Tidy ld/ldmisc.c
[deliverable/binutils-gdb.git] / bfd / linker.c
1 /* linker.c -- BFD linker routines
2 Copyright (C) 1993-2019 Free Software Foundation, Inc.
3 Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "libbfd.h"
25 #include "bfdlink.h"
26 #include "genlink.h"
27
28 /*
29 SECTION
30 Linker Functions
31
32 @cindex Linker
33 The linker uses three special entry points in the BFD target
34 vector. It is not necessary to write special routines for
35 these entry points when creating a new BFD back end, since
36 generic versions are provided. However, writing them can
37 speed up linking and make it use significantly less runtime
38 memory.
39
40 The first routine creates a hash table used by the other
41 routines. The second routine adds the symbols from an object
42 file to the hash table. The third routine takes all the
43 object files and links them together to create the output
44 file. These routines are designed so that the linker proper
45 does not need to know anything about the symbols in the object
46 files that it is linking. The linker merely arranges the
47 sections as directed by the linker script and lets BFD handle
48 the details of symbols and relocs.
49
50 The second routine and third routines are passed a pointer to
51 a <<struct bfd_link_info>> structure (defined in
52 <<bfdlink.h>>) which holds information relevant to the link,
53 including the linker hash table (which was created by the
54 first routine) and a set of callback functions to the linker
55 proper.
56
57 The generic linker routines are in <<linker.c>>, and use the
58 header file <<genlink.h>>. As of this writing, the only back
59 ends which have implemented versions of these routines are
60 a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>). The a.out
61 routines are used as examples throughout this section.
62
63 @menu
64 @* Creating a Linker Hash Table::
65 @* Adding Symbols to the Hash Table::
66 @* Performing the Final Link::
67 @end menu
68
69 INODE
70 Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
71 SUBSECTION
72 Creating a linker hash table
73
74 @cindex _bfd_link_hash_table_create in target vector
75 @cindex target vector (_bfd_link_hash_table_create)
76 The linker routines must create a hash table, which must be
77 derived from <<struct bfd_link_hash_table>> described in
78 <<bfdlink.c>>. @xref{Hash Tables}, for information on how to
79 create a derived hash table. This entry point is called using
80 the target vector of the linker output file.
81
82 The <<_bfd_link_hash_table_create>> entry point must allocate
83 and initialize an instance of the desired hash table. If the
84 back end does not require any additional information to be
85 stored with the entries in the hash table, the entry point may
86 simply create a <<struct bfd_link_hash_table>>. Most likely,
87 however, some additional information will be needed.
88
89 For example, with each entry in the hash table the a.out
90 linker keeps the index the symbol has in the final output file
91 (this index number is used so that when doing a relocatable
92 link the symbol index used in the output file can be quickly
93 filled in when copying over a reloc). The a.out linker code
94 defines the required structures and functions for a hash table
95 derived from <<struct bfd_link_hash_table>>. The a.out linker
96 hash table is created by the function
97 <<NAME(aout,link_hash_table_create)>>; it simply allocates
98 space for the hash table, initializes it, and returns a
99 pointer to it.
100
101 When writing the linker routines for a new back end, you will
102 generally not know exactly which fields will be required until
103 you have finished. You should simply create a new hash table
104 which defines no additional fields, and then simply add fields
105 as they become necessary.
106
107 INODE
108 Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
109 SUBSECTION
110 Adding symbols to the hash table
111
112 @cindex _bfd_link_add_symbols in target vector
113 @cindex target vector (_bfd_link_add_symbols)
114 The linker proper will call the <<_bfd_link_add_symbols>>
115 entry point for each object file or archive which is to be
116 linked (typically these are the files named on the command
117 line, but some may also come from the linker script). The
118 entry point is responsible for examining the file. For an
119 object file, BFD must add any relevant symbol information to
120 the hash table. For an archive, BFD must determine which
121 elements of the archive should be used and adding them to the
122 link.
123
124 The a.out version of this entry point is
125 <<NAME(aout,link_add_symbols)>>.
126
127 @menu
128 @* Differing file formats::
129 @* Adding symbols from an object file::
130 @* Adding symbols from an archive::
131 @end menu
132
133 INODE
134 Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
135 SUBSUBSECTION
136 Differing file formats
137
138 Normally all the files involved in a link will be of the same
139 format, but it is also possible to link together different
140 format object files, and the back end must support that. The
141 <<_bfd_link_add_symbols>> entry point is called via the target
142 vector of the file to be added. This has an important
143 consequence: the function may not assume that the hash table
144 is the type created by the corresponding
145 <<_bfd_link_hash_table_create>> vector. All the
146 <<_bfd_link_add_symbols>> function can assume about the hash
147 table is that it is derived from <<struct
148 bfd_link_hash_table>>.
149
150 Sometimes the <<_bfd_link_add_symbols>> function must store
151 some information in the hash table entry to be used by the
152 <<_bfd_final_link>> function. In such a case the output bfd
153 xvec must be checked to make sure that the hash table was
154 created by an object file of the same format.
155
156 The <<_bfd_final_link>> routine must be prepared to handle a
157 hash entry without any extra information added by the
158 <<_bfd_link_add_symbols>> function. A hash entry without
159 extra information will also occur when the linker script
160 directs the linker to create a symbol. Note that, regardless
161 of how a hash table entry is added, all the fields will be
162 initialized to some sort of null value by the hash table entry
163 initialization function.
164
165 See <<ecoff_link_add_externals>> for an example of how to
166 check the output bfd before saving information (in this
167 case, the ECOFF external symbol debugging information) in a
168 hash table entry.
169
170 INODE
171 Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
172 SUBSUBSECTION
173 Adding symbols from an object file
174
175 When the <<_bfd_link_add_symbols>> routine is passed an object
176 file, it must add all externally visible symbols in that
177 object file to the hash table. The actual work of adding the
178 symbol to the hash table is normally handled by the function
179 <<_bfd_generic_link_add_one_symbol>>. The
180 <<_bfd_link_add_symbols>> routine is responsible for reading
181 all the symbols from the object file and passing the correct
182 information to <<_bfd_generic_link_add_one_symbol>>.
183
184 The <<_bfd_link_add_symbols>> routine should not use
185 <<bfd_canonicalize_symtab>> to read the symbols. The point of
186 providing this routine is to avoid the overhead of converting
187 the symbols into generic <<asymbol>> structures.
188
189 @findex _bfd_generic_link_add_one_symbol
190 <<_bfd_generic_link_add_one_symbol>> handles the details of
191 combining common symbols, warning about multiple definitions,
192 and so forth. It takes arguments which describe the symbol to
193 add, notably symbol flags, a section, and an offset. The
194 symbol flags include such things as <<BSF_WEAK>> or
195 <<BSF_INDIRECT>>. The section is a section in the object
196 file, or something like <<bfd_und_section_ptr>> for an undefined
197 symbol or <<bfd_com_section_ptr>> for a common symbol.
198
199 If the <<_bfd_final_link>> routine is also going to need to
200 read the symbol information, the <<_bfd_link_add_symbols>>
201 routine should save it somewhere attached to the object file
202 BFD. However, the information should only be saved if the
203 <<keep_memory>> field of the <<info>> argument is TRUE, so
204 that the <<-no-keep-memory>> linker switch is effective.
205
206 The a.out function which adds symbols from an object file is
207 <<aout_link_add_object_symbols>>, and most of the interesting
208 work is in <<aout_link_add_symbols>>. The latter saves
209 pointers to the hash tables entries created by
210 <<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
211 so that the <<_bfd_final_link>> routine does not have to call
212 the hash table lookup routine to locate the entry.
213
214 INODE
215 Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
216 SUBSUBSECTION
217 Adding symbols from an archive
218
219 When the <<_bfd_link_add_symbols>> routine is passed an
220 archive, it must look through the symbols defined by the
221 archive and decide which elements of the archive should be
222 included in the link. For each such element it must call the
223 <<add_archive_element>> linker callback, and it must add the
224 symbols from the object file to the linker hash table. (The
225 callback may in fact indicate that a replacement BFD should be
226 used, in which case the symbols from that BFD should be added
227 to the linker hash table instead.)
228
229 @findex _bfd_generic_link_add_archive_symbols
230 In most cases the work of looking through the symbols in the
231 archive should be done by the
232 <<_bfd_generic_link_add_archive_symbols>> function.
233 <<_bfd_generic_link_add_archive_symbols>> is passed a function
234 to call to make the final decision about adding an archive
235 element to the link and to do the actual work of adding the
236 symbols to the linker hash table. If the element is to
237 be included, the <<add_archive_element>> linker callback
238 routine must be called with the element as an argument, and
239 the element's symbols must be added to the linker hash table
240 just as though the element had itself been passed to the
241 <<_bfd_link_add_symbols>> function.
242
243 When the a.out <<_bfd_link_add_symbols>> function receives an
244 archive, it calls <<_bfd_generic_link_add_archive_symbols>>
245 passing <<aout_link_check_archive_element>> as the function
246 argument. <<aout_link_check_archive_element>> calls
247 <<aout_link_check_ar_symbols>>. If the latter decides to add
248 the element (an element is only added if it provides a real,
249 non-common, definition for a previously undefined or common
250 symbol) it calls the <<add_archive_element>> callback and then
251 <<aout_link_check_archive_element>> calls
252 <<aout_link_add_symbols>> to actually add the symbols to the
253 linker hash table - possibly those of a substitute BFD, if the
254 <<add_archive_element>> callback avails itself of that option.
255
256 The ECOFF back end is unusual in that it does not normally
257 call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
258 archives already contain a hash table of symbols. The ECOFF
259 back end searches the archive itself to avoid the overhead of
260 creating a new hash table.
261
262 INODE
263 Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
264 SUBSECTION
265 Performing the final link
266
267 @cindex _bfd_link_final_link in target vector
268 @cindex target vector (_bfd_final_link)
269 When all the input files have been processed, the linker calls
270 the <<_bfd_final_link>> entry point of the output BFD. This
271 routine is responsible for producing the final output file,
272 which has several aspects. It must relocate the contents of
273 the input sections and copy the data into the output sections.
274 It must build an output symbol table including any local
275 symbols from the input files and the global symbols from the
276 hash table. When producing relocatable output, it must
277 modify the input relocs and write them into the output file.
278 There may also be object format dependent work to be done.
279
280 The linker will also call the <<write_object_contents>> entry
281 point when the BFD is closed. The two entry points must work
282 together in order to produce the correct output file.
283
284 The details of how this works are inevitably dependent upon
285 the specific object file format. The a.out
286 <<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
287
288 @menu
289 @* Information provided by the linker::
290 @* Relocating the section contents::
291 @* Writing the symbol table::
292 @end menu
293
294 INODE
295 Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
296 SUBSUBSECTION
297 Information provided by the linker
298
299 Before the linker calls the <<_bfd_final_link>> entry point,
300 it sets up some data structures for the function to use.
301
302 The <<input_bfds>> field of the <<bfd_link_info>> structure
303 will point to a list of all the input files included in the
304 link. These files are linked through the <<link.next>> field
305 of the <<bfd>> structure.
306
307 Each section in the output file will have a list of
308 <<link_order>> structures attached to the <<map_head.link_order>>
309 field (the <<link_order>> structure is defined in
310 <<bfdlink.h>>). These structures describe how to create the
311 contents of the output section in terms of the contents of
312 various input sections, fill constants, and, eventually, other
313 types of information. They also describe relocs that must be
314 created by the BFD backend, but do not correspond to any input
315 file; this is used to support -Ur, which builds constructors
316 while generating a relocatable object file.
317
318 INODE
319 Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
320 SUBSUBSECTION
321 Relocating the section contents
322
323 The <<_bfd_final_link>> function should look through the
324 <<link_order>> structures attached to each section of the
325 output file. Each <<link_order>> structure should either be
326 handled specially, or it should be passed to the function
327 <<_bfd_default_link_order>> which will do the right thing
328 (<<_bfd_default_link_order>> is defined in <<linker.c>>).
329
330 For efficiency, a <<link_order>> of type
331 <<bfd_indirect_link_order>> whose associated section belongs
332 to a BFD of the same format as the output BFD must be handled
333 specially. This type of <<link_order>> describes part of an
334 output section in terms of a section belonging to one of the
335 input files. The <<_bfd_final_link>> function should read the
336 contents of the section and any associated relocs, apply the
337 relocs to the section contents, and write out the modified
338 section contents. If performing a relocatable link, the
339 relocs themselves must also be modified and written out.
340
341 @findex _bfd_relocate_contents
342 @findex _bfd_final_link_relocate
343 The functions <<_bfd_relocate_contents>> and
344 <<_bfd_final_link_relocate>> provide some general support for
345 performing the actual relocations, notably overflow checking.
346 Their arguments include information about the symbol the
347 relocation is against and a <<reloc_howto_type>> argument
348 which describes the relocation to perform. These functions
349 are defined in <<reloc.c>>.
350
351 The a.out function which handles reading, relocating, and
352 writing section contents is <<aout_link_input_section>>. The
353 actual relocation is done in <<aout_link_input_section_std>>
354 and <<aout_link_input_section_ext>>.
355
356 INODE
357 Writing the symbol table, , Relocating the section contents, Performing the Final Link
358 SUBSUBSECTION
359 Writing the symbol table
360
361 The <<_bfd_final_link>> function must gather all the symbols
362 in the input files and write them out. It must also write out
363 all the symbols in the global hash table. This must be
364 controlled by the <<strip>> and <<discard>> fields of the
365 <<bfd_link_info>> structure.
366
367 The local symbols of the input files will not have been
368 entered into the linker hash table. The <<_bfd_final_link>>
369 routine must consider each input file and include the symbols
370 in the output file. It may be convenient to do this when
371 looking through the <<link_order>> structures, or it may be
372 done by stepping through the <<input_bfds>> list.
373
374 The <<_bfd_final_link>> routine must also traverse the global
375 hash table to gather all the externally visible symbols. It
376 is possible that most of the externally visible symbols may be
377 written out when considering the symbols of each input file,
378 but it is still necessary to traverse the hash table since the
379 linker script may have defined some symbols that are not in
380 any of the input files.
381
382 The <<strip>> field of the <<bfd_link_info>> structure
383 controls which symbols are written out. The possible values
384 are listed in <<bfdlink.h>>. If the value is <<strip_some>>,
385 then the <<keep_hash>> field of the <<bfd_link_info>>
386 structure is a hash table of symbols to keep; each symbol
387 should be looked up in this hash table, and only symbols which
388 are present should be included in the output file.
389
390 If the <<strip>> field of the <<bfd_link_info>> structure
391 permits local symbols to be written out, the <<discard>> field
392 is used to further controls which local symbols are included
393 in the output file. If the value is <<discard_l>>, then all
394 local symbols which begin with a certain prefix are discarded;
395 this is controlled by the <<bfd_is_local_label_name>> entry point.
396
397 The a.out backend handles symbols by calling
398 <<aout_link_write_symbols>> on each input BFD and then
399 traversing the global hash table with the function
400 <<aout_link_write_other_symbol>>. It builds a string table
401 while writing out the symbols, which is written to the output
402 file at the end of <<NAME(aout,final_link)>>.
403 */
404
405 static bfd_boolean generic_link_add_object_symbols
406 (bfd *, struct bfd_link_info *);
407 static bfd_boolean generic_link_check_archive_element
408 (bfd *, struct bfd_link_info *, struct bfd_link_hash_entry *, const char *,
409 bfd_boolean *);
410 static bfd_boolean generic_link_add_symbol_list
411 (bfd *, struct bfd_link_info *, bfd_size_type count, asymbol **);
412 static bfd_boolean generic_add_output_symbol
413 (bfd *, size_t *psymalloc, asymbol *);
414 static bfd_boolean default_data_link_order
415 (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *);
416 static bfd_boolean default_indirect_link_order
417 (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *,
418 bfd_boolean);
419
420 /* The link hash table structure is defined in bfdlink.h. It provides
421 a base hash table which the backend specific hash tables are built
422 upon. */
423
424 /* Routine to create an entry in the link hash table. */
425
426 struct bfd_hash_entry *
427 _bfd_link_hash_newfunc (struct bfd_hash_entry *entry,
428 struct bfd_hash_table *table,
429 const char *string)
430 {
431 /* Allocate the structure if it has not already been allocated by a
432 subclass. */
433 if (entry == NULL)
434 {
435 entry = (struct bfd_hash_entry *)
436 bfd_hash_allocate (table, sizeof (struct bfd_link_hash_entry));
437 if (entry == NULL)
438 return entry;
439 }
440
441 /* Call the allocation method of the superclass. */
442 entry = bfd_hash_newfunc (entry, table, string);
443 if (entry)
444 {
445 struct bfd_link_hash_entry *h = (struct bfd_link_hash_entry *) entry;
446
447 /* Initialize the local fields. */
448 memset ((char *) &h->root + sizeof (h->root), 0,
449 sizeof (*h) - sizeof (h->root));
450 }
451
452 return entry;
453 }
454
455 /* Initialize a link hash table. The BFD argument is the one
456 responsible for creating this table. */
457
458 bfd_boolean
459 _bfd_link_hash_table_init
460 (struct bfd_link_hash_table *table,
461 bfd *abfd ATTRIBUTE_UNUSED,
462 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
463 struct bfd_hash_table *,
464 const char *),
465 unsigned int entsize)
466 {
467 bfd_boolean ret;
468
469 BFD_ASSERT (!abfd->is_linker_output && !abfd->link.hash);
470 table->undefs = NULL;
471 table->undefs_tail = NULL;
472 table->type = bfd_link_generic_hash_table;
473
474 ret = bfd_hash_table_init (&table->table, newfunc, entsize);
475 if (ret)
476 {
477 /* Arrange for destruction of this hash table on closing ABFD. */
478 table->hash_table_free = _bfd_generic_link_hash_table_free;
479 abfd->link.hash = table;
480 abfd->is_linker_output = TRUE;
481 }
482 return ret;
483 }
484
485 /* Look up a symbol in a link hash table. If follow is TRUE, we
486 follow bfd_link_hash_indirect and bfd_link_hash_warning links to
487 the real symbol.
488
489 .{* Return TRUE if the symbol described by a linker hash entry H
490 . is going to be absolute. Linker-script defined symbols can be
491 . converted from absolute to section-relative ones late in the
492 . link. Use this macro to correctly determine whether the symbol
493 . will actually end up absolute in output. *}
494 .#define bfd_is_abs_symbol(H) \
495 . (((H)->type == bfd_link_hash_defined \
496 . || (H)->type == bfd_link_hash_defweak) \
497 . && bfd_is_abs_section ((H)->u.def.section) \
498 . && !(H)->rel_from_abs)
499 .
500 */
501
502 struct bfd_link_hash_entry *
503 bfd_link_hash_lookup (struct bfd_link_hash_table *table,
504 const char *string,
505 bfd_boolean create,
506 bfd_boolean copy,
507 bfd_boolean follow)
508 {
509 struct bfd_link_hash_entry *ret;
510
511 if (table == NULL || string == NULL)
512 return NULL;
513
514 ret = ((struct bfd_link_hash_entry *)
515 bfd_hash_lookup (&table->table, string, create, copy));
516
517 if (follow && ret != NULL)
518 {
519 while (ret->type == bfd_link_hash_indirect
520 || ret->type == bfd_link_hash_warning)
521 ret = ret->u.i.link;
522 }
523
524 return ret;
525 }
526
527 /* Look up a symbol in the main linker hash table if the symbol might
528 be wrapped. This should only be used for references to an
529 undefined symbol, not for definitions of a symbol. */
530
531 struct bfd_link_hash_entry *
532 bfd_wrapped_link_hash_lookup (bfd *abfd,
533 struct bfd_link_info *info,
534 const char *string,
535 bfd_boolean create,
536 bfd_boolean copy,
537 bfd_boolean follow)
538 {
539 bfd_size_type amt;
540
541 if (info->wrap_hash != NULL)
542 {
543 const char *l;
544 char prefix = '\0';
545
546 l = string;
547 if (*l == bfd_get_symbol_leading_char (abfd) || *l == info->wrap_char)
548 {
549 prefix = *l;
550 ++l;
551 }
552
553 #undef WRAP
554 #define WRAP "__wrap_"
555
556 if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL)
557 {
558 char *n;
559 struct bfd_link_hash_entry *h;
560
561 /* This symbol is being wrapped. We want to replace all
562 references to SYM with references to __wrap_SYM. */
563
564 amt = strlen (l) + sizeof WRAP + 1;
565 n = (char *) bfd_malloc (amt);
566 if (n == NULL)
567 return NULL;
568
569 n[0] = prefix;
570 n[1] = '\0';
571 strcat (n, WRAP);
572 strcat (n, l);
573 h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
574 free (n);
575 return h;
576 }
577
578 #undef REAL
579 #define REAL "__real_"
580
581 if (*l == '_'
582 && CONST_STRNEQ (l, REAL)
583 && bfd_hash_lookup (info->wrap_hash, l + sizeof REAL - 1,
584 FALSE, FALSE) != NULL)
585 {
586 char *n;
587 struct bfd_link_hash_entry *h;
588
589 /* This is a reference to __real_SYM, where SYM is being
590 wrapped. We want to replace all references to __real_SYM
591 with references to SYM. */
592
593 amt = strlen (l + sizeof REAL - 1) + 2;
594 n = (char *) bfd_malloc (amt);
595 if (n == NULL)
596 return NULL;
597
598 n[0] = prefix;
599 n[1] = '\0';
600 strcat (n, l + sizeof REAL - 1);
601 h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
602 free (n);
603 return h;
604 }
605
606 #undef REAL
607 }
608
609 return bfd_link_hash_lookup (info->hash, string, create, copy, follow);
610 }
611
612 /* If H is a wrapped symbol, ie. the symbol name starts with "__wrap_"
613 and the remainder is found in wrap_hash, return the real symbol. */
614
615 struct bfd_link_hash_entry *
616 unwrap_hash_lookup (struct bfd_link_info *info,
617 bfd *input_bfd,
618 struct bfd_link_hash_entry *h)
619 {
620 const char *l = h->root.string;
621
622 if (*l == bfd_get_symbol_leading_char (input_bfd)
623 || *l == info->wrap_char)
624 ++l;
625
626 if (CONST_STRNEQ (l, WRAP))
627 {
628 l += sizeof WRAP - 1;
629
630 if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL)
631 {
632 char save = 0;
633 if (l - (sizeof WRAP - 1) != h->root.string)
634 {
635 --l;
636 save = *l;
637 *(char *) l = *h->root.string;
638 }
639 h = bfd_link_hash_lookup (info->hash, l, FALSE, FALSE, FALSE);
640 if (save)
641 *(char *) l = save;
642 }
643 }
644 return h;
645 }
646 #undef WRAP
647
648 /* Traverse a generic link hash table. Differs from bfd_hash_traverse
649 in the treatment of warning symbols. When warning symbols are
650 created they replace the real symbol, so you don't get to see the
651 real symbol in a bfd_hash_traverse. This traversal calls func with
652 the real symbol. */
653
654 void
655 bfd_link_hash_traverse
656 (struct bfd_link_hash_table *htab,
657 bfd_boolean (*func) (struct bfd_link_hash_entry *, void *),
658 void *info)
659 {
660 unsigned int i;
661
662 htab->table.frozen = 1;
663 for (i = 0; i < htab->table.size; i++)
664 {
665 struct bfd_link_hash_entry *p;
666
667 p = (struct bfd_link_hash_entry *) htab->table.table[i];
668 for (; p != NULL; p = (struct bfd_link_hash_entry *) p->root.next)
669 if (!(*func) (p->type == bfd_link_hash_warning ? p->u.i.link : p, info))
670 goto out;
671 }
672 out:
673 htab->table.frozen = 0;
674 }
675
676 /* Add a symbol to the linker hash table undefs list. */
677
678 void
679 bfd_link_add_undef (struct bfd_link_hash_table *table,
680 struct bfd_link_hash_entry *h)
681 {
682 BFD_ASSERT (h->u.undef.next == NULL);
683 if (table->undefs_tail != NULL)
684 table->undefs_tail->u.undef.next = h;
685 if (table->undefs == NULL)
686 table->undefs = h;
687 table->undefs_tail = h;
688 }
689
690 /* The undefs list was designed so that in normal use we don't need to
691 remove entries. However, if symbols on the list are changed from
692 bfd_link_hash_undefined to either bfd_link_hash_undefweak or
693 bfd_link_hash_new for some reason, then they must be removed from the
694 list. Failure to do so might result in the linker attempting to add
695 the symbol to the list again at a later stage. */
696
697 void
698 bfd_link_repair_undef_list (struct bfd_link_hash_table *table)
699 {
700 struct bfd_link_hash_entry **pun;
701
702 pun = &table->undefs;
703 while (*pun != NULL)
704 {
705 struct bfd_link_hash_entry *h = *pun;
706
707 if (h->type == bfd_link_hash_new
708 || h->type == bfd_link_hash_undefweak)
709 {
710 *pun = h->u.undef.next;
711 h->u.undef.next = NULL;
712 if (h == table->undefs_tail)
713 {
714 if (pun == &table->undefs)
715 table->undefs_tail = NULL;
716 else
717 /* pun points at an u.undef.next field. Go back to
718 the start of the link_hash_entry. */
719 table->undefs_tail = (struct bfd_link_hash_entry *)
720 ((char *) pun - ((char *) &h->u.undef.next - (char *) h));
721 break;
722 }
723 }
724 else
725 pun = &h->u.undef.next;
726 }
727 }
728 \f
729 /* Routine to create an entry in a generic link hash table. */
730
731 struct bfd_hash_entry *
732 _bfd_generic_link_hash_newfunc (struct bfd_hash_entry *entry,
733 struct bfd_hash_table *table,
734 const char *string)
735 {
736 /* Allocate the structure if it has not already been allocated by a
737 subclass. */
738 if (entry == NULL)
739 {
740 entry = (struct bfd_hash_entry *)
741 bfd_hash_allocate (table, sizeof (struct generic_link_hash_entry));
742 if (entry == NULL)
743 return entry;
744 }
745
746 /* Call the allocation method of the superclass. */
747 entry = _bfd_link_hash_newfunc (entry, table, string);
748 if (entry)
749 {
750 struct generic_link_hash_entry *ret;
751
752 /* Set local fields. */
753 ret = (struct generic_link_hash_entry *) entry;
754 ret->written = FALSE;
755 ret->sym = NULL;
756 }
757
758 return entry;
759 }
760
761 /* Create a generic link hash table. */
762
763 struct bfd_link_hash_table *
764 _bfd_generic_link_hash_table_create (bfd *abfd)
765 {
766 struct generic_link_hash_table *ret;
767 bfd_size_type amt = sizeof (struct generic_link_hash_table);
768
769 ret = (struct generic_link_hash_table *) bfd_malloc (amt);
770 if (ret == NULL)
771 return NULL;
772 if (! _bfd_link_hash_table_init (&ret->root, abfd,
773 _bfd_generic_link_hash_newfunc,
774 sizeof (struct generic_link_hash_entry)))
775 {
776 free (ret);
777 return NULL;
778 }
779 return &ret->root;
780 }
781
782 void
783 _bfd_generic_link_hash_table_free (bfd *obfd)
784 {
785 struct generic_link_hash_table *ret;
786
787 BFD_ASSERT (obfd->is_linker_output && obfd->link.hash);
788 ret = (struct generic_link_hash_table *) obfd->link.hash;
789 bfd_hash_table_free (&ret->root.table);
790 free (ret);
791 obfd->link.hash = NULL;
792 obfd->is_linker_output = FALSE;
793 }
794
795 /* Grab the symbols for an object file when doing a generic link. We
796 store the symbols in the outsymbols field. We need to keep them
797 around for the entire link to ensure that we only read them once.
798 If we read them multiple times, we might wind up with relocs and
799 the hash table pointing to different instances of the symbol
800 structure. */
801
802 bfd_boolean
803 bfd_generic_link_read_symbols (bfd *abfd)
804 {
805 if (bfd_get_outsymbols (abfd) == NULL)
806 {
807 long symsize;
808 long symcount;
809
810 symsize = bfd_get_symtab_upper_bound (abfd);
811 if (symsize < 0)
812 return FALSE;
813 bfd_get_outsymbols (abfd) = (struct bfd_symbol **) bfd_alloc (abfd,
814 symsize);
815 if (bfd_get_outsymbols (abfd) == NULL && symsize != 0)
816 return FALSE;
817 symcount = bfd_canonicalize_symtab (abfd, bfd_get_outsymbols (abfd));
818 if (symcount < 0)
819 return FALSE;
820 bfd_get_symcount (abfd) = symcount;
821 }
822
823 return TRUE;
824 }
825 \f
826 /* Indicate that we are only retrieving symbol values from this
827 section. We want the symbols to act as though the values in the
828 file are absolute. */
829
830 void
831 _bfd_generic_link_just_syms (asection *sec,
832 struct bfd_link_info *info ATTRIBUTE_UNUSED)
833 {
834 sec->sec_info_type = SEC_INFO_TYPE_JUST_SYMS;
835 sec->output_section = bfd_abs_section_ptr;
836 sec->output_offset = sec->vma;
837 }
838
839 /* Copy the symbol type and other attributes for a linker script
840 assignment from HSRC to HDEST.
841 The default implementation does nothing. */
842 void
843 _bfd_generic_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
844 struct bfd_link_hash_entry *hdest ATTRIBUTE_UNUSED,
845 struct bfd_link_hash_entry *hsrc ATTRIBUTE_UNUSED)
846 {
847 }
848
849 /* Generic function to add symbols from an object file to the
850 global hash table. */
851
852 bfd_boolean
853 _bfd_generic_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
854 {
855 bfd_boolean ret;
856
857 switch (bfd_get_format (abfd))
858 {
859 case bfd_object:
860 ret = generic_link_add_object_symbols (abfd, info);
861 break;
862 case bfd_archive:
863 ret = (_bfd_generic_link_add_archive_symbols
864 (abfd, info, generic_link_check_archive_element));
865 break;
866 default:
867 bfd_set_error (bfd_error_wrong_format);
868 ret = FALSE;
869 }
870
871 return ret;
872 }
873
874 /* Add symbols from an object file to the global hash table. */
875
876 static bfd_boolean
877 generic_link_add_object_symbols (bfd *abfd,
878 struct bfd_link_info *info)
879 {
880 bfd_size_type symcount;
881 struct bfd_symbol **outsyms;
882
883 if (!bfd_generic_link_read_symbols (abfd))
884 return FALSE;
885 symcount = _bfd_generic_link_get_symcount (abfd);
886 outsyms = _bfd_generic_link_get_symbols (abfd);
887 return generic_link_add_symbol_list (abfd, info, symcount, outsyms);
888 }
889 \f
890 /* Generic function to add symbols from an archive file to the global
891 hash file. This function presumes that the archive symbol table
892 has already been read in (this is normally done by the
893 bfd_check_format entry point). It looks through the archive symbol
894 table for symbols that are undefined or common in the linker global
895 symbol hash table. When one is found, the CHECKFN argument is used
896 to see if an object file should be included. This allows targets
897 to customize common symbol behaviour. CHECKFN should set *PNEEDED
898 to TRUE if the object file should be included, and must also call
899 the bfd_link_info add_archive_element callback function and handle
900 adding the symbols to the global hash table. CHECKFN must notice
901 if the callback indicates a substitute BFD, and arrange to add
902 those symbols instead if it does so. CHECKFN should only return
903 FALSE if some sort of error occurs. */
904
905 bfd_boolean
906 _bfd_generic_link_add_archive_symbols
907 (bfd *abfd,
908 struct bfd_link_info *info,
909 bfd_boolean (*checkfn) (bfd *, struct bfd_link_info *,
910 struct bfd_link_hash_entry *, const char *,
911 bfd_boolean *))
912 {
913 bfd_boolean loop;
914 bfd_size_type amt;
915 unsigned char *included;
916
917 if (! bfd_has_map (abfd))
918 {
919 /* An empty archive is a special case. */
920 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
921 return TRUE;
922 bfd_set_error (bfd_error_no_armap);
923 return FALSE;
924 }
925
926 amt = bfd_ardata (abfd)->symdef_count;
927 if (amt == 0)
928 return TRUE;
929 amt *= sizeof (*included);
930 included = (unsigned char *) bfd_zmalloc (amt);
931 if (included == NULL)
932 return FALSE;
933
934 do
935 {
936 carsym *arsyms;
937 carsym *arsym_end;
938 carsym *arsym;
939 unsigned int indx;
940 file_ptr last_ar_offset = -1;
941 bfd_boolean needed = FALSE;
942 bfd *element = NULL;
943
944 loop = FALSE;
945 arsyms = bfd_ardata (abfd)->symdefs;
946 arsym_end = arsyms + bfd_ardata (abfd)->symdef_count;
947 for (arsym = arsyms, indx = 0; arsym < arsym_end; arsym++, indx++)
948 {
949 struct bfd_link_hash_entry *h;
950 struct bfd_link_hash_entry *undefs_tail;
951
952 if (included[indx])
953 continue;
954 if (needed && arsym->file_offset == last_ar_offset)
955 {
956 included[indx] = 1;
957 continue;
958 }
959
960 if (arsym->name == NULL)
961 goto error_return;
962
963 h = bfd_link_hash_lookup (info->hash, arsym->name,
964 FALSE, FALSE, TRUE);
965
966 if (h == NULL
967 && info->pei386_auto_import
968 && CONST_STRNEQ (arsym->name, "__imp_"))
969 h = bfd_link_hash_lookup (info->hash, arsym->name + 6,
970 FALSE, FALSE, TRUE);
971 if (h == NULL)
972 continue;
973
974 if (h->type != bfd_link_hash_undefined
975 && h->type != bfd_link_hash_common)
976 {
977 if (h->type != bfd_link_hash_undefweak)
978 /* Symbol must be defined. Don't check it again. */
979 included[indx] = 1;
980 continue;
981 }
982
983 if (last_ar_offset != arsym->file_offset)
984 {
985 last_ar_offset = arsym->file_offset;
986 element = _bfd_get_elt_at_filepos (abfd, last_ar_offset);
987 if (element == NULL
988 || !bfd_check_format (element, bfd_object))
989 goto error_return;
990 }
991
992 undefs_tail = info->hash->undefs_tail;
993
994 /* CHECKFN will see if this element should be included, and
995 go ahead and include it if appropriate. */
996 if (! (*checkfn) (element, info, h, arsym->name, &needed))
997 goto error_return;
998
999 if (needed)
1000 {
1001 unsigned int mark;
1002
1003 /* Look backward to mark all symbols from this object file
1004 which we have already seen in this pass. */
1005 mark = indx;
1006 do
1007 {
1008 included[mark] = 1;
1009 if (mark == 0)
1010 break;
1011 --mark;
1012 }
1013 while (arsyms[mark].file_offset == last_ar_offset);
1014
1015 if (undefs_tail != info->hash->undefs_tail)
1016 loop = TRUE;
1017 }
1018 }
1019 } while (loop);
1020
1021 free (included);
1022 return TRUE;
1023
1024 error_return:
1025 free (included);
1026 return FALSE;
1027 }
1028 \f
1029 /* See if we should include an archive element. */
1030
1031 static bfd_boolean
1032 generic_link_check_archive_element (bfd *abfd,
1033 struct bfd_link_info *info,
1034 struct bfd_link_hash_entry *h,
1035 const char *name ATTRIBUTE_UNUSED,
1036 bfd_boolean *pneeded)
1037 {
1038 asymbol **pp, **ppend;
1039
1040 *pneeded = FALSE;
1041
1042 if (!bfd_generic_link_read_symbols (abfd))
1043 return FALSE;
1044
1045 pp = _bfd_generic_link_get_symbols (abfd);
1046 ppend = pp + _bfd_generic_link_get_symcount (abfd);
1047 for (; pp < ppend; pp++)
1048 {
1049 asymbol *p;
1050
1051 p = *pp;
1052
1053 /* We are only interested in globally visible symbols. */
1054 if (! bfd_is_com_section (p->section)
1055 && (p->flags & (BSF_GLOBAL | BSF_INDIRECT | BSF_WEAK)) == 0)
1056 continue;
1057
1058 /* We are only interested if we know something about this
1059 symbol, and it is undefined or common. An undefined weak
1060 symbol (type bfd_link_hash_undefweak) is not considered to be
1061 a reference when pulling files out of an archive. See the
1062 SVR4 ABI, p. 4-27. */
1063 h = bfd_link_hash_lookup (info->hash, bfd_asymbol_name (p), FALSE,
1064 FALSE, TRUE);
1065 if (h == NULL
1066 || (h->type != bfd_link_hash_undefined
1067 && h->type != bfd_link_hash_common))
1068 continue;
1069
1070 /* P is a symbol we are looking for. */
1071
1072 if (! bfd_is_com_section (p->section)
1073 || (h->type == bfd_link_hash_undefined
1074 && h->u.undef.abfd == NULL))
1075 {
1076 /* P is not a common symbol, or an undefined reference was
1077 created from outside BFD such as from a linker -u option.
1078 This object file defines the symbol, so pull it in. */
1079 *pneeded = TRUE;
1080 if (!(*info->callbacks
1081 ->add_archive_element) (info, abfd, bfd_asymbol_name (p),
1082 &abfd))
1083 return FALSE;
1084 /* Potentially, the add_archive_element hook may have set a
1085 substitute BFD for us. */
1086 return bfd_link_add_symbols (abfd, info);
1087 }
1088
1089 /* P is a common symbol. */
1090
1091 if (h->type == bfd_link_hash_undefined)
1092 {
1093 bfd *symbfd;
1094 bfd_vma size;
1095 unsigned int power;
1096
1097 /* Turn the symbol into a common symbol but do not link in
1098 the object file. This is how a.out works. Object
1099 formats that require different semantics must implement
1100 this function differently. This symbol is already on the
1101 undefs list. We add the section to a common section
1102 attached to symbfd to ensure that it is in a BFD which
1103 will be linked in. */
1104 symbfd = h->u.undef.abfd;
1105 h->type = bfd_link_hash_common;
1106 h->u.c.p = (struct bfd_link_hash_common_entry *)
1107 bfd_hash_allocate (&info->hash->table,
1108 sizeof (struct bfd_link_hash_common_entry));
1109 if (h->u.c.p == NULL)
1110 return FALSE;
1111
1112 size = bfd_asymbol_value (p);
1113 h->u.c.size = size;
1114
1115 power = bfd_log2 (size);
1116 if (power > 4)
1117 power = 4;
1118 h->u.c.p->alignment_power = power;
1119
1120 if (p->section == bfd_com_section_ptr)
1121 h->u.c.p->section = bfd_make_section_old_way (symbfd, "COMMON");
1122 else
1123 h->u.c.p->section = bfd_make_section_old_way (symbfd,
1124 p->section->name);
1125 h->u.c.p->section->flags |= SEC_ALLOC;
1126 }
1127 else
1128 {
1129 /* Adjust the size of the common symbol if necessary. This
1130 is how a.out works. Object formats that require
1131 different semantics must implement this function
1132 differently. */
1133 if (bfd_asymbol_value (p) > h->u.c.size)
1134 h->u.c.size = bfd_asymbol_value (p);
1135 }
1136 }
1137
1138 /* This archive element is not needed. */
1139 return TRUE;
1140 }
1141
1142 /* Add the symbols from an object file to the global hash table. ABFD
1143 is the object file. INFO is the linker information. SYMBOL_COUNT
1144 is the number of symbols. SYMBOLS is the list of symbols. */
1145
1146 static bfd_boolean
1147 generic_link_add_symbol_list (bfd *abfd,
1148 struct bfd_link_info *info,
1149 bfd_size_type symbol_count,
1150 asymbol **symbols)
1151 {
1152 asymbol **pp, **ppend;
1153
1154 pp = symbols;
1155 ppend = symbols + symbol_count;
1156 for (; pp < ppend; pp++)
1157 {
1158 asymbol *p;
1159
1160 p = *pp;
1161
1162 if ((p->flags & (BSF_INDIRECT
1163 | BSF_WARNING
1164 | BSF_GLOBAL
1165 | BSF_CONSTRUCTOR
1166 | BSF_WEAK)) != 0
1167 || bfd_is_und_section (bfd_get_section (p))
1168 || bfd_is_com_section (bfd_get_section (p))
1169 || bfd_is_ind_section (bfd_get_section (p)))
1170 {
1171 const char *name;
1172 const char *string;
1173 struct generic_link_hash_entry *h;
1174 struct bfd_link_hash_entry *bh;
1175
1176 string = name = bfd_asymbol_name (p);
1177 if (((p->flags & BSF_INDIRECT) != 0
1178 || bfd_is_ind_section (p->section))
1179 && pp + 1 < ppend)
1180 {
1181 pp++;
1182 string = bfd_asymbol_name (*pp);
1183 }
1184 else if ((p->flags & BSF_WARNING) != 0
1185 && pp + 1 < ppend)
1186 {
1187 /* The name of P is actually the warning string, and the
1188 next symbol is the one to warn about. */
1189 pp++;
1190 name = bfd_asymbol_name (*pp);
1191 }
1192
1193 bh = NULL;
1194 if (! (_bfd_generic_link_add_one_symbol
1195 (info, abfd, name, p->flags, bfd_get_section (p),
1196 p->value, string, FALSE, FALSE, &bh)))
1197 return FALSE;
1198 h = (struct generic_link_hash_entry *) bh;
1199
1200 /* If this is a constructor symbol, and the linker didn't do
1201 anything with it, then we want to just pass the symbol
1202 through to the output file. This will happen when
1203 linking with -r. */
1204 if ((p->flags & BSF_CONSTRUCTOR) != 0
1205 && (h == NULL || h->root.type == bfd_link_hash_new))
1206 {
1207 p->udata.p = NULL;
1208 continue;
1209 }
1210
1211 /* Save the BFD symbol so that we don't lose any backend
1212 specific information that may be attached to it. We only
1213 want this one if it gives more information than the
1214 existing one; we don't want to replace a defined symbol
1215 with an undefined one. This routine may be called with a
1216 hash table other than the generic hash table, so we only
1217 do this if we are certain that the hash table is a
1218 generic one. */
1219 if (info->output_bfd->xvec == abfd->xvec)
1220 {
1221 if (h->sym == NULL
1222 || (! bfd_is_und_section (bfd_get_section (p))
1223 && (! bfd_is_com_section (bfd_get_section (p))
1224 || bfd_is_und_section (bfd_get_section (h->sym)))))
1225 {
1226 h->sym = p;
1227 /* BSF_OLD_COMMON is a hack to support COFF reloc
1228 reading, and it should go away when the COFF
1229 linker is switched to the new version. */
1230 if (bfd_is_com_section (bfd_get_section (p)))
1231 p->flags |= BSF_OLD_COMMON;
1232 }
1233 }
1234
1235 /* Store a back pointer from the symbol to the hash
1236 table entry for the benefit of relaxation code until
1237 it gets rewritten to not use asymbol structures.
1238 Setting this is also used to check whether these
1239 symbols were set up by the generic linker. */
1240 p->udata.p = h;
1241 }
1242 }
1243
1244 return TRUE;
1245 }
1246 \f
1247 /* We use a state table to deal with adding symbols from an object
1248 file. The first index into the state table describes the symbol
1249 from the object file. The second index into the state table is the
1250 type of the symbol in the hash table. */
1251
1252 /* The symbol from the object file is turned into one of these row
1253 values. */
1254
1255 enum link_row
1256 {
1257 UNDEF_ROW, /* Undefined. */
1258 UNDEFW_ROW, /* Weak undefined. */
1259 DEF_ROW, /* Defined. */
1260 DEFW_ROW, /* Weak defined. */
1261 COMMON_ROW, /* Common. */
1262 INDR_ROW, /* Indirect. */
1263 WARN_ROW, /* Warning. */
1264 SET_ROW /* Member of set. */
1265 };
1266
1267 /* apparently needed for Hitachi 3050R(HI-UX/WE2)? */
1268 #undef FAIL
1269
1270 /* The actions to take in the state table. */
1271
1272 enum link_action
1273 {
1274 FAIL, /* Abort. */
1275 UND, /* Mark symbol undefined. */
1276 WEAK, /* Mark symbol weak undefined. */
1277 DEF, /* Mark symbol defined. */
1278 DEFW, /* Mark symbol weak defined. */
1279 COM, /* Mark symbol common. */
1280 REF, /* Mark defined symbol referenced. */
1281 CREF, /* Possibly warn about common reference to defined symbol. */
1282 CDEF, /* Define existing common symbol. */
1283 NOACT, /* No action. */
1284 BIG, /* Mark symbol common using largest size. */
1285 MDEF, /* Multiple definition error. */
1286 MIND, /* Multiple indirect symbols. */
1287 IND, /* Make indirect symbol. */
1288 CIND, /* Make indirect symbol from existing common symbol. */
1289 SET, /* Add value to set. */
1290 MWARN, /* Make warning symbol. */
1291 WARN, /* Warn if referenced, else MWARN. */
1292 CYCLE, /* Repeat with symbol pointed to. */
1293 REFC, /* Mark indirect symbol referenced and then CYCLE. */
1294 WARNC /* Issue warning and then CYCLE. */
1295 };
1296
1297 /* The state table itself. The first index is a link_row and the
1298 second index is a bfd_link_hash_type. */
1299
1300 static const enum link_action link_action[8][8] =
1301 {
1302 /* current\prev new undef undefw def defw com indr warn */
1303 /* UNDEF_ROW */ {UND, NOACT, UND, REF, REF, NOACT, REFC, WARNC },
1304 /* UNDEFW_ROW */ {WEAK, NOACT, NOACT, REF, REF, NOACT, REFC, WARNC },
1305 /* DEF_ROW */ {DEF, DEF, DEF, MDEF, DEF, CDEF, MDEF, CYCLE },
1306 /* DEFW_ROW */ {DEFW, DEFW, DEFW, NOACT, NOACT, NOACT, NOACT, CYCLE },
1307 /* COMMON_ROW */ {COM, COM, COM, CREF, COM, BIG, REFC, WARNC },
1308 /* INDR_ROW */ {IND, IND, IND, MDEF, IND, CIND, MIND, CYCLE },
1309 /* WARN_ROW */ {MWARN, WARN, WARN, WARN, WARN, WARN, WARN, NOACT },
1310 /* SET_ROW */ {SET, SET, SET, SET, SET, SET, CYCLE, CYCLE }
1311 };
1312
1313 /* Most of the entries in the LINK_ACTION table are straightforward,
1314 but a few are somewhat subtle.
1315
1316 A reference to an indirect symbol (UNDEF_ROW/indr or
1317 UNDEFW_ROW/indr) is counted as a reference both to the indirect
1318 symbol and to the symbol the indirect symbol points to.
1319
1320 A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn)
1321 causes the warning to be issued.
1322
1323 A common definition of an indirect symbol (COMMON_ROW/indr) is
1324 treated as a multiple definition error. Likewise for an indirect
1325 definition of a common symbol (INDR_ROW/com).
1326
1327 An indirect definition of a warning (INDR_ROW/warn) does not cause
1328 the warning to be issued.
1329
1330 If a warning is created for an indirect symbol (WARN_ROW/indr) no
1331 warning is created for the symbol the indirect symbol points to.
1332
1333 Adding an entry to a set does not count as a reference to a set,
1334 and no warning is issued (SET_ROW/warn). */
1335
1336 /* Return the BFD in which a hash entry has been defined, if known. */
1337
1338 static bfd *
1339 hash_entry_bfd (struct bfd_link_hash_entry *h)
1340 {
1341 while (h->type == bfd_link_hash_warning)
1342 h = h->u.i.link;
1343 switch (h->type)
1344 {
1345 default:
1346 return NULL;
1347 case bfd_link_hash_undefined:
1348 case bfd_link_hash_undefweak:
1349 return h->u.undef.abfd;
1350 case bfd_link_hash_defined:
1351 case bfd_link_hash_defweak:
1352 return h->u.def.section->owner;
1353 case bfd_link_hash_common:
1354 return h->u.c.p->section->owner;
1355 }
1356 /*NOTREACHED*/
1357 }
1358
1359 /* Add a symbol to the global hash table.
1360 ABFD is the BFD the symbol comes from.
1361 NAME is the name of the symbol.
1362 FLAGS is the BSF_* bits associated with the symbol.
1363 SECTION is the section in which the symbol is defined; this may be
1364 bfd_und_section_ptr or bfd_com_section_ptr.
1365 VALUE is the value of the symbol, relative to the section.
1366 STRING is used for either an indirect symbol, in which case it is
1367 the name of the symbol to indirect to, or a warning symbol, in
1368 which case it is the warning string.
1369 COPY is TRUE if NAME or STRING must be copied into locally
1370 allocated memory if they need to be saved.
1371 COLLECT is TRUE if we should automatically collect gcc constructor
1372 or destructor names as collect2 does.
1373 HASHP, if not NULL, is a place to store the created hash table
1374 entry; if *HASHP is not NULL, the caller has already looked up
1375 the hash table entry, and stored it in *HASHP. */
1376
1377 bfd_boolean
1378 _bfd_generic_link_add_one_symbol (struct bfd_link_info *info,
1379 bfd *abfd,
1380 const char *name,
1381 flagword flags,
1382 asection *section,
1383 bfd_vma value,
1384 const char *string,
1385 bfd_boolean copy,
1386 bfd_boolean collect,
1387 struct bfd_link_hash_entry **hashp)
1388 {
1389 enum link_row row;
1390 struct bfd_link_hash_entry *h;
1391 struct bfd_link_hash_entry *inh = NULL;
1392 bfd_boolean cycle;
1393
1394 BFD_ASSERT (section != NULL);
1395
1396 if (bfd_is_ind_section (section)
1397 || (flags & BSF_INDIRECT) != 0)
1398 {
1399 row = INDR_ROW;
1400 /* Create the indirect symbol here. This is for the benefit of
1401 the plugin "notice" function.
1402 STRING is the name of the symbol we want to indirect to. */
1403 inh = bfd_wrapped_link_hash_lookup (abfd, info, string, TRUE,
1404 copy, FALSE);
1405 if (inh == NULL)
1406 return FALSE;
1407 }
1408 else if ((flags & BSF_WARNING) != 0)
1409 row = WARN_ROW;
1410 else if ((flags & BSF_CONSTRUCTOR) != 0)
1411 row = SET_ROW;
1412 else if (bfd_is_und_section (section))
1413 {
1414 if ((flags & BSF_WEAK) != 0)
1415 row = UNDEFW_ROW;
1416 else
1417 row = UNDEF_ROW;
1418 }
1419 else if ((flags & BSF_WEAK) != 0)
1420 row = DEFW_ROW;
1421 else if (bfd_is_com_section (section))
1422 {
1423 row = COMMON_ROW;
1424 if (!bfd_link_relocatable (info)
1425 && name[0] == '_'
1426 && name[1] == '_'
1427 && strcmp (name + (name[2] == '_'), "__gnu_lto_slim") == 0)
1428 _bfd_error_handler
1429 (_("%pB: plugin needed to handle lto object"), abfd);
1430 }
1431 else
1432 row = DEF_ROW;
1433
1434 if (hashp != NULL && *hashp != NULL)
1435 h = *hashp;
1436 else
1437 {
1438 if (row == UNDEF_ROW || row == UNDEFW_ROW)
1439 h = bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, copy, FALSE);
1440 else
1441 h = bfd_link_hash_lookup (info->hash, name, TRUE, copy, FALSE);
1442 if (h == NULL)
1443 {
1444 if (hashp != NULL)
1445 *hashp = NULL;
1446 return FALSE;
1447 }
1448 }
1449
1450 if (info->notice_all
1451 || (info->notice_hash != NULL
1452 && bfd_hash_lookup (info->notice_hash, name, FALSE, FALSE) != NULL))
1453 {
1454 if (! (*info->callbacks->notice) (info, h, inh,
1455 abfd, section, value, flags))
1456 return FALSE;
1457 }
1458
1459 if (hashp != NULL)
1460 *hashp = h;
1461
1462 do
1463 {
1464 enum link_action action;
1465 int prev;
1466
1467 prev = h->type;
1468 /* Treat symbols defined by early linker script pass as undefined. */
1469 if (h->ldscript_def)
1470 prev = bfd_link_hash_undefined;
1471 cycle = FALSE;
1472 action = link_action[(int) row][prev];
1473 switch (action)
1474 {
1475 case FAIL:
1476 abort ();
1477
1478 case NOACT:
1479 /* Do nothing. */
1480 break;
1481
1482 case UND:
1483 /* Make a new undefined symbol. */
1484 h->type = bfd_link_hash_undefined;
1485 h->u.undef.abfd = abfd;
1486 bfd_link_add_undef (info->hash, h);
1487 break;
1488
1489 case WEAK:
1490 /* Make a new weak undefined symbol. */
1491 h->type = bfd_link_hash_undefweak;
1492 h->u.undef.abfd = abfd;
1493 break;
1494
1495 case CDEF:
1496 /* We have found a definition for a symbol which was
1497 previously common. */
1498 BFD_ASSERT (h->type == bfd_link_hash_common);
1499 (*info->callbacks->multiple_common) (info, h, abfd,
1500 bfd_link_hash_defined, 0);
1501 /* Fall through. */
1502 case DEF:
1503 case DEFW:
1504 {
1505 enum bfd_link_hash_type oldtype;
1506
1507 /* Define a symbol. */
1508 oldtype = h->type;
1509 if (action == DEFW)
1510 h->type = bfd_link_hash_defweak;
1511 else
1512 h->type = bfd_link_hash_defined;
1513 h->u.def.section = section;
1514 h->u.def.value = value;
1515 h->linker_def = 0;
1516 h->ldscript_def = 0;
1517
1518 /* If we have been asked to, we act like collect2 and
1519 identify all functions that might be global
1520 constructors and destructors and pass them up in a
1521 callback. We only do this for certain object file
1522 types, since many object file types can handle this
1523 automatically. */
1524 if (collect && name[0] == '_')
1525 {
1526 const char *s;
1527
1528 /* A constructor or destructor name starts like this:
1529 _+GLOBAL_[_.$][ID][_.$] where the first [_.$] and
1530 the second are the same character (we accept any
1531 character there, in case a new object file format
1532 comes along with even worse naming restrictions). */
1533
1534 #define CONS_PREFIX "GLOBAL_"
1535 #define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
1536
1537 s = name + 1;
1538 while (*s == '_')
1539 ++s;
1540 if (s[0] == 'G' && CONST_STRNEQ (s, CONS_PREFIX))
1541 {
1542 char c;
1543
1544 c = s[CONS_PREFIX_LEN + 1];
1545 if ((c == 'I' || c == 'D')
1546 && s[CONS_PREFIX_LEN] == s[CONS_PREFIX_LEN + 2])
1547 {
1548 /* If this is a definition of a symbol which
1549 was previously weakly defined, we are in
1550 trouble. We have already added a
1551 constructor entry for the weak defined
1552 symbol, and now we are trying to add one
1553 for the new symbol. Fortunately, this case
1554 should never arise in practice. */
1555 if (oldtype == bfd_link_hash_defweak)
1556 abort ();
1557
1558 (*info->callbacks->constructor) (info, c == 'I',
1559 h->root.string, abfd,
1560 section, value);
1561 }
1562 }
1563 }
1564 }
1565
1566 break;
1567
1568 case COM:
1569 /* We have found a common definition for a symbol. */
1570 if (h->type == bfd_link_hash_new)
1571 bfd_link_add_undef (info->hash, h);
1572 h->type = bfd_link_hash_common;
1573 h->u.c.p = (struct bfd_link_hash_common_entry *)
1574 bfd_hash_allocate (&info->hash->table,
1575 sizeof (struct bfd_link_hash_common_entry));
1576 if (h->u.c.p == NULL)
1577 return FALSE;
1578
1579 h->u.c.size = value;
1580
1581 /* Select a default alignment based on the size. This may
1582 be overridden by the caller. */
1583 {
1584 unsigned int power;
1585
1586 power = bfd_log2 (value);
1587 if (power > 4)
1588 power = 4;
1589 h->u.c.p->alignment_power = power;
1590 }
1591
1592 /* The section of a common symbol is only used if the common
1593 symbol is actually allocated. It basically provides a
1594 hook for the linker script to decide which output section
1595 the common symbols should be put in. In most cases, the
1596 section of a common symbol will be bfd_com_section_ptr,
1597 the code here will choose a common symbol section named
1598 "COMMON", and the linker script will contain *(COMMON) in
1599 the appropriate place. A few targets use separate common
1600 sections for small symbols, and they require special
1601 handling. */
1602 if (section == bfd_com_section_ptr)
1603 {
1604 h->u.c.p->section = bfd_make_section_old_way (abfd, "COMMON");
1605 h->u.c.p->section->flags |= SEC_ALLOC;
1606 }
1607 else if (section->owner != abfd)
1608 {
1609 h->u.c.p->section = bfd_make_section_old_way (abfd,
1610 section->name);
1611 h->u.c.p->section->flags |= SEC_ALLOC;
1612 }
1613 else
1614 h->u.c.p->section = section;
1615 h->linker_def = 0;
1616 h->ldscript_def = 0;
1617 break;
1618
1619 case REF:
1620 /* A reference to a defined symbol. */
1621 if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1622 h->u.undef.next = h;
1623 break;
1624
1625 case BIG:
1626 /* We have found a common definition for a symbol which
1627 already had a common definition. Use the maximum of the
1628 two sizes, and use the section required by the larger symbol. */
1629 BFD_ASSERT (h->type == bfd_link_hash_common);
1630 (*info->callbacks->multiple_common) (info, h, abfd,
1631 bfd_link_hash_common, value);
1632 if (value > h->u.c.size)
1633 {
1634 unsigned int power;
1635
1636 h->u.c.size = value;
1637
1638 /* Select a default alignment based on the size. This may
1639 be overridden by the caller. */
1640 power = bfd_log2 (value);
1641 if (power > 4)
1642 power = 4;
1643 h->u.c.p->alignment_power = power;
1644
1645 /* Some systems have special treatment for small commons,
1646 hence we want to select the section used by the larger
1647 symbol. This makes sure the symbol does not go in a
1648 small common section if it is now too large. */
1649 if (section == bfd_com_section_ptr)
1650 {
1651 h->u.c.p->section
1652 = bfd_make_section_old_way (abfd, "COMMON");
1653 h->u.c.p->section->flags |= SEC_ALLOC;
1654 }
1655 else if (section->owner != abfd)
1656 {
1657 h->u.c.p->section
1658 = bfd_make_section_old_way (abfd, section->name);
1659 h->u.c.p->section->flags |= SEC_ALLOC;
1660 }
1661 else
1662 h->u.c.p->section = section;
1663 }
1664 break;
1665
1666 case CREF:
1667 /* We have found a common definition for a symbol which
1668 was already defined. */
1669 (*info->callbacks->multiple_common) (info, h, abfd,
1670 bfd_link_hash_common, value);
1671 break;
1672
1673 case MIND:
1674 /* Multiple indirect symbols. This is OK if they both point
1675 to the same symbol. */
1676 if (strcmp (h->u.i.link->root.string, string) == 0)
1677 break;
1678 /* Fall through. */
1679 case MDEF:
1680 /* Handle a multiple definition. */
1681 (*info->callbacks->multiple_definition) (info, h,
1682 abfd, section, value);
1683 break;
1684
1685 case CIND:
1686 /* Create an indirect symbol from an existing common symbol. */
1687 BFD_ASSERT (h->type == bfd_link_hash_common);
1688 (*info->callbacks->multiple_common) (info, h, abfd,
1689 bfd_link_hash_indirect, 0);
1690 /* Fall through. */
1691 case IND:
1692 if (inh->type == bfd_link_hash_indirect
1693 && inh->u.i.link == h)
1694 {
1695 _bfd_error_handler
1696 /* xgettext:c-format */
1697 (_("%pB: indirect symbol `%s' to `%s' is a loop"),
1698 abfd, name, string);
1699 bfd_set_error (bfd_error_invalid_operation);
1700 return FALSE;
1701 }
1702 if (inh->type == bfd_link_hash_new)
1703 {
1704 inh->type = bfd_link_hash_undefined;
1705 inh->u.undef.abfd = abfd;
1706 bfd_link_add_undef (info->hash, inh);
1707 }
1708
1709 /* If the indirect symbol has been referenced, we need to
1710 push the reference down to the symbol we are referencing. */
1711 if (h->type != bfd_link_hash_new)
1712 {
1713 /* ??? If inh->type == bfd_link_hash_undefweak this
1714 converts inh to bfd_link_hash_undefined. */
1715 row = UNDEF_ROW;
1716 cycle = TRUE;
1717 }
1718
1719 h->type = bfd_link_hash_indirect;
1720 h->u.i.link = inh;
1721 /* Not setting h = h->u.i.link here means that when cycle is
1722 set above we'll always go to REFC, and then cycle again
1723 to the indirected symbol. This means that any successful
1724 change of an existing symbol to indirect counts as a
1725 reference. ??? That may not be correct when the existing
1726 symbol was defweak. */
1727 break;
1728
1729 case SET:
1730 /* Add an entry to a set. */
1731 (*info->callbacks->add_to_set) (info, h, BFD_RELOC_CTOR,
1732 abfd, section, value);
1733 break;
1734
1735 case WARNC:
1736 /* Issue a warning and cycle, except when the reference is
1737 in LTO IR. */
1738 if (h->u.i.warning != NULL
1739 && (abfd->flags & BFD_PLUGIN) == 0)
1740 {
1741 (*info->callbacks->warning) (info, h->u.i.warning,
1742 h->root.string, abfd, NULL, 0);
1743 /* Only issue a warning once. */
1744 h->u.i.warning = NULL;
1745 }
1746 /* Fall through. */
1747 case CYCLE:
1748 /* Try again with the referenced symbol. */
1749 h = h->u.i.link;
1750 cycle = TRUE;
1751 break;
1752
1753 case REFC:
1754 /* A reference to an indirect symbol. */
1755 if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1756 h->u.undef.next = h;
1757 h = h->u.i.link;
1758 cycle = TRUE;
1759 break;
1760
1761 case WARN:
1762 /* Warn if this symbol has been referenced already from non-IR,
1763 otherwise add a warning. */
1764 if ((!info->lto_plugin_active
1765 && (h->u.undef.next != NULL || info->hash->undefs_tail == h))
1766 || h->non_ir_ref_regular
1767 || h->non_ir_ref_dynamic)
1768 {
1769 (*info->callbacks->warning) (info, string, h->root.string,
1770 hash_entry_bfd (h), NULL, 0);
1771 break;
1772 }
1773 /* Fall through. */
1774 case MWARN:
1775 /* Make a warning symbol. */
1776 {
1777 struct bfd_link_hash_entry *sub;
1778
1779 /* STRING is the warning to give. */
1780 sub = ((struct bfd_link_hash_entry *)
1781 ((*info->hash->table.newfunc)
1782 (NULL, &info->hash->table, h->root.string)));
1783 if (sub == NULL)
1784 return FALSE;
1785 *sub = *h;
1786 sub->type = bfd_link_hash_warning;
1787 sub->u.i.link = h;
1788 if (! copy)
1789 sub->u.i.warning = string;
1790 else
1791 {
1792 char *w;
1793 size_t len = strlen (string) + 1;
1794
1795 w = (char *) bfd_hash_allocate (&info->hash->table, len);
1796 if (w == NULL)
1797 return FALSE;
1798 memcpy (w, string, len);
1799 sub->u.i.warning = w;
1800 }
1801
1802 bfd_hash_replace (&info->hash->table,
1803 (struct bfd_hash_entry *) h,
1804 (struct bfd_hash_entry *) sub);
1805 if (hashp != NULL)
1806 *hashp = sub;
1807 }
1808 break;
1809 }
1810 }
1811 while (cycle);
1812
1813 return TRUE;
1814 }
1815 \f
1816 /* Generic final link routine. */
1817
1818 bfd_boolean
1819 _bfd_generic_final_link (bfd *abfd, struct bfd_link_info *info)
1820 {
1821 bfd *sub;
1822 asection *o;
1823 struct bfd_link_order *p;
1824 size_t outsymalloc;
1825 struct generic_write_global_symbol_info wginfo;
1826
1827 bfd_get_outsymbols (abfd) = NULL;
1828 bfd_get_symcount (abfd) = 0;
1829 outsymalloc = 0;
1830
1831 /* Mark all sections which will be included in the output file. */
1832 for (o = abfd->sections; o != NULL; o = o->next)
1833 for (p = o->map_head.link_order; p != NULL; p = p->next)
1834 if (p->type == bfd_indirect_link_order)
1835 p->u.indirect.section->linker_mark = TRUE;
1836
1837 /* Build the output symbol table. */
1838 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
1839 if (! _bfd_generic_link_output_symbols (abfd, sub, info, &outsymalloc))
1840 return FALSE;
1841
1842 /* Accumulate the global symbols. */
1843 wginfo.info = info;
1844 wginfo.output_bfd = abfd;
1845 wginfo.psymalloc = &outsymalloc;
1846 _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info),
1847 _bfd_generic_link_write_global_symbol,
1848 &wginfo);
1849
1850 /* Make sure we have a trailing NULL pointer on OUTSYMBOLS. We
1851 shouldn't really need one, since we have SYMCOUNT, but some old
1852 code still expects one. */
1853 if (! generic_add_output_symbol (abfd, &outsymalloc, NULL))
1854 return FALSE;
1855
1856 if (bfd_link_relocatable (info))
1857 {
1858 /* Allocate space for the output relocs for each section. */
1859 for (o = abfd->sections; o != NULL; o = o->next)
1860 {
1861 o->reloc_count = 0;
1862 for (p = o->map_head.link_order; p != NULL; p = p->next)
1863 {
1864 if (p->type == bfd_section_reloc_link_order
1865 || p->type == bfd_symbol_reloc_link_order)
1866 ++o->reloc_count;
1867 else if (p->type == bfd_indirect_link_order)
1868 {
1869 asection *input_section;
1870 bfd *input_bfd;
1871 long relsize;
1872 arelent **relocs;
1873 asymbol **symbols;
1874 long reloc_count;
1875
1876 input_section = p->u.indirect.section;
1877 input_bfd = input_section->owner;
1878 relsize = bfd_get_reloc_upper_bound (input_bfd,
1879 input_section);
1880 if (relsize < 0)
1881 return FALSE;
1882 relocs = (arelent **) bfd_malloc (relsize);
1883 if (!relocs && relsize != 0)
1884 return FALSE;
1885 symbols = _bfd_generic_link_get_symbols (input_bfd);
1886 reloc_count = bfd_canonicalize_reloc (input_bfd,
1887 input_section,
1888 relocs,
1889 symbols);
1890 free (relocs);
1891 if (reloc_count < 0)
1892 return FALSE;
1893 BFD_ASSERT ((unsigned long) reloc_count
1894 == input_section->reloc_count);
1895 o->reloc_count += reloc_count;
1896 }
1897 }
1898 if (o->reloc_count > 0)
1899 {
1900 bfd_size_type amt;
1901
1902 amt = o->reloc_count;
1903 amt *= sizeof (arelent *);
1904 o->orelocation = (struct reloc_cache_entry **) bfd_alloc (abfd, amt);
1905 if (!o->orelocation)
1906 return FALSE;
1907 o->flags |= SEC_RELOC;
1908 /* Reset the count so that it can be used as an index
1909 when putting in the output relocs. */
1910 o->reloc_count = 0;
1911 }
1912 }
1913 }
1914
1915 /* Handle all the link order information for the sections. */
1916 for (o = abfd->sections; o != NULL; o = o->next)
1917 {
1918 for (p = o->map_head.link_order; p != NULL; p = p->next)
1919 {
1920 switch (p->type)
1921 {
1922 case bfd_section_reloc_link_order:
1923 case bfd_symbol_reloc_link_order:
1924 if (! _bfd_generic_reloc_link_order (abfd, info, o, p))
1925 return FALSE;
1926 break;
1927 case bfd_indirect_link_order:
1928 if (! default_indirect_link_order (abfd, info, o, p, TRUE))
1929 return FALSE;
1930 break;
1931 default:
1932 if (! _bfd_default_link_order (abfd, info, o, p))
1933 return FALSE;
1934 break;
1935 }
1936 }
1937 }
1938
1939 return TRUE;
1940 }
1941
1942 /* Add an output symbol to the output BFD. */
1943
1944 static bfd_boolean
1945 generic_add_output_symbol (bfd *output_bfd, size_t *psymalloc, asymbol *sym)
1946 {
1947 if (bfd_get_symcount (output_bfd) >= *psymalloc)
1948 {
1949 asymbol **newsyms;
1950 bfd_size_type amt;
1951
1952 if (*psymalloc == 0)
1953 *psymalloc = 124;
1954 else
1955 *psymalloc *= 2;
1956 amt = *psymalloc;
1957 amt *= sizeof (asymbol *);
1958 newsyms = (asymbol **) bfd_realloc (bfd_get_outsymbols (output_bfd), amt);
1959 if (newsyms == NULL)
1960 return FALSE;
1961 bfd_get_outsymbols (output_bfd) = newsyms;
1962 }
1963
1964 bfd_get_outsymbols (output_bfd) [bfd_get_symcount (output_bfd)] = sym;
1965 if (sym != NULL)
1966 ++ bfd_get_symcount (output_bfd);
1967
1968 return TRUE;
1969 }
1970
1971 /* Handle the symbols for an input BFD. */
1972
1973 bfd_boolean
1974 _bfd_generic_link_output_symbols (bfd *output_bfd,
1975 bfd *input_bfd,
1976 struct bfd_link_info *info,
1977 size_t *psymalloc)
1978 {
1979 asymbol **sym_ptr;
1980 asymbol **sym_end;
1981
1982 if (!bfd_generic_link_read_symbols (input_bfd))
1983 return FALSE;
1984
1985 /* Create a filename symbol if we are supposed to. */
1986 if (info->create_object_symbols_section != NULL)
1987 {
1988 asection *sec;
1989
1990 for (sec = input_bfd->sections; sec != NULL; sec = sec->next)
1991 {
1992 if (sec->output_section == info->create_object_symbols_section)
1993 {
1994 asymbol *newsym;
1995
1996 newsym = bfd_make_empty_symbol (input_bfd);
1997 if (!newsym)
1998 return FALSE;
1999 newsym->name = input_bfd->filename;
2000 newsym->value = 0;
2001 newsym->flags = BSF_LOCAL | BSF_FILE;
2002 newsym->section = sec;
2003
2004 if (! generic_add_output_symbol (output_bfd, psymalloc,
2005 newsym))
2006 return FALSE;
2007
2008 break;
2009 }
2010 }
2011 }
2012
2013 /* Adjust the values of the globally visible symbols, and write out
2014 local symbols. */
2015 sym_ptr = _bfd_generic_link_get_symbols (input_bfd);
2016 sym_end = sym_ptr + _bfd_generic_link_get_symcount (input_bfd);
2017 for (; sym_ptr < sym_end; sym_ptr++)
2018 {
2019 asymbol *sym;
2020 struct generic_link_hash_entry *h;
2021 bfd_boolean output;
2022
2023 h = NULL;
2024 sym = *sym_ptr;
2025 if ((sym->flags & (BSF_INDIRECT
2026 | BSF_WARNING
2027 | BSF_GLOBAL
2028 | BSF_CONSTRUCTOR
2029 | BSF_WEAK)) != 0
2030 || bfd_is_und_section (bfd_get_section (sym))
2031 || bfd_is_com_section (bfd_get_section (sym))
2032 || bfd_is_ind_section (bfd_get_section (sym)))
2033 {
2034 if (sym->udata.p != NULL)
2035 h = (struct generic_link_hash_entry *) sym->udata.p;
2036 else if ((sym->flags & BSF_CONSTRUCTOR) != 0)
2037 {
2038 /* This case normally means that the main linker code
2039 deliberately ignored this constructor symbol. We
2040 should just pass it through. This will screw up if
2041 the constructor symbol is from a different,
2042 non-generic, object file format, but the case will
2043 only arise when linking with -r, which will probably
2044 fail anyhow, since there will be no way to represent
2045 the relocs in the output format being used. */
2046 h = NULL;
2047 }
2048 else if (bfd_is_und_section (bfd_get_section (sym)))
2049 h = ((struct generic_link_hash_entry *)
2050 bfd_wrapped_link_hash_lookup (output_bfd, info,
2051 bfd_asymbol_name (sym),
2052 FALSE, FALSE, TRUE));
2053 else
2054 h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info),
2055 bfd_asymbol_name (sym),
2056 FALSE, FALSE, TRUE);
2057
2058 if (h != NULL)
2059 {
2060 /* Force all references to this symbol to point to
2061 the same area in memory. It is possible that
2062 this routine will be called with a hash table
2063 other than a generic hash table, so we double
2064 check that. */
2065 if (info->output_bfd->xvec == input_bfd->xvec)
2066 {
2067 if (h->sym != NULL)
2068 *sym_ptr = sym = h->sym;
2069 }
2070
2071 switch (h->root.type)
2072 {
2073 default:
2074 case bfd_link_hash_new:
2075 abort ();
2076 case bfd_link_hash_undefined:
2077 break;
2078 case bfd_link_hash_undefweak:
2079 sym->flags |= BSF_WEAK;
2080 break;
2081 case bfd_link_hash_indirect:
2082 h = (struct generic_link_hash_entry *) h->root.u.i.link;
2083 /* fall through */
2084 case bfd_link_hash_defined:
2085 sym->flags |= BSF_GLOBAL;
2086 sym->flags &=~ (BSF_WEAK | BSF_CONSTRUCTOR);
2087 sym->value = h->root.u.def.value;
2088 sym->section = h->root.u.def.section;
2089 break;
2090 case bfd_link_hash_defweak:
2091 sym->flags |= BSF_WEAK;
2092 sym->flags &=~ BSF_CONSTRUCTOR;
2093 sym->value = h->root.u.def.value;
2094 sym->section = h->root.u.def.section;
2095 break;
2096 case bfd_link_hash_common:
2097 sym->value = h->root.u.c.size;
2098 sym->flags |= BSF_GLOBAL;
2099 if (! bfd_is_com_section (sym->section))
2100 {
2101 BFD_ASSERT (bfd_is_und_section (sym->section));
2102 sym->section = bfd_com_section_ptr;
2103 }
2104 /* We do not set the section of the symbol to
2105 h->root.u.c.p->section. That value was saved so
2106 that we would know where to allocate the symbol
2107 if it was defined. In this case the type is
2108 still bfd_link_hash_common, so we did not define
2109 it, so we do not want to use that section. */
2110 break;
2111 }
2112 }
2113 }
2114
2115 if ((sym->flags & BSF_KEEP) == 0
2116 && (info->strip == strip_all
2117 || (info->strip == strip_some
2118 && bfd_hash_lookup (info->keep_hash, bfd_asymbol_name (sym),
2119 FALSE, FALSE) == NULL)))
2120 output = FALSE;
2121 else if ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0)
2122 {
2123 /* If this symbol is marked as occurring now, rather
2124 than at the end, output it now. This is used for
2125 COFF C_EXT FCN symbols. FIXME: There must be a
2126 better way. */
2127 if (bfd_asymbol_bfd (sym) == input_bfd
2128 && (sym->flags & BSF_NOT_AT_END) != 0)
2129 output = TRUE;
2130 else
2131 output = FALSE;
2132 }
2133 else if ((sym->flags & BSF_KEEP) != 0)
2134 output = TRUE;
2135 else if (bfd_is_ind_section (sym->section))
2136 output = FALSE;
2137 else if ((sym->flags & BSF_DEBUGGING) != 0)
2138 {
2139 if (info->strip == strip_none)
2140 output = TRUE;
2141 else
2142 output = FALSE;
2143 }
2144 else if (bfd_is_und_section (sym->section)
2145 || bfd_is_com_section (sym->section))
2146 output = FALSE;
2147 else if ((sym->flags & BSF_LOCAL) != 0)
2148 {
2149 if ((sym->flags & BSF_WARNING) != 0)
2150 output = FALSE;
2151 else
2152 {
2153 switch (info->discard)
2154 {
2155 default:
2156 case discard_all:
2157 output = FALSE;
2158 break;
2159 case discard_sec_merge:
2160 output = TRUE;
2161 if (bfd_link_relocatable (info)
2162 || ! (sym->section->flags & SEC_MERGE))
2163 break;
2164 /* FALLTHROUGH */
2165 case discard_l:
2166 if (bfd_is_local_label (input_bfd, sym))
2167 output = FALSE;
2168 else
2169 output = TRUE;
2170 break;
2171 case discard_none:
2172 output = TRUE;
2173 break;
2174 }
2175 }
2176 }
2177 else if ((sym->flags & BSF_CONSTRUCTOR))
2178 {
2179 if (info->strip != strip_all)
2180 output = TRUE;
2181 else
2182 output = FALSE;
2183 }
2184 else if (sym->flags == 0
2185 && (sym->section->owner->flags & BFD_PLUGIN) != 0)
2186 /* LTO doesn't set symbol information. We get here with the
2187 generic linker for a symbol that was "common" but no longer
2188 needs to be global. */
2189 output = FALSE;
2190 else
2191 abort ();
2192
2193 /* If this symbol is in a section which is not being included
2194 in the output file, then we don't want to output the
2195 symbol. */
2196 if (!bfd_is_abs_section (sym->section)
2197 && bfd_section_removed_from_list (output_bfd,
2198 sym->section->output_section))
2199 output = FALSE;
2200
2201 if (output)
2202 {
2203 if (! generic_add_output_symbol (output_bfd, psymalloc, sym))
2204 return FALSE;
2205 if (h != NULL)
2206 h->written = TRUE;
2207 }
2208 }
2209
2210 return TRUE;
2211 }
2212
2213 /* Set the section and value of a generic BFD symbol based on a linker
2214 hash table entry. */
2215
2216 static void
2217 set_symbol_from_hash (asymbol *sym, struct bfd_link_hash_entry *h)
2218 {
2219 switch (h->type)
2220 {
2221 default:
2222 abort ();
2223 break;
2224 case bfd_link_hash_new:
2225 /* This can happen when a constructor symbol is seen but we are
2226 not building constructors. */
2227 if (sym->section != NULL)
2228 {
2229 BFD_ASSERT ((sym->flags & BSF_CONSTRUCTOR) != 0);
2230 }
2231 else
2232 {
2233 sym->flags |= BSF_CONSTRUCTOR;
2234 sym->section = bfd_abs_section_ptr;
2235 sym->value = 0;
2236 }
2237 break;
2238 case bfd_link_hash_undefined:
2239 sym->section = bfd_und_section_ptr;
2240 sym->value = 0;
2241 break;
2242 case bfd_link_hash_undefweak:
2243 sym->section = bfd_und_section_ptr;
2244 sym->value = 0;
2245 sym->flags |= BSF_WEAK;
2246 break;
2247 case bfd_link_hash_defined:
2248 sym->section = h->u.def.section;
2249 sym->value = h->u.def.value;
2250 break;
2251 case bfd_link_hash_defweak:
2252 sym->flags |= BSF_WEAK;
2253 sym->section = h->u.def.section;
2254 sym->value = h->u.def.value;
2255 break;
2256 case bfd_link_hash_common:
2257 sym->value = h->u.c.size;
2258 if (sym->section == NULL)
2259 sym->section = bfd_com_section_ptr;
2260 else if (! bfd_is_com_section (sym->section))
2261 {
2262 BFD_ASSERT (bfd_is_und_section (sym->section));
2263 sym->section = bfd_com_section_ptr;
2264 }
2265 /* Do not set the section; see _bfd_generic_link_output_symbols. */
2266 break;
2267 case bfd_link_hash_indirect:
2268 case bfd_link_hash_warning:
2269 /* FIXME: What should we do here? */
2270 break;
2271 }
2272 }
2273
2274 /* Write out a global symbol, if it hasn't already been written out.
2275 This is called for each symbol in the hash table. */
2276
2277 bfd_boolean
2278 _bfd_generic_link_write_global_symbol (struct generic_link_hash_entry *h,
2279 void *data)
2280 {
2281 struct generic_write_global_symbol_info *wginfo =
2282 (struct generic_write_global_symbol_info *) data;
2283 asymbol *sym;
2284
2285 if (h->written)
2286 return TRUE;
2287
2288 h->written = TRUE;
2289
2290 if (wginfo->info->strip == strip_all
2291 || (wginfo->info->strip == strip_some
2292 && bfd_hash_lookup (wginfo->info->keep_hash, h->root.root.string,
2293 FALSE, FALSE) == NULL))
2294 return TRUE;
2295
2296 if (h->sym != NULL)
2297 sym = h->sym;
2298 else
2299 {
2300 sym = bfd_make_empty_symbol (wginfo->output_bfd);
2301 if (!sym)
2302 return FALSE;
2303 sym->name = h->root.root.string;
2304 sym->flags = 0;
2305 }
2306
2307 set_symbol_from_hash (sym, &h->root);
2308
2309 sym->flags |= BSF_GLOBAL;
2310
2311 if (! generic_add_output_symbol (wginfo->output_bfd, wginfo->psymalloc,
2312 sym))
2313 {
2314 /* FIXME: No way to return failure. */
2315 abort ();
2316 }
2317
2318 return TRUE;
2319 }
2320
2321 /* Create a relocation. */
2322
2323 bfd_boolean
2324 _bfd_generic_reloc_link_order (bfd *abfd,
2325 struct bfd_link_info *info,
2326 asection *sec,
2327 struct bfd_link_order *link_order)
2328 {
2329 arelent *r;
2330
2331 if (! bfd_link_relocatable (info))
2332 abort ();
2333 if (sec->orelocation == NULL)
2334 abort ();
2335
2336 r = (arelent *) bfd_alloc (abfd, sizeof (arelent));
2337 if (r == NULL)
2338 return FALSE;
2339
2340 r->address = link_order->offset;
2341 r->howto = bfd_reloc_type_lookup (abfd, link_order->u.reloc.p->reloc);
2342 if (r->howto == 0)
2343 {
2344 bfd_set_error (bfd_error_bad_value);
2345 return FALSE;
2346 }
2347
2348 /* Get the symbol to use for the relocation. */
2349 if (link_order->type == bfd_section_reloc_link_order)
2350 r->sym_ptr_ptr = link_order->u.reloc.p->u.section->symbol_ptr_ptr;
2351 else
2352 {
2353 struct generic_link_hash_entry *h;
2354
2355 h = ((struct generic_link_hash_entry *)
2356 bfd_wrapped_link_hash_lookup (abfd, info,
2357 link_order->u.reloc.p->u.name,
2358 FALSE, FALSE, TRUE));
2359 if (h == NULL
2360 || ! h->written)
2361 {
2362 (*info->callbacks->unattached_reloc)
2363 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
2364 bfd_set_error (bfd_error_bad_value);
2365 return FALSE;
2366 }
2367 r->sym_ptr_ptr = &h->sym;
2368 }
2369
2370 /* If this is an inplace reloc, write the addend to the object file.
2371 Otherwise, store it in the reloc addend. */
2372 if (! r->howto->partial_inplace)
2373 r->addend = link_order->u.reloc.p->addend;
2374 else
2375 {
2376 bfd_size_type size;
2377 bfd_reloc_status_type rstat;
2378 bfd_byte *buf;
2379 bfd_boolean ok;
2380 file_ptr loc;
2381
2382 size = bfd_get_reloc_size (r->howto);
2383 buf = (bfd_byte *) bfd_zmalloc (size);
2384 if (buf == NULL && size != 0)
2385 return FALSE;
2386 rstat = _bfd_relocate_contents (r->howto, abfd,
2387 (bfd_vma) link_order->u.reloc.p->addend,
2388 buf);
2389 switch (rstat)
2390 {
2391 case bfd_reloc_ok:
2392 break;
2393 default:
2394 case bfd_reloc_outofrange:
2395 abort ();
2396 case bfd_reloc_overflow:
2397 (*info->callbacks->reloc_overflow)
2398 (info, NULL,
2399 (link_order->type == bfd_section_reloc_link_order
2400 ? bfd_section_name (abfd, link_order->u.reloc.p->u.section)
2401 : link_order->u.reloc.p->u.name),
2402 r->howto->name, link_order->u.reloc.p->addend,
2403 NULL, NULL, 0);
2404 break;
2405 }
2406 loc = link_order->offset * bfd_octets_per_byte (abfd);
2407 ok = bfd_set_section_contents (abfd, sec, buf, loc, size);
2408 free (buf);
2409 if (! ok)
2410 return FALSE;
2411
2412 r->addend = 0;
2413 }
2414
2415 sec->orelocation[sec->reloc_count] = r;
2416 ++sec->reloc_count;
2417
2418 return TRUE;
2419 }
2420 \f
2421 /* Allocate a new link_order for a section. */
2422
2423 struct bfd_link_order *
2424 bfd_new_link_order (bfd *abfd, asection *section)
2425 {
2426 bfd_size_type amt = sizeof (struct bfd_link_order);
2427 struct bfd_link_order *new_lo;
2428
2429 new_lo = (struct bfd_link_order *) bfd_zalloc (abfd, amt);
2430 if (!new_lo)
2431 return NULL;
2432
2433 new_lo->type = bfd_undefined_link_order;
2434
2435 if (section->map_tail.link_order != NULL)
2436 section->map_tail.link_order->next = new_lo;
2437 else
2438 section->map_head.link_order = new_lo;
2439 section->map_tail.link_order = new_lo;
2440
2441 return new_lo;
2442 }
2443
2444 /* Default link order processing routine. Note that we can not handle
2445 the reloc_link_order types here, since they depend upon the details
2446 of how the particular backends generates relocs. */
2447
2448 bfd_boolean
2449 _bfd_default_link_order (bfd *abfd,
2450 struct bfd_link_info *info,
2451 asection *sec,
2452 struct bfd_link_order *link_order)
2453 {
2454 switch (link_order->type)
2455 {
2456 case bfd_undefined_link_order:
2457 case bfd_section_reloc_link_order:
2458 case bfd_symbol_reloc_link_order:
2459 default:
2460 abort ();
2461 case bfd_indirect_link_order:
2462 return default_indirect_link_order (abfd, info, sec, link_order,
2463 FALSE);
2464 case bfd_data_link_order:
2465 return default_data_link_order (abfd, info, sec, link_order);
2466 }
2467 }
2468
2469 /* Default routine to handle a bfd_data_link_order. */
2470
2471 static bfd_boolean
2472 default_data_link_order (bfd *abfd,
2473 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2474 asection *sec,
2475 struct bfd_link_order *link_order)
2476 {
2477 bfd_size_type size;
2478 size_t fill_size;
2479 bfd_byte *fill;
2480 file_ptr loc;
2481 bfd_boolean result;
2482
2483 BFD_ASSERT ((sec->flags & SEC_HAS_CONTENTS) != 0);
2484
2485 size = link_order->size;
2486 if (size == 0)
2487 return TRUE;
2488
2489 fill = link_order->u.data.contents;
2490 fill_size = link_order->u.data.size;
2491 if (fill_size == 0)
2492 {
2493 fill = abfd->arch_info->fill (size, bfd_big_endian (abfd),
2494 (sec->flags & SEC_CODE) != 0);
2495 if (fill == NULL)
2496 return FALSE;
2497 }
2498 else if (fill_size < size)
2499 {
2500 bfd_byte *p;
2501 fill = (bfd_byte *) bfd_malloc (size);
2502 if (fill == NULL)
2503 return FALSE;
2504 p = fill;
2505 if (fill_size == 1)
2506 memset (p, (int) link_order->u.data.contents[0], (size_t) size);
2507 else
2508 {
2509 do
2510 {
2511 memcpy (p, link_order->u.data.contents, fill_size);
2512 p += fill_size;
2513 size -= fill_size;
2514 }
2515 while (size >= fill_size);
2516 if (size != 0)
2517 memcpy (p, link_order->u.data.contents, (size_t) size);
2518 size = link_order->size;
2519 }
2520 }
2521
2522 loc = link_order->offset * bfd_octets_per_byte (abfd);
2523 result = bfd_set_section_contents (abfd, sec, fill, loc, size);
2524
2525 if (fill != link_order->u.data.contents)
2526 free (fill);
2527 return result;
2528 }
2529
2530 /* Default routine to handle a bfd_indirect_link_order. */
2531
2532 static bfd_boolean
2533 default_indirect_link_order (bfd *output_bfd,
2534 struct bfd_link_info *info,
2535 asection *output_section,
2536 struct bfd_link_order *link_order,
2537 bfd_boolean generic_linker)
2538 {
2539 asection *input_section;
2540 bfd *input_bfd;
2541 bfd_byte *contents = NULL;
2542 bfd_byte *new_contents;
2543 bfd_size_type sec_size;
2544 file_ptr loc;
2545
2546 BFD_ASSERT ((output_section->flags & SEC_HAS_CONTENTS) != 0);
2547
2548 input_section = link_order->u.indirect.section;
2549 input_bfd = input_section->owner;
2550 if (input_section->size == 0)
2551 return TRUE;
2552
2553 BFD_ASSERT (input_section->output_section == output_section);
2554 BFD_ASSERT (input_section->output_offset == link_order->offset);
2555 BFD_ASSERT (input_section->size == link_order->size);
2556
2557 if (bfd_link_relocatable (info)
2558 && input_section->reloc_count > 0
2559 && output_section->orelocation == NULL)
2560 {
2561 /* Space has not been allocated for the output relocations.
2562 This can happen when we are called by a specific backend
2563 because somebody is attempting to link together different
2564 types of object files. Handling this case correctly is
2565 difficult, and sometimes impossible. */
2566 _bfd_error_handler
2567 /* xgettext:c-format */
2568 (_("attempt to do relocatable link with %s input and %s output"),
2569 bfd_get_target (input_bfd), bfd_get_target (output_bfd));
2570 bfd_set_error (bfd_error_wrong_format);
2571 return FALSE;
2572 }
2573
2574 if (! generic_linker)
2575 {
2576 asymbol **sympp;
2577 asymbol **symppend;
2578
2579 /* Get the canonical symbols. The generic linker will always
2580 have retrieved them by this point, but we are being called by
2581 a specific linker, presumably because we are linking
2582 different types of object files together. */
2583 if (!bfd_generic_link_read_symbols (input_bfd))
2584 return FALSE;
2585
2586 /* Since we have been called by a specific linker, rather than
2587 the generic linker, the values of the symbols will not be
2588 right. They will be the values as seen in the input file,
2589 not the values of the final link. We need to fix them up
2590 before we can relocate the section. */
2591 sympp = _bfd_generic_link_get_symbols (input_bfd);
2592 symppend = sympp + _bfd_generic_link_get_symcount (input_bfd);
2593 for (; sympp < symppend; sympp++)
2594 {
2595 asymbol *sym;
2596 struct bfd_link_hash_entry *h;
2597
2598 sym = *sympp;
2599
2600 if ((sym->flags & (BSF_INDIRECT
2601 | BSF_WARNING
2602 | BSF_GLOBAL
2603 | BSF_CONSTRUCTOR
2604 | BSF_WEAK)) != 0
2605 || bfd_is_und_section (bfd_get_section (sym))
2606 || bfd_is_com_section (bfd_get_section (sym))
2607 || bfd_is_ind_section (bfd_get_section (sym)))
2608 {
2609 /* sym->udata may have been set by
2610 generic_link_add_symbol_list. */
2611 if (sym->udata.p != NULL)
2612 h = (struct bfd_link_hash_entry *) sym->udata.p;
2613 else if (bfd_is_und_section (bfd_get_section (sym)))
2614 h = bfd_wrapped_link_hash_lookup (output_bfd, info,
2615 bfd_asymbol_name (sym),
2616 FALSE, FALSE, TRUE);
2617 else
2618 h = bfd_link_hash_lookup (info->hash,
2619 bfd_asymbol_name (sym),
2620 FALSE, FALSE, TRUE);
2621 if (h != NULL)
2622 set_symbol_from_hash (sym, h);
2623 }
2624 }
2625 }
2626
2627 if ((output_section->flags & (SEC_GROUP | SEC_LINKER_CREATED)) == SEC_GROUP
2628 && input_section->size != 0)
2629 {
2630 /* Group section contents are set by bfd_elf_set_group_contents. */
2631 if (!output_bfd->output_has_begun)
2632 {
2633 /* FIXME: This hack ensures bfd_elf_set_group_contents is called. */
2634 if (!bfd_set_section_contents (output_bfd, output_section, "", 0, 1))
2635 goto error_return;
2636 }
2637 new_contents = output_section->contents;
2638 BFD_ASSERT (new_contents != NULL);
2639 BFD_ASSERT (input_section->output_offset == 0);
2640 }
2641 else
2642 {
2643 /* Get and relocate the section contents. */
2644 sec_size = (input_section->rawsize > input_section->size
2645 ? input_section->rawsize
2646 : input_section->size);
2647 contents = (bfd_byte *) bfd_malloc (sec_size);
2648 if (contents == NULL && sec_size != 0)
2649 goto error_return;
2650 new_contents = (bfd_get_relocated_section_contents
2651 (output_bfd, info, link_order, contents,
2652 bfd_link_relocatable (info),
2653 _bfd_generic_link_get_symbols (input_bfd)));
2654 if (!new_contents)
2655 goto error_return;
2656 }
2657
2658 /* Output the section contents. */
2659 loc = input_section->output_offset * bfd_octets_per_byte (output_bfd);
2660 if (! bfd_set_section_contents (output_bfd, output_section,
2661 new_contents, loc, input_section->size))
2662 goto error_return;
2663
2664 if (contents != NULL)
2665 free (contents);
2666 return TRUE;
2667
2668 error_return:
2669 if (contents != NULL)
2670 free (contents);
2671 return FALSE;
2672 }
2673
2674 /* A little routine to count the number of relocs in a link_order
2675 list. */
2676
2677 unsigned int
2678 _bfd_count_link_order_relocs (struct bfd_link_order *link_order)
2679 {
2680 register unsigned int c;
2681 register struct bfd_link_order *l;
2682
2683 c = 0;
2684 for (l = link_order; l != NULL; l = l->next)
2685 {
2686 if (l->type == bfd_section_reloc_link_order
2687 || l->type == bfd_symbol_reloc_link_order)
2688 ++c;
2689 }
2690
2691 return c;
2692 }
2693
2694 /*
2695 FUNCTION
2696 bfd_link_split_section
2697
2698 SYNOPSIS
2699 bfd_boolean bfd_link_split_section (bfd *abfd, asection *sec);
2700
2701 DESCRIPTION
2702 Return nonzero if @var{sec} should be split during a
2703 reloceatable or final link.
2704
2705 .#define bfd_link_split_section(abfd, sec) \
2706 . BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
2707 .
2708
2709 */
2710
2711 bfd_boolean
2712 _bfd_generic_link_split_section (bfd *abfd ATTRIBUTE_UNUSED,
2713 asection *sec ATTRIBUTE_UNUSED)
2714 {
2715 return FALSE;
2716 }
2717
2718 /*
2719 FUNCTION
2720 bfd_section_already_linked
2721
2722 SYNOPSIS
2723 bfd_boolean bfd_section_already_linked (bfd *abfd,
2724 asection *sec,
2725 struct bfd_link_info *info);
2726
2727 DESCRIPTION
2728 Check if @var{data} has been already linked during a reloceatable
2729 or final link. Return TRUE if it has.
2730
2731 .#define bfd_section_already_linked(abfd, sec, info) \
2732 . BFD_SEND (abfd, _section_already_linked, (abfd, sec, info))
2733 .
2734
2735 */
2736
2737 /* Sections marked with the SEC_LINK_ONCE flag should only be linked
2738 once into the output. This routine checks each section, and
2739 arrange to discard it if a section of the same name has already
2740 been linked. This code assumes that all relevant sections have the
2741 SEC_LINK_ONCE flag set; that is, it does not depend solely upon the
2742 section name. bfd_section_already_linked is called via
2743 bfd_map_over_sections. */
2744
2745 /* The hash table. */
2746
2747 static struct bfd_hash_table _bfd_section_already_linked_table;
2748
2749 /* Support routines for the hash table used by section_already_linked,
2750 initialize the table, traverse, lookup, fill in an entry and remove
2751 the table. */
2752
2753 void
2754 bfd_section_already_linked_table_traverse
2755 (bfd_boolean (*func) (struct bfd_section_already_linked_hash_entry *,
2756 void *), void *info)
2757 {
2758 bfd_hash_traverse (&_bfd_section_already_linked_table,
2759 (bfd_boolean (*) (struct bfd_hash_entry *,
2760 void *)) func,
2761 info);
2762 }
2763
2764 struct bfd_section_already_linked_hash_entry *
2765 bfd_section_already_linked_table_lookup (const char *name)
2766 {
2767 return ((struct bfd_section_already_linked_hash_entry *)
2768 bfd_hash_lookup (&_bfd_section_already_linked_table, name,
2769 TRUE, FALSE));
2770 }
2771
2772 bfd_boolean
2773 bfd_section_already_linked_table_insert
2774 (struct bfd_section_already_linked_hash_entry *already_linked_list,
2775 asection *sec)
2776 {
2777 struct bfd_section_already_linked *l;
2778
2779 /* Allocate the memory from the same obstack as the hash table is
2780 kept in. */
2781 l = (struct bfd_section_already_linked *)
2782 bfd_hash_allocate (&_bfd_section_already_linked_table, sizeof *l);
2783 if (l == NULL)
2784 return FALSE;
2785 l->sec = sec;
2786 l->next = already_linked_list->entry;
2787 already_linked_list->entry = l;
2788 return TRUE;
2789 }
2790
2791 static struct bfd_hash_entry *
2792 already_linked_newfunc (struct bfd_hash_entry *entry ATTRIBUTE_UNUSED,
2793 struct bfd_hash_table *table,
2794 const char *string ATTRIBUTE_UNUSED)
2795 {
2796 struct bfd_section_already_linked_hash_entry *ret =
2797 (struct bfd_section_already_linked_hash_entry *)
2798 bfd_hash_allocate (table, sizeof *ret);
2799
2800 if (ret == NULL)
2801 return NULL;
2802
2803 ret->entry = NULL;
2804
2805 return &ret->root;
2806 }
2807
2808 bfd_boolean
2809 bfd_section_already_linked_table_init (void)
2810 {
2811 return bfd_hash_table_init_n (&_bfd_section_already_linked_table,
2812 already_linked_newfunc,
2813 sizeof (struct bfd_section_already_linked_hash_entry),
2814 42);
2815 }
2816
2817 void
2818 bfd_section_already_linked_table_free (void)
2819 {
2820 bfd_hash_table_free (&_bfd_section_already_linked_table);
2821 }
2822
2823 /* Report warnings as appropriate for duplicate section SEC.
2824 Return FALSE if we decide to keep SEC after all. */
2825
2826 bfd_boolean
2827 _bfd_handle_already_linked (asection *sec,
2828 struct bfd_section_already_linked *l,
2829 struct bfd_link_info *info)
2830 {
2831 switch (sec->flags & SEC_LINK_DUPLICATES)
2832 {
2833 default:
2834 abort ();
2835
2836 case SEC_LINK_DUPLICATES_DISCARD:
2837 /* If we found an LTO IR match for this comdat group on
2838 the first pass, replace it with the LTO output on the
2839 second pass. We can't simply choose real object
2840 files over IR because the first pass may contain a
2841 mix of LTO and normal objects and we must keep the
2842 first match, be it IR or real. */
2843 if (sec->owner->lto_output
2844 && (l->sec->owner->flags & BFD_PLUGIN) != 0)
2845 {
2846 l->sec = sec;
2847 return FALSE;
2848 }
2849 break;
2850
2851 case SEC_LINK_DUPLICATES_ONE_ONLY:
2852 info->callbacks->einfo
2853 /* xgettext:c-format */
2854 (_("%pB: ignoring duplicate section `%pA'\n"),
2855 sec->owner, sec);
2856 break;
2857
2858 case SEC_LINK_DUPLICATES_SAME_SIZE:
2859 if ((l->sec->owner->flags & BFD_PLUGIN) != 0)
2860 ;
2861 else if (sec->size != l->sec->size)
2862 info->callbacks->einfo
2863 /* xgettext:c-format */
2864 (_("%pB: duplicate section `%pA' has different size\n"),
2865 sec->owner, sec);
2866 break;
2867
2868 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
2869 if ((l->sec->owner->flags & BFD_PLUGIN) != 0)
2870 ;
2871 else if (sec->size != l->sec->size)
2872 info->callbacks->einfo
2873 /* xgettext:c-format */
2874 (_("%pB: duplicate section `%pA' has different size\n"),
2875 sec->owner, sec);
2876 else if (sec->size != 0)
2877 {
2878 bfd_byte *sec_contents, *l_sec_contents = NULL;
2879
2880 if (!bfd_malloc_and_get_section (sec->owner, sec, &sec_contents))
2881 info->callbacks->einfo
2882 /* xgettext:c-format */
2883 (_("%pB: could not read contents of section `%pA'\n"),
2884 sec->owner, sec);
2885 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
2886 &l_sec_contents))
2887 info->callbacks->einfo
2888 /* xgettext:c-format */
2889 (_("%pB: could not read contents of section `%pA'\n"),
2890 l->sec->owner, l->sec);
2891 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
2892 info->callbacks->einfo
2893 /* xgettext:c-format */
2894 (_("%pB: duplicate section `%pA' has different contents\n"),
2895 sec->owner, sec);
2896
2897 if (sec_contents)
2898 free (sec_contents);
2899 if (l_sec_contents)
2900 free (l_sec_contents);
2901 }
2902 break;
2903 }
2904
2905 /* Set the output_section field so that lang_add_section
2906 does not create a lang_input_section structure for this
2907 section. Since there might be a symbol in the section
2908 being discarded, we must retain a pointer to the section
2909 which we are really going to use. */
2910 sec->output_section = bfd_abs_section_ptr;
2911 sec->kept_section = l->sec;
2912 return TRUE;
2913 }
2914
2915 /* This is used on non-ELF inputs. */
2916
2917 bfd_boolean
2918 _bfd_generic_section_already_linked (bfd *abfd ATTRIBUTE_UNUSED,
2919 asection *sec,
2920 struct bfd_link_info *info)
2921 {
2922 const char *name;
2923 struct bfd_section_already_linked *l;
2924 struct bfd_section_already_linked_hash_entry *already_linked_list;
2925
2926 if ((sec->flags & SEC_LINK_ONCE) == 0)
2927 return FALSE;
2928
2929 /* The generic linker doesn't handle section groups. */
2930 if ((sec->flags & SEC_GROUP) != 0)
2931 return FALSE;
2932
2933 /* FIXME: When doing a relocatable link, we may have trouble
2934 copying relocations in other sections that refer to local symbols
2935 in the section being discarded. Those relocations will have to
2936 be converted somehow; as of this writing I'm not sure that any of
2937 the backends handle that correctly.
2938
2939 It is tempting to instead not discard link once sections when
2940 doing a relocatable link (technically, they should be discarded
2941 whenever we are building constructors). However, that fails,
2942 because the linker winds up combining all the link once sections
2943 into a single large link once section, which defeats the purpose
2944 of having link once sections in the first place. */
2945
2946 name = bfd_get_section_name (abfd, sec);
2947
2948 already_linked_list = bfd_section_already_linked_table_lookup (name);
2949
2950 l = already_linked_list->entry;
2951 if (l != NULL)
2952 {
2953 /* The section has already been linked. See if we should
2954 issue a warning. */
2955 return _bfd_handle_already_linked (sec, l, info);
2956 }
2957
2958 /* This is the first section with this name. Record it. */
2959 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
2960 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
2961 return FALSE;
2962 }
2963
2964 /* Choose a neighbouring section to S in OBFD that will be output, or
2965 the absolute section if ADDR is out of bounds of the neighbours. */
2966
2967 asection *
2968 _bfd_nearby_section (bfd *obfd, asection *s, bfd_vma addr)
2969 {
2970 asection *next, *prev, *best;
2971
2972 /* Find preceding kept section. */
2973 for (prev = s->prev; prev != NULL; prev = prev->prev)
2974 if ((prev->flags & SEC_EXCLUDE) == 0
2975 && !bfd_section_removed_from_list (obfd, prev))
2976 break;
2977
2978 /* Find following kept section. Start at prev->next because
2979 other sections may have been added after S was removed. */
2980 if (s->prev != NULL)
2981 next = s->prev->next;
2982 else
2983 next = s->owner->sections;
2984 for (; next != NULL; next = next->next)
2985 if ((next->flags & SEC_EXCLUDE) == 0
2986 && !bfd_section_removed_from_list (obfd, next))
2987 break;
2988
2989 /* Choose better of two sections, based on flags. The idea
2990 is to choose a section that will be in the same segment
2991 as S would have been if it was kept. */
2992 best = next;
2993 if (prev == NULL)
2994 {
2995 if (next == NULL)
2996 best = bfd_abs_section_ptr;
2997 }
2998 else if (next == NULL)
2999 best = prev;
3000 else if (((prev->flags ^ next->flags)
3001 & (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_LOAD)) != 0)
3002 {
3003 if (((next->flags ^ s->flags)
3004 & (SEC_ALLOC | SEC_THREAD_LOCAL)) != 0
3005 /* We prefer to choose a loaded section. Section S
3006 doesn't have SEC_LOAD set (it being excluded, that
3007 part of the flag processing didn't happen) so we
3008 can't compare that flag to those of NEXT and PREV. */
3009 || ((prev->flags & SEC_LOAD) != 0
3010 && (next->flags & SEC_LOAD) == 0))
3011 best = prev;
3012 }
3013 else if (((prev->flags ^ next->flags) & SEC_READONLY) != 0)
3014 {
3015 if (((next->flags ^ s->flags) & SEC_READONLY) != 0)
3016 best = prev;
3017 }
3018 else if (((prev->flags ^ next->flags) & SEC_CODE) != 0)
3019 {
3020 if (((next->flags ^ s->flags) & SEC_CODE) != 0)
3021 best = prev;
3022 }
3023 else
3024 {
3025 /* Flags we care about are the same. Prefer the following
3026 section if that will result in a positive valued sym. */
3027 if (addr < next->vma)
3028 best = prev;
3029 }
3030
3031 return best;
3032 }
3033
3034 /* Convert symbols in excluded output sections to use a kept section. */
3035
3036 static bfd_boolean
3037 fix_syms (struct bfd_link_hash_entry *h, void *data)
3038 {
3039 bfd *obfd = (bfd *) data;
3040
3041 if (h->type == bfd_link_hash_defined
3042 || h->type == bfd_link_hash_defweak)
3043 {
3044 asection *s = h->u.def.section;
3045 if (s != NULL
3046 && s->output_section != NULL
3047 && (s->output_section->flags & SEC_EXCLUDE) != 0
3048 && bfd_section_removed_from_list (obfd, s->output_section))
3049 {
3050 asection *op;
3051
3052 h->u.def.value += s->output_offset + s->output_section->vma;
3053 op = _bfd_nearby_section (obfd, s->output_section, h->u.def.value);
3054 h->u.def.value -= op->vma;
3055 h->u.def.section = op;
3056 }
3057 }
3058
3059 return TRUE;
3060 }
3061
3062 void
3063 _bfd_fix_excluded_sec_syms (bfd *obfd, struct bfd_link_info *info)
3064 {
3065 bfd_link_hash_traverse (info->hash, fix_syms, obfd);
3066 }
3067
3068 /*
3069 FUNCTION
3070 bfd_generic_define_common_symbol
3071
3072 SYNOPSIS
3073 bfd_boolean bfd_generic_define_common_symbol
3074 (bfd *output_bfd, struct bfd_link_info *info,
3075 struct bfd_link_hash_entry *h);
3076
3077 DESCRIPTION
3078 Convert common symbol @var{h} into a defined symbol.
3079 Return TRUE on success and FALSE on failure.
3080
3081 .#define bfd_define_common_symbol(output_bfd, info, h) \
3082 . BFD_SEND (output_bfd, _bfd_define_common_symbol, (output_bfd, info, h))
3083 .
3084 */
3085
3086 bfd_boolean
3087 bfd_generic_define_common_symbol (bfd *output_bfd,
3088 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3089 struct bfd_link_hash_entry *h)
3090 {
3091 unsigned int power_of_two;
3092 bfd_vma alignment, size;
3093 asection *section;
3094
3095 BFD_ASSERT (h != NULL && h->type == bfd_link_hash_common);
3096
3097 size = h->u.c.size;
3098 power_of_two = h->u.c.p->alignment_power;
3099 section = h->u.c.p->section;
3100
3101 /* Increase the size of the section to align the common symbol.
3102 The alignment must be a power of two. */
3103 alignment = bfd_octets_per_byte (output_bfd) << power_of_two;
3104 BFD_ASSERT (alignment != 0 && (alignment & -alignment) == alignment);
3105 section->size += alignment - 1;
3106 section->size &= -alignment;
3107
3108 /* Adjust the section's overall alignment if necessary. */
3109 if (power_of_two > section->alignment_power)
3110 section->alignment_power = power_of_two;
3111
3112 /* Change the symbol from common to defined. */
3113 h->type = bfd_link_hash_defined;
3114 h->u.def.section = section;
3115 h->u.def.value = section->size;
3116
3117 /* Increase the size of the section. */
3118 section->size += size;
3119
3120 /* Make sure the section is allocated in memory, and make sure that
3121 it is no longer a common section. */
3122 section->flags |= SEC_ALLOC;
3123 section->flags &= ~(SEC_IS_COMMON | SEC_HAS_CONTENTS);
3124 return TRUE;
3125 }
3126
3127 /*
3128 FUNCTION
3129 _bfd_generic_link_hide_symbol
3130
3131 SYNOPSIS
3132 void _bfd_generic_link_hide_symbol
3133 (bfd *output_bfd, struct bfd_link_info *info,
3134 struct bfd_link_hash_entry *h);
3135
3136 DESCRIPTION
3137 Hide symbol @var{h}.
3138 This is an internal function. It should not be called from
3139 outside the BFD library.
3140
3141 .#define bfd_link_hide_symbol(output_bfd, info, h) \
3142 . BFD_SEND (output_bfd, _bfd_link_hide_symbol, (output_bfd, info, h))
3143 .
3144 */
3145
3146 void
3147 _bfd_generic_link_hide_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
3148 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3149 struct bfd_link_hash_entry *h ATTRIBUTE_UNUSED)
3150 {
3151 }
3152
3153 /*
3154 FUNCTION
3155 bfd_generic_define_start_stop
3156
3157 SYNOPSIS
3158 struct bfd_link_hash_entry *bfd_generic_define_start_stop
3159 (struct bfd_link_info *info,
3160 const char *symbol, asection *sec);
3161
3162 DESCRIPTION
3163 Define a __start, __stop, .startof. or .sizeof. symbol.
3164 Return the symbol or NULL if no such undefined symbol exists.
3165
3166 .#define bfd_define_start_stop(output_bfd, info, symbol, sec) \
3167 . BFD_SEND (output_bfd, _bfd_define_start_stop, (info, symbol, sec))
3168 .
3169 */
3170
3171 struct bfd_link_hash_entry *
3172 bfd_generic_define_start_stop (struct bfd_link_info *info,
3173 const char *symbol, asection *sec)
3174 {
3175 struct bfd_link_hash_entry *h;
3176
3177 h = bfd_link_hash_lookup (info->hash, symbol, FALSE, FALSE, TRUE);
3178 if (h != NULL
3179 && (h->type == bfd_link_hash_undefined
3180 || h->type == bfd_link_hash_undefweak))
3181 {
3182 h->type = bfd_link_hash_defined;
3183 h->u.def.section = sec;
3184 h->u.def.value = 0;
3185 return h;
3186 }
3187 return NULL;
3188 }
3189
3190 /*
3191 FUNCTION
3192 bfd_find_version_for_sym
3193
3194 SYNOPSIS
3195 struct bfd_elf_version_tree * bfd_find_version_for_sym
3196 (struct bfd_elf_version_tree *verdefs,
3197 const char *sym_name, bfd_boolean *hide);
3198
3199 DESCRIPTION
3200 Search an elf version script tree for symbol versioning
3201 info and export / don't-export status for a given symbol.
3202 Return non-NULL on success and NULL on failure; also sets
3203 the output @samp{hide} boolean parameter.
3204
3205 */
3206
3207 struct bfd_elf_version_tree *
3208 bfd_find_version_for_sym (struct bfd_elf_version_tree *verdefs,
3209 const char *sym_name,
3210 bfd_boolean *hide)
3211 {
3212 struct bfd_elf_version_tree *t;
3213 struct bfd_elf_version_tree *local_ver, *global_ver, *exist_ver;
3214 struct bfd_elf_version_tree *star_local_ver, *star_global_ver;
3215
3216 local_ver = NULL;
3217 global_ver = NULL;
3218 star_local_ver = NULL;
3219 star_global_ver = NULL;
3220 exist_ver = NULL;
3221 for (t = verdefs; t != NULL; t = t->next)
3222 {
3223 if (t->globals.list != NULL)
3224 {
3225 struct bfd_elf_version_expr *d = NULL;
3226
3227 while ((d = (*t->match) (&t->globals, d, sym_name)) != NULL)
3228 {
3229 if (d->literal || strcmp (d->pattern, "*") != 0)
3230 global_ver = t;
3231 else
3232 star_global_ver = t;
3233 if (d->symver)
3234 exist_ver = t;
3235 d->script = 1;
3236 /* If the match is a wildcard pattern, keep looking for
3237 a more explicit, perhaps even local, match. */
3238 if (d->literal)
3239 break;
3240 }
3241
3242 if (d != NULL)
3243 break;
3244 }
3245
3246 if (t->locals.list != NULL)
3247 {
3248 struct bfd_elf_version_expr *d = NULL;
3249
3250 while ((d = (*t->match) (&t->locals, d, sym_name)) != NULL)
3251 {
3252 if (d->literal || strcmp (d->pattern, "*") != 0)
3253 local_ver = t;
3254 else
3255 star_local_ver = t;
3256 /* If the match is a wildcard pattern, keep looking for
3257 a more explicit, perhaps even global, match. */
3258 if (d->literal)
3259 {
3260 /* An exact match overrides a global wildcard. */
3261 global_ver = NULL;
3262 star_global_ver = NULL;
3263 break;
3264 }
3265 }
3266
3267 if (d != NULL)
3268 break;
3269 }
3270 }
3271
3272 if (global_ver == NULL && local_ver == NULL)
3273 global_ver = star_global_ver;
3274
3275 if (global_ver != NULL)
3276 {
3277 /* If we already have a versioned symbol that matches the
3278 node for this symbol, then we don't want to create a
3279 duplicate from the unversioned symbol. Instead hide the
3280 unversioned symbol. */
3281 *hide = exist_ver == global_ver;
3282 return global_ver;
3283 }
3284
3285 if (local_ver == NULL)
3286 local_ver = star_local_ver;
3287
3288 if (local_ver != NULL)
3289 {
3290 *hide = TRUE;
3291 return local_ver;
3292 }
3293
3294 return NULL;
3295 }
3296
3297 /*
3298 FUNCTION
3299 bfd_hide_sym_by_version
3300
3301 SYNOPSIS
3302 bfd_boolean bfd_hide_sym_by_version
3303 (struct bfd_elf_version_tree *verdefs, const char *sym_name);
3304
3305 DESCRIPTION
3306 Search an elf version script tree for symbol versioning
3307 info for a given symbol. Return TRUE if the symbol is hidden.
3308
3309 */
3310
3311 bfd_boolean
3312 bfd_hide_sym_by_version (struct bfd_elf_version_tree *verdefs,
3313 const char *sym_name)
3314 {
3315 bfd_boolean hidden = FALSE;
3316 bfd_find_version_for_sym (verdefs, sym_name, &hidden);
3317 return hidden;
3318 }
3319
3320 /*
3321 FUNCTION
3322 bfd_link_check_relocs
3323
3324 SYNOPSIS
3325 bfd_boolean bfd_link_check_relocs
3326 (bfd *abfd, struct bfd_link_info *info);
3327
3328 DESCRIPTION
3329 Checks the relocs in ABFD for validity.
3330 Does not execute the relocs.
3331 Return TRUE if everything is OK, FALSE otherwise.
3332 This is the external entry point to this code.
3333 */
3334
3335 bfd_boolean
3336 bfd_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3337 {
3338 return BFD_SEND (abfd, _bfd_link_check_relocs, (abfd, info));
3339 }
3340
3341 /*
3342 FUNCTION
3343 _bfd_generic_link_check_relocs
3344
3345 SYNOPSIS
3346 bfd_boolean _bfd_generic_link_check_relocs
3347 (bfd *abfd, struct bfd_link_info *info);
3348
3349 DESCRIPTION
3350 Stub function for targets that do not implement reloc checking.
3351 Return TRUE.
3352 This is an internal function. It should not be called from
3353 outside the BFD library.
3354 */
3355
3356 bfd_boolean
3357 _bfd_generic_link_check_relocs (bfd *abfd ATTRIBUTE_UNUSED,
3358 struct bfd_link_info *info ATTRIBUTE_UNUSED)
3359 {
3360 return TRUE;
3361 }
3362
3363 /*
3364 FUNCTION
3365 bfd_merge_private_bfd_data
3366
3367 SYNOPSIS
3368 bfd_boolean bfd_merge_private_bfd_data
3369 (bfd *ibfd, struct bfd_link_info *info);
3370
3371 DESCRIPTION
3372 Merge private BFD information from the BFD @var{ibfd} to the
3373 the output file BFD when linking. Return <<TRUE>> on success,
3374 <<FALSE>> on error. Possible error returns are:
3375
3376 o <<bfd_error_no_memory>> -
3377 Not enough memory exists to create private data for @var{obfd}.
3378
3379 .#define bfd_merge_private_bfd_data(ibfd, info) \
3380 . BFD_SEND ((info)->output_bfd, _bfd_merge_private_bfd_data, \
3381 . (ibfd, info))
3382 */
3383
3384 /*
3385 INTERNAL_FUNCTION
3386 _bfd_generic_verify_endian_match
3387
3388 SYNOPSIS
3389 bfd_boolean _bfd_generic_verify_endian_match
3390 (bfd *ibfd, struct bfd_link_info *info);
3391
3392 DESCRIPTION
3393 Can be used from / for bfd_merge_private_bfd_data to check that
3394 endianness matches between input and output file. Returns
3395 TRUE for a match, otherwise returns FALSE and emits an error.
3396 */
3397
3398 bfd_boolean
3399 _bfd_generic_verify_endian_match (bfd *ibfd, struct bfd_link_info *info)
3400 {
3401 bfd *obfd = info->output_bfd;
3402
3403 if (ibfd->xvec->byteorder != obfd->xvec->byteorder
3404 && ibfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN
3405 && obfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN)
3406 {
3407 if (bfd_big_endian (ibfd))
3408 _bfd_error_handler (_("%pB: compiled for a big endian system "
3409 "and target is little endian"), ibfd);
3410 else
3411 _bfd_error_handler (_("%pB: compiled for a little endian system "
3412 "and target is big endian"), ibfd);
3413 bfd_set_error (bfd_error_wrong_format);
3414 return FALSE;
3415 }
3416
3417 return TRUE;
3418 }
3419
3420 int
3421 _bfd_nolink_sizeof_headers (bfd *abfd ATTRIBUTE_UNUSED,
3422 struct bfd_link_info *info ATTRIBUTE_UNUSED)
3423 {
3424 return 0;
3425 }
3426
3427 bfd_boolean
3428 _bfd_nolink_bfd_relax_section (bfd *abfd,
3429 asection *section ATTRIBUTE_UNUSED,
3430 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
3431 bfd_boolean *again ATTRIBUTE_UNUSED)
3432 {
3433 return _bfd_bool_bfd_false_error (abfd);
3434 }
3435
3436 bfd_byte *
3437 _bfd_nolink_bfd_get_relocated_section_contents
3438 (bfd *abfd,
3439 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
3440 struct bfd_link_order *link_order ATTRIBUTE_UNUSED,
3441 bfd_byte *data ATTRIBUTE_UNUSED,
3442 bfd_boolean relocatable ATTRIBUTE_UNUSED,
3443 asymbol **symbols ATTRIBUTE_UNUSED)
3444 {
3445 return (bfd_byte *) _bfd_ptr_bfd_null_error (abfd);
3446 }
3447
3448 bfd_boolean
3449 _bfd_nolink_bfd_lookup_section_flags
3450 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
3451 struct flag_info *flaginfo ATTRIBUTE_UNUSED,
3452 asection *section)
3453 {
3454 return _bfd_bool_bfd_false_error (section->owner);
3455 }
3456
3457 bfd_boolean
3458 _bfd_nolink_bfd_is_group_section (bfd *abfd,
3459 const asection *sec ATTRIBUTE_UNUSED)
3460 {
3461 return _bfd_bool_bfd_false_error (abfd);
3462 }
3463
3464 const char *
3465 _bfd_nolink_bfd_group_name (bfd *abfd,
3466 const asection *sec ATTRIBUTE_UNUSED)
3467 {
3468 return _bfd_ptr_bfd_null_error (abfd);
3469 }
3470
3471 bfd_boolean
3472 _bfd_nolink_bfd_discard_group (bfd *abfd, asection *sec ATTRIBUTE_UNUSED)
3473 {
3474 return _bfd_bool_bfd_false_error (abfd);
3475 }
3476
3477 struct bfd_link_hash_table *
3478 _bfd_nolink_bfd_link_hash_table_create (bfd *abfd)
3479 {
3480 return (struct bfd_link_hash_table *) _bfd_ptr_bfd_null_error (abfd);
3481 }
3482
3483 void
3484 _bfd_nolink_bfd_link_just_syms (asection *sec ATTRIBUTE_UNUSED,
3485 struct bfd_link_info *info ATTRIBUTE_UNUSED)
3486 {
3487 }
3488
3489 void
3490 _bfd_nolink_bfd_copy_link_hash_symbol_type
3491 (bfd *abfd ATTRIBUTE_UNUSED,
3492 struct bfd_link_hash_entry *from ATTRIBUTE_UNUSED,
3493 struct bfd_link_hash_entry *to ATTRIBUTE_UNUSED)
3494 {
3495 }
3496
3497 bfd_boolean
3498 _bfd_nolink_bfd_link_split_section (bfd *abfd, asection *sec ATTRIBUTE_UNUSED)
3499 {
3500 return _bfd_bool_bfd_false_error (abfd);
3501 }
3502
3503 bfd_boolean
3504 _bfd_nolink_section_already_linked (bfd *abfd,
3505 asection *sec ATTRIBUTE_UNUSED,
3506 struct bfd_link_info *info ATTRIBUTE_UNUSED)
3507 {
3508 return _bfd_bool_bfd_false_error (abfd);
3509 }
3510
3511 bfd_boolean
3512 _bfd_nolink_bfd_define_common_symbol
3513 (bfd *abfd,
3514 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3515 struct bfd_link_hash_entry *h ATTRIBUTE_UNUSED)
3516 {
3517 return _bfd_bool_bfd_false_error (abfd);
3518 }
3519
3520 struct bfd_link_hash_entry *
3521 _bfd_nolink_bfd_define_start_stop (struct bfd_link_info *info ATTRIBUTE_UNUSED,
3522 const char *name ATTRIBUTE_UNUSED,
3523 asection *sec)
3524 {
3525 return (struct bfd_link_hash_entry *) _bfd_ptr_bfd_null_error (sec->owner);
3526 }
This page took 0.13339 seconds and 5 git commands to generate.