap = (get_elf_backend_data (input_bfd)
14518 ->elf_backend_ecoff_debug_swap);
14519
14520 BFD_ASSERT (p->size == input_section->size);
14521
14522 /* The ECOFF linking code expects that we have already
14523 read in the debugging information and set up an
14524 ecoff_debug_info structure, so we do that now. */
14525 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14526 &input_debug))
14527 return FALSE;
14528
14529 if (! (bfd_ecoff_debug_accumulate
14530 (mdebug_handle, abfd, &debug, swap, input_bfd,
14531 &input_debug, input_swap, info)))
14532 return FALSE;
14533
14534 /* Loop through the external symbols. For each one with
14535 interesting information, try to find the symbol in
14536 the linker global hash table and save the information
14537 for the output external symbols. */
14538 eraw_src = input_debug.external_ext;
14539 eraw_end = (eraw_src
14540 + (input_debug.symbolic_header.iextMax
14541 * input_swap->external_ext_size));
14542 for (;
14543 eraw_src < eraw_end;
14544 eraw_src += input_swap->external_ext_size)
14545 {
14546 EXTR ext;
14547 const char *name;
14548 struct mips_elf_link_hash_entry *h;
14549
14550 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
14551 if (ext.asym.sc == scNil
14552 || ext.asym.sc == scUndefined
14553 || ext.asym.sc == scSUndefined)
14554 continue;
14555
14556 name = input_debug.ssext + ext.asym.iss;
14557 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
14558 name, FALSE, FALSE, TRUE);
14559 if (h == NULL || h->esym.ifd != -2)
14560 continue;
14561
14562 if (ext.ifd != -1)
14563 {
14564 BFD_ASSERT (ext.ifd
14565 < input_debug.symbolic_header.ifdMax);
14566 ext.ifd = input_debug.ifdmap[ext.ifd];
14567 }
14568
14569 h->esym = ext;
14570 }
14571
14572 /* Free up the information we just read. */
14573 free (input_debug.line);
14574 free (input_debug.external_dnr);
14575 free (input_debug.external_pdr);
14576 free (input_debug.external_sym);
14577 free (input_debug.external_opt);
14578 free (input_debug.external_aux);
14579 free (input_debug.ss);
14580 free (input_debug.ssext);
14581 free (input_debug.external_fdr);
14582 free (input_debug.external_rfd);
14583 free (input_debug.external_ext);
14584
14585 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14586 elf_link_input_bfd ignores this section. */
14587 input_section->flags &= ~SEC_HAS_CONTENTS;
14588 }
14589
14590 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
14591 {
14592 /* Create .rtproc section. */
14593 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
14594 if (rtproc_sec == NULL)
14595 {
14596 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14597 | SEC_LINKER_CREATED | SEC_READONLY);
14598
14599 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14600 ".rtproc",
14601 flags);
14602 if (rtproc_sec == NULL
14603 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
14604 return FALSE;
14605 }
14606
14607 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14608 info, rtproc_sec,
14609 &debug))
14610 return FALSE;
14611 }
14612
14613 /* Build the external symbol information. */
14614 einfo.abfd = abfd;
14615 einfo.info = info;
14616 einfo.debug = &debug;
14617 einfo.swap = swap;
14618 einfo.failed = FALSE;
14619 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
14620 mips_elf_output_extsym, &einfo);
14621 if (einfo.failed)
14622 return FALSE;
14623
14624 /* Set the size of the .mdebug section. */
14625 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
14626
14627 /* Skip this section later on (I don't think this currently
14628 matters, but someday it might). */
14629 o->map_head.link_order = NULL;
14630
14631 mdebug_sec = o;
14632 }
14633
14634 if (CONST_STRNEQ (o->name, ".gptab."))
14635 {
14636 const char *subname;
14637 unsigned int c;
14638 Elf32_gptab *tab;
14639 Elf32_External_gptab *ext_tab;
14640 unsigned int j;
14641
14642 /* The .gptab.sdata and .gptab.sbss sections hold
14643 information describing how the small data area would
14644 change depending upon the -G switch. These sections
14645 not used in executables files. */
14646 if (! bfd_link_relocatable (info))
14647 {
14648 for (p = o->map_head.link_order; p != NULL; p = p->next)
14649 {
14650 asection *input_section;
14651
14652 if (p->type != bfd_indirect_link_order)
14653 {
14654 if (p->type == bfd_data_link_order)
14655 continue;
14656 abort ();
14657 }
14658
14659 input_section = p->u.indirect.section;
14660
14661 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14662 elf_link_input_bfd ignores this section. */
14663 input_section->flags &= ~SEC_HAS_CONTENTS;
14664 }
14665
14666 /* Skip this section later on (I don't think this
14667 currently matters, but someday it might). */
14668 o->map_head.link_order = NULL;
14669
14670 /* Really remove the section. */
14671 bfd_section_list_remove (abfd, o);
14672 --abfd->section_count;
14673
14674 continue;
14675 }
14676
14677 /* There is one gptab for initialized data, and one for
14678 uninitialized data. */
14679 if (strcmp (o->name, ".gptab.sdata") == 0)
14680 gptab_data_sec = o;
14681 else if (strcmp (o->name, ".gptab.sbss") == 0)
14682 gptab_bss_sec = o;
14683 else
14684 {
14685 _bfd_error_handler
14686 /* xgettext:c-format */
14687 (_("%pB: illegal section name `%pA'"), abfd, o);
14688 bfd_set_error (bfd_error_nonrepresentable_section);
14689 return FALSE;
14690 }
14691
14692 /* The linker script always combines .gptab.data and
14693 .gptab.sdata into .gptab.sdata, and likewise for
14694 .gptab.bss and .gptab.sbss. It is possible that there is
14695 no .sdata or .sbss section in the output file, in which
14696 case we must change the name of the output section. */
14697 subname = o->name + sizeof ".gptab" - 1;
14698 if (bfd_get_section_by_name (abfd, subname) == NULL)
14699 {
14700 if (o == gptab_data_sec)
14701 o->name = ".gptab.data";
14702 else
14703 o->name = ".gptab.bss";
14704 subname = o->name + sizeof ".gptab" - 1;
14705 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14706 }
14707
14708 /* Set up the first entry. */
14709 c = 1;
14710 amt = c * sizeof (Elf32_gptab);
14711 tab = bfd_malloc (amt);
14712 if (tab == NULL)
14713 return FALSE;
14714 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14715 tab[0].gt_header.gt_unused = 0;
14716
14717 /* Combine the input sections. */
14718 for (p = o->map_head.link_order; p != NULL; p = p->next)
14719 {
14720 asection *input_section;
14721 bfd *input_bfd;
14722 bfd_size_type size;
14723 unsigned long last;
14724 bfd_size_type gpentry;
14725
14726 if (p->type != bfd_indirect_link_order)
14727 {
14728 if (p->type == bfd_data_link_order)
14729 continue;
14730 abort ();
14731 }
14732
14733 input_section = p->u.indirect.section;
14734 input_bfd = input_section->owner;
14735
14736 /* Combine the gptab entries for this input section one
14737 by one. We know that the input gptab entries are
14738 sorted by ascending -G value. */
14739 size = input_section->size;
14740 last = 0;
14741 for (gpentry = sizeof (Elf32_External_gptab);
14742 gpentry < size;
14743 gpentry += sizeof (Elf32_External_gptab))
14744 {
14745 Elf32_External_gptab ext_gptab;
14746 Elf32_gptab int_gptab;
14747 unsigned long val;
14748 unsigned long add;
14749 bfd_boolean exact;
14750 unsigned int look;
14751
14752 if (! (bfd_get_section_contents
14753 (input_bfd, input_section, &ext_gptab, gpentry,
14754 sizeof (Elf32_External_gptab))))
14755 {
14756 free (tab);
14757 return FALSE;
14758 }
14759
14760 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
14761 &int_gptab);
14762 val = int_gptab.gt_entry.gt_g_value;
14763 add = int_gptab.gt_entry.gt_bytes - last;
14764
14765 exact = FALSE;
14766 for (look = 1; look < c; look++)
14767 {
14768 if (tab[look].gt_entry.gt_g_value >= val)
14769 tab[look].gt_entry.gt_bytes += add;
14770
14771 if (tab[look].gt_entry.gt_g_value == val)
14772 exact = TRUE;
14773 }
14774
14775 if (! exact)
14776 {
14777 Elf32_gptab *new_tab;
14778 unsigned int max;
14779
14780 /* We need a new table entry. */
14781 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
14782 new_tab = bfd_realloc (tab, amt);
14783 if (new_tab == NULL)
14784 {
14785 free (tab);
14786 return FALSE;
14787 }
14788 tab = new_tab;
14789 tab[c].gt_entry.gt_g_value = val;
14790 tab[c].gt_entry.gt_bytes = add;
14791
14792 /* Merge in the size for the next smallest -G
14793 value, since that will be implied by this new
14794 value. */
14795 max = 0;
14796 for (look = 1; look < c; look++)
14797 {
14798 if (tab[look].gt_entry.gt_g_value < val
14799 && (max == 0
14800 || (tab[look].gt_entry.gt_g_value
14801 > tab[max].gt_entry.gt_g_value)))
14802 max = look;
14803 }
14804 if (max != 0)
14805 tab[c].gt_entry.gt_bytes +=
14806 tab[max].gt_entry.gt_bytes;
14807
14808 ++c;
14809 }
14810
14811 last = int_gptab.gt_entry.gt_bytes;
14812 }
14813
14814 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14815 elf_link_input_bfd ignores this section. */
14816 input_section->flags &= ~SEC_HAS_CONTENTS;
14817 }
14818
14819 /* The table must be sorted by -G value. */
14820 if (c > 2)
14821 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
14822
14823 /* Swap out the table. */
14824 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
14825 ext_tab = bfd_alloc (abfd, amt);
14826 if (ext_tab == NULL)
14827 {
14828 free (tab);
14829 return FALSE;
14830 }
14831
14832 for (j = 0; j < c; j++)
14833 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
14834 free (tab);
14835
14836 o->size = c * sizeof (Elf32_External_gptab);
14837 o->contents = (bfd_byte *) ext_tab;
14838
14839 /* Skip this section later on (I don't think this currently
14840 matters, but someday it might). */
14841 o->map_head.link_order = NULL;
14842 }
14843 }
14844
14845 /* Invoke the regular ELF backend linker to do all the work. */
14846 if (!bfd_elf_final_link (abfd, info))
14847 return FALSE;
14848
14849 /* Now write out the computed sections. */
14850
14851 if (abiflags_sec != NULL)
14852 {
14853 Elf_External_ABIFlags_v0 ext;
14854 Elf_Internal_ABIFlags_v0 *abiflags;
14855
14856 abiflags = &mips_elf_tdata (abfd)->abiflags;
14857
14858 /* Set up the abiflags if no valid input sections were found. */
14859 if (!mips_elf_tdata (abfd)->abiflags_valid)
14860 {
14861 infer_mips_abiflags (abfd, abiflags);
14862 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
14863 }
14864 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
14865 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
14866 return FALSE;
14867 }
14868
14869 if (reginfo_sec != NULL)
14870 {
14871 Elf32_External_RegInfo ext;
14872
14873 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
14874 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
14875 return FALSE;
14876 }
14877
14878 if (mdebug_sec != NULL)
14879 {
14880 BFD_ASSERT (abfd->output_has_begun);
14881 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
14882 swap, info,
14883 mdebug_sec->filepos))
14884 return FALSE;
14885
14886 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
14887 }
14888
14889 if (gptab_data_sec != NULL)
14890 {
14891 if (! bfd_set_section_contents (abfd, gptab_data_sec,
14892 gptab_data_sec->contents,
14893 0, gptab_data_sec->size))
14894 return FALSE;
14895 }
14896
14897 if (gptab_bss_sec != NULL)
14898 {
14899 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
14900 gptab_bss_sec->contents,
14901 0, gptab_bss_sec->size))
14902 return FALSE;
14903 }
14904
14905 if (SGI_COMPAT (abfd))
14906 {
14907 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
14908 if (rtproc_sec != NULL)
14909 {
14910 if (! bfd_set_section_contents (abfd, rtproc_sec,
14911 rtproc_sec->contents,
14912 0, rtproc_sec->size))
14913 return FALSE;
14914 }
14915 }
14916
14917 return TRUE;
14918 }
14919 \f
14920 /* Merge object file header flags from IBFD into OBFD. Raise an error
14921 if there are conflicting settings. */
14922
14923 static bfd_boolean
14924 mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info)
14925 {
14926 bfd *obfd = info->output_bfd;
14927 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
14928 flagword old_flags;
14929 flagword new_flags;
14930 bfd_boolean ok;
14931
14932 new_flags = elf_elfheader (ibfd)->e_flags;
14933 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
14934 old_flags = elf_elfheader (obfd)->e_flags;
14935
14936 /* Check flag compatibility. */
14937
14938 new_flags &= ~EF_MIPS_NOREORDER;
14939 old_flags &= ~EF_MIPS_NOREORDER;
14940
14941 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
14942 doesn't seem to matter. */
14943 new_flags &= ~EF_MIPS_XGOT;
14944 old_flags &= ~EF_MIPS_XGOT;
14945
14946 /* MIPSpro generates ucode info in n64 objects. Again, we should
14947 just be able to ignore this. */
14948 new_flags &= ~EF_MIPS_UCODE;
14949 old_flags &= ~EF_MIPS_UCODE;
14950
14951 /* DSOs should only be linked with CPIC code. */
14952 if ((ibfd->flags & DYNAMIC) != 0)
14953 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
14954
14955 if (new_flags == old_flags)
14956 return TRUE;
14957
14958 ok = TRUE;
14959
14960 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
14961 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
14962 {
14963 _bfd_error_handler
14964 (_("%pB: warning: linking abicalls files with non-abicalls files"),
14965 ibfd);
14966 ok = TRUE;
14967 }
14968
14969 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
14970 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
14971 if (! (new_flags & EF_MIPS_PIC))
14972 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
14973
14974 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14975 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14976
14977 /* Compare the ISAs. */
14978 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
14979 {
14980 _bfd_error_handler
14981 (_("%pB: linking 32-bit code with 64-bit code"),
14982 ibfd);
14983 ok = FALSE;
14984 }
14985 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
14986 {
14987 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
14988 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
14989 {
14990 /* Copy the architecture info from IBFD to OBFD. Also copy
14991 the 32-bit flag (if set) so that we continue to recognise
14992 OBFD as a 32-bit binary. */
14993 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
14994 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
14995 elf_elfheader (obfd)->e_flags
14996 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14997
14998 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
14999 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15000
15001 /* Copy across the ABI flags if OBFD doesn't use them
15002 and if that was what caused us to treat IBFD as 32-bit. */
15003 if ((old_flags & EF_MIPS_ABI) == 0
15004 && mips_32bit_flags_p (new_flags)
15005 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15006 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15007 }
15008 else
15009 {
15010 /* The ISAs aren't compatible. */
15011 _bfd_error_handler
15012 /* xgettext:c-format */
15013 (_("%pB: linking %s module with previous %s modules"),
15014 ibfd,
15015 bfd_printable_name (ibfd),
15016 bfd_printable_name (obfd));
15017 ok = FALSE;
15018 }
15019 }
15020
15021 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15022 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15023
15024 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15025 does set EI_CLASS differently from any 32-bit ABI. */
15026 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15027 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15028 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15029 {
15030 /* Only error if both are set (to different values). */
15031 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15032 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15033 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15034 {
15035 _bfd_error_handler
15036 /* xgettext:c-format */
15037 (_("%pB: ABI mismatch: linking %s module with previous %s modules"),
15038 ibfd,
15039 elf_mips_abi_name (ibfd),
15040 elf_mips_abi_name (obfd));
15041 ok = FALSE;
15042 }
15043 new_flags &= ~EF_MIPS_ABI;
15044 old_flags &= ~EF_MIPS_ABI;
15045 }
15046
15047 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15048 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15049 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15050 {
15051 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15052 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15053 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15054 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15055 int micro_mis = old_m16 && new_micro;
15056 int m16_mis = old_micro && new_m16;
15057
15058 if (m16_mis || micro_mis)
15059 {
15060 _bfd_error_handler
15061 /* xgettext:c-format */
15062 (_("%pB: ASE mismatch: linking %s module with previous %s modules"),
15063 ibfd,
15064 m16_mis ? "MIPS16" : "microMIPS",
15065 m16_mis ? "microMIPS" : "MIPS16");
15066 ok = FALSE;
15067 }
15068
15069 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15070
15071 new_flags &= ~ EF_MIPS_ARCH_ASE;
15072 old_flags &= ~ EF_MIPS_ARCH_ASE;
15073 }
15074
15075 /* Compare NaN encodings. */
15076 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15077 {
15078 /* xgettext:c-format */
15079 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15080 ibfd,
15081 (new_flags & EF_MIPS_NAN2008
15082 ? "-mnan=2008" : "-mnan=legacy"),
15083 (old_flags & EF_MIPS_NAN2008
15084 ? "-mnan=2008" : "-mnan=legacy"));
15085 ok = FALSE;
15086 new_flags &= ~EF_MIPS_NAN2008;
15087 old_flags &= ~EF_MIPS_NAN2008;
15088 }
15089
15090 /* Compare FP64 state. */
15091 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15092 {
15093 /* xgettext:c-format */
15094 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15095 ibfd,
15096 (new_flags & EF_MIPS_FP64
15097 ? "-mfp64" : "-mfp32"),
15098 (old_flags & EF_MIPS_FP64
15099 ? "-mfp64" : "-mfp32"));
15100 ok = FALSE;
15101 new_flags &= ~EF_MIPS_FP64;
15102 old_flags &= ~EF_MIPS_FP64;
15103 }
15104
15105 /* Warn about any other mismatches */
15106 if (new_flags != old_flags)
15107 {
15108 /* xgettext:c-format */
15109 _bfd_error_handler
15110 (_("%pB: uses different e_flags (%#x) fields than previous modules "
15111 "(%#x)"),
15112 ibfd, new_flags, old_flags);
15113 ok = FALSE;
15114 }
15115
15116 return ok;
15117 }
15118
15119 /* Merge object attributes from IBFD into OBFD. Raise an error if
15120 there are conflicting attributes. */
15121 static bfd_boolean
15122 mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
15123 {
15124 bfd *obfd = info->output_bfd;
15125 obj_attribute *in_attr;
15126 obj_attribute *out_attr;
15127 bfd *abi_fp_bfd;
15128 bfd *abi_msa_bfd;
15129
15130 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15131 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15132 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
15133 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15134
15135 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15136 if (!abi_msa_bfd
15137 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15138 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15139
15140 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15141 {
15142 /* This is the first object. Copy the attributes. */
15143 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15144
15145 /* Use the Tag_null value to indicate the attributes have been
15146 initialized. */
15147 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15148
15149 return TRUE;
15150 }
15151
15152 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15153 non-conflicting ones. */
15154 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15155 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15156 {
15157 int out_fp, in_fp;
15158
15159 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15160 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15161 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15162 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15163 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
15164 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15165 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15166 || in_fp == Val_GNU_MIPS_ABI_FP_64
15167 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15168 {
15169 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15170 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15171 }
15172 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15173 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15174 || out_fp == Val_GNU_MIPS_ABI_FP_64
15175 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15176 /* Keep the current setting. */;
15177 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15178 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15179 {
15180 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15181 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15182 }
15183 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15184 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15185 /* Keep the current setting. */;
15186 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15187 {
15188 const char *out_string, *in_string;
15189
15190 out_string = _bfd_mips_fp_abi_string (out_fp);
15191 in_string = _bfd_mips_fp_abi_string (in_fp);
15192 /* First warn about cases involving unrecognised ABIs. */
15193 if (!out_string && !in_string)
15194 /* xgettext:c-format */
15195 _bfd_error_handler
15196 (_("Warning: %pB uses unknown floating point ABI %d "
15197 "(set by %pB), %pB uses unknown floating point ABI %d"),
15198 obfd, out_fp, abi_fp_bfd, ibfd, in_fp);
15199 else if (!out_string)
15200 _bfd_error_handler
15201 /* xgettext:c-format */
15202 (_("Warning: %pB uses unknown floating point ABI %d "
15203 "(set by %pB), %pB uses %s"),
15204 obfd, out_fp, abi_fp_bfd, ibfd, in_string);
15205 else if (!in_string)
15206 _bfd_error_handler
15207 /* xgettext:c-format */
15208 (_("Warning: %pB uses %s (set by %pB), "
15209 "%pB uses unknown floating point ABI %d"),
15210 obfd, out_string, abi_fp_bfd, ibfd, in_fp);
15211 else
15212 {
15213 /* If one of the bfds is soft-float, the other must be
15214 hard-float. The exact choice of hard-float ABI isn't
15215 really relevant to the error message. */
15216 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15217 out_string = "-mhard-float";
15218 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15219 in_string = "-mhard-float";
15220 _bfd_error_handler
15221 /* xgettext:c-format */
15222 (_("Warning: %pB uses %s (set by %pB), %pB uses %s"),
15223 obfd, out_string, abi_fp_bfd, ibfd, in_string);
15224 }
15225 }
15226 }
15227
15228 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15229 non-conflicting ones. */
15230 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15231 {
15232 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15233 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15234 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15235 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15236 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15237 {
15238 case Val_GNU_MIPS_ABI_MSA_128:
15239 _bfd_error_handler
15240 /* xgettext:c-format */
15241 (_("Warning: %pB uses %s (set by %pB), "
15242 "%pB uses unknown MSA ABI %d"),
15243 obfd, "-mmsa", abi_msa_bfd,
15244 ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15245 break;
15246
15247 default:
15248 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15249 {
15250 case Val_GNU_MIPS_ABI_MSA_128:
15251 _bfd_error_handler
15252 /* xgettext:c-format */
15253 (_("Warning: %pB uses unknown MSA ABI %d "
15254 "(set by %pB), %pB uses %s"),
15255 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15256 abi_msa_bfd, ibfd, "-mmsa");
15257 break;
15258
15259 default:
15260 _bfd_error_handler
15261 /* xgettext:c-format */
15262 (_("Warning: %pB uses unknown MSA ABI %d "
15263 "(set by %pB), %pB uses unknown MSA ABI %d"),
15264 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15265 abi_msa_bfd, ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15266 break;
15267 }
15268 }
15269 }
15270
15271 /* Merge Tag_compatibility attributes and any common GNU ones. */
15272 return _bfd_elf_merge_object_attributes (ibfd, info);
15273 }
15274
15275 /* Merge object ABI flags from IBFD into OBFD. Raise an error if
15276 there are conflicting settings. */
15277
15278 static bfd_boolean
15279 mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15280 {
15281 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15282 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15283 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15284
15285 /* Update the output abiflags fp_abi using the computed fp_abi. */
15286 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15287
15288 #define max(a, b) ((a) > (b) ? (a) : (b))
15289 /* Merge abiflags. */
15290 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15291 in_tdata->abiflags.isa_level);
15292 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15293 in_tdata->abiflags.isa_rev);
15294 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15295 in_tdata->abiflags.gpr_size);
15296 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15297 in_tdata->abiflags.cpr1_size);
15298 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15299 in_tdata->abiflags.cpr2_size);
15300 #undef max
15301 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15302 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15303
15304 return TRUE;
15305 }
15306
15307 /* Merge backend specific data from an object file to the output
15308 object file when linking. */
15309
15310 bfd_boolean
15311 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
15312 {
15313 bfd *obfd = info->output_bfd;
15314 struct mips_elf_obj_tdata *out_tdata;
15315 struct mips_elf_obj_tdata *in_tdata;
15316 bfd_boolean null_input_bfd = TRUE;
15317 asection *sec;
15318 bfd_boolean ok;
15319
15320 /* Check if we have the same endianness. */
15321 if (! _bfd_generic_verify_endian_match (ibfd, info))
15322 {
15323 _bfd_error_handler
15324 (_("%pB: endianness incompatible with that of the selected emulation"),
15325 ibfd);
15326 return FALSE;
15327 }
15328
15329 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15330 return TRUE;
15331
15332 in_tdata = mips_elf_tdata (ibfd);
15333 out_tdata = mips_elf_tdata (obfd);
15334
15335 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15336 {
15337 _bfd_error_handler
15338 (_("%pB: ABI is incompatible with that of the selected emulation"),
15339 ibfd);
15340 return FALSE;
15341 }
15342
15343 /* Check to see if the input BFD actually contains any sections. If not,
15344 then it has no attributes, and its flags may not have been initialized
15345 either, but it cannot actually cause any incompatibility. */
15346 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15347 {
15348 /* Ignore synthetic sections and empty .text, .data and .bss sections
15349 which are automatically generated by gas. Also ignore fake
15350 (s)common sections, since merely defining a common symbol does
15351 not affect compatibility. */
15352 if ((sec->flags & SEC_IS_COMMON) == 0
15353 && strcmp (sec->name, ".reginfo")
15354 && strcmp (sec->name, ".mdebug")
15355 && (sec->size != 0
15356 || (strcmp (sec->name, ".text")
15357 && strcmp (sec->name, ".data")
15358 && strcmp (sec->name, ".bss"))))
15359 {
15360 null_input_bfd = FALSE;
15361 break;
15362 }
15363 }
15364 if (null_input_bfd)
15365 return TRUE;
15366
15367 /* Populate abiflags using existing information. */
15368 if (in_tdata->abiflags_valid)
15369 {
15370 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15371 Elf_Internal_ABIFlags_v0 in_abiflags;
15372 Elf_Internal_ABIFlags_v0 abiflags;
15373
15374 /* Set up the FP ABI attribute from the abiflags if it is not already
15375 set. */
15376 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15377 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
15378
15379 infer_mips_abiflags (ibfd, &abiflags);
15380 in_abiflags = in_tdata->abiflags;
15381
15382 /* It is not possible to infer the correct ISA revision
15383 for R3 or R5 so drop down to R2 for the checks. */
15384 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15385 in_abiflags.isa_rev = 2;
15386
15387 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15388 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
15389 _bfd_error_handler
15390 (_("%pB: warning: Inconsistent ISA between e_flags and "
15391 ".MIPS.abiflags"), ibfd);
15392 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15393 && in_abiflags.fp_abi != abiflags.fp_abi)
15394 _bfd_error_handler
15395 (_("%pB: warning: Inconsistent FP ABI between .gnu.attributes and "
15396 ".MIPS.abiflags"), ibfd);
15397 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15398 _bfd_error_handler
15399 (_("%pB: warning: Inconsistent ASEs between e_flags and "
15400 ".MIPS.abiflags"), ibfd);
15401 /* The isa_ext is allowed to be an extension of what can be inferred
15402 from e_flags. */
15403 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15404 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
15405 _bfd_error_handler
15406 (_("%pB: warning: Inconsistent ISA extensions between e_flags and "
15407 ".MIPS.abiflags"), ibfd);
15408 if (in_abiflags.flags2 != 0)
15409 _bfd_error_handler
15410 (_("%pB: warning: Unexpected flag in the flags2 field of "
15411 ".MIPS.abiflags (0x%lx)"), ibfd,
15412 in_abiflags.flags2);
15413 }
15414 else
15415 {
15416 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15417 in_tdata->abiflags_valid = TRUE;
15418 }
15419
15420 if (!out_tdata->abiflags_valid)
15421 {
15422 /* Copy input abiflags if output abiflags are not already valid. */
15423 out_tdata->abiflags = in_tdata->abiflags;
15424 out_tdata->abiflags_valid = TRUE;
15425 }
15426
15427 if (! elf_flags_init (obfd))
15428 {
15429 elf_flags_init (obfd) = TRUE;
15430 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15431 elf_elfheader (obfd)->e_ident[EI_CLASS]
15432 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15433
15434 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15435 && (bfd_get_arch_info (obfd)->the_default
15436 || mips_mach_extends_p (bfd_get_mach (obfd),
15437 bfd_get_mach (ibfd))))
15438 {
15439 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15440 bfd_get_mach (ibfd)))
15441 return FALSE;
15442
15443 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15444 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15445 }
15446
15447 ok = TRUE;
15448 }
15449 else
15450 ok = mips_elf_merge_obj_e_flags (ibfd, info);
15451
15452 ok = mips_elf_merge_obj_attributes (ibfd, info) && ok;
15453
15454 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
15455
15456 if (!ok)
15457 {
15458 bfd_set_error (bfd_error_bad_value);
15459 return FALSE;
15460 }
15461
15462 return TRUE;
15463 }
15464
15465 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15466
15467 bfd_boolean
15468 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15469 {
15470 BFD_ASSERT (!elf_flags_init (abfd)
15471 || elf_elfheader (abfd)->e_flags == flags);
15472
15473 elf_elfheader (abfd)->e_flags = flags;
15474 elf_flags_init (abfd) = TRUE;
15475 return TRUE;
15476 }
15477
15478 char *
15479 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15480 {
15481 switch (dtag)
15482 {
15483 default: return "";
15484 case DT_MIPS_RLD_VERSION:
15485 return "MIPS_RLD_VERSION";
15486 case DT_MIPS_TIME_STAMP:
15487 return "MIPS_TIME_STAMP";
15488 case DT_MIPS_ICHECKSUM:
15489 return "MIPS_ICHECKSUM";
15490 case DT_MIPS_IVERSION:
15491 return "MIPS_IVERSION";
15492 case DT_MIPS_FLAGS:
15493 return "MIPS_FLAGS";
15494 case DT_MIPS_BASE_ADDRESS:
15495 return "MIPS_BASE_ADDRESS";
15496 case DT_MIPS_MSYM:
15497 return "MIPS_MSYM";
15498 case DT_MIPS_CONFLICT:
15499 return "MIPS_CONFLICT";
15500 case DT_MIPS_LIBLIST:
15501 return "MIPS_LIBLIST";
15502 case DT_MIPS_LOCAL_GOTNO:
15503 return "MIPS_LOCAL_GOTNO";
15504 case DT_MIPS_CONFLICTNO:
15505 return "MIPS_CONFLICTNO";
15506 case DT_MIPS_LIBLISTNO:
15507 return "MIPS_LIBLISTNO";
15508 case DT_MIPS_SYMTABNO:
15509 return "MIPS_SYMTABNO";
15510 case DT_MIPS_UNREFEXTNO:
15511 return "MIPS_UNREFEXTNO";
15512 case DT_MIPS_GOTSYM:
15513 return "MIPS_GOTSYM";
15514 case DT_MIPS_HIPAGENO:
15515 return "MIPS_HIPAGENO";
15516 case DT_MIPS_RLD_MAP:
15517 return "MIPS_RLD_MAP";
15518 case DT_MIPS_RLD_MAP_REL:
15519 return "MIPS_RLD_MAP_REL";
15520 case DT_MIPS_DELTA_CLASS:
15521 return "MIPS_DELTA_CLASS";
15522 case DT_MIPS_DELTA_CLASS_NO:
15523 return "MIPS_DELTA_CLASS_NO";
15524 case DT_MIPS_DELTA_INSTANCE:
15525 return "MIPS_DELTA_INSTANCE";
15526 case DT_MIPS_DELTA_INSTANCE_NO:
15527 return "MIPS_DELTA_INSTANCE_NO";
15528 case DT_MIPS_DELTA_RELOC:
15529 return "MIPS_DELTA_RELOC";
15530 case DT_MIPS_DELTA_RELOC_NO:
15531 return "MIPS_DELTA_RELOC_NO";
15532 case DT_MIPS_DELTA_SYM:
15533 return "MIPS_DELTA_SYM";
15534 case DT_MIPS_DELTA_SYM_NO:
15535 return "MIPS_DELTA_SYM_NO";
15536 case DT_MIPS_DELTA_CLASSSYM:
15537 return "MIPS_DELTA_CLASSSYM";
15538 case DT_MIPS_DELTA_CLASSSYM_NO:
15539 return "MIPS_DELTA_CLASSSYM_NO";
15540 case DT_MIPS_CXX_FLAGS:
15541 return "MIPS_CXX_FLAGS";
15542 case DT_MIPS_PIXIE_INIT:
15543 return "MIPS_PIXIE_INIT";
15544 case DT_MIPS_SYMBOL_LIB:
15545 return "MIPS_SYMBOL_LIB";
15546 case DT_MIPS_LOCALPAGE_GOTIDX:
15547 return "MIPS_LOCALPAGE_GOTIDX";
15548 case DT_MIPS_LOCAL_GOTIDX:
15549 return "MIPS_LOCAL_GOTIDX";
15550 case DT_MIPS_HIDDEN_GOTIDX:
15551 return "MIPS_HIDDEN_GOTIDX";
15552 case DT_MIPS_PROTECTED_GOTIDX:
15553 return "MIPS_PROTECTED_GOT_IDX";
15554 case DT_MIPS_OPTIONS:
15555 return "MIPS_OPTIONS";
15556 case DT_MIPS_INTERFACE:
15557 return "MIPS_INTERFACE";
15558 case DT_MIPS_DYNSTR_ALIGN:
15559 return "DT_MIPS_DYNSTR_ALIGN";
15560 case DT_MIPS_INTERFACE_SIZE:
15561 return "DT_MIPS_INTERFACE_SIZE";
15562 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15563 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15564 case DT_MIPS_PERF_SUFFIX:
15565 return "DT_MIPS_PERF_SUFFIX";
15566 case DT_MIPS_COMPACT_SIZE:
15567 return "DT_MIPS_COMPACT_SIZE";
15568 case DT_MIPS_GP_VALUE:
15569 return "DT_MIPS_GP_VALUE";
15570 case DT_MIPS_AUX_DYNAMIC:
15571 return "DT_MIPS_AUX_DYNAMIC";
15572 case DT_MIPS_PLTGOT:
15573 return "DT_MIPS_PLTGOT";
15574 case DT_MIPS_RWPLT:
15575 return "DT_MIPS_RWPLT";
15576 }
15577 }
15578
15579 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15580 not known. */
15581
15582 const char *
15583 _bfd_mips_fp_abi_string (int fp)
15584 {
15585 switch (fp)
15586 {
15587 /* These strings aren't translated because they're simply
15588 option lists. */
15589 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15590 return "-mdouble-float";
15591
15592 case Val_GNU_MIPS_ABI_FP_SINGLE:
15593 return "-msingle-float";
15594
15595 case Val_GNU_MIPS_ABI_FP_SOFT:
15596 return "-msoft-float";
15597
15598 case Val_GNU_MIPS_ABI_FP_OLD_64:
15599 return _("-mips32r2 -mfp64 (12 callee-saved)");
15600
15601 case Val_GNU_MIPS_ABI_FP_XX:
15602 return "-mfpxx";
15603
15604 case Val_GNU_MIPS_ABI_FP_64:
15605 return "-mgp32 -mfp64";
15606
15607 case Val_GNU_MIPS_ABI_FP_64A:
15608 return "-mgp32 -mfp64 -mno-odd-spreg";
15609
15610 default:
15611 return 0;
15612 }
15613 }
15614
15615 static void
15616 print_mips_ases (FILE *file, unsigned int mask)
15617 {
15618 if (mask & AFL_ASE_DSP)
15619 fputs ("\n\tDSP ASE", file);
15620 if (mask & AFL_ASE_DSPR2)
15621 fputs ("\n\tDSP R2 ASE", file);
15622 if (mask & AFL_ASE_DSPR3)
15623 fputs ("\n\tDSP R3 ASE", file);
15624 if (mask & AFL_ASE_EVA)
15625 fputs ("\n\tEnhanced VA Scheme", file);
15626 if (mask & AFL_ASE_MCU)
15627 fputs ("\n\tMCU (MicroController) ASE", file);
15628 if (mask & AFL_ASE_MDMX)
15629 fputs ("\n\tMDMX ASE", file);
15630 if (mask & AFL_ASE_MIPS3D)
15631 fputs ("\n\tMIPS-3D ASE", file);
15632 if (mask & AFL_ASE_MT)
15633 fputs ("\n\tMT ASE", file);
15634 if (mask & AFL_ASE_SMARTMIPS)
15635 fputs ("\n\tSmartMIPS ASE", file);
15636 if (mask & AFL_ASE_VIRT)
15637 fputs ("\n\tVZ ASE", file);
15638 if (mask & AFL_ASE_MSA)
15639 fputs ("\n\tMSA ASE", file);
15640 if (mask & AFL_ASE_MIPS16)
15641 fputs ("\n\tMIPS16 ASE", file);
15642 if (mask & AFL_ASE_MICROMIPS)
15643 fputs ("\n\tMICROMIPS ASE", file);
15644 if (mask & AFL_ASE_XPA)
15645 fputs ("\n\tXPA ASE", file);
15646 if (mask & AFL_ASE_MIPS16E2)
15647 fputs ("\n\tMIPS16e2 ASE", file);
15648 if (mask == 0)
15649 fprintf (file, "\n\t%s", _("None"));
15650 else if ((mask & ~AFL_ASE_MASK) != 0)
15651 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
15652 }
15653
15654 static void
15655 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15656 {
15657 switch (isa_ext)
15658 {
15659 case 0:
15660 fputs (_("None"), file);
15661 break;
15662 case AFL_EXT_XLR:
15663 fputs ("RMI XLR", file);
15664 break;
15665 case AFL_EXT_OCTEON3:
15666 fputs ("Cavium Networks Octeon3", file);
15667 break;
15668 case AFL_EXT_OCTEON2:
15669 fputs ("Cavium Networks Octeon2", file);
15670 break;
15671 case AFL_EXT_OCTEONP:
15672 fputs ("Cavium Networks OcteonP", file);
15673 break;
15674 case AFL_EXT_LOONGSON_3A:
15675 fputs ("Loongson 3A", file);
15676 break;
15677 case AFL_EXT_OCTEON:
15678 fputs ("Cavium Networks Octeon", file);
15679 break;
15680 case AFL_EXT_5900:
15681 fputs ("Toshiba R5900", file);
15682 break;
15683 case AFL_EXT_4650:
15684 fputs ("MIPS R4650", file);
15685 break;
15686 case AFL_EXT_4010:
15687 fputs ("LSI R4010", file);
15688 break;
15689 case AFL_EXT_4100:
15690 fputs ("NEC VR4100", file);
15691 break;
15692 case AFL_EXT_3900:
15693 fputs ("Toshiba R3900", file);
15694 break;
15695 case AFL_EXT_10000:
15696 fputs ("MIPS R10000", file);
15697 break;
15698 case AFL_EXT_SB1:
15699 fputs ("Broadcom SB-1", file);
15700 break;
15701 case AFL_EXT_4111:
15702 fputs ("NEC VR4111/VR4181", file);
15703 break;
15704 case AFL_EXT_4120:
15705 fputs ("NEC VR4120", file);
15706 break;
15707 case AFL_EXT_5400:
15708 fputs ("NEC VR5400", file);
15709 break;
15710 case AFL_EXT_5500:
15711 fputs ("NEC VR5500", file);
15712 break;
15713 case AFL_EXT_LOONGSON_2E:
15714 fputs ("ST Microelectronics Loongson 2E", file);
15715 break;
15716 case AFL_EXT_LOONGSON_2F:
15717 fputs ("ST Microelectronics Loongson 2F", file);
15718 break;
15719 case AFL_EXT_INTERAPTIV_MR2:
15720 fputs ("Imagination interAptiv MR2", file);
15721 break;
15722 default:
15723 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
15724 break;
15725 }
15726 }
15727
15728 static void
15729 print_mips_fp_abi_value (FILE *file, int val)
15730 {
15731 switch (val)
15732 {
15733 case Val_GNU_MIPS_ABI_FP_ANY:
15734 fprintf (file, _("Hard or soft float\n"));
15735 break;
15736 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15737 fprintf (file, _("Hard float (double precision)\n"));
15738 break;
15739 case Val_GNU_MIPS_ABI_FP_SINGLE:
15740 fprintf (file, _("Hard float (single precision)\n"));
15741 break;
15742 case Val_GNU_MIPS_ABI_FP_SOFT:
15743 fprintf (file, _("Soft float\n"));
15744 break;
15745 case Val_GNU_MIPS_ABI_FP_OLD_64:
15746 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15747 break;
15748 case Val_GNU_MIPS_ABI_FP_XX:
15749 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
15750 break;
15751 case Val_GNU_MIPS_ABI_FP_64:
15752 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
15753 break;
15754 case Val_GNU_MIPS_ABI_FP_64A:
15755 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
15756 break;
15757 default:
15758 fprintf (file, "??? (%d)\n", val);
15759 break;
15760 }
15761 }
15762
15763 static int
15764 get_mips_reg_size (int reg_size)
15765 {
15766 return (reg_size == AFL_REG_NONE) ? 0
15767 : (reg_size == AFL_REG_32) ? 32
15768 : (reg_size == AFL_REG_64) ? 64
15769 : (reg_size == AFL_REG_128) ? 128
15770 : -1;
15771 }
15772
15773 bfd_boolean
15774 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
15775 {
15776 FILE *file = ptr;
15777
15778 BFD_ASSERT (abfd != NULL && ptr != NULL);
15779
15780 /* Print normal ELF private data. */
15781 _bfd_elf_print_private_bfd_data (abfd, ptr);
15782
15783 /* xgettext:c-format */
15784 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15785
15786 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
15787 fprintf (file, _(" [abi=O32]"));
15788 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
15789 fprintf (file, _(" [abi=O64]"));
15790 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
15791 fprintf (file, _(" [abi=EABI32]"));
15792 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
15793 fprintf (file, _(" [abi=EABI64]"));
15794 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
15795 fprintf (file, _(" [abi unknown]"));
15796 else if (ABI_N32_P (abfd))
15797 fprintf (file, _(" [abi=N32]"));
15798 else if (ABI_64_P (abfd))
15799 fprintf (file, _(" [abi=64]"));
15800 else
15801 fprintf (file, _(" [no abi set]"));
15802
15803 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
15804 fprintf (file, " [mips1]");
15805 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
15806 fprintf (file, " [mips2]");
15807 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
15808 fprintf (file, " [mips3]");
15809 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
15810 fprintf (file, " [mips4]");
15811 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
15812 fprintf (file, " [mips5]");
15813 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
15814 fprintf (file, " [mips32]");
15815 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
15816 fprintf (file, " [mips64]");
15817 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
15818 fprintf (file, " [mips32r2]");
15819 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
15820 fprintf (file, " [mips64r2]");
15821 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
15822 fprintf (file, " [mips32r6]");
15823 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
15824 fprintf (file, " [mips64r6]");
15825 else
15826 fprintf (file, _(" [unknown ISA]"));
15827
15828 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
15829 fprintf (file, " [mdmx]");
15830
15831 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
15832 fprintf (file, " [mips16]");
15833
15834 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
15835 fprintf (file, " [micromips]");
15836
15837 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
15838 fprintf (file, " [nan2008]");
15839
15840 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
15841 fprintf (file, " [old fp64]");
15842
15843 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
15844 fprintf (file, " [32bitmode]");
15845 else
15846 fprintf (file, _(" [not 32bitmode]"));
15847
15848 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
15849 fprintf (file, " [noreorder]");
15850
15851 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
15852 fprintf (file, " [PIC]");
15853
15854 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
15855 fprintf (file, " [CPIC]");
15856
15857 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
15858 fprintf (file, " [XGOT]");
15859
15860 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
15861 fprintf (file, " [UCODE]");
15862
15863 fputc ('\n', file);
15864
15865 if (mips_elf_tdata (abfd)->abiflags_valid)
15866 {
15867 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
15868 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
15869 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
15870 if (abiflags->isa_rev > 1)
15871 fprintf (file, "r%d", abiflags->isa_rev);
15872 fprintf (file, "\nGPR size: %d",
15873 get_mips_reg_size (abiflags->gpr_size));
15874 fprintf (file, "\nCPR1 size: %d",
15875 get_mips_reg_size (abiflags->cpr1_size));
15876 fprintf (file, "\nCPR2 size: %d",
15877 get_mips_reg_size (abiflags->cpr2_size));
15878 fputs ("\nFP ABI: ", file);
15879 print_mips_fp_abi_value (file, abiflags->fp_abi);
15880 fputs ("ISA Extension: ", file);
15881 print_mips_isa_ext (file, abiflags->isa_ext);
15882 fputs ("\nASEs:", file);
15883 print_mips_ases (file, abiflags->ases);
15884 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
15885 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
15886 fputc ('\n', file);
15887 }
15888
15889 return TRUE;
15890 }
15891
15892 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
15893 {
15894 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15895 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15896 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
15897 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15898 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15899 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
15900 { NULL, 0, 0, 0, 0 }
15901 };
15902
15903 /* Merge non visibility st_other attributes. Ensure that the
15904 STO_OPTIONAL flag is copied into h->other, even if this is not a
15905 definiton of the symbol. */
15906 void
15907 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
15908 const Elf_Internal_Sym *isym,
15909 bfd_boolean definition,
15910 bfd_boolean dynamic ATTRIBUTE_UNUSED)
15911 {
15912 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
15913 {
15914 unsigned char other;
15915
15916 other = (definition ? isym->st_other : h->other);
15917 other &= ~ELF_ST_VISIBILITY (-1);
15918 h->other = other | ELF_ST_VISIBILITY (h->other);
15919 }
15920
15921 if (!definition
15922 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
15923 h->other |= STO_OPTIONAL;
15924 }
15925
15926 /* Decide whether an undefined symbol is special and can be ignored.
15927 This is the case for OPTIONAL symbols on IRIX. */
15928 bfd_boolean
15929 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
15930 {
15931 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
15932 }
15933
15934 bfd_boolean
15935 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
15936 {
15937 return (sym->st_shndx == SHN_COMMON
15938 || sym->st_shndx == SHN_MIPS_ACOMMON
15939 || sym->st_shndx == SHN_MIPS_SCOMMON);
15940 }
15941
15942 /* Return address for Ith PLT stub in section PLT, for relocation REL
15943 or (bfd_vma) -1 if it should not be included. */
15944
15945 bfd_vma
15946 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
15947 const arelent *rel ATTRIBUTE_UNUSED)
15948 {
15949 return (plt->vma
15950 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
15951 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
15952 }
15953
15954 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
15955 and microMIPS PLT slots we may have a many-to-one mapping between .plt
15956 and .got.plt and also the slots may be of a different size each we walk
15957 the PLT manually fetching instructions and matching them against known
15958 patterns. To make things easier standard MIPS slots, if any, always come
15959 first. As we don't create proper ELF symbols we use the UDATA.I member
15960 of ASYMBOL to carry ISA annotation. The encoding used is the same as
15961 with the ST_OTHER member of the ELF symbol. */
15962
15963 long
15964 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
15965 long symcount ATTRIBUTE_UNUSED,
15966 asymbol **syms ATTRIBUTE_UNUSED,
15967 long dynsymcount, asymbol **dynsyms,
15968 asymbol **ret)
15969 {
15970 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
15971 static const char microsuffix[] = "@micromipsplt";
15972 static const char m16suffix[] = "@mips16plt";
15973 static const char mipssuffix[] = "@plt";
15974
15975 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
15976 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
15977 bfd_boolean micromips_p = MICROMIPS_P (abfd);
15978 Elf_Internal_Shdr *hdr;
15979 bfd_byte *plt_data;
15980 bfd_vma plt_offset;
15981 unsigned int other;
15982 bfd_vma entry_size;
15983 bfd_vma plt0_size;
15984 asection *relplt;
15985 bfd_vma opcode;
15986 asection *plt;
15987 asymbol *send;
15988 size_t size;
15989 char *names;
15990 long counti;
15991 arelent *p;
15992 asymbol *s;
15993 char *nend;
15994 long count;
15995 long pi;
15996 long i;
15997 long n;
15998
15999 *ret = NULL;
16000
16001 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
16002 return 0;
16003
16004 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16005 if (relplt == NULL)
16006 return 0;
16007
16008 hdr = &elf_section_data (relplt)->this_hdr;
16009 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
16010 return 0;
16011
16012 plt = bfd_get_section_by_name (abfd, ".plt");
16013 if (plt == NULL)
16014 return 0;
16015
16016 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
16017 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
16018 return -1;
16019 p = relplt->relocation;
16020
16021 /* Calculating the exact amount of space required for symbols would
16022 require two passes over the PLT, so just pessimise assuming two
16023 PLT slots per relocation. */
16024 count = relplt->size / hdr->sh_entsize;
16025 counti = count * bed->s->int_rels_per_ext_rel;
16026 size = 2 * count * sizeof (asymbol);
16027 size += count * (sizeof (mipssuffix) +
16028 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16029 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16030 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16031
16032 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16033 size += sizeof (asymbol) + sizeof (pltname);
16034
16035 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16036 return -1;
16037
16038 if (plt->size < 16)
16039 return -1;
16040
16041 s = *ret = bfd_malloc (size);
16042 if (s == NULL)
16043 return -1;
16044 send = s + 2 * count + 1;
16045
16046 names = (char *) send;
16047 nend = (char *) s + size;
16048 n = 0;
16049
16050 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16051 if (opcode == 0x3302fffe)
16052 {
16053 if (!micromips_p)
16054 return -1;
16055 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16056 other = STO_MICROMIPS;
16057 }
16058 else if (opcode == 0x0398c1d0)
16059 {
16060 if (!micromips_p)
16061 return -1;
16062 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16063 other = STO_MICROMIPS;
16064 }
16065 else
16066 {
16067 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16068 other = 0;
16069 }
16070
16071 s->the_bfd = abfd;
16072 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16073 s->section = plt;
16074 s->value = 0;
16075 s->name = names;
16076 s->udata.i = other;
16077 memcpy (names, pltname, sizeof (pltname));
16078 names += sizeof (pltname);
16079 ++s, ++n;
16080
16081 pi = 0;
16082 for (plt_offset = plt0_size;
16083 plt_offset + 8 <= plt->size && s < send;
16084 plt_offset += entry_size)
16085 {
16086 bfd_vma gotplt_addr;
16087 const char *suffix;
16088 bfd_vma gotplt_hi;
16089 bfd_vma gotplt_lo;
16090 size_t suffixlen;
16091
16092 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16093
16094 /* Check if the second word matches the expected MIPS16 instruction. */
16095 if (opcode == 0x651aeb00)
16096 {
16097 if (micromips_p)
16098 return -1;
16099 /* Truncated table??? */
16100 if (plt_offset + 16 > plt->size)
16101 break;
16102 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16103 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16104 suffixlen = sizeof (m16suffix);
16105 suffix = m16suffix;
16106 other = STO_MIPS16;
16107 }
16108 /* Likewise the expected microMIPS instruction (no insn32 mode). */
16109 else if (opcode == 0xff220000)
16110 {
16111 if (!micromips_p)
16112 return -1;
16113 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16114 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16115 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16116 gotplt_lo <<= 2;
16117 gotplt_addr = gotplt_hi + gotplt_lo;
16118 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16119 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16120 suffixlen = sizeof (microsuffix);
16121 suffix = microsuffix;
16122 other = STO_MICROMIPS;
16123 }
16124 /* Likewise the expected microMIPS instruction (insn32 mode). */
16125 else if ((opcode & 0xffff0000) == 0xff2f0000)
16126 {
16127 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16128 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16129 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16130 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16131 gotplt_addr = gotplt_hi + gotplt_lo;
16132 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16133 suffixlen = sizeof (microsuffix);
16134 suffix = microsuffix;
16135 other = STO_MICROMIPS;
16136 }
16137 /* Otherwise assume standard MIPS code. */
16138 else
16139 {
16140 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16141 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16142 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16143 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16144 gotplt_addr = gotplt_hi + gotplt_lo;
16145 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16146 suffixlen = sizeof (mipssuffix);
16147 suffix = mipssuffix;
16148 other = 0;
16149 }
16150 /* Truncated table??? */
16151 if (plt_offset + entry_size > plt->size)
16152 break;
16153
16154 for (i = 0;
16155 i < count && p[pi].address != gotplt_addr;
16156 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16157
16158 if (i < count)
16159 {
16160 size_t namelen;
16161 size_t len;
16162
16163 *s = **p[pi].sym_ptr_ptr;
16164 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16165 we are defining a symbol, ensure one of them is set. */
16166 if ((s->flags & BSF_LOCAL) == 0)
16167 s->flags |= BSF_GLOBAL;
16168 s->flags |= BSF_SYNTHETIC;
16169 s->section = plt;
16170 s->value = plt_offset;
16171 s->name = names;
16172 s->udata.i = other;
16173
16174 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16175 namelen = len + suffixlen;
16176 if (names + namelen > nend)
16177 break;
16178
16179 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16180 names += len;
16181 memcpy (names, suffix, suffixlen);
16182 names += suffixlen;
16183
16184 ++s, ++n;
16185 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16186 }
16187 }
16188
16189 free (plt_data);
16190
16191 return n;
16192 }
16193
16194 /* Return the ABI flags associated with ABFD if available. */
16195
16196 Elf_Internal_ABIFlags_v0 *
16197 bfd_mips_elf_get_abiflags (bfd *abfd)
16198 {
16199 struct mips_elf_obj_tdata *tdata = mips_elf_tdata (abfd);
16200
16201 return tdata->abiflags_valid ? &tdata->abiflags : NULL;
16202 }
16203
16204 void
16205 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16206 {
16207 struct mips_elf_link_hash_table *htab;
16208 Elf_Internal_Ehdr *i_ehdrp;
16209
16210 i_ehdrp = elf_elfheader (abfd);
16211 if (link_info)
16212 {
16213 htab = mips_elf_hash_table (link_info);
16214 BFD_ASSERT (htab != NULL);
16215
16216 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16217 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
16218 }
16219
16220 _bfd_elf_post_process_headers (abfd, link_info);
16221
16222 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16223 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16224 i_ehdrp->e_ident[EI_ABIVERSION] = 3;
16225 }
16226
16227 int
16228 _bfd_mips_elf_compact_eh_encoding (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16229 {
16230 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16231 }
16232
16233 /* Return the opcode for can't unwind. */
16234
16235 int
16236 _bfd_mips_elf_cant_unwind_opcode (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16237 {
16238 return COMPACT_EH_CANT_UNWIND_OPCODE;
16239 }
This page took 0.371817 seconds and 5 git commands to generate.