Automatic date update in version.in
[deliverable/binutils-gdb.git] / bfd / section.c
1 /* Object file "section" support for the BFD library.
2 Copyright (C) 1990-2019 Free Software Foundation, Inc.
3 Written by Cygnus Support.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 /*
23 SECTION
24 Sections
25
26 The raw data contained within a BFD is maintained through the
27 section abstraction. A single BFD may have any number of
28 sections. It keeps hold of them by pointing to the first;
29 each one points to the next in the list.
30
31 Sections are supported in BFD in <<section.c>>.
32
33 @menu
34 @* Section Input::
35 @* Section Output::
36 @* typedef asection::
37 @* section prototypes::
38 @end menu
39
40 INODE
41 Section Input, Section Output, Sections, Sections
42 SUBSECTION
43 Section input
44
45 When a BFD is opened for reading, the section structures are
46 created and attached to the BFD.
47
48 Each section has a name which describes the section in the
49 outside world---for example, <<a.out>> would contain at least
50 three sections, called <<.text>>, <<.data>> and <<.bss>>.
51
52 Names need not be unique; for example a COFF file may have several
53 sections named <<.data>>.
54
55 Sometimes a BFD will contain more than the ``natural'' number of
56 sections. A back end may attach other sections containing
57 constructor data, or an application may add a section (using
58 <<bfd_make_section>>) to the sections attached to an already open
59 BFD. For example, the linker creates an extra section
60 <<COMMON>> for each input file's BFD to hold information about
61 common storage.
62
63 The raw data is not necessarily read in when
64 the section descriptor is created. Some targets may leave the
65 data in place until a <<bfd_get_section_contents>> call is
66 made. Other back ends may read in all the data at once. For
67 example, an S-record file has to be read once to determine the
68 size of the data.
69
70 INODE
71 Section Output, typedef asection, Section Input, Sections
72
73 SUBSECTION
74 Section output
75
76 To write a new object style BFD, the various sections to be
77 written have to be created. They are attached to the BFD in
78 the same way as input sections; data is written to the
79 sections using <<bfd_set_section_contents>>.
80
81 Any program that creates or combines sections (e.g., the assembler
82 and linker) must use the <<asection>> fields <<output_section>> and
83 <<output_offset>> to indicate the file sections to which each
84 section must be written. (If the section is being created from
85 scratch, <<output_section>> should probably point to the section
86 itself and <<output_offset>> should probably be zero.)
87
88 The data to be written comes from input sections attached
89 (via <<output_section>> pointers) to
90 the output sections. The output section structure can be
91 considered a filter for the input section: the output section
92 determines the vma of the output data and the name, but the
93 input section determines the offset into the output section of
94 the data to be written.
95
96 E.g., to create a section "O", starting at 0x100, 0x123 long,
97 containing two subsections, "A" at offset 0x0 (i.e., at vma
98 0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the <<asection>>
99 structures would look like:
100
101 | section name "A"
102 | output_offset 0x00
103 | size 0x20
104 | output_section -----------> section name "O"
105 | | vma 0x100
106 | section name "B" | size 0x123
107 | output_offset 0x20 |
108 | size 0x103 |
109 | output_section --------|
110
111 SUBSECTION
112 Link orders
113
114 The data within a section is stored in a @dfn{link_order}.
115 These are much like the fixups in <<gas>>. The link_order
116 abstraction allows a section to grow and shrink within itself.
117
118 A link_order knows how big it is, and which is the next
119 link_order and where the raw data for it is; it also points to
120 a list of relocations which apply to it.
121
122 The link_order is used by the linker to perform relaxing on
123 final code. The compiler creates code which is as big as
124 necessary to make it work without relaxing, and the user can
125 select whether to relax. Sometimes relaxing takes a lot of
126 time. The linker runs around the relocations to see if any
127 are attached to data which can be shrunk, if so it does it on
128 a link_order by link_order basis.
129
130 */
131
132 #include "sysdep.h"
133 #include "bfd.h"
134 #include "libbfd.h"
135 #include "bfdlink.h"
136
137 /*
138 DOCDD
139 INODE
140 typedef asection, section prototypes, Section Output, Sections
141 SUBSECTION
142 typedef asection
143
144 Here is the section structure:
145
146 CODE_FRAGMENT
147 .
148 .typedef struct bfd_section
149 .{
150 . {* The name of the section; the name isn't a copy, the pointer is
151 . the same as that passed to bfd_make_section. *}
152 . const char *name;
153 .
154 . {* A unique sequence number. *}
155 . unsigned int id;
156 .
157 . {* Which section in the bfd; 0..n-1 as sections are created in a bfd. *}
158 . unsigned int index;
159 .
160 . {* The next section in the list belonging to the BFD, or NULL. *}
161 . struct bfd_section *next;
162 .
163 . {* The previous section in the list belonging to the BFD, or NULL. *}
164 . struct bfd_section *prev;
165 .
166 . {* The field flags contains attributes of the section. Some
167 . flags are read in from the object file, and some are
168 . synthesized from other information. *}
169 . flagword flags;
170 .
171 .#define SEC_NO_FLAGS 0x0
172 .
173 . {* Tells the OS to allocate space for this section when loading.
174 . This is clear for a section containing debug information only. *}
175 .#define SEC_ALLOC 0x1
176 .
177 . {* Tells the OS to load the section from the file when loading.
178 . This is clear for a .bss section. *}
179 .#define SEC_LOAD 0x2
180 .
181 . {* The section contains data still to be relocated, so there is
182 . some relocation information too. *}
183 .#define SEC_RELOC 0x4
184 .
185 . {* A signal to the OS that the section contains read only data. *}
186 .#define SEC_READONLY 0x8
187 .
188 . {* The section contains code only. *}
189 .#define SEC_CODE 0x10
190 .
191 . {* The section contains data only. *}
192 .#define SEC_DATA 0x20
193 .
194 . {* The section will reside in ROM. *}
195 .#define SEC_ROM 0x40
196 .
197 . {* The section contains constructor information. This section
198 . type is used by the linker to create lists of constructors and
199 . destructors used by <<g++>>. When a back end sees a symbol
200 . which should be used in a constructor list, it creates a new
201 . section for the type of name (e.g., <<__CTOR_LIST__>>), attaches
202 . the symbol to it, and builds a relocation. To build the lists
203 . of constructors, all the linker has to do is catenate all the
204 . sections called <<__CTOR_LIST__>> and relocate the data
205 . contained within - exactly the operations it would peform on
206 . standard data. *}
207 .#define SEC_CONSTRUCTOR 0x80
208 .
209 . {* The section has contents - a data section could be
210 . <<SEC_ALLOC>> | <<SEC_HAS_CONTENTS>>; a debug section could be
211 . <<SEC_HAS_CONTENTS>> *}
212 .#define SEC_HAS_CONTENTS 0x100
213 .
214 . {* An instruction to the linker to not output the section
215 . even if it has information which would normally be written. *}
216 .#define SEC_NEVER_LOAD 0x200
217 .
218 . {* The section contains thread local data. *}
219 .#define SEC_THREAD_LOCAL 0x400
220 .
221 . {* The section's size is fixed. Generic linker code will not
222 . recalculate it and it is up to whoever has set this flag to
223 . get the size right. *}
224 .#define SEC_FIXED_SIZE 0x800
225 .
226 . {* The section contains common symbols (symbols may be defined
227 . multiple times, the value of a symbol is the amount of
228 . space it requires, and the largest symbol value is the one
229 . used). Most targets have exactly one of these (which we
230 . translate to bfd_com_section_ptr), but ECOFF has two. *}
231 .#define SEC_IS_COMMON 0x1000
232 .
233 . {* The section contains only debugging information. For
234 . example, this is set for ELF .debug and .stab sections.
235 . strip tests this flag to see if a section can be
236 . discarded. *}
237 .#define SEC_DEBUGGING 0x2000
238 .
239 . {* The contents of this section are held in memory pointed to
240 . by the contents field. This is checked by bfd_get_section_contents,
241 . and the data is retrieved from memory if appropriate. *}
242 .#define SEC_IN_MEMORY 0x4000
243 .
244 . {* The contents of this section are to be excluded by the
245 . linker for executable and shared objects unless those
246 . objects are to be further relocated. *}
247 .#define SEC_EXCLUDE 0x8000
248 .
249 . {* The contents of this section are to be sorted based on the sum of
250 . the symbol and addend values specified by the associated relocation
251 . entries. Entries without associated relocation entries will be
252 . appended to the end of the section in an unspecified order. *}
253 .#define SEC_SORT_ENTRIES 0x10000
254 .
255 . {* When linking, duplicate sections of the same name should be
256 . discarded, rather than being combined into a single section as
257 . is usually done. This is similar to how common symbols are
258 . handled. See SEC_LINK_DUPLICATES below. *}
259 .#define SEC_LINK_ONCE 0x20000
260 .
261 . {* If SEC_LINK_ONCE is set, this bitfield describes how the linker
262 . should handle duplicate sections. *}
263 .#define SEC_LINK_DUPLICATES 0xc0000
264 .
265 . {* This value for SEC_LINK_DUPLICATES means that duplicate
266 . sections with the same name should simply be discarded. *}
267 .#define SEC_LINK_DUPLICATES_DISCARD 0x0
268 .
269 . {* This value for SEC_LINK_DUPLICATES means that the linker
270 . should warn if there are any duplicate sections, although
271 . it should still only link one copy. *}
272 .#define SEC_LINK_DUPLICATES_ONE_ONLY 0x40000
273 .
274 . {* This value for SEC_LINK_DUPLICATES means that the linker
275 . should warn if any duplicate sections are a different size. *}
276 .#define SEC_LINK_DUPLICATES_SAME_SIZE 0x80000
277 .
278 . {* This value for SEC_LINK_DUPLICATES means that the linker
279 . should warn if any duplicate sections contain different
280 . contents. *}
281 .#define SEC_LINK_DUPLICATES_SAME_CONTENTS \
282 . (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE)
283 .
284 . {* This section was created by the linker as part of dynamic
285 . relocation or other arcane processing. It is skipped when
286 . going through the first-pass output, trusting that someone
287 . else up the line will take care of it later. *}
288 .#define SEC_LINKER_CREATED 0x100000
289 .
290 . {* This section should not be subject to garbage collection.
291 . Also set to inform the linker that this section should not be
292 . listed in the link map as discarded. *}
293 .#define SEC_KEEP 0x200000
294 .
295 . {* This section contains "short" data, and should be placed
296 . "near" the GP. *}
297 .#define SEC_SMALL_DATA 0x400000
298 .
299 . {* Attempt to merge identical entities in the section.
300 . Entity size is given in the entsize field. *}
301 .#define SEC_MERGE 0x800000
302 .
303 . {* If given with SEC_MERGE, entities to merge are zero terminated
304 . strings where entsize specifies character size instead of fixed
305 . size entries. *}
306 .#define SEC_STRINGS 0x1000000
307 .
308 . {* This section contains data about section groups. *}
309 .#define SEC_GROUP 0x2000000
310 .
311 . {* The section is a COFF shared library section. This flag is
312 . only for the linker. If this type of section appears in
313 . the input file, the linker must copy it to the output file
314 . without changing the vma or size. FIXME: Although this
315 . was originally intended to be general, it really is COFF
316 . specific (and the flag was renamed to indicate this). It
317 . might be cleaner to have some more general mechanism to
318 . allow the back end to control what the linker does with
319 . sections. *}
320 .#define SEC_COFF_SHARED_LIBRARY 0x4000000
321 .
322 . {* This input section should be copied to output in reverse order
323 . as an array of pointers. This is for ELF linker internal use
324 . only. *}
325 .#define SEC_ELF_REVERSE_COPY 0x4000000
326 .
327 . {* This section contains data which may be shared with other
328 . executables or shared objects. This is for COFF only. *}
329 .#define SEC_COFF_SHARED 0x8000000
330 .
331 . {* This section should be compressed. This is for ELF linker
332 . internal use only. *}
333 .#define SEC_ELF_COMPRESS 0x8000000
334 .
335 . {* When a section with this flag is being linked, then if the size of
336 . the input section is less than a page, it should not cross a page
337 . boundary. If the size of the input section is one page or more,
338 . it should be aligned on a page boundary. This is for TI
339 . TMS320C54X only. *}
340 .#define SEC_TIC54X_BLOCK 0x10000000
341 .
342 . {* This section should be renamed. This is for ELF linker
343 . internal use only. *}
344 .#define SEC_ELF_RENAME 0x10000000
345 .
346 . {* Conditionally link this section; do not link if there are no
347 . references found to any symbol in the section. This is for TI
348 . TMS320C54X only. *}
349 .#define SEC_TIC54X_CLINK 0x20000000
350 .
351 . {* This section contains vliw code. This is for Toshiba MeP only. *}
352 .#define SEC_MEP_VLIW 0x20000000
353 .
354 . {* Indicate that section has the no read flag set. This happens
355 . when memory read flag isn't set. *}
356 .#define SEC_COFF_NOREAD 0x40000000
357 .
358 . {* Indicate that section has the purecode flag set. *}
359 .#define SEC_ELF_PURECODE 0x80000000
360 .
361 . {* End of section flags. *}
362 .
363 . {* Some internal packed boolean fields. *}
364 .
365 . {* See the vma field. *}
366 . unsigned int user_set_vma : 1;
367 .
368 . {* A mark flag used by some of the linker backends. *}
369 . unsigned int linker_mark : 1;
370 .
371 . {* Another mark flag used by some of the linker backends. Set for
372 . output sections that have an input section. *}
373 . unsigned int linker_has_input : 1;
374 .
375 . {* Mark flag used by some linker backends for garbage collection. *}
376 . unsigned int gc_mark : 1;
377 .
378 . {* Section compression status. *}
379 . unsigned int compress_status : 2;
380 .#define COMPRESS_SECTION_NONE 0
381 .#define COMPRESS_SECTION_DONE 1
382 .#define DECOMPRESS_SECTION_SIZED 2
383 .
384 . {* The following flags are used by the ELF linker. *}
385 .
386 . {* Mark sections which have been allocated to segments. *}
387 . unsigned int segment_mark : 1;
388 .
389 . {* Type of sec_info information. *}
390 . unsigned int sec_info_type:3;
391 .#define SEC_INFO_TYPE_NONE 0
392 .#define SEC_INFO_TYPE_STABS 1
393 .#define SEC_INFO_TYPE_MERGE 2
394 .#define SEC_INFO_TYPE_EH_FRAME 3
395 .#define SEC_INFO_TYPE_JUST_SYMS 4
396 .#define SEC_INFO_TYPE_TARGET 5
397 .#define SEC_INFO_TYPE_EH_FRAME_ENTRY 6
398 .
399 . {* Nonzero if this section uses RELA relocations, rather than REL. *}
400 . unsigned int use_rela_p:1;
401 .
402 . {* Bits used by various backends. The generic code doesn't touch
403 . these fields. *}
404 .
405 . unsigned int sec_flg0:1;
406 . unsigned int sec_flg1:1;
407 . unsigned int sec_flg2:1;
408 . unsigned int sec_flg3:1;
409 . unsigned int sec_flg4:1;
410 . unsigned int sec_flg5:1;
411 .
412 . {* End of internal packed boolean fields. *}
413 .
414 . {* The virtual memory address of the section - where it will be
415 . at run time. The symbols are relocated against this. The
416 . user_set_vma flag is maintained by bfd; if it's not set, the
417 . backend can assign addresses (for example, in <<a.out>>, where
418 . the default address for <<.data>> is dependent on the specific
419 . target and various flags). *}
420 . bfd_vma vma;
421 .
422 . {* The load address of the section - where it would be in a
423 . rom image; really only used for writing section header
424 . information. *}
425 . bfd_vma lma;
426 .
427 . {* The size of the section in *octets*, as it will be output.
428 . Contains a value even if the section has no contents (e.g., the
429 . size of <<.bss>>). *}
430 . bfd_size_type size;
431 .
432 . {* For input sections, the original size on disk of the section, in
433 . octets. This field should be set for any section whose size is
434 . changed by linker relaxation. It is required for sections where
435 . the linker relaxation scheme doesn't cache altered section and
436 . reloc contents (stabs, eh_frame, SEC_MERGE, some coff relaxing
437 . targets), and thus the original size needs to be kept to read the
438 . section multiple times. For output sections, rawsize holds the
439 . section size calculated on a previous linker relaxation pass. *}
440 . bfd_size_type rawsize;
441 .
442 . {* The compressed size of the section in octets. *}
443 . bfd_size_type compressed_size;
444 .
445 . {* Relaxation table. *}
446 . struct relax_table *relax;
447 .
448 . {* Count of used relaxation table entries. *}
449 . int relax_count;
450 .
451 .
452 . {* If this section is going to be output, then this value is the
453 . offset in *bytes* into the output section of the first byte in the
454 . input section (byte ==> smallest addressable unit on the
455 . target). In most cases, if this was going to start at the
456 . 100th octet (8-bit quantity) in the output section, this value
457 . would be 100. However, if the target byte size is 16 bits
458 . (bfd_octets_per_byte is "2"), this value would be 50. *}
459 . bfd_vma output_offset;
460 .
461 . {* The output section through which to map on output. *}
462 . struct bfd_section *output_section;
463 .
464 . {* The alignment requirement of the section, as an exponent of 2 -
465 . e.g., 3 aligns to 2^3 (or 8). *}
466 . unsigned int alignment_power;
467 .
468 . {* If an input section, a pointer to a vector of relocation
469 . records for the data in this section. *}
470 . struct reloc_cache_entry *relocation;
471 .
472 . {* If an output section, a pointer to a vector of pointers to
473 . relocation records for the data in this section. *}
474 . struct reloc_cache_entry **orelocation;
475 .
476 . {* The number of relocation records in one of the above. *}
477 . unsigned reloc_count;
478 .
479 . {* Information below is back end specific - and not always used
480 . or updated. *}
481 .
482 . {* File position of section data. *}
483 . file_ptr filepos;
484 .
485 . {* File position of relocation info. *}
486 . file_ptr rel_filepos;
487 .
488 . {* File position of line data. *}
489 . file_ptr line_filepos;
490 .
491 . {* Pointer to data for applications. *}
492 . void *userdata;
493 .
494 . {* If the SEC_IN_MEMORY flag is set, this points to the actual
495 . contents. *}
496 . unsigned char *contents;
497 .
498 . {* Attached line number information. *}
499 . alent *lineno;
500 .
501 . {* Number of line number records. *}
502 . unsigned int lineno_count;
503 .
504 . {* Entity size for merging purposes. *}
505 . unsigned int entsize;
506 .
507 . {* Points to the kept section if this section is a link-once section,
508 . and is discarded. *}
509 . struct bfd_section *kept_section;
510 .
511 . {* When a section is being output, this value changes as more
512 . linenumbers are written out. *}
513 . file_ptr moving_line_filepos;
514 .
515 . {* What the section number is in the target world. *}
516 . int target_index;
517 .
518 . void *used_by_bfd;
519 .
520 . {* If this is a constructor section then here is a list of the
521 . relocations created to relocate items within it. *}
522 . struct relent_chain *constructor_chain;
523 .
524 . {* The BFD which owns the section. *}
525 . bfd *owner;
526 .
527 . {* A symbol which points at this section only. *}
528 . struct bfd_symbol *symbol;
529 . struct bfd_symbol **symbol_ptr_ptr;
530 .
531 . {* Early in the link process, map_head and map_tail are used to build
532 . a list of input sections attached to an output section. Later,
533 . output sections use these fields for a list of bfd_link_order
534 . structs. *}
535 . union {
536 . struct bfd_link_order *link_order;
537 . struct bfd_section *s;
538 . } map_head, map_tail;
539 .} asection;
540 .
541 .{* Relax table contains information about instructions which can
542 . be removed by relaxation -- replacing a long address with a
543 . short address. *}
544 .struct relax_table {
545 . {* Address where bytes may be deleted. *}
546 . bfd_vma addr;
547 .
548 . {* Number of bytes to be deleted. *}
549 . int size;
550 .};
551 .
552 .static inline const char *
553 .bfd_section_name (const asection *sec)
554 .{
555 . return sec->name;
556 .}
557 .
558 .static inline bfd_size_type
559 .bfd_section_size (const asection *sec)
560 .{
561 . return sec->size;
562 .}
563 .
564 .static inline bfd_vma
565 .bfd_section_vma (const asection *sec)
566 .{
567 . return sec->vma;
568 .}
569 .
570 .static inline bfd_vma
571 .bfd_section_lma (const asection *sec)
572 .{
573 . return sec->lma;
574 .}
575 .
576 .static inline unsigned int
577 .bfd_section_alignment (const asection *sec)
578 .{
579 . return sec->alignment_power;
580 .}
581 .
582 .static inline flagword
583 .bfd_section_flags (const asection *sec)
584 .{
585 . return sec->flags;
586 .}
587 .
588 .static inline void *
589 .bfd_section_userdata (const asection *sec)
590 .{
591 . return sec->userdata;
592 .}
593 .static inline bfd_boolean
594 .bfd_is_com_section (const asection *sec)
595 .{
596 . return (sec->flags & SEC_IS_COMMON) != 0;
597 .}
598 .
599 .{* Note: the following are provided as inline functions rather than macros
600 . because not all callers use the return value. A macro implementation
601 . would use a comma expression, eg: "((ptr)->foo = val, TRUE)" and some
602 . compilers will complain about comma expressions that have no effect. *}
603 .static inline bfd_boolean
604 .bfd_set_section_userdata (asection *sec, void *val)
605 .{
606 . sec->userdata = val;
607 . return TRUE;
608 .}
609 .
610 .static inline bfd_boolean
611 .bfd_set_section_vma (asection *sec, bfd_vma val)
612 .{
613 . sec->vma = sec->lma = val;
614 . sec->user_set_vma = TRUE;
615 . return TRUE;
616 .}
617 .
618 .static inline bfd_boolean
619 .bfd_set_section_lma (asection *sec, bfd_vma val)
620 .{
621 . sec->lma = val;
622 . return TRUE;
623 .}
624 .
625 .static inline bfd_boolean
626 .bfd_set_section_alignment (asection *sec, unsigned int val)
627 .{
628 . sec->alignment_power = val;
629 . return TRUE;
630 .}
631 .
632 .{* These sections are global, and are managed by BFD. The application
633 . and target back end are not permitted to change the values in
634 . these sections. *}
635 .extern asection _bfd_std_section[4];
636 .
637 .#define BFD_ABS_SECTION_NAME "*ABS*"
638 .#define BFD_UND_SECTION_NAME "*UND*"
639 .#define BFD_COM_SECTION_NAME "*COM*"
640 .#define BFD_IND_SECTION_NAME "*IND*"
641 .
642 .{* Pointer to the common section. *}
643 .#define bfd_com_section_ptr (&_bfd_std_section[0])
644 .{* Pointer to the undefined section. *}
645 .#define bfd_und_section_ptr (&_bfd_std_section[1])
646 .{* Pointer to the absolute section. *}
647 .#define bfd_abs_section_ptr (&_bfd_std_section[2])
648 .{* Pointer to the indirect section. *}
649 .#define bfd_ind_section_ptr (&_bfd_std_section[3])
650 .
651 .static inline bfd_boolean
652 .bfd_is_und_section (const asection *sec)
653 .{
654 . return sec == bfd_und_section_ptr;
655 .}
656 .
657 .static inline bfd_boolean
658 .bfd_is_abs_section (const asection *sec)
659 .{
660 . return sec == bfd_abs_section_ptr;
661 .}
662 .
663 .static inline bfd_boolean
664 .bfd_is_ind_section (const asection *sec)
665 .{
666 . return sec == bfd_ind_section_ptr;
667 .}
668 .
669 .static inline bfd_boolean
670 .bfd_is_const_section (const asection *sec)
671 .{
672 . return sec >= bfd_abs_section_ptr && sec <= bfd_ind_section_ptr;
673 .}
674 .
675 .{* Return TRUE if input section SEC has been discarded. *}
676 .static inline bfd_boolean
677 .discarded_section (const asection *sec)
678 .{
679 . return (!bfd_is_abs_section (sec)
680 . && bfd_is_abs_section (sec->output_section)
681 . && sec->sec_info_type != SEC_INFO_TYPE_MERGE
682 . && sec->sec_info_type != SEC_INFO_TYPE_JUST_SYMS);
683 .}
684 .
685 .#define BFD_FAKE_SECTION(SEC, SYM, NAME, IDX, FLAGS) \
686 . {* name, id, index, next, prev, flags, user_set_vma, *} \
687 . { NAME, IDX, 0, NULL, NULL, FLAGS, 0, \
688 . \
689 . {* linker_mark, linker_has_input, gc_mark, decompress_status, *} \
690 . 0, 0, 1, 0, \
691 . \
692 . {* segment_mark, sec_info_type, use_rela_p, *} \
693 . 0, 0, 0, \
694 . \
695 . {* sec_flg0, sec_flg1, sec_flg2, sec_flg3, sec_flg4, sec_flg5, *} \
696 . 0, 0, 0, 0, 0, 0, \
697 . \
698 . {* vma, lma, size, rawsize, compressed_size, relax, relax_count, *} \
699 . 0, 0, 0, 0, 0, 0, 0, \
700 . \
701 . {* output_offset, output_section, alignment_power, *} \
702 . 0, &SEC, 0, \
703 . \
704 . {* relocation, orelocation, reloc_count, filepos, rel_filepos, *} \
705 . NULL, NULL, 0, 0, 0, \
706 . \
707 . {* line_filepos, userdata, contents, lineno, lineno_count, *} \
708 . 0, NULL, NULL, NULL, 0, \
709 . \
710 . {* entsize, kept_section, moving_line_filepos, *} \
711 . 0, NULL, 0, \
712 . \
713 . {* target_index, used_by_bfd, constructor_chain, owner, *} \
714 . 0, NULL, NULL, NULL, \
715 . \
716 . {* symbol, symbol_ptr_ptr, *} \
717 . (struct bfd_symbol *) SYM, &SEC.symbol, \
718 . \
719 . {* map_head, map_tail *} \
720 . { NULL }, { NULL } \
721 . }
722 .
723 .{* We use a macro to initialize the static asymbol structures because
724 . traditional C does not permit us to initialize a union member while
725 . gcc warns if we don't initialize it.
726 . the_bfd, name, value, attr, section [, udata] *}
727 .#ifdef __STDC__
728 .#define GLOBAL_SYM_INIT(NAME, SECTION) \
729 . { 0, NAME, 0, BSF_SECTION_SYM, SECTION, { 0 }}
730 .#else
731 .#define GLOBAL_SYM_INIT(NAME, SECTION) \
732 . { 0, NAME, 0, BSF_SECTION_SYM, SECTION }
733 .#endif
734 .
735 */
736
737 /* These symbols are global, not specific to any BFD. Therefore, anything
738 that tries to change them is broken, and should be repaired. */
739
740 static const asymbol global_syms[] =
741 {
742 GLOBAL_SYM_INIT (BFD_COM_SECTION_NAME, bfd_com_section_ptr),
743 GLOBAL_SYM_INIT (BFD_UND_SECTION_NAME, bfd_und_section_ptr),
744 GLOBAL_SYM_INIT (BFD_ABS_SECTION_NAME, bfd_abs_section_ptr),
745 GLOBAL_SYM_INIT (BFD_IND_SECTION_NAME, bfd_ind_section_ptr)
746 };
747
748 #define STD_SECTION(NAME, IDX, FLAGS) \
749 BFD_FAKE_SECTION(_bfd_std_section[IDX], &global_syms[IDX], NAME, IDX, FLAGS)
750
751 asection _bfd_std_section[] = {
752 STD_SECTION (BFD_COM_SECTION_NAME, 0, SEC_IS_COMMON),
753 STD_SECTION (BFD_UND_SECTION_NAME, 1, 0),
754 STD_SECTION (BFD_ABS_SECTION_NAME, 2, 0),
755 STD_SECTION (BFD_IND_SECTION_NAME, 3, 0)
756 };
757 #undef STD_SECTION
758
759 /* Initialize an entry in the section hash table. */
760
761 struct bfd_hash_entry *
762 bfd_section_hash_newfunc (struct bfd_hash_entry *entry,
763 struct bfd_hash_table *table,
764 const char *string)
765 {
766 /* Allocate the structure if it has not already been allocated by a
767 subclass. */
768 if (entry == NULL)
769 {
770 entry = (struct bfd_hash_entry *)
771 bfd_hash_allocate (table, sizeof (struct section_hash_entry));
772 if (entry == NULL)
773 return entry;
774 }
775
776 /* Call the allocation method of the superclass. */
777 entry = bfd_hash_newfunc (entry, table, string);
778 if (entry != NULL)
779 memset (&((struct section_hash_entry *) entry)->section, 0,
780 sizeof (asection));
781
782 return entry;
783 }
784
785 #define section_hash_lookup(table, string, create, copy) \
786 ((struct section_hash_entry *) \
787 bfd_hash_lookup ((table), (string), (create), (copy)))
788
789 /* Create a symbol whose only job is to point to this section. This
790 is useful for things like relocs which are relative to the base
791 of a section. */
792
793 bfd_boolean
794 _bfd_generic_new_section_hook (bfd *abfd, asection *newsect)
795 {
796 newsect->symbol = bfd_make_empty_symbol (abfd);
797 if (newsect->symbol == NULL)
798 return FALSE;
799
800 newsect->symbol->name = newsect->name;
801 newsect->symbol->value = 0;
802 newsect->symbol->section = newsect;
803 newsect->symbol->flags = BSF_SECTION_SYM;
804
805 newsect->symbol_ptr_ptr = &newsect->symbol;
806 return TRUE;
807 }
808
809 unsigned int _bfd_section_id = 0x10; /* id 0 to 3 used by STD_SECTION. */
810
811 /* Initializes a new section. NEWSECT->NAME is already set. */
812
813 static asection *
814 bfd_section_init (bfd *abfd, asection *newsect)
815 {
816 newsect->id = _bfd_section_id;
817 newsect->index = abfd->section_count;
818 newsect->owner = abfd;
819
820 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
821 return NULL;
822
823 _bfd_section_id++;
824 abfd->section_count++;
825 bfd_section_list_append (abfd, newsect);
826 return newsect;
827 }
828
829 /*
830 DOCDD
831 INODE
832 section prototypes, , typedef asection, Sections
833 SUBSECTION
834 Section prototypes
835
836 These are the functions exported by the section handling part of BFD.
837 */
838
839 /*
840 FUNCTION
841 bfd_section_list_clear
842
843 SYNOPSIS
844 void bfd_section_list_clear (bfd *);
845
846 DESCRIPTION
847 Clears the section list, and also resets the section count and
848 hash table entries.
849 */
850
851 void
852 bfd_section_list_clear (bfd *abfd)
853 {
854 abfd->sections = NULL;
855 abfd->section_last = NULL;
856 abfd->section_count = 0;
857 memset (abfd->section_htab.table, 0,
858 abfd->section_htab.size * sizeof (struct bfd_hash_entry *));
859 abfd->section_htab.count = 0;
860 }
861
862 /*
863 FUNCTION
864 bfd_get_section_by_name
865
866 SYNOPSIS
867 asection *bfd_get_section_by_name (bfd *abfd, const char *name);
868
869 DESCRIPTION
870 Return the most recently created section attached to @var{abfd}
871 named @var{name}. Return NULL if no such section exists.
872 */
873
874 asection *
875 bfd_get_section_by_name (bfd *abfd, const char *name)
876 {
877 struct section_hash_entry *sh;
878
879 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
880 if (sh != NULL)
881 return &sh->section;
882
883 return NULL;
884 }
885
886 /*
887 FUNCTION
888 bfd_get_next_section_by_name
889
890 SYNOPSIS
891 asection *bfd_get_next_section_by_name (bfd *ibfd, asection *sec);
892
893 DESCRIPTION
894 Given @var{sec} is a section returned by @code{bfd_get_section_by_name},
895 return the next most recently created section attached to the same
896 BFD with the same name, or if no such section exists in the same BFD and
897 IBFD is non-NULL, the next section with the same name in any input
898 BFD following IBFD. Return NULL on finding no section.
899 */
900
901 asection *
902 bfd_get_next_section_by_name (bfd *ibfd, asection *sec)
903 {
904 struct section_hash_entry *sh;
905 const char *name;
906 unsigned long hash;
907
908 sh = ((struct section_hash_entry *)
909 ((char *) sec - offsetof (struct section_hash_entry, section)));
910
911 hash = sh->root.hash;
912 name = sec->name;
913 for (sh = (struct section_hash_entry *) sh->root.next;
914 sh != NULL;
915 sh = (struct section_hash_entry *) sh->root.next)
916 if (sh->root.hash == hash
917 && strcmp (sh->root.string, name) == 0)
918 return &sh->section;
919
920 if (ibfd != NULL)
921 {
922 while ((ibfd = ibfd->link.next) != NULL)
923 {
924 asection *s = bfd_get_section_by_name (ibfd, name);
925 if (s != NULL)
926 return s;
927 }
928 }
929
930 return NULL;
931 }
932
933 /*
934 FUNCTION
935 bfd_get_linker_section
936
937 SYNOPSIS
938 asection *bfd_get_linker_section (bfd *abfd, const char *name);
939
940 DESCRIPTION
941 Return the linker created section attached to @var{abfd}
942 named @var{name}. Return NULL if no such section exists.
943 */
944
945 asection *
946 bfd_get_linker_section (bfd *abfd, const char *name)
947 {
948 asection *sec = bfd_get_section_by_name (abfd, name);
949
950 while (sec != NULL && (sec->flags & SEC_LINKER_CREATED) == 0)
951 sec = bfd_get_next_section_by_name (NULL, sec);
952 return sec;
953 }
954
955 /*
956 FUNCTION
957 bfd_get_section_by_name_if
958
959 SYNOPSIS
960 asection *bfd_get_section_by_name_if
961 (bfd *abfd,
962 const char *name,
963 bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj),
964 void *obj);
965
966 DESCRIPTION
967 Call the provided function @var{func} for each section
968 attached to the BFD @var{abfd} whose name matches @var{name},
969 passing @var{obj} as an argument. The function will be called
970 as if by
971
972 | func (abfd, the_section, obj);
973
974 It returns the first section for which @var{func} returns true,
975 otherwise <<NULL>>.
976
977 */
978
979 asection *
980 bfd_get_section_by_name_if (bfd *abfd, const char *name,
981 bfd_boolean (*operation) (bfd *,
982 asection *,
983 void *),
984 void *user_storage)
985 {
986 struct section_hash_entry *sh;
987 unsigned long hash;
988
989 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
990 if (sh == NULL)
991 return NULL;
992
993 hash = sh->root.hash;
994 for (; sh != NULL; sh = (struct section_hash_entry *) sh->root.next)
995 if (sh->root.hash == hash
996 && strcmp (sh->root.string, name) == 0
997 && (*operation) (abfd, &sh->section, user_storage))
998 return &sh->section;
999
1000 return NULL;
1001 }
1002
1003 /*
1004 FUNCTION
1005 bfd_get_unique_section_name
1006
1007 SYNOPSIS
1008 char *bfd_get_unique_section_name
1009 (bfd *abfd, const char *templat, int *count);
1010
1011 DESCRIPTION
1012 Invent a section name that is unique in @var{abfd} by tacking
1013 a dot and a digit suffix onto the original @var{templat}. If
1014 @var{count} is non-NULL, then it specifies the first number
1015 tried as a suffix to generate a unique name. The value
1016 pointed to by @var{count} will be incremented in this case.
1017 */
1018
1019 char *
1020 bfd_get_unique_section_name (bfd *abfd, const char *templat, int *count)
1021 {
1022 int num;
1023 unsigned int len;
1024 char *sname;
1025
1026 len = strlen (templat);
1027 sname = (char *) bfd_malloc (len + 8);
1028 if (sname == NULL)
1029 return NULL;
1030 memcpy (sname, templat, len);
1031 num = 1;
1032 if (count != NULL)
1033 num = *count;
1034
1035 do
1036 {
1037 /* If we have a million sections, something is badly wrong. */
1038 if (num > 999999)
1039 abort ();
1040 sprintf (sname + len, ".%d", num++);
1041 }
1042 while (section_hash_lookup (&abfd->section_htab, sname, FALSE, FALSE));
1043
1044 if (count != NULL)
1045 *count = num;
1046 return sname;
1047 }
1048
1049 /*
1050 FUNCTION
1051 bfd_make_section_old_way
1052
1053 SYNOPSIS
1054 asection *bfd_make_section_old_way (bfd *abfd, const char *name);
1055
1056 DESCRIPTION
1057 Create a new empty section called @var{name}
1058 and attach it to the end of the chain of sections for the
1059 BFD @var{abfd}. An attempt to create a section with a name which
1060 is already in use returns its pointer without changing the
1061 section chain.
1062
1063 It has the funny name since this is the way it used to be
1064 before it was rewritten....
1065
1066 Possible errors are:
1067 o <<bfd_error_invalid_operation>> -
1068 If output has already started for this BFD.
1069 o <<bfd_error_no_memory>> -
1070 If memory allocation fails.
1071
1072 */
1073
1074 asection *
1075 bfd_make_section_old_way (bfd *abfd, const char *name)
1076 {
1077 asection *newsect;
1078
1079 if (abfd->output_has_begun)
1080 {
1081 bfd_set_error (bfd_error_invalid_operation);
1082 return NULL;
1083 }
1084
1085 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0)
1086 newsect = bfd_abs_section_ptr;
1087 else if (strcmp (name, BFD_COM_SECTION_NAME) == 0)
1088 newsect = bfd_com_section_ptr;
1089 else if (strcmp (name, BFD_UND_SECTION_NAME) == 0)
1090 newsect = bfd_und_section_ptr;
1091 else if (strcmp (name, BFD_IND_SECTION_NAME) == 0)
1092 newsect = bfd_ind_section_ptr;
1093 else
1094 {
1095 struct section_hash_entry *sh;
1096
1097 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1098 if (sh == NULL)
1099 return NULL;
1100
1101 newsect = &sh->section;
1102 if (newsect->name != NULL)
1103 {
1104 /* Section already exists. */
1105 return newsect;
1106 }
1107
1108 newsect->name = name;
1109 return bfd_section_init (abfd, newsect);
1110 }
1111
1112 /* Call new_section_hook when "creating" the standard abs, com, und
1113 and ind sections to tack on format specific section data.
1114 Also, create a proper section symbol. */
1115 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
1116 return NULL;
1117 return newsect;
1118 }
1119
1120 /*
1121 FUNCTION
1122 bfd_make_section_anyway_with_flags
1123
1124 SYNOPSIS
1125 asection *bfd_make_section_anyway_with_flags
1126 (bfd *abfd, const char *name, flagword flags);
1127
1128 DESCRIPTION
1129 Create a new empty section called @var{name} and attach it to the end of
1130 the chain of sections for @var{abfd}. Create a new section even if there
1131 is already a section with that name. Also set the attributes of the
1132 new section to the value @var{flags}.
1133
1134 Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1135 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1136 o <<bfd_error_no_memory>> - If memory allocation fails.
1137 */
1138
1139 sec_ptr
1140 bfd_make_section_anyway_with_flags (bfd *abfd, const char *name,
1141 flagword flags)
1142 {
1143 struct section_hash_entry *sh;
1144 asection *newsect;
1145
1146 if (abfd->output_has_begun)
1147 {
1148 bfd_set_error (bfd_error_invalid_operation);
1149 return NULL;
1150 }
1151
1152 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1153 if (sh == NULL)
1154 return NULL;
1155
1156 newsect = &sh->section;
1157 if (newsect->name != NULL)
1158 {
1159 /* We are making a section of the same name. Put it in the
1160 section hash table. Even though we can't find it directly by a
1161 hash lookup, we'll be able to find the section by traversing
1162 sh->root.next quicker than looking at all the bfd sections. */
1163 struct section_hash_entry *new_sh;
1164 new_sh = (struct section_hash_entry *)
1165 bfd_section_hash_newfunc (NULL, &abfd->section_htab, name);
1166 if (new_sh == NULL)
1167 return NULL;
1168
1169 new_sh->root = sh->root;
1170 sh->root.next = &new_sh->root;
1171 newsect = &new_sh->section;
1172 }
1173
1174 newsect->flags = flags;
1175 newsect->name = name;
1176 return bfd_section_init (abfd, newsect);
1177 }
1178
1179 /*
1180 FUNCTION
1181 bfd_make_section_anyway
1182
1183 SYNOPSIS
1184 asection *bfd_make_section_anyway (bfd *abfd, const char *name);
1185
1186 DESCRIPTION
1187 Create a new empty section called @var{name} and attach it to the end of
1188 the chain of sections for @var{abfd}. Create a new section even if there
1189 is already a section with that name.
1190
1191 Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1192 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1193 o <<bfd_error_no_memory>> - If memory allocation fails.
1194 */
1195
1196 sec_ptr
1197 bfd_make_section_anyway (bfd *abfd, const char *name)
1198 {
1199 return bfd_make_section_anyway_with_flags (abfd, name, 0);
1200 }
1201
1202 /*
1203 FUNCTION
1204 bfd_make_section_with_flags
1205
1206 SYNOPSIS
1207 asection *bfd_make_section_with_flags
1208 (bfd *, const char *name, flagword flags);
1209
1210 DESCRIPTION
1211 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1212 bfd_set_error ()) without changing the section chain if there is already a
1213 section named @var{name}. Also set the attributes of the new section to
1214 the value @var{flags}. If there is an error, return <<NULL>> and set
1215 <<bfd_error>>.
1216 */
1217
1218 asection *
1219 bfd_make_section_with_flags (bfd *abfd, const char *name,
1220 flagword flags)
1221 {
1222 struct section_hash_entry *sh;
1223 asection *newsect;
1224
1225 if (abfd == NULL || name == NULL || abfd->output_has_begun)
1226 {
1227 bfd_set_error (bfd_error_invalid_operation);
1228 return NULL;
1229 }
1230
1231 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0
1232 || strcmp (name, BFD_COM_SECTION_NAME) == 0
1233 || strcmp (name, BFD_UND_SECTION_NAME) == 0
1234 || strcmp (name, BFD_IND_SECTION_NAME) == 0)
1235 return NULL;
1236
1237 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1238 if (sh == NULL)
1239 return NULL;
1240
1241 newsect = &sh->section;
1242 if (newsect->name != NULL)
1243 {
1244 /* Section already exists. */
1245 return NULL;
1246 }
1247
1248 newsect->name = name;
1249 newsect->flags = flags;
1250 return bfd_section_init (abfd, newsect);
1251 }
1252
1253 /*
1254 FUNCTION
1255 bfd_make_section
1256
1257 SYNOPSIS
1258 asection *bfd_make_section (bfd *, const char *name);
1259
1260 DESCRIPTION
1261 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1262 bfd_set_error ()) without changing the section chain if there is already a
1263 section named @var{name}. If there is an error, return <<NULL>> and set
1264 <<bfd_error>>.
1265 */
1266
1267 asection *
1268 bfd_make_section (bfd *abfd, const char *name)
1269 {
1270 return bfd_make_section_with_flags (abfd, name, 0);
1271 }
1272
1273 /*
1274 FUNCTION
1275 bfd_set_section_flags
1276
1277 SYNOPSIS
1278 bfd_boolean bfd_set_section_flags (asection *sec, flagword flags);
1279
1280 DESCRIPTION
1281 Set the attributes of the section @var{sec} to the value @var{flags}.
1282 Return <<TRUE>> on success, <<FALSE>> on error. Possible error
1283 returns are:
1284
1285 o <<bfd_error_invalid_operation>> -
1286 The section cannot have one or more of the attributes
1287 requested. For example, a .bss section in <<a.out>> may not
1288 have the <<SEC_HAS_CONTENTS>> field set.
1289
1290 */
1291
1292 bfd_boolean
1293 bfd_set_section_flags (asection *section, flagword flags)
1294 {
1295 section->flags = flags;
1296 return TRUE;
1297 }
1298
1299 /*
1300 FUNCTION
1301 bfd_rename_section
1302
1303 SYNOPSIS
1304 void bfd_rename_section
1305 (asection *sec, const char *newname);
1306
1307 DESCRIPTION
1308 Rename section @var{sec} to @var{newname}.
1309 */
1310
1311 void
1312 bfd_rename_section (asection *sec, const char *newname)
1313 {
1314 struct section_hash_entry *sh;
1315
1316 sh = (struct section_hash_entry *)
1317 ((char *) sec - offsetof (struct section_hash_entry, section));
1318 sh->section.name = newname;
1319 bfd_hash_rename (&sec->owner->section_htab, newname, &sh->root);
1320 }
1321
1322 /*
1323 FUNCTION
1324 bfd_map_over_sections
1325
1326 SYNOPSIS
1327 void bfd_map_over_sections
1328 (bfd *abfd,
1329 void (*func) (bfd *abfd, asection *sect, void *obj),
1330 void *obj);
1331
1332 DESCRIPTION
1333 Call the provided function @var{func} for each section
1334 attached to the BFD @var{abfd}, passing @var{obj} as an
1335 argument. The function will be called as if by
1336
1337 | func (abfd, the_section, obj);
1338
1339 This is the preferred method for iterating over sections; an
1340 alternative would be to use a loop:
1341
1342 | asection *p;
1343 | for (p = abfd->sections; p != NULL; p = p->next)
1344 | func (abfd, p, ...)
1345
1346 */
1347
1348 void
1349 bfd_map_over_sections (bfd *abfd,
1350 void (*operation) (bfd *, asection *, void *),
1351 void *user_storage)
1352 {
1353 asection *sect;
1354 unsigned int i = 0;
1355
1356 for (sect = abfd->sections; sect != NULL; i++, sect = sect->next)
1357 (*operation) (abfd, sect, user_storage);
1358
1359 if (i != abfd->section_count) /* Debugging */
1360 abort ();
1361 }
1362
1363 /*
1364 FUNCTION
1365 bfd_sections_find_if
1366
1367 SYNOPSIS
1368 asection *bfd_sections_find_if
1369 (bfd *abfd,
1370 bfd_boolean (*operation) (bfd *abfd, asection *sect, void *obj),
1371 void *obj);
1372
1373 DESCRIPTION
1374 Call the provided function @var{operation} for each section
1375 attached to the BFD @var{abfd}, passing @var{obj} as an
1376 argument. The function will be called as if by
1377
1378 | operation (abfd, the_section, obj);
1379
1380 It returns the first section for which @var{operation} returns true.
1381
1382 */
1383
1384 asection *
1385 bfd_sections_find_if (bfd *abfd,
1386 bfd_boolean (*operation) (bfd *, asection *, void *),
1387 void *user_storage)
1388 {
1389 asection *sect;
1390
1391 for (sect = abfd->sections; sect != NULL; sect = sect->next)
1392 if ((*operation) (abfd, sect, user_storage))
1393 break;
1394
1395 return sect;
1396 }
1397
1398 /*
1399 FUNCTION
1400 bfd_set_section_size
1401
1402 SYNOPSIS
1403 bfd_boolean bfd_set_section_size (asection *sec, bfd_size_type val);
1404
1405 DESCRIPTION
1406 Set @var{sec} to the size @var{val}. If the operation is
1407 ok, then <<TRUE>> is returned, else <<FALSE>>.
1408
1409 Possible error returns:
1410 o <<bfd_error_invalid_operation>> -
1411 Writing has started to the BFD, so setting the size is invalid.
1412
1413 */
1414
1415 bfd_boolean
1416 bfd_set_section_size (asection *sec, bfd_size_type val)
1417 {
1418 /* Once you've started writing to any section you cannot create or change
1419 the size of any others. */
1420
1421 if (sec->owner == NULL || sec->owner->output_has_begun)
1422 {
1423 bfd_set_error (bfd_error_invalid_operation);
1424 return FALSE;
1425 }
1426
1427 sec->size = val;
1428 return TRUE;
1429 }
1430
1431 /*
1432 FUNCTION
1433 bfd_set_section_contents
1434
1435 SYNOPSIS
1436 bfd_boolean bfd_set_section_contents
1437 (bfd *abfd, asection *section, const void *data,
1438 file_ptr offset, bfd_size_type count);
1439
1440 DESCRIPTION
1441 Sets the contents of the section @var{section} in BFD
1442 @var{abfd} to the data starting in memory at @var{location}.
1443 The data is written to the output section starting at offset
1444 @var{offset} for @var{count} octets.
1445
1446 Normally <<TRUE>> is returned, but <<FALSE>> is returned if
1447 there was an error. Possible error returns are:
1448 o <<bfd_error_no_contents>> -
1449 The output section does not have the <<SEC_HAS_CONTENTS>>
1450 attribute, so nothing can be written to it.
1451 o <<bfd_error_bad_value>> -
1452 The section is unable to contain all of the data.
1453 o <<bfd_error_invalid_operation>> -
1454 The BFD is not writeable.
1455 o and some more too.
1456
1457 This routine is front end to the back end function
1458 <<_bfd_set_section_contents>>.
1459
1460 */
1461
1462 bfd_boolean
1463 bfd_set_section_contents (bfd *abfd,
1464 sec_ptr section,
1465 const void *location,
1466 file_ptr offset,
1467 bfd_size_type count)
1468 {
1469 bfd_size_type sz;
1470
1471 if (!(bfd_section_flags (section) & SEC_HAS_CONTENTS))
1472 {
1473 bfd_set_error (bfd_error_no_contents);
1474 return FALSE;
1475 }
1476
1477 sz = section->size;
1478 if ((bfd_size_type) offset > sz
1479 || count > sz
1480 || offset + count > sz
1481 || count != (size_t) count)
1482 {
1483 bfd_set_error (bfd_error_bad_value);
1484 return FALSE;
1485 }
1486
1487 if (!bfd_write_p (abfd))
1488 {
1489 bfd_set_error (bfd_error_invalid_operation);
1490 return FALSE;
1491 }
1492
1493 /* Record a copy of the data in memory if desired. */
1494 if (section->contents
1495 && location != section->contents + offset)
1496 memcpy (section->contents + offset, location, (size_t) count);
1497
1498 if (BFD_SEND (abfd, _bfd_set_section_contents,
1499 (abfd, section, location, offset, count)))
1500 {
1501 abfd->output_has_begun = TRUE;
1502 return TRUE;
1503 }
1504
1505 return FALSE;
1506 }
1507
1508 /*
1509 FUNCTION
1510 bfd_get_section_contents
1511
1512 SYNOPSIS
1513 bfd_boolean bfd_get_section_contents
1514 (bfd *abfd, asection *section, void *location, file_ptr offset,
1515 bfd_size_type count);
1516
1517 DESCRIPTION
1518 Read data from @var{section} in BFD @var{abfd}
1519 into memory starting at @var{location}. The data is read at an
1520 offset of @var{offset} from the start of the input section,
1521 and is read for @var{count} bytes.
1522
1523 If the contents of a constructor with the <<SEC_CONSTRUCTOR>>
1524 flag set are requested or if the section does not have the
1525 <<SEC_HAS_CONTENTS>> flag set, then the @var{location} is filled
1526 with zeroes. If no errors occur, <<TRUE>> is returned, else
1527 <<FALSE>>.
1528
1529 */
1530 bfd_boolean
1531 bfd_get_section_contents (bfd *abfd,
1532 sec_ptr section,
1533 void *location,
1534 file_ptr offset,
1535 bfd_size_type count)
1536 {
1537 bfd_size_type sz;
1538
1539 if (section->flags & SEC_CONSTRUCTOR)
1540 {
1541 memset (location, 0, (size_t) count);
1542 return TRUE;
1543 }
1544
1545 if (abfd->direction != write_direction && section->rawsize != 0)
1546 sz = section->rawsize;
1547 else
1548 sz = section->size;
1549 if ((bfd_size_type) offset > sz
1550 || count > sz
1551 || offset + count > sz
1552 || count != (size_t) count)
1553 {
1554 bfd_set_error (bfd_error_bad_value);
1555 return FALSE;
1556 }
1557
1558 if (count == 0)
1559 /* Don't bother. */
1560 return TRUE;
1561
1562 if ((section->flags & SEC_HAS_CONTENTS) == 0)
1563 {
1564 memset (location, 0, (size_t) count);
1565 return TRUE;
1566 }
1567
1568 if ((section->flags & SEC_IN_MEMORY) != 0)
1569 {
1570 if (section->contents == NULL)
1571 {
1572 /* This can happen because of errors earlier on in the linking process.
1573 We do not want to seg-fault here, so clear the flag and return an
1574 error code. */
1575 section->flags &= ~ SEC_IN_MEMORY;
1576 bfd_set_error (bfd_error_invalid_operation);
1577 return FALSE;
1578 }
1579
1580 memmove (location, section->contents + offset, (size_t) count);
1581 return TRUE;
1582 }
1583
1584 return BFD_SEND (abfd, _bfd_get_section_contents,
1585 (abfd, section, location, offset, count));
1586 }
1587
1588 /*
1589 FUNCTION
1590 bfd_malloc_and_get_section
1591
1592 SYNOPSIS
1593 bfd_boolean bfd_malloc_and_get_section
1594 (bfd *abfd, asection *section, bfd_byte **buf);
1595
1596 DESCRIPTION
1597 Read all data from @var{section} in BFD @var{abfd}
1598 into a buffer, *@var{buf}, malloc'd by this function.
1599 */
1600
1601 bfd_boolean
1602 bfd_malloc_and_get_section (bfd *abfd, sec_ptr sec, bfd_byte **buf)
1603 {
1604 *buf = NULL;
1605 return bfd_get_full_section_contents (abfd, sec, buf);
1606 }
1607 /*
1608 FUNCTION
1609 bfd_copy_private_section_data
1610
1611 SYNOPSIS
1612 bfd_boolean bfd_copy_private_section_data
1613 (bfd *ibfd, asection *isec, bfd *obfd, asection *osec);
1614
1615 DESCRIPTION
1616 Copy private section information from @var{isec} in the BFD
1617 @var{ibfd} to the section @var{osec} in the BFD @var{obfd}.
1618 Return <<TRUE>> on success, <<FALSE>> on error. Possible error
1619 returns are:
1620
1621 o <<bfd_error_no_memory>> -
1622 Not enough memory exists to create private data for @var{osec}.
1623
1624 .#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \
1625 . BFD_SEND (obfd, _bfd_copy_private_section_data, \
1626 . (ibfd, isection, obfd, osection))
1627 */
1628
1629 /*
1630 FUNCTION
1631 bfd_generic_is_group_section
1632
1633 SYNOPSIS
1634 bfd_boolean bfd_generic_is_group_section (bfd *, const asection *sec);
1635
1636 DESCRIPTION
1637 Returns TRUE if @var{sec} is a member of a group.
1638 */
1639
1640 bfd_boolean
1641 bfd_generic_is_group_section (bfd *abfd ATTRIBUTE_UNUSED,
1642 const asection *sec ATTRIBUTE_UNUSED)
1643 {
1644 return FALSE;
1645 }
1646
1647 /*
1648 FUNCTION
1649 bfd_generic_group_name
1650
1651 SYNOPSIS
1652 const char *bfd_generic_group_name (bfd *, const asection *sec);
1653
1654 DESCRIPTION
1655 Returns group name if @var{sec} is a member of a group.
1656 */
1657
1658 const char *
1659 bfd_generic_group_name (bfd *abfd ATTRIBUTE_UNUSED,
1660 const asection *sec ATTRIBUTE_UNUSED)
1661 {
1662 return NULL;
1663 }
1664
1665 /*
1666 FUNCTION
1667 bfd_generic_discard_group
1668
1669 SYNOPSIS
1670 bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group);
1671
1672 DESCRIPTION
1673 Remove all members of @var{group} from the output.
1674 */
1675
1676 bfd_boolean
1677 bfd_generic_discard_group (bfd *abfd ATTRIBUTE_UNUSED,
1678 asection *group ATTRIBUTE_UNUSED)
1679 {
1680 return TRUE;
1681 }
1682
1683 bfd_boolean
1684 _bfd_nowrite_set_section_contents (bfd *abfd,
1685 sec_ptr section ATTRIBUTE_UNUSED,
1686 const void *location ATTRIBUTE_UNUSED,
1687 file_ptr offset ATTRIBUTE_UNUSED,
1688 bfd_size_type count ATTRIBUTE_UNUSED)
1689 {
1690 return _bfd_bool_bfd_false_error (abfd);
1691 }
This page took 0.081231 seconds and 4 git commands to generate.