include/elf/
[deliverable/binutils-gdb.git] / bfd / section.c
1 /* Object file "section" support for the BFD library.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5 Written by Cygnus Support.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
23
24 /*
25 SECTION
26 Sections
27
28 The raw data contained within a BFD is maintained through the
29 section abstraction. A single BFD may have any number of
30 sections. It keeps hold of them by pointing to the first;
31 each one points to the next in the list.
32
33 Sections are supported in BFD in <<section.c>>.
34
35 @menu
36 @* Section Input::
37 @* Section Output::
38 @* typedef asection::
39 @* section prototypes::
40 @end menu
41
42 INODE
43 Section Input, Section Output, Sections, Sections
44 SUBSECTION
45 Section input
46
47 When a BFD is opened for reading, the section structures are
48 created and attached to the BFD.
49
50 Each section has a name which describes the section in the
51 outside world---for example, <<a.out>> would contain at least
52 three sections, called <<.text>>, <<.data>> and <<.bss>>.
53
54 Names need not be unique; for example a COFF file may have several
55 sections named <<.data>>.
56
57 Sometimes a BFD will contain more than the ``natural'' number of
58 sections. A back end may attach other sections containing
59 constructor data, or an application may add a section (using
60 <<bfd_make_section>>) to the sections attached to an already open
61 BFD. For example, the linker creates an extra section
62 <<COMMON>> for each input file's BFD to hold information about
63 common storage.
64
65 The raw data is not necessarily read in when
66 the section descriptor is created. Some targets may leave the
67 data in place until a <<bfd_get_section_contents>> call is
68 made. Other back ends may read in all the data at once. For
69 example, an S-record file has to be read once to determine the
70 size of the data. An IEEE-695 file doesn't contain raw data in
71 sections, but data and relocation expressions intermixed, so
72 the data area has to be parsed to get out the data and
73 relocations.
74
75 INODE
76 Section Output, typedef asection, Section Input, Sections
77
78 SUBSECTION
79 Section output
80
81 To write a new object style BFD, the various sections to be
82 written have to be created. They are attached to the BFD in
83 the same way as input sections; data is written to the
84 sections using <<bfd_set_section_contents>>.
85
86 Any program that creates or combines sections (e.g., the assembler
87 and linker) must use the <<asection>> fields <<output_section>> and
88 <<output_offset>> to indicate the file sections to which each
89 section must be written. (If the section is being created from
90 scratch, <<output_section>> should probably point to the section
91 itself and <<output_offset>> should probably be zero.)
92
93 The data to be written comes from input sections attached
94 (via <<output_section>> pointers) to
95 the output sections. The output section structure can be
96 considered a filter for the input section: the output section
97 determines the vma of the output data and the name, but the
98 input section determines the offset into the output section of
99 the data to be written.
100
101 E.g., to create a section "O", starting at 0x100, 0x123 long,
102 containing two subsections, "A" at offset 0x0 (i.e., at vma
103 0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the <<asection>>
104 structures would look like:
105
106 | section name "A"
107 | output_offset 0x00
108 | size 0x20
109 | output_section -----------> section name "O"
110 | | vma 0x100
111 | section name "B" | size 0x123
112 | output_offset 0x20 |
113 | size 0x103 |
114 | output_section --------|
115
116 SUBSECTION
117 Link orders
118
119 The data within a section is stored in a @dfn{link_order}.
120 These are much like the fixups in <<gas>>. The link_order
121 abstraction allows a section to grow and shrink within itself.
122
123 A link_order knows how big it is, and which is the next
124 link_order and where the raw data for it is; it also points to
125 a list of relocations which apply to it.
126
127 The link_order is used by the linker to perform relaxing on
128 final code. The compiler creates code which is as big as
129 necessary to make it work without relaxing, and the user can
130 select whether to relax. Sometimes relaxing takes a lot of
131 time. The linker runs around the relocations to see if any
132 are attached to data which can be shrunk, if so it does it on
133 a link_order by link_order basis.
134
135 */
136
137 #include "sysdep.h"
138 #include "bfd.h"
139 #include "libbfd.h"
140 #include "bfdlink.h"
141
142 /*
143 DOCDD
144 INODE
145 typedef asection, section prototypes, Section Output, Sections
146 SUBSECTION
147 typedef asection
148
149 Here is the section structure:
150
151 CODE_FRAGMENT
152 .
153 .typedef struct bfd_section
154 .{
155 . {* The name of the section; the name isn't a copy, the pointer is
156 . the same as that passed to bfd_make_section. *}
157 . const char *name;
158 .
159 . {* A unique sequence number. *}
160 . int id;
161 .
162 . {* Which section in the bfd; 0..n-1 as sections are created in a bfd. *}
163 . int index;
164 .
165 . {* The next section in the list belonging to the BFD, or NULL. *}
166 . struct bfd_section *next;
167 .
168 . {* The previous section in the list belonging to the BFD, or NULL. *}
169 . struct bfd_section *prev;
170 .
171 . {* The field flags contains attributes of the section. Some
172 . flags are read in from the object file, and some are
173 . synthesized from other information. *}
174 . flagword flags;
175 .
176 .#define SEC_NO_FLAGS 0x000
177 .
178 . {* Tells the OS to allocate space for this section when loading.
179 . This is clear for a section containing debug information only. *}
180 .#define SEC_ALLOC 0x001
181 .
182 . {* Tells the OS to load the section from the file when loading.
183 . This is clear for a .bss section. *}
184 .#define SEC_LOAD 0x002
185 .
186 . {* The section contains data still to be relocated, so there is
187 . some relocation information too. *}
188 .#define SEC_RELOC 0x004
189 .
190 . {* A signal to the OS that the section contains read only data. *}
191 .#define SEC_READONLY 0x008
192 .
193 . {* The section contains code only. *}
194 .#define SEC_CODE 0x010
195 .
196 . {* The section contains data only. *}
197 .#define SEC_DATA 0x020
198 .
199 . {* The section will reside in ROM. *}
200 .#define SEC_ROM 0x040
201 .
202 . {* The section contains constructor information. This section
203 . type is used by the linker to create lists of constructors and
204 . destructors used by <<g++>>. When a back end sees a symbol
205 . which should be used in a constructor list, it creates a new
206 . section for the type of name (e.g., <<__CTOR_LIST__>>), attaches
207 . the symbol to it, and builds a relocation. To build the lists
208 . of constructors, all the linker has to do is catenate all the
209 . sections called <<__CTOR_LIST__>> and relocate the data
210 . contained within - exactly the operations it would peform on
211 . standard data. *}
212 .#define SEC_CONSTRUCTOR 0x080
213 .
214 . {* The section has contents - a data section could be
215 . <<SEC_ALLOC>> | <<SEC_HAS_CONTENTS>>; a debug section could be
216 . <<SEC_HAS_CONTENTS>> *}
217 .#define SEC_HAS_CONTENTS 0x100
218 .
219 . {* An instruction to the linker to not output the section
220 . even if it has information which would normally be written. *}
221 .#define SEC_NEVER_LOAD 0x200
222 .
223 . {* The section contains thread local data. *}
224 .#define SEC_THREAD_LOCAL 0x400
225 .
226 . {* The section has GOT references. This flag is only for the
227 . linker, and is currently only used by the elf32-hppa back end.
228 . It will be set if global offset table references were detected
229 . in this section, which indicate to the linker that the section
230 . contains PIC code, and must be handled specially when doing a
231 . static link. *}
232 .#define SEC_HAS_GOT_REF 0x800
233 .
234 . {* The section contains common symbols (symbols may be defined
235 . multiple times, the value of a symbol is the amount of
236 . space it requires, and the largest symbol value is the one
237 . used). Most targets have exactly one of these (which we
238 . translate to bfd_com_section_ptr), but ECOFF has two. *}
239 .#define SEC_IS_COMMON 0x1000
240 .
241 . {* The section contains only debugging information. For
242 . example, this is set for ELF .debug and .stab sections.
243 . strip tests this flag to see if a section can be
244 . discarded. *}
245 .#define SEC_DEBUGGING 0x2000
246 .
247 . {* The contents of this section are held in memory pointed to
248 . by the contents field. This is checked by bfd_get_section_contents,
249 . and the data is retrieved from memory if appropriate. *}
250 .#define SEC_IN_MEMORY 0x4000
251 .
252 . {* The contents of this section are to be excluded by the
253 . linker for executable and shared objects unless those
254 . objects are to be further relocated. *}
255 .#define SEC_EXCLUDE 0x8000
256 .
257 . {* The contents of this section are to be sorted based on the sum of
258 . the symbol and addend values specified by the associated relocation
259 . entries. Entries without associated relocation entries will be
260 . appended to the end of the section in an unspecified order. *}
261 .#define SEC_SORT_ENTRIES 0x10000
262 .
263 . {* When linking, duplicate sections of the same name should be
264 . discarded, rather than being combined into a single section as
265 . is usually done. This is similar to how common symbols are
266 . handled. See SEC_LINK_DUPLICATES below. *}
267 .#define SEC_LINK_ONCE 0x20000
268 .
269 . {* If SEC_LINK_ONCE is set, this bitfield describes how the linker
270 . should handle duplicate sections. *}
271 .#define SEC_LINK_DUPLICATES 0xc0000
272 .
273 . {* This value for SEC_LINK_DUPLICATES means that duplicate
274 . sections with the same name should simply be discarded. *}
275 .#define SEC_LINK_DUPLICATES_DISCARD 0x0
276 .
277 . {* This value for SEC_LINK_DUPLICATES means that the linker
278 . should warn if there are any duplicate sections, although
279 . it should still only link one copy. *}
280 .#define SEC_LINK_DUPLICATES_ONE_ONLY 0x40000
281 .
282 . {* This value for SEC_LINK_DUPLICATES means that the linker
283 . should warn if any duplicate sections are a different size. *}
284 .#define SEC_LINK_DUPLICATES_SAME_SIZE 0x80000
285 .
286 . {* This value for SEC_LINK_DUPLICATES means that the linker
287 . should warn if any duplicate sections contain different
288 . contents. *}
289 .#define SEC_LINK_DUPLICATES_SAME_CONTENTS \
290 . (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE)
291 .
292 . {* This section was created by the linker as part of dynamic
293 . relocation or other arcane processing. It is skipped when
294 . going through the first-pass output, trusting that someone
295 . else up the line will take care of it later. *}
296 .#define SEC_LINKER_CREATED 0x100000
297 .
298 . {* This section should not be subject to garbage collection.
299 . Also set to inform the linker that this section should not be
300 . listed in the link map as discarded. *}
301 .#define SEC_KEEP 0x200000
302 .
303 . {* This section contains "short" data, and should be placed
304 . "near" the GP. *}
305 .#define SEC_SMALL_DATA 0x400000
306 .
307 . {* Attempt to merge identical entities in the section.
308 . Entity size is given in the entsize field. *}
309 .#define SEC_MERGE 0x800000
310 .
311 . {* If given with SEC_MERGE, entities to merge are zero terminated
312 . strings where entsize specifies character size instead of fixed
313 . size entries. *}
314 .#define SEC_STRINGS 0x1000000
315 .
316 . {* This section contains data about section groups. *}
317 .#define SEC_GROUP 0x2000000
318 .
319 . {* The section is a COFF shared library section. This flag is
320 . only for the linker. If this type of section appears in
321 . the input file, the linker must copy it to the output file
322 . without changing the vma or size. FIXME: Although this
323 . was originally intended to be general, it really is COFF
324 . specific (and the flag was renamed to indicate this). It
325 . might be cleaner to have some more general mechanism to
326 . allow the back end to control what the linker does with
327 . sections. *}
328 .#define SEC_COFF_SHARED_LIBRARY 0x4000000
329 .
330 . {* This section contains data which may be shared with other
331 . executables or shared objects. This is for COFF only. *}
332 .#define SEC_COFF_SHARED 0x8000000
333 .
334 . {* When a section with this flag is being linked, then if the size of
335 . the input section is less than a page, it should not cross a page
336 . boundary. If the size of the input section is one page or more,
337 . it should be aligned on a page boundary. This is for TI
338 . TMS320C54X only. *}
339 .#define SEC_TIC54X_BLOCK 0x10000000
340 .
341 . {* Conditionally link this section; do not link if there are no
342 . references found to any symbol in the section. This is for TI
343 . TMS320C54X only. *}
344 .#define SEC_TIC54X_CLINK 0x20000000
345 .
346 . {* End of section flags. *}
347 .
348 . {* Some internal packed boolean fields. *}
349 .
350 . {* See the vma field. *}
351 . unsigned int user_set_vma : 1;
352 .
353 . {* A mark flag used by some of the linker backends. *}
354 . unsigned int linker_mark : 1;
355 .
356 . {* Another mark flag used by some of the linker backends. Set for
357 . output sections that have an input section. *}
358 . unsigned int linker_has_input : 1;
359 .
360 . {* Mark flag used by some linker backends for garbage collection. *}
361 . unsigned int gc_mark : 1;
362 .
363 . {* The following flags are used by the ELF linker. *}
364 .
365 . {* Mark sections which have been allocated to segments. *}
366 . unsigned int segment_mark : 1;
367 .
368 . {* Type of sec_info information. *}
369 . unsigned int sec_info_type:3;
370 .#define ELF_INFO_TYPE_NONE 0
371 .#define ELF_INFO_TYPE_STABS 1
372 .#define ELF_INFO_TYPE_MERGE 2
373 .#define ELF_INFO_TYPE_EH_FRAME 3
374 .#define ELF_INFO_TYPE_JUST_SYMS 4
375 .
376 . {* Nonzero if this section uses RELA relocations, rather than REL. *}
377 . unsigned int use_rela_p:1;
378 .
379 . {* Bits used by various backends. The generic code doesn't touch
380 . these fields. *}
381 .
382 . {* Nonzero if this section has TLS related relocations. *}
383 . unsigned int has_tls_reloc:1;
384 .
385 . {* Nonzero if this section has a call to __tls_get_addr. *}
386 . unsigned int has_tls_get_addr_call:1;
387 .
388 . {* Nonzero if this section has a gp reloc. *}
389 . unsigned int has_gp_reloc:1;
390 .
391 . {* Nonzero if this section needs the relax finalize pass. *}
392 . unsigned int need_finalize_relax:1;
393 .
394 . {* Whether relocations have been processed. *}
395 . unsigned int reloc_done : 1;
396 .
397 . {* End of internal packed boolean fields. *}
398 .
399 . {* The virtual memory address of the section - where it will be
400 . at run time. The symbols are relocated against this. The
401 . user_set_vma flag is maintained by bfd; if it's not set, the
402 . backend can assign addresses (for example, in <<a.out>>, where
403 . the default address for <<.data>> is dependent on the specific
404 . target and various flags). *}
405 . bfd_vma vma;
406 .
407 . {* The load address of the section - where it would be in a
408 . rom image; really only used for writing section header
409 . information. *}
410 . bfd_vma lma;
411 .
412 . {* The size of the section in octets, as it will be output.
413 . Contains a value even if the section has no contents (e.g., the
414 . size of <<.bss>>). *}
415 . bfd_size_type size;
416 .
417 . {* For input sections, the original size on disk of the section, in
418 . octets. This field should be set for any section whose size is
419 . changed by linker relaxation. It is required for sections where
420 . the linker relaxation scheme doesn't cache altered section and
421 . reloc contents (stabs, eh_frame, SEC_MERGE, some coff relaxing
422 . targets), and thus the original size needs to be kept to read the
423 . section multiple times. For output sections, rawsize holds the
424 . section size calculated on a previous linker relaxation pass. *}
425 . bfd_size_type rawsize;
426 .
427 . {* If this section is going to be output, then this value is the
428 . offset in *bytes* into the output section of the first byte in the
429 . input section (byte ==> smallest addressable unit on the
430 . target). In most cases, if this was going to start at the
431 . 100th octet (8-bit quantity) in the output section, this value
432 . would be 100. However, if the target byte size is 16 bits
433 . (bfd_octets_per_byte is "2"), this value would be 50. *}
434 . bfd_vma output_offset;
435 .
436 . {* The output section through which to map on output. *}
437 . struct bfd_section *output_section;
438 .
439 . {* The alignment requirement of the section, as an exponent of 2 -
440 . e.g., 3 aligns to 2^3 (or 8). *}
441 . unsigned int alignment_power;
442 .
443 . {* If an input section, a pointer to a vector of relocation
444 . records for the data in this section. *}
445 . struct reloc_cache_entry *relocation;
446 .
447 . {* If an output section, a pointer to a vector of pointers to
448 . relocation records for the data in this section. *}
449 . struct reloc_cache_entry **orelocation;
450 .
451 . {* The number of relocation records in one of the above. *}
452 . unsigned reloc_count;
453 .
454 . {* Information below is back end specific - and not always used
455 . or updated. *}
456 .
457 . {* File position of section data. *}
458 . file_ptr filepos;
459 .
460 . {* File position of relocation info. *}
461 . file_ptr rel_filepos;
462 .
463 . {* File position of line data. *}
464 . file_ptr line_filepos;
465 .
466 . {* Pointer to data for applications. *}
467 . void *userdata;
468 .
469 . {* If the SEC_IN_MEMORY flag is set, this points to the actual
470 . contents. *}
471 . unsigned char *contents;
472 .
473 . {* Attached line number information. *}
474 . alent *lineno;
475 .
476 . {* Number of line number records. *}
477 . unsigned int lineno_count;
478 .
479 . {* Entity size for merging purposes. *}
480 . unsigned int entsize;
481 .
482 . {* Points to the kept section if this section is a link-once section,
483 . and is discarded. *}
484 . struct bfd_section *kept_section;
485 .
486 . {* When a section is being output, this value changes as more
487 . linenumbers are written out. *}
488 . file_ptr moving_line_filepos;
489 .
490 . {* What the section number is in the target world. *}
491 . int target_index;
492 .
493 . void *used_by_bfd;
494 .
495 . {* If this is a constructor section then here is a list of the
496 . relocations created to relocate items within it. *}
497 . struct relent_chain *constructor_chain;
498 .
499 . {* The BFD which owns the section. *}
500 . bfd *owner;
501 .
502 . {* A symbol which points at this section only. *}
503 . struct bfd_symbol *symbol;
504 . struct bfd_symbol **symbol_ptr_ptr;
505 .
506 . {* Early in the link process, map_head and map_tail are used to build
507 . a list of input sections attached to an output section. Later,
508 . output sections use these fields for a list of bfd_link_order
509 . structs. *}
510 . union {
511 . struct bfd_link_order *link_order;
512 . struct bfd_section *s;
513 . } map_head, map_tail;
514 .} asection;
515 .
516 .{* These sections are global, and are managed by BFD. The application
517 . and target back end are not permitted to change the values in
518 . these sections. New code should use the section_ptr macros rather
519 . than referring directly to the const sections. The const sections
520 . may eventually vanish. *}
521 .#define BFD_ABS_SECTION_NAME "*ABS*"
522 .#define BFD_UND_SECTION_NAME "*UND*"
523 .#define BFD_COM_SECTION_NAME "*COM*"
524 .#define BFD_IND_SECTION_NAME "*IND*"
525 .
526 .{* The absolute section. *}
527 .extern asection bfd_abs_section;
528 .#define bfd_abs_section_ptr ((asection *) &bfd_abs_section)
529 .#define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr)
530 .{* Pointer to the undefined section. *}
531 .extern asection bfd_und_section;
532 .#define bfd_und_section_ptr ((asection *) &bfd_und_section)
533 .#define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr)
534 .{* Pointer to the common section. *}
535 .extern asection bfd_com_section;
536 .#define bfd_com_section_ptr ((asection *) &bfd_com_section)
537 .{* Pointer to the indirect section. *}
538 .extern asection bfd_ind_section;
539 .#define bfd_ind_section_ptr ((asection *) &bfd_ind_section)
540 .#define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr)
541 .
542 .#define bfd_is_const_section(SEC) \
543 . ( ((SEC) == bfd_abs_section_ptr) \
544 . || ((SEC) == bfd_und_section_ptr) \
545 . || ((SEC) == bfd_com_section_ptr) \
546 . || ((SEC) == bfd_ind_section_ptr))
547 .
548 .{* Macros to handle insertion and deletion of a bfd's sections. These
549 . only handle the list pointers, ie. do not adjust section_count,
550 . target_index etc. *}
551 .#define bfd_section_list_remove(ABFD, S) \
552 . do \
553 . { \
554 . asection *_s = S; \
555 . asection *_next = _s->next; \
556 . asection *_prev = _s->prev; \
557 . if (_prev) \
558 . _prev->next = _next; \
559 . else \
560 . (ABFD)->sections = _next; \
561 . if (_next) \
562 . _next->prev = _prev; \
563 . else \
564 . (ABFD)->section_last = _prev; \
565 . } \
566 . while (0)
567 .#define bfd_section_list_append(ABFD, S) \
568 . do \
569 . { \
570 . asection *_s = S; \
571 . bfd *_abfd = ABFD; \
572 . _s->next = NULL; \
573 . if (_abfd->section_last) \
574 . { \
575 . _s->prev = _abfd->section_last; \
576 . _abfd->section_last->next = _s; \
577 . } \
578 . else \
579 . { \
580 . _s->prev = NULL; \
581 . _abfd->sections = _s; \
582 . } \
583 . _abfd->section_last = _s; \
584 . } \
585 . while (0)
586 .#define bfd_section_list_prepend(ABFD, S) \
587 . do \
588 . { \
589 . asection *_s = S; \
590 . bfd *_abfd = ABFD; \
591 . _s->prev = NULL; \
592 . if (_abfd->sections) \
593 . { \
594 . _s->next = _abfd->sections; \
595 . _abfd->sections->prev = _s; \
596 . } \
597 . else \
598 . { \
599 . _s->next = NULL; \
600 . _abfd->section_last = _s; \
601 . } \
602 . _abfd->sections = _s; \
603 . } \
604 . while (0)
605 .#define bfd_section_list_insert_after(ABFD, A, S) \
606 . do \
607 . { \
608 . asection *_a = A; \
609 . asection *_s = S; \
610 . asection *_next = _a->next; \
611 . _s->next = _next; \
612 . _s->prev = _a; \
613 . _a->next = _s; \
614 . if (_next) \
615 . _next->prev = _s; \
616 . else \
617 . (ABFD)->section_last = _s; \
618 . } \
619 . while (0)
620 .#define bfd_section_list_insert_before(ABFD, B, S) \
621 . do \
622 . { \
623 . asection *_b = B; \
624 . asection *_s = S; \
625 . asection *_prev = _b->prev; \
626 . _s->prev = _prev; \
627 . _s->next = _b; \
628 . _b->prev = _s; \
629 . if (_prev) \
630 . _prev->next = _s; \
631 . else \
632 . (ABFD)->sections = _s; \
633 . } \
634 . while (0)
635 .#define bfd_section_removed_from_list(ABFD, S) \
636 . ((S)->next == NULL ? (ABFD)->section_last != (S) : (S)->next->prev != (S))
637 .
638 .#define BFD_FAKE_SECTION(SEC, FLAGS, SYM, NAME, IDX) \
639 . {* name, id, index, next, prev, flags, user_set_vma, *} \
640 . { NAME, IDX, 0, NULL, NULL, FLAGS, 0, \
641 . \
642 . {* linker_mark, linker_has_input, gc_mark, *} \
643 . 0, 0, 1, \
644 . \
645 . {* segment_mark, sec_info_type, use_rela_p, has_tls_reloc, *} \
646 . 0, 0, 0, 0, \
647 . \
648 . {* has_tls_get_addr_call, has_gp_reloc, need_finalize_relax, *} \
649 . 0, 0, 0, \
650 . \
651 . {* reloc_done, vma, lma, size, rawsize *} \
652 . 0, 0, 0, 0, 0, \
653 . \
654 . {* output_offset, output_section, alignment_power, *} \
655 . 0, (struct bfd_section *) &SEC, 0, \
656 . \
657 . {* relocation, orelocation, reloc_count, filepos, rel_filepos, *} \
658 . NULL, NULL, 0, 0, 0, \
659 . \
660 . {* line_filepos, userdata, contents, lineno, lineno_count, *} \
661 . 0, NULL, NULL, NULL, 0, \
662 . \
663 . {* entsize, kept_section, moving_line_filepos, *} \
664 . 0, NULL, 0, \
665 . \
666 . {* target_index, used_by_bfd, constructor_chain, owner, *} \
667 . 0, NULL, NULL, NULL, \
668 . \
669 . {* symbol, symbol_ptr_ptr, *} \
670 . (struct bfd_symbol *) SYM, &SEC.symbol, \
671 . \
672 . {* map_head, map_tail *} \
673 . { NULL }, { NULL } \
674 . }
675 .
676 */
677
678 /* We use a macro to initialize the static asymbol structures because
679 traditional C does not permit us to initialize a union member while
680 gcc warns if we don't initialize it. */
681 /* the_bfd, name, value, attr, section [, udata] */
682 #ifdef __STDC__
683 #define GLOBAL_SYM_INIT(NAME, SECTION) \
684 { 0, NAME, 0, BSF_SECTION_SYM, (asection *) SECTION, { 0 }}
685 #else
686 #define GLOBAL_SYM_INIT(NAME, SECTION) \
687 { 0, NAME, 0, BSF_SECTION_SYM, (asection *) SECTION }
688 #endif
689
690 /* These symbols are global, not specific to any BFD. Therefore, anything
691 that tries to change them is broken, and should be repaired. */
692
693 static const asymbol global_syms[] =
694 {
695 GLOBAL_SYM_INIT (BFD_COM_SECTION_NAME, &bfd_com_section),
696 GLOBAL_SYM_INIT (BFD_UND_SECTION_NAME, &bfd_und_section),
697 GLOBAL_SYM_INIT (BFD_ABS_SECTION_NAME, &bfd_abs_section),
698 GLOBAL_SYM_INIT (BFD_IND_SECTION_NAME, &bfd_ind_section)
699 };
700
701 #define STD_SECTION(SEC, FLAGS, NAME, IDX) \
702 asection SEC = BFD_FAKE_SECTION(SEC, FLAGS, &global_syms[IDX], \
703 NAME, IDX)
704
705 STD_SECTION (bfd_com_section, SEC_IS_COMMON, BFD_COM_SECTION_NAME, 0);
706 STD_SECTION (bfd_und_section, 0, BFD_UND_SECTION_NAME, 1);
707 STD_SECTION (bfd_abs_section, 0, BFD_ABS_SECTION_NAME, 2);
708 STD_SECTION (bfd_ind_section, 0, BFD_IND_SECTION_NAME, 3);
709 #undef STD_SECTION
710
711 /* Initialize an entry in the section hash table. */
712
713 struct bfd_hash_entry *
714 bfd_section_hash_newfunc (struct bfd_hash_entry *entry,
715 struct bfd_hash_table *table,
716 const char *string)
717 {
718 /* Allocate the structure if it has not already been allocated by a
719 subclass. */
720 if (entry == NULL)
721 {
722 entry = (struct bfd_hash_entry *)
723 bfd_hash_allocate (table, sizeof (struct section_hash_entry));
724 if (entry == NULL)
725 return entry;
726 }
727
728 /* Call the allocation method of the superclass. */
729 entry = bfd_hash_newfunc (entry, table, string);
730 if (entry != NULL)
731 memset (&((struct section_hash_entry *) entry)->section, 0,
732 sizeof (asection));
733
734 return entry;
735 }
736
737 #define section_hash_lookup(table, string, create, copy) \
738 ((struct section_hash_entry *) \
739 bfd_hash_lookup ((table), (string), (create), (copy)))
740
741 /* Create a symbol whose only job is to point to this section. This
742 is useful for things like relocs which are relative to the base
743 of a section. */
744
745 bfd_boolean
746 _bfd_generic_new_section_hook (bfd *abfd, asection *newsect)
747 {
748 newsect->symbol = bfd_make_empty_symbol (abfd);
749 if (newsect->symbol == NULL)
750 return FALSE;
751
752 newsect->symbol->name = newsect->name;
753 newsect->symbol->value = 0;
754 newsect->symbol->section = newsect;
755 newsect->symbol->flags = BSF_SECTION_SYM;
756
757 newsect->symbol_ptr_ptr = &newsect->symbol;
758 return TRUE;
759 }
760
761 /* Initializes a new section. NEWSECT->NAME is already set. */
762
763 static asection *
764 bfd_section_init (bfd *abfd, asection *newsect)
765 {
766 static int section_id = 0x10; /* id 0 to 3 used by STD_SECTION. */
767
768 newsect->id = section_id;
769 newsect->index = abfd->section_count;
770 newsect->owner = abfd;
771
772 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
773 return NULL;
774
775 section_id++;
776 abfd->section_count++;
777 bfd_section_list_append (abfd, newsect);
778 return newsect;
779 }
780
781 /*
782 DOCDD
783 INODE
784 section prototypes, , typedef asection, Sections
785 SUBSECTION
786 Section prototypes
787
788 These are the functions exported by the section handling part of BFD.
789 */
790
791 /*
792 FUNCTION
793 bfd_section_list_clear
794
795 SYNOPSIS
796 void bfd_section_list_clear (bfd *);
797
798 DESCRIPTION
799 Clears the section list, and also resets the section count and
800 hash table entries.
801 */
802
803 void
804 bfd_section_list_clear (bfd *abfd)
805 {
806 abfd->sections = NULL;
807 abfd->section_last = NULL;
808 abfd->section_count = 0;
809 memset (abfd->section_htab.table, 0,
810 abfd->section_htab.size * sizeof (struct bfd_hash_entry *));
811 }
812
813 /*
814 FUNCTION
815 bfd_get_section_by_name
816
817 SYNOPSIS
818 asection *bfd_get_section_by_name (bfd *abfd, const char *name);
819
820 DESCRIPTION
821 Run through @var{abfd} and return the one of the
822 <<asection>>s whose name matches @var{name}, otherwise <<NULL>>.
823 @xref{Sections}, for more information.
824
825 This should only be used in special cases; the normal way to process
826 all sections of a given name is to use <<bfd_map_over_sections>> and
827 <<strcmp>> on the name (or better yet, base it on the section flags
828 or something else) for each section.
829 */
830
831 asection *
832 bfd_get_section_by_name (bfd *abfd, const char *name)
833 {
834 struct section_hash_entry *sh;
835
836 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
837 if (sh != NULL)
838 return &sh->section;
839
840 return NULL;
841 }
842
843 /*
844 FUNCTION
845 bfd_get_section_by_name_if
846
847 SYNOPSIS
848 asection *bfd_get_section_by_name_if
849 (bfd *abfd,
850 const char *name,
851 bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj),
852 void *obj);
853
854 DESCRIPTION
855 Call the provided function @var{func} for each section
856 attached to the BFD @var{abfd} whose name matches @var{name},
857 passing @var{obj} as an argument. The function will be called
858 as if by
859
860 | func (abfd, the_section, obj);
861
862 It returns the first section for which @var{func} returns true,
863 otherwise <<NULL>>.
864
865 */
866
867 asection *
868 bfd_get_section_by_name_if (bfd *abfd, const char *name,
869 bfd_boolean (*operation) (bfd *,
870 asection *,
871 void *),
872 void *user_storage)
873 {
874 struct section_hash_entry *sh;
875 unsigned long hash;
876
877 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
878 if (sh == NULL)
879 return NULL;
880
881 hash = sh->root.hash;
882 do
883 {
884 if ((*operation) (abfd, &sh->section, user_storage))
885 return &sh->section;
886 sh = (struct section_hash_entry *) sh->root.next;
887 }
888 while (sh != NULL && sh->root.hash == hash
889 && strcmp (sh->root.string, name) == 0);
890
891 return NULL;
892 }
893
894 /*
895 FUNCTION
896 bfd_get_unique_section_name
897
898 SYNOPSIS
899 char *bfd_get_unique_section_name
900 (bfd *abfd, const char *templat, int *count);
901
902 DESCRIPTION
903 Invent a section name that is unique in @var{abfd} by tacking
904 a dot and a digit suffix onto the original @var{templat}. If
905 @var{count} is non-NULL, then it specifies the first number
906 tried as a suffix to generate a unique name. The value
907 pointed to by @var{count} will be incremented in this case.
908 */
909
910 char *
911 bfd_get_unique_section_name (bfd *abfd, const char *templat, int *count)
912 {
913 int num;
914 unsigned int len;
915 char *sname;
916
917 len = strlen (templat);
918 sname = bfd_malloc (len + 8);
919 if (sname == NULL)
920 return NULL;
921 memcpy (sname, templat, len);
922 num = 1;
923 if (count != NULL)
924 num = *count;
925
926 do
927 {
928 /* If we have a million sections, something is badly wrong. */
929 if (num > 999999)
930 abort ();
931 sprintf (sname + len, ".%d", num++);
932 }
933 while (section_hash_lookup (&abfd->section_htab, sname, FALSE, FALSE));
934
935 if (count != NULL)
936 *count = num;
937 return sname;
938 }
939
940 /*
941 FUNCTION
942 bfd_make_section_old_way
943
944 SYNOPSIS
945 asection *bfd_make_section_old_way (bfd *abfd, const char *name);
946
947 DESCRIPTION
948 Create a new empty section called @var{name}
949 and attach it to the end of the chain of sections for the
950 BFD @var{abfd}. An attempt to create a section with a name which
951 is already in use returns its pointer without changing the
952 section chain.
953
954 It has the funny name since this is the way it used to be
955 before it was rewritten....
956
957 Possible errors are:
958 o <<bfd_error_invalid_operation>> -
959 If output has already started for this BFD.
960 o <<bfd_error_no_memory>> -
961 If memory allocation fails.
962
963 */
964
965 asection *
966 bfd_make_section_old_way (bfd *abfd, const char *name)
967 {
968 asection *newsect;
969
970 if (abfd->output_has_begun)
971 {
972 bfd_set_error (bfd_error_invalid_operation);
973 return NULL;
974 }
975
976 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0)
977 newsect = bfd_abs_section_ptr;
978 else if (strcmp (name, BFD_COM_SECTION_NAME) == 0)
979 newsect = bfd_com_section_ptr;
980 else if (strcmp (name, BFD_UND_SECTION_NAME) == 0)
981 newsect = bfd_und_section_ptr;
982 else if (strcmp (name, BFD_IND_SECTION_NAME) == 0)
983 newsect = bfd_ind_section_ptr;
984 else
985 {
986 struct section_hash_entry *sh;
987
988 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
989 if (sh == NULL)
990 return NULL;
991
992 newsect = &sh->section;
993 if (newsect->name != NULL)
994 {
995 /* Section already exists. */
996 return newsect;
997 }
998
999 newsect->name = name;
1000 return bfd_section_init (abfd, newsect);
1001 }
1002
1003 /* Call new_section_hook when "creating" the standard abs, com, und
1004 and ind sections to tack on format specific section data.
1005 Also, create a proper section symbol. */
1006 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
1007 return NULL;
1008 return newsect;
1009 }
1010
1011 /*
1012 FUNCTION
1013 bfd_make_section_anyway_with_flags
1014
1015 SYNOPSIS
1016 asection *bfd_make_section_anyway_with_flags
1017 (bfd *abfd, const char *name, flagword flags);
1018
1019 DESCRIPTION
1020 Create a new empty section called @var{name} and attach it to the end of
1021 the chain of sections for @var{abfd}. Create a new section even if there
1022 is already a section with that name. Also set the attributes of the
1023 new section to the value @var{flags}.
1024
1025 Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1026 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1027 o <<bfd_error_no_memory>> - If memory allocation fails.
1028 */
1029
1030 sec_ptr
1031 bfd_make_section_anyway_with_flags (bfd *abfd, const char *name,
1032 flagword flags)
1033 {
1034 struct section_hash_entry *sh;
1035 asection *newsect;
1036
1037 if (abfd->output_has_begun)
1038 {
1039 bfd_set_error (bfd_error_invalid_operation);
1040 return NULL;
1041 }
1042
1043 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1044 if (sh == NULL)
1045 return NULL;
1046
1047 newsect = &sh->section;
1048 if (newsect->name != NULL)
1049 {
1050 /* We are making a section of the same name. Put it in the
1051 section hash table. Even though we can't find it directly by a
1052 hash lookup, we'll be able to find the section by traversing
1053 sh->root.next quicker than looking at all the bfd sections. */
1054 struct section_hash_entry *new_sh;
1055 new_sh = (struct section_hash_entry *)
1056 bfd_section_hash_newfunc (NULL, &abfd->section_htab, name);
1057 if (new_sh == NULL)
1058 return NULL;
1059
1060 new_sh->root = sh->root;
1061 sh->root.next = &new_sh->root;
1062 newsect = &new_sh->section;
1063 }
1064
1065 newsect->flags = flags;
1066 newsect->name = name;
1067 return bfd_section_init (abfd, newsect);
1068 }
1069
1070 /*
1071 FUNCTION
1072 bfd_make_section_anyway
1073
1074 SYNOPSIS
1075 asection *bfd_make_section_anyway (bfd *abfd, const char *name);
1076
1077 DESCRIPTION
1078 Create a new empty section called @var{name} and attach it to the end of
1079 the chain of sections for @var{abfd}. Create a new section even if there
1080 is already a section with that name.
1081
1082 Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1083 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1084 o <<bfd_error_no_memory>> - If memory allocation fails.
1085 */
1086
1087 sec_ptr
1088 bfd_make_section_anyway (bfd *abfd, const char *name)
1089 {
1090 return bfd_make_section_anyway_with_flags (abfd, name, 0);
1091 }
1092
1093 /*
1094 FUNCTION
1095 bfd_make_section_with_flags
1096
1097 SYNOPSIS
1098 asection *bfd_make_section_with_flags
1099 (bfd *, const char *name, flagword flags);
1100
1101 DESCRIPTION
1102 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1103 bfd_set_error ()) without changing the section chain if there is already a
1104 section named @var{name}. Also set the attributes of the new section to
1105 the value @var{flags}. If there is an error, return <<NULL>> and set
1106 <<bfd_error>>.
1107 */
1108
1109 asection *
1110 bfd_make_section_with_flags (bfd *abfd, const char *name,
1111 flagword flags)
1112 {
1113 struct section_hash_entry *sh;
1114 asection *newsect;
1115
1116 if (abfd->output_has_begun)
1117 {
1118 bfd_set_error (bfd_error_invalid_operation);
1119 return NULL;
1120 }
1121
1122 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0
1123 || strcmp (name, BFD_COM_SECTION_NAME) == 0
1124 || strcmp (name, BFD_UND_SECTION_NAME) == 0
1125 || strcmp (name, BFD_IND_SECTION_NAME) == 0)
1126 return NULL;
1127
1128 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1129 if (sh == NULL)
1130 return NULL;
1131
1132 newsect = &sh->section;
1133 if (newsect->name != NULL)
1134 {
1135 /* Section already exists. */
1136 return NULL;
1137 }
1138
1139 newsect->name = name;
1140 newsect->flags = flags;
1141 return bfd_section_init (abfd, newsect);
1142 }
1143
1144 /*
1145 FUNCTION
1146 bfd_make_section
1147
1148 SYNOPSIS
1149 asection *bfd_make_section (bfd *, const char *name);
1150
1151 DESCRIPTION
1152 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1153 bfd_set_error ()) without changing the section chain if there is already a
1154 section named @var{name}. If there is an error, return <<NULL>> and set
1155 <<bfd_error>>.
1156 */
1157
1158 asection *
1159 bfd_make_section (bfd *abfd, const char *name)
1160 {
1161 return bfd_make_section_with_flags (abfd, name, 0);
1162 }
1163
1164 /*
1165 FUNCTION
1166 bfd_set_section_flags
1167
1168 SYNOPSIS
1169 bfd_boolean bfd_set_section_flags
1170 (bfd *abfd, asection *sec, flagword flags);
1171
1172 DESCRIPTION
1173 Set the attributes of the section @var{sec} in the BFD
1174 @var{abfd} to the value @var{flags}. Return <<TRUE>> on success,
1175 <<FALSE>> on error. Possible error returns are:
1176
1177 o <<bfd_error_invalid_operation>> -
1178 The section cannot have one or more of the attributes
1179 requested. For example, a .bss section in <<a.out>> may not
1180 have the <<SEC_HAS_CONTENTS>> field set.
1181
1182 */
1183
1184 bfd_boolean
1185 bfd_set_section_flags (bfd *abfd ATTRIBUTE_UNUSED,
1186 sec_ptr section,
1187 flagword flags)
1188 {
1189 section->flags = flags;
1190 return TRUE;
1191 }
1192
1193 /*
1194 FUNCTION
1195 bfd_map_over_sections
1196
1197 SYNOPSIS
1198 void bfd_map_over_sections
1199 (bfd *abfd,
1200 void (*func) (bfd *abfd, asection *sect, void *obj),
1201 void *obj);
1202
1203 DESCRIPTION
1204 Call the provided function @var{func} for each section
1205 attached to the BFD @var{abfd}, passing @var{obj} as an
1206 argument. The function will be called as if by
1207
1208 | func (abfd, the_section, obj);
1209
1210 This is the preferred method for iterating over sections; an
1211 alternative would be to use a loop:
1212
1213 | section *p;
1214 | for (p = abfd->sections; p != NULL; p = p->next)
1215 | func (abfd, p, ...)
1216
1217 */
1218
1219 void
1220 bfd_map_over_sections (bfd *abfd,
1221 void (*operation) (bfd *, asection *, void *),
1222 void *user_storage)
1223 {
1224 asection *sect;
1225 unsigned int i = 0;
1226
1227 for (sect = abfd->sections; sect != NULL; i++, sect = sect->next)
1228 (*operation) (abfd, sect, user_storage);
1229
1230 if (i != abfd->section_count) /* Debugging */
1231 abort ();
1232 }
1233
1234 /*
1235 FUNCTION
1236 bfd_sections_find_if
1237
1238 SYNOPSIS
1239 asection *bfd_sections_find_if
1240 (bfd *abfd,
1241 bfd_boolean (*operation) (bfd *abfd, asection *sect, void *obj),
1242 void *obj);
1243
1244 DESCRIPTION
1245 Call the provided function @var{operation} for each section
1246 attached to the BFD @var{abfd}, passing @var{obj} as an
1247 argument. The function will be called as if by
1248
1249 | operation (abfd, the_section, obj);
1250
1251 It returns the first section for which @var{operation} returns true.
1252
1253 */
1254
1255 asection *
1256 bfd_sections_find_if (bfd *abfd,
1257 bfd_boolean (*operation) (bfd *, asection *, void *),
1258 void *user_storage)
1259 {
1260 asection *sect;
1261
1262 for (sect = abfd->sections; sect != NULL; sect = sect->next)
1263 if ((*operation) (abfd, sect, user_storage))
1264 break;
1265
1266 return sect;
1267 }
1268
1269 /*
1270 FUNCTION
1271 bfd_set_section_size
1272
1273 SYNOPSIS
1274 bfd_boolean bfd_set_section_size
1275 (bfd *abfd, asection *sec, bfd_size_type val);
1276
1277 DESCRIPTION
1278 Set @var{sec} to the size @var{val}. If the operation is
1279 ok, then <<TRUE>> is returned, else <<FALSE>>.
1280
1281 Possible error returns:
1282 o <<bfd_error_invalid_operation>> -
1283 Writing has started to the BFD, so setting the size is invalid.
1284
1285 */
1286
1287 bfd_boolean
1288 bfd_set_section_size (bfd *abfd, sec_ptr ptr, bfd_size_type val)
1289 {
1290 /* Once you've started writing to any section you cannot create or change
1291 the size of any others. */
1292
1293 if (abfd->output_has_begun)
1294 {
1295 bfd_set_error (bfd_error_invalid_operation);
1296 return FALSE;
1297 }
1298
1299 ptr->size = val;
1300 return TRUE;
1301 }
1302
1303 /*
1304 FUNCTION
1305 bfd_set_section_contents
1306
1307 SYNOPSIS
1308 bfd_boolean bfd_set_section_contents
1309 (bfd *abfd, asection *section, const void *data,
1310 file_ptr offset, bfd_size_type count);
1311
1312 DESCRIPTION
1313 Sets the contents of the section @var{section} in BFD
1314 @var{abfd} to the data starting in memory at @var{data}. The
1315 data is written to the output section starting at offset
1316 @var{offset} for @var{count} octets.
1317
1318 Normally <<TRUE>> is returned, else <<FALSE>>. Possible error
1319 returns are:
1320 o <<bfd_error_no_contents>> -
1321 The output section does not have the <<SEC_HAS_CONTENTS>>
1322 attribute, so nothing can be written to it.
1323 o and some more too
1324
1325 This routine is front end to the back end function
1326 <<_bfd_set_section_contents>>.
1327
1328 */
1329
1330 bfd_boolean
1331 bfd_set_section_contents (bfd *abfd,
1332 sec_ptr section,
1333 const void *location,
1334 file_ptr offset,
1335 bfd_size_type count)
1336 {
1337 bfd_size_type sz;
1338
1339 if (!(bfd_get_section_flags (abfd, section) & SEC_HAS_CONTENTS))
1340 {
1341 bfd_set_error (bfd_error_no_contents);
1342 return FALSE;
1343 }
1344
1345 sz = section->size;
1346 if ((bfd_size_type) offset > sz
1347 || count > sz
1348 || offset + count > sz
1349 || count != (size_t) count)
1350 {
1351 bfd_set_error (bfd_error_bad_value);
1352 return FALSE;
1353 }
1354
1355 if (!bfd_write_p (abfd))
1356 {
1357 bfd_set_error (bfd_error_invalid_operation);
1358 return FALSE;
1359 }
1360
1361 /* Record a copy of the data in memory if desired. */
1362 if (section->contents
1363 && location != section->contents + offset)
1364 memcpy (section->contents + offset, location, (size_t) count);
1365
1366 if (BFD_SEND (abfd, _bfd_set_section_contents,
1367 (abfd, section, location, offset, count)))
1368 {
1369 abfd->output_has_begun = TRUE;
1370 return TRUE;
1371 }
1372
1373 return FALSE;
1374 }
1375
1376 /*
1377 FUNCTION
1378 bfd_get_section_contents
1379
1380 SYNOPSIS
1381 bfd_boolean bfd_get_section_contents
1382 (bfd *abfd, asection *section, void *location, file_ptr offset,
1383 bfd_size_type count);
1384
1385 DESCRIPTION
1386 Read data from @var{section} in BFD @var{abfd}
1387 into memory starting at @var{location}. The data is read at an
1388 offset of @var{offset} from the start of the input section,
1389 and is read for @var{count} bytes.
1390
1391 If the contents of a constructor with the <<SEC_CONSTRUCTOR>>
1392 flag set are requested or if the section does not have the
1393 <<SEC_HAS_CONTENTS>> flag set, then the @var{location} is filled
1394 with zeroes. If no errors occur, <<TRUE>> is returned, else
1395 <<FALSE>>.
1396
1397 */
1398 bfd_boolean
1399 bfd_get_section_contents (bfd *abfd,
1400 sec_ptr section,
1401 void *location,
1402 file_ptr offset,
1403 bfd_size_type count)
1404 {
1405 bfd_size_type sz;
1406
1407 if (section->flags & SEC_CONSTRUCTOR)
1408 {
1409 memset (location, 0, (size_t) count);
1410 return TRUE;
1411 }
1412
1413 sz = section->rawsize ? section->rawsize : section->size;
1414 if ((bfd_size_type) offset > sz
1415 || count > sz
1416 || offset + count > sz
1417 || count != (size_t) count)
1418 {
1419 bfd_set_error (bfd_error_bad_value);
1420 return FALSE;
1421 }
1422
1423 if (count == 0)
1424 /* Don't bother. */
1425 return TRUE;
1426
1427 if ((section->flags & SEC_HAS_CONTENTS) == 0)
1428 {
1429 memset (location, 0, (size_t) count);
1430 return TRUE;
1431 }
1432
1433 if ((section->flags & SEC_IN_MEMORY) != 0)
1434 {
1435 memcpy (location, section->contents + offset, (size_t) count);
1436 return TRUE;
1437 }
1438
1439 return BFD_SEND (abfd, _bfd_get_section_contents,
1440 (abfd, section, location, offset, count));
1441 }
1442
1443 /*
1444 FUNCTION
1445 bfd_malloc_and_get_section
1446
1447 SYNOPSIS
1448 bfd_boolean bfd_malloc_and_get_section
1449 (bfd *abfd, asection *section, bfd_byte **buf);
1450
1451 DESCRIPTION
1452 Read all data from @var{section} in BFD @var{abfd}
1453 into a buffer, *@var{buf}, malloc'd by this function.
1454 */
1455
1456 bfd_boolean
1457 bfd_malloc_and_get_section (bfd *abfd, sec_ptr sec, bfd_byte **buf)
1458 {
1459 bfd_size_type sz = sec->rawsize ? sec->rawsize : sec->size;
1460 bfd_byte *p = NULL;
1461
1462 *buf = p;
1463 if (sz == 0)
1464 return TRUE;
1465
1466 p = bfd_malloc (sec->rawsize > sec->size ? sec->rawsize : sec->size);
1467 if (p == NULL)
1468 return FALSE;
1469 *buf = p;
1470
1471 return bfd_get_section_contents (abfd, sec, p, 0, sz);
1472 }
1473 /*
1474 FUNCTION
1475 bfd_copy_private_section_data
1476
1477 SYNOPSIS
1478 bfd_boolean bfd_copy_private_section_data
1479 (bfd *ibfd, asection *isec, bfd *obfd, asection *osec);
1480
1481 DESCRIPTION
1482 Copy private section information from @var{isec} in the BFD
1483 @var{ibfd} to the section @var{osec} in the BFD @var{obfd}.
1484 Return <<TRUE>> on success, <<FALSE>> on error. Possible error
1485 returns are:
1486
1487 o <<bfd_error_no_memory>> -
1488 Not enough memory exists to create private data for @var{osec}.
1489
1490 .#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \
1491 . BFD_SEND (obfd, _bfd_copy_private_section_data, \
1492 . (ibfd, isection, obfd, osection))
1493 */
1494
1495 /*
1496 FUNCTION
1497 bfd_generic_is_group_section
1498
1499 SYNOPSIS
1500 bfd_boolean bfd_generic_is_group_section (bfd *, const asection *sec);
1501
1502 DESCRIPTION
1503 Returns TRUE if @var{sec} is a member of a group.
1504 */
1505
1506 bfd_boolean
1507 bfd_generic_is_group_section (bfd *abfd ATTRIBUTE_UNUSED,
1508 const asection *sec ATTRIBUTE_UNUSED)
1509 {
1510 return FALSE;
1511 }
1512
1513 /*
1514 FUNCTION
1515 bfd_generic_discard_group
1516
1517 SYNOPSIS
1518 bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group);
1519
1520 DESCRIPTION
1521 Remove all members of @var{group} from the output.
1522 */
1523
1524 bfd_boolean
1525 bfd_generic_discard_group (bfd *abfd ATTRIBUTE_UNUSED,
1526 asection *group ATTRIBUTE_UNUSED)
1527 {
1528 return TRUE;
1529 }
This page took 0.061369 seconds and 5 git commands to generate.