bfd/
[deliverable/binutils-gdb.git] / bfd / linker.c
1 /* linker.c -- BFD linker routines
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5 Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "libbfd.h"
26 #include "bfdlink.h"
27 #include "genlink.h"
28
29 /*
30 SECTION
31 Linker Functions
32
33 @cindex Linker
34 The linker uses three special entry points in the BFD target
35 vector. It is not necessary to write special routines for
36 these entry points when creating a new BFD back end, since
37 generic versions are provided. However, writing them can
38 speed up linking and make it use significantly less runtime
39 memory.
40
41 The first routine creates a hash table used by the other
42 routines. The second routine adds the symbols from an object
43 file to the hash table. The third routine takes all the
44 object files and links them together to create the output
45 file. These routines are designed so that the linker proper
46 does not need to know anything about the symbols in the object
47 files that it is linking. The linker merely arranges the
48 sections as directed by the linker script and lets BFD handle
49 the details of symbols and relocs.
50
51 The second routine and third routines are passed a pointer to
52 a <<struct bfd_link_info>> structure (defined in
53 <<bfdlink.h>>) which holds information relevant to the link,
54 including the linker hash table (which was created by the
55 first routine) and a set of callback functions to the linker
56 proper.
57
58 The generic linker routines are in <<linker.c>>, and use the
59 header file <<genlink.h>>. As of this writing, the only back
60 ends which have implemented versions of these routines are
61 a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>). The a.out
62 routines are used as examples throughout this section.
63
64 @menu
65 @* Creating a Linker Hash Table::
66 @* Adding Symbols to the Hash Table::
67 @* Performing the Final Link::
68 @end menu
69
70 INODE
71 Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
72 SUBSECTION
73 Creating a linker hash table
74
75 @cindex _bfd_link_hash_table_create in target vector
76 @cindex target vector (_bfd_link_hash_table_create)
77 The linker routines must create a hash table, which must be
78 derived from <<struct bfd_link_hash_table>> described in
79 <<bfdlink.c>>. @xref{Hash Tables}, for information on how to
80 create a derived hash table. This entry point is called using
81 the target vector of the linker output file.
82
83 The <<_bfd_link_hash_table_create>> entry point must allocate
84 and initialize an instance of the desired hash table. If the
85 back end does not require any additional information to be
86 stored with the entries in the hash table, the entry point may
87 simply create a <<struct bfd_link_hash_table>>. Most likely,
88 however, some additional information will be needed.
89
90 For example, with each entry in the hash table the a.out
91 linker keeps the index the symbol has in the final output file
92 (this index number is used so that when doing a relocatable
93 link the symbol index used in the output file can be quickly
94 filled in when copying over a reloc). The a.out linker code
95 defines the required structures and functions for a hash table
96 derived from <<struct bfd_link_hash_table>>. The a.out linker
97 hash table is created by the function
98 <<NAME(aout,link_hash_table_create)>>; it simply allocates
99 space for the hash table, initializes it, and returns a
100 pointer to it.
101
102 When writing the linker routines for a new back end, you will
103 generally not know exactly which fields will be required until
104 you have finished. You should simply create a new hash table
105 which defines no additional fields, and then simply add fields
106 as they become necessary.
107
108 INODE
109 Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
110 SUBSECTION
111 Adding symbols to the hash table
112
113 @cindex _bfd_link_add_symbols in target vector
114 @cindex target vector (_bfd_link_add_symbols)
115 The linker proper will call the <<_bfd_link_add_symbols>>
116 entry point for each object file or archive which is to be
117 linked (typically these are the files named on the command
118 line, but some may also come from the linker script). The
119 entry point is responsible for examining the file. For an
120 object file, BFD must add any relevant symbol information to
121 the hash table. For an archive, BFD must determine which
122 elements of the archive should be used and adding them to the
123 link.
124
125 The a.out version of this entry point is
126 <<NAME(aout,link_add_symbols)>>.
127
128 @menu
129 @* Differing file formats::
130 @* Adding symbols from an object file::
131 @* Adding symbols from an archive::
132 @end menu
133
134 INODE
135 Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
136 SUBSUBSECTION
137 Differing file formats
138
139 Normally all the files involved in a link will be of the same
140 format, but it is also possible to link together different
141 format object files, and the back end must support that. The
142 <<_bfd_link_add_symbols>> entry point is called via the target
143 vector of the file to be added. This has an important
144 consequence: the function may not assume that the hash table
145 is the type created by the corresponding
146 <<_bfd_link_hash_table_create>> vector. All the
147 <<_bfd_link_add_symbols>> function can assume about the hash
148 table is that it is derived from <<struct
149 bfd_link_hash_table>>.
150
151 Sometimes the <<_bfd_link_add_symbols>> function must store
152 some information in the hash table entry to be used by the
153 <<_bfd_final_link>> function. In such a case the <<creator>>
154 field of the hash table must be checked to make sure that the
155 hash table was created by an object file of the same format.
156
157 The <<_bfd_final_link>> routine must be prepared to handle a
158 hash entry without any extra information added by the
159 <<_bfd_link_add_symbols>> function. A hash entry without
160 extra information will also occur when the linker script
161 directs the linker to create a symbol. Note that, regardless
162 of how a hash table entry is added, all the fields will be
163 initialized to some sort of null value by the hash table entry
164 initialization function.
165
166 See <<ecoff_link_add_externals>> for an example of how to
167 check the <<creator>> field before saving information (in this
168 case, the ECOFF external symbol debugging information) in a
169 hash table entry.
170
171 INODE
172 Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
173 SUBSUBSECTION
174 Adding symbols from an object file
175
176 When the <<_bfd_link_add_symbols>> routine is passed an object
177 file, it must add all externally visible symbols in that
178 object file to the hash table. The actual work of adding the
179 symbol to the hash table is normally handled by the function
180 <<_bfd_generic_link_add_one_symbol>>. The
181 <<_bfd_link_add_symbols>> routine is responsible for reading
182 all the symbols from the object file and passing the correct
183 information to <<_bfd_generic_link_add_one_symbol>>.
184
185 The <<_bfd_link_add_symbols>> routine should not use
186 <<bfd_canonicalize_symtab>> to read the symbols. The point of
187 providing this routine is to avoid the overhead of converting
188 the symbols into generic <<asymbol>> structures.
189
190 @findex _bfd_generic_link_add_one_symbol
191 <<_bfd_generic_link_add_one_symbol>> handles the details of
192 combining common symbols, warning about multiple definitions,
193 and so forth. It takes arguments which describe the symbol to
194 add, notably symbol flags, a section, and an offset. The
195 symbol flags include such things as <<BSF_WEAK>> or
196 <<BSF_INDIRECT>>. The section is a section in the object
197 file, or something like <<bfd_und_section_ptr>> for an undefined
198 symbol or <<bfd_com_section_ptr>> for a common symbol.
199
200 If the <<_bfd_final_link>> routine is also going to need to
201 read the symbol information, the <<_bfd_link_add_symbols>>
202 routine should save it somewhere attached to the object file
203 BFD. However, the information should only be saved if the
204 <<keep_memory>> field of the <<info>> argument is TRUE, so
205 that the <<-no-keep-memory>> linker switch is effective.
206
207 The a.out function which adds symbols from an object file is
208 <<aout_link_add_object_symbols>>, and most of the interesting
209 work is in <<aout_link_add_symbols>>. The latter saves
210 pointers to the hash tables entries created by
211 <<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
212 so that the <<_bfd_final_link>> routine does not have to call
213 the hash table lookup routine to locate the entry.
214
215 INODE
216 Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
217 SUBSUBSECTION
218 Adding symbols from an archive
219
220 When the <<_bfd_link_add_symbols>> routine is passed an
221 archive, it must look through the symbols defined by the
222 archive and decide which elements of the archive should be
223 included in the link. For each such element it must call the
224 <<add_archive_element>> linker callback, and it must add the
225 symbols from the object file to the linker hash table.
226
227 @findex _bfd_generic_link_add_archive_symbols
228 In most cases the work of looking through the symbols in the
229 archive should be done by the
230 <<_bfd_generic_link_add_archive_symbols>> function. This
231 function builds a hash table from the archive symbol table and
232 looks through the list of undefined symbols to see which
233 elements should be included.
234 <<_bfd_generic_link_add_archive_symbols>> is passed a function
235 to call to make the final decision about adding an archive
236 element to the link and to do the actual work of adding the
237 symbols to the linker hash table.
238
239 The function passed to
240 <<_bfd_generic_link_add_archive_symbols>> must read the
241 symbols of the archive element and decide whether the archive
242 element should be included in the link. If the element is to
243 be included, the <<add_archive_element>> linker callback
244 routine must be called with the element as an argument, and
245 the elements symbols must be added to the linker hash table
246 just as though the element had itself been passed to the
247 <<_bfd_link_add_symbols>> function.
248
249 When the a.out <<_bfd_link_add_symbols>> function receives an
250 archive, it calls <<_bfd_generic_link_add_archive_symbols>>
251 passing <<aout_link_check_archive_element>> as the function
252 argument. <<aout_link_check_archive_element>> calls
253 <<aout_link_check_ar_symbols>>. If the latter decides to add
254 the element (an element is only added if it provides a real,
255 non-common, definition for a previously undefined or common
256 symbol) it calls the <<add_archive_element>> callback and then
257 <<aout_link_check_archive_element>> calls
258 <<aout_link_add_symbols>> to actually add the symbols to the
259 linker hash table.
260
261 The ECOFF back end is unusual in that it does not normally
262 call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
263 archives already contain a hash table of symbols. The ECOFF
264 back end searches the archive itself to avoid the overhead of
265 creating a new hash table.
266
267 INODE
268 Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
269 SUBSECTION
270 Performing the final link
271
272 @cindex _bfd_link_final_link in target vector
273 @cindex target vector (_bfd_final_link)
274 When all the input files have been processed, the linker calls
275 the <<_bfd_final_link>> entry point of the output BFD. This
276 routine is responsible for producing the final output file,
277 which has several aspects. It must relocate the contents of
278 the input sections and copy the data into the output sections.
279 It must build an output symbol table including any local
280 symbols from the input files and the global symbols from the
281 hash table. When producing relocatable output, it must
282 modify the input relocs and write them into the output file.
283 There may also be object format dependent work to be done.
284
285 The linker will also call the <<write_object_contents>> entry
286 point when the BFD is closed. The two entry points must work
287 together in order to produce the correct output file.
288
289 The details of how this works are inevitably dependent upon
290 the specific object file format. The a.out
291 <<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
292
293 @menu
294 @* Information provided by the linker::
295 @* Relocating the section contents::
296 @* Writing the symbol table::
297 @end menu
298
299 INODE
300 Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
301 SUBSUBSECTION
302 Information provided by the linker
303
304 Before the linker calls the <<_bfd_final_link>> entry point,
305 it sets up some data structures for the function to use.
306
307 The <<input_bfds>> field of the <<bfd_link_info>> structure
308 will point to a list of all the input files included in the
309 link. These files are linked through the <<link_next>> field
310 of the <<bfd>> structure.
311
312 Each section in the output file will have a list of
313 <<link_order>> structures attached to the <<map_head.link_order>>
314 field (the <<link_order>> structure is defined in
315 <<bfdlink.h>>). These structures describe how to create the
316 contents of the output section in terms of the contents of
317 various input sections, fill constants, and, eventually, other
318 types of information. They also describe relocs that must be
319 created by the BFD backend, but do not correspond to any input
320 file; this is used to support -Ur, which builds constructors
321 while generating a relocatable object file.
322
323 INODE
324 Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
325 SUBSUBSECTION
326 Relocating the section contents
327
328 The <<_bfd_final_link>> function should look through the
329 <<link_order>> structures attached to each section of the
330 output file. Each <<link_order>> structure should either be
331 handled specially, or it should be passed to the function
332 <<_bfd_default_link_order>> which will do the right thing
333 (<<_bfd_default_link_order>> is defined in <<linker.c>>).
334
335 For efficiency, a <<link_order>> of type
336 <<bfd_indirect_link_order>> whose associated section belongs
337 to a BFD of the same format as the output BFD must be handled
338 specially. This type of <<link_order>> describes part of an
339 output section in terms of a section belonging to one of the
340 input files. The <<_bfd_final_link>> function should read the
341 contents of the section and any associated relocs, apply the
342 relocs to the section contents, and write out the modified
343 section contents. If performing a relocatable link, the
344 relocs themselves must also be modified and written out.
345
346 @findex _bfd_relocate_contents
347 @findex _bfd_final_link_relocate
348 The functions <<_bfd_relocate_contents>> and
349 <<_bfd_final_link_relocate>> provide some general support for
350 performing the actual relocations, notably overflow checking.
351 Their arguments include information about the symbol the
352 relocation is against and a <<reloc_howto_type>> argument
353 which describes the relocation to perform. These functions
354 are defined in <<reloc.c>>.
355
356 The a.out function which handles reading, relocating, and
357 writing section contents is <<aout_link_input_section>>. The
358 actual relocation is done in <<aout_link_input_section_std>>
359 and <<aout_link_input_section_ext>>.
360
361 INODE
362 Writing the symbol table, , Relocating the section contents, Performing the Final Link
363 SUBSUBSECTION
364 Writing the symbol table
365
366 The <<_bfd_final_link>> function must gather all the symbols
367 in the input files and write them out. It must also write out
368 all the symbols in the global hash table. This must be
369 controlled by the <<strip>> and <<discard>> fields of the
370 <<bfd_link_info>> structure.
371
372 The local symbols of the input files will not have been
373 entered into the linker hash table. The <<_bfd_final_link>>
374 routine must consider each input file and include the symbols
375 in the output file. It may be convenient to do this when
376 looking through the <<link_order>> structures, or it may be
377 done by stepping through the <<input_bfds>> list.
378
379 The <<_bfd_final_link>> routine must also traverse the global
380 hash table to gather all the externally visible symbols. It
381 is possible that most of the externally visible symbols may be
382 written out when considering the symbols of each input file,
383 but it is still necessary to traverse the hash table since the
384 linker script may have defined some symbols that are not in
385 any of the input files.
386
387 The <<strip>> field of the <<bfd_link_info>> structure
388 controls which symbols are written out. The possible values
389 are listed in <<bfdlink.h>>. If the value is <<strip_some>>,
390 then the <<keep_hash>> field of the <<bfd_link_info>>
391 structure is a hash table of symbols to keep; each symbol
392 should be looked up in this hash table, and only symbols which
393 are present should be included in the output file.
394
395 If the <<strip>> field of the <<bfd_link_info>> structure
396 permits local symbols to be written out, the <<discard>> field
397 is used to further controls which local symbols are included
398 in the output file. If the value is <<discard_l>>, then all
399 local symbols which begin with a certain prefix are discarded;
400 this is controlled by the <<bfd_is_local_label_name>> entry point.
401
402 The a.out backend handles symbols by calling
403 <<aout_link_write_symbols>> on each input BFD and then
404 traversing the global hash table with the function
405 <<aout_link_write_other_symbol>>. It builds a string table
406 while writing out the symbols, which is written to the output
407 file at the end of <<NAME(aout,final_link)>>.
408 */
409
410 static bfd_boolean generic_link_add_object_symbols
411 (bfd *, struct bfd_link_info *, bfd_boolean collect);
412 static bfd_boolean generic_link_add_symbols
413 (bfd *, struct bfd_link_info *, bfd_boolean);
414 static bfd_boolean generic_link_check_archive_element_no_collect
415 (bfd *, struct bfd_link_info *, bfd_boolean *);
416 static bfd_boolean generic_link_check_archive_element_collect
417 (bfd *, struct bfd_link_info *, bfd_boolean *);
418 static bfd_boolean generic_link_check_archive_element
419 (bfd *, struct bfd_link_info *, bfd_boolean *, bfd_boolean);
420 static bfd_boolean generic_link_add_symbol_list
421 (bfd *, struct bfd_link_info *, bfd_size_type count, asymbol **,
422 bfd_boolean);
423 static bfd_boolean generic_add_output_symbol
424 (bfd *, size_t *psymalloc, asymbol *);
425 static bfd_boolean default_data_link_order
426 (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *);
427 static bfd_boolean default_indirect_link_order
428 (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *,
429 bfd_boolean);
430
431 /* The link hash table structure is defined in bfdlink.h. It provides
432 a base hash table which the backend specific hash tables are built
433 upon. */
434
435 /* Routine to create an entry in the link hash table. */
436
437 struct bfd_hash_entry *
438 _bfd_link_hash_newfunc (struct bfd_hash_entry *entry,
439 struct bfd_hash_table *table,
440 const char *string)
441 {
442 /* Allocate the structure if it has not already been allocated by a
443 subclass. */
444 if (entry == NULL)
445 {
446 entry = bfd_hash_allocate (table, sizeof (struct bfd_link_hash_entry));
447 if (entry == NULL)
448 return entry;
449 }
450
451 /* Call the allocation method of the superclass. */
452 entry = bfd_hash_newfunc (entry, table, string);
453 if (entry)
454 {
455 struct bfd_link_hash_entry *h = (struct bfd_link_hash_entry *) entry;
456
457 /* Initialize the local fields. */
458 h->type = bfd_link_hash_new;
459 memset (&h->u.undef.next, 0,
460 (sizeof (struct bfd_link_hash_entry)
461 - offsetof (struct bfd_link_hash_entry, u.undef.next)));
462 }
463
464 return entry;
465 }
466
467 /* Initialize a link hash table. The BFD argument is the one
468 responsible for creating this table. */
469
470 bfd_boolean
471 _bfd_link_hash_table_init
472 (struct bfd_link_hash_table *table,
473 bfd *abfd,
474 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
475 struct bfd_hash_table *,
476 const char *),
477 unsigned int entsize)
478 {
479 table->creator = abfd->xvec;
480 table->undefs = NULL;
481 table->undefs_tail = NULL;
482 table->type = bfd_link_generic_hash_table;
483
484 return bfd_hash_table_init (&table->table, newfunc, entsize);
485 }
486
487 /* Look up a symbol in a link hash table. If follow is TRUE, we
488 follow bfd_link_hash_indirect and bfd_link_hash_warning links to
489 the real symbol. */
490
491 struct bfd_link_hash_entry *
492 bfd_link_hash_lookup (struct bfd_link_hash_table *table,
493 const char *string,
494 bfd_boolean create,
495 bfd_boolean copy,
496 bfd_boolean follow)
497 {
498 struct bfd_link_hash_entry *ret;
499
500 ret = ((struct bfd_link_hash_entry *)
501 bfd_hash_lookup (&table->table, string, create, copy));
502
503 if (follow && ret != NULL)
504 {
505 while (ret->type == bfd_link_hash_indirect
506 || ret->type == bfd_link_hash_warning)
507 ret = ret->u.i.link;
508 }
509
510 return ret;
511 }
512
513 /* Look up a symbol in the main linker hash table if the symbol might
514 be wrapped. This should only be used for references to an
515 undefined symbol, not for definitions of a symbol. */
516
517 struct bfd_link_hash_entry *
518 bfd_wrapped_link_hash_lookup (bfd *abfd,
519 struct bfd_link_info *info,
520 const char *string,
521 bfd_boolean create,
522 bfd_boolean copy,
523 bfd_boolean follow)
524 {
525 bfd_size_type amt;
526
527 if (info->wrap_hash != NULL)
528 {
529 const char *l;
530 char prefix = '\0';
531
532 l = string;
533 if (*l == bfd_get_symbol_leading_char (abfd) || *l == info->wrap_char)
534 {
535 prefix = *l;
536 ++l;
537 }
538
539 #undef WRAP
540 #define WRAP "__wrap_"
541
542 if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL)
543 {
544 char *n;
545 struct bfd_link_hash_entry *h;
546
547 /* This symbol is being wrapped. We want to replace all
548 references to SYM with references to __wrap_SYM. */
549
550 amt = strlen (l) + sizeof WRAP + 1;
551 n = bfd_malloc (amt);
552 if (n == NULL)
553 return NULL;
554
555 n[0] = prefix;
556 n[1] = '\0';
557 strcat (n, WRAP);
558 strcat (n, l);
559 h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
560 free (n);
561 return h;
562 }
563
564 #undef WRAP
565
566 #undef REAL
567 #define REAL "__real_"
568
569 if (*l == '_'
570 && CONST_STRNEQ (l, REAL)
571 && bfd_hash_lookup (info->wrap_hash, l + sizeof REAL - 1,
572 FALSE, FALSE) != NULL)
573 {
574 char *n;
575 struct bfd_link_hash_entry *h;
576
577 /* This is a reference to __real_SYM, where SYM is being
578 wrapped. We want to replace all references to __real_SYM
579 with references to SYM. */
580
581 amt = strlen (l + sizeof REAL - 1) + 2;
582 n = bfd_malloc (amt);
583 if (n == NULL)
584 return NULL;
585
586 n[0] = prefix;
587 n[1] = '\0';
588 strcat (n, l + sizeof REAL - 1);
589 h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
590 free (n);
591 return h;
592 }
593
594 #undef REAL
595 }
596
597 return bfd_link_hash_lookup (info->hash, string, create, copy, follow);
598 }
599
600 /* Traverse a generic link hash table. The only reason this is not a
601 macro is to do better type checking. This code presumes that an
602 argument passed as a struct bfd_hash_entry * may be caught as a
603 struct bfd_link_hash_entry * with no explicit cast required on the
604 call. */
605
606 void
607 bfd_link_hash_traverse
608 (struct bfd_link_hash_table *table,
609 bfd_boolean (*func) (struct bfd_link_hash_entry *, void *),
610 void *info)
611 {
612 bfd_hash_traverse (&table->table,
613 (bfd_boolean (*) (struct bfd_hash_entry *, void *)) func,
614 info);
615 }
616
617 /* Add a symbol to the linker hash table undefs list. */
618
619 void
620 bfd_link_add_undef (struct bfd_link_hash_table *table,
621 struct bfd_link_hash_entry *h)
622 {
623 BFD_ASSERT (h->u.undef.next == NULL);
624 if (table->undefs_tail != NULL)
625 table->undefs_tail->u.undef.next = h;
626 if (table->undefs == NULL)
627 table->undefs = h;
628 table->undefs_tail = h;
629 }
630
631 /* The undefs list was designed so that in normal use we don't need to
632 remove entries. However, if symbols on the list are changed from
633 bfd_link_hash_undefined to either bfd_link_hash_undefweak or
634 bfd_link_hash_new for some reason, then they must be removed from the
635 list. Failure to do so might result in the linker attempting to add
636 the symbol to the list again at a later stage. */
637
638 void
639 bfd_link_repair_undef_list (struct bfd_link_hash_table *table)
640 {
641 struct bfd_link_hash_entry **pun;
642
643 pun = &table->undefs;
644 while (*pun != NULL)
645 {
646 struct bfd_link_hash_entry *h = *pun;
647
648 if (h->type == bfd_link_hash_new
649 || h->type == bfd_link_hash_undefweak)
650 {
651 *pun = h->u.undef.next;
652 h->u.undef.next = NULL;
653 if (h == table->undefs_tail)
654 {
655 if (pun == &table->undefs)
656 table->undefs_tail = NULL;
657 else
658 /* pun points at an u.undef.next field. Go back to
659 the start of the link_hash_entry. */
660 table->undefs_tail = (struct bfd_link_hash_entry *)
661 ((char *) pun - ((char *) &h->u.undef.next - (char *) h));
662 break;
663 }
664 }
665 else
666 pun = &h->u.undef.next;
667 }
668 }
669 \f
670 /* Routine to create an entry in a generic link hash table. */
671
672 struct bfd_hash_entry *
673 _bfd_generic_link_hash_newfunc (struct bfd_hash_entry *entry,
674 struct bfd_hash_table *table,
675 const char *string)
676 {
677 /* Allocate the structure if it has not already been allocated by a
678 subclass. */
679 if (entry == NULL)
680 {
681 entry =
682 bfd_hash_allocate (table, sizeof (struct generic_link_hash_entry));
683 if (entry == NULL)
684 return entry;
685 }
686
687 /* Call the allocation method of the superclass. */
688 entry = _bfd_link_hash_newfunc (entry, table, string);
689 if (entry)
690 {
691 struct generic_link_hash_entry *ret;
692
693 /* Set local fields. */
694 ret = (struct generic_link_hash_entry *) entry;
695 ret->written = FALSE;
696 ret->sym = NULL;
697 }
698
699 return entry;
700 }
701
702 /* Create a generic link hash table. */
703
704 struct bfd_link_hash_table *
705 _bfd_generic_link_hash_table_create (bfd *abfd)
706 {
707 struct generic_link_hash_table *ret;
708 bfd_size_type amt = sizeof (struct generic_link_hash_table);
709
710 ret = bfd_malloc (amt);
711 if (ret == NULL)
712 return NULL;
713 if (! _bfd_link_hash_table_init (&ret->root, abfd,
714 _bfd_generic_link_hash_newfunc,
715 sizeof (struct generic_link_hash_entry)))
716 {
717 free (ret);
718 return NULL;
719 }
720 return &ret->root;
721 }
722
723 void
724 _bfd_generic_link_hash_table_free (struct bfd_link_hash_table *hash)
725 {
726 struct generic_link_hash_table *ret
727 = (struct generic_link_hash_table *) hash;
728
729 bfd_hash_table_free (&ret->root.table);
730 free (ret);
731 }
732
733 /* Grab the symbols for an object file when doing a generic link. We
734 store the symbols in the outsymbols field. We need to keep them
735 around for the entire link to ensure that we only read them once.
736 If we read them multiple times, we might wind up with relocs and
737 the hash table pointing to different instances of the symbol
738 structure. */
739
740 static bfd_boolean
741 generic_link_read_symbols (bfd *abfd)
742 {
743 if (bfd_get_outsymbols (abfd) == NULL)
744 {
745 long symsize;
746 long symcount;
747
748 symsize = bfd_get_symtab_upper_bound (abfd);
749 if (symsize < 0)
750 return FALSE;
751 bfd_get_outsymbols (abfd) = bfd_alloc (abfd, symsize);
752 if (bfd_get_outsymbols (abfd) == NULL && symsize != 0)
753 return FALSE;
754 symcount = bfd_canonicalize_symtab (abfd, bfd_get_outsymbols (abfd));
755 if (symcount < 0)
756 return FALSE;
757 bfd_get_symcount (abfd) = symcount;
758 }
759
760 return TRUE;
761 }
762 \f
763 /* Generic function to add symbols to from an object file to the
764 global hash table. This version does not automatically collect
765 constructors by name. */
766
767 bfd_boolean
768 _bfd_generic_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
769 {
770 return generic_link_add_symbols (abfd, info, FALSE);
771 }
772
773 /* Generic function to add symbols from an object file to the global
774 hash table. This version automatically collects constructors by
775 name, as the collect2 program does. It should be used for any
776 target which does not provide some other mechanism for setting up
777 constructors and destructors; these are approximately those targets
778 for which gcc uses collect2 and do not support stabs. */
779
780 bfd_boolean
781 _bfd_generic_link_add_symbols_collect (bfd *abfd, struct bfd_link_info *info)
782 {
783 return generic_link_add_symbols (abfd, info, TRUE);
784 }
785
786 /* Indicate that we are only retrieving symbol values from this
787 section. We want the symbols to act as though the values in the
788 file are absolute. */
789
790 void
791 _bfd_generic_link_just_syms (asection *sec,
792 struct bfd_link_info *info ATTRIBUTE_UNUSED)
793 {
794 sec->output_section = bfd_abs_section_ptr;
795 sec->output_offset = sec->vma;
796 }
797
798 /* Add symbols from an object file to the global hash table. */
799
800 static bfd_boolean
801 generic_link_add_symbols (bfd *abfd,
802 struct bfd_link_info *info,
803 bfd_boolean collect)
804 {
805 bfd_boolean ret;
806
807 switch (bfd_get_format (abfd))
808 {
809 case bfd_object:
810 ret = generic_link_add_object_symbols (abfd, info, collect);
811 break;
812 case bfd_archive:
813 ret = (_bfd_generic_link_add_archive_symbols
814 (abfd, info,
815 (collect
816 ? generic_link_check_archive_element_collect
817 : generic_link_check_archive_element_no_collect)));
818 break;
819 default:
820 bfd_set_error (bfd_error_wrong_format);
821 ret = FALSE;
822 }
823
824 return ret;
825 }
826
827 /* Add symbols from an object file to the global hash table. */
828
829 static bfd_boolean
830 generic_link_add_object_symbols (bfd *abfd,
831 struct bfd_link_info *info,
832 bfd_boolean collect)
833 {
834 bfd_size_type symcount;
835 struct bfd_symbol **outsyms;
836
837 if (! generic_link_read_symbols (abfd))
838 return FALSE;
839 symcount = _bfd_generic_link_get_symcount (abfd);
840 outsyms = _bfd_generic_link_get_symbols (abfd);
841 return generic_link_add_symbol_list (abfd, info, symcount, outsyms, collect);
842 }
843 \f
844 /* We build a hash table of all symbols defined in an archive. */
845
846 /* An archive symbol may be defined by multiple archive elements.
847 This linked list is used to hold the elements. */
848
849 struct archive_list
850 {
851 struct archive_list *next;
852 unsigned int indx;
853 };
854
855 /* An entry in an archive hash table. */
856
857 struct archive_hash_entry
858 {
859 struct bfd_hash_entry root;
860 /* Where the symbol is defined. */
861 struct archive_list *defs;
862 };
863
864 /* An archive hash table itself. */
865
866 struct archive_hash_table
867 {
868 struct bfd_hash_table table;
869 };
870
871 /* Create a new entry for an archive hash table. */
872
873 static struct bfd_hash_entry *
874 archive_hash_newfunc (struct bfd_hash_entry *entry,
875 struct bfd_hash_table *table,
876 const char *string)
877 {
878 struct archive_hash_entry *ret = (struct archive_hash_entry *) entry;
879
880 /* Allocate the structure if it has not already been allocated by a
881 subclass. */
882 if (ret == NULL)
883 ret = bfd_hash_allocate (table, sizeof (struct archive_hash_entry));
884 if (ret == NULL)
885 return NULL;
886
887 /* Call the allocation method of the superclass. */
888 ret = ((struct archive_hash_entry *)
889 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
890
891 if (ret)
892 {
893 /* Initialize the local fields. */
894 ret->defs = NULL;
895 }
896
897 return &ret->root;
898 }
899
900 /* Initialize an archive hash table. */
901
902 static bfd_boolean
903 archive_hash_table_init
904 (struct archive_hash_table *table,
905 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
906 struct bfd_hash_table *,
907 const char *),
908 unsigned int entsize)
909 {
910 return bfd_hash_table_init (&table->table, newfunc, entsize);
911 }
912
913 /* Look up an entry in an archive hash table. */
914
915 #define archive_hash_lookup(t, string, create, copy) \
916 ((struct archive_hash_entry *) \
917 bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
918
919 /* Allocate space in an archive hash table. */
920
921 #define archive_hash_allocate(t, size) bfd_hash_allocate (&(t)->table, (size))
922
923 /* Free an archive hash table. */
924
925 #define archive_hash_table_free(t) bfd_hash_table_free (&(t)->table)
926
927 /* Generic function to add symbols from an archive file to the global
928 hash file. This function presumes that the archive symbol table
929 has already been read in (this is normally done by the
930 bfd_check_format entry point). It looks through the undefined and
931 common symbols and searches the archive symbol table for them. If
932 it finds an entry, it includes the associated object file in the
933 link.
934
935 The old linker looked through the archive symbol table for
936 undefined symbols. We do it the other way around, looking through
937 undefined symbols for symbols defined in the archive. The
938 advantage of the newer scheme is that we only have to look through
939 the list of undefined symbols once, whereas the old method had to
940 re-search the symbol table each time a new object file was added.
941
942 The CHECKFN argument is used to see if an object file should be
943 included. CHECKFN should set *PNEEDED to TRUE if the object file
944 should be included, and must also call the bfd_link_info
945 add_archive_element callback function and handle adding the symbols
946 to the global hash table. CHECKFN should only return FALSE if some
947 sort of error occurs.
948
949 For some formats, such as a.out, it is possible to look through an
950 object file but not actually include it in the link. The
951 archive_pass field in a BFD is used to avoid checking the symbols
952 of an object files too many times. When an object is included in
953 the link, archive_pass is set to -1. If an object is scanned but
954 not included, archive_pass is set to the pass number. The pass
955 number is incremented each time a new object file is included. The
956 pass number is used because when a new object file is included it
957 may create new undefined symbols which cause a previously examined
958 object file to be included. */
959
960 bfd_boolean
961 _bfd_generic_link_add_archive_symbols
962 (bfd *abfd,
963 struct bfd_link_info *info,
964 bfd_boolean (*checkfn) (bfd *, struct bfd_link_info *, bfd_boolean *))
965 {
966 carsym *arsyms;
967 carsym *arsym_end;
968 register carsym *arsym;
969 int pass;
970 struct archive_hash_table arsym_hash;
971 unsigned int indx;
972 struct bfd_link_hash_entry **pundef;
973
974 if (! bfd_has_map (abfd))
975 {
976 /* An empty archive is a special case. */
977 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
978 return TRUE;
979 bfd_set_error (bfd_error_no_armap);
980 return FALSE;
981 }
982
983 arsyms = bfd_ardata (abfd)->symdefs;
984 arsym_end = arsyms + bfd_ardata (abfd)->symdef_count;
985
986 /* In order to quickly determine whether an symbol is defined in
987 this archive, we build a hash table of the symbols. */
988 if (! archive_hash_table_init (&arsym_hash, archive_hash_newfunc,
989 sizeof (struct archive_hash_entry)))
990 return FALSE;
991 for (arsym = arsyms, indx = 0; arsym < arsym_end; arsym++, indx++)
992 {
993 struct archive_hash_entry *arh;
994 struct archive_list *l, **pp;
995
996 arh = archive_hash_lookup (&arsym_hash, arsym->name, TRUE, FALSE);
997 if (arh == NULL)
998 goto error_return;
999 l = ((struct archive_list *)
1000 archive_hash_allocate (&arsym_hash, sizeof (struct archive_list)));
1001 if (l == NULL)
1002 goto error_return;
1003 l->indx = indx;
1004 for (pp = &arh->defs; *pp != NULL; pp = &(*pp)->next)
1005 ;
1006 *pp = l;
1007 l->next = NULL;
1008 }
1009
1010 /* The archive_pass field in the archive itself is used to
1011 initialize PASS, sine we may search the same archive multiple
1012 times. */
1013 pass = abfd->archive_pass + 1;
1014
1015 /* New undefined symbols are added to the end of the list, so we
1016 only need to look through it once. */
1017 pundef = &info->hash->undefs;
1018 while (*pundef != NULL)
1019 {
1020 struct bfd_link_hash_entry *h;
1021 struct archive_hash_entry *arh;
1022 struct archive_list *l;
1023
1024 h = *pundef;
1025
1026 /* When a symbol is defined, it is not necessarily removed from
1027 the list. */
1028 if (h->type != bfd_link_hash_undefined
1029 && h->type != bfd_link_hash_common)
1030 {
1031 /* Remove this entry from the list, for general cleanliness
1032 and because we are going to look through the list again
1033 if we search any more libraries. We can't remove the
1034 entry if it is the tail, because that would lose any
1035 entries we add to the list later on (it would also cause
1036 us to lose track of whether the symbol has been
1037 referenced). */
1038 if (*pundef != info->hash->undefs_tail)
1039 *pundef = (*pundef)->u.undef.next;
1040 else
1041 pundef = &(*pundef)->u.undef.next;
1042 continue;
1043 }
1044
1045 /* Look for this symbol in the archive symbol map. */
1046 arh = archive_hash_lookup (&arsym_hash, h->root.string, FALSE, FALSE);
1047 if (arh == NULL)
1048 {
1049 /* If we haven't found the exact symbol we're looking for,
1050 let's look for its import thunk */
1051 if (info->pei386_auto_import)
1052 {
1053 bfd_size_type amt = strlen (h->root.string) + 10;
1054 char *buf = bfd_malloc (amt);
1055 if (buf == NULL)
1056 return FALSE;
1057
1058 sprintf (buf, "__imp_%s", h->root.string);
1059 arh = archive_hash_lookup (&arsym_hash, buf, FALSE, FALSE);
1060 free(buf);
1061 }
1062 if (arh == NULL)
1063 {
1064 pundef = &(*pundef)->u.undef.next;
1065 continue;
1066 }
1067 }
1068 /* Look at all the objects which define this symbol. */
1069 for (l = arh->defs; l != NULL; l = l->next)
1070 {
1071 bfd *element;
1072 bfd_boolean needed;
1073
1074 /* If the symbol has gotten defined along the way, quit. */
1075 if (h->type != bfd_link_hash_undefined
1076 && h->type != bfd_link_hash_common)
1077 break;
1078
1079 element = bfd_get_elt_at_index (abfd, l->indx);
1080 if (element == NULL)
1081 goto error_return;
1082
1083 /* If we've already included this element, or if we've
1084 already checked it on this pass, continue. */
1085 if (element->archive_pass == -1
1086 || element->archive_pass == pass)
1087 continue;
1088
1089 /* If we can't figure this element out, just ignore it. */
1090 if (! bfd_check_format (element, bfd_object))
1091 {
1092 element->archive_pass = -1;
1093 continue;
1094 }
1095
1096 /* CHECKFN will see if this element should be included, and
1097 go ahead and include it if appropriate. */
1098 if (! (*checkfn) (element, info, &needed))
1099 goto error_return;
1100
1101 if (! needed)
1102 element->archive_pass = pass;
1103 else
1104 {
1105 element->archive_pass = -1;
1106
1107 /* Increment the pass count to show that we may need to
1108 recheck object files which were already checked. */
1109 ++pass;
1110 }
1111 }
1112
1113 pundef = &(*pundef)->u.undef.next;
1114 }
1115
1116 archive_hash_table_free (&arsym_hash);
1117
1118 /* Save PASS in case we are called again. */
1119 abfd->archive_pass = pass;
1120
1121 return TRUE;
1122
1123 error_return:
1124 archive_hash_table_free (&arsym_hash);
1125 return FALSE;
1126 }
1127 \f
1128 /* See if we should include an archive element. This version is used
1129 when we do not want to automatically collect constructors based on
1130 the symbol name, presumably because we have some other mechanism
1131 for finding them. */
1132
1133 static bfd_boolean
1134 generic_link_check_archive_element_no_collect (
1135 bfd *abfd,
1136 struct bfd_link_info *info,
1137 bfd_boolean *pneeded)
1138 {
1139 return generic_link_check_archive_element (abfd, info, pneeded, FALSE);
1140 }
1141
1142 /* See if we should include an archive element. This version is used
1143 when we want to automatically collect constructors based on the
1144 symbol name, as collect2 does. */
1145
1146 static bfd_boolean
1147 generic_link_check_archive_element_collect (bfd *abfd,
1148 struct bfd_link_info *info,
1149 bfd_boolean *pneeded)
1150 {
1151 return generic_link_check_archive_element (abfd, info, pneeded, TRUE);
1152 }
1153
1154 /* See if we should include an archive element. Optionally collect
1155 constructors. */
1156
1157 static bfd_boolean
1158 generic_link_check_archive_element (bfd *abfd,
1159 struct bfd_link_info *info,
1160 bfd_boolean *pneeded,
1161 bfd_boolean collect)
1162 {
1163 asymbol **pp, **ppend;
1164
1165 *pneeded = FALSE;
1166
1167 if (! generic_link_read_symbols (abfd))
1168 return FALSE;
1169
1170 pp = _bfd_generic_link_get_symbols (abfd);
1171 ppend = pp + _bfd_generic_link_get_symcount (abfd);
1172 for (; pp < ppend; pp++)
1173 {
1174 asymbol *p;
1175 struct bfd_link_hash_entry *h;
1176
1177 p = *pp;
1178
1179 /* We are only interested in globally visible symbols. */
1180 if (! bfd_is_com_section (p->section)
1181 && (p->flags & (BSF_GLOBAL | BSF_INDIRECT | BSF_WEAK)) == 0)
1182 continue;
1183
1184 /* We are only interested if we know something about this
1185 symbol, and it is undefined or common. An undefined weak
1186 symbol (type bfd_link_hash_undefweak) is not considered to be
1187 a reference when pulling files out of an archive. See the
1188 SVR4 ABI, p. 4-27. */
1189 h = bfd_link_hash_lookup (info->hash, bfd_asymbol_name (p), FALSE,
1190 FALSE, TRUE);
1191 if (h == NULL
1192 || (h->type != bfd_link_hash_undefined
1193 && h->type != bfd_link_hash_common))
1194 continue;
1195
1196 /* P is a symbol we are looking for. */
1197
1198 if (! bfd_is_com_section (p->section))
1199 {
1200 bfd_size_type symcount;
1201 asymbol **symbols;
1202
1203 /* This object file defines this symbol, so pull it in. */
1204 if (! (*info->callbacks->add_archive_element) (info, abfd,
1205 bfd_asymbol_name (p)))
1206 return FALSE;
1207 symcount = _bfd_generic_link_get_symcount (abfd);
1208 symbols = _bfd_generic_link_get_symbols (abfd);
1209 if (! generic_link_add_symbol_list (abfd, info, symcount,
1210 symbols, collect))
1211 return FALSE;
1212 *pneeded = TRUE;
1213 return TRUE;
1214 }
1215
1216 /* P is a common symbol. */
1217
1218 if (h->type == bfd_link_hash_undefined)
1219 {
1220 bfd *symbfd;
1221 bfd_vma size;
1222 unsigned int power;
1223
1224 symbfd = h->u.undef.abfd;
1225 if (symbfd == NULL)
1226 {
1227 /* This symbol was created as undefined from outside
1228 BFD. We assume that we should link in the object
1229 file. This is for the -u option in the linker. */
1230 if (! (*info->callbacks->add_archive_element)
1231 (info, abfd, bfd_asymbol_name (p)))
1232 return FALSE;
1233 *pneeded = TRUE;
1234 return TRUE;
1235 }
1236
1237 /* Turn the symbol into a common symbol but do not link in
1238 the object file. This is how a.out works. Object
1239 formats that require different semantics must implement
1240 this function differently. This symbol is already on the
1241 undefs list. We add the section to a common section
1242 attached to symbfd to ensure that it is in a BFD which
1243 will be linked in. */
1244 h->type = bfd_link_hash_common;
1245 h->u.c.p =
1246 bfd_hash_allocate (&info->hash->table,
1247 sizeof (struct bfd_link_hash_common_entry));
1248 if (h->u.c.p == NULL)
1249 return FALSE;
1250
1251 size = bfd_asymbol_value (p);
1252 h->u.c.size = size;
1253
1254 power = bfd_log2 (size);
1255 if (power > 4)
1256 power = 4;
1257 h->u.c.p->alignment_power = power;
1258
1259 if (p->section == bfd_com_section_ptr)
1260 h->u.c.p->section = bfd_make_section_old_way (symbfd, "COMMON");
1261 else
1262 h->u.c.p->section = bfd_make_section_old_way (symbfd,
1263 p->section->name);
1264 h->u.c.p->section->flags = SEC_ALLOC;
1265 }
1266 else
1267 {
1268 /* Adjust the size of the common symbol if necessary. This
1269 is how a.out works. Object formats that require
1270 different semantics must implement this function
1271 differently. */
1272 if (bfd_asymbol_value (p) > h->u.c.size)
1273 h->u.c.size = bfd_asymbol_value (p);
1274 }
1275 }
1276
1277 /* This archive element is not needed. */
1278 return TRUE;
1279 }
1280
1281 /* Add the symbols from an object file to the global hash table. ABFD
1282 is the object file. INFO is the linker information. SYMBOL_COUNT
1283 is the number of symbols. SYMBOLS is the list of symbols. COLLECT
1284 is TRUE if constructors should be automatically collected by name
1285 as is done by collect2. */
1286
1287 static bfd_boolean
1288 generic_link_add_symbol_list (bfd *abfd,
1289 struct bfd_link_info *info,
1290 bfd_size_type symbol_count,
1291 asymbol **symbols,
1292 bfd_boolean collect)
1293 {
1294 asymbol **pp, **ppend;
1295
1296 pp = symbols;
1297 ppend = symbols + symbol_count;
1298 for (; pp < ppend; pp++)
1299 {
1300 asymbol *p;
1301
1302 p = *pp;
1303
1304 if ((p->flags & (BSF_INDIRECT
1305 | BSF_WARNING
1306 | BSF_GLOBAL
1307 | BSF_CONSTRUCTOR
1308 | BSF_WEAK)) != 0
1309 || bfd_is_und_section (bfd_get_section (p))
1310 || bfd_is_com_section (bfd_get_section (p))
1311 || bfd_is_ind_section (bfd_get_section (p)))
1312 {
1313 const char *name;
1314 const char *string;
1315 struct generic_link_hash_entry *h;
1316 struct bfd_link_hash_entry *bh;
1317
1318 name = bfd_asymbol_name (p);
1319 if (((p->flags & BSF_INDIRECT) != 0
1320 || bfd_is_ind_section (p->section))
1321 && pp + 1 < ppend)
1322 {
1323 pp++;
1324 string = bfd_asymbol_name (*pp);
1325 }
1326 else if ((p->flags & BSF_WARNING) != 0
1327 && pp + 1 < ppend)
1328 {
1329 /* The name of P is actually the warning string, and the
1330 next symbol is the one to warn about. */
1331 string = name;
1332 pp++;
1333 name = bfd_asymbol_name (*pp);
1334 }
1335 else
1336 string = NULL;
1337
1338 bh = NULL;
1339 if (! (_bfd_generic_link_add_one_symbol
1340 (info, abfd, name, p->flags, bfd_get_section (p),
1341 p->value, string, FALSE, collect, &bh)))
1342 return FALSE;
1343 h = (struct generic_link_hash_entry *) bh;
1344
1345 /* If this is a constructor symbol, and the linker didn't do
1346 anything with it, then we want to just pass the symbol
1347 through to the output file. This will happen when
1348 linking with -r. */
1349 if ((p->flags & BSF_CONSTRUCTOR) != 0
1350 && (h == NULL || h->root.type == bfd_link_hash_new))
1351 {
1352 p->udata.p = NULL;
1353 continue;
1354 }
1355
1356 /* Save the BFD symbol so that we don't lose any backend
1357 specific information that may be attached to it. We only
1358 want this one if it gives more information than the
1359 existing one; we don't want to replace a defined symbol
1360 with an undefined one. This routine may be called with a
1361 hash table other than the generic hash table, so we only
1362 do this if we are certain that the hash table is a
1363 generic one. */
1364 if (info->hash->creator == abfd->xvec)
1365 {
1366 if (h->sym == NULL
1367 || (! bfd_is_und_section (bfd_get_section (p))
1368 && (! bfd_is_com_section (bfd_get_section (p))
1369 || bfd_is_und_section (bfd_get_section (h->sym)))))
1370 {
1371 h->sym = p;
1372 /* BSF_OLD_COMMON is a hack to support COFF reloc
1373 reading, and it should go away when the COFF
1374 linker is switched to the new version. */
1375 if (bfd_is_com_section (bfd_get_section (p)))
1376 p->flags |= BSF_OLD_COMMON;
1377 }
1378 }
1379
1380 /* Store a back pointer from the symbol to the hash
1381 table entry for the benefit of relaxation code until
1382 it gets rewritten to not use asymbol structures.
1383 Setting this is also used to check whether these
1384 symbols were set up by the generic linker. */
1385 p->udata.p = h;
1386 }
1387 }
1388
1389 return TRUE;
1390 }
1391 \f
1392 /* We use a state table to deal with adding symbols from an object
1393 file. The first index into the state table describes the symbol
1394 from the object file. The second index into the state table is the
1395 type of the symbol in the hash table. */
1396
1397 /* The symbol from the object file is turned into one of these row
1398 values. */
1399
1400 enum link_row
1401 {
1402 UNDEF_ROW, /* Undefined. */
1403 UNDEFW_ROW, /* Weak undefined. */
1404 DEF_ROW, /* Defined. */
1405 DEFW_ROW, /* Weak defined. */
1406 COMMON_ROW, /* Common. */
1407 INDR_ROW, /* Indirect. */
1408 WARN_ROW, /* Warning. */
1409 SET_ROW /* Member of set. */
1410 };
1411
1412 /* apparently needed for Hitachi 3050R(HI-UX/WE2)? */
1413 #undef FAIL
1414
1415 /* The actions to take in the state table. */
1416
1417 enum link_action
1418 {
1419 FAIL, /* Abort. */
1420 UND, /* Mark symbol undefined. */
1421 WEAK, /* Mark symbol weak undefined. */
1422 DEF, /* Mark symbol defined. */
1423 DEFW, /* Mark symbol weak defined. */
1424 COM, /* Mark symbol common. */
1425 REF, /* Mark defined symbol referenced. */
1426 CREF, /* Possibly warn about common reference to defined symbol. */
1427 CDEF, /* Define existing common symbol. */
1428 NOACT, /* No action. */
1429 BIG, /* Mark symbol common using largest size. */
1430 MDEF, /* Multiple definition error. */
1431 MIND, /* Multiple indirect symbols. */
1432 IND, /* Make indirect symbol. */
1433 CIND, /* Make indirect symbol from existing common symbol. */
1434 SET, /* Add value to set. */
1435 MWARN, /* Make warning symbol. */
1436 WARN, /* Issue warning. */
1437 CWARN, /* Warn if referenced, else MWARN. */
1438 CYCLE, /* Repeat with symbol pointed to. */
1439 REFC, /* Mark indirect symbol referenced and then CYCLE. */
1440 WARNC /* Issue warning and then CYCLE. */
1441 };
1442
1443 /* The state table itself. The first index is a link_row and the
1444 second index is a bfd_link_hash_type. */
1445
1446 static const enum link_action link_action[8][8] =
1447 {
1448 /* current\prev new undef undefw def defw com indr warn */
1449 /* UNDEF_ROW */ {UND, NOACT, UND, REF, REF, NOACT, REFC, WARNC },
1450 /* UNDEFW_ROW */ {WEAK, NOACT, NOACT, REF, REF, NOACT, REFC, WARNC },
1451 /* DEF_ROW */ {DEF, DEF, DEF, MDEF, DEF, CDEF, MDEF, CYCLE },
1452 /* DEFW_ROW */ {DEFW, DEFW, DEFW, NOACT, NOACT, NOACT, NOACT, CYCLE },
1453 /* COMMON_ROW */ {COM, COM, COM, CREF, COM, BIG, REFC, WARNC },
1454 /* INDR_ROW */ {IND, IND, IND, MDEF, IND, CIND, MIND, CYCLE },
1455 /* WARN_ROW */ {MWARN, WARN, WARN, CWARN, CWARN, WARN, CWARN, NOACT },
1456 /* SET_ROW */ {SET, SET, SET, SET, SET, SET, CYCLE, CYCLE }
1457 };
1458
1459 /* Most of the entries in the LINK_ACTION table are straightforward,
1460 but a few are somewhat subtle.
1461
1462 A reference to an indirect symbol (UNDEF_ROW/indr or
1463 UNDEFW_ROW/indr) is counted as a reference both to the indirect
1464 symbol and to the symbol the indirect symbol points to.
1465
1466 A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn)
1467 causes the warning to be issued.
1468
1469 A common definition of an indirect symbol (COMMON_ROW/indr) is
1470 treated as a multiple definition error. Likewise for an indirect
1471 definition of a common symbol (INDR_ROW/com).
1472
1473 An indirect definition of a warning (INDR_ROW/warn) does not cause
1474 the warning to be issued.
1475
1476 If a warning is created for an indirect symbol (WARN_ROW/indr) no
1477 warning is created for the symbol the indirect symbol points to.
1478
1479 Adding an entry to a set does not count as a reference to a set,
1480 and no warning is issued (SET_ROW/warn). */
1481
1482 /* Return the BFD in which a hash entry has been defined, if known. */
1483
1484 static bfd *
1485 hash_entry_bfd (struct bfd_link_hash_entry *h)
1486 {
1487 while (h->type == bfd_link_hash_warning)
1488 h = h->u.i.link;
1489 switch (h->type)
1490 {
1491 default:
1492 return NULL;
1493 case bfd_link_hash_undefined:
1494 case bfd_link_hash_undefweak:
1495 return h->u.undef.abfd;
1496 case bfd_link_hash_defined:
1497 case bfd_link_hash_defweak:
1498 return h->u.def.section->owner;
1499 case bfd_link_hash_common:
1500 return h->u.c.p->section->owner;
1501 }
1502 /*NOTREACHED*/
1503 }
1504
1505 /* Add a symbol to the global hash table.
1506 ABFD is the BFD the symbol comes from.
1507 NAME is the name of the symbol.
1508 FLAGS is the BSF_* bits associated with the symbol.
1509 SECTION is the section in which the symbol is defined; this may be
1510 bfd_und_section_ptr or bfd_com_section_ptr.
1511 VALUE is the value of the symbol, relative to the section.
1512 STRING is used for either an indirect symbol, in which case it is
1513 the name of the symbol to indirect to, or a warning symbol, in
1514 which case it is the warning string.
1515 COPY is TRUE if NAME or STRING must be copied into locally
1516 allocated memory if they need to be saved.
1517 COLLECT is TRUE if we should automatically collect gcc constructor
1518 or destructor names as collect2 does.
1519 HASHP, if not NULL, is a place to store the created hash table
1520 entry; if *HASHP is not NULL, the caller has already looked up
1521 the hash table entry, and stored it in *HASHP. */
1522
1523 bfd_boolean
1524 _bfd_generic_link_add_one_symbol (struct bfd_link_info *info,
1525 bfd *abfd,
1526 const char *name,
1527 flagword flags,
1528 asection *section,
1529 bfd_vma value,
1530 const char *string,
1531 bfd_boolean copy,
1532 bfd_boolean collect,
1533 struct bfd_link_hash_entry **hashp)
1534 {
1535 enum link_row row;
1536 struct bfd_link_hash_entry *h;
1537 bfd_boolean cycle;
1538
1539 if (bfd_is_ind_section (section)
1540 || (flags & BSF_INDIRECT) != 0)
1541 row = INDR_ROW;
1542 else if ((flags & BSF_WARNING) != 0)
1543 row = WARN_ROW;
1544 else if ((flags & BSF_CONSTRUCTOR) != 0)
1545 row = SET_ROW;
1546 else if (bfd_is_und_section (section))
1547 {
1548 if ((flags & BSF_WEAK) != 0)
1549 row = UNDEFW_ROW;
1550 else
1551 row = UNDEF_ROW;
1552 }
1553 else if ((flags & BSF_WEAK) != 0)
1554 row = DEFW_ROW;
1555 else if (bfd_is_com_section (section))
1556 row = COMMON_ROW;
1557 else
1558 row = DEF_ROW;
1559
1560 if (hashp != NULL && *hashp != NULL)
1561 h = *hashp;
1562 else
1563 {
1564 if (row == UNDEF_ROW || row == UNDEFW_ROW)
1565 h = bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, copy, FALSE);
1566 else
1567 h = bfd_link_hash_lookup (info->hash, name, TRUE, copy, FALSE);
1568 if (h == NULL)
1569 {
1570 if (hashp != NULL)
1571 *hashp = NULL;
1572 return FALSE;
1573 }
1574 }
1575
1576 if (info->notice_all
1577 || (info->notice_hash != NULL
1578 && bfd_hash_lookup (info->notice_hash, name, FALSE, FALSE) != NULL))
1579 {
1580 if (! (*info->callbacks->notice) (info, h->root.string, abfd, section,
1581 value))
1582 return FALSE;
1583 }
1584
1585 if (hashp != NULL)
1586 *hashp = h;
1587
1588 do
1589 {
1590 enum link_action action;
1591
1592 cycle = FALSE;
1593 action = link_action[(int) row][(int) h->type];
1594 switch (action)
1595 {
1596 case FAIL:
1597 abort ();
1598
1599 case NOACT:
1600 /* Do nothing. */
1601 break;
1602
1603 case UND:
1604 /* Make a new undefined symbol. */
1605 h->type = bfd_link_hash_undefined;
1606 h->u.undef.abfd = abfd;
1607 bfd_link_add_undef (info->hash, h);
1608 break;
1609
1610 case WEAK:
1611 /* Make a new weak undefined symbol. */
1612 h->type = bfd_link_hash_undefweak;
1613 h->u.undef.abfd = abfd;
1614 h->u.undef.weak = abfd;
1615 break;
1616
1617 case CDEF:
1618 /* We have found a definition for a symbol which was
1619 previously common. */
1620 BFD_ASSERT (h->type == bfd_link_hash_common);
1621 if (! ((*info->callbacks->multiple_common)
1622 (info, h->root.string,
1623 h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1624 abfd, bfd_link_hash_defined, 0)))
1625 return FALSE;
1626 /* Fall through. */
1627 case DEF:
1628 case DEFW:
1629 {
1630 enum bfd_link_hash_type oldtype;
1631
1632 /* Define a symbol. */
1633 oldtype = h->type;
1634 if (action == DEFW)
1635 h->type = bfd_link_hash_defweak;
1636 else
1637 h->type = bfd_link_hash_defined;
1638 h->u.def.section = section;
1639 h->u.def.value = value;
1640
1641 /* If we have been asked to, we act like collect2 and
1642 identify all functions that might be global
1643 constructors and destructors and pass them up in a
1644 callback. We only do this for certain object file
1645 types, since many object file types can handle this
1646 automatically. */
1647 if (collect && name[0] == '_')
1648 {
1649 const char *s;
1650
1651 /* A constructor or destructor name starts like this:
1652 _+GLOBAL_[_.$][ID][_.$] where the first [_.$] and
1653 the second are the same character (we accept any
1654 character there, in case a new object file format
1655 comes along with even worse naming restrictions). */
1656
1657 #define CONS_PREFIX "GLOBAL_"
1658 #define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
1659
1660 s = name + 1;
1661 while (*s == '_')
1662 ++s;
1663 if (s[0] == 'G' && CONST_STRNEQ (s, CONS_PREFIX))
1664 {
1665 char c;
1666
1667 c = s[CONS_PREFIX_LEN + 1];
1668 if ((c == 'I' || c == 'D')
1669 && s[CONS_PREFIX_LEN] == s[CONS_PREFIX_LEN + 2])
1670 {
1671 /* If this is a definition of a symbol which
1672 was previously weakly defined, we are in
1673 trouble. We have already added a
1674 constructor entry for the weak defined
1675 symbol, and now we are trying to add one
1676 for the new symbol. Fortunately, this case
1677 should never arise in practice. */
1678 if (oldtype == bfd_link_hash_defweak)
1679 abort ();
1680
1681 if (! ((*info->callbacks->constructor)
1682 (info, c == 'I',
1683 h->root.string, abfd, section, value)))
1684 return FALSE;
1685 }
1686 }
1687 }
1688 }
1689
1690 break;
1691
1692 case COM:
1693 /* We have found a common definition for a symbol. */
1694 if (h->type == bfd_link_hash_new)
1695 bfd_link_add_undef (info->hash, h);
1696 h->type = bfd_link_hash_common;
1697 h->u.c.p =
1698 bfd_hash_allocate (&info->hash->table,
1699 sizeof (struct bfd_link_hash_common_entry));
1700 if (h->u.c.p == NULL)
1701 return FALSE;
1702
1703 h->u.c.size = value;
1704
1705 /* Select a default alignment based on the size. This may
1706 be overridden by the caller. */
1707 {
1708 unsigned int power;
1709
1710 power = bfd_log2 (value);
1711 if (power > 4)
1712 power = 4;
1713 h->u.c.p->alignment_power = power;
1714 }
1715
1716 /* The section of a common symbol is only used if the common
1717 symbol is actually allocated. It basically provides a
1718 hook for the linker script to decide which output section
1719 the common symbols should be put in. In most cases, the
1720 section of a common symbol will be bfd_com_section_ptr,
1721 the code here will choose a common symbol section named
1722 "COMMON", and the linker script will contain *(COMMON) in
1723 the appropriate place. A few targets use separate common
1724 sections for small symbols, and they require special
1725 handling. */
1726 if (section == bfd_com_section_ptr)
1727 {
1728 h->u.c.p->section = bfd_make_section_old_way (abfd, "COMMON");
1729 h->u.c.p->section->flags = SEC_ALLOC;
1730 }
1731 else if (section->owner != abfd)
1732 {
1733 h->u.c.p->section = bfd_make_section_old_way (abfd,
1734 section->name);
1735 h->u.c.p->section->flags = SEC_ALLOC;
1736 }
1737 else
1738 h->u.c.p->section = section;
1739 break;
1740
1741 case REF:
1742 /* A reference to a defined symbol. */
1743 if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1744 h->u.undef.next = h;
1745 break;
1746
1747 case BIG:
1748 /* We have found a common definition for a symbol which
1749 already had a common definition. Use the maximum of the
1750 two sizes, and use the section required by the larger symbol. */
1751 BFD_ASSERT (h->type == bfd_link_hash_common);
1752 if (! ((*info->callbacks->multiple_common)
1753 (info, h->root.string,
1754 h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1755 abfd, bfd_link_hash_common, value)))
1756 return FALSE;
1757 if (value > h->u.c.size)
1758 {
1759 unsigned int power;
1760
1761 h->u.c.size = value;
1762
1763 /* Select a default alignment based on the size. This may
1764 be overridden by the caller. */
1765 power = bfd_log2 (value);
1766 if (power > 4)
1767 power = 4;
1768 h->u.c.p->alignment_power = power;
1769
1770 /* Some systems have special treatment for small commons,
1771 hence we want to select the section used by the larger
1772 symbol. This makes sure the symbol does not go in a
1773 small common section if it is now too large. */
1774 if (section == bfd_com_section_ptr)
1775 {
1776 h->u.c.p->section
1777 = bfd_make_section_old_way (abfd, "COMMON");
1778 h->u.c.p->section->flags = SEC_ALLOC;
1779 }
1780 else if (section->owner != abfd)
1781 {
1782 h->u.c.p->section
1783 = bfd_make_section_old_way (abfd, section->name);
1784 h->u.c.p->section->flags = SEC_ALLOC;
1785 }
1786 else
1787 h->u.c.p->section = section;
1788 }
1789 break;
1790
1791 case CREF:
1792 {
1793 bfd *obfd;
1794
1795 /* We have found a common definition for a symbol which
1796 was already defined. FIXME: It would nice if we could
1797 report the BFD which defined an indirect symbol, but we
1798 don't have anywhere to store the information. */
1799 if (h->type == bfd_link_hash_defined
1800 || h->type == bfd_link_hash_defweak)
1801 obfd = h->u.def.section->owner;
1802 else
1803 obfd = NULL;
1804 if (! ((*info->callbacks->multiple_common)
1805 (info, h->root.string, obfd, h->type, 0,
1806 abfd, bfd_link_hash_common, value)))
1807 return FALSE;
1808 }
1809 break;
1810
1811 case MIND:
1812 /* Multiple indirect symbols. This is OK if they both point
1813 to the same symbol. */
1814 if (strcmp (h->u.i.link->root.string, string) == 0)
1815 break;
1816 /* Fall through. */
1817 case MDEF:
1818 /* Handle a multiple definition. */
1819 if (!info->allow_multiple_definition)
1820 {
1821 asection *msec = NULL;
1822 bfd_vma mval = 0;
1823
1824 switch (h->type)
1825 {
1826 case bfd_link_hash_defined:
1827 msec = h->u.def.section;
1828 mval = h->u.def.value;
1829 break;
1830 case bfd_link_hash_indirect:
1831 msec = bfd_ind_section_ptr;
1832 mval = 0;
1833 break;
1834 default:
1835 abort ();
1836 }
1837
1838 /* Ignore a redefinition of an absolute symbol to the
1839 same value; it's harmless. */
1840 if (h->type == bfd_link_hash_defined
1841 && bfd_is_abs_section (msec)
1842 && bfd_is_abs_section (section)
1843 && value == mval)
1844 break;
1845
1846 if (! ((*info->callbacks->multiple_definition)
1847 (info, h->root.string, msec->owner, msec, mval,
1848 abfd, section, value)))
1849 return FALSE;
1850 }
1851 break;
1852
1853 case CIND:
1854 /* Create an indirect symbol from an existing common symbol. */
1855 BFD_ASSERT (h->type == bfd_link_hash_common);
1856 if (! ((*info->callbacks->multiple_common)
1857 (info, h->root.string,
1858 h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1859 abfd, bfd_link_hash_indirect, 0)))
1860 return FALSE;
1861 /* Fall through. */
1862 case IND:
1863 /* Create an indirect symbol. */
1864 {
1865 struct bfd_link_hash_entry *inh;
1866
1867 /* STRING is the name of the symbol we want to indirect
1868 to. */
1869 inh = bfd_wrapped_link_hash_lookup (abfd, info, string, TRUE,
1870 copy, FALSE);
1871 if (inh == NULL)
1872 return FALSE;
1873 if (inh->type == bfd_link_hash_indirect
1874 && inh->u.i.link == h)
1875 {
1876 (*_bfd_error_handler)
1877 (_("%B: indirect symbol `%s' to `%s' is a loop"),
1878 abfd, name, string);
1879 bfd_set_error (bfd_error_invalid_operation);
1880 return FALSE;
1881 }
1882 if (inh->type == bfd_link_hash_new)
1883 {
1884 inh->type = bfd_link_hash_undefined;
1885 inh->u.undef.abfd = abfd;
1886 bfd_link_add_undef (info->hash, inh);
1887 }
1888
1889 /* If the indirect symbol has been referenced, we need to
1890 push the reference down to the symbol we are
1891 referencing. */
1892 if (h->type != bfd_link_hash_new)
1893 {
1894 row = UNDEF_ROW;
1895 cycle = TRUE;
1896 }
1897
1898 h->type = bfd_link_hash_indirect;
1899 h->u.i.link = inh;
1900 }
1901 break;
1902
1903 case SET:
1904 /* Add an entry to a set. */
1905 if (! (*info->callbacks->add_to_set) (info, h, BFD_RELOC_CTOR,
1906 abfd, section, value))
1907 return FALSE;
1908 break;
1909
1910 case WARNC:
1911 /* Issue a warning and cycle. */
1912 if (h->u.i.warning != NULL)
1913 {
1914 if (! (*info->callbacks->warning) (info, h->u.i.warning,
1915 h->root.string, abfd,
1916 NULL, 0))
1917 return FALSE;
1918 /* Only issue a warning once. */
1919 h->u.i.warning = NULL;
1920 }
1921 /* Fall through. */
1922 case CYCLE:
1923 /* Try again with the referenced symbol. */
1924 h = h->u.i.link;
1925 cycle = TRUE;
1926 break;
1927
1928 case REFC:
1929 /* A reference to an indirect symbol. */
1930 if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1931 h->u.undef.next = h;
1932 h = h->u.i.link;
1933 cycle = TRUE;
1934 break;
1935
1936 case WARN:
1937 /* Issue a warning. */
1938 if (! (*info->callbacks->warning) (info, string, h->root.string,
1939 hash_entry_bfd (h), NULL, 0))
1940 return FALSE;
1941 break;
1942
1943 case CWARN:
1944 /* Warn if this symbol has been referenced already,
1945 otherwise add a warning. A symbol has been referenced if
1946 the u.undef.next field is not NULL, or it is the tail of the
1947 undefined symbol list. The REF case above helps to
1948 ensure this. */
1949 if (h->u.undef.next != NULL || info->hash->undefs_tail == h)
1950 {
1951 if (! (*info->callbacks->warning) (info, string, h->root.string,
1952 hash_entry_bfd (h), NULL, 0))
1953 return FALSE;
1954 break;
1955 }
1956 /* Fall through. */
1957 case MWARN:
1958 /* Make a warning symbol. */
1959 {
1960 struct bfd_link_hash_entry *sub;
1961
1962 /* STRING is the warning to give. */
1963 sub = ((struct bfd_link_hash_entry *)
1964 ((*info->hash->table.newfunc)
1965 (NULL, &info->hash->table, h->root.string)));
1966 if (sub == NULL)
1967 return FALSE;
1968 *sub = *h;
1969 sub->type = bfd_link_hash_warning;
1970 sub->u.i.link = h;
1971 if (! copy)
1972 sub->u.i.warning = string;
1973 else
1974 {
1975 char *w;
1976 size_t len = strlen (string) + 1;
1977
1978 w = bfd_hash_allocate (&info->hash->table, len);
1979 if (w == NULL)
1980 return FALSE;
1981 memcpy (w, string, len);
1982 sub->u.i.warning = w;
1983 }
1984
1985 bfd_hash_replace (&info->hash->table,
1986 (struct bfd_hash_entry *) h,
1987 (struct bfd_hash_entry *) sub);
1988 if (hashp != NULL)
1989 *hashp = sub;
1990 }
1991 break;
1992 }
1993 }
1994 while (cycle);
1995
1996 return TRUE;
1997 }
1998 \f
1999 /* Generic final link routine. */
2000
2001 bfd_boolean
2002 _bfd_generic_final_link (bfd *abfd, struct bfd_link_info *info)
2003 {
2004 bfd *sub;
2005 asection *o;
2006 struct bfd_link_order *p;
2007 size_t outsymalloc;
2008 struct generic_write_global_symbol_info wginfo;
2009
2010 bfd_get_outsymbols (abfd) = NULL;
2011 bfd_get_symcount (abfd) = 0;
2012 outsymalloc = 0;
2013
2014 /* Mark all sections which will be included in the output file. */
2015 for (o = abfd->sections; o != NULL; o = o->next)
2016 for (p = o->map_head.link_order; p != NULL; p = p->next)
2017 if (p->type == bfd_indirect_link_order)
2018 p->u.indirect.section->linker_mark = TRUE;
2019
2020 /* Build the output symbol table. */
2021 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
2022 if (! _bfd_generic_link_output_symbols (abfd, sub, info, &outsymalloc))
2023 return FALSE;
2024
2025 /* Accumulate the global symbols. */
2026 wginfo.info = info;
2027 wginfo.output_bfd = abfd;
2028 wginfo.psymalloc = &outsymalloc;
2029 _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info),
2030 _bfd_generic_link_write_global_symbol,
2031 &wginfo);
2032
2033 /* Make sure we have a trailing NULL pointer on OUTSYMBOLS. We
2034 shouldn't really need one, since we have SYMCOUNT, but some old
2035 code still expects one. */
2036 if (! generic_add_output_symbol (abfd, &outsymalloc, NULL))
2037 return FALSE;
2038
2039 if (info->relocatable)
2040 {
2041 /* Allocate space for the output relocs for each section. */
2042 for (o = abfd->sections; o != NULL; o = o->next)
2043 {
2044 o->reloc_count = 0;
2045 for (p = o->map_head.link_order; p != NULL; p = p->next)
2046 {
2047 if (p->type == bfd_section_reloc_link_order
2048 || p->type == bfd_symbol_reloc_link_order)
2049 ++o->reloc_count;
2050 else if (p->type == bfd_indirect_link_order)
2051 {
2052 asection *input_section;
2053 bfd *input_bfd;
2054 long relsize;
2055 arelent **relocs;
2056 asymbol **symbols;
2057 long reloc_count;
2058
2059 input_section = p->u.indirect.section;
2060 input_bfd = input_section->owner;
2061 relsize = bfd_get_reloc_upper_bound (input_bfd,
2062 input_section);
2063 if (relsize < 0)
2064 return FALSE;
2065 relocs = bfd_malloc (relsize);
2066 if (!relocs && relsize != 0)
2067 return FALSE;
2068 symbols = _bfd_generic_link_get_symbols (input_bfd);
2069 reloc_count = bfd_canonicalize_reloc (input_bfd,
2070 input_section,
2071 relocs,
2072 symbols);
2073 free (relocs);
2074 if (reloc_count < 0)
2075 return FALSE;
2076 BFD_ASSERT ((unsigned long) reloc_count
2077 == input_section->reloc_count);
2078 o->reloc_count += reloc_count;
2079 }
2080 }
2081 if (o->reloc_count > 0)
2082 {
2083 bfd_size_type amt;
2084
2085 amt = o->reloc_count;
2086 amt *= sizeof (arelent *);
2087 o->orelocation = bfd_alloc (abfd, amt);
2088 if (!o->orelocation)
2089 return FALSE;
2090 o->flags |= SEC_RELOC;
2091 /* Reset the count so that it can be used as an index
2092 when putting in the output relocs. */
2093 o->reloc_count = 0;
2094 }
2095 }
2096 }
2097
2098 /* Handle all the link order information for the sections. */
2099 for (o = abfd->sections; o != NULL; o = o->next)
2100 {
2101 for (p = o->map_head.link_order; p != NULL; p = p->next)
2102 {
2103 switch (p->type)
2104 {
2105 case bfd_section_reloc_link_order:
2106 case bfd_symbol_reloc_link_order:
2107 if (! _bfd_generic_reloc_link_order (abfd, info, o, p))
2108 return FALSE;
2109 break;
2110 case bfd_indirect_link_order:
2111 if (! default_indirect_link_order (abfd, info, o, p, TRUE))
2112 return FALSE;
2113 break;
2114 default:
2115 if (! _bfd_default_link_order (abfd, info, o, p))
2116 return FALSE;
2117 break;
2118 }
2119 }
2120 }
2121
2122 return TRUE;
2123 }
2124
2125 /* Add an output symbol to the output BFD. */
2126
2127 static bfd_boolean
2128 generic_add_output_symbol (bfd *output_bfd, size_t *psymalloc, asymbol *sym)
2129 {
2130 if (bfd_get_symcount (output_bfd) >= *psymalloc)
2131 {
2132 asymbol **newsyms;
2133 bfd_size_type amt;
2134
2135 if (*psymalloc == 0)
2136 *psymalloc = 124;
2137 else
2138 *psymalloc *= 2;
2139 amt = *psymalloc;
2140 amt *= sizeof (asymbol *);
2141 newsyms = bfd_realloc (bfd_get_outsymbols (output_bfd), amt);
2142 if (newsyms == NULL)
2143 return FALSE;
2144 bfd_get_outsymbols (output_bfd) = newsyms;
2145 }
2146
2147 bfd_get_outsymbols (output_bfd) [bfd_get_symcount (output_bfd)] = sym;
2148 if (sym != NULL)
2149 ++ bfd_get_symcount (output_bfd);
2150
2151 return TRUE;
2152 }
2153
2154 /* Handle the symbols for an input BFD. */
2155
2156 bfd_boolean
2157 _bfd_generic_link_output_symbols (bfd *output_bfd,
2158 bfd *input_bfd,
2159 struct bfd_link_info *info,
2160 size_t *psymalloc)
2161 {
2162 asymbol **sym_ptr;
2163 asymbol **sym_end;
2164
2165 if (! generic_link_read_symbols (input_bfd))
2166 return FALSE;
2167
2168 /* Create a filename symbol if we are supposed to. */
2169 if (info->create_object_symbols_section != NULL)
2170 {
2171 asection *sec;
2172
2173 for (sec = input_bfd->sections; sec != NULL; sec = sec->next)
2174 {
2175 if (sec->output_section == info->create_object_symbols_section)
2176 {
2177 asymbol *newsym;
2178
2179 newsym = bfd_make_empty_symbol (input_bfd);
2180 if (!newsym)
2181 return FALSE;
2182 newsym->name = input_bfd->filename;
2183 newsym->value = 0;
2184 newsym->flags = BSF_LOCAL | BSF_FILE;
2185 newsym->section = sec;
2186
2187 if (! generic_add_output_symbol (output_bfd, psymalloc,
2188 newsym))
2189 return FALSE;
2190
2191 break;
2192 }
2193 }
2194 }
2195
2196 /* Adjust the values of the globally visible symbols, and write out
2197 local symbols. */
2198 sym_ptr = _bfd_generic_link_get_symbols (input_bfd);
2199 sym_end = sym_ptr + _bfd_generic_link_get_symcount (input_bfd);
2200 for (; sym_ptr < sym_end; sym_ptr++)
2201 {
2202 asymbol *sym;
2203 struct generic_link_hash_entry *h;
2204 bfd_boolean output;
2205
2206 h = NULL;
2207 sym = *sym_ptr;
2208 if ((sym->flags & (BSF_INDIRECT
2209 | BSF_WARNING
2210 | BSF_GLOBAL
2211 | BSF_CONSTRUCTOR
2212 | BSF_WEAK)) != 0
2213 || bfd_is_und_section (bfd_get_section (sym))
2214 || bfd_is_com_section (bfd_get_section (sym))
2215 || bfd_is_ind_section (bfd_get_section (sym)))
2216 {
2217 if (sym->udata.p != NULL)
2218 h = sym->udata.p;
2219 else if ((sym->flags & BSF_CONSTRUCTOR) != 0)
2220 {
2221 /* This case normally means that the main linker code
2222 deliberately ignored this constructor symbol. We
2223 should just pass it through. This will screw up if
2224 the constructor symbol is from a different,
2225 non-generic, object file format, but the case will
2226 only arise when linking with -r, which will probably
2227 fail anyhow, since there will be no way to represent
2228 the relocs in the output format being used. */
2229 h = NULL;
2230 }
2231 else if (bfd_is_und_section (bfd_get_section (sym)))
2232 h = ((struct generic_link_hash_entry *)
2233 bfd_wrapped_link_hash_lookup (output_bfd, info,
2234 bfd_asymbol_name (sym),
2235 FALSE, FALSE, TRUE));
2236 else
2237 h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info),
2238 bfd_asymbol_name (sym),
2239 FALSE, FALSE, TRUE);
2240
2241 if (h != NULL)
2242 {
2243 /* Force all references to this symbol to point to
2244 the same area in memory. It is possible that
2245 this routine will be called with a hash table
2246 other than a generic hash table, so we double
2247 check that. */
2248 if (info->hash->creator == input_bfd->xvec)
2249 {
2250 if (h->sym != NULL)
2251 *sym_ptr = sym = h->sym;
2252 }
2253
2254 switch (h->root.type)
2255 {
2256 default:
2257 case bfd_link_hash_new:
2258 abort ();
2259 case bfd_link_hash_undefined:
2260 break;
2261 case bfd_link_hash_undefweak:
2262 sym->flags |= BSF_WEAK;
2263 break;
2264 case bfd_link_hash_indirect:
2265 h = (struct generic_link_hash_entry *) h->root.u.i.link;
2266 /* fall through */
2267 case bfd_link_hash_defined:
2268 sym->flags |= BSF_GLOBAL;
2269 sym->flags &=~ BSF_CONSTRUCTOR;
2270 sym->value = h->root.u.def.value;
2271 sym->section = h->root.u.def.section;
2272 break;
2273 case bfd_link_hash_defweak:
2274 sym->flags |= BSF_WEAK;
2275 sym->flags &=~ BSF_CONSTRUCTOR;
2276 sym->value = h->root.u.def.value;
2277 sym->section = h->root.u.def.section;
2278 break;
2279 case bfd_link_hash_common:
2280 sym->value = h->root.u.c.size;
2281 sym->flags |= BSF_GLOBAL;
2282 if (! bfd_is_com_section (sym->section))
2283 {
2284 BFD_ASSERT (bfd_is_und_section (sym->section));
2285 sym->section = bfd_com_section_ptr;
2286 }
2287 /* We do not set the section of the symbol to
2288 h->root.u.c.p->section. That value was saved so
2289 that we would know where to allocate the symbol
2290 if it was defined. In this case the type is
2291 still bfd_link_hash_common, so we did not define
2292 it, so we do not want to use that section. */
2293 break;
2294 }
2295 }
2296 }
2297
2298 /* This switch is straight from the old code in
2299 write_file_locals in ldsym.c. */
2300 if (info->strip == strip_all
2301 || (info->strip == strip_some
2302 && bfd_hash_lookup (info->keep_hash, bfd_asymbol_name (sym),
2303 FALSE, FALSE) == NULL))
2304 output = FALSE;
2305 else if ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0)
2306 {
2307 /* If this symbol is marked as occurring now, rather
2308 than at the end, output it now. This is used for
2309 COFF C_EXT FCN symbols. FIXME: There must be a
2310 better way. */
2311 if (bfd_asymbol_bfd (sym) == input_bfd
2312 && (sym->flags & BSF_NOT_AT_END) != 0)
2313 output = TRUE;
2314 else
2315 output = FALSE;
2316 }
2317 else if (bfd_is_ind_section (sym->section))
2318 output = FALSE;
2319 else if ((sym->flags & BSF_DEBUGGING) != 0)
2320 {
2321 if (info->strip == strip_none)
2322 output = TRUE;
2323 else
2324 output = FALSE;
2325 }
2326 else if (bfd_is_und_section (sym->section)
2327 || bfd_is_com_section (sym->section))
2328 output = FALSE;
2329 else if ((sym->flags & BSF_LOCAL) != 0)
2330 {
2331 if ((sym->flags & BSF_WARNING) != 0)
2332 output = FALSE;
2333 else
2334 {
2335 switch (info->discard)
2336 {
2337 default:
2338 case discard_all:
2339 output = FALSE;
2340 break;
2341 case discard_sec_merge:
2342 output = TRUE;
2343 if (info->relocatable
2344 || ! (sym->section->flags & SEC_MERGE))
2345 break;
2346 /* FALLTHROUGH */
2347 case discard_l:
2348 if (bfd_is_local_label (input_bfd, sym))
2349 output = FALSE;
2350 else
2351 output = TRUE;
2352 break;
2353 case discard_none:
2354 output = TRUE;
2355 break;
2356 }
2357 }
2358 }
2359 else if ((sym->flags & BSF_CONSTRUCTOR))
2360 {
2361 if (info->strip != strip_all)
2362 output = TRUE;
2363 else
2364 output = FALSE;
2365 }
2366 else
2367 abort ();
2368
2369 /* If this symbol is in a section which is not being included
2370 in the output file, then we don't want to output the
2371 symbol. */
2372 if (!bfd_is_abs_section (sym->section)
2373 && bfd_section_removed_from_list (output_bfd,
2374 sym->section->output_section))
2375 output = FALSE;
2376
2377 if (output)
2378 {
2379 if (! generic_add_output_symbol (output_bfd, psymalloc, sym))
2380 return FALSE;
2381 if (h != NULL)
2382 h->written = TRUE;
2383 }
2384 }
2385
2386 return TRUE;
2387 }
2388
2389 /* Set the section and value of a generic BFD symbol based on a linker
2390 hash table entry. */
2391
2392 static void
2393 set_symbol_from_hash (asymbol *sym, struct bfd_link_hash_entry *h)
2394 {
2395 switch (h->type)
2396 {
2397 default:
2398 abort ();
2399 break;
2400 case bfd_link_hash_new:
2401 /* This can happen when a constructor symbol is seen but we are
2402 not building constructors. */
2403 if (sym->section != NULL)
2404 {
2405 BFD_ASSERT ((sym->flags & BSF_CONSTRUCTOR) != 0);
2406 }
2407 else
2408 {
2409 sym->flags |= BSF_CONSTRUCTOR;
2410 sym->section = bfd_abs_section_ptr;
2411 sym->value = 0;
2412 }
2413 break;
2414 case bfd_link_hash_undefined:
2415 sym->section = bfd_und_section_ptr;
2416 sym->value = 0;
2417 break;
2418 case bfd_link_hash_undefweak:
2419 sym->section = bfd_und_section_ptr;
2420 sym->value = 0;
2421 sym->flags |= BSF_WEAK;
2422 break;
2423 case bfd_link_hash_defined:
2424 sym->section = h->u.def.section;
2425 sym->value = h->u.def.value;
2426 break;
2427 case bfd_link_hash_defweak:
2428 sym->flags |= BSF_WEAK;
2429 sym->section = h->u.def.section;
2430 sym->value = h->u.def.value;
2431 break;
2432 case bfd_link_hash_common:
2433 sym->value = h->u.c.size;
2434 if (sym->section == NULL)
2435 sym->section = bfd_com_section_ptr;
2436 else if (! bfd_is_com_section (sym->section))
2437 {
2438 BFD_ASSERT (bfd_is_und_section (sym->section));
2439 sym->section = bfd_com_section_ptr;
2440 }
2441 /* Do not set the section; see _bfd_generic_link_output_symbols. */
2442 break;
2443 case bfd_link_hash_indirect:
2444 case bfd_link_hash_warning:
2445 /* FIXME: What should we do here? */
2446 break;
2447 }
2448 }
2449
2450 /* Write out a global symbol, if it hasn't already been written out.
2451 This is called for each symbol in the hash table. */
2452
2453 bfd_boolean
2454 _bfd_generic_link_write_global_symbol (struct generic_link_hash_entry *h,
2455 void *data)
2456 {
2457 struct generic_write_global_symbol_info *wginfo = data;
2458 asymbol *sym;
2459
2460 if (h->root.type == bfd_link_hash_warning)
2461 h = (struct generic_link_hash_entry *) h->root.u.i.link;
2462
2463 if (h->written)
2464 return TRUE;
2465
2466 h->written = TRUE;
2467
2468 if (wginfo->info->strip == strip_all
2469 || (wginfo->info->strip == strip_some
2470 && bfd_hash_lookup (wginfo->info->keep_hash, h->root.root.string,
2471 FALSE, FALSE) == NULL))
2472 return TRUE;
2473
2474 if (h->sym != NULL)
2475 sym = h->sym;
2476 else
2477 {
2478 sym = bfd_make_empty_symbol (wginfo->output_bfd);
2479 if (!sym)
2480 return FALSE;
2481 sym->name = h->root.root.string;
2482 sym->flags = 0;
2483 }
2484
2485 set_symbol_from_hash (sym, &h->root);
2486
2487 sym->flags |= BSF_GLOBAL;
2488
2489 if (! generic_add_output_symbol (wginfo->output_bfd, wginfo->psymalloc,
2490 sym))
2491 {
2492 /* FIXME: No way to return failure. */
2493 abort ();
2494 }
2495
2496 return TRUE;
2497 }
2498
2499 /* Create a relocation. */
2500
2501 bfd_boolean
2502 _bfd_generic_reloc_link_order (bfd *abfd,
2503 struct bfd_link_info *info,
2504 asection *sec,
2505 struct bfd_link_order *link_order)
2506 {
2507 arelent *r;
2508
2509 if (! info->relocatable)
2510 abort ();
2511 if (sec->orelocation == NULL)
2512 abort ();
2513
2514 r = bfd_alloc (abfd, sizeof (arelent));
2515 if (r == NULL)
2516 return FALSE;
2517
2518 r->address = link_order->offset;
2519 r->howto = bfd_reloc_type_lookup (abfd, link_order->u.reloc.p->reloc);
2520 if (r->howto == 0)
2521 {
2522 bfd_set_error (bfd_error_bad_value);
2523 return FALSE;
2524 }
2525
2526 /* Get the symbol to use for the relocation. */
2527 if (link_order->type == bfd_section_reloc_link_order)
2528 r->sym_ptr_ptr = link_order->u.reloc.p->u.section->symbol_ptr_ptr;
2529 else
2530 {
2531 struct generic_link_hash_entry *h;
2532
2533 h = ((struct generic_link_hash_entry *)
2534 bfd_wrapped_link_hash_lookup (abfd, info,
2535 link_order->u.reloc.p->u.name,
2536 FALSE, FALSE, TRUE));
2537 if (h == NULL
2538 || ! h->written)
2539 {
2540 if (! ((*info->callbacks->unattached_reloc)
2541 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
2542 return FALSE;
2543 bfd_set_error (bfd_error_bad_value);
2544 return FALSE;
2545 }
2546 r->sym_ptr_ptr = &h->sym;
2547 }
2548
2549 /* If this is an inplace reloc, write the addend to the object file.
2550 Otherwise, store it in the reloc addend. */
2551 if (! r->howto->partial_inplace)
2552 r->addend = link_order->u.reloc.p->addend;
2553 else
2554 {
2555 bfd_size_type size;
2556 bfd_reloc_status_type rstat;
2557 bfd_byte *buf;
2558 bfd_boolean ok;
2559 file_ptr loc;
2560
2561 size = bfd_get_reloc_size (r->howto);
2562 buf = bfd_zmalloc (size);
2563 if (buf == NULL)
2564 return FALSE;
2565 rstat = _bfd_relocate_contents (r->howto, abfd,
2566 (bfd_vma) link_order->u.reloc.p->addend,
2567 buf);
2568 switch (rstat)
2569 {
2570 case bfd_reloc_ok:
2571 break;
2572 default:
2573 case bfd_reloc_outofrange:
2574 abort ();
2575 case bfd_reloc_overflow:
2576 if (! ((*info->callbacks->reloc_overflow)
2577 (info, NULL,
2578 (link_order->type == bfd_section_reloc_link_order
2579 ? bfd_section_name (abfd, link_order->u.reloc.p->u.section)
2580 : link_order->u.reloc.p->u.name),
2581 r->howto->name, link_order->u.reloc.p->addend,
2582 NULL, NULL, 0)))
2583 {
2584 free (buf);
2585 return FALSE;
2586 }
2587 break;
2588 }
2589 loc = link_order->offset * bfd_octets_per_byte (abfd);
2590 ok = bfd_set_section_contents (abfd, sec, buf, loc, size);
2591 free (buf);
2592 if (! ok)
2593 return FALSE;
2594
2595 r->addend = 0;
2596 }
2597
2598 sec->orelocation[sec->reloc_count] = r;
2599 ++sec->reloc_count;
2600
2601 return TRUE;
2602 }
2603 \f
2604 /* Allocate a new link_order for a section. */
2605
2606 struct bfd_link_order *
2607 bfd_new_link_order (bfd *abfd, asection *section)
2608 {
2609 bfd_size_type amt = sizeof (struct bfd_link_order);
2610 struct bfd_link_order *new;
2611
2612 new = bfd_zalloc (abfd, amt);
2613 if (!new)
2614 return NULL;
2615
2616 new->type = bfd_undefined_link_order;
2617
2618 if (section->map_tail.link_order != NULL)
2619 section->map_tail.link_order->next = new;
2620 else
2621 section->map_head.link_order = new;
2622 section->map_tail.link_order = new;
2623
2624 return new;
2625 }
2626
2627 /* Default link order processing routine. Note that we can not handle
2628 the reloc_link_order types here, since they depend upon the details
2629 of how the particular backends generates relocs. */
2630
2631 bfd_boolean
2632 _bfd_default_link_order (bfd *abfd,
2633 struct bfd_link_info *info,
2634 asection *sec,
2635 struct bfd_link_order *link_order)
2636 {
2637 switch (link_order->type)
2638 {
2639 case bfd_undefined_link_order:
2640 case bfd_section_reloc_link_order:
2641 case bfd_symbol_reloc_link_order:
2642 default:
2643 abort ();
2644 case bfd_indirect_link_order:
2645 return default_indirect_link_order (abfd, info, sec, link_order,
2646 FALSE);
2647 case bfd_data_link_order:
2648 return default_data_link_order (abfd, info, sec, link_order);
2649 }
2650 }
2651
2652 /* Default routine to handle a bfd_data_link_order. */
2653
2654 static bfd_boolean
2655 default_data_link_order (bfd *abfd,
2656 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2657 asection *sec,
2658 struct bfd_link_order *link_order)
2659 {
2660 bfd_size_type size;
2661 size_t fill_size;
2662 bfd_byte *fill;
2663 file_ptr loc;
2664 bfd_boolean result;
2665
2666 BFD_ASSERT ((sec->flags & SEC_HAS_CONTENTS) != 0);
2667
2668 size = link_order->size;
2669 if (size == 0)
2670 return TRUE;
2671
2672 fill = link_order->u.data.contents;
2673 fill_size = link_order->u.data.size;
2674 if (fill_size != 0 && fill_size < size)
2675 {
2676 bfd_byte *p;
2677 fill = bfd_malloc (size);
2678 if (fill == NULL)
2679 return FALSE;
2680 p = fill;
2681 if (fill_size == 1)
2682 memset (p, (int) link_order->u.data.contents[0], (size_t) size);
2683 else
2684 {
2685 do
2686 {
2687 memcpy (p, link_order->u.data.contents, fill_size);
2688 p += fill_size;
2689 size -= fill_size;
2690 }
2691 while (size >= fill_size);
2692 if (size != 0)
2693 memcpy (p, link_order->u.data.contents, (size_t) size);
2694 size = link_order->size;
2695 }
2696 }
2697
2698 loc = link_order->offset * bfd_octets_per_byte (abfd);
2699 result = bfd_set_section_contents (abfd, sec, fill, loc, size);
2700
2701 if (fill != link_order->u.data.contents)
2702 free (fill);
2703 return result;
2704 }
2705
2706 /* Default routine to handle a bfd_indirect_link_order. */
2707
2708 static bfd_boolean
2709 default_indirect_link_order (bfd *output_bfd,
2710 struct bfd_link_info *info,
2711 asection *output_section,
2712 struct bfd_link_order *link_order,
2713 bfd_boolean generic_linker)
2714 {
2715 asection *input_section;
2716 bfd *input_bfd;
2717 bfd_byte *contents = NULL;
2718 bfd_byte *new_contents;
2719 bfd_size_type sec_size;
2720 file_ptr loc;
2721
2722 BFD_ASSERT ((output_section->flags & SEC_HAS_CONTENTS) != 0);
2723
2724 input_section = link_order->u.indirect.section;
2725 input_bfd = input_section->owner;
2726 if (input_section->size == 0)
2727 return TRUE;
2728
2729 BFD_ASSERT (input_section->output_section == output_section);
2730 BFD_ASSERT (input_section->output_offset == link_order->offset);
2731 BFD_ASSERT (input_section->size == link_order->size);
2732
2733 if (info->relocatable
2734 && input_section->reloc_count > 0
2735 && output_section->orelocation == NULL)
2736 {
2737 /* Space has not been allocated for the output relocations.
2738 This can happen when we are called by a specific backend
2739 because somebody is attempting to link together different
2740 types of object files. Handling this case correctly is
2741 difficult, and sometimes impossible. */
2742 (*_bfd_error_handler)
2743 (_("Attempt to do relocatable link with %s input and %s output"),
2744 bfd_get_target (input_bfd), bfd_get_target (output_bfd));
2745 bfd_set_error (bfd_error_wrong_format);
2746 return FALSE;
2747 }
2748
2749 if (! generic_linker)
2750 {
2751 asymbol **sympp;
2752 asymbol **symppend;
2753
2754 /* Get the canonical symbols. The generic linker will always
2755 have retrieved them by this point, but we are being called by
2756 a specific linker, presumably because we are linking
2757 different types of object files together. */
2758 if (! generic_link_read_symbols (input_bfd))
2759 return FALSE;
2760
2761 /* Since we have been called by a specific linker, rather than
2762 the generic linker, the values of the symbols will not be
2763 right. They will be the values as seen in the input file,
2764 not the values of the final link. We need to fix them up
2765 before we can relocate the section. */
2766 sympp = _bfd_generic_link_get_symbols (input_bfd);
2767 symppend = sympp + _bfd_generic_link_get_symcount (input_bfd);
2768 for (; sympp < symppend; sympp++)
2769 {
2770 asymbol *sym;
2771 struct bfd_link_hash_entry *h;
2772
2773 sym = *sympp;
2774
2775 if ((sym->flags & (BSF_INDIRECT
2776 | BSF_WARNING
2777 | BSF_GLOBAL
2778 | BSF_CONSTRUCTOR
2779 | BSF_WEAK)) != 0
2780 || bfd_is_und_section (bfd_get_section (sym))
2781 || bfd_is_com_section (bfd_get_section (sym))
2782 || bfd_is_ind_section (bfd_get_section (sym)))
2783 {
2784 /* sym->udata may have been set by
2785 generic_link_add_symbol_list. */
2786 if (sym->udata.p != NULL)
2787 h = sym->udata.p;
2788 else if (bfd_is_und_section (bfd_get_section (sym)))
2789 h = bfd_wrapped_link_hash_lookup (output_bfd, info,
2790 bfd_asymbol_name (sym),
2791 FALSE, FALSE, TRUE);
2792 else
2793 h = bfd_link_hash_lookup (info->hash,
2794 bfd_asymbol_name (sym),
2795 FALSE, FALSE, TRUE);
2796 if (h != NULL)
2797 set_symbol_from_hash (sym, h);
2798 }
2799 }
2800 }
2801
2802 /* Get and relocate the section contents. */
2803 sec_size = (input_section->rawsize > input_section->size
2804 ? input_section->rawsize
2805 : input_section->size);
2806 contents = bfd_malloc (sec_size);
2807 if (contents == NULL && sec_size != 0)
2808 goto error_return;
2809 new_contents = (bfd_get_relocated_section_contents
2810 (output_bfd, info, link_order, contents, info->relocatable,
2811 _bfd_generic_link_get_symbols (input_bfd)));
2812 if (!new_contents)
2813 goto error_return;
2814
2815 /* Output the section contents. */
2816 loc = input_section->output_offset * bfd_octets_per_byte (output_bfd);
2817 if (! bfd_set_section_contents (output_bfd, output_section,
2818 new_contents, loc, input_section->size))
2819 goto error_return;
2820
2821 if (contents != NULL)
2822 free (contents);
2823 return TRUE;
2824
2825 error_return:
2826 if (contents != NULL)
2827 free (contents);
2828 return FALSE;
2829 }
2830
2831 /* A little routine to count the number of relocs in a link_order
2832 list. */
2833
2834 unsigned int
2835 _bfd_count_link_order_relocs (struct bfd_link_order *link_order)
2836 {
2837 register unsigned int c;
2838 register struct bfd_link_order *l;
2839
2840 c = 0;
2841 for (l = link_order; l != NULL; l = l->next)
2842 {
2843 if (l->type == bfd_section_reloc_link_order
2844 || l->type == bfd_symbol_reloc_link_order)
2845 ++c;
2846 }
2847
2848 return c;
2849 }
2850
2851 /*
2852 FUNCTION
2853 bfd_link_split_section
2854
2855 SYNOPSIS
2856 bfd_boolean bfd_link_split_section (bfd *abfd, asection *sec);
2857
2858 DESCRIPTION
2859 Return nonzero if @var{sec} should be split during a
2860 reloceatable or final link.
2861
2862 .#define bfd_link_split_section(abfd, sec) \
2863 . BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
2864 .
2865
2866 */
2867
2868 bfd_boolean
2869 _bfd_generic_link_split_section (bfd *abfd ATTRIBUTE_UNUSED,
2870 asection *sec ATTRIBUTE_UNUSED)
2871 {
2872 return FALSE;
2873 }
2874
2875 /*
2876 FUNCTION
2877 bfd_section_already_linked
2878
2879 SYNOPSIS
2880 void bfd_section_already_linked (bfd *abfd, asection *sec,
2881 struct bfd_link_info *info);
2882
2883 DESCRIPTION
2884 Check if @var{sec} has been already linked during a reloceatable
2885 or final link.
2886
2887 .#define bfd_section_already_linked(abfd, sec, info) \
2888 . BFD_SEND (abfd, _section_already_linked, (abfd, sec, info))
2889 .
2890
2891 */
2892
2893 /* Sections marked with the SEC_LINK_ONCE flag should only be linked
2894 once into the output. This routine checks each section, and
2895 arrange to discard it if a section of the same name has already
2896 been linked. This code assumes that all relevant sections have the
2897 SEC_LINK_ONCE flag set; that is, it does not depend solely upon the
2898 section name. bfd_section_already_linked is called via
2899 bfd_map_over_sections. */
2900
2901 /* The hash table. */
2902
2903 static struct bfd_hash_table _bfd_section_already_linked_table;
2904
2905 /* Support routines for the hash table used by section_already_linked,
2906 initialize the table, traverse, lookup, fill in an entry and remove
2907 the table. */
2908
2909 void
2910 bfd_section_already_linked_table_traverse
2911 (bfd_boolean (*func) (struct bfd_section_already_linked_hash_entry *,
2912 void *), void *info)
2913 {
2914 bfd_hash_traverse (&_bfd_section_already_linked_table,
2915 (bfd_boolean (*) (struct bfd_hash_entry *,
2916 void *)) func,
2917 info);
2918 }
2919
2920 struct bfd_section_already_linked_hash_entry *
2921 bfd_section_already_linked_table_lookup (const char *name)
2922 {
2923 return ((struct bfd_section_already_linked_hash_entry *)
2924 bfd_hash_lookup (&_bfd_section_already_linked_table, name,
2925 TRUE, FALSE));
2926 }
2927
2928 void
2929 bfd_section_already_linked_table_insert
2930 (struct bfd_section_already_linked_hash_entry *already_linked_list,
2931 asection *sec)
2932 {
2933 struct bfd_section_already_linked *l;
2934
2935 /* Allocate the memory from the same obstack as the hash table is
2936 kept in. */
2937 l = bfd_hash_allocate (&_bfd_section_already_linked_table, sizeof *l);
2938 l->sec = sec;
2939 l->next = already_linked_list->entry;
2940 already_linked_list->entry = l;
2941 }
2942
2943 static struct bfd_hash_entry *
2944 already_linked_newfunc (struct bfd_hash_entry *entry ATTRIBUTE_UNUSED,
2945 struct bfd_hash_table *table,
2946 const char *string ATTRIBUTE_UNUSED)
2947 {
2948 struct bfd_section_already_linked_hash_entry *ret =
2949 bfd_hash_allocate (table, sizeof *ret);
2950
2951 ret->entry = NULL;
2952
2953 return &ret->root;
2954 }
2955
2956 bfd_boolean
2957 bfd_section_already_linked_table_init (void)
2958 {
2959 return bfd_hash_table_init_n (&_bfd_section_already_linked_table,
2960 already_linked_newfunc,
2961 sizeof (struct bfd_section_already_linked_hash_entry),
2962 42);
2963 }
2964
2965 void
2966 bfd_section_already_linked_table_free (void)
2967 {
2968 bfd_hash_table_free (&_bfd_section_already_linked_table);
2969 }
2970
2971 /* This is used on non-ELF inputs. */
2972
2973 void
2974 _bfd_generic_section_already_linked (bfd *abfd, asection *sec,
2975 struct bfd_link_info *info ATTRIBUTE_UNUSED)
2976 {
2977 flagword flags;
2978 const char *name;
2979 struct bfd_section_already_linked *l;
2980 struct bfd_section_already_linked_hash_entry *already_linked_list;
2981
2982 flags = sec->flags;
2983 if ((flags & SEC_LINK_ONCE) == 0)
2984 return;
2985
2986 /* FIXME: When doing a relocatable link, we may have trouble
2987 copying relocations in other sections that refer to local symbols
2988 in the section being discarded. Those relocations will have to
2989 be converted somehow; as of this writing I'm not sure that any of
2990 the backends handle that correctly.
2991
2992 It is tempting to instead not discard link once sections when
2993 doing a relocatable link (technically, they should be discarded
2994 whenever we are building constructors). However, that fails,
2995 because the linker winds up combining all the link once sections
2996 into a single large link once section, which defeats the purpose
2997 of having link once sections in the first place. */
2998
2999 name = bfd_get_section_name (abfd, sec);
3000
3001 already_linked_list = bfd_section_already_linked_table_lookup (name);
3002
3003 for (l = already_linked_list->entry; l != NULL; l = l->next)
3004 {
3005 bfd_boolean skip = FALSE;
3006 struct coff_comdat_info *s_comdat
3007 = bfd_coff_get_comdat_section (abfd, sec);
3008 struct coff_comdat_info *l_comdat
3009 = bfd_coff_get_comdat_section (l->sec->owner, l->sec);
3010
3011 /* We may have 3 different sections on the list: group section,
3012 comdat section and linkonce section. SEC may be a linkonce or
3013 comdat section. We always ignore group section. For non-COFF
3014 inputs, we also ignore comdat section.
3015
3016 FIXME: Is that safe to match a linkonce section with a comdat
3017 section for COFF inputs? */
3018 if ((l->sec->flags & SEC_GROUP) != 0)
3019 skip = TRUE;
3020 else if (bfd_get_flavour (abfd) == bfd_target_coff_flavour)
3021 {
3022 if (s_comdat != NULL
3023 && l_comdat != NULL
3024 && strcmp (s_comdat->name, l_comdat->name) != 0)
3025 skip = TRUE;
3026 }
3027 else if (l_comdat != NULL)
3028 skip = TRUE;
3029
3030 if (!skip)
3031 {
3032 /* The section has already been linked. See if we should
3033 issue a warning. */
3034 switch (flags & SEC_LINK_DUPLICATES)
3035 {
3036 default:
3037 abort ();
3038
3039 case SEC_LINK_DUPLICATES_DISCARD:
3040 break;
3041
3042 case SEC_LINK_DUPLICATES_ONE_ONLY:
3043 (*_bfd_error_handler)
3044 (_("%B: warning: ignoring duplicate section `%A'\n"),
3045 abfd, sec);
3046 break;
3047
3048 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
3049 /* FIXME: We should really dig out the contents of both
3050 sections and memcmp them. The COFF/PE spec says that
3051 the Microsoft linker does not implement this
3052 correctly, so I'm not going to bother doing it
3053 either. */
3054 /* Fall through. */
3055 case SEC_LINK_DUPLICATES_SAME_SIZE:
3056 if (sec->size != l->sec->size)
3057 (*_bfd_error_handler)
3058 (_("%B: warning: duplicate section `%A' has different size\n"),
3059 abfd, sec);
3060 break;
3061 }
3062
3063 /* Set the output_section field so that lang_add_section
3064 does not create a lang_input_section structure for this
3065 section. Since there might be a symbol in the section
3066 being discarded, we must retain a pointer to the section
3067 which we are really going to use. */
3068 sec->output_section = bfd_abs_section_ptr;
3069 sec->kept_section = l->sec;
3070
3071 return;
3072 }
3073 }
3074
3075 /* This is the first section with this name. Record it. */
3076 bfd_section_already_linked_table_insert (already_linked_list, sec);
3077 }
3078
3079 /* Convert symbols in excluded output sections to use a kept section. */
3080
3081 static bfd_boolean
3082 fix_syms (struct bfd_link_hash_entry *h, void *data)
3083 {
3084 bfd *obfd = (bfd *) data;
3085
3086 if (h->type == bfd_link_hash_warning)
3087 h = h->u.i.link;
3088
3089 if (h->type == bfd_link_hash_defined
3090 || h->type == bfd_link_hash_defweak)
3091 {
3092 asection *s = h->u.def.section;
3093 if (s != NULL
3094 && s->output_section != NULL
3095 && (s->output_section->flags & SEC_EXCLUDE) != 0
3096 && bfd_section_removed_from_list (obfd, s->output_section))
3097 {
3098 asection *op, *op1;
3099
3100 h->u.def.value += s->output_offset + s->output_section->vma;
3101
3102 /* Find preceding kept section. */
3103 for (op1 = s->output_section->prev; op1 != NULL; op1 = op1->prev)
3104 if ((op1->flags & SEC_EXCLUDE) == 0
3105 && !bfd_section_removed_from_list (obfd, op1))
3106 break;
3107
3108 /* Find following kept section. Start at prev->next because
3109 other sections may have been added after S was removed. */
3110 if (s->output_section->prev != NULL)
3111 op = s->output_section->prev->next;
3112 else
3113 op = s->output_section->owner->sections;
3114 for (; op != NULL; op = op->next)
3115 if ((op->flags & SEC_EXCLUDE) == 0
3116 && !bfd_section_removed_from_list (obfd, op))
3117 break;
3118
3119 /* Choose better of two sections, based on flags. The idea
3120 is to choose a section that will be in the same segment
3121 as S would have been if it was kept. */
3122 if (op1 == NULL)
3123 {
3124 if (op == NULL)
3125 op = bfd_abs_section_ptr;
3126 }
3127 else if (op == NULL)
3128 op = op1;
3129 else if (((op1->flags ^ op->flags)
3130 & (SEC_ALLOC | SEC_THREAD_LOCAL)) != 0)
3131 {
3132 if (((op->flags ^ s->flags)
3133 & (SEC_ALLOC | SEC_THREAD_LOCAL)) != 0)
3134 op = op1;
3135 }
3136 else if (((op1->flags ^ op->flags) & SEC_READONLY) != 0)
3137 {
3138 if (((op->flags ^ s->flags) & SEC_READONLY) != 0)
3139 op = op1;
3140 }
3141 else if (((op1->flags ^ op->flags) & SEC_CODE) != 0)
3142 {
3143 if (((op->flags ^ s->flags) & SEC_CODE) != 0)
3144 op = op1;
3145 }
3146 else
3147 {
3148 /* Flags we care about are the same. Prefer the following
3149 section if that will result in a positive valued sym. */
3150 if (h->u.def.value < op->vma)
3151 op = op1;
3152 }
3153
3154 h->u.def.value -= op->vma;
3155 h->u.def.section = op;
3156 }
3157 }
3158
3159 return TRUE;
3160 }
3161
3162 void
3163 _bfd_fix_excluded_sec_syms (bfd *obfd, struct bfd_link_info *info)
3164 {
3165 bfd_link_hash_traverse (info->hash, fix_syms, obfd);
3166 }
This page took 0.093539 seconds and 4 git commands to generate.