* som.c (hppa_som_reloc, som_mkobject, som_is_space)
[deliverable/binutils-gdb.git] / bfd / som.c
1 /* bfd back-end for HP PA-RISC SOM objects.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
5
6 Contributed by the Center for Software Science at the
7 University of Utah.
8
9 This file is part of BFD, the Binary File Descriptor library.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
24 02111-1307, USA. */
25
26 #include "alloca-conf.h"
27 #include "bfd.h"
28 #include "sysdep.h"
29
30 #if defined (HOST_HPPAHPUX) || defined (HOST_HPPABSD) || defined (HOST_HPPAOSF) || defined(HOST_HPPAMPEIX)
31
32 #include "libbfd.h"
33 #include "som.h"
34 #include "safe-ctype.h"
35
36 #include <sys/param.h>
37 #include <signal.h>
38 #include <machine/reg.h>
39 #include <sys/file.h>
40
41 static bfd_reloc_status_type hppa_som_reloc
42 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
43 static bfd_boolean som_mkobject (bfd *);
44 static bfd_boolean som_is_space (asection *);
45 static bfd_boolean som_is_subspace (asection *);
46 static int compare_subspaces (const void *, const void *);
47 static unsigned long som_compute_checksum (bfd *);
48 static bfd_boolean som_build_and_write_symbol_table (bfd *);
49 static unsigned int som_slurp_symbol_table (bfd *);
50
51 /* Magic not defined in standard HP-UX header files until 8.0. */
52
53 #ifndef CPU_PA_RISC1_0
54 #define CPU_PA_RISC1_0 0x20B
55 #endif /* CPU_PA_RISC1_0 */
56
57 #ifndef CPU_PA_RISC1_1
58 #define CPU_PA_RISC1_1 0x210
59 #endif /* CPU_PA_RISC1_1 */
60
61 #ifndef CPU_PA_RISC2_0
62 #define CPU_PA_RISC2_0 0x214
63 #endif /* CPU_PA_RISC2_0 */
64
65 #ifndef _PA_RISC1_0_ID
66 #define _PA_RISC1_0_ID CPU_PA_RISC1_0
67 #endif /* _PA_RISC1_0_ID */
68
69 #ifndef _PA_RISC1_1_ID
70 #define _PA_RISC1_1_ID CPU_PA_RISC1_1
71 #endif /* _PA_RISC1_1_ID */
72
73 #ifndef _PA_RISC2_0_ID
74 #define _PA_RISC2_0_ID CPU_PA_RISC2_0
75 #endif /* _PA_RISC2_0_ID */
76
77 #ifndef _PA_RISC_MAXID
78 #define _PA_RISC_MAXID 0x2FF
79 #endif /* _PA_RISC_MAXID */
80
81 #ifndef _PA_RISC_ID
82 #define _PA_RISC_ID(__m_num) \
83 (((__m_num) == _PA_RISC1_0_ID) || \
84 ((__m_num) >= _PA_RISC1_1_ID && (__m_num) <= _PA_RISC_MAXID))
85 #endif /* _PA_RISC_ID */
86
87 /* HIUX in it's infinite stupidity changed the names for several "well
88 known" constants. Work around such braindamage. Try the HPUX version
89 first, then the HIUX version, and finally provide a default. */
90 #ifdef HPUX_AUX_ID
91 #define EXEC_AUX_ID HPUX_AUX_ID
92 #endif
93
94 #if !defined (EXEC_AUX_ID) && defined (HIUX_AUX_ID)
95 #define EXEC_AUX_ID HIUX_AUX_ID
96 #endif
97
98 #ifndef EXEC_AUX_ID
99 #define EXEC_AUX_ID 0
100 #endif
101
102 /* Size (in chars) of the temporary buffers used during fixup and string
103 table writes. */
104
105 #define SOM_TMP_BUFSIZE 8192
106
107 /* Size of the hash table in archives. */
108 #define SOM_LST_HASH_SIZE 31
109
110 /* Max number of SOMs to be found in an archive. */
111 #define SOM_LST_MODULE_LIMIT 1024
112
113 /* Generic alignment macro. */
114 #define SOM_ALIGN(val, alignment) \
115 (((val) + (alignment) - 1) &~ ((unsigned long) (alignment) - 1))
116
117 /* SOM allows any one of the four previous relocations to be reused
118 with a "R_PREV_FIXUP" relocation entry. Since R_PREV_FIXUP
119 relocations are always a single byte, using a R_PREV_FIXUP instead
120 of some multi-byte relocation makes object files smaller.
121
122 Note one side effect of using a R_PREV_FIXUP is the relocation that
123 is being repeated moves to the front of the queue. */
124 struct reloc_queue
125 {
126 unsigned char *reloc;
127 unsigned int size;
128 } reloc_queue[4];
129
130 /* This fully describes the symbol types which may be attached to
131 an EXPORT or IMPORT directive. Only SOM uses this formation
132 (ELF has no need for it). */
133 typedef enum
134 {
135 SYMBOL_TYPE_UNKNOWN,
136 SYMBOL_TYPE_ABSOLUTE,
137 SYMBOL_TYPE_CODE,
138 SYMBOL_TYPE_DATA,
139 SYMBOL_TYPE_ENTRY,
140 SYMBOL_TYPE_MILLICODE,
141 SYMBOL_TYPE_PLABEL,
142 SYMBOL_TYPE_PRI_PROG,
143 SYMBOL_TYPE_SEC_PROG,
144 } pa_symbol_type;
145
146 struct section_to_type
147 {
148 char *section;
149 char type;
150 };
151
152 /* Assorted symbol information that needs to be derived from the BFD symbol
153 and/or the BFD backend private symbol data. */
154 struct som_misc_symbol_info
155 {
156 unsigned int symbol_type;
157 unsigned int symbol_scope;
158 unsigned int arg_reloc;
159 unsigned int symbol_info;
160 unsigned int symbol_value;
161 unsigned int priv_level;
162 unsigned int secondary_def;
163 unsigned int is_comdat;
164 unsigned int is_common;
165 unsigned int dup_common;
166 };
167
168 /* Map SOM section names to POSIX/BSD single-character symbol types.
169
170 This table includes all the standard subspaces as defined in the
171 current "PRO ABI for PA-RISC Systems", $UNWIND$ which for
172 some reason was left out, and sections specific to embedded stabs. */
173
174 static const struct section_to_type stt[] =
175 {
176 {"$TEXT$", 't'},
177 {"$SHLIB_INFO$", 't'},
178 {"$MILLICODE$", 't'},
179 {"$LIT$", 't'},
180 {"$CODE$", 't'},
181 {"$UNWIND_START$", 't'},
182 {"$UNWIND$", 't'},
183 {"$PRIVATE$", 'd'},
184 {"$PLT$", 'd'},
185 {"$SHLIB_DATA$", 'd'},
186 {"$DATA$", 'd'},
187 {"$SHORTDATA$", 'g'},
188 {"$DLT$", 'd'},
189 {"$GLOBAL$", 'g'},
190 {"$SHORTBSS$", 's'},
191 {"$BSS$", 'b'},
192 {"$GDB_STRINGS$", 'N'},
193 {"$GDB_SYMBOLS$", 'N'},
194 {0, 0}
195 };
196
197 /* About the relocation formatting table...
198
199 There are 256 entries in the table, one for each possible
200 relocation opcode available in SOM. We index the table by
201 the relocation opcode. The names and operations are those
202 defined by a.out_800 (4).
203
204 Right now this table is only used to count and perform minimal
205 processing on relocation streams so that they can be internalized
206 into BFD and symbolically printed by utilities. To make actual use
207 of them would be much more difficult, BFD's concept of relocations
208 is far too simple to handle SOM relocations. The basic assumption
209 that a relocation can be completely processed independent of other
210 relocations before an object file is written is invalid for SOM.
211
212 The SOM relocations are meant to be processed as a stream, they
213 specify copying of data from the input section to the output section
214 while possibly modifying the data in some manner. They also can
215 specify that a variable number of zeros or uninitialized data be
216 inserted on in the output segment at the current offset. Some
217 relocations specify that some previous relocation be re-applied at
218 the current location in the input/output sections. And finally a number
219 of relocations have effects on other sections (R_ENTRY, R_EXIT,
220 R_UNWIND_AUX and a variety of others). There isn't even enough room
221 in the BFD relocation data structure to store enough information to
222 perform all the relocations.
223
224 Each entry in the table has three fields.
225
226 The first entry is an index into this "class" of relocations. This
227 index can then be used as a variable within the relocation itself.
228
229 The second field is a format string which actually controls processing
230 of the relocation. It uses a simple postfix machine to do calculations
231 based on variables/constants found in the string and the relocation
232 stream.
233
234 The third field specifys whether or not this relocation may use
235 a constant (V) from the previous R_DATA_OVERRIDE rather than a constant
236 stored in the instruction.
237
238 Variables:
239
240 L = input space byte count
241 D = index into class of relocations
242 M = output space byte count
243 N = statement number (unused?)
244 O = stack operation
245 R = parameter relocation bits
246 S = symbol index
247 T = first 32 bits of stack unwind information
248 U = second 32 bits of stack unwind information
249 V = a literal constant (usually used in the next relocation)
250 P = a previous relocation
251
252 Lower case letters (starting with 'b') refer to following
253 bytes in the relocation stream. 'b' is the next 1 byte,
254 c is the next 2 bytes, d is the next 3 bytes, etc...
255 This is the variable part of the relocation entries that
256 makes our life a living hell.
257
258 numerical constants are also used in the format string. Note
259 the constants are represented in decimal.
260
261 '+', "*" and "=" represents the obvious postfix operators.
262 '<' represents a left shift.
263
264 Stack Operations:
265
266 Parameter Relocation Bits:
267
268 Unwind Entries:
269
270 Previous Relocations: The index field represents which in the queue
271 of 4 previous fixups should be re-applied.
272
273 Literal Constants: These are generally used to represent addend
274 parts of relocations when these constants are not stored in the
275 fields of the instructions themselves. For example the instruction
276 addil foo-$global$-0x1234 would use an override for "0x1234" rather
277 than storing it into the addil itself. */
278
279 struct fixup_format
280 {
281 int D;
282 const char *format;
283 };
284
285 static const struct fixup_format som_fixup_formats[256] =
286 {
287 /* R_NO_RELOCATION. */
288 { 0, "LD1+4*=" }, /* 0x00 */
289 { 1, "LD1+4*=" }, /* 0x01 */
290 { 2, "LD1+4*=" }, /* 0x02 */
291 { 3, "LD1+4*=" }, /* 0x03 */
292 { 4, "LD1+4*=" }, /* 0x04 */
293 { 5, "LD1+4*=" }, /* 0x05 */
294 { 6, "LD1+4*=" }, /* 0x06 */
295 { 7, "LD1+4*=" }, /* 0x07 */
296 { 8, "LD1+4*=" }, /* 0x08 */
297 { 9, "LD1+4*=" }, /* 0x09 */
298 { 10, "LD1+4*=" }, /* 0x0a */
299 { 11, "LD1+4*=" }, /* 0x0b */
300 { 12, "LD1+4*=" }, /* 0x0c */
301 { 13, "LD1+4*=" }, /* 0x0d */
302 { 14, "LD1+4*=" }, /* 0x0e */
303 { 15, "LD1+4*=" }, /* 0x0f */
304 { 16, "LD1+4*=" }, /* 0x10 */
305 { 17, "LD1+4*=" }, /* 0x11 */
306 { 18, "LD1+4*=" }, /* 0x12 */
307 { 19, "LD1+4*=" }, /* 0x13 */
308 { 20, "LD1+4*=" }, /* 0x14 */
309 { 21, "LD1+4*=" }, /* 0x15 */
310 { 22, "LD1+4*=" }, /* 0x16 */
311 { 23, "LD1+4*=" }, /* 0x17 */
312 { 0, "LD8<b+1+4*=" }, /* 0x18 */
313 { 1, "LD8<b+1+4*=" }, /* 0x19 */
314 { 2, "LD8<b+1+4*=" }, /* 0x1a */
315 { 3, "LD8<b+1+4*=" }, /* 0x1b */
316 { 0, "LD16<c+1+4*=" }, /* 0x1c */
317 { 1, "LD16<c+1+4*=" }, /* 0x1d */
318 { 2, "LD16<c+1+4*=" }, /* 0x1e */
319 { 0, "Ld1+=" }, /* 0x1f */
320 /* R_ZEROES. */
321 { 0, "Lb1+4*=" }, /* 0x20 */
322 { 1, "Ld1+=" }, /* 0x21 */
323 /* R_UNINIT. */
324 { 0, "Lb1+4*=" }, /* 0x22 */
325 { 1, "Ld1+=" }, /* 0x23 */
326 /* R_RELOCATION. */
327 { 0, "L4=" }, /* 0x24 */
328 /* R_DATA_ONE_SYMBOL. */
329 { 0, "L4=Sb=" }, /* 0x25 */
330 { 1, "L4=Sd=" }, /* 0x26 */
331 /* R_DATA_PLEBEL. */
332 { 0, "L4=Sb=" }, /* 0x27 */
333 { 1, "L4=Sd=" }, /* 0x28 */
334 /* R_SPACE_REF. */
335 { 0, "L4=" }, /* 0x29 */
336 /* R_REPEATED_INIT. */
337 { 0, "L4=Mb1+4*=" }, /* 0x2a */
338 { 1, "Lb4*=Mb1+L*=" }, /* 0x2b */
339 { 2, "Lb4*=Md1+4*=" }, /* 0x2c */
340 { 3, "Ld1+=Me1+=" }, /* 0x2d */
341 { 0, "" }, /* 0x2e */
342 { 0, "" }, /* 0x2f */
343 /* R_PCREL_CALL. */
344 { 0, "L4=RD=Sb=" }, /* 0x30 */
345 { 1, "L4=RD=Sb=" }, /* 0x31 */
346 { 2, "L4=RD=Sb=" }, /* 0x32 */
347 { 3, "L4=RD=Sb=" }, /* 0x33 */
348 { 4, "L4=RD=Sb=" }, /* 0x34 */
349 { 5, "L4=RD=Sb=" }, /* 0x35 */
350 { 6, "L4=RD=Sb=" }, /* 0x36 */
351 { 7, "L4=RD=Sb=" }, /* 0x37 */
352 { 8, "L4=RD=Sb=" }, /* 0x38 */
353 { 9, "L4=RD=Sb=" }, /* 0x39 */
354 { 0, "L4=RD8<b+=Sb=" }, /* 0x3a */
355 { 1, "L4=RD8<b+=Sb=" }, /* 0x3b */
356 { 0, "L4=RD8<b+=Sd=" }, /* 0x3c */
357 { 1, "L4=RD8<b+=Sd=" }, /* 0x3d */
358 /* R_SHORT_PCREL_MODE. */
359 { 0, "" }, /* 0x3e */
360 /* R_LONG_PCREL_MODE. */
361 { 0, "" }, /* 0x3f */
362 /* R_ABS_CALL. */
363 { 0, "L4=RD=Sb=" }, /* 0x40 */
364 { 1, "L4=RD=Sb=" }, /* 0x41 */
365 { 2, "L4=RD=Sb=" }, /* 0x42 */
366 { 3, "L4=RD=Sb=" }, /* 0x43 */
367 { 4, "L4=RD=Sb=" }, /* 0x44 */
368 { 5, "L4=RD=Sb=" }, /* 0x45 */
369 { 6, "L4=RD=Sb=" }, /* 0x46 */
370 { 7, "L4=RD=Sb=" }, /* 0x47 */
371 { 8, "L4=RD=Sb=" }, /* 0x48 */
372 { 9, "L4=RD=Sb=" }, /* 0x49 */
373 { 0, "L4=RD8<b+=Sb=" }, /* 0x4a */
374 { 1, "L4=RD8<b+=Sb=" }, /* 0x4b */
375 { 0, "L4=RD8<b+=Sd=" }, /* 0x4c */
376 { 1, "L4=RD8<b+=Sd=" }, /* 0x4d */
377 /* R_RESERVED. */
378 { 0, "" }, /* 0x4e */
379 { 0, "" }, /* 0x4f */
380 /* R_DP_RELATIVE. */
381 { 0, "L4=SD=" }, /* 0x50 */
382 { 1, "L4=SD=" }, /* 0x51 */
383 { 2, "L4=SD=" }, /* 0x52 */
384 { 3, "L4=SD=" }, /* 0x53 */
385 { 4, "L4=SD=" }, /* 0x54 */
386 { 5, "L4=SD=" }, /* 0x55 */
387 { 6, "L4=SD=" }, /* 0x56 */
388 { 7, "L4=SD=" }, /* 0x57 */
389 { 8, "L4=SD=" }, /* 0x58 */
390 { 9, "L4=SD=" }, /* 0x59 */
391 { 10, "L4=SD=" }, /* 0x5a */
392 { 11, "L4=SD=" }, /* 0x5b */
393 { 12, "L4=SD=" }, /* 0x5c */
394 { 13, "L4=SD=" }, /* 0x5d */
395 { 14, "L4=SD=" }, /* 0x5e */
396 { 15, "L4=SD=" }, /* 0x5f */
397 { 16, "L4=SD=" }, /* 0x60 */
398 { 17, "L4=SD=" }, /* 0x61 */
399 { 18, "L4=SD=" }, /* 0x62 */
400 { 19, "L4=SD=" }, /* 0x63 */
401 { 20, "L4=SD=" }, /* 0x64 */
402 { 21, "L4=SD=" }, /* 0x65 */
403 { 22, "L4=SD=" }, /* 0x66 */
404 { 23, "L4=SD=" }, /* 0x67 */
405 { 24, "L4=SD=" }, /* 0x68 */
406 { 25, "L4=SD=" }, /* 0x69 */
407 { 26, "L4=SD=" }, /* 0x6a */
408 { 27, "L4=SD=" }, /* 0x6b */
409 { 28, "L4=SD=" }, /* 0x6c */
410 { 29, "L4=SD=" }, /* 0x6d */
411 { 30, "L4=SD=" }, /* 0x6e */
412 { 31, "L4=SD=" }, /* 0x6f */
413 { 32, "L4=Sb=" }, /* 0x70 */
414 { 33, "L4=Sd=" }, /* 0x71 */
415 /* R_RESERVED. */
416 { 0, "" }, /* 0x72 */
417 { 0, "" }, /* 0x73 */
418 { 0, "" }, /* 0x74 */
419 { 0, "" }, /* 0x75 */
420 { 0, "" }, /* 0x76 */
421 { 0, "" }, /* 0x77 */
422 /* R_DLT_REL. */
423 { 0, "L4=Sb=" }, /* 0x78 */
424 { 1, "L4=Sd=" }, /* 0x79 */
425 /* R_RESERVED. */
426 { 0, "" }, /* 0x7a */
427 { 0, "" }, /* 0x7b */
428 { 0, "" }, /* 0x7c */
429 { 0, "" }, /* 0x7d */
430 { 0, "" }, /* 0x7e */
431 { 0, "" }, /* 0x7f */
432 /* R_CODE_ONE_SYMBOL. */
433 { 0, "L4=SD=" }, /* 0x80 */
434 { 1, "L4=SD=" }, /* 0x81 */
435 { 2, "L4=SD=" }, /* 0x82 */
436 { 3, "L4=SD=" }, /* 0x83 */
437 { 4, "L4=SD=" }, /* 0x84 */
438 { 5, "L4=SD=" }, /* 0x85 */
439 { 6, "L4=SD=" }, /* 0x86 */
440 { 7, "L4=SD=" }, /* 0x87 */
441 { 8, "L4=SD=" }, /* 0x88 */
442 { 9, "L4=SD=" }, /* 0x89 */
443 { 10, "L4=SD=" }, /* 0x8q */
444 { 11, "L4=SD=" }, /* 0x8b */
445 { 12, "L4=SD=" }, /* 0x8c */
446 { 13, "L4=SD=" }, /* 0x8d */
447 { 14, "L4=SD=" }, /* 0x8e */
448 { 15, "L4=SD=" }, /* 0x8f */
449 { 16, "L4=SD=" }, /* 0x90 */
450 { 17, "L4=SD=" }, /* 0x91 */
451 { 18, "L4=SD=" }, /* 0x92 */
452 { 19, "L4=SD=" }, /* 0x93 */
453 { 20, "L4=SD=" }, /* 0x94 */
454 { 21, "L4=SD=" }, /* 0x95 */
455 { 22, "L4=SD=" }, /* 0x96 */
456 { 23, "L4=SD=" }, /* 0x97 */
457 { 24, "L4=SD=" }, /* 0x98 */
458 { 25, "L4=SD=" }, /* 0x99 */
459 { 26, "L4=SD=" }, /* 0x9a */
460 { 27, "L4=SD=" }, /* 0x9b */
461 { 28, "L4=SD=" }, /* 0x9c */
462 { 29, "L4=SD=" }, /* 0x9d */
463 { 30, "L4=SD=" }, /* 0x9e */
464 { 31, "L4=SD=" }, /* 0x9f */
465 { 32, "L4=Sb=" }, /* 0xa0 */
466 { 33, "L4=Sd=" }, /* 0xa1 */
467 /* R_RESERVED. */
468 { 0, "" }, /* 0xa2 */
469 { 0, "" }, /* 0xa3 */
470 { 0, "" }, /* 0xa4 */
471 { 0, "" }, /* 0xa5 */
472 { 0, "" }, /* 0xa6 */
473 { 0, "" }, /* 0xa7 */
474 { 0, "" }, /* 0xa8 */
475 { 0, "" }, /* 0xa9 */
476 { 0, "" }, /* 0xaa */
477 { 0, "" }, /* 0xab */
478 { 0, "" }, /* 0xac */
479 { 0, "" }, /* 0xad */
480 /* R_MILLI_REL. */
481 { 0, "L4=Sb=" }, /* 0xae */
482 { 1, "L4=Sd=" }, /* 0xaf */
483 /* R_CODE_PLABEL. */
484 { 0, "L4=Sb=" }, /* 0xb0 */
485 { 1, "L4=Sd=" }, /* 0xb1 */
486 /* R_BREAKPOINT. */
487 { 0, "L4=" }, /* 0xb2 */
488 /* R_ENTRY. */
489 { 0, "Te=Ue=" }, /* 0xb3 */
490 { 1, "Uf=" }, /* 0xb4 */
491 /* R_ALT_ENTRY. */
492 { 0, "" }, /* 0xb5 */
493 /* R_EXIT. */
494 { 0, "" }, /* 0xb6 */
495 /* R_BEGIN_TRY. */
496 { 0, "" }, /* 0xb7 */
497 /* R_END_TRY. */
498 { 0, "R0=" }, /* 0xb8 */
499 { 1, "Rb4*=" }, /* 0xb9 */
500 { 2, "Rd4*=" }, /* 0xba */
501 /* R_BEGIN_BRTAB. */
502 { 0, "" }, /* 0xbb */
503 /* R_END_BRTAB. */
504 { 0, "" }, /* 0xbc */
505 /* R_STATEMENT. */
506 { 0, "Nb=" }, /* 0xbd */
507 { 1, "Nc=" }, /* 0xbe */
508 { 2, "Nd=" }, /* 0xbf */
509 /* R_DATA_EXPR. */
510 { 0, "L4=" }, /* 0xc0 */
511 /* R_CODE_EXPR. */
512 { 0, "L4=" }, /* 0xc1 */
513 /* R_FSEL. */
514 { 0, "" }, /* 0xc2 */
515 /* R_LSEL. */
516 { 0, "" }, /* 0xc3 */
517 /* R_RSEL. */
518 { 0, "" }, /* 0xc4 */
519 /* R_N_MODE. */
520 { 0, "" }, /* 0xc5 */
521 /* R_S_MODE. */
522 { 0, "" }, /* 0xc6 */
523 /* R_D_MODE. */
524 { 0, "" }, /* 0xc7 */
525 /* R_R_MODE. */
526 { 0, "" }, /* 0xc8 */
527 /* R_DATA_OVERRIDE. */
528 { 0, "V0=" }, /* 0xc9 */
529 { 1, "Vb=" }, /* 0xca */
530 { 2, "Vc=" }, /* 0xcb */
531 { 3, "Vd=" }, /* 0xcc */
532 { 4, "Ve=" }, /* 0xcd */
533 /* R_TRANSLATED. */
534 { 0, "" }, /* 0xce */
535 /* R_AUX_UNWIND. */
536 { 0,"Sd=Ve=Ee=" }, /* 0xcf */
537 /* R_COMP1. */
538 { 0, "Ob=" }, /* 0xd0 */
539 /* R_COMP2. */
540 { 0, "Ob=Sd=" }, /* 0xd1 */
541 /* R_COMP3. */
542 { 0, "Ob=Ve=" }, /* 0xd2 */
543 /* R_PREV_FIXUP. */
544 { 0, "P" }, /* 0xd3 */
545 { 1, "P" }, /* 0xd4 */
546 { 2, "P" }, /* 0xd5 */
547 { 3, "P" }, /* 0xd6 */
548 /* R_SEC_STMT. */
549 { 0, "" }, /* 0xd7 */
550 /* R_N0SEL. */
551 { 0, "" }, /* 0xd8 */
552 /* R_N1SEL. */
553 { 0, "" }, /* 0xd9 */
554 /* R_LINETAB. */
555 { 0, "Eb=Sd=Ve=" }, /* 0xda */
556 /* R_LINETAB_ESC. */
557 { 0, "Eb=Mb=" }, /* 0xdb */
558 /* R_LTP_OVERRIDE. */
559 { 0, "" }, /* 0xdc */
560 /* R_COMMENT. */
561 { 0, "Ob=Vf=" }, /* 0xdd */
562 /* R_RESERVED. */
563 { 0, "" }, /* 0xde */
564 { 0, "" }, /* 0xdf */
565 { 0, "" }, /* 0xe0 */
566 { 0, "" }, /* 0xe1 */
567 { 0, "" }, /* 0xe2 */
568 { 0, "" }, /* 0xe3 */
569 { 0, "" }, /* 0xe4 */
570 { 0, "" }, /* 0xe5 */
571 { 0, "" }, /* 0xe6 */
572 { 0, "" }, /* 0xe7 */
573 { 0, "" }, /* 0xe8 */
574 { 0, "" }, /* 0xe9 */
575 { 0, "" }, /* 0xea */
576 { 0, "" }, /* 0xeb */
577 { 0, "" }, /* 0xec */
578 { 0, "" }, /* 0xed */
579 { 0, "" }, /* 0xee */
580 { 0, "" }, /* 0xef */
581 { 0, "" }, /* 0xf0 */
582 { 0, "" }, /* 0xf1 */
583 { 0, "" }, /* 0xf2 */
584 { 0, "" }, /* 0xf3 */
585 { 0, "" }, /* 0xf4 */
586 { 0, "" }, /* 0xf5 */
587 { 0, "" }, /* 0xf6 */
588 { 0, "" }, /* 0xf7 */
589 { 0, "" }, /* 0xf8 */
590 { 0, "" }, /* 0xf9 */
591 { 0, "" }, /* 0xfa */
592 { 0, "" }, /* 0xfb */
593 { 0, "" }, /* 0xfc */
594 { 0, "" }, /* 0xfd */
595 { 0, "" }, /* 0xfe */
596 { 0, "" }, /* 0xff */
597 };
598
599 static const int comp1_opcodes[] =
600 {
601 0x00,
602 0x40,
603 0x41,
604 0x42,
605 0x43,
606 0x44,
607 0x45,
608 0x46,
609 0x47,
610 0x48,
611 0x49,
612 0x4a,
613 0x4b,
614 0x60,
615 0x80,
616 0xa0,
617 0xc0,
618 -1
619 };
620
621 static const int comp2_opcodes[] =
622 {
623 0x00,
624 0x80,
625 0x82,
626 0xc0,
627 -1
628 };
629
630 static const int comp3_opcodes[] =
631 {
632 0x00,
633 0x02,
634 -1
635 };
636
637 /* These apparently are not in older versions of hpux reloc.h (hpux7). */
638 #ifndef R_DLT_REL
639 #define R_DLT_REL 0x78
640 #endif
641
642 #ifndef R_AUX_UNWIND
643 #define R_AUX_UNWIND 0xcf
644 #endif
645
646 #ifndef R_SEC_STMT
647 #define R_SEC_STMT 0xd7
648 #endif
649
650 /* And these first appeared in hpux10. */
651 #ifndef R_SHORT_PCREL_MODE
652 #define NO_PCREL_MODES
653 #define R_SHORT_PCREL_MODE 0x3e
654 #endif
655
656 #ifndef R_LONG_PCREL_MODE
657 #define R_LONG_PCREL_MODE 0x3f
658 #endif
659
660 #ifndef R_N0SEL
661 #define R_N0SEL 0xd8
662 #endif
663
664 #ifndef R_N1SEL
665 #define R_N1SEL 0xd9
666 #endif
667
668 #ifndef R_LINETAB
669 #define R_LINETAB 0xda
670 #endif
671
672 #ifndef R_LINETAB_ESC
673 #define R_LINETAB_ESC 0xdb
674 #endif
675
676 #ifndef R_LTP_OVERRIDE
677 #define R_LTP_OVERRIDE 0xdc
678 #endif
679
680 #ifndef R_COMMENT
681 #define R_COMMENT 0xdd
682 #endif
683
684 #define SOM_HOWTO(TYPE, NAME) \
685 HOWTO(TYPE, 0, 0, 32, FALSE, 0, 0, hppa_som_reloc, NAME, FALSE, 0, 0, FALSE)
686
687 static reloc_howto_type som_hppa_howto_table[] =
688 {
689 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
690 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
691 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
692 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
693 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
694 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
695 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
696 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
697 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
698 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
699 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
700 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
701 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
702 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
703 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
704 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
705 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
706 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
707 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
708 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
709 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
710 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
711 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
712 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
713 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
714 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
715 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
716 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
717 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
718 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
719 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
720 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
721 SOM_HOWTO (R_ZEROES, "R_ZEROES"),
722 SOM_HOWTO (R_ZEROES, "R_ZEROES"),
723 SOM_HOWTO (R_UNINIT, "R_UNINIT"),
724 SOM_HOWTO (R_UNINIT, "R_UNINIT"),
725 SOM_HOWTO (R_RELOCATION, "R_RELOCATION"),
726 SOM_HOWTO (R_DATA_ONE_SYMBOL, "R_DATA_ONE_SYMBOL"),
727 SOM_HOWTO (R_DATA_ONE_SYMBOL, "R_DATA_ONE_SYMBOL"),
728 SOM_HOWTO (R_DATA_PLABEL, "R_DATA_PLABEL"),
729 SOM_HOWTO (R_DATA_PLABEL, "R_DATA_PLABEL"),
730 SOM_HOWTO (R_SPACE_REF, "R_SPACE_REF"),
731 SOM_HOWTO (R_REPEATED_INIT, "REPEATED_INIT"),
732 SOM_HOWTO (R_REPEATED_INIT, "REPEATED_INIT"),
733 SOM_HOWTO (R_REPEATED_INIT, "REPEATED_INIT"),
734 SOM_HOWTO (R_REPEATED_INIT, "REPEATED_INIT"),
735 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
736 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
737 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
738 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
739 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
740 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
741 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
742 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
743 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
744 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
745 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
746 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
747 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
748 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
749 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
750 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
751 SOM_HOWTO (R_SHORT_PCREL_MODE, "R_SHORT_PCREL_MODE"),
752 SOM_HOWTO (R_LONG_PCREL_MODE, "R_LONG_PCREL_MODE"),
753 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
754 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
755 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
756 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
757 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
758 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
759 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
760 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
761 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
762 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
763 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
764 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
765 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
766 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
767 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
768 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
769 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
770 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
771 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
772 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
773 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
774 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
775 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
776 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
777 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
778 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
779 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
780 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
781 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
782 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
783 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
784 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
785 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
786 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
787 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
788 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
789 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
790 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
791 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
792 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
793 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
794 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
795 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
796 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
797 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
798 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
799 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
800 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
801 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
802 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
803 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
804 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
805 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
806 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
807 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
808 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
809 SOM_HOWTO (R_DLT_REL, "R_DLT_REL"),
810 SOM_HOWTO (R_DLT_REL, "R_DLT_REL"),
811 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
812 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
813 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
814 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
815 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
816 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
817 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
818 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
819 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
820 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
821 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
822 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
823 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
824 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
825 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
826 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
827 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
828 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
829 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
830 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
831 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
832 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
833 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
834 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
835 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
836 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
837 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
838 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
839 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
840 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
841 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
842 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
843 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
844 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
845 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
846 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
847 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
848 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
849 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
850 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
851 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
852 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
853 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
854 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
855 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
856 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
857 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
858 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
859 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
860 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
861 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
862 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
863 SOM_HOWTO (R_MILLI_REL, "R_MILLI_REL"),
864 SOM_HOWTO (R_MILLI_REL, "R_MILLI_REL"),
865 SOM_HOWTO (R_CODE_PLABEL, "R_CODE_PLABEL"),
866 SOM_HOWTO (R_CODE_PLABEL, "R_CODE_PLABEL"),
867 SOM_HOWTO (R_BREAKPOINT, "R_BREAKPOINT"),
868 SOM_HOWTO (R_ENTRY, "R_ENTRY"),
869 SOM_HOWTO (R_ENTRY, "R_ENTRY"),
870 SOM_HOWTO (R_ALT_ENTRY, "R_ALT_ENTRY"),
871 SOM_HOWTO (R_EXIT, "R_EXIT"),
872 SOM_HOWTO (R_BEGIN_TRY, "R_BEGIN_TRY"),
873 SOM_HOWTO (R_END_TRY, "R_END_TRY"),
874 SOM_HOWTO (R_END_TRY, "R_END_TRY"),
875 SOM_HOWTO (R_END_TRY, "R_END_TRY"),
876 SOM_HOWTO (R_BEGIN_BRTAB, "R_BEGIN_BRTAB"),
877 SOM_HOWTO (R_END_BRTAB, "R_END_BRTAB"),
878 SOM_HOWTO (R_STATEMENT, "R_STATEMENT"),
879 SOM_HOWTO (R_STATEMENT, "R_STATEMENT"),
880 SOM_HOWTO (R_STATEMENT, "R_STATEMENT"),
881 SOM_HOWTO (R_DATA_EXPR, "R_DATA_EXPR"),
882 SOM_HOWTO (R_CODE_EXPR, "R_CODE_EXPR"),
883 SOM_HOWTO (R_FSEL, "R_FSEL"),
884 SOM_HOWTO (R_LSEL, "R_LSEL"),
885 SOM_HOWTO (R_RSEL, "R_RSEL"),
886 SOM_HOWTO (R_N_MODE, "R_N_MODE"),
887 SOM_HOWTO (R_S_MODE, "R_S_MODE"),
888 SOM_HOWTO (R_D_MODE, "R_D_MODE"),
889 SOM_HOWTO (R_R_MODE, "R_R_MODE"),
890 SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
891 SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
892 SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
893 SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
894 SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
895 SOM_HOWTO (R_TRANSLATED, "R_TRANSLATED"),
896 SOM_HOWTO (R_AUX_UNWIND, "R_AUX_UNWIND"),
897 SOM_HOWTO (R_COMP1, "R_COMP1"),
898 SOM_HOWTO (R_COMP2, "R_COMP2"),
899 SOM_HOWTO (R_COMP3, "R_COMP3"),
900 SOM_HOWTO (R_PREV_FIXUP, "R_PREV_FIXUP"),
901 SOM_HOWTO (R_PREV_FIXUP, "R_PREV_FIXUP"),
902 SOM_HOWTO (R_PREV_FIXUP, "R_PREV_FIXUP"),
903 SOM_HOWTO (R_PREV_FIXUP, "R_PREV_FIXUP"),
904 SOM_HOWTO (R_SEC_STMT, "R_SEC_STMT"),
905 SOM_HOWTO (R_N0SEL, "R_N0SEL"),
906 SOM_HOWTO (R_N1SEL, "R_N1SEL"),
907 SOM_HOWTO (R_LINETAB, "R_LINETAB"),
908 SOM_HOWTO (R_LINETAB_ESC, "R_LINETAB_ESC"),
909 SOM_HOWTO (R_LTP_OVERRIDE, "R_LTP_OVERRIDE"),
910 SOM_HOWTO (R_COMMENT, "R_COMMENT"),
911 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
912 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
913 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
914 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
915 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
916 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
917 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
918 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
919 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
920 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
921 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
922 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
923 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
924 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
925 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
926 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
927 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
928 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
929 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
930 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
931 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
932 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
933 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
934 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
935 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
936 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
937 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
938 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
939 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
940 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
941 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
942 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
943 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
944 SOM_HOWTO (R_RESERVED, "R_RESERVED")
945 };
946
947 /* Initialize the SOM relocation queue. By definition the queue holds
948 the last four multibyte fixups. */
949
950 static void
951 som_initialize_reloc_queue (struct reloc_queue *queue)
952 {
953 queue[0].reloc = NULL;
954 queue[0].size = 0;
955 queue[1].reloc = NULL;
956 queue[1].size = 0;
957 queue[2].reloc = NULL;
958 queue[2].size = 0;
959 queue[3].reloc = NULL;
960 queue[3].size = 0;
961 }
962
963 /* Insert a new relocation into the relocation queue. */
964
965 static void
966 som_reloc_queue_insert (unsigned char *p,
967 unsigned int size,
968 struct reloc_queue *queue)
969 {
970 queue[3].reloc = queue[2].reloc;
971 queue[3].size = queue[2].size;
972 queue[2].reloc = queue[1].reloc;
973 queue[2].size = queue[1].size;
974 queue[1].reloc = queue[0].reloc;
975 queue[1].size = queue[0].size;
976 queue[0].reloc = p;
977 queue[0].size = size;
978 }
979
980 /* When an entry in the relocation queue is reused, the entry moves
981 to the front of the queue. */
982
983 static void
984 som_reloc_queue_fix (struct reloc_queue *queue, unsigned int index)
985 {
986 if (index == 0)
987 return;
988
989 if (index == 1)
990 {
991 unsigned char *tmp1 = queue[0].reloc;
992 unsigned int tmp2 = queue[0].size;
993
994 queue[0].reloc = queue[1].reloc;
995 queue[0].size = queue[1].size;
996 queue[1].reloc = tmp1;
997 queue[1].size = tmp2;
998 return;
999 }
1000
1001 if (index == 2)
1002 {
1003 unsigned char *tmp1 = queue[0].reloc;
1004 unsigned int tmp2 = queue[0].size;
1005
1006 queue[0].reloc = queue[2].reloc;
1007 queue[0].size = queue[2].size;
1008 queue[2].reloc = queue[1].reloc;
1009 queue[2].size = queue[1].size;
1010 queue[1].reloc = tmp1;
1011 queue[1].size = tmp2;
1012 return;
1013 }
1014
1015 if (index == 3)
1016 {
1017 unsigned char *tmp1 = queue[0].reloc;
1018 unsigned int tmp2 = queue[0].size;
1019
1020 queue[0].reloc = queue[3].reloc;
1021 queue[0].size = queue[3].size;
1022 queue[3].reloc = queue[2].reloc;
1023 queue[3].size = queue[2].size;
1024 queue[2].reloc = queue[1].reloc;
1025 queue[2].size = queue[1].size;
1026 queue[1].reloc = tmp1;
1027 queue[1].size = tmp2;
1028 return;
1029 }
1030 abort ();
1031 }
1032
1033 /* Search for a particular relocation in the relocation queue. */
1034
1035 static int
1036 som_reloc_queue_find (unsigned char *p,
1037 unsigned int size,
1038 struct reloc_queue *queue)
1039 {
1040 if (queue[0].reloc && !memcmp (p, queue[0].reloc, size)
1041 && size == queue[0].size)
1042 return 0;
1043 if (queue[1].reloc && !memcmp (p, queue[1].reloc, size)
1044 && size == queue[1].size)
1045 return 1;
1046 if (queue[2].reloc && !memcmp (p, queue[2].reloc, size)
1047 && size == queue[2].size)
1048 return 2;
1049 if (queue[3].reloc && !memcmp (p, queue[3].reloc, size)
1050 && size == queue[3].size)
1051 return 3;
1052 return -1;
1053 }
1054
1055 static unsigned char *
1056 try_prev_fixup (bfd *abfd ATTRIBUTE_UNUSED,
1057 int *subspace_reloc_sizep,
1058 unsigned char *p,
1059 unsigned int size,
1060 struct reloc_queue *queue)
1061 {
1062 int queue_index = som_reloc_queue_find (p, size, queue);
1063
1064 if (queue_index != -1)
1065 {
1066 /* Found this in a previous fixup. Undo the fixup we
1067 just built and use R_PREV_FIXUP instead. We saved
1068 a total of size - 1 bytes in the fixup stream. */
1069 bfd_put_8 (abfd, R_PREV_FIXUP + queue_index, p);
1070 p += 1;
1071 *subspace_reloc_sizep += 1;
1072 som_reloc_queue_fix (queue, queue_index);
1073 }
1074 else
1075 {
1076 som_reloc_queue_insert (p, size, queue);
1077 *subspace_reloc_sizep += size;
1078 p += size;
1079 }
1080 return p;
1081 }
1082
1083 /* Emit the proper R_NO_RELOCATION fixups to map the next SKIP
1084 bytes without any relocation. Update the size of the subspace
1085 relocation stream via SUBSPACE_RELOC_SIZE_P; also return the
1086 current pointer into the relocation stream. */
1087
1088 static unsigned char *
1089 som_reloc_skip (bfd *abfd,
1090 unsigned int skip,
1091 unsigned char *p,
1092 unsigned int *subspace_reloc_sizep,
1093 struct reloc_queue *queue)
1094 {
1095 /* Use a 4 byte R_NO_RELOCATION entry with a maximal value
1096 then R_PREV_FIXUPs to get the difference down to a
1097 reasonable size. */
1098 if (skip >= 0x1000000)
1099 {
1100 skip -= 0x1000000;
1101 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1102 bfd_put_8 (abfd, 0xff, p + 1);
1103 bfd_put_16 (abfd, (bfd_vma) 0xffff, p + 2);
1104 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1105 while (skip >= 0x1000000)
1106 {
1107 skip -= 0x1000000;
1108 bfd_put_8 (abfd, R_PREV_FIXUP, p);
1109 p++;
1110 *subspace_reloc_sizep += 1;
1111 /* No need to adjust queue here since we are repeating the
1112 most recent fixup. */
1113 }
1114 }
1115
1116 /* The difference must be less than 0x1000000. Use one
1117 more R_NO_RELOCATION entry to get to the right difference. */
1118 if ((skip & 3) == 0 && skip <= 0xc0000 && skip > 0)
1119 {
1120 /* Difference can be handled in a simple single-byte
1121 R_NO_RELOCATION entry. */
1122 if (skip <= 0x60)
1123 {
1124 bfd_put_8 (abfd, R_NO_RELOCATION + (skip >> 2) - 1, p);
1125 *subspace_reloc_sizep += 1;
1126 p++;
1127 }
1128 /* Handle it with a two byte R_NO_RELOCATION entry. */
1129 else if (skip <= 0x1000)
1130 {
1131 bfd_put_8 (abfd, R_NO_RELOCATION + 24 + (((skip >> 2) - 1) >> 8), p);
1132 bfd_put_8 (abfd, (skip >> 2) - 1, p + 1);
1133 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1134 }
1135 /* Handle it with a three byte R_NO_RELOCATION entry. */
1136 else
1137 {
1138 bfd_put_8 (abfd, R_NO_RELOCATION + 28 + (((skip >> 2) - 1) >> 16), p);
1139 bfd_put_16 (abfd, (bfd_vma) (skip >> 2) - 1, p + 1);
1140 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1141 }
1142 }
1143 /* Ugh. Punt and use a 4 byte entry. */
1144 else if (skip > 0)
1145 {
1146 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1147 bfd_put_8 (abfd, (skip - 1) >> 16, p + 1);
1148 bfd_put_16 (abfd, (bfd_vma) skip - 1, p + 2);
1149 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1150 }
1151 return p;
1152 }
1153
1154 /* Emit the proper R_DATA_OVERRIDE fixups to handle a nonzero addend
1155 from a BFD relocation. Update the size of the subspace relocation
1156 stream via SUBSPACE_RELOC_SIZE_P; also return the current pointer
1157 into the relocation stream. */
1158
1159 static unsigned char *
1160 som_reloc_addend (bfd *abfd,
1161 bfd_vma addend,
1162 unsigned char *p,
1163 unsigned int *subspace_reloc_sizep,
1164 struct reloc_queue *queue)
1165 {
1166 if (addend + 0x80 < 0x100)
1167 {
1168 bfd_put_8 (abfd, R_DATA_OVERRIDE + 1, p);
1169 bfd_put_8 (abfd, addend, p + 1);
1170 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1171 }
1172 else if (addend + 0x8000 < 0x10000)
1173 {
1174 bfd_put_8 (abfd, R_DATA_OVERRIDE + 2, p);
1175 bfd_put_16 (abfd, addend, p + 1);
1176 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1177 }
1178 else if (addend + 0x800000 < 0x1000000)
1179 {
1180 bfd_put_8 (abfd, R_DATA_OVERRIDE + 3, p);
1181 bfd_put_8 (abfd, addend >> 16, p + 1);
1182 bfd_put_16 (abfd, addend, p + 2);
1183 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1184 }
1185 else
1186 {
1187 bfd_put_8 (abfd, R_DATA_OVERRIDE + 4, p);
1188 bfd_put_32 (abfd, addend, p + 1);
1189 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1190 }
1191 return p;
1192 }
1193
1194 /* Handle a single function call relocation. */
1195
1196 static unsigned char *
1197 som_reloc_call (bfd *abfd,
1198 unsigned char *p,
1199 unsigned int *subspace_reloc_sizep,
1200 arelent *bfd_reloc,
1201 int sym_num,
1202 struct reloc_queue *queue)
1203 {
1204 int arg_bits = HPPA_R_ARG_RELOC (bfd_reloc->addend);
1205 int rtn_bits = arg_bits & 0x3;
1206 int type, done = 0;
1207
1208 /* You'll never believe all this is necessary to handle relocations
1209 for function calls. Having to compute and pack the argument
1210 relocation bits is the real nightmare.
1211
1212 If you're interested in how this works, just forget it. You really
1213 do not want to know about this braindamage. */
1214
1215 /* First see if this can be done with a "simple" relocation. Simple
1216 relocations have a symbol number < 0x100 and have simple encodings
1217 of argument relocations. */
1218
1219 if (sym_num < 0x100)
1220 {
1221 switch (arg_bits)
1222 {
1223 case 0:
1224 case 1:
1225 type = 0;
1226 break;
1227 case 1 << 8:
1228 case 1 << 8 | 1:
1229 type = 1;
1230 break;
1231 case 1 << 8 | 1 << 6:
1232 case 1 << 8 | 1 << 6 | 1:
1233 type = 2;
1234 break;
1235 case 1 << 8 | 1 << 6 | 1 << 4:
1236 case 1 << 8 | 1 << 6 | 1 << 4 | 1:
1237 type = 3;
1238 break;
1239 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2:
1240 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2 | 1:
1241 type = 4;
1242 break;
1243 default:
1244 /* Not one of the easy encodings. This will have to be
1245 handled by the more complex code below. */
1246 type = -1;
1247 break;
1248 }
1249 if (type != -1)
1250 {
1251 /* Account for the return value too. */
1252 if (rtn_bits)
1253 type += 5;
1254
1255 /* Emit a 2 byte relocation. Then see if it can be handled
1256 with a relocation which is already in the relocation queue. */
1257 bfd_put_8 (abfd, bfd_reloc->howto->type + type, p);
1258 bfd_put_8 (abfd, sym_num, p + 1);
1259 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1260 done = 1;
1261 }
1262 }
1263
1264 /* If this could not be handled with a simple relocation, then do a hard
1265 one. Hard relocations occur if the symbol number was too high or if
1266 the encoding of argument relocation bits is too complex. */
1267 if (! done)
1268 {
1269 /* Don't ask about these magic sequences. I took them straight
1270 from gas-1.36 which took them from the a.out man page. */
1271 type = rtn_bits;
1272 if ((arg_bits >> 6 & 0xf) == 0xe)
1273 type += 9 * 40;
1274 else
1275 type += (3 * (arg_bits >> 8 & 3) + (arg_bits >> 6 & 3)) * 40;
1276 if ((arg_bits >> 2 & 0xf) == 0xe)
1277 type += 9 * 4;
1278 else
1279 type += (3 * (arg_bits >> 4 & 3) + (arg_bits >> 2 & 3)) * 4;
1280
1281 /* Output the first two bytes of the relocation. These describe
1282 the length of the relocation and encoding style. */
1283 bfd_put_8 (abfd, bfd_reloc->howto->type + 10
1284 + 2 * (sym_num >= 0x100) + (type >= 0x100),
1285 p);
1286 bfd_put_8 (abfd, type, p + 1);
1287
1288 /* Now output the symbol index and see if this bizarre relocation
1289 just happened to be in the relocation queue. */
1290 if (sym_num < 0x100)
1291 {
1292 bfd_put_8 (abfd, sym_num, p + 2);
1293 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1294 }
1295 else
1296 {
1297 bfd_put_8 (abfd, sym_num >> 16, p + 2);
1298 bfd_put_16 (abfd, (bfd_vma) sym_num, p + 3);
1299 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1300 }
1301 }
1302 return p;
1303 }
1304
1305 /* Return the logarithm of X, base 2, considering X unsigned,
1306 if X is a power of 2. Otherwise, returns -1. */
1307
1308 static int
1309 exact_log2 (unsigned int x)
1310 {
1311 int log = 0;
1312
1313 /* Test for 0 or a power of 2. */
1314 if (x == 0 || x != (x & -x))
1315 return -1;
1316
1317 while ((x >>= 1) != 0)
1318 log++;
1319 return log;
1320 }
1321
1322 static bfd_reloc_status_type
1323 hppa_som_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1324 arelent *reloc_entry,
1325 asymbol *symbol_in ATTRIBUTE_UNUSED,
1326 void *data ATTRIBUTE_UNUSED,
1327 asection *input_section,
1328 bfd *output_bfd,
1329 char **error_message ATTRIBUTE_UNUSED)
1330 {
1331 if (output_bfd)
1332 reloc_entry->address += input_section->output_offset;
1333
1334 return bfd_reloc_ok;
1335 }
1336
1337 /* Given a generic HPPA relocation type, the instruction format,
1338 and a field selector, return one or more appropriate SOM relocations. */
1339
1340 int **
1341 hppa_som_gen_reloc_type (bfd *abfd,
1342 int base_type,
1343 int format,
1344 enum hppa_reloc_field_selector_type_alt field,
1345 int sym_diff,
1346 asymbol *sym)
1347 {
1348 int *final_type, **final_types;
1349
1350 final_types = bfd_alloc (abfd, (bfd_size_type) sizeof (int *) * 6);
1351 final_type = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1352 if (!final_types || !final_type)
1353 return NULL;
1354
1355 /* The field selector may require additional relocations to be
1356 generated. It's impossible to know at this moment if additional
1357 relocations will be needed, so we make them. The code to actually
1358 write the relocation/fixup stream is responsible for removing
1359 any redundant relocations. */
1360 switch (field)
1361 {
1362 case e_fsel:
1363 case e_psel:
1364 case e_lpsel:
1365 case e_rpsel:
1366 final_types[0] = final_type;
1367 final_types[1] = NULL;
1368 final_types[2] = NULL;
1369 *final_type = base_type;
1370 break;
1371
1372 case e_tsel:
1373 case e_ltsel:
1374 case e_rtsel:
1375 final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1376 if (!final_types[0])
1377 return NULL;
1378 if (field == e_tsel)
1379 *final_types[0] = R_FSEL;
1380 else if (field == e_ltsel)
1381 *final_types[0] = R_LSEL;
1382 else
1383 *final_types[0] = R_RSEL;
1384 final_types[1] = final_type;
1385 final_types[2] = NULL;
1386 *final_type = base_type;
1387 break;
1388
1389 case e_lssel:
1390 case e_rssel:
1391 final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1392 if (!final_types[0])
1393 return NULL;
1394 *final_types[0] = R_S_MODE;
1395 final_types[1] = final_type;
1396 final_types[2] = NULL;
1397 *final_type = base_type;
1398 break;
1399
1400 case e_lsel:
1401 case e_rsel:
1402 final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1403 if (!final_types[0])
1404 return NULL;
1405 *final_types[0] = R_N_MODE;
1406 final_types[1] = final_type;
1407 final_types[2] = NULL;
1408 *final_type = base_type;
1409 break;
1410
1411 case e_ldsel:
1412 case e_rdsel:
1413 final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1414 if (!final_types[0])
1415 return NULL;
1416 *final_types[0] = R_D_MODE;
1417 final_types[1] = final_type;
1418 final_types[2] = NULL;
1419 *final_type = base_type;
1420 break;
1421
1422 case e_lrsel:
1423 case e_rrsel:
1424 final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1425 if (!final_types[0])
1426 return NULL;
1427 *final_types[0] = R_R_MODE;
1428 final_types[1] = final_type;
1429 final_types[2] = NULL;
1430 *final_type = base_type;
1431 break;
1432
1433 case e_nsel:
1434 final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1435 if (!final_types[0])
1436 return NULL;
1437 *final_types[0] = R_N1SEL;
1438 final_types[1] = final_type;
1439 final_types[2] = NULL;
1440 *final_type = base_type;
1441 break;
1442
1443 case e_nlsel:
1444 case e_nlrsel:
1445 final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1446 if (!final_types[0])
1447 return NULL;
1448 *final_types[0] = R_N0SEL;
1449 final_types[1] = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1450 if (!final_types[1])
1451 return NULL;
1452 if (field == e_nlsel)
1453 *final_types[1] = R_N_MODE;
1454 else
1455 *final_types[1] = R_R_MODE;
1456 final_types[2] = final_type;
1457 final_types[3] = NULL;
1458 *final_type = base_type;
1459 break;
1460
1461 /* FIXME: These two field selectors are not currently supported. */
1462 case e_ltpsel:
1463 case e_rtpsel:
1464 abort ();
1465 }
1466
1467 switch (base_type)
1468 {
1469 case R_HPPA:
1470 /* The difference of two symbols needs *very* special handling. */
1471 if (sym_diff)
1472 {
1473 bfd_size_type amt = sizeof (int);
1474
1475 final_types[0] = bfd_alloc (abfd, amt);
1476 final_types[1] = bfd_alloc (abfd, amt);
1477 final_types[2] = bfd_alloc (abfd, amt);
1478 final_types[3] = bfd_alloc (abfd, amt);
1479 if (!final_types[0] || !final_types[1] || !final_types[2])
1480 return NULL;
1481 if (field == e_fsel)
1482 *final_types[0] = R_FSEL;
1483 else if (field == e_rsel)
1484 *final_types[0] = R_RSEL;
1485 else if (field == e_lsel)
1486 *final_types[0] = R_LSEL;
1487 *final_types[1] = R_COMP2;
1488 *final_types[2] = R_COMP2;
1489 *final_types[3] = R_COMP1;
1490 final_types[4] = final_type;
1491 if (format == 32)
1492 *final_types[4] = R_DATA_EXPR;
1493 else
1494 *final_types[4] = R_CODE_EXPR;
1495 final_types[5] = NULL;
1496 break;
1497 }
1498 /* PLABELs get their own relocation type. */
1499 else if (field == e_psel
1500 || field == e_lpsel
1501 || field == e_rpsel)
1502 {
1503 /* A PLABEL relocation that has a size of 32 bits must
1504 be a R_DATA_PLABEL. All others are R_CODE_PLABELs. */
1505 if (format == 32)
1506 *final_type = R_DATA_PLABEL;
1507 else
1508 *final_type = R_CODE_PLABEL;
1509 }
1510 /* PIC stuff. */
1511 else if (field == e_tsel
1512 || field == e_ltsel
1513 || field == e_rtsel)
1514 *final_type = R_DLT_REL;
1515 /* A relocation in the data space is always a full 32bits. */
1516 else if (format == 32)
1517 {
1518 *final_type = R_DATA_ONE_SYMBOL;
1519
1520 /* If there's no SOM symbol type associated with this BFD
1521 symbol, then set the symbol type to ST_DATA.
1522
1523 Only do this if the type is going to default later when
1524 we write the object file.
1525
1526 This is done so that the linker never encounters an
1527 R_DATA_ONE_SYMBOL reloc involving an ST_CODE symbol.
1528
1529 This allows the compiler to generate exception handling
1530 tables.
1531
1532 Note that one day we may need to also emit BEGIN_BRTAB and
1533 END_BRTAB to prevent the linker from optimizing away insns
1534 in exception handling regions. */
1535 if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
1536 && (sym->flags & BSF_SECTION_SYM) == 0
1537 && (sym->flags & BSF_FUNCTION) == 0
1538 && ! bfd_is_com_section (sym->section))
1539 som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
1540 }
1541 break;
1542
1543 case R_HPPA_GOTOFF:
1544 /* More PLABEL special cases. */
1545 if (field == e_psel
1546 || field == e_lpsel
1547 || field == e_rpsel)
1548 *final_type = R_DATA_PLABEL;
1549 break;
1550
1551 case R_HPPA_COMPLEX:
1552 /* The difference of two symbols needs *very* special handling. */
1553 if (sym_diff)
1554 {
1555 bfd_size_type amt = sizeof (int);
1556
1557 final_types[0] = bfd_alloc (abfd, amt);
1558 final_types[1] = bfd_alloc (abfd, amt);
1559 final_types[2] = bfd_alloc (abfd, amt);
1560 final_types[3] = bfd_alloc (abfd, amt);
1561 if (!final_types[0] || !final_types[1] || !final_types[2])
1562 return NULL;
1563 if (field == e_fsel)
1564 *final_types[0] = R_FSEL;
1565 else if (field == e_rsel)
1566 *final_types[0] = R_RSEL;
1567 else if (field == e_lsel)
1568 *final_types[0] = R_LSEL;
1569 *final_types[1] = R_COMP2;
1570 *final_types[2] = R_COMP2;
1571 *final_types[3] = R_COMP1;
1572 final_types[4] = final_type;
1573 if (format == 32)
1574 *final_types[4] = R_DATA_EXPR;
1575 else
1576 *final_types[4] = R_CODE_EXPR;
1577 final_types[5] = NULL;
1578 break;
1579 }
1580 else
1581 break;
1582
1583 case R_HPPA_NONE:
1584 case R_HPPA_ABS_CALL:
1585 /* Right now we can default all these. */
1586 break;
1587
1588 case R_HPPA_PCREL_CALL:
1589 {
1590 #ifndef NO_PCREL_MODES
1591 /* If we have short and long pcrel modes, then generate the proper
1592 mode selector, then the pcrel relocation. Redundant selectors
1593 will be eliminated as the relocs are sized and emitted. */
1594 bfd_size_type amt = sizeof (int);
1595
1596 final_types[0] = bfd_alloc (abfd, amt);
1597 if (!final_types[0])
1598 return NULL;
1599 if (format == 17)
1600 *final_types[0] = R_SHORT_PCREL_MODE;
1601 else
1602 *final_types[0] = R_LONG_PCREL_MODE;
1603 final_types[1] = final_type;
1604 final_types[2] = NULL;
1605 *final_type = base_type;
1606 #endif
1607 break;
1608 }
1609 }
1610 return final_types;
1611 }
1612
1613 /* Return the address of the correct entry in the PA SOM relocation
1614 howto table. */
1615
1616 static reloc_howto_type *
1617 som_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1618 bfd_reloc_code_real_type code)
1619 {
1620 if ((int) code < (int) R_NO_RELOCATION + 255)
1621 {
1622 BFD_ASSERT ((int) som_hppa_howto_table[(int) code].type == (int) code);
1623 return &som_hppa_howto_table[(int) code];
1624 }
1625
1626 return NULL;
1627 }
1628
1629 /* Perform some initialization for an object. Save results of this
1630 initialization in the BFD. */
1631
1632 static const bfd_target *
1633 som_object_setup (bfd *abfd,
1634 struct header *file_hdrp,
1635 struct som_exec_auxhdr *aux_hdrp,
1636 unsigned long current_offset)
1637 {
1638 asection *section;
1639
1640 /* som_mkobject will set bfd_error if som_mkobject fails. */
1641 if (! som_mkobject (abfd))
1642 return NULL;
1643
1644 /* Set BFD flags based on what information is available in the SOM. */
1645 abfd->flags = BFD_NO_FLAGS;
1646 if (file_hdrp->symbol_total)
1647 abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;
1648
1649 switch (file_hdrp->a_magic)
1650 {
1651 case DEMAND_MAGIC:
1652 abfd->flags |= (D_PAGED | WP_TEXT | EXEC_P);
1653 break;
1654 case SHARE_MAGIC:
1655 abfd->flags |= (WP_TEXT | EXEC_P);
1656 break;
1657 case EXEC_MAGIC:
1658 abfd->flags |= (EXEC_P);
1659 break;
1660 case RELOC_MAGIC:
1661 abfd->flags |= HAS_RELOC;
1662 break;
1663 #ifdef SHL_MAGIC
1664 case SHL_MAGIC:
1665 #endif
1666 #ifdef DL_MAGIC
1667 case DL_MAGIC:
1668 #endif
1669 abfd->flags |= DYNAMIC;
1670 break;
1671
1672 default:
1673 break;
1674 }
1675
1676 /* Save the auxiliary header. */
1677 obj_som_exec_hdr (abfd) = aux_hdrp;
1678
1679 /* Allocate space to hold the saved exec header information. */
1680 obj_som_exec_data (abfd) = bfd_zalloc (abfd, (bfd_size_type) sizeof (struct som_exec_data));
1681 if (obj_som_exec_data (abfd) == NULL)
1682 return NULL;
1683
1684 /* The braindamaged OSF1 linker switched exec_flags and exec_entry!
1685
1686 We used to identify OSF1 binaries based on NEW_VERSION_ID, but
1687 apparently the latest HPUX linker is using NEW_VERSION_ID now.
1688
1689 It's about time, OSF has used the new id since at least 1992;
1690 HPUX didn't start till nearly 1995!.
1691
1692 The new approach examines the entry field for an executable. If
1693 it is not 4-byte aligned then it's not a proper code address and
1694 we guess it's really the executable flags. For a main program,
1695 we also consider zero to be indicative of a buggy linker, since
1696 that is not a valid entry point. The entry point for a shared
1697 library, however, can be zero so we do not consider that to be
1698 indicative of a buggy linker. */
1699 if (aux_hdrp)
1700 {
1701 int found = 0;
1702
1703 for (section = abfd->sections; section; section = section->next)
1704 {
1705 bfd_vma entry;
1706
1707 if ((section->flags & SEC_CODE) == 0)
1708 continue;
1709 entry = aux_hdrp->exec_entry + aux_hdrp->exec_tmem;
1710 if (entry >= section->vma
1711 && entry < section->vma + section->size)
1712 found = 1;
1713 }
1714 if ((aux_hdrp->exec_entry == 0 && !(abfd->flags & DYNAMIC))
1715 || (aux_hdrp->exec_entry & 0x3) != 0
1716 || ! found)
1717 {
1718 bfd_get_start_address (abfd) = aux_hdrp->exec_flags;
1719 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_entry;
1720 }
1721 else
1722 {
1723 bfd_get_start_address (abfd) = aux_hdrp->exec_entry + current_offset;
1724 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_flags;
1725 }
1726 }
1727
1728 obj_som_exec_data (abfd)->version_id = file_hdrp->version_id;
1729
1730 bfd_default_set_arch_mach (abfd, bfd_arch_hppa, pa10);
1731 bfd_get_symcount (abfd) = file_hdrp->symbol_total;
1732
1733 /* Initialize the saved symbol table and string table to NULL.
1734 Save important offsets and sizes from the SOM header into
1735 the BFD. */
1736 obj_som_stringtab (abfd) = NULL;
1737 obj_som_symtab (abfd) = NULL;
1738 obj_som_sorted_syms (abfd) = NULL;
1739 obj_som_stringtab_size (abfd) = file_hdrp->symbol_strings_size;
1740 obj_som_sym_filepos (abfd) = file_hdrp->symbol_location + current_offset;
1741 obj_som_str_filepos (abfd) = (file_hdrp->symbol_strings_location
1742 + current_offset);
1743 obj_som_reloc_filepos (abfd) = (file_hdrp->fixup_request_location
1744 + current_offset);
1745 obj_som_exec_data (abfd)->system_id = file_hdrp->system_id;
1746
1747 return abfd->xvec;
1748 }
1749
1750 /* Convert all of the space and subspace info into BFD sections. Each space
1751 contains a number of subspaces, which in turn describe the mapping between
1752 regions of the exec file, and the address space that the program runs in.
1753 BFD sections which correspond to spaces will overlap the sections for the
1754 associated subspaces. */
1755
1756 static bfd_boolean
1757 setup_sections (bfd *abfd,
1758 struct header *file_hdr,
1759 unsigned long current_offset)
1760 {
1761 char *space_strings;
1762 unsigned int space_index, i;
1763 unsigned int total_subspaces = 0;
1764 asection **subspace_sections = NULL;
1765 asection *section;
1766 bfd_size_type amt;
1767
1768 /* First, read in space names. */
1769 amt = file_hdr->space_strings_size;
1770 space_strings = bfd_malloc (amt);
1771 if (!space_strings && amt != 0)
1772 goto error_return;
1773
1774 if (bfd_seek (abfd, current_offset + file_hdr->space_strings_location,
1775 SEEK_SET) != 0)
1776 goto error_return;
1777 if (bfd_bread (space_strings, amt, abfd) != amt)
1778 goto error_return;
1779
1780 /* Loop over all of the space dictionaries, building up sections. */
1781 for (space_index = 0; space_index < file_hdr->space_total; space_index++)
1782 {
1783 struct space_dictionary_record space;
1784 struct som_subspace_dictionary_record subspace, save_subspace;
1785 unsigned int subspace_index;
1786 asection *space_asect;
1787 bfd_size_type space_size = 0;
1788 char *newname;
1789
1790 /* Read the space dictionary element. */
1791 if (bfd_seek (abfd,
1792 (current_offset + file_hdr->space_location
1793 + space_index * sizeof space),
1794 SEEK_SET) != 0)
1795 goto error_return;
1796 amt = sizeof space;
1797 if (bfd_bread (&space, amt, abfd) != amt)
1798 goto error_return;
1799
1800 /* Setup the space name string. */
1801 space.name.n_name = space.name.n_strx + space_strings;
1802
1803 /* Make a section out of it. */
1804 amt = strlen (space.name.n_name) + 1;
1805 newname = bfd_alloc (abfd, amt);
1806 if (!newname)
1807 goto error_return;
1808 strcpy (newname, space.name.n_name);
1809
1810 space_asect = bfd_make_section_anyway (abfd, newname);
1811 if (!space_asect)
1812 goto error_return;
1813
1814 if (space.is_loadable == 0)
1815 space_asect->flags |= SEC_DEBUGGING;
1816
1817 /* Set up all the attributes for the space. */
1818 if (! bfd_som_set_section_attributes (space_asect, space.is_defined,
1819 space.is_private, space.sort_key,
1820 space.space_number))
1821 goto error_return;
1822
1823 /* If the space has no subspaces, then we're done. */
1824 if (space.subspace_quantity == 0)
1825 continue;
1826
1827 /* Now, read in the first subspace for this space. */
1828 if (bfd_seek (abfd,
1829 (current_offset + file_hdr->subspace_location
1830 + space.subspace_index * sizeof subspace),
1831 SEEK_SET) != 0)
1832 goto error_return;
1833 amt = sizeof subspace;
1834 if (bfd_bread (&subspace, amt, abfd) != amt)
1835 goto error_return;
1836 /* Seek back to the start of the subspaces for loop below. */
1837 if (bfd_seek (abfd,
1838 (current_offset + file_hdr->subspace_location
1839 + space.subspace_index * sizeof subspace),
1840 SEEK_SET) != 0)
1841 goto error_return;
1842
1843 /* Setup the start address and file loc from the first subspace
1844 record. */
1845 space_asect->vma = subspace.subspace_start;
1846 space_asect->filepos = subspace.file_loc_init_value + current_offset;
1847 space_asect->alignment_power = exact_log2 (subspace.alignment);
1848 if (space_asect->alignment_power == (unsigned) -1)
1849 goto error_return;
1850
1851 /* Initialize save_subspace so we can reliably determine if this
1852 loop placed any useful values into it. */
1853 memset (&save_subspace, 0, sizeof (save_subspace));
1854
1855 /* Loop over the rest of the subspaces, building up more sections. */
1856 for (subspace_index = 0; subspace_index < space.subspace_quantity;
1857 subspace_index++)
1858 {
1859 asection *subspace_asect;
1860
1861 /* Read in the next subspace. */
1862 amt = sizeof subspace;
1863 if (bfd_bread (&subspace, amt, abfd) != amt)
1864 goto error_return;
1865
1866 /* Setup the subspace name string. */
1867 subspace.name.n_name = subspace.name.n_strx + space_strings;
1868
1869 amt = strlen (subspace.name.n_name) + 1;
1870 newname = bfd_alloc (abfd, amt);
1871 if (!newname)
1872 goto error_return;
1873 strcpy (newname, subspace.name.n_name);
1874
1875 /* Make a section out of this subspace. */
1876 subspace_asect = bfd_make_section_anyway (abfd, newname);
1877 if (!subspace_asect)
1878 goto error_return;
1879
1880 /* Store private information about the section. */
1881 if (! bfd_som_set_subsection_attributes (subspace_asect, space_asect,
1882 subspace.access_control_bits,
1883 subspace.sort_key,
1884 subspace.quadrant,
1885 subspace.is_comdat,
1886 subspace.is_common,
1887 subspace.dup_common))
1888 goto error_return;
1889
1890 /* Keep an easy mapping between subspaces and sections.
1891 Note we do not necessarily read the subspaces in the
1892 same order in which they appear in the object file.
1893
1894 So to make the target index come out correctly, we
1895 store the location of the subspace header in target
1896 index, then sort using the location of the subspace
1897 header as the key. Then we can assign correct
1898 subspace indices. */
1899 total_subspaces++;
1900 subspace_asect->target_index = bfd_tell (abfd) - sizeof (subspace);
1901
1902 /* Set SEC_READONLY and SEC_CODE/SEC_DATA as specified
1903 by the access_control_bits in the subspace header. */
1904 switch (subspace.access_control_bits >> 4)
1905 {
1906 /* Readonly data. */
1907 case 0x0:
1908 subspace_asect->flags |= SEC_DATA | SEC_READONLY;
1909 break;
1910
1911 /* Normal data. */
1912 case 0x1:
1913 subspace_asect->flags |= SEC_DATA;
1914 break;
1915
1916 /* Readonly code and the gateways.
1917 Gateways have other attributes which do not map
1918 into anything BFD knows about. */
1919 case 0x2:
1920 case 0x4:
1921 case 0x5:
1922 case 0x6:
1923 case 0x7:
1924 subspace_asect->flags |= SEC_CODE | SEC_READONLY;
1925 break;
1926
1927 /* dynamic (writable) code. */
1928 case 0x3:
1929 subspace_asect->flags |= SEC_CODE;
1930 break;
1931 }
1932
1933 if (subspace.is_comdat || subspace.is_common || subspace.dup_common)
1934 subspace_asect->flags |= SEC_LINK_ONCE;
1935
1936 if (subspace.subspace_length > 0)
1937 subspace_asect->flags |= SEC_HAS_CONTENTS;
1938
1939 if (subspace.is_loadable)
1940 subspace_asect->flags |= SEC_ALLOC | SEC_LOAD;
1941 else
1942 subspace_asect->flags |= SEC_DEBUGGING;
1943
1944 if (subspace.code_only)
1945 subspace_asect->flags |= SEC_CODE;
1946
1947 /* Both file_loc_init_value and initialization_length will
1948 be zero for a BSS like subspace. */
1949 if (subspace.file_loc_init_value == 0
1950 && subspace.initialization_length == 0)
1951 subspace_asect->flags &= ~(SEC_DATA | SEC_LOAD | SEC_HAS_CONTENTS);
1952
1953 /* This subspace has relocations.
1954 The fixup_request_quantity is a byte count for the number of
1955 entries in the relocation stream; it is not the actual number
1956 of relocations in the subspace. */
1957 if (subspace.fixup_request_quantity != 0)
1958 {
1959 subspace_asect->flags |= SEC_RELOC;
1960 subspace_asect->rel_filepos = subspace.fixup_request_index;
1961 som_section_data (subspace_asect)->reloc_size
1962 = subspace.fixup_request_quantity;
1963 /* We can not determine this yet. When we read in the
1964 relocation table the correct value will be filled in. */
1965 subspace_asect->reloc_count = (unsigned) -1;
1966 }
1967
1968 /* Update save_subspace if appropriate. */
1969 if (subspace.file_loc_init_value > save_subspace.file_loc_init_value)
1970 save_subspace = subspace;
1971
1972 subspace_asect->vma = subspace.subspace_start;
1973 subspace_asect->size = subspace.subspace_length;
1974 subspace_asect->filepos = (subspace.file_loc_init_value
1975 + current_offset);
1976 subspace_asect->alignment_power = exact_log2 (subspace.alignment);
1977 if (subspace_asect->alignment_power == (unsigned) -1)
1978 goto error_return;
1979
1980 /* Keep track of the accumulated sizes of the sections. */
1981 space_size += subspace.subspace_length;
1982 }
1983
1984 /* This can happen for a .o which defines symbols in otherwise
1985 empty subspaces. */
1986 if (!save_subspace.file_loc_init_value)
1987 space_asect->size = 0;
1988 else
1989 {
1990 if (file_hdr->a_magic != RELOC_MAGIC)
1991 {
1992 /* Setup the size for the space section based upon the info
1993 in the last subspace of the space. */
1994 space_asect->size = (save_subspace.subspace_start
1995 - space_asect->vma
1996 + save_subspace.subspace_length);
1997 }
1998 else
1999 {
2000 /* The subspace_start field is not initialised in relocatable
2001 only objects, so it cannot be used for length calculations.
2002 Instead we use the space_size value which we have been
2003 accumulating. This isn't an accurate estimate since it
2004 ignores alignment and ordering issues. */
2005 space_asect->size = space_size;
2006 }
2007 }
2008 }
2009 /* Now that we've read in all the subspace records, we need to assign
2010 a target index to each subspace. */
2011 amt = total_subspaces;
2012 amt *= sizeof (asection *);
2013 subspace_sections = bfd_malloc (amt);
2014 if (subspace_sections == NULL)
2015 goto error_return;
2016
2017 for (i = 0, section = abfd->sections; section; section = section->next)
2018 {
2019 if (!som_is_subspace (section))
2020 continue;
2021
2022 subspace_sections[i] = section;
2023 i++;
2024 }
2025 qsort (subspace_sections, total_subspaces,
2026 sizeof (asection *), compare_subspaces);
2027
2028 /* subspace_sections is now sorted in the order in which the subspaces
2029 appear in the object file. Assign an index to each one now. */
2030 for (i = 0; i < total_subspaces; i++)
2031 subspace_sections[i]->target_index = i;
2032
2033 if (space_strings != NULL)
2034 free (space_strings);
2035
2036 if (subspace_sections != NULL)
2037 free (subspace_sections);
2038
2039 return TRUE;
2040
2041 error_return:
2042 if (space_strings != NULL)
2043 free (space_strings);
2044
2045 if (subspace_sections != NULL)
2046 free (subspace_sections);
2047 return FALSE;
2048 }
2049
2050 /* Read in a SOM object and make it into a BFD. */
2051
2052 static const bfd_target *
2053 som_object_p (bfd *abfd)
2054 {
2055 struct header file_hdr;
2056 struct som_exec_auxhdr *aux_hdr_ptr = NULL;
2057 unsigned long current_offset = 0;
2058 struct lst_header lst_header;
2059 struct som_entry som_entry;
2060 bfd_size_type amt;
2061 #define ENTRY_SIZE sizeof (struct som_entry)
2062
2063 amt = FILE_HDR_SIZE;
2064 if (bfd_bread ((void *) &file_hdr, amt, abfd) != amt)
2065 {
2066 if (bfd_get_error () != bfd_error_system_call)
2067 bfd_set_error (bfd_error_wrong_format);
2068 return NULL;
2069 }
2070
2071 if (!_PA_RISC_ID (file_hdr.system_id))
2072 {
2073 bfd_set_error (bfd_error_wrong_format);
2074 return NULL;
2075 }
2076
2077 switch (file_hdr.a_magic)
2078 {
2079 case RELOC_MAGIC:
2080 case EXEC_MAGIC:
2081 case SHARE_MAGIC:
2082 case DEMAND_MAGIC:
2083 #ifdef DL_MAGIC
2084 case DL_MAGIC:
2085 #endif
2086 #ifdef SHL_MAGIC
2087 case SHL_MAGIC:
2088 #endif
2089 #ifdef SHARED_MAGIC_CNX
2090 case SHARED_MAGIC_CNX:
2091 #endif
2092 break;
2093
2094 #ifdef EXECLIBMAGIC
2095 case EXECLIBMAGIC:
2096 /* Read the lst header and determine where the SOM directory begins. */
2097
2098 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0)
2099 {
2100 if (bfd_get_error () != bfd_error_system_call)
2101 bfd_set_error (bfd_error_wrong_format);
2102 return NULL;
2103 }
2104
2105 amt = SLSTHDR;
2106 if (bfd_bread ((void *) &lst_header, amt, abfd) != amt)
2107 {
2108 if (bfd_get_error () != bfd_error_system_call)
2109 bfd_set_error (bfd_error_wrong_format);
2110 return NULL;
2111 }
2112
2113 /* Position to and read the first directory entry. */
2114
2115 if (bfd_seek (abfd, lst_header.dir_loc, SEEK_SET) != 0)
2116 {
2117 if (bfd_get_error () != bfd_error_system_call)
2118 bfd_set_error (bfd_error_wrong_format);
2119 return NULL;
2120 }
2121
2122 amt = ENTRY_SIZE;
2123 if (bfd_bread ((void *) &som_entry, amt, abfd) != amt)
2124 {
2125 if (bfd_get_error () != bfd_error_system_call)
2126 bfd_set_error (bfd_error_wrong_format);
2127 return NULL;
2128 }
2129
2130 /* Now position to the first SOM. */
2131
2132 if (bfd_seek (abfd, som_entry.location, SEEK_SET) != 0)
2133 {
2134 if (bfd_get_error () != bfd_error_system_call)
2135 bfd_set_error (bfd_error_wrong_format);
2136 return NULL;
2137 }
2138
2139 current_offset = som_entry.location;
2140
2141 /* And finally, re-read the som header. */
2142 amt = FILE_HDR_SIZE;
2143 if (bfd_bread ((void *) &file_hdr, amt, abfd) != amt)
2144 {
2145 if (bfd_get_error () != bfd_error_system_call)
2146 bfd_set_error (bfd_error_wrong_format);
2147 return NULL;
2148 }
2149
2150 break;
2151 #endif
2152
2153 default:
2154 bfd_set_error (bfd_error_wrong_format);
2155 return NULL;
2156 }
2157
2158 if (file_hdr.version_id != VERSION_ID
2159 && file_hdr.version_id != NEW_VERSION_ID)
2160 {
2161 bfd_set_error (bfd_error_wrong_format);
2162 return NULL;
2163 }
2164
2165 /* If the aux_header_size field in the file header is zero, then this
2166 object is an incomplete executable (a .o file). Do not try to read
2167 a non-existant auxiliary header. */
2168 if (file_hdr.aux_header_size != 0)
2169 {
2170 aux_hdr_ptr = bfd_zalloc (abfd,
2171 (bfd_size_type) sizeof (*aux_hdr_ptr));
2172 if (aux_hdr_ptr == NULL)
2173 return NULL;
2174 amt = AUX_HDR_SIZE;
2175 if (bfd_bread ((void *) aux_hdr_ptr, amt, abfd) != amt)
2176 {
2177 if (bfd_get_error () != bfd_error_system_call)
2178 bfd_set_error (bfd_error_wrong_format);
2179 return NULL;
2180 }
2181 }
2182
2183 if (!setup_sections (abfd, &file_hdr, current_offset))
2184 {
2185 /* setup_sections does not bubble up a bfd error code. */
2186 bfd_set_error (bfd_error_bad_value);
2187 return NULL;
2188 }
2189
2190 /* This appears to be a valid SOM object. Do some initialization. */
2191 return som_object_setup (abfd, &file_hdr, aux_hdr_ptr, current_offset);
2192 }
2193
2194 /* Create a SOM object. */
2195
2196 static bfd_boolean
2197 som_mkobject (bfd *abfd)
2198 {
2199 /* Allocate memory to hold backend information. */
2200 abfd->tdata.som_data = bfd_zalloc (abfd, (bfd_size_type) sizeof (struct som_data_struct));
2201 if (abfd->tdata.som_data == NULL)
2202 return FALSE;
2203 return TRUE;
2204 }
2205
2206 /* Initialize some information in the file header. This routine makes
2207 not attempt at doing the right thing for a full executable; it
2208 is only meant to handle relocatable objects. */
2209
2210 static bfd_boolean
2211 som_prep_headers (bfd *abfd)
2212 {
2213 struct header *file_hdr;
2214 asection *section;
2215 bfd_size_type amt = sizeof (struct header);
2216
2217 /* Make and attach a file header to the BFD. */
2218 file_hdr = bfd_zalloc (abfd, amt);
2219 if (file_hdr == NULL)
2220 return FALSE;
2221 obj_som_file_hdr (abfd) = file_hdr;
2222
2223 if (abfd->flags & (EXEC_P | DYNAMIC))
2224 {
2225 /* Make and attach an exec header to the BFD. */
2226 amt = sizeof (struct som_exec_auxhdr);
2227 obj_som_exec_hdr (abfd) = bfd_zalloc (abfd, amt);
2228 if (obj_som_exec_hdr (abfd) == NULL)
2229 return FALSE;
2230
2231 if (abfd->flags & D_PAGED)
2232 file_hdr->a_magic = DEMAND_MAGIC;
2233 else if (abfd->flags & WP_TEXT)
2234 file_hdr->a_magic = SHARE_MAGIC;
2235 #ifdef SHL_MAGIC
2236 else if (abfd->flags & DYNAMIC)
2237 file_hdr->a_magic = SHL_MAGIC;
2238 #endif
2239 else
2240 file_hdr->a_magic = EXEC_MAGIC;
2241 }
2242 else
2243 file_hdr->a_magic = RELOC_MAGIC;
2244
2245 /* These fields are optional, and embedding timestamps is not always
2246 a wise thing to do, it makes comparing objects during a multi-stage
2247 bootstrap difficult. */
2248 file_hdr->file_time.secs = 0;
2249 file_hdr->file_time.nanosecs = 0;
2250
2251 file_hdr->entry_space = 0;
2252 file_hdr->entry_subspace = 0;
2253 file_hdr->entry_offset = 0;
2254 file_hdr->presumed_dp = 0;
2255
2256 /* Now iterate over the sections translating information from
2257 BFD sections to SOM spaces/subspaces. */
2258 for (section = abfd->sections; section != NULL; section = section->next)
2259 {
2260 /* Ignore anything which has not been marked as a space or
2261 subspace. */
2262 if (!som_is_space (section) && !som_is_subspace (section))
2263 continue;
2264
2265 if (som_is_space (section))
2266 {
2267 /* Allocate space for the space dictionary. */
2268 amt = sizeof (struct space_dictionary_record);
2269 som_section_data (section)->space_dict = bfd_zalloc (abfd, amt);
2270 if (som_section_data (section)->space_dict == NULL)
2271 return FALSE;
2272 /* Set space attributes. Note most attributes of SOM spaces
2273 are set based on the subspaces it contains. */
2274 som_section_data (section)->space_dict->loader_fix_index = -1;
2275 som_section_data (section)->space_dict->init_pointer_index = -1;
2276
2277 /* Set more attributes that were stuffed away in private data. */
2278 som_section_data (section)->space_dict->sort_key =
2279 som_section_data (section)->copy_data->sort_key;
2280 som_section_data (section)->space_dict->is_defined =
2281 som_section_data (section)->copy_data->is_defined;
2282 som_section_data (section)->space_dict->is_private =
2283 som_section_data (section)->copy_data->is_private;
2284 som_section_data (section)->space_dict->space_number =
2285 som_section_data (section)->copy_data->space_number;
2286 }
2287 else
2288 {
2289 /* Allocate space for the subspace dictionary. */
2290 amt = sizeof (struct som_subspace_dictionary_record);
2291 som_section_data (section)->subspace_dict = bfd_zalloc (abfd, amt);
2292 if (som_section_data (section)->subspace_dict == NULL)
2293 return FALSE;
2294
2295 /* Set subspace attributes. Basic stuff is done here, additional
2296 attributes are filled in later as more information becomes
2297 available. */
2298 if (section->flags & SEC_ALLOC)
2299 som_section_data (section)->subspace_dict->is_loadable = 1;
2300
2301 if (section->flags & SEC_CODE)
2302 som_section_data (section)->subspace_dict->code_only = 1;
2303
2304 som_section_data (section)->subspace_dict->subspace_start =
2305 section->vma;
2306 som_section_data (section)->subspace_dict->subspace_length =
2307 section->size;
2308 som_section_data (section)->subspace_dict->initialization_length =
2309 section->size;
2310 som_section_data (section)->subspace_dict->alignment =
2311 1 << section->alignment_power;
2312
2313 /* Set more attributes that were stuffed away in private data. */
2314 som_section_data (section)->subspace_dict->sort_key =
2315 som_section_data (section)->copy_data->sort_key;
2316 som_section_data (section)->subspace_dict->access_control_bits =
2317 som_section_data (section)->copy_data->access_control_bits;
2318 som_section_data (section)->subspace_dict->quadrant =
2319 som_section_data (section)->copy_data->quadrant;
2320 som_section_data (section)->subspace_dict->is_comdat =
2321 som_section_data (section)->copy_data->is_comdat;
2322 som_section_data (section)->subspace_dict->is_common =
2323 som_section_data (section)->copy_data->is_common;
2324 som_section_data (section)->subspace_dict->dup_common =
2325 som_section_data (section)->copy_data->dup_common;
2326 }
2327 }
2328 return TRUE;
2329 }
2330
2331 /* Return TRUE if the given section is a SOM space, FALSE otherwise. */
2332
2333 static bfd_boolean
2334 som_is_space (asection *section)
2335 {
2336 /* If no copy data is available, then it's neither a space nor a
2337 subspace. */
2338 if (som_section_data (section)->copy_data == NULL)
2339 return FALSE;
2340
2341 /* If the containing space isn't the same as the given section,
2342 then this isn't a space. */
2343 if (som_section_data (section)->copy_data->container != section
2344 && (som_section_data (section)->copy_data->container->output_section
2345 != section))
2346 return FALSE;
2347
2348 /* OK. Must be a space. */
2349 return TRUE;
2350 }
2351
2352 /* Return TRUE if the given section is a SOM subspace, FALSE otherwise. */
2353
2354 static bfd_boolean
2355 som_is_subspace (asection *section)
2356 {
2357 /* If no copy data is available, then it's neither a space nor a
2358 subspace. */
2359 if (som_section_data (section)->copy_data == NULL)
2360 return FALSE;
2361
2362 /* If the containing space is the same as the given section,
2363 then this isn't a subspace. */
2364 if (som_section_data (section)->copy_data->container == section
2365 || (som_section_data (section)->copy_data->container->output_section
2366 == section))
2367 return FALSE;
2368
2369 /* OK. Must be a subspace. */
2370 return TRUE;
2371 }
2372
2373 /* Return TRUE if the given space contains the given subspace. It
2374 is safe to assume space really is a space, and subspace really
2375 is a subspace. */
2376
2377 static bfd_boolean
2378 som_is_container (asection *space, asection *subspace)
2379 {
2380 return (som_section_data (subspace)->copy_data->container == space)
2381 || (som_section_data (subspace)->copy_data->container->output_section
2382 == space);
2383 }
2384
2385 /* Count and return the number of spaces attached to the given BFD. */
2386
2387 static unsigned long
2388 som_count_spaces (bfd *abfd)
2389 {
2390 int count = 0;
2391 asection *section;
2392
2393 for (section = abfd->sections; section != NULL; section = section->next)
2394 count += som_is_space (section);
2395
2396 return count;
2397 }
2398
2399 /* Count the number of subspaces attached to the given BFD. */
2400
2401 static unsigned long
2402 som_count_subspaces (bfd *abfd)
2403 {
2404 int count = 0;
2405 asection *section;
2406
2407 for (section = abfd->sections; section != NULL; section = section->next)
2408 count += som_is_subspace (section);
2409
2410 return count;
2411 }
2412
2413 /* Return -1, 0, 1 indicating the relative ordering of sym1 and sym2.
2414
2415 We desire symbols to be ordered starting with the symbol with the
2416 highest relocation count down to the symbol with the lowest relocation
2417 count. Doing so compacts the relocation stream. */
2418
2419 static int
2420 compare_syms (const void *arg1, const void *arg2)
2421 {
2422 asymbol **sym1 = (asymbol **) arg1;
2423 asymbol **sym2 = (asymbol **) arg2;
2424 unsigned int count1, count2;
2425
2426 /* Get relocation count for each symbol. Note that the count
2427 is stored in the udata pointer for section symbols! */
2428 if ((*sym1)->flags & BSF_SECTION_SYM)
2429 count1 = (*sym1)->udata.i;
2430 else
2431 count1 = som_symbol_data (*sym1)->reloc_count;
2432
2433 if ((*sym2)->flags & BSF_SECTION_SYM)
2434 count2 = (*sym2)->udata.i;
2435 else
2436 count2 = som_symbol_data (*sym2)->reloc_count;
2437
2438 /* Return the appropriate value. */
2439 if (count1 < count2)
2440 return 1;
2441 else if (count1 > count2)
2442 return -1;
2443 return 0;
2444 }
2445
2446 /* Return -1, 0, 1 indicating the relative ordering of subspace1
2447 and subspace. */
2448
2449 static int
2450 compare_subspaces (const void *arg1, const void *arg2)
2451 {
2452 asection **subspace1 = (asection **) arg1;
2453 asection **subspace2 = (asection **) arg2;
2454
2455 if ((*subspace1)->target_index < (*subspace2)->target_index)
2456 return -1;
2457 else if ((*subspace2)->target_index < (*subspace1)->target_index)
2458 return 1;
2459 else
2460 return 0;
2461 }
2462
2463 /* Perform various work in preparation for emitting the fixup stream. */
2464
2465 static void
2466 som_prep_for_fixups (bfd *abfd, asymbol **syms, unsigned long num_syms)
2467 {
2468 unsigned long i;
2469 asection *section;
2470 asymbol **sorted_syms;
2471 bfd_size_type amt;
2472
2473 /* Most SOM relocations involving a symbol have a length which is
2474 dependent on the index of the symbol. So symbols which are
2475 used often in relocations should have a small index. */
2476
2477 /* First initialize the counters for each symbol. */
2478 for (i = 0; i < num_syms; i++)
2479 {
2480 /* Handle a section symbol; these have no pointers back to the
2481 SOM symbol info. So we just use the udata field to hold the
2482 relocation count. */
2483 if (som_symbol_data (syms[i]) == NULL
2484 || syms[i]->flags & BSF_SECTION_SYM)
2485 {
2486 syms[i]->flags |= BSF_SECTION_SYM;
2487 syms[i]->udata.i = 0;
2488 }
2489 else
2490 som_symbol_data (syms[i])->reloc_count = 0;
2491 }
2492
2493 /* Now that the counters are initialized, make a weighted count
2494 of how often a given symbol is used in a relocation. */
2495 for (section = abfd->sections; section != NULL; section = section->next)
2496 {
2497 int j;
2498
2499 /* Does this section have any relocations? */
2500 if ((int) section->reloc_count <= 0)
2501 continue;
2502
2503 /* Walk through each relocation for this section. */
2504 for (j = 1; j < (int) section->reloc_count; j++)
2505 {
2506 arelent *reloc = section->orelocation[j];
2507 int scale;
2508
2509 /* A relocation against a symbol in the *ABS* section really
2510 does not have a symbol. Likewise if the symbol isn't associated
2511 with any section. */
2512 if (reloc->sym_ptr_ptr == NULL
2513 || bfd_is_abs_section ((*reloc->sym_ptr_ptr)->section))
2514 continue;
2515
2516 /* Scaling to encourage symbols involved in R_DP_RELATIVE
2517 and R_CODE_ONE_SYMBOL relocations to come first. These
2518 two relocations have single byte versions if the symbol
2519 index is very small. */
2520 if (reloc->howto->type == R_DP_RELATIVE
2521 || reloc->howto->type == R_CODE_ONE_SYMBOL)
2522 scale = 2;
2523 else
2524 scale = 1;
2525
2526 /* Handle section symbols by storing the count in the udata
2527 field. It will not be used and the count is very important
2528 for these symbols. */
2529 if ((*reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2530 {
2531 (*reloc->sym_ptr_ptr)->udata.i =
2532 (*reloc->sym_ptr_ptr)->udata.i + scale;
2533 continue;
2534 }
2535
2536 /* A normal symbol. Increment the count. */
2537 som_symbol_data (*reloc->sym_ptr_ptr)->reloc_count += scale;
2538 }
2539 }
2540
2541 /* Sort a copy of the symbol table, rather than the canonical
2542 output symbol table. */
2543 amt = num_syms;
2544 amt *= sizeof (asymbol *);
2545 sorted_syms = bfd_zalloc (abfd, amt);
2546 memcpy (sorted_syms, syms, num_syms * sizeof (asymbol *));
2547 qsort (sorted_syms, num_syms, sizeof (asymbol *), compare_syms);
2548 obj_som_sorted_syms (abfd) = sorted_syms;
2549
2550 /* Compute the symbol indexes, they will be needed by the relocation
2551 code. */
2552 for (i = 0; i < num_syms; i++)
2553 {
2554 /* A section symbol. Again, there is no pointer to backend symbol
2555 information, so we reuse the udata field again. */
2556 if (sorted_syms[i]->flags & BSF_SECTION_SYM)
2557 sorted_syms[i]->udata.i = i;
2558 else
2559 som_symbol_data (sorted_syms[i])->index = i;
2560 }
2561 }
2562
2563 static bfd_boolean
2564 som_write_fixups (bfd *abfd,
2565 unsigned long current_offset,
2566 unsigned int *total_reloc_sizep)
2567 {
2568 unsigned int i, j;
2569 /* Chunk of memory that we can use as buffer space, then throw
2570 away. */
2571 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2572 unsigned char *p;
2573 unsigned int total_reloc_size = 0;
2574 unsigned int subspace_reloc_size = 0;
2575 unsigned int num_spaces = obj_som_file_hdr (abfd)->space_total;
2576 asection *section = abfd->sections;
2577 bfd_size_type amt;
2578
2579 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2580 p = tmp_space;
2581
2582 /* All the fixups for a particular subspace are emitted in a single
2583 stream. All the subspaces for a particular space are emitted
2584 as a single stream.
2585
2586 So, to get all the locations correct one must iterate through all the
2587 spaces, for each space iterate through its subspaces and output a
2588 fixups stream. */
2589 for (i = 0; i < num_spaces; i++)
2590 {
2591 asection *subsection;
2592
2593 /* Find a space. */
2594 while (!som_is_space (section))
2595 section = section->next;
2596
2597 /* Now iterate through each of its subspaces. */
2598 for (subsection = abfd->sections;
2599 subsection != NULL;
2600 subsection = subsection->next)
2601 {
2602 int reloc_offset;
2603 unsigned int current_rounding_mode;
2604 #ifndef NO_PCREL_MODES
2605 unsigned int current_call_mode;
2606 #endif
2607
2608 /* Find a subspace of this space. */
2609 if (!som_is_subspace (subsection)
2610 || !som_is_container (section, subsection))
2611 continue;
2612
2613 /* If this subspace does not have real data, then we are
2614 finished with it. */
2615 if ((subsection->flags & SEC_HAS_CONTENTS) == 0)
2616 {
2617 som_section_data (subsection)->subspace_dict->fixup_request_index
2618 = -1;
2619 continue;
2620 }
2621
2622 /* This subspace has some relocations. Put the relocation stream
2623 index into the subspace record. */
2624 som_section_data (subsection)->subspace_dict->fixup_request_index
2625 = total_reloc_size;
2626
2627 /* To make life easier start over with a clean slate for
2628 each subspace. Seek to the start of the relocation stream
2629 for this subspace in preparation for writing out its fixup
2630 stream. */
2631 if (bfd_seek (abfd, current_offset + total_reloc_size, SEEK_SET) != 0)
2632 return FALSE;
2633
2634 /* Buffer space has already been allocated. Just perform some
2635 initialization here. */
2636 p = tmp_space;
2637 subspace_reloc_size = 0;
2638 reloc_offset = 0;
2639 som_initialize_reloc_queue (reloc_queue);
2640 current_rounding_mode = R_N_MODE;
2641 #ifndef NO_PCREL_MODES
2642 current_call_mode = R_SHORT_PCREL_MODE;
2643 #endif
2644
2645 /* Translate each BFD relocation into one or more SOM
2646 relocations. */
2647 for (j = 0; j < subsection->reloc_count; j++)
2648 {
2649 arelent *bfd_reloc = subsection->orelocation[j];
2650 unsigned int skip;
2651 int sym_num;
2652
2653 /* Get the symbol number. Remember it's stored in a
2654 special place for section symbols. */
2655 if ((*bfd_reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2656 sym_num = (*bfd_reloc->sym_ptr_ptr)->udata.i;
2657 else
2658 sym_num = som_symbol_data (*bfd_reloc->sym_ptr_ptr)->index;
2659
2660 /* If there is not enough room for the next couple relocations,
2661 then dump the current buffer contents now. Also reinitialize
2662 the relocation queue.
2663
2664 No single BFD relocation could ever translate into more
2665 than 100 bytes of SOM relocations (20bytes is probably the
2666 upper limit, but leave lots of space for growth). */
2667 if (p - tmp_space + 100 > SOM_TMP_BUFSIZE)
2668 {
2669 amt = p - tmp_space;
2670 if (bfd_bwrite ((void *) tmp_space, amt, abfd) != amt)
2671 return FALSE;
2672
2673 p = tmp_space;
2674 som_initialize_reloc_queue (reloc_queue);
2675 }
2676
2677 /* Emit R_NO_RELOCATION fixups to map any bytes which were
2678 skipped. */
2679 skip = bfd_reloc->address - reloc_offset;
2680 p = som_reloc_skip (abfd, skip, p,
2681 &subspace_reloc_size, reloc_queue);
2682
2683 /* Update reloc_offset for the next iteration.
2684
2685 Many relocations do not consume input bytes. They
2686 are markers, or set state necessary to perform some
2687 later relocation. */
2688 switch (bfd_reloc->howto->type)
2689 {
2690 case R_ENTRY:
2691 case R_ALT_ENTRY:
2692 case R_EXIT:
2693 case R_N_MODE:
2694 case R_S_MODE:
2695 case R_D_MODE:
2696 case R_R_MODE:
2697 case R_FSEL:
2698 case R_LSEL:
2699 case R_RSEL:
2700 case R_COMP1:
2701 case R_COMP2:
2702 case R_BEGIN_BRTAB:
2703 case R_END_BRTAB:
2704 case R_BEGIN_TRY:
2705 case R_END_TRY:
2706 case R_N0SEL:
2707 case R_N1SEL:
2708 #ifndef NO_PCREL_MODES
2709 case R_SHORT_PCREL_MODE:
2710 case R_LONG_PCREL_MODE:
2711 #endif
2712 reloc_offset = bfd_reloc->address;
2713 break;
2714
2715 default:
2716 reloc_offset = bfd_reloc->address + 4;
2717 break;
2718 }
2719
2720 /* Now the actual relocation we care about. */
2721 switch (bfd_reloc->howto->type)
2722 {
2723 case R_PCREL_CALL:
2724 case R_ABS_CALL:
2725 p = som_reloc_call (abfd, p, &subspace_reloc_size,
2726 bfd_reloc, sym_num, reloc_queue);
2727 break;
2728
2729 case R_CODE_ONE_SYMBOL:
2730 case R_DP_RELATIVE:
2731 /* Account for any addend. */
2732 if (bfd_reloc->addend)
2733 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2734 &subspace_reloc_size, reloc_queue);
2735
2736 if (sym_num < 0x20)
2737 {
2738 bfd_put_8 (abfd, bfd_reloc->howto->type + sym_num, p);
2739 subspace_reloc_size += 1;
2740 p += 1;
2741 }
2742 else if (sym_num < 0x100)
2743 {
2744 bfd_put_8 (abfd, bfd_reloc->howto->type + 32, p);
2745 bfd_put_8 (abfd, sym_num, p + 1);
2746 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2747 2, reloc_queue);
2748 }
2749 else if (sym_num < 0x10000000)
2750 {
2751 bfd_put_8 (abfd, bfd_reloc->howto->type + 33, p);
2752 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2753 bfd_put_16 (abfd, (bfd_vma) sym_num, p + 2);
2754 p = try_prev_fixup (abfd, &subspace_reloc_size,
2755 p, 4, reloc_queue);
2756 }
2757 else
2758 abort ();
2759 break;
2760
2761 case R_DATA_ONE_SYMBOL:
2762 case R_DATA_PLABEL:
2763 case R_CODE_PLABEL:
2764 case R_DLT_REL:
2765 /* Account for any addend using R_DATA_OVERRIDE. */
2766 if (bfd_reloc->howto->type != R_DATA_ONE_SYMBOL
2767 && bfd_reloc->addend)
2768 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2769 &subspace_reloc_size, reloc_queue);
2770
2771 if (sym_num < 0x100)
2772 {
2773 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2774 bfd_put_8 (abfd, sym_num, p + 1);
2775 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2776 2, reloc_queue);
2777 }
2778 else if (sym_num < 0x10000000)
2779 {
2780 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
2781 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2782 bfd_put_16 (abfd, (bfd_vma) sym_num, p + 2);
2783 p = try_prev_fixup (abfd, &subspace_reloc_size,
2784 p, 4, reloc_queue);
2785 }
2786 else
2787 abort ();
2788 break;
2789
2790 case R_ENTRY:
2791 {
2792 unsigned int tmp;
2793 arelent *tmp_reloc = NULL;
2794 bfd_put_8 (abfd, R_ENTRY, p);
2795
2796 /* R_ENTRY relocations have 64 bits of associated
2797 data. Unfortunately the addend field of a bfd
2798 relocation is only 32 bits. So, we split up
2799 the 64bit unwind information and store part in
2800 the R_ENTRY relocation, and the rest in the R_EXIT
2801 relocation. */
2802 bfd_put_32 (abfd, bfd_reloc->addend, p + 1);
2803
2804 /* Find the next R_EXIT relocation. */
2805 for (tmp = j; tmp < subsection->reloc_count; tmp++)
2806 {
2807 tmp_reloc = subsection->orelocation[tmp];
2808 if (tmp_reloc->howto->type == R_EXIT)
2809 break;
2810 }
2811
2812 if (tmp == subsection->reloc_count)
2813 abort ();
2814
2815 bfd_put_32 (abfd, tmp_reloc->addend, p + 5);
2816 p = try_prev_fixup (abfd, &subspace_reloc_size,
2817 p, 9, reloc_queue);
2818 break;
2819 }
2820
2821 case R_N_MODE:
2822 case R_S_MODE:
2823 case R_D_MODE:
2824 case R_R_MODE:
2825 /* If this relocation requests the current rounding
2826 mode, then it is redundant. */
2827 if (bfd_reloc->howto->type != current_rounding_mode)
2828 {
2829 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2830 subspace_reloc_size += 1;
2831 p += 1;
2832 current_rounding_mode = bfd_reloc->howto->type;
2833 }
2834 break;
2835
2836 #ifndef NO_PCREL_MODES
2837 case R_LONG_PCREL_MODE:
2838 case R_SHORT_PCREL_MODE:
2839 if (bfd_reloc->howto->type != current_call_mode)
2840 {
2841 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2842 subspace_reloc_size += 1;
2843 p += 1;
2844 current_call_mode = bfd_reloc->howto->type;
2845 }
2846 break;
2847 #endif
2848
2849 case R_EXIT:
2850 case R_ALT_ENTRY:
2851 case R_FSEL:
2852 case R_LSEL:
2853 case R_RSEL:
2854 case R_BEGIN_BRTAB:
2855 case R_END_BRTAB:
2856 case R_BEGIN_TRY:
2857 case R_N0SEL:
2858 case R_N1SEL:
2859 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2860 subspace_reloc_size += 1;
2861 p += 1;
2862 break;
2863
2864 case R_END_TRY:
2865 /* The end of an exception handling region. The reloc's
2866 addend contains the offset of the exception handling
2867 code. */
2868 if (bfd_reloc->addend == 0)
2869 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2870 else if (bfd_reloc->addend < 1024)
2871 {
2872 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
2873 bfd_put_8 (abfd, bfd_reloc->addend / 4, p + 1);
2874 p = try_prev_fixup (abfd, &subspace_reloc_size,
2875 p, 2, reloc_queue);
2876 }
2877 else
2878 {
2879 bfd_put_8 (abfd, bfd_reloc->howto->type + 2, p);
2880 bfd_put_8 (abfd, (bfd_reloc->addend / 4) >> 16, p + 1);
2881 bfd_put_16 (abfd, bfd_reloc->addend / 4, p + 2);
2882 p = try_prev_fixup (abfd, &subspace_reloc_size,
2883 p, 4, reloc_queue);
2884 }
2885 break;
2886
2887 case R_COMP1:
2888 /* The only time we generate R_COMP1, R_COMP2 and
2889 R_CODE_EXPR relocs is for the difference of two
2890 symbols. Hence we can cheat here. */
2891 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2892 bfd_put_8 (abfd, 0x44, p + 1);
2893 p = try_prev_fixup (abfd, &subspace_reloc_size,
2894 p, 2, reloc_queue);
2895 break;
2896
2897 case R_COMP2:
2898 /* The only time we generate R_COMP1, R_COMP2 and
2899 R_CODE_EXPR relocs is for the difference of two
2900 symbols. Hence we can cheat here. */
2901 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2902 bfd_put_8 (abfd, 0x80, p + 1);
2903 bfd_put_8 (abfd, sym_num >> 16, p + 2);
2904 bfd_put_16 (abfd, (bfd_vma) sym_num, p + 3);
2905 p = try_prev_fixup (abfd, &subspace_reloc_size,
2906 p, 5, reloc_queue);
2907 break;
2908
2909 case R_CODE_EXPR:
2910 case R_DATA_EXPR:
2911 /* The only time we generate R_COMP1, R_COMP2 and
2912 R_CODE_EXPR relocs is for the difference of two
2913 symbols. Hence we can cheat here. */
2914 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2915 subspace_reloc_size += 1;
2916 p += 1;
2917 break;
2918
2919 /* Put a "R_RESERVED" relocation in the stream if
2920 we hit something we do not understand. The linker
2921 will complain loudly if this ever happens. */
2922 default:
2923 bfd_put_8 (abfd, 0xff, p);
2924 subspace_reloc_size += 1;
2925 p += 1;
2926 break;
2927 }
2928 }
2929
2930 /* Last BFD relocation for a subspace has been processed.
2931 Map the rest of the subspace with R_NO_RELOCATION fixups. */
2932 p = som_reloc_skip (abfd, subsection->size - reloc_offset,
2933 p, &subspace_reloc_size, reloc_queue);
2934
2935 /* Scribble out the relocations. */
2936 amt = p - tmp_space;
2937 if (bfd_bwrite ((void *) tmp_space, amt, abfd) != amt)
2938 return FALSE;
2939 p = tmp_space;
2940
2941 total_reloc_size += subspace_reloc_size;
2942 som_section_data (subsection)->subspace_dict->fixup_request_quantity
2943 = subspace_reloc_size;
2944 }
2945 section = section->next;
2946 }
2947 *total_reloc_sizep = total_reloc_size;
2948 return TRUE;
2949 }
2950
2951 /* Write out the space/subspace string table. */
2952
2953 static bfd_boolean
2954 som_write_space_strings (bfd *abfd,
2955 unsigned long current_offset,
2956 unsigned int *string_sizep)
2957 {
2958 /* Chunk of memory that we can use as buffer space, then throw
2959 away. */
2960 size_t tmp_space_size = SOM_TMP_BUFSIZE;
2961 unsigned char *tmp_space = alloca (tmp_space_size);
2962 unsigned char *p = tmp_space;
2963 unsigned int strings_size = 0;
2964 asection *section;
2965 bfd_size_type amt;
2966
2967 /* Seek to the start of the space strings in preparation for writing
2968 them out. */
2969 if (bfd_seek (abfd, (file_ptr) current_offset, SEEK_SET) != 0)
2970 return FALSE;
2971
2972 /* Walk through all the spaces and subspaces (order is not important)
2973 building up and writing string table entries for their names. */
2974 for (section = abfd->sections; section != NULL; section = section->next)
2975 {
2976 size_t length;
2977
2978 /* Only work with space/subspaces; avoid any other sections
2979 which might have been made (.text for example). */
2980 if (!som_is_space (section) && !som_is_subspace (section))
2981 continue;
2982
2983 /* Get the length of the space/subspace name. */
2984 length = strlen (section->name);
2985
2986 /* If there is not enough room for the next entry, then dump the
2987 current buffer contents now and maybe allocate a larger
2988 buffer. Each entry will take 4 bytes to hold the string
2989 length + the string itself + null terminator. */
2990 if (p - tmp_space + 5 + length > tmp_space_size)
2991 {
2992 /* Flush buffer before refilling or reallocating. */
2993 amt = p - tmp_space;
2994 if (bfd_bwrite ((void *) &tmp_space[0], amt, abfd) != amt)
2995 return FALSE;
2996
2997 /* Reallocate if now empty buffer still too small. */
2998 if (5 + length > tmp_space_size)
2999 {
3000 /* Ensure a minimum growth factor to avoid O(n**2) space
3001 consumption for n strings. The optimal minimum
3002 factor seems to be 2, as no other value can guarantee
3003 wasting less than 50% space. (Note that we cannot
3004 deallocate space allocated by `alloca' without
3005 returning from this function.) The same technique is
3006 used a few more times below when a buffer is
3007 reallocated. */
3008 tmp_space_size = MAX (2 * tmp_space_size, 5 + length);
3009 tmp_space = alloca (tmp_space_size);
3010 }
3011
3012 /* Reset to beginning of the (possibly new) buffer space. */
3013 p = tmp_space;
3014 }
3015
3016 /* First element in a string table entry is the length of the
3017 string. Alignment issues are already handled. */
3018 bfd_put_32 (abfd, (bfd_vma) length, p);
3019 p += 4;
3020 strings_size += 4;
3021
3022 /* Record the index in the space/subspace records. */
3023 if (som_is_space (section))
3024 som_section_data (section)->space_dict->name.n_strx = strings_size;
3025 else
3026 som_section_data (section)->subspace_dict->name.n_strx = strings_size;
3027
3028 /* Next comes the string itself + a null terminator. */
3029 strcpy (p, section->name);
3030 p += length + 1;
3031 strings_size += length + 1;
3032
3033 /* Always align up to the next word boundary. */
3034 while (strings_size % 4)
3035 {
3036 bfd_put_8 (abfd, 0, p);
3037 p++;
3038 strings_size++;
3039 }
3040 }
3041
3042 /* Done with the space/subspace strings. Write out any information
3043 contained in a partial block. */
3044 amt = p - tmp_space;
3045 if (bfd_bwrite ((void *) &tmp_space[0], amt, abfd) != amt)
3046 return FALSE;
3047 *string_sizep = strings_size;
3048 return TRUE;
3049 }
3050
3051 /* Write out the symbol string table. */
3052
3053 static bfd_boolean
3054 som_write_symbol_strings (bfd *abfd,
3055 unsigned long current_offset,
3056 asymbol **syms,
3057 unsigned int num_syms,
3058 unsigned int *string_sizep,
3059 COMPUNIT *compilation_unit)
3060 {
3061 unsigned int i;
3062
3063 /* Chunk of memory that we can use as buffer space, then throw
3064 away. */
3065 size_t tmp_space_size = SOM_TMP_BUFSIZE;
3066 unsigned char *tmp_space = alloca (tmp_space_size);
3067 unsigned char *p = tmp_space;
3068
3069 unsigned int strings_size = 0;
3070 unsigned char *comp[4];
3071 bfd_size_type amt;
3072
3073 /* This gets a bit gruesome because of the compilation unit. The
3074 strings within the compilation unit are part of the symbol
3075 strings, but don't have symbol_dictionary entries. So, manually
3076 write them and update the compilation unit header. On input, the
3077 compilation unit header contains local copies of the strings.
3078 Move them aside. */
3079 if (compilation_unit)
3080 {
3081 comp[0] = compilation_unit->name.n_name;
3082 comp[1] = compilation_unit->language_name.n_name;
3083 comp[2] = compilation_unit->product_id.n_name;
3084 comp[3] = compilation_unit->version_id.n_name;
3085 }
3086
3087 /* Seek to the start of the space strings in preparation for writing
3088 them out. */
3089 if (bfd_seek (abfd, (file_ptr) current_offset, SEEK_SET) != 0)
3090 return FALSE;
3091
3092 if (compilation_unit)
3093 {
3094 for (i = 0; i < 4; i++)
3095 {
3096 size_t length = strlen (comp[i]);
3097
3098 /* If there is not enough room for the next entry, then dump
3099 the current buffer contents now and maybe allocate a
3100 larger buffer. */
3101 if (p - tmp_space + 5 + length > tmp_space_size)
3102 {
3103 /* Flush buffer before refilling or reallocating. */
3104 amt = p - tmp_space;
3105 if (bfd_bwrite ((void *) &tmp_space[0], amt, abfd) != amt)
3106 return FALSE;
3107
3108 /* Reallocate if now empty buffer still too small. */
3109 if (5 + length > tmp_space_size)
3110 {
3111 /* See alloca above for discussion of new size. */
3112 tmp_space_size = MAX (2 * tmp_space_size, 5 + length);
3113 tmp_space = alloca (tmp_space_size);
3114 }
3115
3116 /* Reset to beginning of the (possibly new) buffer
3117 space. */
3118 p = tmp_space;
3119 }
3120
3121 /* First element in a string table entry is the length of
3122 the string. This must always be 4 byte aligned. This is
3123 also an appropriate time to fill in the string index
3124 field in the symbol table entry. */
3125 bfd_put_32 (abfd, (bfd_vma) length, p);
3126 strings_size += 4;
3127 p += 4;
3128
3129 /* Next comes the string itself + a null terminator. */
3130 strcpy (p, comp[i]);
3131
3132 switch (i)
3133 {
3134 case 0:
3135 obj_som_compilation_unit (abfd)->name.n_strx = strings_size;
3136 break;
3137 case 1:
3138 obj_som_compilation_unit (abfd)->language_name.n_strx =
3139 strings_size;
3140 break;
3141 case 2:
3142 obj_som_compilation_unit (abfd)->product_id.n_strx =
3143 strings_size;
3144 break;
3145 case 3:
3146 obj_som_compilation_unit (abfd)->version_id.n_strx =
3147 strings_size;
3148 break;
3149 }
3150
3151 p += length + 1;
3152 strings_size += length + 1;
3153
3154 /* Always align up to the next word boundary. */
3155 while (strings_size % 4)
3156 {
3157 bfd_put_8 (abfd, 0, p);
3158 strings_size++;
3159 p++;
3160 }
3161 }
3162 }
3163
3164 for (i = 0; i < num_syms; i++)
3165 {
3166 size_t length = strlen (syms[i]->name);
3167
3168 /* If there is not enough room for the next entry, then dump the
3169 current buffer contents now and maybe allocate a larger buffer. */
3170 if (p - tmp_space + 5 + length > tmp_space_size)
3171 {
3172 /* Flush buffer before refilling or reallocating. */
3173 amt = p - tmp_space;
3174 if (bfd_bwrite ((void *) &tmp_space[0], amt, abfd) != amt)
3175 return FALSE;
3176
3177 /* Reallocate if now empty buffer still too small. */
3178 if (5 + length > tmp_space_size)
3179 {
3180 /* See alloca above for discussion of new size. */
3181 tmp_space_size = MAX (2 * tmp_space_size, 5 + length);
3182 tmp_space = alloca (tmp_space_size);
3183 }
3184
3185 /* Reset to beginning of the (possibly new) buffer space. */
3186 p = tmp_space;
3187 }
3188
3189 /* First element in a string table entry is the length of the
3190 string. This must always be 4 byte aligned. This is also
3191 an appropriate time to fill in the string index field in the
3192 symbol table entry. */
3193 bfd_put_32 (abfd, (bfd_vma) length, p);
3194 strings_size += 4;
3195 p += 4;
3196
3197 /* Next comes the string itself + a null terminator. */
3198 strcpy (p, syms[i]->name);
3199
3200 som_symbol_data (syms[i])->stringtab_offset = strings_size;
3201 p += length + 1;
3202 strings_size += length + 1;
3203
3204 /* Always align up to the next word boundary. */
3205 while (strings_size % 4)
3206 {
3207 bfd_put_8 (abfd, 0, p);
3208 strings_size++;
3209 p++;
3210 }
3211 }
3212
3213 /* Scribble out any partial block. */
3214 amt = p - tmp_space;
3215 if (bfd_bwrite ((void *) &tmp_space[0], amt, abfd) != amt)
3216 return FALSE;
3217
3218 *string_sizep = strings_size;
3219 return TRUE;
3220 }
3221
3222 /* Compute variable information to be placed in the SOM headers,
3223 space/subspace dictionaries, relocation streams, etc. Begin
3224 writing parts of the object file. */
3225
3226 static bfd_boolean
3227 som_begin_writing (bfd *abfd)
3228 {
3229 unsigned long current_offset = 0;
3230 int strings_size = 0;
3231 unsigned long num_spaces, num_subspaces, i;
3232 asection *section;
3233 unsigned int total_subspaces = 0;
3234 struct som_exec_auxhdr *exec_header = NULL;
3235
3236 /* The file header will always be first in an object file,
3237 everything else can be in random locations. To keep things
3238 "simple" BFD will lay out the object file in the manner suggested
3239 by the PRO ABI for PA-RISC Systems. */
3240
3241 /* Before any output can really begin offsets for all the major
3242 portions of the object file must be computed. So, starting
3243 with the initial file header compute (and sometimes write)
3244 each portion of the object file. */
3245
3246 /* Make room for the file header, it's contents are not complete
3247 yet, so it can not be written at this time. */
3248 current_offset += sizeof (struct header);
3249
3250 /* Any auxiliary headers will follow the file header. Right now
3251 we support only the copyright and version headers. */
3252 obj_som_file_hdr (abfd)->aux_header_location = current_offset;
3253 obj_som_file_hdr (abfd)->aux_header_size = 0;
3254 if (abfd->flags & (EXEC_P | DYNAMIC))
3255 {
3256 /* Parts of the exec header will be filled in later, so
3257 delay writing the header itself. Fill in the defaults,
3258 and write it later. */
3259 current_offset += sizeof (struct som_exec_auxhdr);
3260 obj_som_file_hdr (abfd)->aux_header_size
3261 += sizeof (struct som_exec_auxhdr);
3262 exec_header = obj_som_exec_hdr (abfd);
3263 exec_header->som_auxhdr.type = EXEC_AUX_ID;
3264 exec_header->som_auxhdr.length = 40;
3265 }
3266 if (obj_som_version_hdr (abfd) != NULL)
3267 {
3268 bfd_size_type len;
3269
3270 if (bfd_seek (abfd, (file_ptr) current_offset, SEEK_SET) != 0)
3271 return FALSE;
3272
3273 /* Write the aux_id structure and the string length. */
3274 len = sizeof (struct aux_id) + sizeof (unsigned int);
3275 obj_som_file_hdr (abfd)->aux_header_size += len;
3276 current_offset += len;
3277 if (bfd_bwrite ((void *) obj_som_version_hdr (abfd), len, abfd) != len)
3278 return FALSE;
3279
3280 /* Write the version string. */
3281 len = obj_som_version_hdr (abfd)->header_id.length - sizeof (int);
3282 obj_som_file_hdr (abfd)->aux_header_size += len;
3283 current_offset += len;
3284 if (bfd_bwrite ((void *) obj_som_version_hdr (abfd)->user_string, len, abfd)
3285 != len)
3286 return FALSE;
3287 }
3288
3289 if (obj_som_copyright_hdr (abfd) != NULL)
3290 {
3291 bfd_size_type len;
3292
3293 if (bfd_seek (abfd, (file_ptr) current_offset, SEEK_SET) != 0)
3294 return FALSE;
3295
3296 /* Write the aux_id structure and the string length. */
3297 len = sizeof (struct aux_id) + sizeof (unsigned int);
3298 obj_som_file_hdr (abfd)->aux_header_size += len;
3299 current_offset += len;
3300 if (bfd_bwrite ((void *) obj_som_copyright_hdr (abfd), len, abfd) != len)
3301 return FALSE;
3302
3303 /* Write the copyright string. */
3304 len = obj_som_copyright_hdr (abfd)->header_id.length - sizeof (int);
3305 obj_som_file_hdr (abfd)->aux_header_size += len;
3306 current_offset += len;
3307 if (bfd_bwrite ((void *) obj_som_copyright_hdr (abfd)->copyright, len, abfd)
3308 != len)
3309 return FALSE;
3310 }
3311
3312 /* Next comes the initialization pointers; we have no initialization
3313 pointers, so current offset does not change. */
3314 obj_som_file_hdr (abfd)->init_array_location = current_offset;
3315 obj_som_file_hdr (abfd)->init_array_total = 0;
3316
3317 /* Next are the space records. These are fixed length records.
3318
3319 Count the number of spaces to determine how much room is needed
3320 in the object file for the space records.
3321
3322 The names of the spaces are stored in a separate string table,
3323 and the index for each space into the string table is computed
3324 below. Therefore, it is not possible to write the space headers
3325 at this time. */
3326 num_spaces = som_count_spaces (abfd);
3327 obj_som_file_hdr (abfd)->space_location = current_offset;
3328 obj_som_file_hdr (abfd)->space_total = num_spaces;
3329 current_offset += num_spaces * sizeof (struct space_dictionary_record);
3330
3331 /* Next are the subspace records. These are fixed length records.
3332
3333 Count the number of subspaes to determine how much room is needed
3334 in the object file for the subspace records.
3335
3336 A variety if fields in the subspace record are still unknown at
3337 this time (index into string table, fixup stream location/size, etc). */
3338 num_subspaces = som_count_subspaces (abfd);
3339 obj_som_file_hdr (abfd)->subspace_location = current_offset;
3340 obj_som_file_hdr (abfd)->subspace_total = num_subspaces;
3341 current_offset
3342 += num_subspaces * sizeof (struct som_subspace_dictionary_record);
3343
3344 /* Next is the string table for the space/subspace names. We will
3345 build and write the string table on the fly. At the same time
3346 we will fill in the space/subspace name index fields. */
3347
3348 /* The string table needs to be aligned on a word boundary. */
3349 if (current_offset % 4)
3350 current_offset += (4 - (current_offset % 4));
3351
3352 /* Mark the offset of the space/subspace string table in the
3353 file header. */
3354 obj_som_file_hdr (abfd)->space_strings_location = current_offset;
3355
3356 /* Scribble out the space strings. */
3357 if (! som_write_space_strings (abfd, current_offset, &strings_size))
3358 return FALSE;
3359
3360 /* Record total string table size in the header and update the
3361 current offset. */
3362 obj_som_file_hdr (abfd)->space_strings_size = strings_size;
3363 current_offset += strings_size;
3364
3365 /* Next is the compilation unit. */
3366 obj_som_file_hdr (abfd)->compiler_location = current_offset;
3367 obj_som_file_hdr (abfd)->compiler_total = 0;
3368 if (obj_som_compilation_unit (abfd))
3369 {
3370 obj_som_file_hdr (abfd)->compiler_total = 1;
3371 current_offset += COMPUNITSZ;
3372 }
3373
3374 /* Now compute the file positions for the loadable subspaces, taking
3375 care to make sure everything stays properly aligned. */
3376
3377 section = abfd->sections;
3378 for (i = 0; i < num_spaces; i++)
3379 {
3380 asection *subsection;
3381 int first_subspace;
3382 unsigned int subspace_offset = 0;
3383
3384 /* Find a space. */
3385 while (!som_is_space (section))
3386 section = section->next;
3387
3388 first_subspace = 1;
3389 /* Now look for all its subspaces. */
3390 for (subsection = abfd->sections;
3391 subsection != NULL;
3392 subsection = subsection->next)
3393 {
3394
3395 if (!som_is_subspace (subsection)
3396 || !som_is_container (section, subsection)
3397 || (subsection->flags & SEC_ALLOC) == 0)
3398 continue;
3399
3400 /* If this is the first subspace in the space, and we are
3401 building an executable, then take care to make sure all
3402 the alignments are correct and update the exec header. */
3403 if (first_subspace
3404 && (abfd->flags & (EXEC_P | DYNAMIC)))
3405 {
3406 /* Demand paged executables have each space aligned to a
3407 page boundary. Sharable executables (write-protected
3408 text) have just the private (aka data & bss) space aligned
3409 to a page boundary. Ugh. Not true for HPUX.
3410
3411 The HPUX kernel requires the text to always be page aligned
3412 within the file regardless of the executable's type. */
3413 if (abfd->flags & (D_PAGED | DYNAMIC)
3414 || (subsection->flags & SEC_CODE)
3415 || ((abfd->flags & WP_TEXT)
3416 && (subsection->flags & SEC_DATA)))
3417 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3418
3419 /* Update the exec header. */
3420 if (subsection->flags & SEC_CODE && exec_header->exec_tfile == 0)
3421 {
3422 exec_header->exec_tmem = section->vma;
3423 exec_header->exec_tfile = current_offset;
3424 }
3425 if (subsection->flags & SEC_DATA && exec_header->exec_dfile == 0)
3426 {
3427 exec_header->exec_dmem = section->vma;
3428 exec_header->exec_dfile = current_offset;
3429 }
3430
3431 /* Keep track of exactly where we are within a particular
3432 space. This is necessary as the braindamaged HPUX
3433 loader will create holes between subspaces *and*
3434 subspace alignments are *NOT* preserved. What a crock. */
3435 subspace_offset = subsection->vma;
3436
3437 /* Only do this for the first subspace within each space. */
3438 first_subspace = 0;
3439 }
3440 else if (abfd->flags & (EXEC_P | DYNAMIC))
3441 {
3442 /* The braindamaged HPUX loader may have created a hole
3443 between two subspaces. It is *not* sufficient to use
3444 the alignment specifications within the subspaces to
3445 account for these holes -- I've run into at least one
3446 case where the loader left one code subspace unaligned
3447 in a final executable.
3448
3449 To combat this we keep a current offset within each space,
3450 and use the subspace vma fields to detect and preserve
3451 holes. What a crock!
3452
3453 ps. This is not necessary for unloadable space/subspaces. */
3454 current_offset += subsection->vma - subspace_offset;
3455 if (subsection->flags & SEC_CODE)
3456 exec_header->exec_tsize += subsection->vma - subspace_offset;
3457 else
3458 exec_header->exec_dsize += subsection->vma - subspace_offset;
3459 subspace_offset += subsection->vma - subspace_offset;
3460 }
3461
3462 subsection->target_index = total_subspaces++;
3463 /* This is real data to be loaded from the file. */
3464 if (subsection->flags & SEC_LOAD)
3465 {
3466 /* Update the size of the code & data. */
3467 if (abfd->flags & (EXEC_P | DYNAMIC)
3468 && subsection->flags & SEC_CODE)
3469 exec_header->exec_tsize += subsection->size;
3470 else if (abfd->flags & (EXEC_P | DYNAMIC)
3471 && subsection->flags & SEC_DATA)
3472 exec_header->exec_dsize += subsection->size;
3473 som_section_data (subsection)->subspace_dict->file_loc_init_value
3474 = current_offset;
3475 subsection->filepos = current_offset;
3476 current_offset += subsection->size;
3477 subspace_offset += subsection->size;
3478 }
3479 /* Looks like uninitialized data. */
3480 else
3481 {
3482 /* Update the size of the bss section. */
3483 if (abfd->flags & (EXEC_P | DYNAMIC))
3484 exec_header->exec_bsize += subsection->size;
3485
3486 som_section_data (subsection)->subspace_dict->file_loc_init_value
3487 = 0;
3488 som_section_data (subsection)->subspace_dict->
3489 initialization_length = 0;
3490 }
3491 }
3492 /* Goto the next section. */
3493 section = section->next;
3494 }
3495
3496 /* Finally compute the file positions for unloadable subspaces.
3497 If building an executable, start the unloadable stuff on its
3498 own page. */
3499
3500 if (abfd->flags & (EXEC_P | DYNAMIC))
3501 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3502
3503 obj_som_file_hdr (abfd)->unloadable_sp_location = current_offset;
3504 section = abfd->sections;
3505 for (i = 0; i < num_spaces; i++)
3506 {
3507 asection *subsection;
3508
3509 /* Find a space. */
3510 while (!som_is_space (section))
3511 section = section->next;
3512
3513 if (abfd->flags & (EXEC_P | DYNAMIC))
3514 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3515
3516 /* Now look for all its subspaces. */
3517 for (subsection = abfd->sections;
3518 subsection != NULL;
3519 subsection = subsection->next)
3520 {
3521
3522 if (!som_is_subspace (subsection)
3523 || !som_is_container (section, subsection)
3524 || (subsection->flags & SEC_ALLOC) != 0)
3525 continue;
3526
3527 subsection->target_index = total_subspaces++;
3528 /* This is real data to be loaded from the file. */
3529 if ((subsection->flags & SEC_LOAD) == 0)
3530 {
3531 som_section_data (subsection)->subspace_dict->file_loc_init_value
3532 = current_offset;
3533 subsection->filepos = current_offset;
3534 current_offset += subsection->size;
3535 }
3536 /* Looks like uninitialized data. */
3537 else
3538 {
3539 som_section_data (subsection)->subspace_dict->file_loc_init_value
3540 = 0;
3541 som_section_data (subsection)->subspace_dict->
3542 initialization_length = subsection->size;
3543 }
3544 }
3545 /* Goto the next section. */
3546 section = section->next;
3547 }
3548
3549 /* If building an executable, then make sure to seek to and write
3550 one byte at the end of the file to make sure any necessary
3551 zeros are filled in. Ugh. */
3552 if (abfd->flags & (EXEC_P | DYNAMIC))
3553 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3554 if (bfd_seek (abfd, (file_ptr) current_offset - 1, SEEK_SET) != 0)
3555 return FALSE;
3556 if (bfd_bwrite ((void *) "", (bfd_size_type) 1, abfd) != 1)
3557 return FALSE;
3558
3559 obj_som_file_hdr (abfd)->unloadable_sp_size
3560 = current_offset - obj_som_file_hdr (abfd)->unloadable_sp_location;
3561
3562 /* Loader fixups are not supported in any way shape or form. */
3563 obj_som_file_hdr (abfd)->loader_fixup_location = 0;
3564 obj_som_file_hdr (abfd)->loader_fixup_total = 0;
3565
3566 /* Done. Store the total size of the SOM so far. */
3567 obj_som_file_hdr (abfd)->som_length = current_offset;
3568
3569 return TRUE;
3570 }
3571
3572 /* Finally, scribble out the various headers to the disk. */
3573
3574 static bfd_boolean
3575 som_finish_writing (bfd *abfd)
3576 {
3577 int num_spaces = som_count_spaces (abfd);
3578 asymbol **syms = bfd_get_outsymbols (abfd);
3579 int i, num_syms, strings_size;
3580 int subspace_index = 0;
3581 file_ptr location;
3582 asection *section;
3583 unsigned long current_offset;
3584 unsigned int total_reloc_size;
3585 bfd_size_type amt;
3586
3587 /* We must set up the version identifier here as objcopy/strip copy
3588 private BFD data too late for us to handle this in som_begin_writing. */
3589 if (obj_som_exec_data (abfd)
3590 && obj_som_exec_data (abfd)->version_id)
3591 obj_som_file_hdr (abfd)->version_id = obj_som_exec_data (abfd)->version_id;
3592 else
3593 obj_som_file_hdr (abfd)->version_id = NEW_VERSION_ID;
3594
3595 /* Next is the symbol table. These are fixed length records.
3596
3597 Count the number of symbols to determine how much room is needed
3598 in the object file for the symbol table.
3599
3600 The names of the symbols are stored in a separate string table,
3601 and the index for each symbol name into the string table is computed
3602 below. Therefore, it is not possible to write the symbol table
3603 at this time.
3604
3605 These used to be output before the subspace contents, but they
3606 were moved here to work around a stupid bug in the hpux linker
3607 (fixed in hpux10). */
3608 current_offset = obj_som_file_hdr (abfd)->som_length;
3609
3610 /* Make sure we're on a word boundary. */
3611 if (current_offset % 4)
3612 current_offset += (4 - (current_offset % 4));
3613
3614 num_syms = bfd_get_symcount (abfd);
3615 obj_som_file_hdr (abfd)->symbol_location = current_offset;
3616 obj_som_file_hdr (abfd)->symbol_total = num_syms;
3617 current_offset += num_syms * sizeof (struct symbol_dictionary_record);
3618
3619 /* Next are the symbol strings.
3620 Align them to a word boundary. */
3621 if (current_offset % 4)
3622 current_offset += (4 - (current_offset % 4));
3623 obj_som_file_hdr (abfd)->symbol_strings_location = current_offset;
3624
3625 /* Scribble out the symbol strings. */
3626 if (! som_write_symbol_strings (abfd, current_offset, syms,
3627 num_syms, &strings_size,
3628 obj_som_compilation_unit (abfd)))
3629 return FALSE;
3630
3631 /* Record total string table size in header and update the
3632 current offset. */
3633 obj_som_file_hdr (abfd)->symbol_strings_size = strings_size;
3634 current_offset += strings_size;
3635
3636 /* Do prep work before handling fixups. */
3637 som_prep_for_fixups (abfd,
3638 bfd_get_outsymbols (abfd),
3639 bfd_get_symcount (abfd));
3640
3641 /* At the end of the file is the fixup stream which starts on a
3642 word boundary. */
3643 if (current_offset % 4)
3644 current_offset += (4 - (current_offset % 4));
3645 obj_som_file_hdr (abfd)->fixup_request_location = current_offset;
3646
3647 /* Write the fixups and update fields in subspace headers which
3648 relate to the fixup stream. */
3649 if (! som_write_fixups (abfd, current_offset, &total_reloc_size))
3650 return FALSE;
3651
3652 /* Record the total size of the fixup stream in the file header. */
3653 obj_som_file_hdr (abfd)->fixup_request_total = total_reloc_size;
3654
3655 /* Done. Store the total size of the SOM. */
3656 obj_som_file_hdr (abfd)->som_length = current_offset + total_reloc_size;
3657
3658 /* Now that the symbol table information is complete, build and
3659 write the symbol table. */
3660 if (! som_build_and_write_symbol_table (abfd))
3661 return FALSE;
3662
3663 /* Subspaces are written first so that we can set up information
3664 about them in their containing spaces as the subspace is written. */
3665
3666 /* Seek to the start of the subspace dictionary records. */
3667 location = obj_som_file_hdr (abfd)->subspace_location;
3668 if (bfd_seek (abfd, location, SEEK_SET) != 0)
3669 return FALSE;
3670
3671 section = abfd->sections;
3672 /* Now for each loadable space write out records for its subspaces. */
3673 for (i = 0; i < num_spaces; i++)
3674 {
3675 asection *subsection;
3676
3677 /* Find a space. */
3678 while (!som_is_space (section))
3679 section = section->next;
3680
3681 /* Now look for all its subspaces. */
3682 for (subsection = abfd->sections;
3683 subsection != NULL;
3684 subsection = subsection->next)
3685 {
3686
3687 /* Skip any section which does not correspond to a space
3688 or subspace. Or does not have SEC_ALLOC set (and therefore
3689 has no real bits on the disk). */
3690 if (!som_is_subspace (subsection)
3691 || !som_is_container (section, subsection)
3692 || (subsection->flags & SEC_ALLOC) == 0)
3693 continue;
3694
3695 /* If this is the first subspace for this space, then save
3696 the index of the subspace in its containing space. Also
3697 set "is_loadable" in the containing space. */
3698
3699 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3700 {
3701 som_section_data (section)->space_dict->is_loadable = 1;
3702 som_section_data (section)->space_dict->subspace_index
3703 = subspace_index;
3704 }
3705
3706 /* Increment the number of subspaces seen and the number of
3707 subspaces contained within the current space. */
3708 subspace_index++;
3709 som_section_data (section)->space_dict->subspace_quantity++;
3710
3711 /* Mark the index of the current space within the subspace's
3712 dictionary record. */
3713 som_section_data (subsection)->subspace_dict->space_index = i;
3714
3715 /* Dump the current subspace header. */
3716 amt = sizeof (struct som_subspace_dictionary_record);
3717 if (bfd_bwrite ((void *) som_section_data (subsection)->subspace_dict,
3718 amt, abfd) != amt)
3719 return FALSE;
3720 }
3721 /* Goto the next section. */
3722 section = section->next;
3723 }
3724
3725 /* Now repeat the process for unloadable subspaces. */
3726 section = abfd->sections;
3727 /* Now for each space write out records for its subspaces. */
3728 for (i = 0; i < num_spaces; i++)
3729 {
3730 asection *subsection;
3731
3732 /* Find a space. */
3733 while (!som_is_space (section))
3734 section = section->next;
3735
3736 /* Now look for all its subspaces. */
3737 for (subsection = abfd->sections;
3738 subsection != NULL;
3739 subsection = subsection->next)
3740 {
3741
3742 /* Skip any section which does not correspond to a space or
3743 subspace, or which SEC_ALLOC set (and therefore handled
3744 in the loadable spaces/subspaces code above). */
3745
3746 if (!som_is_subspace (subsection)
3747 || !som_is_container (section, subsection)
3748 || (subsection->flags & SEC_ALLOC) != 0)
3749 continue;
3750
3751 /* If this is the first subspace for this space, then save
3752 the index of the subspace in its containing space. Clear
3753 "is_loadable". */
3754
3755 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3756 {
3757 som_section_data (section)->space_dict->is_loadable = 0;
3758 som_section_data (section)->space_dict->subspace_index
3759 = subspace_index;
3760 }
3761
3762 /* Increment the number of subspaces seen and the number of
3763 subspaces contained within the current space. */
3764 som_section_data (section)->space_dict->subspace_quantity++;
3765 subspace_index++;
3766
3767 /* Mark the index of the current space within the subspace's
3768 dictionary record. */
3769 som_section_data (subsection)->subspace_dict->space_index = i;
3770
3771 /* Dump this subspace header. */
3772 amt = sizeof (struct som_subspace_dictionary_record);
3773 if (bfd_bwrite ((void *) som_section_data (subsection)->subspace_dict,
3774 amt, abfd) != amt)
3775 return FALSE;
3776 }
3777 /* Goto the next section. */
3778 section = section->next;
3779 }
3780
3781 /* All the subspace dictionary records are written, and all the
3782 fields are set up in the space dictionary records.
3783
3784 Seek to the right location and start writing the space
3785 dictionary records. */
3786 location = obj_som_file_hdr (abfd)->space_location;
3787 if (bfd_seek (abfd, location, SEEK_SET) != 0)
3788 return FALSE;
3789
3790 section = abfd->sections;
3791 for (i = 0; i < num_spaces; i++)
3792 {
3793 /* Find a space. */
3794 while (!som_is_space (section))
3795 section = section->next;
3796
3797 /* Dump its header. */
3798 amt = sizeof (struct space_dictionary_record);
3799 if (bfd_bwrite ((void *) som_section_data (section)->space_dict,
3800 amt, abfd) != amt)
3801 return FALSE;
3802
3803 /* Goto the next section. */
3804 section = section->next;
3805 }
3806
3807 /* Write the compilation unit record if there is one. */
3808 if (obj_som_compilation_unit (abfd))
3809 {
3810 location = obj_som_file_hdr (abfd)->compiler_location;
3811 if (bfd_seek (abfd, location, SEEK_SET) != 0)
3812 return FALSE;
3813
3814 amt = COMPUNITSZ;
3815 if (bfd_bwrite ((void *) obj_som_compilation_unit (abfd), amt, abfd) != amt)
3816 return FALSE;
3817 }
3818
3819 /* Setting of the system_id has to happen very late now that copying of
3820 BFD private data happens *after* section contents are set. */
3821 if (abfd->flags & (EXEC_P | DYNAMIC))
3822 obj_som_file_hdr (abfd)->system_id = obj_som_exec_data (abfd)->system_id;
3823 else if (bfd_get_mach (abfd) == pa20)
3824 obj_som_file_hdr (abfd)->system_id = CPU_PA_RISC2_0;
3825 else if (bfd_get_mach (abfd) == pa11)
3826 obj_som_file_hdr (abfd)->system_id = CPU_PA_RISC1_1;
3827 else
3828 obj_som_file_hdr (abfd)->system_id = CPU_PA_RISC1_0;
3829
3830 /* Compute the checksum for the file header just before writing
3831 the header to disk. */
3832 obj_som_file_hdr (abfd)->checksum = som_compute_checksum (abfd);
3833
3834 /* Only thing left to do is write out the file header. It is always
3835 at location zero. Seek there and write it. */
3836 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0)
3837 return FALSE;
3838 amt = sizeof (struct header);
3839 if (bfd_bwrite ((void *) obj_som_file_hdr (abfd), amt, abfd) != amt)
3840 return FALSE;
3841
3842 /* Now write the exec header. */
3843 if (abfd->flags & (EXEC_P | DYNAMIC))
3844 {
3845 long tmp, som_length;
3846 struct som_exec_auxhdr *exec_header;
3847
3848 exec_header = obj_som_exec_hdr (abfd);
3849 exec_header->exec_entry = bfd_get_start_address (abfd);
3850 exec_header->exec_flags = obj_som_exec_data (abfd)->exec_flags;
3851
3852 /* Oh joys. Ram some of the BSS data into the DATA section
3853 to be compatible with how the hp linker makes objects
3854 (saves memory space). */
3855 tmp = exec_header->exec_dsize;
3856 tmp = SOM_ALIGN (tmp, PA_PAGESIZE);
3857 exec_header->exec_bsize -= (tmp - exec_header->exec_dsize);
3858 if (exec_header->exec_bsize < 0)
3859 exec_header->exec_bsize = 0;
3860 exec_header->exec_dsize = tmp;
3861
3862 /* Now perform some sanity checks. The idea is to catch bogons now and
3863 inform the user, instead of silently generating a bogus file. */
3864 som_length = obj_som_file_hdr (abfd)->som_length;
3865 if (exec_header->exec_tfile + exec_header->exec_tsize > som_length
3866 || exec_header->exec_dfile + exec_header->exec_dsize > som_length)
3867 {
3868 bfd_set_error (bfd_error_bad_value);
3869 return FALSE;
3870 }
3871
3872 if (bfd_seek (abfd, obj_som_file_hdr (abfd)->aux_header_location,
3873 SEEK_SET) != 0)
3874 return FALSE;
3875
3876 amt = AUX_HDR_SIZE;
3877 if (bfd_bwrite ((void *) exec_header, amt, abfd) != amt)
3878 return FALSE;
3879 }
3880 return TRUE;
3881 }
3882
3883 /* Compute and return the checksum for a SOM file header. */
3884
3885 static unsigned long
3886 som_compute_checksum (bfd *abfd)
3887 {
3888 unsigned long checksum, count, i;
3889 unsigned long *buffer = (unsigned long *) obj_som_file_hdr (abfd);
3890
3891 checksum = 0;
3892 count = sizeof (struct header) / sizeof (unsigned long);
3893 for (i = 0; i < count; i++)
3894 checksum ^= *(buffer + i);
3895
3896 return checksum;
3897 }
3898
3899 static void
3900 som_bfd_derive_misc_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
3901 asymbol *sym,
3902 struct som_misc_symbol_info *info)
3903 {
3904 /* Initialize. */
3905 memset (info, 0, sizeof (struct som_misc_symbol_info));
3906
3907 /* The HP SOM linker requires detailed type information about
3908 all symbols (including undefined symbols!). Unfortunately,
3909 the type specified in an import/export statement does not
3910 always match what the linker wants. Severe braindamage. */
3911
3912 /* Section symbols will not have a SOM symbol type assigned to
3913 them yet. Assign all section symbols type ST_DATA. */
3914 if (sym->flags & BSF_SECTION_SYM)
3915 info->symbol_type = ST_DATA;
3916 else
3917 {
3918 /* For BFD style common, the linker will choke unless we set the
3919 type and scope to ST_STORAGE and SS_UNSAT, respectively. */
3920 if (bfd_is_com_section (sym->section))
3921 {
3922 info->symbol_type = ST_STORAGE;
3923 info->symbol_scope = SS_UNSAT;
3924 }
3925
3926 /* It is possible to have a symbol without an associated
3927 type. This happens if the user imported the symbol
3928 without a type and the symbol was never defined
3929 locally. If BSF_FUNCTION is set for this symbol, then
3930 assign it type ST_CODE (the HP linker requires undefined
3931 external functions to have type ST_CODE rather than ST_ENTRY). */
3932 else if ((som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3933 || som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
3934 && bfd_is_und_section (sym->section)
3935 && sym->flags & BSF_FUNCTION)
3936 info->symbol_type = ST_CODE;
3937
3938 /* Handle function symbols which were defined in this file.
3939 They should have type ST_ENTRY. Also retrieve the argument
3940 relocation bits from the SOM backend information. */
3941 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ENTRY
3942 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE
3943 && (sym->flags & BSF_FUNCTION))
3944 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3945 && (sym->flags & BSF_FUNCTION)))
3946 {
3947 info->symbol_type = ST_ENTRY;
3948 info->arg_reloc = som_symbol_data (sym)->tc_data.ap.hppa_arg_reloc;
3949 info->priv_level= som_symbol_data (sym)->tc_data.ap.hppa_priv_level;
3950 }
3951
3952 /* For unknown symbols set the symbol's type based on the symbol's
3953 section (ST_DATA for DATA sections, ST_CODE for CODE sections). */
3954 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN)
3955 {
3956 if (sym->section->flags & SEC_CODE)
3957 info->symbol_type = ST_CODE;
3958 else
3959 info->symbol_type = ST_DATA;
3960 }
3961
3962 /* From now on it's a very simple mapping. */
3963 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ABSOLUTE)
3964 info->symbol_type = ST_ABSOLUTE;
3965 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
3966 info->symbol_type = ST_CODE;
3967 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_DATA)
3968 info->symbol_type = ST_DATA;
3969 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_MILLICODE)
3970 info->symbol_type = ST_MILLICODE;
3971 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PLABEL)
3972 info->symbol_type = ST_PLABEL;
3973 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PRI_PROG)
3974 info->symbol_type = ST_PRI_PROG;
3975 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_SEC_PROG)
3976 info->symbol_type = ST_SEC_PROG;
3977 }
3978
3979 /* Now handle the symbol's scope. Exported data which is not
3980 in the common section has scope SS_UNIVERSAL. Note scope
3981 of common symbols was handled earlier! */
3982 if (bfd_is_com_section (sym->section))
3983 ;
3984 else if (bfd_is_und_section (sym->section))
3985 info->symbol_scope = SS_UNSAT;
3986 else if (sym->flags & (BSF_EXPORT | BSF_WEAK))
3987 info->symbol_scope = SS_UNIVERSAL;
3988 /* Anything else which is not in the common section has scope
3989 SS_LOCAL. */
3990 else
3991 info->symbol_scope = SS_LOCAL;
3992
3993 /* Now set the symbol_info field. It has no real meaning
3994 for undefined or common symbols, but the HP linker will
3995 choke if it's not set to some "reasonable" value. We
3996 use zero as a reasonable value. */
3997 if (bfd_is_com_section (sym->section)
3998 || bfd_is_und_section (sym->section)
3999 || bfd_is_abs_section (sym->section))
4000 info->symbol_info = 0;
4001 /* For all other symbols, the symbol_info field contains the
4002 subspace index of the space this symbol is contained in. */
4003 else
4004 info->symbol_info = sym->section->target_index;
4005
4006 /* Set the symbol's value. */
4007 info->symbol_value = sym->value + sym->section->vma;
4008
4009 /* The secondary_def field is for "weak" symbols. */
4010 if (sym->flags & BSF_WEAK)
4011 info->secondary_def = TRUE;
4012 else
4013 info->secondary_def = FALSE;
4014
4015 /* The is_comdat, is_common and dup_common fields provide various
4016 flavors of common.
4017
4018 For data symbols, setting IS_COMMON provides Fortran style common
4019 (duplicate definitions and overlapped initialization). Setting both
4020 IS_COMMON and DUP_COMMON provides Cobol style common (duplicate
4021 definitions as long as they are all the same length). In a shared
4022 link data symbols retain their IS_COMMON and DUP_COMMON flags.
4023 An IS_COMDAT data symbol is similar to a IS_COMMON | DUP_COMMON
4024 symbol except in that it loses its IS_COMDAT flag in a shared link.
4025
4026 For code symbols, IS_COMDAT and DUP_COMMON have effect. Universal
4027 DUP_COMMON code symbols are not exported from shared libraries.
4028 IS_COMDAT symbols are exported but they lose their IS_COMDAT flag.
4029
4030 We take a simplified approach to setting the is_comdat, is_common
4031 and dup_common flags in symbols based on the flag settings of their
4032 subspace. This avoids having to add directives like `.comdat' but
4033 the linker behavior is probably undefined if there is more than one
4034 universal symbol (comdat key sysmbol) in a subspace.
4035
4036 The behavior of these flags is not well documentmented, so there
4037 may be bugs and some surprising interactions with other flags. */
4038 if (som_section_data (sym->section)
4039 && som_section_data (sym->section)->subspace_dict
4040 && info->symbol_scope == SS_UNIVERSAL
4041 && (info->symbol_type == ST_ENTRY
4042 || info->symbol_type == ST_CODE
4043 || info->symbol_type == ST_DATA))
4044 {
4045 info->is_comdat
4046 = som_section_data (sym->section)->subspace_dict->is_comdat;
4047 info->is_common
4048 = som_section_data (sym->section)->subspace_dict->is_common;
4049 info->dup_common
4050 = som_section_data (sym->section)->subspace_dict->dup_common;
4051 }
4052 }
4053
4054 /* Build and write, in one big chunk, the entire symbol table for
4055 this BFD. */
4056
4057 static bfd_boolean
4058 som_build_and_write_symbol_table (bfd *abfd)
4059 {
4060 unsigned int num_syms = bfd_get_symcount (abfd);
4061 file_ptr symtab_location = obj_som_file_hdr (abfd)->symbol_location;
4062 asymbol **bfd_syms = obj_som_sorted_syms (abfd);
4063 struct symbol_dictionary_record *som_symtab = NULL;
4064 unsigned int i;
4065 bfd_size_type symtab_size;
4066
4067 /* Compute total symbol table size and allocate a chunk of memory
4068 to hold the symbol table as we build it. */
4069 symtab_size = num_syms;
4070 symtab_size *= sizeof (struct symbol_dictionary_record);
4071 som_symtab = bfd_zmalloc (symtab_size);
4072 if (som_symtab == NULL && symtab_size != 0)
4073 goto error_return;
4074
4075 /* Walk over each symbol. */
4076 for (i = 0; i < num_syms; i++)
4077 {
4078 struct som_misc_symbol_info info;
4079
4080 /* This is really an index into the symbol strings table.
4081 By the time we get here, the index has already been
4082 computed and stored into the name field in the BFD symbol. */
4083 som_symtab[i].name.n_strx = som_symbol_data(bfd_syms[i])->stringtab_offset;
4084
4085 /* Derive SOM information from the BFD symbol. */
4086 som_bfd_derive_misc_symbol_info (abfd, bfd_syms[i], &info);
4087
4088 /* Now use it. */
4089 som_symtab[i].symbol_type = info.symbol_type;
4090 som_symtab[i].symbol_scope = info.symbol_scope;
4091 som_symtab[i].arg_reloc = info.arg_reloc;
4092 som_symtab[i].symbol_info = info.symbol_info;
4093 som_symtab[i].xleast = 3;
4094 som_symtab[i].symbol_value = info.symbol_value | info.priv_level;
4095 som_symtab[i].secondary_def = info.secondary_def;
4096 som_symtab[i].is_comdat = info.is_comdat;
4097 som_symtab[i].is_common = info.is_common;
4098 som_symtab[i].dup_common = info.dup_common;
4099 }
4100
4101 /* Everything is ready, seek to the right location and
4102 scribble out the symbol table. */
4103 if (bfd_seek (abfd, symtab_location, SEEK_SET) != 0)
4104 return FALSE;
4105
4106 if (bfd_bwrite ((void *) som_symtab, symtab_size, abfd) != symtab_size)
4107 goto error_return;
4108
4109 if (som_symtab != NULL)
4110 free (som_symtab);
4111 return TRUE;
4112 error_return:
4113 if (som_symtab != NULL)
4114 free (som_symtab);
4115 return FALSE;
4116 }
4117
4118 /* Write an object in SOM format. */
4119
4120 static bfd_boolean
4121 som_write_object_contents (bfd *abfd)
4122 {
4123 if (! abfd->output_has_begun)
4124 {
4125 /* Set up fixed parts of the file, space, and subspace headers.
4126 Notify the world that output has begun. */
4127 som_prep_headers (abfd);
4128 abfd->output_has_begun = TRUE;
4129 /* Start writing the object file. This include all the string
4130 tables, fixup streams, and other portions of the object file. */
4131 som_begin_writing (abfd);
4132 }
4133
4134 return som_finish_writing (abfd);
4135 }
4136 \f
4137 /* Read and save the string table associated with the given BFD. */
4138
4139 static bfd_boolean
4140 som_slurp_string_table (bfd *abfd)
4141 {
4142 char *stringtab;
4143 bfd_size_type amt;
4144
4145 /* Use the saved version if its available. */
4146 if (obj_som_stringtab (abfd) != NULL)
4147 return TRUE;
4148
4149 /* I don't think this can currently happen, and I'm not sure it should
4150 really be an error, but it's better than getting unpredictable results
4151 from the host's malloc when passed a size of zero. */
4152 if (obj_som_stringtab_size (abfd) == 0)
4153 {
4154 bfd_set_error (bfd_error_no_symbols);
4155 return FALSE;
4156 }
4157
4158 /* Allocate and read in the string table. */
4159 amt = obj_som_stringtab_size (abfd);
4160 stringtab = bfd_zmalloc (amt);
4161 if (stringtab == NULL)
4162 return FALSE;
4163
4164 if (bfd_seek (abfd, obj_som_str_filepos (abfd), SEEK_SET) != 0)
4165 return FALSE;
4166
4167 if (bfd_bread (stringtab, amt, abfd) != amt)
4168 return FALSE;
4169
4170 /* Save our results and return success. */
4171 obj_som_stringtab (abfd) = stringtab;
4172 return TRUE;
4173 }
4174
4175 /* Return the amount of data (in bytes) required to hold the symbol
4176 table for this object. */
4177
4178 static long
4179 som_get_symtab_upper_bound (bfd *abfd)
4180 {
4181 if (!som_slurp_symbol_table (abfd))
4182 return -1;
4183
4184 return (bfd_get_symcount (abfd) + 1) * sizeof (asymbol *);
4185 }
4186
4187 /* Convert from a SOM subspace index to a BFD section. */
4188
4189 static asection *
4190 bfd_section_from_som_symbol (bfd *abfd, struct symbol_dictionary_record *symbol)
4191 {
4192 asection *section;
4193
4194 /* The meaning of the symbol_info field changes for functions
4195 within executables. So only use the quick symbol_info mapping for
4196 incomplete objects and non-function symbols in executables. */
4197 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4198 || (symbol->symbol_type != ST_ENTRY
4199 && symbol->symbol_type != ST_PRI_PROG
4200 && symbol->symbol_type != ST_SEC_PROG
4201 && symbol->symbol_type != ST_MILLICODE))
4202 {
4203 int index = symbol->symbol_info;
4204
4205 for (section = abfd->sections; section != NULL; section = section->next)
4206 if (section->target_index == index && som_is_subspace (section))
4207 return section;
4208 }
4209 else
4210 {
4211 unsigned int value = symbol->symbol_value;
4212
4213 /* For executables we will have to use the symbol's address and
4214 find out what section would contain that address. Yuk. */
4215 for (section = abfd->sections; section; section = section->next)
4216 if (value >= section->vma
4217 && value <= section->vma + section->size
4218 && som_is_subspace (section))
4219 return section;
4220 }
4221
4222 /* Could be a symbol from an external library (such as an OMOS
4223 shared library). Don't abort. */
4224 return bfd_abs_section_ptr;
4225 }
4226
4227 /* Read and save the symbol table associated with the given BFD. */
4228
4229 static unsigned int
4230 som_slurp_symbol_table (bfd *abfd)
4231 {
4232 int symbol_count = bfd_get_symcount (abfd);
4233 int symsize = sizeof (struct symbol_dictionary_record);
4234 char *stringtab;
4235 struct symbol_dictionary_record *buf = NULL, *bufp, *endbufp;
4236 som_symbol_type *sym, *symbase;
4237 bfd_size_type amt;
4238
4239 /* Return saved value if it exists. */
4240 if (obj_som_symtab (abfd) != NULL)
4241 goto successful_return;
4242
4243 /* Special case. This is *not* an error. */
4244 if (symbol_count == 0)
4245 goto successful_return;
4246
4247 if (!som_slurp_string_table (abfd))
4248 goto error_return;
4249
4250 stringtab = obj_som_stringtab (abfd);
4251
4252 amt = symbol_count;
4253 amt *= sizeof (som_symbol_type);
4254 symbase = bfd_zmalloc (amt);
4255 if (symbase == NULL)
4256 goto error_return;
4257
4258 /* Read in the external SOM representation. */
4259 amt = symbol_count;
4260 amt *= symsize;
4261 buf = bfd_malloc (amt);
4262 if (buf == NULL && amt != 0)
4263 goto error_return;
4264 if (bfd_seek (abfd, obj_som_sym_filepos (abfd), SEEK_SET) != 0)
4265 goto error_return;
4266 if (bfd_bread (buf, amt, abfd) != amt)
4267 goto error_return;
4268
4269 /* Iterate over all the symbols and internalize them. */
4270 endbufp = buf + symbol_count;
4271 for (bufp = buf, sym = symbase; bufp < endbufp; ++bufp)
4272 {
4273 /* I don't think we care about these. */
4274 if (bufp->symbol_type == ST_SYM_EXT
4275 || bufp->symbol_type == ST_ARG_EXT)
4276 continue;
4277
4278 /* Set some private data we care about. */
4279 if (bufp->symbol_type == ST_NULL)
4280 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
4281 else if (bufp->symbol_type == ST_ABSOLUTE)
4282 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ABSOLUTE;
4283 else if (bufp->symbol_type == ST_DATA)
4284 som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
4285 else if (bufp->symbol_type == ST_CODE)
4286 som_symbol_data (sym)->som_type = SYMBOL_TYPE_CODE;
4287 else if (bufp->symbol_type == ST_PRI_PROG)
4288 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PRI_PROG;
4289 else if (bufp->symbol_type == ST_SEC_PROG)
4290 som_symbol_data (sym)->som_type = SYMBOL_TYPE_SEC_PROG;
4291 else if (bufp->symbol_type == ST_ENTRY)
4292 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ENTRY;
4293 else if (bufp->symbol_type == ST_MILLICODE)
4294 som_symbol_data (sym)->som_type = SYMBOL_TYPE_MILLICODE;
4295 else if (bufp->symbol_type == ST_PLABEL)
4296 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PLABEL;
4297 else
4298 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
4299 som_symbol_data (sym)->tc_data.ap.hppa_arg_reloc = bufp->arg_reloc;
4300
4301 /* Some reasonable defaults. */
4302 sym->symbol.the_bfd = abfd;
4303 sym->symbol.name = bufp->name.n_strx + stringtab;
4304 sym->symbol.value = bufp->symbol_value;
4305 sym->symbol.section = 0;
4306 sym->symbol.flags = 0;
4307
4308 switch (bufp->symbol_type)
4309 {
4310 case ST_ENTRY:
4311 case ST_MILLICODE:
4312 sym->symbol.flags |= BSF_FUNCTION;
4313 som_symbol_data (sym)->tc_data.ap.hppa_priv_level =
4314 sym->symbol.value & 0x3;
4315 sym->symbol.value &= ~0x3;
4316 break;
4317
4318 case ST_STUB:
4319 case ST_CODE:
4320 case ST_PRI_PROG:
4321 case ST_SEC_PROG:
4322 som_symbol_data (sym)->tc_data.ap.hppa_priv_level =
4323 sym->symbol.value & 0x3;
4324 sym->symbol.value &= ~0x3;
4325 /* If the symbol's scope is SS_UNSAT, then these are
4326 undefined function symbols. */
4327 if (bufp->symbol_scope == SS_UNSAT)
4328 sym->symbol.flags |= BSF_FUNCTION;
4329
4330 default:
4331 break;
4332 }
4333
4334 /* Handle scoping and section information. */
4335 switch (bufp->symbol_scope)
4336 {
4337 /* symbol_info field is undefined for SS_EXTERNAL and SS_UNSAT symbols,
4338 so the section associated with this symbol can't be known. */
4339 case SS_EXTERNAL:
4340 if (bufp->symbol_type != ST_STORAGE)
4341 sym->symbol.section = bfd_und_section_ptr;
4342 else
4343 sym->symbol.section = bfd_com_section_ptr;
4344 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
4345 break;
4346
4347 case SS_UNSAT:
4348 if (bufp->symbol_type != ST_STORAGE)
4349 sym->symbol.section = bfd_und_section_ptr;
4350 else
4351 sym->symbol.section = bfd_com_section_ptr;
4352 break;
4353
4354 case SS_UNIVERSAL:
4355 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
4356 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
4357 sym->symbol.value -= sym->symbol.section->vma;
4358 break;
4359
4360 case SS_LOCAL:
4361 sym->symbol.flags |= BSF_LOCAL;
4362 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
4363 sym->symbol.value -= sym->symbol.section->vma;
4364 break;
4365 }
4366
4367 /* Check for a weak symbol. */
4368 if (bufp->secondary_def)
4369 sym->symbol.flags |= BSF_WEAK;
4370
4371 /* Mark section symbols and symbols used by the debugger.
4372 Note $START$ is a magic code symbol, NOT a section symbol. */
4373 if (sym->symbol.name[0] == '$'
4374 && sym->symbol.name[strlen (sym->symbol.name) - 1] == '$'
4375 && !strcmp (sym->symbol.name, sym->symbol.section->name))
4376 sym->symbol.flags |= BSF_SECTION_SYM;
4377 else if (!strncmp (sym->symbol.name, "L$0\002", 4))
4378 {
4379 sym->symbol.flags |= BSF_SECTION_SYM;
4380 sym->symbol.name = sym->symbol.section->name;
4381 }
4382 else if (!strncmp (sym->symbol.name, "L$0\001", 4))
4383 sym->symbol.flags |= BSF_DEBUGGING;
4384
4385 /* Note increment at bottom of loop, since we skip some symbols
4386 we can not include it as part of the for statement. */
4387 sym++;
4388 }
4389
4390 /* We modify the symbol count to record the number of BFD symbols we
4391 created. */
4392 bfd_get_symcount (abfd) = sym - symbase;
4393
4394 /* Save our results and return success. */
4395 obj_som_symtab (abfd) = symbase;
4396 successful_return:
4397 if (buf != NULL)
4398 free (buf);
4399 return (TRUE);
4400
4401 error_return:
4402 if (buf != NULL)
4403 free (buf);
4404 return FALSE;
4405 }
4406
4407 /* Canonicalize a SOM symbol table. Return the number of entries
4408 in the symbol table. */
4409
4410 static long
4411 som_canonicalize_symtab (bfd *abfd, asymbol **location)
4412 {
4413 int i;
4414 som_symbol_type *symbase;
4415
4416 if (!som_slurp_symbol_table (abfd))
4417 return -1;
4418
4419 i = bfd_get_symcount (abfd);
4420 symbase = obj_som_symtab (abfd);
4421
4422 for (; i > 0; i--, location++, symbase++)
4423 *location = &symbase->symbol;
4424
4425 /* Final null pointer. */
4426 *location = 0;
4427 return (bfd_get_symcount (abfd));
4428 }
4429
4430 /* Make a SOM symbol. There is nothing special to do here. */
4431
4432 static asymbol *
4433 som_make_empty_symbol (bfd *abfd)
4434 {
4435 bfd_size_type amt = sizeof (som_symbol_type);
4436 som_symbol_type *new = bfd_zalloc (abfd, amt);
4437
4438 if (new == NULL)
4439 return NULL;
4440 new->symbol.the_bfd = abfd;
4441
4442 return &new->symbol;
4443 }
4444
4445 /* Print symbol information. */
4446
4447 static void
4448 som_print_symbol (bfd *abfd,
4449 void *afile,
4450 asymbol *symbol,
4451 bfd_print_symbol_type how)
4452 {
4453 FILE *file = (FILE *) afile;
4454
4455 switch (how)
4456 {
4457 case bfd_print_symbol_name:
4458 fprintf (file, "%s", symbol->name);
4459 break;
4460 case bfd_print_symbol_more:
4461 fprintf (file, "som ");
4462 fprintf_vma (file, symbol->value);
4463 fprintf (file, " %lx", (long) symbol->flags);
4464 break;
4465 case bfd_print_symbol_all:
4466 {
4467 const char *section_name;
4468
4469 section_name = symbol->section ? symbol->section->name : "(*none*)";
4470 bfd_print_symbol_vandf (abfd, (void *) file, symbol);
4471 fprintf (file, " %s\t%s", section_name, symbol->name);
4472 break;
4473 }
4474 }
4475 }
4476
4477 static bfd_boolean
4478 som_bfd_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
4479 const char *name)
4480 {
4481 return name[0] == 'L' && name[1] == '$';
4482 }
4483
4484 /* Count or process variable-length SOM fixup records.
4485
4486 To avoid code duplication we use this code both to compute the number
4487 of relocations requested by a stream, and to internalize the stream.
4488
4489 When computing the number of relocations requested by a stream the
4490 variables rptr, section, and symbols have no meaning.
4491
4492 Return the number of relocations requested by the fixup stream. When
4493 not just counting
4494
4495 This needs at least two or three more passes to get it cleaned up. */
4496
4497 static unsigned int
4498 som_set_reloc_info (unsigned char *fixup,
4499 unsigned int end,
4500 arelent *internal_relocs,
4501 asection *section,
4502 asymbol **symbols,
4503 bfd_boolean just_count)
4504 {
4505 unsigned int op, varname, deallocate_contents = 0;
4506 unsigned char *end_fixups = &fixup[end];
4507 const struct fixup_format *fp;
4508 const char *cp;
4509 unsigned char *save_fixup;
4510 int variables[26], stack[20], c, v, count, prev_fixup, *sp, saved_unwind_bits;
4511 const int *subop;
4512 arelent *rptr = internal_relocs;
4513 unsigned int offset = 0;
4514
4515 #define var(c) variables[(c) - 'A']
4516 #define push(v) (*sp++ = (v))
4517 #define pop() (*--sp)
4518 #define emptystack() (sp == stack)
4519
4520 som_initialize_reloc_queue (reloc_queue);
4521 memset (variables, 0, sizeof (variables));
4522 memset (stack, 0, sizeof (stack));
4523 count = 0;
4524 prev_fixup = 0;
4525 saved_unwind_bits = 0;
4526 sp = stack;
4527
4528 while (fixup < end_fixups)
4529 {
4530 /* Save pointer to the start of this fixup. We'll use
4531 it later to determine if it is necessary to put this fixup
4532 on the queue. */
4533 save_fixup = fixup;
4534
4535 /* Get the fixup code and its associated format. */
4536 op = *fixup++;
4537 fp = &som_fixup_formats[op];
4538
4539 /* Handle a request for a previous fixup. */
4540 if (*fp->format == 'P')
4541 {
4542 /* Get pointer to the beginning of the prev fixup, move
4543 the repeated fixup to the head of the queue. */
4544 fixup = reloc_queue[fp->D].reloc;
4545 som_reloc_queue_fix (reloc_queue, fp->D);
4546 prev_fixup = 1;
4547
4548 /* Get the fixup code and its associated format. */
4549 op = *fixup++;
4550 fp = &som_fixup_formats[op];
4551 }
4552
4553 /* If this fixup will be passed to BFD, set some reasonable defaults. */
4554 if (! just_count
4555 && som_hppa_howto_table[op].type != R_NO_RELOCATION
4556 && som_hppa_howto_table[op].type != R_DATA_OVERRIDE)
4557 {
4558 rptr->address = offset;
4559 rptr->howto = &som_hppa_howto_table[op];
4560 rptr->addend = 0;
4561 rptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
4562 }
4563
4564 /* Set default input length to 0. Get the opcode class index
4565 into D. */
4566 var ('L') = 0;
4567 var ('D') = fp->D;
4568 var ('U') = saved_unwind_bits;
4569
4570 /* Get the opcode format. */
4571 cp = fp->format;
4572
4573 /* Process the format string. Parsing happens in two phases,
4574 parse RHS, then assign to LHS. Repeat until no more
4575 characters in the format string. */
4576 while (*cp)
4577 {
4578 /* The variable this pass is going to compute a value for. */
4579 varname = *cp++;
4580
4581 /* Start processing RHS. Continue until a NULL or '=' is found. */
4582 do
4583 {
4584 c = *cp++;
4585
4586 /* If this is a variable, push it on the stack. */
4587 if (ISUPPER (c))
4588 push (var (c));
4589
4590 /* If this is a lower case letter, then it represents
4591 additional data from the fixup stream to be pushed onto
4592 the stack. */
4593 else if (ISLOWER (c))
4594 {
4595 int bits = (c - 'a') * 8;
4596 for (v = 0; c > 'a'; --c)
4597 v = (v << 8) | *fixup++;
4598 if (varname == 'V')
4599 v = sign_extend (v, bits);
4600 push (v);
4601 }
4602
4603 /* A decimal constant. Push it on the stack. */
4604 else if (ISDIGIT (c))
4605 {
4606 v = c - '0';
4607 while (ISDIGIT (*cp))
4608 v = (v * 10) + (*cp++ - '0');
4609 push (v);
4610 }
4611 else
4612 /* An operator. Pop two two values from the stack and
4613 use them as operands to the given operation. Push
4614 the result of the operation back on the stack. */
4615 switch (c)
4616 {
4617 case '+':
4618 v = pop ();
4619 v += pop ();
4620 push (v);
4621 break;
4622 case '*':
4623 v = pop ();
4624 v *= pop ();
4625 push (v);
4626 break;
4627 case '<':
4628 v = pop ();
4629 v = pop () << v;
4630 push (v);
4631 break;
4632 default:
4633 abort ();
4634 }
4635 }
4636 while (*cp && *cp != '=');
4637
4638 /* Move over the equal operator. */
4639 cp++;
4640
4641 /* Pop the RHS off the stack. */
4642 c = pop ();
4643
4644 /* Perform the assignment. */
4645 var (varname) = c;
4646
4647 /* Handle side effects. and special 'O' stack cases. */
4648 switch (varname)
4649 {
4650 /* Consume some bytes from the input space. */
4651 case 'L':
4652 offset += c;
4653 break;
4654 /* A symbol to use in the relocation. Make a note
4655 of this if we are not just counting. */
4656 case 'S':
4657 if (! just_count)
4658 rptr->sym_ptr_ptr = &symbols[c];
4659 break;
4660 /* Argument relocation bits for a function call. */
4661 case 'R':
4662 if (! just_count)
4663 {
4664 unsigned int tmp = var ('R');
4665 rptr->addend = 0;
4666
4667 if ((som_hppa_howto_table[op].type == R_PCREL_CALL
4668 && R_PCREL_CALL + 10 > op)
4669 || (som_hppa_howto_table[op].type == R_ABS_CALL
4670 && R_ABS_CALL + 10 > op))
4671 {
4672 /* Simple encoding. */
4673 if (tmp > 4)
4674 {
4675 tmp -= 5;
4676 rptr->addend |= 1;
4677 }
4678 if (tmp == 4)
4679 rptr->addend |= 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2;
4680 else if (tmp == 3)
4681 rptr->addend |= 1 << 8 | 1 << 6 | 1 << 4;
4682 else if (tmp == 2)
4683 rptr->addend |= 1 << 8 | 1 << 6;
4684 else if (tmp == 1)
4685 rptr->addend |= 1 << 8;
4686 }
4687 else
4688 {
4689 unsigned int tmp1, tmp2;
4690
4691 /* First part is easy -- low order two bits are
4692 directly copied, then shifted away. */
4693 rptr->addend = tmp & 0x3;
4694 tmp >>= 2;
4695
4696 /* Diving the result by 10 gives us the second
4697 part. If it is 9, then the first two words
4698 are a double precision paramater, else it is
4699 3 * the first arg bits + the 2nd arg bits. */
4700 tmp1 = tmp / 10;
4701 tmp -= tmp1 * 10;
4702 if (tmp1 == 9)
4703 rptr->addend += (0xe << 6);
4704 else
4705 {
4706 /* Get the two pieces. */
4707 tmp2 = tmp1 / 3;
4708 tmp1 -= tmp2 * 3;
4709 /* Put them in the addend. */
4710 rptr->addend += (tmp2 << 8) + (tmp1 << 6);
4711 }
4712
4713 /* What's left is the third part. It's unpacked
4714 just like the second. */
4715 if (tmp == 9)
4716 rptr->addend += (0xe << 2);
4717 else
4718 {
4719 tmp2 = tmp / 3;
4720 tmp -= tmp2 * 3;
4721 rptr->addend += (tmp2 << 4) + (tmp << 2);
4722 }
4723 }
4724 rptr->addend = HPPA_R_ADDEND (rptr->addend, 0);
4725 }
4726 break;
4727 /* Handle the linker expression stack. */
4728 case 'O':
4729 switch (op)
4730 {
4731 case R_COMP1:
4732 subop = comp1_opcodes;
4733 break;
4734 case R_COMP2:
4735 subop = comp2_opcodes;
4736 break;
4737 case R_COMP3:
4738 subop = comp3_opcodes;
4739 break;
4740 default:
4741 abort ();
4742 }
4743 while (*subop <= (unsigned char) c)
4744 ++subop;
4745 --subop;
4746 break;
4747 /* The lower 32unwind bits must be persistent. */
4748 case 'U':
4749 saved_unwind_bits = var ('U');
4750 break;
4751
4752 default:
4753 break;
4754 }
4755 }
4756
4757 /* If we used a previous fixup, clean up after it. */
4758 if (prev_fixup)
4759 {
4760 fixup = save_fixup + 1;
4761 prev_fixup = 0;
4762 }
4763 /* Queue it. */
4764 else if (fixup > save_fixup + 1)
4765 som_reloc_queue_insert (save_fixup, fixup - save_fixup, reloc_queue);
4766
4767 /* We do not pass R_DATA_OVERRIDE or R_NO_RELOCATION
4768 fixups to BFD. */
4769 if (som_hppa_howto_table[op].type != R_DATA_OVERRIDE
4770 && som_hppa_howto_table[op].type != R_NO_RELOCATION)
4771 {
4772 /* Done with a single reloction. Loop back to the top. */
4773 if (! just_count)
4774 {
4775 if (som_hppa_howto_table[op].type == R_ENTRY)
4776 rptr->addend = var ('T');
4777 else if (som_hppa_howto_table[op].type == R_EXIT)
4778 rptr->addend = var ('U');
4779 else if (som_hppa_howto_table[op].type == R_PCREL_CALL
4780 || som_hppa_howto_table[op].type == R_ABS_CALL)
4781 ;
4782 else if (som_hppa_howto_table[op].type == R_DATA_ONE_SYMBOL)
4783 {
4784 /* Try what was specified in R_DATA_OVERRIDE first
4785 (if anything). Then the hard way using the
4786 section contents. */
4787 rptr->addend = var ('V');
4788
4789 if (rptr->addend == 0 && !section->contents)
4790 {
4791 /* Got to read the damn contents first. We don't
4792 bother saving the contents (yet). Add it one
4793 day if the need arises. */
4794 bfd_byte *contents;
4795 if (!bfd_malloc_and_get_section (section->owner, section,
4796 &contents))
4797 {
4798 if (contents != NULL)
4799 free (contents);
4800 return (unsigned) -1;
4801 }
4802 section->contents = contents;
4803 deallocate_contents = 1;
4804 }
4805 else if (rptr->addend == 0)
4806 rptr->addend = bfd_get_32 (section->owner,
4807 (section->contents
4808 + offset - var ('L')));
4809
4810 }
4811 else
4812 rptr->addend = var ('V');
4813 rptr++;
4814 }
4815 count++;
4816 /* Now that we've handled a "full" relocation, reset
4817 some state. */
4818 memset (variables, 0, sizeof (variables));
4819 memset (stack, 0, sizeof (stack));
4820 }
4821 }
4822 if (deallocate_contents)
4823 free (section->contents);
4824
4825 return count;
4826
4827 #undef var
4828 #undef push
4829 #undef pop
4830 #undef emptystack
4831 }
4832
4833 /* Read in the relocs (aka fixups in SOM terms) for a section.
4834
4835 som_get_reloc_upper_bound calls this routine with JUST_COUNT
4836 set to TRUE to indicate it only needs a count of the number
4837 of actual relocations. */
4838
4839 static bfd_boolean
4840 som_slurp_reloc_table (bfd *abfd,
4841 asection *section,
4842 asymbol **symbols,
4843 bfd_boolean just_count)
4844 {
4845 char *external_relocs;
4846 unsigned int fixup_stream_size;
4847 arelent *internal_relocs;
4848 unsigned int num_relocs;
4849 bfd_size_type amt;
4850
4851 fixup_stream_size = som_section_data (section)->reloc_size;
4852 /* If there were no relocations, then there is nothing to do. */
4853 if (section->reloc_count == 0)
4854 return TRUE;
4855
4856 /* If reloc_count is -1, then the relocation stream has not been
4857 parsed. We must do so now to know how many relocations exist. */
4858 if (section->reloc_count == (unsigned) -1)
4859 {
4860 amt = fixup_stream_size;
4861 external_relocs = bfd_malloc (amt);
4862 if (external_relocs == NULL)
4863 return FALSE;
4864 /* Read in the external forms. */
4865 if (bfd_seek (abfd,
4866 obj_som_reloc_filepos (abfd) + section->rel_filepos,
4867 SEEK_SET)
4868 != 0)
4869 return FALSE;
4870 if (bfd_bread (external_relocs, amt, abfd) != amt)
4871 return FALSE;
4872
4873 /* Let callers know how many relocations found.
4874 also save the relocation stream as we will
4875 need it again. */
4876 section->reloc_count = som_set_reloc_info (external_relocs,
4877 fixup_stream_size,
4878 NULL, NULL, NULL, TRUE);
4879
4880 som_section_data (section)->reloc_stream = external_relocs;
4881 }
4882
4883 /* If the caller only wanted a count, then return now. */
4884 if (just_count)
4885 return TRUE;
4886
4887 num_relocs = section->reloc_count;
4888 external_relocs = som_section_data (section)->reloc_stream;
4889 /* Return saved information about the relocations if it is available. */
4890 if (section->relocation != NULL)
4891 return TRUE;
4892
4893 amt = num_relocs;
4894 amt *= sizeof (arelent);
4895 internal_relocs = bfd_zalloc (abfd, (amt));
4896 if (internal_relocs == NULL)
4897 return FALSE;
4898
4899 /* Process and internalize the relocations. */
4900 som_set_reloc_info (external_relocs, fixup_stream_size,
4901 internal_relocs, section, symbols, FALSE);
4902
4903 /* We're done with the external relocations. Free them. */
4904 free (external_relocs);
4905 som_section_data (section)->reloc_stream = NULL;
4906
4907 /* Save our results and return success. */
4908 section->relocation = internal_relocs;
4909 return TRUE;
4910 }
4911
4912 /* Return the number of bytes required to store the relocation
4913 information associated with the given section. */
4914
4915 static long
4916 som_get_reloc_upper_bound (bfd *abfd, sec_ptr asect)
4917 {
4918 /* If section has relocations, then read in the relocation stream
4919 and parse it to determine how many relocations exist. */
4920 if (asect->flags & SEC_RELOC)
4921 {
4922 if (! som_slurp_reloc_table (abfd, asect, NULL, TRUE))
4923 return -1;
4924 return (asect->reloc_count + 1) * sizeof (arelent *);
4925 }
4926 /* There are no relocations. */
4927 return 0;
4928 }
4929
4930 /* Convert relocations from SOM (external) form into BFD internal
4931 form. Return the number of relocations. */
4932
4933 static long
4934 som_canonicalize_reloc (bfd *abfd,
4935 sec_ptr section,
4936 arelent **relptr,
4937 asymbol **symbols)
4938 {
4939 arelent *tblptr;
4940 int count;
4941
4942 if (! som_slurp_reloc_table (abfd, section, symbols, FALSE))
4943 return -1;
4944
4945 count = section->reloc_count;
4946 tblptr = section->relocation;
4947
4948 while (count--)
4949 *relptr++ = tblptr++;
4950
4951 *relptr = NULL;
4952 return section->reloc_count;
4953 }
4954
4955 extern const bfd_target som_vec;
4956
4957 /* A hook to set up object file dependent section information. */
4958
4959 static bfd_boolean
4960 som_new_section_hook (bfd *abfd, asection *newsect)
4961 {
4962 bfd_size_type amt = sizeof (struct som_section_data_struct);
4963
4964 newsect->used_by_bfd = bfd_zalloc (abfd, amt);
4965 if (!newsect->used_by_bfd)
4966 return FALSE;
4967 newsect->alignment_power = 3;
4968
4969 /* We allow more than three sections internally. */
4970 return TRUE;
4971 }
4972
4973 /* Copy any private info we understand from the input symbol
4974 to the output symbol. */
4975
4976 static bfd_boolean
4977 som_bfd_copy_private_symbol_data (bfd *ibfd,
4978 asymbol *isymbol,
4979 bfd *obfd,
4980 asymbol *osymbol)
4981 {
4982 struct som_symbol *input_symbol = (struct som_symbol *) isymbol;
4983 struct som_symbol *output_symbol = (struct som_symbol *) osymbol;
4984
4985 /* One day we may try to grok other private data. */
4986 if (ibfd->xvec->flavour != bfd_target_som_flavour
4987 || obfd->xvec->flavour != bfd_target_som_flavour)
4988 return FALSE;
4989
4990 /* The only private information we need to copy is the argument relocation
4991 bits. */
4992 output_symbol->tc_data.ap.hppa_arg_reloc =
4993 input_symbol->tc_data.ap.hppa_arg_reloc;
4994
4995 return TRUE;
4996 }
4997
4998 /* Copy any private info we understand from the input section
4999 to the output section. */
5000
5001 static bfd_boolean
5002 som_bfd_copy_private_section_data (bfd *ibfd,
5003 asection *isection,
5004 bfd *obfd,
5005 asection *osection)
5006 {
5007 bfd_size_type amt;
5008
5009 /* One day we may try to grok other private data. */
5010 if (ibfd->xvec->flavour != bfd_target_som_flavour
5011 || obfd->xvec->flavour != bfd_target_som_flavour
5012 || (!som_is_space (isection) && !som_is_subspace (isection)))
5013 return TRUE;
5014
5015 amt = sizeof (struct som_copyable_section_data_struct);
5016 som_section_data (osection)->copy_data = bfd_zalloc (obfd, amt);
5017 if (som_section_data (osection)->copy_data == NULL)
5018 return FALSE;
5019
5020 memcpy (som_section_data (osection)->copy_data,
5021 som_section_data (isection)->copy_data,
5022 sizeof (struct som_copyable_section_data_struct));
5023
5024 /* Reparent if necessary. */
5025 if (som_section_data (osection)->copy_data->container)
5026 som_section_data (osection)->copy_data->container =
5027 som_section_data (osection)->copy_data->container->output_section;
5028
5029 return TRUE;
5030 }
5031
5032 /* Copy any private info we understand from the input bfd
5033 to the output bfd. */
5034
5035 static bfd_boolean
5036 som_bfd_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
5037 {
5038 /* One day we may try to grok other private data. */
5039 if (ibfd->xvec->flavour != bfd_target_som_flavour
5040 || obfd->xvec->flavour != bfd_target_som_flavour)
5041 return TRUE;
5042
5043 /* Allocate some memory to hold the data we need. */
5044 obj_som_exec_data (obfd) = bfd_zalloc (obfd, (bfd_size_type) sizeof (struct som_exec_data));
5045 if (obj_som_exec_data (obfd) == NULL)
5046 return FALSE;
5047
5048 /* Now copy the data. */
5049 memcpy (obj_som_exec_data (obfd), obj_som_exec_data (ibfd),
5050 sizeof (struct som_exec_data));
5051
5052 return TRUE;
5053 }
5054
5055 /* Display the SOM header. */
5056
5057 static bfd_boolean
5058 som_bfd_print_private_bfd_data (bfd *abfd, void *farg)
5059 {
5060 struct som_exec_auxhdr *exec_header;
5061 struct aux_id* auxhdr;
5062 FILE *f;
5063
5064 f = (FILE *) farg;
5065
5066 exec_header = obj_som_exec_hdr (abfd);
5067 if (exec_header)
5068 {
5069 fprintf (f, _("\nExec Auxiliary Header\n"));
5070 fprintf (f, " flags ");
5071 auxhdr = &exec_header->som_auxhdr;
5072 if (auxhdr->mandatory)
5073 fprintf (f, "mandatory ");
5074 if (auxhdr->copy)
5075 fprintf (f, "copy ");
5076 if (auxhdr->append)
5077 fprintf (f, "append ");
5078 if (auxhdr->ignore)
5079 fprintf (f, "ignore ");
5080 fprintf (f, "\n");
5081 fprintf (f, " type %#x\n", auxhdr->type);
5082 fprintf (f, " length %#x\n", auxhdr->length);
5083 fprintf (f, " text size %#lx\n", exec_header->exec_tsize);
5084 fprintf (f, " text memory offset %#lx\n", exec_header->exec_tmem);
5085 fprintf (f, " text file offset %#lx\n", exec_header->exec_tfile);
5086 fprintf (f, " data size %#lx\n", exec_header->exec_dsize);
5087 fprintf (f, " data memory offset %#lx\n", exec_header->exec_dmem);
5088 fprintf (f, " data file offset %#lx\n", exec_header->exec_dfile);
5089 fprintf (f, " bss size %#lx\n", exec_header->exec_bsize);
5090 fprintf (f, " entry point %#lx\n", exec_header->exec_entry);
5091 fprintf (f, " loader flags %#lx\n", exec_header->exec_flags);
5092 fprintf (f, " bss initializer %#lx\n", exec_header->exec_bfill);
5093 }
5094
5095 return TRUE;
5096 }
5097
5098 /* Set backend info for sections which can not be described
5099 in the BFD data structures. */
5100
5101 bfd_boolean
5102 bfd_som_set_section_attributes (asection *section,
5103 int defined,
5104 int private,
5105 unsigned int sort_key,
5106 int spnum)
5107 {
5108 /* Allocate memory to hold the magic information. */
5109 if (som_section_data (section)->copy_data == NULL)
5110 {
5111 bfd_size_type amt = sizeof (struct som_copyable_section_data_struct);
5112
5113 som_section_data (section)->copy_data = bfd_zalloc (section->owner, amt);
5114 if (som_section_data (section)->copy_data == NULL)
5115 return FALSE;
5116 }
5117 som_section_data (section)->copy_data->sort_key = sort_key;
5118 som_section_data (section)->copy_data->is_defined = defined;
5119 som_section_data (section)->copy_data->is_private = private;
5120 som_section_data (section)->copy_data->container = section;
5121 som_section_data (section)->copy_data->space_number = spnum;
5122 return TRUE;
5123 }
5124
5125 /* Set backend info for subsections which can not be described
5126 in the BFD data structures. */
5127
5128 bfd_boolean
5129 bfd_som_set_subsection_attributes (asection *section,
5130 asection *container,
5131 int access,
5132 unsigned int sort_key,
5133 int quadrant,
5134 int comdat,
5135 int common,
5136 int dup_common)
5137 {
5138 /* Allocate memory to hold the magic information. */
5139 if (som_section_data (section)->copy_data == NULL)
5140 {
5141 bfd_size_type amt = sizeof (struct som_copyable_section_data_struct);
5142
5143 som_section_data (section)->copy_data = bfd_zalloc (section->owner, amt);
5144 if (som_section_data (section)->copy_data == NULL)
5145 return FALSE;
5146 }
5147 som_section_data (section)->copy_data->sort_key = sort_key;
5148 som_section_data (section)->copy_data->access_control_bits = access;
5149 som_section_data (section)->copy_data->quadrant = quadrant;
5150 som_section_data (section)->copy_data->container = container;
5151 som_section_data (section)->copy_data->is_comdat = comdat;
5152 som_section_data (section)->copy_data->is_common = common;
5153 som_section_data (section)->copy_data->dup_common = dup_common;
5154 return TRUE;
5155 }
5156
5157 /* Set the full SOM symbol type. SOM needs far more symbol information
5158 than any other object file format I'm aware of. It is mandatory
5159 to be able to know if a symbol is an entry point, millicode, data,
5160 code, absolute, storage request, or procedure label. If you get
5161 the symbol type wrong your program will not link. */
5162
5163 void
5164 bfd_som_set_symbol_type (asymbol *symbol, unsigned int type)
5165 {
5166 som_symbol_data (symbol)->som_type = type;
5167 }
5168
5169 /* Attach an auxiliary header to the BFD backend so that it may be
5170 written into the object file. */
5171
5172 bfd_boolean
5173 bfd_som_attach_aux_hdr (bfd *abfd, int type, char *string)
5174 {
5175 bfd_size_type amt;
5176
5177 if (type == VERSION_AUX_ID)
5178 {
5179 size_t len = strlen (string);
5180 int pad = 0;
5181
5182 if (len % 4)
5183 pad = (4 - (len % 4));
5184 amt = sizeof (struct aux_id) + sizeof (unsigned int) + len + pad;
5185 obj_som_version_hdr (abfd) = bfd_zalloc (abfd, amt);
5186 if (!obj_som_version_hdr (abfd))
5187 return FALSE;
5188 obj_som_version_hdr (abfd)->header_id.type = VERSION_AUX_ID;
5189 obj_som_version_hdr (abfd)->header_id.length = len + pad;
5190 obj_som_version_hdr (abfd)->header_id.length += sizeof (int);
5191 obj_som_version_hdr (abfd)->string_length = len;
5192 strncpy (obj_som_version_hdr (abfd)->user_string, string, len);
5193 }
5194 else if (type == COPYRIGHT_AUX_ID)
5195 {
5196 int len = strlen (string);
5197 int pad = 0;
5198
5199 if (len % 4)
5200 pad = (4 - (len % 4));
5201 amt = sizeof (struct aux_id) + sizeof (unsigned int) + len + pad;
5202 obj_som_copyright_hdr (abfd) = bfd_zalloc (abfd, amt);
5203 if (!obj_som_copyright_hdr (abfd))
5204 return FALSE;
5205 obj_som_copyright_hdr (abfd)->header_id.type = COPYRIGHT_AUX_ID;
5206 obj_som_copyright_hdr (abfd)->header_id.length = len + pad;
5207 obj_som_copyright_hdr (abfd)->header_id.length += sizeof (int);
5208 obj_som_copyright_hdr (abfd)->string_length = len;
5209 strcpy (obj_som_copyright_hdr (abfd)->copyright, string);
5210 }
5211 return TRUE;
5212 }
5213
5214 /* Attach a compilation unit header to the BFD backend so that it may be
5215 written into the object file. */
5216
5217 bfd_boolean
5218 bfd_som_attach_compilation_unit (bfd *abfd,
5219 const char *name,
5220 const char *language_name,
5221 const char *product_id,
5222 const char *version_id)
5223 {
5224 COMPUNIT *n = (COMPUNIT *) bfd_zalloc (abfd, (bfd_size_type) COMPUNITSZ);
5225
5226 if (n == NULL)
5227 return FALSE;
5228
5229 #define STRDUP(f) \
5230 if (f != NULL) \
5231 { \
5232 n->f.n_name = bfd_alloc (abfd, (bfd_size_type) strlen (f) + 1); \
5233 if (n->f.n_name == NULL) \
5234 return FALSE; \
5235 strcpy (n->f.n_name, f); \
5236 }
5237
5238 STRDUP (name);
5239 STRDUP (language_name);
5240 STRDUP (product_id);
5241 STRDUP (version_id);
5242
5243 #undef STRDUP
5244
5245 obj_som_compilation_unit (abfd) = n;
5246
5247 return TRUE;
5248 }
5249
5250 static bfd_boolean
5251 som_get_section_contents (bfd *abfd,
5252 sec_ptr section,
5253 void *location,
5254 file_ptr offset,
5255 bfd_size_type count)
5256 {
5257 if (count == 0 || ((section->flags & SEC_HAS_CONTENTS) == 0))
5258 return TRUE;
5259 if ((bfd_size_type) (offset+count) > section->size
5260 || bfd_seek (abfd, (file_ptr) (section->filepos + offset), SEEK_SET) != 0
5261 || bfd_bread (location, count, abfd) != count)
5262 return FALSE; /* On error. */
5263 return TRUE;
5264 }
5265
5266 static bfd_boolean
5267 som_set_section_contents (bfd *abfd,
5268 sec_ptr section,
5269 const void *location,
5270 file_ptr offset,
5271 bfd_size_type count)
5272 {
5273 if (! abfd->output_has_begun)
5274 {
5275 /* Set up fixed parts of the file, space, and subspace headers.
5276 Notify the world that output has begun. */
5277 som_prep_headers (abfd);
5278 abfd->output_has_begun = TRUE;
5279 /* Start writing the object file. This include all the string
5280 tables, fixup streams, and other portions of the object file. */
5281 som_begin_writing (abfd);
5282 }
5283
5284 /* Only write subspaces which have "real" contents (eg. the contents
5285 are not generated at run time by the OS). */
5286 if (!som_is_subspace (section)
5287 || ((section->flags & SEC_HAS_CONTENTS) == 0))
5288 return TRUE;
5289
5290 /* Seek to the proper offset within the object file and write the
5291 data. */
5292 offset += som_section_data (section)->subspace_dict->file_loc_init_value;
5293 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
5294 return FALSE;
5295
5296 if (bfd_bwrite (location, count, abfd) != count)
5297 return FALSE;
5298 return TRUE;
5299 }
5300
5301 static bfd_boolean
5302 som_set_arch_mach (bfd *abfd,
5303 enum bfd_architecture arch,
5304 unsigned long machine)
5305 {
5306 /* Allow any architecture to be supported by the SOM backend. */
5307 return bfd_default_set_arch_mach (abfd, arch, machine);
5308 }
5309
5310 static bfd_boolean
5311 som_find_nearest_line (bfd *abfd ATTRIBUTE_UNUSED,
5312 asection *section ATTRIBUTE_UNUSED,
5313 asymbol **symbols ATTRIBUTE_UNUSED,
5314 bfd_vma offset ATTRIBUTE_UNUSED,
5315 const char **filename_ptr ATTRIBUTE_UNUSED,
5316 const char **functionname_ptr ATTRIBUTE_UNUSED,
5317 unsigned int *line_ptr ATTRIBUTE_UNUSED)
5318 {
5319 return FALSE;
5320 }
5321
5322 static int
5323 som_sizeof_headers (bfd *abfd ATTRIBUTE_UNUSED,
5324 bfd_boolean reloc ATTRIBUTE_UNUSED)
5325 {
5326 (*_bfd_error_handler) (_("som_sizeof_headers unimplemented"));
5327 fflush (stderr);
5328 abort ();
5329 return 0;
5330 }
5331
5332 /* Return the single-character symbol type corresponding to
5333 SOM section S, or '?' for an unknown SOM section. */
5334
5335 static char
5336 som_section_type (const char *s)
5337 {
5338 const struct section_to_type *t;
5339
5340 for (t = &stt[0]; t->section; t++)
5341 if (!strcmp (s, t->section))
5342 return t->type;
5343 return '?';
5344 }
5345
5346 static int
5347 som_decode_symclass (asymbol *symbol)
5348 {
5349 char c;
5350
5351 if (bfd_is_com_section (symbol->section))
5352 return 'C';
5353 if (bfd_is_und_section (symbol->section))
5354 return 'U';
5355 if (bfd_is_ind_section (symbol->section))
5356 return 'I';
5357 if (symbol->flags & BSF_WEAK)
5358 return 'W';
5359 if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL)))
5360 return '?';
5361
5362 if (bfd_is_abs_section (symbol->section)
5363 || (som_symbol_data (symbol) != NULL
5364 && som_symbol_data (symbol)->som_type == SYMBOL_TYPE_ABSOLUTE))
5365 c = 'a';
5366 else if (symbol->section)
5367 c = som_section_type (symbol->section->name);
5368 else
5369 return '?';
5370 if (symbol->flags & BSF_GLOBAL)
5371 c = TOUPPER (c);
5372 return c;
5373 }
5374
5375 /* Return information about SOM symbol SYMBOL in RET. */
5376
5377 static void
5378 som_get_symbol_info (bfd *ignore_abfd ATTRIBUTE_UNUSED,
5379 asymbol *symbol,
5380 symbol_info *ret)
5381 {
5382 ret->type = som_decode_symclass (symbol);
5383 if (ret->type != 'U')
5384 ret->value = symbol->value + symbol->section->vma;
5385 else
5386 ret->value = 0;
5387 ret->name = symbol->name;
5388 }
5389
5390 /* Count the number of symbols in the archive symbol table. Necessary
5391 so that we can allocate space for all the carsyms at once. */
5392
5393 static bfd_boolean
5394 som_bfd_count_ar_symbols (bfd *abfd,
5395 struct lst_header *lst_header,
5396 symindex *count)
5397 {
5398 unsigned int i;
5399 unsigned int *hash_table = NULL;
5400 bfd_size_type amt;
5401 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5402
5403 amt = lst_header->hash_size;
5404 amt *= sizeof (unsigned int);
5405 hash_table = bfd_malloc (amt);
5406 if (hash_table == NULL && lst_header->hash_size != 0)
5407 goto error_return;
5408
5409 /* Don't forget to initialize the counter! */
5410 *count = 0;
5411
5412 /* Read in the hash table. The has table is an array of 32bit file offsets
5413 which point to the hash chains. */
5414 if (bfd_bread ((void *) hash_table, amt, abfd) != amt)
5415 goto error_return;
5416
5417 /* Walk each chain counting the number of symbols found on that particular
5418 chain. */
5419 for (i = 0; i < lst_header->hash_size; i++)
5420 {
5421 struct lst_symbol_record lst_symbol;
5422
5423 /* An empty chain has zero as it's file offset. */
5424 if (hash_table[i] == 0)
5425 continue;
5426
5427 /* Seek to the first symbol in this hash chain. */
5428 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) != 0)
5429 goto error_return;
5430
5431 /* Read in this symbol and update the counter. */
5432 amt = sizeof (lst_symbol);
5433 if (bfd_bread ((void *) &lst_symbol, amt, abfd) != amt)
5434 goto error_return;
5435
5436 (*count)++;
5437
5438 /* Now iterate through the rest of the symbols on this chain. */
5439 while (lst_symbol.next_entry)
5440 {
5441
5442 /* Seek to the next symbol. */
5443 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
5444 != 0)
5445 goto error_return;
5446
5447 /* Read the symbol in and update the counter. */
5448 amt = sizeof (lst_symbol);
5449 if (bfd_bread ((void *) &lst_symbol, amt, abfd) != amt)
5450 goto error_return;
5451
5452 (*count)++;
5453 }
5454 }
5455 if (hash_table != NULL)
5456 free (hash_table);
5457 return TRUE;
5458
5459 error_return:
5460 if (hash_table != NULL)
5461 free (hash_table);
5462 return FALSE;
5463 }
5464
5465 /* Fill in the canonical archive symbols (SYMS) from the archive described
5466 by ABFD and LST_HEADER. */
5467
5468 static bfd_boolean
5469 som_bfd_fill_in_ar_symbols (bfd *abfd,
5470 struct lst_header *lst_header,
5471 carsym **syms)
5472 {
5473 unsigned int i, len;
5474 carsym *set = syms[0];
5475 unsigned int *hash_table = NULL;
5476 struct som_entry *som_dict = NULL;
5477 bfd_size_type amt;
5478 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5479
5480 amt = lst_header->hash_size;
5481 amt *= sizeof (unsigned int);
5482 hash_table = bfd_malloc (amt);
5483 if (hash_table == NULL && lst_header->hash_size != 0)
5484 goto error_return;
5485
5486 /* Read in the hash table. The has table is an array of 32bit file offsets
5487 which point to the hash chains. */
5488 if (bfd_bread ((void *) hash_table, amt, abfd) != amt)
5489 goto error_return;
5490
5491 /* Seek to and read in the SOM dictionary. We will need this to fill
5492 in the carsym's filepos field. */
5493 if (bfd_seek (abfd, lst_filepos + lst_header->dir_loc, SEEK_SET) != 0)
5494 goto error_return;
5495
5496 amt = lst_header->module_count;
5497 amt *= sizeof (struct som_entry);
5498 som_dict = bfd_malloc (amt);
5499 if (som_dict == NULL && lst_header->module_count != 0)
5500 goto error_return;
5501
5502 if (bfd_bread ((void *) som_dict, amt, abfd) != amt)
5503 goto error_return;
5504
5505 /* Walk each chain filling in the carsyms as we go along. */
5506 for (i = 0; i < lst_header->hash_size; i++)
5507 {
5508 struct lst_symbol_record lst_symbol;
5509
5510 /* An empty chain has zero as it's file offset. */
5511 if (hash_table[i] == 0)
5512 continue;
5513
5514 /* Seek to and read the first symbol on the chain. */
5515 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) != 0)
5516 goto error_return;
5517
5518 amt = sizeof (lst_symbol);
5519 if (bfd_bread ((void *) &lst_symbol, amt, abfd) != amt)
5520 goto error_return;
5521
5522 /* Get the name of the symbol, first get the length which is stored
5523 as a 32bit integer just before the symbol.
5524
5525 One might ask why we don't just read in the entire string table
5526 and index into it. Well, according to the SOM ABI the string
5527 index can point *anywhere* in the archive to save space, so just
5528 using the string table would not be safe. */
5529 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
5530 + lst_symbol.name.n_strx - 4, SEEK_SET) != 0)
5531 goto error_return;
5532
5533 if (bfd_bread (&len, (bfd_size_type) 4, abfd) != 4)
5534 goto error_return;
5535
5536 /* Allocate space for the name and null terminate it too. */
5537 set->name = bfd_zalloc (abfd, (bfd_size_type) len + 1);
5538 if (!set->name)
5539 goto error_return;
5540 if (bfd_bread (set->name, (bfd_size_type) len, abfd) != len)
5541 goto error_return;
5542
5543 set->name[len] = 0;
5544
5545 /* Fill in the file offset. Note that the "location" field points
5546 to the SOM itself, not the ar_hdr in front of it. */
5547 set->file_offset = som_dict[lst_symbol.som_index].location
5548 - sizeof (struct ar_hdr);
5549
5550 /* Go to the next symbol. */
5551 set++;
5552
5553 /* Iterate through the rest of the chain. */
5554 while (lst_symbol.next_entry)
5555 {
5556 /* Seek to the next symbol and read it in. */
5557 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
5558 != 0)
5559 goto error_return;
5560
5561 amt = sizeof (lst_symbol);
5562 if (bfd_bread ((void *) &lst_symbol, amt, abfd) != amt)
5563 goto error_return;
5564
5565 /* Seek to the name length & string and read them in. */
5566 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
5567 + lst_symbol.name.n_strx - 4, SEEK_SET) != 0)
5568 goto error_return;
5569
5570 if (bfd_bread (&len, (bfd_size_type) 4, abfd) != 4)
5571 goto error_return;
5572
5573 /* Allocate space for the name and null terminate it too. */
5574 set->name = bfd_zalloc (abfd, (bfd_size_type) len + 1);
5575 if (!set->name)
5576 goto error_return;
5577
5578 if (bfd_bread (set->name, (bfd_size_type) len, abfd) != len)
5579 goto error_return;
5580 set->name[len] = 0;
5581
5582 /* Fill in the file offset. Note that the "location" field points
5583 to the SOM itself, not the ar_hdr in front of it. */
5584 set->file_offset = som_dict[lst_symbol.som_index].location
5585 - sizeof (struct ar_hdr);
5586
5587 /* Go on to the next symbol. */
5588 set++;
5589 }
5590 }
5591 /* If we haven't died by now, then we successfully read the entire
5592 archive symbol table. */
5593 if (hash_table != NULL)
5594 free (hash_table);
5595 if (som_dict != NULL)
5596 free (som_dict);
5597 return TRUE;
5598
5599 error_return:
5600 if (hash_table != NULL)
5601 free (hash_table);
5602 if (som_dict != NULL)
5603 free (som_dict);
5604 return FALSE;
5605 }
5606
5607 /* Read in the LST from the archive. */
5608
5609 static bfd_boolean
5610 som_slurp_armap (bfd *abfd)
5611 {
5612 struct lst_header lst_header;
5613 struct ar_hdr ar_header;
5614 unsigned int parsed_size;
5615 struct artdata *ardata = bfd_ardata (abfd);
5616 char nextname[17];
5617 bfd_size_type amt = 16;
5618 int i = bfd_bread ((void *) nextname, amt, abfd);
5619
5620 /* Special cases. */
5621 if (i == 0)
5622 return TRUE;
5623 if (i != 16)
5624 return FALSE;
5625
5626 if (bfd_seek (abfd, (file_ptr) -16, SEEK_CUR) != 0)
5627 return FALSE;
5628
5629 /* For archives without .o files there is no symbol table. */
5630 if (strncmp (nextname, "/ ", 16))
5631 {
5632 bfd_has_map (abfd) = FALSE;
5633 return TRUE;
5634 }
5635
5636 /* Read in and sanity check the archive header. */
5637 amt = sizeof (struct ar_hdr);
5638 if (bfd_bread ((void *) &ar_header, amt, abfd) != amt)
5639 return FALSE;
5640
5641 if (strncmp (ar_header.ar_fmag, ARFMAG, 2))
5642 {
5643 bfd_set_error (bfd_error_malformed_archive);
5644 return FALSE;
5645 }
5646
5647 /* How big is the archive symbol table entry? */
5648 errno = 0;
5649 parsed_size = strtol (ar_header.ar_size, NULL, 10);
5650 if (errno != 0)
5651 {
5652 bfd_set_error (bfd_error_malformed_archive);
5653 return FALSE;
5654 }
5655
5656 /* Save off the file offset of the first real user data. */
5657 ardata->first_file_filepos = bfd_tell (abfd) + parsed_size;
5658
5659 /* Read in the library symbol table. We'll make heavy use of this
5660 in just a minute. */
5661 amt = sizeof (struct lst_header);
5662 if (bfd_bread ((void *) &lst_header, amt, abfd) != amt)
5663 return FALSE;
5664
5665 /* Sanity check. */
5666 if (lst_header.a_magic != LIBMAGIC)
5667 {
5668 bfd_set_error (bfd_error_malformed_archive);
5669 return FALSE;
5670 }
5671
5672 /* Count the number of symbols in the library symbol table. */
5673 if (! som_bfd_count_ar_symbols (abfd, &lst_header, &ardata->symdef_count))
5674 return FALSE;
5675
5676 /* Get back to the start of the library symbol table. */
5677 if (bfd_seek (abfd, (ardata->first_file_filepos - parsed_size
5678 + sizeof (struct lst_header)), SEEK_SET) != 0)
5679 return FALSE;
5680
5681 /* Initialize the cache and allocate space for the library symbols. */
5682 ardata->cache = 0;
5683 amt = ardata->symdef_count;
5684 amt *= sizeof (carsym);
5685 ardata->symdefs = bfd_alloc (abfd, amt);
5686 if (!ardata->symdefs)
5687 return FALSE;
5688
5689 /* Now fill in the canonical archive symbols. */
5690 if (! som_bfd_fill_in_ar_symbols (abfd, &lst_header, &ardata->symdefs))
5691 return FALSE;
5692
5693 /* Seek back to the "first" file in the archive. Note the "first"
5694 file may be the extended name table. */
5695 if (bfd_seek (abfd, ardata->first_file_filepos, SEEK_SET) != 0)
5696 return FALSE;
5697
5698 /* Notify the generic archive code that we have a symbol map. */
5699 bfd_has_map (abfd) = TRUE;
5700 return TRUE;
5701 }
5702
5703 /* Begin preparing to write a SOM library symbol table.
5704
5705 As part of the prep work we need to determine the number of symbols
5706 and the size of the associated string section. */
5707
5708 static bfd_boolean
5709 som_bfd_prep_for_ar_write (bfd *abfd,
5710 unsigned int *num_syms,
5711 unsigned int *stringsize)
5712 {
5713 bfd *curr_bfd = abfd->archive_head;
5714
5715 /* Some initialization. */
5716 *num_syms = 0;
5717 *stringsize = 0;
5718
5719 /* Iterate over each BFD within this archive. */
5720 while (curr_bfd != NULL)
5721 {
5722 unsigned int curr_count, i;
5723 som_symbol_type *sym;
5724
5725 /* Don't bother for non-SOM objects. */
5726 if (curr_bfd->format != bfd_object
5727 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5728 {
5729 curr_bfd = curr_bfd->next;
5730 continue;
5731 }
5732
5733 /* Make sure the symbol table has been read, then snag a pointer
5734 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5735 but doing so avoids allocating lots of extra memory. */
5736 if (! som_slurp_symbol_table (curr_bfd))
5737 return FALSE;
5738
5739 sym = obj_som_symtab (curr_bfd);
5740 curr_count = bfd_get_symcount (curr_bfd);
5741
5742 /* Examine each symbol to determine if it belongs in the
5743 library symbol table. */
5744 for (i = 0; i < curr_count; i++, sym++)
5745 {
5746 struct som_misc_symbol_info info;
5747
5748 /* Derive SOM information from the BFD symbol. */
5749 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5750
5751 /* Should we include this symbol? */
5752 if (info.symbol_type == ST_NULL
5753 || info.symbol_type == ST_SYM_EXT
5754 || info.symbol_type == ST_ARG_EXT)
5755 continue;
5756
5757 /* Only global symbols and unsatisfied commons. */
5758 if (info.symbol_scope != SS_UNIVERSAL
5759 && info.symbol_type != ST_STORAGE)
5760 continue;
5761
5762 /* Do no include undefined symbols. */
5763 if (bfd_is_und_section (sym->symbol.section))
5764 continue;
5765
5766 /* Bump the various counters, being careful to honor
5767 alignment considerations in the string table. */
5768 (*num_syms)++;
5769 *stringsize = *stringsize + strlen (sym->symbol.name) + 5;
5770 while (*stringsize % 4)
5771 (*stringsize)++;
5772 }
5773
5774 curr_bfd = curr_bfd->next;
5775 }
5776 return TRUE;
5777 }
5778
5779 /* Hash a symbol name based on the hashing algorithm presented in the
5780 SOM ABI. */
5781
5782 static unsigned int
5783 som_bfd_ar_symbol_hash (asymbol *symbol)
5784 {
5785 unsigned int len = strlen (symbol->name);
5786
5787 /* Names with length 1 are special. */
5788 if (len == 1)
5789 return 0x1000100 | (symbol->name[0] << 16) | symbol->name[0];
5790
5791 return ((len & 0x7f) << 24) | (symbol->name[1] << 16)
5792 | (symbol->name[len - 2] << 8) | symbol->name[len - 1];
5793 }
5794
5795 /* Do the bulk of the work required to write the SOM library
5796 symbol table. */
5797
5798 static bfd_boolean
5799 som_bfd_ar_write_symbol_stuff (bfd *abfd,
5800 unsigned int nsyms,
5801 unsigned int string_size,
5802 struct lst_header lst,
5803 unsigned elength)
5804 {
5805 file_ptr lst_filepos;
5806 char *strings = NULL, *p;
5807 struct lst_symbol_record *lst_syms = NULL, *curr_lst_sym;
5808 bfd *curr_bfd;
5809 unsigned int *hash_table = NULL;
5810 struct som_entry *som_dict = NULL;
5811 struct lst_symbol_record **last_hash_entry = NULL;
5812 unsigned int curr_som_offset, som_index = 0;
5813 bfd_size_type amt;
5814
5815 amt = lst.hash_size;
5816 amt *= sizeof (unsigned int);
5817 hash_table = bfd_zmalloc (amt);
5818 if (hash_table == NULL && lst.hash_size != 0)
5819 goto error_return;
5820
5821 amt = lst.module_count;
5822 amt *= sizeof (struct som_entry);
5823 som_dict = bfd_zmalloc (amt);
5824 if (som_dict == NULL && lst.module_count != 0)
5825 goto error_return;
5826
5827 amt = lst.hash_size;
5828 amt *= sizeof (struct lst_symbol_record *);
5829 last_hash_entry = bfd_zmalloc (amt);
5830 if (last_hash_entry == NULL && lst.hash_size != 0)
5831 goto error_return;
5832
5833 /* Lots of fields are file positions relative to the start
5834 of the lst record. So save its location. */
5835 lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5836
5837 /* Symbols have som_index fields, so we have to keep track of the
5838 index of each SOM in the archive.
5839
5840 The SOM dictionary has (among other things) the absolute file
5841 position for the SOM which a particular dictionary entry
5842 describes. We have to compute that information as we iterate
5843 through the SOMs/symbols. */
5844 som_index = 0;
5845
5846 /* We add in the size of the archive header twice as the location
5847 in the SOM dictionary is the actual offset of the SOM, not the
5848 archive header before the SOM. */
5849 curr_som_offset = 8 + 2 * sizeof (struct ar_hdr) + lst.file_end;
5850
5851 /* Make room for the archive header and the contents of the
5852 extended string table. Note that elength includes the size
5853 of the archive header for the extended name table! */
5854 if (elength)
5855 curr_som_offset += elength;
5856
5857 /* Make sure we're properly aligned. */
5858 curr_som_offset = (curr_som_offset + 0x1) & ~0x1;
5859
5860 /* FIXME should be done with buffers just like everything else... */
5861 amt = nsyms;
5862 amt *= sizeof (struct lst_symbol_record);
5863 lst_syms = bfd_malloc (amt);
5864 if (lst_syms == NULL && nsyms != 0)
5865 goto error_return;
5866 strings = bfd_malloc ((bfd_size_type) string_size);
5867 if (strings == NULL && string_size != 0)
5868 goto error_return;
5869
5870 p = strings;
5871 curr_lst_sym = lst_syms;
5872
5873 curr_bfd = abfd->archive_head;
5874 while (curr_bfd != NULL)
5875 {
5876 unsigned int curr_count, i;
5877 som_symbol_type *sym;
5878
5879 /* Don't bother for non-SOM objects. */
5880 if (curr_bfd->format != bfd_object
5881 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5882 {
5883 curr_bfd = curr_bfd->next;
5884 continue;
5885 }
5886
5887 /* Make sure the symbol table has been read, then snag a pointer
5888 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5889 but doing so avoids allocating lots of extra memory. */
5890 if (! som_slurp_symbol_table (curr_bfd))
5891 goto error_return;
5892
5893 sym = obj_som_symtab (curr_bfd);
5894 curr_count = bfd_get_symcount (curr_bfd);
5895
5896 for (i = 0; i < curr_count; i++, sym++)
5897 {
5898 struct som_misc_symbol_info info;
5899
5900 /* Derive SOM information from the BFD symbol. */
5901 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5902
5903 /* Should we include this symbol? */
5904 if (info.symbol_type == ST_NULL
5905 || info.symbol_type == ST_SYM_EXT
5906 || info.symbol_type == ST_ARG_EXT)
5907 continue;
5908
5909 /* Only global symbols and unsatisfied commons. */
5910 if (info.symbol_scope != SS_UNIVERSAL
5911 && info.symbol_type != ST_STORAGE)
5912 continue;
5913
5914 /* Do no include undefined symbols. */
5915 if (bfd_is_und_section (sym->symbol.section))
5916 continue;
5917
5918 /* If this is the first symbol from this SOM, then update
5919 the SOM dictionary too. */
5920 if (som_dict[som_index].location == 0)
5921 {
5922 som_dict[som_index].location = curr_som_offset;
5923 som_dict[som_index].length = arelt_size (curr_bfd);
5924 }
5925
5926 /* Fill in the lst symbol record. */
5927 curr_lst_sym->hidden = 0;
5928 curr_lst_sym->secondary_def = info.secondary_def;
5929 curr_lst_sym->symbol_type = info.symbol_type;
5930 curr_lst_sym->symbol_scope = info.symbol_scope;
5931 curr_lst_sym->check_level = 0;
5932 curr_lst_sym->must_qualify = 0;
5933 curr_lst_sym->initially_frozen = 0;
5934 curr_lst_sym->memory_resident = 0;
5935 curr_lst_sym->is_common = bfd_is_com_section (sym->symbol.section);
5936 curr_lst_sym->dup_common = info.dup_common;
5937 curr_lst_sym->xleast = 3;
5938 curr_lst_sym->arg_reloc = info.arg_reloc;
5939 curr_lst_sym->name.n_strx = p - strings + 4;
5940 curr_lst_sym->qualifier_name.n_strx = 0;
5941 curr_lst_sym->symbol_info = info.symbol_info;
5942 curr_lst_sym->symbol_value = info.symbol_value | info.priv_level;
5943 curr_lst_sym->symbol_descriptor = 0;
5944 curr_lst_sym->reserved = 0;
5945 curr_lst_sym->som_index = som_index;
5946 curr_lst_sym->symbol_key = som_bfd_ar_symbol_hash (&sym->symbol);
5947 curr_lst_sym->next_entry = 0;
5948
5949 /* Insert into the hash table. */
5950 if (hash_table[curr_lst_sym->symbol_key % lst.hash_size])
5951 {
5952 struct lst_symbol_record *tmp;
5953
5954 /* There is already something at the head of this hash chain,
5955 so tack this symbol onto the end of the chain. */
5956 tmp = last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size];
5957 tmp->next_entry
5958 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5959 + lst.hash_size * 4
5960 + lst.module_count * sizeof (struct som_entry)
5961 + sizeof (struct lst_header);
5962 }
5963 else
5964 /* First entry in this hash chain. */
5965 hash_table[curr_lst_sym->symbol_key % lst.hash_size]
5966 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5967 + lst.hash_size * 4
5968 + lst.module_count * sizeof (struct som_entry)
5969 + sizeof (struct lst_header);
5970
5971 /* Keep track of the last symbol we added to this chain so we can
5972 easily update its next_entry pointer. */
5973 last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size]
5974 = curr_lst_sym;
5975
5976 /* Update the string table. */
5977 bfd_put_32 (abfd, strlen (sym->symbol.name), p);
5978 p += 4;
5979 strcpy (p, sym->symbol.name);
5980 p += strlen (sym->symbol.name) + 1;
5981 while ((int) p % 4)
5982 {
5983 bfd_put_8 (abfd, 0, p);
5984 p++;
5985 }
5986
5987 /* Head to the next symbol. */
5988 curr_lst_sym++;
5989 }
5990
5991 /* Keep track of where each SOM will finally reside; then look
5992 at the next BFD. */
5993 curr_som_offset += arelt_size (curr_bfd) + sizeof (struct ar_hdr);
5994
5995 /* A particular object in the archive may have an odd length; the
5996 linker requires objects begin on an even boundary. So round
5997 up the current offset as necessary. */
5998 curr_som_offset = (curr_som_offset + 0x1) &~ (unsigned) 1;
5999 curr_bfd = curr_bfd->next;
6000 som_index++;
6001 }
6002
6003 /* Now scribble out the hash table. */
6004 amt = lst.hash_size * 4;
6005 if (bfd_bwrite ((void *) hash_table, amt, abfd) != amt)
6006 goto error_return;
6007
6008 /* Then the SOM dictionary. */
6009 amt = lst.module_count * sizeof (struct som_entry);
6010 if (bfd_bwrite ((void *) som_dict, amt, abfd) != amt)
6011 goto error_return;
6012
6013 /* The library symbols. */
6014 amt = nsyms * sizeof (struct lst_symbol_record);
6015 if (bfd_bwrite ((void *) lst_syms, amt, abfd) != amt)
6016 goto error_return;
6017
6018 /* And finally the strings. */
6019 amt = string_size;
6020 if (bfd_bwrite ((void *) strings, amt, abfd) != amt)
6021 goto error_return;
6022
6023 if (hash_table != NULL)
6024 free (hash_table);
6025 if (som_dict != NULL)
6026 free (som_dict);
6027 if (last_hash_entry != NULL)
6028 free (last_hash_entry);
6029 if (lst_syms != NULL)
6030 free (lst_syms);
6031 if (strings != NULL)
6032 free (strings);
6033 return TRUE;
6034
6035 error_return:
6036 if (hash_table != NULL)
6037 free (hash_table);
6038 if (som_dict != NULL)
6039 free (som_dict);
6040 if (last_hash_entry != NULL)
6041 free (last_hash_entry);
6042 if (lst_syms != NULL)
6043 free (lst_syms);
6044 if (strings != NULL)
6045 free (strings);
6046
6047 return FALSE;
6048 }
6049
6050 /* Write out the LST for the archive.
6051
6052 You'll never believe this is really how armaps are handled in SOM... */
6053
6054 static bfd_boolean
6055 som_write_armap (bfd *abfd,
6056 unsigned int elength,
6057 struct orl *map ATTRIBUTE_UNUSED,
6058 unsigned int orl_count ATTRIBUTE_UNUSED,
6059 int stridx ATTRIBUTE_UNUSED)
6060 {
6061 bfd *curr_bfd;
6062 struct stat statbuf;
6063 unsigned int i, lst_size, nsyms, stringsize;
6064 struct ar_hdr hdr;
6065 struct lst_header lst;
6066 int *p;
6067 bfd_size_type amt;
6068
6069 /* We'll use this for the archive's date and mode later. */
6070 if (stat (abfd->filename, &statbuf) != 0)
6071 {
6072 bfd_set_error (bfd_error_system_call);
6073 return FALSE;
6074 }
6075 /* Fudge factor. */
6076 bfd_ardata (abfd)->armap_timestamp = statbuf.st_mtime + 60;
6077
6078 /* Account for the lst header first. */
6079 lst_size = sizeof (struct lst_header);
6080
6081 /* Start building the LST header. */
6082 /* FIXME: Do we need to examine each element to determine the
6083 largest id number? */
6084 lst.system_id = CPU_PA_RISC1_0;
6085 lst.a_magic = LIBMAGIC;
6086 lst.version_id = VERSION_ID;
6087 lst.file_time.secs = 0;
6088 lst.file_time.nanosecs = 0;
6089
6090 lst.hash_loc = lst_size;
6091 lst.hash_size = SOM_LST_HASH_SIZE;
6092
6093 /* Hash table is a SOM_LST_HASH_SIZE 32bit offsets. */
6094 lst_size += 4 * SOM_LST_HASH_SIZE;
6095
6096 /* We need to count the number of SOMs in this archive. */
6097 curr_bfd = abfd->archive_head;
6098 lst.module_count = 0;
6099 while (curr_bfd != NULL)
6100 {
6101 /* Only true SOM objects count. */
6102 if (curr_bfd->format == bfd_object
6103 && curr_bfd->xvec->flavour == bfd_target_som_flavour)
6104 lst.module_count++;
6105 curr_bfd = curr_bfd->next;
6106 }
6107 lst.module_limit = lst.module_count;
6108 lst.dir_loc = lst_size;
6109 lst_size += sizeof (struct som_entry) * lst.module_count;
6110
6111 /* We don't support import/export tables, auxiliary headers,
6112 or free lists yet. Make the linker work a little harder
6113 to make our life easier. */
6114
6115 lst.export_loc = 0;
6116 lst.export_count = 0;
6117 lst.import_loc = 0;
6118 lst.aux_loc = 0;
6119 lst.aux_size = 0;
6120
6121 /* Count how many symbols we will have on the hash chains and the
6122 size of the associated string table. */
6123 if (! som_bfd_prep_for_ar_write (abfd, &nsyms, &stringsize))
6124 return FALSE;
6125
6126 lst_size += sizeof (struct lst_symbol_record) * nsyms;
6127
6128 /* For the string table. One day we might actually use this info
6129 to avoid small seeks/reads when reading archives. */
6130 lst.string_loc = lst_size;
6131 lst.string_size = stringsize;
6132 lst_size += stringsize;
6133
6134 /* SOM ABI says this must be zero. */
6135 lst.free_list = 0;
6136 lst.file_end = lst_size;
6137
6138 /* Compute the checksum. Must happen after the entire lst header
6139 has filled in. */
6140 p = (int *) &lst;
6141 lst.checksum = 0;
6142 for (i = 0; i < sizeof (struct lst_header) / sizeof (int) - 1; i++)
6143 lst.checksum ^= *p++;
6144
6145 sprintf (hdr.ar_name, "/ ");
6146 sprintf (hdr.ar_date, "%ld", bfd_ardata (abfd)->armap_timestamp);
6147 sprintf (hdr.ar_uid, "%ld", (long) getuid ());
6148 sprintf (hdr.ar_gid, "%ld", (long) getgid ());
6149 sprintf (hdr.ar_mode, "%-8o", (unsigned int) statbuf.st_mode);
6150 sprintf (hdr.ar_size, "%-10d", (int) lst_size);
6151 hdr.ar_fmag[0] = '`';
6152 hdr.ar_fmag[1] = '\012';
6153
6154 /* Turn any nulls into spaces. */
6155 for (i = 0; i < sizeof (struct ar_hdr); i++)
6156 if (((char *) (&hdr))[i] == '\0')
6157 (((char *) (&hdr))[i]) = ' ';
6158
6159 /* Scribble out the ar header. */
6160 amt = sizeof (struct ar_hdr);
6161 if (bfd_bwrite ((void *) &hdr, amt, abfd) != amt)
6162 return FALSE;
6163
6164 /* Now scribble out the lst header. */
6165 amt = sizeof (struct lst_header);
6166 if (bfd_bwrite ((void *) &lst, amt, abfd) != amt)
6167 return FALSE;
6168
6169 /* Build and write the armap. */
6170 if (!som_bfd_ar_write_symbol_stuff (abfd, nsyms, stringsize, lst, elength))
6171 return FALSE;
6172
6173 /* Done. */
6174 return TRUE;
6175 }
6176
6177 /* Free all information we have cached for this BFD. We can always
6178 read it again later if we need it. */
6179
6180 static bfd_boolean
6181 som_bfd_free_cached_info (bfd *abfd)
6182 {
6183 asection *o;
6184
6185 if (bfd_get_format (abfd) != bfd_object)
6186 return TRUE;
6187
6188 #define FREE(x) if (x != NULL) { free (x); x = NULL; }
6189 /* Free the native string and symbol tables. */
6190 FREE (obj_som_symtab (abfd));
6191 FREE (obj_som_stringtab (abfd));
6192 for (o = abfd->sections; o != NULL; o = o->next)
6193 {
6194 /* Free the native relocations. */
6195 o->reloc_count = (unsigned) -1;
6196 FREE (som_section_data (o)->reloc_stream);
6197 /* Free the generic relocations. */
6198 FREE (o->relocation);
6199 }
6200 #undef FREE
6201
6202 return TRUE;
6203 }
6204
6205 /* End of miscellaneous support functions. */
6206
6207 /* Linker support functions. */
6208
6209 static bfd_boolean
6210 som_bfd_link_split_section (bfd *abfd ATTRIBUTE_UNUSED, asection *sec)
6211 {
6212 return som_is_subspace (sec) && sec->size > 240000;
6213 }
6214
6215 #define som_close_and_cleanup som_bfd_free_cached_info
6216 #define som_read_ar_hdr _bfd_generic_read_ar_hdr
6217 #define som_openr_next_archived_file bfd_generic_openr_next_archived_file
6218 #define som_get_elt_at_index _bfd_generic_get_elt_at_index
6219 #define som_generic_stat_arch_elt bfd_generic_stat_arch_elt
6220 #define som_truncate_arname bfd_bsd_truncate_arname
6221 #define som_slurp_extended_name_table _bfd_slurp_extended_name_table
6222 #define som_construct_extended_name_table _bfd_archive_coff_construct_extended_name_table
6223 #define som_update_armap_timestamp bfd_true
6224 #define som_bfd_is_target_special_symbol ((bfd_boolean (*) (bfd *, asymbol *)) bfd_false)
6225 #define som_get_lineno _bfd_nosymbols_get_lineno
6226 #define som_bfd_make_debug_symbol _bfd_nosymbols_bfd_make_debug_symbol
6227 #define som_read_minisymbols _bfd_generic_read_minisymbols
6228 #define som_minisymbol_to_symbol _bfd_generic_minisymbol_to_symbol
6229 #define som_get_section_contents_in_window _bfd_generic_get_section_contents_in_window
6230 #define som_bfd_get_relocated_section_contents bfd_generic_get_relocated_section_contents
6231 #define som_bfd_relax_section bfd_generic_relax_section
6232 #define som_bfd_link_hash_table_create _bfd_generic_link_hash_table_create
6233 #define som_bfd_link_hash_table_free _bfd_generic_link_hash_table_free
6234 #define som_bfd_link_add_symbols _bfd_generic_link_add_symbols
6235 #define som_bfd_link_just_syms _bfd_generic_link_just_syms
6236 #define som_bfd_final_link _bfd_generic_final_link
6237 #define som_bfd_gc_sections bfd_generic_gc_sections
6238 #define som_bfd_merge_sections bfd_generic_merge_sections
6239 #define som_bfd_is_group_section bfd_generic_is_group_section
6240 #define som_bfd_discard_group bfd_generic_discard_group
6241 #define som_section_already_linked _bfd_generic_section_already_linked
6242 #define som_bfd_merge_private_bfd_data _bfd_generic_bfd_merge_private_bfd_data
6243 #define som_bfd_copy_private_header_data _bfd_generic_bfd_copy_private_header_data
6244 #define som_bfd_set_private_flags _bfd_generic_bfd_set_private_flags
6245
6246 const bfd_target som_vec =
6247 {
6248 "som", /* Name. */
6249 bfd_target_som_flavour,
6250 BFD_ENDIAN_BIG, /* Target byte order. */
6251 BFD_ENDIAN_BIG, /* Target headers byte order. */
6252 (HAS_RELOC | EXEC_P | /* Object flags. */
6253 HAS_LINENO | HAS_DEBUG |
6254 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED | DYNAMIC),
6255 (SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS | SEC_LINK_ONCE
6256 | SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* Section flags. */
6257
6258 /* Leading_symbol_char: is the first char of a user symbol
6259 predictable, and if so what is it. */
6260 0,
6261 '/', /* AR_pad_char. */
6262 14, /* AR_max_namelen. */
6263 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
6264 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
6265 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* Data. */
6266 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
6267 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
6268 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* Headers. */
6269 {_bfd_dummy_target,
6270 som_object_p, /* bfd_check_format. */
6271 bfd_generic_archive_p,
6272 _bfd_dummy_target
6273 },
6274 {
6275 bfd_false,
6276 som_mkobject,
6277 _bfd_generic_mkarchive,
6278 bfd_false
6279 },
6280 {
6281 bfd_false,
6282 som_write_object_contents,
6283 _bfd_write_archive_contents,
6284 bfd_false,
6285 },
6286 #undef som
6287
6288 BFD_JUMP_TABLE_GENERIC (som),
6289 BFD_JUMP_TABLE_COPY (som),
6290 BFD_JUMP_TABLE_CORE (_bfd_nocore),
6291 BFD_JUMP_TABLE_ARCHIVE (som),
6292 BFD_JUMP_TABLE_SYMBOLS (som),
6293 BFD_JUMP_TABLE_RELOCS (som),
6294 BFD_JUMP_TABLE_WRITE (som),
6295 BFD_JUMP_TABLE_LINK (som),
6296 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
6297
6298 NULL,
6299
6300 NULL
6301 };
6302
6303 #endif /* HOST_HPPAHPUX || HOST_HPPABSD || HOST_HPPAOSF */
This page took 0.158939 seconds and 5 git commands to generate.