Remove trailing white spaces in bfd
[deliverable/binutils-gdb.git] / bfd / linker.c
1 /* linker.c -- BFD linker routines
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 Free Software Foundation, Inc.
5 Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
23
24 #include "sysdep.h"
25 #include "bfd.h"
26 #include "libbfd.h"
27 #include "bfdlink.h"
28 #include "genlink.h"
29
30 /*
31 SECTION
32 Linker Functions
33
34 @cindex Linker
35 The linker uses three special entry points in the BFD target
36 vector. It is not necessary to write special routines for
37 these entry points when creating a new BFD back end, since
38 generic versions are provided. However, writing them can
39 speed up linking and make it use significantly less runtime
40 memory.
41
42 The first routine creates a hash table used by the other
43 routines. The second routine adds the symbols from an object
44 file to the hash table. The third routine takes all the
45 object files and links them together to create the output
46 file. These routines are designed so that the linker proper
47 does not need to know anything about the symbols in the object
48 files that it is linking. The linker merely arranges the
49 sections as directed by the linker script and lets BFD handle
50 the details of symbols and relocs.
51
52 The second routine and third routines are passed a pointer to
53 a <<struct bfd_link_info>> structure (defined in
54 <<bfdlink.h>>) which holds information relevant to the link,
55 including the linker hash table (which was created by the
56 first routine) and a set of callback functions to the linker
57 proper.
58
59 The generic linker routines are in <<linker.c>>, and use the
60 header file <<genlink.h>>. As of this writing, the only back
61 ends which have implemented versions of these routines are
62 a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>). The a.out
63 routines are used as examples throughout this section.
64
65 @menu
66 @* Creating a Linker Hash Table::
67 @* Adding Symbols to the Hash Table::
68 @* Performing the Final Link::
69 @end menu
70
71 INODE
72 Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
73 SUBSECTION
74 Creating a linker hash table
75
76 @cindex _bfd_link_hash_table_create in target vector
77 @cindex target vector (_bfd_link_hash_table_create)
78 The linker routines must create a hash table, which must be
79 derived from <<struct bfd_link_hash_table>> described in
80 <<bfdlink.c>>. @xref{Hash Tables}, for information on how to
81 create a derived hash table. This entry point is called using
82 the target vector of the linker output file.
83
84 The <<_bfd_link_hash_table_create>> entry point must allocate
85 and initialize an instance of the desired hash table. If the
86 back end does not require any additional information to be
87 stored with the entries in the hash table, the entry point may
88 simply create a <<struct bfd_link_hash_table>>. Most likely,
89 however, some additional information will be needed.
90
91 For example, with each entry in the hash table the a.out
92 linker keeps the index the symbol has in the final output file
93 (this index number is used so that when doing a relocatable
94 link the symbol index used in the output file can be quickly
95 filled in when copying over a reloc). The a.out linker code
96 defines the required structures and functions for a hash table
97 derived from <<struct bfd_link_hash_table>>. The a.out linker
98 hash table is created by the function
99 <<NAME(aout,link_hash_table_create)>>; it simply allocates
100 space for the hash table, initializes it, and returns a
101 pointer to it.
102
103 When writing the linker routines for a new back end, you will
104 generally not know exactly which fields will be required until
105 you have finished. You should simply create a new hash table
106 which defines no additional fields, and then simply add fields
107 as they become necessary.
108
109 INODE
110 Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
111 SUBSECTION
112 Adding symbols to the hash table
113
114 @cindex _bfd_link_add_symbols in target vector
115 @cindex target vector (_bfd_link_add_symbols)
116 The linker proper will call the <<_bfd_link_add_symbols>>
117 entry point for each object file or archive which is to be
118 linked (typically these are the files named on the command
119 line, but some may also come from the linker script). The
120 entry point is responsible for examining the file. For an
121 object file, BFD must add any relevant symbol information to
122 the hash table. For an archive, BFD must determine which
123 elements of the archive should be used and adding them to the
124 link.
125
126 The a.out version of this entry point is
127 <<NAME(aout,link_add_symbols)>>.
128
129 @menu
130 @* Differing file formats::
131 @* Adding symbols from an object file::
132 @* Adding symbols from an archive::
133 @end menu
134
135 INODE
136 Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
137 SUBSUBSECTION
138 Differing file formats
139
140 Normally all the files involved in a link will be of the same
141 format, but it is also possible to link together different
142 format object files, and the back end must support that. The
143 <<_bfd_link_add_symbols>> entry point is called via the target
144 vector of the file to be added. This has an important
145 consequence: the function may not assume that the hash table
146 is the type created by the corresponding
147 <<_bfd_link_hash_table_create>> vector. All the
148 <<_bfd_link_add_symbols>> function can assume about the hash
149 table is that it is derived from <<struct
150 bfd_link_hash_table>>.
151
152 Sometimes the <<_bfd_link_add_symbols>> function must store
153 some information in the hash table entry to be used by the
154 <<_bfd_final_link>> function. In such a case the output bfd
155 xvec must be checked to make sure that the hash table was
156 created by an object file of the same format.
157
158 The <<_bfd_final_link>> routine must be prepared to handle a
159 hash entry without any extra information added by the
160 <<_bfd_link_add_symbols>> function. A hash entry without
161 extra information will also occur when the linker script
162 directs the linker to create a symbol. Note that, regardless
163 of how a hash table entry is added, all the fields will be
164 initialized to some sort of null value by the hash table entry
165 initialization function.
166
167 See <<ecoff_link_add_externals>> for an example of how to
168 check the output bfd before saving information (in this
169 case, the ECOFF external symbol debugging information) in a
170 hash table entry.
171
172 INODE
173 Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
174 SUBSUBSECTION
175 Adding symbols from an object file
176
177 When the <<_bfd_link_add_symbols>> routine is passed an object
178 file, it must add all externally visible symbols in that
179 object file to the hash table. The actual work of adding the
180 symbol to the hash table is normally handled by the function
181 <<_bfd_generic_link_add_one_symbol>>. The
182 <<_bfd_link_add_symbols>> routine is responsible for reading
183 all the symbols from the object file and passing the correct
184 information to <<_bfd_generic_link_add_one_symbol>>.
185
186 The <<_bfd_link_add_symbols>> routine should not use
187 <<bfd_canonicalize_symtab>> to read the symbols. The point of
188 providing this routine is to avoid the overhead of converting
189 the symbols into generic <<asymbol>> structures.
190
191 @findex _bfd_generic_link_add_one_symbol
192 <<_bfd_generic_link_add_one_symbol>> handles the details of
193 combining common symbols, warning about multiple definitions,
194 and so forth. It takes arguments which describe the symbol to
195 add, notably symbol flags, a section, and an offset. The
196 symbol flags include such things as <<BSF_WEAK>> or
197 <<BSF_INDIRECT>>. The section is a section in the object
198 file, or something like <<bfd_und_section_ptr>> for an undefined
199 symbol or <<bfd_com_section_ptr>> for a common symbol.
200
201 If the <<_bfd_final_link>> routine is also going to need to
202 read the symbol information, the <<_bfd_link_add_symbols>>
203 routine should save it somewhere attached to the object file
204 BFD. However, the information should only be saved if the
205 <<keep_memory>> field of the <<info>> argument is TRUE, so
206 that the <<-no-keep-memory>> linker switch is effective.
207
208 The a.out function which adds symbols from an object file is
209 <<aout_link_add_object_symbols>>, and most of the interesting
210 work is in <<aout_link_add_symbols>>. The latter saves
211 pointers to the hash tables entries created by
212 <<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
213 so that the <<_bfd_final_link>> routine does not have to call
214 the hash table lookup routine to locate the entry.
215
216 INODE
217 Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
218 SUBSUBSECTION
219 Adding symbols from an archive
220
221 When the <<_bfd_link_add_symbols>> routine is passed an
222 archive, it must look through the symbols defined by the
223 archive and decide which elements of the archive should be
224 included in the link. For each such element it must call the
225 <<add_archive_element>> linker callback, and it must add the
226 symbols from the object file to the linker hash table. (The
227 callback may in fact indicate that a replacement BFD should be
228 used, in which case the symbols from that BFD should be added
229 to the linker hash table instead.)
230
231 @findex _bfd_generic_link_add_archive_symbols
232 In most cases the work of looking through the symbols in the
233 archive should be done by the
234 <<_bfd_generic_link_add_archive_symbols>> function. This
235 function builds a hash table from the archive symbol table and
236 looks through the list of undefined symbols to see which
237 elements should be included.
238 <<_bfd_generic_link_add_archive_symbols>> is passed a function
239 to call to make the final decision about adding an archive
240 element to the link and to do the actual work of adding the
241 symbols to the linker hash table.
242
243 The function passed to
244 <<_bfd_generic_link_add_archive_symbols>> must read the
245 symbols of the archive element and decide whether the archive
246 element should be included in the link. If the element is to
247 be included, the <<add_archive_element>> linker callback
248 routine must be called with the element as an argument, and
249 the element's symbols must be added to the linker hash table
250 just as though the element had itself been passed to the
251 <<_bfd_link_add_symbols>> function. The <<add_archive_element>>
252 callback has the option to indicate that it would like to
253 replace the element archive with a substitute BFD, in which
254 case it is the symbols of that substitute BFD that must be
255 added to the linker hash table instead.
256
257 When the a.out <<_bfd_link_add_symbols>> function receives an
258 archive, it calls <<_bfd_generic_link_add_archive_symbols>>
259 passing <<aout_link_check_archive_element>> as the function
260 argument. <<aout_link_check_archive_element>> calls
261 <<aout_link_check_ar_symbols>>. If the latter decides to add
262 the element (an element is only added if it provides a real,
263 non-common, definition for a previously undefined or common
264 symbol) it calls the <<add_archive_element>> callback and then
265 <<aout_link_check_archive_element>> calls
266 <<aout_link_add_symbols>> to actually add the symbols to the
267 linker hash table - possibly those of a substitute BFD, if the
268 <<add_archive_element>> callback avails itself of that option.
269
270 The ECOFF back end is unusual in that it does not normally
271 call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
272 archives already contain a hash table of symbols. The ECOFF
273 back end searches the archive itself to avoid the overhead of
274 creating a new hash table.
275
276 INODE
277 Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
278 SUBSECTION
279 Performing the final link
280
281 @cindex _bfd_link_final_link in target vector
282 @cindex target vector (_bfd_final_link)
283 When all the input files have been processed, the linker calls
284 the <<_bfd_final_link>> entry point of the output BFD. This
285 routine is responsible for producing the final output file,
286 which has several aspects. It must relocate the contents of
287 the input sections and copy the data into the output sections.
288 It must build an output symbol table including any local
289 symbols from the input files and the global symbols from the
290 hash table. When producing relocatable output, it must
291 modify the input relocs and write them into the output file.
292 There may also be object format dependent work to be done.
293
294 The linker will also call the <<write_object_contents>> entry
295 point when the BFD is closed. The two entry points must work
296 together in order to produce the correct output file.
297
298 The details of how this works are inevitably dependent upon
299 the specific object file format. The a.out
300 <<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
301
302 @menu
303 @* Information provided by the linker::
304 @* Relocating the section contents::
305 @* Writing the symbol table::
306 @end menu
307
308 INODE
309 Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
310 SUBSUBSECTION
311 Information provided by the linker
312
313 Before the linker calls the <<_bfd_final_link>> entry point,
314 it sets up some data structures for the function to use.
315
316 The <<input_bfds>> field of the <<bfd_link_info>> structure
317 will point to a list of all the input files included in the
318 link. These files are linked through the <<link_next>> field
319 of the <<bfd>> structure.
320
321 Each section in the output file will have a list of
322 <<link_order>> structures attached to the <<map_head.link_order>>
323 field (the <<link_order>> structure is defined in
324 <<bfdlink.h>>). These structures describe how to create the
325 contents of the output section in terms of the contents of
326 various input sections, fill constants, and, eventually, other
327 types of information. They also describe relocs that must be
328 created by the BFD backend, but do not correspond to any input
329 file; this is used to support -Ur, which builds constructors
330 while generating a relocatable object file.
331
332 INODE
333 Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
334 SUBSUBSECTION
335 Relocating the section contents
336
337 The <<_bfd_final_link>> function should look through the
338 <<link_order>> structures attached to each section of the
339 output file. Each <<link_order>> structure should either be
340 handled specially, or it should be passed to the function
341 <<_bfd_default_link_order>> which will do the right thing
342 (<<_bfd_default_link_order>> is defined in <<linker.c>>).
343
344 For efficiency, a <<link_order>> of type
345 <<bfd_indirect_link_order>> whose associated section belongs
346 to a BFD of the same format as the output BFD must be handled
347 specially. This type of <<link_order>> describes part of an
348 output section in terms of a section belonging to one of the
349 input files. The <<_bfd_final_link>> function should read the
350 contents of the section and any associated relocs, apply the
351 relocs to the section contents, and write out the modified
352 section contents. If performing a relocatable link, the
353 relocs themselves must also be modified and written out.
354
355 @findex _bfd_relocate_contents
356 @findex _bfd_final_link_relocate
357 The functions <<_bfd_relocate_contents>> and
358 <<_bfd_final_link_relocate>> provide some general support for
359 performing the actual relocations, notably overflow checking.
360 Their arguments include information about the symbol the
361 relocation is against and a <<reloc_howto_type>> argument
362 which describes the relocation to perform. These functions
363 are defined in <<reloc.c>>.
364
365 The a.out function which handles reading, relocating, and
366 writing section contents is <<aout_link_input_section>>. The
367 actual relocation is done in <<aout_link_input_section_std>>
368 and <<aout_link_input_section_ext>>.
369
370 INODE
371 Writing the symbol table, , Relocating the section contents, Performing the Final Link
372 SUBSUBSECTION
373 Writing the symbol table
374
375 The <<_bfd_final_link>> function must gather all the symbols
376 in the input files and write them out. It must also write out
377 all the symbols in the global hash table. This must be
378 controlled by the <<strip>> and <<discard>> fields of the
379 <<bfd_link_info>> structure.
380
381 The local symbols of the input files will not have been
382 entered into the linker hash table. The <<_bfd_final_link>>
383 routine must consider each input file and include the symbols
384 in the output file. It may be convenient to do this when
385 looking through the <<link_order>> structures, or it may be
386 done by stepping through the <<input_bfds>> list.
387
388 The <<_bfd_final_link>> routine must also traverse the global
389 hash table to gather all the externally visible symbols. It
390 is possible that most of the externally visible symbols may be
391 written out when considering the symbols of each input file,
392 but it is still necessary to traverse the hash table since the
393 linker script may have defined some symbols that are not in
394 any of the input files.
395
396 The <<strip>> field of the <<bfd_link_info>> structure
397 controls which symbols are written out. The possible values
398 are listed in <<bfdlink.h>>. If the value is <<strip_some>>,
399 then the <<keep_hash>> field of the <<bfd_link_info>>
400 structure is a hash table of symbols to keep; each symbol
401 should be looked up in this hash table, and only symbols which
402 are present should be included in the output file.
403
404 If the <<strip>> field of the <<bfd_link_info>> structure
405 permits local symbols to be written out, the <<discard>> field
406 is used to further controls which local symbols are included
407 in the output file. If the value is <<discard_l>>, then all
408 local symbols which begin with a certain prefix are discarded;
409 this is controlled by the <<bfd_is_local_label_name>> entry point.
410
411 The a.out backend handles symbols by calling
412 <<aout_link_write_symbols>> on each input BFD and then
413 traversing the global hash table with the function
414 <<aout_link_write_other_symbol>>. It builds a string table
415 while writing out the symbols, which is written to the output
416 file at the end of <<NAME(aout,final_link)>>.
417 */
418
419 static bfd_boolean generic_link_add_object_symbols
420 (bfd *, struct bfd_link_info *, bfd_boolean collect);
421 static bfd_boolean generic_link_add_symbols
422 (bfd *, struct bfd_link_info *, bfd_boolean);
423 static bfd_boolean generic_link_check_archive_element_no_collect
424 (bfd *, struct bfd_link_info *, bfd_boolean *);
425 static bfd_boolean generic_link_check_archive_element_collect
426 (bfd *, struct bfd_link_info *, bfd_boolean *);
427 static bfd_boolean generic_link_check_archive_element
428 (bfd *, struct bfd_link_info *, bfd_boolean *, bfd_boolean);
429 static bfd_boolean generic_link_add_symbol_list
430 (bfd *, struct bfd_link_info *, bfd_size_type count, asymbol **,
431 bfd_boolean);
432 static bfd_boolean generic_add_output_symbol
433 (bfd *, size_t *psymalloc, asymbol *);
434 static bfd_boolean default_data_link_order
435 (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *);
436 static bfd_boolean default_indirect_link_order
437 (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *,
438 bfd_boolean);
439
440 /* The link hash table structure is defined in bfdlink.h. It provides
441 a base hash table which the backend specific hash tables are built
442 upon. */
443
444 /* Routine to create an entry in the link hash table. */
445
446 struct bfd_hash_entry *
447 _bfd_link_hash_newfunc (struct bfd_hash_entry *entry,
448 struct bfd_hash_table *table,
449 const char *string)
450 {
451 /* Allocate the structure if it has not already been allocated by a
452 subclass. */
453 if (entry == NULL)
454 {
455 entry = (struct bfd_hash_entry *)
456 bfd_hash_allocate (table, sizeof (struct bfd_link_hash_entry));
457 if (entry == NULL)
458 return entry;
459 }
460
461 /* Call the allocation method of the superclass. */
462 entry = bfd_hash_newfunc (entry, table, string);
463 if (entry)
464 {
465 struct bfd_link_hash_entry *h = (struct bfd_link_hash_entry *) entry;
466
467 /* Initialize the local fields. */
468 memset ((char *) &h->root + sizeof (h->root), 0,
469 sizeof (*h) - sizeof (h->root));
470 }
471
472 return entry;
473 }
474
475 /* Initialize a link hash table. The BFD argument is the one
476 responsible for creating this table. */
477
478 bfd_boolean
479 _bfd_link_hash_table_init
480 (struct bfd_link_hash_table *table,
481 bfd *abfd ATTRIBUTE_UNUSED,
482 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
483 struct bfd_hash_table *,
484 const char *),
485 unsigned int entsize)
486 {
487 table->undefs = NULL;
488 table->undefs_tail = NULL;
489 table->type = bfd_link_generic_hash_table;
490
491 return bfd_hash_table_init (&table->table, newfunc, entsize);
492 }
493
494 /* Look up a symbol in a link hash table. If follow is TRUE, we
495 follow bfd_link_hash_indirect and bfd_link_hash_warning links to
496 the real symbol. */
497
498 struct bfd_link_hash_entry *
499 bfd_link_hash_lookup (struct bfd_link_hash_table *table,
500 const char *string,
501 bfd_boolean create,
502 bfd_boolean copy,
503 bfd_boolean follow)
504 {
505 struct bfd_link_hash_entry *ret;
506
507 ret = ((struct bfd_link_hash_entry *)
508 bfd_hash_lookup (&table->table, string, create, copy));
509
510 if (follow && ret != NULL)
511 {
512 while (ret->type == bfd_link_hash_indirect
513 || ret->type == bfd_link_hash_warning)
514 ret = ret->u.i.link;
515 }
516
517 return ret;
518 }
519
520 /* Look up a symbol in the main linker hash table if the symbol might
521 be wrapped. This should only be used for references to an
522 undefined symbol, not for definitions of a symbol. */
523
524 struct bfd_link_hash_entry *
525 bfd_wrapped_link_hash_lookup (bfd *abfd,
526 struct bfd_link_info *info,
527 const char *string,
528 bfd_boolean create,
529 bfd_boolean copy,
530 bfd_boolean follow)
531 {
532 bfd_size_type amt;
533
534 if (info->wrap_hash != NULL)
535 {
536 const char *l;
537 char prefix = '\0';
538
539 l = string;
540 if (*l == bfd_get_symbol_leading_char (abfd) || *l == info->wrap_char)
541 {
542 prefix = *l;
543 ++l;
544 }
545
546 #undef WRAP
547 #define WRAP "__wrap_"
548
549 if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL)
550 {
551 char *n;
552 struct bfd_link_hash_entry *h;
553
554 /* This symbol is being wrapped. We want to replace all
555 references to SYM with references to __wrap_SYM. */
556
557 amt = strlen (l) + sizeof WRAP + 1;
558 n = (char *) bfd_malloc (amt);
559 if (n == NULL)
560 return NULL;
561
562 n[0] = prefix;
563 n[1] = '\0';
564 strcat (n, WRAP);
565 strcat (n, l);
566 h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
567 free (n);
568 return h;
569 }
570
571 #undef WRAP
572
573 #undef REAL
574 #define REAL "__real_"
575
576 if (*l == '_'
577 && CONST_STRNEQ (l, REAL)
578 && bfd_hash_lookup (info->wrap_hash, l + sizeof REAL - 1,
579 FALSE, FALSE) != NULL)
580 {
581 char *n;
582 struct bfd_link_hash_entry *h;
583
584 /* This is a reference to __real_SYM, where SYM is being
585 wrapped. We want to replace all references to __real_SYM
586 with references to SYM. */
587
588 amt = strlen (l + sizeof REAL - 1) + 2;
589 n = (char *) bfd_malloc (amt);
590 if (n == NULL)
591 return NULL;
592
593 n[0] = prefix;
594 n[1] = '\0';
595 strcat (n, l + sizeof REAL - 1);
596 h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
597 free (n);
598 return h;
599 }
600
601 #undef REAL
602 }
603
604 return bfd_link_hash_lookup (info->hash, string, create, copy, follow);
605 }
606
607 /* Traverse a generic link hash table. Differs from bfd_hash_traverse
608 in the treatment of warning symbols. When warning symbols are
609 created they replace the real symbol, so you don't get to see the
610 real symbol in a bfd_hash_travere. This traversal calls func with
611 the real symbol. */
612
613 void
614 bfd_link_hash_traverse
615 (struct bfd_link_hash_table *htab,
616 bfd_boolean (*func) (struct bfd_link_hash_entry *, void *),
617 void *info)
618 {
619 unsigned int i;
620
621 htab->table.frozen = 1;
622 for (i = 0; i < htab->table.size; i++)
623 {
624 struct bfd_link_hash_entry *p;
625
626 p = (struct bfd_link_hash_entry *) htab->table.table[i];
627 for (; p != NULL; p = (struct bfd_link_hash_entry *) p->root.next)
628 if (!(*func) (p->type == bfd_link_hash_warning ? p->u.i.link : p, info))
629 goto out;
630 }
631 out:
632 htab->table.frozen = 0;
633 }
634
635 /* Add a symbol to the linker hash table undefs list. */
636
637 void
638 bfd_link_add_undef (struct bfd_link_hash_table *table,
639 struct bfd_link_hash_entry *h)
640 {
641 BFD_ASSERT (h->u.undef.next == NULL);
642 if (table->undefs_tail != NULL)
643 table->undefs_tail->u.undef.next = h;
644 if (table->undefs == NULL)
645 table->undefs = h;
646 table->undefs_tail = h;
647 }
648
649 /* The undefs list was designed so that in normal use we don't need to
650 remove entries. However, if symbols on the list are changed from
651 bfd_link_hash_undefined to either bfd_link_hash_undefweak or
652 bfd_link_hash_new for some reason, then they must be removed from the
653 list. Failure to do so might result in the linker attempting to add
654 the symbol to the list again at a later stage. */
655
656 void
657 bfd_link_repair_undef_list (struct bfd_link_hash_table *table)
658 {
659 struct bfd_link_hash_entry **pun;
660
661 pun = &table->undefs;
662 while (*pun != NULL)
663 {
664 struct bfd_link_hash_entry *h = *pun;
665
666 if (h->type == bfd_link_hash_new
667 || h->type == bfd_link_hash_undefweak)
668 {
669 *pun = h->u.undef.next;
670 h->u.undef.next = NULL;
671 if (h == table->undefs_tail)
672 {
673 if (pun == &table->undefs)
674 table->undefs_tail = NULL;
675 else
676 /* pun points at an u.undef.next field. Go back to
677 the start of the link_hash_entry. */
678 table->undefs_tail = (struct bfd_link_hash_entry *)
679 ((char *) pun - ((char *) &h->u.undef.next - (char *) h));
680 break;
681 }
682 }
683 else
684 pun = &h->u.undef.next;
685 }
686 }
687 \f
688 /* Routine to create an entry in a generic link hash table. */
689
690 struct bfd_hash_entry *
691 _bfd_generic_link_hash_newfunc (struct bfd_hash_entry *entry,
692 struct bfd_hash_table *table,
693 const char *string)
694 {
695 /* Allocate the structure if it has not already been allocated by a
696 subclass. */
697 if (entry == NULL)
698 {
699 entry = (struct bfd_hash_entry *)
700 bfd_hash_allocate (table, sizeof (struct generic_link_hash_entry));
701 if (entry == NULL)
702 return entry;
703 }
704
705 /* Call the allocation method of the superclass. */
706 entry = _bfd_link_hash_newfunc (entry, table, string);
707 if (entry)
708 {
709 struct generic_link_hash_entry *ret;
710
711 /* Set local fields. */
712 ret = (struct generic_link_hash_entry *) entry;
713 ret->written = FALSE;
714 ret->sym = NULL;
715 }
716
717 return entry;
718 }
719
720 /* Create a generic link hash table. */
721
722 struct bfd_link_hash_table *
723 _bfd_generic_link_hash_table_create (bfd *abfd)
724 {
725 struct generic_link_hash_table *ret;
726 bfd_size_type amt = sizeof (struct generic_link_hash_table);
727
728 ret = (struct generic_link_hash_table *) bfd_malloc (amt);
729 if (ret == NULL)
730 return NULL;
731 if (! _bfd_link_hash_table_init (&ret->root, abfd,
732 _bfd_generic_link_hash_newfunc,
733 sizeof (struct generic_link_hash_entry)))
734 {
735 free (ret);
736 return NULL;
737 }
738 return &ret->root;
739 }
740
741 void
742 _bfd_generic_link_hash_table_free (struct bfd_link_hash_table *hash)
743 {
744 struct generic_link_hash_table *ret
745 = (struct generic_link_hash_table *) hash;
746
747 bfd_hash_table_free (&ret->root.table);
748 free (ret);
749 }
750
751 /* Grab the symbols for an object file when doing a generic link. We
752 store the symbols in the outsymbols field. We need to keep them
753 around for the entire link to ensure that we only read them once.
754 If we read them multiple times, we might wind up with relocs and
755 the hash table pointing to different instances of the symbol
756 structure. */
757
758 bfd_boolean
759 bfd_generic_link_read_symbols (bfd *abfd)
760 {
761 if (bfd_get_outsymbols (abfd) == NULL)
762 {
763 long symsize;
764 long symcount;
765
766 symsize = bfd_get_symtab_upper_bound (abfd);
767 if (symsize < 0)
768 return FALSE;
769 bfd_get_outsymbols (abfd) = (struct bfd_symbol **) bfd_alloc (abfd,
770 symsize);
771 if (bfd_get_outsymbols (abfd) == NULL && symsize != 0)
772 return FALSE;
773 symcount = bfd_canonicalize_symtab (abfd, bfd_get_outsymbols (abfd));
774 if (symcount < 0)
775 return FALSE;
776 bfd_get_symcount (abfd) = symcount;
777 }
778
779 return TRUE;
780 }
781 \f
782 /* Generic function to add symbols to from an object file to the
783 global hash table. This version does not automatically collect
784 constructors by name. */
785
786 bfd_boolean
787 _bfd_generic_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
788 {
789 return generic_link_add_symbols (abfd, info, FALSE);
790 }
791
792 /* Generic function to add symbols from an object file to the global
793 hash table. This version automatically collects constructors by
794 name, as the collect2 program does. It should be used for any
795 target which does not provide some other mechanism for setting up
796 constructors and destructors; these are approximately those targets
797 for which gcc uses collect2 and do not support stabs. */
798
799 bfd_boolean
800 _bfd_generic_link_add_symbols_collect (bfd *abfd, struct bfd_link_info *info)
801 {
802 return generic_link_add_symbols (abfd, info, TRUE);
803 }
804
805 /* Indicate that we are only retrieving symbol values from this
806 section. We want the symbols to act as though the values in the
807 file are absolute. */
808
809 void
810 _bfd_generic_link_just_syms (asection *sec,
811 struct bfd_link_info *info ATTRIBUTE_UNUSED)
812 {
813 sec->sec_info_type = SEC_INFO_TYPE_JUST_SYMS;
814 sec->output_section = bfd_abs_section_ptr;
815 sec->output_offset = sec->vma;
816 }
817
818 /* Copy the type of a symbol assiciated with a linker hast table entry.
819 Override this so that symbols created in linker scripts get their
820 type from the RHS of the assignment.
821 The default implementation does nothing. */
822 void
823 _bfd_generic_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
824 struct bfd_link_hash_entry * hdest ATTRIBUTE_UNUSED,
825 struct bfd_link_hash_entry * hsrc ATTRIBUTE_UNUSED)
826 {
827 }
828
829 /* Add symbols from an object file to the global hash table. */
830
831 static bfd_boolean
832 generic_link_add_symbols (bfd *abfd,
833 struct bfd_link_info *info,
834 bfd_boolean collect)
835 {
836 bfd_boolean ret;
837
838 switch (bfd_get_format (abfd))
839 {
840 case bfd_object:
841 ret = generic_link_add_object_symbols (abfd, info, collect);
842 break;
843 case bfd_archive:
844 ret = (_bfd_generic_link_add_archive_symbols
845 (abfd, info,
846 (collect
847 ? generic_link_check_archive_element_collect
848 : generic_link_check_archive_element_no_collect)));
849 break;
850 default:
851 bfd_set_error (bfd_error_wrong_format);
852 ret = FALSE;
853 }
854
855 return ret;
856 }
857
858 /* Add symbols from an object file to the global hash table. */
859
860 static bfd_boolean
861 generic_link_add_object_symbols (bfd *abfd,
862 struct bfd_link_info *info,
863 bfd_boolean collect)
864 {
865 bfd_size_type symcount;
866 struct bfd_symbol **outsyms;
867
868 if (!bfd_generic_link_read_symbols (abfd))
869 return FALSE;
870 symcount = _bfd_generic_link_get_symcount (abfd);
871 outsyms = _bfd_generic_link_get_symbols (abfd);
872 return generic_link_add_symbol_list (abfd, info, symcount, outsyms, collect);
873 }
874 \f
875 /* We build a hash table of all symbols defined in an archive. */
876
877 /* An archive symbol may be defined by multiple archive elements.
878 This linked list is used to hold the elements. */
879
880 struct archive_list
881 {
882 struct archive_list *next;
883 unsigned int indx;
884 };
885
886 /* An entry in an archive hash table. */
887
888 struct archive_hash_entry
889 {
890 struct bfd_hash_entry root;
891 /* Where the symbol is defined. */
892 struct archive_list *defs;
893 };
894
895 /* An archive hash table itself. */
896
897 struct archive_hash_table
898 {
899 struct bfd_hash_table table;
900 };
901
902 /* Create a new entry for an archive hash table. */
903
904 static struct bfd_hash_entry *
905 archive_hash_newfunc (struct bfd_hash_entry *entry,
906 struct bfd_hash_table *table,
907 const char *string)
908 {
909 struct archive_hash_entry *ret = (struct archive_hash_entry *) entry;
910
911 /* Allocate the structure if it has not already been allocated by a
912 subclass. */
913 if (ret == NULL)
914 ret = (struct archive_hash_entry *)
915 bfd_hash_allocate (table, sizeof (struct archive_hash_entry));
916 if (ret == NULL)
917 return NULL;
918
919 /* Call the allocation method of the superclass. */
920 ret = ((struct archive_hash_entry *)
921 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
922
923 if (ret)
924 {
925 /* Initialize the local fields. */
926 ret->defs = NULL;
927 }
928
929 return &ret->root;
930 }
931
932 /* Initialize an archive hash table. */
933
934 static bfd_boolean
935 archive_hash_table_init
936 (struct archive_hash_table *table,
937 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
938 struct bfd_hash_table *,
939 const char *),
940 unsigned int entsize)
941 {
942 return bfd_hash_table_init (&table->table, newfunc, entsize);
943 }
944
945 /* Look up an entry in an archive hash table. */
946
947 #define archive_hash_lookup(t, string, create, copy) \
948 ((struct archive_hash_entry *) \
949 bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
950
951 /* Allocate space in an archive hash table. */
952
953 #define archive_hash_allocate(t, size) bfd_hash_allocate (&(t)->table, (size))
954
955 /* Free an archive hash table. */
956
957 #define archive_hash_table_free(t) bfd_hash_table_free (&(t)->table)
958
959 /* Generic function to add symbols from an archive file to the global
960 hash file. This function presumes that the archive symbol table
961 has already been read in (this is normally done by the
962 bfd_check_format entry point). It looks through the undefined and
963 common symbols and searches the archive symbol table for them. If
964 it finds an entry, it includes the associated object file in the
965 link.
966
967 The old linker looked through the archive symbol table for
968 undefined symbols. We do it the other way around, looking through
969 undefined symbols for symbols defined in the archive. The
970 advantage of the newer scheme is that we only have to look through
971 the list of undefined symbols once, whereas the old method had to
972 re-search the symbol table each time a new object file was added.
973
974 The CHECKFN argument is used to see if an object file should be
975 included. CHECKFN should set *PNEEDED to TRUE if the object file
976 should be included, and must also call the bfd_link_info
977 add_archive_element callback function and handle adding the symbols
978 to the global hash table. CHECKFN must notice if the callback
979 indicates a substitute BFD, and arrange to add those symbols instead
980 if it does so. CHECKFN should only return FALSE if some sort of
981 error occurs.
982
983 For some formats, such as a.out, it is possible to look through an
984 object file but not actually include it in the link. The
985 archive_pass field in a BFD is used to avoid checking the symbols
986 of an object files too many times. When an object is included in
987 the link, archive_pass is set to -1. If an object is scanned but
988 not included, archive_pass is set to the pass number. The pass
989 number is incremented each time a new object file is included. The
990 pass number is used because when a new object file is included it
991 may create new undefined symbols which cause a previously examined
992 object file to be included. */
993
994 bfd_boolean
995 _bfd_generic_link_add_archive_symbols
996 (bfd *abfd,
997 struct bfd_link_info *info,
998 bfd_boolean (*checkfn) (bfd *, struct bfd_link_info *, bfd_boolean *))
999 {
1000 carsym *arsyms;
1001 carsym *arsym_end;
1002 register carsym *arsym;
1003 int pass;
1004 struct archive_hash_table arsym_hash;
1005 unsigned int indx;
1006 struct bfd_link_hash_entry **pundef;
1007
1008 if (! bfd_has_map (abfd))
1009 {
1010 /* An empty archive is a special case. */
1011 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
1012 return TRUE;
1013 bfd_set_error (bfd_error_no_armap);
1014 return FALSE;
1015 }
1016
1017 arsyms = bfd_ardata (abfd)->symdefs;
1018 arsym_end = arsyms + bfd_ardata (abfd)->symdef_count;
1019
1020 /* In order to quickly determine whether an symbol is defined in
1021 this archive, we build a hash table of the symbols. */
1022 if (! archive_hash_table_init (&arsym_hash, archive_hash_newfunc,
1023 sizeof (struct archive_hash_entry)))
1024 return FALSE;
1025 for (arsym = arsyms, indx = 0; arsym < arsym_end; arsym++, indx++)
1026 {
1027 struct archive_hash_entry *arh;
1028 struct archive_list *l, **pp;
1029
1030 arh = archive_hash_lookup (&arsym_hash, arsym->name, TRUE, FALSE);
1031 if (arh == NULL)
1032 goto error_return;
1033 l = ((struct archive_list *)
1034 archive_hash_allocate (&arsym_hash, sizeof (struct archive_list)));
1035 if (l == NULL)
1036 goto error_return;
1037 l->indx = indx;
1038 for (pp = &arh->defs; *pp != NULL; pp = &(*pp)->next)
1039 ;
1040 *pp = l;
1041 l->next = NULL;
1042 }
1043
1044 /* The archive_pass field in the archive itself is used to
1045 initialize PASS, sine we may search the same archive multiple
1046 times. */
1047 pass = abfd->archive_pass + 1;
1048
1049 /* New undefined symbols are added to the end of the list, so we
1050 only need to look through it once. */
1051 pundef = &info->hash->undefs;
1052 while (*pundef != NULL)
1053 {
1054 struct bfd_link_hash_entry *h;
1055 struct archive_hash_entry *arh;
1056 struct archive_list *l;
1057
1058 h = *pundef;
1059
1060 /* When a symbol is defined, it is not necessarily removed from
1061 the list. */
1062 if (h->type != bfd_link_hash_undefined
1063 && h->type != bfd_link_hash_common)
1064 {
1065 /* Remove this entry from the list, for general cleanliness
1066 and because we are going to look through the list again
1067 if we search any more libraries. We can't remove the
1068 entry if it is the tail, because that would lose any
1069 entries we add to the list later on (it would also cause
1070 us to lose track of whether the symbol has been
1071 referenced). */
1072 if (*pundef != info->hash->undefs_tail)
1073 *pundef = (*pundef)->u.undef.next;
1074 else
1075 pundef = &(*pundef)->u.undef.next;
1076 continue;
1077 }
1078
1079 /* Look for this symbol in the archive symbol map. */
1080 arh = archive_hash_lookup (&arsym_hash, h->root.string, FALSE, FALSE);
1081 if (arh == NULL)
1082 {
1083 /* If we haven't found the exact symbol we're looking for,
1084 let's look for its import thunk */
1085 if (info->pei386_auto_import)
1086 {
1087 bfd_size_type amt = strlen (h->root.string) + 10;
1088 char *buf = (char *) bfd_malloc (amt);
1089 if (buf == NULL)
1090 return FALSE;
1091
1092 sprintf (buf, "__imp_%s", h->root.string);
1093 arh = archive_hash_lookup (&arsym_hash, buf, FALSE, FALSE);
1094 free(buf);
1095 }
1096 if (arh == NULL)
1097 {
1098 pundef = &(*pundef)->u.undef.next;
1099 continue;
1100 }
1101 }
1102 /* Look at all the objects which define this symbol. */
1103 for (l = arh->defs; l != NULL; l = l->next)
1104 {
1105 bfd *element;
1106 bfd_boolean needed;
1107
1108 /* If the symbol has gotten defined along the way, quit. */
1109 if (h->type != bfd_link_hash_undefined
1110 && h->type != bfd_link_hash_common)
1111 break;
1112
1113 element = bfd_get_elt_at_index (abfd, l->indx);
1114 if (element == NULL)
1115 goto error_return;
1116
1117 /* If we've already included this element, or if we've
1118 already checked it on this pass, continue. */
1119 if (element->archive_pass == -1
1120 || element->archive_pass == pass)
1121 continue;
1122
1123 /* If we can't figure this element out, just ignore it. */
1124 if (! bfd_check_format (element, bfd_object))
1125 {
1126 element->archive_pass = -1;
1127 continue;
1128 }
1129
1130 /* CHECKFN will see if this element should be included, and
1131 go ahead and include it if appropriate. */
1132 if (! (*checkfn) (element, info, &needed))
1133 goto error_return;
1134
1135 if (! needed)
1136 element->archive_pass = pass;
1137 else
1138 {
1139 element->archive_pass = -1;
1140
1141 /* Increment the pass count to show that we may need to
1142 recheck object files which were already checked. */
1143 ++pass;
1144 }
1145 }
1146
1147 pundef = &(*pundef)->u.undef.next;
1148 }
1149
1150 archive_hash_table_free (&arsym_hash);
1151
1152 /* Save PASS in case we are called again. */
1153 abfd->archive_pass = pass;
1154
1155 return TRUE;
1156
1157 error_return:
1158 archive_hash_table_free (&arsym_hash);
1159 return FALSE;
1160 }
1161 \f
1162 /* See if we should include an archive element. This version is used
1163 when we do not want to automatically collect constructors based on
1164 the symbol name, presumably because we have some other mechanism
1165 for finding them. */
1166
1167 static bfd_boolean
1168 generic_link_check_archive_element_no_collect (
1169 bfd *abfd,
1170 struct bfd_link_info *info,
1171 bfd_boolean *pneeded)
1172 {
1173 return generic_link_check_archive_element (abfd, info, pneeded, FALSE);
1174 }
1175
1176 /* See if we should include an archive element. This version is used
1177 when we want to automatically collect constructors based on the
1178 symbol name, as collect2 does. */
1179
1180 static bfd_boolean
1181 generic_link_check_archive_element_collect (bfd *abfd,
1182 struct bfd_link_info *info,
1183 bfd_boolean *pneeded)
1184 {
1185 return generic_link_check_archive_element (abfd, info, pneeded, TRUE);
1186 }
1187
1188 /* See if we should include an archive element. Optionally collect
1189 constructors. */
1190
1191 static bfd_boolean
1192 generic_link_check_archive_element (bfd *abfd,
1193 struct bfd_link_info *info,
1194 bfd_boolean *pneeded,
1195 bfd_boolean collect)
1196 {
1197 asymbol **pp, **ppend;
1198
1199 *pneeded = FALSE;
1200
1201 if (!bfd_generic_link_read_symbols (abfd))
1202 return FALSE;
1203
1204 pp = _bfd_generic_link_get_symbols (abfd);
1205 ppend = pp + _bfd_generic_link_get_symcount (abfd);
1206 for (; pp < ppend; pp++)
1207 {
1208 asymbol *p;
1209 struct bfd_link_hash_entry *h;
1210
1211 p = *pp;
1212
1213 /* We are only interested in globally visible symbols. */
1214 if (! bfd_is_com_section (p->section)
1215 && (p->flags & (BSF_GLOBAL | BSF_INDIRECT | BSF_WEAK)) == 0)
1216 continue;
1217
1218 /* We are only interested if we know something about this
1219 symbol, and it is undefined or common. An undefined weak
1220 symbol (type bfd_link_hash_undefweak) is not considered to be
1221 a reference when pulling files out of an archive. See the
1222 SVR4 ABI, p. 4-27. */
1223 h = bfd_link_hash_lookup (info->hash, bfd_asymbol_name (p), FALSE,
1224 FALSE, TRUE);
1225 if (h == NULL
1226 || (h->type != bfd_link_hash_undefined
1227 && h->type != bfd_link_hash_common))
1228 continue;
1229
1230 /* P is a symbol we are looking for. */
1231
1232 if (! bfd_is_com_section (p->section))
1233 {
1234 bfd_size_type symcount;
1235 asymbol **symbols;
1236 bfd *oldbfd = abfd;
1237
1238 /* This object file defines this symbol, so pull it in. */
1239 if (!(*info->callbacks
1240 ->add_archive_element) (info, abfd, bfd_asymbol_name (p),
1241 &abfd))
1242 return FALSE;
1243 /* Potentially, the add_archive_element hook may have set a
1244 substitute BFD for us. */
1245 if (abfd != oldbfd
1246 && !bfd_generic_link_read_symbols (abfd))
1247 return FALSE;
1248 symcount = _bfd_generic_link_get_symcount (abfd);
1249 symbols = _bfd_generic_link_get_symbols (abfd);
1250 if (! generic_link_add_symbol_list (abfd, info, symcount,
1251 symbols, collect))
1252 return FALSE;
1253 *pneeded = TRUE;
1254 return TRUE;
1255 }
1256
1257 /* P is a common symbol. */
1258
1259 if (h->type == bfd_link_hash_undefined)
1260 {
1261 bfd *symbfd;
1262 bfd_vma size;
1263 unsigned int power;
1264
1265 symbfd = h->u.undef.abfd;
1266 if (symbfd == NULL)
1267 {
1268 /* This symbol was created as undefined from outside
1269 BFD. We assume that we should link in the object
1270 file. This is for the -u option in the linker. */
1271 if (!(*info->callbacks
1272 ->add_archive_element) (info, abfd, bfd_asymbol_name (p),
1273 &abfd))
1274 return FALSE;
1275 /* Potentially, the add_archive_element hook may have set a
1276 substitute BFD for us. But no symbols are going to get
1277 registered by anything we're returning to from here. */
1278 *pneeded = TRUE;
1279 return TRUE;
1280 }
1281
1282 /* Turn the symbol into a common symbol but do not link in
1283 the object file. This is how a.out works. Object
1284 formats that require different semantics must implement
1285 this function differently. This symbol is already on the
1286 undefs list. We add the section to a common section
1287 attached to symbfd to ensure that it is in a BFD which
1288 will be linked in. */
1289 h->type = bfd_link_hash_common;
1290 h->u.c.p = (struct bfd_link_hash_common_entry *)
1291 bfd_hash_allocate (&info->hash->table,
1292 sizeof (struct bfd_link_hash_common_entry));
1293 if (h->u.c.p == NULL)
1294 return FALSE;
1295
1296 size = bfd_asymbol_value (p);
1297 h->u.c.size = size;
1298
1299 power = bfd_log2 (size);
1300 if (power > 4)
1301 power = 4;
1302 h->u.c.p->alignment_power = power;
1303
1304 if (p->section == bfd_com_section_ptr)
1305 h->u.c.p->section = bfd_make_section_old_way (symbfd, "COMMON");
1306 else
1307 h->u.c.p->section = bfd_make_section_old_way (symbfd,
1308 p->section->name);
1309 h->u.c.p->section->flags |= SEC_ALLOC;
1310 }
1311 else
1312 {
1313 /* Adjust the size of the common symbol if necessary. This
1314 is how a.out works. Object formats that require
1315 different semantics must implement this function
1316 differently. */
1317 if (bfd_asymbol_value (p) > h->u.c.size)
1318 h->u.c.size = bfd_asymbol_value (p);
1319 }
1320 }
1321
1322 /* This archive element is not needed. */
1323 return TRUE;
1324 }
1325
1326 /* Add the symbols from an object file to the global hash table. ABFD
1327 is the object file. INFO is the linker information. SYMBOL_COUNT
1328 is the number of symbols. SYMBOLS is the list of symbols. COLLECT
1329 is TRUE if constructors should be automatically collected by name
1330 as is done by collect2. */
1331
1332 static bfd_boolean
1333 generic_link_add_symbol_list (bfd *abfd,
1334 struct bfd_link_info *info,
1335 bfd_size_type symbol_count,
1336 asymbol **symbols,
1337 bfd_boolean collect)
1338 {
1339 asymbol **pp, **ppend;
1340
1341 pp = symbols;
1342 ppend = symbols + symbol_count;
1343 for (; pp < ppend; pp++)
1344 {
1345 asymbol *p;
1346
1347 p = *pp;
1348
1349 if ((p->flags & (BSF_INDIRECT
1350 | BSF_WARNING
1351 | BSF_GLOBAL
1352 | BSF_CONSTRUCTOR
1353 | BSF_WEAK)) != 0
1354 || bfd_is_und_section (bfd_get_section (p))
1355 || bfd_is_com_section (bfd_get_section (p))
1356 || bfd_is_ind_section (bfd_get_section (p)))
1357 {
1358 const char *name;
1359 const char *string;
1360 struct generic_link_hash_entry *h;
1361 struct bfd_link_hash_entry *bh;
1362
1363 string = name = bfd_asymbol_name (p);
1364 if (((p->flags & BSF_INDIRECT) != 0
1365 || bfd_is_ind_section (p->section))
1366 && pp + 1 < ppend)
1367 {
1368 pp++;
1369 string = bfd_asymbol_name (*pp);
1370 }
1371 else if ((p->flags & BSF_WARNING) != 0
1372 && pp + 1 < ppend)
1373 {
1374 /* The name of P is actually the warning string, and the
1375 next symbol is the one to warn about. */
1376 pp++;
1377 name = bfd_asymbol_name (*pp);
1378 }
1379
1380 bh = NULL;
1381 if (! (_bfd_generic_link_add_one_symbol
1382 (info, abfd, name, p->flags, bfd_get_section (p),
1383 p->value, string, FALSE, collect, &bh)))
1384 return FALSE;
1385 h = (struct generic_link_hash_entry *) bh;
1386
1387 /* If this is a constructor symbol, and the linker didn't do
1388 anything with it, then we want to just pass the symbol
1389 through to the output file. This will happen when
1390 linking with -r. */
1391 if ((p->flags & BSF_CONSTRUCTOR) != 0
1392 && (h == NULL || h->root.type == bfd_link_hash_new))
1393 {
1394 p->udata.p = NULL;
1395 continue;
1396 }
1397
1398 /* Save the BFD symbol so that we don't lose any backend
1399 specific information that may be attached to it. We only
1400 want this one if it gives more information than the
1401 existing one; we don't want to replace a defined symbol
1402 with an undefined one. This routine may be called with a
1403 hash table other than the generic hash table, so we only
1404 do this if we are certain that the hash table is a
1405 generic one. */
1406 if (info->output_bfd->xvec == abfd->xvec)
1407 {
1408 if (h->sym == NULL
1409 || (! bfd_is_und_section (bfd_get_section (p))
1410 && (! bfd_is_com_section (bfd_get_section (p))
1411 || bfd_is_und_section (bfd_get_section (h->sym)))))
1412 {
1413 h->sym = p;
1414 /* BSF_OLD_COMMON is a hack to support COFF reloc
1415 reading, and it should go away when the COFF
1416 linker is switched to the new version. */
1417 if (bfd_is_com_section (bfd_get_section (p)))
1418 p->flags |= BSF_OLD_COMMON;
1419 }
1420 }
1421
1422 /* Store a back pointer from the symbol to the hash
1423 table entry for the benefit of relaxation code until
1424 it gets rewritten to not use asymbol structures.
1425 Setting this is also used to check whether these
1426 symbols were set up by the generic linker. */
1427 p->udata.p = h;
1428 }
1429 }
1430
1431 return TRUE;
1432 }
1433 \f
1434 /* We use a state table to deal with adding symbols from an object
1435 file. The first index into the state table describes the symbol
1436 from the object file. The second index into the state table is the
1437 type of the symbol in the hash table. */
1438
1439 /* The symbol from the object file is turned into one of these row
1440 values. */
1441
1442 enum link_row
1443 {
1444 UNDEF_ROW, /* Undefined. */
1445 UNDEFW_ROW, /* Weak undefined. */
1446 DEF_ROW, /* Defined. */
1447 DEFW_ROW, /* Weak defined. */
1448 COMMON_ROW, /* Common. */
1449 INDR_ROW, /* Indirect. */
1450 WARN_ROW, /* Warning. */
1451 SET_ROW /* Member of set. */
1452 };
1453
1454 /* apparently needed for Hitachi 3050R(HI-UX/WE2)? */
1455 #undef FAIL
1456
1457 /* The actions to take in the state table. */
1458
1459 enum link_action
1460 {
1461 FAIL, /* Abort. */
1462 UND, /* Mark symbol undefined. */
1463 WEAK, /* Mark symbol weak undefined. */
1464 DEF, /* Mark symbol defined. */
1465 DEFW, /* Mark symbol weak defined. */
1466 COM, /* Mark symbol common. */
1467 REF, /* Mark defined symbol referenced. */
1468 CREF, /* Possibly warn about common reference to defined symbol. */
1469 CDEF, /* Define existing common symbol. */
1470 NOACT, /* No action. */
1471 BIG, /* Mark symbol common using largest size. */
1472 MDEF, /* Multiple definition error. */
1473 MIND, /* Multiple indirect symbols. */
1474 IND, /* Make indirect symbol. */
1475 CIND, /* Make indirect symbol from existing common symbol. */
1476 SET, /* Add value to set. */
1477 MWARN, /* Make warning symbol. */
1478 WARN, /* Issue warning. */
1479 CWARN, /* Warn if referenced, else MWARN. */
1480 CYCLE, /* Repeat with symbol pointed to. */
1481 REFC, /* Mark indirect symbol referenced and then CYCLE. */
1482 WARNC /* Issue warning and then CYCLE. */
1483 };
1484
1485 /* The state table itself. The first index is a link_row and the
1486 second index is a bfd_link_hash_type. */
1487
1488 static const enum link_action link_action[8][8] =
1489 {
1490 /* current\prev new undef undefw def defw com indr warn */
1491 /* UNDEF_ROW */ {UND, NOACT, UND, REF, REF, NOACT, REFC, WARNC },
1492 /* UNDEFW_ROW */ {WEAK, NOACT, NOACT, REF, REF, NOACT, REFC, WARNC },
1493 /* DEF_ROW */ {DEF, DEF, DEF, MDEF, DEF, CDEF, MDEF, CYCLE },
1494 /* DEFW_ROW */ {DEFW, DEFW, DEFW, NOACT, NOACT, NOACT, NOACT, CYCLE },
1495 /* COMMON_ROW */ {COM, COM, COM, CREF, COM, BIG, REFC, WARNC },
1496 /* INDR_ROW */ {IND, IND, IND, MDEF, IND, CIND, MIND, CYCLE },
1497 /* WARN_ROW */ {MWARN, WARN, WARN, CWARN, CWARN, WARN, CWARN, NOACT },
1498 /* SET_ROW */ {SET, SET, SET, SET, SET, SET, CYCLE, CYCLE }
1499 };
1500
1501 /* Most of the entries in the LINK_ACTION table are straightforward,
1502 but a few are somewhat subtle.
1503
1504 A reference to an indirect symbol (UNDEF_ROW/indr or
1505 UNDEFW_ROW/indr) is counted as a reference both to the indirect
1506 symbol and to the symbol the indirect symbol points to.
1507
1508 A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn)
1509 causes the warning to be issued.
1510
1511 A common definition of an indirect symbol (COMMON_ROW/indr) is
1512 treated as a multiple definition error. Likewise for an indirect
1513 definition of a common symbol (INDR_ROW/com).
1514
1515 An indirect definition of a warning (INDR_ROW/warn) does not cause
1516 the warning to be issued.
1517
1518 If a warning is created for an indirect symbol (WARN_ROW/indr) no
1519 warning is created for the symbol the indirect symbol points to.
1520
1521 Adding an entry to a set does not count as a reference to a set,
1522 and no warning is issued (SET_ROW/warn). */
1523
1524 /* Return the BFD in which a hash entry has been defined, if known. */
1525
1526 static bfd *
1527 hash_entry_bfd (struct bfd_link_hash_entry *h)
1528 {
1529 while (h->type == bfd_link_hash_warning)
1530 h = h->u.i.link;
1531 switch (h->type)
1532 {
1533 default:
1534 return NULL;
1535 case bfd_link_hash_undefined:
1536 case bfd_link_hash_undefweak:
1537 return h->u.undef.abfd;
1538 case bfd_link_hash_defined:
1539 case bfd_link_hash_defweak:
1540 return h->u.def.section->owner;
1541 case bfd_link_hash_common:
1542 return h->u.c.p->section->owner;
1543 }
1544 /*NOTREACHED*/
1545 }
1546
1547 /* Add a symbol to the global hash table.
1548 ABFD is the BFD the symbol comes from.
1549 NAME is the name of the symbol.
1550 FLAGS is the BSF_* bits associated with the symbol.
1551 SECTION is the section in which the symbol is defined; this may be
1552 bfd_und_section_ptr or bfd_com_section_ptr.
1553 VALUE is the value of the symbol, relative to the section.
1554 STRING is used for either an indirect symbol, in which case it is
1555 the name of the symbol to indirect to, or a warning symbol, in
1556 which case it is the warning string.
1557 COPY is TRUE if NAME or STRING must be copied into locally
1558 allocated memory if they need to be saved.
1559 COLLECT is TRUE if we should automatically collect gcc constructor
1560 or destructor names as collect2 does.
1561 HASHP, if not NULL, is a place to store the created hash table
1562 entry; if *HASHP is not NULL, the caller has already looked up
1563 the hash table entry, and stored it in *HASHP. */
1564
1565 bfd_boolean
1566 _bfd_generic_link_add_one_symbol (struct bfd_link_info *info,
1567 bfd *abfd,
1568 const char *name,
1569 flagword flags,
1570 asection *section,
1571 bfd_vma value,
1572 const char *string,
1573 bfd_boolean copy,
1574 bfd_boolean collect,
1575 struct bfd_link_hash_entry **hashp)
1576 {
1577 enum link_row row;
1578 struct bfd_link_hash_entry *h;
1579 bfd_boolean cycle;
1580
1581 BFD_ASSERT (section != NULL);
1582
1583 if (bfd_is_ind_section (section)
1584 || (flags & BSF_INDIRECT) != 0)
1585 row = INDR_ROW;
1586 else if ((flags & BSF_WARNING) != 0)
1587 row = WARN_ROW;
1588 else if ((flags & BSF_CONSTRUCTOR) != 0)
1589 row = SET_ROW;
1590 else if (bfd_is_und_section (section))
1591 {
1592 if ((flags & BSF_WEAK) != 0)
1593 row = UNDEFW_ROW;
1594 else
1595 row = UNDEF_ROW;
1596 }
1597 else if ((flags & BSF_WEAK) != 0)
1598 row = DEFW_ROW;
1599 else if (bfd_is_com_section (section))
1600 row = COMMON_ROW;
1601 else
1602 row = DEF_ROW;
1603
1604 if (hashp != NULL && *hashp != NULL)
1605 h = *hashp;
1606 else
1607 {
1608 if (row == UNDEF_ROW || row == UNDEFW_ROW)
1609 h = bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, copy, FALSE);
1610 else
1611 h = bfd_link_hash_lookup (info->hash, name, TRUE, copy, FALSE);
1612 if (h == NULL)
1613 {
1614 if (hashp != NULL)
1615 *hashp = NULL;
1616 return FALSE;
1617 }
1618 }
1619
1620 if (info->notice_all
1621 || (info->notice_hash != NULL
1622 && bfd_hash_lookup (info->notice_hash, name, FALSE, FALSE) != NULL))
1623 {
1624 if (! (*info->callbacks->notice) (info, h,
1625 abfd, section, value, flags, string))
1626 return FALSE;
1627 }
1628
1629 if (hashp != NULL)
1630 *hashp = h;
1631
1632 do
1633 {
1634 enum link_action action;
1635
1636 cycle = FALSE;
1637 action = link_action[(int) row][(int) h->type];
1638 switch (action)
1639 {
1640 case FAIL:
1641 abort ();
1642
1643 case NOACT:
1644 /* Do nothing. */
1645 break;
1646
1647 case UND:
1648 /* Make a new undefined symbol. */
1649 h->type = bfd_link_hash_undefined;
1650 h->u.undef.abfd = abfd;
1651 bfd_link_add_undef (info->hash, h);
1652 break;
1653
1654 case WEAK:
1655 /* Make a new weak undefined symbol. */
1656 h->type = bfd_link_hash_undefweak;
1657 h->u.undef.abfd = abfd;
1658 break;
1659
1660 case CDEF:
1661 /* We have found a definition for a symbol which was
1662 previously common. */
1663 BFD_ASSERT (h->type == bfd_link_hash_common);
1664 if (! ((*info->callbacks->multiple_common)
1665 (info, h, abfd, bfd_link_hash_defined, 0)))
1666 return FALSE;
1667 /* Fall through. */
1668 case DEF:
1669 case DEFW:
1670 {
1671 enum bfd_link_hash_type oldtype;
1672
1673 /* Define a symbol. */
1674 oldtype = h->type;
1675 if (action == DEFW)
1676 h->type = bfd_link_hash_defweak;
1677 else
1678 h->type = bfd_link_hash_defined;
1679 h->u.def.section = section;
1680 h->u.def.value = value;
1681
1682 /* If we have been asked to, we act like collect2 and
1683 identify all functions that might be global
1684 constructors and destructors and pass them up in a
1685 callback. We only do this for certain object file
1686 types, since many object file types can handle this
1687 automatically. */
1688 if (collect && name[0] == '_')
1689 {
1690 const char *s;
1691
1692 /* A constructor or destructor name starts like this:
1693 _+GLOBAL_[_.$][ID][_.$] where the first [_.$] and
1694 the second are the same character (we accept any
1695 character there, in case a new object file format
1696 comes along with even worse naming restrictions). */
1697
1698 #define CONS_PREFIX "GLOBAL_"
1699 #define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
1700
1701 s = name + 1;
1702 while (*s == '_')
1703 ++s;
1704 if (s[0] == 'G' && CONST_STRNEQ (s, CONS_PREFIX))
1705 {
1706 char c;
1707
1708 c = s[CONS_PREFIX_LEN + 1];
1709 if ((c == 'I' || c == 'D')
1710 && s[CONS_PREFIX_LEN] == s[CONS_PREFIX_LEN + 2])
1711 {
1712 /* If this is a definition of a symbol which
1713 was previously weakly defined, we are in
1714 trouble. We have already added a
1715 constructor entry for the weak defined
1716 symbol, and now we are trying to add one
1717 for the new symbol. Fortunately, this case
1718 should never arise in practice. */
1719 if (oldtype == bfd_link_hash_defweak)
1720 abort ();
1721
1722 if (! ((*info->callbacks->constructor)
1723 (info, c == 'I',
1724 h->root.string, abfd, section, value)))
1725 return FALSE;
1726 }
1727 }
1728 }
1729 }
1730
1731 break;
1732
1733 case COM:
1734 /* We have found a common definition for a symbol. */
1735 if (h->type == bfd_link_hash_new)
1736 bfd_link_add_undef (info->hash, h);
1737 h->type = bfd_link_hash_common;
1738 h->u.c.p = (struct bfd_link_hash_common_entry *)
1739 bfd_hash_allocate (&info->hash->table,
1740 sizeof (struct bfd_link_hash_common_entry));
1741 if (h->u.c.p == NULL)
1742 return FALSE;
1743
1744 h->u.c.size = value;
1745
1746 /* Select a default alignment based on the size. This may
1747 be overridden by the caller. */
1748 {
1749 unsigned int power;
1750
1751 power = bfd_log2 (value);
1752 if (power > 4)
1753 power = 4;
1754 h->u.c.p->alignment_power = power;
1755 }
1756
1757 /* The section of a common symbol is only used if the common
1758 symbol is actually allocated. It basically provides a
1759 hook for the linker script to decide which output section
1760 the common symbols should be put in. In most cases, the
1761 section of a common symbol will be bfd_com_section_ptr,
1762 the code here will choose a common symbol section named
1763 "COMMON", and the linker script will contain *(COMMON) in
1764 the appropriate place. A few targets use separate common
1765 sections for small symbols, and they require special
1766 handling. */
1767 if (section == bfd_com_section_ptr)
1768 {
1769 h->u.c.p->section = bfd_make_section_old_way (abfd, "COMMON");
1770 h->u.c.p->section->flags |= SEC_ALLOC;
1771 }
1772 else if (section->owner != abfd)
1773 {
1774 h->u.c.p->section = bfd_make_section_old_way (abfd,
1775 section->name);
1776 h->u.c.p->section->flags |= SEC_ALLOC;
1777 }
1778 else
1779 h->u.c.p->section = section;
1780 break;
1781
1782 case REF:
1783 /* A reference to a defined symbol. */
1784 if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1785 h->u.undef.next = h;
1786 break;
1787
1788 case BIG:
1789 /* We have found a common definition for a symbol which
1790 already had a common definition. Use the maximum of the
1791 two sizes, and use the section required by the larger symbol. */
1792 BFD_ASSERT (h->type == bfd_link_hash_common);
1793 if (! ((*info->callbacks->multiple_common)
1794 (info, h, abfd, bfd_link_hash_common, value)))
1795 return FALSE;
1796 if (value > h->u.c.size)
1797 {
1798 unsigned int power;
1799
1800 h->u.c.size = value;
1801
1802 /* Select a default alignment based on the size. This may
1803 be overridden by the caller. */
1804 power = bfd_log2 (value);
1805 if (power > 4)
1806 power = 4;
1807 h->u.c.p->alignment_power = power;
1808
1809 /* Some systems have special treatment for small commons,
1810 hence we want to select the section used by the larger
1811 symbol. This makes sure the symbol does not go in a
1812 small common section if it is now too large. */
1813 if (section == bfd_com_section_ptr)
1814 {
1815 h->u.c.p->section
1816 = bfd_make_section_old_way (abfd, "COMMON");
1817 h->u.c.p->section->flags |= SEC_ALLOC;
1818 }
1819 else if (section->owner != abfd)
1820 {
1821 h->u.c.p->section
1822 = bfd_make_section_old_way (abfd, section->name);
1823 h->u.c.p->section->flags |= SEC_ALLOC;
1824 }
1825 else
1826 h->u.c.p->section = section;
1827 }
1828 break;
1829
1830 case CREF:
1831 /* We have found a common definition for a symbol which
1832 was already defined. */
1833 if (! ((*info->callbacks->multiple_common)
1834 (info, h, abfd, bfd_link_hash_common, value)))
1835 return FALSE;
1836 break;
1837
1838 case MIND:
1839 /* Multiple indirect symbols. This is OK if they both point
1840 to the same symbol. */
1841 if (strcmp (h->u.i.link->root.string, string) == 0)
1842 break;
1843 /* Fall through. */
1844 case MDEF:
1845 /* Handle a multiple definition. */
1846 if (! ((*info->callbacks->multiple_definition)
1847 (info, h, abfd, section, value)))
1848 return FALSE;
1849 break;
1850
1851 case CIND:
1852 /* Create an indirect symbol from an existing common symbol. */
1853 BFD_ASSERT (h->type == bfd_link_hash_common);
1854 if (! ((*info->callbacks->multiple_common)
1855 (info, h, abfd, bfd_link_hash_indirect, 0)))
1856 return FALSE;
1857 /* Fall through. */
1858 case IND:
1859 /* Create an indirect symbol. */
1860 {
1861 struct bfd_link_hash_entry *inh;
1862
1863 /* STRING is the name of the symbol we want to indirect
1864 to. */
1865 inh = bfd_wrapped_link_hash_lookup (abfd, info, string, TRUE,
1866 copy, FALSE);
1867 if (inh == NULL)
1868 return FALSE;
1869 if (inh->type == bfd_link_hash_indirect
1870 && inh->u.i.link == h)
1871 {
1872 (*_bfd_error_handler)
1873 (_("%B: indirect symbol `%s' to `%s' is a loop"),
1874 abfd, name, string);
1875 bfd_set_error (bfd_error_invalid_operation);
1876 return FALSE;
1877 }
1878 if (inh->type == bfd_link_hash_new)
1879 {
1880 inh->type = bfd_link_hash_undefined;
1881 inh->u.undef.abfd = abfd;
1882 bfd_link_add_undef (info->hash, inh);
1883 }
1884
1885 /* If the indirect symbol has been referenced, we need to
1886 push the reference down to the symbol we are
1887 referencing. */
1888 if (h->type != bfd_link_hash_new)
1889 {
1890 row = UNDEF_ROW;
1891 cycle = TRUE;
1892 }
1893
1894 h->type = bfd_link_hash_indirect;
1895 h->u.i.link = inh;
1896 }
1897 break;
1898
1899 case SET:
1900 /* Add an entry to a set. */
1901 if (! (*info->callbacks->add_to_set) (info, h, BFD_RELOC_CTOR,
1902 abfd, section, value))
1903 return FALSE;
1904 break;
1905
1906 case WARNC:
1907 /* Issue a warning and cycle. */
1908 if (h->u.i.warning != NULL)
1909 {
1910 if (! (*info->callbacks->warning) (info, h->u.i.warning,
1911 h->root.string, abfd,
1912 NULL, 0))
1913 return FALSE;
1914 /* Only issue a warning once. */
1915 h->u.i.warning = NULL;
1916 }
1917 /* Fall through. */
1918 case CYCLE:
1919 /* Try again with the referenced symbol. */
1920 h = h->u.i.link;
1921 cycle = TRUE;
1922 break;
1923
1924 case REFC:
1925 /* A reference to an indirect symbol. */
1926 if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1927 h->u.undef.next = h;
1928 h = h->u.i.link;
1929 cycle = TRUE;
1930 break;
1931
1932 case WARN:
1933 /* Issue a warning. */
1934 if (! (*info->callbacks->warning) (info, string, h->root.string,
1935 hash_entry_bfd (h), NULL, 0))
1936 return FALSE;
1937 break;
1938
1939 case CWARN:
1940 /* Warn if this symbol has been referenced already,
1941 otherwise add a warning. A symbol has been referenced if
1942 the u.undef.next field is not NULL, or it is the tail of the
1943 undefined symbol list. The REF case above helps to
1944 ensure this. */
1945 if (h->u.undef.next != NULL || info->hash->undefs_tail == h)
1946 {
1947 if (! (*info->callbacks->warning) (info, string, h->root.string,
1948 hash_entry_bfd (h), NULL, 0))
1949 return FALSE;
1950 break;
1951 }
1952 /* Fall through. */
1953 case MWARN:
1954 /* Make a warning symbol. */
1955 {
1956 struct bfd_link_hash_entry *sub;
1957
1958 /* STRING is the warning to give. */
1959 sub = ((struct bfd_link_hash_entry *)
1960 ((*info->hash->table.newfunc)
1961 (NULL, &info->hash->table, h->root.string)));
1962 if (sub == NULL)
1963 return FALSE;
1964 *sub = *h;
1965 sub->type = bfd_link_hash_warning;
1966 sub->u.i.link = h;
1967 if (! copy)
1968 sub->u.i.warning = string;
1969 else
1970 {
1971 char *w;
1972 size_t len = strlen (string) + 1;
1973
1974 w = (char *) bfd_hash_allocate (&info->hash->table, len);
1975 if (w == NULL)
1976 return FALSE;
1977 memcpy (w, string, len);
1978 sub->u.i.warning = w;
1979 }
1980
1981 bfd_hash_replace (&info->hash->table,
1982 (struct bfd_hash_entry *) h,
1983 (struct bfd_hash_entry *) sub);
1984 if (hashp != NULL)
1985 *hashp = sub;
1986 }
1987 break;
1988 }
1989 }
1990 while (cycle);
1991
1992 return TRUE;
1993 }
1994 \f
1995 /* Generic final link routine. */
1996
1997 bfd_boolean
1998 _bfd_generic_final_link (bfd *abfd, struct bfd_link_info *info)
1999 {
2000 bfd *sub;
2001 asection *o;
2002 struct bfd_link_order *p;
2003 size_t outsymalloc;
2004 struct generic_write_global_symbol_info wginfo;
2005
2006 bfd_get_outsymbols (abfd) = NULL;
2007 bfd_get_symcount (abfd) = 0;
2008 outsymalloc = 0;
2009
2010 /* Mark all sections which will be included in the output file. */
2011 for (o = abfd->sections; o != NULL; o = o->next)
2012 for (p = o->map_head.link_order; p != NULL; p = p->next)
2013 if (p->type == bfd_indirect_link_order)
2014 p->u.indirect.section->linker_mark = TRUE;
2015
2016 /* Build the output symbol table. */
2017 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
2018 if (! _bfd_generic_link_output_symbols (abfd, sub, info, &outsymalloc))
2019 return FALSE;
2020
2021 /* Accumulate the global symbols. */
2022 wginfo.info = info;
2023 wginfo.output_bfd = abfd;
2024 wginfo.psymalloc = &outsymalloc;
2025 _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info),
2026 _bfd_generic_link_write_global_symbol,
2027 &wginfo);
2028
2029 /* Make sure we have a trailing NULL pointer on OUTSYMBOLS. We
2030 shouldn't really need one, since we have SYMCOUNT, but some old
2031 code still expects one. */
2032 if (! generic_add_output_symbol (abfd, &outsymalloc, NULL))
2033 return FALSE;
2034
2035 if (info->relocatable)
2036 {
2037 /* Allocate space for the output relocs for each section. */
2038 for (o = abfd->sections; o != NULL; o = o->next)
2039 {
2040 o->reloc_count = 0;
2041 for (p = o->map_head.link_order; p != NULL; p = p->next)
2042 {
2043 if (p->type == bfd_section_reloc_link_order
2044 || p->type == bfd_symbol_reloc_link_order)
2045 ++o->reloc_count;
2046 else if (p->type == bfd_indirect_link_order)
2047 {
2048 asection *input_section;
2049 bfd *input_bfd;
2050 long relsize;
2051 arelent **relocs;
2052 asymbol **symbols;
2053 long reloc_count;
2054
2055 input_section = p->u.indirect.section;
2056 input_bfd = input_section->owner;
2057 relsize = bfd_get_reloc_upper_bound (input_bfd,
2058 input_section);
2059 if (relsize < 0)
2060 return FALSE;
2061 relocs = (arelent **) bfd_malloc (relsize);
2062 if (!relocs && relsize != 0)
2063 return FALSE;
2064 symbols = _bfd_generic_link_get_symbols (input_bfd);
2065 reloc_count = bfd_canonicalize_reloc (input_bfd,
2066 input_section,
2067 relocs,
2068 symbols);
2069 free (relocs);
2070 if (reloc_count < 0)
2071 return FALSE;
2072 BFD_ASSERT ((unsigned long) reloc_count
2073 == input_section->reloc_count);
2074 o->reloc_count += reloc_count;
2075 }
2076 }
2077 if (o->reloc_count > 0)
2078 {
2079 bfd_size_type amt;
2080
2081 amt = o->reloc_count;
2082 amt *= sizeof (arelent *);
2083 o->orelocation = (struct reloc_cache_entry **) bfd_alloc (abfd, amt);
2084 if (!o->orelocation)
2085 return FALSE;
2086 o->flags |= SEC_RELOC;
2087 /* Reset the count so that it can be used as an index
2088 when putting in the output relocs. */
2089 o->reloc_count = 0;
2090 }
2091 }
2092 }
2093
2094 /* Handle all the link order information for the sections. */
2095 for (o = abfd->sections; o != NULL; o = o->next)
2096 {
2097 for (p = o->map_head.link_order; p != NULL; p = p->next)
2098 {
2099 switch (p->type)
2100 {
2101 case bfd_section_reloc_link_order:
2102 case bfd_symbol_reloc_link_order:
2103 if (! _bfd_generic_reloc_link_order (abfd, info, o, p))
2104 return FALSE;
2105 break;
2106 case bfd_indirect_link_order:
2107 if (! default_indirect_link_order (abfd, info, o, p, TRUE))
2108 return FALSE;
2109 break;
2110 default:
2111 if (! _bfd_default_link_order (abfd, info, o, p))
2112 return FALSE;
2113 break;
2114 }
2115 }
2116 }
2117
2118 return TRUE;
2119 }
2120
2121 /* Add an output symbol to the output BFD. */
2122
2123 static bfd_boolean
2124 generic_add_output_symbol (bfd *output_bfd, size_t *psymalloc, asymbol *sym)
2125 {
2126 if (bfd_get_symcount (output_bfd) >= *psymalloc)
2127 {
2128 asymbol **newsyms;
2129 bfd_size_type amt;
2130
2131 if (*psymalloc == 0)
2132 *psymalloc = 124;
2133 else
2134 *psymalloc *= 2;
2135 amt = *psymalloc;
2136 amt *= sizeof (asymbol *);
2137 newsyms = (asymbol **) bfd_realloc (bfd_get_outsymbols (output_bfd), amt);
2138 if (newsyms == NULL)
2139 return FALSE;
2140 bfd_get_outsymbols (output_bfd) = newsyms;
2141 }
2142
2143 bfd_get_outsymbols (output_bfd) [bfd_get_symcount (output_bfd)] = sym;
2144 if (sym != NULL)
2145 ++ bfd_get_symcount (output_bfd);
2146
2147 return TRUE;
2148 }
2149
2150 /* Handle the symbols for an input BFD. */
2151
2152 bfd_boolean
2153 _bfd_generic_link_output_symbols (bfd *output_bfd,
2154 bfd *input_bfd,
2155 struct bfd_link_info *info,
2156 size_t *psymalloc)
2157 {
2158 asymbol **sym_ptr;
2159 asymbol **sym_end;
2160
2161 if (!bfd_generic_link_read_symbols (input_bfd))
2162 return FALSE;
2163
2164 /* Create a filename symbol if we are supposed to. */
2165 if (info->create_object_symbols_section != NULL)
2166 {
2167 asection *sec;
2168
2169 for (sec = input_bfd->sections; sec != NULL; sec = sec->next)
2170 {
2171 if (sec->output_section == info->create_object_symbols_section)
2172 {
2173 asymbol *newsym;
2174
2175 newsym = bfd_make_empty_symbol (input_bfd);
2176 if (!newsym)
2177 return FALSE;
2178 newsym->name = input_bfd->filename;
2179 newsym->value = 0;
2180 newsym->flags = BSF_LOCAL | BSF_FILE;
2181 newsym->section = sec;
2182
2183 if (! generic_add_output_symbol (output_bfd, psymalloc,
2184 newsym))
2185 return FALSE;
2186
2187 break;
2188 }
2189 }
2190 }
2191
2192 /* Adjust the values of the globally visible symbols, and write out
2193 local symbols. */
2194 sym_ptr = _bfd_generic_link_get_symbols (input_bfd);
2195 sym_end = sym_ptr + _bfd_generic_link_get_symcount (input_bfd);
2196 for (; sym_ptr < sym_end; sym_ptr++)
2197 {
2198 asymbol *sym;
2199 struct generic_link_hash_entry *h;
2200 bfd_boolean output;
2201
2202 h = NULL;
2203 sym = *sym_ptr;
2204 if ((sym->flags & (BSF_INDIRECT
2205 | BSF_WARNING
2206 | BSF_GLOBAL
2207 | BSF_CONSTRUCTOR
2208 | BSF_WEAK)) != 0
2209 || bfd_is_und_section (bfd_get_section (sym))
2210 || bfd_is_com_section (bfd_get_section (sym))
2211 || bfd_is_ind_section (bfd_get_section (sym)))
2212 {
2213 if (sym->udata.p != NULL)
2214 h = (struct generic_link_hash_entry *) sym->udata.p;
2215 else if ((sym->flags & BSF_CONSTRUCTOR) != 0)
2216 {
2217 /* This case normally means that the main linker code
2218 deliberately ignored this constructor symbol. We
2219 should just pass it through. This will screw up if
2220 the constructor symbol is from a different,
2221 non-generic, object file format, but the case will
2222 only arise when linking with -r, which will probably
2223 fail anyhow, since there will be no way to represent
2224 the relocs in the output format being used. */
2225 h = NULL;
2226 }
2227 else if (bfd_is_und_section (bfd_get_section (sym)))
2228 h = ((struct generic_link_hash_entry *)
2229 bfd_wrapped_link_hash_lookup (output_bfd, info,
2230 bfd_asymbol_name (sym),
2231 FALSE, FALSE, TRUE));
2232 else
2233 h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info),
2234 bfd_asymbol_name (sym),
2235 FALSE, FALSE, TRUE);
2236
2237 if (h != NULL)
2238 {
2239 /* Force all references to this symbol to point to
2240 the same area in memory. It is possible that
2241 this routine will be called with a hash table
2242 other than a generic hash table, so we double
2243 check that. */
2244 if (info->output_bfd->xvec == input_bfd->xvec)
2245 {
2246 if (h->sym != NULL)
2247 *sym_ptr = sym = h->sym;
2248 }
2249
2250 switch (h->root.type)
2251 {
2252 default:
2253 case bfd_link_hash_new:
2254 abort ();
2255 case bfd_link_hash_undefined:
2256 break;
2257 case bfd_link_hash_undefweak:
2258 sym->flags |= BSF_WEAK;
2259 break;
2260 case bfd_link_hash_indirect:
2261 h = (struct generic_link_hash_entry *) h->root.u.i.link;
2262 /* fall through */
2263 case bfd_link_hash_defined:
2264 sym->flags |= BSF_GLOBAL;
2265 sym->flags &=~ BSF_CONSTRUCTOR;
2266 sym->value = h->root.u.def.value;
2267 sym->section = h->root.u.def.section;
2268 break;
2269 case bfd_link_hash_defweak:
2270 sym->flags |= BSF_WEAK;
2271 sym->flags &=~ BSF_CONSTRUCTOR;
2272 sym->value = h->root.u.def.value;
2273 sym->section = h->root.u.def.section;
2274 break;
2275 case bfd_link_hash_common:
2276 sym->value = h->root.u.c.size;
2277 sym->flags |= BSF_GLOBAL;
2278 if (! bfd_is_com_section (sym->section))
2279 {
2280 BFD_ASSERT (bfd_is_und_section (sym->section));
2281 sym->section = bfd_com_section_ptr;
2282 }
2283 /* We do not set the section of the symbol to
2284 h->root.u.c.p->section. That value was saved so
2285 that we would know where to allocate the symbol
2286 if it was defined. In this case the type is
2287 still bfd_link_hash_common, so we did not define
2288 it, so we do not want to use that section. */
2289 break;
2290 }
2291 }
2292 }
2293
2294 /* This switch is straight from the old code in
2295 write_file_locals in ldsym.c. */
2296 if (info->strip == strip_all
2297 || (info->strip == strip_some
2298 && bfd_hash_lookup (info->keep_hash, bfd_asymbol_name (sym),
2299 FALSE, FALSE) == NULL))
2300 output = FALSE;
2301 else if ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0)
2302 {
2303 /* If this symbol is marked as occurring now, rather
2304 than at the end, output it now. This is used for
2305 COFF C_EXT FCN symbols. FIXME: There must be a
2306 better way. */
2307 if (bfd_asymbol_bfd (sym) == input_bfd
2308 && (sym->flags & BSF_NOT_AT_END) != 0)
2309 output = TRUE;
2310 else
2311 output = FALSE;
2312 }
2313 else if (bfd_is_ind_section (sym->section))
2314 output = FALSE;
2315 else if ((sym->flags & BSF_DEBUGGING) != 0)
2316 {
2317 if (info->strip == strip_none)
2318 output = TRUE;
2319 else
2320 output = FALSE;
2321 }
2322 else if (bfd_is_und_section (sym->section)
2323 || bfd_is_com_section (sym->section))
2324 output = FALSE;
2325 else if ((sym->flags & BSF_LOCAL) != 0)
2326 {
2327 if ((sym->flags & BSF_WARNING) != 0)
2328 output = FALSE;
2329 else
2330 {
2331 switch (info->discard)
2332 {
2333 default:
2334 case discard_all:
2335 output = FALSE;
2336 break;
2337 case discard_sec_merge:
2338 output = TRUE;
2339 if (info->relocatable
2340 || ! (sym->section->flags & SEC_MERGE))
2341 break;
2342 /* FALLTHROUGH */
2343 case discard_l:
2344 if (bfd_is_local_label (input_bfd, sym))
2345 output = FALSE;
2346 else
2347 output = TRUE;
2348 break;
2349 case discard_none:
2350 output = TRUE;
2351 break;
2352 }
2353 }
2354 }
2355 else if ((sym->flags & BSF_CONSTRUCTOR))
2356 {
2357 if (info->strip != strip_all)
2358 output = TRUE;
2359 else
2360 output = FALSE;
2361 }
2362 else if (sym->flags == 0
2363 && (sym->section->owner->flags & BFD_PLUGIN) != 0)
2364 /* LTO doesn't set symbol information. We get here with the
2365 generic linker for a symbol that was "common" but no longer
2366 needs to be global. */
2367 output = FALSE;
2368 else
2369 abort ();
2370
2371 /* If this symbol is in a section which is not being included
2372 in the output file, then we don't want to output the
2373 symbol. */
2374 if (!bfd_is_abs_section (sym->section)
2375 && bfd_section_removed_from_list (output_bfd,
2376 sym->section->output_section))
2377 output = FALSE;
2378
2379 if (output)
2380 {
2381 if (! generic_add_output_symbol (output_bfd, psymalloc, sym))
2382 return FALSE;
2383 if (h != NULL)
2384 h->written = TRUE;
2385 }
2386 }
2387
2388 return TRUE;
2389 }
2390
2391 /* Set the section and value of a generic BFD symbol based on a linker
2392 hash table entry. */
2393
2394 static void
2395 set_symbol_from_hash (asymbol *sym, struct bfd_link_hash_entry *h)
2396 {
2397 switch (h->type)
2398 {
2399 default:
2400 abort ();
2401 break;
2402 case bfd_link_hash_new:
2403 /* This can happen when a constructor symbol is seen but we are
2404 not building constructors. */
2405 if (sym->section != NULL)
2406 {
2407 BFD_ASSERT ((sym->flags & BSF_CONSTRUCTOR) != 0);
2408 }
2409 else
2410 {
2411 sym->flags |= BSF_CONSTRUCTOR;
2412 sym->section = bfd_abs_section_ptr;
2413 sym->value = 0;
2414 }
2415 break;
2416 case bfd_link_hash_undefined:
2417 sym->section = bfd_und_section_ptr;
2418 sym->value = 0;
2419 break;
2420 case bfd_link_hash_undefweak:
2421 sym->section = bfd_und_section_ptr;
2422 sym->value = 0;
2423 sym->flags |= BSF_WEAK;
2424 break;
2425 case bfd_link_hash_defined:
2426 sym->section = h->u.def.section;
2427 sym->value = h->u.def.value;
2428 break;
2429 case bfd_link_hash_defweak:
2430 sym->flags |= BSF_WEAK;
2431 sym->section = h->u.def.section;
2432 sym->value = h->u.def.value;
2433 break;
2434 case bfd_link_hash_common:
2435 sym->value = h->u.c.size;
2436 if (sym->section == NULL)
2437 sym->section = bfd_com_section_ptr;
2438 else if (! bfd_is_com_section (sym->section))
2439 {
2440 BFD_ASSERT (bfd_is_und_section (sym->section));
2441 sym->section = bfd_com_section_ptr;
2442 }
2443 /* Do not set the section; see _bfd_generic_link_output_symbols. */
2444 break;
2445 case bfd_link_hash_indirect:
2446 case bfd_link_hash_warning:
2447 /* FIXME: What should we do here? */
2448 break;
2449 }
2450 }
2451
2452 /* Write out a global symbol, if it hasn't already been written out.
2453 This is called for each symbol in the hash table. */
2454
2455 bfd_boolean
2456 _bfd_generic_link_write_global_symbol (struct generic_link_hash_entry *h,
2457 void *data)
2458 {
2459 struct generic_write_global_symbol_info *wginfo =
2460 (struct generic_write_global_symbol_info *) data;
2461 asymbol *sym;
2462
2463 if (h->written)
2464 return TRUE;
2465
2466 h->written = TRUE;
2467
2468 if (wginfo->info->strip == strip_all
2469 || (wginfo->info->strip == strip_some
2470 && bfd_hash_lookup (wginfo->info->keep_hash, h->root.root.string,
2471 FALSE, FALSE) == NULL))
2472 return TRUE;
2473
2474 if (h->sym != NULL)
2475 sym = h->sym;
2476 else
2477 {
2478 sym = bfd_make_empty_symbol (wginfo->output_bfd);
2479 if (!sym)
2480 return FALSE;
2481 sym->name = h->root.root.string;
2482 sym->flags = 0;
2483 }
2484
2485 set_symbol_from_hash (sym, &h->root);
2486
2487 sym->flags |= BSF_GLOBAL;
2488
2489 if (! generic_add_output_symbol (wginfo->output_bfd, wginfo->psymalloc,
2490 sym))
2491 {
2492 /* FIXME: No way to return failure. */
2493 abort ();
2494 }
2495
2496 return TRUE;
2497 }
2498
2499 /* Create a relocation. */
2500
2501 bfd_boolean
2502 _bfd_generic_reloc_link_order (bfd *abfd,
2503 struct bfd_link_info *info,
2504 asection *sec,
2505 struct bfd_link_order *link_order)
2506 {
2507 arelent *r;
2508
2509 if (! info->relocatable)
2510 abort ();
2511 if (sec->orelocation == NULL)
2512 abort ();
2513
2514 r = (arelent *) bfd_alloc (abfd, sizeof (arelent));
2515 if (r == NULL)
2516 return FALSE;
2517
2518 r->address = link_order->offset;
2519 r->howto = bfd_reloc_type_lookup (abfd, link_order->u.reloc.p->reloc);
2520 if (r->howto == 0)
2521 {
2522 bfd_set_error (bfd_error_bad_value);
2523 return FALSE;
2524 }
2525
2526 /* Get the symbol to use for the relocation. */
2527 if (link_order->type == bfd_section_reloc_link_order)
2528 r->sym_ptr_ptr = link_order->u.reloc.p->u.section->symbol_ptr_ptr;
2529 else
2530 {
2531 struct generic_link_hash_entry *h;
2532
2533 h = ((struct generic_link_hash_entry *)
2534 bfd_wrapped_link_hash_lookup (abfd, info,
2535 link_order->u.reloc.p->u.name,
2536 FALSE, FALSE, TRUE));
2537 if (h == NULL
2538 || ! h->written)
2539 {
2540 if (! ((*info->callbacks->unattached_reloc)
2541 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
2542 return FALSE;
2543 bfd_set_error (bfd_error_bad_value);
2544 return FALSE;
2545 }
2546 r->sym_ptr_ptr = &h->sym;
2547 }
2548
2549 /* If this is an inplace reloc, write the addend to the object file.
2550 Otherwise, store it in the reloc addend. */
2551 if (! r->howto->partial_inplace)
2552 r->addend = link_order->u.reloc.p->addend;
2553 else
2554 {
2555 bfd_size_type size;
2556 bfd_reloc_status_type rstat;
2557 bfd_byte *buf;
2558 bfd_boolean ok;
2559 file_ptr loc;
2560
2561 size = bfd_get_reloc_size (r->howto);
2562 buf = (bfd_byte *) bfd_zmalloc (size);
2563 if (buf == NULL)
2564 return FALSE;
2565 rstat = _bfd_relocate_contents (r->howto, abfd,
2566 (bfd_vma) link_order->u.reloc.p->addend,
2567 buf);
2568 switch (rstat)
2569 {
2570 case bfd_reloc_ok:
2571 break;
2572 default:
2573 case bfd_reloc_outofrange:
2574 abort ();
2575 case bfd_reloc_overflow:
2576 if (! ((*info->callbacks->reloc_overflow)
2577 (info, NULL,
2578 (link_order->type == bfd_section_reloc_link_order
2579 ? bfd_section_name (abfd, link_order->u.reloc.p->u.section)
2580 : link_order->u.reloc.p->u.name),
2581 r->howto->name, link_order->u.reloc.p->addend,
2582 NULL, NULL, 0)))
2583 {
2584 free (buf);
2585 return FALSE;
2586 }
2587 break;
2588 }
2589 loc = link_order->offset * bfd_octets_per_byte (abfd);
2590 ok = bfd_set_section_contents (abfd, sec, buf, loc, size);
2591 free (buf);
2592 if (! ok)
2593 return FALSE;
2594
2595 r->addend = 0;
2596 }
2597
2598 sec->orelocation[sec->reloc_count] = r;
2599 ++sec->reloc_count;
2600
2601 return TRUE;
2602 }
2603 \f
2604 /* Allocate a new link_order for a section. */
2605
2606 struct bfd_link_order *
2607 bfd_new_link_order (bfd *abfd, asection *section)
2608 {
2609 bfd_size_type amt = sizeof (struct bfd_link_order);
2610 struct bfd_link_order *new_lo;
2611
2612 new_lo = (struct bfd_link_order *) bfd_zalloc (abfd, amt);
2613 if (!new_lo)
2614 return NULL;
2615
2616 new_lo->type = bfd_undefined_link_order;
2617
2618 if (section->map_tail.link_order != NULL)
2619 section->map_tail.link_order->next = new_lo;
2620 else
2621 section->map_head.link_order = new_lo;
2622 section->map_tail.link_order = new_lo;
2623
2624 return new_lo;
2625 }
2626
2627 /* Default link order processing routine. Note that we can not handle
2628 the reloc_link_order types here, since they depend upon the details
2629 of how the particular backends generates relocs. */
2630
2631 bfd_boolean
2632 _bfd_default_link_order (bfd *abfd,
2633 struct bfd_link_info *info,
2634 asection *sec,
2635 struct bfd_link_order *link_order)
2636 {
2637 switch (link_order->type)
2638 {
2639 case bfd_undefined_link_order:
2640 case bfd_section_reloc_link_order:
2641 case bfd_symbol_reloc_link_order:
2642 default:
2643 abort ();
2644 case bfd_indirect_link_order:
2645 return default_indirect_link_order (abfd, info, sec, link_order,
2646 FALSE);
2647 case bfd_data_link_order:
2648 return default_data_link_order (abfd, info, sec, link_order);
2649 }
2650 }
2651
2652 /* Default routine to handle a bfd_data_link_order. */
2653
2654 static bfd_boolean
2655 default_data_link_order (bfd *abfd,
2656 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2657 asection *sec,
2658 struct bfd_link_order *link_order)
2659 {
2660 bfd_size_type size;
2661 size_t fill_size;
2662 bfd_byte *fill;
2663 file_ptr loc;
2664 bfd_boolean result;
2665
2666 BFD_ASSERT ((sec->flags & SEC_HAS_CONTENTS) != 0);
2667
2668 size = link_order->size;
2669 if (size == 0)
2670 return TRUE;
2671
2672 fill = link_order->u.data.contents;
2673 fill_size = link_order->u.data.size;
2674 if (fill_size == 0)
2675 {
2676 fill = abfd->arch_info->fill (size, bfd_big_endian (abfd),
2677 (sec->flags & SEC_CODE) != 0);
2678 if (fill == NULL)
2679 return FALSE;
2680 }
2681 else if (fill_size < size)
2682 {
2683 bfd_byte *p;
2684 fill = (bfd_byte *) bfd_malloc (size);
2685 if (fill == NULL)
2686 return FALSE;
2687 p = fill;
2688 if (fill_size == 1)
2689 memset (p, (int) link_order->u.data.contents[0], (size_t) size);
2690 else
2691 {
2692 do
2693 {
2694 memcpy (p, link_order->u.data.contents, fill_size);
2695 p += fill_size;
2696 size -= fill_size;
2697 }
2698 while (size >= fill_size);
2699 if (size != 0)
2700 memcpy (p, link_order->u.data.contents, (size_t) size);
2701 size = link_order->size;
2702 }
2703 }
2704
2705 loc = link_order->offset * bfd_octets_per_byte (abfd);
2706 result = bfd_set_section_contents (abfd, sec, fill, loc, size);
2707
2708 if (fill != link_order->u.data.contents)
2709 free (fill);
2710 return result;
2711 }
2712
2713 /* Default routine to handle a bfd_indirect_link_order. */
2714
2715 static bfd_boolean
2716 default_indirect_link_order (bfd *output_bfd,
2717 struct bfd_link_info *info,
2718 asection *output_section,
2719 struct bfd_link_order *link_order,
2720 bfd_boolean generic_linker)
2721 {
2722 asection *input_section;
2723 bfd *input_bfd;
2724 bfd_byte *contents = NULL;
2725 bfd_byte *new_contents;
2726 bfd_size_type sec_size;
2727 file_ptr loc;
2728
2729 BFD_ASSERT ((output_section->flags & SEC_HAS_CONTENTS) != 0);
2730
2731 input_section = link_order->u.indirect.section;
2732 input_bfd = input_section->owner;
2733 if (input_section->size == 0)
2734 return TRUE;
2735
2736 BFD_ASSERT (input_section->output_section == output_section);
2737 BFD_ASSERT (input_section->output_offset == link_order->offset);
2738 BFD_ASSERT (input_section->size == link_order->size);
2739
2740 if (info->relocatable
2741 && input_section->reloc_count > 0
2742 && output_section->orelocation == NULL)
2743 {
2744 /* Space has not been allocated for the output relocations.
2745 This can happen when we are called by a specific backend
2746 because somebody is attempting to link together different
2747 types of object files. Handling this case correctly is
2748 difficult, and sometimes impossible. */
2749 (*_bfd_error_handler)
2750 (_("Attempt to do relocatable link with %s input and %s output"),
2751 bfd_get_target (input_bfd), bfd_get_target (output_bfd));
2752 bfd_set_error (bfd_error_wrong_format);
2753 return FALSE;
2754 }
2755
2756 if (! generic_linker)
2757 {
2758 asymbol **sympp;
2759 asymbol **symppend;
2760
2761 /* Get the canonical symbols. The generic linker will always
2762 have retrieved them by this point, but we are being called by
2763 a specific linker, presumably because we are linking
2764 different types of object files together. */
2765 if (!bfd_generic_link_read_symbols (input_bfd))
2766 return FALSE;
2767
2768 /* Since we have been called by a specific linker, rather than
2769 the generic linker, the values of the symbols will not be
2770 right. They will be the values as seen in the input file,
2771 not the values of the final link. We need to fix them up
2772 before we can relocate the section. */
2773 sympp = _bfd_generic_link_get_symbols (input_bfd);
2774 symppend = sympp + _bfd_generic_link_get_symcount (input_bfd);
2775 for (; sympp < symppend; sympp++)
2776 {
2777 asymbol *sym;
2778 struct bfd_link_hash_entry *h;
2779
2780 sym = *sympp;
2781
2782 if ((sym->flags & (BSF_INDIRECT
2783 | BSF_WARNING
2784 | BSF_GLOBAL
2785 | BSF_CONSTRUCTOR
2786 | BSF_WEAK)) != 0
2787 || bfd_is_und_section (bfd_get_section (sym))
2788 || bfd_is_com_section (bfd_get_section (sym))
2789 || bfd_is_ind_section (bfd_get_section (sym)))
2790 {
2791 /* sym->udata may have been set by
2792 generic_link_add_symbol_list. */
2793 if (sym->udata.p != NULL)
2794 h = (struct bfd_link_hash_entry *) sym->udata.p;
2795 else if (bfd_is_und_section (bfd_get_section (sym)))
2796 h = bfd_wrapped_link_hash_lookup (output_bfd, info,
2797 bfd_asymbol_name (sym),
2798 FALSE, FALSE, TRUE);
2799 else
2800 h = bfd_link_hash_lookup (info->hash,
2801 bfd_asymbol_name (sym),
2802 FALSE, FALSE, TRUE);
2803 if (h != NULL)
2804 set_symbol_from_hash (sym, h);
2805 }
2806 }
2807 }
2808
2809 if ((output_section->flags & (SEC_GROUP | SEC_LINKER_CREATED)) == SEC_GROUP
2810 && input_section->size != 0)
2811 {
2812 /* Group section contents are set by bfd_elf_set_group_contents. */
2813 if (!output_bfd->output_has_begun)
2814 {
2815 /* FIXME: This hack ensures bfd_elf_set_group_contents is called. */
2816 if (!bfd_set_section_contents (output_bfd, output_section, "", 0, 1))
2817 goto error_return;
2818 }
2819 new_contents = output_section->contents;
2820 BFD_ASSERT (new_contents != NULL);
2821 BFD_ASSERT (input_section->output_offset == 0);
2822 }
2823 else
2824 {
2825 /* Get and relocate the section contents. */
2826 sec_size = (input_section->rawsize > input_section->size
2827 ? input_section->rawsize
2828 : input_section->size);
2829 contents = (bfd_byte *) bfd_malloc (sec_size);
2830 if (contents == NULL && sec_size != 0)
2831 goto error_return;
2832 new_contents = (bfd_get_relocated_section_contents
2833 (output_bfd, info, link_order, contents,
2834 info->relocatable,
2835 _bfd_generic_link_get_symbols (input_bfd)));
2836 if (!new_contents)
2837 goto error_return;
2838 }
2839
2840 /* Output the section contents. */
2841 loc = input_section->output_offset * bfd_octets_per_byte (output_bfd);
2842 if (! bfd_set_section_contents (output_bfd, output_section,
2843 new_contents, loc, input_section->size))
2844 goto error_return;
2845
2846 if (contents != NULL)
2847 free (contents);
2848 return TRUE;
2849
2850 error_return:
2851 if (contents != NULL)
2852 free (contents);
2853 return FALSE;
2854 }
2855
2856 /* A little routine to count the number of relocs in a link_order
2857 list. */
2858
2859 unsigned int
2860 _bfd_count_link_order_relocs (struct bfd_link_order *link_order)
2861 {
2862 register unsigned int c;
2863 register struct bfd_link_order *l;
2864
2865 c = 0;
2866 for (l = link_order; l != NULL; l = l->next)
2867 {
2868 if (l->type == bfd_section_reloc_link_order
2869 || l->type == bfd_symbol_reloc_link_order)
2870 ++c;
2871 }
2872
2873 return c;
2874 }
2875
2876 /*
2877 FUNCTION
2878 bfd_link_split_section
2879
2880 SYNOPSIS
2881 bfd_boolean bfd_link_split_section (bfd *abfd, asection *sec);
2882
2883 DESCRIPTION
2884 Return nonzero if @var{sec} should be split during a
2885 reloceatable or final link.
2886
2887 .#define bfd_link_split_section(abfd, sec) \
2888 . BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
2889 .
2890
2891 */
2892
2893 bfd_boolean
2894 _bfd_generic_link_split_section (bfd *abfd ATTRIBUTE_UNUSED,
2895 asection *sec ATTRIBUTE_UNUSED)
2896 {
2897 return FALSE;
2898 }
2899
2900 /*
2901 FUNCTION
2902 bfd_section_already_linked
2903
2904 SYNOPSIS
2905 bfd_boolean bfd_section_already_linked (bfd *abfd,
2906 asection *sec,
2907 struct bfd_link_info *info);
2908
2909 DESCRIPTION
2910 Check if @var{data} has been already linked during a reloceatable
2911 or final link. Return TRUE if it has.
2912
2913 .#define bfd_section_already_linked(abfd, sec, info) \
2914 . BFD_SEND (abfd, _section_already_linked, (abfd, sec, info))
2915 .
2916
2917 */
2918
2919 /* Sections marked with the SEC_LINK_ONCE flag should only be linked
2920 once into the output. This routine checks each section, and
2921 arrange to discard it if a section of the same name has already
2922 been linked. This code assumes that all relevant sections have the
2923 SEC_LINK_ONCE flag set; that is, it does not depend solely upon the
2924 section name. bfd_section_already_linked is called via
2925 bfd_map_over_sections. */
2926
2927 /* The hash table. */
2928
2929 static struct bfd_hash_table _bfd_section_already_linked_table;
2930
2931 /* Support routines for the hash table used by section_already_linked,
2932 initialize the table, traverse, lookup, fill in an entry and remove
2933 the table. */
2934
2935 void
2936 bfd_section_already_linked_table_traverse
2937 (bfd_boolean (*func) (struct bfd_section_already_linked_hash_entry *,
2938 void *), void *info)
2939 {
2940 bfd_hash_traverse (&_bfd_section_already_linked_table,
2941 (bfd_boolean (*) (struct bfd_hash_entry *,
2942 void *)) func,
2943 info);
2944 }
2945
2946 struct bfd_section_already_linked_hash_entry *
2947 bfd_section_already_linked_table_lookup (const char *name)
2948 {
2949 return ((struct bfd_section_already_linked_hash_entry *)
2950 bfd_hash_lookup (&_bfd_section_already_linked_table, name,
2951 TRUE, FALSE));
2952 }
2953
2954 bfd_boolean
2955 bfd_section_already_linked_table_insert
2956 (struct bfd_section_already_linked_hash_entry *already_linked_list,
2957 asection *sec)
2958 {
2959 struct bfd_section_already_linked *l;
2960
2961 /* Allocate the memory from the same obstack as the hash table is
2962 kept in. */
2963 l = (struct bfd_section_already_linked *)
2964 bfd_hash_allocate (&_bfd_section_already_linked_table, sizeof *l);
2965 if (l == NULL)
2966 return FALSE;
2967 l->sec = sec;
2968 l->next = already_linked_list->entry;
2969 already_linked_list->entry = l;
2970 return TRUE;
2971 }
2972
2973 static struct bfd_hash_entry *
2974 already_linked_newfunc (struct bfd_hash_entry *entry ATTRIBUTE_UNUSED,
2975 struct bfd_hash_table *table,
2976 const char *string ATTRIBUTE_UNUSED)
2977 {
2978 struct bfd_section_already_linked_hash_entry *ret =
2979 (struct bfd_section_already_linked_hash_entry *)
2980 bfd_hash_allocate (table, sizeof *ret);
2981
2982 if (ret == NULL)
2983 return NULL;
2984
2985 ret->entry = NULL;
2986
2987 return &ret->root;
2988 }
2989
2990 bfd_boolean
2991 bfd_section_already_linked_table_init (void)
2992 {
2993 return bfd_hash_table_init_n (&_bfd_section_already_linked_table,
2994 already_linked_newfunc,
2995 sizeof (struct bfd_section_already_linked_hash_entry),
2996 42);
2997 }
2998
2999 void
3000 bfd_section_already_linked_table_free (void)
3001 {
3002 bfd_hash_table_free (&_bfd_section_already_linked_table);
3003 }
3004
3005 /* Report warnings as appropriate for duplicate section SEC.
3006 Return FALSE if we decide to keep SEC after all. */
3007
3008 bfd_boolean
3009 _bfd_handle_already_linked (asection *sec,
3010 struct bfd_section_already_linked *l,
3011 struct bfd_link_info *info)
3012 {
3013 switch (sec->flags & SEC_LINK_DUPLICATES)
3014 {
3015 default:
3016 abort ();
3017
3018 case SEC_LINK_DUPLICATES_DISCARD:
3019 /* If we found an LTO IR match for this comdat group on
3020 the first pass, replace it with the LTO output on the
3021 second pass. We can't simply choose real object
3022 files over IR because the first pass may contain a
3023 mix of LTO and normal objects and we must keep the
3024 first match, be it IR or real. */
3025 if (info->loading_lto_outputs
3026 && (l->sec->owner->flags & BFD_PLUGIN) != 0)
3027 {
3028 l->sec = sec;
3029 return FALSE;
3030 }
3031 break;
3032
3033 case SEC_LINK_DUPLICATES_ONE_ONLY:
3034 info->callbacks->einfo
3035 (_("%B: ignoring duplicate section `%A'\n"),
3036 sec->owner, sec);
3037 break;
3038
3039 case SEC_LINK_DUPLICATES_SAME_SIZE:
3040 if ((l->sec->owner->flags & BFD_PLUGIN) != 0)
3041 ;
3042 else if (sec->size != l->sec->size)
3043 info->callbacks->einfo
3044 (_("%B: duplicate section `%A' has different size\n"),
3045 sec->owner, sec);
3046 break;
3047
3048 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
3049 if ((l->sec->owner->flags & BFD_PLUGIN) != 0)
3050 ;
3051 else if (sec->size != l->sec->size)
3052 info->callbacks->einfo
3053 (_("%B: duplicate section `%A' has different size\n"),
3054 sec->owner, sec);
3055 else if (sec->size != 0)
3056 {
3057 bfd_byte *sec_contents, *l_sec_contents = NULL;
3058
3059 if (!bfd_malloc_and_get_section (sec->owner, sec, &sec_contents))
3060 info->callbacks->einfo
3061 (_("%B: could not read contents of section `%A'\n"),
3062 sec->owner, sec);
3063 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
3064 &l_sec_contents))
3065 info->callbacks->einfo
3066 (_("%B: could not read contents of section `%A'\n"),
3067 l->sec->owner, l->sec);
3068 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
3069 info->callbacks->einfo
3070 (_("%B: duplicate section `%A' has different contents\n"),
3071 sec->owner, sec);
3072
3073 if (sec_contents)
3074 free (sec_contents);
3075 if (l_sec_contents)
3076 free (l_sec_contents);
3077 }
3078 break;
3079 }
3080
3081 /* Set the output_section field so that lang_add_section
3082 does not create a lang_input_section structure for this
3083 section. Since there might be a symbol in the section
3084 being discarded, we must retain a pointer to the section
3085 which we are really going to use. */
3086 sec->output_section = bfd_abs_section_ptr;
3087 sec->kept_section = l->sec;
3088 return TRUE;
3089 }
3090
3091 /* This is used on non-ELF inputs. */
3092
3093 bfd_boolean
3094 _bfd_generic_section_already_linked (bfd *abfd ATTRIBUTE_UNUSED,
3095 asection *sec,
3096 struct bfd_link_info *info)
3097 {
3098 const char *name;
3099 struct bfd_section_already_linked *l;
3100 struct bfd_section_already_linked_hash_entry *already_linked_list;
3101
3102 if ((sec->flags & SEC_LINK_ONCE) == 0)
3103 return FALSE;
3104
3105 /* The generic linker doesn't handle section groups. */
3106 if ((sec->flags & SEC_GROUP) != 0)
3107 return FALSE;
3108
3109 /* FIXME: When doing a relocatable link, we may have trouble
3110 copying relocations in other sections that refer to local symbols
3111 in the section being discarded. Those relocations will have to
3112 be converted somehow; as of this writing I'm not sure that any of
3113 the backends handle that correctly.
3114
3115 It is tempting to instead not discard link once sections when
3116 doing a relocatable link (technically, they should be discarded
3117 whenever we are building constructors). However, that fails,
3118 because the linker winds up combining all the link once sections
3119 into a single large link once section, which defeats the purpose
3120 of having link once sections in the first place. */
3121
3122 name = bfd_get_section_name (abfd, sec);
3123
3124 already_linked_list = bfd_section_already_linked_table_lookup (name);
3125
3126 l = already_linked_list->entry;
3127 if (l != NULL)
3128 {
3129 /* The section has already been linked. See if we should
3130 issue a warning. */
3131 return _bfd_handle_already_linked (sec, l, info);
3132 }
3133
3134 /* This is the first section with this name. Record it. */
3135 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
3136 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
3137 return FALSE;
3138 }
3139
3140 /* Choose a neighbouring section to S in OBFD that will be output, or
3141 the absolute section if ADDR is out of bounds of the neighbours. */
3142
3143 asection *
3144 _bfd_nearby_section (bfd *obfd, asection *s, bfd_vma addr)
3145 {
3146 asection *next, *prev, *best;
3147
3148 /* Find preceding kept section. */
3149 for (prev = s->prev; prev != NULL; prev = prev->prev)
3150 if ((prev->flags & SEC_EXCLUDE) == 0
3151 && !bfd_section_removed_from_list (obfd, prev))
3152 break;
3153
3154 /* Find following kept section. Start at prev->next because
3155 other sections may have been added after S was removed. */
3156 if (s->prev != NULL)
3157 next = s->prev->next;
3158 else
3159 next = s->owner->sections;
3160 for (; next != NULL; next = next->next)
3161 if ((next->flags & SEC_EXCLUDE) == 0
3162 && !bfd_section_removed_from_list (obfd, next))
3163 break;
3164
3165 /* Choose better of two sections, based on flags. The idea
3166 is to choose a section that will be in the same segment
3167 as S would have been if it was kept. */
3168 best = next;
3169 if (prev == NULL)
3170 {
3171 if (next == NULL)
3172 best = bfd_abs_section_ptr;
3173 }
3174 else if (next == NULL)
3175 best = prev;
3176 else if (((prev->flags ^ next->flags)
3177 & (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_LOAD)) != 0)
3178 {
3179 if (((next->flags ^ s->flags)
3180 & (SEC_ALLOC | SEC_THREAD_LOCAL)) != 0
3181 /* We prefer to choose a loaded section. Section S
3182 doesn't have SEC_LOAD set (it being excluded, that
3183 part of the flag processing didn't happen) so we
3184 can't compare that flag to those of NEXT and PREV. */
3185 || ((prev->flags & SEC_LOAD) != 0
3186 && (next->flags & SEC_LOAD) == 0))
3187 best = prev;
3188 }
3189 else if (((prev->flags ^ next->flags) & SEC_READONLY) != 0)
3190 {
3191 if (((next->flags ^ s->flags) & SEC_READONLY) != 0)
3192 best = prev;
3193 }
3194 else if (((prev->flags ^ next->flags) & SEC_CODE) != 0)
3195 {
3196 if (((next->flags ^ s->flags) & SEC_CODE) != 0)
3197 best = prev;
3198 }
3199 else
3200 {
3201 /* Flags we care about are the same. Prefer the following
3202 section if that will result in a positive valued sym. */
3203 if (addr < next->vma)
3204 best = prev;
3205 }
3206
3207 return best;
3208 }
3209
3210 /* Convert symbols in excluded output sections to use a kept section. */
3211
3212 static bfd_boolean
3213 fix_syms (struct bfd_link_hash_entry *h, void *data)
3214 {
3215 bfd *obfd = (bfd *) data;
3216
3217 if (h->type == bfd_link_hash_defined
3218 || h->type == bfd_link_hash_defweak)
3219 {
3220 asection *s = h->u.def.section;
3221 if (s != NULL
3222 && s->output_section != NULL
3223 && (s->output_section->flags & SEC_EXCLUDE) != 0
3224 && bfd_section_removed_from_list (obfd, s->output_section))
3225 {
3226 asection *op;
3227
3228 h->u.def.value += s->output_offset + s->output_section->vma;
3229 op = _bfd_nearby_section (obfd, s->output_section, h->u.def.value);
3230 h->u.def.value -= op->vma;
3231 h->u.def.section = op;
3232 }
3233 }
3234
3235 return TRUE;
3236 }
3237
3238 void
3239 _bfd_fix_excluded_sec_syms (bfd *obfd, struct bfd_link_info *info)
3240 {
3241 bfd_link_hash_traverse (info->hash, fix_syms, obfd);
3242 }
3243
3244 /*
3245 FUNCTION
3246 bfd_generic_define_common_symbol
3247
3248 SYNOPSIS
3249 bfd_boolean bfd_generic_define_common_symbol
3250 (bfd *output_bfd, struct bfd_link_info *info,
3251 struct bfd_link_hash_entry *h);
3252
3253 DESCRIPTION
3254 Convert common symbol @var{h} into a defined symbol.
3255 Return TRUE on success and FALSE on failure.
3256
3257 .#define bfd_define_common_symbol(output_bfd, info, h) \
3258 . BFD_SEND (output_bfd, _bfd_define_common_symbol, (output_bfd, info, h))
3259 .
3260 */
3261
3262 bfd_boolean
3263 bfd_generic_define_common_symbol (bfd *output_bfd,
3264 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3265 struct bfd_link_hash_entry *h)
3266 {
3267 unsigned int power_of_two;
3268 bfd_vma alignment, size;
3269 asection *section;
3270
3271 BFD_ASSERT (h != NULL && h->type == bfd_link_hash_common);
3272
3273 size = h->u.c.size;
3274 power_of_two = h->u.c.p->alignment_power;
3275 section = h->u.c.p->section;
3276
3277 /* Increase the size of the section to align the common symbol.
3278 The alignment must be a power of two. */
3279 alignment = bfd_octets_per_byte (output_bfd) << power_of_two;
3280 BFD_ASSERT (alignment != 0 && (alignment & -alignment) == alignment);
3281 section->size += alignment - 1;
3282 section->size &= -alignment;
3283
3284 /* Adjust the section's overall alignment if necessary. */
3285 if (power_of_two > section->alignment_power)
3286 section->alignment_power = power_of_two;
3287
3288 /* Change the symbol from common to defined. */
3289 h->type = bfd_link_hash_defined;
3290 h->u.def.section = section;
3291 h->u.def.value = section->size;
3292
3293 /* Increase the size of the section. */
3294 section->size += size;
3295
3296 /* Make sure the section is allocated in memory, and make sure that
3297 it is no longer a common section. */
3298 section->flags |= SEC_ALLOC;
3299 section->flags &= ~SEC_IS_COMMON;
3300 return TRUE;
3301 }
3302
3303 /*
3304 FUNCTION
3305 bfd_find_version_for_sym
3306
3307 SYNOPSIS
3308 struct bfd_elf_version_tree * bfd_find_version_for_sym
3309 (struct bfd_elf_version_tree *verdefs,
3310 const char *sym_name, bfd_boolean *hide);
3311
3312 DESCRIPTION
3313 Search an elf version script tree for symbol versioning
3314 info and export / don't-export status for a given symbol.
3315 Return non-NULL on success and NULL on failure; also sets
3316 the output @samp{hide} boolean parameter.
3317
3318 */
3319
3320 struct bfd_elf_version_tree *
3321 bfd_find_version_for_sym (struct bfd_elf_version_tree *verdefs,
3322 const char *sym_name,
3323 bfd_boolean *hide)
3324 {
3325 struct bfd_elf_version_tree *t;
3326 struct bfd_elf_version_tree *local_ver, *global_ver, *exist_ver;
3327 struct bfd_elf_version_tree *star_local_ver, *star_global_ver;
3328
3329 local_ver = NULL;
3330 global_ver = NULL;
3331 star_local_ver = NULL;
3332 star_global_ver = NULL;
3333 exist_ver = NULL;
3334 for (t = verdefs; t != NULL; t = t->next)
3335 {
3336 if (t->globals.list != NULL)
3337 {
3338 struct bfd_elf_version_expr *d = NULL;
3339
3340 while ((d = (*t->match) (&t->globals, d, sym_name)) != NULL)
3341 {
3342 if (d->literal || strcmp (d->pattern, "*") != 0)
3343 global_ver = t;
3344 else
3345 star_global_ver = t;
3346 if (d->symver)
3347 exist_ver = t;
3348 d->script = 1;
3349 /* If the match is a wildcard pattern, keep looking for
3350 a more explicit, perhaps even local, match. */
3351 if (d->literal)
3352 break;
3353 }
3354
3355 if (d != NULL)
3356 break;
3357 }
3358
3359 if (t->locals.list != NULL)
3360 {
3361 struct bfd_elf_version_expr *d = NULL;
3362
3363 while ((d = (*t->match) (&t->locals, d, sym_name)) != NULL)
3364 {
3365 if (d->literal || strcmp (d->pattern, "*") != 0)
3366 local_ver = t;
3367 else
3368 star_local_ver = t;
3369 /* If the match is a wildcard pattern, keep looking for
3370 a more explicit, perhaps even global, match. */
3371 if (d->literal)
3372 {
3373 /* An exact match overrides a global wildcard. */
3374 global_ver = NULL;
3375 star_global_ver = NULL;
3376 break;
3377 }
3378 }
3379
3380 if (d != NULL)
3381 break;
3382 }
3383 }
3384
3385 if (global_ver == NULL && local_ver == NULL)
3386 global_ver = star_global_ver;
3387
3388 if (global_ver != NULL)
3389 {
3390 /* If we already have a versioned symbol that matches the
3391 node for this symbol, then we don't want to create a
3392 duplicate from the unversioned symbol. Instead hide the
3393 unversioned symbol. */
3394 *hide = exist_ver == global_ver;
3395 return global_ver;
3396 }
3397
3398 if (local_ver == NULL)
3399 local_ver = star_local_ver;
3400
3401 if (local_ver != NULL)
3402 {
3403 *hide = TRUE;
3404 return local_ver;
3405 }
3406
3407 return NULL;
3408 }
3409
3410 /*
3411 FUNCTION
3412 bfd_hide_sym_by_version
3413
3414 SYNOPSIS
3415 bfd_boolean bfd_hide_sym_by_version
3416 (struct bfd_elf_version_tree *verdefs, const char *sym_name);
3417
3418 DESCRIPTION
3419 Search an elf version script tree for symbol versioning
3420 info for a given symbol. Return TRUE if the symbol is hidden.
3421
3422 */
3423
3424 bfd_boolean
3425 bfd_hide_sym_by_version (struct bfd_elf_version_tree *verdefs,
3426 const char *sym_name)
3427 {
3428 bfd_boolean hidden = FALSE;
3429 bfd_find_version_for_sym (verdefs, sym_name, &hidden);
3430 return hidden;
3431 }
This page took 0.096701 seconds and 5 git commands to generate.