ppc476 icache bug workaround
[deliverable/binutils-gdb.git] / bfd / section.c
1 /* Object file "section" support for the BFD library.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011,
4 2012, 2013
5 Free Software Foundation, Inc.
6 Written by Cygnus Support.
7
8 This file is part of BFD, the Binary File Descriptor library.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
23 MA 02110-1301, USA. */
24
25 /*
26 SECTION
27 Sections
28
29 The raw data contained within a BFD is maintained through the
30 section abstraction. A single BFD may have any number of
31 sections. It keeps hold of them by pointing to the first;
32 each one points to the next in the list.
33
34 Sections are supported in BFD in <<section.c>>.
35
36 @menu
37 @* Section Input::
38 @* Section Output::
39 @* typedef asection::
40 @* section prototypes::
41 @end menu
42
43 INODE
44 Section Input, Section Output, Sections, Sections
45 SUBSECTION
46 Section input
47
48 When a BFD is opened for reading, the section structures are
49 created and attached to the BFD.
50
51 Each section has a name which describes the section in the
52 outside world---for example, <<a.out>> would contain at least
53 three sections, called <<.text>>, <<.data>> and <<.bss>>.
54
55 Names need not be unique; for example a COFF file may have several
56 sections named <<.data>>.
57
58 Sometimes a BFD will contain more than the ``natural'' number of
59 sections. A back end may attach other sections containing
60 constructor data, or an application may add a section (using
61 <<bfd_make_section>>) to the sections attached to an already open
62 BFD. For example, the linker creates an extra section
63 <<COMMON>> for each input file's BFD to hold information about
64 common storage.
65
66 The raw data is not necessarily read in when
67 the section descriptor is created. Some targets may leave the
68 data in place until a <<bfd_get_section_contents>> call is
69 made. Other back ends may read in all the data at once. For
70 example, an S-record file has to be read once to determine the
71 size of the data. An IEEE-695 file doesn't contain raw data in
72 sections, but data and relocation expressions intermixed, so
73 the data area has to be parsed to get out the data and
74 relocations.
75
76 INODE
77 Section Output, typedef asection, Section Input, Sections
78
79 SUBSECTION
80 Section output
81
82 To write a new object style BFD, the various sections to be
83 written have to be created. They are attached to the BFD in
84 the same way as input sections; data is written to the
85 sections using <<bfd_set_section_contents>>.
86
87 Any program that creates or combines sections (e.g., the assembler
88 and linker) must use the <<asection>> fields <<output_section>> and
89 <<output_offset>> to indicate the file sections to which each
90 section must be written. (If the section is being created from
91 scratch, <<output_section>> should probably point to the section
92 itself and <<output_offset>> should probably be zero.)
93
94 The data to be written comes from input sections attached
95 (via <<output_section>> pointers) to
96 the output sections. The output section structure can be
97 considered a filter for the input section: the output section
98 determines the vma of the output data and the name, but the
99 input section determines the offset into the output section of
100 the data to be written.
101
102 E.g., to create a section "O", starting at 0x100, 0x123 long,
103 containing two subsections, "A" at offset 0x0 (i.e., at vma
104 0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the <<asection>>
105 structures would look like:
106
107 | section name "A"
108 | output_offset 0x00
109 | size 0x20
110 | output_section -----------> section name "O"
111 | | vma 0x100
112 | section name "B" | size 0x123
113 | output_offset 0x20 |
114 | size 0x103 |
115 | output_section --------|
116
117 SUBSECTION
118 Link orders
119
120 The data within a section is stored in a @dfn{link_order}.
121 These are much like the fixups in <<gas>>. The link_order
122 abstraction allows a section to grow and shrink within itself.
123
124 A link_order knows how big it is, and which is the next
125 link_order and where the raw data for it is; it also points to
126 a list of relocations which apply to it.
127
128 The link_order is used by the linker to perform relaxing on
129 final code. The compiler creates code which is as big as
130 necessary to make it work without relaxing, and the user can
131 select whether to relax. Sometimes relaxing takes a lot of
132 time. The linker runs around the relocations to see if any
133 are attached to data which can be shrunk, if so it does it on
134 a link_order by link_order basis.
135
136 */
137
138 #include "sysdep.h"
139 #include "bfd.h"
140 #include "libbfd.h"
141 #include "bfdlink.h"
142
143 /*
144 DOCDD
145 INODE
146 typedef asection, section prototypes, Section Output, Sections
147 SUBSECTION
148 typedef asection
149
150 Here is the section structure:
151
152 CODE_FRAGMENT
153 .
154 .typedef struct bfd_section
155 .{
156 . {* The name of the section; the name isn't a copy, the pointer is
157 . the same as that passed to bfd_make_section. *}
158 . const char *name;
159 .
160 . {* A unique sequence number. *}
161 . int id;
162 .
163 . {* Which section in the bfd; 0..n-1 as sections are created in a bfd. *}
164 . int index;
165 .
166 . {* The next section in the list belonging to the BFD, or NULL. *}
167 . struct bfd_section *next;
168 .
169 . {* The previous section in the list belonging to the BFD, or NULL. *}
170 . struct bfd_section *prev;
171 .
172 . {* The field flags contains attributes of the section. Some
173 . flags are read in from the object file, and some are
174 . synthesized from other information. *}
175 . flagword flags;
176 .
177 .#define SEC_NO_FLAGS 0x000
178 .
179 . {* Tells the OS to allocate space for this section when loading.
180 . This is clear for a section containing debug information only. *}
181 .#define SEC_ALLOC 0x001
182 .
183 . {* Tells the OS to load the section from the file when loading.
184 . This is clear for a .bss section. *}
185 .#define SEC_LOAD 0x002
186 .
187 . {* The section contains data still to be relocated, so there is
188 . some relocation information too. *}
189 .#define SEC_RELOC 0x004
190 .
191 . {* A signal to the OS that the section contains read only data. *}
192 .#define SEC_READONLY 0x008
193 .
194 . {* The section contains code only. *}
195 .#define SEC_CODE 0x010
196 .
197 . {* The section contains data only. *}
198 .#define SEC_DATA 0x020
199 .
200 . {* The section will reside in ROM. *}
201 .#define SEC_ROM 0x040
202 .
203 . {* The section contains constructor information. This section
204 . type is used by the linker to create lists of constructors and
205 . destructors used by <<g++>>. When a back end sees a symbol
206 . which should be used in a constructor list, it creates a new
207 . section for the type of name (e.g., <<__CTOR_LIST__>>), attaches
208 . the symbol to it, and builds a relocation. To build the lists
209 . of constructors, all the linker has to do is catenate all the
210 . sections called <<__CTOR_LIST__>> and relocate the data
211 . contained within - exactly the operations it would peform on
212 . standard data. *}
213 .#define SEC_CONSTRUCTOR 0x080
214 .
215 . {* The section has contents - a data section could be
216 . <<SEC_ALLOC>> | <<SEC_HAS_CONTENTS>>; a debug section could be
217 . <<SEC_HAS_CONTENTS>> *}
218 .#define SEC_HAS_CONTENTS 0x100
219 .
220 . {* An instruction to the linker to not output the section
221 . even if it has information which would normally be written. *}
222 .#define SEC_NEVER_LOAD 0x200
223 .
224 . {* The section contains thread local data. *}
225 .#define SEC_THREAD_LOCAL 0x400
226 .
227 . {* The section has GOT references. This flag is only for the
228 . linker, and is currently only used by the elf32-hppa back end.
229 . It will be set if global offset table references were detected
230 . in this section, which indicate to the linker that the section
231 . contains PIC code, and must be handled specially when doing a
232 . static link. *}
233 .#define SEC_HAS_GOT_REF 0x800
234 .
235 . {* The section contains common symbols (symbols may be defined
236 . multiple times, the value of a symbol is the amount of
237 . space it requires, and the largest symbol value is the one
238 . used). Most targets have exactly one of these (which we
239 . translate to bfd_com_section_ptr), but ECOFF has two. *}
240 .#define SEC_IS_COMMON 0x1000
241 .
242 . {* The section contains only debugging information. For
243 . example, this is set for ELF .debug and .stab sections.
244 . strip tests this flag to see if a section can be
245 . discarded. *}
246 .#define SEC_DEBUGGING 0x2000
247 .
248 . {* The contents of this section are held in memory pointed to
249 . by the contents field. This is checked by bfd_get_section_contents,
250 . and the data is retrieved from memory if appropriate. *}
251 .#define SEC_IN_MEMORY 0x4000
252 .
253 . {* The contents of this section are to be excluded by the
254 . linker for executable and shared objects unless those
255 . objects are to be further relocated. *}
256 .#define SEC_EXCLUDE 0x8000
257 .
258 . {* The contents of this section are to be sorted based on the sum of
259 . the symbol and addend values specified by the associated relocation
260 . entries. Entries without associated relocation entries will be
261 . appended to the end of the section in an unspecified order. *}
262 .#define SEC_SORT_ENTRIES 0x10000
263 .
264 . {* When linking, duplicate sections of the same name should be
265 . discarded, rather than being combined into a single section as
266 . is usually done. This is similar to how common symbols are
267 . handled. See SEC_LINK_DUPLICATES below. *}
268 .#define SEC_LINK_ONCE 0x20000
269 .
270 . {* If SEC_LINK_ONCE is set, this bitfield describes how the linker
271 . should handle duplicate sections. *}
272 .#define SEC_LINK_DUPLICATES 0xc0000
273 .
274 . {* This value for SEC_LINK_DUPLICATES means that duplicate
275 . sections with the same name should simply be discarded. *}
276 .#define SEC_LINK_DUPLICATES_DISCARD 0x0
277 .
278 . {* This value for SEC_LINK_DUPLICATES means that the linker
279 . should warn if there are any duplicate sections, although
280 . it should still only link one copy. *}
281 .#define SEC_LINK_DUPLICATES_ONE_ONLY 0x40000
282 .
283 . {* This value for SEC_LINK_DUPLICATES means that the linker
284 . should warn if any duplicate sections are a different size. *}
285 .#define SEC_LINK_DUPLICATES_SAME_SIZE 0x80000
286 .
287 . {* This value for SEC_LINK_DUPLICATES means that the linker
288 . should warn if any duplicate sections contain different
289 . contents. *}
290 .#define SEC_LINK_DUPLICATES_SAME_CONTENTS \
291 . (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE)
292 .
293 . {* This section was created by the linker as part of dynamic
294 . relocation or other arcane processing. It is skipped when
295 . going through the first-pass output, trusting that someone
296 . else up the line will take care of it later. *}
297 .#define SEC_LINKER_CREATED 0x100000
298 .
299 . {* This section should not be subject to garbage collection.
300 . Also set to inform the linker that this section should not be
301 . listed in the link map as discarded. *}
302 .#define SEC_KEEP 0x200000
303 .
304 . {* This section contains "short" data, and should be placed
305 . "near" the GP. *}
306 .#define SEC_SMALL_DATA 0x400000
307 .
308 . {* Attempt to merge identical entities in the section.
309 . Entity size is given in the entsize field. *}
310 .#define SEC_MERGE 0x800000
311 .
312 . {* If given with SEC_MERGE, entities to merge are zero terminated
313 . strings where entsize specifies character size instead of fixed
314 . size entries. *}
315 .#define SEC_STRINGS 0x1000000
316 .
317 . {* This section contains data about section groups. *}
318 .#define SEC_GROUP 0x2000000
319 .
320 . {* The section is a COFF shared library section. This flag is
321 . only for the linker. If this type of section appears in
322 . the input file, the linker must copy it to the output file
323 . without changing the vma or size. FIXME: Although this
324 . was originally intended to be general, it really is COFF
325 . specific (and the flag was renamed to indicate this). It
326 . might be cleaner to have some more general mechanism to
327 . allow the back end to control what the linker does with
328 . sections. *}
329 .#define SEC_COFF_SHARED_LIBRARY 0x4000000
330 .
331 . {* This input section should be copied to output in reverse order
332 . as an array of pointers. This is for ELF linker internal use
333 . only. *}
334 .#define SEC_ELF_REVERSE_COPY 0x4000000
335 .
336 . {* This section contains data which may be shared with other
337 . executables or shared objects. This is for COFF only. *}
338 .#define SEC_COFF_SHARED 0x8000000
339 .
340 . {* When a section with this flag is being linked, then if the size of
341 . the input section is less than a page, it should not cross a page
342 . boundary. If the size of the input section is one page or more,
343 . it should be aligned on a page boundary. This is for TI
344 . TMS320C54X only. *}
345 .#define SEC_TIC54X_BLOCK 0x10000000
346 .
347 . {* Conditionally link this section; do not link if there are no
348 . references found to any symbol in the section. This is for TI
349 . TMS320C54X only. *}
350 .#define SEC_TIC54X_CLINK 0x20000000
351 .
352 . {* Indicate that section has the no read flag set. This happens
353 . when memory read flag isn't set. *}
354 .#define SEC_COFF_NOREAD 0x40000000
355 .
356 . {* End of section flags. *}
357 .
358 . {* Some internal packed boolean fields. *}
359 .
360 . {* See the vma field. *}
361 . unsigned int user_set_vma : 1;
362 .
363 . {* A mark flag used by some of the linker backends. *}
364 . unsigned int linker_mark : 1;
365 .
366 . {* Another mark flag used by some of the linker backends. Set for
367 . output sections that have an input section. *}
368 . unsigned int linker_has_input : 1;
369 .
370 . {* Mark flag used by some linker backends for garbage collection. *}
371 . unsigned int gc_mark : 1;
372 .
373 . {* Section compression status. *}
374 . unsigned int compress_status : 2;
375 .#define COMPRESS_SECTION_NONE 0
376 .#define COMPRESS_SECTION_DONE 1
377 .#define DECOMPRESS_SECTION_SIZED 2
378 .
379 . {* The following flags are used by the ELF linker. *}
380 .
381 . {* Mark sections which have been allocated to segments. *}
382 . unsigned int segment_mark : 1;
383 .
384 . {* Type of sec_info information. *}
385 . unsigned int sec_info_type:3;
386 .#define SEC_INFO_TYPE_NONE 0
387 .#define SEC_INFO_TYPE_STABS 1
388 .#define SEC_INFO_TYPE_MERGE 2
389 .#define SEC_INFO_TYPE_EH_FRAME 3
390 .#define SEC_INFO_TYPE_JUST_SYMS 4
391 .#define SEC_INFO_TYPE_TARGET 5
392 .
393 . {* Nonzero if this section uses RELA relocations, rather than REL. *}
394 . unsigned int use_rela_p:1;
395 .
396 . {* Bits used by various backends. The generic code doesn't touch
397 . these fields. *}
398 .
399 . unsigned int sec_flg0:1;
400 . unsigned int sec_flg1:1;
401 . unsigned int sec_flg2:1;
402 . unsigned int sec_flg3:1;
403 . unsigned int sec_flg4:1;
404 . unsigned int sec_flg5:1;
405 .
406 . {* End of internal packed boolean fields. *}
407 .
408 . {* The virtual memory address of the section - where it will be
409 . at run time. The symbols are relocated against this. The
410 . user_set_vma flag is maintained by bfd; if it's not set, the
411 . backend can assign addresses (for example, in <<a.out>>, where
412 . the default address for <<.data>> is dependent on the specific
413 . target and various flags). *}
414 . bfd_vma vma;
415 .
416 . {* The load address of the section - where it would be in a
417 . rom image; really only used for writing section header
418 . information. *}
419 . bfd_vma lma;
420 .
421 . {* The size of the section in octets, as it will be output.
422 . Contains a value even if the section has no contents (e.g., the
423 . size of <<.bss>>). *}
424 . bfd_size_type size;
425 .
426 . {* For input sections, the original size on disk of the section, in
427 . octets. This field should be set for any section whose size is
428 . changed by linker relaxation. It is required for sections where
429 . the linker relaxation scheme doesn't cache altered section and
430 . reloc contents (stabs, eh_frame, SEC_MERGE, some coff relaxing
431 . targets), and thus the original size needs to be kept to read the
432 . section multiple times. For output sections, rawsize holds the
433 . section size calculated on a previous linker relaxation pass. *}
434 . bfd_size_type rawsize;
435 .
436 . {* The compressed size of the section in octets. *}
437 . bfd_size_type compressed_size;
438 .
439 . {* Relaxation table. *}
440 . struct relax_table *relax;
441 .
442 . {* Count of used relaxation table entries. *}
443 . int relax_count;
444 .
445 .
446 . {* If this section is going to be output, then this value is the
447 . offset in *bytes* into the output section of the first byte in the
448 . input section (byte ==> smallest addressable unit on the
449 . target). In most cases, if this was going to start at the
450 . 100th octet (8-bit quantity) in the output section, this value
451 . would be 100. However, if the target byte size is 16 bits
452 . (bfd_octets_per_byte is "2"), this value would be 50. *}
453 . bfd_vma output_offset;
454 .
455 . {* The output section through which to map on output. *}
456 . struct bfd_section *output_section;
457 .
458 . {* The alignment requirement of the section, as an exponent of 2 -
459 . e.g., 3 aligns to 2^3 (or 8). *}
460 . unsigned int alignment_power;
461 .
462 . {* If an input section, a pointer to a vector of relocation
463 . records for the data in this section. *}
464 . struct reloc_cache_entry *relocation;
465 .
466 . {* If an output section, a pointer to a vector of pointers to
467 . relocation records for the data in this section. *}
468 . struct reloc_cache_entry **orelocation;
469 .
470 . {* The number of relocation records in one of the above. *}
471 . unsigned reloc_count;
472 .
473 . {* Information below is back end specific - and not always used
474 . or updated. *}
475 .
476 . {* File position of section data. *}
477 . file_ptr filepos;
478 .
479 . {* File position of relocation info. *}
480 . file_ptr rel_filepos;
481 .
482 . {* File position of line data. *}
483 . file_ptr line_filepos;
484 .
485 . {* Pointer to data for applications. *}
486 . void *userdata;
487 .
488 . {* If the SEC_IN_MEMORY flag is set, this points to the actual
489 . contents. *}
490 . unsigned char *contents;
491 .
492 . {* Attached line number information. *}
493 . alent *lineno;
494 .
495 . {* Number of line number records. *}
496 . unsigned int lineno_count;
497 .
498 . {* Entity size for merging purposes. *}
499 . unsigned int entsize;
500 .
501 . {* Points to the kept section if this section is a link-once section,
502 . and is discarded. *}
503 . struct bfd_section *kept_section;
504 .
505 . {* When a section is being output, this value changes as more
506 . linenumbers are written out. *}
507 . file_ptr moving_line_filepos;
508 .
509 . {* What the section number is in the target world. *}
510 . int target_index;
511 .
512 . void *used_by_bfd;
513 .
514 . {* If this is a constructor section then here is a list of the
515 . relocations created to relocate items within it. *}
516 . struct relent_chain *constructor_chain;
517 .
518 . {* The BFD which owns the section. *}
519 . bfd *owner;
520 .
521 . {* A symbol which points at this section only. *}
522 . struct bfd_symbol *symbol;
523 . struct bfd_symbol **symbol_ptr_ptr;
524 .
525 . {* Early in the link process, map_head and map_tail are used to build
526 . a list of input sections attached to an output section. Later,
527 . output sections use these fields for a list of bfd_link_order
528 . structs. *}
529 . union {
530 . struct bfd_link_order *link_order;
531 . struct bfd_section *s;
532 . } map_head, map_tail;
533 .} asection;
534 .
535 .{* Relax table contains information about instructions which can
536 . be removed by relaxation -- replacing a long address with a
537 . short address. *}
538 .struct relax_table {
539 . {* Address where bytes may be deleted. *}
540 . bfd_vma addr;
541 .
542 . {* Number of bytes to be deleted. *}
543 . int size;
544 .};
545 .
546 .{* Note: the following are provided as inline functions rather than macros
547 . because not all callers use the return value. A macro implementation
548 . would use a comma expression, eg: "((ptr)->foo = val, TRUE)" and some
549 . compilers will complain about comma expressions that have no effect. *}
550 .static inline bfd_boolean
551 .bfd_set_section_userdata (bfd * abfd ATTRIBUTE_UNUSED, asection * ptr, void * val)
552 .{
553 . ptr->userdata = val;
554 . return TRUE;
555 .}
556 .
557 .static inline bfd_boolean
558 .bfd_set_section_vma (bfd * abfd ATTRIBUTE_UNUSED, asection * ptr, bfd_vma val)
559 .{
560 . ptr->vma = ptr->lma = val;
561 . ptr->user_set_vma = TRUE;
562 . return TRUE;
563 .}
564 .
565 .static inline bfd_boolean
566 .bfd_set_section_alignment (bfd * abfd ATTRIBUTE_UNUSED, asection * ptr, unsigned int val)
567 .{
568 . ptr->alignment_power = val;
569 . return TRUE;
570 .}
571 .
572 .{* These sections are global, and are managed by BFD. The application
573 . and target back end are not permitted to change the values in
574 . these sections. *}
575 .extern asection _bfd_std_section[4];
576 .
577 .#define BFD_ABS_SECTION_NAME "*ABS*"
578 .#define BFD_UND_SECTION_NAME "*UND*"
579 .#define BFD_COM_SECTION_NAME "*COM*"
580 .#define BFD_IND_SECTION_NAME "*IND*"
581 .
582 .{* Pointer to the common section. *}
583 .#define bfd_com_section_ptr (&_bfd_std_section[0])
584 .{* Pointer to the undefined section. *}
585 .#define bfd_und_section_ptr (&_bfd_std_section[1])
586 .{* Pointer to the absolute section. *}
587 .#define bfd_abs_section_ptr (&_bfd_std_section[2])
588 .{* Pointer to the indirect section. *}
589 .#define bfd_ind_section_ptr (&_bfd_std_section[3])
590 .
591 .#define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr)
592 .#define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr)
593 .#define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr)
594 .
595 .#define bfd_is_const_section(SEC) \
596 . ( ((SEC) == bfd_abs_section_ptr) \
597 . || ((SEC) == bfd_und_section_ptr) \
598 . || ((SEC) == bfd_com_section_ptr) \
599 . || ((SEC) == bfd_ind_section_ptr))
600 .
601 .{* Macros to handle insertion and deletion of a bfd's sections. These
602 . only handle the list pointers, ie. do not adjust section_count,
603 . target_index etc. *}
604 .#define bfd_section_list_remove(ABFD, S) \
605 . do \
606 . { \
607 . asection *_s = S; \
608 . asection *_next = _s->next; \
609 . asection *_prev = _s->prev; \
610 . if (_prev) \
611 . _prev->next = _next; \
612 . else \
613 . (ABFD)->sections = _next; \
614 . if (_next) \
615 . _next->prev = _prev; \
616 . else \
617 . (ABFD)->section_last = _prev; \
618 . } \
619 . while (0)
620 .#define bfd_section_list_append(ABFD, S) \
621 . do \
622 . { \
623 . asection *_s = S; \
624 . bfd *_abfd = ABFD; \
625 . _s->next = NULL; \
626 . if (_abfd->section_last) \
627 . { \
628 . _s->prev = _abfd->section_last; \
629 . _abfd->section_last->next = _s; \
630 . } \
631 . else \
632 . { \
633 . _s->prev = NULL; \
634 . _abfd->sections = _s; \
635 . } \
636 . _abfd->section_last = _s; \
637 . } \
638 . while (0)
639 .#define bfd_section_list_prepend(ABFD, S) \
640 . do \
641 . { \
642 . asection *_s = S; \
643 . bfd *_abfd = ABFD; \
644 . _s->prev = NULL; \
645 . if (_abfd->sections) \
646 . { \
647 . _s->next = _abfd->sections; \
648 . _abfd->sections->prev = _s; \
649 . } \
650 . else \
651 . { \
652 . _s->next = NULL; \
653 . _abfd->section_last = _s; \
654 . } \
655 . _abfd->sections = _s; \
656 . } \
657 . while (0)
658 .#define bfd_section_list_insert_after(ABFD, A, S) \
659 . do \
660 . { \
661 . asection *_a = A; \
662 . asection *_s = S; \
663 . asection *_next = _a->next; \
664 . _s->next = _next; \
665 . _s->prev = _a; \
666 . _a->next = _s; \
667 . if (_next) \
668 . _next->prev = _s; \
669 . else \
670 . (ABFD)->section_last = _s; \
671 . } \
672 . while (0)
673 .#define bfd_section_list_insert_before(ABFD, B, S) \
674 . do \
675 . { \
676 . asection *_b = B; \
677 . asection *_s = S; \
678 . asection *_prev = _b->prev; \
679 . _s->prev = _prev; \
680 . _s->next = _b; \
681 . _b->prev = _s; \
682 . if (_prev) \
683 . _prev->next = _s; \
684 . else \
685 . (ABFD)->sections = _s; \
686 . } \
687 . while (0)
688 .#define bfd_section_removed_from_list(ABFD, S) \
689 . ((S)->next == NULL ? (ABFD)->section_last != (S) : (S)->next->prev != (S))
690 .
691 .#define BFD_FAKE_SECTION(SEC, FLAGS, SYM, NAME, IDX) \
692 . {* name, id, index, next, prev, flags, user_set_vma, *} \
693 . { NAME, IDX, 0, NULL, NULL, FLAGS, 0, \
694 . \
695 . {* linker_mark, linker_has_input, gc_mark, decompress_status, *} \
696 . 0, 0, 1, 0, \
697 . \
698 . {* segment_mark, sec_info_type, use_rela_p, *} \
699 . 0, 0, 0, \
700 . \
701 . {* sec_flg0, sec_flg1, sec_flg2, sec_flg3, sec_flg4, sec_flg5, *} \
702 . 0, 0, 0, 0, 0, 0, \
703 . \
704 . {* vma, lma, size, rawsize, compressed_size, relax, relax_count, *} \
705 . 0, 0, 0, 0, 0, 0, 0, \
706 . \
707 . {* output_offset, output_section, alignment_power, *} \
708 . 0, &SEC, 0, \
709 . \
710 . {* relocation, orelocation, reloc_count, filepos, rel_filepos, *} \
711 . NULL, NULL, 0, 0, 0, \
712 . \
713 . {* line_filepos, userdata, contents, lineno, lineno_count, *} \
714 . 0, NULL, NULL, NULL, 0, \
715 . \
716 . {* entsize, kept_section, moving_line_filepos, *} \
717 . 0, NULL, 0, \
718 . \
719 . {* target_index, used_by_bfd, constructor_chain, owner, *} \
720 . 0, NULL, NULL, NULL, \
721 . \
722 . {* symbol, symbol_ptr_ptr, *} \
723 . (struct bfd_symbol *) SYM, &SEC.symbol, \
724 . \
725 . {* map_head, map_tail *} \
726 . { NULL }, { NULL } \
727 . }
728 .
729 */
730
731 /* We use a macro to initialize the static asymbol structures because
732 traditional C does not permit us to initialize a union member while
733 gcc warns if we don't initialize it. */
734 /* the_bfd, name, value, attr, section [, udata] */
735 #ifdef __STDC__
736 #define GLOBAL_SYM_INIT(NAME, SECTION) \
737 { 0, NAME, 0, BSF_SECTION_SYM, SECTION, { 0 }}
738 #else
739 #define GLOBAL_SYM_INIT(NAME, SECTION) \
740 { 0, NAME, 0, BSF_SECTION_SYM, SECTION }
741 #endif
742
743 /* These symbols are global, not specific to any BFD. Therefore, anything
744 that tries to change them is broken, and should be repaired. */
745
746 static const asymbol global_syms[] =
747 {
748 GLOBAL_SYM_INIT (BFD_COM_SECTION_NAME, bfd_com_section_ptr),
749 GLOBAL_SYM_INIT (BFD_UND_SECTION_NAME, bfd_und_section_ptr),
750 GLOBAL_SYM_INIT (BFD_ABS_SECTION_NAME, bfd_abs_section_ptr),
751 GLOBAL_SYM_INIT (BFD_IND_SECTION_NAME, bfd_ind_section_ptr)
752 };
753
754 #define STD_SECTION(NAME, IDX, FLAGS) \
755 BFD_FAKE_SECTION(_bfd_std_section[IDX], FLAGS, &global_syms[IDX], NAME, IDX)
756
757 asection _bfd_std_section[] = {
758 STD_SECTION (BFD_COM_SECTION_NAME, 0, SEC_IS_COMMON),
759 STD_SECTION (BFD_UND_SECTION_NAME, 1, 0),
760 STD_SECTION (BFD_ABS_SECTION_NAME, 2, 0),
761 STD_SECTION (BFD_IND_SECTION_NAME, 3, 0)
762 };
763 #undef STD_SECTION
764
765 /* Initialize an entry in the section hash table. */
766
767 struct bfd_hash_entry *
768 bfd_section_hash_newfunc (struct bfd_hash_entry *entry,
769 struct bfd_hash_table *table,
770 const char *string)
771 {
772 /* Allocate the structure if it has not already been allocated by a
773 subclass. */
774 if (entry == NULL)
775 {
776 entry = (struct bfd_hash_entry *)
777 bfd_hash_allocate (table, sizeof (struct section_hash_entry));
778 if (entry == NULL)
779 return entry;
780 }
781
782 /* Call the allocation method of the superclass. */
783 entry = bfd_hash_newfunc (entry, table, string);
784 if (entry != NULL)
785 memset (&((struct section_hash_entry *) entry)->section, 0,
786 sizeof (asection));
787
788 return entry;
789 }
790
791 #define section_hash_lookup(table, string, create, copy) \
792 ((struct section_hash_entry *) \
793 bfd_hash_lookup ((table), (string), (create), (copy)))
794
795 /* Create a symbol whose only job is to point to this section. This
796 is useful for things like relocs which are relative to the base
797 of a section. */
798
799 bfd_boolean
800 _bfd_generic_new_section_hook (bfd *abfd, asection *newsect)
801 {
802 newsect->symbol = bfd_make_empty_symbol (abfd);
803 if (newsect->symbol == NULL)
804 return FALSE;
805
806 newsect->symbol->name = newsect->name;
807 newsect->symbol->value = 0;
808 newsect->symbol->section = newsect;
809 newsect->symbol->flags = BSF_SECTION_SYM;
810
811 newsect->symbol_ptr_ptr = &newsect->symbol;
812 return TRUE;
813 }
814
815 /* Initializes a new section. NEWSECT->NAME is already set. */
816
817 static asection *
818 bfd_section_init (bfd *abfd, asection *newsect)
819 {
820 static int section_id = 0x10; /* id 0 to 3 used by STD_SECTION. */
821
822 newsect->id = section_id;
823 newsect->index = abfd->section_count;
824 newsect->owner = abfd;
825
826 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
827 return NULL;
828
829 section_id++;
830 abfd->section_count++;
831 bfd_section_list_append (abfd, newsect);
832 return newsect;
833 }
834
835 /*
836 DOCDD
837 INODE
838 section prototypes, , typedef asection, Sections
839 SUBSECTION
840 Section prototypes
841
842 These are the functions exported by the section handling part of BFD.
843 */
844
845 /*
846 FUNCTION
847 bfd_section_list_clear
848
849 SYNOPSIS
850 void bfd_section_list_clear (bfd *);
851
852 DESCRIPTION
853 Clears the section list, and also resets the section count and
854 hash table entries.
855 */
856
857 void
858 bfd_section_list_clear (bfd *abfd)
859 {
860 abfd->sections = NULL;
861 abfd->section_last = NULL;
862 abfd->section_count = 0;
863 memset (abfd->section_htab.table, 0,
864 abfd->section_htab.size * sizeof (struct bfd_hash_entry *));
865 abfd->section_htab.count = 0;
866 }
867
868 /*
869 FUNCTION
870 bfd_get_section_by_name
871
872 SYNOPSIS
873 asection *bfd_get_section_by_name (bfd *abfd, const char *name);
874
875 DESCRIPTION
876 Return the most recently created section attached to @var{abfd}
877 named @var{name}. Return NULL if no such section exists.
878 */
879
880 asection *
881 bfd_get_section_by_name (bfd *abfd, const char *name)
882 {
883 struct section_hash_entry *sh;
884
885 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
886 if (sh != NULL)
887 return &sh->section;
888
889 return NULL;
890 }
891
892 /*
893 FUNCTION
894 bfd_get_next_section_by_name
895
896 SYNOPSIS
897 asection *bfd_get_next_section_by_name (asection *sec);
898
899 DESCRIPTION
900 Given @var{sec} is a section returned by @code{bfd_get_section_by_name},
901 return the next most recently created section attached to the same
902 BFD with the same name. Return NULL if no such section exists.
903 */
904
905 asection *
906 bfd_get_next_section_by_name (asection *sec)
907 {
908 struct section_hash_entry *sh;
909 const char *name;
910 unsigned long hash;
911
912 sh = ((struct section_hash_entry *)
913 ((char *) sec - offsetof (struct section_hash_entry, section)));
914
915 hash = sh->root.hash;
916 name = sec->name;
917 for (sh = (struct section_hash_entry *) sh->root.next;
918 sh != NULL;
919 sh = (struct section_hash_entry *) sh->root.next)
920 if (sh->root.hash == hash
921 && strcmp (sh->root.string, name) == 0)
922 return &sh->section;
923
924 return NULL;
925 }
926
927 /*
928 FUNCTION
929 bfd_get_linker_section
930
931 SYNOPSIS
932 asection *bfd_get_linker_section (bfd *abfd, const char *name);
933
934 DESCRIPTION
935 Return the linker created section attached to @var{abfd}
936 named @var{name}. Return NULL if no such section exists.
937 */
938
939 asection *
940 bfd_get_linker_section (bfd *abfd, const char *name)
941 {
942 asection *sec = bfd_get_section_by_name (abfd, name);
943
944 while (sec != NULL && (sec->flags & SEC_LINKER_CREATED) == 0)
945 sec = bfd_get_next_section_by_name (sec);
946 return sec;
947 }
948
949 /*
950 FUNCTION
951 bfd_get_section_by_name_if
952
953 SYNOPSIS
954 asection *bfd_get_section_by_name_if
955 (bfd *abfd,
956 const char *name,
957 bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj),
958 void *obj);
959
960 DESCRIPTION
961 Call the provided function @var{func} for each section
962 attached to the BFD @var{abfd} whose name matches @var{name},
963 passing @var{obj} as an argument. The function will be called
964 as if by
965
966 | func (abfd, the_section, obj);
967
968 It returns the first section for which @var{func} returns true,
969 otherwise <<NULL>>.
970
971 */
972
973 asection *
974 bfd_get_section_by_name_if (bfd *abfd, const char *name,
975 bfd_boolean (*operation) (bfd *,
976 asection *,
977 void *),
978 void *user_storage)
979 {
980 struct section_hash_entry *sh;
981 unsigned long hash;
982
983 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
984 if (sh == NULL)
985 return NULL;
986
987 hash = sh->root.hash;
988 do
989 {
990 if ((*operation) (abfd, &sh->section, user_storage))
991 return &sh->section;
992 sh = (struct section_hash_entry *) sh->root.next;
993 }
994 while (sh != NULL && sh->root.hash == hash
995 && strcmp (sh->root.string, name) == 0);
996
997 return NULL;
998 }
999
1000 /*
1001 FUNCTION
1002 bfd_get_unique_section_name
1003
1004 SYNOPSIS
1005 char *bfd_get_unique_section_name
1006 (bfd *abfd, const char *templat, int *count);
1007
1008 DESCRIPTION
1009 Invent a section name that is unique in @var{abfd} by tacking
1010 a dot and a digit suffix onto the original @var{templat}. If
1011 @var{count} is non-NULL, then it specifies the first number
1012 tried as a suffix to generate a unique name. The value
1013 pointed to by @var{count} will be incremented in this case.
1014 */
1015
1016 char *
1017 bfd_get_unique_section_name (bfd *abfd, const char *templat, int *count)
1018 {
1019 int num;
1020 unsigned int len;
1021 char *sname;
1022
1023 len = strlen (templat);
1024 sname = (char *) bfd_malloc (len + 8);
1025 if (sname == NULL)
1026 return NULL;
1027 memcpy (sname, templat, len);
1028 num = 1;
1029 if (count != NULL)
1030 num = *count;
1031
1032 do
1033 {
1034 /* If we have a million sections, something is badly wrong. */
1035 if (num > 999999)
1036 abort ();
1037 sprintf (sname + len, ".%d", num++);
1038 }
1039 while (section_hash_lookup (&abfd->section_htab, sname, FALSE, FALSE));
1040
1041 if (count != NULL)
1042 *count = num;
1043 return sname;
1044 }
1045
1046 /*
1047 FUNCTION
1048 bfd_make_section_old_way
1049
1050 SYNOPSIS
1051 asection *bfd_make_section_old_way (bfd *abfd, const char *name);
1052
1053 DESCRIPTION
1054 Create a new empty section called @var{name}
1055 and attach it to the end of the chain of sections for the
1056 BFD @var{abfd}. An attempt to create a section with a name which
1057 is already in use returns its pointer without changing the
1058 section chain.
1059
1060 It has the funny name since this is the way it used to be
1061 before it was rewritten....
1062
1063 Possible errors are:
1064 o <<bfd_error_invalid_operation>> -
1065 If output has already started for this BFD.
1066 o <<bfd_error_no_memory>> -
1067 If memory allocation fails.
1068
1069 */
1070
1071 asection *
1072 bfd_make_section_old_way (bfd *abfd, const char *name)
1073 {
1074 asection *newsect;
1075
1076 if (abfd->output_has_begun)
1077 {
1078 bfd_set_error (bfd_error_invalid_operation);
1079 return NULL;
1080 }
1081
1082 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0)
1083 newsect = bfd_abs_section_ptr;
1084 else if (strcmp (name, BFD_COM_SECTION_NAME) == 0)
1085 newsect = bfd_com_section_ptr;
1086 else if (strcmp (name, BFD_UND_SECTION_NAME) == 0)
1087 newsect = bfd_und_section_ptr;
1088 else if (strcmp (name, BFD_IND_SECTION_NAME) == 0)
1089 newsect = bfd_ind_section_ptr;
1090 else
1091 {
1092 struct section_hash_entry *sh;
1093
1094 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1095 if (sh == NULL)
1096 return NULL;
1097
1098 newsect = &sh->section;
1099 if (newsect->name != NULL)
1100 {
1101 /* Section already exists. */
1102 return newsect;
1103 }
1104
1105 newsect->name = name;
1106 return bfd_section_init (abfd, newsect);
1107 }
1108
1109 /* Call new_section_hook when "creating" the standard abs, com, und
1110 and ind sections to tack on format specific section data.
1111 Also, create a proper section symbol. */
1112 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
1113 return NULL;
1114 return newsect;
1115 }
1116
1117 /*
1118 FUNCTION
1119 bfd_make_section_anyway_with_flags
1120
1121 SYNOPSIS
1122 asection *bfd_make_section_anyway_with_flags
1123 (bfd *abfd, const char *name, flagword flags);
1124
1125 DESCRIPTION
1126 Create a new empty section called @var{name} and attach it to the end of
1127 the chain of sections for @var{abfd}. Create a new section even if there
1128 is already a section with that name. Also set the attributes of the
1129 new section to the value @var{flags}.
1130
1131 Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1132 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1133 o <<bfd_error_no_memory>> - If memory allocation fails.
1134 */
1135
1136 sec_ptr
1137 bfd_make_section_anyway_with_flags (bfd *abfd, const char *name,
1138 flagword flags)
1139 {
1140 struct section_hash_entry *sh;
1141 asection *newsect;
1142
1143 if (abfd->output_has_begun)
1144 {
1145 bfd_set_error (bfd_error_invalid_operation);
1146 return NULL;
1147 }
1148
1149 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1150 if (sh == NULL)
1151 return NULL;
1152
1153 newsect = &sh->section;
1154 if (newsect->name != NULL)
1155 {
1156 /* We are making a section of the same name. Put it in the
1157 section hash table. Even though we can't find it directly by a
1158 hash lookup, we'll be able to find the section by traversing
1159 sh->root.next quicker than looking at all the bfd sections. */
1160 struct section_hash_entry *new_sh;
1161 new_sh = (struct section_hash_entry *)
1162 bfd_section_hash_newfunc (NULL, &abfd->section_htab, name);
1163 if (new_sh == NULL)
1164 return NULL;
1165
1166 new_sh->root = sh->root;
1167 sh->root.next = &new_sh->root;
1168 newsect = &new_sh->section;
1169 }
1170
1171 newsect->flags = flags;
1172 newsect->name = name;
1173 return bfd_section_init (abfd, newsect);
1174 }
1175
1176 /*
1177 FUNCTION
1178 bfd_make_section_anyway
1179
1180 SYNOPSIS
1181 asection *bfd_make_section_anyway (bfd *abfd, const char *name);
1182
1183 DESCRIPTION
1184 Create a new empty section called @var{name} and attach it to the end of
1185 the chain of sections for @var{abfd}. Create a new section even if there
1186 is already a section with that name.
1187
1188 Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1189 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1190 o <<bfd_error_no_memory>> - If memory allocation fails.
1191 */
1192
1193 sec_ptr
1194 bfd_make_section_anyway (bfd *abfd, const char *name)
1195 {
1196 return bfd_make_section_anyway_with_flags (abfd, name, 0);
1197 }
1198
1199 /*
1200 FUNCTION
1201 bfd_make_section_with_flags
1202
1203 SYNOPSIS
1204 asection *bfd_make_section_with_flags
1205 (bfd *, const char *name, flagword flags);
1206
1207 DESCRIPTION
1208 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1209 bfd_set_error ()) without changing the section chain if there is already a
1210 section named @var{name}. Also set the attributes of the new section to
1211 the value @var{flags}. If there is an error, return <<NULL>> and set
1212 <<bfd_error>>.
1213 */
1214
1215 asection *
1216 bfd_make_section_with_flags (bfd *abfd, const char *name,
1217 flagword flags)
1218 {
1219 struct section_hash_entry *sh;
1220 asection *newsect;
1221
1222 if (abfd->output_has_begun)
1223 {
1224 bfd_set_error (bfd_error_invalid_operation);
1225 return NULL;
1226 }
1227
1228 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0
1229 || strcmp (name, BFD_COM_SECTION_NAME) == 0
1230 || strcmp (name, BFD_UND_SECTION_NAME) == 0
1231 || strcmp (name, BFD_IND_SECTION_NAME) == 0)
1232 return NULL;
1233
1234 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1235 if (sh == NULL)
1236 return NULL;
1237
1238 newsect = &sh->section;
1239 if (newsect->name != NULL)
1240 {
1241 /* Section already exists. */
1242 return NULL;
1243 }
1244
1245 newsect->name = name;
1246 newsect->flags = flags;
1247 return bfd_section_init (abfd, newsect);
1248 }
1249
1250 /*
1251 FUNCTION
1252 bfd_make_section
1253
1254 SYNOPSIS
1255 asection *bfd_make_section (bfd *, const char *name);
1256
1257 DESCRIPTION
1258 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1259 bfd_set_error ()) without changing the section chain if there is already a
1260 section named @var{name}. If there is an error, return <<NULL>> and set
1261 <<bfd_error>>.
1262 */
1263
1264 asection *
1265 bfd_make_section (bfd *abfd, const char *name)
1266 {
1267 return bfd_make_section_with_flags (abfd, name, 0);
1268 }
1269
1270 /*
1271 FUNCTION
1272 bfd_set_section_flags
1273
1274 SYNOPSIS
1275 bfd_boolean bfd_set_section_flags
1276 (bfd *abfd, asection *sec, flagword flags);
1277
1278 DESCRIPTION
1279 Set the attributes of the section @var{sec} in the BFD
1280 @var{abfd} to the value @var{flags}. Return <<TRUE>> on success,
1281 <<FALSE>> on error. Possible error returns are:
1282
1283 o <<bfd_error_invalid_operation>> -
1284 The section cannot have one or more of the attributes
1285 requested. For example, a .bss section in <<a.out>> may not
1286 have the <<SEC_HAS_CONTENTS>> field set.
1287
1288 */
1289
1290 bfd_boolean
1291 bfd_set_section_flags (bfd *abfd ATTRIBUTE_UNUSED,
1292 sec_ptr section,
1293 flagword flags)
1294 {
1295 section->flags = flags;
1296 return TRUE;
1297 }
1298
1299 /*
1300 FUNCTION
1301 bfd_rename_section
1302
1303 SYNOPSIS
1304 void bfd_rename_section
1305 (bfd *abfd, asection *sec, const char *newname);
1306
1307 DESCRIPTION
1308 Rename section @var{sec} in @var{abfd} to @var{newname}.
1309 */
1310
1311 void
1312 bfd_rename_section (bfd *abfd, sec_ptr sec, const char *newname)
1313 {
1314 struct section_hash_entry *sh;
1315
1316 sh = (struct section_hash_entry *)
1317 ((char *) sec - offsetof (struct section_hash_entry, section));
1318 sh->section.name = newname;
1319 bfd_hash_rename (&abfd->section_htab, newname, &sh->root);
1320 }
1321
1322 /*
1323 FUNCTION
1324 bfd_map_over_sections
1325
1326 SYNOPSIS
1327 void bfd_map_over_sections
1328 (bfd *abfd,
1329 void (*func) (bfd *abfd, asection *sect, void *obj),
1330 void *obj);
1331
1332 DESCRIPTION
1333 Call the provided function @var{func} for each section
1334 attached to the BFD @var{abfd}, passing @var{obj} as an
1335 argument. The function will be called as if by
1336
1337 | func (abfd, the_section, obj);
1338
1339 This is the preferred method for iterating over sections; an
1340 alternative would be to use a loop:
1341
1342 | asection *p;
1343 | for (p = abfd->sections; p != NULL; p = p->next)
1344 | func (abfd, p, ...)
1345
1346 */
1347
1348 void
1349 bfd_map_over_sections (bfd *abfd,
1350 void (*operation) (bfd *, asection *, void *),
1351 void *user_storage)
1352 {
1353 asection *sect;
1354 unsigned int i = 0;
1355
1356 for (sect = abfd->sections; sect != NULL; i++, sect = sect->next)
1357 (*operation) (abfd, sect, user_storage);
1358
1359 if (i != abfd->section_count) /* Debugging */
1360 abort ();
1361 }
1362
1363 /*
1364 FUNCTION
1365 bfd_sections_find_if
1366
1367 SYNOPSIS
1368 asection *bfd_sections_find_if
1369 (bfd *abfd,
1370 bfd_boolean (*operation) (bfd *abfd, asection *sect, void *obj),
1371 void *obj);
1372
1373 DESCRIPTION
1374 Call the provided function @var{operation} for each section
1375 attached to the BFD @var{abfd}, passing @var{obj} as an
1376 argument. The function will be called as if by
1377
1378 | operation (abfd, the_section, obj);
1379
1380 It returns the first section for which @var{operation} returns true.
1381
1382 */
1383
1384 asection *
1385 bfd_sections_find_if (bfd *abfd,
1386 bfd_boolean (*operation) (bfd *, asection *, void *),
1387 void *user_storage)
1388 {
1389 asection *sect;
1390
1391 for (sect = abfd->sections; sect != NULL; sect = sect->next)
1392 if ((*operation) (abfd, sect, user_storage))
1393 break;
1394
1395 return sect;
1396 }
1397
1398 /*
1399 FUNCTION
1400 bfd_set_section_size
1401
1402 SYNOPSIS
1403 bfd_boolean bfd_set_section_size
1404 (bfd *abfd, asection *sec, bfd_size_type val);
1405
1406 DESCRIPTION
1407 Set @var{sec} to the size @var{val}. If the operation is
1408 ok, then <<TRUE>> is returned, else <<FALSE>>.
1409
1410 Possible error returns:
1411 o <<bfd_error_invalid_operation>> -
1412 Writing has started to the BFD, so setting the size is invalid.
1413
1414 */
1415
1416 bfd_boolean
1417 bfd_set_section_size (bfd *abfd, sec_ptr ptr, bfd_size_type val)
1418 {
1419 /* Once you've started writing to any section you cannot create or change
1420 the size of any others. */
1421
1422 if (abfd->output_has_begun)
1423 {
1424 bfd_set_error (bfd_error_invalid_operation);
1425 return FALSE;
1426 }
1427
1428 ptr->size = val;
1429 return TRUE;
1430 }
1431
1432 /*
1433 FUNCTION
1434 bfd_set_section_contents
1435
1436 SYNOPSIS
1437 bfd_boolean bfd_set_section_contents
1438 (bfd *abfd, asection *section, const void *data,
1439 file_ptr offset, bfd_size_type count);
1440
1441 DESCRIPTION
1442 Sets the contents of the section @var{section} in BFD
1443 @var{abfd} to the data starting in memory at @var{data}. The
1444 data is written to the output section starting at offset
1445 @var{offset} for @var{count} octets.
1446
1447 Normally <<TRUE>> is returned, else <<FALSE>>. Possible error
1448 returns are:
1449 o <<bfd_error_no_contents>> -
1450 The output section does not have the <<SEC_HAS_CONTENTS>>
1451 attribute, so nothing can be written to it.
1452 o and some more too
1453
1454 This routine is front end to the back end function
1455 <<_bfd_set_section_contents>>.
1456
1457 */
1458
1459 bfd_boolean
1460 bfd_set_section_contents (bfd *abfd,
1461 sec_ptr section,
1462 const void *location,
1463 file_ptr offset,
1464 bfd_size_type count)
1465 {
1466 bfd_size_type sz;
1467
1468 if (!(bfd_get_section_flags (abfd, section) & SEC_HAS_CONTENTS))
1469 {
1470 bfd_set_error (bfd_error_no_contents);
1471 return FALSE;
1472 }
1473
1474 sz = section->size;
1475 if ((bfd_size_type) offset > sz
1476 || count > sz
1477 || offset + count > sz
1478 || count != (size_t) count)
1479 {
1480 bfd_set_error (bfd_error_bad_value);
1481 return FALSE;
1482 }
1483
1484 if (!bfd_write_p (abfd))
1485 {
1486 bfd_set_error (bfd_error_invalid_operation);
1487 return FALSE;
1488 }
1489
1490 /* Record a copy of the data in memory if desired. */
1491 if (section->contents
1492 && location != section->contents + offset)
1493 memcpy (section->contents + offset, location, (size_t) count);
1494
1495 if (BFD_SEND (abfd, _bfd_set_section_contents,
1496 (abfd, section, location, offset, count)))
1497 {
1498 abfd->output_has_begun = TRUE;
1499 return TRUE;
1500 }
1501
1502 return FALSE;
1503 }
1504
1505 /*
1506 FUNCTION
1507 bfd_get_section_contents
1508
1509 SYNOPSIS
1510 bfd_boolean bfd_get_section_contents
1511 (bfd *abfd, asection *section, void *location, file_ptr offset,
1512 bfd_size_type count);
1513
1514 DESCRIPTION
1515 Read data from @var{section} in BFD @var{abfd}
1516 into memory starting at @var{location}. The data is read at an
1517 offset of @var{offset} from the start of the input section,
1518 and is read for @var{count} bytes.
1519
1520 If the contents of a constructor with the <<SEC_CONSTRUCTOR>>
1521 flag set are requested or if the section does not have the
1522 <<SEC_HAS_CONTENTS>> flag set, then the @var{location} is filled
1523 with zeroes. If no errors occur, <<TRUE>> is returned, else
1524 <<FALSE>>.
1525
1526 */
1527 bfd_boolean
1528 bfd_get_section_contents (bfd *abfd,
1529 sec_ptr section,
1530 void *location,
1531 file_ptr offset,
1532 bfd_size_type count)
1533 {
1534 bfd_size_type sz;
1535
1536 if (section->flags & SEC_CONSTRUCTOR)
1537 {
1538 memset (location, 0, (size_t) count);
1539 return TRUE;
1540 }
1541
1542 if (abfd->direction != write_direction && section->rawsize != 0)
1543 sz = section->rawsize;
1544 else
1545 sz = section->size;
1546 if ((bfd_size_type) offset > sz
1547 || count > sz
1548 || offset + count > sz
1549 || count != (size_t) count)
1550 {
1551 bfd_set_error (bfd_error_bad_value);
1552 return FALSE;
1553 }
1554
1555 if (count == 0)
1556 /* Don't bother. */
1557 return TRUE;
1558
1559 if ((section->flags & SEC_HAS_CONTENTS) == 0)
1560 {
1561 memset (location, 0, (size_t) count);
1562 return TRUE;
1563 }
1564
1565 if ((section->flags & SEC_IN_MEMORY) != 0)
1566 {
1567 if (section->contents == NULL)
1568 {
1569 /* This can happen because of errors earlier on in the linking process.
1570 We do not want to seg-fault here, so clear the flag and return an
1571 error code. */
1572 section->flags &= ~ SEC_IN_MEMORY;
1573 bfd_set_error (bfd_error_invalid_operation);
1574 return FALSE;
1575 }
1576
1577 memmove (location, section->contents + offset, (size_t) count);
1578 return TRUE;
1579 }
1580
1581 return BFD_SEND (abfd, _bfd_get_section_contents,
1582 (abfd, section, location, offset, count));
1583 }
1584
1585 /*
1586 FUNCTION
1587 bfd_malloc_and_get_section
1588
1589 SYNOPSIS
1590 bfd_boolean bfd_malloc_and_get_section
1591 (bfd *abfd, asection *section, bfd_byte **buf);
1592
1593 DESCRIPTION
1594 Read all data from @var{section} in BFD @var{abfd}
1595 into a buffer, *@var{buf}, malloc'd by this function.
1596 */
1597
1598 bfd_boolean
1599 bfd_malloc_and_get_section (bfd *abfd, sec_ptr sec, bfd_byte **buf)
1600 {
1601 *buf = NULL;
1602 return bfd_get_full_section_contents (abfd, sec, buf);
1603 }
1604 /*
1605 FUNCTION
1606 bfd_copy_private_section_data
1607
1608 SYNOPSIS
1609 bfd_boolean bfd_copy_private_section_data
1610 (bfd *ibfd, asection *isec, bfd *obfd, asection *osec);
1611
1612 DESCRIPTION
1613 Copy private section information from @var{isec} in the BFD
1614 @var{ibfd} to the section @var{osec} in the BFD @var{obfd}.
1615 Return <<TRUE>> on success, <<FALSE>> on error. Possible error
1616 returns are:
1617
1618 o <<bfd_error_no_memory>> -
1619 Not enough memory exists to create private data for @var{osec}.
1620
1621 .#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \
1622 . BFD_SEND (obfd, _bfd_copy_private_section_data, \
1623 . (ibfd, isection, obfd, osection))
1624 */
1625
1626 /*
1627 FUNCTION
1628 bfd_generic_is_group_section
1629
1630 SYNOPSIS
1631 bfd_boolean bfd_generic_is_group_section (bfd *, const asection *sec);
1632
1633 DESCRIPTION
1634 Returns TRUE if @var{sec} is a member of a group.
1635 */
1636
1637 bfd_boolean
1638 bfd_generic_is_group_section (bfd *abfd ATTRIBUTE_UNUSED,
1639 const asection *sec ATTRIBUTE_UNUSED)
1640 {
1641 return FALSE;
1642 }
1643
1644 /*
1645 FUNCTION
1646 bfd_generic_discard_group
1647
1648 SYNOPSIS
1649 bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group);
1650
1651 DESCRIPTION
1652 Remove all members of @var{group} from the output.
1653 */
1654
1655 bfd_boolean
1656 bfd_generic_discard_group (bfd *abfd ATTRIBUTE_UNUSED,
1657 asection *group ATTRIBUTE_UNUSED)
1658 {
1659 return TRUE;
1660 }
This page took 0.073874 seconds and 5 git commands to generate.