x86 map file textrel
[deliverable/binutils-gdb.git] / bfd / linker.c
1 /* linker.c -- BFD linker routines
2 Copyright (C) 1993-2017 Free Software Foundation, Inc.
3 Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "libbfd.h"
25 #include "bfdlink.h"
26 #include "genlink.h"
27
28 /*
29 SECTION
30 Linker Functions
31
32 @cindex Linker
33 The linker uses three special entry points in the BFD target
34 vector. It is not necessary to write special routines for
35 these entry points when creating a new BFD back end, since
36 generic versions are provided. However, writing them can
37 speed up linking and make it use significantly less runtime
38 memory.
39
40 The first routine creates a hash table used by the other
41 routines. The second routine adds the symbols from an object
42 file to the hash table. The third routine takes all the
43 object files and links them together to create the output
44 file. These routines are designed so that the linker proper
45 does not need to know anything about the symbols in the object
46 files that it is linking. The linker merely arranges the
47 sections as directed by the linker script and lets BFD handle
48 the details of symbols and relocs.
49
50 The second routine and third routines are passed a pointer to
51 a <<struct bfd_link_info>> structure (defined in
52 <<bfdlink.h>>) which holds information relevant to the link,
53 including the linker hash table (which was created by the
54 first routine) and a set of callback functions to the linker
55 proper.
56
57 The generic linker routines are in <<linker.c>>, and use the
58 header file <<genlink.h>>. As of this writing, the only back
59 ends which have implemented versions of these routines are
60 a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>). The a.out
61 routines are used as examples throughout this section.
62
63 @menu
64 @* Creating a Linker Hash Table::
65 @* Adding Symbols to the Hash Table::
66 @* Performing the Final Link::
67 @end menu
68
69 INODE
70 Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
71 SUBSECTION
72 Creating a linker hash table
73
74 @cindex _bfd_link_hash_table_create in target vector
75 @cindex target vector (_bfd_link_hash_table_create)
76 The linker routines must create a hash table, which must be
77 derived from <<struct bfd_link_hash_table>> described in
78 <<bfdlink.c>>. @xref{Hash Tables}, for information on how to
79 create a derived hash table. This entry point is called using
80 the target vector of the linker output file.
81
82 The <<_bfd_link_hash_table_create>> entry point must allocate
83 and initialize an instance of the desired hash table. If the
84 back end does not require any additional information to be
85 stored with the entries in the hash table, the entry point may
86 simply create a <<struct bfd_link_hash_table>>. Most likely,
87 however, some additional information will be needed.
88
89 For example, with each entry in the hash table the a.out
90 linker keeps the index the symbol has in the final output file
91 (this index number is used so that when doing a relocatable
92 link the symbol index used in the output file can be quickly
93 filled in when copying over a reloc). The a.out linker code
94 defines the required structures and functions for a hash table
95 derived from <<struct bfd_link_hash_table>>. The a.out linker
96 hash table is created by the function
97 <<NAME(aout,link_hash_table_create)>>; it simply allocates
98 space for the hash table, initializes it, and returns a
99 pointer to it.
100
101 When writing the linker routines for a new back end, you will
102 generally not know exactly which fields will be required until
103 you have finished. You should simply create a new hash table
104 which defines no additional fields, and then simply add fields
105 as they become necessary.
106
107 INODE
108 Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
109 SUBSECTION
110 Adding symbols to the hash table
111
112 @cindex _bfd_link_add_symbols in target vector
113 @cindex target vector (_bfd_link_add_symbols)
114 The linker proper will call the <<_bfd_link_add_symbols>>
115 entry point for each object file or archive which is to be
116 linked (typically these are the files named on the command
117 line, but some may also come from the linker script). The
118 entry point is responsible for examining the file. For an
119 object file, BFD must add any relevant symbol information to
120 the hash table. For an archive, BFD must determine which
121 elements of the archive should be used and adding them to the
122 link.
123
124 The a.out version of this entry point is
125 <<NAME(aout,link_add_symbols)>>.
126
127 @menu
128 @* Differing file formats::
129 @* Adding symbols from an object file::
130 @* Adding symbols from an archive::
131 @end menu
132
133 INODE
134 Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
135 SUBSUBSECTION
136 Differing file formats
137
138 Normally all the files involved in a link will be of the same
139 format, but it is also possible to link together different
140 format object files, and the back end must support that. The
141 <<_bfd_link_add_symbols>> entry point is called via the target
142 vector of the file to be added. This has an important
143 consequence: the function may not assume that the hash table
144 is the type created by the corresponding
145 <<_bfd_link_hash_table_create>> vector. All the
146 <<_bfd_link_add_symbols>> function can assume about the hash
147 table is that it is derived from <<struct
148 bfd_link_hash_table>>.
149
150 Sometimes the <<_bfd_link_add_symbols>> function must store
151 some information in the hash table entry to be used by the
152 <<_bfd_final_link>> function. In such a case the output bfd
153 xvec must be checked to make sure that the hash table was
154 created by an object file of the same format.
155
156 The <<_bfd_final_link>> routine must be prepared to handle a
157 hash entry without any extra information added by the
158 <<_bfd_link_add_symbols>> function. A hash entry without
159 extra information will also occur when the linker script
160 directs the linker to create a symbol. Note that, regardless
161 of how a hash table entry is added, all the fields will be
162 initialized to some sort of null value by the hash table entry
163 initialization function.
164
165 See <<ecoff_link_add_externals>> for an example of how to
166 check the output bfd before saving information (in this
167 case, the ECOFF external symbol debugging information) in a
168 hash table entry.
169
170 INODE
171 Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
172 SUBSUBSECTION
173 Adding symbols from an object file
174
175 When the <<_bfd_link_add_symbols>> routine is passed an object
176 file, it must add all externally visible symbols in that
177 object file to the hash table. The actual work of adding the
178 symbol to the hash table is normally handled by the function
179 <<_bfd_generic_link_add_one_symbol>>. The
180 <<_bfd_link_add_symbols>> routine is responsible for reading
181 all the symbols from the object file and passing the correct
182 information to <<_bfd_generic_link_add_one_symbol>>.
183
184 The <<_bfd_link_add_symbols>> routine should not use
185 <<bfd_canonicalize_symtab>> to read the symbols. The point of
186 providing this routine is to avoid the overhead of converting
187 the symbols into generic <<asymbol>> structures.
188
189 @findex _bfd_generic_link_add_one_symbol
190 <<_bfd_generic_link_add_one_symbol>> handles the details of
191 combining common symbols, warning about multiple definitions,
192 and so forth. It takes arguments which describe the symbol to
193 add, notably symbol flags, a section, and an offset. The
194 symbol flags include such things as <<BSF_WEAK>> or
195 <<BSF_INDIRECT>>. The section is a section in the object
196 file, or something like <<bfd_und_section_ptr>> for an undefined
197 symbol or <<bfd_com_section_ptr>> for a common symbol.
198
199 If the <<_bfd_final_link>> routine is also going to need to
200 read the symbol information, the <<_bfd_link_add_symbols>>
201 routine should save it somewhere attached to the object file
202 BFD. However, the information should only be saved if the
203 <<keep_memory>> field of the <<info>> argument is TRUE, so
204 that the <<-no-keep-memory>> linker switch is effective.
205
206 The a.out function which adds symbols from an object file is
207 <<aout_link_add_object_symbols>>, and most of the interesting
208 work is in <<aout_link_add_symbols>>. The latter saves
209 pointers to the hash tables entries created by
210 <<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
211 so that the <<_bfd_final_link>> routine does not have to call
212 the hash table lookup routine to locate the entry.
213
214 INODE
215 Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
216 SUBSUBSECTION
217 Adding symbols from an archive
218
219 When the <<_bfd_link_add_symbols>> routine is passed an
220 archive, it must look through the symbols defined by the
221 archive and decide which elements of the archive should be
222 included in the link. For each such element it must call the
223 <<add_archive_element>> linker callback, and it must add the
224 symbols from the object file to the linker hash table. (The
225 callback may in fact indicate that a replacement BFD should be
226 used, in which case the symbols from that BFD should be added
227 to the linker hash table instead.)
228
229 @findex _bfd_generic_link_add_archive_symbols
230 In most cases the work of looking through the symbols in the
231 archive should be done by the
232 <<_bfd_generic_link_add_archive_symbols>> function.
233 <<_bfd_generic_link_add_archive_symbols>> is passed a function
234 to call to make the final decision about adding an archive
235 element to the link and to do the actual work of adding the
236 symbols to the linker hash table. If the element is to
237 be included, the <<add_archive_element>> linker callback
238 routine must be called with the element as an argument, and
239 the element's symbols must be added to the linker hash table
240 just as though the element had itself been passed to the
241 <<_bfd_link_add_symbols>> function.
242
243 When the a.out <<_bfd_link_add_symbols>> function receives an
244 archive, it calls <<_bfd_generic_link_add_archive_symbols>>
245 passing <<aout_link_check_archive_element>> as the function
246 argument. <<aout_link_check_archive_element>> calls
247 <<aout_link_check_ar_symbols>>. If the latter decides to add
248 the element (an element is only added if it provides a real,
249 non-common, definition for a previously undefined or common
250 symbol) it calls the <<add_archive_element>> callback and then
251 <<aout_link_check_archive_element>> calls
252 <<aout_link_add_symbols>> to actually add the symbols to the
253 linker hash table - possibly those of a substitute BFD, if the
254 <<add_archive_element>> callback avails itself of that option.
255
256 The ECOFF back end is unusual in that it does not normally
257 call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
258 archives already contain a hash table of symbols. The ECOFF
259 back end searches the archive itself to avoid the overhead of
260 creating a new hash table.
261
262 INODE
263 Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
264 SUBSECTION
265 Performing the final link
266
267 @cindex _bfd_link_final_link in target vector
268 @cindex target vector (_bfd_final_link)
269 When all the input files have been processed, the linker calls
270 the <<_bfd_final_link>> entry point of the output BFD. This
271 routine is responsible for producing the final output file,
272 which has several aspects. It must relocate the contents of
273 the input sections and copy the data into the output sections.
274 It must build an output symbol table including any local
275 symbols from the input files and the global symbols from the
276 hash table. When producing relocatable output, it must
277 modify the input relocs and write them into the output file.
278 There may also be object format dependent work to be done.
279
280 The linker will also call the <<write_object_contents>> entry
281 point when the BFD is closed. The two entry points must work
282 together in order to produce the correct output file.
283
284 The details of how this works are inevitably dependent upon
285 the specific object file format. The a.out
286 <<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
287
288 @menu
289 @* Information provided by the linker::
290 @* Relocating the section contents::
291 @* Writing the symbol table::
292 @end menu
293
294 INODE
295 Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
296 SUBSUBSECTION
297 Information provided by the linker
298
299 Before the linker calls the <<_bfd_final_link>> entry point,
300 it sets up some data structures for the function to use.
301
302 The <<input_bfds>> field of the <<bfd_link_info>> structure
303 will point to a list of all the input files included in the
304 link. These files are linked through the <<link.next>> field
305 of the <<bfd>> structure.
306
307 Each section in the output file will have a list of
308 <<link_order>> structures attached to the <<map_head.link_order>>
309 field (the <<link_order>> structure is defined in
310 <<bfdlink.h>>). These structures describe how to create the
311 contents of the output section in terms of the contents of
312 various input sections, fill constants, and, eventually, other
313 types of information. They also describe relocs that must be
314 created by the BFD backend, but do not correspond to any input
315 file; this is used to support -Ur, which builds constructors
316 while generating a relocatable object file.
317
318 INODE
319 Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
320 SUBSUBSECTION
321 Relocating the section contents
322
323 The <<_bfd_final_link>> function should look through the
324 <<link_order>> structures attached to each section of the
325 output file. Each <<link_order>> structure should either be
326 handled specially, or it should be passed to the function
327 <<_bfd_default_link_order>> which will do the right thing
328 (<<_bfd_default_link_order>> is defined in <<linker.c>>).
329
330 For efficiency, a <<link_order>> of type
331 <<bfd_indirect_link_order>> whose associated section belongs
332 to a BFD of the same format as the output BFD must be handled
333 specially. This type of <<link_order>> describes part of an
334 output section in terms of a section belonging to one of the
335 input files. The <<_bfd_final_link>> function should read the
336 contents of the section and any associated relocs, apply the
337 relocs to the section contents, and write out the modified
338 section contents. If performing a relocatable link, the
339 relocs themselves must also be modified and written out.
340
341 @findex _bfd_relocate_contents
342 @findex _bfd_final_link_relocate
343 The functions <<_bfd_relocate_contents>> and
344 <<_bfd_final_link_relocate>> provide some general support for
345 performing the actual relocations, notably overflow checking.
346 Their arguments include information about the symbol the
347 relocation is against and a <<reloc_howto_type>> argument
348 which describes the relocation to perform. These functions
349 are defined in <<reloc.c>>.
350
351 The a.out function which handles reading, relocating, and
352 writing section contents is <<aout_link_input_section>>. The
353 actual relocation is done in <<aout_link_input_section_std>>
354 and <<aout_link_input_section_ext>>.
355
356 INODE
357 Writing the symbol table, , Relocating the section contents, Performing the Final Link
358 SUBSUBSECTION
359 Writing the symbol table
360
361 The <<_bfd_final_link>> function must gather all the symbols
362 in the input files and write them out. It must also write out
363 all the symbols in the global hash table. This must be
364 controlled by the <<strip>> and <<discard>> fields of the
365 <<bfd_link_info>> structure.
366
367 The local symbols of the input files will not have been
368 entered into the linker hash table. The <<_bfd_final_link>>
369 routine must consider each input file and include the symbols
370 in the output file. It may be convenient to do this when
371 looking through the <<link_order>> structures, or it may be
372 done by stepping through the <<input_bfds>> list.
373
374 The <<_bfd_final_link>> routine must also traverse the global
375 hash table to gather all the externally visible symbols. It
376 is possible that most of the externally visible symbols may be
377 written out when considering the symbols of each input file,
378 but it is still necessary to traverse the hash table since the
379 linker script may have defined some symbols that are not in
380 any of the input files.
381
382 The <<strip>> field of the <<bfd_link_info>> structure
383 controls which symbols are written out. The possible values
384 are listed in <<bfdlink.h>>. If the value is <<strip_some>>,
385 then the <<keep_hash>> field of the <<bfd_link_info>>
386 structure is a hash table of symbols to keep; each symbol
387 should be looked up in this hash table, and only symbols which
388 are present should be included in the output file.
389
390 If the <<strip>> field of the <<bfd_link_info>> structure
391 permits local symbols to be written out, the <<discard>> field
392 is used to further controls which local symbols are included
393 in the output file. If the value is <<discard_l>>, then all
394 local symbols which begin with a certain prefix are discarded;
395 this is controlled by the <<bfd_is_local_label_name>> entry point.
396
397 The a.out backend handles symbols by calling
398 <<aout_link_write_symbols>> on each input BFD and then
399 traversing the global hash table with the function
400 <<aout_link_write_other_symbol>>. It builds a string table
401 while writing out the symbols, which is written to the output
402 file at the end of <<NAME(aout,final_link)>>.
403 */
404
405 static bfd_boolean generic_link_add_object_symbols
406 (bfd *, struct bfd_link_info *);
407 static bfd_boolean generic_link_check_archive_element
408 (bfd *, struct bfd_link_info *, struct bfd_link_hash_entry *, const char *,
409 bfd_boolean *);
410 static bfd_boolean generic_link_add_symbol_list
411 (bfd *, struct bfd_link_info *, bfd_size_type count, asymbol **);
412 static bfd_boolean generic_add_output_symbol
413 (bfd *, size_t *psymalloc, asymbol *);
414 static bfd_boolean default_data_link_order
415 (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *);
416 static bfd_boolean default_indirect_link_order
417 (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *,
418 bfd_boolean);
419
420 /* The link hash table structure is defined in bfdlink.h. It provides
421 a base hash table which the backend specific hash tables are built
422 upon. */
423
424 /* Routine to create an entry in the link hash table. */
425
426 struct bfd_hash_entry *
427 _bfd_link_hash_newfunc (struct bfd_hash_entry *entry,
428 struct bfd_hash_table *table,
429 const char *string)
430 {
431 /* Allocate the structure if it has not already been allocated by a
432 subclass. */
433 if (entry == NULL)
434 {
435 entry = (struct bfd_hash_entry *)
436 bfd_hash_allocate (table, sizeof (struct bfd_link_hash_entry));
437 if (entry == NULL)
438 return entry;
439 }
440
441 /* Call the allocation method of the superclass. */
442 entry = bfd_hash_newfunc (entry, table, string);
443 if (entry)
444 {
445 struct bfd_link_hash_entry *h = (struct bfd_link_hash_entry *) entry;
446
447 /* Initialize the local fields. */
448 memset ((char *) &h->root + sizeof (h->root), 0,
449 sizeof (*h) - sizeof (h->root));
450 }
451
452 return entry;
453 }
454
455 /* Initialize a link hash table. The BFD argument is the one
456 responsible for creating this table. */
457
458 bfd_boolean
459 _bfd_link_hash_table_init
460 (struct bfd_link_hash_table *table,
461 bfd *abfd ATTRIBUTE_UNUSED,
462 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
463 struct bfd_hash_table *,
464 const char *),
465 unsigned int entsize)
466 {
467 bfd_boolean ret;
468
469 BFD_ASSERT (!abfd->is_linker_output && !abfd->link.hash);
470 table->undefs = NULL;
471 table->undefs_tail = NULL;
472 table->type = bfd_link_generic_hash_table;
473
474 ret = bfd_hash_table_init (&table->table, newfunc, entsize);
475 if (ret)
476 {
477 /* Arrange for destruction of this hash table on closing ABFD. */
478 table->hash_table_free = _bfd_generic_link_hash_table_free;
479 abfd->link.hash = table;
480 abfd->is_linker_output = TRUE;
481 }
482 return ret;
483 }
484
485 /* Look up a symbol in a link hash table. If follow is TRUE, we
486 follow bfd_link_hash_indirect and bfd_link_hash_warning links to
487 the real symbol. */
488
489 struct bfd_link_hash_entry *
490 bfd_link_hash_lookup (struct bfd_link_hash_table *table,
491 const char *string,
492 bfd_boolean create,
493 bfd_boolean copy,
494 bfd_boolean follow)
495 {
496 struct bfd_link_hash_entry *ret;
497
498 ret = ((struct bfd_link_hash_entry *)
499 bfd_hash_lookup (&table->table, string, create, copy));
500
501 if (follow && ret != NULL)
502 {
503 while (ret->type == bfd_link_hash_indirect
504 || ret->type == bfd_link_hash_warning)
505 ret = ret->u.i.link;
506 }
507
508 return ret;
509 }
510
511 /* Look up a symbol in the main linker hash table if the symbol might
512 be wrapped. This should only be used for references to an
513 undefined symbol, not for definitions of a symbol. */
514
515 struct bfd_link_hash_entry *
516 bfd_wrapped_link_hash_lookup (bfd *abfd,
517 struct bfd_link_info *info,
518 const char *string,
519 bfd_boolean create,
520 bfd_boolean copy,
521 bfd_boolean follow)
522 {
523 bfd_size_type amt;
524
525 if (info->wrap_hash != NULL)
526 {
527 const char *l;
528 char prefix = '\0';
529
530 l = string;
531 if (*l == bfd_get_symbol_leading_char (abfd) || *l == info->wrap_char)
532 {
533 prefix = *l;
534 ++l;
535 }
536
537 #undef WRAP
538 #define WRAP "__wrap_"
539
540 if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL)
541 {
542 char *n;
543 struct bfd_link_hash_entry *h;
544
545 /* This symbol is being wrapped. We want to replace all
546 references to SYM with references to __wrap_SYM. */
547
548 amt = strlen (l) + sizeof WRAP + 1;
549 n = (char *) bfd_malloc (amt);
550 if (n == NULL)
551 return NULL;
552
553 n[0] = prefix;
554 n[1] = '\0';
555 strcat (n, WRAP);
556 strcat (n, l);
557 h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
558 free (n);
559 return h;
560 }
561
562 #undef REAL
563 #define REAL "__real_"
564
565 if (*l == '_'
566 && CONST_STRNEQ (l, REAL)
567 && bfd_hash_lookup (info->wrap_hash, l + sizeof REAL - 1,
568 FALSE, FALSE) != NULL)
569 {
570 char *n;
571 struct bfd_link_hash_entry *h;
572
573 /* This is a reference to __real_SYM, where SYM is being
574 wrapped. We want to replace all references to __real_SYM
575 with references to SYM. */
576
577 amt = strlen (l + sizeof REAL - 1) + 2;
578 n = (char *) bfd_malloc (amt);
579 if (n == NULL)
580 return NULL;
581
582 n[0] = prefix;
583 n[1] = '\0';
584 strcat (n, l + sizeof REAL - 1);
585 h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
586 free (n);
587 return h;
588 }
589
590 #undef REAL
591 }
592
593 return bfd_link_hash_lookup (info->hash, string, create, copy, follow);
594 }
595
596 /* If H is a wrapped symbol, ie. the symbol name starts with "__wrap_"
597 and the remainder is found in wrap_hash, return the real symbol. */
598
599 struct bfd_link_hash_entry *
600 unwrap_hash_lookup (struct bfd_link_info *info,
601 bfd *input_bfd,
602 struct bfd_link_hash_entry *h)
603 {
604 const char *l = h->root.string;
605
606 if (*l == bfd_get_symbol_leading_char (input_bfd)
607 || *l == info->wrap_char)
608 ++l;
609
610 if (CONST_STRNEQ (l, WRAP))
611 {
612 l += sizeof WRAP - 1;
613
614 if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL)
615 {
616 char save = 0;
617 if (l - (sizeof WRAP - 1) != h->root.string)
618 {
619 --l;
620 save = *l;
621 *(char *) l = *h->root.string;
622 }
623 h = bfd_link_hash_lookup (info->hash, l, FALSE, FALSE, FALSE);
624 if (save)
625 *(char *) l = save;
626 }
627 }
628 return h;
629 }
630 #undef WRAP
631
632 /* Traverse a generic link hash table. Differs from bfd_hash_traverse
633 in the treatment of warning symbols. When warning symbols are
634 created they replace the real symbol, so you don't get to see the
635 real symbol in a bfd_hash_traverse. This traversal calls func with
636 the real symbol. */
637
638 void
639 bfd_link_hash_traverse
640 (struct bfd_link_hash_table *htab,
641 bfd_boolean (*func) (struct bfd_link_hash_entry *, void *),
642 void *info)
643 {
644 unsigned int i;
645
646 htab->table.frozen = 1;
647 for (i = 0; i < htab->table.size; i++)
648 {
649 struct bfd_link_hash_entry *p;
650
651 p = (struct bfd_link_hash_entry *) htab->table.table[i];
652 for (; p != NULL; p = (struct bfd_link_hash_entry *) p->root.next)
653 if (!(*func) (p->type == bfd_link_hash_warning ? p->u.i.link : p, info))
654 goto out;
655 }
656 out:
657 htab->table.frozen = 0;
658 }
659
660 /* Add a symbol to the linker hash table undefs list. */
661
662 void
663 bfd_link_add_undef (struct bfd_link_hash_table *table,
664 struct bfd_link_hash_entry *h)
665 {
666 BFD_ASSERT (h->u.undef.next == NULL);
667 if (table->undefs_tail != NULL)
668 table->undefs_tail->u.undef.next = h;
669 if (table->undefs == NULL)
670 table->undefs = h;
671 table->undefs_tail = h;
672 }
673
674 /* The undefs list was designed so that in normal use we don't need to
675 remove entries. However, if symbols on the list are changed from
676 bfd_link_hash_undefined to either bfd_link_hash_undefweak or
677 bfd_link_hash_new for some reason, then they must be removed from the
678 list. Failure to do so might result in the linker attempting to add
679 the symbol to the list again at a later stage. */
680
681 void
682 bfd_link_repair_undef_list (struct bfd_link_hash_table *table)
683 {
684 struct bfd_link_hash_entry **pun;
685
686 pun = &table->undefs;
687 while (*pun != NULL)
688 {
689 struct bfd_link_hash_entry *h = *pun;
690
691 if (h->type == bfd_link_hash_new
692 || h->type == bfd_link_hash_undefweak)
693 {
694 *pun = h->u.undef.next;
695 h->u.undef.next = NULL;
696 if (h == table->undefs_tail)
697 {
698 if (pun == &table->undefs)
699 table->undefs_tail = NULL;
700 else
701 /* pun points at an u.undef.next field. Go back to
702 the start of the link_hash_entry. */
703 table->undefs_tail = (struct bfd_link_hash_entry *)
704 ((char *) pun - ((char *) &h->u.undef.next - (char *) h));
705 break;
706 }
707 }
708 else
709 pun = &h->u.undef.next;
710 }
711 }
712 \f
713 /* Routine to create an entry in a generic link hash table. */
714
715 struct bfd_hash_entry *
716 _bfd_generic_link_hash_newfunc (struct bfd_hash_entry *entry,
717 struct bfd_hash_table *table,
718 const char *string)
719 {
720 /* Allocate the structure if it has not already been allocated by a
721 subclass. */
722 if (entry == NULL)
723 {
724 entry = (struct bfd_hash_entry *)
725 bfd_hash_allocate (table, sizeof (struct generic_link_hash_entry));
726 if (entry == NULL)
727 return entry;
728 }
729
730 /* Call the allocation method of the superclass. */
731 entry = _bfd_link_hash_newfunc (entry, table, string);
732 if (entry)
733 {
734 struct generic_link_hash_entry *ret;
735
736 /* Set local fields. */
737 ret = (struct generic_link_hash_entry *) entry;
738 ret->written = FALSE;
739 ret->sym = NULL;
740 }
741
742 return entry;
743 }
744
745 /* Create a generic link hash table. */
746
747 struct bfd_link_hash_table *
748 _bfd_generic_link_hash_table_create (bfd *abfd)
749 {
750 struct generic_link_hash_table *ret;
751 bfd_size_type amt = sizeof (struct generic_link_hash_table);
752
753 ret = (struct generic_link_hash_table *) bfd_malloc (amt);
754 if (ret == NULL)
755 return NULL;
756 if (! _bfd_link_hash_table_init (&ret->root, abfd,
757 _bfd_generic_link_hash_newfunc,
758 sizeof (struct generic_link_hash_entry)))
759 {
760 free (ret);
761 return NULL;
762 }
763 return &ret->root;
764 }
765
766 void
767 _bfd_generic_link_hash_table_free (bfd *obfd)
768 {
769 struct generic_link_hash_table *ret;
770
771 BFD_ASSERT (obfd->is_linker_output && obfd->link.hash);
772 ret = (struct generic_link_hash_table *) obfd->link.hash;
773 bfd_hash_table_free (&ret->root.table);
774 free (ret);
775 obfd->link.hash = NULL;
776 obfd->is_linker_output = FALSE;
777 }
778
779 /* Grab the symbols for an object file when doing a generic link. We
780 store the symbols in the outsymbols field. We need to keep them
781 around for the entire link to ensure that we only read them once.
782 If we read them multiple times, we might wind up with relocs and
783 the hash table pointing to different instances of the symbol
784 structure. */
785
786 bfd_boolean
787 bfd_generic_link_read_symbols (bfd *abfd)
788 {
789 if (bfd_get_outsymbols (abfd) == NULL)
790 {
791 long symsize;
792 long symcount;
793
794 symsize = bfd_get_symtab_upper_bound (abfd);
795 if (symsize < 0)
796 return FALSE;
797 bfd_get_outsymbols (abfd) = (struct bfd_symbol **) bfd_alloc (abfd,
798 symsize);
799 if (bfd_get_outsymbols (abfd) == NULL && symsize != 0)
800 return FALSE;
801 symcount = bfd_canonicalize_symtab (abfd, bfd_get_outsymbols (abfd));
802 if (symcount < 0)
803 return FALSE;
804 bfd_get_symcount (abfd) = symcount;
805 }
806
807 return TRUE;
808 }
809 \f
810 /* Indicate that we are only retrieving symbol values from this
811 section. We want the symbols to act as though the values in the
812 file are absolute. */
813
814 void
815 _bfd_generic_link_just_syms (asection *sec,
816 struct bfd_link_info *info ATTRIBUTE_UNUSED)
817 {
818 sec->sec_info_type = SEC_INFO_TYPE_JUST_SYMS;
819 sec->output_section = bfd_abs_section_ptr;
820 sec->output_offset = sec->vma;
821 }
822
823 /* Copy the symbol type and other attributes for a linker script
824 assignment from HSRC to HDEST.
825 The default implementation does nothing. */
826 void
827 _bfd_generic_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
828 struct bfd_link_hash_entry *hdest ATTRIBUTE_UNUSED,
829 struct bfd_link_hash_entry *hsrc ATTRIBUTE_UNUSED)
830 {
831 }
832
833 /* Generic function to add symbols from an object file to the
834 global hash table. */
835
836 bfd_boolean
837 _bfd_generic_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
838 {
839 bfd_boolean ret;
840
841 switch (bfd_get_format (abfd))
842 {
843 case bfd_object:
844 ret = generic_link_add_object_symbols (abfd, info);
845 break;
846 case bfd_archive:
847 ret = (_bfd_generic_link_add_archive_symbols
848 (abfd, info, generic_link_check_archive_element));
849 break;
850 default:
851 bfd_set_error (bfd_error_wrong_format);
852 ret = FALSE;
853 }
854
855 return ret;
856 }
857
858 /* Add symbols from an object file to the global hash table. */
859
860 static bfd_boolean
861 generic_link_add_object_symbols (bfd *abfd,
862 struct bfd_link_info *info)
863 {
864 bfd_size_type symcount;
865 struct bfd_symbol **outsyms;
866
867 if (!bfd_generic_link_read_symbols (abfd))
868 return FALSE;
869 symcount = _bfd_generic_link_get_symcount (abfd);
870 outsyms = _bfd_generic_link_get_symbols (abfd);
871 return generic_link_add_symbol_list (abfd, info, symcount, outsyms);
872 }
873 \f
874 /* Generic function to add symbols from an archive file to the global
875 hash file. This function presumes that the archive symbol table
876 has already been read in (this is normally done by the
877 bfd_check_format entry point). It looks through the archive symbol
878 table for symbols that are undefined or common in the linker global
879 symbol hash table. When one is found, the CHECKFN argument is used
880 to see if an object file should be included. This allows targets
881 to customize common symbol behaviour. CHECKFN should set *PNEEDED
882 to TRUE if the object file should be included, and must also call
883 the bfd_link_info add_archive_element callback function and handle
884 adding the symbols to the global hash table. CHECKFN must notice
885 if the callback indicates a substitute BFD, and arrange to add
886 those symbols instead if it does so. CHECKFN should only return
887 FALSE if some sort of error occurs. */
888
889 bfd_boolean
890 _bfd_generic_link_add_archive_symbols
891 (bfd *abfd,
892 struct bfd_link_info *info,
893 bfd_boolean (*checkfn) (bfd *, struct bfd_link_info *,
894 struct bfd_link_hash_entry *, const char *,
895 bfd_boolean *))
896 {
897 bfd_boolean loop;
898 bfd_size_type amt;
899 unsigned char *included;
900
901 if (! bfd_has_map (abfd))
902 {
903 /* An empty archive is a special case. */
904 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
905 return TRUE;
906 bfd_set_error (bfd_error_no_armap);
907 return FALSE;
908 }
909
910 amt = bfd_ardata (abfd)->symdef_count;
911 if (amt == 0)
912 return TRUE;
913 amt *= sizeof (*included);
914 included = (unsigned char *) bfd_zmalloc (amt);
915 if (included == NULL)
916 return FALSE;
917
918 do
919 {
920 carsym *arsyms;
921 carsym *arsym_end;
922 carsym *arsym;
923 unsigned int indx;
924 file_ptr last_ar_offset = -1;
925 bfd_boolean needed = FALSE;
926 bfd *element = NULL;
927
928 loop = FALSE;
929 arsyms = bfd_ardata (abfd)->symdefs;
930 arsym_end = arsyms + bfd_ardata (abfd)->symdef_count;
931 for (arsym = arsyms, indx = 0; arsym < arsym_end; arsym++, indx++)
932 {
933 struct bfd_link_hash_entry *h;
934 struct bfd_link_hash_entry *undefs_tail;
935
936 if (included[indx])
937 continue;
938 if (needed && arsym->file_offset == last_ar_offset)
939 {
940 included[indx] = 1;
941 continue;
942 }
943
944 h = bfd_link_hash_lookup (info->hash, arsym->name,
945 FALSE, FALSE, TRUE);
946
947 if (h == NULL
948 && info->pei386_auto_import
949 && CONST_STRNEQ (arsym->name, "__imp_"))
950 h = bfd_link_hash_lookup (info->hash, arsym->name + 6,
951 FALSE, FALSE, TRUE);
952 if (h == NULL)
953 continue;
954
955 if (h->type != bfd_link_hash_undefined
956 && h->type != bfd_link_hash_common)
957 {
958 if (h->type != bfd_link_hash_undefweak)
959 /* Symbol must be defined. Don't check it again. */
960 included[indx] = 1;
961 continue;
962 }
963
964 if (last_ar_offset != arsym->file_offset)
965 {
966 last_ar_offset = arsym->file_offset;
967 element = _bfd_get_elt_at_filepos (abfd, last_ar_offset);
968 if (element == NULL
969 || !bfd_check_format (element, bfd_object))
970 goto error_return;
971 }
972
973 undefs_tail = info->hash->undefs_tail;
974
975 /* CHECKFN will see if this element should be included, and
976 go ahead and include it if appropriate. */
977 if (! (*checkfn) (element, info, h, arsym->name, &needed))
978 goto error_return;
979
980 if (needed)
981 {
982 unsigned int mark;
983
984 /* Look backward to mark all symbols from this object file
985 which we have already seen in this pass. */
986 mark = indx;
987 do
988 {
989 included[mark] = 1;
990 if (mark == 0)
991 break;
992 --mark;
993 }
994 while (arsyms[mark].file_offset == last_ar_offset);
995
996 if (undefs_tail != info->hash->undefs_tail)
997 loop = TRUE;
998 }
999 }
1000 } while (loop);
1001
1002 free (included);
1003 return TRUE;
1004
1005 error_return:
1006 free (included);
1007 return FALSE;
1008 }
1009 \f
1010 /* See if we should include an archive element. */
1011
1012 static bfd_boolean
1013 generic_link_check_archive_element (bfd *abfd,
1014 struct bfd_link_info *info,
1015 struct bfd_link_hash_entry *h,
1016 const char *name ATTRIBUTE_UNUSED,
1017 bfd_boolean *pneeded)
1018 {
1019 asymbol **pp, **ppend;
1020
1021 *pneeded = FALSE;
1022
1023 if (!bfd_generic_link_read_symbols (abfd))
1024 return FALSE;
1025
1026 pp = _bfd_generic_link_get_symbols (abfd);
1027 ppend = pp + _bfd_generic_link_get_symcount (abfd);
1028 for (; pp < ppend; pp++)
1029 {
1030 asymbol *p;
1031
1032 p = *pp;
1033
1034 /* We are only interested in globally visible symbols. */
1035 if (! bfd_is_com_section (p->section)
1036 && (p->flags & (BSF_GLOBAL | BSF_INDIRECT | BSF_WEAK)) == 0)
1037 continue;
1038
1039 /* We are only interested if we know something about this
1040 symbol, and it is undefined or common. An undefined weak
1041 symbol (type bfd_link_hash_undefweak) is not considered to be
1042 a reference when pulling files out of an archive. See the
1043 SVR4 ABI, p. 4-27. */
1044 h = bfd_link_hash_lookup (info->hash, bfd_asymbol_name (p), FALSE,
1045 FALSE, TRUE);
1046 if (h == NULL
1047 || (h->type != bfd_link_hash_undefined
1048 && h->type != bfd_link_hash_common))
1049 continue;
1050
1051 /* P is a symbol we are looking for. */
1052
1053 if (! bfd_is_com_section (p->section)
1054 || (h->type == bfd_link_hash_undefined
1055 && h->u.undef.abfd == NULL))
1056 {
1057 /* P is not a common symbol, or an undefined reference was
1058 created from outside BFD such as from a linker -u option.
1059 This object file defines the symbol, so pull it in. */
1060 *pneeded = TRUE;
1061 if (!(*info->callbacks
1062 ->add_archive_element) (info, abfd, bfd_asymbol_name (p),
1063 &abfd))
1064 return FALSE;
1065 /* Potentially, the add_archive_element hook may have set a
1066 substitute BFD for us. */
1067 return bfd_link_add_symbols (abfd, info);
1068 }
1069
1070 /* P is a common symbol. */
1071
1072 if (h->type == bfd_link_hash_undefined)
1073 {
1074 bfd *symbfd;
1075 bfd_vma size;
1076 unsigned int power;
1077
1078 /* Turn the symbol into a common symbol but do not link in
1079 the object file. This is how a.out works. Object
1080 formats that require different semantics must implement
1081 this function differently. This symbol is already on the
1082 undefs list. We add the section to a common section
1083 attached to symbfd to ensure that it is in a BFD which
1084 will be linked in. */
1085 symbfd = h->u.undef.abfd;
1086 h->type = bfd_link_hash_common;
1087 h->u.c.p = (struct bfd_link_hash_common_entry *)
1088 bfd_hash_allocate (&info->hash->table,
1089 sizeof (struct bfd_link_hash_common_entry));
1090 if (h->u.c.p == NULL)
1091 return FALSE;
1092
1093 size = bfd_asymbol_value (p);
1094 h->u.c.size = size;
1095
1096 power = bfd_log2 (size);
1097 if (power > 4)
1098 power = 4;
1099 h->u.c.p->alignment_power = power;
1100
1101 if (p->section == bfd_com_section_ptr)
1102 h->u.c.p->section = bfd_make_section_old_way (symbfd, "COMMON");
1103 else
1104 h->u.c.p->section = bfd_make_section_old_way (symbfd,
1105 p->section->name);
1106 h->u.c.p->section->flags |= SEC_ALLOC;
1107 }
1108 else
1109 {
1110 /* Adjust the size of the common symbol if necessary. This
1111 is how a.out works. Object formats that require
1112 different semantics must implement this function
1113 differently. */
1114 if (bfd_asymbol_value (p) > h->u.c.size)
1115 h->u.c.size = bfd_asymbol_value (p);
1116 }
1117 }
1118
1119 /* This archive element is not needed. */
1120 return TRUE;
1121 }
1122
1123 /* Add the symbols from an object file to the global hash table. ABFD
1124 is the object file. INFO is the linker information. SYMBOL_COUNT
1125 is the number of symbols. SYMBOLS is the list of symbols. */
1126
1127 static bfd_boolean
1128 generic_link_add_symbol_list (bfd *abfd,
1129 struct bfd_link_info *info,
1130 bfd_size_type symbol_count,
1131 asymbol **symbols)
1132 {
1133 asymbol **pp, **ppend;
1134
1135 pp = symbols;
1136 ppend = symbols + symbol_count;
1137 for (; pp < ppend; pp++)
1138 {
1139 asymbol *p;
1140
1141 p = *pp;
1142
1143 if ((p->flags & (BSF_INDIRECT
1144 | BSF_WARNING
1145 | BSF_GLOBAL
1146 | BSF_CONSTRUCTOR
1147 | BSF_WEAK)) != 0
1148 || bfd_is_und_section (bfd_get_section (p))
1149 || bfd_is_com_section (bfd_get_section (p))
1150 || bfd_is_ind_section (bfd_get_section (p)))
1151 {
1152 const char *name;
1153 const char *string;
1154 struct generic_link_hash_entry *h;
1155 struct bfd_link_hash_entry *bh;
1156
1157 string = name = bfd_asymbol_name (p);
1158 if (((p->flags & BSF_INDIRECT) != 0
1159 || bfd_is_ind_section (p->section))
1160 && pp + 1 < ppend)
1161 {
1162 pp++;
1163 string = bfd_asymbol_name (*pp);
1164 }
1165 else if ((p->flags & BSF_WARNING) != 0
1166 && pp + 1 < ppend)
1167 {
1168 /* The name of P is actually the warning string, and the
1169 next symbol is the one to warn about. */
1170 pp++;
1171 name = bfd_asymbol_name (*pp);
1172 }
1173
1174 bh = NULL;
1175 if (! (_bfd_generic_link_add_one_symbol
1176 (info, abfd, name, p->flags, bfd_get_section (p),
1177 p->value, string, FALSE, FALSE, &bh)))
1178 return FALSE;
1179 h = (struct generic_link_hash_entry *) bh;
1180
1181 /* If this is a constructor symbol, and the linker didn't do
1182 anything with it, then we want to just pass the symbol
1183 through to the output file. This will happen when
1184 linking with -r. */
1185 if ((p->flags & BSF_CONSTRUCTOR) != 0
1186 && (h == NULL || h->root.type == bfd_link_hash_new))
1187 {
1188 p->udata.p = NULL;
1189 continue;
1190 }
1191
1192 /* Save the BFD symbol so that we don't lose any backend
1193 specific information that may be attached to it. We only
1194 want this one if it gives more information than the
1195 existing one; we don't want to replace a defined symbol
1196 with an undefined one. This routine may be called with a
1197 hash table other than the generic hash table, so we only
1198 do this if we are certain that the hash table is a
1199 generic one. */
1200 if (info->output_bfd->xvec == abfd->xvec)
1201 {
1202 if (h->sym == NULL
1203 || (! bfd_is_und_section (bfd_get_section (p))
1204 && (! bfd_is_com_section (bfd_get_section (p))
1205 || bfd_is_und_section (bfd_get_section (h->sym)))))
1206 {
1207 h->sym = p;
1208 /* BSF_OLD_COMMON is a hack to support COFF reloc
1209 reading, and it should go away when the COFF
1210 linker is switched to the new version. */
1211 if (bfd_is_com_section (bfd_get_section (p)))
1212 p->flags |= BSF_OLD_COMMON;
1213 }
1214 }
1215
1216 /* Store a back pointer from the symbol to the hash
1217 table entry for the benefit of relaxation code until
1218 it gets rewritten to not use asymbol structures.
1219 Setting this is also used to check whether these
1220 symbols were set up by the generic linker. */
1221 p->udata.p = h;
1222 }
1223 }
1224
1225 return TRUE;
1226 }
1227 \f
1228 /* We use a state table to deal with adding symbols from an object
1229 file. The first index into the state table describes the symbol
1230 from the object file. The second index into the state table is the
1231 type of the symbol in the hash table. */
1232
1233 /* The symbol from the object file is turned into one of these row
1234 values. */
1235
1236 enum link_row
1237 {
1238 UNDEF_ROW, /* Undefined. */
1239 UNDEFW_ROW, /* Weak undefined. */
1240 DEF_ROW, /* Defined. */
1241 DEFW_ROW, /* Weak defined. */
1242 COMMON_ROW, /* Common. */
1243 INDR_ROW, /* Indirect. */
1244 WARN_ROW, /* Warning. */
1245 SET_ROW /* Member of set. */
1246 };
1247
1248 /* apparently needed for Hitachi 3050R(HI-UX/WE2)? */
1249 #undef FAIL
1250
1251 /* The actions to take in the state table. */
1252
1253 enum link_action
1254 {
1255 FAIL, /* Abort. */
1256 UND, /* Mark symbol undefined. */
1257 WEAK, /* Mark symbol weak undefined. */
1258 DEF, /* Mark symbol defined. */
1259 DEFW, /* Mark symbol weak defined. */
1260 COM, /* Mark symbol common. */
1261 REF, /* Mark defined symbol referenced. */
1262 CREF, /* Possibly warn about common reference to defined symbol. */
1263 CDEF, /* Define existing common symbol. */
1264 NOACT, /* No action. */
1265 BIG, /* Mark symbol common using largest size. */
1266 MDEF, /* Multiple definition error. */
1267 MIND, /* Multiple indirect symbols. */
1268 IND, /* Make indirect symbol. */
1269 CIND, /* Make indirect symbol from existing common symbol. */
1270 SET, /* Add value to set. */
1271 MWARN, /* Make warning symbol. */
1272 WARN, /* Warn if referenced, else MWARN. */
1273 CYCLE, /* Repeat with symbol pointed to. */
1274 REFC, /* Mark indirect symbol referenced and then CYCLE. */
1275 WARNC /* Issue warning and then CYCLE. */
1276 };
1277
1278 /* The state table itself. The first index is a link_row and the
1279 second index is a bfd_link_hash_type. */
1280
1281 static const enum link_action link_action[8][8] =
1282 {
1283 /* current\prev new undef undefw def defw com indr warn */
1284 /* UNDEF_ROW */ {UND, NOACT, UND, REF, REF, NOACT, REFC, WARNC },
1285 /* UNDEFW_ROW */ {WEAK, NOACT, NOACT, REF, REF, NOACT, REFC, WARNC },
1286 /* DEF_ROW */ {DEF, DEF, DEF, MDEF, DEF, CDEF, MDEF, CYCLE },
1287 /* DEFW_ROW */ {DEFW, DEFW, DEFW, NOACT, NOACT, NOACT, NOACT, CYCLE },
1288 /* COMMON_ROW */ {COM, COM, COM, CREF, COM, BIG, REFC, WARNC },
1289 /* INDR_ROW */ {IND, IND, IND, MDEF, IND, CIND, MIND, CYCLE },
1290 /* WARN_ROW */ {MWARN, WARN, WARN, WARN, WARN, WARN, WARN, NOACT },
1291 /* SET_ROW */ {SET, SET, SET, SET, SET, SET, CYCLE, CYCLE }
1292 };
1293
1294 /* Most of the entries in the LINK_ACTION table are straightforward,
1295 but a few are somewhat subtle.
1296
1297 A reference to an indirect symbol (UNDEF_ROW/indr or
1298 UNDEFW_ROW/indr) is counted as a reference both to the indirect
1299 symbol and to the symbol the indirect symbol points to.
1300
1301 A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn)
1302 causes the warning to be issued.
1303
1304 A common definition of an indirect symbol (COMMON_ROW/indr) is
1305 treated as a multiple definition error. Likewise for an indirect
1306 definition of a common symbol (INDR_ROW/com).
1307
1308 An indirect definition of a warning (INDR_ROW/warn) does not cause
1309 the warning to be issued.
1310
1311 If a warning is created for an indirect symbol (WARN_ROW/indr) no
1312 warning is created for the symbol the indirect symbol points to.
1313
1314 Adding an entry to a set does not count as a reference to a set,
1315 and no warning is issued (SET_ROW/warn). */
1316
1317 /* Return the BFD in which a hash entry has been defined, if known. */
1318
1319 static bfd *
1320 hash_entry_bfd (struct bfd_link_hash_entry *h)
1321 {
1322 while (h->type == bfd_link_hash_warning)
1323 h = h->u.i.link;
1324 switch (h->type)
1325 {
1326 default:
1327 return NULL;
1328 case bfd_link_hash_undefined:
1329 case bfd_link_hash_undefweak:
1330 return h->u.undef.abfd;
1331 case bfd_link_hash_defined:
1332 case bfd_link_hash_defweak:
1333 return h->u.def.section->owner;
1334 case bfd_link_hash_common:
1335 return h->u.c.p->section->owner;
1336 }
1337 /*NOTREACHED*/
1338 }
1339
1340 /* Add a symbol to the global hash table.
1341 ABFD is the BFD the symbol comes from.
1342 NAME is the name of the symbol.
1343 FLAGS is the BSF_* bits associated with the symbol.
1344 SECTION is the section in which the symbol is defined; this may be
1345 bfd_und_section_ptr or bfd_com_section_ptr.
1346 VALUE is the value of the symbol, relative to the section.
1347 STRING is used for either an indirect symbol, in which case it is
1348 the name of the symbol to indirect to, or a warning symbol, in
1349 which case it is the warning string.
1350 COPY is TRUE if NAME or STRING must be copied into locally
1351 allocated memory if they need to be saved.
1352 COLLECT is TRUE if we should automatically collect gcc constructor
1353 or destructor names as collect2 does.
1354 HASHP, if not NULL, is a place to store the created hash table
1355 entry; if *HASHP is not NULL, the caller has already looked up
1356 the hash table entry, and stored it in *HASHP. */
1357
1358 bfd_boolean
1359 _bfd_generic_link_add_one_symbol (struct bfd_link_info *info,
1360 bfd *abfd,
1361 const char *name,
1362 flagword flags,
1363 asection *section,
1364 bfd_vma value,
1365 const char *string,
1366 bfd_boolean copy,
1367 bfd_boolean collect,
1368 struct bfd_link_hash_entry **hashp)
1369 {
1370 enum link_row row;
1371 struct bfd_link_hash_entry *h;
1372 struct bfd_link_hash_entry *inh = NULL;
1373 bfd_boolean cycle;
1374
1375 BFD_ASSERT (section != NULL);
1376
1377 if (bfd_is_ind_section (section)
1378 || (flags & BSF_INDIRECT) != 0)
1379 {
1380 row = INDR_ROW;
1381 /* Create the indirect symbol here. This is for the benefit of
1382 the plugin "notice" function.
1383 STRING is the name of the symbol we want to indirect to. */
1384 inh = bfd_wrapped_link_hash_lookup (abfd, info, string, TRUE,
1385 copy, FALSE);
1386 if (inh == NULL)
1387 return FALSE;
1388 }
1389 else if ((flags & BSF_WARNING) != 0)
1390 row = WARN_ROW;
1391 else if ((flags & BSF_CONSTRUCTOR) != 0)
1392 row = SET_ROW;
1393 else if (bfd_is_und_section (section))
1394 {
1395 if ((flags & BSF_WEAK) != 0)
1396 row = UNDEFW_ROW;
1397 else
1398 row = UNDEF_ROW;
1399 }
1400 else if ((flags & BSF_WEAK) != 0)
1401 row = DEFW_ROW;
1402 else if (bfd_is_com_section (section))
1403 {
1404 row = COMMON_ROW;
1405 if (!bfd_link_relocatable (info)
1406 && name[0] == '_'
1407 && name[1] == '_'
1408 && strcmp (name + (name[2] == '_'), "__gnu_lto_slim") == 0)
1409 _bfd_error_handler
1410 (_("%B: plugin needed to handle lto object"), abfd);
1411 }
1412 else
1413 row = DEF_ROW;
1414
1415 if (hashp != NULL && *hashp != NULL)
1416 h = *hashp;
1417 else
1418 {
1419 if (row == UNDEF_ROW || row == UNDEFW_ROW)
1420 h = bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, copy, FALSE);
1421 else
1422 h = bfd_link_hash_lookup (info->hash, name, TRUE, copy, FALSE);
1423 if (h == NULL)
1424 {
1425 if (hashp != NULL)
1426 *hashp = NULL;
1427 return FALSE;
1428 }
1429 }
1430
1431 if (info->notice_all
1432 || (info->notice_hash != NULL
1433 && bfd_hash_lookup (info->notice_hash, name, FALSE, FALSE) != NULL))
1434 {
1435 if (! (*info->callbacks->notice) (info, h, inh,
1436 abfd, section, value, flags))
1437 return FALSE;
1438 }
1439
1440 if (hashp != NULL)
1441 *hashp = h;
1442
1443 do
1444 {
1445 enum link_action action;
1446 int prev;
1447
1448 prev = h->type;
1449 /* Treat symbols defined by early linker script pass as undefined. */
1450 if (h->ldscript_def)
1451 prev = bfd_link_hash_undefined;
1452 cycle = FALSE;
1453 action = link_action[(int) row][prev];
1454 switch (action)
1455 {
1456 case FAIL:
1457 abort ();
1458
1459 case NOACT:
1460 /* Do nothing. */
1461 break;
1462
1463 case UND:
1464 /* Make a new undefined symbol. */
1465 h->type = bfd_link_hash_undefined;
1466 h->u.undef.abfd = abfd;
1467 bfd_link_add_undef (info->hash, h);
1468 break;
1469
1470 case WEAK:
1471 /* Make a new weak undefined symbol. */
1472 h->type = bfd_link_hash_undefweak;
1473 h->u.undef.abfd = abfd;
1474 break;
1475
1476 case CDEF:
1477 /* We have found a definition for a symbol which was
1478 previously common. */
1479 BFD_ASSERT (h->type == bfd_link_hash_common);
1480 (*info->callbacks->multiple_common) (info, h, abfd,
1481 bfd_link_hash_defined, 0);
1482 /* Fall through. */
1483 case DEF:
1484 case DEFW:
1485 {
1486 enum bfd_link_hash_type oldtype;
1487
1488 /* Define a symbol. */
1489 oldtype = h->type;
1490 if (action == DEFW)
1491 h->type = bfd_link_hash_defweak;
1492 else
1493 h->type = bfd_link_hash_defined;
1494 h->u.def.section = section;
1495 h->u.def.value = value;
1496 h->linker_def = 0;
1497 h->ldscript_def = 0;
1498
1499 /* If we have been asked to, we act like collect2 and
1500 identify all functions that might be global
1501 constructors and destructors and pass them up in a
1502 callback. We only do this for certain object file
1503 types, since many object file types can handle this
1504 automatically. */
1505 if (collect && name[0] == '_')
1506 {
1507 const char *s;
1508
1509 /* A constructor or destructor name starts like this:
1510 _+GLOBAL_[_.$][ID][_.$] where the first [_.$] and
1511 the second are the same character (we accept any
1512 character there, in case a new object file format
1513 comes along with even worse naming restrictions). */
1514
1515 #define CONS_PREFIX "GLOBAL_"
1516 #define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
1517
1518 s = name + 1;
1519 while (*s == '_')
1520 ++s;
1521 if (s[0] == 'G' && CONST_STRNEQ (s, CONS_PREFIX))
1522 {
1523 char c;
1524
1525 c = s[CONS_PREFIX_LEN + 1];
1526 if ((c == 'I' || c == 'D')
1527 && s[CONS_PREFIX_LEN] == s[CONS_PREFIX_LEN + 2])
1528 {
1529 /* If this is a definition of a symbol which
1530 was previously weakly defined, we are in
1531 trouble. We have already added a
1532 constructor entry for the weak defined
1533 symbol, and now we are trying to add one
1534 for the new symbol. Fortunately, this case
1535 should never arise in practice. */
1536 if (oldtype == bfd_link_hash_defweak)
1537 abort ();
1538
1539 (*info->callbacks->constructor) (info, c == 'I',
1540 h->root.string, abfd,
1541 section, value);
1542 }
1543 }
1544 }
1545 }
1546
1547 break;
1548
1549 case COM:
1550 /* We have found a common definition for a symbol. */
1551 if (h->type == bfd_link_hash_new)
1552 bfd_link_add_undef (info->hash, h);
1553 h->type = bfd_link_hash_common;
1554 h->u.c.p = (struct bfd_link_hash_common_entry *)
1555 bfd_hash_allocate (&info->hash->table,
1556 sizeof (struct bfd_link_hash_common_entry));
1557 if (h->u.c.p == NULL)
1558 return FALSE;
1559
1560 h->u.c.size = value;
1561
1562 /* Select a default alignment based on the size. This may
1563 be overridden by the caller. */
1564 {
1565 unsigned int power;
1566
1567 power = bfd_log2 (value);
1568 if (power > 4)
1569 power = 4;
1570 h->u.c.p->alignment_power = power;
1571 }
1572
1573 /* The section of a common symbol is only used if the common
1574 symbol is actually allocated. It basically provides a
1575 hook for the linker script to decide which output section
1576 the common symbols should be put in. In most cases, the
1577 section of a common symbol will be bfd_com_section_ptr,
1578 the code here will choose a common symbol section named
1579 "COMMON", and the linker script will contain *(COMMON) in
1580 the appropriate place. A few targets use separate common
1581 sections for small symbols, and they require special
1582 handling. */
1583 if (section == bfd_com_section_ptr)
1584 {
1585 h->u.c.p->section = bfd_make_section_old_way (abfd, "COMMON");
1586 h->u.c.p->section->flags |= SEC_ALLOC;
1587 }
1588 else if (section->owner != abfd)
1589 {
1590 h->u.c.p->section = bfd_make_section_old_way (abfd,
1591 section->name);
1592 h->u.c.p->section->flags |= SEC_ALLOC;
1593 }
1594 else
1595 h->u.c.p->section = section;
1596 h->linker_def = 0;
1597 h->ldscript_def = 0;
1598 break;
1599
1600 case REF:
1601 /* A reference to a defined symbol. */
1602 if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1603 h->u.undef.next = h;
1604 break;
1605
1606 case BIG:
1607 /* We have found a common definition for a symbol which
1608 already had a common definition. Use the maximum of the
1609 two sizes, and use the section required by the larger symbol. */
1610 BFD_ASSERT (h->type == bfd_link_hash_common);
1611 (*info->callbacks->multiple_common) (info, h, abfd,
1612 bfd_link_hash_common, value);
1613 if (value > h->u.c.size)
1614 {
1615 unsigned int power;
1616
1617 h->u.c.size = value;
1618
1619 /* Select a default alignment based on the size. This may
1620 be overridden by the caller. */
1621 power = bfd_log2 (value);
1622 if (power > 4)
1623 power = 4;
1624 h->u.c.p->alignment_power = power;
1625
1626 /* Some systems have special treatment for small commons,
1627 hence we want to select the section used by the larger
1628 symbol. This makes sure the symbol does not go in a
1629 small common section if it is now too large. */
1630 if (section == bfd_com_section_ptr)
1631 {
1632 h->u.c.p->section
1633 = bfd_make_section_old_way (abfd, "COMMON");
1634 h->u.c.p->section->flags |= SEC_ALLOC;
1635 }
1636 else if (section->owner != abfd)
1637 {
1638 h->u.c.p->section
1639 = bfd_make_section_old_way (abfd, section->name);
1640 h->u.c.p->section->flags |= SEC_ALLOC;
1641 }
1642 else
1643 h->u.c.p->section = section;
1644 }
1645 break;
1646
1647 case CREF:
1648 /* We have found a common definition for a symbol which
1649 was already defined. */
1650 (*info->callbacks->multiple_common) (info, h, abfd,
1651 bfd_link_hash_common, value);
1652 break;
1653
1654 case MIND:
1655 /* Multiple indirect symbols. This is OK if they both point
1656 to the same symbol. */
1657 if (strcmp (h->u.i.link->root.string, string) == 0)
1658 break;
1659 /* Fall through. */
1660 case MDEF:
1661 /* Handle a multiple definition. */
1662 (*info->callbacks->multiple_definition) (info, h,
1663 abfd, section, value);
1664 break;
1665
1666 case CIND:
1667 /* Create an indirect symbol from an existing common symbol. */
1668 BFD_ASSERT (h->type == bfd_link_hash_common);
1669 (*info->callbacks->multiple_common) (info, h, abfd,
1670 bfd_link_hash_indirect, 0);
1671 /* Fall through. */
1672 case IND:
1673 if (inh->type == bfd_link_hash_indirect
1674 && inh->u.i.link == h)
1675 {
1676 _bfd_error_handler
1677 /* xgettext:c-format */
1678 (_("%B: indirect symbol `%s' to `%s' is a loop"),
1679 abfd, name, string);
1680 bfd_set_error (bfd_error_invalid_operation);
1681 return FALSE;
1682 }
1683 if (inh->type == bfd_link_hash_new)
1684 {
1685 inh->type = bfd_link_hash_undefined;
1686 inh->u.undef.abfd = abfd;
1687 bfd_link_add_undef (info->hash, inh);
1688 }
1689
1690 /* If the indirect symbol has been referenced, we need to
1691 push the reference down to the symbol we are referencing. */
1692 if (h->type != bfd_link_hash_new)
1693 {
1694 /* ??? If inh->type == bfd_link_hash_undefweak this
1695 converts inh to bfd_link_hash_undefined. */
1696 row = UNDEF_ROW;
1697 cycle = TRUE;
1698 }
1699
1700 h->type = bfd_link_hash_indirect;
1701 h->u.i.link = inh;
1702 /* Not setting h = h->u.i.link here means that when cycle is
1703 set above we'll always go to REFC, and then cycle again
1704 to the indirected symbol. This means that any successful
1705 change of an existing symbol to indirect counts as a
1706 reference. ??? That may not be correct when the existing
1707 symbol was defweak. */
1708 break;
1709
1710 case SET:
1711 /* Add an entry to a set. */
1712 (*info->callbacks->add_to_set) (info, h, BFD_RELOC_CTOR,
1713 abfd, section, value);
1714 break;
1715
1716 case WARNC:
1717 /* Issue a warning and cycle, except when the reference is
1718 in LTO IR. */
1719 if (h->u.i.warning != NULL
1720 && (abfd->flags & BFD_PLUGIN) == 0)
1721 {
1722 (*info->callbacks->warning) (info, h->u.i.warning,
1723 h->root.string, abfd, NULL, 0);
1724 /* Only issue a warning once. */
1725 h->u.i.warning = NULL;
1726 }
1727 /* Fall through. */
1728 case CYCLE:
1729 /* Try again with the referenced symbol. */
1730 h = h->u.i.link;
1731 cycle = TRUE;
1732 break;
1733
1734 case REFC:
1735 /* A reference to an indirect symbol. */
1736 if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1737 h->u.undef.next = h;
1738 h = h->u.i.link;
1739 cycle = TRUE;
1740 break;
1741
1742 case WARN:
1743 /* Warn if this symbol has been referenced already from non-IR,
1744 otherwise add a warning. */
1745 if ((!info->lto_plugin_active
1746 && (h->u.undef.next != NULL || info->hash->undefs_tail == h))
1747 || h->non_ir_ref_regular
1748 || h->non_ir_ref_dynamic)
1749 {
1750 (*info->callbacks->warning) (info, string, h->root.string,
1751 hash_entry_bfd (h), NULL, 0);
1752 break;
1753 }
1754 /* Fall through. */
1755 case MWARN:
1756 /* Make a warning symbol. */
1757 {
1758 struct bfd_link_hash_entry *sub;
1759
1760 /* STRING is the warning to give. */
1761 sub = ((struct bfd_link_hash_entry *)
1762 ((*info->hash->table.newfunc)
1763 (NULL, &info->hash->table, h->root.string)));
1764 if (sub == NULL)
1765 return FALSE;
1766 *sub = *h;
1767 sub->type = bfd_link_hash_warning;
1768 sub->u.i.link = h;
1769 if (! copy)
1770 sub->u.i.warning = string;
1771 else
1772 {
1773 char *w;
1774 size_t len = strlen (string) + 1;
1775
1776 w = (char *) bfd_hash_allocate (&info->hash->table, len);
1777 if (w == NULL)
1778 return FALSE;
1779 memcpy (w, string, len);
1780 sub->u.i.warning = w;
1781 }
1782
1783 bfd_hash_replace (&info->hash->table,
1784 (struct bfd_hash_entry *) h,
1785 (struct bfd_hash_entry *) sub);
1786 if (hashp != NULL)
1787 *hashp = sub;
1788 }
1789 break;
1790 }
1791 }
1792 while (cycle);
1793
1794 return TRUE;
1795 }
1796 \f
1797 /* Generic final link routine. */
1798
1799 bfd_boolean
1800 _bfd_generic_final_link (bfd *abfd, struct bfd_link_info *info)
1801 {
1802 bfd *sub;
1803 asection *o;
1804 struct bfd_link_order *p;
1805 size_t outsymalloc;
1806 struct generic_write_global_symbol_info wginfo;
1807
1808 bfd_get_outsymbols (abfd) = NULL;
1809 bfd_get_symcount (abfd) = 0;
1810 outsymalloc = 0;
1811
1812 /* Mark all sections which will be included in the output file. */
1813 for (o = abfd->sections; o != NULL; o = o->next)
1814 for (p = o->map_head.link_order; p != NULL; p = p->next)
1815 if (p->type == bfd_indirect_link_order)
1816 p->u.indirect.section->linker_mark = TRUE;
1817
1818 /* Build the output symbol table. */
1819 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
1820 if (! _bfd_generic_link_output_symbols (abfd, sub, info, &outsymalloc))
1821 return FALSE;
1822
1823 /* Accumulate the global symbols. */
1824 wginfo.info = info;
1825 wginfo.output_bfd = abfd;
1826 wginfo.psymalloc = &outsymalloc;
1827 _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info),
1828 _bfd_generic_link_write_global_symbol,
1829 &wginfo);
1830
1831 /* Make sure we have a trailing NULL pointer on OUTSYMBOLS. We
1832 shouldn't really need one, since we have SYMCOUNT, but some old
1833 code still expects one. */
1834 if (! generic_add_output_symbol (abfd, &outsymalloc, NULL))
1835 return FALSE;
1836
1837 if (bfd_link_relocatable (info))
1838 {
1839 /* Allocate space for the output relocs for each section. */
1840 for (o = abfd->sections; o != NULL; o = o->next)
1841 {
1842 o->reloc_count = 0;
1843 for (p = o->map_head.link_order; p != NULL; p = p->next)
1844 {
1845 if (p->type == bfd_section_reloc_link_order
1846 || p->type == bfd_symbol_reloc_link_order)
1847 ++o->reloc_count;
1848 else if (p->type == bfd_indirect_link_order)
1849 {
1850 asection *input_section;
1851 bfd *input_bfd;
1852 long relsize;
1853 arelent **relocs;
1854 asymbol **symbols;
1855 long reloc_count;
1856
1857 input_section = p->u.indirect.section;
1858 input_bfd = input_section->owner;
1859 relsize = bfd_get_reloc_upper_bound (input_bfd,
1860 input_section);
1861 if (relsize < 0)
1862 return FALSE;
1863 relocs = (arelent **) bfd_malloc (relsize);
1864 if (!relocs && relsize != 0)
1865 return FALSE;
1866 symbols = _bfd_generic_link_get_symbols (input_bfd);
1867 reloc_count = bfd_canonicalize_reloc (input_bfd,
1868 input_section,
1869 relocs,
1870 symbols);
1871 free (relocs);
1872 if (reloc_count < 0)
1873 return FALSE;
1874 BFD_ASSERT ((unsigned long) reloc_count
1875 == input_section->reloc_count);
1876 o->reloc_count += reloc_count;
1877 }
1878 }
1879 if (o->reloc_count > 0)
1880 {
1881 bfd_size_type amt;
1882
1883 amt = o->reloc_count;
1884 amt *= sizeof (arelent *);
1885 o->orelocation = (struct reloc_cache_entry **) bfd_alloc (abfd, amt);
1886 if (!o->orelocation)
1887 return FALSE;
1888 o->flags |= SEC_RELOC;
1889 /* Reset the count so that it can be used as an index
1890 when putting in the output relocs. */
1891 o->reloc_count = 0;
1892 }
1893 }
1894 }
1895
1896 /* Handle all the link order information for the sections. */
1897 for (o = abfd->sections; o != NULL; o = o->next)
1898 {
1899 for (p = o->map_head.link_order; p != NULL; p = p->next)
1900 {
1901 switch (p->type)
1902 {
1903 case bfd_section_reloc_link_order:
1904 case bfd_symbol_reloc_link_order:
1905 if (! _bfd_generic_reloc_link_order (abfd, info, o, p))
1906 return FALSE;
1907 break;
1908 case bfd_indirect_link_order:
1909 if (! default_indirect_link_order (abfd, info, o, p, TRUE))
1910 return FALSE;
1911 break;
1912 default:
1913 if (! _bfd_default_link_order (abfd, info, o, p))
1914 return FALSE;
1915 break;
1916 }
1917 }
1918 }
1919
1920 return TRUE;
1921 }
1922
1923 /* Add an output symbol to the output BFD. */
1924
1925 static bfd_boolean
1926 generic_add_output_symbol (bfd *output_bfd, size_t *psymalloc, asymbol *sym)
1927 {
1928 if (bfd_get_symcount (output_bfd) >= *psymalloc)
1929 {
1930 asymbol **newsyms;
1931 bfd_size_type amt;
1932
1933 if (*psymalloc == 0)
1934 *psymalloc = 124;
1935 else
1936 *psymalloc *= 2;
1937 amt = *psymalloc;
1938 amt *= sizeof (asymbol *);
1939 newsyms = (asymbol **) bfd_realloc (bfd_get_outsymbols (output_bfd), amt);
1940 if (newsyms == NULL)
1941 return FALSE;
1942 bfd_get_outsymbols (output_bfd) = newsyms;
1943 }
1944
1945 bfd_get_outsymbols (output_bfd) [bfd_get_symcount (output_bfd)] = sym;
1946 if (sym != NULL)
1947 ++ bfd_get_symcount (output_bfd);
1948
1949 return TRUE;
1950 }
1951
1952 /* Handle the symbols for an input BFD. */
1953
1954 bfd_boolean
1955 _bfd_generic_link_output_symbols (bfd *output_bfd,
1956 bfd *input_bfd,
1957 struct bfd_link_info *info,
1958 size_t *psymalloc)
1959 {
1960 asymbol **sym_ptr;
1961 asymbol **sym_end;
1962
1963 if (!bfd_generic_link_read_symbols (input_bfd))
1964 return FALSE;
1965
1966 /* Create a filename symbol if we are supposed to. */
1967 if (info->create_object_symbols_section != NULL)
1968 {
1969 asection *sec;
1970
1971 for (sec = input_bfd->sections; sec != NULL; sec = sec->next)
1972 {
1973 if (sec->output_section == info->create_object_symbols_section)
1974 {
1975 asymbol *newsym;
1976
1977 newsym = bfd_make_empty_symbol (input_bfd);
1978 if (!newsym)
1979 return FALSE;
1980 newsym->name = input_bfd->filename;
1981 newsym->value = 0;
1982 newsym->flags = BSF_LOCAL | BSF_FILE;
1983 newsym->section = sec;
1984
1985 if (! generic_add_output_symbol (output_bfd, psymalloc,
1986 newsym))
1987 return FALSE;
1988
1989 break;
1990 }
1991 }
1992 }
1993
1994 /* Adjust the values of the globally visible symbols, and write out
1995 local symbols. */
1996 sym_ptr = _bfd_generic_link_get_symbols (input_bfd);
1997 sym_end = sym_ptr + _bfd_generic_link_get_symcount (input_bfd);
1998 for (; sym_ptr < sym_end; sym_ptr++)
1999 {
2000 asymbol *sym;
2001 struct generic_link_hash_entry *h;
2002 bfd_boolean output;
2003
2004 h = NULL;
2005 sym = *sym_ptr;
2006 if ((sym->flags & (BSF_INDIRECT
2007 | BSF_WARNING
2008 | BSF_GLOBAL
2009 | BSF_CONSTRUCTOR
2010 | BSF_WEAK)) != 0
2011 || bfd_is_und_section (bfd_get_section (sym))
2012 || bfd_is_com_section (bfd_get_section (sym))
2013 || bfd_is_ind_section (bfd_get_section (sym)))
2014 {
2015 if (sym->udata.p != NULL)
2016 h = (struct generic_link_hash_entry *) sym->udata.p;
2017 else if ((sym->flags & BSF_CONSTRUCTOR) != 0)
2018 {
2019 /* This case normally means that the main linker code
2020 deliberately ignored this constructor symbol. We
2021 should just pass it through. This will screw up if
2022 the constructor symbol is from a different,
2023 non-generic, object file format, but the case will
2024 only arise when linking with -r, which will probably
2025 fail anyhow, since there will be no way to represent
2026 the relocs in the output format being used. */
2027 h = NULL;
2028 }
2029 else if (bfd_is_und_section (bfd_get_section (sym)))
2030 h = ((struct generic_link_hash_entry *)
2031 bfd_wrapped_link_hash_lookup (output_bfd, info,
2032 bfd_asymbol_name (sym),
2033 FALSE, FALSE, TRUE));
2034 else
2035 h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info),
2036 bfd_asymbol_name (sym),
2037 FALSE, FALSE, TRUE);
2038
2039 if (h != NULL)
2040 {
2041 /* Force all references to this symbol to point to
2042 the same area in memory. It is possible that
2043 this routine will be called with a hash table
2044 other than a generic hash table, so we double
2045 check that. */
2046 if (info->output_bfd->xvec == input_bfd->xvec)
2047 {
2048 if (h->sym != NULL)
2049 *sym_ptr = sym = h->sym;
2050 }
2051
2052 switch (h->root.type)
2053 {
2054 default:
2055 case bfd_link_hash_new:
2056 abort ();
2057 case bfd_link_hash_undefined:
2058 break;
2059 case bfd_link_hash_undefweak:
2060 sym->flags |= BSF_WEAK;
2061 break;
2062 case bfd_link_hash_indirect:
2063 h = (struct generic_link_hash_entry *) h->root.u.i.link;
2064 /* fall through */
2065 case bfd_link_hash_defined:
2066 sym->flags |= BSF_GLOBAL;
2067 sym->flags &=~ (BSF_WEAK | BSF_CONSTRUCTOR);
2068 sym->value = h->root.u.def.value;
2069 sym->section = h->root.u.def.section;
2070 break;
2071 case bfd_link_hash_defweak:
2072 sym->flags |= BSF_WEAK;
2073 sym->flags &=~ BSF_CONSTRUCTOR;
2074 sym->value = h->root.u.def.value;
2075 sym->section = h->root.u.def.section;
2076 break;
2077 case bfd_link_hash_common:
2078 sym->value = h->root.u.c.size;
2079 sym->flags |= BSF_GLOBAL;
2080 if (! bfd_is_com_section (sym->section))
2081 {
2082 BFD_ASSERT (bfd_is_und_section (sym->section));
2083 sym->section = bfd_com_section_ptr;
2084 }
2085 /* We do not set the section of the symbol to
2086 h->root.u.c.p->section. That value was saved so
2087 that we would know where to allocate the symbol
2088 if it was defined. In this case the type is
2089 still bfd_link_hash_common, so we did not define
2090 it, so we do not want to use that section. */
2091 break;
2092 }
2093 }
2094 }
2095
2096 /* This switch is straight from the old code in
2097 write_file_locals in ldsym.c. */
2098 if (info->strip == strip_all
2099 || (info->strip == strip_some
2100 && bfd_hash_lookup (info->keep_hash, bfd_asymbol_name (sym),
2101 FALSE, FALSE) == NULL))
2102 output = FALSE;
2103 else if ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0)
2104 {
2105 /* If this symbol is marked as occurring now, rather
2106 than at the end, output it now. This is used for
2107 COFF C_EXT FCN symbols. FIXME: There must be a
2108 better way. */
2109 if (bfd_asymbol_bfd (sym) == input_bfd
2110 && (sym->flags & BSF_NOT_AT_END) != 0)
2111 output = TRUE;
2112 else
2113 output = FALSE;
2114 }
2115 else if (bfd_is_ind_section (sym->section))
2116 output = FALSE;
2117 else if ((sym->flags & BSF_DEBUGGING) != 0)
2118 {
2119 if (info->strip == strip_none)
2120 output = TRUE;
2121 else
2122 output = FALSE;
2123 }
2124 else if (bfd_is_und_section (sym->section)
2125 || bfd_is_com_section (sym->section))
2126 output = FALSE;
2127 else if ((sym->flags & BSF_LOCAL) != 0)
2128 {
2129 if ((sym->flags & BSF_WARNING) != 0)
2130 output = FALSE;
2131 else
2132 {
2133 switch (info->discard)
2134 {
2135 default:
2136 case discard_all:
2137 output = FALSE;
2138 break;
2139 case discard_sec_merge:
2140 output = TRUE;
2141 if (bfd_link_relocatable (info)
2142 || ! (sym->section->flags & SEC_MERGE))
2143 break;
2144 /* FALLTHROUGH */
2145 case discard_l:
2146 if (bfd_is_local_label (input_bfd, sym))
2147 output = FALSE;
2148 else
2149 output = TRUE;
2150 break;
2151 case discard_none:
2152 output = TRUE;
2153 break;
2154 }
2155 }
2156 }
2157 else if ((sym->flags & BSF_CONSTRUCTOR))
2158 {
2159 if (info->strip != strip_all)
2160 output = TRUE;
2161 else
2162 output = FALSE;
2163 }
2164 else if (sym->flags == 0
2165 && (sym->section->owner->flags & BFD_PLUGIN) != 0)
2166 /* LTO doesn't set symbol information. We get here with the
2167 generic linker for a symbol that was "common" but no longer
2168 needs to be global. */
2169 output = FALSE;
2170 else
2171 abort ();
2172
2173 /* If this symbol is in a section which is not being included
2174 in the output file, then we don't want to output the
2175 symbol. */
2176 if (!bfd_is_abs_section (sym->section)
2177 && bfd_section_removed_from_list (output_bfd,
2178 sym->section->output_section))
2179 output = FALSE;
2180
2181 if (output)
2182 {
2183 if (! generic_add_output_symbol (output_bfd, psymalloc, sym))
2184 return FALSE;
2185 if (h != NULL)
2186 h->written = TRUE;
2187 }
2188 }
2189
2190 return TRUE;
2191 }
2192
2193 /* Set the section and value of a generic BFD symbol based on a linker
2194 hash table entry. */
2195
2196 static void
2197 set_symbol_from_hash (asymbol *sym, struct bfd_link_hash_entry *h)
2198 {
2199 switch (h->type)
2200 {
2201 default:
2202 abort ();
2203 break;
2204 case bfd_link_hash_new:
2205 /* This can happen when a constructor symbol is seen but we are
2206 not building constructors. */
2207 if (sym->section != NULL)
2208 {
2209 BFD_ASSERT ((sym->flags & BSF_CONSTRUCTOR) != 0);
2210 }
2211 else
2212 {
2213 sym->flags |= BSF_CONSTRUCTOR;
2214 sym->section = bfd_abs_section_ptr;
2215 sym->value = 0;
2216 }
2217 break;
2218 case bfd_link_hash_undefined:
2219 sym->section = bfd_und_section_ptr;
2220 sym->value = 0;
2221 break;
2222 case bfd_link_hash_undefweak:
2223 sym->section = bfd_und_section_ptr;
2224 sym->value = 0;
2225 sym->flags |= BSF_WEAK;
2226 break;
2227 case bfd_link_hash_defined:
2228 sym->section = h->u.def.section;
2229 sym->value = h->u.def.value;
2230 break;
2231 case bfd_link_hash_defweak:
2232 sym->flags |= BSF_WEAK;
2233 sym->section = h->u.def.section;
2234 sym->value = h->u.def.value;
2235 break;
2236 case bfd_link_hash_common:
2237 sym->value = h->u.c.size;
2238 if (sym->section == NULL)
2239 sym->section = bfd_com_section_ptr;
2240 else if (! bfd_is_com_section (sym->section))
2241 {
2242 BFD_ASSERT (bfd_is_und_section (sym->section));
2243 sym->section = bfd_com_section_ptr;
2244 }
2245 /* Do not set the section; see _bfd_generic_link_output_symbols. */
2246 break;
2247 case bfd_link_hash_indirect:
2248 case bfd_link_hash_warning:
2249 /* FIXME: What should we do here? */
2250 break;
2251 }
2252 }
2253
2254 /* Write out a global symbol, if it hasn't already been written out.
2255 This is called for each symbol in the hash table. */
2256
2257 bfd_boolean
2258 _bfd_generic_link_write_global_symbol (struct generic_link_hash_entry *h,
2259 void *data)
2260 {
2261 struct generic_write_global_symbol_info *wginfo =
2262 (struct generic_write_global_symbol_info *) data;
2263 asymbol *sym;
2264
2265 if (h->written)
2266 return TRUE;
2267
2268 h->written = TRUE;
2269
2270 if (wginfo->info->strip == strip_all
2271 || (wginfo->info->strip == strip_some
2272 && bfd_hash_lookup (wginfo->info->keep_hash, h->root.root.string,
2273 FALSE, FALSE) == NULL))
2274 return TRUE;
2275
2276 if (h->sym != NULL)
2277 sym = h->sym;
2278 else
2279 {
2280 sym = bfd_make_empty_symbol (wginfo->output_bfd);
2281 if (!sym)
2282 return FALSE;
2283 sym->name = h->root.root.string;
2284 sym->flags = 0;
2285 }
2286
2287 set_symbol_from_hash (sym, &h->root);
2288
2289 sym->flags |= BSF_GLOBAL;
2290
2291 if (! generic_add_output_symbol (wginfo->output_bfd, wginfo->psymalloc,
2292 sym))
2293 {
2294 /* FIXME: No way to return failure. */
2295 abort ();
2296 }
2297
2298 return TRUE;
2299 }
2300
2301 /* Create a relocation. */
2302
2303 bfd_boolean
2304 _bfd_generic_reloc_link_order (bfd *abfd,
2305 struct bfd_link_info *info,
2306 asection *sec,
2307 struct bfd_link_order *link_order)
2308 {
2309 arelent *r;
2310
2311 if (! bfd_link_relocatable (info))
2312 abort ();
2313 if (sec->orelocation == NULL)
2314 abort ();
2315
2316 r = (arelent *) bfd_alloc (abfd, sizeof (arelent));
2317 if (r == NULL)
2318 return FALSE;
2319
2320 r->address = link_order->offset;
2321 r->howto = bfd_reloc_type_lookup (abfd, link_order->u.reloc.p->reloc);
2322 if (r->howto == 0)
2323 {
2324 bfd_set_error (bfd_error_bad_value);
2325 return FALSE;
2326 }
2327
2328 /* Get the symbol to use for the relocation. */
2329 if (link_order->type == bfd_section_reloc_link_order)
2330 r->sym_ptr_ptr = link_order->u.reloc.p->u.section->symbol_ptr_ptr;
2331 else
2332 {
2333 struct generic_link_hash_entry *h;
2334
2335 h = ((struct generic_link_hash_entry *)
2336 bfd_wrapped_link_hash_lookup (abfd, info,
2337 link_order->u.reloc.p->u.name,
2338 FALSE, FALSE, TRUE));
2339 if (h == NULL
2340 || ! h->written)
2341 {
2342 (*info->callbacks->unattached_reloc)
2343 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
2344 bfd_set_error (bfd_error_bad_value);
2345 return FALSE;
2346 }
2347 r->sym_ptr_ptr = &h->sym;
2348 }
2349
2350 /* If this is an inplace reloc, write the addend to the object file.
2351 Otherwise, store it in the reloc addend. */
2352 if (! r->howto->partial_inplace)
2353 r->addend = link_order->u.reloc.p->addend;
2354 else
2355 {
2356 bfd_size_type size;
2357 bfd_reloc_status_type rstat;
2358 bfd_byte *buf;
2359 bfd_boolean ok;
2360 file_ptr loc;
2361
2362 size = bfd_get_reloc_size (r->howto);
2363 buf = (bfd_byte *) bfd_zmalloc (size);
2364 if (buf == NULL && size != 0)
2365 return FALSE;
2366 rstat = _bfd_relocate_contents (r->howto, abfd,
2367 (bfd_vma) link_order->u.reloc.p->addend,
2368 buf);
2369 switch (rstat)
2370 {
2371 case bfd_reloc_ok:
2372 break;
2373 default:
2374 case bfd_reloc_outofrange:
2375 abort ();
2376 case bfd_reloc_overflow:
2377 (*info->callbacks->reloc_overflow)
2378 (info, NULL,
2379 (link_order->type == bfd_section_reloc_link_order
2380 ? bfd_section_name (abfd, link_order->u.reloc.p->u.section)
2381 : link_order->u.reloc.p->u.name),
2382 r->howto->name, link_order->u.reloc.p->addend,
2383 NULL, NULL, 0);
2384 break;
2385 }
2386 loc = link_order->offset * bfd_octets_per_byte (abfd);
2387 ok = bfd_set_section_contents (abfd, sec, buf, loc, size);
2388 free (buf);
2389 if (! ok)
2390 return FALSE;
2391
2392 r->addend = 0;
2393 }
2394
2395 sec->orelocation[sec->reloc_count] = r;
2396 ++sec->reloc_count;
2397
2398 return TRUE;
2399 }
2400 \f
2401 /* Allocate a new link_order for a section. */
2402
2403 struct bfd_link_order *
2404 bfd_new_link_order (bfd *abfd, asection *section)
2405 {
2406 bfd_size_type amt = sizeof (struct bfd_link_order);
2407 struct bfd_link_order *new_lo;
2408
2409 new_lo = (struct bfd_link_order *) bfd_zalloc (abfd, amt);
2410 if (!new_lo)
2411 return NULL;
2412
2413 new_lo->type = bfd_undefined_link_order;
2414
2415 if (section->map_tail.link_order != NULL)
2416 section->map_tail.link_order->next = new_lo;
2417 else
2418 section->map_head.link_order = new_lo;
2419 section->map_tail.link_order = new_lo;
2420
2421 return new_lo;
2422 }
2423
2424 /* Default link order processing routine. Note that we can not handle
2425 the reloc_link_order types here, since they depend upon the details
2426 of how the particular backends generates relocs. */
2427
2428 bfd_boolean
2429 _bfd_default_link_order (bfd *abfd,
2430 struct bfd_link_info *info,
2431 asection *sec,
2432 struct bfd_link_order *link_order)
2433 {
2434 switch (link_order->type)
2435 {
2436 case bfd_undefined_link_order:
2437 case bfd_section_reloc_link_order:
2438 case bfd_symbol_reloc_link_order:
2439 default:
2440 abort ();
2441 case bfd_indirect_link_order:
2442 return default_indirect_link_order (abfd, info, sec, link_order,
2443 FALSE);
2444 case bfd_data_link_order:
2445 return default_data_link_order (abfd, info, sec, link_order);
2446 }
2447 }
2448
2449 /* Default routine to handle a bfd_data_link_order. */
2450
2451 static bfd_boolean
2452 default_data_link_order (bfd *abfd,
2453 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2454 asection *sec,
2455 struct bfd_link_order *link_order)
2456 {
2457 bfd_size_type size;
2458 size_t fill_size;
2459 bfd_byte *fill;
2460 file_ptr loc;
2461 bfd_boolean result;
2462
2463 BFD_ASSERT ((sec->flags & SEC_HAS_CONTENTS) != 0);
2464
2465 size = link_order->size;
2466 if (size == 0)
2467 return TRUE;
2468
2469 fill = link_order->u.data.contents;
2470 fill_size = link_order->u.data.size;
2471 if (fill_size == 0)
2472 {
2473 fill = abfd->arch_info->fill (size, bfd_big_endian (abfd),
2474 (sec->flags & SEC_CODE) != 0);
2475 if (fill == NULL)
2476 return FALSE;
2477 }
2478 else if (fill_size < size)
2479 {
2480 bfd_byte *p;
2481 fill = (bfd_byte *) bfd_malloc (size);
2482 if (fill == NULL)
2483 return FALSE;
2484 p = fill;
2485 if (fill_size == 1)
2486 memset (p, (int) link_order->u.data.contents[0], (size_t) size);
2487 else
2488 {
2489 do
2490 {
2491 memcpy (p, link_order->u.data.contents, fill_size);
2492 p += fill_size;
2493 size -= fill_size;
2494 }
2495 while (size >= fill_size);
2496 if (size != 0)
2497 memcpy (p, link_order->u.data.contents, (size_t) size);
2498 size = link_order->size;
2499 }
2500 }
2501
2502 loc = link_order->offset * bfd_octets_per_byte (abfd);
2503 result = bfd_set_section_contents (abfd, sec, fill, loc, size);
2504
2505 if (fill != link_order->u.data.contents)
2506 free (fill);
2507 return result;
2508 }
2509
2510 /* Default routine to handle a bfd_indirect_link_order. */
2511
2512 static bfd_boolean
2513 default_indirect_link_order (bfd *output_bfd,
2514 struct bfd_link_info *info,
2515 asection *output_section,
2516 struct bfd_link_order *link_order,
2517 bfd_boolean generic_linker)
2518 {
2519 asection *input_section;
2520 bfd *input_bfd;
2521 bfd_byte *contents = NULL;
2522 bfd_byte *new_contents;
2523 bfd_size_type sec_size;
2524 file_ptr loc;
2525
2526 BFD_ASSERT ((output_section->flags & SEC_HAS_CONTENTS) != 0);
2527
2528 input_section = link_order->u.indirect.section;
2529 input_bfd = input_section->owner;
2530 if (input_section->size == 0)
2531 return TRUE;
2532
2533 BFD_ASSERT (input_section->output_section == output_section);
2534 BFD_ASSERT (input_section->output_offset == link_order->offset);
2535 BFD_ASSERT (input_section->size == link_order->size);
2536
2537 if (bfd_link_relocatable (info)
2538 && input_section->reloc_count > 0
2539 && output_section->orelocation == NULL)
2540 {
2541 /* Space has not been allocated for the output relocations.
2542 This can happen when we are called by a specific backend
2543 because somebody is attempting to link together different
2544 types of object files. Handling this case correctly is
2545 difficult, and sometimes impossible. */
2546 _bfd_error_handler
2547 /* xgettext:c-format */
2548 (_("Attempt to do relocatable link with %s input and %s output"),
2549 bfd_get_target (input_bfd), bfd_get_target (output_bfd));
2550 bfd_set_error (bfd_error_wrong_format);
2551 return FALSE;
2552 }
2553
2554 if (! generic_linker)
2555 {
2556 asymbol **sympp;
2557 asymbol **symppend;
2558
2559 /* Get the canonical symbols. The generic linker will always
2560 have retrieved them by this point, but we are being called by
2561 a specific linker, presumably because we are linking
2562 different types of object files together. */
2563 if (!bfd_generic_link_read_symbols (input_bfd))
2564 return FALSE;
2565
2566 /* Since we have been called by a specific linker, rather than
2567 the generic linker, the values of the symbols will not be
2568 right. They will be the values as seen in the input file,
2569 not the values of the final link. We need to fix them up
2570 before we can relocate the section. */
2571 sympp = _bfd_generic_link_get_symbols (input_bfd);
2572 symppend = sympp + _bfd_generic_link_get_symcount (input_bfd);
2573 for (; sympp < symppend; sympp++)
2574 {
2575 asymbol *sym;
2576 struct bfd_link_hash_entry *h;
2577
2578 sym = *sympp;
2579
2580 if ((sym->flags & (BSF_INDIRECT
2581 | BSF_WARNING
2582 | BSF_GLOBAL
2583 | BSF_CONSTRUCTOR
2584 | BSF_WEAK)) != 0
2585 || bfd_is_und_section (bfd_get_section (sym))
2586 || bfd_is_com_section (bfd_get_section (sym))
2587 || bfd_is_ind_section (bfd_get_section (sym)))
2588 {
2589 /* sym->udata may have been set by
2590 generic_link_add_symbol_list. */
2591 if (sym->udata.p != NULL)
2592 h = (struct bfd_link_hash_entry *) sym->udata.p;
2593 else if (bfd_is_und_section (bfd_get_section (sym)))
2594 h = bfd_wrapped_link_hash_lookup (output_bfd, info,
2595 bfd_asymbol_name (sym),
2596 FALSE, FALSE, TRUE);
2597 else
2598 h = bfd_link_hash_lookup (info->hash,
2599 bfd_asymbol_name (sym),
2600 FALSE, FALSE, TRUE);
2601 if (h != NULL)
2602 set_symbol_from_hash (sym, h);
2603 }
2604 }
2605 }
2606
2607 if ((output_section->flags & (SEC_GROUP | SEC_LINKER_CREATED)) == SEC_GROUP
2608 && input_section->size != 0)
2609 {
2610 /* Group section contents are set by bfd_elf_set_group_contents. */
2611 if (!output_bfd->output_has_begun)
2612 {
2613 /* FIXME: This hack ensures bfd_elf_set_group_contents is called. */
2614 if (!bfd_set_section_contents (output_bfd, output_section, "", 0, 1))
2615 goto error_return;
2616 }
2617 new_contents = output_section->contents;
2618 BFD_ASSERT (new_contents != NULL);
2619 BFD_ASSERT (input_section->output_offset == 0);
2620 }
2621 else
2622 {
2623 /* Get and relocate the section contents. */
2624 sec_size = (input_section->rawsize > input_section->size
2625 ? input_section->rawsize
2626 : input_section->size);
2627 contents = (bfd_byte *) bfd_malloc (sec_size);
2628 if (contents == NULL && sec_size != 0)
2629 goto error_return;
2630 new_contents = (bfd_get_relocated_section_contents
2631 (output_bfd, info, link_order, contents,
2632 bfd_link_relocatable (info),
2633 _bfd_generic_link_get_symbols (input_bfd)));
2634 if (!new_contents)
2635 goto error_return;
2636 }
2637
2638 /* Output the section contents. */
2639 loc = input_section->output_offset * bfd_octets_per_byte (output_bfd);
2640 if (! bfd_set_section_contents (output_bfd, output_section,
2641 new_contents, loc, input_section->size))
2642 goto error_return;
2643
2644 if (contents != NULL)
2645 free (contents);
2646 return TRUE;
2647
2648 error_return:
2649 if (contents != NULL)
2650 free (contents);
2651 return FALSE;
2652 }
2653
2654 /* A little routine to count the number of relocs in a link_order
2655 list. */
2656
2657 unsigned int
2658 _bfd_count_link_order_relocs (struct bfd_link_order *link_order)
2659 {
2660 register unsigned int c;
2661 register struct bfd_link_order *l;
2662
2663 c = 0;
2664 for (l = link_order; l != NULL; l = l->next)
2665 {
2666 if (l->type == bfd_section_reloc_link_order
2667 || l->type == bfd_symbol_reloc_link_order)
2668 ++c;
2669 }
2670
2671 return c;
2672 }
2673
2674 /*
2675 FUNCTION
2676 bfd_link_split_section
2677
2678 SYNOPSIS
2679 bfd_boolean bfd_link_split_section (bfd *abfd, asection *sec);
2680
2681 DESCRIPTION
2682 Return nonzero if @var{sec} should be split during a
2683 reloceatable or final link.
2684
2685 .#define bfd_link_split_section(abfd, sec) \
2686 . BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
2687 .
2688
2689 */
2690
2691 bfd_boolean
2692 _bfd_generic_link_split_section (bfd *abfd ATTRIBUTE_UNUSED,
2693 asection *sec ATTRIBUTE_UNUSED)
2694 {
2695 return FALSE;
2696 }
2697
2698 /*
2699 FUNCTION
2700 bfd_section_already_linked
2701
2702 SYNOPSIS
2703 bfd_boolean bfd_section_already_linked (bfd *abfd,
2704 asection *sec,
2705 struct bfd_link_info *info);
2706
2707 DESCRIPTION
2708 Check if @var{data} has been already linked during a reloceatable
2709 or final link. Return TRUE if it has.
2710
2711 .#define bfd_section_already_linked(abfd, sec, info) \
2712 . BFD_SEND (abfd, _section_already_linked, (abfd, sec, info))
2713 .
2714
2715 */
2716
2717 /* Sections marked with the SEC_LINK_ONCE flag should only be linked
2718 once into the output. This routine checks each section, and
2719 arrange to discard it if a section of the same name has already
2720 been linked. This code assumes that all relevant sections have the
2721 SEC_LINK_ONCE flag set; that is, it does not depend solely upon the
2722 section name. bfd_section_already_linked is called via
2723 bfd_map_over_sections. */
2724
2725 /* The hash table. */
2726
2727 static struct bfd_hash_table _bfd_section_already_linked_table;
2728
2729 /* Support routines for the hash table used by section_already_linked,
2730 initialize the table, traverse, lookup, fill in an entry and remove
2731 the table. */
2732
2733 void
2734 bfd_section_already_linked_table_traverse
2735 (bfd_boolean (*func) (struct bfd_section_already_linked_hash_entry *,
2736 void *), void *info)
2737 {
2738 bfd_hash_traverse (&_bfd_section_already_linked_table,
2739 (bfd_boolean (*) (struct bfd_hash_entry *,
2740 void *)) func,
2741 info);
2742 }
2743
2744 struct bfd_section_already_linked_hash_entry *
2745 bfd_section_already_linked_table_lookup (const char *name)
2746 {
2747 return ((struct bfd_section_already_linked_hash_entry *)
2748 bfd_hash_lookup (&_bfd_section_already_linked_table, name,
2749 TRUE, FALSE));
2750 }
2751
2752 bfd_boolean
2753 bfd_section_already_linked_table_insert
2754 (struct bfd_section_already_linked_hash_entry *already_linked_list,
2755 asection *sec)
2756 {
2757 struct bfd_section_already_linked *l;
2758
2759 /* Allocate the memory from the same obstack as the hash table is
2760 kept in. */
2761 l = (struct bfd_section_already_linked *)
2762 bfd_hash_allocate (&_bfd_section_already_linked_table, sizeof *l);
2763 if (l == NULL)
2764 return FALSE;
2765 l->sec = sec;
2766 l->next = already_linked_list->entry;
2767 already_linked_list->entry = l;
2768 return TRUE;
2769 }
2770
2771 static struct bfd_hash_entry *
2772 already_linked_newfunc (struct bfd_hash_entry *entry ATTRIBUTE_UNUSED,
2773 struct bfd_hash_table *table,
2774 const char *string ATTRIBUTE_UNUSED)
2775 {
2776 struct bfd_section_already_linked_hash_entry *ret =
2777 (struct bfd_section_already_linked_hash_entry *)
2778 bfd_hash_allocate (table, sizeof *ret);
2779
2780 if (ret == NULL)
2781 return NULL;
2782
2783 ret->entry = NULL;
2784
2785 return &ret->root;
2786 }
2787
2788 bfd_boolean
2789 bfd_section_already_linked_table_init (void)
2790 {
2791 return bfd_hash_table_init_n (&_bfd_section_already_linked_table,
2792 already_linked_newfunc,
2793 sizeof (struct bfd_section_already_linked_hash_entry),
2794 42);
2795 }
2796
2797 void
2798 bfd_section_already_linked_table_free (void)
2799 {
2800 bfd_hash_table_free (&_bfd_section_already_linked_table);
2801 }
2802
2803 /* Report warnings as appropriate for duplicate section SEC.
2804 Return FALSE if we decide to keep SEC after all. */
2805
2806 bfd_boolean
2807 _bfd_handle_already_linked (asection *sec,
2808 struct bfd_section_already_linked *l,
2809 struct bfd_link_info *info)
2810 {
2811 switch (sec->flags & SEC_LINK_DUPLICATES)
2812 {
2813 default:
2814 abort ();
2815
2816 case SEC_LINK_DUPLICATES_DISCARD:
2817 /* If we found an LTO IR match for this comdat group on
2818 the first pass, replace it with the LTO output on the
2819 second pass. We can't simply choose real object
2820 files over IR because the first pass may contain a
2821 mix of LTO and normal objects and we must keep the
2822 first match, be it IR or real. */
2823 if (sec->owner->lto_output
2824 && (l->sec->owner->flags & BFD_PLUGIN) != 0)
2825 {
2826 l->sec = sec;
2827 return FALSE;
2828 }
2829 break;
2830
2831 case SEC_LINK_DUPLICATES_ONE_ONLY:
2832 info->callbacks->einfo
2833 /* xgettext:c-format */
2834 (_("%B: ignoring duplicate section `%A'\n"),
2835 sec->owner, sec);
2836 break;
2837
2838 case SEC_LINK_DUPLICATES_SAME_SIZE:
2839 if ((l->sec->owner->flags & BFD_PLUGIN) != 0)
2840 ;
2841 else if (sec->size != l->sec->size)
2842 info->callbacks->einfo
2843 /* xgettext:c-format */
2844 (_("%B: duplicate section `%A' has different size\n"),
2845 sec->owner, sec);
2846 break;
2847
2848 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
2849 if ((l->sec->owner->flags & BFD_PLUGIN) != 0)
2850 ;
2851 else if (sec->size != l->sec->size)
2852 info->callbacks->einfo
2853 /* xgettext:c-format */
2854 (_("%B: duplicate section `%A' has different size\n"),
2855 sec->owner, sec);
2856 else if (sec->size != 0)
2857 {
2858 bfd_byte *sec_contents, *l_sec_contents = NULL;
2859
2860 if (!bfd_malloc_and_get_section (sec->owner, sec, &sec_contents))
2861 info->callbacks->einfo
2862 /* xgettext:c-format */
2863 (_("%B: could not read contents of section `%A'\n"),
2864 sec->owner, sec);
2865 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
2866 &l_sec_contents))
2867 info->callbacks->einfo
2868 /* xgettext:c-format */
2869 (_("%B: could not read contents of section `%A'\n"),
2870 l->sec->owner, l->sec);
2871 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
2872 info->callbacks->einfo
2873 /* xgettext:c-format */
2874 (_("%B: duplicate section `%A' has different contents\n"),
2875 sec->owner, sec);
2876
2877 if (sec_contents)
2878 free (sec_contents);
2879 if (l_sec_contents)
2880 free (l_sec_contents);
2881 }
2882 break;
2883 }
2884
2885 /* Set the output_section field so that lang_add_section
2886 does not create a lang_input_section structure for this
2887 section. Since there might be a symbol in the section
2888 being discarded, we must retain a pointer to the section
2889 which we are really going to use. */
2890 sec->output_section = bfd_abs_section_ptr;
2891 sec->kept_section = l->sec;
2892 return TRUE;
2893 }
2894
2895 /* This is used on non-ELF inputs. */
2896
2897 bfd_boolean
2898 _bfd_generic_section_already_linked (bfd *abfd ATTRIBUTE_UNUSED,
2899 asection *sec,
2900 struct bfd_link_info *info)
2901 {
2902 const char *name;
2903 struct bfd_section_already_linked *l;
2904 struct bfd_section_already_linked_hash_entry *already_linked_list;
2905
2906 if ((sec->flags & SEC_LINK_ONCE) == 0)
2907 return FALSE;
2908
2909 /* The generic linker doesn't handle section groups. */
2910 if ((sec->flags & SEC_GROUP) != 0)
2911 return FALSE;
2912
2913 /* FIXME: When doing a relocatable link, we may have trouble
2914 copying relocations in other sections that refer to local symbols
2915 in the section being discarded. Those relocations will have to
2916 be converted somehow; as of this writing I'm not sure that any of
2917 the backends handle that correctly.
2918
2919 It is tempting to instead not discard link once sections when
2920 doing a relocatable link (technically, they should be discarded
2921 whenever we are building constructors). However, that fails,
2922 because the linker winds up combining all the link once sections
2923 into a single large link once section, which defeats the purpose
2924 of having link once sections in the first place. */
2925
2926 name = bfd_get_section_name (abfd, sec);
2927
2928 already_linked_list = bfd_section_already_linked_table_lookup (name);
2929
2930 l = already_linked_list->entry;
2931 if (l != NULL)
2932 {
2933 /* The section has already been linked. See if we should
2934 issue a warning. */
2935 return _bfd_handle_already_linked (sec, l, info);
2936 }
2937
2938 /* This is the first section with this name. Record it. */
2939 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
2940 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
2941 return FALSE;
2942 }
2943
2944 /* Choose a neighbouring section to S in OBFD that will be output, or
2945 the absolute section if ADDR is out of bounds of the neighbours. */
2946
2947 asection *
2948 _bfd_nearby_section (bfd *obfd, asection *s, bfd_vma addr)
2949 {
2950 asection *next, *prev, *best;
2951
2952 /* Find preceding kept section. */
2953 for (prev = s->prev; prev != NULL; prev = prev->prev)
2954 if ((prev->flags & SEC_EXCLUDE) == 0
2955 && !bfd_section_removed_from_list (obfd, prev))
2956 break;
2957
2958 /* Find following kept section. Start at prev->next because
2959 other sections may have been added after S was removed. */
2960 if (s->prev != NULL)
2961 next = s->prev->next;
2962 else
2963 next = s->owner->sections;
2964 for (; next != NULL; next = next->next)
2965 if ((next->flags & SEC_EXCLUDE) == 0
2966 && !bfd_section_removed_from_list (obfd, next))
2967 break;
2968
2969 /* Choose better of two sections, based on flags. The idea
2970 is to choose a section that will be in the same segment
2971 as S would have been if it was kept. */
2972 best = next;
2973 if (prev == NULL)
2974 {
2975 if (next == NULL)
2976 best = bfd_abs_section_ptr;
2977 }
2978 else if (next == NULL)
2979 best = prev;
2980 else if (((prev->flags ^ next->flags)
2981 & (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_LOAD)) != 0)
2982 {
2983 if (((next->flags ^ s->flags)
2984 & (SEC_ALLOC | SEC_THREAD_LOCAL)) != 0
2985 /* We prefer to choose a loaded section. Section S
2986 doesn't have SEC_LOAD set (it being excluded, that
2987 part of the flag processing didn't happen) so we
2988 can't compare that flag to those of NEXT and PREV. */
2989 || ((prev->flags & SEC_LOAD) != 0
2990 && (next->flags & SEC_LOAD) == 0))
2991 best = prev;
2992 }
2993 else if (((prev->flags ^ next->flags) & SEC_READONLY) != 0)
2994 {
2995 if (((next->flags ^ s->flags) & SEC_READONLY) != 0)
2996 best = prev;
2997 }
2998 else if (((prev->flags ^ next->flags) & SEC_CODE) != 0)
2999 {
3000 if (((next->flags ^ s->flags) & SEC_CODE) != 0)
3001 best = prev;
3002 }
3003 else
3004 {
3005 /* Flags we care about are the same. Prefer the following
3006 section if that will result in a positive valued sym. */
3007 if (addr < next->vma)
3008 best = prev;
3009 }
3010
3011 return best;
3012 }
3013
3014 /* Convert symbols in excluded output sections to use a kept section. */
3015
3016 static bfd_boolean
3017 fix_syms (struct bfd_link_hash_entry *h, void *data)
3018 {
3019 bfd *obfd = (bfd *) data;
3020
3021 if (h->type == bfd_link_hash_defined
3022 || h->type == bfd_link_hash_defweak)
3023 {
3024 asection *s = h->u.def.section;
3025 if (s != NULL
3026 && s->output_section != NULL
3027 && (s->output_section->flags & SEC_EXCLUDE) != 0
3028 && bfd_section_removed_from_list (obfd, s->output_section))
3029 {
3030 asection *op;
3031
3032 h->u.def.value += s->output_offset + s->output_section->vma;
3033 op = _bfd_nearby_section (obfd, s->output_section, h->u.def.value);
3034 h->u.def.value -= op->vma;
3035 h->u.def.section = op;
3036 }
3037 }
3038
3039 return TRUE;
3040 }
3041
3042 void
3043 _bfd_fix_excluded_sec_syms (bfd *obfd, struct bfd_link_info *info)
3044 {
3045 bfd_link_hash_traverse (info->hash, fix_syms, obfd);
3046 }
3047
3048 /*
3049 FUNCTION
3050 bfd_generic_define_common_symbol
3051
3052 SYNOPSIS
3053 bfd_boolean bfd_generic_define_common_symbol
3054 (bfd *output_bfd, struct bfd_link_info *info,
3055 struct bfd_link_hash_entry *h);
3056
3057 DESCRIPTION
3058 Convert common symbol @var{h} into a defined symbol.
3059 Return TRUE on success and FALSE on failure.
3060
3061 .#define bfd_define_common_symbol(output_bfd, info, h) \
3062 . BFD_SEND (output_bfd, _bfd_define_common_symbol, (output_bfd, info, h))
3063 .
3064 */
3065
3066 bfd_boolean
3067 bfd_generic_define_common_symbol (bfd *output_bfd,
3068 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3069 struct bfd_link_hash_entry *h)
3070 {
3071 unsigned int power_of_two;
3072 bfd_vma alignment, size;
3073 asection *section;
3074
3075 BFD_ASSERT (h != NULL && h->type == bfd_link_hash_common);
3076
3077 size = h->u.c.size;
3078 power_of_two = h->u.c.p->alignment_power;
3079 section = h->u.c.p->section;
3080
3081 /* Increase the size of the section to align the common symbol.
3082 The alignment must be a power of two. */
3083 alignment = bfd_octets_per_byte (output_bfd) << power_of_two;
3084 BFD_ASSERT (alignment != 0 && (alignment & -alignment) == alignment);
3085 section->size += alignment - 1;
3086 section->size &= -alignment;
3087
3088 /* Adjust the section's overall alignment if necessary. */
3089 if (power_of_two > section->alignment_power)
3090 section->alignment_power = power_of_two;
3091
3092 /* Change the symbol from common to defined. */
3093 h->type = bfd_link_hash_defined;
3094 h->u.def.section = section;
3095 h->u.def.value = section->size;
3096
3097 /* Increase the size of the section. */
3098 section->size += size;
3099
3100 /* Make sure the section is allocated in memory, and make sure that
3101 it is no longer a common section. */
3102 section->flags |= SEC_ALLOC;
3103 section->flags &= ~SEC_IS_COMMON;
3104 return TRUE;
3105 }
3106
3107 /*
3108 FUNCTION
3109 bfd_generic_define_start_stop
3110
3111 SYNOPSIS
3112 struct bfd_link_hash_entry *bfd_generic_define_start_stop
3113 (struct bfd_link_info *info,
3114 const char *symbol, asection *sec);
3115
3116 DESCRIPTION
3117 Define a __start, __stop, .startof. or .sizeof. symbol.
3118 Return the symbol or NULL if no such undefined symbol exists.
3119
3120 .#define bfd_define_start_stop(output_bfd, info, symbol, sec) \
3121 . BFD_SEND (output_bfd, _bfd_define_start_stop, (info, symbol, sec))
3122 .
3123 */
3124
3125 struct bfd_link_hash_entry *
3126 bfd_generic_define_start_stop (struct bfd_link_info *info,
3127 const char *symbol, asection *sec)
3128 {
3129 struct bfd_link_hash_entry *h;
3130
3131 h = bfd_link_hash_lookup (info->hash, symbol, FALSE, FALSE, TRUE);
3132 if (h != NULL
3133 && (h->type == bfd_link_hash_undefined
3134 || h->type == bfd_link_hash_undefweak))
3135 {
3136 h->type = bfd_link_hash_defined;
3137 h->u.def.section = sec;
3138 h->u.def.value = 0;
3139 return h;
3140 }
3141 return NULL;
3142 }
3143
3144 /*
3145 FUNCTION
3146 bfd_find_version_for_sym
3147
3148 SYNOPSIS
3149 struct bfd_elf_version_tree * bfd_find_version_for_sym
3150 (struct bfd_elf_version_tree *verdefs,
3151 const char *sym_name, bfd_boolean *hide);
3152
3153 DESCRIPTION
3154 Search an elf version script tree for symbol versioning
3155 info and export / don't-export status for a given symbol.
3156 Return non-NULL on success and NULL on failure; also sets
3157 the output @samp{hide} boolean parameter.
3158
3159 */
3160
3161 struct bfd_elf_version_tree *
3162 bfd_find_version_for_sym (struct bfd_elf_version_tree *verdefs,
3163 const char *sym_name,
3164 bfd_boolean *hide)
3165 {
3166 struct bfd_elf_version_tree *t;
3167 struct bfd_elf_version_tree *local_ver, *global_ver, *exist_ver;
3168 struct bfd_elf_version_tree *star_local_ver, *star_global_ver;
3169
3170 local_ver = NULL;
3171 global_ver = NULL;
3172 star_local_ver = NULL;
3173 star_global_ver = NULL;
3174 exist_ver = NULL;
3175 for (t = verdefs; t != NULL; t = t->next)
3176 {
3177 if (t->globals.list != NULL)
3178 {
3179 struct bfd_elf_version_expr *d = NULL;
3180
3181 while ((d = (*t->match) (&t->globals, d, sym_name)) != NULL)
3182 {
3183 if (d->literal || strcmp (d->pattern, "*") != 0)
3184 global_ver = t;
3185 else
3186 star_global_ver = t;
3187 if (d->symver)
3188 exist_ver = t;
3189 d->script = 1;
3190 /* If the match is a wildcard pattern, keep looking for
3191 a more explicit, perhaps even local, match. */
3192 if (d->literal)
3193 break;
3194 }
3195
3196 if (d != NULL)
3197 break;
3198 }
3199
3200 if (t->locals.list != NULL)
3201 {
3202 struct bfd_elf_version_expr *d = NULL;
3203
3204 while ((d = (*t->match) (&t->locals, d, sym_name)) != NULL)
3205 {
3206 if (d->literal || strcmp (d->pattern, "*") != 0)
3207 local_ver = t;
3208 else
3209 star_local_ver = t;
3210 /* If the match is a wildcard pattern, keep looking for
3211 a more explicit, perhaps even global, match. */
3212 if (d->literal)
3213 {
3214 /* An exact match overrides a global wildcard. */
3215 global_ver = NULL;
3216 star_global_ver = NULL;
3217 break;
3218 }
3219 }
3220
3221 if (d != NULL)
3222 break;
3223 }
3224 }
3225
3226 if (global_ver == NULL && local_ver == NULL)
3227 global_ver = star_global_ver;
3228
3229 if (global_ver != NULL)
3230 {
3231 /* If we already have a versioned symbol that matches the
3232 node for this symbol, then we don't want to create a
3233 duplicate from the unversioned symbol. Instead hide the
3234 unversioned symbol. */
3235 *hide = exist_ver == global_ver;
3236 return global_ver;
3237 }
3238
3239 if (local_ver == NULL)
3240 local_ver = star_local_ver;
3241
3242 if (local_ver != NULL)
3243 {
3244 *hide = TRUE;
3245 return local_ver;
3246 }
3247
3248 return NULL;
3249 }
3250
3251 /*
3252 FUNCTION
3253 bfd_hide_sym_by_version
3254
3255 SYNOPSIS
3256 bfd_boolean bfd_hide_sym_by_version
3257 (struct bfd_elf_version_tree *verdefs, const char *sym_name);
3258
3259 DESCRIPTION
3260 Search an elf version script tree for symbol versioning
3261 info for a given symbol. Return TRUE if the symbol is hidden.
3262
3263 */
3264
3265 bfd_boolean
3266 bfd_hide_sym_by_version (struct bfd_elf_version_tree *verdefs,
3267 const char *sym_name)
3268 {
3269 bfd_boolean hidden = FALSE;
3270 bfd_find_version_for_sym (verdefs, sym_name, &hidden);
3271 return hidden;
3272 }
3273
3274 /*
3275 FUNCTION
3276 bfd_link_check_relocs
3277
3278 SYNOPSIS
3279 bfd_boolean bfd_link_check_relocs
3280 (bfd *abfd, struct bfd_link_info *info);
3281
3282 DESCRIPTION
3283 Checks the relocs in ABFD for validity.
3284 Does not execute the relocs.
3285 Return TRUE if everything is OK, FALSE otherwise.
3286 This is the external entry point to this code.
3287 */
3288
3289 bfd_boolean
3290 bfd_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3291 {
3292 return BFD_SEND (abfd, _bfd_link_check_relocs, (abfd, info));
3293 }
3294
3295 /*
3296 FUNCTION
3297 _bfd_generic_link_check_relocs
3298
3299 SYNOPSIS
3300 bfd_boolean _bfd_generic_link_check_relocs
3301 (bfd *abfd, struct bfd_link_info *info);
3302
3303 DESCRIPTION
3304 Stub function for targets that do not implement reloc checking.
3305 Return TRUE.
3306 This is an internal function. It should not be called from
3307 outside the BFD library.
3308 */
3309
3310 bfd_boolean
3311 _bfd_generic_link_check_relocs (bfd *abfd ATTRIBUTE_UNUSED,
3312 struct bfd_link_info *info ATTRIBUTE_UNUSED)
3313 {
3314 return TRUE;
3315 }
3316
3317 /*
3318 FUNCTION
3319 bfd_merge_private_bfd_data
3320
3321 SYNOPSIS
3322 bfd_boolean bfd_merge_private_bfd_data
3323 (bfd *ibfd, struct bfd_link_info *info);
3324
3325 DESCRIPTION
3326 Merge private BFD information from the BFD @var{ibfd} to the
3327 the output file BFD when linking. Return <<TRUE>> on success,
3328 <<FALSE>> on error. Possible error returns are:
3329
3330 o <<bfd_error_no_memory>> -
3331 Not enough memory exists to create private data for @var{obfd}.
3332
3333 .#define bfd_merge_private_bfd_data(ibfd, info) \
3334 . BFD_SEND ((info)->output_bfd, _bfd_merge_private_bfd_data, \
3335 . (ibfd, info))
3336 */
3337
3338 /*
3339 INTERNAL_FUNCTION
3340 _bfd_generic_verify_endian_match
3341
3342 SYNOPSIS
3343 bfd_boolean _bfd_generic_verify_endian_match
3344 (bfd *ibfd, struct bfd_link_info *info);
3345
3346 DESCRIPTION
3347 Can be used from / for bfd_merge_private_bfd_data to check that
3348 endianness matches between input and output file. Returns
3349 TRUE for a match, otherwise returns FALSE and emits an error.
3350 */
3351
3352 bfd_boolean
3353 _bfd_generic_verify_endian_match (bfd *ibfd, struct bfd_link_info *info)
3354 {
3355 bfd *obfd = info->output_bfd;
3356
3357 if (ibfd->xvec->byteorder != obfd->xvec->byteorder
3358 && ibfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN
3359 && obfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN)
3360 {
3361 if (bfd_big_endian (ibfd))
3362 _bfd_error_handler (_("%B: compiled for a big endian system "
3363 "and target is little endian"), ibfd);
3364 else
3365 _bfd_error_handler (_("%B: compiled for a little endian system "
3366 "and target is big endian"), ibfd);
3367 bfd_set_error (bfd_error_wrong_format);
3368 return FALSE;
3369 }
3370
3371 return TRUE;
3372 }
This page took 0.203653 seconds and 5 git commands to generate.