Don't change compressed input debug section names
[deliverable/binutils-gdb.git] / bfd / section.c
1 /* Object file "section" support for the BFD library.
2 Copyright (C) 1990-2015 Free Software Foundation, Inc.
3 Written by Cygnus Support.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 /*
23 SECTION
24 Sections
25
26 The raw data contained within a BFD is maintained through the
27 section abstraction. A single BFD may have any number of
28 sections. It keeps hold of them by pointing to the first;
29 each one points to the next in the list.
30
31 Sections are supported in BFD in <<section.c>>.
32
33 @menu
34 @* Section Input::
35 @* Section Output::
36 @* typedef asection::
37 @* section prototypes::
38 @end menu
39
40 INODE
41 Section Input, Section Output, Sections, Sections
42 SUBSECTION
43 Section input
44
45 When a BFD is opened for reading, the section structures are
46 created and attached to the BFD.
47
48 Each section has a name which describes the section in the
49 outside world---for example, <<a.out>> would contain at least
50 three sections, called <<.text>>, <<.data>> and <<.bss>>.
51
52 Names need not be unique; for example a COFF file may have several
53 sections named <<.data>>.
54
55 Sometimes a BFD will contain more than the ``natural'' number of
56 sections. A back end may attach other sections containing
57 constructor data, or an application may add a section (using
58 <<bfd_make_section>>) to the sections attached to an already open
59 BFD. For example, the linker creates an extra section
60 <<COMMON>> for each input file's BFD to hold information about
61 common storage.
62
63 The raw data is not necessarily read in when
64 the section descriptor is created. Some targets may leave the
65 data in place until a <<bfd_get_section_contents>> call is
66 made. Other back ends may read in all the data at once. For
67 example, an S-record file has to be read once to determine the
68 size of the data. An IEEE-695 file doesn't contain raw data in
69 sections, but data and relocation expressions intermixed, so
70 the data area has to be parsed to get out the data and
71 relocations.
72
73 INODE
74 Section Output, typedef asection, Section Input, Sections
75
76 SUBSECTION
77 Section output
78
79 To write a new object style BFD, the various sections to be
80 written have to be created. They are attached to the BFD in
81 the same way as input sections; data is written to the
82 sections using <<bfd_set_section_contents>>.
83
84 Any program that creates or combines sections (e.g., the assembler
85 and linker) must use the <<asection>> fields <<output_section>> and
86 <<output_offset>> to indicate the file sections to which each
87 section must be written. (If the section is being created from
88 scratch, <<output_section>> should probably point to the section
89 itself and <<output_offset>> should probably be zero.)
90
91 The data to be written comes from input sections attached
92 (via <<output_section>> pointers) to
93 the output sections. The output section structure can be
94 considered a filter for the input section: the output section
95 determines the vma of the output data and the name, but the
96 input section determines the offset into the output section of
97 the data to be written.
98
99 E.g., to create a section "O", starting at 0x100, 0x123 long,
100 containing two subsections, "A" at offset 0x0 (i.e., at vma
101 0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the <<asection>>
102 structures would look like:
103
104 | section name "A"
105 | output_offset 0x00
106 | size 0x20
107 | output_section -----------> section name "O"
108 | | vma 0x100
109 | section name "B" | size 0x123
110 | output_offset 0x20 |
111 | size 0x103 |
112 | output_section --------|
113
114 SUBSECTION
115 Link orders
116
117 The data within a section is stored in a @dfn{link_order}.
118 These are much like the fixups in <<gas>>. The link_order
119 abstraction allows a section to grow and shrink within itself.
120
121 A link_order knows how big it is, and which is the next
122 link_order and where the raw data for it is; it also points to
123 a list of relocations which apply to it.
124
125 The link_order is used by the linker to perform relaxing on
126 final code. The compiler creates code which is as big as
127 necessary to make it work without relaxing, and the user can
128 select whether to relax. Sometimes relaxing takes a lot of
129 time. The linker runs around the relocations to see if any
130 are attached to data which can be shrunk, if so it does it on
131 a link_order by link_order basis.
132
133 */
134
135 #include "sysdep.h"
136 #include "bfd.h"
137 #include "libbfd.h"
138 #include "bfdlink.h"
139
140 /*
141 DOCDD
142 INODE
143 typedef asection, section prototypes, Section Output, Sections
144 SUBSECTION
145 typedef asection
146
147 Here is the section structure:
148
149 CODE_FRAGMENT
150 .
151 .typedef struct bfd_section
152 .{
153 . {* The name of the section; the name isn't a copy, the pointer is
154 . the same as that passed to bfd_make_section. *}
155 . const char *name;
156 .
157 . {* A unique sequence number. *}
158 . int id;
159 .
160 . {* Which section in the bfd; 0..n-1 as sections are created in a bfd. *}
161 . int index;
162 .
163 . {* The next section in the list belonging to the BFD, or NULL. *}
164 . struct bfd_section *next;
165 .
166 . {* The previous section in the list belonging to the BFD, or NULL. *}
167 . struct bfd_section *prev;
168 .
169 . {* The field flags contains attributes of the section. Some
170 . flags are read in from the object file, and some are
171 . synthesized from other information. *}
172 . flagword flags;
173 .
174 .#define SEC_NO_FLAGS 0x000
175 .
176 . {* Tells the OS to allocate space for this section when loading.
177 . This is clear for a section containing debug information only. *}
178 .#define SEC_ALLOC 0x001
179 .
180 . {* Tells the OS to load the section from the file when loading.
181 . This is clear for a .bss section. *}
182 .#define SEC_LOAD 0x002
183 .
184 . {* The section contains data still to be relocated, so there is
185 . some relocation information too. *}
186 .#define SEC_RELOC 0x004
187 .
188 . {* A signal to the OS that the section contains read only data. *}
189 .#define SEC_READONLY 0x008
190 .
191 . {* The section contains code only. *}
192 .#define SEC_CODE 0x010
193 .
194 . {* The section contains data only. *}
195 .#define SEC_DATA 0x020
196 .
197 . {* The section will reside in ROM. *}
198 .#define SEC_ROM 0x040
199 .
200 . {* The section contains constructor information. This section
201 . type is used by the linker to create lists of constructors and
202 . destructors used by <<g++>>. When a back end sees a symbol
203 . which should be used in a constructor list, it creates a new
204 . section for the type of name (e.g., <<__CTOR_LIST__>>), attaches
205 . the symbol to it, and builds a relocation. To build the lists
206 . of constructors, all the linker has to do is catenate all the
207 . sections called <<__CTOR_LIST__>> and relocate the data
208 . contained within - exactly the operations it would peform on
209 . standard data. *}
210 .#define SEC_CONSTRUCTOR 0x080
211 .
212 . {* The section has contents - a data section could be
213 . <<SEC_ALLOC>> | <<SEC_HAS_CONTENTS>>; a debug section could be
214 . <<SEC_HAS_CONTENTS>> *}
215 .#define SEC_HAS_CONTENTS 0x100
216 .
217 . {* An instruction to the linker to not output the section
218 . even if it has information which would normally be written. *}
219 .#define SEC_NEVER_LOAD 0x200
220 .
221 . {* The section contains thread local data. *}
222 .#define SEC_THREAD_LOCAL 0x400
223 .
224 . {* The section has GOT references. This flag is only for the
225 . linker, and is currently only used by the elf32-hppa back end.
226 . It will be set if global offset table references were detected
227 . in this section, which indicate to the linker that the section
228 . contains PIC code, and must be handled specially when doing a
229 . static link. *}
230 .#define SEC_HAS_GOT_REF 0x800
231 .
232 . {* The section contains common symbols (symbols may be defined
233 . multiple times, the value of a symbol is the amount of
234 . space it requires, and the largest symbol value is the one
235 . used). Most targets have exactly one of these (which we
236 . translate to bfd_com_section_ptr), but ECOFF has two. *}
237 .#define SEC_IS_COMMON 0x1000
238 .
239 . {* The section contains only debugging information. For
240 . example, this is set for ELF .debug and .stab sections.
241 . strip tests this flag to see if a section can be
242 . discarded. *}
243 .#define SEC_DEBUGGING 0x2000
244 .
245 . {* The contents of this section are held in memory pointed to
246 . by the contents field. This is checked by bfd_get_section_contents,
247 . and the data is retrieved from memory if appropriate. *}
248 .#define SEC_IN_MEMORY 0x4000
249 .
250 . {* The contents of this section are to be excluded by the
251 . linker for executable and shared objects unless those
252 . objects are to be further relocated. *}
253 .#define SEC_EXCLUDE 0x8000
254 .
255 . {* The contents of this section are to be sorted based on the sum of
256 . the symbol and addend values specified by the associated relocation
257 . entries. Entries without associated relocation entries will be
258 . appended to the end of the section in an unspecified order. *}
259 .#define SEC_SORT_ENTRIES 0x10000
260 .
261 . {* When linking, duplicate sections of the same name should be
262 . discarded, rather than being combined into a single section as
263 . is usually done. This is similar to how common symbols are
264 . handled. See SEC_LINK_DUPLICATES below. *}
265 .#define SEC_LINK_ONCE 0x20000
266 .
267 . {* If SEC_LINK_ONCE is set, this bitfield describes how the linker
268 . should handle duplicate sections. *}
269 .#define SEC_LINK_DUPLICATES 0xc0000
270 .
271 . {* This value for SEC_LINK_DUPLICATES means that duplicate
272 . sections with the same name should simply be discarded. *}
273 .#define SEC_LINK_DUPLICATES_DISCARD 0x0
274 .
275 . {* This value for SEC_LINK_DUPLICATES means that the linker
276 . should warn if there are any duplicate sections, although
277 . it should still only link one copy. *}
278 .#define SEC_LINK_DUPLICATES_ONE_ONLY 0x40000
279 .
280 . {* This value for SEC_LINK_DUPLICATES means that the linker
281 . should warn if any duplicate sections are a different size. *}
282 .#define SEC_LINK_DUPLICATES_SAME_SIZE 0x80000
283 .
284 . {* This value for SEC_LINK_DUPLICATES means that the linker
285 . should warn if any duplicate sections contain different
286 . contents. *}
287 .#define SEC_LINK_DUPLICATES_SAME_CONTENTS \
288 . (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE)
289 .
290 . {* This section was created by the linker as part of dynamic
291 . relocation or other arcane processing. It is skipped when
292 . going through the first-pass output, trusting that someone
293 . else up the line will take care of it later. *}
294 .#define SEC_LINKER_CREATED 0x100000
295 .
296 . {* This section should not be subject to garbage collection.
297 . Also set to inform the linker that this section should not be
298 . listed in the link map as discarded. *}
299 .#define SEC_KEEP 0x200000
300 .
301 . {* This section contains "short" data, and should be placed
302 . "near" the GP. *}
303 .#define SEC_SMALL_DATA 0x400000
304 .
305 . {* Attempt to merge identical entities in the section.
306 . Entity size is given in the entsize field. *}
307 .#define SEC_MERGE 0x800000
308 .
309 . {* If given with SEC_MERGE, entities to merge are zero terminated
310 . strings where entsize specifies character size instead of fixed
311 . size entries. *}
312 .#define SEC_STRINGS 0x1000000
313 .
314 . {* This section contains data about section groups. *}
315 .#define SEC_GROUP 0x2000000
316 .
317 . {* The section is a COFF shared library section. This flag is
318 . only for the linker. If this type of section appears in
319 . the input file, the linker must copy it to the output file
320 . without changing the vma or size. FIXME: Although this
321 . was originally intended to be general, it really is COFF
322 . specific (and the flag was renamed to indicate this). It
323 . might be cleaner to have some more general mechanism to
324 . allow the back end to control what the linker does with
325 . sections. *}
326 .#define SEC_COFF_SHARED_LIBRARY 0x4000000
327 .
328 . {* This input section should be copied to output in reverse order
329 . as an array of pointers. This is for ELF linker internal use
330 . only. *}
331 .#define SEC_ELF_REVERSE_COPY 0x4000000
332 .
333 . {* This section contains data which may be shared with other
334 . executables or shared objects. This is for COFF only. *}
335 .#define SEC_COFF_SHARED 0x8000000
336 .
337 . {* This section should be compressed. This is for ELF linker
338 . internal use only. *}
339 .#define SEC_ELF_COMPRESS 0x8000000
340 .
341 . {* When a section with this flag is being linked, then if the size of
342 . the input section is less than a page, it should not cross a page
343 . boundary. If the size of the input section is one page or more,
344 . it should be aligned on a page boundary. This is for TI
345 . TMS320C54X only. *}
346 .#define SEC_TIC54X_BLOCK 0x10000000
347 .
348 . {* This section should be renamed. This is for ELF linker
349 . internal use only. *}
350 .#define SEC_ELF_RENAME 0x10000000
351 .
352 . {* Conditionally link this section; do not link if there are no
353 . references found to any symbol in the section. This is for TI
354 . TMS320C54X only. *}
355 .#define SEC_TIC54X_CLINK 0x20000000
356 .
357 . {* Indicate that section has the no read flag set. This happens
358 . when memory read flag isn't set. *}
359 .#define SEC_COFF_NOREAD 0x40000000
360 .
361 . {* End of section flags. *}
362 .
363 . {* Some internal packed boolean fields. *}
364 .
365 . {* See the vma field. *}
366 . unsigned int user_set_vma : 1;
367 .
368 . {* A mark flag used by some of the linker backends. *}
369 . unsigned int linker_mark : 1;
370 .
371 . {* Another mark flag used by some of the linker backends. Set for
372 . output sections that have an input section. *}
373 . unsigned int linker_has_input : 1;
374 .
375 . {* Mark flag used by some linker backends for garbage collection. *}
376 . unsigned int gc_mark : 1;
377 .
378 . {* Section compression status. *}
379 . unsigned int compress_status : 2;
380 .#define COMPRESS_SECTION_NONE 0
381 .#define COMPRESS_SECTION_DONE 1
382 .#define DECOMPRESS_SECTION_SIZED 2
383 .
384 . {* The following flags are used by the ELF linker. *}
385 .
386 . {* Mark sections which have been allocated to segments. *}
387 . unsigned int segment_mark : 1;
388 .
389 . {* Type of sec_info information. *}
390 . unsigned int sec_info_type:3;
391 .#define SEC_INFO_TYPE_NONE 0
392 .#define SEC_INFO_TYPE_STABS 1
393 .#define SEC_INFO_TYPE_MERGE 2
394 .#define SEC_INFO_TYPE_EH_FRAME 3
395 .#define SEC_INFO_TYPE_JUST_SYMS 4
396 .#define SEC_INFO_TYPE_TARGET 5
397 .
398 . {* Nonzero if this section uses RELA relocations, rather than REL. *}
399 . unsigned int use_rela_p:1;
400 .
401 . {* Bits used by various backends. The generic code doesn't touch
402 . these fields. *}
403 .
404 . unsigned int sec_flg0:1;
405 . unsigned int sec_flg1:1;
406 . unsigned int sec_flg2:1;
407 . unsigned int sec_flg3:1;
408 . unsigned int sec_flg4:1;
409 . unsigned int sec_flg5:1;
410 .
411 . {* End of internal packed boolean fields. *}
412 .
413 . {* The virtual memory address of the section - where it will be
414 . at run time. The symbols are relocated against this. The
415 . user_set_vma flag is maintained by bfd; if it's not set, the
416 . backend can assign addresses (for example, in <<a.out>>, where
417 . the default address for <<.data>> is dependent on the specific
418 . target and various flags). *}
419 . bfd_vma vma;
420 .
421 . {* The load address of the section - where it would be in a
422 . rom image; really only used for writing section header
423 . information. *}
424 . bfd_vma lma;
425 .
426 . {* The size of the section in octets, as it will be output.
427 . Contains a value even if the section has no contents (e.g., the
428 . size of <<.bss>>). *}
429 . bfd_size_type size;
430 .
431 . {* For input sections, the original size on disk of the section, in
432 . octets. This field should be set for any section whose size is
433 . changed by linker relaxation. It is required for sections where
434 . the linker relaxation scheme doesn't cache altered section and
435 . reloc contents (stabs, eh_frame, SEC_MERGE, some coff relaxing
436 . targets), and thus the original size needs to be kept to read the
437 . section multiple times. For output sections, rawsize holds the
438 . section size calculated on a previous linker relaxation pass. *}
439 . bfd_size_type rawsize;
440 .
441 . {* The compressed size of the section in octets. *}
442 . bfd_size_type compressed_size;
443 .
444 . {* Relaxation table. *}
445 . struct relax_table *relax;
446 .
447 . {* Count of used relaxation table entries. *}
448 . int relax_count;
449 .
450 .
451 . {* If this section is going to be output, then this value is the
452 . offset in *bytes* into the output section of the first byte in the
453 . input section (byte ==> smallest addressable unit on the
454 . target). In most cases, if this was going to start at the
455 . 100th octet (8-bit quantity) in the output section, this value
456 . would be 100. However, if the target byte size is 16 bits
457 . (bfd_octets_per_byte is "2"), this value would be 50. *}
458 . bfd_vma output_offset;
459 .
460 . {* The output section through which to map on output. *}
461 . struct bfd_section *output_section;
462 .
463 . {* The alignment requirement of the section, as an exponent of 2 -
464 . e.g., 3 aligns to 2^3 (or 8). *}
465 . unsigned int alignment_power;
466 .
467 . {* If an input section, a pointer to a vector of relocation
468 . records for the data in this section. *}
469 . struct reloc_cache_entry *relocation;
470 .
471 . {* If an output section, a pointer to a vector of pointers to
472 . relocation records for the data in this section. *}
473 . struct reloc_cache_entry **orelocation;
474 .
475 . {* The number of relocation records in one of the above. *}
476 . unsigned reloc_count;
477 .
478 . {* Information below is back end specific - and not always used
479 . or updated. *}
480 .
481 . {* File position of section data. *}
482 . file_ptr filepos;
483 .
484 . {* File position of relocation info. *}
485 . file_ptr rel_filepos;
486 .
487 . {* File position of line data. *}
488 . file_ptr line_filepos;
489 .
490 . {* Pointer to data for applications. *}
491 . void *userdata;
492 .
493 . {* If the SEC_IN_MEMORY flag is set, this points to the actual
494 . contents. *}
495 . unsigned char *contents;
496 .
497 . {* Attached line number information. *}
498 . alent *lineno;
499 .
500 . {* Number of line number records. *}
501 . unsigned int lineno_count;
502 .
503 . {* Entity size for merging purposes. *}
504 . unsigned int entsize;
505 .
506 . {* Points to the kept section if this section is a link-once section,
507 . and is discarded. *}
508 . struct bfd_section *kept_section;
509 .
510 . {* When a section is being output, this value changes as more
511 . linenumbers are written out. *}
512 . file_ptr moving_line_filepos;
513 .
514 . {* What the section number is in the target world. *}
515 . int target_index;
516 .
517 . void *used_by_bfd;
518 .
519 . {* If this is a constructor section then here is a list of the
520 . relocations created to relocate items within it. *}
521 . struct relent_chain *constructor_chain;
522 .
523 . {* The BFD which owns the section. *}
524 . bfd *owner;
525 .
526 . {* A symbol which points at this section only. *}
527 . struct bfd_symbol *symbol;
528 . struct bfd_symbol **symbol_ptr_ptr;
529 .
530 . {* Early in the link process, map_head and map_tail are used to build
531 . a list of input sections attached to an output section. Later,
532 . output sections use these fields for a list of bfd_link_order
533 . structs. *}
534 . union {
535 . struct bfd_link_order *link_order;
536 . struct bfd_section *s;
537 . } map_head, map_tail;
538 .} asection;
539 .
540 .{* Relax table contains information about instructions which can
541 . be removed by relaxation -- replacing a long address with a
542 . short address. *}
543 .struct relax_table {
544 . {* Address where bytes may be deleted. *}
545 . bfd_vma addr;
546 .
547 . {* Number of bytes to be deleted. *}
548 . int size;
549 .};
550 .
551 .{* Note: the following are provided as inline functions rather than macros
552 . because not all callers use the return value. A macro implementation
553 . would use a comma expression, eg: "((ptr)->foo = val, TRUE)" and some
554 . compilers will complain about comma expressions that have no effect. *}
555 .static inline bfd_boolean
556 .bfd_set_section_userdata (bfd * abfd ATTRIBUTE_UNUSED, asection * ptr, void * val)
557 .{
558 . ptr->userdata = val;
559 . return TRUE;
560 .}
561 .
562 .static inline bfd_boolean
563 .bfd_set_section_vma (bfd * abfd ATTRIBUTE_UNUSED, asection * ptr, bfd_vma val)
564 .{
565 . ptr->vma = ptr->lma = val;
566 . ptr->user_set_vma = TRUE;
567 . return TRUE;
568 .}
569 .
570 .static inline bfd_boolean
571 .bfd_set_section_alignment (bfd * abfd ATTRIBUTE_UNUSED, asection * ptr, unsigned int val)
572 .{
573 . ptr->alignment_power = val;
574 . return TRUE;
575 .}
576 .
577 .{* These sections are global, and are managed by BFD. The application
578 . and target back end are not permitted to change the values in
579 . these sections. *}
580 .extern asection _bfd_std_section[4];
581 .
582 .#define BFD_ABS_SECTION_NAME "*ABS*"
583 .#define BFD_UND_SECTION_NAME "*UND*"
584 .#define BFD_COM_SECTION_NAME "*COM*"
585 .#define BFD_IND_SECTION_NAME "*IND*"
586 .
587 .{* Pointer to the common section. *}
588 .#define bfd_com_section_ptr (&_bfd_std_section[0])
589 .{* Pointer to the undefined section. *}
590 .#define bfd_und_section_ptr (&_bfd_std_section[1])
591 .{* Pointer to the absolute section. *}
592 .#define bfd_abs_section_ptr (&_bfd_std_section[2])
593 .{* Pointer to the indirect section. *}
594 .#define bfd_ind_section_ptr (&_bfd_std_section[3])
595 .
596 .#define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr)
597 .#define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr)
598 .#define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr)
599 .
600 .#define bfd_is_const_section(SEC) \
601 . ( ((SEC) == bfd_abs_section_ptr) \
602 . || ((SEC) == bfd_und_section_ptr) \
603 . || ((SEC) == bfd_com_section_ptr) \
604 . || ((SEC) == bfd_ind_section_ptr))
605 .
606 .{* Macros to handle insertion and deletion of a bfd's sections. These
607 . only handle the list pointers, ie. do not adjust section_count,
608 . target_index etc. *}
609 .#define bfd_section_list_remove(ABFD, S) \
610 . do \
611 . { \
612 . asection *_s = S; \
613 . asection *_next = _s->next; \
614 . asection *_prev = _s->prev; \
615 . if (_prev) \
616 . _prev->next = _next; \
617 . else \
618 . (ABFD)->sections = _next; \
619 . if (_next) \
620 . _next->prev = _prev; \
621 . else \
622 . (ABFD)->section_last = _prev; \
623 . } \
624 . while (0)
625 .#define bfd_section_list_append(ABFD, S) \
626 . do \
627 . { \
628 . asection *_s = S; \
629 . bfd *_abfd = ABFD; \
630 . _s->next = NULL; \
631 . if (_abfd->section_last) \
632 . { \
633 . _s->prev = _abfd->section_last; \
634 . _abfd->section_last->next = _s; \
635 . } \
636 . else \
637 . { \
638 . _s->prev = NULL; \
639 . _abfd->sections = _s; \
640 . } \
641 . _abfd->section_last = _s; \
642 . } \
643 . while (0)
644 .#define bfd_section_list_prepend(ABFD, S) \
645 . do \
646 . { \
647 . asection *_s = S; \
648 . bfd *_abfd = ABFD; \
649 . _s->prev = NULL; \
650 . if (_abfd->sections) \
651 . { \
652 . _s->next = _abfd->sections; \
653 . _abfd->sections->prev = _s; \
654 . } \
655 . else \
656 . { \
657 . _s->next = NULL; \
658 . _abfd->section_last = _s; \
659 . } \
660 . _abfd->sections = _s; \
661 . } \
662 . while (0)
663 .#define bfd_section_list_insert_after(ABFD, A, S) \
664 . do \
665 . { \
666 . asection *_a = A; \
667 . asection *_s = S; \
668 . asection *_next = _a->next; \
669 . _s->next = _next; \
670 . _s->prev = _a; \
671 . _a->next = _s; \
672 . if (_next) \
673 . _next->prev = _s; \
674 . else \
675 . (ABFD)->section_last = _s; \
676 . } \
677 . while (0)
678 .#define bfd_section_list_insert_before(ABFD, B, S) \
679 . do \
680 . { \
681 . asection *_b = B; \
682 . asection *_s = S; \
683 . asection *_prev = _b->prev; \
684 . _s->prev = _prev; \
685 . _s->next = _b; \
686 . _b->prev = _s; \
687 . if (_prev) \
688 . _prev->next = _s; \
689 . else \
690 . (ABFD)->sections = _s; \
691 . } \
692 . while (0)
693 .#define bfd_section_removed_from_list(ABFD, S) \
694 . ((S)->next == NULL ? (ABFD)->section_last != (S) : (S)->next->prev != (S))
695 .
696 .#define BFD_FAKE_SECTION(SEC, FLAGS, SYM, NAME, IDX) \
697 . {* name, id, index, next, prev, flags, user_set_vma, *} \
698 . { NAME, IDX, 0, NULL, NULL, FLAGS, 0, \
699 . \
700 . {* linker_mark, linker_has_input, gc_mark, decompress_status, *} \
701 . 0, 0, 1, 0, \
702 . \
703 . {* segment_mark, sec_info_type, use_rela_p, *} \
704 . 0, 0, 0, \
705 . \
706 . {* sec_flg0, sec_flg1, sec_flg2, sec_flg3, sec_flg4, sec_flg5, *} \
707 . 0, 0, 0, 0, 0, 0, \
708 . \
709 . {* vma, lma, size, rawsize, compressed_size, relax, relax_count, *} \
710 . 0, 0, 0, 0, 0, 0, 0, \
711 . \
712 . {* output_offset, output_section, alignment_power, *} \
713 . 0, &SEC, 0, \
714 . \
715 . {* relocation, orelocation, reloc_count, filepos, rel_filepos, *} \
716 . NULL, NULL, 0, 0, 0, \
717 . \
718 . {* line_filepos, userdata, contents, lineno, lineno_count, *} \
719 . 0, NULL, NULL, NULL, 0, \
720 . \
721 . {* entsize, kept_section, moving_line_filepos, *} \
722 . 0, NULL, 0, \
723 . \
724 . {* target_index, used_by_bfd, constructor_chain, owner, *} \
725 . 0, NULL, NULL, NULL, \
726 . \
727 . {* symbol, symbol_ptr_ptr, *} \
728 . (struct bfd_symbol *) SYM, &SEC.symbol, \
729 . \
730 . {* map_head, map_tail *} \
731 . { NULL }, { NULL } \
732 . }
733 .
734 */
735
736 /* We use a macro to initialize the static asymbol structures because
737 traditional C does not permit us to initialize a union member while
738 gcc warns if we don't initialize it. */
739 /* the_bfd, name, value, attr, section [, udata] */
740 #ifdef __STDC__
741 #define GLOBAL_SYM_INIT(NAME, SECTION) \
742 { 0, NAME, 0, BSF_SECTION_SYM, SECTION, { 0 }}
743 #else
744 #define GLOBAL_SYM_INIT(NAME, SECTION) \
745 { 0, NAME, 0, BSF_SECTION_SYM, SECTION }
746 #endif
747
748 /* These symbols are global, not specific to any BFD. Therefore, anything
749 that tries to change them is broken, and should be repaired. */
750
751 static const asymbol global_syms[] =
752 {
753 GLOBAL_SYM_INIT (BFD_COM_SECTION_NAME, bfd_com_section_ptr),
754 GLOBAL_SYM_INIT (BFD_UND_SECTION_NAME, bfd_und_section_ptr),
755 GLOBAL_SYM_INIT (BFD_ABS_SECTION_NAME, bfd_abs_section_ptr),
756 GLOBAL_SYM_INIT (BFD_IND_SECTION_NAME, bfd_ind_section_ptr)
757 };
758
759 #define STD_SECTION(NAME, IDX, FLAGS) \
760 BFD_FAKE_SECTION(_bfd_std_section[IDX], FLAGS, &global_syms[IDX], NAME, IDX)
761
762 asection _bfd_std_section[] = {
763 STD_SECTION (BFD_COM_SECTION_NAME, 0, SEC_IS_COMMON),
764 STD_SECTION (BFD_UND_SECTION_NAME, 1, 0),
765 STD_SECTION (BFD_ABS_SECTION_NAME, 2, 0),
766 STD_SECTION (BFD_IND_SECTION_NAME, 3, 0)
767 };
768 #undef STD_SECTION
769
770 /* Initialize an entry in the section hash table. */
771
772 struct bfd_hash_entry *
773 bfd_section_hash_newfunc (struct bfd_hash_entry *entry,
774 struct bfd_hash_table *table,
775 const char *string)
776 {
777 /* Allocate the structure if it has not already been allocated by a
778 subclass. */
779 if (entry == NULL)
780 {
781 entry = (struct bfd_hash_entry *)
782 bfd_hash_allocate (table, sizeof (struct section_hash_entry));
783 if (entry == NULL)
784 return entry;
785 }
786
787 /* Call the allocation method of the superclass. */
788 entry = bfd_hash_newfunc (entry, table, string);
789 if (entry != NULL)
790 memset (&((struct section_hash_entry *) entry)->section, 0,
791 sizeof (asection));
792
793 return entry;
794 }
795
796 #define section_hash_lookup(table, string, create, copy) \
797 ((struct section_hash_entry *) \
798 bfd_hash_lookup ((table), (string), (create), (copy)))
799
800 /* Create a symbol whose only job is to point to this section. This
801 is useful for things like relocs which are relative to the base
802 of a section. */
803
804 bfd_boolean
805 _bfd_generic_new_section_hook (bfd *abfd, asection *newsect)
806 {
807 newsect->symbol = bfd_make_empty_symbol (abfd);
808 if (newsect->symbol == NULL)
809 return FALSE;
810
811 newsect->symbol->name = newsect->name;
812 newsect->symbol->value = 0;
813 newsect->symbol->section = newsect;
814 newsect->symbol->flags = BSF_SECTION_SYM;
815
816 newsect->symbol_ptr_ptr = &newsect->symbol;
817 return TRUE;
818 }
819
820 /* Initializes a new section. NEWSECT->NAME is already set. */
821
822 static asection *
823 bfd_section_init (bfd *abfd, asection *newsect)
824 {
825 static int section_id = 0x10; /* id 0 to 3 used by STD_SECTION. */
826
827 newsect->id = section_id;
828 newsect->index = abfd->section_count;
829 newsect->owner = abfd;
830
831 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
832 return NULL;
833
834 section_id++;
835 abfd->section_count++;
836 bfd_section_list_append (abfd, newsect);
837 return newsect;
838 }
839
840 /*
841 DOCDD
842 INODE
843 section prototypes, , typedef asection, Sections
844 SUBSECTION
845 Section prototypes
846
847 These are the functions exported by the section handling part of BFD.
848 */
849
850 /*
851 FUNCTION
852 bfd_section_list_clear
853
854 SYNOPSIS
855 void bfd_section_list_clear (bfd *);
856
857 DESCRIPTION
858 Clears the section list, and also resets the section count and
859 hash table entries.
860 */
861
862 void
863 bfd_section_list_clear (bfd *abfd)
864 {
865 abfd->sections = NULL;
866 abfd->section_last = NULL;
867 abfd->section_count = 0;
868 memset (abfd->section_htab.table, 0,
869 abfd->section_htab.size * sizeof (struct bfd_hash_entry *));
870 abfd->section_htab.count = 0;
871 }
872
873 /*
874 FUNCTION
875 bfd_get_section_by_name
876
877 SYNOPSIS
878 asection *bfd_get_section_by_name (bfd *abfd, const char *name);
879
880 DESCRIPTION
881 Return the most recently created section attached to @var{abfd}
882 named @var{name}. Return NULL if no such section exists.
883 */
884
885 asection *
886 bfd_get_section_by_name (bfd *abfd, const char *name)
887 {
888 struct section_hash_entry *sh;
889
890 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
891 if (sh != NULL)
892 return &sh->section;
893
894 return NULL;
895 }
896
897 /*
898 FUNCTION
899 bfd_get_next_section_by_name
900
901 SYNOPSIS
902 asection *bfd_get_next_section_by_name (asection *sec);
903
904 DESCRIPTION
905 Given @var{sec} is a section returned by @code{bfd_get_section_by_name},
906 return the next most recently created section attached to the same
907 BFD with the same name. Return NULL if no such section exists.
908 */
909
910 asection *
911 bfd_get_next_section_by_name (asection *sec)
912 {
913 struct section_hash_entry *sh;
914 const char *name;
915 unsigned long hash;
916
917 sh = ((struct section_hash_entry *)
918 ((char *) sec - offsetof (struct section_hash_entry, section)));
919
920 hash = sh->root.hash;
921 name = sec->name;
922 for (sh = (struct section_hash_entry *) sh->root.next;
923 sh != NULL;
924 sh = (struct section_hash_entry *) sh->root.next)
925 if (sh->root.hash == hash
926 && strcmp (sh->root.string, name) == 0)
927 return &sh->section;
928
929 return NULL;
930 }
931
932 /*
933 FUNCTION
934 bfd_get_linker_section
935
936 SYNOPSIS
937 asection *bfd_get_linker_section (bfd *abfd, const char *name);
938
939 DESCRIPTION
940 Return the linker created section attached to @var{abfd}
941 named @var{name}. Return NULL if no such section exists.
942 */
943
944 asection *
945 bfd_get_linker_section (bfd *abfd, const char *name)
946 {
947 asection *sec = bfd_get_section_by_name (abfd, name);
948
949 while (sec != NULL && (sec->flags & SEC_LINKER_CREATED) == 0)
950 sec = bfd_get_next_section_by_name (sec);
951 return sec;
952 }
953
954 /*
955 FUNCTION
956 bfd_get_section_by_name_if
957
958 SYNOPSIS
959 asection *bfd_get_section_by_name_if
960 (bfd *abfd,
961 const char *name,
962 bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj),
963 void *obj);
964
965 DESCRIPTION
966 Call the provided function @var{func} for each section
967 attached to the BFD @var{abfd} whose name matches @var{name},
968 passing @var{obj} as an argument. The function will be called
969 as if by
970
971 | func (abfd, the_section, obj);
972
973 It returns the first section for which @var{func} returns true,
974 otherwise <<NULL>>.
975
976 */
977
978 asection *
979 bfd_get_section_by_name_if (bfd *abfd, const char *name,
980 bfd_boolean (*operation) (bfd *,
981 asection *,
982 void *),
983 void *user_storage)
984 {
985 struct section_hash_entry *sh;
986 unsigned long hash;
987
988 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
989 if (sh == NULL)
990 return NULL;
991
992 hash = sh->root.hash;
993 do
994 {
995 if ((*operation) (abfd, &sh->section, user_storage))
996 return &sh->section;
997 sh = (struct section_hash_entry *) sh->root.next;
998 }
999 while (sh != NULL && sh->root.hash == hash
1000 && strcmp (sh->root.string, name) == 0);
1001
1002 return NULL;
1003 }
1004
1005 /*
1006 FUNCTION
1007 bfd_get_unique_section_name
1008
1009 SYNOPSIS
1010 char *bfd_get_unique_section_name
1011 (bfd *abfd, const char *templat, int *count);
1012
1013 DESCRIPTION
1014 Invent a section name that is unique in @var{abfd} by tacking
1015 a dot and a digit suffix onto the original @var{templat}. If
1016 @var{count} is non-NULL, then it specifies the first number
1017 tried as a suffix to generate a unique name. The value
1018 pointed to by @var{count} will be incremented in this case.
1019 */
1020
1021 char *
1022 bfd_get_unique_section_name (bfd *abfd, const char *templat, int *count)
1023 {
1024 int num;
1025 unsigned int len;
1026 char *sname;
1027
1028 len = strlen (templat);
1029 sname = (char *) bfd_malloc (len + 8);
1030 if (sname == NULL)
1031 return NULL;
1032 memcpy (sname, templat, len);
1033 num = 1;
1034 if (count != NULL)
1035 num = *count;
1036
1037 do
1038 {
1039 /* If we have a million sections, something is badly wrong. */
1040 if (num > 999999)
1041 abort ();
1042 sprintf (sname + len, ".%d", num++);
1043 }
1044 while (section_hash_lookup (&abfd->section_htab, sname, FALSE, FALSE));
1045
1046 if (count != NULL)
1047 *count = num;
1048 return sname;
1049 }
1050
1051 /*
1052 FUNCTION
1053 bfd_make_section_old_way
1054
1055 SYNOPSIS
1056 asection *bfd_make_section_old_way (bfd *abfd, const char *name);
1057
1058 DESCRIPTION
1059 Create a new empty section called @var{name}
1060 and attach it to the end of the chain of sections for the
1061 BFD @var{abfd}. An attempt to create a section with a name which
1062 is already in use returns its pointer without changing the
1063 section chain.
1064
1065 It has the funny name since this is the way it used to be
1066 before it was rewritten....
1067
1068 Possible errors are:
1069 o <<bfd_error_invalid_operation>> -
1070 If output has already started for this BFD.
1071 o <<bfd_error_no_memory>> -
1072 If memory allocation fails.
1073
1074 */
1075
1076 asection *
1077 bfd_make_section_old_way (bfd *abfd, const char *name)
1078 {
1079 asection *newsect;
1080
1081 if (abfd->output_has_begun)
1082 {
1083 bfd_set_error (bfd_error_invalid_operation);
1084 return NULL;
1085 }
1086
1087 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0)
1088 newsect = bfd_abs_section_ptr;
1089 else if (strcmp (name, BFD_COM_SECTION_NAME) == 0)
1090 newsect = bfd_com_section_ptr;
1091 else if (strcmp (name, BFD_UND_SECTION_NAME) == 0)
1092 newsect = bfd_und_section_ptr;
1093 else if (strcmp (name, BFD_IND_SECTION_NAME) == 0)
1094 newsect = bfd_ind_section_ptr;
1095 else
1096 {
1097 struct section_hash_entry *sh;
1098
1099 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1100 if (sh == NULL)
1101 return NULL;
1102
1103 newsect = &sh->section;
1104 if (newsect->name != NULL)
1105 {
1106 /* Section already exists. */
1107 return newsect;
1108 }
1109
1110 newsect->name = name;
1111 return bfd_section_init (abfd, newsect);
1112 }
1113
1114 /* Call new_section_hook when "creating" the standard abs, com, und
1115 and ind sections to tack on format specific section data.
1116 Also, create a proper section symbol. */
1117 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
1118 return NULL;
1119 return newsect;
1120 }
1121
1122 /*
1123 FUNCTION
1124 bfd_make_section_anyway_with_flags
1125
1126 SYNOPSIS
1127 asection *bfd_make_section_anyway_with_flags
1128 (bfd *abfd, const char *name, flagword flags);
1129
1130 DESCRIPTION
1131 Create a new empty section called @var{name} and attach it to the end of
1132 the chain of sections for @var{abfd}. Create a new section even if there
1133 is already a section with that name. Also set the attributes of the
1134 new section to the value @var{flags}.
1135
1136 Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1137 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1138 o <<bfd_error_no_memory>> - If memory allocation fails.
1139 */
1140
1141 sec_ptr
1142 bfd_make_section_anyway_with_flags (bfd *abfd, const char *name,
1143 flagword flags)
1144 {
1145 struct section_hash_entry *sh;
1146 asection *newsect;
1147
1148 if (abfd->output_has_begun)
1149 {
1150 bfd_set_error (bfd_error_invalid_operation);
1151 return NULL;
1152 }
1153
1154 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1155 if (sh == NULL)
1156 return NULL;
1157
1158 newsect = &sh->section;
1159 if (newsect->name != NULL)
1160 {
1161 /* We are making a section of the same name. Put it in the
1162 section hash table. Even though we can't find it directly by a
1163 hash lookup, we'll be able to find the section by traversing
1164 sh->root.next quicker than looking at all the bfd sections. */
1165 struct section_hash_entry *new_sh;
1166 new_sh = (struct section_hash_entry *)
1167 bfd_section_hash_newfunc (NULL, &abfd->section_htab, name);
1168 if (new_sh == NULL)
1169 return NULL;
1170
1171 new_sh->root = sh->root;
1172 sh->root.next = &new_sh->root;
1173 newsect = &new_sh->section;
1174 }
1175
1176 newsect->flags = flags;
1177 newsect->name = name;
1178 return bfd_section_init (abfd, newsect);
1179 }
1180
1181 /*
1182 FUNCTION
1183 bfd_make_section_anyway
1184
1185 SYNOPSIS
1186 asection *bfd_make_section_anyway (bfd *abfd, const char *name);
1187
1188 DESCRIPTION
1189 Create a new empty section called @var{name} and attach it to the end of
1190 the chain of sections for @var{abfd}. Create a new section even if there
1191 is already a section with that name.
1192
1193 Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1194 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1195 o <<bfd_error_no_memory>> - If memory allocation fails.
1196 */
1197
1198 sec_ptr
1199 bfd_make_section_anyway (bfd *abfd, const char *name)
1200 {
1201 return bfd_make_section_anyway_with_flags (abfd, name, 0);
1202 }
1203
1204 /*
1205 FUNCTION
1206 bfd_make_section_with_flags
1207
1208 SYNOPSIS
1209 asection *bfd_make_section_with_flags
1210 (bfd *, const char *name, flagword flags);
1211
1212 DESCRIPTION
1213 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1214 bfd_set_error ()) without changing the section chain if there is already a
1215 section named @var{name}. Also set the attributes of the new section to
1216 the value @var{flags}. If there is an error, return <<NULL>> and set
1217 <<bfd_error>>.
1218 */
1219
1220 asection *
1221 bfd_make_section_with_flags (bfd *abfd, const char *name,
1222 flagword flags)
1223 {
1224 struct section_hash_entry *sh;
1225 asection *newsect;
1226
1227 if (abfd->output_has_begun)
1228 {
1229 bfd_set_error (bfd_error_invalid_operation);
1230 return NULL;
1231 }
1232
1233 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0
1234 || strcmp (name, BFD_COM_SECTION_NAME) == 0
1235 || strcmp (name, BFD_UND_SECTION_NAME) == 0
1236 || strcmp (name, BFD_IND_SECTION_NAME) == 0)
1237 return NULL;
1238
1239 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1240 if (sh == NULL)
1241 return NULL;
1242
1243 newsect = &sh->section;
1244 if (newsect->name != NULL)
1245 {
1246 /* Section already exists. */
1247 return NULL;
1248 }
1249
1250 newsect->name = name;
1251 newsect->flags = flags;
1252 return bfd_section_init (abfd, newsect);
1253 }
1254
1255 /*
1256 FUNCTION
1257 bfd_make_section
1258
1259 SYNOPSIS
1260 asection *bfd_make_section (bfd *, const char *name);
1261
1262 DESCRIPTION
1263 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1264 bfd_set_error ()) without changing the section chain if there is already a
1265 section named @var{name}. If there is an error, return <<NULL>> and set
1266 <<bfd_error>>.
1267 */
1268
1269 asection *
1270 bfd_make_section (bfd *abfd, const char *name)
1271 {
1272 return bfd_make_section_with_flags (abfd, name, 0);
1273 }
1274
1275 /*
1276 FUNCTION
1277 bfd_set_section_flags
1278
1279 SYNOPSIS
1280 bfd_boolean bfd_set_section_flags
1281 (bfd *abfd, asection *sec, flagword flags);
1282
1283 DESCRIPTION
1284 Set the attributes of the section @var{sec} in the BFD
1285 @var{abfd} to the value @var{flags}. Return <<TRUE>> on success,
1286 <<FALSE>> on error. Possible error returns are:
1287
1288 o <<bfd_error_invalid_operation>> -
1289 The section cannot have one or more of the attributes
1290 requested. For example, a .bss section in <<a.out>> may not
1291 have the <<SEC_HAS_CONTENTS>> field set.
1292
1293 */
1294
1295 bfd_boolean
1296 bfd_set_section_flags (bfd *abfd ATTRIBUTE_UNUSED,
1297 sec_ptr section,
1298 flagword flags)
1299 {
1300 section->flags = flags;
1301 return TRUE;
1302 }
1303
1304 /*
1305 FUNCTION
1306 bfd_rename_section
1307
1308 SYNOPSIS
1309 void bfd_rename_section
1310 (bfd *abfd, asection *sec, const char *newname);
1311
1312 DESCRIPTION
1313 Rename section @var{sec} in @var{abfd} to @var{newname}.
1314 */
1315
1316 void
1317 bfd_rename_section (bfd *abfd, sec_ptr sec, const char *newname)
1318 {
1319 struct section_hash_entry *sh;
1320
1321 sh = (struct section_hash_entry *)
1322 ((char *) sec - offsetof (struct section_hash_entry, section));
1323 sh->section.name = newname;
1324 bfd_hash_rename (&abfd->section_htab, newname, &sh->root);
1325 }
1326
1327 /*
1328 FUNCTION
1329 bfd_map_over_sections
1330
1331 SYNOPSIS
1332 void bfd_map_over_sections
1333 (bfd *abfd,
1334 void (*func) (bfd *abfd, asection *sect, void *obj),
1335 void *obj);
1336
1337 DESCRIPTION
1338 Call the provided function @var{func} for each section
1339 attached to the BFD @var{abfd}, passing @var{obj} as an
1340 argument. The function will be called as if by
1341
1342 | func (abfd, the_section, obj);
1343
1344 This is the preferred method for iterating over sections; an
1345 alternative would be to use a loop:
1346
1347 | asection *p;
1348 | for (p = abfd->sections; p != NULL; p = p->next)
1349 | func (abfd, p, ...)
1350
1351 */
1352
1353 void
1354 bfd_map_over_sections (bfd *abfd,
1355 void (*operation) (bfd *, asection *, void *),
1356 void *user_storage)
1357 {
1358 asection *sect;
1359 unsigned int i = 0;
1360
1361 for (sect = abfd->sections; sect != NULL; i++, sect = sect->next)
1362 (*operation) (abfd, sect, user_storage);
1363
1364 if (i != abfd->section_count) /* Debugging */
1365 abort ();
1366 }
1367
1368 /*
1369 FUNCTION
1370 bfd_sections_find_if
1371
1372 SYNOPSIS
1373 asection *bfd_sections_find_if
1374 (bfd *abfd,
1375 bfd_boolean (*operation) (bfd *abfd, asection *sect, void *obj),
1376 void *obj);
1377
1378 DESCRIPTION
1379 Call the provided function @var{operation} for each section
1380 attached to the BFD @var{abfd}, passing @var{obj} as an
1381 argument. The function will be called as if by
1382
1383 | operation (abfd, the_section, obj);
1384
1385 It returns the first section for which @var{operation} returns true.
1386
1387 */
1388
1389 asection *
1390 bfd_sections_find_if (bfd *abfd,
1391 bfd_boolean (*operation) (bfd *, asection *, void *),
1392 void *user_storage)
1393 {
1394 asection *sect;
1395
1396 for (sect = abfd->sections; sect != NULL; sect = sect->next)
1397 if ((*operation) (abfd, sect, user_storage))
1398 break;
1399
1400 return sect;
1401 }
1402
1403 /*
1404 FUNCTION
1405 bfd_set_section_size
1406
1407 SYNOPSIS
1408 bfd_boolean bfd_set_section_size
1409 (bfd *abfd, asection *sec, bfd_size_type val);
1410
1411 DESCRIPTION
1412 Set @var{sec} to the size @var{val}. If the operation is
1413 ok, then <<TRUE>> is returned, else <<FALSE>>.
1414
1415 Possible error returns:
1416 o <<bfd_error_invalid_operation>> -
1417 Writing has started to the BFD, so setting the size is invalid.
1418
1419 */
1420
1421 bfd_boolean
1422 bfd_set_section_size (bfd *abfd, sec_ptr ptr, bfd_size_type val)
1423 {
1424 /* Once you've started writing to any section you cannot create or change
1425 the size of any others. */
1426
1427 if (abfd->output_has_begun)
1428 {
1429 bfd_set_error (bfd_error_invalid_operation);
1430 return FALSE;
1431 }
1432
1433 ptr->size = val;
1434 return TRUE;
1435 }
1436
1437 /*
1438 FUNCTION
1439 bfd_set_section_contents
1440
1441 SYNOPSIS
1442 bfd_boolean bfd_set_section_contents
1443 (bfd *abfd, asection *section, const void *data,
1444 file_ptr offset, bfd_size_type count);
1445
1446 DESCRIPTION
1447 Sets the contents of the section @var{section} in BFD
1448 @var{abfd} to the data starting in memory at @var{data}. The
1449 data is written to the output section starting at offset
1450 @var{offset} for @var{count} octets.
1451
1452 Normally <<TRUE>> is returned, else <<FALSE>>. Possible error
1453 returns are:
1454 o <<bfd_error_no_contents>> -
1455 The output section does not have the <<SEC_HAS_CONTENTS>>
1456 attribute, so nothing can be written to it.
1457 o and some more too
1458
1459 This routine is front end to the back end function
1460 <<_bfd_set_section_contents>>.
1461
1462 */
1463
1464 bfd_boolean
1465 bfd_set_section_contents (bfd *abfd,
1466 sec_ptr section,
1467 const void *location,
1468 file_ptr offset,
1469 bfd_size_type count)
1470 {
1471 bfd_size_type sz;
1472
1473 if (!(bfd_get_section_flags (abfd, section) & SEC_HAS_CONTENTS))
1474 {
1475 bfd_set_error (bfd_error_no_contents);
1476 return FALSE;
1477 }
1478
1479 sz = section->size;
1480 if ((bfd_size_type) offset > sz
1481 || count > sz
1482 || offset + count > sz
1483 || count != (size_t) count)
1484 {
1485 bfd_set_error (bfd_error_bad_value);
1486 return FALSE;
1487 }
1488
1489 if (!bfd_write_p (abfd))
1490 {
1491 bfd_set_error (bfd_error_invalid_operation);
1492 return FALSE;
1493 }
1494
1495 /* Record a copy of the data in memory if desired. */
1496 if (section->contents
1497 && location != section->contents + offset)
1498 memcpy (section->contents + offset, location, (size_t) count);
1499
1500 if (BFD_SEND (abfd, _bfd_set_section_contents,
1501 (abfd, section, location, offset, count)))
1502 {
1503 abfd->output_has_begun = TRUE;
1504 return TRUE;
1505 }
1506
1507 return FALSE;
1508 }
1509
1510 /*
1511 FUNCTION
1512 bfd_get_section_contents
1513
1514 SYNOPSIS
1515 bfd_boolean bfd_get_section_contents
1516 (bfd *abfd, asection *section, void *location, file_ptr offset,
1517 bfd_size_type count);
1518
1519 DESCRIPTION
1520 Read data from @var{section} in BFD @var{abfd}
1521 into memory starting at @var{location}. The data is read at an
1522 offset of @var{offset} from the start of the input section,
1523 and is read for @var{count} bytes.
1524
1525 If the contents of a constructor with the <<SEC_CONSTRUCTOR>>
1526 flag set are requested or if the section does not have the
1527 <<SEC_HAS_CONTENTS>> flag set, then the @var{location} is filled
1528 with zeroes. If no errors occur, <<TRUE>> is returned, else
1529 <<FALSE>>.
1530
1531 */
1532 bfd_boolean
1533 bfd_get_section_contents (bfd *abfd,
1534 sec_ptr section,
1535 void *location,
1536 file_ptr offset,
1537 bfd_size_type count)
1538 {
1539 bfd_size_type sz;
1540
1541 if (section->flags & SEC_CONSTRUCTOR)
1542 {
1543 memset (location, 0, (size_t) count);
1544 return TRUE;
1545 }
1546
1547 if (abfd->direction != write_direction && section->rawsize != 0)
1548 sz = section->rawsize;
1549 else
1550 sz = section->size;
1551 if ((bfd_size_type) offset > sz
1552 || count > sz
1553 || offset + count > sz
1554 || count != (size_t) count)
1555 {
1556 bfd_set_error (bfd_error_bad_value);
1557 return FALSE;
1558 }
1559
1560 if (count == 0)
1561 /* Don't bother. */
1562 return TRUE;
1563
1564 if ((section->flags & SEC_HAS_CONTENTS) == 0)
1565 {
1566 memset (location, 0, (size_t) count);
1567 return TRUE;
1568 }
1569
1570 if ((section->flags & SEC_IN_MEMORY) != 0)
1571 {
1572 if (section->contents == NULL)
1573 {
1574 /* This can happen because of errors earlier on in the linking process.
1575 We do not want to seg-fault here, so clear the flag and return an
1576 error code. */
1577 section->flags &= ~ SEC_IN_MEMORY;
1578 bfd_set_error (bfd_error_invalid_operation);
1579 return FALSE;
1580 }
1581
1582 memmove (location, section->contents + offset, (size_t) count);
1583 return TRUE;
1584 }
1585
1586 return BFD_SEND (abfd, _bfd_get_section_contents,
1587 (abfd, section, location, offset, count));
1588 }
1589
1590 /*
1591 FUNCTION
1592 bfd_malloc_and_get_section
1593
1594 SYNOPSIS
1595 bfd_boolean bfd_malloc_and_get_section
1596 (bfd *abfd, asection *section, bfd_byte **buf);
1597
1598 DESCRIPTION
1599 Read all data from @var{section} in BFD @var{abfd}
1600 into a buffer, *@var{buf}, malloc'd by this function.
1601 */
1602
1603 bfd_boolean
1604 bfd_malloc_and_get_section (bfd *abfd, sec_ptr sec, bfd_byte **buf)
1605 {
1606 *buf = NULL;
1607 return bfd_get_full_section_contents (abfd, sec, buf);
1608 }
1609 /*
1610 FUNCTION
1611 bfd_copy_private_section_data
1612
1613 SYNOPSIS
1614 bfd_boolean bfd_copy_private_section_data
1615 (bfd *ibfd, asection *isec, bfd *obfd, asection *osec);
1616
1617 DESCRIPTION
1618 Copy private section information from @var{isec} in the BFD
1619 @var{ibfd} to the section @var{osec} in the BFD @var{obfd}.
1620 Return <<TRUE>> on success, <<FALSE>> on error. Possible error
1621 returns are:
1622
1623 o <<bfd_error_no_memory>> -
1624 Not enough memory exists to create private data for @var{osec}.
1625
1626 .#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \
1627 . BFD_SEND (obfd, _bfd_copy_private_section_data, \
1628 . (ibfd, isection, obfd, osection))
1629 */
1630
1631 /*
1632 FUNCTION
1633 bfd_generic_is_group_section
1634
1635 SYNOPSIS
1636 bfd_boolean bfd_generic_is_group_section (bfd *, const asection *sec);
1637
1638 DESCRIPTION
1639 Returns TRUE if @var{sec} is a member of a group.
1640 */
1641
1642 bfd_boolean
1643 bfd_generic_is_group_section (bfd *abfd ATTRIBUTE_UNUSED,
1644 const asection *sec ATTRIBUTE_UNUSED)
1645 {
1646 return FALSE;
1647 }
1648
1649 /*
1650 FUNCTION
1651 bfd_generic_discard_group
1652
1653 SYNOPSIS
1654 bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group);
1655
1656 DESCRIPTION
1657 Remove all members of @var{group} from the output.
1658 */
1659
1660 bfd_boolean
1661 bfd_generic_discard_group (bfd *abfd ATTRIBUTE_UNUSED,
1662 asection *group ATTRIBUTE_UNUSED)
1663 {
1664 return TRUE;
1665 }
This page took 0.096996 seconds and 5 git commands to generate.