Improve the formatting of the title strings of the binutils manual pages.
[deliverable/binutils-gdb.git] / bfd / linker.c
1 /* linker.c -- BFD linker routines
2 Copyright (C) 1993-2019 Free Software Foundation, Inc.
3 Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "libbfd.h"
25 #include "bfdlink.h"
26 #include "genlink.h"
27
28 /*
29 SECTION
30 Linker Functions
31
32 @cindex Linker
33 The linker uses three special entry points in the BFD target
34 vector. It is not necessary to write special routines for
35 these entry points when creating a new BFD back end, since
36 generic versions are provided. However, writing them can
37 speed up linking and make it use significantly less runtime
38 memory.
39
40 The first routine creates a hash table used by the other
41 routines. The second routine adds the symbols from an object
42 file to the hash table. The third routine takes all the
43 object files and links them together to create the output
44 file. These routines are designed so that the linker proper
45 does not need to know anything about the symbols in the object
46 files that it is linking. The linker merely arranges the
47 sections as directed by the linker script and lets BFD handle
48 the details of symbols and relocs.
49
50 The second routine and third routines are passed a pointer to
51 a <<struct bfd_link_info>> structure (defined in
52 <<bfdlink.h>>) which holds information relevant to the link,
53 including the linker hash table (which was created by the
54 first routine) and a set of callback functions to the linker
55 proper.
56
57 The generic linker routines are in <<linker.c>>, and use the
58 header file <<genlink.h>>. As of this writing, the only back
59 ends which have implemented versions of these routines are
60 a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>). The a.out
61 routines are used as examples throughout this section.
62
63 @menu
64 @* Creating a Linker Hash Table::
65 @* Adding Symbols to the Hash Table::
66 @* Performing the Final Link::
67 @end menu
68
69 INODE
70 Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
71 SUBSECTION
72 Creating a linker hash table
73
74 @cindex _bfd_link_hash_table_create in target vector
75 @cindex target vector (_bfd_link_hash_table_create)
76 The linker routines must create a hash table, which must be
77 derived from <<struct bfd_link_hash_table>> described in
78 <<bfdlink.c>>. @xref{Hash Tables}, for information on how to
79 create a derived hash table. This entry point is called using
80 the target vector of the linker output file.
81
82 The <<_bfd_link_hash_table_create>> entry point must allocate
83 and initialize an instance of the desired hash table. If the
84 back end does not require any additional information to be
85 stored with the entries in the hash table, the entry point may
86 simply create a <<struct bfd_link_hash_table>>. Most likely,
87 however, some additional information will be needed.
88
89 For example, with each entry in the hash table the a.out
90 linker keeps the index the symbol has in the final output file
91 (this index number is used so that when doing a relocatable
92 link the symbol index used in the output file can be quickly
93 filled in when copying over a reloc). The a.out linker code
94 defines the required structures and functions for a hash table
95 derived from <<struct bfd_link_hash_table>>. The a.out linker
96 hash table is created by the function
97 <<NAME(aout,link_hash_table_create)>>; it simply allocates
98 space for the hash table, initializes it, and returns a
99 pointer to it.
100
101 When writing the linker routines for a new back end, you will
102 generally not know exactly which fields will be required until
103 you have finished. You should simply create a new hash table
104 which defines no additional fields, and then simply add fields
105 as they become necessary.
106
107 INODE
108 Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
109 SUBSECTION
110 Adding symbols to the hash table
111
112 @cindex _bfd_link_add_symbols in target vector
113 @cindex target vector (_bfd_link_add_symbols)
114 The linker proper will call the <<_bfd_link_add_symbols>>
115 entry point for each object file or archive which is to be
116 linked (typically these are the files named on the command
117 line, but some may also come from the linker script). The
118 entry point is responsible for examining the file. For an
119 object file, BFD must add any relevant symbol information to
120 the hash table. For an archive, BFD must determine which
121 elements of the archive should be used and adding them to the
122 link.
123
124 The a.out version of this entry point is
125 <<NAME(aout,link_add_symbols)>>.
126
127 @menu
128 @* Differing file formats::
129 @* Adding symbols from an object file::
130 @* Adding symbols from an archive::
131 @end menu
132
133 INODE
134 Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
135 SUBSUBSECTION
136 Differing file formats
137
138 Normally all the files involved in a link will be of the same
139 format, but it is also possible to link together different
140 format object files, and the back end must support that. The
141 <<_bfd_link_add_symbols>> entry point is called via the target
142 vector of the file to be added. This has an important
143 consequence: the function may not assume that the hash table
144 is the type created by the corresponding
145 <<_bfd_link_hash_table_create>> vector. All the
146 <<_bfd_link_add_symbols>> function can assume about the hash
147 table is that it is derived from <<struct
148 bfd_link_hash_table>>.
149
150 Sometimes the <<_bfd_link_add_symbols>> function must store
151 some information in the hash table entry to be used by the
152 <<_bfd_final_link>> function. In such a case the output bfd
153 xvec must be checked to make sure that the hash table was
154 created by an object file of the same format.
155
156 The <<_bfd_final_link>> routine must be prepared to handle a
157 hash entry without any extra information added by the
158 <<_bfd_link_add_symbols>> function. A hash entry without
159 extra information will also occur when the linker script
160 directs the linker to create a symbol. Note that, regardless
161 of how a hash table entry is added, all the fields will be
162 initialized to some sort of null value by the hash table entry
163 initialization function.
164
165 See <<ecoff_link_add_externals>> for an example of how to
166 check the output bfd before saving information (in this
167 case, the ECOFF external symbol debugging information) in a
168 hash table entry.
169
170 INODE
171 Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
172 SUBSUBSECTION
173 Adding symbols from an object file
174
175 When the <<_bfd_link_add_symbols>> routine is passed an object
176 file, it must add all externally visible symbols in that
177 object file to the hash table. The actual work of adding the
178 symbol to the hash table is normally handled by the function
179 <<_bfd_generic_link_add_one_symbol>>. The
180 <<_bfd_link_add_symbols>> routine is responsible for reading
181 all the symbols from the object file and passing the correct
182 information to <<_bfd_generic_link_add_one_symbol>>.
183
184 The <<_bfd_link_add_symbols>> routine should not use
185 <<bfd_canonicalize_symtab>> to read the symbols. The point of
186 providing this routine is to avoid the overhead of converting
187 the symbols into generic <<asymbol>> structures.
188
189 @findex _bfd_generic_link_add_one_symbol
190 <<_bfd_generic_link_add_one_symbol>> handles the details of
191 combining common symbols, warning about multiple definitions,
192 and so forth. It takes arguments which describe the symbol to
193 add, notably symbol flags, a section, and an offset. The
194 symbol flags include such things as <<BSF_WEAK>> or
195 <<BSF_INDIRECT>>. The section is a section in the object
196 file, or something like <<bfd_und_section_ptr>> for an undefined
197 symbol or <<bfd_com_section_ptr>> for a common symbol.
198
199 If the <<_bfd_final_link>> routine is also going to need to
200 read the symbol information, the <<_bfd_link_add_symbols>>
201 routine should save it somewhere attached to the object file
202 BFD. However, the information should only be saved if the
203 <<keep_memory>> field of the <<info>> argument is TRUE, so
204 that the <<-no-keep-memory>> linker switch is effective.
205
206 The a.out function which adds symbols from an object file is
207 <<aout_link_add_object_symbols>>, and most of the interesting
208 work is in <<aout_link_add_symbols>>. The latter saves
209 pointers to the hash tables entries created by
210 <<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
211 so that the <<_bfd_final_link>> routine does not have to call
212 the hash table lookup routine to locate the entry.
213
214 INODE
215 Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
216 SUBSUBSECTION
217 Adding symbols from an archive
218
219 When the <<_bfd_link_add_symbols>> routine is passed an
220 archive, it must look through the symbols defined by the
221 archive and decide which elements of the archive should be
222 included in the link. For each such element it must call the
223 <<add_archive_element>> linker callback, and it must add the
224 symbols from the object file to the linker hash table. (The
225 callback may in fact indicate that a replacement BFD should be
226 used, in which case the symbols from that BFD should be added
227 to the linker hash table instead.)
228
229 @findex _bfd_generic_link_add_archive_symbols
230 In most cases the work of looking through the symbols in the
231 archive should be done by the
232 <<_bfd_generic_link_add_archive_symbols>> function.
233 <<_bfd_generic_link_add_archive_symbols>> is passed a function
234 to call to make the final decision about adding an archive
235 element to the link and to do the actual work of adding the
236 symbols to the linker hash table. If the element is to
237 be included, the <<add_archive_element>> linker callback
238 routine must be called with the element as an argument, and
239 the element's symbols must be added to the linker hash table
240 just as though the element had itself been passed to the
241 <<_bfd_link_add_symbols>> function.
242
243 When the a.out <<_bfd_link_add_symbols>> function receives an
244 archive, it calls <<_bfd_generic_link_add_archive_symbols>>
245 passing <<aout_link_check_archive_element>> as the function
246 argument. <<aout_link_check_archive_element>> calls
247 <<aout_link_check_ar_symbols>>. If the latter decides to add
248 the element (an element is only added if it provides a real,
249 non-common, definition for a previously undefined or common
250 symbol) it calls the <<add_archive_element>> callback and then
251 <<aout_link_check_archive_element>> calls
252 <<aout_link_add_symbols>> to actually add the symbols to the
253 linker hash table - possibly those of a substitute BFD, if the
254 <<add_archive_element>> callback avails itself of that option.
255
256 The ECOFF back end is unusual in that it does not normally
257 call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
258 archives already contain a hash table of symbols. The ECOFF
259 back end searches the archive itself to avoid the overhead of
260 creating a new hash table.
261
262 INODE
263 Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
264 SUBSECTION
265 Performing the final link
266
267 @cindex _bfd_link_final_link in target vector
268 @cindex target vector (_bfd_final_link)
269 When all the input files have been processed, the linker calls
270 the <<_bfd_final_link>> entry point of the output BFD. This
271 routine is responsible for producing the final output file,
272 which has several aspects. It must relocate the contents of
273 the input sections and copy the data into the output sections.
274 It must build an output symbol table including any local
275 symbols from the input files and the global symbols from the
276 hash table. When producing relocatable output, it must
277 modify the input relocs and write them into the output file.
278 There may also be object format dependent work to be done.
279
280 The linker will also call the <<write_object_contents>> entry
281 point when the BFD is closed. The two entry points must work
282 together in order to produce the correct output file.
283
284 The details of how this works are inevitably dependent upon
285 the specific object file format. The a.out
286 <<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
287
288 @menu
289 @* Information provided by the linker::
290 @* Relocating the section contents::
291 @* Writing the symbol table::
292 @end menu
293
294 INODE
295 Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
296 SUBSUBSECTION
297 Information provided by the linker
298
299 Before the linker calls the <<_bfd_final_link>> entry point,
300 it sets up some data structures for the function to use.
301
302 The <<input_bfds>> field of the <<bfd_link_info>> structure
303 will point to a list of all the input files included in the
304 link. These files are linked through the <<link.next>> field
305 of the <<bfd>> structure.
306
307 Each section in the output file will have a list of
308 <<link_order>> structures attached to the <<map_head.link_order>>
309 field (the <<link_order>> structure is defined in
310 <<bfdlink.h>>). These structures describe how to create the
311 contents of the output section in terms of the contents of
312 various input sections, fill constants, and, eventually, other
313 types of information. They also describe relocs that must be
314 created by the BFD backend, but do not correspond to any input
315 file; this is used to support -Ur, which builds constructors
316 while generating a relocatable object file.
317
318 INODE
319 Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
320 SUBSUBSECTION
321 Relocating the section contents
322
323 The <<_bfd_final_link>> function should look through the
324 <<link_order>> structures attached to each section of the
325 output file. Each <<link_order>> structure should either be
326 handled specially, or it should be passed to the function
327 <<_bfd_default_link_order>> which will do the right thing
328 (<<_bfd_default_link_order>> is defined in <<linker.c>>).
329
330 For efficiency, a <<link_order>> of type
331 <<bfd_indirect_link_order>> whose associated section belongs
332 to a BFD of the same format as the output BFD must be handled
333 specially. This type of <<link_order>> describes part of an
334 output section in terms of a section belonging to one of the
335 input files. The <<_bfd_final_link>> function should read the
336 contents of the section and any associated relocs, apply the
337 relocs to the section contents, and write out the modified
338 section contents. If performing a relocatable link, the
339 relocs themselves must also be modified and written out.
340
341 @findex _bfd_relocate_contents
342 @findex _bfd_final_link_relocate
343 The functions <<_bfd_relocate_contents>> and
344 <<_bfd_final_link_relocate>> provide some general support for
345 performing the actual relocations, notably overflow checking.
346 Their arguments include information about the symbol the
347 relocation is against and a <<reloc_howto_type>> argument
348 which describes the relocation to perform. These functions
349 are defined in <<reloc.c>>.
350
351 The a.out function which handles reading, relocating, and
352 writing section contents is <<aout_link_input_section>>. The
353 actual relocation is done in <<aout_link_input_section_std>>
354 and <<aout_link_input_section_ext>>.
355
356 INODE
357 Writing the symbol table, , Relocating the section contents, Performing the Final Link
358 SUBSUBSECTION
359 Writing the symbol table
360
361 The <<_bfd_final_link>> function must gather all the symbols
362 in the input files and write them out. It must also write out
363 all the symbols in the global hash table. This must be
364 controlled by the <<strip>> and <<discard>> fields of the
365 <<bfd_link_info>> structure.
366
367 The local symbols of the input files will not have been
368 entered into the linker hash table. The <<_bfd_final_link>>
369 routine must consider each input file and include the symbols
370 in the output file. It may be convenient to do this when
371 looking through the <<link_order>> structures, or it may be
372 done by stepping through the <<input_bfds>> list.
373
374 The <<_bfd_final_link>> routine must also traverse the global
375 hash table to gather all the externally visible symbols. It
376 is possible that most of the externally visible symbols may be
377 written out when considering the symbols of each input file,
378 but it is still necessary to traverse the hash table since the
379 linker script may have defined some symbols that are not in
380 any of the input files.
381
382 The <<strip>> field of the <<bfd_link_info>> structure
383 controls which symbols are written out. The possible values
384 are listed in <<bfdlink.h>>. If the value is <<strip_some>>,
385 then the <<keep_hash>> field of the <<bfd_link_info>>
386 structure is a hash table of symbols to keep; each symbol
387 should be looked up in this hash table, and only symbols which
388 are present should be included in the output file.
389
390 If the <<strip>> field of the <<bfd_link_info>> structure
391 permits local symbols to be written out, the <<discard>> field
392 is used to further controls which local symbols are included
393 in the output file. If the value is <<discard_l>>, then all
394 local symbols which begin with a certain prefix are discarded;
395 this is controlled by the <<bfd_is_local_label_name>> entry point.
396
397 The a.out backend handles symbols by calling
398 <<aout_link_write_symbols>> on each input BFD and then
399 traversing the global hash table with the function
400 <<aout_link_write_other_symbol>>. It builds a string table
401 while writing out the symbols, which is written to the output
402 file at the end of <<NAME(aout,final_link)>>.
403 */
404
405 static bfd_boolean generic_link_add_object_symbols
406 (bfd *, struct bfd_link_info *);
407 static bfd_boolean generic_link_check_archive_element
408 (bfd *, struct bfd_link_info *, struct bfd_link_hash_entry *, const char *,
409 bfd_boolean *);
410 static bfd_boolean generic_link_add_symbol_list
411 (bfd *, struct bfd_link_info *, bfd_size_type count, asymbol **);
412 static bfd_boolean generic_add_output_symbol
413 (bfd *, size_t *psymalloc, asymbol *);
414 static bfd_boolean default_data_link_order
415 (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *);
416 static bfd_boolean default_indirect_link_order
417 (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *,
418 bfd_boolean);
419
420 /* The link hash table structure is defined in bfdlink.h. It provides
421 a base hash table which the backend specific hash tables are built
422 upon. */
423
424 /* Routine to create an entry in the link hash table. */
425
426 struct bfd_hash_entry *
427 _bfd_link_hash_newfunc (struct bfd_hash_entry *entry,
428 struct bfd_hash_table *table,
429 const char *string)
430 {
431 /* Allocate the structure if it has not already been allocated by a
432 subclass. */
433 if (entry == NULL)
434 {
435 entry = (struct bfd_hash_entry *)
436 bfd_hash_allocate (table, sizeof (struct bfd_link_hash_entry));
437 if (entry == NULL)
438 return entry;
439 }
440
441 /* Call the allocation method of the superclass. */
442 entry = bfd_hash_newfunc (entry, table, string);
443 if (entry)
444 {
445 struct bfd_link_hash_entry *h = (struct bfd_link_hash_entry *) entry;
446
447 /* Initialize the local fields. */
448 memset ((char *) &h->root + sizeof (h->root), 0,
449 sizeof (*h) - sizeof (h->root));
450 }
451
452 return entry;
453 }
454
455 /* Initialize a link hash table. The BFD argument is the one
456 responsible for creating this table. */
457
458 bfd_boolean
459 _bfd_link_hash_table_init
460 (struct bfd_link_hash_table *table,
461 bfd *abfd ATTRIBUTE_UNUSED,
462 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
463 struct bfd_hash_table *,
464 const char *),
465 unsigned int entsize)
466 {
467 bfd_boolean ret;
468
469 BFD_ASSERT (!abfd->is_linker_output && !abfd->link.hash);
470 table->undefs = NULL;
471 table->undefs_tail = NULL;
472 table->type = bfd_link_generic_hash_table;
473
474 ret = bfd_hash_table_init (&table->table, newfunc, entsize);
475 if (ret)
476 {
477 /* Arrange for destruction of this hash table on closing ABFD. */
478 table->hash_table_free = _bfd_generic_link_hash_table_free;
479 abfd->link.hash = table;
480 abfd->is_linker_output = TRUE;
481 }
482 return ret;
483 }
484
485 /* Look up a symbol in a link hash table. If follow is TRUE, we
486 follow bfd_link_hash_indirect and bfd_link_hash_warning links to
487 the real symbol.
488
489 .{* Return TRUE if the symbol described by a linker hash entry H
490 . is going to be absolute. Linker-script defined symbols can be
491 . converted from absolute to section-relative ones late in the
492 . link. Use this macro to correctly determine whether the symbol
493 . will actually end up absolute in output. *}
494 .#define bfd_is_abs_symbol(H) \
495 . (((H)->type == bfd_link_hash_defined \
496 . || (H)->type == bfd_link_hash_defweak) \
497 . && bfd_is_abs_section ((H)->u.def.section) \
498 . && !(H)->rel_from_abs)
499 .
500 */
501
502 struct bfd_link_hash_entry *
503 bfd_link_hash_lookup (struct bfd_link_hash_table *table,
504 const char *string,
505 bfd_boolean create,
506 bfd_boolean copy,
507 bfd_boolean follow)
508 {
509 struct bfd_link_hash_entry *ret;
510
511 if (table == NULL || string == NULL)
512 return NULL;
513
514 ret = ((struct bfd_link_hash_entry *)
515 bfd_hash_lookup (&table->table, string, create, copy));
516
517 if (follow && ret != NULL)
518 {
519 while (ret->type == bfd_link_hash_indirect
520 || ret->type == bfd_link_hash_warning)
521 ret = ret->u.i.link;
522 }
523
524 return ret;
525 }
526
527 /* Look up a symbol in the main linker hash table if the symbol might
528 be wrapped. This should only be used for references to an
529 undefined symbol, not for definitions of a symbol. */
530
531 struct bfd_link_hash_entry *
532 bfd_wrapped_link_hash_lookup (bfd *abfd,
533 struct bfd_link_info *info,
534 const char *string,
535 bfd_boolean create,
536 bfd_boolean copy,
537 bfd_boolean follow)
538 {
539 bfd_size_type amt;
540
541 if (info->wrap_hash != NULL)
542 {
543 const char *l;
544 char prefix = '\0';
545
546 l = string;
547 if (*l == bfd_get_symbol_leading_char (abfd) || *l == info->wrap_char)
548 {
549 prefix = *l;
550 ++l;
551 }
552
553 #undef WRAP
554 #define WRAP "__wrap_"
555
556 if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL)
557 {
558 char *n;
559 struct bfd_link_hash_entry *h;
560
561 /* This symbol is being wrapped. We want to replace all
562 references to SYM with references to __wrap_SYM. */
563
564 amt = strlen (l) + sizeof WRAP + 1;
565 n = (char *) bfd_malloc (amt);
566 if (n == NULL)
567 return NULL;
568
569 n[0] = prefix;
570 n[1] = '\0';
571 strcat (n, WRAP);
572 strcat (n, l);
573 h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
574 free (n);
575 return h;
576 }
577
578 #undef REAL
579 #define REAL "__real_"
580
581 if (*l == '_'
582 && CONST_STRNEQ (l, REAL)
583 && bfd_hash_lookup (info->wrap_hash, l + sizeof REAL - 1,
584 FALSE, FALSE) != NULL)
585 {
586 char *n;
587 struct bfd_link_hash_entry *h;
588
589 /* This is a reference to __real_SYM, where SYM is being
590 wrapped. We want to replace all references to __real_SYM
591 with references to SYM. */
592
593 amt = strlen (l + sizeof REAL - 1) + 2;
594 n = (char *) bfd_malloc (amt);
595 if (n == NULL)
596 return NULL;
597
598 n[0] = prefix;
599 n[1] = '\0';
600 strcat (n, l + sizeof REAL - 1);
601 h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
602 free (n);
603 return h;
604 }
605
606 #undef REAL
607 }
608
609 return bfd_link_hash_lookup (info->hash, string, create, copy, follow);
610 }
611
612 /* If H is a wrapped symbol, ie. the symbol name starts with "__wrap_"
613 and the remainder is found in wrap_hash, return the real symbol. */
614
615 struct bfd_link_hash_entry *
616 unwrap_hash_lookup (struct bfd_link_info *info,
617 bfd *input_bfd,
618 struct bfd_link_hash_entry *h)
619 {
620 const char *l = h->root.string;
621
622 if (*l == bfd_get_symbol_leading_char (input_bfd)
623 || *l == info->wrap_char)
624 ++l;
625
626 if (CONST_STRNEQ (l, WRAP))
627 {
628 l += sizeof WRAP - 1;
629
630 if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL)
631 {
632 char save = 0;
633 if (l - (sizeof WRAP - 1) != h->root.string)
634 {
635 --l;
636 save = *l;
637 *(char *) l = *h->root.string;
638 }
639 h = bfd_link_hash_lookup (info->hash, l, FALSE, FALSE, FALSE);
640 if (save)
641 *(char *) l = save;
642 }
643 }
644 return h;
645 }
646 #undef WRAP
647
648 /* Traverse a generic link hash table. Differs from bfd_hash_traverse
649 in the treatment of warning symbols. When warning symbols are
650 created they replace the real symbol, so you don't get to see the
651 real symbol in a bfd_hash_traverse. This traversal calls func with
652 the real symbol. */
653
654 void
655 bfd_link_hash_traverse
656 (struct bfd_link_hash_table *htab,
657 bfd_boolean (*func) (struct bfd_link_hash_entry *, void *),
658 void *info)
659 {
660 unsigned int i;
661
662 htab->table.frozen = 1;
663 for (i = 0; i < htab->table.size; i++)
664 {
665 struct bfd_link_hash_entry *p;
666
667 p = (struct bfd_link_hash_entry *) htab->table.table[i];
668 for (; p != NULL; p = (struct bfd_link_hash_entry *) p->root.next)
669 if (!(*func) (p->type == bfd_link_hash_warning ? p->u.i.link : p, info))
670 goto out;
671 }
672 out:
673 htab->table.frozen = 0;
674 }
675
676 /* Add a symbol to the linker hash table undefs list. */
677
678 void
679 bfd_link_add_undef (struct bfd_link_hash_table *table,
680 struct bfd_link_hash_entry *h)
681 {
682 BFD_ASSERT (h->u.undef.next == NULL);
683 if (table->undefs_tail != NULL)
684 table->undefs_tail->u.undef.next = h;
685 if (table->undefs == NULL)
686 table->undefs = h;
687 table->undefs_tail = h;
688 }
689
690 /* The undefs list was designed so that in normal use we don't need to
691 remove entries. However, if symbols on the list are changed from
692 bfd_link_hash_undefined to either bfd_link_hash_undefweak or
693 bfd_link_hash_new for some reason, then they must be removed from the
694 list. Failure to do so might result in the linker attempting to add
695 the symbol to the list again at a later stage. */
696
697 void
698 bfd_link_repair_undef_list (struct bfd_link_hash_table *table)
699 {
700 struct bfd_link_hash_entry **pun;
701
702 pun = &table->undefs;
703 while (*pun != NULL)
704 {
705 struct bfd_link_hash_entry *h = *pun;
706
707 if (h->type == bfd_link_hash_new
708 || h->type == bfd_link_hash_undefweak)
709 {
710 *pun = h->u.undef.next;
711 h->u.undef.next = NULL;
712 if (h == table->undefs_tail)
713 {
714 if (pun == &table->undefs)
715 table->undefs_tail = NULL;
716 else
717 /* pun points at an u.undef.next field. Go back to
718 the start of the link_hash_entry. */
719 table->undefs_tail = (struct bfd_link_hash_entry *)
720 ((char *) pun - ((char *) &h->u.undef.next - (char *) h));
721 break;
722 }
723 }
724 else
725 pun = &h->u.undef.next;
726 }
727 }
728 \f
729 /* Routine to create an entry in a generic link hash table. */
730
731 struct bfd_hash_entry *
732 _bfd_generic_link_hash_newfunc (struct bfd_hash_entry *entry,
733 struct bfd_hash_table *table,
734 const char *string)
735 {
736 /* Allocate the structure if it has not already been allocated by a
737 subclass. */
738 if (entry == NULL)
739 {
740 entry = (struct bfd_hash_entry *)
741 bfd_hash_allocate (table, sizeof (struct generic_link_hash_entry));
742 if (entry == NULL)
743 return entry;
744 }
745
746 /* Call the allocation method of the superclass. */
747 entry = _bfd_link_hash_newfunc (entry, table, string);
748 if (entry)
749 {
750 struct generic_link_hash_entry *ret;
751
752 /* Set local fields. */
753 ret = (struct generic_link_hash_entry *) entry;
754 ret->written = FALSE;
755 ret->sym = NULL;
756 }
757
758 return entry;
759 }
760
761 /* Create a generic link hash table. */
762
763 struct bfd_link_hash_table *
764 _bfd_generic_link_hash_table_create (bfd *abfd)
765 {
766 struct generic_link_hash_table *ret;
767 bfd_size_type amt = sizeof (struct generic_link_hash_table);
768
769 ret = (struct generic_link_hash_table *) bfd_malloc (amt);
770 if (ret == NULL)
771 return NULL;
772 if (! _bfd_link_hash_table_init (&ret->root, abfd,
773 _bfd_generic_link_hash_newfunc,
774 sizeof (struct generic_link_hash_entry)))
775 {
776 free (ret);
777 return NULL;
778 }
779 return &ret->root;
780 }
781
782 void
783 _bfd_generic_link_hash_table_free (bfd *obfd)
784 {
785 struct generic_link_hash_table *ret;
786
787 BFD_ASSERT (obfd->is_linker_output && obfd->link.hash);
788 ret = (struct generic_link_hash_table *) obfd->link.hash;
789 bfd_hash_table_free (&ret->root.table);
790 free (ret);
791 obfd->link.hash = NULL;
792 obfd->is_linker_output = FALSE;
793 }
794
795 /* Grab the symbols for an object file when doing a generic link. We
796 store the symbols in the outsymbols field. We need to keep them
797 around for the entire link to ensure that we only read them once.
798 If we read them multiple times, we might wind up with relocs and
799 the hash table pointing to different instances of the symbol
800 structure. */
801
802 bfd_boolean
803 bfd_generic_link_read_symbols (bfd *abfd)
804 {
805 if (bfd_get_outsymbols (abfd) == NULL)
806 {
807 long symsize;
808 long symcount;
809
810 symsize = bfd_get_symtab_upper_bound (abfd);
811 if (symsize < 0)
812 return FALSE;
813 bfd_get_outsymbols (abfd) = (struct bfd_symbol **) bfd_alloc (abfd,
814 symsize);
815 if (bfd_get_outsymbols (abfd) == NULL && symsize != 0)
816 return FALSE;
817 symcount = bfd_canonicalize_symtab (abfd, bfd_get_outsymbols (abfd));
818 if (symcount < 0)
819 return FALSE;
820 bfd_get_symcount (abfd) = symcount;
821 }
822
823 return TRUE;
824 }
825 \f
826 /* Indicate that we are only retrieving symbol values from this
827 section. We want the symbols to act as though the values in the
828 file are absolute. */
829
830 void
831 _bfd_generic_link_just_syms (asection *sec,
832 struct bfd_link_info *info ATTRIBUTE_UNUSED)
833 {
834 sec->sec_info_type = SEC_INFO_TYPE_JUST_SYMS;
835 sec->output_section = bfd_abs_section_ptr;
836 sec->output_offset = sec->vma;
837 }
838
839 /* Copy the symbol type and other attributes for a linker script
840 assignment from HSRC to HDEST.
841 The default implementation does nothing. */
842 void
843 _bfd_generic_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
844 struct bfd_link_hash_entry *hdest ATTRIBUTE_UNUSED,
845 struct bfd_link_hash_entry *hsrc ATTRIBUTE_UNUSED)
846 {
847 }
848
849 /* Generic function to add symbols from an object file to the
850 global hash table. */
851
852 bfd_boolean
853 _bfd_generic_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
854 {
855 bfd_boolean ret;
856
857 switch (bfd_get_format (abfd))
858 {
859 case bfd_object:
860 ret = generic_link_add_object_symbols (abfd, info);
861 break;
862 case bfd_archive:
863 ret = (_bfd_generic_link_add_archive_symbols
864 (abfd, info, generic_link_check_archive_element));
865 break;
866 default:
867 bfd_set_error (bfd_error_wrong_format);
868 ret = FALSE;
869 }
870
871 return ret;
872 }
873
874 /* Add symbols from an object file to the global hash table. */
875
876 static bfd_boolean
877 generic_link_add_object_symbols (bfd *abfd,
878 struct bfd_link_info *info)
879 {
880 bfd_size_type symcount;
881 struct bfd_symbol **outsyms;
882
883 if (!bfd_generic_link_read_symbols (abfd))
884 return FALSE;
885 symcount = _bfd_generic_link_get_symcount (abfd);
886 outsyms = _bfd_generic_link_get_symbols (abfd);
887 return generic_link_add_symbol_list (abfd, info, symcount, outsyms);
888 }
889 \f
890 /* Generic function to add symbols from an archive file to the global
891 hash file. This function presumes that the archive symbol table
892 has already been read in (this is normally done by the
893 bfd_check_format entry point). It looks through the archive symbol
894 table for symbols that are undefined or common in the linker global
895 symbol hash table. When one is found, the CHECKFN argument is used
896 to see if an object file should be included. This allows targets
897 to customize common symbol behaviour. CHECKFN should set *PNEEDED
898 to TRUE if the object file should be included, and must also call
899 the bfd_link_info add_archive_element callback function and handle
900 adding the symbols to the global hash table. CHECKFN must notice
901 if the callback indicates a substitute BFD, and arrange to add
902 those symbols instead if it does so. CHECKFN should only return
903 FALSE if some sort of error occurs. */
904
905 bfd_boolean
906 _bfd_generic_link_add_archive_symbols
907 (bfd *abfd,
908 struct bfd_link_info *info,
909 bfd_boolean (*checkfn) (bfd *, struct bfd_link_info *,
910 struct bfd_link_hash_entry *, const char *,
911 bfd_boolean *))
912 {
913 bfd_boolean loop;
914 bfd_size_type amt;
915 unsigned char *included;
916
917 if (! bfd_has_map (abfd))
918 {
919 /* An empty archive is a special case. */
920 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
921 return TRUE;
922 bfd_set_error (bfd_error_no_armap);
923 return FALSE;
924 }
925
926 amt = bfd_ardata (abfd)->symdef_count;
927 if (amt == 0)
928 return TRUE;
929 amt *= sizeof (*included);
930 included = (unsigned char *) bfd_zmalloc (amt);
931 if (included == NULL)
932 return FALSE;
933
934 do
935 {
936 carsym *arsyms;
937 carsym *arsym_end;
938 carsym *arsym;
939 unsigned int indx;
940 file_ptr last_ar_offset = -1;
941 bfd_boolean needed = FALSE;
942 bfd *element = NULL;
943
944 loop = FALSE;
945 arsyms = bfd_ardata (abfd)->symdefs;
946 arsym_end = arsyms + bfd_ardata (abfd)->symdef_count;
947 for (arsym = arsyms, indx = 0; arsym < arsym_end; arsym++, indx++)
948 {
949 struct bfd_link_hash_entry *h;
950 struct bfd_link_hash_entry *undefs_tail;
951
952 if (included[indx])
953 continue;
954 if (needed && arsym->file_offset == last_ar_offset)
955 {
956 included[indx] = 1;
957 continue;
958 }
959
960 if (arsym->name == NULL)
961 goto error_return;
962
963 h = bfd_link_hash_lookup (info->hash, arsym->name,
964 FALSE, FALSE, TRUE);
965
966 if (h == NULL
967 && info->pei386_auto_import
968 && CONST_STRNEQ (arsym->name, "__imp_"))
969 h = bfd_link_hash_lookup (info->hash, arsym->name + 6,
970 FALSE, FALSE, TRUE);
971 if (h == NULL)
972 continue;
973
974 if (h->type != bfd_link_hash_undefined
975 && h->type != bfd_link_hash_common)
976 {
977 if (h->type != bfd_link_hash_undefweak)
978 /* Symbol must be defined. Don't check it again. */
979 included[indx] = 1;
980 continue;
981 }
982
983 if (last_ar_offset != arsym->file_offset)
984 {
985 last_ar_offset = arsym->file_offset;
986 element = _bfd_get_elt_at_filepos (abfd, last_ar_offset);
987 if (element == NULL
988 || !bfd_check_format (element, bfd_object))
989 goto error_return;
990 }
991
992 undefs_tail = info->hash->undefs_tail;
993
994 /* CHECKFN will see if this element should be included, and
995 go ahead and include it if appropriate. */
996 if (! (*checkfn) (element, info, h, arsym->name, &needed))
997 goto error_return;
998
999 if (needed)
1000 {
1001 unsigned int mark;
1002
1003 /* Look backward to mark all symbols from this object file
1004 which we have already seen in this pass. */
1005 mark = indx;
1006 do
1007 {
1008 included[mark] = 1;
1009 if (mark == 0)
1010 break;
1011 --mark;
1012 }
1013 while (arsyms[mark].file_offset == last_ar_offset);
1014
1015 if (undefs_tail != info->hash->undefs_tail)
1016 loop = TRUE;
1017 }
1018 }
1019 } while (loop);
1020
1021 free (included);
1022 return TRUE;
1023
1024 error_return:
1025 free (included);
1026 return FALSE;
1027 }
1028 \f
1029 /* See if we should include an archive element. */
1030
1031 static bfd_boolean
1032 generic_link_check_archive_element (bfd *abfd,
1033 struct bfd_link_info *info,
1034 struct bfd_link_hash_entry *h,
1035 const char *name ATTRIBUTE_UNUSED,
1036 bfd_boolean *pneeded)
1037 {
1038 asymbol **pp, **ppend;
1039
1040 *pneeded = FALSE;
1041
1042 if (!bfd_generic_link_read_symbols (abfd))
1043 return FALSE;
1044
1045 pp = _bfd_generic_link_get_symbols (abfd);
1046 ppend = pp + _bfd_generic_link_get_symcount (abfd);
1047 for (; pp < ppend; pp++)
1048 {
1049 asymbol *p;
1050
1051 p = *pp;
1052
1053 /* We are only interested in globally visible symbols. */
1054 if (! bfd_is_com_section (p->section)
1055 && (p->flags & (BSF_GLOBAL | BSF_INDIRECT | BSF_WEAK)) == 0)
1056 continue;
1057
1058 /* We are only interested if we know something about this
1059 symbol, and it is undefined or common. An undefined weak
1060 symbol (type bfd_link_hash_undefweak) is not considered to be
1061 a reference when pulling files out of an archive. See the
1062 SVR4 ABI, p. 4-27. */
1063 h = bfd_link_hash_lookup (info->hash, bfd_asymbol_name (p), FALSE,
1064 FALSE, TRUE);
1065 if (h == NULL
1066 || (h->type != bfd_link_hash_undefined
1067 && h->type != bfd_link_hash_common))
1068 continue;
1069
1070 /* P is a symbol we are looking for. */
1071
1072 if (! bfd_is_com_section (p->section)
1073 || (h->type == bfd_link_hash_undefined
1074 && h->u.undef.abfd == NULL))
1075 {
1076 /* P is not a common symbol, or an undefined reference was
1077 created from outside BFD such as from a linker -u option.
1078 This object file defines the symbol, so pull it in. */
1079 *pneeded = TRUE;
1080 if (!(*info->callbacks
1081 ->add_archive_element) (info, abfd, bfd_asymbol_name (p),
1082 &abfd))
1083 return FALSE;
1084 /* Potentially, the add_archive_element hook may have set a
1085 substitute BFD for us. */
1086 return bfd_link_add_symbols (abfd, info);
1087 }
1088
1089 /* P is a common symbol. */
1090
1091 if (h->type == bfd_link_hash_undefined)
1092 {
1093 bfd *symbfd;
1094 bfd_vma size;
1095 unsigned int power;
1096
1097 /* Turn the symbol into a common symbol but do not link in
1098 the object file. This is how a.out works. Object
1099 formats that require different semantics must implement
1100 this function differently. This symbol is already on the
1101 undefs list. We add the section to a common section
1102 attached to symbfd to ensure that it is in a BFD which
1103 will be linked in. */
1104 symbfd = h->u.undef.abfd;
1105 h->type = bfd_link_hash_common;
1106 h->u.c.p = (struct bfd_link_hash_common_entry *)
1107 bfd_hash_allocate (&info->hash->table,
1108 sizeof (struct bfd_link_hash_common_entry));
1109 if (h->u.c.p == NULL)
1110 return FALSE;
1111
1112 size = bfd_asymbol_value (p);
1113 h->u.c.size = size;
1114
1115 power = bfd_log2 (size);
1116 if (power > 4)
1117 power = 4;
1118 h->u.c.p->alignment_power = power;
1119
1120 if (p->section == bfd_com_section_ptr)
1121 h->u.c.p->section = bfd_make_section_old_way (symbfd, "COMMON");
1122 else
1123 h->u.c.p->section = bfd_make_section_old_way (symbfd,
1124 p->section->name);
1125 h->u.c.p->section->flags |= SEC_ALLOC;
1126 }
1127 else
1128 {
1129 /* Adjust the size of the common symbol if necessary. This
1130 is how a.out works. Object formats that require
1131 different semantics must implement this function
1132 differently. */
1133 if (bfd_asymbol_value (p) > h->u.c.size)
1134 h->u.c.size = bfd_asymbol_value (p);
1135 }
1136 }
1137
1138 /* This archive element is not needed. */
1139 return TRUE;
1140 }
1141
1142 /* Add the symbols from an object file to the global hash table. ABFD
1143 is the object file. INFO is the linker information. SYMBOL_COUNT
1144 is the number of symbols. SYMBOLS is the list of symbols. */
1145
1146 static bfd_boolean
1147 generic_link_add_symbol_list (bfd *abfd,
1148 struct bfd_link_info *info,
1149 bfd_size_type symbol_count,
1150 asymbol **symbols)
1151 {
1152 asymbol **pp, **ppend;
1153
1154 pp = symbols;
1155 ppend = symbols + symbol_count;
1156 for (; pp < ppend; pp++)
1157 {
1158 asymbol *p;
1159
1160 p = *pp;
1161
1162 if ((p->flags & (BSF_INDIRECT
1163 | BSF_WARNING
1164 | BSF_GLOBAL
1165 | BSF_CONSTRUCTOR
1166 | BSF_WEAK)) != 0
1167 || bfd_is_und_section (bfd_get_section (p))
1168 || bfd_is_com_section (bfd_get_section (p))
1169 || bfd_is_ind_section (bfd_get_section (p)))
1170 {
1171 const char *name;
1172 const char *string;
1173 struct generic_link_hash_entry *h;
1174 struct bfd_link_hash_entry *bh;
1175
1176 string = name = bfd_asymbol_name (p);
1177 if (((p->flags & BSF_INDIRECT) != 0
1178 || bfd_is_ind_section (p->section))
1179 && pp + 1 < ppend)
1180 {
1181 pp++;
1182 string = bfd_asymbol_name (*pp);
1183 }
1184 else if ((p->flags & BSF_WARNING) != 0
1185 && pp + 1 < ppend)
1186 {
1187 /* The name of P is actually the warning string, and the
1188 next symbol is the one to warn about. */
1189 pp++;
1190 name = bfd_asymbol_name (*pp);
1191 }
1192
1193 bh = NULL;
1194 if (! (_bfd_generic_link_add_one_symbol
1195 (info, abfd, name, p->flags, bfd_get_section (p),
1196 p->value, string, FALSE, FALSE, &bh)))
1197 return FALSE;
1198 h = (struct generic_link_hash_entry *) bh;
1199
1200 /* If this is a constructor symbol, and the linker didn't do
1201 anything with it, then we want to just pass the symbol
1202 through to the output file. This will happen when
1203 linking with -r. */
1204 if ((p->flags & BSF_CONSTRUCTOR) != 0
1205 && (h == NULL || h->root.type == bfd_link_hash_new))
1206 {
1207 p->udata.p = NULL;
1208 continue;
1209 }
1210
1211 /* Save the BFD symbol so that we don't lose any backend
1212 specific information that may be attached to it. We only
1213 want this one if it gives more information than the
1214 existing one; we don't want to replace a defined symbol
1215 with an undefined one. This routine may be called with a
1216 hash table other than the generic hash table, so we only
1217 do this if we are certain that the hash table is a
1218 generic one. */
1219 if (info->output_bfd->xvec == abfd->xvec)
1220 {
1221 if (h->sym == NULL
1222 || (! bfd_is_und_section (bfd_get_section (p))
1223 && (! bfd_is_com_section (bfd_get_section (p))
1224 || bfd_is_und_section (bfd_get_section (h->sym)))))
1225 {
1226 h->sym = p;
1227 /* BSF_OLD_COMMON is a hack to support COFF reloc
1228 reading, and it should go away when the COFF
1229 linker is switched to the new version. */
1230 if (bfd_is_com_section (bfd_get_section (p)))
1231 p->flags |= BSF_OLD_COMMON;
1232 }
1233 }
1234
1235 /* Store a back pointer from the symbol to the hash
1236 table entry for the benefit of relaxation code until
1237 it gets rewritten to not use asymbol structures.
1238 Setting this is also used to check whether these
1239 symbols were set up by the generic linker. */
1240 p->udata.p = h;
1241 }
1242 }
1243
1244 return TRUE;
1245 }
1246 \f
1247 /* We use a state table to deal with adding symbols from an object
1248 file. The first index into the state table describes the symbol
1249 from the object file. The second index into the state table is the
1250 type of the symbol in the hash table. */
1251
1252 /* The symbol from the object file is turned into one of these row
1253 values. */
1254
1255 enum link_row
1256 {
1257 UNDEF_ROW, /* Undefined. */
1258 UNDEFW_ROW, /* Weak undefined. */
1259 DEF_ROW, /* Defined. */
1260 DEFW_ROW, /* Weak defined. */
1261 COMMON_ROW, /* Common. */
1262 INDR_ROW, /* Indirect. */
1263 WARN_ROW, /* Warning. */
1264 SET_ROW /* Member of set. */
1265 };
1266
1267 /* apparently needed for Hitachi 3050R(HI-UX/WE2)? */
1268 #undef FAIL
1269
1270 /* The actions to take in the state table. */
1271
1272 enum link_action
1273 {
1274 FAIL, /* Abort. */
1275 UND, /* Mark symbol undefined. */
1276 WEAK, /* Mark symbol weak undefined. */
1277 DEF, /* Mark symbol defined. */
1278 DEFW, /* Mark symbol weak defined. */
1279 COM, /* Mark symbol common. */
1280 REF, /* Mark defined symbol referenced. */
1281 CREF, /* Possibly warn about common reference to defined symbol. */
1282 CDEF, /* Define existing common symbol. */
1283 NOACT, /* No action. */
1284 BIG, /* Mark symbol common using largest size. */
1285 MDEF, /* Multiple definition error. */
1286 MIND, /* Multiple indirect symbols. */
1287 IND, /* Make indirect symbol. */
1288 CIND, /* Make indirect symbol from existing common symbol. */
1289 SET, /* Add value to set. */
1290 MWARN, /* Make warning symbol. */
1291 WARN, /* Warn if referenced, else MWARN. */
1292 CYCLE, /* Repeat with symbol pointed to. */
1293 REFC, /* Mark indirect symbol referenced and then CYCLE. */
1294 WARNC /* Issue warning and then CYCLE. */
1295 };
1296
1297 /* The state table itself. The first index is a link_row and the
1298 second index is a bfd_link_hash_type. */
1299
1300 static const enum link_action link_action[8][8] =
1301 {
1302 /* current\prev new undef undefw def defw com indr warn */
1303 /* UNDEF_ROW */ {UND, NOACT, UND, REF, REF, NOACT, REFC, WARNC },
1304 /* UNDEFW_ROW */ {WEAK, NOACT, NOACT, REF, REF, NOACT, REFC, WARNC },
1305 /* DEF_ROW */ {DEF, DEF, DEF, MDEF, DEF, CDEF, MDEF, CYCLE },
1306 /* DEFW_ROW */ {DEFW, DEFW, DEFW, NOACT, NOACT, NOACT, NOACT, CYCLE },
1307 /* COMMON_ROW */ {COM, COM, COM, CREF, COM, BIG, REFC, WARNC },
1308 /* INDR_ROW */ {IND, IND, IND, MDEF, IND, CIND, MIND, CYCLE },
1309 /* WARN_ROW */ {MWARN, WARN, WARN, WARN, WARN, WARN, WARN, NOACT },
1310 /* SET_ROW */ {SET, SET, SET, SET, SET, SET, CYCLE, CYCLE }
1311 };
1312
1313 /* Most of the entries in the LINK_ACTION table are straightforward,
1314 but a few are somewhat subtle.
1315
1316 A reference to an indirect symbol (UNDEF_ROW/indr or
1317 UNDEFW_ROW/indr) is counted as a reference both to the indirect
1318 symbol and to the symbol the indirect symbol points to.
1319
1320 A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn)
1321 causes the warning to be issued.
1322
1323 A common definition of an indirect symbol (COMMON_ROW/indr) is
1324 treated as a multiple definition error. Likewise for an indirect
1325 definition of a common symbol (INDR_ROW/com).
1326
1327 An indirect definition of a warning (INDR_ROW/warn) does not cause
1328 the warning to be issued.
1329
1330 If a warning is created for an indirect symbol (WARN_ROW/indr) no
1331 warning is created for the symbol the indirect symbol points to.
1332
1333 Adding an entry to a set does not count as a reference to a set,
1334 and no warning is issued (SET_ROW/warn). */
1335
1336 /* Return the BFD in which a hash entry has been defined, if known. */
1337
1338 static bfd *
1339 hash_entry_bfd (struct bfd_link_hash_entry *h)
1340 {
1341 while (h->type == bfd_link_hash_warning)
1342 h = h->u.i.link;
1343 switch (h->type)
1344 {
1345 default:
1346 return NULL;
1347 case bfd_link_hash_undefined:
1348 case bfd_link_hash_undefweak:
1349 return h->u.undef.abfd;
1350 case bfd_link_hash_defined:
1351 case bfd_link_hash_defweak:
1352 return h->u.def.section->owner;
1353 case bfd_link_hash_common:
1354 return h->u.c.p->section->owner;
1355 }
1356 /*NOTREACHED*/
1357 }
1358
1359 /* Add a symbol to the global hash table.
1360 ABFD is the BFD the symbol comes from.
1361 NAME is the name of the symbol.
1362 FLAGS is the BSF_* bits associated with the symbol.
1363 SECTION is the section in which the symbol is defined; this may be
1364 bfd_und_section_ptr or bfd_com_section_ptr.
1365 VALUE is the value of the symbol, relative to the section.
1366 STRING is used for either an indirect symbol, in which case it is
1367 the name of the symbol to indirect to, or a warning symbol, in
1368 which case it is the warning string.
1369 COPY is TRUE if NAME or STRING must be copied into locally
1370 allocated memory if they need to be saved.
1371 COLLECT is TRUE if we should automatically collect gcc constructor
1372 or destructor names as collect2 does.
1373 HASHP, if not NULL, is a place to store the created hash table
1374 entry; if *HASHP is not NULL, the caller has already looked up
1375 the hash table entry, and stored it in *HASHP. */
1376
1377 bfd_boolean
1378 _bfd_generic_link_add_one_symbol (struct bfd_link_info *info,
1379 bfd *abfd,
1380 const char *name,
1381 flagword flags,
1382 asection *section,
1383 bfd_vma value,
1384 const char *string,
1385 bfd_boolean copy,
1386 bfd_boolean collect,
1387 struct bfd_link_hash_entry **hashp)
1388 {
1389 enum link_row row;
1390 struct bfd_link_hash_entry *h;
1391 struct bfd_link_hash_entry *inh = NULL;
1392 bfd_boolean cycle;
1393
1394 BFD_ASSERT (section != NULL);
1395
1396 if (bfd_is_ind_section (section)
1397 || (flags & BSF_INDIRECT) != 0)
1398 {
1399 row = INDR_ROW;
1400 /* Create the indirect symbol here. This is for the benefit of
1401 the plugin "notice" function.
1402 STRING is the name of the symbol we want to indirect to. */
1403 inh = bfd_wrapped_link_hash_lookup (abfd, info, string, TRUE,
1404 copy, FALSE);
1405 if (inh == NULL)
1406 return FALSE;
1407 }
1408 else if ((flags & BSF_WARNING) != 0)
1409 row = WARN_ROW;
1410 else if ((flags & BSF_CONSTRUCTOR) != 0)
1411 row = SET_ROW;
1412 else if (bfd_is_und_section (section))
1413 {
1414 if ((flags & BSF_WEAK) != 0)
1415 row = UNDEFW_ROW;
1416 else
1417 row = UNDEF_ROW;
1418 }
1419 else if ((flags & BSF_WEAK) != 0)
1420 row = DEFW_ROW;
1421 else if (bfd_is_com_section (section))
1422 {
1423 row = COMMON_ROW;
1424 static bfd_boolean report_plugin_err = TRUE;
1425 if (!bfd_link_relocatable (info) && report_plugin_err)
1426 {
1427 if (abfd->lto_slim_object)
1428 {
1429 report_plugin_err = FALSE;
1430 _bfd_error_handler
1431 (_("%pB: plugin needed to handle lto object"), abfd);
1432 }
1433 else if (name[0] == '_'
1434 && name[1] == '_'
1435 && strcmp (name + (name[2] == '_'), "__gnu_lto_slim") == 0)
1436 {
1437 report_plugin_err = FALSE;
1438 _bfd_error_handler
1439 (_("%pB: plugin needed to handle lto object"), abfd);
1440 }
1441 }
1442 }
1443 else
1444 row = DEF_ROW;
1445
1446 if (hashp != NULL && *hashp != NULL)
1447 h = *hashp;
1448 else
1449 {
1450 if (row == UNDEF_ROW || row == UNDEFW_ROW)
1451 h = bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, copy, FALSE);
1452 else
1453 h = bfd_link_hash_lookup (info->hash, name, TRUE, copy, FALSE);
1454 if (h == NULL)
1455 {
1456 if (hashp != NULL)
1457 *hashp = NULL;
1458 return FALSE;
1459 }
1460 }
1461
1462 if (info->notice_all
1463 || (info->notice_hash != NULL
1464 && bfd_hash_lookup (info->notice_hash, name, FALSE, FALSE) != NULL))
1465 {
1466 if (! (*info->callbacks->notice) (info, h, inh,
1467 abfd, section, value, flags))
1468 return FALSE;
1469 }
1470
1471 if (hashp != NULL)
1472 *hashp = h;
1473
1474 do
1475 {
1476 enum link_action action;
1477 int prev;
1478
1479 prev = h->type;
1480 /* Treat symbols defined by early linker script pass as undefined. */
1481 if (h->ldscript_def)
1482 prev = bfd_link_hash_undefined;
1483 cycle = FALSE;
1484 action = link_action[(int) row][prev];
1485 switch (action)
1486 {
1487 case FAIL:
1488 abort ();
1489
1490 case NOACT:
1491 /* Do nothing. */
1492 break;
1493
1494 case UND:
1495 /* Make a new undefined symbol. */
1496 h->type = bfd_link_hash_undefined;
1497 h->u.undef.abfd = abfd;
1498 bfd_link_add_undef (info->hash, h);
1499 break;
1500
1501 case WEAK:
1502 /* Make a new weak undefined symbol. */
1503 h->type = bfd_link_hash_undefweak;
1504 h->u.undef.abfd = abfd;
1505 break;
1506
1507 case CDEF:
1508 /* We have found a definition for a symbol which was
1509 previously common. */
1510 BFD_ASSERT (h->type == bfd_link_hash_common);
1511 (*info->callbacks->multiple_common) (info, h, abfd,
1512 bfd_link_hash_defined, 0);
1513 /* Fall through. */
1514 case DEF:
1515 case DEFW:
1516 {
1517 enum bfd_link_hash_type oldtype;
1518
1519 /* Define a symbol. */
1520 oldtype = h->type;
1521 if (action == DEFW)
1522 h->type = bfd_link_hash_defweak;
1523 else
1524 h->type = bfd_link_hash_defined;
1525 h->u.def.section = section;
1526 h->u.def.value = value;
1527 h->linker_def = 0;
1528 h->ldscript_def = 0;
1529
1530 /* If we have been asked to, we act like collect2 and
1531 identify all functions that might be global
1532 constructors and destructors and pass them up in a
1533 callback. We only do this for certain object file
1534 types, since many object file types can handle this
1535 automatically. */
1536 if (collect && name[0] == '_')
1537 {
1538 const char *s;
1539
1540 /* A constructor or destructor name starts like this:
1541 _+GLOBAL_[_.$][ID][_.$] where the first [_.$] and
1542 the second are the same character (we accept any
1543 character there, in case a new object file format
1544 comes along with even worse naming restrictions). */
1545
1546 #define CONS_PREFIX "GLOBAL_"
1547 #define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
1548
1549 s = name + 1;
1550 while (*s == '_')
1551 ++s;
1552 if (s[0] == 'G' && CONST_STRNEQ (s, CONS_PREFIX))
1553 {
1554 char c;
1555
1556 c = s[CONS_PREFIX_LEN + 1];
1557 if ((c == 'I' || c == 'D')
1558 && s[CONS_PREFIX_LEN] == s[CONS_PREFIX_LEN + 2])
1559 {
1560 /* If this is a definition of a symbol which
1561 was previously weakly defined, we are in
1562 trouble. We have already added a
1563 constructor entry for the weak defined
1564 symbol, and now we are trying to add one
1565 for the new symbol. Fortunately, this case
1566 should never arise in practice. */
1567 if (oldtype == bfd_link_hash_defweak)
1568 abort ();
1569
1570 (*info->callbacks->constructor) (info, c == 'I',
1571 h->root.string, abfd,
1572 section, value);
1573 }
1574 }
1575 }
1576 }
1577
1578 break;
1579
1580 case COM:
1581 /* We have found a common definition for a symbol. */
1582 if (h->type == bfd_link_hash_new)
1583 bfd_link_add_undef (info->hash, h);
1584 h->type = bfd_link_hash_common;
1585 h->u.c.p = (struct bfd_link_hash_common_entry *)
1586 bfd_hash_allocate (&info->hash->table,
1587 sizeof (struct bfd_link_hash_common_entry));
1588 if (h->u.c.p == NULL)
1589 return FALSE;
1590
1591 h->u.c.size = value;
1592
1593 /* Select a default alignment based on the size. This may
1594 be overridden by the caller. */
1595 {
1596 unsigned int power;
1597
1598 power = bfd_log2 (value);
1599 if (power > 4)
1600 power = 4;
1601 h->u.c.p->alignment_power = power;
1602 }
1603
1604 /* The section of a common symbol is only used if the common
1605 symbol is actually allocated. It basically provides a
1606 hook for the linker script to decide which output section
1607 the common symbols should be put in. In most cases, the
1608 section of a common symbol will be bfd_com_section_ptr,
1609 the code here will choose a common symbol section named
1610 "COMMON", and the linker script will contain *(COMMON) in
1611 the appropriate place. A few targets use separate common
1612 sections for small symbols, and they require special
1613 handling. */
1614 if (section == bfd_com_section_ptr)
1615 {
1616 h->u.c.p->section = bfd_make_section_old_way (abfd, "COMMON");
1617 h->u.c.p->section->flags |= SEC_ALLOC;
1618 }
1619 else if (section->owner != abfd)
1620 {
1621 h->u.c.p->section = bfd_make_section_old_way (abfd,
1622 section->name);
1623 h->u.c.p->section->flags |= SEC_ALLOC;
1624 }
1625 else
1626 h->u.c.p->section = section;
1627 h->linker_def = 0;
1628 h->ldscript_def = 0;
1629 break;
1630
1631 case REF:
1632 /* A reference to a defined symbol. */
1633 if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1634 h->u.undef.next = h;
1635 break;
1636
1637 case BIG:
1638 /* We have found a common definition for a symbol which
1639 already had a common definition. Use the maximum of the
1640 two sizes, and use the section required by the larger symbol. */
1641 BFD_ASSERT (h->type == bfd_link_hash_common);
1642 (*info->callbacks->multiple_common) (info, h, abfd,
1643 bfd_link_hash_common, value);
1644 if (value > h->u.c.size)
1645 {
1646 unsigned int power;
1647
1648 h->u.c.size = value;
1649
1650 /* Select a default alignment based on the size. This may
1651 be overridden by the caller. */
1652 power = bfd_log2 (value);
1653 if (power > 4)
1654 power = 4;
1655 h->u.c.p->alignment_power = power;
1656
1657 /* Some systems have special treatment for small commons,
1658 hence we want to select the section used by the larger
1659 symbol. This makes sure the symbol does not go in a
1660 small common section if it is now too large. */
1661 if (section == bfd_com_section_ptr)
1662 {
1663 h->u.c.p->section
1664 = bfd_make_section_old_way (abfd, "COMMON");
1665 h->u.c.p->section->flags |= SEC_ALLOC;
1666 }
1667 else if (section->owner != abfd)
1668 {
1669 h->u.c.p->section
1670 = bfd_make_section_old_way (abfd, section->name);
1671 h->u.c.p->section->flags |= SEC_ALLOC;
1672 }
1673 else
1674 h->u.c.p->section = section;
1675 }
1676 break;
1677
1678 case CREF:
1679 /* We have found a common definition for a symbol which
1680 was already defined. */
1681 (*info->callbacks->multiple_common) (info, h, abfd,
1682 bfd_link_hash_common, value);
1683 break;
1684
1685 case MIND:
1686 /* Multiple indirect symbols. This is OK if they both point
1687 to the same symbol. */
1688 if (strcmp (h->u.i.link->root.string, string) == 0)
1689 break;
1690 /* Fall through. */
1691 case MDEF:
1692 /* Handle a multiple definition. */
1693 (*info->callbacks->multiple_definition) (info, h,
1694 abfd, section, value);
1695 break;
1696
1697 case CIND:
1698 /* Create an indirect symbol from an existing common symbol. */
1699 BFD_ASSERT (h->type == bfd_link_hash_common);
1700 (*info->callbacks->multiple_common) (info, h, abfd,
1701 bfd_link_hash_indirect, 0);
1702 /* Fall through. */
1703 case IND:
1704 if (inh->type == bfd_link_hash_indirect
1705 && inh->u.i.link == h)
1706 {
1707 _bfd_error_handler
1708 /* xgettext:c-format */
1709 (_("%pB: indirect symbol `%s' to `%s' is a loop"),
1710 abfd, name, string);
1711 bfd_set_error (bfd_error_invalid_operation);
1712 return FALSE;
1713 }
1714 if (inh->type == bfd_link_hash_new)
1715 {
1716 inh->type = bfd_link_hash_undefined;
1717 inh->u.undef.abfd = abfd;
1718 bfd_link_add_undef (info->hash, inh);
1719 }
1720
1721 /* If the indirect symbol has been referenced, we need to
1722 push the reference down to the symbol we are referencing. */
1723 if (h->type != bfd_link_hash_new)
1724 {
1725 /* ??? If inh->type == bfd_link_hash_undefweak this
1726 converts inh to bfd_link_hash_undefined. */
1727 row = UNDEF_ROW;
1728 cycle = TRUE;
1729 }
1730
1731 h->type = bfd_link_hash_indirect;
1732 h->u.i.link = inh;
1733 /* Not setting h = h->u.i.link here means that when cycle is
1734 set above we'll always go to REFC, and then cycle again
1735 to the indirected symbol. This means that any successful
1736 change of an existing symbol to indirect counts as a
1737 reference. ??? That may not be correct when the existing
1738 symbol was defweak. */
1739 break;
1740
1741 case SET:
1742 /* Add an entry to a set. */
1743 (*info->callbacks->add_to_set) (info, h, BFD_RELOC_CTOR,
1744 abfd, section, value);
1745 break;
1746
1747 case WARNC:
1748 /* Issue a warning and cycle, except when the reference is
1749 in LTO IR. */
1750 if (h->u.i.warning != NULL
1751 && (abfd->flags & BFD_PLUGIN) == 0)
1752 {
1753 (*info->callbacks->warning) (info, h->u.i.warning,
1754 h->root.string, abfd, NULL, 0);
1755 /* Only issue a warning once. */
1756 h->u.i.warning = NULL;
1757 }
1758 /* Fall through. */
1759 case CYCLE:
1760 /* Try again with the referenced symbol. */
1761 h = h->u.i.link;
1762 cycle = TRUE;
1763 break;
1764
1765 case REFC:
1766 /* A reference to an indirect symbol. */
1767 if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1768 h->u.undef.next = h;
1769 h = h->u.i.link;
1770 cycle = TRUE;
1771 break;
1772
1773 case WARN:
1774 /* Warn if this symbol has been referenced already from non-IR,
1775 otherwise add a warning. */
1776 if ((!info->lto_plugin_active
1777 && (h->u.undef.next != NULL || info->hash->undefs_tail == h))
1778 || h->non_ir_ref_regular
1779 || h->non_ir_ref_dynamic)
1780 {
1781 (*info->callbacks->warning) (info, string, h->root.string,
1782 hash_entry_bfd (h), NULL, 0);
1783 break;
1784 }
1785 /* Fall through. */
1786 case MWARN:
1787 /* Make a warning symbol. */
1788 {
1789 struct bfd_link_hash_entry *sub;
1790
1791 /* STRING is the warning to give. */
1792 sub = ((struct bfd_link_hash_entry *)
1793 ((*info->hash->table.newfunc)
1794 (NULL, &info->hash->table, h->root.string)));
1795 if (sub == NULL)
1796 return FALSE;
1797 *sub = *h;
1798 sub->type = bfd_link_hash_warning;
1799 sub->u.i.link = h;
1800 if (! copy)
1801 sub->u.i.warning = string;
1802 else
1803 {
1804 char *w;
1805 size_t len = strlen (string) + 1;
1806
1807 w = (char *) bfd_hash_allocate (&info->hash->table, len);
1808 if (w == NULL)
1809 return FALSE;
1810 memcpy (w, string, len);
1811 sub->u.i.warning = w;
1812 }
1813
1814 bfd_hash_replace (&info->hash->table,
1815 (struct bfd_hash_entry *) h,
1816 (struct bfd_hash_entry *) sub);
1817 if (hashp != NULL)
1818 *hashp = sub;
1819 }
1820 break;
1821 }
1822 }
1823 while (cycle);
1824
1825 return TRUE;
1826 }
1827 \f
1828 /* Generic final link routine. */
1829
1830 bfd_boolean
1831 _bfd_generic_final_link (bfd *abfd, struct bfd_link_info *info)
1832 {
1833 bfd *sub;
1834 asection *o;
1835 struct bfd_link_order *p;
1836 size_t outsymalloc;
1837 struct generic_write_global_symbol_info wginfo;
1838
1839 bfd_get_outsymbols (abfd) = NULL;
1840 bfd_get_symcount (abfd) = 0;
1841 outsymalloc = 0;
1842
1843 /* Mark all sections which will be included in the output file. */
1844 for (o = abfd->sections; o != NULL; o = o->next)
1845 for (p = o->map_head.link_order; p != NULL; p = p->next)
1846 if (p->type == bfd_indirect_link_order)
1847 p->u.indirect.section->linker_mark = TRUE;
1848
1849 /* Build the output symbol table. */
1850 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
1851 if (! _bfd_generic_link_output_symbols (abfd, sub, info, &outsymalloc))
1852 return FALSE;
1853
1854 /* Accumulate the global symbols. */
1855 wginfo.info = info;
1856 wginfo.output_bfd = abfd;
1857 wginfo.psymalloc = &outsymalloc;
1858 _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info),
1859 _bfd_generic_link_write_global_symbol,
1860 &wginfo);
1861
1862 /* Make sure we have a trailing NULL pointer on OUTSYMBOLS. We
1863 shouldn't really need one, since we have SYMCOUNT, but some old
1864 code still expects one. */
1865 if (! generic_add_output_symbol (abfd, &outsymalloc, NULL))
1866 return FALSE;
1867
1868 if (bfd_link_relocatable (info))
1869 {
1870 /* Allocate space for the output relocs for each section. */
1871 for (o = abfd->sections; o != NULL; o = o->next)
1872 {
1873 o->reloc_count = 0;
1874 for (p = o->map_head.link_order; p != NULL; p = p->next)
1875 {
1876 if (p->type == bfd_section_reloc_link_order
1877 || p->type == bfd_symbol_reloc_link_order)
1878 ++o->reloc_count;
1879 else if (p->type == bfd_indirect_link_order)
1880 {
1881 asection *input_section;
1882 bfd *input_bfd;
1883 long relsize;
1884 arelent **relocs;
1885 asymbol **symbols;
1886 long reloc_count;
1887
1888 input_section = p->u.indirect.section;
1889 input_bfd = input_section->owner;
1890 relsize = bfd_get_reloc_upper_bound (input_bfd,
1891 input_section);
1892 if (relsize < 0)
1893 return FALSE;
1894 relocs = (arelent **) bfd_malloc (relsize);
1895 if (!relocs && relsize != 0)
1896 return FALSE;
1897 symbols = _bfd_generic_link_get_symbols (input_bfd);
1898 reloc_count = bfd_canonicalize_reloc (input_bfd,
1899 input_section,
1900 relocs,
1901 symbols);
1902 free (relocs);
1903 if (reloc_count < 0)
1904 return FALSE;
1905 BFD_ASSERT ((unsigned long) reloc_count
1906 == input_section->reloc_count);
1907 o->reloc_count += reloc_count;
1908 }
1909 }
1910 if (o->reloc_count > 0)
1911 {
1912 bfd_size_type amt;
1913
1914 amt = o->reloc_count;
1915 amt *= sizeof (arelent *);
1916 o->orelocation = (struct reloc_cache_entry **) bfd_alloc (abfd, amt);
1917 if (!o->orelocation)
1918 return FALSE;
1919 o->flags |= SEC_RELOC;
1920 /* Reset the count so that it can be used as an index
1921 when putting in the output relocs. */
1922 o->reloc_count = 0;
1923 }
1924 }
1925 }
1926
1927 /* Handle all the link order information for the sections. */
1928 for (o = abfd->sections; o != NULL; o = o->next)
1929 {
1930 for (p = o->map_head.link_order; p != NULL; p = p->next)
1931 {
1932 switch (p->type)
1933 {
1934 case bfd_section_reloc_link_order:
1935 case bfd_symbol_reloc_link_order:
1936 if (! _bfd_generic_reloc_link_order (abfd, info, o, p))
1937 return FALSE;
1938 break;
1939 case bfd_indirect_link_order:
1940 if (! default_indirect_link_order (abfd, info, o, p, TRUE))
1941 return FALSE;
1942 break;
1943 default:
1944 if (! _bfd_default_link_order (abfd, info, o, p))
1945 return FALSE;
1946 break;
1947 }
1948 }
1949 }
1950
1951 return TRUE;
1952 }
1953
1954 /* Add an output symbol to the output BFD. */
1955
1956 static bfd_boolean
1957 generic_add_output_symbol (bfd *output_bfd, size_t *psymalloc, asymbol *sym)
1958 {
1959 if (bfd_get_symcount (output_bfd) >= *psymalloc)
1960 {
1961 asymbol **newsyms;
1962 bfd_size_type amt;
1963
1964 if (*psymalloc == 0)
1965 *psymalloc = 124;
1966 else
1967 *psymalloc *= 2;
1968 amt = *psymalloc;
1969 amt *= sizeof (asymbol *);
1970 newsyms = (asymbol **) bfd_realloc (bfd_get_outsymbols (output_bfd), amt);
1971 if (newsyms == NULL)
1972 return FALSE;
1973 bfd_get_outsymbols (output_bfd) = newsyms;
1974 }
1975
1976 bfd_get_outsymbols (output_bfd) [bfd_get_symcount (output_bfd)] = sym;
1977 if (sym != NULL)
1978 ++ bfd_get_symcount (output_bfd);
1979
1980 return TRUE;
1981 }
1982
1983 /* Handle the symbols for an input BFD. */
1984
1985 bfd_boolean
1986 _bfd_generic_link_output_symbols (bfd *output_bfd,
1987 bfd *input_bfd,
1988 struct bfd_link_info *info,
1989 size_t *psymalloc)
1990 {
1991 asymbol **sym_ptr;
1992 asymbol **sym_end;
1993
1994 if (!bfd_generic_link_read_symbols (input_bfd))
1995 return FALSE;
1996
1997 /* Create a filename symbol if we are supposed to. */
1998 if (info->create_object_symbols_section != NULL)
1999 {
2000 asection *sec;
2001
2002 for (sec = input_bfd->sections; sec != NULL; sec = sec->next)
2003 {
2004 if (sec->output_section == info->create_object_symbols_section)
2005 {
2006 asymbol *newsym;
2007
2008 newsym = bfd_make_empty_symbol (input_bfd);
2009 if (!newsym)
2010 return FALSE;
2011 newsym->name = input_bfd->filename;
2012 newsym->value = 0;
2013 newsym->flags = BSF_LOCAL | BSF_FILE;
2014 newsym->section = sec;
2015
2016 if (! generic_add_output_symbol (output_bfd, psymalloc,
2017 newsym))
2018 return FALSE;
2019
2020 break;
2021 }
2022 }
2023 }
2024
2025 /* Adjust the values of the globally visible symbols, and write out
2026 local symbols. */
2027 sym_ptr = _bfd_generic_link_get_symbols (input_bfd);
2028 sym_end = sym_ptr + _bfd_generic_link_get_symcount (input_bfd);
2029 for (; sym_ptr < sym_end; sym_ptr++)
2030 {
2031 asymbol *sym;
2032 struct generic_link_hash_entry *h;
2033 bfd_boolean output;
2034
2035 h = NULL;
2036 sym = *sym_ptr;
2037 if ((sym->flags & (BSF_INDIRECT
2038 | BSF_WARNING
2039 | BSF_GLOBAL
2040 | BSF_CONSTRUCTOR
2041 | BSF_WEAK)) != 0
2042 || bfd_is_und_section (bfd_get_section (sym))
2043 || bfd_is_com_section (bfd_get_section (sym))
2044 || bfd_is_ind_section (bfd_get_section (sym)))
2045 {
2046 if (sym->udata.p != NULL)
2047 h = (struct generic_link_hash_entry *) sym->udata.p;
2048 else if ((sym->flags & BSF_CONSTRUCTOR) != 0)
2049 {
2050 /* This case normally means that the main linker code
2051 deliberately ignored this constructor symbol. We
2052 should just pass it through. This will screw up if
2053 the constructor symbol is from a different,
2054 non-generic, object file format, but the case will
2055 only arise when linking with -r, which will probably
2056 fail anyhow, since there will be no way to represent
2057 the relocs in the output format being used. */
2058 h = NULL;
2059 }
2060 else if (bfd_is_und_section (bfd_get_section (sym)))
2061 h = ((struct generic_link_hash_entry *)
2062 bfd_wrapped_link_hash_lookup (output_bfd, info,
2063 bfd_asymbol_name (sym),
2064 FALSE, FALSE, TRUE));
2065 else
2066 h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info),
2067 bfd_asymbol_name (sym),
2068 FALSE, FALSE, TRUE);
2069
2070 if (h != NULL)
2071 {
2072 /* Force all references to this symbol to point to
2073 the same area in memory. It is possible that
2074 this routine will be called with a hash table
2075 other than a generic hash table, so we double
2076 check that. */
2077 if (info->output_bfd->xvec == input_bfd->xvec)
2078 {
2079 if (h->sym != NULL)
2080 *sym_ptr = sym = h->sym;
2081 }
2082
2083 switch (h->root.type)
2084 {
2085 default:
2086 case bfd_link_hash_new:
2087 abort ();
2088 case bfd_link_hash_undefined:
2089 break;
2090 case bfd_link_hash_undefweak:
2091 sym->flags |= BSF_WEAK;
2092 break;
2093 case bfd_link_hash_indirect:
2094 h = (struct generic_link_hash_entry *) h->root.u.i.link;
2095 /* fall through */
2096 case bfd_link_hash_defined:
2097 sym->flags |= BSF_GLOBAL;
2098 sym->flags &=~ (BSF_WEAK | BSF_CONSTRUCTOR);
2099 sym->value = h->root.u.def.value;
2100 sym->section = h->root.u.def.section;
2101 break;
2102 case bfd_link_hash_defweak:
2103 sym->flags |= BSF_WEAK;
2104 sym->flags &=~ BSF_CONSTRUCTOR;
2105 sym->value = h->root.u.def.value;
2106 sym->section = h->root.u.def.section;
2107 break;
2108 case bfd_link_hash_common:
2109 sym->value = h->root.u.c.size;
2110 sym->flags |= BSF_GLOBAL;
2111 if (! bfd_is_com_section (sym->section))
2112 {
2113 BFD_ASSERT (bfd_is_und_section (sym->section));
2114 sym->section = bfd_com_section_ptr;
2115 }
2116 /* We do not set the section of the symbol to
2117 h->root.u.c.p->section. That value was saved so
2118 that we would know where to allocate the symbol
2119 if it was defined. In this case the type is
2120 still bfd_link_hash_common, so we did not define
2121 it, so we do not want to use that section. */
2122 break;
2123 }
2124 }
2125 }
2126
2127 if ((sym->flags & BSF_KEEP) == 0
2128 && (info->strip == strip_all
2129 || (info->strip == strip_some
2130 && bfd_hash_lookup (info->keep_hash, bfd_asymbol_name (sym),
2131 FALSE, FALSE) == NULL)))
2132 output = FALSE;
2133 else if ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0)
2134 {
2135 /* If this symbol is marked as occurring now, rather
2136 than at the end, output it now. This is used for
2137 COFF C_EXT FCN symbols. FIXME: There must be a
2138 better way. */
2139 if (bfd_asymbol_bfd (sym) == input_bfd
2140 && (sym->flags & BSF_NOT_AT_END) != 0)
2141 output = TRUE;
2142 else
2143 output = FALSE;
2144 }
2145 else if ((sym->flags & BSF_KEEP) != 0)
2146 output = TRUE;
2147 else if (bfd_is_ind_section (sym->section))
2148 output = FALSE;
2149 else if ((sym->flags & BSF_DEBUGGING) != 0)
2150 {
2151 if (info->strip == strip_none)
2152 output = TRUE;
2153 else
2154 output = FALSE;
2155 }
2156 else if (bfd_is_und_section (sym->section)
2157 || bfd_is_com_section (sym->section))
2158 output = FALSE;
2159 else if ((sym->flags & BSF_LOCAL) != 0)
2160 {
2161 if ((sym->flags & BSF_WARNING) != 0)
2162 output = FALSE;
2163 else
2164 {
2165 switch (info->discard)
2166 {
2167 default:
2168 case discard_all:
2169 output = FALSE;
2170 break;
2171 case discard_sec_merge:
2172 output = TRUE;
2173 if (bfd_link_relocatable (info)
2174 || ! (sym->section->flags & SEC_MERGE))
2175 break;
2176 /* FALLTHROUGH */
2177 case discard_l:
2178 if (bfd_is_local_label (input_bfd, sym))
2179 output = FALSE;
2180 else
2181 output = TRUE;
2182 break;
2183 case discard_none:
2184 output = TRUE;
2185 break;
2186 }
2187 }
2188 }
2189 else if ((sym->flags & BSF_CONSTRUCTOR))
2190 {
2191 if (info->strip != strip_all)
2192 output = TRUE;
2193 else
2194 output = FALSE;
2195 }
2196 else if (sym->flags == 0
2197 && (sym->section->owner->flags & BFD_PLUGIN) != 0)
2198 /* LTO doesn't set symbol information. We get here with the
2199 generic linker for a symbol that was "common" but no longer
2200 needs to be global. */
2201 output = FALSE;
2202 else
2203 abort ();
2204
2205 /* If this symbol is in a section which is not being included
2206 in the output file, then we don't want to output the
2207 symbol. */
2208 if (!bfd_is_abs_section (sym->section)
2209 && bfd_section_removed_from_list (output_bfd,
2210 sym->section->output_section))
2211 output = FALSE;
2212
2213 if (output)
2214 {
2215 if (! generic_add_output_symbol (output_bfd, psymalloc, sym))
2216 return FALSE;
2217 if (h != NULL)
2218 h->written = TRUE;
2219 }
2220 }
2221
2222 return TRUE;
2223 }
2224
2225 /* Set the section and value of a generic BFD symbol based on a linker
2226 hash table entry. */
2227
2228 static void
2229 set_symbol_from_hash (asymbol *sym, struct bfd_link_hash_entry *h)
2230 {
2231 switch (h->type)
2232 {
2233 default:
2234 abort ();
2235 break;
2236 case bfd_link_hash_new:
2237 /* This can happen when a constructor symbol is seen but we are
2238 not building constructors. */
2239 if (sym->section != NULL)
2240 {
2241 BFD_ASSERT ((sym->flags & BSF_CONSTRUCTOR) != 0);
2242 }
2243 else
2244 {
2245 sym->flags |= BSF_CONSTRUCTOR;
2246 sym->section = bfd_abs_section_ptr;
2247 sym->value = 0;
2248 }
2249 break;
2250 case bfd_link_hash_undefined:
2251 sym->section = bfd_und_section_ptr;
2252 sym->value = 0;
2253 break;
2254 case bfd_link_hash_undefweak:
2255 sym->section = bfd_und_section_ptr;
2256 sym->value = 0;
2257 sym->flags |= BSF_WEAK;
2258 break;
2259 case bfd_link_hash_defined:
2260 sym->section = h->u.def.section;
2261 sym->value = h->u.def.value;
2262 break;
2263 case bfd_link_hash_defweak:
2264 sym->flags |= BSF_WEAK;
2265 sym->section = h->u.def.section;
2266 sym->value = h->u.def.value;
2267 break;
2268 case bfd_link_hash_common:
2269 sym->value = h->u.c.size;
2270 if (sym->section == NULL)
2271 sym->section = bfd_com_section_ptr;
2272 else if (! bfd_is_com_section (sym->section))
2273 {
2274 BFD_ASSERT (bfd_is_und_section (sym->section));
2275 sym->section = bfd_com_section_ptr;
2276 }
2277 /* Do not set the section; see _bfd_generic_link_output_symbols. */
2278 break;
2279 case bfd_link_hash_indirect:
2280 case bfd_link_hash_warning:
2281 /* FIXME: What should we do here? */
2282 break;
2283 }
2284 }
2285
2286 /* Write out a global symbol, if it hasn't already been written out.
2287 This is called for each symbol in the hash table. */
2288
2289 bfd_boolean
2290 _bfd_generic_link_write_global_symbol (struct generic_link_hash_entry *h,
2291 void *data)
2292 {
2293 struct generic_write_global_symbol_info *wginfo =
2294 (struct generic_write_global_symbol_info *) data;
2295 asymbol *sym;
2296
2297 if (h->written)
2298 return TRUE;
2299
2300 h->written = TRUE;
2301
2302 if (wginfo->info->strip == strip_all
2303 || (wginfo->info->strip == strip_some
2304 && bfd_hash_lookup (wginfo->info->keep_hash, h->root.root.string,
2305 FALSE, FALSE) == NULL))
2306 return TRUE;
2307
2308 if (h->sym != NULL)
2309 sym = h->sym;
2310 else
2311 {
2312 sym = bfd_make_empty_symbol (wginfo->output_bfd);
2313 if (!sym)
2314 return FALSE;
2315 sym->name = h->root.root.string;
2316 sym->flags = 0;
2317 }
2318
2319 set_symbol_from_hash (sym, &h->root);
2320
2321 sym->flags |= BSF_GLOBAL;
2322
2323 if (! generic_add_output_symbol (wginfo->output_bfd, wginfo->psymalloc,
2324 sym))
2325 {
2326 /* FIXME: No way to return failure. */
2327 abort ();
2328 }
2329
2330 return TRUE;
2331 }
2332
2333 /* Create a relocation. */
2334
2335 bfd_boolean
2336 _bfd_generic_reloc_link_order (bfd *abfd,
2337 struct bfd_link_info *info,
2338 asection *sec,
2339 struct bfd_link_order *link_order)
2340 {
2341 arelent *r;
2342
2343 if (! bfd_link_relocatable (info))
2344 abort ();
2345 if (sec->orelocation == NULL)
2346 abort ();
2347
2348 r = (arelent *) bfd_alloc (abfd, sizeof (arelent));
2349 if (r == NULL)
2350 return FALSE;
2351
2352 r->address = link_order->offset;
2353 r->howto = bfd_reloc_type_lookup (abfd, link_order->u.reloc.p->reloc);
2354 if (r->howto == 0)
2355 {
2356 bfd_set_error (bfd_error_bad_value);
2357 return FALSE;
2358 }
2359
2360 /* Get the symbol to use for the relocation. */
2361 if (link_order->type == bfd_section_reloc_link_order)
2362 r->sym_ptr_ptr = link_order->u.reloc.p->u.section->symbol_ptr_ptr;
2363 else
2364 {
2365 struct generic_link_hash_entry *h;
2366
2367 h = ((struct generic_link_hash_entry *)
2368 bfd_wrapped_link_hash_lookup (abfd, info,
2369 link_order->u.reloc.p->u.name,
2370 FALSE, FALSE, TRUE));
2371 if (h == NULL
2372 || ! h->written)
2373 {
2374 (*info->callbacks->unattached_reloc)
2375 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
2376 bfd_set_error (bfd_error_bad_value);
2377 return FALSE;
2378 }
2379 r->sym_ptr_ptr = &h->sym;
2380 }
2381
2382 /* If this is an inplace reloc, write the addend to the object file.
2383 Otherwise, store it in the reloc addend. */
2384 if (! r->howto->partial_inplace)
2385 r->addend = link_order->u.reloc.p->addend;
2386 else
2387 {
2388 bfd_size_type size;
2389 bfd_reloc_status_type rstat;
2390 bfd_byte *buf;
2391 bfd_boolean ok;
2392 file_ptr loc;
2393
2394 size = bfd_get_reloc_size (r->howto);
2395 buf = (bfd_byte *) bfd_zmalloc (size);
2396 if (buf == NULL && size != 0)
2397 return FALSE;
2398 rstat = _bfd_relocate_contents (r->howto, abfd,
2399 (bfd_vma) link_order->u.reloc.p->addend,
2400 buf);
2401 switch (rstat)
2402 {
2403 case bfd_reloc_ok:
2404 break;
2405 default:
2406 case bfd_reloc_outofrange:
2407 abort ();
2408 case bfd_reloc_overflow:
2409 (*info->callbacks->reloc_overflow)
2410 (info, NULL,
2411 (link_order->type == bfd_section_reloc_link_order
2412 ? bfd_section_name (abfd, link_order->u.reloc.p->u.section)
2413 : link_order->u.reloc.p->u.name),
2414 r->howto->name, link_order->u.reloc.p->addend,
2415 NULL, NULL, 0);
2416 break;
2417 }
2418 loc = link_order->offset * bfd_octets_per_byte (abfd);
2419 ok = bfd_set_section_contents (abfd, sec, buf, loc, size);
2420 free (buf);
2421 if (! ok)
2422 return FALSE;
2423
2424 r->addend = 0;
2425 }
2426
2427 sec->orelocation[sec->reloc_count] = r;
2428 ++sec->reloc_count;
2429
2430 return TRUE;
2431 }
2432 \f
2433 /* Allocate a new link_order for a section. */
2434
2435 struct bfd_link_order *
2436 bfd_new_link_order (bfd *abfd, asection *section)
2437 {
2438 bfd_size_type amt = sizeof (struct bfd_link_order);
2439 struct bfd_link_order *new_lo;
2440
2441 new_lo = (struct bfd_link_order *) bfd_zalloc (abfd, amt);
2442 if (!new_lo)
2443 return NULL;
2444
2445 new_lo->type = bfd_undefined_link_order;
2446
2447 if (section->map_tail.link_order != NULL)
2448 section->map_tail.link_order->next = new_lo;
2449 else
2450 section->map_head.link_order = new_lo;
2451 section->map_tail.link_order = new_lo;
2452
2453 return new_lo;
2454 }
2455
2456 /* Default link order processing routine. Note that we can not handle
2457 the reloc_link_order types here, since they depend upon the details
2458 of how the particular backends generates relocs. */
2459
2460 bfd_boolean
2461 _bfd_default_link_order (bfd *abfd,
2462 struct bfd_link_info *info,
2463 asection *sec,
2464 struct bfd_link_order *link_order)
2465 {
2466 switch (link_order->type)
2467 {
2468 case bfd_undefined_link_order:
2469 case bfd_section_reloc_link_order:
2470 case bfd_symbol_reloc_link_order:
2471 default:
2472 abort ();
2473 case bfd_indirect_link_order:
2474 return default_indirect_link_order (abfd, info, sec, link_order,
2475 FALSE);
2476 case bfd_data_link_order:
2477 return default_data_link_order (abfd, info, sec, link_order);
2478 }
2479 }
2480
2481 /* Default routine to handle a bfd_data_link_order. */
2482
2483 static bfd_boolean
2484 default_data_link_order (bfd *abfd,
2485 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2486 asection *sec,
2487 struct bfd_link_order *link_order)
2488 {
2489 bfd_size_type size;
2490 size_t fill_size;
2491 bfd_byte *fill;
2492 file_ptr loc;
2493 bfd_boolean result;
2494
2495 BFD_ASSERT ((sec->flags & SEC_HAS_CONTENTS) != 0);
2496
2497 size = link_order->size;
2498 if (size == 0)
2499 return TRUE;
2500
2501 fill = link_order->u.data.contents;
2502 fill_size = link_order->u.data.size;
2503 if (fill_size == 0)
2504 {
2505 fill = abfd->arch_info->fill (size, bfd_big_endian (abfd),
2506 (sec->flags & SEC_CODE) != 0);
2507 if (fill == NULL)
2508 return FALSE;
2509 }
2510 else if (fill_size < size)
2511 {
2512 bfd_byte *p;
2513 fill = (bfd_byte *) bfd_malloc (size);
2514 if (fill == NULL)
2515 return FALSE;
2516 p = fill;
2517 if (fill_size == 1)
2518 memset (p, (int) link_order->u.data.contents[0], (size_t) size);
2519 else
2520 {
2521 do
2522 {
2523 memcpy (p, link_order->u.data.contents, fill_size);
2524 p += fill_size;
2525 size -= fill_size;
2526 }
2527 while (size >= fill_size);
2528 if (size != 0)
2529 memcpy (p, link_order->u.data.contents, (size_t) size);
2530 size = link_order->size;
2531 }
2532 }
2533
2534 loc = link_order->offset * bfd_octets_per_byte (abfd);
2535 result = bfd_set_section_contents (abfd, sec, fill, loc, size);
2536
2537 if (fill != link_order->u.data.contents)
2538 free (fill);
2539 return result;
2540 }
2541
2542 /* Default routine to handle a bfd_indirect_link_order. */
2543
2544 static bfd_boolean
2545 default_indirect_link_order (bfd *output_bfd,
2546 struct bfd_link_info *info,
2547 asection *output_section,
2548 struct bfd_link_order *link_order,
2549 bfd_boolean generic_linker)
2550 {
2551 asection *input_section;
2552 bfd *input_bfd;
2553 bfd_byte *contents = NULL;
2554 bfd_byte *new_contents;
2555 bfd_size_type sec_size;
2556 file_ptr loc;
2557
2558 BFD_ASSERT ((output_section->flags & SEC_HAS_CONTENTS) != 0);
2559
2560 input_section = link_order->u.indirect.section;
2561 input_bfd = input_section->owner;
2562 if (input_section->size == 0)
2563 return TRUE;
2564
2565 BFD_ASSERT (input_section->output_section == output_section);
2566 BFD_ASSERT (input_section->output_offset == link_order->offset);
2567 BFD_ASSERT (input_section->size == link_order->size);
2568
2569 if (bfd_link_relocatable (info)
2570 && input_section->reloc_count > 0
2571 && output_section->orelocation == NULL)
2572 {
2573 /* Space has not been allocated for the output relocations.
2574 This can happen when we are called by a specific backend
2575 because somebody is attempting to link together different
2576 types of object files. Handling this case correctly is
2577 difficult, and sometimes impossible. */
2578 _bfd_error_handler
2579 /* xgettext:c-format */
2580 (_("attempt to do relocatable link with %s input and %s output"),
2581 bfd_get_target (input_bfd), bfd_get_target (output_bfd));
2582 bfd_set_error (bfd_error_wrong_format);
2583 return FALSE;
2584 }
2585
2586 if (! generic_linker)
2587 {
2588 asymbol **sympp;
2589 asymbol **symppend;
2590
2591 /* Get the canonical symbols. The generic linker will always
2592 have retrieved them by this point, but we are being called by
2593 a specific linker, presumably because we are linking
2594 different types of object files together. */
2595 if (!bfd_generic_link_read_symbols (input_bfd))
2596 return FALSE;
2597
2598 /* Since we have been called by a specific linker, rather than
2599 the generic linker, the values of the symbols will not be
2600 right. They will be the values as seen in the input file,
2601 not the values of the final link. We need to fix them up
2602 before we can relocate the section. */
2603 sympp = _bfd_generic_link_get_symbols (input_bfd);
2604 symppend = sympp + _bfd_generic_link_get_symcount (input_bfd);
2605 for (; sympp < symppend; sympp++)
2606 {
2607 asymbol *sym;
2608 struct bfd_link_hash_entry *h;
2609
2610 sym = *sympp;
2611
2612 if ((sym->flags & (BSF_INDIRECT
2613 | BSF_WARNING
2614 | BSF_GLOBAL
2615 | BSF_CONSTRUCTOR
2616 | BSF_WEAK)) != 0
2617 || bfd_is_und_section (bfd_get_section (sym))
2618 || bfd_is_com_section (bfd_get_section (sym))
2619 || bfd_is_ind_section (bfd_get_section (sym)))
2620 {
2621 /* sym->udata may have been set by
2622 generic_link_add_symbol_list. */
2623 if (sym->udata.p != NULL)
2624 h = (struct bfd_link_hash_entry *) sym->udata.p;
2625 else if (bfd_is_und_section (bfd_get_section (sym)))
2626 h = bfd_wrapped_link_hash_lookup (output_bfd, info,
2627 bfd_asymbol_name (sym),
2628 FALSE, FALSE, TRUE);
2629 else
2630 h = bfd_link_hash_lookup (info->hash,
2631 bfd_asymbol_name (sym),
2632 FALSE, FALSE, TRUE);
2633 if (h != NULL)
2634 set_symbol_from_hash (sym, h);
2635 }
2636 }
2637 }
2638
2639 if ((output_section->flags & (SEC_GROUP | SEC_LINKER_CREATED)) == SEC_GROUP
2640 && input_section->size != 0)
2641 {
2642 /* Group section contents are set by bfd_elf_set_group_contents. */
2643 if (!output_bfd->output_has_begun)
2644 {
2645 /* FIXME: This hack ensures bfd_elf_set_group_contents is called. */
2646 if (!bfd_set_section_contents (output_bfd, output_section, "", 0, 1))
2647 goto error_return;
2648 }
2649 new_contents = output_section->contents;
2650 BFD_ASSERT (new_contents != NULL);
2651 BFD_ASSERT (input_section->output_offset == 0);
2652 }
2653 else
2654 {
2655 /* Get and relocate the section contents. */
2656 sec_size = (input_section->rawsize > input_section->size
2657 ? input_section->rawsize
2658 : input_section->size);
2659 contents = (bfd_byte *) bfd_malloc (sec_size);
2660 if (contents == NULL && sec_size != 0)
2661 goto error_return;
2662 new_contents = (bfd_get_relocated_section_contents
2663 (output_bfd, info, link_order, contents,
2664 bfd_link_relocatable (info),
2665 _bfd_generic_link_get_symbols (input_bfd)));
2666 if (!new_contents)
2667 goto error_return;
2668 }
2669
2670 /* Output the section contents. */
2671 loc = input_section->output_offset * bfd_octets_per_byte (output_bfd);
2672 if (! bfd_set_section_contents (output_bfd, output_section,
2673 new_contents, loc, input_section->size))
2674 goto error_return;
2675
2676 if (contents != NULL)
2677 free (contents);
2678 return TRUE;
2679
2680 error_return:
2681 if (contents != NULL)
2682 free (contents);
2683 return FALSE;
2684 }
2685
2686 /* A little routine to count the number of relocs in a link_order
2687 list. */
2688
2689 unsigned int
2690 _bfd_count_link_order_relocs (struct bfd_link_order *link_order)
2691 {
2692 register unsigned int c;
2693 register struct bfd_link_order *l;
2694
2695 c = 0;
2696 for (l = link_order; l != NULL; l = l->next)
2697 {
2698 if (l->type == bfd_section_reloc_link_order
2699 || l->type == bfd_symbol_reloc_link_order)
2700 ++c;
2701 }
2702
2703 return c;
2704 }
2705
2706 /*
2707 FUNCTION
2708 bfd_link_split_section
2709
2710 SYNOPSIS
2711 bfd_boolean bfd_link_split_section (bfd *abfd, asection *sec);
2712
2713 DESCRIPTION
2714 Return nonzero if @var{sec} should be split during a
2715 reloceatable or final link.
2716
2717 .#define bfd_link_split_section(abfd, sec) \
2718 . BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
2719 .
2720
2721 */
2722
2723 bfd_boolean
2724 _bfd_generic_link_split_section (bfd *abfd ATTRIBUTE_UNUSED,
2725 asection *sec ATTRIBUTE_UNUSED)
2726 {
2727 return FALSE;
2728 }
2729
2730 /*
2731 FUNCTION
2732 bfd_section_already_linked
2733
2734 SYNOPSIS
2735 bfd_boolean bfd_section_already_linked (bfd *abfd,
2736 asection *sec,
2737 struct bfd_link_info *info);
2738
2739 DESCRIPTION
2740 Check if @var{data} has been already linked during a reloceatable
2741 or final link. Return TRUE if it has.
2742
2743 .#define bfd_section_already_linked(abfd, sec, info) \
2744 . BFD_SEND (abfd, _section_already_linked, (abfd, sec, info))
2745 .
2746
2747 */
2748
2749 /* Sections marked with the SEC_LINK_ONCE flag should only be linked
2750 once into the output. This routine checks each section, and
2751 arrange to discard it if a section of the same name has already
2752 been linked. This code assumes that all relevant sections have the
2753 SEC_LINK_ONCE flag set; that is, it does not depend solely upon the
2754 section name. bfd_section_already_linked is called via
2755 bfd_map_over_sections. */
2756
2757 /* The hash table. */
2758
2759 static struct bfd_hash_table _bfd_section_already_linked_table;
2760
2761 /* Support routines for the hash table used by section_already_linked,
2762 initialize the table, traverse, lookup, fill in an entry and remove
2763 the table. */
2764
2765 void
2766 bfd_section_already_linked_table_traverse
2767 (bfd_boolean (*func) (struct bfd_section_already_linked_hash_entry *,
2768 void *), void *info)
2769 {
2770 bfd_hash_traverse (&_bfd_section_already_linked_table,
2771 (bfd_boolean (*) (struct bfd_hash_entry *,
2772 void *)) func,
2773 info);
2774 }
2775
2776 struct bfd_section_already_linked_hash_entry *
2777 bfd_section_already_linked_table_lookup (const char *name)
2778 {
2779 return ((struct bfd_section_already_linked_hash_entry *)
2780 bfd_hash_lookup (&_bfd_section_already_linked_table, name,
2781 TRUE, FALSE));
2782 }
2783
2784 bfd_boolean
2785 bfd_section_already_linked_table_insert
2786 (struct bfd_section_already_linked_hash_entry *already_linked_list,
2787 asection *sec)
2788 {
2789 struct bfd_section_already_linked *l;
2790
2791 /* Allocate the memory from the same obstack as the hash table is
2792 kept in. */
2793 l = (struct bfd_section_already_linked *)
2794 bfd_hash_allocate (&_bfd_section_already_linked_table, sizeof *l);
2795 if (l == NULL)
2796 return FALSE;
2797 l->sec = sec;
2798 l->next = already_linked_list->entry;
2799 already_linked_list->entry = l;
2800 return TRUE;
2801 }
2802
2803 static struct bfd_hash_entry *
2804 already_linked_newfunc (struct bfd_hash_entry *entry ATTRIBUTE_UNUSED,
2805 struct bfd_hash_table *table,
2806 const char *string ATTRIBUTE_UNUSED)
2807 {
2808 struct bfd_section_already_linked_hash_entry *ret =
2809 (struct bfd_section_already_linked_hash_entry *)
2810 bfd_hash_allocate (table, sizeof *ret);
2811
2812 if (ret == NULL)
2813 return NULL;
2814
2815 ret->entry = NULL;
2816
2817 return &ret->root;
2818 }
2819
2820 bfd_boolean
2821 bfd_section_already_linked_table_init (void)
2822 {
2823 return bfd_hash_table_init_n (&_bfd_section_already_linked_table,
2824 already_linked_newfunc,
2825 sizeof (struct bfd_section_already_linked_hash_entry),
2826 42);
2827 }
2828
2829 void
2830 bfd_section_already_linked_table_free (void)
2831 {
2832 bfd_hash_table_free (&_bfd_section_already_linked_table);
2833 }
2834
2835 /* Report warnings as appropriate for duplicate section SEC.
2836 Return FALSE if we decide to keep SEC after all. */
2837
2838 bfd_boolean
2839 _bfd_handle_already_linked (asection *sec,
2840 struct bfd_section_already_linked *l,
2841 struct bfd_link_info *info)
2842 {
2843 switch (sec->flags & SEC_LINK_DUPLICATES)
2844 {
2845 default:
2846 abort ();
2847
2848 case SEC_LINK_DUPLICATES_DISCARD:
2849 /* If we found an LTO IR match for this comdat group on
2850 the first pass, replace it with the LTO output on the
2851 second pass. We can't simply choose real object
2852 files over IR because the first pass may contain a
2853 mix of LTO and normal objects and we must keep the
2854 first match, be it IR or real. */
2855 if (sec->owner->lto_output
2856 && (l->sec->owner->flags & BFD_PLUGIN) != 0)
2857 {
2858 l->sec = sec;
2859 return FALSE;
2860 }
2861 break;
2862
2863 case SEC_LINK_DUPLICATES_ONE_ONLY:
2864 info->callbacks->einfo
2865 /* xgettext:c-format */
2866 (_("%pB: ignoring duplicate section `%pA'\n"),
2867 sec->owner, sec);
2868 break;
2869
2870 case SEC_LINK_DUPLICATES_SAME_SIZE:
2871 if ((l->sec->owner->flags & BFD_PLUGIN) != 0)
2872 ;
2873 else if (sec->size != l->sec->size)
2874 info->callbacks->einfo
2875 /* xgettext:c-format */
2876 (_("%pB: duplicate section `%pA' has different size\n"),
2877 sec->owner, sec);
2878 break;
2879
2880 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
2881 if ((l->sec->owner->flags & BFD_PLUGIN) != 0)
2882 ;
2883 else if (sec->size != l->sec->size)
2884 info->callbacks->einfo
2885 /* xgettext:c-format */
2886 (_("%pB: duplicate section `%pA' has different size\n"),
2887 sec->owner, sec);
2888 else if (sec->size != 0)
2889 {
2890 bfd_byte *sec_contents, *l_sec_contents = NULL;
2891
2892 if (!bfd_malloc_and_get_section (sec->owner, sec, &sec_contents))
2893 info->callbacks->einfo
2894 /* xgettext:c-format */
2895 (_("%pB: could not read contents of section `%pA'\n"),
2896 sec->owner, sec);
2897 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
2898 &l_sec_contents))
2899 info->callbacks->einfo
2900 /* xgettext:c-format */
2901 (_("%pB: could not read contents of section `%pA'\n"),
2902 l->sec->owner, l->sec);
2903 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
2904 info->callbacks->einfo
2905 /* xgettext:c-format */
2906 (_("%pB: duplicate section `%pA' has different contents\n"),
2907 sec->owner, sec);
2908
2909 if (sec_contents)
2910 free (sec_contents);
2911 if (l_sec_contents)
2912 free (l_sec_contents);
2913 }
2914 break;
2915 }
2916
2917 /* Set the output_section field so that lang_add_section
2918 does not create a lang_input_section structure for this
2919 section. Since there might be a symbol in the section
2920 being discarded, we must retain a pointer to the section
2921 which we are really going to use. */
2922 sec->output_section = bfd_abs_section_ptr;
2923 sec->kept_section = l->sec;
2924 return TRUE;
2925 }
2926
2927 /* This is used on non-ELF inputs. */
2928
2929 bfd_boolean
2930 _bfd_generic_section_already_linked (bfd *abfd ATTRIBUTE_UNUSED,
2931 asection *sec,
2932 struct bfd_link_info *info)
2933 {
2934 const char *name;
2935 struct bfd_section_already_linked *l;
2936 struct bfd_section_already_linked_hash_entry *already_linked_list;
2937
2938 if ((sec->flags & SEC_LINK_ONCE) == 0)
2939 return FALSE;
2940
2941 /* The generic linker doesn't handle section groups. */
2942 if ((sec->flags & SEC_GROUP) != 0)
2943 return FALSE;
2944
2945 /* FIXME: When doing a relocatable link, we may have trouble
2946 copying relocations in other sections that refer to local symbols
2947 in the section being discarded. Those relocations will have to
2948 be converted somehow; as of this writing I'm not sure that any of
2949 the backends handle that correctly.
2950
2951 It is tempting to instead not discard link once sections when
2952 doing a relocatable link (technically, they should be discarded
2953 whenever we are building constructors). However, that fails,
2954 because the linker winds up combining all the link once sections
2955 into a single large link once section, which defeats the purpose
2956 of having link once sections in the first place. */
2957
2958 name = bfd_get_section_name (abfd, sec);
2959
2960 already_linked_list = bfd_section_already_linked_table_lookup (name);
2961
2962 l = already_linked_list->entry;
2963 if (l != NULL)
2964 {
2965 /* The section has already been linked. See if we should
2966 issue a warning. */
2967 return _bfd_handle_already_linked (sec, l, info);
2968 }
2969
2970 /* This is the first section with this name. Record it. */
2971 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
2972 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
2973 return FALSE;
2974 }
2975
2976 /* Choose a neighbouring section to S in OBFD that will be output, or
2977 the absolute section if ADDR is out of bounds of the neighbours. */
2978
2979 asection *
2980 _bfd_nearby_section (bfd *obfd, asection *s, bfd_vma addr)
2981 {
2982 asection *next, *prev, *best;
2983
2984 /* Find preceding kept section. */
2985 for (prev = s->prev; prev != NULL; prev = prev->prev)
2986 if ((prev->flags & SEC_EXCLUDE) == 0
2987 && !bfd_section_removed_from_list (obfd, prev))
2988 break;
2989
2990 /* Find following kept section. Start at prev->next because
2991 other sections may have been added after S was removed. */
2992 if (s->prev != NULL)
2993 next = s->prev->next;
2994 else
2995 next = s->owner->sections;
2996 for (; next != NULL; next = next->next)
2997 if ((next->flags & SEC_EXCLUDE) == 0
2998 && !bfd_section_removed_from_list (obfd, next))
2999 break;
3000
3001 /* Choose better of two sections, based on flags. The idea
3002 is to choose a section that will be in the same segment
3003 as S would have been if it was kept. */
3004 best = next;
3005 if (prev == NULL)
3006 {
3007 if (next == NULL)
3008 best = bfd_abs_section_ptr;
3009 }
3010 else if (next == NULL)
3011 best = prev;
3012 else if (((prev->flags ^ next->flags)
3013 & (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_LOAD)) != 0)
3014 {
3015 if (((next->flags ^ s->flags)
3016 & (SEC_ALLOC | SEC_THREAD_LOCAL)) != 0
3017 /* We prefer to choose a loaded section. Section S
3018 doesn't have SEC_LOAD set (it being excluded, that
3019 part of the flag processing didn't happen) so we
3020 can't compare that flag to those of NEXT and PREV. */
3021 || ((prev->flags & SEC_LOAD) != 0
3022 && (next->flags & SEC_LOAD) == 0))
3023 best = prev;
3024 }
3025 else if (((prev->flags ^ next->flags) & SEC_READONLY) != 0)
3026 {
3027 if (((next->flags ^ s->flags) & SEC_READONLY) != 0)
3028 best = prev;
3029 }
3030 else if (((prev->flags ^ next->flags) & SEC_CODE) != 0)
3031 {
3032 if (((next->flags ^ s->flags) & SEC_CODE) != 0)
3033 best = prev;
3034 }
3035 else
3036 {
3037 /* Flags we care about are the same. Prefer the following
3038 section if that will result in a positive valued sym. */
3039 if (addr < next->vma)
3040 best = prev;
3041 }
3042
3043 return best;
3044 }
3045
3046 /* Convert symbols in excluded output sections to use a kept section. */
3047
3048 static bfd_boolean
3049 fix_syms (struct bfd_link_hash_entry *h, void *data)
3050 {
3051 bfd *obfd = (bfd *) data;
3052
3053 if (h->type == bfd_link_hash_defined
3054 || h->type == bfd_link_hash_defweak)
3055 {
3056 asection *s = h->u.def.section;
3057 if (s != NULL
3058 && s->output_section != NULL
3059 && (s->output_section->flags & SEC_EXCLUDE) != 0
3060 && bfd_section_removed_from_list (obfd, s->output_section))
3061 {
3062 asection *op;
3063
3064 h->u.def.value += s->output_offset + s->output_section->vma;
3065 op = _bfd_nearby_section (obfd, s->output_section, h->u.def.value);
3066 h->u.def.value -= op->vma;
3067 h->u.def.section = op;
3068 }
3069 }
3070
3071 return TRUE;
3072 }
3073
3074 void
3075 _bfd_fix_excluded_sec_syms (bfd *obfd, struct bfd_link_info *info)
3076 {
3077 bfd_link_hash_traverse (info->hash, fix_syms, obfd);
3078 }
3079
3080 /*
3081 FUNCTION
3082 bfd_generic_define_common_symbol
3083
3084 SYNOPSIS
3085 bfd_boolean bfd_generic_define_common_symbol
3086 (bfd *output_bfd, struct bfd_link_info *info,
3087 struct bfd_link_hash_entry *h);
3088
3089 DESCRIPTION
3090 Convert common symbol @var{h} into a defined symbol.
3091 Return TRUE on success and FALSE on failure.
3092
3093 .#define bfd_define_common_symbol(output_bfd, info, h) \
3094 . BFD_SEND (output_bfd, _bfd_define_common_symbol, (output_bfd, info, h))
3095 .
3096 */
3097
3098 bfd_boolean
3099 bfd_generic_define_common_symbol (bfd *output_bfd,
3100 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3101 struct bfd_link_hash_entry *h)
3102 {
3103 unsigned int power_of_two;
3104 bfd_vma alignment, size;
3105 asection *section;
3106
3107 BFD_ASSERT (h != NULL && h->type == bfd_link_hash_common);
3108
3109 size = h->u.c.size;
3110 power_of_two = h->u.c.p->alignment_power;
3111 section = h->u.c.p->section;
3112
3113 /* Increase the size of the section to align the common symbol.
3114 The alignment must be a power of two. */
3115 alignment = bfd_octets_per_byte (output_bfd) << power_of_two;
3116 BFD_ASSERT (alignment != 0 && (alignment & -alignment) == alignment);
3117 section->size += alignment - 1;
3118 section->size &= -alignment;
3119
3120 /* Adjust the section's overall alignment if necessary. */
3121 if (power_of_two > section->alignment_power)
3122 section->alignment_power = power_of_two;
3123
3124 /* Change the symbol from common to defined. */
3125 h->type = bfd_link_hash_defined;
3126 h->u.def.section = section;
3127 h->u.def.value = section->size;
3128
3129 /* Increase the size of the section. */
3130 section->size += size;
3131
3132 /* Make sure the section is allocated in memory, and make sure that
3133 it is no longer a common section. */
3134 section->flags |= SEC_ALLOC;
3135 section->flags &= ~(SEC_IS_COMMON | SEC_HAS_CONTENTS);
3136 return TRUE;
3137 }
3138
3139 /*
3140 FUNCTION
3141 _bfd_generic_link_hide_symbol
3142
3143 SYNOPSIS
3144 void _bfd_generic_link_hide_symbol
3145 (bfd *output_bfd, struct bfd_link_info *info,
3146 struct bfd_link_hash_entry *h);
3147
3148 DESCRIPTION
3149 Hide symbol @var{h}.
3150 This is an internal function. It should not be called from
3151 outside the BFD library.
3152
3153 .#define bfd_link_hide_symbol(output_bfd, info, h) \
3154 . BFD_SEND (output_bfd, _bfd_link_hide_symbol, (output_bfd, info, h))
3155 .
3156 */
3157
3158 void
3159 _bfd_generic_link_hide_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
3160 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3161 struct bfd_link_hash_entry *h ATTRIBUTE_UNUSED)
3162 {
3163 }
3164
3165 /*
3166 FUNCTION
3167 bfd_generic_define_start_stop
3168
3169 SYNOPSIS
3170 struct bfd_link_hash_entry *bfd_generic_define_start_stop
3171 (struct bfd_link_info *info,
3172 const char *symbol, asection *sec);
3173
3174 DESCRIPTION
3175 Define a __start, __stop, .startof. or .sizeof. symbol.
3176 Return the symbol or NULL if no such undefined symbol exists.
3177
3178 .#define bfd_define_start_stop(output_bfd, info, symbol, sec) \
3179 . BFD_SEND (output_bfd, _bfd_define_start_stop, (info, symbol, sec))
3180 .
3181 */
3182
3183 struct bfd_link_hash_entry *
3184 bfd_generic_define_start_stop (struct bfd_link_info *info,
3185 const char *symbol, asection *sec)
3186 {
3187 struct bfd_link_hash_entry *h;
3188
3189 h = bfd_link_hash_lookup (info->hash, symbol, FALSE, FALSE, TRUE);
3190 if (h != NULL
3191 && (h->type == bfd_link_hash_undefined
3192 || h->type == bfd_link_hash_undefweak))
3193 {
3194 h->type = bfd_link_hash_defined;
3195 h->u.def.section = sec;
3196 h->u.def.value = 0;
3197 return h;
3198 }
3199 return NULL;
3200 }
3201
3202 /*
3203 FUNCTION
3204 bfd_find_version_for_sym
3205
3206 SYNOPSIS
3207 struct bfd_elf_version_tree * bfd_find_version_for_sym
3208 (struct bfd_elf_version_tree *verdefs,
3209 const char *sym_name, bfd_boolean *hide);
3210
3211 DESCRIPTION
3212 Search an elf version script tree for symbol versioning
3213 info and export / don't-export status for a given symbol.
3214 Return non-NULL on success and NULL on failure; also sets
3215 the output @samp{hide} boolean parameter.
3216
3217 */
3218
3219 struct bfd_elf_version_tree *
3220 bfd_find_version_for_sym (struct bfd_elf_version_tree *verdefs,
3221 const char *sym_name,
3222 bfd_boolean *hide)
3223 {
3224 struct bfd_elf_version_tree *t;
3225 struct bfd_elf_version_tree *local_ver, *global_ver, *exist_ver;
3226 struct bfd_elf_version_tree *star_local_ver, *star_global_ver;
3227
3228 local_ver = NULL;
3229 global_ver = NULL;
3230 star_local_ver = NULL;
3231 star_global_ver = NULL;
3232 exist_ver = NULL;
3233 for (t = verdefs; t != NULL; t = t->next)
3234 {
3235 if (t->globals.list != NULL)
3236 {
3237 struct bfd_elf_version_expr *d = NULL;
3238
3239 while ((d = (*t->match) (&t->globals, d, sym_name)) != NULL)
3240 {
3241 if (d->literal || strcmp (d->pattern, "*") != 0)
3242 global_ver = t;
3243 else
3244 star_global_ver = t;
3245 if (d->symver)
3246 exist_ver = t;
3247 d->script = 1;
3248 /* If the match is a wildcard pattern, keep looking for
3249 a more explicit, perhaps even local, match. */
3250 if (d->literal)
3251 break;
3252 }
3253
3254 if (d != NULL)
3255 break;
3256 }
3257
3258 if (t->locals.list != NULL)
3259 {
3260 struct bfd_elf_version_expr *d = NULL;
3261
3262 while ((d = (*t->match) (&t->locals, d, sym_name)) != NULL)
3263 {
3264 if (d->literal || strcmp (d->pattern, "*") != 0)
3265 local_ver = t;
3266 else
3267 star_local_ver = t;
3268 /* If the match is a wildcard pattern, keep looking for
3269 a more explicit, perhaps even global, match. */
3270 if (d->literal)
3271 {
3272 /* An exact match overrides a global wildcard. */
3273 global_ver = NULL;
3274 star_global_ver = NULL;
3275 break;
3276 }
3277 }
3278
3279 if (d != NULL)
3280 break;
3281 }
3282 }
3283
3284 if (global_ver == NULL && local_ver == NULL)
3285 global_ver = star_global_ver;
3286
3287 if (global_ver != NULL)
3288 {
3289 /* If we already have a versioned symbol that matches the
3290 node for this symbol, then we don't want to create a
3291 duplicate from the unversioned symbol. Instead hide the
3292 unversioned symbol. */
3293 *hide = exist_ver == global_ver;
3294 return global_ver;
3295 }
3296
3297 if (local_ver == NULL)
3298 local_ver = star_local_ver;
3299
3300 if (local_ver != NULL)
3301 {
3302 *hide = TRUE;
3303 return local_ver;
3304 }
3305
3306 return NULL;
3307 }
3308
3309 /*
3310 FUNCTION
3311 bfd_hide_sym_by_version
3312
3313 SYNOPSIS
3314 bfd_boolean bfd_hide_sym_by_version
3315 (struct bfd_elf_version_tree *verdefs, const char *sym_name);
3316
3317 DESCRIPTION
3318 Search an elf version script tree for symbol versioning
3319 info for a given symbol. Return TRUE if the symbol is hidden.
3320
3321 */
3322
3323 bfd_boolean
3324 bfd_hide_sym_by_version (struct bfd_elf_version_tree *verdefs,
3325 const char *sym_name)
3326 {
3327 bfd_boolean hidden = FALSE;
3328 bfd_find_version_for_sym (verdefs, sym_name, &hidden);
3329 return hidden;
3330 }
3331
3332 /*
3333 FUNCTION
3334 bfd_link_check_relocs
3335
3336 SYNOPSIS
3337 bfd_boolean bfd_link_check_relocs
3338 (bfd *abfd, struct bfd_link_info *info);
3339
3340 DESCRIPTION
3341 Checks the relocs in ABFD for validity.
3342 Does not execute the relocs.
3343 Return TRUE if everything is OK, FALSE otherwise.
3344 This is the external entry point to this code.
3345 */
3346
3347 bfd_boolean
3348 bfd_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3349 {
3350 return BFD_SEND (abfd, _bfd_link_check_relocs, (abfd, info));
3351 }
3352
3353 /*
3354 FUNCTION
3355 _bfd_generic_link_check_relocs
3356
3357 SYNOPSIS
3358 bfd_boolean _bfd_generic_link_check_relocs
3359 (bfd *abfd, struct bfd_link_info *info);
3360
3361 DESCRIPTION
3362 Stub function for targets that do not implement reloc checking.
3363 Return TRUE.
3364 This is an internal function. It should not be called from
3365 outside the BFD library.
3366 */
3367
3368 bfd_boolean
3369 _bfd_generic_link_check_relocs (bfd *abfd ATTRIBUTE_UNUSED,
3370 struct bfd_link_info *info ATTRIBUTE_UNUSED)
3371 {
3372 return TRUE;
3373 }
3374
3375 /*
3376 FUNCTION
3377 bfd_merge_private_bfd_data
3378
3379 SYNOPSIS
3380 bfd_boolean bfd_merge_private_bfd_data
3381 (bfd *ibfd, struct bfd_link_info *info);
3382
3383 DESCRIPTION
3384 Merge private BFD information from the BFD @var{ibfd} to the
3385 the output file BFD when linking. Return <<TRUE>> on success,
3386 <<FALSE>> on error. Possible error returns are:
3387
3388 o <<bfd_error_no_memory>> -
3389 Not enough memory exists to create private data for @var{obfd}.
3390
3391 .#define bfd_merge_private_bfd_data(ibfd, info) \
3392 . BFD_SEND ((info)->output_bfd, _bfd_merge_private_bfd_data, \
3393 . (ibfd, info))
3394 */
3395
3396 /*
3397 INTERNAL_FUNCTION
3398 _bfd_generic_verify_endian_match
3399
3400 SYNOPSIS
3401 bfd_boolean _bfd_generic_verify_endian_match
3402 (bfd *ibfd, struct bfd_link_info *info);
3403
3404 DESCRIPTION
3405 Can be used from / for bfd_merge_private_bfd_data to check that
3406 endianness matches between input and output file. Returns
3407 TRUE for a match, otherwise returns FALSE and emits an error.
3408 */
3409
3410 bfd_boolean
3411 _bfd_generic_verify_endian_match (bfd *ibfd, struct bfd_link_info *info)
3412 {
3413 bfd *obfd = info->output_bfd;
3414
3415 if (ibfd->xvec->byteorder != obfd->xvec->byteorder
3416 && ibfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN
3417 && obfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN)
3418 {
3419 if (bfd_big_endian (ibfd))
3420 _bfd_error_handler (_("%pB: compiled for a big endian system "
3421 "and target is little endian"), ibfd);
3422 else
3423 _bfd_error_handler (_("%pB: compiled for a little endian system "
3424 "and target is big endian"), ibfd);
3425 bfd_set_error (bfd_error_wrong_format);
3426 return FALSE;
3427 }
3428
3429 return TRUE;
3430 }
3431
3432 int
3433 _bfd_nolink_sizeof_headers (bfd *abfd ATTRIBUTE_UNUSED,
3434 struct bfd_link_info *info ATTRIBUTE_UNUSED)
3435 {
3436 return 0;
3437 }
3438
3439 bfd_boolean
3440 _bfd_nolink_bfd_relax_section (bfd *abfd,
3441 asection *section ATTRIBUTE_UNUSED,
3442 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
3443 bfd_boolean *again ATTRIBUTE_UNUSED)
3444 {
3445 return _bfd_bool_bfd_false_error (abfd);
3446 }
3447
3448 bfd_byte *
3449 _bfd_nolink_bfd_get_relocated_section_contents
3450 (bfd *abfd,
3451 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
3452 struct bfd_link_order *link_order ATTRIBUTE_UNUSED,
3453 bfd_byte *data ATTRIBUTE_UNUSED,
3454 bfd_boolean relocatable ATTRIBUTE_UNUSED,
3455 asymbol **symbols ATTRIBUTE_UNUSED)
3456 {
3457 return (bfd_byte *) _bfd_ptr_bfd_null_error (abfd);
3458 }
3459
3460 bfd_boolean
3461 _bfd_nolink_bfd_lookup_section_flags
3462 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
3463 struct flag_info *flaginfo ATTRIBUTE_UNUSED,
3464 asection *section)
3465 {
3466 return _bfd_bool_bfd_false_error (section->owner);
3467 }
3468
3469 bfd_boolean
3470 _bfd_nolink_bfd_is_group_section (bfd *abfd,
3471 const asection *sec ATTRIBUTE_UNUSED)
3472 {
3473 return _bfd_bool_bfd_false_error (abfd);
3474 }
3475
3476 bfd_boolean
3477 _bfd_nolink_bfd_discard_group (bfd *abfd, asection *sec ATTRIBUTE_UNUSED)
3478 {
3479 return _bfd_bool_bfd_false_error (abfd);
3480 }
3481
3482 struct bfd_link_hash_table *
3483 _bfd_nolink_bfd_link_hash_table_create (bfd *abfd)
3484 {
3485 return (struct bfd_link_hash_table *) _bfd_ptr_bfd_null_error (abfd);
3486 }
3487
3488 void
3489 _bfd_nolink_bfd_link_just_syms (asection *sec ATTRIBUTE_UNUSED,
3490 struct bfd_link_info *info ATTRIBUTE_UNUSED)
3491 {
3492 }
3493
3494 void
3495 _bfd_nolink_bfd_copy_link_hash_symbol_type
3496 (bfd *abfd ATTRIBUTE_UNUSED,
3497 struct bfd_link_hash_entry *from ATTRIBUTE_UNUSED,
3498 struct bfd_link_hash_entry *to ATTRIBUTE_UNUSED)
3499 {
3500 }
3501
3502 bfd_boolean
3503 _bfd_nolink_bfd_link_split_section (bfd *abfd, asection *sec ATTRIBUTE_UNUSED)
3504 {
3505 return _bfd_bool_bfd_false_error (abfd);
3506 }
3507
3508 bfd_boolean
3509 _bfd_nolink_section_already_linked (bfd *abfd,
3510 asection *sec ATTRIBUTE_UNUSED,
3511 struct bfd_link_info *info ATTRIBUTE_UNUSED)
3512 {
3513 return _bfd_bool_bfd_false_error (abfd);
3514 }
3515
3516 bfd_boolean
3517 _bfd_nolink_bfd_define_common_symbol
3518 (bfd *abfd,
3519 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3520 struct bfd_link_hash_entry *h ATTRIBUTE_UNUSED)
3521 {
3522 return _bfd_bool_bfd_false_error (abfd);
3523 }
3524
3525 struct bfd_link_hash_entry *
3526 _bfd_nolink_bfd_define_start_stop (struct bfd_link_info *info ATTRIBUTE_UNUSED,
3527 const char *name ATTRIBUTE_UNUSED,
3528 asection *sec)
3529 {
3530 return (struct bfd_link_hash_entry *) _bfd_ptr_bfd_null_error (sec->owner);
3531 }
This page took 0.112553 seconds and 4 git commands to generate.