* som.c (som_get_reloc_upper_bound): If there are no relocs return enough
[deliverable/binutils-gdb.git] / bfd / som.c
1 /* bfd back-end for HP PA-RISC SOM objects.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5
6 Contributed by the Center for Software Science at the
7 University of Utah.
8
9 This file is part of BFD, the Binary File Descriptor library.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
24 02110-1301, USA. */
25
26 #include "alloca-conf.h"
27 #include "sysdep.h"
28 #include "bfd.h"
29
30 #if defined (HOST_HPPAHPUX) || defined (HOST_HPPABSD) || defined (HOST_HPPAOSF) || defined(HOST_HPPAMPEIX)
31
32 #include "libbfd.h"
33 #include "som.h"
34 #include "safe-ctype.h"
35
36 #include <sys/param.h>
37 #include <signal.h>
38 #include <machine/reg.h>
39 #include <sys/file.h>
40
41 static bfd_reloc_status_type hppa_som_reloc
42 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
43 static bfd_boolean som_mkobject (bfd *);
44 static bfd_boolean som_is_space (asection *);
45 static bfd_boolean som_is_subspace (asection *);
46 static int compare_subspaces (const void *, const void *);
47 static unsigned long som_compute_checksum (bfd *);
48 static bfd_boolean som_build_and_write_symbol_table (bfd *);
49 static unsigned int som_slurp_symbol_table (bfd *);
50
51 /* Magic not defined in standard HP-UX header files until 8.0. */
52
53 #ifndef CPU_PA_RISC1_0
54 #define CPU_PA_RISC1_0 0x20B
55 #endif /* CPU_PA_RISC1_0 */
56
57 #ifndef CPU_PA_RISC1_1
58 #define CPU_PA_RISC1_1 0x210
59 #endif /* CPU_PA_RISC1_1 */
60
61 #ifndef CPU_PA_RISC2_0
62 #define CPU_PA_RISC2_0 0x214
63 #endif /* CPU_PA_RISC2_0 */
64
65 #ifndef _PA_RISC1_0_ID
66 #define _PA_RISC1_0_ID CPU_PA_RISC1_0
67 #endif /* _PA_RISC1_0_ID */
68
69 #ifndef _PA_RISC1_1_ID
70 #define _PA_RISC1_1_ID CPU_PA_RISC1_1
71 #endif /* _PA_RISC1_1_ID */
72
73 #ifndef _PA_RISC2_0_ID
74 #define _PA_RISC2_0_ID CPU_PA_RISC2_0
75 #endif /* _PA_RISC2_0_ID */
76
77 #ifndef _PA_RISC_MAXID
78 #define _PA_RISC_MAXID 0x2FF
79 #endif /* _PA_RISC_MAXID */
80
81 #ifndef _PA_RISC_ID
82 #define _PA_RISC_ID(__m_num) \
83 (((__m_num) == _PA_RISC1_0_ID) || \
84 ((__m_num) >= _PA_RISC1_1_ID && (__m_num) <= _PA_RISC_MAXID))
85 #endif /* _PA_RISC_ID */
86
87 /* HIUX in it's infinite stupidity changed the names for several "well
88 known" constants. Work around such braindamage. Try the HPUX version
89 first, then the HIUX version, and finally provide a default. */
90 #ifdef HPUX_AUX_ID
91 #define EXEC_AUX_ID HPUX_AUX_ID
92 #endif
93
94 #if !defined (EXEC_AUX_ID) && defined (HIUX_AUX_ID)
95 #define EXEC_AUX_ID HIUX_AUX_ID
96 #endif
97
98 #ifndef EXEC_AUX_ID
99 #define EXEC_AUX_ID 0
100 #endif
101
102 /* Size (in chars) of the temporary buffers used during fixup and string
103 table writes. */
104
105 #define SOM_TMP_BUFSIZE 8192
106
107 /* Size of the hash table in archives. */
108 #define SOM_LST_HASH_SIZE 31
109
110 /* Max number of SOMs to be found in an archive. */
111 #define SOM_LST_MODULE_LIMIT 1024
112
113 /* Generic alignment macro. */
114 #define SOM_ALIGN(val, alignment) \
115 (((val) + (alignment) - 1) &~ ((unsigned long) (alignment) - 1))
116
117 /* SOM allows any one of the four previous relocations to be reused
118 with a "R_PREV_FIXUP" relocation entry. Since R_PREV_FIXUP
119 relocations are always a single byte, using a R_PREV_FIXUP instead
120 of some multi-byte relocation makes object files smaller.
121
122 Note one side effect of using a R_PREV_FIXUP is the relocation that
123 is being repeated moves to the front of the queue. */
124 struct reloc_queue
125 {
126 unsigned char *reloc;
127 unsigned int size;
128 } reloc_queue[4];
129
130 /* This fully describes the symbol types which may be attached to
131 an EXPORT or IMPORT directive. Only SOM uses this formation
132 (ELF has no need for it). */
133 typedef enum
134 {
135 SYMBOL_TYPE_UNKNOWN,
136 SYMBOL_TYPE_ABSOLUTE,
137 SYMBOL_TYPE_CODE,
138 SYMBOL_TYPE_DATA,
139 SYMBOL_TYPE_ENTRY,
140 SYMBOL_TYPE_MILLICODE,
141 SYMBOL_TYPE_PLABEL,
142 SYMBOL_TYPE_PRI_PROG,
143 SYMBOL_TYPE_SEC_PROG,
144 } pa_symbol_type;
145
146 struct section_to_type
147 {
148 char *section;
149 char type;
150 };
151
152 /* Assorted symbol information that needs to be derived from the BFD symbol
153 and/or the BFD backend private symbol data. */
154 struct som_misc_symbol_info
155 {
156 unsigned int symbol_type;
157 unsigned int symbol_scope;
158 unsigned int arg_reloc;
159 unsigned int symbol_info;
160 unsigned int symbol_value;
161 unsigned int priv_level;
162 unsigned int secondary_def;
163 unsigned int is_comdat;
164 unsigned int is_common;
165 unsigned int dup_common;
166 };
167
168 /* Map SOM section names to POSIX/BSD single-character symbol types.
169
170 This table includes all the standard subspaces as defined in the
171 current "PRO ABI for PA-RISC Systems", $UNWIND$ which for
172 some reason was left out, and sections specific to embedded stabs. */
173
174 static const struct section_to_type stt[] =
175 {
176 {"$TEXT$", 't'},
177 {"$SHLIB_INFO$", 't'},
178 {"$MILLICODE$", 't'},
179 {"$LIT$", 't'},
180 {"$CODE$", 't'},
181 {"$UNWIND_START$", 't'},
182 {"$UNWIND$", 't'},
183 {"$PRIVATE$", 'd'},
184 {"$PLT$", 'd'},
185 {"$SHLIB_DATA$", 'd'},
186 {"$DATA$", 'd'},
187 {"$SHORTDATA$", 'g'},
188 {"$DLT$", 'd'},
189 {"$GLOBAL$", 'g'},
190 {"$SHORTBSS$", 's'},
191 {"$BSS$", 'b'},
192 {"$GDB_STRINGS$", 'N'},
193 {"$GDB_SYMBOLS$", 'N'},
194 {0, 0}
195 };
196
197 /* About the relocation formatting table...
198
199 There are 256 entries in the table, one for each possible
200 relocation opcode available in SOM. We index the table by
201 the relocation opcode. The names and operations are those
202 defined by a.out_800 (4).
203
204 Right now this table is only used to count and perform minimal
205 processing on relocation streams so that they can be internalized
206 into BFD and symbolically printed by utilities. To make actual use
207 of them would be much more difficult, BFD's concept of relocations
208 is far too simple to handle SOM relocations. The basic assumption
209 that a relocation can be completely processed independent of other
210 relocations before an object file is written is invalid for SOM.
211
212 The SOM relocations are meant to be processed as a stream, they
213 specify copying of data from the input section to the output section
214 while possibly modifying the data in some manner. They also can
215 specify that a variable number of zeros or uninitialized data be
216 inserted on in the output segment at the current offset. Some
217 relocations specify that some previous relocation be re-applied at
218 the current location in the input/output sections. And finally a number
219 of relocations have effects on other sections (R_ENTRY, R_EXIT,
220 R_UNWIND_AUX and a variety of others). There isn't even enough room
221 in the BFD relocation data structure to store enough information to
222 perform all the relocations.
223
224 Each entry in the table has three fields.
225
226 The first entry is an index into this "class" of relocations. This
227 index can then be used as a variable within the relocation itself.
228
229 The second field is a format string which actually controls processing
230 of the relocation. It uses a simple postfix machine to do calculations
231 based on variables/constants found in the string and the relocation
232 stream.
233
234 The third field specifys whether or not this relocation may use
235 a constant (V) from the previous R_DATA_OVERRIDE rather than a constant
236 stored in the instruction.
237
238 Variables:
239
240 L = input space byte count
241 D = index into class of relocations
242 M = output space byte count
243 N = statement number (unused?)
244 O = stack operation
245 R = parameter relocation bits
246 S = symbol index
247 T = first 32 bits of stack unwind information
248 U = second 32 bits of stack unwind information
249 V = a literal constant (usually used in the next relocation)
250 P = a previous relocation
251
252 Lower case letters (starting with 'b') refer to following
253 bytes in the relocation stream. 'b' is the next 1 byte,
254 c is the next 2 bytes, d is the next 3 bytes, etc...
255 This is the variable part of the relocation entries that
256 makes our life a living hell.
257
258 numerical constants are also used in the format string. Note
259 the constants are represented in decimal.
260
261 '+', "*" and "=" represents the obvious postfix operators.
262 '<' represents a left shift.
263
264 Stack Operations:
265
266 Parameter Relocation Bits:
267
268 Unwind Entries:
269
270 Previous Relocations: The index field represents which in the queue
271 of 4 previous fixups should be re-applied.
272
273 Literal Constants: These are generally used to represent addend
274 parts of relocations when these constants are not stored in the
275 fields of the instructions themselves. For example the instruction
276 addil foo-$global$-0x1234 would use an override for "0x1234" rather
277 than storing it into the addil itself. */
278
279 struct fixup_format
280 {
281 int D;
282 const char *format;
283 };
284
285 static const struct fixup_format som_fixup_formats[256] =
286 {
287 /* R_NO_RELOCATION. */
288 { 0, "LD1+4*=" }, /* 0x00 */
289 { 1, "LD1+4*=" }, /* 0x01 */
290 { 2, "LD1+4*=" }, /* 0x02 */
291 { 3, "LD1+4*=" }, /* 0x03 */
292 { 4, "LD1+4*=" }, /* 0x04 */
293 { 5, "LD1+4*=" }, /* 0x05 */
294 { 6, "LD1+4*=" }, /* 0x06 */
295 { 7, "LD1+4*=" }, /* 0x07 */
296 { 8, "LD1+4*=" }, /* 0x08 */
297 { 9, "LD1+4*=" }, /* 0x09 */
298 { 10, "LD1+4*=" }, /* 0x0a */
299 { 11, "LD1+4*=" }, /* 0x0b */
300 { 12, "LD1+4*=" }, /* 0x0c */
301 { 13, "LD1+4*=" }, /* 0x0d */
302 { 14, "LD1+4*=" }, /* 0x0e */
303 { 15, "LD1+4*=" }, /* 0x0f */
304 { 16, "LD1+4*=" }, /* 0x10 */
305 { 17, "LD1+4*=" }, /* 0x11 */
306 { 18, "LD1+4*=" }, /* 0x12 */
307 { 19, "LD1+4*=" }, /* 0x13 */
308 { 20, "LD1+4*=" }, /* 0x14 */
309 { 21, "LD1+4*=" }, /* 0x15 */
310 { 22, "LD1+4*=" }, /* 0x16 */
311 { 23, "LD1+4*=" }, /* 0x17 */
312 { 0, "LD8<b+1+4*=" }, /* 0x18 */
313 { 1, "LD8<b+1+4*=" }, /* 0x19 */
314 { 2, "LD8<b+1+4*=" }, /* 0x1a */
315 { 3, "LD8<b+1+4*=" }, /* 0x1b */
316 { 0, "LD16<c+1+4*=" }, /* 0x1c */
317 { 1, "LD16<c+1+4*=" }, /* 0x1d */
318 { 2, "LD16<c+1+4*=" }, /* 0x1e */
319 { 0, "Ld1+=" }, /* 0x1f */
320 /* R_ZEROES. */
321 { 0, "Lb1+4*=" }, /* 0x20 */
322 { 1, "Ld1+=" }, /* 0x21 */
323 /* R_UNINIT. */
324 { 0, "Lb1+4*=" }, /* 0x22 */
325 { 1, "Ld1+=" }, /* 0x23 */
326 /* R_RELOCATION. */
327 { 0, "L4=" }, /* 0x24 */
328 /* R_DATA_ONE_SYMBOL. */
329 { 0, "L4=Sb=" }, /* 0x25 */
330 { 1, "L4=Sd=" }, /* 0x26 */
331 /* R_DATA_PLEBEL. */
332 { 0, "L4=Sb=" }, /* 0x27 */
333 { 1, "L4=Sd=" }, /* 0x28 */
334 /* R_SPACE_REF. */
335 { 0, "L4=" }, /* 0x29 */
336 /* R_REPEATED_INIT. */
337 { 0, "L4=Mb1+4*=" }, /* 0x2a */
338 { 1, "Lb4*=Mb1+L*=" }, /* 0x2b */
339 { 2, "Lb4*=Md1+4*=" }, /* 0x2c */
340 { 3, "Ld1+=Me1+=" }, /* 0x2d */
341 { 0, "" }, /* 0x2e */
342 { 0, "" }, /* 0x2f */
343 /* R_PCREL_CALL. */
344 { 0, "L4=RD=Sb=" }, /* 0x30 */
345 { 1, "L4=RD=Sb=" }, /* 0x31 */
346 { 2, "L4=RD=Sb=" }, /* 0x32 */
347 { 3, "L4=RD=Sb=" }, /* 0x33 */
348 { 4, "L4=RD=Sb=" }, /* 0x34 */
349 { 5, "L4=RD=Sb=" }, /* 0x35 */
350 { 6, "L4=RD=Sb=" }, /* 0x36 */
351 { 7, "L4=RD=Sb=" }, /* 0x37 */
352 { 8, "L4=RD=Sb=" }, /* 0x38 */
353 { 9, "L4=RD=Sb=" }, /* 0x39 */
354 { 0, "L4=RD8<b+=Sb=" }, /* 0x3a */
355 { 1, "L4=RD8<b+=Sb=" }, /* 0x3b */
356 { 0, "L4=RD8<b+=Sd=" }, /* 0x3c */
357 { 1, "L4=RD8<b+=Sd=" }, /* 0x3d */
358 /* R_SHORT_PCREL_MODE. */
359 { 0, "" }, /* 0x3e */
360 /* R_LONG_PCREL_MODE. */
361 { 0, "" }, /* 0x3f */
362 /* R_ABS_CALL. */
363 { 0, "L4=RD=Sb=" }, /* 0x40 */
364 { 1, "L4=RD=Sb=" }, /* 0x41 */
365 { 2, "L4=RD=Sb=" }, /* 0x42 */
366 { 3, "L4=RD=Sb=" }, /* 0x43 */
367 { 4, "L4=RD=Sb=" }, /* 0x44 */
368 { 5, "L4=RD=Sb=" }, /* 0x45 */
369 { 6, "L4=RD=Sb=" }, /* 0x46 */
370 { 7, "L4=RD=Sb=" }, /* 0x47 */
371 { 8, "L4=RD=Sb=" }, /* 0x48 */
372 { 9, "L4=RD=Sb=" }, /* 0x49 */
373 { 0, "L4=RD8<b+=Sb=" }, /* 0x4a */
374 { 1, "L4=RD8<b+=Sb=" }, /* 0x4b */
375 { 0, "L4=RD8<b+=Sd=" }, /* 0x4c */
376 { 1, "L4=RD8<b+=Sd=" }, /* 0x4d */
377 /* R_RESERVED. */
378 { 0, "" }, /* 0x4e */
379 { 0, "" }, /* 0x4f */
380 /* R_DP_RELATIVE. */
381 { 0, "L4=SD=" }, /* 0x50 */
382 { 1, "L4=SD=" }, /* 0x51 */
383 { 2, "L4=SD=" }, /* 0x52 */
384 { 3, "L4=SD=" }, /* 0x53 */
385 { 4, "L4=SD=" }, /* 0x54 */
386 { 5, "L4=SD=" }, /* 0x55 */
387 { 6, "L4=SD=" }, /* 0x56 */
388 { 7, "L4=SD=" }, /* 0x57 */
389 { 8, "L4=SD=" }, /* 0x58 */
390 { 9, "L4=SD=" }, /* 0x59 */
391 { 10, "L4=SD=" }, /* 0x5a */
392 { 11, "L4=SD=" }, /* 0x5b */
393 { 12, "L4=SD=" }, /* 0x5c */
394 { 13, "L4=SD=" }, /* 0x5d */
395 { 14, "L4=SD=" }, /* 0x5e */
396 { 15, "L4=SD=" }, /* 0x5f */
397 { 16, "L4=SD=" }, /* 0x60 */
398 { 17, "L4=SD=" }, /* 0x61 */
399 { 18, "L4=SD=" }, /* 0x62 */
400 { 19, "L4=SD=" }, /* 0x63 */
401 { 20, "L4=SD=" }, /* 0x64 */
402 { 21, "L4=SD=" }, /* 0x65 */
403 { 22, "L4=SD=" }, /* 0x66 */
404 { 23, "L4=SD=" }, /* 0x67 */
405 { 24, "L4=SD=" }, /* 0x68 */
406 { 25, "L4=SD=" }, /* 0x69 */
407 { 26, "L4=SD=" }, /* 0x6a */
408 { 27, "L4=SD=" }, /* 0x6b */
409 { 28, "L4=SD=" }, /* 0x6c */
410 { 29, "L4=SD=" }, /* 0x6d */
411 { 30, "L4=SD=" }, /* 0x6e */
412 { 31, "L4=SD=" }, /* 0x6f */
413 { 32, "L4=Sb=" }, /* 0x70 */
414 { 33, "L4=Sd=" }, /* 0x71 */
415 /* R_RESERVED. */
416 { 0, "" }, /* 0x72 */
417 { 0, "" }, /* 0x73 */
418 { 0, "" }, /* 0x74 */
419 { 0, "" }, /* 0x75 */
420 { 0, "" }, /* 0x76 */
421 { 0, "" }, /* 0x77 */
422 /* R_DLT_REL. */
423 { 0, "L4=Sb=" }, /* 0x78 */
424 { 1, "L4=Sd=" }, /* 0x79 */
425 /* R_RESERVED. */
426 { 0, "" }, /* 0x7a */
427 { 0, "" }, /* 0x7b */
428 { 0, "" }, /* 0x7c */
429 { 0, "" }, /* 0x7d */
430 { 0, "" }, /* 0x7e */
431 { 0, "" }, /* 0x7f */
432 /* R_CODE_ONE_SYMBOL. */
433 { 0, "L4=SD=" }, /* 0x80 */
434 { 1, "L4=SD=" }, /* 0x81 */
435 { 2, "L4=SD=" }, /* 0x82 */
436 { 3, "L4=SD=" }, /* 0x83 */
437 { 4, "L4=SD=" }, /* 0x84 */
438 { 5, "L4=SD=" }, /* 0x85 */
439 { 6, "L4=SD=" }, /* 0x86 */
440 { 7, "L4=SD=" }, /* 0x87 */
441 { 8, "L4=SD=" }, /* 0x88 */
442 { 9, "L4=SD=" }, /* 0x89 */
443 { 10, "L4=SD=" }, /* 0x8q */
444 { 11, "L4=SD=" }, /* 0x8b */
445 { 12, "L4=SD=" }, /* 0x8c */
446 { 13, "L4=SD=" }, /* 0x8d */
447 { 14, "L4=SD=" }, /* 0x8e */
448 { 15, "L4=SD=" }, /* 0x8f */
449 { 16, "L4=SD=" }, /* 0x90 */
450 { 17, "L4=SD=" }, /* 0x91 */
451 { 18, "L4=SD=" }, /* 0x92 */
452 { 19, "L4=SD=" }, /* 0x93 */
453 { 20, "L4=SD=" }, /* 0x94 */
454 { 21, "L4=SD=" }, /* 0x95 */
455 { 22, "L4=SD=" }, /* 0x96 */
456 { 23, "L4=SD=" }, /* 0x97 */
457 { 24, "L4=SD=" }, /* 0x98 */
458 { 25, "L4=SD=" }, /* 0x99 */
459 { 26, "L4=SD=" }, /* 0x9a */
460 { 27, "L4=SD=" }, /* 0x9b */
461 { 28, "L4=SD=" }, /* 0x9c */
462 { 29, "L4=SD=" }, /* 0x9d */
463 { 30, "L4=SD=" }, /* 0x9e */
464 { 31, "L4=SD=" }, /* 0x9f */
465 { 32, "L4=Sb=" }, /* 0xa0 */
466 { 33, "L4=Sd=" }, /* 0xa1 */
467 /* R_RESERVED. */
468 { 0, "" }, /* 0xa2 */
469 { 0, "" }, /* 0xa3 */
470 { 0, "" }, /* 0xa4 */
471 { 0, "" }, /* 0xa5 */
472 { 0, "" }, /* 0xa6 */
473 { 0, "" }, /* 0xa7 */
474 { 0, "" }, /* 0xa8 */
475 { 0, "" }, /* 0xa9 */
476 { 0, "" }, /* 0xaa */
477 { 0, "" }, /* 0xab */
478 { 0, "" }, /* 0xac */
479 { 0, "" }, /* 0xad */
480 /* R_MILLI_REL. */
481 { 0, "L4=Sb=" }, /* 0xae */
482 { 1, "L4=Sd=" }, /* 0xaf */
483 /* R_CODE_PLABEL. */
484 { 0, "L4=Sb=" }, /* 0xb0 */
485 { 1, "L4=Sd=" }, /* 0xb1 */
486 /* R_BREAKPOINT. */
487 { 0, "L4=" }, /* 0xb2 */
488 /* R_ENTRY. */
489 { 0, "Te=Ue=" }, /* 0xb3 */
490 { 1, "Uf=" }, /* 0xb4 */
491 /* R_ALT_ENTRY. */
492 { 0, "" }, /* 0xb5 */
493 /* R_EXIT. */
494 { 0, "" }, /* 0xb6 */
495 /* R_BEGIN_TRY. */
496 { 0, "" }, /* 0xb7 */
497 /* R_END_TRY. */
498 { 0, "R0=" }, /* 0xb8 */
499 { 1, "Rb4*=" }, /* 0xb9 */
500 { 2, "Rd4*=" }, /* 0xba */
501 /* R_BEGIN_BRTAB. */
502 { 0, "" }, /* 0xbb */
503 /* R_END_BRTAB. */
504 { 0, "" }, /* 0xbc */
505 /* R_STATEMENT. */
506 { 0, "Nb=" }, /* 0xbd */
507 { 1, "Nc=" }, /* 0xbe */
508 { 2, "Nd=" }, /* 0xbf */
509 /* R_DATA_EXPR. */
510 { 0, "L4=" }, /* 0xc0 */
511 /* R_CODE_EXPR. */
512 { 0, "L4=" }, /* 0xc1 */
513 /* R_FSEL. */
514 { 0, "" }, /* 0xc2 */
515 /* R_LSEL. */
516 { 0, "" }, /* 0xc3 */
517 /* R_RSEL. */
518 { 0, "" }, /* 0xc4 */
519 /* R_N_MODE. */
520 { 0, "" }, /* 0xc5 */
521 /* R_S_MODE. */
522 { 0, "" }, /* 0xc6 */
523 /* R_D_MODE. */
524 { 0, "" }, /* 0xc7 */
525 /* R_R_MODE. */
526 { 0, "" }, /* 0xc8 */
527 /* R_DATA_OVERRIDE. */
528 { 0, "V0=" }, /* 0xc9 */
529 { 1, "Vb=" }, /* 0xca */
530 { 2, "Vc=" }, /* 0xcb */
531 { 3, "Vd=" }, /* 0xcc */
532 { 4, "Ve=" }, /* 0xcd */
533 /* R_TRANSLATED. */
534 { 0, "" }, /* 0xce */
535 /* R_AUX_UNWIND. */
536 { 0,"Sd=Ve=Ee=" }, /* 0xcf */
537 /* R_COMP1. */
538 { 0, "Ob=" }, /* 0xd0 */
539 /* R_COMP2. */
540 { 0, "Ob=Sd=" }, /* 0xd1 */
541 /* R_COMP3. */
542 { 0, "Ob=Ve=" }, /* 0xd2 */
543 /* R_PREV_FIXUP. */
544 { 0, "P" }, /* 0xd3 */
545 { 1, "P" }, /* 0xd4 */
546 { 2, "P" }, /* 0xd5 */
547 { 3, "P" }, /* 0xd6 */
548 /* R_SEC_STMT. */
549 { 0, "" }, /* 0xd7 */
550 /* R_N0SEL. */
551 { 0, "" }, /* 0xd8 */
552 /* R_N1SEL. */
553 { 0, "" }, /* 0xd9 */
554 /* R_LINETAB. */
555 { 0, "Eb=Sd=Ve=" }, /* 0xda */
556 /* R_LINETAB_ESC. */
557 { 0, "Eb=Mb=" }, /* 0xdb */
558 /* R_LTP_OVERRIDE. */
559 { 0, "" }, /* 0xdc */
560 /* R_COMMENT. */
561 { 0, "Ob=Vf=" }, /* 0xdd */
562 /* R_RESERVED. */
563 { 0, "" }, /* 0xde */
564 { 0, "" }, /* 0xdf */
565 { 0, "" }, /* 0xe0 */
566 { 0, "" }, /* 0xe1 */
567 { 0, "" }, /* 0xe2 */
568 { 0, "" }, /* 0xe3 */
569 { 0, "" }, /* 0xe4 */
570 { 0, "" }, /* 0xe5 */
571 { 0, "" }, /* 0xe6 */
572 { 0, "" }, /* 0xe7 */
573 { 0, "" }, /* 0xe8 */
574 { 0, "" }, /* 0xe9 */
575 { 0, "" }, /* 0xea */
576 { 0, "" }, /* 0xeb */
577 { 0, "" }, /* 0xec */
578 { 0, "" }, /* 0xed */
579 { 0, "" }, /* 0xee */
580 { 0, "" }, /* 0xef */
581 { 0, "" }, /* 0xf0 */
582 { 0, "" }, /* 0xf1 */
583 { 0, "" }, /* 0xf2 */
584 { 0, "" }, /* 0xf3 */
585 { 0, "" }, /* 0xf4 */
586 { 0, "" }, /* 0xf5 */
587 { 0, "" }, /* 0xf6 */
588 { 0, "" }, /* 0xf7 */
589 { 0, "" }, /* 0xf8 */
590 { 0, "" }, /* 0xf9 */
591 { 0, "" }, /* 0xfa */
592 { 0, "" }, /* 0xfb */
593 { 0, "" }, /* 0xfc */
594 { 0, "" }, /* 0xfd */
595 { 0, "" }, /* 0xfe */
596 { 0, "" }, /* 0xff */
597 };
598
599 static const int comp1_opcodes[] =
600 {
601 0x00,
602 0x40,
603 0x41,
604 0x42,
605 0x43,
606 0x44,
607 0x45,
608 0x46,
609 0x47,
610 0x48,
611 0x49,
612 0x4a,
613 0x4b,
614 0x60,
615 0x80,
616 0xa0,
617 0xc0,
618 -1
619 };
620
621 static const int comp2_opcodes[] =
622 {
623 0x00,
624 0x80,
625 0x82,
626 0xc0,
627 -1
628 };
629
630 static const int comp3_opcodes[] =
631 {
632 0x00,
633 0x02,
634 -1
635 };
636
637 /* These apparently are not in older versions of hpux reloc.h (hpux7). */
638 #ifndef R_DLT_REL
639 #define R_DLT_REL 0x78
640 #endif
641
642 #ifndef R_AUX_UNWIND
643 #define R_AUX_UNWIND 0xcf
644 #endif
645
646 #ifndef R_SEC_STMT
647 #define R_SEC_STMT 0xd7
648 #endif
649
650 /* And these first appeared in hpux10. */
651 #ifndef R_SHORT_PCREL_MODE
652 #define NO_PCREL_MODES
653 #define R_SHORT_PCREL_MODE 0x3e
654 #endif
655
656 #ifndef R_LONG_PCREL_MODE
657 #define R_LONG_PCREL_MODE 0x3f
658 #endif
659
660 #ifndef R_N0SEL
661 #define R_N0SEL 0xd8
662 #endif
663
664 #ifndef R_N1SEL
665 #define R_N1SEL 0xd9
666 #endif
667
668 #ifndef R_LINETAB
669 #define R_LINETAB 0xda
670 #endif
671
672 #ifndef R_LINETAB_ESC
673 #define R_LINETAB_ESC 0xdb
674 #endif
675
676 #ifndef R_LTP_OVERRIDE
677 #define R_LTP_OVERRIDE 0xdc
678 #endif
679
680 #ifndef R_COMMENT
681 #define R_COMMENT 0xdd
682 #endif
683
684 #define SOM_HOWTO(TYPE, NAME) \
685 HOWTO(TYPE, 0, 0, 32, FALSE, 0, 0, hppa_som_reloc, NAME, FALSE, 0, 0, FALSE)
686
687 static reloc_howto_type som_hppa_howto_table[] =
688 {
689 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
690 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
691 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
692 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
693 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
694 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
695 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
696 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
697 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
698 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
699 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
700 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
701 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
702 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
703 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
704 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
705 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
706 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
707 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
708 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
709 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
710 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
711 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
712 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
713 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
714 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
715 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
716 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
717 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
718 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
719 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
720 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
721 SOM_HOWTO (R_ZEROES, "R_ZEROES"),
722 SOM_HOWTO (R_ZEROES, "R_ZEROES"),
723 SOM_HOWTO (R_UNINIT, "R_UNINIT"),
724 SOM_HOWTO (R_UNINIT, "R_UNINIT"),
725 SOM_HOWTO (R_RELOCATION, "R_RELOCATION"),
726 SOM_HOWTO (R_DATA_ONE_SYMBOL, "R_DATA_ONE_SYMBOL"),
727 SOM_HOWTO (R_DATA_ONE_SYMBOL, "R_DATA_ONE_SYMBOL"),
728 SOM_HOWTO (R_DATA_PLABEL, "R_DATA_PLABEL"),
729 SOM_HOWTO (R_DATA_PLABEL, "R_DATA_PLABEL"),
730 SOM_HOWTO (R_SPACE_REF, "R_SPACE_REF"),
731 SOM_HOWTO (R_REPEATED_INIT, "REPEATED_INIT"),
732 SOM_HOWTO (R_REPEATED_INIT, "REPEATED_INIT"),
733 SOM_HOWTO (R_REPEATED_INIT, "REPEATED_INIT"),
734 SOM_HOWTO (R_REPEATED_INIT, "REPEATED_INIT"),
735 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
736 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
737 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
738 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
739 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
740 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
741 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
742 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
743 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
744 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
745 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
746 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
747 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
748 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
749 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
750 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
751 SOM_HOWTO (R_SHORT_PCREL_MODE, "R_SHORT_PCREL_MODE"),
752 SOM_HOWTO (R_LONG_PCREL_MODE, "R_LONG_PCREL_MODE"),
753 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
754 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
755 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
756 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
757 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
758 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
759 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
760 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
761 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
762 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
763 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
764 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
765 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
766 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
767 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
768 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
769 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
770 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
771 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
772 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
773 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
774 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
775 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
776 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
777 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
778 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
779 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
780 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
781 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
782 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
783 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
784 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
785 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
786 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
787 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
788 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
789 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
790 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
791 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
792 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
793 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
794 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
795 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
796 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
797 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
798 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
799 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
800 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
801 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
802 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
803 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
804 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
805 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
806 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
807 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
808 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
809 SOM_HOWTO (R_DLT_REL, "R_DLT_REL"),
810 SOM_HOWTO (R_DLT_REL, "R_DLT_REL"),
811 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
812 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
813 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
814 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
815 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
816 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
817 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
818 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
819 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
820 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
821 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
822 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
823 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
824 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
825 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
826 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
827 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
828 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
829 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
830 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
831 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
832 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
833 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
834 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
835 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
836 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
837 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
838 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
839 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
840 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
841 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
842 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
843 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
844 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
845 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
846 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
847 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
848 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
849 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
850 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
851 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
852 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
853 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
854 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
855 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
856 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
857 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
858 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
859 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
860 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
861 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
862 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
863 SOM_HOWTO (R_MILLI_REL, "R_MILLI_REL"),
864 SOM_HOWTO (R_MILLI_REL, "R_MILLI_REL"),
865 SOM_HOWTO (R_CODE_PLABEL, "R_CODE_PLABEL"),
866 SOM_HOWTO (R_CODE_PLABEL, "R_CODE_PLABEL"),
867 SOM_HOWTO (R_BREAKPOINT, "R_BREAKPOINT"),
868 SOM_HOWTO (R_ENTRY, "R_ENTRY"),
869 SOM_HOWTO (R_ENTRY, "R_ENTRY"),
870 SOM_HOWTO (R_ALT_ENTRY, "R_ALT_ENTRY"),
871 SOM_HOWTO (R_EXIT, "R_EXIT"),
872 SOM_HOWTO (R_BEGIN_TRY, "R_BEGIN_TRY"),
873 SOM_HOWTO (R_END_TRY, "R_END_TRY"),
874 SOM_HOWTO (R_END_TRY, "R_END_TRY"),
875 SOM_HOWTO (R_END_TRY, "R_END_TRY"),
876 SOM_HOWTO (R_BEGIN_BRTAB, "R_BEGIN_BRTAB"),
877 SOM_HOWTO (R_END_BRTAB, "R_END_BRTAB"),
878 SOM_HOWTO (R_STATEMENT, "R_STATEMENT"),
879 SOM_HOWTO (R_STATEMENT, "R_STATEMENT"),
880 SOM_HOWTO (R_STATEMENT, "R_STATEMENT"),
881 SOM_HOWTO (R_DATA_EXPR, "R_DATA_EXPR"),
882 SOM_HOWTO (R_CODE_EXPR, "R_CODE_EXPR"),
883 SOM_HOWTO (R_FSEL, "R_FSEL"),
884 SOM_HOWTO (R_LSEL, "R_LSEL"),
885 SOM_HOWTO (R_RSEL, "R_RSEL"),
886 SOM_HOWTO (R_N_MODE, "R_N_MODE"),
887 SOM_HOWTO (R_S_MODE, "R_S_MODE"),
888 SOM_HOWTO (R_D_MODE, "R_D_MODE"),
889 SOM_HOWTO (R_R_MODE, "R_R_MODE"),
890 SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
891 SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
892 SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
893 SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
894 SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
895 SOM_HOWTO (R_TRANSLATED, "R_TRANSLATED"),
896 SOM_HOWTO (R_AUX_UNWIND, "R_AUX_UNWIND"),
897 SOM_HOWTO (R_COMP1, "R_COMP1"),
898 SOM_HOWTO (R_COMP2, "R_COMP2"),
899 SOM_HOWTO (R_COMP3, "R_COMP3"),
900 SOM_HOWTO (R_PREV_FIXUP, "R_PREV_FIXUP"),
901 SOM_HOWTO (R_PREV_FIXUP, "R_PREV_FIXUP"),
902 SOM_HOWTO (R_PREV_FIXUP, "R_PREV_FIXUP"),
903 SOM_HOWTO (R_PREV_FIXUP, "R_PREV_FIXUP"),
904 SOM_HOWTO (R_SEC_STMT, "R_SEC_STMT"),
905 SOM_HOWTO (R_N0SEL, "R_N0SEL"),
906 SOM_HOWTO (R_N1SEL, "R_N1SEL"),
907 SOM_HOWTO (R_LINETAB, "R_LINETAB"),
908 SOM_HOWTO (R_LINETAB_ESC, "R_LINETAB_ESC"),
909 SOM_HOWTO (R_LTP_OVERRIDE, "R_LTP_OVERRIDE"),
910 SOM_HOWTO (R_COMMENT, "R_COMMENT"),
911 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
912 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
913 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
914 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
915 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
916 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
917 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
918 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
919 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
920 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
921 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
922 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
923 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
924 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
925 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
926 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
927 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
928 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
929 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
930 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
931 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
932 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
933 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
934 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
935 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
936 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
937 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
938 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
939 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
940 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
941 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
942 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
943 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
944 SOM_HOWTO (R_RESERVED, "R_RESERVED")
945 };
946
947 /* Initialize the SOM relocation queue. By definition the queue holds
948 the last four multibyte fixups. */
949
950 static void
951 som_initialize_reloc_queue (struct reloc_queue *queue)
952 {
953 queue[0].reloc = NULL;
954 queue[0].size = 0;
955 queue[1].reloc = NULL;
956 queue[1].size = 0;
957 queue[2].reloc = NULL;
958 queue[2].size = 0;
959 queue[3].reloc = NULL;
960 queue[3].size = 0;
961 }
962
963 /* Insert a new relocation into the relocation queue. */
964
965 static void
966 som_reloc_queue_insert (unsigned char *p,
967 unsigned int size,
968 struct reloc_queue *queue)
969 {
970 queue[3].reloc = queue[2].reloc;
971 queue[3].size = queue[2].size;
972 queue[2].reloc = queue[1].reloc;
973 queue[2].size = queue[1].size;
974 queue[1].reloc = queue[0].reloc;
975 queue[1].size = queue[0].size;
976 queue[0].reloc = p;
977 queue[0].size = size;
978 }
979
980 /* When an entry in the relocation queue is reused, the entry moves
981 to the front of the queue. */
982
983 static void
984 som_reloc_queue_fix (struct reloc_queue *queue, unsigned int index)
985 {
986 if (index == 0)
987 return;
988
989 if (index == 1)
990 {
991 unsigned char *tmp1 = queue[0].reloc;
992 unsigned int tmp2 = queue[0].size;
993
994 queue[0].reloc = queue[1].reloc;
995 queue[0].size = queue[1].size;
996 queue[1].reloc = tmp1;
997 queue[1].size = tmp2;
998 return;
999 }
1000
1001 if (index == 2)
1002 {
1003 unsigned char *tmp1 = queue[0].reloc;
1004 unsigned int tmp2 = queue[0].size;
1005
1006 queue[0].reloc = queue[2].reloc;
1007 queue[0].size = queue[2].size;
1008 queue[2].reloc = queue[1].reloc;
1009 queue[2].size = queue[1].size;
1010 queue[1].reloc = tmp1;
1011 queue[1].size = tmp2;
1012 return;
1013 }
1014
1015 if (index == 3)
1016 {
1017 unsigned char *tmp1 = queue[0].reloc;
1018 unsigned int tmp2 = queue[0].size;
1019
1020 queue[0].reloc = queue[3].reloc;
1021 queue[0].size = queue[3].size;
1022 queue[3].reloc = queue[2].reloc;
1023 queue[3].size = queue[2].size;
1024 queue[2].reloc = queue[1].reloc;
1025 queue[2].size = queue[1].size;
1026 queue[1].reloc = tmp1;
1027 queue[1].size = tmp2;
1028 return;
1029 }
1030 abort ();
1031 }
1032
1033 /* Search for a particular relocation in the relocation queue. */
1034
1035 static int
1036 som_reloc_queue_find (unsigned char *p,
1037 unsigned int size,
1038 struct reloc_queue *queue)
1039 {
1040 if (queue[0].reloc && !memcmp (p, queue[0].reloc, size)
1041 && size == queue[0].size)
1042 return 0;
1043 if (queue[1].reloc && !memcmp (p, queue[1].reloc, size)
1044 && size == queue[1].size)
1045 return 1;
1046 if (queue[2].reloc && !memcmp (p, queue[2].reloc, size)
1047 && size == queue[2].size)
1048 return 2;
1049 if (queue[3].reloc && !memcmp (p, queue[3].reloc, size)
1050 && size == queue[3].size)
1051 return 3;
1052 return -1;
1053 }
1054
1055 static unsigned char *
1056 try_prev_fixup (bfd *abfd ATTRIBUTE_UNUSED,
1057 unsigned int *subspace_reloc_sizep,
1058 unsigned char *p,
1059 unsigned int size,
1060 struct reloc_queue *queue)
1061 {
1062 int queue_index = som_reloc_queue_find (p, size, queue);
1063
1064 if (queue_index != -1)
1065 {
1066 /* Found this in a previous fixup. Undo the fixup we
1067 just built and use R_PREV_FIXUP instead. We saved
1068 a total of size - 1 bytes in the fixup stream. */
1069 bfd_put_8 (abfd, R_PREV_FIXUP + queue_index, p);
1070 p += 1;
1071 *subspace_reloc_sizep += 1;
1072 som_reloc_queue_fix (queue, queue_index);
1073 }
1074 else
1075 {
1076 som_reloc_queue_insert (p, size, queue);
1077 *subspace_reloc_sizep += size;
1078 p += size;
1079 }
1080 return p;
1081 }
1082
1083 /* Emit the proper R_NO_RELOCATION fixups to map the next SKIP
1084 bytes without any relocation. Update the size of the subspace
1085 relocation stream via SUBSPACE_RELOC_SIZE_P; also return the
1086 current pointer into the relocation stream. */
1087
1088 static unsigned char *
1089 som_reloc_skip (bfd *abfd,
1090 unsigned int skip,
1091 unsigned char *p,
1092 unsigned int *subspace_reloc_sizep,
1093 struct reloc_queue *queue)
1094 {
1095 /* Use a 4 byte R_NO_RELOCATION entry with a maximal value
1096 then R_PREV_FIXUPs to get the difference down to a
1097 reasonable size. */
1098 if (skip >= 0x1000000)
1099 {
1100 skip -= 0x1000000;
1101 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1102 bfd_put_8 (abfd, 0xff, p + 1);
1103 bfd_put_16 (abfd, (bfd_vma) 0xffff, p + 2);
1104 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1105 while (skip >= 0x1000000)
1106 {
1107 skip -= 0x1000000;
1108 bfd_put_8 (abfd, R_PREV_FIXUP, p);
1109 p++;
1110 *subspace_reloc_sizep += 1;
1111 /* No need to adjust queue here since we are repeating the
1112 most recent fixup. */
1113 }
1114 }
1115
1116 /* The difference must be less than 0x1000000. Use one
1117 more R_NO_RELOCATION entry to get to the right difference. */
1118 if ((skip & 3) == 0 && skip <= 0xc0000 && skip > 0)
1119 {
1120 /* Difference can be handled in a simple single-byte
1121 R_NO_RELOCATION entry. */
1122 if (skip <= 0x60)
1123 {
1124 bfd_put_8 (abfd, R_NO_RELOCATION + (skip >> 2) - 1, p);
1125 *subspace_reloc_sizep += 1;
1126 p++;
1127 }
1128 /* Handle it with a two byte R_NO_RELOCATION entry. */
1129 else if (skip <= 0x1000)
1130 {
1131 bfd_put_8 (abfd, R_NO_RELOCATION + 24 + (((skip >> 2) - 1) >> 8), p);
1132 bfd_put_8 (abfd, (skip >> 2) - 1, p + 1);
1133 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1134 }
1135 /* Handle it with a three byte R_NO_RELOCATION entry. */
1136 else
1137 {
1138 bfd_put_8 (abfd, R_NO_RELOCATION + 28 + (((skip >> 2) - 1) >> 16), p);
1139 bfd_put_16 (abfd, (bfd_vma) (skip >> 2) - 1, p + 1);
1140 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1141 }
1142 }
1143 /* Ugh. Punt and use a 4 byte entry. */
1144 else if (skip > 0)
1145 {
1146 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1147 bfd_put_8 (abfd, (skip - 1) >> 16, p + 1);
1148 bfd_put_16 (abfd, (bfd_vma) skip - 1, p + 2);
1149 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1150 }
1151 return p;
1152 }
1153
1154 /* Emit the proper R_DATA_OVERRIDE fixups to handle a nonzero addend
1155 from a BFD relocation. Update the size of the subspace relocation
1156 stream via SUBSPACE_RELOC_SIZE_P; also return the current pointer
1157 into the relocation stream. */
1158
1159 static unsigned char *
1160 som_reloc_addend (bfd *abfd,
1161 bfd_vma addend,
1162 unsigned char *p,
1163 unsigned int *subspace_reloc_sizep,
1164 struct reloc_queue *queue)
1165 {
1166 if (addend + 0x80 < 0x100)
1167 {
1168 bfd_put_8 (abfd, R_DATA_OVERRIDE + 1, p);
1169 bfd_put_8 (abfd, addend, p + 1);
1170 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1171 }
1172 else if (addend + 0x8000 < 0x10000)
1173 {
1174 bfd_put_8 (abfd, R_DATA_OVERRIDE + 2, p);
1175 bfd_put_16 (abfd, addend, p + 1);
1176 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1177 }
1178 else if (addend + 0x800000 < 0x1000000)
1179 {
1180 bfd_put_8 (abfd, R_DATA_OVERRIDE + 3, p);
1181 bfd_put_8 (abfd, addend >> 16, p + 1);
1182 bfd_put_16 (abfd, addend, p + 2);
1183 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1184 }
1185 else
1186 {
1187 bfd_put_8 (abfd, R_DATA_OVERRIDE + 4, p);
1188 bfd_put_32 (abfd, addend, p + 1);
1189 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1190 }
1191 return p;
1192 }
1193
1194 /* Handle a single function call relocation. */
1195
1196 static unsigned char *
1197 som_reloc_call (bfd *abfd,
1198 unsigned char *p,
1199 unsigned int *subspace_reloc_sizep,
1200 arelent *bfd_reloc,
1201 int sym_num,
1202 struct reloc_queue *queue)
1203 {
1204 int arg_bits = HPPA_R_ARG_RELOC (bfd_reloc->addend);
1205 int rtn_bits = arg_bits & 0x3;
1206 int type, done = 0;
1207
1208 /* You'll never believe all this is necessary to handle relocations
1209 for function calls. Having to compute and pack the argument
1210 relocation bits is the real nightmare.
1211
1212 If you're interested in how this works, just forget it. You really
1213 do not want to know about this braindamage. */
1214
1215 /* First see if this can be done with a "simple" relocation. Simple
1216 relocations have a symbol number < 0x100 and have simple encodings
1217 of argument relocations. */
1218
1219 if (sym_num < 0x100)
1220 {
1221 switch (arg_bits)
1222 {
1223 case 0:
1224 case 1:
1225 type = 0;
1226 break;
1227 case 1 << 8:
1228 case 1 << 8 | 1:
1229 type = 1;
1230 break;
1231 case 1 << 8 | 1 << 6:
1232 case 1 << 8 | 1 << 6 | 1:
1233 type = 2;
1234 break;
1235 case 1 << 8 | 1 << 6 | 1 << 4:
1236 case 1 << 8 | 1 << 6 | 1 << 4 | 1:
1237 type = 3;
1238 break;
1239 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2:
1240 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2 | 1:
1241 type = 4;
1242 break;
1243 default:
1244 /* Not one of the easy encodings. This will have to be
1245 handled by the more complex code below. */
1246 type = -1;
1247 break;
1248 }
1249 if (type != -1)
1250 {
1251 /* Account for the return value too. */
1252 if (rtn_bits)
1253 type += 5;
1254
1255 /* Emit a 2 byte relocation. Then see if it can be handled
1256 with a relocation which is already in the relocation queue. */
1257 bfd_put_8 (abfd, bfd_reloc->howto->type + type, p);
1258 bfd_put_8 (abfd, sym_num, p + 1);
1259 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1260 done = 1;
1261 }
1262 }
1263
1264 /* If this could not be handled with a simple relocation, then do a hard
1265 one. Hard relocations occur if the symbol number was too high or if
1266 the encoding of argument relocation bits is too complex. */
1267 if (! done)
1268 {
1269 /* Don't ask about these magic sequences. I took them straight
1270 from gas-1.36 which took them from the a.out man page. */
1271 type = rtn_bits;
1272 if ((arg_bits >> 6 & 0xf) == 0xe)
1273 type += 9 * 40;
1274 else
1275 type += (3 * (arg_bits >> 8 & 3) + (arg_bits >> 6 & 3)) * 40;
1276 if ((arg_bits >> 2 & 0xf) == 0xe)
1277 type += 9 * 4;
1278 else
1279 type += (3 * (arg_bits >> 4 & 3) + (arg_bits >> 2 & 3)) * 4;
1280
1281 /* Output the first two bytes of the relocation. These describe
1282 the length of the relocation and encoding style. */
1283 bfd_put_8 (abfd, bfd_reloc->howto->type + 10
1284 + 2 * (sym_num >= 0x100) + (type >= 0x100),
1285 p);
1286 bfd_put_8 (abfd, type, p + 1);
1287
1288 /* Now output the symbol index and see if this bizarre relocation
1289 just happened to be in the relocation queue. */
1290 if (sym_num < 0x100)
1291 {
1292 bfd_put_8 (abfd, sym_num, p + 2);
1293 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1294 }
1295 else
1296 {
1297 bfd_put_8 (abfd, sym_num >> 16, p + 2);
1298 bfd_put_16 (abfd, (bfd_vma) sym_num, p + 3);
1299 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1300 }
1301 }
1302 return p;
1303 }
1304
1305 /* Return the logarithm of X, base 2, considering X unsigned,
1306 if X is a power of 2. Otherwise, returns -1. */
1307
1308 static int
1309 exact_log2 (unsigned int x)
1310 {
1311 int log = 0;
1312
1313 /* Test for 0 or a power of 2. */
1314 if (x == 0 || x != (x & -x))
1315 return -1;
1316
1317 while ((x >>= 1) != 0)
1318 log++;
1319 return log;
1320 }
1321
1322 static bfd_reloc_status_type
1323 hppa_som_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1324 arelent *reloc_entry,
1325 asymbol *symbol_in ATTRIBUTE_UNUSED,
1326 void *data ATTRIBUTE_UNUSED,
1327 asection *input_section,
1328 bfd *output_bfd,
1329 char **error_message ATTRIBUTE_UNUSED)
1330 {
1331 if (output_bfd)
1332 reloc_entry->address += input_section->output_offset;
1333
1334 return bfd_reloc_ok;
1335 }
1336
1337 /* Given a generic HPPA relocation type, the instruction format,
1338 and a field selector, return one or more appropriate SOM relocations. */
1339
1340 int **
1341 hppa_som_gen_reloc_type (bfd *abfd,
1342 int base_type,
1343 int format,
1344 enum hppa_reloc_field_selector_type_alt field,
1345 int sym_diff,
1346 asymbol *sym)
1347 {
1348 int *final_type, **final_types;
1349
1350 final_types = bfd_alloc (abfd, (bfd_size_type) sizeof (int *) * 6);
1351 final_type = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1352 if (!final_types || !final_type)
1353 return NULL;
1354
1355 /* The field selector may require additional relocations to be
1356 generated. It's impossible to know at this moment if additional
1357 relocations will be needed, so we make them. The code to actually
1358 write the relocation/fixup stream is responsible for removing
1359 any redundant relocations. */
1360 switch (field)
1361 {
1362 case e_fsel:
1363 case e_psel:
1364 case e_lpsel:
1365 case e_rpsel:
1366 final_types[0] = final_type;
1367 final_types[1] = NULL;
1368 final_types[2] = NULL;
1369 *final_type = base_type;
1370 break;
1371
1372 case e_tsel:
1373 case e_ltsel:
1374 case e_rtsel:
1375 final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1376 if (!final_types[0])
1377 return NULL;
1378 if (field == e_tsel)
1379 *final_types[0] = R_FSEL;
1380 else if (field == e_ltsel)
1381 *final_types[0] = R_LSEL;
1382 else
1383 *final_types[0] = R_RSEL;
1384 final_types[1] = final_type;
1385 final_types[2] = NULL;
1386 *final_type = base_type;
1387 break;
1388
1389 case e_lssel:
1390 case e_rssel:
1391 final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1392 if (!final_types[0])
1393 return NULL;
1394 *final_types[0] = R_S_MODE;
1395 final_types[1] = final_type;
1396 final_types[2] = NULL;
1397 *final_type = base_type;
1398 break;
1399
1400 case e_lsel:
1401 case e_rsel:
1402 final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1403 if (!final_types[0])
1404 return NULL;
1405 *final_types[0] = R_N_MODE;
1406 final_types[1] = final_type;
1407 final_types[2] = NULL;
1408 *final_type = base_type;
1409 break;
1410
1411 case e_ldsel:
1412 case e_rdsel:
1413 final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1414 if (!final_types[0])
1415 return NULL;
1416 *final_types[0] = R_D_MODE;
1417 final_types[1] = final_type;
1418 final_types[2] = NULL;
1419 *final_type = base_type;
1420 break;
1421
1422 case e_lrsel:
1423 case e_rrsel:
1424 final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1425 if (!final_types[0])
1426 return NULL;
1427 *final_types[0] = R_R_MODE;
1428 final_types[1] = final_type;
1429 final_types[2] = NULL;
1430 *final_type = base_type;
1431 break;
1432
1433 case e_nsel:
1434 final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1435 if (!final_types[0])
1436 return NULL;
1437 *final_types[0] = R_N1SEL;
1438 final_types[1] = final_type;
1439 final_types[2] = NULL;
1440 *final_type = base_type;
1441 break;
1442
1443 case e_nlsel:
1444 case e_nlrsel:
1445 final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1446 if (!final_types[0])
1447 return NULL;
1448 *final_types[0] = R_N0SEL;
1449 final_types[1] = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1450 if (!final_types[1])
1451 return NULL;
1452 if (field == e_nlsel)
1453 *final_types[1] = R_N_MODE;
1454 else
1455 *final_types[1] = R_R_MODE;
1456 final_types[2] = final_type;
1457 final_types[3] = NULL;
1458 *final_type = base_type;
1459 break;
1460
1461 /* FIXME: These two field selectors are not currently supported. */
1462 case e_ltpsel:
1463 case e_rtpsel:
1464 abort ();
1465 }
1466
1467 switch (base_type)
1468 {
1469 case R_HPPA:
1470 /* The difference of two symbols needs *very* special handling. */
1471 if (sym_diff)
1472 {
1473 bfd_size_type amt = sizeof (int);
1474
1475 final_types[0] = bfd_alloc (abfd, amt);
1476 final_types[1] = bfd_alloc (abfd, amt);
1477 final_types[2] = bfd_alloc (abfd, amt);
1478 final_types[3] = bfd_alloc (abfd, amt);
1479 if (!final_types[0] || !final_types[1] || !final_types[2])
1480 return NULL;
1481 if (field == e_fsel)
1482 *final_types[0] = R_FSEL;
1483 else if (field == e_rsel)
1484 *final_types[0] = R_RSEL;
1485 else if (field == e_lsel)
1486 *final_types[0] = R_LSEL;
1487 *final_types[1] = R_COMP2;
1488 *final_types[2] = R_COMP2;
1489 *final_types[3] = R_COMP1;
1490 final_types[4] = final_type;
1491 if (format == 32)
1492 *final_types[4] = R_DATA_EXPR;
1493 else
1494 *final_types[4] = R_CODE_EXPR;
1495 final_types[5] = NULL;
1496 break;
1497 }
1498 /* PLABELs get their own relocation type. */
1499 else if (field == e_psel
1500 || field == e_lpsel
1501 || field == e_rpsel)
1502 {
1503 /* A PLABEL relocation that has a size of 32 bits must
1504 be a R_DATA_PLABEL. All others are R_CODE_PLABELs. */
1505 if (format == 32)
1506 *final_type = R_DATA_PLABEL;
1507 else
1508 *final_type = R_CODE_PLABEL;
1509 }
1510 /* PIC stuff. */
1511 else if (field == e_tsel
1512 || field == e_ltsel
1513 || field == e_rtsel)
1514 *final_type = R_DLT_REL;
1515 /* A relocation in the data space is always a full 32bits. */
1516 else if (format == 32)
1517 {
1518 *final_type = R_DATA_ONE_SYMBOL;
1519
1520 /* If there's no SOM symbol type associated with this BFD
1521 symbol, then set the symbol type to ST_DATA.
1522
1523 Only do this if the type is going to default later when
1524 we write the object file.
1525
1526 This is done so that the linker never encounters an
1527 R_DATA_ONE_SYMBOL reloc involving an ST_CODE symbol.
1528
1529 This allows the compiler to generate exception handling
1530 tables.
1531
1532 Note that one day we may need to also emit BEGIN_BRTAB and
1533 END_BRTAB to prevent the linker from optimizing away insns
1534 in exception handling regions. */
1535 if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
1536 && (sym->flags & BSF_SECTION_SYM) == 0
1537 && (sym->flags & BSF_FUNCTION) == 0
1538 && ! bfd_is_com_section (sym->section))
1539 som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
1540 }
1541 break;
1542
1543 case R_HPPA_GOTOFF:
1544 /* More PLABEL special cases. */
1545 if (field == e_psel
1546 || field == e_lpsel
1547 || field == e_rpsel)
1548 *final_type = R_DATA_PLABEL;
1549 break;
1550
1551 case R_HPPA_COMPLEX:
1552 /* The difference of two symbols needs *very* special handling. */
1553 if (sym_diff)
1554 {
1555 bfd_size_type amt = sizeof (int);
1556
1557 final_types[0] = bfd_alloc (abfd, amt);
1558 final_types[1] = bfd_alloc (abfd, amt);
1559 final_types[2] = bfd_alloc (abfd, amt);
1560 final_types[3] = bfd_alloc (abfd, amt);
1561 if (!final_types[0] || !final_types[1] || !final_types[2])
1562 return NULL;
1563 if (field == e_fsel)
1564 *final_types[0] = R_FSEL;
1565 else if (field == e_rsel)
1566 *final_types[0] = R_RSEL;
1567 else if (field == e_lsel)
1568 *final_types[0] = R_LSEL;
1569 *final_types[1] = R_COMP2;
1570 *final_types[2] = R_COMP2;
1571 *final_types[3] = R_COMP1;
1572 final_types[4] = final_type;
1573 if (format == 32)
1574 *final_types[4] = R_DATA_EXPR;
1575 else
1576 *final_types[4] = R_CODE_EXPR;
1577 final_types[5] = NULL;
1578 break;
1579 }
1580 else
1581 break;
1582
1583 case R_HPPA_NONE:
1584 case R_HPPA_ABS_CALL:
1585 /* Right now we can default all these. */
1586 break;
1587
1588 case R_HPPA_PCREL_CALL:
1589 {
1590 #ifndef NO_PCREL_MODES
1591 /* If we have short and long pcrel modes, then generate the proper
1592 mode selector, then the pcrel relocation. Redundant selectors
1593 will be eliminated as the relocs are sized and emitted. */
1594 bfd_size_type amt = sizeof (int);
1595
1596 final_types[0] = bfd_alloc (abfd, amt);
1597 if (!final_types[0])
1598 return NULL;
1599 if (format == 17)
1600 *final_types[0] = R_SHORT_PCREL_MODE;
1601 else
1602 *final_types[0] = R_LONG_PCREL_MODE;
1603 final_types[1] = final_type;
1604 final_types[2] = NULL;
1605 *final_type = base_type;
1606 #endif
1607 break;
1608 }
1609 }
1610 return final_types;
1611 }
1612
1613 /* Return the address of the correct entry in the PA SOM relocation
1614 howto table. */
1615
1616 static reloc_howto_type *
1617 som_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1618 bfd_reloc_code_real_type code)
1619 {
1620 if ((int) code < (int) R_NO_RELOCATION + 255)
1621 {
1622 BFD_ASSERT ((int) som_hppa_howto_table[(int) code].type == (int) code);
1623 return &som_hppa_howto_table[(int) code];
1624 }
1625
1626 return NULL;
1627 }
1628
1629 static reloc_howto_type *
1630 som_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1631 const char *r_name)
1632 {
1633 unsigned int i;
1634
1635 for (i = 0;
1636 i < sizeof (som_hppa_howto_table) / sizeof (som_hppa_howto_table[0]);
1637 i++)
1638 if (som_hppa_howto_table[i].name != NULL
1639 && strcasecmp (som_hppa_howto_table[i].name, r_name) == 0)
1640 return &som_hppa_howto_table[i];
1641
1642 return NULL;
1643 }
1644
1645 /* Perform some initialization for an object. Save results of this
1646 initialization in the BFD. */
1647
1648 static const bfd_target *
1649 som_object_setup (bfd *abfd,
1650 struct header *file_hdrp,
1651 struct som_exec_auxhdr *aux_hdrp,
1652 unsigned long current_offset)
1653 {
1654 asection *section;
1655
1656 /* som_mkobject will set bfd_error if som_mkobject fails. */
1657 if (! som_mkobject (abfd))
1658 return NULL;
1659
1660 /* Set BFD flags based on what information is available in the SOM. */
1661 abfd->flags = BFD_NO_FLAGS;
1662 if (file_hdrp->symbol_total)
1663 abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;
1664
1665 switch (file_hdrp->a_magic)
1666 {
1667 case DEMAND_MAGIC:
1668 abfd->flags |= (D_PAGED | WP_TEXT | EXEC_P);
1669 break;
1670 case SHARE_MAGIC:
1671 abfd->flags |= (WP_TEXT | EXEC_P);
1672 break;
1673 case EXEC_MAGIC:
1674 abfd->flags |= (EXEC_P);
1675 break;
1676 case RELOC_MAGIC:
1677 abfd->flags |= HAS_RELOC;
1678 break;
1679 #ifdef SHL_MAGIC
1680 case SHL_MAGIC:
1681 #endif
1682 #ifdef DL_MAGIC
1683 case DL_MAGIC:
1684 #endif
1685 abfd->flags |= DYNAMIC;
1686 break;
1687
1688 default:
1689 break;
1690 }
1691
1692 /* Save the auxiliary header. */
1693 obj_som_exec_hdr (abfd) = aux_hdrp;
1694
1695 /* Allocate space to hold the saved exec header information. */
1696 obj_som_exec_data (abfd) = bfd_zalloc (abfd, (bfd_size_type) sizeof (struct som_exec_data));
1697 if (obj_som_exec_data (abfd) == NULL)
1698 return NULL;
1699
1700 /* The braindamaged OSF1 linker switched exec_flags and exec_entry!
1701
1702 We used to identify OSF1 binaries based on NEW_VERSION_ID, but
1703 apparently the latest HPUX linker is using NEW_VERSION_ID now.
1704
1705 It's about time, OSF has used the new id since at least 1992;
1706 HPUX didn't start till nearly 1995!.
1707
1708 The new approach examines the entry field for an executable. If
1709 it is not 4-byte aligned then it's not a proper code address and
1710 we guess it's really the executable flags. For a main program,
1711 we also consider zero to be indicative of a buggy linker, since
1712 that is not a valid entry point. The entry point for a shared
1713 library, however, can be zero so we do not consider that to be
1714 indicative of a buggy linker. */
1715 if (aux_hdrp)
1716 {
1717 int found = 0;
1718
1719 for (section = abfd->sections; section; section = section->next)
1720 {
1721 bfd_vma entry;
1722
1723 if ((section->flags & SEC_CODE) == 0)
1724 continue;
1725 entry = aux_hdrp->exec_entry + aux_hdrp->exec_tmem;
1726 if (entry >= section->vma
1727 && entry < section->vma + section->size)
1728 found = 1;
1729 }
1730 if ((aux_hdrp->exec_entry == 0 && !(abfd->flags & DYNAMIC))
1731 || (aux_hdrp->exec_entry & 0x3) != 0
1732 || ! found)
1733 {
1734 bfd_get_start_address (abfd) = aux_hdrp->exec_flags;
1735 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_entry;
1736 }
1737 else
1738 {
1739 bfd_get_start_address (abfd) = aux_hdrp->exec_entry + current_offset;
1740 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_flags;
1741 }
1742 }
1743
1744 obj_som_exec_data (abfd)->version_id = file_hdrp->version_id;
1745
1746 bfd_default_set_arch_mach (abfd, bfd_arch_hppa, pa10);
1747 bfd_get_symcount (abfd) = file_hdrp->symbol_total;
1748
1749 /* Initialize the saved symbol table and string table to NULL.
1750 Save important offsets and sizes from the SOM header into
1751 the BFD. */
1752 obj_som_stringtab (abfd) = NULL;
1753 obj_som_symtab (abfd) = NULL;
1754 obj_som_sorted_syms (abfd) = NULL;
1755 obj_som_stringtab_size (abfd) = file_hdrp->symbol_strings_size;
1756 obj_som_sym_filepos (abfd) = file_hdrp->symbol_location + current_offset;
1757 obj_som_str_filepos (abfd) = (file_hdrp->symbol_strings_location
1758 + current_offset);
1759 obj_som_reloc_filepos (abfd) = (file_hdrp->fixup_request_location
1760 + current_offset);
1761 obj_som_exec_data (abfd)->system_id = file_hdrp->system_id;
1762
1763 return abfd->xvec;
1764 }
1765
1766 /* Convert all of the space and subspace info into BFD sections. Each space
1767 contains a number of subspaces, which in turn describe the mapping between
1768 regions of the exec file, and the address space that the program runs in.
1769 BFD sections which correspond to spaces will overlap the sections for the
1770 associated subspaces. */
1771
1772 static bfd_boolean
1773 setup_sections (bfd *abfd,
1774 struct header *file_hdr,
1775 unsigned long current_offset)
1776 {
1777 char *space_strings;
1778 unsigned int space_index, i;
1779 unsigned int total_subspaces = 0;
1780 asection **subspace_sections = NULL;
1781 asection *section;
1782 bfd_size_type amt;
1783
1784 /* First, read in space names. */
1785 amt = file_hdr->space_strings_size;
1786 space_strings = bfd_malloc (amt);
1787 if (!space_strings && amt != 0)
1788 goto error_return;
1789
1790 if (bfd_seek (abfd, current_offset + file_hdr->space_strings_location,
1791 SEEK_SET) != 0)
1792 goto error_return;
1793 if (bfd_bread (space_strings, amt, abfd) != amt)
1794 goto error_return;
1795
1796 /* Loop over all of the space dictionaries, building up sections. */
1797 for (space_index = 0; space_index < file_hdr->space_total; space_index++)
1798 {
1799 struct space_dictionary_record space;
1800 struct som_subspace_dictionary_record subspace, save_subspace;
1801 unsigned int subspace_index;
1802 asection *space_asect;
1803 bfd_size_type space_size = 0;
1804 char *newname;
1805
1806 /* Read the space dictionary element. */
1807 if (bfd_seek (abfd,
1808 (current_offset + file_hdr->space_location
1809 + space_index * sizeof space),
1810 SEEK_SET) != 0)
1811 goto error_return;
1812 amt = sizeof space;
1813 if (bfd_bread (&space, amt, abfd) != amt)
1814 goto error_return;
1815
1816 /* Setup the space name string. */
1817 space.name.n_name = space.name.n_strx + space_strings;
1818
1819 /* Make a section out of it. */
1820 amt = strlen (space.name.n_name) + 1;
1821 newname = bfd_alloc (abfd, amt);
1822 if (!newname)
1823 goto error_return;
1824 strcpy (newname, space.name.n_name);
1825
1826 space_asect = bfd_make_section_anyway (abfd, newname);
1827 if (!space_asect)
1828 goto error_return;
1829
1830 if (space.is_loadable == 0)
1831 space_asect->flags |= SEC_DEBUGGING;
1832
1833 /* Set up all the attributes for the space. */
1834 if (! bfd_som_set_section_attributes (space_asect, space.is_defined,
1835 space.is_private, space.sort_key,
1836 space.space_number))
1837 goto error_return;
1838
1839 /* If the space has no subspaces, then we're done. */
1840 if (space.subspace_quantity == 0)
1841 continue;
1842
1843 /* Now, read in the first subspace for this space. */
1844 if (bfd_seek (abfd,
1845 (current_offset + file_hdr->subspace_location
1846 + space.subspace_index * sizeof subspace),
1847 SEEK_SET) != 0)
1848 goto error_return;
1849 amt = sizeof subspace;
1850 if (bfd_bread (&subspace, amt, abfd) != amt)
1851 goto error_return;
1852 /* Seek back to the start of the subspaces for loop below. */
1853 if (bfd_seek (abfd,
1854 (current_offset + file_hdr->subspace_location
1855 + space.subspace_index * sizeof subspace),
1856 SEEK_SET) != 0)
1857 goto error_return;
1858
1859 /* Setup the start address and file loc from the first subspace
1860 record. */
1861 space_asect->vma = subspace.subspace_start;
1862 space_asect->filepos = subspace.file_loc_init_value + current_offset;
1863 space_asect->alignment_power = exact_log2 (subspace.alignment);
1864 if (space_asect->alignment_power == (unsigned) -1)
1865 goto error_return;
1866
1867 /* Initialize save_subspace so we can reliably determine if this
1868 loop placed any useful values into it. */
1869 memset (&save_subspace, 0, sizeof (save_subspace));
1870
1871 /* Loop over the rest of the subspaces, building up more sections. */
1872 for (subspace_index = 0; subspace_index < space.subspace_quantity;
1873 subspace_index++)
1874 {
1875 asection *subspace_asect;
1876
1877 /* Read in the next subspace. */
1878 amt = sizeof subspace;
1879 if (bfd_bread (&subspace, amt, abfd) != amt)
1880 goto error_return;
1881
1882 /* Setup the subspace name string. */
1883 subspace.name.n_name = subspace.name.n_strx + space_strings;
1884
1885 amt = strlen (subspace.name.n_name) + 1;
1886 newname = bfd_alloc (abfd, amt);
1887 if (!newname)
1888 goto error_return;
1889 strcpy (newname, subspace.name.n_name);
1890
1891 /* Make a section out of this subspace. */
1892 subspace_asect = bfd_make_section_anyway (abfd, newname);
1893 if (!subspace_asect)
1894 goto error_return;
1895
1896 /* Store private information about the section. */
1897 if (! bfd_som_set_subsection_attributes (subspace_asect, space_asect,
1898 subspace.access_control_bits,
1899 subspace.sort_key,
1900 subspace.quadrant,
1901 subspace.is_comdat,
1902 subspace.is_common,
1903 subspace.dup_common))
1904 goto error_return;
1905
1906 /* Keep an easy mapping between subspaces and sections.
1907 Note we do not necessarily read the subspaces in the
1908 same order in which they appear in the object file.
1909
1910 So to make the target index come out correctly, we
1911 store the location of the subspace header in target
1912 index, then sort using the location of the subspace
1913 header as the key. Then we can assign correct
1914 subspace indices. */
1915 total_subspaces++;
1916 subspace_asect->target_index = bfd_tell (abfd) - sizeof (subspace);
1917
1918 /* Set SEC_READONLY and SEC_CODE/SEC_DATA as specified
1919 by the access_control_bits in the subspace header. */
1920 switch (subspace.access_control_bits >> 4)
1921 {
1922 /* Readonly data. */
1923 case 0x0:
1924 subspace_asect->flags |= SEC_DATA | SEC_READONLY;
1925 break;
1926
1927 /* Normal data. */
1928 case 0x1:
1929 subspace_asect->flags |= SEC_DATA;
1930 break;
1931
1932 /* Readonly code and the gateways.
1933 Gateways have other attributes which do not map
1934 into anything BFD knows about. */
1935 case 0x2:
1936 case 0x4:
1937 case 0x5:
1938 case 0x6:
1939 case 0x7:
1940 subspace_asect->flags |= SEC_CODE | SEC_READONLY;
1941 break;
1942
1943 /* dynamic (writable) code. */
1944 case 0x3:
1945 subspace_asect->flags |= SEC_CODE;
1946 break;
1947 }
1948
1949 if (subspace.is_comdat || subspace.is_common || subspace.dup_common)
1950 subspace_asect->flags |= SEC_LINK_ONCE;
1951
1952 if (subspace.subspace_length > 0)
1953 subspace_asect->flags |= SEC_HAS_CONTENTS;
1954
1955 if (subspace.is_loadable)
1956 subspace_asect->flags |= SEC_ALLOC | SEC_LOAD;
1957 else
1958 subspace_asect->flags |= SEC_DEBUGGING;
1959
1960 if (subspace.code_only)
1961 subspace_asect->flags |= SEC_CODE;
1962
1963 /* Both file_loc_init_value and initialization_length will
1964 be zero for a BSS like subspace. */
1965 if (subspace.file_loc_init_value == 0
1966 && subspace.initialization_length == 0)
1967 subspace_asect->flags &= ~(SEC_DATA | SEC_LOAD | SEC_HAS_CONTENTS);
1968
1969 /* This subspace has relocations.
1970 The fixup_request_quantity is a byte count for the number of
1971 entries in the relocation stream; it is not the actual number
1972 of relocations in the subspace. */
1973 if (subspace.fixup_request_quantity != 0)
1974 {
1975 subspace_asect->flags |= SEC_RELOC;
1976 subspace_asect->rel_filepos = subspace.fixup_request_index;
1977 som_section_data (subspace_asect)->reloc_size
1978 = subspace.fixup_request_quantity;
1979 /* We can not determine this yet. When we read in the
1980 relocation table the correct value will be filled in. */
1981 subspace_asect->reloc_count = (unsigned) -1;
1982 }
1983
1984 /* Update save_subspace if appropriate. */
1985 if (subspace.file_loc_init_value > save_subspace.file_loc_init_value)
1986 save_subspace = subspace;
1987
1988 subspace_asect->vma = subspace.subspace_start;
1989 subspace_asect->size = subspace.subspace_length;
1990 subspace_asect->filepos = (subspace.file_loc_init_value
1991 + current_offset);
1992 subspace_asect->alignment_power = exact_log2 (subspace.alignment);
1993 if (subspace_asect->alignment_power == (unsigned) -1)
1994 goto error_return;
1995
1996 /* Keep track of the accumulated sizes of the sections. */
1997 space_size += subspace.subspace_length;
1998 }
1999
2000 /* This can happen for a .o which defines symbols in otherwise
2001 empty subspaces. */
2002 if (!save_subspace.file_loc_init_value)
2003 space_asect->size = 0;
2004 else
2005 {
2006 if (file_hdr->a_magic != RELOC_MAGIC)
2007 {
2008 /* Setup the size for the space section based upon the info
2009 in the last subspace of the space. */
2010 space_asect->size = (save_subspace.subspace_start
2011 - space_asect->vma
2012 + save_subspace.subspace_length);
2013 }
2014 else
2015 {
2016 /* The subspace_start field is not initialised in relocatable
2017 only objects, so it cannot be used for length calculations.
2018 Instead we use the space_size value which we have been
2019 accumulating. This isn't an accurate estimate since it
2020 ignores alignment and ordering issues. */
2021 space_asect->size = space_size;
2022 }
2023 }
2024 }
2025 /* Now that we've read in all the subspace records, we need to assign
2026 a target index to each subspace. */
2027 amt = total_subspaces;
2028 amt *= sizeof (asection *);
2029 subspace_sections = bfd_malloc (amt);
2030 if (subspace_sections == NULL)
2031 goto error_return;
2032
2033 for (i = 0, section = abfd->sections; section; section = section->next)
2034 {
2035 if (!som_is_subspace (section))
2036 continue;
2037
2038 subspace_sections[i] = section;
2039 i++;
2040 }
2041 qsort (subspace_sections, total_subspaces,
2042 sizeof (asection *), compare_subspaces);
2043
2044 /* subspace_sections is now sorted in the order in which the subspaces
2045 appear in the object file. Assign an index to each one now. */
2046 for (i = 0; i < total_subspaces; i++)
2047 subspace_sections[i]->target_index = i;
2048
2049 if (space_strings != NULL)
2050 free (space_strings);
2051
2052 if (subspace_sections != NULL)
2053 free (subspace_sections);
2054
2055 return TRUE;
2056
2057 error_return:
2058 if (space_strings != NULL)
2059 free (space_strings);
2060
2061 if (subspace_sections != NULL)
2062 free (subspace_sections);
2063 return FALSE;
2064 }
2065
2066 /* Read in a SOM object and make it into a BFD. */
2067
2068 static const bfd_target *
2069 som_object_p (bfd *abfd)
2070 {
2071 struct header file_hdr;
2072 struct som_exec_auxhdr *aux_hdr_ptr = NULL;
2073 unsigned long current_offset = 0;
2074 struct lst_header lst_header;
2075 struct som_entry som_entry;
2076 bfd_size_type amt;
2077 #define ENTRY_SIZE sizeof (struct som_entry)
2078
2079 amt = FILE_HDR_SIZE;
2080 if (bfd_bread ((void *) &file_hdr, amt, abfd) != amt)
2081 {
2082 if (bfd_get_error () != bfd_error_system_call)
2083 bfd_set_error (bfd_error_wrong_format);
2084 return NULL;
2085 }
2086
2087 if (!_PA_RISC_ID (file_hdr.system_id))
2088 {
2089 bfd_set_error (bfd_error_wrong_format);
2090 return NULL;
2091 }
2092
2093 switch (file_hdr.a_magic)
2094 {
2095 case RELOC_MAGIC:
2096 case EXEC_MAGIC:
2097 case SHARE_MAGIC:
2098 case DEMAND_MAGIC:
2099 #ifdef DL_MAGIC
2100 case DL_MAGIC:
2101 #endif
2102 #ifdef SHL_MAGIC
2103 case SHL_MAGIC:
2104 #endif
2105 #ifdef SHARED_MAGIC_CNX
2106 case SHARED_MAGIC_CNX:
2107 #endif
2108 break;
2109
2110 #ifdef EXECLIBMAGIC
2111 case EXECLIBMAGIC:
2112 /* Read the lst header and determine where the SOM directory begins. */
2113
2114 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0)
2115 {
2116 if (bfd_get_error () != bfd_error_system_call)
2117 bfd_set_error (bfd_error_wrong_format);
2118 return NULL;
2119 }
2120
2121 amt = SLSTHDR;
2122 if (bfd_bread ((void *) &lst_header, amt, abfd) != amt)
2123 {
2124 if (bfd_get_error () != bfd_error_system_call)
2125 bfd_set_error (bfd_error_wrong_format);
2126 return NULL;
2127 }
2128
2129 /* Position to and read the first directory entry. */
2130
2131 if (bfd_seek (abfd, lst_header.dir_loc, SEEK_SET) != 0)
2132 {
2133 if (bfd_get_error () != bfd_error_system_call)
2134 bfd_set_error (bfd_error_wrong_format);
2135 return NULL;
2136 }
2137
2138 amt = ENTRY_SIZE;
2139 if (bfd_bread ((void *) &som_entry, amt, abfd) != amt)
2140 {
2141 if (bfd_get_error () != bfd_error_system_call)
2142 bfd_set_error (bfd_error_wrong_format);
2143 return NULL;
2144 }
2145
2146 /* Now position to the first SOM. */
2147
2148 if (bfd_seek (abfd, som_entry.location, SEEK_SET) != 0)
2149 {
2150 if (bfd_get_error () != bfd_error_system_call)
2151 bfd_set_error (bfd_error_wrong_format);
2152 return NULL;
2153 }
2154
2155 current_offset = som_entry.location;
2156
2157 /* And finally, re-read the som header. */
2158 amt = FILE_HDR_SIZE;
2159 if (bfd_bread ((void *) &file_hdr, amt, abfd) != amt)
2160 {
2161 if (bfd_get_error () != bfd_error_system_call)
2162 bfd_set_error (bfd_error_wrong_format);
2163 return NULL;
2164 }
2165
2166 break;
2167 #endif
2168
2169 default:
2170 bfd_set_error (bfd_error_wrong_format);
2171 return NULL;
2172 }
2173
2174 if (file_hdr.version_id != VERSION_ID
2175 && file_hdr.version_id != NEW_VERSION_ID)
2176 {
2177 bfd_set_error (bfd_error_wrong_format);
2178 return NULL;
2179 }
2180
2181 /* If the aux_header_size field in the file header is zero, then this
2182 object is an incomplete executable (a .o file). Do not try to read
2183 a non-existant auxiliary header. */
2184 if (file_hdr.aux_header_size != 0)
2185 {
2186 aux_hdr_ptr = bfd_zalloc (abfd,
2187 (bfd_size_type) sizeof (*aux_hdr_ptr));
2188 if (aux_hdr_ptr == NULL)
2189 return NULL;
2190 amt = AUX_HDR_SIZE;
2191 if (bfd_bread ((void *) aux_hdr_ptr, amt, abfd) != amt)
2192 {
2193 if (bfd_get_error () != bfd_error_system_call)
2194 bfd_set_error (bfd_error_wrong_format);
2195 return NULL;
2196 }
2197 }
2198
2199 if (!setup_sections (abfd, &file_hdr, current_offset))
2200 {
2201 /* setup_sections does not bubble up a bfd error code. */
2202 bfd_set_error (bfd_error_bad_value);
2203 return NULL;
2204 }
2205
2206 /* This appears to be a valid SOM object. Do some initialization. */
2207 return som_object_setup (abfd, &file_hdr, aux_hdr_ptr, current_offset);
2208 }
2209
2210 /* Create a SOM object. */
2211
2212 static bfd_boolean
2213 som_mkobject (bfd *abfd)
2214 {
2215 /* Allocate memory to hold backend information. */
2216 abfd->tdata.som_data = bfd_zalloc (abfd, (bfd_size_type) sizeof (struct som_data_struct));
2217 if (abfd->tdata.som_data == NULL)
2218 return FALSE;
2219 return TRUE;
2220 }
2221
2222 /* Initialize some information in the file header. This routine makes
2223 not attempt at doing the right thing for a full executable; it
2224 is only meant to handle relocatable objects. */
2225
2226 static bfd_boolean
2227 som_prep_headers (bfd *abfd)
2228 {
2229 struct header *file_hdr;
2230 asection *section;
2231 bfd_size_type amt = sizeof (struct header);
2232
2233 /* Make and attach a file header to the BFD. */
2234 file_hdr = bfd_zalloc (abfd, amt);
2235 if (file_hdr == NULL)
2236 return FALSE;
2237 obj_som_file_hdr (abfd) = file_hdr;
2238
2239 if (abfd->flags & (EXEC_P | DYNAMIC))
2240 {
2241 /* Make and attach an exec header to the BFD. */
2242 amt = sizeof (struct som_exec_auxhdr);
2243 obj_som_exec_hdr (abfd) = bfd_zalloc (abfd, amt);
2244 if (obj_som_exec_hdr (abfd) == NULL)
2245 return FALSE;
2246
2247 if (abfd->flags & D_PAGED)
2248 file_hdr->a_magic = DEMAND_MAGIC;
2249 else if (abfd->flags & WP_TEXT)
2250 file_hdr->a_magic = SHARE_MAGIC;
2251 #ifdef SHL_MAGIC
2252 else if (abfd->flags & DYNAMIC)
2253 file_hdr->a_magic = SHL_MAGIC;
2254 #endif
2255 else
2256 file_hdr->a_magic = EXEC_MAGIC;
2257 }
2258 else
2259 file_hdr->a_magic = RELOC_MAGIC;
2260
2261 /* These fields are optional, and embedding timestamps is not always
2262 a wise thing to do, it makes comparing objects during a multi-stage
2263 bootstrap difficult. */
2264 file_hdr->file_time.secs = 0;
2265 file_hdr->file_time.nanosecs = 0;
2266
2267 file_hdr->entry_space = 0;
2268 file_hdr->entry_subspace = 0;
2269 file_hdr->entry_offset = 0;
2270 file_hdr->presumed_dp = 0;
2271
2272 /* Now iterate over the sections translating information from
2273 BFD sections to SOM spaces/subspaces. */
2274 for (section = abfd->sections; section != NULL; section = section->next)
2275 {
2276 /* Ignore anything which has not been marked as a space or
2277 subspace. */
2278 if (!som_is_space (section) && !som_is_subspace (section))
2279 continue;
2280
2281 if (som_is_space (section))
2282 {
2283 /* Allocate space for the space dictionary. */
2284 amt = sizeof (struct space_dictionary_record);
2285 som_section_data (section)->space_dict = bfd_zalloc (abfd, amt);
2286 if (som_section_data (section)->space_dict == NULL)
2287 return FALSE;
2288 /* Set space attributes. Note most attributes of SOM spaces
2289 are set based on the subspaces it contains. */
2290 som_section_data (section)->space_dict->loader_fix_index = -1;
2291 som_section_data (section)->space_dict->init_pointer_index = -1;
2292
2293 /* Set more attributes that were stuffed away in private data. */
2294 som_section_data (section)->space_dict->sort_key =
2295 som_section_data (section)->copy_data->sort_key;
2296 som_section_data (section)->space_dict->is_defined =
2297 som_section_data (section)->copy_data->is_defined;
2298 som_section_data (section)->space_dict->is_private =
2299 som_section_data (section)->copy_data->is_private;
2300 som_section_data (section)->space_dict->space_number =
2301 som_section_data (section)->copy_data->space_number;
2302 }
2303 else
2304 {
2305 /* Allocate space for the subspace dictionary. */
2306 amt = sizeof (struct som_subspace_dictionary_record);
2307 som_section_data (section)->subspace_dict = bfd_zalloc (abfd, amt);
2308 if (som_section_data (section)->subspace_dict == NULL)
2309 return FALSE;
2310
2311 /* Set subspace attributes. Basic stuff is done here, additional
2312 attributes are filled in later as more information becomes
2313 available. */
2314 if (section->flags & SEC_ALLOC)
2315 som_section_data (section)->subspace_dict->is_loadable = 1;
2316
2317 if (section->flags & SEC_CODE)
2318 som_section_data (section)->subspace_dict->code_only = 1;
2319
2320 som_section_data (section)->subspace_dict->subspace_start =
2321 section->vma;
2322 som_section_data (section)->subspace_dict->subspace_length =
2323 section->size;
2324 som_section_data (section)->subspace_dict->initialization_length =
2325 section->size;
2326 som_section_data (section)->subspace_dict->alignment =
2327 1 << section->alignment_power;
2328
2329 /* Set more attributes that were stuffed away in private data. */
2330 som_section_data (section)->subspace_dict->sort_key =
2331 som_section_data (section)->copy_data->sort_key;
2332 som_section_data (section)->subspace_dict->access_control_bits =
2333 som_section_data (section)->copy_data->access_control_bits;
2334 som_section_data (section)->subspace_dict->quadrant =
2335 som_section_data (section)->copy_data->quadrant;
2336 som_section_data (section)->subspace_dict->is_comdat =
2337 som_section_data (section)->copy_data->is_comdat;
2338 som_section_data (section)->subspace_dict->is_common =
2339 som_section_data (section)->copy_data->is_common;
2340 som_section_data (section)->subspace_dict->dup_common =
2341 som_section_data (section)->copy_data->dup_common;
2342 }
2343 }
2344 return TRUE;
2345 }
2346
2347 /* Return TRUE if the given section is a SOM space, FALSE otherwise. */
2348
2349 static bfd_boolean
2350 som_is_space (asection *section)
2351 {
2352 /* If no copy data is available, then it's neither a space nor a
2353 subspace. */
2354 if (som_section_data (section)->copy_data == NULL)
2355 return FALSE;
2356
2357 /* If the containing space isn't the same as the given section,
2358 then this isn't a space. */
2359 if (som_section_data (section)->copy_data->container != section
2360 && (som_section_data (section)->copy_data->container->output_section
2361 != section))
2362 return FALSE;
2363
2364 /* OK. Must be a space. */
2365 return TRUE;
2366 }
2367
2368 /* Return TRUE if the given section is a SOM subspace, FALSE otherwise. */
2369
2370 static bfd_boolean
2371 som_is_subspace (asection *section)
2372 {
2373 /* If no copy data is available, then it's neither a space nor a
2374 subspace. */
2375 if (som_section_data (section)->copy_data == NULL)
2376 return FALSE;
2377
2378 /* If the containing space is the same as the given section,
2379 then this isn't a subspace. */
2380 if (som_section_data (section)->copy_data->container == section
2381 || (som_section_data (section)->copy_data->container->output_section
2382 == section))
2383 return FALSE;
2384
2385 /* OK. Must be a subspace. */
2386 return TRUE;
2387 }
2388
2389 /* Return TRUE if the given space contains the given subspace. It
2390 is safe to assume space really is a space, and subspace really
2391 is a subspace. */
2392
2393 static bfd_boolean
2394 som_is_container (asection *space, asection *subspace)
2395 {
2396 return (som_section_data (subspace)->copy_data->container == space)
2397 || (som_section_data (subspace)->copy_data->container->output_section
2398 == space);
2399 }
2400
2401 /* Count and return the number of spaces attached to the given BFD. */
2402
2403 static unsigned long
2404 som_count_spaces (bfd *abfd)
2405 {
2406 int count = 0;
2407 asection *section;
2408
2409 for (section = abfd->sections; section != NULL; section = section->next)
2410 count += som_is_space (section);
2411
2412 return count;
2413 }
2414
2415 /* Count the number of subspaces attached to the given BFD. */
2416
2417 static unsigned long
2418 som_count_subspaces (bfd *abfd)
2419 {
2420 int count = 0;
2421 asection *section;
2422
2423 for (section = abfd->sections; section != NULL; section = section->next)
2424 count += som_is_subspace (section);
2425
2426 return count;
2427 }
2428
2429 /* Return -1, 0, 1 indicating the relative ordering of sym1 and sym2.
2430
2431 We desire symbols to be ordered starting with the symbol with the
2432 highest relocation count down to the symbol with the lowest relocation
2433 count. Doing so compacts the relocation stream. */
2434
2435 static int
2436 compare_syms (const void *arg1, const void *arg2)
2437 {
2438 asymbol **sym1 = (asymbol **) arg1;
2439 asymbol **sym2 = (asymbol **) arg2;
2440 unsigned int count1, count2;
2441
2442 /* Get relocation count for each symbol. Note that the count
2443 is stored in the udata pointer for section symbols! */
2444 if ((*sym1)->flags & BSF_SECTION_SYM)
2445 count1 = (*sym1)->udata.i;
2446 else
2447 count1 = som_symbol_data (*sym1)->reloc_count;
2448
2449 if ((*sym2)->flags & BSF_SECTION_SYM)
2450 count2 = (*sym2)->udata.i;
2451 else
2452 count2 = som_symbol_data (*sym2)->reloc_count;
2453
2454 /* Return the appropriate value. */
2455 if (count1 < count2)
2456 return 1;
2457 else if (count1 > count2)
2458 return -1;
2459 return 0;
2460 }
2461
2462 /* Return -1, 0, 1 indicating the relative ordering of subspace1
2463 and subspace. */
2464
2465 static int
2466 compare_subspaces (const void *arg1, const void *arg2)
2467 {
2468 asection **subspace1 = (asection **) arg1;
2469 asection **subspace2 = (asection **) arg2;
2470
2471 if ((*subspace1)->target_index < (*subspace2)->target_index)
2472 return -1;
2473 else if ((*subspace2)->target_index < (*subspace1)->target_index)
2474 return 1;
2475 else
2476 return 0;
2477 }
2478
2479 /* Perform various work in preparation for emitting the fixup stream. */
2480
2481 static void
2482 som_prep_for_fixups (bfd *abfd, asymbol **syms, unsigned long num_syms)
2483 {
2484 unsigned long i;
2485 asection *section;
2486 asymbol **sorted_syms;
2487 bfd_size_type amt;
2488
2489 /* Most SOM relocations involving a symbol have a length which is
2490 dependent on the index of the symbol. So symbols which are
2491 used often in relocations should have a small index. */
2492
2493 /* First initialize the counters for each symbol. */
2494 for (i = 0; i < num_syms; i++)
2495 {
2496 /* Handle a section symbol; these have no pointers back to the
2497 SOM symbol info. So we just use the udata field to hold the
2498 relocation count. */
2499 if (som_symbol_data (syms[i]) == NULL
2500 || syms[i]->flags & BSF_SECTION_SYM)
2501 {
2502 syms[i]->flags |= BSF_SECTION_SYM;
2503 syms[i]->udata.i = 0;
2504 }
2505 else
2506 som_symbol_data (syms[i])->reloc_count = 0;
2507 }
2508
2509 /* Now that the counters are initialized, make a weighted count
2510 of how often a given symbol is used in a relocation. */
2511 for (section = abfd->sections; section != NULL; section = section->next)
2512 {
2513 int j;
2514
2515 /* Does this section have any relocations? */
2516 if ((int) section->reloc_count <= 0)
2517 continue;
2518
2519 /* Walk through each relocation for this section. */
2520 for (j = 1; j < (int) section->reloc_count; j++)
2521 {
2522 arelent *reloc = section->orelocation[j];
2523 int scale;
2524
2525 /* A relocation against a symbol in the *ABS* section really
2526 does not have a symbol. Likewise if the symbol isn't associated
2527 with any section. */
2528 if (reloc->sym_ptr_ptr == NULL
2529 || bfd_is_abs_section ((*reloc->sym_ptr_ptr)->section))
2530 continue;
2531
2532 /* Scaling to encourage symbols involved in R_DP_RELATIVE
2533 and R_CODE_ONE_SYMBOL relocations to come first. These
2534 two relocations have single byte versions if the symbol
2535 index is very small. */
2536 if (reloc->howto->type == R_DP_RELATIVE
2537 || reloc->howto->type == R_CODE_ONE_SYMBOL)
2538 scale = 2;
2539 else
2540 scale = 1;
2541
2542 /* Handle section symbols by storing the count in the udata
2543 field. It will not be used and the count is very important
2544 for these symbols. */
2545 if ((*reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2546 {
2547 (*reloc->sym_ptr_ptr)->udata.i =
2548 (*reloc->sym_ptr_ptr)->udata.i + scale;
2549 continue;
2550 }
2551
2552 /* A normal symbol. Increment the count. */
2553 som_symbol_data (*reloc->sym_ptr_ptr)->reloc_count += scale;
2554 }
2555 }
2556
2557 /* Sort a copy of the symbol table, rather than the canonical
2558 output symbol table. */
2559 amt = num_syms;
2560 amt *= sizeof (asymbol *);
2561 sorted_syms = bfd_zalloc (abfd, amt);
2562 memcpy (sorted_syms, syms, num_syms * sizeof (asymbol *));
2563 qsort (sorted_syms, num_syms, sizeof (asymbol *), compare_syms);
2564 obj_som_sorted_syms (abfd) = sorted_syms;
2565
2566 /* Compute the symbol indexes, they will be needed by the relocation
2567 code. */
2568 for (i = 0; i < num_syms; i++)
2569 {
2570 /* A section symbol. Again, there is no pointer to backend symbol
2571 information, so we reuse the udata field again. */
2572 if (sorted_syms[i]->flags & BSF_SECTION_SYM)
2573 sorted_syms[i]->udata.i = i;
2574 else
2575 som_symbol_data (sorted_syms[i])->index = i;
2576 }
2577 }
2578
2579 static bfd_boolean
2580 som_write_fixups (bfd *abfd,
2581 unsigned long current_offset,
2582 unsigned int *total_reloc_sizep)
2583 {
2584 unsigned int i, j;
2585 /* Chunk of memory that we can use as buffer space, then throw
2586 away. */
2587 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2588 unsigned char *p;
2589 unsigned int total_reloc_size = 0;
2590 unsigned int subspace_reloc_size = 0;
2591 unsigned int num_spaces = obj_som_file_hdr (abfd)->space_total;
2592 asection *section = abfd->sections;
2593 bfd_size_type amt;
2594
2595 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2596 p = tmp_space;
2597
2598 /* All the fixups for a particular subspace are emitted in a single
2599 stream. All the subspaces for a particular space are emitted
2600 as a single stream.
2601
2602 So, to get all the locations correct one must iterate through all the
2603 spaces, for each space iterate through its subspaces and output a
2604 fixups stream. */
2605 for (i = 0; i < num_spaces; i++)
2606 {
2607 asection *subsection;
2608
2609 /* Find a space. */
2610 while (!som_is_space (section))
2611 section = section->next;
2612
2613 /* Now iterate through each of its subspaces. */
2614 for (subsection = abfd->sections;
2615 subsection != NULL;
2616 subsection = subsection->next)
2617 {
2618 int reloc_offset;
2619 unsigned int current_rounding_mode;
2620 #ifndef NO_PCREL_MODES
2621 unsigned int current_call_mode;
2622 #endif
2623
2624 /* Find a subspace of this space. */
2625 if (!som_is_subspace (subsection)
2626 || !som_is_container (section, subsection))
2627 continue;
2628
2629 /* If this subspace does not have real data, then we are
2630 finished with it. */
2631 if ((subsection->flags & SEC_HAS_CONTENTS) == 0)
2632 {
2633 som_section_data (subsection)->subspace_dict->fixup_request_index
2634 = -1;
2635 continue;
2636 }
2637
2638 /* This subspace has some relocations. Put the relocation stream
2639 index into the subspace record. */
2640 som_section_data (subsection)->subspace_dict->fixup_request_index
2641 = total_reloc_size;
2642
2643 /* To make life easier start over with a clean slate for
2644 each subspace. Seek to the start of the relocation stream
2645 for this subspace in preparation for writing out its fixup
2646 stream. */
2647 if (bfd_seek (abfd, current_offset + total_reloc_size, SEEK_SET) != 0)
2648 return FALSE;
2649
2650 /* Buffer space has already been allocated. Just perform some
2651 initialization here. */
2652 p = tmp_space;
2653 subspace_reloc_size = 0;
2654 reloc_offset = 0;
2655 som_initialize_reloc_queue (reloc_queue);
2656 current_rounding_mode = R_N_MODE;
2657 #ifndef NO_PCREL_MODES
2658 current_call_mode = R_SHORT_PCREL_MODE;
2659 #endif
2660
2661 /* Translate each BFD relocation into one or more SOM
2662 relocations. */
2663 for (j = 0; j < subsection->reloc_count; j++)
2664 {
2665 arelent *bfd_reloc = subsection->orelocation[j];
2666 unsigned int skip;
2667 int sym_num;
2668
2669 /* Get the symbol number. Remember it's stored in a
2670 special place for section symbols. */
2671 if ((*bfd_reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2672 sym_num = (*bfd_reloc->sym_ptr_ptr)->udata.i;
2673 else
2674 sym_num = som_symbol_data (*bfd_reloc->sym_ptr_ptr)->index;
2675
2676 /* If there is not enough room for the next couple relocations,
2677 then dump the current buffer contents now. Also reinitialize
2678 the relocation queue.
2679
2680 No single BFD relocation could ever translate into more
2681 than 100 bytes of SOM relocations (20bytes is probably the
2682 upper limit, but leave lots of space for growth). */
2683 if (p - tmp_space + 100 > SOM_TMP_BUFSIZE)
2684 {
2685 amt = p - tmp_space;
2686 if (bfd_bwrite ((void *) tmp_space, amt, abfd) != amt)
2687 return FALSE;
2688
2689 p = tmp_space;
2690 som_initialize_reloc_queue (reloc_queue);
2691 }
2692
2693 /* Emit R_NO_RELOCATION fixups to map any bytes which were
2694 skipped. */
2695 skip = bfd_reloc->address - reloc_offset;
2696 p = som_reloc_skip (abfd, skip, p,
2697 &subspace_reloc_size, reloc_queue);
2698
2699 /* Update reloc_offset for the next iteration.
2700
2701 Many relocations do not consume input bytes. They
2702 are markers, or set state necessary to perform some
2703 later relocation. */
2704 switch (bfd_reloc->howto->type)
2705 {
2706 case R_ENTRY:
2707 case R_ALT_ENTRY:
2708 case R_EXIT:
2709 case R_N_MODE:
2710 case R_S_MODE:
2711 case R_D_MODE:
2712 case R_R_MODE:
2713 case R_FSEL:
2714 case R_LSEL:
2715 case R_RSEL:
2716 case R_COMP1:
2717 case R_COMP2:
2718 case R_BEGIN_BRTAB:
2719 case R_END_BRTAB:
2720 case R_BEGIN_TRY:
2721 case R_END_TRY:
2722 case R_N0SEL:
2723 case R_N1SEL:
2724 #ifndef NO_PCREL_MODES
2725 case R_SHORT_PCREL_MODE:
2726 case R_LONG_PCREL_MODE:
2727 #endif
2728 reloc_offset = bfd_reloc->address;
2729 break;
2730
2731 default:
2732 reloc_offset = bfd_reloc->address + 4;
2733 break;
2734 }
2735
2736 /* Now the actual relocation we care about. */
2737 switch (bfd_reloc->howto->type)
2738 {
2739 case R_PCREL_CALL:
2740 case R_ABS_CALL:
2741 p = som_reloc_call (abfd, p, &subspace_reloc_size,
2742 bfd_reloc, sym_num, reloc_queue);
2743 break;
2744
2745 case R_CODE_ONE_SYMBOL:
2746 case R_DP_RELATIVE:
2747 /* Account for any addend. */
2748 if (bfd_reloc->addend)
2749 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2750 &subspace_reloc_size, reloc_queue);
2751
2752 if (sym_num < 0x20)
2753 {
2754 bfd_put_8 (abfd, bfd_reloc->howto->type + sym_num, p);
2755 subspace_reloc_size += 1;
2756 p += 1;
2757 }
2758 else if (sym_num < 0x100)
2759 {
2760 bfd_put_8 (abfd, bfd_reloc->howto->type + 32, p);
2761 bfd_put_8 (abfd, sym_num, p + 1);
2762 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2763 2, reloc_queue);
2764 }
2765 else if (sym_num < 0x10000000)
2766 {
2767 bfd_put_8 (abfd, bfd_reloc->howto->type + 33, p);
2768 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2769 bfd_put_16 (abfd, (bfd_vma) sym_num, p + 2);
2770 p = try_prev_fixup (abfd, &subspace_reloc_size,
2771 p, 4, reloc_queue);
2772 }
2773 else
2774 abort ();
2775 break;
2776
2777 case R_DATA_ONE_SYMBOL:
2778 case R_DATA_PLABEL:
2779 case R_CODE_PLABEL:
2780 case R_DLT_REL:
2781 /* Account for any addend using R_DATA_OVERRIDE. */
2782 if (bfd_reloc->howto->type != R_DATA_ONE_SYMBOL
2783 && bfd_reloc->addend)
2784 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2785 &subspace_reloc_size, reloc_queue);
2786
2787 if (sym_num < 0x100)
2788 {
2789 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2790 bfd_put_8 (abfd, sym_num, p + 1);
2791 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2792 2, reloc_queue);
2793 }
2794 else if (sym_num < 0x10000000)
2795 {
2796 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
2797 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2798 bfd_put_16 (abfd, (bfd_vma) sym_num, p + 2);
2799 p = try_prev_fixup (abfd, &subspace_reloc_size,
2800 p, 4, reloc_queue);
2801 }
2802 else
2803 abort ();
2804 break;
2805
2806 case R_ENTRY:
2807 {
2808 unsigned int tmp;
2809 arelent *tmp_reloc = NULL;
2810 bfd_put_8 (abfd, R_ENTRY, p);
2811
2812 /* R_ENTRY relocations have 64 bits of associated
2813 data. Unfortunately the addend field of a bfd
2814 relocation is only 32 bits. So, we split up
2815 the 64bit unwind information and store part in
2816 the R_ENTRY relocation, and the rest in the R_EXIT
2817 relocation. */
2818 bfd_put_32 (abfd, bfd_reloc->addend, p + 1);
2819
2820 /* Find the next R_EXIT relocation. */
2821 for (tmp = j; tmp < subsection->reloc_count; tmp++)
2822 {
2823 tmp_reloc = subsection->orelocation[tmp];
2824 if (tmp_reloc->howto->type == R_EXIT)
2825 break;
2826 }
2827
2828 if (tmp == subsection->reloc_count)
2829 abort ();
2830
2831 bfd_put_32 (abfd, tmp_reloc->addend, p + 5);
2832 p = try_prev_fixup (abfd, &subspace_reloc_size,
2833 p, 9, reloc_queue);
2834 break;
2835 }
2836
2837 case R_N_MODE:
2838 case R_S_MODE:
2839 case R_D_MODE:
2840 case R_R_MODE:
2841 /* If this relocation requests the current rounding
2842 mode, then it is redundant. */
2843 if (bfd_reloc->howto->type != current_rounding_mode)
2844 {
2845 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2846 subspace_reloc_size += 1;
2847 p += 1;
2848 current_rounding_mode = bfd_reloc->howto->type;
2849 }
2850 break;
2851
2852 #ifndef NO_PCREL_MODES
2853 case R_LONG_PCREL_MODE:
2854 case R_SHORT_PCREL_MODE:
2855 if (bfd_reloc->howto->type != current_call_mode)
2856 {
2857 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2858 subspace_reloc_size += 1;
2859 p += 1;
2860 current_call_mode = bfd_reloc->howto->type;
2861 }
2862 break;
2863 #endif
2864
2865 case R_EXIT:
2866 case R_ALT_ENTRY:
2867 case R_FSEL:
2868 case R_LSEL:
2869 case R_RSEL:
2870 case R_BEGIN_BRTAB:
2871 case R_END_BRTAB:
2872 case R_BEGIN_TRY:
2873 case R_N0SEL:
2874 case R_N1SEL:
2875 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2876 subspace_reloc_size += 1;
2877 p += 1;
2878 break;
2879
2880 case R_END_TRY:
2881 /* The end of an exception handling region. The reloc's
2882 addend contains the offset of the exception handling
2883 code. */
2884 if (bfd_reloc->addend == 0)
2885 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2886 else if (bfd_reloc->addend < 1024)
2887 {
2888 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
2889 bfd_put_8 (abfd, bfd_reloc->addend / 4, p + 1);
2890 p = try_prev_fixup (abfd, &subspace_reloc_size,
2891 p, 2, reloc_queue);
2892 }
2893 else
2894 {
2895 bfd_put_8 (abfd, bfd_reloc->howto->type + 2, p);
2896 bfd_put_8 (abfd, (bfd_reloc->addend / 4) >> 16, p + 1);
2897 bfd_put_16 (abfd, bfd_reloc->addend / 4, p + 2);
2898 p = try_prev_fixup (abfd, &subspace_reloc_size,
2899 p, 4, reloc_queue);
2900 }
2901 break;
2902
2903 case R_COMP1:
2904 /* The only time we generate R_COMP1, R_COMP2 and
2905 R_CODE_EXPR relocs is for the difference of two
2906 symbols. Hence we can cheat here. */
2907 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2908 bfd_put_8 (abfd, 0x44, p + 1);
2909 p = try_prev_fixup (abfd, &subspace_reloc_size,
2910 p, 2, reloc_queue);
2911 break;
2912
2913 case R_COMP2:
2914 /* The only time we generate R_COMP1, R_COMP2 and
2915 R_CODE_EXPR relocs is for the difference of two
2916 symbols. Hence we can cheat here. */
2917 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2918 bfd_put_8 (abfd, 0x80, p + 1);
2919 bfd_put_8 (abfd, sym_num >> 16, p + 2);
2920 bfd_put_16 (abfd, (bfd_vma) sym_num, p + 3);
2921 p = try_prev_fixup (abfd, &subspace_reloc_size,
2922 p, 5, reloc_queue);
2923 break;
2924
2925 case R_CODE_EXPR:
2926 case R_DATA_EXPR:
2927 /* The only time we generate R_COMP1, R_COMP2 and
2928 R_CODE_EXPR relocs is for the difference of two
2929 symbols. Hence we can cheat here. */
2930 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2931 subspace_reloc_size += 1;
2932 p += 1;
2933 break;
2934
2935 /* Put a "R_RESERVED" relocation in the stream if
2936 we hit something we do not understand. The linker
2937 will complain loudly if this ever happens. */
2938 default:
2939 bfd_put_8 (abfd, 0xff, p);
2940 subspace_reloc_size += 1;
2941 p += 1;
2942 break;
2943 }
2944 }
2945
2946 /* Last BFD relocation for a subspace has been processed.
2947 Map the rest of the subspace with R_NO_RELOCATION fixups. */
2948 p = som_reloc_skip (abfd, subsection->size - reloc_offset,
2949 p, &subspace_reloc_size, reloc_queue);
2950
2951 /* Scribble out the relocations. */
2952 amt = p - tmp_space;
2953 if (bfd_bwrite ((void *) tmp_space, amt, abfd) != amt)
2954 return FALSE;
2955 p = tmp_space;
2956
2957 total_reloc_size += subspace_reloc_size;
2958 som_section_data (subsection)->subspace_dict->fixup_request_quantity
2959 = subspace_reloc_size;
2960 }
2961 section = section->next;
2962 }
2963 *total_reloc_sizep = total_reloc_size;
2964 return TRUE;
2965 }
2966
2967 /* Write out the space/subspace string table. */
2968
2969 static bfd_boolean
2970 som_write_space_strings (bfd *abfd,
2971 unsigned long current_offset,
2972 unsigned int *string_sizep)
2973 {
2974 /* Chunk of memory that we can use as buffer space, then throw
2975 away. */
2976 size_t tmp_space_size = SOM_TMP_BUFSIZE;
2977 char *tmp_space = alloca (tmp_space_size);
2978 char *p = tmp_space;
2979 unsigned int strings_size = 0;
2980 asection *section;
2981 bfd_size_type amt;
2982
2983 /* Seek to the start of the space strings in preparation for writing
2984 them out. */
2985 if (bfd_seek (abfd, (file_ptr) current_offset, SEEK_SET) != 0)
2986 return FALSE;
2987
2988 /* Walk through all the spaces and subspaces (order is not important)
2989 building up and writing string table entries for their names. */
2990 for (section = abfd->sections; section != NULL; section = section->next)
2991 {
2992 size_t length;
2993
2994 /* Only work with space/subspaces; avoid any other sections
2995 which might have been made (.text for example). */
2996 if (!som_is_space (section) && !som_is_subspace (section))
2997 continue;
2998
2999 /* Get the length of the space/subspace name. */
3000 length = strlen (section->name);
3001
3002 /* If there is not enough room for the next entry, then dump the
3003 current buffer contents now and maybe allocate a larger
3004 buffer. Each entry will take 4 bytes to hold the string
3005 length + the string itself + null terminator. */
3006 if (p - tmp_space + 5 + length > tmp_space_size)
3007 {
3008 /* Flush buffer before refilling or reallocating. */
3009 amt = p - tmp_space;
3010 if (bfd_bwrite ((void *) &tmp_space[0], amt, abfd) != amt)
3011 return FALSE;
3012
3013 /* Reallocate if now empty buffer still too small. */
3014 if (5 + length > tmp_space_size)
3015 {
3016 /* Ensure a minimum growth factor to avoid O(n**2) space
3017 consumption for n strings. The optimal minimum
3018 factor seems to be 2, as no other value can guarantee
3019 wasting less than 50% space. (Note that we cannot
3020 deallocate space allocated by `alloca' without
3021 returning from this function.) The same technique is
3022 used a few more times below when a buffer is
3023 reallocated. */
3024 tmp_space_size = MAX (2 * tmp_space_size, 5 + length);
3025 tmp_space = alloca (tmp_space_size);
3026 }
3027
3028 /* Reset to beginning of the (possibly new) buffer space. */
3029 p = tmp_space;
3030 }
3031
3032 /* First element in a string table entry is the length of the
3033 string. Alignment issues are already handled. */
3034 bfd_put_32 (abfd, (bfd_vma) length, p);
3035 p += 4;
3036 strings_size += 4;
3037
3038 /* Record the index in the space/subspace records. */
3039 if (som_is_space (section))
3040 som_section_data (section)->space_dict->name.n_strx = strings_size;
3041 else
3042 som_section_data (section)->subspace_dict->name.n_strx = strings_size;
3043
3044 /* Next comes the string itself + a null terminator. */
3045 strcpy (p, section->name);
3046 p += length + 1;
3047 strings_size += length + 1;
3048
3049 /* Always align up to the next word boundary. */
3050 while (strings_size % 4)
3051 {
3052 bfd_put_8 (abfd, 0, p);
3053 p++;
3054 strings_size++;
3055 }
3056 }
3057
3058 /* Done with the space/subspace strings. Write out any information
3059 contained in a partial block. */
3060 amt = p - tmp_space;
3061 if (bfd_bwrite ((void *) &tmp_space[0], amt, abfd) != amt)
3062 return FALSE;
3063 *string_sizep = strings_size;
3064 return TRUE;
3065 }
3066
3067 /* Write out the symbol string table. */
3068
3069 static bfd_boolean
3070 som_write_symbol_strings (bfd *abfd,
3071 unsigned long current_offset,
3072 asymbol **syms,
3073 unsigned int num_syms,
3074 unsigned int *string_sizep,
3075 COMPUNIT *compilation_unit)
3076 {
3077 unsigned int i;
3078
3079 /* Chunk of memory that we can use as buffer space, then throw
3080 away. */
3081 size_t tmp_space_size = SOM_TMP_BUFSIZE;
3082 char *tmp_space = alloca (tmp_space_size);
3083 char *p = tmp_space;
3084
3085 unsigned int strings_size = 0;
3086 char *comp[4];
3087 bfd_size_type amt;
3088
3089 /* This gets a bit gruesome because of the compilation unit. The
3090 strings within the compilation unit are part of the symbol
3091 strings, but don't have symbol_dictionary entries. So, manually
3092 write them and update the compilation unit header. On input, the
3093 compilation unit header contains local copies of the strings.
3094 Move them aside. */
3095 if (compilation_unit)
3096 {
3097 comp[0] = compilation_unit->name.n_name;
3098 comp[1] = compilation_unit->language_name.n_name;
3099 comp[2] = compilation_unit->product_id.n_name;
3100 comp[3] = compilation_unit->version_id.n_name;
3101 }
3102
3103 /* Seek to the start of the space strings in preparation for writing
3104 them out. */
3105 if (bfd_seek (abfd, (file_ptr) current_offset, SEEK_SET) != 0)
3106 return FALSE;
3107
3108 if (compilation_unit)
3109 {
3110 for (i = 0; i < 4; i++)
3111 {
3112 size_t length = strlen (comp[i]);
3113
3114 /* If there is not enough room for the next entry, then dump
3115 the current buffer contents now and maybe allocate a
3116 larger buffer. */
3117 if (p - tmp_space + 5 + length > tmp_space_size)
3118 {
3119 /* Flush buffer before refilling or reallocating. */
3120 amt = p - tmp_space;
3121 if (bfd_bwrite ((void *) &tmp_space[0], amt, abfd) != amt)
3122 return FALSE;
3123
3124 /* Reallocate if now empty buffer still too small. */
3125 if (5 + length > tmp_space_size)
3126 {
3127 /* See alloca above for discussion of new size. */
3128 tmp_space_size = MAX (2 * tmp_space_size, 5 + length);
3129 tmp_space = alloca (tmp_space_size);
3130 }
3131
3132 /* Reset to beginning of the (possibly new) buffer
3133 space. */
3134 p = tmp_space;
3135 }
3136
3137 /* First element in a string table entry is the length of
3138 the string. This must always be 4 byte aligned. This is
3139 also an appropriate time to fill in the string index
3140 field in the symbol table entry. */
3141 bfd_put_32 (abfd, (bfd_vma) length, p);
3142 strings_size += 4;
3143 p += 4;
3144
3145 /* Next comes the string itself + a null terminator. */
3146 strcpy (p, comp[i]);
3147
3148 switch (i)
3149 {
3150 case 0:
3151 obj_som_compilation_unit (abfd)->name.n_strx = strings_size;
3152 break;
3153 case 1:
3154 obj_som_compilation_unit (abfd)->language_name.n_strx =
3155 strings_size;
3156 break;
3157 case 2:
3158 obj_som_compilation_unit (abfd)->product_id.n_strx =
3159 strings_size;
3160 break;
3161 case 3:
3162 obj_som_compilation_unit (abfd)->version_id.n_strx =
3163 strings_size;
3164 break;
3165 }
3166
3167 p += length + 1;
3168 strings_size += length + 1;
3169
3170 /* Always align up to the next word boundary. */
3171 while (strings_size % 4)
3172 {
3173 bfd_put_8 (abfd, 0, p);
3174 strings_size++;
3175 p++;
3176 }
3177 }
3178 }
3179
3180 for (i = 0; i < num_syms; i++)
3181 {
3182 size_t length = strlen (syms[i]->name);
3183
3184 /* If there is not enough room for the next entry, then dump the
3185 current buffer contents now and maybe allocate a larger buffer. */
3186 if (p - tmp_space + 5 + length > tmp_space_size)
3187 {
3188 /* Flush buffer before refilling or reallocating. */
3189 amt = p - tmp_space;
3190 if (bfd_bwrite ((void *) &tmp_space[0], amt, abfd) != amt)
3191 return FALSE;
3192
3193 /* Reallocate if now empty buffer still too small. */
3194 if (5 + length > tmp_space_size)
3195 {
3196 /* See alloca above for discussion of new size. */
3197 tmp_space_size = MAX (2 * tmp_space_size, 5 + length);
3198 tmp_space = alloca (tmp_space_size);
3199 }
3200
3201 /* Reset to beginning of the (possibly new) buffer space. */
3202 p = tmp_space;
3203 }
3204
3205 /* First element in a string table entry is the length of the
3206 string. This must always be 4 byte aligned. This is also
3207 an appropriate time to fill in the string index field in the
3208 symbol table entry. */
3209 bfd_put_32 (abfd, (bfd_vma) length, p);
3210 strings_size += 4;
3211 p += 4;
3212
3213 /* Next comes the string itself + a null terminator. */
3214 strcpy (p, syms[i]->name);
3215
3216 som_symbol_data (syms[i])->stringtab_offset = strings_size;
3217 p += length + 1;
3218 strings_size += length + 1;
3219
3220 /* Always align up to the next word boundary. */
3221 while (strings_size % 4)
3222 {
3223 bfd_put_8 (abfd, 0, p);
3224 strings_size++;
3225 p++;
3226 }
3227 }
3228
3229 /* Scribble out any partial block. */
3230 amt = p - tmp_space;
3231 if (bfd_bwrite ((void *) &tmp_space[0], amt, abfd) != amt)
3232 return FALSE;
3233
3234 *string_sizep = strings_size;
3235 return TRUE;
3236 }
3237
3238 /* Compute variable information to be placed in the SOM headers,
3239 space/subspace dictionaries, relocation streams, etc. Begin
3240 writing parts of the object file. */
3241
3242 static bfd_boolean
3243 som_begin_writing (bfd *abfd)
3244 {
3245 unsigned long current_offset = 0;
3246 unsigned int strings_size = 0;
3247 unsigned long num_spaces, num_subspaces, i;
3248 asection *section;
3249 unsigned int total_subspaces = 0;
3250 struct som_exec_auxhdr *exec_header = NULL;
3251
3252 /* The file header will always be first in an object file,
3253 everything else can be in random locations. To keep things
3254 "simple" BFD will lay out the object file in the manner suggested
3255 by the PRO ABI for PA-RISC Systems. */
3256
3257 /* Before any output can really begin offsets for all the major
3258 portions of the object file must be computed. So, starting
3259 with the initial file header compute (and sometimes write)
3260 each portion of the object file. */
3261
3262 /* Make room for the file header, it's contents are not complete
3263 yet, so it can not be written at this time. */
3264 current_offset += sizeof (struct header);
3265
3266 /* Any auxiliary headers will follow the file header. Right now
3267 we support only the copyright and version headers. */
3268 obj_som_file_hdr (abfd)->aux_header_location = current_offset;
3269 obj_som_file_hdr (abfd)->aux_header_size = 0;
3270 if (abfd->flags & (EXEC_P | DYNAMIC))
3271 {
3272 /* Parts of the exec header will be filled in later, so
3273 delay writing the header itself. Fill in the defaults,
3274 and write it later. */
3275 current_offset += sizeof (struct som_exec_auxhdr);
3276 obj_som_file_hdr (abfd)->aux_header_size
3277 += sizeof (struct som_exec_auxhdr);
3278 exec_header = obj_som_exec_hdr (abfd);
3279 exec_header->som_auxhdr.type = EXEC_AUX_ID;
3280 exec_header->som_auxhdr.length = 40;
3281 }
3282 if (obj_som_version_hdr (abfd) != NULL)
3283 {
3284 bfd_size_type len;
3285
3286 if (bfd_seek (abfd, (file_ptr) current_offset, SEEK_SET) != 0)
3287 return FALSE;
3288
3289 /* Write the aux_id structure and the string length. */
3290 len = sizeof (struct aux_id) + sizeof (unsigned int);
3291 obj_som_file_hdr (abfd)->aux_header_size += len;
3292 current_offset += len;
3293 if (bfd_bwrite ((void *) obj_som_version_hdr (abfd), len, abfd) != len)
3294 return FALSE;
3295
3296 /* Write the version string. */
3297 len = obj_som_version_hdr (abfd)->header_id.length - sizeof (int);
3298 obj_som_file_hdr (abfd)->aux_header_size += len;
3299 current_offset += len;
3300 if (bfd_bwrite ((void *) obj_som_version_hdr (abfd)->user_string, len, abfd)
3301 != len)
3302 return FALSE;
3303 }
3304
3305 if (obj_som_copyright_hdr (abfd) != NULL)
3306 {
3307 bfd_size_type len;
3308
3309 if (bfd_seek (abfd, (file_ptr) current_offset, SEEK_SET) != 0)
3310 return FALSE;
3311
3312 /* Write the aux_id structure and the string length. */
3313 len = sizeof (struct aux_id) + sizeof (unsigned int);
3314 obj_som_file_hdr (abfd)->aux_header_size += len;
3315 current_offset += len;
3316 if (bfd_bwrite ((void *) obj_som_copyright_hdr (abfd), len, abfd) != len)
3317 return FALSE;
3318
3319 /* Write the copyright string. */
3320 len = obj_som_copyright_hdr (abfd)->header_id.length - sizeof (int);
3321 obj_som_file_hdr (abfd)->aux_header_size += len;
3322 current_offset += len;
3323 if (bfd_bwrite ((void *) obj_som_copyright_hdr (abfd)->copyright, len, abfd)
3324 != len)
3325 return FALSE;
3326 }
3327
3328 /* Next comes the initialization pointers; we have no initialization
3329 pointers, so current offset does not change. */
3330 obj_som_file_hdr (abfd)->init_array_location = current_offset;
3331 obj_som_file_hdr (abfd)->init_array_total = 0;
3332
3333 /* Next are the space records. These are fixed length records.
3334
3335 Count the number of spaces to determine how much room is needed
3336 in the object file for the space records.
3337
3338 The names of the spaces are stored in a separate string table,
3339 and the index for each space into the string table is computed
3340 below. Therefore, it is not possible to write the space headers
3341 at this time. */
3342 num_spaces = som_count_spaces (abfd);
3343 obj_som_file_hdr (abfd)->space_location = current_offset;
3344 obj_som_file_hdr (abfd)->space_total = num_spaces;
3345 current_offset += num_spaces * sizeof (struct space_dictionary_record);
3346
3347 /* Next are the subspace records. These are fixed length records.
3348
3349 Count the number of subspaes to determine how much room is needed
3350 in the object file for the subspace records.
3351
3352 A variety if fields in the subspace record are still unknown at
3353 this time (index into string table, fixup stream location/size, etc). */
3354 num_subspaces = som_count_subspaces (abfd);
3355 obj_som_file_hdr (abfd)->subspace_location = current_offset;
3356 obj_som_file_hdr (abfd)->subspace_total = num_subspaces;
3357 current_offset
3358 += num_subspaces * sizeof (struct som_subspace_dictionary_record);
3359
3360 /* Next is the string table for the space/subspace names. We will
3361 build and write the string table on the fly. At the same time
3362 we will fill in the space/subspace name index fields. */
3363
3364 /* The string table needs to be aligned on a word boundary. */
3365 if (current_offset % 4)
3366 current_offset += (4 - (current_offset % 4));
3367
3368 /* Mark the offset of the space/subspace string table in the
3369 file header. */
3370 obj_som_file_hdr (abfd)->space_strings_location = current_offset;
3371
3372 /* Scribble out the space strings. */
3373 if (! som_write_space_strings (abfd, current_offset, &strings_size))
3374 return FALSE;
3375
3376 /* Record total string table size in the header and update the
3377 current offset. */
3378 obj_som_file_hdr (abfd)->space_strings_size = strings_size;
3379 current_offset += strings_size;
3380
3381 /* Next is the compilation unit. */
3382 obj_som_file_hdr (abfd)->compiler_location = current_offset;
3383 obj_som_file_hdr (abfd)->compiler_total = 0;
3384 if (obj_som_compilation_unit (abfd))
3385 {
3386 obj_som_file_hdr (abfd)->compiler_total = 1;
3387 current_offset += COMPUNITSZ;
3388 }
3389
3390 /* Now compute the file positions for the loadable subspaces, taking
3391 care to make sure everything stays properly aligned. */
3392
3393 section = abfd->sections;
3394 for (i = 0; i < num_spaces; i++)
3395 {
3396 asection *subsection;
3397 int first_subspace;
3398 unsigned int subspace_offset = 0;
3399
3400 /* Find a space. */
3401 while (!som_is_space (section))
3402 section = section->next;
3403
3404 first_subspace = 1;
3405 /* Now look for all its subspaces. */
3406 for (subsection = abfd->sections;
3407 subsection != NULL;
3408 subsection = subsection->next)
3409 {
3410
3411 if (!som_is_subspace (subsection)
3412 || !som_is_container (section, subsection)
3413 || (subsection->flags & SEC_ALLOC) == 0)
3414 continue;
3415
3416 /* If this is the first subspace in the space, and we are
3417 building an executable, then take care to make sure all
3418 the alignments are correct and update the exec header. */
3419 if (first_subspace
3420 && (abfd->flags & (EXEC_P | DYNAMIC)))
3421 {
3422 /* Demand paged executables have each space aligned to a
3423 page boundary. Sharable executables (write-protected
3424 text) have just the private (aka data & bss) space aligned
3425 to a page boundary. Ugh. Not true for HPUX.
3426
3427 The HPUX kernel requires the text to always be page aligned
3428 within the file regardless of the executable's type. */
3429 if (abfd->flags & (D_PAGED | DYNAMIC)
3430 || (subsection->flags & SEC_CODE)
3431 || ((abfd->flags & WP_TEXT)
3432 && (subsection->flags & SEC_DATA)))
3433 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3434
3435 /* Update the exec header. */
3436 if (subsection->flags & SEC_CODE && exec_header->exec_tfile == 0)
3437 {
3438 exec_header->exec_tmem = section->vma;
3439 exec_header->exec_tfile = current_offset;
3440 }
3441 if (subsection->flags & SEC_DATA && exec_header->exec_dfile == 0)
3442 {
3443 exec_header->exec_dmem = section->vma;
3444 exec_header->exec_dfile = current_offset;
3445 }
3446
3447 /* Keep track of exactly where we are within a particular
3448 space. This is necessary as the braindamaged HPUX
3449 loader will create holes between subspaces *and*
3450 subspace alignments are *NOT* preserved. What a crock. */
3451 subspace_offset = subsection->vma;
3452
3453 /* Only do this for the first subspace within each space. */
3454 first_subspace = 0;
3455 }
3456 else if (abfd->flags & (EXEC_P | DYNAMIC))
3457 {
3458 /* The braindamaged HPUX loader may have created a hole
3459 between two subspaces. It is *not* sufficient to use
3460 the alignment specifications within the subspaces to
3461 account for these holes -- I've run into at least one
3462 case where the loader left one code subspace unaligned
3463 in a final executable.
3464
3465 To combat this we keep a current offset within each space,
3466 and use the subspace vma fields to detect and preserve
3467 holes. What a crock!
3468
3469 ps. This is not necessary for unloadable space/subspaces. */
3470 current_offset += subsection->vma - subspace_offset;
3471 if (subsection->flags & SEC_CODE)
3472 exec_header->exec_tsize += subsection->vma - subspace_offset;
3473 else
3474 exec_header->exec_dsize += subsection->vma - subspace_offset;
3475 subspace_offset += subsection->vma - subspace_offset;
3476 }
3477
3478 subsection->target_index = total_subspaces++;
3479 /* This is real data to be loaded from the file. */
3480 if (subsection->flags & SEC_LOAD)
3481 {
3482 /* Update the size of the code & data. */
3483 if (abfd->flags & (EXEC_P | DYNAMIC)
3484 && subsection->flags & SEC_CODE)
3485 exec_header->exec_tsize += subsection->size;
3486 else if (abfd->flags & (EXEC_P | DYNAMIC)
3487 && subsection->flags & SEC_DATA)
3488 exec_header->exec_dsize += subsection->size;
3489 som_section_data (subsection)->subspace_dict->file_loc_init_value
3490 = current_offset;
3491 subsection->filepos = current_offset;
3492 current_offset += subsection->size;
3493 subspace_offset += subsection->size;
3494 }
3495 /* Looks like uninitialized data. */
3496 else
3497 {
3498 /* Update the size of the bss section. */
3499 if (abfd->flags & (EXEC_P | DYNAMIC))
3500 exec_header->exec_bsize += subsection->size;
3501
3502 som_section_data (subsection)->subspace_dict->file_loc_init_value
3503 = 0;
3504 som_section_data (subsection)->subspace_dict->
3505 initialization_length = 0;
3506 }
3507 }
3508 /* Goto the next section. */
3509 section = section->next;
3510 }
3511
3512 /* Finally compute the file positions for unloadable subspaces.
3513 If building an executable, start the unloadable stuff on its
3514 own page. */
3515
3516 if (abfd->flags & (EXEC_P | DYNAMIC))
3517 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3518
3519 obj_som_file_hdr (abfd)->unloadable_sp_location = current_offset;
3520 section = abfd->sections;
3521 for (i = 0; i < num_spaces; i++)
3522 {
3523 asection *subsection;
3524
3525 /* Find a space. */
3526 while (!som_is_space (section))
3527 section = section->next;
3528
3529 if (abfd->flags & (EXEC_P | DYNAMIC))
3530 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3531
3532 /* Now look for all its subspaces. */
3533 for (subsection = abfd->sections;
3534 subsection != NULL;
3535 subsection = subsection->next)
3536 {
3537
3538 if (!som_is_subspace (subsection)
3539 || !som_is_container (section, subsection)
3540 || (subsection->flags & SEC_ALLOC) != 0)
3541 continue;
3542
3543 subsection->target_index = total_subspaces++;
3544 /* This is real data to be loaded from the file. */
3545 if ((subsection->flags & SEC_LOAD) == 0)
3546 {
3547 som_section_data (subsection)->subspace_dict->file_loc_init_value
3548 = current_offset;
3549 subsection->filepos = current_offset;
3550 current_offset += subsection->size;
3551 }
3552 /* Looks like uninitialized data. */
3553 else
3554 {
3555 som_section_data (subsection)->subspace_dict->file_loc_init_value
3556 = 0;
3557 som_section_data (subsection)->subspace_dict->
3558 initialization_length = subsection->size;
3559 }
3560 }
3561 /* Goto the next section. */
3562 section = section->next;
3563 }
3564
3565 /* If building an executable, then make sure to seek to and write
3566 one byte at the end of the file to make sure any necessary
3567 zeros are filled in. Ugh. */
3568 if (abfd->flags & (EXEC_P | DYNAMIC))
3569 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3570 if (bfd_seek (abfd, (file_ptr) current_offset - 1, SEEK_SET) != 0)
3571 return FALSE;
3572 if (bfd_bwrite ((void *) "", (bfd_size_type) 1, abfd) != 1)
3573 return FALSE;
3574
3575 obj_som_file_hdr (abfd)->unloadable_sp_size
3576 = current_offset - obj_som_file_hdr (abfd)->unloadable_sp_location;
3577
3578 /* Loader fixups are not supported in any way shape or form. */
3579 obj_som_file_hdr (abfd)->loader_fixup_location = 0;
3580 obj_som_file_hdr (abfd)->loader_fixup_total = 0;
3581
3582 /* Done. Store the total size of the SOM so far. */
3583 obj_som_file_hdr (abfd)->som_length = current_offset;
3584
3585 return TRUE;
3586 }
3587
3588 /* Finally, scribble out the various headers to the disk. */
3589
3590 static bfd_boolean
3591 som_finish_writing (bfd *abfd)
3592 {
3593 int num_spaces = som_count_spaces (abfd);
3594 asymbol **syms = bfd_get_outsymbols (abfd);
3595 int i, num_syms;
3596 int subspace_index = 0;
3597 file_ptr location;
3598 asection *section;
3599 unsigned long current_offset;
3600 unsigned int strings_size, total_reloc_size;
3601 bfd_size_type amt;
3602
3603 /* We must set up the version identifier here as objcopy/strip copy
3604 private BFD data too late for us to handle this in som_begin_writing. */
3605 if (obj_som_exec_data (abfd)
3606 && obj_som_exec_data (abfd)->version_id)
3607 obj_som_file_hdr (abfd)->version_id = obj_som_exec_data (abfd)->version_id;
3608 else
3609 obj_som_file_hdr (abfd)->version_id = NEW_VERSION_ID;
3610
3611 /* Next is the symbol table. These are fixed length records.
3612
3613 Count the number of symbols to determine how much room is needed
3614 in the object file for the symbol table.
3615
3616 The names of the symbols are stored in a separate string table,
3617 and the index for each symbol name into the string table is computed
3618 below. Therefore, it is not possible to write the symbol table
3619 at this time.
3620
3621 These used to be output before the subspace contents, but they
3622 were moved here to work around a stupid bug in the hpux linker
3623 (fixed in hpux10). */
3624 current_offset = obj_som_file_hdr (abfd)->som_length;
3625
3626 /* Make sure we're on a word boundary. */
3627 if (current_offset % 4)
3628 current_offset += (4 - (current_offset % 4));
3629
3630 num_syms = bfd_get_symcount (abfd);
3631 obj_som_file_hdr (abfd)->symbol_location = current_offset;
3632 obj_som_file_hdr (abfd)->symbol_total = num_syms;
3633 current_offset += num_syms * sizeof (struct symbol_dictionary_record);
3634
3635 /* Next are the symbol strings.
3636 Align them to a word boundary. */
3637 if (current_offset % 4)
3638 current_offset += (4 - (current_offset % 4));
3639 obj_som_file_hdr (abfd)->symbol_strings_location = current_offset;
3640
3641 /* Scribble out the symbol strings. */
3642 if (! som_write_symbol_strings (abfd, current_offset, syms,
3643 num_syms, &strings_size,
3644 obj_som_compilation_unit (abfd)))
3645 return FALSE;
3646
3647 /* Record total string table size in header and update the
3648 current offset. */
3649 obj_som_file_hdr (abfd)->symbol_strings_size = strings_size;
3650 current_offset += strings_size;
3651
3652 /* Do prep work before handling fixups. */
3653 som_prep_for_fixups (abfd,
3654 bfd_get_outsymbols (abfd),
3655 bfd_get_symcount (abfd));
3656
3657 /* At the end of the file is the fixup stream which starts on a
3658 word boundary. */
3659 if (current_offset % 4)
3660 current_offset += (4 - (current_offset % 4));
3661 obj_som_file_hdr (abfd)->fixup_request_location = current_offset;
3662
3663 /* Write the fixups and update fields in subspace headers which
3664 relate to the fixup stream. */
3665 if (! som_write_fixups (abfd, current_offset, &total_reloc_size))
3666 return FALSE;
3667
3668 /* Record the total size of the fixup stream in the file header. */
3669 obj_som_file_hdr (abfd)->fixup_request_total = total_reloc_size;
3670
3671 /* Done. Store the total size of the SOM. */
3672 obj_som_file_hdr (abfd)->som_length = current_offset + total_reloc_size;
3673
3674 /* Now that the symbol table information is complete, build and
3675 write the symbol table. */
3676 if (! som_build_and_write_symbol_table (abfd))
3677 return FALSE;
3678
3679 /* Subspaces are written first so that we can set up information
3680 about them in their containing spaces as the subspace is written. */
3681
3682 /* Seek to the start of the subspace dictionary records. */
3683 location = obj_som_file_hdr (abfd)->subspace_location;
3684 if (bfd_seek (abfd, location, SEEK_SET) != 0)
3685 return FALSE;
3686
3687 section = abfd->sections;
3688 /* Now for each loadable space write out records for its subspaces. */
3689 for (i = 0; i < num_spaces; i++)
3690 {
3691 asection *subsection;
3692
3693 /* Find a space. */
3694 while (!som_is_space (section))
3695 section = section->next;
3696
3697 /* Now look for all its subspaces. */
3698 for (subsection = abfd->sections;
3699 subsection != NULL;
3700 subsection = subsection->next)
3701 {
3702
3703 /* Skip any section which does not correspond to a space
3704 or subspace. Or does not have SEC_ALLOC set (and therefore
3705 has no real bits on the disk). */
3706 if (!som_is_subspace (subsection)
3707 || !som_is_container (section, subsection)
3708 || (subsection->flags & SEC_ALLOC) == 0)
3709 continue;
3710
3711 /* If this is the first subspace for this space, then save
3712 the index of the subspace in its containing space. Also
3713 set "is_loadable" in the containing space. */
3714
3715 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3716 {
3717 som_section_data (section)->space_dict->is_loadable = 1;
3718 som_section_data (section)->space_dict->subspace_index
3719 = subspace_index;
3720 }
3721
3722 /* Increment the number of subspaces seen and the number of
3723 subspaces contained within the current space. */
3724 subspace_index++;
3725 som_section_data (section)->space_dict->subspace_quantity++;
3726
3727 /* Mark the index of the current space within the subspace's
3728 dictionary record. */
3729 som_section_data (subsection)->subspace_dict->space_index = i;
3730
3731 /* Dump the current subspace header. */
3732 amt = sizeof (struct som_subspace_dictionary_record);
3733 if (bfd_bwrite ((void *) som_section_data (subsection)->subspace_dict,
3734 amt, abfd) != amt)
3735 return FALSE;
3736 }
3737 /* Goto the next section. */
3738 section = section->next;
3739 }
3740
3741 /* Now repeat the process for unloadable subspaces. */
3742 section = abfd->sections;
3743 /* Now for each space write out records for its subspaces. */
3744 for (i = 0; i < num_spaces; i++)
3745 {
3746 asection *subsection;
3747
3748 /* Find a space. */
3749 while (!som_is_space (section))
3750 section = section->next;
3751
3752 /* Now look for all its subspaces. */
3753 for (subsection = abfd->sections;
3754 subsection != NULL;
3755 subsection = subsection->next)
3756 {
3757
3758 /* Skip any section which does not correspond to a space or
3759 subspace, or which SEC_ALLOC set (and therefore handled
3760 in the loadable spaces/subspaces code above). */
3761
3762 if (!som_is_subspace (subsection)
3763 || !som_is_container (section, subsection)
3764 || (subsection->flags & SEC_ALLOC) != 0)
3765 continue;
3766
3767 /* If this is the first subspace for this space, then save
3768 the index of the subspace in its containing space. Clear
3769 "is_loadable". */
3770
3771 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3772 {
3773 som_section_data (section)->space_dict->is_loadable = 0;
3774 som_section_data (section)->space_dict->subspace_index
3775 = subspace_index;
3776 }
3777
3778 /* Increment the number of subspaces seen and the number of
3779 subspaces contained within the current space. */
3780 som_section_data (section)->space_dict->subspace_quantity++;
3781 subspace_index++;
3782
3783 /* Mark the index of the current space within the subspace's
3784 dictionary record. */
3785 som_section_data (subsection)->subspace_dict->space_index = i;
3786
3787 /* Dump this subspace header. */
3788 amt = sizeof (struct som_subspace_dictionary_record);
3789 if (bfd_bwrite ((void *) som_section_data (subsection)->subspace_dict,
3790 amt, abfd) != amt)
3791 return FALSE;
3792 }
3793 /* Goto the next section. */
3794 section = section->next;
3795 }
3796
3797 /* All the subspace dictionary records are written, and all the
3798 fields are set up in the space dictionary records.
3799
3800 Seek to the right location and start writing the space
3801 dictionary records. */
3802 location = obj_som_file_hdr (abfd)->space_location;
3803 if (bfd_seek (abfd, location, SEEK_SET) != 0)
3804 return FALSE;
3805
3806 section = abfd->sections;
3807 for (i = 0; i < num_spaces; i++)
3808 {
3809 /* Find a space. */
3810 while (!som_is_space (section))
3811 section = section->next;
3812
3813 /* Dump its header. */
3814 amt = sizeof (struct space_dictionary_record);
3815 if (bfd_bwrite ((void *) som_section_data (section)->space_dict,
3816 amt, abfd) != amt)
3817 return FALSE;
3818
3819 /* Goto the next section. */
3820 section = section->next;
3821 }
3822
3823 /* Write the compilation unit record if there is one. */
3824 if (obj_som_compilation_unit (abfd))
3825 {
3826 location = obj_som_file_hdr (abfd)->compiler_location;
3827 if (bfd_seek (abfd, location, SEEK_SET) != 0)
3828 return FALSE;
3829
3830 amt = COMPUNITSZ;
3831 if (bfd_bwrite ((void *) obj_som_compilation_unit (abfd), amt, abfd) != amt)
3832 return FALSE;
3833 }
3834
3835 /* Setting of the system_id has to happen very late now that copying of
3836 BFD private data happens *after* section contents are set. */
3837 if (abfd->flags & (EXEC_P | DYNAMIC))
3838 obj_som_file_hdr (abfd)->system_id = obj_som_exec_data (abfd)->system_id;
3839 else if (bfd_get_mach (abfd) == pa20)
3840 obj_som_file_hdr (abfd)->system_id = CPU_PA_RISC2_0;
3841 else if (bfd_get_mach (abfd) == pa11)
3842 obj_som_file_hdr (abfd)->system_id = CPU_PA_RISC1_1;
3843 else
3844 obj_som_file_hdr (abfd)->system_id = CPU_PA_RISC1_0;
3845
3846 /* Compute the checksum for the file header just before writing
3847 the header to disk. */
3848 obj_som_file_hdr (abfd)->checksum = som_compute_checksum (abfd);
3849
3850 /* Only thing left to do is write out the file header. It is always
3851 at location zero. Seek there and write it. */
3852 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0)
3853 return FALSE;
3854 amt = sizeof (struct header);
3855 if (bfd_bwrite ((void *) obj_som_file_hdr (abfd), amt, abfd) != amt)
3856 return FALSE;
3857
3858 /* Now write the exec header. */
3859 if (abfd->flags & (EXEC_P | DYNAMIC))
3860 {
3861 long tmp, som_length;
3862 struct som_exec_auxhdr *exec_header;
3863
3864 exec_header = obj_som_exec_hdr (abfd);
3865 exec_header->exec_entry = bfd_get_start_address (abfd);
3866 exec_header->exec_flags = obj_som_exec_data (abfd)->exec_flags;
3867
3868 /* Oh joys. Ram some of the BSS data into the DATA section
3869 to be compatible with how the hp linker makes objects
3870 (saves memory space). */
3871 tmp = exec_header->exec_dsize;
3872 tmp = SOM_ALIGN (tmp, PA_PAGESIZE);
3873 exec_header->exec_bsize -= (tmp - exec_header->exec_dsize);
3874 if (exec_header->exec_bsize < 0)
3875 exec_header->exec_bsize = 0;
3876 exec_header->exec_dsize = tmp;
3877
3878 /* Now perform some sanity checks. The idea is to catch bogons now and
3879 inform the user, instead of silently generating a bogus file. */
3880 som_length = obj_som_file_hdr (abfd)->som_length;
3881 if (exec_header->exec_tfile + exec_header->exec_tsize > som_length
3882 || exec_header->exec_dfile + exec_header->exec_dsize > som_length)
3883 {
3884 bfd_set_error (bfd_error_bad_value);
3885 return FALSE;
3886 }
3887
3888 if (bfd_seek (abfd, obj_som_file_hdr (abfd)->aux_header_location,
3889 SEEK_SET) != 0)
3890 return FALSE;
3891
3892 amt = AUX_HDR_SIZE;
3893 if (bfd_bwrite ((void *) exec_header, amt, abfd) != amt)
3894 return FALSE;
3895 }
3896 return TRUE;
3897 }
3898
3899 /* Compute and return the checksum for a SOM file header. */
3900
3901 static unsigned long
3902 som_compute_checksum (bfd *abfd)
3903 {
3904 unsigned long checksum, count, i;
3905 unsigned long *buffer = (unsigned long *) obj_som_file_hdr (abfd);
3906
3907 checksum = 0;
3908 count = sizeof (struct header) / sizeof (unsigned long);
3909 for (i = 0; i < count; i++)
3910 checksum ^= *(buffer + i);
3911
3912 return checksum;
3913 }
3914
3915 static void
3916 som_bfd_derive_misc_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
3917 asymbol *sym,
3918 struct som_misc_symbol_info *info)
3919 {
3920 /* Initialize. */
3921 memset (info, 0, sizeof (struct som_misc_symbol_info));
3922
3923 /* The HP SOM linker requires detailed type information about
3924 all symbols (including undefined symbols!). Unfortunately,
3925 the type specified in an import/export statement does not
3926 always match what the linker wants. Severe braindamage. */
3927
3928 /* Section symbols will not have a SOM symbol type assigned to
3929 them yet. Assign all section symbols type ST_DATA. */
3930 if (sym->flags & BSF_SECTION_SYM)
3931 info->symbol_type = ST_DATA;
3932 else
3933 {
3934 /* For BFD style common, the linker will choke unless we set the
3935 type and scope to ST_STORAGE and SS_UNSAT, respectively. */
3936 if (bfd_is_com_section (sym->section))
3937 {
3938 info->symbol_type = ST_STORAGE;
3939 info->symbol_scope = SS_UNSAT;
3940 }
3941
3942 /* It is possible to have a symbol without an associated
3943 type. This happens if the user imported the symbol
3944 without a type and the symbol was never defined
3945 locally. If BSF_FUNCTION is set for this symbol, then
3946 assign it type ST_CODE (the HP linker requires undefined
3947 external functions to have type ST_CODE rather than ST_ENTRY). */
3948 else if ((som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3949 || som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
3950 && bfd_is_und_section (sym->section)
3951 && sym->flags & BSF_FUNCTION)
3952 info->symbol_type = ST_CODE;
3953
3954 /* Handle function symbols which were defined in this file.
3955 They should have type ST_ENTRY. Also retrieve the argument
3956 relocation bits from the SOM backend information. */
3957 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ENTRY
3958 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE
3959 && (sym->flags & BSF_FUNCTION))
3960 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3961 && (sym->flags & BSF_FUNCTION)))
3962 {
3963 info->symbol_type = ST_ENTRY;
3964 info->arg_reloc = som_symbol_data (sym)->tc_data.ap.hppa_arg_reloc;
3965 info->priv_level= som_symbol_data (sym)->tc_data.ap.hppa_priv_level;
3966 }
3967
3968 /* For unknown symbols set the symbol's type based on the symbol's
3969 section (ST_DATA for DATA sections, ST_CODE for CODE sections). */
3970 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN)
3971 {
3972 if (sym->section->flags & SEC_CODE)
3973 info->symbol_type = ST_CODE;
3974 else
3975 info->symbol_type = ST_DATA;
3976 }
3977
3978 /* From now on it's a very simple mapping. */
3979 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ABSOLUTE)
3980 info->symbol_type = ST_ABSOLUTE;
3981 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
3982 info->symbol_type = ST_CODE;
3983 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_DATA)
3984 info->symbol_type = ST_DATA;
3985 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_MILLICODE)
3986 info->symbol_type = ST_MILLICODE;
3987 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PLABEL)
3988 info->symbol_type = ST_PLABEL;
3989 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PRI_PROG)
3990 info->symbol_type = ST_PRI_PROG;
3991 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_SEC_PROG)
3992 info->symbol_type = ST_SEC_PROG;
3993 }
3994
3995 /* Now handle the symbol's scope. Exported data which is not
3996 in the common section has scope SS_UNIVERSAL. Note scope
3997 of common symbols was handled earlier! */
3998 if (bfd_is_com_section (sym->section))
3999 ;
4000 else if (bfd_is_und_section (sym->section))
4001 info->symbol_scope = SS_UNSAT;
4002 else if (sym->flags & (BSF_EXPORT | BSF_WEAK))
4003 info->symbol_scope = SS_UNIVERSAL;
4004 /* Anything else which is not in the common section has scope
4005 SS_LOCAL. */
4006 else
4007 info->symbol_scope = SS_LOCAL;
4008
4009 /* Now set the symbol_info field. It has no real meaning
4010 for undefined or common symbols, but the HP linker will
4011 choke if it's not set to some "reasonable" value. We
4012 use zero as a reasonable value. */
4013 if (bfd_is_com_section (sym->section)
4014 || bfd_is_und_section (sym->section)
4015 || bfd_is_abs_section (sym->section))
4016 info->symbol_info = 0;
4017 /* For all other symbols, the symbol_info field contains the
4018 subspace index of the space this symbol is contained in. */
4019 else
4020 info->symbol_info = sym->section->target_index;
4021
4022 /* Set the symbol's value. */
4023 info->symbol_value = sym->value + sym->section->vma;
4024
4025 /* The secondary_def field is for "weak" symbols. */
4026 if (sym->flags & BSF_WEAK)
4027 info->secondary_def = TRUE;
4028 else
4029 info->secondary_def = FALSE;
4030
4031 /* The is_comdat, is_common and dup_common fields provide various
4032 flavors of common.
4033
4034 For data symbols, setting IS_COMMON provides Fortran style common
4035 (duplicate definitions and overlapped initialization). Setting both
4036 IS_COMMON and DUP_COMMON provides Cobol style common (duplicate
4037 definitions as long as they are all the same length). In a shared
4038 link data symbols retain their IS_COMMON and DUP_COMMON flags.
4039 An IS_COMDAT data symbol is similar to a IS_COMMON | DUP_COMMON
4040 symbol except in that it loses its IS_COMDAT flag in a shared link.
4041
4042 For code symbols, IS_COMDAT and DUP_COMMON have effect. Universal
4043 DUP_COMMON code symbols are not exported from shared libraries.
4044 IS_COMDAT symbols are exported but they lose their IS_COMDAT flag.
4045
4046 We take a simplified approach to setting the is_comdat, is_common
4047 and dup_common flags in symbols based on the flag settings of their
4048 subspace. This avoids having to add directives like `.comdat' but
4049 the linker behavior is probably undefined if there is more than one
4050 universal symbol (comdat key sysmbol) in a subspace.
4051
4052 The behavior of these flags is not well documentmented, so there
4053 may be bugs and some surprising interactions with other flags. */
4054 if (som_section_data (sym->section)
4055 && som_section_data (sym->section)->subspace_dict
4056 && info->symbol_scope == SS_UNIVERSAL
4057 && (info->symbol_type == ST_ENTRY
4058 || info->symbol_type == ST_CODE
4059 || info->symbol_type == ST_DATA))
4060 {
4061 info->is_comdat
4062 = som_section_data (sym->section)->subspace_dict->is_comdat;
4063 info->is_common
4064 = som_section_data (sym->section)->subspace_dict->is_common;
4065 info->dup_common
4066 = som_section_data (sym->section)->subspace_dict->dup_common;
4067 }
4068 }
4069
4070 /* Build and write, in one big chunk, the entire symbol table for
4071 this BFD. */
4072
4073 static bfd_boolean
4074 som_build_and_write_symbol_table (bfd *abfd)
4075 {
4076 unsigned int num_syms = bfd_get_symcount (abfd);
4077 file_ptr symtab_location = obj_som_file_hdr (abfd)->symbol_location;
4078 asymbol **bfd_syms = obj_som_sorted_syms (abfd);
4079 struct symbol_dictionary_record *som_symtab = NULL;
4080 unsigned int i;
4081 bfd_size_type symtab_size;
4082
4083 /* Compute total symbol table size and allocate a chunk of memory
4084 to hold the symbol table as we build it. */
4085 symtab_size = num_syms;
4086 symtab_size *= sizeof (struct symbol_dictionary_record);
4087 som_symtab = bfd_zmalloc (symtab_size);
4088 if (som_symtab == NULL && symtab_size != 0)
4089 goto error_return;
4090
4091 /* Walk over each symbol. */
4092 for (i = 0; i < num_syms; i++)
4093 {
4094 struct som_misc_symbol_info info;
4095
4096 /* This is really an index into the symbol strings table.
4097 By the time we get here, the index has already been
4098 computed and stored into the name field in the BFD symbol. */
4099 som_symtab[i].name.n_strx = som_symbol_data(bfd_syms[i])->stringtab_offset;
4100
4101 /* Derive SOM information from the BFD symbol. */
4102 som_bfd_derive_misc_symbol_info (abfd, bfd_syms[i], &info);
4103
4104 /* Now use it. */
4105 som_symtab[i].symbol_type = info.symbol_type;
4106 som_symtab[i].symbol_scope = info.symbol_scope;
4107 som_symtab[i].arg_reloc = info.arg_reloc;
4108 som_symtab[i].symbol_info = info.symbol_info;
4109 som_symtab[i].xleast = 3;
4110 som_symtab[i].symbol_value = info.symbol_value | info.priv_level;
4111 som_symtab[i].secondary_def = info.secondary_def;
4112 som_symtab[i].is_comdat = info.is_comdat;
4113 som_symtab[i].is_common = info.is_common;
4114 som_symtab[i].dup_common = info.dup_common;
4115 }
4116
4117 /* Everything is ready, seek to the right location and
4118 scribble out the symbol table. */
4119 if (bfd_seek (abfd, symtab_location, SEEK_SET) != 0)
4120 return FALSE;
4121
4122 if (bfd_bwrite ((void *) som_symtab, symtab_size, abfd) != symtab_size)
4123 goto error_return;
4124
4125 if (som_symtab != NULL)
4126 free (som_symtab);
4127 return TRUE;
4128 error_return:
4129 if (som_symtab != NULL)
4130 free (som_symtab);
4131 return FALSE;
4132 }
4133
4134 /* Write an object in SOM format. */
4135
4136 static bfd_boolean
4137 som_write_object_contents (bfd *abfd)
4138 {
4139 if (! abfd->output_has_begun)
4140 {
4141 /* Set up fixed parts of the file, space, and subspace headers.
4142 Notify the world that output has begun. */
4143 som_prep_headers (abfd);
4144 abfd->output_has_begun = TRUE;
4145 /* Start writing the object file. This include all the string
4146 tables, fixup streams, and other portions of the object file. */
4147 som_begin_writing (abfd);
4148 }
4149
4150 return som_finish_writing (abfd);
4151 }
4152 \f
4153 /* Read and save the string table associated with the given BFD. */
4154
4155 static bfd_boolean
4156 som_slurp_string_table (bfd *abfd)
4157 {
4158 char *stringtab;
4159 bfd_size_type amt;
4160
4161 /* Use the saved version if its available. */
4162 if (obj_som_stringtab (abfd) != NULL)
4163 return TRUE;
4164
4165 /* I don't think this can currently happen, and I'm not sure it should
4166 really be an error, but it's better than getting unpredictable results
4167 from the host's malloc when passed a size of zero. */
4168 if (obj_som_stringtab_size (abfd) == 0)
4169 {
4170 bfd_set_error (bfd_error_no_symbols);
4171 return FALSE;
4172 }
4173
4174 /* Allocate and read in the string table. */
4175 amt = obj_som_stringtab_size (abfd);
4176 stringtab = bfd_zmalloc (amt);
4177 if (stringtab == NULL)
4178 return FALSE;
4179
4180 if (bfd_seek (abfd, obj_som_str_filepos (abfd), SEEK_SET) != 0)
4181 return FALSE;
4182
4183 if (bfd_bread (stringtab, amt, abfd) != amt)
4184 return FALSE;
4185
4186 /* Save our results and return success. */
4187 obj_som_stringtab (abfd) = stringtab;
4188 return TRUE;
4189 }
4190
4191 /* Return the amount of data (in bytes) required to hold the symbol
4192 table for this object. */
4193
4194 static long
4195 som_get_symtab_upper_bound (bfd *abfd)
4196 {
4197 if (!som_slurp_symbol_table (abfd))
4198 return -1;
4199
4200 return (bfd_get_symcount (abfd) + 1) * sizeof (asymbol *);
4201 }
4202
4203 /* Convert from a SOM subspace index to a BFD section. */
4204
4205 static asection *
4206 bfd_section_from_som_symbol (bfd *abfd, struct symbol_dictionary_record *symbol)
4207 {
4208 asection *section;
4209
4210 /* The meaning of the symbol_info field changes for functions
4211 within executables. So only use the quick symbol_info mapping for
4212 incomplete objects and non-function symbols in executables. */
4213 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4214 || (symbol->symbol_type != ST_ENTRY
4215 && symbol->symbol_type != ST_PRI_PROG
4216 && symbol->symbol_type != ST_SEC_PROG
4217 && symbol->symbol_type != ST_MILLICODE))
4218 {
4219 int index = symbol->symbol_info;
4220
4221 for (section = abfd->sections; section != NULL; section = section->next)
4222 if (section->target_index == index && som_is_subspace (section))
4223 return section;
4224 }
4225 else
4226 {
4227 unsigned int value = symbol->symbol_value;
4228
4229 /* For executables we will have to use the symbol's address and
4230 find out what section would contain that address. Yuk. */
4231 for (section = abfd->sections; section; section = section->next)
4232 if (value >= section->vma
4233 && value <= section->vma + section->size
4234 && som_is_subspace (section))
4235 return section;
4236 }
4237
4238 /* Could be a symbol from an external library (such as an OMOS
4239 shared library). Don't abort. */
4240 return bfd_abs_section_ptr;
4241 }
4242
4243 /* Read and save the symbol table associated with the given BFD. */
4244
4245 static unsigned int
4246 som_slurp_symbol_table (bfd *abfd)
4247 {
4248 int symbol_count = bfd_get_symcount (abfd);
4249 int symsize = sizeof (struct symbol_dictionary_record);
4250 char *stringtab;
4251 struct symbol_dictionary_record *buf = NULL, *bufp, *endbufp;
4252 som_symbol_type *sym, *symbase;
4253 bfd_size_type amt;
4254
4255 /* Return saved value if it exists. */
4256 if (obj_som_symtab (abfd) != NULL)
4257 goto successful_return;
4258
4259 /* Special case. This is *not* an error. */
4260 if (symbol_count == 0)
4261 goto successful_return;
4262
4263 if (!som_slurp_string_table (abfd))
4264 goto error_return;
4265
4266 stringtab = obj_som_stringtab (abfd);
4267
4268 amt = symbol_count;
4269 amt *= sizeof (som_symbol_type);
4270 symbase = bfd_zmalloc (amt);
4271 if (symbase == NULL)
4272 goto error_return;
4273
4274 /* Read in the external SOM representation. */
4275 amt = symbol_count;
4276 amt *= symsize;
4277 buf = bfd_malloc (amt);
4278 if (buf == NULL && amt != 0)
4279 goto error_return;
4280 if (bfd_seek (abfd, obj_som_sym_filepos (abfd), SEEK_SET) != 0)
4281 goto error_return;
4282 if (bfd_bread (buf, amt, abfd) != amt)
4283 goto error_return;
4284
4285 /* Iterate over all the symbols and internalize them. */
4286 endbufp = buf + symbol_count;
4287 for (bufp = buf, sym = symbase; bufp < endbufp; ++bufp)
4288 {
4289 /* I don't think we care about these. */
4290 if (bufp->symbol_type == ST_SYM_EXT
4291 || bufp->symbol_type == ST_ARG_EXT)
4292 continue;
4293
4294 /* Set some private data we care about. */
4295 if (bufp->symbol_type == ST_NULL)
4296 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
4297 else if (bufp->symbol_type == ST_ABSOLUTE)
4298 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ABSOLUTE;
4299 else if (bufp->symbol_type == ST_DATA)
4300 som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
4301 else if (bufp->symbol_type == ST_CODE)
4302 som_symbol_data (sym)->som_type = SYMBOL_TYPE_CODE;
4303 else if (bufp->symbol_type == ST_PRI_PROG)
4304 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PRI_PROG;
4305 else if (bufp->symbol_type == ST_SEC_PROG)
4306 som_symbol_data (sym)->som_type = SYMBOL_TYPE_SEC_PROG;
4307 else if (bufp->symbol_type == ST_ENTRY)
4308 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ENTRY;
4309 else if (bufp->symbol_type == ST_MILLICODE)
4310 som_symbol_data (sym)->som_type = SYMBOL_TYPE_MILLICODE;
4311 else if (bufp->symbol_type == ST_PLABEL)
4312 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PLABEL;
4313 else
4314 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
4315 som_symbol_data (sym)->tc_data.ap.hppa_arg_reloc = bufp->arg_reloc;
4316
4317 /* Some reasonable defaults. */
4318 sym->symbol.the_bfd = abfd;
4319 sym->symbol.name = bufp->name.n_strx + stringtab;
4320 sym->symbol.value = bufp->symbol_value;
4321 sym->symbol.section = 0;
4322 sym->symbol.flags = 0;
4323
4324 switch (bufp->symbol_type)
4325 {
4326 case ST_ENTRY:
4327 case ST_MILLICODE:
4328 sym->symbol.flags |= BSF_FUNCTION;
4329 som_symbol_data (sym)->tc_data.ap.hppa_priv_level =
4330 sym->symbol.value & 0x3;
4331 sym->symbol.value &= ~0x3;
4332 break;
4333
4334 case ST_STUB:
4335 case ST_CODE:
4336 case ST_PRI_PROG:
4337 case ST_SEC_PROG:
4338 som_symbol_data (sym)->tc_data.ap.hppa_priv_level =
4339 sym->symbol.value & 0x3;
4340 sym->symbol.value &= ~0x3;
4341 /* If the symbol's scope is SS_UNSAT, then these are
4342 undefined function symbols. */
4343 if (bufp->symbol_scope == SS_UNSAT)
4344 sym->symbol.flags |= BSF_FUNCTION;
4345
4346 default:
4347 break;
4348 }
4349
4350 /* Handle scoping and section information. */
4351 switch (bufp->symbol_scope)
4352 {
4353 /* symbol_info field is undefined for SS_EXTERNAL and SS_UNSAT symbols,
4354 so the section associated with this symbol can't be known. */
4355 case SS_EXTERNAL:
4356 if (bufp->symbol_type != ST_STORAGE)
4357 sym->symbol.section = bfd_und_section_ptr;
4358 else
4359 sym->symbol.section = bfd_com_section_ptr;
4360 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
4361 break;
4362
4363 case SS_UNSAT:
4364 if (bufp->symbol_type != ST_STORAGE)
4365 sym->symbol.section = bfd_und_section_ptr;
4366 else
4367 sym->symbol.section = bfd_com_section_ptr;
4368 break;
4369
4370 case SS_UNIVERSAL:
4371 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
4372 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
4373 sym->symbol.value -= sym->symbol.section->vma;
4374 break;
4375
4376 case SS_LOCAL:
4377 sym->symbol.flags |= BSF_LOCAL;
4378 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
4379 sym->symbol.value -= sym->symbol.section->vma;
4380 break;
4381 }
4382
4383 /* Check for a weak symbol. */
4384 if (bufp->secondary_def)
4385 sym->symbol.flags |= BSF_WEAK;
4386
4387 /* Mark section symbols and symbols used by the debugger.
4388 Note $START$ is a magic code symbol, NOT a section symbol. */
4389 if (sym->symbol.name[0] == '$'
4390 && sym->symbol.name[strlen (sym->symbol.name) - 1] == '$'
4391 && !strcmp (sym->symbol.name, sym->symbol.section->name))
4392 sym->symbol.flags |= BSF_SECTION_SYM;
4393 else if (CONST_STRNEQ (sym->symbol.name, "L$0\002"))
4394 {
4395 sym->symbol.flags |= BSF_SECTION_SYM;
4396 sym->symbol.name = sym->symbol.section->name;
4397 }
4398 else if (CONST_STRNEQ (sym->symbol.name, "L$0\001"))
4399 sym->symbol.flags |= BSF_DEBUGGING;
4400
4401 /* Note increment at bottom of loop, since we skip some symbols
4402 we can not include it as part of the for statement. */
4403 sym++;
4404 }
4405
4406 /* We modify the symbol count to record the number of BFD symbols we
4407 created. */
4408 bfd_get_symcount (abfd) = sym - symbase;
4409
4410 /* Save our results and return success. */
4411 obj_som_symtab (abfd) = symbase;
4412 successful_return:
4413 if (buf != NULL)
4414 free (buf);
4415 return (TRUE);
4416
4417 error_return:
4418 if (buf != NULL)
4419 free (buf);
4420 return FALSE;
4421 }
4422
4423 /* Canonicalize a SOM symbol table. Return the number of entries
4424 in the symbol table. */
4425
4426 static long
4427 som_canonicalize_symtab (bfd *abfd, asymbol **location)
4428 {
4429 int i;
4430 som_symbol_type *symbase;
4431
4432 if (!som_slurp_symbol_table (abfd))
4433 return -1;
4434
4435 i = bfd_get_symcount (abfd);
4436 symbase = obj_som_symtab (abfd);
4437
4438 for (; i > 0; i--, location++, symbase++)
4439 *location = &symbase->symbol;
4440
4441 /* Final null pointer. */
4442 *location = 0;
4443 return (bfd_get_symcount (abfd));
4444 }
4445
4446 /* Make a SOM symbol. There is nothing special to do here. */
4447
4448 static asymbol *
4449 som_make_empty_symbol (bfd *abfd)
4450 {
4451 bfd_size_type amt = sizeof (som_symbol_type);
4452 som_symbol_type *new = bfd_zalloc (abfd, amt);
4453
4454 if (new == NULL)
4455 return NULL;
4456 new->symbol.the_bfd = abfd;
4457
4458 return &new->symbol;
4459 }
4460
4461 /* Print symbol information. */
4462
4463 static void
4464 som_print_symbol (bfd *abfd,
4465 void *afile,
4466 asymbol *symbol,
4467 bfd_print_symbol_type how)
4468 {
4469 FILE *file = (FILE *) afile;
4470
4471 switch (how)
4472 {
4473 case bfd_print_symbol_name:
4474 fprintf (file, "%s", symbol->name);
4475 break;
4476 case bfd_print_symbol_more:
4477 fprintf (file, "som ");
4478 fprintf_vma (file, symbol->value);
4479 fprintf (file, " %lx", (long) symbol->flags);
4480 break;
4481 case bfd_print_symbol_all:
4482 {
4483 const char *section_name;
4484
4485 section_name = symbol->section ? symbol->section->name : "(*none*)";
4486 bfd_print_symbol_vandf (abfd, (void *) file, symbol);
4487 fprintf (file, " %s\t%s", section_name, symbol->name);
4488 break;
4489 }
4490 }
4491 }
4492
4493 static bfd_boolean
4494 som_bfd_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
4495 const char *name)
4496 {
4497 return name[0] == 'L' && name[1] == '$';
4498 }
4499
4500 /* Count or process variable-length SOM fixup records.
4501
4502 To avoid code duplication we use this code both to compute the number
4503 of relocations requested by a stream, and to internalize the stream.
4504
4505 When computing the number of relocations requested by a stream the
4506 variables rptr, section, and symbols have no meaning.
4507
4508 Return the number of relocations requested by the fixup stream. When
4509 not just counting
4510
4511 This needs at least two or three more passes to get it cleaned up. */
4512
4513 static unsigned int
4514 som_set_reloc_info (unsigned char *fixup,
4515 unsigned int end,
4516 arelent *internal_relocs,
4517 asection *section,
4518 asymbol **symbols,
4519 bfd_boolean just_count)
4520 {
4521 unsigned int op, varname, deallocate_contents = 0;
4522 unsigned char *end_fixups = &fixup[end];
4523 const struct fixup_format *fp;
4524 const char *cp;
4525 unsigned char *save_fixup;
4526 int variables[26], stack[20], c, v, count, prev_fixup, *sp, saved_unwind_bits;
4527 const int *subop;
4528 arelent *rptr = internal_relocs;
4529 unsigned int offset = 0;
4530
4531 #define var(c) variables[(c) - 'A']
4532 #define push(v) (*sp++ = (v))
4533 #define pop() (*--sp)
4534 #define emptystack() (sp == stack)
4535
4536 som_initialize_reloc_queue (reloc_queue);
4537 memset (variables, 0, sizeof (variables));
4538 memset (stack, 0, sizeof (stack));
4539 count = 0;
4540 prev_fixup = 0;
4541 saved_unwind_bits = 0;
4542 sp = stack;
4543
4544 while (fixup < end_fixups)
4545 {
4546 /* Save pointer to the start of this fixup. We'll use
4547 it later to determine if it is necessary to put this fixup
4548 on the queue. */
4549 save_fixup = fixup;
4550
4551 /* Get the fixup code and its associated format. */
4552 op = *fixup++;
4553 fp = &som_fixup_formats[op];
4554
4555 /* Handle a request for a previous fixup. */
4556 if (*fp->format == 'P')
4557 {
4558 /* Get pointer to the beginning of the prev fixup, move
4559 the repeated fixup to the head of the queue. */
4560 fixup = reloc_queue[fp->D].reloc;
4561 som_reloc_queue_fix (reloc_queue, fp->D);
4562 prev_fixup = 1;
4563
4564 /* Get the fixup code and its associated format. */
4565 op = *fixup++;
4566 fp = &som_fixup_formats[op];
4567 }
4568
4569 /* If this fixup will be passed to BFD, set some reasonable defaults. */
4570 if (! just_count
4571 && som_hppa_howto_table[op].type != R_NO_RELOCATION
4572 && som_hppa_howto_table[op].type != R_DATA_OVERRIDE)
4573 {
4574 rptr->address = offset;
4575 rptr->howto = &som_hppa_howto_table[op];
4576 rptr->addend = 0;
4577 rptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
4578 }
4579
4580 /* Set default input length to 0. Get the opcode class index
4581 into D. */
4582 var ('L') = 0;
4583 var ('D') = fp->D;
4584 var ('U') = saved_unwind_bits;
4585
4586 /* Get the opcode format. */
4587 cp = fp->format;
4588
4589 /* Process the format string. Parsing happens in two phases,
4590 parse RHS, then assign to LHS. Repeat until no more
4591 characters in the format string. */
4592 while (*cp)
4593 {
4594 /* The variable this pass is going to compute a value for. */
4595 varname = *cp++;
4596
4597 /* Start processing RHS. Continue until a NULL or '=' is found. */
4598 do
4599 {
4600 c = *cp++;
4601
4602 /* If this is a variable, push it on the stack. */
4603 if (ISUPPER (c))
4604 push (var (c));
4605
4606 /* If this is a lower case letter, then it represents
4607 additional data from the fixup stream to be pushed onto
4608 the stack. */
4609 else if (ISLOWER (c))
4610 {
4611 int bits = (c - 'a') * 8;
4612 for (v = 0; c > 'a'; --c)
4613 v = (v << 8) | *fixup++;
4614 if (varname == 'V')
4615 v = sign_extend (v, bits);
4616 push (v);
4617 }
4618
4619 /* A decimal constant. Push it on the stack. */
4620 else if (ISDIGIT (c))
4621 {
4622 v = c - '0';
4623 while (ISDIGIT (*cp))
4624 v = (v * 10) + (*cp++ - '0');
4625 push (v);
4626 }
4627 else
4628 /* An operator. Pop two two values from the stack and
4629 use them as operands to the given operation. Push
4630 the result of the operation back on the stack. */
4631 switch (c)
4632 {
4633 case '+':
4634 v = pop ();
4635 v += pop ();
4636 push (v);
4637 break;
4638 case '*':
4639 v = pop ();
4640 v *= pop ();
4641 push (v);
4642 break;
4643 case '<':
4644 v = pop ();
4645 v = pop () << v;
4646 push (v);
4647 break;
4648 default:
4649 abort ();
4650 }
4651 }
4652 while (*cp && *cp != '=');
4653
4654 /* Move over the equal operator. */
4655 cp++;
4656
4657 /* Pop the RHS off the stack. */
4658 c = pop ();
4659
4660 /* Perform the assignment. */
4661 var (varname) = c;
4662
4663 /* Handle side effects. and special 'O' stack cases. */
4664 switch (varname)
4665 {
4666 /* Consume some bytes from the input space. */
4667 case 'L':
4668 offset += c;
4669 break;
4670 /* A symbol to use in the relocation. Make a note
4671 of this if we are not just counting. */
4672 case 'S':
4673 if (! just_count)
4674 rptr->sym_ptr_ptr = &symbols[c];
4675 break;
4676 /* Argument relocation bits for a function call. */
4677 case 'R':
4678 if (! just_count)
4679 {
4680 unsigned int tmp = var ('R');
4681 rptr->addend = 0;
4682
4683 if ((som_hppa_howto_table[op].type == R_PCREL_CALL
4684 && R_PCREL_CALL + 10 > op)
4685 || (som_hppa_howto_table[op].type == R_ABS_CALL
4686 && R_ABS_CALL + 10 > op))
4687 {
4688 /* Simple encoding. */
4689 if (tmp > 4)
4690 {
4691 tmp -= 5;
4692 rptr->addend |= 1;
4693 }
4694 if (tmp == 4)
4695 rptr->addend |= 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2;
4696 else if (tmp == 3)
4697 rptr->addend |= 1 << 8 | 1 << 6 | 1 << 4;
4698 else if (tmp == 2)
4699 rptr->addend |= 1 << 8 | 1 << 6;
4700 else if (tmp == 1)
4701 rptr->addend |= 1 << 8;
4702 }
4703 else
4704 {
4705 unsigned int tmp1, tmp2;
4706
4707 /* First part is easy -- low order two bits are
4708 directly copied, then shifted away. */
4709 rptr->addend = tmp & 0x3;
4710 tmp >>= 2;
4711
4712 /* Diving the result by 10 gives us the second
4713 part. If it is 9, then the first two words
4714 are a double precision paramater, else it is
4715 3 * the first arg bits + the 2nd arg bits. */
4716 tmp1 = tmp / 10;
4717 tmp -= tmp1 * 10;
4718 if (tmp1 == 9)
4719 rptr->addend += (0xe << 6);
4720 else
4721 {
4722 /* Get the two pieces. */
4723 tmp2 = tmp1 / 3;
4724 tmp1 -= tmp2 * 3;
4725 /* Put them in the addend. */
4726 rptr->addend += (tmp2 << 8) + (tmp1 << 6);
4727 }
4728
4729 /* What's left is the third part. It's unpacked
4730 just like the second. */
4731 if (tmp == 9)
4732 rptr->addend += (0xe << 2);
4733 else
4734 {
4735 tmp2 = tmp / 3;
4736 tmp -= tmp2 * 3;
4737 rptr->addend += (tmp2 << 4) + (tmp << 2);
4738 }
4739 }
4740 rptr->addend = HPPA_R_ADDEND (rptr->addend, 0);
4741 }
4742 break;
4743 /* Handle the linker expression stack. */
4744 case 'O':
4745 switch (op)
4746 {
4747 case R_COMP1:
4748 subop = comp1_opcodes;
4749 break;
4750 case R_COMP2:
4751 subop = comp2_opcodes;
4752 break;
4753 case R_COMP3:
4754 subop = comp3_opcodes;
4755 break;
4756 default:
4757 abort ();
4758 }
4759 while (*subop <= (unsigned char) c)
4760 ++subop;
4761 --subop;
4762 break;
4763 /* The lower 32unwind bits must be persistent. */
4764 case 'U':
4765 saved_unwind_bits = var ('U');
4766 break;
4767
4768 default:
4769 break;
4770 }
4771 }
4772
4773 /* If we used a previous fixup, clean up after it. */
4774 if (prev_fixup)
4775 {
4776 fixup = save_fixup + 1;
4777 prev_fixup = 0;
4778 }
4779 /* Queue it. */
4780 else if (fixup > save_fixup + 1)
4781 som_reloc_queue_insert (save_fixup, fixup - save_fixup, reloc_queue);
4782
4783 /* We do not pass R_DATA_OVERRIDE or R_NO_RELOCATION
4784 fixups to BFD. */
4785 if (som_hppa_howto_table[op].type != R_DATA_OVERRIDE
4786 && som_hppa_howto_table[op].type != R_NO_RELOCATION)
4787 {
4788 /* Done with a single reloction. Loop back to the top. */
4789 if (! just_count)
4790 {
4791 if (som_hppa_howto_table[op].type == R_ENTRY)
4792 rptr->addend = var ('T');
4793 else if (som_hppa_howto_table[op].type == R_EXIT)
4794 rptr->addend = var ('U');
4795 else if (som_hppa_howto_table[op].type == R_PCREL_CALL
4796 || som_hppa_howto_table[op].type == R_ABS_CALL)
4797 ;
4798 else if (som_hppa_howto_table[op].type == R_DATA_ONE_SYMBOL)
4799 {
4800 /* Try what was specified in R_DATA_OVERRIDE first
4801 (if anything). Then the hard way using the
4802 section contents. */
4803 rptr->addend = var ('V');
4804
4805 if (rptr->addend == 0 && !section->contents)
4806 {
4807 /* Got to read the damn contents first. We don't
4808 bother saving the contents (yet). Add it one
4809 day if the need arises. */
4810 bfd_byte *contents;
4811 if (!bfd_malloc_and_get_section (section->owner, section,
4812 &contents))
4813 {
4814 if (contents != NULL)
4815 free (contents);
4816 return (unsigned) -1;
4817 }
4818 section->contents = contents;
4819 deallocate_contents = 1;
4820 }
4821 else if (rptr->addend == 0)
4822 rptr->addend = bfd_get_32 (section->owner,
4823 (section->contents
4824 + offset - var ('L')));
4825
4826 }
4827 else
4828 rptr->addend = var ('V');
4829 rptr++;
4830 }
4831 count++;
4832 /* Now that we've handled a "full" relocation, reset
4833 some state. */
4834 memset (variables, 0, sizeof (variables));
4835 memset (stack, 0, sizeof (stack));
4836 }
4837 }
4838 if (deallocate_contents)
4839 free (section->contents);
4840
4841 return count;
4842
4843 #undef var
4844 #undef push
4845 #undef pop
4846 #undef emptystack
4847 }
4848
4849 /* Read in the relocs (aka fixups in SOM terms) for a section.
4850
4851 som_get_reloc_upper_bound calls this routine with JUST_COUNT
4852 set to TRUE to indicate it only needs a count of the number
4853 of actual relocations. */
4854
4855 static bfd_boolean
4856 som_slurp_reloc_table (bfd *abfd,
4857 asection *section,
4858 asymbol **symbols,
4859 bfd_boolean just_count)
4860 {
4861 unsigned char *external_relocs;
4862 unsigned int fixup_stream_size;
4863 arelent *internal_relocs;
4864 unsigned int num_relocs;
4865 bfd_size_type amt;
4866
4867 fixup_stream_size = som_section_data (section)->reloc_size;
4868 /* If there were no relocations, then there is nothing to do. */
4869 if (section->reloc_count == 0)
4870 return TRUE;
4871
4872 /* If reloc_count is -1, then the relocation stream has not been
4873 parsed. We must do so now to know how many relocations exist. */
4874 if (section->reloc_count == (unsigned) -1)
4875 {
4876 amt = fixup_stream_size;
4877 external_relocs = bfd_malloc (amt);
4878 if (external_relocs == NULL)
4879 return FALSE;
4880 /* Read in the external forms. */
4881 if (bfd_seek (abfd,
4882 obj_som_reloc_filepos (abfd) + section->rel_filepos,
4883 SEEK_SET)
4884 != 0)
4885 return FALSE;
4886 if (bfd_bread (external_relocs, amt, abfd) != amt)
4887 return FALSE;
4888
4889 /* Let callers know how many relocations found.
4890 also save the relocation stream as we will
4891 need it again. */
4892 section->reloc_count = som_set_reloc_info (external_relocs,
4893 fixup_stream_size,
4894 NULL, NULL, NULL, TRUE);
4895
4896 som_section_data (section)->reloc_stream = external_relocs;
4897 }
4898
4899 /* If the caller only wanted a count, then return now. */
4900 if (just_count)
4901 return TRUE;
4902
4903 num_relocs = section->reloc_count;
4904 external_relocs = som_section_data (section)->reloc_stream;
4905 /* Return saved information about the relocations if it is available. */
4906 if (section->relocation != NULL)
4907 return TRUE;
4908
4909 amt = num_relocs;
4910 amt *= sizeof (arelent);
4911 internal_relocs = bfd_zalloc (abfd, (amt));
4912 if (internal_relocs == NULL)
4913 return FALSE;
4914
4915 /* Process and internalize the relocations. */
4916 som_set_reloc_info (external_relocs, fixup_stream_size,
4917 internal_relocs, section, symbols, FALSE);
4918
4919 /* We're done with the external relocations. Free them. */
4920 free (external_relocs);
4921 som_section_data (section)->reloc_stream = NULL;
4922
4923 /* Save our results and return success. */
4924 section->relocation = internal_relocs;
4925 return TRUE;
4926 }
4927
4928 /* Return the number of bytes required to store the relocation
4929 information associated with the given section. */
4930
4931 static long
4932 som_get_reloc_upper_bound (bfd *abfd, sec_ptr asect)
4933 {
4934 /* If section has relocations, then read in the relocation stream
4935 and parse it to determine how many relocations exist. */
4936 if (asect->flags & SEC_RELOC)
4937 {
4938 if (! som_slurp_reloc_table (abfd, asect, NULL, TRUE))
4939 return -1;
4940 return (asect->reloc_count + 1) * sizeof (arelent *);
4941 }
4942
4943 /* There are no relocations. Return enough space to hold the
4944 NULL pointer which will be installed if som_canonicalize_reloc
4945 is called. */
4946 return sizeof (arelent *);
4947 }
4948
4949 /* Convert relocations from SOM (external) form into BFD internal
4950 form. Return the number of relocations. */
4951
4952 static long
4953 som_canonicalize_reloc (bfd *abfd,
4954 sec_ptr section,
4955 arelent **relptr,
4956 asymbol **symbols)
4957 {
4958 arelent *tblptr;
4959 int count;
4960
4961 if (! som_slurp_reloc_table (abfd, section, symbols, FALSE))
4962 return -1;
4963
4964 count = section->reloc_count;
4965 tblptr = section->relocation;
4966
4967 while (count--)
4968 *relptr++ = tblptr++;
4969
4970 *relptr = NULL;
4971 return section->reloc_count;
4972 }
4973
4974 extern const bfd_target som_vec;
4975
4976 /* A hook to set up object file dependent section information. */
4977
4978 static bfd_boolean
4979 som_new_section_hook (bfd *abfd, asection *newsect)
4980 {
4981 if (!newsect->used_by_bfd)
4982 {
4983 bfd_size_type amt = sizeof (struct som_section_data_struct);
4984
4985 newsect->used_by_bfd = bfd_zalloc (abfd, amt);
4986 if (!newsect->used_by_bfd)
4987 return FALSE;
4988 }
4989 newsect->alignment_power = 3;
4990
4991 /* We allow more than three sections internally. */
4992 return _bfd_generic_new_section_hook (abfd, newsect);
4993 }
4994
4995 /* Copy any private info we understand from the input symbol
4996 to the output symbol. */
4997
4998 static bfd_boolean
4999 som_bfd_copy_private_symbol_data (bfd *ibfd,
5000 asymbol *isymbol,
5001 bfd *obfd,
5002 asymbol *osymbol)
5003 {
5004 struct som_symbol *input_symbol = (struct som_symbol *) isymbol;
5005 struct som_symbol *output_symbol = (struct som_symbol *) osymbol;
5006
5007 /* One day we may try to grok other private data. */
5008 if (ibfd->xvec->flavour != bfd_target_som_flavour
5009 || obfd->xvec->flavour != bfd_target_som_flavour)
5010 return FALSE;
5011
5012 /* The only private information we need to copy is the argument relocation
5013 bits. */
5014 output_symbol->tc_data.ap.hppa_arg_reloc =
5015 input_symbol->tc_data.ap.hppa_arg_reloc;
5016
5017 return TRUE;
5018 }
5019
5020 /* Copy any private info we understand from the input section
5021 to the output section. */
5022
5023 static bfd_boolean
5024 som_bfd_copy_private_section_data (bfd *ibfd,
5025 asection *isection,
5026 bfd *obfd,
5027 asection *osection)
5028 {
5029 bfd_size_type amt;
5030
5031 /* One day we may try to grok other private data. */
5032 if (ibfd->xvec->flavour != bfd_target_som_flavour
5033 || obfd->xvec->flavour != bfd_target_som_flavour
5034 || (!som_is_space (isection) && !som_is_subspace (isection)))
5035 return TRUE;
5036
5037 amt = sizeof (struct som_copyable_section_data_struct);
5038 som_section_data (osection)->copy_data = bfd_zalloc (obfd, amt);
5039 if (som_section_data (osection)->copy_data == NULL)
5040 return FALSE;
5041
5042 memcpy (som_section_data (osection)->copy_data,
5043 som_section_data (isection)->copy_data,
5044 sizeof (struct som_copyable_section_data_struct));
5045
5046 /* Reparent if necessary. */
5047 if (som_section_data (osection)->copy_data->container)
5048 som_section_data (osection)->copy_data->container =
5049 som_section_data (osection)->copy_data->container->output_section;
5050
5051 return TRUE;
5052 }
5053
5054 /* Copy any private info we understand from the input bfd
5055 to the output bfd. */
5056
5057 static bfd_boolean
5058 som_bfd_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
5059 {
5060 /* One day we may try to grok other private data. */
5061 if (ibfd->xvec->flavour != bfd_target_som_flavour
5062 || obfd->xvec->flavour != bfd_target_som_flavour)
5063 return TRUE;
5064
5065 /* Allocate some memory to hold the data we need. */
5066 obj_som_exec_data (obfd) = bfd_zalloc (obfd, (bfd_size_type) sizeof (struct som_exec_data));
5067 if (obj_som_exec_data (obfd) == NULL)
5068 return FALSE;
5069
5070 /* Now copy the data. */
5071 memcpy (obj_som_exec_data (obfd), obj_som_exec_data (ibfd),
5072 sizeof (struct som_exec_data));
5073
5074 return TRUE;
5075 }
5076
5077 /* Display the SOM header. */
5078
5079 static bfd_boolean
5080 som_bfd_print_private_bfd_data (bfd *abfd, void *farg)
5081 {
5082 struct som_exec_auxhdr *exec_header;
5083 struct aux_id* auxhdr;
5084 FILE *f;
5085
5086 f = (FILE *) farg;
5087
5088 exec_header = obj_som_exec_hdr (abfd);
5089 if (exec_header)
5090 {
5091 fprintf (f, _("\nExec Auxiliary Header\n"));
5092 fprintf (f, " flags ");
5093 auxhdr = &exec_header->som_auxhdr;
5094 if (auxhdr->mandatory)
5095 fprintf (f, "mandatory ");
5096 if (auxhdr->copy)
5097 fprintf (f, "copy ");
5098 if (auxhdr->append)
5099 fprintf (f, "append ");
5100 if (auxhdr->ignore)
5101 fprintf (f, "ignore ");
5102 fprintf (f, "\n");
5103 fprintf (f, " type %#x\n", auxhdr->type);
5104 fprintf (f, " length %#x\n", auxhdr->length);
5105
5106 /* Note that, depending on the HP-UX version, the following fields can be
5107 either ints, or longs. */
5108
5109 fprintf (f, " text size %#lx\n", (long) exec_header->exec_tsize);
5110 fprintf (f, " text memory offset %#lx\n", (long) exec_header->exec_tmem);
5111 fprintf (f, " text file offset %#lx\n", (long) exec_header->exec_tfile);
5112 fprintf (f, " data size %#lx\n", (long) exec_header->exec_dsize);
5113 fprintf (f, " data memory offset %#lx\n", (long) exec_header->exec_dmem);
5114 fprintf (f, " data file offset %#lx\n", (long) exec_header->exec_dfile);
5115 fprintf (f, " bss size %#lx\n", (long) exec_header->exec_bsize);
5116 fprintf (f, " entry point %#lx\n", (long) exec_header->exec_entry);
5117 fprintf (f, " loader flags %#lx\n", (long) exec_header->exec_flags);
5118 fprintf (f, " bss initializer %#lx\n", (long) exec_header->exec_bfill);
5119 }
5120
5121 return TRUE;
5122 }
5123
5124 /* Set backend info for sections which can not be described
5125 in the BFD data structures. */
5126
5127 bfd_boolean
5128 bfd_som_set_section_attributes (asection *section,
5129 int defined,
5130 int private,
5131 unsigned int sort_key,
5132 int spnum)
5133 {
5134 /* Allocate memory to hold the magic information. */
5135 if (som_section_data (section)->copy_data == NULL)
5136 {
5137 bfd_size_type amt = sizeof (struct som_copyable_section_data_struct);
5138
5139 som_section_data (section)->copy_data = bfd_zalloc (section->owner, amt);
5140 if (som_section_data (section)->copy_data == NULL)
5141 return FALSE;
5142 }
5143 som_section_data (section)->copy_data->sort_key = sort_key;
5144 som_section_data (section)->copy_data->is_defined = defined;
5145 som_section_data (section)->copy_data->is_private = private;
5146 som_section_data (section)->copy_data->container = section;
5147 som_section_data (section)->copy_data->space_number = spnum;
5148 return TRUE;
5149 }
5150
5151 /* Set backend info for subsections which can not be described
5152 in the BFD data structures. */
5153
5154 bfd_boolean
5155 bfd_som_set_subsection_attributes (asection *section,
5156 asection *container,
5157 int access,
5158 unsigned int sort_key,
5159 int quadrant,
5160 int comdat,
5161 int common,
5162 int dup_common)
5163 {
5164 /* Allocate memory to hold the magic information. */
5165 if (som_section_data (section)->copy_data == NULL)
5166 {
5167 bfd_size_type amt = sizeof (struct som_copyable_section_data_struct);
5168
5169 som_section_data (section)->copy_data = bfd_zalloc (section->owner, amt);
5170 if (som_section_data (section)->copy_data == NULL)
5171 return FALSE;
5172 }
5173 som_section_data (section)->copy_data->sort_key = sort_key;
5174 som_section_data (section)->copy_data->access_control_bits = access;
5175 som_section_data (section)->copy_data->quadrant = quadrant;
5176 som_section_data (section)->copy_data->container = container;
5177 som_section_data (section)->copy_data->is_comdat = comdat;
5178 som_section_data (section)->copy_data->is_common = common;
5179 som_section_data (section)->copy_data->dup_common = dup_common;
5180 return TRUE;
5181 }
5182
5183 /* Set the full SOM symbol type. SOM needs far more symbol information
5184 than any other object file format I'm aware of. It is mandatory
5185 to be able to know if a symbol is an entry point, millicode, data,
5186 code, absolute, storage request, or procedure label. If you get
5187 the symbol type wrong your program will not link. */
5188
5189 void
5190 bfd_som_set_symbol_type (asymbol *symbol, unsigned int type)
5191 {
5192 som_symbol_data (symbol)->som_type = type;
5193 }
5194
5195 /* Attach an auxiliary header to the BFD backend so that it may be
5196 written into the object file. */
5197
5198 bfd_boolean
5199 bfd_som_attach_aux_hdr (bfd *abfd, int type, char *string)
5200 {
5201 bfd_size_type amt;
5202
5203 if (type == VERSION_AUX_ID)
5204 {
5205 size_t len = strlen (string);
5206 int pad = 0;
5207
5208 if (len % 4)
5209 pad = (4 - (len % 4));
5210 amt = sizeof (struct aux_id) + sizeof (unsigned int) + len + pad;
5211 obj_som_version_hdr (abfd) = bfd_zalloc (abfd, amt);
5212 if (!obj_som_version_hdr (abfd))
5213 return FALSE;
5214 obj_som_version_hdr (abfd)->header_id.type = VERSION_AUX_ID;
5215 obj_som_version_hdr (abfd)->header_id.length = len + pad;
5216 obj_som_version_hdr (abfd)->header_id.length += sizeof (int);
5217 obj_som_version_hdr (abfd)->string_length = len;
5218 strncpy (obj_som_version_hdr (abfd)->user_string, string, len);
5219 }
5220 else if (type == COPYRIGHT_AUX_ID)
5221 {
5222 int len = strlen (string);
5223 int pad = 0;
5224
5225 if (len % 4)
5226 pad = (4 - (len % 4));
5227 amt = sizeof (struct aux_id) + sizeof (unsigned int) + len + pad;
5228 obj_som_copyright_hdr (abfd) = bfd_zalloc (abfd, amt);
5229 if (!obj_som_copyright_hdr (abfd))
5230 return FALSE;
5231 obj_som_copyright_hdr (abfd)->header_id.type = COPYRIGHT_AUX_ID;
5232 obj_som_copyright_hdr (abfd)->header_id.length = len + pad;
5233 obj_som_copyright_hdr (abfd)->header_id.length += sizeof (int);
5234 obj_som_copyright_hdr (abfd)->string_length = len;
5235 strcpy (obj_som_copyright_hdr (abfd)->copyright, string);
5236 }
5237 return TRUE;
5238 }
5239
5240 /* Attach a compilation unit header to the BFD backend so that it may be
5241 written into the object file. */
5242
5243 bfd_boolean
5244 bfd_som_attach_compilation_unit (bfd *abfd,
5245 const char *name,
5246 const char *language_name,
5247 const char *product_id,
5248 const char *version_id)
5249 {
5250 COMPUNIT *n = (COMPUNIT *) bfd_zalloc (abfd, (bfd_size_type) COMPUNITSZ);
5251
5252 if (n == NULL)
5253 return FALSE;
5254
5255 #define STRDUP(f) \
5256 if (f != NULL) \
5257 { \
5258 n->f.n_name = bfd_alloc (abfd, (bfd_size_type) strlen (f) + 1); \
5259 if (n->f.n_name == NULL) \
5260 return FALSE; \
5261 strcpy (n->f.n_name, f); \
5262 }
5263
5264 STRDUP (name);
5265 STRDUP (language_name);
5266 STRDUP (product_id);
5267 STRDUP (version_id);
5268
5269 #undef STRDUP
5270
5271 obj_som_compilation_unit (abfd) = n;
5272
5273 return TRUE;
5274 }
5275
5276 static bfd_boolean
5277 som_get_section_contents (bfd *abfd,
5278 sec_ptr section,
5279 void *location,
5280 file_ptr offset,
5281 bfd_size_type count)
5282 {
5283 if (count == 0 || ((section->flags & SEC_HAS_CONTENTS) == 0))
5284 return TRUE;
5285 if ((bfd_size_type) (offset+count) > section->size
5286 || bfd_seek (abfd, (file_ptr) (section->filepos + offset), SEEK_SET) != 0
5287 || bfd_bread (location, count, abfd) != count)
5288 return FALSE; /* On error. */
5289 return TRUE;
5290 }
5291
5292 static bfd_boolean
5293 som_set_section_contents (bfd *abfd,
5294 sec_ptr section,
5295 const void *location,
5296 file_ptr offset,
5297 bfd_size_type count)
5298 {
5299 if (! abfd->output_has_begun)
5300 {
5301 /* Set up fixed parts of the file, space, and subspace headers.
5302 Notify the world that output has begun. */
5303 som_prep_headers (abfd);
5304 abfd->output_has_begun = TRUE;
5305 /* Start writing the object file. This include all the string
5306 tables, fixup streams, and other portions of the object file. */
5307 som_begin_writing (abfd);
5308 }
5309
5310 /* Only write subspaces which have "real" contents (eg. the contents
5311 are not generated at run time by the OS). */
5312 if (!som_is_subspace (section)
5313 || ((section->flags & SEC_HAS_CONTENTS) == 0))
5314 return TRUE;
5315
5316 /* Seek to the proper offset within the object file and write the
5317 data. */
5318 offset += som_section_data (section)->subspace_dict->file_loc_init_value;
5319 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
5320 return FALSE;
5321
5322 if (bfd_bwrite (location, count, abfd) != count)
5323 return FALSE;
5324 return TRUE;
5325 }
5326
5327 static bfd_boolean
5328 som_set_arch_mach (bfd *abfd,
5329 enum bfd_architecture arch,
5330 unsigned long machine)
5331 {
5332 /* Allow any architecture to be supported by the SOM backend. */
5333 return bfd_default_set_arch_mach (abfd, arch, machine);
5334 }
5335
5336 static bfd_boolean
5337 som_find_nearest_line (bfd *abfd,
5338 asection *section,
5339 asymbol **symbols,
5340 bfd_vma offset,
5341 const char **filename_ptr,
5342 const char **functionname_ptr,
5343 unsigned int *line_ptr)
5344 {
5345 bfd_boolean found;
5346 asymbol *func;
5347 bfd_vma low_func;
5348 asymbol **p;
5349
5350 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
5351 & found, filename_ptr,
5352 functionname_ptr, line_ptr,
5353 & somdata (abfd).line_info))
5354 return FALSE;
5355
5356 if (found)
5357 return TRUE;
5358
5359 if (symbols == NULL)
5360 return FALSE;
5361
5362 /* Fallback: find function name from symbols table. */
5363 func = NULL;
5364 low_func = 0;
5365
5366 for (p = symbols; *p != NULL; p++)
5367 {
5368 som_symbol_type *q = (som_symbol_type *) *p;
5369
5370 if (q->som_type == SYMBOL_TYPE_ENTRY
5371 && q->symbol.section == section
5372 && q->symbol.value >= low_func
5373 && q->symbol.value <= offset)
5374 {
5375 func = (asymbol *) q;
5376 low_func = q->symbol.value;
5377 }
5378 }
5379
5380 if (func == NULL)
5381 return FALSE;
5382
5383 *filename_ptr = NULL;
5384 *functionname_ptr = bfd_asymbol_name (func);
5385 *line_ptr = 0;
5386
5387 return TRUE;
5388 }
5389
5390 static int
5391 som_sizeof_headers (bfd *abfd ATTRIBUTE_UNUSED,
5392 struct bfd_link_info *info ATTRIBUTE_UNUSED)
5393 {
5394 (*_bfd_error_handler) (_("som_sizeof_headers unimplemented"));
5395 fflush (stderr);
5396 abort ();
5397 return 0;
5398 }
5399
5400 /* Return the single-character symbol type corresponding to
5401 SOM section S, or '?' for an unknown SOM section. */
5402
5403 static char
5404 som_section_type (const char *s)
5405 {
5406 const struct section_to_type *t;
5407
5408 for (t = &stt[0]; t->section; t++)
5409 if (!strcmp (s, t->section))
5410 return t->type;
5411 return '?';
5412 }
5413
5414 static int
5415 som_decode_symclass (asymbol *symbol)
5416 {
5417 char c;
5418
5419 if (bfd_is_com_section (symbol->section))
5420 return 'C';
5421 if (bfd_is_und_section (symbol->section))
5422 {
5423 if (symbol->flags & BSF_WEAK)
5424 {
5425 /* If weak, determine if it's specifically an object
5426 or non-object weak. */
5427 if (symbol->flags & BSF_OBJECT)
5428 return 'v';
5429 else
5430 return 'w';
5431 }
5432 else
5433 return 'U';
5434 }
5435 if (bfd_is_ind_section (symbol->section))
5436 return 'I';
5437 if (symbol->flags & BSF_WEAK)
5438 {
5439 /* If weak, determine if it's specifically an object
5440 or non-object weak. */
5441 if (symbol->flags & BSF_OBJECT)
5442 return 'V';
5443 else
5444 return 'W';
5445 }
5446 if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL)))
5447 return '?';
5448
5449 if (bfd_is_abs_section (symbol->section)
5450 || (som_symbol_data (symbol) != NULL
5451 && som_symbol_data (symbol)->som_type == SYMBOL_TYPE_ABSOLUTE))
5452 c = 'a';
5453 else if (symbol->section)
5454 c = som_section_type (symbol->section->name);
5455 else
5456 return '?';
5457 if (symbol->flags & BSF_GLOBAL)
5458 c = TOUPPER (c);
5459 return c;
5460 }
5461
5462 /* Return information about SOM symbol SYMBOL in RET. */
5463
5464 static void
5465 som_get_symbol_info (bfd *ignore_abfd ATTRIBUTE_UNUSED,
5466 asymbol *symbol,
5467 symbol_info *ret)
5468 {
5469 ret->type = som_decode_symclass (symbol);
5470 if (ret->type != 'U')
5471 ret->value = symbol->value + symbol->section->vma;
5472 else
5473 ret->value = 0;
5474 ret->name = symbol->name;
5475 }
5476
5477 /* Count the number of symbols in the archive symbol table. Necessary
5478 so that we can allocate space for all the carsyms at once. */
5479
5480 static bfd_boolean
5481 som_bfd_count_ar_symbols (bfd *abfd,
5482 struct lst_header *lst_header,
5483 symindex *count)
5484 {
5485 unsigned int i;
5486 unsigned int *hash_table = NULL;
5487 bfd_size_type amt;
5488 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5489
5490 amt = lst_header->hash_size;
5491 amt *= sizeof (unsigned int);
5492 hash_table = bfd_malloc (amt);
5493 if (hash_table == NULL && lst_header->hash_size != 0)
5494 goto error_return;
5495
5496 /* Don't forget to initialize the counter! */
5497 *count = 0;
5498
5499 /* Read in the hash table. The has table is an array of 32bit file offsets
5500 which point to the hash chains. */
5501 if (bfd_bread ((void *) hash_table, amt, abfd) != amt)
5502 goto error_return;
5503
5504 /* Walk each chain counting the number of symbols found on that particular
5505 chain. */
5506 for (i = 0; i < lst_header->hash_size; i++)
5507 {
5508 struct lst_symbol_record lst_symbol;
5509
5510 /* An empty chain has zero as it's file offset. */
5511 if (hash_table[i] == 0)
5512 continue;
5513
5514 /* Seek to the first symbol in this hash chain. */
5515 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) != 0)
5516 goto error_return;
5517
5518 /* Read in this symbol and update the counter. */
5519 amt = sizeof (lst_symbol);
5520 if (bfd_bread ((void *) &lst_symbol, amt, abfd) != amt)
5521 goto error_return;
5522
5523 (*count)++;
5524
5525 /* Now iterate through the rest of the symbols on this chain. */
5526 while (lst_symbol.next_entry)
5527 {
5528
5529 /* Seek to the next symbol. */
5530 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
5531 != 0)
5532 goto error_return;
5533
5534 /* Read the symbol in and update the counter. */
5535 amt = sizeof (lst_symbol);
5536 if (bfd_bread ((void *) &lst_symbol, amt, abfd) != amt)
5537 goto error_return;
5538
5539 (*count)++;
5540 }
5541 }
5542 if (hash_table != NULL)
5543 free (hash_table);
5544 return TRUE;
5545
5546 error_return:
5547 if (hash_table != NULL)
5548 free (hash_table);
5549 return FALSE;
5550 }
5551
5552 /* Fill in the canonical archive symbols (SYMS) from the archive described
5553 by ABFD and LST_HEADER. */
5554
5555 static bfd_boolean
5556 som_bfd_fill_in_ar_symbols (bfd *abfd,
5557 struct lst_header *lst_header,
5558 carsym **syms)
5559 {
5560 unsigned int i, len;
5561 carsym *set = syms[0];
5562 unsigned int *hash_table = NULL;
5563 struct som_entry *som_dict = NULL;
5564 bfd_size_type amt;
5565 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5566
5567 amt = lst_header->hash_size;
5568 amt *= sizeof (unsigned int);
5569 hash_table = bfd_malloc (amt);
5570 if (hash_table == NULL && lst_header->hash_size != 0)
5571 goto error_return;
5572
5573 /* Read in the hash table. The has table is an array of 32bit file offsets
5574 which point to the hash chains. */
5575 if (bfd_bread ((void *) hash_table, amt, abfd) != amt)
5576 goto error_return;
5577
5578 /* Seek to and read in the SOM dictionary. We will need this to fill
5579 in the carsym's filepos field. */
5580 if (bfd_seek (abfd, lst_filepos + lst_header->dir_loc, SEEK_SET) != 0)
5581 goto error_return;
5582
5583 amt = lst_header->module_count;
5584 amt *= sizeof (struct som_entry);
5585 som_dict = bfd_malloc (amt);
5586 if (som_dict == NULL && lst_header->module_count != 0)
5587 goto error_return;
5588
5589 if (bfd_bread ((void *) som_dict, amt, abfd) != amt)
5590 goto error_return;
5591
5592 /* Walk each chain filling in the carsyms as we go along. */
5593 for (i = 0; i < lst_header->hash_size; i++)
5594 {
5595 struct lst_symbol_record lst_symbol;
5596
5597 /* An empty chain has zero as it's file offset. */
5598 if (hash_table[i] == 0)
5599 continue;
5600
5601 /* Seek to and read the first symbol on the chain. */
5602 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) != 0)
5603 goto error_return;
5604
5605 amt = sizeof (lst_symbol);
5606 if (bfd_bread ((void *) &lst_symbol, amt, abfd) != amt)
5607 goto error_return;
5608
5609 /* Get the name of the symbol, first get the length which is stored
5610 as a 32bit integer just before the symbol.
5611
5612 One might ask why we don't just read in the entire string table
5613 and index into it. Well, according to the SOM ABI the string
5614 index can point *anywhere* in the archive to save space, so just
5615 using the string table would not be safe. */
5616 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
5617 + lst_symbol.name.n_strx - 4, SEEK_SET) != 0)
5618 goto error_return;
5619
5620 if (bfd_bread (&len, (bfd_size_type) 4, abfd) != 4)
5621 goto error_return;
5622
5623 /* Allocate space for the name and null terminate it too. */
5624 set->name = bfd_zalloc (abfd, (bfd_size_type) len + 1);
5625 if (!set->name)
5626 goto error_return;
5627 if (bfd_bread (set->name, (bfd_size_type) len, abfd) != len)
5628 goto error_return;
5629
5630 set->name[len] = 0;
5631
5632 /* Fill in the file offset. Note that the "location" field points
5633 to the SOM itself, not the ar_hdr in front of it. */
5634 set->file_offset = som_dict[lst_symbol.som_index].location
5635 - sizeof (struct ar_hdr);
5636
5637 /* Go to the next symbol. */
5638 set++;
5639
5640 /* Iterate through the rest of the chain. */
5641 while (lst_symbol.next_entry)
5642 {
5643 /* Seek to the next symbol and read it in. */
5644 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
5645 != 0)
5646 goto error_return;
5647
5648 amt = sizeof (lst_symbol);
5649 if (bfd_bread ((void *) &lst_symbol, amt, abfd) != amt)
5650 goto error_return;
5651
5652 /* Seek to the name length & string and read them in. */
5653 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
5654 + lst_symbol.name.n_strx - 4, SEEK_SET) != 0)
5655 goto error_return;
5656
5657 if (bfd_bread (&len, (bfd_size_type) 4, abfd) != 4)
5658 goto error_return;
5659
5660 /* Allocate space for the name and null terminate it too. */
5661 set->name = bfd_zalloc (abfd, (bfd_size_type) len + 1);
5662 if (!set->name)
5663 goto error_return;
5664
5665 if (bfd_bread (set->name, (bfd_size_type) len, abfd) != len)
5666 goto error_return;
5667 set->name[len] = 0;
5668
5669 /* Fill in the file offset. Note that the "location" field points
5670 to the SOM itself, not the ar_hdr in front of it. */
5671 set->file_offset = som_dict[lst_symbol.som_index].location
5672 - sizeof (struct ar_hdr);
5673
5674 /* Go on to the next symbol. */
5675 set++;
5676 }
5677 }
5678 /* If we haven't died by now, then we successfully read the entire
5679 archive symbol table. */
5680 if (hash_table != NULL)
5681 free (hash_table);
5682 if (som_dict != NULL)
5683 free (som_dict);
5684 return TRUE;
5685
5686 error_return:
5687 if (hash_table != NULL)
5688 free (hash_table);
5689 if (som_dict != NULL)
5690 free (som_dict);
5691 return FALSE;
5692 }
5693
5694 /* Read in the LST from the archive. */
5695
5696 static bfd_boolean
5697 som_slurp_armap (bfd *abfd)
5698 {
5699 struct lst_header lst_header;
5700 struct ar_hdr ar_header;
5701 unsigned int parsed_size;
5702 struct artdata *ardata = bfd_ardata (abfd);
5703 char nextname[17];
5704 bfd_size_type amt = 16;
5705 int i = bfd_bread ((void *) nextname, amt, abfd);
5706
5707 /* Special cases. */
5708 if (i == 0)
5709 return TRUE;
5710 if (i != 16)
5711 return FALSE;
5712
5713 if (bfd_seek (abfd, (file_ptr) -16, SEEK_CUR) != 0)
5714 return FALSE;
5715
5716 /* For archives without .o files there is no symbol table. */
5717 if (! CONST_STRNEQ (nextname, "/ "))
5718 {
5719 bfd_has_map (abfd) = FALSE;
5720 return TRUE;
5721 }
5722
5723 /* Read in and sanity check the archive header. */
5724 amt = sizeof (struct ar_hdr);
5725 if (bfd_bread ((void *) &ar_header, amt, abfd) != amt)
5726 return FALSE;
5727
5728 if (strncmp (ar_header.ar_fmag, ARFMAG, 2))
5729 {
5730 bfd_set_error (bfd_error_malformed_archive);
5731 return FALSE;
5732 }
5733
5734 /* How big is the archive symbol table entry? */
5735 errno = 0;
5736 parsed_size = strtol (ar_header.ar_size, NULL, 10);
5737 if (errno != 0)
5738 {
5739 bfd_set_error (bfd_error_malformed_archive);
5740 return FALSE;
5741 }
5742
5743 /* Save off the file offset of the first real user data. */
5744 ardata->first_file_filepos = bfd_tell (abfd) + parsed_size;
5745
5746 /* Read in the library symbol table. We'll make heavy use of this
5747 in just a minute. */
5748 amt = sizeof (struct lst_header);
5749 if (bfd_bread ((void *) &lst_header, amt, abfd) != amt)
5750 return FALSE;
5751
5752 /* Sanity check. */
5753 if (lst_header.a_magic != LIBMAGIC)
5754 {
5755 bfd_set_error (bfd_error_malformed_archive);
5756 return FALSE;
5757 }
5758
5759 /* Count the number of symbols in the library symbol table. */
5760 if (! som_bfd_count_ar_symbols (abfd, &lst_header, &ardata->symdef_count))
5761 return FALSE;
5762
5763 /* Get back to the start of the library symbol table. */
5764 if (bfd_seek (abfd, (ardata->first_file_filepos - parsed_size
5765 + sizeof (struct lst_header)), SEEK_SET) != 0)
5766 return FALSE;
5767
5768 /* Initialize the cache and allocate space for the library symbols. */
5769 ardata->cache = 0;
5770 amt = ardata->symdef_count;
5771 amt *= sizeof (carsym);
5772 ardata->symdefs = bfd_alloc (abfd, amt);
5773 if (!ardata->symdefs)
5774 return FALSE;
5775
5776 /* Now fill in the canonical archive symbols. */
5777 if (! som_bfd_fill_in_ar_symbols (abfd, &lst_header, &ardata->symdefs))
5778 return FALSE;
5779
5780 /* Seek back to the "first" file in the archive. Note the "first"
5781 file may be the extended name table. */
5782 if (bfd_seek (abfd, ardata->first_file_filepos, SEEK_SET) != 0)
5783 return FALSE;
5784
5785 /* Notify the generic archive code that we have a symbol map. */
5786 bfd_has_map (abfd) = TRUE;
5787 return TRUE;
5788 }
5789
5790 /* Begin preparing to write a SOM library symbol table.
5791
5792 As part of the prep work we need to determine the number of symbols
5793 and the size of the associated string section. */
5794
5795 static bfd_boolean
5796 som_bfd_prep_for_ar_write (bfd *abfd,
5797 unsigned int *num_syms,
5798 unsigned int *stringsize)
5799 {
5800 bfd *curr_bfd = abfd->archive_head;
5801
5802 /* Some initialization. */
5803 *num_syms = 0;
5804 *stringsize = 0;
5805
5806 /* Iterate over each BFD within this archive. */
5807 while (curr_bfd != NULL)
5808 {
5809 unsigned int curr_count, i;
5810 som_symbol_type *sym;
5811
5812 /* Don't bother for non-SOM objects. */
5813 if (curr_bfd->format != bfd_object
5814 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5815 {
5816 curr_bfd = curr_bfd->archive_next;
5817 continue;
5818 }
5819
5820 /* Make sure the symbol table has been read, then snag a pointer
5821 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5822 but doing so avoids allocating lots of extra memory. */
5823 if (! som_slurp_symbol_table (curr_bfd))
5824 return FALSE;
5825
5826 sym = obj_som_symtab (curr_bfd);
5827 curr_count = bfd_get_symcount (curr_bfd);
5828
5829 /* Examine each symbol to determine if it belongs in the
5830 library symbol table. */
5831 for (i = 0; i < curr_count; i++, sym++)
5832 {
5833 struct som_misc_symbol_info info;
5834
5835 /* Derive SOM information from the BFD symbol. */
5836 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5837
5838 /* Should we include this symbol? */
5839 if (info.symbol_type == ST_NULL
5840 || info.symbol_type == ST_SYM_EXT
5841 || info.symbol_type == ST_ARG_EXT)
5842 continue;
5843
5844 /* Only global symbols and unsatisfied commons. */
5845 if (info.symbol_scope != SS_UNIVERSAL
5846 && info.symbol_type != ST_STORAGE)
5847 continue;
5848
5849 /* Do no include undefined symbols. */
5850 if (bfd_is_und_section (sym->symbol.section))
5851 continue;
5852
5853 /* Bump the various counters, being careful to honor
5854 alignment considerations in the string table. */
5855 (*num_syms)++;
5856 *stringsize = *stringsize + strlen (sym->symbol.name) + 5;
5857 while (*stringsize % 4)
5858 (*stringsize)++;
5859 }
5860
5861 curr_bfd = curr_bfd->archive_next;
5862 }
5863 return TRUE;
5864 }
5865
5866 /* Hash a symbol name based on the hashing algorithm presented in the
5867 SOM ABI. */
5868
5869 static unsigned int
5870 som_bfd_ar_symbol_hash (asymbol *symbol)
5871 {
5872 unsigned int len = strlen (symbol->name);
5873
5874 /* Names with length 1 are special. */
5875 if (len == 1)
5876 return 0x1000100 | (symbol->name[0] << 16) | symbol->name[0];
5877
5878 return ((len & 0x7f) << 24) | (symbol->name[1] << 16)
5879 | (symbol->name[len - 2] << 8) | symbol->name[len - 1];
5880 }
5881
5882 /* Do the bulk of the work required to write the SOM library
5883 symbol table. */
5884
5885 static bfd_boolean
5886 som_bfd_ar_write_symbol_stuff (bfd *abfd,
5887 unsigned int nsyms,
5888 unsigned int string_size,
5889 struct lst_header lst,
5890 unsigned elength)
5891 {
5892 file_ptr lst_filepos;
5893 char *strings = NULL, *p;
5894 struct lst_symbol_record *lst_syms = NULL, *curr_lst_sym;
5895 bfd *curr_bfd;
5896 unsigned int *hash_table = NULL;
5897 struct som_entry *som_dict = NULL;
5898 struct lst_symbol_record **last_hash_entry = NULL;
5899 unsigned int curr_som_offset, som_index = 0;
5900 bfd_size_type amt;
5901
5902 amt = lst.hash_size;
5903 amt *= sizeof (unsigned int);
5904 hash_table = bfd_zmalloc (amt);
5905 if (hash_table == NULL && lst.hash_size != 0)
5906 goto error_return;
5907
5908 amt = lst.module_count;
5909 amt *= sizeof (struct som_entry);
5910 som_dict = bfd_zmalloc (amt);
5911 if (som_dict == NULL && lst.module_count != 0)
5912 goto error_return;
5913
5914 amt = lst.hash_size;
5915 amt *= sizeof (struct lst_symbol_record *);
5916 last_hash_entry = bfd_zmalloc (amt);
5917 if (last_hash_entry == NULL && lst.hash_size != 0)
5918 goto error_return;
5919
5920 /* Lots of fields are file positions relative to the start
5921 of the lst record. So save its location. */
5922 lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5923
5924 /* Symbols have som_index fields, so we have to keep track of the
5925 index of each SOM in the archive.
5926
5927 The SOM dictionary has (among other things) the absolute file
5928 position for the SOM which a particular dictionary entry
5929 describes. We have to compute that information as we iterate
5930 through the SOMs/symbols. */
5931 som_index = 0;
5932
5933 /* We add in the size of the archive header twice as the location
5934 in the SOM dictionary is the actual offset of the SOM, not the
5935 archive header before the SOM. */
5936 curr_som_offset = 8 + 2 * sizeof (struct ar_hdr) + lst.file_end;
5937
5938 /* Make room for the archive header and the contents of the
5939 extended string table. Note that elength includes the size
5940 of the archive header for the extended name table! */
5941 if (elength)
5942 curr_som_offset += elength;
5943
5944 /* Make sure we're properly aligned. */
5945 curr_som_offset = (curr_som_offset + 0x1) & ~0x1;
5946
5947 /* FIXME should be done with buffers just like everything else... */
5948 amt = nsyms;
5949 amt *= sizeof (struct lst_symbol_record);
5950 lst_syms = bfd_malloc (amt);
5951 if (lst_syms == NULL && nsyms != 0)
5952 goto error_return;
5953 strings = bfd_malloc ((bfd_size_type) string_size);
5954 if (strings == NULL && string_size != 0)
5955 goto error_return;
5956
5957 p = strings;
5958 curr_lst_sym = lst_syms;
5959
5960 curr_bfd = abfd->archive_head;
5961 while (curr_bfd != NULL)
5962 {
5963 unsigned int curr_count, i;
5964 som_symbol_type *sym;
5965
5966 /* Don't bother for non-SOM objects. */
5967 if (curr_bfd->format != bfd_object
5968 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5969 {
5970 curr_bfd = curr_bfd->archive_next;
5971 continue;
5972 }
5973
5974 /* Make sure the symbol table has been read, then snag a pointer
5975 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5976 but doing so avoids allocating lots of extra memory. */
5977 if (! som_slurp_symbol_table (curr_bfd))
5978 goto error_return;
5979
5980 sym = obj_som_symtab (curr_bfd);
5981 curr_count = bfd_get_symcount (curr_bfd);
5982
5983 for (i = 0; i < curr_count; i++, sym++)
5984 {
5985 struct som_misc_symbol_info info;
5986
5987 /* Derive SOM information from the BFD symbol. */
5988 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5989
5990 /* Should we include this symbol? */
5991 if (info.symbol_type == ST_NULL
5992 || info.symbol_type == ST_SYM_EXT
5993 || info.symbol_type == ST_ARG_EXT)
5994 continue;
5995
5996 /* Only global symbols and unsatisfied commons. */
5997 if (info.symbol_scope != SS_UNIVERSAL
5998 && info.symbol_type != ST_STORAGE)
5999 continue;
6000
6001 /* Do no include undefined symbols. */
6002 if (bfd_is_und_section (sym->symbol.section))
6003 continue;
6004
6005 /* If this is the first symbol from this SOM, then update
6006 the SOM dictionary too. */
6007 if (som_dict[som_index].location == 0)
6008 {
6009 som_dict[som_index].location = curr_som_offset;
6010 som_dict[som_index].length = arelt_size (curr_bfd);
6011 }
6012
6013 /* Fill in the lst symbol record. */
6014 curr_lst_sym->hidden = 0;
6015 curr_lst_sym->secondary_def = info.secondary_def;
6016 curr_lst_sym->symbol_type = info.symbol_type;
6017 curr_lst_sym->symbol_scope = info.symbol_scope;
6018 curr_lst_sym->check_level = 0;
6019 curr_lst_sym->must_qualify = 0;
6020 curr_lst_sym->initially_frozen = 0;
6021 curr_lst_sym->memory_resident = 0;
6022 curr_lst_sym->is_common = bfd_is_com_section (sym->symbol.section);
6023 curr_lst_sym->dup_common = info.dup_common;
6024 curr_lst_sym->xleast = 3;
6025 curr_lst_sym->arg_reloc = info.arg_reloc;
6026 curr_lst_sym->name.n_strx = p - strings + 4;
6027 curr_lst_sym->qualifier_name.n_strx = 0;
6028 curr_lst_sym->symbol_info = info.symbol_info;
6029 curr_lst_sym->symbol_value = info.symbol_value | info.priv_level;
6030 curr_lst_sym->symbol_descriptor = 0;
6031 curr_lst_sym->reserved = 0;
6032 curr_lst_sym->som_index = som_index;
6033 curr_lst_sym->symbol_key = som_bfd_ar_symbol_hash (&sym->symbol);
6034 curr_lst_sym->next_entry = 0;
6035
6036 /* Insert into the hash table. */
6037 if (hash_table[curr_lst_sym->symbol_key % lst.hash_size])
6038 {
6039 struct lst_symbol_record *tmp;
6040
6041 /* There is already something at the head of this hash chain,
6042 so tack this symbol onto the end of the chain. */
6043 tmp = last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size];
6044 tmp->next_entry
6045 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
6046 + lst.hash_size * 4
6047 + lst.module_count * sizeof (struct som_entry)
6048 + sizeof (struct lst_header);
6049 }
6050 else
6051 /* First entry in this hash chain. */
6052 hash_table[curr_lst_sym->symbol_key % lst.hash_size]
6053 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
6054 + lst.hash_size * 4
6055 + lst.module_count * sizeof (struct som_entry)
6056 + sizeof (struct lst_header);
6057
6058 /* Keep track of the last symbol we added to this chain so we can
6059 easily update its next_entry pointer. */
6060 last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size]
6061 = curr_lst_sym;
6062
6063 /* Update the string table. */
6064 bfd_put_32 (abfd, strlen (sym->symbol.name), p);
6065 p += 4;
6066 strcpy (p, sym->symbol.name);
6067 p += strlen (sym->symbol.name) + 1;
6068 while ((int) p % 4)
6069 {
6070 bfd_put_8 (abfd, 0, p);
6071 p++;
6072 }
6073
6074 /* Head to the next symbol. */
6075 curr_lst_sym++;
6076 }
6077
6078 /* Keep track of where each SOM will finally reside; then look
6079 at the next BFD. */
6080 curr_som_offset += arelt_size (curr_bfd) + sizeof (struct ar_hdr);
6081
6082 /* A particular object in the archive may have an odd length; the
6083 linker requires objects begin on an even boundary. So round
6084 up the current offset as necessary. */
6085 curr_som_offset = (curr_som_offset + 0x1) &~ (unsigned) 1;
6086 curr_bfd = curr_bfd->archive_next;
6087 som_index++;
6088 }
6089
6090 /* Now scribble out the hash table. */
6091 amt = lst.hash_size * 4;
6092 if (bfd_bwrite ((void *) hash_table, amt, abfd) != amt)
6093 goto error_return;
6094
6095 /* Then the SOM dictionary. */
6096 amt = lst.module_count * sizeof (struct som_entry);
6097 if (bfd_bwrite ((void *) som_dict, amt, abfd) != amt)
6098 goto error_return;
6099
6100 /* The library symbols. */
6101 amt = nsyms * sizeof (struct lst_symbol_record);
6102 if (bfd_bwrite ((void *) lst_syms, amt, abfd) != amt)
6103 goto error_return;
6104
6105 /* And finally the strings. */
6106 amt = string_size;
6107 if (bfd_bwrite ((void *) strings, amt, abfd) != amt)
6108 goto error_return;
6109
6110 if (hash_table != NULL)
6111 free (hash_table);
6112 if (som_dict != NULL)
6113 free (som_dict);
6114 if (last_hash_entry != NULL)
6115 free (last_hash_entry);
6116 if (lst_syms != NULL)
6117 free (lst_syms);
6118 if (strings != NULL)
6119 free (strings);
6120 return TRUE;
6121
6122 error_return:
6123 if (hash_table != NULL)
6124 free (hash_table);
6125 if (som_dict != NULL)
6126 free (som_dict);
6127 if (last_hash_entry != NULL)
6128 free (last_hash_entry);
6129 if (lst_syms != NULL)
6130 free (lst_syms);
6131 if (strings != NULL)
6132 free (strings);
6133
6134 return FALSE;
6135 }
6136
6137 /* Write out the LST for the archive.
6138
6139 You'll never believe this is really how armaps are handled in SOM... */
6140
6141 static bfd_boolean
6142 som_write_armap (bfd *abfd,
6143 unsigned int elength,
6144 struct orl *map ATTRIBUTE_UNUSED,
6145 unsigned int orl_count ATTRIBUTE_UNUSED,
6146 int stridx ATTRIBUTE_UNUSED)
6147 {
6148 bfd *curr_bfd;
6149 struct stat statbuf;
6150 unsigned int i, lst_size, nsyms, stringsize;
6151 struct ar_hdr hdr;
6152 struct lst_header lst;
6153 int *p;
6154 bfd_size_type amt;
6155
6156 /* We'll use this for the archive's date and mode later. */
6157 if (stat (abfd->filename, &statbuf) != 0)
6158 {
6159 bfd_set_error (bfd_error_system_call);
6160 return FALSE;
6161 }
6162 /* Fudge factor. */
6163 bfd_ardata (abfd)->armap_timestamp = statbuf.st_mtime + 60;
6164
6165 /* Account for the lst header first. */
6166 lst_size = sizeof (struct lst_header);
6167
6168 /* Start building the LST header. */
6169 /* FIXME: Do we need to examine each element to determine the
6170 largest id number? */
6171 lst.system_id = CPU_PA_RISC1_0;
6172 lst.a_magic = LIBMAGIC;
6173 lst.version_id = VERSION_ID;
6174 lst.file_time.secs = 0;
6175 lst.file_time.nanosecs = 0;
6176
6177 lst.hash_loc = lst_size;
6178 lst.hash_size = SOM_LST_HASH_SIZE;
6179
6180 /* Hash table is a SOM_LST_HASH_SIZE 32bit offsets. */
6181 lst_size += 4 * SOM_LST_HASH_SIZE;
6182
6183 /* We need to count the number of SOMs in this archive. */
6184 curr_bfd = abfd->archive_head;
6185 lst.module_count = 0;
6186 while (curr_bfd != NULL)
6187 {
6188 /* Only true SOM objects count. */
6189 if (curr_bfd->format == bfd_object
6190 && curr_bfd->xvec->flavour == bfd_target_som_flavour)
6191 lst.module_count++;
6192 curr_bfd = curr_bfd->archive_next;
6193 }
6194 lst.module_limit = lst.module_count;
6195 lst.dir_loc = lst_size;
6196 lst_size += sizeof (struct som_entry) * lst.module_count;
6197
6198 /* We don't support import/export tables, auxiliary headers,
6199 or free lists yet. Make the linker work a little harder
6200 to make our life easier. */
6201
6202 lst.export_loc = 0;
6203 lst.export_count = 0;
6204 lst.import_loc = 0;
6205 lst.aux_loc = 0;
6206 lst.aux_size = 0;
6207
6208 /* Count how many symbols we will have on the hash chains and the
6209 size of the associated string table. */
6210 if (! som_bfd_prep_for_ar_write (abfd, &nsyms, &stringsize))
6211 return FALSE;
6212
6213 lst_size += sizeof (struct lst_symbol_record) * nsyms;
6214
6215 /* For the string table. One day we might actually use this info
6216 to avoid small seeks/reads when reading archives. */
6217 lst.string_loc = lst_size;
6218 lst.string_size = stringsize;
6219 lst_size += stringsize;
6220
6221 /* SOM ABI says this must be zero. */
6222 lst.free_list = 0;
6223 lst.file_end = lst_size;
6224
6225 /* Compute the checksum. Must happen after the entire lst header
6226 has filled in. */
6227 p = (int *) &lst;
6228 lst.checksum = 0;
6229 for (i = 0; i < sizeof (struct lst_header) / sizeof (int) - 1; i++)
6230 lst.checksum ^= *p++;
6231
6232 sprintf (hdr.ar_name, "/ ");
6233 sprintf (hdr.ar_date, "%ld", bfd_ardata (abfd)->armap_timestamp);
6234 sprintf (hdr.ar_uid, "%ld", (long) getuid ());
6235 sprintf (hdr.ar_gid, "%ld", (long) getgid ());
6236 sprintf (hdr.ar_mode, "%-8o", (unsigned int) statbuf.st_mode);
6237 sprintf (hdr.ar_size, "%-10d", (int) lst_size);
6238 hdr.ar_fmag[0] = '`';
6239 hdr.ar_fmag[1] = '\012';
6240
6241 /* Turn any nulls into spaces. */
6242 for (i = 0; i < sizeof (struct ar_hdr); i++)
6243 if (((char *) (&hdr))[i] == '\0')
6244 (((char *) (&hdr))[i]) = ' ';
6245
6246 /* Scribble out the ar header. */
6247 amt = sizeof (struct ar_hdr);
6248 if (bfd_bwrite ((void *) &hdr, amt, abfd) != amt)
6249 return FALSE;
6250
6251 /* Now scribble out the lst header. */
6252 amt = sizeof (struct lst_header);
6253 if (bfd_bwrite ((void *) &lst, amt, abfd) != amt)
6254 return FALSE;
6255
6256 /* Build and write the armap. */
6257 if (!som_bfd_ar_write_symbol_stuff (abfd, nsyms, stringsize, lst, elength))
6258 return FALSE;
6259
6260 /* Done. */
6261 return TRUE;
6262 }
6263
6264 /* Free all information we have cached for this BFD. We can always
6265 read it again later if we need it. */
6266
6267 static bfd_boolean
6268 som_bfd_free_cached_info (bfd *abfd)
6269 {
6270 asection *o;
6271
6272 if (bfd_get_format (abfd) != bfd_object)
6273 return TRUE;
6274
6275 #define FREE(x) if (x != NULL) { free (x); x = NULL; }
6276 /* Free the native string and symbol tables. */
6277 FREE (obj_som_symtab (abfd));
6278 FREE (obj_som_stringtab (abfd));
6279 for (o = abfd->sections; o != NULL; o = o->next)
6280 {
6281 /* Free the native relocations. */
6282 o->reloc_count = (unsigned) -1;
6283 FREE (som_section_data (o)->reloc_stream);
6284 /* Free the generic relocations. */
6285 FREE (o->relocation);
6286 }
6287 #undef FREE
6288
6289 return TRUE;
6290 }
6291
6292 /* End of miscellaneous support functions. */
6293
6294 /* Linker support functions. */
6295
6296 static bfd_boolean
6297 som_bfd_link_split_section (bfd *abfd ATTRIBUTE_UNUSED, asection *sec)
6298 {
6299 return som_is_subspace (sec) && sec->size > 240000;
6300 }
6301
6302 #define som_close_and_cleanup som_bfd_free_cached_info
6303 #define som_read_ar_hdr _bfd_generic_read_ar_hdr
6304 #define som_openr_next_archived_file bfd_generic_openr_next_archived_file
6305 #define som_get_elt_at_index _bfd_generic_get_elt_at_index
6306 #define som_generic_stat_arch_elt bfd_generic_stat_arch_elt
6307 #define som_truncate_arname bfd_bsd_truncate_arname
6308 #define som_slurp_extended_name_table _bfd_slurp_extended_name_table
6309 #define som_construct_extended_name_table _bfd_archive_coff_construct_extended_name_table
6310 #define som_update_armap_timestamp bfd_true
6311 #define som_bfd_is_target_special_symbol ((bfd_boolean (*) (bfd *, asymbol *)) bfd_false)
6312 #define som_get_lineno _bfd_nosymbols_get_lineno
6313 #define som_bfd_make_debug_symbol _bfd_nosymbols_bfd_make_debug_symbol
6314 #define som_read_minisymbols _bfd_generic_read_minisymbols
6315 #define som_minisymbol_to_symbol _bfd_generic_minisymbol_to_symbol
6316 #define som_get_section_contents_in_window _bfd_generic_get_section_contents_in_window
6317 #define som_bfd_get_relocated_section_contents bfd_generic_get_relocated_section_contents
6318 #define som_bfd_relax_section bfd_generic_relax_section
6319 #define som_bfd_link_hash_table_create _bfd_generic_link_hash_table_create
6320 #define som_bfd_link_hash_table_free _bfd_generic_link_hash_table_free
6321 #define som_bfd_link_add_symbols _bfd_generic_link_add_symbols
6322 #define som_bfd_link_just_syms _bfd_generic_link_just_syms
6323 #define som_bfd_final_link _bfd_generic_final_link
6324 #define som_bfd_gc_sections bfd_generic_gc_sections
6325 #define som_bfd_merge_sections bfd_generic_merge_sections
6326 #define som_bfd_is_group_section bfd_generic_is_group_section
6327 #define som_bfd_discard_group bfd_generic_discard_group
6328 #define som_section_already_linked _bfd_generic_section_already_linked
6329 #define som_bfd_merge_private_bfd_data _bfd_generic_bfd_merge_private_bfd_data
6330 #define som_bfd_copy_private_header_data _bfd_generic_bfd_copy_private_header_data
6331 #define som_bfd_set_private_flags _bfd_generic_bfd_set_private_flags
6332 #define som_find_inliner_info _bfd_nosymbols_find_inliner_info
6333
6334 const bfd_target som_vec =
6335 {
6336 "som", /* Name. */
6337 bfd_target_som_flavour,
6338 BFD_ENDIAN_BIG, /* Target byte order. */
6339 BFD_ENDIAN_BIG, /* Target headers byte order. */
6340 (HAS_RELOC | EXEC_P | /* Object flags. */
6341 HAS_LINENO | HAS_DEBUG |
6342 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED | DYNAMIC),
6343 (SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS | SEC_LINK_ONCE
6344 | SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* Section flags. */
6345
6346 /* Leading_symbol_char: is the first char of a user symbol
6347 predictable, and if so what is it. */
6348 0,
6349 '/', /* AR_pad_char. */
6350 14, /* AR_max_namelen. */
6351 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
6352 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
6353 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* Data. */
6354 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
6355 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
6356 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* Headers. */
6357 {_bfd_dummy_target,
6358 som_object_p, /* bfd_check_format. */
6359 bfd_generic_archive_p,
6360 _bfd_dummy_target
6361 },
6362 {
6363 bfd_false,
6364 som_mkobject,
6365 _bfd_generic_mkarchive,
6366 bfd_false
6367 },
6368 {
6369 bfd_false,
6370 som_write_object_contents,
6371 _bfd_write_archive_contents,
6372 bfd_false,
6373 },
6374 #undef som
6375
6376 BFD_JUMP_TABLE_GENERIC (som),
6377 BFD_JUMP_TABLE_COPY (som),
6378 BFD_JUMP_TABLE_CORE (_bfd_nocore),
6379 BFD_JUMP_TABLE_ARCHIVE (som),
6380 BFD_JUMP_TABLE_SYMBOLS (som),
6381 BFD_JUMP_TABLE_RELOCS (som),
6382 BFD_JUMP_TABLE_WRITE (som),
6383 BFD_JUMP_TABLE_LINK (som),
6384 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
6385
6386 NULL,
6387
6388 NULL
6389 };
6390
6391 #endif /* HOST_HPPAHPUX || HOST_HPPABSD || HOST_HPPAOSF */
This page took 0.257836 seconds and 5 git commands to generate.