082eea0715b0bd62820140bda518f690a6f9f63e
[deliverable/binutils-gdb.git] / bfd / linker.c
1 /* linker.c -- BFD linker routines
2 Copyright (C) 1993-2016 Free Software Foundation, Inc.
3 Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "libbfd.h"
25 #include "bfdlink.h"
26 #include "genlink.h"
27
28 /*
29 SECTION
30 Linker Functions
31
32 @cindex Linker
33 The linker uses three special entry points in the BFD target
34 vector. It is not necessary to write special routines for
35 these entry points when creating a new BFD back end, since
36 generic versions are provided. However, writing them can
37 speed up linking and make it use significantly less runtime
38 memory.
39
40 The first routine creates a hash table used by the other
41 routines. The second routine adds the symbols from an object
42 file to the hash table. The third routine takes all the
43 object files and links them together to create the output
44 file. These routines are designed so that the linker proper
45 does not need to know anything about the symbols in the object
46 files that it is linking. The linker merely arranges the
47 sections as directed by the linker script and lets BFD handle
48 the details of symbols and relocs.
49
50 The second routine and third routines are passed a pointer to
51 a <<struct bfd_link_info>> structure (defined in
52 <<bfdlink.h>>) which holds information relevant to the link,
53 including the linker hash table (which was created by the
54 first routine) and a set of callback functions to the linker
55 proper.
56
57 The generic linker routines are in <<linker.c>>, and use the
58 header file <<genlink.h>>. As of this writing, the only back
59 ends which have implemented versions of these routines are
60 a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>). The a.out
61 routines are used as examples throughout this section.
62
63 @menu
64 @* Creating a Linker Hash Table::
65 @* Adding Symbols to the Hash Table::
66 @* Performing the Final Link::
67 @end menu
68
69 INODE
70 Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
71 SUBSECTION
72 Creating a linker hash table
73
74 @cindex _bfd_link_hash_table_create in target vector
75 @cindex target vector (_bfd_link_hash_table_create)
76 The linker routines must create a hash table, which must be
77 derived from <<struct bfd_link_hash_table>> described in
78 <<bfdlink.c>>. @xref{Hash Tables}, for information on how to
79 create a derived hash table. This entry point is called using
80 the target vector of the linker output file.
81
82 The <<_bfd_link_hash_table_create>> entry point must allocate
83 and initialize an instance of the desired hash table. If the
84 back end does not require any additional information to be
85 stored with the entries in the hash table, the entry point may
86 simply create a <<struct bfd_link_hash_table>>. Most likely,
87 however, some additional information will be needed.
88
89 For example, with each entry in the hash table the a.out
90 linker keeps the index the symbol has in the final output file
91 (this index number is used so that when doing a relocatable
92 link the symbol index used in the output file can be quickly
93 filled in when copying over a reloc). The a.out linker code
94 defines the required structures and functions for a hash table
95 derived from <<struct bfd_link_hash_table>>. The a.out linker
96 hash table is created by the function
97 <<NAME(aout,link_hash_table_create)>>; it simply allocates
98 space for the hash table, initializes it, and returns a
99 pointer to it.
100
101 When writing the linker routines for a new back end, you will
102 generally not know exactly which fields will be required until
103 you have finished. You should simply create a new hash table
104 which defines no additional fields, and then simply add fields
105 as they become necessary.
106
107 INODE
108 Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
109 SUBSECTION
110 Adding symbols to the hash table
111
112 @cindex _bfd_link_add_symbols in target vector
113 @cindex target vector (_bfd_link_add_symbols)
114 The linker proper will call the <<_bfd_link_add_symbols>>
115 entry point for each object file or archive which is to be
116 linked (typically these are the files named on the command
117 line, but some may also come from the linker script). The
118 entry point is responsible for examining the file. For an
119 object file, BFD must add any relevant symbol information to
120 the hash table. For an archive, BFD must determine which
121 elements of the archive should be used and adding them to the
122 link.
123
124 The a.out version of this entry point is
125 <<NAME(aout,link_add_symbols)>>.
126
127 @menu
128 @* Differing file formats::
129 @* Adding symbols from an object file::
130 @* Adding symbols from an archive::
131 @end menu
132
133 INODE
134 Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
135 SUBSUBSECTION
136 Differing file formats
137
138 Normally all the files involved in a link will be of the same
139 format, but it is also possible to link together different
140 format object files, and the back end must support that. The
141 <<_bfd_link_add_symbols>> entry point is called via the target
142 vector of the file to be added. This has an important
143 consequence: the function may not assume that the hash table
144 is the type created by the corresponding
145 <<_bfd_link_hash_table_create>> vector. All the
146 <<_bfd_link_add_symbols>> function can assume about the hash
147 table is that it is derived from <<struct
148 bfd_link_hash_table>>.
149
150 Sometimes the <<_bfd_link_add_symbols>> function must store
151 some information in the hash table entry to be used by the
152 <<_bfd_final_link>> function. In such a case the output bfd
153 xvec must be checked to make sure that the hash table was
154 created by an object file of the same format.
155
156 The <<_bfd_final_link>> routine must be prepared to handle a
157 hash entry without any extra information added by the
158 <<_bfd_link_add_symbols>> function. A hash entry without
159 extra information will also occur when the linker script
160 directs the linker to create a symbol. Note that, regardless
161 of how a hash table entry is added, all the fields will be
162 initialized to some sort of null value by the hash table entry
163 initialization function.
164
165 See <<ecoff_link_add_externals>> for an example of how to
166 check the output bfd before saving information (in this
167 case, the ECOFF external symbol debugging information) in a
168 hash table entry.
169
170 INODE
171 Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
172 SUBSUBSECTION
173 Adding symbols from an object file
174
175 When the <<_bfd_link_add_symbols>> routine is passed an object
176 file, it must add all externally visible symbols in that
177 object file to the hash table. The actual work of adding the
178 symbol to the hash table is normally handled by the function
179 <<_bfd_generic_link_add_one_symbol>>. The
180 <<_bfd_link_add_symbols>> routine is responsible for reading
181 all the symbols from the object file and passing the correct
182 information to <<_bfd_generic_link_add_one_symbol>>.
183
184 The <<_bfd_link_add_symbols>> routine should not use
185 <<bfd_canonicalize_symtab>> to read the symbols. The point of
186 providing this routine is to avoid the overhead of converting
187 the symbols into generic <<asymbol>> structures.
188
189 @findex _bfd_generic_link_add_one_symbol
190 <<_bfd_generic_link_add_one_symbol>> handles the details of
191 combining common symbols, warning about multiple definitions,
192 and so forth. It takes arguments which describe the symbol to
193 add, notably symbol flags, a section, and an offset. The
194 symbol flags include such things as <<BSF_WEAK>> or
195 <<BSF_INDIRECT>>. The section is a section in the object
196 file, or something like <<bfd_und_section_ptr>> for an undefined
197 symbol or <<bfd_com_section_ptr>> for a common symbol.
198
199 If the <<_bfd_final_link>> routine is also going to need to
200 read the symbol information, the <<_bfd_link_add_symbols>>
201 routine should save it somewhere attached to the object file
202 BFD. However, the information should only be saved if the
203 <<keep_memory>> field of the <<info>> argument is TRUE, so
204 that the <<-no-keep-memory>> linker switch is effective.
205
206 The a.out function which adds symbols from an object file is
207 <<aout_link_add_object_symbols>>, and most of the interesting
208 work is in <<aout_link_add_symbols>>. The latter saves
209 pointers to the hash tables entries created by
210 <<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
211 so that the <<_bfd_final_link>> routine does not have to call
212 the hash table lookup routine to locate the entry.
213
214 INODE
215 Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
216 SUBSUBSECTION
217 Adding symbols from an archive
218
219 When the <<_bfd_link_add_symbols>> routine is passed an
220 archive, it must look through the symbols defined by the
221 archive and decide which elements of the archive should be
222 included in the link. For each such element it must call the
223 <<add_archive_element>> linker callback, and it must add the
224 symbols from the object file to the linker hash table. (The
225 callback may in fact indicate that a replacement BFD should be
226 used, in which case the symbols from that BFD should be added
227 to the linker hash table instead.)
228
229 @findex _bfd_generic_link_add_archive_symbols
230 In most cases the work of looking through the symbols in the
231 archive should be done by the
232 <<_bfd_generic_link_add_archive_symbols>> function.
233 <<_bfd_generic_link_add_archive_symbols>> is passed a function
234 to call to make the final decision about adding an archive
235 element to the link and to do the actual work of adding the
236 symbols to the linker hash table. If the element is to
237 be included, the <<add_archive_element>> linker callback
238 routine must be called with the element as an argument, and
239 the element's symbols must be added to the linker hash table
240 just as though the element had itself been passed to the
241 <<_bfd_link_add_symbols>> function.
242
243 When the a.out <<_bfd_link_add_symbols>> function receives an
244 archive, it calls <<_bfd_generic_link_add_archive_symbols>>
245 passing <<aout_link_check_archive_element>> as the function
246 argument. <<aout_link_check_archive_element>> calls
247 <<aout_link_check_ar_symbols>>. If the latter decides to add
248 the element (an element is only added if it provides a real,
249 non-common, definition for a previously undefined or common
250 symbol) it calls the <<add_archive_element>> callback and then
251 <<aout_link_check_archive_element>> calls
252 <<aout_link_add_symbols>> to actually add the symbols to the
253 linker hash table - possibly those of a substitute BFD, if the
254 <<add_archive_element>> callback avails itself of that option.
255
256 The ECOFF back end is unusual in that it does not normally
257 call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
258 archives already contain a hash table of symbols. The ECOFF
259 back end searches the archive itself to avoid the overhead of
260 creating a new hash table.
261
262 INODE
263 Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
264 SUBSECTION
265 Performing the final link
266
267 @cindex _bfd_link_final_link in target vector
268 @cindex target vector (_bfd_final_link)
269 When all the input files have been processed, the linker calls
270 the <<_bfd_final_link>> entry point of the output BFD. This
271 routine is responsible for producing the final output file,
272 which has several aspects. It must relocate the contents of
273 the input sections and copy the data into the output sections.
274 It must build an output symbol table including any local
275 symbols from the input files and the global symbols from the
276 hash table. When producing relocatable output, it must
277 modify the input relocs and write them into the output file.
278 There may also be object format dependent work to be done.
279
280 The linker will also call the <<write_object_contents>> entry
281 point when the BFD is closed. The two entry points must work
282 together in order to produce the correct output file.
283
284 The details of how this works are inevitably dependent upon
285 the specific object file format. The a.out
286 <<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
287
288 @menu
289 @* Information provided by the linker::
290 @* Relocating the section contents::
291 @* Writing the symbol table::
292 @end menu
293
294 INODE
295 Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
296 SUBSUBSECTION
297 Information provided by the linker
298
299 Before the linker calls the <<_bfd_final_link>> entry point,
300 it sets up some data structures for the function to use.
301
302 The <<input_bfds>> field of the <<bfd_link_info>> structure
303 will point to a list of all the input files included in the
304 link. These files are linked through the <<link.next>> field
305 of the <<bfd>> structure.
306
307 Each section in the output file will have a list of
308 <<link_order>> structures attached to the <<map_head.link_order>>
309 field (the <<link_order>> structure is defined in
310 <<bfdlink.h>>). These structures describe how to create the
311 contents of the output section in terms of the contents of
312 various input sections, fill constants, and, eventually, other
313 types of information. They also describe relocs that must be
314 created by the BFD backend, but do not correspond to any input
315 file; this is used to support -Ur, which builds constructors
316 while generating a relocatable object file.
317
318 INODE
319 Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
320 SUBSUBSECTION
321 Relocating the section contents
322
323 The <<_bfd_final_link>> function should look through the
324 <<link_order>> structures attached to each section of the
325 output file. Each <<link_order>> structure should either be
326 handled specially, or it should be passed to the function
327 <<_bfd_default_link_order>> which will do the right thing
328 (<<_bfd_default_link_order>> is defined in <<linker.c>>).
329
330 For efficiency, a <<link_order>> of type
331 <<bfd_indirect_link_order>> whose associated section belongs
332 to a BFD of the same format as the output BFD must be handled
333 specially. This type of <<link_order>> describes part of an
334 output section in terms of a section belonging to one of the
335 input files. The <<_bfd_final_link>> function should read the
336 contents of the section and any associated relocs, apply the
337 relocs to the section contents, and write out the modified
338 section contents. If performing a relocatable link, the
339 relocs themselves must also be modified and written out.
340
341 @findex _bfd_relocate_contents
342 @findex _bfd_final_link_relocate
343 The functions <<_bfd_relocate_contents>> and
344 <<_bfd_final_link_relocate>> provide some general support for
345 performing the actual relocations, notably overflow checking.
346 Their arguments include information about the symbol the
347 relocation is against and a <<reloc_howto_type>> argument
348 which describes the relocation to perform. These functions
349 are defined in <<reloc.c>>.
350
351 The a.out function which handles reading, relocating, and
352 writing section contents is <<aout_link_input_section>>. The
353 actual relocation is done in <<aout_link_input_section_std>>
354 and <<aout_link_input_section_ext>>.
355
356 INODE
357 Writing the symbol table, , Relocating the section contents, Performing the Final Link
358 SUBSUBSECTION
359 Writing the symbol table
360
361 The <<_bfd_final_link>> function must gather all the symbols
362 in the input files and write them out. It must also write out
363 all the symbols in the global hash table. This must be
364 controlled by the <<strip>> and <<discard>> fields of the
365 <<bfd_link_info>> structure.
366
367 The local symbols of the input files will not have been
368 entered into the linker hash table. The <<_bfd_final_link>>
369 routine must consider each input file and include the symbols
370 in the output file. It may be convenient to do this when
371 looking through the <<link_order>> structures, or it may be
372 done by stepping through the <<input_bfds>> list.
373
374 The <<_bfd_final_link>> routine must also traverse the global
375 hash table to gather all the externally visible symbols. It
376 is possible that most of the externally visible symbols may be
377 written out when considering the symbols of each input file,
378 but it is still necessary to traverse the hash table since the
379 linker script may have defined some symbols that are not in
380 any of the input files.
381
382 The <<strip>> field of the <<bfd_link_info>> structure
383 controls which symbols are written out. The possible values
384 are listed in <<bfdlink.h>>. If the value is <<strip_some>>,
385 then the <<keep_hash>> field of the <<bfd_link_info>>
386 structure is a hash table of symbols to keep; each symbol
387 should be looked up in this hash table, and only symbols which
388 are present should be included in the output file.
389
390 If the <<strip>> field of the <<bfd_link_info>> structure
391 permits local symbols to be written out, the <<discard>> field
392 is used to further controls which local symbols are included
393 in the output file. If the value is <<discard_l>>, then all
394 local symbols which begin with a certain prefix are discarded;
395 this is controlled by the <<bfd_is_local_label_name>> entry point.
396
397 The a.out backend handles symbols by calling
398 <<aout_link_write_symbols>> on each input BFD and then
399 traversing the global hash table with the function
400 <<aout_link_write_other_symbol>>. It builds a string table
401 while writing out the symbols, which is written to the output
402 file at the end of <<NAME(aout,final_link)>>.
403 */
404
405 static bfd_boolean generic_link_add_object_symbols
406 (bfd *, struct bfd_link_info *, bfd_boolean collect);
407 static bfd_boolean generic_link_add_symbols
408 (bfd *, struct bfd_link_info *, bfd_boolean);
409 static bfd_boolean generic_link_check_archive_element_no_collect
410 (bfd *, struct bfd_link_info *, struct bfd_link_hash_entry *, const char *,
411 bfd_boolean *);
412 static bfd_boolean generic_link_check_archive_element_collect
413 (bfd *, struct bfd_link_info *, struct bfd_link_hash_entry *, const char *,
414 bfd_boolean *);
415 static bfd_boolean generic_link_check_archive_element
416 (bfd *, struct bfd_link_info *, struct bfd_link_hash_entry *, const char *,
417 bfd_boolean *, bfd_boolean);
418 static bfd_boolean generic_link_add_symbol_list
419 (bfd *, struct bfd_link_info *, bfd_size_type count, asymbol **,
420 bfd_boolean);
421 static bfd_boolean generic_add_output_symbol
422 (bfd *, size_t *psymalloc, asymbol *);
423 static bfd_boolean default_data_link_order
424 (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *);
425 static bfd_boolean default_indirect_link_order
426 (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *,
427 bfd_boolean);
428
429 /* The link hash table structure is defined in bfdlink.h. It provides
430 a base hash table which the backend specific hash tables are built
431 upon. */
432
433 /* Routine to create an entry in the link hash table. */
434
435 struct bfd_hash_entry *
436 _bfd_link_hash_newfunc (struct bfd_hash_entry *entry,
437 struct bfd_hash_table *table,
438 const char *string)
439 {
440 /* Allocate the structure if it has not already been allocated by a
441 subclass. */
442 if (entry == NULL)
443 {
444 entry = (struct bfd_hash_entry *)
445 bfd_hash_allocate (table, sizeof (struct bfd_link_hash_entry));
446 if (entry == NULL)
447 return entry;
448 }
449
450 /* Call the allocation method of the superclass. */
451 entry = bfd_hash_newfunc (entry, table, string);
452 if (entry)
453 {
454 struct bfd_link_hash_entry *h = (struct bfd_link_hash_entry *) entry;
455
456 /* Initialize the local fields. */
457 memset ((char *) &h->root + sizeof (h->root), 0,
458 sizeof (*h) - sizeof (h->root));
459 }
460
461 return entry;
462 }
463
464 /* Initialize a link hash table. The BFD argument is the one
465 responsible for creating this table. */
466
467 bfd_boolean
468 _bfd_link_hash_table_init
469 (struct bfd_link_hash_table *table,
470 bfd *abfd ATTRIBUTE_UNUSED,
471 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
472 struct bfd_hash_table *,
473 const char *),
474 unsigned int entsize)
475 {
476 bfd_boolean ret;
477
478 BFD_ASSERT (!abfd->is_linker_output && !abfd->link.hash);
479 table->undefs = NULL;
480 table->undefs_tail = NULL;
481 table->type = bfd_link_generic_hash_table;
482
483 ret = bfd_hash_table_init (&table->table, newfunc, entsize);
484 if (ret)
485 {
486 /* Arrange for destruction of this hash table on closing ABFD. */
487 table->hash_table_free = _bfd_generic_link_hash_table_free;
488 abfd->link.hash = table;
489 abfd->is_linker_output = TRUE;
490 }
491 return ret;
492 }
493
494 /* Look up a symbol in a link hash table. If follow is TRUE, we
495 follow bfd_link_hash_indirect and bfd_link_hash_warning links to
496 the real symbol. */
497
498 struct bfd_link_hash_entry *
499 bfd_link_hash_lookup (struct bfd_link_hash_table *table,
500 const char *string,
501 bfd_boolean create,
502 bfd_boolean copy,
503 bfd_boolean follow)
504 {
505 struct bfd_link_hash_entry *ret;
506
507 ret = ((struct bfd_link_hash_entry *)
508 bfd_hash_lookup (&table->table, string, create, copy));
509
510 if (follow && ret != NULL)
511 {
512 while (ret->type == bfd_link_hash_indirect
513 || ret->type == bfd_link_hash_warning)
514 ret = ret->u.i.link;
515 }
516
517 return ret;
518 }
519
520 /* Look up a symbol in the main linker hash table if the symbol might
521 be wrapped. This should only be used for references to an
522 undefined symbol, not for definitions of a symbol. */
523
524 struct bfd_link_hash_entry *
525 bfd_wrapped_link_hash_lookup (bfd *abfd,
526 struct bfd_link_info *info,
527 const char *string,
528 bfd_boolean create,
529 bfd_boolean copy,
530 bfd_boolean follow)
531 {
532 bfd_size_type amt;
533
534 if (info->wrap_hash != NULL)
535 {
536 const char *l;
537 char prefix = '\0';
538
539 l = string;
540 if (*l == bfd_get_symbol_leading_char (abfd) || *l == info->wrap_char)
541 {
542 prefix = *l;
543 ++l;
544 }
545
546 #undef WRAP
547 #define WRAP "__wrap_"
548
549 if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL)
550 {
551 char *n;
552 struct bfd_link_hash_entry *h;
553
554 /* This symbol is being wrapped. We want to replace all
555 references to SYM with references to __wrap_SYM. */
556
557 amt = strlen (l) + sizeof WRAP + 1;
558 n = (char *) bfd_malloc (amt);
559 if (n == NULL)
560 return NULL;
561
562 n[0] = prefix;
563 n[1] = '\0';
564 strcat (n, WRAP);
565 strcat (n, l);
566 h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
567 free (n);
568 return h;
569 }
570
571 #undef REAL
572 #define REAL "__real_"
573
574 if (*l == '_'
575 && CONST_STRNEQ (l, REAL)
576 && bfd_hash_lookup (info->wrap_hash, l + sizeof REAL - 1,
577 FALSE, FALSE) != NULL)
578 {
579 char *n;
580 struct bfd_link_hash_entry *h;
581
582 /* This is a reference to __real_SYM, where SYM is being
583 wrapped. We want to replace all references to __real_SYM
584 with references to SYM. */
585
586 amt = strlen (l + sizeof REAL - 1) + 2;
587 n = (char *) bfd_malloc (amt);
588 if (n == NULL)
589 return NULL;
590
591 n[0] = prefix;
592 n[1] = '\0';
593 strcat (n, l + sizeof REAL - 1);
594 h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
595 free (n);
596 return h;
597 }
598
599 #undef REAL
600 }
601
602 return bfd_link_hash_lookup (info->hash, string, create, copy, follow);
603 }
604
605 /* If H is a wrapped symbol, ie. the symbol name starts with "__wrap_"
606 and the remainder is found in wrap_hash, return the real symbol. */
607
608 struct bfd_link_hash_entry *
609 unwrap_hash_lookup (struct bfd_link_info *info,
610 bfd *input_bfd,
611 struct bfd_link_hash_entry *h)
612 {
613 const char *l = h->root.string;
614
615 if (*l == bfd_get_symbol_leading_char (input_bfd)
616 || *l == info->wrap_char)
617 ++l;
618
619 if (CONST_STRNEQ (l, WRAP))
620 {
621 l += sizeof WRAP - 1;
622
623 if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL)
624 {
625 char save = 0;
626 if (l - (sizeof WRAP - 1) != h->root.string)
627 {
628 --l;
629 save = *l;
630 *(char *) l = *h->root.string;
631 }
632 h = bfd_link_hash_lookup (info->hash, l, FALSE, FALSE, FALSE);
633 if (save)
634 *(char *) l = save;
635 }
636 }
637 return h;
638 }
639 #undef WRAP
640
641 /* Traverse a generic link hash table. Differs from bfd_hash_traverse
642 in the treatment of warning symbols. When warning symbols are
643 created they replace the real symbol, so you don't get to see the
644 real symbol in a bfd_hash_travere. This traversal calls func with
645 the real symbol. */
646
647 void
648 bfd_link_hash_traverse
649 (struct bfd_link_hash_table *htab,
650 bfd_boolean (*func) (struct bfd_link_hash_entry *, void *),
651 void *info)
652 {
653 unsigned int i;
654
655 htab->table.frozen = 1;
656 for (i = 0; i < htab->table.size; i++)
657 {
658 struct bfd_link_hash_entry *p;
659
660 p = (struct bfd_link_hash_entry *) htab->table.table[i];
661 for (; p != NULL; p = (struct bfd_link_hash_entry *) p->root.next)
662 if (!(*func) (p->type == bfd_link_hash_warning ? p->u.i.link : p, info))
663 goto out;
664 }
665 out:
666 htab->table.frozen = 0;
667 }
668
669 /* Add a symbol to the linker hash table undefs list. */
670
671 void
672 bfd_link_add_undef (struct bfd_link_hash_table *table,
673 struct bfd_link_hash_entry *h)
674 {
675 BFD_ASSERT (h->u.undef.next == NULL);
676 if (table->undefs_tail != NULL)
677 table->undefs_tail->u.undef.next = h;
678 if (table->undefs == NULL)
679 table->undefs = h;
680 table->undefs_tail = h;
681 }
682
683 /* The undefs list was designed so that in normal use we don't need to
684 remove entries. However, if symbols on the list are changed from
685 bfd_link_hash_undefined to either bfd_link_hash_undefweak or
686 bfd_link_hash_new for some reason, then they must be removed from the
687 list. Failure to do so might result in the linker attempting to add
688 the symbol to the list again at a later stage. */
689
690 void
691 bfd_link_repair_undef_list (struct bfd_link_hash_table *table)
692 {
693 struct bfd_link_hash_entry **pun;
694
695 pun = &table->undefs;
696 while (*pun != NULL)
697 {
698 struct bfd_link_hash_entry *h = *pun;
699
700 if (h->type == bfd_link_hash_new
701 || h->type == bfd_link_hash_undefweak)
702 {
703 *pun = h->u.undef.next;
704 h->u.undef.next = NULL;
705 if (h == table->undefs_tail)
706 {
707 if (pun == &table->undefs)
708 table->undefs_tail = NULL;
709 else
710 /* pun points at an u.undef.next field. Go back to
711 the start of the link_hash_entry. */
712 table->undefs_tail = (struct bfd_link_hash_entry *)
713 ((char *) pun - ((char *) &h->u.undef.next - (char *) h));
714 break;
715 }
716 }
717 else
718 pun = &h->u.undef.next;
719 }
720 }
721 \f
722 /* Routine to create an entry in a generic link hash table. */
723
724 struct bfd_hash_entry *
725 _bfd_generic_link_hash_newfunc (struct bfd_hash_entry *entry,
726 struct bfd_hash_table *table,
727 const char *string)
728 {
729 /* Allocate the structure if it has not already been allocated by a
730 subclass. */
731 if (entry == NULL)
732 {
733 entry = (struct bfd_hash_entry *)
734 bfd_hash_allocate (table, sizeof (struct generic_link_hash_entry));
735 if (entry == NULL)
736 return entry;
737 }
738
739 /* Call the allocation method of the superclass. */
740 entry = _bfd_link_hash_newfunc (entry, table, string);
741 if (entry)
742 {
743 struct generic_link_hash_entry *ret;
744
745 /* Set local fields. */
746 ret = (struct generic_link_hash_entry *) entry;
747 ret->written = FALSE;
748 ret->sym = NULL;
749 }
750
751 return entry;
752 }
753
754 /* Create a generic link hash table. */
755
756 struct bfd_link_hash_table *
757 _bfd_generic_link_hash_table_create (bfd *abfd)
758 {
759 struct generic_link_hash_table *ret;
760 bfd_size_type amt = sizeof (struct generic_link_hash_table);
761
762 ret = (struct generic_link_hash_table *) bfd_malloc (amt);
763 if (ret == NULL)
764 return NULL;
765 if (! _bfd_link_hash_table_init (&ret->root, abfd,
766 _bfd_generic_link_hash_newfunc,
767 sizeof (struct generic_link_hash_entry)))
768 {
769 free (ret);
770 return NULL;
771 }
772 return &ret->root;
773 }
774
775 void
776 _bfd_generic_link_hash_table_free (bfd *obfd)
777 {
778 struct generic_link_hash_table *ret;
779
780 BFD_ASSERT (obfd->is_linker_output && obfd->link.hash);
781 ret = (struct generic_link_hash_table *) obfd->link.hash;
782 bfd_hash_table_free (&ret->root.table);
783 free (ret);
784 obfd->link.hash = NULL;
785 obfd->is_linker_output = FALSE;
786 }
787
788 /* Grab the symbols for an object file when doing a generic link. We
789 store the symbols in the outsymbols field. We need to keep them
790 around for the entire link to ensure that we only read them once.
791 If we read them multiple times, we might wind up with relocs and
792 the hash table pointing to different instances of the symbol
793 structure. */
794
795 bfd_boolean
796 bfd_generic_link_read_symbols (bfd *abfd)
797 {
798 if (bfd_get_outsymbols (abfd) == NULL)
799 {
800 long symsize;
801 long symcount;
802
803 symsize = bfd_get_symtab_upper_bound (abfd);
804 if (symsize < 0)
805 return FALSE;
806 bfd_get_outsymbols (abfd) = (struct bfd_symbol **) bfd_alloc (abfd,
807 symsize);
808 if (bfd_get_outsymbols (abfd) == NULL && symsize != 0)
809 return FALSE;
810 symcount = bfd_canonicalize_symtab (abfd, bfd_get_outsymbols (abfd));
811 if (symcount < 0)
812 return FALSE;
813 bfd_get_symcount (abfd) = symcount;
814 }
815
816 return TRUE;
817 }
818 \f
819 /* Generic function to add symbols to from an object file to the
820 global hash table. This version does not automatically collect
821 constructors by name. */
822
823 bfd_boolean
824 _bfd_generic_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
825 {
826 return generic_link_add_symbols (abfd, info, FALSE);
827 }
828
829 /* Generic function to add symbols from an object file to the global
830 hash table. This version automatically collects constructors by
831 name, as the collect2 program does. It should be used for any
832 target which does not provide some other mechanism for setting up
833 constructors and destructors; these are approximately those targets
834 for which gcc uses collect2 and do not support stabs. */
835
836 bfd_boolean
837 _bfd_generic_link_add_symbols_collect (bfd *abfd, struct bfd_link_info *info)
838 {
839 return generic_link_add_symbols (abfd, info, TRUE);
840 }
841
842 /* Indicate that we are only retrieving symbol values from this
843 section. We want the symbols to act as though the values in the
844 file are absolute. */
845
846 void
847 _bfd_generic_link_just_syms (asection *sec,
848 struct bfd_link_info *info ATTRIBUTE_UNUSED)
849 {
850 sec->sec_info_type = SEC_INFO_TYPE_JUST_SYMS;
851 sec->output_section = bfd_abs_section_ptr;
852 sec->output_offset = sec->vma;
853 }
854
855 /* Copy the symbol type and other attributes for a linker script
856 assignment from HSRC to HDEST.
857 The default implementation does nothing. */
858 void
859 _bfd_generic_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
860 struct bfd_link_hash_entry *hdest ATTRIBUTE_UNUSED,
861 struct bfd_link_hash_entry *hsrc ATTRIBUTE_UNUSED)
862 {
863 }
864
865 /* Add symbols from an object file to the global hash table. */
866
867 static bfd_boolean
868 generic_link_add_symbols (bfd *abfd,
869 struct bfd_link_info *info,
870 bfd_boolean collect)
871 {
872 bfd_boolean ret;
873
874 switch (bfd_get_format (abfd))
875 {
876 case bfd_object:
877 ret = generic_link_add_object_symbols (abfd, info, collect);
878 break;
879 case bfd_archive:
880 ret = (_bfd_generic_link_add_archive_symbols
881 (abfd, info,
882 (collect
883 ? generic_link_check_archive_element_collect
884 : generic_link_check_archive_element_no_collect)));
885 break;
886 default:
887 bfd_set_error (bfd_error_wrong_format);
888 ret = FALSE;
889 }
890
891 return ret;
892 }
893
894 /* Add symbols from an object file to the global hash table. */
895
896 static bfd_boolean
897 generic_link_add_object_symbols (bfd *abfd,
898 struct bfd_link_info *info,
899 bfd_boolean collect)
900 {
901 bfd_size_type symcount;
902 struct bfd_symbol **outsyms;
903
904 if (!bfd_generic_link_read_symbols (abfd))
905 return FALSE;
906 symcount = _bfd_generic_link_get_symcount (abfd);
907 outsyms = _bfd_generic_link_get_symbols (abfd);
908 return generic_link_add_symbol_list (abfd, info, symcount, outsyms, collect);
909 }
910 \f
911 /* Generic function to add symbols from an archive file to the global
912 hash file. This function presumes that the archive symbol table
913 has already been read in (this is normally done by the
914 bfd_check_format entry point). It looks through the archive symbol
915 table for symbols that are undefined or common in the linker global
916 symbol hash table. When one is found, the CHECKFN argument is used
917 to see if an object file should be included. This allows targets
918 to customize common symbol behaviour. CHECKFN should set *PNEEDED
919 to TRUE if the object file should be included, and must also call
920 the bfd_link_info add_archive_element callback function and handle
921 adding the symbols to the global hash table. CHECKFN must notice
922 if the callback indicates a substitute BFD, and arrange to add
923 those symbols instead if it does so. CHECKFN should only return
924 FALSE if some sort of error occurs. */
925
926 bfd_boolean
927 _bfd_generic_link_add_archive_symbols
928 (bfd *abfd,
929 struct bfd_link_info *info,
930 bfd_boolean (*checkfn) (bfd *, struct bfd_link_info *,
931 struct bfd_link_hash_entry *, const char *,
932 bfd_boolean *))
933 {
934 bfd_boolean loop;
935 bfd_size_type amt;
936 unsigned char *included;
937
938 if (! bfd_has_map (abfd))
939 {
940 /* An empty archive is a special case. */
941 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
942 return TRUE;
943 bfd_set_error (bfd_error_no_armap);
944 return FALSE;
945 }
946
947 amt = bfd_ardata (abfd)->symdef_count;
948 if (amt == 0)
949 return TRUE;
950 amt *= sizeof (*included);
951 included = (unsigned char *) bfd_zmalloc (amt);
952 if (included == NULL)
953 return FALSE;
954
955 do
956 {
957 carsym *arsyms;
958 carsym *arsym_end;
959 carsym *arsym;
960 unsigned int indx;
961 file_ptr last_ar_offset = -1;
962 bfd_boolean needed = FALSE;
963 bfd *element = NULL;
964
965 loop = FALSE;
966 arsyms = bfd_ardata (abfd)->symdefs;
967 arsym_end = arsyms + bfd_ardata (abfd)->symdef_count;
968 for (arsym = arsyms, indx = 0; arsym < arsym_end; arsym++, indx++)
969 {
970 struct bfd_link_hash_entry *h;
971 struct bfd_link_hash_entry *undefs_tail;
972
973 if (included[indx])
974 continue;
975 if (needed && arsym->file_offset == last_ar_offset)
976 {
977 included[indx] = 1;
978 continue;
979 }
980
981 h = bfd_link_hash_lookup (info->hash, arsym->name,
982 FALSE, FALSE, TRUE);
983
984 if (h == NULL
985 && info->pei386_auto_import
986 && CONST_STRNEQ (arsym->name, "__imp_"))
987 h = bfd_link_hash_lookup (info->hash, arsym->name + 6,
988 FALSE, FALSE, TRUE);
989 if (h == NULL)
990 continue;
991
992 if (h->type != bfd_link_hash_undefined
993 && h->type != bfd_link_hash_common)
994 {
995 if (h->type != bfd_link_hash_undefweak)
996 /* Symbol must be defined. Don't check it again. */
997 included[indx] = 1;
998 continue;
999 }
1000
1001 if (last_ar_offset != arsym->file_offset)
1002 {
1003 last_ar_offset = arsym->file_offset;
1004 element = _bfd_get_elt_at_filepos (abfd, last_ar_offset);
1005 if (element == NULL
1006 || !bfd_check_format (element, bfd_object))
1007 goto error_return;
1008 }
1009
1010 undefs_tail = info->hash->undefs_tail;
1011
1012 /* CHECKFN will see if this element should be included, and
1013 go ahead and include it if appropriate. */
1014 if (! (*checkfn) (element, info, h, arsym->name, &needed))
1015 goto error_return;
1016
1017 if (needed)
1018 {
1019 unsigned int mark;
1020
1021 /* Look backward to mark all symbols from this object file
1022 which we have already seen in this pass. */
1023 mark = indx;
1024 do
1025 {
1026 included[mark] = 1;
1027 if (mark == 0)
1028 break;
1029 --mark;
1030 }
1031 while (arsyms[mark].file_offset == last_ar_offset);
1032
1033 if (undefs_tail != info->hash->undefs_tail)
1034 loop = TRUE;
1035 }
1036 }
1037 } while (loop);
1038
1039 free (included);
1040 return TRUE;
1041
1042 error_return:
1043 free (included);
1044 return FALSE;
1045 }
1046 \f
1047 /* See if we should include an archive element. This version is used
1048 when we do not want to automatically collect constructors based on
1049 the symbol name, presumably because we have some other mechanism
1050 for finding them. */
1051
1052 static bfd_boolean
1053 generic_link_check_archive_element_no_collect (bfd *abfd,
1054 struct bfd_link_info *info,
1055 struct bfd_link_hash_entry *h,
1056 const char *name,
1057 bfd_boolean *pneeded)
1058 {
1059 return generic_link_check_archive_element (abfd, info, h, name, pneeded,
1060 FALSE);
1061 }
1062
1063 /* See if we should include an archive element. This version is used
1064 when we want to automatically collect constructors based on the
1065 symbol name, as collect2 does. */
1066
1067 static bfd_boolean
1068 generic_link_check_archive_element_collect (bfd *abfd,
1069 struct bfd_link_info *info,
1070 struct bfd_link_hash_entry *h,
1071 const char *name,
1072 bfd_boolean *pneeded)
1073 {
1074 return generic_link_check_archive_element (abfd, info, h, name, pneeded,
1075 TRUE);
1076 }
1077
1078 /* See if we should include an archive element. Optionally collect
1079 constructors. */
1080
1081 static bfd_boolean
1082 generic_link_check_archive_element (bfd *abfd,
1083 struct bfd_link_info *info,
1084 struct bfd_link_hash_entry *h,
1085 const char *name ATTRIBUTE_UNUSED,
1086 bfd_boolean *pneeded,
1087 bfd_boolean collect)
1088 {
1089 asymbol **pp, **ppend;
1090
1091 *pneeded = FALSE;
1092
1093 if (!bfd_generic_link_read_symbols (abfd))
1094 return FALSE;
1095
1096 pp = _bfd_generic_link_get_symbols (abfd);
1097 ppend = pp + _bfd_generic_link_get_symcount (abfd);
1098 for (; pp < ppend; pp++)
1099 {
1100 asymbol *p;
1101
1102 p = *pp;
1103
1104 /* We are only interested in globally visible symbols. */
1105 if (! bfd_is_com_section (p->section)
1106 && (p->flags & (BSF_GLOBAL | BSF_INDIRECT | BSF_WEAK)) == 0)
1107 continue;
1108
1109 /* We are only interested if we know something about this
1110 symbol, and it is undefined or common. An undefined weak
1111 symbol (type bfd_link_hash_undefweak) is not considered to be
1112 a reference when pulling files out of an archive. See the
1113 SVR4 ABI, p. 4-27. */
1114 h = bfd_link_hash_lookup (info->hash, bfd_asymbol_name (p), FALSE,
1115 FALSE, TRUE);
1116 if (h == NULL
1117 || (h->type != bfd_link_hash_undefined
1118 && h->type != bfd_link_hash_common))
1119 continue;
1120
1121 /* P is a symbol we are looking for. */
1122
1123 if (! bfd_is_com_section (p->section)
1124 || (h->type == bfd_link_hash_undefined
1125 && h->u.undef.abfd == NULL))
1126 {
1127 /* P is not a common symbol, or an undefined reference was
1128 created from outside BFD such as from a linker -u option.
1129 This object file defines the symbol, so pull it in. */
1130 *pneeded = TRUE;
1131 if (!(*info->callbacks
1132 ->add_archive_element) (info, abfd, bfd_asymbol_name (p),
1133 &abfd))
1134 return FALSE;
1135 /* Potentially, the add_archive_element hook may have set a
1136 substitute BFD for us. */
1137 return generic_link_add_object_symbols (abfd, info, collect);
1138 }
1139
1140 /* P is a common symbol. */
1141
1142 if (h->type == bfd_link_hash_undefined)
1143 {
1144 bfd *symbfd;
1145 bfd_vma size;
1146 unsigned int power;
1147
1148 /* Turn the symbol into a common symbol but do not link in
1149 the object file. This is how a.out works. Object
1150 formats that require different semantics must implement
1151 this function differently. This symbol is already on the
1152 undefs list. We add the section to a common section
1153 attached to symbfd to ensure that it is in a BFD which
1154 will be linked in. */
1155 symbfd = h->u.undef.abfd;
1156 h->type = bfd_link_hash_common;
1157 h->u.c.p = (struct bfd_link_hash_common_entry *)
1158 bfd_hash_allocate (&info->hash->table,
1159 sizeof (struct bfd_link_hash_common_entry));
1160 if (h->u.c.p == NULL)
1161 return FALSE;
1162
1163 size = bfd_asymbol_value (p);
1164 h->u.c.size = size;
1165
1166 power = bfd_log2 (size);
1167 if (power > 4)
1168 power = 4;
1169 h->u.c.p->alignment_power = power;
1170
1171 if (p->section == bfd_com_section_ptr)
1172 h->u.c.p->section = bfd_make_section_old_way (symbfd, "COMMON");
1173 else
1174 h->u.c.p->section = bfd_make_section_old_way (symbfd,
1175 p->section->name);
1176 h->u.c.p->section->flags |= SEC_ALLOC;
1177 }
1178 else
1179 {
1180 /* Adjust the size of the common symbol if necessary. This
1181 is how a.out works. Object formats that require
1182 different semantics must implement this function
1183 differently. */
1184 if (bfd_asymbol_value (p) > h->u.c.size)
1185 h->u.c.size = bfd_asymbol_value (p);
1186 }
1187 }
1188
1189 /* This archive element is not needed. */
1190 return TRUE;
1191 }
1192
1193 /* Add the symbols from an object file to the global hash table. ABFD
1194 is the object file. INFO is the linker information. SYMBOL_COUNT
1195 is the number of symbols. SYMBOLS is the list of symbols. COLLECT
1196 is TRUE if constructors should be automatically collected by name
1197 as is done by collect2. */
1198
1199 static bfd_boolean
1200 generic_link_add_symbol_list (bfd *abfd,
1201 struct bfd_link_info *info,
1202 bfd_size_type symbol_count,
1203 asymbol **symbols,
1204 bfd_boolean collect)
1205 {
1206 asymbol **pp, **ppend;
1207
1208 pp = symbols;
1209 ppend = symbols + symbol_count;
1210 for (; pp < ppend; pp++)
1211 {
1212 asymbol *p;
1213
1214 p = *pp;
1215
1216 if ((p->flags & (BSF_INDIRECT
1217 | BSF_WARNING
1218 | BSF_GLOBAL
1219 | BSF_CONSTRUCTOR
1220 | BSF_WEAK)) != 0
1221 || bfd_is_und_section (bfd_get_section (p))
1222 || bfd_is_com_section (bfd_get_section (p))
1223 || bfd_is_ind_section (bfd_get_section (p)))
1224 {
1225 const char *name;
1226 const char *string;
1227 struct generic_link_hash_entry *h;
1228 struct bfd_link_hash_entry *bh;
1229
1230 string = name = bfd_asymbol_name (p);
1231 if (((p->flags & BSF_INDIRECT) != 0
1232 || bfd_is_ind_section (p->section))
1233 && pp + 1 < ppend)
1234 {
1235 pp++;
1236 string = bfd_asymbol_name (*pp);
1237 }
1238 else if ((p->flags & BSF_WARNING) != 0
1239 && pp + 1 < ppend)
1240 {
1241 /* The name of P is actually the warning string, and the
1242 next symbol is the one to warn about. */
1243 pp++;
1244 name = bfd_asymbol_name (*pp);
1245 }
1246
1247 bh = NULL;
1248 if (! (_bfd_generic_link_add_one_symbol
1249 (info, abfd, name, p->flags, bfd_get_section (p),
1250 p->value, string, FALSE, collect, &bh)))
1251 return FALSE;
1252 h = (struct generic_link_hash_entry *) bh;
1253
1254 /* If this is a constructor symbol, and the linker didn't do
1255 anything with it, then we want to just pass the symbol
1256 through to the output file. This will happen when
1257 linking with -r. */
1258 if ((p->flags & BSF_CONSTRUCTOR) != 0
1259 && (h == NULL || h->root.type == bfd_link_hash_new))
1260 {
1261 p->udata.p = NULL;
1262 continue;
1263 }
1264
1265 /* Save the BFD symbol so that we don't lose any backend
1266 specific information that may be attached to it. We only
1267 want this one if it gives more information than the
1268 existing one; we don't want to replace a defined symbol
1269 with an undefined one. This routine may be called with a
1270 hash table other than the generic hash table, so we only
1271 do this if we are certain that the hash table is a
1272 generic one. */
1273 if (info->output_bfd->xvec == abfd->xvec)
1274 {
1275 if (h->sym == NULL
1276 || (! bfd_is_und_section (bfd_get_section (p))
1277 && (! bfd_is_com_section (bfd_get_section (p))
1278 || bfd_is_und_section (bfd_get_section (h->sym)))))
1279 {
1280 h->sym = p;
1281 /* BSF_OLD_COMMON is a hack to support COFF reloc
1282 reading, and it should go away when the COFF
1283 linker is switched to the new version. */
1284 if (bfd_is_com_section (bfd_get_section (p)))
1285 p->flags |= BSF_OLD_COMMON;
1286 }
1287 }
1288
1289 /* Store a back pointer from the symbol to the hash
1290 table entry for the benefit of relaxation code until
1291 it gets rewritten to not use asymbol structures.
1292 Setting this is also used to check whether these
1293 symbols were set up by the generic linker. */
1294 p->udata.p = h;
1295 }
1296 }
1297
1298 return TRUE;
1299 }
1300 \f
1301 /* We use a state table to deal with adding symbols from an object
1302 file. The first index into the state table describes the symbol
1303 from the object file. The second index into the state table is the
1304 type of the symbol in the hash table. */
1305
1306 /* The symbol from the object file is turned into one of these row
1307 values. */
1308
1309 enum link_row
1310 {
1311 UNDEF_ROW, /* Undefined. */
1312 UNDEFW_ROW, /* Weak undefined. */
1313 DEF_ROW, /* Defined. */
1314 DEFW_ROW, /* Weak defined. */
1315 COMMON_ROW, /* Common. */
1316 INDR_ROW, /* Indirect. */
1317 WARN_ROW, /* Warning. */
1318 SET_ROW /* Member of set. */
1319 };
1320
1321 /* apparently needed for Hitachi 3050R(HI-UX/WE2)? */
1322 #undef FAIL
1323
1324 /* The actions to take in the state table. */
1325
1326 enum link_action
1327 {
1328 FAIL, /* Abort. */
1329 UND, /* Mark symbol undefined. */
1330 WEAK, /* Mark symbol weak undefined. */
1331 DEF, /* Mark symbol defined. */
1332 DEFW, /* Mark symbol weak defined. */
1333 COM, /* Mark symbol common. */
1334 REF, /* Mark defined symbol referenced. */
1335 CREF, /* Possibly warn about common reference to defined symbol. */
1336 CDEF, /* Define existing common symbol. */
1337 NOACT, /* No action. */
1338 BIG, /* Mark symbol common using largest size. */
1339 MDEF, /* Multiple definition error. */
1340 MIND, /* Multiple indirect symbols. */
1341 IND, /* Make indirect symbol. */
1342 CIND, /* Make indirect symbol from existing common symbol. */
1343 SET, /* Add value to set. */
1344 MWARN, /* Make warning symbol. */
1345 WARN, /* Warn if referenced, else MWARN. */
1346 CYCLE, /* Repeat with symbol pointed to. */
1347 REFC, /* Mark indirect symbol referenced and then CYCLE. */
1348 WARNC /* Issue warning and then CYCLE. */
1349 };
1350
1351 /* The state table itself. The first index is a link_row and the
1352 second index is a bfd_link_hash_type. */
1353
1354 static const enum link_action link_action[8][8] =
1355 {
1356 /* current\prev new undef undefw def defw com indr warn */
1357 /* UNDEF_ROW */ {UND, NOACT, UND, REF, REF, NOACT, REFC, WARNC },
1358 /* UNDEFW_ROW */ {WEAK, NOACT, NOACT, REF, REF, NOACT, REFC, WARNC },
1359 /* DEF_ROW */ {DEF, DEF, DEF, MDEF, DEF, CDEF, MDEF, CYCLE },
1360 /* DEFW_ROW */ {DEFW, DEFW, DEFW, NOACT, NOACT, NOACT, NOACT, CYCLE },
1361 /* COMMON_ROW */ {COM, COM, COM, CREF, COM, BIG, REFC, WARNC },
1362 /* INDR_ROW */ {IND, IND, IND, MDEF, IND, CIND, MIND, CYCLE },
1363 /* WARN_ROW */ {MWARN, WARN, WARN, WARN, WARN, WARN, WARN, NOACT },
1364 /* SET_ROW */ {SET, SET, SET, SET, SET, SET, CYCLE, CYCLE }
1365 };
1366
1367 /* Most of the entries in the LINK_ACTION table are straightforward,
1368 but a few are somewhat subtle.
1369
1370 A reference to an indirect symbol (UNDEF_ROW/indr or
1371 UNDEFW_ROW/indr) is counted as a reference both to the indirect
1372 symbol and to the symbol the indirect symbol points to.
1373
1374 A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn)
1375 causes the warning to be issued.
1376
1377 A common definition of an indirect symbol (COMMON_ROW/indr) is
1378 treated as a multiple definition error. Likewise for an indirect
1379 definition of a common symbol (INDR_ROW/com).
1380
1381 An indirect definition of a warning (INDR_ROW/warn) does not cause
1382 the warning to be issued.
1383
1384 If a warning is created for an indirect symbol (WARN_ROW/indr) no
1385 warning is created for the symbol the indirect symbol points to.
1386
1387 Adding an entry to a set does not count as a reference to a set,
1388 and no warning is issued (SET_ROW/warn). */
1389
1390 /* Return the BFD in which a hash entry has been defined, if known. */
1391
1392 static bfd *
1393 hash_entry_bfd (struct bfd_link_hash_entry *h)
1394 {
1395 while (h->type == bfd_link_hash_warning)
1396 h = h->u.i.link;
1397 switch (h->type)
1398 {
1399 default:
1400 return NULL;
1401 case bfd_link_hash_undefined:
1402 case bfd_link_hash_undefweak:
1403 return h->u.undef.abfd;
1404 case bfd_link_hash_defined:
1405 case bfd_link_hash_defweak:
1406 return h->u.def.section->owner;
1407 case bfd_link_hash_common:
1408 return h->u.c.p->section->owner;
1409 }
1410 /*NOTREACHED*/
1411 }
1412
1413 /* Add a symbol to the global hash table.
1414 ABFD is the BFD the symbol comes from.
1415 NAME is the name of the symbol.
1416 FLAGS is the BSF_* bits associated with the symbol.
1417 SECTION is the section in which the symbol is defined; this may be
1418 bfd_und_section_ptr or bfd_com_section_ptr.
1419 VALUE is the value of the symbol, relative to the section.
1420 STRING is used for either an indirect symbol, in which case it is
1421 the name of the symbol to indirect to, or a warning symbol, in
1422 which case it is the warning string.
1423 COPY is TRUE if NAME or STRING must be copied into locally
1424 allocated memory if they need to be saved.
1425 COLLECT is TRUE if we should automatically collect gcc constructor
1426 or destructor names as collect2 does.
1427 HASHP, if not NULL, is a place to store the created hash table
1428 entry; if *HASHP is not NULL, the caller has already looked up
1429 the hash table entry, and stored it in *HASHP. */
1430
1431 bfd_boolean
1432 _bfd_generic_link_add_one_symbol (struct bfd_link_info *info,
1433 bfd *abfd,
1434 const char *name,
1435 flagword flags,
1436 asection *section,
1437 bfd_vma value,
1438 const char *string,
1439 bfd_boolean copy,
1440 bfd_boolean collect,
1441 struct bfd_link_hash_entry **hashp)
1442 {
1443 enum link_row row;
1444 struct bfd_link_hash_entry *h;
1445 struct bfd_link_hash_entry *inh = NULL;
1446 bfd_boolean cycle;
1447
1448 BFD_ASSERT (section != NULL);
1449
1450 if (bfd_is_ind_section (section)
1451 || (flags & BSF_INDIRECT) != 0)
1452 {
1453 row = INDR_ROW;
1454 /* Create the indirect symbol here. This is for the benefit of
1455 the plugin "notice" function.
1456 STRING is the name of the symbol we want to indirect to. */
1457 inh = bfd_wrapped_link_hash_lookup (abfd, info, string, TRUE,
1458 copy, FALSE);
1459 if (inh == NULL)
1460 return FALSE;
1461 }
1462 else if ((flags & BSF_WARNING) != 0)
1463 row = WARN_ROW;
1464 else if ((flags & BSF_CONSTRUCTOR) != 0)
1465 row = SET_ROW;
1466 else if (bfd_is_und_section (section))
1467 {
1468 if ((flags & BSF_WEAK) != 0)
1469 row = UNDEFW_ROW;
1470 else
1471 row = UNDEF_ROW;
1472 }
1473 else if ((flags & BSF_WEAK) != 0)
1474 row = DEFW_ROW;
1475 else if (bfd_is_com_section (section))
1476 {
1477 row = COMMON_ROW;
1478 if (!bfd_link_relocatable (info)
1479 && strcmp (name, "__gnu_lto_slim") == 0)
1480 (*_bfd_error_handler)
1481 (_("%s: plugin needed to handle lto object"),
1482 bfd_get_filename (abfd));
1483 }
1484 else
1485 row = DEF_ROW;
1486
1487 if (hashp != NULL && *hashp != NULL)
1488 h = *hashp;
1489 else
1490 {
1491 if (row == UNDEF_ROW || row == UNDEFW_ROW)
1492 h = bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, copy, FALSE);
1493 else
1494 h = bfd_link_hash_lookup (info->hash, name, TRUE, copy, FALSE);
1495 if (h == NULL)
1496 {
1497 if (hashp != NULL)
1498 *hashp = NULL;
1499 return FALSE;
1500 }
1501 }
1502
1503 if (info->notice_all
1504 || (info->notice_hash != NULL
1505 && bfd_hash_lookup (info->notice_hash, name, FALSE, FALSE) != NULL))
1506 {
1507 if (! (*info->callbacks->notice) (info, h, inh,
1508 abfd, section, value, flags))
1509 return FALSE;
1510 }
1511
1512 if (hashp != NULL)
1513 *hashp = h;
1514
1515 do
1516 {
1517 enum link_action action;
1518
1519 cycle = FALSE;
1520 action = link_action[(int) row][(int) h->type];
1521 switch (action)
1522 {
1523 case FAIL:
1524 abort ();
1525
1526 case NOACT:
1527 /* Do nothing. */
1528 break;
1529
1530 case UND:
1531 /* Make a new undefined symbol. */
1532 h->type = bfd_link_hash_undefined;
1533 h->u.undef.abfd = abfd;
1534 bfd_link_add_undef (info->hash, h);
1535 break;
1536
1537 case WEAK:
1538 /* Make a new weak undefined symbol. */
1539 h->type = bfd_link_hash_undefweak;
1540 h->u.undef.abfd = abfd;
1541 break;
1542
1543 case CDEF:
1544 /* We have found a definition for a symbol which was
1545 previously common. */
1546 BFD_ASSERT (h->type == bfd_link_hash_common);
1547 if (! ((*info->callbacks->multiple_common)
1548 (info, h, abfd, bfd_link_hash_defined, 0)))
1549 return FALSE;
1550 /* Fall through. */
1551 case DEF:
1552 case DEFW:
1553 {
1554 enum bfd_link_hash_type oldtype;
1555
1556 /* Define a symbol. */
1557 oldtype = h->type;
1558 if (action == DEFW)
1559 h->type = bfd_link_hash_defweak;
1560 else
1561 h->type = bfd_link_hash_defined;
1562 h->u.def.section = section;
1563 h->u.def.value = value;
1564 h->linker_def = 0;
1565
1566 /* If we have been asked to, we act like collect2 and
1567 identify all functions that might be global
1568 constructors and destructors and pass them up in a
1569 callback. We only do this for certain object file
1570 types, since many object file types can handle this
1571 automatically. */
1572 if (collect && name[0] == '_')
1573 {
1574 const char *s;
1575
1576 /* A constructor or destructor name starts like this:
1577 _+GLOBAL_[_.$][ID][_.$] where the first [_.$] and
1578 the second are the same character (we accept any
1579 character there, in case a new object file format
1580 comes along with even worse naming restrictions). */
1581
1582 #define CONS_PREFIX "GLOBAL_"
1583 #define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
1584
1585 s = name + 1;
1586 while (*s == '_')
1587 ++s;
1588 if (s[0] == 'G' && CONST_STRNEQ (s, CONS_PREFIX))
1589 {
1590 char c;
1591
1592 c = s[CONS_PREFIX_LEN + 1];
1593 if ((c == 'I' || c == 'D')
1594 && s[CONS_PREFIX_LEN] == s[CONS_PREFIX_LEN + 2])
1595 {
1596 /* If this is a definition of a symbol which
1597 was previously weakly defined, we are in
1598 trouble. We have already added a
1599 constructor entry for the weak defined
1600 symbol, and now we are trying to add one
1601 for the new symbol. Fortunately, this case
1602 should never arise in practice. */
1603 if (oldtype == bfd_link_hash_defweak)
1604 abort ();
1605
1606 if (! ((*info->callbacks->constructor)
1607 (info, c == 'I',
1608 h->root.string, abfd, section, value)))
1609 return FALSE;
1610 }
1611 }
1612 }
1613 }
1614
1615 break;
1616
1617 case COM:
1618 /* We have found a common definition for a symbol. */
1619 if (h->type == bfd_link_hash_new)
1620 bfd_link_add_undef (info->hash, h);
1621 h->type = bfd_link_hash_common;
1622 h->u.c.p = (struct bfd_link_hash_common_entry *)
1623 bfd_hash_allocate (&info->hash->table,
1624 sizeof (struct bfd_link_hash_common_entry));
1625 if (h->u.c.p == NULL)
1626 return FALSE;
1627
1628 h->u.c.size = value;
1629
1630 /* Select a default alignment based on the size. This may
1631 be overridden by the caller. */
1632 {
1633 unsigned int power;
1634
1635 power = bfd_log2 (value);
1636 if (power > 4)
1637 power = 4;
1638 h->u.c.p->alignment_power = power;
1639 }
1640
1641 /* The section of a common symbol is only used if the common
1642 symbol is actually allocated. It basically provides a
1643 hook for the linker script to decide which output section
1644 the common symbols should be put in. In most cases, the
1645 section of a common symbol will be bfd_com_section_ptr,
1646 the code here will choose a common symbol section named
1647 "COMMON", and the linker script will contain *(COMMON) in
1648 the appropriate place. A few targets use separate common
1649 sections for small symbols, and they require special
1650 handling. */
1651 if (section == bfd_com_section_ptr)
1652 {
1653 h->u.c.p->section = bfd_make_section_old_way (abfd, "COMMON");
1654 h->u.c.p->section->flags |= SEC_ALLOC;
1655 }
1656 else if (section->owner != abfd)
1657 {
1658 h->u.c.p->section = bfd_make_section_old_way (abfd,
1659 section->name);
1660 h->u.c.p->section->flags |= SEC_ALLOC;
1661 }
1662 else
1663 h->u.c.p->section = section;
1664 h->linker_def = 0;
1665 break;
1666
1667 case REF:
1668 /* A reference to a defined symbol. */
1669 if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1670 h->u.undef.next = h;
1671 break;
1672
1673 case BIG:
1674 /* We have found a common definition for a symbol which
1675 already had a common definition. Use the maximum of the
1676 two sizes, and use the section required by the larger symbol. */
1677 BFD_ASSERT (h->type == bfd_link_hash_common);
1678 if (! ((*info->callbacks->multiple_common)
1679 (info, h, abfd, bfd_link_hash_common, value)))
1680 return FALSE;
1681 if (value > h->u.c.size)
1682 {
1683 unsigned int power;
1684
1685 h->u.c.size = value;
1686
1687 /* Select a default alignment based on the size. This may
1688 be overridden by the caller. */
1689 power = bfd_log2 (value);
1690 if (power > 4)
1691 power = 4;
1692 h->u.c.p->alignment_power = power;
1693
1694 /* Some systems have special treatment for small commons,
1695 hence we want to select the section used by the larger
1696 symbol. This makes sure the symbol does not go in a
1697 small common section if it is now too large. */
1698 if (section == bfd_com_section_ptr)
1699 {
1700 h->u.c.p->section
1701 = bfd_make_section_old_way (abfd, "COMMON");
1702 h->u.c.p->section->flags |= SEC_ALLOC;
1703 }
1704 else if (section->owner != abfd)
1705 {
1706 h->u.c.p->section
1707 = bfd_make_section_old_way (abfd, section->name);
1708 h->u.c.p->section->flags |= SEC_ALLOC;
1709 }
1710 else
1711 h->u.c.p->section = section;
1712 }
1713 break;
1714
1715 case CREF:
1716 /* We have found a common definition for a symbol which
1717 was already defined. */
1718 if (! ((*info->callbacks->multiple_common)
1719 (info, h, abfd, bfd_link_hash_common, value)))
1720 return FALSE;
1721 break;
1722
1723 case MIND:
1724 /* Multiple indirect symbols. This is OK if they both point
1725 to the same symbol. */
1726 if (strcmp (h->u.i.link->root.string, string) == 0)
1727 break;
1728 /* Fall through. */
1729 case MDEF:
1730 /* Handle a multiple definition. */
1731 if (! ((*info->callbacks->multiple_definition)
1732 (info, h, abfd, section, value)))
1733 return FALSE;
1734 break;
1735
1736 case CIND:
1737 /* Create an indirect symbol from an existing common symbol. */
1738 BFD_ASSERT (h->type == bfd_link_hash_common);
1739 if (! ((*info->callbacks->multiple_common)
1740 (info, h, abfd, bfd_link_hash_indirect, 0)))
1741 return FALSE;
1742 /* Fall through. */
1743 case IND:
1744 if (inh->type == bfd_link_hash_indirect
1745 && inh->u.i.link == h)
1746 {
1747 (*_bfd_error_handler)
1748 (_("%B: indirect symbol `%s' to `%s' is a loop"),
1749 abfd, name, string);
1750 bfd_set_error (bfd_error_invalid_operation);
1751 return FALSE;
1752 }
1753 if (inh->type == bfd_link_hash_new)
1754 {
1755 inh->type = bfd_link_hash_undefined;
1756 inh->u.undef.abfd = abfd;
1757 bfd_link_add_undef (info->hash, inh);
1758 }
1759
1760 /* If the indirect symbol has been referenced, we need to
1761 push the reference down to the symbol we are referencing. */
1762 if (h->type != bfd_link_hash_new)
1763 {
1764 /* ??? If inh->type == bfd_link_hash_undefweak this
1765 converts inh to bfd_link_hash_undefined. */
1766 row = UNDEF_ROW;
1767 cycle = TRUE;
1768 }
1769
1770 h->type = bfd_link_hash_indirect;
1771 h->u.i.link = inh;
1772 /* Not setting h = h->u.i.link here means that when cycle is
1773 set above we'll always go to REFC, and then cycle again
1774 to the indirected symbol. This means that any successful
1775 change of an existing symbol to indirect counts as a
1776 reference. ??? That may not be correct when the existing
1777 symbol was defweak. */
1778 break;
1779
1780 case SET:
1781 /* Add an entry to a set. */
1782 if (! (*info->callbacks->add_to_set) (info, h, BFD_RELOC_CTOR,
1783 abfd, section, value))
1784 return FALSE;
1785 break;
1786
1787 case WARNC:
1788 /* Issue a warning and cycle, except when the reference is
1789 in LTO IR. */
1790 if (h->u.i.warning != NULL
1791 && (abfd->flags & BFD_PLUGIN) == 0)
1792 {
1793 if (! (*info->callbacks->warning) (info, h->u.i.warning,
1794 h->root.string, abfd,
1795 NULL, 0))
1796 return FALSE;
1797 /* Only issue a warning once. */
1798 h->u.i.warning = NULL;
1799 }
1800 /* Fall through. */
1801 case CYCLE:
1802 /* Try again with the referenced symbol. */
1803 h = h->u.i.link;
1804 cycle = TRUE;
1805 break;
1806
1807 case REFC:
1808 /* A reference to an indirect symbol. */
1809 if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1810 h->u.undef.next = h;
1811 h = h->u.i.link;
1812 cycle = TRUE;
1813 break;
1814
1815 case WARN:
1816 /* Warn if this symbol has been referenced already from non-IR,
1817 otherwise add a warning. */
1818 if ((!info->lto_plugin_active
1819 && (h->u.undef.next != NULL || info->hash->undefs_tail == h))
1820 || h->non_ir_ref)
1821 {
1822 if (! (*info->callbacks->warning) (info, string, h->root.string,
1823 hash_entry_bfd (h), NULL, 0))
1824 return FALSE;
1825 break;
1826 }
1827 /* Fall through. */
1828 case MWARN:
1829 /* Make a warning symbol. */
1830 {
1831 struct bfd_link_hash_entry *sub;
1832
1833 /* STRING is the warning to give. */
1834 sub = ((struct bfd_link_hash_entry *)
1835 ((*info->hash->table.newfunc)
1836 (NULL, &info->hash->table, h->root.string)));
1837 if (sub == NULL)
1838 return FALSE;
1839 *sub = *h;
1840 sub->type = bfd_link_hash_warning;
1841 sub->u.i.link = h;
1842 if (! copy)
1843 sub->u.i.warning = string;
1844 else
1845 {
1846 char *w;
1847 size_t len = strlen (string) + 1;
1848
1849 w = (char *) bfd_hash_allocate (&info->hash->table, len);
1850 if (w == NULL)
1851 return FALSE;
1852 memcpy (w, string, len);
1853 sub->u.i.warning = w;
1854 }
1855
1856 bfd_hash_replace (&info->hash->table,
1857 (struct bfd_hash_entry *) h,
1858 (struct bfd_hash_entry *) sub);
1859 if (hashp != NULL)
1860 *hashp = sub;
1861 }
1862 break;
1863 }
1864 }
1865 while (cycle);
1866
1867 return TRUE;
1868 }
1869 \f
1870 /* Generic final link routine. */
1871
1872 bfd_boolean
1873 _bfd_generic_final_link (bfd *abfd, struct bfd_link_info *info)
1874 {
1875 bfd *sub;
1876 asection *o;
1877 struct bfd_link_order *p;
1878 size_t outsymalloc;
1879 struct generic_write_global_symbol_info wginfo;
1880
1881 bfd_get_outsymbols (abfd) = NULL;
1882 bfd_get_symcount (abfd) = 0;
1883 outsymalloc = 0;
1884
1885 /* Mark all sections which will be included in the output file. */
1886 for (o = abfd->sections; o != NULL; o = o->next)
1887 for (p = o->map_head.link_order; p != NULL; p = p->next)
1888 if (p->type == bfd_indirect_link_order)
1889 p->u.indirect.section->linker_mark = TRUE;
1890
1891 /* Build the output symbol table. */
1892 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
1893 if (! _bfd_generic_link_output_symbols (abfd, sub, info, &outsymalloc))
1894 return FALSE;
1895
1896 /* Accumulate the global symbols. */
1897 wginfo.info = info;
1898 wginfo.output_bfd = abfd;
1899 wginfo.psymalloc = &outsymalloc;
1900 _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info),
1901 _bfd_generic_link_write_global_symbol,
1902 &wginfo);
1903
1904 /* Make sure we have a trailing NULL pointer on OUTSYMBOLS. We
1905 shouldn't really need one, since we have SYMCOUNT, but some old
1906 code still expects one. */
1907 if (! generic_add_output_symbol (abfd, &outsymalloc, NULL))
1908 return FALSE;
1909
1910 if (bfd_link_relocatable (info))
1911 {
1912 /* Allocate space for the output relocs for each section. */
1913 for (o = abfd->sections; o != NULL; o = o->next)
1914 {
1915 o->reloc_count = 0;
1916 for (p = o->map_head.link_order; p != NULL; p = p->next)
1917 {
1918 if (p->type == bfd_section_reloc_link_order
1919 || p->type == bfd_symbol_reloc_link_order)
1920 ++o->reloc_count;
1921 else if (p->type == bfd_indirect_link_order)
1922 {
1923 asection *input_section;
1924 bfd *input_bfd;
1925 long relsize;
1926 arelent **relocs;
1927 asymbol **symbols;
1928 long reloc_count;
1929
1930 input_section = p->u.indirect.section;
1931 input_bfd = input_section->owner;
1932 relsize = bfd_get_reloc_upper_bound (input_bfd,
1933 input_section);
1934 if (relsize < 0)
1935 return FALSE;
1936 relocs = (arelent **) bfd_malloc (relsize);
1937 if (!relocs && relsize != 0)
1938 return FALSE;
1939 symbols = _bfd_generic_link_get_symbols (input_bfd);
1940 reloc_count = bfd_canonicalize_reloc (input_bfd,
1941 input_section,
1942 relocs,
1943 symbols);
1944 free (relocs);
1945 if (reloc_count < 0)
1946 return FALSE;
1947 BFD_ASSERT ((unsigned long) reloc_count
1948 == input_section->reloc_count);
1949 o->reloc_count += reloc_count;
1950 }
1951 }
1952 if (o->reloc_count > 0)
1953 {
1954 bfd_size_type amt;
1955
1956 amt = o->reloc_count;
1957 amt *= sizeof (arelent *);
1958 o->orelocation = (struct reloc_cache_entry **) bfd_alloc (abfd, amt);
1959 if (!o->orelocation)
1960 return FALSE;
1961 o->flags |= SEC_RELOC;
1962 /* Reset the count so that it can be used as an index
1963 when putting in the output relocs. */
1964 o->reloc_count = 0;
1965 }
1966 }
1967 }
1968
1969 /* Handle all the link order information for the sections. */
1970 for (o = abfd->sections; o != NULL; o = o->next)
1971 {
1972 for (p = o->map_head.link_order; p != NULL; p = p->next)
1973 {
1974 switch (p->type)
1975 {
1976 case bfd_section_reloc_link_order:
1977 case bfd_symbol_reloc_link_order:
1978 if (! _bfd_generic_reloc_link_order (abfd, info, o, p))
1979 return FALSE;
1980 break;
1981 case bfd_indirect_link_order:
1982 if (! default_indirect_link_order (abfd, info, o, p, TRUE))
1983 return FALSE;
1984 break;
1985 default:
1986 if (! _bfd_default_link_order (abfd, info, o, p))
1987 return FALSE;
1988 break;
1989 }
1990 }
1991 }
1992
1993 return TRUE;
1994 }
1995
1996 /* Add an output symbol to the output BFD. */
1997
1998 static bfd_boolean
1999 generic_add_output_symbol (bfd *output_bfd, size_t *psymalloc, asymbol *sym)
2000 {
2001 if (bfd_get_symcount (output_bfd) >= *psymalloc)
2002 {
2003 asymbol **newsyms;
2004 bfd_size_type amt;
2005
2006 if (*psymalloc == 0)
2007 *psymalloc = 124;
2008 else
2009 *psymalloc *= 2;
2010 amt = *psymalloc;
2011 amt *= sizeof (asymbol *);
2012 newsyms = (asymbol **) bfd_realloc (bfd_get_outsymbols (output_bfd), amt);
2013 if (newsyms == NULL)
2014 return FALSE;
2015 bfd_get_outsymbols (output_bfd) = newsyms;
2016 }
2017
2018 bfd_get_outsymbols (output_bfd) [bfd_get_symcount (output_bfd)] = sym;
2019 if (sym != NULL)
2020 ++ bfd_get_symcount (output_bfd);
2021
2022 return TRUE;
2023 }
2024
2025 /* Handle the symbols for an input BFD. */
2026
2027 bfd_boolean
2028 _bfd_generic_link_output_symbols (bfd *output_bfd,
2029 bfd *input_bfd,
2030 struct bfd_link_info *info,
2031 size_t *psymalloc)
2032 {
2033 asymbol **sym_ptr;
2034 asymbol **sym_end;
2035
2036 if (!bfd_generic_link_read_symbols (input_bfd))
2037 return FALSE;
2038
2039 /* Create a filename symbol if we are supposed to. */
2040 if (info->create_object_symbols_section != NULL)
2041 {
2042 asection *sec;
2043
2044 for (sec = input_bfd->sections; sec != NULL; sec = sec->next)
2045 {
2046 if (sec->output_section == info->create_object_symbols_section)
2047 {
2048 asymbol *newsym;
2049
2050 newsym = bfd_make_empty_symbol (input_bfd);
2051 if (!newsym)
2052 return FALSE;
2053 newsym->name = input_bfd->filename;
2054 newsym->value = 0;
2055 newsym->flags = BSF_LOCAL | BSF_FILE;
2056 newsym->section = sec;
2057
2058 if (! generic_add_output_symbol (output_bfd, psymalloc,
2059 newsym))
2060 return FALSE;
2061
2062 break;
2063 }
2064 }
2065 }
2066
2067 /* Adjust the values of the globally visible symbols, and write out
2068 local symbols. */
2069 sym_ptr = _bfd_generic_link_get_symbols (input_bfd);
2070 sym_end = sym_ptr + _bfd_generic_link_get_symcount (input_bfd);
2071 for (; sym_ptr < sym_end; sym_ptr++)
2072 {
2073 asymbol *sym;
2074 struct generic_link_hash_entry *h;
2075 bfd_boolean output;
2076
2077 h = NULL;
2078 sym = *sym_ptr;
2079 if ((sym->flags & (BSF_INDIRECT
2080 | BSF_WARNING
2081 | BSF_GLOBAL
2082 | BSF_CONSTRUCTOR
2083 | BSF_WEAK)) != 0
2084 || bfd_is_und_section (bfd_get_section (sym))
2085 || bfd_is_com_section (bfd_get_section (sym))
2086 || bfd_is_ind_section (bfd_get_section (sym)))
2087 {
2088 if (sym->udata.p != NULL)
2089 h = (struct generic_link_hash_entry *) sym->udata.p;
2090 else if ((sym->flags & BSF_CONSTRUCTOR) != 0)
2091 {
2092 /* This case normally means that the main linker code
2093 deliberately ignored this constructor symbol. We
2094 should just pass it through. This will screw up if
2095 the constructor symbol is from a different,
2096 non-generic, object file format, but the case will
2097 only arise when linking with -r, which will probably
2098 fail anyhow, since there will be no way to represent
2099 the relocs in the output format being used. */
2100 h = NULL;
2101 }
2102 else if (bfd_is_und_section (bfd_get_section (sym)))
2103 h = ((struct generic_link_hash_entry *)
2104 bfd_wrapped_link_hash_lookup (output_bfd, info,
2105 bfd_asymbol_name (sym),
2106 FALSE, FALSE, TRUE));
2107 else
2108 h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info),
2109 bfd_asymbol_name (sym),
2110 FALSE, FALSE, TRUE);
2111
2112 if (h != NULL)
2113 {
2114 /* Force all references to this symbol to point to
2115 the same area in memory. It is possible that
2116 this routine will be called with a hash table
2117 other than a generic hash table, so we double
2118 check that. */
2119 if (info->output_bfd->xvec == input_bfd->xvec)
2120 {
2121 if (h->sym != NULL)
2122 *sym_ptr = sym = h->sym;
2123 }
2124
2125 switch (h->root.type)
2126 {
2127 default:
2128 case bfd_link_hash_new:
2129 abort ();
2130 case bfd_link_hash_undefined:
2131 break;
2132 case bfd_link_hash_undefweak:
2133 sym->flags |= BSF_WEAK;
2134 break;
2135 case bfd_link_hash_indirect:
2136 h = (struct generic_link_hash_entry *) h->root.u.i.link;
2137 /* fall through */
2138 case bfd_link_hash_defined:
2139 sym->flags |= BSF_GLOBAL;
2140 sym->flags &=~ (BSF_WEAK | BSF_CONSTRUCTOR);
2141 sym->value = h->root.u.def.value;
2142 sym->section = h->root.u.def.section;
2143 break;
2144 case bfd_link_hash_defweak:
2145 sym->flags |= BSF_WEAK;
2146 sym->flags &=~ BSF_CONSTRUCTOR;
2147 sym->value = h->root.u.def.value;
2148 sym->section = h->root.u.def.section;
2149 break;
2150 case bfd_link_hash_common:
2151 sym->value = h->root.u.c.size;
2152 sym->flags |= BSF_GLOBAL;
2153 if (! bfd_is_com_section (sym->section))
2154 {
2155 BFD_ASSERT (bfd_is_und_section (sym->section));
2156 sym->section = bfd_com_section_ptr;
2157 }
2158 /* We do not set the section of the symbol to
2159 h->root.u.c.p->section. That value was saved so
2160 that we would know where to allocate the symbol
2161 if it was defined. In this case the type is
2162 still bfd_link_hash_common, so we did not define
2163 it, so we do not want to use that section. */
2164 break;
2165 }
2166 }
2167 }
2168
2169 /* This switch is straight from the old code in
2170 write_file_locals in ldsym.c. */
2171 if (info->strip == strip_all
2172 || (info->strip == strip_some
2173 && bfd_hash_lookup (info->keep_hash, bfd_asymbol_name (sym),
2174 FALSE, FALSE) == NULL))
2175 output = FALSE;
2176 else if ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0)
2177 {
2178 /* If this symbol is marked as occurring now, rather
2179 than at the end, output it now. This is used for
2180 COFF C_EXT FCN symbols. FIXME: There must be a
2181 better way. */
2182 if (bfd_asymbol_bfd (sym) == input_bfd
2183 && (sym->flags & BSF_NOT_AT_END) != 0)
2184 output = TRUE;
2185 else
2186 output = FALSE;
2187 }
2188 else if (bfd_is_ind_section (sym->section))
2189 output = FALSE;
2190 else if ((sym->flags & BSF_DEBUGGING) != 0)
2191 {
2192 if (info->strip == strip_none)
2193 output = TRUE;
2194 else
2195 output = FALSE;
2196 }
2197 else if (bfd_is_und_section (sym->section)
2198 || bfd_is_com_section (sym->section))
2199 output = FALSE;
2200 else if ((sym->flags & BSF_LOCAL) != 0)
2201 {
2202 if ((sym->flags & BSF_WARNING) != 0)
2203 output = FALSE;
2204 else
2205 {
2206 switch (info->discard)
2207 {
2208 default:
2209 case discard_all:
2210 output = FALSE;
2211 break;
2212 case discard_sec_merge:
2213 output = TRUE;
2214 if (bfd_link_relocatable (info)
2215 || ! (sym->section->flags & SEC_MERGE))
2216 break;
2217 /* FALLTHROUGH */
2218 case discard_l:
2219 if (bfd_is_local_label (input_bfd, sym))
2220 output = FALSE;
2221 else
2222 output = TRUE;
2223 break;
2224 case discard_none:
2225 output = TRUE;
2226 break;
2227 }
2228 }
2229 }
2230 else if ((sym->flags & BSF_CONSTRUCTOR))
2231 {
2232 if (info->strip != strip_all)
2233 output = TRUE;
2234 else
2235 output = FALSE;
2236 }
2237 else if (sym->flags == 0
2238 && (sym->section->owner->flags & BFD_PLUGIN) != 0)
2239 /* LTO doesn't set symbol information. We get here with the
2240 generic linker for a symbol that was "common" but no longer
2241 needs to be global. */
2242 output = FALSE;
2243 else
2244 abort ();
2245
2246 /* If this symbol is in a section which is not being included
2247 in the output file, then we don't want to output the
2248 symbol. */
2249 if (!bfd_is_abs_section (sym->section)
2250 && bfd_section_removed_from_list (output_bfd,
2251 sym->section->output_section))
2252 output = FALSE;
2253
2254 if (output)
2255 {
2256 if (! generic_add_output_symbol (output_bfd, psymalloc, sym))
2257 return FALSE;
2258 if (h != NULL)
2259 h->written = TRUE;
2260 }
2261 }
2262
2263 return TRUE;
2264 }
2265
2266 /* Set the section and value of a generic BFD symbol based on a linker
2267 hash table entry. */
2268
2269 static void
2270 set_symbol_from_hash (asymbol *sym, struct bfd_link_hash_entry *h)
2271 {
2272 switch (h->type)
2273 {
2274 default:
2275 abort ();
2276 break;
2277 case bfd_link_hash_new:
2278 /* This can happen when a constructor symbol is seen but we are
2279 not building constructors. */
2280 if (sym->section != NULL)
2281 {
2282 BFD_ASSERT ((sym->flags & BSF_CONSTRUCTOR) != 0);
2283 }
2284 else
2285 {
2286 sym->flags |= BSF_CONSTRUCTOR;
2287 sym->section = bfd_abs_section_ptr;
2288 sym->value = 0;
2289 }
2290 break;
2291 case bfd_link_hash_undefined:
2292 sym->section = bfd_und_section_ptr;
2293 sym->value = 0;
2294 break;
2295 case bfd_link_hash_undefweak:
2296 sym->section = bfd_und_section_ptr;
2297 sym->value = 0;
2298 sym->flags |= BSF_WEAK;
2299 break;
2300 case bfd_link_hash_defined:
2301 sym->section = h->u.def.section;
2302 sym->value = h->u.def.value;
2303 break;
2304 case bfd_link_hash_defweak:
2305 sym->flags |= BSF_WEAK;
2306 sym->section = h->u.def.section;
2307 sym->value = h->u.def.value;
2308 break;
2309 case bfd_link_hash_common:
2310 sym->value = h->u.c.size;
2311 if (sym->section == NULL)
2312 sym->section = bfd_com_section_ptr;
2313 else if (! bfd_is_com_section (sym->section))
2314 {
2315 BFD_ASSERT (bfd_is_und_section (sym->section));
2316 sym->section = bfd_com_section_ptr;
2317 }
2318 /* Do not set the section; see _bfd_generic_link_output_symbols. */
2319 break;
2320 case bfd_link_hash_indirect:
2321 case bfd_link_hash_warning:
2322 /* FIXME: What should we do here? */
2323 break;
2324 }
2325 }
2326
2327 /* Write out a global symbol, if it hasn't already been written out.
2328 This is called for each symbol in the hash table. */
2329
2330 bfd_boolean
2331 _bfd_generic_link_write_global_symbol (struct generic_link_hash_entry *h,
2332 void *data)
2333 {
2334 struct generic_write_global_symbol_info *wginfo =
2335 (struct generic_write_global_symbol_info *) data;
2336 asymbol *sym;
2337
2338 if (h->written)
2339 return TRUE;
2340
2341 h->written = TRUE;
2342
2343 if (wginfo->info->strip == strip_all
2344 || (wginfo->info->strip == strip_some
2345 && bfd_hash_lookup (wginfo->info->keep_hash, h->root.root.string,
2346 FALSE, FALSE) == NULL))
2347 return TRUE;
2348
2349 if (h->sym != NULL)
2350 sym = h->sym;
2351 else
2352 {
2353 sym = bfd_make_empty_symbol (wginfo->output_bfd);
2354 if (!sym)
2355 return FALSE;
2356 sym->name = h->root.root.string;
2357 sym->flags = 0;
2358 }
2359
2360 set_symbol_from_hash (sym, &h->root);
2361
2362 sym->flags |= BSF_GLOBAL;
2363
2364 if (! generic_add_output_symbol (wginfo->output_bfd, wginfo->psymalloc,
2365 sym))
2366 {
2367 /* FIXME: No way to return failure. */
2368 abort ();
2369 }
2370
2371 return TRUE;
2372 }
2373
2374 /* Create a relocation. */
2375
2376 bfd_boolean
2377 _bfd_generic_reloc_link_order (bfd *abfd,
2378 struct bfd_link_info *info,
2379 asection *sec,
2380 struct bfd_link_order *link_order)
2381 {
2382 arelent *r;
2383
2384 if (! bfd_link_relocatable (info))
2385 abort ();
2386 if (sec->orelocation == NULL)
2387 abort ();
2388
2389 r = (arelent *) bfd_alloc (abfd, sizeof (arelent));
2390 if (r == NULL)
2391 return FALSE;
2392
2393 r->address = link_order->offset;
2394 r->howto = bfd_reloc_type_lookup (abfd, link_order->u.reloc.p->reloc);
2395 if (r->howto == 0)
2396 {
2397 bfd_set_error (bfd_error_bad_value);
2398 return FALSE;
2399 }
2400
2401 /* Get the symbol to use for the relocation. */
2402 if (link_order->type == bfd_section_reloc_link_order)
2403 r->sym_ptr_ptr = link_order->u.reloc.p->u.section->symbol_ptr_ptr;
2404 else
2405 {
2406 struct generic_link_hash_entry *h;
2407
2408 h = ((struct generic_link_hash_entry *)
2409 bfd_wrapped_link_hash_lookup (abfd, info,
2410 link_order->u.reloc.p->u.name,
2411 FALSE, FALSE, TRUE));
2412 if (h == NULL
2413 || ! h->written)
2414 {
2415 if (! ((*info->callbacks->unattached_reloc)
2416 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
2417 return FALSE;
2418 bfd_set_error (bfd_error_bad_value);
2419 return FALSE;
2420 }
2421 r->sym_ptr_ptr = &h->sym;
2422 }
2423
2424 /* If this is an inplace reloc, write the addend to the object file.
2425 Otherwise, store it in the reloc addend. */
2426 if (! r->howto->partial_inplace)
2427 r->addend = link_order->u.reloc.p->addend;
2428 else
2429 {
2430 bfd_size_type size;
2431 bfd_reloc_status_type rstat;
2432 bfd_byte *buf;
2433 bfd_boolean ok;
2434 file_ptr loc;
2435
2436 size = bfd_get_reloc_size (r->howto);
2437 buf = (bfd_byte *) bfd_zmalloc (size);
2438 if (buf == NULL && size != 0)
2439 return FALSE;
2440 rstat = _bfd_relocate_contents (r->howto, abfd,
2441 (bfd_vma) link_order->u.reloc.p->addend,
2442 buf);
2443 switch (rstat)
2444 {
2445 case bfd_reloc_ok:
2446 break;
2447 default:
2448 case bfd_reloc_outofrange:
2449 abort ();
2450 case bfd_reloc_overflow:
2451 if (! ((*info->callbacks->reloc_overflow)
2452 (info, NULL,
2453 (link_order->type == bfd_section_reloc_link_order
2454 ? bfd_section_name (abfd, link_order->u.reloc.p->u.section)
2455 : link_order->u.reloc.p->u.name),
2456 r->howto->name, link_order->u.reloc.p->addend,
2457 NULL, NULL, 0)))
2458 {
2459 free (buf);
2460 return FALSE;
2461 }
2462 break;
2463 }
2464 loc = link_order->offset * bfd_octets_per_byte (abfd);
2465 ok = bfd_set_section_contents (abfd, sec, buf, loc, size);
2466 free (buf);
2467 if (! ok)
2468 return FALSE;
2469
2470 r->addend = 0;
2471 }
2472
2473 sec->orelocation[sec->reloc_count] = r;
2474 ++sec->reloc_count;
2475
2476 return TRUE;
2477 }
2478 \f
2479 /* Allocate a new link_order for a section. */
2480
2481 struct bfd_link_order *
2482 bfd_new_link_order (bfd *abfd, asection *section)
2483 {
2484 bfd_size_type amt = sizeof (struct bfd_link_order);
2485 struct bfd_link_order *new_lo;
2486
2487 new_lo = (struct bfd_link_order *) bfd_zalloc (abfd, amt);
2488 if (!new_lo)
2489 return NULL;
2490
2491 new_lo->type = bfd_undefined_link_order;
2492
2493 if (section->map_tail.link_order != NULL)
2494 section->map_tail.link_order->next = new_lo;
2495 else
2496 section->map_head.link_order = new_lo;
2497 section->map_tail.link_order = new_lo;
2498
2499 return new_lo;
2500 }
2501
2502 /* Default link order processing routine. Note that we can not handle
2503 the reloc_link_order types here, since they depend upon the details
2504 of how the particular backends generates relocs. */
2505
2506 bfd_boolean
2507 _bfd_default_link_order (bfd *abfd,
2508 struct bfd_link_info *info,
2509 asection *sec,
2510 struct bfd_link_order *link_order)
2511 {
2512 switch (link_order->type)
2513 {
2514 case bfd_undefined_link_order:
2515 case bfd_section_reloc_link_order:
2516 case bfd_symbol_reloc_link_order:
2517 default:
2518 abort ();
2519 case bfd_indirect_link_order:
2520 return default_indirect_link_order (abfd, info, sec, link_order,
2521 FALSE);
2522 case bfd_data_link_order:
2523 return default_data_link_order (abfd, info, sec, link_order);
2524 }
2525 }
2526
2527 /* Default routine to handle a bfd_data_link_order. */
2528
2529 static bfd_boolean
2530 default_data_link_order (bfd *abfd,
2531 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2532 asection *sec,
2533 struct bfd_link_order *link_order)
2534 {
2535 bfd_size_type size;
2536 size_t fill_size;
2537 bfd_byte *fill;
2538 file_ptr loc;
2539 bfd_boolean result;
2540
2541 BFD_ASSERT ((sec->flags & SEC_HAS_CONTENTS) != 0);
2542
2543 size = link_order->size;
2544 if (size == 0)
2545 return TRUE;
2546
2547 fill = link_order->u.data.contents;
2548 fill_size = link_order->u.data.size;
2549 if (fill_size == 0)
2550 {
2551 fill = abfd->arch_info->fill (size, bfd_big_endian (abfd),
2552 (sec->flags & SEC_CODE) != 0);
2553 if (fill == NULL)
2554 return FALSE;
2555 }
2556 else if (fill_size < size)
2557 {
2558 bfd_byte *p;
2559 fill = (bfd_byte *) bfd_malloc (size);
2560 if (fill == NULL)
2561 return FALSE;
2562 p = fill;
2563 if (fill_size == 1)
2564 memset (p, (int) link_order->u.data.contents[0], (size_t) size);
2565 else
2566 {
2567 do
2568 {
2569 memcpy (p, link_order->u.data.contents, fill_size);
2570 p += fill_size;
2571 size -= fill_size;
2572 }
2573 while (size >= fill_size);
2574 if (size != 0)
2575 memcpy (p, link_order->u.data.contents, (size_t) size);
2576 size = link_order->size;
2577 }
2578 }
2579
2580 loc = link_order->offset * bfd_octets_per_byte (abfd);
2581 result = bfd_set_section_contents (abfd, sec, fill, loc, size);
2582
2583 if (fill != link_order->u.data.contents)
2584 free (fill);
2585 return result;
2586 }
2587
2588 /* Default routine to handle a bfd_indirect_link_order. */
2589
2590 static bfd_boolean
2591 default_indirect_link_order (bfd *output_bfd,
2592 struct bfd_link_info *info,
2593 asection *output_section,
2594 struct bfd_link_order *link_order,
2595 bfd_boolean generic_linker)
2596 {
2597 asection *input_section;
2598 bfd *input_bfd;
2599 bfd_byte *contents = NULL;
2600 bfd_byte *new_contents;
2601 bfd_size_type sec_size;
2602 file_ptr loc;
2603
2604 BFD_ASSERT ((output_section->flags & SEC_HAS_CONTENTS) != 0);
2605
2606 input_section = link_order->u.indirect.section;
2607 input_bfd = input_section->owner;
2608 if (input_section->size == 0)
2609 return TRUE;
2610
2611 BFD_ASSERT (input_section->output_section == output_section);
2612 BFD_ASSERT (input_section->output_offset == link_order->offset);
2613 BFD_ASSERT (input_section->size == link_order->size);
2614
2615 if (bfd_link_relocatable (info)
2616 && input_section->reloc_count > 0
2617 && output_section->orelocation == NULL)
2618 {
2619 /* Space has not been allocated for the output relocations.
2620 This can happen when we are called by a specific backend
2621 because somebody is attempting to link together different
2622 types of object files. Handling this case correctly is
2623 difficult, and sometimes impossible. */
2624 (*_bfd_error_handler)
2625 (_("Attempt to do relocatable link with %s input and %s output"),
2626 bfd_get_target (input_bfd), bfd_get_target (output_bfd));
2627 bfd_set_error (bfd_error_wrong_format);
2628 return FALSE;
2629 }
2630
2631 if (! generic_linker)
2632 {
2633 asymbol **sympp;
2634 asymbol **symppend;
2635
2636 /* Get the canonical symbols. The generic linker will always
2637 have retrieved them by this point, but we are being called by
2638 a specific linker, presumably because we are linking
2639 different types of object files together. */
2640 if (!bfd_generic_link_read_symbols (input_bfd))
2641 return FALSE;
2642
2643 /* Since we have been called by a specific linker, rather than
2644 the generic linker, the values of the symbols will not be
2645 right. They will be the values as seen in the input file,
2646 not the values of the final link. We need to fix them up
2647 before we can relocate the section. */
2648 sympp = _bfd_generic_link_get_symbols (input_bfd);
2649 symppend = sympp + _bfd_generic_link_get_symcount (input_bfd);
2650 for (; sympp < symppend; sympp++)
2651 {
2652 asymbol *sym;
2653 struct bfd_link_hash_entry *h;
2654
2655 sym = *sympp;
2656
2657 if ((sym->flags & (BSF_INDIRECT
2658 | BSF_WARNING
2659 | BSF_GLOBAL
2660 | BSF_CONSTRUCTOR
2661 | BSF_WEAK)) != 0
2662 || bfd_is_und_section (bfd_get_section (sym))
2663 || bfd_is_com_section (bfd_get_section (sym))
2664 || bfd_is_ind_section (bfd_get_section (sym)))
2665 {
2666 /* sym->udata may have been set by
2667 generic_link_add_symbol_list. */
2668 if (sym->udata.p != NULL)
2669 h = (struct bfd_link_hash_entry *) sym->udata.p;
2670 else if (bfd_is_und_section (bfd_get_section (sym)))
2671 h = bfd_wrapped_link_hash_lookup (output_bfd, info,
2672 bfd_asymbol_name (sym),
2673 FALSE, FALSE, TRUE);
2674 else
2675 h = bfd_link_hash_lookup (info->hash,
2676 bfd_asymbol_name (sym),
2677 FALSE, FALSE, TRUE);
2678 if (h != NULL)
2679 set_symbol_from_hash (sym, h);
2680 }
2681 }
2682 }
2683
2684 if ((output_section->flags & (SEC_GROUP | SEC_LINKER_CREATED)) == SEC_GROUP
2685 && input_section->size != 0)
2686 {
2687 /* Group section contents are set by bfd_elf_set_group_contents. */
2688 if (!output_bfd->output_has_begun)
2689 {
2690 /* FIXME: This hack ensures bfd_elf_set_group_contents is called. */
2691 if (!bfd_set_section_contents (output_bfd, output_section, "", 0, 1))
2692 goto error_return;
2693 }
2694 new_contents = output_section->contents;
2695 BFD_ASSERT (new_contents != NULL);
2696 BFD_ASSERT (input_section->output_offset == 0);
2697 }
2698 else
2699 {
2700 /* Get and relocate the section contents. */
2701 sec_size = (input_section->rawsize > input_section->size
2702 ? input_section->rawsize
2703 : input_section->size);
2704 contents = (bfd_byte *) bfd_malloc (sec_size);
2705 if (contents == NULL && sec_size != 0)
2706 goto error_return;
2707 new_contents = (bfd_get_relocated_section_contents
2708 (output_bfd, info, link_order, contents,
2709 bfd_link_relocatable (info),
2710 _bfd_generic_link_get_symbols (input_bfd)));
2711 if (!new_contents)
2712 goto error_return;
2713 }
2714
2715 /* Output the section contents. */
2716 loc = input_section->output_offset * bfd_octets_per_byte (output_bfd);
2717 if (! bfd_set_section_contents (output_bfd, output_section,
2718 new_contents, loc, input_section->size))
2719 goto error_return;
2720
2721 if (contents != NULL)
2722 free (contents);
2723 return TRUE;
2724
2725 error_return:
2726 if (contents != NULL)
2727 free (contents);
2728 return FALSE;
2729 }
2730
2731 /* A little routine to count the number of relocs in a link_order
2732 list. */
2733
2734 unsigned int
2735 _bfd_count_link_order_relocs (struct bfd_link_order *link_order)
2736 {
2737 register unsigned int c;
2738 register struct bfd_link_order *l;
2739
2740 c = 0;
2741 for (l = link_order; l != NULL; l = l->next)
2742 {
2743 if (l->type == bfd_section_reloc_link_order
2744 || l->type == bfd_symbol_reloc_link_order)
2745 ++c;
2746 }
2747
2748 return c;
2749 }
2750
2751 /*
2752 FUNCTION
2753 bfd_link_split_section
2754
2755 SYNOPSIS
2756 bfd_boolean bfd_link_split_section (bfd *abfd, asection *sec);
2757
2758 DESCRIPTION
2759 Return nonzero if @var{sec} should be split during a
2760 reloceatable or final link.
2761
2762 .#define bfd_link_split_section(abfd, sec) \
2763 . BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
2764 .
2765
2766 */
2767
2768 bfd_boolean
2769 _bfd_generic_link_split_section (bfd *abfd ATTRIBUTE_UNUSED,
2770 asection *sec ATTRIBUTE_UNUSED)
2771 {
2772 return FALSE;
2773 }
2774
2775 /*
2776 FUNCTION
2777 bfd_section_already_linked
2778
2779 SYNOPSIS
2780 bfd_boolean bfd_section_already_linked (bfd *abfd,
2781 asection *sec,
2782 struct bfd_link_info *info);
2783
2784 DESCRIPTION
2785 Check if @var{data} has been already linked during a reloceatable
2786 or final link. Return TRUE if it has.
2787
2788 .#define bfd_section_already_linked(abfd, sec, info) \
2789 . BFD_SEND (abfd, _section_already_linked, (abfd, sec, info))
2790 .
2791
2792 */
2793
2794 /* Sections marked with the SEC_LINK_ONCE flag should only be linked
2795 once into the output. This routine checks each section, and
2796 arrange to discard it if a section of the same name has already
2797 been linked. This code assumes that all relevant sections have the
2798 SEC_LINK_ONCE flag set; that is, it does not depend solely upon the
2799 section name. bfd_section_already_linked is called via
2800 bfd_map_over_sections. */
2801
2802 /* The hash table. */
2803
2804 static struct bfd_hash_table _bfd_section_already_linked_table;
2805
2806 /* Support routines for the hash table used by section_already_linked,
2807 initialize the table, traverse, lookup, fill in an entry and remove
2808 the table. */
2809
2810 void
2811 bfd_section_already_linked_table_traverse
2812 (bfd_boolean (*func) (struct bfd_section_already_linked_hash_entry *,
2813 void *), void *info)
2814 {
2815 bfd_hash_traverse (&_bfd_section_already_linked_table,
2816 (bfd_boolean (*) (struct bfd_hash_entry *,
2817 void *)) func,
2818 info);
2819 }
2820
2821 struct bfd_section_already_linked_hash_entry *
2822 bfd_section_already_linked_table_lookup (const char *name)
2823 {
2824 return ((struct bfd_section_already_linked_hash_entry *)
2825 bfd_hash_lookup (&_bfd_section_already_linked_table, name,
2826 TRUE, FALSE));
2827 }
2828
2829 bfd_boolean
2830 bfd_section_already_linked_table_insert
2831 (struct bfd_section_already_linked_hash_entry *already_linked_list,
2832 asection *sec)
2833 {
2834 struct bfd_section_already_linked *l;
2835
2836 /* Allocate the memory from the same obstack as the hash table is
2837 kept in. */
2838 l = (struct bfd_section_already_linked *)
2839 bfd_hash_allocate (&_bfd_section_already_linked_table, sizeof *l);
2840 if (l == NULL)
2841 return FALSE;
2842 l->sec = sec;
2843 l->next = already_linked_list->entry;
2844 already_linked_list->entry = l;
2845 return TRUE;
2846 }
2847
2848 static struct bfd_hash_entry *
2849 already_linked_newfunc (struct bfd_hash_entry *entry ATTRIBUTE_UNUSED,
2850 struct bfd_hash_table *table,
2851 const char *string ATTRIBUTE_UNUSED)
2852 {
2853 struct bfd_section_already_linked_hash_entry *ret =
2854 (struct bfd_section_already_linked_hash_entry *)
2855 bfd_hash_allocate (table, sizeof *ret);
2856
2857 if (ret == NULL)
2858 return NULL;
2859
2860 ret->entry = NULL;
2861
2862 return &ret->root;
2863 }
2864
2865 bfd_boolean
2866 bfd_section_already_linked_table_init (void)
2867 {
2868 return bfd_hash_table_init_n (&_bfd_section_already_linked_table,
2869 already_linked_newfunc,
2870 sizeof (struct bfd_section_already_linked_hash_entry),
2871 42);
2872 }
2873
2874 void
2875 bfd_section_already_linked_table_free (void)
2876 {
2877 bfd_hash_table_free (&_bfd_section_already_linked_table);
2878 }
2879
2880 /* Report warnings as appropriate for duplicate section SEC.
2881 Return FALSE if we decide to keep SEC after all. */
2882
2883 bfd_boolean
2884 _bfd_handle_already_linked (asection *sec,
2885 struct bfd_section_already_linked *l,
2886 struct bfd_link_info *info)
2887 {
2888 switch (sec->flags & SEC_LINK_DUPLICATES)
2889 {
2890 default:
2891 abort ();
2892
2893 case SEC_LINK_DUPLICATES_DISCARD:
2894 /* If we found an LTO IR match for this comdat group on
2895 the first pass, replace it with the LTO output on the
2896 second pass. We can't simply choose real object
2897 files over IR because the first pass may contain a
2898 mix of LTO and normal objects and we must keep the
2899 first match, be it IR or real. */
2900 if (sec->owner->lto_output
2901 && (l->sec->owner->flags & BFD_PLUGIN) != 0)
2902 {
2903 l->sec = sec;
2904 return FALSE;
2905 }
2906 break;
2907
2908 case SEC_LINK_DUPLICATES_ONE_ONLY:
2909 info->callbacks->einfo
2910 (_("%B: ignoring duplicate section `%A'\n"),
2911 sec->owner, sec);
2912 break;
2913
2914 case SEC_LINK_DUPLICATES_SAME_SIZE:
2915 if ((l->sec->owner->flags & BFD_PLUGIN) != 0)
2916 ;
2917 else if (sec->size != l->sec->size)
2918 info->callbacks->einfo
2919 (_("%B: duplicate section `%A' has different size\n"),
2920 sec->owner, sec);
2921 break;
2922
2923 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
2924 if ((l->sec->owner->flags & BFD_PLUGIN) != 0)
2925 ;
2926 else if (sec->size != l->sec->size)
2927 info->callbacks->einfo
2928 (_("%B: duplicate section `%A' has different size\n"),
2929 sec->owner, sec);
2930 else if (sec->size != 0)
2931 {
2932 bfd_byte *sec_contents, *l_sec_contents = NULL;
2933
2934 if (!bfd_malloc_and_get_section (sec->owner, sec, &sec_contents))
2935 info->callbacks->einfo
2936 (_("%B: could not read contents of section `%A'\n"),
2937 sec->owner, sec);
2938 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
2939 &l_sec_contents))
2940 info->callbacks->einfo
2941 (_("%B: could not read contents of section `%A'\n"),
2942 l->sec->owner, l->sec);
2943 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
2944 info->callbacks->einfo
2945 (_("%B: duplicate section `%A' has different contents\n"),
2946 sec->owner, sec);
2947
2948 if (sec_contents)
2949 free (sec_contents);
2950 if (l_sec_contents)
2951 free (l_sec_contents);
2952 }
2953 break;
2954 }
2955
2956 /* Set the output_section field so that lang_add_section
2957 does not create a lang_input_section structure for this
2958 section. Since there might be a symbol in the section
2959 being discarded, we must retain a pointer to the section
2960 which we are really going to use. */
2961 sec->output_section = bfd_abs_section_ptr;
2962 sec->kept_section = l->sec;
2963 return TRUE;
2964 }
2965
2966 /* This is used on non-ELF inputs. */
2967
2968 bfd_boolean
2969 _bfd_generic_section_already_linked (bfd *abfd ATTRIBUTE_UNUSED,
2970 asection *sec,
2971 struct bfd_link_info *info)
2972 {
2973 const char *name;
2974 struct bfd_section_already_linked *l;
2975 struct bfd_section_already_linked_hash_entry *already_linked_list;
2976
2977 if ((sec->flags & SEC_LINK_ONCE) == 0)
2978 return FALSE;
2979
2980 /* The generic linker doesn't handle section groups. */
2981 if ((sec->flags & SEC_GROUP) != 0)
2982 return FALSE;
2983
2984 /* FIXME: When doing a relocatable link, we may have trouble
2985 copying relocations in other sections that refer to local symbols
2986 in the section being discarded. Those relocations will have to
2987 be converted somehow; as of this writing I'm not sure that any of
2988 the backends handle that correctly.
2989
2990 It is tempting to instead not discard link once sections when
2991 doing a relocatable link (technically, they should be discarded
2992 whenever we are building constructors). However, that fails,
2993 because the linker winds up combining all the link once sections
2994 into a single large link once section, which defeats the purpose
2995 of having link once sections in the first place. */
2996
2997 name = bfd_get_section_name (abfd, sec);
2998
2999 already_linked_list = bfd_section_already_linked_table_lookup (name);
3000
3001 l = already_linked_list->entry;
3002 if (l != NULL)
3003 {
3004 /* The section has already been linked. See if we should
3005 issue a warning. */
3006 return _bfd_handle_already_linked (sec, l, info);
3007 }
3008
3009 /* This is the first section with this name. Record it. */
3010 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
3011 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
3012 return FALSE;
3013 }
3014
3015 /* Choose a neighbouring section to S in OBFD that will be output, or
3016 the absolute section if ADDR is out of bounds of the neighbours. */
3017
3018 asection *
3019 _bfd_nearby_section (bfd *obfd, asection *s, bfd_vma addr)
3020 {
3021 asection *next, *prev, *best;
3022
3023 /* Find preceding kept section. */
3024 for (prev = s->prev; prev != NULL; prev = prev->prev)
3025 if ((prev->flags & SEC_EXCLUDE) == 0
3026 && !bfd_section_removed_from_list (obfd, prev))
3027 break;
3028
3029 /* Find following kept section. Start at prev->next because
3030 other sections may have been added after S was removed. */
3031 if (s->prev != NULL)
3032 next = s->prev->next;
3033 else
3034 next = s->owner->sections;
3035 for (; next != NULL; next = next->next)
3036 if ((next->flags & SEC_EXCLUDE) == 0
3037 && !bfd_section_removed_from_list (obfd, next))
3038 break;
3039
3040 /* Choose better of two sections, based on flags. The idea
3041 is to choose a section that will be in the same segment
3042 as S would have been if it was kept. */
3043 best = next;
3044 if (prev == NULL)
3045 {
3046 if (next == NULL)
3047 best = bfd_abs_section_ptr;
3048 }
3049 else if (next == NULL)
3050 best = prev;
3051 else if (((prev->flags ^ next->flags)
3052 & (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_LOAD)) != 0)
3053 {
3054 if (((next->flags ^ s->flags)
3055 & (SEC_ALLOC | SEC_THREAD_LOCAL)) != 0
3056 /* We prefer to choose a loaded section. Section S
3057 doesn't have SEC_LOAD set (it being excluded, that
3058 part of the flag processing didn't happen) so we
3059 can't compare that flag to those of NEXT and PREV. */
3060 || ((prev->flags & SEC_LOAD) != 0
3061 && (next->flags & SEC_LOAD) == 0))
3062 best = prev;
3063 }
3064 else if (((prev->flags ^ next->flags) & SEC_READONLY) != 0)
3065 {
3066 if (((next->flags ^ s->flags) & SEC_READONLY) != 0)
3067 best = prev;
3068 }
3069 else if (((prev->flags ^ next->flags) & SEC_CODE) != 0)
3070 {
3071 if (((next->flags ^ s->flags) & SEC_CODE) != 0)
3072 best = prev;
3073 }
3074 else
3075 {
3076 /* Flags we care about are the same. Prefer the following
3077 section if that will result in a positive valued sym. */
3078 if (addr < next->vma)
3079 best = prev;
3080 }
3081
3082 return best;
3083 }
3084
3085 /* Convert symbols in excluded output sections to use a kept section. */
3086
3087 static bfd_boolean
3088 fix_syms (struct bfd_link_hash_entry *h, void *data)
3089 {
3090 bfd *obfd = (bfd *) data;
3091
3092 if (h->type == bfd_link_hash_defined
3093 || h->type == bfd_link_hash_defweak)
3094 {
3095 asection *s = h->u.def.section;
3096 if (s != NULL
3097 && s->output_section != NULL
3098 && (s->output_section->flags & SEC_EXCLUDE) != 0
3099 && bfd_section_removed_from_list (obfd, s->output_section))
3100 {
3101 asection *op;
3102
3103 h->u.def.value += s->output_offset + s->output_section->vma;
3104 op = _bfd_nearby_section (obfd, s->output_section, h->u.def.value);
3105 h->u.def.value -= op->vma;
3106 h->u.def.section = op;
3107 }
3108 }
3109
3110 return TRUE;
3111 }
3112
3113 void
3114 _bfd_fix_excluded_sec_syms (bfd *obfd, struct bfd_link_info *info)
3115 {
3116 bfd_link_hash_traverse (info->hash, fix_syms, obfd);
3117 }
3118
3119 /*
3120 FUNCTION
3121 bfd_generic_define_common_symbol
3122
3123 SYNOPSIS
3124 bfd_boolean bfd_generic_define_common_symbol
3125 (bfd *output_bfd, struct bfd_link_info *info,
3126 struct bfd_link_hash_entry *h);
3127
3128 DESCRIPTION
3129 Convert common symbol @var{h} into a defined symbol.
3130 Return TRUE on success and FALSE on failure.
3131
3132 .#define bfd_define_common_symbol(output_bfd, info, h) \
3133 . BFD_SEND (output_bfd, _bfd_define_common_symbol, (output_bfd, info, h))
3134 .
3135 */
3136
3137 bfd_boolean
3138 bfd_generic_define_common_symbol (bfd *output_bfd,
3139 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3140 struct bfd_link_hash_entry *h)
3141 {
3142 unsigned int power_of_two;
3143 bfd_vma alignment, size;
3144 asection *section;
3145
3146 BFD_ASSERT (h != NULL && h->type == bfd_link_hash_common);
3147
3148 size = h->u.c.size;
3149 power_of_two = h->u.c.p->alignment_power;
3150 section = h->u.c.p->section;
3151
3152 /* Increase the size of the section to align the common symbol.
3153 The alignment must be a power of two. */
3154 alignment = bfd_octets_per_byte (output_bfd) << power_of_two;
3155 BFD_ASSERT (alignment != 0 && (alignment & -alignment) == alignment);
3156 section->size += alignment - 1;
3157 section->size &= -alignment;
3158
3159 /* Adjust the section's overall alignment if necessary. */
3160 if (power_of_two > section->alignment_power)
3161 section->alignment_power = power_of_two;
3162
3163 /* Change the symbol from common to defined. */
3164 h->type = bfd_link_hash_defined;
3165 h->u.def.section = section;
3166 h->u.def.value = section->size;
3167
3168 /* Increase the size of the section. */
3169 section->size += size;
3170
3171 /* Make sure the section is allocated in memory, and make sure that
3172 it is no longer a common section. */
3173 section->flags |= SEC_ALLOC;
3174 section->flags &= ~SEC_IS_COMMON;
3175 return TRUE;
3176 }
3177
3178 /*
3179 FUNCTION
3180 bfd_find_version_for_sym
3181
3182 SYNOPSIS
3183 struct bfd_elf_version_tree * bfd_find_version_for_sym
3184 (struct bfd_elf_version_tree *verdefs,
3185 const char *sym_name, bfd_boolean *hide);
3186
3187 DESCRIPTION
3188 Search an elf version script tree for symbol versioning
3189 info and export / don't-export status for a given symbol.
3190 Return non-NULL on success and NULL on failure; also sets
3191 the output @samp{hide} boolean parameter.
3192
3193 */
3194
3195 struct bfd_elf_version_tree *
3196 bfd_find_version_for_sym (struct bfd_elf_version_tree *verdefs,
3197 const char *sym_name,
3198 bfd_boolean *hide)
3199 {
3200 struct bfd_elf_version_tree *t;
3201 struct bfd_elf_version_tree *local_ver, *global_ver, *exist_ver;
3202 struct bfd_elf_version_tree *star_local_ver, *star_global_ver;
3203
3204 local_ver = NULL;
3205 global_ver = NULL;
3206 star_local_ver = NULL;
3207 star_global_ver = NULL;
3208 exist_ver = NULL;
3209 for (t = verdefs; t != NULL; t = t->next)
3210 {
3211 if (t->globals.list != NULL)
3212 {
3213 struct bfd_elf_version_expr *d = NULL;
3214
3215 while ((d = (*t->match) (&t->globals, d, sym_name)) != NULL)
3216 {
3217 if (d->literal || strcmp (d->pattern, "*") != 0)
3218 global_ver = t;
3219 else
3220 star_global_ver = t;
3221 if (d->symver)
3222 exist_ver = t;
3223 d->script = 1;
3224 /* If the match is a wildcard pattern, keep looking for
3225 a more explicit, perhaps even local, match. */
3226 if (d->literal)
3227 break;
3228 }
3229
3230 if (d != NULL)
3231 break;
3232 }
3233
3234 if (t->locals.list != NULL)
3235 {
3236 struct bfd_elf_version_expr *d = NULL;
3237
3238 while ((d = (*t->match) (&t->locals, d, sym_name)) != NULL)
3239 {
3240 if (d->literal || strcmp (d->pattern, "*") != 0)
3241 local_ver = t;
3242 else
3243 star_local_ver = t;
3244 /* If the match is a wildcard pattern, keep looking for
3245 a more explicit, perhaps even global, match. */
3246 if (d->literal)
3247 {
3248 /* An exact match overrides a global wildcard. */
3249 global_ver = NULL;
3250 star_global_ver = NULL;
3251 break;
3252 }
3253 }
3254
3255 if (d != NULL)
3256 break;
3257 }
3258 }
3259
3260 if (global_ver == NULL && local_ver == NULL)
3261 global_ver = star_global_ver;
3262
3263 if (global_ver != NULL)
3264 {
3265 /* If we already have a versioned symbol that matches the
3266 node for this symbol, then we don't want to create a
3267 duplicate from the unversioned symbol. Instead hide the
3268 unversioned symbol. */
3269 *hide = exist_ver == global_ver;
3270 return global_ver;
3271 }
3272
3273 if (local_ver == NULL)
3274 local_ver = star_local_ver;
3275
3276 if (local_ver != NULL)
3277 {
3278 *hide = TRUE;
3279 return local_ver;
3280 }
3281
3282 return NULL;
3283 }
3284
3285 /*
3286 FUNCTION
3287 bfd_hide_sym_by_version
3288
3289 SYNOPSIS
3290 bfd_boolean bfd_hide_sym_by_version
3291 (struct bfd_elf_version_tree *verdefs, const char *sym_name);
3292
3293 DESCRIPTION
3294 Search an elf version script tree for symbol versioning
3295 info for a given symbol. Return TRUE if the symbol is hidden.
3296
3297 */
3298
3299 bfd_boolean
3300 bfd_hide_sym_by_version (struct bfd_elf_version_tree *verdefs,
3301 const char *sym_name)
3302 {
3303 bfd_boolean hidden = FALSE;
3304 bfd_find_version_for_sym (verdefs, sym_name, &hidden);
3305 return hidden;
3306 }
3307
3308 /*
3309 FUNCTION
3310 bfd_link_check_relocs
3311
3312 SYNOPSIS
3313 bfd_boolean bfd_link_check_relocs
3314 (bfd *abfd, struct bfd_link_info *info);
3315
3316 DESCRIPTION
3317 Checks the relocs in ABFD for validity.
3318 Does not execute the relocs.
3319 Return TRUE if everything is OK, FALSE otherwise.
3320 This is the external entry point to this code.
3321 */
3322
3323 bfd_boolean
3324 bfd_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3325 {
3326 return BFD_SEND (abfd, _bfd_link_check_relocs, (abfd, info));
3327 }
3328
3329 /*
3330 FUNCTION
3331 _bfd_generic_link_check_relocs
3332
3333 SYNOPSIS
3334 bfd_boolean _bfd_generic_link_check_relocs
3335 (bfd *abfd, struct bfd_link_info *info);
3336
3337 DESCRIPTION
3338 Stub function for targets that do not implement reloc checking.
3339 Return TRUE.
3340 This is an internal function. It should not be called from
3341 outside the BFD library.
3342 */
3343
3344 bfd_boolean
3345 _bfd_generic_link_check_relocs (bfd *abfd ATTRIBUTE_UNUSED,
3346 struct bfd_link_info *info ATTRIBUTE_UNUSED)
3347 {
3348 return TRUE;
3349 }
This page took 0.118732 seconds and 3 git commands to generate.