Following up on Tom's suggestion I am checking in a patch to replace the various
[deliverable/binutils-gdb.git] / bfd / section.c
1 /* Object file "section" support for the BFD library.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011,
4 2012, 2013
5 Free Software Foundation, Inc.
6 Written by Cygnus Support.
7
8 This file is part of BFD, the Binary File Descriptor library.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
23 MA 02110-1301, USA. */
24
25 /*
26 SECTION
27 Sections
28
29 The raw data contained within a BFD is maintained through the
30 section abstraction. A single BFD may have any number of
31 sections. It keeps hold of them by pointing to the first;
32 each one points to the next in the list.
33
34 Sections are supported in BFD in <<section.c>>.
35
36 @menu
37 @* Section Input::
38 @* Section Output::
39 @* typedef asection::
40 @* section prototypes::
41 @end menu
42
43 INODE
44 Section Input, Section Output, Sections, Sections
45 SUBSECTION
46 Section input
47
48 When a BFD is opened for reading, the section structures are
49 created and attached to the BFD.
50
51 Each section has a name which describes the section in the
52 outside world---for example, <<a.out>> would contain at least
53 three sections, called <<.text>>, <<.data>> and <<.bss>>.
54
55 Names need not be unique; for example a COFF file may have several
56 sections named <<.data>>.
57
58 Sometimes a BFD will contain more than the ``natural'' number of
59 sections. A back end may attach other sections containing
60 constructor data, or an application may add a section (using
61 <<bfd_make_section>>) to the sections attached to an already open
62 BFD. For example, the linker creates an extra section
63 <<COMMON>> for each input file's BFD to hold information about
64 common storage.
65
66 The raw data is not necessarily read in when
67 the section descriptor is created. Some targets may leave the
68 data in place until a <<bfd_get_section_contents>> call is
69 made. Other back ends may read in all the data at once. For
70 example, an S-record file has to be read once to determine the
71 size of the data. An IEEE-695 file doesn't contain raw data in
72 sections, but data and relocation expressions intermixed, so
73 the data area has to be parsed to get out the data and
74 relocations.
75
76 INODE
77 Section Output, typedef asection, Section Input, Sections
78
79 SUBSECTION
80 Section output
81
82 To write a new object style BFD, the various sections to be
83 written have to be created. They are attached to the BFD in
84 the same way as input sections; data is written to the
85 sections using <<bfd_set_section_contents>>.
86
87 Any program that creates or combines sections (e.g., the assembler
88 and linker) must use the <<asection>> fields <<output_section>> and
89 <<output_offset>> to indicate the file sections to which each
90 section must be written. (If the section is being created from
91 scratch, <<output_section>> should probably point to the section
92 itself and <<output_offset>> should probably be zero.)
93
94 The data to be written comes from input sections attached
95 (via <<output_section>> pointers) to
96 the output sections. The output section structure can be
97 considered a filter for the input section: the output section
98 determines the vma of the output data and the name, but the
99 input section determines the offset into the output section of
100 the data to be written.
101
102 E.g., to create a section "O", starting at 0x100, 0x123 long,
103 containing two subsections, "A" at offset 0x0 (i.e., at vma
104 0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the <<asection>>
105 structures would look like:
106
107 | section name "A"
108 | output_offset 0x00
109 | size 0x20
110 | output_section -----------> section name "O"
111 | | vma 0x100
112 | section name "B" | size 0x123
113 | output_offset 0x20 |
114 | size 0x103 |
115 | output_section --------|
116
117 SUBSECTION
118 Link orders
119
120 The data within a section is stored in a @dfn{link_order}.
121 These are much like the fixups in <<gas>>. The link_order
122 abstraction allows a section to grow and shrink within itself.
123
124 A link_order knows how big it is, and which is the next
125 link_order and where the raw data for it is; it also points to
126 a list of relocations which apply to it.
127
128 The link_order is used by the linker to perform relaxing on
129 final code. The compiler creates code which is as big as
130 necessary to make it work without relaxing, and the user can
131 select whether to relax. Sometimes relaxing takes a lot of
132 time. The linker runs around the relocations to see if any
133 are attached to data which can be shrunk, if so it does it on
134 a link_order by link_order basis.
135
136 */
137
138 #include "sysdep.h"
139 #include "bfd.h"
140 #include "libbfd.h"
141 #include "bfdlink.h"
142
143 /*
144 DOCDD
145 INODE
146 typedef asection, section prototypes, Section Output, Sections
147 SUBSECTION
148 typedef asection
149
150 Here is the section structure:
151
152 CODE_FRAGMENT
153 .
154 .typedef struct bfd_section
155 .{
156 . {* The name of the section; the name isn't a copy, the pointer is
157 . the same as that passed to bfd_make_section. *}
158 . const char *name;
159 .
160 . {* A unique sequence number. *}
161 . int id;
162 .
163 . {* Which section in the bfd; 0..n-1 as sections are created in a bfd. *}
164 . int index;
165 .
166 . {* The next section in the list belonging to the BFD, or NULL. *}
167 . struct bfd_section *next;
168 .
169 . {* The previous section in the list belonging to the BFD, or NULL. *}
170 . struct bfd_section *prev;
171 .
172 . {* The field flags contains attributes of the section. Some
173 . flags are read in from the object file, and some are
174 . synthesized from other information. *}
175 . flagword flags;
176 .
177 .#define SEC_NO_FLAGS 0x000
178 .
179 . {* Tells the OS to allocate space for this section when loading.
180 . This is clear for a section containing debug information only. *}
181 .#define SEC_ALLOC 0x001
182 .
183 . {* Tells the OS to load the section from the file when loading.
184 . This is clear for a .bss section. *}
185 .#define SEC_LOAD 0x002
186 .
187 . {* The section contains data still to be relocated, so there is
188 . some relocation information too. *}
189 .#define SEC_RELOC 0x004
190 .
191 . {* A signal to the OS that the section contains read only data. *}
192 .#define SEC_READONLY 0x008
193 .
194 . {* The section contains code only. *}
195 .#define SEC_CODE 0x010
196 .
197 . {* The section contains data only. *}
198 .#define SEC_DATA 0x020
199 .
200 . {* The section will reside in ROM. *}
201 .#define SEC_ROM 0x040
202 .
203 . {* The section contains constructor information. This section
204 . type is used by the linker to create lists of constructors and
205 . destructors used by <<g++>>. When a back end sees a symbol
206 . which should be used in a constructor list, it creates a new
207 . section for the type of name (e.g., <<__CTOR_LIST__>>), attaches
208 . the symbol to it, and builds a relocation. To build the lists
209 . of constructors, all the linker has to do is catenate all the
210 . sections called <<__CTOR_LIST__>> and relocate the data
211 . contained within - exactly the operations it would peform on
212 . standard data. *}
213 .#define SEC_CONSTRUCTOR 0x080
214 .
215 . {* The section has contents - a data section could be
216 . <<SEC_ALLOC>> | <<SEC_HAS_CONTENTS>>; a debug section could be
217 . <<SEC_HAS_CONTENTS>> *}
218 .#define SEC_HAS_CONTENTS 0x100
219 .
220 . {* An instruction to the linker to not output the section
221 . even if it has information which would normally be written. *}
222 .#define SEC_NEVER_LOAD 0x200
223 .
224 . {* The section contains thread local data. *}
225 .#define SEC_THREAD_LOCAL 0x400
226 .
227 . {* The section has GOT references. This flag is only for the
228 . linker, and is currently only used by the elf32-hppa back end.
229 . It will be set if global offset table references were detected
230 . in this section, which indicate to the linker that the section
231 . contains PIC code, and must be handled specially when doing a
232 . static link. *}
233 .#define SEC_HAS_GOT_REF 0x800
234 .
235 . {* The section contains common symbols (symbols may be defined
236 . multiple times, the value of a symbol is the amount of
237 . space it requires, and the largest symbol value is the one
238 . used). Most targets have exactly one of these (which we
239 . translate to bfd_com_section_ptr), but ECOFF has two. *}
240 .#define SEC_IS_COMMON 0x1000
241 .
242 . {* The section contains only debugging information. For
243 . example, this is set for ELF .debug and .stab sections.
244 . strip tests this flag to see if a section can be
245 . discarded. *}
246 .#define SEC_DEBUGGING 0x2000
247 .
248 . {* The contents of this section are held in memory pointed to
249 . by the contents field. This is checked by bfd_get_section_contents,
250 . and the data is retrieved from memory if appropriate. *}
251 .#define SEC_IN_MEMORY 0x4000
252 .
253 . {* The contents of this section are to be excluded by the
254 . linker for executable and shared objects unless those
255 . objects are to be further relocated. *}
256 .#define SEC_EXCLUDE 0x8000
257 .
258 . {* The contents of this section are to be sorted based on the sum of
259 . the symbol and addend values specified by the associated relocation
260 . entries. Entries without associated relocation entries will be
261 . appended to the end of the section in an unspecified order. *}
262 .#define SEC_SORT_ENTRIES 0x10000
263 .
264 . {* When linking, duplicate sections of the same name should be
265 . discarded, rather than being combined into a single section as
266 . is usually done. This is similar to how common symbols are
267 . handled. See SEC_LINK_DUPLICATES below. *}
268 .#define SEC_LINK_ONCE 0x20000
269 .
270 . {* If SEC_LINK_ONCE is set, this bitfield describes how the linker
271 . should handle duplicate sections. *}
272 .#define SEC_LINK_DUPLICATES 0xc0000
273 .
274 . {* This value for SEC_LINK_DUPLICATES means that duplicate
275 . sections with the same name should simply be discarded. *}
276 .#define SEC_LINK_DUPLICATES_DISCARD 0x0
277 .
278 . {* This value for SEC_LINK_DUPLICATES means that the linker
279 . should warn if there are any duplicate sections, although
280 . it should still only link one copy. *}
281 .#define SEC_LINK_DUPLICATES_ONE_ONLY 0x40000
282 .
283 . {* This value for SEC_LINK_DUPLICATES means that the linker
284 . should warn if any duplicate sections are a different size. *}
285 .#define SEC_LINK_DUPLICATES_SAME_SIZE 0x80000
286 .
287 . {* This value for SEC_LINK_DUPLICATES means that the linker
288 . should warn if any duplicate sections contain different
289 . contents. *}
290 .#define SEC_LINK_DUPLICATES_SAME_CONTENTS \
291 . (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE)
292 .
293 . {* This section was created by the linker as part of dynamic
294 . relocation or other arcane processing. It is skipped when
295 . going through the first-pass output, trusting that someone
296 . else up the line will take care of it later. *}
297 .#define SEC_LINKER_CREATED 0x100000
298 .
299 . {* This section should not be subject to garbage collection.
300 . Also set to inform the linker that this section should not be
301 . listed in the link map as discarded. *}
302 .#define SEC_KEEP 0x200000
303 .
304 . {* This section contains "short" data, and should be placed
305 . "near" the GP. *}
306 .#define SEC_SMALL_DATA 0x400000
307 .
308 . {* Attempt to merge identical entities in the section.
309 . Entity size is given in the entsize field. *}
310 .#define SEC_MERGE 0x800000
311 .
312 . {* If given with SEC_MERGE, entities to merge are zero terminated
313 . strings where entsize specifies character size instead of fixed
314 . size entries. *}
315 .#define SEC_STRINGS 0x1000000
316 .
317 . {* This section contains data about section groups. *}
318 .#define SEC_GROUP 0x2000000
319 .
320 . {* The section is a COFF shared library section. This flag is
321 . only for the linker. If this type of section appears in
322 . the input file, the linker must copy it to the output file
323 . without changing the vma or size. FIXME: Although this
324 . was originally intended to be general, it really is COFF
325 . specific (and the flag was renamed to indicate this). It
326 . might be cleaner to have some more general mechanism to
327 . allow the back end to control what the linker does with
328 . sections. *}
329 .#define SEC_COFF_SHARED_LIBRARY 0x4000000
330 .
331 . {* This input section should be copied to output in reverse order
332 . as an array of pointers. This is for ELF linker internal use
333 . only. *}
334 .#define SEC_ELF_REVERSE_COPY 0x4000000
335 .
336 . {* This section contains data which may be shared with other
337 . executables or shared objects. This is for COFF only. *}
338 .#define SEC_COFF_SHARED 0x8000000
339 .
340 . {* When a section with this flag is being linked, then if the size of
341 . the input section is less than a page, it should not cross a page
342 . boundary. If the size of the input section is one page or more,
343 . it should be aligned on a page boundary. This is for TI
344 . TMS320C54X only. *}
345 .#define SEC_TIC54X_BLOCK 0x10000000
346 .
347 . {* Conditionally link this section; do not link if there are no
348 . references found to any symbol in the section. This is for TI
349 . TMS320C54X only. *}
350 .#define SEC_TIC54X_CLINK 0x20000000
351 .
352 . {* Indicate that section has the no read flag set. This happens
353 . when memory read flag isn't set. *}
354 .#define SEC_COFF_NOREAD 0x40000000
355 .
356 . {* End of section flags. *}
357 .
358 . {* Some internal packed boolean fields. *}
359 .
360 . {* See the vma field. *}
361 . unsigned int user_set_vma : 1;
362 .
363 . {* A mark flag used by some of the linker backends. *}
364 . unsigned int linker_mark : 1;
365 .
366 . {* Another mark flag used by some of the linker backends. Set for
367 . output sections that have an input section. *}
368 . unsigned int linker_has_input : 1;
369 .
370 . {* Mark flag used by some linker backends for garbage collection. *}
371 . unsigned int gc_mark : 1;
372 .
373 . {* Section compression status. *}
374 . unsigned int compress_status : 2;
375 .#define COMPRESS_SECTION_NONE 0
376 .#define COMPRESS_SECTION_DONE 1
377 .#define DECOMPRESS_SECTION_SIZED 2
378 .
379 . {* The following flags are used by the ELF linker. *}
380 .
381 . {* Mark sections which have been allocated to segments. *}
382 . unsigned int segment_mark : 1;
383 .
384 . {* Type of sec_info information. *}
385 . unsigned int sec_info_type:3;
386 .#define SEC_INFO_TYPE_NONE 0
387 .#define SEC_INFO_TYPE_STABS 1
388 .#define SEC_INFO_TYPE_MERGE 2
389 .#define SEC_INFO_TYPE_EH_FRAME 3
390 .#define SEC_INFO_TYPE_JUST_SYMS 4
391 .
392 . {* Nonzero if this section uses RELA relocations, rather than REL. *}
393 . unsigned int use_rela_p:1;
394 .
395 . {* Bits used by various backends. The generic code doesn't touch
396 . these fields. *}
397 .
398 . unsigned int sec_flg0:1;
399 . unsigned int sec_flg1:1;
400 . unsigned int sec_flg2:1;
401 . unsigned int sec_flg3:1;
402 . unsigned int sec_flg4:1;
403 . unsigned int sec_flg5:1;
404 .
405 . {* End of internal packed boolean fields. *}
406 .
407 . {* The virtual memory address of the section - where it will be
408 . at run time. The symbols are relocated against this. The
409 . user_set_vma flag is maintained by bfd; if it's not set, the
410 . backend can assign addresses (for example, in <<a.out>>, where
411 . the default address for <<.data>> is dependent on the specific
412 . target and various flags). *}
413 . bfd_vma vma;
414 .
415 . {* The load address of the section - where it would be in a
416 . rom image; really only used for writing section header
417 . information. *}
418 . bfd_vma lma;
419 .
420 . {* The size of the section in octets, as it will be output.
421 . Contains a value even if the section has no contents (e.g., the
422 . size of <<.bss>>). *}
423 . bfd_size_type size;
424 .
425 . {* For input sections, the original size on disk of the section, in
426 . octets. This field should be set for any section whose size is
427 . changed by linker relaxation. It is required for sections where
428 . the linker relaxation scheme doesn't cache altered section and
429 . reloc contents (stabs, eh_frame, SEC_MERGE, some coff relaxing
430 . targets), and thus the original size needs to be kept to read the
431 . section multiple times. For output sections, rawsize holds the
432 . section size calculated on a previous linker relaxation pass. *}
433 . bfd_size_type rawsize;
434 .
435 . {* The compressed size of the section in octets. *}
436 . bfd_size_type compressed_size;
437 .
438 . {* Relaxation table. *}
439 . struct relax_table *relax;
440 .
441 . {* Count of used relaxation table entries. *}
442 . int relax_count;
443 .
444 .
445 . {* If this section is going to be output, then this value is the
446 . offset in *bytes* into the output section of the first byte in the
447 . input section (byte ==> smallest addressable unit on the
448 . target). In most cases, if this was going to start at the
449 . 100th octet (8-bit quantity) in the output section, this value
450 . would be 100. However, if the target byte size is 16 bits
451 . (bfd_octets_per_byte is "2"), this value would be 50. *}
452 . bfd_vma output_offset;
453 .
454 . {* The output section through which to map on output. *}
455 . struct bfd_section *output_section;
456 .
457 . {* The alignment requirement of the section, as an exponent of 2 -
458 . e.g., 3 aligns to 2^3 (or 8). *}
459 . unsigned int alignment_power;
460 .
461 . {* If an input section, a pointer to a vector of relocation
462 . records for the data in this section. *}
463 . struct reloc_cache_entry *relocation;
464 .
465 . {* If an output section, a pointer to a vector of pointers to
466 . relocation records for the data in this section. *}
467 . struct reloc_cache_entry **orelocation;
468 .
469 . {* The number of relocation records in one of the above. *}
470 . unsigned reloc_count;
471 .
472 . {* Information below is back end specific - and not always used
473 . or updated. *}
474 .
475 . {* File position of section data. *}
476 . file_ptr filepos;
477 .
478 . {* File position of relocation info. *}
479 . file_ptr rel_filepos;
480 .
481 . {* File position of line data. *}
482 . file_ptr line_filepos;
483 .
484 . {* Pointer to data for applications. *}
485 . void *userdata;
486 .
487 . {* If the SEC_IN_MEMORY flag is set, this points to the actual
488 . contents. *}
489 . unsigned char *contents;
490 .
491 . {* Attached line number information. *}
492 . alent *lineno;
493 .
494 . {* Number of line number records. *}
495 . unsigned int lineno_count;
496 .
497 . {* Entity size for merging purposes. *}
498 . unsigned int entsize;
499 .
500 . {* Points to the kept section if this section is a link-once section,
501 . and is discarded. *}
502 . struct bfd_section *kept_section;
503 .
504 . {* When a section is being output, this value changes as more
505 . linenumbers are written out. *}
506 . file_ptr moving_line_filepos;
507 .
508 . {* What the section number is in the target world. *}
509 . int target_index;
510 .
511 . void *used_by_bfd;
512 .
513 . {* If this is a constructor section then here is a list of the
514 . relocations created to relocate items within it. *}
515 . struct relent_chain *constructor_chain;
516 .
517 . {* The BFD which owns the section. *}
518 . bfd *owner;
519 .
520 . {* A symbol which points at this section only. *}
521 . struct bfd_symbol *symbol;
522 . struct bfd_symbol **symbol_ptr_ptr;
523 .
524 . {* Early in the link process, map_head and map_tail are used to build
525 . a list of input sections attached to an output section. Later,
526 . output sections use these fields for a list of bfd_link_order
527 . structs. *}
528 . union {
529 . struct bfd_link_order *link_order;
530 . struct bfd_section *s;
531 . } map_head, map_tail;
532 .} asection;
533 .
534 .{* Relax table contains information about instructions which can
535 . be removed by relaxation -- replacing a long address with a
536 . short address. *}
537 .struct relax_table {
538 . {* Address where bytes may be deleted. *}
539 . bfd_vma addr;
540 .
541 . {* Number of bytes to be deleted. *}
542 . int size;
543 .};
544 .
545 .{* Note: the following are provided as inline functions rather than macros
546 . because not all callers use the return value. A macro implementation
547 . would use a comma expression, eg: "((ptr)->foo = val, TRUE)" and some
548 . compilers will complain about comma expressions that have no effect. *}
549 .static inline bfd_boolean
550 .bfd_set_section_userdata (bfd * abfd ATTRIBUTE_UNUSED, asection * ptr, void * val)
551 .{
552 . ptr->userdata = val;
553 . return TRUE;
554 .}
555 .
556 .static inline bfd_boolean
557 .bfd_set_section_vma (bfd * abfd ATTRIBUTE_UNUSED, asection * ptr, bfd_vma val)
558 .{
559 . ptr->vma = ptr->lma = val;
560 . ptr->user_set_vma = TRUE;
561 . return TRUE;
562 .}
563 .
564 .static inline bfd_boolean
565 .bfd_set_section_alignment (bfd * abfd ATTRIBUTE_UNUSED, asection * ptr, unsigned int val)
566 .{
567 . ptr->alignment_power = val;
568 . return TRUE;
569 .}
570 .
571 .{* These sections are global, and are managed by BFD. The application
572 . and target back end are not permitted to change the values in
573 . these sections. *}
574 .extern asection _bfd_std_section[4];
575 .
576 .#define BFD_ABS_SECTION_NAME "*ABS*"
577 .#define BFD_UND_SECTION_NAME "*UND*"
578 .#define BFD_COM_SECTION_NAME "*COM*"
579 .#define BFD_IND_SECTION_NAME "*IND*"
580 .
581 .{* Pointer to the common section. *}
582 .#define bfd_com_section_ptr (&_bfd_std_section[0])
583 .{* Pointer to the undefined section. *}
584 .#define bfd_und_section_ptr (&_bfd_std_section[1])
585 .{* Pointer to the absolute section. *}
586 .#define bfd_abs_section_ptr (&_bfd_std_section[2])
587 .{* Pointer to the indirect section. *}
588 .#define bfd_ind_section_ptr (&_bfd_std_section[3])
589 .
590 .#define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr)
591 .#define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr)
592 .#define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr)
593 .
594 .#define bfd_is_const_section(SEC) \
595 . ( ((SEC) == bfd_abs_section_ptr) \
596 . || ((SEC) == bfd_und_section_ptr) \
597 . || ((SEC) == bfd_com_section_ptr) \
598 . || ((SEC) == bfd_ind_section_ptr))
599 .
600 .{* Macros to handle insertion and deletion of a bfd's sections. These
601 . only handle the list pointers, ie. do not adjust section_count,
602 . target_index etc. *}
603 .#define bfd_section_list_remove(ABFD, S) \
604 . do \
605 . { \
606 . asection *_s = S; \
607 . asection *_next = _s->next; \
608 . asection *_prev = _s->prev; \
609 . if (_prev) \
610 . _prev->next = _next; \
611 . else \
612 . (ABFD)->sections = _next; \
613 . if (_next) \
614 . _next->prev = _prev; \
615 . else \
616 . (ABFD)->section_last = _prev; \
617 . } \
618 . while (0)
619 .#define bfd_section_list_append(ABFD, S) \
620 . do \
621 . { \
622 . asection *_s = S; \
623 . bfd *_abfd = ABFD; \
624 . _s->next = NULL; \
625 . if (_abfd->section_last) \
626 . { \
627 . _s->prev = _abfd->section_last; \
628 . _abfd->section_last->next = _s; \
629 . } \
630 . else \
631 . { \
632 . _s->prev = NULL; \
633 . _abfd->sections = _s; \
634 . } \
635 . _abfd->section_last = _s; \
636 . } \
637 . while (0)
638 .#define bfd_section_list_prepend(ABFD, S) \
639 . do \
640 . { \
641 . asection *_s = S; \
642 . bfd *_abfd = ABFD; \
643 . _s->prev = NULL; \
644 . if (_abfd->sections) \
645 . { \
646 . _s->next = _abfd->sections; \
647 . _abfd->sections->prev = _s; \
648 . } \
649 . else \
650 . { \
651 . _s->next = NULL; \
652 . _abfd->section_last = _s; \
653 . } \
654 . _abfd->sections = _s; \
655 . } \
656 . while (0)
657 .#define bfd_section_list_insert_after(ABFD, A, S) \
658 . do \
659 . { \
660 . asection *_a = A; \
661 . asection *_s = S; \
662 . asection *_next = _a->next; \
663 . _s->next = _next; \
664 . _s->prev = _a; \
665 . _a->next = _s; \
666 . if (_next) \
667 . _next->prev = _s; \
668 . else \
669 . (ABFD)->section_last = _s; \
670 . } \
671 . while (0)
672 .#define bfd_section_list_insert_before(ABFD, B, S) \
673 . do \
674 . { \
675 . asection *_b = B; \
676 . asection *_s = S; \
677 . asection *_prev = _b->prev; \
678 . _s->prev = _prev; \
679 . _s->next = _b; \
680 . _b->prev = _s; \
681 . if (_prev) \
682 . _prev->next = _s; \
683 . else \
684 . (ABFD)->sections = _s; \
685 . } \
686 . while (0)
687 .#define bfd_section_removed_from_list(ABFD, S) \
688 . ((S)->next == NULL ? (ABFD)->section_last != (S) : (S)->next->prev != (S))
689 .
690 .#define BFD_FAKE_SECTION(SEC, FLAGS, SYM, NAME, IDX) \
691 . {* name, id, index, next, prev, flags, user_set_vma, *} \
692 . { NAME, IDX, 0, NULL, NULL, FLAGS, 0, \
693 . \
694 . {* linker_mark, linker_has_input, gc_mark, decompress_status, *} \
695 . 0, 0, 1, 0, \
696 . \
697 . {* segment_mark, sec_info_type, use_rela_p, *} \
698 . 0, 0, 0, \
699 . \
700 . {* sec_flg0, sec_flg1, sec_flg2, sec_flg3, sec_flg4, sec_flg5, *} \
701 . 0, 0, 0, 0, 0, 0, \
702 . \
703 . {* vma, lma, size, rawsize, compressed_size, relax, relax_count, *} \
704 . 0, 0, 0, 0, 0, 0, 0, \
705 . \
706 . {* output_offset, output_section, alignment_power, *} \
707 . 0, &SEC, 0, \
708 . \
709 . {* relocation, orelocation, reloc_count, filepos, rel_filepos, *} \
710 . NULL, NULL, 0, 0, 0, \
711 . \
712 . {* line_filepos, userdata, contents, lineno, lineno_count, *} \
713 . 0, NULL, NULL, NULL, 0, \
714 . \
715 . {* entsize, kept_section, moving_line_filepos, *} \
716 . 0, NULL, 0, \
717 . \
718 . {* target_index, used_by_bfd, constructor_chain, owner, *} \
719 . 0, NULL, NULL, NULL, \
720 . \
721 . {* symbol, symbol_ptr_ptr, *} \
722 . (struct bfd_symbol *) SYM, &SEC.symbol, \
723 . \
724 . {* map_head, map_tail *} \
725 . { NULL }, { NULL } \
726 . }
727 .
728 */
729
730 /* We use a macro to initialize the static asymbol structures because
731 traditional C does not permit us to initialize a union member while
732 gcc warns if we don't initialize it. */
733 /* the_bfd, name, value, attr, section [, udata] */
734 #ifdef __STDC__
735 #define GLOBAL_SYM_INIT(NAME, SECTION) \
736 { 0, NAME, 0, BSF_SECTION_SYM, SECTION, { 0 }}
737 #else
738 #define GLOBAL_SYM_INIT(NAME, SECTION) \
739 { 0, NAME, 0, BSF_SECTION_SYM, SECTION }
740 #endif
741
742 /* These symbols are global, not specific to any BFD. Therefore, anything
743 that tries to change them is broken, and should be repaired. */
744
745 static const asymbol global_syms[] =
746 {
747 GLOBAL_SYM_INIT (BFD_COM_SECTION_NAME, bfd_com_section_ptr),
748 GLOBAL_SYM_INIT (BFD_UND_SECTION_NAME, bfd_und_section_ptr),
749 GLOBAL_SYM_INIT (BFD_ABS_SECTION_NAME, bfd_abs_section_ptr),
750 GLOBAL_SYM_INIT (BFD_IND_SECTION_NAME, bfd_ind_section_ptr)
751 };
752
753 #define STD_SECTION(NAME, IDX, FLAGS) \
754 BFD_FAKE_SECTION(_bfd_std_section[IDX], FLAGS, &global_syms[IDX], NAME, IDX)
755
756 asection _bfd_std_section[] = {
757 STD_SECTION (BFD_COM_SECTION_NAME, 0, SEC_IS_COMMON),
758 STD_SECTION (BFD_UND_SECTION_NAME, 1, 0),
759 STD_SECTION (BFD_ABS_SECTION_NAME, 2, 0),
760 STD_SECTION (BFD_IND_SECTION_NAME, 3, 0)
761 };
762 #undef STD_SECTION
763
764 /* Initialize an entry in the section hash table. */
765
766 struct bfd_hash_entry *
767 bfd_section_hash_newfunc (struct bfd_hash_entry *entry,
768 struct bfd_hash_table *table,
769 const char *string)
770 {
771 /* Allocate the structure if it has not already been allocated by a
772 subclass. */
773 if (entry == NULL)
774 {
775 entry = (struct bfd_hash_entry *)
776 bfd_hash_allocate (table, sizeof (struct section_hash_entry));
777 if (entry == NULL)
778 return entry;
779 }
780
781 /* Call the allocation method of the superclass. */
782 entry = bfd_hash_newfunc (entry, table, string);
783 if (entry != NULL)
784 memset (&((struct section_hash_entry *) entry)->section, 0,
785 sizeof (asection));
786
787 return entry;
788 }
789
790 #define section_hash_lookup(table, string, create, copy) \
791 ((struct section_hash_entry *) \
792 bfd_hash_lookup ((table), (string), (create), (copy)))
793
794 /* Create a symbol whose only job is to point to this section. This
795 is useful for things like relocs which are relative to the base
796 of a section. */
797
798 bfd_boolean
799 _bfd_generic_new_section_hook (bfd *abfd, asection *newsect)
800 {
801 newsect->symbol = bfd_make_empty_symbol (abfd);
802 if (newsect->symbol == NULL)
803 return FALSE;
804
805 newsect->symbol->name = newsect->name;
806 newsect->symbol->value = 0;
807 newsect->symbol->section = newsect;
808 newsect->symbol->flags = BSF_SECTION_SYM;
809
810 newsect->symbol_ptr_ptr = &newsect->symbol;
811 return TRUE;
812 }
813
814 /* Initializes a new section. NEWSECT->NAME is already set. */
815
816 static asection *
817 bfd_section_init (bfd *abfd, asection *newsect)
818 {
819 static int section_id = 0x10; /* id 0 to 3 used by STD_SECTION. */
820
821 newsect->id = section_id;
822 newsect->index = abfd->section_count;
823 newsect->owner = abfd;
824
825 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
826 return NULL;
827
828 section_id++;
829 abfd->section_count++;
830 bfd_section_list_append (abfd, newsect);
831 return newsect;
832 }
833
834 /*
835 DOCDD
836 INODE
837 section prototypes, , typedef asection, Sections
838 SUBSECTION
839 Section prototypes
840
841 These are the functions exported by the section handling part of BFD.
842 */
843
844 /*
845 FUNCTION
846 bfd_section_list_clear
847
848 SYNOPSIS
849 void bfd_section_list_clear (bfd *);
850
851 DESCRIPTION
852 Clears the section list, and also resets the section count and
853 hash table entries.
854 */
855
856 void
857 bfd_section_list_clear (bfd *abfd)
858 {
859 abfd->sections = NULL;
860 abfd->section_last = NULL;
861 abfd->section_count = 0;
862 memset (abfd->section_htab.table, 0,
863 abfd->section_htab.size * sizeof (struct bfd_hash_entry *));
864 abfd->section_htab.count = 0;
865 }
866
867 /*
868 FUNCTION
869 bfd_get_section_by_name
870
871 SYNOPSIS
872 asection *bfd_get_section_by_name (bfd *abfd, const char *name);
873
874 DESCRIPTION
875 Return the most recently created section attached to @var{abfd}
876 named @var{name}. Return NULL if no such section exists.
877 */
878
879 asection *
880 bfd_get_section_by_name (bfd *abfd, const char *name)
881 {
882 struct section_hash_entry *sh;
883
884 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
885 if (sh != NULL)
886 return &sh->section;
887
888 return NULL;
889 }
890
891 /*
892 FUNCTION
893 bfd_get_next_section_by_name
894
895 SYNOPSIS
896 asection *bfd_get_next_section_by_name (asection *sec);
897
898 DESCRIPTION
899 Given @var{sec} is a section returned by @code{bfd_get_section_by_name},
900 return the next most recently created section attached to the same
901 BFD with the same name. Return NULL if no such section exists.
902 */
903
904 asection *
905 bfd_get_next_section_by_name (asection *sec)
906 {
907 struct section_hash_entry *sh;
908 const char *name;
909 unsigned long hash;
910
911 sh = ((struct section_hash_entry *)
912 ((char *) sec - offsetof (struct section_hash_entry, section)));
913
914 hash = sh->root.hash;
915 name = sec->name;
916 for (sh = (struct section_hash_entry *) sh->root.next;
917 sh != NULL;
918 sh = (struct section_hash_entry *) sh->root.next)
919 if (sh->root.hash == hash
920 && strcmp (sh->root.string, name) == 0)
921 return &sh->section;
922
923 return NULL;
924 }
925
926 /*
927 FUNCTION
928 bfd_get_linker_section
929
930 SYNOPSIS
931 asection *bfd_get_linker_section (bfd *abfd, const char *name);
932
933 DESCRIPTION
934 Return the linker created section attached to @var{abfd}
935 named @var{name}. Return NULL if no such section exists.
936 */
937
938 asection *
939 bfd_get_linker_section (bfd *abfd, const char *name)
940 {
941 asection *sec = bfd_get_section_by_name (abfd, name);
942
943 while (sec != NULL && (sec->flags & SEC_LINKER_CREATED) == 0)
944 sec = bfd_get_next_section_by_name (sec);
945 return sec;
946 }
947
948 /*
949 FUNCTION
950 bfd_get_section_by_name_if
951
952 SYNOPSIS
953 asection *bfd_get_section_by_name_if
954 (bfd *abfd,
955 const char *name,
956 bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj),
957 void *obj);
958
959 DESCRIPTION
960 Call the provided function @var{func} for each section
961 attached to the BFD @var{abfd} whose name matches @var{name},
962 passing @var{obj} as an argument. The function will be called
963 as if by
964
965 | func (abfd, the_section, obj);
966
967 It returns the first section for which @var{func} returns true,
968 otherwise <<NULL>>.
969
970 */
971
972 asection *
973 bfd_get_section_by_name_if (bfd *abfd, const char *name,
974 bfd_boolean (*operation) (bfd *,
975 asection *,
976 void *),
977 void *user_storage)
978 {
979 struct section_hash_entry *sh;
980 unsigned long hash;
981
982 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
983 if (sh == NULL)
984 return NULL;
985
986 hash = sh->root.hash;
987 do
988 {
989 if ((*operation) (abfd, &sh->section, user_storage))
990 return &sh->section;
991 sh = (struct section_hash_entry *) sh->root.next;
992 }
993 while (sh != NULL && sh->root.hash == hash
994 && strcmp (sh->root.string, name) == 0);
995
996 return NULL;
997 }
998
999 /*
1000 FUNCTION
1001 bfd_get_unique_section_name
1002
1003 SYNOPSIS
1004 char *bfd_get_unique_section_name
1005 (bfd *abfd, const char *templat, int *count);
1006
1007 DESCRIPTION
1008 Invent a section name that is unique in @var{abfd} by tacking
1009 a dot and a digit suffix onto the original @var{templat}. If
1010 @var{count} is non-NULL, then it specifies the first number
1011 tried as a suffix to generate a unique name. The value
1012 pointed to by @var{count} will be incremented in this case.
1013 */
1014
1015 char *
1016 bfd_get_unique_section_name (bfd *abfd, const char *templat, int *count)
1017 {
1018 int num;
1019 unsigned int len;
1020 char *sname;
1021
1022 len = strlen (templat);
1023 sname = (char *) bfd_malloc (len + 8);
1024 if (sname == NULL)
1025 return NULL;
1026 memcpy (sname, templat, len);
1027 num = 1;
1028 if (count != NULL)
1029 num = *count;
1030
1031 do
1032 {
1033 /* If we have a million sections, something is badly wrong. */
1034 if (num > 999999)
1035 abort ();
1036 sprintf (sname + len, ".%d", num++);
1037 }
1038 while (section_hash_lookup (&abfd->section_htab, sname, FALSE, FALSE));
1039
1040 if (count != NULL)
1041 *count = num;
1042 return sname;
1043 }
1044
1045 /*
1046 FUNCTION
1047 bfd_make_section_old_way
1048
1049 SYNOPSIS
1050 asection *bfd_make_section_old_way (bfd *abfd, const char *name);
1051
1052 DESCRIPTION
1053 Create a new empty section called @var{name}
1054 and attach it to the end of the chain of sections for the
1055 BFD @var{abfd}. An attempt to create a section with a name which
1056 is already in use returns its pointer without changing the
1057 section chain.
1058
1059 It has the funny name since this is the way it used to be
1060 before it was rewritten....
1061
1062 Possible errors are:
1063 o <<bfd_error_invalid_operation>> -
1064 If output has already started for this BFD.
1065 o <<bfd_error_no_memory>> -
1066 If memory allocation fails.
1067
1068 */
1069
1070 asection *
1071 bfd_make_section_old_way (bfd *abfd, const char *name)
1072 {
1073 asection *newsect;
1074
1075 if (abfd->output_has_begun)
1076 {
1077 bfd_set_error (bfd_error_invalid_operation);
1078 return NULL;
1079 }
1080
1081 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0)
1082 newsect = bfd_abs_section_ptr;
1083 else if (strcmp (name, BFD_COM_SECTION_NAME) == 0)
1084 newsect = bfd_com_section_ptr;
1085 else if (strcmp (name, BFD_UND_SECTION_NAME) == 0)
1086 newsect = bfd_und_section_ptr;
1087 else if (strcmp (name, BFD_IND_SECTION_NAME) == 0)
1088 newsect = bfd_ind_section_ptr;
1089 else
1090 {
1091 struct section_hash_entry *sh;
1092
1093 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1094 if (sh == NULL)
1095 return NULL;
1096
1097 newsect = &sh->section;
1098 if (newsect->name != NULL)
1099 {
1100 /* Section already exists. */
1101 return newsect;
1102 }
1103
1104 newsect->name = name;
1105 return bfd_section_init (abfd, newsect);
1106 }
1107
1108 /* Call new_section_hook when "creating" the standard abs, com, und
1109 and ind sections to tack on format specific section data.
1110 Also, create a proper section symbol. */
1111 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
1112 return NULL;
1113 return newsect;
1114 }
1115
1116 /*
1117 FUNCTION
1118 bfd_make_section_anyway_with_flags
1119
1120 SYNOPSIS
1121 asection *bfd_make_section_anyway_with_flags
1122 (bfd *abfd, const char *name, flagword flags);
1123
1124 DESCRIPTION
1125 Create a new empty section called @var{name} and attach it to the end of
1126 the chain of sections for @var{abfd}. Create a new section even if there
1127 is already a section with that name. Also set the attributes of the
1128 new section to the value @var{flags}.
1129
1130 Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1131 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1132 o <<bfd_error_no_memory>> - If memory allocation fails.
1133 */
1134
1135 sec_ptr
1136 bfd_make_section_anyway_with_flags (bfd *abfd, const char *name,
1137 flagword flags)
1138 {
1139 struct section_hash_entry *sh;
1140 asection *newsect;
1141
1142 if (abfd->output_has_begun)
1143 {
1144 bfd_set_error (bfd_error_invalid_operation);
1145 return NULL;
1146 }
1147
1148 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1149 if (sh == NULL)
1150 return NULL;
1151
1152 newsect = &sh->section;
1153 if (newsect->name != NULL)
1154 {
1155 /* We are making a section of the same name. Put it in the
1156 section hash table. Even though we can't find it directly by a
1157 hash lookup, we'll be able to find the section by traversing
1158 sh->root.next quicker than looking at all the bfd sections. */
1159 struct section_hash_entry *new_sh;
1160 new_sh = (struct section_hash_entry *)
1161 bfd_section_hash_newfunc (NULL, &abfd->section_htab, name);
1162 if (new_sh == NULL)
1163 return NULL;
1164
1165 new_sh->root = sh->root;
1166 sh->root.next = &new_sh->root;
1167 newsect = &new_sh->section;
1168 }
1169
1170 newsect->flags = flags;
1171 newsect->name = name;
1172 return bfd_section_init (abfd, newsect);
1173 }
1174
1175 /*
1176 FUNCTION
1177 bfd_make_section_anyway
1178
1179 SYNOPSIS
1180 asection *bfd_make_section_anyway (bfd *abfd, const char *name);
1181
1182 DESCRIPTION
1183 Create a new empty section called @var{name} and attach it to the end of
1184 the chain of sections for @var{abfd}. Create a new section even if there
1185 is already a section with that name.
1186
1187 Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1188 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1189 o <<bfd_error_no_memory>> - If memory allocation fails.
1190 */
1191
1192 sec_ptr
1193 bfd_make_section_anyway (bfd *abfd, const char *name)
1194 {
1195 return bfd_make_section_anyway_with_flags (abfd, name, 0);
1196 }
1197
1198 /*
1199 FUNCTION
1200 bfd_make_section_with_flags
1201
1202 SYNOPSIS
1203 asection *bfd_make_section_with_flags
1204 (bfd *, const char *name, flagword flags);
1205
1206 DESCRIPTION
1207 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1208 bfd_set_error ()) without changing the section chain if there is already a
1209 section named @var{name}. Also set the attributes of the new section to
1210 the value @var{flags}. If there is an error, return <<NULL>> and set
1211 <<bfd_error>>.
1212 */
1213
1214 asection *
1215 bfd_make_section_with_flags (bfd *abfd, const char *name,
1216 flagword flags)
1217 {
1218 struct section_hash_entry *sh;
1219 asection *newsect;
1220
1221 if (abfd->output_has_begun)
1222 {
1223 bfd_set_error (bfd_error_invalid_operation);
1224 return NULL;
1225 }
1226
1227 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0
1228 || strcmp (name, BFD_COM_SECTION_NAME) == 0
1229 || strcmp (name, BFD_UND_SECTION_NAME) == 0
1230 || strcmp (name, BFD_IND_SECTION_NAME) == 0)
1231 return NULL;
1232
1233 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1234 if (sh == NULL)
1235 return NULL;
1236
1237 newsect = &sh->section;
1238 if (newsect->name != NULL)
1239 {
1240 /* Section already exists. */
1241 return NULL;
1242 }
1243
1244 newsect->name = name;
1245 newsect->flags = flags;
1246 return bfd_section_init (abfd, newsect);
1247 }
1248
1249 /*
1250 FUNCTION
1251 bfd_make_section
1252
1253 SYNOPSIS
1254 asection *bfd_make_section (bfd *, const char *name);
1255
1256 DESCRIPTION
1257 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1258 bfd_set_error ()) without changing the section chain if there is already a
1259 section named @var{name}. If there is an error, return <<NULL>> and set
1260 <<bfd_error>>.
1261 */
1262
1263 asection *
1264 bfd_make_section (bfd *abfd, const char *name)
1265 {
1266 return bfd_make_section_with_flags (abfd, name, 0);
1267 }
1268
1269 /*
1270 FUNCTION
1271 bfd_set_section_flags
1272
1273 SYNOPSIS
1274 bfd_boolean bfd_set_section_flags
1275 (bfd *abfd, asection *sec, flagword flags);
1276
1277 DESCRIPTION
1278 Set the attributes of the section @var{sec} in the BFD
1279 @var{abfd} to the value @var{flags}. Return <<TRUE>> on success,
1280 <<FALSE>> on error. Possible error returns are:
1281
1282 o <<bfd_error_invalid_operation>> -
1283 The section cannot have one or more of the attributes
1284 requested. For example, a .bss section in <<a.out>> may not
1285 have the <<SEC_HAS_CONTENTS>> field set.
1286
1287 */
1288
1289 bfd_boolean
1290 bfd_set_section_flags (bfd *abfd ATTRIBUTE_UNUSED,
1291 sec_ptr section,
1292 flagword flags)
1293 {
1294 section->flags = flags;
1295 return TRUE;
1296 }
1297
1298 /*
1299 FUNCTION
1300 bfd_rename_section
1301
1302 SYNOPSIS
1303 void bfd_rename_section
1304 (bfd *abfd, asection *sec, const char *newname);
1305
1306 DESCRIPTION
1307 Rename section @var{sec} in @var{abfd} to @var{newname}.
1308 */
1309
1310 void
1311 bfd_rename_section (bfd *abfd, sec_ptr sec, const char *newname)
1312 {
1313 struct section_hash_entry *sh;
1314
1315 sh = (struct section_hash_entry *)
1316 ((char *) sec - offsetof (struct section_hash_entry, section));
1317 sh->section.name = newname;
1318 bfd_hash_rename (&abfd->section_htab, newname, &sh->root);
1319 }
1320
1321 /*
1322 FUNCTION
1323 bfd_map_over_sections
1324
1325 SYNOPSIS
1326 void bfd_map_over_sections
1327 (bfd *abfd,
1328 void (*func) (bfd *abfd, asection *sect, void *obj),
1329 void *obj);
1330
1331 DESCRIPTION
1332 Call the provided function @var{func} for each section
1333 attached to the BFD @var{abfd}, passing @var{obj} as an
1334 argument. The function will be called as if by
1335
1336 | func (abfd, the_section, obj);
1337
1338 This is the preferred method for iterating over sections; an
1339 alternative would be to use a loop:
1340
1341 | asection *p;
1342 | for (p = abfd->sections; p != NULL; p = p->next)
1343 | func (abfd, p, ...)
1344
1345 */
1346
1347 void
1348 bfd_map_over_sections (bfd *abfd,
1349 void (*operation) (bfd *, asection *, void *),
1350 void *user_storage)
1351 {
1352 asection *sect;
1353 unsigned int i = 0;
1354
1355 for (sect = abfd->sections; sect != NULL; i++, sect = sect->next)
1356 (*operation) (abfd, sect, user_storage);
1357
1358 if (i != abfd->section_count) /* Debugging */
1359 abort ();
1360 }
1361
1362 /*
1363 FUNCTION
1364 bfd_sections_find_if
1365
1366 SYNOPSIS
1367 asection *bfd_sections_find_if
1368 (bfd *abfd,
1369 bfd_boolean (*operation) (bfd *abfd, asection *sect, void *obj),
1370 void *obj);
1371
1372 DESCRIPTION
1373 Call the provided function @var{operation} for each section
1374 attached to the BFD @var{abfd}, passing @var{obj} as an
1375 argument. The function will be called as if by
1376
1377 | operation (abfd, the_section, obj);
1378
1379 It returns the first section for which @var{operation} returns true.
1380
1381 */
1382
1383 asection *
1384 bfd_sections_find_if (bfd *abfd,
1385 bfd_boolean (*operation) (bfd *, asection *, void *),
1386 void *user_storage)
1387 {
1388 asection *sect;
1389
1390 for (sect = abfd->sections; sect != NULL; sect = sect->next)
1391 if ((*operation) (abfd, sect, user_storage))
1392 break;
1393
1394 return sect;
1395 }
1396
1397 /*
1398 FUNCTION
1399 bfd_set_section_size
1400
1401 SYNOPSIS
1402 bfd_boolean bfd_set_section_size
1403 (bfd *abfd, asection *sec, bfd_size_type val);
1404
1405 DESCRIPTION
1406 Set @var{sec} to the size @var{val}. If the operation is
1407 ok, then <<TRUE>> is returned, else <<FALSE>>.
1408
1409 Possible error returns:
1410 o <<bfd_error_invalid_operation>> -
1411 Writing has started to the BFD, so setting the size is invalid.
1412
1413 */
1414
1415 bfd_boolean
1416 bfd_set_section_size (bfd *abfd, sec_ptr ptr, bfd_size_type val)
1417 {
1418 /* Once you've started writing to any section you cannot create or change
1419 the size of any others. */
1420
1421 if (abfd->output_has_begun)
1422 {
1423 bfd_set_error (bfd_error_invalid_operation);
1424 return FALSE;
1425 }
1426
1427 ptr->size = val;
1428 return TRUE;
1429 }
1430
1431 /*
1432 FUNCTION
1433 bfd_set_section_contents
1434
1435 SYNOPSIS
1436 bfd_boolean bfd_set_section_contents
1437 (bfd *abfd, asection *section, const void *data,
1438 file_ptr offset, bfd_size_type count);
1439
1440 DESCRIPTION
1441 Sets the contents of the section @var{section} in BFD
1442 @var{abfd} to the data starting in memory at @var{data}. The
1443 data is written to the output section starting at offset
1444 @var{offset} for @var{count} octets.
1445
1446 Normally <<TRUE>> is returned, else <<FALSE>>. Possible error
1447 returns are:
1448 o <<bfd_error_no_contents>> -
1449 The output section does not have the <<SEC_HAS_CONTENTS>>
1450 attribute, so nothing can be written to it.
1451 o and some more too
1452
1453 This routine is front end to the back end function
1454 <<_bfd_set_section_contents>>.
1455
1456 */
1457
1458 bfd_boolean
1459 bfd_set_section_contents (bfd *abfd,
1460 sec_ptr section,
1461 const void *location,
1462 file_ptr offset,
1463 bfd_size_type count)
1464 {
1465 bfd_size_type sz;
1466
1467 if (!(bfd_get_section_flags (abfd, section) & SEC_HAS_CONTENTS))
1468 {
1469 bfd_set_error (bfd_error_no_contents);
1470 return FALSE;
1471 }
1472
1473 sz = section->size;
1474 if ((bfd_size_type) offset > sz
1475 || count > sz
1476 || offset + count > sz
1477 || count != (size_t) count)
1478 {
1479 bfd_set_error (bfd_error_bad_value);
1480 return FALSE;
1481 }
1482
1483 if (!bfd_write_p (abfd))
1484 {
1485 bfd_set_error (bfd_error_invalid_operation);
1486 return FALSE;
1487 }
1488
1489 /* Record a copy of the data in memory if desired. */
1490 if (section->contents
1491 && location != section->contents + offset)
1492 memcpy (section->contents + offset, location, (size_t) count);
1493
1494 if (BFD_SEND (abfd, _bfd_set_section_contents,
1495 (abfd, section, location, offset, count)))
1496 {
1497 abfd->output_has_begun = TRUE;
1498 return TRUE;
1499 }
1500
1501 return FALSE;
1502 }
1503
1504 /*
1505 FUNCTION
1506 bfd_get_section_contents
1507
1508 SYNOPSIS
1509 bfd_boolean bfd_get_section_contents
1510 (bfd *abfd, asection *section, void *location, file_ptr offset,
1511 bfd_size_type count);
1512
1513 DESCRIPTION
1514 Read data from @var{section} in BFD @var{abfd}
1515 into memory starting at @var{location}. The data is read at an
1516 offset of @var{offset} from the start of the input section,
1517 and is read for @var{count} bytes.
1518
1519 If the contents of a constructor with the <<SEC_CONSTRUCTOR>>
1520 flag set are requested or if the section does not have the
1521 <<SEC_HAS_CONTENTS>> flag set, then the @var{location} is filled
1522 with zeroes. If no errors occur, <<TRUE>> is returned, else
1523 <<FALSE>>.
1524
1525 */
1526 bfd_boolean
1527 bfd_get_section_contents (bfd *abfd,
1528 sec_ptr section,
1529 void *location,
1530 file_ptr offset,
1531 bfd_size_type count)
1532 {
1533 bfd_size_type sz;
1534
1535 if (section->flags & SEC_CONSTRUCTOR)
1536 {
1537 memset (location, 0, (size_t) count);
1538 return TRUE;
1539 }
1540
1541 if (abfd->direction != write_direction && section->rawsize != 0)
1542 sz = section->rawsize;
1543 else
1544 sz = section->size;
1545 if ((bfd_size_type) offset > sz
1546 || count > sz
1547 || offset + count > sz
1548 || count != (size_t) count)
1549 {
1550 bfd_set_error (bfd_error_bad_value);
1551 return FALSE;
1552 }
1553
1554 if (count == 0)
1555 /* Don't bother. */
1556 return TRUE;
1557
1558 if ((section->flags & SEC_HAS_CONTENTS) == 0)
1559 {
1560 memset (location, 0, (size_t) count);
1561 return TRUE;
1562 }
1563
1564 if ((section->flags & SEC_IN_MEMORY) != 0)
1565 {
1566 if (section->contents == NULL)
1567 {
1568 /* This can happen because of errors earlier on in the linking process.
1569 We do not want to seg-fault here, so clear the flag and return an
1570 error code. */
1571 section->flags &= ~ SEC_IN_MEMORY;
1572 bfd_set_error (bfd_error_invalid_operation);
1573 return FALSE;
1574 }
1575
1576 memmove (location, section->contents + offset, (size_t) count);
1577 return TRUE;
1578 }
1579
1580 return BFD_SEND (abfd, _bfd_get_section_contents,
1581 (abfd, section, location, offset, count));
1582 }
1583
1584 /*
1585 FUNCTION
1586 bfd_malloc_and_get_section
1587
1588 SYNOPSIS
1589 bfd_boolean bfd_malloc_and_get_section
1590 (bfd *abfd, asection *section, bfd_byte **buf);
1591
1592 DESCRIPTION
1593 Read all data from @var{section} in BFD @var{abfd}
1594 into a buffer, *@var{buf}, malloc'd by this function.
1595 */
1596
1597 bfd_boolean
1598 bfd_malloc_and_get_section (bfd *abfd, sec_ptr sec, bfd_byte **buf)
1599 {
1600 *buf = NULL;
1601 return bfd_get_full_section_contents (abfd, sec, buf);
1602 }
1603 /*
1604 FUNCTION
1605 bfd_copy_private_section_data
1606
1607 SYNOPSIS
1608 bfd_boolean bfd_copy_private_section_data
1609 (bfd *ibfd, asection *isec, bfd *obfd, asection *osec);
1610
1611 DESCRIPTION
1612 Copy private section information from @var{isec} in the BFD
1613 @var{ibfd} to the section @var{osec} in the BFD @var{obfd}.
1614 Return <<TRUE>> on success, <<FALSE>> on error. Possible error
1615 returns are:
1616
1617 o <<bfd_error_no_memory>> -
1618 Not enough memory exists to create private data for @var{osec}.
1619
1620 .#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \
1621 . BFD_SEND (obfd, _bfd_copy_private_section_data, \
1622 . (ibfd, isection, obfd, osection))
1623 */
1624
1625 /*
1626 FUNCTION
1627 bfd_generic_is_group_section
1628
1629 SYNOPSIS
1630 bfd_boolean bfd_generic_is_group_section (bfd *, const asection *sec);
1631
1632 DESCRIPTION
1633 Returns TRUE if @var{sec} is a member of a group.
1634 */
1635
1636 bfd_boolean
1637 bfd_generic_is_group_section (bfd *abfd ATTRIBUTE_UNUSED,
1638 const asection *sec ATTRIBUTE_UNUSED)
1639 {
1640 return FALSE;
1641 }
1642
1643 /*
1644 FUNCTION
1645 bfd_generic_discard_group
1646
1647 SYNOPSIS
1648 bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group);
1649
1650 DESCRIPTION
1651 Remove all members of @var{group} from the output.
1652 */
1653
1654 bfd_boolean
1655 bfd_generic_discard_group (bfd *abfd ATTRIBUTE_UNUSED,
1656 asection *group ATTRIBUTE_UNUSED)
1657 {
1658 return TRUE;
1659 }
This page took 0.077523 seconds and 5 git commands to generate.