* aout-arm.c, aout-target.h, aoutx.h, archive.c, armnetbsd.c,
[deliverable/binutils-gdb.git] / bfd / som.c
1 /* bfd back-end for HP PA-RISC SOM objects.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004
4 Free Software Foundation, Inc.
5
6 Contributed by the Center for Software Science at the
7 University of Utah.
8
9 This file is part of BFD, the Binary File Descriptor library.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
24 02111-1307, USA. */
25
26 #include "alloca-conf.h"
27 #include "bfd.h"
28 #include "sysdep.h"
29
30 #if defined (HOST_HPPAHPUX) || defined (HOST_HPPABSD) || defined (HOST_HPPAOSF) || defined(HOST_HPPAMPEIX)
31
32 #include "libbfd.h"
33 #include "som.h"
34 #include "safe-ctype.h"
35
36 #include <sys/param.h>
37 #include <signal.h>
38 #include <machine/reg.h>
39 #include <sys/file.h>
40
41 /* Magic not defined in standard HP-UX header files until 8.0. */
42
43 #ifndef CPU_PA_RISC1_0
44 #define CPU_PA_RISC1_0 0x20B
45 #endif /* CPU_PA_RISC1_0 */
46
47 #ifndef CPU_PA_RISC1_1
48 #define CPU_PA_RISC1_1 0x210
49 #endif /* CPU_PA_RISC1_1 */
50
51 #ifndef CPU_PA_RISC2_0
52 #define CPU_PA_RISC2_0 0x214
53 #endif /* CPU_PA_RISC2_0 */
54
55 #ifndef _PA_RISC1_0_ID
56 #define _PA_RISC1_0_ID CPU_PA_RISC1_0
57 #endif /* _PA_RISC1_0_ID */
58
59 #ifndef _PA_RISC1_1_ID
60 #define _PA_RISC1_1_ID CPU_PA_RISC1_1
61 #endif /* _PA_RISC1_1_ID */
62
63 #ifndef _PA_RISC2_0_ID
64 #define _PA_RISC2_0_ID CPU_PA_RISC2_0
65 #endif /* _PA_RISC2_0_ID */
66
67 #ifndef _PA_RISC_MAXID
68 #define _PA_RISC_MAXID 0x2FF
69 #endif /* _PA_RISC_MAXID */
70
71 #ifndef _PA_RISC_ID
72 #define _PA_RISC_ID(__m_num) \
73 (((__m_num) == _PA_RISC1_0_ID) || \
74 ((__m_num) >= _PA_RISC1_1_ID && (__m_num) <= _PA_RISC_MAXID))
75 #endif /* _PA_RISC_ID */
76
77 /* HIUX in it's infinite stupidity changed the names for several "well
78 known" constants. Work around such braindamage. Try the HPUX version
79 first, then the HIUX version, and finally provide a default. */
80 #ifdef HPUX_AUX_ID
81 #define EXEC_AUX_ID HPUX_AUX_ID
82 #endif
83
84 #if !defined (EXEC_AUX_ID) && defined (HIUX_AUX_ID)
85 #define EXEC_AUX_ID HIUX_AUX_ID
86 #endif
87
88 #ifndef EXEC_AUX_ID
89 #define EXEC_AUX_ID 0
90 #endif
91
92 /* Size (in chars) of the temporary buffers used during fixup and string
93 table writes. */
94
95 #define SOM_TMP_BUFSIZE 8192
96
97 /* Size of the hash table in archives. */
98 #define SOM_LST_HASH_SIZE 31
99
100 /* Max number of SOMs to be found in an archive. */
101 #define SOM_LST_MODULE_LIMIT 1024
102
103 /* Generic alignment macro. */
104 #define SOM_ALIGN(val, alignment) \
105 (((val) + (alignment) - 1) &~ ((unsigned long) (alignment) - 1))
106
107 /* SOM allows any one of the four previous relocations to be reused
108 with a "R_PREV_FIXUP" relocation entry. Since R_PREV_FIXUP
109 relocations are always a single byte, using a R_PREV_FIXUP instead
110 of some multi-byte relocation makes object files smaller.
111
112 Note one side effect of using a R_PREV_FIXUP is the relocation that
113 is being repeated moves to the front of the queue. */
114 struct reloc_queue {
115 unsigned char *reloc;
116 unsigned int size;
117 } reloc_queue[4];
118
119 /* This fully describes the symbol types which may be attached to
120 an EXPORT or IMPORT directive. Only SOM uses this formation
121 (ELF has no need for it). */
122 typedef enum {
123 SYMBOL_TYPE_UNKNOWN,
124 SYMBOL_TYPE_ABSOLUTE,
125 SYMBOL_TYPE_CODE,
126 SYMBOL_TYPE_DATA,
127 SYMBOL_TYPE_ENTRY,
128 SYMBOL_TYPE_MILLICODE,
129 SYMBOL_TYPE_PLABEL,
130 SYMBOL_TYPE_PRI_PROG,
131 SYMBOL_TYPE_SEC_PROG,
132 } pa_symbol_type;
133
134 struct section_to_type {
135 char *section;
136 char type;
137 };
138
139 /* Assorted symbol information that needs to be derived from the BFD symbol
140 and/or the BFD backend private symbol data. */
141 struct som_misc_symbol_info {
142 unsigned int symbol_type;
143 unsigned int symbol_scope;
144 unsigned int arg_reloc;
145 unsigned int symbol_info;
146 unsigned int symbol_value;
147 unsigned int priv_level;
148 unsigned int secondary_def;
149 unsigned int is_comdat;
150 unsigned int is_common;
151 unsigned int dup_common;
152 };
153
154 /* Forward declarations. */
155
156 static bfd_boolean som_mkobject
157 PARAMS ((bfd *));
158 static const bfd_target * som_object_setup
159 PARAMS ((bfd *, struct header *, struct som_exec_auxhdr *, unsigned long));
160 static bfd_boolean setup_sections
161 PARAMS ((bfd *, struct header *, unsigned long));
162 static const bfd_target * som_object_p
163 PARAMS ((bfd *));
164 static bfd_boolean som_write_object_contents
165 PARAMS ((bfd *));
166 static bfd_boolean som_slurp_string_table
167 PARAMS ((bfd *));
168 static unsigned int som_slurp_symbol_table
169 PARAMS ((bfd *));
170 static long som_get_symtab_upper_bound
171 PARAMS ((bfd *));
172 static long som_canonicalize_reloc
173 PARAMS ((bfd *, sec_ptr, arelent **, asymbol **));
174 static long som_get_reloc_upper_bound
175 PARAMS ((bfd *, sec_ptr));
176 static unsigned int som_set_reloc_info
177 PARAMS ((unsigned char *, unsigned int, arelent *, asection *,
178 asymbol **, bfd_boolean));
179 static bfd_boolean som_slurp_reloc_table
180 PARAMS ((bfd *, asection *, asymbol **, bfd_boolean));
181 static long som_canonicalize_symtab
182 PARAMS ((bfd *, asymbol **));
183 static asymbol * som_make_empty_symbol
184 PARAMS ((bfd *));
185 static void som_print_symbol
186 PARAMS ((bfd *, PTR, asymbol *, bfd_print_symbol_type));
187 static bfd_boolean som_new_section_hook
188 PARAMS ((bfd *, asection *));
189 static bfd_boolean som_bfd_copy_private_symbol_data
190 PARAMS ((bfd *, asymbol *, bfd *, asymbol *));
191 static bfd_boolean som_bfd_copy_private_section_data
192 PARAMS ((bfd *, asection *, bfd *, asection *));
193 static bfd_boolean som_bfd_copy_private_bfd_data
194 PARAMS ((bfd *, bfd *));
195 #define som_bfd_copy_private_header_data \
196 _bfd_generic_bfd_copy_private_header_data
197 #define som_bfd_merge_private_bfd_data _bfd_generic_bfd_merge_private_bfd_data
198 #define som_bfd_set_private_flags _bfd_generic_bfd_set_private_flags
199 static bfd_boolean som_bfd_print_private_bfd_data
200 (bfd *, void *);
201 static bfd_boolean som_bfd_is_local_label_name
202 PARAMS ((bfd *, const char *));
203 static bfd_boolean som_set_section_contents
204 PARAMS ((bfd *, sec_ptr, const PTR, file_ptr, bfd_size_type));
205 static bfd_boolean som_get_section_contents
206 PARAMS ((bfd *, sec_ptr, PTR, file_ptr, bfd_size_type));
207 static bfd_boolean som_set_arch_mach
208 PARAMS ((bfd *, enum bfd_architecture, unsigned long));
209 static bfd_boolean som_find_nearest_line
210 PARAMS ((bfd *, asection *, asymbol **, bfd_vma, const char **,
211 const char **, unsigned int *));
212 static void som_get_symbol_info
213 PARAMS ((bfd *, asymbol *, symbol_info *));
214 static asection * bfd_section_from_som_symbol
215 PARAMS ((bfd *, struct symbol_dictionary_record *));
216 static int exact_log2
217 PARAMS ((unsigned int));
218 static bfd_reloc_status_type hppa_som_reloc
219 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
220 static void som_initialize_reloc_queue
221 PARAMS ((struct reloc_queue *));
222 static void som_reloc_queue_insert
223 PARAMS ((unsigned char *, unsigned int, struct reloc_queue *));
224 static void som_reloc_queue_fix
225 PARAMS ((struct reloc_queue *, unsigned int));
226 static int som_reloc_queue_find
227 PARAMS ((unsigned char *, unsigned int, struct reloc_queue *));
228 static unsigned char * try_prev_fixup
229 PARAMS ((bfd *, int *, unsigned char *, unsigned int, struct reloc_queue *));
230 static unsigned char * som_reloc_skip
231 PARAMS ((bfd *, unsigned int, unsigned char *, unsigned int *,
232 struct reloc_queue *));
233 static unsigned char * som_reloc_addend
234 PARAMS ((bfd *, bfd_vma, unsigned char *, unsigned int *,
235 struct reloc_queue *));
236 static unsigned char * som_reloc_call
237 PARAMS ((bfd *, unsigned char *, unsigned int *, arelent *, int,
238 struct reloc_queue *));
239 static unsigned long som_count_spaces
240 PARAMS ((bfd *));
241 static unsigned long som_count_subspaces
242 PARAMS ((bfd *));
243 static int compare_syms
244 PARAMS ((const void *, const void *));
245 static int compare_subspaces
246 PARAMS ((const void *, const void *));
247 static unsigned long som_compute_checksum
248 PARAMS ((bfd *));
249 static bfd_boolean som_prep_headers
250 PARAMS ((bfd *));
251 static int som_sizeof_headers
252 PARAMS ((bfd *, bfd_boolean));
253 static bfd_boolean som_finish_writing
254 PARAMS ((bfd *));
255 static bfd_boolean som_build_and_write_symbol_table
256 PARAMS ((bfd *));
257 static void som_prep_for_fixups
258 PARAMS ((bfd *, asymbol **, unsigned long));
259 static bfd_boolean som_write_fixups
260 PARAMS ((bfd *, unsigned long, unsigned int *));
261 static bfd_boolean som_write_space_strings
262 PARAMS ((bfd *, unsigned long, unsigned int *));
263 static bfd_boolean som_write_symbol_strings
264 PARAMS ((bfd *, unsigned long, asymbol **, unsigned int, unsigned *,
265 COMPUNIT *));
266 static bfd_boolean som_begin_writing
267 PARAMS ((bfd *));
268 static reloc_howto_type * som_bfd_reloc_type_lookup
269 PARAMS ((bfd *, bfd_reloc_code_real_type));
270 static char som_section_type
271 PARAMS ((const char *));
272 static int som_decode_symclass
273 PARAMS ((asymbol *));
274 static bfd_boolean som_bfd_count_ar_symbols
275 PARAMS ((bfd *, struct lst_header *, symindex *));
276 static bfd_boolean som_bfd_fill_in_ar_symbols
277 PARAMS ((bfd *, struct lst_header *, carsym **));
278 static bfd_boolean som_slurp_armap
279 PARAMS ((bfd *));
280 static bfd_boolean som_write_armap
281 PARAMS ((bfd *, unsigned int, struct orl *, unsigned int, int));
282 static void som_bfd_derive_misc_symbol_info
283 PARAMS ((bfd *, asymbol *, struct som_misc_symbol_info *));
284 static bfd_boolean som_bfd_prep_for_ar_write
285 PARAMS ((bfd *, unsigned int *, unsigned int *));
286 static unsigned int som_bfd_ar_symbol_hash
287 PARAMS ((asymbol *));
288 static bfd_boolean som_bfd_ar_write_symbol_stuff
289 PARAMS ((bfd *, unsigned int, unsigned int, struct lst_header,
290 unsigned int));
291 static bfd_boolean som_is_space
292 PARAMS ((asection *));
293 static bfd_boolean som_is_subspace
294 PARAMS ((asection *));
295 static bfd_boolean som_is_container
296 PARAMS ((asection *, asection *));
297 static bfd_boolean som_bfd_free_cached_info
298 PARAMS ((bfd *));
299 static bfd_boolean som_bfd_link_split_section
300 PARAMS ((bfd *, asection *));
301
302 /* Map SOM section names to POSIX/BSD single-character symbol types.
303
304 This table includes all the standard subspaces as defined in the
305 current "PRO ABI for PA-RISC Systems", $UNWIND$ which for
306 some reason was left out, and sections specific to embedded stabs. */
307
308 static const struct section_to_type stt[] = {
309 {"$TEXT$", 't'},
310 {"$SHLIB_INFO$", 't'},
311 {"$MILLICODE$", 't'},
312 {"$LIT$", 't'},
313 {"$CODE$", 't'},
314 {"$UNWIND_START$", 't'},
315 {"$UNWIND$", 't'},
316 {"$PRIVATE$", 'd'},
317 {"$PLT$", 'd'},
318 {"$SHLIB_DATA$", 'd'},
319 {"$DATA$", 'd'},
320 {"$SHORTDATA$", 'g'},
321 {"$DLT$", 'd'},
322 {"$GLOBAL$", 'g'},
323 {"$SHORTBSS$", 's'},
324 {"$BSS$", 'b'},
325 {"$GDB_STRINGS$", 'N'},
326 {"$GDB_SYMBOLS$", 'N'},
327 {0, 0}
328 };
329
330 /* About the relocation formatting table...
331
332 There are 256 entries in the table, one for each possible
333 relocation opcode available in SOM. We index the table by
334 the relocation opcode. The names and operations are those
335 defined by a.out_800 (4).
336
337 Right now this table is only used to count and perform minimal
338 processing on relocation streams so that they can be internalized
339 into BFD and symbolically printed by utilities. To make actual use
340 of them would be much more difficult, BFD's concept of relocations
341 is far too simple to handle SOM relocations. The basic assumption
342 that a relocation can be completely processed independent of other
343 relocations before an object file is written is invalid for SOM.
344
345 The SOM relocations are meant to be processed as a stream, they
346 specify copying of data from the input section to the output section
347 while possibly modifying the data in some manner. They also can
348 specify that a variable number of zeros or uninitialized data be
349 inserted on in the output segment at the current offset. Some
350 relocations specify that some previous relocation be re-applied at
351 the current location in the input/output sections. And finally a number
352 of relocations have effects on other sections (R_ENTRY, R_EXIT,
353 R_UNWIND_AUX and a variety of others). There isn't even enough room
354 in the BFD relocation data structure to store enough information to
355 perform all the relocations.
356
357 Each entry in the table has three fields.
358
359 The first entry is an index into this "class" of relocations. This
360 index can then be used as a variable within the relocation itself.
361
362 The second field is a format string which actually controls processing
363 of the relocation. It uses a simple postfix machine to do calculations
364 based on variables/constants found in the string and the relocation
365 stream.
366
367 The third field specifys whether or not this relocation may use
368 a constant (V) from the previous R_DATA_OVERRIDE rather than a constant
369 stored in the instruction.
370
371 Variables:
372
373 L = input space byte count
374 D = index into class of relocations
375 M = output space byte count
376 N = statement number (unused?)
377 O = stack operation
378 R = parameter relocation bits
379 S = symbol index
380 T = first 32 bits of stack unwind information
381 U = second 32 bits of stack unwind information
382 V = a literal constant (usually used in the next relocation)
383 P = a previous relocation
384
385 Lower case letters (starting with 'b') refer to following
386 bytes in the relocation stream. 'b' is the next 1 byte,
387 c is the next 2 bytes, d is the next 3 bytes, etc...
388 This is the variable part of the relocation entries that
389 makes our life a living hell.
390
391 numerical constants are also used in the format string. Note
392 the constants are represented in decimal.
393
394 '+', "*" and "=" represents the obvious postfix operators.
395 '<' represents a left shift.
396
397 Stack Operations:
398
399 Parameter Relocation Bits:
400
401 Unwind Entries:
402
403 Previous Relocations: The index field represents which in the queue
404 of 4 previous fixups should be re-applied.
405
406 Literal Constants: These are generally used to represent addend
407 parts of relocations when these constants are not stored in the
408 fields of the instructions themselves. For example the instruction
409 addil foo-$global$-0x1234 would use an override for "0x1234" rather
410 than storing it into the addil itself. */
411
412 struct fixup_format {
413 int D;
414 const char *format;
415 };
416
417 static const struct fixup_format som_fixup_formats[256] = {
418 /* R_NO_RELOCATION */
419 { 0, "LD1+4*=" }, /* 0x00 */
420 { 1, "LD1+4*=" }, /* 0x01 */
421 { 2, "LD1+4*=" }, /* 0x02 */
422 { 3, "LD1+4*=" }, /* 0x03 */
423 { 4, "LD1+4*=" }, /* 0x04 */
424 { 5, "LD1+4*=" }, /* 0x05 */
425 { 6, "LD1+4*=" }, /* 0x06 */
426 { 7, "LD1+4*=" }, /* 0x07 */
427 { 8, "LD1+4*=" }, /* 0x08 */
428 { 9, "LD1+4*=" }, /* 0x09 */
429 { 10, "LD1+4*=" }, /* 0x0a */
430 { 11, "LD1+4*=" }, /* 0x0b */
431 { 12, "LD1+4*=" }, /* 0x0c */
432 { 13, "LD1+4*=" }, /* 0x0d */
433 { 14, "LD1+4*=" }, /* 0x0e */
434 { 15, "LD1+4*=" }, /* 0x0f */
435 { 16, "LD1+4*=" }, /* 0x10 */
436 { 17, "LD1+4*=" }, /* 0x11 */
437 { 18, "LD1+4*=" }, /* 0x12 */
438 { 19, "LD1+4*=" }, /* 0x13 */
439 { 20, "LD1+4*=" }, /* 0x14 */
440 { 21, "LD1+4*=" }, /* 0x15 */
441 { 22, "LD1+4*=" }, /* 0x16 */
442 { 23, "LD1+4*=" }, /* 0x17 */
443 { 0, "LD8<b+1+4*=" }, /* 0x18 */
444 { 1, "LD8<b+1+4*=" }, /* 0x19 */
445 { 2, "LD8<b+1+4*=" }, /* 0x1a */
446 { 3, "LD8<b+1+4*=" }, /* 0x1b */
447 { 0, "LD16<c+1+4*=" }, /* 0x1c */
448 { 1, "LD16<c+1+4*=" }, /* 0x1d */
449 { 2, "LD16<c+1+4*=" }, /* 0x1e */
450 { 0, "Ld1+=" }, /* 0x1f */
451 /* R_ZEROES */
452 { 0, "Lb1+4*=" }, /* 0x20 */
453 { 1, "Ld1+=" }, /* 0x21 */
454 /* R_UNINIT */
455 { 0, "Lb1+4*=" }, /* 0x22 */
456 { 1, "Ld1+=" }, /* 0x23 */
457 /* R_RELOCATION */
458 { 0, "L4=" }, /* 0x24 */
459 /* R_DATA_ONE_SYMBOL */
460 { 0, "L4=Sb=" }, /* 0x25 */
461 { 1, "L4=Sd=" }, /* 0x26 */
462 /* R_DATA_PLEBEL */
463 { 0, "L4=Sb=" }, /* 0x27 */
464 { 1, "L4=Sd=" }, /* 0x28 */
465 /* R_SPACE_REF */
466 { 0, "L4=" }, /* 0x29 */
467 /* R_REPEATED_INIT */
468 { 0, "L4=Mb1+4*=" }, /* 0x2a */
469 { 1, "Lb4*=Mb1+L*=" }, /* 0x2b */
470 { 2, "Lb4*=Md1+4*=" }, /* 0x2c */
471 { 3, "Ld1+=Me1+=" }, /* 0x2d */
472 { 0, "" }, /* 0x2e */
473 { 0, "" }, /* 0x2f */
474 /* R_PCREL_CALL */
475 { 0, "L4=RD=Sb=" }, /* 0x30 */
476 { 1, "L4=RD=Sb=" }, /* 0x31 */
477 { 2, "L4=RD=Sb=" }, /* 0x32 */
478 { 3, "L4=RD=Sb=" }, /* 0x33 */
479 { 4, "L4=RD=Sb=" }, /* 0x34 */
480 { 5, "L4=RD=Sb=" }, /* 0x35 */
481 { 6, "L4=RD=Sb=" }, /* 0x36 */
482 { 7, "L4=RD=Sb=" }, /* 0x37 */
483 { 8, "L4=RD=Sb=" }, /* 0x38 */
484 { 9, "L4=RD=Sb=" }, /* 0x39 */
485 { 0, "L4=RD8<b+=Sb=" }, /* 0x3a */
486 { 1, "L4=RD8<b+=Sb=" }, /* 0x3b */
487 { 0, "L4=RD8<b+=Sd=" }, /* 0x3c */
488 { 1, "L4=RD8<b+=Sd=" }, /* 0x3d */
489 /* R_SHORT_PCREL_MODE */
490 { 0, "" }, /* 0x3e */
491 /* R_LONG_PCREL_MODE */
492 { 0, "" }, /* 0x3f */
493 /* R_ABS_CALL */
494 { 0, "L4=RD=Sb=" }, /* 0x40 */
495 { 1, "L4=RD=Sb=" }, /* 0x41 */
496 { 2, "L4=RD=Sb=" }, /* 0x42 */
497 { 3, "L4=RD=Sb=" }, /* 0x43 */
498 { 4, "L4=RD=Sb=" }, /* 0x44 */
499 { 5, "L4=RD=Sb=" }, /* 0x45 */
500 { 6, "L4=RD=Sb=" }, /* 0x46 */
501 { 7, "L4=RD=Sb=" }, /* 0x47 */
502 { 8, "L4=RD=Sb=" }, /* 0x48 */
503 { 9, "L4=RD=Sb=" }, /* 0x49 */
504 { 0, "L4=RD8<b+=Sb=" }, /* 0x4a */
505 { 1, "L4=RD8<b+=Sb=" }, /* 0x4b */
506 { 0, "L4=RD8<b+=Sd=" }, /* 0x4c */
507 { 1, "L4=RD8<b+=Sd=" }, /* 0x4d */
508 /* R_RESERVED */
509 { 0, "" }, /* 0x4e */
510 { 0, "" }, /* 0x4f */
511 /* R_DP_RELATIVE */
512 { 0, "L4=SD=" }, /* 0x50 */
513 { 1, "L4=SD=" }, /* 0x51 */
514 { 2, "L4=SD=" }, /* 0x52 */
515 { 3, "L4=SD=" }, /* 0x53 */
516 { 4, "L4=SD=" }, /* 0x54 */
517 { 5, "L4=SD=" }, /* 0x55 */
518 { 6, "L4=SD=" }, /* 0x56 */
519 { 7, "L4=SD=" }, /* 0x57 */
520 { 8, "L4=SD=" }, /* 0x58 */
521 { 9, "L4=SD=" }, /* 0x59 */
522 { 10, "L4=SD=" }, /* 0x5a */
523 { 11, "L4=SD=" }, /* 0x5b */
524 { 12, "L4=SD=" }, /* 0x5c */
525 { 13, "L4=SD=" }, /* 0x5d */
526 { 14, "L4=SD=" }, /* 0x5e */
527 { 15, "L4=SD=" }, /* 0x5f */
528 { 16, "L4=SD=" }, /* 0x60 */
529 { 17, "L4=SD=" }, /* 0x61 */
530 { 18, "L4=SD=" }, /* 0x62 */
531 { 19, "L4=SD=" }, /* 0x63 */
532 { 20, "L4=SD=" }, /* 0x64 */
533 { 21, "L4=SD=" }, /* 0x65 */
534 { 22, "L4=SD=" }, /* 0x66 */
535 { 23, "L4=SD=" }, /* 0x67 */
536 { 24, "L4=SD=" }, /* 0x68 */
537 { 25, "L4=SD=" }, /* 0x69 */
538 { 26, "L4=SD=" }, /* 0x6a */
539 { 27, "L4=SD=" }, /* 0x6b */
540 { 28, "L4=SD=" }, /* 0x6c */
541 { 29, "L4=SD=" }, /* 0x6d */
542 { 30, "L4=SD=" }, /* 0x6e */
543 { 31, "L4=SD=" }, /* 0x6f */
544 { 32, "L4=Sb=" }, /* 0x70 */
545 { 33, "L4=Sd=" }, /* 0x71 */
546 /* R_RESERVED */
547 { 0, "" }, /* 0x72 */
548 { 0, "" }, /* 0x73 */
549 { 0, "" }, /* 0x74 */
550 { 0, "" }, /* 0x75 */
551 { 0, "" }, /* 0x76 */
552 { 0, "" }, /* 0x77 */
553 /* R_DLT_REL */
554 { 0, "L4=Sb=" }, /* 0x78 */
555 { 1, "L4=Sd=" }, /* 0x79 */
556 /* R_RESERVED */
557 { 0, "" }, /* 0x7a */
558 { 0, "" }, /* 0x7b */
559 { 0, "" }, /* 0x7c */
560 { 0, "" }, /* 0x7d */
561 { 0, "" }, /* 0x7e */
562 { 0, "" }, /* 0x7f */
563 /* R_CODE_ONE_SYMBOL */
564 { 0, "L4=SD=" }, /* 0x80 */
565 { 1, "L4=SD=" }, /* 0x81 */
566 { 2, "L4=SD=" }, /* 0x82 */
567 { 3, "L4=SD=" }, /* 0x83 */
568 { 4, "L4=SD=" }, /* 0x84 */
569 { 5, "L4=SD=" }, /* 0x85 */
570 { 6, "L4=SD=" }, /* 0x86 */
571 { 7, "L4=SD=" }, /* 0x87 */
572 { 8, "L4=SD=" }, /* 0x88 */
573 { 9, "L4=SD=" }, /* 0x89 */
574 { 10, "L4=SD=" }, /* 0x8q */
575 { 11, "L4=SD=" }, /* 0x8b */
576 { 12, "L4=SD=" }, /* 0x8c */
577 { 13, "L4=SD=" }, /* 0x8d */
578 { 14, "L4=SD=" }, /* 0x8e */
579 { 15, "L4=SD=" }, /* 0x8f */
580 { 16, "L4=SD=" }, /* 0x90 */
581 { 17, "L4=SD=" }, /* 0x91 */
582 { 18, "L4=SD=" }, /* 0x92 */
583 { 19, "L4=SD=" }, /* 0x93 */
584 { 20, "L4=SD=" }, /* 0x94 */
585 { 21, "L4=SD=" }, /* 0x95 */
586 { 22, "L4=SD=" }, /* 0x96 */
587 { 23, "L4=SD=" }, /* 0x97 */
588 { 24, "L4=SD=" }, /* 0x98 */
589 { 25, "L4=SD=" }, /* 0x99 */
590 { 26, "L4=SD=" }, /* 0x9a */
591 { 27, "L4=SD=" }, /* 0x9b */
592 { 28, "L4=SD=" }, /* 0x9c */
593 { 29, "L4=SD=" }, /* 0x9d */
594 { 30, "L4=SD=" }, /* 0x9e */
595 { 31, "L4=SD=" }, /* 0x9f */
596 { 32, "L4=Sb=" }, /* 0xa0 */
597 { 33, "L4=Sd=" }, /* 0xa1 */
598 /* R_RESERVED */
599 { 0, "" }, /* 0xa2 */
600 { 0, "" }, /* 0xa3 */
601 { 0, "" }, /* 0xa4 */
602 { 0, "" }, /* 0xa5 */
603 { 0, "" }, /* 0xa6 */
604 { 0, "" }, /* 0xa7 */
605 { 0, "" }, /* 0xa8 */
606 { 0, "" }, /* 0xa9 */
607 { 0, "" }, /* 0xaa */
608 { 0, "" }, /* 0xab */
609 { 0, "" }, /* 0xac */
610 { 0, "" }, /* 0xad */
611 /* R_MILLI_REL */
612 { 0, "L4=Sb=" }, /* 0xae */
613 { 1, "L4=Sd=" }, /* 0xaf */
614 /* R_CODE_PLABEL */
615 { 0, "L4=Sb=" }, /* 0xb0 */
616 { 1, "L4=Sd=" }, /* 0xb1 */
617 /* R_BREAKPOINT */
618 { 0, "L4=" }, /* 0xb2 */
619 /* R_ENTRY */
620 { 0, "Te=Ue=" }, /* 0xb3 */
621 { 1, "Uf=" }, /* 0xb4 */
622 /* R_ALT_ENTRY */
623 { 0, "" }, /* 0xb5 */
624 /* R_EXIT */
625 { 0, "" }, /* 0xb6 */
626 /* R_BEGIN_TRY */
627 { 0, "" }, /* 0xb7 */
628 /* R_END_TRY */
629 { 0, "R0=" }, /* 0xb8 */
630 { 1, "Rb4*=" }, /* 0xb9 */
631 { 2, "Rd4*=" }, /* 0xba */
632 /* R_BEGIN_BRTAB */
633 { 0, "" }, /* 0xbb */
634 /* R_END_BRTAB */
635 { 0, "" }, /* 0xbc */
636 /* R_STATEMENT */
637 { 0, "Nb=" }, /* 0xbd */
638 { 1, "Nc=" }, /* 0xbe */
639 { 2, "Nd=" }, /* 0xbf */
640 /* R_DATA_EXPR */
641 { 0, "L4=" }, /* 0xc0 */
642 /* R_CODE_EXPR */
643 { 0, "L4=" }, /* 0xc1 */
644 /* R_FSEL */
645 { 0, "" }, /* 0xc2 */
646 /* R_LSEL */
647 { 0, "" }, /* 0xc3 */
648 /* R_RSEL */
649 { 0, "" }, /* 0xc4 */
650 /* R_N_MODE */
651 { 0, "" }, /* 0xc5 */
652 /* R_S_MODE */
653 { 0, "" }, /* 0xc6 */
654 /* R_D_MODE */
655 { 0, "" }, /* 0xc7 */
656 /* R_R_MODE */
657 { 0, "" }, /* 0xc8 */
658 /* R_DATA_OVERRIDE */
659 { 0, "V0=" }, /* 0xc9 */
660 { 1, "Vb=" }, /* 0xca */
661 { 2, "Vc=" }, /* 0xcb */
662 { 3, "Vd=" }, /* 0xcc */
663 { 4, "Ve=" }, /* 0xcd */
664 /* R_TRANSLATED */
665 { 0, "" }, /* 0xce */
666 /* R_AUX_UNWIND */
667 { 0,"Sd=Ve=Ee=" }, /* 0xcf */
668 /* R_COMP1 */
669 { 0, "Ob=" }, /* 0xd0 */
670 /* R_COMP2 */
671 { 0, "Ob=Sd=" }, /* 0xd1 */
672 /* R_COMP3 */
673 { 0, "Ob=Ve=" }, /* 0xd2 */
674 /* R_PREV_FIXUP */
675 { 0, "P" }, /* 0xd3 */
676 { 1, "P" }, /* 0xd4 */
677 { 2, "P" }, /* 0xd5 */
678 { 3, "P" }, /* 0xd6 */
679 /* R_SEC_STMT */
680 { 0, "" }, /* 0xd7 */
681 /* R_N0SEL */
682 { 0, "" }, /* 0xd8 */
683 /* R_N1SEL */
684 { 0, "" }, /* 0xd9 */
685 /* R_LINETAB */
686 { 0, "Eb=Sd=Ve=" }, /* 0xda */
687 /* R_LINETAB_ESC */
688 { 0, "Eb=Mb=" }, /* 0xdb */
689 /* R_LTP_OVERRIDE */
690 { 0, "" }, /* 0xdc */
691 /* R_COMMENT */
692 { 0, "Ob=Vf=" }, /* 0xdd */
693 /* R_RESERVED */
694 { 0, "" }, /* 0xde */
695 { 0, "" }, /* 0xdf */
696 { 0, "" }, /* 0xe0 */
697 { 0, "" }, /* 0xe1 */
698 { 0, "" }, /* 0xe2 */
699 { 0, "" }, /* 0xe3 */
700 { 0, "" }, /* 0xe4 */
701 { 0, "" }, /* 0xe5 */
702 { 0, "" }, /* 0xe6 */
703 { 0, "" }, /* 0xe7 */
704 { 0, "" }, /* 0xe8 */
705 { 0, "" }, /* 0xe9 */
706 { 0, "" }, /* 0xea */
707 { 0, "" }, /* 0xeb */
708 { 0, "" }, /* 0xec */
709 { 0, "" }, /* 0xed */
710 { 0, "" }, /* 0xee */
711 { 0, "" }, /* 0xef */
712 { 0, "" }, /* 0xf0 */
713 { 0, "" }, /* 0xf1 */
714 { 0, "" }, /* 0xf2 */
715 { 0, "" }, /* 0xf3 */
716 { 0, "" }, /* 0xf4 */
717 { 0, "" }, /* 0xf5 */
718 { 0, "" }, /* 0xf6 */
719 { 0, "" }, /* 0xf7 */
720 { 0, "" }, /* 0xf8 */
721 { 0, "" }, /* 0xf9 */
722 { 0, "" }, /* 0xfa */
723 { 0, "" }, /* 0xfb */
724 { 0, "" }, /* 0xfc */
725 { 0, "" }, /* 0xfd */
726 { 0, "" }, /* 0xfe */
727 { 0, "" }, /* 0xff */
728 };
729
730 static const int comp1_opcodes[] = {
731 0x00,
732 0x40,
733 0x41,
734 0x42,
735 0x43,
736 0x44,
737 0x45,
738 0x46,
739 0x47,
740 0x48,
741 0x49,
742 0x4a,
743 0x4b,
744 0x60,
745 0x80,
746 0xa0,
747 0xc0,
748 -1
749 };
750
751 static const int comp2_opcodes[] = {
752 0x00,
753 0x80,
754 0x82,
755 0xc0,
756 -1
757 };
758
759 static const int comp3_opcodes[] = {
760 0x00,
761 0x02,
762 -1
763 };
764
765 /* These apparently are not in older versions of hpux reloc.h (hpux7). */
766 #ifndef R_DLT_REL
767 #define R_DLT_REL 0x78
768 #endif
769
770 #ifndef R_AUX_UNWIND
771 #define R_AUX_UNWIND 0xcf
772 #endif
773
774 #ifndef R_SEC_STMT
775 #define R_SEC_STMT 0xd7
776 #endif
777
778 /* And these first appeared in hpux10. */
779 #ifndef R_SHORT_PCREL_MODE
780 #define NO_PCREL_MODES
781 #define R_SHORT_PCREL_MODE 0x3e
782 #endif
783
784 #ifndef R_LONG_PCREL_MODE
785 #define R_LONG_PCREL_MODE 0x3f
786 #endif
787
788 #ifndef R_N0SEL
789 #define R_N0SEL 0xd8
790 #endif
791
792 #ifndef R_N1SEL
793 #define R_N1SEL 0xd9
794 #endif
795
796 #ifndef R_LINETAB
797 #define R_LINETAB 0xda
798 #endif
799
800 #ifndef R_LINETAB_ESC
801 #define R_LINETAB_ESC 0xdb
802 #endif
803
804 #ifndef R_LTP_OVERRIDE
805 #define R_LTP_OVERRIDE 0xdc
806 #endif
807
808 #ifndef R_COMMENT
809 #define R_COMMENT 0xdd
810 #endif
811
812 #define SOM_HOWTO(TYPE, NAME) \
813 HOWTO(TYPE, 0, 0, 32, FALSE, 0, 0, hppa_som_reloc, NAME, FALSE, 0, 0, FALSE)
814
815 static reloc_howto_type som_hppa_howto_table[] = {
816 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
817 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
818 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
819 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
820 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
821 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
822 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
823 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
824 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
825 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
826 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
827 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
828 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
829 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
830 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
831 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
832 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
833 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
834 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
835 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
836 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
837 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
838 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
839 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
840 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
841 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
842 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
843 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
844 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
845 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
846 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
847 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
848 SOM_HOWTO (R_ZEROES, "R_ZEROES"),
849 SOM_HOWTO (R_ZEROES, "R_ZEROES"),
850 SOM_HOWTO (R_UNINIT, "R_UNINIT"),
851 SOM_HOWTO (R_UNINIT, "R_UNINIT"),
852 SOM_HOWTO (R_RELOCATION, "R_RELOCATION"),
853 SOM_HOWTO (R_DATA_ONE_SYMBOL, "R_DATA_ONE_SYMBOL"),
854 SOM_HOWTO (R_DATA_ONE_SYMBOL, "R_DATA_ONE_SYMBOL"),
855 SOM_HOWTO (R_DATA_PLABEL, "R_DATA_PLABEL"),
856 SOM_HOWTO (R_DATA_PLABEL, "R_DATA_PLABEL"),
857 SOM_HOWTO (R_SPACE_REF, "R_SPACE_REF"),
858 SOM_HOWTO (R_REPEATED_INIT, "REPEATED_INIT"),
859 SOM_HOWTO (R_REPEATED_INIT, "REPEATED_INIT"),
860 SOM_HOWTO (R_REPEATED_INIT, "REPEATED_INIT"),
861 SOM_HOWTO (R_REPEATED_INIT, "REPEATED_INIT"),
862 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
863 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
864 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
865 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
866 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
867 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
868 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
869 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
870 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
871 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
872 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
873 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
874 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
875 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
876 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
877 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
878 SOM_HOWTO (R_SHORT_PCREL_MODE, "R_SHORT_PCREL_MODE"),
879 SOM_HOWTO (R_LONG_PCREL_MODE, "R_LONG_PCREL_MODE"),
880 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
881 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
882 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
883 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
884 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
885 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
886 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
887 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
888 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
889 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
890 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
891 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
892 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
893 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
894 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
895 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
896 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
897 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
898 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
899 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
900 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
901 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
902 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
903 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
904 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
905 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
906 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
907 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
908 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
909 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
910 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
911 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
912 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
913 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
914 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
915 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
916 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
917 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
918 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
919 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
920 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
921 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
922 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
923 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
924 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
925 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
926 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
927 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
928 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
929 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
930 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
931 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
932 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
933 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
934 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
935 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
936 SOM_HOWTO (R_DLT_REL, "R_DLT_REL"),
937 SOM_HOWTO (R_DLT_REL, "R_DLT_REL"),
938 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
939 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
940 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
941 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
942 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
943 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
944 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
945 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
946 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
947 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
948 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
949 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
950 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
951 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
952 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
953 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
954 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
955 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
956 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
957 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
958 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
959 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
960 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
961 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
962 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
963 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
964 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
965 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
966 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
967 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
968 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
969 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
970 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
971 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
972 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
973 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
974 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
975 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
976 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
977 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
978 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
979 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
980 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
981 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
982 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
983 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
984 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
985 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
986 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
987 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
988 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
989 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
990 SOM_HOWTO (R_MILLI_REL, "R_MILLI_REL"),
991 SOM_HOWTO (R_MILLI_REL, "R_MILLI_REL"),
992 SOM_HOWTO (R_CODE_PLABEL, "R_CODE_PLABEL"),
993 SOM_HOWTO (R_CODE_PLABEL, "R_CODE_PLABEL"),
994 SOM_HOWTO (R_BREAKPOINT, "R_BREAKPOINT"),
995 SOM_HOWTO (R_ENTRY, "R_ENTRY"),
996 SOM_HOWTO (R_ENTRY, "R_ENTRY"),
997 SOM_HOWTO (R_ALT_ENTRY, "R_ALT_ENTRY"),
998 SOM_HOWTO (R_EXIT, "R_EXIT"),
999 SOM_HOWTO (R_BEGIN_TRY, "R_BEGIN_TRY"),
1000 SOM_HOWTO (R_END_TRY, "R_END_TRY"),
1001 SOM_HOWTO (R_END_TRY, "R_END_TRY"),
1002 SOM_HOWTO (R_END_TRY, "R_END_TRY"),
1003 SOM_HOWTO (R_BEGIN_BRTAB, "R_BEGIN_BRTAB"),
1004 SOM_HOWTO (R_END_BRTAB, "R_END_BRTAB"),
1005 SOM_HOWTO (R_STATEMENT, "R_STATEMENT"),
1006 SOM_HOWTO (R_STATEMENT, "R_STATEMENT"),
1007 SOM_HOWTO (R_STATEMENT, "R_STATEMENT"),
1008 SOM_HOWTO (R_DATA_EXPR, "R_DATA_EXPR"),
1009 SOM_HOWTO (R_CODE_EXPR, "R_CODE_EXPR"),
1010 SOM_HOWTO (R_FSEL, "R_FSEL"),
1011 SOM_HOWTO (R_LSEL, "R_LSEL"),
1012 SOM_HOWTO (R_RSEL, "R_RSEL"),
1013 SOM_HOWTO (R_N_MODE, "R_N_MODE"),
1014 SOM_HOWTO (R_S_MODE, "R_S_MODE"),
1015 SOM_HOWTO (R_D_MODE, "R_D_MODE"),
1016 SOM_HOWTO (R_R_MODE, "R_R_MODE"),
1017 SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
1018 SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
1019 SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
1020 SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
1021 SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
1022 SOM_HOWTO (R_TRANSLATED, "R_TRANSLATED"),
1023 SOM_HOWTO (R_AUX_UNWIND, "R_AUX_UNWIND"),
1024 SOM_HOWTO (R_COMP1, "R_COMP1"),
1025 SOM_HOWTO (R_COMP2, "R_COMP2"),
1026 SOM_HOWTO (R_COMP3, "R_COMP3"),
1027 SOM_HOWTO (R_PREV_FIXUP, "R_PREV_FIXUP"),
1028 SOM_HOWTO (R_PREV_FIXUP, "R_PREV_FIXUP"),
1029 SOM_HOWTO (R_PREV_FIXUP, "R_PREV_FIXUP"),
1030 SOM_HOWTO (R_PREV_FIXUP, "R_PREV_FIXUP"),
1031 SOM_HOWTO (R_SEC_STMT, "R_SEC_STMT"),
1032 SOM_HOWTO (R_N0SEL, "R_N0SEL"),
1033 SOM_HOWTO (R_N1SEL, "R_N1SEL"),
1034 SOM_HOWTO (R_LINETAB, "R_LINETAB"),
1035 SOM_HOWTO (R_LINETAB_ESC, "R_LINETAB_ESC"),
1036 SOM_HOWTO (R_LTP_OVERRIDE, "R_LTP_OVERRIDE"),
1037 SOM_HOWTO (R_COMMENT, "R_COMMENT"),
1038 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1039 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1040 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1041 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1042 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1043 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1044 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1045 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1046 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1047 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1048 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1049 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1050 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1051 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1052 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1053 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1054 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1055 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1056 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1057 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1058 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1059 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1060 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1061 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1062 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1063 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1064 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1065 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1066 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1067 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1068 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1069 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1070 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1071 SOM_HOWTO (R_RESERVED, "R_RESERVED")
1072 };
1073
1074 /* Initialize the SOM relocation queue. By definition the queue holds
1075 the last four multibyte fixups. */
1076
1077 static void
1078 som_initialize_reloc_queue (queue)
1079 struct reloc_queue *queue;
1080 {
1081 queue[0].reloc = NULL;
1082 queue[0].size = 0;
1083 queue[1].reloc = NULL;
1084 queue[1].size = 0;
1085 queue[2].reloc = NULL;
1086 queue[2].size = 0;
1087 queue[3].reloc = NULL;
1088 queue[3].size = 0;
1089 }
1090
1091 /* Insert a new relocation into the relocation queue. */
1092
1093 static void
1094 som_reloc_queue_insert (p, size, queue)
1095 unsigned char *p;
1096 unsigned int size;
1097 struct reloc_queue *queue;
1098 {
1099 queue[3].reloc = queue[2].reloc;
1100 queue[3].size = queue[2].size;
1101 queue[2].reloc = queue[1].reloc;
1102 queue[2].size = queue[1].size;
1103 queue[1].reloc = queue[0].reloc;
1104 queue[1].size = queue[0].size;
1105 queue[0].reloc = p;
1106 queue[0].size = size;
1107 }
1108
1109 /* When an entry in the relocation queue is reused, the entry moves
1110 to the front of the queue. */
1111
1112 static void
1113 som_reloc_queue_fix (queue, index)
1114 struct reloc_queue *queue;
1115 unsigned int index;
1116 {
1117 if (index == 0)
1118 return;
1119
1120 if (index == 1)
1121 {
1122 unsigned char *tmp1 = queue[0].reloc;
1123 unsigned int tmp2 = queue[0].size;
1124 queue[0].reloc = queue[1].reloc;
1125 queue[0].size = queue[1].size;
1126 queue[1].reloc = tmp1;
1127 queue[1].size = tmp2;
1128 return;
1129 }
1130
1131 if (index == 2)
1132 {
1133 unsigned char *tmp1 = queue[0].reloc;
1134 unsigned int tmp2 = queue[0].size;
1135 queue[0].reloc = queue[2].reloc;
1136 queue[0].size = queue[2].size;
1137 queue[2].reloc = queue[1].reloc;
1138 queue[2].size = queue[1].size;
1139 queue[1].reloc = tmp1;
1140 queue[1].size = tmp2;
1141 return;
1142 }
1143
1144 if (index == 3)
1145 {
1146 unsigned char *tmp1 = queue[0].reloc;
1147 unsigned int tmp2 = queue[0].size;
1148 queue[0].reloc = queue[3].reloc;
1149 queue[0].size = queue[3].size;
1150 queue[3].reloc = queue[2].reloc;
1151 queue[3].size = queue[2].size;
1152 queue[2].reloc = queue[1].reloc;
1153 queue[2].size = queue[1].size;
1154 queue[1].reloc = tmp1;
1155 queue[1].size = tmp2;
1156 return;
1157 }
1158 abort ();
1159 }
1160
1161 /* Search for a particular relocation in the relocation queue. */
1162
1163 static int
1164 som_reloc_queue_find (p, size, queue)
1165 unsigned char *p;
1166 unsigned int size;
1167 struct reloc_queue *queue;
1168 {
1169 if (queue[0].reloc && !memcmp (p, queue[0].reloc, size)
1170 && size == queue[0].size)
1171 return 0;
1172 if (queue[1].reloc && !memcmp (p, queue[1].reloc, size)
1173 && size == queue[1].size)
1174 return 1;
1175 if (queue[2].reloc && !memcmp (p, queue[2].reloc, size)
1176 && size == queue[2].size)
1177 return 2;
1178 if (queue[3].reloc && !memcmp (p, queue[3].reloc, size)
1179 && size == queue[3].size)
1180 return 3;
1181 return -1;
1182 }
1183
1184 static unsigned char *
1185 try_prev_fixup (abfd, subspace_reloc_sizep, p, size, queue)
1186 bfd *abfd ATTRIBUTE_UNUSED;
1187 int *subspace_reloc_sizep;
1188 unsigned char *p;
1189 unsigned int size;
1190 struct reloc_queue *queue;
1191 {
1192 int queue_index = som_reloc_queue_find (p, size, queue);
1193
1194 if (queue_index != -1)
1195 {
1196 /* Found this in a previous fixup. Undo the fixup we
1197 just built and use R_PREV_FIXUP instead. We saved
1198 a total of size - 1 bytes in the fixup stream. */
1199 bfd_put_8 (abfd, R_PREV_FIXUP + queue_index, p);
1200 p += 1;
1201 *subspace_reloc_sizep += 1;
1202 som_reloc_queue_fix (queue, queue_index);
1203 }
1204 else
1205 {
1206 som_reloc_queue_insert (p, size, queue);
1207 *subspace_reloc_sizep += size;
1208 p += size;
1209 }
1210 return p;
1211 }
1212
1213 /* Emit the proper R_NO_RELOCATION fixups to map the next SKIP
1214 bytes without any relocation. Update the size of the subspace
1215 relocation stream via SUBSPACE_RELOC_SIZE_P; also return the
1216 current pointer into the relocation stream. */
1217
1218 static unsigned char *
1219 som_reloc_skip (abfd, skip, p, subspace_reloc_sizep, queue)
1220 bfd *abfd;
1221 unsigned int skip;
1222 unsigned char *p;
1223 unsigned int *subspace_reloc_sizep;
1224 struct reloc_queue *queue;
1225 {
1226 /* Use a 4 byte R_NO_RELOCATION entry with a maximal value
1227 then R_PREV_FIXUPs to get the difference down to a
1228 reasonable size. */
1229 if (skip >= 0x1000000)
1230 {
1231 skip -= 0x1000000;
1232 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1233 bfd_put_8 (abfd, 0xff, p + 1);
1234 bfd_put_16 (abfd, (bfd_vma) 0xffff, p + 2);
1235 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1236 while (skip >= 0x1000000)
1237 {
1238 skip -= 0x1000000;
1239 bfd_put_8 (abfd, R_PREV_FIXUP, p);
1240 p++;
1241 *subspace_reloc_sizep += 1;
1242 /* No need to adjust queue here since we are repeating the
1243 most recent fixup. */
1244 }
1245 }
1246
1247 /* The difference must be less than 0x1000000. Use one
1248 more R_NO_RELOCATION entry to get to the right difference. */
1249 if ((skip & 3) == 0 && skip <= 0xc0000 && skip > 0)
1250 {
1251 /* Difference can be handled in a simple single-byte
1252 R_NO_RELOCATION entry. */
1253 if (skip <= 0x60)
1254 {
1255 bfd_put_8 (abfd, R_NO_RELOCATION + (skip >> 2) - 1, p);
1256 *subspace_reloc_sizep += 1;
1257 p++;
1258 }
1259 /* Handle it with a two byte R_NO_RELOCATION entry. */
1260 else if (skip <= 0x1000)
1261 {
1262 bfd_put_8 (abfd, R_NO_RELOCATION + 24 + (((skip >> 2) - 1) >> 8), p);
1263 bfd_put_8 (abfd, (skip >> 2) - 1, p + 1);
1264 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1265 }
1266 /* Handle it with a three byte R_NO_RELOCATION entry. */
1267 else
1268 {
1269 bfd_put_8 (abfd, R_NO_RELOCATION + 28 + (((skip >> 2) - 1) >> 16), p);
1270 bfd_put_16 (abfd, (bfd_vma) (skip >> 2) - 1, p + 1);
1271 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1272 }
1273 }
1274 /* Ugh. Punt and use a 4 byte entry. */
1275 else if (skip > 0)
1276 {
1277 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1278 bfd_put_8 (abfd, (skip - 1) >> 16, p + 1);
1279 bfd_put_16 (abfd, (bfd_vma) skip - 1, p + 2);
1280 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1281 }
1282 return p;
1283 }
1284
1285 /* Emit the proper R_DATA_OVERRIDE fixups to handle a nonzero addend
1286 from a BFD relocation. Update the size of the subspace relocation
1287 stream via SUBSPACE_RELOC_SIZE_P; also return the current pointer
1288 into the relocation stream. */
1289
1290 static unsigned char *
1291 som_reloc_addend (abfd, addend, p, subspace_reloc_sizep, queue)
1292 bfd *abfd;
1293 bfd_vma addend;
1294 unsigned char *p;
1295 unsigned int *subspace_reloc_sizep;
1296 struct reloc_queue *queue;
1297 {
1298 if (addend + 0x80 < 0x100)
1299 {
1300 bfd_put_8 (abfd, R_DATA_OVERRIDE + 1, p);
1301 bfd_put_8 (abfd, addend, p + 1);
1302 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1303 }
1304 else if (addend + 0x8000 < 0x10000)
1305 {
1306 bfd_put_8 (abfd, R_DATA_OVERRIDE + 2, p);
1307 bfd_put_16 (abfd, addend, p + 1);
1308 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1309 }
1310 else if (addend + 0x800000 < 0x1000000)
1311 {
1312 bfd_put_8 (abfd, R_DATA_OVERRIDE + 3, p);
1313 bfd_put_8 (abfd, addend >> 16, p + 1);
1314 bfd_put_16 (abfd, addend, p + 2);
1315 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1316 }
1317 else
1318 {
1319 bfd_put_8 (abfd, R_DATA_OVERRIDE + 4, p);
1320 bfd_put_32 (abfd, addend, p + 1);
1321 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1322 }
1323 return p;
1324 }
1325
1326 /* Handle a single function call relocation. */
1327
1328 static unsigned char *
1329 som_reloc_call (abfd, p, subspace_reloc_sizep, bfd_reloc, sym_num, queue)
1330 bfd *abfd;
1331 unsigned char *p;
1332 unsigned int *subspace_reloc_sizep;
1333 arelent *bfd_reloc;
1334 int sym_num;
1335 struct reloc_queue *queue;
1336 {
1337 int arg_bits = HPPA_R_ARG_RELOC (bfd_reloc->addend);
1338 int rtn_bits = arg_bits & 0x3;
1339 int type, done = 0;
1340
1341 /* You'll never believe all this is necessary to handle relocations
1342 for function calls. Having to compute and pack the argument
1343 relocation bits is the real nightmare.
1344
1345 If you're interested in how this works, just forget it. You really
1346 do not want to know about this braindamage. */
1347
1348 /* First see if this can be done with a "simple" relocation. Simple
1349 relocations have a symbol number < 0x100 and have simple encodings
1350 of argument relocations. */
1351
1352 if (sym_num < 0x100)
1353 {
1354 switch (arg_bits)
1355 {
1356 case 0:
1357 case 1:
1358 type = 0;
1359 break;
1360 case 1 << 8:
1361 case 1 << 8 | 1:
1362 type = 1;
1363 break;
1364 case 1 << 8 | 1 << 6:
1365 case 1 << 8 | 1 << 6 | 1:
1366 type = 2;
1367 break;
1368 case 1 << 8 | 1 << 6 | 1 << 4:
1369 case 1 << 8 | 1 << 6 | 1 << 4 | 1:
1370 type = 3;
1371 break;
1372 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2:
1373 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2 | 1:
1374 type = 4;
1375 break;
1376 default:
1377 /* Not one of the easy encodings. This will have to be
1378 handled by the more complex code below. */
1379 type = -1;
1380 break;
1381 }
1382 if (type != -1)
1383 {
1384 /* Account for the return value too. */
1385 if (rtn_bits)
1386 type += 5;
1387
1388 /* Emit a 2 byte relocation. Then see if it can be handled
1389 with a relocation which is already in the relocation queue. */
1390 bfd_put_8 (abfd, bfd_reloc->howto->type + type, p);
1391 bfd_put_8 (abfd, sym_num, p + 1);
1392 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1393 done = 1;
1394 }
1395 }
1396
1397 /* If this could not be handled with a simple relocation, then do a hard
1398 one. Hard relocations occur if the symbol number was too high or if
1399 the encoding of argument relocation bits is too complex. */
1400 if (! done)
1401 {
1402 /* Don't ask about these magic sequences. I took them straight
1403 from gas-1.36 which took them from the a.out man page. */
1404 type = rtn_bits;
1405 if ((arg_bits >> 6 & 0xf) == 0xe)
1406 type += 9 * 40;
1407 else
1408 type += (3 * (arg_bits >> 8 & 3) + (arg_bits >> 6 & 3)) * 40;
1409 if ((arg_bits >> 2 & 0xf) == 0xe)
1410 type += 9 * 4;
1411 else
1412 type += (3 * (arg_bits >> 4 & 3) + (arg_bits >> 2 & 3)) * 4;
1413
1414 /* Output the first two bytes of the relocation. These describe
1415 the length of the relocation and encoding style. */
1416 bfd_put_8 (abfd, bfd_reloc->howto->type + 10
1417 + 2 * (sym_num >= 0x100) + (type >= 0x100),
1418 p);
1419 bfd_put_8 (abfd, type, p + 1);
1420
1421 /* Now output the symbol index and see if this bizarre relocation
1422 just happened to be in the relocation queue. */
1423 if (sym_num < 0x100)
1424 {
1425 bfd_put_8 (abfd, sym_num, p + 2);
1426 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1427 }
1428 else
1429 {
1430 bfd_put_8 (abfd, sym_num >> 16, p + 2);
1431 bfd_put_16 (abfd, (bfd_vma) sym_num, p + 3);
1432 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1433 }
1434 }
1435 return p;
1436 }
1437
1438 /* Return the logarithm of X, base 2, considering X unsigned,
1439 if X is a power of 2. Otherwise, returns -1. */
1440
1441 static int
1442 exact_log2 (x)
1443 unsigned int x;
1444 {
1445 int log = 0;
1446
1447 /* Test for 0 or a power of 2. */
1448 if (x == 0 || x != (x & -x))
1449 return -1;
1450
1451 while ((x >>= 1) != 0)
1452 log++;
1453 return log;
1454 }
1455
1456 static bfd_reloc_status_type
1457 hppa_som_reloc (abfd, reloc_entry, symbol_in, data,
1458 input_section, output_bfd, error_message)
1459 bfd *abfd ATTRIBUTE_UNUSED;
1460 arelent *reloc_entry;
1461 asymbol *symbol_in ATTRIBUTE_UNUSED;
1462 PTR data ATTRIBUTE_UNUSED;
1463 asection *input_section;
1464 bfd *output_bfd;
1465 char **error_message ATTRIBUTE_UNUSED;
1466 {
1467 if (output_bfd)
1468 {
1469 reloc_entry->address += input_section->output_offset;
1470 return bfd_reloc_ok;
1471 }
1472 return bfd_reloc_ok;
1473 }
1474
1475 /* Given a generic HPPA relocation type, the instruction format,
1476 and a field selector, return one or more appropriate SOM relocations. */
1477
1478 int **
1479 hppa_som_gen_reloc_type (abfd, base_type, format, field, sym_diff, sym)
1480 bfd *abfd;
1481 int base_type;
1482 int format;
1483 enum hppa_reloc_field_selector_type_alt field;
1484 int sym_diff;
1485 asymbol *sym;
1486 {
1487 int *final_type, **final_types;
1488
1489 final_types = (int **) bfd_alloc (abfd, (bfd_size_type) sizeof (int *) * 6);
1490 final_type = (int *) bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1491 if (!final_types || !final_type)
1492 return NULL;
1493
1494 /* The field selector may require additional relocations to be
1495 generated. It's impossible to know at this moment if additional
1496 relocations will be needed, so we make them. The code to actually
1497 write the relocation/fixup stream is responsible for removing
1498 any redundant relocations. */
1499 switch (field)
1500 {
1501 case e_fsel:
1502 case e_psel:
1503 case e_lpsel:
1504 case e_rpsel:
1505 final_types[0] = final_type;
1506 final_types[1] = NULL;
1507 final_types[2] = NULL;
1508 *final_type = base_type;
1509 break;
1510
1511 case e_tsel:
1512 case e_ltsel:
1513 case e_rtsel:
1514 final_types[0] = (int *) bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1515 if (!final_types[0])
1516 return NULL;
1517 if (field == e_tsel)
1518 *final_types[0] = R_FSEL;
1519 else if (field == e_ltsel)
1520 *final_types[0] = R_LSEL;
1521 else
1522 *final_types[0] = R_RSEL;
1523 final_types[1] = final_type;
1524 final_types[2] = NULL;
1525 *final_type = base_type;
1526 break;
1527
1528 case e_lssel:
1529 case e_rssel:
1530 final_types[0] = (int *) bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1531 if (!final_types[0])
1532 return NULL;
1533 *final_types[0] = R_S_MODE;
1534 final_types[1] = final_type;
1535 final_types[2] = NULL;
1536 *final_type = base_type;
1537 break;
1538
1539 case e_lsel:
1540 case e_rsel:
1541 final_types[0] = (int *) bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1542 if (!final_types[0])
1543 return NULL;
1544 *final_types[0] = R_N_MODE;
1545 final_types[1] = final_type;
1546 final_types[2] = NULL;
1547 *final_type = base_type;
1548 break;
1549
1550 case e_ldsel:
1551 case e_rdsel:
1552 final_types[0] = (int *) bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1553 if (!final_types[0])
1554 return NULL;
1555 *final_types[0] = R_D_MODE;
1556 final_types[1] = final_type;
1557 final_types[2] = NULL;
1558 *final_type = base_type;
1559 break;
1560
1561 case e_lrsel:
1562 case e_rrsel:
1563 final_types[0] = (int *) bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1564 if (!final_types[0])
1565 return NULL;
1566 *final_types[0] = R_R_MODE;
1567 final_types[1] = final_type;
1568 final_types[2] = NULL;
1569 *final_type = base_type;
1570 break;
1571
1572 case e_nsel:
1573 final_types[0] = (int *) bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1574 if (!final_types[0])
1575 return NULL;
1576 *final_types[0] = R_N1SEL;
1577 final_types[1] = final_type;
1578 final_types[2] = NULL;
1579 *final_type = base_type;
1580 break;
1581
1582 case e_nlsel:
1583 case e_nlrsel:
1584 final_types[0] = (int *) bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1585 if (!final_types[0])
1586 return NULL;
1587 *final_types[0] = R_N0SEL;
1588 final_types[1] = (int *) bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1589 if (!final_types[1])
1590 return NULL;
1591 if (field == e_nlsel)
1592 *final_types[1] = R_N_MODE;
1593 else
1594 *final_types[1] = R_R_MODE;
1595 final_types[2] = final_type;
1596 final_types[3] = NULL;
1597 *final_type = base_type;
1598 break;
1599
1600 /* FIXME: These two field selectors are not currently supported. */
1601 case e_ltpsel:
1602 case e_rtpsel:
1603 abort ();
1604 }
1605
1606 switch (base_type)
1607 {
1608 case R_HPPA:
1609 /* The difference of two symbols needs *very* special handling. */
1610 if (sym_diff)
1611 {
1612 bfd_size_type amt = sizeof (int);
1613 final_types[0] = (int *) bfd_alloc (abfd, amt);
1614 final_types[1] = (int *) bfd_alloc (abfd, amt);
1615 final_types[2] = (int *) bfd_alloc (abfd, amt);
1616 final_types[3] = (int *) bfd_alloc (abfd, amt);
1617 if (!final_types[0] || !final_types[1] || !final_types[2])
1618 return NULL;
1619 if (field == e_fsel)
1620 *final_types[0] = R_FSEL;
1621 else if (field == e_rsel)
1622 *final_types[0] = R_RSEL;
1623 else if (field == e_lsel)
1624 *final_types[0] = R_LSEL;
1625 *final_types[1] = R_COMP2;
1626 *final_types[2] = R_COMP2;
1627 *final_types[3] = R_COMP1;
1628 final_types[4] = final_type;
1629 if (format == 32)
1630 *final_types[4] = R_DATA_EXPR;
1631 else
1632 *final_types[4] = R_CODE_EXPR;
1633 final_types[5] = NULL;
1634 break;
1635 }
1636 /* PLABELs get their own relocation type. */
1637 else if (field == e_psel
1638 || field == e_lpsel
1639 || field == e_rpsel)
1640 {
1641 /* A PLABEL relocation that has a size of 32 bits must
1642 be a R_DATA_PLABEL. All others are R_CODE_PLABELs. */
1643 if (format == 32)
1644 *final_type = R_DATA_PLABEL;
1645 else
1646 *final_type = R_CODE_PLABEL;
1647 }
1648 /* PIC stuff. */
1649 else if (field == e_tsel
1650 || field == e_ltsel
1651 || field == e_rtsel)
1652 *final_type = R_DLT_REL;
1653 /* A relocation in the data space is always a full 32bits. */
1654 else if (format == 32)
1655 {
1656 *final_type = R_DATA_ONE_SYMBOL;
1657
1658 /* If there's no SOM symbol type associated with this BFD
1659 symbol, then set the symbol type to ST_DATA.
1660
1661 Only do this if the type is going to default later when
1662 we write the object file.
1663
1664 This is done so that the linker never encounters an
1665 R_DATA_ONE_SYMBOL reloc involving an ST_CODE symbol.
1666
1667 This allows the compiler to generate exception handling
1668 tables.
1669
1670 Note that one day we may need to also emit BEGIN_BRTAB and
1671 END_BRTAB to prevent the linker from optimizing away insns
1672 in exception handling regions. */
1673 if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
1674 && (sym->flags & BSF_SECTION_SYM) == 0
1675 && (sym->flags & BSF_FUNCTION) == 0
1676 && ! bfd_is_com_section (sym->section))
1677 som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
1678 }
1679 break;
1680
1681 case R_HPPA_GOTOFF:
1682 /* More PLABEL special cases. */
1683 if (field == e_psel
1684 || field == e_lpsel
1685 || field == e_rpsel)
1686 *final_type = R_DATA_PLABEL;
1687 break;
1688
1689 case R_HPPA_COMPLEX:
1690 /* The difference of two symbols needs *very* special handling. */
1691 if (sym_diff)
1692 {
1693 bfd_size_type amt = sizeof (int);
1694 final_types[0] = (int *) bfd_alloc (abfd, amt);
1695 final_types[1] = (int *) bfd_alloc (abfd, amt);
1696 final_types[2] = (int *) bfd_alloc (abfd, amt);
1697 final_types[3] = (int *) bfd_alloc (abfd, amt);
1698 if (!final_types[0] || !final_types[1] || !final_types[2])
1699 return NULL;
1700 if (field == e_fsel)
1701 *final_types[0] = R_FSEL;
1702 else if (field == e_rsel)
1703 *final_types[0] = R_RSEL;
1704 else if (field == e_lsel)
1705 *final_types[0] = R_LSEL;
1706 *final_types[1] = R_COMP2;
1707 *final_types[2] = R_COMP2;
1708 *final_types[3] = R_COMP1;
1709 final_types[4] = final_type;
1710 if (format == 32)
1711 *final_types[4] = R_DATA_EXPR;
1712 else
1713 *final_types[4] = R_CODE_EXPR;
1714 final_types[5] = NULL;
1715 break;
1716 }
1717 else
1718 break;
1719
1720 case R_HPPA_NONE:
1721 case R_HPPA_ABS_CALL:
1722 /* Right now we can default all these. */
1723 break;
1724
1725 case R_HPPA_PCREL_CALL:
1726 {
1727 #ifndef NO_PCREL_MODES
1728 /* If we have short and long pcrel modes, then generate the proper
1729 mode selector, then the pcrel relocation. Redundant selectors
1730 will be eliminated as the relocs are sized and emitted. */
1731 bfd_size_type amt = sizeof (int);
1732 final_types[0] = (int *) bfd_alloc (abfd, amt);
1733 if (!final_types[0])
1734 return NULL;
1735 if (format == 17)
1736 *final_types[0] = R_SHORT_PCREL_MODE;
1737 else
1738 *final_types[0] = R_LONG_PCREL_MODE;
1739 final_types[1] = final_type;
1740 final_types[2] = NULL;
1741 *final_type = base_type;
1742 #endif
1743 break;
1744 }
1745 }
1746 return final_types;
1747 }
1748
1749 /* Return the address of the correct entry in the PA SOM relocation
1750 howto table. */
1751
1752 static reloc_howto_type *
1753 som_bfd_reloc_type_lookup (abfd, code)
1754 bfd *abfd ATTRIBUTE_UNUSED;
1755 bfd_reloc_code_real_type code;
1756 {
1757 if ((int) code < (int) R_NO_RELOCATION + 255)
1758 {
1759 BFD_ASSERT ((int) som_hppa_howto_table[(int) code].type == (int) code);
1760 return &som_hppa_howto_table[(int) code];
1761 }
1762
1763 return (reloc_howto_type *) 0;
1764 }
1765
1766 /* Perform some initialization for an object. Save results of this
1767 initialization in the BFD. */
1768
1769 static const bfd_target *
1770 som_object_setup (abfd, file_hdrp, aux_hdrp, current_offset)
1771 bfd *abfd;
1772 struct header *file_hdrp;
1773 struct som_exec_auxhdr *aux_hdrp;
1774 unsigned long current_offset;
1775 {
1776 asection *section;
1777
1778 /* som_mkobject will set bfd_error if som_mkobject fails. */
1779 if (! som_mkobject (abfd))
1780 return 0;
1781
1782 /* Set BFD flags based on what information is available in the SOM. */
1783 abfd->flags = BFD_NO_FLAGS;
1784 if (file_hdrp->symbol_total)
1785 abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;
1786
1787 switch (file_hdrp->a_magic)
1788 {
1789 case DEMAND_MAGIC:
1790 abfd->flags |= (D_PAGED | WP_TEXT | EXEC_P);
1791 break;
1792 case SHARE_MAGIC:
1793 abfd->flags |= (WP_TEXT | EXEC_P);
1794 break;
1795 case EXEC_MAGIC:
1796 abfd->flags |= (EXEC_P);
1797 break;
1798 case RELOC_MAGIC:
1799 abfd->flags |= HAS_RELOC;
1800 break;
1801 #ifdef SHL_MAGIC
1802 case SHL_MAGIC:
1803 #endif
1804 #ifdef DL_MAGIC
1805 case DL_MAGIC:
1806 #endif
1807 abfd->flags |= DYNAMIC;
1808 break;
1809
1810 default:
1811 break;
1812 }
1813
1814 /* Save the auxiliary header. */
1815 obj_som_exec_hdr (abfd) = aux_hdrp;
1816
1817 /* Allocate space to hold the saved exec header information. */
1818 obj_som_exec_data (abfd) = (struct som_exec_data *)
1819 bfd_zalloc (abfd, (bfd_size_type) sizeof (struct som_exec_data));
1820 if (obj_som_exec_data (abfd) == NULL)
1821 return NULL;
1822
1823 /* The braindamaged OSF1 linker switched exec_flags and exec_entry!
1824
1825 We used to identify OSF1 binaries based on NEW_VERSION_ID, but
1826 apparently the latest HPUX linker is using NEW_VERSION_ID now.
1827
1828 It's about time, OSF has used the new id since at least 1992;
1829 HPUX didn't start till nearly 1995!.
1830
1831 The new approach examines the entry field for an executable. If
1832 it is not 4-byte aligned then it's not a proper code address and
1833 we guess it's really the executable flags. For a main program,
1834 we also consider zero to be indicative of a buggy linker, since
1835 that is not a valid entry point. The entry point for a shared
1836 library, however, can be zero so we do not consider that to be
1837 indicative of a buggy linker. */
1838 if (aux_hdrp)
1839 {
1840 int found = 0;
1841
1842 for (section = abfd->sections; section; section = section->next)
1843 {
1844 bfd_vma entry;
1845
1846 if ((section->flags & SEC_CODE) == 0)
1847 continue;
1848 entry = aux_hdrp->exec_entry + aux_hdrp->exec_tmem;
1849 if (entry >= section->vma
1850 && entry < section->vma + section->size)
1851 found = 1;
1852 }
1853 if ((aux_hdrp->exec_entry == 0 && !(abfd->flags & DYNAMIC))
1854 || (aux_hdrp->exec_entry & 0x3) != 0
1855 || ! found)
1856 {
1857 bfd_get_start_address (abfd) = aux_hdrp->exec_flags;
1858 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_entry;
1859 }
1860 else
1861 {
1862 bfd_get_start_address (abfd) = aux_hdrp->exec_entry + current_offset;
1863 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_flags;
1864 }
1865 }
1866
1867 obj_som_exec_data (abfd)->version_id = file_hdrp->version_id;
1868
1869 bfd_default_set_arch_mach (abfd, bfd_arch_hppa, pa10);
1870 bfd_get_symcount (abfd) = file_hdrp->symbol_total;
1871
1872 /* Initialize the saved symbol table and string table to NULL.
1873 Save important offsets and sizes from the SOM header into
1874 the BFD. */
1875 obj_som_stringtab (abfd) = (char *) NULL;
1876 obj_som_symtab (abfd) = (som_symbol_type *) NULL;
1877 obj_som_sorted_syms (abfd) = NULL;
1878 obj_som_stringtab_size (abfd) = file_hdrp->symbol_strings_size;
1879 obj_som_sym_filepos (abfd) = file_hdrp->symbol_location + current_offset;
1880 obj_som_str_filepos (abfd) = (file_hdrp->symbol_strings_location
1881 + current_offset);
1882 obj_som_reloc_filepos (abfd) = (file_hdrp->fixup_request_location
1883 + current_offset);
1884 obj_som_exec_data (abfd)->system_id = file_hdrp->system_id;
1885
1886 return abfd->xvec;
1887 }
1888
1889 /* Convert all of the space and subspace info into BFD sections. Each space
1890 contains a number of subspaces, which in turn describe the mapping between
1891 regions of the exec file, and the address space that the program runs in.
1892 BFD sections which correspond to spaces will overlap the sections for the
1893 associated subspaces. */
1894
1895 static bfd_boolean
1896 setup_sections (abfd, file_hdr, current_offset)
1897 bfd *abfd;
1898 struct header *file_hdr;
1899 unsigned long current_offset;
1900 {
1901 char *space_strings;
1902 unsigned int space_index, i;
1903 unsigned int total_subspaces = 0;
1904 asection **subspace_sections = NULL;
1905 asection *section;
1906 bfd_size_type amt;
1907
1908 /* First, read in space names. */
1909
1910 amt = file_hdr->space_strings_size;
1911 space_strings = bfd_malloc (amt);
1912 if (!space_strings && amt != 0)
1913 goto error_return;
1914
1915 if (bfd_seek (abfd, current_offset + file_hdr->space_strings_location,
1916 SEEK_SET) != 0)
1917 goto error_return;
1918 if (bfd_bread (space_strings, amt, abfd) != amt)
1919 goto error_return;
1920
1921 /* Loop over all of the space dictionaries, building up sections. */
1922 for (space_index = 0; space_index < file_hdr->space_total; space_index++)
1923 {
1924 struct space_dictionary_record space;
1925 struct som_subspace_dictionary_record subspace, save_subspace;
1926 unsigned int subspace_index;
1927 asection *space_asect;
1928 bfd_size_type space_size = 0;
1929 char *newname;
1930
1931 /* Read the space dictionary element. */
1932 if (bfd_seek (abfd,
1933 (current_offset + file_hdr->space_location
1934 + space_index * sizeof space),
1935 SEEK_SET) != 0)
1936 goto error_return;
1937 amt = sizeof space;
1938 if (bfd_bread (&space, amt, abfd) != amt)
1939 goto error_return;
1940
1941 /* Setup the space name string. */
1942 space.name.n_name = space.name.n_strx + space_strings;
1943
1944 /* Make a section out of it. */
1945 amt = strlen (space.name.n_name) + 1;
1946 newname = bfd_alloc (abfd, amt);
1947 if (!newname)
1948 goto error_return;
1949 strcpy (newname, space.name.n_name);
1950
1951 space_asect = bfd_make_section_anyway (abfd, newname);
1952 if (!space_asect)
1953 goto error_return;
1954
1955 if (space.is_loadable == 0)
1956 space_asect->flags |= SEC_DEBUGGING;
1957
1958 /* Set up all the attributes for the space. */
1959 if (! bfd_som_set_section_attributes (space_asect, space.is_defined,
1960 space.is_private, space.sort_key,
1961 space.space_number))
1962 goto error_return;
1963
1964 /* If the space has no subspaces, then we're done. */
1965 if (space.subspace_quantity == 0)
1966 continue;
1967
1968 /* Now, read in the first subspace for this space. */
1969 if (bfd_seek (abfd,
1970 (current_offset + file_hdr->subspace_location
1971 + space.subspace_index * sizeof subspace),
1972 SEEK_SET) != 0)
1973 goto error_return;
1974 amt = sizeof subspace;
1975 if (bfd_bread (&subspace, amt, abfd) != amt)
1976 goto error_return;
1977 /* Seek back to the start of the subspaces for loop below. */
1978 if (bfd_seek (abfd,
1979 (current_offset + file_hdr->subspace_location
1980 + space.subspace_index * sizeof subspace),
1981 SEEK_SET) != 0)
1982 goto error_return;
1983
1984 /* Setup the start address and file loc from the first subspace
1985 record. */
1986 space_asect->vma = subspace.subspace_start;
1987 space_asect->filepos = subspace.file_loc_init_value + current_offset;
1988 space_asect->alignment_power = exact_log2 (subspace.alignment);
1989 if (space_asect->alignment_power == (unsigned) -1)
1990 goto error_return;
1991
1992 /* Initialize save_subspace so we can reliably determine if this
1993 loop placed any useful values into it. */
1994 memset (&save_subspace, 0, sizeof (save_subspace));
1995
1996 /* Loop over the rest of the subspaces, building up more sections. */
1997 for (subspace_index = 0; subspace_index < space.subspace_quantity;
1998 subspace_index++)
1999 {
2000 asection *subspace_asect;
2001
2002 /* Read in the next subspace. */
2003 amt = sizeof subspace;
2004 if (bfd_bread (&subspace, amt, abfd) != amt)
2005 goto error_return;
2006
2007 /* Setup the subspace name string. */
2008 subspace.name.n_name = subspace.name.n_strx + space_strings;
2009
2010 amt = strlen (subspace.name.n_name) + 1;
2011 newname = bfd_alloc (abfd, amt);
2012 if (!newname)
2013 goto error_return;
2014 strcpy (newname, subspace.name.n_name);
2015
2016 /* Make a section out of this subspace. */
2017 subspace_asect = bfd_make_section_anyway (abfd, newname);
2018 if (!subspace_asect)
2019 goto error_return;
2020
2021 /* Store private information about the section. */
2022 if (! bfd_som_set_subsection_attributes (subspace_asect, space_asect,
2023 subspace.access_control_bits,
2024 subspace.sort_key,
2025 subspace.quadrant,
2026 subspace.is_comdat,
2027 subspace.is_common,
2028 subspace.dup_common))
2029 goto error_return;
2030
2031 /* Keep an easy mapping between subspaces and sections.
2032 Note we do not necessarily read the subspaces in the
2033 same order in which they appear in the object file.
2034
2035 So to make the target index come out correctly, we
2036 store the location of the subspace header in target
2037 index, then sort using the location of the subspace
2038 header as the key. Then we can assign correct
2039 subspace indices. */
2040 total_subspaces++;
2041 subspace_asect->target_index = bfd_tell (abfd) - sizeof (subspace);
2042
2043 /* Set SEC_READONLY and SEC_CODE/SEC_DATA as specified
2044 by the access_control_bits in the subspace header. */
2045 switch (subspace.access_control_bits >> 4)
2046 {
2047 /* Readonly data. */
2048 case 0x0:
2049 subspace_asect->flags |= SEC_DATA | SEC_READONLY;
2050 break;
2051
2052 /* Normal data. */
2053 case 0x1:
2054 subspace_asect->flags |= SEC_DATA;
2055 break;
2056
2057 /* Readonly code and the gateways.
2058 Gateways have other attributes which do not map
2059 into anything BFD knows about. */
2060 case 0x2:
2061 case 0x4:
2062 case 0x5:
2063 case 0x6:
2064 case 0x7:
2065 subspace_asect->flags |= SEC_CODE | SEC_READONLY;
2066 break;
2067
2068 /* dynamic (writable) code. */
2069 case 0x3:
2070 subspace_asect->flags |= SEC_CODE;
2071 break;
2072 }
2073
2074 if (subspace.is_comdat || subspace.is_common || subspace.dup_common)
2075 subspace_asect->flags |= SEC_LINK_ONCE;
2076
2077 if (subspace.subspace_length > 0)
2078 subspace_asect->flags |= SEC_HAS_CONTENTS;
2079
2080 if (subspace.is_loadable)
2081 subspace_asect->flags |= SEC_ALLOC | SEC_LOAD;
2082 else
2083 subspace_asect->flags |= SEC_DEBUGGING;
2084
2085 if (subspace.code_only)
2086 subspace_asect->flags |= SEC_CODE;
2087
2088 /* Both file_loc_init_value and initialization_length will
2089 be zero for a BSS like subspace. */
2090 if (subspace.file_loc_init_value == 0
2091 && subspace.initialization_length == 0)
2092 subspace_asect->flags &= ~(SEC_DATA | SEC_LOAD | SEC_HAS_CONTENTS);
2093
2094 /* This subspace has relocations.
2095 The fixup_request_quantity is a byte count for the number of
2096 entries in the relocation stream; it is not the actual number
2097 of relocations in the subspace. */
2098 if (subspace.fixup_request_quantity != 0)
2099 {
2100 subspace_asect->flags |= SEC_RELOC;
2101 subspace_asect->rel_filepos = subspace.fixup_request_index;
2102 som_section_data (subspace_asect)->reloc_size
2103 = subspace.fixup_request_quantity;
2104 /* We can not determine this yet. When we read in the
2105 relocation table the correct value will be filled in. */
2106 subspace_asect->reloc_count = (unsigned) -1;
2107 }
2108
2109 /* Update save_subspace if appropriate. */
2110 if (subspace.file_loc_init_value > save_subspace.file_loc_init_value)
2111 save_subspace = subspace;
2112
2113 subspace_asect->vma = subspace.subspace_start;
2114 subspace_asect->size = subspace.subspace_length;
2115 subspace_asect->filepos = (subspace.file_loc_init_value
2116 + current_offset);
2117 subspace_asect->alignment_power = exact_log2 (subspace.alignment);
2118 if (subspace_asect->alignment_power == (unsigned) -1)
2119 goto error_return;
2120
2121 /* Keep track of the accumulated sizes of the sections. */
2122 space_size += subspace.subspace_length;
2123 }
2124
2125 /* This can happen for a .o which defines symbols in otherwise
2126 empty subspaces. */
2127 if (!save_subspace.file_loc_init_value)
2128 space_asect->size = 0;
2129 else
2130 {
2131 if (file_hdr->a_magic != RELOC_MAGIC)
2132 {
2133 /* Setup the size for the space section based upon the info
2134 in the last subspace of the space. */
2135 space_asect->size = (save_subspace.subspace_start
2136 - space_asect->vma
2137 + save_subspace.subspace_length);
2138 }
2139 else
2140 {
2141 /* The subspace_start field is not initialised in relocatable
2142 only objects, so it cannot be used for length calculations.
2143 Instead we use the space_size value which we have been
2144 accumulating. This isn't an accurate estimate since it
2145 ignores alignment and ordering issues. */
2146 space_asect->size = space_size;
2147 }
2148 }
2149 }
2150 /* Now that we've read in all the subspace records, we need to assign
2151 a target index to each subspace. */
2152 amt = total_subspaces;
2153 amt *= sizeof (asection *);
2154 subspace_sections = (asection **) bfd_malloc (amt);
2155 if (subspace_sections == NULL)
2156 goto error_return;
2157
2158 for (i = 0, section = abfd->sections; section; section = section->next)
2159 {
2160 if (!som_is_subspace (section))
2161 continue;
2162
2163 subspace_sections[i] = section;
2164 i++;
2165 }
2166 qsort (subspace_sections, total_subspaces,
2167 sizeof (asection *), compare_subspaces);
2168
2169 /* subspace_sections is now sorted in the order in which the subspaces
2170 appear in the object file. Assign an index to each one now. */
2171 for (i = 0; i < total_subspaces; i++)
2172 subspace_sections[i]->target_index = i;
2173
2174 if (space_strings != NULL)
2175 free (space_strings);
2176
2177 if (subspace_sections != NULL)
2178 free (subspace_sections);
2179
2180 return TRUE;
2181
2182 error_return:
2183 if (space_strings != NULL)
2184 free (space_strings);
2185
2186 if (subspace_sections != NULL)
2187 free (subspace_sections);
2188 return FALSE;
2189 }
2190
2191 /* Read in a SOM object and make it into a BFD. */
2192
2193 static const bfd_target *
2194 som_object_p (abfd)
2195 bfd *abfd;
2196 {
2197 struct header file_hdr;
2198 struct som_exec_auxhdr *aux_hdr_ptr = NULL;
2199 unsigned long current_offset = 0;
2200 struct lst_header lst_header;
2201 struct som_entry som_entry;
2202 bfd_size_type amt;
2203 #define ENTRY_SIZE sizeof (struct som_entry)
2204
2205 amt = FILE_HDR_SIZE;
2206 if (bfd_bread ((PTR) &file_hdr, amt, abfd) != amt)
2207 {
2208 if (bfd_get_error () != bfd_error_system_call)
2209 bfd_set_error (bfd_error_wrong_format);
2210 return 0;
2211 }
2212
2213 if (!_PA_RISC_ID (file_hdr.system_id))
2214 {
2215 bfd_set_error (bfd_error_wrong_format);
2216 return 0;
2217 }
2218
2219 switch (file_hdr.a_magic)
2220 {
2221 case RELOC_MAGIC:
2222 case EXEC_MAGIC:
2223 case SHARE_MAGIC:
2224 case DEMAND_MAGIC:
2225 #ifdef DL_MAGIC
2226 case DL_MAGIC:
2227 #endif
2228 #ifdef SHL_MAGIC
2229 case SHL_MAGIC:
2230 #endif
2231 #ifdef SHARED_MAGIC_CNX
2232 case SHARED_MAGIC_CNX:
2233 #endif
2234 break;
2235
2236 #ifdef EXECLIBMAGIC
2237 case EXECLIBMAGIC:
2238 /* Read the lst header and determine where the SOM directory begins. */
2239
2240 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0)
2241 {
2242 if (bfd_get_error () != bfd_error_system_call)
2243 bfd_set_error (bfd_error_wrong_format);
2244 return 0;
2245 }
2246
2247 amt = SLSTHDR;
2248 if (bfd_bread ((PTR) &lst_header, amt, abfd) != amt)
2249 {
2250 if (bfd_get_error () != bfd_error_system_call)
2251 bfd_set_error (bfd_error_wrong_format);
2252 return 0;
2253 }
2254
2255 /* Position to and read the first directory entry. */
2256
2257 if (bfd_seek (abfd, lst_header.dir_loc, SEEK_SET) != 0)
2258 {
2259 if (bfd_get_error () != bfd_error_system_call)
2260 bfd_set_error (bfd_error_wrong_format);
2261 return 0;
2262 }
2263
2264 amt = ENTRY_SIZE;
2265 if (bfd_bread ((PTR) &som_entry, amt, abfd) != amt)
2266 {
2267 if (bfd_get_error () != bfd_error_system_call)
2268 bfd_set_error (bfd_error_wrong_format);
2269 return 0;
2270 }
2271
2272 /* Now position to the first SOM. */
2273
2274 if (bfd_seek (abfd, som_entry.location, SEEK_SET) != 0)
2275 {
2276 if (bfd_get_error () != bfd_error_system_call)
2277 bfd_set_error (bfd_error_wrong_format);
2278 return 0;
2279 }
2280
2281 current_offset = som_entry.location;
2282
2283 /* And finally, re-read the som header. */
2284 amt = FILE_HDR_SIZE;
2285 if (bfd_bread ((PTR) &file_hdr, amt, abfd) != amt)
2286 {
2287 if (bfd_get_error () != bfd_error_system_call)
2288 bfd_set_error (bfd_error_wrong_format);
2289 return 0;
2290 }
2291
2292 break;
2293 #endif
2294
2295 default:
2296 bfd_set_error (bfd_error_wrong_format);
2297 return 0;
2298 }
2299
2300 if (file_hdr.version_id != VERSION_ID
2301 && file_hdr.version_id != NEW_VERSION_ID)
2302 {
2303 bfd_set_error (bfd_error_wrong_format);
2304 return 0;
2305 }
2306
2307 /* If the aux_header_size field in the file header is zero, then this
2308 object is an incomplete executable (a .o file). Do not try to read
2309 a non-existant auxiliary header. */
2310 if (file_hdr.aux_header_size != 0)
2311 {
2312 aux_hdr_ptr = bfd_zalloc (abfd,
2313 (bfd_size_type) sizeof (*aux_hdr_ptr));
2314 if (aux_hdr_ptr == NULL)
2315 return NULL;
2316 amt = AUX_HDR_SIZE;
2317 if (bfd_bread ((PTR) aux_hdr_ptr, amt, abfd) != amt)
2318 {
2319 if (bfd_get_error () != bfd_error_system_call)
2320 bfd_set_error (bfd_error_wrong_format);
2321 return 0;
2322 }
2323 }
2324
2325 if (!setup_sections (abfd, &file_hdr, current_offset))
2326 {
2327 /* setup_sections does not bubble up a bfd error code. */
2328 bfd_set_error (bfd_error_bad_value);
2329 return 0;
2330 }
2331
2332 /* This appears to be a valid SOM object. Do some initialization. */
2333 return som_object_setup (abfd, &file_hdr, aux_hdr_ptr, current_offset);
2334 }
2335
2336 /* Create a SOM object. */
2337
2338 static bfd_boolean
2339 som_mkobject (abfd)
2340 bfd *abfd;
2341 {
2342 /* Allocate memory to hold backend information. */
2343 abfd->tdata.som_data = (struct som_data_struct *)
2344 bfd_zalloc (abfd, (bfd_size_type) sizeof (struct som_data_struct));
2345 if (abfd->tdata.som_data == NULL)
2346 return FALSE;
2347 return TRUE;
2348 }
2349
2350 /* Initialize some information in the file header. This routine makes
2351 not attempt at doing the right thing for a full executable; it
2352 is only meant to handle relocatable objects. */
2353
2354 static bfd_boolean
2355 som_prep_headers (abfd)
2356 bfd *abfd;
2357 {
2358 struct header *file_hdr;
2359 asection *section;
2360 bfd_size_type amt = sizeof (struct header);
2361
2362 /* Make and attach a file header to the BFD. */
2363 file_hdr = (struct header *) bfd_zalloc (abfd, amt);
2364 if (file_hdr == NULL)
2365 return FALSE;
2366 obj_som_file_hdr (abfd) = file_hdr;
2367
2368 if (abfd->flags & (EXEC_P | DYNAMIC))
2369 {
2370 /* Make and attach an exec header to the BFD. */
2371 amt = sizeof (struct som_exec_auxhdr);
2372 obj_som_exec_hdr (abfd) =
2373 (struct som_exec_auxhdr *) bfd_zalloc (abfd, amt);
2374 if (obj_som_exec_hdr (abfd) == NULL)
2375 return FALSE;
2376
2377 if (abfd->flags & D_PAGED)
2378 file_hdr->a_magic = DEMAND_MAGIC;
2379 else if (abfd->flags & WP_TEXT)
2380 file_hdr->a_magic = SHARE_MAGIC;
2381 #ifdef SHL_MAGIC
2382 else if (abfd->flags & DYNAMIC)
2383 file_hdr->a_magic = SHL_MAGIC;
2384 #endif
2385 else
2386 file_hdr->a_magic = EXEC_MAGIC;
2387 }
2388 else
2389 file_hdr->a_magic = RELOC_MAGIC;
2390
2391 /* These fields are optional, and embedding timestamps is not always
2392 a wise thing to do, it makes comparing objects during a multi-stage
2393 bootstrap difficult. */
2394 file_hdr->file_time.secs = 0;
2395 file_hdr->file_time.nanosecs = 0;
2396
2397 file_hdr->entry_space = 0;
2398 file_hdr->entry_subspace = 0;
2399 file_hdr->entry_offset = 0;
2400 file_hdr->presumed_dp = 0;
2401
2402 /* Now iterate over the sections translating information from
2403 BFD sections to SOM spaces/subspaces. */
2404
2405 for (section = abfd->sections; section != NULL; section = section->next)
2406 {
2407 /* Ignore anything which has not been marked as a space or
2408 subspace. */
2409 if (!som_is_space (section) && !som_is_subspace (section))
2410 continue;
2411
2412 if (som_is_space (section))
2413 {
2414 /* Allocate space for the space dictionary. */
2415 amt = sizeof (struct space_dictionary_record);
2416 som_section_data (section)->space_dict =
2417 (struct space_dictionary_record *) bfd_zalloc (abfd, amt);
2418 if (som_section_data (section)->space_dict == NULL)
2419 return FALSE;
2420 /* Set space attributes. Note most attributes of SOM spaces
2421 are set based on the subspaces it contains. */
2422 som_section_data (section)->space_dict->loader_fix_index = -1;
2423 som_section_data (section)->space_dict->init_pointer_index = -1;
2424
2425 /* Set more attributes that were stuffed away in private data. */
2426 som_section_data (section)->space_dict->sort_key =
2427 som_section_data (section)->copy_data->sort_key;
2428 som_section_data (section)->space_dict->is_defined =
2429 som_section_data (section)->copy_data->is_defined;
2430 som_section_data (section)->space_dict->is_private =
2431 som_section_data (section)->copy_data->is_private;
2432 som_section_data (section)->space_dict->space_number =
2433 som_section_data (section)->copy_data->space_number;
2434 }
2435 else
2436 {
2437 /* Allocate space for the subspace dictionary. */
2438 amt = sizeof (struct som_subspace_dictionary_record);
2439 som_section_data (section)->subspace_dict =
2440 (struct som_subspace_dictionary_record *) bfd_zalloc (abfd, amt);
2441 if (som_section_data (section)->subspace_dict == NULL)
2442 return FALSE;
2443
2444 /* Set subspace attributes. Basic stuff is done here, additional
2445 attributes are filled in later as more information becomes
2446 available. */
2447 if (section->flags & SEC_ALLOC)
2448 som_section_data (section)->subspace_dict->is_loadable = 1;
2449
2450 if (section->flags & SEC_CODE)
2451 som_section_data (section)->subspace_dict->code_only = 1;
2452
2453 som_section_data (section)->subspace_dict->subspace_start =
2454 section->vma;
2455 som_section_data (section)->subspace_dict->subspace_length =
2456 section->size;
2457 som_section_data (section)->subspace_dict->initialization_length =
2458 section->size;
2459 som_section_data (section)->subspace_dict->alignment =
2460 1 << section->alignment_power;
2461
2462 /* Set more attributes that were stuffed away in private data. */
2463 som_section_data (section)->subspace_dict->sort_key =
2464 som_section_data (section)->copy_data->sort_key;
2465 som_section_data (section)->subspace_dict->access_control_bits =
2466 som_section_data (section)->copy_data->access_control_bits;
2467 som_section_data (section)->subspace_dict->quadrant =
2468 som_section_data (section)->copy_data->quadrant;
2469 som_section_data (section)->subspace_dict->is_comdat =
2470 som_section_data (section)->copy_data->is_comdat;
2471 som_section_data (section)->subspace_dict->is_common =
2472 som_section_data (section)->copy_data->is_common;
2473 som_section_data (section)->subspace_dict->dup_common =
2474 som_section_data (section)->copy_data->dup_common;
2475 }
2476 }
2477 return TRUE;
2478 }
2479
2480 /* Return TRUE if the given section is a SOM space, FALSE otherwise. */
2481
2482 static bfd_boolean
2483 som_is_space (section)
2484 asection *section;
2485 {
2486 /* If no copy data is available, then it's neither a space nor a
2487 subspace. */
2488 if (som_section_data (section)->copy_data == NULL)
2489 return FALSE;
2490
2491 /* If the containing space isn't the same as the given section,
2492 then this isn't a space. */
2493 if (som_section_data (section)->copy_data->container != section
2494 && (som_section_data (section)->copy_data->container->output_section
2495 != section))
2496 return FALSE;
2497
2498 /* OK. Must be a space. */
2499 return TRUE;
2500 }
2501
2502 /* Return TRUE if the given section is a SOM subspace, FALSE otherwise. */
2503
2504 static bfd_boolean
2505 som_is_subspace (section)
2506 asection *section;
2507 {
2508 /* If no copy data is available, then it's neither a space nor a
2509 subspace. */
2510 if (som_section_data (section)->copy_data == NULL)
2511 return FALSE;
2512
2513 /* If the containing space is the same as the given section,
2514 then this isn't a subspace. */
2515 if (som_section_data (section)->copy_data->container == section
2516 || (som_section_data (section)->copy_data->container->output_section
2517 == section))
2518 return FALSE;
2519
2520 /* OK. Must be a subspace. */
2521 return TRUE;
2522 }
2523
2524 /* Return TRUE if the given space contains the given subspace. It
2525 is safe to assume space really is a space, and subspace really
2526 is a subspace. */
2527
2528 static bfd_boolean
2529 som_is_container (space, subspace)
2530 asection *space, *subspace;
2531 {
2532 return (som_section_data (subspace)->copy_data->container == space
2533 || (som_section_data (subspace)->copy_data->container->output_section
2534 == space));
2535 }
2536
2537 /* Count and return the number of spaces attached to the given BFD. */
2538
2539 static unsigned long
2540 som_count_spaces (abfd)
2541 bfd *abfd;
2542 {
2543 int count = 0;
2544 asection *section;
2545
2546 for (section = abfd->sections; section != NULL; section = section->next)
2547 count += som_is_space (section);
2548
2549 return count;
2550 }
2551
2552 /* Count the number of subspaces attached to the given BFD. */
2553
2554 static unsigned long
2555 som_count_subspaces (abfd)
2556 bfd *abfd;
2557 {
2558 int count = 0;
2559 asection *section;
2560
2561 for (section = abfd->sections; section != NULL; section = section->next)
2562 count += som_is_subspace (section);
2563
2564 return count;
2565 }
2566
2567 /* Return -1, 0, 1 indicating the relative ordering of sym1 and sym2.
2568
2569 We desire symbols to be ordered starting with the symbol with the
2570 highest relocation count down to the symbol with the lowest relocation
2571 count. Doing so compacts the relocation stream. */
2572
2573 static int
2574 compare_syms (arg1, arg2)
2575 const PTR arg1;
2576 const PTR arg2;
2577
2578 {
2579 asymbol **sym1 = (asymbol **) arg1;
2580 asymbol **sym2 = (asymbol **) arg2;
2581 unsigned int count1, count2;
2582
2583 /* Get relocation count for each symbol. Note that the count
2584 is stored in the udata pointer for section symbols! */
2585 if ((*sym1)->flags & BSF_SECTION_SYM)
2586 count1 = (*sym1)->udata.i;
2587 else
2588 count1 = som_symbol_data (*sym1)->reloc_count;
2589
2590 if ((*sym2)->flags & BSF_SECTION_SYM)
2591 count2 = (*sym2)->udata.i;
2592 else
2593 count2 = som_symbol_data (*sym2)->reloc_count;
2594
2595 /* Return the appropriate value. */
2596 if (count1 < count2)
2597 return 1;
2598 else if (count1 > count2)
2599 return -1;
2600 return 0;
2601 }
2602
2603 /* Return -1, 0, 1 indicating the relative ordering of subspace1
2604 and subspace. */
2605
2606 static int
2607 compare_subspaces (arg1, arg2)
2608 const PTR arg1;
2609 const PTR arg2;
2610
2611 {
2612 asection **subspace1 = (asection **) arg1;
2613 asection **subspace2 = (asection **) arg2;
2614
2615 if ((*subspace1)->target_index < (*subspace2)->target_index)
2616 return -1;
2617 else if ((*subspace2)->target_index < (*subspace1)->target_index)
2618 return 1;
2619 else
2620 return 0;
2621 }
2622
2623 /* Perform various work in preparation for emitting the fixup stream. */
2624
2625 static void
2626 som_prep_for_fixups (abfd, syms, num_syms)
2627 bfd *abfd;
2628 asymbol **syms;
2629 unsigned long num_syms;
2630 {
2631 unsigned long i;
2632 asection *section;
2633 asymbol **sorted_syms;
2634 bfd_size_type amt;
2635
2636 /* Most SOM relocations involving a symbol have a length which is
2637 dependent on the index of the symbol. So symbols which are
2638 used often in relocations should have a small index. */
2639
2640 /* First initialize the counters for each symbol. */
2641 for (i = 0; i < num_syms; i++)
2642 {
2643 /* Handle a section symbol; these have no pointers back to the
2644 SOM symbol info. So we just use the udata field to hold the
2645 relocation count. */
2646 if (som_symbol_data (syms[i]) == NULL
2647 || syms[i]->flags & BSF_SECTION_SYM)
2648 {
2649 syms[i]->flags |= BSF_SECTION_SYM;
2650 syms[i]->udata.i = 0;
2651 }
2652 else
2653 som_symbol_data (syms[i])->reloc_count = 0;
2654 }
2655
2656 /* Now that the counters are initialized, make a weighted count
2657 of how often a given symbol is used in a relocation. */
2658 for (section = abfd->sections; section != NULL; section = section->next)
2659 {
2660 int j;
2661
2662 /* Does this section have any relocations? */
2663 if ((int) section->reloc_count <= 0)
2664 continue;
2665
2666 /* Walk through each relocation for this section. */
2667 for (j = 1; j < (int) section->reloc_count; j++)
2668 {
2669 arelent *reloc = section->orelocation[j];
2670 int scale;
2671
2672 /* A relocation against a symbol in the *ABS* section really
2673 does not have a symbol. Likewise if the symbol isn't associated
2674 with any section. */
2675 if (reloc->sym_ptr_ptr == NULL
2676 || bfd_is_abs_section ((*reloc->sym_ptr_ptr)->section))
2677 continue;
2678
2679 /* Scaling to encourage symbols involved in R_DP_RELATIVE
2680 and R_CODE_ONE_SYMBOL relocations to come first. These
2681 two relocations have single byte versions if the symbol
2682 index is very small. */
2683 if (reloc->howto->type == R_DP_RELATIVE
2684 || reloc->howto->type == R_CODE_ONE_SYMBOL)
2685 scale = 2;
2686 else
2687 scale = 1;
2688
2689 /* Handle section symbols by storing the count in the udata
2690 field. It will not be used and the count is very important
2691 for these symbols. */
2692 if ((*reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2693 {
2694 (*reloc->sym_ptr_ptr)->udata.i =
2695 (*reloc->sym_ptr_ptr)->udata.i + scale;
2696 continue;
2697 }
2698
2699 /* A normal symbol. Increment the count. */
2700 som_symbol_data (*reloc->sym_ptr_ptr)->reloc_count += scale;
2701 }
2702 }
2703
2704 /* Sort a copy of the symbol table, rather than the canonical
2705 output symbol table. */
2706 amt = num_syms;
2707 amt *= sizeof (asymbol *);
2708 sorted_syms = (asymbol **) bfd_zalloc (abfd, amt);
2709 memcpy (sorted_syms, syms, num_syms * sizeof (asymbol *));
2710 qsort (sorted_syms, num_syms, sizeof (asymbol *), compare_syms);
2711 obj_som_sorted_syms (abfd) = sorted_syms;
2712
2713 /* Compute the symbol indexes, they will be needed by the relocation
2714 code. */
2715 for (i = 0; i < num_syms; i++)
2716 {
2717 /* A section symbol. Again, there is no pointer to backend symbol
2718 information, so we reuse the udata field again. */
2719 if (sorted_syms[i]->flags & BSF_SECTION_SYM)
2720 sorted_syms[i]->udata.i = i;
2721 else
2722 som_symbol_data (sorted_syms[i])->index = i;
2723 }
2724 }
2725
2726 static bfd_boolean
2727 som_write_fixups (abfd, current_offset, total_reloc_sizep)
2728 bfd *abfd;
2729 unsigned long current_offset;
2730 unsigned int *total_reloc_sizep;
2731 {
2732 unsigned int i, j;
2733 /* Chunk of memory that we can use as buffer space, then throw
2734 away. */
2735 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2736 unsigned char *p;
2737 unsigned int total_reloc_size = 0;
2738 unsigned int subspace_reloc_size = 0;
2739 unsigned int num_spaces = obj_som_file_hdr (abfd)->space_total;
2740 asection *section = abfd->sections;
2741 bfd_size_type amt;
2742
2743 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2744 p = tmp_space;
2745
2746 /* All the fixups for a particular subspace are emitted in a single
2747 stream. All the subspaces for a particular space are emitted
2748 as a single stream.
2749
2750 So, to get all the locations correct one must iterate through all the
2751 spaces, for each space iterate through its subspaces and output a
2752 fixups stream. */
2753 for (i = 0; i < num_spaces; i++)
2754 {
2755 asection *subsection;
2756
2757 /* Find a space. */
2758 while (!som_is_space (section))
2759 section = section->next;
2760
2761 /* Now iterate through each of its subspaces. */
2762 for (subsection = abfd->sections;
2763 subsection != NULL;
2764 subsection = subsection->next)
2765 {
2766 int reloc_offset;
2767 unsigned int current_rounding_mode;
2768 #ifndef NO_PCREL_MODES
2769 unsigned int current_call_mode;
2770 #endif
2771
2772 /* Find a subspace of this space. */
2773 if (!som_is_subspace (subsection)
2774 || !som_is_container (section, subsection))
2775 continue;
2776
2777 /* If this subspace does not have real data, then we are
2778 finished with it. */
2779 if ((subsection->flags & SEC_HAS_CONTENTS) == 0)
2780 {
2781 som_section_data (subsection)->subspace_dict->fixup_request_index
2782 = -1;
2783 continue;
2784 }
2785
2786 /* This subspace has some relocations. Put the relocation stream
2787 index into the subspace record. */
2788 som_section_data (subsection)->subspace_dict->fixup_request_index
2789 = total_reloc_size;
2790
2791 /* To make life easier start over with a clean slate for
2792 each subspace. Seek to the start of the relocation stream
2793 for this subspace in preparation for writing out its fixup
2794 stream. */
2795 if (bfd_seek (abfd, current_offset + total_reloc_size, SEEK_SET) != 0)
2796 return FALSE;
2797
2798 /* Buffer space has already been allocated. Just perform some
2799 initialization here. */
2800 p = tmp_space;
2801 subspace_reloc_size = 0;
2802 reloc_offset = 0;
2803 som_initialize_reloc_queue (reloc_queue);
2804 current_rounding_mode = R_N_MODE;
2805 #ifndef NO_PCREL_MODES
2806 current_call_mode = R_SHORT_PCREL_MODE;
2807 #endif
2808
2809 /* Translate each BFD relocation into one or more SOM
2810 relocations. */
2811 for (j = 0; j < subsection->reloc_count; j++)
2812 {
2813 arelent *bfd_reloc = subsection->orelocation[j];
2814 unsigned int skip;
2815 int sym_num;
2816
2817 /* Get the symbol number. Remember it's stored in a
2818 special place for section symbols. */
2819 if ((*bfd_reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2820 sym_num = (*bfd_reloc->sym_ptr_ptr)->udata.i;
2821 else
2822 sym_num = som_symbol_data (*bfd_reloc->sym_ptr_ptr)->index;
2823
2824 /* If there is not enough room for the next couple relocations,
2825 then dump the current buffer contents now. Also reinitialize
2826 the relocation queue.
2827
2828 No single BFD relocation could ever translate into more
2829 than 100 bytes of SOM relocations (20bytes is probably the
2830 upper limit, but leave lots of space for growth). */
2831 if (p - tmp_space + 100 > SOM_TMP_BUFSIZE)
2832 {
2833 amt = p - tmp_space;
2834 if (bfd_bwrite ((PTR) tmp_space, amt, abfd) != amt)
2835 return FALSE;
2836
2837 p = tmp_space;
2838 som_initialize_reloc_queue (reloc_queue);
2839 }
2840
2841 /* Emit R_NO_RELOCATION fixups to map any bytes which were
2842 skipped. */
2843 skip = bfd_reloc->address - reloc_offset;
2844 p = som_reloc_skip (abfd, skip, p,
2845 &subspace_reloc_size, reloc_queue);
2846
2847 /* Update reloc_offset for the next iteration.
2848
2849 Many relocations do not consume input bytes. They
2850 are markers, or set state necessary to perform some
2851 later relocation. */
2852 switch (bfd_reloc->howto->type)
2853 {
2854 case R_ENTRY:
2855 case R_ALT_ENTRY:
2856 case R_EXIT:
2857 case R_N_MODE:
2858 case R_S_MODE:
2859 case R_D_MODE:
2860 case R_R_MODE:
2861 case R_FSEL:
2862 case R_LSEL:
2863 case R_RSEL:
2864 case R_COMP1:
2865 case R_COMP2:
2866 case R_BEGIN_BRTAB:
2867 case R_END_BRTAB:
2868 case R_BEGIN_TRY:
2869 case R_END_TRY:
2870 case R_N0SEL:
2871 case R_N1SEL:
2872 #ifndef NO_PCREL_MODES
2873 case R_SHORT_PCREL_MODE:
2874 case R_LONG_PCREL_MODE:
2875 #endif
2876 reloc_offset = bfd_reloc->address;
2877 break;
2878
2879 default:
2880 reloc_offset = bfd_reloc->address + 4;
2881 break;
2882 }
2883
2884 /* Now the actual relocation we care about. */
2885 switch (bfd_reloc->howto->type)
2886 {
2887 case R_PCREL_CALL:
2888 case R_ABS_CALL:
2889 p = som_reloc_call (abfd, p, &subspace_reloc_size,
2890 bfd_reloc, sym_num, reloc_queue);
2891 break;
2892
2893 case R_CODE_ONE_SYMBOL:
2894 case R_DP_RELATIVE:
2895 /* Account for any addend. */
2896 if (bfd_reloc->addend)
2897 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2898 &subspace_reloc_size, reloc_queue);
2899
2900 if (sym_num < 0x20)
2901 {
2902 bfd_put_8 (abfd, bfd_reloc->howto->type + sym_num, p);
2903 subspace_reloc_size += 1;
2904 p += 1;
2905 }
2906 else if (sym_num < 0x100)
2907 {
2908 bfd_put_8 (abfd, bfd_reloc->howto->type + 32, p);
2909 bfd_put_8 (abfd, sym_num, p + 1);
2910 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2911 2, reloc_queue);
2912 }
2913 else if (sym_num < 0x10000000)
2914 {
2915 bfd_put_8 (abfd, bfd_reloc->howto->type + 33, p);
2916 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2917 bfd_put_16 (abfd, (bfd_vma) sym_num, p + 2);
2918 p = try_prev_fixup (abfd, &subspace_reloc_size,
2919 p, 4, reloc_queue);
2920 }
2921 else
2922 abort ();
2923 break;
2924
2925 case R_DATA_ONE_SYMBOL:
2926 case R_DATA_PLABEL:
2927 case R_CODE_PLABEL:
2928 case R_DLT_REL:
2929 /* Account for any addend using R_DATA_OVERRIDE. */
2930 if (bfd_reloc->howto->type != R_DATA_ONE_SYMBOL
2931 && bfd_reloc->addend)
2932 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2933 &subspace_reloc_size, reloc_queue);
2934
2935 if (sym_num < 0x100)
2936 {
2937 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2938 bfd_put_8 (abfd, sym_num, p + 1);
2939 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2940 2, reloc_queue);
2941 }
2942 else if (sym_num < 0x10000000)
2943 {
2944 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
2945 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2946 bfd_put_16 (abfd, (bfd_vma) sym_num, p + 2);
2947 p = try_prev_fixup (abfd, &subspace_reloc_size,
2948 p, 4, reloc_queue);
2949 }
2950 else
2951 abort ();
2952 break;
2953
2954 case R_ENTRY:
2955 {
2956 unsigned int tmp;
2957 arelent *tmp_reloc = NULL;
2958 bfd_put_8 (abfd, R_ENTRY, p);
2959
2960 /* R_ENTRY relocations have 64 bits of associated
2961 data. Unfortunately the addend field of a bfd
2962 relocation is only 32 bits. So, we split up
2963 the 64bit unwind information and store part in
2964 the R_ENTRY relocation, and the rest in the R_EXIT
2965 relocation. */
2966 bfd_put_32 (abfd, bfd_reloc->addend, p + 1);
2967
2968 /* Find the next R_EXIT relocation. */
2969 for (tmp = j; tmp < subsection->reloc_count; tmp++)
2970 {
2971 tmp_reloc = subsection->orelocation[tmp];
2972 if (tmp_reloc->howto->type == R_EXIT)
2973 break;
2974 }
2975
2976 if (tmp == subsection->reloc_count)
2977 abort ();
2978
2979 bfd_put_32 (abfd, tmp_reloc->addend, p + 5);
2980 p = try_prev_fixup (abfd, &subspace_reloc_size,
2981 p, 9, reloc_queue);
2982 break;
2983 }
2984
2985 case R_N_MODE:
2986 case R_S_MODE:
2987 case R_D_MODE:
2988 case R_R_MODE:
2989 /* If this relocation requests the current rounding
2990 mode, then it is redundant. */
2991 if (bfd_reloc->howto->type != current_rounding_mode)
2992 {
2993 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2994 subspace_reloc_size += 1;
2995 p += 1;
2996 current_rounding_mode = bfd_reloc->howto->type;
2997 }
2998 break;
2999
3000 #ifndef NO_PCREL_MODES
3001 case R_LONG_PCREL_MODE:
3002 case R_SHORT_PCREL_MODE:
3003 if (bfd_reloc->howto->type != current_call_mode)
3004 {
3005 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
3006 subspace_reloc_size += 1;
3007 p += 1;
3008 current_call_mode = bfd_reloc->howto->type;
3009 }
3010 break;
3011 #endif
3012
3013 case R_EXIT:
3014 case R_ALT_ENTRY:
3015 case R_FSEL:
3016 case R_LSEL:
3017 case R_RSEL:
3018 case R_BEGIN_BRTAB:
3019 case R_END_BRTAB:
3020 case R_BEGIN_TRY:
3021 case R_N0SEL:
3022 case R_N1SEL:
3023 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
3024 subspace_reloc_size += 1;
3025 p += 1;
3026 break;
3027
3028 case R_END_TRY:
3029 /* The end of an exception handling region. The reloc's
3030 addend contains the offset of the exception handling
3031 code. */
3032 if (bfd_reloc->addend == 0)
3033 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
3034 else if (bfd_reloc->addend < 1024)
3035 {
3036 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
3037 bfd_put_8 (abfd, bfd_reloc->addend / 4, p + 1);
3038 p = try_prev_fixup (abfd, &subspace_reloc_size,
3039 p, 2, reloc_queue);
3040 }
3041 else
3042 {
3043 bfd_put_8 (abfd, bfd_reloc->howto->type + 2, p);
3044 bfd_put_8 (abfd, (bfd_reloc->addend / 4) >> 16, p + 1);
3045 bfd_put_16 (abfd, bfd_reloc->addend / 4, p + 2);
3046 p = try_prev_fixup (abfd, &subspace_reloc_size,
3047 p, 4, reloc_queue);
3048 }
3049 break;
3050
3051 case R_COMP1:
3052 /* The only time we generate R_COMP1, R_COMP2 and
3053 R_CODE_EXPR relocs is for the difference of two
3054 symbols. Hence we can cheat here. */
3055 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
3056 bfd_put_8 (abfd, 0x44, p + 1);
3057 p = try_prev_fixup (abfd, &subspace_reloc_size,
3058 p, 2, reloc_queue);
3059 break;
3060
3061 case R_COMP2:
3062 /* The only time we generate R_COMP1, R_COMP2 and
3063 R_CODE_EXPR relocs is for the difference of two
3064 symbols. Hence we can cheat here. */
3065 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
3066 bfd_put_8 (abfd, 0x80, p + 1);
3067 bfd_put_8 (abfd, sym_num >> 16, p + 2);
3068 bfd_put_16 (abfd, (bfd_vma) sym_num, p + 3);
3069 p = try_prev_fixup (abfd, &subspace_reloc_size,
3070 p, 5, reloc_queue);
3071 break;
3072
3073 case R_CODE_EXPR:
3074 case R_DATA_EXPR:
3075 /* The only time we generate R_COMP1, R_COMP2 and
3076 R_CODE_EXPR relocs is for the difference of two
3077 symbols. Hence we can cheat here. */
3078 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
3079 subspace_reloc_size += 1;
3080 p += 1;
3081 break;
3082
3083 /* Put a "R_RESERVED" relocation in the stream if
3084 we hit something we do not understand. The linker
3085 will complain loudly if this ever happens. */
3086 default:
3087 bfd_put_8 (abfd, 0xff, p);
3088 subspace_reloc_size += 1;
3089 p += 1;
3090 break;
3091 }
3092 }
3093
3094 /* Last BFD relocation for a subspace has been processed.
3095 Map the rest of the subspace with R_NO_RELOCATION fixups. */
3096 p = som_reloc_skip (abfd, subsection->size - reloc_offset,
3097 p, &subspace_reloc_size, reloc_queue);
3098
3099 /* Scribble out the relocations. */
3100 amt = p - tmp_space;
3101 if (bfd_bwrite ((PTR) tmp_space, amt, abfd) != amt)
3102 return FALSE;
3103 p = tmp_space;
3104
3105 total_reloc_size += subspace_reloc_size;
3106 som_section_data (subsection)->subspace_dict->fixup_request_quantity
3107 = subspace_reloc_size;
3108 }
3109 section = section->next;
3110 }
3111 *total_reloc_sizep = total_reloc_size;
3112 return TRUE;
3113 }
3114
3115 /* Write out the space/subspace string table. */
3116
3117 static bfd_boolean
3118 som_write_space_strings (abfd, current_offset, string_sizep)
3119 bfd *abfd;
3120 unsigned long current_offset;
3121 unsigned int *string_sizep;
3122 {
3123 /* Chunk of memory that we can use as buffer space, then throw
3124 away. */
3125 size_t tmp_space_size = SOM_TMP_BUFSIZE;
3126 unsigned char *tmp_space = alloca (tmp_space_size);
3127 unsigned char *p = tmp_space;
3128 unsigned int strings_size = 0;
3129 asection *section;
3130 bfd_size_type amt;
3131
3132 /* Seek to the start of the space strings in preparation for writing
3133 them out. */
3134 if (bfd_seek (abfd, (file_ptr) current_offset, SEEK_SET) != 0)
3135 return FALSE;
3136
3137 /* Walk through all the spaces and subspaces (order is not important)
3138 building up and writing string table entries for their names. */
3139 for (section = abfd->sections; section != NULL; section = section->next)
3140 {
3141 size_t length;
3142
3143 /* Only work with space/subspaces; avoid any other sections
3144 which might have been made (.text for example). */
3145 if (!som_is_space (section) && !som_is_subspace (section))
3146 continue;
3147
3148 /* Get the length of the space/subspace name. */
3149 length = strlen (section->name);
3150
3151 /* If there is not enough room for the next entry, then dump the
3152 current buffer contents now and maybe allocate a larger
3153 buffer. Each entry will take 4 bytes to hold the string
3154 length + the string itself + null terminator. */
3155 if (p - tmp_space + 5 + length > tmp_space_size)
3156 {
3157 /* Flush buffer before refilling or reallocating. */
3158 amt = p - tmp_space;
3159 if (bfd_bwrite ((PTR) &tmp_space[0], amt, abfd) != amt)
3160 return FALSE;
3161
3162 /* Reallocate if now empty buffer still too small. */
3163 if (5 + length > tmp_space_size)
3164 {
3165 /* Ensure a minimum growth factor to avoid O(n**2) space
3166 consumption for n strings. The optimal minimum
3167 factor seems to be 2, as no other value can guarantee
3168 wasting less than 50% space. (Note that we cannot
3169 deallocate space allocated by `alloca' without
3170 returning from this function.) The same technique is
3171 used a few more times below when a buffer is
3172 reallocated. */
3173 tmp_space_size = MAX (2 * tmp_space_size, 5 + length);
3174 tmp_space = alloca (tmp_space_size);
3175 }
3176
3177 /* Reset to beginning of the (possibly new) buffer space. */
3178 p = tmp_space;
3179 }
3180
3181 /* First element in a string table entry is the length of the
3182 string. Alignment issues are already handled. */
3183 bfd_put_32 (abfd, (bfd_vma) length, p);
3184 p += 4;
3185 strings_size += 4;
3186
3187 /* Record the index in the space/subspace records. */
3188 if (som_is_space (section))
3189 som_section_data (section)->space_dict->name.n_strx = strings_size;
3190 else
3191 som_section_data (section)->subspace_dict->name.n_strx = strings_size;
3192
3193 /* Next comes the string itself + a null terminator. */
3194 strcpy (p, section->name);
3195 p += length + 1;
3196 strings_size += length + 1;
3197
3198 /* Always align up to the next word boundary. */
3199 while (strings_size % 4)
3200 {
3201 bfd_put_8 (abfd, 0, p);
3202 p++;
3203 strings_size++;
3204 }
3205 }
3206
3207 /* Done with the space/subspace strings. Write out any information
3208 contained in a partial block. */
3209 amt = p - tmp_space;
3210 if (bfd_bwrite ((PTR) &tmp_space[0], amt, abfd) != amt)
3211 return FALSE;
3212 *string_sizep = strings_size;
3213 return TRUE;
3214 }
3215
3216 /* Write out the symbol string table. */
3217
3218 static bfd_boolean
3219 som_write_symbol_strings (abfd, current_offset, syms, num_syms, string_sizep,
3220 compilation_unit)
3221 bfd *abfd;
3222 unsigned long current_offset;
3223 asymbol **syms;
3224 unsigned int num_syms;
3225 unsigned int *string_sizep;
3226 COMPUNIT *compilation_unit;
3227 {
3228 unsigned int i;
3229
3230 /* Chunk of memory that we can use as buffer space, then throw
3231 away. */
3232 size_t tmp_space_size = SOM_TMP_BUFSIZE;
3233 unsigned char *tmp_space = alloca (tmp_space_size);
3234 unsigned char *p = tmp_space;
3235
3236 unsigned int strings_size = 0;
3237 unsigned char *comp[4];
3238 bfd_size_type amt;
3239
3240 /* This gets a bit gruesome because of the compilation unit. The
3241 strings within the compilation unit are part of the symbol
3242 strings, but don't have symbol_dictionary entries. So, manually
3243 write them and update the compilation unit header. On input, the
3244 compilation unit header contains local copies of the strings.
3245 Move them aside. */
3246 if (compilation_unit)
3247 {
3248 comp[0] = compilation_unit->name.n_name;
3249 comp[1] = compilation_unit->language_name.n_name;
3250 comp[2] = compilation_unit->product_id.n_name;
3251 comp[3] = compilation_unit->version_id.n_name;
3252 }
3253
3254 /* Seek to the start of the space strings in preparation for writing
3255 them out. */
3256 if (bfd_seek (abfd, (file_ptr) current_offset, SEEK_SET) != 0)
3257 return FALSE;
3258
3259 if (compilation_unit)
3260 {
3261 for (i = 0; i < 4; i++)
3262 {
3263 size_t length = strlen (comp[i]);
3264
3265 /* If there is not enough room for the next entry, then dump
3266 the current buffer contents now and maybe allocate a
3267 larger buffer. */
3268 if (p - tmp_space + 5 + length > tmp_space_size)
3269 {
3270 /* Flush buffer before refilling or reallocating. */
3271 amt = p - tmp_space;
3272 if (bfd_bwrite ((PTR) &tmp_space[0], amt, abfd) != amt)
3273 return FALSE;
3274
3275 /* Reallocate if now empty buffer still too small. */
3276 if (5 + length > tmp_space_size)
3277 {
3278 /* See alloca above for discussion of new size. */
3279 tmp_space_size = MAX (2 * tmp_space_size, 5 + length);
3280 tmp_space = alloca (tmp_space_size);
3281 }
3282
3283 /* Reset to beginning of the (possibly new) buffer
3284 space. */
3285 p = tmp_space;
3286 }
3287
3288 /* First element in a string table entry is the length of
3289 the string. This must always be 4 byte aligned. This is
3290 also an appropriate time to fill in the string index
3291 field in the symbol table entry. */
3292 bfd_put_32 (abfd, (bfd_vma) length, p);
3293 strings_size += 4;
3294 p += 4;
3295
3296 /* Next comes the string itself + a null terminator. */
3297 strcpy (p, comp[i]);
3298
3299 switch (i)
3300 {
3301 case 0:
3302 obj_som_compilation_unit (abfd)->name.n_strx = strings_size;
3303 break;
3304 case 1:
3305 obj_som_compilation_unit (abfd)->language_name.n_strx =
3306 strings_size;
3307 break;
3308 case 2:
3309 obj_som_compilation_unit (abfd)->product_id.n_strx =
3310 strings_size;
3311 break;
3312 case 3:
3313 obj_som_compilation_unit (abfd)->version_id.n_strx =
3314 strings_size;
3315 break;
3316 }
3317
3318 p += length + 1;
3319 strings_size += length + 1;
3320
3321 /* Always align up to the next word boundary. */
3322 while (strings_size % 4)
3323 {
3324 bfd_put_8 (abfd, 0, p);
3325 strings_size++;
3326 p++;
3327 }
3328 }
3329 }
3330
3331 for (i = 0; i < num_syms; i++)
3332 {
3333 size_t length = strlen (syms[i]->name);
3334
3335 /* If there is not enough room for the next entry, then dump the
3336 current buffer contents now and maybe allocate a larger buffer. */
3337 if (p - tmp_space + 5 + length > tmp_space_size)
3338 {
3339 /* Flush buffer before refilling or reallocating. */
3340 amt = p - tmp_space;
3341 if (bfd_bwrite ((PTR) &tmp_space[0], amt, abfd) != amt)
3342 return FALSE;
3343
3344 /* Reallocate if now empty buffer still too small. */
3345 if (5 + length > tmp_space_size)
3346 {
3347 /* See alloca above for discussion of new size. */
3348 tmp_space_size = MAX (2 * tmp_space_size, 5 + length);
3349 tmp_space = alloca (tmp_space_size);
3350 }
3351
3352 /* Reset to beginning of the (possibly new) buffer space. */
3353 p = tmp_space;
3354 }
3355
3356 /* First element in a string table entry is the length of the
3357 string. This must always be 4 byte aligned. This is also
3358 an appropriate time to fill in the string index field in the
3359 symbol table entry. */
3360 bfd_put_32 (abfd, (bfd_vma) length, p);
3361 strings_size += 4;
3362 p += 4;
3363
3364 /* Next comes the string itself + a null terminator. */
3365 strcpy (p, syms[i]->name);
3366
3367 som_symbol_data (syms[i])->stringtab_offset = strings_size;
3368 p += length + 1;
3369 strings_size += length + 1;
3370
3371 /* Always align up to the next word boundary. */
3372 while (strings_size % 4)
3373 {
3374 bfd_put_8 (abfd, 0, p);
3375 strings_size++;
3376 p++;
3377 }
3378 }
3379
3380 /* Scribble out any partial block. */
3381 amt = p - tmp_space;
3382 if (bfd_bwrite ((PTR) &tmp_space[0], amt, abfd) != amt)
3383 return FALSE;
3384
3385 *string_sizep = strings_size;
3386 return TRUE;
3387 }
3388
3389 /* Compute variable information to be placed in the SOM headers,
3390 space/subspace dictionaries, relocation streams, etc. Begin
3391 writing parts of the object file. */
3392
3393 static bfd_boolean
3394 som_begin_writing (abfd)
3395 bfd *abfd;
3396 {
3397 unsigned long current_offset = 0;
3398 int strings_size = 0;
3399 unsigned long num_spaces, num_subspaces, i;
3400 asection *section;
3401 unsigned int total_subspaces = 0;
3402 struct som_exec_auxhdr *exec_header = NULL;
3403
3404 /* The file header will always be first in an object file,
3405 everything else can be in random locations. To keep things
3406 "simple" BFD will lay out the object file in the manner suggested
3407 by the PRO ABI for PA-RISC Systems. */
3408
3409 /* Before any output can really begin offsets for all the major
3410 portions of the object file must be computed. So, starting
3411 with the initial file header compute (and sometimes write)
3412 each portion of the object file. */
3413
3414 /* Make room for the file header, it's contents are not complete
3415 yet, so it can not be written at this time. */
3416 current_offset += sizeof (struct header);
3417
3418 /* Any auxiliary headers will follow the file header. Right now
3419 we support only the copyright and version headers. */
3420 obj_som_file_hdr (abfd)->aux_header_location = current_offset;
3421 obj_som_file_hdr (abfd)->aux_header_size = 0;
3422 if (abfd->flags & (EXEC_P | DYNAMIC))
3423 {
3424 /* Parts of the exec header will be filled in later, so
3425 delay writing the header itself. Fill in the defaults,
3426 and write it later. */
3427 current_offset += sizeof (struct som_exec_auxhdr);
3428 obj_som_file_hdr (abfd)->aux_header_size
3429 += sizeof (struct som_exec_auxhdr);
3430 exec_header = obj_som_exec_hdr (abfd);
3431 exec_header->som_auxhdr.type = EXEC_AUX_ID;
3432 exec_header->som_auxhdr.length = 40;
3433 }
3434 if (obj_som_version_hdr (abfd) != NULL)
3435 {
3436 bfd_size_type len;
3437
3438 if (bfd_seek (abfd, (file_ptr) current_offset, SEEK_SET) != 0)
3439 return FALSE;
3440
3441 /* Write the aux_id structure and the string length. */
3442 len = sizeof (struct aux_id) + sizeof (unsigned int);
3443 obj_som_file_hdr (abfd)->aux_header_size += len;
3444 current_offset += len;
3445 if (bfd_bwrite ((PTR) obj_som_version_hdr (abfd), len, abfd) != len)
3446 return FALSE;
3447
3448 /* Write the version string. */
3449 len = obj_som_version_hdr (abfd)->header_id.length - sizeof (int);
3450 obj_som_file_hdr (abfd)->aux_header_size += len;
3451 current_offset += len;
3452 if (bfd_bwrite ((PTR) obj_som_version_hdr (abfd)->user_string, len, abfd)
3453 != len)
3454 return FALSE;
3455 }
3456
3457 if (obj_som_copyright_hdr (abfd) != NULL)
3458 {
3459 bfd_size_type len;
3460
3461 if (bfd_seek (abfd, (file_ptr) current_offset, SEEK_SET) != 0)
3462 return FALSE;
3463
3464 /* Write the aux_id structure and the string length. */
3465 len = sizeof (struct aux_id) + sizeof (unsigned int);
3466 obj_som_file_hdr (abfd)->aux_header_size += len;
3467 current_offset += len;
3468 if (bfd_bwrite ((PTR) obj_som_copyright_hdr (abfd), len, abfd) != len)
3469 return FALSE;
3470
3471 /* Write the copyright string. */
3472 len = obj_som_copyright_hdr (abfd)->header_id.length - sizeof (int);
3473 obj_som_file_hdr (abfd)->aux_header_size += len;
3474 current_offset += len;
3475 if (bfd_bwrite ((PTR) obj_som_copyright_hdr (abfd)->copyright, len, abfd)
3476 != len)
3477 return FALSE;
3478 }
3479
3480 /* Next comes the initialization pointers; we have no initialization
3481 pointers, so current offset does not change. */
3482 obj_som_file_hdr (abfd)->init_array_location = current_offset;
3483 obj_som_file_hdr (abfd)->init_array_total = 0;
3484
3485 /* Next are the space records. These are fixed length records.
3486
3487 Count the number of spaces to determine how much room is needed
3488 in the object file for the space records.
3489
3490 The names of the spaces are stored in a separate string table,
3491 and the index for each space into the string table is computed
3492 below. Therefore, it is not possible to write the space headers
3493 at this time. */
3494 num_spaces = som_count_spaces (abfd);
3495 obj_som_file_hdr (abfd)->space_location = current_offset;
3496 obj_som_file_hdr (abfd)->space_total = num_spaces;
3497 current_offset += num_spaces * sizeof (struct space_dictionary_record);
3498
3499 /* Next are the subspace records. These are fixed length records.
3500
3501 Count the number of subspaes to determine how much room is needed
3502 in the object file for the subspace records.
3503
3504 A variety if fields in the subspace record are still unknown at
3505 this time (index into string table, fixup stream location/size, etc). */
3506 num_subspaces = som_count_subspaces (abfd);
3507 obj_som_file_hdr (abfd)->subspace_location = current_offset;
3508 obj_som_file_hdr (abfd)->subspace_total = num_subspaces;
3509 current_offset
3510 += num_subspaces * sizeof (struct som_subspace_dictionary_record);
3511
3512 /* Next is the string table for the space/subspace names. We will
3513 build and write the string table on the fly. At the same time
3514 we will fill in the space/subspace name index fields. */
3515
3516 /* The string table needs to be aligned on a word boundary. */
3517 if (current_offset % 4)
3518 current_offset += (4 - (current_offset % 4));
3519
3520 /* Mark the offset of the space/subspace string table in the
3521 file header. */
3522 obj_som_file_hdr (abfd)->space_strings_location = current_offset;
3523
3524 /* Scribble out the space strings. */
3525 if (! som_write_space_strings (abfd, current_offset, &strings_size))
3526 return FALSE;
3527
3528 /* Record total string table size in the header and update the
3529 current offset. */
3530 obj_som_file_hdr (abfd)->space_strings_size = strings_size;
3531 current_offset += strings_size;
3532
3533 /* Next is the compilation unit. */
3534 obj_som_file_hdr (abfd)->compiler_location = current_offset;
3535 obj_som_file_hdr (abfd)->compiler_total = 0;
3536 if (obj_som_compilation_unit (abfd))
3537 {
3538 obj_som_file_hdr (abfd)->compiler_total = 1;
3539 current_offset += COMPUNITSZ;
3540 }
3541
3542 /* Now compute the file positions for the loadable subspaces, taking
3543 care to make sure everything stays properly aligned. */
3544
3545 section = abfd->sections;
3546 for (i = 0; i < num_spaces; i++)
3547 {
3548 asection *subsection;
3549 int first_subspace;
3550 unsigned int subspace_offset = 0;
3551
3552 /* Find a space. */
3553 while (!som_is_space (section))
3554 section = section->next;
3555
3556 first_subspace = 1;
3557 /* Now look for all its subspaces. */
3558 for (subsection = abfd->sections;
3559 subsection != NULL;
3560 subsection = subsection->next)
3561 {
3562
3563 if (!som_is_subspace (subsection)
3564 || !som_is_container (section, subsection)
3565 || (subsection->flags & SEC_ALLOC) == 0)
3566 continue;
3567
3568 /* If this is the first subspace in the space, and we are
3569 building an executable, then take care to make sure all
3570 the alignments are correct and update the exec header. */
3571 if (first_subspace
3572 && (abfd->flags & (EXEC_P | DYNAMIC)))
3573 {
3574 /* Demand paged executables have each space aligned to a
3575 page boundary. Sharable executables (write-protected
3576 text) have just the private (aka data & bss) space aligned
3577 to a page boundary. Ugh. Not true for HPUX.
3578
3579 The HPUX kernel requires the text to always be page aligned
3580 within the file regardless of the executable's type. */
3581 if (abfd->flags & (D_PAGED | DYNAMIC)
3582 || (subsection->flags & SEC_CODE)
3583 || ((abfd->flags & WP_TEXT)
3584 && (subsection->flags & SEC_DATA)))
3585 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3586
3587 /* Update the exec header. */
3588 if (subsection->flags & SEC_CODE && exec_header->exec_tfile == 0)
3589 {
3590 exec_header->exec_tmem = section->vma;
3591 exec_header->exec_tfile = current_offset;
3592 }
3593 if (subsection->flags & SEC_DATA && exec_header->exec_dfile == 0)
3594 {
3595 exec_header->exec_dmem = section->vma;
3596 exec_header->exec_dfile = current_offset;
3597 }
3598
3599 /* Keep track of exactly where we are within a particular
3600 space. This is necessary as the braindamaged HPUX
3601 loader will create holes between subspaces *and*
3602 subspace alignments are *NOT* preserved. What a crock. */
3603 subspace_offset = subsection->vma;
3604
3605 /* Only do this for the first subspace within each space. */
3606 first_subspace = 0;
3607 }
3608 else if (abfd->flags & (EXEC_P | DYNAMIC))
3609 {
3610 /* The braindamaged HPUX loader may have created a hole
3611 between two subspaces. It is *not* sufficient to use
3612 the alignment specifications within the subspaces to
3613 account for these holes -- I've run into at least one
3614 case where the loader left one code subspace unaligned
3615 in a final executable.
3616
3617 To combat this we keep a current offset within each space,
3618 and use the subspace vma fields to detect and preserve
3619 holes. What a crock!
3620
3621 ps. This is not necessary for unloadable space/subspaces. */
3622 current_offset += subsection->vma - subspace_offset;
3623 if (subsection->flags & SEC_CODE)
3624 exec_header->exec_tsize += subsection->vma - subspace_offset;
3625 else
3626 exec_header->exec_dsize += subsection->vma - subspace_offset;
3627 subspace_offset += subsection->vma - subspace_offset;
3628 }
3629
3630 subsection->target_index = total_subspaces++;
3631 /* This is real data to be loaded from the file. */
3632 if (subsection->flags & SEC_LOAD)
3633 {
3634 /* Update the size of the code & data. */
3635 if (abfd->flags & (EXEC_P | DYNAMIC)
3636 && subsection->flags & SEC_CODE)
3637 exec_header->exec_tsize += subsection->size;
3638 else if (abfd->flags & (EXEC_P | DYNAMIC)
3639 && subsection->flags & SEC_DATA)
3640 exec_header->exec_dsize += subsection->size;
3641 som_section_data (subsection)->subspace_dict->file_loc_init_value
3642 = current_offset;
3643 subsection->filepos = current_offset;
3644 current_offset += subsection->size;
3645 subspace_offset += subsection->size;
3646 }
3647 /* Looks like uninitialized data. */
3648 else
3649 {
3650 /* Update the size of the bss section. */
3651 if (abfd->flags & (EXEC_P | DYNAMIC))
3652 exec_header->exec_bsize += subsection->size;
3653
3654 som_section_data (subsection)->subspace_dict->file_loc_init_value
3655 = 0;
3656 som_section_data (subsection)->subspace_dict->
3657 initialization_length = 0;
3658 }
3659 }
3660 /* Goto the next section. */
3661 section = section->next;
3662 }
3663
3664 /* Finally compute the file positions for unloadable subspaces.
3665 If building an executable, start the unloadable stuff on its
3666 own page. */
3667
3668 if (abfd->flags & (EXEC_P | DYNAMIC))
3669 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3670
3671 obj_som_file_hdr (abfd)->unloadable_sp_location = current_offset;
3672 section = abfd->sections;
3673 for (i = 0; i < num_spaces; i++)
3674 {
3675 asection *subsection;
3676
3677 /* Find a space. */
3678 while (!som_is_space (section))
3679 section = section->next;
3680
3681 if (abfd->flags & (EXEC_P | DYNAMIC))
3682 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3683
3684 /* Now look for all its subspaces. */
3685 for (subsection = abfd->sections;
3686 subsection != NULL;
3687 subsection = subsection->next)
3688 {
3689
3690 if (!som_is_subspace (subsection)
3691 || !som_is_container (section, subsection)
3692 || (subsection->flags & SEC_ALLOC) != 0)
3693 continue;
3694
3695 subsection->target_index = total_subspaces++;
3696 /* This is real data to be loaded from the file. */
3697 if ((subsection->flags & SEC_LOAD) == 0)
3698 {
3699 som_section_data (subsection)->subspace_dict->file_loc_init_value
3700 = current_offset;
3701 subsection->filepos = current_offset;
3702 current_offset += subsection->size;
3703 }
3704 /* Looks like uninitialized data. */
3705 else
3706 {
3707 som_section_data (subsection)->subspace_dict->file_loc_init_value
3708 = 0;
3709 som_section_data (subsection)->subspace_dict->
3710 initialization_length = subsection->size;
3711 }
3712 }
3713 /* Goto the next section. */
3714 section = section->next;
3715 }
3716
3717 /* If building an executable, then make sure to seek to and write
3718 one byte at the end of the file to make sure any necessary
3719 zeros are filled in. Ugh. */
3720 if (abfd->flags & (EXEC_P | DYNAMIC))
3721 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3722 if (bfd_seek (abfd, (file_ptr) current_offset - 1, SEEK_SET) != 0)
3723 return FALSE;
3724 if (bfd_bwrite ((PTR) "", (bfd_size_type) 1, abfd) != 1)
3725 return FALSE;
3726
3727 obj_som_file_hdr (abfd)->unloadable_sp_size
3728 = current_offset - obj_som_file_hdr (abfd)->unloadable_sp_location;
3729
3730 /* Loader fixups are not supported in any way shape or form. */
3731 obj_som_file_hdr (abfd)->loader_fixup_location = 0;
3732 obj_som_file_hdr (abfd)->loader_fixup_total = 0;
3733
3734 /* Done. Store the total size of the SOM so far. */
3735 obj_som_file_hdr (abfd)->som_length = current_offset;
3736
3737 return TRUE;
3738 }
3739
3740 /* Finally, scribble out the various headers to the disk. */
3741
3742 static bfd_boolean
3743 som_finish_writing (abfd)
3744 bfd *abfd;
3745 {
3746 int num_spaces = som_count_spaces (abfd);
3747 asymbol **syms = bfd_get_outsymbols (abfd);
3748 int i, num_syms, strings_size;
3749 int subspace_index = 0;
3750 file_ptr location;
3751 asection *section;
3752 unsigned long current_offset;
3753 unsigned int total_reloc_size;
3754 bfd_size_type amt;
3755
3756 /* We must set up the version identifier here as objcopy/strip copy
3757 private BFD data too late for us to handle this in som_begin_writing. */
3758 if (obj_som_exec_data (abfd)
3759 && obj_som_exec_data (abfd)->version_id)
3760 obj_som_file_hdr (abfd)->version_id = obj_som_exec_data (abfd)->version_id;
3761 else
3762 obj_som_file_hdr (abfd)->version_id = NEW_VERSION_ID;
3763
3764 /* Next is the symbol table. These are fixed length records.
3765
3766 Count the number of symbols to determine how much room is needed
3767 in the object file for the symbol table.
3768
3769 The names of the symbols are stored in a separate string table,
3770 and the index for each symbol name into the string table is computed
3771 below. Therefore, it is not possible to write the symbol table
3772 at this time.
3773
3774 These used to be output before the subspace contents, but they
3775 were moved here to work around a stupid bug in the hpux linker
3776 (fixed in hpux10). */
3777 current_offset = obj_som_file_hdr (abfd)->som_length;
3778
3779 /* Make sure we're on a word boundary. */
3780 if (current_offset % 4)
3781 current_offset += (4 - (current_offset % 4));
3782
3783 num_syms = bfd_get_symcount (abfd);
3784 obj_som_file_hdr (abfd)->symbol_location = current_offset;
3785 obj_som_file_hdr (abfd)->symbol_total = num_syms;
3786 current_offset += num_syms * sizeof (struct symbol_dictionary_record);
3787
3788 /* Next are the symbol strings.
3789 Align them to a word boundary. */
3790 if (current_offset % 4)
3791 current_offset += (4 - (current_offset % 4));
3792 obj_som_file_hdr (abfd)->symbol_strings_location = current_offset;
3793
3794 /* Scribble out the symbol strings. */
3795 if (! som_write_symbol_strings (abfd, current_offset, syms,
3796 num_syms, &strings_size,
3797 obj_som_compilation_unit (abfd)))
3798 return FALSE;
3799
3800 /* Record total string table size in header and update the
3801 current offset. */
3802 obj_som_file_hdr (abfd)->symbol_strings_size = strings_size;
3803 current_offset += strings_size;
3804
3805 /* Do prep work before handling fixups. */
3806 som_prep_for_fixups (abfd,
3807 bfd_get_outsymbols (abfd),
3808 bfd_get_symcount (abfd));
3809
3810 /* At the end of the file is the fixup stream which starts on a
3811 word boundary. */
3812 if (current_offset % 4)
3813 current_offset += (4 - (current_offset % 4));
3814 obj_som_file_hdr (abfd)->fixup_request_location = current_offset;
3815
3816 /* Write the fixups and update fields in subspace headers which
3817 relate to the fixup stream. */
3818 if (! som_write_fixups (abfd, current_offset, &total_reloc_size))
3819 return FALSE;
3820
3821 /* Record the total size of the fixup stream in the file header. */
3822 obj_som_file_hdr (abfd)->fixup_request_total = total_reloc_size;
3823
3824 /* Done. Store the total size of the SOM. */
3825 obj_som_file_hdr (abfd)->som_length = current_offset + total_reloc_size;
3826
3827 /* Now that the symbol table information is complete, build and
3828 write the symbol table. */
3829 if (! som_build_and_write_symbol_table (abfd))
3830 return FALSE;
3831
3832 /* Subspaces are written first so that we can set up information
3833 about them in their containing spaces as the subspace is written. */
3834
3835 /* Seek to the start of the subspace dictionary records. */
3836 location = obj_som_file_hdr (abfd)->subspace_location;
3837 if (bfd_seek (abfd, location, SEEK_SET) != 0)
3838 return FALSE;
3839
3840 section = abfd->sections;
3841 /* Now for each loadable space write out records for its subspaces. */
3842 for (i = 0; i < num_spaces; i++)
3843 {
3844 asection *subsection;
3845
3846 /* Find a space. */
3847 while (!som_is_space (section))
3848 section = section->next;
3849
3850 /* Now look for all its subspaces. */
3851 for (subsection = abfd->sections;
3852 subsection != NULL;
3853 subsection = subsection->next)
3854 {
3855
3856 /* Skip any section which does not correspond to a space
3857 or subspace. Or does not have SEC_ALLOC set (and therefore
3858 has no real bits on the disk). */
3859 if (!som_is_subspace (subsection)
3860 || !som_is_container (section, subsection)
3861 || (subsection->flags & SEC_ALLOC) == 0)
3862 continue;
3863
3864 /* If this is the first subspace for this space, then save
3865 the index of the subspace in its containing space. Also
3866 set "is_loadable" in the containing space. */
3867
3868 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3869 {
3870 som_section_data (section)->space_dict->is_loadable = 1;
3871 som_section_data (section)->space_dict->subspace_index
3872 = subspace_index;
3873 }
3874
3875 /* Increment the number of subspaces seen and the number of
3876 subspaces contained within the current space. */
3877 subspace_index++;
3878 som_section_data (section)->space_dict->subspace_quantity++;
3879
3880 /* Mark the index of the current space within the subspace's
3881 dictionary record. */
3882 som_section_data (subsection)->subspace_dict->space_index = i;
3883
3884 /* Dump the current subspace header. */
3885 amt = sizeof (struct som_subspace_dictionary_record);
3886 if (bfd_bwrite ((PTR) som_section_data (subsection)->subspace_dict,
3887 amt, abfd) != amt)
3888 return FALSE;
3889 }
3890 /* Goto the next section. */
3891 section = section->next;
3892 }
3893
3894 /* Now repeat the process for unloadable subspaces. */
3895 section = abfd->sections;
3896 /* Now for each space write out records for its subspaces. */
3897 for (i = 0; i < num_spaces; i++)
3898 {
3899 asection *subsection;
3900
3901 /* Find a space. */
3902 while (!som_is_space (section))
3903 section = section->next;
3904
3905 /* Now look for all its subspaces. */
3906 for (subsection = abfd->sections;
3907 subsection != NULL;
3908 subsection = subsection->next)
3909 {
3910
3911 /* Skip any section which does not correspond to a space or
3912 subspace, or which SEC_ALLOC set (and therefore handled
3913 in the loadable spaces/subspaces code above). */
3914
3915 if (!som_is_subspace (subsection)
3916 || !som_is_container (section, subsection)
3917 || (subsection->flags & SEC_ALLOC) != 0)
3918 continue;
3919
3920 /* If this is the first subspace for this space, then save
3921 the index of the subspace in its containing space. Clear
3922 "is_loadable". */
3923
3924 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3925 {
3926 som_section_data (section)->space_dict->is_loadable = 0;
3927 som_section_data (section)->space_dict->subspace_index
3928 = subspace_index;
3929 }
3930
3931 /* Increment the number of subspaces seen and the number of
3932 subspaces contained within the current space. */
3933 som_section_data (section)->space_dict->subspace_quantity++;
3934 subspace_index++;
3935
3936 /* Mark the index of the current space within the subspace's
3937 dictionary record. */
3938 som_section_data (subsection)->subspace_dict->space_index = i;
3939
3940 /* Dump this subspace header. */
3941 amt = sizeof (struct som_subspace_dictionary_record);
3942 if (bfd_bwrite ((PTR) som_section_data (subsection)->subspace_dict,
3943 amt, abfd) != amt)
3944 return FALSE;
3945 }
3946 /* Goto the next section. */
3947 section = section->next;
3948 }
3949
3950 /* All the subspace dictionary records are written, and all the
3951 fields are set up in the space dictionary records.
3952
3953 Seek to the right location and start writing the space
3954 dictionary records. */
3955 location = obj_som_file_hdr (abfd)->space_location;
3956 if (bfd_seek (abfd, location, SEEK_SET) != 0)
3957 return FALSE;
3958
3959 section = abfd->sections;
3960 for (i = 0; i < num_spaces; i++)
3961 {
3962 /* Find a space. */
3963 while (!som_is_space (section))
3964 section = section->next;
3965
3966 /* Dump its header. */
3967 amt = sizeof (struct space_dictionary_record);
3968 if (bfd_bwrite ((PTR) som_section_data (section)->space_dict,
3969 amt, abfd) != amt)
3970 return FALSE;
3971
3972 /* Goto the next section. */
3973 section = section->next;
3974 }
3975
3976 /* Write the compilation unit record if there is one. */
3977 if (obj_som_compilation_unit (abfd))
3978 {
3979 location = obj_som_file_hdr (abfd)->compiler_location;
3980 if (bfd_seek (abfd, location, SEEK_SET) != 0)
3981 return FALSE;
3982
3983 amt = COMPUNITSZ;
3984 if (bfd_bwrite ((PTR) obj_som_compilation_unit (abfd), amt, abfd) != amt)
3985 return FALSE;
3986 }
3987
3988 /* Setting of the system_id has to happen very late now that copying of
3989 BFD private data happens *after* section contents are set. */
3990 if (abfd->flags & (EXEC_P | DYNAMIC))
3991 obj_som_file_hdr (abfd)->system_id = obj_som_exec_data (abfd)->system_id;
3992 else if (bfd_get_mach (abfd) == pa20)
3993 obj_som_file_hdr (abfd)->system_id = CPU_PA_RISC2_0;
3994 else if (bfd_get_mach (abfd) == pa11)
3995 obj_som_file_hdr (abfd)->system_id = CPU_PA_RISC1_1;
3996 else
3997 obj_som_file_hdr (abfd)->system_id = CPU_PA_RISC1_0;
3998
3999 /* Compute the checksum for the file header just before writing
4000 the header to disk. */
4001 obj_som_file_hdr (abfd)->checksum = som_compute_checksum (abfd);
4002
4003 /* Only thing left to do is write out the file header. It is always
4004 at location zero. Seek there and write it. */
4005 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0)
4006 return FALSE;
4007 amt = sizeof (struct header);
4008 if (bfd_bwrite ((PTR) obj_som_file_hdr (abfd), amt, abfd) != amt)
4009 return FALSE;
4010
4011 /* Now write the exec header. */
4012 if (abfd->flags & (EXEC_P | DYNAMIC))
4013 {
4014 long tmp, som_length;
4015 struct som_exec_auxhdr *exec_header;
4016
4017 exec_header = obj_som_exec_hdr (abfd);
4018 exec_header->exec_entry = bfd_get_start_address (abfd);
4019 exec_header->exec_flags = obj_som_exec_data (abfd)->exec_flags;
4020
4021 /* Oh joys. Ram some of the BSS data into the DATA section
4022 to be compatible with how the hp linker makes objects
4023 (saves memory space). */
4024 tmp = exec_header->exec_dsize;
4025 tmp = SOM_ALIGN (tmp, PA_PAGESIZE);
4026 exec_header->exec_bsize -= (tmp - exec_header->exec_dsize);
4027 if (exec_header->exec_bsize < 0)
4028 exec_header->exec_bsize = 0;
4029 exec_header->exec_dsize = tmp;
4030
4031 /* Now perform some sanity checks. The idea is to catch bogons now and
4032 inform the user, instead of silently generating a bogus file. */
4033 som_length = obj_som_file_hdr (abfd)->som_length;
4034 if (exec_header->exec_tfile + exec_header->exec_tsize > som_length
4035 || exec_header->exec_dfile + exec_header->exec_dsize > som_length)
4036 {
4037 bfd_set_error (bfd_error_bad_value);
4038 return FALSE;
4039 }
4040
4041 if (bfd_seek (abfd, obj_som_file_hdr (abfd)->aux_header_location,
4042 SEEK_SET) != 0)
4043 return FALSE;
4044
4045 amt = AUX_HDR_SIZE;
4046 if (bfd_bwrite ((PTR) exec_header, amt, abfd) != amt)
4047 return FALSE;
4048 }
4049 return TRUE;
4050 }
4051
4052 /* Compute and return the checksum for a SOM file header. */
4053
4054 static unsigned long
4055 som_compute_checksum (abfd)
4056 bfd *abfd;
4057 {
4058 unsigned long checksum, count, i;
4059 unsigned long *buffer = (unsigned long *) obj_som_file_hdr (abfd);
4060
4061 checksum = 0;
4062 count = sizeof (struct header) / sizeof (unsigned long);
4063 for (i = 0; i < count; i++)
4064 checksum ^= *(buffer + i);
4065
4066 return checksum;
4067 }
4068
4069 static void
4070 som_bfd_derive_misc_symbol_info (abfd, sym, info)
4071 bfd *abfd ATTRIBUTE_UNUSED;
4072 asymbol *sym;
4073 struct som_misc_symbol_info *info;
4074 {
4075 /* Initialize. */
4076 memset (info, 0, sizeof (struct som_misc_symbol_info));
4077
4078 /* The HP SOM linker requires detailed type information about
4079 all symbols (including undefined symbols!). Unfortunately,
4080 the type specified in an import/export statement does not
4081 always match what the linker wants. Severe braindamage. */
4082
4083 /* Section symbols will not have a SOM symbol type assigned to
4084 them yet. Assign all section symbols type ST_DATA. */
4085 if (sym->flags & BSF_SECTION_SYM)
4086 info->symbol_type = ST_DATA;
4087 else
4088 {
4089 /* For BFD style common, the linker will choke unless we set the
4090 type and scope to ST_STORAGE and SS_UNSAT, respectively. */
4091 if (bfd_is_com_section (sym->section))
4092 {
4093 info->symbol_type = ST_STORAGE;
4094 info->symbol_scope = SS_UNSAT;
4095 }
4096
4097 /* It is possible to have a symbol without an associated
4098 type. This happens if the user imported the symbol
4099 without a type and the symbol was never defined
4100 locally. If BSF_FUNCTION is set for this symbol, then
4101 assign it type ST_CODE (the HP linker requires undefined
4102 external functions to have type ST_CODE rather than ST_ENTRY). */
4103 else if ((som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
4104 || som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
4105 && bfd_is_und_section (sym->section)
4106 && sym->flags & BSF_FUNCTION)
4107 info->symbol_type = ST_CODE;
4108
4109 /* Handle function symbols which were defined in this file.
4110 They should have type ST_ENTRY. Also retrieve the argument
4111 relocation bits from the SOM backend information. */
4112 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ENTRY
4113 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE
4114 && (sym->flags & BSF_FUNCTION))
4115 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
4116 && (sym->flags & BSF_FUNCTION)))
4117 {
4118 info->symbol_type = ST_ENTRY;
4119 info->arg_reloc = som_symbol_data (sym)->tc_data.ap.hppa_arg_reloc;
4120 info->priv_level= som_symbol_data (sym)->tc_data.ap.hppa_priv_level;
4121 }
4122
4123 /* For unknown symbols set the symbol's type based on the symbol's
4124 section (ST_DATA for DATA sections, ST_CODE for CODE sections). */
4125 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN)
4126 {
4127 if (sym->section->flags & SEC_CODE)
4128 info->symbol_type = ST_CODE;
4129 else
4130 info->symbol_type = ST_DATA;
4131 }
4132
4133 /* From now on it's a very simple mapping. */
4134 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ABSOLUTE)
4135 info->symbol_type = ST_ABSOLUTE;
4136 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
4137 info->symbol_type = ST_CODE;
4138 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_DATA)
4139 info->symbol_type = ST_DATA;
4140 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_MILLICODE)
4141 info->symbol_type = ST_MILLICODE;
4142 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PLABEL)
4143 info->symbol_type = ST_PLABEL;
4144 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PRI_PROG)
4145 info->symbol_type = ST_PRI_PROG;
4146 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_SEC_PROG)
4147 info->symbol_type = ST_SEC_PROG;
4148 }
4149
4150 /* Now handle the symbol's scope. Exported data which is not
4151 in the common section has scope SS_UNIVERSAL. Note scope
4152 of common symbols was handled earlier! */
4153 if (bfd_is_com_section (sym->section))
4154 ;
4155 else if (bfd_is_und_section (sym->section))
4156 info->symbol_scope = SS_UNSAT;
4157 else if (sym->flags & (BSF_EXPORT | BSF_WEAK))
4158 info->symbol_scope = SS_UNIVERSAL;
4159 /* Anything else which is not in the common section has scope
4160 SS_LOCAL. */
4161 else
4162 info->symbol_scope = SS_LOCAL;
4163
4164 /* Now set the symbol_info field. It has no real meaning
4165 for undefined or common symbols, but the HP linker will
4166 choke if it's not set to some "reasonable" value. We
4167 use zero as a reasonable value. */
4168 if (bfd_is_com_section (sym->section)
4169 || bfd_is_und_section (sym->section)
4170 || bfd_is_abs_section (sym->section))
4171 info->symbol_info = 0;
4172 /* For all other symbols, the symbol_info field contains the
4173 subspace index of the space this symbol is contained in. */
4174 else
4175 info->symbol_info = sym->section->target_index;
4176
4177 /* Set the symbol's value. */
4178 info->symbol_value = sym->value + sym->section->vma;
4179
4180 /* The secondary_def field is for "weak" symbols. */
4181 if (sym->flags & BSF_WEAK)
4182 info->secondary_def = TRUE;
4183 else
4184 info->secondary_def = FALSE;
4185
4186 /* The is_comdat, is_common and dup_common fields provide various
4187 flavors of common.
4188
4189 For data symbols, setting IS_COMMON provides Fortran style common
4190 (duplicate definitions and overlapped initialization). Setting both
4191 IS_COMMON and DUP_COMMON provides Cobol style common (duplicate
4192 definitions as long as they are all the same length). In a shared
4193 link data symbols retain their IS_COMMON and DUP_COMMON flags.
4194 An IS_COMDAT data symbol is similar to a IS_COMMON | DUP_COMMON
4195 symbol except in that it loses its IS_COMDAT flag in a shared link.
4196
4197 For code symbols, IS_COMDAT and DUP_COMMON have effect. Universal
4198 DUP_COMMON code symbols are not exported from shared libraries.
4199 IS_COMDAT symbols are exported but they lose their IS_COMDAT flag.
4200
4201 We take a simplified approach to setting the is_comdat, is_common
4202 and dup_common flags in symbols based on the flag settings of their
4203 subspace. This avoids having to add directives like `.comdat' but
4204 the linker behavior is probably undefined if there is more than one
4205 universal symbol (comdat key sysmbol) in a subspace.
4206
4207 The behavior of these flags is not well documentmented, so there
4208 may be bugs and some surprising interactions with other flags. */
4209 if (som_section_data (sym->section)
4210 && som_section_data (sym->section)->subspace_dict
4211 && info->symbol_scope == SS_UNIVERSAL
4212 && (info->symbol_type == ST_ENTRY
4213 || info->symbol_type == ST_CODE
4214 || info->symbol_type == ST_DATA))
4215 {
4216 info->is_comdat
4217 = som_section_data (sym->section)->subspace_dict->is_comdat;
4218 info->is_common
4219 = som_section_data (sym->section)->subspace_dict->is_common;
4220 info->dup_common
4221 = som_section_data (sym->section)->subspace_dict->dup_common;
4222 }
4223 }
4224
4225 /* Build and write, in one big chunk, the entire symbol table for
4226 this BFD. */
4227
4228 static bfd_boolean
4229 som_build_and_write_symbol_table (abfd)
4230 bfd *abfd;
4231 {
4232 unsigned int num_syms = bfd_get_symcount (abfd);
4233 file_ptr symtab_location = obj_som_file_hdr (abfd)->symbol_location;
4234 asymbol **bfd_syms = obj_som_sorted_syms (abfd);
4235 struct symbol_dictionary_record *som_symtab = NULL;
4236 unsigned int i;
4237 bfd_size_type symtab_size;
4238
4239 /* Compute total symbol table size and allocate a chunk of memory
4240 to hold the symbol table as we build it. */
4241 symtab_size = num_syms;
4242 symtab_size *= sizeof (struct symbol_dictionary_record);
4243 som_symtab = (struct symbol_dictionary_record *) bfd_zmalloc (symtab_size);
4244 if (som_symtab == NULL && symtab_size != 0)
4245 goto error_return;
4246
4247 /* Walk over each symbol. */
4248 for (i = 0; i < num_syms; i++)
4249 {
4250 struct som_misc_symbol_info info;
4251
4252 /* This is really an index into the symbol strings table.
4253 By the time we get here, the index has already been
4254 computed and stored into the name field in the BFD symbol. */
4255 som_symtab[i].name.n_strx = som_symbol_data(bfd_syms[i])->stringtab_offset;
4256
4257 /* Derive SOM information from the BFD symbol. */
4258 som_bfd_derive_misc_symbol_info (abfd, bfd_syms[i], &info);
4259
4260 /* Now use it. */
4261 som_symtab[i].symbol_type = info.symbol_type;
4262 som_symtab[i].symbol_scope = info.symbol_scope;
4263 som_symtab[i].arg_reloc = info.arg_reloc;
4264 som_symtab[i].symbol_info = info.symbol_info;
4265 som_symtab[i].xleast = 3;
4266 som_symtab[i].symbol_value = info.symbol_value | info.priv_level;
4267 som_symtab[i].secondary_def = info.secondary_def;
4268 som_symtab[i].is_comdat = info.is_comdat;
4269 som_symtab[i].is_common = info.is_common;
4270 som_symtab[i].dup_common = info.dup_common;
4271 }
4272
4273 /* Everything is ready, seek to the right location and
4274 scribble out the symbol table. */
4275 if (bfd_seek (abfd, symtab_location, SEEK_SET) != 0)
4276 return FALSE;
4277
4278 if (bfd_bwrite ((PTR) som_symtab, symtab_size, abfd) != symtab_size)
4279 goto error_return;
4280
4281 if (som_symtab != NULL)
4282 free (som_symtab);
4283 return TRUE;
4284 error_return:
4285 if (som_symtab != NULL)
4286 free (som_symtab);
4287 return FALSE;
4288 }
4289
4290 /* Write an object in SOM format. */
4291
4292 static bfd_boolean
4293 som_write_object_contents (abfd)
4294 bfd *abfd;
4295 {
4296 if (! abfd->output_has_begun)
4297 {
4298 /* Set up fixed parts of the file, space, and subspace headers.
4299 Notify the world that output has begun. */
4300 som_prep_headers (abfd);
4301 abfd->output_has_begun = TRUE;
4302 /* Start writing the object file. This include all the string
4303 tables, fixup streams, and other portions of the object file. */
4304 som_begin_writing (abfd);
4305 }
4306
4307 return (som_finish_writing (abfd));
4308 }
4309 \f
4310 /* Read and save the string table associated with the given BFD. */
4311
4312 static bfd_boolean
4313 som_slurp_string_table (abfd)
4314 bfd *abfd;
4315 {
4316 char *stringtab;
4317 bfd_size_type amt;
4318
4319 /* Use the saved version if its available. */
4320 if (obj_som_stringtab (abfd) != NULL)
4321 return TRUE;
4322
4323 /* I don't think this can currently happen, and I'm not sure it should
4324 really be an error, but it's better than getting unpredictable results
4325 from the host's malloc when passed a size of zero. */
4326 if (obj_som_stringtab_size (abfd) == 0)
4327 {
4328 bfd_set_error (bfd_error_no_symbols);
4329 return FALSE;
4330 }
4331
4332 /* Allocate and read in the string table. */
4333 amt = obj_som_stringtab_size (abfd);
4334 stringtab = bfd_zmalloc (amt);
4335 if (stringtab == NULL)
4336 return FALSE;
4337
4338 if (bfd_seek (abfd, obj_som_str_filepos (abfd), SEEK_SET) != 0)
4339 return FALSE;
4340
4341 if (bfd_bread (stringtab, amt, abfd) != amt)
4342 return FALSE;
4343
4344 /* Save our results and return success. */
4345 obj_som_stringtab (abfd) = stringtab;
4346 return TRUE;
4347 }
4348
4349 /* Return the amount of data (in bytes) required to hold the symbol
4350 table for this object. */
4351
4352 static long
4353 som_get_symtab_upper_bound (abfd)
4354 bfd *abfd;
4355 {
4356 if (!som_slurp_symbol_table (abfd))
4357 return -1;
4358
4359 return (bfd_get_symcount (abfd) + 1) * (sizeof (asymbol *));
4360 }
4361
4362 /* Convert from a SOM subspace index to a BFD section. */
4363
4364 static asection *
4365 bfd_section_from_som_symbol (abfd, symbol)
4366 bfd *abfd;
4367 struct symbol_dictionary_record *symbol;
4368 {
4369 asection *section;
4370
4371 /* The meaning of the symbol_info field changes for functions
4372 within executables. So only use the quick symbol_info mapping for
4373 incomplete objects and non-function symbols in executables. */
4374 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4375 || (symbol->symbol_type != ST_ENTRY
4376 && symbol->symbol_type != ST_PRI_PROG
4377 && symbol->symbol_type != ST_SEC_PROG
4378 && symbol->symbol_type != ST_MILLICODE))
4379 {
4380 int index = symbol->symbol_info;
4381 for (section = abfd->sections; section != NULL; section = section->next)
4382 if (section->target_index == index && som_is_subspace (section))
4383 return section;
4384
4385 /* Could be a symbol from an external library (such as an OMOS
4386 shared library). Don't abort. */
4387 return bfd_abs_section_ptr;
4388
4389 }
4390 else
4391 {
4392 unsigned int value = symbol->symbol_value;
4393
4394 /* For executables we will have to use the symbol's address and
4395 find out what section would contain that address. Yuk. */
4396 for (section = abfd->sections; section; section = section->next)
4397 {
4398 if (value >= section->vma
4399 && value <= section->vma + section->size
4400 && som_is_subspace (section))
4401 return section;
4402 }
4403
4404 /* Could be a symbol from an external library (such as an OMOS
4405 shared library). Don't abort. */
4406 return bfd_abs_section_ptr;
4407
4408 }
4409 }
4410
4411 /* Read and save the symbol table associated with the given BFD. */
4412
4413 static unsigned int
4414 som_slurp_symbol_table (abfd)
4415 bfd *abfd;
4416 {
4417 int symbol_count = bfd_get_symcount (abfd);
4418 int symsize = sizeof (struct symbol_dictionary_record);
4419 char *stringtab;
4420 struct symbol_dictionary_record *buf = NULL, *bufp, *endbufp;
4421 som_symbol_type *sym, *symbase;
4422 bfd_size_type amt;
4423
4424 /* Return saved value if it exists. */
4425 if (obj_som_symtab (abfd) != NULL)
4426 goto successful_return;
4427
4428 /* Special case. This is *not* an error. */
4429 if (symbol_count == 0)
4430 goto successful_return;
4431
4432 if (!som_slurp_string_table (abfd))
4433 goto error_return;
4434
4435 stringtab = obj_som_stringtab (abfd);
4436
4437 amt = symbol_count;
4438 amt *= sizeof (som_symbol_type);
4439 symbase = (som_symbol_type *) bfd_zmalloc (amt);
4440 if (symbase == NULL)
4441 goto error_return;
4442
4443 /* Read in the external SOM representation. */
4444 amt = symbol_count;
4445 amt *= symsize;
4446 buf = bfd_malloc (amt);
4447 if (buf == NULL && amt != 0)
4448 goto error_return;
4449 if (bfd_seek (abfd, obj_som_sym_filepos (abfd), SEEK_SET) != 0)
4450 goto error_return;
4451 if (bfd_bread (buf, amt, abfd) != amt)
4452 goto error_return;
4453
4454 /* Iterate over all the symbols and internalize them. */
4455 endbufp = buf + symbol_count;
4456 for (bufp = buf, sym = symbase; bufp < endbufp; ++bufp)
4457 {
4458
4459 /* I don't think we care about these. */
4460 if (bufp->symbol_type == ST_SYM_EXT
4461 || bufp->symbol_type == ST_ARG_EXT)
4462 continue;
4463
4464 /* Set some private data we care about. */
4465 if (bufp->symbol_type == ST_NULL)
4466 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
4467 else if (bufp->symbol_type == ST_ABSOLUTE)
4468 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ABSOLUTE;
4469 else if (bufp->symbol_type == ST_DATA)
4470 som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
4471 else if (bufp->symbol_type == ST_CODE)
4472 som_symbol_data (sym)->som_type = SYMBOL_TYPE_CODE;
4473 else if (bufp->symbol_type == ST_PRI_PROG)
4474 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PRI_PROG;
4475 else if (bufp->symbol_type == ST_SEC_PROG)
4476 som_symbol_data (sym)->som_type = SYMBOL_TYPE_SEC_PROG;
4477 else if (bufp->symbol_type == ST_ENTRY)
4478 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ENTRY;
4479 else if (bufp->symbol_type == ST_MILLICODE)
4480 som_symbol_data (sym)->som_type = SYMBOL_TYPE_MILLICODE;
4481 else if (bufp->symbol_type == ST_PLABEL)
4482 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PLABEL;
4483 else
4484 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
4485 som_symbol_data (sym)->tc_data.ap.hppa_arg_reloc = bufp->arg_reloc;
4486
4487 /* Some reasonable defaults. */
4488 sym->symbol.the_bfd = abfd;
4489 sym->symbol.name = bufp->name.n_strx + stringtab;
4490 sym->symbol.value = bufp->symbol_value;
4491 sym->symbol.section = 0;
4492 sym->symbol.flags = 0;
4493
4494 switch (bufp->symbol_type)
4495 {
4496 case ST_ENTRY:
4497 case ST_MILLICODE:
4498 sym->symbol.flags |= BSF_FUNCTION;
4499 som_symbol_data (sym)->tc_data.ap.hppa_priv_level =
4500 sym->symbol.value & 0x3;
4501 sym->symbol.value &= ~0x3;
4502 break;
4503
4504 case ST_STUB:
4505 case ST_CODE:
4506 case ST_PRI_PROG:
4507 case ST_SEC_PROG:
4508 som_symbol_data (sym)->tc_data.ap.hppa_priv_level =
4509 sym->symbol.value & 0x3;
4510 sym->symbol.value &= ~0x3;
4511 /* If the symbol's scope is SS_UNSAT, then these are
4512 undefined function symbols. */
4513 if (bufp->symbol_scope == SS_UNSAT)
4514 sym->symbol.flags |= BSF_FUNCTION;
4515
4516 default:
4517 break;
4518 }
4519
4520 /* Handle scoping and section information. */
4521 switch (bufp->symbol_scope)
4522 {
4523 /* symbol_info field is undefined for SS_EXTERNAL and SS_UNSAT symbols,
4524 so the section associated with this symbol can't be known. */
4525 case SS_EXTERNAL:
4526 if (bufp->symbol_type != ST_STORAGE)
4527 sym->symbol.section = bfd_und_section_ptr;
4528 else
4529 sym->symbol.section = bfd_com_section_ptr;
4530 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
4531 break;
4532
4533 case SS_UNSAT:
4534 if (bufp->symbol_type != ST_STORAGE)
4535 sym->symbol.section = bfd_und_section_ptr;
4536 else
4537 sym->symbol.section = bfd_com_section_ptr;
4538 break;
4539
4540 case SS_UNIVERSAL:
4541 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
4542 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
4543 sym->symbol.value -= sym->symbol.section->vma;
4544 break;
4545
4546 case SS_LOCAL:
4547 sym->symbol.flags |= BSF_LOCAL;
4548 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
4549 sym->symbol.value -= sym->symbol.section->vma;
4550 break;
4551 }
4552
4553 /* Check for a weak symbol. */
4554 if (bufp->secondary_def)
4555 sym->symbol.flags |= BSF_WEAK;
4556
4557 /* Mark section symbols and symbols used by the debugger.
4558 Note $START$ is a magic code symbol, NOT a section symbol. */
4559 if (sym->symbol.name[0] == '$'
4560 && sym->symbol.name[strlen (sym->symbol.name) - 1] == '$'
4561 && !strcmp (sym->symbol.name, sym->symbol.section->name))
4562 sym->symbol.flags |= BSF_SECTION_SYM;
4563 else if (!strncmp (sym->symbol.name, "L$0\002", 4))
4564 {
4565 sym->symbol.flags |= BSF_SECTION_SYM;
4566 sym->symbol.name = sym->symbol.section->name;
4567 }
4568 else if (!strncmp (sym->symbol.name, "L$0\001", 4))
4569 sym->symbol.flags |= BSF_DEBUGGING;
4570
4571 /* Note increment at bottom of loop, since we skip some symbols
4572 we can not include it as part of the for statement. */
4573 sym++;
4574 }
4575
4576 /* We modify the symbol count to record the number of BFD symbols we
4577 created. */
4578 bfd_get_symcount (abfd) = sym - symbase;
4579
4580 /* Save our results and return success. */
4581 obj_som_symtab (abfd) = symbase;
4582 successful_return:
4583 if (buf != NULL)
4584 free (buf);
4585 return (TRUE);
4586
4587 error_return:
4588 if (buf != NULL)
4589 free (buf);
4590 return FALSE;
4591 }
4592
4593 /* Canonicalize a SOM symbol table. Return the number of entries
4594 in the symbol table. */
4595
4596 static long
4597 som_canonicalize_symtab (abfd, location)
4598 bfd *abfd;
4599 asymbol **location;
4600 {
4601 int i;
4602 som_symbol_type *symbase;
4603
4604 if (!som_slurp_symbol_table (abfd))
4605 return -1;
4606
4607 i = bfd_get_symcount (abfd);
4608 symbase = obj_som_symtab (abfd);
4609
4610 for (; i > 0; i--, location++, symbase++)
4611 *location = &symbase->symbol;
4612
4613 /* Final null pointer. */
4614 *location = 0;
4615 return (bfd_get_symcount (abfd));
4616 }
4617
4618 /* Make a SOM symbol. There is nothing special to do here. */
4619
4620 static asymbol *
4621 som_make_empty_symbol (abfd)
4622 bfd *abfd;
4623 {
4624 bfd_size_type amt = sizeof (som_symbol_type);
4625 som_symbol_type *new = (som_symbol_type *) bfd_zalloc (abfd, amt);
4626 if (new == NULL)
4627 return 0;
4628 new->symbol.the_bfd = abfd;
4629
4630 return &new->symbol;
4631 }
4632
4633 /* Print symbol information. */
4634
4635 static void
4636 som_print_symbol (abfd, afile, symbol, how)
4637 bfd *abfd;
4638 PTR afile;
4639 asymbol *symbol;
4640 bfd_print_symbol_type how;
4641 {
4642 FILE *file = (FILE *) afile;
4643 switch (how)
4644 {
4645 case bfd_print_symbol_name:
4646 fprintf (file, "%s", symbol->name);
4647 break;
4648 case bfd_print_symbol_more:
4649 fprintf (file, "som ");
4650 fprintf_vma (file, symbol->value);
4651 fprintf (file, " %lx", (long) symbol->flags);
4652 break;
4653 case bfd_print_symbol_all:
4654 {
4655 const char *section_name;
4656 section_name = symbol->section ? symbol->section->name : "(*none*)";
4657 bfd_print_symbol_vandf (abfd, (PTR) file, symbol);
4658 fprintf (file, " %s\t%s", section_name, symbol->name);
4659 break;
4660 }
4661 }
4662 }
4663
4664 static bfd_boolean
4665 som_bfd_is_local_label_name (abfd, name)
4666 bfd *abfd ATTRIBUTE_UNUSED;
4667 const char *name;
4668 {
4669 return (name[0] == 'L' && name[1] == '$');
4670 }
4671
4672 /* Count or process variable-length SOM fixup records.
4673
4674 To avoid code duplication we use this code both to compute the number
4675 of relocations requested by a stream, and to internalize the stream.
4676
4677 When computing the number of relocations requested by a stream the
4678 variables rptr, section, and symbols have no meaning.
4679
4680 Return the number of relocations requested by the fixup stream. When
4681 not just counting
4682
4683 This needs at least two or three more passes to get it cleaned up. */
4684
4685 static unsigned int
4686 som_set_reloc_info (fixup, end, internal_relocs, section, symbols, just_count)
4687 unsigned char *fixup;
4688 unsigned int end;
4689 arelent *internal_relocs;
4690 asection *section;
4691 asymbol **symbols;
4692 bfd_boolean just_count;
4693 {
4694 unsigned int op, varname, deallocate_contents = 0;
4695 unsigned char *end_fixups = &fixup[end];
4696 const struct fixup_format *fp;
4697 const char *cp;
4698 unsigned char *save_fixup;
4699 int variables[26], stack[20], c, v, count, prev_fixup, *sp, saved_unwind_bits;
4700 const int *subop;
4701 arelent *rptr = internal_relocs;
4702 unsigned int offset = 0;
4703
4704 #define var(c) variables[(c) - 'A']
4705 #define push(v) (*sp++ = (v))
4706 #define pop() (*--sp)
4707 #define emptystack() (sp == stack)
4708
4709 som_initialize_reloc_queue (reloc_queue);
4710 memset (variables, 0, sizeof (variables));
4711 memset (stack, 0, sizeof (stack));
4712 count = 0;
4713 prev_fixup = 0;
4714 saved_unwind_bits = 0;
4715 sp = stack;
4716
4717 while (fixup < end_fixups)
4718 {
4719
4720 /* Save pointer to the start of this fixup. We'll use
4721 it later to determine if it is necessary to put this fixup
4722 on the queue. */
4723 save_fixup = fixup;
4724
4725 /* Get the fixup code and its associated format. */
4726 op = *fixup++;
4727 fp = &som_fixup_formats[op];
4728
4729 /* Handle a request for a previous fixup. */
4730 if (*fp->format == 'P')
4731 {
4732 /* Get pointer to the beginning of the prev fixup, move
4733 the repeated fixup to the head of the queue. */
4734 fixup = reloc_queue[fp->D].reloc;
4735 som_reloc_queue_fix (reloc_queue, fp->D);
4736 prev_fixup = 1;
4737
4738 /* Get the fixup code and its associated format. */
4739 op = *fixup++;
4740 fp = &som_fixup_formats[op];
4741 }
4742
4743 /* If this fixup will be passed to BFD, set some reasonable defaults. */
4744 if (! just_count
4745 && som_hppa_howto_table[op].type != R_NO_RELOCATION
4746 && som_hppa_howto_table[op].type != R_DATA_OVERRIDE)
4747 {
4748 rptr->address = offset;
4749 rptr->howto = &som_hppa_howto_table[op];
4750 rptr->addend = 0;
4751 rptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
4752 }
4753
4754 /* Set default input length to 0. Get the opcode class index
4755 into D. */
4756 var ('L') = 0;
4757 var ('D') = fp->D;
4758 var ('U') = saved_unwind_bits;
4759
4760 /* Get the opcode format. */
4761 cp = fp->format;
4762
4763 /* Process the format string. Parsing happens in two phases,
4764 parse RHS, then assign to LHS. Repeat until no more
4765 characters in the format string. */
4766 while (*cp)
4767 {
4768 /* The variable this pass is going to compute a value for. */
4769 varname = *cp++;
4770
4771 /* Start processing RHS. Continue until a NULL or '=' is found. */
4772 do
4773 {
4774 c = *cp++;
4775
4776 /* If this is a variable, push it on the stack. */
4777 if (ISUPPER (c))
4778 push (var (c));
4779
4780 /* If this is a lower case letter, then it represents
4781 additional data from the fixup stream to be pushed onto
4782 the stack. */
4783 else if (ISLOWER (c))
4784 {
4785 int bits = (c - 'a') * 8;
4786 for (v = 0; c > 'a'; --c)
4787 v = (v << 8) | *fixup++;
4788 if (varname == 'V')
4789 v = sign_extend (v, bits);
4790 push (v);
4791 }
4792
4793 /* A decimal constant. Push it on the stack. */
4794 else if (ISDIGIT (c))
4795 {
4796 v = c - '0';
4797 while (ISDIGIT (*cp))
4798 v = (v * 10) + (*cp++ - '0');
4799 push (v);
4800 }
4801 else
4802 /* An operator. Pop two two values from the stack and
4803 use them as operands to the given operation. Push
4804 the result of the operation back on the stack. */
4805 switch (c)
4806 {
4807 case '+':
4808 v = pop ();
4809 v += pop ();
4810 push (v);
4811 break;
4812 case '*':
4813 v = pop ();
4814 v *= pop ();
4815 push (v);
4816 break;
4817 case '<':
4818 v = pop ();
4819 v = pop () << v;
4820 push (v);
4821 break;
4822 default:
4823 abort ();
4824 }
4825 }
4826 while (*cp && *cp != '=');
4827
4828 /* Move over the equal operator. */
4829 cp++;
4830
4831 /* Pop the RHS off the stack. */
4832 c = pop ();
4833
4834 /* Perform the assignment. */
4835 var (varname) = c;
4836
4837 /* Handle side effects. and special 'O' stack cases. */
4838 switch (varname)
4839 {
4840 /* Consume some bytes from the input space. */
4841 case 'L':
4842 offset += c;
4843 break;
4844 /* A symbol to use in the relocation. Make a note
4845 of this if we are not just counting. */
4846 case 'S':
4847 if (! just_count)
4848 rptr->sym_ptr_ptr = &symbols[c];
4849 break;
4850 /* Argument relocation bits for a function call. */
4851 case 'R':
4852 if (! just_count)
4853 {
4854 unsigned int tmp = var ('R');
4855 rptr->addend = 0;
4856
4857 if ((som_hppa_howto_table[op].type == R_PCREL_CALL
4858 && R_PCREL_CALL + 10 > op)
4859 || (som_hppa_howto_table[op].type == R_ABS_CALL
4860 && R_ABS_CALL + 10 > op))
4861 {
4862 /* Simple encoding. */
4863 if (tmp > 4)
4864 {
4865 tmp -= 5;
4866 rptr->addend |= 1;
4867 }
4868 if (tmp == 4)
4869 rptr->addend |= 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2;
4870 else if (tmp == 3)
4871 rptr->addend |= 1 << 8 | 1 << 6 | 1 << 4;
4872 else if (tmp == 2)
4873 rptr->addend |= 1 << 8 | 1 << 6;
4874 else if (tmp == 1)
4875 rptr->addend |= 1 << 8;
4876 }
4877 else
4878 {
4879 unsigned int tmp1, tmp2;
4880
4881 /* First part is easy -- low order two bits are
4882 directly copied, then shifted away. */
4883 rptr->addend = tmp & 0x3;
4884 tmp >>= 2;
4885
4886 /* Diving the result by 10 gives us the second
4887 part. If it is 9, then the first two words
4888 are a double precision paramater, else it is
4889 3 * the first arg bits + the 2nd arg bits. */
4890 tmp1 = tmp / 10;
4891 tmp -= tmp1 * 10;
4892 if (tmp1 == 9)
4893 rptr->addend += (0xe << 6);
4894 else
4895 {
4896 /* Get the two pieces. */
4897 tmp2 = tmp1 / 3;
4898 tmp1 -= tmp2 * 3;
4899 /* Put them in the addend. */
4900 rptr->addend += (tmp2 << 8) + (tmp1 << 6);
4901 }
4902
4903 /* What's left is the third part. It's unpacked
4904 just like the second. */
4905 if (tmp == 9)
4906 rptr->addend += (0xe << 2);
4907 else
4908 {
4909 tmp2 = tmp / 3;
4910 tmp -= tmp2 * 3;
4911 rptr->addend += (tmp2 << 4) + (tmp << 2);
4912 }
4913 }
4914 rptr->addend = HPPA_R_ADDEND (rptr->addend, 0);
4915 }
4916 break;
4917 /* Handle the linker expression stack. */
4918 case 'O':
4919 switch (op)
4920 {
4921 case R_COMP1:
4922 subop = comp1_opcodes;
4923 break;
4924 case R_COMP2:
4925 subop = comp2_opcodes;
4926 break;
4927 case R_COMP3:
4928 subop = comp3_opcodes;
4929 break;
4930 default:
4931 abort ();
4932 }
4933 while (*subop <= (unsigned char) c)
4934 ++subop;
4935 --subop;
4936 break;
4937 /* The lower 32unwind bits must be persistent. */
4938 case 'U':
4939 saved_unwind_bits = var ('U');
4940 break;
4941
4942 default:
4943 break;
4944 }
4945 }
4946
4947 /* If we used a previous fixup, clean up after it. */
4948 if (prev_fixup)
4949 {
4950 fixup = save_fixup + 1;
4951 prev_fixup = 0;
4952 }
4953 /* Queue it. */
4954 else if (fixup > save_fixup + 1)
4955 som_reloc_queue_insert (save_fixup, fixup - save_fixup, reloc_queue);
4956
4957 /* We do not pass R_DATA_OVERRIDE or R_NO_RELOCATION
4958 fixups to BFD. */
4959 if (som_hppa_howto_table[op].type != R_DATA_OVERRIDE
4960 && som_hppa_howto_table[op].type != R_NO_RELOCATION)
4961 {
4962 /* Done with a single reloction. Loop back to the top. */
4963 if (! just_count)
4964 {
4965 if (som_hppa_howto_table[op].type == R_ENTRY)
4966 rptr->addend = var ('T');
4967 else if (som_hppa_howto_table[op].type == R_EXIT)
4968 rptr->addend = var ('U');
4969 else if (som_hppa_howto_table[op].type == R_PCREL_CALL
4970 || som_hppa_howto_table[op].type == R_ABS_CALL)
4971 ;
4972 else if (som_hppa_howto_table[op].type == R_DATA_ONE_SYMBOL)
4973 {
4974 /* Try what was specified in R_DATA_OVERRIDE first
4975 (if anything). Then the hard way using the
4976 section contents. */
4977 rptr->addend = var ('V');
4978
4979 if (rptr->addend == 0 && !section->contents)
4980 {
4981 /* Got to read the damn contents first. We don't
4982 bother saving the contents (yet). Add it one
4983 day if the need arises. */
4984 bfd_byte *contents;
4985 if (!bfd_malloc_and_get_section (section->owner, section,
4986 &contents))
4987 {
4988 if (contents != NULL)
4989 free (contents);
4990 return (unsigned) -1;
4991 }
4992 section->contents = contents;
4993 deallocate_contents = 1;
4994 }
4995 else if (rptr->addend == 0)
4996 rptr->addend = bfd_get_32 (section->owner,
4997 (section->contents
4998 + offset - var ('L')));
4999
5000 }
5001 else
5002 rptr->addend = var ('V');
5003 rptr++;
5004 }
5005 count++;
5006 /* Now that we've handled a "full" relocation, reset
5007 some state. */
5008 memset (variables, 0, sizeof (variables));
5009 memset (stack, 0, sizeof (stack));
5010 }
5011 }
5012 if (deallocate_contents)
5013 free (section->contents);
5014
5015 return count;
5016
5017 #undef var
5018 #undef push
5019 #undef pop
5020 #undef emptystack
5021 }
5022
5023 /* Read in the relocs (aka fixups in SOM terms) for a section.
5024
5025 som_get_reloc_upper_bound calls this routine with JUST_COUNT
5026 set to TRUE to indicate it only needs a count of the number
5027 of actual relocations. */
5028
5029 static bfd_boolean
5030 som_slurp_reloc_table (abfd, section, symbols, just_count)
5031 bfd *abfd;
5032 asection *section;
5033 asymbol **symbols;
5034 bfd_boolean just_count;
5035 {
5036 char *external_relocs;
5037 unsigned int fixup_stream_size;
5038 arelent *internal_relocs;
5039 unsigned int num_relocs;
5040 bfd_size_type amt;
5041
5042 fixup_stream_size = som_section_data (section)->reloc_size;
5043 /* If there were no relocations, then there is nothing to do. */
5044 if (section->reloc_count == 0)
5045 return TRUE;
5046
5047 /* If reloc_count is -1, then the relocation stream has not been
5048 parsed. We must do so now to know how many relocations exist. */
5049 if (section->reloc_count == (unsigned) -1)
5050 {
5051 amt = fixup_stream_size;
5052 external_relocs = (char *) bfd_malloc (amt);
5053 if (external_relocs == (char *) NULL)
5054 return FALSE;
5055 /* Read in the external forms. */
5056 if (bfd_seek (abfd,
5057 obj_som_reloc_filepos (abfd) + section->rel_filepos,
5058 SEEK_SET)
5059 != 0)
5060 return FALSE;
5061 if (bfd_bread (external_relocs, amt, abfd) != amt)
5062 return FALSE;
5063
5064 /* Let callers know how many relocations found.
5065 also save the relocation stream as we will
5066 need it again. */
5067 section->reloc_count = som_set_reloc_info (external_relocs,
5068 fixup_stream_size,
5069 NULL, NULL, NULL, TRUE);
5070
5071 som_section_data (section)->reloc_stream = external_relocs;
5072 }
5073
5074 /* If the caller only wanted a count, then return now. */
5075 if (just_count)
5076 return TRUE;
5077
5078 num_relocs = section->reloc_count;
5079 external_relocs = som_section_data (section)->reloc_stream;
5080 /* Return saved information about the relocations if it is available. */
5081 if (section->relocation != (arelent *) NULL)
5082 return TRUE;
5083
5084 amt = num_relocs;
5085 amt *= sizeof (arelent);
5086 internal_relocs = (arelent *) bfd_zalloc (abfd, (amt));
5087 if (internal_relocs == (arelent *) NULL)
5088 return FALSE;
5089
5090 /* Process and internalize the relocations. */
5091 som_set_reloc_info (external_relocs, fixup_stream_size,
5092 internal_relocs, section, symbols, FALSE);
5093
5094 /* We're done with the external relocations. Free them. */
5095 free (external_relocs);
5096 som_section_data (section)->reloc_stream = NULL;
5097
5098 /* Save our results and return success. */
5099 section->relocation = internal_relocs;
5100 return TRUE;
5101 }
5102
5103 /* Return the number of bytes required to store the relocation
5104 information associated with the given section. */
5105
5106 static long
5107 som_get_reloc_upper_bound (abfd, asect)
5108 bfd *abfd;
5109 sec_ptr asect;
5110 {
5111 /* If section has relocations, then read in the relocation stream
5112 and parse it to determine how many relocations exist. */
5113 if (asect->flags & SEC_RELOC)
5114 {
5115 if (! som_slurp_reloc_table (abfd, asect, NULL, TRUE))
5116 return -1;
5117 return (asect->reloc_count + 1) * sizeof (arelent *);
5118 }
5119 /* There are no relocations. */
5120 return 0;
5121 }
5122
5123 /* Convert relocations from SOM (external) form into BFD internal
5124 form. Return the number of relocations. */
5125
5126 static long
5127 som_canonicalize_reloc (abfd, section, relptr, symbols)
5128 bfd *abfd;
5129 sec_ptr section;
5130 arelent **relptr;
5131 asymbol **symbols;
5132 {
5133 arelent *tblptr;
5134 int count;
5135
5136 if (! som_slurp_reloc_table (abfd, section, symbols, FALSE))
5137 return -1;
5138
5139 count = section->reloc_count;
5140 tblptr = section->relocation;
5141
5142 while (count--)
5143 *relptr++ = tblptr++;
5144
5145 *relptr = (arelent *) NULL;
5146 return section->reloc_count;
5147 }
5148
5149 extern const bfd_target som_vec;
5150
5151 /* A hook to set up object file dependent section information. */
5152
5153 static bfd_boolean
5154 som_new_section_hook (abfd, newsect)
5155 bfd *abfd;
5156 asection *newsect;
5157 {
5158 bfd_size_type amt = sizeof (struct som_section_data_struct);
5159 newsect->used_by_bfd = (PTR) bfd_zalloc (abfd, amt);
5160 if (!newsect->used_by_bfd)
5161 return FALSE;
5162 newsect->alignment_power = 3;
5163
5164 /* We allow more than three sections internally. */
5165 return TRUE;
5166 }
5167
5168 /* Copy any private info we understand from the input symbol
5169 to the output symbol. */
5170
5171 static bfd_boolean
5172 som_bfd_copy_private_symbol_data (ibfd, isymbol, obfd, osymbol)
5173 bfd *ibfd;
5174 asymbol *isymbol;
5175 bfd *obfd;
5176 asymbol *osymbol;
5177 {
5178 struct som_symbol *input_symbol = (struct som_symbol *) isymbol;
5179 struct som_symbol *output_symbol = (struct som_symbol *) osymbol;
5180
5181 /* One day we may try to grok other private data. */
5182 if (ibfd->xvec->flavour != bfd_target_som_flavour
5183 || obfd->xvec->flavour != bfd_target_som_flavour)
5184 return FALSE;
5185
5186 /* The only private information we need to copy is the argument relocation
5187 bits. */
5188 output_symbol->tc_data.ap.hppa_arg_reloc =
5189 input_symbol->tc_data.ap.hppa_arg_reloc;
5190
5191 return TRUE;
5192 }
5193
5194 /* Copy any private info we understand from the input section
5195 to the output section. */
5196
5197 static bfd_boolean
5198 som_bfd_copy_private_section_data (ibfd, isection, obfd, osection)
5199 bfd *ibfd;
5200 asection *isection;
5201 bfd *obfd;
5202 asection *osection;
5203 {
5204 bfd_size_type amt;
5205
5206 /* One day we may try to grok other private data. */
5207 if (ibfd->xvec->flavour != bfd_target_som_flavour
5208 || obfd->xvec->flavour != bfd_target_som_flavour
5209 || (!som_is_space (isection) && !som_is_subspace (isection)))
5210 return TRUE;
5211
5212 amt = sizeof (struct som_copyable_section_data_struct);
5213 som_section_data (osection)->copy_data =
5214 (struct som_copyable_section_data_struct *) bfd_zalloc (obfd, amt);
5215 if (som_section_data (osection)->copy_data == NULL)
5216 return FALSE;
5217
5218 memcpy (som_section_data (osection)->copy_data,
5219 som_section_data (isection)->copy_data,
5220 sizeof (struct som_copyable_section_data_struct));
5221
5222 /* Reparent if necessary. */
5223 if (som_section_data (osection)->copy_data->container)
5224 som_section_data (osection)->copy_data->container =
5225 som_section_data (osection)->copy_data->container->output_section;
5226
5227 return TRUE;
5228 }
5229
5230 /* Copy any private info we understand from the input bfd
5231 to the output bfd. */
5232
5233 static bfd_boolean
5234 som_bfd_copy_private_bfd_data (ibfd, obfd)
5235 bfd *ibfd, *obfd;
5236 {
5237 /* One day we may try to grok other private data. */
5238 if (ibfd->xvec->flavour != bfd_target_som_flavour
5239 || obfd->xvec->flavour != bfd_target_som_flavour)
5240 return TRUE;
5241
5242 /* Allocate some memory to hold the data we need. */
5243 obj_som_exec_data (obfd) = (struct som_exec_data *)
5244 bfd_zalloc (obfd, (bfd_size_type) sizeof (struct som_exec_data));
5245 if (obj_som_exec_data (obfd) == NULL)
5246 return FALSE;
5247
5248 /* Now copy the data. */
5249 memcpy (obj_som_exec_data (obfd), obj_som_exec_data (ibfd),
5250 sizeof (struct som_exec_data));
5251
5252 return TRUE;
5253 }
5254
5255 /* Display the SOM header. */
5256
5257 static bfd_boolean
5258 som_bfd_print_private_bfd_data (bfd *abfd, void *farg)
5259 {
5260 struct som_exec_auxhdr *exec_header;
5261 struct aux_id* auxhdr;
5262 FILE *f;
5263
5264 f = (FILE *) farg;
5265
5266 exec_header = obj_som_exec_hdr (abfd);
5267 if (exec_header)
5268 {
5269 fprintf (f, _("\nExec Auxiliary Header\n"));
5270 fprintf (f, " flags ");
5271 auxhdr = &exec_header->som_auxhdr;
5272 if (auxhdr->mandatory)
5273 fprintf (f, "mandatory ");
5274 if (auxhdr->copy)
5275 fprintf (f, "copy ");
5276 if (auxhdr->append)
5277 fprintf (f, "append ");
5278 if (auxhdr->ignore)
5279 fprintf (f, "ignore ");
5280 fprintf (f, "\n");
5281 fprintf (f, " type %#x\n", auxhdr->type);
5282 fprintf (f, " length %#x\n", auxhdr->length);
5283 fprintf (f, " text size %#x\n", exec_header->exec_tsize);
5284 fprintf (f, " text memory offset %#x\n", exec_header->exec_tmem);
5285 fprintf (f, " text file offset %#x\n", exec_header->exec_tfile);
5286 fprintf (f, " data size %#x\n", exec_header->exec_dsize);
5287 fprintf (f, " data memory offset %#x\n", exec_header->exec_dmem);
5288 fprintf (f, " data file offset %#x\n", exec_header->exec_dfile);
5289 fprintf (f, " bss size %#x\n", exec_header->exec_bsize);
5290 fprintf (f, " entry point %#x\n", exec_header->exec_entry);
5291 fprintf (f, " loader flags %#x\n", exec_header->exec_flags);
5292 fprintf (f, " bss initializer %#x\n", exec_header->exec_bfill);
5293 }
5294
5295 return TRUE;
5296 }
5297
5298 /* Set backend info for sections which can not be described
5299 in the BFD data structures. */
5300
5301 bfd_boolean
5302 bfd_som_set_section_attributes (section, defined, private, sort_key, spnum)
5303 asection *section;
5304 int defined;
5305 int private;
5306 unsigned int sort_key;
5307 int spnum;
5308 {
5309 /* Allocate memory to hold the magic information. */
5310 if (som_section_data (section)->copy_data == NULL)
5311 {
5312 bfd_size_type amt = sizeof (struct som_copyable_section_data_struct);
5313 som_section_data (section)->copy_data =
5314 (struct som_copyable_section_data_struct *) bfd_zalloc (section->owner,
5315 amt);
5316 if (som_section_data (section)->copy_data == NULL)
5317 return FALSE;
5318 }
5319 som_section_data (section)->copy_data->sort_key = sort_key;
5320 som_section_data (section)->copy_data->is_defined = defined;
5321 som_section_data (section)->copy_data->is_private = private;
5322 som_section_data (section)->copy_data->container = section;
5323 som_section_data (section)->copy_data->space_number = spnum;
5324 return TRUE;
5325 }
5326
5327 /* Set backend info for subsections which can not be described
5328 in the BFD data structures. */
5329
5330 bfd_boolean
5331 bfd_som_set_subsection_attributes (section, container, access,
5332 sort_key, quadrant, comdat,
5333 common, dup_common)
5334 asection *section;
5335 asection *container;
5336 int access;
5337 unsigned int sort_key;
5338 int quadrant, comdat, common, dup_common;
5339 {
5340 /* Allocate memory to hold the magic information. */
5341 if (som_section_data (section)->copy_data == NULL)
5342 {
5343 bfd_size_type amt = sizeof (struct som_copyable_section_data_struct);
5344 som_section_data (section)->copy_data =
5345 (struct som_copyable_section_data_struct *) bfd_zalloc (section->owner,
5346 amt);
5347 if (som_section_data (section)->copy_data == NULL)
5348 return FALSE;
5349 }
5350 som_section_data (section)->copy_data->sort_key = sort_key;
5351 som_section_data (section)->copy_data->access_control_bits = access;
5352 som_section_data (section)->copy_data->quadrant = quadrant;
5353 som_section_data (section)->copy_data->container = container;
5354 som_section_data (section)->copy_data->is_comdat = comdat;
5355 som_section_data (section)->copy_data->is_common = common;
5356 som_section_data (section)->copy_data->dup_common = dup_common;
5357 return TRUE;
5358 }
5359
5360 /* Set the full SOM symbol type. SOM needs far more symbol information
5361 than any other object file format I'm aware of. It is mandatory
5362 to be able to know if a symbol is an entry point, millicode, data,
5363 code, absolute, storage request, or procedure label. If you get
5364 the symbol type wrong your program will not link. */
5365
5366 void
5367 bfd_som_set_symbol_type (symbol, type)
5368 asymbol *symbol;
5369 unsigned int type;
5370 {
5371 som_symbol_data (symbol)->som_type = type;
5372 }
5373
5374 /* Attach an auxiliary header to the BFD backend so that it may be
5375 written into the object file. */
5376
5377 bfd_boolean
5378 bfd_som_attach_aux_hdr (abfd, type, string)
5379 bfd *abfd;
5380 int type;
5381 char *string;
5382 {
5383 bfd_size_type amt;
5384
5385 if (type == VERSION_AUX_ID)
5386 {
5387 size_t len = strlen (string);
5388 int pad = 0;
5389
5390 if (len % 4)
5391 pad = (4 - (len % 4));
5392 amt = sizeof (struct aux_id) + sizeof (unsigned int) + len + pad;
5393 obj_som_version_hdr (abfd) =
5394 (struct user_string_aux_hdr *) bfd_zalloc (abfd, amt);
5395 if (!obj_som_version_hdr (abfd))
5396 return FALSE;
5397 obj_som_version_hdr (abfd)->header_id.type = VERSION_AUX_ID;
5398 obj_som_version_hdr (abfd)->header_id.length = len + pad;
5399 obj_som_version_hdr (abfd)->header_id.length += sizeof (int);
5400 obj_som_version_hdr (abfd)->string_length = len;
5401 strncpy (obj_som_version_hdr (abfd)->user_string, string, len);
5402 }
5403 else if (type == COPYRIGHT_AUX_ID)
5404 {
5405 int len = strlen (string);
5406 int pad = 0;
5407
5408 if (len % 4)
5409 pad = (4 - (len % 4));
5410 amt = sizeof (struct aux_id) + sizeof (unsigned int) + len + pad;
5411 obj_som_copyright_hdr (abfd) =
5412 (struct copyright_aux_hdr *) bfd_zalloc (abfd, amt);
5413 if (!obj_som_copyright_hdr (abfd))
5414 return FALSE;
5415 obj_som_copyright_hdr (abfd)->header_id.type = COPYRIGHT_AUX_ID;
5416 obj_som_copyright_hdr (abfd)->header_id.length = len + pad;
5417 obj_som_copyright_hdr (abfd)->header_id.length += sizeof (int);
5418 obj_som_copyright_hdr (abfd)->string_length = len;
5419 strcpy (obj_som_copyright_hdr (abfd)->copyright, string);
5420 }
5421 return TRUE;
5422 }
5423
5424 /* Attach a compilation unit header to the BFD backend so that it may be
5425 written into the object file. */
5426
5427 bfd_boolean
5428 bfd_som_attach_compilation_unit (abfd, name, language_name, product_id,
5429 version_id)
5430 bfd *abfd;
5431 const char *name;
5432 const char *language_name;
5433 const char *product_id;
5434 const char *version_id;
5435 {
5436 COMPUNIT *n = (COMPUNIT *) bfd_zalloc (abfd, (bfd_size_type) COMPUNITSZ);
5437 if (n == NULL)
5438 return FALSE;
5439
5440 #define STRDUP(f) \
5441 if (f != NULL) \
5442 { \
5443 n->f.n_name = bfd_alloc (abfd, (bfd_size_type) strlen (f) + 1); \
5444 if (n->f.n_name == NULL) \
5445 return FALSE; \
5446 strcpy (n->f.n_name, f); \
5447 }
5448
5449 STRDUP (name);
5450 STRDUP (language_name);
5451 STRDUP (product_id);
5452 STRDUP (version_id);
5453
5454 #undef STRDUP
5455
5456 obj_som_compilation_unit (abfd) = n;
5457
5458 return TRUE;
5459 }
5460
5461 static bfd_boolean
5462 som_get_section_contents (abfd, section, location, offset, count)
5463 bfd *abfd;
5464 sec_ptr section;
5465 PTR location;
5466 file_ptr offset;
5467 bfd_size_type count;
5468 {
5469 if (count == 0 || ((section->flags & SEC_HAS_CONTENTS) == 0))
5470 return TRUE;
5471 if ((bfd_size_type) (offset+count) > section->size
5472 || bfd_seek (abfd, (file_ptr) (section->filepos + offset), SEEK_SET) != 0
5473 || bfd_bread (location, count, abfd) != count)
5474 return FALSE; /* On error. */
5475 return TRUE;
5476 }
5477
5478 static bfd_boolean
5479 som_set_section_contents (abfd, section, location, offset, count)
5480 bfd *abfd;
5481 sec_ptr section;
5482 const PTR location;
5483 file_ptr offset;
5484 bfd_size_type count;
5485 {
5486 if (! abfd->output_has_begun)
5487 {
5488 /* Set up fixed parts of the file, space, and subspace headers.
5489 Notify the world that output has begun. */
5490 som_prep_headers (abfd);
5491 abfd->output_has_begun = TRUE;
5492 /* Start writing the object file. This include all the string
5493 tables, fixup streams, and other portions of the object file. */
5494 som_begin_writing (abfd);
5495 }
5496
5497 /* Only write subspaces which have "real" contents (eg. the contents
5498 are not generated at run time by the OS). */
5499 if (!som_is_subspace (section)
5500 || ((section->flags & SEC_HAS_CONTENTS) == 0))
5501 return TRUE;
5502
5503 /* Seek to the proper offset within the object file and write the
5504 data. */
5505 offset += som_section_data (section)->subspace_dict->file_loc_init_value;
5506 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
5507 return FALSE;
5508
5509 if (bfd_bwrite (location, count, abfd) != count)
5510 return FALSE;
5511 return TRUE;
5512 }
5513
5514 static bfd_boolean
5515 som_set_arch_mach (abfd, arch, machine)
5516 bfd *abfd;
5517 enum bfd_architecture arch;
5518 unsigned long machine;
5519 {
5520 /* Allow any architecture to be supported by the SOM backend. */
5521 return bfd_default_set_arch_mach (abfd, arch, machine);
5522 }
5523
5524 static bfd_boolean
5525 som_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
5526 functionname_ptr, line_ptr)
5527 bfd *abfd ATTRIBUTE_UNUSED;
5528 asection *section ATTRIBUTE_UNUSED;
5529 asymbol **symbols ATTRIBUTE_UNUSED;
5530 bfd_vma offset ATTRIBUTE_UNUSED;
5531 const char **filename_ptr ATTRIBUTE_UNUSED;
5532 const char **functionname_ptr ATTRIBUTE_UNUSED;
5533 unsigned int *line_ptr ATTRIBUTE_UNUSED;
5534 {
5535 return FALSE;
5536 }
5537
5538 static int
5539 som_sizeof_headers (abfd, reloc)
5540 bfd *abfd ATTRIBUTE_UNUSED;
5541 bfd_boolean reloc ATTRIBUTE_UNUSED;
5542 {
5543 (*_bfd_error_handler) (_("som_sizeof_headers unimplemented"));
5544 fflush (stderr);
5545 abort ();
5546 return 0;
5547 }
5548
5549 /* Return the single-character symbol type corresponding to
5550 SOM section S, or '?' for an unknown SOM section. */
5551
5552 static char
5553 som_section_type (s)
5554 const char *s;
5555 {
5556 const struct section_to_type *t;
5557
5558 for (t = &stt[0]; t->section; t++)
5559 if (!strcmp (s, t->section))
5560 return t->type;
5561 return '?';
5562 }
5563
5564 static int
5565 som_decode_symclass (symbol)
5566 asymbol *symbol;
5567 {
5568 char c;
5569
5570 if (bfd_is_com_section (symbol->section))
5571 return 'C';
5572 if (bfd_is_und_section (symbol->section))
5573 return 'U';
5574 if (bfd_is_ind_section (symbol->section))
5575 return 'I';
5576 if (symbol->flags & BSF_WEAK)
5577 return 'W';
5578 if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL)))
5579 return '?';
5580
5581 if (bfd_is_abs_section (symbol->section)
5582 || (som_symbol_data (symbol) != NULL
5583 && som_symbol_data (symbol)->som_type == SYMBOL_TYPE_ABSOLUTE))
5584 c = 'a';
5585 else if (symbol->section)
5586 c = som_section_type (symbol->section->name);
5587 else
5588 return '?';
5589 if (symbol->flags & BSF_GLOBAL)
5590 c = TOUPPER (c);
5591 return c;
5592 }
5593
5594 /* Return information about SOM symbol SYMBOL in RET. */
5595
5596 static void
5597 som_get_symbol_info (ignore_abfd, symbol, ret)
5598 bfd *ignore_abfd ATTRIBUTE_UNUSED;
5599 asymbol *symbol;
5600 symbol_info *ret;
5601 {
5602 ret->type = som_decode_symclass (symbol);
5603 if (ret->type != 'U')
5604 ret->value = symbol->value + symbol->section->vma;
5605 else
5606 ret->value = 0;
5607 ret->name = symbol->name;
5608 }
5609
5610 /* Count the number of symbols in the archive symbol table. Necessary
5611 so that we can allocate space for all the carsyms at once. */
5612
5613 static bfd_boolean
5614 som_bfd_count_ar_symbols (abfd, lst_header, count)
5615 bfd *abfd;
5616 struct lst_header *lst_header;
5617 symindex *count;
5618 {
5619 unsigned int i;
5620 unsigned int *hash_table = NULL;
5621 bfd_size_type amt;
5622 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5623
5624 amt = lst_header->hash_size;
5625 amt *= sizeof (unsigned int);
5626 hash_table = (unsigned int *) bfd_malloc (amt);
5627 if (hash_table == NULL && lst_header->hash_size != 0)
5628 goto error_return;
5629
5630 /* Don't forget to initialize the counter! */
5631 *count = 0;
5632
5633 /* Read in the hash table. The has table is an array of 32bit file offsets
5634 which point to the hash chains. */
5635 if (bfd_bread ((PTR) hash_table, amt, abfd) != amt)
5636 goto error_return;
5637
5638 /* Walk each chain counting the number of symbols found on that particular
5639 chain. */
5640 for (i = 0; i < lst_header->hash_size; i++)
5641 {
5642 struct lst_symbol_record lst_symbol;
5643
5644 /* An empty chain has zero as it's file offset. */
5645 if (hash_table[i] == 0)
5646 continue;
5647
5648 /* Seek to the first symbol in this hash chain. */
5649 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) != 0)
5650 goto error_return;
5651
5652 /* Read in this symbol and update the counter. */
5653 amt = sizeof (lst_symbol);
5654 if (bfd_bread ((PTR) &lst_symbol, amt, abfd) != amt)
5655 goto error_return;
5656
5657 (*count)++;
5658
5659 /* Now iterate through the rest of the symbols on this chain. */
5660 while (lst_symbol.next_entry)
5661 {
5662
5663 /* Seek to the next symbol. */
5664 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
5665 != 0)
5666 goto error_return;
5667
5668 /* Read the symbol in and update the counter. */
5669 amt = sizeof (lst_symbol);
5670 if (bfd_bread ((PTR) &lst_symbol, amt, abfd) != amt)
5671 goto error_return;
5672
5673 (*count)++;
5674 }
5675 }
5676 if (hash_table != NULL)
5677 free (hash_table);
5678 return TRUE;
5679
5680 error_return:
5681 if (hash_table != NULL)
5682 free (hash_table);
5683 return FALSE;
5684 }
5685
5686 /* Fill in the canonical archive symbols (SYMS) from the archive described
5687 by ABFD and LST_HEADER. */
5688
5689 static bfd_boolean
5690 som_bfd_fill_in_ar_symbols (abfd, lst_header, syms)
5691 bfd *abfd;
5692 struct lst_header *lst_header;
5693 carsym **syms;
5694 {
5695 unsigned int i, len;
5696 carsym *set = syms[0];
5697 unsigned int *hash_table = NULL;
5698 struct som_entry *som_dict = NULL;
5699 bfd_size_type amt;
5700 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5701
5702 amt = lst_header->hash_size;
5703 amt *= sizeof (unsigned int);
5704 hash_table = (unsigned int *) bfd_malloc (amt);
5705 if (hash_table == NULL && lst_header->hash_size != 0)
5706 goto error_return;
5707
5708 /* Read in the hash table. The has table is an array of 32bit file offsets
5709 which point to the hash chains. */
5710 if (bfd_bread ((PTR) hash_table, amt, abfd) != amt)
5711 goto error_return;
5712
5713 /* Seek to and read in the SOM dictionary. We will need this to fill
5714 in the carsym's filepos field. */
5715 if (bfd_seek (abfd, lst_filepos + lst_header->dir_loc, SEEK_SET) != 0)
5716 goto error_return;
5717
5718 amt = lst_header->module_count;
5719 amt *= sizeof (struct som_entry);
5720 som_dict = (struct som_entry *) bfd_malloc (amt);
5721 if (som_dict == NULL && lst_header->module_count != 0)
5722 goto error_return;
5723
5724 if (bfd_bread ((PTR) som_dict, amt, abfd) != amt)
5725 goto error_return;
5726
5727 /* Walk each chain filling in the carsyms as we go along. */
5728 for (i = 0; i < lst_header->hash_size; i++)
5729 {
5730 struct lst_symbol_record lst_symbol;
5731
5732 /* An empty chain has zero as it's file offset. */
5733 if (hash_table[i] == 0)
5734 continue;
5735
5736 /* Seek to and read the first symbol on the chain. */
5737 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) != 0)
5738 goto error_return;
5739
5740 amt = sizeof (lst_symbol);
5741 if (bfd_bread ((PTR) &lst_symbol, amt, abfd) != amt)
5742 goto error_return;
5743
5744 /* Get the name of the symbol, first get the length which is stored
5745 as a 32bit integer just before the symbol.
5746
5747 One might ask why we don't just read in the entire string table
5748 and index into it. Well, according to the SOM ABI the string
5749 index can point *anywhere* in the archive to save space, so just
5750 using the string table would not be safe. */
5751 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
5752 + lst_symbol.name.n_strx - 4, SEEK_SET) != 0)
5753 goto error_return;
5754
5755 if (bfd_bread (&len, (bfd_size_type) 4, abfd) != 4)
5756 goto error_return;
5757
5758 /* Allocate space for the name and null terminate it too. */
5759 set->name = bfd_zalloc (abfd, (bfd_size_type) len + 1);
5760 if (!set->name)
5761 goto error_return;
5762 if (bfd_bread (set->name, (bfd_size_type) len, abfd) != len)
5763 goto error_return;
5764
5765 set->name[len] = 0;
5766
5767 /* Fill in the file offset. Note that the "location" field points
5768 to the SOM itself, not the ar_hdr in front of it. */
5769 set->file_offset = som_dict[lst_symbol.som_index].location
5770 - sizeof (struct ar_hdr);
5771
5772 /* Go to the next symbol. */
5773 set++;
5774
5775 /* Iterate through the rest of the chain. */
5776 while (lst_symbol.next_entry)
5777 {
5778 /* Seek to the next symbol and read it in. */
5779 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
5780 != 0)
5781 goto error_return;
5782
5783 amt = sizeof (lst_symbol);
5784 if (bfd_bread ((PTR) &lst_symbol, amt, abfd) != amt)
5785 goto error_return;
5786
5787 /* Seek to the name length & string and read them in. */
5788 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
5789 + lst_symbol.name.n_strx - 4, SEEK_SET) != 0)
5790 goto error_return;
5791
5792 if (bfd_bread (&len, (bfd_size_type) 4, abfd) != 4)
5793 goto error_return;
5794
5795 /* Allocate space for the name and null terminate it too. */
5796 set->name = bfd_zalloc (abfd, (bfd_size_type) len + 1);
5797 if (!set->name)
5798 goto error_return;
5799
5800 if (bfd_bread (set->name, (bfd_size_type) len, abfd) != len)
5801 goto error_return;
5802 set->name[len] = 0;
5803
5804 /* Fill in the file offset. Note that the "location" field points
5805 to the SOM itself, not the ar_hdr in front of it. */
5806 set->file_offset = som_dict[lst_symbol.som_index].location
5807 - sizeof (struct ar_hdr);
5808
5809 /* Go on to the next symbol. */
5810 set++;
5811 }
5812 }
5813 /* If we haven't died by now, then we successfully read the entire
5814 archive symbol table. */
5815 if (hash_table != NULL)
5816 free (hash_table);
5817 if (som_dict != NULL)
5818 free (som_dict);
5819 return TRUE;
5820
5821 error_return:
5822 if (hash_table != NULL)
5823 free (hash_table);
5824 if (som_dict != NULL)
5825 free (som_dict);
5826 return FALSE;
5827 }
5828
5829 /* Read in the LST from the archive. */
5830
5831 static bfd_boolean
5832 som_slurp_armap (abfd)
5833 bfd *abfd;
5834 {
5835 struct lst_header lst_header;
5836 struct ar_hdr ar_header;
5837 unsigned int parsed_size;
5838 struct artdata *ardata = bfd_ardata (abfd);
5839 char nextname[17];
5840 bfd_size_type amt = 16;
5841 int i = bfd_bread ((PTR) nextname, amt, abfd);
5842
5843 /* Special cases. */
5844 if (i == 0)
5845 return TRUE;
5846 if (i != 16)
5847 return FALSE;
5848
5849 if (bfd_seek (abfd, (file_ptr) -16, SEEK_CUR) != 0)
5850 return FALSE;
5851
5852 /* For archives without .o files there is no symbol table. */
5853 if (strncmp (nextname, "/ ", 16))
5854 {
5855 bfd_has_map (abfd) = FALSE;
5856 return TRUE;
5857 }
5858
5859 /* Read in and sanity check the archive header. */
5860 amt = sizeof (struct ar_hdr);
5861 if (bfd_bread ((PTR) &ar_header, amt, abfd) != amt)
5862 return FALSE;
5863
5864 if (strncmp (ar_header.ar_fmag, ARFMAG, 2))
5865 {
5866 bfd_set_error (bfd_error_malformed_archive);
5867 return FALSE;
5868 }
5869
5870 /* How big is the archive symbol table entry? */
5871 errno = 0;
5872 parsed_size = strtol (ar_header.ar_size, NULL, 10);
5873 if (errno != 0)
5874 {
5875 bfd_set_error (bfd_error_malformed_archive);
5876 return FALSE;
5877 }
5878
5879 /* Save off the file offset of the first real user data. */
5880 ardata->first_file_filepos = bfd_tell (abfd) + parsed_size;
5881
5882 /* Read in the library symbol table. We'll make heavy use of this
5883 in just a minute. */
5884 amt = sizeof (struct lst_header);
5885 if (bfd_bread ((PTR) &lst_header, amt, abfd) != amt)
5886 return FALSE;
5887
5888 /* Sanity check. */
5889 if (lst_header.a_magic != LIBMAGIC)
5890 {
5891 bfd_set_error (bfd_error_malformed_archive);
5892 return FALSE;
5893 }
5894
5895 /* Count the number of symbols in the library symbol table. */
5896 if (! som_bfd_count_ar_symbols (abfd, &lst_header, &ardata->symdef_count))
5897 return FALSE;
5898
5899 /* Get back to the start of the library symbol table. */
5900 if (bfd_seek (abfd, (ardata->first_file_filepos - parsed_size
5901 + sizeof (struct lst_header)), SEEK_SET) != 0)
5902 return FALSE;
5903
5904 /* Initialize the cache and allocate space for the library symbols. */
5905 ardata->cache = 0;
5906 amt = ardata->symdef_count;
5907 amt *= sizeof (carsym);
5908 ardata->symdefs = (carsym *) bfd_alloc (abfd, amt);
5909 if (!ardata->symdefs)
5910 return FALSE;
5911
5912 /* Now fill in the canonical archive symbols. */
5913 if (! som_bfd_fill_in_ar_symbols (abfd, &lst_header, &ardata->symdefs))
5914 return FALSE;
5915
5916 /* Seek back to the "first" file in the archive. Note the "first"
5917 file may be the extended name table. */
5918 if (bfd_seek (abfd, ardata->first_file_filepos, SEEK_SET) != 0)
5919 return FALSE;
5920
5921 /* Notify the generic archive code that we have a symbol map. */
5922 bfd_has_map (abfd) = TRUE;
5923 return TRUE;
5924 }
5925
5926 /* Begin preparing to write a SOM library symbol table.
5927
5928 As part of the prep work we need to determine the number of symbols
5929 and the size of the associated string section. */
5930
5931 static bfd_boolean
5932 som_bfd_prep_for_ar_write (abfd, num_syms, stringsize)
5933 bfd *abfd;
5934 unsigned int *num_syms, *stringsize;
5935 {
5936 bfd *curr_bfd = abfd->archive_head;
5937
5938 /* Some initialization. */
5939 *num_syms = 0;
5940 *stringsize = 0;
5941
5942 /* Iterate over each BFD within this archive. */
5943 while (curr_bfd != NULL)
5944 {
5945 unsigned int curr_count, i;
5946 som_symbol_type *sym;
5947
5948 /* Don't bother for non-SOM objects. */
5949 if (curr_bfd->format != bfd_object
5950 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5951 {
5952 curr_bfd = curr_bfd->next;
5953 continue;
5954 }
5955
5956 /* Make sure the symbol table has been read, then snag a pointer
5957 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5958 but doing so avoids allocating lots of extra memory. */
5959 if (! som_slurp_symbol_table (curr_bfd))
5960 return FALSE;
5961
5962 sym = obj_som_symtab (curr_bfd);
5963 curr_count = bfd_get_symcount (curr_bfd);
5964
5965 /* Examine each symbol to determine if it belongs in the
5966 library symbol table. */
5967 for (i = 0; i < curr_count; i++, sym++)
5968 {
5969 struct som_misc_symbol_info info;
5970
5971 /* Derive SOM information from the BFD symbol. */
5972 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5973
5974 /* Should we include this symbol? */
5975 if (info.symbol_type == ST_NULL
5976 || info.symbol_type == ST_SYM_EXT
5977 || info.symbol_type == ST_ARG_EXT)
5978 continue;
5979
5980 /* Only global symbols and unsatisfied commons. */
5981 if (info.symbol_scope != SS_UNIVERSAL
5982 && info.symbol_type != ST_STORAGE)
5983 continue;
5984
5985 /* Do no include undefined symbols. */
5986 if (bfd_is_und_section (sym->symbol.section))
5987 continue;
5988
5989 /* Bump the various counters, being careful to honor
5990 alignment considerations in the string table. */
5991 (*num_syms)++;
5992 *stringsize = *stringsize + strlen (sym->symbol.name) + 5;
5993 while (*stringsize % 4)
5994 (*stringsize)++;
5995 }
5996
5997 curr_bfd = curr_bfd->next;
5998 }
5999 return TRUE;
6000 }
6001
6002 /* Hash a symbol name based on the hashing algorithm presented in the
6003 SOM ABI. */
6004
6005 static unsigned int
6006 som_bfd_ar_symbol_hash (symbol)
6007 asymbol *symbol;
6008 {
6009 unsigned int len = strlen (symbol->name);
6010
6011 /* Names with length 1 are special. */
6012 if (len == 1)
6013 return 0x1000100 | (symbol->name[0] << 16) | symbol->name[0];
6014
6015 return ((len & 0x7f) << 24) | (symbol->name[1] << 16)
6016 | (symbol->name[len - 2] << 8) | symbol->name[len - 1];
6017 }
6018
6019 /* Do the bulk of the work required to write the SOM library
6020 symbol table. */
6021
6022 static bfd_boolean
6023 som_bfd_ar_write_symbol_stuff (abfd, nsyms, string_size, lst, elength)
6024 bfd *abfd;
6025 unsigned int nsyms, string_size;
6026 struct lst_header lst;
6027 unsigned elength;
6028 {
6029 file_ptr lst_filepos;
6030 char *strings = NULL, *p;
6031 struct lst_symbol_record *lst_syms = NULL, *curr_lst_sym;
6032 bfd *curr_bfd;
6033 unsigned int *hash_table = NULL;
6034 struct som_entry *som_dict = NULL;
6035 struct lst_symbol_record **last_hash_entry = NULL;
6036 unsigned int curr_som_offset, som_index = 0;
6037 bfd_size_type amt;
6038
6039 amt = lst.hash_size;
6040 amt *= sizeof (unsigned int);
6041 hash_table = (unsigned int *) bfd_zmalloc (amt);
6042 if (hash_table == NULL && lst.hash_size != 0)
6043 goto error_return;
6044
6045 amt = lst.module_count;
6046 amt *= sizeof (struct som_entry);
6047 som_dict = (struct som_entry *) bfd_zmalloc (amt);
6048 if (som_dict == NULL && lst.module_count != 0)
6049 goto error_return;
6050
6051 amt = lst.hash_size;
6052 amt *= sizeof (struct lst_symbol_record *);
6053 last_hash_entry = ((struct lst_symbol_record **) bfd_zmalloc (amt));
6054 if (last_hash_entry == NULL && lst.hash_size != 0)
6055 goto error_return;
6056
6057 /* Lots of fields are file positions relative to the start
6058 of the lst record. So save its location. */
6059 lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
6060
6061 /* Symbols have som_index fields, so we have to keep track of the
6062 index of each SOM in the archive.
6063
6064 The SOM dictionary has (among other things) the absolute file
6065 position for the SOM which a particular dictionary entry
6066 describes. We have to compute that information as we iterate
6067 through the SOMs/symbols. */
6068 som_index = 0;
6069
6070 /* We add in the size of the archive header twice as the location
6071 in the SOM dictionary is the actual offset of the SOM, not the
6072 archive header before the SOM. */
6073 curr_som_offset = 8 + 2 * sizeof (struct ar_hdr) + lst.file_end;
6074
6075 /* Make room for the archive header and the contents of the
6076 extended string table. Note that elength includes the size
6077 of the archive header for the extended name table! */
6078 if (elength)
6079 curr_som_offset += elength;
6080
6081 /* Make sure we're properly aligned. */
6082 curr_som_offset = (curr_som_offset + 0x1) & ~0x1;
6083
6084 /* FIXME should be done with buffers just like everything else... */
6085 amt = nsyms;
6086 amt *= sizeof (struct lst_symbol_record);
6087 lst_syms = bfd_malloc (amt);
6088 if (lst_syms == NULL && nsyms != 0)
6089 goto error_return;
6090 strings = bfd_malloc ((bfd_size_type) string_size);
6091 if (strings == NULL && string_size != 0)
6092 goto error_return;
6093
6094 p = strings;
6095 curr_lst_sym = lst_syms;
6096
6097 curr_bfd = abfd->archive_head;
6098 while (curr_bfd != NULL)
6099 {
6100 unsigned int curr_count, i;
6101 som_symbol_type *sym;
6102
6103 /* Don't bother for non-SOM objects. */
6104 if (curr_bfd->format != bfd_object
6105 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
6106 {
6107 curr_bfd = curr_bfd->next;
6108 continue;
6109 }
6110
6111 /* Make sure the symbol table has been read, then snag a pointer
6112 to it. It's a little slimey to grab the symbols via obj_som_symtab,
6113 but doing so avoids allocating lots of extra memory. */
6114 if (! som_slurp_symbol_table (curr_bfd))
6115 goto error_return;
6116
6117 sym = obj_som_symtab (curr_bfd);
6118 curr_count = bfd_get_symcount (curr_bfd);
6119
6120 for (i = 0; i < curr_count; i++, sym++)
6121 {
6122 struct som_misc_symbol_info info;
6123
6124 /* Derive SOM information from the BFD symbol. */
6125 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
6126
6127 /* Should we include this symbol? */
6128 if (info.symbol_type == ST_NULL
6129 || info.symbol_type == ST_SYM_EXT
6130 || info.symbol_type == ST_ARG_EXT)
6131 continue;
6132
6133 /* Only global symbols and unsatisfied commons. */
6134 if (info.symbol_scope != SS_UNIVERSAL
6135 && info.symbol_type != ST_STORAGE)
6136 continue;
6137
6138 /* Do no include undefined symbols. */
6139 if (bfd_is_und_section (sym->symbol.section))
6140 continue;
6141
6142 /* If this is the first symbol from this SOM, then update
6143 the SOM dictionary too. */
6144 if (som_dict[som_index].location == 0)
6145 {
6146 som_dict[som_index].location = curr_som_offset;
6147 som_dict[som_index].length = arelt_size (curr_bfd);
6148 }
6149
6150 /* Fill in the lst symbol record. */
6151 curr_lst_sym->hidden = 0;
6152 curr_lst_sym->secondary_def = info.secondary_def;
6153 curr_lst_sym->symbol_type = info.symbol_type;
6154 curr_lst_sym->symbol_scope = info.symbol_scope;
6155 curr_lst_sym->check_level = 0;
6156 curr_lst_sym->must_qualify = 0;
6157 curr_lst_sym->initially_frozen = 0;
6158 curr_lst_sym->memory_resident = 0;
6159 curr_lst_sym->is_common = bfd_is_com_section (sym->symbol.section);
6160 curr_lst_sym->dup_common = info.dup_common;
6161 curr_lst_sym->xleast = 3;
6162 curr_lst_sym->arg_reloc = info.arg_reloc;
6163 curr_lst_sym->name.n_strx = p - strings + 4;
6164 curr_lst_sym->qualifier_name.n_strx = 0;
6165 curr_lst_sym->symbol_info = info.symbol_info;
6166 curr_lst_sym->symbol_value = info.symbol_value | info.priv_level;
6167 curr_lst_sym->symbol_descriptor = 0;
6168 curr_lst_sym->reserved = 0;
6169 curr_lst_sym->som_index = som_index;
6170 curr_lst_sym->symbol_key = som_bfd_ar_symbol_hash (&sym->symbol);
6171 curr_lst_sym->next_entry = 0;
6172
6173 /* Insert into the hash table. */
6174 if (hash_table[curr_lst_sym->symbol_key % lst.hash_size])
6175 {
6176 struct lst_symbol_record *tmp;
6177
6178 /* There is already something at the head of this hash chain,
6179 so tack this symbol onto the end of the chain. */
6180 tmp = last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size];
6181 tmp->next_entry
6182 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
6183 + lst.hash_size * 4
6184 + lst.module_count * sizeof (struct som_entry)
6185 + sizeof (struct lst_header);
6186 }
6187 else
6188 {
6189 /* First entry in this hash chain. */
6190 hash_table[curr_lst_sym->symbol_key % lst.hash_size]
6191 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
6192 + lst.hash_size * 4
6193 + lst.module_count * sizeof (struct som_entry)
6194 + sizeof (struct lst_header);
6195 }
6196
6197 /* Keep track of the last symbol we added to this chain so we can
6198 easily update its next_entry pointer. */
6199 last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size]
6200 = curr_lst_sym;
6201
6202 /* Update the string table. */
6203 bfd_put_32 (abfd, strlen (sym->symbol.name), p);
6204 p += 4;
6205 strcpy (p, sym->symbol.name);
6206 p += strlen (sym->symbol.name) + 1;
6207 while ((int) p % 4)
6208 {
6209 bfd_put_8 (abfd, 0, p);
6210 p++;
6211 }
6212
6213 /* Head to the next symbol. */
6214 curr_lst_sym++;
6215 }
6216
6217 /* Keep track of where each SOM will finally reside; then look
6218 at the next BFD. */
6219 curr_som_offset += arelt_size (curr_bfd) + sizeof (struct ar_hdr);
6220
6221 /* A particular object in the archive may have an odd length; the
6222 linker requires objects begin on an even boundary. So round
6223 up the current offset as necessary. */
6224 curr_som_offset = (curr_som_offset + 0x1) &~ (unsigned) 1;
6225 curr_bfd = curr_bfd->next;
6226 som_index++;
6227 }
6228
6229 /* Now scribble out the hash table. */
6230 amt = lst.hash_size * 4;
6231 if (bfd_bwrite ((PTR) hash_table, amt, abfd) != amt)
6232 goto error_return;
6233
6234 /* Then the SOM dictionary. */
6235 amt = lst.module_count * sizeof (struct som_entry);
6236 if (bfd_bwrite ((PTR) som_dict, amt, abfd) != amt)
6237 goto error_return;
6238
6239 /* The library symbols. */
6240 amt = nsyms * sizeof (struct lst_symbol_record);
6241 if (bfd_bwrite ((PTR) lst_syms, amt, abfd) != amt)
6242 goto error_return;
6243
6244 /* And finally the strings. */
6245 amt = string_size;
6246 if (bfd_bwrite ((PTR) strings, amt, abfd) != amt)
6247 goto error_return;
6248
6249 if (hash_table != NULL)
6250 free (hash_table);
6251 if (som_dict != NULL)
6252 free (som_dict);
6253 if (last_hash_entry != NULL)
6254 free (last_hash_entry);
6255 if (lst_syms != NULL)
6256 free (lst_syms);
6257 if (strings != NULL)
6258 free (strings);
6259 return TRUE;
6260
6261 error_return:
6262 if (hash_table != NULL)
6263 free (hash_table);
6264 if (som_dict != NULL)
6265 free (som_dict);
6266 if (last_hash_entry != NULL)
6267 free (last_hash_entry);
6268 if (lst_syms != NULL)
6269 free (lst_syms);
6270 if (strings != NULL)
6271 free (strings);
6272
6273 return FALSE;
6274 }
6275
6276 /* Write out the LST for the archive.
6277
6278 You'll never believe this is really how armaps are handled in SOM... */
6279
6280 static bfd_boolean
6281 som_write_armap (abfd, elength, map, orl_count, stridx)
6282 bfd *abfd;
6283 unsigned int elength;
6284 struct orl *map ATTRIBUTE_UNUSED;
6285 unsigned int orl_count ATTRIBUTE_UNUSED;
6286 int stridx ATTRIBUTE_UNUSED;
6287 {
6288 bfd *curr_bfd;
6289 struct stat statbuf;
6290 unsigned int i, lst_size, nsyms, stringsize;
6291 struct ar_hdr hdr;
6292 struct lst_header lst;
6293 int *p;
6294 bfd_size_type amt;
6295
6296 /* We'll use this for the archive's date and mode later. */
6297 if (stat (abfd->filename, &statbuf) != 0)
6298 {
6299 bfd_set_error (bfd_error_system_call);
6300 return FALSE;
6301 }
6302 /* Fudge factor. */
6303 bfd_ardata (abfd)->armap_timestamp = statbuf.st_mtime + 60;
6304
6305 /* Account for the lst header first. */
6306 lst_size = sizeof (struct lst_header);
6307
6308 /* Start building the LST header. */
6309 /* FIXME: Do we need to examine each element to determine the
6310 largest id number? */
6311 lst.system_id = CPU_PA_RISC1_0;
6312 lst.a_magic = LIBMAGIC;
6313 lst.version_id = VERSION_ID;
6314 lst.file_time.secs = 0;
6315 lst.file_time.nanosecs = 0;
6316
6317 lst.hash_loc = lst_size;
6318 lst.hash_size = SOM_LST_HASH_SIZE;
6319
6320 /* Hash table is a SOM_LST_HASH_SIZE 32bit offsets. */
6321 lst_size += 4 * SOM_LST_HASH_SIZE;
6322
6323 /* We need to count the number of SOMs in this archive. */
6324 curr_bfd = abfd->archive_head;
6325 lst.module_count = 0;
6326 while (curr_bfd != NULL)
6327 {
6328 /* Only true SOM objects count. */
6329 if (curr_bfd->format == bfd_object
6330 && curr_bfd->xvec->flavour == bfd_target_som_flavour)
6331 lst.module_count++;
6332 curr_bfd = curr_bfd->next;
6333 }
6334 lst.module_limit = lst.module_count;
6335 lst.dir_loc = lst_size;
6336 lst_size += sizeof (struct som_entry) * lst.module_count;
6337
6338 /* We don't support import/export tables, auxiliary headers,
6339 or free lists yet. Make the linker work a little harder
6340 to make our life easier. */
6341
6342 lst.export_loc = 0;
6343 lst.export_count = 0;
6344 lst.import_loc = 0;
6345 lst.aux_loc = 0;
6346 lst.aux_size = 0;
6347
6348 /* Count how many symbols we will have on the hash chains and the
6349 size of the associated string table. */
6350 if (! som_bfd_prep_for_ar_write (abfd, &nsyms, &stringsize))
6351 return FALSE;
6352
6353 lst_size += sizeof (struct lst_symbol_record) * nsyms;
6354
6355 /* For the string table. One day we might actually use this info
6356 to avoid small seeks/reads when reading archives. */
6357 lst.string_loc = lst_size;
6358 lst.string_size = stringsize;
6359 lst_size += stringsize;
6360
6361 /* SOM ABI says this must be zero. */
6362 lst.free_list = 0;
6363 lst.file_end = lst_size;
6364
6365 /* Compute the checksum. Must happen after the entire lst header
6366 has filled in. */
6367 p = (int *) &lst;
6368 lst.checksum = 0;
6369 for (i = 0; i < sizeof (struct lst_header) / sizeof (int) - 1; i++)
6370 lst.checksum ^= *p++;
6371
6372 sprintf (hdr.ar_name, "/ ");
6373 sprintf (hdr.ar_date, "%ld", bfd_ardata (abfd)->armap_timestamp);
6374 sprintf (hdr.ar_uid, "%ld", (long) getuid ());
6375 sprintf (hdr.ar_gid, "%ld", (long) getgid ());
6376 sprintf (hdr.ar_mode, "%-8o", (unsigned int) statbuf.st_mode);
6377 sprintf (hdr.ar_size, "%-10d", (int) lst_size);
6378 hdr.ar_fmag[0] = '`';
6379 hdr.ar_fmag[1] = '\012';
6380
6381 /* Turn any nulls into spaces. */
6382 for (i = 0; i < sizeof (struct ar_hdr); i++)
6383 if (((char *) (&hdr))[i] == '\0')
6384 (((char *) (&hdr))[i]) = ' ';
6385
6386 /* Scribble out the ar header. */
6387 amt = sizeof (struct ar_hdr);
6388 if (bfd_bwrite ((PTR) &hdr, amt, abfd) != amt)
6389 return FALSE;
6390
6391 /* Now scribble out the lst header. */
6392 amt = sizeof (struct lst_header);
6393 if (bfd_bwrite ((PTR) &lst, amt, abfd) != amt)
6394 return FALSE;
6395
6396 /* Build and write the armap. */
6397 if (!som_bfd_ar_write_symbol_stuff (abfd, nsyms, stringsize, lst, elength))
6398 return FALSE;
6399
6400 /* Done. */
6401 return TRUE;
6402 }
6403
6404 /* Free all information we have cached for this BFD. We can always
6405 read it again later if we need it. */
6406
6407 static bfd_boolean
6408 som_bfd_free_cached_info (abfd)
6409 bfd *abfd;
6410 {
6411 asection *o;
6412
6413 if (bfd_get_format (abfd) != bfd_object)
6414 return TRUE;
6415
6416 #define FREE(x) if (x != NULL) { free (x); x = NULL; }
6417 /* Free the native string and symbol tables. */
6418 FREE (obj_som_symtab (abfd));
6419 FREE (obj_som_stringtab (abfd));
6420 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
6421 {
6422 /* Free the native relocations. */
6423 o->reloc_count = (unsigned) -1;
6424 FREE (som_section_data (o)->reloc_stream);
6425 /* Free the generic relocations. */
6426 FREE (o->relocation);
6427 }
6428 #undef FREE
6429
6430 return TRUE;
6431 }
6432
6433 /* End of miscellaneous support functions. */
6434
6435 /* Linker support functions. */
6436
6437 static bfd_boolean
6438 som_bfd_link_split_section (abfd, sec)
6439 bfd *abfd ATTRIBUTE_UNUSED;
6440 asection *sec;
6441 {
6442 return (som_is_subspace (sec) && sec->size > 240000);
6443 }
6444
6445 #define som_close_and_cleanup som_bfd_free_cached_info
6446
6447 #define som_read_ar_hdr _bfd_generic_read_ar_hdr
6448 #define som_openr_next_archived_file bfd_generic_openr_next_archived_file
6449 #define som_get_elt_at_index _bfd_generic_get_elt_at_index
6450 #define som_generic_stat_arch_elt bfd_generic_stat_arch_elt
6451 #define som_truncate_arname bfd_bsd_truncate_arname
6452 #define som_slurp_extended_name_table _bfd_slurp_extended_name_table
6453 #define som_construct_extended_name_table \
6454 _bfd_archive_coff_construct_extended_name_table
6455 #define som_update_armap_timestamp bfd_true
6456
6457 #define som_bfd_is_target_special_symbol \
6458 ((bfd_boolean (*) (bfd *, asymbol *)) bfd_false)
6459 #define som_get_lineno _bfd_nosymbols_get_lineno
6460 #define som_bfd_make_debug_symbol _bfd_nosymbols_bfd_make_debug_symbol
6461 #define som_read_minisymbols _bfd_generic_read_minisymbols
6462 #define som_minisymbol_to_symbol _bfd_generic_minisymbol_to_symbol
6463 #define som_get_section_contents_in_window \
6464 _bfd_generic_get_section_contents_in_window
6465
6466 #define som_bfd_get_relocated_section_contents \
6467 bfd_generic_get_relocated_section_contents
6468 #define som_bfd_relax_section bfd_generic_relax_section
6469 #define som_bfd_link_hash_table_create _bfd_generic_link_hash_table_create
6470 #define som_bfd_link_hash_table_free _bfd_generic_link_hash_table_free
6471 #define som_bfd_link_add_symbols _bfd_generic_link_add_symbols
6472 #define som_bfd_link_just_syms _bfd_generic_link_just_syms
6473 #define som_bfd_final_link _bfd_generic_final_link
6474
6475 #define som_bfd_gc_sections bfd_generic_gc_sections
6476 #define som_bfd_merge_sections bfd_generic_merge_sections
6477 #define som_bfd_is_group_section bfd_generic_is_group_section
6478 #define som_bfd_discard_group bfd_generic_discard_group
6479 #define som_section_already_linked \
6480 _bfd_generic_section_already_linked
6481
6482 const bfd_target som_vec = {
6483 "som", /* name */
6484 bfd_target_som_flavour,
6485 BFD_ENDIAN_BIG, /* target byte order */
6486 BFD_ENDIAN_BIG, /* target headers byte order */
6487 (HAS_RELOC | EXEC_P | /* object flags */
6488 HAS_LINENO | HAS_DEBUG |
6489 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED | DYNAMIC),
6490 (SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS | SEC_LINK_ONCE
6491 | SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* section flags */
6492
6493 /* leading_symbol_char: is the first char of a user symbol
6494 predictable, and if so what is it. */
6495 0,
6496 '/', /* ar_pad_char */
6497 14, /* ar_max_namelen */
6498 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
6499 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
6500 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
6501 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
6502 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
6503 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
6504 {_bfd_dummy_target,
6505 som_object_p, /* bfd_check_format */
6506 bfd_generic_archive_p,
6507 _bfd_dummy_target
6508 },
6509 {
6510 bfd_false,
6511 som_mkobject,
6512 _bfd_generic_mkarchive,
6513 bfd_false
6514 },
6515 {
6516 bfd_false,
6517 som_write_object_contents,
6518 _bfd_write_archive_contents,
6519 bfd_false,
6520 },
6521 #undef som
6522
6523 BFD_JUMP_TABLE_GENERIC (som),
6524 BFD_JUMP_TABLE_COPY (som),
6525 BFD_JUMP_TABLE_CORE (_bfd_nocore),
6526 BFD_JUMP_TABLE_ARCHIVE (som),
6527 BFD_JUMP_TABLE_SYMBOLS (som),
6528 BFD_JUMP_TABLE_RELOCS (som),
6529 BFD_JUMP_TABLE_WRITE (som),
6530 BFD_JUMP_TABLE_LINK (som),
6531 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
6532
6533 NULL,
6534
6535 (PTR) 0
6536 };
6537
6538 #endif /* HOST_HPPAHPUX || HOST_HPPABSD || HOST_HPPAOSF */
This page took 0.262515 seconds and 5 git commands to generate.