i386: Align branches within a fixed boundary
[deliverable/binutils-gdb.git] / bfd / section.c
1 /* Object file "section" support for the BFD library.
2 Copyright (C) 1990-2019 Free Software Foundation, Inc.
3 Written by Cygnus Support.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 /*
23 SECTION
24 Sections
25
26 The raw data contained within a BFD is maintained through the
27 section abstraction. A single BFD may have any number of
28 sections. It keeps hold of them by pointing to the first;
29 each one points to the next in the list.
30
31 Sections are supported in BFD in <<section.c>>.
32
33 @menu
34 @* Section Input::
35 @* Section Output::
36 @* typedef asection::
37 @* section prototypes::
38 @end menu
39
40 INODE
41 Section Input, Section Output, Sections, Sections
42 SUBSECTION
43 Section input
44
45 When a BFD is opened for reading, the section structures are
46 created and attached to the BFD.
47
48 Each section has a name which describes the section in the
49 outside world---for example, <<a.out>> would contain at least
50 three sections, called <<.text>>, <<.data>> and <<.bss>>.
51
52 Names need not be unique; for example a COFF file may have several
53 sections named <<.data>>.
54
55 Sometimes a BFD will contain more than the ``natural'' number of
56 sections. A back end may attach other sections containing
57 constructor data, or an application may add a section (using
58 <<bfd_make_section>>) to the sections attached to an already open
59 BFD. For example, the linker creates an extra section
60 <<COMMON>> for each input file's BFD to hold information about
61 common storage.
62
63 The raw data is not necessarily read in when
64 the section descriptor is created. Some targets may leave the
65 data in place until a <<bfd_get_section_contents>> call is
66 made. Other back ends may read in all the data at once. For
67 example, an S-record file has to be read once to determine the
68 size of the data.
69
70 INODE
71 Section Output, typedef asection, Section Input, Sections
72
73 SUBSECTION
74 Section output
75
76 To write a new object style BFD, the various sections to be
77 written have to be created. They are attached to the BFD in
78 the same way as input sections; data is written to the
79 sections using <<bfd_set_section_contents>>.
80
81 Any program that creates or combines sections (e.g., the assembler
82 and linker) must use the <<asection>> fields <<output_section>> and
83 <<output_offset>> to indicate the file sections to which each
84 section must be written. (If the section is being created from
85 scratch, <<output_section>> should probably point to the section
86 itself and <<output_offset>> should probably be zero.)
87
88 The data to be written comes from input sections attached
89 (via <<output_section>> pointers) to
90 the output sections. The output section structure can be
91 considered a filter for the input section: the output section
92 determines the vma of the output data and the name, but the
93 input section determines the offset into the output section of
94 the data to be written.
95
96 E.g., to create a section "O", starting at 0x100, 0x123 long,
97 containing two subsections, "A" at offset 0x0 (i.e., at vma
98 0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the <<asection>>
99 structures would look like:
100
101 | section name "A"
102 | output_offset 0x00
103 | size 0x20
104 | output_section -----------> section name "O"
105 | | vma 0x100
106 | section name "B" | size 0x123
107 | output_offset 0x20 |
108 | size 0x103 |
109 | output_section --------|
110
111 SUBSECTION
112 Link orders
113
114 The data within a section is stored in a @dfn{link_order}.
115 These are much like the fixups in <<gas>>. The link_order
116 abstraction allows a section to grow and shrink within itself.
117
118 A link_order knows how big it is, and which is the next
119 link_order and where the raw data for it is; it also points to
120 a list of relocations which apply to it.
121
122 The link_order is used by the linker to perform relaxing on
123 final code. The compiler creates code which is as big as
124 necessary to make it work without relaxing, and the user can
125 select whether to relax. Sometimes relaxing takes a lot of
126 time. The linker runs around the relocations to see if any
127 are attached to data which can be shrunk, if so it does it on
128 a link_order by link_order basis.
129
130 */
131
132 #include "sysdep.h"
133 #include "bfd.h"
134 #include "libbfd.h"
135 #include "bfdlink.h"
136
137 /*
138 DOCDD
139 INODE
140 typedef asection, section prototypes, Section Output, Sections
141 SUBSECTION
142 typedef asection
143
144 Here is the section structure:
145
146 CODE_FRAGMENT
147 .
148 .typedef struct bfd_section
149 .{
150 . {* The name of the section; the name isn't a copy, the pointer is
151 . the same as that passed to bfd_make_section. *}
152 . const char *name;
153 .
154 . {* A unique sequence number. *}
155 . unsigned int id;
156 .
157 . {* Which section in the bfd; 0..n-1 as sections are created in a bfd. *}
158 . unsigned int index;
159 .
160 . {* The next section in the list belonging to the BFD, or NULL. *}
161 . struct bfd_section *next;
162 .
163 . {* The previous section in the list belonging to the BFD, or NULL. *}
164 . struct bfd_section *prev;
165 .
166 . {* The field flags contains attributes of the section. Some
167 . flags are read in from the object file, and some are
168 . synthesized from other information. *}
169 . flagword flags;
170 .
171 .#define SEC_NO_FLAGS 0x0
172 .
173 . {* Tells the OS to allocate space for this section when loading.
174 . This is clear for a section containing debug information only. *}
175 .#define SEC_ALLOC 0x1
176 .
177 . {* Tells the OS to load the section from the file when loading.
178 . This is clear for a .bss section. *}
179 .#define SEC_LOAD 0x2
180 .
181 . {* The section contains data still to be relocated, so there is
182 . some relocation information too. *}
183 .#define SEC_RELOC 0x4
184 .
185 . {* A signal to the OS that the section contains read only data. *}
186 .#define SEC_READONLY 0x8
187 .
188 . {* The section contains code only. *}
189 .#define SEC_CODE 0x10
190 .
191 . {* The section contains data only. *}
192 .#define SEC_DATA 0x20
193 .
194 . {* The section will reside in ROM. *}
195 .#define SEC_ROM 0x40
196 .
197 . {* The section contains constructor information. This section
198 . type is used by the linker to create lists of constructors and
199 . destructors used by <<g++>>. When a back end sees a symbol
200 . which should be used in a constructor list, it creates a new
201 . section for the type of name (e.g., <<__CTOR_LIST__>>), attaches
202 . the symbol to it, and builds a relocation. To build the lists
203 . of constructors, all the linker has to do is catenate all the
204 . sections called <<__CTOR_LIST__>> and relocate the data
205 . contained within - exactly the operations it would peform on
206 . standard data. *}
207 .#define SEC_CONSTRUCTOR 0x80
208 .
209 . {* The section has contents - a data section could be
210 . <<SEC_ALLOC>> | <<SEC_HAS_CONTENTS>>; a debug section could be
211 . <<SEC_HAS_CONTENTS>> *}
212 .#define SEC_HAS_CONTENTS 0x100
213 .
214 . {* An instruction to the linker to not output the section
215 . even if it has information which would normally be written. *}
216 .#define SEC_NEVER_LOAD 0x200
217 .
218 . {* The section contains thread local data. *}
219 .#define SEC_THREAD_LOCAL 0x400
220 .
221 . {* The section's size is fixed. Generic linker code will not
222 . recalculate it and it is up to whoever has set this flag to
223 . get the size right. *}
224 .#define SEC_FIXED_SIZE 0x800
225 .
226 . {* The section contains common symbols (symbols may be defined
227 . multiple times, the value of a symbol is the amount of
228 . space it requires, and the largest symbol value is the one
229 . used). Most targets have exactly one of these (which we
230 . translate to bfd_com_section_ptr), but ECOFF has two. *}
231 .#define SEC_IS_COMMON 0x1000
232 .
233 . {* The section contains only debugging information. For
234 . example, this is set for ELF .debug and .stab sections.
235 . strip tests this flag to see if a section can be
236 . discarded. *}
237 .#define SEC_DEBUGGING 0x2000
238 .
239 . {* The contents of this section are held in memory pointed to
240 . by the contents field. This is checked by bfd_get_section_contents,
241 . and the data is retrieved from memory if appropriate. *}
242 .#define SEC_IN_MEMORY 0x4000
243 .
244 . {* The contents of this section are to be excluded by the
245 . linker for executable and shared objects unless those
246 . objects are to be further relocated. *}
247 .#define SEC_EXCLUDE 0x8000
248 .
249 . {* The contents of this section are to be sorted based on the sum of
250 . the symbol and addend values specified by the associated relocation
251 . entries. Entries without associated relocation entries will be
252 . appended to the end of the section in an unspecified order. *}
253 .#define SEC_SORT_ENTRIES 0x10000
254 .
255 . {* When linking, duplicate sections of the same name should be
256 . discarded, rather than being combined into a single section as
257 . is usually done. This is similar to how common symbols are
258 . handled. See SEC_LINK_DUPLICATES below. *}
259 .#define SEC_LINK_ONCE 0x20000
260 .
261 . {* If SEC_LINK_ONCE is set, this bitfield describes how the linker
262 . should handle duplicate sections. *}
263 .#define SEC_LINK_DUPLICATES 0xc0000
264 .
265 . {* This value for SEC_LINK_DUPLICATES means that duplicate
266 . sections with the same name should simply be discarded. *}
267 .#define SEC_LINK_DUPLICATES_DISCARD 0x0
268 .
269 . {* This value for SEC_LINK_DUPLICATES means that the linker
270 . should warn if there are any duplicate sections, although
271 . it should still only link one copy. *}
272 .#define SEC_LINK_DUPLICATES_ONE_ONLY 0x40000
273 .
274 . {* This value for SEC_LINK_DUPLICATES means that the linker
275 . should warn if any duplicate sections are a different size. *}
276 .#define SEC_LINK_DUPLICATES_SAME_SIZE 0x80000
277 .
278 . {* This value for SEC_LINK_DUPLICATES means that the linker
279 . should warn if any duplicate sections contain different
280 . contents. *}
281 .#define SEC_LINK_DUPLICATES_SAME_CONTENTS \
282 . (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE)
283 .
284 . {* This section was created by the linker as part of dynamic
285 . relocation or other arcane processing. It is skipped when
286 . going through the first-pass output, trusting that someone
287 . else up the line will take care of it later. *}
288 .#define SEC_LINKER_CREATED 0x100000
289 .
290 . {* This section should not be subject to garbage collection.
291 . Also set to inform the linker that this section should not be
292 . listed in the link map as discarded. *}
293 .#define SEC_KEEP 0x200000
294 .
295 . {* This section contains "short" data, and should be placed
296 . "near" the GP. *}
297 .#define SEC_SMALL_DATA 0x400000
298 .
299 . {* Attempt to merge identical entities in the section.
300 . Entity size is given in the entsize field. *}
301 .#define SEC_MERGE 0x800000
302 .
303 . {* If given with SEC_MERGE, entities to merge are zero terminated
304 . strings where entsize specifies character size instead of fixed
305 . size entries. *}
306 .#define SEC_STRINGS 0x1000000
307 .
308 . {* This section contains data about section groups. *}
309 .#define SEC_GROUP 0x2000000
310 .
311 . {* The section is a COFF shared library section. This flag is
312 . only for the linker. If this type of section appears in
313 . the input file, the linker must copy it to the output file
314 . without changing the vma or size. FIXME: Although this
315 . was originally intended to be general, it really is COFF
316 . specific (and the flag was renamed to indicate this). It
317 . might be cleaner to have some more general mechanism to
318 . allow the back end to control what the linker does with
319 . sections. *}
320 .#define SEC_COFF_SHARED_LIBRARY 0x4000000
321 .
322 . {* This input section should be copied to output in reverse order
323 . as an array of pointers. This is for ELF linker internal use
324 . only. *}
325 .#define SEC_ELF_REVERSE_COPY 0x4000000
326 .
327 . {* This section contains data which may be shared with other
328 . executables or shared objects. This is for COFF only. *}
329 .#define SEC_COFF_SHARED 0x8000000
330 .
331 . {* This section should be compressed. This is for ELF linker
332 . internal use only. *}
333 .#define SEC_ELF_COMPRESS 0x8000000
334 .
335 . {* When a section with this flag is being linked, then if the size of
336 . the input section is less than a page, it should not cross a page
337 . boundary. If the size of the input section is one page or more,
338 . it should be aligned on a page boundary. This is for TI
339 . TMS320C54X only. *}
340 .#define SEC_TIC54X_BLOCK 0x10000000
341 .
342 . {* This section should be renamed. This is for ELF linker
343 . internal use only. *}
344 .#define SEC_ELF_RENAME 0x10000000
345 .
346 . {* Conditionally link this section; do not link if there are no
347 . references found to any symbol in the section. This is for TI
348 . TMS320C54X only. *}
349 .#define SEC_TIC54X_CLINK 0x20000000
350 .
351 . {* This section contains vliw code. This is for Toshiba MeP only. *}
352 .#define SEC_MEP_VLIW 0x20000000
353 .
354 . {* All symbols, sizes and relocations in this section are octets
355 . instead of bytes. Required for DWARF debug sections as DWARF
356 . information is organized in octets, not bytes. *}
357 .#define SEC_ELF_OCTETS 0x40000000
358 .
359 . {* Indicate that section has the no read flag set. This happens
360 . when memory read flag isn't set. *}
361 .#define SEC_COFF_NOREAD 0x40000000
362 .
363 . {* Indicate that section has the purecode flag set. *}
364 .#define SEC_ELF_PURECODE 0x80000000
365 .
366 . {* End of section flags. *}
367 .
368 . {* Some internal packed boolean fields. *}
369 .
370 . {* See the vma field. *}
371 . unsigned int user_set_vma : 1;
372 .
373 . {* A mark flag used by some of the linker backends. *}
374 . unsigned int linker_mark : 1;
375 .
376 . {* Another mark flag used by some of the linker backends. Set for
377 . output sections that have an input section. *}
378 . unsigned int linker_has_input : 1;
379 .
380 . {* Mark flag used by some linker backends for garbage collection. *}
381 . unsigned int gc_mark : 1;
382 .
383 . {* Section compression status. *}
384 . unsigned int compress_status : 2;
385 .#define COMPRESS_SECTION_NONE 0
386 .#define COMPRESS_SECTION_DONE 1
387 .#define DECOMPRESS_SECTION_SIZED 2
388 .
389 . {* The following flags are used by the ELF linker. *}
390 .
391 . {* Mark sections which have been allocated to segments. *}
392 . unsigned int segment_mark : 1;
393 .
394 . {* Type of sec_info information. *}
395 . unsigned int sec_info_type:3;
396 .#define SEC_INFO_TYPE_NONE 0
397 .#define SEC_INFO_TYPE_STABS 1
398 .#define SEC_INFO_TYPE_MERGE 2
399 .#define SEC_INFO_TYPE_EH_FRAME 3
400 .#define SEC_INFO_TYPE_JUST_SYMS 4
401 .#define SEC_INFO_TYPE_TARGET 5
402 .#define SEC_INFO_TYPE_EH_FRAME_ENTRY 6
403 .
404 . {* Nonzero if this section uses RELA relocations, rather than REL. *}
405 . unsigned int use_rela_p:1;
406 .
407 . {* Bits used by various backends. The generic code doesn't touch
408 . these fields. *}
409 .
410 . unsigned int sec_flg0:1;
411 . unsigned int sec_flg1:1;
412 . unsigned int sec_flg2:1;
413 . unsigned int sec_flg3:1;
414 . unsigned int sec_flg4:1;
415 . unsigned int sec_flg5:1;
416 .
417 . {* End of internal packed boolean fields. *}
418 .
419 . {* The virtual memory address of the section - where it will be
420 . at run time. The symbols are relocated against this. The
421 . user_set_vma flag is maintained by bfd; if it's not set, the
422 . backend can assign addresses (for example, in <<a.out>>, where
423 . the default address for <<.data>> is dependent on the specific
424 . target and various flags). *}
425 . bfd_vma vma;
426 .
427 . {* The load address of the section - where it would be in a
428 . rom image; really only used for writing section header
429 . information. *}
430 . bfd_vma lma;
431 .
432 . {* The size of the section in *octets*, as it will be output.
433 . Contains a value even if the section has no contents (e.g., the
434 . size of <<.bss>>). *}
435 . bfd_size_type size;
436 .
437 . {* For input sections, the original size on disk of the section, in
438 . octets. This field should be set for any section whose size is
439 . changed by linker relaxation. It is required for sections where
440 . the linker relaxation scheme doesn't cache altered section and
441 . reloc contents (stabs, eh_frame, SEC_MERGE, some coff relaxing
442 . targets), and thus the original size needs to be kept to read the
443 . section multiple times. For output sections, rawsize holds the
444 . section size calculated on a previous linker relaxation pass. *}
445 . bfd_size_type rawsize;
446 .
447 . {* The compressed size of the section in octets. *}
448 . bfd_size_type compressed_size;
449 .
450 . {* Relaxation table. *}
451 . struct relax_table *relax;
452 .
453 . {* Count of used relaxation table entries. *}
454 . int relax_count;
455 .
456 .
457 . {* If this section is going to be output, then this value is the
458 . offset in *bytes* into the output section of the first byte in the
459 . input section (byte ==> smallest addressable unit on the
460 . target). In most cases, if this was going to start at the
461 . 100th octet (8-bit quantity) in the output section, this value
462 . would be 100. However, if the target byte size is 16 bits
463 . (bfd_octets_per_byte is "2"), this value would be 50. *}
464 . bfd_vma output_offset;
465 .
466 . {* The output section through which to map on output. *}
467 . struct bfd_section *output_section;
468 .
469 . {* The alignment requirement of the section, as an exponent of 2 -
470 . e.g., 3 aligns to 2^3 (or 8). *}
471 . unsigned int alignment_power;
472 .
473 . {* If an input section, a pointer to a vector of relocation
474 . records for the data in this section. *}
475 . struct reloc_cache_entry *relocation;
476 .
477 . {* If an output section, a pointer to a vector of pointers to
478 . relocation records for the data in this section. *}
479 . struct reloc_cache_entry **orelocation;
480 .
481 . {* The number of relocation records in one of the above. *}
482 . unsigned reloc_count;
483 .
484 . {* Information below is back end specific - and not always used
485 . or updated. *}
486 .
487 . {* File position of section data. *}
488 . file_ptr filepos;
489 .
490 . {* File position of relocation info. *}
491 . file_ptr rel_filepos;
492 .
493 . {* File position of line data. *}
494 . file_ptr line_filepos;
495 .
496 . {* Pointer to data for applications. *}
497 . void *userdata;
498 .
499 . {* If the SEC_IN_MEMORY flag is set, this points to the actual
500 . contents. *}
501 . unsigned char *contents;
502 .
503 . {* Attached line number information. *}
504 . alent *lineno;
505 .
506 . {* Number of line number records. *}
507 . unsigned int lineno_count;
508 .
509 . {* Entity size for merging purposes. *}
510 . unsigned int entsize;
511 .
512 . {* Points to the kept section if this section is a link-once section,
513 . and is discarded. *}
514 . struct bfd_section *kept_section;
515 .
516 . {* When a section is being output, this value changes as more
517 . linenumbers are written out. *}
518 . file_ptr moving_line_filepos;
519 .
520 . {* What the section number is in the target world. *}
521 . int target_index;
522 .
523 . void *used_by_bfd;
524 .
525 . {* If this is a constructor section then here is a list of the
526 . relocations created to relocate items within it. *}
527 . struct relent_chain *constructor_chain;
528 .
529 . {* The BFD which owns the section. *}
530 . bfd *owner;
531 .
532 . {* A symbol which points at this section only. *}
533 . struct bfd_symbol *symbol;
534 . struct bfd_symbol **symbol_ptr_ptr;
535 .
536 . {* Early in the link process, map_head and map_tail are used to build
537 . a list of input sections attached to an output section. Later,
538 . output sections use these fields for a list of bfd_link_order
539 . structs. *}
540 . union {
541 . struct bfd_link_order *link_order;
542 . struct bfd_section *s;
543 . } map_head, map_tail;
544 .} asection;
545 .
546 .{* Relax table contains information about instructions which can
547 . be removed by relaxation -- replacing a long address with a
548 . short address. *}
549 .struct relax_table {
550 . {* Address where bytes may be deleted. *}
551 . bfd_vma addr;
552 .
553 . {* Number of bytes to be deleted. *}
554 . int size;
555 .};
556 .
557 .static inline const char *
558 .bfd_section_name (const asection *sec)
559 .{
560 . return sec->name;
561 .}
562 .
563 .static inline bfd_size_type
564 .bfd_section_size (const asection *sec)
565 .{
566 . return sec->size;
567 .}
568 .
569 .static inline bfd_vma
570 .bfd_section_vma (const asection *sec)
571 .{
572 . return sec->vma;
573 .}
574 .
575 .static inline bfd_vma
576 .bfd_section_lma (const asection *sec)
577 .{
578 . return sec->lma;
579 .}
580 .
581 .static inline unsigned int
582 .bfd_section_alignment (const asection *sec)
583 .{
584 . return sec->alignment_power;
585 .}
586 .
587 .static inline flagword
588 .bfd_section_flags (const asection *sec)
589 .{
590 . return sec->flags;
591 .}
592 .
593 .static inline void *
594 .bfd_section_userdata (const asection *sec)
595 .{
596 . return sec->userdata;
597 .}
598 .static inline bfd_boolean
599 .bfd_is_com_section (const asection *sec)
600 .{
601 . return (sec->flags & SEC_IS_COMMON) != 0;
602 .}
603 .
604 .{* Note: the following are provided as inline functions rather than macros
605 . because not all callers use the return value. A macro implementation
606 . would use a comma expression, eg: "((ptr)->foo = val, TRUE)" and some
607 . compilers will complain about comma expressions that have no effect. *}
608 .static inline bfd_boolean
609 .bfd_set_section_userdata (asection *sec, void *val)
610 .{
611 . sec->userdata = val;
612 . return TRUE;
613 .}
614 .
615 .static inline bfd_boolean
616 .bfd_set_section_vma (asection *sec, bfd_vma val)
617 .{
618 . sec->vma = sec->lma = val;
619 . sec->user_set_vma = TRUE;
620 . return TRUE;
621 .}
622 .
623 .static inline bfd_boolean
624 .bfd_set_section_lma (asection *sec, bfd_vma val)
625 .{
626 . sec->lma = val;
627 . return TRUE;
628 .}
629 .
630 .static inline bfd_boolean
631 .bfd_set_section_alignment (asection *sec, unsigned int val)
632 .{
633 . sec->alignment_power = val;
634 . return TRUE;
635 .}
636 .
637 .{* These sections are global, and are managed by BFD. The application
638 . and target back end are not permitted to change the values in
639 . these sections. *}
640 .extern asection _bfd_std_section[4];
641 .
642 .#define BFD_ABS_SECTION_NAME "*ABS*"
643 .#define BFD_UND_SECTION_NAME "*UND*"
644 .#define BFD_COM_SECTION_NAME "*COM*"
645 .#define BFD_IND_SECTION_NAME "*IND*"
646 .
647 .{* Pointer to the common section. *}
648 .#define bfd_com_section_ptr (&_bfd_std_section[0])
649 .{* Pointer to the undefined section. *}
650 .#define bfd_und_section_ptr (&_bfd_std_section[1])
651 .{* Pointer to the absolute section. *}
652 .#define bfd_abs_section_ptr (&_bfd_std_section[2])
653 .{* Pointer to the indirect section. *}
654 .#define bfd_ind_section_ptr (&_bfd_std_section[3])
655 .
656 .static inline bfd_boolean
657 .bfd_is_und_section (const asection *sec)
658 .{
659 . return sec == bfd_und_section_ptr;
660 .}
661 .
662 .static inline bfd_boolean
663 .bfd_is_abs_section (const asection *sec)
664 .{
665 . return sec == bfd_abs_section_ptr;
666 .}
667 .
668 .static inline bfd_boolean
669 .bfd_is_ind_section (const asection *sec)
670 .{
671 . return sec == bfd_ind_section_ptr;
672 .}
673 .
674 .static inline bfd_boolean
675 .bfd_is_const_section (const asection *sec)
676 .{
677 . return sec >= bfd_abs_section_ptr && sec <= bfd_ind_section_ptr;
678 .}
679 .
680 .{* Return TRUE if input section SEC has been discarded. *}
681 .static inline bfd_boolean
682 .discarded_section (const asection *sec)
683 .{
684 . return (!bfd_is_abs_section (sec)
685 . && bfd_is_abs_section (sec->output_section)
686 . && sec->sec_info_type != SEC_INFO_TYPE_MERGE
687 . && sec->sec_info_type != SEC_INFO_TYPE_JUST_SYMS);
688 .}
689 .
690 .#define BFD_FAKE_SECTION(SEC, SYM, NAME, IDX, FLAGS) \
691 . {* name, id, index, next, prev, flags, user_set_vma, *} \
692 . { NAME, IDX, 0, NULL, NULL, FLAGS, 0, \
693 . \
694 . {* linker_mark, linker_has_input, gc_mark, decompress_status, *} \
695 . 0, 0, 1, 0, \
696 . \
697 . {* segment_mark, sec_info_type, use_rela_p, *} \
698 . 0, 0, 0, \
699 . \
700 . {* sec_flg0, sec_flg1, sec_flg2, sec_flg3, sec_flg4, sec_flg5, *} \
701 . 0, 0, 0, 0, 0, 0, \
702 . \
703 . {* vma, lma, size, rawsize, compressed_size, relax, relax_count, *} \
704 . 0, 0, 0, 0, 0, 0, 0, \
705 . \
706 . {* output_offset, output_section, alignment_power, *} \
707 . 0, &SEC, 0, \
708 . \
709 . {* relocation, orelocation, reloc_count, filepos, rel_filepos, *} \
710 . NULL, NULL, 0, 0, 0, \
711 . \
712 . {* line_filepos, userdata, contents, lineno, lineno_count, *} \
713 . 0, NULL, NULL, NULL, 0, \
714 . \
715 . {* entsize, kept_section, moving_line_filepos, *} \
716 . 0, NULL, 0, \
717 . \
718 . {* target_index, used_by_bfd, constructor_chain, owner, *} \
719 . 0, NULL, NULL, NULL, \
720 . \
721 . {* symbol, symbol_ptr_ptr, *} \
722 . (struct bfd_symbol *) SYM, &SEC.symbol, \
723 . \
724 . {* map_head, map_tail *} \
725 . { NULL }, { NULL } \
726 . }
727 .
728 .{* We use a macro to initialize the static asymbol structures because
729 . traditional C does not permit us to initialize a union member while
730 . gcc warns if we don't initialize it.
731 . the_bfd, name, value, attr, section [, udata] *}
732 .#ifdef __STDC__
733 .#define GLOBAL_SYM_INIT(NAME, SECTION) \
734 . { 0, NAME, 0, BSF_SECTION_SYM, SECTION, { 0 }}
735 .#else
736 .#define GLOBAL_SYM_INIT(NAME, SECTION) \
737 . { 0, NAME, 0, BSF_SECTION_SYM, SECTION }
738 .#endif
739 .
740 */
741
742 /* These symbols are global, not specific to any BFD. Therefore, anything
743 that tries to change them is broken, and should be repaired. */
744
745 static const asymbol global_syms[] =
746 {
747 GLOBAL_SYM_INIT (BFD_COM_SECTION_NAME, bfd_com_section_ptr),
748 GLOBAL_SYM_INIT (BFD_UND_SECTION_NAME, bfd_und_section_ptr),
749 GLOBAL_SYM_INIT (BFD_ABS_SECTION_NAME, bfd_abs_section_ptr),
750 GLOBAL_SYM_INIT (BFD_IND_SECTION_NAME, bfd_ind_section_ptr)
751 };
752
753 #define STD_SECTION(NAME, IDX, FLAGS) \
754 BFD_FAKE_SECTION(_bfd_std_section[IDX], &global_syms[IDX], NAME, IDX, FLAGS)
755
756 asection _bfd_std_section[] = {
757 STD_SECTION (BFD_COM_SECTION_NAME, 0, SEC_IS_COMMON),
758 STD_SECTION (BFD_UND_SECTION_NAME, 1, 0),
759 STD_SECTION (BFD_ABS_SECTION_NAME, 2, 0),
760 STD_SECTION (BFD_IND_SECTION_NAME, 3, 0)
761 };
762 #undef STD_SECTION
763
764 /* Initialize an entry in the section hash table. */
765
766 struct bfd_hash_entry *
767 bfd_section_hash_newfunc (struct bfd_hash_entry *entry,
768 struct bfd_hash_table *table,
769 const char *string)
770 {
771 /* Allocate the structure if it has not already been allocated by a
772 subclass. */
773 if (entry == NULL)
774 {
775 entry = (struct bfd_hash_entry *)
776 bfd_hash_allocate (table, sizeof (struct section_hash_entry));
777 if (entry == NULL)
778 return entry;
779 }
780
781 /* Call the allocation method of the superclass. */
782 entry = bfd_hash_newfunc (entry, table, string);
783 if (entry != NULL)
784 memset (&((struct section_hash_entry *) entry)->section, 0,
785 sizeof (asection));
786
787 return entry;
788 }
789
790 #define section_hash_lookup(table, string, create, copy) \
791 ((struct section_hash_entry *) \
792 bfd_hash_lookup ((table), (string), (create), (copy)))
793
794 /* Create a symbol whose only job is to point to this section. This
795 is useful for things like relocs which are relative to the base
796 of a section. */
797
798 bfd_boolean
799 _bfd_generic_new_section_hook (bfd *abfd, asection *newsect)
800 {
801 newsect->symbol = bfd_make_empty_symbol (abfd);
802 if (newsect->symbol == NULL)
803 return FALSE;
804
805 newsect->symbol->name = newsect->name;
806 newsect->symbol->value = 0;
807 newsect->symbol->section = newsect;
808 newsect->symbol->flags = BSF_SECTION_SYM;
809
810 newsect->symbol_ptr_ptr = &newsect->symbol;
811 return TRUE;
812 }
813
814 unsigned int _bfd_section_id = 0x10; /* id 0 to 3 used by STD_SECTION. */
815
816 /* Initializes a new section. NEWSECT->NAME is already set. */
817
818 static asection *
819 bfd_section_init (bfd *abfd, asection *newsect)
820 {
821 newsect->id = _bfd_section_id;
822 newsect->index = abfd->section_count;
823 newsect->owner = abfd;
824
825 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
826 return NULL;
827
828 _bfd_section_id++;
829 abfd->section_count++;
830 bfd_section_list_append (abfd, newsect);
831 return newsect;
832 }
833
834 /*
835 DOCDD
836 INODE
837 section prototypes, , typedef asection, Sections
838 SUBSECTION
839 Section prototypes
840
841 These are the functions exported by the section handling part of BFD.
842 */
843
844 /*
845 FUNCTION
846 bfd_section_list_clear
847
848 SYNOPSIS
849 void bfd_section_list_clear (bfd *);
850
851 DESCRIPTION
852 Clears the section list, and also resets the section count and
853 hash table entries.
854 */
855
856 void
857 bfd_section_list_clear (bfd *abfd)
858 {
859 abfd->sections = NULL;
860 abfd->section_last = NULL;
861 abfd->section_count = 0;
862 memset (abfd->section_htab.table, 0,
863 abfd->section_htab.size * sizeof (struct bfd_hash_entry *));
864 abfd->section_htab.count = 0;
865 }
866
867 /*
868 FUNCTION
869 bfd_get_section_by_name
870
871 SYNOPSIS
872 asection *bfd_get_section_by_name (bfd *abfd, const char *name);
873
874 DESCRIPTION
875 Return the most recently created section attached to @var{abfd}
876 named @var{name}. Return NULL if no such section exists.
877 */
878
879 asection *
880 bfd_get_section_by_name (bfd *abfd, const char *name)
881 {
882 struct section_hash_entry *sh;
883
884 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
885 if (sh != NULL)
886 return &sh->section;
887
888 return NULL;
889 }
890
891 /*
892 FUNCTION
893 bfd_get_next_section_by_name
894
895 SYNOPSIS
896 asection *bfd_get_next_section_by_name (bfd *ibfd, asection *sec);
897
898 DESCRIPTION
899 Given @var{sec} is a section returned by @code{bfd_get_section_by_name},
900 return the next most recently created section attached to the same
901 BFD with the same name, or if no such section exists in the same BFD and
902 IBFD is non-NULL, the next section with the same name in any input
903 BFD following IBFD. Return NULL on finding no section.
904 */
905
906 asection *
907 bfd_get_next_section_by_name (bfd *ibfd, asection *sec)
908 {
909 struct section_hash_entry *sh;
910 const char *name;
911 unsigned long hash;
912
913 sh = ((struct section_hash_entry *)
914 ((char *) sec - offsetof (struct section_hash_entry, section)));
915
916 hash = sh->root.hash;
917 name = sec->name;
918 for (sh = (struct section_hash_entry *) sh->root.next;
919 sh != NULL;
920 sh = (struct section_hash_entry *) sh->root.next)
921 if (sh->root.hash == hash
922 && strcmp (sh->root.string, name) == 0)
923 return &sh->section;
924
925 if (ibfd != NULL)
926 {
927 while ((ibfd = ibfd->link.next) != NULL)
928 {
929 asection *s = bfd_get_section_by_name (ibfd, name);
930 if (s != NULL)
931 return s;
932 }
933 }
934
935 return NULL;
936 }
937
938 /*
939 FUNCTION
940 bfd_get_linker_section
941
942 SYNOPSIS
943 asection *bfd_get_linker_section (bfd *abfd, const char *name);
944
945 DESCRIPTION
946 Return the linker created section attached to @var{abfd}
947 named @var{name}. Return NULL if no such section exists.
948 */
949
950 asection *
951 bfd_get_linker_section (bfd *abfd, const char *name)
952 {
953 asection *sec = bfd_get_section_by_name (abfd, name);
954
955 while (sec != NULL && (sec->flags & SEC_LINKER_CREATED) == 0)
956 sec = bfd_get_next_section_by_name (NULL, sec);
957 return sec;
958 }
959
960 /*
961 FUNCTION
962 bfd_get_section_by_name_if
963
964 SYNOPSIS
965 asection *bfd_get_section_by_name_if
966 (bfd *abfd,
967 const char *name,
968 bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj),
969 void *obj);
970
971 DESCRIPTION
972 Call the provided function @var{func} for each section
973 attached to the BFD @var{abfd} whose name matches @var{name},
974 passing @var{obj} as an argument. The function will be called
975 as if by
976
977 | func (abfd, the_section, obj);
978
979 It returns the first section for which @var{func} returns true,
980 otherwise <<NULL>>.
981
982 */
983
984 asection *
985 bfd_get_section_by_name_if (bfd *abfd, const char *name,
986 bfd_boolean (*operation) (bfd *,
987 asection *,
988 void *),
989 void *user_storage)
990 {
991 struct section_hash_entry *sh;
992 unsigned long hash;
993
994 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
995 if (sh == NULL)
996 return NULL;
997
998 hash = sh->root.hash;
999 for (; sh != NULL; sh = (struct section_hash_entry *) sh->root.next)
1000 if (sh->root.hash == hash
1001 && strcmp (sh->root.string, name) == 0
1002 && (*operation) (abfd, &sh->section, user_storage))
1003 return &sh->section;
1004
1005 return NULL;
1006 }
1007
1008 /*
1009 FUNCTION
1010 bfd_get_unique_section_name
1011
1012 SYNOPSIS
1013 char *bfd_get_unique_section_name
1014 (bfd *abfd, const char *templat, int *count);
1015
1016 DESCRIPTION
1017 Invent a section name that is unique in @var{abfd} by tacking
1018 a dot and a digit suffix onto the original @var{templat}. If
1019 @var{count} is non-NULL, then it specifies the first number
1020 tried as a suffix to generate a unique name. The value
1021 pointed to by @var{count} will be incremented in this case.
1022 */
1023
1024 char *
1025 bfd_get_unique_section_name (bfd *abfd, const char *templat, int *count)
1026 {
1027 int num;
1028 unsigned int len;
1029 char *sname;
1030
1031 len = strlen (templat);
1032 sname = (char *) bfd_malloc (len + 8);
1033 if (sname == NULL)
1034 return NULL;
1035 memcpy (sname, templat, len);
1036 num = 1;
1037 if (count != NULL)
1038 num = *count;
1039
1040 do
1041 {
1042 /* If we have a million sections, something is badly wrong. */
1043 if (num > 999999)
1044 abort ();
1045 sprintf (sname + len, ".%d", num++);
1046 }
1047 while (section_hash_lookup (&abfd->section_htab, sname, FALSE, FALSE));
1048
1049 if (count != NULL)
1050 *count = num;
1051 return sname;
1052 }
1053
1054 /*
1055 FUNCTION
1056 bfd_make_section_old_way
1057
1058 SYNOPSIS
1059 asection *bfd_make_section_old_way (bfd *abfd, const char *name);
1060
1061 DESCRIPTION
1062 Create a new empty section called @var{name}
1063 and attach it to the end of the chain of sections for the
1064 BFD @var{abfd}. An attempt to create a section with a name which
1065 is already in use returns its pointer without changing the
1066 section chain.
1067
1068 It has the funny name since this is the way it used to be
1069 before it was rewritten....
1070
1071 Possible errors are:
1072 o <<bfd_error_invalid_operation>> -
1073 If output has already started for this BFD.
1074 o <<bfd_error_no_memory>> -
1075 If memory allocation fails.
1076
1077 */
1078
1079 asection *
1080 bfd_make_section_old_way (bfd *abfd, const char *name)
1081 {
1082 asection *newsect;
1083
1084 if (abfd->output_has_begun)
1085 {
1086 bfd_set_error (bfd_error_invalid_operation);
1087 return NULL;
1088 }
1089
1090 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0)
1091 newsect = bfd_abs_section_ptr;
1092 else if (strcmp (name, BFD_COM_SECTION_NAME) == 0)
1093 newsect = bfd_com_section_ptr;
1094 else if (strcmp (name, BFD_UND_SECTION_NAME) == 0)
1095 newsect = bfd_und_section_ptr;
1096 else if (strcmp (name, BFD_IND_SECTION_NAME) == 0)
1097 newsect = bfd_ind_section_ptr;
1098 else
1099 {
1100 struct section_hash_entry *sh;
1101
1102 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1103 if (sh == NULL)
1104 return NULL;
1105
1106 newsect = &sh->section;
1107 if (newsect->name != NULL)
1108 {
1109 /* Section already exists. */
1110 return newsect;
1111 }
1112
1113 newsect->name = name;
1114 return bfd_section_init (abfd, newsect);
1115 }
1116
1117 /* Call new_section_hook when "creating" the standard abs, com, und
1118 and ind sections to tack on format specific section data.
1119 Also, create a proper section symbol. */
1120 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
1121 return NULL;
1122 return newsect;
1123 }
1124
1125 /*
1126 FUNCTION
1127 bfd_make_section_anyway_with_flags
1128
1129 SYNOPSIS
1130 asection *bfd_make_section_anyway_with_flags
1131 (bfd *abfd, const char *name, flagword flags);
1132
1133 DESCRIPTION
1134 Create a new empty section called @var{name} and attach it to the end of
1135 the chain of sections for @var{abfd}. Create a new section even if there
1136 is already a section with that name. Also set the attributes of the
1137 new section to the value @var{flags}.
1138
1139 Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1140 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1141 o <<bfd_error_no_memory>> - If memory allocation fails.
1142 */
1143
1144 sec_ptr
1145 bfd_make_section_anyway_with_flags (bfd *abfd, const char *name,
1146 flagword flags)
1147 {
1148 struct section_hash_entry *sh;
1149 asection *newsect;
1150
1151 if (abfd->output_has_begun)
1152 {
1153 bfd_set_error (bfd_error_invalid_operation);
1154 return NULL;
1155 }
1156
1157 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1158 if (sh == NULL)
1159 return NULL;
1160
1161 newsect = &sh->section;
1162 if (newsect->name != NULL)
1163 {
1164 /* We are making a section of the same name. Put it in the
1165 section hash table. Even though we can't find it directly by a
1166 hash lookup, we'll be able to find the section by traversing
1167 sh->root.next quicker than looking at all the bfd sections. */
1168 struct section_hash_entry *new_sh;
1169 new_sh = (struct section_hash_entry *)
1170 bfd_section_hash_newfunc (NULL, &abfd->section_htab, name);
1171 if (new_sh == NULL)
1172 return NULL;
1173
1174 new_sh->root = sh->root;
1175 sh->root.next = &new_sh->root;
1176 newsect = &new_sh->section;
1177 }
1178
1179 newsect->flags = flags;
1180 newsect->name = name;
1181 return bfd_section_init (abfd, newsect);
1182 }
1183
1184 /*
1185 FUNCTION
1186 bfd_make_section_anyway
1187
1188 SYNOPSIS
1189 asection *bfd_make_section_anyway (bfd *abfd, const char *name);
1190
1191 DESCRIPTION
1192 Create a new empty section called @var{name} and attach it to the end of
1193 the chain of sections for @var{abfd}. Create a new section even if there
1194 is already a section with that name.
1195
1196 Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1197 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1198 o <<bfd_error_no_memory>> - If memory allocation fails.
1199 */
1200
1201 sec_ptr
1202 bfd_make_section_anyway (bfd *abfd, const char *name)
1203 {
1204 return bfd_make_section_anyway_with_flags (abfd, name, 0);
1205 }
1206
1207 /*
1208 FUNCTION
1209 bfd_make_section_with_flags
1210
1211 SYNOPSIS
1212 asection *bfd_make_section_with_flags
1213 (bfd *, const char *name, flagword flags);
1214
1215 DESCRIPTION
1216 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1217 bfd_set_error ()) without changing the section chain if there is already a
1218 section named @var{name}. Also set the attributes of the new section to
1219 the value @var{flags}. If there is an error, return <<NULL>> and set
1220 <<bfd_error>>.
1221 */
1222
1223 asection *
1224 bfd_make_section_with_flags (bfd *abfd, const char *name,
1225 flagword flags)
1226 {
1227 struct section_hash_entry *sh;
1228 asection *newsect;
1229
1230 if (abfd == NULL || name == NULL || abfd->output_has_begun)
1231 {
1232 bfd_set_error (bfd_error_invalid_operation);
1233 return NULL;
1234 }
1235
1236 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0
1237 || strcmp (name, BFD_COM_SECTION_NAME) == 0
1238 || strcmp (name, BFD_UND_SECTION_NAME) == 0
1239 || strcmp (name, BFD_IND_SECTION_NAME) == 0)
1240 return NULL;
1241
1242 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1243 if (sh == NULL)
1244 return NULL;
1245
1246 newsect = &sh->section;
1247 if (newsect->name != NULL)
1248 {
1249 /* Section already exists. */
1250 return NULL;
1251 }
1252
1253 newsect->name = name;
1254 newsect->flags = flags;
1255 return bfd_section_init (abfd, newsect);
1256 }
1257
1258 /*
1259 FUNCTION
1260 bfd_make_section
1261
1262 SYNOPSIS
1263 asection *bfd_make_section (bfd *, const char *name);
1264
1265 DESCRIPTION
1266 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1267 bfd_set_error ()) without changing the section chain if there is already a
1268 section named @var{name}. If there is an error, return <<NULL>> and set
1269 <<bfd_error>>.
1270 */
1271
1272 asection *
1273 bfd_make_section (bfd *abfd, const char *name)
1274 {
1275 return bfd_make_section_with_flags (abfd, name, 0);
1276 }
1277
1278 /*
1279 FUNCTION
1280 bfd_set_section_flags
1281
1282 SYNOPSIS
1283 bfd_boolean bfd_set_section_flags (asection *sec, flagword flags);
1284
1285 DESCRIPTION
1286 Set the attributes of the section @var{sec} to the value @var{flags}.
1287 Return <<TRUE>> on success, <<FALSE>> on error. Possible error
1288 returns are:
1289
1290 o <<bfd_error_invalid_operation>> -
1291 The section cannot have one or more of the attributes
1292 requested. For example, a .bss section in <<a.out>> may not
1293 have the <<SEC_HAS_CONTENTS>> field set.
1294
1295 */
1296
1297 bfd_boolean
1298 bfd_set_section_flags (asection *section, flagword flags)
1299 {
1300 section->flags = flags;
1301 return TRUE;
1302 }
1303
1304 /*
1305 FUNCTION
1306 bfd_rename_section
1307
1308 SYNOPSIS
1309 void bfd_rename_section
1310 (asection *sec, const char *newname);
1311
1312 DESCRIPTION
1313 Rename section @var{sec} to @var{newname}.
1314 */
1315
1316 void
1317 bfd_rename_section (asection *sec, const char *newname)
1318 {
1319 struct section_hash_entry *sh;
1320
1321 sh = (struct section_hash_entry *)
1322 ((char *) sec - offsetof (struct section_hash_entry, section));
1323 sh->section.name = newname;
1324 bfd_hash_rename (&sec->owner->section_htab, newname, &sh->root);
1325 }
1326
1327 /*
1328 FUNCTION
1329 bfd_map_over_sections
1330
1331 SYNOPSIS
1332 void bfd_map_over_sections
1333 (bfd *abfd,
1334 void (*func) (bfd *abfd, asection *sect, void *obj),
1335 void *obj);
1336
1337 DESCRIPTION
1338 Call the provided function @var{func} for each section
1339 attached to the BFD @var{abfd}, passing @var{obj} as an
1340 argument. The function will be called as if by
1341
1342 | func (abfd, the_section, obj);
1343
1344 This is the preferred method for iterating over sections; an
1345 alternative would be to use a loop:
1346
1347 | asection *p;
1348 | for (p = abfd->sections; p != NULL; p = p->next)
1349 | func (abfd, p, ...)
1350
1351 */
1352
1353 void
1354 bfd_map_over_sections (bfd *abfd,
1355 void (*operation) (bfd *, asection *, void *),
1356 void *user_storage)
1357 {
1358 asection *sect;
1359 unsigned int i = 0;
1360
1361 for (sect = abfd->sections; sect != NULL; i++, sect = sect->next)
1362 (*operation) (abfd, sect, user_storage);
1363
1364 if (i != abfd->section_count) /* Debugging */
1365 abort ();
1366 }
1367
1368 /*
1369 FUNCTION
1370 bfd_sections_find_if
1371
1372 SYNOPSIS
1373 asection *bfd_sections_find_if
1374 (bfd *abfd,
1375 bfd_boolean (*operation) (bfd *abfd, asection *sect, void *obj),
1376 void *obj);
1377
1378 DESCRIPTION
1379 Call the provided function @var{operation} for each section
1380 attached to the BFD @var{abfd}, passing @var{obj} as an
1381 argument. The function will be called as if by
1382
1383 | operation (abfd, the_section, obj);
1384
1385 It returns the first section for which @var{operation} returns true.
1386
1387 */
1388
1389 asection *
1390 bfd_sections_find_if (bfd *abfd,
1391 bfd_boolean (*operation) (bfd *, asection *, void *),
1392 void *user_storage)
1393 {
1394 asection *sect;
1395
1396 for (sect = abfd->sections; sect != NULL; sect = sect->next)
1397 if ((*operation) (abfd, sect, user_storage))
1398 break;
1399
1400 return sect;
1401 }
1402
1403 /*
1404 FUNCTION
1405 bfd_set_section_size
1406
1407 SYNOPSIS
1408 bfd_boolean bfd_set_section_size (asection *sec, bfd_size_type val);
1409
1410 DESCRIPTION
1411 Set @var{sec} to the size @var{val}. If the operation is
1412 ok, then <<TRUE>> is returned, else <<FALSE>>.
1413
1414 Possible error returns:
1415 o <<bfd_error_invalid_operation>> -
1416 Writing has started to the BFD, so setting the size is invalid.
1417
1418 */
1419
1420 bfd_boolean
1421 bfd_set_section_size (asection *sec, bfd_size_type val)
1422 {
1423 /* Once you've started writing to any section you cannot create or change
1424 the size of any others. */
1425
1426 if (sec->owner == NULL || sec->owner->output_has_begun)
1427 {
1428 bfd_set_error (bfd_error_invalid_operation);
1429 return FALSE;
1430 }
1431
1432 sec->size = val;
1433 return TRUE;
1434 }
1435
1436 /*
1437 FUNCTION
1438 bfd_set_section_contents
1439
1440 SYNOPSIS
1441 bfd_boolean bfd_set_section_contents
1442 (bfd *abfd, asection *section, const void *data,
1443 file_ptr offset, bfd_size_type count);
1444
1445 DESCRIPTION
1446 Sets the contents of the section @var{section} in BFD
1447 @var{abfd} to the data starting in memory at @var{location}.
1448 The data is written to the output section starting at offset
1449 @var{offset} for @var{count} octets.
1450
1451 Normally <<TRUE>> is returned, but <<FALSE>> is returned if
1452 there was an error. Possible error returns are:
1453 o <<bfd_error_no_contents>> -
1454 The output section does not have the <<SEC_HAS_CONTENTS>>
1455 attribute, so nothing can be written to it.
1456 o <<bfd_error_bad_value>> -
1457 The section is unable to contain all of the data.
1458 o <<bfd_error_invalid_operation>> -
1459 The BFD is not writeable.
1460 o and some more too.
1461
1462 This routine is front end to the back end function
1463 <<_bfd_set_section_contents>>.
1464
1465 */
1466
1467 bfd_boolean
1468 bfd_set_section_contents (bfd *abfd,
1469 sec_ptr section,
1470 const void *location,
1471 file_ptr offset,
1472 bfd_size_type count)
1473 {
1474 bfd_size_type sz;
1475
1476 if (!(bfd_section_flags (section) & SEC_HAS_CONTENTS))
1477 {
1478 bfd_set_error (bfd_error_no_contents);
1479 return FALSE;
1480 }
1481
1482 sz = section->size;
1483 if ((bfd_size_type) offset > sz
1484 || count > sz
1485 || offset + count > sz
1486 || count != (size_t) count)
1487 {
1488 bfd_set_error (bfd_error_bad_value);
1489 return FALSE;
1490 }
1491
1492 if (!bfd_write_p (abfd))
1493 {
1494 bfd_set_error (bfd_error_invalid_operation);
1495 return FALSE;
1496 }
1497
1498 /* Record a copy of the data in memory if desired. */
1499 if (section->contents
1500 && location != section->contents + offset)
1501 memcpy (section->contents + offset, location, (size_t) count);
1502
1503 if (BFD_SEND (abfd, _bfd_set_section_contents,
1504 (abfd, section, location, offset, count)))
1505 {
1506 abfd->output_has_begun = TRUE;
1507 return TRUE;
1508 }
1509
1510 return FALSE;
1511 }
1512
1513 /*
1514 FUNCTION
1515 bfd_get_section_contents
1516
1517 SYNOPSIS
1518 bfd_boolean bfd_get_section_contents
1519 (bfd *abfd, asection *section, void *location, file_ptr offset,
1520 bfd_size_type count);
1521
1522 DESCRIPTION
1523 Read data from @var{section} in BFD @var{abfd}
1524 into memory starting at @var{location}. The data is read at an
1525 offset of @var{offset} from the start of the input section,
1526 and is read for @var{count} bytes.
1527
1528 If the contents of a constructor with the <<SEC_CONSTRUCTOR>>
1529 flag set are requested or if the section does not have the
1530 <<SEC_HAS_CONTENTS>> flag set, then the @var{location} is filled
1531 with zeroes. If no errors occur, <<TRUE>> is returned, else
1532 <<FALSE>>.
1533
1534 */
1535 bfd_boolean
1536 bfd_get_section_contents (bfd *abfd,
1537 sec_ptr section,
1538 void *location,
1539 file_ptr offset,
1540 bfd_size_type count)
1541 {
1542 bfd_size_type sz;
1543
1544 if (section->flags & SEC_CONSTRUCTOR)
1545 {
1546 memset (location, 0, (size_t) count);
1547 return TRUE;
1548 }
1549
1550 if (abfd->direction != write_direction && section->rawsize != 0)
1551 sz = section->rawsize;
1552 else
1553 sz = section->size;
1554 if ((bfd_size_type) offset > sz
1555 || count > sz
1556 || offset + count > sz
1557 || count != (size_t) count)
1558 {
1559 bfd_set_error (bfd_error_bad_value);
1560 return FALSE;
1561 }
1562
1563 if (count == 0)
1564 /* Don't bother. */
1565 return TRUE;
1566
1567 if ((section->flags & SEC_HAS_CONTENTS) == 0)
1568 {
1569 memset (location, 0, (size_t) count);
1570 return TRUE;
1571 }
1572
1573 if ((section->flags & SEC_IN_MEMORY) != 0)
1574 {
1575 if (section->contents == NULL)
1576 {
1577 /* This can happen because of errors earlier on in the linking process.
1578 We do not want to seg-fault here, so clear the flag and return an
1579 error code. */
1580 section->flags &= ~ SEC_IN_MEMORY;
1581 bfd_set_error (bfd_error_invalid_operation);
1582 return FALSE;
1583 }
1584
1585 memmove (location, section->contents + offset, (size_t) count);
1586 return TRUE;
1587 }
1588
1589 return BFD_SEND (abfd, _bfd_get_section_contents,
1590 (abfd, section, location, offset, count));
1591 }
1592
1593 /*
1594 FUNCTION
1595 bfd_malloc_and_get_section
1596
1597 SYNOPSIS
1598 bfd_boolean bfd_malloc_and_get_section
1599 (bfd *abfd, asection *section, bfd_byte **buf);
1600
1601 DESCRIPTION
1602 Read all data from @var{section} in BFD @var{abfd}
1603 into a buffer, *@var{buf}, malloc'd by this function.
1604 */
1605
1606 bfd_boolean
1607 bfd_malloc_and_get_section (bfd *abfd, sec_ptr sec, bfd_byte **buf)
1608 {
1609 *buf = NULL;
1610 return bfd_get_full_section_contents (abfd, sec, buf);
1611 }
1612 /*
1613 FUNCTION
1614 bfd_copy_private_section_data
1615
1616 SYNOPSIS
1617 bfd_boolean bfd_copy_private_section_data
1618 (bfd *ibfd, asection *isec, bfd *obfd, asection *osec);
1619
1620 DESCRIPTION
1621 Copy private section information from @var{isec} in the BFD
1622 @var{ibfd} to the section @var{osec} in the BFD @var{obfd}.
1623 Return <<TRUE>> on success, <<FALSE>> on error. Possible error
1624 returns are:
1625
1626 o <<bfd_error_no_memory>> -
1627 Not enough memory exists to create private data for @var{osec}.
1628
1629 .#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \
1630 . BFD_SEND (obfd, _bfd_copy_private_section_data, \
1631 . (ibfd, isection, obfd, osection))
1632 */
1633
1634 /*
1635 FUNCTION
1636 bfd_generic_is_group_section
1637
1638 SYNOPSIS
1639 bfd_boolean bfd_generic_is_group_section (bfd *, const asection *sec);
1640
1641 DESCRIPTION
1642 Returns TRUE if @var{sec} is a member of a group.
1643 */
1644
1645 bfd_boolean
1646 bfd_generic_is_group_section (bfd *abfd ATTRIBUTE_UNUSED,
1647 const asection *sec ATTRIBUTE_UNUSED)
1648 {
1649 return FALSE;
1650 }
1651
1652 /*
1653 FUNCTION
1654 bfd_generic_group_name
1655
1656 SYNOPSIS
1657 const char *bfd_generic_group_name (bfd *, const asection *sec);
1658
1659 DESCRIPTION
1660 Returns group name if @var{sec} is a member of a group.
1661 */
1662
1663 const char *
1664 bfd_generic_group_name (bfd *abfd ATTRIBUTE_UNUSED,
1665 const asection *sec ATTRIBUTE_UNUSED)
1666 {
1667 return NULL;
1668 }
1669
1670 /*
1671 FUNCTION
1672 bfd_generic_discard_group
1673
1674 SYNOPSIS
1675 bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group);
1676
1677 DESCRIPTION
1678 Remove all members of @var{group} from the output.
1679 */
1680
1681 bfd_boolean
1682 bfd_generic_discard_group (bfd *abfd ATTRIBUTE_UNUSED,
1683 asection *group ATTRIBUTE_UNUSED)
1684 {
1685 return TRUE;
1686 }
1687
1688 bfd_boolean
1689 _bfd_nowrite_set_section_contents (bfd *abfd,
1690 sec_ptr section ATTRIBUTE_UNUSED,
1691 const void *location ATTRIBUTE_UNUSED,
1692 file_ptr offset ATTRIBUTE_UNUSED,
1693 bfd_size_type count ATTRIBUTE_UNUSED)
1694 {
1695 return _bfd_bool_bfd_false_error (abfd);
1696 }
This page took 0.064203 seconds and 4 git commands to generate.