PR 3532
[deliverable/binutils-gdb.git] / bfd / hash.c
1 /* hash.c -- hash table routines for BFD
2 Copyright 1993, 1994, 1995, 1997, 1999, 2001, 2002, 2003, 2004, 2005,
3 2006 Free Software Foundation, Inc.
4 Written by Steve Chamberlain <sac@cygnus.com>
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
21
22 #include "bfd.h"
23 #include "sysdep.h"
24 #include "libbfd.h"
25 #include "objalloc.h"
26 #include "libiberty.h"
27
28 /*
29 SECTION
30 Hash Tables
31
32 @cindex Hash tables
33 BFD provides a simple set of hash table functions. Routines
34 are provided to initialize a hash table, to free a hash table,
35 to look up a string in a hash table and optionally create an
36 entry for it, and to traverse a hash table. There is
37 currently no routine to delete an string from a hash table.
38
39 The basic hash table does not permit any data to be stored
40 with a string. However, a hash table is designed to present a
41 base class from which other types of hash tables may be
42 derived. These derived types may store additional information
43 with the string. Hash tables were implemented in this way,
44 rather than simply providing a data pointer in a hash table
45 entry, because they were designed for use by the linker back
46 ends. The linker may create thousands of hash table entries,
47 and the overhead of allocating private data and storing and
48 following pointers becomes noticeable.
49
50 The basic hash table code is in <<hash.c>>.
51
52 @menu
53 @* Creating and Freeing a Hash Table::
54 @* Looking Up or Entering a String::
55 @* Traversing a Hash Table::
56 @* Deriving a New Hash Table Type::
57 @end menu
58
59 INODE
60 Creating and Freeing a Hash Table, Looking Up or Entering a String, Hash Tables, Hash Tables
61 SUBSECTION
62 Creating and freeing a hash table
63
64 @findex bfd_hash_table_init
65 @findex bfd_hash_table_init_n
66 To create a hash table, create an instance of a <<struct
67 bfd_hash_table>> (defined in <<bfd.h>>) and call
68 <<bfd_hash_table_init>> (if you know approximately how many
69 entries you will need, the function <<bfd_hash_table_init_n>>,
70 which takes a @var{size} argument, may be used).
71 <<bfd_hash_table_init>> returns <<FALSE>> if some sort of
72 error occurs.
73
74 @findex bfd_hash_newfunc
75 The function <<bfd_hash_table_init>> take as an argument a
76 function to use to create new entries. For a basic hash
77 table, use the function <<bfd_hash_newfunc>>. @xref{Deriving
78 a New Hash Table Type}, for why you would want to use a
79 different value for this argument.
80
81 @findex bfd_hash_allocate
82 <<bfd_hash_table_init>> will create an objalloc which will be
83 used to allocate new entries. You may allocate memory on this
84 objalloc using <<bfd_hash_allocate>>.
85
86 @findex bfd_hash_table_free
87 Use <<bfd_hash_table_free>> to free up all the memory that has
88 been allocated for a hash table. This will not free up the
89 <<struct bfd_hash_table>> itself, which you must provide.
90
91 @findex bfd_hash_set_default_size
92 Use <<bfd_hash_set_default_size>> to set the default size of
93 hash table to use.
94
95 INODE
96 Looking Up or Entering a String, Traversing a Hash Table, Creating and Freeing a Hash Table, Hash Tables
97 SUBSECTION
98 Looking up or entering a string
99
100 @findex bfd_hash_lookup
101 The function <<bfd_hash_lookup>> is used both to look up a
102 string in the hash table and to create a new entry.
103
104 If the @var{create} argument is <<FALSE>>, <<bfd_hash_lookup>>
105 will look up a string. If the string is found, it will
106 returns a pointer to a <<struct bfd_hash_entry>>. If the
107 string is not found in the table <<bfd_hash_lookup>> will
108 return <<NULL>>. You should not modify any of the fields in
109 the returns <<struct bfd_hash_entry>>.
110
111 If the @var{create} argument is <<TRUE>>, the string will be
112 entered into the hash table if it is not already there.
113 Either way a pointer to a <<struct bfd_hash_entry>> will be
114 returned, either to the existing structure or to a newly
115 created one. In this case, a <<NULL>> return means that an
116 error occurred.
117
118 If the @var{create} argument is <<TRUE>>, and a new entry is
119 created, the @var{copy} argument is used to decide whether to
120 copy the string onto the hash table objalloc or not. If
121 @var{copy} is passed as <<FALSE>>, you must be careful not to
122 deallocate or modify the string as long as the hash table
123 exists.
124
125 INODE
126 Traversing a Hash Table, Deriving a New Hash Table Type, Looking Up or Entering a String, Hash Tables
127 SUBSECTION
128 Traversing a hash table
129
130 @findex bfd_hash_traverse
131 The function <<bfd_hash_traverse>> may be used to traverse a
132 hash table, calling a function on each element. The traversal
133 is done in a random order.
134
135 <<bfd_hash_traverse>> takes as arguments a function and a
136 generic <<void *>> pointer. The function is called with a
137 hash table entry (a <<struct bfd_hash_entry *>>) and the
138 generic pointer passed to <<bfd_hash_traverse>>. The function
139 must return a <<boolean>> value, which indicates whether to
140 continue traversing the hash table. If the function returns
141 <<FALSE>>, <<bfd_hash_traverse>> will stop the traversal and
142 return immediately.
143
144 INODE
145 Deriving a New Hash Table Type, , Traversing a Hash Table, Hash Tables
146 SUBSECTION
147 Deriving a new hash table type
148
149 Many uses of hash tables want to store additional information
150 which each entry in the hash table. Some also find it
151 convenient to store additional information with the hash table
152 itself. This may be done using a derived hash table.
153
154 Since C is not an object oriented language, creating a derived
155 hash table requires sticking together some boilerplate
156 routines with a few differences specific to the type of hash
157 table you want to create.
158
159 An example of a derived hash table is the linker hash table.
160 The structures for this are defined in <<bfdlink.h>>. The
161 functions are in <<linker.c>>.
162
163 You may also derive a hash table from an already derived hash
164 table. For example, the a.out linker backend code uses a hash
165 table derived from the linker hash table.
166
167 @menu
168 @* Define the Derived Structures::
169 @* Write the Derived Creation Routine::
170 @* Write Other Derived Routines::
171 @end menu
172
173 INODE
174 Define the Derived Structures, Write the Derived Creation Routine, Deriving a New Hash Table Type, Deriving a New Hash Table Type
175 SUBSUBSECTION
176 Define the derived structures
177
178 You must define a structure for an entry in the hash table,
179 and a structure for the hash table itself.
180
181 The first field in the structure for an entry in the hash
182 table must be of the type used for an entry in the hash table
183 you are deriving from. If you are deriving from a basic hash
184 table this is <<struct bfd_hash_entry>>, which is defined in
185 <<bfd.h>>. The first field in the structure for the hash
186 table itself must be of the type of the hash table you are
187 deriving from itself. If you are deriving from a basic hash
188 table, this is <<struct bfd_hash_table>>.
189
190 For example, the linker hash table defines <<struct
191 bfd_link_hash_entry>> (in <<bfdlink.h>>). The first field,
192 <<root>>, is of type <<struct bfd_hash_entry>>. Similarly,
193 the first field in <<struct bfd_link_hash_table>>, <<table>>,
194 is of type <<struct bfd_hash_table>>.
195
196 INODE
197 Write the Derived Creation Routine, Write Other Derived Routines, Define the Derived Structures, Deriving a New Hash Table Type
198 SUBSUBSECTION
199 Write the derived creation routine
200
201 You must write a routine which will create and initialize an
202 entry in the hash table. This routine is passed as the
203 function argument to <<bfd_hash_table_init>>.
204
205 In order to permit other hash tables to be derived from the
206 hash table you are creating, this routine must be written in a
207 standard way.
208
209 The first argument to the creation routine is a pointer to a
210 hash table entry. This may be <<NULL>>, in which case the
211 routine should allocate the right amount of space. Otherwise
212 the space has already been allocated by a hash table type
213 derived from this one.
214
215 After allocating space, the creation routine must call the
216 creation routine of the hash table type it is derived from,
217 passing in a pointer to the space it just allocated. This
218 will initialize any fields used by the base hash table.
219
220 Finally the creation routine must initialize any local fields
221 for the new hash table type.
222
223 Here is a boilerplate example of a creation routine.
224 @var{function_name} is the name of the routine.
225 @var{entry_type} is the type of an entry in the hash table you
226 are creating. @var{base_newfunc} is the name of the creation
227 routine of the hash table type your hash table is derived
228 from.
229
230 EXAMPLE
231
232 .struct bfd_hash_entry *
233 .@var{function_name} (struct bfd_hash_entry *entry,
234 . struct bfd_hash_table *table,
235 . const char *string)
236 .{
237 . struct @var{entry_type} *ret = (@var{entry_type} *) entry;
238 .
239 . {* Allocate the structure if it has not already been allocated by a
240 . derived class. *}
241 . if (ret == NULL)
242 . {
243 . ret = bfd_hash_allocate (table, sizeof (* ret));
244 . if (ret == NULL)
245 . return NULL;
246 . }
247 .
248 . {* Call the allocation method of the base class. *}
249 . ret = ((@var{entry_type} *)
250 . @var{base_newfunc} ((struct bfd_hash_entry *) ret, table, string));
251 .
252 . {* Initialize the local fields here. *}
253 .
254 . return (struct bfd_hash_entry *) ret;
255 .}
256
257 DESCRIPTION
258 The creation routine for the linker hash table, which is in
259 <<linker.c>>, looks just like this example.
260 @var{function_name} is <<_bfd_link_hash_newfunc>>.
261 @var{entry_type} is <<struct bfd_link_hash_entry>>.
262 @var{base_newfunc} is <<bfd_hash_newfunc>>, the creation
263 routine for a basic hash table.
264
265 <<_bfd_link_hash_newfunc>> also initializes the local fields
266 in a linker hash table entry: <<type>>, <<written>> and
267 <<next>>.
268
269 INODE
270 Write Other Derived Routines, , Write the Derived Creation Routine, Deriving a New Hash Table Type
271 SUBSUBSECTION
272 Write other derived routines
273
274 You will want to write other routines for your new hash table,
275 as well.
276
277 You will want an initialization routine which calls the
278 initialization routine of the hash table you are deriving from
279 and initializes any other local fields. For the linker hash
280 table, this is <<_bfd_link_hash_table_init>> in <<linker.c>>.
281
282 You will want a lookup routine which calls the lookup routine
283 of the hash table you are deriving from and casts the result.
284 The linker hash table uses <<bfd_link_hash_lookup>> in
285 <<linker.c>> (this actually takes an additional argument which
286 it uses to decide how to return the looked up value).
287
288 You may want a traversal routine. This should just call the
289 traversal routine of the hash table you are deriving from with
290 appropriate casts. The linker hash table uses
291 <<bfd_link_hash_traverse>> in <<linker.c>>.
292
293 These routines may simply be defined as macros. For example,
294 the a.out backend linker hash table, which is derived from the
295 linker hash table, uses macros for the lookup and traversal
296 routines. These are <<aout_link_hash_lookup>> and
297 <<aout_link_hash_traverse>> in aoutx.h.
298 */
299
300 /* The default number of entries to use when creating a hash table. */
301 #define DEFAULT_SIZE 4051
302
303 /* The following function returns a nearest prime number which is
304 greater than N, and near a power of two. Copied from libiberty.
305 Returns zero for ridiculously large N to signify an error. */
306
307 static unsigned long
308 higher_prime_number (unsigned long n)
309 {
310 /* These are primes that are near, but slightly smaller than, a
311 power of two. */
312 static const unsigned long primes[] = {
313 (unsigned long) 127,
314 (unsigned long) 2039,
315 (unsigned long) 32749,
316 (unsigned long) 65521,
317 (unsigned long) 131071,
318 (unsigned long) 262139,
319 (unsigned long) 524287,
320 (unsigned long) 1048573,
321 (unsigned long) 2097143,
322 (unsigned long) 4194301,
323 (unsigned long) 8388593,
324 (unsigned long) 16777213,
325 (unsigned long) 33554393,
326 (unsigned long) 67108859,
327 (unsigned long) 134217689,
328 (unsigned long) 268435399,
329 (unsigned long) 536870909,
330 (unsigned long) 1073741789,
331 (unsigned long) 2147483647,
332 /* 4294967291L */
333 ((unsigned long) 2147483647) + ((unsigned long) 2147483644),
334 };
335
336 const unsigned long *low = &primes[0];
337 const unsigned long *high = &primes[sizeof (primes) / sizeof (primes[0])];
338
339 while (low != high)
340 {
341 const unsigned long *mid = low + (high - low) / 2;
342 if (n >= *mid)
343 low = mid + 1;
344 else
345 high = mid;
346 }
347
348 if (n >= *low)
349 return 0;
350
351 return *low;
352 }
353
354 static size_t bfd_default_hash_table_size = DEFAULT_SIZE;
355
356 /* Create a new hash table, given a number of entries. */
357
358 bfd_boolean
359 bfd_hash_table_init_n (struct bfd_hash_table *table,
360 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
361 struct bfd_hash_table *,
362 const char *),
363 unsigned int entsize,
364 unsigned int size)
365 {
366 unsigned int alloc;
367
368 alloc = size * sizeof (struct bfd_hash_entry *);
369
370 table->memory = (void *) objalloc_create ();
371 if (table->memory == NULL)
372 {
373 bfd_set_error (bfd_error_no_memory);
374 return FALSE;
375 }
376 table->table = objalloc_alloc ((struct objalloc *) table->memory, alloc);
377 if (table->table == NULL)
378 {
379 bfd_set_error (bfd_error_no_memory);
380 return FALSE;
381 }
382 memset ((void *) table->table, 0, alloc);
383 table->size = size;
384 table->entsize = entsize;
385 table->count = 0;
386 table->frozen = 0;
387 table->newfunc = newfunc;
388 return TRUE;
389 }
390
391 /* Create a new hash table with the default number of entries. */
392
393 bfd_boolean
394 bfd_hash_table_init (struct bfd_hash_table *table,
395 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
396 struct bfd_hash_table *,
397 const char *),
398 unsigned int entsize)
399 {
400 return bfd_hash_table_init_n (table, newfunc, entsize,
401 bfd_default_hash_table_size);
402 }
403
404 /* Free a hash table. */
405
406 void
407 bfd_hash_table_free (struct bfd_hash_table *table)
408 {
409 objalloc_free (table->memory);
410 table->memory = NULL;
411 }
412
413 /* Look up a string in a hash table. */
414
415 struct bfd_hash_entry *
416 bfd_hash_lookup (struct bfd_hash_table *table,
417 const char *string,
418 bfd_boolean create,
419 bfd_boolean copy)
420 {
421 const unsigned char *s;
422 unsigned long hash;
423 unsigned int c;
424 struct bfd_hash_entry *hashp;
425 unsigned int len;
426 unsigned int index;
427
428 hash = 0;
429 len = 0;
430 s = (const unsigned char *) string;
431 while ((c = *s++) != '\0')
432 {
433 hash += c + (c << 17);
434 hash ^= hash >> 2;
435 }
436 len = (s - (const unsigned char *) string) - 1;
437 hash += len + (len << 17);
438 hash ^= hash >> 2;
439
440 index = hash % table->size;
441 for (hashp = table->table[index];
442 hashp != NULL;
443 hashp = hashp->next)
444 {
445 if (hashp->hash == hash
446 && strcmp (hashp->string, string) == 0)
447 return hashp;
448 }
449
450 if (! create)
451 return NULL;
452
453 hashp = (*table->newfunc) (NULL, table, string);
454 if (hashp == NULL)
455 return NULL;
456 if (copy)
457 {
458 char *new;
459
460 new = objalloc_alloc ((struct objalloc *) table->memory, len + 1);
461 if (!new)
462 {
463 bfd_set_error (bfd_error_no_memory);
464 return NULL;
465 }
466 memcpy (new, string, len + 1);
467 string = new;
468 }
469 hashp->string = string;
470 hashp->hash = hash;
471 hashp->next = table->table[index];
472 table->table[index] = hashp;
473 table->count++;
474
475 if (!table->frozen && table->count > table->size * 3 / 4)
476 {
477 unsigned long newsize = higher_prime_number (table->size);
478 struct bfd_hash_entry **newtable;
479 unsigned int hi;
480 unsigned long alloc = newsize * sizeof (struct bfd_hash_entry *);
481
482 /* If we can't find a higher prime, or we can't possibly alloc
483 that much memory, don't try to grow the table. */
484 if (newsize == 0 || alloc / sizeof (struct bfd_hash_entry *) != newsize)
485 {
486 table->frozen = 1;
487 return hashp;
488 }
489
490 newtable = ((struct bfd_hash_entry **)
491 objalloc_alloc ((struct objalloc *) table->memory, alloc));
492 memset ((PTR) newtable, 0, alloc);
493
494 for (hi = 0; hi < table->size; hi ++)
495 while (table->table[hi])
496 {
497 struct bfd_hash_entry *chain = table->table[hi];
498 struct bfd_hash_entry *chain_end = chain;
499 int index;
500
501 while (chain_end->next && chain_end->next->hash == chain->hash)
502 chain_end = chain_end->next;
503
504 table->table[hi] = chain_end->next;
505 index = chain->hash % newsize;
506 chain_end->next = newtable[index];
507 newtable[index] = chain;
508 }
509 table->table = newtable;
510 table->size = newsize;
511 }
512
513 return hashp;
514 }
515
516 /* Replace an entry in a hash table. */
517
518 void
519 bfd_hash_replace (struct bfd_hash_table *table,
520 struct bfd_hash_entry *old,
521 struct bfd_hash_entry *nw)
522 {
523 unsigned int index;
524 struct bfd_hash_entry **pph;
525
526 index = old->hash % table->size;
527 for (pph = &table->table[index];
528 (*pph) != NULL;
529 pph = &(*pph)->next)
530 {
531 if (*pph == old)
532 {
533 *pph = nw;
534 return;
535 }
536 }
537
538 abort ();
539 }
540
541 /* Allocate space in a hash table. */
542
543 void *
544 bfd_hash_allocate (struct bfd_hash_table *table,
545 unsigned int size)
546 {
547 void * ret;
548
549 ret = objalloc_alloc ((struct objalloc *) table->memory, size);
550 if (ret == NULL && size != 0)
551 bfd_set_error (bfd_error_no_memory);
552 return ret;
553 }
554
555 /* Base method for creating a new hash table entry. */
556
557 struct bfd_hash_entry *
558 bfd_hash_newfunc (struct bfd_hash_entry *entry,
559 struct bfd_hash_table *table,
560 const char *string ATTRIBUTE_UNUSED)
561 {
562 if (entry == NULL)
563 entry = bfd_hash_allocate (table, sizeof (* entry));
564 return entry;
565 }
566
567 /* Traverse a hash table. */
568
569 void
570 bfd_hash_traverse (struct bfd_hash_table *table,
571 bfd_boolean (*func) (struct bfd_hash_entry *, void *),
572 void * info)
573 {
574 unsigned int i;
575
576 table->frozen = 1;
577 for (i = 0; i < table->size; i++)
578 {
579 struct bfd_hash_entry *p;
580
581 for (p = table->table[i]; p != NULL; p = p->next)
582 if (! (*func) (p, info))
583 goto out;
584 }
585 out:
586 table->frozen = 0;
587 }
588 \f
589 void
590 bfd_hash_set_default_size (bfd_size_type hash_size)
591 {
592 /* Extend this prime list if you want more granularity of hash table size. */
593 static const bfd_size_type hash_size_primes[] =
594 {
595 251, 509, 1021, 2039, 4051, 8599, 16699, 32749
596 };
597 size_t index;
598
599 /* Work out best prime number near the hash_size. */
600 for (index = 0; index < ARRAY_SIZE (hash_size_primes) - 1; ++index)
601 if (hash_size <= hash_size_primes[index])
602 break;
603
604 bfd_default_hash_table_size = hash_size_primes[index];
605 }
606 \f
607 /* A few different object file formats (a.out, COFF, ELF) use a string
608 table. These functions support adding strings to a string table,
609 returning the byte offset, and writing out the table.
610
611 Possible improvements:
612 + look for strings matching trailing substrings of other strings
613 + better data structures? balanced trees?
614 + look at reducing memory use elsewhere -- maybe if we didn't have
615 to construct the entire symbol table at once, we could get by
616 with smaller amounts of VM? (What effect does that have on the
617 string table reductions?) */
618
619 /* An entry in the strtab hash table. */
620
621 struct strtab_hash_entry
622 {
623 struct bfd_hash_entry root;
624 /* Index in string table. */
625 bfd_size_type index;
626 /* Next string in strtab. */
627 struct strtab_hash_entry *next;
628 };
629
630 /* The strtab hash table. */
631
632 struct bfd_strtab_hash
633 {
634 struct bfd_hash_table table;
635 /* Size of strtab--also next available index. */
636 bfd_size_type size;
637 /* First string in strtab. */
638 struct strtab_hash_entry *first;
639 /* Last string in strtab. */
640 struct strtab_hash_entry *last;
641 /* Whether to precede strings with a two byte length, as in the
642 XCOFF .debug section. */
643 bfd_boolean xcoff;
644 };
645
646 /* Routine to create an entry in a strtab. */
647
648 static struct bfd_hash_entry *
649 strtab_hash_newfunc (struct bfd_hash_entry *entry,
650 struct bfd_hash_table *table,
651 const char *string)
652 {
653 struct strtab_hash_entry *ret = (struct strtab_hash_entry *) entry;
654
655 /* Allocate the structure if it has not already been allocated by a
656 subclass. */
657 if (ret == NULL)
658 ret = bfd_hash_allocate (table, sizeof (* ret));
659 if (ret == NULL)
660 return NULL;
661
662 /* Call the allocation method of the superclass. */
663 ret = (struct strtab_hash_entry *)
664 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string);
665
666 if (ret)
667 {
668 /* Initialize the local fields. */
669 ret->index = (bfd_size_type) -1;
670 ret->next = NULL;
671 }
672
673 return (struct bfd_hash_entry *) ret;
674 }
675
676 /* Look up an entry in an strtab. */
677
678 #define strtab_hash_lookup(t, string, create, copy) \
679 ((struct strtab_hash_entry *) \
680 bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
681
682 /* Create a new strtab. */
683
684 struct bfd_strtab_hash *
685 _bfd_stringtab_init (void)
686 {
687 struct bfd_strtab_hash *table;
688 bfd_size_type amt = sizeof (* table);
689
690 table = bfd_malloc (amt);
691 if (table == NULL)
692 return NULL;
693
694 if (!bfd_hash_table_init (&table->table, strtab_hash_newfunc,
695 sizeof (struct strtab_hash_entry)))
696 {
697 free (table);
698 return NULL;
699 }
700
701 table->size = 0;
702 table->first = NULL;
703 table->last = NULL;
704 table->xcoff = FALSE;
705
706 return table;
707 }
708
709 /* Create a new strtab in which the strings are output in the format
710 used in the XCOFF .debug section: a two byte length precedes each
711 string. */
712
713 struct bfd_strtab_hash *
714 _bfd_xcoff_stringtab_init (void)
715 {
716 struct bfd_strtab_hash *ret;
717
718 ret = _bfd_stringtab_init ();
719 if (ret != NULL)
720 ret->xcoff = TRUE;
721 return ret;
722 }
723
724 /* Free a strtab. */
725
726 void
727 _bfd_stringtab_free (struct bfd_strtab_hash *table)
728 {
729 bfd_hash_table_free (&table->table);
730 free (table);
731 }
732
733 /* Get the index of a string in a strtab, adding it if it is not
734 already present. If HASH is FALSE, we don't really use the hash
735 table, and we don't eliminate duplicate strings. */
736
737 bfd_size_type
738 _bfd_stringtab_add (struct bfd_strtab_hash *tab,
739 const char *str,
740 bfd_boolean hash,
741 bfd_boolean copy)
742 {
743 struct strtab_hash_entry *entry;
744
745 if (hash)
746 {
747 entry = strtab_hash_lookup (tab, str, TRUE, copy);
748 if (entry == NULL)
749 return (bfd_size_type) -1;
750 }
751 else
752 {
753 entry = bfd_hash_allocate (&tab->table, sizeof (* entry));
754 if (entry == NULL)
755 return (bfd_size_type) -1;
756 if (! copy)
757 entry->root.string = str;
758 else
759 {
760 char *n;
761
762 n = bfd_hash_allocate (&tab->table, strlen (str) + 1);
763 if (n == NULL)
764 return (bfd_size_type) -1;
765 entry->root.string = n;
766 }
767 entry->index = (bfd_size_type) -1;
768 entry->next = NULL;
769 }
770
771 if (entry->index == (bfd_size_type) -1)
772 {
773 entry->index = tab->size;
774 tab->size += strlen (str) + 1;
775 if (tab->xcoff)
776 {
777 entry->index += 2;
778 tab->size += 2;
779 }
780 if (tab->first == NULL)
781 tab->first = entry;
782 else
783 tab->last->next = entry;
784 tab->last = entry;
785 }
786
787 return entry->index;
788 }
789
790 /* Get the number of bytes in a strtab. */
791
792 bfd_size_type
793 _bfd_stringtab_size (struct bfd_strtab_hash *tab)
794 {
795 return tab->size;
796 }
797
798 /* Write out a strtab. ABFD must already be at the right location in
799 the file. */
800
801 bfd_boolean
802 _bfd_stringtab_emit (bfd *abfd, struct bfd_strtab_hash *tab)
803 {
804 bfd_boolean xcoff;
805 struct strtab_hash_entry *entry;
806
807 xcoff = tab->xcoff;
808
809 for (entry = tab->first; entry != NULL; entry = entry->next)
810 {
811 const char *str;
812 size_t len;
813
814 str = entry->root.string;
815 len = strlen (str) + 1;
816
817 if (xcoff)
818 {
819 bfd_byte buf[2];
820
821 /* The output length includes the null byte. */
822 bfd_put_16 (abfd, (bfd_vma) len, buf);
823 if (bfd_bwrite ((void *) buf, (bfd_size_type) 2, abfd) != 2)
824 return FALSE;
825 }
826
827 if (bfd_bwrite ((void *) str, (bfd_size_type) len, abfd) != len)
828 return FALSE;
829 }
830
831 return TRUE;
832 }
This page took 0.05198 seconds and 5 git commands to generate.