bfd_section_* macros
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2019 Free Software Foundation, Inc.
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
28
29 /* This file handles functionality common to the different MIPS ABI's. */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "libiberty.h"
35 #include "elf-bfd.h"
36 #include "elfxx-mips.h"
37 #include "elf/mips.h"
38 #include "elf-vxworks.h"
39 #include "dwarf2.h"
40
41 /* Get the ECOFF swapping routines. */
42 #include "coff/sym.h"
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46
47 #include "hashtab.h"
48
49 /* Types of TLS GOT entry. */
50 enum mips_got_tls_type {
51 GOT_TLS_NONE,
52 GOT_TLS_GD,
53 GOT_TLS_LDM,
54 GOT_TLS_IE
55 };
56
57 /* This structure is used to hold information about one GOT entry.
58 There are four types of entry:
59
60 (1) an absolute address
61 requires: abfd == NULL
62 fields: d.address
63
64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 fields: abfd, symndx, d.addend, tls_type
67
68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 requires: abfd != NULL, symndx == -1
70 fields: d.h, tls_type
71
72 (4) a TLS LDM slot
73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 fields: none; there's only one of these per GOT. */
75 struct mips_got_entry
76 {
77 /* One input bfd that needs the GOT entry. */
78 bfd *abfd;
79 /* The index of the symbol, as stored in the relocation r_info, if
80 we have a local symbol; -1 otherwise. */
81 long symndx;
82 union
83 {
84 /* If abfd == NULL, an address that must be stored in the got. */
85 bfd_vma address;
86 /* If abfd != NULL && symndx != -1, the addend of the relocation
87 that should be added to the symbol value. */
88 bfd_vma addend;
89 /* If abfd != NULL && symndx == -1, the hash table entry
90 corresponding to a symbol in the GOT. The symbol's entry
91 is in the local area if h->global_got_area is GGA_NONE,
92 otherwise it is in the global area. */
93 struct mips_elf_link_hash_entry *h;
94 } d;
95
96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
97 symbol entry with r_symndx == 0. */
98 unsigned char tls_type;
99
100 /* True if we have filled in the GOT contents for a TLS entry,
101 and created the associated relocations. */
102 unsigned char tls_initialized;
103
104 /* The offset from the beginning of the .got section to the entry
105 corresponding to this symbol+addend. If it's a global symbol
106 whose offset is yet to be decided, it's going to be -1. */
107 long gotidx;
108 };
109
110 /* This structure represents a GOT page reference from an input bfd.
111 Each instance represents a symbol + ADDEND, where the representation
112 of the symbol depends on whether it is local to the input bfd.
113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
115
116 Page references with SYMNDX >= 0 always become page references
117 in the output. Page references with SYMNDX < 0 only become page
118 references if the symbol binds locally; in other cases, the page
119 reference decays to a global GOT reference. */
120 struct mips_got_page_ref
121 {
122 long symndx;
123 union
124 {
125 struct mips_elf_link_hash_entry *h;
126 bfd *abfd;
127 } u;
128 bfd_vma addend;
129 };
130
131 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132 The structures form a non-overlapping list that is sorted by increasing
133 MIN_ADDEND. */
134 struct mips_got_page_range
135 {
136 struct mips_got_page_range *next;
137 bfd_signed_vma min_addend;
138 bfd_signed_vma max_addend;
139 };
140
141 /* This structure describes the range of addends that are applied to page
142 relocations against a given section. */
143 struct mips_got_page_entry
144 {
145 /* The section that these entries are based on. */
146 asection *sec;
147 /* The ranges for this page entry. */
148 struct mips_got_page_range *ranges;
149 /* The maximum number of page entries needed for RANGES. */
150 bfd_vma num_pages;
151 };
152
153 /* This structure is used to hold .got information when linking. */
154
155 struct mips_got_info
156 {
157 /* The number of global .got entries. */
158 unsigned int global_gotno;
159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
160 unsigned int reloc_only_gotno;
161 /* The number of .got slots used for TLS. */
162 unsigned int tls_gotno;
163 /* The first unused TLS .got entry. Used only during
164 mips_elf_initialize_tls_index. */
165 unsigned int tls_assigned_gotno;
166 /* The number of local .got entries, eventually including page entries. */
167 unsigned int local_gotno;
168 /* The maximum number of page entries needed. */
169 unsigned int page_gotno;
170 /* The number of relocations needed for the GOT entries. */
171 unsigned int relocs;
172 /* The first unused local .got entry. */
173 unsigned int assigned_low_gotno;
174 /* The last unused local .got entry. */
175 unsigned int assigned_high_gotno;
176 /* A hash table holding members of the got. */
177 struct htab *got_entries;
178 /* A hash table holding mips_got_page_ref structures. */
179 struct htab *got_page_refs;
180 /* A hash table of mips_got_page_entry structures. */
181 struct htab *got_page_entries;
182 /* In multi-got links, a pointer to the next got (err, rather, most
183 of the time, it points to the previous got). */
184 struct mips_got_info *next;
185 };
186
187 /* Structure passed when merging bfds' gots. */
188
189 struct mips_elf_got_per_bfd_arg
190 {
191 /* The output bfd. */
192 bfd *obfd;
193 /* The link information. */
194 struct bfd_link_info *info;
195 /* A pointer to the primary got, i.e., the one that's going to get
196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
197 DT_MIPS_GOTSYM. */
198 struct mips_got_info *primary;
199 /* A non-primary got we're trying to merge with other input bfd's
200 gots. */
201 struct mips_got_info *current;
202 /* The maximum number of got entries that can be addressed with a
203 16-bit offset. */
204 unsigned int max_count;
205 /* The maximum number of page entries needed by each got. */
206 unsigned int max_pages;
207 /* The total number of global entries which will live in the
208 primary got and be automatically relocated. This includes
209 those not referenced by the primary GOT but included in
210 the "master" GOT. */
211 unsigned int global_count;
212 };
213
214 /* A structure used to pass information to htab_traverse callbacks
215 when laying out the GOT. */
216
217 struct mips_elf_traverse_got_arg
218 {
219 struct bfd_link_info *info;
220 struct mips_got_info *g;
221 int value;
222 };
223
224 struct _mips_elf_section_data
225 {
226 struct bfd_elf_section_data elf;
227 union
228 {
229 bfd_byte *tdata;
230 } u;
231 };
232
233 #define mips_elf_section_data(sec) \
234 ((struct _mips_elf_section_data *) elf_section_data (sec))
235
236 #define is_mips_elf(bfd) \
237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
238 && elf_tdata (bfd) != NULL \
239 && elf_object_id (bfd) == MIPS_ELF_DATA)
240
241 /* The ABI says that every symbol used by dynamic relocations must have
242 a global GOT entry. Among other things, this provides the dynamic
243 linker with a free, directly-indexed cache. The GOT can therefore
244 contain symbols that are not referenced by GOT relocations themselves
245 (in other words, it may have symbols that are not referenced by things
246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
247
248 GOT relocations are less likely to overflow if we put the associated
249 GOT entries towards the beginning. We therefore divide the global
250 GOT entries into two areas: "normal" and "reloc-only". Entries in
251 the first area can be used for both dynamic relocations and GP-relative
252 accesses, while those in the "reloc-only" area are for dynamic
253 relocations only.
254
255 These GGA_* ("Global GOT Area") values are organised so that lower
256 values are more general than higher values. Also, non-GGA_NONE
257 values are ordered by the position of the area in the GOT. */
258 #define GGA_NORMAL 0
259 #define GGA_RELOC_ONLY 1
260 #define GGA_NONE 2
261
262 /* Information about a non-PIC interface to a PIC function. There are
263 two ways of creating these interfaces. The first is to add:
264
265 lui $25,%hi(func)
266 addiu $25,$25,%lo(func)
267
268 immediately before a PIC function "func". The second is to add:
269
270 lui $25,%hi(func)
271 j func
272 addiu $25,$25,%lo(func)
273
274 to a separate trampoline section.
275
276 Stubs of the first kind go in a new section immediately before the
277 target function. Stubs of the second kind go in a single section
278 pointed to by the hash table's "strampoline" field. */
279 struct mips_elf_la25_stub {
280 /* The generated section that contains this stub. */
281 asection *stub_section;
282
283 /* The offset of the stub from the start of STUB_SECTION. */
284 bfd_vma offset;
285
286 /* One symbol for the original function. Its location is available
287 in H->root.root.u.def. */
288 struct mips_elf_link_hash_entry *h;
289 };
290
291 /* Macros for populating a mips_elf_la25_stub. */
292
293 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
294 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
295 #define LA25_BC(VAL) (0xc8000000 | (((VAL) >> 2) & 0x3ffffff)) /* bc VAL */
296 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
297 #define LA25_LUI_MICROMIPS(VAL) \
298 (0x41b90000 | (VAL)) /* lui t9,VAL */
299 #define LA25_J_MICROMIPS(VAL) \
300 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
301 #define LA25_ADDIU_MICROMIPS(VAL) \
302 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
303
304 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
305 the dynamic symbols. */
306
307 struct mips_elf_hash_sort_data
308 {
309 /* The symbol in the global GOT with the lowest dynamic symbol table
310 index. */
311 struct elf_link_hash_entry *low;
312 /* The least dynamic symbol table index corresponding to a non-TLS
313 symbol with a GOT entry. */
314 bfd_size_type min_got_dynindx;
315 /* The greatest dynamic symbol table index corresponding to a symbol
316 with a GOT entry that is not referenced (e.g., a dynamic symbol
317 with dynamic relocations pointing to it from non-primary GOTs). */
318 bfd_size_type max_unref_got_dynindx;
319 /* The greatest dynamic symbol table index corresponding to a local
320 symbol. */
321 bfd_size_type max_local_dynindx;
322 /* The greatest dynamic symbol table index corresponding to an external
323 symbol without a GOT entry. */
324 bfd_size_type max_non_got_dynindx;
325 /* If non-NULL, output BFD for .MIPS.xhash finalization. */
326 bfd *output_bfd;
327 /* If non-NULL, pointer to contents of .MIPS.xhash for filling in
328 real final dynindx. */
329 bfd_byte *mipsxhash;
330 };
331
332 /* We make up to two PLT entries if needed, one for standard MIPS code
333 and one for compressed code, either a MIPS16 or microMIPS one. We
334 keep a separate record of traditional lazy-binding stubs, for easier
335 processing. */
336
337 struct plt_entry
338 {
339 /* Traditional SVR4 stub offset, or -1 if none. */
340 bfd_vma stub_offset;
341
342 /* Standard PLT entry offset, or -1 if none. */
343 bfd_vma mips_offset;
344
345 /* Compressed PLT entry offset, or -1 if none. */
346 bfd_vma comp_offset;
347
348 /* The corresponding .got.plt index, or -1 if none. */
349 bfd_vma gotplt_index;
350
351 /* Whether we need a standard PLT entry. */
352 unsigned int need_mips : 1;
353
354 /* Whether we need a compressed PLT entry. */
355 unsigned int need_comp : 1;
356 };
357
358 /* The MIPS ELF linker needs additional information for each symbol in
359 the global hash table. */
360
361 struct mips_elf_link_hash_entry
362 {
363 struct elf_link_hash_entry root;
364
365 /* External symbol information. */
366 EXTR esym;
367
368 /* The la25 stub we have created for ths symbol, if any. */
369 struct mips_elf_la25_stub *la25_stub;
370
371 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
372 this symbol. */
373 unsigned int possibly_dynamic_relocs;
374
375 /* If there is a stub that 32 bit functions should use to call this
376 16 bit function, this points to the section containing the stub. */
377 asection *fn_stub;
378
379 /* If there is a stub that 16 bit functions should use to call this
380 32 bit function, this points to the section containing the stub. */
381 asection *call_stub;
382
383 /* This is like the call_stub field, but it is used if the function
384 being called returns a floating point value. */
385 asection *call_fp_stub;
386
387 /* If non-zero, location in .MIPS.xhash to write real final dynindx. */
388 bfd_vma mipsxhash_loc;
389
390 /* The highest GGA_* value that satisfies all references to this symbol. */
391 unsigned int global_got_area : 2;
392
393 /* True if all GOT relocations against this symbol are for calls. This is
394 a looser condition than no_fn_stub below, because there may be other
395 non-call non-GOT relocations against the symbol. */
396 unsigned int got_only_for_calls : 1;
397
398 /* True if one of the relocations described by possibly_dynamic_relocs
399 is against a readonly section. */
400 unsigned int readonly_reloc : 1;
401
402 /* True if there is a relocation against this symbol that must be
403 resolved by the static linker (in other words, if the relocation
404 cannot possibly be made dynamic). */
405 unsigned int has_static_relocs : 1;
406
407 /* True if we must not create a .MIPS.stubs entry for this symbol.
408 This is set, for example, if there are relocations related to
409 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
410 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
411 unsigned int no_fn_stub : 1;
412
413 /* Whether we need the fn_stub; this is true if this symbol appears
414 in any relocs other than a 16 bit call. */
415 unsigned int need_fn_stub : 1;
416
417 /* True if this symbol is referenced by branch relocations from
418 any non-PIC input file. This is used to determine whether an
419 la25 stub is required. */
420 unsigned int has_nonpic_branches : 1;
421
422 /* Does this symbol need a traditional MIPS lazy-binding stub
423 (as opposed to a PLT entry)? */
424 unsigned int needs_lazy_stub : 1;
425
426 /* Does this symbol resolve to a PLT entry? */
427 unsigned int use_plt_entry : 1;
428 };
429
430 /* MIPS ELF linker hash table. */
431
432 struct mips_elf_link_hash_table
433 {
434 struct elf_link_hash_table root;
435
436 /* The number of .rtproc entries. */
437 bfd_size_type procedure_count;
438
439 /* The size of the .compact_rel section (if SGI_COMPAT). */
440 bfd_size_type compact_rel_size;
441
442 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
443 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
444 bfd_boolean use_rld_obj_head;
445
446 /* The __rld_map or __rld_obj_head symbol. */
447 struct elf_link_hash_entry *rld_symbol;
448
449 /* This is set if we see any mips16 stub sections. */
450 bfd_boolean mips16_stubs_seen;
451
452 /* True if we can generate copy relocs and PLTs. */
453 bfd_boolean use_plts_and_copy_relocs;
454
455 /* True if we can only use 32-bit microMIPS instructions. */
456 bfd_boolean insn32;
457
458 /* True if we suppress checks for invalid branches between ISA modes. */
459 bfd_boolean ignore_branch_isa;
460
461 /* True if we are targetting R6 compact branches. */
462 bfd_boolean compact_branches;
463
464 /* True if we're generating code for VxWorks. */
465 bfd_boolean is_vxworks;
466
467 /* True if we already reported the small-data section overflow. */
468 bfd_boolean small_data_overflow_reported;
469
470 /* True if we use the special `__gnu_absolute_zero' symbol. */
471 bfd_boolean use_absolute_zero;
472
473 /* True if we have been configured for a GNU target. */
474 bfd_boolean gnu_target;
475
476 /* Shortcuts to some dynamic sections, or NULL if they are not
477 being used. */
478 asection *srelplt2;
479 asection *sstubs;
480
481 /* The master GOT information. */
482 struct mips_got_info *got_info;
483
484 /* The global symbol in the GOT with the lowest index in the dynamic
485 symbol table. */
486 struct elf_link_hash_entry *global_gotsym;
487
488 /* The size of the PLT header in bytes. */
489 bfd_vma plt_header_size;
490
491 /* The size of a standard PLT entry in bytes. */
492 bfd_vma plt_mips_entry_size;
493
494 /* The size of a compressed PLT entry in bytes. */
495 bfd_vma plt_comp_entry_size;
496
497 /* The offset of the next standard PLT entry to create. */
498 bfd_vma plt_mips_offset;
499
500 /* The offset of the next compressed PLT entry to create. */
501 bfd_vma plt_comp_offset;
502
503 /* The index of the next .got.plt entry to create. */
504 bfd_vma plt_got_index;
505
506 /* The number of functions that need a lazy-binding stub. */
507 bfd_vma lazy_stub_count;
508
509 /* The size of a function stub entry in bytes. */
510 bfd_vma function_stub_size;
511
512 /* The number of reserved entries at the beginning of the GOT. */
513 unsigned int reserved_gotno;
514
515 /* The section used for mips_elf_la25_stub trampolines.
516 See the comment above that structure for details. */
517 asection *strampoline;
518
519 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
520 pairs. */
521 htab_t la25_stubs;
522
523 /* A function FN (NAME, IS, OS) that creates a new input section
524 called NAME and links it to output section OS. If IS is nonnull,
525 the new section should go immediately before it, otherwise it
526 should go at the (current) beginning of OS.
527
528 The function returns the new section on success, otherwise it
529 returns null. */
530 asection *(*add_stub_section) (const char *, asection *, asection *);
531
532 /* Small local sym cache. */
533 struct sym_cache sym_cache;
534
535 /* Is the PLT header compressed? */
536 unsigned int plt_header_is_comp : 1;
537 };
538
539 /* Get the MIPS ELF linker hash table from a link_info structure. */
540
541 #define mips_elf_hash_table(p) \
542 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
543 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
544
545 /* A structure used to communicate with htab_traverse callbacks. */
546 struct mips_htab_traverse_info
547 {
548 /* The usual link-wide information. */
549 struct bfd_link_info *info;
550 bfd *output_bfd;
551
552 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
553 bfd_boolean error;
554 };
555
556 /* MIPS ELF private object data. */
557
558 struct mips_elf_obj_tdata
559 {
560 /* Generic ELF private object data. */
561 struct elf_obj_tdata root;
562
563 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
564 bfd *abi_fp_bfd;
565
566 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
567 bfd *abi_msa_bfd;
568
569 /* The abiflags for this object. */
570 Elf_Internal_ABIFlags_v0 abiflags;
571 bfd_boolean abiflags_valid;
572
573 /* The GOT requirements of input bfds. */
574 struct mips_got_info *got;
575
576 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
577 included directly in this one, but there's no point to wasting
578 the memory just for the infrequently called find_nearest_line. */
579 struct mips_elf_find_line *find_line_info;
580
581 /* An array of stub sections indexed by symbol number. */
582 asection **local_stubs;
583 asection **local_call_stubs;
584
585 /* The Irix 5 support uses two virtual sections, which represent
586 text/data symbols defined in dynamic objects. */
587 asymbol *elf_data_symbol;
588 asymbol *elf_text_symbol;
589 asection *elf_data_section;
590 asection *elf_text_section;
591 };
592
593 /* Get MIPS ELF private object data from BFD's tdata. */
594
595 #define mips_elf_tdata(bfd) \
596 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
597
598 #define TLS_RELOC_P(r_type) \
599 (r_type == R_MIPS_TLS_DTPMOD32 \
600 || r_type == R_MIPS_TLS_DTPMOD64 \
601 || r_type == R_MIPS_TLS_DTPREL32 \
602 || r_type == R_MIPS_TLS_DTPREL64 \
603 || r_type == R_MIPS_TLS_GD \
604 || r_type == R_MIPS_TLS_LDM \
605 || r_type == R_MIPS_TLS_DTPREL_HI16 \
606 || r_type == R_MIPS_TLS_DTPREL_LO16 \
607 || r_type == R_MIPS_TLS_GOTTPREL \
608 || r_type == R_MIPS_TLS_TPREL32 \
609 || r_type == R_MIPS_TLS_TPREL64 \
610 || r_type == R_MIPS_TLS_TPREL_HI16 \
611 || r_type == R_MIPS_TLS_TPREL_LO16 \
612 || r_type == R_MIPS16_TLS_GD \
613 || r_type == R_MIPS16_TLS_LDM \
614 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
615 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
616 || r_type == R_MIPS16_TLS_GOTTPREL \
617 || r_type == R_MIPS16_TLS_TPREL_HI16 \
618 || r_type == R_MIPS16_TLS_TPREL_LO16 \
619 || r_type == R_MICROMIPS_TLS_GD \
620 || r_type == R_MICROMIPS_TLS_LDM \
621 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
622 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
623 || r_type == R_MICROMIPS_TLS_GOTTPREL \
624 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
625 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
626
627 /* Structure used to pass information to mips_elf_output_extsym. */
628
629 struct extsym_info
630 {
631 bfd *abfd;
632 struct bfd_link_info *info;
633 struct ecoff_debug_info *debug;
634 const struct ecoff_debug_swap *swap;
635 bfd_boolean failed;
636 };
637
638 /* The names of the runtime procedure table symbols used on IRIX5. */
639
640 static const char * const mips_elf_dynsym_rtproc_names[] =
641 {
642 "_procedure_table",
643 "_procedure_string_table",
644 "_procedure_table_size",
645 NULL
646 };
647
648 /* These structures are used to generate the .compact_rel section on
649 IRIX5. */
650
651 typedef struct
652 {
653 unsigned long id1; /* Always one? */
654 unsigned long num; /* Number of compact relocation entries. */
655 unsigned long id2; /* Always two? */
656 unsigned long offset; /* The file offset of the first relocation. */
657 unsigned long reserved0; /* Zero? */
658 unsigned long reserved1; /* Zero? */
659 } Elf32_compact_rel;
660
661 typedef struct
662 {
663 bfd_byte id1[4];
664 bfd_byte num[4];
665 bfd_byte id2[4];
666 bfd_byte offset[4];
667 bfd_byte reserved0[4];
668 bfd_byte reserved1[4];
669 } Elf32_External_compact_rel;
670
671 typedef struct
672 {
673 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
674 unsigned int rtype : 4; /* Relocation types. See below. */
675 unsigned int dist2to : 8;
676 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
677 unsigned long konst; /* KONST field. See below. */
678 unsigned long vaddr; /* VADDR to be relocated. */
679 } Elf32_crinfo;
680
681 typedef struct
682 {
683 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
684 unsigned int rtype : 4; /* Relocation types. See below. */
685 unsigned int dist2to : 8;
686 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
687 unsigned long konst; /* KONST field. See below. */
688 } Elf32_crinfo2;
689
690 typedef struct
691 {
692 bfd_byte info[4];
693 bfd_byte konst[4];
694 bfd_byte vaddr[4];
695 } Elf32_External_crinfo;
696
697 typedef struct
698 {
699 bfd_byte info[4];
700 bfd_byte konst[4];
701 } Elf32_External_crinfo2;
702
703 /* These are the constants used to swap the bitfields in a crinfo. */
704
705 #define CRINFO_CTYPE (0x1)
706 #define CRINFO_CTYPE_SH (31)
707 #define CRINFO_RTYPE (0xf)
708 #define CRINFO_RTYPE_SH (27)
709 #define CRINFO_DIST2TO (0xff)
710 #define CRINFO_DIST2TO_SH (19)
711 #define CRINFO_RELVADDR (0x7ffff)
712 #define CRINFO_RELVADDR_SH (0)
713
714 /* A compact relocation info has long (3 words) or short (2 words)
715 formats. A short format doesn't have VADDR field and relvaddr
716 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
717 #define CRF_MIPS_LONG 1
718 #define CRF_MIPS_SHORT 0
719
720 /* There are 4 types of compact relocation at least. The value KONST
721 has different meaning for each type:
722
723 (type) (konst)
724 CT_MIPS_REL32 Address in data
725 CT_MIPS_WORD Address in word (XXX)
726 CT_MIPS_GPHI_LO GP - vaddr
727 CT_MIPS_JMPAD Address to jump
728 */
729
730 #define CRT_MIPS_REL32 0xa
731 #define CRT_MIPS_WORD 0xb
732 #define CRT_MIPS_GPHI_LO 0xc
733 #define CRT_MIPS_JMPAD 0xd
734
735 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
736 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
737 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
738 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
739 \f
740 /* The structure of the runtime procedure descriptor created by the
741 loader for use by the static exception system. */
742
743 typedef struct runtime_pdr {
744 bfd_vma adr; /* Memory address of start of procedure. */
745 long regmask; /* Save register mask. */
746 long regoffset; /* Save register offset. */
747 long fregmask; /* Save floating point register mask. */
748 long fregoffset; /* Save floating point register offset. */
749 long frameoffset; /* Frame size. */
750 short framereg; /* Frame pointer register. */
751 short pcreg; /* Offset or reg of return pc. */
752 long irpss; /* Index into the runtime string table. */
753 long reserved;
754 struct exception_info *exception_info;/* Pointer to exception array. */
755 } RPDR, *pRPDR;
756 #define cbRPDR sizeof (RPDR)
757 #define rpdNil ((pRPDR) 0)
758 \f
759 static struct mips_got_entry *mips_elf_create_local_got_entry
760 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
761 struct mips_elf_link_hash_entry *, int);
762 static bfd_boolean mips_elf_sort_hash_table_f
763 (struct mips_elf_link_hash_entry *, void *);
764 static bfd_vma mips_elf_high
765 (bfd_vma);
766 static bfd_boolean mips_elf_create_dynamic_relocation
767 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
768 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
769 bfd_vma *, asection *);
770 static bfd_vma mips_elf_adjust_gp
771 (bfd *, struct mips_got_info *, bfd *);
772
773 /* This will be used when we sort the dynamic relocation records. */
774 static bfd *reldyn_sorting_bfd;
775
776 /* True if ABFD is for CPUs with load interlocking that include
777 non-MIPS1 CPUs and R3900. */
778 #define LOAD_INTERLOCKS_P(abfd) \
779 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
780 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
781
782 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
783 This should be safe for all architectures. We enable this predicate
784 for RM9000 for now. */
785 #define JAL_TO_BAL_P(abfd) \
786 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
787
788 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
789 This should be safe for all architectures. We enable this predicate for
790 all CPUs. */
791 #define JALR_TO_BAL_P(abfd) 1
792
793 /* True if ABFD is for CPUs that are faster if JR is converted to B.
794 This should be safe for all architectures. We enable this predicate for
795 all CPUs. */
796 #define JR_TO_B_P(abfd) 1
797
798 /* True if ABFD is a PIC object. */
799 #define PIC_OBJECT_P(abfd) \
800 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
801
802 /* Nonzero if ABFD is using the O32 ABI. */
803 #define ABI_O32_P(abfd) \
804 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
805
806 /* Nonzero if ABFD is using the N32 ABI. */
807 #define ABI_N32_P(abfd) \
808 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
809
810 /* Nonzero if ABFD is using the N64 ABI. */
811 #define ABI_64_P(abfd) \
812 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
813
814 /* Nonzero if ABFD is using NewABI conventions. */
815 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
816
817 /* Nonzero if ABFD has microMIPS code. */
818 #define MICROMIPS_P(abfd) \
819 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
820
821 /* Nonzero if ABFD is MIPS R6. */
822 #define MIPSR6_P(abfd) \
823 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
824 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
825
826 /* The IRIX compatibility level we are striving for. */
827 #define IRIX_COMPAT(abfd) \
828 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
829
830 /* Whether we are trying to be compatible with IRIX at all. */
831 #define SGI_COMPAT(abfd) \
832 (IRIX_COMPAT (abfd) != ict_none)
833
834 /* The name of the options section. */
835 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
836 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
837
838 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
839 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
840 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
841 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
842
843 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
844 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
845 (strcmp (NAME, ".MIPS.abiflags") == 0)
846
847 /* Whether the section is readonly. */
848 #define MIPS_ELF_READONLY_SECTION(sec) \
849 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
850 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
851
852 /* The name of the stub section. */
853 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
854
855 /* The size of an external REL relocation. */
856 #define MIPS_ELF_REL_SIZE(abfd) \
857 (get_elf_backend_data (abfd)->s->sizeof_rel)
858
859 /* The size of an external RELA relocation. */
860 #define MIPS_ELF_RELA_SIZE(abfd) \
861 (get_elf_backend_data (abfd)->s->sizeof_rela)
862
863 /* The size of an external dynamic table entry. */
864 #define MIPS_ELF_DYN_SIZE(abfd) \
865 (get_elf_backend_data (abfd)->s->sizeof_dyn)
866
867 /* The size of a GOT entry. */
868 #define MIPS_ELF_GOT_SIZE(abfd) \
869 (get_elf_backend_data (abfd)->s->arch_size / 8)
870
871 /* The size of the .rld_map section. */
872 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
873 (get_elf_backend_data (abfd)->s->arch_size / 8)
874
875 /* The size of a symbol-table entry. */
876 #define MIPS_ELF_SYM_SIZE(abfd) \
877 (get_elf_backend_data (abfd)->s->sizeof_sym)
878
879 /* The default alignment for sections, as a power of two. */
880 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
881 (get_elf_backend_data (abfd)->s->log_file_align)
882
883 /* Get word-sized data. */
884 #define MIPS_ELF_GET_WORD(abfd, ptr) \
885 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
886
887 /* Put out word-sized data. */
888 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
889 (ABI_64_P (abfd) \
890 ? bfd_put_64 (abfd, val, ptr) \
891 : bfd_put_32 (abfd, val, ptr))
892
893 /* The opcode for word-sized loads (LW or LD). */
894 #define MIPS_ELF_LOAD_WORD(abfd) \
895 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
896
897 /* Add a dynamic symbol table-entry. */
898 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
899 _bfd_elf_add_dynamic_entry (info, tag, val)
900
901 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
902 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (abfd, rtype, rela))
903
904 /* The name of the dynamic relocation section. */
905 #define MIPS_ELF_REL_DYN_NAME(INFO) \
906 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
907
908 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
909 from smaller values. Start with zero, widen, *then* decrement. */
910 #define MINUS_ONE (((bfd_vma)0) - 1)
911 #define MINUS_TWO (((bfd_vma)0) - 2)
912
913 /* The value to write into got[1] for SVR4 targets, to identify it is
914 a GNU object. The dynamic linker can then use got[1] to store the
915 module pointer. */
916 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
917 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
918
919 /* The offset of $gp from the beginning of the .got section. */
920 #define ELF_MIPS_GP_OFFSET(INFO) \
921 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
922
923 /* The maximum size of the GOT for it to be addressable using 16-bit
924 offsets from $gp. */
925 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
926
927 /* Instructions which appear in a stub. */
928 #define STUB_LW(abfd) \
929 ((ABI_64_P (abfd) \
930 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
931 : 0x8f998010)) /* lw t9,0x8010(gp) */
932 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
933 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
934 #define STUB_JALR 0x0320f809 /* jalr ra,t9 */
935 #define STUB_JALRC 0xf8190000 /* jalrc ra,t9 */
936 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
937 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
938 #define STUB_LI16S(abfd, VAL) \
939 ((ABI_64_P (abfd) \
940 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
941 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
942
943 /* Likewise for the microMIPS ASE. */
944 #define STUB_LW_MICROMIPS(abfd) \
945 (ABI_64_P (abfd) \
946 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
947 : 0xff3c8010) /* lw t9,0x8010(gp) */
948 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
949 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
950 #define STUB_LUI_MICROMIPS(VAL) \
951 (0x41b80000 + (VAL)) /* lui t8,VAL */
952 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
953 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
954 #define STUB_ORI_MICROMIPS(VAL) \
955 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
956 #define STUB_LI16U_MICROMIPS(VAL) \
957 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
958 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
959 (ABI_64_P (abfd) \
960 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
961 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
962
963 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
964 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
965 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
966 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
967 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
968 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
969
970 /* The name of the dynamic interpreter. This is put in the .interp
971 section. */
972
973 #define ELF_DYNAMIC_INTERPRETER(abfd) \
974 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
975 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
976 : "/usr/lib/libc.so.1")
977
978 #ifdef BFD64
979 #define MNAME(bfd,pre,pos) \
980 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
981 #define ELF_R_SYM(bfd, i) \
982 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
983 #define ELF_R_TYPE(bfd, i) \
984 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
985 #define ELF_R_INFO(bfd, s, t) \
986 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
987 #else
988 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
989 #define ELF_R_SYM(bfd, i) \
990 (ELF32_R_SYM (i))
991 #define ELF_R_TYPE(bfd, i) \
992 (ELF32_R_TYPE (i))
993 #define ELF_R_INFO(bfd, s, t) \
994 (ELF32_R_INFO (s, t))
995 #endif
996 \f
997 /* The mips16 compiler uses a couple of special sections to handle
998 floating point arguments.
999
1000 Section names that look like .mips16.fn.FNNAME contain stubs that
1001 copy floating point arguments from the fp regs to the gp regs and
1002 then jump to FNNAME. If any 32 bit function calls FNNAME, the
1003 call should be redirected to the stub instead. If no 32 bit
1004 function calls FNNAME, the stub should be discarded. We need to
1005 consider any reference to the function, not just a call, because
1006 if the address of the function is taken we will need the stub,
1007 since the address might be passed to a 32 bit function.
1008
1009 Section names that look like .mips16.call.FNNAME contain stubs
1010 that copy floating point arguments from the gp regs to the fp
1011 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
1012 then any 16 bit function that calls FNNAME should be redirected
1013 to the stub instead. If FNNAME is not a 32 bit function, the
1014 stub should be discarded.
1015
1016 .mips16.call.fp.FNNAME sections are similar, but contain stubs
1017 which call FNNAME and then copy the return value from the fp regs
1018 to the gp regs. These stubs store the return value in $18 while
1019 calling FNNAME; any function which might call one of these stubs
1020 must arrange to save $18 around the call. (This case is not
1021 needed for 32 bit functions that call 16 bit functions, because
1022 16 bit functions always return floating point values in both
1023 $f0/$f1 and $2/$3.)
1024
1025 Note that in all cases FNNAME might be defined statically.
1026 Therefore, FNNAME is not used literally. Instead, the relocation
1027 information will indicate which symbol the section is for.
1028
1029 We record any stubs that we find in the symbol table. */
1030
1031 #define FN_STUB ".mips16.fn."
1032 #define CALL_STUB ".mips16.call."
1033 #define CALL_FP_STUB ".mips16.call.fp."
1034
1035 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1036 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1037 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1038 \f
1039 /* The format of the first PLT entry in an O32 executable. */
1040 static const bfd_vma mips_o32_exec_plt0_entry[] =
1041 {
1042 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1043 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1044 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1045 0x031cc023, /* subu $24, $24, $28 */
1046 0x03e07825, /* or t7, ra, zero */
1047 0x0018c082, /* srl $24, $24, 2 */
1048 0x0320f809, /* jalr $25 */
1049 0x2718fffe /* subu $24, $24, 2 */
1050 };
1051
1052 /* The format of the first PLT entry in an O32 executable using compact
1053 jumps. */
1054 static const bfd_vma mipsr6_o32_exec_plt0_entry_compact[] =
1055 {
1056 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1057 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1058 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1059 0x031cc023, /* subu $24, $24, $28 */
1060 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
1061 0x0018c082, /* srl $24, $24, 2 */
1062 0x2718fffe, /* subu $24, $24, 2 */
1063 0xf8190000 /* jalrc $25 */
1064 };
1065
1066 /* The format of the first PLT entry in an N32 executable. Different
1067 because gp ($28) is not available; we use t2 ($14) instead. */
1068 static const bfd_vma mips_n32_exec_plt0_entry[] =
1069 {
1070 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1071 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1072 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1073 0x030ec023, /* subu $24, $24, $14 */
1074 0x03e07825, /* or t7, ra, zero */
1075 0x0018c082, /* srl $24, $24, 2 */
1076 0x0320f809, /* jalr $25 */
1077 0x2718fffe /* subu $24, $24, 2 */
1078 };
1079
1080 /* The format of the first PLT entry in an N32 executable using compact
1081 jumps. Different because gp ($28) is not available; we use t2 ($14)
1082 instead. */
1083 static const bfd_vma mipsr6_n32_exec_plt0_entry_compact[] =
1084 {
1085 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1086 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1087 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1088 0x030ec023, /* subu $24, $24, $14 */
1089 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
1090 0x0018c082, /* srl $24, $24, 2 */
1091 0x2718fffe, /* subu $24, $24, 2 */
1092 0xf8190000 /* jalrc $25 */
1093 };
1094
1095 /* The format of the first PLT entry in an N64 executable. Different
1096 from N32 because of the increased size of GOT entries. */
1097 static const bfd_vma mips_n64_exec_plt0_entry[] =
1098 {
1099 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1100 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1101 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1102 0x030ec023, /* subu $24, $24, $14 */
1103 0x03e07825, /* or t7, ra, zero */
1104 0x0018c0c2, /* srl $24, $24, 3 */
1105 0x0320f809, /* jalr $25 */
1106 0x2718fffe /* subu $24, $24, 2 */
1107 };
1108
1109 /* The format of the first PLT entry in an N64 executable using compact
1110 jumps. Different from N32 because of the increased size of GOT
1111 entries. */
1112 static const bfd_vma mipsr6_n64_exec_plt0_entry_compact[] =
1113 {
1114 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1115 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1116 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1117 0x030ec023, /* subu $24, $24, $14 */
1118 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
1119 0x0018c0c2, /* srl $24, $24, 3 */
1120 0x2718fffe, /* subu $24, $24, 2 */
1121 0xf8190000 /* jalrc $25 */
1122 };
1123
1124
1125 /* The format of the microMIPS first PLT entry in an O32 executable.
1126 We rely on v0 ($2) rather than t8 ($24) to contain the address
1127 of the GOTPLT entry handled, so this stub may only be used when
1128 all the subsequent PLT entries are microMIPS code too.
1129
1130 The trailing NOP is for alignment and correct disassembly only. */
1131 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1132 {
1133 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1134 0xff23, 0x0000, /* lw $25, 0($3) */
1135 0x0535, /* subu $2, $2, $3 */
1136 0x2525, /* srl $2, $2, 2 */
1137 0x3302, 0xfffe, /* subu $24, $2, 2 */
1138 0x0dff, /* move $15, $31 */
1139 0x45f9, /* jalrs $25 */
1140 0x0f83, /* move $28, $3 */
1141 0x0c00 /* nop */
1142 };
1143
1144 /* The format of the microMIPS first PLT entry in an O32 executable
1145 in the insn32 mode. */
1146 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1147 {
1148 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1149 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1150 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1151 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1152 0x001f, 0x7a90, /* or $15, $31, zero */
1153 0x0318, 0x1040, /* srl $24, $24, 2 */
1154 0x03f9, 0x0f3c, /* jalr $25 */
1155 0x3318, 0xfffe /* subu $24, $24, 2 */
1156 };
1157
1158 /* The format of subsequent standard PLT entries. */
1159 static const bfd_vma mips_exec_plt_entry[] =
1160 {
1161 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1162 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1163 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1164 0x03200008 /* jr $25 */
1165 };
1166
1167 static const bfd_vma mipsr6_exec_plt_entry[] =
1168 {
1169 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1170 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1171 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1172 0x03200009 /* jr $25 */
1173 };
1174
1175 static const bfd_vma mipsr6_exec_plt_entry_compact[] =
1176 {
1177 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1178 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1179 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1180 0xd8190000 /* jic $25, 0 */
1181 };
1182
1183 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1184 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1185 directly addressable. */
1186 static const bfd_vma mips16_o32_exec_plt_entry[] =
1187 {
1188 0xb203, /* lw $2, 12($pc) */
1189 0x9a60, /* lw $3, 0($2) */
1190 0x651a, /* move $24, $2 */
1191 0xeb00, /* jr $3 */
1192 0x653b, /* move $25, $3 */
1193 0x6500, /* nop */
1194 0x0000, 0x0000 /* .word (.got.plt entry) */
1195 };
1196
1197 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1198 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1199 static const bfd_vma micromips_o32_exec_plt_entry[] =
1200 {
1201 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1202 0xff22, 0x0000, /* lw $25, 0($2) */
1203 0x4599, /* jr $25 */
1204 0x0f02 /* move $24, $2 */
1205 };
1206
1207 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1208 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1209 {
1210 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1211 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1212 0x0019, 0x0f3c, /* jr $25 */
1213 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1214 };
1215
1216 /* The format of the first PLT entry in a VxWorks executable. */
1217 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1218 {
1219 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1220 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1221 0x8f390008, /* lw t9, 8(t9) */
1222 0x00000000, /* nop */
1223 0x03200008, /* jr t9 */
1224 0x00000000 /* nop */
1225 };
1226
1227 /* The format of subsequent PLT entries. */
1228 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1229 {
1230 0x10000000, /* b .PLT_resolver */
1231 0x24180000, /* li t8, <pltindex> */
1232 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1233 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1234 0x8f390000, /* lw t9, 0(t9) */
1235 0x00000000, /* nop */
1236 0x03200008, /* jr t9 */
1237 0x00000000 /* nop */
1238 };
1239
1240 /* The format of the first PLT entry in a VxWorks shared object. */
1241 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1242 {
1243 0x8f990008, /* lw t9, 8(gp) */
1244 0x00000000, /* nop */
1245 0x03200008, /* jr t9 */
1246 0x00000000, /* nop */
1247 0x00000000, /* nop */
1248 0x00000000 /* nop */
1249 };
1250
1251 /* The format of subsequent PLT entries. */
1252 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1253 {
1254 0x10000000, /* b .PLT_resolver */
1255 0x24180000 /* li t8, <pltindex> */
1256 };
1257 \f
1258 /* microMIPS 32-bit opcode helper installer. */
1259
1260 static void
1261 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1262 {
1263 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1264 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1265 }
1266
1267 /* microMIPS 32-bit opcode helper retriever. */
1268
1269 static bfd_vma
1270 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1271 {
1272 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1273 }
1274 \f
1275 /* Look up an entry in a MIPS ELF linker hash table. */
1276
1277 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1278 ((struct mips_elf_link_hash_entry *) \
1279 elf_link_hash_lookup (&(table)->root, (string), (create), \
1280 (copy), (follow)))
1281
1282 /* Traverse a MIPS ELF linker hash table. */
1283
1284 #define mips_elf_link_hash_traverse(table, func, info) \
1285 (elf_link_hash_traverse \
1286 (&(table)->root, \
1287 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1288 (info)))
1289
1290 /* Find the base offsets for thread-local storage in this object,
1291 for GD/LD and IE/LE respectively. */
1292
1293 #define TP_OFFSET 0x7000
1294 #define DTP_OFFSET 0x8000
1295
1296 static bfd_vma
1297 dtprel_base (struct bfd_link_info *info)
1298 {
1299 /* If tls_sec is NULL, we should have signalled an error already. */
1300 if (elf_hash_table (info)->tls_sec == NULL)
1301 return 0;
1302 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1303 }
1304
1305 static bfd_vma
1306 tprel_base (struct bfd_link_info *info)
1307 {
1308 /* If tls_sec is NULL, we should have signalled an error already. */
1309 if (elf_hash_table (info)->tls_sec == NULL)
1310 return 0;
1311 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1312 }
1313
1314 /* Create an entry in a MIPS ELF linker hash table. */
1315
1316 static struct bfd_hash_entry *
1317 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1318 struct bfd_hash_table *table, const char *string)
1319 {
1320 struct mips_elf_link_hash_entry *ret =
1321 (struct mips_elf_link_hash_entry *) entry;
1322
1323 /* Allocate the structure if it has not already been allocated by a
1324 subclass. */
1325 if (ret == NULL)
1326 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1327 if (ret == NULL)
1328 return (struct bfd_hash_entry *) ret;
1329
1330 /* Call the allocation method of the superclass. */
1331 ret = ((struct mips_elf_link_hash_entry *)
1332 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1333 table, string));
1334 if (ret != NULL)
1335 {
1336 /* Set local fields. */
1337 memset (&ret->esym, 0, sizeof (EXTR));
1338 /* We use -2 as a marker to indicate that the information has
1339 not been set. -1 means there is no associated ifd. */
1340 ret->esym.ifd = -2;
1341 ret->la25_stub = 0;
1342 ret->possibly_dynamic_relocs = 0;
1343 ret->fn_stub = NULL;
1344 ret->call_stub = NULL;
1345 ret->call_fp_stub = NULL;
1346 ret->mipsxhash_loc = 0;
1347 ret->global_got_area = GGA_NONE;
1348 ret->got_only_for_calls = TRUE;
1349 ret->readonly_reloc = FALSE;
1350 ret->has_static_relocs = FALSE;
1351 ret->no_fn_stub = FALSE;
1352 ret->need_fn_stub = FALSE;
1353 ret->has_nonpic_branches = FALSE;
1354 ret->needs_lazy_stub = FALSE;
1355 ret->use_plt_entry = FALSE;
1356 }
1357
1358 return (struct bfd_hash_entry *) ret;
1359 }
1360
1361 /* Allocate MIPS ELF private object data. */
1362
1363 bfd_boolean
1364 _bfd_mips_elf_mkobject (bfd *abfd)
1365 {
1366 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1367 MIPS_ELF_DATA);
1368 }
1369
1370 bfd_boolean
1371 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1372 {
1373 if (!sec->used_by_bfd)
1374 {
1375 struct _mips_elf_section_data *sdata;
1376 bfd_size_type amt = sizeof (*sdata);
1377
1378 sdata = bfd_zalloc (abfd, amt);
1379 if (sdata == NULL)
1380 return FALSE;
1381 sec->used_by_bfd = sdata;
1382 }
1383
1384 return _bfd_elf_new_section_hook (abfd, sec);
1385 }
1386 \f
1387 /* Read ECOFF debugging information from a .mdebug section into a
1388 ecoff_debug_info structure. */
1389
1390 bfd_boolean
1391 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1392 struct ecoff_debug_info *debug)
1393 {
1394 HDRR *symhdr;
1395 const struct ecoff_debug_swap *swap;
1396 char *ext_hdr;
1397
1398 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1399 memset (debug, 0, sizeof (*debug));
1400
1401 ext_hdr = bfd_malloc (swap->external_hdr_size);
1402 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1403 goto error_return;
1404
1405 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1406 swap->external_hdr_size))
1407 goto error_return;
1408
1409 symhdr = &debug->symbolic_header;
1410 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1411
1412 /* The symbolic header contains absolute file offsets and sizes to
1413 read. */
1414 #define READ(ptr, offset, count, size, type) \
1415 if (symhdr->count == 0) \
1416 debug->ptr = NULL; \
1417 else \
1418 { \
1419 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1420 debug->ptr = bfd_malloc (amt); \
1421 if (debug->ptr == NULL) \
1422 goto error_return; \
1423 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1424 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1425 goto error_return; \
1426 }
1427
1428 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1429 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1430 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1431 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1432 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1433 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1434 union aux_ext *);
1435 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1436 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1437 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1438 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1439 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1440 #undef READ
1441
1442 debug->fdr = NULL;
1443
1444 return TRUE;
1445
1446 error_return:
1447 if (ext_hdr != NULL)
1448 free (ext_hdr);
1449 if (debug->line != NULL)
1450 free (debug->line);
1451 if (debug->external_dnr != NULL)
1452 free (debug->external_dnr);
1453 if (debug->external_pdr != NULL)
1454 free (debug->external_pdr);
1455 if (debug->external_sym != NULL)
1456 free (debug->external_sym);
1457 if (debug->external_opt != NULL)
1458 free (debug->external_opt);
1459 if (debug->external_aux != NULL)
1460 free (debug->external_aux);
1461 if (debug->ss != NULL)
1462 free (debug->ss);
1463 if (debug->ssext != NULL)
1464 free (debug->ssext);
1465 if (debug->external_fdr != NULL)
1466 free (debug->external_fdr);
1467 if (debug->external_rfd != NULL)
1468 free (debug->external_rfd);
1469 if (debug->external_ext != NULL)
1470 free (debug->external_ext);
1471 return FALSE;
1472 }
1473 \f
1474 /* Swap RPDR (runtime procedure table entry) for output. */
1475
1476 static void
1477 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1478 {
1479 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1480 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1481 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1482 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1483 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1484 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1485
1486 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1487 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1488
1489 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1490 }
1491
1492 /* Create a runtime procedure table from the .mdebug section. */
1493
1494 static bfd_boolean
1495 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1496 struct bfd_link_info *info, asection *s,
1497 struct ecoff_debug_info *debug)
1498 {
1499 const struct ecoff_debug_swap *swap;
1500 HDRR *hdr = &debug->symbolic_header;
1501 RPDR *rpdr, *rp;
1502 struct rpdr_ext *erp;
1503 void *rtproc;
1504 struct pdr_ext *epdr;
1505 struct sym_ext *esym;
1506 char *ss, **sv;
1507 char *str;
1508 bfd_size_type size;
1509 bfd_size_type count;
1510 unsigned long sindex;
1511 unsigned long i;
1512 PDR pdr;
1513 SYMR sym;
1514 const char *no_name_func = _("static procedure (no name)");
1515
1516 epdr = NULL;
1517 rpdr = NULL;
1518 esym = NULL;
1519 ss = NULL;
1520 sv = NULL;
1521
1522 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1523
1524 sindex = strlen (no_name_func) + 1;
1525 count = hdr->ipdMax;
1526 if (count > 0)
1527 {
1528 size = swap->external_pdr_size;
1529
1530 epdr = bfd_malloc (size * count);
1531 if (epdr == NULL)
1532 goto error_return;
1533
1534 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1535 goto error_return;
1536
1537 size = sizeof (RPDR);
1538 rp = rpdr = bfd_malloc (size * count);
1539 if (rpdr == NULL)
1540 goto error_return;
1541
1542 size = sizeof (char *);
1543 sv = bfd_malloc (size * count);
1544 if (sv == NULL)
1545 goto error_return;
1546
1547 count = hdr->isymMax;
1548 size = swap->external_sym_size;
1549 esym = bfd_malloc (size * count);
1550 if (esym == NULL)
1551 goto error_return;
1552
1553 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1554 goto error_return;
1555
1556 count = hdr->issMax;
1557 ss = bfd_malloc (count);
1558 if (ss == NULL)
1559 goto error_return;
1560 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1561 goto error_return;
1562
1563 count = hdr->ipdMax;
1564 for (i = 0; i < (unsigned long) count; i++, rp++)
1565 {
1566 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1567 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1568 rp->adr = sym.value;
1569 rp->regmask = pdr.regmask;
1570 rp->regoffset = pdr.regoffset;
1571 rp->fregmask = pdr.fregmask;
1572 rp->fregoffset = pdr.fregoffset;
1573 rp->frameoffset = pdr.frameoffset;
1574 rp->framereg = pdr.framereg;
1575 rp->pcreg = pdr.pcreg;
1576 rp->irpss = sindex;
1577 sv[i] = ss + sym.iss;
1578 sindex += strlen (sv[i]) + 1;
1579 }
1580 }
1581
1582 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1583 size = BFD_ALIGN (size, 16);
1584 rtproc = bfd_alloc (abfd, size);
1585 if (rtproc == NULL)
1586 {
1587 mips_elf_hash_table (info)->procedure_count = 0;
1588 goto error_return;
1589 }
1590
1591 mips_elf_hash_table (info)->procedure_count = count + 2;
1592
1593 erp = rtproc;
1594 memset (erp, 0, sizeof (struct rpdr_ext));
1595 erp++;
1596 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1597 strcpy (str, no_name_func);
1598 str += strlen (no_name_func) + 1;
1599 for (i = 0; i < count; i++)
1600 {
1601 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1602 strcpy (str, sv[i]);
1603 str += strlen (sv[i]) + 1;
1604 }
1605 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1606
1607 /* Set the size and contents of .rtproc section. */
1608 s->size = size;
1609 s->contents = rtproc;
1610
1611 /* Skip this section later on (I don't think this currently
1612 matters, but someday it might). */
1613 s->map_head.link_order = NULL;
1614
1615 if (epdr != NULL)
1616 free (epdr);
1617 if (rpdr != NULL)
1618 free (rpdr);
1619 if (esym != NULL)
1620 free (esym);
1621 if (ss != NULL)
1622 free (ss);
1623 if (sv != NULL)
1624 free (sv);
1625
1626 return TRUE;
1627
1628 error_return:
1629 if (epdr != NULL)
1630 free (epdr);
1631 if (rpdr != NULL)
1632 free (rpdr);
1633 if (esym != NULL)
1634 free (esym);
1635 if (ss != NULL)
1636 free (ss);
1637 if (sv != NULL)
1638 free (sv);
1639 return FALSE;
1640 }
1641 \f
1642 /* We're going to create a stub for H. Create a symbol for the stub's
1643 value and size, to help make the disassembly easier to read. */
1644
1645 static bfd_boolean
1646 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1647 struct mips_elf_link_hash_entry *h,
1648 const char *prefix, asection *s, bfd_vma value,
1649 bfd_vma size)
1650 {
1651 bfd_boolean micromips_p = ELF_ST_IS_MICROMIPS (h->root.other);
1652 struct bfd_link_hash_entry *bh;
1653 struct elf_link_hash_entry *elfh;
1654 char *name;
1655 bfd_boolean res;
1656
1657 if (micromips_p)
1658 value |= 1;
1659
1660 /* Create a new symbol. */
1661 name = concat (prefix, h->root.root.root.string, NULL);
1662 bh = NULL;
1663 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1664 BSF_LOCAL, s, value, NULL,
1665 TRUE, FALSE, &bh);
1666 free (name);
1667 if (! res)
1668 return FALSE;
1669
1670 /* Make it a local function. */
1671 elfh = (struct elf_link_hash_entry *) bh;
1672 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1673 elfh->size = size;
1674 elfh->forced_local = 1;
1675 if (micromips_p)
1676 elfh->other = ELF_ST_SET_MICROMIPS (elfh->other);
1677 return TRUE;
1678 }
1679
1680 /* We're about to redefine H. Create a symbol to represent H's
1681 current value and size, to help make the disassembly easier
1682 to read. */
1683
1684 static bfd_boolean
1685 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1686 struct mips_elf_link_hash_entry *h,
1687 const char *prefix)
1688 {
1689 struct bfd_link_hash_entry *bh;
1690 struct elf_link_hash_entry *elfh;
1691 char *name;
1692 asection *s;
1693 bfd_vma value;
1694 bfd_boolean res;
1695
1696 /* Read the symbol's value. */
1697 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1698 || h->root.root.type == bfd_link_hash_defweak);
1699 s = h->root.root.u.def.section;
1700 value = h->root.root.u.def.value;
1701
1702 /* Create a new symbol. */
1703 name = concat (prefix, h->root.root.root.string, NULL);
1704 bh = NULL;
1705 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1706 BSF_LOCAL, s, value, NULL,
1707 TRUE, FALSE, &bh);
1708 free (name);
1709 if (! res)
1710 return FALSE;
1711
1712 /* Make it local and copy the other attributes from H. */
1713 elfh = (struct elf_link_hash_entry *) bh;
1714 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1715 elfh->other = h->root.other;
1716 elfh->size = h->root.size;
1717 elfh->forced_local = 1;
1718 return TRUE;
1719 }
1720
1721 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1722 function rather than to a hard-float stub. */
1723
1724 static bfd_boolean
1725 section_allows_mips16_refs_p (asection *section)
1726 {
1727 const char *name;
1728
1729 name = bfd_section_name (section);
1730 return (FN_STUB_P (name)
1731 || CALL_STUB_P (name)
1732 || CALL_FP_STUB_P (name)
1733 || strcmp (name, ".pdr") == 0);
1734 }
1735
1736 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1737 stub section of some kind. Return the R_SYMNDX of the target
1738 function, or 0 if we can't decide which function that is. */
1739
1740 static unsigned long
1741 mips16_stub_symndx (const struct elf_backend_data *bed,
1742 asection *sec ATTRIBUTE_UNUSED,
1743 const Elf_Internal_Rela *relocs,
1744 const Elf_Internal_Rela *relend)
1745 {
1746 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1747 const Elf_Internal_Rela *rel;
1748
1749 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1750 one in a compound relocation. */
1751 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1752 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1753 return ELF_R_SYM (sec->owner, rel->r_info);
1754
1755 /* Otherwise trust the first relocation, whatever its kind. This is
1756 the traditional behavior. */
1757 if (relocs < relend)
1758 return ELF_R_SYM (sec->owner, relocs->r_info);
1759
1760 return 0;
1761 }
1762
1763 /* Check the mips16 stubs for a particular symbol, and see if we can
1764 discard them. */
1765
1766 static void
1767 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1768 struct mips_elf_link_hash_entry *h)
1769 {
1770 /* Dynamic symbols must use the standard call interface, in case other
1771 objects try to call them. */
1772 if (h->fn_stub != NULL
1773 && h->root.dynindx != -1)
1774 {
1775 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1776 h->need_fn_stub = TRUE;
1777 }
1778
1779 if (h->fn_stub != NULL
1780 && ! h->need_fn_stub)
1781 {
1782 /* We don't need the fn_stub; the only references to this symbol
1783 are 16 bit calls. Clobber the size to 0 to prevent it from
1784 being included in the link. */
1785 h->fn_stub->size = 0;
1786 h->fn_stub->flags &= ~SEC_RELOC;
1787 h->fn_stub->reloc_count = 0;
1788 h->fn_stub->flags |= SEC_EXCLUDE;
1789 h->fn_stub->output_section = bfd_abs_section_ptr;
1790 }
1791
1792 if (h->call_stub != NULL
1793 && ELF_ST_IS_MIPS16 (h->root.other))
1794 {
1795 /* We don't need the call_stub; this is a 16 bit function, so
1796 calls from other 16 bit functions are OK. Clobber the size
1797 to 0 to prevent it from being included in the link. */
1798 h->call_stub->size = 0;
1799 h->call_stub->flags &= ~SEC_RELOC;
1800 h->call_stub->reloc_count = 0;
1801 h->call_stub->flags |= SEC_EXCLUDE;
1802 h->call_stub->output_section = bfd_abs_section_ptr;
1803 }
1804
1805 if (h->call_fp_stub != NULL
1806 && ELF_ST_IS_MIPS16 (h->root.other))
1807 {
1808 /* We don't need the call_stub; this is a 16 bit function, so
1809 calls from other 16 bit functions are OK. Clobber the size
1810 to 0 to prevent it from being included in the link. */
1811 h->call_fp_stub->size = 0;
1812 h->call_fp_stub->flags &= ~SEC_RELOC;
1813 h->call_fp_stub->reloc_count = 0;
1814 h->call_fp_stub->flags |= SEC_EXCLUDE;
1815 h->call_fp_stub->output_section = bfd_abs_section_ptr;
1816 }
1817 }
1818
1819 /* Hashtable callbacks for mips_elf_la25_stubs. */
1820
1821 static hashval_t
1822 mips_elf_la25_stub_hash (const void *entry_)
1823 {
1824 const struct mips_elf_la25_stub *entry;
1825
1826 entry = (struct mips_elf_la25_stub *) entry_;
1827 return entry->h->root.root.u.def.section->id
1828 + entry->h->root.root.u.def.value;
1829 }
1830
1831 static int
1832 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1833 {
1834 const struct mips_elf_la25_stub *entry1, *entry2;
1835
1836 entry1 = (struct mips_elf_la25_stub *) entry1_;
1837 entry2 = (struct mips_elf_la25_stub *) entry2_;
1838 return ((entry1->h->root.root.u.def.section
1839 == entry2->h->root.root.u.def.section)
1840 && (entry1->h->root.root.u.def.value
1841 == entry2->h->root.root.u.def.value));
1842 }
1843
1844 /* Called by the linker to set up the la25 stub-creation code. FN is
1845 the linker's implementation of add_stub_function. Return true on
1846 success. */
1847
1848 bfd_boolean
1849 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1850 asection *(*fn) (const char *, asection *,
1851 asection *))
1852 {
1853 struct mips_elf_link_hash_table *htab;
1854
1855 htab = mips_elf_hash_table (info);
1856 if (htab == NULL)
1857 return FALSE;
1858
1859 htab->add_stub_section = fn;
1860 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1861 mips_elf_la25_stub_eq, NULL);
1862 if (htab->la25_stubs == NULL)
1863 return FALSE;
1864
1865 return TRUE;
1866 }
1867
1868 /* Return true if H is a locally-defined PIC function, in the sense
1869 that it or its fn_stub might need $25 to be valid on entry.
1870 Note that MIPS16 functions set up $gp using PC-relative instructions,
1871 so they themselves never need $25 to be valid. Only non-MIPS16
1872 entry points are of interest here. */
1873
1874 static bfd_boolean
1875 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1876 {
1877 return ((h->root.root.type == bfd_link_hash_defined
1878 || h->root.root.type == bfd_link_hash_defweak)
1879 && h->root.def_regular
1880 && !bfd_is_abs_section (h->root.root.u.def.section)
1881 && !bfd_is_und_section (h->root.root.u.def.section)
1882 && (!ELF_ST_IS_MIPS16 (h->root.other)
1883 || (h->fn_stub && h->need_fn_stub))
1884 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1885 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1886 }
1887
1888 /* Set *SEC to the input section that contains the target of STUB.
1889 Return the offset of the target from the start of that section. */
1890
1891 static bfd_vma
1892 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1893 asection **sec)
1894 {
1895 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1896 {
1897 BFD_ASSERT (stub->h->need_fn_stub);
1898 *sec = stub->h->fn_stub;
1899 return 0;
1900 }
1901 else
1902 {
1903 *sec = stub->h->root.root.u.def.section;
1904 return stub->h->root.root.u.def.value;
1905 }
1906 }
1907
1908 /* STUB describes an la25 stub that we have decided to implement
1909 by inserting an LUI/ADDIU pair before the target function.
1910 Create the section and redirect the function symbol to it. */
1911
1912 static bfd_boolean
1913 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1914 struct bfd_link_info *info)
1915 {
1916 struct mips_elf_link_hash_table *htab;
1917 char *name;
1918 asection *s, *input_section;
1919 unsigned int align;
1920
1921 htab = mips_elf_hash_table (info);
1922 if (htab == NULL)
1923 return FALSE;
1924
1925 /* Create a unique name for the new section. */
1926 name = bfd_malloc (11 + sizeof (".text.stub."));
1927 if (name == NULL)
1928 return FALSE;
1929 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1930
1931 /* Create the section. */
1932 mips_elf_get_la25_target (stub, &input_section);
1933 s = htab->add_stub_section (name, input_section,
1934 input_section->output_section);
1935 if (s == NULL)
1936 return FALSE;
1937
1938 /* Make sure that any padding goes before the stub. */
1939 align = input_section->alignment_power;
1940 if (!bfd_set_section_alignment (s, align))
1941 return FALSE;
1942 if (align > 3)
1943 s->size = (1 << align) - 8;
1944
1945 /* Create a symbol for the stub. */
1946 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1947 stub->stub_section = s;
1948 stub->offset = s->size;
1949
1950 /* Allocate room for it. */
1951 s->size += 8;
1952 return TRUE;
1953 }
1954
1955 /* STUB describes an la25 stub that we have decided to implement
1956 with a separate trampoline. Allocate room for it and redirect
1957 the function symbol to it. */
1958
1959 static bfd_boolean
1960 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1961 struct bfd_link_info *info)
1962 {
1963 struct mips_elf_link_hash_table *htab;
1964 asection *s;
1965
1966 htab = mips_elf_hash_table (info);
1967 if (htab == NULL)
1968 return FALSE;
1969
1970 /* Create a trampoline section, if we haven't already. */
1971 s = htab->strampoline;
1972 if (s == NULL)
1973 {
1974 asection *input_section = stub->h->root.root.u.def.section;
1975 s = htab->add_stub_section (".text", NULL,
1976 input_section->output_section);
1977 if (s == NULL || !bfd_set_section_alignment (s, 4))
1978 return FALSE;
1979 htab->strampoline = s;
1980 }
1981
1982 /* Create a symbol for the stub. */
1983 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1984 stub->stub_section = s;
1985 stub->offset = s->size;
1986
1987 /* Allocate room for it. */
1988 s->size += 16;
1989 return TRUE;
1990 }
1991
1992 /* H describes a symbol that needs an la25 stub. Make sure that an
1993 appropriate stub exists and point H at it. */
1994
1995 static bfd_boolean
1996 mips_elf_add_la25_stub (struct bfd_link_info *info,
1997 struct mips_elf_link_hash_entry *h)
1998 {
1999 struct mips_elf_link_hash_table *htab;
2000 struct mips_elf_la25_stub search, *stub;
2001 bfd_boolean use_trampoline_p;
2002 asection *s;
2003 bfd_vma value;
2004 void **slot;
2005
2006 /* Describe the stub we want. */
2007 search.stub_section = NULL;
2008 search.offset = 0;
2009 search.h = h;
2010
2011 /* See if we've already created an equivalent stub. */
2012 htab = mips_elf_hash_table (info);
2013 if (htab == NULL)
2014 return FALSE;
2015
2016 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
2017 if (slot == NULL)
2018 return FALSE;
2019
2020 stub = (struct mips_elf_la25_stub *) *slot;
2021 if (stub != NULL)
2022 {
2023 /* We can reuse the existing stub. */
2024 h->la25_stub = stub;
2025 return TRUE;
2026 }
2027
2028 /* Create a permanent copy of ENTRY and add it to the hash table. */
2029 stub = bfd_malloc (sizeof (search));
2030 if (stub == NULL)
2031 return FALSE;
2032 *stub = search;
2033 *slot = stub;
2034
2035 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
2036 of the section and if we would need no more than 2 nops. */
2037 value = mips_elf_get_la25_target (stub, &s);
2038 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
2039 value &= ~1;
2040 use_trampoline_p = (value != 0 || s->alignment_power > 4);
2041
2042 h->la25_stub = stub;
2043 return (use_trampoline_p
2044 ? mips_elf_add_la25_trampoline (stub, info)
2045 : mips_elf_add_la25_intro (stub, info));
2046 }
2047
2048 /* A mips_elf_link_hash_traverse callback that is called before sizing
2049 sections. DATA points to a mips_htab_traverse_info structure. */
2050
2051 static bfd_boolean
2052 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
2053 {
2054 struct mips_htab_traverse_info *hti;
2055
2056 hti = (struct mips_htab_traverse_info *) data;
2057 if (!bfd_link_relocatable (hti->info))
2058 mips_elf_check_mips16_stubs (hti->info, h);
2059
2060 if (mips_elf_local_pic_function_p (h))
2061 {
2062 /* PR 12845: If H is in a section that has been garbage
2063 collected it will have its output section set to *ABS*. */
2064 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
2065 return TRUE;
2066
2067 /* H is a function that might need $25 to be valid on entry.
2068 If we're creating a non-PIC relocatable object, mark H as
2069 being PIC. If we're creating a non-relocatable object with
2070 non-PIC branches and jumps to H, make sure that H has an la25
2071 stub. */
2072 if (bfd_link_relocatable (hti->info))
2073 {
2074 if (!PIC_OBJECT_P (hti->output_bfd))
2075 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2076 }
2077 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2078 {
2079 hti->error = TRUE;
2080 return FALSE;
2081 }
2082 }
2083 return TRUE;
2084 }
2085 \f
2086 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2087 Most mips16 instructions are 16 bits, but these instructions
2088 are 32 bits.
2089
2090 The format of these instructions is:
2091
2092 +--------------+--------------------------------+
2093 | JALX | X| Imm 20:16 | Imm 25:21 |
2094 +--------------+--------------------------------+
2095 | Immediate 15:0 |
2096 +-----------------------------------------------+
2097
2098 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2099 Note that the immediate value in the first word is swapped.
2100
2101 When producing a relocatable object file, R_MIPS16_26 is
2102 handled mostly like R_MIPS_26. In particular, the addend is
2103 stored as a straight 26-bit value in a 32-bit instruction.
2104 (gas makes life simpler for itself by never adjusting a
2105 R_MIPS16_26 reloc to be against a section, so the addend is
2106 always zero). However, the 32 bit instruction is stored as 2
2107 16-bit values, rather than a single 32-bit value. In a
2108 big-endian file, the result is the same; in a little-endian
2109 file, the two 16-bit halves of the 32 bit value are swapped.
2110 This is so that a disassembler can recognize the jal
2111 instruction.
2112
2113 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2114 instruction stored as two 16-bit values. The addend A is the
2115 contents of the targ26 field. The calculation is the same as
2116 R_MIPS_26. When storing the calculated value, reorder the
2117 immediate value as shown above, and don't forget to store the
2118 value as two 16-bit values.
2119
2120 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2121 defined as
2122
2123 big-endian:
2124 +--------+----------------------+
2125 | | |
2126 | | targ26-16 |
2127 |31 26|25 0|
2128 +--------+----------------------+
2129
2130 little-endian:
2131 +----------+------+-------------+
2132 | | | |
2133 | sub1 | | sub2 |
2134 |0 9|10 15|16 31|
2135 +----------+--------------------+
2136 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2137 ((sub1 << 16) | sub2)).
2138
2139 When producing a relocatable object file, the calculation is
2140 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2141 When producing a fully linked file, the calculation is
2142 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2143 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2144
2145 The table below lists the other MIPS16 instruction relocations.
2146 Each one is calculated in the same way as the non-MIPS16 relocation
2147 given on the right, but using the extended MIPS16 layout of 16-bit
2148 immediate fields:
2149
2150 R_MIPS16_GPREL R_MIPS_GPREL16
2151 R_MIPS16_GOT16 R_MIPS_GOT16
2152 R_MIPS16_CALL16 R_MIPS_CALL16
2153 R_MIPS16_HI16 R_MIPS_HI16
2154 R_MIPS16_LO16 R_MIPS_LO16
2155
2156 A typical instruction will have a format like this:
2157
2158 +--------------+--------------------------------+
2159 | EXTEND | Imm 10:5 | Imm 15:11 |
2160 +--------------+--------------------------------+
2161 | Major | rx | ry | Imm 4:0 |
2162 +--------------+--------------------------------+
2163
2164 EXTEND is the five bit value 11110. Major is the instruction
2165 opcode.
2166
2167 All we need to do here is shuffle the bits appropriately.
2168 As above, the two 16-bit halves must be swapped on a
2169 little-endian system.
2170
2171 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2172 relocatable field is shifted by 1 rather than 2 and the same bit
2173 shuffling is done as with the relocations above. */
2174
2175 static inline bfd_boolean
2176 mips16_reloc_p (int r_type)
2177 {
2178 switch (r_type)
2179 {
2180 case R_MIPS16_26:
2181 case R_MIPS16_GPREL:
2182 case R_MIPS16_GOT16:
2183 case R_MIPS16_CALL16:
2184 case R_MIPS16_HI16:
2185 case R_MIPS16_LO16:
2186 case R_MIPS16_TLS_GD:
2187 case R_MIPS16_TLS_LDM:
2188 case R_MIPS16_TLS_DTPREL_HI16:
2189 case R_MIPS16_TLS_DTPREL_LO16:
2190 case R_MIPS16_TLS_GOTTPREL:
2191 case R_MIPS16_TLS_TPREL_HI16:
2192 case R_MIPS16_TLS_TPREL_LO16:
2193 case R_MIPS16_PC16_S1:
2194 return TRUE;
2195
2196 default:
2197 return FALSE;
2198 }
2199 }
2200
2201 /* Check if a microMIPS reloc. */
2202
2203 static inline bfd_boolean
2204 micromips_reloc_p (unsigned int r_type)
2205 {
2206 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2207 }
2208
2209 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2210 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2211 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2212
2213 static inline bfd_boolean
2214 micromips_reloc_shuffle_p (unsigned int r_type)
2215 {
2216 return (micromips_reloc_p (r_type)
2217 && r_type != R_MICROMIPS_PC7_S1
2218 && r_type != R_MICROMIPS_PC10_S1);
2219 }
2220
2221 static inline bfd_boolean
2222 got16_reloc_p (int r_type)
2223 {
2224 return (r_type == R_MIPS_GOT16
2225 || r_type == R_MIPS16_GOT16
2226 || r_type == R_MICROMIPS_GOT16);
2227 }
2228
2229 static inline bfd_boolean
2230 call16_reloc_p (int r_type)
2231 {
2232 return (r_type == R_MIPS_CALL16
2233 || r_type == R_MIPS16_CALL16
2234 || r_type == R_MICROMIPS_CALL16);
2235 }
2236
2237 static inline bfd_boolean
2238 got_disp_reloc_p (unsigned int r_type)
2239 {
2240 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2241 }
2242
2243 static inline bfd_boolean
2244 got_page_reloc_p (unsigned int r_type)
2245 {
2246 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2247 }
2248
2249 static inline bfd_boolean
2250 got_lo16_reloc_p (unsigned int r_type)
2251 {
2252 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2253 }
2254
2255 static inline bfd_boolean
2256 call_hi16_reloc_p (unsigned int r_type)
2257 {
2258 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2259 }
2260
2261 static inline bfd_boolean
2262 call_lo16_reloc_p (unsigned int r_type)
2263 {
2264 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2265 }
2266
2267 static inline bfd_boolean
2268 hi16_reloc_p (int r_type)
2269 {
2270 return (r_type == R_MIPS_HI16
2271 || r_type == R_MIPS16_HI16
2272 || r_type == R_MICROMIPS_HI16
2273 || r_type == R_MIPS_PCHI16);
2274 }
2275
2276 static inline bfd_boolean
2277 lo16_reloc_p (int r_type)
2278 {
2279 return (r_type == R_MIPS_LO16
2280 || r_type == R_MIPS16_LO16
2281 || r_type == R_MICROMIPS_LO16
2282 || r_type == R_MIPS_PCLO16);
2283 }
2284
2285 static inline bfd_boolean
2286 mips16_call_reloc_p (int r_type)
2287 {
2288 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2289 }
2290
2291 static inline bfd_boolean
2292 jal_reloc_p (int r_type)
2293 {
2294 return (r_type == R_MIPS_26
2295 || r_type == R_MIPS16_26
2296 || r_type == R_MICROMIPS_26_S1);
2297 }
2298
2299 static inline bfd_boolean
2300 b_reloc_p (int r_type)
2301 {
2302 return (r_type == R_MIPS_PC26_S2
2303 || r_type == R_MIPS_PC21_S2
2304 || r_type == R_MIPS_PC16
2305 || r_type == R_MIPS_GNU_REL16_S2
2306 || r_type == R_MIPS16_PC16_S1
2307 || r_type == R_MICROMIPS_PC16_S1
2308 || r_type == R_MICROMIPS_PC10_S1
2309 || r_type == R_MICROMIPS_PC7_S1);
2310 }
2311
2312 static inline bfd_boolean
2313 aligned_pcrel_reloc_p (int r_type)
2314 {
2315 return (r_type == R_MIPS_PC18_S3
2316 || r_type == R_MIPS_PC19_S2);
2317 }
2318
2319 static inline bfd_boolean
2320 branch_reloc_p (int r_type)
2321 {
2322 return (r_type == R_MIPS_26
2323 || r_type == R_MIPS_PC26_S2
2324 || r_type == R_MIPS_PC21_S2
2325 || r_type == R_MIPS_PC16
2326 || r_type == R_MIPS_GNU_REL16_S2);
2327 }
2328
2329 static inline bfd_boolean
2330 mips16_branch_reloc_p (int r_type)
2331 {
2332 return (r_type == R_MIPS16_26
2333 || r_type == R_MIPS16_PC16_S1);
2334 }
2335
2336 static inline bfd_boolean
2337 micromips_branch_reloc_p (int r_type)
2338 {
2339 return (r_type == R_MICROMIPS_26_S1
2340 || r_type == R_MICROMIPS_PC16_S1
2341 || r_type == R_MICROMIPS_PC10_S1
2342 || r_type == R_MICROMIPS_PC7_S1);
2343 }
2344
2345 static inline bfd_boolean
2346 tls_gd_reloc_p (unsigned int r_type)
2347 {
2348 return (r_type == R_MIPS_TLS_GD
2349 || r_type == R_MIPS16_TLS_GD
2350 || r_type == R_MICROMIPS_TLS_GD);
2351 }
2352
2353 static inline bfd_boolean
2354 tls_ldm_reloc_p (unsigned int r_type)
2355 {
2356 return (r_type == R_MIPS_TLS_LDM
2357 || r_type == R_MIPS16_TLS_LDM
2358 || r_type == R_MICROMIPS_TLS_LDM);
2359 }
2360
2361 static inline bfd_boolean
2362 tls_gottprel_reloc_p (unsigned int r_type)
2363 {
2364 return (r_type == R_MIPS_TLS_GOTTPREL
2365 || r_type == R_MIPS16_TLS_GOTTPREL
2366 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2367 }
2368
2369 void
2370 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2371 bfd_boolean jal_shuffle, bfd_byte *data)
2372 {
2373 bfd_vma first, second, val;
2374
2375 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2376 return;
2377
2378 /* Pick up the first and second halfwords of the instruction. */
2379 first = bfd_get_16 (abfd, data);
2380 second = bfd_get_16 (abfd, data + 2);
2381 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2382 val = first << 16 | second;
2383 else if (r_type != R_MIPS16_26)
2384 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2385 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2386 else
2387 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2388 | ((first & 0x1f) << 21) | second);
2389 bfd_put_32 (abfd, val, data);
2390 }
2391
2392 void
2393 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2394 bfd_boolean jal_shuffle, bfd_byte *data)
2395 {
2396 bfd_vma first, second, val;
2397
2398 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2399 return;
2400
2401 val = bfd_get_32 (abfd, data);
2402 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2403 {
2404 second = val & 0xffff;
2405 first = val >> 16;
2406 }
2407 else if (r_type != R_MIPS16_26)
2408 {
2409 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2410 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2411 }
2412 else
2413 {
2414 second = val & 0xffff;
2415 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2416 | ((val >> 21) & 0x1f);
2417 }
2418 bfd_put_16 (abfd, second, data + 2);
2419 bfd_put_16 (abfd, first, data);
2420 }
2421
2422 bfd_reloc_status_type
2423 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2424 arelent *reloc_entry, asection *input_section,
2425 bfd_boolean relocatable, void *data, bfd_vma gp)
2426 {
2427 bfd_vma relocation;
2428 bfd_signed_vma val;
2429 bfd_reloc_status_type status;
2430
2431 if (bfd_is_com_section (symbol->section))
2432 relocation = 0;
2433 else
2434 relocation = symbol->value;
2435
2436 relocation += symbol->section->output_section->vma;
2437 relocation += symbol->section->output_offset;
2438
2439 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2440 return bfd_reloc_outofrange;
2441
2442 /* Set val to the offset into the section or symbol. */
2443 val = reloc_entry->addend;
2444
2445 _bfd_mips_elf_sign_extend (val, 16);
2446
2447 /* Adjust val for the final section location and GP value. If we
2448 are producing relocatable output, we don't want to do this for
2449 an external symbol. */
2450 if (! relocatable
2451 || (symbol->flags & BSF_SECTION_SYM) != 0)
2452 val += relocation - gp;
2453
2454 if (reloc_entry->howto->partial_inplace)
2455 {
2456 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2457 (bfd_byte *) data
2458 + reloc_entry->address);
2459 if (status != bfd_reloc_ok)
2460 return status;
2461 }
2462 else
2463 reloc_entry->addend = val;
2464
2465 if (relocatable)
2466 reloc_entry->address += input_section->output_offset;
2467
2468 return bfd_reloc_ok;
2469 }
2470
2471 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2472 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2473 that contains the relocation field and DATA points to the start of
2474 INPUT_SECTION. */
2475
2476 struct mips_hi16
2477 {
2478 struct mips_hi16 *next;
2479 bfd_byte *data;
2480 asection *input_section;
2481 arelent rel;
2482 };
2483
2484 /* FIXME: This should not be a static variable. */
2485
2486 static struct mips_hi16 *mips_hi16_list;
2487
2488 /* A howto special_function for REL *HI16 relocations. We can only
2489 calculate the correct value once we've seen the partnering
2490 *LO16 relocation, so just save the information for later.
2491
2492 The ABI requires that the *LO16 immediately follow the *HI16.
2493 However, as a GNU extension, we permit an arbitrary number of
2494 *HI16s to be associated with a single *LO16. This significantly
2495 simplies the relocation handling in gcc. */
2496
2497 bfd_reloc_status_type
2498 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2499 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2500 asection *input_section, bfd *output_bfd,
2501 char **error_message ATTRIBUTE_UNUSED)
2502 {
2503 struct mips_hi16 *n;
2504
2505 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2506 return bfd_reloc_outofrange;
2507
2508 n = bfd_malloc (sizeof *n);
2509 if (n == NULL)
2510 return bfd_reloc_outofrange;
2511
2512 n->next = mips_hi16_list;
2513 n->data = data;
2514 n->input_section = input_section;
2515 n->rel = *reloc_entry;
2516 mips_hi16_list = n;
2517
2518 if (output_bfd != NULL)
2519 reloc_entry->address += input_section->output_offset;
2520
2521 return bfd_reloc_ok;
2522 }
2523
2524 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2525 like any other 16-bit relocation when applied to global symbols, but is
2526 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2527
2528 bfd_reloc_status_type
2529 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2530 void *data, asection *input_section,
2531 bfd *output_bfd, char **error_message)
2532 {
2533 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2534 || bfd_is_und_section (bfd_asymbol_section (symbol))
2535 || bfd_is_com_section (bfd_asymbol_section (symbol)))
2536 /* The relocation is against a global symbol. */
2537 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2538 input_section, output_bfd,
2539 error_message);
2540
2541 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2542 input_section, output_bfd, error_message);
2543 }
2544
2545 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2546 is a straightforward 16 bit inplace relocation, but we must deal with
2547 any partnering high-part relocations as well. */
2548
2549 bfd_reloc_status_type
2550 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2551 void *data, asection *input_section,
2552 bfd *output_bfd, char **error_message)
2553 {
2554 bfd_vma vallo;
2555 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2556
2557 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2558 return bfd_reloc_outofrange;
2559
2560 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2561 location);
2562 vallo = bfd_get_32 (abfd, location);
2563 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2564 location);
2565
2566 while (mips_hi16_list != NULL)
2567 {
2568 bfd_reloc_status_type ret;
2569 struct mips_hi16 *hi;
2570
2571 hi = mips_hi16_list;
2572
2573 /* R_MIPS*_GOT16 relocations are something of a special case. We
2574 want to install the addend in the same way as for a R_MIPS*_HI16
2575 relocation (with a rightshift of 16). However, since GOT16
2576 relocations can also be used with global symbols, their howto
2577 has a rightshift of 0. */
2578 if (hi->rel.howto->type == R_MIPS_GOT16)
2579 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2580 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2581 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2582 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2583 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2584
2585 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2586 carry or borrow will induce a change of +1 or -1 in the high part. */
2587 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2588
2589 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2590 hi->input_section, output_bfd,
2591 error_message);
2592 if (ret != bfd_reloc_ok)
2593 return ret;
2594
2595 mips_hi16_list = hi->next;
2596 free (hi);
2597 }
2598
2599 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2600 input_section, output_bfd,
2601 error_message);
2602 }
2603
2604 /* A generic howto special_function. This calculates and installs the
2605 relocation itself, thus avoiding the oft-discussed problems in
2606 bfd_perform_relocation and bfd_install_relocation. */
2607
2608 bfd_reloc_status_type
2609 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2610 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2611 asection *input_section, bfd *output_bfd,
2612 char **error_message ATTRIBUTE_UNUSED)
2613 {
2614 bfd_signed_vma val;
2615 bfd_reloc_status_type status;
2616 bfd_boolean relocatable;
2617
2618 relocatable = (output_bfd != NULL);
2619
2620 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2621 return bfd_reloc_outofrange;
2622
2623 /* Build up the field adjustment in VAL. */
2624 val = 0;
2625 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2626 {
2627 /* Either we're calculating the final field value or we have a
2628 relocation against a section symbol. Add in the section's
2629 offset or address. */
2630 val += symbol->section->output_section->vma;
2631 val += symbol->section->output_offset;
2632 }
2633
2634 if (!relocatable)
2635 {
2636 /* We're calculating the final field value. Add in the symbol's value
2637 and, if pc-relative, subtract the address of the field itself. */
2638 val += symbol->value;
2639 if (reloc_entry->howto->pc_relative)
2640 {
2641 val -= input_section->output_section->vma;
2642 val -= input_section->output_offset;
2643 val -= reloc_entry->address;
2644 }
2645 }
2646
2647 /* VAL is now the final adjustment. If we're keeping this relocation
2648 in the output file, and if the relocation uses a separate addend,
2649 we just need to add VAL to that addend. Otherwise we need to add
2650 VAL to the relocation field itself. */
2651 if (relocatable && !reloc_entry->howto->partial_inplace)
2652 reloc_entry->addend += val;
2653 else
2654 {
2655 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2656
2657 /* Add in the separate addend, if any. */
2658 val += reloc_entry->addend;
2659
2660 /* Add VAL to the relocation field. */
2661 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2662 location);
2663 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2664 location);
2665 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2666 location);
2667
2668 if (status != bfd_reloc_ok)
2669 return status;
2670 }
2671
2672 if (relocatable)
2673 reloc_entry->address += input_section->output_offset;
2674
2675 return bfd_reloc_ok;
2676 }
2677 \f
2678 /* Swap an entry in a .gptab section. Note that these routines rely
2679 on the equivalence of the two elements of the union. */
2680
2681 static void
2682 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2683 Elf32_gptab *in)
2684 {
2685 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2686 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2687 }
2688
2689 static void
2690 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2691 Elf32_External_gptab *ex)
2692 {
2693 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2694 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2695 }
2696
2697 static void
2698 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2699 Elf32_External_compact_rel *ex)
2700 {
2701 H_PUT_32 (abfd, in->id1, ex->id1);
2702 H_PUT_32 (abfd, in->num, ex->num);
2703 H_PUT_32 (abfd, in->id2, ex->id2);
2704 H_PUT_32 (abfd, in->offset, ex->offset);
2705 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2706 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2707 }
2708
2709 static void
2710 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2711 Elf32_External_crinfo *ex)
2712 {
2713 unsigned long l;
2714
2715 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2716 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2717 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2718 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2719 H_PUT_32 (abfd, l, ex->info);
2720 H_PUT_32 (abfd, in->konst, ex->konst);
2721 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2722 }
2723 \f
2724 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2725 routines swap this structure in and out. They are used outside of
2726 BFD, so they are globally visible. */
2727
2728 void
2729 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2730 Elf32_RegInfo *in)
2731 {
2732 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2733 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2734 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2735 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2736 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2737 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2738 }
2739
2740 void
2741 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2742 Elf32_External_RegInfo *ex)
2743 {
2744 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2745 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2746 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2747 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2748 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2749 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2750 }
2751
2752 /* In the 64 bit ABI, the .MIPS.options section holds register
2753 information in an Elf64_Reginfo structure. These routines swap
2754 them in and out. They are globally visible because they are used
2755 outside of BFD. These routines are here so that gas can call them
2756 without worrying about whether the 64 bit ABI has been included. */
2757
2758 void
2759 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2760 Elf64_Internal_RegInfo *in)
2761 {
2762 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2763 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2764 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2765 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2766 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2767 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2768 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2769 }
2770
2771 void
2772 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2773 Elf64_External_RegInfo *ex)
2774 {
2775 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2776 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2777 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2778 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2779 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2780 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2781 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2782 }
2783
2784 /* Swap in an options header. */
2785
2786 void
2787 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2788 Elf_Internal_Options *in)
2789 {
2790 in->kind = H_GET_8 (abfd, ex->kind);
2791 in->size = H_GET_8 (abfd, ex->size);
2792 in->section = H_GET_16 (abfd, ex->section);
2793 in->info = H_GET_32 (abfd, ex->info);
2794 }
2795
2796 /* Swap out an options header. */
2797
2798 void
2799 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2800 Elf_External_Options *ex)
2801 {
2802 H_PUT_8 (abfd, in->kind, ex->kind);
2803 H_PUT_8 (abfd, in->size, ex->size);
2804 H_PUT_16 (abfd, in->section, ex->section);
2805 H_PUT_32 (abfd, in->info, ex->info);
2806 }
2807
2808 /* Swap in an abiflags structure. */
2809
2810 void
2811 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2812 const Elf_External_ABIFlags_v0 *ex,
2813 Elf_Internal_ABIFlags_v0 *in)
2814 {
2815 in->version = H_GET_16 (abfd, ex->version);
2816 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2817 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2818 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2819 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2820 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2821 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2822 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2823 in->ases = H_GET_32 (abfd, ex->ases);
2824 in->flags1 = H_GET_32 (abfd, ex->flags1);
2825 in->flags2 = H_GET_32 (abfd, ex->flags2);
2826 }
2827
2828 /* Swap out an abiflags structure. */
2829
2830 void
2831 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2832 const Elf_Internal_ABIFlags_v0 *in,
2833 Elf_External_ABIFlags_v0 *ex)
2834 {
2835 H_PUT_16 (abfd, in->version, ex->version);
2836 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2837 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2838 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2839 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2840 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2841 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2842 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2843 H_PUT_32 (abfd, in->ases, ex->ases);
2844 H_PUT_32 (abfd, in->flags1, ex->flags1);
2845 H_PUT_32 (abfd, in->flags2, ex->flags2);
2846 }
2847 \f
2848 /* This function is called via qsort() to sort the dynamic relocation
2849 entries by increasing r_symndx value. */
2850
2851 static int
2852 sort_dynamic_relocs (const void *arg1, const void *arg2)
2853 {
2854 Elf_Internal_Rela int_reloc1;
2855 Elf_Internal_Rela int_reloc2;
2856 int diff;
2857
2858 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2859 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2860
2861 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2862 if (diff != 0)
2863 return diff;
2864
2865 if (int_reloc1.r_offset < int_reloc2.r_offset)
2866 return -1;
2867 if (int_reloc1.r_offset > int_reloc2.r_offset)
2868 return 1;
2869 return 0;
2870 }
2871
2872 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2873
2874 static int
2875 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2876 const void *arg2 ATTRIBUTE_UNUSED)
2877 {
2878 #ifdef BFD64
2879 Elf_Internal_Rela int_reloc1[3];
2880 Elf_Internal_Rela int_reloc2[3];
2881
2882 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2883 (reldyn_sorting_bfd, arg1, int_reloc1);
2884 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2885 (reldyn_sorting_bfd, arg2, int_reloc2);
2886
2887 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2888 return -1;
2889 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2890 return 1;
2891
2892 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2893 return -1;
2894 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2895 return 1;
2896 return 0;
2897 #else
2898 abort ();
2899 #endif
2900 }
2901
2902
2903 /* This routine is used to write out ECOFF debugging external symbol
2904 information. It is called via mips_elf_link_hash_traverse. The
2905 ECOFF external symbol information must match the ELF external
2906 symbol information. Unfortunately, at this point we don't know
2907 whether a symbol is required by reloc information, so the two
2908 tables may wind up being different. We must sort out the external
2909 symbol information before we can set the final size of the .mdebug
2910 section, and we must set the size of the .mdebug section before we
2911 can relocate any sections, and we can't know which symbols are
2912 required by relocation until we relocate the sections.
2913 Fortunately, it is relatively unlikely that any symbol will be
2914 stripped but required by a reloc. In particular, it can not happen
2915 when generating a final executable. */
2916
2917 static bfd_boolean
2918 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2919 {
2920 struct extsym_info *einfo = data;
2921 bfd_boolean strip;
2922 asection *sec, *output_section;
2923
2924 if (h->root.indx == -2)
2925 strip = FALSE;
2926 else if ((h->root.def_dynamic
2927 || h->root.ref_dynamic
2928 || h->root.type == bfd_link_hash_new)
2929 && !h->root.def_regular
2930 && !h->root.ref_regular)
2931 strip = TRUE;
2932 else if (einfo->info->strip == strip_all
2933 || (einfo->info->strip == strip_some
2934 && bfd_hash_lookup (einfo->info->keep_hash,
2935 h->root.root.root.string,
2936 FALSE, FALSE) == NULL))
2937 strip = TRUE;
2938 else
2939 strip = FALSE;
2940
2941 if (strip)
2942 return TRUE;
2943
2944 if (h->esym.ifd == -2)
2945 {
2946 h->esym.jmptbl = 0;
2947 h->esym.cobol_main = 0;
2948 h->esym.weakext = 0;
2949 h->esym.reserved = 0;
2950 h->esym.ifd = ifdNil;
2951 h->esym.asym.value = 0;
2952 h->esym.asym.st = stGlobal;
2953
2954 if (h->root.root.type == bfd_link_hash_undefined
2955 || h->root.root.type == bfd_link_hash_undefweak)
2956 {
2957 const char *name;
2958
2959 /* Use undefined class. Also, set class and type for some
2960 special symbols. */
2961 name = h->root.root.root.string;
2962 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2963 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2964 {
2965 h->esym.asym.sc = scData;
2966 h->esym.asym.st = stLabel;
2967 h->esym.asym.value = 0;
2968 }
2969 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2970 {
2971 h->esym.asym.sc = scAbs;
2972 h->esym.asym.st = stLabel;
2973 h->esym.asym.value =
2974 mips_elf_hash_table (einfo->info)->procedure_count;
2975 }
2976 else
2977 h->esym.asym.sc = scUndefined;
2978 }
2979 else if (h->root.root.type != bfd_link_hash_defined
2980 && h->root.root.type != bfd_link_hash_defweak)
2981 h->esym.asym.sc = scAbs;
2982 else
2983 {
2984 const char *name;
2985
2986 sec = h->root.root.u.def.section;
2987 output_section = sec->output_section;
2988
2989 /* When making a shared library and symbol h is the one from
2990 the another shared library, OUTPUT_SECTION may be null. */
2991 if (output_section == NULL)
2992 h->esym.asym.sc = scUndefined;
2993 else
2994 {
2995 name = bfd_section_name (output_section);
2996
2997 if (strcmp (name, ".text") == 0)
2998 h->esym.asym.sc = scText;
2999 else if (strcmp (name, ".data") == 0)
3000 h->esym.asym.sc = scData;
3001 else if (strcmp (name, ".sdata") == 0)
3002 h->esym.asym.sc = scSData;
3003 else if (strcmp (name, ".rodata") == 0
3004 || strcmp (name, ".rdata") == 0)
3005 h->esym.asym.sc = scRData;
3006 else if (strcmp (name, ".bss") == 0)
3007 h->esym.asym.sc = scBss;
3008 else if (strcmp (name, ".sbss") == 0)
3009 h->esym.asym.sc = scSBss;
3010 else if (strcmp (name, ".init") == 0)
3011 h->esym.asym.sc = scInit;
3012 else if (strcmp (name, ".fini") == 0)
3013 h->esym.asym.sc = scFini;
3014 else
3015 h->esym.asym.sc = scAbs;
3016 }
3017 }
3018
3019 h->esym.asym.reserved = 0;
3020 h->esym.asym.index = indexNil;
3021 }
3022
3023 if (h->root.root.type == bfd_link_hash_common)
3024 h->esym.asym.value = h->root.root.u.c.size;
3025 else if (h->root.root.type == bfd_link_hash_defined
3026 || h->root.root.type == bfd_link_hash_defweak)
3027 {
3028 if (h->esym.asym.sc == scCommon)
3029 h->esym.asym.sc = scBss;
3030 else if (h->esym.asym.sc == scSCommon)
3031 h->esym.asym.sc = scSBss;
3032
3033 sec = h->root.root.u.def.section;
3034 output_section = sec->output_section;
3035 if (output_section != NULL)
3036 h->esym.asym.value = (h->root.root.u.def.value
3037 + sec->output_offset
3038 + output_section->vma);
3039 else
3040 h->esym.asym.value = 0;
3041 }
3042 else
3043 {
3044 struct mips_elf_link_hash_entry *hd = h;
3045
3046 while (hd->root.root.type == bfd_link_hash_indirect)
3047 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
3048
3049 if (hd->needs_lazy_stub)
3050 {
3051 BFD_ASSERT (hd->root.plt.plist != NULL);
3052 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
3053 /* Set type and value for a symbol with a function stub. */
3054 h->esym.asym.st = stProc;
3055 sec = hd->root.root.u.def.section;
3056 if (sec == NULL)
3057 h->esym.asym.value = 0;
3058 else
3059 {
3060 output_section = sec->output_section;
3061 if (output_section != NULL)
3062 h->esym.asym.value = (hd->root.plt.plist->stub_offset
3063 + sec->output_offset
3064 + output_section->vma);
3065 else
3066 h->esym.asym.value = 0;
3067 }
3068 }
3069 }
3070
3071 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3072 h->root.root.root.string,
3073 &h->esym))
3074 {
3075 einfo->failed = TRUE;
3076 return FALSE;
3077 }
3078
3079 return TRUE;
3080 }
3081
3082 /* A comparison routine used to sort .gptab entries. */
3083
3084 static int
3085 gptab_compare (const void *p1, const void *p2)
3086 {
3087 const Elf32_gptab *a1 = p1;
3088 const Elf32_gptab *a2 = p2;
3089
3090 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3091 }
3092 \f
3093 /* Functions to manage the got entry hash table. */
3094
3095 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3096 hash number. */
3097
3098 static INLINE hashval_t
3099 mips_elf_hash_bfd_vma (bfd_vma addr)
3100 {
3101 #ifdef BFD64
3102 return addr + (addr >> 32);
3103 #else
3104 return addr;
3105 #endif
3106 }
3107
3108 static hashval_t
3109 mips_elf_got_entry_hash (const void *entry_)
3110 {
3111 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3112
3113 return (entry->symndx
3114 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3115 + (entry->tls_type == GOT_TLS_LDM ? 0
3116 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3117 : entry->symndx >= 0 ? (entry->abfd->id
3118 + mips_elf_hash_bfd_vma (entry->d.addend))
3119 : entry->d.h->root.root.root.hash));
3120 }
3121
3122 static int
3123 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3124 {
3125 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3126 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3127
3128 return (e1->symndx == e2->symndx
3129 && e1->tls_type == e2->tls_type
3130 && (e1->tls_type == GOT_TLS_LDM ? TRUE
3131 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3132 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3133 && e1->d.addend == e2->d.addend)
3134 : e2->abfd && e1->d.h == e2->d.h));
3135 }
3136
3137 static hashval_t
3138 mips_got_page_ref_hash (const void *ref_)
3139 {
3140 const struct mips_got_page_ref *ref;
3141
3142 ref = (const struct mips_got_page_ref *) ref_;
3143 return ((ref->symndx >= 0
3144 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3145 : ref->u.h->root.root.root.hash)
3146 + mips_elf_hash_bfd_vma (ref->addend));
3147 }
3148
3149 static int
3150 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3151 {
3152 const struct mips_got_page_ref *ref1, *ref2;
3153
3154 ref1 = (const struct mips_got_page_ref *) ref1_;
3155 ref2 = (const struct mips_got_page_ref *) ref2_;
3156 return (ref1->symndx == ref2->symndx
3157 && (ref1->symndx < 0
3158 ? ref1->u.h == ref2->u.h
3159 : ref1->u.abfd == ref2->u.abfd)
3160 && ref1->addend == ref2->addend);
3161 }
3162
3163 static hashval_t
3164 mips_got_page_entry_hash (const void *entry_)
3165 {
3166 const struct mips_got_page_entry *entry;
3167
3168 entry = (const struct mips_got_page_entry *) entry_;
3169 return entry->sec->id;
3170 }
3171
3172 static int
3173 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3174 {
3175 const struct mips_got_page_entry *entry1, *entry2;
3176
3177 entry1 = (const struct mips_got_page_entry *) entry1_;
3178 entry2 = (const struct mips_got_page_entry *) entry2_;
3179 return entry1->sec == entry2->sec;
3180 }
3181 \f
3182 /* Create and return a new mips_got_info structure. */
3183
3184 static struct mips_got_info *
3185 mips_elf_create_got_info (bfd *abfd)
3186 {
3187 struct mips_got_info *g;
3188
3189 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3190 if (g == NULL)
3191 return NULL;
3192
3193 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3194 mips_elf_got_entry_eq, NULL);
3195 if (g->got_entries == NULL)
3196 return NULL;
3197
3198 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3199 mips_got_page_ref_eq, NULL);
3200 if (g->got_page_refs == NULL)
3201 return NULL;
3202
3203 return g;
3204 }
3205
3206 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3207 CREATE_P and if ABFD doesn't already have a GOT. */
3208
3209 static struct mips_got_info *
3210 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3211 {
3212 struct mips_elf_obj_tdata *tdata;
3213
3214 if (!is_mips_elf (abfd))
3215 return NULL;
3216
3217 tdata = mips_elf_tdata (abfd);
3218 if (!tdata->got && create_p)
3219 tdata->got = mips_elf_create_got_info (abfd);
3220 return tdata->got;
3221 }
3222
3223 /* Record that ABFD should use output GOT G. */
3224
3225 static void
3226 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3227 {
3228 struct mips_elf_obj_tdata *tdata;
3229
3230 BFD_ASSERT (is_mips_elf (abfd));
3231 tdata = mips_elf_tdata (abfd);
3232 if (tdata->got)
3233 {
3234 /* The GOT structure itself and the hash table entries are
3235 allocated to a bfd, but the hash tables aren't. */
3236 htab_delete (tdata->got->got_entries);
3237 htab_delete (tdata->got->got_page_refs);
3238 if (tdata->got->got_page_entries)
3239 htab_delete (tdata->got->got_page_entries);
3240 }
3241 tdata->got = g;
3242 }
3243
3244 /* Return the dynamic relocation section. If it doesn't exist, try to
3245 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3246 if creation fails. */
3247
3248 static asection *
3249 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3250 {
3251 const char *dname;
3252 asection *sreloc;
3253 bfd *dynobj;
3254
3255 dname = MIPS_ELF_REL_DYN_NAME (info);
3256 dynobj = elf_hash_table (info)->dynobj;
3257 sreloc = bfd_get_linker_section (dynobj, dname);
3258 if (sreloc == NULL && create_p)
3259 {
3260 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3261 (SEC_ALLOC
3262 | SEC_LOAD
3263 | SEC_HAS_CONTENTS
3264 | SEC_IN_MEMORY
3265 | SEC_LINKER_CREATED
3266 | SEC_READONLY));
3267 if (sreloc == NULL
3268 || !bfd_set_section_alignment (sreloc,
3269 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3270 return NULL;
3271 }
3272 return sreloc;
3273 }
3274
3275 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3276
3277 static int
3278 mips_elf_reloc_tls_type (unsigned int r_type)
3279 {
3280 if (tls_gd_reloc_p (r_type))
3281 return GOT_TLS_GD;
3282
3283 if (tls_ldm_reloc_p (r_type))
3284 return GOT_TLS_LDM;
3285
3286 if (tls_gottprel_reloc_p (r_type))
3287 return GOT_TLS_IE;
3288
3289 return GOT_TLS_NONE;
3290 }
3291
3292 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3293
3294 static int
3295 mips_tls_got_entries (unsigned int type)
3296 {
3297 switch (type)
3298 {
3299 case GOT_TLS_GD:
3300 case GOT_TLS_LDM:
3301 return 2;
3302
3303 case GOT_TLS_IE:
3304 return 1;
3305
3306 case GOT_TLS_NONE:
3307 return 0;
3308 }
3309 abort ();
3310 }
3311
3312 /* Count the number of relocations needed for a TLS GOT entry, with
3313 access types from TLS_TYPE, and symbol H (or a local symbol if H
3314 is NULL). */
3315
3316 static int
3317 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3318 struct elf_link_hash_entry *h)
3319 {
3320 int indx = 0;
3321 bfd_boolean need_relocs = FALSE;
3322 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3323
3324 if (h != NULL
3325 && h->dynindx != -1
3326 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3327 && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
3328 indx = h->dynindx;
3329
3330 if ((bfd_link_dll (info) || indx != 0)
3331 && (h == NULL
3332 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3333 || h->root.type != bfd_link_hash_undefweak))
3334 need_relocs = TRUE;
3335
3336 if (!need_relocs)
3337 return 0;
3338
3339 switch (tls_type)
3340 {
3341 case GOT_TLS_GD:
3342 return indx != 0 ? 2 : 1;
3343
3344 case GOT_TLS_IE:
3345 return 1;
3346
3347 case GOT_TLS_LDM:
3348 return bfd_link_dll (info) ? 1 : 0;
3349
3350 default:
3351 return 0;
3352 }
3353 }
3354
3355 /* Add the number of GOT entries and TLS relocations required by ENTRY
3356 to G. */
3357
3358 static void
3359 mips_elf_count_got_entry (struct bfd_link_info *info,
3360 struct mips_got_info *g,
3361 struct mips_got_entry *entry)
3362 {
3363 if (entry->tls_type)
3364 {
3365 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3366 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3367 entry->symndx < 0
3368 ? &entry->d.h->root : NULL);
3369 }
3370 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3371 g->local_gotno += 1;
3372 else
3373 g->global_gotno += 1;
3374 }
3375
3376 /* Output a simple dynamic relocation into SRELOC. */
3377
3378 static void
3379 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3380 asection *sreloc,
3381 unsigned long reloc_index,
3382 unsigned long indx,
3383 int r_type,
3384 bfd_vma offset)
3385 {
3386 Elf_Internal_Rela rel[3];
3387
3388 memset (rel, 0, sizeof (rel));
3389
3390 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3391 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3392
3393 if (ABI_64_P (output_bfd))
3394 {
3395 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3396 (output_bfd, &rel[0],
3397 (sreloc->contents
3398 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3399 }
3400 else
3401 bfd_elf32_swap_reloc_out
3402 (output_bfd, &rel[0],
3403 (sreloc->contents
3404 + reloc_index * sizeof (Elf32_External_Rel)));
3405 }
3406
3407 /* Initialize a set of TLS GOT entries for one symbol. */
3408
3409 static void
3410 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3411 struct mips_got_entry *entry,
3412 struct mips_elf_link_hash_entry *h,
3413 bfd_vma value)
3414 {
3415 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3416 struct mips_elf_link_hash_table *htab;
3417 int indx;
3418 asection *sreloc, *sgot;
3419 bfd_vma got_offset, got_offset2;
3420 bfd_boolean need_relocs = FALSE;
3421
3422 htab = mips_elf_hash_table (info);
3423 if (htab == NULL)
3424 return;
3425
3426 sgot = htab->root.sgot;
3427
3428 indx = 0;
3429 if (h != NULL
3430 && h->root.dynindx != -1
3431 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), &h->root)
3432 && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3433 indx = h->root.dynindx;
3434
3435 if (entry->tls_initialized)
3436 return;
3437
3438 if ((bfd_link_dll (info) || indx != 0)
3439 && (h == NULL
3440 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3441 || h->root.type != bfd_link_hash_undefweak))
3442 need_relocs = TRUE;
3443
3444 /* MINUS_ONE means the symbol is not defined in this object. It may not
3445 be defined at all; assume that the value doesn't matter in that
3446 case. Otherwise complain if we would use the value. */
3447 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3448 || h->root.root.type == bfd_link_hash_undefweak);
3449
3450 /* Emit necessary relocations. */
3451 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3452 got_offset = entry->gotidx;
3453
3454 switch (entry->tls_type)
3455 {
3456 case GOT_TLS_GD:
3457 /* General Dynamic. */
3458 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3459
3460 if (need_relocs)
3461 {
3462 mips_elf_output_dynamic_relocation
3463 (abfd, sreloc, sreloc->reloc_count++, indx,
3464 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3465 sgot->output_offset + sgot->output_section->vma + got_offset);
3466
3467 if (indx)
3468 mips_elf_output_dynamic_relocation
3469 (abfd, sreloc, sreloc->reloc_count++, indx,
3470 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3471 sgot->output_offset + sgot->output_section->vma + got_offset2);
3472 else
3473 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3474 sgot->contents + got_offset2);
3475 }
3476 else
3477 {
3478 MIPS_ELF_PUT_WORD (abfd, 1,
3479 sgot->contents + got_offset);
3480 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3481 sgot->contents + got_offset2);
3482 }
3483 break;
3484
3485 case GOT_TLS_IE:
3486 /* Initial Exec model. */
3487 if (need_relocs)
3488 {
3489 if (indx == 0)
3490 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3491 sgot->contents + got_offset);
3492 else
3493 MIPS_ELF_PUT_WORD (abfd, 0,
3494 sgot->contents + got_offset);
3495
3496 mips_elf_output_dynamic_relocation
3497 (abfd, sreloc, sreloc->reloc_count++, indx,
3498 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3499 sgot->output_offset + sgot->output_section->vma + got_offset);
3500 }
3501 else
3502 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3503 sgot->contents + got_offset);
3504 break;
3505
3506 case GOT_TLS_LDM:
3507 /* The initial offset is zero, and the LD offsets will include the
3508 bias by DTP_OFFSET. */
3509 MIPS_ELF_PUT_WORD (abfd, 0,
3510 sgot->contents + got_offset
3511 + MIPS_ELF_GOT_SIZE (abfd));
3512
3513 if (!bfd_link_dll (info))
3514 MIPS_ELF_PUT_WORD (abfd, 1,
3515 sgot->contents + got_offset);
3516 else
3517 mips_elf_output_dynamic_relocation
3518 (abfd, sreloc, sreloc->reloc_count++, indx,
3519 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3520 sgot->output_offset + sgot->output_section->vma + got_offset);
3521 break;
3522
3523 default:
3524 abort ();
3525 }
3526
3527 entry->tls_initialized = TRUE;
3528 }
3529
3530 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3531 for global symbol H. .got.plt comes before the GOT, so the offset
3532 will be negative. */
3533
3534 static bfd_vma
3535 mips_elf_gotplt_index (struct bfd_link_info *info,
3536 struct elf_link_hash_entry *h)
3537 {
3538 bfd_vma got_address, got_value;
3539 struct mips_elf_link_hash_table *htab;
3540
3541 htab = mips_elf_hash_table (info);
3542 BFD_ASSERT (htab != NULL);
3543
3544 BFD_ASSERT (h->plt.plist != NULL);
3545 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3546
3547 /* Calculate the address of the associated .got.plt entry. */
3548 got_address = (htab->root.sgotplt->output_section->vma
3549 + htab->root.sgotplt->output_offset
3550 + (h->plt.plist->gotplt_index
3551 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3552
3553 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3554 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3555 + htab->root.hgot->root.u.def.section->output_offset
3556 + htab->root.hgot->root.u.def.value);
3557
3558 return got_address - got_value;
3559 }
3560
3561 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3562 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3563 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3564 offset can be found. */
3565
3566 static bfd_vma
3567 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3568 bfd_vma value, unsigned long r_symndx,
3569 struct mips_elf_link_hash_entry *h, int r_type)
3570 {
3571 struct mips_elf_link_hash_table *htab;
3572 struct mips_got_entry *entry;
3573
3574 htab = mips_elf_hash_table (info);
3575 BFD_ASSERT (htab != NULL);
3576
3577 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3578 r_symndx, h, r_type);
3579 if (!entry)
3580 return MINUS_ONE;
3581
3582 if (entry->tls_type)
3583 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3584 return entry->gotidx;
3585 }
3586
3587 /* Return the GOT index of global symbol H in the primary GOT. */
3588
3589 static bfd_vma
3590 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3591 struct elf_link_hash_entry *h)
3592 {
3593 struct mips_elf_link_hash_table *htab;
3594 long global_got_dynindx;
3595 struct mips_got_info *g;
3596 bfd_vma got_index;
3597
3598 htab = mips_elf_hash_table (info);
3599 BFD_ASSERT (htab != NULL);
3600
3601 global_got_dynindx = 0;
3602 if (htab->global_gotsym != NULL)
3603 global_got_dynindx = htab->global_gotsym->dynindx;
3604
3605 /* Once we determine the global GOT entry with the lowest dynamic
3606 symbol table index, we must put all dynamic symbols with greater
3607 indices into the primary GOT. That makes it easy to calculate the
3608 GOT offset. */
3609 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3610 g = mips_elf_bfd_got (obfd, FALSE);
3611 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3612 * MIPS_ELF_GOT_SIZE (obfd));
3613 BFD_ASSERT (got_index < htab->root.sgot->size);
3614
3615 return got_index;
3616 }
3617
3618 /* Return the GOT index for the global symbol indicated by H, which is
3619 referenced by a relocation of type R_TYPE in IBFD. */
3620
3621 static bfd_vma
3622 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3623 struct elf_link_hash_entry *h, int r_type)
3624 {
3625 struct mips_elf_link_hash_table *htab;
3626 struct mips_got_info *g;
3627 struct mips_got_entry lookup, *entry;
3628 bfd_vma gotidx;
3629
3630 htab = mips_elf_hash_table (info);
3631 BFD_ASSERT (htab != NULL);
3632
3633 g = mips_elf_bfd_got (ibfd, FALSE);
3634 BFD_ASSERT (g);
3635
3636 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3637 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3638 return mips_elf_primary_global_got_index (obfd, info, h);
3639
3640 lookup.abfd = ibfd;
3641 lookup.symndx = -1;
3642 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3643 entry = htab_find (g->got_entries, &lookup);
3644 BFD_ASSERT (entry);
3645
3646 gotidx = entry->gotidx;
3647 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3648
3649 if (lookup.tls_type)
3650 {
3651 bfd_vma value = MINUS_ONE;
3652
3653 if ((h->root.type == bfd_link_hash_defined
3654 || h->root.type == bfd_link_hash_defweak)
3655 && h->root.u.def.section->output_section)
3656 value = (h->root.u.def.value
3657 + h->root.u.def.section->output_offset
3658 + h->root.u.def.section->output_section->vma);
3659
3660 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3661 }
3662 return gotidx;
3663 }
3664
3665 /* Find a GOT page entry that points to within 32KB of VALUE. These
3666 entries are supposed to be placed at small offsets in the GOT, i.e.,
3667 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3668 entry could be created. If OFFSETP is nonnull, use it to return the
3669 offset of the GOT entry from VALUE. */
3670
3671 static bfd_vma
3672 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3673 bfd_vma value, bfd_vma *offsetp)
3674 {
3675 bfd_vma page, got_index;
3676 struct mips_got_entry *entry;
3677
3678 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3679 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3680 NULL, R_MIPS_GOT_PAGE);
3681
3682 if (!entry)
3683 return MINUS_ONE;
3684
3685 got_index = entry->gotidx;
3686
3687 if (offsetp)
3688 *offsetp = value - entry->d.address;
3689
3690 return got_index;
3691 }
3692
3693 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3694 EXTERNAL is true if the relocation was originally against a global
3695 symbol that binds locally. */
3696
3697 static bfd_vma
3698 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3699 bfd_vma value, bfd_boolean external)
3700 {
3701 struct mips_got_entry *entry;
3702
3703 /* GOT16 relocations against local symbols are followed by a LO16
3704 relocation; those against global symbols are not. Thus if the
3705 symbol was originally local, the GOT16 relocation should load the
3706 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3707 if (! external)
3708 value = mips_elf_high (value) << 16;
3709
3710 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3711 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3712 same in all cases. */
3713 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3714 NULL, R_MIPS_GOT16);
3715 if (entry)
3716 return entry->gotidx;
3717 else
3718 return MINUS_ONE;
3719 }
3720
3721 /* Returns the offset for the entry at the INDEXth position
3722 in the GOT. */
3723
3724 static bfd_vma
3725 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3726 bfd *input_bfd, bfd_vma got_index)
3727 {
3728 struct mips_elf_link_hash_table *htab;
3729 asection *sgot;
3730 bfd_vma gp;
3731
3732 htab = mips_elf_hash_table (info);
3733 BFD_ASSERT (htab != NULL);
3734
3735 sgot = htab->root.sgot;
3736 gp = _bfd_get_gp_value (output_bfd)
3737 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3738
3739 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3740 }
3741
3742 /* Create and return a local GOT entry for VALUE, which was calculated
3743 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3744 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3745 instead. */
3746
3747 static struct mips_got_entry *
3748 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3749 bfd *ibfd, bfd_vma value,
3750 unsigned long r_symndx,
3751 struct mips_elf_link_hash_entry *h,
3752 int r_type)
3753 {
3754 struct mips_got_entry lookup, *entry;
3755 void **loc;
3756 struct mips_got_info *g;
3757 struct mips_elf_link_hash_table *htab;
3758 bfd_vma gotidx;
3759
3760 htab = mips_elf_hash_table (info);
3761 BFD_ASSERT (htab != NULL);
3762
3763 g = mips_elf_bfd_got (ibfd, FALSE);
3764 if (g == NULL)
3765 {
3766 g = mips_elf_bfd_got (abfd, FALSE);
3767 BFD_ASSERT (g != NULL);
3768 }
3769
3770 /* This function shouldn't be called for symbols that live in the global
3771 area of the GOT. */
3772 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3773
3774 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3775 if (lookup.tls_type)
3776 {
3777 lookup.abfd = ibfd;
3778 if (tls_ldm_reloc_p (r_type))
3779 {
3780 lookup.symndx = 0;
3781 lookup.d.addend = 0;
3782 }
3783 else if (h == NULL)
3784 {
3785 lookup.symndx = r_symndx;
3786 lookup.d.addend = 0;
3787 }
3788 else
3789 {
3790 lookup.symndx = -1;
3791 lookup.d.h = h;
3792 }
3793
3794 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3795 BFD_ASSERT (entry);
3796
3797 gotidx = entry->gotidx;
3798 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3799
3800 return entry;
3801 }
3802
3803 lookup.abfd = NULL;
3804 lookup.symndx = -1;
3805 lookup.d.address = value;
3806 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3807 if (!loc)
3808 return NULL;
3809
3810 entry = (struct mips_got_entry *) *loc;
3811 if (entry)
3812 return entry;
3813
3814 if (g->assigned_low_gotno > g->assigned_high_gotno)
3815 {
3816 /* We didn't allocate enough space in the GOT. */
3817 _bfd_error_handler
3818 (_("not enough GOT space for local GOT entries"));
3819 bfd_set_error (bfd_error_bad_value);
3820 return NULL;
3821 }
3822
3823 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3824 if (!entry)
3825 return NULL;
3826
3827 if (got16_reloc_p (r_type)
3828 || call16_reloc_p (r_type)
3829 || got_page_reloc_p (r_type)
3830 || got_disp_reloc_p (r_type))
3831 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3832 else
3833 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3834
3835 *entry = lookup;
3836 *loc = entry;
3837
3838 MIPS_ELF_PUT_WORD (abfd, value, htab->root.sgot->contents + entry->gotidx);
3839
3840 /* These GOT entries need a dynamic relocation on VxWorks. */
3841 if (htab->is_vxworks)
3842 {
3843 Elf_Internal_Rela outrel;
3844 asection *s;
3845 bfd_byte *rloc;
3846 bfd_vma got_address;
3847
3848 s = mips_elf_rel_dyn_section (info, FALSE);
3849 got_address = (htab->root.sgot->output_section->vma
3850 + htab->root.sgot->output_offset
3851 + entry->gotidx);
3852
3853 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3854 outrel.r_offset = got_address;
3855 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3856 outrel.r_addend = value;
3857 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3858 }
3859
3860 return entry;
3861 }
3862
3863 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3864 The number might be exact or a worst-case estimate, depending on how
3865 much information is available to elf_backend_omit_section_dynsym at
3866 the current linking stage. */
3867
3868 static bfd_size_type
3869 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3870 {
3871 bfd_size_type count;
3872
3873 count = 0;
3874 if (bfd_link_pic (info)
3875 || elf_hash_table (info)->is_relocatable_executable)
3876 {
3877 asection *p;
3878 const struct elf_backend_data *bed;
3879
3880 bed = get_elf_backend_data (output_bfd);
3881 for (p = output_bfd->sections; p ; p = p->next)
3882 if ((p->flags & SEC_EXCLUDE) == 0
3883 && (p->flags & SEC_ALLOC) != 0
3884 && elf_hash_table (info)->dynamic_relocs
3885 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3886 ++count;
3887 }
3888 return count;
3889 }
3890
3891 /* Sort the dynamic symbol table so that symbols that need GOT entries
3892 appear towards the end. */
3893
3894 static bfd_boolean
3895 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3896 {
3897 struct mips_elf_link_hash_table *htab;
3898 struct mips_elf_hash_sort_data hsd;
3899 struct mips_got_info *g;
3900
3901 htab = mips_elf_hash_table (info);
3902 BFD_ASSERT (htab != NULL);
3903
3904 if (htab->root.dynsymcount == 0)
3905 return TRUE;
3906
3907 g = htab->got_info;
3908 if (g == NULL)
3909 return TRUE;
3910
3911 hsd.low = NULL;
3912 hsd.max_unref_got_dynindx
3913 = hsd.min_got_dynindx
3914 = (htab->root.dynsymcount - g->reloc_only_gotno);
3915 /* Add 1 to local symbol indices to account for the mandatory NULL entry
3916 at the head of the table; see `_bfd_elf_link_renumber_dynsyms'. */
3917 hsd.max_local_dynindx = count_section_dynsyms (abfd, info) + 1;
3918 hsd.max_non_got_dynindx = htab->root.local_dynsymcount + 1;
3919 hsd.output_bfd = abfd;
3920 if (htab->root.dynobj != NULL
3921 && htab->root.dynamic_sections_created
3922 && info->emit_gnu_hash)
3923 {
3924 asection *s = bfd_get_linker_section (htab->root.dynobj, ".MIPS.xhash");
3925 BFD_ASSERT (s != NULL);
3926 hsd.mipsxhash = s->contents;
3927 BFD_ASSERT (hsd.mipsxhash != NULL);
3928 }
3929 else
3930 hsd.mipsxhash = NULL;
3931 mips_elf_link_hash_traverse (htab, mips_elf_sort_hash_table_f, &hsd);
3932
3933 /* There should have been enough room in the symbol table to
3934 accommodate both the GOT and non-GOT symbols. */
3935 BFD_ASSERT (hsd.max_local_dynindx <= htab->root.local_dynsymcount + 1);
3936 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3937 BFD_ASSERT (hsd.max_unref_got_dynindx == htab->root.dynsymcount);
3938 BFD_ASSERT (htab->root.dynsymcount - hsd.min_got_dynindx == g->global_gotno);
3939
3940 /* Now we know which dynamic symbol has the lowest dynamic symbol
3941 table index in the GOT. */
3942 htab->global_gotsym = hsd.low;
3943
3944 return TRUE;
3945 }
3946
3947 /* If H needs a GOT entry, assign it the highest available dynamic
3948 index. Otherwise, assign it the lowest available dynamic
3949 index. */
3950
3951 static bfd_boolean
3952 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3953 {
3954 struct mips_elf_hash_sort_data *hsd = data;
3955
3956 /* Symbols without dynamic symbol table entries aren't interesting
3957 at all. */
3958 if (h->root.dynindx == -1)
3959 return TRUE;
3960
3961 switch (h->global_got_area)
3962 {
3963 case GGA_NONE:
3964 if (h->root.forced_local)
3965 h->root.dynindx = hsd->max_local_dynindx++;
3966 else
3967 h->root.dynindx = hsd->max_non_got_dynindx++;
3968 break;
3969
3970 case GGA_NORMAL:
3971 h->root.dynindx = --hsd->min_got_dynindx;
3972 hsd->low = (struct elf_link_hash_entry *) h;
3973 break;
3974
3975 case GGA_RELOC_ONLY:
3976 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3977 hsd->low = (struct elf_link_hash_entry *) h;
3978 h->root.dynindx = hsd->max_unref_got_dynindx++;
3979 break;
3980 }
3981
3982 /* Populate the .MIPS.xhash translation table entry with
3983 the symbol dynindx. */
3984 if (h->mipsxhash_loc != 0 && hsd->mipsxhash != NULL)
3985 bfd_put_32 (hsd->output_bfd, h->root.dynindx,
3986 hsd->mipsxhash + h->mipsxhash_loc);
3987
3988 return TRUE;
3989 }
3990
3991 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3992 (which is owned by the caller and shouldn't be added to the
3993 hash table directly). */
3994
3995 static bfd_boolean
3996 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3997 struct mips_got_entry *lookup)
3998 {
3999 struct mips_elf_link_hash_table *htab;
4000 struct mips_got_entry *entry;
4001 struct mips_got_info *g;
4002 void **loc, **bfd_loc;
4003
4004 /* Make sure there's a slot for this entry in the master GOT. */
4005 htab = mips_elf_hash_table (info);
4006 g = htab->got_info;
4007 loc = htab_find_slot (g->got_entries, lookup, INSERT);
4008 if (!loc)
4009 return FALSE;
4010
4011 /* Populate the entry if it isn't already. */
4012 entry = (struct mips_got_entry *) *loc;
4013 if (!entry)
4014 {
4015 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
4016 if (!entry)
4017 return FALSE;
4018
4019 lookup->tls_initialized = FALSE;
4020 lookup->gotidx = -1;
4021 *entry = *lookup;
4022 *loc = entry;
4023 }
4024
4025 /* Reuse the same GOT entry for the BFD's GOT. */
4026 g = mips_elf_bfd_got (abfd, TRUE);
4027 if (!g)
4028 return FALSE;
4029
4030 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
4031 if (!bfd_loc)
4032 return FALSE;
4033
4034 if (!*bfd_loc)
4035 *bfd_loc = entry;
4036 return TRUE;
4037 }
4038
4039 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
4040 entry for it. FOR_CALL is true if the caller is only interested in
4041 using the GOT entry for calls. */
4042
4043 static bfd_boolean
4044 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
4045 bfd *abfd, struct bfd_link_info *info,
4046 bfd_boolean for_call, int r_type)
4047 {
4048 struct mips_elf_link_hash_table *htab;
4049 struct mips_elf_link_hash_entry *hmips;
4050 struct mips_got_entry entry;
4051 unsigned char tls_type;
4052
4053 htab = mips_elf_hash_table (info);
4054 BFD_ASSERT (htab != NULL);
4055
4056 hmips = (struct mips_elf_link_hash_entry *) h;
4057 if (!for_call)
4058 hmips->got_only_for_calls = FALSE;
4059
4060 /* A global symbol in the GOT must also be in the dynamic symbol
4061 table. */
4062 if (h->dynindx == -1)
4063 {
4064 switch (ELF_ST_VISIBILITY (h->other))
4065 {
4066 case STV_INTERNAL:
4067 case STV_HIDDEN:
4068 _bfd_mips_elf_hide_symbol (info, h, TRUE);
4069 break;
4070 }
4071 if (!bfd_elf_link_record_dynamic_symbol (info, h))
4072 return FALSE;
4073 }
4074
4075 tls_type = mips_elf_reloc_tls_type (r_type);
4076 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
4077 hmips->global_got_area = GGA_NORMAL;
4078
4079 entry.abfd = abfd;
4080 entry.symndx = -1;
4081 entry.d.h = (struct mips_elf_link_hash_entry *) h;
4082 entry.tls_type = tls_type;
4083 return mips_elf_record_got_entry (info, abfd, &entry);
4084 }
4085
4086 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
4087 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
4088
4089 static bfd_boolean
4090 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
4091 struct bfd_link_info *info, int r_type)
4092 {
4093 struct mips_elf_link_hash_table *htab;
4094 struct mips_got_info *g;
4095 struct mips_got_entry entry;
4096
4097 htab = mips_elf_hash_table (info);
4098 BFD_ASSERT (htab != NULL);
4099
4100 g = htab->got_info;
4101 BFD_ASSERT (g != NULL);
4102
4103 entry.abfd = abfd;
4104 entry.symndx = symndx;
4105 entry.d.addend = addend;
4106 entry.tls_type = mips_elf_reloc_tls_type (r_type);
4107 return mips_elf_record_got_entry (info, abfd, &entry);
4108 }
4109
4110 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4111 H is the symbol's hash table entry, or null if SYMNDX is local
4112 to ABFD. */
4113
4114 static bfd_boolean
4115 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4116 long symndx, struct elf_link_hash_entry *h,
4117 bfd_signed_vma addend)
4118 {
4119 struct mips_elf_link_hash_table *htab;
4120 struct mips_got_info *g1, *g2;
4121 struct mips_got_page_ref lookup, *entry;
4122 void **loc, **bfd_loc;
4123
4124 htab = mips_elf_hash_table (info);
4125 BFD_ASSERT (htab != NULL);
4126
4127 g1 = htab->got_info;
4128 BFD_ASSERT (g1 != NULL);
4129
4130 if (h)
4131 {
4132 lookup.symndx = -1;
4133 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4134 }
4135 else
4136 {
4137 lookup.symndx = symndx;
4138 lookup.u.abfd = abfd;
4139 }
4140 lookup.addend = addend;
4141 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4142 if (loc == NULL)
4143 return FALSE;
4144
4145 entry = (struct mips_got_page_ref *) *loc;
4146 if (!entry)
4147 {
4148 entry = bfd_alloc (abfd, sizeof (*entry));
4149 if (!entry)
4150 return FALSE;
4151
4152 *entry = lookup;
4153 *loc = entry;
4154 }
4155
4156 /* Add the same entry to the BFD's GOT. */
4157 g2 = mips_elf_bfd_got (abfd, TRUE);
4158 if (!g2)
4159 return FALSE;
4160
4161 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4162 if (!bfd_loc)
4163 return FALSE;
4164
4165 if (!*bfd_loc)
4166 *bfd_loc = entry;
4167
4168 return TRUE;
4169 }
4170
4171 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4172
4173 static void
4174 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4175 unsigned int n)
4176 {
4177 asection *s;
4178 struct mips_elf_link_hash_table *htab;
4179
4180 htab = mips_elf_hash_table (info);
4181 BFD_ASSERT (htab != NULL);
4182
4183 s = mips_elf_rel_dyn_section (info, FALSE);
4184 BFD_ASSERT (s != NULL);
4185
4186 if (htab->is_vxworks)
4187 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4188 else
4189 {
4190 if (s->size == 0)
4191 {
4192 /* Make room for a null element. */
4193 s->size += MIPS_ELF_REL_SIZE (abfd);
4194 ++s->reloc_count;
4195 }
4196 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4197 }
4198 }
4199 \f
4200 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4201 mips_elf_traverse_got_arg structure. Count the number of GOT
4202 entries and TLS relocs. Set DATA->value to true if we need
4203 to resolve indirect or warning symbols and then recreate the GOT. */
4204
4205 static int
4206 mips_elf_check_recreate_got (void **entryp, void *data)
4207 {
4208 struct mips_got_entry *entry;
4209 struct mips_elf_traverse_got_arg *arg;
4210
4211 entry = (struct mips_got_entry *) *entryp;
4212 arg = (struct mips_elf_traverse_got_arg *) data;
4213 if (entry->abfd != NULL && entry->symndx == -1)
4214 {
4215 struct mips_elf_link_hash_entry *h;
4216
4217 h = entry->d.h;
4218 if (h->root.root.type == bfd_link_hash_indirect
4219 || h->root.root.type == bfd_link_hash_warning)
4220 {
4221 arg->value = TRUE;
4222 return 0;
4223 }
4224 }
4225 mips_elf_count_got_entry (arg->info, arg->g, entry);
4226 return 1;
4227 }
4228
4229 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4230 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4231 converting entries for indirect and warning symbols into entries
4232 for the target symbol. Set DATA->g to null on error. */
4233
4234 static int
4235 mips_elf_recreate_got (void **entryp, void *data)
4236 {
4237 struct mips_got_entry new_entry, *entry;
4238 struct mips_elf_traverse_got_arg *arg;
4239 void **slot;
4240
4241 entry = (struct mips_got_entry *) *entryp;
4242 arg = (struct mips_elf_traverse_got_arg *) data;
4243 if (entry->abfd != NULL
4244 && entry->symndx == -1
4245 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4246 || entry->d.h->root.root.type == bfd_link_hash_warning))
4247 {
4248 struct mips_elf_link_hash_entry *h;
4249
4250 new_entry = *entry;
4251 entry = &new_entry;
4252 h = entry->d.h;
4253 do
4254 {
4255 BFD_ASSERT (h->global_got_area == GGA_NONE);
4256 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4257 }
4258 while (h->root.root.type == bfd_link_hash_indirect
4259 || h->root.root.type == bfd_link_hash_warning);
4260 entry->d.h = h;
4261 }
4262 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4263 if (slot == NULL)
4264 {
4265 arg->g = NULL;
4266 return 0;
4267 }
4268 if (*slot == NULL)
4269 {
4270 if (entry == &new_entry)
4271 {
4272 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4273 if (!entry)
4274 {
4275 arg->g = NULL;
4276 return 0;
4277 }
4278 *entry = new_entry;
4279 }
4280 *slot = entry;
4281 mips_elf_count_got_entry (arg->info, arg->g, entry);
4282 }
4283 return 1;
4284 }
4285
4286 /* Return the maximum number of GOT page entries required for RANGE. */
4287
4288 static bfd_vma
4289 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4290 {
4291 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4292 }
4293
4294 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4295
4296 static bfd_boolean
4297 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4298 asection *sec, bfd_signed_vma addend)
4299 {
4300 struct mips_got_info *g = arg->g;
4301 struct mips_got_page_entry lookup, *entry;
4302 struct mips_got_page_range **range_ptr, *range;
4303 bfd_vma old_pages, new_pages;
4304 void **loc;
4305
4306 /* Find the mips_got_page_entry hash table entry for this section. */
4307 lookup.sec = sec;
4308 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4309 if (loc == NULL)
4310 return FALSE;
4311
4312 /* Create a mips_got_page_entry if this is the first time we've
4313 seen the section. */
4314 entry = (struct mips_got_page_entry *) *loc;
4315 if (!entry)
4316 {
4317 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4318 if (!entry)
4319 return FALSE;
4320
4321 entry->sec = sec;
4322 *loc = entry;
4323 }
4324
4325 /* Skip over ranges whose maximum extent cannot share a page entry
4326 with ADDEND. */
4327 range_ptr = &entry->ranges;
4328 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4329 range_ptr = &(*range_ptr)->next;
4330
4331 /* If we scanned to the end of the list, or found a range whose
4332 minimum extent cannot share a page entry with ADDEND, create
4333 a new singleton range. */
4334 range = *range_ptr;
4335 if (!range || addend < range->min_addend - 0xffff)
4336 {
4337 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4338 if (!range)
4339 return FALSE;
4340
4341 range->next = *range_ptr;
4342 range->min_addend = addend;
4343 range->max_addend = addend;
4344
4345 *range_ptr = range;
4346 entry->num_pages++;
4347 g->page_gotno++;
4348 return TRUE;
4349 }
4350
4351 /* Remember how many pages the old range contributed. */
4352 old_pages = mips_elf_pages_for_range (range);
4353
4354 /* Update the ranges. */
4355 if (addend < range->min_addend)
4356 range->min_addend = addend;
4357 else if (addend > range->max_addend)
4358 {
4359 if (range->next && addend >= range->next->min_addend - 0xffff)
4360 {
4361 old_pages += mips_elf_pages_for_range (range->next);
4362 range->max_addend = range->next->max_addend;
4363 range->next = range->next->next;
4364 }
4365 else
4366 range->max_addend = addend;
4367 }
4368
4369 /* Record any change in the total estimate. */
4370 new_pages = mips_elf_pages_for_range (range);
4371 if (old_pages != new_pages)
4372 {
4373 entry->num_pages += new_pages - old_pages;
4374 g->page_gotno += new_pages - old_pages;
4375 }
4376
4377 return TRUE;
4378 }
4379
4380 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4381 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4382 whether the page reference described by *REFP needs a GOT page entry,
4383 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4384
4385 static bfd_boolean
4386 mips_elf_resolve_got_page_ref (void **refp, void *data)
4387 {
4388 struct mips_got_page_ref *ref;
4389 struct mips_elf_traverse_got_arg *arg;
4390 struct mips_elf_link_hash_table *htab;
4391 asection *sec;
4392 bfd_vma addend;
4393
4394 ref = (struct mips_got_page_ref *) *refp;
4395 arg = (struct mips_elf_traverse_got_arg *) data;
4396 htab = mips_elf_hash_table (arg->info);
4397
4398 if (ref->symndx < 0)
4399 {
4400 struct mips_elf_link_hash_entry *h;
4401
4402 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4403 h = ref->u.h;
4404 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4405 return 1;
4406
4407 /* Ignore undefined symbols; we'll issue an error later if
4408 appropriate. */
4409 if (!((h->root.root.type == bfd_link_hash_defined
4410 || h->root.root.type == bfd_link_hash_defweak)
4411 && h->root.root.u.def.section))
4412 return 1;
4413
4414 sec = h->root.root.u.def.section;
4415 addend = h->root.root.u.def.value + ref->addend;
4416 }
4417 else
4418 {
4419 Elf_Internal_Sym *isym;
4420
4421 /* Read in the symbol. */
4422 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4423 ref->symndx);
4424 if (isym == NULL)
4425 {
4426 arg->g = NULL;
4427 return 0;
4428 }
4429
4430 /* Get the associated input section. */
4431 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4432 if (sec == NULL)
4433 {
4434 arg->g = NULL;
4435 return 0;
4436 }
4437
4438 /* If this is a mergable section, work out the section and offset
4439 of the merged data. For section symbols, the addend specifies
4440 of the offset _of_ the first byte in the data, otherwise it
4441 specifies the offset _from_ the first byte. */
4442 if (sec->flags & SEC_MERGE)
4443 {
4444 void *secinfo;
4445
4446 secinfo = elf_section_data (sec)->sec_info;
4447 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4448 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4449 isym->st_value + ref->addend);
4450 else
4451 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4452 isym->st_value) + ref->addend;
4453 }
4454 else
4455 addend = isym->st_value + ref->addend;
4456 }
4457 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4458 {
4459 arg->g = NULL;
4460 return 0;
4461 }
4462 return 1;
4463 }
4464
4465 /* If any entries in G->got_entries are for indirect or warning symbols,
4466 replace them with entries for the target symbol. Convert g->got_page_refs
4467 into got_page_entry structures and estimate the number of page entries
4468 that they require. */
4469
4470 static bfd_boolean
4471 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4472 struct mips_got_info *g)
4473 {
4474 struct mips_elf_traverse_got_arg tga;
4475 struct mips_got_info oldg;
4476
4477 oldg = *g;
4478
4479 tga.info = info;
4480 tga.g = g;
4481 tga.value = FALSE;
4482 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4483 if (tga.value)
4484 {
4485 *g = oldg;
4486 g->got_entries = htab_create (htab_size (oldg.got_entries),
4487 mips_elf_got_entry_hash,
4488 mips_elf_got_entry_eq, NULL);
4489 if (!g->got_entries)
4490 return FALSE;
4491
4492 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4493 if (!tga.g)
4494 return FALSE;
4495
4496 htab_delete (oldg.got_entries);
4497 }
4498
4499 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4500 mips_got_page_entry_eq, NULL);
4501 if (g->got_page_entries == NULL)
4502 return FALSE;
4503
4504 tga.info = info;
4505 tga.g = g;
4506 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4507
4508 return TRUE;
4509 }
4510
4511 /* Return true if a GOT entry for H should live in the local rather than
4512 global GOT area. */
4513
4514 static bfd_boolean
4515 mips_use_local_got_p (struct bfd_link_info *info,
4516 struct mips_elf_link_hash_entry *h)
4517 {
4518 /* Symbols that aren't in the dynamic symbol table must live in the
4519 local GOT. This includes symbols that are completely undefined
4520 and which therefore don't bind locally. We'll report undefined
4521 symbols later if appropriate. */
4522 if (h->root.dynindx == -1)
4523 return TRUE;
4524
4525 /* Absolute symbols, if ever they need a GOT entry, cannot ever go
4526 to the local GOT, as they would be implicitly relocated by the
4527 base address by the dynamic loader. */
4528 if (bfd_is_abs_symbol (&h->root.root))
4529 return FALSE;
4530
4531 /* Symbols that bind locally can (and in the case of forced-local
4532 symbols, must) live in the local GOT. */
4533 if (h->got_only_for_calls
4534 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4535 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4536 return TRUE;
4537
4538 /* If this is an executable that must provide a definition of the symbol,
4539 either though PLTs or copy relocations, then that address should go in
4540 the local rather than global GOT. */
4541 if (bfd_link_executable (info) && h->has_static_relocs)
4542 return TRUE;
4543
4544 return FALSE;
4545 }
4546
4547 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4548 link_info structure. Decide whether the hash entry needs an entry in
4549 the global part of the primary GOT, setting global_got_area accordingly.
4550 Count the number of global symbols that are in the primary GOT only
4551 because they have relocations against them (reloc_only_gotno). */
4552
4553 static int
4554 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4555 {
4556 struct bfd_link_info *info;
4557 struct mips_elf_link_hash_table *htab;
4558 struct mips_got_info *g;
4559
4560 info = (struct bfd_link_info *) data;
4561 htab = mips_elf_hash_table (info);
4562 g = htab->got_info;
4563 if (h->global_got_area != GGA_NONE)
4564 {
4565 /* Make a final decision about whether the symbol belongs in the
4566 local or global GOT. */
4567 if (mips_use_local_got_p (info, h))
4568 /* The symbol belongs in the local GOT. We no longer need this
4569 entry if it was only used for relocations; those relocations
4570 will be against the null or section symbol instead of H. */
4571 h->global_got_area = GGA_NONE;
4572 else if (htab->is_vxworks
4573 && h->got_only_for_calls
4574 && h->root.plt.plist->mips_offset != MINUS_ONE)
4575 /* On VxWorks, calls can refer directly to the .got.plt entry;
4576 they don't need entries in the regular GOT. .got.plt entries
4577 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4578 h->global_got_area = GGA_NONE;
4579 else if (h->global_got_area == GGA_RELOC_ONLY)
4580 {
4581 g->reloc_only_gotno++;
4582 g->global_gotno++;
4583 }
4584 }
4585 return 1;
4586 }
4587 \f
4588 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4589 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4590
4591 static int
4592 mips_elf_add_got_entry (void **entryp, void *data)
4593 {
4594 struct mips_got_entry *entry;
4595 struct mips_elf_traverse_got_arg *arg;
4596 void **slot;
4597
4598 entry = (struct mips_got_entry *) *entryp;
4599 arg = (struct mips_elf_traverse_got_arg *) data;
4600 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4601 if (!slot)
4602 {
4603 arg->g = NULL;
4604 return 0;
4605 }
4606 if (!*slot)
4607 {
4608 *slot = entry;
4609 mips_elf_count_got_entry (arg->info, arg->g, entry);
4610 }
4611 return 1;
4612 }
4613
4614 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4615 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4616
4617 static int
4618 mips_elf_add_got_page_entry (void **entryp, void *data)
4619 {
4620 struct mips_got_page_entry *entry;
4621 struct mips_elf_traverse_got_arg *arg;
4622 void **slot;
4623
4624 entry = (struct mips_got_page_entry *) *entryp;
4625 arg = (struct mips_elf_traverse_got_arg *) data;
4626 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4627 if (!slot)
4628 {
4629 arg->g = NULL;
4630 return 0;
4631 }
4632 if (!*slot)
4633 {
4634 *slot = entry;
4635 arg->g->page_gotno += entry->num_pages;
4636 }
4637 return 1;
4638 }
4639
4640 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4641 this would lead to overflow, 1 if they were merged successfully,
4642 and 0 if a merge failed due to lack of memory. (These values are chosen
4643 so that nonnegative return values can be returned by a htab_traverse
4644 callback.) */
4645
4646 static int
4647 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4648 struct mips_got_info *to,
4649 struct mips_elf_got_per_bfd_arg *arg)
4650 {
4651 struct mips_elf_traverse_got_arg tga;
4652 unsigned int estimate;
4653
4654 /* Work out how many page entries we would need for the combined GOT. */
4655 estimate = arg->max_pages;
4656 if (estimate >= from->page_gotno + to->page_gotno)
4657 estimate = from->page_gotno + to->page_gotno;
4658
4659 /* And conservatively estimate how many local and TLS entries
4660 would be needed. */
4661 estimate += from->local_gotno + to->local_gotno;
4662 estimate += from->tls_gotno + to->tls_gotno;
4663
4664 /* If we're merging with the primary got, any TLS relocations will
4665 come after the full set of global entries. Otherwise estimate those
4666 conservatively as well. */
4667 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4668 estimate += arg->global_count;
4669 else
4670 estimate += from->global_gotno + to->global_gotno;
4671
4672 /* Bail out if the combined GOT might be too big. */
4673 if (estimate > arg->max_count)
4674 return -1;
4675
4676 /* Transfer the bfd's got information from FROM to TO. */
4677 tga.info = arg->info;
4678 tga.g = to;
4679 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4680 if (!tga.g)
4681 return 0;
4682
4683 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4684 if (!tga.g)
4685 return 0;
4686
4687 mips_elf_replace_bfd_got (abfd, to);
4688 return 1;
4689 }
4690
4691 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4692 as possible of the primary got, since it doesn't require explicit
4693 dynamic relocations, but don't use bfds that would reference global
4694 symbols out of the addressable range. Failing the primary got,
4695 attempt to merge with the current got, or finish the current got
4696 and then make make the new got current. */
4697
4698 static bfd_boolean
4699 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4700 struct mips_elf_got_per_bfd_arg *arg)
4701 {
4702 unsigned int estimate;
4703 int result;
4704
4705 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4706 return FALSE;
4707
4708 /* Work out the number of page, local and TLS entries. */
4709 estimate = arg->max_pages;
4710 if (estimate > g->page_gotno)
4711 estimate = g->page_gotno;
4712 estimate += g->local_gotno + g->tls_gotno;
4713
4714 /* We place TLS GOT entries after both locals and globals. The globals
4715 for the primary GOT may overflow the normal GOT size limit, so be
4716 sure not to merge a GOT which requires TLS with the primary GOT in that
4717 case. This doesn't affect non-primary GOTs. */
4718 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4719
4720 if (estimate <= arg->max_count)
4721 {
4722 /* If we don't have a primary GOT, use it as
4723 a starting point for the primary GOT. */
4724 if (!arg->primary)
4725 {
4726 arg->primary = g;
4727 return TRUE;
4728 }
4729
4730 /* Try merging with the primary GOT. */
4731 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4732 if (result >= 0)
4733 return result;
4734 }
4735
4736 /* If we can merge with the last-created got, do it. */
4737 if (arg->current)
4738 {
4739 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4740 if (result >= 0)
4741 return result;
4742 }
4743
4744 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4745 fits; if it turns out that it doesn't, we'll get relocation
4746 overflows anyway. */
4747 g->next = arg->current;
4748 arg->current = g;
4749
4750 return TRUE;
4751 }
4752
4753 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4754 to GOTIDX, duplicating the entry if it has already been assigned
4755 an index in a different GOT. */
4756
4757 static bfd_boolean
4758 mips_elf_set_gotidx (void **entryp, long gotidx)
4759 {
4760 struct mips_got_entry *entry;
4761
4762 entry = (struct mips_got_entry *) *entryp;
4763 if (entry->gotidx > 0)
4764 {
4765 struct mips_got_entry *new_entry;
4766
4767 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4768 if (!new_entry)
4769 return FALSE;
4770
4771 *new_entry = *entry;
4772 *entryp = new_entry;
4773 entry = new_entry;
4774 }
4775 entry->gotidx = gotidx;
4776 return TRUE;
4777 }
4778
4779 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4780 mips_elf_traverse_got_arg in which DATA->value is the size of one
4781 GOT entry. Set DATA->g to null on failure. */
4782
4783 static int
4784 mips_elf_initialize_tls_index (void **entryp, void *data)
4785 {
4786 struct mips_got_entry *entry;
4787 struct mips_elf_traverse_got_arg *arg;
4788
4789 /* We're only interested in TLS symbols. */
4790 entry = (struct mips_got_entry *) *entryp;
4791 if (entry->tls_type == GOT_TLS_NONE)
4792 return 1;
4793
4794 arg = (struct mips_elf_traverse_got_arg *) data;
4795 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4796 {
4797 arg->g = NULL;
4798 return 0;
4799 }
4800
4801 /* Account for the entries we've just allocated. */
4802 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4803 return 1;
4804 }
4805
4806 /* A htab_traverse callback for GOT entries, where DATA points to a
4807 mips_elf_traverse_got_arg. Set the global_got_area of each global
4808 symbol to DATA->value. */
4809
4810 static int
4811 mips_elf_set_global_got_area (void **entryp, void *data)
4812 {
4813 struct mips_got_entry *entry;
4814 struct mips_elf_traverse_got_arg *arg;
4815
4816 entry = (struct mips_got_entry *) *entryp;
4817 arg = (struct mips_elf_traverse_got_arg *) data;
4818 if (entry->abfd != NULL
4819 && entry->symndx == -1
4820 && entry->d.h->global_got_area != GGA_NONE)
4821 entry->d.h->global_got_area = arg->value;
4822 return 1;
4823 }
4824
4825 /* A htab_traverse callback for secondary GOT entries, where DATA points
4826 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4827 and record the number of relocations they require. DATA->value is
4828 the size of one GOT entry. Set DATA->g to null on failure. */
4829
4830 static int
4831 mips_elf_set_global_gotidx (void **entryp, void *data)
4832 {
4833 struct mips_got_entry *entry;
4834 struct mips_elf_traverse_got_arg *arg;
4835
4836 entry = (struct mips_got_entry *) *entryp;
4837 arg = (struct mips_elf_traverse_got_arg *) data;
4838 if (entry->abfd != NULL
4839 && entry->symndx == -1
4840 && entry->d.h->global_got_area != GGA_NONE)
4841 {
4842 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4843 {
4844 arg->g = NULL;
4845 return 0;
4846 }
4847 arg->g->assigned_low_gotno += 1;
4848
4849 if (bfd_link_pic (arg->info)
4850 || (elf_hash_table (arg->info)->dynamic_sections_created
4851 && entry->d.h->root.def_dynamic
4852 && !entry->d.h->root.def_regular))
4853 arg->g->relocs += 1;
4854 }
4855
4856 return 1;
4857 }
4858
4859 /* A htab_traverse callback for GOT entries for which DATA is the
4860 bfd_link_info. Forbid any global symbols from having traditional
4861 lazy-binding stubs. */
4862
4863 static int
4864 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4865 {
4866 struct bfd_link_info *info;
4867 struct mips_elf_link_hash_table *htab;
4868 struct mips_got_entry *entry;
4869
4870 entry = (struct mips_got_entry *) *entryp;
4871 info = (struct bfd_link_info *) data;
4872 htab = mips_elf_hash_table (info);
4873 BFD_ASSERT (htab != NULL);
4874
4875 if (entry->abfd != NULL
4876 && entry->symndx == -1
4877 && entry->d.h->needs_lazy_stub)
4878 {
4879 entry->d.h->needs_lazy_stub = FALSE;
4880 htab->lazy_stub_count--;
4881 }
4882
4883 return 1;
4884 }
4885
4886 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4887 the primary GOT. */
4888 static bfd_vma
4889 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4890 {
4891 if (!g->next)
4892 return 0;
4893
4894 g = mips_elf_bfd_got (ibfd, FALSE);
4895 if (! g)
4896 return 0;
4897
4898 BFD_ASSERT (g->next);
4899
4900 g = g->next;
4901
4902 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4903 * MIPS_ELF_GOT_SIZE (abfd);
4904 }
4905
4906 /* Turn a single GOT that is too big for 16-bit addressing into
4907 a sequence of GOTs, each one 16-bit addressable. */
4908
4909 static bfd_boolean
4910 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4911 asection *got, bfd_size_type pages)
4912 {
4913 struct mips_elf_link_hash_table *htab;
4914 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4915 struct mips_elf_traverse_got_arg tga;
4916 struct mips_got_info *g, *gg;
4917 unsigned int assign, needed_relocs;
4918 bfd *dynobj, *ibfd;
4919
4920 dynobj = elf_hash_table (info)->dynobj;
4921 htab = mips_elf_hash_table (info);
4922 BFD_ASSERT (htab != NULL);
4923
4924 g = htab->got_info;
4925
4926 got_per_bfd_arg.obfd = abfd;
4927 got_per_bfd_arg.info = info;
4928 got_per_bfd_arg.current = NULL;
4929 got_per_bfd_arg.primary = NULL;
4930 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4931 / MIPS_ELF_GOT_SIZE (abfd))
4932 - htab->reserved_gotno);
4933 got_per_bfd_arg.max_pages = pages;
4934 /* The number of globals that will be included in the primary GOT.
4935 See the calls to mips_elf_set_global_got_area below for more
4936 information. */
4937 got_per_bfd_arg.global_count = g->global_gotno;
4938
4939 /* Try to merge the GOTs of input bfds together, as long as they
4940 don't seem to exceed the maximum GOT size, choosing one of them
4941 to be the primary GOT. */
4942 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4943 {
4944 gg = mips_elf_bfd_got (ibfd, FALSE);
4945 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4946 return FALSE;
4947 }
4948
4949 /* If we do not find any suitable primary GOT, create an empty one. */
4950 if (got_per_bfd_arg.primary == NULL)
4951 g->next = mips_elf_create_got_info (abfd);
4952 else
4953 g->next = got_per_bfd_arg.primary;
4954 g->next->next = got_per_bfd_arg.current;
4955
4956 /* GG is now the master GOT, and G is the primary GOT. */
4957 gg = g;
4958 g = g->next;
4959
4960 /* Map the output bfd to the primary got. That's what we're going
4961 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4962 didn't mark in check_relocs, and we want a quick way to find it.
4963 We can't just use gg->next because we're going to reverse the
4964 list. */
4965 mips_elf_replace_bfd_got (abfd, g);
4966
4967 /* Every symbol that is referenced in a dynamic relocation must be
4968 present in the primary GOT, so arrange for them to appear after
4969 those that are actually referenced. */
4970 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4971 g->global_gotno = gg->global_gotno;
4972
4973 tga.info = info;
4974 tga.value = GGA_RELOC_ONLY;
4975 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4976 tga.value = GGA_NORMAL;
4977 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4978
4979 /* Now go through the GOTs assigning them offset ranges.
4980 [assigned_low_gotno, local_gotno[ will be set to the range of local
4981 entries in each GOT. We can then compute the end of a GOT by
4982 adding local_gotno to global_gotno. We reverse the list and make
4983 it circular since then we'll be able to quickly compute the
4984 beginning of a GOT, by computing the end of its predecessor. To
4985 avoid special cases for the primary GOT, while still preserving
4986 assertions that are valid for both single- and multi-got links,
4987 we arrange for the main got struct to have the right number of
4988 global entries, but set its local_gotno such that the initial
4989 offset of the primary GOT is zero. Remember that the primary GOT
4990 will become the last item in the circular linked list, so it
4991 points back to the master GOT. */
4992 gg->local_gotno = -g->global_gotno;
4993 gg->global_gotno = g->global_gotno;
4994 gg->tls_gotno = 0;
4995 assign = 0;
4996 gg->next = gg;
4997
4998 do
4999 {
5000 struct mips_got_info *gn;
5001
5002 assign += htab->reserved_gotno;
5003 g->assigned_low_gotno = assign;
5004 g->local_gotno += assign;
5005 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
5006 g->assigned_high_gotno = g->local_gotno - 1;
5007 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
5008
5009 /* Take g out of the direct list, and push it onto the reversed
5010 list that gg points to. g->next is guaranteed to be nonnull after
5011 this operation, as required by mips_elf_initialize_tls_index. */
5012 gn = g->next;
5013 g->next = gg->next;
5014 gg->next = g;
5015
5016 /* Set up any TLS entries. We always place the TLS entries after
5017 all non-TLS entries. */
5018 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
5019 tga.g = g;
5020 tga.value = MIPS_ELF_GOT_SIZE (abfd);
5021 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
5022 if (!tga.g)
5023 return FALSE;
5024 BFD_ASSERT (g->tls_assigned_gotno == assign);
5025
5026 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
5027 g = gn;
5028
5029 /* Forbid global symbols in every non-primary GOT from having
5030 lazy-binding stubs. */
5031 if (g)
5032 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
5033 }
5034 while (g);
5035
5036 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
5037
5038 needed_relocs = 0;
5039 for (g = gg->next; g && g->next != gg; g = g->next)
5040 {
5041 unsigned int save_assign;
5042
5043 /* Assign offsets to global GOT entries and count how many
5044 relocations they need. */
5045 save_assign = g->assigned_low_gotno;
5046 g->assigned_low_gotno = g->local_gotno;
5047 tga.info = info;
5048 tga.value = MIPS_ELF_GOT_SIZE (abfd);
5049 tga.g = g;
5050 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
5051 if (!tga.g)
5052 return FALSE;
5053 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
5054 g->assigned_low_gotno = save_assign;
5055
5056 if (bfd_link_pic (info))
5057 {
5058 g->relocs += g->local_gotno - g->assigned_low_gotno;
5059 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
5060 + g->next->global_gotno
5061 + g->next->tls_gotno
5062 + htab->reserved_gotno);
5063 }
5064 needed_relocs += g->relocs;
5065 }
5066 needed_relocs += g->relocs;
5067
5068 if (needed_relocs)
5069 mips_elf_allocate_dynamic_relocations (dynobj, info,
5070 needed_relocs);
5071
5072 return TRUE;
5073 }
5074
5075 \f
5076 /* Returns the first relocation of type r_type found, beginning with
5077 RELOCATION. RELEND is one-past-the-end of the relocation table. */
5078
5079 static const Elf_Internal_Rela *
5080 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
5081 const Elf_Internal_Rela *relocation,
5082 const Elf_Internal_Rela *relend)
5083 {
5084 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
5085
5086 while (relocation < relend)
5087 {
5088 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
5089 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
5090 return relocation;
5091
5092 ++relocation;
5093 }
5094
5095 /* We didn't find it. */
5096 return NULL;
5097 }
5098
5099 /* Return whether an input relocation is against a local symbol. */
5100
5101 static bfd_boolean
5102 mips_elf_local_relocation_p (bfd *input_bfd,
5103 const Elf_Internal_Rela *relocation,
5104 asection **local_sections)
5105 {
5106 unsigned long r_symndx;
5107 Elf_Internal_Shdr *symtab_hdr;
5108 size_t extsymoff;
5109
5110 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5111 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5112 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5113
5114 if (r_symndx < extsymoff)
5115 return TRUE;
5116 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5117 return TRUE;
5118
5119 return FALSE;
5120 }
5121 \f
5122 /* Sign-extend VALUE, which has the indicated number of BITS. */
5123
5124 bfd_vma
5125 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
5126 {
5127 if (value & ((bfd_vma) 1 << (bits - 1)))
5128 /* VALUE is negative. */
5129 value |= ((bfd_vma) - 1) << bits;
5130
5131 return value;
5132 }
5133
5134 /* Return non-zero if the indicated VALUE has overflowed the maximum
5135 range expressible by a signed number with the indicated number of
5136 BITS. */
5137
5138 static bfd_boolean
5139 mips_elf_overflow_p (bfd_vma value, int bits)
5140 {
5141 bfd_signed_vma svalue = (bfd_signed_vma) value;
5142
5143 if (svalue > (1 << (bits - 1)) - 1)
5144 /* The value is too big. */
5145 return TRUE;
5146 else if (svalue < -(1 << (bits - 1)))
5147 /* The value is too small. */
5148 return TRUE;
5149
5150 /* All is well. */
5151 return FALSE;
5152 }
5153
5154 /* Calculate the %high function. */
5155
5156 static bfd_vma
5157 mips_elf_high (bfd_vma value)
5158 {
5159 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5160 }
5161
5162 /* Calculate the %higher function. */
5163
5164 static bfd_vma
5165 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5166 {
5167 #ifdef BFD64
5168 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5169 #else
5170 abort ();
5171 return MINUS_ONE;
5172 #endif
5173 }
5174
5175 /* Calculate the %highest function. */
5176
5177 static bfd_vma
5178 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5179 {
5180 #ifdef BFD64
5181 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5182 #else
5183 abort ();
5184 return MINUS_ONE;
5185 #endif
5186 }
5187 \f
5188 /* Create the .compact_rel section. */
5189
5190 static bfd_boolean
5191 mips_elf_create_compact_rel_section
5192 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5193 {
5194 flagword flags;
5195 register asection *s;
5196
5197 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5198 {
5199 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5200 | SEC_READONLY);
5201
5202 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5203 if (s == NULL
5204 || !bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5205 return FALSE;
5206
5207 s->size = sizeof (Elf32_External_compact_rel);
5208 }
5209
5210 return TRUE;
5211 }
5212
5213 /* Create the .got section to hold the global offset table. */
5214
5215 static bfd_boolean
5216 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5217 {
5218 flagword flags;
5219 register asection *s;
5220 struct elf_link_hash_entry *h;
5221 struct bfd_link_hash_entry *bh;
5222 struct mips_elf_link_hash_table *htab;
5223
5224 htab = mips_elf_hash_table (info);
5225 BFD_ASSERT (htab != NULL);
5226
5227 /* This function may be called more than once. */
5228 if (htab->root.sgot)
5229 return TRUE;
5230
5231 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5232 | SEC_LINKER_CREATED);
5233
5234 /* We have to use an alignment of 2**4 here because this is hardcoded
5235 in the function stub generation and in the linker script. */
5236 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5237 if (s == NULL
5238 || !bfd_set_section_alignment (s, 4))
5239 return FALSE;
5240 htab->root.sgot = s;
5241
5242 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5243 linker script because we don't want to define the symbol if we
5244 are not creating a global offset table. */
5245 bh = NULL;
5246 if (! (_bfd_generic_link_add_one_symbol
5247 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5248 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5249 return FALSE;
5250
5251 h = (struct elf_link_hash_entry *) bh;
5252 h->non_elf = 0;
5253 h->def_regular = 1;
5254 h->type = STT_OBJECT;
5255 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5256 elf_hash_table (info)->hgot = h;
5257
5258 if (bfd_link_pic (info)
5259 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5260 return FALSE;
5261
5262 htab->got_info = mips_elf_create_got_info (abfd);
5263 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5264 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5265
5266 /* We also need a .got.plt section when generating PLTs. */
5267 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5268 SEC_ALLOC | SEC_LOAD
5269 | SEC_HAS_CONTENTS
5270 | SEC_IN_MEMORY
5271 | SEC_LINKER_CREATED);
5272 if (s == NULL)
5273 return FALSE;
5274 htab->root.sgotplt = s;
5275
5276 return TRUE;
5277 }
5278 \f
5279 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5280 __GOTT_INDEX__ symbols. These symbols are only special for
5281 shared objects; they are not used in executables. */
5282
5283 static bfd_boolean
5284 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5285 {
5286 return (mips_elf_hash_table (info)->is_vxworks
5287 && bfd_link_pic (info)
5288 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5289 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5290 }
5291
5292 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5293 require an la25 stub. See also mips_elf_local_pic_function_p,
5294 which determines whether the destination function ever requires a
5295 stub. */
5296
5297 static bfd_boolean
5298 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5299 bfd_boolean target_is_16_bit_code_p)
5300 {
5301 /* We specifically ignore branches and jumps from EF_PIC objects,
5302 where the onus is on the compiler or programmer to perform any
5303 necessary initialization of $25. Sometimes such initialization
5304 is unnecessary; for example, -mno-shared functions do not use
5305 the incoming value of $25, and may therefore be called directly. */
5306 if (PIC_OBJECT_P (input_bfd))
5307 return FALSE;
5308
5309 switch (r_type)
5310 {
5311 case R_MIPS_26:
5312 case R_MIPS_PC16:
5313 case R_MIPS_PC21_S2:
5314 case R_MIPS_PC26_S2:
5315 case R_MICROMIPS_26_S1:
5316 case R_MICROMIPS_PC7_S1:
5317 case R_MICROMIPS_PC10_S1:
5318 case R_MICROMIPS_PC16_S1:
5319 case R_MICROMIPS_PC23_S2:
5320 return TRUE;
5321
5322 case R_MIPS16_26:
5323 return !target_is_16_bit_code_p;
5324
5325 default:
5326 return FALSE;
5327 }
5328 }
5329 \f
5330 /* Obtain the field relocated by RELOCATION. */
5331
5332 static bfd_vma
5333 mips_elf_obtain_contents (reloc_howto_type *howto,
5334 const Elf_Internal_Rela *relocation,
5335 bfd *input_bfd, bfd_byte *contents)
5336 {
5337 bfd_vma x = 0;
5338 bfd_byte *location = contents + relocation->r_offset;
5339 unsigned int size = bfd_get_reloc_size (howto);
5340
5341 /* Obtain the bytes. */
5342 if (size != 0)
5343 x = bfd_get (8 * size, input_bfd, location);
5344
5345 return x;
5346 }
5347
5348 /* Store the field relocated by RELOCATION. */
5349
5350 static void
5351 mips_elf_store_contents (reloc_howto_type *howto,
5352 const Elf_Internal_Rela *relocation,
5353 bfd *input_bfd, bfd_byte *contents, bfd_vma x)
5354 {
5355 bfd_byte *location = contents + relocation->r_offset;
5356 unsigned int size = bfd_get_reloc_size (howto);
5357
5358 /* Put the value into the output. */
5359 if (size != 0)
5360 bfd_put (8 * size, input_bfd, x, location);
5361 }
5362
5363 /* Try to patch a load from GOT instruction in CONTENTS pointed to by
5364 RELOCATION described by HOWTO, with a move of 0 to the load target
5365 register, returning TRUE if that is successful and FALSE otherwise.
5366 If DOIT is FALSE, then only determine it patching is possible and
5367 return status without actually changing CONTENTS.
5368 */
5369
5370 static bfd_boolean
5371 mips_elf_nullify_got_load (bfd *input_bfd, bfd_byte *contents,
5372 const Elf_Internal_Rela *relocation,
5373 reloc_howto_type *howto, bfd_boolean doit)
5374 {
5375 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5376 bfd_byte *location = contents + relocation->r_offset;
5377 bfd_boolean nullified = TRUE;
5378 bfd_vma x;
5379
5380 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5381
5382 /* Obtain the current value. */
5383 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5384
5385 /* Note that in the unshuffled MIPS16 encoding RX is at bits [21:19]
5386 while RY is at bits [18:16] of the combined 32-bit instruction word. */
5387 if (mips16_reloc_p (r_type)
5388 && (((x >> 22) & 0x3ff) == 0x3d3 /* LW */
5389 || ((x >> 22) & 0x3ff) == 0x3c7)) /* LD */
5390 x = (0x3cd << 22) | (x & (7 << 16)) << 3; /* LI */
5391 else if (micromips_reloc_p (r_type)
5392 && ((x >> 26) & 0x37) == 0x37) /* LW/LD */
5393 x = (0xc << 26) | (x & (0x1f << 21)); /* ADDIU */
5394 else if (((x >> 26) & 0x3f) == 0x23 /* LW */
5395 || ((x >> 26) & 0x3f) == 0x37) /* LD */
5396 x = (0x9 << 26) | (x & (0x1f << 16)); /* ADDIU */
5397 else
5398 nullified = FALSE;
5399
5400 /* Put the value into the output. */
5401 if (doit && nullified)
5402 mips_elf_store_contents (howto, relocation, input_bfd, contents, x);
5403
5404 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, FALSE, location);
5405
5406 return nullified;
5407 }
5408
5409 /* Calculate the value produced by the RELOCATION (which comes from
5410 the INPUT_BFD). The ADDEND is the addend to use for this
5411 RELOCATION; RELOCATION->R_ADDEND is ignored.
5412
5413 The result of the relocation calculation is stored in VALUEP.
5414 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5415 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5416
5417 This function returns bfd_reloc_continue if the caller need take no
5418 further action regarding this relocation, bfd_reloc_notsupported if
5419 something goes dramatically wrong, bfd_reloc_overflow if an
5420 overflow occurs, and bfd_reloc_ok to indicate success. */
5421
5422 static bfd_reloc_status_type
5423 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5424 asection *input_section, bfd_byte *contents,
5425 struct bfd_link_info *info,
5426 const Elf_Internal_Rela *relocation,
5427 bfd_vma addend, reloc_howto_type *howto,
5428 Elf_Internal_Sym *local_syms,
5429 asection **local_sections, bfd_vma *valuep,
5430 const char **namep,
5431 bfd_boolean *cross_mode_jump_p,
5432 bfd_boolean save_addend)
5433 {
5434 /* The eventual value we will return. */
5435 bfd_vma value;
5436 /* The address of the symbol against which the relocation is
5437 occurring. */
5438 bfd_vma symbol = 0;
5439 /* The final GP value to be used for the relocatable, executable, or
5440 shared object file being produced. */
5441 bfd_vma gp;
5442 /* The place (section offset or address) of the storage unit being
5443 relocated. */
5444 bfd_vma p;
5445 /* The value of GP used to create the relocatable object. */
5446 bfd_vma gp0;
5447 /* The offset into the global offset table at which the address of
5448 the relocation entry symbol, adjusted by the addend, resides
5449 during execution. */
5450 bfd_vma g = MINUS_ONE;
5451 /* The section in which the symbol referenced by the relocation is
5452 located. */
5453 asection *sec = NULL;
5454 struct mips_elf_link_hash_entry *h = NULL;
5455 /* TRUE if the symbol referred to by this relocation is a local
5456 symbol. */
5457 bfd_boolean local_p, was_local_p;
5458 /* TRUE if the symbol referred to by this relocation is a section
5459 symbol. */
5460 bfd_boolean section_p = FALSE;
5461 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5462 bfd_boolean gp_disp_p = FALSE;
5463 /* TRUE if the symbol referred to by this relocation is
5464 "__gnu_local_gp". */
5465 bfd_boolean gnu_local_gp_p = FALSE;
5466 Elf_Internal_Shdr *symtab_hdr;
5467 size_t extsymoff;
5468 unsigned long r_symndx;
5469 int r_type;
5470 /* TRUE if overflow occurred during the calculation of the
5471 relocation value. */
5472 bfd_boolean overflowed_p;
5473 /* TRUE if this relocation refers to a MIPS16 function. */
5474 bfd_boolean target_is_16_bit_code_p = FALSE;
5475 bfd_boolean target_is_micromips_code_p = FALSE;
5476 struct mips_elf_link_hash_table *htab;
5477 bfd *dynobj;
5478 bfd_boolean resolved_to_zero;
5479
5480 dynobj = elf_hash_table (info)->dynobj;
5481 htab = mips_elf_hash_table (info);
5482 BFD_ASSERT (htab != NULL);
5483
5484 /* Parse the relocation. */
5485 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5486 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5487 p = (input_section->output_section->vma
5488 + input_section->output_offset
5489 + relocation->r_offset);
5490
5491 /* Assume that there will be no overflow. */
5492 overflowed_p = FALSE;
5493
5494 /* Figure out whether or not the symbol is local, and get the offset
5495 used in the array of hash table entries. */
5496 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5497 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5498 local_sections);
5499 was_local_p = local_p;
5500 if (! elf_bad_symtab (input_bfd))
5501 extsymoff = symtab_hdr->sh_info;
5502 else
5503 {
5504 /* The symbol table does not follow the rule that local symbols
5505 must come before globals. */
5506 extsymoff = 0;
5507 }
5508
5509 /* Figure out the value of the symbol. */
5510 if (local_p)
5511 {
5512 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5513 Elf_Internal_Sym *sym;
5514
5515 sym = local_syms + r_symndx;
5516 sec = local_sections[r_symndx];
5517
5518 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5519
5520 symbol = sec->output_section->vma + sec->output_offset;
5521 if (!section_p || (sec->flags & SEC_MERGE))
5522 symbol += sym->st_value;
5523 if ((sec->flags & SEC_MERGE) && section_p)
5524 {
5525 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5526 addend -= symbol;
5527 addend += sec->output_section->vma + sec->output_offset;
5528 }
5529
5530 /* MIPS16/microMIPS text labels should be treated as odd. */
5531 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5532 ++symbol;
5533
5534 /* Record the name of this symbol, for our caller. */
5535 *namep = bfd_elf_string_from_elf_section (input_bfd,
5536 symtab_hdr->sh_link,
5537 sym->st_name);
5538 if (*namep == NULL || **namep == '\0')
5539 *namep = bfd_section_name (sec);
5540
5541 /* For relocations against a section symbol and ones against no
5542 symbol (absolute relocations) infer the ISA mode from the addend. */
5543 if (section_p || r_symndx == STN_UNDEF)
5544 {
5545 target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5546 target_is_micromips_code_p = (addend & 1) && micromips_p;
5547 }
5548 /* For relocations against an absolute symbol infer the ISA mode
5549 from the value of the symbol plus addend. */
5550 else if (bfd_is_abs_section (sec))
5551 {
5552 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5553 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5554 }
5555 /* Otherwise just use the regular symbol annotation available. */
5556 else
5557 {
5558 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5559 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5560 }
5561 }
5562 else
5563 {
5564 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5565
5566 /* For global symbols we look up the symbol in the hash-table. */
5567 h = ((struct mips_elf_link_hash_entry *)
5568 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5569 /* Find the real hash-table entry for this symbol. */
5570 while (h->root.root.type == bfd_link_hash_indirect
5571 || h->root.root.type == bfd_link_hash_warning)
5572 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5573
5574 /* Record the name of this symbol, for our caller. */
5575 *namep = h->root.root.root.string;
5576
5577 /* See if this is the special _gp_disp symbol. Note that such a
5578 symbol must always be a global symbol. */
5579 if (strcmp (*namep, "_gp_disp") == 0
5580 && ! NEWABI_P (input_bfd))
5581 {
5582 /* Relocations against _gp_disp are permitted only with
5583 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5584 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5585 return bfd_reloc_notsupported;
5586
5587 gp_disp_p = TRUE;
5588 }
5589 /* See if this is the special _gp symbol. Note that such a
5590 symbol must always be a global symbol. */
5591 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5592 gnu_local_gp_p = TRUE;
5593
5594
5595 /* If this symbol is defined, calculate its address. Note that
5596 _gp_disp is a magic symbol, always implicitly defined by the
5597 linker, so it's inappropriate to check to see whether or not
5598 its defined. */
5599 else if ((h->root.root.type == bfd_link_hash_defined
5600 || h->root.root.type == bfd_link_hash_defweak)
5601 && h->root.root.u.def.section)
5602 {
5603 sec = h->root.root.u.def.section;
5604 if (sec->output_section)
5605 symbol = (h->root.root.u.def.value
5606 + sec->output_section->vma
5607 + sec->output_offset);
5608 else
5609 symbol = h->root.root.u.def.value;
5610 }
5611 else if (h->root.root.type == bfd_link_hash_undefweak)
5612 /* We allow relocations against undefined weak symbols, giving
5613 it the value zero, so that you can undefined weak functions
5614 and check to see if they exist by looking at their
5615 addresses. */
5616 symbol = 0;
5617 else if (info->unresolved_syms_in_objects == RM_IGNORE
5618 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5619 symbol = 0;
5620 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5621 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5622 {
5623 /* If this is a dynamic link, we should have created a
5624 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5625 in _bfd_mips_elf_create_dynamic_sections.
5626 Otherwise, we should define the symbol with a value of 0.
5627 FIXME: It should probably get into the symbol table
5628 somehow as well. */
5629 BFD_ASSERT (! bfd_link_pic (info));
5630 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5631 symbol = 0;
5632 }
5633 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5634 {
5635 /* This is an optional symbol - an Irix specific extension to the
5636 ELF spec. Ignore it for now.
5637 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5638 than simply ignoring them, but we do not handle this for now.
5639 For information see the "64-bit ELF Object File Specification"
5640 which is available from here:
5641 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5642 symbol = 0;
5643 }
5644 else
5645 {
5646 bfd_boolean reject_undefined
5647 = (info->unresolved_syms_in_objects == RM_GENERATE_ERROR
5648 || ELF_ST_VISIBILITY (h->root.other) != STV_DEFAULT);
5649
5650 (*info->callbacks->undefined_symbol)
5651 (info, h->root.root.root.string, input_bfd,
5652 input_section, relocation->r_offset, reject_undefined);
5653
5654 if (reject_undefined)
5655 return bfd_reloc_undefined;
5656
5657 symbol = 0;
5658 }
5659
5660 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5661 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5662 }
5663
5664 /* If this is a reference to a 16-bit function with a stub, we need
5665 to redirect the relocation to the stub unless:
5666
5667 (a) the relocation is for a MIPS16 JAL;
5668
5669 (b) the relocation is for a MIPS16 PIC call, and there are no
5670 non-MIPS16 uses of the GOT slot; or
5671
5672 (c) the section allows direct references to MIPS16 functions. */
5673 if (r_type != R_MIPS16_26
5674 && !bfd_link_relocatable (info)
5675 && ((h != NULL
5676 && h->fn_stub != NULL
5677 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5678 || (local_p
5679 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5680 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5681 && !section_allows_mips16_refs_p (input_section))
5682 {
5683 /* This is a 32- or 64-bit call to a 16-bit function. We should
5684 have already noticed that we were going to need the
5685 stub. */
5686 if (local_p)
5687 {
5688 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5689 value = 0;
5690 }
5691 else
5692 {
5693 BFD_ASSERT (h->need_fn_stub);
5694 if (h->la25_stub)
5695 {
5696 /* If a LA25 header for the stub itself exists, point to the
5697 prepended LUI/ADDIU sequence. */
5698 sec = h->la25_stub->stub_section;
5699 value = h->la25_stub->offset;
5700 }
5701 else
5702 {
5703 sec = h->fn_stub;
5704 value = 0;
5705 }
5706 }
5707
5708 symbol = sec->output_section->vma + sec->output_offset + value;
5709 /* The target is 16-bit, but the stub isn't. */
5710 target_is_16_bit_code_p = FALSE;
5711 }
5712 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5713 to a standard MIPS function, we need to redirect the call to the stub.
5714 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5715 indirect calls should use an indirect stub instead. */
5716 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
5717 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5718 || (local_p
5719 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5720 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5721 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5722 {
5723 if (local_p)
5724 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5725 else
5726 {
5727 /* If both call_stub and call_fp_stub are defined, we can figure
5728 out which one to use by checking which one appears in the input
5729 file. */
5730 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5731 {
5732 asection *o;
5733
5734 sec = NULL;
5735 for (o = input_bfd->sections; o != NULL; o = o->next)
5736 {
5737 if (CALL_FP_STUB_P (bfd_section_name (o)))
5738 {
5739 sec = h->call_fp_stub;
5740 break;
5741 }
5742 }
5743 if (sec == NULL)
5744 sec = h->call_stub;
5745 }
5746 else if (h->call_stub != NULL)
5747 sec = h->call_stub;
5748 else
5749 sec = h->call_fp_stub;
5750 }
5751
5752 BFD_ASSERT (sec->size > 0);
5753 symbol = sec->output_section->vma + sec->output_offset;
5754 }
5755 /* If this is a direct call to a PIC function, redirect to the
5756 non-PIC stub. */
5757 else if (h != NULL && h->la25_stub
5758 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5759 target_is_16_bit_code_p))
5760 {
5761 symbol = (h->la25_stub->stub_section->output_section->vma
5762 + h->la25_stub->stub_section->output_offset
5763 + h->la25_stub->offset);
5764 if (ELF_ST_IS_MICROMIPS (h->root.other))
5765 symbol |= 1;
5766 }
5767 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5768 entry is used if a standard PLT entry has also been made. In this
5769 case the symbol will have been set by mips_elf_set_plt_sym_value
5770 to point to the standard PLT entry, so redirect to the compressed
5771 one. */
5772 else if ((mips16_branch_reloc_p (r_type)
5773 || micromips_branch_reloc_p (r_type))
5774 && !bfd_link_relocatable (info)
5775 && h != NULL
5776 && h->use_plt_entry
5777 && h->root.plt.plist->comp_offset != MINUS_ONE
5778 && h->root.plt.plist->mips_offset != MINUS_ONE)
5779 {
5780 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5781
5782 sec = htab->root.splt;
5783 symbol = (sec->output_section->vma
5784 + sec->output_offset
5785 + htab->plt_header_size
5786 + htab->plt_mips_offset
5787 + h->root.plt.plist->comp_offset
5788 + 1);
5789
5790 target_is_16_bit_code_p = !micromips_p;
5791 target_is_micromips_code_p = micromips_p;
5792 }
5793
5794 /* Make sure MIPS16 and microMIPS are not used together. */
5795 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
5796 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5797 {
5798 _bfd_error_handler
5799 (_("MIPS16 and microMIPS functions cannot call each other"));
5800 return bfd_reloc_notsupported;
5801 }
5802
5803 /* Calls from 16-bit code to 32-bit code and vice versa require the
5804 mode change. However, we can ignore calls to undefined weak symbols,
5805 which should never be executed at runtime. This exception is important
5806 because the assembly writer may have "known" that any definition of the
5807 symbol would be 16-bit code, and that direct jumps were therefore
5808 acceptable. */
5809 *cross_mode_jump_p = (!bfd_link_relocatable (info)
5810 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5811 && ((mips16_branch_reloc_p (r_type)
5812 && !target_is_16_bit_code_p)
5813 || (micromips_branch_reloc_p (r_type)
5814 && !target_is_micromips_code_p)
5815 || ((branch_reloc_p (r_type)
5816 || r_type == R_MIPS_JALR)
5817 && (target_is_16_bit_code_p
5818 || target_is_micromips_code_p))));
5819
5820 resolved_to_zero = (h != NULL
5821 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, &h->root));
5822
5823 switch (r_type)
5824 {
5825 case R_MIPS16_CALL16:
5826 case R_MIPS16_GOT16:
5827 case R_MIPS_CALL16:
5828 case R_MIPS_GOT16:
5829 case R_MIPS_GOT_PAGE:
5830 case R_MIPS_GOT_DISP:
5831 case R_MIPS_GOT_LO16:
5832 case R_MIPS_CALL_LO16:
5833 case R_MICROMIPS_CALL16:
5834 case R_MICROMIPS_GOT16:
5835 case R_MICROMIPS_GOT_PAGE:
5836 case R_MICROMIPS_GOT_DISP:
5837 case R_MICROMIPS_GOT_LO16:
5838 case R_MICROMIPS_CALL_LO16:
5839 if (resolved_to_zero
5840 && !bfd_link_relocatable (info)
5841 && mips_elf_nullify_got_load (input_bfd, contents,
5842 relocation, howto, TRUE))
5843 return bfd_reloc_continue;
5844
5845 /* Fall through. */
5846 case R_MIPS_GOT_HI16:
5847 case R_MIPS_CALL_HI16:
5848 case R_MICROMIPS_GOT_HI16:
5849 case R_MICROMIPS_CALL_HI16:
5850 if (resolved_to_zero
5851 && htab->use_absolute_zero
5852 && bfd_link_pic (info))
5853 {
5854 /* Redirect to the special `__gnu_absolute_zero' symbol. */
5855 h = mips_elf_link_hash_lookup (htab, "__gnu_absolute_zero",
5856 FALSE, FALSE, FALSE);
5857 BFD_ASSERT (h != NULL);
5858 }
5859 break;
5860 }
5861
5862 local_p = (h == NULL || mips_use_local_got_p (info, h));
5863
5864 gp0 = _bfd_get_gp_value (input_bfd);
5865 gp = _bfd_get_gp_value (abfd);
5866 if (htab->got_info)
5867 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5868
5869 if (gnu_local_gp_p)
5870 symbol = gp;
5871
5872 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5873 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5874 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5875 if (got_page_reloc_p (r_type) && !local_p)
5876 {
5877 r_type = (micromips_reloc_p (r_type)
5878 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5879 addend = 0;
5880 }
5881
5882 /* If we haven't already determined the GOT offset, and we're going
5883 to need it, get it now. */
5884 switch (r_type)
5885 {
5886 case R_MIPS16_CALL16:
5887 case R_MIPS16_GOT16:
5888 case R_MIPS_CALL16:
5889 case R_MIPS_GOT16:
5890 case R_MIPS_GOT_DISP:
5891 case R_MIPS_GOT_HI16:
5892 case R_MIPS_CALL_HI16:
5893 case R_MIPS_GOT_LO16:
5894 case R_MIPS_CALL_LO16:
5895 case R_MICROMIPS_CALL16:
5896 case R_MICROMIPS_GOT16:
5897 case R_MICROMIPS_GOT_DISP:
5898 case R_MICROMIPS_GOT_HI16:
5899 case R_MICROMIPS_CALL_HI16:
5900 case R_MICROMIPS_GOT_LO16:
5901 case R_MICROMIPS_CALL_LO16:
5902 case R_MIPS_TLS_GD:
5903 case R_MIPS_TLS_GOTTPREL:
5904 case R_MIPS_TLS_LDM:
5905 case R_MIPS16_TLS_GD:
5906 case R_MIPS16_TLS_GOTTPREL:
5907 case R_MIPS16_TLS_LDM:
5908 case R_MICROMIPS_TLS_GD:
5909 case R_MICROMIPS_TLS_GOTTPREL:
5910 case R_MICROMIPS_TLS_LDM:
5911 /* Find the index into the GOT where this value is located. */
5912 if (tls_ldm_reloc_p (r_type))
5913 {
5914 g = mips_elf_local_got_index (abfd, input_bfd, info,
5915 0, 0, NULL, r_type);
5916 if (g == MINUS_ONE)
5917 return bfd_reloc_outofrange;
5918 }
5919 else if (!local_p)
5920 {
5921 /* On VxWorks, CALL relocations should refer to the .got.plt
5922 entry, which is initialized to point at the PLT stub. */
5923 if (htab->is_vxworks
5924 && (call_hi16_reloc_p (r_type)
5925 || call_lo16_reloc_p (r_type)
5926 || call16_reloc_p (r_type)))
5927 {
5928 BFD_ASSERT (addend == 0);
5929 BFD_ASSERT (h->root.needs_plt);
5930 g = mips_elf_gotplt_index (info, &h->root);
5931 }
5932 else
5933 {
5934 BFD_ASSERT (addend == 0);
5935 g = mips_elf_global_got_index (abfd, info, input_bfd,
5936 &h->root, r_type);
5937 if (!TLS_RELOC_P (r_type)
5938 && !elf_hash_table (info)->dynamic_sections_created)
5939 /* This is a static link. We must initialize the GOT entry. */
5940 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->root.sgot->contents + g);
5941 }
5942 }
5943 else if (!htab->is_vxworks
5944 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5945 /* The calculation below does not involve "g". */
5946 break;
5947 else
5948 {
5949 g = mips_elf_local_got_index (abfd, input_bfd, info,
5950 symbol + addend, r_symndx, h, r_type);
5951 if (g == MINUS_ONE)
5952 return bfd_reloc_outofrange;
5953 }
5954
5955 /* Convert GOT indices to actual offsets. */
5956 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5957 break;
5958 }
5959
5960 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5961 symbols are resolved by the loader. Add them to .rela.dyn. */
5962 if (h != NULL && is_gott_symbol (info, &h->root))
5963 {
5964 Elf_Internal_Rela outrel;
5965 bfd_byte *loc;
5966 asection *s;
5967
5968 s = mips_elf_rel_dyn_section (info, FALSE);
5969 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5970
5971 outrel.r_offset = (input_section->output_section->vma
5972 + input_section->output_offset
5973 + relocation->r_offset);
5974 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5975 outrel.r_addend = addend;
5976 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5977
5978 /* If we've written this relocation for a readonly section,
5979 we need to set DF_TEXTREL again, so that we do not delete the
5980 DT_TEXTREL tag. */
5981 if (MIPS_ELF_READONLY_SECTION (input_section))
5982 info->flags |= DF_TEXTREL;
5983
5984 *valuep = 0;
5985 return bfd_reloc_ok;
5986 }
5987
5988 /* Figure out what kind of relocation is being performed. */
5989 switch (r_type)
5990 {
5991 case R_MIPS_NONE:
5992 return bfd_reloc_continue;
5993
5994 case R_MIPS_16:
5995 if (howto->partial_inplace)
5996 addend = _bfd_mips_elf_sign_extend (addend, 16);
5997 value = symbol + addend;
5998 overflowed_p = mips_elf_overflow_p (value, 16);
5999 break;
6000
6001 case R_MIPS_32:
6002 case R_MIPS_REL32:
6003 case R_MIPS_64:
6004 if ((bfd_link_pic (info)
6005 || (htab->root.dynamic_sections_created
6006 && h != NULL
6007 && h->root.def_dynamic
6008 && !h->root.def_regular
6009 && !h->has_static_relocs))
6010 && r_symndx != STN_UNDEF
6011 && (h == NULL
6012 || h->root.root.type != bfd_link_hash_undefweak
6013 || (ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
6014 && !resolved_to_zero))
6015 && (input_section->flags & SEC_ALLOC) != 0)
6016 {
6017 /* If we're creating a shared library, then we can't know
6018 where the symbol will end up. So, we create a relocation
6019 record in the output, and leave the job up to the dynamic
6020 linker. We must do the same for executable references to
6021 shared library symbols, unless we've decided to use copy
6022 relocs or PLTs instead. */
6023 value = addend;
6024 if (!mips_elf_create_dynamic_relocation (abfd,
6025 info,
6026 relocation,
6027 h,
6028 sec,
6029 symbol,
6030 &value,
6031 input_section))
6032 return bfd_reloc_undefined;
6033 }
6034 else
6035 {
6036 if (r_type != R_MIPS_REL32)
6037 value = symbol + addend;
6038 else
6039 value = addend;
6040 }
6041 value &= howto->dst_mask;
6042 break;
6043
6044 case R_MIPS_PC32:
6045 value = symbol + addend - p;
6046 value &= howto->dst_mask;
6047 break;
6048
6049 case R_MIPS16_26:
6050 /* The calculation for R_MIPS16_26 is just the same as for an
6051 R_MIPS_26. It's only the storage of the relocated field into
6052 the output file that's different. That's handled in
6053 mips_elf_perform_relocation. So, we just fall through to the
6054 R_MIPS_26 case here. */
6055 case R_MIPS_26:
6056 case R_MICROMIPS_26_S1:
6057 {
6058 unsigned int shift;
6059
6060 /* Shift is 2, unusually, for microMIPS JALX. */
6061 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
6062
6063 if (howto->partial_inplace && !section_p)
6064 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
6065 else
6066 value = addend;
6067 value += symbol;
6068
6069 /* Make sure the target of a jump is suitably aligned. Bit 0 must
6070 be the correct ISA mode selector except for weak undefined
6071 symbols. */
6072 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6073 && (*cross_mode_jump_p
6074 ? (value & 3) != (r_type == R_MIPS_26)
6075 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
6076 return bfd_reloc_outofrange;
6077
6078 value >>= shift;
6079 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6080 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
6081 value &= howto->dst_mask;
6082 }
6083 break;
6084
6085 case R_MIPS_TLS_DTPREL_HI16:
6086 case R_MIPS16_TLS_DTPREL_HI16:
6087 case R_MICROMIPS_TLS_DTPREL_HI16:
6088 value = (mips_elf_high (addend + symbol - dtprel_base (info))
6089 & howto->dst_mask);
6090 break;
6091
6092 case R_MIPS_TLS_DTPREL_LO16:
6093 case R_MIPS_TLS_DTPREL32:
6094 case R_MIPS_TLS_DTPREL64:
6095 case R_MIPS16_TLS_DTPREL_LO16:
6096 case R_MICROMIPS_TLS_DTPREL_LO16:
6097 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
6098 break;
6099
6100 case R_MIPS_TLS_TPREL_HI16:
6101 case R_MIPS16_TLS_TPREL_HI16:
6102 case R_MICROMIPS_TLS_TPREL_HI16:
6103 value = (mips_elf_high (addend + symbol - tprel_base (info))
6104 & howto->dst_mask);
6105 break;
6106
6107 case R_MIPS_TLS_TPREL_LO16:
6108 case R_MIPS_TLS_TPREL32:
6109 case R_MIPS_TLS_TPREL64:
6110 case R_MIPS16_TLS_TPREL_LO16:
6111 case R_MICROMIPS_TLS_TPREL_LO16:
6112 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
6113 break;
6114
6115 case R_MIPS_HI16:
6116 case R_MIPS16_HI16:
6117 case R_MICROMIPS_HI16:
6118 if (!gp_disp_p)
6119 {
6120 value = mips_elf_high (addend + symbol);
6121 value &= howto->dst_mask;
6122 }
6123 else
6124 {
6125 /* For MIPS16 ABI code we generate this sequence
6126 0: li $v0,%hi(_gp_disp)
6127 4: addiupc $v1,%lo(_gp_disp)
6128 8: sll $v0,16
6129 12: addu $v0,$v1
6130 14: move $gp,$v0
6131 So the offsets of hi and lo relocs are the same, but the
6132 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
6133 ADDIUPC clears the low two bits of the instruction address,
6134 so the base is ($t9 + 4) & ~3. */
6135 if (r_type == R_MIPS16_HI16)
6136 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
6137 /* The microMIPS .cpload sequence uses the same assembly
6138 instructions as the traditional psABI version, but the
6139 incoming $t9 has the low bit set. */
6140 else if (r_type == R_MICROMIPS_HI16)
6141 value = mips_elf_high (addend + gp - p - 1);
6142 else
6143 value = mips_elf_high (addend + gp - p);
6144 }
6145 break;
6146
6147 case R_MIPS_LO16:
6148 case R_MIPS16_LO16:
6149 case R_MICROMIPS_LO16:
6150 case R_MICROMIPS_HI0_LO16:
6151 if (!gp_disp_p)
6152 value = (symbol + addend) & howto->dst_mask;
6153 else
6154 {
6155 /* See the comment for R_MIPS16_HI16 above for the reason
6156 for this conditional. */
6157 if (r_type == R_MIPS16_LO16)
6158 value = addend + gp - (p & ~(bfd_vma) 0x3);
6159 else if (r_type == R_MICROMIPS_LO16
6160 || r_type == R_MICROMIPS_HI0_LO16)
6161 value = addend + gp - p + 3;
6162 else
6163 value = addend + gp - p + 4;
6164 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
6165 for overflow. But, on, say, IRIX5, relocations against
6166 _gp_disp are normally generated from the .cpload
6167 pseudo-op. It generates code that normally looks like
6168 this:
6169
6170 lui $gp,%hi(_gp_disp)
6171 addiu $gp,$gp,%lo(_gp_disp)
6172 addu $gp,$gp,$t9
6173
6174 Here $t9 holds the address of the function being called,
6175 as required by the MIPS ELF ABI. The R_MIPS_LO16
6176 relocation can easily overflow in this situation, but the
6177 R_MIPS_HI16 relocation will handle the overflow.
6178 Therefore, we consider this a bug in the MIPS ABI, and do
6179 not check for overflow here. */
6180 }
6181 break;
6182
6183 case R_MIPS_LITERAL:
6184 case R_MICROMIPS_LITERAL:
6185 /* Because we don't merge literal sections, we can handle this
6186 just like R_MIPS_GPREL16. In the long run, we should merge
6187 shared literals, and then we will need to additional work
6188 here. */
6189
6190 /* Fall through. */
6191
6192 case R_MIPS16_GPREL:
6193 /* The R_MIPS16_GPREL performs the same calculation as
6194 R_MIPS_GPREL16, but stores the relocated bits in a different
6195 order. We don't need to do anything special here; the
6196 differences are handled in mips_elf_perform_relocation. */
6197 case R_MIPS_GPREL16:
6198 case R_MICROMIPS_GPREL7_S2:
6199 case R_MICROMIPS_GPREL16:
6200 /* Only sign-extend the addend if it was extracted from the
6201 instruction. If the addend was separate, leave it alone,
6202 otherwise we may lose significant bits. */
6203 if (howto->partial_inplace)
6204 addend = _bfd_mips_elf_sign_extend (addend, 16);
6205 value = symbol + addend - gp;
6206 /* If the symbol was local, any earlier relocatable links will
6207 have adjusted its addend with the gp offset, so compensate
6208 for that now. Don't do it for symbols forced local in this
6209 link, though, since they won't have had the gp offset applied
6210 to them before. */
6211 if (was_local_p)
6212 value += gp0;
6213 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6214 overflowed_p = mips_elf_overflow_p (value, 16);
6215 break;
6216
6217 case R_MIPS16_GOT16:
6218 case R_MIPS16_CALL16:
6219 case R_MIPS_GOT16:
6220 case R_MIPS_CALL16:
6221 case R_MICROMIPS_GOT16:
6222 case R_MICROMIPS_CALL16:
6223 /* VxWorks does not have separate local and global semantics for
6224 R_MIPS*_GOT16; every relocation evaluates to "G". */
6225 if (!htab->is_vxworks && local_p)
6226 {
6227 value = mips_elf_got16_entry (abfd, input_bfd, info,
6228 symbol + addend, !was_local_p);
6229 if (value == MINUS_ONE)
6230 return bfd_reloc_outofrange;
6231 value
6232 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6233 overflowed_p = mips_elf_overflow_p (value, 16);
6234 break;
6235 }
6236
6237 /* Fall through. */
6238
6239 case R_MIPS_TLS_GD:
6240 case R_MIPS_TLS_GOTTPREL:
6241 case R_MIPS_TLS_LDM:
6242 case R_MIPS_GOT_DISP:
6243 case R_MIPS16_TLS_GD:
6244 case R_MIPS16_TLS_GOTTPREL:
6245 case R_MIPS16_TLS_LDM:
6246 case R_MICROMIPS_TLS_GD:
6247 case R_MICROMIPS_TLS_GOTTPREL:
6248 case R_MICROMIPS_TLS_LDM:
6249 case R_MICROMIPS_GOT_DISP:
6250 value = g;
6251 overflowed_p = mips_elf_overflow_p (value, 16);
6252 break;
6253
6254 case R_MIPS_GPREL32:
6255 value = (addend + symbol + gp0 - gp);
6256 if (!save_addend)
6257 value &= howto->dst_mask;
6258 break;
6259
6260 case R_MIPS_PC16:
6261 case R_MIPS_GNU_REL16_S2:
6262 if (howto->partial_inplace)
6263 addend = _bfd_mips_elf_sign_extend (addend, 18);
6264
6265 /* No need to exclude weak undefined symbols here as they resolve
6266 to 0 and never set `*cross_mode_jump_p', so this alignment check
6267 will never trigger for them. */
6268 if (*cross_mode_jump_p
6269 ? ((symbol + addend) & 3) != 1
6270 : ((symbol + addend) & 3) != 0)
6271 return bfd_reloc_outofrange;
6272
6273 value = symbol + addend - p;
6274 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6275 overflowed_p = mips_elf_overflow_p (value, 18);
6276 value >>= howto->rightshift;
6277 value &= howto->dst_mask;
6278 break;
6279
6280 case R_MIPS16_PC16_S1:
6281 if (howto->partial_inplace)
6282 addend = _bfd_mips_elf_sign_extend (addend, 17);
6283
6284 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6285 && (*cross_mode_jump_p
6286 ? ((symbol + addend) & 3) != 0
6287 : ((symbol + addend) & 1) == 0))
6288 return bfd_reloc_outofrange;
6289
6290 value = symbol + addend - p;
6291 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6292 overflowed_p = mips_elf_overflow_p (value, 17);
6293 value >>= howto->rightshift;
6294 value &= howto->dst_mask;
6295 break;
6296
6297 case R_MIPS_PC21_S2:
6298 if (howto->partial_inplace)
6299 addend = _bfd_mips_elf_sign_extend (addend, 23);
6300
6301 if ((symbol + addend) & 3)
6302 return bfd_reloc_outofrange;
6303
6304 value = symbol + addend - p;
6305 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6306 overflowed_p = mips_elf_overflow_p (value, 23);
6307 value >>= howto->rightshift;
6308 value &= howto->dst_mask;
6309 break;
6310
6311 case R_MIPS_PC26_S2:
6312 if (howto->partial_inplace)
6313 addend = _bfd_mips_elf_sign_extend (addend, 28);
6314
6315 if ((symbol + addend) & 3)
6316 return bfd_reloc_outofrange;
6317
6318 value = symbol + addend - p;
6319 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6320 overflowed_p = mips_elf_overflow_p (value, 28);
6321 value >>= howto->rightshift;
6322 value &= howto->dst_mask;
6323 break;
6324
6325 case R_MIPS_PC18_S3:
6326 if (howto->partial_inplace)
6327 addend = _bfd_mips_elf_sign_extend (addend, 21);
6328
6329 if ((symbol + addend) & 7)
6330 return bfd_reloc_outofrange;
6331
6332 value = symbol + addend - ((p | 7) ^ 7);
6333 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6334 overflowed_p = mips_elf_overflow_p (value, 21);
6335 value >>= howto->rightshift;
6336 value &= howto->dst_mask;
6337 break;
6338
6339 case R_MIPS_PC19_S2:
6340 if (howto->partial_inplace)
6341 addend = _bfd_mips_elf_sign_extend (addend, 21);
6342
6343 if ((symbol + addend) & 3)
6344 return bfd_reloc_outofrange;
6345
6346 value = symbol + addend - p;
6347 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6348 overflowed_p = mips_elf_overflow_p (value, 21);
6349 value >>= howto->rightshift;
6350 value &= howto->dst_mask;
6351 break;
6352
6353 case R_MIPS_PCHI16:
6354 value = mips_elf_high (symbol + addend - p);
6355 value &= howto->dst_mask;
6356 break;
6357
6358 case R_MIPS_PCLO16:
6359 if (howto->partial_inplace)
6360 addend = _bfd_mips_elf_sign_extend (addend, 16);
6361 value = symbol + addend - p;
6362 value &= howto->dst_mask;
6363 break;
6364
6365 case R_MICROMIPS_PC7_S1:
6366 if (howto->partial_inplace)
6367 addend = _bfd_mips_elf_sign_extend (addend, 8);
6368
6369 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6370 && (*cross_mode_jump_p
6371 ? ((symbol + addend + 2) & 3) != 0
6372 : ((symbol + addend + 2) & 1) == 0))
6373 return bfd_reloc_outofrange;
6374
6375 value = symbol + addend - p;
6376 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6377 overflowed_p = mips_elf_overflow_p (value, 8);
6378 value >>= howto->rightshift;
6379 value &= howto->dst_mask;
6380 break;
6381
6382 case R_MICROMIPS_PC10_S1:
6383 if (howto->partial_inplace)
6384 addend = _bfd_mips_elf_sign_extend (addend, 11);
6385
6386 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6387 && (*cross_mode_jump_p
6388 ? ((symbol + addend + 2) & 3) != 0
6389 : ((symbol + addend + 2) & 1) == 0))
6390 return bfd_reloc_outofrange;
6391
6392 value = symbol + addend - p;
6393 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6394 overflowed_p = mips_elf_overflow_p (value, 11);
6395 value >>= howto->rightshift;
6396 value &= howto->dst_mask;
6397 break;
6398
6399 case R_MICROMIPS_PC16_S1:
6400 if (howto->partial_inplace)
6401 addend = _bfd_mips_elf_sign_extend (addend, 17);
6402
6403 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6404 && (*cross_mode_jump_p
6405 ? ((symbol + addend) & 3) != 0
6406 : ((symbol + addend) & 1) == 0))
6407 return bfd_reloc_outofrange;
6408
6409 value = symbol + addend - p;
6410 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6411 overflowed_p = mips_elf_overflow_p (value, 17);
6412 value >>= howto->rightshift;
6413 value &= howto->dst_mask;
6414 break;
6415
6416 case R_MICROMIPS_PC23_S2:
6417 if (howto->partial_inplace)
6418 addend = _bfd_mips_elf_sign_extend (addend, 25);
6419 value = symbol + addend - ((p | 3) ^ 3);
6420 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6421 overflowed_p = mips_elf_overflow_p (value, 25);
6422 value >>= howto->rightshift;
6423 value &= howto->dst_mask;
6424 break;
6425
6426 case R_MIPS_GOT_HI16:
6427 case R_MIPS_CALL_HI16:
6428 case R_MICROMIPS_GOT_HI16:
6429 case R_MICROMIPS_CALL_HI16:
6430 /* We're allowed to handle these two relocations identically.
6431 The dynamic linker is allowed to handle the CALL relocations
6432 differently by creating a lazy evaluation stub. */
6433 value = g;
6434 value = mips_elf_high (value);
6435 value &= howto->dst_mask;
6436 break;
6437
6438 case R_MIPS_GOT_LO16:
6439 case R_MIPS_CALL_LO16:
6440 case R_MICROMIPS_GOT_LO16:
6441 case R_MICROMIPS_CALL_LO16:
6442 value = g & howto->dst_mask;
6443 break;
6444
6445 case R_MIPS_GOT_PAGE:
6446 case R_MICROMIPS_GOT_PAGE:
6447 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6448 if (value == MINUS_ONE)
6449 return bfd_reloc_outofrange;
6450 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6451 overflowed_p = mips_elf_overflow_p (value, 16);
6452 break;
6453
6454 case R_MIPS_GOT_OFST:
6455 case R_MICROMIPS_GOT_OFST:
6456 if (local_p)
6457 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6458 else
6459 value = addend;
6460 overflowed_p = mips_elf_overflow_p (value, 16);
6461 break;
6462
6463 case R_MIPS_SUB:
6464 case R_MICROMIPS_SUB:
6465 value = symbol - addend;
6466 value &= howto->dst_mask;
6467 break;
6468
6469 case R_MIPS_HIGHER:
6470 case R_MICROMIPS_HIGHER:
6471 value = mips_elf_higher (addend + symbol);
6472 value &= howto->dst_mask;
6473 break;
6474
6475 case R_MIPS_HIGHEST:
6476 case R_MICROMIPS_HIGHEST:
6477 value = mips_elf_highest (addend + symbol);
6478 value &= howto->dst_mask;
6479 break;
6480
6481 case R_MIPS_SCN_DISP:
6482 case R_MICROMIPS_SCN_DISP:
6483 value = symbol + addend - sec->output_offset;
6484 value &= howto->dst_mask;
6485 break;
6486
6487 case R_MIPS_JALR:
6488 case R_MICROMIPS_JALR:
6489 /* This relocation is only a hint. In some cases, we optimize
6490 it into a bal instruction. But we don't try to optimize
6491 when the symbol does not resolve locally. */
6492 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6493 return bfd_reloc_continue;
6494 /* We can't optimize cross-mode jumps either. */
6495 if (*cross_mode_jump_p)
6496 return bfd_reloc_continue;
6497 value = symbol + addend;
6498 /* Neither we can non-instruction-aligned targets. */
6499 if (r_type == R_MIPS_JALR ? (value & 3) != 0 : (value & 1) == 0)
6500 return bfd_reloc_continue;
6501 break;
6502
6503 case R_MIPS_PJUMP:
6504 case R_MIPS_GNU_VTINHERIT:
6505 case R_MIPS_GNU_VTENTRY:
6506 /* We don't do anything with these at present. */
6507 return bfd_reloc_continue;
6508
6509 default:
6510 /* An unrecognized relocation type. */
6511 return bfd_reloc_notsupported;
6512 }
6513
6514 /* Store the VALUE for our caller. */
6515 *valuep = value;
6516 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6517 }
6518
6519 /* It has been determined that the result of the RELOCATION is the
6520 VALUE. Use HOWTO to place VALUE into the output file at the
6521 appropriate position. The SECTION is the section to which the
6522 relocation applies.
6523 CROSS_MODE_JUMP_P is true if the relocation field
6524 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6525
6526 Returns FALSE if anything goes wrong. */
6527
6528 static bfd_boolean
6529 mips_elf_perform_relocation (struct bfd_link_info *info,
6530 reloc_howto_type *howto,
6531 const Elf_Internal_Rela *relocation,
6532 bfd_vma value, bfd *input_bfd,
6533 asection *input_section, bfd_byte *contents,
6534 bfd_boolean cross_mode_jump_p)
6535 {
6536 bfd_vma x;
6537 bfd_byte *location;
6538 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6539
6540 /* Figure out where the relocation is occurring. */
6541 location = contents + relocation->r_offset;
6542
6543 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6544
6545 /* Obtain the current value. */
6546 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6547
6548 /* Clear the field we are setting. */
6549 x &= ~howto->dst_mask;
6550
6551 /* Set the field. */
6552 x |= (value & howto->dst_mask);
6553
6554 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
6555 if (!cross_mode_jump_p && jal_reloc_p (r_type))
6556 {
6557 bfd_vma opcode = x >> 26;
6558
6559 if (r_type == R_MIPS16_26 ? opcode == 0x7
6560 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6561 : opcode == 0x1d)
6562 {
6563 info->callbacks->einfo
6564 (_("%X%H: unsupported JALX to the same ISA mode\n"),
6565 input_bfd, input_section, relocation->r_offset);
6566 return TRUE;
6567 }
6568 }
6569 if (cross_mode_jump_p && jal_reloc_p (r_type))
6570 {
6571 bfd_boolean ok;
6572 bfd_vma opcode = x >> 26;
6573 bfd_vma jalx_opcode;
6574
6575 /* Check to see if the opcode is already JAL or JALX. */
6576 if (r_type == R_MIPS16_26)
6577 {
6578 ok = ((opcode == 0x6) || (opcode == 0x7));
6579 jalx_opcode = 0x7;
6580 }
6581 else if (r_type == R_MICROMIPS_26_S1)
6582 {
6583 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6584 jalx_opcode = 0x3c;
6585 }
6586 else
6587 {
6588 ok = ((opcode == 0x3) || (opcode == 0x1d));
6589 jalx_opcode = 0x1d;
6590 }
6591
6592 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6593 convert J or JALS to JALX. */
6594 if (!ok)
6595 {
6596 info->callbacks->einfo
6597 (_("%X%H: unsupported jump between ISA modes; "
6598 "consider recompiling with interlinking enabled\n"),
6599 input_bfd, input_section, relocation->r_offset);
6600 return TRUE;
6601 }
6602
6603 /* Make this the JALX opcode. */
6604 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6605 }
6606 else if (cross_mode_jump_p && b_reloc_p (r_type))
6607 {
6608 bfd_boolean ok = FALSE;
6609 bfd_vma opcode = x >> 16;
6610 bfd_vma jalx_opcode = 0;
6611 bfd_vma sign_bit = 0;
6612 bfd_vma addr;
6613 bfd_vma dest;
6614
6615 if (r_type == R_MICROMIPS_PC16_S1)
6616 {
6617 ok = opcode == 0x4060;
6618 jalx_opcode = 0x3c;
6619 sign_bit = 0x10000;
6620 value <<= 1;
6621 }
6622 else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6623 {
6624 ok = opcode == 0x411;
6625 jalx_opcode = 0x1d;
6626 sign_bit = 0x20000;
6627 value <<= 2;
6628 }
6629
6630 if (ok && !bfd_link_pic (info))
6631 {
6632 addr = (input_section->output_section->vma
6633 + input_section->output_offset
6634 + relocation->r_offset
6635 + 4);
6636 dest = (addr
6637 + (((value & ((sign_bit << 1) - 1)) ^ sign_bit) - sign_bit));
6638
6639 if ((addr >> 28) << 28 != (dest >> 28) << 28)
6640 {
6641 info->callbacks->einfo
6642 (_("%X%H: cannot convert branch between ISA modes "
6643 "to JALX: relocation out of range\n"),
6644 input_bfd, input_section, relocation->r_offset);
6645 return TRUE;
6646 }
6647
6648 /* Make this the JALX opcode. */
6649 x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
6650 }
6651 else if (!mips_elf_hash_table (info)->ignore_branch_isa)
6652 {
6653 info->callbacks->einfo
6654 (_("%X%H: unsupported branch between ISA modes\n"),
6655 input_bfd, input_section, relocation->r_offset);
6656 return TRUE;
6657 }
6658 }
6659
6660 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6661 range. */
6662 if (!bfd_link_relocatable (info)
6663 && !cross_mode_jump_p
6664 && ((JAL_TO_BAL_P (input_bfd)
6665 && r_type == R_MIPS_26
6666 && (x >> 26) == 0x3) /* jal addr */
6667 || (JALR_TO_BAL_P (input_bfd)
6668 && r_type == R_MIPS_JALR
6669 && x == 0x0320f809) /* jalr t9 */
6670 || (JR_TO_B_P (input_bfd)
6671 && r_type == R_MIPS_JALR
6672 && (x & ~1) == 0x03200008))) /* jr t9 / jalr zero, t9 */
6673 {
6674 bfd_vma addr;
6675 bfd_vma dest;
6676 bfd_signed_vma off;
6677
6678 addr = (input_section->output_section->vma
6679 + input_section->output_offset
6680 + relocation->r_offset
6681 + 4);
6682 if (r_type == R_MIPS_26)
6683 dest = (value << 2) | ((addr >> 28) << 28);
6684 else
6685 dest = value;
6686 off = dest - addr;
6687 if (off <= 0x1ffff && off >= -0x20000)
6688 {
6689 if ((x & ~1) == 0x03200008) /* jr t9 / jalr zero, t9 */
6690 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6691 else
6692 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6693 }
6694 }
6695
6696 /* Put the value into the output. */
6697 mips_elf_store_contents (howto, relocation, input_bfd, contents, x);
6698
6699 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
6700 location);
6701
6702 return TRUE;
6703 }
6704 \f
6705 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6706 is the original relocation, which is now being transformed into a
6707 dynamic relocation. The ADDENDP is adjusted if necessary; the
6708 caller should store the result in place of the original addend. */
6709
6710 static bfd_boolean
6711 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6712 struct bfd_link_info *info,
6713 const Elf_Internal_Rela *rel,
6714 struct mips_elf_link_hash_entry *h,
6715 asection *sec, bfd_vma symbol,
6716 bfd_vma *addendp, asection *input_section)
6717 {
6718 Elf_Internal_Rela outrel[3];
6719 asection *sreloc;
6720 bfd *dynobj;
6721 int r_type;
6722 long indx;
6723 bfd_boolean defined_p;
6724 struct mips_elf_link_hash_table *htab;
6725
6726 htab = mips_elf_hash_table (info);
6727 BFD_ASSERT (htab != NULL);
6728
6729 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6730 dynobj = elf_hash_table (info)->dynobj;
6731 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6732 BFD_ASSERT (sreloc != NULL);
6733 BFD_ASSERT (sreloc->contents != NULL);
6734 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6735 < sreloc->size);
6736
6737 outrel[0].r_offset =
6738 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6739 if (ABI_64_P (output_bfd))
6740 {
6741 outrel[1].r_offset =
6742 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6743 outrel[2].r_offset =
6744 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6745 }
6746
6747 if (outrel[0].r_offset == MINUS_ONE)
6748 /* The relocation field has been deleted. */
6749 return TRUE;
6750
6751 if (outrel[0].r_offset == MINUS_TWO)
6752 {
6753 /* The relocation field has been converted into a relative value of
6754 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6755 the field to be fully relocated, so add in the symbol's value. */
6756 *addendp += symbol;
6757 return TRUE;
6758 }
6759
6760 /* We must now calculate the dynamic symbol table index to use
6761 in the relocation. */
6762 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6763 {
6764 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6765 indx = h->root.dynindx;
6766 if (SGI_COMPAT (output_bfd))
6767 defined_p = h->root.def_regular;
6768 else
6769 /* ??? glibc's ld.so just adds the final GOT entry to the
6770 relocation field. It therefore treats relocs against
6771 defined symbols in the same way as relocs against
6772 undefined symbols. */
6773 defined_p = FALSE;
6774 }
6775 else
6776 {
6777 if (sec != NULL && bfd_is_abs_section (sec))
6778 indx = 0;
6779 else if (sec == NULL || sec->owner == NULL)
6780 {
6781 bfd_set_error (bfd_error_bad_value);
6782 return FALSE;
6783 }
6784 else
6785 {
6786 indx = elf_section_data (sec->output_section)->dynindx;
6787 if (indx == 0)
6788 {
6789 asection *osec = htab->root.text_index_section;
6790 indx = elf_section_data (osec)->dynindx;
6791 }
6792 if (indx == 0)
6793 abort ();
6794 }
6795
6796 /* Instead of generating a relocation using the section
6797 symbol, we may as well make it a fully relative
6798 relocation. We want to avoid generating relocations to
6799 local symbols because we used to generate them
6800 incorrectly, without adding the original symbol value,
6801 which is mandated by the ABI for section symbols. In
6802 order to give dynamic loaders and applications time to
6803 phase out the incorrect use, we refrain from emitting
6804 section-relative relocations. It's not like they're
6805 useful, after all. This should be a bit more efficient
6806 as well. */
6807 /* ??? Although this behavior is compatible with glibc's ld.so,
6808 the ABI says that relocations against STN_UNDEF should have
6809 a symbol value of 0. Irix rld honors this, so relocations
6810 against STN_UNDEF have no effect. */
6811 if (!SGI_COMPAT (output_bfd))
6812 indx = 0;
6813 defined_p = TRUE;
6814 }
6815
6816 /* If the relocation was previously an absolute relocation and
6817 this symbol will not be referred to by the relocation, we must
6818 adjust it by the value we give it in the dynamic symbol table.
6819 Otherwise leave the job up to the dynamic linker. */
6820 if (defined_p && r_type != R_MIPS_REL32)
6821 *addendp += symbol;
6822
6823 if (htab->is_vxworks)
6824 /* VxWorks uses non-relative relocations for this. */
6825 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6826 else
6827 /* The relocation is always an REL32 relocation because we don't
6828 know where the shared library will wind up at load-time. */
6829 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6830 R_MIPS_REL32);
6831
6832 /* For strict adherence to the ABI specification, we should
6833 generate a R_MIPS_64 relocation record by itself before the
6834 _REL32/_64 record as well, such that the addend is read in as
6835 a 64-bit value (REL32 is a 32-bit relocation, after all).
6836 However, since none of the existing ELF64 MIPS dynamic
6837 loaders seems to care, we don't waste space with these
6838 artificial relocations. If this turns out to not be true,
6839 mips_elf_allocate_dynamic_relocation() should be tweaked so
6840 as to make room for a pair of dynamic relocations per
6841 invocation if ABI_64_P, and here we should generate an
6842 additional relocation record with R_MIPS_64 by itself for a
6843 NULL symbol before this relocation record. */
6844 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6845 ABI_64_P (output_bfd)
6846 ? R_MIPS_64
6847 : R_MIPS_NONE);
6848 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6849
6850 /* Adjust the output offset of the relocation to reference the
6851 correct location in the output file. */
6852 outrel[0].r_offset += (input_section->output_section->vma
6853 + input_section->output_offset);
6854 outrel[1].r_offset += (input_section->output_section->vma
6855 + input_section->output_offset);
6856 outrel[2].r_offset += (input_section->output_section->vma
6857 + input_section->output_offset);
6858
6859 /* Put the relocation back out. We have to use the special
6860 relocation outputter in the 64-bit case since the 64-bit
6861 relocation format is non-standard. */
6862 if (ABI_64_P (output_bfd))
6863 {
6864 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6865 (output_bfd, &outrel[0],
6866 (sreloc->contents
6867 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6868 }
6869 else if (htab->is_vxworks)
6870 {
6871 /* VxWorks uses RELA rather than REL dynamic relocations. */
6872 outrel[0].r_addend = *addendp;
6873 bfd_elf32_swap_reloca_out
6874 (output_bfd, &outrel[0],
6875 (sreloc->contents
6876 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6877 }
6878 else
6879 bfd_elf32_swap_reloc_out
6880 (output_bfd, &outrel[0],
6881 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6882
6883 /* We've now added another relocation. */
6884 ++sreloc->reloc_count;
6885
6886 /* Make sure the output section is writable. The dynamic linker
6887 will be writing to it. */
6888 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6889 |= SHF_WRITE;
6890
6891 /* On IRIX5, make an entry of compact relocation info. */
6892 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6893 {
6894 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6895 bfd_byte *cr;
6896
6897 if (scpt)
6898 {
6899 Elf32_crinfo cptrel;
6900
6901 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6902 cptrel.vaddr = (rel->r_offset
6903 + input_section->output_section->vma
6904 + input_section->output_offset);
6905 if (r_type == R_MIPS_REL32)
6906 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6907 else
6908 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6909 mips_elf_set_cr_dist2to (cptrel, 0);
6910 cptrel.konst = *addendp;
6911
6912 cr = (scpt->contents
6913 + sizeof (Elf32_External_compact_rel));
6914 mips_elf_set_cr_relvaddr (cptrel, 0);
6915 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6916 ((Elf32_External_crinfo *) cr
6917 + scpt->reloc_count));
6918 ++scpt->reloc_count;
6919 }
6920 }
6921
6922 /* If we've written this relocation for a readonly section,
6923 we need to set DF_TEXTREL again, so that we do not delete the
6924 DT_TEXTREL tag. */
6925 if (MIPS_ELF_READONLY_SECTION (input_section))
6926 info->flags |= DF_TEXTREL;
6927
6928 return TRUE;
6929 }
6930 \f
6931 /* Return the MACH for a MIPS e_flags value. */
6932
6933 unsigned long
6934 _bfd_elf_mips_mach (flagword flags)
6935 {
6936 switch (flags & EF_MIPS_MACH)
6937 {
6938 case E_MIPS_MACH_3900:
6939 return bfd_mach_mips3900;
6940
6941 case E_MIPS_MACH_4010:
6942 return bfd_mach_mips4010;
6943
6944 case E_MIPS_MACH_4100:
6945 return bfd_mach_mips4100;
6946
6947 case E_MIPS_MACH_4111:
6948 return bfd_mach_mips4111;
6949
6950 case E_MIPS_MACH_4120:
6951 return bfd_mach_mips4120;
6952
6953 case E_MIPS_MACH_4650:
6954 return bfd_mach_mips4650;
6955
6956 case E_MIPS_MACH_5400:
6957 return bfd_mach_mips5400;
6958
6959 case E_MIPS_MACH_5500:
6960 return bfd_mach_mips5500;
6961
6962 case E_MIPS_MACH_5900:
6963 return bfd_mach_mips5900;
6964
6965 case E_MIPS_MACH_9000:
6966 return bfd_mach_mips9000;
6967
6968 case E_MIPS_MACH_SB1:
6969 return bfd_mach_mips_sb1;
6970
6971 case E_MIPS_MACH_LS2E:
6972 return bfd_mach_mips_loongson_2e;
6973
6974 case E_MIPS_MACH_LS2F:
6975 return bfd_mach_mips_loongson_2f;
6976
6977 case E_MIPS_MACH_GS464:
6978 return bfd_mach_mips_gs464;
6979
6980 case E_MIPS_MACH_GS464E:
6981 return bfd_mach_mips_gs464e;
6982
6983 case E_MIPS_MACH_GS264E:
6984 return bfd_mach_mips_gs264e;
6985
6986 case E_MIPS_MACH_OCTEON3:
6987 return bfd_mach_mips_octeon3;
6988
6989 case E_MIPS_MACH_OCTEON2:
6990 return bfd_mach_mips_octeon2;
6991
6992 case E_MIPS_MACH_OCTEON:
6993 return bfd_mach_mips_octeon;
6994
6995 case E_MIPS_MACH_XLR:
6996 return bfd_mach_mips_xlr;
6997
6998 case E_MIPS_MACH_IAMR2:
6999 return bfd_mach_mips_interaptiv_mr2;
7000
7001 default:
7002 switch (flags & EF_MIPS_ARCH)
7003 {
7004 default:
7005 case E_MIPS_ARCH_1:
7006 return bfd_mach_mips3000;
7007
7008 case E_MIPS_ARCH_2:
7009 return bfd_mach_mips6000;
7010
7011 case E_MIPS_ARCH_3:
7012 return bfd_mach_mips4000;
7013
7014 case E_MIPS_ARCH_4:
7015 return bfd_mach_mips8000;
7016
7017 case E_MIPS_ARCH_5:
7018 return bfd_mach_mips5;
7019
7020 case E_MIPS_ARCH_32:
7021 return bfd_mach_mipsisa32;
7022
7023 case E_MIPS_ARCH_64:
7024 return bfd_mach_mipsisa64;
7025
7026 case E_MIPS_ARCH_32R2:
7027 return bfd_mach_mipsisa32r2;
7028
7029 case E_MIPS_ARCH_64R2:
7030 return bfd_mach_mipsisa64r2;
7031
7032 case E_MIPS_ARCH_32R6:
7033 return bfd_mach_mipsisa32r6;
7034
7035 case E_MIPS_ARCH_64R6:
7036 return bfd_mach_mipsisa64r6;
7037 }
7038 }
7039
7040 return 0;
7041 }
7042
7043 /* Return printable name for ABI. */
7044
7045 static INLINE char *
7046 elf_mips_abi_name (bfd *abfd)
7047 {
7048 flagword flags;
7049
7050 flags = elf_elfheader (abfd)->e_flags;
7051 switch (flags & EF_MIPS_ABI)
7052 {
7053 case 0:
7054 if (ABI_N32_P (abfd))
7055 return "N32";
7056 else if (ABI_64_P (abfd))
7057 return "64";
7058 else
7059 return "none";
7060 case E_MIPS_ABI_O32:
7061 return "O32";
7062 case E_MIPS_ABI_O64:
7063 return "O64";
7064 case E_MIPS_ABI_EABI32:
7065 return "EABI32";
7066 case E_MIPS_ABI_EABI64:
7067 return "EABI64";
7068 default:
7069 return "unknown abi";
7070 }
7071 }
7072 \f
7073 /* MIPS ELF uses two common sections. One is the usual one, and the
7074 other is for small objects. All the small objects are kept
7075 together, and then referenced via the gp pointer, which yields
7076 faster assembler code. This is what we use for the small common
7077 section. This approach is copied from ecoff.c. */
7078 static asection mips_elf_scom_section;
7079 static asymbol mips_elf_scom_symbol;
7080 static asymbol *mips_elf_scom_symbol_ptr;
7081
7082 /* MIPS ELF also uses an acommon section, which represents an
7083 allocated common symbol which may be overridden by a
7084 definition in a shared library. */
7085 static asection mips_elf_acom_section;
7086 static asymbol mips_elf_acom_symbol;
7087 static asymbol *mips_elf_acom_symbol_ptr;
7088
7089 /* This is used for both the 32-bit and the 64-bit ABI. */
7090
7091 void
7092 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
7093 {
7094 elf_symbol_type *elfsym;
7095
7096 /* Handle the special MIPS section numbers that a symbol may use. */
7097 elfsym = (elf_symbol_type *) asym;
7098 switch (elfsym->internal_elf_sym.st_shndx)
7099 {
7100 case SHN_MIPS_ACOMMON:
7101 /* This section is used in a dynamically linked executable file.
7102 It is an allocated common section. The dynamic linker can
7103 either resolve these symbols to something in a shared
7104 library, or it can just leave them here. For our purposes,
7105 we can consider these symbols to be in a new section. */
7106 if (mips_elf_acom_section.name == NULL)
7107 {
7108 /* Initialize the acommon section. */
7109 mips_elf_acom_section.name = ".acommon";
7110 mips_elf_acom_section.flags = SEC_ALLOC;
7111 mips_elf_acom_section.output_section = &mips_elf_acom_section;
7112 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
7113 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
7114 mips_elf_acom_symbol.name = ".acommon";
7115 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
7116 mips_elf_acom_symbol.section = &mips_elf_acom_section;
7117 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
7118 }
7119 asym->section = &mips_elf_acom_section;
7120 break;
7121
7122 case SHN_COMMON:
7123 /* Common symbols less than the GP size are automatically
7124 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
7125 if (asym->value > elf_gp_size (abfd)
7126 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
7127 || IRIX_COMPAT (abfd) == ict_irix6)
7128 break;
7129 /* Fall through. */
7130 case SHN_MIPS_SCOMMON:
7131 if (mips_elf_scom_section.name == NULL)
7132 {
7133 /* Initialize the small common section. */
7134 mips_elf_scom_section.name = ".scommon";
7135 mips_elf_scom_section.flags = SEC_IS_COMMON;
7136 mips_elf_scom_section.output_section = &mips_elf_scom_section;
7137 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
7138 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
7139 mips_elf_scom_symbol.name = ".scommon";
7140 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
7141 mips_elf_scom_symbol.section = &mips_elf_scom_section;
7142 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
7143 }
7144 asym->section = &mips_elf_scom_section;
7145 asym->value = elfsym->internal_elf_sym.st_size;
7146 break;
7147
7148 case SHN_MIPS_SUNDEFINED:
7149 asym->section = bfd_und_section_ptr;
7150 break;
7151
7152 case SHN_MIPS_TEXT:
7153 {
7154 asection *section = bfd_get_section_by_name (abfd, ".text");
7155
7156 if (section != NULL)
7157 {
7158 asym->section = section;
7159 /* MIPS_TEXT is a bit special, the address is not an offset
7160 to the base of the .text section. So subtract the section
7161 base address to make it an offset. */
7162 asym->value -= section->vma;
7163 }
7164 }
7165 break;
7166
7167 case SHN_MIPS_DATA:
7168 {
7169 asection *section = bfd_get_section_by_name (abfd, ".data");
7170
7171 if (section != NULL)
7172 {
7173 asym->section = section;
7174 /* MIPS_DATA is a bit special, the address is not an offset
7175 to the base of the .data section. So subtract the section
7176 base address to make it an offset. */
7177 asym->value -= section->vma;
7178 }
7179 }
7180 break;
7181 }
7182
7183 /* If this is an odd-valued function symbol, assume it's a MIPS16
7184 or microMIPS one. */
7185 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
7186 && (asym->value & 1) != 0)
7187 {
7188 asym->value--;
7189 if (MICROMIPS_P (abfd))
7190 elfsym->internal_elf_sym.st_other
7191 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
7192 else
7193 elfsym->internal_elf_sym.st_other
7194 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
7195 }
7196 }
7197 \f
7198 /* Implement elf_backend_eh_frame_address_size. This differs from
7199 the default in the way it handles EABI64.
7200
7201 EABI64 was originally specified as an LP64 ABI, and that is what
7202 -mabi=eabi normally gives on a 64-bit target. However, gcc has
7203 historically accepted the combination of -mabi=eabi and -mlong32,
7204 and this ILP32 variation has become semi-official over time.
7205 Both forms use elf32 and have pointer-sized FDE addresses.
7206
7207 If an EABI object was generated by GCC 4.0 or above, it will have
7208 an empty .gcc_compiled_longXX section, where XX is the size of longs
7209 in bits. Unfortunately, ILP32 objects generated by earlier compilers
7210 have no special marking to distinguish them from LP64 objects.
7211
7212 We don't want users of the official LP64 ABI to be punished for the
7213 existence of the ILP32 variant, but at the same time, we don't want
7214 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
7215 We therefore take the following approach:
7216
7217 - If ABFD contains a .gcc_compiled_longXX section, use it to
7218 determine the pointer size.
7219
7220 - Otherwise check the type of the first relocation. Assume that
7221 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
7222
7223 - Otherwise punt.
7224
7225 The second check is enough to detect LP64 objects generated by pre-4.0
7226 compilers because, in the kind of output generated by those compilers,
7227 the first relocation will be associated with either a CIE personality
7228 routine or an FDE start address. Furthermore, the compilers never
7229 used a special (non-pointer) encoding for this ABI.
7230
7231 Checking the relocation type should also be safe because there is no
7232 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7233 did so. */
7234
7235 unsigned int
7236 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, const asection *sec)
7237 {
7238 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7239 return 8;
7240 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7241 {
7242 bfd_boolean long32_p, long64_p;
7243
7244 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7245 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7246 if (long32_p && long64_p)
7247 return 0;
7248 if (long32_p)
7249 return 4;
7250 if (long64_p)
7251 return 8;
7252
7253 if (sec->reloc_count > 0
7254 && elf_section_data (sec)->relocs != NULL
7255 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7256 == R_MIPS_64))
7257 return 8;
7258
7259 return 0;
7260 }
7261 return 4;
7262 }
7263 \f
7264 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7265 relocations against two unnamed section symbols to resolve to the
7266 same address. For example, if we have code like:
7267
7268 lw $4,%got_disp(.data)($gp)
7269 lw $25,%got_disp(.text)($gp)
7270 jalr $25
7271
7272 then the linker will resolve both relocations to .data and the program
7273 will jump there rather than to .text.
7274
7275 We can work around this problem by giving names to local section symbols.
7276 This is also what the MIPSpro tools do. */
7277
7278 bfd_boolean
7279 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7280 {
7281 return SGI_COMPAT (abfd);
7282 }
7283 \f
7284 /* Work over a section just before writing it out. This routine is
7285 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7286 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7287 a better way. */
7288
7289 bfd_boolean
7290 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
7291 {
7292 if (hdr->sh_type == SHT_MIPS_REGINFO
7293 && hdr->sh_size > 0)
7294 {
7295 bfd_byte buf[4];
7296
7297 BFD_ASSERT (hdr->contents == NULL);
7298
7299 if (hdr->sh_size != sizeof (Elf32_External_RegInfo))
7300 {
7301 _bfd_error_handler
7302 (_("%pB: incorrect `.reginfo' section size; "
7303 "expected %" PRIu64 ", got %" PRIu64),
7304 abfd, (uint64_t) sizeof (Elf32_External_RegInfo),
7305 (uint64_t) hdr->sh_size);
7306 bfd_set_error (bfd_error_bad_value);
7307 return FALSE;
7308 }
7309
7310 if (bfd_seek (abfd,
7311 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7312 SEEK_SET) != 0)
7313 return FALSE;
7314 H_PUT_32 (abfd, elf_gp (abfd), buf);
7315 if (bfd_bwrite (buf, 4, abfd) != 4)
7316 return FALSE;
7317 }
7318
7319 if (hdr->sh_type == SHT_MIPS_OPTIONS
7320 && hdr->bfd_section != NULL
7321 && mips_elf_section_data (hdr->bfd_section) != NULL
7322 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
7323 {
7324 bfd_byte *contents, *l, *lend;
7325
7326 /* We stored the section contents in the tdata field in the
7327 set_section_contents routine. We save the section contents
7328 so that we don't have to read them again.
7329 At this point we know that elf_gp is set, so we can look
7330 through the section contents to see if there is an
7331 ODK_REGINFO structure. */
7332
7333 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
7334 l = contents;
7335 lend = contents + hdr->sh_size;
7336 while (l + sizeof (Elf_External_Options) <= lend)
7337 {
7338 Elf_Internal_Options intopt;
7339
7340 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7341 &intopt);
7342 if (intopt.size < sizeof (Elf_External_Options))
7343 {
7344 _bfd_error_handler
7345 /* xgettext:c-format */
7346 (_("%pB: warning: bad `%s' option size %u smaller than"
7347 " its header"),
7348 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7349 break;
7350 }
7351 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7352 {
7353 bfd_byte buf[8];
7354
7355 if (bfd_seek (abfd,
7356 (hdr->sh_offset
7357 + (l - contents)
7358 + sizeof (Elf_External_Options)
7359 + (sizeof (Elf64_External_RegInfo) - 8)),
7360 SEEK_SET) != 0)
7361 return FALSE;
7362 H_PUT_64 (abfd, elf_gp (abfd), buf);
7363 if (bfd_bwrite (buf, 8, abfd) != 8)
7364 return FALSE;
7365 }
7366 else if (intopt.kind == ODK_REGINFO)
7367 {
7368 bfd_byte buf[4];
7369
7370 if (bfd_seek (abfd,
7371 (hdr->sh_offset
7372 + (l - contents)
7373 + sizeof (Elf_External_Options)
7374 + (sizeof (Elf32_External_RegInfo) - 4)),
7375 SEEK_SET) != 0)
7376 return FALSE;
7377 H_PUT_32 (abfd, elf_gp (abfd), buf);
7378 if (bfd_bwrite (buf, 4, abfd) != 4)
7379 return FALSE;
7380 }
7381 l += intopt.size;
7382 }
7383 }
7384
7385 if (hdr->bfd_section != NULL)
7386 {
7387 const char *name = bfd_section_name (hdr->bfd_section);
7388
7389 /* .sbss is not handled specially here because the GNU/Linux
7390 prelinker can convert .sbss from NOBITS to PROGBITS and
7391 changing it back to NOBITS breaks the binary. The entry in
7392 _bfd_mips_elf_special_sections will ensure the correct flags
7393 are set on .sbss if BFD creates it without reading it from an
7394 input file, and without special handling here the flags set
7395 on it in an input file will be followed. */
7396 if (strcmp (name, ".sdata") == 0
7397 || strcmp (name, ".lit8") == 0
7398 || strcmp (name, ".lit4") == 0)
7399 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7400 else if (strcmp (name, ".srdata") == 0)
7401 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
7402 else if (strcmp (name, ".compact_rel") == 0)
7403 hdr->sh_flags = 0;
7404 else if (strcmp (name, ".rtproc") == 0)
7405 {
7406 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7407 {
7408 unsigned int adjust;
7409
7410 adjust = hdr->sh_size % hdr->sh_addralign;
7411 if (adjust != 0)
7412 hdr->sh_size += hdr->sh_addralign - adjust;
7413 }
7414 }
7415 }
7416
7417 return TRUE;
7418 }
7419
7420 /* Handle a MIPS specific section when reading an object file. This
7421 is called when elfcode.h finds a section with an unknown type.
7422 This routine supports both the 32-bit and 64-bit ELF ABI.
7423
7424 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7425 how to. */
7426
7427 bfd_boolean
7428 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7429 Elf_Internal_Shdr *hdr,
7430 const char *name,
7431 int shindex)
7432 {
7433 flagword flags = 0;
7434
7435 /* There ought to be a place to keep ELF backend specific flags, but
7436 at the moment there isn't one. We just keep track of the
7437 sections by their name, instead. Fortunately, the ABI gives
7438 suggested names for all the MIPS specific sections, so we will
7439 probably get away with this. */
7440 switch (hdr->sh_type)
7441 {
7442 case SHT_MIPS_LIBLIST:
7443 if (strcmp (name, ".liblist") != 0)
7444 return FALSE;
7445 break;
7446 case SHT_MIPS_MSYM:
7447 if (strcmp (name, ".msym") != 0)
7448 return FALSE;
7449 break;
7450 case SHT_MIPS_CONFLICT:
7451 if (strcmp (name, ".conflict") != 0)
7452 return FALSE;
7453 break;
7454 case SHT_MIPS_GPTAB:
7455 if (! CONST_STRNEQ (name, ".gptab."))
7456 return FALSE;
7457 break;
7458 case SHT_MIPS_UCODE:
7459 if (strcmp (name, ".ucode") != 0)
7460 return FALSE;
7461 break;
7462 case SHT_MIPS_DEBUG:
7463 if (strcmp (name, ".mdebug") != 0)
7464 return FALSE;
7465 flags = SEC_DEBUGGING;
7466 break;
7467 case SHT_MIPS_REGINFO:
7468 if (strcmp (name, ".reginfo") != 0
7469 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7470 return FALSE;
7471 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7472 break;
7473 case SHT_MIPS_IFACE:
7474 if (strcmp (name, ".MIPS.interfaces") != 0)
7475 return FALSE;
7476 break;
7477 case SHT_MIPS_CONTENT:
7478 if (! CONST_STRNEQ (name, ".MIPS.content"))
7479 return FALSE;
7480 break;
7481 case SHT_MIPS_OPTIONS:
7482 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7483 return FALSE;
7484 break;
7485 case SHT_MIPS_ABIFLAGS:
7486 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7487 return FALSE;
7488 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7489 break;
7490 case SHT_MIPS_DWARF:
7491 if (! CONST_STRNEQ (name, ".debug_")
7492 && ! CONST_STRNEQ (name, ".zdebug_"))
7493 return FALSE;
7494 break;
7495 case SHT_MIPS_SYMBOL_LIB:
7496 if (strcmp (name, ".MIPS.symlib") != 0)
7497 return FALSE;
7498 break;
7499 case SHT_MIPS_EVENTS:
7500 if (! CONST_STRNEQ (name, ".MIPS.events")
7501 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
7502 return FALSE;
7503 break;
7504 case SHT_MIPS_XHASH:
7505 if (strcmp (name, ".MIPS.xhash") != 0)
7506 return FALSE;
7507 default:
7508 break;
7509 }
7510
7511 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7512 return FALSE;
7513
7514 if (flags)
7515 {
7516 if (!bfd_set_section_flags (hdr->bfd_section,
7517 (bfd_section_flags (hdr->bfd_section)
7518 | flags)))
7519 return FALSE;
7520 }
7521
7522 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7523 {
7524 Elf_External_ABIFlags_v0 ext;
7525
7526 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7527 &ext, 0, sizeof ext))
7528 return FALSE;
7529 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7530 &mips_elf_tdata (abfd)->abiflags);
7531 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7532 return FALSE;
7533 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7534 }
7535
7536 /* FIXME: We should record sh_info for a .gptab section. */
7537
7538 /* For a .reginfo section, set the gp value in the tdata information
7539 from the contents of this section. We need the gp value while
7540 processing relocs, so we just get it now. The .reginfo section
7541 is not used in the 64-bit MIPS ELF ABI. */
7542 if (hdr->sh_type == SHT_MIPS_REGINFO)
7543 {
7544 Elf32_External_RegInfo ext;
7545 Elf32_RegInfo s;
7546
7547 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7548 &ext, 0, sizeof ext))
7549 return FALSE;
7550 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7551 elf_gp (abfd) = s.ri_gp_value;
7552 }
7553
7554 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7555 set the gp value based on what we find. We may see both
7556 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7557 they should agree. */
7558 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7559 {
7560 bfd_byte *contents, *l, *lend;
7561
7562 contents = bfd_malloc (hdr->sh_size);
7563 if (contents == NULL)
7564 return FALSE;
7565 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7566 0, hdr->sh_size))
7567 {
7568 free (contents);
7569 return FALSE;
7570 }
7571 l = contents;
7572 lend = contents + hdr->sh_size;
7573 while (l + sizeof (Elf_External_Options) <= lend)
7574 {
7575 Elf_Internal_Options intopt;
7576
7577 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7578 &intopt);
7579 if (intopt.size < sizeof (Elf_External_Options))
7580 {
7581 _bfd_error_handler
7582 /* xgettext:c-format */
7583 (_("%pB: warning: bad `%s' option size %u smaller than"
7584 " its header"),
7585 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7586 break;
7587 }
7588 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7589 {
7590 Elf64_Internal_RegInfo intreg;
7591
7592 bfd_mips_elf64_swap_reginfo_in
7593 (abfd,
7594 ((Elf64_External_RegInfo *)
7595 (l + sizeof (Elf_External_Options))),
7596 &intreg);
7597 elf_gp (abfd) = intreg.ri_gp_value;
7598 }
7599 else if (intopt.kind == ODK_REGINFO)
7600 {
7601 Elf32_RegInfo intreg;
7602
7603 bfd_mips_elf32_swap_reginfo_in
7604 (abfd,
7605 ((Elf32_External_RegInfo *)
7606 (l + sizeof (Elf_External_Options))),
7607 &intreg);
7608 elf_gp (abfd) = intreg.ri_gp_value;
7609 }
7610 l += intopt.size;
7611 }
7612 free (contents);
7613 }
7614
7615 return TRUE;
7616 }
7617
7618 /* Set the correct type for a MIPS ELF section. We do this by the
7619 section name, which is a hack, but ought to work. This routine is
7620 used by both the 32-bit and the 64-bit ABI. */
7621
7622 bfd_boolean
7623 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7624 {
7625 const char *name = bfd_section_name (sec);
7626
7627 if (strcmp (name, ".liblist") == 0)
7628 {
7629 hdr->sh_type = SHT_MIPS_LIBLIST;
7630 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7631 /* The sh_link field is set in final_write_processing. */
7632 }
7633 else if (strcmp (name, ".conflict") == 0)
7634 hdr->sh_type = SHT_MIPS_CONFLICT;
7635 else if (CONST_STRNEQ (name, ".gptab."))
7636 {
7637 hdr->sh_type = SHT_MIPS_GPTAB;
7638 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7639 /* The sh_info field is set in final_write_processing. */
7640 }
7641 else if (strcmp (name, ".ucode") == 0)
7642 hdr->sh_type = SHT_MIPS_UCODE;
7643 else if (strcmp (name, ".mdebug") == 0)
7644 {
7645 hdr->sh_type = SHT_MIPS_DEBUG;
7646 /* In a shared object on IRIX 5.3, the .mdebug section has an
7647 entsize of 0. FIXME: Does this matter? */
7648 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7649 hdr->sh_entsize = 0;
7650 else
7651 hdr->sh_entsize = 1;
7652 }
7653 else if (strcmp (name, ".reginfo") == 0)
7654 {
7655 hdr->sh_type = SHT_MIPS_REGINFO;
7656 /* In a shared object on IRIX 5.3, the .reginfo section has an
7657 entsize of 0x18. FIXME: Does this matter? */
7658 if (SGI_COMPAT (abfd))
7659 {
7660 if ((abfd->flags & DYNAMIC) != 0)
7661 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7662 else
7663 hdr->sh_entsize = 1;
7664 }
7665 else
7666 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7667 }
7668 else if (SGI_COMPAT (abfd)
7669 && (strcmp (name, ".hash") == 0
7670 || strcmp (name, ".dynamic") == 0
7671 || strcmp (name, ".dynstr") == 0))
7672 {
7673 if (SGI_COMPAT (abfd))
7674 hdr->sh_entsize = 0;
7675 #if 0
7676 /* This isn't how the IRIX6 linker behaves. */
7677 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7678 #endif
7679 }
7680 else if (strcmp (name, ".got") == 0
7681 || strcmp (name, ".srdata") == 0
7682 || strcmp (name, ".sdata") == 0
7683 || strcmp (name, ".sbss") == 0
7684 || strcmp (name, ".lit4") == 0
7685 || strcmp (name, ".lit8") == 0)
7686 hdr->sh_flags |= SHF_MIPS_GPREL;
7687 else if (strcmp (name, ".MIPS.interfaces") == 0)
7688 {
7689 hdr->sh_type = SHT_MIPS_IFACE;
7690 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7691 }
7692 else if (CONST_STRNEQ (name, ".MIPS.content"))
7693 {
7694 hdr->sh_type = SHT_MIPS_CONTENT;
7695 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7696 /* The sh_info field is set in final_write_processing. */
7697 }
7698 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7699 {
7700 hdr->sh_type = SHT_MIPS_OPTIONS;
7701 hdr->sh_entsize = 1;
7702 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7703 }
7704 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7705 {
7706 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7707 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7708 }
7709 else if (CONST_STRNEQ (name, ".debug_")
7710 || CONST_STRNEQ (name, ".zdebug_"))
7711 {
7712 hdr->sh_type = SHT_MIPS_DWARF;
7713
7714 /* Irix facilities such as libexc expect a single .debug_frame
7715 per executable, the system ones have NOSTRIP set and the linker
7716 doesn't merge sections with different flags so ... */
7717 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7718 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7719 }
7720 else if (strcmp (name, ".MIPS.symlib") == 0)
7721 {
7722 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7723 /* The sh_link and sh_info fields are set in
7724 final_write_processing. */
7725 }
7726 else if (CONST_STRNEQ (name, ".MIPS.events")
7727 || CONST_STRNEQ (name, ".MIPS.post_rel"))
7728 {
7729 hdr->sh_type = SHT_MIPS_EVENTS;
7730 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7731 /* The sh_link field is set in final_write_processing. */
7732 }
7733 else if (strcmp (name, ".msym") == 0)
7734 {
7735 hdr->sh_type = SHT_MIPS_MSYM;
7736 hdr->sh_flags |= SHF_ALLOC;
7737 hdr->sh_entsize = 8;
7738 }
7739 else if (strcmp (name, ".MIPS.xhash") == 0)
7740 {
7741 hdr->sh_type = SHT_MIPS_XHASH;
7742 hdr->sh_flags |= SHF_ALLOC;
7743 hdr->sh_entsize = get_elf_backend_data(abfd)->s->arch_size == 64 ? 0 : 4;
7744 }
7745
7746 /* The generic elf_fake_sections will set up REL_HDR using the default
7747 kind of relocations. We used to set up a second header for the
7748 non-default kind of relocations here, but only NewABI would use
7749 these, and the IRIX ld doesn't like resulting empty RELA sections.
7750 Thus we create those header only on demand now. */
7751
7752 return TRUE;
7753 }
7754
7755 /* Given a BFD section, try to locate the corresponding ELF section
7756 index. This is used by both the 32-bit and the 64-bit ABI.
7757 Actually, it's not clear to me that the 64-bit ABI supports these,
7758 but for non-PIC objects we will certainly want support for at least
7759 the .scommon section. */
7760
7761 bfd_boolean
7762 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7763 asection *sec, int *retval)
7764 {
7765 if (strcmp (bfd_section_name (sec), ".scommon") == 0)
7766 {
7767 *retval = SHN_MIPS_SCOMMON;
7768 return TRUE;
7769 }
7770 if (strcmp (bfd_section_name (sec), ".acommon") == 0)
7771 {
7772 *retval = SHN_MIPS_ACOMMON;
7773 return TRUE;
7774 }
7775 return FALSE;
7776 }
7777 \f
7778 /* Hook called by the linker routine which adds symbols from an object
7779 file. We must handle the special MIPS section numbers here. */
7780
7781 bfd_boolean
7782 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7783 Elf_Internal_Sym *sym, const char **namep,
7784 flagword *flagsp ATTRIBUTE_UNUSED,
7785 asection **secp, bfd_vma *valp)
7786 {
7787 if (SGI_COMPAT (abfd)
7788 && (abfd->flags & DYNAMIC) != 0
7789 && strcmp (*namep, "_rld_new_interface") == 0)
7790 {
7791 /* Skip IRIX5 rld entry name. */
7792 *namep = NULL;
7793 return TRUE;
7794 }
7795
7796 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7797 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7798 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7799 a magic symbol resolved by the linker, we ignore this bogus definition
7800 of _gp_disp. New ABI objects do not suffer from this problem so this
7801 is not done for them. */
7802 if (!NEWABI_P(abfd)
7803 && (sym->st_shndx == SHN_ABS)
7804 && (strcmp (*namep, "_gp_disp") == 0))
7805 {
7806 *namep = NULL;
7807 return TRUE;
7808 }
7809
7810 switch (sym->st_shndx)
7811 {
7812 case SHN_COMMON:
7813 /* Common symbols less than the GP size are automatically
7814 treated as SHN_MIPS_SCOMMON symbols. */
7815 if (sym->st_size > elf_gp_size (abfd)
7816 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7817 || IRIX_COMPAT (abfd) == ict_irix6)
7818 break;
7819 /* Fall through. */
7820 case SHN_MIPS_SCOMMON:
7821 *secp = bfd_make_section_old_way (abfd, ".scommon");
7822 (*secp)->flags |= SEC_IS_COMMON;
7823 *valp = sym->st_size;
7824 break;
7825
7826 case SHN_MIPS_TEXT:
7827 /* This section is used in a shared object. */
7828 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7829 {
7830 asymbol *elf_text_symbol;
7831 asection *elf_text_section;
7832 bfd_size_type amt = sizeof (asection);
7833
7834 elf_text_section = bfd_zalloc (abfd, amt);
7835 if (elf_text_section == NULL)
7836 return FALSE;
7837
7838 amt = sizeof (asymbol);
7839 elf_text_symbol = bfd_zalloc (abfd, amt);
7840 if (elf_text_symbol == NULL)
7841 return FALSE;
7842
7843 /* Initialize the section. */
7844
7845 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7846 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7847
7848 elf_text_section->symbol = elf_text_symbol;
7849 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7850
7851 elf_text_section->name = ".text";
7852 elf_text_section->flags = SEC_NO_FLAGS;
7853 elf_text_section->output_section = NULL;
7854 elf_text_section->owner = abfd;
7855 elf_text_symbol->name = ".text";
7856 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7857 elf_text_symbol->section = elf_text_section;
7858 }
7859 /* This code used to do *secp = bfd_und_section_ptr if
7860 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7861 so I took it out. */
7862 *secp = mips_elf_tdata (abfd)->elf_text_section;
7863 break;
7864
7865 case SHN_MIPS_ACOMMON:
7866 /* Fall through. XXX Can we treat this as allocated data? */
7867 case SHN_MIPS_DATA:
7868 /* This section is used in a shared object. */
7869 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7870 {
7871 asymbol *elf_data_symbol;
7872 asection *elf_data_section;
7873 bfd_size_type amt = sizeof (asection);
7874
7875 elf_data_section = bfd_zalloc (abfd, amt);
7876 if (elf_data_section == NULL)
7877 return FALSE;
7878
7879 amt = sizeof (asymbol);
7880 elf_data_symbol = bfd_zalloc (abfd, amt);
7881 if (elf_data_symbol == NULL)
7882 return FALSE;
7883
7884 /* Initialize the section. */
7885
7886 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7887 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7888
7889 elf_data_section->symbol = elf_data_symbol;
7890 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7891
7892 elf_data_section->name = ".data";
7893 elf_data_section->flags = SEC_NO_FLAGS;
7894 elf_data_section->output_section = NULL;
7895 elf_data_section->owner = abfd;
7896 elf_data_symbol->name = ".data";
7897 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7898 elf_data_symbol->section = elf_data_section;
7899 }
7900 /* This code used to do *secp = bfd_und_section_ptr if
7901 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7902 so I took it out. */
7903 *secp = mips_elf_tdata (abfd)->elf_data_section;
7904 break;
7905
7906 case SHN_MIPS_SUNDEFINED:
7907 *secp = bfd_und_section_ptr;
7908 break;
7909 }
7910
7911 if (SGI_COMPAT (abfd)
7912 && ! bfd_link_pic (info)
7913 && info->output_bfd->xvec == abfd->xvec
7914 && strcmp (*namep, "__rld_obj_head") == 0)
7915 {
7916 struct elf_link_hash_entry *h;
7917 struct bfd_link_hash_entry *bh;
7918
7919 /* Mark __rld_obj_head as dynamic. */
7920 bh = NULL;
7921 if (! (_bfd_generic_link_add_one_symbol
7922 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7923 get_elf_backend_data (abfd)->collect, &bh)))
7924 return FALSE;
7925
7926 h = (struct elf_link_hash_entry *) bh;
7927 h->non_elf = 0;
7928 h->def_regular = 1;
7929 h->type = STT_OBJECT;
7930
7931 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7932 return FALSE;
7933
7934 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7935 mips_elf_hash_table (info)->rld_symbol = h;
7936 }
7937
7938 /* If this is a mips16 text symbol, add 1 to the value to make it
7939 odd. This will cause something like .word SYM to come up with
7940 the right value when it is loaded into the PC. */
7941 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7942 ++*valp;
7943
7944 return TRUE;
7945 }
7946
7947 /* This hook function is called before the linker writes out a global
7948 symbol. We mark symbols as small common if appropriate. This is
7949 also where we undo the increment of the value for a mips16 symbol. */
7950
7951 int
7952 _bfd_mips_elf_link_output_symbol_hook
7953 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7954 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7955 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7956 {
7957 /* If we see a common symbol, which implies a relocatable link, then
7958 if a symbol was small common in an input file, mark it as small
7959 common in the output file. */
7960 if (sym->st_shndx == SHN_COMMON
7961 && strcmp (input_sec->name, ".scommon") == 0)
7962 sym->st_shndx = SHN_MIPS_SCOMMON;
7963
7964 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7965 sym->st_value &= ~1;
7966
7967 return 1;
7968 }
7969 \f
7970 /* Functions for the dynamic linker. */
7971
7972 /* Create dynamic sections when linking against a dynamic object. */
7973
7974 bfd_boolean
7975 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7976 {
7977 struct elf_link_hash_entry *h;
7978 struct bfd_link_hash_entry *bh;
7979 flagword flags;
7980 register asection *s;
7981 const char * const *namep;
7982 struct mips_elf_link_hash_table *htab;
7983
7984 htab = mips_elf_hash_table (info);
7985 BFD_ASSERT (htab != NULL);
7986
7987 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7988 | SEC_LINKER_CREATED | SEC_READONLY);
7989
7990 /* The psABI requires a read-only .dynamic section, but the VxWorks
7991 EABI doesn't. */
7992 if (!htab->is_vxworks)
7993 {
7994 s = bfd_get_linker_section (abfd, ".dynamic");
7995 if (s != NULL)
7996 {
7997 if (!bfd_set_section_flags (s, flags))
7998 return FALSE;
7999 }
8000 }
8001
8002 /* We need to create .got section. */
8003 if (!mips_elf_create_got_section (abfd, info))
8004 return FALSE;
8005
8006 if (! mips_elf_rel_dyn_section (info, TRUE))
8007 return FALSE;
8008
8009 /* Create .stub section. */
8010 s = bfd_make_section_anyway_with_flags (abfd,
8011 MIPS_ELF_STUB_SECTION_NAME (abfd),
8012 flags | SEC_CODE);
8013 if (s == NULL
8014 || !bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)))
8015 return FALSE;
8016 htab->sstubs = s;
8017
8018 if (!mips_elf_hash_table (info)->use_rld_obj_head
8019 && bfd_link_executable (info)
8020 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
8021 {
8022 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
8023 flags &~ (flagword) SEC_READONLY);
8024 if (s == NULL
8025 || !bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)))
8026 return FALSE;
8027 }
8028
8029 /* Create .MIPS.xhash section. */
8030 if (info->emit_gnu_hash)
8031 s = bfd_make_section_anyway_with_flags (abfd, ".MIPS.xhash",
8032 flags | SEC_READONLY);
8033
8034 /* On IRIX5, we adjust add some additional symbols and change the
8035 alignments of several sections. There is no ABI documentation
8036 indicating that this is necessary on IRIX6, nor any evidence that
8037 the linker takes such action. */
8038 if (IRIX_COMPAT (abfd) == ict_irix5)
8039 {
8040 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
8041 {
8042 bh = NULL;
8043 if (! (_bfd_generic_link_add_one_symbol
8044 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
8045 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
8046 return FALSE;
8047
8048 h = (struct elf_link_hash_entry *) bh;
8049 h->mark = 1;
8050 h->non_elf = 0;
8051 h->def_regular = 1;
8052 h->type = STT_SECTION;
8053
8054 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8055 return FALSE;
8056 }
8057
8058 /* We need to create a .compact_rel section. */
8059 if (SGI_COMPAT (abfd))
8060 {
8061 if (!mips_elf_create_compact_rel_section (abfd, info))
8062 return FALSE;
8063 }
8064
8065 /* Change alignments of some sections. */
8066 s = bfd_get_linker_section (abfd, ".hash");
8067 if (s != NULL)
8068 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8069
8070 s = bfd_get_linker_section (abfd, ".dynsym");
8071 if (s != NULL)
8072 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8073
8074 s = bfd_get_linker_section (abfd, ".dynstr");
8075 if (s != NULL)
8076 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8077
8078 /* ??? */
8079 s = bfd_get_section_by_name (abfd, ".reginfo");
8080 if (s != NULL)
8081 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8082
8083 s = bfd_get_linker_section (abfd, ".dynamic");
8084 if (s != NULL)
8085 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8086 }
8087
8088 if (bfd_link_executable (info))
8089 {
8090 const char *name;
8091
8092 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
8093 bh = NULL;
8094 if (!(_bfd_generic_link_add_one_symbol
8095 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
8096 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
8097 return FALSE;
8098
8099 h = (struct elf_link_hash_entry *) bh;
8100 h->non_elf = 0;
8101 h->def_regular = 1;
8102 h->type = STT_SECTION;
8103
8104 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8105 return FALSE;
8106
8107 if (! mips_elf_hash_table (info)->use_rld_obj_head)
8108 {
8109 /* __rld_map is a four byte word located in the .data section
8110 and is filled in by the rtld to contain a pointer to
8111 the _r_debug structure. Its symbol value will be set in
8112 _bfd_mips_elf_finish_dynamic_symbol. */
8113 s = bfd_get_linker_section (abfd, ".rld_map");
8114 BFD_ASSERT (s != NULL);
8115
8116 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
8117 bh = NULL;
8118 if (!(_bfd_generic_link_add_one_symbol
8119 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
8120 get_elf_backend_data (abfd)->collect, &bh)))
8121 return FALSE;
8122
8123 h = (struct elf_link_hash_entry *) bh;
8124 h->non_elf = 0;
8125 h->def_regular = 1;
8126 h->type = STT_OBJECT;
8127
8128 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8129 return FALSE;
8130 mips_elf_hash_table (info)->rld_symbol = h;
8131 }
8132 }
8133
8134 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
8135 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
8136 if (!_bfd_elf_create_dynamic_sections (abfd, info))
8137 return FALSE;
8138
8139 /* Do the usual VxWorks handling. */
8140 if (htab->is_vxworks
8141 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
8142 return FALSE;
8143
8144 return TRUE;
8145 }
8146 \f
8147 /* Return true if relocation REL against section SEC is a REL rather than
8148 RELA relocation. RELOCS is the first relocation in the section and
8149 ABFD is the bfd that contains SEC. */
8150
8151 static bfd_boolean
8152 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
8153 const Elf_Internal_Rela *relocs,
8154 const Elf_Internal_Rela *rel)
8155 {
8156 Elf_Internal_Shdr *rel_hdr;
8157 const struct elf_backend_data *bed;
8158
8159 /* To determine which flavor of relocation this is, we depend on the
8160 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
8161 rel_hdr = elf_section_data (sec)->rel.hdr;
8162 if (rel_hdr == NULL)
8163 return FALSE;
8164 bed = get_elf_backend_data (abfd);
8165 return ((size_t) (rel - relocs)
8166 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
8167 }
8168
8169 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
8170 HOWTO is the relocation's howto and CONTENTS points to the contents
8171 of the section that REL is against. */
8172
8173 static bfd_vma
8174 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
8175 reloc_howto_type *howto, bfd_byte *contents)
8176 {
8177 bfd_byte *location;
8178 unsigned int r_type;
8179 bfd_vma addend;
8180 bfd_vma bytes;
8181
8182 r_type = ELF_R_TYPE (abfd, rel->r_info);
8183 location = contents + rel->r_offset;
8184
8185 /* Get the addend, which is stored in the input file. */
8186 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
8187 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
8188 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
8189
8190 addend = bytes & howto->src_mask;
8191
8192 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
8193 accordingly. */
8194 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
8195 addend <<= 1;
8196
8197 return addend;
8198 }
8199
8200 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
8201 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
8202 and update *ADDEND with the final addend. Return true on success
8203 or false if the LO16 could not be found. RELEND is the exclusive
8204 upper bound on the relocations for REL's section. */
8205
8206 static bfd_boolean
8207 mips_elf_add_lo16_rel_addend (bfd *abfd,
8208 const Elf_Internal_Rela *rel,
8209 const Elf_Internal_Rela *relend,
8210 bfd_byte *contents, bfd_vma *addend)
8211 {
8212 unsigned int r_type, lo16_type;
8213 const Elf_Internal_Rela *lo16_relocation;
8214 reloc_howto_type *lo16_howto;
8215 bfd_vma l;
8216
8217 r_type = ELF_R_TYPE (abfd, rel->r_info);
8218 if (mips16_reloc_p (r_type))
8219 lo16_type = R_MIPS16_LO16;
8220 else if (micromips_reloc_p (r_type))
8221 lo16_type = R_MICROMIPS_LO16;
8222 else if (r_type == R_MIPS_PCHI16)
8223 lo16_type = R_MIPS_PCLO16;
8224 else
8225 lo16_type = R_MIPS_LO16;
8226
8227 /* The combined value is the sum of the HI16 addend, left-shifted by
8228 sixteen bits, and the LO16 addend, sign extended. (Usually, the
8229 code does a `lui' of the HI16 value, and then an `addiu' of the
8230 LO16 value.)
8231
8232 Scan ahead to find a matching LO16 relocation.
8233
8234 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8235 be immediately following. However, for the IRIX6 ABI, the next
8236 relocation may be a composed relocation consisting of several
8237 relocations for the same address. In that case, the R_MIPS_LO16
8238 relocation may occur as one of these. We permit a similar
8239 extension in general, as that is useful for GCC.
8240
8241 In some cases GCC dead code elimination removes the LO16 but keeps
8242 the corresponding HI16. This is strictly speaking a violation of
8243 the ABI but not immediately harmful. */
8244 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8245 if (lo16_relocation == NULL)
8246 return FALSE;
8247
8248 /* Obtain the addend kept there. */
8249 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
8250 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8251
8252 l <<= lo16_howto->rightshift;
8253 l = _bfd_mips_elf_sign_extend (l, 16);
8254
8255 *addend <<= 16;
8256 *addend += l;
8257 return TRUE;
8258 }
8259
8260 /* Try to read the contents of section SEC in bfd ABFD. Return true and
8261 store the contents in *CONTENTS on success. Assume that *CONTENTS
8262 already holds the contents if it is nonull on entry. */
8263
8264 static bfd_boolean
8265 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8266 {
8267 if (*contents)
8268 return TRUE;
8269
8270 /* Get cached copy if it exists. */
8271 if (elf_section_data (sec)->this_hdr.contents != NULL)
8272 {
8273 *contents = elf_section_data (sec)->this_hdr.contents;
8274 return TRUE;
8275 }
8276
8277 return bfd_malloc_and_get_section (abfd, sec, contents);
8278 }
8279
8280 /* Make a new PLT record to keep internal data. */
8281
8282 static struct plt_entry *
8283 mips_elf_make_plt_record (bfd *abfd)
8284 {
8285 struct plt_entry *entry;
8286
8287 entry = bfd_zalloc (abfd, sizeof (*entry));
8288 if (entry == NULL)
8289 return NULL;
8290
8291 entry->stub_offset = MINUS_ONE;
8292 entry->mips_offset = MINUS_ONE;
8293 entry->comp_offset = MINUS_ONE;
8294 entry->gotplt_index = MINUS_ONE;
8295 return entry;
8296 }
8297
8298 /* Define the special `__gnu_absolute_zero' symbol. We only need this
8299 for PIC code, as otherwise there is no load-time relocation involved
8300 and local GOT entries whose value is zero at static link time will
8301 retain their value at load time. */
8302
8303 static bfd_boolean
8304 mips_elf_define_absolute_zero (bfd *abfd, struct bfd_link_info *info,
8305 struct mips_elf_link_hash_table *htab,
8306 unsigned int r_type)
8307 {
8308 union
8309 {
8310 struct elf_link_hash_entry *eh;
8311 struct bfd_link_hash_entry *bh;
8312 }
8313 hzero;
8314
8315 BFD_ASSERT (!htab->use_absolute_zero);
8316 BFD_ASSERT (bfd_link_pic (info));
8317
8318 hzero.bh = NULL;
8319 if (!_bfd_generic_link_add_one_symbol (info, abfd, "__gnu_absolute_zero",
8320 BSF_GLOBAL, bfd_abs_section_ptr, 0,
8321 NULL, FALSE, FALSE, &hzero.bh))
8322 return FALSE;
8323
8324 BFD_ASSERT (hzero.bh != NULL);
8325 hzero.eh->size = 0;
8326 hzero.eh->type = STT_NOTYPE;
8327 hzero.eh->other = STV_PROTECTED;
8328 hzero.eh->def_regular = 1;
8329 hzero.eh->non_elf = 0;
8330
8331 if (!mips_elf_record_global_got_symbol (hzero.eh, abfd, info, TRUE, r_type))
8332 return FALSE;
8333
8334 htab->use_absolute_zero = TRUE;
8335
8336 return TRUE;
8337 }
8338
8339 /* Look through the relocs for a section during the first phase, and
8340 allocate space in the global offset table and record the need for
8341 standard MIPS and compressed procedure linkage table entries. */
8342
8343 bfd_boolean
8344 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8345 asection *sec, const Elf_Internal_Rela *relocs)
8346 {
8347 const char *name;
8348 bfd *dynobj;
8349 Elf_Internal_Shdr *symtab_hdr;
8350 struct elf_link_hash_entry **sym_hashes;
8351 size_t extsymoff;
8352 const Elf_Internal_Rela *rel;
8353 const Elf_Internal_Rela *rel_end;
8354 asection *sreloc;
8355 const struct elf_backend_data *bed;
8356 struct mips_elf_link_hash_table *htab;
8357 bfd_byte *contents;
8358 bfd_vma addend;
8359 reloc_howto_type *howto;
8360
8361 if (bfd_link_relocatable (info))
8362 return TRUE;
8363
8364 htab = mips_elf_hash_table (info);
8365 BFD_ASSERT (htab != NULL);
8366
8367 dynobj = elf_hash_table (info)->dynobj;
8368 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8369 sym_hashes = elf_sym_hashes (abfd);
8370 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8371
8372 bed = get_elf_backend_data (abfd);
8373 rel_end = relocs + sec->reloc_count;
8374
8375 /* Check for the mips16 stub sections. */
8376
8377 name = bfd_section_name (sec);
8378 if (FN_STUB_P (name))
8379 {
8380 unsigned long r_symndx;
8381
8382 /* Look at the relocation information to figure out which symbol
8383 this is for. */
8384
8385 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8386 if (r_symndx == 0)
8387 {
8388 _bfd_error_handler
8389 /* xgettext:c-format */
8390 (_("%pB: warning: cannot determine the target function for"
8391 " stub section `%s'"),
8392 abfd, name);
8393 bfd_set_error (bfd_error_bad_value);
8394 return FALSE;
8395 }
8396
8397 if (r_symndx < extsymoff
8398 || sym_hashes[r_symndx - extsymoff] == NULL)
8399 {
8400 asection *o;
8401
8402 /* This stub is for a local symbol. This stub will only be
8403 needed if there is some relocation in this BFD, other
8404 than a 16 bit function call, which refers to this symbol. */
8405 for (o = abfd->sections; o != NULL; o = o->next)
8406 {
8407 Elf_Internal_Rela *sec_relocs;
8408 const Elf_Internal_Rela *r, *rend;
8409
8410 /* We can ignore stub sections when looking for relocs. */
8411 if ((o->flags & SEC_RELOC) == 0
8412 || o->reloc_count == 0
8413 || section_allows_mips16_refs_p (o))
8414 continue;
8415
8416 sec_relocs
8417 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8418 info->keep_memory);
8419 if (sec_relocs == NULL)
8420 return FALSE;
8421
8422 rend = sec_relocs + o->reloc_count;
8423 for (r = sec_relocs; r < rend; r++)
8424 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8425 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
8426 break;
8427
8428 if (elf_section_data (o)->relocs != sec_relocs)
8429 free (sec_relocs);
8430
8431 if (r < rend)
8432 break;
8433 }
8434
8435 if (o == NULL)
8436 {
8437 /* There is no non-call reloc for this stub, so we do
8438 not need it. Since this function is called before
8439 the linker maps input sections to output sections, we
8440 can easily discard it by setting the SEC_EXCLUDE
8441 flag. */
8442 sec->flags |= SEC_EXCLUDE;
8443 return TRUE;
8444 }
8445
8446 /* Record this stub in an array of local symbol stubs for
8447 this BFD. */
8448 if (mips_elf_tdata (abfd)->local_stubs == NULL)
8449 {
8450 unsigned long symcount;
8451 asection **n;
8452 bfd_size_type amt;
8453
8454 if (elf_bad_symtab (abfd))
8455 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8456 else
8457 symcount = symtab_hdr->sh_info;
8458 amt = symcount * sizeof (asection *);
8459 n = bfd_zalloc (abfd, amt);
8460 if (n == NULL)
8461 return FALSE;
8462 mips_elf_tdata (abfd)->local_stubs = n;
8463 }
8464
8465 sec->flags |= SEC_KEEP;
8466 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8467
8468 /* We don't need to set mips16_stubs_seen in this case.
8469 That flag is used to see whether we need to look through
8470 the global symbol table for stubs. We don't need to set
8471 it here, because we just have a local stub. */
8472 }
8473 else
8474 {
8475 struct mips_elf_link_hash_entry *h;
8476
8477 h = ((struct mips_elf_link_hash_entry *)
8478 sym_hashes[r_symndx - extsymoff]);
8479
8480 while (h->root.root.type == bfd_link_hash_indirect
8481 || h->root.root.type == bfd_link_hash_warning)
8482 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8483
8484 /* H is the symbol this stub is for. */
8485
8486 /* If we already have an appropriate stub for this function, we
8487 don't need another one, so we can discard this one. Since
8488 this function is called before the linker maps input sections
8489 to output sections, we can easily discard it by setting the
8490 SEC_EXCLUDE flag. */
8491 if (h->fn_stub != NULL)
8492 {
8493 sec->flags |= SEC_EXCLUDE;
8494 return TRUE;
8495 }
8496
8497 sec->flags |= SEC_KEEP;
8498 h->fn_stub = sec;
8499 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8500 }
8501 }
8502 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8503 {
8504 unsigned long r_symndx;
8505 struct mips_elf_link_hash_entry *h;
8506 asection **loc;
8507
8508 /* Look at the relocation information to figure out which symbol
8509 this is for. */
8510
8511 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8512 if (r_symndx == 0)
8513 {
8514 _bfd_error_handler
8515 /* xgettext:c-format */
8516 (_("%pB: warning: cannot determine the target function for"
8517 " stub section `%s'"),
8518 abfd, name);
8519 bfd_set_error (bfd_error_bad_value);
8520 return FALSE;
8521 }
8522
8523 if (r_symndx < extsymoff
8524 || sym_hashes[r_symndx - extsymoff] == NULL)
8525 {
8526 asection *o;
8527
8528 /* This stub is for a local symbol. This stub will only be
8529 needed if there is some relocation (R_MIPS16_26) in this BFD
8530 that refers to this symbol. */
8531 for (o = abfd->sections; o != NULL; o = o->next)
8532 {
8533 Elf_Internal_Rela *sec_relocs;
8534 const Elf_Internal_Rela *r, *rend;
8535
8536 /* We can ignore stub sections when looking for relocs. */
8537 if ((o->flags & SEC_RELOC) == 0
8538 || o->reloc_count == 0
8539 || section_allows_mips16_refs_p (o))
8540 continue;
8541
8542 sec_relocs
8543 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8544 info->keep_memory);
8545 if (sec_relocs == NULL)
8546 return FALSE;
8547
8548 rend = sec_relocs + o->reloc_count;
8549 for (r = sec_relocs; r < rend; r++)
8550 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8551 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8552 break;
8553
8554 if (elf_section_data (o)->relocs != sec_relocs)
8555 free (sec_relocs);
8556
8557 if (r < rend)
8558 break;
8559 }
8560
8561 if (o == NULL)
8562 {
8563 /* There is no non-call reloc for this stub, so we do
8564 not need it. Since this function is called before
8565 the linker maps input sections to output sections, we
8566 can easily discard it by setting the SEC_EXCLUDE
8567 flag. */
8568 sec->flags |= SEC_EXCLUDE;
8569 return TRUE;
8570 }
8571
8572 /* Record this stub in an array of local symbol call_stubs for
8573 this BFD. */
8574 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8575 {
8576 unsigned long symcount;
8577 asection **n;
8578 bfd_size_type amt;
8579
8580 if (elf_bad_symtab (abfd))
8581 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8582 else
8583 symcount = symtab_hdr->sh_info;
8584 amt = symcount * sizeof (asection *);
8585 n = bfd_zalloc (abfd, amt);
8586 if (n == NULL)
8587 return FALSE;
8588 mips_elf_tdata (abfd)->local_call_stubs = n;
8589 }
8590
8591 sec->flags |= SEC_KEEP;
8592 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8593
8594 /* We don't need to set mips16_stubs_seen in this case.
8595 That flag is used to see whether we need to look through
8596 the global symbol table for stubs. We don't need to set
8597 it here, because we just have a local stub. */
8598 }
8599 else
8600 {
8601 h = ((struct mips_elf_link_hash_entry *)
8602 sym_hashes[r_symndx - extsymoff]);
8603
8604 /* H is the symbol this stub is for. */
8605
8606 if (CALL_FP_STUB_P (name))
8607 loc = &h->call_fp_stub;
8608 else
8609 loc = &h->call_stub;
8610
8611 /* If we already have an appropriate stub for this function, we
8612 don't need another one, so we can discard this one. Since
8613 this function is called before the linker maps input sections
8614 to output sections, we can easily discard it by setting the
8615 SEC_EXCLUDE flag. */
8616 if (*loc != NULL)
8617 {
8618 sec->flags |= SEC_EXCLUDE;
8619 return TRUE;
8620 }
8621
8622 sec->flags |= SEC_KEEP;
8623 *loc = sec;
8624 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8625 }
8626 }
8627
8628 sreloc = NULL;
8629 contents = NULL;
8630 for (rel = relocs; rel < rel_end; ++rel)
8631 {
8632 unsigned long r_symndx;
8633 unsigned int r_type;
8634 struct elf_link_hash_entry *h;
8635 bfd_boolean can_make_dynamic_p;
8636 bfd_boolean call_reloc_p;
8637 bfd_boolean constrain_symbol_p;
8638
8639 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8640 r_type = ELF_R_TYPE (abfd, rel->r_info);
8641
8642 if (r_symndx < extsymoff)
8643 h = NULL;
8644 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8645 {
8646 _bfd_error_handler
8647 /* xgettext:c-format */
8648 (_("%pB: malformed reloc detected for section %s"),
8649 abfd, name);
8650 bfd_set_error (bfd_error_bad_value);
8651 return FALSE;
8652 }
8653 else
8654 {
8655 h = sym_hashes[r_symndx - extsymoff];
8656 if (h != NULL)
8657 {
8658 while (h->root.type == bfd_link_hash_indirect
8659 || h->root.type == bfd_link_hash_warning)
8660 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8661 }
8662 }
8663
8664 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8665 relocation into a dynamic one. */
8666 can_make_dynamic_p = FALSE;
8667
8668 /* Set CALL_RELOC_P to true if the relocation is for a call,
8669 and if pointer equality therefore doesn't matter. */
8670 call_reloc_p = FALSE;
8671
8672 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8673 into account when deciding how to define the symbol.
8674 Relocations in nonallocatable sections such as .pdr and
8675 .debug* should have no effect. */
8676 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8677
8678 switch (r_type)
8679 {
8680 case R_MIPS_CALL16:
8681 case R_MIPS_CALL_HI16:
8682 case R_MIPS_CALL_LO16:
8683 case R_MIPS16_CALL16:
8684 case R_MICROMIPS_CALL16:
8685 case R_MICROMIPS_CALL_HI16:
8686 case R_MICROMIPS_CALL_LO16:
8687 call_reloc_p = TRUE;
8688 /* Fall through. */
8689
8690 case R_MIPS_GOT16:
8691 case R_MIPS_GOT_LO16:
8692 case R_MIPS_GOT_PAGE:
8693 case R_MIPS_GOT_DISP:
8694 case R_MIPS16_GOT16:
8695 case R_MICROMIPS_GOT16:
8696 case R_MICROMIPS_GOT_LO16:
8697 case R_MICROMIPS_GOT_PAGE:
8698 case R_MICROMIPS_GOT_DISP:
8699 /* If we have a symbol that will resolve to zero at static link
8700 time and it is used by a GOT relocation applied to code we
8701 cannot relax to an immediate zero load, then we will be using
8702 the special `__gnu_absolute_zero' symbol whose value is zero
8703 at dynamic load time. We ignore HI16-type GOT relocations at
8704 this stage, because their handling will depend entirely on
8705 the corresponding LO16-type GOT relocation. */
8706 if (!call_hi16_reloc_p (r_type)
8707 && h != NULL
8708 && bfd_link_pic (info)
8709 && !htab->use_absolute_zero
8710 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8711 {
8712 bfd_boolean rel_reloc;
8713
8714 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8715 return FALSE;
8716
8717 rel_reloc = mips_elf_rel_relocation_p (abfd, sec, relocs, rel);
8718 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, !rel_reloc);
8719
8720 if (!mips_elf_nullify_got_load (abfd, contents, rel, howto,
8721 FALSE))
8722 if (!mips_elf_define_absolute_zero (abfd, info, htab, r_type))
8723 return FALSE;
8724 }
8725
8726 /* Fall through. */
8727 case R_MIPS_GOT_HI16:
8728 case R_MIPS_GOT_OFST:
8729 case R_MIPS_TLS_GOTTPREL:
8730 case R_MIPS_TLS_GD:
8731 case R_MIPS_TLS_LDM:
8732 case R_MIPS16_TLS_GOTTPREL:
8733 case R_MIPS16_TLS_GD:
8734 case R_MIPS16_TLS_LDM:
8735 case R_MICROMIPS_GOT_HI16:
8736 case R_MICROMIPS_GOT_OFST:
8737 case R_MICROMIPS_TLS_GOTTPREL:
8738 case R_MICROMIPS_TLS_GD:
8739 case R_MICROMIPS_TLS_LDM:
8740 if (dynobj == NULL)
8741 elf_hash_table (info)->dynobj = dynobj = abfd;
8742 if (!mips_elf_create_got_section (dynobj, info))
8743 return FALSE;
8744 if (htab->is_vxworks && !bfd_link_pic (info))
8745 {
8746 _bfd_error_handler
8747 /* xgettext:c-format */
8748 (_("%pB: GOT reloc at %#" PRIx64 " not expected in executables"),
8749 abfd, (uint64_t) rel->r_offset);
8750 bfd_set_error (bfd_error_bad_value);
8751 return FALSE;
8752 }
8753 can_make_dynamic_p = TRUE;
8754 break;
8755
8756 case R_MIPS_NONE:
8757 case R_MIPS_JALR:
8758 case R_MICROMIPS_JALR:
8759 /* These relocations have empty fields and are purely there to
8760 provide link information. The symbol value doesn't matter. */
8761 constrain_symbol_p = FALSE;
8762 break;
8763
8764 case R_MIPS_GPREL16:
8765 case R_MIPS_GPREL32:
8766 case R_MIPS16_GPREL:
8767 case R_MICROMIPS_GPREL16:
8768 /* GP-relative relocations always resolve to a definition in a
8769 regular input file, ignoring the one-definition rule. This is
8770 important for the GP setup sequence in NewABI code, which
8771 always resolves to a local function even if other relocations
8772 against the symbol wouldn't. */
8773 constrain_symbol_p = FALSE;
8774 break;
8775
8776 case R_MIPS_32:
8777 case R_MIPS_REL32:
8778 case R_MIPS_64:
8779 /* In VxWorks executables, references to external symbols
8780 must be handled using copy relocs or PLT entries; it is not
8781 possible to convert this relocation into a dynamic one.
8782
8783 For executables that use PLTs and copy-relocs, we have a
8784 choice between converting the relocation into a dynamic
8785 one or using copy relocations or PLT entries. It is
8786 usually better to do the former, unless the relocation is
8787 against a read-only section. */
8788 if ((bfd_link_pic (info)
8789 || (h != NULL
8790 && !htab->is_vxworks
8791 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8792 && !(!info->nocopyreloc
8793 && !PIC_OBJECT_P (abfd)
8794 && MIPS_ELF_READONLY_SECTION (sec))))
8795 && (sec->flags & SEC_ALLOC) != 0)
8796 {
8797 can_make_dynamic_p = TRUE;
8798 if (dynobj == NULL)
8799 elf_hash_table (info)->dynobj = dynobj = abfd;
8800 }
8801 break;
8802
8803 case R_MIPS_26:
8804 case R_MIPS_PC16:
8805 case R_MIPS_PC21_S2:
8806 case R_MIPS_PC26_S2:
8807 case R_MIPS16_26:
8808 case R_MIPS16_PC16_S1:
8809 case R_MICROMIPS_26_S1:
8810 case R_MICROMIPS_PC7_S1:
8811 case R_MICROMIPS_PC10_S1:
8812 case R_MICROMIPS_PC16_S1:
8813 case R_MICROMIPS_PC23_S2:
8814 call_reloc_p = TRUE;
8815 break;
8816 }
8817
8818 if (h)
8819 {
8820 if (constrain_symbol_p)
8821 {
8822 if (!can_make_dynamic_p)
8823 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8824
8825 if (!call_reloc_p)
8826 h->pointer_equality_needed = 1;
8827
8828 /* We must not create a stub for a symbol that has
8829 relocations related to taking the function's address.
8830 This doesn't apply to VxWorks, where CALL relocs refer
8831 to a .got.plt entry instead of a normal .got entry. */
8832 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8833 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8834 }
8835
8836 /* Relocations against the special VxWorks __GOTT_BASE__ and
8837 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8838 room for them in .rela.dyn. */
8839 if (is_gott_symbol (info, h))
8840 {
8841 if (sreloc == NULL)
8842 {
8843 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8844 if (sreloc == NULL)
8845 return FALSE;
8846 }
8847 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8848 if (MIPS_ELF_READONLY_SECTION (sec))
8849 /* We tell the dynamic linker that there are
8850 relocations against the text segment. */
8851 info->flags |= DF_TEXTREL;
8852 }
8853 }
8854 else if (call_lo16_reloc_p (r_type)
8855 || got_lo16_reloc_p (r_type)
8856 || got_disp_reloc_p (r_type)
8857 || (got16_reloc_p (r_type) && htab->is_vxworks))
8858 {
8859 /* We may need a local GOT entry for this relocation. We
8860 don't count R_MIPS_GOT_PAGE because we can estimate the
8861 maximum number of pages needed by looking at the size of
8862 the segment. Similar comments apply to R_MIPS*_GOT16 and
8863 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8864 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8865 R_MIPS_CALL_HI16 because these are always followed by an
8866 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8867 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8868 rel->r_addend, info, r_type))
8869 return FALSE;
8870 }
8871
8872 if (h != NULL
8873 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8874 ELF_ST_IS_MIPS16 (h->other)))
8875 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8876
8877 switch (r_type)
8878 {
8879 case R_MIPS_CALL16:
8880 case R_MIPS16_CALL16:
8881 case R_MICROMIPS_CALL16:
8882 if (h == NULL)
8883 {
8884 _bfd_error_handler
8885 /* xgettext:c-format */
8886 (_("%pB: CALL16 reloc at %#" PRIx64 " not against global symbol"),
8887 abfd, (uint64_t) rel->r_offset);
8888 bfd_set_error (bfd_error_bad_value);
8889 return FALSE;
8890 }
8891 /* Fall through. */
8892
8893 case R_MIPS_CALL_HI16:
8894 case R_MIPS_CALL_LO16:
8895 case R_MICROMIPS_CALL_HI16:
8896 case R_MICROMIPS_CALL_LO16:
8897 if (h != NULL)
8898 {
8899 /* Make sure there is room in the regular GOT to hold the
8900 function's address. We may eliminate it in favour of
8901 a .got.plt entry later; see mips_elf_count_got_symbols. */
8902 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8903 r_type))
8904 return FALSE;
8905
8906 /* We need a stub, not a plt entry for the undefined
8907 function. But we record it as if it needs plt. See
8908 _bfd_elf_adjust_dynamic_symbol. */
8909 h->needs_plt = 1;
8910 h->type = STT_FUNC;
8911 }
8912 break;
8913
8914 case R_MIPS_GOT_PAGE:
8915 case R_MICROMIPS_GOT_PAGE:
8916 case R_MIPS16_GOT16:
8917 case R_MIPS_GOT16:
8918 case R_MIPS_GOT_HI16:
8919 case R_MIPS_GOT_LO16:
8920 case R_MICROMIPS_GOT16:
8921 case R_MICROMIPS_GOT_HI16:
8922 case R_MICROMIPS_GOT_LO16:
8923 if (!h || got_page_reloc_p (r_type))
8924 {
8925 /* This relocation needs (or may need, if h != NULL) a
8926 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8927 know for sure until we know whether the symbol is
8928 preemptible. */
8929 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8930 {
8931 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8932 return FALSE;
8933 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8934 addend = mips_elf_read_rel_addend (abfd, rel,
8935 howto, contents);
8936 if (got16_reloc_p (r_type))
8937 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8938 contents, &addend);
8939 else
8940 addend <<= howto->rightshift;
8941 }
8942 else
8943 addend = rel->r_addend;
8944 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8945 h, addend))
8946 return FALSE;
8947
8948 if (h)
8949 {
8950 struct mips_elf_link_hash_entry *hmips =
8951 (struct mips_elf_link_hash_entry *) h;
8952
8953 /* This symbol is definitely not overridable. */
8954 if (hmips->root.def_regular
8955 && ! (bfd_link_pic (info) && ! info->symbolic
8956 && ! hmips->root.forced_local))
8957 h = NULL;
8958 }
8959 }
8960 /* If this is a global, overridable symbol, GOT_PAGE will
8961 decay to GOT_DISP, so we'll need a GOT entry for it. */
8962 /* Fall through. */
8963
8964 case R_MIPS_GOT_DISP:
8965 case R_MICROMIPS_GOT_DISP:
8966 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8967 FALSE, r_type))
8968 return FALSE;
8969 break;
8970
8971 case R_MIPS_TLS_GOTTPREL:
8972 case R_MIPS16_TLS_GOTTPREL:
8973 case R_MICROMIPS_TLS_GOTTPREL:
8974 if (bfd_link_pic (info))
8975 info->flags |= DF_STATIC_TLS;
8976 /* Fall through */
8977
8978 case R_MIPS_TLS_LDM:
8979 case R_MIPS16_TLS_LDM:
8980 case R_MICROMIPS_TLS_LDM:
8981 if (tls_ldm_reloc_p (r_type))
8982 {
8983 r_symndx = STN_UNDEF;
8984 h = NULL;
8985 }
8986 /* Fall through */
8987
8988 case R_MIPS_TLS_GD:
8989 case R_MIPS16_TLS_GD:
8990 case R_MICROMIPS_TLS_GD:
8991 /* This symbol requires a global offset table entry, or two
8992 for TLS GD relocations. */
8993 if (h != NULL)
8994 {
8995 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8996 FALSE, r_type))
8997 return FALSE;
8998 }
8999 else
9000 {
9001 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
9002 rel->r_addend,
9003 info, r_type))
9004 return FALSE;
9005 }
9006 break;
9007
9008 case R_MIPS_32:
9009 case R_MIPS_REL32:
9010 case R_MIPS_64:
9011 /* In VxWorks executables, references to external symbols
9012 are handled using copy relocs or PLT stubs, so there's
9013 no need to add a .rela.dyn entry for this relocation. */
9014 if (can_make_dynamic_p)
9015 {
9016 if (sreloc == NULL)
9017 {
9018 sreloc = mips_elf_rel_dyn_section (info, TRUE);
9019 if (sreloc == NULL)
9020 return FALSE;
9021 }
9022 if (bfd_link_pic (info) && h == NULL)
9023 {
9024 /* When creating a shared object, we must copy these
9025 reloc types into the output file as R_MIPS_REL32
9026 relocs. Make room for this reloc in .rel(a).dyn. */
9027 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9028 if (MIPS_ELF_READONLY_SECTION (sec))
9029 /* We tell the dynamic linker that there are
9030 relocations against the text segment. */
9031 info->flags |= DF_TEXTREL;
9032 }
9033 else
9034 {
9035 struct mips_elf_link_hash_entry *hmips;
9036
9037 /* For a shared object, we must copy this relocation
9038 unless the symbol turns out to be undefined and
9039 weak with non-default visibility, in which case
9040 it will be left as zero.
9041
9042 We could elide R_MIPS_REL32 for locally binding symbols
9043 in shared libraries, but do not yet do so.
9044
9045 For an executable, we only need to copy this
9046 reloc if the symbol is defined in a dynamic
9047 object. */
9048 hmips = (struct mips_elf_link_hash_entry *) h;
9049 ++hmips->possibly_dynamic_relocs;
9050 if (MIPS_ELF_READONLY_SECTION (sec))
9051 /* We need it to tell the dynamic linker if there
9052 are relocations against the text segment. */
9053 hmips->readonly_reloc = TRUE;
9054 }
9055 }
9056
9057 if (SGI_COMPAT (abfd))
9058 mips_elf_hash_table (info)->compact_rel_size +=
9059 sizeof (Elf32_External_crinfo);
9060 break;
9061
9062 case R_MIPS_26:
9063 case R_MIPS_GPREL16:
9064 case R_MIPS_LITERAL:
9065 case R_MIPS_GPREL32:
9066 case R_MICROMIPS_26_S1:
9067 case R_MICROMIPS_GPREL16:
9068 case R_MICROMIPS_LITERAL:
9069 case R_MICROMIPS_GPREL7_S2:
9070 if (SGI_COMPAT (abfd))
9071 mips_elf_hash_table (info)->compact_rel_size +=
9072 sizeof (Elf32_External_crinfo);
9073 break;
9074
9075 /* This relocation describes the C++ object vtable hierarchy.
9076 Reconstruct it for later use during GC. */
9077 case R_MIPS_GNU_VTINHERIT:
9078 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
9079 return FALSE;
9080 break;
9081
9082 /* This relocation describes which C++ vtable entries are actually
9083 used. Record for later use during GC. */
9084 case R_MIPS_GNU_VTENTRY:
9085 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
9086 return FALSE;
9087 break;
9088
9089 default:
9090 break;
9091 }
9092
9093 /* Record the need for a PLT entry. At this point we don't know
9094 yet if we are going to create a PLT in the first place, but
9095 we only record whether the relocation requires a standard MIPS
9096 or a compressed code entry anyway. If we don't make a PLT after
9097 all, then we'll just ignore these arrangements. Likewise if
9098 a PLT entry is not created because the symbol is satisfied
9099 locally. */
9100 if (h != NULL
9101 && (branch_reloc_p (r_type)
9102 || mips16_branch_reloc_p (r_type)
9103 || micromips_branch_reloc_p (r_type))
9104 && !SYMBOL_CALLS_LOCAL (info, h))
9105 {
9106 if (h->plt.plist == NULL)
9107 h->plt.plist = mips_elf_make_plt_record (abfd);
9108 if (h->plt.plist == NULL)
9109 return FALSE;
9110
9111 if (branch_reloc_p (r_type))
9112 h->plt.plist->need_mips = TRUE;
9113 else
9114 h->plt.plist->need_comp = TRUE;
9115 }
9116
9117 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
9118 if there is one. We only need to handle global symbols here;
9119 we decide whether to keep or delete stubs for local symbols
9120 when processing the stub's relocations. */
9121 if (h != NULL
9122 && !mips16_call_reloc_p (r_type)
9123 && !section_allows_mips16_refs_p (sec))
9124 {
9125 struct mips_elf_link_hash_entry *mh;
9126
9127 mh = (struct mips_elf_link_hash_entry *) h;
9128 mh->need_fn_stub = TRUE;
9129 }
9130
9131 /* Refuse some position-dependent relocations when creating a
9132 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
9133 not PIC, but we can create dynamic relocations and the result
9134 will be fine. Also do not refuse R_MIPS_LO16, which can be
9135 combined with R_MIPS_GOT16. */
9136 if (bfd_link_pic (info))
9137 {
9138 switch (r_type)
9139 {
9140 case R_MIPS_TLS_TPREL_HI16:
9141 case R_MIPS16_TLS_TPREL_HI16:
9142 case R_MICROMIPS_TLS_TPREL_HI16:
9143 case R_MIPS_TLS_TPREL_LO16:
9144 case R_MIPS16_TLS_TPREL_LO16:
9145 case R_MICROMIPS_TLS_TPREL_LO16:
9146 /* These are okay in PIE, but not in a shared library. */
9147 if (bfd_link_executable (info))
9148 break;
9149
9150 /* FALLTHROUGH */
9151
9152 case R_MIPS16_HI16:
9153 case R_MIPS_HI16:
9154 case R_MIPS_HIGHER:
9155 case R_MIPS_HIGHEST:
9156 case R_MICROMIPS_HI16:
9157 case R_MICROMIPS_HIGHER:
9158 case R_MICROMIPS_HIGHEST:
9159 /* Don't refuse a high part relocation if it's against
9160 no symbol (e.g. part of a compound relocation). */
9161 if (r_symndx == STN_UNDEF)
9162 break;
9163
9164 /* Likewise an absolute symbol. */
9165 if (h != NULL && bfd_is_abs_symbol (&h->root))
9166 break;
9167
9168 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
9169 and has a special meaning. */
9170 if (!NEWABI_P (abfd) && h != NULL
9171 && strcmp (h->root.root.string, "_gp_disp") == 0)
9172 break;
9173
9174 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
9175 if (is_gott_symbol (info, h))
9176 break;
9177
9178 /* FALLTHROUGH */
9179
9180 case R_MIPS16_26:
9181 case R_MIPS_26:
9182 case R_MICROMIPS_26_S1:
9183 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, NEWABI_P (abfd));
9184 /* An error for unsupported relocations is raised as part
9185 of the above search, so we can skip the following. */
9186 if (howto != NULL)
9187 info->callbacks->einfo
9188 /* xgettext:c-format */
9189 (_("%X%H: relocation %s against `%s' cannot be used"
9190 " when making a shared object; recompile with -fPIC\n"),
9191 abfd, sec, rel->r_offset, howto->name,
9192 (h) ? h->root.root.string : "a local symbol");
9193 break;
9194 default:
9195 break;
9196 }
9197 }
9198 }
9199
9200 return TRUE;
9201 }
9202 \f
9203 /* Allocate space for global sym dynamic relocs. */
9204
9205 static bfd_boolean
9206 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9207 {
9208 struct bfd_link_info *info = inf;
9209 bfd *dynobj;
9210 struct mips_elf_link_hash_entry *hmips;
9211 struct mips_elf_link_hash_table *htab;
9212
9213 htab = mips_elf_hash_table (info);
9214 BFD_ASSERT (htab != NULL);
9215
9216 dynobj = elf_hash_table (info)->dynobj;
9217 hmips = (struct mips_elf_link_hash_entry *) h;
9218
9219 /* VxWorks executables are handled elsewhere; we only need to
9220 allocate relocations in shared objects. */
9221 if (htab->is_vxworks && !bfd_link_pic (info))
9222 return TRUE;
9223
9224 /* Ignore indirect symbols. All relocations against such symbols
9225 will be redirected to the target symbol. */
9226 if (h->root.type == bfd_link_hash_indirect)
9227 return TRUE;
9228
9229 /* If this symbol is defined in a dynamic object, or we are creating
9230 a shared library, we will need to copy any R_MIPS_32 or
9231 R_MIPS_REL32 relocs against it into the output file. */
9232 if (! bfd_link_relocatable (info)
9233 && hmips->possibly_dynamic_relocs != 0
9234 && (h->root.type == bfd_link_hash_defweak
9235 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
9236 || bfd_link_pic (info)))
9237 {
9238 bfd_boolean do_copy = TRUE;
9239
9240 if (h->root.type == bfd_link_hash_undefweak)
9241 {
9242 /* Do not copy relocations for undefined weak symbols that
9243 we are not going to export. */
9244 if (UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9245 do_copy = FALSE;
9246
9247 /* Make sure undefined weak symbols are output as a dynamic
9248 symbol in PIEs. */
9249 else if (h->dynindx == -1 && !h->forced_local)
9250 {
9251 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9252 return FALSE;
9253 }
9254 }
9255
9256 if (do_copy)
9257 {
9258 /* Even though we don't directly need a GOT entry for this symbol,
9259 the SVR4 psABI requires it to have a dynamic symbol table
9260 index greater that DT_MIPS_GOTSYM if there are dynamic
9261 relocations against it.
9262
9263 VxWorks does not enforce the same mapping between the GOT
9264 and the symbol table, so the same requirement does not
9265 apply there. */
9266 if (!htab->is_vxworks)
9267 {
9268 if (hmips->global_got_area > GGA_RELOC_ONLY)
9269 hmips->global_got_area = GGA_RELOC_ONLY;
9270 hmips->got_only_for_calls = FALSE;
9271 }
9272
9273 mips_elf_allocate_dynamic_relocations
9274 (dynobj, info, hmips->possibly_dynamic_relocs);
9275 if (hmips->readonly_reloc)
9276 /* We tell the dynamic linker that there are relocations
9277 against the text segment. */
9278 info->flags |= DF_TEXTREL;
9279 }
9280 }
9281
9282 return TRUE;
9283 }
9284
9285 /* Adjust a symbol defined by a dynamic object and referenced by a
9286 regular object. The current definition is in some section of the
9287 dynamic object, but we're not including those sections. We have to
9288 change the definition to something the rest of the link can
9289 understand. */
9290
9291 bfd_boolean
9292 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
9293 struct elf_link_hash_entry *h)
9294 {
9295 bfd *dynobj;
9296 struct mips_elf_link_hash_entry *hmips;
9297 struct mips_elf_link_hash_table *htab;
9298 asection *s, *srel;
9299
9300 htab = mips_elf_hash_table (info);
9301 BFD_ASSERT (htab != NULL);
9302
9303 dynobj = elf_hash_table (info)->dynobj;
9304 hmips = (struct mips_elf_link_hash_entry *) h;
9305
9306 /* Make sure we know what is going on here. */
9307 BFD_ASSERT (dynobj != NULL
9308 && (h->needs_plt
9309 || h->is_weakalias
9310 || (h->def_dynamic
9311 && h->ref_regular
9312 && !h->def_regular)));
9313
9314 hmips = (struct mips_elf_link_hash_entry *) h;
9315
9316 /* If there are call relocations against an externally-defined symbol,
9317 see whether we can create a MIPS lazy-binding stub for it. We can
9318 only do this if all references to the function are through call
9319 relocations, and in that case, the traditional lazy-binding stubs
9320 are much more efficient than PLT entries.
9321
9322 Traditional stubs are only available on SVR4 psABI-based systems;
9323 VxWorks always uses PLTs instead. */
9324 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
9325 {
9326 if (! elf_hash_table (info)->dynamic_sections_created)
9327 return TRUE;
9328
9329 /* If this symbol is not defined in a regular file, then set
9330 the symbol to the stub location. This is required to make
9331 function pointers compare as equal between the normal
9332 executable and the shared library. */
9333 if (!h->def_regular
9334 && !bfd_is_abs_section (htab->sstubs->output_section))
9335 {
9336 hmips->needs_lazy_stub = TRUE;
9337 htab->lazy_stub_count++;
9338 return TRUE;
9339 }
9340 }
9341 /* As above, VxWorks requires PLT entries for externally-defined
9342 functions that are only accessed through call relocations.
9343
9344 Both VxWorks and non-VxWorks targets also need PLT entries if there
9345 are static-only relocations against an externally-defined function.
9346 This can technically occur for shared libraries if there are
9347 branches to the symbol, although it is unlikely that this will be
9348 used in practice due to the short ranges involved. It can occur
9349 for any relative or absolute relocation in executables; in that
9350 case, the PLT entry becomes the function's canonical address. */
9351 else if (((h->needs_plt && !hmips->no_fn_stub)
9352 || (h->type == STT_FUNC && hmips->has_static_relocs))
9353 && htab->use_plts_and_copy_relocs
9354 && !SYMBOL_CALLS_LOCAL (info, h)
9355 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9356 && h->root.type == bfd_link_hash_undefweak))
9357 {
9358 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9359 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9360
9361 /* If this is the first symbol to need a PLT entry, then make some
9362 basic setup. Also work out PLT entry sizes. We'll need them
9363 for PLT offset calculations. */
9364 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9365 {
9366 BFD_ASSERT (htab->root.sgotplt->size == 0);
9367 BFD_ASSERT (htab->plt_got_index == 0);
9368
9369 /* If we're using the PLT additions to the psABI, each PLT
9370 entry is 16 bytes and the PLT0 entry is 32 bytes.
9371 Encourage better cache usage by aligning. We do this
9372 lazily to avoid pessimizing traditional objects. */
9373 if (!htab->is_vxworks
9374 && !bfd_set_section_alignment (htab->root.splt, 5))
9375 return FALSE;
9376
9377 /* Make sure that .got.plt is word-aligned. We do this lazily
9378 for the same reason as above. */
9379 if (!bfd_set_section_alignment (htab->root.sgotplt,
9380 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9381 return FALSE;
9382
9383 /* On non-VxWorks targets, the first two entries in .got.plt
9384 are reserved. */
9385 if (!htab->is_vxworks)
9386 htab->plt_got_index
9387 += (get_elf_backend_data (dynobj)->got_header_size
9388 / MIPS_ELF_GOT_SIZE (dynobj));
9389
9390 /* On VxWorks, also allocate room for the header's
9391 .rela.plt.unloaded entries. */
9392 if (htab->is_vxworks && !bfd_link_pic (info))
9393 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9394
9395 /* Now work out the sizes of individual PLT entries. */
9396 if (htab->is_vxworks && bfd_link_pic (info))
9397 htab->plt_mips_entry_size
9398 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9399 else if (htab->is_vxworks)
9400 htab->plt_mips_entry_size
9401 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9402 else if (newabi_p)
9403 htab->plt_mips_entry_size
9404 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9405 else if (!micromips_p)
9406 {
9407 htab->plt_mips_entry_size
9408 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9409 htab->plt_comp_entry_size
9410 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9411 }
9412 else if (htab->insn32)
9413 {
9414 htab->plt_mips_entry_size
9415 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9416 htab->plt_comp_entry_size
9417 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9418 }
9419 else
9420 {
9421 htab->plt_mips_entry_size
9422 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9423 htab->plt_comp_entry_size
9424 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9425 }
9426 }
9427
9428 if (h->plt.plist == NULL)
9429 h->plt.plist = mips_elf_make_plt_record (dynobj);
9430 if (h->plt.plist == NULL)
9431 return FALSE;
9432
9433 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9434 n32 or n64, so always use a standard entry there.
9435
9436 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9437 all MIPS16 calls will go via that stub, and there is no benefit
9438 to having a MIPS16 entry. And in the case of call_stub a
9439 standard entry actually has to be used as the stub ends with a J
9440 instruction. */
9441 if (newabi_p
9442 || htab->is_vxworks
9443 || hmips->call_stub
9444 || hmips->call_fp_stub)
9445 {
9446 h->plt.plist->need_mips = TRUE;
9447 h->plt.plist->need_comp = FALSE;
9448 }
9449
9450 /* Otherwise, if there are no direct calls to the function, we
9451 have a free choice of whether to use standard or compressed
9452 entries. Prefer microMIPS entries if the object is known to
9453 contain microMIPS code, so that it becomes possible to create
9454 pure microMIPS binaries. Prefer standard entries otherwise,
9455 because MIPS16 ones are no smaller and are usually slower. */
9456 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9457 {
9458 if (micromips_p)
9459 h->plt.plist->need_comp = TRUE;
9460 else
9461 h->plt.plist->need_mips = TRUE;
9462 }
9463
9464 if (h->plt.plist->need_mips)
9465 {
9466 h->plt.plist->mips_offset = htab->plt_mips_offset;
9467 htab->plt_mips_offset += htab->plt_mips_entry_size;
9468 }
9469 if (h->plt.plist->need_comp)
9470 {
9471 h->plt.plist->comp_offset = htab->plt_comp_offset;
9472 htab->plt_comp_offset += htab->plt_comp_entry_size;
9473 }
9474
9475 /* Reserve the corresponding .got.plt entry now too. */
9476 h->plt.plist->gotplt_index = htab->plt_got_index++;
9477
9478 /* If the output file has no definition of the symbol, set the
9479 symbol's value to the address of the stub. */
9480 if (!bfd_link_pic (info) && !h->def_regular)
9481 hmips->use_plt_entry = TRUE;
9482
9483 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9484 htab->root.srelplt->size += (htab->is_vxworks
9485 ? MIPS_ELF_RELA_SIZE (dynobj)
9486 : MIPS_ELF_REL_SIZE (dynobj));
9487
9488 /* Make room for the .rela.plt.unloaded relocations. */
9489 if (htab->is_vxworks && !bfd_link_pic (info))
9490 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9491
9492 /* All relocations against this symbol that could have been made
9493 dynamic will now refer to the PLT entry instead. */
9494 hmips->possibly_dynamic_relocs = 0;
9495
9496 return TRUE;
9497 }
9498
9499 /* If this is a weak symbol, and there is a real definition, the
9500 processor independent code will have arranged for us to see the
9501 real definition first, and we can just use the same value. */
9502 if (h->is_weakalias)
9503 {
9504 struct elf_link_hash_entry *def = weakdef (h);
9505 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
9506 h->root.u.def.section = def->root.u.def.section;
9507 h->root.u.def.value = def->root.u.def.value;
9508 return TRUE;
9509 }
9510
9511 /* Otherwise, there is nothing further to do for symbols defined
9512 in regular objects. */
9513 if (h->def_regular)
9514 return TRUE;
9515
9516 /* There's also nothing more to do if we'll convert all relocations
9517 against this symbol into dynamic relocations. */
9518 if (!hmips->has_static_relocs)
9519 return TRUE;
9520
9521 /* We're now relying on copy relocations. Complain if we have
9522 some that we can't convert. */
9523 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
9524 {
9525 _bfd_error_handler (_("non-dynamic relocations refer to "
9526 "dynamic symbol %s"),
9527 h->root.root.string);
9528 bfd_set_error (bfd_error_bad_value);
9529 return FALSE;
9530 }
9531
9532 /* We must allocate the symbol in our .dynbss section, which will
9533 become part of the .bss section of the executable. There will be
9534 an entry for this symbol in the .dynsym section. The dynamic
9535 object will contain position independent code, so all references
9536 from the dynamic object to this symbol will go through the global
9537 offset table. The dynamic linker will use the .dynsym entry to
9538 determine the address it must put in the global offset table, so
9539 both the dynamic object and the regular object will refer to the
9540 same memory location for the variable. */
9541
9542 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
9543 {
9544 s = htab->root.sdynrelro;
9545 srel = htab->root.sreldynrelro;
9546 }
9547 else
9548 {
9549 s = htab->root.sdynbss;
9550 srel = htab->root.srelbss;
9551 }
9552 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9553 {
9554 if (htab->is_vxworks)
9555 srel->size += sizeof (Elf32_External_Rela);
9556 else
9557 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9558 h->needs_copy = 1;
9559 }
9560
9561 /* All relocations against this symbol that could have been made
9562 dynamic will now refer to the local copy instead. */
9563 hmips->possibly_dynamic_relocs = 0;
9564
9565 return _bfd_elf_adjust_dynamic_copy (info, h, s);
9566 }
9567 \f
9568 /* This function is called after all the input files have been read,
9569 and the input sections have been assigned to output sections. We
9570 check for any mips16 stub sections that we can discard. */
9571
9572 bfd_boolean
9573 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9574 struct bfd_link_info *info)
9575 {
9576 asection *sect;
9577 struct mips_elf_link_hash_table *htab;
9578 struct mips_htab_traverse_info hti;
9579
9580 htab = mips_elf_hash_table (info);
9581 BFD_ASSERT (htab != NULL);
9582
9583 /* The .reginfo section has a fixed size. */
9584 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9585 if (sect != NULL)
9586 {
9587 bfd_set_section_size (sect, sizeof (Elf32_External_RegInfo));
9588 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9589 }
9590
9591 /* The .MIPS.abiflags section has a fixed size. */
9592 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9593 if (sect != NULL)
9594 {
9595 bfd_set_section_size (sect, sizeof (Elf_External_ABIFlags_v0));
9596 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9597 }
9598
9599 hti.info = info;
9600 hti.output_bfd = output_bfd;
9601 hti.error = FALSE;
9602 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9603 mips_elf_check_symbols, &hti);
9604 if (hti.error)
9605 return FALSE;
9606
9607 return TRUE;
9608 }
9609
9610 /* If the link uses a GOT, lay it out and work out its size. */
9611
9612 static bfd_boolean
9613 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9614 {
9615 bfd *dynobj;
9616 asection *s;
9617 struct mips_got_info *g;
9618 bfd_size_type loadable_size = 0;
9619 bfd_size_type page_gotno;
9620 bfd *ibfd;
9621 struct mips_elf_traverse_got_arg tga;
9622 struct mips_elf_link_hash_table *htab;
9623
9624 htab = mips_elf_hash_table (info);
9625 BFD_ASSERT (htab != NULL);
9626
9627 s = htab->root.sgot;
9628 if (s == NULL)
9629 return TRUE;
9630
9631 dynobj = elf_hash_table (info)->dynobj;
9632 g = htab->got_info;
9633
9634 /* Allocate room for the reserved entries. VxWorks always reserves
9635 3 entries; other objects only reserve 2 entries. */
9636 BFD_ASSERT (g->assigned_low_gotno == 0);
9637 if (htab->is_vxworks)
9638 htab->reserved_gotno = 3;
9639 else
9640 htab->reserved_gotno = 2;
9641 g->local_gotno += htab->reserved_gotno;
9642 g->assigned_low_gotno = htab->reserved_gotno;
9643
9644 /* Decide which symbols need to go in the global part of the GOT and
9645 count the number of reloc-only GOT symbols. */
9646 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9647
9648 if (!mips_elf_resolve_final_got_entries (info, g))
9649 return FALSE;
9650
9651 /* Calculate the total loadable size of the output. That
9652 will give us the maximum number of GOT_PAGE entries
9653 required. */
9654 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9655 {
9656 asection *subsection;
9657
9658 for (subsection = ibfd->sections;
9659 subsection;
9660 subsection = subsection->next)
9661 {
9662 if ((subsection->flags & SEC_ALLOC) == 0)
9663 continue;
9664 loadable_size += ((subsection->size + 0xf)
9665 &~ (bfd_size_type) 0xf);
9666 }
9667 }
9668
9669 if (htab->is_vxworks)
9670 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9671 relocations against local symbols evaluate to "G", and the EABI does
9672 not include R_MIPS_GOT_PAGE. */
9673 page_gotno = 0;
9674 else
9675 /* Assume there are two loadable segments consisting of contiguous
9676 sections. Is 5 enough? */
9677 page_gotno = (loadable_size >> 16) + 5;
9678
9679 /* Choose the smaller of the two page estimates; both are intended to be
9680 conservative. */
9681 if (page_gotno > g->page_gotno)
9682 page_gotno = g->page_gotno;
9683
9684 g->local_gotno += page_gotno;
9685 g->assigned_high_gotno = g->local_gotno - 1;
9686
9687 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9688 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9689 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9690
9691 /* VxWorks does not support multiple GOTs. It initializes $gp to
9692 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9693 dynamic loader. */
9694 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9695 {
9696 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9697 return FALSE;
9698 }
9699 else
9700 {
9701 /* Record that all bfds use G. This also has the effect of freeing
9702 the per-bfd GOTs, which we no longer need. */
9703 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9704 if (mips_elf_bfd_got (ibfd, FALSE))
9705 mips_elf_replace_bfd_got (ibfd, g);
9706 mips_elf_replace_bfd_got (output_bfd, g);
9707
9708 /* Set up TLS entries. */
9709 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9710 tga.info = info;
9711 tga.g = g;
9712 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9713 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9714 if (!tga.g)
9715 return FALSE;
9716 BFD_ASSERT (g->tls_assigned_gotno
9717 == g->global_gotno + g->local_gotno + g->tls_gotno);
9718
9719 /* Each VxWorks GOT entry needs an explicit relocation. */
9720 if (htab->is_vxworks && bfd_link_pic (info))
9721 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9722
9723 /* Allocate room for the TLS relocations. */
9724 if (g->relocs)
9725 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9726 }
9727
9728 return TRUE;
9729 }
9730
9731 /* Estimate the size of the .MIPS.stubs section. */
9732
9733 static void
9734 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9735 {
9736 struct mips_elf_link_hash_table *htab;
9737 bfd_size_type dynsymcount;
9738
9739 htab = mips_elf_hash_table (info);
9740 BFD_ASSERT (htab != NULL);
9741
9742 if (htab->lazy_stub_count == 0)
9743 return;
9744
9745 /* IRIX rld assumes that a function stub isn't at the end of the .text
9746 section, so add a dummy entry to the end. */
9747 htab->lazy_stub_count++;
9748
9749 /* Get a worst-case estimate of the number of dynamic symbols needed.
9750 At this point, dynsymcount does not account for section symbols
9751 and count_section_dynsyms may overestimate the number that will
9752 be needed. */
9753 dynsymcount = (elf_hash_table (info)->dynsymcount
9754 + count_section_dynsyms (output_bfd, info));
9755
9756 /* Determine the size of one stub entry. There's no disadvantage
9757 from using microMIPS code here, so for the sake of pure-microMIPS
9758 binaries we prefer it whenever there's any microMIPS code in
9759 output produced at all. This has a benefit of stubs being
9760 shorter by 4 bytes each too, unless in the insn32 mode. */
9761 if (!MICROMIPS_P (output_bfd))
9762 htab->function_stub_size = (dynsymcount > 0x10000
9763 ? MIPS_FUNCTION_STUB_BIG_SIZE
9764 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9765 else if (htab->insn32)
9766 htab->function_stub_size = (dynsymcount > 0x10000
9767 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9768 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9769 else
9770 htab->function_stub_size = (dynsymcount > 0x10000
9771 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9772 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9773
9774 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9775 }
9776
9777 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9778 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9779 stub, allocate an entry in the stubs section. */
9780
9781 static bfd_boolean
9782 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9783 {
9784 struct mips_htab_traverse_info *hti = data;
9785 struct mips_elf_link_hash_table *htab;
9786 struct bfd_link_info *info;
9787 bfd *output_bfd;
9788
9789 info = hti->info;
9790 output_bfd = hti->output_bfd;
9791 htab = mips_elf_hash_table (info);
9792 BFD_ASSERT (htab != NULL);
9793
9794 if (h->needs_lazy_stub)
9795 {
9796 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9797 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9798 bfd_vma isa_bit = micromips_p;
9799
9800 BFD_ASSERT (htab->root.dynobj != NULL);
9801 if (h->root.plt.plist == NULL)
9802 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9803 if (h->root.plt.plist == NULL)
9804 {
9805 hti->error = TRUE;
9806 return FALSE;
9807 }
9808 h->root.root.u.def.section = htab->sstubs;
9809 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9810 h->root.plt.plist->stub_offset = htab->sstubs->size;
9811 h->root.other = other;
9812 htab->sstubs->size += htab->function_stub_size;
9813 }
9814 return TRUE;
9815 }
9816
9817 /* Allocate offsets in the stubs section to each symbol that needs one.
9818 Set the final size of the .MIPS.stub section. */
9819
9820 static bfd_boolean
9821 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9822 {
9823 bfd *output_bfd = info->output_bfd;
9824 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9825 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9826 bfd_vma isa_bit = micromips_p;
9827 struct mips_elf_link_hash_table *htab;
9828 struct mips_htab_traverse_info hti;
9829 struct elf_link_hash_entry *h;
9830 bfd *dynobj;
9831
9832 htab = mips_elf_hash_table (info);
9833 BFD_ASSERT (htab != NULL);
9834
9835 if (htab->lazy_stub_count == 0)
9836 return TRUE;
9837
9838 htab->sstubs->size = 0;
9839 hti.info = info;
9840 hti.output_bfd = output_bfd;
9841 hti.error = FALSE;
9842 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9843 if (hti.error)
9844 return FALSE;
9845 htab->sstubs->size += htab->function_stub_size;
9846 BFD_ASSERT (htab->sstubs->size
9847 == htab->lazy_stub_count * htab->function_stub_size);
9848
9849 dynobj = elf_hash_table (info)->dynobj;
9850 BFD_ASSERT (dynobj != NULL);
9851 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9852 if (h == NULL)
9853 return FALSE;
9854 h->root.u.def.value = isa_bit;
9855 h->other = other;
9856 h->type = STT_FUNC;
9857
9858 return TRUE;
9859 }
9860
9861 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9862 bfd_link_info. If H uses the address of a PLT entry as the value
9863 of the symbol, then set the entry in the symbol table now. Prefer
9864 a standard MIPS PLT entry. */
9865
9866 static bfd_boolean
9867 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9868 {
9869 struct bfd_link_info *info = data;
9870 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9871 struct mips_elf_link_hash_table *htab;
9872 unsigned int other;
9873 bfd_vma isa_bit;
9874 bfd_vma val;
9875
9876 htab = mips_elf_hash_table (info);
9877 BFD_ASSERT (htab != NULL);
9878
9879 if (h->use_plt_entry)
9880 {
9881 BFD_ASSERT (h->root.plt.plist != NULL);
9882 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9883 || h->root.plt.plist->comp_offset != MINUS_ONE);
9884
9885 val = htab->plt_header_size;
9886 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9887 {
9888 isa_bit = 0;
9889 val += h->root.plt.plist->mips_offset;
9890 other = 0;
9891 }
9892 else
9893 {
9894 isa_bit = 1;
9895 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9896 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9897 }
9898 val += isa_bit;
9899 /* For VxWorks, point at the PLT load stub rather than the lazy
9900 resolution stub; this stub will become the canonical function
9901 address. */
9902 if (htab->is_vxworks)
9903 val += 8;
9904
9905 h->root.root.u.def.section = htab->root.splt;
9906 h->root.root.u.def.value = val;
9907 h->root.other = other;
9908 }
9909
9910 return TRUE;
9911 }
9912
9913 /* Set the sizes of the dynamic sections. */
9914
9915 bfd_boolean
9916 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9917 struct bfd_link_info *info)
9918 {
9919 bfd *dynobj;
9920 asection *s, *sreldyn;
9921 bfd_boolean reltext;
9922 struct mips_elf_link_hash_table *htab;
9923
9924 htab = mips_elf_hash_table (info);
9925 BFD_ASSERT (htab != NULL);
9926 dynobj = elf_hash_table (info)->dynobj;
9927 BFD_ASSERT (dynobj != NULL);
9928
9929 if (elf_hash_table (info)->dynamic_sections_created)
9930 {
9931 /* Set the contents of the .interp section to the interpreter. */
9932 if (bfd_link_executable (info) && !info->nointerp)
9933 {
9934 s = bfd_get_linker_section (dynobj, ".interp");
9935 BFD_ASSERT (s != NULL);
9936 s->size
9937 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9938 s->contents
9939 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9940 }
9941
9942 /* Figure out the size of the PLT header if we know that we
9943 are using it. For the sake of cache alignment always use
9944 a standard header whenever any standard entries are present
9945 even if microMIPS entries are present as well. This also
9946 lets the microMIPS header rely on the value of $v0 only set
9947 by microMIPS entries, for a small size reduction.
9948
9949 Set symbol table entry values for symbols that use the
9950 address of their PLT entry now that we can calculate it.
9951
9952 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9953 haven't already in _bfd_elf_create_dynamic_sections. */
9954 if (htab->root.splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9955 {
9956 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9957 && !htab->plt_mips_offset);
9958 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9959 bfd_vma isa_bit = micromips_p;
9960 struct elf_link_hash_entry *h;
9961 bfd_vma size;
9962
9963 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9964 BFD_ASSERT (htab->root.sgotplt->size == 0);
9965 BFD_ASSERT (htab->root.splt->size == 0);
9966
9967 if (htab->is_vxworks && bfd_link_pic (info))
9968 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9969 else if (htab->is_vxworks)
9970 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9971 else if (ABI_64_P (output_bfd))
9972 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9973 else if (ABI_N32_P (output_bfd))
9974 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9975 else if (!micromips_p)
9976 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9977 else if (htab->insn32)
9978 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9979 else
9980 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9981
9982 htab->plt_header_is_comp = micromips_p;
9983 htab->plt_header_size = size;
9984 htab->root.splt->size = (size
9985 + htab->plt_mips_offset
9986 + htab->plt_comp_offset);
9987 htab->root.sgotplt->size = (htab->plt_got_index
9988 * MIPS_ELF_GOT_SIZE (dynobj));
9989
9990 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9991
9992 if (htab->root.hplt == NULL)
9993 {
9994 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.splt,
9995 "_PROCEDURE_LINKAGE_TABLE_");
9996 htab->root.hplt = h;
9997 if (h == NULL)
9998 return FALSE;
9999 }
10000
10001 h = htab->root.hplt;
10002 h->root.u.def.value = isa_bit;
10003 h->other = other;
10004 h->type = STT_FUNC;
10005 }
10006 }
10007
10008 /* Allocate space for global sym dynamic relocs. */
10009 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
10010
10011 mips_elf_estimate_stub_size (output_bfd, info);
10012
10013 if (!mips_elf_lay_out_got (output_bfd, info))
10014 return FALSE;
10015
10016 mips_elf_lay_out_lazy_stubs (info);
10017
10018 /* The check_relocs and adjust_dynamic_symbol entry points have
10019 determined the sizes of the various dynamic sections. Allocate
10020 memory for them. */
10021 reltext = FALSE;
10022 for (s = dynobj->sections; s != NULL; s = s->next)
10023 {
10024 const char *name;
10025
10026 /* It's OK to base decisions on the section name, because none
10027 of the dynobj section names depend upon the input files. */
10028 name = bfd_section_name (s);
10029
10030 if ((s->flags & SEC_LINKER_CREATED) == 0)
10031 continue;
10032
10033 if (CONST_STRNEQ (name, ".rel"))
10034 {
10035 if (s->size != 0)
10036 {
10037 const char *outname;
10038 asection *target;
10039
10040 /* If this relocation section applies to a read only
10041 section, then we probably need a DT_TEXTREL entry.
10042 If the relocation section is .rel(a).dyn, we always
10043 assert a DT_TEXTREL entry rather than testing whether
10044 there exists a relocation to a read only section or
10045 not. */
10046 outname = bfd_section_name (s->output_section);
10047 target = bfd_get_section_by_name (output_bfd, outname + 4);
10048 if ((target != NULL
10049 && (target->flags & SEC_READONLY) != 0
10050 && (target->flags & SEC_ALLOC) != 0)
10051 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
10052 reltext = TRUE;
10053
10054 /* We use the reloc_count field as a counter if we need
10055 to copy relocs into the output file. */
10056 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
10057 s->reloc_count = 0;
10058
10059 /* If combreloc is enabled, elf_link_sort_relocs() will
10060 sort relocations, but in a different way than we do,
10061 and before we're done creating relocations. Also, it
10062 will move them around between input sections'
10063 relocation's contents, so our sorting would be
10064 broken, so don't let it run. */
10065 info->combreloc = 0;
10066 }
10067 }
10068 else if (bfd_link_executable (info)
10069 && ! mips_elf_hash_table (info)->use_rld_obj_head
10070 && CONST_STRNEQ (name, ".rld_map"))
10071 {
10072 /* We add a room for __rld_map. It will be filled in by the
10073 rtld to contain a pointer to the _r_debug structure. */
10074 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
10075 }
10076 else if (SGI_COMPAT (output_bfd)
10077 && CONST_STRNEQ (name, ".compact_rel"))
10078 s->size += mips_elf_hash_table (info)->compact_rel_size;
10079 else if (s == htab->root.splt)
10080 {
10081 /* If the last PLT entry has a branch delay slot, allocate
10082 room for an extra nop to fill the delay slot. This is
10083 for CPUs without load interlocking. */
10084 if (! LOAD_INTERLOCKS_P (output_bfd)
10085 && ! htab->is_vxworks && s->size > 0)
10086 s->size += 4;
10087 }
10088 else if (! CONST_STRNEQ (name, ".init")
10089 && s != htab->root.sgot
10090 && s != htab->root.sgotplt
10091 && s != htab->sstubs
10092 && s != htab->root.sdynbss
10093 && s != htab->root.sdynrelro)
10094 {
10095 /* It's not one of our sections, so don't allocate space. */
10096 continue;
10097 }
10098
10099 if (s->size == 0)
10100 {
10101 s->flags |= SEC_EXCLUDE;
10102 continue;
10103 }
10104
10105 if ((s->flags & SEC_HAS_CONTENTS) == 0)
10106 continue;
10107
10108 /* Allocate memory for the section contents. */
10109 s->contents = bfd_zalloc (dynobj, s->size);
10110 if (s->contents == NULL)
10111 {
10112 bfd_set_error (bfd_error_no_memory);
10113 return FALSE;
10114 }
10115 }
10116
10117 if (elf_hash_table (info)->dynamic_sections_created)
10118 {
10119 /* Add some entries to the .dynamic section. We fill in the
10120 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
10121 must add the entries now so that we get the correct size for
10122 the .dynamic section. */
10123
10124 /* SGI object has the equivalence of DT_DEBUG in the
10125 DT_MIPS_RLD_MAP entry. This must come first because glibc
10126 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
10127 may only look at the first one they see. */
10128 if (!bfd_link_pic (info)
10129 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
10130 return FALSE;
10131
10132 if (bfd_link_executable (info)
10133 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
10134 return FALSE;
10135
10136 /* The DT_DEBUG entry may be filled in by the dynamic linker and
10137 used by the debugger. */
10138 if (bfd_link_executable (info)
10139 && !SGI_COMPAT (output_bfd)
10140 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
10141 return FALSE;
10142
10143 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
10144 info->flags |= DF_TEXTREL;
10145
10146 if ((info->flags & DF_TEXTREL) != 0)
10147 {
10148 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
10149 return FALSE;
10150
10151 /* Clear the DF_TEXTREL flag. It will be set again if we
10152 write out an actual text relocation; we may not, because
10153 at this point we do not know whether e.g. any .eh_frame
10154 absolute relocations have been converted to PC-relative. */
10155 info->flags &= ~DF_TEXTREL;
10156 }
10157
10158 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
10159 return FALSE;
10160
10161 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
10162 if (htab->is_vxworks)
10163 {
10164 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
10165 use any of the DT_MIPS_* tags. */
10166 if (sreldyn && sreldyn->size > 0)
10167 {
10168 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
10169 return FALSE;
10170
10171 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
10172 return FALSE;
10173
10174 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
10175 return FALSE;
10176 }
10177 }
10178 else
10179 {
10180 if (sreldyn && sreldyn->size > 0
10181 && !bfd_is_abs_section (sreldyn->output_section))
10182 {
10183 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
10184 return FALSE;
10185
10186 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
10187 return FALSE;
10188
10189 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
10190 return FALSE;
10191 }
10192
10193 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
10194 return FALSE;
10195
10196 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
10197 return FALSE;
10198
10199 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
10200 return FALSE;
10201
10202 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
10203 return FALSE;
10204
10205 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
10206 return FALSE;
10207
10208 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
10209 return FALSE;
10210
10211 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
10212 return FALSE;
10213
10214 if (info->emit_gnu_hash
10215 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_XHASH, 0))
10216 return FALSE;
10217
10218 if (IRIX_COMPAT (dynobj) == ict_irix5
10219 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
10220 return FALSE;
10221
10222 if (IRIX_COMPAT (dynobj) == ict_irix6
10223 && (bfd_get_section_by_name
10224 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
10225 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
10226 return FALSE;
10227 }
10228 if (htab->root.splt->size > 0)
10229 {
10230 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
10231 return FALSE;
10232
10233 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
10234 return FALSE;
10235
10236 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
10237 return FALSE;
10238
10239 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
10240 return FALSE;
10241 }
10242 if (htab->is_vxworks
10243 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
10244 return FALSE;
10245 }
10246
10247 return TRUE;
10248 }
10249 \f
10250 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
10251 Adjust its R_ADDEND field so that it is correct for the output file.
10252 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
10253 and sections respectively; both use symbol indexes. */
10254
10255 static void
10256 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
10257 bfd *input_bfd, Elf_Internal_Sym *local_syms,
10258 asection **local_sections, Elf_Internal_Rela *rel)
10259 {
10260 unsigned int r_type, r_symndx;
10261 Elf_Internal_Sym *sym;
10262 asection *sec;
10263
10264 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10265 {
10266 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10267 if (gprel16_reloc_p (r_type)
10268 || r_type == R_MIPS_GPREL32
10269 || literal_reloc_p (r_type))
10270 {
10271 rel->r_addend += _bfd_get_gp_value (input_bfd);
10272 rel->r_addend -= _bfd_get_gp_value (output_bfd);
10273 }
10274
10275 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
10276 sym = local_syms + r_symndx;
10277
10278 /* Adjust REL's addend to account for section merging. */
10279 if (!bfd_link_relocatable (info))
10280 {
10281 sec = local_sections[r_symndx];
10282 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
10283 }
10284
10285 /* This would normally be done by the rela_normal code in elflink.c. */
10286 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10287 rel->r_addend += local_sections[r_symndx]->output_offset;
10288 }
10289 }
10290
10291 /* Handle relocations against symbols from removed linkonce sections,
10292 or sections discarded by a linker script. We use this wrapper around
10293 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
10294 on 64-bit ELF targets. In this case for any relocation handled, which
10295 always be the first in a triplet, the remaining two have to be processed
10296 together with the first, even if they are R_MIPS_NONE. It is the symbol
10297 index referred by the first reloc that applies to all the three and the
10298 remaining two never refer to an object symbol. And it is the final
10299 relocation (the last non-null one) that determines the output field of
10300 the whole relocation so retrieve the corresponding howto structure for
10301 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
10302
10303 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
10304 and therefore requires to be pasted in a loop. It also defines a block
10305 and does not protect any of its arguments, hence the extra brackets. */
10306
10307 static void
10308 mips_reloc_against_discarded_section (bfd *output_bfd,
10309 struct bfd_link_info *info,
10310 bfd *input_bfd, asection *input_section,
10311 Elf_Internal_Rela **rel,
10312 const Elf_Internal_Rela **relend,
10313 bfd_boolean rel_reloc,
10314 reloc_howto_type *howto,
10315 bfd_byte *contents)
10316 {
10317 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10318 int count = bed->s->int_rels_per_ext_rel;
10319 unsigned int r_type;
10320 int i;
10321
10322 for (i = count - 1; i > 0; i--)
10323 {
10324 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10325 if (r_type != R_MIPS_NONE)
10326 {
10327 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10328 break;
10329 }
10330 }
10331 do
10332 {
10333 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10334 (*rel), count, (*relend),
10335 howto, i, contents);
10336 }
10337 while (0);
10338 }
10339
10340 /* Relocate a MIPS ELF section. */
10341
10342 bfd_boolean
10343 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10344 bfd *input_bfd, asection *input_section,
10345 bfd_byte *contents, Elf_Internal_Rela *relocs,
10346 Elf_Internal_Sym *local_syms,
10347 asection **local_sections)
10348 {
10349 Elf_Internal_Rela *rel;
10350 const Elf_Internal_Rela *relend;
10351 bfd_vma addend = 0;
10352 bfd_boolean use_saved_addend_p = FALSE;
10353
10354 relend = relocs + input_section->reloc_count;
10355 for (rel = relocs; rel < relend; ++rel)
10356 {
10357 const char *name;
10358 bfd_vma value = 0;
10359 reloc_howto_type *howto;
10360 bfd_boolean cross_mode_jump_p = FALSE;
10361 /* TRUE if the relocation is a RELA relocation, rather than a
10362 REL relocation. */
10363 bfd_boolean rela_relocation_p = TRUE;
10364 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10365 const char *msg;
10366 unsigned long r_symndx;
10367 asection *sec;
10368 Elf_Internal_Shdr *symtab_hdr;
10369 struct elf_link_hash_entry *h;
10370 bfd_boolean rel_reloc;
10371
10372 rel_reloc = (NEWABI_P (input_bfd)
10373 && mips_elf_rel_relocation_p (input_bfd, input_section,
10374 relocs, rel));
10375 /* Find the relocation howto for this relocation. */
10376 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10377
10378 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10379 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10380 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10381 {
10382 sec = local_sections[r_symndx];
10383 h = NULL;
10384 }
10385 else
10386 {
10387 unsigned long extsymoff;
10388
10389 extsymoff = 0;
10390 if (!elf_bad_symtab (input_bfd))
10391 extsymoff = symtab_hdr->sh_info;
10392 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10393 while (h->root.type == bfd_link_hash_indirect
10394 || h->root.type == bfd_link_hash_warning)
10395 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10396
10397 sec = NULL;
10398 if (h->root.type == bfd_link_hash_defined
10399 || h->root.type == bfd_link_hash_defweak)
10400 sec = h->root.u.def.section;
10401 }
10402
10403 if (sec != NULL && discarded_section (sec))
10404 {
10405 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10406 input_section, &rel, &relend,
10407 rel_reloc, howto, contents);
10408 continue;
10409 }
10410
10411 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10412 {
10413 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10414 64-bit code, but make sure all their addresses are in the
10415 lowermost or uppermost 32-bit section of the 64-bit address
10416 space. Thus, when they use an R_MIPS_64 they mean what is
10417 usually meant by R_MIPS_32, with the exception that the
10418 stored value is sign-extended to 64 bits. */
10419 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
10420
10421 /* On big-endian systems, we need to lie about the position
10422 of the reloc. */
10423 if (bfd_big_endian (input_bfd))
10424 rel->r_offset += 4;
10425 }
10426
10427 if (!use_saved_addend_p)
10428 {
10429 /* If these relocations were originally of the REL variety,
10430 we must pull the addend out of the field that will be
10431 relocated. Otherwise, we simply use the contents of the
10432 RELA relocation. */
10433 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10434 relocs, rel))
10435 {
10436 rela_relocation_p = FALSE;
10437 addend = mips_elf_read_rel_addend (input_bfd, rel,
10438 howto, contents);
10439 if (hi16_reloc_p (r_type)
10440 || (got16_reloc_p (r_type)
10441 && mips_elf_local_relocation_p (input_bfd, rel,
10442 local_sections)))
10443 {
10444 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10445 contents, &addend))
10446 {
10447 if (h)
10448 name = h->root.root.string;
10449 else
10450 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10451 local_syms + r_symndx,
10452 sec);
10453 _bfd_error_handler
10454 /* xgettext:c-format */
10455 (_("%pB: can't find matching LO16 reloc against `%s'"
10456 " for %s at %#" PRIx64 " in section `%pA'"),
10457 input_bfd, name,
10458 howto->name, (uint64_t) rel->r_offset, input_section);
10459 }
10460 }
10461 else
10462 addend <<= howto->rightshift;
10463 }
10464 else
10465 addend = rel->r_addend;
10466 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10467 local_syms, local_sections, rel);
10468 }
10469
10470 if (bfd_link_relocatable (info))
10471 {
10472 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10473 && bfd_big_endian (input_bfd))
10474 rel->r_offset -= 4;
10475
10476 if (!rela_relocation_p && rel->r_addend)
10477 {
10478 addend += rel->r_addend;
10479 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10480 addend = mips_elf_high (addend);
10481 else if (r_type == R_MIPS_HIGHER)
10482 addend = mips_elf_higher (addend);
10483 else if (r_type == R_MIPS_HIGHEST)
10484 addend = mips_elf_highest (addend);
10485 else
10486 addend >>= howto->rightshift;
10487
10488 /* We use the source mask, rather than the destination
10489 mask because the place to which we are writing will be
10490 source of the addend in the final link. */
10491 addend &= howto->src_mask;
10492
10493 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10494 /* See the comment above about using R_MIPS_64 in the 32-bit
10495 ABI. Here, we need to update the addend. It would be
10496 possible to get away with just using the R_MIPS_32 reloc
10497 but for endianness. */
10498 {
10499 bfd_vma sign_bits;
10500 bfd_vma low_bits;
10501 bfd_vma high_bits;
10502
10503 if (addend & ((bfd_vma) 1 << 31))
10504 #ifdef BFD64
10505 sign_bits = ((bfd_vma) 1 << 32) - 1;
10506 #else
10507 sign_bits = -1;
10508 #endif
10509 else
10510 sign_bits = 0;
10511
10512 /* If we don't know that we have a 64-bit type,
10513 do two separate stores. */
10514 if (bfd_big_endian (input_bfd))
10515 {
10516 /* Store the sign-bits (which are most significant)
10517 first. */
10518 low_bits = sign_bits;
10519 high_bits = addend;
10520 }
10521 else
10522 {
10523 low_bits = addend;
10524 high_bits = sign_bits;
10525 }
10526 bfd_put_32 (input_bfd, low_bits,
10527 contents + rel->r_offset);
10528 bfd_put_32 (input_bfd, high_bits,
10529 contents + rel->r_offset + 4);
10530 continue;
10531 }
10532
10533 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10534 input_bfd, input_section,
10535 contents, FALSE))
10536 return FALSE;
10537 }
10538
10539 /* Go on to the next relocation. */
10540 continue;
10541 }
10542
10543 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10544 relocations for the same offset. In that case we are
10545 supposed to treat the output of each relocation as the addend
10546 for the next. */
10547 if (rel + 1 < relend
10548 && rel->r_offset == rel[1].r_offset
10549 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10550 use_saved_addend_p = TRUE;
10551 else
10552 use_saved_addend_p = FALSE;
10553
10554 /* Figure out what value we are supposed to relocate. */
10555 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10556 input_section, contents,
10557 info, rel, addend, howto,
10558 local_syms, local_sections,
10559 &value, &name, &cross_mode_jump_p,
10560 use_saved_addend_p))
10561 {
10562 case bfd_reloc_continue:
10563 /* There's nothing to do. */
10564 continue;
10565
10566 case bfd_reloc_undefined:
10567 /* mips_elf_calculate_relocation already called the
10568 undefined_symbol callback. There's no real point in
10569 trying to perform the relocation at this point, so we
10570 just skip ahead to the next relocation. */
10571 continue;
10572
10573 case bfd_reloc_notsupported:
10574 msg = _("internal error: unsupported relocation error");
10575 info->callbacks->warning
10576 (info, msg, name, input_bfd, input_section, rel->r_offset);
10577 return FALSE;
10578
10579 case bfd_reloc_overflow:
10580 if (use_saved_addend_p)
10581 /* Ignore overflow until we reach the last relocation for
10582 a given location. */
10583 ;
10584 else
10585 {
10586 struct mips_elf_link_hash_table *htab;
10587
10588 htab = mips_elf_hash_table (info);
10589 BFD_ASSERT (htab != NULL);
10590 BFD_ASSERT (name != NULL);
10591 if (!htab->small_data_overflow_reported
10592 && (gprel16_reloc_p (howto->type)
10593 || literal_reloc_p (howto->type)))
10594 {
10595 msg = _("small-data section exceeds 64KB;"
10596 " lower small-data size limit (see option -G)");
10597
10598 htab->small_data_overflow_reported = TRUE;
10599 (*info->callbacks->einfo) ("%P: %s\n", msg);
10600 }
10601 (*info->callbacks->reloc_overflow)
10602 (info, NULL, name, howto->name, (bfd_vma) 0,
10603 input_bfd, input_section, rel->r_offset);
10604 }
10605 break;
10606
10607 case bfd_reloc_ok:
10608 break;
10609
10610 case bfd_reloc_outofrange:
10611 msg = NULL;
10612 if (jal_reloc_p (howto->type))
10613 msg = (cross_mode_jump_p
10614 ? _("cannot convert a jump to JALX "
10615 "for a non-word-aligned address")
10616 : (howto->type == R_MIPS16_26
10617 ? _("jump to a non-word-aligned address")
10618 : _("jump to a non-instruction-aligned address")));
10619 else if (b_reloc_p (howto->type))
10620 msg = (cross_mode_jump_p
10621 ? _("cannot convert a branch to JALX "
10622 "for a non-word-aligned address")
10623 : _("branch to a non-instruction-aligned address"));
10624 else if (aligned_pcrel_reloc_p (howto->type))
10625 msg = _("PC-relative load from unaligned address");
10626 if (msg)
10627 {
10628 info->callbacks->einfo
10629 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10630 break;
10631 }
10632 /* Fall through. */
10633
10634 default:
10635 abort ();
10636 break;
10637 }
10638
10639 /* If we've got another relocation for the address, keep going
10640 until we reach the last one. */
10641 if (use_saved_addend_p)
10642 {
10643 addend = value;
10644 continue;
10645 }
10646
10647 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10648 /* See the comment above about using R_MIPS_64 in the 32-bit
10649 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10650 that calculated the right value. Now, however, we
10651 sign-extend the 32-bit result to 64-bits, and store it as a
10652 64-bit value. We are especially generous here in that we
10653 go to extreme lengths to support this usage on systems with
10654 only a 32-bit VMA. */
10655 {
10656 bfd_vma sign_bits;
10657 bfd_vma low_bits;
10658 bfd_vma high_bits;
10659
10660 if (value & ((bfd_vma) 1 << 31))
10661 #ifdef BFD64
10662 sign_bits = ((bfd_vma) 1 << 32) - 1;
10663 #else
10664 sign_bits = -1;
10665 #endif
10666 else
10667 sign_bits = 0;
10668
10669 /* If we don't know that we have a 64-bit type,
10670 do two separate stores. */
10671 if (bfd_big_endian (input_bfd))
10672 {
10673 /* Undo what we did above. */
10674 rel->r_offset -= 4;
10675 /* Store the sign-bits (which are most significant)
10676 first. */
10677 low_bits = sign_bits;
10678 high_bits = value;
10679 }
10680 else
10681 {
10682 low_bits = value;
10683 high_bits = sign_bits;
10684 }
10685 bfd_put_32 (input_bfd, low_bits,
10686 contents + rel->r_offset);
10687 bfd_put_32 (input_bfd, high_bits,
10688 contents + rel->r_offset + 4);
10689 continue;
10690 }
10691
10692 /* Actually perform the relocation. */
10693 if (! mips_elf_perform_relocation (info, howto, rel, value,
10694 input_bfd, input_section,
10695 contents, cross_mode_jump_p))
10696 return FALSE;
10697 }
10698
10699 return TRUE;
10700 }
10701 \f
10702 /* A function that iterates over each entry in la25_stubs and fills
10703 in the code for each one. DATA points to a mips_htab_traverse_info. */
10704
10705 static int
10706 mips_elf_create_la25_stub (void **slot, void *data)
10707 {
10708 struct mips_htab_traverse_info *hti;
10709 struct mips_elf_link_hash_table *htab;
10710 struct mips_elf_la25_stub *stub;
10711 asection *s;
10712 bfd_byte *loc;
10713 bfd_vma offset, target, target_high, target_low;
10714 bfd_vma branch_pc;
10715 bfd_signed_vma pcrel_offset = 0;
10716
10717 stub = (struct mips_elf_la25_stub *) *slot;
10718 hti = (struct mips_htab_traverse_info *) data;
10719 htab = mips_elf_hash_table (hti->info);
10720 BFD_ASSERT (htab != NULL);
10721
10722 /* Create the section contents, if we haven't already. */
10723 s = stub->stub_section;
10724 loc = s->contents;
10725 if (loc == NULL)
10726 {
10727 loc = bfd_malloc (s->size);
10728 if (loc == NULL)
10729 {
10730 hti->error = TRUE;
10731 return FALSE;
10732 }
10733 s->contents = loc;
10734 }
10735
10736 /* Work out where in the section this stub should go. */
10737 offset = stub->offset;
10738
10739 /* We add 8 here to account for the LUI/ADDIU instructions
10740 before the branch instruction. This cannot be moved down to
10741 where pcrel_offset is calculated as 's' is updated in
10742 mips_elf_get_la25_target. */
10743 branch_pc = s->output_section->vma + s->output_offset + offset + 8;
10744
10745 /* Work out the target address. */
10746 target = mips_elf_get_la25_target (stub, &s);
10747 target += s->output_section->vma + s->output_offset;
10748
10749 target_high = ((target + 0x8000) >> 16) & 0xffff;
10750 target_low = (target & 0xffff);
10751
10752 /* Calculate the PC of the compact branch instruction (for the case where
10753 compact branches are used for either microMIPSR6 or MIPSR6 with
10754 compact branches. Add 4-bytes to account for BC using the PC of the
10755 next instruction as the base. */
10756 pcrel_offset = target - (branch_pc + 4);
10757
10758 if (stub->stub_section != htab->strampoline)
10759 {
10760 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10761 of the section and write the two instructions at the end. */
10762 memset (loc, 0, offset);
10763 loc += offset;
10764 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10765 {
10766 bfd_put_micromips_32 (hti->output_bfd,
10767 LA25_LUI_MICROMIPS (target_high),
10768 loc);
10769 bfd_put_micromips_32 (hti->output_bfd,
10770 LA25_ADDIU_MICROMIPS (target_low),
10771 loc + 4);
10772 }
10773 else
10774 {
10775 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10776 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10777 }
10778 }
10779 else
10780 {
10781 /* This is trampoline. */
10782 loc += offset;
10783 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10784 {
10785 bfd_put_micromips_32 (hti->output_bfd,
10786 LA25_LUI_MICROMIPS (target_high), loc);
10787 bfd_put_micromips_32 (hti->output_bfd,
10788 LA25_J_MICROMIPS (target), loc + 4);
10789 bfd_put_micromips_32 (hti->output_bfd,
10790 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10791 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10792 }
10793 else
10794 {
10795 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10796 if (MIPSR6_P (hti->output_bfd) && htab->compact_branches)
10797 {
10798 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10799 bfd_put_32 (hti->output_bfd, LA25_BC (pcrel_offset), loc + 8);
10800 }
10801 else
10802 {
10803 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10804 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10805 }
10806 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10807 }
10808 }
10809 return TRUE;
10810 }
10811
10812 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10813 adjust it appropriately now. */
10814
10815 static void
10816 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10817 const char *name, Elf_Internal_Sym *sym)
10818 {
10819 /* The linker script takes care of providing names and values for
10820 these, but we must place them into the right sections. */
10821 static const char* const text_section_symbols[] = {
10822 "_ftext",
10823 "_etext",
10824 "__dso_displacement",
10825 "__elf_header",
10826 "__program_header_table",
10827 NULL
10828 };
10829
10830 static const char* const data_section_symbols[] = {
10831 "_fdata",
10832 "_edata",
10833 "_end",
10834 "_fbss",
10835 NULL
10836 };
10837
10838 const char* const *p;
10839 int i;
10840
10841 for (i = 0; i < 2; ++i)
10842 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10843 *p;
10844 ++p)
10845 if (strcmp (*p, name) == 0)
10846 {
10847 /* All of these symbols are given type STT_SECTION by the
10848 IRIX6 linker. */
10849 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10850 sym->st_other = STO_PROTECTED;
10851
10852 /* The IRIX linker puts these symbols in special sections. */
10853 if (i == 0)
10854 sym->st_shndx = SHN_MIPS_TEXT;
10855 else
10856 sym->st_shndx = SHN_MIPS_DATA;
10857
10858 break;
10859 }
10860 }
10861
10862 /* Finish up dynamic symbol handling. We set the contents of various
10863 dynamic sections here. */
10864
10865 bfd_boolean
10866 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10867 struct bfd_link_info *info,
10868 struct elf_link_hash_entry *h,
10869 Elf_Internal_Sym *sym)
10870 {
10871 bfd *dynobj;
10872 asection *sgot;
10873 struct mips_got_info *g, *gg;
10874 const char *name;
10875 int idx;
10876 struct mips_elf_link_hash_table *htab;
10877 struct mips_elf_link_hash_entry *hmips;
10878
10879 htab = mips_elf_hash_table (info);
10880 BFD_ASSERT (htab != NULL);
10881 dynobj = elf_hash_table (info)->dynobj;
10882 hmips = (struct mips_elf_link_hash_entry *) h;
10883
10884 BFD_ASSERT (!htab->is_vxworks);
10885
10886 if (h->plt.plist != NULL
10887 && (h->plt.plist->mips_offset != MINUS_ONE
10888 || h->plt.plist->comp_offset != MINUS_ONE))
10889 {
10890 /* We've decided to create a PLT entry for this symbol. */
10891 bfd_byte *loc;
10892 bfd_vma header_address, got_address;
10893 bfd_vma got_address_high, got_address_low, load;
10894 bfd_vma got_index;
10895 bfd_vma isa_bit;
10896
10897 got_index = h->plt.plist->gotplt_index;
10898
10899 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10900 BFD_ASSERT (h->dynindx != -1);
10901 BFD_ASSERT (htab->root.splt != NULL);
10902 BFD_ASSERT (got_index != MINUS_ONE);
10903 BFD_ASSERT (!h->def_regular);
10904
10905 /* Calculate the address of the PLT header. */
10906 isa_bit = htab->plt_header_is_comp;
10907 header_address = (htab->root.splt->output_section->vma
10908 + htab->root.splt->output_offset + isa_bit);
10909
10910 /* Calculate the address of the .got.plt entry. */
10911 got_address = (htab->root.sgotplt->output_section->vma
10912 + htab->root.sgotplt->output_offset
10913 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10914
10915 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10916 got_address_low = got_address & 0xffff;
10917
10918 /* The PLT sequence is not safe for N64 if .got.plt entry's address
10919 cannot be loaded in two instructions. */
10920 if (ABI_64_P (output_bfd)
10921 && ((got_address + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
10922 {
10923 _bfd_error_handler
10924 /* xgettext:c-format */
10925 (_("%pB: `%pA' entry VMA of %#" PRIx64 " outside the 32-bit range "
10926 "supported; consider using `-Ttext-segment=...'"),
10927 output_bfd,
10928 htab->root.sgotplt->output_section,
10929 (int64_t) got_address);
10930 bfd_set_error (bfd_error_no_error);
10931 return FALSE;
10932 }
10933
10934 /* Initially point the .got.plt entry at the PLT header. */
10935 loc = (htab->root.sgotplt->contents
10936 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10937 if (ABI_64_P (output_bfd))
10938 bfd_put_64 (output_bfd, header_address, loc);
10939 else
10940 bfd_put_32 (output_bfd, header_address, loc);
10941
10942 /* Now handle the PLT itself. First the standard entry (the order
10943 does not matter, we just have to pick one). */
10944 if (h->plt.plist->mips_offset != MINUS_ONE)
10945 {
10946 const bfd_vma *plt_entry;
10947 bfd_vma plt_offset;
10948
10949 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10950
10951 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10952
10953 /* Find out where the .plt entry should go. */
10954 loc = htab->root.splt->contents + plt_offset;
10955
10956 /* Pick the load opcode. */
10957 load = MIPS_ELF_LOAD_WORD (output_bfd);
10958
10959 /* Fill in the PLT entry itself. */
10960
10961 if (MIPSR6_P (output_bfd))
10962 plt_entry = htab->compact_branches ? mipsr6_exec_plt_entry_compact
10963 : mipsr6_exec_plt_entry;
10964 else
10965 plt_entry = mips_exec_plt_entry;
10966 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10967 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10968 loc + 4);
10969
10970 if (! LOAD_INTERLOCKS_P (output_bfd)
10971 || (MIPSR6_P (output_bfd) && htab->compact_branches))
10972 {
10973 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10974 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10975 }
10976 else
10977 {
10978 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10979 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10980 loc + 12);
10981 }
10982 }
10983
10984 /* Now the compressed entry. They come after any standard ones. */
10985 if (h->plt.plist->comp_offset != MINUS_ONE)
10986 {
10987 bfd_vma plt_offset;
10988
10989 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10990 + h->plt.plist->comp_offset);
10991
10992 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10993
10994 /* Find out where the .plt entry should go. */
10995 loc = htab->root.splt->contents + plt_offset;
10996
10997 /* Fill in the PLT entry itself. */
10998 if (!MICROMIPS_P (output_bfd))
10999 {
11000 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
11001
11002 bfd_put_16 (output_bfd, plt_entry[0], loc);
11003 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
11004 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11005 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
11006 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11007 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
11008 bfd_put_32 (output_bfd, got_address, loc + 12);
11009 }
11010 else if (htab->insn32)
11011 {
11012 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
11013
11014 bfd_put_16 (output_bfd, plt_entry[0], loc);
11015 bfd_put_16 (output_bfd, got_address_high, loc + 2);
11016 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11017 bfd_put_16 (output_bfd, got_address_low, loc + 6);
11018 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11019 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
11020 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
11021 bfd_put_16 (output_bfd, got_address_low, loc + 14);
11022 }
11023 else
11024 {
11025 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
11026 bfd_signed_vma gotpc_offset;
11027 bfd_vma loc_address;
11028
11029 BFD_ASSERT (got_address % 4 == 0);
11030
11031 loc_address = (htab->root.splt->output_section->vma
11032 + htab->root.splt->output_offset + plt_offset);
11033 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
11034
11035 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11036 if (gotpc_offset + 0x1000000 >= 0x2000000)
11037 {
11038 _bfd_error_handler
11039 /* xgettext:c-format */
11040 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
11041 "beyond the range of ADDIUPC"),
11042 output_bfd,
11043 htab->root.sgotplt->output_section,
11044 (int64_t) gotpc_offset,
11045 htab->root.splt->output_section);
11046 bfd_set_error (bfd_error_no_error);
11047 return FALSE;
11048 }
11049 bfd_put_16 (output_bfd,
11050 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11051 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11052 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11053 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
11054 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11055 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
11056 }
11057 }
11058
11059 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11060 mips_elf_output_dynamic_relocation (output_bfd, htab->root.srelplt,
11061 got_index - 2, h->dynindx,
11062 R_MIPS_JUMP_SLOT, got_address);
11063
11064 /* We distinguish between PLT entries and lazy-binding stubs by
11065 giving the former an st_other value of STO_MIPS_PLT. Set the
11066 flag and leave the value if there are any relocations in the
11067 binary where pointer equality matters. */
11068 sym->st_shndx = SHN_UNDEF;
11069 if (h->pointer_equality_needed)
11070 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
11071 else
11072 {
11073 sym->st_value = 0;
11074 sym->st_other = 0;
11075 }
11076 }
11077
11078 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
11079 {
11080 /* We've decided to create a lazy-binding stub. */
11081 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
11082 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
11083 bfd_vma stub_size = htab->function_stub_size;
11084 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
11085 bfd_vma isa_bit = micromips_p;
11086 bfd_vma stub_big_size;
11087
11088 if (!micromips_p)
11089 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
11090 else if (htab->insn32)
11091 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
11092 else
11093 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
11094
11095 /* This symbol has a stub. Set it up. */
11096
11097 BFD_ASSERT (h->dynindx != -1);
11098
11099 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
11100
11101 /* Values up to 2^31 - 1 are allowed. Larger values would cause
11102 sign extension at runtime in the stub, resulting in a negative
11103 index value. */
11104 if (h->dynindx & ~0x7fffffff)
11105 return FALSE;
11106
11107 /* Fill the stub. */
11108 if (micromips_p)
11109 {
11110 idx = 0;
11111 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
11112 stub + idx);
11113 idx += 4;
11114 if (htab->insn32)
11115 {
11116 bfd_put_micromips_32 (output_bfd,
11117 STUB_MOVE32_MICROMIPS, stub + idx);
11118 idx += 4;
11119 }
11120 else
11121 {
11122 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
11123 idx += 2;
11124 }
11125 if (stub_size == stub_big_size)
11126 {
11127 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
11128
11129 bfd_put_micromips_32 (output_bfd,
11130 STUB_LUI_MICROMIPS (dynindx_hi),
11131 stub + idx);
11132 idx += 4;
11133 }
11134 if (htab->insn32)
11135 {
11136 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
11137 stub + idx);
11138 idx += 4;
11139 }
11140 else
11141 {
11142 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
11143 idx += 2;
11144 }
11145
11146 /* If a large stub is not required and sign extension is not a
11147 problem, then use legacy code in the stub. */
11148 if (stub_size == stub_big_size)
11149 bfd_put_micromips_32 (output_bfd,
11150 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
11151 stub + idx);
11152 else if (h->dynindx & ~0x7fff)
11153 bfd_put_micromips_32 (output_bfd,
11154 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
11155 stub + idx);
11156 else
11157 bfd_put_micromips_32 (output_bfd,
11158 STUB_LI16S_MICROMIPS (output_bfd,
11159 h->dynindx),
11160 stub + idx);
11161 }
11162 else
11163 {
11164 idx = 0;
11165 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
11166 idx += 4;
11167 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
11168 idx += 4;
11169 if (stub_size == stub_big_size)
11170 {
11171 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
11172 stub + idx);
11173 idx += 4;
11174 }
11175
11176 if (!(MIPSR6_P (output_bfd) && htab->compact_branches))
11177 {
11178 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
11179 idx += 4;
11180 }
11181
11182 /* If a large stub is not required and sign extension is not a
11183 problem, then use legacy code in the stub. */
11184 if (stub_size == stub_big_size)
11185 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
11186 stub + idx);
11187 else if (h->dynindx & ~0x7fff)
11188 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
11189 stub + idx);
11190 else
11191 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
11192 stub + idx);
11193 idx += 4;
11194
11195 if (MIPSR6_P (output_bfd) && htab->compact_branches)
11196 bfd_put_32 (output_bfd, STUB_JALRC, stub + idx);
11197 }
11198
11199 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
11200 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
11201 stub, stub_size);
11202
11203 /* Mark the symbol as undefined. stub_offset != -1 occurs
11204 only for the referenced symbol. */
11205 sym->st_shndx = SHN_UNDEF;
11206
11207 /* The run-time linker uses the st_value field of the symbol
11208 to reset the global offset table entry for this external
11209 to its stub address when unlinking a shared object. */
11210 sym->st_value = (htab->sstubs->output_section->vma
11211 + htab->sstubs->output_offset
11212 + h->plt.plist->stub_offset
11213 + isa_bit);
11214 sym->st_other = other;
11215 }
11216
11217 /* If we have a MIPS16 function with a stub, the dynamic symbol must
11218 refer to the stub, since only the stub uses the standard calling
11219 conventions. */
11220 if (h->dynindx != -1 && hmips->fn_stub != NULL)
11221 {
11222 BFD_ASSERT (hmips->need_fn_stub);
11223 sym->st_value = (hmips->fn_stub->output_section->vma
11224 + hmips->fn_stub->output_offset);
11225 sym->st_size = hmips->fn_stub->size;
11226 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
11227 }
11228
11229 BFD_ASSERT (h->dynindx != -1
11230 || h->forced_local);
11231
11232 sgot = htab->root.sgot;
11233 g = htab->got_info;
11234 BFD_ASSERT (g != NULL);
11235
11236 /* Run through the global symbol table, creating GOT entries for all
11237 the symbols that need them. */
11238 if (hmips->global_got_area != GGA_NONE)
11239 {
11240 bfd_vma offset;
11241 bfd_vma value;
11242
11243 value = sym->st_value;
11244 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11245 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
11246 }
11247
11248 if (hmips->global_got_area != GGA_NONE && g->next)
11249 {
11250 struct mips_got_entry e, *p;
11251 bfd_vma entry;
11252 bfd_vma offset;
11253
11254 gg = g;
11255
11256 e.abfd = output_bfd;
11257 e.symndx = -1;
11258 e.d.h = hmips;
11259 e.tls_type = GOT_TLS_NONE;
11260
11261 for (g = g->next; g->next != gg; g = g->next)
11262 {
11263 if (g->got_entries
11264 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
11265 &e)))
11266 {
11267 offset = p->gotidx;
11268 BFD_ASSERT (offset > 0 && offset < htab->root.sgot->size);
11269 if (bfd_link_pic (info)
11270 || (elf_hash_table (info)->dynamic_sections_created
11271 && p->d.h != NULL
11272 && p->d.h->root.def_dynamic
11273 && !p->d.h->root.def_regular))
11274 {
11275 /* Create an R_MIPS_REL32 relocation for this entry. Due to
11276 the various compatibility problems, it's easier to mock
11277 up an R_MIPS_32 or R_MIPS_64 relocation and leave
11278 mips_elf_create_dynamic_relocation to calculate the
11279 appropriate addend. */
11280 Elf_Internal_Rela rel[3];
11281
11282 memset (rel, 0, sizeof (rel));
11283 if (ABI_64_P (output_bfd))
11284 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
11285 else
11286 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
11287 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
11288
11289 entry = 0;
11290 if (! (mips_elf_create_dynamic_relocation
11291 (output_bfd, info, rel,
11292 e.d.h, NULL, sym->st_value, &entry, sgot)))
11293 return FALSE;
11294 }
11295 else
11296 entry = sym->st_value;
11297 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
11298 }
11299 }
11300 }
11301
11302 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
11303 name = h->root.root.string;
11304 if (h == elf_hash_table (info)->hdynamic
11305 || h == elf_hash_table (info)->hgot)
11306 sym->st_shndx = SHN_ABS;
11307 else if (strcmp (name, "_DYNAMIC_LINK") == 0
11308 || strcmp (name, "_DYNAMIC_LINKING") == 0)
11309 {
11310 sym->st_shndx = SHN_ABS;
11311 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11312 sym->st_value = 1;
11313 }
11314 else if (SGI_COMPAT (output_bfd))
11315 {
11316 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
11317 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
11318 {
11319 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11320 sym->st_other = STO_PROTECTED;
11321 sym->st_value = 0;
11322 sym->st_shndx = SHN_MIPS_DATA;
11323 }
11324 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
11325 {
11326 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11327 sym->st_other = STO_PROTECTED;
11328 sym->st_value = mips_elf_hash_table (info)->procedure_count;
11329 sym->st_shndx = SHN_ABS;
11330 }
11331 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
11332 {
11333 if (h->type == STT_FUNC)
11334 sym->st_shndx = SHN_MIPS_TEXT;
11335 else if (h->type == STT_OBJECT)
11336 sym->st_shndx = SHN_MIPS_DATA;
11337 }
11338 }
11339
11340 /* Emit a copy reloc, if needed. */
11341 if (h->needs_copy)
11342 {
11343 asection *s;
11344 bfd_vma symval;
11345
11346 BFD_ASSERT (h->dynindx != -1);
11347 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11348
11349 s = mips_elf_rel_dyn_section (info, FALSE);
11350 symval = (h->root.u.def.section->output_section->vma
11351 + h->root.u.def.section->output_offset
11352 + h->root.u.def.value);
11353 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
11354 h->dynindx, R_MIPS_COPY, symval);
11355 }
11356
11357 /* Handle the IRIX6-specific symbols. */
11358 if (IRIX_COMPAT (output_bfd) == ict_irix6)
11359 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11360
11361 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11362 to treat compressed symbols like any other. */
11363 if (ELF_ST_IS_MIPS16 (sym->st_other))
11364 {
11365 BFD_ASSERT (sym->st_value & 1);
11366 sym->st_other -= STO_MIPS16;
11367 }
11368 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11369 {
11370 BFD_ASSERT (sym->st_value & 1);
11371 sym->st_other -= STO_MICROMIPS;
11372 }
11373
11374 return TRUE;
11375 }
11376
11377 /* Likewise, for VxWorks. */
11378
11379 bfd_boolean
11380 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11381 struct bfd_link_info *info,
11382 struct elf_link_hash_entry *h,
11383 Elf_Internal_Sym *sym)
11384 {
11385 bfd *dynobj;
11386 asection *sgot;
11387 struct mips_got_info *g;
11388 struct mips_elf_link_hash_table *htab;
11389 struct mips_elf_link_hash_entry *hmips;
11390
11391 htab = mips_elf_hash_table (info);
11392 BFD_ASSERT (htab != NULL);
11393 dynobj = elf_hash_table (info)->dynobj;
11394 hmips = (struct mips_elf_link_hash_entry *) h;
11395
11396 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
11397 {
11398 bfd_byte *loc;
11399 bfd_vma plt_address, got_address, got_offset, branch_offset;
11400 Elf_Internal_Rela rel;
11401 static const bfd_vma *plt_entry;
11402 bfd_vma gotplt_index;
11403 bfd_vma plt_offset;
11404
11405 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11406 gotplt_index = h->plt.plist->gotplt_index;
11407
11408 BFD_ASSERT (h->dynindx != -1);
11409 BFD_ASSERT (htab->root.splt != NULL);
11410 BFD_ASSERT (gotplt_index != MINUS_ONE);
11411 BFD_ASSERT (plt_offset <= htab->root.splt->size);
11412
11413 /* Calculate the address of the .plt entry. */
11414 plt_address = (htab->root.splt->output_section->vma
11415 + htab->root.splt->output_offset
11416 + plt_offset);
11417
11418 /* Calculate the address of the .got.plt entry. */
11419 got_address = (htab->root.sgotplt->output_section->vma
11420 + htab->root.sgotplt->output_offset
11421 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11422
11423 /* Calculate the offset of the .got.plt entry from
11424 _GLOBAL_OFFSET_TABLE_. */
11425 got_offset = mips_elf_gotplt_index (info, h);
11426
11427 /* Calculate the offset for the branch at the start of the PLT
11428 entry. The branch jumps to the beginning of .plt. */
11429 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11430
11431 /* Fill in the initial value of the .got.plt entry. */
11432 bfd_put_32 (output_bfd, plt_address,
11433 (htab->root.sgotplt->contents
11434 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11435
11436 /* Find out where the .plt entry should go. */
11437 loc = htab->root.splt->contents + plt_offset;
11438
11439 if (bfd_link_pic (info))
11440 {
11441 plt_entry = mips_vxworks_shared_plt_entry;
11442 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11443 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11444 }
11445 else
11446 {
11447 bfd_vma got_address_high, got_address_low;
11448
11449 plt_entry = mips_vxworks_exec_plt_entry;
11450 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11451 got_address_low = got_address & 0xffff;
11452
11453 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11454 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11455 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11456 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11457 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11458 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11459 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11460 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11461
11462 loc = (htab->srelplt2->contents
11463 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11464
11465 /* Emit a relocation for the .got.plt entry. */
11466 rel.r_offset = got_address;
11467 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11468 rel.r_addend = plt_offset;
11469 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11470
11471 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11472 loc += sizeof (Elf32_External_Rela);
11473 rel.r_offset = plt_address + 8;
11474 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11475 rel.r_addend = got_offset;
11476 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11477
11478 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11479 loc += sizeof (Elf32_External_Rela);
11480 rel.r_offset += 4;
11481 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11482 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11483 }
11484
11485 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11486 loc = (htab->root.srelplt->contents
11487 + gotplt_index * sizeof (Elf32_External_Rela));
11488 rel.r_offset = got_address;
11489 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11490 rel.r_addend = 0;
11491 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11492
11493 if (!h->def_regular)
11494 sym->st_shndx = SHN_UNDEF;
11495 }
11496
11497 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11498
11499 sgot = htab->root.sgot;
11500 g = htab->got_info;
11501 BFD_ASSERT (g != NULL);
11502
11503 /* See if this symbol has an entry in the GOT. */
11504 if (hmips->global_got_area != GGA_NONE)
11505 {
11506 bfd_vma offset;
11507 Elf_Internal_Rela outrel;
11508 bfd_byte *loc;
11509 asection *s;
11510
11511 /* Install the symbol value in the GOT. */
11512 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11513 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11514
11515 /* Add a dynamic relocation for it. */
11516 s = mips_elf_rel_dyn_section (info, FALSE);
11517 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11518 outrel.r_offset = (sgot->output_section->vma
11519 + sgot->output_offset
11520 + offset);
11521 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11522 outrel.r_addend = 0;
11523 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11524 }
11525
11526 /* Emit a copy reloc, if needed. */
11527 if (h->needs_copy)
11528 {
11529 Elf_Internal_Rela rel;
11530 asection *srel;
11531 bfd_byte *loc;
11532
11533 BFD_ASSERT (h->dynindx != -1);
11534
11535 rel.r_offset = (h->root.u.def.section->output_section->vma
11536 + h->root.u.def.section->output_offset
11537 + h->root.u.def.value);
11538 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11539 rel.r_addend = 0;
11540 if (h->root.u.def.section == htab->root.sdynrelro)
11541 srel = htab->root.sreldynrelro;
11542 else
11543 srel = htab->root.srelbss;
11544 loc = srel->contents + srel->reloc_count * sizeof (Elf32_External_Rela);
11545 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11546 ++srel->reloc_count;
11547 }
11548
11549 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11550 if (ELF_ST_IS_COMPRESSED (sym->st_other))
11551 sym->st_value &= ~1;
11552
11553 return TRUE;
11554 }
11555
11556 /* Write out a plt0 entry to the beginning of .plt. */
11557
11558 static bfd_boolean
11559 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11560 {
11561 bfd_byte *loc;
11562 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11563 static const bfd_vma *plt_entry;
11564 struct mips_elf_link_hash_table *htab;
11565
11566 htab = mips_elf_hash_table (info);
11567 BFD_ASSERT (htab != NULL);
11568
11569 if (ABI_64_P (output_bfd))
11570 plt_entry = (htab->compact_branches
11571 ? mipsr6_n64_exec_plt0_entry_compact
11572 : mips_n64_exec_plt0_entry);
11573 else if (ABI_N32_P (output_bfd))
11574 plt_entry = (htab->compact_branches
11575 ? mipsr6_n32_exec_plt0_entry_compact
11576 : mips_n32_exec_plt0_entry);
11577 else if (!htab->plt_header_is_comp)
11578 plt_entry = (htab->compact_branches
11579 ? mipsr6_o32_exec_plt0_entry_compact
11580 : mips_o32_exec_plt0_entry);
11581 else if (htab->insn32)
11582 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11583 else
11584 plt_entry = micromips_o32_exec_plt0_entry;
11585
11586 /* Calculate the value of .got.plt. */
11587 gotplt_value = (htab->root.sgotplt->output_section->vma
11588 + htab->root.sgotplt->output_offset);
11589 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11590 gotplt_value_low = gotplt_value & 0xffff;
11591
11592 /* The PLT sequence is not safe for N64 if .got.plt's address can
11593 not be loaded in two instructions. */
11594 if (ABI_64_P (output_bfd)
11595 && ((gotplt_value + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
11596 {
11597 _bfd_error_handler
11598 /* xgettext:c-format */
11599 (_("%pB: `%pA' start VMA of %#" PRIx64 " outside the 32-bit range "
11600 "supported; consider using `-Ttext-segment=...'"),
11601 output_bfd,
11602 htab->root.sgotplt->output_section,
11603 (int64_t) gotplt_value);
11604 bfd_set_error (bfd_error_no_error);
11605 return FALSE;
11606 }
11607
11608 /* Install the PLT header. */
11609 loc = htab->root.splt->contents;
11610 if (plt_entry == micromips_o32_exec_plt0_entry)
11611 {
11612 bfd_vma gotpc_offset;
11613 bfd_vma loc_address;
11614 size_t i;
11615
11616 BFD_ASSERT (gotplt_value % 4 == 0);
11617
11618 loc_address = (htab->root.splt->output_section->vma
11619 + htab->root.splt->output_offset);
11620 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11621
11622 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11623 if (gotpc_offset + 0x1000000 >= 0x2000000)
11624 {
11625 _bfd_error_handler
11626 /* xgettext:c-format */
11627 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
11628 "beyond the range of ADDIUPC"),
11629 output_bfd,
11630 htab->root.sgotplt->output_section,
11631 (int64_t) gotpc_offset,
11632 htab->root.splt->output_section);
11633 bfd_set_error (bfd_error_no_error);
11634 return FALSE;
11635 }
11636 bfd_put_16 (output_bfd,
11637 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11638 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11639 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11640 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11641 }
11642 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11643 {
11644 size_t i;
11645
11646 bfd_put_16 (output_bfd, plt_entry[0], loc);
11647 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11648 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11649 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11650 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11651 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11652 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11653 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11654 }
11655 else
11656 {
11657 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11658 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11659 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11660 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11661 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11662 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11663 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11664 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11665 }
11666
11667 return TRUE;
11668 }
11669
11670 /* Install the PLT header for a VxWorks executable and finalize the
11671 contents of .rela.plt.unloaded. */
11672
11673 static void
11674 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11675 {
11676 Elf_Internal_Rela rela;
11677 bfd_byte *loc;
11678 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11679 static const bfd_vma *plt_entry;
11680 struct mips_elf_link_hash_table *htab;
11681
11682 htab = mips_elf_hash_table (info);
11683 BFD_ASSERT (htab != NULL);
11684
11685 plt_entry = mips_vxworks_exec_plt0_entry;
11686
11687 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11688 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11689 + htab->root.hgot->root.u.def.section->output_offset
11690 + htab->root.hgot->root.u.def.value);
11691
11692 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11693 got_value_low = got_value & 0xffff;
11694
11695 /* Calculate the address of the PLT header. */
11696 plt_address = (htab->root.splt->output_section->vma
11697 + htab->root.splt->output_offset);
11698
11699 /* Install the PLT header. */
11700 loc = htab->root.splt->contents;
11701 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11702 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11703 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11704 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11705 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11706 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11707
11708 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11709 loc = htab->srelplt2->contents;
11710 rela.r_offset = plt_address;
11711 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11712 rela.r_addend = 0;
11713 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11714 loc += sizeof (Elf32_External_Rela);
11715
11716 /* Output the relocation for the following addiu of
11717 %lo(_GLOBAL_OFFSET_TABLE_). */
11718 rela.r_offset += 4;
11719 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11720 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11721 loc += sizeof (Elf32_External_Rela);
11722
11723 /* Fix up the remaining relocations. They may have the wrong
11724 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11725 in which symbols were output. */
11726 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11727 {
11728 Elf_Internal_Rela rel;
11729
11730 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11731 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11732 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11733 loc += sizeof (Elf32_External_Rela);
11734
11735 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11736 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11737 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11738 loc += sizeof (Elf32_External_Rela);
11739
11740 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11741 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11742 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11743 loc += sizeof (Elf32_External_Rela);
11744 }
11745 }
11746
11747 /* Install the PLT header for a VxWorks shared library. */
11748
11749 static void
11750 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11751 {
11752 unsigned int i;
11753 struct mips_elf_link_hash_table *htab;
11754
11755 htab = mips_elf_hash_table (info);
11756 BFD_ASSERT (htab != NULL);
11757
11758 /* We just need to copy the entry byte-by-byte. */
11759 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11760 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11761 htab->root.splt->contents + i * 4);
11762 }
11763
11764 /* Finish up the dynamic sections. */
11765
11766 bfd_boolean
11767 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11768 struct bfd_link_info *info)
11769 {
11770 bfd *dynobj;
11771 asection *sdyn;
11772 asection *sgot;
11773 struct mips_got_info *gg, *g;
11774 struct mips_elf_link_hash_table *htab;
11775
11776 htab = mips_elf_hash_table (info);
11777 BFD_ASSERT (htab != NULL);
11778
11779 dynobj = elf_hash_table (info)->dynobj;
11780
11781 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11782
11783 sgot = htab->root.sgot;
11784 gg = htab->got_info;
11785
11786 if (elf_hash_table (info)->dynamic_sections_created)
11787 {
11788 bfd_byte *b;
11789 int dyn_to_skip = 0, dyn_skipped = 0;
11790
11791 BFD_ASSERT (sdyn != NULL);
11792 BFD_ASSERT (gg != NULL);
11793
11794 g = mips_elf_bfd_got (output_bfd, FALSE);
11795 BFD_ASSERT (g != NULL);
11796
11797 for (b = sdyn->contents;
11798 b < sdyn->contents + sdyn->size;
11799 b += MIPS_ELF_DYN_SIZE (dynobj))
11800 {
11801 Elf_Internal_Dyn dyn;
11802 const char *name;
11803 size_t elemsize;
11804 asection *s;
11805 bfd_boolean swap_out_p;
11806
11807 /* Read in the current dynamic entry. */
11808 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11809
11810 /* Assume that we're going to modify it and write it out. */
11811 swap_out_p = TRUE;
11812
11813 switch (dyn.d_tag)
11814 {
11815 case DT_RELENT:
11816 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11817 break;
11818
11819 case DT_RELAENT:
11820 BFD_ASSERT (htab->is_vxworks);
11821 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11822 break;
11823
11824 case DT_STRSZ:
11825 /* Rewrite DT_STRSZ. */
11826 dyn.d_un.d_val =
11827 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11828 break;
11829
11830 case DT_PLTGOT:
11831 s = htab->root.sgot;
11832 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11833 break;
11834
11835 case DT_MIPS_PLTGOT:
11836 s = htab->root.sgotplt;
11837 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11838 break;
11839
11840 case DT_MIPS_RLD_VERSION:
11841 dyn.d_un.d_val = 1; /* XXX */
11842 break;
11843
11844 case DT_MIPS_FLAGS:
11845 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11846 break;
11847
11848 case DT_MIPS_TIME_STAMP:
11849 {
11850 time_t t;
11851 time (&t);
11852 dyn.d_un.d_val = t;
11853 }
11854 break;
11855
11856 case DT_MIPS_ICHECKSUM:
11857 /* XXX FIXME: */
11858 swap_out_p = FALSE;
11859 break;
11860
11861 case DT_MIPS_IVERSION:
11862 /* XXX FIXME: */
11863 swap_out_p = FALSE;
11864 break;
11865
11866 case DT_MIPS_BASE_ADDRESS:
11867 s = output_bfd->sections;
11868 BFD_ASSERT (s != NULL);
11869 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11870 break;
11871
11872 case DT_MIPS_LOCAL_GOTNO:
11873 dyn.d_un.d_val = g->local_gotno;
11874 break;
11875
11876 case DT_MIPS_UNREFEXTNO:
11877 /* The index into the dynamic symbol table which is the
11878 entry of the first external symbol that is not
11879 referenced within the same object. */
11880 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11881 break;
11882
11883 case DT_MIPS_GOTSYM:
11884 if (htab->global_gotsym)
11885 {
11886 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11887 break;
11888 }
11889 /* In case if we don't have global got symbols we default
11890 to setting DT_MIPS_GOTSYM to the same value as
11891 DT_MIPS_SYMTABNO. */
11892 /* Fall through. */
11893
11894 case DT_MIPS_SYMTABNO:
11895 name = ".dynsym";
11896 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11897 s = bfd_get_linker_section (dynobj, name);
11898
11899 if (s != NULL)
11900 dyn.d_un.d_val = s->size / elemsize;
11901 else
11902 dyn.d_un.d_val = 0;
11903 break;
11904
11905 case DT_MIPS_HIPAGENO:
11906 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11907 break;
11908
11909 case DT_MIPS_RLD_MAP:
11910 {
11911 struct elf_link_hash_entry *h;
11912 h = mips_elf_hash_table (info)->rld_symbol;
11913 if (!h)
11914 {
11915 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11916 swap_out_p = FALSE;
11917 break;
11918 }
11919 s = h->root.u.def.section;
11920
11921 /* The MIPS_RLD_MAP tag stores the absolute address of the
11922 debug pointer. */
11923 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11924 + h->root.u.def.value);
11925 }
11926 break;
11927
11928 case DT_MIPS_RLD_MAP_REL:
11929 {
11930 struct elf_link_hash_entry *h;
11931 bfd_vma dt_addr, rld_addr;
11932 h = mips_elf_hash_table (info)->rld_symbol;
11933 if (!h)
11934 {
11935 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11936 swap_out_p = FALSE;
11937 break;
11938 }
11939 s = h->root.u.def.section;
11940
11941 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11942 pointer, relative to the address of the tag. */
11943 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
11944 + (b - sdyn->contents));
11945 rld_addr = (s->output_section->vma + s->output_offset
11946 + h->root.u.def.value);
11947 dyn.d_un.d_ptr = rld_addr - dt_addr;
11948 }
11949 break;
11950
11951 case DT_MIPS_OPTIONS:
11952 s = (bfd_get_section_by_name
11953 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11954 dyn.d_un.d_ptr = s->vma;
11955 break;
11956
11957 case DT_PLTREL:
11958 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11959 if (htab->is_vxworks)
11960 dyn.d_un.d_val = DT_RELA;
11961 else
11962 dyn.d_un.d_val = DT_REL;
11963 break;
11964
11965 case DT_PLTRELSZ:
11966 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11967 dyn.d_un.d_val = htab->root.srelplt->size;
11968 break;
11969
11970 case DT_JMPREL:
11971 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11972 dyn.d_un.d_ptr = (htab->root.srelplt->output_section->vma
11973 + htab->root.srelplt->output_offset);
11974 break;
11975
11976 case DT_TEXTREL:
11977 /* If we didn't need any text relocations after all, delete
11978 the dynamic tag. */
11979 if (!(info->flags & DF_TEXTREL))
11980 {
11981 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11982 swap_out_p = FALSE;
11983 }
11984 break;
11985
11986 case DT_FLAGS:
11987 /* If we didn't need any text relocations after all, clear
11988 DF_TEXTREL from DT_FLAGS. */
11989 if (!(info->flags & DF_TEXTREL))
11990 dyn.d_un.d_val &= ~DF_TEXTREL;
11991 else
11992 swap_out_p = FALSE;
11993 break;
11994
11995 case DT_MIPS_XHASH:
11996 name = ".MIPS.xhash";
11997 s = bfd_get_linker_section (dynobj, name);
11998 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11999 break;
12000
12001 default:
12002 swap_out_p = FALSE;
12003 if (htab->is_vxworks
12004 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
12005 swap_out_p = TRUE;
12006 break;
12007 }
12008
12009 if (swap_out_p || dyn_skipped)
12010 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
12011 (dynobj, &dyn, b - dyn_skipped);
12012
12013 if (dyn_to_skip)
12014 {
12015 dyn_skipped += dyn_to_skip;
12016 dyn_to_skip = 0;
12017 }
12018 }
12019
12020 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
12021 if (dyn_skipped > 0)
12022 memset (b - dyn_skipped, 0, dyn_skipped);
12023 }
12024
12025 if (sgot != NULL && sgot->size > 0
12026 && !bfd_is_abs_section (sgot->output_section))
12027 {
12028 if (htab->is_vxworks)
12029 {
12030 /* The first entry of the global offset table points to the
12031 ".dynamic" section. The second is initialized by the
12032 loader and contains the shared library identifier.
12033 The third is also initialized by the loader and points
12034 to the lazy resolution stub. */
12035 MIPS_ELF_PUT_WORD (output_bfd,
12036 sdyn->output_offset + sdyn->output_section->vma,
12037 sgot->contents);
12038 MIPS_ELF_PUT_WORD (output_bfd, 0,
12039 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
12040 MIPS_ELF_PUT_WORD (output_bfd, 0,
12041 sgot->contents
12042 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
12043 }
12044 else
12045 {
12046 /* The first entry of the global offset table will be filled at
12047 runtime. The second entry will be used by some runtime loaders.
12048 This isn't the case of IRIX rld. */
12049 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
12050 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
12051 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
12052 }
12053
12054 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
12055 = MIPS_ELF_GOT_SIZE (output_bfd);
12056 }
12057
12058 /* Generate dynamic relocations for the non-primary gots. */
12059 if (gg != NULL && gg->next)
12060 {
12061 Elf_Internal_Rela rel[3];
12062 bfd_vma addend = 0;
12063
12064 memset (rel, 0, sizeof (rel));
12065 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
12066
12067 for (g = gg->next; g->next != gg; g = g->next)
12068 {
12069 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
12070 + g->next->tls_gotno;
12071
12072 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
12073 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
12074 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
12075 sgot->contents
12076 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
12077
12078 if (! bfd_link_pic (info))
12079 continue;
12080
12081 for (; got_index < g->local_gotno; got_index++)
12082 {
12083 if (got_index >= g->assigned_low_gotno
12084 && got_index <= g->assigned_high_gotno)
12085 continue;
12086
12087 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
12088 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
12089 if (!(mips_elf_create_dynamic_relocation
12090 (output_bfd, info, rel, NULL,
12091 bfd_abs_section_ptr,
12092 0, &addend, sgot)))
12093 return FALSE;
12094 BFD_ASSERT (addend == 0);
12095 }
12096 }
12097 }
12098
12099 /* The generation of dynamic relocations for the non-primary gots
12100 adds more dynamic relocations. We cannot count them until
12101 here. */
12102
12103 if (elf_hash_table (info)->dynamic_sections_created)
12104 {
12105 bfd_byte *b;
12106 bfd_boolean swap_out_p;
12107
12108 BFD_ASSERT (sdyn != NULL);
12109
12110 for (b = sdyn->contents;
12111 b < sdyn->contents + sdyn->size;
12112 b += MIPS_ELF_DYN_SIZE (dynobj))
12113 {
12114 Elf_Internal_Dyn dyn;
12115 asection *s;
12116
12117 /* Read in the current dynamic entry. */
12118 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
12119
12120 /* Assume that we're going to modify it and write it out. */
12121 swap_out_p = TRUE;
12122
12123 switch (dyn.d_tag)
12124 {
12125 case DT_RELSZ:
12126 /* Reduce DT_RELSZ to account for any relocations we
12127 decided not to make. This is for the n64 irix rld,
12128 which doesn't seem to apply any relocations if there
12129 are trailing null entries. */
12130 s = mips_elf_rel_dyn_section (info, FALSE);
12131 dyn.d_un.d_val = (s->reloc_count
12132 * (ABI_64_P (output_bfd)
12133 ? sizeof (Elf64_Mips_External_Rel)
12134 : sizeof (Elf32_External_Rel)));
12135 /* Adjust the section size too. Tools like the prelinker
12136 can reasonably expect the values to the same. */
12137 BFD_ASSERT (!bfd_is_abs_section (s->output_section));
12138 elf_section_data (s->output_section)->this_hdr.sh_size
12139 = dyn.d_un.d_val;
12140 break;
12141
12142 default:
12143 swap_out_p = FALSE;
12144 break;
12145 }
12146
12147 if (swap_out_p)
12148 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
12149 (dynobj, &dyn, b);
12150 }
12151 }
12152
12153 {
12154 asection *s;
12155 Elf32_compact_rel cpt;
12156
12157 if (SGI_COMPAT (output_bfd))
12158 {
12159 /* Write .compact_rel section out. */
12160 s = bfd_get_linker_section (dynobj, ".compact_rel");
12161 if (s != NULL)
12162 {
12163 cpt.id1 = 1;
12164 cpt.num = s->reloc_count;
12165 cpt.id2 = 2;
12166 cpt.offset = (s->output_section->filepos
12167 + sizeof (Elf32_External_compact_rel));
12168 cpt.reserved0 = 0;
12169 cpt.reserved1 = 0;
12170 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
12171 ((Elf32_External_compact_rel *)
12172 s->contents));
12173
12174 /* Clean up a dummy stub function entry in .text. */
12175 if (htab->sstubs != NULL)
12176 {
12177 file_ptr dummy_offset;
12178
12179 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
12180 dummy_offset = htab->sstubs->size - htab->function_stub_size;
12181 memset (htab->sstubs->contents + dummy_offset, 0,
12182 htab->function_stub_size);
12183 }
12184 }
12185 }
12186
12187 /* The psABI says that the dynamic relocations must be sorted in
12188 increasing order of r_symndx. The VxWorks EABI doesn't require
12189 this, and because the code below handles REL rather than RELA
12190 relocations, using it for VxWorks would be outright harmful. */
12191 if (!htab->is_vxworks)
12192 {
12193 s = mips_elf_rel_dyn_section (info, FALSE);
12194 if (s != NULL
12195 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
12196 {
12197 reldyn_sorting_bfd = output_bfd;
12198
12199 if (ABI_64_P (output_bfd))
12200 qsort ((Elf64_External_Rel *) s->contents + 1,
12201 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
12202 sort_dynamic_relocs_64);
12203 else
12204 qsort ((Elf32_External_Rel *) s->contents + 1,
12205 s->reloc_count - 1, sizeof (Elf32_External_Rel),
12206 sort_dynamic_relocs);
12207 }
12208 }
12209 }
12210
12211 if (htab->root.splt && htab->root.splt->size > 0)
12212 {
12213 if (htab->is_vxworks)
12214 {
12215 if (bfd_link_pic (info))
12216 mips_vxworks_finish_shared_plt (output_bfd, info);
12217 else
12218 mips_vxworks_finish_exec_plt (output_bfd, info);
12219 }
12220 else
12221 {
12222 BFD_ASSERT (!bfd_link_pic (info));
12223 if (!mips_finish_exec_plt (output_bfd, info))
12224 return FALSE;
12225 }
12226 }
12227 return TRUE;
12228 }
12229
12230
12231 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
12232
12233 static void
12234 mips_set_isa_flags (bfd *abfd)
12235 {
12236 flagword val;
12237
12238 switch (bfd_get_mach (abfd))
12239 {
12240 default:
12241 if (ABI_N32_P (abfd) || ABI_64_P (abfd))
12242 val = E_MIPS_ARCH_3;
12243 else
12244 val = E_MIPS_ARCH_1;
12245 break;
12246
12247 case bfd_mach_mips3000:
12248 val = E_MIPS_ARCH_1;
12249 break;
12250
12251 case bfd_mach_mips3900:
12252 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
12253 break;
12254
12255 case bfd_mach_mips6000:
12256 val = E_MIPS_ARCH_2;
12257 break;
12258
12259 case bfd_mach_mips4010:
12260 val = E_MIPS_ARCH_2 | E_MIPS_MACH_4010;
12261 break;
12262
12263 case bfd_mach_mips4000:
12264 case bfd_mach_mips4300:
12265 case bfd_mach_mips4400:
12266 case bfd_mach_mips4600:
12267 val = E_MIPS_ARCH_3;
12268 break;
12269
12270 case bfd_mach_mips4100:
12271 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
12272 break;
12273
12274 case bfd_mach_mips4111:
12275 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
12276 break;
12277
12278 case bfd_mach_mips4120:
12279 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
12280 break;
12281
12282 case bfd_mach_mips4650:
12283 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
12284 break;
12285
12286 case bfd_mach_mips5400:
12287 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
12288 break;
12289
12290 case bfd_mach_mips5500:
12291 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
12292 break;
12293
12294 case bfd_mach_mips5900:
12295 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
12296 break;
12297
12298 case bfd_mach_mips9000:
12299 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
12300 break;
12301
12302 case bfd_mach_mips5000:
12303 case bfd_mach_mips7000:
12304 case bfd_mach_mips8000:
12305 case bfd_mach_mips10000:
12306 case bfd_mach_mips12000:
12307 case bfd_mach_mips14000:
12308 case bfd_mach_mips16000:
12309 val = E_MIPS_ARCH_4;
12310 break;
12311
12312 case bfd_mach_mips5:
12313 val = E_MIPS_ARCH_5;
12314 break;
12315
12316 case bfd_mach_mips_loongson_2e:
12317 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
12318 break;
12319
12320 case bfd_mach_mips_loongson_2f:
12321 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
12322 break;
12323
12324 case bfd_mach_mips_sb1:
12325 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
12326 break;
12327
12328 case bfd_mach_mips_gs464:
12329 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS464;
12330 break;
12331
12332 case bfd_mach_mips_gs464e:
12333 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS464E;
12334 break;
12335
12336 case bfd_mach_mips_gs264e:
12337 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS264E;
12338 break;
12339
12340 case bfd_mach_mips_octeon:
12341 case bfd_mach_mips_octeonp:
12342 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
12343 break;
12344
12345 case bfd_mach_mips_octeon3:
12346 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
12347 break;
12348
12349 case bfd_mach_mips_xlr:
12350 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
12351 break;
12352
12353 case bfd_mach_mips_octeon2:
12354 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
12355 break;
12356
12357 case bfd_mach_mipsisa32:
12358 val = E_MIPS_ARCH_32;
12359 break;
12360
12361 case bfd_mach_mipsisa64:
12362 val = E_MIPS_ARCH_64;
12363 break;
12364
12365 case bfd_mach_mipsisa32r2:
12366 case bfd_mach_mipsisa32r3:
12367 case bfd_mach_mipsisa32r5:
12368 val = E_MIPS_ARCH_32R2;
12369 break;
12370
12371 case bfd_mach_mips_interaptiv_mr2:
12372 val = E_MIPS_ARCH_32R2 | E_MIPS_MACH_IAMR2;
12373 break;
12374
12375 case bfd_mach_mipsisa64r2:
12376 case bfd_mach_mipsisa64r3:
12377 case bfd_mach_mipsisa64r5:
12378 val = E_MIPS_ARCH_64R2;
12379 break;
12380
12381 case bfd_mach_mipsisa32r6:
12382 val = E_MIPS_ARCH_32R6;
12383 break;
12384
12385 case bfd_mach_mipsisa64r6:
12386 val = E_MIPS_ARCH_64R6;
12387 break;
12388 }
12389 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12390 elf_elfheader (abfd)->e_flags |= val;
12391
12392 }
12393
12394
12395 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12396 Don't do so for code sections. We want to keep ordering of HI16/LO16
12397 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12398 relocs to be sorted. */
12399
12400 bfd_boolean
12401 _bfd_mips_elf_sort_relocs_p (asection *sec)
12402 {
12403 return (sec->flags & SEC_CODE) == 0;
12404 }
12405
12406
12407 /* The final processing done just before writing out a MIPS ELF object
12408 file. This gets the MIPS architecture right based on the machine
12409 number. This is used by both the 32-bit and the 64-bit ABI. */
12410
12411 void
12412 _bfd_mips_final_write_processing (bfd *abfd)
12413 {
12414 unsigned int i;
12415 Elf_Internal_Shdr **hdrpp;
12416 const char *name;
12417 asection *sec;
12418
12419 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12420 is nonzero. This is for compatibility with old objects, which used
12421 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12422 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12423 mips_set_isa_flags (abfd);
12424
12425 /* Set the sh_info field for .gptab sections and other appropriate
12426 info for each special section. */
12427 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12428 i < elf_numsections (abfd);
12429 i++, hdrpp++)
12430 {
12431 switch ((*hdrpp)->sh_type)
12432 {
12433 case SHT_MIPS_MSYM:
12434 case SHT_MIPS_LIBLIST:
12435 sec = bfd_get_section_by_name (abfd, ".dynstr");
12436 if (sec != NULL)
12437 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12438 break;
12439
12440 case SHT_MIPS_GPTAB:
12441 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12442 name = bfd_section_name ((*hdrpp)->bfd_section);
12443 BFD_ASSERT (name != NULL
12444 && CONST_STRNEQ (name, ".gptab."));
12445 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12446 BFD_ASSERT (sec != NULL);
12447 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12448 break;
12449
12450 case SHT_MIPS_CONTENT:
12451 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12452 name = bfd_section_name ((*hdrpp)->bfd_section);
12453 BFD_ASSERT (name != NULL
12454 && CONST_STRNEQ (name, ".MIPS.content"));
12455 sec = bfd_get_section_by_name (abfd,
12456 name + sizeof ".MIPS.content" - 1);
12457 BFD_ASSERT (sec != NULL);
12458 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12459 break;
12460
12461 case SHT_MIPS_SYMBOL_LIB:
12462 sec = bfd_get_section_by_name (abfd, ".dynsym");
12463 if (sec != NULL)
12464 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12465 sec = bfd_get_section_by_name (abfd, ".liblist");
12466 if (sec != NULL)
12467 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12468 break;
12469
12470 case SHT_MIPS_EVENTS:
12471 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12472 name = bfd_section_name ((*hdrpp)->bfd_section);
12473 BFD_ASSERT (name != NULL);
12474 if (CONST_STRNEQ (name, ".MIPS.events"))
12475 sec = bfd_get_section_by_name (abfd,
12476 name + sizeof ".MIPS.events" - 1);
12477 else
12478 {
12479 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
12480 sec = bfd_get_section_by_name (abfd,
12481 (name
12482 + sizeof ".MIPS.post_rel" - 1));
12483 }
12484 BFD_ASSERT (sec != NULL);
12485 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12486 break;
12487
12488 case SHT_MIPS_XHASH:
12489 sec = bfd_get_section_by_name (abfd, ".dynsym");
12490 if (sec != NULL)
12491 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12492 }
12493 }
12494 }
12495
12496 bfd_boolean
12497 _bfd_mips_elf_final_write_processing (bfd *abfd)
12498 {
12499 _bfd_mips_final_write_processing (abfd);
12500 return _bfd_elf_final_write_processing (abfd);
12501 }
12502 \f
12503 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12504 segments. */
12505
12506 int
12507 _bfd_mips_elf_additional_program_headers (bfd *abfd,
12508 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12509 {
12510 asection *s;
12511 int ret = 0;
12512
12513 /* See if we need a PT_MIPS_REGINFO segment. */
12514 s = bfd_get_section_by_name (abfd, ".reginfo");
12515 if (s && (s->flags & SEC_LOAD))
12516 ++ret;
12517
12518 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12519 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12520 ++ret;
12521
12522 /* See if we need a PT_MIPS_OPTIONS segment. */
12523 if (IRIX_COMPAT (abfd) == ict_irix6
12524 && bfd_get_section_by_name (abfd,
12525 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12526 ++ret;
12527
12528 /* See if we need a PT_MIPS_RTPROC segment. */
12529 if (IRIX_COMPAT (abfd) == ict_irix5
12530 && bfd_get_section_by_name (abfd, ".dynamic")
12531 && bfd_get_section_by_name (abfd, ".mdebug"))
12532 ++ret;
12533
12534 /* Allocate a PT_NULL header in dynamic objects. See
12535 _bfd_mips_elf_modify_segment_map for details. */
12536 if (!SGI_COMPAT (abfd)
12537 && bfd_get_section_by_name (abfd, ".dynamic"))
12538 ++ret;
12539
12540 return ret;
12541 }
12542
12543 /* Modify the segment map for an IRIX5 executable. */
12544
12545 bfd_boolean
12546 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12547 struct bfd_link_info *info)
12548 {
12549 asection *s;
12550 struct elf_segment_map *m, **pm;
12551 bfd_size_type amt;
12552
12553 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12554 segment. */
12555 s = bfd_get_section_by_name (abfd, ".reginfo");
12556 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12557 {
12558 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12559 if (m->p_type == PT_MIPS_REGINFO)
12560 break;
12561 if (m == NULL)
12562 {
12563 amt = sizeof *m;
12564 m = bfd_zalloc (abfd, amt);
12565 if (m == NULL)
12566 return FALSE;
12567
12568 m->p_type = PT_MIPS_REGINFO;
12569 m->count = 1;
12570 m->sections[0] = s;
12571
12572 /* We want to put it after the PHDR and INTERP segments. */
12573 pm = &elf_seg_map (abfd);
12574 while (*pm != NULL
12575 && ((*pm)->p_type == PT_PHDR
12576 || (*pm)->p_type == PT_INTERP))
12577 pm = &(*pm)->next;
12578
12579 m->next = *pm;
12580 *pm = m;
12581 }
12582 }
12583
12584 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12585 segment. */
12586 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12587 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12588 {
12589 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12590 if (m->p_type == PT_MIPS_ABIFLAGS)
12591 break;
12592 if (m == NULL)
12593 {
12594 amt = sizeof *m;
12595 m = bfd_zalloc (abfd, amt);
12596 if (m == NULL)
12597 return FALSE;
12598
12599 m->p_type = PT_MIPS_ABIFLAGS;
12600 m->count = 1;
12601 m->sections[0] = s;
12602
12603 /* We want to put it after the PHDR and INTERP segments. */
12604 pm = &elf_seg_map (abfd);
12605 while (*pm != NULL
12606 && ((*pm)->p_type == PT_PHDR
12607 || (*pm)->p_type == PT_INTERP))
12608 pm = &(*pm)->next;
12609
12610 m->next = *pm;
12611 *pm = m;
12612 }
12613 }
12614
12615 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12616 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12617 PT_MIPS_OPTIONS segment immediately following the program header
12618 table. */
12619 if (NEWABI_P (abfd)
12620 /* On non-IRIX6 new abi, we'll have already created a segment
12621 for this section, so don't create another. I'm not sure this
12622 is not also the case for IRIX 6, but I can't test it right
12623 now. */
12624 && IRIX_COMPAT (abfd) == ict_irix6)
12625 {
12626 for (s = abfd->sections; s; s = s->next)
12627 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12628 break;
12629
12630 if (s)
12631 {
12632 struct elf_segment_map *options_segment;
12633
12634 pm = &elf_seg_map (abfd);
12635 while (*pm != NULL
12636 && ((*pm)->p_type == PT_PHDR
12637 || (*pm)->p_type == PT_INTERP))
12638 pm = &(*pm)->next;
12639
12640 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12641 {
12642 amt = sizeof (struct elf_segment_map);
12643 options_segment = bfd_zalloc (abfd, amt);
12644 options_segment->next = *pm;
12645 options_segment->p_type = PT_MIPS_OPTIONS;
12646 options_segment->p_flags = PF_R;
12647 options_segment->p_flags_valid = TRUE;
12648 options_segment->count = 1;
12649 options_segment->sections[0] = s;
12650 *pm = options_segment;
12651 }
12652 }
12653 }
12654 else
12655 {
12656 if (IRIX_COMPAT (abfd) == ict_irix5)
12657 {
12658 /* If there are .dynamic and .mdebug sections, we make a room
12659 for the RTPROC header. FIXME: Rewrite without section names. */
12660 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12661 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12662 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12663 {
12664 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12665 if (m->p_type == PT_MIPS_RTPROC)
12666 break;
12667 if (m == NULL)
12668 {
12669 amt = sizeof *m;
12670 m = bfd_zalloc (abfd, amt);
12671 if (m == NULL)
12672 return FALSE;
12673
12674 m->p_type = PT_MIPS_RTPROC;
12675
12676 s = bfd_get_section_by_name (abfd, ".rtproc");
12677 if (s == NULL)
12678 {
12679 m->count = 0;
12680 m->p_flags = 0;
12681 m->p_flags_valid = 1;
12682 }
12683 else
12684 {
12685 m->count = 1;
12686 m->sections[0] = s;
12687 }
12688
12689 /* We want to put it after the DYNAMIC segment. */
12690 pm = &elf_seg_map (abfd);
12691 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12692 pm = &(*pm)->next;
12693 if (*pm != NULL)
12694 pm = &(*pm)->next;
12695
12696 m->next = *pm;
12697 *pm = m;
12698 }
12699 }
12700 }
12701 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12702 .dynstr, .dynsym, and .hash sections, and everything in
12703 between. */
12704 for (pm = &elf_seg_map (abfd); *pm != NULL;
12705 pm = &(*pm)->next)
12706 if ((*pm)->p_type == PT_DYNAMIC)
12707 break;
12708 m = *pm;
12709 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12710 glibc's dynamic linker has traditionally derived the number of
12711 tags from the p_filesz field, and sometimes allocates stack
12712 arrays of that size. An overly-big PT_DYNAMIC segment can
12713 be actively harmful in such cases. Making PT_DYNAMIC contain
12714 other sections can also make life hard for the prelinker,
12715 which might move one of the other sections to a different
12716 PT_LOAD segment. */
12717 if (SGI_COMPAT (abfd)
12718 && m != NULL
12719 && m->count == 1
12720 && strcmp (m->sections[0]->name, ".dynamic") == 0)
12721 {
12722 static const char *sec_names[] =
12723 {
12724 ".dynamic", ".dynstr", ".dynsym", ".hash"
12725 };
12726 bfd_vma low, high;
12727 unsigned int i, c;
12728 struct elf_segment_map *n;
12729
12730 low = ~(bfd_vma) 0;
12731 high = 0;
12732 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12733 {
12734 s = bfd_get_section_by_name (abfd, sec_names[i]);
12735 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12736 {
12737 bfd_size_type sz;
12738
12739 if (low > s->vma)
12740 low = s->vma;
12741 sz = s->size;
12742 if (high < s->vma + sz)
12743 high = s->vma + sz;
12744 }
12745 }
12746
12747 c = 0;
12748 for (s = abfd->sections; s != NULL; s = s->next)
12749 if ((s->flags & SEC_LOAD) != 0
12750 && s->vma >= low
12751 && s->vma + s->size <= high)
12752 ++c;
12753
12754 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
12755 n = bfd_zalloc (abfd, amt);
12756 if (n == NULL)
12757 return FALSE;
12758 *n = *m;
12759 n->count = c;
12760
12761 i = 0;
12762 for (s = abfd->sections; s != NULL; s = s->next)
12763 {
12764 if ((s->flags & SEC_LOAD) != 0
12765 && s->vma >= low
12766 && s->vma + s->size <= high)
12767 {
12768 n->sections[i] = s;
12769 ++i;
12770 }
12771 }
12772
12773 *pm = n;
12774 }
12775 }
12776
12777 /* Allocate a spare program header in dynamic objects so that tools
12778 like the prelinker can add an extra PT_LOAD entry.
12779
12780 If the prelinker needs to make room for a new PT_LOAD entry, its
12781 standard procedure is to move the first (read-only) sections into
12782 the new (writable) segment. However, the MIPS ABI requires
12783 .dynamic to be in a read-only segment, and the section will often
12784 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12785
12786 Although the prelinker could in principle move .dynamic to a
12787 writable segment, it seems better to allocate a spare program
12788 header instead, and avoid the need to move any sections.
12789 There is a long tradition of allocating spare dynamic tags,
12790 so allocating a spare program header seems like a natural
12791 extension.
12792
12793 If INFO is NULL, we may be copying an already prelinked binary
12794 with objcopy or strip, so do not add this header. */
12795 if (info != NULL
12796 && !SGI_COMPAT (abfd)
12797 && bfd_get_section_by_name (abfd, ".dynamic"))
12798 {
12799 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12800 if ((*pm)->p_type == PT_NULL)
12801 break;
12802 if (*pm == NULL)
12803 {
12804 m = bfd_zalloc (abfd, sizeof (*m));
12805 if (m == NULL)
12806 return FALSE;
12807
12808 m->p_type = PT_NULL;
12809 *pm = m;
12810 }
12811 }
12812
12813 return TRUE;
12814 }
12815 \f
12816 /* Return the section that should be marked against GC for a given
12817 relocation. */
12818
12819 asection *
12820 _bfd_mips_elf_gc_mark_hook (asection *sec,
12821 struct bfd_link_info *info,
12822 Elf_Internal_Rela *rel,
12823 struct elf_link_hash_entry *h,
12824 Elf_Internal_Sym *sym)
12825 {
12826 /* ??? Do mips16 stub sections need to be handled special? */
12827
12828 if (h != NULL)
12829 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12830 {
12831 case R_MIPS_GNU_VTINHERIT:
12832 case R_MIPS_GNU_VTENTRY:
12833 return NULL;
12834 }
12835
12836 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12837 }
12838
12839 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12840
12841 bfd_boolean
12842 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12843 elf_gc_mark_hook_fn gc_mark_hook)
12844 {
12845 bfd *sub;
12846
12847 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12848
12849 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12850 {
12851 asection *o;
12852
12853 if (! is_mips_elf (sub))
12854 continue;
12855
12856 for (o = sub->sections; o != NULL; o = o->next)
12857 if (!o->gc_mark
12858 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P (bfd_section_name (o)))
12859 {
12860 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12861 return FALSE;
12862 }
12863 }
12864
12865 return TRUE;
12866 }
12867 \f
12868 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12869 hiding the old indirect symbol. Process additional relocation
12870 information. Also called for weakdefs, in which case we just let
12871 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12872
12873 void
12874 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12875 struct elf_link_hash_entry *dir,
12876 struct elf_link_hash_entry *ind)
12877 {
12878 struct mips_elf_link_hash_entry *dirmips, *indmips;
12879
12880 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12881
12882 dirmips = (struct mips_elf_link_hash_entry *) dir;
12883 indmips = (struct mips_elf_link_hash_entry *) ind;
12884 /* Any absolute non-dynamic relocations against an indirect or weak
12885 definition will be against the target symbol. */
12886 if (indmips->has_static_relocs)
12887 dirmips->has_static_relocs = TRUE;
12888
12889 if (ind->root.type != bfd_link_hash_indirect)
12890 return;
12891
12892 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12893 if (indmips->readonly_reloc)
12894 dirmips->readonly_reloc = TRUE;
12895 if (indmips->no_fn_stub)
12896 dirmips->no_fn_stub = TRUE;
12897 if (indmips->fn_stub)
12898 {
12899 dirmips->fn_stub = indmips->fn_stub;
12900 indmips->fn_stub = NULL;
12901 }
12902 if (indmips->need_fn_stub)
12903 {
12904 dirmips->need_fn_stub = TRUE;
12905 indmips->need_fn_stub = FALSE;
12906 }
12907 if (indmips->call_stub)
12908 {
12909 dirmips->call_stub = indmips->call_stub;
12910 indmips->call_stub = NULL;
12911 }
12912 if (indmips->call_fp_stub)
12913 {
12914 dirmips->call_fp_stub = indmips->call_fp_stub;
12915 indmips->call_fp_stub = NULL;
12916 }
12917 if (indmips->global_got_area < dirmips->global_got_area)
12918 dirmips->global_got_area = indmips->global_got_area;
12919 if (indmips->global_got_area < GGA_NONE)
12920 indmips->global_got_area = GGA_NONE;
12921 if (indmips->has_nonpic_branches)
12922 dirmips->has_nonpic_branches = TRUE;
12923 }
12924
12925 /* Take care of the special `__gnu_absolute_zero' symbol and ignore attempts
12926 to hide it. It has to remain global (it will also be protected) so as to
12927 be assigned a global GOT entry, which will then remain unchanged at load
12928 time. */
12929
12930 void
12931 _bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
12932 struct elf_link_hash_entry *entry,
12933 bfd_boolean force_local)
12934 {
12935 struct mips_elf_link_hash_table *htab;
12936
12937 htab = mips_elf_hash_table (info);
12938 BFD_ASSERT (htab != NULL);
12939 if (htab->use_absolute_zero
12940 && strcmp (entry->root.root.string, "__gnu_absolute_zero") == 0)
12941 return;
12942
12943 _bfd_elf_link_hash_hide_symbol (info, entry, force_local);
12944 }
12945 \f
12946 #define PDR_SIZE 32
12947
12948 bfd_boolean
12949 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12950 struct bfd_link_info *info)
12951 {
12952 asection *o;
12953 bfd_boolean ret = FALSE;
12954 unsigned char *tdata;
12955 size_t i, skip;
12956
12957 o = bfd_get_section_by_name (abfd, ".pdr");
12958 if (! o)
12959 return FALSE;
12960 if (o->size == 0)
12961 return FALSE;
12962 if (o->size % PDR_SIZE != 0)
12963 return FALSE;
12964 if (o->output_section != NULL
12965 && bfd_is_abs_section (o->output_section))
12966 return FALSE;
12967
12968 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12969 if (! tdata)
12970 return FALSE;
12971
12972 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12973 info->keep_memory);
12974 if (!cookie->rels)
12975 {
12976 free (tdata);
12977 return FALSE;
12978 }
12979
12980 cookie->rel = cookie->rels;
12981 cookie->relend = cookie->rels + o->reloc_count;
12982
12983 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12984 {
12985 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12986 {
12987 tdata[i] = 1;
12988 skip ++;
12989 }
12990 }
12991
12992 if (skip != 0)
12993 {
12994 mips_elf_section_data (o)->u.tdata = tdata;
12995 if (o->rawsize == 0)
12996 o->rawsize = o->size;
12997 o->size -= skip * PDR_SIZE;
12998 ret = TRUE;
12999 }
13000 else
13001 free (tdata);
13002
13003 if (! info->keep_memory)
13004 free (cookie->rels);
13005
13006 return ret;
13007 }
13008
13009 bfd_boolean
13010 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
13011 {
13012 if (strcmp (sec->name, ".pdr") == 0)
13013 return TRUE;
13014 return FALSE;
13015 }
13016
13017 bfd_boolean
13018 _bfd_mips_elf_write_section (bfd *output_bfd,
13019 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
13020 asection *sec, bfd_byte *contents)
13021 {
13022 bfd_byte *to, *from, *end;
13023 int i;
13024
13025 if (strcmp (sec->name, ".pdr") != 0)
13026 return FALSE;
13027
13028 if (mips_elf_section_data (sec)->u.tdata == NULL)
13029 return FALSE;
13030
13031 to = contents;
13032 end = contents + sec->size;
13033 for (from = contents, i = 0;
13034 from < end;
13035 from += PDR_SIZE, i++)
13036 {
13037 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
13038 continue;
13039 if (to != from)
13040 memcpy (to, from, PDR_SIZE);
13041 to += PDR_SIZE;
13042 }
13043 bfd_set_section_contents (output_bfd, sec->output_section, contents,
13044 sec->output_offset, sec->size);
13045 return TRUE;
13046 }
13047 \f
13048 /* microMIPS code retains local labels for linker relaxation. Omit them
13049 from output by default for clarity. */
13050
13051 bfd_boolean
13052 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
13053 {
13054 return _bfd_elf_is_local_label_name (abfd, sym->name);
13055 }
13056
13057 /* MIPS ELF uses a special find_nearest_line routine in order the
13058 handle the ECOFF debugging information. */
13059
13060 struct mips_elf_find_line
13061 {
13062 struct ecoff_debug_info d;
13063 struct ecoff_find_line i;
13064 };
13065
13066 bfd_boolean
13067 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
13068 asection *section, bfd_vma offset,
13069 const char **filename_ptr,
13070 const char **functionname_ptr,
13071 unsigned int *line_ptr,
13072 unsigned int *discriminator_ptr)
13073 {
13074 asection *msec;
13075
13076 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
13077 filename_ptr, functionname_ptr,
13078 line_ptr, discriminator_ptr,
13079 dwarf_debug_sections,
13080 &elf_tdata (abfd)->dwarf2_find_line_info)
13081 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
13082 filename_ptr, functionname_ptr,
13083 line_ptr))
13084 {
13085 /* PR 22789: If the function name or filename was not found through
13086 the debug information, then try an ordinary lookup instead. */
13087 if ((functionname_ptr != NULL && *functionname_ptr == NULL)
13088 || (filename_ptr != NULL && *filename_ptr == NULL))
13089 {
13090 /* Do not override already discovered names. */
13091 if (functionname_ptr != NULL && *functionname_ptr != NULL)
13092 functionname_ptr = NULL;
13093
13094 if (filename_ptr != NULL && *filename_ptr != NULL)
13095 filename_ptr = NULL;
13096
13097 _bfd_elf_find_function (abfd, symbols, section, offset,
13098 filename_ptr, functionname_ptr);
13099 }
13100
13101 return TRUE;
13102 }
13103
13104 msec = bfd_get_section_by_name (abfd, ".mdebug");
13105 if (msec != NULL)
13106 {
13107 flagword origflags;
13108 struct mips_elf_find_line *fi;
13109 const struct ecoff_debug_swap * const swap =
13110 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
13111
13112 /* If we are called during a link, mips_elf_final_link may have
13113 cleared the SEC_HAS_CONTENTS field. We force it back on here
13114 if appropriate (which it normally will be). */
13115 origflags = msec->flags;
13116 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
13117 msec->flags |= SEC_HAS_CONTENTS;
13118
13119 fi = mips_elf_tdata (abfd)->find_line_info;
13120 if (fi == NULL)
13121 {
13122 bfd_size_type external_fdr_size;
13123 char *fraw_src;
13124 char *fraw_end;
13125 struct fdr *fdr_ptr;
13126 bfd_size_type amt = sizeof (struct mips_elf_find_line);
13127
13128 fi = bfd_zalloc (abfd, amt);
13129 if (fi == NULL)
13130 {
13131 msec->flags = origflags;
13132 return FALSE;
13133 }
13134
13135 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
13136 {
13137 msec->flags = origflags;
13138 return FALSE;
13139 }
13140
13141 /* Swap in the FDR information. */
13142 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
13143 fi->d.fdr = bfd_alloc (abfd, amt);
13144 if (fi->d.fdr == NULL)
13145 {
13146 msec->flags = origflags;
13147 return FALSE;
13148 }
13149 external_fdr_size = swap->external_fdr_size;
13150 fdr_ptr = fi->d.fdr;
13151 fraw_src = (char *) fi->d.external_fdr;
13152 fraw_end = (fraw_src
13153 + fi->d.symbolic_header.ifdMax * external_fdr_size);
13154 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
13155 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
13156
13157 mips_elf_tdata (abfd)->find_line_info = fi;
13158
13159 /* Note that we don't bother to ever free this information.
13160 find_nearest_line is either called all the time, as in
13161 objdump -l, so the information should be saved, or it is
13162 rarely called, as in ld error messages, so the memory
13163 wasted is unimportant. Still, it would probably be a
13164 good idea for free_cached_info to throw it away. */
13165 }
13166
13167 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
13168 &fi->i, filename_ptr, functionname_ptr,
13169 line_ptr))
13170 {
13171 msec->flags = origflags;
13172 return TRUE;
13173 }
13174
13175 msec->flags = origflags;
13176 }
13177
13178 /* Fall back on the generic ELF find_nearest_line routine. */
13179
13180 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
13181 filename_ptr, functionname_ptr,
13182 line_ptr, discriminator_ptr);
13183 }
13184
13185 bfd_boolean
13186 _bfd_mips_elf_find_inliner_info (bfd *abfd,
13187 const char **filename_ptr,
13188 const char **functionname_ptr,
13189 unsigned int *line_ptr)
13190 {
13191 bfd_boolean found;
13192 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
13193 functionname_ptr, line_ptr,
13194 & elf_tdata (abfd)->dwarf2_find_line_info);
13195 return found;
13196 }
13197
13198 \f
13199 /* When are writing out the .options or .MIPS.options section,
13200 remember the bytes we are writing out, so that we can install the
13201 GP value in the section_processing routine. */
13202
13203 bfd_boolean
13204 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
13205 const void *location,
13206 file_ptr offset, bfd_size_type count)
13207 {
13208 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
13209 {
13210 bfd_byte *c;
13211
13212 if (elf_section_data (section) == NULL)
13213 {
13214 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
13215 section->used_by_bfd = bfd_zalloc (abfd, amt);
13216 if (elf_section_data (section) == NULL)
13217 return FALSE;
13218 }
13219 c = mips_elf_section_data (section)->u.tdata;
13220 if (c == NULL)
13221 {
13222 c = bfd_zalloc (abfd, section->size);
13223 if (c == NULL)
13224 return FALSE;
13225 mips_elf_section_data (section)->u.tdata = c;
13226 }
13227
13228 memcpy (c + offset, location, count);
13229 }
13230
13231 return _bfd_elf_set_section_contents (abfd, section, location, offset,
13232 count);
13233 }
13234
13235 /* This is almost identical to bfd_generic_get_... except that some
13236 MIPS relocations need to be handled specially. Sigh. */
13237
13238 bfd_byte *
13239 _bfd_elf_mips_get_relocated_section_contents
13240 (bfd *abfd,
13241 struct bfd_link_info *link_info,
13242 struct bfd_link_order *link_order,
13243 bfd_byte *data,
13244 bfd_boolean relocatable,
13245 asymbol **symbols)
13246 {
13247 /* Get enough memory to hold the stuff */
13248 bfd *input_bfd = link_order->u.indirect.section->owner;
13249 asection *input_section = link_order->u.indirect.section;
13250 bfd_size_type sz;
13251
13252 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
13253 arelent **reloc_vector = NULL;
13254 long reloc_count;
13255
13256 if (reloc_size < 0)
13257 goto error_return;
13258
13259 reloc_vector = bfd_malloc (reloc_size);
13260 if (reloc_vector == NULL && reloc_size != 0)
13261 goto error_return;
13262
13263 /* read in the section */
13264 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
13265 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
13266 goto error_return;
13267
13268 reloc_count = bfd_canonicalize_reloc (input_bfd,
13269 input_section,
13270 reloc_vector,
13271 symbols);
13272 if (reloc_count < 0)
13273 goto error_return;
13274
13275 if (reloc_count > 0)
13276 {
13277 arelent **parent;
13278 /* for mips */
13279 int gp_found;
13280 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
13281
13282 {
13283 struct bfd_hash_entry *h;
13284 struct bfd_link_hash_entry *lh;
13285 /* Skip all this stuff if we aren't mixing formats. */
13286 if (abfd && input_bfd
13287 && abfd->xvec == input_bfd->xvec)
13288 lh = 0;
13289 else
13290 {
13291 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
13292 lh = (struct bfd_link_hash_entry *) h;
13293 }
13294 lookup:
13295 if (lh)
13296 {
13297 switch (lh->type)
13298 {
13299 case bfd_link_hash_undefined:
13300 case bfd_link_hash_undefweak:
13301 case bfd_link_hash_common:
13302 gp_found = 0;
13303 break;
13304 case bfd_link_hash_defined:
13305 case bfd_link_hash_defweak:
13306 gp_found = 1;
13307 gp = lh->u.def.value;
13308 break;
13309 case bfd_link_hash_indirect:
13310 case bfd_link_hash_warning:
13311 lh = lh->u.i.link;
13312 /* @@FIXME ignoring warning for now */
13313 goto lookup;
13314 case bfd_link_hash_new:
13315 default:
13316 abort ();
13317 }
13318 }
13319 else
13320 gp_found = 0;
13321 }
13322 /* end mips */
13323 for (parent = reloc_vector; *parent != NULL; parent++)
13324 {
13325 char *error_message = NULL;
13326 bfd_reloc_status_type r;
13327
13328 /* Specific to MIPS: Deal with relocation types that require
13329 knowing the gp of the output bfd. */
13330 asymbol *sym = *(*parent)->sym_ptr_ptr;
13331
13332 /* If we've managed to find the gp and have a special
13333 function for the relocation then go ahead, else default
13334 to the generic handling. */
13335 if (gp_found
13336 && (*parent)->howto->special_function
13337 == _bfd_mips_elf32_gprel16_reloc)
13338 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
13339 input_section, relocatable,
13340 data, gp);
13341 else
13342 r = bfd_perform_relocation (input_bfd, *parent, data,
13343 input_section,
13344 relocatable ? abfd : NULL,
13345 &error_message);
13346
13347 if (relocatable)
13348 {
13349 asection *os = input_section->output_section;
13350
13351 /* A partial link, so keep the relocs */
13352 os->orelocation[os->reloc_count] = *parent;
13353 os->reloc_count++;
13354 }
13355
13356 if (r != bfd_reloc_ok)
13357 {
13358 switch (r)
13359 {
13360 case bfd_reloc_undefined:
13361 (*link_info->callbacks->undefined_symbol)
13362 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13363 input_bfd, input_section, (*parent)->address, TRUE);
13364 break;
13365 case bfd_reloc_dangerous:
13366 BFD_ASSERT (error_message != NULL);
13367 (*link_info->callbacks->reloc_dangerous)
13368 (link_info, error_message,
13369 input_bfd, input_section, (*parent)->address);
13370 break;
13371 case bfd_reloc_overflow:
13372 (*link_info->callbacks->reloc_overflow)
13373 (link_info, NULL,
13374 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13375 (*parent)->howto->name, (*parent)->addend,
13376 input_bfd, input_section, (*parent)->address);
13377 break;
13378 case bfd_reloc_outofrange:
13379 default:
13380 abort ();
13381 break;
13382 }
13383
13384 }
13385 }
13386 }
13387 if (reloc_vector != NULL)
13388 free (reloc_vector);
13389 return data;
13390
13391 error_return:
13392 if (reloc_vector != NULL)
13393 free (reloc_vector);
13394 return NULL;
13395 }
13396 \f
13397 static bfd_boolean
13398 mips_elf_relax_delete_bytes (bfd *abfd,
13399 asection *sec, bfd_vma addr, int count)
13400 {
13401 Elf_Internal_Shdr *symtab_hdr;
13402 unsigned int sec_shndx;
13403 bfd_byte *contents;
13404 Elf_Internal_Rela *irel, *irelend;
13405 Elf_Internal_Sym *isym;
13406 Elf_Internal_Sym *isymend;
13407 struct elf_link_hash_entry **sym_hashes;
13408 struct elf_link_hash_entry **end_hashes;
13409 struct elf_link_hash_entry **start_hashes;
13410 unsigned int symcount;
13411
13412 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13413 contents = elf_section_data (sec)->this_hdr.contents;
13414
13415 irel = elf_section_data (sec)->relocs;
13416 irelend = irel + sec->reloc_count;
13417
13418 /* Actually delete the bytes. */
13419 memmove (contents + addr, contents + addr + count,
13420 (size_t) (sec->size - addr - count));
13421 sec->size -= count;
13422
13423 /* Adjust all the relocs. */
13424 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13425 {
13426 /* Get the new reloc address. */
13427 if (irel->r_offset > addr)
13428 irel->r_offset -= count;
13429 }
13430
13431 BFD_ASSERT (addr % 2 == 0);
13432 BFD_ASSERT (count % 2 == 0);
13433
13434 /* Adjust the local symbols defined in this section. */
13435 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13436 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13437 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
13438 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
13439 isym->st_value -= count;
13440
13441 /* Now adjust the global symbols defined in this section. */
13442 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13443 - symtab_hdr->sh_info);
13444 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13445 end_hashes = sym_hashes + symcount;
13446
13447 for (; sym_hashes < end_hashes; sym_hashes++)
13448 {
13449 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13450
13451 if ((sym_hash->root.type == bfd_link_hash_defined
13452 || sym_hash->root.type == bfd_link_hash_defweak)
13453 && sym_hash->root.u.def.section == sec)
13454 {
13455 bfd_vma value = sym_hash->root.u.def.value;
13456
13457 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13458 value &= MINUS_TWO;
13459 if (value > addr)
13460 sym_hash->root.u.def.value -= count;
13461 }
13462 }
13463
13464 return TRUE;
13465 }
13466
13467
13468 /* Opcodes needed for microMIPS relaxation as found in
13469 opcodes/micromips-opc.c. */
13470
13471 struct opcode_descriptor {
13472 unsigned long match;
13473 unsigned long mask;
13474 };
13475
13476 /* The $ra register aka $31. */
13477
13478 #define RA 31
13479
13480 /* 32-bit instruction format register fields. */
13481
13482 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13483 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13484
13485 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
13486
13487 #define OP16_VALID_REG(r) \
13488 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13489
13490
13491 /* 32-bit and 16-bit branches. */
13492
13493 static const struct opcode_descriptor b_insns_32[] = {
13494 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13495 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13496 { 0, 0 } /* End marker for find_match(). */
13497 };
13498
13499 static const struct opcode_descriptor bc_insn_32 =
13500 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13501
13502 static const struct opcode_descriptor bz_insn_32 =
13503 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13504
13505 static const struct opcode_descriptor bzal_insn_32 =
13506 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13507
13508 static const struct opcode_descriptor beq_insn_32 =
13509 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13510
13511 static const struct opcode_descriptor b_insn_16 =
13512 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13513
13514 static const struct opcode_descriptor bz_insn_16 =
13515 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13516
13517
13518 /* 32-bit and 16-bit branch EQ and NE zero. */
13519
13520 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13521 eq and second the ne. This convention is used when replacing a
13522 32-bit BEQ/BNE with the 16-bit version. */
13523
13524 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13525
13526 static const struct opcode_descriptor bz_rs_insns_32[] = {
13527 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13528 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13529 { 0, 0 } /* End marker for find_match(). */
13530 };
13531
13532 static const struct opcode_descriptor bz_rt_insns_32[] = {
13533 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13534 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13535 { 0, 0 } /* End marker for find_match(). */
13536 };
13537
13538 static const struct opcode_descriptor bzc_insns_32[] = {
13539 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13540 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13541 { 0, 0 } /* End marker for find_match(). */
13542 };
13543
13544 static const struct opcode_descriptor bz_insns_16[] = {
13545 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13546 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13547 { 0, 0 } /* End marker for find_match(). */
13548 };
13549
13550 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13551
13552 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
13553 #define BZ16_REG_FIELD(r) (((r) & 7) << 7)
13554
13555
13556 /* 32-bit instructions with a delay slot. */
13557
13558 static const struct opcode_descriptor jal_insn_32_bd16 =
13559 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13560
13561 static const struct opcode_descriptor jal_insn_32_bd32 =
13562 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13563
13564 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13565 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13566
13567 static const struct opcode_descriptor j_insn_32 =
13568 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13569
13570 static const struct opcode_descriptor jalr_insn_32 =
13571 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13572
13573 /* This table can be compacted, because no opcode replacement is made. */
13574
13575 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13576 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13577
13578 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13579 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13580
13581 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13582 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13583 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13584 { 0, 0 } /* End marker for find_match(). */
13585 };
13586
13587 /* This table can be compacted, because no opcode replacement is made. */
13588
13589 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13590 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13591
13592 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13593 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13594 { 0, 0 } /* End marker for find_match(). */
13595 };
13596
13597
13598 /* 16-bit instructions with a delay slot. */
13599
13600 static const struct opcode_descriptor jalr_insn_16_bd16 =
13601 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13602
13603 static const struct opcode_descriptor jalr_insn_16_bd32 =
13604 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13605
13606 static const struct opcode_descriptor jr_insn_16 =
13607 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13608
13609 #define JR16_REG(opcode) ((opcode) & 0x1f)
13610
13611 /* This table can be compacted, because no opcode replacement is made. */
13612
13613 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13614 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13615
13616 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13617 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13618 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13619 { 0, 0 } /* End marker for find_match(). */
13620 };
13621
13622
13623 /* LUI instruction. */
13624
13625 static const struct opcode_descriptor lui_insn =
13626 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13627
13628
13629 /* ADDIU instruction. */
13630
13631 static const struct opcode_descriptor addiu_insn =
13632 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13633
13634 static const struct opcode_descriptor addiupc_insn =
13635 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13636
13637 #define ADDIUPC_REG_FIELD(r) \
13638 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13639
13640
13641 /* Relaxable instructions in a JAL delay slot: MOVE. */
13642
13643 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13644 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13645 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13646 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13647
13648 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13649 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13650
13651 static const struct opcode_descriptor move_insns_32[] = {
13652 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13653 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13654 { 0, 0 } /* End marker for find_match(). */
13655 };
13656
13657 static const struct opcode_descriptor move_insn_16 =
13658 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13659
13660
13661 /* NOP instructions. */
13662
13663 static const struct opcode_descriptor nop_insn_32 =
13664 { /* "nop", "", */ 0x00000000, 0xffffffff };
13665
13666 static const struct opcode_descriptor nop_insn_16 =
13667 { /* "nop", "", */ 0x0c00, 0xffff };
13668
13669
13670 /* Instruction match support. */
13671
13672 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13673
13674 static int
13675 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13676 {
13677 unsigned long indx;
13678
13679 for (indx = 0; insn[indx].mask != 0; indx++)
13680 if (MATCH (opcode, insn[indx]))
13681 return indx;
13682
13683 return -1;
13684 }
13685
13686
13687 /* Branch and delay slot decoding support. */
13688
13689 /* If PTR points to what *might* be a 16-bit branch or jump, then
13690 return the minimum length of its delay slot, otherwise return 0.
13691 Non-zero results are not definitive as we might be checking against
13692 the second half of another instruction. */
13693
13694 static int
13695 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13696 {
13697 unsigned long opcode;
13698 int bdsize;
13699
13700 opcode = bfd_get_16 (abfd, ptr);
13701 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13702 /* 16-bit branch/jump with a 32-bit delay slot. */
13703 bdsize = 4;
13704 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13705 || find_match (opcode, ds_insns_16_bd16) >= 0)
13706 /* 16-bit branch/jump with a 16-bit delay slot. */
13707 bdsize = 2;
13708 else
13709 /* No delay slot. */
13710 bdsize = 0;
13711
13712 return bdsize;
13713 }
13714
13715 /* If PTR points to what *might* be a 32-bit branch or jump, then
13716 return the minimum length of its delay slot, otherwise return 0.
13717 Non-zero results are not definitive as we might be checking against
13718 the second half of another instruction. */
13719
13720 static int
13721 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13722 {
13723 unsigned long opcode;
13724 int bdsize;
13725
13726 opcode = bfd_get_micromips_32 (abfd, ptr);
13727 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13728 /* 32-bit branch/jump with a 32-bit delay slot. */
13729 bdsize = 4;
13730 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13731 /* 32-bit branch/jump with a 16-bit delay slot. */
13732 bdsize = 2;
13733 else
13734 /* No delay slot. */
13735 bdsize = 0;
13736
13737 return bdsize;
13738 }
13739
13740 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13741 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13742
13743 static bfd_boolean
13744 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13745 {
13746 unsigned long opcode;
13747
13748 opcode = bfd_get_16 (abfd, ptr);
13749 if (MATCH (opcode, b_insn_16)
13750 /* B16 */
13751 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13752 /* JR16 */
13753 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13754 /* BEQZ16, BNEZ16 */
13755 || (MATCH (opcode, jalr_insn_16_bd32)
13756 /* JALR16 */
13757 && reg != JR16_REG (opcode) && reg != RA))
13758 return TRUE;
13759
13760 return FALSE;
13761 }
13762
13763 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13764 then return TRUE, otherwise FALSE. */
13765
13766 static bfd_boolean
13767 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13768 {
13769 unsigned long opcode;
13770
13771 opcode = bfd_get_micromips_32 (abfd, ptr);
13772 if (MATCH (opcode, j_insn_32)
13773 /* J */
13774 || MATCH (opcode, bc_insn_32)
13775 /* BC1F, BC1T, BC2F, BC2T */
13776 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13777 /* JAL, JALX */
13778 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13779 /* BGEZ, BGTZ, BLEZ, BLTZ */
13780 || (MATCH (opcode, bzal_insn_32)
13781 /* BGEZAL, BLTZAL */
13782 && reg != OP32_SREG (opcode) && reg != RA)
13783 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13784 /* JALR, JALR.HB, BEQ, BNE */
13785 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13786 return TRUE;
13787
13788 return FALSE;
13789 }
13790
13791 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13792 IRELEND) at OFFSET indicate that there must be a compact branch there,
13793 then return TRUE, otherwise FALSE. */
13794
13795 static bfd_boolean
13796 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13797 const Elf_Internal_Rela *internal_relocs,
13798 const Elf_Internal_Rela *irelend)
13799 {
13800 const Elf_Internal_Rela *irel;
13801 unsigned long opcode;
13802
13803 opcode = bfd_get_micromips_32 (abfd, ptr);
13804 if (find_match (opcode, bzc_insns_32) < 0)
13805 return FALSE;
13806
13807 for (irel = internal_relocs; irel < irelend; irel++)
13808 if (irel->r_offset == offset
13809 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13810 return TRUE;
13811
13812 return FALSE;
13813 }
13814
13815 /* Bitsize checking. */
13816 #define IS_BITSIZE(val, N) \
13817 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13818 - (1ULL << ((N) - 1))) == (val))
13819
13820 \f
13821 bfd_boolean
13822 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13823 struct bfd_link_info *link_info,
13824 bfd_boolean *again)
13825 {
13826 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13827 Elf_Internal_Shdr *symtab_hdr;
13828 Elf_Internal_Rela *internal_relocs;
13829 Elf_Internal_Rela *irel, *irelend;
13830 bfd_byte *contents = NULL;
13831 Elf_Internal_Sym *isymbuf = NULL;
13832
13833 /* Assume nothing changes. */
13834 *again = FALSE;
13835
13836 /* We don't have to do anything for a relocatable link, if
13837 this section does not have relocs, or if this is not a
13838 code section. */
13839
13840 if (bfd_link_relocatable (link_info)
13841 || (sec->flags & SEC_RELOC) == 0
13842 || sec->reloc_count == 0
13843 || (sec->flags & SEC_CODE) == 0)
13844 return TRUE;
13845
13846 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13847
13848 /* Get a copy of the native relocations. */
13849 internal_relocs = (_bfd_elf_link_read_relocs
13850 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13851 link_info->keep_memory));
13852 if (internal_relocs == NULL)
13853 goto error_return;
13854
13855 /* Walk through them looking for relaxing opportunities. */
13856 irelend = internal_relocs + sec->reloc_count;
13857 for (irel = internal_relocs; irel < irelend; irel++)
13858 {
13859 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13860 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13861 bfd_boolean target_is_micromips_code_p;
13862 unsigned long opcode;
13863 bfd_vma symval;
13864 bfd_vma pcrval;
13865 bfd_byte *ptr;
13866 int fndopc;
13867
13868 /* The number of bytes to delete for relaxation and from where
13869 to delete these bytes starting at irel->r_offset. */
13870 int delcnt = 0;
13871 int deloff = 0;
13872
13873 /* If this isn't something that can be relaxed, then ignore
13874 this reloc. */
13875 if (r_type != R_MICROMIPS_HI16
13876 && r_type != R_MICROMIPS_PC16_S1
13877 && r_type != R_MICROMIPS_26_S1)
13878 continue;
13879
13880 /* Get the section contents if we haven't done so already. */
13881 if (contents == NULL)
13882 {
13883 /* Get cached copy if it exists. */
13884 if (elf_section_data (sec)->this_hdr.contents != NULL)
13885 contents = elf_section_data (sec)->this_hdr.contents;
13886 /* Go get them off disk. */
13887 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13888 goto error_return;
13889 }
13890 ptr = contents + irel->r_offset;
13891
13892 /* Read this BFD's local symbols if we haven't done so already. */
13893 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13894 {
13895 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13896 if (isymbuf == NULL)
13897 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13898 symtab_hdr->sh_info, 0,
13899 NULL, NULL, NULL);
13900 if (isymbuf == NULL)
13901 goto error_return;
13902 }
13903
13904 /* Get the value of the symbol referred to by the reloc. */
13905 if (r_symndx < symtab_hdr->sh_info)
13906 {
13907 /* A local symbol. */
13908 Elf_Internal_Sym *isym;
13909 asection *sym_sec;
13910
13911 isym = isymbuf + r_symndx;
13912 if (isym->st_shndx == SHN_UNDEF)
13913 sym_sec = bfd_und_section_ptr;
13914 else if (isym->st_shndx == SHN_ABS)
13915 sym_sec = bfd_abs_section_ptr;
13916 else if (isym->st_shndx == SHN_COMMON)
13917 sym_sec = bfd_com_section_ptr;
13918 else
13919 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13920 symval = (isym->st_value
13921 + sym_sec->output_section->vma
13922 + sym_sec->output_offset);
13923 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13924 }
13925 else
13926 {
13927 unsigned long indx;
13928 struct elf_link_hash_entry *h;
13929
13930 /* An external symbol. */
13931 indx = r_symndx - symtab_hdr->sh_info;
13932 h = elf_sym_hashes (abfd)[indx];
13933 BFD_ASSERT (h != NULL);
13934
13935 if (h->root.type != bfd_link_hash_defined
13936 && h->root.type != bfd_link_hash_defweak)
13937 /* This appears to be a reference to an undefined
13938 symbol. Just ignore it -- it will be caught by the
13939 regular reloc processing. */
13940 continue;
13941
13942 symval = (h->root.u.def.value
13943 + h->root.u.def.section->output_section->vma
13944 + h->root.u.def.section->output_offset);
13945 target_is_micromips_code_p = (!h->needs_plt
13946 && ELF_ST_IS_MICROMIPS (h->other));
13947 }
13948
13949
13950 /* For simplicity of coding, we are going to modify the
13951 section contents, the section relocs, and the BFD symbol
13952 table. We must tell the rest of the code not to free up this
13953 information. It would be possible to instead create a table
13954 of changes which have to be made, as is done in coff-mips.c;
13955 that would be more work, but would require less memory when
13956 the linker is run. */
13957
13958 /* Only 32-bit instructions relaxed. */
13959 if (irel->r_offset + 4 > sec->size)
13960 continue;
13961
13962 opcode = bfd_get_micromips_32 (abfd, ptr);
13963
13964 /* This is the pc-relative distance from the instruction the
13965 relocation is applied to, to the symbol referred. */
13966 pcrval = (symval
13967 - (sec->output_section->vma + sec->output_offset)
13968 - irel->r_offset);
13969
13970 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13971 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13972 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13973
13974 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13975
13976 where pcrval has first to be adjusted to apply against the LO16
13977 location (we make the adjustment later on, when we have figured
13978 out the offset). */
13979 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13980 {
13981 bfd_boolean bzc = FALSE;
13982 unsigned long nextopc;
13983 unsigned long reg;
13984 bfd_vma offset;
13985
13986 /* Give up if the previous reloc was a HI16 against this symbol
13987 too. */
13988 if (irel > internal_relocs
13989 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13990 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13991 continue;
13992
13993 /* Or if the next reloc is not a LO16 against this symbol. */
13994 if (irel + 1 >= irelend
13995 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13996 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13997 continue;
13998
13999 /* Or if the second next reloc is a LO16 against this symbol too. */
14000 if (irel + 2 >= irelend
14001 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
14002 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
14003 continue;
14004
14005 /* See if the LUI instruction *might* be in a branch delay slot.
14006 We check whether what looks like a 16-bit branch or jump is
14007 actually an immediate argument to a compact branch, and let
14008 it through if so. */
14009 if (irel->r_offset >= 2
14010 && check_br16_dslot (abfd, ptr - 2)
14011 && !(irel->r_offset >= 4
14012 && (bzc = check_relocated_bzc (abfd,
14013 ptr - 4, irel->r_offset - 4,
14014 internal_relocs, irelend))))
14015 continue;
14016 if (irel->r_offset >= 4
14017 && !bzc
14018 && check_br32_dslot (abfd, ptr - 4))
14019 continue;
14020
14021 reg = OP32_SREG (opcode);
14022
14023 /* We only relax adjacent instructions or ones separated with
14024 a branch or jump that has a delay slot. The branch or jump
14025 must not fiddle with the register used to hold the address.
14026 Subtract 4 for the LUI itself. */
14027 offset = irel[1].r_offset - irel[0].r_offset;
14028 switch (offset - 4)
14029 {
14030 case 0:
14031 break;
14032 case 2:
14033 if (check_br16 (abfd, ptr + 4, reg))
14034 break;
14035 continue;
14036 case 4:
14037 if (check_br32 (abfd, ptr + 4, reg))
14038 break;
14039 continue;
14040 default:
14041 continue;
14042 }
14043
14044 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
14045
14046 /* Give up unless the same register is used with both
14047 relocations. */
14048 if (OP32_SREG (nextopc) != reg)
14049 continue;
14050
14051 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
14052 and rounding up to take masking of the two LSBs into account. */
14053 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
14054
14055 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
14056 if (IS_BITSIZE (symval, 16))
14057 {
14058 /* Fix the relocation's type. */
14059 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
14060
14061 /* Instructions using R_MICROMIPS_LO16 have the base or
14062 source register in bits 20:16. This register becomes $0
14063 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
14064 nextopc &= ~0x001f0000;
14065 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
14066 contents + irel[1].r_offset);
14067 }
14068
14069 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
14070 We add 4 to take LUI deletion into account while checking
14071 the PC-relative distance. */
14072 else if (symval % 4 == 0
14073 && IS_BITSIZE (pcrval + 4, 25)
14074 && MATCH (nextopc, addiu_insn)
14075 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
14076 && OP16_VALID_REG (OP32_TREG (nextopc)))
14077 {
14078 /* Fix the relocation's type. */
14079 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
14080
14081 /* Replace ADDIU with the ADDIUPC version. */
14082 nextopc = (addiupc_insn.match
14083 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
14084
14085 bfd_put_micromips_32 (abfd, nextopc,
14086 contents + irel[1].r_offset);
14087 }
14088
14089 /* Can't do anything, give up, sigh... */
14090 else
14091 continue;
14092
14093 /* Fix the relocation's type. */
14094 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
14095
14096 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
14097 delcnt = 4;
14098 deloff = 0;
14099 }
14100
14101 /* Compact branch relaxation -- due to the multitude of macros
14102 employed by the compiler/assembler, compact branches are not
14103 always generated. Obviously, this can/will be fixed elsewhere,
14104 but there is no drawback in double checking it here. */
14105 else if (r_type == R_MICROMIPS_PC16_S1
14106 && irel->r_offset + 5 < sec->size
14107 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
14108 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
14109 && ((!insn32
14110 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
14111 nop_insn_16) ? 2 : 0))
14112 || (irel->r_offset + 7 < sec->size
14113 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
14114 ptr + 4),
14115 nop_insn_32) ? 4 : 0))))
14116 {
14117 unsigned long reg;
14118
14119 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
14120
14121 /* Replace BEQZ/BNEZ with the compact version. */
14122 opcode = (bzc_insns_32[fndopc].match
14123 | BZC32_REG_FIELD (reg)
14124 | (opcode & 0xffff)); /* Addend value. */
14125
14126 bfd_put_micromips_32 (abfd, opcode, ptr);
14127
14128 /* Delete the delay slot NOP: two or four bytes from
14129 irel->offset + 4; delcnt has already been set above. */
14130 deloff = 4;
14131 }
14132
14133 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
14134 to check the distance from the next instruction, so subtract 2. */
14135 else if (!insn32
14136 && r_type == R_MICROMIPS_PC16_S1
14137 && IS_BITSIZE (pcrval - 2, 11)
14138 && find_match (opcode, b_insns_32) >= 0)
14139 {
14140 /* Fix the relocation's type. */
14141 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
14142
14143 /* Replace the 32-bit opcode with a 16-bit opcode. */
14144 bfd_put_16 (abfd,
14145 (b_insn_16.match
14146 | (opcode & 0x3ff)), /* Addend value. */
14147 ptr);
14148
14149 /* Delete 2 bytes from irel->r_offset + 2. */
14150 delcnt = 2;
14151 deloff = 2;
14152 }
14153
14154 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
14155 to check the distance from the next instruction, so subtract 2. */
14156 else if (!insn32
14157 && r_type == R_MICROMIPS_PC16_S1
14158 && IS_BITSIZE (pcrval - 2, 8)
14159 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
14160 && OP16_VALID_REG (OP32_SREG (opcode)))
14161 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
14162 && OP16_VALID_REG (OP32_TREG (opcode)))))
14163 {
14164 unsigned long reg;
14165
14166 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
14167
14168 /* Fix the relocation's type. */
14169 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
14170
14171 /* Replace the 32-bit opcode with a 16-bit opcode. */
14172 bfd_put_16 (abfd,
14173 (bz_insns_16[fndopc].match
14174 | BZ16_REG_FIELD (reg)
14175 | (opcode & 0x7f)), /* Addend value. */
14176 ptr);
14177
14178 /* Delete 2 bytes from irel->r_offset + 2. */
14179 delcnt = 2;
14180 deloff = 2;
14181 }
14182
14183 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
14184 else if (!insn32
14185 && r_type == R_MICROMIPS_26_S1
14186 && target_is_micromips_code_p
14187 && irel->r_offset + 7 < sec->size
14188 && MATCH (opcode, jal_insn_32_bd32))
14189 {
14190 unsigned long n32opc;
14191 bfd_boolean relaxed = FALSE;
14192
14193 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
14194
14195 if (MATCH (n32opc, nop_insn_32))
14196 {
14197 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
14198 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
14199
14200 relaxed = TRUE;
14201 }
14202 else if (find_match (n32opc, move_insns_32) >= 0)
14203 {
14204 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
14205 bfd_put_16 (abfd,
14206 (move_insn_16.match
14207 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
14208 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
14209 ptr + 4);
14210
14211 relaxed = TRUE;
14212 }
14213 /* Other 32-bit instructions relaxable to 16-bit
14214 instructions will be handled here later. */
14215
14216 if (relaxed)
14217 {
14218 /* JAL with 32-bit delay slot that is changed to a JALS
14219 with 16-bit delay slot. */
14220 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
14221
14222 /* Delete 2 bytes from irel->r_offset + 6. */
14223 delcnt = 2;
14224 deloff = 6;
14225 }
14226 }
14227
14228 if (delcnt != 0)
14229 {
14230 /* Note that we've changed the relocs, section contents, etc. */
14231 elf_section_data (sec)->relocs = internal_relocs;
14232 elf_section_data (sec)->this_hdr.contents = contents;
14233 symtab_hdr->contents = (unsigned char *) isymbuf;
14234
14235 /* Delete bytes depending on the delcnt and deloff. */
14236 if (!mips_elf_relax_delete_bytes (abfd, sec,
14237 irel->r_offset + deloff, delcnt))
14238 goto error_return;
14239
14240 /* That will change things, so we should relax again.
14241 Note that this is not required, and it may be slow. */
14242 *again = TRUE;
14243 }
14244 }
14245
14246 if (isymbuf != NULL
14247 && symtab_hdr->contents != (unsigned char *) isymbuf)
14248 {
14249 if (! link_info->keep_memory)
14250 free (isymbuf);
14251 else
14252 {
14253 /* Cache the symbols for elf_link_input_bfd. */
14254 symtab_hdr->contents = (unsigned char *) isymbuf;
14255 }
14256 }
14257
14258 if (contents != NULL
14259 && elf_section_data (sec)->this_hdr.contents != contents)
14260 {
14261 if (! link_info->keep_memory)
14262 free (contents);
14263 else
14264 {
14265 /* Cache the section contents for elf_link_input_bfd. */
14266 elf_section_data (sec)->this_hdr.contents = contents;
14267 }
14268 }
14269
14270 if (internal_relocs != NULL
14271 && elf_section_data (sec)->relocs != internal_relocs)
14272 free (internal_relocs);
14273
14274 return TRUE;
14275
14276 error_return:
14277 if (isymbuf != NULL
14278 && symtab_hdr->contents != (unsigned char *) isymbuf)
14279 free (isymbuf);
14280 if (contents != NULL
14281 && elf_section_data (sec)->this_hdr.contents != contents)
14282 free (contents);
14283 if (internal_relocs != NULL
14284 && elf_section_data (sec)->relocs != internal_relocs)
14285 free (internal_relocs);
14286
14287 return FALSE;
14288 }
14289 \f
14290 /* Create a MIPS ELF linker hash table. */
14291
14292 struct bfd_link_hash_table *
14293 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
14294 {
14295 struct mips_elf_link_hash_table *ret;
14296 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
14297
14298 ret = bfd_zmalloc (amt);
14299 if (ret == NULL)
14300 return NULL;
14301
14302 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
14303 mips_elf_link_hash_newfunc,
14304 sizeof (struct mips_elf_link_hash_entry),
14305 MIPS_ELF_DATA))
14306 {
14307 free (ret);
14308 return NULL;
14309 }
14310 ret->root.init_plt_refcount.plist = NULL;
14311 ret->root.init_plt_offset.plist = NULL;
14312
14313 return &ret->root.root;
14314 }
14315
14316 /* Likewise, but indicate that the target is VxWorks. */
14317
14318 struct bfd_link_hash_table *
14319 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
14320 {
14321 struct bfd_link_hash_table *ret;
14322
14323 ret = _bfd_mips_elf_link_hash_table_create (abfd);
14324 if (ret)
14325 {
14326 struct mips_elf_link_hash_table *htab;
14327
14328 htab = (struct mips_elf_link_hash_table *) ret;
14329 htab->use_plts_and_copy_relocs = TRUE;
14330 htab->is_vxworks = TRUE;
14331 }
14332 return ret;
14333 }
14334
14335 /* A function that the linker calls if we are allowed to use PLTs
14336 and copy relocs. */
14337
14338 void
14339 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
14340 {
14341 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
14342 }
14343
14344 /* A function that the linker calls to select between all or only
14345 32-bit microMIPS instructions, and between making or ignoring
14346 branch relocation checks for invalid transitions between ISA modes.
14347 Also record whether we have been configured for a GNU target. */
14348
14349 void
14350 _bfd_mips_elf_linker_flags (struct bfd_link_info *info, bfd_boolean insn32,
14351 bfd_boolean ignore_branch_isa,
14352 bfd_boolean gnu_target)
14353 {
14354 mips_elf_hash_table (info)->insn32 = insn32;
14355 mips_elf_hash_table (info)->ignore_branch_isa = ignore_branch_isa;
14356 mips_elf_hash_table (info)->gnu_target = gnu_target;
14357 }
14358
14359 /* A function that the linker calls to enable use of compact branches in
14360 linker generated code for MIPSR6. */
14361
14362 void
14363 _bfd_mips_elf_compact_branches (struct bfd_link_info *info, bfd_boolean on)
14364 {
14365 mips_elf_hash_table (info)->compact_branches = on;
14366 }
14367
14368 \f
14369 /* Structure for saying that BFD machine EXTENSION extends BASE. */
14370
14371 struct mips_mach_extension
14372 {
14373 unsigned long extension, base;
14374 };
14375
14376
14377 /* An array describing how BFD machines relate to one another. The entries
14378 are ordered topologically with MIPS I extensions listed last. */
14379
14380 static const struct mips_mach_extension mips_mach_extensions[] =
14381 {
14382 /* MIPS64r2 extensions. */
14383 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
14384 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
14385 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
14386 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
14387 { bfd_mach_mips_gs264e, bfd_mach_mips_gs464e },
14388 { bfd_mach_mips_gs464e, bfd_mach_mips_gs464 },
14389 { bfd_mach_mips_gs464, bfd_mach_mipsisa64r2 },
14390
14391 /* MIPS64 extensions. */
14392 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
14393 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
14394 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
14395
14396 /* MIPS V extensions. */
14397 { bfd_mach_mipsisa64, bfd_mach_mips5 },
14398
14399 /* R10000 extensions. */
14400 { bfd_mach_mips12000, bfd_mach_mips10000 },
14401 { bfd_mach_mips14000, bfd_mach_mips10000 },
14402 { bfd_mach_mips16000, bfd_mach_mips10000 },
14403
14404 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14405 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14406 better to allow vr5400 and vr5500 code to be merged anyway, since
14407 many libraries will just use the core ISA. Perhaps we could add
14408 some sort of ASE flag if this ever proves a problem. */
14409 { bfd_mach_mips5500, bfd_mach_mips5400 },
14410 { bfd_mach_mips5400, bfd_mach_mips5000 },
14411
14412 /* MIPS IV extensions. */
14413 { bfd_mach_mips5, bfd_mach_mips8000 },
14414 { bfd_mach_mips10000, bfd_mach_mips8000 },
14415 { bfd_mach_mips5000, bfd_mach_mips8000 },
14416 { bfd_mach_mips7000, bfd_mach_mips8000 },
14417 { bfd_mach_mips9000, bfd_mach_mips8000 },
14418
14419 /* VR4100 extensions. */
14420 { bfd_mach_mips4120, bfd_mach_mips4100 },
14421 { bfd_mach_mips4111, bfd_mach_mips4100 },
14422
14423 /* MIPS III extensions. */
14424 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14425 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14426 { bfd_mach_mips8000, bfd_mach_mips4000 },
14427 { bfd_mach_mips4650, bfd_mach_mips4000 },
14428 { bfd_mach_mips4600, bfd_mach_mips4000 },
14429 { bfd_mach_mips4400, bfd_mach_mips4000 },
14430 { bfd_mach_mips4300, bfd_mach_mips4000 },
14431 { bfd_mach_mips4100, bfd_mach_mips4000 },
14432 { bfd_mach_mips5900, bfd_mach_mips4000 },
14433
14434 /* MIPS32r3 extensions. */
14435 { bfd_mach_mips_interaptiv_mr2, bfd_mach_mipsisa32r3 },
14436
14437 /* MIPS32r2 extensions. */
14438 { bfd_mach_mipsisa32r3, bfd_mach_mipsisa32r2 },
14439
14440 /* MIPS32 extensions. */
14441 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14442
14443 /* MIPS II extensions. */
14444 { bfd_mach_mips4000, bfd_mach_mips6000 },
14445 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14446 { bfd_mach_mips4010, bfd_mach_mips6000 },
14447
14448 /* MIPS I extensions. */
14449 { bfd_mach_mips6000, bfd_mach_mips3000 },
14450 { bfd_mach_mips3900, bfd_mach_mips3000 }
14451 };
14452
14453 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14454
14455 static bfd_boolean
14456 mips_mach_extends_p (unsigned long base, unsigned long extension)
14457 {
14458 size_t i;
14459
14460 if (extension == base)
14461 return TRUE;
14462
14463 if (base == bfd_mach_mipsisa32
14464 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14465 return TRUE;
14466
14467 if (base == bfd_mach_mipsisa32r2
14468 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14469 return TRUE;
14470
14471 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14472 if (extension == mips_mach_extensions[i].extension)
14473 {
14474 extension = mips_mach_extensions[i].base;
14475 if (extension == base)
14476 return TRUE;
14477 }
14478
14479 return FALSE;
14480 }
14481
14482 /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14483
14484 static unsigned long
14485 bfd_mips_isa_ext_mach (unsigned int isa_ext)
14486 {
14487 switch (isa_ext)
14488 {
14489 case AFL_EXT_3900: return bfd_mach_mips3900;
14490 case AFL_EXT_4010: return bfd_mach_mips4010;
14491 case AFL_EXT_4100: return bfd_mach_mips4100;
14492 case AFL_EXT_4111: return bfd_mach_mips4111;
14493 case AFL_EXT_4120: return bfd_mach_mips4120;
14494 case AFL_EXT_4650: return bfd_mach_mips4650;
14495 case AFL_EXT_5400: return bfd_mach_mips5400;
14496 case AFL_EXT_5500: return bfd_mach_mips5500;
14497 case AFL_EXT_5900: return bfd_mach_mips5900;
14498 case AFL_EXT_10000: return bfd_mach_mips10000;
14499 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14500 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14501 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
14502 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14503 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14504 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
14505 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14506 default: return bfd_mach_mips3000;
14507 }
14508 }
14509
14510 /* Return the .MIPS.abiflags value representing each ISA Extension. */
14511
14512 unsigned int
14513 bfd_mips_isa_ext (bfd *abfd)
14514 {
14515 switch (bfd_get_mach (abfd))
14516 {
14517 case bfd_mach_mips3900: return AFL_EXT_3900;
14518 case bfd_mach_mips4010: return AFL_EXT_4010;
14519 case bfd_mach_mips4100: return AFL_EXT_4100;
14520 case bfd_mach_mips4111: return AFL_EXT_4111;
14521 case bfd_mach_mips4120: return AFL_EXT_4120;
14522 case bfd_mach_mips4650: return AFL_EXT_4650;
14523 case bfd_mach_mips5400: return AFL_EXT_5400;
14524 case bfd_mach_mips5500: return AFL_EXT_5500;
14525 case bfd_mach_mips5900: return AFL_EXT_5900;
14526 case bfd_mach_mips10000: return AFL_EXT_10000;
14527 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14528 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14529 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14530 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14531 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14532 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14533 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14534 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
14535 case bfd_mach_mips_interaptiv_mr2:
14536 return AFL_EXT_INTERAPTIV_MR2;
14537 default: return 0;
14538 }
14539 }
14540
14541 /* Encode ISA level and revision as a single value. */
14542 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14543
14544 /* Decode a single value into level and revision. */
14545 #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14546 #define ISA_REV(LEVREV) ((LEVREV) & 0x7)
14547
14548 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14549
14550 static void
14551 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14552 {
14553 int new_isa = 0;
14554 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14555 {
14556 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14557 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14558 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14559 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14560 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14561 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14562 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14563 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14564 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14565 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14566 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
14567 default:
14568 _bfd_error_handler
14569 /* xgettext:c-format */
14570 (_("%pB: unknown architecture %s"),
14571 abfd, bfd_printable_name (abfd));
14572 }
14573
14574 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14575 {
14576 abiflags->isa_level = ISA_LEVEL (new_isa);
14577 abiflags->isa_rev = ISA_REV (new_isa);
14578 }
14579
14580 /* Update the isa_ext if ABFD describes a further extension. */
14581 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14582 bfd_get_mach (abfd)))
14583 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
14584 }
14585
14586 /* Return true if the given ELF header flags describe a 32-bit binary. */
14587
14588 static bfd_boolean
14589 mips_32bit_flags_p (flagword flags)
14590 {
14591 return ((flags & EF_MIPS_32BITMODE) != 0
14592 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14593 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14594 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14595 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14596 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14597 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14598 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14599 }
14600
14601 /* Infer the content of the ABI flags based on the elf header. */
14602
14603 static void
14604 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14605 {
14606 obj_attribute *in_attr;
14607
14608 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14609 update_mips_abiflags_isa (abfd, abiflags);
14610
14611 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14612 abiflags->gpr_size = AFL_REG_32;
14613 else
14614 abiflags->gpr_size = AFL_REG_64;
14615
14616 abiflags->cpr1_size = AFL_REG_NONE;
14617
14618 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14619 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14620
14621 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14622 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14623 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14624 && abiflags->gpr_size == AFL_REG_32))
14625 abiflags->cpr1_size = AFL_REG_32;
14626 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14627 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14628 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14629 abiflags->cpr1_size = AFL_REG_64;
14630
14631 abiflags->cpr2_size = AFL_REG_NONE;
14632
14633 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14634 abiflags->ases |= AFL_ASE_MDMX;
14635 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14636 abiflags->ases |= AFL_ASE_MIPS16;
14637 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14638 abiflags->ases |= AFL_ASE_MICROMIPS;
14639
14640 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14641 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14642 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14643 && abiflags->isa_level >= 32
14644 && abiflags->ases != AFL_ASE_LOONGSON_EXT)
14645 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14646 }
14647
14648 /* We need to use a special link routine to handle the .reginfo and
14649 the .mdebug sections. We need to merge all instances of these
14650 sections together, not write them all out sequentially. */
14651
14652 bfd_boolean
14653 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14654 {
14655 asection *o;
14656 struct bfd_link_order *p;
14657 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14658 asection *rtproc_sec, *abiflags_sec;
14659 Elf32_RegInfo reginfo;
14660 struct ecoff_debug_info debug;
14661 struct mips_htab_traverse_info hti;
14662 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14663 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14664 HDRR *symhdr = &debug.symbolic_header;
14665 void *mdebug_handle = NULL;
14666 asection *s;
14667 EXTR esym;
14668 unsigned int i;
14669 bfd_size_type amt;
14670 struct mips_elf_link_hash_table *htab;
14671
14672 static const char * const secname[] =
14673 {
14674 ".text", ".init", ".fini", ".data",
14675 ".rodata", ".sdata", ".sbss", ".bss"
14676 };
14677 static const int sc[] =
14678 {
14679 scText, scInit, scFini, scData,
14680 scRData, scSData, scSBss, scBss
14681 };
14682
14683 htab = mips_elf_hash_table (info);
14684 BFD_ASSERT (htab != NULL);
14685
14686 /* Sort the dynamic symbols so that those with GOT entries come after
14687 those without. */
14688 if (!mips_elf_sort_hash_table (abfd, info))
14689 return FALSE;
14690
14691 /* Create any scheduled LA25 stubs. */
14692 hti.info = info;
14693 hti.output_bfd = abfd;
14694 hti.error = FALSE;
14695 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14696 if (hti.error)
14697 return FALSE;
14698
14699 /* Get a value for the GP register. */
14700 if (elf_gp (abfd) == 0)
14701 {
14702 struct bfd_link_hash_entry *h;
14703
14704 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
14705 if (h != NULL && h->type == bfd_link_hash_defined)
14706 elf_gp (abfd) = (h->u.def.value
14707 + h->u.def.section->output_section->vma
14708 + h->u.def.section->output_offset);
14709 else if (htab->is_vxworks
14710 && (h = bfd_link_hash_lookup (info->hash,
14711 "_GLOBAL_OFFSET_TABLE_",
14712 FALSE, FALSE, TRUE))
14713 && h->type == bfd_link_hash_defined)
14714 elf_gp (abfd) = (h->u.def.section->output_section->vma
14715 + h->u.def.section->output_offset
14716 + h->u.def.value);
14717 else if (bfd_link_relocatable (info))
14718 {
14719 bfd_vma lo = MINUS_ONE;
14720
14721 /* Find the GP-relative section with the lowest offset. */
14722 for (o = abfd->sections; o != NULL; o = o->next)
14723 if (o->vma < lo
14724 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14725 lo = o->vma;
14726
14727 /* And calculate GP relative to that. */
14728 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14729 }
14730 else
14731 {
14732 /* If the relocate_section function needs to do a reloc
14733 involving the GP value, it should make a reloc_dangerous
14734 callback to warn that GP is not defined. */
14735 }
14736 }
14737
14738 /* Go through the sections and collect the .reginfo and .mdebug
14739 information. */
14740 abiflags_sec = NULL;
14741 reginfo_sec = NULL;
14742 mdebug_sec = NULL;
14743 gptab_data_sec = NULL;
14744 gptab_bss_sec = NULL;
14745 for (o = abfd->sections; o != NULL; o = o->next)
14746 {
14747 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14748 {
14749 /* We have found the .MIPS.abiflags section in the output file.
14750 Look through all the link_orders comprising it and remove them.
14751 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14752 for (p = o->map_head.link_order; p != NULL; p = p->next)
14753 {
14754 asection *input_section;
14755
14756 if (p->type != bfd_indirect_link_order)
14757 {
14758 if (p->type == bfd_data_link_order)
14759 continue;
14760 abort ();
14761 }
14762
14763 input_section = p->u.indirect.section;
14764
14765 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14766 elf_link_input_bfd ignores this section. */
14767 input_section->flags &= ~SEC_HAS_CONTENTS;
14768 }
14769
14770 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14771 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14772
14773 /* Skip this section later on (I don't think this currently
14774 matters, but someday it might). */
14775 o->map_head.link_order = NULL;
14776
14777 abiflags_sec = o;
14778 }
14779
14780 if (strcmp (o->name, ".reginfo") == 0)
14781 {
14782 memset (&reginfo, 0, sizeof reginfo);
14783
14784 /* We have found the .reginfo section in the output file.
14785 Look through all the link_orders comprising it and merge
14786 the information together. */
14787 for (p = o->map_head.link_order; p != NULL; p = p->next)
14788 {
14789 asection *input_section;
14790 bfd *input_bfd;
14791 Elf32_External_RegInfo ext;
14792 Elf32_RegInfo sub;
14793 bfd_size_type sz;
14794
14795 if (p->type != bfd_indirect_link_order)
14796 {
14797 if (p->type == bfd_data_link_order)
14798 continue;
14799 abort ();
14800 }
14801
14802 input_section = p->u.indirect.section;
14803 input_bfd = input_section->owner;
14804
14805 sz = (input_section->size < sizeof (ext)
14806 ? input_section->size : sizeof (ext));
14807 memset (&ext, 0, sizeof (ext));
14808 if (! bfd_get_section_contents (input_bfd, input_section,
14809 &ext, 0, sz))
14810 return FALSE;
14811
14812 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14813
14814 reginfo.ri_gprmask |= sub.ri_gprmask;
14815 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14816 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14817 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14818 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14819
14820 /* ri_gp_value is set by the function
14821 `_bfd_mips_elf_section_processing' when the section is
14822 finally written out. */
14823
14824 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14825 elf_link_input_bfd ignores this section. */
14826 input_section->flags &= ~SEC_HAS_CONTENTS;
14827 }
14828
14829 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14830 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14831
14832 /* Skip this section later on (I don't think this currently
14833 matters, but someday it might). */
14834 o->map_head.link_order = NULL;
14835
14836 reginfo_sec = o;
14837 }
14838
14839 if (strcmp (o->name, ".mdebug") == 0)
14840 {
14841 struct extsym_info einfo;
14842 bfd_vma last;
14843
14844 /* We have found the .mdebug section in the output file.
14845 Look through all the link_orders comprising it and merge
14846 the information together. */
14847 symhdr->magic = swap->sym_magic;
14848 /* FIXME: What should the version stamp be? */
14849 symhdr->vstamp = 0;
14850 symhdr->ilineMax = 0;
14851 symhdr->cbLine = 0;
14852 symhdr->idnMax = 0;
14853 symhdr->ipdMax = 0;
14854 symhdr->isymMax = 0;
14855 symhdr->ioptMax = 0;
14856 symhdr->iauxMax = 0;
14857 symhdr->issMax = 0;
14858 symhdr->issExtMax = 0;
14859 symhdr->ifdMax = 0;
14860 symhdr->crfd = 0;
14861 symhdr->iextMax = 0;
14862
14863 /* We accumulate the debugging information itself in the
14864 debug_info structure. */
14865 debug.line = NULL;
14866 debug.external_dnr = NULL;
14867 debug.external_pdr = NULL;
14868 debug.external_sym = NULL;
14869 debug.external_opt = NULL;
14870 debug.external_aux = NULL;
14871 debug.ss = NULL;
14872 debug.ssext = debug.ssext_end = NULL;
14873 debug.external_fdr = NULL;
14874 debug.external_rfd = NULL;
14875 debug.external_ext = debug.external_ext_end = NULL;
14876
14877 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14878 if (mdebug_handle == NULL)
14879 return FALSE;
14880
14881 esym.jmptbl = 0;
14882 esym.cobol_main = 0;
14883 esym.weakext = 0;
14884 esym.reserved = 0;
14885 esym.ifd = ifdNil;
14886 esym.asym.iss = issNil;
14887 esym.asym.st = stLocal;
14888 esym.asym.reserved = 0;
14889 esym.asym.index = indexNil;
14890 last = 0;
14891 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14892 {
14893 esym.asym.sc = sc[i];
14894 s = bfd_get_section_by_name (abfd, secname[i]);
14895 if (s != NULL)
14896 {
14897 esym.asym.value = s->vma;
14898 last = s->vma + s->size;
14899 }
14900 else
14901 esym.asym.value = last;
14902 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14903 secname[i], &esym))
14904 return FALSE;
14905 }
14906
14907 for (p = o->map_head.link_order; p != NULL; p = p->next)
14908 {
14909 asection *input_section;
14910 bfd *input_bfd;
14911 const struct ecoff_debug_swap *input_swap;
14912 struct ecoff_debug_info input_debug;
14913 char *eraw_src;
14914 char *eraw_end;
14915
14916 if (p->type != bfd_indirect_link_order)
14917 {
14918 if (p->type == bfd_data_link_order)
14919 continue;
14920 abort ();
14921 }
14922
14923 input_section = p->u.indirect.section;
14924 input_bfd = input_section->owner;
14925
14926 if (!is_mips_elf (input_bfd))
14927 {
14928 /* I don't know what a non MIPS ELF bfd would be
14929 doing with a .mdebug section, but I don't really
14930 want to deal with it. */
14931 continue;
14932 }
14933
14934 input_swap = (get_elf_backend_data (input_bfd)
14935 ->elf_backend_ecoff_debug_swap);
14936
14937 BFD_ASSERT (p->size == input_section->size);
14938
14939 /* The ECOFF linking code expects that we have already
14940 read in the debugging information and set up an
14941 ecoff_debug_info structure, so we do that now. */
14942 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14943 &input_debug))
14944 return FALSE;
14945
14946 if (! (bfd_ecoff_debug_accumulate
14947 (mdebug_handle, abfd, &debug, swap, input_bfd,
14948 &input_debug, input_swap, info)))
14949 return FALSE;
14950
14951 /* Loop through the external symbols. For each one with
14952 interesting information, try to find the symbol in
14953 the linker global hash table and save the information
14954 for the output external symbols. */
14955 eraw_src = input_debug.external_ext;
14956 eraw_end = (eraw_src
14957 + (input_debug.symbolic_header.iextMax
14958 * input_swap->external_ext_size));
14959 for (;
14960 eraw_src < eraw_end;
14961 eraw_src += input_swap->external_ext_size)
14962 {
14963 EXTR ext;
14964 const char *name;
14965 struct mips_elf_link_hash_entry *h;
14966
14967 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
14968 if (ext.asym.sc == scNil
14969 || ext.asym.sc == scUndefined
14970 || ext.asym.sc == scSUndefined)
14971 continue;
14972
14973 name = input_debug.ssext + ext.asym.iss;
14974 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
14975 name, FALSE, FALSE, TRUE);
14976 if (h == NULL || h->esym.ifd != -2)
14977 continue;
14978
14979 if (ext.ifd != -1)
14980 {
14981 BFD_ASSERT (ext.ifd
14982 < input_debug.symbolic_header.ifdMax);
14983 ext.ifd = input_debug.ifdmap[ext.ifd];
14984 }
14985
14986 h->esym = ext;
14987 }
14988
14989 /* Free up the information we just read. */
14990 free (input_debug.line);
14991 free (input_debug.external_dnr);
14992 free (input_debug.external_pdr);
14993 free (input_debug.external_sym);
14994 free (input_debug.external_opt);
14995 free (input_debug.external_aux);
14996 free (input_debug.ss);
14997 free (input_debug.ssext);
14998 free (input_debug.external_fdr);
14999 free (input_debug.external_rfd);
15000 free (input_debug.external_ext);
15001
15002 /* Hack: reset the SEC_HAS_CONTENTS flag so that
15003 elf_link_input_bfd ignores this section. */
15004 input_section->flags &= ~SEC_HAS_CONTENTS;
15005 }
15006
15007 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
15008 {
15009 /* Create .rtproc section. */
15010 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
15011 if (rtproc_sec == NULL)
15012 {
15013 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
15014 | SEC_LINKER_CREATED | SEC_READONLY);
15015
15016 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
15017 ".rtproc",
15018 flags);
15019 if (rtproc_sec == NULL
15020 || !bfd_set_section_alignment (rtproc_sec, 4))
15021 return FALSE;
15022 }
15023
15024 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
15025 info, rtproc_sec,
15026 &debug))
15027 return FALSE;
15028 }
15029
15030 /* Build the external symbol information. */
15031 einfo.abfd = abfd;
15032 einfo.info = info;
15033 einfo.debug = &debug;
15034 einfo.swap = swap;
15035 einfo.failed = FALSE;
15036 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
15037 mips_elf_output_extsym, &einfo);
15038 if (einfo.failed)
15039 return FALSE;
15040
15041 /* Set the size of the .mdebug section. */
15042 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
15043
15044 /* Skip this section later on (I don't think this currently
15045 matters, but someday it might). */
15046 o->map_head.link_order = NULL;
15047
15048 mdebug_sec = o;
15049 }
15050
15051 if (CONST_STRNEQ (o->name, ".gptab."))
15052 {
15053 const char *subname;
15054 unsigned int c;
15055 Elf32_gptab *tab;
15056 Elf32_External_gptab *ext_tab;
15057 unsigned int j;
15058
15059 /* The .gptab.sdata and .gptab.sbss sections hold
15060 information describing how the small data area would
15061 change depending upon the -G switch. These sections
15062 not used in executables files. */
15063 if (! bfd_link_relocatable (info))
15064 {
15065 for (p = o->map_head.link_order; p != NULL; p = p->next)
15066 {
15067 asection *input_section;
15068
15069 if (p->type != bfd_indirect_link_order)
15070 {
15071 if (p->type == bfd_data_link_order)
15072 continue;
15073 abort ();
15074 }
15075
15076 input_section = p->u.indirect.section;
15077
15078 /* Hack: reset the SEC_HAS_CONTENTS flag so that
15079 elf_link_input_bfd ignores this section. */
15080 input_section->flags &= ~SEC_HAS_CONTENTS;
15081 }
15082
15083 /* Skip this section later on (I don't think this
15084 currently matters, but someday it might). */
15085 o->map_head.link_order = NULL;
15086
15087 /* Really remove the section. */
15088 bfd_section_list_remove (abfd, o);
15089 --abfd->section_count;
15090
15091 continue;
15092 }
15093
15094 /* There is one gptab for initialized data, and one for
15095 uninitialized data. */
15096 if (strcmp (o->name, ".gptab.sdata") == 0)
15097 gptab_data_sec = o;
15098 else if (strcmp (o->name, ".gptab.sbss") == 0)
15099 gptab_bss_sec = o;
15100 else
15101 {
15102 _bfd_error_handler
15103 /* xgettext:c-format */
15104 (_("%pB: illegal section name `%pA'"), abfd, o);
15105 bfd_set_error (bfd_error_nonrepresentable_section);
15106 return FALSE;
15107 }
15108
15109 /* The linker script always combines .gptab.data and
15110 .gptab.sdata into .gptab.sdata, and likewise for
15111 .gptab.bss and .gptab.sbss. It is possible that there is
15112 no .sdata or .sbss section in the output file, in which
15113 case we must change the name of the output section. */
15114 subname = o->name + sizeof ".gptab" - 1;
15115 if (bfd_get_section_by_name (abfd, subname) == NULL)
15116 {
15117 if (o == gptab_data_sec)
15118 o->name = ".gptab.data";
15119 else
15120 o->name = ".gptab.bss";
15121 subname = o->name + sizeof ".gptab" - 1;
15122 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
15123 }
15124
15125 /* Set up the first entry. */
15126 c = 1;
15127 amt = c * sizeof (Elf32_gptab);
15128 tab = bfd_malloc (amt);
15129 if (tab == NULL)
15130 return FALSE;
15131 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
15132 tab[0].gt_header.gt_unused = 0;
15133
15134 /* Combine the input sections. */
15135 for (p = o->map_head.link_order; p != NULL; p = p->next)
15136 {
15137 asection *input_section;
15138 bfd *input_bfd;
15139 bfd_size_type size;
15140 unsigned long last;
15141 bfd_size_type gpentry;
15142
15143 if (p->type != bfd_indirect_link_order)
15144 {
15145 if (p->type == bfd_data_link_order)
15146 continue;
15147 abort ();
15148 }
15149
15150 input_section = p->u.indirect.section;
15151 input_bfd = input_section->owner;
15152
15153 /* Combine the gptab entries for this input section one
15154 by one. We know that the input gptab entries are
15155 sorted by ascending -G value. */
15156 size = input_section->size;
15157 last = 0;
15158 for (gpentry = sizeof (Elf32_External_gptab);
15159 gpentry < size;
15160 gpentry += sizeof (Elf32_External_gptab))
15161 {
15162 Elf32_External_gptab ext_gptab;
15163 Elf32_gptab int_gptab;
15164 unsigned long val;
15165 unsigned long add;
15166 bfd_boolean exact;
15167 unsigned int look;
15168
15169 if (! (bfd_get_section_contents
15170 (input_bfd, input_section, &ext_gptab, gpentry,
15171 sizeof (Elf32_External_gptab))))
15172 {
15173 free (tab);
15174 return FALSE;
15175 }
15176
15177 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
15178 &int_gptab);
15179 val = int_gptab.gt_entry.gt_g_value;
15180 add = int_gptab.gt_entry.gt_bytes - last;
15181
15182 exact = FALSE;
15183 for (look = 1; look < c; look++)
15184 {
15185 if (tab[look].gt_entry.gt_g_value >= val)
15186 tab[look].gt_entry.gt_bytes += add;
15187
15188 if (tab[look].gt_entry.gt_g_value == val)
15189 exact = TRUE;
15190 }
15191
15192 if (! exact)
15193 {
15194 Elf32_gptab *new_tab;
15195 unsigned int max;
15196
15197 /* We need a new table entry. */
15198 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
15199 new_tab = bfd_realloc (tab, amt);
15200 if (new_tab == NULL)
15201 {
15202 free (tab);
15203 return FALSE;
15204 }
15205 tab = new_tab;
15206 tab[c].gt_entry.gt_g_value = val;
15207 tab[c].gt_entry.gt_bytes = add;
15208
15209 /* Merge in the size for the next smallest -G
15210 value, since that will be implied by this new
15211 value. */
15212 max = 0;
15213 for (look = 1; look < c; look++)
15214 {
15215 if (tab[look].gt_entry.gt_g_value < val
15216 && (max == 0
15217 || (tab[look].gt_entry.gt_g_value
15218 > tab[max].gt_entry.gt_g_value)))
15219 max = look;
15220 }
15221 if (max != 0)
15222 tab[c].gt_entry.gt_bytes +=
15223 tab[max].gt_entry.gt_bytes;
15224
15225 ++c;
15226 }
15227
15228 last = int_gptab.gt_entry.gt_bytes;
15229 }
15230
15231 /* Hack: reset the SEC_HAS_CONTENTS flag so that
15232 elf_link_input_bfd ignores this section. */
15233 input_section->flags &= ~SEC_HAS_CONTENTS;
15234 }
15235
15236 /* The table must be sorted by -G value. */
15237 if (c > 2)
15238 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
15239
15240 /* Swap out the table. */
15241 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
15242 ext_tab = bfd_alloc (abfd, amt);
15243 if (ext_tab == NULL)
15244 {
15245 free (tab);
15246 return FALSE;
15247 }
15248
15249 for (j = 0; j < c; j++)
15250 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
15251 free (tab);
15252
15253 o->size = c * sizeof (Elf32_External_gptab);
15254 o->contents = (bfd_byte *) ext_tab;
15255
15256 /* Skip this section later on (I don't think this currently
15257 matters, but someday it might). */
15258 o->map_head.link_order = NULL;
15259 }
15260 }
15261
15262 /* Invoke the regular ELF backend linker to do all the work. */
15263 if (!bfd_elf_final_link (abfd, info))
15264 return FALSE;
15265
15266 /* Now write out the computed sections. */
15267
15268 if (abiflags_sec != NULL)
15269 {
15270 Elf_External_ABIFlags_v0 ext;
15271 Elf_Internal_ABIFlags_v0 *abiflags;
15272
15273 abiflags = &mips_elf_tdata (abfd)->abiflags;
15274
15275 /* Set up the abiflags if no valid input sections were found. */
15276 if (!mips_elf_tdata (abfd)->abiflags_valid)
15277 {
15278 infer_mips_abiflags (abfd, abiflags);
15279 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
15280 }
15281 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
15282 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
15283 return FALSE;
15284 }
15285
15286 if (reginfo_sec != NULL)
15287 {
15288 Elf32_External_RegInfo ext;
15289
15290 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
15291 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
15292 return FALSE;
15293 }
15294
15295 if (mdebug_sec != NULL)
15296 {
15297 BFD_ASSERT (abfd->output_has_begun);
15298 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
15299 swap, info,
15300 mdebug_sec->filepos))
15301 return FALSE;
15302
15303 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
15304 }
15305
15306 if (gptab_data_sec != NULL)
15307 {
15308 if (! bfd_set_section_contents (abfd, gptab_data_sec,
15309 gptab_data_sec->contents,
15310 0, gptab_data_sec->size))
15311 return FALSE;
15312 }
15313
15314 if (gptab_bss_sec != NULL)
15315 {
15316 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
15317 gptab_bss_sec->contents,
15318 0, gptab_bss_sec->size))
15319 return FALSE;
15320 }
15321
15322 if (SGI_COMPAT (abfd))
15323 {
15324 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
15325 if (rtproc_sec != NULL)
15326 {
15327 if (! bfd_set_section_contents (abfd, rtproc_sec,
15328 rtproc_sec->contents,
15329 0, rtproc_sec->size))
15330 return FALSE;
15331 }
15332 }
15333
15334 return TRUE;
15335 }
15336 \f
15337 /* Merge object file header flags from IBFD into OBFD. Raise an error
15338 if there are conflicting settings. */
15339
15340 static bfd_boolean
15341 mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info)
15342 {
15343 bfd *obfd = info->output_bfd;
15344 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15345 flagword old_flags;
15346 flagword new_flags;
15347 bfd_boolean ok;
15348
15349 new_flags = elf_elfheader (ibfd)->e_flags;
15350 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
15351 old_flags = elf_elfheader (obfd)->e_flags;
15352
15353 /* Check flag compatibility. */
15354
15355 new_flags &= ~EF_MIPS_NOREORDER;
15356 old_flags &= ~EF_MIPS_NOREORDER;
15357
15358 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
15359 doesn't seem to matter. */
15360 new_flags &= ~EF_MIPS_XGOT;
15361 old_flags &= ~EF_MIPS_XGOT;
15362
15363 /* MIPSpro generates ucode info in n64 objects. Again, we should
15364 just be able to ignore this. */
15365 new_flags &= ~EF_MIPS_UCODE;
15366 old_flags &= ~EF_MIPS_UCODE;
15367
15368 /* DSOs should only be linked with CPIC code. */
15369 if ((ibfd->flags & DYNAMIC) != 0)
15370 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
15371
15372 if (new_flags == old_flags)
15373 return TRUE;
15374
15375 ok = TRUE;
15376
15377 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
15378 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
15379 {
15380 _bfd_error_handler
15381 (_("%pB: warning: linking abicalls files with non-abicalls files"),
15382 ibfd);
15383 ok = TRUE;
15384 }
15385
15386 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
15387 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
15388 if (! (new_flags & EF_MIPS_PIC))
15389 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
15390
15391 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15392 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15393
15394 /* Compare the ISAs. */
15395 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
15396 {
15397 _bfd_error_handler
15398 (_("%pB: linking 32-bit code with 64-bit code"),
15399 ibfd);
15400 ok = FALSE;
15401 }
15402 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15403 {
15404 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15405 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
15406 {
15407 /* Copy the architecture info from IBFD to OBFD. Also copy
15408 the 32-bit flag (if set) so that we continue to recognise
15409 OBFD as a 32-bit binary. */
15410 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15411 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15412 elf_elfheader (obfd)->e_flags
15413 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15414
15415 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15416 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15417
15418 /* Copy across the ABI flags if OBFD doesn't use them
15419 and if that was what caused us to treat IBFD as 32-bit. */
15420 if ((old_flags & EF_MIPS_ABI) == 0
15421 && mips_32bit_flags_p (new_flags)
15422 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15423 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15424 }
15425 else
15426 {
15427 /* The ISAs aren't compatible. */
15428 _bfd_error_handler
15429 /* xgettext:c-format */
15430 (_("%pB: linking %s module with previous %s modules"),
15431 ibfd,
15432 bfd_printable_name (ibfd),
15433 bfd_printable_name (obfd));
15434 ok = FALSE;
15435 }
15436 }
15437
15438 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15439 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15440
15441 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15442 does set EI_CLASS differently from any 32-bit ABI. */
15443 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15444 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15445 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15446 {
15447 /* Only error if both are set (to different values). */
15448 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15449 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15450 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15451 {
15452 _bfd_error_handler
15453 /* xgettext:c-format */
15454 (_("%pB: ABI mismatch: linking %s module with previous %s modules"),
15455 ibfd,
15456 elf_mips_abi_name (ibfd),
15457 elf_mips_abi_name (obfd));
15458 ok = FALSE;
15459 }
15460 new_flags &= ~EF_MIPS_ABI;
15461 old_flags &= ~EF_MIPS_ABI;
15462 }
15463
15464 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15465 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15466 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15467 {
15468 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15469 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15470 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15471 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15472 int micro_mis = old_m16 && new_micro;
15473 int m16_mis = old_micro && new_m16;
15474
15475 if (m16_mis || micro_mis)
15476 {
15477 _bfd_error_handler
15478 /* xgettext:c-format */
15479 (_("%pB: ASE mismatch: linking %s module with previous %s modules"),
15480 ibfd,
15481 m16_mis ? "MIPS16" : "microMIPS",
15482 m16_mis ? "microMIPS" : "MIPS16");
15483 ok = FALSE;
15484 }
15485
15486 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15487
15488 new_flags &= ~ EF_MIPS_ARCH_ASE;
15489 old_flags &= ~ EF_MIPS_ARCH_ASE;
15490 }
15491
15492 /* Compare NaN encodings. */
15493 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15494 {
15495 /* xgettext:c-format */
15496 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15497 ibfd,
15498 (new_flags & EF_MIPS_NAN2008
15499 ? "-mnan=2008" : "-mnan=legacy"),
15500 (old_flags & EF_MIPS_NAN2008
15501 ? "-mnan=2008" : "-mnan=legacy"));
15502 ok = FALSE;
15503 new_flags &= ~EF_MIPS_NAN2008;
15504 old_flags &= ~EF_MIPS_NAN2008;
15505 }
15506
15507 /* Compare FP64 state. */
15508 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15509 {
15510 /* xgettext:c-format */
15511 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15512 ibfd,
15513 (new_flags & EF_MIPS_FP64
15514 ? "-mfp64" : "-mfp32"),
15515 (old_flags & EF_MIPS_FP64
15516 ? "-mfp64" : "-mfp32"));
15517 ok = FALSE;
15518 new_flags &= ~EF_MIPS_FP64;
15519 old_flags &= ~EF_MIPS_FP64;
15520 }
15521
15522 /* Warn about any other mismatches */
15523 if (new_flags != old_flags)
15524 {
15525 /* xgettext:c-format */
15526 _bfd_error_handler
15527 (_("%pB: uses different e_flags (%#x) fields than previous modules "
15528 "(%#x)"),
15529 ibfd, new_flags, old_flags);
15530 ok = FALSE;
15531 }
15532
15533 return ok;
15534 }
15535
15536 /* Merge object attributes from IBFD into OBFD. Raise an error if
15537 there are conflicting attributes. */
15538 static bfd_boolean
15539 mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
15540 {
15541 bfd *obfd = info->output_bfd;
15542 obj_attribute *in_attr;
15543 obj_attribute *out_attr;
15544 bfd *abi_fp_bfd;
15545 bfd *abi_msa_bfd;
15546
15547 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15548 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15549 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
15550 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15551
15552 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15553 if (!abi_msa_bfd
15554 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15555 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15556
15557 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15558 {
15559 /* This is the first object. Copy the attributes. */
15560 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15561
15562 /* Use the Tag_null value to indicate the attributes have been
15563 initialized. */
15564 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15565
15566 return TRUE;
15567 }
15568
15569 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15570 non-conflicting ones. */
15571 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15572 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15573 {
15574 int out_fp, in_fp;
15575
15576 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15577 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15578 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15579 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15580 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
15581 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15582 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15583 || in_fp == Val_GNU_MIPS_ABI_FP_64
15584 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15585 {
15586 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15587 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15588 }
15589 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15590 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15591 || out_fp == Val_GNU_MIPS_ABI_FP_64
15592 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15593 /* Keep the current setting. */;
15594 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15595 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15596 {
15597 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15598 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15599 }
15600 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15601 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15602 /* Keep the current setting. */;
15603 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15604 {
15605 const char *out_string, *in_string;
15606
15607 out_string = _bfd_mips_fp_abi_string (out_fp);
15608 in_string = _bfd_mips_fp_abi_string (in_fp);
15609 /* First warn about cases involving unrecognised ABIs. */
15610 if (!out_string && !in_string)
15611 /* xgettext:c-format */
15612 _bfd_error_handler
15613 (_("warning: %pB uses unknown floating point ABI %d "
15614 "(set by %pB), %pB uses unknown floating point ABI %d"),
15615 obfd, out_fp, abi_fp_bfd, ibfd, in_fp);
15616 else if (!out_string)
15617 _bfd_error_handler
15618 /* xgettext:c-format */
15619 (_("warning: %pB uses unknown floating point ABI %d "
15620 "(set by %pB), %pB uses %s"),
15621 obfd, out_fp, abi_fp_bfd, ibfd, in_string);
15622 else if (!in_string)
15623 _bfd_error_handler
15624 /* xgettext:c-format */
15625 (_("warning: %pB uses %s (set by %pB), "
15626 "%pB uses unknown floating point ABI %d"),
15627 obfd, out_string, abi_fp_bfd, ibfd, in_fp);
15628 else
15629 {
15630 /* If one of the bfds is soft-float, the other must be
15631 hard-float. The exact choice of hard-float ABI isn't
15632 really relevant to the error message. */
15633 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15634 out_string = "-mhard-float";
15635 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15636 in_string = "-mhard-float";
15637 _bfd_error_handler
15638 /* xgettext:c-format */
15639 (_("warning: %pB uses %s (set by %pB), %pB uses %s"),
15640 obfd, out_string, abi_fp_bfd, ibfd, in_string);
15641 }
15642 }
15643 }
15644
15645 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15646 non-conflicting ones. */
15647 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15648 {
15649 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15650 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15651 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15652 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15653 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15654 {
15655 case Val_GNU_MIPS_ABI_MSA_128:
15656 _bfd_error_handler
15657 /* xgettext:c-format */
15658 (_("warning: %pB uses %s (set by %pB), "
15659 "%pB uses unknown MSA ABI %d"),
15660 obfd, "-mmsa", abi_msa_bfd,
15661 ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15662 break;
15663
15664 default:
15665 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15666 {
15667 case Val_GNU_MIPS_ABI_MSA_128:
15668 _bfd_error_handler
15669 /* xgettext:c-format */
15670 (_("warning: %pB uses unknown MSA ABI %d "
15671 "(set by %pB), %pB uses %s"),
15672 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15673 abi_msa_bfd, ibfd, "-mmsa");
15674 break;
15675
15676 default:
15677 _bfd_error_handler
15678 /* xgettext:c-format */
15679 (_("warning: %pB uses unknown MSA ABI %d "
15680 "(set by %pB), %pB uses unknown MSA ABI %d"),
15681 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15682 abi_msa_bfd, ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15683 break;
15684 }
15685 }
15686 }
15687
15688 /* Merge Tag_compatibility attributes and any common GNU ones. */
15689 return _bfd_elf_merge_object_attributes (ibfd, info);
15690 }
15691
15692 /* Merge object ABI flags from IBFD into OBFD. Raise an error if
15693 there are conflicting settings. */
15694
15695 static bfd_boolean
15696 mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15697 {
15698 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15699 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15700 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15701
15702 /* Update the output abiflags fp_abi using the computed fp_abi. */
15703 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15704
15705 #define max(a, b) ((a) > (b) ? (a) : (b))
15706 /* Merge abiflags. */
15707 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15708 in_tdata->abiflags.isa_level);
15709 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15710 in_tdata->abiflags.isa_rev);
15711 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15712 in_tdata->abiflags.gpr_size);
15713 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15714 in_tdata->abiflags.cpr1_size);
15715 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15716 in_tdata->abiflags.cpr2_size);
15717 #undef max
15718 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15719 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15720
15721 return TRUE;
15722 }
15723
15724 /* Merge backend specific data from an object file to the output
15725 object file when linking. */
15726
15727 bfd_boolean
15728 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
15729 {
15730 bfd *obfd = info->output_bfd;
15731 struct mips_elf_obj_tdata *out_tdata;
15732 struct mips_elf_obj_tdata *in_tdata;
15733 bfd_boolean null_input_bfd = TRUE;
15734 asection *sec;
15735 bfd_boolean ok;
15736
15737 /* Check if we have the same endianness. */
15738 if (! _bfd_generic_verify_endian_match (ibfd, info))
15739 {
15740 _bfd_error_handler
15741 (_("%pB: endianness incompatible with that of the selected emulation"),
15742 ibfd);
15743 return FALSE;
15744 }
15745
15746 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15747 return TRUE;
15748
15749 in_tdata = mips_elf_tdata (ibfd);
15750 out_tdata = mips_elf_tdata (obfd);
15751
15752 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15753 {
15754 _bfd_error_handler
15755 (_("%pB: ABI is incompatible with that of the selected emulation"),
15756 ibfd);
15757 return FALSE;
15758 }
15759
15760 /* Check to see if the input BFD actually contains any sections. If not,
15761 then it has no attributes, and its flags may not have been initialized
15762 either, but it cannot actually cause any incompatibility. */
15763 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15764 {
15765 /* Ignore synthetic sections and empty .text, .data and .bss sections
15766 which are automatically generated by gas. Also ignore fake
15767 (s)common sections, since merely defining a common symbol does
15768 not affect compatibility. */
15769 if ((sec->flags & SEC_IS_COMMON) == 0
15770 && strcmp (sec->name, ".reginfo")
15771 && strcmp (sec->name, ".mdebug")
15772 && (sec->size != 0
15773 || (strcmp (sec->name, ".text")
15774 && strcmp (sec->name, ".data")
15775 && strcmp (sec->name, ".bss"))))
15776 {
15777 null_input_bfd = FALSE;
15778 break;
15779 }
15780 }
15781 if (null_input_bfd)
15782 return TRUE;
15783
15784 /* Populate abiflags using existing information. */
15785 if (in_tdata->abiflags_valid)
15786 {
15787 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15788 Elf_Internal_ABIFlags_v0 in_abiflags;
15789 Elf_Internal_ABIFlags_v0 abiflags;
15790
15791 /* Set up the FP ABI attribute from the abiflags if it is not already
15792 set. */
15793 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15794 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
15795
15796 infer_mips_abiflags (ibfd, &abiflags);
15797 in_abiflags = in_tdata->abiflags;
15798
15799 /* It is not possible to infer the correct ISA revision
15800 for R3 or R5 so drop down to R2 for the checks. */
15801 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15802 in_abiflags.isa_rev = 2;
15803
15804 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15805 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
15806 _bfd_error_handler
15807 (_("%pB: warning: inconsistent ISA between e_flags and "
15808 ".MIPS.abiflags"), ibfd);
15809 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15810 && in_abiflags.fp_abi != abiflags.fp_abi)
15811 _bfd_error_handler
15812 (_("%pB: warning: inconsistent FP ABI between .gnu.attributes and "
15813 ".MIPS.abiflags"), ibfd);
15814 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15815 _bfd_error_handler
15816 (_("%pB: warning: inconsistent ASEs between e_flags and "
15817 ".MIPS.abiflags"), ibfd);
15818 /* The isa_ext is allowed to be an extension of what can be inferred
15819 from e_flags. */
15820 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15821 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
15822 _bfd_error_handler
15823 (_("%pB: warning: inconsistent ISA extensions between e_flags and "
15824 ".MIPS.abiflags"), ibfd);
15825 if (in_abiflags.flags2 != 0)
15826 _bfd_error_handler
15827 (_("%pB: warning: unexpected flag in the flags2 field of "
15828 ".MIPS.abiflags (0x%lx)"), ibfd,
15829 in_abiflags.flags2);
15830 }
15831 else
15832 {
15833 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15834 in_tdata->abiflags_valid = TRUE;
15835 }
15836
15837 if (!out_tdata->abiflags_valid)
15838 {
15839 /* Copy input abiflags if output abiflags are not already valid. */
15840 out_tdata->abiflags = in_tdata->abiflags;
15841 out_tdata->abiflags_valid = TRUE;
15842 }
15843
15844 if (! elf_flags_init (obfd))
15845 {
15846 elf_flags_init (obfd) = TRUE;
15847 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15848 elf_elfheader (obfd)->e_ident[EI_CLASS]
15849 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15850
15851 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15852 && (bfd_get_arch_info (obfd)->the_default
15853 || mips_mach_extends_p (bfd_get_mach (obfd),
15854 bfd_get_mach (ibfd))))
15855 {
15856 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15857 bfd_get_mach (ibfd)))
15858 return FALSE;
15859
15860 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15861 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15862 }
15863
15864 ok = TRUE;
15865 }
15866 else
15867 ok = mips_elf_merge_obj_e_flags (ibfd, info);
15868
15869 ok = mips_elf_merge_obj_attributes (ibfd, info) && ok;
15870
15871 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
15872
15873 if (!ok)
15874 {
15875 bfd_set_error (bfd_error_bad_value);
15876 return FALSE;
15877 }
15878
15879 return TRUE;
15880 }
15881
15882 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15883
15884 bfd_boolean
15885 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15886 {
15887 BFD_ASSERT (!elf_flags_init (abfd)
15888 || elf_elfheader (abfd)->e_flags == flags);
15889
15890 elf_elfheader (abfd)->e_flags = flags;
15891 elf_flags_init (abfd) = TRUE;
15892 return TRUE;
15893 }
15894
15895 char *
15896 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15897 {
15898 switch (dtag)
15899 {
15900 default: return "";
15901 case DT_MIPS_RLD_VERSION:
15902 return "MIPS_RLD_VERSION";
15903 case DT_MIPS_TIME_STAMP:
15904 return "MIPS_TIME_STAMP";
15905 case DT_MIPS_ICHECKSUM:
15906 return "MIPS_ICHECKSUM";
15907 case DT_MIPS_IVERSION:
15908 return "MIPS_IVERSION";
15909 case DT_MIPS_FLAGS:
15910 return "MIPS_FLAGS";
15911 case DT_MIPS_BASE_ADDRESS:
15912 return "MIPS_BASE_ADDRESS";
15913 case DT_MIPS_MSYM:
15914 return "MIPS_MSYM";
15915 case DT_MIPS_CONFLICT:
15916 return "MIPS_CONFLICT";
15917 case DT_MIPS_LIBLIST:
15918 return "MIPS_LIBLIST";
15919 case DT_MIPS_LOCAL_GOTNO:
15920 return "MIPS_LOCAL_GOTNO";
15921 case DT_MIPS_CONFLICTNO:
15922 return "MIPS_CONFLICTNO";
15923 case DT_MIPS_LIBLISTNO:
15924 return "MIPS_LIBLISTNO";
15925 case DT_MIPS_SYMTABNO:
15926 return "MIPS_SYMTABNO";
15927 case DT_MIPS_UNREFEXTNO:
15928 return "MIPS_UNREFEXTNO";
15929 case DT_MIPS_GOTSYM:
15930 return "MIPS_GOTSYM";
15931 case DT_MIPS_HIPAGENO:
15932 return "MIPS_HIPAGENO";
15933 case DT_MIPS_RLD_MAP:
15934 return "MIPS_RLD_MAP";
15935 case DT_MIPS_RLD_MAP_REL:
15936 return "MIPS_RLD_MAP_REL";
15937 case DT_MIPS_DELTA_CLASS:
15938 return "MIPS_DELTA_CLASS";
15939 case DT_MIPS_DELTA_CLASS_NO:
15940 return "MIPS_DELTA_CLASS_NO";
15941 case DT_MIPS_DELTA_INSTANCE:
15942 return "MIPS_DELTA_INSTANCE";
15943 case DT_MIPS_DELTA_INSTANCE_NO:
15944 return "MIPS_DELTA_INSTANCE_NO";
15945 case DT_MIPS_DELTA_RELOC:
15946 return "MIPS_DELTA_RELOC";
15947 case DT_MIPS_DELTA_RELOC_NO:
15948 return "MIPS_DELTA_RELOC_NO";
15949 case DT_MIPS_DELTA_SYM:
15950 return "MIPS_DELTA_SYM";
15951 case DT_MIPS_DELTA_SYM_NO:
15952 return "MIPS_DELTA_SYM_NO";
15953 case DT_MIPS_DELTA_CLASSSYM:
15954 return "MIPS_DELTA_CLASSSYM";
15955 case DT_MIPS_DELTA_CLASSSYM_NO:
15956 return "MIPS_DELTA_CLASSSYM_NO";
15957 case DT_MIPS_CXX_FLAGS:
15958 return "MIPS_CXX_FLAGS";
15959 case DT_MIPS_PIXIE_INIT:
15960 return "MIPS_PIXIE_INIT";
15961 case DT_MIPS_SYMBOL_LIB:
15962 return "MIPS_SYMBOL_LIB";
15963 case DT_MIPS_LOCALPAGE_GOTIDX:
15964 return "MIPS_LOCALPAGE_GOTIDX";
15965 case DT_MIPS_LOCAL_GOTIDX:
15966 return "MIPS_LOCAL_GOTIDX";
15967 case DT_MIPS_HIDDEN_GOTIDX:
15968 return "MIPS_HIDDEN_GOTIDX";
15969 case DT_MIPS_PROTECTED_GOTIDX:
15970 return "MIPS_PROTECTED_GOT_IDX";
15971 case DT_MIPS_OPTIONS:
15972 return "MIPS_OPTIONS";
15973 case DT_MIPS_INTERFACE:
15974 return "MIPS_INTERFACE";
15975 case DT_MIPS_DYNSTR_ALIGN:
15976 return "DT_MIPS_DYNSTR_ALIGN";
15977 case DT_MIPS_INTERFACE_SIZE:
15978 return "DT_MIPS_INTERFACE_SIZE";
15979 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15980 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15981 case DT_MIPS_PERF_SUFFIX:
15982 return "DT_MIPS_PERF_SUFFIX";
15983 case DT_MIPS_COMPACT_SIZE:
15984 return "DT_MIPS_COMPACT_SIZE";
15985 case DT_MIPS_GP_VALUE:
15986 return "DT_MIPS_GP_VALUE";
15987 case DT_MIPS_AUX_DYNAMIC:
15988 return "DT_MIPS_AUX_DYNAMIC";
15989 case DT_MIPS_PLTGOT:
15990 return "DT_MIPS_PLTGOT";
15991 case DT_MIPS_RWPLT:
15992 return "DT_MIPS_RWPLT";
15993 case DT_MIPS_XHASH:
15994 return "DT_MIPS_XHASH";
15995 }
15996 }
15997
15998 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15999 not known. */
16000
16001 const char *
16002 _bfd_mips_fp_abi_string (int fp)
16003 {
16004 switch (fp)
16005 {
16006 /* These strings aren't translated because they're simply
16007 option lists. */
16008 case Val_GNU_MIPS_ABI_FP_DOUBLE:
16009 return "-mdouble-float";
16010
16011 case Val_GNU_MIPS_ABI_FP_SINGLE:
16012 return "-msingle-float";
16013
16014 case Val_GNU_MIPS_ABI_FP_SOFT:
16015 return "-msoft-float";
16016
16017 case Val_GNU_MIPS_ABI_FP_OLD_64:
16018 return _("-mips32r2 -mfp64 (12 callee-saved)");
16019
16020 case Val_GNU_MIPS_ABI_FP_XX:
16021 return "-mfpxx";
16022
16023 case Val_GNU_MIPS_ABI_FP_64:
16024 return "-mgp32 -mfp64";
16025
16026 case Val_GNU_MIPS_ABI_FP_64A:
16027 return "-mgp32 -mfp64 -mno-odd-spreg";
16028
16029 default:
16030 return 0;
16031 }
16032 }
16033
16034 static void
16035 print_mips_ases (FILE *file, unsigned int mask)
16036 {
16037 if (mask & AFL_ASE_DSP)
16038 fputs ("\n\tDSP ASE", file);
16039 if (mask & AFL_ASE_DSPR2)
16040 fputs ("\n\tDSP R2 ASE", file);
16041 if (mask & AFL_ASE_DSPR3)
16042 fputs ("\n\tDSP R3 ASE", file);
16043 if (mask & AFL_ASE_EVA)
16044 fputs ("\n\tEnhanced VA Scheme", file);
16045 if (mask & AFL_ASE_MCU)
16046 fputs ("\n\tMCU (MicroController) ASE", file);
16047 if (mask & AFL_ASE_MDMX)
16048 fputs ("\n\tMDMX ASE", file);
16049 if (mask & AFL_ASE_MIPS3D)
16050 fputs ("\n\tMIPS-3D ASE", file);
16051 if (mask & AFL_ASE_MT)
16052 fputs ("\n\tMT ASE", file);
16053 if (mask & AFL_ASE_SMARTMIPS)
16054 fputs ("\n\tSmartMIPS ASE", file);
16055 if (mask & AFL_ASE_VIRT)
16056 fputs ("\n\tVZ ASE", file);
16057 if (mask & AFL_ASE_MSA)
16058 fputs ("\n\tMSA ASE", file);
16059 if (mask & AFL_ASE_MIPS16)
16060 fputs ("\n\tMIPS16 ASE", file);
16061 if (mask & AFL_ASE_MICROMIPS)
16062 fputs ("\n\tMICROMIPS ASE", file);
16063 if (mask & AFL_ASE_XPA)
16064 fputs ("\n\tXPA ASE", file);
16065 if (mask & AFL_ASE_MIPS16E2)
16066 fputs ("\n\tMIPS16e2 ASE", file);
16067 if (mask & AFL_ASE_CRC)
16068 fputs ("\n\tCRC ASE", file);
16069 if (mask & AFL_ASE_GINV)
16070 fputs ("\n\tGINV ASE", file);
16071 if (mask & AFL_ASE_LOONGSON_MMI)
16072 fputs ("\n\tLoongson MMI ASE", file);
16073 if (mask & AFL_ASE_LOONGSON_CAM)
16074 fputs ("\n\tLoongson CAM ASE", file);
16075 if (mask & AFL_ASE_LOONGSON_EXT)
16076 fputs ("\n\tLoongson EXT ASE", file);
16077 if (mask & AFL_ASE_LOONGSON_EXT2)
16078 fputs ("\n\tLoongson EXT2 ASE", file);
16079 if (mask == 0)
16080 fprintf (file, "\n\t%s", _("None"));
16081 else if ((mask & ~AFL_ASE_MASK) != 0)
16082 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
16083 }
16084
16085 static void
16086 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
16087 {
16088 switch (isa_ext)
16089 {
16090 case 0:
16091 fputs (_("None"), file);
16092 break;
16093 case AFL_EXT_XLR:
16094 fputs ("RMI XLR", file);
16095 break;
16096 case AFL_EXT_OCTEON3:
16097 fputs ("Cavium Networks Octeon3", file);
16098 break;
16099 case AFL_EXT_OCTEON2:
16100 fputs ("Cavium Networks Octeon2", file);
16101 break;
16102 case AFL_EXT_OCTEONP:
16103 fputs ("Cavium Networks OcteonP", file);
16104 break;
16105 case AFL_EXT_OCTEON:
16106 fputs ("Cavium Networks Octeon", file);
16107 break;
16108 case AFL_EXT_5900:
16109 fputs ("Toshiba R5900", file);
16110 break;
16111 case AFL_EXT_4650:
16112 fputs ("MIPS R4650", file);
16113 break;
16114 case AFL_EXT_4010:
16115 fputs ("LSI R4010", file);
16116 break;
16117 case AFL_EXT_4100:
16118 fputs ("NEC VR4100", file);
16119 break;
16120 case AFL_EXT_3900:
16121 fputs ("Toshiba R3900", file);
16122 break;
16123 case AFL_EXT_10000:
16124 fputs ("MIPS R10000", file);
16125 break;
16126 case AFL_EXT_SB1:
16127 fputs ("Broadcom SB-1", file);
16128 break;
16129 case AFL_EXT_4111:
16130 fputs ("NEC VR4111/VR4181", file);
16131 break;
16132 case AFL_EXT_4120:
16133 fputs ("NEC VR4120", file);
16134 break;
16135 case AFL_EXT_5400:
16136 fputs ("NEC VR5400", file);
16137 break;
16138 case AFL_EXT_5500:
16139 fputs ("NEC VR5500", file);
16140 break;
16141 case AFL_EXT_LOONGSON_2E:
16142 fputs ("ST Microelectronics Loongson 2E", file);
16143 break;
16144 case AFL_EXT_LOONGSON_2F:
16145 fputs ("ST Microelectronics Loongson 2F", file);
16146 break;
16147 case AFL_EXT_INTERAPTIV_MR2:
16148 fputs ("Imagination interAptiv MR2", file);
16149 break;
16150 default:
16151 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
16152 break;
16153 }
16154 }
16155
16156 static void
16157 print_mips_fp_abi_value (FILE *file, int val)
16158 {
16159 switch (val)
16160 {
16161 case Val_GNU_MIPS_ABI_FP_ANY:
16162 fprintf (file, _("Hard or soft float\n"));
16163 break;
16164 case Val_GNU_MIPS_ABI_FP_DOUBLE:
16165 fprintf (file, _("Hard float (double precision)\n"));
16166 break;
16167 case Val_GNU_MIPS_ABI_FP_SINGLE:
16168 fprintf (file, _("Hard float (single precision)\n"));
16169 break;
16170 case Val_GNU_MIPS_ABI_FP_SOFT:
16171 fprintf (file, _("Soft float\n"));
16172 break;
16173 case Val_GNU_MIPS_ABI_FP_OLD_64:
16174 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
16175 break;
16176 case Val_GNU_MIPS_ABI_FP_XX:
16177 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
16178 break;
16179 case Val_GNU_MIPS_ABI_FP_64:
16180 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
16181 break;
16182 case Val_GNU_MIPS_ABI_FP_64A:
16183 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
16184 break;
16185 default:
16186 fprintf (file, "??? (%d)\n", val);
16187 break;
16188 }
16189 }
16190
16191 static int
16192 get_mips_reg_size (int reg_size)
16193 {
16194 return (reg_size == AFL_REG_NONE) ? 0
16195 : (reg_size == AFL_REG_32) ? 32
16196 : (reg_size == AFL_REG_64) ? 64
16197 : (reg_size == AFL_REG_128) ? 128
16198 : -1;
16199 }
16200
16201 bfd_boolean
16202 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
16203 {
16204 FILE *file = ptr;
16205
16206 BFD_ASSERT (abfd != NULL && ptr != NULL);
16207
16208 /* Print normal ELF private data. */
16209 _bfd_elf_print_private_bfd_data (abfd, ptr);
16210
16211 /* xgettext:c-format */
16212 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
16213
16214 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
16215 fprintf (file, _(" [abi=O32]"));
16216 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
16217 fprintf (file, _(" [abi=O64]"));
16218 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
16219 fprintf (file, _(" [abi=EABI32]"));
16220 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
16221 fprintf (file, _(" [abi=EABI64]"));
16222 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
16223 fprintf (file, _(" [abi unknown]"));
16224 else if (ABI_N32_P (abfd))
16225 fprintf (file, _(" [abi=N32]"));
16226 else if (ABI_64_P (abfd))
16227 fprintf (file, _(" [abi=64]"));
16228 else
16229 fprintf (file, _(" [no abi set]"));
16230
16231 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
16232 fprintf (file, " [mips1]");
16233 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
16234 fprintf (file, " [mips2]");
16235 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
16236 fprintf (file, " [mips3]");
16237 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
16238 fprintf (file, " [mips4]");
16239 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
16240 fprintf (file, " [mips5]");
16241 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
16242 fprintf (file, " [mips32]");
16243 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
16244 fprintf (file, " [mips64]");
16245 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
16246 fprintf (file, " [mips32r2]");
16247 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
16248 fprintf (file, " [mips64r2]");
16249 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
16250 fprintf (file, " [mips32r6]");
16251 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
16252 fprintf (file, " [mips64r6]");
16253 else
16254 fprintf (file, _(" [unknown ISA]"));
16255
16256 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
16257 fprintf (file, " [mdmx]");
16258
16259 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
16260 fprintf (file, " [mips16]");
16261
16262 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
16263 fprintf (file, " [micromips]");
16264
16265 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
16266 fprintf (file, " [nan2008]");
16267
16268 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
16269 fprintf (file, " [old fp64]");
16270
16271 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
16272 fprintf (file, " [32bitmode]");
16273 else
16274 fprintf (file, _(" [not 32bitmode]"));
16275
16276 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
16277 fprintf (file, " [noreorder]");
16278
16279 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
16280 fprintf (file, " [PIC]");
16281
16282 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
16283 fprintf (file, " [CPIC]");
16284
16285 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
16286 fprintf (file, " [XGOT]");
16287
16288 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
16289 fprintf (file, " [UCODE]");
16290
16291 fputc ('\n', file);
16292
16293 if (mips_elf_tdata (abfd)->abiflags_valid)
16294 {
16295 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
16296 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
16297 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
16298 if (abiflags->isa_rev > 1)
16299 fprintf (file, "r%d", abiflags->isa_rev);
16300 fprintf (file, "\nGPR size: %d",
16301 get_mips_reg_size (abiflags->gpr_size));
16302 fprintf (file, "\nCPR1 size: %d",
16303 get_mips_reg_size (abiflags->cpr1_size));
16304 fprintf (file, "\nCPR2 size: %d",
16305 get_mips_reg_size (abiflags->cpr2_size));
16306 fputs ("\nFP ABI: ", file);
16307 print_mips_fp_abi_value (file, abiflags->fp_abi);
16308 fputs ("ISA Extension: ", file);
16309 print_mips_isa_ext (file, abiflags->isa_ext);
16310 fputs ("\nASEs:", file);
16311 print_mips_ases (file, abiflags->ases);
16312 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
16313 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
16314 fputc ('\n', file);
16315 }
16316
16317 return TRUE;
16318 }
16319
16320 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
16321 {
16322 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16323 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16324 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
16325 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16326 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16327 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
16328 { STRING_COMMA_LEN (".MIPS.xhash"), 0, SHT_MIPS_XHASH, SHF_ALLOC },
16329 { NULL, 0, 0, 0, 0 }
16330 };
16331
16332 /* Merge non visibility st_other attributes. Ensure that the
16333 STO_OPTIONAL flag is copied into h->other, even if this is not a
16334 definiton of the symbol. */
16335 void
16336 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
16337 const Elf_Internal_Sym *isym,
16338 bfd_boolean definition,
16339 bfd_boolean dynamic ATTRIBUTE_UNUSED)
16340 {
16341 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
16342 {
16343 unsigned char other;
16344
16345 other = (definition ? isym->st_other : h->other);
16346 other &= ~ELF_ST_VISIBILITY (-1);
16347 h->other = other | ELF_ST_VISIBILITY (h->other);
16348 }
16349
16350 if (!definition
16351 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
16352 h->other |= STO_OPTIONAL;
16353 }
16354
16355 /* Decide whether an undefined symbol is special and can be ignored.
16356 This is the case for OPTIONAL symbols on IRIX. */
16357 bfd_boolean
16358 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
16359 {
16360 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
16361 }
16362
16363 bfd_boolean
16364 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
16365 {
16366 return (sym->st_shndx == SHN_COMMON
16367 || sym->st_shndx == SHN_MIPS_ACOMMON
16368 || sym->st_shndx == SHN_MIPS_SCOMMON);
16369 }
16370
16371 /* Return address for Ith PLT stub in section PLT, for relocation REL
16372 or (bfd_vma) -1 if it should not be included. */
16373
16374 bfd_vma
16375 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
16376 const arelent *rel ATTRIBUTE_UNUSED)
16377 {
16378 return (plt->vma
16379 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
16380 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
16381 }
16382
16383 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
16384 and microMIPS PLT slots we may have a many-to-one mapping between .plt
16385 and .got.plt and also the slots may be of a different size each we walk
16386 the PLT manually fetching instructions and matching them against known
16387 patterns. To make things easier standard MIPS slots, if any, always come
16388 first. As we don't create proper ELF symbols we use the UDATA.I member
16389 of ASYMBOL to carry ISA annotation. The encoding used is the same as
16390 with the ST_OTHER member of the ELF symbol. */
16391
16392 long
16393 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
16394 long symcount ATTRIBUTE_UNUSED,
16395 asymbol **syms ATTRIBUTE_UNUSED,
16396 long dynsymcount, asymbol **dynsyms,
16397 asymbol **ret)
16398 {
16399 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
16400 static const char microsuffix[] = "@micromipsplt";
16401 static const char m16suffix[] = "@mips16plt";
16402 static const char mipssuffix[] = "@plt";
16403
16404 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
16405 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
16406 bfd_boolean micromips_p = MICROMIPS_P (abfd);
16407 Elf_Internal_Shdr *hdr;
16408 bfd_byte *plt_data;
16409 bfd_vma plt_offset;
16410 unsigned int other;
16411 bfd_vma entry_size;
16412 bfd_vma plt0_size;
16413 asection *relplt;
16414 bfd_vma opcode;
16415 asection *plt;
16416 asymbol *send;
16417 size_t size;
16418 char *names;
16419 long counti;
16420 arelent *p;
16421 asymbol *s;
16422 char *nend;
16423 long count;
16424 long pi;
16425 long i;
16426 long n;
16427
16428 *ret = NULL;
16429
16430 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
16431 return 0;
16432
16433 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16434 if (relplt == NULL)
16435 return 0;
16436
16437 hdr = &elf_section_data (relplt)->this_hdr;
16438 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
16439 return 0;
16440
16441 plt = bfd_get_section_by_name (abfd, ".plt");
16442 if (plt == NULL)
16443 return 0;
16444
16445 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
16446 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
16447 return -1;
16448 p = relplt->relocation;
16449
16450 /* Calculating the exact amount of space required for symbols would
16451 require two passes over the PLT, so just pessimise assuming two
16452 PLT slots per relocation. */
16453 count = relplt->size / hdr->sh_entsize;
16454 counti = count * bed->s->int_rels_per_ext_rel;
16455 size = 2 * count * sizeof (asymbol);
16456 size += count * (sizeof (mipssuffix) +
16457 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16458 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16459 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16460
16461 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16462 size += sizeof (asymbol) + sizeof (pltname);
16463
16464 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16465 return -1;
16466
16467 if (plt->size < 16)
16468 return -1;
16469
16470 s = *ret = bfd_malloc (size);
16471 if (s == NULL)
16472 return -1;
16473 send = s + 2 * count + 1;
16474
16475 names = (char *) send;
16476 nend = (char *) s + size;
16477 n = 0;
16478
16479 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16480 if (opcode == 0x3302fffe)
16481 {
16482 if (!micromips_p)
16483 return -1;
16484 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16485 other = STO_MICROMIPS;
16486 }
16487 else if (opcode == 0x0398c1d0)
16488 {
16489 if (!micromips_p)
16490 return -1;
16491 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16492 other = STO_MICROMIPS;
16493 }
16494 else
16495 {
16496 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16497 other = 0;
16498 }
16499
16500 s->the_bfd = abfd;
16501 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16502 s->section = plt;
16503 s->value = 0;
16504 s->name = names;
16505 s->udata.i = other;
16506 memcpy (names, pltname, sizeof (pltname));
16507 names += sizeof (pltname);
16508 ++s, ++n;
16509
16510 pi = 0;
16511 for (plt_offset = plt0_size;
16512 plt_offset + 8 <= plt->size && s < send;
16513 plt_offset += entry_size)
16514 {
16515 bfd_vma gotplt_addr;
16516 const char *suffix;
16517 bfd_vma gotplt_hi;
16518 bfd_vma gotplt_lo;
16519 size_t suffixlen;
16520
16521 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16522
16523 /* Check if the second word matches the expected MIPS16 instruction. */
16524 if (opcode == 0x651aeb00)
16525 {
16526 if (micromips_p)
16527 return -1;
16528 /* Truncated table??? */
16529 if (plt_offset + 16 > plt->size)
16530 break;
16531 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16532 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16533 suffixlen = sizeof (m16suffix);
16534 suffix = m16suffix;
16535 other = STO_MIPS16;
16536 }
16537 /* Likewise the expected microMIPS instruction (no insn32 mode). */
16538 else if (opcode == 0xff220000)
16539 {
16540 if (!micromips_p)
16541 return -1;
16542 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16543 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16544 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16545 gotplt_lo <<= 2;
16546 gotplt_addr = gotplt_hi + gotplt_lo;
16547 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16548 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16549 suffixlen = sizeof (microsuffix);
16550 suffix = microsuffix;
16551 other = STO_MICROMIPS;
16552 }
16553 /* Likewise the expected microMIPS instruction (insn32 mode). */
16554 else if ((opcode & 0xffff0000) == 0xff2f0000)
16555 {
16556 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16557 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16558 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16559 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16560 gotplt_addr = gotplt_hi + gotplt_lo;
16561 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16562 suffixlen = sizeof (microsuffix);
16563 suffix = microsuffix;
16564 other = STO_MICROMIPS;
16565 }
16566 /* Otherwise assume standard MIPS code. */
16567 else
16568 {
16569 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16570 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16571 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16572 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16573 gotplt_addr = gotplt_hi + gotplt_lo;
16574 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16575 suffixlen = sizeof (mipssuffix);
16576 suffix = mipssuffix;
16577 other = 0;
16578 }
16579 /* Truncated table??? */
16580 if (plt_offset + entry_size > plt->size)
16581 break;
16582
16583 for (i = 0;
16584 i < count && p[pi].address != gotplt_addr;
16585 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16586
16587 if (i < count)
16588 {
16589 size_t namelen;
16590 size_t len;
16591
16592 *s = **p[pi].sym_ptr_ptr;
16593 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16594 we are defining a symbol, ensure one of them is set. */
16595 if ((s->flags & BSF_LOCAL) == 0)
16596 s->flags |= BSF_GLOBAL;
16597 s->flags |= BSF_SYNTHETIC;
16598 s->section = plt;
16599 s->value = plt_offset;
16600 s->name = names;
16601 s->udata.i = other;
16602
16603 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16604 namelen = len + suffixlen;
16605 if (names + namelen > nend)
16606 break;
16607
16608 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16609 names += len;
16610 memcpy (names, suffix, suffixlen);
16611 names += suffixlen;
16612
16613 ++s, ++n;
16614 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16615 }
16616 }
16617
16618 free (plt_data);
16619
16620 return n;
16621 }
16622
16623 /* Return the ABI flags associated with ABFD if available. */
16624
16625 Elf_Internal_ABIFlags_v0 *
16626 bfd_mips_elf_get_abiflags (bfd *abfd)
16627 {
16628 struct mips_elf_obj_tdata *tdata = mips_elf_tdata (abfd);
16629
16630 return tdata->abiflags_valid ? &tdata->abiflags : NULL;
16631 }
16632
16633 /* MIPS libc ABI versions, used with the EI_ABIVERSION ELF file header
16634 field. Taken from `libc-abis.h' generated at GNU libc build time.
16635 Using a MIPS_ prefix as other libc targets use different values. */
16636 enum
16637 {
16638 MIPS_LIBC_ABI_DEFAULT = 0,
16639 MIPS_LIBC_ABI_MIPS_PLT,
16640 MIPS_LIBC_ABI_UNIQUE,
16641 MIPS_LIBC_ABI_MIPS_O32_FP64,
16642 MIPS_LIBC_ABI_ABSOLUTE,
16643 MIPS_LIBC_ABI_XHASH,
16644 MIPS_LIBC_ABI_MAX
16645 };
16646
16647 void
16648 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16649 {
16650 struct mips_elf_link_hash_table *htab = NULL;
16651 Elf_Internal_Ehdr *i_ehdrp;
16652
16653 i_ehdrp = elf_elfheader (abfd);
16654 if (link_info)
16655 {
16656 htab = mips_elf_hash_table (link_info);
16657 BFD_ASSERT (htab != NULL);
16658 }
16659
16660 if (htab != NULL && htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16661 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_PLT;
16662
16663 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16664 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16665 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_O32_FP64;
16666
16667 /* Mark that we need support for absolute symbols in the dynamic loader. */
16668 if (htab != NULL && htab->use_absolute_zero && htab->gnu_target)
16669 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_ABSOLUTE;
16670
16671 /* Mark that we need support for .MIPS.xhash in the dynamic linker,
16672 if it is the only hash section that will be created. */
16673 if (link_info && link_info->emit_gnu_hash && !link_info->emit_hash)
16674 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_XHASH;
16675
16676 _bfd_elf_post_process_headers (abfd, link_info);
16677 }
16678
16679 int
16680 _bfd_mips_elf_compact_eh_encoding
16681 (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16682 {
16683 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16684 }
16685
16686 /* Return the opcode for can't unwind. */
16687
16688 int
16689 _bfd_mips_elf_cant_unwind_opcode
16690 (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16691 {
16692 return COMPACT_EH_CANT_UNWIND_OPCODE;
16693 }
16694
16695 /* Record a position XLAT_LOC in the xlat translation table, associated with
16696 the hash entry H. The entry in the translation table will later be
16697 populated with the real symbol dynindx. */
16698
16699 void
16700 _bfd_mips_elf_record_xhash_symbol (struct elf_link_hash_entry *h,
16701 bfd_vma xlat_loc)
16702 {
16703 struct mips_elf_link_hash_entry *hmips;
16704
16705 hmips = (struct mips_elf_link_hash_entry *) h;
16706 hmips->mipsxhash_loc = xlat_loc;
16707 }
This page took 0.566903 seconds and 5 git commands to generate.