* som.c (som_set_reloc_info): Correct small typo.
[deliverable/binutils-gdb.git] / bfd / som.c
1 /* bfd back-end for HP PA-RISC SOM objects.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004
4 Free Software Foundation, Inc.
5
6 Contributed by the Center for Software Science at the
7 University of Utah.
8
9 This file is part of BFD, the Binary File Descriptor library.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
24 02111-1307, USA. */
25
26 #include "alloca-conf.h"
27 #include "bfd.h"
28 #include "sysdep.h"
29
30 #if defined (HOST_HPPAHPUX) || defined (HOST_HPPABSD) || defined (HOST_HPPAOSF) || defined(HOST_HPPAMPEIX)
31
32 #include "libbfd.h"
33 #include "som.h"
34 #include "safe-ctype.h"
35
36 #include <sys/param.h>
37 #include <signal.h>
38 #include <machine/reg.h>
39 #include <sys/file.h>
40
41 /* Magic not defined in standard HP-UX header files until 8.0. */
42
43 #ifndef CPU_PA_RISC1_0
44 #define CPU_PA_RISC1_0 0x20B
45 #endif /* CPU_PA_RISC1_0 */
46
47 #ifndef CPU_PA_RISC1_1
48 #define CPU_PA_RISC1_1 0x210
49 #endif /* CPU_PA_RISC1_1 */
50
51 #ifndef CPU_PA_RISC2_0
52 #define CPU_PA_RISC2_0 0x214
53 #endif /* CPU_PA_RISC2_0 */
54
55 #ifndef _PA_RISC1_0_ID
56 #define _PA_RISC1_0_ID CPU_PA_RISC1_0
57 #endif /* _PA_RISC1_0_ID */
58
59 #ifndef _PA_RISC1_1_ID
60 #define _PA_RISC1_1_ID CPU_PA_RISC1_1
61 #endif /* _PA_RISC1_1_ID */
62
63 #ifndef _PA_RISC2_0_ID
64 #define _PA_RISC2_0_ID CPU_PA_RISC2_0
65 #endif /* _PA_RISC2_0_ID */
66
67 #ifndef _PA_RISC_MAXID
68 #define _PA_RISC_MAXID 0x2FF
69 #endif /* _PA_RISC_MAXID */
70
71 #ifndef _PA_RISC_ID
72 #define _PA_RISC_ID(__m_num) \
73 (((__m_num) == _PA_RISC1_0_ID) || \
74 ((__m_num) >= _PA_RISC1_1_ID && (__m_num) <= _PA_RISC_MAXID))
75 #endif /* _PA_RISC_ID */
76
77 /* HIUX in it's infinite stupidity changed the names for several "well
78 known" constants. Work around such braindamage. Try the HPUX version
79 first, then the HIUX version, and finally provide a default. */
80 #ifdef HPUX_AUX_ID
81 #define EXEC_AUX_ID HPUX_AUX_ID
82 #endif
83
84 #if !defined (EXEC_AUX_ID) && defined (HIUX_AUX_ID)
85 #define EXEC_AUX_ID HIUX_AUX_ID
86 #endif
87
88 #ifndef EXEC_AUX_ID
89 #define EXEC_AUX_ID 0
90 #endif
91
92 /* Size (in chars) of the temporary buffers used during fixup and string
93 table writes. */
94
95 #define SOM_TMP_BUFSIZE 8192
96
97 /* Size of the hash table in archives. */
98 #define SOM_LST_HASH_SIZE 31
99
100 /* Max number of SOMs to be found in an archive. */
101 #define SOM_LST_MODULE_LIMIT 1024
102
103 /* Generic alignment macro. */
104 #define SOM_ALIGN(val, alignment) \
105 (((val) + (alignment) - 1) &~ ((unsigned long) (alignment) - 1))
106
107 /* SOM allows any one of the four previous relocations to be reused
108 with a "R_PREV_FIXUP" relocation entry. Since R_PREV_FIXUP
109 relocations are always a single byte, using a R_PREV_FIXUP instead
110 of some multi-byte relocation makes object files smaller.
111
112 Note one side effect of using a R_PREV_FIXUP is the relocation that
113 is being repeated moves to the front of the queue. */
114 struct reloc_queue {
115 unsigned char *reloc;
116 unsigned int size;
117 } reloc_queue[4];
118
119 /* This fully describes the symbol types which may be attached to
120 an EXPORT or IMPORT directive. Only SOM uses this formation
121 (ELF has no need for it). */
122 typedef enum {
123 SYMBOL_TYPE_UNKNOWN,
124 SYMBOL_TYPE_ABSOLUTE,
125 SYMBOL_TYPE_CODE,
126 SYMBOL_TYPE_DATA,
127 SYMBOL_TYPE_ENTRY,
128 SYMBOL_TYPE_MILLICODE,
129 SYMBOL_TYPE_PLABEL,
130 SYMBOL_TYPE_PRI_PROG,
131 SYMBOL_TYPE_SEC_PROG,
132 } pa_symbol_type;
133
134 struct section_to_type {
135 char *section;
136 char type;
137 };
138
139 /* Assorted symbol information that needs to be derived from the BFD symbol
140 and/or the BFD backend private symbol data. */
141 struct som_misc_symbol_info {
142 unsigned int symbol_type;
143 unsigned int symbol_scope;
144 unsigned int arg_reloc;
145 unsigned int symbol_info;
146 unsigned int symbol_value;
147 unsigned int priv_level;
148 unsigned int secondary_def;
149 unsigned int is_comdat;
150 unsigned int is_common;
151 unsigned int dup_common;
152 };
153
154 /* Forward declarations. */
155
156 static bfd_boolean som_mkobject
157 PARAMS ((bfd *));
158 static const bfd_target * som_object_setup
159 PARAMS ((bfd *, struct header *, struct som_exec_auxhdr *, unsigned long));
160 static bfd_boolean setup_sections
161 PARAMS ((bfd *, struct header *, unsigned long));
162 static const bfd_target * som_object_p
163 PARAMS ((bfd *));
164 static bfd_boolean som_write_object_contents
165 PARAMS ((bfd *));
166 static bfd_boolean som_slurp_string_table
167 PARAMS ((bfd *));
168 static unsigned int som_slurp_symbol_table
169 PARAMS ((bfd *));
170 static long som_get_symtab_upper_bound
171 PARAMS ((bfd *));
172 static long som_canonicalize_reloc
173 PARAMS ((bfd *, sec_ptr, arelent **, asymbol **));
174 static long som_get_reloc_upper_bound
175 PARAMS ((bfd *, sec_ptr));
176 static unsigned int som_set_reloc_info
177 PARAMS ((unsigned char *, unsigned int, arelent *, asection *,
178 asymbol **, bfd_boolean));
179 static bfd_boolean som_slurp_reloc_table
180 PARAMS ((bfd *, asection *, asymbol **, bfd_boolean));
181 static long som_canonicalize_symtab
182 PARAMS ((bfd *, asymbol **));
183 static asymbol * som_make_empty_symbol
184 PARAMS ((bfd *));
185 static void som_print_symbol
186 PARAMS ((bfd *, PTR, asymbol *, bfd_print_symbol_type));
187 static bfd_boolean som_new_section_hook
188 PARAMS ((bfd *, asection *));
189 static bfd_boolean som_bfd_copy_private_symbol_data
190 PARAMS ((bfd *, asymbol *, bfd *, asymbol *));
191 static bfd_boolean som_bfd_copy_private_section_data
192 PARAMS ((bfd *, asection *, bfd *, asection *));
193 static bfd_boolean som_bfd_copy_private_bfd_data
194 PARAMS ((bfd *, bfd *));
195 #define som_bfd_copy_private_header_data \
196 _bfd_generic_bfd_copy_private_header_data
197 #define som_bfd_merge_private_bfd_data _bfd_generic_bfd_merge_private_bfd_data
198 #define som_bfd_set_private_flags _bfd_generic_bfd_set_private_flags
199 static bfd_boolean som_bfd_is_local_label_name
200 PARAMS ((bfd *, const char *));
201 static bfd_boolean som_set_section_contents
202 PARAMS ((bfd *, sec_ptr, const PTR, file_ptr, bfd_size_type));
203 static bfd_boolean som_get_section_contents
204 PARAMS ((bfd *, sec_ptr, PTR, file_ptr, bfd_size_type));
205 static bfd_boolean som_set_arch_mach
206 PARAMS ((bfd *, enum bfd_architecture, unsigned long));
207 static bfd_boolean som_find_nearest_line
208 PARAMS ((bfd *, asection *, asymbol **, bfd_vma, const char **,
209 const char **, unsigned int *));
210 static void som_get_symbol_info
211 PARAMS ((bfd *, asymbol *, symbol_info *));
212 static asection * bfd_section_from_som_symbol
213 PARAMS ((bfd *, struct symbol_dictionary_record *));
214 static int exact_log2
215 PARAMS ((unsigned int));
216 static bfd_reloc_status_type hppa_som_reloc
217 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
218 static void som_initialize_reloc_queue
219 PARAMS ((struct reloc_queue *));
220 static void som_reloc_queue_insert
221 PARAMS ((unsigned char *, unsigned int, struct reloc_queue *));
222 static void som_reloc_queue_fix
223 PARAMS ((struct reloc_queue *, unsigned int));
224 static int som_reloc_queue_find
225 PARAMS ((unsigned char *, unsigned int, struct reloc_queue *));
226 static unsigned char * try_prev_fixup
227 PARAMS ((bfd *, int *, unsigned char *, unsigned int, struct reloc_queue *));
228 static unsigned char * som_reloc_skip
229 PARAMS ((bfd *, unsigned int, unsigned char *, unsigned int *,
230 struct reloc_queue *));
231 static unsigned char * som_reloc_addend
232 PARAMS ((bfd *, bfd_vma, unsigned char *, unsigned int *,
233 struct reloc_queue *));
234 static unsigned char * som_reloc_call
235 PARAMS ((bfd *, unsigned char *, unsigned int *, arelent *, int,
236 struct reloc_queue *));
237 static unsigned long som_count_spaces
238 PARAMS ((bfd *));
239 static unsigned long som_count_subspaces
240 PARAMS ((bfd *));
241 static int compare_syms
242 PARAMS ((const void *, const void *));
243 static int compare_subspaces
244 PARAMS ((const void *, const void *));
245 static unsigned long som_compute_checksum
246 PARAMS ((bfd *));
247 static bfd_boolean som_prep_headers
248 PARAMS ((bfd *));
249 static int som_sizeof_headers
250 PARAMS ((bfd *, bfd_boolean));
251 static bfd_boolean som_finish_writing
252 PARAMS ((bfd *));
253 static bfd_boolean som_build_and_write_symbol_table
254 PARAMS ((bfd *));
255 static void som_prep_for_fixups
256 PARAMS ((bfd *, asymbol **, unsigned long));
257 static bfd_boolean som_write_fixups
258 PARAMS ((bfd *, unsigned long, unsigned int *));
259 static bfd_boolean som_write_space_strings
260 PARAMS ((bfd *, unsigned long, unsigned int *));
261 static bfd_boolean som_write_symbol_strings
262 PARAMS ((bfd *, unsigned long, asymbol **, unsigned int, unsigned *,
263 COMPUNIT *));
264 static bfd_boolean som_begin_writing
265 PARAMS ((bfd *));
266 static reloc_howto_type * som_bfd_reloc_type_lookup
267 PARAMS ((bfd *, bfd_reloc_code_real_type));
268 static char som_section_type
269 PARAMS ((const char *));
270 static int som_decode_symclass
271 PARAMS ((asymbol *));
272 static bfd_boolean som_bfd_count_ar_symbols
273 PARAMS ((bfd *, struct lst_header *, symindex *));
274 static bfd_boolean som_bfd_fill_in_ar_symbols
275 PARAMS ((bfd *, struct lst_header *, carsym **));
276 static bfd_boolean som_slurp_armap
277 PARAMS ((bfd *));
278 static bfd_boolean som_write_armap
279 PARAMS ((bfd *, unsigned int, struct orl *, unsigned int, int));
280 static void som_bfd_derive_misc_symbol_info
281 PARAMS ((bfd *, asymbol *, struct som_misc_symbol_info *));
282 static bfd_boolean som_bfd_prep_for_ar_write
283 PARAMS ((bfd *, unsigned int *, unsigned int *));
284 static unsigned int som_bfd_ar_symbol_hash
285 PARAMS ((asymbol *));
286 static bfd_boolean som_bfd_ar_write_symbol_stuff
287 PARAMS ((bfd *, unsigned int, unsigned int, struct lst_header,
288 unsigned int));
289 static bfd_boolean som_is_space
290 PARAMS ((asection *));
291 static bfd_boolean som_is_subspace
292 PARAMS ((asection *));
293 static bfd_boolean som_is_container
294 PARAMS ((asection *, asection *));
295 static bfd_boolean som_bfd_free_cached_info
296 PARAMS ((bfd *));
297 static bfd_boolean som_bfd_link_split_section
298 PARAMS ((bfd *, asection *));
299
300 /* Map SOM section names to POSIX/BSD single-character symbol types.
301
302 This table includes all the standard subspaces as defined in the
303 current "PRO ABI for PA-RISC Systems", $UNWIND$ which for
304 some reason was left out, and sections specific to embedded stabs. */
305
306 static const struct section_to_type stt[] = {
307 {"$TEXT$", 't'},
308 {"$SHLIB_INFO$", 't'},
309 {"$MILLICODE$", 't'},
310 {"$LIT$", 't'},
311 {"$CODE$", 't'},
312 {"$UNWIND_START$", 't'},
313 {"$UNWIND$", 't'},
314 {"$PRIVATE$", 'd'},
315 {"$PLT$", 'd'},
316 {"$SHLIB_DATA$", 'd'},
317 {"$DATA$", 'd'},
318 {"$SHORTDATA$", 'g'},
319 {"$DLT$", 'd'},
320 {"$GLOBAL$", 'g'},
321 {"$SHORTBSS$", 's'},
322 {"$BSS$", 'b'},
323 {"$GDB_STRINGS$", 'N'},
324 {"$GDB_SYMBOLS$", 'N'},
325 {0, 0}
326 };
327
328 /* About the relocation formatting table...
329
330 There are 256 entries in the table, one for each possible
331 relocation opcode available in SOM. We index the table by
332 the relocation opcode. The names and operations are those
333 defined by a.out_800 (4).
334
335 Right now this table is only used to count and perform minimal
336 processing on relocation streams so that they can be internalized
337 into BFD and symbolically printed by utilities. To make actual use
338 of them would be much more difficult, BFD's concept of relocations
339 is far too simple to handle SOM relocations. The basic assumption
340 that a relocation can be completely processed independent of other
341 relocations before an object file is written is invalid for SOM.
342
343 The SOM relocations are meant to be processed as a stream, they
344 specify copying of data from the input section to the output section
345 while possibly modifying the data in some manner. They also can
346 specify that a variable number of zeros or uninitialized data be
347 inserted on in the output segment at the current offset. Some
348 relocations specify that some previous relocation be re-applied at
349 the current location in the input/output sections. And finally a number
350 of relocations have effects on other sections (R_ENTRY, R_EXIT,
351 R_UNWIND_AUX and a variety of others). There isn't even enough room
352 in the BFD relocation data structure to store enough information to
353 perform all the relocations.
354
355 Each entry in the table has three fields.
356
357 The first entry is an index into this "class" of relocations. This
358 index can then be used as a variable within the relocation itself.
359
360 The second field is a format string which actually controls processing
361 of the relocation. It uses a simple postfix machine to do calculations
362 based on variables/constants found in the string and the relocation
363 stream.
364
365 The third field specifys whether or not this relocation may use
366 a constant (V) from the previous R_DATA_OVERRIDE rather than a constant
367 stored in the instruction.
368
369 Variables:
370
371 L = input space byte count
372 D = index into class of relocations
373 M = output space byte count
374 N = statement number (unused?)
375 O = stack operation
376 R = parameter relocation bits
377 S = symbol index
378 T = first 32 bits of stack unwind information
379 U = second 32 bits of stack unwind information
380 V = a literal constant (usually used in the next relocation)
381 P = a previous relocation
382
383 Lower case letters (starting with 'b') refer to following
384 bytes in the relocation stream. 'b' is the next 1 byte,
385 c is the next 2 bytes, d is the next 3 bytes, etc...
386 This is the variable part of the relocation entries that
387 makes our life a living hell.
388
389 numerical constants are also used in the format string. Note
390 the constants are represented in decimal.
391
392 '+', "*" and "=" represents the obvious postfix operators.
393 '<' represents a left shift.
394
395 Stack Operations:
396
397 Parameter Relocation Bits:
398
399 Unwind Entries:
400
401 Previous Relocations: The index field represents which in the queue
402 of 4 previous fixups should be re-applied.
403
404 Literal Constants: These are generally used to represent addend
405 parts of relocations when these constants are not stored in the
406 fields of the instructions themselves. For example the instruction
407 addil foo-$global$-0x1234 would use an override for "0x1234" rather
408 than storing it into the addil itself. */
409
410 struct fixup_format {
411 int D;
412 const char *format;
413 };
414
415 static const struct fixup_format som_fixup_formats[256] = {
416 /* R_NO_RELOCATION */
417 { 0, "LD1+4*=" }, /* 0x00 */
418 { 1, "LD1+4*=" }, /* 0x01 */
419 { 2, "LD1+4*=" }, /* 0x02 */
420 { 3, "LD1+4*=" }, /* 0x03 */
421 { 4, "LD1+4*=" }, /* 0x04 */
422 { 5, "LD1+4*=" }, /* 0x05 */
423 { 6, "LD1+4*=" }, /* 0x06 */
424 { 7, "LD1+4*=" }, /* 0x07 */
425 { 8, "LD1+4*=" }, /* 0x08 */
426 { 9, "LD1+4*=" }, /* 0x09 */
427 { 10, "LD1+4*=" }, /* 0x0a */
428 { 11, "LD1+4*=" }, /* 0x0b */
429 { 12, "LD1+4*=" }, /* 0x0c */
430 { 13, "LD1+4*=" }, /* 0x0d */
431 { 14, "LD1+4*=" }, /* 0x0e */
432 { 15, "LD1+4*=" }, /* 0x0f */
433 { 16, "LD1+4*=" }, /* 0x10 */
434 { 17, "LD1+4*=" }, /* 0x11 */
435 { 18, "LD1+4*=" }, /* 0x12 */
436 { 19, "LD1+4*=" }, /* 0x13 */
437 { 20, "LD1+4*=" }, /* 0x14 */
438 { 21, "LD1+4*=" }, /* 0x15 */
439 { 22, "LD1+4*=" }, /* 0x16 */
440 { 23, "LD1+4*=" }, /* 0x17 */
441 { 0, "LD8<b+1+4*=" }, /* 0x18 */
442 { 1, "LD8<b+1+4*=" }, /* 0x19 */
443 { 2, "LD8<b+1+4*=" }, /* 0x1a */
444 { 3, "LD8<b+1+4*=" }, /* 0x1b */
445 { 0, "LD16<c+1+4*=" }, /* 0x1c */
446 { 1, "LD16<c+1+4*=" }, /* 0x1d */
447 { 2, "LD16<c+1+4*=" }, /* 0x1e */
448 { 0, "Ld1+=" }, /* 0x1f */
449 /* R_ZEROES */
450 { 0, "Lb1+4*=" }, /* 0x20 */
451 { 1, "Ld1+=" }, /* 0x21 */
452 /* R_UNINIT */
453 { 0, "Lb1+4*=" }, /* 0x22 */
454 { 1, "Ld1+=" }, /* 0x23 */
455 /* R_RELOCATION */
456 { 0, "L4=" }, /* 0x24 */
457 /* R_DATA_ONE_SYMBOL */
458 { 0, "L4=Sb=" }, /* 0x25 */
459 { 1, "L4=Sd=" }, /* 0x26 */
460 /* R_DATA_PLEBEL */
461 { 0, "L4=Sb=" }, /* 0x27 */
462 { 1, "L4=Sd=" }, /* 0x28 */
463 /* R_SPACE_REF */
464 { 0, "L4=" }, /* 0x29 */
465 /* R_REPEATED_INIT */
466 { 0, "L4=Mb1+4*=" }, /* 0x2a */
467 { 1, "Lb4*=Mb1+L*=" }, /* 0x2b */
468 { 2, "Lb4*=Md1+4*=" }, /* 0x2c */
469 { 3, "Ld1+=Me1+=" }, /* 0x2d */
470 { 0, "" }, /* 0x2e */
471 { 0, "" }, /* 0x2f */
472 /* R_PCREL_CALL */
473 { 0, "L4=RD=Sb=" }, /* 0x30 */
474 { 1, "L4=RD=Sb=" }, /* 0x31 */
475 { 2, "L4=RD=Sb=" }, /* 0x32 */
476 { 3, "L4=RD=Sb=" }, /* 0x33 */
477 { 4, "L4=RD=Sb=" }, /* 0x34 */
478 { 5, "L4=RD=Sb=" }, /* 0x35 */
479 { 6, "L4=RD=Sb=" }, /* 0x36 */
480 { 7, "L4=RD=Sb=" }, /* 0x37 */
481 { 8, "L4=RD=Sb=" }, /* 0x38 */
482 { 9, "L4=RD=Sb=" }, /* 0x39 */
483 { 0, "L4=RD8<b+=Sb=" }, /* 0x3a */
484 { 1, "L4=RD8<b+=Sb=" }, /* 0x3b */
485 { 0, "L4=RD8<b+=Sd=" }, /* 0x3c */
486 { 1, "L4=RD8<b+=Sd=" }, /* 0x3d */
487 /* R_SHORT_PCREL_MODE */
488 { 0, "" }, /* 0x3e */
489 /* R_LONG_PCREL_MODE */
490 { 0, "" }, /* 0x3f */
491 /* R_ABS_CALL */
492 { 0, "L4=RD=Sb=" }, /* 0x40 */
493 { 1, "L4=RD=Sb=" }, /* 0x41 */
494 { 2, "L4=RD=Sb=" }, /* 0x42 */
495 { 3, "L4=RD=Sb=" }, /* 0x43 */
496 { 4, "L4=RD=Sb=" }, /* 0x44 */
497 { 5, "L4=RD=Sb=" }, /* 0x45 */
498 { 6, "L4=RD=Sb=" }, /* 0x46 */
499 { 7, "L4=RD=Sb=" }, /* 0x47 */
500 { 8, "L4=RD=Sb=" }, /* 0x48 */
501 { 9, "L4=RD=Sb=" }, /* 0x49 */
502 { 0, "L4=RD8<b+=Sb=" }, /* 0x4a */
503 { 1, "L4=RD8<b+=Sb=" }, /* 0x4b */
504 { 0, "L4=RD8<b+=Sd=" }, /* 0x4c */
505 { 1, "L4=RD8<b+=Sd=" }, /* 0x4d */
506 /* R_RESERVED */
507 { 0, "" }, /* 0x4e */
508 { 0, "" }, /* 0x4f */
509 /* R_DP_RELATIVE */
510 { 0, "L4=SD=" }, /* 0x50 */
511 { 1, "L4=SD=" }, /* 0x51 */
512 { 2, "L4=SD=" }, /* 0x52 */
513 { 3, "L4=SD=" }, /* 0x53 */
514 { 4, "L4=SD=" }, /* 0x54 */
515 { 5, "L4=SD=" }, /* 0x55 */
516 { 6, "L4=SD=" }, /* 0x56 */
517 { 7, "L4=SD=" }, /* 0x57 */
518 { 8, "L4=SD=" }, /* 0x58 */
519 { 9, "L4=SD=" }, /* 0x59 */
520 { 10, "L4=SD=" }, /* 0x5a */
521 { 11, "L4=SD=" }, /* 0x5b */
522 { 12, "L4=SD=" }, /* 0x5c */
523 { 13, "L4=SD=" }, /* 0x5d */
524 { 14, "L4=SD=" }, /* 0x5e */
525 { 15, "L4=SD=" }, /* 0x5f */
526 { 16, "L4=SD=" }, /* 0x60 */
527 { 17, "L4=SD=" }, /* 0x61 */
528 { 18, "L4=SD=" }, /* 0x62 */
529 { 19, "L4=SD=" }, /* 0x63 */
530 { 20, "L4=SD=" }, /* 0x64 */
531 { 21, "L4=SD=" }, /* 0x65 */
532 { 22, "L4=SD=" }, /* 0x66 */
533 { 23, "L4=SD=" }, /* 0x67 */
534 { 24, "L4=SD=" }, /* 0x68 */
535 { 25, "L4=SD=" }, /* 0x69 */
536 { 26, "L4=SD=" }, /* 0x6a */
537 { 27, "L4=SD=" }, /* 0x6b */
538 { 28, "L4=SD=" }, /* 0x6c */
539 { 29, "L4=SD=" }, /* 0x6d */
540 { 30, "L4=SD=" }, /* 0x6e */
541 { 31, "L4=SD=" }, /* 0x6f */
542 { 32, "L4=Sb=" }, /* 0x70 */
543 { 33, "L4=Sd=" }, /* 0x71 */
544 /* R_RESERVED */
545 { 0, "" }, /* 0x72 */
546 { 0, "" }, /* 0x73 */
547 { 0, "" }, /* 0x74 */
548 { 0, "" }, /* 0x75 */
549 { 0, "" }, /* 0x76 */
550 { 0, "" }, /* 0x77 */
551 /* R_DLT_REL */
552 { 0, "L4=Sb=" }, /* 0x78 */
553 { 1, "L4=Sd=" }, /* 0x79 */
554 /* R_RESERVED */
555 { 0, "" }, /* 0x7a */
556 { 0, "" }, /* 0x7b */
557 { 0, "" }, /* 0x7c */
558 { 0, "" }, /* 0x7d */
559 { 0, "" }, /* 0x7e */
560 { 0, "" }, /* 0x7f */
561 /* R_CODE_ONE_SYMBOL */
562 { 0, "L4=SD=" }, /* 0x80 */
563 { 1, "L4=SD=" }, /* 0x81 */
564 { 2, "L4=SD=" }, /* 0x82 */
565 { 3, "L4=SD=" }, /* 0x83 */
566 { 4, "L4=SD=" }, /* 0x84 */
567 { 5, "L4=SD=" }, /* 0x85 */
568 { 6, "L4=SD=" }, /* 0x86 */
569 { 7, "L4=SD=" }, /* 0x87 */
570 { 8, "L4=SD=" }, /* 0x88 */
571 { 9, "L4=SD=" }, /* 0x89 */
572 { 10, "L4=SD=" }, /* 0x8q */
573 { 11, "L4=SD=" }, /* 0x8b */
574 { 12, "L4=SD=" }, /* 0x8c */
575 { 13, "L4=SD=" }, /* 0x8d */
576 { 14, "L4=SD=" }, /* 0x8e */
577 { 15, "L4=SD=" }, /* 0x8f */
578 { 16, "L4=SD=" }, /* 0x90 */
579 { 17, "L4=SD=" }, /* 0x91 */
580 { 18, "L4=SD=" }, /* 0x92 */
581 { 19, "L4=SD=" }, /* 0x93 */
582 { 20, "L4=SD=" }, /* 0x94 */
583 { 21, "L4=SD=" }, /* 0x95 */
584 { 22, "L4=SD=" }, /* 0x96 */
585 { 23, "L4=SD=" }, /* 0x97 */
586 { 24, "L4=SD=" }, /* 0x98 */
587 { 25, "L4=SD=" }, /* 0x99 */
588 { 26, "L4=SD=" }, /* 0x9a */
589 { 27, "L4=SD=" }, /* 0x9b */
590 { 28, "L4=SD=" }, /* 0x9c */
591 { 29, "L4=SD=" }, /* 0x9d */
592 { 30, "L4=SD=" }, /* 0x9e */
593 { 31, "L4=SD=" }, /* 0x9f */
594 { 32, "L4=Sb=" }, /* 0xa0 */
595 { 33, "L4=Sd=" }, /* 0xa1 */
596 /* R_RESERVED */
597 { 0, "" }, /* 0xa2 */
598 { 0, "" }, /* 0xa3 */
599 { 0, "" }, /* 0xa4 */
600 { 0, "" }, /* 0xa5 */
601 { 0, "" }, /* 0xa6 */
602 { 0, "" }, /* 0xa7 */
603 { 0, "" }, /* 0xa8 */
604 { 0, "" }, /* 0xa9 */
605 { 0, "" }, /* 0xaa */
606 { 0, "" }, /* 0xab */
607 { 0, "" }, /* 0xac */
608 { 0, "" }, /* 0xad */
609 /* R_MILLI_REL */
610 { 0, "L4=Sb=" }, /* 0xae */
611 { 1, "L4=Sd=" }, /* 0xaf */
612 /* R_CODE_PLABEL */
613 { 0, "L4=Sb=" }, /* 0xb0 */
614 { 1, "L4=Sd=" }, /* 0xb1 */
615 /* R_BREAKPOINT */
616 { 0, "L4=" }, /* 0xb2 */
617 /* R_ENTRY */
618 { 0, "Te=Ue=" }, /* 0xb3 */
619 { 1, "Uf=" }, /* 0xb4 */
620 /* R_ALT_ENTRY */
621 { 0, "" }, /* 0xb5 */
622 /* R_EXIT */
623 { 0, "" }, /* 0xb6 */
624 /* R_BEGIN_TRY */
625 { 0, "" }, /* 0xb7 */
626 /* R_END_TRY */
627 { 0, "R0=" }, /* 0xb8 */
628 { 1, "Rb4*=" }, /* 0xb9 */
629 { 2, "Rd4*=" }, /* 0xba */
630 /* R_BEGIN_BRTAB */
631 { 0, "" }, /* 0xbb */
632 /* R_END_BRTAB */
633 { 0, "" }, /* 0xbc */
634 /* R_STATEMENT */
635 { 0, "Nb=" }, /* 0xbd */
636 { 1, "Nc=" }, /* 0xbe */
637 { 2, "Nd=" }, /* 0xbf */
638 /* R_DATA_EXPR */
639 { 0, "L4=" }, /* 0xc0 */
640 /* R_CODE_EXPR */
641 { 0, "L4=" }, /* 0xc1 */
642 /* R_FSEL */
643 { 0, "" }, /* 0xc2 */
644 /* R_LSEL */
645 { 0, "" }, /* 0xc3 */
646 /* R_RSEL */
647 { 0, "" }, /* 0xc4 */
648 /* R_N_MODE */
649 { 0, "" }, /* 0xc5 */
650 /* R_S_MODE */
651 { 0, "" }, /* 0xc6 */
652 /* R_D_MODE */
653 { 0, "" }, /* 0xc7 */
654 /* R_R_MODE */
655 { 0, "" }, /* 0xc8 */
656 /* R_DATA_OVERRIDE */
657 { 0, "V0=" }, /* 0xc9 */
658 { 1, "Vb=" }, /* 0xca */
659 { 2, "Vc=" }, /* 0xcb */
660 { 3, "Vd=" }, /* 0xcc */
661 { 4, "Ve=" }, /* 0xcd */
662 /* R_TRANSLATED */
663 { 0, "" }, /* 0xce */
664 /* R_AUX_UNWIND */
665 { 0,"Sd=Ve=Ee=" }, /* 0xcf */
666 /* R_COMP1 */
667 { 0, "Ob=" }, /* 0xd0 */
668 /* R_COMP2 */
669 { 0, "Ob=Sd=" }, /* 0xd1 */
670 /* R_COMP3 */
671 { 0, "Ob=Ve=" }, /* 0xd2 */
672 /* R_PREV_FIXUP */
673 { 0, "P" }, /* 0xd3 */
674 { 1, "P" }, /* 0xd4 */
675 { 2, "P" }, /* 0xd5 */
676 { 3, "P" }, /* 0xd6 */
677 /* R_SEC_STMT */
678 { 0, "" }, /* 0xd7 */
679 /* R_N0SEL */
680 { 0, "" }, /* 0xd8 */
681 /* R_N1SEL */
682 { 0, "" }, /* 0xd9 */
683 /* R_LINETAB */
684 { 0, "Eb=Sd=Ve=" }, /* 0xda */
685 /* R_LINETAB_ESC */
686 { 0, "Eb=Mb=" }, /* 0xdb */
687 /* R_LTP_OVERRIDE */
688 { 0, "" }, /* 0xdc */
689 /* R_COMMENT */
690 { 0, "Ob=Vf=" }, /* 0xdd */
691 /* R_RESERVED */
692 { 0, "" }, /* 0xde */
693 { 0, "" }, /* 0xdf */
694 { 0, "" }, /* 0xe0 */
695 { 0, "" }, /* 0xe1 */
696 { 0, "" }, /* 0xe2 */
697 { 0, "" }, /* 0xe3 */
698 { 0, "" }, /* 0xe4 */
699 { 0, "" }, /* 0xe5 */
700 { 0, "" }, /* 0xe6 */
701 { 0, "" }, /* 0xe7 */
702 { 0, "" }, /* 0xe8 */
703 { 0, "" }, /* 0xe9 */
704 { 0, "" }, /* 0xea */
705 { 0, "" }, /* 0xeb */
706 { 0, "" }, /* 0xec */
707 { 0, "" }, /* 0xed */
708 { 0, "" }, /* 0xee */
709 { 0, "" }, /* 0xef */
710 { 0, "" }, /* 0xf0 */
711 { 0, "" }, /* 0xf1 */
712 { 0, "" }, /* 0xf2 */
713 { 0, "" }, /* 0xf3 */
714 { 0, "" }, /* 0xf4 */
715 { 0, "" }, /* 0xf5 */
716 { 0, "" }, /* 0xf6 */
717 { 0, "" }, /* 0xf7 */
718 { 0, "" }, /* 0xf8 */
719 { 0, "" }, /* 0xf9 */
720 { 0, "" }, /* 0xfa */
721 { 0, "" }, /* 0xfb */
722 { 0, "" }, /* 0xfc */
723 { 0, "" }, /* 0xfd */
724 { 0, "" }, /* 0xfe */
725 { 0, "" }, /* 0xff */
726 };
727
728 static const int comp1_opcodes[] = {
729 0x00,
730 0x40,
731 0x41,
732 0x42,
733 0x43,
734 0x44,
735 0x45,
736 0x46,
737 0x47,
738 0x48,
739 0x49,
740 0x4a,
741 0x4b,
742 0x60,
743 0x80,
744 0xa0,
745 0xc0,
746 -1
747 };
748
749 static const int comp2_opcodes[] = {
750 0x00,
751 0x80,
752 0x82,
753 0xc0,
754 -1
755 };
756
757 static const int comp3_opcodes[] = {
758 0x00,
759 0x02,
760 -1
761 };
762
763 /* These apparently are not in older versions of hpux reloc.h (hpux7). */
764 #ifndef R_DLT_REL
765 #define R_DLT_REL 0x78
766 #endif
767
768 #ifndef R_AUX_UNWIND
769 #define R_AUX_UNWIND 0xcf
770 #endif
771
772 #ifndef R_SEC_STMT
773 #define R_SEC_STMT 0xd7
774 #endif
775
776 /* And these first appeared in hpux10. */
777 #ifndef R_SHORT_PCREL_MODE
778 #define NO_PCREL_MODES
779 #define R_SHORT_PCREL_MODE 0x3e
780 #endif
781
782 #ifndef R_LONG_PCREL_MODE
783 #define R_LONG_PCREL_MODE 0x3f
784 #endif
785
786 #ifndef R_N0SEL
787 #define R_N0SEL 0xd8
788 #endif
789
790 #ifndef R_N1SEL
791 #define R_N1SEL 0xd9
792 #endif
793
794 #ifndef R_LINETAB
795 #define R_LINETAB 0xda
796 #endif
797
798 #ifndef R_LINETAB_ESC
799 #define R_LINETAB_ESC 0xdb
800 #endif
801
802 #ifndef R_LTP_OVERRIDE
803 #define R_LTP_OVERRIDE 0xdc
804 #endif
805
806 #ifndef R_COMMENT
807 #define R_COMMENT 0xdd
808 #endif
809
810 #define SOM_HOWTO(TYPE, NAME) \
811 HOWTO(TYPE, 0, 0, 32, FALSE, 0, 0, hppa_som_reloc, NAME, FALSE, 0, 0, FALSE)
812
813 static reloc_howto_type som_hppa_howto_table[] = {
814 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
815 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
816 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
817 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
818 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
819 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
820 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
821 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
822 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
823 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
824 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
825 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
826 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
827 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
828 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
829 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
830 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
831 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
832 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
833 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
834 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
835 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
836 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
837 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
838 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
839 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
840 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
841 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
842 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
843 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
844 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
845 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
846 SOM_HOWTO (R_ZEROES, "R_ZEROES"),
847 SOM_HOWTO (R_ZEROES, "R_ZEROES"),
848 SOM_HOWTO (R_UNINIT, "R_UNINIT"),
849 SOM_HOWTO (R_UNINIT, "R_UNINIT"),
850 SOM_HOWTO (R_RELOCATION, "R_RELOCATION"),
851 SOM_HOWTO (R_DATA_ONE_SYMBOL, "R_DATA_ONE_SYMBOL"),
852 SOM_HOWTO (R_DATA_ONE_SYMBOL, "R_DATA_ONE_SYMBOL"),
853 SOM_HOWTO (R_DATA_PLABEL, "R_DATA_PLABEL"),
854 SOM_HOWTO (R_DATA_PLABEL, "R_DATA_PLABEL"),
855 SOM_HOWTO (R_SPACE_REF, "R_SPACE_REF"),
856 SOM_HOWTO (R_REPEATED_INIT, "REPEATED_INIT"),
857 SOM_HOWTO (R_REPEATED_INIT, "REPEATED_INIT"),
858 SOM_HOWTO (R_REPEATED_INIT, "REPEATED_INIT"),
859 SOM_HOWTO (R_REPEATED_INIT, "REPEATED_INIT"),
860 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
861 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
862 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
863 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
864 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
865 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
866 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
867 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
868 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
869 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
870 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
871 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
872 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
873 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
874 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
875 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
876 SOM_HOWTO (R_SHORT_PCREL_MODE, "R_SHORT_PCREL_MODE"),
877 SOM_HOWTO (R_LONG_PCREL_MODE, "R_LONG_PCREL_MODE"),
878 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
879 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
880 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
881 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
882 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
883 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
884 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
885 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
886 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
887 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
888 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
889 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
890 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
891 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
892 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
893 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
894 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
895 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
896 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
897 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
898 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
899 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
900 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
901 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
902 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
903 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
904 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
905 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
906 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
907 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
908 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
909 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
910 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
911 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
912 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
913 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
914 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
915 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
916 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
917 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
918 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
919 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
920 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
921 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
922 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
923 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
924 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
925 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
926 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
927 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
928 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
929 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
930 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
931 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
932 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
933 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
934 SOM_HOWTO (R_DLT_REL, "R_DLT_REL"),
935 SOM_HOWTO (R_DLT_REL, "R_DLT_REL"),
936 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
937 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
938 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
939 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
940 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
941 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
942 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
943 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
944 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
945 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
946 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
947 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
948 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
949 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
950 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
951 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
952 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
953 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
954 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
955 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
956 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
957 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
958 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
959 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
960 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
961 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
962 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
963 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
964 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
965 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
966 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
967 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
968 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
969 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
970 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
971 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
972 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
973 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
974 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
975 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
976 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
977 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
978 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
979 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
980 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
981 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
982 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
983 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
984 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
985 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
986 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
987 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
988 SOM_HOWTO (R_MILLI_REL, "R_MILLI_REL"),
989 SOM_HOWTO (R_MILLI_REL, "R_MILLI_REL"),
990 SOM_HOWTO (R_CODE_PLABEL, "R_CODE_PLABEL"),
991 SOM_HOWTO (R_CODE_PLABEL, "R_CODE_PLABEL"),
992 SOM_HOWTO (R_BREAKPOINT, "R_BREAKPOINT"),
993 SOM_HOWTO (R_ENTRY, "R_ENTRY"),
994 SOM_HOWTO (R_ENTRY, "R_ENTRY"),
995 SOM_HOWTO (R_ALT_ENTRY, "R_ALT_ENTRY"),
996 SOM_HOWTO (R_EXIT, "R_EXIT"),
997 SOM_HOWTO (R_BEGIN_TRY, "R_BEGIN_TRY"),
998 SOM_HOWTO (R_END_TRY, "R_END_TRY"),
999 SOM_HOWTO (R_END_TRY, "R_END_TRY"),
1000 SOM_HOWTO (R_END_TRY, "R_END_TRY"),
1001 SOM_HOWTO (R_BEGIN_BRTAB, "R_BEGIN_BRTAB"),
1002 SOM_HOWTO (R_END_BRTAB, "R_END_BRTAB"),
1003 SOM_HOWTO (R_STATEMENT, "R_STATEMENT"),
1004 SOM_HOWTO (R_STATEMENT, "R_STATEMENT"),
1005 SOM_HOWTO (R_STATEMENT, "R_STATEMENT"),
1006 SOM_HOWTO (R_DATA_EXPR, "R_DATA_EXPR"),
1007 SOM_HOWTO (R_CODE_EXPR, "R_CODE_EXPR"),
1008 SOM_HOWTO (R_FSEL, "R_FSEL"),
1009 SOM_HOWTO (R_LSEL, "R_LSEL"),
1010 SOM_HOWTO (R_RSEL, "R_RSEL"),
1011 SOM_HOWTO (R_N_MODE, "R_N_MODE"),
1012 SOM_HOWTO (R_S_MODE, "R_S_MODE"),
1013 SOM_HOWTO (R_D_MODE, "R_D_MODE"),
1014 SOM_HOWTO (R_R_MODE, "R_R_MODE"),
1015 SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
1016 SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
1017 SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
1018 SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
1019 SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
1020 SOM_HOWTO (R_TRANSLATED, "R_TRANSLATED"),
1021 SOM_HOWTO (R_AUX_UNWIND, "R_AUX_UNWIND"),
1022 SOM_HOWTO (R_COMP1, "R_COMP1"),
1023 SOM_HOWTO (R_COMP2, "R_COMP2"),
1024 SOM_HOWTO (R_COMP3, "R_COMP3"),
1025 SOM_HOWTO (R_PREV_FIXUP, "R_PREV_FIXUP"),
1026 SOM_HOWTO (R_PREV_FIXUP, "R_PREV_FIXUP"),
1027 SOM_HOWTO (R_PREV_FIXUP, "R_PREV_FIXUP"),
1028 SOM_HOWTO (R_PREV_FIXUP, "R_PREV_FIXUP"),
1029 SOM_HOWTO (R_SEC_STMT, "R_SEC_STMT"),
1030 SOM_HOWTO (R_N0SEL, "R_N0SEL"),
1031 SOM_HOWTO (R_N1SEL, "R_N1SEL"),
1032 SOM_HOWTO (R_LINETAB, "R_LINETAB"),
1033 SOM_HOWTO (R_LINETAB_ESC, "R_LINETAB_ESC"),
1034 SOM_HOWTO (R_LTP_OVERRIDE, "R_LTP_OVERRIDE"),
1035 SOM_HOWTO (R_COMMENT, "R_COMMENT"),
1036 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1037 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1038 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1039 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1040 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1041 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1042 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1043 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1044 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1045 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1046 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1047 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1048 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1049 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1050 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1051 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1052 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1053 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1054 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1055 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1056 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1057 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1058 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1059 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1060 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1061 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1062 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1063 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1064 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1065 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1066 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1067 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1068 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1069 SOM_HOWTO (R_RESERVED, "R_RESERVED")
1070 };
1071
1072 /* Initialize the SOM relocation queue. By definition the queue holds
1073 the last four multibyte fixups. */
1074
1075 static void
1076 som_initialize_reloc_queue (queue)
1077 struct reloc_queue *queue;
1078 {
1079 queue[0].reloc = NULL;
1080 queue[0].size = 0;
1081 queue[1].reloc = NULL;
1082 queue[1].size = 0;
1083 queue[2].reloc = NULL;
1084 queue[2].size = 0;
1085 queue[3].reloc = NULL;
1086 queue[3].size = 0;
1087 }
1088
1089 /* Insert a new relocation into the relocation queue. */
1090
1091 static void
1092 som_reloc_queue_insert (p, size, queue)
1093 unsigned char *p;
1094 unsigned int size;
1095 struct reloc_queue *queue;
1096 {
1097 queue[3].reloc = queue[2].reloc;
1098 queue[3].size = queue[2].size;
1099 queue[2].reloc = queue[1].reloc;
1100 queue[2].size = queue[1].size;
1101 queue[1].reloc = queue[0].reloc;
1102 queue[1].size = queue[0].size;
1103 queue[0].reloc = p;
1104 queue[0].size = size;
1105 }
1106
1107 /* When an entry in the relocation queue is reused, the entry moves
1108 to the front of the queue. */
1109
1110 static void
1111 som_reloc_queue_fix (queue, index)
1112 struct reloc_queue *queue;
1113 unsigned int index;
1114 {
1115 if (index == 0)
1116 return;
1117
1118 if (index == 1)
1119 {
1120 unsigned char *tmp1 = queue[0].reloc;
1121 unsigned int tmp2 = queue[0].size;
1122 queue[0].reloc = queue[1].reloc;
1123 queue[0].size = queue[1].size;
1124 queue[1].reloc = tmp1;
1125 queue[1].size = tmp2;
1126 return;
1127 }
1128
1129 if (index == 2)
1130 {
1131 unsigned char *tmp1 = queue[0].reloc;
1132 unsigned int tmp2 = queue[0].size;
1133 queue[0].reloc = queue[2].reloc;
1134 queue[0].size = queue[2].size;
1135 queue[2].reloc = queue[1].reloc;
1136 queue[2].size = queue[1].size;
1137 queue[1].reloc = tmp1;
1138 queue[1].size = tmp2;
1139 return;
1140 }
1141
1142 if (index == 3)
1143 {
1144 unsigned char *tmp1 = queue[0].reloc;
1145 unsigned int tmp2 = queue[0].size;
1146 queue[0].reloc = queue[3].reloc;
1147 queue[0].size = queue[3].size;
1148 queue[3].reloc = queue[2].reloc;
1149 queue[3].size = queue[2].size;
1150 queue[2].reloc = queue[1].reloc;
1151 queue[2].size = queue[1].size;
1152 queue[1].reloc = tmp1;
1153 queue[1].size = tmp2;
1154 return;
1155 }
1156 abort ();
1157 }
1158
1159 /* Search for a particular relocation in the relocation queue. */
1160
1161 static int
1162 som_reloc_queue_find (p, size, queue)
1163 unsigned char *p;
1164 unsigned int size;
1165 struct reloc_queue *queue;
1166 {
1167 if (queue[0].reloc && !memcmp (p, queue[0].reloc, size)
1168 && size == queue[0].size)
1169 return 0;
1170 if (queue[1].reloc && !memcmp (p, queue[1].reloc, size)
1171 && size == queue[1].size)
1172 return 1;
1173 if (queue[2].reloc && !memcmp (p, queue[2].reloc, size)
1174 && size == queue[2].size)
1175 return 2;
1176 if (queue[3].reloc && !memcmp (p, queue[3].reloc, size)
1177 && size == queue[3].size)
1178 return 3;
1179 return -1;
1180 }
1181
1182 static unsigned char *
1183 try_prev_fixup (abfd, subspace_reloc_sizep, p, size, queue)
1184 bfd *abfd ATTRIBUTE_UNUSED;
1185 int *subspace_reloc_sizep;
1186 unsigned char *p;
1187 unsigned int size;
1188 struct reloc_queue *queue;
1189 {
1190 int queue_index = som_reloc_queue_find (p, size, queue);
1191
1192 if (queue_index != -1)
1193 {
1194 /* Found this in a previous fixup. Undo the fixup we
1195 just built and use R_PREV_FIXUP instead. We saved
1196 a total of size - 1 bytes in the fixup stream. */
1197 bfd_put_8 (abfd, R_PREV_FIXUP + queue_index, p);
1198 p += 1;
1199 *subspace_reloc_sizep += 1;
1200 som_reloc_queue_fix (queue, queue_index);
1201 }
1202 else
1203 {
1204 som_reloc_queue_insert (p, size, queue);
1205 *subspace_reloc_sizep += size;
1206 p += size;
1207 }
1208 return p;
1209 }
1210
1211 /* Emit the proper R_NO_RELOCATION fixups to map the next SKIP
1212 bytes without any relocation. Update the size of the subspace
1213 relocation stream via SUBSPACE_RELOC_SIZE_P; also return the
1214 current pointer into the relocation stream. */
1215
1216 static unsigned char *
1217 som_reloc_skip (abfd, skip, p, subspace_reloc_sizep, queue)
1218 bfd *abfd;
1219 unsigned int skip;
1220 unsigned char *p;
1221 unsigned int *subspace_reloc_sizep;
1222 struct reloc_queue *queue;
1223 {
1224 /* Use a 4 byte R_NO_RELOCATION entry with a maximal value
1225 then R_PREV_FIXUPs to get the difference down to a
1226 reasonable size. */
1227 if (skip >= 0x1000000)
1228 {
1229 skip -= 0x1000000;
1230 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1231 bfd_put_8 (abfd, 0xff, p + 1);
1232 bfd_put_16 (abfd, (bfd_vma) 0xffff, p + 2);
1233 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1234 while (skip >= 0x1000000)
1235 {
1236 skip -= 0x1000000;
1237 bfd_put_8 (abfd, R_PREV_FIXUP, p);
1238 p++;
1239 *subspace_reloc_sizep += 1;
1240 /* No need to adjust queue here since we are repeating the
1241 most recent fixup. */
1242 }
1243 }
1244
1245 /* The difference must be less than 0x1000000. Use one
1246 more R_NO_RELOCATION entry to get to the right difference. */
1247 if ((skip & 3) == 0 && skip <= 0xc0000 && skip > 0)
1248 {
1249 /* Difference can be handled in a simple single-byte
1250 R_NO_RELOCATION entry. */
1251 if (skip <= 0x60)
1252 {
1253 bfd_put_8 (abfd, R_NO_RELOCATION + (skip >> 2) - 1, p);
1254 *subspace_reloc_sizep += 1;
1255 p++;
1256 }
1257 /* Handle it with a two byte R_NO_RELOCATION entry. */
1258 else if (skip <= 0x1000)
1259 {
1260 bfd_put_8 (abfd, R_NO_RELOCATION + 24 + (((skip >> 2) - 1) >> 8), p);
1261 bfd_put_8 (abfd, (skip >> 2) - 1, p + 1);
1262 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1263 }
1264 /* Handle it with a three byte R_NO_RELOCATION entry. */
1265 else
1266 {
1267 bfd_put_8 (abfd, R_NO_RELOCATION + 28 + (((skip >> 2) - 1) >> 16), p);
1268 bfd_put_16 (abfd, (bfd_vma) (skip >> 2) - 1, p + 1);
1269 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1270 }
1271 }
1272 /* Ugh. Punt and use a 4 byte entry. */
1273 else if (skip > 0)
1274 {
1275 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1276 bfd_put_8 (abfd, (skip - 1) >> 16, p + 1);
1277 bfd_put_16 (abfd, (bfd_vma) skip - 1, p + 2);
1278 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1279 }
1280 return p;
1281 }
1282
1283 /* Emit the proper R_DATA_OVERRIDE fixups to handle a nonzero addend
1284 from a BFD relocation. Update the size of the subspace relocation
1285 stream via SUBSPACE_RELOC_SIZE_P; also return the current pointer
1286 into the relocation stream. */
1287
1288 static unsigned char *
1289 som_reloc_addend (abfd, addend, p, subspace_reloc_sizep, queue)
1290 bfd *abfd;
1291 bfd_vma addend;
1292 unsigned char *p;
1293 unsigned int *subspace_reloc_sizep;
1294 struct reloc_queue *queue;
1295 {
1296 if (addend + 0x80 < 0x100)
1297 {
1298 bfd_put_8 (abfd, R_DATA_OVERRIDE + 1, p);
1299 bfd_put_8 (abfd, addend, p + 1);
1300 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1301 }
1302 else if (addend + 0x8000 < 0x10000)
1303 {
1304 bfd_put_8 (abfd, R_DATA_OVERRIDE + 2, p);
1305 bfd_put_16 (abfd, addend, p + 1);
1306 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1307 }
1308 else if (addend + 0x800000 < 0x1000000)
1309 {
1310 bfd_put_8 (abfd, R_DATA_OVERRIDE + 3, p);
1311 bfd_put_8 (abfd, addend >> 16, p + 1);
1312 bfd_put_16 (abfd, addend, p + 2);
1313 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1314 }
1315 else
1316 {
1317 bfd_put_8 (abfd, R_DATA_OVERRIDE + 4, p);
1318 bfd_put_32 (abfd, addend, p + 1);
1319 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1320 }
1321 return p;
1322 }
1323
1324 /* Handle a single function call relocation. */
1325
1326 static unsigned char *
1327 som_reloc_call (abfd, p, subspace_reloc_sizep, bfd_reloc, sym_num, queue)
1328 bfd *abfd;
1329 unsigned char *p;
1330 unsigned int *subspace_reloc_sizep;
1331 arelent *bfd_reloc;
1332 int sym_num;
1333 struct reloc_queue *queue;
1334 {
1335 int arg_bits = HPPA_R_ARG_RELOC (bfd_reloc->addend);
1336 int rtn_bits = arg_bits & 0x3;
1337 int type, done = 0;
1338
1339 /* You'll never believe all this is necessary to handle relocations
1340 for function calls. Having to compute and pack the argument
1341 relocation bits is the real nightmare.
1342
1343 If you're interested in how this works, just forget it. You really
1344 do not want to know about this braindamage. */
1345
1346 /* First see if this can be done with a "simple" relocation. Simple
1347 relocations have a symbol number < 0x100 and have simple encodings
1348 of argument relocations. */
1349
1350 if (sym_num < 0x100)
1351 {
1352 switch (arg_bits)
1353 {
1354 case 0:
1355 case 1:
1356 type = 0;
1357 break;
1358 case 1 << 8:
1359 case 1 << 8 | 1:
1360 type = 1;
1361 break;
1362 case 1 << 8 | 1 << 6:
1363 case 1 << 8 | 1 << 6 | 1:
1364 type = 2;
1365 break;
1366 case 1 << 8 | 1 << 6 | 1 << 4:
1367 case 1 << 8 | 1 << 6 | 1 << 4 | 1:
1368 type = 3;
1369 break;
1370 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2:
1371 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2 | 1:
1372 type = 4;
1373 break;
1374 default:
1375 /* Not one of the easy encodings. This will have to be
1376 handled by the more complex code below. */
1377 type = -1;
1378 break;
1379 }
1380 if (type != -1)
1381 {
1382 /* Account for the return value too. */
1383 if (rtn_bits)
1384 type += 5;
1385
1386 /* Emit a 2 byte relocation. Then see if it can be handled
1387 with a relocation which is already in the relocation queue. */
1388 bfd_put_8 (abfd, bfd_reloc->howto->type + type, p);
1389 bfd_put_8 (abfd, sym_num, p + 1);
1390 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1391 done = 1;
1392 }
1393 }
1394
1395 /* If this could not be handled with a simple relocation, then do a hard
1396 one. Hard relocations occur if the symbol number was too high or if
1397 the encoding of argument relocation bits is too complex. */
1398 if (! done)
1399 {
1400 /* Don't ask about these magic sequences. I took them straight
1401 from gas-1.36 which took them from the a.out man page. */
1402 type = rtn_bits;
1403 if ((arg_bits >> 6 & 0xf) == 0xe)
1404 type += 9 * 40;
1405 else
1406 type += (3 * (arg_bits >> 8 & 3) + (arg_bits >> 6 & 3)) * 40;
1407 if ((arg_bits >> 2 & 0xf) == 0xe)
1408 type += 9 * 4;
1409 else
1410 type += (3 * (arg_bits >> 4 & 3) + (arg_bits >> 2 & 3)) * 4;
1411
1412 /* Output the first two bytes of the relocation. These describe
1413 the length of the relocation and encoding style. */
1414 bfd_put_8 (abfd, bfd_reloc->howto->type + 10
1415 + 2 * (sym_num >= 0x100) + (type >= 0x100),
1416 p);
1417 bfd_put_8 (abfd, type, p + 1);
1418
1419 /* Now output the symbol index and see if this bizarre relocation
1420 just happened to be in the relocation queue. */
1421 if (sym_num < 0x100)
1422 {
1423 bfd_put_8 (abfd, sym_num, p + 2);
1424 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1425 }
1426 else
1427 {
1428 bfd_put_8 (abfd, sym_num >> 16, p + 2);
1429 bfd_put_16 (abfd, (bfd_vma) sym_num, p + 3);
1430 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1431 }
1432 }
1433 return p;
1434 }
1435
1436 /* Return the logarithm of X, base 2, considering X unsigned,
1437 if X is a power of 2. Otherwise, returns -1. */
1438
1439 static int
1440 exact_log2 (x)
1441 unsigned int x;
1442 {
1443 int log = 0;
1444
1445 /* Test for 0 or a power of 2. */
1446 if (x == 0 || x != (x & -x))
1447 return -1;
1448
1449 while ((x >>= 1) != 0)
1450 log++;
1451 return log;
1452 }
1453
1454 static bfd_reloc_status_type
1455 hppa_som_reloc (abfd, reloc_entry, symbol_in, data,
1456 input_section, output_bfd, error_message)
1457 bfd *abfd ATTRIBUTE_UNUSED;
1458 arelent *reloc_entry;
1459 asymbol *symbol_in ATTRIBUTE_UNUSED;
1460 PTR data ATTRIBUTE_UNUSED;
1461 asection *input_section;
1462 bfd *output_bfd;
1463 char **error_message ATTRIBUTE_UNUSED;
1464 {
1465 if (output_bfd)
1466 {
1467 reloc_entry->address += input_section->output_offset;
1468 return bfd_reloc_ok;
1469 }
1470 return bfd_reloc_ok;
1471 }
1472
1473 /* Given a generic HPPA relocation type, the instruction format,
1474 and a field selector, return one or more appropriate SOM relocations. */
1475
1476 int **
1477 hppa_som_gen_reloc_type (abfd, base_type, format, field, sym_diff, sym)
1478 bfd *abfd;
1479 int base_type;
1480 int format;
1481 enum hppa_reloc_field_selector_type_alt field;
1482 int sym_diff;
1483 asymbol *sym;
1484 {
1485 int *final_type, **final_types;
1486
1487 final_types = (int **) bfd_alloc (abfd, (bfd_size_type) sizeof (int *) * 6);
1488 final_type = (int *) bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1489 if (!final_types || !final_type)
1490 return NULL;
1491
1492 /* The field selector may require additional relocations to be
1493 generated. It's impossible to know at this moment if additional
1494 relocations will be needed, so we make them. The code to actually
1495 write the relocation/fixup stream is responsible for removing
1496 any redundant relocations. */
1497 switch (field)
1498 {
1499 case e_fsel:
1500 case e_psel:
1501 case e_lpsel:
1502 case e_rpsel:
1503 final_types[0] = final_type;
1504 final_types[1] = NULL;
1505 final_types[2] = NULL;
1506 *final_type = base_type;
1507 break;
1508
1509 case e_tsel:
1510 case e_ltsel:
1511 case e_rtsel:
1512 final_types[0] = (int *) bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1513 if (!final_types[0])
1514 return NULL;
1515 if (field == e_tsel)
1516 *final_types[0] = R_FSEL;
1517 else if (field == e_ltsel)
1518 *final_types[0] = R_LSEL;
1519 else
1520 *final_types[0] = R_RSEL;
1521 final_types[1] = final_type;
1522 final_types[2] = NULL;
1523 *final_type = base_type;
1524 break;
1525
1526 case e_lssel:
1527 case e_rssel:
1528 final_types[0] = (int *) bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1529 if (!final_types[0])
1530 return NULL;
1531 *final_types[0] = R_S_MODE;
1532 final_types[1] = final_type;
1533 final_types[2] = NULL;
1534 *final_type = base_type;
1535 break;
1536
1537 case e_lsel:
1538 case e_rsel:
1539 final_types[0] = (int *) bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1540 if (!final_types[0])
1541 return NULL;
1542 *final_types[0] = R_N_MODE;
1543 final_types[1] = final_type;
1544 final_types[2] = NULL;
1545 *final_type = base_type;
1546 break;
1547
1548 case e_ldsel:
1549 case e_rdsel:
1550 final_types[0] = (int *) bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1551 if (!final_types[0])
1552 return NULL;
1553 *final_types[0] = R_D_MODE;
1554 final_types[1] = final_type;
1555 final_types[2] = NULL;
1556 *final_type = base_type;
1557 break;
1558
1559 case e_lrsel:
1560 case e_rrsel:
1561 final_types[0] = (int *) bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1562 if (!final_types[0])
1563 return NULL;
1564 *final_types[0] = R_R_MODE;
1565 final_types[1] = final_type;
1566 final_types[2] = NULL;
1567 *final_type = base_type;
1568 break;
1569
1570 case e_nsel:
1571 final_types[0] = (int *) bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1572 if (!final_types[0])
1573 return NULL;
1574 *final_types[0] = R_N1SEL;
1575 final_types[1] = final_type;
1576 final_types[2] = NULL;
1577 *final_type = base_type;
1578 break;
1579
1580 case e_nlsel:
1581 case e_nlrsel:
1582 final_types[0] = (int *) bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1583 if (!final_types[0])
1584 return NULL;
1585 *final_types[0] = R_N0SEL;
1586 final_types[1] = (int *) bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1587 if (!final_types[1])
1588 return NULL;
1589 if (field == e_nlsel)
1590 *final_types[1] = R_N_MODE;
1591 else
1592 *final_types[1] = R_R_MODE;
1593 final_types[2] = final_type;
1594 final_types[3] = NULL;
1595 *final_type = base_type;
1596 break;
1597
1598 /* FIXME: These two field selectors are not currently supported. */
1599 case e_ltpsel:
1600 case e_rtpsel:
1601 abort ();
1602 }
1603
1604 switch (base_type)
1605 {
1606 case R_HPPA:
1607 /* The difference of two symbols needs *very* special handling. */
1608 if (sym_diff)
1609 {
1610 bfd_size_type amt = sizeof (int);
1611 final_types[0] = (int *) bfd_alloc (abfd, amt);
1612 final_types[1] = (int *) bfd_alloc (abfd, amt);
1613 final_types[2] = (int *) bfd_alloc (abfd, amt);
1614 final_types[3] = (int *) bfd_alloc (abfd, amt);
1615 if (!final_types[0] || !final_types[1] || !final_types[2])
1616 return NULL;
1617 if (field == e_fsel)
1618 *final_types[0] = R_FSEL;
1619 else if (field == e_rsel)
1620 *final_types[0] = R_RSEL;
1621 else if (field == e_lsel)
1622 *final_types[0] = R_LSEL;
1623 *final_types[1] = R_COMP2;
1624 *final_types[2] = R_COMP2;
1625 *final_types[3] = R_COMP1;
1626 final_types[4] = final_type;
1627 if (format == 32)
1628 *final_types[4] = R_DATA_EXPR;
1629 else
1630 *final_types[4] = R_CODE_EXPR;
1631 final_types[5] = NULL;
1632 break;
1633 }
1634 /* PLABELs get their own relocation type. */
1635 else if (field == e_psel
1636 || field == e_lpsel
1637 || field == e_rpsel)
1638 {
1639 /* A PLABEL relocation that has a size of 32 bits must
1640 be a R_DATA_PLABEL. All others are R_CODE_PLABELs. */
1641 if (format == 32)
1642 *final_type = R_DATA_PLABEL;
1643 else
1644 *final_type = R_CODE_PLABEL;
1645 }
1646 /* PIC stuff. */
1647 else if (field == e_tsel
1648 || field == e_ltsel
1649 || field == e_rtsel)
1650 *final_type = R_DLT_REL;
1651 /* A relocation in the data space is always a full 32bits. */
1652 else if (format == 32)
1653 {
1654 *final_type = R_DATA_ONE_SYMBOL;
1655
1656 /* If there's no SOM symbol type associated with this BFD
1657 symbol, then set the symbol type to ST_DATA.
1658
1659 Only do this if the type is going to default later when
1660 we write the object file.
1661
1662 This is done so that the linker never encounters an
1663 R_DATA_ONE_SYMBOL reloc involving an ST_CODE symbol.
1664
1665 This allows the compiler to generate exception handling
1666 tables.
1667
1668 Note that one day we may need to also emit BEGIN_BRTAB and
1669 END_BRTAB to prevent the linker from optimizing away insns
1670 in exception handling regions. */
1671 if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
1672 && (sym->flags & BSF_SECTION_SYM) == 0
1673 && (sym->flags & BSF_FUNCTION) == 0
1674 && ! bfd_is_com_section (sym->section))
1675 som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
1676 }
1677 break;
1678
1679 case R_HPPA_GOTOFF:
1680 /* More PLABEL special cases. */
1681 if (field == e_psel
1682 || field == e_lpsel
1683 || field == e_rpsel)
1684 *final_type = R_DATA_PLABEL;
1685 break;
1686
1687 case R_HPPA_COMPLEX:
1688 /* The difference of two symbols needs *very* special handling. */
1689 if (sym_diff)
1690 {
1691 bfd_size_type amt = sizeof (int);
1692 final_types[0] = (int *) bfd_alloc (abfd, amt);
1693 final_types[1] = (int *) bfd_alloc (abfd, amt);
1694 final_types[2] = (int *) bfd_alloc (abfd, amt);
1695 final_types[3] = (int *) bfd_alloc (abfd, amt);
1696 if (!final_types[0] || !final_types[1] || !final_types[2])
1697 return NULL;
1698 if (field == e_fsel)
1699 *final_types[0] = R_FSEL;
1700 else if (field == e_rsel)
1701 *final_types[0] = R_RSEL;
1702 else if (field == e_lsel)
1703 *final_types[0] = R_LSEL;
1704 *final_types[1] = R_COMP2;
1705 *final_types[2] = R_COMP2;
1706 *final_types[3] = R_COMP1;
1707 final_types[4] = final_type;
1708 if (format == 32)
1709 *final_types[4] = R_DATA_EXPR;
1710 else
1711 *final_types[4] = R_CODE_EXPR;
1712 final_types[5] = NULL;
1713 break;
1714 }
1715 else
1716 break;
1717
1718 case R_HPPA_NONE:
1719 case R_HPPA_ABS_CALL:
1720 /* Right now we can default all these. */
1721 break;
1722
1723 case R_HPPA_PCREL_CALL:
1724 {
1725 #ifndef NO_PCREL_MODES
1726 /* If we have short and long pcrel modes, then generate the proper
1727 mode selector, then the pcrel relocation. Redundant selectors
1728 will be eliminated as the relocs are sized and emitted. */
1729 bfd_size_type amt = sizeof (int);
1730 final_types[0] = (int *) bfd_alloc (abfd, amt);
1731 if (!final_types[0])
1732 return NULL;
1733 if (format == 17)
1734 *final_types[0] = R_SHORT_PCREL_MODE;
1735 else
1736 *final_types[0] = R_LONG_PCREL_MODE;
1737 final_types[1] = final_type;
1738 final_types[2] = NULL;
1739 *final_type = base_type;
1740 #endif
1741 break;
1742 }
1743 }
1744 return final_types;
1745 }
1746
1747 /* Return the address of the correct entry in the PA SOM relocation
1748 howto table. */
1749
1750 static reloc_howto_type *
1751 som_bfd_reloc_type_lookup (abfd, code)
1752 bfd *abfd ATTRIBUTE_UNUSED;
1753 bfd_reloc_code_real_type code;
1754 {
1755 if ((int) code < (int) R_NO_RELOCATION + 255)
1756 {
1757 BFD_ASSERT ((int) som_hppa_howto_table[(int) code].type == (int) code);
1758 return &som_hppa_howto_table[(int) code];
1759 }
1760
1761 return (reloc_howto_type *) 0;
1762 }
1763
1764 /* Perform some initialization for an object. Save results of this
1765 initialization in the BFD. */
1766
1767 static const bfd_target *
1768 som_object_setup (abfd, file_hdrp, aux_hdrp, current_offset)
1769 bfd *abfd;
1770 struct header *file_hdrp;
1771 struct som_exec_auxhdr *aux_hdrp;
1772 unsigned long current_offset;
1773 {
1774 asection *section;
1775 int found;
1776
1777 /* som_mkobject will set bfd_error if som_mkobject fails. */
1778 if (! som_mkobject (abfd))
1779 return 0;
1780
1781 /* Set BFD flags based on what information is available in the SOM. */
1782 abfd->flags = BFD_NO_FLAGS;
1783 if (file_hdrp->symbol_total)
1784 abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;
1785
1786 switch (file_hdrp->a_magic)
1787 {
1788 case DEMAND_MAGIC:
1789 abfd->flags |= (D_PAGED | WP_TEXT | EXEC_P);
1790 break;
1791 case SHARE_MAGIC:
1792 abfd->flags |= (WP_TEXT | EXEC_P);
1793 break;
1794 case EXEC_MAGIC:
1795 abfd->flags |= (EXEC_P);
1796 break;
1797 case RELOC_MAGIC:
1798 abfd->flags |= HAS_RELOC;
1799 break;
1800 #ifdef SHL_MAGIC
1801 case SHL_MAGIC:
1802 #endif
1803 #ifdef DL_MAGIC
1804 case DL_MAGIC:
1805 #endif
1806 abfd->flags |= DYNAMIC;
1807 break;
1808
1809 default:
1810 break;
1811 }
1812
1813 /* Allocate space to hold the saved exec header information. */
1814 obj_som_exec_data (abfd) = (struct som_exec_data *)
1815 bfd_zalloc (abfd, (bfd_size_type) sizeof (struct som_exec_data));
1816 if (obj_som_exec_data (abfd) == NULL)
1817 return NULL;
1818
1819 /* The braindamaged OSF1 linker switched exec_flags and exec_entry!
1820
1821 We used to identify OSF1 binaries based on NEW_VERSION_ID, but
1822 apparently the latest HPUX linker is using NEW_VERSION_ID now.
1823
1824 It's about time, OSF has used the new id since at least 1992;
1825 HPUX didn't start till nearly 1995!.
1826
1827 The new approach examines the entry field. If it's zero or not 4
1828 byte aligned then it's not a proper code address and we guess it's
1829 really the executable flags. */
1830 found = 0;
1831 for (section = abfd->sections; section; section = section->next)
1832 {
1833 bfd_vma entry;
1834
1835 if ((section->flags & SEC_CODE) == 0)
1836 continue;
1837 entry = aux_hdrp->exec_entry;
1838 if (entry >= section->vma
1839 && entry < section->vma + section->size)
1840 found = 1;
1841 }
1842 if (aux_hdrp->exec_entry == 0
1843 || (aux_hdrp->exec_entry & 0x3) != 0
1844 || ! found)
1845 {
1846 bfd_get_start_address (abfd) = aux_hdrp->exec_flags;
1847 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_entry;
1848 }
1849 else
1850 {
1851 bfd_get_start_address (abfd) = aux_hdrp->exec_entry + current_offset;
1852 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_flags;
1853 }
1854
1855 obj_som_exec_data (abfd)->version_id = file_hdrp->version_id;
1856
1857 bfd_default_set_arch_mach (abfd, bfd_arch_hppa, pa10);
1858 bfd_get_symcount (abfd) = file_hdrp->symbol_total;
1859
1860 /* Initialize the saved symbol table and string table to NULL.
1861 Save important offsets and sizes from the SOM header into
1862 the BFD. */
1863 obj_som_stringtab (abfd) = (char *) NULL;
1864 obj_som_symtab (abfd) = (som_symbol_type *) NULL;
1865 obj_som_sorted_syms (abfd) = NULL;
1866 obj_som_stringtab_size (abfd) = file_hdrp->symbol_strings_size;
1867 obj_som_sym_filepos (abfd) = file_hdrp->symbol_location + current_offset;
1868 obj_som_str_filepos (abfd) = (file_hdrp->symbol_strings_location
1869 + current_offset);
1870 obj_som_reloc_filepos (abfd) = (file_hdrp->fixup_request_location
1871 + current_offset);
1872 obj_som_exec_data (abfd)->system_id = file_hdrp->system_id;
1873
1874 return abfd->xvec;
1875 }
1876
1877 /* Convert all of the space and subspace info into BFD sections. Each space
1878 contains a number of subspaces, which in turn describe the mapping between
1879 regions of the exec file, and the address space that the program runs in.
1880 BFD sections which correspond to spaces will overlap the sections for the
1881 associated subspaces. */
1882
1883 static bfd_boolean
1884 setup_sections (abfd, file_hdr, current_offset)
1885 bfd *abfd;
1886 struct header *file_hdr;
1887 unsigned long current_offset;
1888 {
1889 char *space_strings;
1890 unsigned int space_index, i;
1891 unsigned int total_subspaces = 0;
1892 asection **subspace_sections = NULL;
1893 asection *section;
1894 bfd_size_type amt;
1895
1896 /* First, read in space names. */
1897
1898 amt = file_hdr->space_strings_size;
1899 space_strings = bfd_malloc (amt);
1900 if (!space_strings && amt != 0)
1901 goto error_return;
1902
1903 if (bfd_seek (abfd, current_offset + file_hdr->space_strings_location,
1904 SEEK_SET) != 0)
1905 goto error_return;
1906 if (bfd_bread (space_strings, amt, abfd) != amt)
1907 goto error_return;
1908
1909 /* Loop over all of the space dictionaries, building up sections. */
1910 for (space_index = 0; space_index < file_hdr->space_total; space_index++)
1911 {
1912 struct space_dictionary_record space;
1913 struct som_subspace_dictionary_record subspace, save_subspace;
1914 unsigned int subspace_index;
1915 asection *space_asect;
1916 char *newname;
1917
1918 /* Read the space dictionary element. */
1919 if (bfd_seek (abfd,
1920 (current_offset + file_hdr->space_location
1921 + space_index * sizeof space),
1922 SEEK_SET) != 0)
1923 goto error_return;
1924 amt = sizeof space;
1925 if (bfd_bread (&space, amt, abfd) != amt)
1926 goto error_return;
1927
1928 /* Setup the space name string. */
1929 space.name.n_name = space.name.n_strx + space_strings;
1930
1931 /* Make a section out of it. */
1932 amt = strlen (space.name.n_name) + 1;
1933 newname = bfd_alloc (abfd, amt);
1934 if (!newname)
1935 goto error_return;
1936 strcpy (newname, space.name.n_name);
1937
1938 space_asect = bfd_make_section_anyway (abfd, newname);
1939 if (!space_asect)
1940 goto error_return;
1941
1942 if (space.is_loadable == 0)
1943 space_asect->flags |= SEC_DEBUGGING;
1944
1945 /* Set up all the attributes for the space. */
1946 if (! bfd_som_set_section_attributes (space_asect, space.is_defined,
1947 space.is_private, space.sort_key,
1948 space.space_number))
1949 goto error_return;
1950
1951 /* If the space has no subspaces, then we're done. */
1952 if (space.subspace_quantity == 0)
1953 continue;
1954
1955 /* Now, read in the first subspace for this space. */
1956 if (bfd_seek (abfd,
1957 (current_offset + file_hdr->subspace_location
1958 + space.subspace_index * sizeof subspace),
1959 SEEK_SET) != 0)
1960 goto error_return;
1961 amt = sizeof subspace;
1962 if (bfd_bread (&subspace, amt, abfd) != amt)
1963 goto error_return;
1964 /* Seek back to the start of the subspaces for loop below. */
1965 if (bfd_seek (abfd,
1966 (current_offset + file_hdr->subspace_location
1967 + space.subspace_index * sizeof subspace),
1968 SEEK_SET) != 0)
1969 goto error_return;
1970
1971 /* Setup the start address and file loc from the first subspace
1972 record. */
1973 space_asect->vma = subspace.subspace_start;
1974 space_asect->filepos = subspace.file_loc_init_value + current_offset;
1975 space_asect->alignment_power = exact_log2 (subspace.alignment);
1976 if (space_asect->alignment_power == (unsigned) -1)
1977 goto error_return;
1978
1979 /* Initialize save_subspace so we can reliably determine if this
1980 loop placed any useful values into it. */
1981 memset (&save_subspace, 0, sizeof (save_subspace));
1982
1983 /* Loop over the rest of the subspaces, building up more sections. */
1984 for (subspace_index = 0; subspace_index < space.subspace_quantity;
1985 subspace_index++)
1986 {
1987 asection *subspace_asect;
1988
1989 /* Read in the next subspace. */
1990 amt = sizeof subspace;
1991 if (bfd_bread (&subspace, amt, abfd) != amt)
1992 goto error_return;
1993
1994 /* Setup the subspace name string. */
1995 subspace.name.n_name = subspace.name.n_strx + space_strings;
1996
1997 amt = strlen (subspace.name.n_name) + 1;
1998 newname = bfd_alloc (abfd, amt);
1999 if (!newname)
2000 goto error_return;
2001 strcpy (newname, subspace.name.n_name);
2002
2003 /* Make a section out of this subspace. */
2004 subspace_asect = bfd_make_section_anyway (abfd, newname);
2005 if (!subspace_asect)
2006 goto error_return;
2007
2008 /* Store private information about the section. */
2009 if (! bfd_som_set_subsection_attributes (subspace_asect, space_asect,
2010 subspace.access_control_bits,
2011 subspace.sort_key,
2012 subspace.quadrant,
2013 subspace.is_comdat,
2014 subspace.is_common,
2015 subspace.dup_common))
2016 goto error_return;
2017
2018 /* Keep an easy mapping between subspaces and sections.
2019 Note we do not necessarily read the subspaces in the
2020 same order in which they appear in the object file.
2021
2022 So to make the target index come out correctly, we
2023 store the location of the subspace header in target
2024 index, then sort using the location of the subspace
2025 header as the key. Then we can assign correct
2026 subspace indices. */
2027 total_subspaces++;
2028 subspace_asect->target_index = bfd_tell (abfd) - sizeof (subspace);
2029
2030 /* Set SEC_READONLY and SEC_CODE/SEC_DATA as specified
2031 by the access_control_bits in the subspace header. */
2032 switch (subspace.access_control_bits >> 4)
2033 {
2034 /* Readonly data. */
2035 case 0x0:
2036 subspace_asect->flags |= SEC_DATA | SEC_READONLY;
2037 break;
2038
2039 /* Normal data. */
2040 case 0x1:
2041 subspace_asect->flags |= SEC_DATA;
2042 break;
2043
2044 /* Readonly code and the gateways.
2045 Gateways have other attributes which do not map
2046 into anything BFD knows about. */
2047 case 0x2:
2048 case 0x4:
2049 case 0x5:
2050 case 0x6:
2051 case 0x7:
2052 subspace_asect->flags |= SEC_CODE | SEC_READONLY;
2053 break;
2054
2055 /* dynamic (writable) code. */
2056 case 0x3:
2057 subspace_asect->flags |= SEC_CODE;
2058 break;
2059 }
2060
2061 if (subspace.is_comdat || subspace.is_common || subspace.dup_common)
2062 subspace_asect->flags |= SEC_LINK_ONCE;
2063
2064 if (subspace.subspace_length > 0)
2065 subspace_asect->flags |= SEC_HAS_CONTENTS;
2066
2067 if (subspace.is_loadable)
2068 subspace_asect->flags |= SEC_ALLOC | SEC_LOAD;
2069 else
2070 subspace_asect->flags |= SEC_DEBUGGING;
2071
2072 if (subspace.code_only)
2073 subspace_asect->flags |= SEC_CODE;
2074
2075 /* Both file_loc_init_value and initialization_length will
2076 be zero for a BSS like subspace. */
2077 if (subspace.file_loc_init_value == 0
2078 && subspace.initialization_length == 0)
2079 subspace_asect->flags &= ~(SEC_DATA | SEC_LOAD | SEC_HAS_CONTENTS);
2080
2081 /* This subspace has relocations.
2082 The fixup_request_quantity is a byte count for the number of
2083 entries in the relocation stream; it is not the actual number
2084 of relocations in the subspace. */
2085 if (subspace.fixup_request_quantity != 0)
2086 {
2087 subspace_asect->flags |= SEC_RELOC;
2088 subspace_asect->rel_filepos = subspace.fixup_request_index;
2089 som_section_data (subspace_asect)->reloc_size
2090 = subspace.fixup_request_quantity;
2091 /* We can not determine this yet. When we read in the
2092 relocation table the correct value will be filled in. */
2093 subspace_asect->reloc_count = (unsigned) -1;
2094 }
2095
2096 /* Update save_subspace if appropriate. */
2097 if (subspace.file_loc_init_value > save_subspace.file_loc_init_value)
2098 save_subspace = subspace;
2099
2100 subspace_asect->vma = subspace.subspace_start;
2101 subspace_asect->size = subspace.subspace_length;
2102 subspace_asect->filepos = (subspace.file_loc_init_value
2103 + current_offset);
2104 subspace_asect->alignment_power = exact_log2 (subspace.alignment);
2105 if (subspace_asect->alignment_power == (unsigned) -1)
2106 goto error_return;
2107 }
2108
2109 /* This can happen for a .o which defines symbols in otherwise
2110 empty subspaces. */
2111 if (!save_subspace.file_loc_init_value)
2112 space_asect->size = 0;
2113 else
2114 /* Setup the size for the space section based upon the info in the
2115 last subspace of the space. */
2116 space_asect->size = (save_subspace.subspace_start
2117 - space_asect->vma
2118 + save_subspace.subspace_length);
2119 }
2120 /* Now that we've read in all the subspace records, we need to assign
2121 a target index to each subspace. */
2122 amt = total_subspaces;
2123 amt *= sizeof (asection *);
2124 subspace_sections = (asection **) bfd_malloc (amt);
2125 if (subspace_sections == NULL)
2126 goto error_return;
2127
2128 for (i = 0, section = abfd->sections; section; section = section->next)
2129 {
2130 if (!som_is_subspace (section))
2131 continue;
2132
2133 subspace_sections[i] = section;
2134 i++;
2135 }
2136 qsort (subspace_sections, total_subspaces,
2137 sizeof (asection *), compare_subspaces);
2138
2139 /* subspace_sections is now sorted in the order in which the subspaces
2140 appear in the object file. Assign an index to each one now. */
2141 for (i = 0; i < total_subspaces; i++)
2142 subspace_sections[i]->target_index = i;
2143
2144 if (space_strings != NULL)
2145 free (space_strings);
2146
2147 if (subspace_sections != NULL)
2148 free (subspace_sections);
2149
2150 return TRUE;
2151
2152 error_return:
2153 if (space_strings != NULL)
2154 free (space_strings);
2155
2156 if (subspace_sections != NULL)
2157 free (subspace_sections);
2158 return FALSE;
2159 }
2160
2161 /* Read in a SOM object and make it into a BFD. */
2162
2163 static const bfd_target *
2164 som_object_p (abfd)
2165 bfd *abfd;
2166 {
2167 struct header file_hdr;
2168 struct som_exec_auxhdr aux_hdr;
2169 unsigned long current_offset = 0;
2170 struct lst_header lst_header;
2171 struct som_entry som_entry;
2172 bfd_size_type amt;
2173 #define ENTRY_SIZE sizeof (struct som_entry)
2174
2175 amt = FILE_HDR_SIZE;
2176 if (bfd_bread ((PTR) &file_hdr, amt, abfd) != amt)
2177 {
2178 if (bfd_get_error () != bfd_error_system_call)
2179 bfd_set_error (bfd_error_wrong_format);
2180 return 0;
2181 }
2182
2183 if (!_PA_RISC_ID (file_hdr.system_id))
2184 {
2185 bfd_set_error (bfd_error_wrong_format);
2186 return 0;
2187 }
2188
2189 switch (file_hdr.a_magic)
2190 {
2191 case RELOC_MAGIC:
2192 case EXEC_MAGIC:
2193 case SHARE_MAGIC:
2194 case DEMAND_MAGIC:
2195 #ifdef DL_MAGIC
2196 case DL_MAGIC:
2197 #endif
2198 #ifdef SHL_MAGIC
2199 case SHL_MAGIC:
2200 #endif
2201 #ifdef SHARED_MAGIC_CNX
2202 case SHARED_MAGIC_CNX:
2203 #endif
2204 break;
2205
2206 #ifdef EXECLIBMAGIC
2207 case EXECLIBMAGIC:
2208 /* Read the lst header and determine where the SOM directory begins. */
2209
2210 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0)
2211 {
2212 if (bfd_get_error () != bfd_error_system_call)
2213 bfd_set_error (bfd_error_wrong_format);
2214 return 0;
2215 }
2216
2217 amt = SLSTHDR;
2218 if (bfd_bread ((PTR) &lst_header, amt, abfd) != amt)
2219 {
2220 if (bfd_get_error () != bfd_error_system_call)
2221 bfd_set_error (bfd_error_wrong_format);
2222 return 0;
2223 }
2224
2225 /* Position to and read the first directory entry. */
2226
2227 if (bfd_seek (abfd, lst_header.dir_loc, SEEK_SET) != 0)
2228 {
2229 if (bfd_get_error () != bfd_error_system_call)
2230 bfd_set_error (bfd_error_wrong_format);
2231 return 0;
2232 }
2233
2234 amt = ENTRY_SIZE;
2235 if (bfd_bread ((PTR) &som_entry, amt, abfd) != amt)
2236 {
2237 if (bfd_get_error () != bfd_error_system_call)
2238 bfd_set_error (bfd_error_wrong_format);
2239 return 0;
2240 }
2241
2242 /* Now position to the first SOM. */
2243
2244 if (bfd_seek (abfd, som_entry.location, SEEK_SET) != 0)
2245 {
2246 if (bfd_get_error () != bfd_error_system_call)
2247 bfd_set_error (bfd_error_wrong_format);
2248 return 0;
2249 }
2250
2251 current_offset = som_entry.location;
2252
2253 /* And finally, re-read the som header. */
2254 amt = FILE_HDR_SIZE;
2255 if (bfd_bread ((PTR) &file_hdr, amt, abfd) != amt)
2256 {
2257 if (bfd_get_error () != bfd_error_system_call)
2258 bfd_set_error (bfd_error_wrong_format);
2259 return 0;
2260 }
2261
2262 break;
2263 #endif
2264
2265 default:
2266 bfd_set_error (bfd_error_wrong_format);
2267 return 0;
2268 }
2269
2270 if (file_hdr.version_id != VERSION_ID
2271 && file_hdr.version_id != NEW_VERSION_ID)
2272 {
2273 bfd_set_error (bfd_error_wrong_format);
2274 return 0;
2275 }
2276
2277 /* If the aux_header_size field in the file header is zero, then this
2278 object is an incomplete executable (a .o file). Do not try to read
2279 a non-existant auxiliary header. */
2280 memset (&aux_hdr, 0, sizeof (struct som_exec_auxhdr));
2281 if (file_hdr.aux_header_size != 0)
2282 {
2283 amt = AUX_HDR_SIZE;
2284 if (bfd_bread ((PTR) &aux_hdr, amt, abfd) != amt)
2285 {
2286 if (bfd_get_error () != bfd_error_system_call)
2287 bfd_set_error (bfd_error_wrong_format);
2288 return 0;
2289 }
2290 }
2291
2292 if (!setup_sections (abfd, &file_hdr, current_offset))
2293 {
2294 /* setup_sections does not bubble up a bfd error code. */
2295 bfd_set_error (bfd_error_bad_value);
2296 return 0;
2297 }
2298
2299 /* This appears to be a valid SOM object. Do some initialization. */
2300 return som_object_setup (abfd, &file_hdr, &aux_hdr, current_offset);
2301 }
2302
2303 /* Create a SOM object. */
2304
2305 static bfd_boolean
2306 som_mkobject (abfd)
2307 bfd *abfd;
2308 {
2309 /* Allocate memory to hold backend information. */
2310 abfd->tdata.som_data = (struct som_data_struct *)
2311 bfd_zalloc (abfd, (bfd_size_type) sizeof (struct som_data_struct));
2312 if (abfd->tdata.som_data == NULL)
2313 return FALSE;
2314 return TRUE;
2315 }
2316
2317 /* Initialize some information in the file header. This routine makes
2318 not attempt at doing the right thing for a full executable; it
2319 is only meant to handle relocatable objects. */
2320
2321 static bfd_boolean
2322 som_prep_headers (abfd)
2323 bfd *abfd;
2324 {
2325 struct header *file_hdr;
2326 asection *section;
2327 bfd_size_type amt = sizeof (struct header);
2328
2329 /* Make and attach a file header to the BFD. */
2330 file_hdr = (struct header *) bfd_zalloc (abfd, amt);
2331 if (file_hdr == NULL)
2332 return FALSE;
2333 obj_som_file_hdr (abfd) = file_hdr;
2334
2335 if (abfd->flags & (EXEC_P | DYNAMIC))
2336 {
2337 /* Make and attach an exec header to the BFD. */
2338 amt = sizeof (struct som_exec_auxhdr);
2339 obj_som_exec_hdr (abfd) =
2340 (struct som_exec_auxhdr *) bfd_zalloc (abfd, amt);
2341 if (obj_som_exec_hdr (abfd) == NULL)
2342 return FALSE;
2343
2344 if (abfd->flags & D_PAGED)
2345 file_hdr->a_magic = DEMAND_MAGIC;
2346 else if (abfd->flags & WP_TEXT)
2347 file_hdr->a_magic = SHARE_MAGIC;
2348 #ifdef SHL_MAGIC
2349 else if (abfd->flags & DYNAMIC)
2350 file_hdr->a_magic = SHL_MAGIC;
2351 #endif
2352 else
2353 file_hdr->a_magic = EXEC_MAGIC;
2354 }
2355 else
2356 file_hdr->a_magic = RELOC_MAGIC;
2357
2358 /* These fields are optional, and embedding timestamps is not always
2359 a wise thing to do, it makes comparing objects during a multi-stage
2360 bootstrap difficult. */
2361 file_hdr->file_time.secs = 0;
2362 file_hdr->file_time.nanosecs = 0;
2363
2364 file_hdr->entry_space = 0;
2365 file_hdr->entry_subspace = 0;
2366 file_hdr->entry_offset = 0;
2367 file_hdr->presumed_dp = 0;
2368
2369 /* Now iterate over the sections translating information from
2370 BFD sections to SOM spaces/subspaces. */
2371
2372 for (section = abfd->sections; section != NULL; section = section->next)
2373 {
2374 /* Ignore anything which has not been marked as a space or
2375 subspace. */
2376 if (!som_is_space (section) && !som_is_subspace (section))
2377 continue;
2378
2379 if (som_is_space (section))
2380 {
2381 /* Allocate space for the space dictionary. */
2382 amt = sizeof (struct space_dictionary_record);
2383 som_section_data (section)->space_dict =
2384 (struct space_dictionary_record *) bfd_zalloc (abfd, amt);
2385 if (som_section_data (section)->space_dict == NULL)
2386 return FALSE;
2387 /* Set space attributes. Note most attributes of SOM spaces
2388 are set based on the subspaces it contains. */
2389 som_section_data (section)->space_dict->loader_fix_index = -1;
2390 som_section_data (section)->space_dict->init_pointer_index = -1;
2391
2392 /* Set more attributes that were stuffed away in private data. */
2393 som_section_data (section)->space_dict->sort_key =
2394 som_section_data (section)->copy_data->sort_key;
2395 som_section_data (section)->space_dict->is_defined =
2396 som_section_data (section)->copy_data->is_defined;
2397 som_section_data (section)->space_dict->is_private =
2398 som_section_data (section)->copy_data->is_private;
2399 som_section_data (section)->space_dict->space_number =
2400 som_section_data (section)->copy_data->space_number;
2401 }
2402 else
2403 {
2404 /* Allocate space for the subspace dictionary. */
2405 amt = sizeof (struct som_subspace_dictionary_record);
2406 som_section_data (section)->subspace_dict =
2407 (struct som_subspace_dictionary_record *) bfd_zalloc (abfd, amt);
2408 if (som_section_data (section)->subspace_dict == NULL)
2409 return FALSE;
2410
2411 /* Set subspace attributes. Basic stuff is done here, additional
2412 attributes are filled in later as more information becomes
2413 available. */
2414 if (section->flags & SEC_ALLOC)
2415 som_section_data (section)->subspace_dict->is_loadable = 1;
2416
2417 if (section->flags & SEC_CODE)
2418 som_section_data (section)->subspace_dict->code_only = 1;
2419
2420 som_section_data (section)->subspace_dict->subspace_start =
2421 section->vma;
2422 som_section_data (section)->subspace_dict->subspace_length =
2423 section->size;
2424 som_section_data (section)->subspace_dict->initialization_length =
2425 section->size;
2426 som_section_data (section)->subspace_dict->alignment =
2427 1 << section->alignment_power;
2428
2429 /* Set more attributes that were stuffed away in private data. */
2430 som_section_data (section)->subspace_dict->sort_key =
2431 som_section_data (section)->copy_data->sort_key;
2432 som_section_data (section)->subspace_dict->access_control_bits =
2433 som_section_data (section)->copy_data->access_control_bits;
2434 som_section_data (section)->subspace_dict->quadrant =
2435 som_section_data (section)->copy_data->quadrant;
2436 som_section_data (section)->subspace_dict->is_comdat =
2437 som_section_data (section)->copy_data->is_comdat;
2438 som_section_data (section)->subspace_dict->is_common =
2439 som_section_data (section)->copy_data->is_common;
2440 som_section_data (section)->subspace_dict->dup_common =
2441 som_section_data (section)->copy_data->dup_common;
2442 }
2443 }
2444 return TRUE;
2445 }
2446
2447 /* Return TRUE if the given section is a SOM space, FALSE otherwise. */
2448
2449 static bfd_boolean
2450 som_is_space (section)
2451 asection *section;
2452 {
2453 /* If no copy data is available, then it's neither a space nor a
2454 subspace. */
2455 if (som_section_data (section)->copy_data == NULL)
2456 return FALSE;
2457
2458 /* If the containing space isn't the same as the given section,
2459 then this isn't a space. */
2460 if (som_section_data (section)->copy_data->container != section
2461 && (som_section_data (section)->copy_data->container->output_section
2462 != section))
2463 return FALSE;
2464
2465 /* OK. Must be a space. */
2466 return TRUE;
2467 }
2468
2469 /* Return TRUE if the given section is a SOM subspace, FALSE otherwise. */
2470
2471 static bfd_boolean
2472 som_is_subspace (section)
2473 asection *section;
2474 {
2475 /* If no copy data is available, then it's neither a space nor a
2476 subspace. */
2477 if (som_section_data (section)->copy_data == NULL)
2478 return FALSE;
2479
2480 /* If the containing space is the same as the given section,
2481 then this isn't a subspace. */
2482 if (som_section_data (section)->copy_data->container == section
2483 || (som_section_data (section)->copy_data->container->output_section
2484 == section))
2485 return FALSE;
2486
2487 /* OK. Must be a subspace. */
2488 return TRUE;
2489 }
2490
2491 /* Return TRUE if the given space contains the given subspace. It
2492 is safe to assume space really is a space, and subspace really
2493 is a subspace. */
2494
2495 static bfd_boolean
2496 som_is_container (space, subspace)
2497 asection *space, *subspace;
2498 {
2499 return (som_section_data (subspace)->copy_data->container == space
2500 || (som_section_data (subspace)->copy_data->container->output_section
2501 == space));
2502 }
2503
2504 /* Count and return the number of spaces attached to the given BFD. */
2505
2506 static unsigned long
2507 som_count_spaces (abfd)
2508 bfd *abfd;
2509 {
2510 int count = 0;
2511 asection *section;
2512
2513 for (section = abfd->sections; section != NULL; section = section->next)
2514 count += som_is_space (section);
2515
2516 return count;
2517 }
2518
2519 /* Count the number of subspaces attached to the given BFD. */
2520
2521 static unsigned long
2522 som_count_subspaces (abfd)
2523 bfd *abfd;
2524 {
2525 int count = 0;
2526 asection *section;
2527
2528 for (section = abfd->sections; section != NULL; section = section->next)
2529 count += som_is_subspace (section);
2530
2531 return count;
2532 }
2533
2534 /* Return -1, 0, 1 indicating the relative ordering of sym1 and sym2.
2535
2536 We desire symbols to be ordered starting with the symbol with the
2537 highest relocation count down to the symbol with the lowest relocation
2538 count. Doing so compacts the relocation stream. */
2539
2540 static int
2541 compare_syms (arg1, arg2)
2542 const PTR arg1;
2543 const PTR arg2;
2544
2545 {
2546 asymbol **sym1 = (asymbol **) arg1;
2547 asymbol **sym2 = (asymbol **) arg2;
2548 unsigned int count1, count2;
2549
2550 /* Get relocation count for each symbol. Note that the count
2551 is stored in the udata pointer for section symbols! */
2552 if ((*sym1)->flags & BSF_SECTION_SYM)
2553 count1 = (*sym1)->udata.i;
2554 else
2555 count1 = som_symbol_data (*sym1)->reloc_count;
2556
2557 if ((*sym2)->flags & BSF_SECTION_SYM)
2558 count2 = (*sym2)->udata.i;
2559 else
2560 count2 = som_symbol_data (*sym2)->reloc_count;
2561
2562 /* Return the appropriate value. */
2563 if (count1 < count2)
2564 return 1;
2565 else if (count1 > count2)
2566 return -1;
2567 return 0;
2568 }
2569
2570 /* Return -1, 0, 1 indicating the relative ordering of subspace1
2571 and subspace. */
2572
2573 static int
2574 compare_subspaces (arg1, arg2)
2575 const PTR arg1;
2576 const PTR arg2;
2577
2578 {
2579 asection **subspace1 = (asection **) arg1;
2580 asection **subspace2 = (asection **) arg2;
2581
2582 if ((*subspace1)->target_index < (*subspace2)->target_index)
2583 return -1;
2584 else if ((*subspace2)->target_index < (*subspace1)->target_index)
2585 return 1;
2586 else
2587 return 0;
2588 }
2589
2590 /* Perform various work in preparation for emitting the fixup stream. */
2591
2592 static void
2593 som_prep_for_fixups (abfd, syms, num_syms)
2594 bfd *abfd;
2595 asymbol **syms;
2596 unsigned long num_syms;
2597 {
2598 unsigned long i;
2599 asection *section;
2600 asymbol **sorted_syms;
2601 bfd_size_type amt;
2602
2603 /* Most SOM relocations involving a symbol have a length which is
2604 dependent on the index of the symbol. So symbols which are
2605 used often in relocations should have a small index. */
2606
2607 /* First initialize the counters for each symbol. */
2608 for (i = 0; i < num_syms; i++)
2609 {
2610 /* Handle a section symbol; these have no pointers back to the
2611 SOM symbol info. So we just use the udata field to hold the
2612 relocation count. */
2613 if (som_symbol_data (syms[i]) == NULL
2614 || syms[i]->flags & BSF_SECTION_SYM)
2615 {
2616 syms[i]->flags |= BSF_SECTION_SYM;
2617 syms[i]->udata.i = 0;
2618 }
2619 else
2620 som_symbol_data (syms[i])->reloc_count = 0;
2621 }
2622
2623 /* Now that the counters are initialized, make a weighted count
2624 of how often a given symbol is used in a relocation. */
2625 for (section = abfd->sections; section != NULL; section = section->next)
2626 {
2627 int j;
2628
2629 /* Does this section have any relocations? */
2630 if ((int) section->reloc_count <= 0)
2631 continue;
2632
2633 /* Walk through each relocation for this section. */
2634 for (j = 1; j < (int) section->reloc_count; j++)
2635 {
2636 arelent *reloc = section->orelocation[j];
2637 int scale;
2638
2639 /* A relocation against a symbol in the *ABS* section really
2640 does not have a symbol. Likewise if the symbol isn't associated
2641 with any section. */
2642 if (reloc->sym_ptr_ptr == NULL
2643 || bfd_is_abs_section ((*reloc->sym_ptr_ptr)->section))
2644 continue;
2645
2646 /* Scaling to encourage symbols involved in R_DP_RELATIVE
2647 and R_CODE_ONE_SYMBOL relocations to come first. These
2648 two relocations have single byte versions if the symbol
2649 index is very small. */
2650 if (reloc->howto->type == R_DP_RELATIVE
2651 || reloc->howto->type == R_CODE_ONE_SYMBOL)
2652 scale = 2;
2653 else
2654 scale = 1;
2655
2656 /* Handle section symbols by storing the count in the udata
2657 field. It will not be used and the count is very important
2658 for these symbols. */
2659 if ((*reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2660 {
2661 (*reloc->sym_ptr_ptr)->udata.i =
2662 (*reloc->sym_ptr_ptr)->udata.i + scale;
2663 continue;
2664 }
2665
2666 /* A normal symbol. Increment the count. */
2667 som_symbol_data (*reloc->sym_ptr_ptr)->reloc_count += scale;
2668 }
2669 }
2670
2671 /* Sort a copy of the symbol table, rather than the canonical
2672 output symbol table. */
2673 amt = num_syms;
2674 amt *= sizeof (asymbol *);
2675 sorted_syms = (asymbol **) bfd_zalloc (abfd, amt);
2676 memcpy (sorted_syms, syms, num_syms * sizeof (asymbol *));
2677 qsort (sorted_syms, num_syms, sizeof (asymbol *), compare_syms);
2678 obj_som_sorted_syms (abfd) = sorted_syms;
2679
2680 /* Compute the symbol indexes, they will be needed by the relocation
2681 code. */
2682 for (i = 0; i < num_syms; i++)
2683 {
2684 /* A section symbol. Again, there is no pointer to backend symbol
2685 information, so we reuse the udata field again. */
2686 if (sorted_syms[i]->flags & BSF_SECTION_SYM)
2687 sorted_syms[i]->udata.i = i;
2688 else
2689 som_symbol_data (sorted_syms[i])->index = i;
2690 }
2691 }
2692
2693 static bfd_boolean
2694 som_write_fixups (abfd, current_offset, total_reloc_sizep)
2695 bfd *abfd;
2696 unsigned long current_offset;
2697 unsigned int *total_reloc_sizep;
2698 {
2699 unsigned int i, j;
2700 /* Chunk of memory that we can use as buffer space, then throw
2701 away. */
2702 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2703 unsigned char *p;
2704 unsigned int total_reloc_size = 0;
2705 unsigned int subspace_reloc_size = 0;
2706 unsigned int num_spaces = obj_som_file_hdr (abfd)->space_total;
2707 asection *section = abfd->sections;
2708 bfd_size_type amt;
2709
2710 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2711 p = tmp_space;
2712
2713 /* All the fixups for a particular subspace are emitted in a single
2714 stream. All the subspaces for a particular space are emitted
2715 as a single stream.
2716
2717 So, to get all the locations correct one must iterate through all the
2718 spaces, for each space iterate through its subspaces and output a
2719 fixups stream. */
2720 for (i = 0; i < num_spaces; i++)
2721 {
2722 asection *subsection;
2723
2724 /* Find a space. */
2725 while (!som_is_space (section))
2726 section = section->next;
2727
2728 /* Now iterate through each of its subspaces. */
2729 for (subsection = abfd->sections;
2730 subsection != NULL;
2731 subsection = subsection->next)
2732 {
2733 int reloc_offset;
2734 unsigned int current_rounding_mode;
2735 #ifndef NO_PCREL_MODES
2736 unsigned int current_call_mode;
2737 #endif
2738
2739 /* Find a subspace of this space. */
2740 if (!som_is_subspace (subsection)
2741 || !som_is_container (section, subsection))
2742 continue;
2743
2744 /* If this subspace does not have real data, then we are
2745 finished with it. */
2746 if ((subsection->flags & SEC_HAS_CONTENTS) == 0)
2747 {
2748 som_section_data (subsection)->subspace_dict->fixup_request_index
2749 = -1;
2750 continue;
2751 }
2752
2753 /* This subspace has some relocations. Put the relocation stream
2754 index into the subspace record. */
2755 som_section_data (subsection)->subspace_dict->fixup_request_index
2756 = total_reloc_size;
2757
2758 /* To make life easier start over with a clean slate for
2759 each subspace. Seek to the start of the relocation stream
2760 for this subspace in preparation for writing out its fixup
2761 stream. */
2762 if (bfd_seek (abfd, current_offset + total_reloc_size, SEEK_SET) != 0)
2763 return FALSE;
2764
2765 /* Buffer space has already been allocated. Just perform some
2766 initialization here. */
2767 p = tmp_space;
2768 subspace_reloc_size = 0;
2769 reloc_offset = 0;
2770 som_initialize_reloc_queue (reloc_queue);
2771 current_rounding_mode = R_N_MODE;
2772 #ifndef NO_PCREL_MODES
2773 current_call_mode = R_SHORT_PCREL_MODE;
2774 #endif
2775
2776 /* Translate each BFD relocation into one or more SOM
2777 relocations. */
2778 for (j = 0; j < subsection->reloc_count; j++)
2779 {
2780 arelent *bfd_reloc = subsection->orelocation[j];
2781 unsigned int skip;
2782 int sym_num;
2783
2784 /* Get the symbol number. Remember it's stored in a
2785 special place for section symbols. */
2786 if ((*bfd_reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2787 sym_num = (*bfd_reloc->sym_ptr_ptr)->udata.i;
2788 else
2789 sym_num = som_symbol_data (*bfd_reloc->sym_ptr_ptr)->index;
2790
2791 /* If there is not enough room for the next couple relocations,
2792 then dump the current buffer contents now. Also reinitialize
2793 the relocation queue.
2794
2795 No single BFD relocation could ever translate into more
2796 than 100 bytes of SOM relocations (20bytes is probably the
2797 upper limit, but leave lots of space for growth). */
2798 if (p - tmp_space + 100 > SOM_TMP_BUFSIZE)
2799 {
2800 amt = p - tmp_space;
2801 if (bfd_bwrite ((PTR) tmp_space, amt, abfd) != amt)
2802 return FALSE;
2803
2804 p = tmp_space;
2805 som_initialize_reloc_queue (reloc_queue);
2806 }
2807
2808 /* Emit R_NO_RELOCATION fixups to map any bytes which were
2809 skipped. */
2810 skip = bfd_reloc->address - reloc_offset;
2811 p = som_reloc_skip (abfd, skip, p,
2812 &subspace_reloc_size, reloc_queue);
2813
2814 /* Update reloc_offset for the next iteration.
2815
2816 Many relocations do not consume input bytes. They
2817 are markers, or set state necessary to perform some
2818 later relocation. */
2819 switch (bfd_reloc->howto->type)
2820 {
2821 case R_ENTRY:
2822 case R_ALT_ENTRY:
2823 case R_EXIT:
2824 case R_N_MODE:
2825 case R_S_MODE:
2826 case R_D_MODE:
2827 case R_R_MODE:
2828 case R_FSEL:
2829 case R_LSEL:
2830 case R_RSEL:
2831 case R_COMP1:
2832 case R_COMP2:
2833 case R_BEGIN_BRTAB:
2834 case R_END_BRTAB:
2835 case R_BEGIN_TRY:
2836 case R_END_TRY:
2837 case R_N0SEL:
2838 case R_N1SEL:
2839 #ifndef NO_PCREL_MODES
2840 case R_SHORT_PCREL_MODE:
2841 case R_LONG_PCREL_MODE:
2842 #endif
2843 reloc_offset = bfd_reloc->address;
2844 break;
2845
2846 default:
2847 reloc_offset = bfd_reloc->address + 4;
2848 break;
2849 }
2850
2851 /* Now the actual relocation we care about. */
2852 switch (bfd_reloc->howto->type)
2853 {
2854 case R_PCREL_CALL:
2855 case R_ABS_CALL:
2856 p = som_reloc_call (abfd, p, &subspace_reloc_size,
2857 bfd_reloc, sym_num, reloc_queue);
2858 break;
2859
2860 case R_CODE_ONE_SYMBOL:
2861 case R_DP_RELATIVE:
2862 /* Account for any addend. */
2863 if (bfd_reloc->addend)
2864 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2865 &subspace_reloc_size, reloc_queue);
2866
2867 if (sym_num < 0x20)
2868 {
2869 bfd_put_8 (abfd, bfd_reloc->howto->type + sym_num, p);
2870 subspace_reloc_size += 1;
2871 p += 1;
2872 }
2873 else if (sym_num < 0x100)
2874 {
2875 bfd_put_8 (abfd, bfd_reloc->howto->type + 32, p);
2876 bfd_put_8 (abfd, sym_num, p + 1);
2877 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2878 2, reloc_queue);
2879 }
2880 else if (sym_num < 0x10000000)
2881 {
2882 bfd_put_8 (abfd, bfd_reloc->howto->type + 33, p);
2883 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2884 bfd_put_16 (abfd, (bfd_vma) sym_num, p + 2);
2885 p = try_prev_fixup (abfd, &subspace_reloc_size,
2886 p, 4, reloc_queue);
2887 }
2888 else
2889 abort ();
2890 break;
2891
2892 case R_DATA_ONE_SYMBOL:
2893 case R_DATA_PLABEL:
2894 case R_CODE_PLABEL:
2895 case R_DLT_REL:
2896 /* Account for any addend using R_DATA_OVERRIDE. */
2897 if (bfd_reloc->howto->type != R_DATA_ONE_SYMBOL
2898 && bfd_reloc->addend)
2899 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2900 &subspace_reloc_size, reloc_queue);
2901
2902 if (sym_num < 0x100)
2903 {
2904 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2905 bfd_put_8 (abfd, sym_num, p + 1);
2906 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2907 2, reloc_queue);
2908 }
2909 else if (sym_num < 0x10000000)
2910 {
2911 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
2912 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2913 bfd_put_16 (abfd, (bfd_vma) sym_num, p + 2);
2914 p = try_prev_fixup (abfd, &subspace_reloc_size,
2915 p, 4, reloc_queue);
2916 }
2917 else
2918 abort ();
2919 break;
2920
2921 case R_ENTRY:
2922 {
2923 unsigned int tmp;
2924 arelent *tmp_reloc = NULL;
2925 bfd_put_8 (abfd, R_ENTRY, p);
2926
2927 /* R_ENTRY relocations have 64 bits of associated
2928 data. Unfortunately the addend field of a bfd
2929 relocation is only 32 bits. So, we split up
2930 the 64bit unwind information and store part in
2931 the R_ENTRY relocation, and the rest in the R_EXIT
2932 relocation. */
2933 bfd_put_32 (abfd, bfd_reloc->addend, p + 1);
2934
2935 /* Find the next R_EXIT relocation. */
2936 for (tmp = j; tmp < subsection->reloc_count; tmp++)
2937 {
2938 tmp_reloc = subsection->orelocation[tmp];
2939 if (tmp_reloc->howto->type == R_EXIT)
2940 break;
2941 }
2942
2943 if (tmp == subsection->reloc_count)
2944 abort ();
2945
2946 bfd_put_32 (abfd, tmp_reloc->addend, p + 5);
2947 p = try_prev_fixup (abfd, &subspace_reloc_size,
2948 p, 9, reloc_queue);
2949 break;
2950 }
2951
2952 case R_N_MODE:
2953 case R_S_MODE:
2954 case R_D_MODE:
2955 case R_R_MODE:
2956 /* If this relocation requests the current rounding
2957 mode, then it is redundant. */
2958 if (bfd_reloc->howto->type != current_rounding_mode)
2959 {
2960 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2961 subspace_reloc_size += 1;
2962 p += 1;
2963 current_rounding_mode = bfd_reloc->howto->type;
2964 }
2965 break;
2966
2967 #ifndef NO_PCREL_MODES
2968 case R_LONG_PCREL_MODE:
2969 case R_SHORT_PCREL_MODE:
2970 if (bfd_reloc->howto->type != current_call_mode)
2971 {
2972 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2973 subspace_reloc_size += 1;
2974 p += 1;
2975 current_call_mode = bfd_reloc->howto->type;
2976 }
2977 break;
2978 #endif
2979
2980 case R_EXIT:
2981 case R_ALT_ENTRY:
2982 case R_FSEL:
2983 case R_LSEL:
2984 case R_RSEL:
2985 case R_BEGIN_BRTAB:
2986 case R_END_BRTAB:
2987 case R_BEGIN_TRY:
2988 case R_N0SEL:
2989 case R_N1SEL:
2990 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2991 subspace_reloc_size += 1;
2992 p += 1;
2993 break;
2994
2995 case R_END_TRY:
2996 /* The end of an exception handling region. The reloc's
2997 addend contains the offset of the exception handling
2998 code. */
2999 if (bfd_reloc->addend == 0)
3000 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
3001 else if (bfd_reloc->addend < 1024)
3002 {
3003 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
3004 bfd_put_8 (abfd, bfd_reloc->addend / 4, p + 1);
3005 p = try_prev_fixup (abfd, &subspace_reloc_size,
3006 p, 2, reloc_queue);
3007 }
3008 else
3009 {
3010 bfd_put_8 (abfd, bfd_reloc->howto->type + 2, p);
3011 bfd_put_8 (abfd, (bfd_reloc->addend / 4) >> 16, p + 1);
3012 bfd_put_16 (abfd, bfd_reloc->addend / 4, p + 2);
3013 p = try_prev_fixup (abfd, &subspace_reloc_size,
3014 p, 4, reloc_queue);
3015 }
3016 break;
3017
3018 case R_COMP1:
3019 /* The only time we generate R_COMP1, R_COMP2 and
3020 R_CODE_EXPR relocs is for the difference of two
3021 symbols. Hence we can cheat here. */
3022 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
3023 bfd_put_8 (abfd, 0x44, p + 1);
3024 p = try_prev_fixup (abfd, &subspace_reloc_size,
3025 p, 2, reloc_queue);
3026 break;
3027
3028 case R_COMP2:
3029 /* The only time we generate R_COMP1, R_COMP2 and
3030 R_CODE_EXPR relocs is for the difference of two
3031 symbols. Hence we can cheat here. */
3032 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
3033 bfd_put_8 (abfd, 0x80, p + 1);
3034 bfd_put_8 (abfd, sym_num >> 16, p + 2);
3035 bfd_put_16 (abfd, (bfd_vma) sym_num, p + 3);
3036 p = try_prev_fixup (abfd, &subspace_reloc_size,
3037 p, 5, reloc_queue);
3038 break;
3039
3040 case R_CODE_EXPR:
3041 case R_DATA_EXPR:
3042 /* The only time we generate R_COMP1, R_COMP2 and
3043 R_CODE_EXPR relocs is for the difference of two
3044 symbols. Hence we can cheat here. */
3045 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
3046 subspace_reloc_size += 1;
3047 p += 1;
3048 break;
3049
3050 /* Put a "R_RESERVED" relocation in the stream if
3051 we hit something we do not understand. The linker
3052 will complain loudly if this ever happens. */
3053 default:
3054 bfd_put_8 (abfd, 0xff, p);
3055 subspace_reloc_size += 1;
3056 p += 1;
3057 break;
3058 }
3059 }
3060
3061 /* Last BFD relocation for a subspace has been processed.
3062 Map the rest of the subspace with R_NO_RELOCATION fixups. */
3063 p = som_reloc_skip (abfd, subsection->size - reloc_offset,
3064 p, &subspace_reloc_size, reloc_queue);
3065
3066 /* Scribble out the relocations. */
3067 amt = p - tmp_space;
3068 if (bfd_bwrite ((PTR) tmp_space, amt, abfd) != amt)
3069 return FALSE;
3070 p = tmp_space;
3071
3072 total_reloc_size += subspace_reloc_size;
3073 som_section_data (subsection)->subspace_dict->fixup_request_quantity
3074 = subspace_reloc_size;
3075 }
3076 section = section->next;
3077 }
3078 *total_reloc_sizep = total_reloc_size;
3079 return TRUE;
3080 }
3081
3082 /* Write out the space/subspace string table. */
3083
3084 static bfd_boolean
3085 som_write_space_strings (abfd, current_offset, string_sizep)
3086 bfd *abfd;
3087 unsigned long current_offset;
3088 unsigned int *string_sizep;
3089 {
3090 /* Chunk of memory that we can use as buffer space, then throw
3091 away. */
3092 size_t tmp_space_size = SOM_TMP_BUFSIZE;
3093 unsigned char *tmp_space = alloca (tmp_space_size);
3094 unsigned char *p = tmp_space;
3095 unsigned int strings_size = 0;
3096 asection *section;
3097 bfd_size_type amt;
3098
3099 /* Seek to the start of the space strings in preparation for writing
3100 them out. */
3101 if (bfd_seek (abfd, (file_ptr) current_offset, SEEK_SET) != 0)
3102 return FALSE;
3103
3104 /* Walk through all the spaces and subspaces (order is not important)
3105 building up and writing string table entries for their names. */
3106 for (section = abfd->sections; section != NULL; section = section->next)
3107 {
3108 size_t length;
3109
3110 /* Only work with space/subspaces; avoid any other sections
3111 which might have been made (.text for example). */
3112 if (!som_is_space (section) && !som_is_subspace (section))
3113 continue;
3114
3115 /* Get the length of the space/subspace name. */
3116 length = strlen (section->name);
3117
3118 /* If there is not enough room for the next entry, then dump the
3119 current buffer contents now and maybe allocate a larger
3120 buffer. Each entry will take 4 bytes to hold the string
3121 length + the string itself + null terminator. */
3122 if (p - tmp_space + 5 + length > tmp_space_size)
3123 {
3124 /* Flush buffer before refilling or reallocating. */
3125 amt = p - tmp_space;
3126 if (bfd_bwrite ((PTR) &tmp_space[0], amt, abfd) != amt)
3127 return FALSE;
3128
3129 /* Reallocate if now empty buffer still too small. */
3130 if (5 + length > tmp_space_size)
3131 {
3132 /* Ensure a minimum growth factor to avoid O(n**2) space
3133 consumption for n strings. The optimal minimum
3134 factor seems to be 2, as no other value can guarantee
3135 wasting less than 50% space. (Note that we cannot
3136 deallocate space allocated by `alloca' without
3137 returning from this function.) The same technique is
3138 used a few more times below when a buffer is
3139 reallocated. */
3140 tmp_space_size = MAX (2 * tmp_space_size, 5 + length);
3141 tmp_space = alloca (tmp_space_size);
3142 }
3143
3144 /* Reset to beginning of the (possibly new) buffer space. */
3145 p = tmp_space;
3146 }
3147
3148 /* First element in a string table entry is the length of the
3149 string. Alignment issues are already handled. */
3150 bfd_put_32 (abfd, (bfd_vma) length, p);
3151 p += 4;
3152 strings_size += 4;
3153
3154 /* Record the index in the space/subspace records. */
3155 if (som_is_space (section))
3156 som_section_data (section)->space_dict->name.n_strx = strings_size;
3157 else
3158 som_section_data (section)->subspace_dict->name.n_strx = strings_size;
3159
3160 /* Next comes the string itself + a null terminator. */
3161 strcpy (p, section->name);
3162 p += length + 1;
3163 strings_size += length + 1;
3164
3165 /* Always align up to the next word boundary. */
3166 while (strings_size % 4)
3167 {
3168 bfd_put_8 (abfd, 0, p);
3169 p++;
3170 strings_size++;
3171 }
3172 }
3173
3174 /* Done with the space/subspace strings. Write out any information
3175 contained in a partial block. */
3176 amt = p - tmp_space;
3177 if (bfd_bwrite ((PTR) &tmp_space[0], amt, abfd) != amt)
3178 return FALSE;
3179 *string_sizep = strings_size;
3180 return TRUE;
3181 }
3182
3183 /* Write out the symbol string table. */
3184
3185 static bfd_boolean
3186 som_write_symbol_strings (abfd, current_offset, syms, num_syms, string_sizep,
3187 compilation_unit)
3188 bfd *abfd;
3189 unsigned long current_offset;
3190 asymbol **syms;
3191 unsigned int num_syms;
3192 unsigned int *string_sizep;
3193 COMPUNIT *compilation_unit;
3194 {
3195 unsigned int i;
3196
3197 /* Chunk of memory that we can use as buffer space, then throw
3198 away. */
3199 size_t tmp_space_size = SOM_TMP_BUFSIZE;
3200 unsigned char *tmp_space = alloca (tmp_space_size);
3201 unsigned char *p = tmp_space;
3202
3203 unsigned int strings_size = 0;
3204 unsigned char *comp[4];
3205 bfd_size_type amt;
3206
3207 /* This gets a bit gruesome because of the compilation unit. The
3208 strings within the compilation unit are part of the symbol
3209 strings, but don't have symbol_dictionary entries. So, manually
3210 write them and update the compilation unit header. On input, the
3211 compilation unit header contains local copies of the strings.
3212 Move them aside. */
3213 if (compilation_unit)
3214 {
3215 comp[0] = compilation_unit->name.n_name;
3216 comp[1] = compilation_unit->language_name.n_name;
3217 comp[2] = compilation_unit->product_id.n_name;
3218 comp[3] = compilation_unit->version_id.n_name;
3219 }
3220
3221 /* Seek to the start of the space strings in preparation for writing
3222 them out. */
3223 if (bfd_seek (abfd, (file_ptr) current_offset, SEEK_SET) != 0)
3224 return FALSE;
3225
3226 if (compilation_unit)
3227 {
3228 for (i = 0; i < 4; i++)
3229 {
3230 size_t length = strlen (comp[i]);
3231
3232 /* If there is not enough room for the next entry, then dump
3233 the current buffer contents now and maybe allocate a
3234 larger buffer. */
3235 if (p - tmp_space + 5 + length > tmp_space_size)
3236 {
3237 /* Flush buffer before refilling or reallocating. */
3238 amt = p - tmp_space;
3239 if (bfd_bwrite ((PTR) &tmp_space[0], amt, abfd) != amt)
3240 return FALSE;
3241
3242 /* Reallocate if now empty buffer still too small. */
3243 if (5 + length > tmp_space_size)
3244 {
3245 /* See alloca above for discussion of new size. */
3246 tmp_space_size = MAX (2 * tmp_space_size, 5 + length);
3247 tmp_space = alloca (tmp_space_size);
3248 }
3249
3250 /* Reset to beginning of the (possibly new) buffer
3251 space. */
3252 p = tmp_space;
3253 }
3254
3255 /* First element in a string table entry is the length of
3256 the string. This must always be 4 byte aligned. This is
3257 also an appropriate time to fill in the string index
3258 field in the symbol table entry. */
3259 bfd_put_32 (abfd, (bfd_vma) length, p);
3260 strings_size += 4;
3261 p += 4;
3262
3263 /* Next comes the string itself + a null terminator. */
3264 strcpy (p, comp[i]);
3265
3266 switch (i)
3267 {
3268 case 0:
3269 obj_som_compilation_unit (abfd)->name.n_strx = strings_size;
3270 break;
3271 case 1:
3272 obj_som_compilation_unit (abfd)->language_name.n_strx =
3273 strings_size;
3274 break;
3275 case 2:
3276 obj_som_compilation_unit (abfd)->product_id.n_strx =
3277 strings_size;
3278 break;
3279 case 3:
3280 obj_som_compilation_unit (abfd)->version_id.n_strx =
3281 strings_size;
3282 break;
3283 }
3284
3285 p += length + 1;
3286 strings_size += length + 1;
3287
3288 /* Always align up to the next word boundary. */
3289 while (strings_size % 4)
3290 {
3291 bfd_put_8 (abfd, 0, p);
3292 strings_size++;
3293 p++;
3294 }
3295 }
3296 }
3297
3298 for (i = 0; i < num_syms; i++)
3299 {
3300 size_t length = strlen (syms[i]->name);
3301
3302 /* If there is not enough room for the next entry, then dump the
3303 current buffer contents now and maybe allocate a larger buffer. */
3304 if (p - tmp_space + 5 + length > tmp_space_size)
3305 {
3306 /* Flush buffer before refilling or reallocating. */
3307 amt = p - tmp_space;
3308 if (bfd_bwrite ((PTR) &tmp_space[0], amt, abfd) != amt)
3309 return FALSE;
3310
3311 /* Reallocate if now empty buffer still too small. */
3312 if (5 + length > tmp_space_size)
3313 {
3314 /* See alloca above for discussion of new size. */
3315 tmp_space_size = MAX (2 * tmp_space_size, 5 + length);
3316 tmp_space = alloca (tmp_space_size);
3317 }
3318
3319 /* Reset to beginning of the (possibly new) buffer space. */
3320 p = tmp_space;
3321 }
3322
3323 /* First element in a string table entry is the length of the
3324 string. This must always be 4 byte aligned. This is also
3325 an appropriate time to fill in the string index field in the
3326 symbol table entry. */
3327 bfd_put_32 (abfd, (bfd_vma) length, p);
3328 strings_size += 4;
3329 p += 4;
3330
3331 /* Next comes the string itself + a null terminator. */
3332 strcpy (p, syms[i]->name);
3333
3334 som_symbol_data (syms[i])->stringtab_offset = strings_size;
3335 p += length + 1;
3336 strings_size += length + 1;
3337
3338 /* Always align up to the next word boundary. */
3339 while (strings_size % 4)
3340 {
3341 bfd_put_8 (abfd, 0, p);
3342 strings_size++;
3343 p++;
3344 }
3345 }
3346
3347 /* Scribble out any partial block. */
3348 amt = p - tmp_space;
3349 if (bfd_bwrite ((PTR) &tmp_space[0], amt, abfd) != amt)
3350 return FALSE;
3351
3352 *string_sizep = strings_size;
3353 return TRUE;
3354 }
3355
3356 /* Compute variable information to be placed in the SOM headers,
3357 space/subspace dictionaries, relocation streams, etc. Begin
3358 writing parts of the object file. */
3359
3360 static bfd_boolean
3361 som_begin_writing (abfd)
3362 bfd *abfd;
3363 {
3364 unsigned long current_offset = 0;
3365 int strings_size = 0;
3366 unsigned long num_spaces, num_subspaces, i;
3367 asection *section;
3368 unsigned int total_subspaces = 0;
3369 struct som_exec_auxhdr *exec_header = NULL;
3370
3371 /* The file header will always be first in an object file,
3372 everything else can be in random locations. To keep things
3373 "simple" BFD will lay out the object file in the manner suggested
3374 by the PRO ABI for PA-RISC Systems. */
3375
3376 /* Before any output can really begin offsets for all the major
3377 portions of the object file must be computed. So, starting
3378 with the initial file header compute (and sometimes write)
3379 each portion of the object file. */
3380
3381 /* Make room for the file header, it's contents are not complete
3382 yet, so it can not be written at this time. */
3383 current_offset += sizeof (struct header);
3384
3385 /* Any auxiliary headers will follow the file header. Right now
3386 we support only the copyright and version headers. */
3387 obj_som_file_hdr (abfd)->aux_header_location = current_offset;
3388 obj_som_file_hdr (abfd)->aux_header_size = 0;
3389 if (abfd->flags & (EXEC_P | DYNAMIC))
3390 {
3391 /* Parts of the exec header will be filled in later, so
3392 delay writing the header itself. Fill in the defaults,
3393 and write it later. */
3394 current_offset += sizeof (struct som_exec_auxhdr);
3395 obj_som_file_hdr (abfd)->aux_header_size
3396 += sizeof (struct som_exec_auxhdr);
3397 exec_header = obj_som_exec_hdr (abfd);
3398 exec_header->som_auxhdr.type = EXEC_AUX_ID;
3399 exec_header->som_auxhdr.length = 40;
3400 }
3401 if (obj_som_version_hdr (abfd) != NULL)
3402 {
3403 bfd_size_type len;
3404
3405 if (bfd_seek (abfd, (file_ptr) current_offset, SEEK_SET) != 0)
3406 return FALSE;
3407
3408 /* Write the aux_id structure and the string length. */
3409 len = sizeof (struct aux_id) + sizeof (unsigned int);
3410 obj_som_file_hdr (abfd)->aux_header_size += len;
3411 current_offset += len;
3412 if (bfd_bwrite ((PTR) obj_som_version_hdr (abfd), len, abfd) != len)
3413 return FALSE;
3414
3415 /* Write the version string. */
3416 len = obj_som_version_hdr (abfd)->header_id.length - sizeof (int);
3417 obj_som_file_hdr (abfd)->aux_header_size += len;
3418 current_offset += len;
3419 if (bfd_bwrite ((PTR) obj_som_version_hdr (abfd)->user_string, len, abfd)
3420 != len)
3421 return FALSE;
3422 }
3423
3424 if (obj_som_copyright_hdr (abfd) != NULL)
3425 {
3426 bfd_size_type len;
3427
3428 if (bfd_seek (abfd, (file_ptr) current_offset, SEEK_SET) != 0)
3429 return FALSE;
3430
3431 /* Write the aux_id structure and the string length. */
3432 len = sizeof (struct aux_id) + sizeof (unsigned int);
3433 obj_som_file_hdr (abfd)->aux_header_size += len;
3434 current_offset += len;
3435 if (bfd_bwrite ((PTR) obj_som_copyright_hdr (abfd), len, abfd) != len)
3436 return FALSE;
3437
3438 /* Write the copyright string. */
3439 len = obj_som_copyright_hdr (abfd)->header_id.length - sizeof (int);
3440 obj_som_file_hdr (abfd)->aux_header_size += len;
3441 current_offset += len;
3442 if (bfd_bwrite ((PTR) obj_som_copyright_hdr (abfd)->copyright, len, abfd)
3443 != len)
3444 return FALSE;
3445 }
3446
3447 /* Next comes the initialization pointers; we have no initialization
3448 pointers, so current offset does not change. */
3449 obj_som_file_hdr (abfd)->init_array_location = current_offset;
3450 obj_som_file_hdr (abfd)->init_array_total = 0;
3451
3452 /* Next are the space records. These are fixed length records.
3453
3454 Count the number of spaces to determine how much room is needed
3455 in the object file for the space records.
3456
3457 The names of the spaces are stored in a separate string table,
3458 and the index for each space into the string table is computed
3459 below. Therefore, it is not possible to write the space headers
3460 at this time. */
3461 num_spaces = som_count_spaces (abfd);
3462 obj_som_file_hdr (abfd)->space_location = current_offset;
3463 obj_som_file_hdr (abfd)->space_total = num_spaces;
3464 current_offset += num_spaces * sizeof (struct space_dictionary_record);
3465
3466 /* Next are the subspace records. These are fixed length records.
3467
3468 Count the number of subspaes to determine how much room is needed
3469 in the object file for the subspace records.
3470
3471 A variety if fields in the subspace record are still unknown at
3472 this time (index into string table, fixup stream location/size, etc). */
3473 num_subspaces = som_count_subspaces (abfd);
3474 obj_som_file_hdr (abfd)->subspace_location = current_offset;
3475 obj_som_file_hdr (abfd)->subspace_total = num_subspaces;
3476 current_offset
3477 += num_subspaces * sizeof (struct som_subspace_dictionary_record);
3478
3479 /* Next is the string table for the space/subspace names. We will
3480 build and write the string table on the fly. At the same time
3481 we will fill in the space/subspace name index fields. */
3482
3483 /* The string table needs to be aligned on a word boundary. */
3484 if (current_offset % 4)
3485 current_offset += (4 - (current_offset % 4));
3486
3487 /* Mark the offset of the space/subspace string table in the
3488 file header. */
3489 obj_som_file_hdr (abfd)->space_strings_location = current_offset;
3490
3491 /* Scribble out the space strings. */
3492 if (! som_write_space_strings (abfd, current_offset, &strings_size))
3493 return FALSE;
3494
3495 /* Record total string table size in the header and update the
3496 current offset. */
3497 obj_som_file_hdr (abfd)->space_strings_size = strings_size;
3498 current_offset += strings_size;
3499
3500 /* Next is the compilation unit. */
3501 obj_som_file_hdr (abfd)->compiler_location = current_offset;
3502 obj_som_file_hdr (abfd)->compiler_total = 0;
3503 if (obj_som_compilation_unit (abfd))
3504 {
3505 obj_som_file_hdr (abfd)->compiler_total = 1;
3506 current_offset += COMPUNITSZ;
3507 }
3508
3509 /* Now compute the file positions for the loadable subspaces, taking
3510 care to make sure everything stays properly aligned. */
3511
3512 section = abfd->sections;
3513 for (i = 0; i < num_spaces; i++)
3514 {
3515 asection *subsection;
3516 int first_subspace;
3517 unsigned int subspace_offset = 0;
3518
3519 /* Find a space. */
3520 while (!som_is_space (section))
3521 section = section->next;
3522
3523 first_subspace = 1;
3524 /* Now look for all its subspaces. */
3525 for (subsection = abfd->sections;
3526 subsection != NULL;
3527 subsection = subsection->next)
3528 {
3529
3530 if (!som_is_subspace (subsection)
3531 || !som_is_container (section, subsection)
3532 || (subsection->flags & SEC_ALLOC) == 0)
3533 continue;
3534
3535 /* If this is the first subspace in the space, and we are
3536 building an executable, then take care to make sure all
3537 the alignments are correct and update the exec header. */
3538 if (first_subspace
3539 && (abfd->flags & (EXEC_P | DYNAMIC)))
3540 {
3541 /* Demand paged executables have each space aligned to a
3542 page boundary. Sharable executables (write-protected
3543 text) have just the private (aka data & bss) space aligned
3544 to a page boundary. Ugh. Not true for HPUX.
3545
3546 The HPUX kernel requires the text to always be page aligned
3547 within the file regardless of the executable's type. */
3548 if (abfd->flags & (D_PAGED | DYNAMIC)
3549 || (subsection->flags & SEC_CODE)
3550 || ((abfd->flags & WP_TEXT)
3551 && (subsection->flags & SEC_DATA)))
3552 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3553
3554 /* Update the exec header. */
3555 if (subsection->flags & SEC_CODE && exec_header->exec_tfile == 0)
3556 {
3557 exec_header->exec_tmem = section->vma;
3558 exec_header->exec_tfile = current_offset;
3559 }
3560 if (subsection->flags & SEC_DATA && exec_header->exec_dfile == 0)
3561 {
3562 exec_header->exec_dmem = section->vma;
3563 exec_header->exec_dfile = current_offset;
3564 }
3565
3566 /* Keep track of exactly where we are within a particular
3567 space. This is necessary as the braindamaged HPUX
3568 loader will create holes between subspaces *and*
3569 subspace alignments are *NOT* preserved. What a crock. */
3570 subspace_offset = subsection->vma;
3571
3572 /* Only do this for the first subspace within each space. */
3573 first_subspace = 0;
3574 }
3575 else if (abfd->flags & (EXEC_P | DYNAMIC))
3576 {
3577 /* The braindamaged HPUX loader may have created a hole
3578 between two subspaces. It is *not* sufficient to use
3579 the alignment specifications within the subspaces to
3580 account for these holes -- I've run into at least one
3581 case where the loader left one code subspace unaligned
3582 in a final executable.
3583
3584 To combat this we keep a current offset within each space,
3585 and use the subspace vma fields to detect and preserve
3586 holes. What a crock!
3587
3588 ps. This is not necessary for unloadable space/subspaces. */
3589 current_offset += subsection->vma - subspace_offset;
3590 if (subsection->flags & SEC_CODE)
3591 exec_header->exec_tsize += subsection->vma - subspace_offset;
3592 else
3593 exec_header->exec_dsize += subsection->vma - subspace_offset;
3594 subspace_offset += subsection->vma - subspace_offset;
3595 }
3596
3597 subsection->target_index = total_subspaces++;
3598 /* This is real data to be loaded from the file. */
3599 if (subsection->flags & SEC_LOAD)
3600 {
3601 /* Update the size of the code & data. */
3602 if (abfd->flags & (EXEC_P | DYNAMIC)
3603 && subsection->flags & SEC_CODE)
3604 exec_header->exec_tsize += subsection->size;
3605 else if (abfd->flags & (EXEC_P | DYNAMIC)
3606 && subsection->flags & SEC_DATA)
3607 exec_header->exec_dsize += subsection->size;
3608 som_section_data (subsection)->subspace_dict->file_loc_init_value
3609 = current_offset;
3610 subsection->filepos = current_offset;
3611 current_offset += subsection->size;
3612 subspace_offset += subsection->size;
3613 }
3614 /* Looks like uninitialized data. */
3615 else
3616 {
3617 /* Update the size of the bss section. */
3618 if (abfd->flags & (EXEC_P | DYNAMIC))
3619 exec_header->exec_bsize += subsection->size;
3620
3621 som_section_data (subsection)->subspace_dict->file_loc_init_value
3622 = 0;
3623 som_section_data (subsection)->subspace_dict->
3624 initialization_length = 0;
3625 }
3626 }
3627 /* Goto the next section. */
3628 section = section->next;
3629 }
3630
3631 /* Finally compute the file positions for unloadable subspaces.
3632 If building an executable, start the unloadable stuff on its
3633 own page. */
3634
3635 if (abfd->flags & (EXEC_P | DYNAMIC))
3636 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3637
3638 obj_som_file_hdr (abfd)->unloadable_sp_location = current_offset;
3639 section = abfd->sections;
3640 for (i = 0; i < num_spaces; i++)
3641 {
3642 asection *subsection;
3643
3644 /* Find a space. */
3645 while (!som_is_space (section))
3646 section = section->next;
3647
3648 if (abfd->flags & (EXEC_P | DYNAMIC))
3649 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3650
3651 /* Now look for all its subspaces. */
3652 for (subsection = abfd->sections;
3653 subsection != NULL;
3654 subsection = subsection->next)
3655 {
3656
3657 if (!som_is_subspace (subsection)
3658 || !som_is_container (section, subsection)
3659 || (subsection->flags & SEC_ALLOC) != 0)
3660 continue;
3661
3662 subsection->target_index = total_subspaces++;
3663 /* This is real data to be loaded from the file. */
3664 if ((subsection->flags & SEC_LOAD) == 0)
3665 {
3666 som_section_data (subsection)->subspace_dict->file_loc_init_value
3667 = current_offset;
3668 subsection->filepos = current_offset;
3669 current_offset += subsection->size;
3670 }
3671 /* Looks like uninitialized data. */
3672 else
3673 {
3674 som_section_data (subsection)->subspace_dict->file_loc_init_value
3675 = 0;
3676 som_section_data (subsection)->subspace_dict->
3677 initialization_length = subsection->size;
3678 }
3679 }
3680 /* Goto the next section. */
3681 section = section->next;
3682 }
3683
3684 /* If building an executable, then make sure to seek to and write
3685 one byte at the end of the file to make sure any necessary
3686 zeros are filled in. Ugh. */
3687 if (abfd->flags & (EXEC_P | DYNAMIC))
3688 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3689 if (bfd_seek (abfd, (file_ptr) current_offset - 1, SEEK_SET) != 0)
3690 return FALSE;
3691 if (bfd_bwrite ((PTR) "", (bfd_size_type) 1, abfd) != 1)
3692 return FALSE;
3693
3694 obj_som_file_hdr (abfd)->unloadable_sp_size
3695 = current_offset - obj_som_file_hdr (abfd)->unloadable_sp_location;
3696
3697 /* Loader fixups are not supported in any way shape or form. */
3698 obj_som_file_hdr (abfd)->loader_fixup_location = 0;
3699 obj_som_file_hdr (abfd)->loader_fixup_total = 0;
3700
3701 /* Done. Store the total size of the SOM so far. */
3702 obj_som_file_hdr (abfd)->som_length = current_offset;
3703
3704 return TRUE;
3705 }
3706
3707 /* Finally, scribble out the various headers to the disk. */
3708
3709 static bfd_boolean
3710 som_finish_writing (abfd)
3711 bfd *abfd;
3712 {
3713 int num_spaces = som_count_spaces (abfd);
3714 asymbol **syms = bfd_get_outsymbols (abfd);
3715 int i, num_syms, strings_size;
3716 int subspace_index = 0;
3717 file_ptr location;
3718 asection *section;
3719 unsigned long current_offset;
3720 unsigned int total_reloc_size;
3721 bfd_size_type amt;
3722
3723 /* We must set up the version identifier here as objcopy/strip copy
3724 private BFD data too late for us to handle this in som_begin_writing. */
3725 if (obj_som_exec_data (abfd)
3726 && obj_som_exec_data (abfd)->version_id)
3727 obj_som_file_hdr (abfd)->version_id = obj_som_exec_data (abfd)->version_id;
3728 else
3729 obj_som_file_hdr (abfd)->version_id = NEW_VERSION_ID;
3730
3731 /* Next is the symbol table. These are fixed length records.
3732
3733 Count the number of symbols to determine how much room is needed
3734 in the object file for the symbol table.
3735
3736 The names of the symbols are stored in a separate string table,
3737 and the index for each symbol name into the string table is computed
3738 below. Therefore, it is not possible to write the symbol table
3739 at this time.
3740
3741 These used to be output before the subspace contents, but they
3742 were moved here to work around a stupid bug in the hpux linker
3743 (fixed in hpux10). */
3744 current_offset = obj_som_file_hdr (abfd)->som_length;
3745
3746 /* Make sure we're on a word boundary. */
3747 if (current_offset % 4)
3748 current_offset += (4 - (current_offset % 4));
3749
3750 num_syms = bfd_get_symcount (abfd);
3751 obj_som_file_hdr (abfd)->symbol_location = current_offset;
3752 obj_som_file_hdr (abfd)->symbol_total = num_syms;
3753 current_offset += num_syms * sizeof (struct symbol_dictionary_record);
3754
3755 /* Next are the symbol strings.
3756 Align them to a word boundary. */
3757 if (current_offset % 4)
3758 current_offset += (4 - (current_offset % 4));
3759 obj_som_file_hdr (abfd)->symbol_strings_location = current_offset;
3760
3761 /* Scribble out the symbol strings. */
3762 if (! som_write_symbol_strings (abfd, current_offset, syms,
3763 num_syms, &strings_size,
3764 obj_som_compilation_unit (abfd)))
3765 return FALSE;
3766
3767 /* Record total string table size in header and update the
3768 current offset. */
3769 obj_som_file_hdr (abfd)->symbol_strings_size = strings_size;
3770 current_offset += strings_size;
3771
3772 /* Do prep work before handling fixups. */
3773 som_prep_for_fixups (abfd,
3774 bfd_get_outsymbols (abfd),
3775 bfd_get_symcount (abfd));
3776
3777 /* At the end of the file is the fixup stream which starts on a
3778 word boundary. */
3779 if (current_offset % 4)
3780 current_offset += (4 - (current_offset % 4));
3781 obj_som_file_hdr (abfd)->fixup_request_location = current_offset;
3782
3783 /* Write the fixups and update fields in subspace headers which
3784 relate to the fixup stream. */
3785 if (! som_write_fixups (abfd, current_offset, &total_reloc_size))
3786 return FALSE;
3787
3788 /* Record the total size of the fixup stream in the file header. */
3789 obj_som_file_hdr (abfd)->fixup_request_total = total_reloc_size;
3790
3791 /* Done. Store the total size of the SOM. */
3792 obj_som_file_hdr (abfd)->som_length = current_offset + total_reloc_size;
3793
3794 /* Now that the symbol table information is complete, build and
3795 write the symbol table. */
3796 if (! som_build_and_write_symbol_table (abfd))
3797 return FALSE;
3798
3799 /* Subspaces are written first so that we can set up information
3800 about them in their containing spaces as the subspace is written. */
3801
3802 /* Seek to the start of the subspace dictionary records. */
3803 location = obj_som_file_hdr (abfd)->subspace_location;
3804 if (bfd_seek (abfd, location, SEEK_SET) != 0)
3805 return FALSE;
3806
3807 section = abfd->sections;
3808 /* Now for each loadable space write out records for its subspaces. */
3809 for (i = 0; i < num_spaces; i++)
3810 {
3811 asection *subsection;
3812
3813 /* Find a space. */
3814 while (!som_is_space (section))
3815 section = section->next;
3816
3817 /* Now look for all its subspaces. */
3818 for (subsection = abfd->sections;
3819 subsection != NULL;
3820 subsection = subsection->next)
3821 {
3822
3823 /* Skip any section which does not correspond to a space
3824 or subspace. Or does not have SEC_ALLOC set (and therefore
3825 has no real bits on the disk). */
3826 if (!som_is_subspace (subsection)
3827 || !som_is_container (section, subsection)
3828 || (subsection->flags & SEC_ALLOC) == 0)
3829 continue;
3830
3831 /* If this is the first subspace for this space, then save
3832 the index of the subspace in its containing space. Also
3833 set "is_loadable" in the containing space. */
3834
3835 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3836 {
3837 som_section_data (section)->space_dict->is_loadable = 1;
3838 som_section_data (section)->space_dict->subspace_index
3839 = subspace_index;
3840 }
3841
3842 /* Increment the number of subspaces seen and the number of
3843 subspaces contained within the current space. */
3844 subspace_index++;
3845 som_section_data (section)->space_dict->subspace_quantity++;
3846
3847 /* Mark the index of the current space within the subspace's
3848 dictionary record. */
3849 som_section_data (subsection)->subspace_dict->space_index = i;
3850
3851 /* Dump the current subspace header. */
3852 amt = sizeof (struct som_subspace_dictionary_record);
3853 if (bfd_bwrite ((PTR) som_section_data (subsection)->subspace_dict,
3854 amt, abfd) != amt)
3855 return FALSE;
3856 }
3857 /* Goto the next section. */
3858 section = section->next;
3859 }
3860
3861 /* Now repeat the process for unloadable subspaces. */
3862 section = abfd->sections;
3863 /* Now for each space write out records for its subspaces. */
3864 for (i = 0; i < num_spaces; i++)
3865 {
3866 asection *subsection;
3867
3868 /* Find a space. */
3869 while (!som_is_space (section))
3870 section = section->next;
3871
3872 /* Now look for all its subspaces. */
3873 for (subsection = abfd->sections;
3874 subsection != NULL;
3875 subsection = subsection->next)
3876 {
3877
3878 /* Skip any section which does not correspond to a space or
3879 subspace, or which SEC_ALLOC set (and therefore handled
3880 in the loadable spaces/subspaces code above). */
3881
3882 if (!som_is_subspace (subsection)
3883 || !som_is_container (section, subsection)
3884 || (subsection->flags & SEC_ALLOC) != 0)
3885 continue;
3886
3887 /* If this is the first subspace for this space, then save
3888 the index of the subspace in its containing space. Clear
3889 "is_loadable". */
3890
3891 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3892 {
3893 som_section_data (section)->space_dict->is_loadable = 0;
3894 som_section_data (section)->space_dict->subspace_index
3895 = subspace_index;
3896 }
3897
3898 /* Increment the number of subspaces seen and the number of
3899 subspaces contained within the current space. */
3900 som_section_data (section)->space_dict->subspace_quantity++;
3901 subspace_index++;
3902
3903 /* Mark the index of the current space within the subspace's
3904 dictionary record. */
3905 som_section_data (subsection)->subspace_dict->space_index = i;
3906
3907 /* Dump this subspace header. */
3908 amt = sizeof (struct som_subspace_dictionary_record);
3909 if (bfd_bwrite ((PTR) som_section_data (subsection)->subspace_dict,
3910 amt, abfd) != amt)
3911 return FALSE;
3912 }
3913 /* Goto the next section. */
3914 section = section->next;
3915 }
3916
3917 /* All the subspace dictionary records are written, and all the
3918 fields are set up in the space dictionary records.
3919
3920 Seek to the right location and start writing the space
3921 dictionary records. */
3922 location = obj_som_file_hdr (abfd)->space_location;
3923 if (bfd_seek (abfd, location, SEEK_SET) != 0)
3924 return FALSE;
3925
3926 section = abfd->sections;
3927 for (i = 0; i < num_spaces; i++)
3928 {
3929 /* Find a space. */
3930 while (!som_is_space (section))
3931 section = section->next;
3932
3933 /* Dump its header. */
3934 amt = sizeof (struct space_dictionary_record);
3935 if (bfd_bwrite ((PTR) som_section_data (section)->space_dict,
3936 amt, abfd) != amt)
3937 return FALSE;
3938
3939 /* Goto the next section. */
3940 section = section->next;
3941 }
3942
3943 /* Write the compilation unit record if there is one. */
3944 if (obj_som_compilation_unit (abfd))
3945 {
3946 location = obj_som_file_hdr (abfd)->compiler_location;
3947 if (bfd_seek (abfd, location, SEEK_SET) != 0)
3948 return FALSE;
3949
3950 amt = COMPUNITSZ;
3951 if (bfd_bwrite ((PTR) obj_som_compilation_unit (abfd), amt, abfd) != amt)
3952 return FALSE;
3953 }
3954
3955 /* Setting of the system_id has to happen very late now that copying of
3956 BFD private data happens *after* section contents are set. */
3957 if (abfd->flags & (EXEC_P | DYNAMIC))
3958 obj_som_file_hdr (abfd)->system_id = obj_som_exec_data (abfd)->system_id;
3959 else if (bfd_get_mach (abfd) == pa20)
3960 obj_som_file_hdr (abfd)->system_id = CPU_PA_RISC2_0;
3961 else if (bfd_get_mach (abfd) == pa11)
3962 obj_som_file_hdr (abfd)->system_id = CPU_PA_RISC1_1;
3963 else
3964 obj_som_file_hdr (abfd)->system_id = CPU_PA_RISC1_0;
3965
3966 /* Compute the checksum for the file header just before writing
3967 the header to disk. */
3968 obj_som_file_hdr (abfd)->checksum = som_compute_checksum (abfd);
3969
3970 /* Only thing left to do is write out the file header. It is always
3971 at location zero. Seek there and write it. */
3972 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0)
3973 return FALSE;
3974 amt = sizeof (struct header);
3975 if (bfd_bwrite ((PTR) obj_som_file_hdr (abfd), amt, abfd) != amt)
3976 return FALSE;
3977
3978 /* Now write the exec header. */
3979 if (abfd->flags & (EXEC_P | DYNAMIC))
3980 {
3981 long tmp, som_length;
3982 struct som_exec_auxhdr *exec_header;
3983
3984 exec_header = obj_som_exec_hdr (abfd);
3985 exec_header->exec_entry = bfd_get_start_address (abfd);
3986 exec_header->exec_flags = obj_som_exec_data (abfd)->exec_flags;
3987
3988 /* Oh joys. Ram some of the BSS data into the DATA section
3989 to be compatible with how the hp linker makes objects
3990 (saves memory space). */
3991 tmp = exec_header->exec_dsize;
3992 tmp = SOM_ALIGN (tmp, PA_PAGESIZE);
3993 exec_header->exec_bsize -= (tmp - exec_header->exec_dsize);
3994 if (exec_header->exec_bsize < 0)
3995 exec_header->exec_bsize = 0;
3996 exec_header->exec_dsize = tmp;
3997
3998 /* Now perform some sanity checks. The idea is to catch bogons now and
3999 inform the user, instead of silently generating a bogus file. */
4000 som_length = obj_som_file_hdr (abfd)->som_length;
4001 if (exec_header->exec_tfile + exec_header->exec_tsize > som_length
4002 || exec_header->exec_dfile + exec_header->exec_dsize > som_length)
4003 {
4004 bfd_set_error (bfd_error_bad_value);
4005 return FALSE;
4006 }
4007
4008 if (bfd_seek (abfd, obj_som_file_hdr (abfd)->aux_header_location,
4009 SEEK_SET) != 0)
4010 return FALSE;
4011
4012 amt = AUX_HDR_SIZE;
4013 if (bfd_bwrite ((PTR) exec_header, amt, abfd) != amt)
4014 return FALSE;
4015 }
4016 return TRUE;
4017 }
4018
4019 /* Compute and return the checksum for a SOM file header. */
4020
4021 static unsigned long
4022 som_compute_checksum (abfd)
4023 bfd *abfd;
4024 {
4025 unsigned long checksum, count, i;
4026 unsigned long *buffer = (unsigned long *) obj_som_file_hdr (abfd);
4027
4028 checksum = 0;
4029 count = sizeof (struct header) / sizeof (unsigned long);
4030 for (i = 0; i < count; i++)
4031 checksum ^= *(buffer + i);
4032
4033 return checksum;
4034 }
4035
4036 static void
4037 som_bfd_derive_misc_symbol_info (abfd, sym, info)
4038 bfd *abfd ATTRIBUTE_UNUSED;
4039 asymbol *sym;
4040 struct som_misc_symbol_info *info;
4041 {
4042 /* Initialize. */
4043 memset (info, 0, sizeof (struct som_misc_symbol_info));
4044
4045 /* The HP SOM linker requires detailed type information about
4046 all symbols (including undefined symbols!). Unfortunately,
4047 the type specified in an import/export statement does not
4048 always match what the linker wants. Severe braindamage. */
4049
4050 /* Section symbols will not have a SOM symbol type assigned to
4051 them yet. Assign all section symbols type ST_DATA. */
4052 if (sym->flags & BSF_SECTION_SYM)
4053 info->symbol_type = ST_DATA;
4054 else
4055 {
4056 /* For BFD style common, the linker will choke unless we set the
4057 type and scope to ST_STORAGE and SS_UNSAT, respectively. */
4058 if (bfd_is_com_section (sym->section))
4059 {
4060 info->symbol_type = ST_STORAGE;
4061 info->symbol_scope = SS_UNSAT;
4062 }
4063
4064 /* It is possible to have a symbol without an associated
4065 type. This happens if the user imported the symbol
4066 without a type and the symbol was never defined
4067 locally. If BSF_FUNCTION is set for this symbol, then
4068 assign it type ST_CODE (the HP linker requires undefined
4069 external functions to have type ST_CODE rather than ST_ENTRY). */
4070 else if ((som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
4071 || som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
4072 && bfd_is_und_section (sym->section)
4073 && sym->flags & BSF_FUNCTION)
4074 info->symbol_type = ST_CODE;
4075
4076 /* Handle function symbols which were defined in this file.
4077 They should have type ST_ENTRY. Also retrieve the argument
4078 relocation bits from the SOM backend information. */
4079 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ENTRY
4080 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE
4081 && (sym->flags & BSF_FUNCTION))
4082 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
4083 && (sym->flags & BSF_FUNCTION)))
4084 {
4085 info->symbol_type = ST_ENTRY;
4086 info->arg_reloc = som_symbol_data (sym)->tc_data.ap.hppa_arg_reloc;
4087 info->priv_level= som_symbol_data (sym)->tc_data.ap.hppa_priv_level;
4088 }
4089
4090 /* For unknown symbols set the symbol's type based on the symbol's
4091 section (ST_DATA for DATA sections, ST_CODE for CODE sections). */
4092 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN)
4093 {
4094 if (sym->section->flags & SEC_CODE)
4095 info->symbol_type = ST_CODE;
4096 else
4097 info->symbol_type = ST_DATA;
4098 }
4099
4100 /* From now on it's a very simple mapping. */
4101 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ABSOLUTE)
4102 info->symbol_type = ST_ABSOLUTE;
4103 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
4104 info->symbol_type = ST_CODE;
4105 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_DATA)
4106 info->symbol_type = ST_DATA;
4107 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_MILLICODE)
4108 info->symbol_type = ST_MILLICODE;
4109 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PLABEL)
4110 info->symbol_type = ST_PLABEL;
4111 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PRI_PROG)
4112 info->symbol_type = ST_PRI_PROG;
4113 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_SEC_PROG)
4114 info->symbol_type = ST_SEC_PROG;
4115 }
4116
4117 /* Now handle the symbol's scope. Exported data which is not
4118 in the common section has scope SS_UNIVERSAL. Note scope
4119 of common symbols was handled earlier! */
4120 if (bfd_is_com_section (sym->section))
4121 ;
4122 else if (bfd_is_und_section (sym->section))
4123 info->symbol_scope = SS_UNSAT;
4124 else if (sym->flags & (BSF_EXPORT | BSF_WEAK))
4125 info->symbol_scope = SS_UNIVERSAL;
4126 /* Anything else which is not in the common section has scope
4127 SS_LOCAL. */
4128 else
4129 info->symbol_scope = SS_LOCAL;
4130
4131 /* Now set the symbol_info field. It has no real meaning
4132 for undefined or common symbols, but the HP linker will
4133 choke if it's not set to some "reasonable" value. We
4134 use zero as a reasonable value. */
4135 if (bfd_is_com_section (sym->section)
4136 || bfd_is_und_section (sym->section)
4137 || bfd_is_abs_section (sym->section))
4138 info->symbol_info = 0;
4139 /* For all other symbols, the symbol_info field contains the
4140 subspace index of the space this symbol is contained in. */
4141 else
4142 info->symbol_info = sym->section->target_index;
4143
4144 /* Set the symbol's value. */
4145 info->symbol_value = sym->value + sym->section->vma;
4146
4147 /* The secondary_def field is for "weak" symbols. */
4148 if (sym->flags & BSF_WEAK)
4149 info->secondary_def = TRUE;
4150 else
4151 info->secondary_def = FALSE;
4152
4153 /* The is_comdat, is_common and dup_common fields provide various
4154 flavors of common.
4155
4156 For data symbols, setting IS_COMMON provides Fortran style common
4157 (duplicate definitions and overlapped initialization). Setting both
4158 IS_COMMON and DUP_COMMON provides Cobol style common (duplicate
4159 definitions as long as they are all the same length). In a shared
4160 link data symbols retain their IS_COMMON and DUP_COMMON flags.
4161 An IS_COMDAT data symbol is similar to a IS_COMMON | DUP_COMMON
4162 symbol except in that it loses its IS_COMDAT flag in a shared link.
4163
4164 For code symbols, IS_COMDAT and DUP_COMMON have effect. Universal
4165 DUP_COMMON code symbols are not exported from shared libraries.
4166 IS_COMDAT symbols are exported but they lose their IS_COMDAT flag.
4167
4168 We take a simplified approach to setting the is_comdat, is_common
4169 and dup_common flags in symbols based on the flag settings of their
4170 subspace. This avoids having to add directives like `.comdat' but
4171 the linker behavior is probably undefined if there is more than one
4172 universal symbol (comdat key sysmbol) in a subspace.
4173
4174 The behavior of these flags is not well documentmented, so there
4175 may be bugs and some surprising interactions with other flags. */
4176 if (som_section_data (sym->section)
4177 && som_section_data (sym->section)->subspace_dict
4178 && info->symbol_scope == SS_UNIVERSAL
4179 && (info->symbol_type == ST_ENTRY
4180 || info->symbol_type == ST_CODE
4181 || info->symbol_type == ST_DATA))
4182 {
4183 info->is_comdat
4184 = som_section_data (sym->section)->subspace_dict->is_comdat;
4185 info->is_common
4186 = som_section_data (sym->section)->subspace_dict->is_common;
4187 info->dup_common
4188 = som_section_data (sym->section)->subspace_dict->dup_common;
4189 }
4190 }
4191
4192 /* Build and write, in one big chunk, the entire symbol table for
4193 this BFD. */
4194
4195 static bfd_boolean
4196 som_build_and_write_symbol_table (abfd)
4197 bfd *abfd;
4198 {
4199 unsigned int num_syms = bfd_get_symcount (abfd);
4200 file_ptr symtab_location = obj_som_file_hdr (abfd)->symbol_location;
4201 asymbol **bfd_syms = obj_som_sorted_syms (abfd);
4202 struct symbol_dictionary_record *som_symtab = NULL;
4203 unsigned int i;
4204 bfd_size_type symtab_size;
4205
4206 /* Compute total symbol table size and allocate a chunk of memory
4207 to hold the symbol table as we build it. */
4208 symtab_size = num_syms;
4209 symtab_size *= sizeof (struct symbol_dictionary_record);
4210 som_symtab = (struct symbol_dictionary_record *) bfd_zmalloc (symtab_size);
4211 if (som_symtab == NULL && symtab_size != 0)
4212 goto error_return;
4213
4214 /* Walk over each symbol. */
4215 for (i = 0; i < num_syms; i++)
4216 {
4217 struct som_misc_symbol_info info;
4218
4219 /* This is really an index into the symbol strings table.
4220 By the time we get here, the index has already been
4221 computed and stored into the name field in the BFD symbol. */
4222 som_symtab[i].name.n_strx = som_symbol_data(bfd_syms[i])->stringtab_offset;
4223
4224 /* Derive SOM information from the BFD symbol. */
4225 som_bfd_derive_misc_symbol_info (abfd, bfd_syms[i], &info);
4226
4227 /* Now use it. */
4228 som_symtab[i].symbol_type = info.symbol_type;
4229 som_symtab[i].symbol_scope = info.symbol_scope;
4230 som_symtab[i].arg_reloc = info.arg_reloc;
4231 som_symtab[i].symbol_info = info.symbol_info;
4232 som_symtab[i].xleast = 3;
4233 som_symtab[i].symbol_value = info.symbol_value | info.priv_level;
4234 som_symtab[i].secondary_def = info.secondary_def;
4235 som_symtab[i].is_comdat = info.is_comdat;
4236 som_symtab[i].is_common = info.is_common;
4237 som_symtab[i].dup_common = info.dup_common;
4238 }
4239
4240 /* Everything is ready, seek to the right location and
4241 scribble out the symbol table. */
4242 if (bfd_seek (abfd, symtab_location, SEEK_SET) != 0)
4243 return FALSE;
4244
4245 if (bfd_bwrite ((PTR) som_symtab, symtab_size, abfd) != symtab_size)
4246 goto error_return;
4247
4248 if (som_symtab != NULL)
4249 free (som_symtab);
4250 return TRUE;
4251 error_return:
4252 if (som_symtab != NULL)
4253 free (som_symtab);
4254 return FALSE;
4255 }
4256
4257 /* Write an object in SOM format. */
4258
4259 static bfd_boolean
4260 som_write_object_contents (abfd)
4261 bfd *abfd;
4262 {
4263 if (! abfd->output_has_begun)
4264 {
4265 /* Set up fixed parts of the file, space, and subspace headers.
4266 Notify the world that output has begun. */
4267 som_prep_headers (abfd);
4268 abfd->output_has_begun = TRUE;
4269 /* Start writing the object file. This include all the string
4270 tables, fixup streams, and other portions of the object file. */
4271 som_begin_writing (abfd);
4272 }
4273
4274 return (som_finish_writing (abfd));
4275 }
4276 \f
4277 /* Read and save the string table associated with the given BFD. */
4278
4279 static bfd_boolean
4280 som_slurp_string_table (abfd)
4281 bfd *abfd;
4282 {
4283 char *stringtab;
4284 bfd_size_type amt;
4285
4286 /* Use the saved version if its available. */
4287 if (obj_som_stringtab (abfd) != NULL)
4288 return TRUE;
4289
4290 /* I don't think this can currently happen, and I'm not sure it should
4291 really be an error, but it's better than getting unpredictable results
4292 from the host's malloc when passed a size of zero. */
4293 if (obj_som_stringtab_size (abfd) == 0)
4294 {
4295 bfd_set_error (bfd_error_no_symbols);
4296 return FALSE;
4297 }
4298
4299 /* Allocate and read in the string table. */
4300 amt = obj_som_stringtab_size (abfd);
4301 stringtab = bfd_zmalloc (amt);
4302 if (stringtab == NULL)
4303 return FALSE;
4304
4305 if (bfd_seek (abfd, obj_som_str_filepos (abfd), SEEK_SET) != 0)
4306 return FALSE;
4307
4308 if (bfd_bread (stringtab, amt, abfd) != amt)
4309 return FALSE;
4310
4311 /* Save our results and return success. */
4312 obj_som_stringtab (abfd) = stringtab;
4313 return TRUE;
4314 }
4315
4316 /* Return the amount of data (in bytes) required to hold the symbol
4317 table for this object. */
4318
4319 static long
4320 som_get_symtab_upper_bound (abfd)
4321 bfd *abfd;
4322 {
4323 if (!som_slurp_symbol_table (abfd))
4324 return -1;
4325
4326 return (bfd_get_symcount (abfd) + 1) * (sizeof (asymbol *));
4327 }
4328
4329 /* Convert from a SOM subspace index to a BFD section. */
4330
4331 static asection *
4332 bfd_section_from_som_symbol (abfd, symbol)
4333 bfd *abfd;
4334 struct symbol_dictionary_record *symbol;
4335 {
4336 asection *section;
4337
4338 /* The meaning of the symbol_info field changes for functions
4339 within executables. So only use the quick symbol_info mapping for
4340 incomplete objects and non-function symbols in executables. */
4341 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4342 || (symbol->symbol_type != ST_ENTRY
4343 && symbol->symbol_type != ST_PRI_PROG
4344 && symbol->symbol_type != ST_SEC_PROG
4345 && symbol->symbol_type != ST_MILLICODE))
4346 {
4347 int index = symbol->symbol_info;
4348 for (section = abfd->sections; section != NULL; section = section->next)
4349 if (section->target_index == index && som_is_subspace (section))
4350 return section;
4351
4352 /* Could be a symbol from an external library (such as an OMOS
4353 shared library). Don't abort. */
4354 return bfd_abs_section_ptr;
4355
4356 }
4357 else
4358 {
4359 unsigned int value = symbol->symbol_value;
4360
4361 /* For executables we will have to use the symbol's address and
4362 find out what section would contain that address. Yuk. */
4363 for (section = abfd->sections; section; section = section->next)
4364 {
4365 if (value >= section->vma
4366 && value <= section->vma + section->size
4367 && som_is_subspace (section))
4368 return section;
4369 }
4370
4371 /* Could be a symbol from an external library (such as an OMOS
4372 shared library). Don't abort. */
4373 return bfd_abs_section_ptr;
4374
4375 }
4376 }
4377
4378 /* Read and save the symbol table associated with the given BFD. */
4379
4380 static unsigned int
4381 som_slurp_symbol_table (abfd)
4382 bfd *abfd;
4383 {
4384 int symbol_count = bfd_get_symcount (abfd);
4385 int symsize = sizeof (struct symbol_dictionary_record);
4386 char *stringtab;
4387 struct symbol_dictionary_record *buf = NULL, *bufp, *endbufp;
4388 som_symbol_type *sym, *symbase;
4389 bfd_size_type amt;
4390
4391 /* Return saved value if it exists. */
4392 if (obj_som_symtab (abfd) != NULL)
4393 goto successful_return;
4394
4395 /* Special case. This is *not* an error. */
4396 if (symbol_count == 0)
4397 goto successful_return;
4398
4399 if (!som_slurp_string_table (abfd))
4400 goto error_return;
4401
4402 stringtab = obj_som_stringtab (abfd);
4403
4404 amt = symbol_count;
4405 amt *= sizeof (som_symbol_type);
4406 symbase = (som_symbol_type *) bfd_zmalloc (amt);
4407 if (symbase == NULL)
4408 goto error_return;
4409
4410 /* Read in the external SOM representation. */
4411 amt = symbol_count;
4412 amt *= symsize;
4413 buf = bfd_malloc (amt);
4414 if (buf == NULL && amt != 0)
4415 goto error_return;
4416 if (bfd_seek (abfd, obj_som_sym_filepos (abfd), SEEK_SET) != 0)
4417 goto error_return;
4418 if (bfd_bread (buf, amt, abfd) != amt)
4419 goto error_return;
4420
4421 /* Iterate over all the symbols and internalize them. */
4422 endbufp = buf + symbol_count;
4423 for (bufp = buf, sym = symbase; bufp < endbufp; ++bufp)
4424 {
4425
4426 /* I don't think we care about these. */
4427 if (bufp->symbol_type == ST_SYM_EXT
4428 || bufp->symbol_type == ST_ARG_EXT)
4429 continue;
4430
4431 /* Set some private data we care about. */
4432 if (bufp->symbol_type == ST_NULL)
4433 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
4434 else if (bufp->symbol_type == ST_ABSOLUTE)
4435 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ABSOLUTE;
4436 else if (bufp->symbol_type == ST_DATA)
4437 som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
4438 else if (bufp->symbol_type == ST_CODE)
4439 som_symbol_data (sym)->som_type = SYMBOL_TYPE_CODE;
4440 else if (bufp->symbol_type == ST_PRI_PROG)
4441 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PRI_PROG;
4442 else if (bufp->symbol_type == ST_SEC_PROG)
4443 som_symbol_data (sym)->som_type = SYMBOL_TYPE_SEC_PROG;
4444 else if (bufp->symbol_type == ST_ENTRY)
4445 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ENTRY;
4446 else if (bufp->symbol_type == ST_MILLICODE)
4447 som_symbol_data (sym)->som_type = SYMBOL_TYPE_MILLICODE;
4448 else if (bufp->symbol_type == ST_PLABEL)
4449 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PLABEL;
4450 else
4451 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
4452 som_symbol_data (sym)->tc_data.ap.hppa_arg_reloc = bufp->arg_reloc;
4453
4454 /* Some reasonable defaults. */
4455 sym->symbol.the_bfd = abfd;
4456 sym->symbol.name = bufp->name.n_strx + stringtab;
4457 sym->symbol.value = bufp->symbol_value;
4458 sym->symbol.section = 0;
4459 sym->symbol.flags = 0;
4460
4461 switch (bufp->symbol_type)
4462 {
4463 case ST_ENTRY:
4464 case ST_MILLICODE:
4465 sym->symbol.flags |= BSF_FUNCTION;
4466 som_symbol_data (sym)->tc_data.ap.hppa_priv_level =
4467 sym->symbol.value & 0x3;
4468 sym->symbol.value &= ~0x3;
4469 break;
4470
4471 case ST_STUB:
4472 case ST_CODE:
4473 case ST_PRI_PROG:
4474 case ST_SEC_PROG:
4475 som_symbol_data (sym)->tc_data.ap.hppa_priv_level =
4476 sym->symbol.value & 0x3;
4477 sym->symbol.value &= ~0x3;
4478 /* If the symbol's scope is SS_UNSAT, then these are
4479 undefined function symbols. */
4480 if (bufp->symbol_scope == SS_UNSAT)
4481 sym->symbol.flags |= BSF_FUNCTION;
4482
4483 default:
4484 break;
4485 }
4486
4487 /* Handle scoping and section information. */
4488 switch (bufp->symbol_scope)
4489 {
4490 /* symbol_info field is undefined for SS_EXTERNAL and SS_UNSAT symbols,
4491 so the section associated with this symbol can't be known. */
4492 case SS_EXTERNAL:
4493 if (bufp->symbol_type != ST_STORAGE)
4494 sym->symbol.section = bfd_und_section_ptr;
4495 else
4496 sym->symbol.section = bfd_com_section_ptr;
4497 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
4498 break;
4499
4500 case SS_UNSAT:
4501 if (bufp->symbol_type != ST_STORAGE)
4502 sym->symbol.section = bfd_und_section_ptr;
4503 else
4504 sym->symbol.section = bfd_com_section_ptr;
4505 break;
4506
4507 case SS_UNIVERSAL:
4508 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
4509 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
4510 sym->symbol.value -= sym->symbol.section->vma;
4511 break;
4512
4513 #if 0
4514 /* SS_GLOBAL and SS_LOCAL are two names for the same thing.
4515 Sound dumb? It is. */
4516 case SS_GLOBAL:
4517 #endif
4518 case SS_LOCAL:
4519 sym->symbol.flags |= BSF_LOCAL;
4520 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
4521 sym->symbol.value -= sym->symbol.section->vma;
4522 break;
4523 }
4524
4525 /* Check for a weak symbol. */
4526 if (bufp->secondary_def)
4527 sym->symbol.flags |= BSF_WEAK;
4528
4529 /* Mark section symbols and symbols used by the debugger.
4530 Note $START$ is a magic code symbol, NOT a section symbol. */
4531 if (sym->symbol.name[0] == '$'
4532 && sym->symbol.name[strlen (sym->symbol.name) - 1] == '$'
4533 && !strcmp (sym->symbol.name, sym->symbol.section->name))
4534 sym->symbol.flags |= BSF_SECTION_SYM;
4535 else if (!strncmp (sym->symbol.name, "L$0\002", 4))
4536 {
4537 sym->symbol.flags |= BSF_SECTION_SYM;
4538 sym->symbol.name = sym->symbol.section->name;
4539 }
4540 else if (!strncmp (sym->symbol.name, "L$0\001", 4))
4541 sym->symbol.flags |= BSF_DEBUGGING;
4542
4543 /* Note increment at bottom of loop, since we skip some symbols
4544 we can not include it as part of the for statement. */
4545 sym++;
4546 }
4547
4548 /* We modify the symbol count to record the number of BFD symbols we
4549 created. */
4550 bfd_get_symcount (abfd) = sym - symbase;
4551
4552 /* Save our results and return success. */
4553 obj_som_symtab (abfd) = symbase;
4554 successful_return:
4555 if (buf != NULL)
4556 free (buf);
4557 return (TRUE);
4558
4559 error_return:
4560 if (buf != NULL)
4561 free (buf);
4562 return FALSE;
4563 }
4564
4565 /* Canonicalize a SOM symbol table. Return the number of entries
4566 in the symbol table. */
4567
4568 static long
4569 som_canonicalize_symtab (abfd, location)
4570 bfd *abfd;
4571 asymbol **location;
4572 {
4573 int i;
4574 som_symbol_type *symbase;
4575
4576 if (!som_slurp_symbol_table (abfd))
4577 return -1;
4578
4579 i = bfd_get_symcount (abfd);
4580 symbase = obj_som_symtab (abfd);
4581
4582 for (; i > 0; i--, location++, symbase++)
4583 *location = &symbase->symbol;
4584
4585 /* Final null pointer. */
4586 *location = 0;
4587 return (bfd_get_symcount (abfd));
4588 }
4589
4590 /* Make a SOM symbol. There is nothing special to do here. */
4591
4592 static asymbol *
4593 som_make_empty_symbol (abfd)
4594 bfd *abfd;
4595 {
4596 bfd_size_type amt = sizeof (som_symbol_type);
4597 som_symbol_type *new = (som_symbol_type *) bfd_zalloc (abfd, amt);
4598 if (new == NULL)
4599 return 0;
4600 new->symbol.the_bfd = abfd;
4601
4602 return &new->symbol;
4603 }
4604
4605 /* Print symbol information. */
4606
4607 static void
4608 som_print_symbol (abfd, afile, symbol, how)
4609 bfd *abfd;
4610 PTR afile;
4611 asymbol *symbol;
4612 bfd_print_symbol_type how;
4613 {
4614 FILE *file = (FILE *) afile;
4615 switch (how)
4616 {
4617 case bfd_print_symbol_name:
4618 fprintf (file, "%s", symbol->name);
4619 break;
4620 case bfd_print_symbol_more:
4621 fprintf (file, "som ");
4622 fprintf_vma (file, symbol->value);
4623 fprintf (file, " %lx", (long) symbol->flags);
4624 break;
4625 case bfd_print_symbol_all:
4626 {
4627 const char *section_name;
4628 section_name = symbol->section ? symbol->section->name : "(*none*)";
4629 bfd_print_symbol_vandf (abfd, (PTR) file, symbol);
4630 fprintf (file, " %s\t%s", section_name, symbol->name);
4631 break;
4632 }
4633 }
4634 }
4635
4636 static bfd_boolean
4637 som_bfd_is_local_label_name (abfd, name)
4638 bfd *abfd ATTRIBUTE_UNUSED;
4639 const char *name;
4640 {
4641 return (name[0] == 'L' && name[1] == '$');
4642 }
4643
4644 /* Count or process variable-length SOM fixup records.
4645
4646 To avoid code duplication we use this code both to compute the number
4647 of relocations requested by a stream, and to internalize the stream.
4648
4649 When computing the number of relocations requested by a stream the
4650 variables rptr, section, and symbols have no meaning.
4651
4652 Return the number of relocations requested by the fixup stream. When
4653 not just counting
4654
4655 This needs at least two or three more passes to get it cleaned up. */
4656
4657 static unsigned int
4658 som_set_reloc_info (fixup, end, internal_relocs, section, symbols, just_count)
4659 unsigned char *fixup;
4660 unsigned int end;
4661 arelent *internal_relocs;
4662 asection *section;
4663 asymbol **symbols;
4664 bfd_boolean just_count;
4665 {
4666 unsigned int op, varname, deallocate_contents = 0;
4667 unsigned char *end_fixups = &fixup[end];
4668 const struct fixup_format *fp;
4669 const char *cp;
4670 unsigned char *save_fixup;
4671 int variables[26], stack[20], c, v, count, prev_fixup, *sp, saved_unwind_bits;
4672 const int *subop;
4673 arelent *rptr = internal_relocs;
4674 unsigned int offset = 0;
4675
4676 #define var(c) variables[(c) - 'A']
4677 #define push(v) (*sp++ = (v))
4678 #define pop() (*--sp)
4679 #define emptystack() (sp == stack)
4680
4681 som_initialize_reloc_queue (reloc_queue);
4682 memset (variables, 0, sizeof (variables));
4683 memset (stack, 0, sizeof (stack));
4684 count = 0;
4685 prev_fixup = 0;
4686 saved_unwind_bits = 0;
4687 sp = stack;
4688
4689 while (fixup < end_fixups)
4690 {
4691
4692 /* Save pointer to the start of this fixup. We'll use
4693 it later to determine if it is necessary to put this fixup
4694 on the queue. */
4695 save_fixup = fixup;
4696
4697 /* Get the fixup code and its associated format. */
4698 op = *fixup++;
4699 fp = &som_fixup_formats[op];
4700
4701 /* Handle a request for a previous fixup. */
4702 if (*fp->format == 'P')
4703 {
4704 /* Get pointer to the beginning of the prev fixup, move
4705 the repeated fixup to the head of the queue. */
4706 fixup = reloc_queue[fp->D].reloc;
4707 som_reloc_queue_fix (reloc_queue, fp->D);
4708 prev_fixup = 1;
4709
4710 /* Get the fixup code and its associated format. */
4711 op = *fixup++;
4712 fp = &som_fixup_formats[op];
4713 }
4714
4715 /* If this fixup will be passed to BFD, set some reasonable defaults. */
4716 if (! just_count
4717 && som_hppa_howto_table[op].type != R_NO_RELOCATION
4718 && som_hppa_howto_table[op].type != R_DATA_OVERRIDE)
4719 {
4720 rptr->address = offset;
4721 rptr->howto = &som_hppa_howto_table[op];
4722 rptr->addend = 0;
4723 rptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
4724 }
4725
4726 /* Set default input length to 0. Get the opcode class index
4727 into D. */
4728 var ('L') = 0;
4729 var ('D') = fp->D;
4730 var ('U') = saved_unwind_bits;
4731
4732 /* Get the opcode format. */
4733 cp = fp->format;
4734
4735 /* Process the format string. Parsing happens in two phases,
4736 parse RHS, then assign to LHS. Repeat until no more
4737 characters in the format string. */
4738 while (*cp)
4739 {
4740 /* The variable this pass is going to compute a value for. */
4741 varname = *cp++;
4742
4743 /* Start processing RHS. Continue until a NULL or '=' is found. */
4744 do
4745 {
4746 c = *cp++;
4747
4748 /* If this is a variable, push it on the stack. */
4749 if (ISUPPER (c))
4750 push (var (c));
4751
4752 /* If this is a lower case letter, then it represents
4753 additional data from the fixup stream to be pushed onto
4754 the stack. */
4755 else if (ISLOWER (c))
4756 {
4757 int bits = (c - 'a') * 8;
4758 for (v = 0; c > 'a'; --c)
4759 v = (v << 8) | *fixup++;
4760 if (varname == 'V')
4761 v = sign_extend (v, bits);
4762 push (v);
4763 }
4764
4765 /* A decimal constant. Push it on the stack. */
4766 else if (ISDIGIT (c))
4767 {
4768 v = c - '0';
4769 while (ISDIGIT (*cp))
4770 v = (v * 10) + (*cp++ - '0');
4771 push (v);
4772 }
4773 else
4774 /* An operator. Pop two two values from the stack and
4775 use them as operands to the given operation. Push
4776 the result of the operation back on the stack. */
4777 switch (c)
4778 {
4779 case '+':
4780 v = pop ();
4781 v += pop ();
4782 push (v);
4783 break;
4784 case '*':
4785 v = pop ();
4786 v *= pop ();
4787 push (v);
4788 break;
4789 case '<':
4790 v = pop ();
4791 v = pop () << v;
4792 push (v);
4793 break;
4794 default:
4795 abort ();
4796 }
4797 }
4798 while (*cp && *cp != '=');
4799
4800 /* Move over the equal operator. */
4801 cp++;
4802
4803 /* Pop the RHS off the stack. */
4804 c = pop ();
4805
4806 /* Perform the assignment. */
4807 var (varname) = c;
4808
4809 /* Handle side effects. and special 'O' stack cases. */
4810 switch (varname)
4811 {
4812 /* Consume some bytes from the input space. */
4813 case 'L':
4814 offset += c;
4815 break;
4816 /* A symbol to use in the relocation. Make a note
4817 of this if we are not just counting. */
4818 case 'S':
4819 if (! just_count)
4820 rptr->sym_ptr_ptr = &symbols[c];
4821 break;
4822 /* Argument relocation bits for a function call. */
4823 case 'R':
4824 if (! just_count)
4825 {
4826 unsigned int tmp = var ('R');
4827 rptr->addend = 0;
4828
4829 if ((som_hppa_howto_table[op].type == R_PCREL_CALL
4830 && R_PCREL_CALL + 10 > op)
4831 || (som_hppa_howto_table[op].type == R_ABS_CALL
4832 && R_ABS_CALL + 10 > op))
4833 {
4834 /* Simple encoding. */
4835 if (tmp > 4)
4836 {
4837 tmp -= 5;
4838 rptr->addend |= 1;
4839 }
4840 if (tmp == 4)
4841 rptr->addend |= 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2;
4842 else if (tmp == 3)
4843 rptr->addend |= 1 << 8 | 1 << 6 | 1 << 4;
4844 else if (tmp == 2)
4845 rptr->addend |= 1 << 8 | 1 << 6;
4846 else if (tmp == 1)
4847 rptr->addend |= 1 << 8;
4848 }
4849 else
4850 {
4851 unsigned int tmp1, tmp2;
4852
4853 /* First part is easy -- low order two bits are
4854 directly copied, then shifted away. */
4855 rptr->addend = tmp & 0x3;
4856 tmp >>= 2;
4857
4858 /* Diving the result by 10 gives us the second
4859 part. If it is 9, then the first two words
4860 are a double precision paramater, else it is
4861 3 * the first arg bits + the 2nd arg bits. */
4862 tmp1 = tmp / 10;
4863 tmp -= tmp1 * 10;
4864 if (tmp1 == 9)
4865 rptr->addend += (0xe << 6);
4866 else
4867 {
4868 /* Get the two pieces. */
4869 tmp2 = tmp1 / 3;
4870 tmp1 -= tmp2 * 3;
4871 /* Put them in the addend. */
4872 rptr->addend += (tmp2 << 8) + (tmp1 << 6);
4873 }
4874
4875 /* What's left is the third part. It's unpacked
4876 just like the second. */
4877 if (tmp == 9)
4878 rptr->addend += (0xe << 2);
4879 else
4880 {
4881 tmp2 = tmp / 3;
4882 tmp -= tmp2 * 3;
4883 rptr->addend += (tmp2 << 4) + (tmp << 2);
4884 }
4885 }
4886 rptr->addend = HPPA_R_ADDEND (rptr->addend, 0);
4887 }
4888 break;
4889 /* Handle the linker expression stack. */
4890 case 'O':
4891 switch (op)
4892 {
4893 case R_COMP1:
4894 subop = comp1_opcodes;
4895 break;
4896 case R_COMP2:
4897 subop = comp2_opcodes;
4898 break;
4899 case R_COMP3:
4900 subop = comp3_opcodes;
4901 break;
4902 default:
4903 abort ();
4904 }
4905 while (*subop <= (unsigned char) c)
4906 ++subop;
4907 --subop;
4908 break;
4909 /* The lower 32unwind bits must be persistent. */
4910 case 'U':
4911 saved_unwind_bits = var ('U');
4912 break;
4913
4914 default:
4915 break;
4916 }
4917 }
4918
4919 /* If we used a previous fixup, clean up after it. */
4920 if (prev_fixup)
4921 {
4922 fixup = save_fixup + 1;
4923 prev_fixup = 0;
4924 }
4925 /* Queue it. */
4926 else if (fixup > save_fixup + 1)
4927 som_reloc_queue_insert (save_fixup, fixup - save_fixup, reloc_queue);
4928
4929 /* We do not pass R_DATA_OVERRIDE or R_NO_RELOCATION
4930 fixups to BFD. */
4931 if (som_hppa_howto_table[op].type != R_DATA_OVERRIDE
4932 && som_hppa_howto_table[op].type != R_NO_RELOCATION)
4933 {
4934 /* Done with a single reloction. Loop back to the top. */
4935 if (! just_count)
4936 {
4937 if (som_hppa_howto_table[op].type == R_ENTRY)
4938 rptr->addend = var ('T');
4939 else if (som_hppa_howto_table[op].type == R_EXIT)
4940 rptr->addend = var ('U');
4941 else if (som_hppa_howto_table[op].type == R_PCREL_CALL
4942 || som_hppa_howto_table[op].type == R_ABS_CALL)
4943 ;
4944 else if (som_hppa_howto_table[op].type == R_DATA_ONE_SYMBOL)
4945 {
4946 /* Try what was specified in R_DATA_OVERRIDE first
4947 (if anything). Then the hard way using the
4948 section contents. */
4949 rptr->addend = var ('V');
4950
4951 if (rptr->addend == 0 && !section->contents)
4952 {
4953 /* Got to read the damn contents first. We don't
4954 bother saving the contents (yet). Add it one
4955 day if the need arises. */
4956 bfd_byte *contents;
4957 if (!bfd_malloc_and_get_section (section->owner, section,
4958 &contents))
4959 {
4960 if (contents != NULL)
4961 free (contents);
4962 return (unsigned) -1;
4963 }
4964 section->contents = contents;
4965 deallocate_contents = 1;
4966 }
4967 else if (rptr->addend == 0)
4968 rptr->addend = bfd_get_32 (section->owner,
4969 (section->contents
4970 + offset - var ('L')));
4971
4972 }
4973 else
4974 rptr->addend = var ('V');
4975 rptr++;
4976 }
4977 count++;
4978 /* Now that we've handled a "full" relocation, reset
4979 some state. */
4980 memset (variables, 0, sizeof (variables));
4981 memset (stack, 0, sizeof (stack));
4982 }
4983 }
4984 if (deallocate_contents)
4985 free (section->contents);
4986
4987 return count;
4988
4989 #undef var
4990 #undef push
4991 #undef pop
4992 #undef emptystack
4993 }
4994
4995 /* Read in the relocs (aka fixups in SOM terms) for a section.
4996
4997 som_get_reloc_upper_bound calls this routine with JUST_COUNT
4998 set to TRUE to indicate it only needs a count of the number
4999 of actual relocations. */
5000
5001 static bfd_boolean
5002 som_slurp_reloc_table (abfd, section, symbols, just_count)
5003 bfd *abfd;
5004 asection *section;
5005 asymbol **symbols;
5006 bfd_boolean just_count;
5007 {
5008 char *external_relocs;
5009 unsigned int fixup_stream_size;
5010 arelent *internal_relocs;
5011 unsigned int num_relocs;
5012 bfd_size_type amt;
5013
5014 fixup_stream_size = som_section_data (section)->reloc_size;
5015 /* If there were no relocations, then there is nothing to do. */
5016 if (section->reloc_count == 0)
5017 return TRUE;
5018
5019 /* If reloc_count is -1, then the relocation stream has not been
5020 parsed. We must do so now to know how many relocations exist. */
5021 if (section->reloc_count == (unsigned) -1)
5022 {
5023 amt = fixup_stream_size;
5024 external_relocs = (char *) bfd_malloc (amt);
5025 if (external_relocs == (char *) NULL)
5026 return FALSE;
5027 /* Read in the external forms. */
5028 if (bfd_seek (abfd,
5029 obj_som_reloc_filepos (abfd) + section->rel_filepos,
5030 SEEK_SET)
5031 != 0)
5032 return FALSE;
5033 if (bfd_bread (external_relocs, amt, abfd) != amt)
5034 return FALSE;
5035
5036 /* Let callers know how many relocations found.
5037 also save the relocation stream as we will
5038 need it again. */
5039 section->reloc_count = som_set_reloc_info (external_relocs,
5040 fixup_stream_size,
5041 NULL, NULL, NULL, TRUE);
5042
5043 som_section_data (section)->reloc_stream = external_relocs;
5044 }
5045
5046 /* If the caller only wanted a count, then return now. */
5047 if (just_count)
5048 return TRUE;
5049
5050 num_relocs = section->reloc_count;
5051 external_relocs = som_section_data (section)->reloc_stream;
5052 /* Return saved information about the relocations if it is available. */
5053 if (section->relocation != (arelent *) NULL)
5054 return TRUE;
5055
5056 amt = num_relocs;
5057 amt *= sizeof (arelent);
5058 internal_relocs = (arelent *) bfd_zalloc (abfd, (amt));
5059 if (internal_relocs == (arelent *) NULL)
5060 return FALSE;
5061
5062 /* Process and internalize the relocations. */
5063 som_set_reloc_info (external_relocs, fixup_stream_size,
5064 internal_relocs, section, symbols, FALSE);
5065
5066 /* We're done with the external relocations. Free them. */
5067 free (external_relocs);
5068 som_section_data (section)->reloc_stream = NULL;
5069
5070 /* Save our results and return success. */
5071 section->relocation = internal_relocs;
5072 return TRUE;
5073 }
5074
5075 /* Return the number of bytes required to store the relocation
5076 information associated with the given section. */
5077
5078 static long
5079 som_get_reloc_upper_bound (abfd, asect)
5080 bfd *abfd;
5081 sec_ptr asect;
5082 {
5083 /* If section has relocations, then read in the relocation stream
5084 and parse it to determine how many relocations exist. */
5085 if (asect->flags & SEC_RELOC)
5086 {
5087 if (! som_slurp_reloc_table (abfd, asect, NULL, TRUE))
5088 return -1;
5089 return (asect->reloc_count + 1) * sizeof (arelent *);
5090 }
5091 /* There are no relocations. */
5092 return 0;
5093 }
5094
5095 /* Convert relocations from SOM (external) form into BFD internal
5096 form. Return the number of relocations. */
5097
5098 static long
5099 som_canonicalize_reloc (abfd, section, relptr, symbols)
5100 bfd *abfd;
5101 sec_ptr section;
5102 arelent **relptr;
5103 asymbol **symbols;
5104 {
5105 arelent *tblptr;
5106 int count;
5107
5108 if (! som_slurp_reloc_table (abfd, section, symbols, FALSE))
5109 return -1;
5110
5111 count = section->reloc_count;
5112 tblptr = section->relocation;
5113
5114 while (count--)
5115 *relptr++ = tblptr++;
5116
5117 *relptr = (arelent *) NULL;
5118 return section->reloc_count;
5119 }
5120
5121 extern const bfd_target som_vec;
5122
5123 /* A hook to set up object file dependent section information. */
5124
5125 static bfd_boolean
5126 som_new_section_hook (abfd, newsect)
5127 bfd *abfd;
5128 asection *newsect;
5129 {
5130 bfd_size_type amt = sizeof (struct som_section_data_struct);
5131 newsect->used_by_bfd = (PTR) bfd_zalloc (abfd, amt);
5132 if (!newsect->used_by_bfd)
5133 return FALSE;
5134 newsect->alignment_power = 3;
5135
5136 /* We allow more than three sections internally. */
5137 return TRUE;
5138 }
5139
5140 /* Copy any private info we understand from the input symbol
5141 to the output symbol. */
5142
5143 static bfd_boolean
5144 som_bfd_copy_private_symbol_data (ibfd, isymbol, obfd, osymbol)
5145 bfd *ibfd;
5146 asymbol *isymbol;
5147 bfd *obfd;
5148 asymbol *osymbol;
5149 {
5150 struct som_symbol *input_symbol = (struct som_symbol *) isymbol;
5151 struct som_symbol *output_symbol = (struct som_symbol *) osymbol;
5152
5153 /* One day we may try to grok other private data. */
5154 if (ibfd->xvec->flavour != bfd_target_som_flavour
5155 || obfd->xvec->flavour != bfd_target_som_flavour)
5156 return FALSE;
5157
5158 /* The only private information we need to copy is the argument relocation
5159 bits. */
5160 output_symbol->tc_data.ap.hppa_arg_reloc =
5161 input_symbol->tc_data.ap.hppa_arg_reloc;
5162
5163 return TRUE;
5164 }
5165
5166 /* Copy any private info we understand from the input section
5167 to the output section. */
5168
5169 static bfd_boolean
5170 som_bfd_copy_private_section_data (ibfd, isection, obfd, osection)
5171 bfd *ibfd;
5172 asection *isection;
5173 bfd *obfd;
5174 asection *osection;
5175 {
5176 bfd_size_type amt;
5177
5178 /* One day we may try to grok other private data. */
5179 if (ibfd->xvec->flavour != bfd_target_som_flavour
5180 || obfd->xvec->flavour != bfd_target_som_flavour
5181 || (!som_is_space (isection) && !som_is_subspace (isection)))
5182 return TRUE;
5183
5184 amt = sizeof (struct som_copyable_section_data_struct);
5185 som_section_data (osection)->copy_data =
5186 (struct som_copyable_section_data_struct *) bfd_zalloc (obfd, amt);
5187 if (som_section_data (osection)->copy_data == NULL)
5188 return FALSE;
5189
5190 memcpy (som_section_data (osection)->copy_data,
5191 som_section_data (isection)->copy_data,
5192 sizeof (struct som_copyable_section_data_struct));
5193
5194 /* Reparent if necessary. */
5195 if (som_section_data (osection)->copy_data->container)
5196 som_section_data (osection)->copy_data->container =
5197 som_section_data (osection)->copy_data->container->output_section;
5198
5199 return TRUE;
5200 }
5201
5202 /* Copy any private info we understand from the input bfd
5203 to the output bfd. */
5204
5205 static bfd_boolean
5206 som_bfd_copy_private_bfd_data (ibfd, obfd)
5207 bfd *ibfd, *obfd;
5208 {
5209 /* One day we may try to grok other private data. */
5210 if (ibfd->xvec->flavour != bfd_target_som_flavour
5211 || obfd->xvec->flavour != bfd_target_som_flavour)
5212 return TRUE;
5213
5214 /* Allocate some memory to hold the data we need. */
5215 obj_som_exec_data (obfd) = (struct som_exec_data *)
5216 bfd_zalloc (obfd, (bfd_size_type) sizeof (struct som_exec_data));
5217 if (obj_som_exec_data (obfd) == NULL)
5218 return FALSE;
5219
5220 /* Now copy the data. */
5221 memcpy (obj_som_exec_data (obfd), obj_som_exec_data (ibfd),
5222 sizeof (struct som_exec_data));
5223
5224 return TRUE;
5225 }
5226
5227 /* Set backend info for sections which can not be described
5228 in the BFD data structures. */
5229
5230 bfd_boolean
5231 bfd_som_set_section_attributes (section, defined, private, sort_key, spnum)
5232 asection *section;
5233 int defined;
5234 int private;
5235 unsigned int sort_key;
5236 int spnum;
5237 {
5238 /* Allocate memory to hold the magic information. */
5239 if (som_section_data (section)->copy_data == NULL)
5240 {
5241 bfd_size_type amt = sizeof (struct som_copyable_section_data_struct);
5242 som_section_data (section)->copy_data =
5243 (struct som_copyable_section_data_struct *) bfd_zalloc (section->owner,
5244 amt);
5245 if (som_section_data (section)->copy_data == NULL)
5246 return FALSE;
5247 }
5248 som_section_data (section)->copy_data->sort_key = sort_key;
5249 som_section_data (section)->copy_data->is_defined = defined;
5250 som_section_data (section)->copy_data->is_private = private;
5251 som_section_data (section)->copy_data->container = section;
5252 som_section_data (section)->copy_data->space_number = spnum;
5253 return TRUE;
5254 }
5255
5256 /* Set backend info for subsections which can not be described
5257 in the BFD data structures. */
5258
5259 bfd_boolean
5260 bfd_som_set_subsection_attributes (section, container, access,
5261 sort_key, quadrant, comdat,
5262 common, dup_common)
5263 asection *section;
5264 asection *container;
5265 int access;
5266 unsigned int sort_key;
5267 int quadrant, comdat, common, dup_common;
5268 {
5269 /* Allocate memory to hold the magic information. */
5270 if (som_section_data (section)->copy_data == NULL)
5271 {
5272 bfd_size_type amt = sizeof (struct som_copyable_section_data_struct);
5273 som_section_data (section)->copy_data =
5274 (struct som_copyable_section_data_struct *) bfd_zalloc (section->owner,
5275 amt);
5276 if (som_section_data (section)->copy_data == NULL)
5277 return FALSE;
5278 }
5279 som_section_data (section)->copy_data->sort_key = sort_key;
5280 som_section_data (section)->copy_data->access_control_bits = access;
5281 som_section_data (section)->copy_data->quadrant = quadrant;
5282 som_section_data (section)->copy_data->container = container;
5283 som_section_data (section)->copy_data->is_comdat = comdat;
5284 som_section_data (section)->copy_data->is_common = common;
5285 som_section_data (section)->copy_data->dup_common = dup_common;
5286 return TRUE;
5287 }
5288
5289 /* Set the full SOM symbol type. SOM needs far more symbol information
5290 than any other object file format I'm aware of. It is mandatory
5291 to be able to know if a symbol is an entry point, millicode, data,
5292 code, absolute, storage request, or procedure label. If you get
5293 the symbol type wrong your program will not link. */
5294
5295 void
5296 bfd_som_set_symbol_type (symbol, type)
5297 asymbol *symbol;
5298 unsigned int type;
5299 {
5300 som_symbol_data (symbol)->som_type = type;
5301 }
5302
5303 /* Attach an auxiliary header to the BFD backend so that it may be
5304 written into the object file. */
5305
5306 bfd_boolean
5307 bfd_som_attach_aux_hdr (abfd, type, string)
5308 bfd *abfd;
5309 int type;
5310 char *string;
5311 {
5312 bfd_size_type amt;
5313
5314 if (type == VERSION_AUX_ID)
5315 {
5316 size_t len = strlen (string);
5317 int pad = 0;
5318
5319 if (len % 4)
5320 pad = (4 - (len % 4));
5321 amt = sizeof (struct aux_id) + sizeof (unsigned int) + len + pad;
5322 obj_som_version_hdr (abfd) =
5323 (struct user_string_aux_hdr *) bfd_zalloc (abfd, amt);
5324 if (!obj_som_version_hdr (abfd))
5325 return FALSE;
5326 obj_som_version_hdr (abfd)->header_id.type = VERSION_AUX_ID;
5327 obj_som_version_hdr (abfd)->header_id.length = len + pad;
5328 obj_som_version_hdr (abfd)->header_id.length += sizeof (int);
5329 obj_som_version_hdr (abfd)->string_length = len;
5330 strncpy (obj_som_version_hdr (abfd)->user_string, string, len);
5331 }
5332 else if (type == COPYRIGHT_AUX_ID)
5333 {
5334 int len = strlen (string);
5335 int pad = 0;
5336
5337 if (len % 4)
5338 pad = (4 - (len % 4));
5339 amt = sizeof (struct aux_id) + sizeof (unsigned int) + len + pad;
5340 obj_som_copyright_hdr (abfd) =
5341 (struct copyright_aux_hdr *) bfd_zalloc (abfd, amt);
5342 if (!obj_som_copyright_hdr (abfd))
5343 return FALSE;
5344 obj_som_copyright_hdr (abfd)->header_id.type = COPYRIGHT_AUX_ID;
5345 obj_som_copyright_hdr (abfd)->header_id.length = len + pad;
5346 obj_som_copyright_hdr (abfd)->header_id.length += sizeof (int);
5347 obj_som_copyright_hdr (abfd)->string_length = len;
5348 strcpy (obj_som_copyright_hdr (abfd)->copyright, string);
5349 }
5350 return TRUE;
5351 }
5352
5353 /* Attach a compilation unit header to the BFD backend so that it may be
5354 written into the object file. */
5355
5356 bfd_boolean
5357 bfd_som_attach_compilation_unit (abfd, name, language_name, product_id,
5358 version_id)
5359 bfd *abfd;
5360 const char *name;
5361 const char *language_name;
5362 const char *product_id;
5363 const char *version_id;
5364 {
5365 COMPUNIT *n = (COMPUNIT *) bfd_zalloc (abfd, (bfd_size_type) COMPUNITSZ);
5366 if (n == NULL)
5367 return FALSE;
5368
5369 #define STRDUP(f) \
5370 if (f != NULL) \
5371 { \
5372 n->f.n_name = bfd_alloc (abfd, (bfd_size_type) strlen (f) + 1); \
5373 if (n->f.n_name == NULL) \
5374 return FALSE; \
5375 strcpy (n->f.n_name, f); \
5376 }
5377
5378 STRDUP (name);
5379 STRDUP (language_name);
5380 STRDUP (product_id);
5381 STRDUP (version_id);
5382
5383 #undef STRDUP
5384
5385 obj_som_compilation_unit (abfd) = n;
5386
5387 return TRUE;
5388 }
5389
5390 static bfd_boolean
5391 som_get_section_contents (abfd, section, location, offset, count)
5392 bfd *abfd;
5393 sec_ptr section;
5394 PTR location;
5395 file_ptr offset;
5396 bfd_size_type count;
5397 {
5398 if (count == 0 || ((section->flags & SEC_HAS_CONTENTS) == 0))
5399 return TRUE;
5400 if ((bfd_size_type) (offset+count) > section->size
5401 || bfd_seek (abfd, (file_ptr) (section->filepos + offset), SEEK_SET) != 0
5402 || bfd_bread (location, count, abfd) != count)
5403 return FALSE; /* On error. */
5404 return TRUE;
5405 }
5406
5407 static bfd_boolean
5408 som_set_section_contents (abfd, section, location, offset, count)
5409 bfd *abfd;
5410 sec_ptr section;
5411 const PTR location;
5412 file_ptr offset;
5413 bfd_size_type count;
5414 {
5415 if (! abfd->output_has_begun)
5416 {
5417 /* Set up fixed parts of the file, space, and subspace headers.
5418 Notify the world that output has begun. */
5419 som_prep_headers (abfd);
5420 abfd->output_has_begun = TRUE;
5421 /* Start writing the object file. This include all the string
5422 tables, fixup streams, and other portions of the object file. */
5423 som_begin_writing (abfd);
5424 }
5425
5426 /* Only write subspaces which have "real" contents (eg. the contents
5427 are not generated at run time by the OS). */
5428 if (!som_is_subspace (section)
5429 || ((section->flags & SEC_HAS_CONTENTS) == 0))
5430 return TRUE;
5431
5432 /* Seek to the proper offset within the object file and write the
5433 data. */
5434 offset += som_section_data (section)->subspace_dict->file_loc_init_value;
5435 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
5436 return FALSE;
5437
5438 if (bfd_bwrite (location, count, abfd) != count)
5439 return FALSE;
5440 return TRUE;
5441 }
5442
5443 static bfd_boolean
5444 som_set_arch_mach (abfd, arch, machine)
5445 bfd *abfd;
5446 enum bfd_architecture arch;
5447 unsigned long machine;
5448 {
5449 /* Allow any architecture to be supported by the SOM backend. */
5450 return bfd_default_set_arch_mach (abfd, arch, machine);
5451 }
5452
5453 static bfd_boolean
5454 som_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
5455 functionname_ptr, line_ptr)
5456 bfd *abfd ATTRIBUTE_UNUSED;
5457 asection *section ATTRIBUTE_UNUSED;
5458 asymbol **symbols ATTRIBUTE_UNUSED;
5459 bfd_vma offset ATTRIBUTE_UNUSED;
5460 const char **filename_ptr ATTRIBUTE_UNUSED;
5461 const char **functionname_ptr ATTRIBUTE_UNUSED;
5462 unsigned int *line_ptr ATTRIBUTE_UNUSED;
5463 {
5464 return FALSE;
5465 }
5466
5467 static int
5468 som_sizeof_headers (abfd, reloc)
5469 bfd *abfd ATTRIBUTE_UNUSED;
5470 bfd_boolean reloc ATTRIBUTE_UNUSED;
5471 {
5472 (*_bfd_error_handler) (_("som_sizeof_headers unimplemented"));
5473 fflush (stderr);
5474 abort ();
5475 return 0;
5476 }
5477
5478 /* Return the single-character symbol type corresponding to
5479 SOM section S, or '?' for an unknown SOM section. */
5480
5481 static char
5482 som_section_type (s)
5483 const char *s;
5484 {
5485 const struct section_to_type *t;
5486
5487 for (t = &stt[0]; t->section; t++)
5488 if (!strcmp (s, t->section))
5489 return t->type;
5490 return '?';
5491 }
5492
5493 static int
5494 som_decode_symclass (symbol)
5495 asymbol *symbol;
5496 {
5497 char c;
5498
5499 if (bfd_is_com_section (symbol->section))
5500 return 'C';
5501 if (bfd_is_und_section (symbol->section))
5502 return 'U';
5503 if (bfd_is_ind_section (symbol->section))
5504 return 'I';
5505 if (symbol->flags & BSF_WEAK)
5506 return 'W';
5507 if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL)))
5508 return '?';
5509
5510 if (bfd_is_abs_section (symbol->section)
5511 || (som_symbol_data (symbol) != NULL
5512 && som_symbol_data (symbol)->som_type == SYMBOL_TYPE_ABSOLUTE))
5513 c = 'a';
5514 else if (symbol->section)
5515 c = som_section_type (symbol->section->name);
5516 else
5517 return '?';
5518 if (symbol->flags & BSF_GLOBAL)
5519 c = TOUPPER (c);
5520 return c;
5521 }
5522
5523 /* Return information about SOM symbol SYMBOL in RET. */
5524
5525 static void
5526 som_get_symbol_info (ignore_abfd, symbol, ret)
5527 bfd *ignore_abfd ATTRIBUTE_UNUSED;
5528 asymbol *symbol;
5529 symbol_info *ret;
5530 {
5531 ret->type = som_decode_symclass (symbol);
5532 if (ret->type != 'U')
5533 ret->value = symbol->value + symbol->section->vma;
5534 else
5535 ret->value = 0;
5536 ret->name = symbol->name;
5537 }
5538
5539 /* Count the number of symbols in the archive symbol table. Necessary
5540 so that we can allocate space for all the carsyms at once. */
5541
5542 static bfd_boolean
5543 som_bfd_count_ar_symbols (abfd, lst_header, count)
5544 bfd *abfd;
5545 struct lst_header *lst_header;
5546 symindex *count;
5547 {
5548 unsigned int i;
5549 unsigned int *hash_table = NULL;
5550 bfd_size_type amt;
5551 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5552
5553 amt = lst_header->hash_size;
5554 amt *= sizeof (unsigned int);
5555 hash_table = (unsigned int *) bfd_malloc (amt);
5556 if (hash_table == NULL && lst_header->hash_size != 0)
5557 goto error_return;
5558
5559 /* Don't forget to initialize the counter! */
5560 *count = 0;
5561
5562 /* Read in the hash table. The has table is an array of 32bit file offsets
5563 which point to the hash chains. */
5564 if (bfd_bread ((PTR) hash_table, amt, abfd) != amt)
5565 goto error_return;
5566
5567 /* Walk each chain counting the number of symbols found on that particular
5568 chain. */
5569 for (i = 0; i < lst_header->hash_size; i++)
5570 {
5571 struct lst_symbol_record lst_symbol;
5572
5573 /* An empty chain has zero as it's file offset. */
5574 if (hash_table[i] == 0)
5575 continue;
5576
5577 /* Seek to the first symbol in this hash chain. */
5578 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) != 0)
5579 goto error_return;
5580
5581 /* Read in this symbol and update the counter. */
5582 amt = sizeof (lst_symbol);
5583 if (bfd_bread ((PTR) &lst_symbol, amt, abfd) != amt)
5584 goto error_return;
5585
5586 (*count)++;
5587
5588 /* Now iterate through the rest of the symbols on this chain. */
5589 while (lst_symbol.next_entry)
5590 {
5591
5592 /* Seek to the next symbol. */
5593 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
5594 != 0)
5595 goto error_return;
5596
5597 /* Read the symbol in and update the counter. */
5598 amt = sizeof (lst_symbol);
5599 if (bfd_bread ((PTR) &lst_symbol, amt, abfd) != amt)
5600 goto error_return;
5601
5602 (*count)++;
5603 }
5604 }
5605 if (hash_table != NULL)
5606 free (hash_table);
5607 return TRUE;
5608
5609 error_return:
5610 if (hash_table != NULL)
5611 free (hash_table);
5612 return FALSE;
5613 }
5614
5615 /* Fill in the canonical archive symbols (SYMS) from the archive described
5616 by ABFD and LST_HEADER. */
5617
5618 static bfd_boolean
5619 som_bfd_fill_in_ar_symbols (abfd, lst_header, syms)
5620 bfd *abfd;
5621 struct lst_header *lst_header;
5622 carsym **syms;
5623 {
5624 unsigned int i, len;
5625 carsym *set = syms[0];
5626 unsigned int *hash_table = NULL;
5627 struct som_entry *som_dict = NULL;
5628 bfd_size_type amt;
5629 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5630
5631 amt = lst_header->hash_size;
5632 amt *= sizeof (unsigned int);
5633 hash_table = (unsigned int *) bfd_malloc (amt);
5634 if (hash_table == NULL && lst_header->hash_size != 0)
5635 goto error_return;
5636
5637 /* Read in the hash table. The has table is an array of 32bit file offsets
5638 which point to the hash chains. */
5639 if (bfd_bread ((PTR) hash_table, amt, abfd) != amt)
5640 goto error_return;
5641
5642 /* Seek to and read in the SOM dictionary. We will need this to fill
5643 in the carsym's filepos field. */
5644 if (bfd_seek (abfd, lst_filepos + lst_header->dir_loc, SEEK_SET) != 0)
5645 goto error_return;
5646
5647 amt = lst_header->module_count;
5648 amt *= sizeof (struct som_entry);
5649 som_dict = (struct som_entry *) bfd_malloc (amt);
5650 if (som_dict == NULL && lst_header->module_count != 0)
5651 goto error_return;
5652
5653 if (bfd_bread ((PTR) som_dict, amt, abfd) != amt)
5654 goto error_return;
5655
5656 /* Walk each chain filling in the carsyms as we go along. */
5657 for (i = 0; i < lst_header->hash_size; i++)
5658 {
5659 struct lst_symbol_record lst_symbol;
5660
5661 /* An empty chain has zero as it's file offset. */
5662 if (hash_table[i] == 0)
5663 continue;
5664
5665 /* Seek to and read the first symbol on the chain. */
5666 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) != 0)
5667 goto error_return;
5668
5669 amt = sizeof (lst_symbol);
5670 if (bfd_bread ((PTR) &lst_symbol, amt, abfd) != amt)
5671 goto error_return;
5672
5673 /* Get the name of the symbol, first get the length which is stored
5674 as a 32bit integer just before the symbol.
5675
5676 One might ask why we don't just read in the entire string table
5677 and index into it. Well, according to the SOM ABI the string
5678 index can point *anywhere* in the archive to save space, so just
5679 using the string table would not be safe. */
5680 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
5681 + lst_symbol.name.n_strx - 4, SEEK_SET) != 0)
5682 goto error_return;
5683
5684 if (bfd_bread (&len, (bfd_size_type) 4, abfd) != 4)
5685 goto error_return;
5686
5687 /* Allocate space for the name and null terminate it too. */
5688 set->name = bfd_zalloc (abfd, (bfd_size_type) len + 1);
5689 if (!set->name)
5690 goto error_return;
5691 if (bfd_bread (set->name, (bfd_size_type) len, abfd) != len)
5692 goto error_return;
5693
5694 set->name[len] = 0;
5695
5696 /* Fill in the file offset. Note that the "location" field points
5697 to the SOM itself, not the ar_hdr in front of it. */
5698 set->file_offset = som_dict[lst_symbol.som_index].location
5699 - sizeof (struct ar_hdr);
5700
5701 /* Go to the next symbol. */
5702 set++;
5703
5704 /* Iterate through the rest of the chain. */
5705 while (lst_symbol.next_entry)
5706 {
5707 /* Seek to the next symbol and read it in. */
5708 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
5709 != 0)
5710 goto error_return;
5711
5712 amt = sizeof (lst_symbol);
5713 if (bfd_bread ((PTR) &lst_symbol, amt, abfd) != amt)
5714 goto error_return;
5715
5716 /* Seek to the name length & string and read them in. */
5717 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
5718 + lst_symbol.name.n_strx - 4, SEEK_SET) != 0)
5719 goto error_return;
5720
5721 if (bfd_bread (&len, (bfd_size_type) 4, abfd) != 4)
5722 goto error_return;
5723
5724 /* Allocate space for the name and null terminate it too. */
5725 set->name = bfd_zalloc (abfd, (bfd_size_type) len + 1);
5726 if (!set->name)
5727 goto error_return;
5728
5729 if (bfd_bread (set->name, (bfd_size_type) len, abfd) != len)
5730 goto error_return;
5731 set->name[len] = 0;
5732
5733 /* Fill in the file offset. Note that the "location" field points
5734 to the SOM itself, not the ar_hdr in front of it. */
5735 set->file_offset = som_dict[lst_symbol.som_index].location
5736 - sizeof (struct ar_hdr);
5737
5738 /* Go on to the next symbol. */
5739 set++;
5740 }
5741 }
5742 /* If we haven't died by now, then we successfully read the entire
5743 archive symbol table. */
5744 if (hash_table != NULL)
5745 free (hash_table);
5746 if (som_dict != NULL)
5747 free (som_dict);
5748 return TRUE;
5749
5750 error_return:
5751 if (hash_table != NULL)
5752 free (hash_table);
5753 if (som_dict != NULL)
5754 free (som_dict);
5755 return FALSE;
5756 }
5757
5758 /* Read in the LST from the archive. */
5759
5760 static bfd_boolean
5761 som_slurp_armap (abfd)
5762 bfd *abfd;
5763 {
5764 struct lst_header lst_header;
5765 struct ar_hdr ar_header;
5766 unsigned int parsed_size;
5767 struct artdata *ardata = bfd_ardata (abfd);
5768 char nextname[17];
5769 bfd_size_type amt = 16;
5770 int i = bfd_bread ((PTR) nextname, amt, abfd);
5771
5772 /* Special cases. */
5773 if (i == 0)
5774 return TRUE;
5775 if (i != 16)
5776 return FALSE;
5777
5778 if (bfd_seek (abfd, (file_ptr) -16, SEEK_CUR) != 0)
5779 return FALSE;
5780
5781 /* For archives without .o files there is no symbol table. */
5782 if (strncmp (nextname, "/ ", 16))
5783 {
5784 bfd_has_map (abfd) = FALSE;
5785 return TRUE;
5786 }
5787
5788 /* Read in and sanity check the archive header. */
5789 amt = sizeof (struct ar_hdr);
5790 if (bfd_bread ((PTR) &ar_header, amt, abfd) != amt)
5791 return FALSE;
5792
5793 if (strncmp (ar_header.ar_fmag, ARFMAG, 2))
5794 {
5795 bfd_set_error (bfd_error_malformed_archive);
5796 return FALSE;
5797 }
5798
5799 /* How big is the archive symbol table entry? */
5800 errno = 0;
5801 parsed_size = strtol (ar_header.ar_size, NULL, 10);
5802 if (errno != 0)
5803 {
5804 bfd_set_error (bfd_error_malformed_archive);
5805 return FALSE;
5806 }
5807
5808 /* Save off the file offset of the first real user data. */
5809 ardata->first_file_filepos = bfd_tell (abfd) + parsed_size;
5810
5811 /* Read in the library symbol table. We'll make heavy use of this
5812 in just a minute. */
5813 amt = sizeof (struct lst_header);
5814 if (bfd_bread ((PTR) &lst_header, amt, abfd) != amt)
5815 return FALSE;
5816
5817 /* Sanity check. */
5818 if (lst_header.a_magic != LIBMAGIC)
5819 {
5820 bfd_set_error (bfd_error_malformed_archive);
5821 return FALSE;
5822 }
5823
5824 /* Count the number of symbols in the library symbol table. */
5825 if (! som_bfd_count_ar_symbols (abfd, &lst_header, &ardata->symdef_count))
5826 return FALSE;
5827
5828 /* Get back to the start of the library symbol table. */
5829 if (bfd_seek (abfd, (ardata->first_file_filepos - parsed_size
5830 + sizeof (struct lst_header)), SEEK_SET) != 0)
5831 return FALSE;
5832
5833 /* Initialize the cache and allocate space for the library symbols. */
5834 ardata->cache = 0;
5835 amt = ardata->symdef_count;
5836 amt *= sizeof (carsym);
5837 ardata->symdefs = (carsym *) bfd_alloc (abfd, amt);
5838 if (!ardata->symdefs)
5839 return FALSE;
5840
5841 /* Now fill in the canonical archive symbols. */
5842 if (! som_bfd_fill_in_ar_symbols (abfd, &lst_header, &ardata->symdefs))
5843 return FALSE;
5844
5845 /* Seek back to the "first" file in the archive. Note the "first"
5846 file may be the extended name table. */
5847 if (bfd_seek (abfd, ardata->first_file_filepos, SEEK_SET) != 0)
5848 return FALSE;
5849
5850 /* Notify the generic archive code that we have a symbol map. */
5851 bfd_has_map (abfd) = TRUE;
5852 return TRUE;
5853 }
5854
5855 /* Begin preparing to write a SOM library symbol table.
5856
5857 As part of the prep work we need to determine the number of symbols
5858 and the size of the associated string section. */
5859
5860 static bfd_boolean
5861 som_bfd_prep_for_ar_write (abfd, num_syms, stringsize)
5862 bfd *abfd;
5863 unsigned int *num_syms, *stringsize;
5864 {
5865 bfd *curr_bfd = abfd->archive_head;
5866
5867 /* Some initialization. */
5868 *num_syms = 0;
5869 *stringsize = 0;
5870
5871 /* Iterate over each BFD within this archive. */
5872 while (curr_bfd != NULL)
5873 {
5874 unsigned int curr_count, i;
5875 som_symbol_type *sym;
5876
5877 /* Don't bother for non-SOM objects. */
5878 if (curr_bfd->format != bfd_object
5879 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5880 {
5881 curr_bfd = curr_bfd->next;
5882 continue;
5883 }
5884
5885 /* Make sure the symbol table has been read, then snag a pointer
5886 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5887 but doing so avoids allocating lots of extra memory. */
5888 if (! som_slurp_symbol_table (curr_bfd))
5889 return FALSE;
5890
5891 sym = obj_som_symtab (curr_bfd);
5892 curr_count = bfd_get_symcount (curr_bfd);
5893
5894 /* Examine each symbol to determine if it belongs in the
5895 library symbol table. */
5896 for (i = 0; i < curr_count; i++, sym++)
5897 {
5898 struct som_misc_symbol_info info;
5899
5900 /* Derive SOM information from the BFD symbol. */
5901 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5902
5903 /* Should we include this symbol? */
5904 if (info.symbol_type == ST_NULL
5905 || info.symbol_type == ST_SYM_EXT
5906 || info.symbol_type == ST_ARG_EXT)
5907 continue;
5908
5909 /* Only global symbols and unsatisfied commons. */
5910 if (info.symbol_scope != SS_UNIVERSAL
5911 && info.symbol_type != ST_STORAGE)
5912 continue;
5913
5914 /* Do no include undefined symbols. */
5915 if (bfd_is_und_section (sym->symbol.section))
5916 continue;
5917
5918 /* Bump the various counters, being careful to honor
5919 alignment considerations in the string table. */
5920 (*num_syms)++;
5921 *stringsize = *stringsize + strlen (sym->symbol.name) + 5;
5922 while (*stringsize % 4)
5923 (*stringsize)++;
5924 }
5925
5926 curr_bfd = curr_bfd->next;
5927 }
5928 return TRUE;
5929 }
5930
5931 /* Hash a symbol name based on the hashing algorithm presented in the
5932 SOM ABI. */
5933
5934 static unsigned int
5935 som_bfd_ar_symbol_hash (symbol)
5936 asymbol *symbol;
5937 {
5938 unsigned int len = strlen (symbol->name);
5939
5940 /* Names with length 1 are special. */
5941 if (len == 1)
5942 return 0x1000100 | (symbol->name[0] << 16) | symbol->name[0];
5943
5944 return ((len & 0x7f) << 24) | (symbol->name[1] << 16)
5945 | (symbol->name[len - 2] << 8) | symbol->name[len - 1];
5946 }
5947
5948 /* Do the bulk of the work required to write the SOM library
5949 symbol table. */
5950
5951 static bfd_boolean
5952 som_bfd_ar_write_symbol_stuff (abfd, nsyms, string_size, lst, elength)
5953 bfd *abfd;
5954 unsigned int nsyms, string_size;
5955 struct lst_header lst;
5956 unsigned elength;
5957 {
5958 file_ptr lst_filepos;
5959 char *strings = NULL, *p;
5960 struct lst_symbol_record *lst_syms = NULL, *curr_lst_sym;
5961 bfd *curr_bfd;
5962 unsigned int *hash_table = NULL;
5963 struct som_entry *som_dict = NULL;
5964 struct lst_symbol_record **last_hash_entry = NULL;
5965 unsigned int curr_som_offset, som_index = 0;
5966 bfd_size_type amt;
5967
5968 amt = lst.hash_size;
5969 amt *= sizeof (unsigned int);
5970 hash_table = (unsigned int *) bfd_zmalloc (amt);
5971 if (hash_table == NULL && lst.hash_size != 0)
5972 goto error_return;
5973
5974 amt = lst.module_count;
5975 amt *= sizeof (struct som_entry);
5976 som_dict = (struct som_entry *) bfd_zmalloc (amt);
5977 if (som_dict == NULL && lst.module_count != 0)
5978 goto error_return;
5979
5980 amt = lst.hash_size;
5981 amt *= sizeof (struct lst_symbol_record *);
5982 last_hash_entry = ((struct lst_symbol_record **) bfd_zmalloc (amt));
5983 if (last_hash_entry == NULL && lst.hash_size != 0)
5984 goto error_return;
5985
5986 /* Lots of fields are file positions relative to the start
5987 of the lst record. So save its location. */
5988 lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5989
5990 /* Symbols have som_index fields, so we have to keep track of the
5991 index of each SOM in the archive.
5992
5993 The SOM dictionary has (among other things) the absolute file
5994 position for the SOM which a particular dictionary entry
5995 describes. We have to compute that information as we iterate
5996 through the SOMs/symbols. */
5997 som_index = 0;
5998
5999 /* We add in the size of the archive header twice as the location
6000 in the SOM dictionary is the actual offset of the SOM, not the
6001 archive header before the SOM. */
6002 curr_som_offset = 8 + 2 * sizeof (struct ar_hdr) + lst.file_end;
6003
6004 /* Make room for the archive header and the contents of the
6005 extended string table. Note that elength includes the size
6006 of the archive header for the extended name table! */
6007 if (elength)
6008 curr_som_offset += elength;
6009
6010 /* Make sure we're properly aligned. */
6011 curr_som_offset = (curr_som_offset + 0x1) & ~0x1;
6012
6013 /* FIXME should be done with buffers just like everything else... */
6014 amt = nsyms;
6015 amt *= sizeof (struct lst_symbol_record);
6016 lst_syms = bfd_malloc (amt);
6017 if (lst_syms == NULL && nsyms != 0)
6018 goto error_return;
6019 strings = bfd_malloc ((bfd_size_type) string_size);
6020 if (strings == NULL && string_size != 0)
6021 goto error_return;
6022
6023 p = strings;
6024 curr_lst_sym = lst_syms;
6025
6026 curr_bfd = abfd->archive_head;
6027 while (curr_bfd != NULL)
6028 {
6029 unsigned int curr_count, i;
6030 som_symbol_type *sym;
6031
6032 /* Don't bother for non-SOM objects. */
6033 if (curr_bfd->format != bfd_object
6034 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
6035 {
6036 curr_bfd = curr_bfd->next;
6037 continue;
6038 }
6039
6040 /* Make sure the symbol table has been read, then snag a pointer
6041 to it. It's a little slimey to grab the symbols via obj_som_symtab,
6042 but doing so avoids allocating lots of extra memory. */
6043 if (! som_slurp_symbol_table (curr_bfd))
6044 goto error_return;
6045
6046 sym = obj_som_symtab (curr_bfd);
6047 curr_count = bfd_get_symcount (curr_bfd);
6048
6049 for (i = 0; i < curr_count; i++, sym++)
6050 {
6051 struct som_misc_symbol_info info;
6052
6053 /* Derive SOM information from the BFD symbol. */
6054 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
6055
6056 /* Should we include this symbol? */
6057 if (info.symbol_type == ST_NULL
6058 || info.symbol_type == ST_SYM_EXT
6059 || info.symbol_type == ST_ARG_EXT)
6060 continue;
6061
6062 /* Only global symbols and unsatisfied commons. */
6063 if (info.symbol_scope != SS_UNIVERSAL
6064 && info.symbol_type != ST_STORAGE)
6065 continue;
6066
6067 /* Do no include undefined symbols. */
6068 if (bfd_is_und_section (sym->symbol.section))
6069 continue;
6070
6071 /* If this is the first symbol from this SOM, then update
6072 the SOM dictionary too. */
6073 if (som_dict[som_index].location == 0)
6074 {
6075 som_dict[som_index].location = curr_som_offset;
6076 som_dict[som_index].length = arelt_size (curr_bfd);
6077 }
6078
6079 /* Fill in the lst symbol record. */
6080 curr_lst_sym->hidden = 0;
6081 curr_lst_sym->secondary_def = info.secondary_def;
6082 curr_lst_sym->symbol_type = info.symbol_type;
6083 curr_lst_sym->symbol_scope = info.symbol_scope;
6084 curr_lst_sym->check_level = 0;
6085 curr_lst_sym->must_qualify = 0;
6086 curr_lst_sym->initially_frozen = 0;
6087 curr_lst_sym->memory_resident = 0;
6088 curr_lst_sym->is_common = bfd_is_com_section (sym->symbol.section);
6089 curr_lst_sym->dup_common = info.dup_common;
6090 curr_lst_sym->xleast = 3;
6091 curr_lst_sym->arg_reloc = info.arg_reloc;
6092 curr_lst_sym->name.n_strx = p - strings + 4;
6093 curr_lst_sym->qualifier_name.n_strx = 0;
6094 curr_lst_sym->symbol_info = info.symbol_info;
6095 curr_lst_sym->symbol_value = info.symbol_value | info.priv_level;
6096 curr_lst_sym->symbol_descriptor = 0;
6097 curr_lst_sym->reserved = 0;
6098 curr_lst_sym->som_index = som_index;
6099 curr_lst_sym->symbol_key = som_bfd_ar_symbol_hash (&sym->symbol);
6100 curr_lst_sym->next_entry = 0;
6101
6102 /* Insert into the hash table. */
6103 if (hash_table[curr_lst_sym->symbol_key % lst.hash_size])
6104 {
6105 struct lst_symbol_record *tmp;
6106
6107 /* There is already something at the head of this hash chain,
6108 so tack this symbol onto the end of the chain. */
6109 tmp = last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size];
6110 tmp->next_entry
6111 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
6112 + lst.hash_size * 4
6113 + lst.module_count * sizeof (struct som_entry)
6114 + sizeof (struct lst_header);
6115 }
6116 else
6117 {
6118 /* First entry in this hash chain. */
6119 hash_table[curr_lst_sym->symbol_key % lst.hash_size]
6120 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
6121 + lst.hash_size * 4
6122 + lst.module_count * sizeof (struct som_entry)
6123 + sizeof (struct lst_header);
6124 }
6125
6126 /* Keep track of the last symbol we added to this chain so we can
6127 easily update its next_entry pointer. */
6128 last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size]
6129 = curr_lst_sym;
6130
6131 /* Update the string table. */
6132 bfd_put_32 (abfd, strlen (sym->symbol.name), p);
6133 p += 4;
6134 strcpy (p, sym->symbol.name);
6135 p += strlen (sym->symbol.name) + 1;
6136 while ((int) p % 4)
6137 {
6138 bfd_put_8 (abfd, 0, p);
6139 p++;
6140 }
6141
6142 /* Head to the next symbol. */
6143 curr_lst_sym++;
6144 }
6145
6146 /* Keep track of where each SOM will finally reside; then look
6147 at the next BFD. */
6148 curr_som_offset += arelt_size (curr_bfd) + sizeof (struct ar_hdr);
6149
6150 /* A particular object in the archive may have an odd length; the
6151 linker requires objects begin on an even boundary. So round
6152 up the current offset as necessary. */
6153 curr_som_offset = (curr_som_offset + 0x1) &~ (unsigned) 1;
6154 curr_bfd = curr_bfd->next;
6155 som_index++;
6156 }
6157
6158 /* Now scribble out the hash table. */
6159 amt = lst.hash_size * 4;
6160 if (bfd_bwrite ((PTR) hash_table, amt, abfd) != amt)
6161 goto error_return;
6162
6163 /* Then the SOM dictionary. */
6164 amt = lst.module_count * sizeof (struct som_entry);
6165 if (bfd_bwrite ((PTR) som_dict, amt, abfd) != amt)
6166 goto error_return;
6167
6168 /* The library symbols. */
6169 amt = nsyms * sizeof (struct lst_symbol_record);
6170 if (bfd_bwrite ((PTR) lst_syms, amt, abfd) != amt)
6171 goto error_return;
6172
6173 /* And finally the strings. */
6174 amt = string_size;
6175 if (bfd_bwrite ((PTR) strings, amt, abfd) != amt)
6176 goto error_return;
6177
6178 if (hash_table != NULL)
6179 free (hash_table);
6180 if (som_dict != NULL)
6181 free (som_dict);
6182 if (last_hash_entry != NULL)
6183 free (last_hash_entry);
6184 if (lst_syms != NULL)
6185 free (lst_syms);
6186 if (strings != NULL)
6187 free (strings);
6188 return TRUE;
6189
6190 error_return:
6191 if (hash_table != NULL)
6192 free (hash_table);
6193 if (som_dict != NULL)
6194 free (som_dict);
6195 if (last_hash_entry != NULL)
6196 free (last_hash_entry);
6197 if (lst_syms != NULL)
6198 free (lst_syms);
6199 if (strings != NULL)
6200 free (strings);
6201
6202 return FALSE;
6203 }
6204
6205 /* Write out the LST for the archive.
6206
6207 You'll never believe this is really how armaps are handled in SOM... */
6208
6209 static bfd_boolean
6210 som_write_armap (abfd, elength, map, orl_count, stridx)
6211 bfd *abfd;
6212 unsigned int elength;
6213 struct orl *map ATTRIBUTE_UNUSED;
6214 unsigned int orl_count ATTRIBUTE_UNUSED;
6215 int stridx ATTRIBUTE_UNUSED;
6216 {
6217 bfd *curr_bfd;
6218 struct stat statbuf;
6219 unsigned int i, lst_size, nsyms, stringsize;
6220 struct ar_hdr hdr;
6221 struct lst_header lst;
6222 int *p;
6223 bfd_size_type amt;
6224
6225 /* We'll use this for the archive's date and mode later. */
6226 if (stat (abfd->filename, &statbuf) != 0)
6227 {
6228 bfd_set_error (bfd_error_system_call);
6229 return FALSE;
6230 }
6231 /* Fudge factor. */
6232 bfd_ardata (abfd)->armap_timestamp = statbuf.st_mtime + 60;
6233
6234 /* Account for the lst header first. */
6235 lst_size = sizeof (struct lst_header);
6236
6237 /* Start building the LST header. */
6238 /* FIXME: Do we need to examine each element to determine the
6239 largest id number? */
6240 lst.system_id = CPU_PA_RISC1_0;
6241 lst.a_magic = LIBMAGIC;
6242 lst.version_id = VERSION_ID;
6243 lst.file_time.secs = 0;
6244 lst.file_time.nanosecs = 0;
6245
6246 lst.hash_loc = lst_size;
6247 lst.hash_size = SOM_LST_HASH_SIZE;
6248
6249 /* Hash table is a SOM_LST_HASH_SIZE 32bit offsets. */
6250 lst_size += 4 * SOM_LST_HASH_SIZE;
6251
6252 /* We need to count the number of SOMs in this archive. */
6253 curr_bfd = abfd->archive_head;
6254 lst.module_count = 0;
6255 while (curr_bfd != NULL)
6256 {
6257 /* Only true SOM objects count. */
6258 if (curr_bfd->format == bfd_object
6259 && curr_bfd->xvec->flavour == bfd_target_som_flavour)
6260 lst.module_count++;
6261 curr_bfd = curr_bfd->next;
6262 }
6263 lst.module_limit = lst.module_count;
6264 lst.dir_loc = lst_size;
6265 lst_size += sizeof (struct som_entry) * lst.module_count;
6266
6267 /* We don't support import/export tables, auxiliary headers,
6268 or free lists yet. Make the linker work a little harder
6269 to make our life easier. */
6270
6271 lst.export_loc = 0;
6272 lst.export_count = 0;
6273 lst.import_loc = 0;
6274 lst.aux_loc = 0;
6275 lst.aux_size = 0;
6276
6277 /* Count how many symbols we will have on the hash chains and the
6278 size of the associated string table. */
6279 if (! som_bfd_prep_for_ar_write (abfd, &nsyms, &stringsize))
6280 return FALSE;
6281
6282 lst_size += sizeof (struct lst_symbol_record) * nsyms;
6283
6284 /* For the string table. One day we might actually use this info
6285 to avoid small seeks/reads when reading archives. */
6286 lst.string_loc = lst_size;
6287 lst.string_size = stringsize;
6288 lst_size += stringsize;
6289
6290 /* SOM ABI says this must be zero. */
6291 lst.free_list = 0;
6292 lst.file_end = lst_size;
6293
6294 /* Compute the checksum. Must happen after the entire lst header
6295 has filled in. */
6296 p = (int *) &lst;
6297 lst.checksum = 0;
6298 for (i = 0; i < sizeof (struct lst_header) / sizeof (int) - 1; i++)
6299 lst.checksum ^= *p++;
6300
6301 sprintf (hdr.ar_name, "/ ");
6302 sprintf (hdr.ar_date, "%ld", bfd_ardata (abfd)->armap_timestamp);
6303 sprintf (hdr.ar_uid, "%ld", (long) getuid ());
6304 sprintf (hdr.ar_gid, "%ld", (long) getgid ());
6305 sprintf (hdr.ar_mode, "%-8o", (unsigned int) statbuf.st_mode);
6306 sprintf (hdr.ar_size, "%-10d", (int) lst_size);
6307 hdr.ar_fmag[0] = '`';
6308 hdr.ar_fmag[1] = '\012';
6309
6310 /* Turn any nulls into spaces. */
6311 for (i = 0; i < sizeof (struct ar_hdr); i++)
6312 if (((char *) (&hdr))[i] == '\0')
6313 (((char *) (&hdr))[i]) = ' ';
6314
6315 /* Scribble out the ar header. */
6316 amt = sizeof (struct ar_hdr);
6317 if (bfd_bwrite ((PTR) &hdr, amt, abfd) != amt)
6318 return FALSE;
6319
6320 /* Now scribble out the lst header. */
6321 amt = sizeof (struct lst_header);
6322 if (bfd_bwrite ((PTR) &lst, amt, abfd) != amt)
6323 return FALSE;
6324
6325 /* Build and write the armap. */
6326 if (!som_bfd_ar_write_symbol_stuff (abfd, nsyms, stringsize, lst, elength))
6327 return FALSE;
6328
6329 /* Done. */
6330 return TRUE;
6331 }
6332
6333 /* Free all information we have cached for this BFD. We can always
6334 read it again later if we need it. */
6335
6336 static bfd_boolean
6337 som_bfd_free_cached_info (abfd)
6338 bfd *abfd;
6339 {
6340 asection *o;
6341
6342 if (bfd_get_format (abfd) != bfd_object)
6343 return TRUE;
6344
6345 #define FREE(x) if (x != NULL) { free (x); x = NULL; }
6346 /* Free the native string and symbol tables. */
6347 FREE (obj_som_symtab (abfd));
6348 FREE (obj_som_stringtab (abfd));
6349 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
6350 {
6351 /* Free the native relocations. */
6352 o->reloc_count = (unsigned) -1;
6353 FREE (som_section_data (o)->reloc_stream);
6354 /* Free the generic relocations. */
6355 FREE (o->relocation);
6356 }
6357 #undef FREE
6358
6359 return TRUE;
6360 }
6361
6362 /* End of miscellaneous support functions. */
6363
6364 /* Linker support functions. */
6365
6366 static bfd_boolean
6367 som_bfd_link_split_section (abfd, sec)
6368 bfd *abfd ATTRIBUTE_UNUSED;
6369 asection *sec;
6370 {
6371 return (som_is_subspace (sec) && sec->size > 240000);
6372 }
6373
6374 #define som_close_and_cleanup som_bfd_free_cached_info
6375
6376 #define som_read_ar_hdr _bfd_generic_read_ar_hdr
6377 #define som_openr_next_archived_file bfd_generic_openr_next_archived_file
6378 #define som_get_elt_at_index _bfd_generic_get_elt_at_index
6379 #define som_generic_stat_arch_elt bfd_generic_stat_arch_elt
6380 #define som_truncate_arname bfd_bsd_truncate_arname
6381 #define som_slurp_extended_name_table _bfd_slurp_extended_name_table
6382 #define som_construct_extended_name_table \
6383 _bfd_archive_coff_construct_extended_name_table
6384 #define som_update_armap_timestamp bfd_true
6385 #define som_bfd_print_private_bfd_data _bfd_generic_bfd_print_private_bfd_data
6386
6387 #define som_get_lineno _bfd_nosymbols_get_lineno
6388 #define som_bfd_make_debug_symbol _bfd_nosymbols_bfd_make_debug_symbol
6389 #define som_read_minisymbols _bfd_generic_read_minisymbols
6390 #define som_minisymbol_to_symbol _bfd_generic_minisymbol_to_symbol
6391 #define som_get_section_contents_in_window \
6392 _bfd_generic_get_section_contents_in_window
6393
6394 #define som_bfd_get_relocated_section_contents \
6395 bfd_generic_get_relocated_section_contents
6396 #define som_bfd_relax_section bfd_generic_relax_section
6397 #define som_bfd_link_hash_table_create _bfd_generic_link_hash_table_create
6398 #define som_bfd_link_hash_table_free _bfd_generic_link_hash_table_free
6399 #define som_bfd_link_add_symbols _bfd_generic_link_add_symbols
6400 #define som_bfd_link_just_syms _bfd_generic_link_just_syms
6401 #define som_bfd_final_link _bfd_generic_final_link
6402
6403 #define som_bfd_gc_sections bfd_generic_gc_sections
6404 #define som_bfd_merge_sections bfd_generic_merge_sections
6405 #define som_bfd_is_group_section bfd_generic_is_group_section
6406 #define som_bfd_discard_group bfd_generic_discard_group
6407
6408 const bfd_target som_vec = {
6409 "som", /* name */
6410 bfd_target_som_flavour,
6411 BFD_ENDIAN_BIG, /* target byte order */
6412 BFD_ENDIAN_BIG, /* target headers byte order */
6413 (HAS_RELOC | EXEC_P | /* object flags */
6414 HAS_LINENO | HAS_DEBUG |
6415 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED | DYNAMIC),
6416 (SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS | SEC_LINK_ONCE
6417 | SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* section flags */
6418
6419 /* leading_symbol_char: is the first char of a user symbol
6420 predictable, and if so what is it. */
6421 0,
6422 '/', /* ar_pad_char */
6423 14, /* ar_max_namelen */
6424 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
6425 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
6426 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
6427 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
6428 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
6429 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
6430 {_bfd_dummy_target,
6431 som_object_p, /* bfd_check_format */
6432 bfd_generic_archive_p,
6433 _bfd_dummy_target
6434 },
6435 {
6436 bfd_false,
6437 som_mkobject,
6438 _bfd_generic_mkarchive,
6439 bfd_false
6440 },
6441 {
6442 bfd_false,
6443 som_write_object_contents,
6444 _bfd_write_archive_contents,
6445 bfd_false,
6446 },
6447 #undef som
6448
6449 BFD_JUMP_TABLE_GENERIC (som),
6450 BFD_JUMP_TABLE_COPY (som),
6451 BFD_JUMP_TABLE_CORE (_bfd_nocore),
6452 BFD_JUMP_TABLE_ARCHIVE (som),
6453 BFD_JUMP_TABLE_SYMBOLS (som),
6454 BFD_JUMP_TABLE_RELOCS (som),
6455 BFD_JUMP_TABLE_WRITE (som),
6456 BFD_JUMP_TABLE_LINK (som),
6457 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
6458
6459 NULL,
6460
6461 (PTR) 0
6462 };
6463
6464 #endif /* HOST_HPPAHPUX || HOST_HPPABSD || HOST_HPPAOSF */
This page took 0.226556 seconds and 5 git commands to generate.