7de0a2d7a858b9b7e3b9948484886b9174bed388
[deliverable/binutils-gdb.git] / bfd / section.c
1 /* Object file "section" support for the BFD library.
2 Copyright (C) 1990-2020 Free Software Foundation, Inc.
3 Written by Cygnus Support.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 /*
23 SECTION
24 Sections
25
26 The raw data contained within a BFD is maintained through the
27 section abstraction. A single BFD may have any number of
28 sections. It keeps hold of them by pointing to the first;
29 each one points to the next in the list.
30
31 Sections are supported in BFD in <<section.c>>.
32
33 @menu
34 @* Section Input::
35 @* Section Output::
36 @* typedef asection::
37 @* section prototypes::
38 @end menu
39
40 INODE
41 Section Input, Section Output, Sections, Sections
42 SUBSECTION
43 Section input
44
45 When a BFD is opened for reading, the section structures are
46 created and attached to the BFD.
47
48 Each section has a name which describes the section in the
49 outside world---for example, <<a.out>> would contain at least
50 three sections, called <<.text>>, <<.data>> and <<.bss>>.
51
52 Names need not be unique; for example a COFF file may have several
53 sections named <<.data>>.
54
55 Sometimes a BFD will contain more than the ``natural'' number of
56 sections. A back end may attach other sections containing
57 constructor data, or an application may add a section (using
58 <<bfd_make_section>>) to the sections attached to an already open
59 BFD. For example, the linker creates an extra section
60 <<COMMON>> for each input file's BFD to hold information about
61 common storage.
62
63 The raw data is not necessarily read in when
64 the section descriptor is created. Some targets may leave the
65 data in place until a <<bfd_get_section_contents>> call is
66 made. Other back ends may read in all the data at once. For
67 example, an S-record file has to be read once to determine the
68 size of the data.
69
70 INODE
71 Section Output, typedef asection, Section Input, Sections
72
73 SUBSECTION
74 Section output
75
76 To write a new object style BFD, the various sections to be
77 written have to be created. They are attached to the BFD in
78 the same way as input sections; data is written to the
79 sections using <<bfd_set_section_contents>>.
80
81 Any program that creates or combines sections (e.g., the assembler
82 and linker) must use the <<asection>> fields <<output_section>> and
83 <<output_offset>> to indicate the file sections to which each
84 section must be written. (If the section is being created from
85 scratch, <<output_section>> should probably point to the section
86 itself and <<output_offset>> should probably be zero.)
87
88 The data to be written comes from input sections attached
89 (via <<output_section>> pointers) to
90 the output sections. The output section structure can be
91 considered a filter for the input section: the output section
92 determines the vma of the output data and the name, but the
93 input section determines the offset into the output section of
94 the data to be written.
95
96 E.g., to create a section "O", starting at 0x100, 0x123 long,
97 containing two subsections, "A" at offset 0x0 (i.e., at vma
98 0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the <<asection>>
99 structures would look like:
100
101 | section name "A"
102 | output_offset 0x00
103 | size 0x20
104 | output_section -----------> section name "O"
105 | | vma 0x100
106 | section name "B" | size 0x123
107 | output_offset 0x20 |
108 | size 0x103 |
109 | output_section --------|
110
111 SUBSECTION
112 Link orders
113
114 The data within a section is stored in a @dfn{link_order}.
115 These are much like the fixups in <<gas>>. The link_order
116 abstraction allows a section to grow and shrink within itself.
117
118 A link_order knows how big it is, and which is the next
119 link_order and where the raw data for it is; it also points to
120 a list of relocations which apply to it.
121
122 The link_order is used by the linker to perform relaxing on
123 final code. The compiler creates code which is as big as
124 necessary to make it work without relaxing, and the user can
125 select whether to relax. Sometimes relaxing takes a lot of
126 time. The linker runs around the relocations to see if any
127 are attached to data which can be shrunk, if so it does it on
128 a link_order by link_order basis.
129
130 */
131
132 #include "sysdep.h"
133 #include "bfd.h"
134 #include "libbfd.h"
135 #include "bfdlink.h"
136
137 /*
138 DOCDD
139 INODE
140 typedef asection, section prototypes, Section Output, Sections
141 SUBSECTION
142 typedef asection
143
144 Here is the section structure:
145
146 CODE_FRAGMENT
147 .
148 .typedef struct bfd_section
149 .{
150 . {* The name of the section; the name isn't a copy, the pointer is
151 . the same as that passed to bfd_make_section. *}
152 . const char *name;
153 .
154 . {* A unique sequence number. *}
155 . unsigned int id;
156 .
157 . {* A unique section number which can be used by assembler to
158 . distinguish different sections with the same section name. *}
159 . unsigned int section_id;
160 .
161 . {* Which section in the bfd; 0..n-1 as sections are created in a bfd. *}
162 . unsigned int index;
163 .
164 . {* The next section in the list belonging to the BFD, or NULL. *}
165 . struct bfd_section *next;
166 .
167 . {* The previous section in the list belonging to the BFD, or NULL. *}
168 . struct bfd_section *prev;
169 .
170 . {* The field flags contains attributes of the section. Some
171 . flags are read in from the object file, and some are
172 . synthesized from other information. *}
173 . flagword flags;
174 .
175 .#define SEC_NO_FLAGS 0x0
176 .
177 . {* Tells the OS to allocate space for this section when loading.
178 . This is clear for a section containing debug information only. *}
179 .#define SEC_ALLOC 0x1
180 .
181 . {* Tells the OS to load the section from the file when loading.
182 . This is clear for a .bss section. *}
183 .#define SEC_LOAD 0x2
184 .
185 . {* The section contains data still to be relocated, so there is
186 . some relocation information too. *}
187 .#define SEC_RELOC 0x4
188 .
189 . {* A signal to the OS that the section contains read only data. *}
190 .#define SEC_READONLY 0x8
191 .
192 . {* The section contains code only. *}
193 .#define SEC_CODE 0x10
194 .
195 . {* The section contains data only. *}
196 .#define SEC_DATA 0x20
197 .
198 . {* The section will reside in ROM. *}
199 .#define SEC_ROM 0x40
200 .
201 . {* The section contains constructor information. This section
202 . type is used by the linker to create lists of constructors and
203 . destructors used by <<g++>>. When a back end sees a symbol
204 . which should be used in a constructor list, it creates a new
205 . section for the type of name (e.g., <<__CTOR_LIST__>>), attaches
206 . the symbol to it, and builds a relocation. To build the lists
207 . of constructors, all the linker has to do is catenate all the
208 . sections called <<__CTOR_LIST__>> and relocate the data
209 . contained within - exactly the operations it would peform on
210 . standard data. *}
211 .#define SEC_CONSTRUCTOR 0x80
212 .
213 . {* The section has contents - a data section could be
214 . <<SEC_ALLOC>> | <<SEC_HAS_CONTENTS>>; a debug section could be
215 . <<SEC_HAS_CONTENTS>> *}
216 .#define SEC_HAS_CONTENTS 0x100
217 .
218 . {* An instruction to the linker to not output the section
219 . even if it has information which would normally be written. *}
220 .#define SEC_NEVER_LOAD 0x200
221 .
222 . {* The section contains thread local data. *}
223 .#define SEC_THREAD_LOCAL 0x400
224 .
225 . {* The section's size is fixed. Generic linker code will not
226 . recalculate it and it is up to whoever has set this flag to
227 . get the size right. *}
228 .#define SEC_FIXED_SIZE 0x800
229 .
230 . {* The section contains common symbols (symbols may be defined
231 . multiple times, the value of a symbol is the amount of
232 . space it requires, and the largest symbol value is the one
233 . used). Most targets have exactly one of these (which we
234 . translate to bfd_com_section_ptr), but ECOFF has two. *}
235 .#define SEC_IS_COMMON 0x1000
236 .
237 . {* The section contains only debugging information. For
238 . example, this is set for ELF .debug and .stab sections.
239 . strip tests this flag to see if a section can be
240 . discarded. *}
241 .#define SEC_DEBUGGING 0x2000
242 .
243 . {* The contents of this section are held in memory pointed to
244 . by the contents field. This is checked by bfd_get_section_contents,
245 . and the data is retrieved from memory if appropriate. *}
246 .#define SEC_IN_MEMORY 0x4000
247 .
248 . {* The contents of this section are to be excluded by the
249 . linker for executable and shared objects unless those
250 . objects are to be further relocated. *}
251 .#define SEC_EXCLUDE 0x8000
252 .
253 . {* The contents of this section are to be sorted based on the sum of
254 . the symbol and addend values specified by the associated relocation
255 . entries. Entries without associated relocation entries will be
256 . appended to the end of the section in an unspecified order. *}
257 .#define SEC_SORT_ENTRIES 0x10000
258 .
259 . {* When linking, duplicate sections of the same name should be
260 . discarded, rather than being combined into a single section as
261 . is usually done. This is similar to how common symbols are
262 . handled. See SEC_LINK_DUPLICATES below. *}
263 .#define SEC_LINK_ONCE 0x20000
264 .
265 . {* If SEC_LINK_ONCE is set, this bitfield describes how the linker
266 . should handle duplicate sections. *}
267 .#define SEC_LINK_DUPLICATES 0xc0000
268 .
269 . {* This value for SEC_LINK_DUPLICATES means that duplicate
270 . sections with the same name should simply be discarded. *}
271 .#define SEC_LINK_DUPLICATES_DISCARD 0x0
272 .
273 . {* This value for SEC_LINK_DUPLICATES means that the linker
274 . should warn if there are any duplicate sections, although
275 . it should still only link one copy. *}
276 .#define SEC_LINK_DUPLICATES_ONE_ONLY 0x40000
277 .
278 . {* This value for SEC_LINK_DUPLICATES means that the linker
279 . should warn if any duplicate sections are a different size. *}
280 .#define SEC_LINK_DUPLICATES_SAME_SIZE 0x80000
281 .
282 . {* This value for SEC_LINK_DUPLICATES means that the linker
283 . should warn if any duplicate sections contain different
284 . contents. *}
285 .#define SEC_LINK_DUPLICATES_SAME_CONTENTS \
286 . (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE)
287 .
288 . {* This section was created by the linker as part of dynamic
289 . relocation or other arcane processing. It is skipped when
290 . going through the first-pass output, trusting that someone
291 . else up the line will take care of it later. *}
292 .#define SEC_LINKER_CREATED 0x100000
293 .
294 . {* This section contains a section ID to distinguish different
295 . sections with the same section name. *}
296 .#define SEC_ASSEMBLER_SECTION_ID 0x100000
297 .
298 . {* This section should not be subject to garbage collection.
299 . Also set to inform the linker that this section should not be
300 . listed in the link map as discarded. *}
301 .#define SEC_KEEP 0x200000
302 .
303 . {* This section contains "short" data, and should be placed
304 . "near" the GP. *}
305 .#define SEC_SMALL_DATA 0x400000
306 .
307 . {* Attempt to merge identical entities in the section.
308 . Entity size is given in the entsize field. *}
309 .#define SEC_MERGE 0x800000
310 .
311 . {* If given with SEC_MERGE, entities to merge are zero terminated
312 . strings where entsize specifies character size instead of fixed
313 . size entries. *}
314 .#define SEC_STRINGS 0x1000000
315 .
316 . {* This section contains data about section groups. *}
317 .#define SEC_GROUP 0x2000000
318 .
319 . {* The section is a COFF shared library section. This flag is
320 . only for the linker. If this type of section appears in
321 . the input file, the linker must copy it to the output file
322 . without changing the vma or size. FIXME: Although this
323 . was originally intended to be general, it really is COFF
324 . specific (and the flag was renamed to indicate this). It
325 . might be cleaner to have some more general mechanism to
326 . allow the back end to control what the linker does with
327 . sections. *}
328 .#define SEC_COFF_SHARED_LIBRARY 0x4000000
329 .
330 . {* This input section should be copied to output in reverse order
331 . as an array of pointers. This is for ELF linker internal use
332 . only. *}
333 .#define SEC_ELF_REVERSE_COPY 0x4000000
334 .
335 . {* This section contains data which may be shared with other
336 . executables or shared objects. This is for COFF only. *}
337 .#define SEC_COFF_SHARED 0x8000000
338 .
339 . {* This section should be compressed. This is for ELF linker
340 . internal use only. *}
341 .#define SEC_ELF_COMPRESS 0x8000000
342 .
343 . {* When a section with this flag is being linked, then if the size of
344 . the input section is less than a page, it should not cross a page
345 . boundary. If the size of the input section is one page or more,
346 . it should be aligned on a page boundary. This is for TI
347 . TMS320C54X only. *}
348 .#define SEC_TIC54X_BLOCK 0x10000000
349 .
350 . {* This section should be renamed. This is for ELF linker
351 . internal use only. *}
352 .#define SEC_ELF_RENAME 0x10000000
353 .
354 . {* Conditionally link this section; do not link if there are no
355 . references found to any symbol in the section. This is for TI
356 . TMS320C54X only. *}
357 .#define SEC_TIC54X_CLINK 0x20000000
358 .
359 . {* This section contains vliw code. This is for Toshiba MeP only. *}
360 .#define SEC_MEP_VLIW 0x20000000
361 .
362 . {* All symbols, sizes and relocations in this section are octets
363 . instead of bytes. Required for DWARF debug sections as DWARF
364 . information is organized in octets, not bytes. *}
365 .#define SEC_ELF_OCTETS 0x40000000
366 .
367 . {* Indicate that section has the no read flag set. This happens
368 . when memory read flag isn't set. *}
369 .#define SEC_COFF_NOREAD 0x40000000
370 .
371 . {* Indicate that section has the purecode flag set. *}
372 .#define SEC_ELF_PURECODE 0x80000000
373 .
374 . {* End of section flags. *}
375 .
376 . {* Some internal packed boolean fields. *}
377 .
378 . {* See the vma field. *}
379 . unsigned int user_set_vma : 1;
380 .
381 . {* A mark flag used by some of the linker backends. *}
382 . unsigned int linker_mark : 1;
383 .
384 . {* Another mark flag used by some of the linker backends. Set for
385 . output sections that have an input section. *}
386 . unsigned int linker_has_input : 1;
387 .
388 . {* Mark flag used by some linker backends for garbage collection. *}
389 . unsigned int gc_mark : 1;
390 .
391 . {* Section compression status. *}
392 . unsigned int compress_status : 2;
393 .#define COMPRESS_SECTION_NONE 0
394 .#define COMPRESS_SECTION_DONE 1
395 .#define DECOMPRESS_SECTION_SIZED 2
396 .
397 . {* The following flags are used by the ELF linker. *}
398 .
399 . {* Mark sections which have been allocated to segments. *}
400 . unsigned int segment_mark : 1;
401 .
402 . {* Type of sec_info information. *}
403 . unsigned int sec_info_type:3;
404 .#define SEC_INFO_TYPE_NONE 0
405 .#define SEC_INFO_TYPE_STABS 1
406 .#define SEC_INFO_TYPE_MERGE 2
407 .#define SEC_INFO_TYPE_EH_FRAME 3
408 .#define SEC_INFO_TYPE_JUST_SYMS 4
409 .#define SEC_INFO_TYPE_TARGET 5
410 .#define SEC_INFO_TYPE_EH_FRAME_ENTRY 6
411 .
412 . {* Nonzero if this section uses RELA relocations, rather than REL. *}
413 . unsigned int use_rela_p:1;
414 .
415 . {* Bits used by various backends. The generic code doesn't touch
416 . these fields. *}
417 .
418 . unsigned int sec_flg0:1;
419 . unsigned int sec_flg1:1;
420 . unsigned int sec_flg2:1;
421 . unsigned int sec_flg3:1;
422 . unsigned int sec_flg4:1;
423 . unsigned int sec_flg5:1;
424 .
425 . {* End of internal packed boolean fields. *}
426 .
427 . {* The virtual memory address of the section - where it will be
428 . at run time. The symbols are relocated against this. The
429 . user_set_vma flag is maintained by bfd; if it's not set, the
430 . backend can assign addresses (for example, in <<a.out>>, where
431 . the default address for <<.data>> is dependent on the specific
432 . target and various flags). *}
433 . bfd_vma vma;
434 .
435 . {* The load address of the section - where it would be in a
436 . rom image; really only used for writing section header
437 . information. *}
438 . bfd_vma lma;
439 .
440 . {* The size of the section in *octets*, as it will be output.
441 . Contains a value even if the section has no contents (e.g., the
442 . size of <<.bss>>). *}
443 . bfd_size_type size;
444 .
445 . {* For input sections, the original size on disk of the section, in
446 . octets. This field should be set for any section whose size is
447 . changed by linker relaxation. It is required for sections where
448 . the linker relaxation scheme doesn't cache altered section and
449 . reloc contents (stabs, eh_frame, SEC_MERGE, some coff relaxing
450 . targets), and thus the original size needs to be kept to read the
451 . section multiple times. For output sections, rawsize holds the
452 . section size calculated on a previous linker relaxation pass. *}
453 . bfd_size_type rawsize;
454 .
455 . {* The compressed size of the section in octets. *}
456 . bfd_size_type compressed_size;
457 .
458 . {* Relaxation table. *}
459 . struct relax_table *relax;
460 .
461 . {* Count of used relaxation table entries. *}
462 . int relax_count;
463 .
464 .
465 . {* If this section is going to be output, then this value is the
466 . offset in *bytes* into the output section of the first byte in the
467 . input section (byte ==> smallest addressable unit on the
468 . target). In most cases, if this was going to start at the
469 . 100th octet (8-bit quantity) in the output section, this value
470 . would be 100. However, if the target byte size is 16 bits
471 . (bfd_octets_per_byte is "2"), this value would be 50. *}
472 . bfd_vma output_offset;
473 .
474 . {* The output section through which to map on output. *}
475 . struct bfd_section *output_section;
476 .
477 . {* The alignment requirement of the section, as an exponent of 2 -
478 . e.g., 3 aligns to 2^3 (or 8). *}
479 . unsigned int alignment_power;
480 .
481 . {* If an input section, a pointer to a vector of relocation
482 . records for the data in this section. *}
483 . struct reloc_cache_entry *relocation;
484 .
485 . {* If an output section, a pointer to a vector of pointers to
486 . relocation records for the data in this section. *}
487 . struct reloc_cache_entry **orelocation;
488 .
489 . {* The number of relocation records in one of the above. *}
490 . unsigned reloc_count;
491 .
492 . {* Information below is back end specific - and not always used
493 . or updated. *}
494 .
495 . {* File position of section data. *}
496 . file_ptr filepos;
497 .
498 . {* File position of relocation info. *}
499 . file_ptr rel_filepos;
500 .
501 . {* File position of line data. *}
502 . file_ptr line_filepos;
503 .
504 . {* Pointer to data for applications. *}
505 . void *userdata;
506 .
507 . {* If the SEC_IN_MEMORY flag is set, this points to the actual
508 . contents. *}
509 . unsigned char *contents;
510 .
511 . {* Attached line number information. *}
512 . alent *lineno;
513 .
514 . {* Number of line number records. *}
515 . unsigned int lineno_count;
516 .
517 . {* Entity size for merging purposes. *}
518 . unsigned int entsize;
519 .
520 . {* Points to the kept section if this section is a link-once section,
521 . and is discarded. *}
522 . struct bfd_section *kept_section;
523 .
524 . {* When a section is being output, this value changes as more
525 . linenumbers are written out. *}
526 . file_ptr moving_line_filepos;
527 .
528 . {* What the section number is in the target world. *}
529 . int target_index;
530 .
531 . void *used_by_bfd;
532 .
533 . {* If this is a constructor section then here is a list of the
534 . relocations created to relocate items within it. *}
535 . struct relent_chain *constructor_chain;
536 .
537 . {* The BFD which owns the section. *}
538 . bfd *owner;
539 .
540 . {* A symbol which points at this section only. *}
541 . struct bfd_symbol *symbol;
542 . struct bfd_symbol **symbol_ptr_ptr;
543 .
544 . {* Early in the link process, map_head and map_tail are used to build
545 . a list of input sections attached to an output section. Later,
546 . output sections use these fields for a list of bfd_link_order
547 . structs. The linked_to_symbol_name field is for ELF assembler
548 . internal use. *}
549 . union {
550 . struct bfd_link_order *link_order;
551 . struct bfd_section *s;
552 . const char *linked_to_symbol_name;
553 . } map_head, map_tail;
554 .} asection;
555 .
556 .{* Relax table contains information about instructions which can
557 . be removed by relaxation -- replacing a long address with a
558 . short address. *}
559 .struct relax_table {
560 . {* Address where bytes may be deleted. *}
561 . bfd_vma addr;
562 .
563 . {* Number of bytes to be deleted. *}
564 . int size;
565 .};
566 .
567 .static inline const char *
568 .bfd_section_name (const asection *sec)
569 .{
570 . return sec->name;
571 .}
572 .
573 .static inline bfd_size_type
574 .bfd_section_size (const asection *sec)
575 .{
576 . return sec->size;
577 .}
578 .
579 .static inline bfd_vma
580 .bfd_section_vma (const asection *sec)
581 .{
582 . return sec->vma;
583 .}
584 .
585 .static inline bfd_vma
586 .bfd_section_lma (const asection *sec)
587 .{
588 . return sec->lma;
589 .}
590 .
591 .static inline unsigned int
592 .bfd_section_alignment (const asection *sec)
593 .{
594 . return sec->alignment_power;
595 .}
596 .
597 .static inline flagword
598 .bfd_section_flags (const asection *sec)
599 .{
600 . return sec->flags;
601 .}
602 .
603 .static inline void *
604 .bfd_section_userdata (const asection *sec)
605 .{
606 . return sec->userdata;
607 .}
608 .static inline bfd_boolean
609 .bfd_is_com_section (const asection *sec)
610 .{
611 . return (sec->flags & SEC_IS_COMMON) != 0;
612 .}
613 .
614 .{* Note: the following are provided as inline functions rather than macros
615 . because not all callers use the return value. A macro implementation
616 . would use a comma expression, eg: "((ptr)->foo = val, TRUE)" and some
617 . compilers will complain about comma expressions that have no effect. *}
618 .static inline bfd_boolean
619 .bfd_set_section_userdata (asection *sec, void *val)
620 .{
621 . sec->userdata = val;
622 . return TRUE;
623 .}
624 .
625 .static inline bfd_boolean
626 .bfd_set_section_vma (asection *sec, bfd_vma val)
627 .{
628 . sec->vma = sec->lma = val;
629 . sec->user_set_vma = TRUE;
630 . return TRUE;
631 .}
632 .
633 .static inline bfd_boolean
634 .bfd_set_section_lma (asection *sec, bfd_vma val)
635 .{
636 . sec->lma = val;
637 . return TRUE;
638 .}
639 .
640 .static inline bfd_boolean
641 .bfd_set_section_alignment (asection *sec, unsigned int val)
642 .{
643 . sec->alignment_power = val;
644 . return TRUE;
645 .}
646 .
647 .{* These sections are global, and are managed by BFD. The application
648 . and target back end are not permitted to change the values in
649 . these sections. *}
650 .extern asection _bfd_std_section[4];
651 .
652 .#define BFD_ABS_SECTION_NAME "*ABS*"
653 .#define BFD_UND_SECTION_NAME "*UND*"
654 .#define BFD_COM_SECTION_NAME "*COM*"
655 .#define BFD_IND_SECTION_NAME "*IND*"
656 .
657 .{* Pointer to the common section. *}
658 .#define bfd_com_section_ptr (&_bfd_std_section[0])
659 .{* Pointer to the undefined section. *}
660 .#define bfd_und_section_ptr (&_bfd_std_section[1])
661 .{* Pointer to the absolute section. *}
662 .#define bfd_abs_section_ptr (&_bfd_std_section[2])
663 .{* Pointer to the indirect section. *}
664 .#define bfd_ind_section_ptr (&_bfd_std_section[3])
665 .
666 .static inline bfd_boolean
667 .bfd_is_und_section (const asection *sec)
668 .{
669 . return sec == bfd_und_section_ptr;
670 .}
671 .
672 .static inline bfd_boolean
673 .bfd_is_abs_section (const asection *sec)
674 .{
675 . return sec == bfd_abs_section_ptr;
676 .}
677 .
678 .static inline bfd_boolean
679 .bfd_is_ind_section (const asection *sec)
680 .{
681 . return sec == bfd_ind_section_ptr;
682 .}
683 .
684 .static inline bfd_boolean
685 .bfd_is_const_section (const asection *sec)
686 .{
687 . return sec >= bfd_abs_section_ptr && sec <= bfd_ind_section_ptr;
688 .}
689 .
690 .{* Return TRUE if input section SEC has been discarded. *}
691 .static inline bfd_boolean
692 .discarded_section (const asection *sec)
693 .{
694 . return (!bfd_is_abs_section (sec)
695 . && bfd_is_abs_section (sec->output_section)
696 . && sec->sec_info_type != SEC_INFO_TYPE_MERGE
697 . && sec->sec_info_type != SEC_INFO_TYPE_JUST_SYMS);
698 .}
699 .
700 .#define BFD_FAKE_SECTION(SEC, SYM, NAME, IDX, FLAGS) \
701 . {* name, id, section_id, index, next, prev, flags, user_set_vma, *} \
702 . { NAME, IDX, 0, 0, NULL, NULL, FLAGS, 0, \
703 . \
704 . {* linker_mark, linker_has_input, gc_mark, decompress_status, *} \
705 . 0, 0, 1, 0, \
706 . \
707 . {* segment_mark, sec_info_type, use_rela_p, *} \
708 . 0, 0, 0, \
709 . \
710 . {* sec_flg0, sec_flg1, sec_flg2, sec_flg3, sec_flg4, sec_flg5, *} \
711 . 0, 0, 0, 0, 0, 0, \
712 . \
713 . {* vma, lma, size, rawsize, compressed_size, relax, relax_count, *} \
714 . 0, 0, 0, 0, 0, 0, 0, \
715 . \
716 . {* output_offset, output_section, alignment_power, *} \
717 . 0, &SEC, 0, \
718 . \
719 . {* relocation, orelocation, reloc_count, filepos, rel_filepos, *} \
720 . NULL, NULL, 0, 0, 0, \
721 . \
722 . {* line_filepos, userdata, contents, lineno, lineno_count, *} \
723 . 0, NULL, NULL, NULL, 0, \
724 . \
725 . {* entsize, kept_section, moving_line_filepos, *} \
726 . 0, NULL, 0, \
727 . \
728 . {* target_index, used_by_bfd, constructor_chain, owner, *} \
729 . 0, NULL, NULL, NULL, \
730 . \
731 . {* symbol, symbol_ptr_ptr, *} \
732 . (struct bfd_symbol *) SYM, &SEC.symbol, \
733 . \
734 . {* map_head, map_tail *} \
735 . { NULL }, { NULL } \
736 . }
737 .
738 .{* We use a macro to initialize the static asymbol structures because
739 . traditional C does not permit us to initialize a union member while
740 . gcc warns if we don't initialize it.
741 . the_bfd, name, value, attr, section [, udata] *}
742 .#ifdef __STDC__
743 .#define GLOBAL_SYM_INIT(NAME, SECTION) \
744 . { 0, NAME, 0, BSF_SECTION_SYM, SECTION, { 0 }}
745 .#else
746 .#define GLOBAL_SYM_INIT(NAME, SECTION) \
747 . { 0, NAME, 0, BSF_SECTION_SYM, SECTION }
748 .#endif
749 .
750 */
751
752 /* These symbols are global, not specific to any BFD. Therefore, anything
753 that tries to change them is broken, and should be repaired. */
754
755 static const asymbol global_syms[] =
756 {
757 GLOBAL_SYM_INIT (BFD_COM_SECTION_NAME, bfd_com_section_ptr),
758 GLOBAL_SYM_INIT (BFD_UND_SECTION_NAME, bfd_und_section_ptr),
759 GLOBAL_SYM_INIT (BFD_ABS_SECTION_NAME, bfd_abs_section_ptr),
760 GLOBAL_SYM_INIT (BFD_IND_SECTION_NAME, bfd_ind_section_ptr)
761 };
762
763 #define STD_SECTION(NAME, IDX, FLAGS) \
764 BFD_FAKE_SECTION(_bfd_std_section[IDX], &global_syms[IDX], NAME, IDX, FLAGS)
765
766 asection _bfd_std_section[] = {
767 STD_SECTION (BFD_COM_SECTION_NAME, 0, SEC_IS_COMMON),
768 STD_SECTION (BFD_UND_SECTION_NAME, 1, 0),
769 STD_SECTION (BFD_ABS_SECTION_NAME, 2, 0),
770 STD_SECTION (BFD_IND_SECTION_NAME, 3, 0)
771 };
772 #undef STD_SECTION
773
774 /* Initialize an entry in the section hash table. */
775
776 struct bfd_hash_entry *
777 bfd_section_hash_newfunc (struct bfd_hash_entry *entry,
778 struct bfd_hash_table *table,
779 const char *string)
780 {
781 /* Allocate the structure if it has not already been allocated by a
782 subclass. */
783 if (entry == NULL)
784 {
785 entry = (struct bfd_hash_entry *)
786 bfd_hash_allocate (table, sizeof (struct section_hash_entry));
787 if (entry == NULL)
788 return entry;
789 }
790
791 /* Call the allocation method of the superclass. */
792 entry = bfd_hash_newfunc (entry, table, string);
793 if (entry != NULL)
794 memset (&((struct section_hash_entry *) entry)->section, 0,
795 sizeof (asection));
796
797 return entry;
798 }
799
800 #define section_hash_lookup(table, string, create, copy) \
801 ((struct section_hash_entry *) \
802 bfd_hash_lookup ((table), (string), (create), (copy)))
803
804 /* Create a symbol whose only job is to point to this section. This
805 is useful for things like relocs which are relative to the base
806 of a section. */
807
808 bfd_boolean
809 _bfd_generic_new_section_hook (bfd *abfd, asection *newsect)
810 {
811 newsect->symbol = bfd_make_empty_symbol (abfd);
812 if (newsect->symbol == NULL)
813 return FALSE;
814
815 newsect->symbol->name = newsect->name;
816 newsect->symbol->value = 0;
817 newsect->symbol->section = newsect;
818 newsect->symbol->flags = BSF_SECTION_SYM;
819
820 newsect->symbol_ptr_ptr = &newsect->symbol;
821 return TRUE;
822 }
823
824 unsigned int _bfd_section_id = 0x10; /* id 0 to 3 used by STD_SECTION. */
825
826 /* Initializes a new section. NEWSECT->NAME is already set. */
827
828 static asection *
829 bfd_section_init (bfd *abfd, asection *newsect)
830 {
831 newsect->id = _bfd_section_id;
832 newsect->index = abfd->section_count;
833 newsect->owner = abfd;
834
835 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
836 return NULL;
837
838 _bfd_section_id++;
839 abfd->section_count++;
840 bfd_section_list_append (abfd, newsect);
841 return newsect;
842 }
843
844 /*
845 DOCDD
846 INODE
847 section prototypes, , typedef asection, Sections
848 SUBSECTION
849 Section prototypes
850
851 These are the functions exported by the section handling part of BFD.
852 */
853
854 /*
855 FUNCTION
856 bfd_section_list_clear
857
858 SYNOPSIS
859 void bfd_section_list_clear (bfd *);
860
861 DESCRIPTION
862 Clears the section list, and also resets the section count and
863 hash table entries.
864 */
865
866 void
867 bfd_section_list_clear (bfd *abfd)
868 {
869 abfd->sections = NULL;
870 abfd->section_last = NULL;
871 abfd->section_count = 0;
872 memset (abfd->section_htab.table, 0,
873 abfd->section_htab.size * sizeof (struct bfd_hash_entry *));
874 abfd->section_htab.count = 0;
875 }
876
877 /*
878 FUNCTION
879 bfd_get_section_by_name
880
881 SYNOPSIS
882 asection *bfd_get_section_by_name (bfd *abfd, const char *name);
883
884 DESCRIPTION
885 Return the most recently created section attached to @var{abfd}
886 named @var{name}. Return NULL if no such section exists.
887 */
888
889 asection *
890 bfd_get_section_by_name (bfd *abfd, const char *name)
891 {
892 struct section_hash_entry *sh;
893
894 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
895 if (sh != NULL)
896 return &sh->section;
897
898 return NULL;
899 }
900
901 /*
902 FUNCTION
903 bfd_get_next_section_by_name
904
905 SYNOPSIS
906 asection *bfd_get_next_section_by_name (bfd *ibfd, asection *sec);
907
908 DESCRIPTION
909 Given @var{sec} is a section returned by @code{bfd_get_section_by_name},
910 return the next most recently created section attached to the same
911 BFD with the same name, or if no such section exists in the same BFD and
912 IBFD is non-NULL, the next section with the same name in any input
913 BFD following IBFD. Return NULL on finding no section.
914 */
915
916 asection *
917 bfd_get_next_section_by_name (bfd *ibfd, asection *sec)
918 {
919 struct section_hash_entry *sh;
920 const char *name;
921 unsigned long hash;
922
923 sh = ((struct section_hash_entry *)
924 ((char *) sec - offsetof (struct section_hash_entry, section)));
925
926 hash = sh->root.hash;
927 name = sec->name;
928 for (sh = (struct section_hash_entry *) sh->root.next;
929 sh != NULL;
930 sh = (struct section_hash_entry *) sh->root.next)
931 if (sh->root.hash == hash
932 && strcmp (sh->root.string, name) == 0)
933 return &sh->section;
934
935 if (ibfd != NULL)
936 {
937 while ((ibfd = ibfd->link.next) != NULL)
938 {
939 asection *s = bfd_get_section_by_name (ibfd, name);
940 if (s != NULL)
941 return s;
942 }
943 }
944
945 return NULL;
946 }
947
948 /*
949 FUNCTION
950 bfd_get_linker_section
951
952 SYNOPSIS
953 asection *bfd_get_linker_section (bfd *abfd, const char *name);
954
955 DESCRIPTION
956 Return the linker created section attached to @var{abfd}
957 named @var{name}. Return NULL if no such section exists.
958 */
959
960 asection *
961 bfd_get_linker_section (bfd *abfd, const char *name)
962 {
963 asection *sec = bfd_get_section_by_name (abfd, name);
964
965 while (sec != NULL && (sec->flags & SEC_LINKER_CREATED) == 0)
966 sec = bfd_get_next_section_by_name (NULL, sec);
967 return sec;
968 }
969
970 /*
971 FUNCTION
972 bfd_get_section_by_name_if
973
974 SYNOPSIS
975 asection *bfd_get_section_by_name_if
976 (bfd *abfd,
977 const char *name,
978 bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj),
979 void *obj);
980
981 DESCRIPTION
982 Call the provided function @var{func} for each section
983 attached to the BFD @var{abfd} whose name matches @var{name},
984 passing @var{obj} as an argument. The function will be called
985 as if by
986
987 | func (abfd, the_section, obj);
988
989 It returns the first section for which @var{func} returns true,
990 otherwise <<NULL>>.
991
992 */
993
994 asection *
995 bfd_get_section_by_name_if (bfd *abfd, const char *name,
996 bfd_boolean (*operation) (bfd *,
997 asection *,
998 void *),
999 void *user_storage)
1000 {
1001 struct section_hash_entry *sh;
1002 unsigned long hash;
1003
1004 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
1005 if (sh == NULL)
1006 return NULL;
1007
1008 hash = sh->root.hash;
1009 for (; sh != NULL; sh = (struct section_hash_entry *) sh->root.next)
1010 if (sh->root.hash == hash
1011 && strcmp (sh->root.string, name) == 0
1012 && (*operation) (abfd, &sh->section, user_storage))
1013 return &sh->section;
1014
1015 return NULL;
1016 }
1017
1018 /*
1019 FUNCTION
1020 bfd_get_unique_section_name
1021
1022 SYNOPSIS
1023 char *bfd_get_unique_section_name
1024 (bfd *abfd, const char *templat, int *count);
1025
1026 DESCRIPTION
1027 Invent a section name that is unique in @var{abfd} by tacking
1028 a dot and a digit suffix onto the original @var{templat}. If
1029 @var{count} is non-NULL, then it specifies the first number
1030 tried as a suffix to generate a unique name. The value
1031 pointed to by @var{count} will be incremented in this case.
1032 */
1033
1034 char *
1035 bfd_get_unique_section_name (bfd *abfd, const char *templat, int *count)
1036 {
1037 int num;
1038 unsigned int len;
1039 char *sname;
1040
1041 len = strlen (templat);
1042 sname = (char *) bfd_malloc (len + 8);
1043 if (sname == NULL)
1044 return NULL;
1045 memcpy (sname, templat, len);
1046 num = 1;
1047 if (count != NULL)
1048 num = *count;
1049
1050 do
1051 {
1052 /* If we have a million sections, something is badly wrong. */
1053 if (num > 999999)
1054 abort ();
1055 sprintf (sname + len, ".%d", num++);
1056 }
1057 while (section_hash_lookup (&abfd->section_htab, sname, FALSE, FALSE));
1058
1059 if (count != NULL)
1060 *count = num;
1061 return sname;
1062 }
1063
1064 /*
1065 FUNCTION
1066 bfd_make_section_old_way
1067
1068 SYNOPSIS
1069 asection *bfd_make_section_old_way (bfd *abfd, const char *name);
1070
1071 DESCRIPTION
1072 Create a new empty section called @var{name}
1073 and attach it to the end of the chain of sections for the
1074 BFD @var{abfd}. An attempt to create a section with a name which
1075 is already in use returns its pointer without changing the
1076 section chain.
1077
1078 It has the funny name since this is the way it used to be
1079 before it was rewritten....
1080
1081 Possible errors are:
1082 o <<bfd_error_invalid_operation>> -
1083 If output has already started for this BFD.
1084 o <<bfd_error_no_memory>> -
1085 If memory allocation fails.
1086
1087 */
1088
1089 asection *
1090 bfd_make_section_old_way (bfd *abfd, const char *name)
1091 {
1092 asection *newsect;
1093
1094 if (abfd->output_has_begun)
1095 {
1096 bfd_set_error (bfd_error_invalid_operation);
1097 return NULL;
1098 }
1099
1100 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0)
1101 newsect = bfd_abs_section_ptr;
1102 else if (strcmp (name, BFD_COM_SECTION_NAME) == 0)
1103 newsect = bfd_com_section_ptr;
1104 else if (strcmp (name, BFD_UND_SECTION_NAME) == 0)
1105 newsect = bfd_und_section_ptr;
1106 else if (strcmp (name, BFD_IND_SECTION_NAME) == 0)
1107 newsect = bfd_ind_section_ptr;
1108 else
1109 {
1110 struct section_hash_entry *sh;
1111
1112 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1113 if (sh == NULL)
1114 return NULL;
1115
1116 newsect = &sh->section;
1117 if (newsect->name != NULL)
1118 {
1119 /* Section already exists. */
1120 return newsect;
1121 }
1122
1123 newsect->name = name;
1124 return bfd_section_init (abfd, newsect);
1125 }
1126
1127 /* Call new_section_hook when "creating" the standard abs, com, und
1128 and ind sections to tack on format specific section data.
1129 Also, create a proper section symbol. */
1130 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
1131 return NULL;
1132 return newsect;
1133 }
1134
1135 /*
1136 FUNCTION
1137 bfd_make_section_anyway_with_flags
1138
1139 SYNOPSIS
1140 asection *bfd_make_section_anyway_with_flags
1141 (bfd *abfd, const char *name, flagword flags);
1142
1143 DESCRIPTION
1144 Create a new empty section called @var{name} and attach it to the end of
1145 the chain of sections for @var{abfd}. Create a new section even if there
1146 is already a section with that name. Also set the attributes of the
1147 new section to the value @var{flags}.
1148
1149 Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1150 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1151 o <<bfd_error_no_memory>> - If memory allocation fails.
1152 */
1153
1154 sec_ptr
1155 bfd_make_section_anyway_with_flags (bfd *abfd, const char *name,
1156 flagword flags)
1157 {
1158 struct section_hash_entry *sh;
1159 asection *newsect;
1160
1161 if (abfd->output_has_begun)
1162 {
1163 bfd_set_error (bfd_error_invalid_operation);
1164 return NULL;
1165 }
1166
1167 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1168 if (sh == NULL)
1169 return NULL;
1170
1171 newsect = &sh->section;
1172 if (newsect->name != NULL)
1173 {
1174 /* We are making a section of the same name. Put it in the
1175 section hash table. Even though we can't find it directly by a
1176 hash lookup, we'll be able to find the section by traversing
1177 sh->root.next quicker than looking at all the bfd sections. */
1178 struct section_hash_entry *new_sh;
1179 new_sh = (struct section_hash_entry *)
1180 bfd_section_hash_newfunc (NULL, &abfd->section_htab, name);
1181 if (new_sh == NULL)
1182 return NULL;
1183
1184 new_sh->root = sh->root;
1185 sh->root.next = &new_sh->root;
1186 newsect = &new_sh->section;
1187 }
1188
1189 newsect->flags = flags;
1190 newsect->name = name;
1191 return bfd_section_init (abfd, newsect);
1192 }
1193
1194 /*
1195 FUNCTION
1196 bfd_make_section_anyway
1197
1198 SYNOPSIS
1199 asection *bfd_make_section_anyway (bfd *abfd, const char *name);
1200
1201 DESCRIPTION
1202 Create a new empty section called @var{name} and attach it to the end of
1203 the chain of sections for @var{abfd}. Create a new section even if there
1204 is already a section with that name.
1205
1206 Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1207 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1208 o <<bfd_error_no_memory>> - If memory allocation fails.
1209 */
1210
1211 sec_ptr
1212 bfd_make_section_anyway (bfd *abfd, const char *name)
1213 {
1214 return bfd_make_section_anyway_with_flags (abfd, name, 0);
1215 }
1216
1217 /*
1218 FUNCTION
1219 bfd_make_section_with_flags
1220
1221 SYNOPSIS
1222 asection *bfd_make_section_with_flags
1223 (bfd *, const char *name, flagword flags);
1224
1225 DESCRIPTION
1226 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1227 bfd_set_error ()) without changing the section chain if there is already a
1228 section named @var{name}. Also set the attributes of the new section to
1229 the value @var{flags}. If there is an error, return <<NULL>> and set
1230 <<bfd_error>>.
1231 */
1232
1233 asection *
1234 bfd_make_section_with_flags (bfd *abfd, const char *name,
1235 flagword flags)
1236 {
1237 struct section_hash_entry *sh;
1238 asection *newsect;
1239
1240 if (abfd == NULL || name == NULL || abfd->output_has_begun)
1241 {
1242 bfd_set_error (bfd_error_invalid_operation);
1243 return NULL;
1244 }
1245
1246 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0
1247 || strcmp (name, BFD_COM_SECTION_NAME) == 0
1248 || strcmp (name, BFD_UND_SECTION_NAME) == 0
1249 || strcmp (name, BFD_IND_SECTION_NAME) == 0)
1250 return NULL;
1251
1252 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1253 if (sh == NULL)
1254 return NULL;
1255
1256 newsect = &sh->section;
1257 if (newsect->name != NULL)
1258 {
1259 /* Section already exists. */
1260 return NULL;
1261 }
1262
1263 newsect->name = name;
1264 newsect->flags = flags;
1265 return bfd_section_init (abfd, newsect);
1266 }
1267
1268 /*
1269 FUNCTION
1270 bfd_make_section
1271
1272 SYNOPSIS
1273 asection *bfd_make_section (bfd *, const char *name);
1274
1275 DESCRIPTION
1276 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1277 bfd_set_error ()) without changing the section chain if there is already a
1278 section named @var{name}. If there is an error, return <<NULL>> and set
1279 <<bfd_error>>.
1280 */
1281
1282 asection *
1283 bfd_make_section (bfd *abfd, const char *name)
1284 {
1285 return bfd_make_section_with_flags (abfd, name, 0);
1286 }
1287
1288 /*
1289 FUNCTION
1290 bfd_set_section_flags
1291
1292 SYNOPSIS
1293 bfd_boolean bfd_set_section_flags (asection *sec, flagword flags);
1294
1295 DESCRIPTION
1296 Set the attributes of the section @var{sec} to the value @var{flags}.
1297 Return <<TRUE>> on success, <<FALSE>> on error. Possible error
1298 returns are:
1299
1300 o <<bfd_error_invalid_operation>> -
1301 The section cannot have one or more of the attributes
1302 requested. For example, a .bss section in <<a.out>> may not
1303 have the <<SEC_HAS_CONTENTS>> field set.
1304
1305 */
1306
1307 bfd_boolean
1308 bfd_set_section_flags (asection *section, flagword flags)
1309 {
1310 section->flags = flags;
1311 return TRUE;
1312 }
1313
1314 /*
1315 FUNCTION
1316 bfd_rename_section
1317
1318 SYNOPSIS
1319 void bfd_rename_section
1320 (asection *sec, const char *newname);
1321
1322 DESCRIPTION
1323 Rename section @var{sec} to @var{newname}.
1324 */
1325
1326 void
1327 bfd_rename_section (asection *sec, const char *newname)
1328 {
1329 struct section_hash_entry *sh;
1330
1331 sh = (struct section_hash_entry *)
1332 ((char *) sec - offsetof (struct section_hash_entry, section));
1333 sh->section.name = newname;
1334 bfd_hash_rename (&sec->owner->section_htab, newname, &sh->root);
1335 }
1336
1337 /*
1338 FUNCTION
1339 bfd_map_over_sections
1340
1341 SYNOPSIS
1342 void bfd_map_over_sections
1343 (bfd *abfd,
1344 void (*func) (bfd *abfd, asection *sect, void *obj),
1345 void *obj);
1346
1347 DESCRIPTION
1348 Call the provided function @var{func} for each section
1349 attached to the BFD @var{abfd}, passing @var{obj} as an
1350 argument. The function will be called as if by
1351
1352 | func (abfd, the_section, obj);
1353
1354 This is the preferred method for iterating over sections; an
1355 alternative would be to use a loop:
1356
1357 | asection *p;
1358 | for (p = abfd->sections; p != NULL; p = p->next)
1359 | func (abfd, p, ...)
1360
1361 */
1362
1363 void
1364 bfd_map_over_sections (bfd *abfd,
1365 void (*operation) (bfd *, asection *, void *),
1366 void *user_storage)
1367 {
1368 asection *sect;
1369 unsigned int i = 0;
1370
1371 for (sect = abfd->sections; sect != NULL; i++, sect = sect->next)
1372 (*operation) (abfd, sect, user_storage);
1373
1374 if (i != abfd->section_count) /* Debugging */
1375 abort ();
1376 }
1377
1378 /*
1379 FUNCTION
1380 bfd_sections_find_if
1381
1382 SYNOPSIS
1383 asection *bfd_sections_find_if
1384 (bfd *abfd,
1385 bfd_boolean (*operation) (bfd *abfd, asection *sect, void *obj),
1386 void *obj);
1387
1388 DESCRIPTION
1389 Call the provided function @var{operation} for each section
1390 attached to the BFD @var{abfd}, passing @var{obj} as an
1391 argument. The function will be called as if by
1392
1393 | operation (abfd, the_section, obj);
1394
1395 It returns the first section for which @var{operation} returns true.
1396
1397 */
1398
1399 asection *
1400 bfd_sections_find_if (bfd *abfd,
1401 bfd_boolean (*operation) (bfd *, asection *, void *),
1402 void *user_storage)
1403 {
1404 asection *sect;
1405
1406 for (sect = abfd->sections; sect != NULL; sect = sect->next)
1407 if ((*operation) (abfd, sect, user_storage))
1408 break;
1409
1410 return sect;
1411 }
1412
1413 /*
1414 FUNCTION
1415 bfd_set_section_size
1416
1417 SYNOPSIS
1418 bfd_boolean bfd_set_section_size (asection *sec, bfd_size_type val);
1419
1420 DESCRIPTION
1421 Set @var{sec} to the size @var{val}. If the operation is
1422 ok, then <<TRUE>> is returned, else <<FALSE>>.
1423
1424 Possible error returns:
1425 o <<bfd_error_invalid_operation>> -
1426 Writing has started to the BFD, so setting the size is invalid.
1427
1428 */
1429
1430 bfd_boolean
1431 bfd_set_section_size (asection *sec, bfd_size_type val)
1432 {
1433 /* Once you've started writing to any section you cannot create or change
1434 the size of any others. */
1435
1436 if (sec->owner == NULL || sec->owner->output_has_begun)
1437 {
1438 bfd_set_error (bfd_error_invalid_operation);
1439 return FALSE;
1440 }
1441
1442 sec->size = val;
1443 return TRUE;
1444 }
1445
1446 /*
1447 FUNCTION
1448 bfd_set_section_contents
1449
1450 SYNOPSIS
1451 bfd_boolean bfd_set_section_contents
1452 (bfd *abfd, asection *section, const void *data,
1453 file_ptr offset, bfd_size_type count);
1454
1455 DESCRIPTION
1456 Sets the contents of the section @var{section} in BFD
1457 @var{abfd} to the data starting in memory at @var{location}.
1458 The data is written to the output section starting at offset
1459 @var{offset} for @var{count} octets.
1460
1461 Normally <<TRUE>> is returned, but <<FALSE>> is returned if
1462 there was an error. Possible error returns are:
1463 o <<bfd_error_no_contents>> -
1464 The output section does not have the <<SEC_HAS_CONTENTS>>
1465 attribute, so nothing can be written to it.
1466 o <<bfd_error_bad_value>> -
1467 The section is unable to contain all of the data.
1468 o <<bfd_error_invalid_operation>> -
1469 The BFD is not writeable.
1470 o and some more too.
1471
1472 This routine is front end to the back end function
1473 <<_bfd_set_section_contents>>.
1474
1475 */
1476
1477 bfd_boolean
1478 bfd_set_section_contents (bfd *abfd,
1479 sec_ptr section,
1480 const void *location,
1481 file_ptr offset,
1482 bfd_size_type count)
1483 {
1484 bfd_size_type sz;
1485
1486 if (!(bfd_section_flags (section) & SEC_HAS_CONTENTS))
1487 {
1488 bfd_set_error (bfd_error_no_contents);
1489 return FALSE;
1490 }
1491
1492 sz = section->size;
1493 if ((bfd_size_type) offset > sz
1494 || count > sz
1495 || offset + count > sz
1496 || count != (size_t) count)
1497 {
1498 bfd_set_error (bfd_error_bad_value);
1499 return FALSE;
1500 }
1501
1502 if (!bfd_write_p (abfd))
1503 {
1504 bfd_set_error (bfd_error_invalid_operation);
1505 return FALSE;
1506 }
1507
1508 /* Record a copy of the data in memory if desired. */
1509 if (section->contents
1510 && location != section->contents + offset)
1511 memcpy (section->contents + offset, location, (size_t) count);
1512
1513 if (BFD_SEND (abfd, _bfd_set_section_contents,
1514 (abfd, section, location, offset, count)))
1515 {
1516 abfd->output_has_begun = TRUE;
1517 return TRUE;
1518 }
1519
1520 return FALSE;
1521 }
1522
1523 /*
1524 FUNCTION
1525 bfd_get_section_contents
1526
1527 SYNOPSIS
1528 bfd_boolean bfd_get_section_contents
1529 (bfd *abfd, asection *section, void *location, file_ptr offset,
1530 bfd_size_type count);
1531
1532 DESCRIPTION
1533 Read data from @var{section} in BFD @var{abfd}
1534 into memory starting at @var{location}. The data is read at an
1535 offset of @var{offset} from the start of the input section,
1536 and is read for @var{count} bytes.
1537
1538 If the contents of a constructor with the <<SEC_CONSTRUCTOR>>
1539 flag set are requested or if the section does not have the
1540 <<SEC_HAS_CONTENTS>> flag set, then the @var{location} is filled
1541 with zeroes. If no errors occur, <<TRUE>> is returned, else
1542 <<FALSE>>.
1543
1544 */
1545 bfd_boolean
1546 bfd_get_section_contents (bfd *abfd,
1547 sec_ptr section,
1548 void *location,
1549 file_ptr offset,
1550 bfd_size_type count)
1551 {
1552 bfd_size_type sz;
1553
1554 if (section->flags & SEC_CONSTRUCTOR)
1555 {
1556 memset (location, 0, (size_t) count);
1557 return TRUE;
1558 }
1559
1560 if (abfd->direction != write_direction && section->rawsize != 0)
1561 sz = section->rawsize;
1562 else
1563 sz = section->size;
1564 if ((bfd_size_type) offset > sz
1565 || count > sz
1566 || offset + count > sz
1567 || count != (size_t) count)
1568 {
1569 bfd_set_error (bfd_error_bad_value);
1570 return FALSE;
1571 }
1572
1573 if (count == 0)
1574 /* Don't bother. */
1575 return TRUE;
1576
1577 if ((section->flags & SEC_HAS_CONTENTS) == 0)
1578 {
1579 memset (location, 0, (size_t) count);
1580 return TRUE;
1581 }
1582
1583 if ((section->flags & SEC_IN_MEMORY) != 0)
1584 {
1585 if (section->contents == NULL)
1586 {
1587 /* This can happen because of errors earlier on in the linking process.
1588 We do not want to seg-fault here, so clear the flag and return an
1589 error code. */
1590 section->flags &= ~ SEC_IN_MEMORY;
1591 bfd_set_error (bfd_error_invalid_operation);
1592 return FALSE;
1593 }
1594
1595 memmove (location, section->contents + offset, (size_t) count);
1596 return TRUE;
1597 }
1598
1599 return BFD_SEND (abfd, _bfd_get_section_contents,
1600 (abfd, section, location, offset, count));
1601 }
1602
1603 /*
1604 FUNCTION
1605 bfd_malloc_and_get_section
1606
1607 SYNOPSIS
1608 bfd_boolean bfd_malloc_and_get_section
1609 (bfd *abfd, asection *section, bfd_byte **buf);
1610
1611 DESCRIPTION
1612 Read all data from @var{section} in BFD @var{abfd}
1613 into a buffer, *@var{buf}, malloc'd by this function.
1614 */
1615
1616 bfd_boolean
1617 bfd_malloc_and_get_section (bfd *abfd, sec_ptr sec, bfd_byte **buf)
1618 {
1619 *buf = NULL;
1620 return bfd_get_full_section_contents (abfd, sec, buf);
1621 }
1622 /*
1623 FUNCTION
1624 bfd_copy_private_section_data
1625
1626 SYNOPSIS
1627 bfd_boolean bfd_copy_private_section_data
1628 (bfd *ibfd, asection *isec, bfd *obfd, asection *osec);
1629
1630 DESCRIPTION
1631 Copy private section information from @var{isec} in the BFD
1632 @var{ibfd} to the section @var{osec} in the BFD @var{obfd}.
1633 Return <<TRUE>> on success, <<FALSE>> on error. Possible error
1634 returns are:
1635
1636 o <<bfd_error_no_memory>> -
1637 Not enough memory exists to create private data for @var{osec}.
1638
1639 .#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \
1640 . BFD_SEND (obfd, _bfd_copy_private_section_data, \
1641 . (ibfd, isection, obfd, osection))
1642 */
1643
1644 /*
1645 FUNCTION
1646 bfd_generic_is_group_section
1647
1648 SYNOPSIS
1649 bfd_boolean bfd_generic_is_group_section (bfd *, const asection *sec);
1650
1651 DESCRIPTION
1652 Returns TRUE if @var{sec} is a member of a group.
1653 */
1654
1655 bfd_boolean
1656 bfd_generic_is_group_section (bfd *abfd ATTRIBUTE_UNUSED,
1657 const asection *sec ATTRIBUTE_UNUSED)
1658 {
1659 return FALSE;
1660 }
1661
1662 /*
1663 FUNCTION
1664 bfd_generic_group_name
1665
1666 SYNOPSIS
1667 const char *bfd_generic_group_name (bfd *, const asection *sec);
1668
1669 DESCRIPTION
1670 Returns group name if @var{sec} is a member of a group.
1671 */
1672
1673 const char *
1674 bfd_generic_group_name (bfd *abfd ATTRIBUTE_UNUSED,
1675 const asection *sec ATTRIBUTE_UNUSED)
1676 {
1677 return NULL;
1678 }
1679
1680 /*
1681 FUNCTION
1682 bfd_generic_discard_group
1683
1684 SYNOPSIS
1685 bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group);
1686
1687 DESCRIPTION
1688 Remove all members of @var{group} from the output.
1689 */
1690
1691 bfd_boolean
1692 bfd_generic_discard_group (bfd *abfd ATTRIBUTE_UNUSED,
1693 asection *group ATTRIBUTE_UNUSED)
1694 {
1695 return TRUE;
1696 }
1697
1698 bfd_boolean
1699 _bfd_nowrite_set_section_contents (bfd *abfd,
1700 sec_ptr section ATTRIBUTE_UNUSED,
1701 const void *location ATTRIBUTE_UNUSED,
1702 file_ptr offset ATTRIBUTE_UNUSED,
1703 bfd_size_type count ATTRIBUTE_UNUSED)
1704 {
1705 return _bfd_bool_bfd_false_error (abfd);
1706 }
This page took 0.093584 seconds and 3 git commands to generate.