Use std::vector on tdesc->reg_defs (gdbserver/tdesc.h)
[deliverable/binutils-gdb.git] / bfd / linker.c
1 /* linker.c -- BFD linker routines
2 Copyright (C) 1993-2017 Free Software Foundation, Inc.
3 Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "libbfd.h"
25 #include "bfdlink.h"
26 #include "genlink.h"
27
28 /*
29 SECTION
30 Linker Functions
31
32 @cindex Linker
33 The linker uses three special entry points in the BFD target
34 vector. It is not necessary to write special routines for
35 these entry points when creating a new BFD back end, since
36 generic versions are provided. However, writing them can
37 speed up linking and make it use significantly less runtime
38 memory.
39
40 The first routine creates a hash table used by the other
41 routines. The second routine adds the symbols from an object
42 file to the hash table. The third routine takes all the
43 object files and links them together to create the output
44 file. These routines are designed so that the linker proper
45 does not need to know anything about the symbols in the object
46 files that it is linking. The linker merely arranges the
47 sections as directed by the linker script and lets BFD handle
48 the details of symbols and relocs.
49
50 The second routine and third routines are passed a pointer to
51 a <<struct bfd_link_info>> structure (defined in
52 <<bfdlink.h>>) which holds information relevant to the link,
53 including the linker hash table (which was created by the
54 first routine) and a set of callback functions to the linker
55 proper.
56
57 The generic linker routines are in <<linker.c>>, and use the
58 header file <<genlink.h>>. As of this writing, the only back
59 ends which have implemented versions of these routines are
60 a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>). The a.out
61 routines are used as examples throughout this section.
62
63 @menu
64 @* Creating a Linker Hash Table::
65 @* Adding Symbols to the Hash Table::
66 @* Performing the Final Link::
67 @end menu
68
69 INODE
70 Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
71 SUBSECTION
72 Creating a linker hash table
73
74 @cindex _bfd_link_hash_table_create in target vector
75 @cindex target vector (_bfd_link_hash_table_create)
76 The linker routines must create a hash table, which must be
77 derived from <<struct bfd_link_hash_table>> described in
78 <<bfdlink.c>>. @xref{Hash Tables}, for information on how to
79 create a derived hash table. This entry point is called using
80 the target vector of the linker output file.
81
82 The <<_bfd_link_hash_table_create>> entry point must allocate
83 and initialize an instance of the desired hash table. If the
84 back end does not require any additional information to be
85 stored with the entries in the hash table, the entry point may
86 simply create a <<struct bfd_link_hash_table>>. Most likely,
87 however, some additional information will be needed.
88
89 For example, with each entry in the hash table the a.out
90 linker keeps the index the symbol has in the final output file
91 (this index number is used so that when doing a relocatable
92 link the symbol index used in the output file can be quickly
93 filled in when copying over a reloc). The a.out linker code
94 defines the required structures and functions for a hash table
95 derived from <<struct bfd_link_hash_table>>. The a.out linker
96 hash table is created by the function
97 <<NAME(aout,link_hash_table_create)>>; it simply allocates
98 space for the hash table, initializes it, and returns a
99 pointer to it.
100
101 When writing the linker routines for a new back end, you will
102 generally not know exactly which fields will be required until
103 you have finished. You should simply create a new hash table
104 which defines no additional fields, and then simply add fields
105 as they become necessary.
106
107 INODE
108 Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
109 SUBSECTION
110 Adding symbols to the hash table
111
112 @cindex _bfd_link_add_symbols in target vector
113 @cindex target vector (_bfd_link_add_symbols)
114 The linker proper will call the <<_bfd_link_add_symbols>>
115 entry point for each object file or archive which is to be
116 linked (typically these are the files named on the command
117 line, but some may also come from the linker script). The
118 entry point is responsible for examining the file. For an
119 object file, BFD must add any relevant symbol information to
120 the hash table. For an archive, BFD must determine which
121 elements of the archive should be used and adding them to the
122 link.
123
124 The a.out version of this entry point is
125 <<NAME(aout,link_add_symbols)>>.
126
127 @menu
128 @* Differing file formats::
129 @* Adding symbols from an object file::
130 @* Adding symbols from an archive::
131 @end menu
132
133 INODE
134 Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
135 SUBSUBSECTION
136 Differing file formats
137
138 Normally all the files involved in a link will be of the same
139 format, but it is also possible to link together different
140 format object files, and the back end must support that. The
141 <<_bfd_link_add_symbols>> entry point is called via the target
142 vector of the file to be added. This has an important
143 consequence: the function may not assume that the hash table
144 is the type created by the corresponding
145 <<_bfd_link_hash_table_create>> vector. All the
146 <<_bfd_link_add_symbols>> function can assume about the hash
147 table is that it is derived from <<struct
148 bfd_link_hash_table>>.
149
150 Sometimes the <<_bfd_link_add_symbols>> function must store
151 some information in the hash table entry to be used by the
152 <<_bfd_final_link>> function. In such a case the output bfd
153 xvec must be checked to make sure that the hash table was
154 created by an object file of the same format.
155
156 The <<_bfd_final_link>> routine must be prepared to handle a
157 hash entry without any extra information added by the
158 <<_bfd_link_add_symbols>> function. A hash entry without
159 extra information will also occur when the linker script
160 directs the linker to create a symbol. Note that, regardless
161 of how a hash table entry is added, all the fields will be
162 initialized to some sort of null value by the hash table entry
163 initialization function.
164
165 See <<ecoff_link_add_externals>> for an example of how to
166 check the output bfd before saving information (in this
167 case, the ECOFF external symbol debugging information) in a
168 hash table entry.
169
170 INODE
171 Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
172 SUBSUBSECTION
173 Adding symbols from an object file
174
175 When the <<_bfd_link_add_symbols>> routine is passed an object
176 file, it must add all externally visible symbols in that
177 object file to the hash table. The actual work of adding the
178 symbol to the hash table is normally handled by the function
179 <<_bfd_generic_link_add_one_symbol>>. The
180 <<_bfd_link_add_symbols>> routine is responsible for reading
181 all the symbols from the object file and passing the correct
182 information to <<_bfd_generic_link_add_one_symbol>>.
183
184 The <<_bfd_link_add_symbols>> routine should not use
185 <<bfd_canonicalize_symtab>> to read the symbols. The point of
186 providing this routine is to avoid the overhead of converting
187 the symbols into generic <<asymbol>> structures.
188
189 @findex _bfd_generic_link_add_one_symbol
190 <<_bfd_generic_link_add_one_symbol>> handles the details of
191 combining common symbols, warning about multiple definitions,
192 and so forth. It takes arguments which describe the symbol to
193 add, notably symbol flags, a section, and an offset. The
194 symbol flags include such things as <<BSF_WEAK>> or
195 <<BSF_INDIRECT>>. The section is a section in the object
196 file, or something like <<bfd_und_section_ptr>> for an undefined
197 symbol or <<bfd_com_section_ptr>> for a common symbol.
198
199 If the <<_bfd_final_link>> routine is also going to need to
200 read the symbol information, the <<_bfd_link_add_symbols>>
201 routine should save it somewhere attached to the object file
202 BFD. However, the information should only be saved if the
203 <<keep_memory>> field of the <<info>> argument is TRUE, so
204 that the <<-no-keep-memory>> linker switch is effective.
205
206 The a.out function which adds symbols from an object file is
207 <<aout_link_add_object_symbols>>, and most of the interesting
208 work is in <<aout_link_add_symbols>>. The latter saves
209 pointers to the hash tables entries created by
210 <<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
211 so that the <<_bfd_final_link>> routine does not have to call
212 the hash table lookup routine to locate the entry.
213
214 INODE
215 Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
216 SUBSUBSECTION
217 Adding symbols from an archive
218
219 When the <<_bfd_link_add_symbols>> routine is passed an
220 archive, it must look through the symbols defined by the
221 archive and decide which elements of the archive should be
222 included in the link. For each such element it must call the
223 <<add_archive_element>> linker callback, and it must add the
224 symbols from the object file to the linker hash table. (The
225 callback may in fact indicate that a replacement BFD should be
226 used, in which case the symbols from that BFD should be added
227 to the linker hash table instead.)
228
229 @findex _bfd_generic_link_add_archive_symbols
230 In most cases the work of looking through the symbols in the
231 archive should be done by the
232 <<_bfd_generic_link_add_archive_symbols>> function.
233 <<_bfd_generic_link_add_archive_symbols>> is passed a function
234 to call to make the final decision about adding an archive
235 element to the link and to do the actual work of adding the
236 symbols to the linker hash table. If the element is to
237 be included, the <<add_archive_element>> linker callback
238 routine must be called with the element as an argument, and
239 the element's symbols must be added to the linker hash table
240 just as though the element had itself been passed to the
241 <<_bfd_link_add_symbols>> function.
242
243 When the a.out <<_bfd_link_add_symbols>> function receives an
244 archive, it calls <<_bfd_generic_link_add_archive_symbols>>
245 passing <<aout_link_check_archive_element>> as the function
246 argument. <<aout_link_check_archive_element>> calls
247 <<aout_link_check_ar_symbols>>. If the latter decides to add
248 the element (an element is only added if it provides a real,
249 non-common, definition for a previously undefined or common
250 symbol) it calls the <<add_archive_element>> callback and then
251 <<aout_link_check_archive_element>> calls
252 <<aout_link_add_symbols>> to actually add the symbols to the
253 linker hash table - possibly those of a substitute BFD, if the
254 <<add_archive_element>> callback avails itself of that option.
255
256 The ECOFF back end is unusual in that it does not normally
257 call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
258 archives already contain a hash table of symbols. The ECOFF
259 back end searches the archive itself to avoid the overhead of
260 creating a new hash table.
261
262 INODE
263 Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
264 SUBSECTION
265 Performing the final link
266
267 @cindex _bfd_link_final_link in target vector
268 @cindex target vector (_bfd_final_link)
269 When all the input files have been processed, the linker calls
270 the <<_bfd_final_link>> entry point of the output BFD. This
271 routine is responsible for producing the final output file,
272 which has several aspects. It must relocate the contents of
273 the input sections and copy the data into the output sections.
274 It must build an output symbol table including any local
275 symbols from the input files and the global symbols from the
276 hash table. When producing relocatable output, it must
277 modify the input relocs and write them into the output file.
278 There may also be object format dependent work to be done.
279
280 The linker will also call the <<write_object_contents>> entry
281 point when the BFD is closed. The two entry points must work
282 together in order to produce the correct output file.
283
284 The details of how this works are inevitably dependent upon
285 the specific object file format. The a.out
286 <<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
287
288 @menu
289 @* Information provided by the linker::
290 @* Relocating the section contents::
291 @* Writing the symbol table::
292 @end menu
293
294 INODE
295 Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
296 SUBSUBSECTION
297 Information provided by the linker
298
299 Before the linker calls the <<_bfd_final_link>> entry point,
300 it sets up some data structures for the function to use.
301
302 The <<input_bfds>> field of the <<bfd_link_info>> structure
303 will point to a list of all the input files included in the
304 link. These files are linked through the <<link.next>> field
305 of the <<bfd>> structure.
306
307 Each section in the output file will have a list of
308 <<link_order>> structures attached to the <<map_head.link_order>>
309 field (the <<link_order>> structure is defined in
310 <<bfdlink.h>>). These structures describe how to create the
311 contents of the output section in terms of the contents of
312 various input sections, fill constants, and, eventually, other
313 types of information. They also describe relocs that must be
314 created by the BFD backend, but do not correspond to any input
315 file; this is used to support -Ur, which builds constructors
316 while generating a relocatable object file.
317
318 INODE
319 Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
320 SUBSUBSECTION
321 Relocating the section contents
322
323 The <<_bfd_final_link>> function should look through the
324 <<link_order>> structures attached to each section of the
325 output file. Each <<link_order>> structure should either be
326 handled specially, or it should be passed to the function
327 <<_bfd_default_link_order>> which will do the right thing
328 (<<_bfd_default_link_order>> is defined in <<linker.c>>).
329
330 For efficiency, a <<link_order>> of type
331 <<bfd_indirect_link_order>> whose associated section belongs
332 to a BFD of the same format as the output BFD must be handled
333 specially. This type of <<link_order>> describes part of an
334 output section in terms of a section belonging to one of the
335 input files. The <<_bfd_final_link>> function should read the
336 contents of the section and any associated relocs, apply the
337 relocs to the section contents, and write out the modified
338 section contents. If performing a relocatable link, the
339 relocs themselves must also be modified and written out.
340
341 @findex _bfd_relocate_contents
342 @findex _bfd_final_link_relocate
343 The functions <<_bfd_relocate_contents>> and
344 <<_bfd_final_link_relocate>> provide some general support for
345 performing the actual relocations, notably overflow checking.
346 Their arguments include information about the symbol the
347 relocation is against and a <<reloc_howto_type>> argument
348 which describes the relocation to perform. These functions
349 are defined in <<reloc.c>>.
350
351 The a.out function which handles reading, relocating, and
352 writing section contents is <<aout_link_input_section>>. The
353 actual relocation is done in <<aout_link_input_section_std>>
354 and <<aout_link_input_section_ext>>.
355
356 INODE
357 Writing the symbol table, , Relocating the section contents, Performing the Final Link
358 SUBSUBSECTION
359 Writing the symbol table
360
361 The <<_bfd_final_link>> function must gather all the symbols
362 in the input files and write them out. It must also write out
363 all the symbols in the global hash table. This must be
364 controlled by the <<strip>> and <<discard>> fields of the
365 <<bfd_link_info>> structure.
366
367 The local symbols of the input files will not have been
368 entered into the linker hash table. The <<_bfd_final_link>>
369 routine must consider each input file and include the symbols
370 in the output file. It may be convenient to do this when
371 looking through the <<link_order>> structures, or it may be
372 done by stepping through the <<input_bfds>> list.
373
374 The <<_bfd_final_link>> routine must also traverse the global
375 hash table to gather all the externally visible symbols. It
376 is possible that most of the externally visible symbols may be
377 written out when considering the symbols of each input file,
378 but it is still necessary to traverse the hash table since the
379 linker script may have defined some symbols that are not in
380 any of the input files.
381
382 The <<strip>> field of the <<bfd_link_info>> structure
383 controls which symbols are written out. The possible values
384 are listed in <<bfdlink.h>>. If the value is <<strip_some>>,
385 then the <<keep_hash>> field of the <<bfd_link_info>>
386 structure is a hash table of symbols to keep; each symbol
387 should be looked up in this hash table, and only symbols which
388 are present should be included in the output file.
389
390 If the <<strip>> field of the <<bfd_link_info>> structure
391 permits local symbols to be written out, the <<discard>> field
392 is used to further controls which local symbols are included
393 in the output file. If the value is <<discard_l>>, then all
394 local symbols which begin with a certain prefix are discarded;
395 this is controlled by the <<bfd_is_local_label_name>> entry point.
396
397 The a.out backend handles symbols by calling
398 <<aout_link_write_symbols>> on each input BFD and then
399 traversing the global hash table with the function
400 <<aout_link_write_other_symbol>>. It builds a string table
401 while writing out the symbols, which is written to the output
402 file at the end of <<NAME(aout,final_link)>>.
403 */
404
405 static bfd_boolean generic_link_add_object_symbols
406 (bfd *, struct bfd_link_info *);
407 static bfd_boolean generic_link_check_archive_element
408 (bfd *, struct bfd_link_info *, struct bfd_link_hash_entry *, const char *,
409 bfd_boolean *);
410 static bfd_boolean generic_link_add_symbol_list
411 (bfd *, struct bfd_link_info *, bfd_size_type count, asymbol **);
412 static bfd_boolean generic_add_output_symbol
413 (bfd *, size_t *psymalloc, asymbol *);
414 static bfd_boolean default_data_link_order
415 (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *);
416 static bfd_boolean default_indirect_link_order
417 (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *,
418 bfd_boolean);
419
420 /* The link hash table structure is defined in bfdlink.h. It provides
421 a base hash table which the backend specific hash tables are built
422 upon. */
423
424 /* Routine to create an entry in the link hash table. */
425
426 struct bfd_hash_entry *
427 _bfd_link_hash_newfunc (struct bfd_hash_entry *entry,
428 struct bfd_hash_table *table,
429 const char *string)
430 {
431 /* Allocate the structure if it has not already been allocated by a
432 subclass. */
433 if (entry == NULL)
434 {
435 entry = (struct bfd_hash_entry *)
436 bfd_hash_allocate (table, sizeof (struct bfd_link_hash_entry));
437 if (entry == NULL)
438 return entry;
439 }
440
441 /* Call the allocation method of the superclass. */
442 entry = bfd_hash_newfunc (entry, table, string);
443 if (entry)
444 {
445 struct bfd_link_hash_entry *h = (struct bfd_link_hash_entry *) entry;
446
447 /* Initialize the local fields. */
448 memset ((char *) &h->root + sizeof (h->root), 0,
449 sizeof (*h) - sizeof (h->root));
450 }
451
452 return entry;
453 }
454
455 /* Initialize a link hash table. The BFD argument is the one
456 responsible for creating this table. */
457
458 bfd_boolean
459 _bfd_link_hash_table_init
460 (struct bfd_link_hash_table *table,
461 bfd *abfd ATTRIBUTE_UNUSED,
462 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
463 struct bfd_hash_table *,
464 const char *),
465 unsigned int entsize)
466 {
467 bfd_boolean ret;
468
469 BFD_ASSERT (!abfd->is_linker_output && !abfd->link.hash);
470 table->undefs = NULL;
471 table->undefs_tail = NULL;
472 table->type = bfd_link_generic_hash_table;
473
474 ret = bfd_hash_table_init (&table->table, newfunc, entsize);
475 if (ret)
476 {
477 /* Arrange for destruction of this hash table on closing ABFD. */
478 table->hash_table_free = _bfd_generic_link_hash_table_free;
479 abfd->link.hash = table;
480 abfd->is_linker_output = TRUE;
481 }
482 return ret;
483 }
484
485 /* Look up a symbol in a link hash table. If follow is TRUE, we
486 follow bfd_link_hash_indirect and bfd_link_hash_warning links to
487 the real symbol. */
488
489 struct bfd_link_hash_entry *
490 bfd_link_hash_lookup (struct bfd_link_hash_table *table,
491 const char *string,
492 bfd_boolean create,
493 bfd_boolean copy,
494 bfd_boolean follow)
495 {
496 struct bfd_link_hash_entry *ret;
497
498 ret = ((struct bfd_link_hash_entry *)
499 bfd_hash_lookup (&table->table, string, create, copy));
500
501 if (follow && ret != NULL)
502 {
503 while (ret->type == bfd_link_hash_indirect
504 || ret->type == bfd_link_hash_warning)
505 ret = ret->u.i.link;
506 }
507
508 return ret;
509 }
510
511 /* Look up a symbol in the main linker hash table if the symbol might
512 be wrapped. This should only be used for references to an
513 undefined symbol, not for definitions of a symbol. */
514
515 struct bfd_link_hash_entry *
516 bfd_wrapped_link_hash_lookup (bfd *abfd,
517 struct bfd_link_info *info,
518 const char *string,
519 bfd_boolean create,
520 bfd_boolean copy,
521 bfd_boolean follow)
522 {
523 bfd_size_type amt;
524
525 if (info->wrap_hash != NULL)
526 {
527 const char *l;
528 char prefix = '\0';
529
530 l = string;
531 if (*l == bfd_get_symbol_leading_char (abfd) || *l == info->wrap_char)
532 {
533 prefix = *l;
534 ++l;
535 }
536
537 #undef WRAP
538 #define WRAP "__wrap_"
539
540 if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL)
541 {
542 char *n;
543 struct bfd_link_hash_entry *h;
544
545 /* This symbol is being wrapped. We want to replace all
546 references to SYM with references to __wrap_SYM. */
547
548 amt = strlen (l) + sizeof WRAP + 1;
549 n = (char *) bfd_malloc (amt);
550 if (n == NULL)
551 return NULL;
552
553 n[0] = prefix;
554 n[1] = '\0';
555 strcat (n, WRAP);
556 strcat (n, l);
557 h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
558 free (n);
559 return h;
560 }
561
562 #undef REAL
563 #define REAL "__real_"
564
565 if (*l == '_'
566 && CONST_STRNEQ (l, REAL)
567 && bfd_hash_lookup (info->wrap_hash, l + sizeof REAL - 1,
568 FALSE, FALSE) != NULL)
569 {
570 char *n;
571 struct bfd_link_hash_entry *h;
572
573 /* This is a reference to __real_SYM, where SYM is being
574 wrapped. We want to replace all references to __real_SYM
575 with references to SYM. */
576
577 amt = strlen (l + sizeof REAL - 1) + 2;
578 n = (char *) bfd_malloc (amt);
579 if (n == NULL)
580 return NULL;
581
582 n[0] = prefix;
583 n[1] = '\0';
584 strcat (n, l + sizeof REAL - 1);
585 h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
586 free (n);
587 return h;
588 }
589
590 #undef REAL
591 }
592
593 return bfd_link_hash_lookup (info->hash, string, create, copy, follow);
594 }
595
596 /* If H is a wrapped symbol, ie. the symbol name starts with "__wrap_"
597 and the remainder is found in wrap_hash, return the real symbol. */
598
599 struct bfd_link_hash_entry *
600 unwrap_hash_lookup (struct bfd_link_info *info,
601 bfd *input_bfd,
602 struct bfd_link_hash_entry *h)
603 {
604 const char *l = h->root.string;
605
606 if (*l == bfd_get_symbol_leading_char (input_bfd)
607 || *l == info->wrap_char)
608 ++l;
609
610 if (CONST_STRNEQ (l, WRAP))
611 {
612 l += sizeof WRAP - 1;
613
614 if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL)
615 {
616 char save = 0;
617 if (l - (sizeof WRAP - 1) != h->root.string)
618 {
619 --l;
620 save = *l;
621 *(char *) l = *h->root.string;
622 }
623 h = bfd_link_hash_lookup (info->hash, l, FALSE, FALSE, FALSE);
624 if (save)
625 *(char *) l = save;
626 }
627 }
628 return h;
629 }
630 #undef WRAP
631
632 /* Traverse a generic link hash table. Differs from bfd_hash_traverse
633 in the treatment of warning symbols. When warning symbols are
634 created they replace the real symbol, so you don't get to see the
635 real symbol in a bfd_hash_travere. This traversal calls func with
636 the real symbol. */
637
638 void
639 bfd_link_hash_traverse
640 (struct bfd_link_hash_table *htab,
641 bfd_boolean (*func) (struct bfd_link_hash_entry *, void *),
642 void *info)
643 {
644 unsigned int i;
645
646 htab->table.frozen = 1;
647 for (i = 0; i < htab->table.size; i++)
648 {
649 struct bfd_link_hash_entry *p;
650
651 p = (struct bfd_link_hash_entry *) htab->table.table[i];
652 for (; p != NULL; p = (struct bfd_link_hash_entry *) p->root.next)
653 if (!(*func) (p->type == bfd_link_hash_warning ? p->u.i.link : p, info))
654 goto out;
655 }
656 out:
657 htab->table.frozen = 0;
658 }
659
660 /* Add a symbol to the linker hash table undefs list. */
661
662 void
663 bfd_link_add_undef (struct bfd_link_hash_table *table,
664 struct bfd_link_hash_entry *h)
665 {
666 BFD_ASSERT (h->u.undef.next == NULL);
667 if (table->undefs_tail != NULL)
668 table->undefs_tail->u.undef.next = h;
669 if (table->undefs == NULL)
670 table->undefs = h;
671 table->undefs_tail = h;
672 }
673
674 /* The undefs list was designed so that in normal use we don't need to
675 remove entries. However, if symbols on the list are changed from
676 bfd_link_hash_undefined to either bfd_link_hash_undefweak or
677 bfd_link_hash_new for some reason, then they must be removed from the
678 list. Failure to do so might result in the linker attempting to add
679 the symbol to the list again at a later stage. */
680
681 void
682 bfd_link_repair_undef_list (struct bfd_link_hash_table *table)
683 {
684 struct bfd_link_hash_entry **pun;
685
686 pun = &table->undefs;
687 while (*pun != NULL)
688 {
689 struct bfd_link_hash_entry *h = *pun;
690
691 if (h->type == bfd_link_hash_new
692 || h->type == bfd_link_hash_undefweak)
693 {
694 *pun = h->u.undef.next;
695 h->u.undef.next = NULL;
696 if (h == table->undefs_tail)
697 {
698 if (pun == &table->undefs)
699 table->undefs_tail = NULL;
700 else
701 /* pun points at an u.undef.next field. Go back to
702 the start of the link_hash_entry. */
703 table->undefs_tail = (struct bfd_link_hash_entry *)
704 ((char *) pun - ((char *) &h->u.undef.next - (char *) h));
705 break;
706 }
707 }
708 else
709 pun = &h->u.undef.next;
710 }
711 }
712 \f
713 /* Routine to create an entry in a generic link hash table. */
714
715 struct bfd_hash_entry *
716 _bfd_generic_link_hash_newfunc (struct bfd_hash_entry *entry,
717 struct bfd_hash_table *table,
718 const char *string)
719 {
720 /* Allocate the structure if it has not already been allocated by a
721 subclass. */
722 if (entry == NULL)
723 {
724 entry = (struct bfd_hash_entry *)
725 bfd_hash_allocate (table, sizeof (struct generic_link_hash_entry));
726 if (entry == NULL)
727 return entry;
728 }
729
730 /* Call the allocation method of the superclass. */
731 entry = _bfd_link_hash_newfunc (entry, table, string);
732 if (entry)
733 {
734 struct generic_link_hash_entry *ret;
735
736 /* Set local fields. */
737 ret = (struct generic_link_hash_entry *) entry;
738 ret->written = FALSE;
739 ret->sym = NULL;
740 }
741
742 return entry;
743 }
744
745 /* Create a generic link hash table. */
746
747 struct bfd_link_hash_table *
748 _bfd_generic_link_hash_table_create (bfd *abfd)
749 {
750 struct generic_link_hash_table *ret;
751 bfd_size_type amt = sizeof (struct generic_link_hash_table);
752
753 ret = (struct generic_link_hash_table *) bfd_malloc (amt);
754 if (ret == NULL)
755 return NULL;
756 if (! _bfd_link_hash_table_init (&ret->root, abfd,
757 _bfd_generic_link_hash_newfunc,
758 sizeof (struct generic_link_hash_entry)))
759 {
760 free (ret);
761 return NULL;
762 }
763 return &ret->root;
764 }
765
766 void
767 _bfd_generic_link_hash_table_free (bfd *obfd)
768 {
769 struct generic_link_hash_table *ret;
770
771 BFD_ASSERT (obfd->is_linker_output && obfd->link.hash);
772 ret = (struct generic_link_hash_table *) obfd->link.hash;
773 bfd_hash_table_free (&ret->root.table);
774 free (ret);
775 obfd->link.hash = NULL;
776 obfd->is_linker_output = FALSE;
777 }
778
779 /* Grab the symbols for an object file when doing a generic link. We
780 store the symbols in the outsymbols field. We need to keep them
781 around for the entire link to ensure that we only read them once.
782 If we read them multiple times, we might wind up with relocs and
783 the hash table pointing to different instances of the symbol
784 structure. */
785
786 bfd_boolean
787 bfd_generic_link_read_symbols (bfd *abfd)
788 {
789 if (bfd_get_outsymbols (abfd) == NULL)
790 {
791 long symsize;
792 long symcount;
793
794 symsize = bfd_get_symtab_upper_bound (abfd);
795 if (symsize < 0)
796 return FALSE;
797 bfd_get_outsymbols (abfd) = (struct bfd_symbol **) bfd_alloc (abfd,
798 symsize);
799 if (bfd_get_outsymbols (abfd) == NULL && symsize != 0)
800 return FALSE;
801 symcount = bfd_canonicalize_symtab (abfd, bfd_get_outsymbols (abfd));
802 if (symcount < 0)
803 return FALSE;
804 bfd_get_symcount (abfd) = symcount;
805 }
806
807 return TRUE;
808 }
809 \f
810 /* Indicate that we are only retrieving symbol values from this
811 section. We want the symbols to act as though the values in the
812 file are absolute. */
813
814 void
815 _bfd_generic_link_just_syms (asection *sec,
816 struct bfd_link_info *info ATTRIBUTE_UNUSED)
817 {
818 sec->sec_info_type = SEC_INFO_TYPE_JUST_SYMS;
819 sec->output_section = bfd_abs_section_ptr;
820 sec->output_offset = sec->vma;
821 }
822
823 /* Copy the symbol type and other attributes for a linker script
824 assignment from HSRC to HDEST.
825 The default implementation does nothing. */
826 void
827 _bfd_generic_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
828 struct bfd_link_hash_entry *hdest ATTRIBUTE_UNUSED,
829 struct bfd_link_hash_entry *hsrc ATTRIBUTE_UNUSED)
830 {
831 }
832
833 /* Generic function to add symbols from an object file to the
834 global hash table. */
835
836 bfd_boolean
837 _bfd_generic_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
838 {
839 bfd_boolean ret;
840
841 switch (bfd_get_format (abfd))
842 {
843 case bfd_object:
844 ret = generic_link_add_object_symbols (abfd, info);
845 break;
846 case bfd_archive:
847 ret = (_bfd_generic_link_add_archive_symbols
848 (abfd, info, generic_link_check_archive_element));
849 break;
850 default:
851 bfd_set_error (bfd_error_wrong_format);
852 ret = FALSE;
853 }
854
855 return ret;
856 }
857
858 /* Add symbols from an object file to the global hash table. */
859
860 static bfd_boolean
861 generic_link_add_object_symbols (bfd *abfd,
862 struct bfd_link_info *info)
863 {
864 bfd_size_type symcount;
865 struct bfd_symbol **outsyms;
866
867 if (!bfd_generic_link_read_symbols (abfd))
868 return FALSE;
869 symcount = _bfd_generic_link_get_symcount (abfd);
870 outsyms = _bfd_generic_link_get_symbols (abfd);
871 return generic_link_add_symbol_list (abfd, info, symcount, outsyms);
872 }
873 \f
874 /* Generic function to add symbols from an archive file to the global
875 hash file. This function presumes that the archive symbol table
876 has already been read in (this is normally done by the
877 bfd_check_format entry point). It looks through the archive symbol
878 table for symbols that are undefined or common in the linker global
879 symbol hash table. When one is found, the CHECKFN argument is used
880 to see if an object file should be included. This allows targets
881 to customize common symbol behaviour. CHECKFN should set *PNEEDED
882 to TRUE if the object file should be included, and must also call
883 the bfd_link_info add_archive_element callback function and handle
884 adding the symbols to the global hash table. CHECKFN must notice
885 if the callback indicates a substitute BFD, and arrange to add
886 those symbols instead if it does so. CHECKFN should only return
887 FALSE if some sort of error occurs. */
888
889 bfd_boolean
890 _bfd_generic_link_add_archive_symbols
891 (bfd *abfd,
892 struct bfd_link_info *info,
893 bfd_boolean (*checkfn) (bfd *, struct bfd_link_info *,
894 struct bfd_link_hash_entry *, const char *,
895 bfd_boolean *))
896 {
897 bfd_boolean loop;
898 bfd_size_type amt;
899 unsigned char *included;
900
901 if (! bfd_has_map (abfd))
902 {
903 /* An empty archive is a special case. */
904 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
905 return TRUE;
906 bfd_set_error (bfd_error_no_armap);
907 return FALSE;
908 }
909
910 amt = bfd_ardata (abfd)->symdef_count;
911 if (amt == 0)
912 return TRUE;
913 amt *= sizeof (*included);
914 included = (unsigned char *) bfd_zmalloc (amt);
915 if (included == NULL)
916 return FALSE;
917
918 do
919 {
920 carsym *arsyms;
921 carsym *arsym_end;
922 carsym *arsym;
923 unsigned int indx;
924 file_ptr last_ar_offset = -1;
925 bfd_boolean needed = FALSE;
926 bfd *element = NULL;
927
928 loop = FALSE;
929 arsyms = bfd_ardata (abfd)->symdefs;
930 arsym_end = arsyms + bfd_ardata (abfd)->symdef_count;
931 for (arsym = arsyms, indx = 0; arsym < arsym_end; arsym++, indx++)
932 {
933 struct bfd_link_hash_entry *h;
934 struct bfd_link_hash_entry *undefs_tail;
935
936 if (included[indx])
937 continue;
938 if (needed && arsym->file_offset == last_ar_offset)
939 {
940 included[indx] = 1;
941 continue;
942 }
943
944 h = bfd_link_hash_lookup (info->hash, arsym->name,
945 FALSE, FALSE, TRUE);
946
947 if (h == NULL
948 && info->pei386_auto_import
949 && CONST_STRNEQ (arsym->name, "__imp_"))
950 h = bfd_link_hash_lookup (info->hash, arsym->name + 6,
951 FALSE, FALSE, TRUE);
952 if (h == NULL)
953 continue;
954
955 if (h->type != bfd_link_hash_undefined
956 && h->type != bfd_link_hash_common)
957 {
958 if (h->type != bfd_link_hash_undefweak)
959 /* Symbol must be defined. Don't check it again. */
960 included[indx] = 1;
961 continue;
962 }
963
964 if (last_ar_offset != arsym->file_offset)
965 {
966 last_ar_offset = arsym->file_offset;
967 element = _bfd_get_elt_at_filepos (abfd, last_ar_offset);
968 if (element == NULL
969 || !bfd_check_format (element, bfd_object))
970 goto error_return;
971 }
972
973 undefs_tail = info->hash->undefs_tail;
974
975 /* CHECKFN will see if this element should be included, and
976 go ahead and include it if appropriate. */
977 if (! (*checkfn) (element, info, h, arsym->name, &needed))
978 goto error_return;
979
980 if (needed)
981 {
982 unsigned int mark;
983
984 /* Look backward to mark all symbols from this object file
985 which we have already seen in this pass. */
986 mark = indx;
987 do
988 {
989 included[mark] = 1;
990 if (mark == 0)
991 break;
992 --mark;
993 }
994 while (arsyms[mark].file_offset == last_ar_offset);
995
996 if (undefs_tail != info->hash->undefs_tail)
997 loop = TRUE;
998 }
999 }
1000 } while (loop);
1001
1002 free (included);
1003 return TRUE;
1004
1005 error_return:
1006 free (included);
1007 return FALSE;
1008 }
1009 \f
1010 /* See if we should include an archive element. */
1011
1012 static bfd_boolean
1013 generic_link_check_archive_element (bfd *abfd,
1014 struct bfd_link_info *info,
1015 struct bfd_link_hash_entry *h,
1016 const char *name ATTRIBUTE_UNUSED,
1017 bfd_boolean *pneeded)
1018 {
1019 asymbol **pp, **ppend;
1020
1021 *pneeded = FALSE;
1022
1023 if (!bfd_generic_link_read_symbols (abfd))
1024 return FALSE;
1025
1026 pp = _bfd_generic_link_get_symbols (abfd);
1027 ppend = pp + _bfd_generic_link_get_symcount (abfd);
1028 for (; pp < ppend; pp++)
1029 {
1030 asymbol *p;
1031
1032 p = *pp;
1033
1034 /* We are only interested in globally visible symbols. */
1035 if (! bfd_is_com_section (p->section)
1036 && (p->flags & (BSF_GLOBAL | BSF_INDIRECT | BSF_WEAK)) == 0)
1037 continue;
1038
1039 /* We are only interested if we know something about this
1040 symbol, and it is undefined or common. An undefined weak
1041 symbol (type bfd_link_hash_undefweak) is not considered to be
1042 a reference when pulling files out of an archive. See the
1043 SVR4 ABI, p. 4-27. */
1044 h = bfd_link_hash_lookup (info->hash, bfd_asymbol_name (p), FALSE,
1045 FALSE, TRUE);
1046 if (h == NULL
1047 || (h->type != bfd_link_hash_undefined
1048 && h->type != bfd_link_hash_common))
1049 continue;
1050
1051 /* P is a symbol we are looking for. */
1052
1053 if (! bfd_is_com_section (p->section)
1054 || (h->type == bfd_link_hash_undefined
1055 && h->u.undef.abfd == NULL))
1056 {
1057 /* P is not a common symbol, or an undefined reference was
1058 created from outside BFD such as from a linker -u option.
1059 This object file defines the symbol, so pull it in. */
1060 *pneeded = TRUE;
1061 if (!(*info->callbacks
1062 ->add_archive_element) (info, abfd, bfd_asymbol_name (p),
1063 &abfd))
1064 return FALSE;
1065 /* Potentially, the add_archive_element hook may have set a
1066 substitute BFD for us. */
1067 return bfd_link_add_symbols (abfd, info);
1068 }
1069
1070 /* P is a common symbol. */
1071
1072 if (h->type == bfd_link_hash_undefined)
1073 {
1074 bfd *symbfd;
1075 bfd_vma size;
1076 unsigned int power;
1077
1078 /* Turn the symbol into a common symbol but do not link in
1079 the object file. This is how a.out works. Object
1080 formats that require different semantics must implement
1081 this function differently. This symbol is already on the
1082 undefs list. We add the section to a common section
1083 attached to symbfd to ensure that it is in a BFD which
1084 will be linked in. */
1085 symbfd = h->u.undef.abfd;
1086 h->type = bfd_link_hash_common;
1087 h->u.c.p = (struct bfd_link_hash_common_entry *)
1088 bfd_hash_allocate (&info->hash->table,
1089 sizeof (struct bfd_link_hash_common_entry));
1090 if (h->u.c.p == NULL)
1091 return FALSE;
1092
1093 size = bfd_asymbol_value (p);
1094 h->u.c.size = size;
1095
1096 power = bfd_log2 (size);
1097 if (power > 4)
1098 power = 4;
1099 h->u.c.p->alignment_power = power;
1100
1101 if (p->section == bfd_com_section_ptr)
1102 h->u.c.p->section = bfd_make_section_old_way (symbfd, "COMMON");
1103 else
1104 h->u.c.p->section = bfd_make_section_old_way (symbfd,
1105 p->section->name);
1106 h->u.c.p->section->flags |= SEC_ALLOC;
1107 }
1108 else
1109 {
1110 /* Adjust the size of the common symbol if necessary. This
1111 is how a.out works. Object formats that require
1112 different semantics must implement this function
1113 differently. */
1114 if (bfd_asymbol_value (p) > h->u.c.size)
1115 h->u.c.size = bfd_asymbol_value (p);
1116 }
1117 }
1118
1119 /* This archive element is not needed. */
1120 return TRUE;
1121 }
1122
1123 /* Add the symbols from an object file to the global hash table. ABFD
1124 is the object file. INFO is the linker information. SYMBOL_COUNT
1125 is the number of symbols. SYMBOLS is the list of symbols. */
1126
1127 static bfd_boolean
1128 generic_link_add_symbol_list (bfd *abfd,
1129 struct bfd_link_info *info,
1130 bfd_size_type symbol_count,
1131 asymbol **symbols)
1132 {
1133 asymbol **pp, **ppend;
1134
1135 pp = symbols;
1136 ppend = symbols + symbol_count;
1137 for (; pp < ppend; pp++)
1138 {
1139 asymbol *p;
1140
1141 p = *pp;
1142
1143 if ((p->flags & (BSF_INDIRECT
1144 | BSF_WARNING
1145 | BSF_GLOBAL
1146 | BSF_CONSTRUCTOR
1147 | BSF_WEAK)) != 0
1148 || bfd_is_und_section (bfd_get_section (p))
1149 || bfd_is_com_section (bfd_get_section (p))
1150 || bfd_is_ind_section (bfd_get_section (p)))
1151 {
1152 const char *name;
1153 const char *string;
1154 struct generic_link_hash_entry *h;
1155 struct bfd_link_hash_entry *bh;
1156
1157 string = name = bfd_asymbol_name (p);
1158 if (((p->flags & BSF_INDIRECT) != 0
1159 || bfd_is_ind_section (p->section))
1160 && pp + 1 < ppend)
1161 {
1162 pp++;
1163 string = bfd_asymbol_name (*pp);
1164 }
1165 else if ((p->flags & BSF_WARNING) != 0
1166 && pp + 1 < ppend)
1167 {
1168 /* The name of P is actually the warning string, and the
1169 next symbol is the one to warn about. */
1170 pp++;
1171 name = bfd_asymbol_name (*pp);
1172 }
1173
1174 bh = NULL;
1175 if (! (_bfd_generic_link_add_one_symbol
1176 (info, abfd, name, p->flags, bfd_get_section (p),
1177 p->value, string, FALSE, FALSE, &bh)))
1178 return FALSE;
1179 h = (struct generic_link_hash_entry *) bh;
1180
1181 /* If this is a constructor symbol, and the linker didn't do
1182 anything with it, then we want to just pass the symbol
1183 through to the output file. This will happen when
1184 linking with -r. */
1185 if ((p->flags & BSF_CONSTRUCTOR) != 0
1186 && (h == NULL || h->root.type == bfd_link_hash_new))
1187 {
1188 p->udata.p = NULL;
1189 continue;
1190 }
1191
1192 /* Save the BFD symbol so that we don't lose any backend
1193 specific information that may be attached to it. We only
1194 want this one if it gives more information than the
1195 existing one; we don't want to replace a defined symbol
1196 with an undefined one. This routine may be called with a
1197 hash table other than the generic hash table, so we only
1198 do this if we are certain that the hash table is a
1199 generic one. */
1200 if (info->output_bfd->xvec == abfd->xvec)
1201 {
1202 if (h->sym == NULL
1203 || (! bfd_is_und_section (bfd_get_section (p))
1204 && (! bfd_is_com_section (bfd_get_section (p))
1205 || bfd_is_und_section (bfd_get_section (h->sym)))))
1206 {
1207 h->sym = p;
1208 /* BSF_OLD_COMMON is a hack to support COFF reloc
1209 reading, and it should go away when the COFF
1210 linker is switched to the new version. */
1211 if (bfd_is_com_section (bfd_get_section (p)))
1212 p->flags |= BSF_OLD_COMMON;
1213 }
1214 }
1215
1216 /* Store a back pointer from the symbol to the hash
1217 table entry for the benefit of relaxation code until
1218 it gets rewritten to not use asymbol structures.
1219 Setting this is also used to check whether these
1220 symbols were set up by the generic linker. */
1221 p->udata.p = h;
1222 }
1223 }
1224
1225 return TRUE;
1226 }
1227 \f
1228 /* We use a state table to deal with adding symbols from an object
1229 file. The first index into the state table describes the symbol
1230 from the object file. The second index into the state table is the
1231 type of the symbol in the hash table. */
1232
1233 /* The symbol from the object file is turned into one of these row
1234 values. */
1235
1236 enum link_row
1237 {
1238 UNDEF_ROW, /* Undefined. */
1239 UNDEFW_ROW, /* Weak undefined. */
1240 DEF_ROW, /* Defined. */
1241 DEFW_ROW, /* Weak defined. */
1242 COMMON_ROW, /* Common. */
1243 INDR_ROW, /* Indirect. */
1244 WARN_ROW, /* Warning. */
1245 SET_ROW /* Member of set. */
1246 };
1247
1248 /* apparently needed for Hitachi 3050R(HI-UX/WE2)? */
1249 #undef FAIL
1250
1251 /* The actions to take in the state table. */
1252
1253 enum link_action
1254 {
1255 FAIL, /* Abort. */
1256 UND, /* Mark symbol undefined. */
1257 WEAK, /* Mark symbol weak undefined. */
1258 DEF, /* Mark symbol defined. */
1259 DEFW, /* Mark symbol weak defined. */
1260 COM, /* Mark symbol common. */
1261 REF, /* Mark defined symbol referenced. */
1262 CREF, /* Possibly warn about common reference to defined symbol. */
1263 CDEF, /* Define existing common symbol. */
1264 NOACT, /* No action. */
1265 BIG, /* Mark symbol common using largest size. */
1266 MDEF, /* Multiple definition error. */
1267 MIND, /* Multiple indirect symbols. */
1268 IND, /* Make indirect symbol. */
1269 CIND, /* Make indirect symbol from existing common symbol. */
1270 SET, /* Add value to set. */
1271 MWARN, /* Make warning symbol. */
1272 WARN, /* Warn if referenced, else MWARN. */
1273 CYCLE, /* Repeat with symbol pointed to. */
1274 REFC, /* Mark indirect symbol referenced and then CYCLE. */
1275 WARNC /* Issue warning and then CYCLE. */
1276 };
1277
1278 /* The state table itself. The first index is a link_row and the
1279 second index is a bfd_link_hash_type. */
1280
1281 static const enum link_action link_action[8][8] =
1282 {
1283 /* current\prev new undef undefw def defw com indr warn */
1284 /* UNDEF_ROW */ {UND, NOACT, UND, REF, REF, NOACT, REFC, WARNC },
1285 /* UNDEFW_ROW */ {WEAK, NOACT, NOACT, REF, REF, NOACT, REFC, WARNC },
1286 /* DEF_ROW */ {DEF, DEF, DEF, MDEF, DEF, CDEF, MDEF, CYCLE },
1287 /* DEFW_ROW */ {DEFW, DEFW, DEFW, NOACT, NOACT, NOACT, NOACT, CYCLE },
1288 /* COMMON_ROW */ {COM, COM, COM, CREF, COM, BIG, REFC, WARNC },
1289 /* INDR_ROW */ {IND, IND, IND, MDEF, IND, CIND, MIND, CYCLE },
1290 /* WARN_ROW */ {MWARN, WARN, WARN, WARN, WARN, WARN, WARN, NOACT },
1291 /* SET_ROW */ {SET, SET, SET, SET, SET, SET, CYCLE, CYCLE }
1292 };
1293
1294 /* Most of the entries in the LINK_ACTION table are straightforward,
1295 but a few are somewhat subtle.
1296
1297 A reference to an indirect symbol (UNDEF_ROW/indr or
1298 UNDEFW_ROW/indr) is counted as a reference both to the indirect
1299 symbol and to the symbol the indirect symbol points to.
1300
1301 A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn)
1302 causes the warning to be issued.
1303
1304 A common definition of an indirect symbol (COMMON_ROW/indr) is
1305 treated as a multiple definition error. Likewise for an indirect
1306 definition of a common symbol (INDR_ROW/com).
1307
1308 An indirect definition of a warning (INDR_ROW/warn) does not cause
1309 the warning to be issued.
1310
1311 If a warning is created for an indirect symbol (WARN_ROW/indr) no
1312 warning is created for the symbol the indirect symbol points to.
1313
1314 Adding an entry to a set does not count as a reference to a set,
1315 and no warning is issued (SET_ROW/warn). */
1316
1317 /* Return the BFD in which a hash entry has been defined, if known. */
1318
1319 static bfd *
1320 hash_entry_bfd (struct bfd_link_hash_entry *h)
1321 {
1322 while (h->type == bfd_link_hash_warning)
1323 h = h->u.i.link;
1324 switch (h->type)
1325 {
1326 default:
1327 return NULL;
1328 case bfd_link_hash_undefined:
1329 case bfd_link_hash_undefweak:
1330 return h->u.undef.abfd;
1331 case bfd_link_hash_defined:
1332 case bfd_link_hash_defweak:
1333 return h->u.def.section->owner;
1334 case bfd_link_hash_common:
1335 return h->u.c.p->section->owner;
1336 }
1337 /*NOTREACHED*/
1338 }
1339
1340 /* Add a symbol to the global hash table.
1341 ABFD is the BFD the symbol comes from.
1342 NAME is the name of the symbol.
1343 FLAGS is the BSF_* bits associated with the symbol.
1344 SECTION is the section in which the symbol is defined; this may be
1345 bfd_und_section_ptr or bfd_com_section_ptr.
1346 VALUE is the value of the symbol, relative to the section.
1347 STRING is used for either an indirect symbol, in which case it is
1348 the name of the symbol to indirect to, or a warning symbol, in
1349 which case it is the warning string.
1350 COPY is TRUE if NAME or STRING must be copied into locally
1351 allocated memory if they need to be saved.
1352 COLLECT is TRUE if we should automatically collect gcc constructor
1353 or destructor names as collect2 does.
1354 HASHP, if not NULL, is a place to store the created hash table
1355 entry; if *HASHP is not NULL, the caller has already looked up
1356 the hash table entry, and stored it in *HASHP. */
1357
1358 bfd_boolean
1359 _bfd_generic_link_add_one_symbol (struct bfd_link_info *info,
1360 bfd *abfd,
1361 const char *name,
1362 flagword flags,
1363 asection *section,
1364 bfd_vma value,
1365 const char *string,
1366 bfd_boolean copy,
1367 bfd_boolean collect,
1368 struct bfd_link_hash_entry **hashp)
1369 {
1370 enum link_row row;
1371 struct bfd_link_hash_entry *h;
1372 struct bfd_link_hash_entry *inh = NULL;
1373 bfd_boolean cycle;
1374
1375 BFD_ASSERT (section != NULL);
1376
1377 if (bfd_is_ind_section (section)
1378 || (flags & BSF_INDIRECT) != 0)
1379 {
1380 row = INDR_ROW;
1381 /* Create the indirect symbol here. This is for the benefit of
1382 the plugin "notice" function.
1383 STRING is the name of the symbol we want to indirect to. */
1384 inh = bfd_wrapped_link_hash_lookup (abfd, info, string, TRUE,
1385 copy, FALSE);
1386 if (inh == NULL)
1387 return FALSE;
1388 }
1389 else if ((flags & BSF_WARNING) != 0)
1390 row = WARN_ROW;
1391 else if ((flags & BSF_CONSTRUCTOR) != 0)
1392 row = SET_ROW;
1393 else if (bfd_is_und_section (section))
1394 {
1395 if ((flags & BSF_WEAK) != 0)
1396 row = UNDEFW_ROW;
1397 else
1398 row = UNDEF_ROW;
1399 }
1400 else if ((flags & BSF_WEAK) != 0)
1401 row = DEFW_ROW;
1402 else if (bfd_is_com_section (section))
1403 {
1404 row = COMMON_ROW;
1405 if (!bfd_link_relocatable (info)
1406 && strcmp (name, "__gnu_lto_slim") == 0)
1407 _bfd_error_handler
1408 (_("%B: plugin needed to handle lto object"), abfd);
1409 }
1410 else
1411 row = DEF_ROW;
1412
1413 if (hashp != NULL && *hashp != NULL)
1414 h = *hashp;
1415 else
1416 {
1417 if (row == UNDEF_ROW || row == UNDEFW_ROW)
1418 h = bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, copy, FALSE);
1419 else
1420 h = bfd_link_hash_lookup (info->hash, name, TRUE, copy, FALSE);
1421 if (h == NULL)
1422 {
1423 if (hashp != NULL)
1424 *hashp = NULL;
1425 return FALSE;
1426 }
1427 }
1428
1429 if (info->notice_all
1430 || (info->notice_hash != NULL
1431 && bfd_hash_lookup (info->notice_hash, name, FALSE, FALSE) != NULL))
1432 {
1433 if (! (*info->callbacks->notice) (info, h, inh,
1434 abfd, section, value, flags))
1435 return FALSE;
1436 }
1437
1438 if (hashp != NULL)
1439 *hashp = h;
1440
1441 do
1442 {
1443 enum link_action action;
1444
1445 cycle = FALSE;
1446 action = link_action[(int) row][(int) h->type];
1447 switch (action)
1448 {
1449 case FAIL:
1450 abort ();
1451
1452 case NOACT:
1453 /* Do nothing. */
1454 break;
1455
1456 case UND:
1457 /* Make a new undefined symbol. */
1458 h->type = bfd_link_hash_undefined;
1459 h->u.undef.abfd = abfd;
1460 bfd_link_add_undef (info->hash, h);
1461 break;
1462
1463 case WEAK:
1464 /* Make a new weak undefined symbol. */
1465 h->type = bfd_link_hash_undefweak;
1466 h->u.undef.abfd = abfd;
1467 break;
1468
1469 case CDEF:
1470 /* We have found a definition for a symbol which was
1471 previously common. */
1472 BFD_ASSERT (h->type == bfd_link_hash_common);
1473 (*info->callbacks->multiple_common) (info, h, abfd,
1474 bfd_link_hash_defined, 0);
1475 /* Fall through. */
1476 case DEF:
1477 case DEFW:
1478 {
1479 enum bfd_link_hash_type oldtype;
1480
1481 /* Define a symbol. */
1482 oldtype = h->type;
1483 if (action == DEFW)
1484 h->type = bfd_link_hash_defweak;
1485 else
1486 h->type = bfd_link_hash_defined;
1487 h->u.def.section = section;
1488 h->u.def.value = value;
1489 h->linker_def = 0;
1490
1491 /* If we have been asked to, we act like collect2 and
1492 identify all functions that might be global
1493 constructors and destructors and pass them up in a
1494 callback. We only do this for certain object file
1495 types, since many object file types can handle this
1496 automatically. */
1497 if (collect && name[0] == '_')
1498 {
1499 const char *s;
1500
1501 /* A constructor or destructor name starts like this:
1502 _+GLOBAL_[_.$][ID][_.$] where the first [_.$] and
1503 the second are the same character (we accept any
1504 character there, in case a new object file format
1505 comes along with even worse naming restrictions). */
1506
1507 #define CONS_PREFIX "GLOBAL_"
1508 #define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
1509
1510 s = name + 1;
1511 while (*s == '_')
1512 ++s;
1513 if (s[0] == 'G' && CONST_STRNEQ (s, CONS_PREFIX))
1514 {
1515 char c;
1516
1517 c = s[CONS_PREFIX_LEN + 1];
1518 if ((c == 'I' || c == 'D')
1519 && s[CONS_PREFIX_LEN] == s[CONS_PREFIX_LEN + 2])
1520 {
1521 /* If this is a definition of a symbol which
1522 was previously weakly defined, we are in
1523 trouble. We have already added a
1524 constructor entry for the weak defined
1525 symbol, and now we are trying to add one
1526 for the new symbol. Fortunately, this case
1527 should never arise in practice. */
1528 if (oldtype == bfd_link_hash_defweak)
1529 abort ();
1530
1531 (*info->callbacks->constructor) (info, c == 'I',
1532 h->root.string, abfd,
1533 section, value);
1534 }
1535 }
1536 }
1537 }
1538
1539 break;
1540
1541 case COM:
1542 /* We have found a common definition for a symbol. */
1543 if (h->type == bfd_link_hash_new)
1544 bfd_link_add_undef (info->hash, h);
1545 h->type = bfd_link_hash_common;
1546 h->u.c.p = (struct bfd_link_hash_common_entry *)
1547 bfd_hash_allocate (&info->hash->table,
1548 sizeof (struct bfd_link_hash_common_entry));
1549 if (h->u.c.p == NULL)
1550 return FALSE;
1551
1552 h->u.c.size = value;
1553
1554 /* Select a default alignment based on the size. This may
1555 be overridden by the caller. */
1556 {
1557 unsigned int power;
1558
1559 power = bfd_log2 (value);
1560 if (power > 4)
1561 power = 4;
1562 h->u.c.p->alignment_power = power;
1563 }
1564
1565 /* The section of a common symbol is only used if the common
1566 symbol is actually allocated. It basically provides a
1567 hook for the linker script to decide which output section
1568 the common symbols should be put in. In most cases, the
1569 section of a common symbol will be bfd_com_section_ptr,
1570 the code here will choose a common symbol section named
1571 "COMMON", and the linker script will contain *(COMMON) in
1572 the appropriate place. A few targets use separate common
1573 sections for small symbols, and they require special
1574 handling. */
1575 if (section == bfd_com_section_ptr)
1576 {
1577 h->u.c.p->section = bfd_make_section_old_way (abfd, "COMMON");
1578 h->u.c.p->section->flags |= SEC_ALLOC;
1579 }
1580 else if (section->owner != abfd)
1581 {
1582 h->u.c.p->section = bfd_make_section_old_way (abfd,
1583 section->name);
1584 h->u.c.p->section->flags |= SEC_ALLOC;
1585 }
1586 else
1587 h->u.c.p->section = section;
1588 h->linker_def = 0;
1589 break;
1590
1591 case REF:
1592 /* A reference to a defined symbol. */
1593 if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1594 h->u.undef.next = h;
1595 break;
1596
1597 case BIG:
1598 /* We have found a common definition for a symbol which
1599 already had a common definition. Use the maximum of the
1600 two sizes, and use the section required by the larger symbol. */
1601 BFD_ASSERT (h->type == bfd_link_hash_common);
1602 (*info->callbacks->multiple_common) (info, h, abfd,
1603 bfd_link_hash_common, value);
1604 if (value > h->u.c.size)
1605 {
1606 unsigned int power;
1607
1608 h->u.c.size = value;
1609
1610 /* Select a default alignment based on the size. This may
1611 be overridden by the caller. */
1612 power = bfd_log2 (value);
1613 if (power > 4)
1614 power = 4;
1615 h->u.c.p->alignment_power = power;
1616
1617 /* Some systems have special treatment for small commons,
1618 hence we want to select the section used by the larger
1619 symbol. This makes sure the symbol does not go in a
1620 small common section if it is now too large. */
1621 if (section == bfd_com_section_ptr)
1622 {
1623 h->u.c.p->section
1624 = bfd_make_section_old_way (abfd, "COMMON");
1625 h->u.c.p->section->flags |= SEC_ALLOC;
1626 }
1627 else if (section->owner != abfd)
1628 {
1629 h->u.c.p->section
1630 = bfd_make_section_old_way (abfd, section->name);
1631 h->u.c.p->section->flags |= SEC_ALLOC;
1632 }
1633 else
1634 h->u.c.p->section = section;
1635 }
1636 break;
1637
1638 case CREF:
1639 /* We have found a common definition for a symbol which
1640 was already defined. */
1641 (*info->callbacks->multiple_common) (info, h, abfd,
1642 bfd_link_hash_common, value);
1643 break;
1644
1645 case MIND:
1646 /* Multiple indirect symbols. This is OK if they both point
1647 to the same symbol. */
1648 if (strcmp (h->u.i.link->root.string, string) == 0)
1649 break;
1650 /* Fall through. */
1651 case MDEF:
1652 /* Handle a multiple definition. */
1653 (*info->callbacks->multiple_definition) (info, h,
1654 abfd, section, value);
1655 break;
1656
1657 case CIND:
1658 /* Create an indirect symbol from an existing common symbol. */
1659 BFD_ASSERT (h->type == bfd_link_hash_common);
1660 (*info->callbacks->multiple_common) (info, h, abfd,
1661 bfd_link_hash_indirect, 0);
1662 /* Fall through. */
1663 case IND:
1664 if (inh->type == bfd_link_hash_indirect
1665 && inh->u.i.link == h)
1666 {
1667 _bfd_error_handler
1668 /* xgettext:c-format */
1669 (_("%B: indirect symbol `%s' to `%s' is a loop"),
1670 abfd, name, string);
1671 bfd_set_error (bfd_error_invalid_operation);
1672 return FALSE;
1673 }
1674 if (inh->type == bfd_link_hash_new)
1675 {
1676 inh->type = bfd_link_hash_undefined;
1677 inh->u.undef.abfd = abfd;
1678 bfd_link_add_undef (info->hash, inh);
1679 }
1680
1681 /* If the indirect symbol has been referenced, we need to
1682 push the reference down to the symbol we are referencing. */
1683 if (h->type != bfd_link_hash_new)
1684 {
1685 /* ??? If inh->type == bfd_link_hash_undefweak this
1686 converts inh to bfd_link_hash_undefined. */
1687 row = UNDEF_ROW;
1688 cycle = TRUE;
1689 }
1690
1691 h->type = bfd_link_hash_indirect;
1692 h->u.i.link = inh;
1693 /* Not setting h = h->u.i.link here means that when cycle is
1694 set above we'll always go to REFC, and then cycle again
1695 to the indirected symbol. This means that any successful
1696 change of an existing symbol to indirect counts as a
1697 reference. ??? That may not be correct when the existing
1698 symbol was defweak. */
1699 break;
1700
1701 case SET:
1702 /* Add an entry to a set. */
1703 (*info->callbacks->add_to_set) (info, h, BFD_RELOC_CTOR,
1704 abfd, section, value);
1705 break;
1706
1707 case WARNC:
1708 /* Issue a warning and cycle, except when the reference is
1709 in LTO IR. */
1710 if (h->u.i.warning != NULL
1711 && (abfd->flags & BFD_PLUGIN) == 0)
1712 {
1713 (*info->callbacks->warning) (info, h->u.i.warning,
1714 h->root.string, abfd, NULL, 0);
1715 /* Only issue a warning once. */
1716 h->u.i.warning = NULL;
1717 }
1718 /* Fall through. */
1719 case CYCLE:
1720 /* Try again with the referenced symbol. */
1721 h = h->u.i.link;
1722 cycle = TRUE;
1723 break;
1724
1725 case REFC:
1726 /* A reference to an indirect symbol. */
1727 if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1728 h->u.undef.next = h;
1729 h = h->u.i.link;
1730 cycle = TRUE;
1731 break;
1732
1733 case WARN:
1734 /* Warn if this symbol has been referenced already from non-IR,
1735 otherwise add a warning. */
1736 if ((!info->lto_plugin_active
1737 && (h->u.undef.next != NULL || info->hash->undefs_tail == h))
1738 || h->non_ir_ref_regular
1739 || h->non_ir_ref_dynamic)
1740 {
1741 (*info->callbacks->warning) (info, string, h->root.string,
1742 hash_entry_bfd (h), NULL, 0);
1743 break;
1744 }
1745 /* Fall through. */
1746 case MWARN:
1747 /* Make a warning symbol. */
1748 {
1749 struct bfd_link_hash_entry *sub;
1750
1751 /* STRING is the warning to give. */
1752 sub = ((struct bfd_link_hash_entry *)
1753 ((*info->hash->table.newfunc)
1754 (NULL, &info->hash->table, h->root.string)));
1755 if (sub == NULL)
1756 return FALSE;
1757 *sub = *h;
1758 sub->type = bfd_link_hash_warning;
1759 sub->u.i.link = h;
1760 if (! copy)
1761 sub->u.i.warning = string;
1762 else
1763 {
1764 char *w;
1765 size_t len = strlen (string) + 1;
1766
1767 w = (char *) bfd_hash_allocate (&info->hash->table, len);
1768 if (w == NULL)
1769 return FALSE;
1770 memcpy (w, string, len);
1771 sub->u.i.warning = w;
1772 }
1773
1774 bfd_hash_replace (&info->hash->table,
1775 (struct bfd_hash_entry *) h,
1776 (struct bfd_hash_entry *) sub);
1777 if (hashp != NULL)
1778 *hashp = sub;
1779 }
1780 break;
1781 }
1782 }
1783 while (cycle);
1784
1785 return TRUE;
1786 }
1787 \f
1788 /* Generic final link routine. */
1789
1790 bfd_boolean
1791 _bfd_generic_final_link (bfd *abfd, struct bfd_link_info *info)
1792 {
1793 bfd *sub;
1794 asection *o;
1795 struct bfd_link_order *p;
1796 size_t outsymalloc;
1797 struct generic_write_global_symbol_info wginfo;
1798
1799 bfd_get_outsymbols (abfd) = NULL;
1800 bfd_get_symcount (abfd) = 0;
1801 outsymalloc = 0;
1802
1803 /* Mark all sections which will be included in the output file. */
1804 for (o = abfd->sections; o != NULL; o = o->next)
1805 for (p = o->map_head.link_order; p != NULL; p = p->next)
1806 if (p->type == bfd_indirect_link_order)
1807 p->u.indirect.section->linker_mark = TRUE;
1808
1809 /* Build the output symbol table. */
1810 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
1811 if (! _bfd_generic_link_output_symbols (abfd, sub, info, &outsymalloc))
1812 return FALSE;
1813
1814 /* Accumulate the global symbols. */
1815 wginfo.info = info;
1816 wginfo.output_bfd = abfd;
1817 wginfo.psymalloc = &outsymalloc;
1818 _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info),
1819 _bfd_generic_link_write_global_symbol,
1820 &wginfo);
1821
1822 /* Make sure we have a trailing NULL pointer on OUTSYMBOLS. We
1823 shouldn't really need one, since we have SYMCOUNT, but some old
1824 code still expects one. */
1825 if (! generic_add_output_symbol (abfd, &outsymalloc, NULL))
1826 return FALSE;
1827
1828 if (bfd_link_relocatable (info))
1829 {
1830 /* Allocate space for the output relocs for each section. */
1831 for (o = abfd->sections; o != NULL; o = o->next)
1832 {
1833 o->reloc_count = 0;
1834 for (p = o->map_head.link_order; p != NULL; p = p->next)
1835 {
1836 if (p->type == bfd_section_reloc_link_order
1837 || p->type == bfd_symbol_reloc_link_order)
1838 ++o->reloc_count;
1839 else if (p->type == bfd_indirect_link_order)
1840 {
1841 asection *input_section;
1842 bfd *input_bfd;
1843 long relsize;
1844 arelent **relocs;
1845 asymbol **symbols;
1846 long reloc_count;
1847
1848 input_section = p->u.indirect.section;
1849 input_bfd = input_section->owner;
1850 relsize = bfd_get_reloc_upper_bound (input_bfd,
1851 input_section);
1852 if (relsize < 0)
1853 return FALSE;
1854 relocs = (arelent **) bfd_malloc (relsize);
1855 if (!relocs && relsize != 0)
1856 return FALSE;
1857 symbols = _bfd_generic_link_get_symbols (input_bfd);
1858 reloc_count = bfd_canonicalize_reloc (input_bfd,
1859 input_section,
1860 relocs,
1861 symbols);
1862 free (relocs);
1863 if (reloc_count < 0)
1864 return FALSE;
1865 BFD_ASSERT ((unsigned long) reloc_count
1866 == input_section->reloc_count);
1867 o->reloc_count += reloc_count;
1868 }
1869 }
1870 if (o->reloc_count > 0)
1871 {
1872 bfd_size_type amt;
1873
1874 amt = o->reloc_count;
1875 amt *= sizeof (arelent *);
1876 o->orelocation = (struct reloc_cache_entry **) bfd_alloc (abfd, amt);
1877 if (!o->orelocation)
1878 return FALSE;
1879 o->flags |= SEC_RELOC;
1880 /* Reset the count so that it can be used as an index
1881 when putting in the output relocs. */
1882 o->reloc_count = 0;
1883 }
1884 }
1885 }
1886
1887 /* Handle all the link order information for the sections. */
1888 for (o = abfd->sections; o != NULL; o = o->next)
1889 {
1890 for (p = o->map_head.link_order; p != NULL; p = p->next)
1891 {
1892 switch (p->type)
1893 {
1894 case bfd_section_reloc_link_order:
1895 case bfd_symbol_reloc_link_order:
1896 if (! _bfd_generic_reloc_link_order (abfd, info, o, p))
1897 return FALSE;
1898 break;
1899 case bfd_indirect_link_order:
1900 if (! default_indirect_link_order (abfd, info, o, p, TRUE))
1901 return FALSE;
1902 break;
1903 default:
1904 if (! _bfd_default_link_order (abfd, info, o, p))
1905 return FALSE;
1906 break;
1907 }
1908 }
1909 }
1910
1911 return TRUE;
1912 }
1913
1914 /* Add an output symbol to the output BFD. */
1915
1916 static bfd_boolean
1917 generic_add_output_symbol (bfd *output_bfd, size_t *psymalloc, asymbol *sym)
1918 {
1919 if (bfd_get_symcount (output_bfd) >= *psymalloc)
1920 {
1921 asymbol **newsyms;
1922 bfd_size_type amt;
1923
1924 if (*psymalloc == 0)
1925 *psymalloc = 124;
1926 else
1927 *psymalloc *= 2;
1928 amt = *psymalloc;
1929 amt *= sizeof (asymbol *);
1930 newsyms = (asymbol **) bfd_realloc (bfd_get_outsymbols (output_bfd), amt);
1931 if (newsyms == NULL)
1932 return FALSE;
1933 bfd_get_outsymbols (output_bfd) = newsyms;
1934 }
1935
1936 bfd_get_outsymbols (output_bfd) [bfd_get_symcount (output_bfd)] = sym;
1937 if (sym != NULL)
1938 ++ bfd_get_symcount (output_bfd);
1939
1940 return TRUE;
1941 }
1942
1943 /* Handle the symbols for an input BFD. */
1944
1945 bfd_boolean
1946 _bfd_generic_link_output_symbols (bfd *output_bfd,
1947 bfd *input_bfd,
1948 struct bfd_link_info *info,
1949 size_t *psymalloc)
1950 {
1951 asymbol **sym_ptr;
1952 asymbol **sym_end;
1953
1954 if (!bfd_generic_link_read_symbols (input_bfd))
1955 return FALSE;
1956
1957 /* Create a filename symbol if we are supposed to. */
1958 if (info->create_object_symbols_section != NULL)
1959 {
1960 asection *sec;
1961
1962 for (sec = input_bfd->sections; sec != NULL; sec = sec->next)
1963 {
1964 if (sec->output_section == info->create_object_symbols_section)
1965 {
1966 asymbol *newsym;
1967
1968 newsym = bfd_make_empty_symbol (input_bfd);
1969 if (!newsym)
1970 return FALSE;
1971 newsym->name = input_bfd->filename;
1972 newsym->value = 0;
1973 newsym->flags = BSF_LOCAL | BSF_FILE;
1974 newsym->section = sec;
1975
1976 if (! generic_add_output_symbol (output_bfd, psymalloc,
1977 newsym))
1978 return FALSE;
1979
1980 break;
1981 }
1982 }
1983 }
1984
1985 /* Adjust the values of the globally visible symbols, and write out
1986 local symbols. */
1987 sym_ptr = _bfd_generic_link_get_symbols (input_bfd);
1988 sym_end = sym_ptr + _bfd_generic_link_get_symcount (input_bfd);
1989 for (; sym_ptr < sym_end; sym_ptr++)
1990 {
1991 asymbol *sym;
1992 struct generic_link_hash_entry *h;
1993 bfd_boolean output;
1994
1995 h = NULL;
1996 sym = *sym_ptr;
1997 if ((sym->flags & (BSF_INDIRECT
1998 | BSF_WARNING
1999 | BSF_GLOBAL
2000 | BSF_CONSTRUCTOR
2001 | BSF_WEAK)) != 0
2002 || bfd_is_und_section (bfd_get_section (sym))
2003 || bfd_is_com_section (bfd_get_section (sym))
2004 || bfd_is_ind_section (bfd_get_section (sym)))
2005 {
2006 if (sym->udata.p != NULL)
2007 h = (struct generic_link_hash_entry *) sym->udata.p;
2008 else if ((sym->flags & BSF_CONSTRUCTOR) != 0)
2009 {
2010 /* This case normally means that the main linker code
2011 deliberately ignored this constructor symbol. We
2012 should just pass it through. This will screw up if
2013 the constructor symbol is from a different,
2014 non-generic, object file format, but the case will
2015 only arise when linking with -r, which will probably
2016 fail anyhow, since there will be no way to represent
2017 the relocs in the output format being used. */
2018 h = NULL;
2019 }
2020 else if (bfd_is_und_section (bfd_get_section (sym)))
2021 h = ((struct generic_link_hash_entry *)
2022 bfd_wrapped_link_hash_lookup (output_bfd, info,
2023 bfd_asymbol_name (sym),
2024 FALSE, FALSE, TRUE));
2025 else
2026 h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info),
2027 bfd_asymbol_name (sym),
2028 FALSE, FALSE, TRUE);
2029
2030 if (h != NULL)
2031 {
2032 /* Force all references to this symbol to point to
2033 the same area in memory. It is possible that
2034 this routine will be called with a hash table
2035 other than a generic hash table, so we double
2036 check that. */
2037 if (info->output_bfd->xvec == input_bfd->xvec)
2038 {
2039 if (h->sym != NULL)
2040 *sym_ptr = sym = h->sym;
2041 }
2042
2043 switch (h->root.type)
2044 {
2045 default:
2046 case bfd_link_hash_new:
2047 abort ();
2048 case bfd_link_hash_undefined:
2049 break;
2050 case bfd_link_hash_undefweak:
2051 sym->flags |= BSF_WEAK;
2052 break;
2053 case bfd_link_hash_indirect:
2054 h = (struct generic_link_hash_entry *) h->root.u.i.link;
2055 /* fall through */
2056 case bfd_link_hash_defined:
2057 sym->flags |= BSF_GLOBAL;
2058 sym->flags &=~ (BSF_WEAK | BSF_CONSTRUCTOR);
2059 sym->value = h->root.u.def.value;
2060 sym->section = h->root.u.def.section;
2061 break;
2062 case bfd_link_hash_defweak:
2063 sym->flags |= BSF_WEAK;
2064 sym->flags &=~ BSF_CONSTRUCTOR;
2065 sym->value = h->root.u.def.value;
2066 sym->section = h->root.u.def.section;
2067 break;
2068 case bfd_link_hash_common:
2069 sym->value = h->root.u.c.size;
2070 sym->flags |= BSF_GLOBAL;
2071 if (! bfd_is_com_section (sym->section))
2072 {
2073 BFD_ASSERT (bfd_is_und_section (sym->section));
2074 sym->section = bfd_com_section_ptr;
2075 }
2076 /* We do not set the section of the symbol to
2077 h->root.u.c.p->section. That value was saved so
2078 that we would know where to allocate the symbol
2079 if it was defined. In this case the type is
2080 still bfd_link_hash_common, so we did not define
2081 it, so we do not want to use that section. */
2082 break;
2083 }
2084 }
2085 }
2086
2087 /* This switch is straight from the old code in
2088 write_file_locals in ldsym.c. */
2089 if (info->strip == strip_all
2090 || (info->strip == strip_some
2091 && bfd_hash_lookup (info->keep_hash, bfd_asymbol_name (sym),
2092 FALSE, FALSE) == NULL))
2093 output = FALSE;
2094 else if ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0)
2095 {
2096 /* If this symbol is marked as occurring now, rather
2097 than at the end, output it now. This is used for
2098 COFF C_EXT FCN symbols. FIXME: There must be a
2099 better way. */
2100 if (bfd_asymbol_bfd (sym) == input_bfd
2101 && (sym->flags & BSF_NOT_AT_END) != 0)
2102 output = TRUE;
2103 else
2104 output = FALSE;
2105 }
2106 else if (bfd_is_ind_section (sym->section))
2107 output = FALSE;
2108 else if ((sym->flags & BSF_DEBUGGING) != 0)
2109 {
2110 if (info->strip == strip_none)
2111 output = TRUE;
2112 else
2113 output = FALSE;
2114 }
2115 else if (bfd_is_und_section (sym->section)
2116 || bfd_is_com_section (sym->section))
2117 output = FALSE;
2118 else if ((sym->flags & BSF_LOCAL) != 0)
2119 {
2120 if ((sym->flags & BSF_WARNING) != 0)
2121 output = FALSE;
2122 else
2123 {
2124 switch (info->discard)
2125 {
2126 default:
2127 case discard_all:
2128 output = FALSE;
2129 break;
2130 case discard_sec_merge:
2131 output = TRUE;
2132 if (bfd_link_relocatable (info)
2133 || ! (sym->section->flags & SEC_MERGE))
2134 break;
2135 /* FALLTHROUGH */
2136 case discard_l:
2137 if (bfd_is_local_label (input_bfd, sym))
2138 output = FALSE;
2139 else
2140 output = TRUE;
2141 break;
2142 case discard_none:
2143 output = TRUE;
2144 break;
2145 }
2146 }
2147 }
2148 else if ((sym->flags & BSF_CONSTRUCTOR))
2149 {
2150 if (info->strip != strip_all)
2151 output = TRUE;
2152 else
2153 output = FALSE;
2154 }
2155 else if (sym->flags == 0
2156 && (sym->section->owner->flags & BFD_PLUGIN) != 0)
2157 /* LTO doesn't set symbol information. We get here with the
2158 generic linker for a symbol that was "common" but no longer
2159 needs to be global. */
2160 output = FALSE;
2161 else
2162 abort ();
2163
2164 /* If this symbol is in a section which is not being included
2165 in the output file, then we don't want to output the
2166 symbol. */
2167 if (!bfd_is_abs_section (sym->section)
2168 && bfd_section_removed_from_list (output_bfd,
2169 sym->section->output_section))
2170 output = FALSE;
2171
2172 if (output)
2173 {
2174 if (! generic_add_output_symbol (output_bfd, psymalloc, sym))
2175 return FALSE;
2176 if (h != NULL)
2177 h->written = TRUE;
2178 }
2179 }
2180
2181 return TRUE;
2182 }
2183
2184 /* Set the section and value of a generic BFD symbol based on a linker
2185 hash table entry. */
2186
2187 static void
2188 set_symbol_from_hash (asymbol *sym, struct bfd_link_hash_entry *h)
2189 {
2190 switch (h->type)
2191 {
2192 default:
2193 abort ();
2194 break;
2195 case bfd_link_hash_new:
2196 /* This can happen when a constructor symbol is seen but we are
2197 not building constructors. */
2198 if (sym->section != NULL)
2199 {
2200 BFD_ASSERT ((sym->flags & BSF_CONSTRUCTOR) != 0);
2201 }
2202 else
2203 {
2204 sym->flags |= BSF_CONSTRUCTOR;
2205 sym->section = bfd_abs_section_ptr;
2206 sym->value = 0;
2207 }
2208 break;
2209 case bfd_link_hash_undefined:
2210 sym->section = bfd_und_section_ptr;
2211 sym->value = 0;
2212 break;
2213 case bfd_link_hash_undefweak:
2214 sym->section = bfd_und_section_ptr;
2215 sym->value = 0;
2216 sym->flags |= BSF_WEAK;
2217 break;
2218 case bfd_link_hash_defined:
2219 sym->section = h->u.def.section;
2220 sym->value = h->u.def.value;
2221 break;
2222 case bfd_link_hash_defweak:
2223 sym->flags |= BSF_WEAK;
2224 sym->section = h->u.def.section;
2225 sym->value = h->u.def.value;
2226 break;
2227 case bfd_link_hash_common:
2228 sym->value = h->u.c.size;
2229 if (sym->section == NULL)
2230 sym->section = bfd_com_section_ptr;
2231 else if (! bfd_is_com_section (sym->section))
2232 {
2233 BFD_ASSERT (bfd_is_und_section (sym->section));
2234 sym->section = bfd_com_section_ptr;
2235 }
2236 /* Do not set the section; see _bfd_generic_link_output_symbols. */
2237 break;
2238 case bfd_link_hash_indirect:
2239 case bfd_link_hash_warning:
2240 /* FIXME: What should we do here? */
2241 break;
2242 }
2243 }
2244
2245 /* Write out a global symbol, if it hasn't already been written out.
2246 This is called for each symbol in the hash table. */
2247
2248 bfd_boolean
2249 _bfd_generic_link_write_global_symbol (struct generic_link_hash_entry *h,
2250 void *data)
2251 {
2252 struct generic_write_global_symbol_info *wginfo =
2253 (struct generic_write_global_symbol_info *) data;
2254 asymbol *sym;
2255
2256 if (h->written)
2257 return TRUE;
2258
2259 h->written = TRUE;
2260
2261 if (wginfo->info->strip == strip_all
2262 || (wginfo->info->strip == strip_some
2263 && bfd_hash_lookup (wginfo->info->keep_hash, h->root.root.string,
2264 FALSE, FALSE) == NULL))
2265 return TRUE;
2266
2267 if (h->sym != NULL)
2268 sym = h->sym;
2269 else
2270 {
2271 sym = bfd_make_empty_symbol (wginfo->output_bfd);
2272 if (!sym)
2273 return FALSE;
2274 sym->name = h->root.root.string;
2275 sym->flags = 0;
2276 }
2277
2278 set_symbol_from_hash (sym, &h->root);
2279
2280 sym->flags |= BSF_GLOBAL;
2281
2282 if (! generic_add_output_symbol (wginfo->output_bfd, wginfo->psymalloc,
2283 sym))
2284 {
2285 /* FIXME: No way to return failure. */
2286 abort ();
2287 }
2288
2289 return TRUE;
2290 }
2291
2292 /* Create a relocation. */
2293
2294 bfd_boolean
2295 _bfd_generic_reloc_link_order (bfd *abfd,
2296 struct bfd_link_info *info,
2297 asection *sec,
2298 struct bfd_link_order *link_order)
2299 {
2300 arelent *r;
2301
2302 if (! bfd_link_relocatable (info))
2303 abort ();
2304 if (sec->orelocation == NULL)
2305 abort ();
2306
2307 r = (arelent *) bfd_alloc (abfd, sizeof (arelent));
2308 if (r == NULL)
2309 return FALSE;
2310
2311 r->address = link_order->offset;
2312 r->howto = bfd_reloc_type_lookup (abfd, link_order->u.reloc.p->reloc);
2313 if (r->howto == 0)
2314 {
2315 bfd_set_error (bfd_error_bad_value);
2316 return FALSE;
2317 }
2318
2319 /* Get the symbol to use for the relocation. */
2320 if (link_order->type == bfd_section_reloc_link_order)
2321 r->sym_ptr_ptr = link_order->u.reloc.p->u.section->symbol_ptr_ptr;
2322 else
2323 {
2324 struct generic_link_hash_entry *h;
2325
2326 h = ((struct generic_link_hash_entry *)
2327 bfd_wrapped_link_hash_lookup (abfd, info,
2328 link_order->u.reloc.p->u.name,
2329 FALSE, FALSE, TRUE));
2330 if (h == NULL
2331 || ! h->written)
2332 {
2333 (*info->callbacks->unattached_reloc)
2334 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
2335 bfd_set_error (bfd_error_bad_value);
2336 return FALSE;
2337 }
2338 r->sym_ptr_ptr = &h->sym;
2339 }
2340
2341 /* If this is an inplace reloc, write the addend to the object file.
2342 Otherwise, store it in the reloc addend. */
2343 if (! r->howto->partial_inplace)
2344 r->addend = link_order->u.reloc.p->addend;
2345 else
2346 {
2347 bfd_size_type size;
2348 bfd_reloc_status_type rstat;
2349 bfd_byte *buf;
2350 bfd_boolean ok;
2351 file_ptr loc;
2352
2353 size = bfd_get_reloc_size (r->howto);
2354 buf = (bfd_byte *) bfd_zmalloc (size);
2355 if (buf == NULL && size != 0)
2356 return FALSE;
2357 rstat = _bfd_relocate_contents (r->howto, abfd,
2358 (bfd_vma) link_order->u.reloc.p->addend,
2359 buf);
2360 switch (rstat)
2361 {
2362 case bfd_reloc_ok:
2363 break;
2364 default:
2365 case bfd_reloc_outofrange:
2366 abort ();
2367 case bfd_reloc_overflow:
2368 (*info->callbacks->reloc_overflow)
2369 (info, NULL,
2370 (link_order->type == bfd_section_reloc_link_order
2371 ? bfd_section_name (abfd, link_order->u.reloc.p->u.section)
2372 : link_order->u.reloc.p->u.name),
2373 r->howto->name, link_order->u.reloc.p->addend,
2374 NULL, NULL, 0);
2375 break;
2376 }
2377 loc = link_order->offset * bfd_octets_per_byte (abfd);
2378 ok = bfd_set_section_contents (abfd, sec, buf, loc, size);
2379 free (buf);
2380 if (! ok)
2381 return FALSE;
2382
2383 r->addend = 0;
2384 }
2385
2386 sec->orelocation[sec->reloc_count] = r;
2387 ++sec->reloc_count;
2388
2389 return TRUE;
2390 }
2391 \f
2392 /* Allocate a new link_order for a section. */
2393
2394 struct bfd_link_order *
2395 bfd_new_link_order (bfd *abfd, asection *section)
2396 {
2397 bfd_size_type amt = sizeof (struct bfd_link_order);
2398 struct bfd_link_order *new_lo;
2399
2400 new_lo = (struct bfd_link_order *) bfd_zalloc (abfd, amt);
2401 if (!new_lo)
2402 return NULL;
2403
2404 new_lo->type = bfd_undefined_link_order;
2405
2406 if (section->map_tail.link_order != NULL)
2407 section->map_tail.link_order->next = new_lo;
2408 else
2409 section->map_head.link_order = new_lo;
2410 section->map_tail.link_order = new_lo;
2411
2412 return new_lo;
2413 }
2414
2415 /* Default link order processing routine. Note that we can not handle
2416 the reloc_link_order types here, since they depend upon the details
2417 of how the particular backends generates relocs. */
2418
2419 bfd_boolean
2420 _bfd_default_link_order (bfd *abfd,
2421 struct bfd_link_info *info,
2422 asection *sec,
2423 struct bfd_link_order *link_order)
2424 {
2425 switch (link_order->type)
2426 {
2427 case bfd_undefined_link_order:
2428 case bfd_section_reloc_link_order:
2429 case bfd_symbol_reloc_link_order:
2430 default:
2431 abort ();
2432 case bfd_indirect_link_order:
2433 return default_indirect_link_order (abfd, info, sec, link_order,
2434 FALSE);
2435 case bfd_data_link_order:
2436 return default_data_link_order (abfd, info, sec, link_order);
2437 }
2438 }
2439
2440 /* Default routine to handle a bfd_data_link_order. */
2441
2442 static bfd_boolean
2443 default_data_link_order (bfd *abfd,
2444 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2445 asection *sec,
2446 struct bfd_link_order *link_order)
2447 {
2448 bfd_size_type size;
2449 size_t fill_size;
2450 bfd_byte *fill;
2451 file_ptr loc;
2452 bfd_boolean result;
2453
2454 BFD_ASSERT ((sec->flags & SEC_HAS_CONTENTS) != 0);
2455
2456 size = link_order->size;
2457 if (size == 0)
2458 return TRUE;
2459
2460 fill = link_order->u.data.contents;
2461 fill_size = link_order->u.data.size;
2462 if (fill_size == 0)
2463 {
2464 fill = abfd->arch_info->fill (size, bfd_big_endian (abfd),
2465 (sec->flags & SEC_CODE) != 0);
2466 if (fill == NULL)
2467 return FALSE;
2468 }
2469 else if (fill_size < size)
2470 {
2471 bfd_byte *p;
2472 fill = (bfd_byte *) bfd_malloc (size);
2473 if (fill == NULL)
2474 return FALSE;
2475 p = fill;
2476 if (fill_size == 1)
2477 memset (p, (int) link_order->u.data.contents[0], (size_t) size);
2478 else
2479 {
2480 do
2481 {
2482 memcpy (p, link_order->u.data.contents, fill_size);
2483 p += fill_size;
2484 size -= fill_size;
2485 }
2486 while (size >= fill_size);
2487 if (size != 0)
2488 memcpy (p, link_order->u.data.contents, (size_t) size);
2489 size = link_order->size;
2490 }
2491 }
2492
2493 loc = link_order->offset * bfd_octets_per_byte (abfd);
2494 result = bfd_set_section_contents (abfd, sec, fill, loc, size);
2495
2496 if (fill != link_order->u.data.contents)
2497 free (fill);
2498 return result;
2499 }
2500
2501 /* Default routine to handle a bfd_indirect_link_order. */
2502
2503 static bfd_boolean
2504 default_indirect_link_order (bfd *output_bfd,
2505 struct bfd_link_info *info,
2506 asection *output_section,
2507 struct bfd_link_order *link_order,
2508 bfd_boolean generic_linker)
2509 {
2510 asection *input_section;
2511 bfd *input_bfd;
2512 bfd_byte *contents = NULL;
2513 bfd_byte *new_contents;
2514 bfd_size_type sec_size;
2515 file_ptr loc;
2516
2517 BFD_ASSERT ((output_section->flags & SEC_HAS_CONTENTS) != 0);
2518
2519 input_section = link_order->u.indirect.section;
2520 input_bfd = input_section->owner;
2521 if (input_section->size == 0)
2522 return TRUE;
2523
2524 BFD_ASSERT (input_section->output_section == output_section);
2525 BFD_ASSERT (input_section->output_offset == link_order->offset);
2526 BFD_ASSERT (input_section->size == link_order->size);
2527
2528 if (bfd_link_relocatable (info)
2529 && input_section->reloc_count > 0
2530 && output_section->orelocation == NULL)
2531 {
2532 /* Space has not been allocated for the output relocations.
2533 This can happen when we are called by a specific backend
2534 because somebody is attempting to link together different
2535 types of object files. Handling this case correctly is
2536 difficult, and sometimes impossible. */
2537 _bfd_error_handler
2538 /* xgettext:c-format */
2539 (_("Attempt to do relocatable link with %s input and %s output"),
2540 bfd_get_target (input_bfd), bfd_get_target (output_bfd));
2541 bfd_set_error (bfd_error_wrong_format);
2542 return FALSE;
2543 }
2544
2545 if (! generic_linker)
2546 {
2547 asymbol **sympp;
2548 asymbol **symppend;
2549
2550 /* Get the canonical symbols. The generic linker will always
2551 have retrieved them by this point, but we are being called by
2552 a specific linker, presumably because we are linking
2553 different types of object files together. */
2554 if (!bfd_generic_link_read_symbols (input_bfd))
2555 return FALSE;
2556
2557 /* Since we have been called by a specific linker, rather than
2558 the generic linker, the values of the symbols will not be
2559 right. They will be the values as seen in the input file,
2560 not the values of the final link. We need to fix them up
2561 before we can relocate the section. */
2562 sympp = _bfd_generic_link_get_symbols (input_bfd);
2563 symppend = sympp + _bfd_generic_link_get_symcount (input_bfd);
2564 for (; sympp < symppend; sympp++)
2565 {
2566 asymbol *sym;
2567 struct bfd_link_hash_entry *h;
2568
2569 sym = *sympp;
2570
2571 if ((sym->flags & (BSF_INDIRECT
2572 | BSF_WARNING
2573 | BSF_GLOBAL
2574 | BSF_CONSTRUCTOR
2575 | BSF_WEAK)) != 0
2576 || bfd_is_und_section (bfd_get_section (sym))
2577 || bfd_is_com_section (bfd_get_section (sym))
2578 || bfd_is_ind_section (bfd_get_section (sym)))
2579 {
2580 /* sym->udata may have been set by
2581 generic_link_add_symbol_list. */
2582 if (sym->udata.p != NULL)
2583 h = (struct bfd_link_hash_entry *) sym->udata.p;
2584 else if (bfd_is_und_section (bfd_get_section (sym)))
2585 h = bfd_wrapped_link_hash_lookup (output_bfd, info,
2586 bfd_asymbol_name (sym),
2587 FALSE, FALSE, TRUE);
2588 else
2589 h = bfd_link_hash_lookup (info->hash,
2590 bfd_asymbol_name (sym),
2591 FALSE, FALSE, TRUE);
2592 if (h != NULL)
2593 set_symbol_from_hash (sym, h);
2594 }
2595 }
2596 }
2597
2598 if ((output_section->flags & (SEC_GROUP | SEC_LINKER_CREATED)) == SEC_GROUP
2599 && input_section->size != 0)
2600 {
2601 /* Group section contents are set by bfd_elf_set_group_contents. */
2602 if (!output_bfd->output_has_begun)
2603 {
2604 /* FIXME: This hack ensures bfd_elf_set_group_contents is called. */
2605 if (!bfd_set_section_contents (output_bfd, output_section, "", 0, 1))
2606 goto error_return;
2607 }
2608 new_contents = output_section->contents;
2609 BFD_ASSERT (new_contents != NULL);
2610 BFD_ASSERT (input_section->output_offset == 0);
2611 }
2612 else
2613 {
2614 /* Get and relocate the section contents. */
2615 sec_size = (input_section->rawsize > input_section->size
2616 ? input_section->rawsize
2617 : input_section->size);
2618 contents = (bfd_byte *) bfd_malloc (sec_size);
2619 if (contents == NULL && sec_size != 0)
2620 goto error_return;
2621 new_contents = (bfd_get_relocated_section_contents
2622 (output_bfd, info, link_order, contents,
2623 bfd_link_relocatable (info),
2624 _bfd_generic_link_get_symbols (input_bfd)));
2625 if (!new_contents)
2626 goto error_return;
2627 }
2628
2629 /* Output the section contents. */
2630 loc = input_section->output_offset * bfd_octets_per_byte (output_bfd);
2631 if (! bfd_set_section_contents (output_bfd, output_section,
2632 new_contents, loc, input_section->size))
2633 goto error_return;
2634
2635 if (contents != NULL)
2636 free (contents);
2637 return TRUE;
2638
2639 error_return:
2640 if (contents != NULL)
2641 free (contents);
2642 return FALSE;
2643 }
2644
2645 /* A little routine to count the number of relocs in a link_order
2646 list. */
2647
2648 unsigned int
2649 _bfd_count_link_order_relocs (struct bfd_link_order *link_order)
2650 {
2651 register unsigned int c;
2652 register struct bfd_link_order *l;
2653
2654 c = 0;
2655 for (l = link_order; l != NULL; l = l->next)
2656 {
2657 if (l->type == bfd_section_reloc_link_order
2658 || l->type == bfd_symbol_reloc_link_order)
2659 ++c;
2660 }
2661
2662 return c;
2663 }
2664
2665 /*
2666 FUNCTION
2667 bfd_link_split_section
2668
2669 SYNOPSIS
2670 bfd_boolean bfd_link_split_section (bfd *abfd, asection *sec);
2671
2672 DESCRIPTION
2673 Return nonzero if @var{sec} should be split during a
2674 reloceatable or final link.
2675
2676 .#define bfd_link_split_section(abfd, sec) \
2677 . BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
2678 .
2679
2680 */
2681
2682 bfd_boolean
2683 _bfd_generic_link_split_section (bfd *abfd ATTRIBUTE_UNUSED,
2684 asection *sec ATTRIBUTE_UNUSED)
2685 {
2686 return FALSE;
2687 }
2688
2689 /*
2690 FUNCTION
2691 bfd_section_already_linked
2692
2693 SYNOPSIS
2694 bfd_boolean bfd_section_already_linked (bfd *abfd,
2695 asection *sec,
2696 struct bfd_link_info *info);
2697
2698 DESCRIPTION
2699 Check if @var{data} has been already linked during a reloceatable
2700 or final link. Return TRUE if it has.
2701
2702 .#define bfd_section_already_linked(abfd, sec, info) \
2703 . BFD_SEND (abfd, _section_already_linked, (abfd, sec, info))
2704 .
2705
2706 */
2707
2708 /* Sections marked with the SEC_LINK_ONCE flag should only be linked
2709 once into the output. This routine checks each section, and
2710 arrange to discard it if a section of the same name has already
2711 been linked. This code assumes that all relevant sections have the
2712 SEC_LINK_ONCE flag set; that is, it does not depend solely upon the
2713 section name. bfd_section_already_linked is called via
2714 bfd_map_over_sections. */
2715
2716 /* The hash table. */
2717
2718 static struct bfd_hash_table _bfd_section_already_linked_table;
2719
2720 /* Support routines for the hash table used by section_already_linked,
2721 initialize the table, traverse, lookup, fill in an entry and remove
2722 the table. */
2723
2724 void
2725 bfd_section_already_linked_table_traverse
2726 (bfd_boolean (*func) (struct bfd_section_already_linked_hash_entry *,
2727 void *), void *info)
2728 {
2729 bfd_hash_traverse (&_bfd_section_already_linked_table,
2730 (bfd_boolean (*) (struct bfd_hash_entry *,
2731 void *)) func,
2732 info);
2733 }
2734
2735 struct bfd_section_already_linked_hash_entry *
2736 bfd_section_already_linked_table_lookup (const char *name)
2737 {
2738 return ((struct bfd_section_already_linked_hash_entry *)
2739 bfd_hash_lookup (&_bfd_section_already_linked_table, name,
2740 TRUE, FALSE));
2741 }
2742
2743 bfd_boolean
2744 bfd_section_already_linked_table_insert
2745 (struct bfd_section_already_linked_hash_entry *already_linked_list,
2746 asection *sec)
2747 {
2748 struct bfd_section_already_linked *l;
2749
2750 /* Allocate the memory from the same obstack as the hash table is
2751 kept in. */
2752 l = (struct bfd_section_already_linked *)
2753 bfd_hash_allocate (&_bfd_section_already_linked_table, sizeof *l);
2754 if (l == NULL)
2755 return FALSE;
2756 l->sec = sec;
2757 l->next = already_linked_list->entry;
2758 already_linked_list->entry = l;
2759 return TRUE;
2760 }
2761
2762 static struct bfd_hash_entry *
2763 already_linked_newfunc (struct bfd_hash_entry *entry ATTRIBUTE_UNUSED,
2764 struct bfd_hash_table *table,
2765 const char *string ATTRIBUTE_UNUSED)
2766 {
2767 struct bfd_section_already_linked_hash_entry *ret =
2768 (struct bfd_section_already_linked_hash_entry *)
2769 bfd_hash_allocate (table, sizeof *ret);
2770
2771 if (ret == NULL)
2772 return NULL;
2773
2774 ret->entry = NULL;
2775
2776 return &ret->root;
2777 }
2778
2779 bfd_boolean
2780 bfd_section_already_linked_table_init (void)
2781 {
2782 return bfd_hash_table_init_n (&_bfd_section_already_linked_table,
2783 already_linked_newfunc,
2784 sizeof (struct bfd_section_already_linked_hash_entry),
2785 42);
2786 }
2787
2788 void
2789 bfd_section_already_linked_table_free (void)
2790 {
2791 bfd_hash_table_free (&_bfd_section_already_linked_table);
2792 }
2793
2794 /* Report warnings as appropriate for duplicate section SEC.
2795 Return FALSE if we decide to keep SEC after all. */
2796
2797 bfd_boolean
2798 _bfd_handle_already_linked (asection *sec,
2799 struct bfd_section_already_linked *l,
2800 struct bfd_link_info *info)
2801 {
2802 switch (sec->flags & SEC_LINK_DUPLICATES)
2803 {
2804 default:
2805 abort ();
2806
2807 case SEC_LINK_DUPLICATES_DISCARD:
2808 /* If we found an LTO IR match for this comdat group on
2809 the first pass, replace it with the LTO output on the
2810 second pass. We can't simply choose real object
2811 files over IR because the first pass may contain a
2812 mix of LTO and normal objects and we must keep the
2813 first match, be it IR or real. */
2814 if (sec->owner->lto_output
2815 && (l->sec->owner->flags & BFD_PLUGIN) != 0)
2816 {
2817 l->sec = sec;
2818 return FALSE;
2819 }
2820 break;
2821
2822 case SEC_LINK_DUPLICATES_ONE_ONLY:
2823 info->callbacks->einfo
2824 /* xgettext:c-format */
2825 (_("%B: ignoring duplicate section `%A'\n"),
2826 sec->owner, sec);
2827 break;
2828
2829 case SEC_LINK_DUPLICATES_SAME_SIZE:
2830 if ((l->sec->owner->flags & BFD_PLUGIN) != 0)
2831 ;
2832 else if (sec->size != l->sec->size)
2833 info->callbacks->einfo
2834 /* xgettext:c-format */
2835 (_("%B: duplicate section `%A' has different size\n"),
2836 sec->owner, sec);
2837 break;
2838
2839 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
2840 if ((l->sec->owner->flags & BFD_PLUGIN) != 0)
2841 ;
2842 else if (sec->size != l->sec->size)
2843 info->callbacks->einfo
2844 /* xgettext:c-format */
2845 (_("%B: duplicate section `%A' has different size\n"),
2846 sec->owner, sec);
2847 else if (sec->size != 0)
2848 {
2849 bfd_byte *sec_contents, *l_sec_contents = NULL;
2850
2851 if (!bfd_malloc_and_get_section (sec->owner, sec, &sec_contents))
2852 info->callbacks->einfo
2853 /* xgettext:c-format */
2854 (_("%B: could not read contents of section `%A'\n"),
2855 sec->owner, sec);
2856 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
2857 &l_sec_contents))
2858 info->callbacks->einfo
2859 /* xgettext:c-format */
2860 (_("%B: could not read contents of section `%A'\n"),
2861 l->sec->owner, l->sec);
2862 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
2863 info->callbacks->einfo
2864 /* xgettext:c-format */
2865 (_("%B: duplicate section `%A' has different contents\n"),
2866 sec->owner, sec);
2867
2868 if (sec_contents)
2869 free (sec_contents);
2870 if (l_sec_contents)
2871 free (l_sec_contents);
2872 }
2873 break;
2874 }
2875
2876 /* Set the output_section field so that lang_add_section
2877 does not create a lang_input_section structure for this
2878 section. Since there might be a symbol in the section
2879 being discarded, we must retain a pointer to the section
2880 which we are really going to use. */
2881 sec->output_section = bfd_abs_section_ptr;
2882 sec->kept_section = l->sec;
2883 return TRUE;
2884 }
2885
2886 /* This is used on non-ELF inputs. */
2887
2888 bfd_boolean
2889 _bfd_generic_section_already_linked (bfd *abfd ATTRIBUTE_UNUSED,
2890 asection *sec,
2891 struct bfd_link_info *info)
2892 {
2893 const char *name;
2894 struct bfd_section_already_linked *l;
2895 struct bfd_section_already_linked_hash_entry *already_linked_list;
2896
2897 if ((sec->flags & SEC_LINK_ONCE) == 0)
2898 return FALSE;
2899
2900 /* The generic linker doesn't handle section groups. */
2901 if ((sec->flags & SEC_GROUP) != 0)
2902 return FALSE;
2903
2904 /* FIXME: When doing a relocatable link, we may have trouble
2905 copying relocations in other sections that refer to local symbols
2906 in the section being discarded. Those relocations will have to
2907 be converted somehow; as of this writing I'm not sure that any of
2908 the backends handle that correctly.
2909
2910 It is tempting to instead not discard link once sections when
2911 doing a relocatable link (technically, they should be discarded
2912 whenever we are building constructors). However, that fails,
2913 because the linker winds up combining all the link once sections
2914 into a single large link once section, which defeats the purpose
2915 of having link once sections in the first place. */
2916
2917 name = bfd_get_section_name (abfd, sec);
2918
2919 already_linked_list = bfd_section_already_linked_table_lookup (name);
2920
2921 l = already_linked_list->entry;
2922 if (l != NULL)
2923 {
2924 /* The section has already been linked. See if we should
2925 issue a warning. */
2926 return _bfd_handle_already_linked (sec, l, info);
2927 }
2928
2929 /* This is the first section with this name. Record it. */
2930 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
2931 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
2932 return FALSE;
2933 }
2934
2935 /* Choose a neighbouring section to S in OBFD that will be output, or
2936 the absolute section if ADDR is out of bounds of the neighbours. */
2937
2938 asection *
2939 _bfd_nearby_section (bfd *obfd, asection *s, bfd_vma addr)
2940 {
2941 asection *next, *prev, *best;
2942
2943 /* Find preceding kept section. */
2944 for (prev = s->prev; prev != NULL; prev = prev->prev)
2945 if ((prev->flags & SEC_EXCLUDE) == 0
2946 && !bfd_section_removed_from_list (obfd, prev))
2947 break;
2948
2949 /* Find following kept section. Start at prev->next because
2950 other sections may have been added after S was removed. */
2951 if (s->prev != NULL)
2952 next = s->prev->next;
2953 else
2954 next = s->owner->sections;
2955 for (; next != NULL; next = next->next)
2956 if ((next->flags & SEC_EXCLUDE) == 0
2957 && !bfd_section_removed_from_list (obfd, next))
2958 break;
2959
2960 /* Choose better of two sections, based on flags. The idea
2961 is to choose a section that will be in the same segment
2962 as S would have been if it was kept. */
2963 best = next;
2964 if (prev == NULL)
2965 {
2966 if (next == NULL)
2967 best = bfd_abs_section_ptr;
2968 }
2969 else if (next == NULL)
2970 best = prev;
2971 else if (((prev->flags ^ next->flags)
2972 & (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_LOAD)) != 0)
2973 {
2974 if (((next->flags ^ s->flags)
2975 & (SEC_ALLOC | SEC_THREAD_LOCAL)) != 0
2976 /* We prefer to choose a loaded section. Section S
2977 doesn't have SEC_LOAD set (it being excluded, that
2978 part of the flag processing didn't happen) so we
2979 can't compare that flag to those of NEXT and PREV. */
2980 || ((prev->flags & SEC_LOAD) != 0
2981 && (next->flags & SEC_LOAD) == 0))
2982 best = prev;
2983 }
2984 else if (((prev->flags ^ next->flags) & SEC_READONLY) != 0)
2985 {
2986 if (((next->flags ^ s->flags) & SEC_READONLY) != 0)
2987 best = prev;
2988 }
2989 else if (((prev->flags ^ next->flags) & SEC_CODE) != 0)
2990 {
2991 if (((next->flags ^ s->flags) & SEC_CODE) != 0)
2992 best = prev;
2993 }
2994 else
2995 {
2996 /* Flags we care about are the same. Prefer the following
2997 section if that will result in a positive valued sym. */
2998 if (addr < next->vma)
2999 best = prev;
3000 }
3001
3002 return best;
3003 }
3004
3005 /* Convert symbols in excluded output sections to use a kept section. */
3006
3007 static bfd_boolean
3008 fix_syms (struct bfd_link_hash_entry *h, void *data)
3009 {
3010 bfd *obfd = (bfd *) data;
3011
3012 if (h->type == bfd_link_hash_defined
3013 || h->type == bfd_link_hash_defweak)
3014 {
3015 asection *s = h->u.def.section;
3016 if (s != NULL
3017 && s->output_section != NULL
3018 && (s->output_section->flags & SEC_EXCLUDE) != 0
3019 && bfd_section_removed_from_list (obfd, s->output_section))
3020 {
3021 asection *op;
3022
3023 h->u.def.value += s->output_offset + s->output_section->vma;
3024 op = _bfd_nearby_section (obfd, s->output_section, h->u.def.value);
3025 h->u.def.value -= op->vma;
3026 h->u.def.section = op;
3027 }
3028 }
3029
3030 return TRUE;
3031 }
3032
3033 void
3034 _bfd_fix_excluded_sec_syms (bfd *obfd, struct bfd_link_info *info)
3035 {
3036 bfd_link_hash_traverse (info->hash, fix_syms, obfd);
3037 }
3038
3039 /*
3040 FUNCTION
3041 bfd_generic_define_common_symbol
3042
3043 SYNOPSIS
3044 bfd_boolean bfd_generic_define_common_symbol
3045 (bfd *output_bfd, struct bfd_link_info *info,
3046 struct bfd_link_hash_entry *h);
3047
3048 DESCRIPTION
3049 Convert common symbol @var{h} into a defined symbol.
3050 Return TRUE on success and FALSE on failure.
3051
3052 .#define bfd_define_common_symbol(output_bfd, info, h) \
3053 . BFD_SEND (output_bfd, _bfd_define_common_symbol, (output_bfd, info, h))
3054 .
3055 */
3056
3057 bfd_boolean
3058 bfd_generic_define_common_symbol (bfd *output_bfd,
3059 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3060 struct bfd_link_hash_entry *h)
3061 {
3062 unsigned int power_of_two;
3063 bfd_vma alignment, size;
3064 asection *section;
3065
3066 BFD_ASSERT (h != NULL && h->type == bfd_link_hash_common);
3067
3068 size = h->u.c.size;
3069 power_of_two = h->u.c.p->alignment_power;
3070 section = h->u.c.p->section;
3071
3072 /* Increase the size of the section to align the common symbol.
3073 The alignment must be a power of two. */
3074 alignment = bfd_octets_per_byte (output_bfd) << power_of_two;
3075 BFD_ASSERT (alignment != 0 && (alignment & -alignment) == alignment);
3076 section->size += alignment - 1;
3077 section->size &= -alignment;
3078
3079 /* Adjust the section's overall alignment if necessary. */
3080 if (power_of_two > section->alignment_power)
3081 section->alignment_power = power_of_two;
3082
3083 /* Change the symbol from common to defined. */
3084 h->type = bfd_link_hash_defined;
3085 h->u.def.section = section;
3086 h->u.def.value = section->size;
3087
3088 /* Increase the size of the section. */
3089 section->size += size;
3090
3091 /* Make sure the section is allocated in memory, and make sure that
3092 it is no longer a common section. */
3093 section->flags |= SEC_ALLOC;
3094 section->flags &= ~SEC_IS_COMMON;
3095 return TRUE;
3096 }
3097
3098 /*
3099 FUNCTION
3100 bfd_generic_define_start_stop
3101
3102 SYNOPSIS
3103 struct bfd_link_hash_entry *bfd_generic_define_start_stop
3104 (struct bfd_link_info *info,
3105 const char *symbol, asection *sec);
3106
3107 DESCRIPTION
3108 Define a __start, __stop, .startof. or .sizeof. symbol.
3109 Return the symbol or NULL if no such undefined symbol exists.
3110
3111 .#define bfd_define_start_stop(output_bfd, info, symbol, sec) \
3112 . BFD_SEND (output_bfd, _bfd_define_start_stop, (info, symbol, sec))
3113 .
3114 */
3115
3116 struct bfd_link_hash_entry *
3117 bfd_generic_define_start_stop (struct bfd_link_info *info,
3118 const char *symbol, asection *sec)
3119 {
3120 struct bfd_link_hash_entry *h;
3121
3122 h = bfd_link_hash_lookup (info->hash, symbol, FALSE, FALSE, TRUE);
3123 if (h != NULL
3124 && (h->type == bfd_link_hash_undefined
3125 || h->type == bfd_link_hash_undefweak))
3126 {
3127 h->type = bfd_link_hash_defined;
3128 h->u.def.section = sec;
3129 h->u.def.value = 0;
3130 return h;
3131 }
3132 return NULL;
3133 }
3134
3135 /*
3136 FUNCTION
3137 bfd_find_version_for_sym
3138
3139 SYNOPSIS
3140 struct bfd_elf_version_tree * bfd_find_version_for_sym
3141 (struct bfd_elf_version_tree *verdefs,
3142 const char *sym_name, bfd_boolean *hide);
3143
3144 DESCRIPTION
3145 Search an elf version script tree for symbol versioning
3146 info and export / don't-export status for a given symbol.
3147 Return non-NULL on success and NULL on failure; also sets
3148 the output @samp{hide} boolean parameter.
3149
3150 */
3151
3152 struct bfd_elf_version_tree *
3153 bfd_find_version_for_sym (struct bfd_elf_version_tree *verdefs,
3154 const char *sym_name,
3155 bfd_boolean *hide)
3156 {
3157 struct bfd_elf_version_tree *t;
3158 struct bfd_elf_version_tree *local_ver, *global_ver, *exist_ver;
3159 struct bfd_elf_version_tree *star_local_ver, *star_global_ver;
3160
3161 local_ver = NULL;
3162 global_ver = NULL;
3163 star_local_ver = NULL;
3164 star_global_ver = NULL;
3165 exist_ver = NULL;
3166 for (t = verdefs; t != NULL; t = t->next)
3167 {
3168 if (t->globals.list != NULL)
3169 {
3170 struct bfd_elf_version_expr *d = NULL;
3171
3172 while ((d = (*t->match) (&t->globals, d, sym_name)) != NULL)
3173 {
3174 if (d->literal || strcmp (d->pattern, "*") != 0)
3175 global_ver = t;
3176 else
3177 star_global_ver = t;
3178 if (d->symver)
3179 exist_ver = t;
3180 d->script = 1;
3181 /* If the match is a wildcard pattern, keep looking for
3182 a more explicit, perhaps even local, match. */
3183 if (d->literal)
3184 break;
3185 }
3186
3187 if (d != NULL)
3188 break;
3189 }
3190
3191 if (t->locals.list != NULL)
3192 {
3193 struct bfd_elf_version_expr *d = NULL;
3194
3195 while ((d = (*t->match) (&t->locals, d, sym_name)) != NULL)
3196 {
3197 if (d->literal || strcmp (d->pattern, "*") != 0)
3198 local_ver = t;
3199 else
3200 star_local_ver = t;
3201 /* If the match is a wildcard pattern, keep looking for
3202 a more explicit, perhaps even global, match. */
3203 if (d->literal)
3204 {
3205 /* An exact match overrides a global wildcard. */
3206 global_ver = NULL;
3207 star_global_ver = NULL;
3208 break;
3209 }
3210 }
3211
3212 if (d != NULL)
3213 break;
3214 }
3215 }
3216
3217 if (global_ver == NULL && local_ver == NULL)
3218 global_ver = star_global_ver;
3219
3220 if (global_ver != NULL)
3221 {
3222 /* If we already have a versioned symbol that matches the
3223 node for this symbol, then we don't want to create a
3224 duplicate from the unversioned symbol. Instead hide the
3225 unversioned symbol. */
3226 *hide = exist_ver == global_ver;
3227 return global_ver;
3228 }
3229
3230 if (local_ver == NULL)
3231 local_ver = star_local_ver;
3232
3233 if (local_ver != NULL)
3234 {
3235 *hide = TRUE;
3236 return local_ver;
3237 }
3238
3239 return NULL;
3240 }
3241
3242 /*
3243 FUNCTION
3244 bfd_hide_sym_by_version
3245
3246 SYNOPSIS
3247 bfd_boolean bfd_hide_sym_by_version
3248 (struct bfd_elf_version_tree *verdefs, const char *sym_name);
3249
3250 DESCRIPTION
3251 Search an elf version script tree for symbol versioning
3252 info for a given symbol. Return TRUE if the symbol is hidden.
3253
3254 */
3255
3256 bfd_boolean
3257 bfd_hide_sym_by_version (struct bfd_elf_version_tree *verdefs,
3258 const char *sym_name)
3259 {
3260 bfd_boolean hidden = FALSE;
3261 bfd_find_version_for_sym (verdefs, sym_name, &hidden);
3262 return hidden;
3263 }
3264
3265 /*
3266 FUNCTION
3267 bfd_link_check_relocs
3268
3269 SYNOPSIS
3270 bfd_boolean bfd_link_check_relocs
3271 (bfd *abfd, struct bfd_link_info *info);
3272
3273 DESCRIPTION
3274 Checks the relocs in ABFD for validity.
3275 Does not execute the relocs.
3276 Return TRUE if everything is OK, FALSE otherwise.
3277 This is the external entry point to this code.
3278 */
3279
3280 bfd_boolean
3281 bfd_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3282 {
3283 return BFD_SEND (abfd, _bfd_link_check_relocs, (abfd, info));
3284 }
3285
3286 /*
3287 FUNCTION
3288 _bfd_generic_link_check_relocs
3289
3290 SYNOPSIS
3291 bfd_boolean _bfd_generic_link_check_relocs
3292 (bfd *abfd, struct bfd_link_info *info);
3293
3294 DESCRIPTION
3295 Stub function for targets that do not implement reloc checking.
3296 Return TRUE.
3297 This is an internal function. It should not be called from
3298 outside the BFD library.
3299 */
3300
3301 bfd_boolean
3302 _bfd_generic_link_check_relocs (bfd *abfd ATTRIBUTE_UNUSED,
3303 struct bfd_link_info *info ATTRIBUTE_UNUSED)
3304 {
3305 return TRUE;
3306 }
3307
3308 /*
3309 FUNCTION
3310 bfd_merge_private_bfd_data
3311
3312 SYNOPSIS
3313 bfd_boolean bfd_merge_private_bfd_data
3314 (bfd *ibfd, struct bfd_link_info *info);
3315
3316 DESCRIPTION
3317 Merge private BFD information from the BFD @var{ibfd} to the
3318 the output file BFD when linking. Return <<TRUE>> on success,
3319 <<FALSE>> on error. Possible error returns are:
3320
3321 o <<bfd_error_no_memory>> -
3322 Not enough memory exists to create private data for @var{obfd}.
3323
3324 .#define bfd_merge_private_bfd_data(ibfd, info) \
3325 . BFD_SEND ((info)->output_bfd, _bfd_merge_private_bfd_data, \
3326 . (ibfd, info))
3327 */
3328
3329 /*
3330 INTERNAL_FUNCTION
3331 _bfd_generic_verify_endian_match
3332
3333 SYNOPSIS
3334 bfd_boolean _bfd_generic_verify_endian_match
3335 (bfd *ibfd, struct bfd_link_info *info);
3336
3337 DESCRIPTION
3338 Can be used from / for bfd_merge_private_bfd_data to check that
3339 endianness matches between input and output file. Returns
3340 TRUE for a match, otherwise returns FALSE and emits an error.
3341 */
3342
3343 bfd_boolean
3344 _bfd_generic_verify_endian_match (bfd *ibfd, struct bfd_link_info *info)
3345 {
3346 bfd *obfd = info->output_bfd;
3347
3348 if (ibfd->xvec->byteorder != obfd->xvec->byteorder
3349 && ibfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN
3350 && obfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN)
3351 {
3352 if (bfd_big_endian (ibfd))
3353 _bfd_error_handler (_("%B: compiled for a big endian system "
3354 "and target is little endian"), ibfd);
3355 else
3356 _bfd_error_handler (_("%B: compiled for a little endian system "
3357 "and target is big endian"), ibfd);
3358 bfd_set_error (bfd_error_wrong_format);
3359 return FALSE;
3360 }
3361
3362 return TRUE;
3363 }
This page took 0.099386 seconds and 4 git commands to generate.