* aout-adobe.c: Don't compare against "true" or "false.
[deliverable/binutils-gdb.git] / bfd / som.c
1 /* bfd back-end for HP PA-RISC SOM objects.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002
4 Free Software Foundation, Inc.
5
6 Contributed by the Center for Software Science at the
7 University of Utah.
8
9 This file is part of BFD, the Binary File Descriptor library.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
24 02111-1307, USA. */
25
26 #include "alloca-conf.h"
27 #include "bfd.h"
28 #include "sysdep.h"
29
30 #if defined (HOST_HPPAHPUX) || defined (HOST_HPPABSD) || defined (HOST_HPPAOSF) || defined(HOST_HPPAMPEIX)
31
32 #include "libbfd.h"
33 #include "som.h"
34 #include "safe-ctype.h"
35
36 #include <sys/param.h>
37 #include <signal.h>
38 #include <machine/reg.h>
39 #include <sys/file.h>
40
41 /* Magic not defined in standard HP-UX header files until 8.0 */
42
43 #ifndef CPU_PA_RISC1_0
44 #define CPU_PA_RISC1_0 0x20B
45 #endif /* CPU_PA_RISC1_0 */
46
47 #ifndef CPU_PA_RISC1_1
48 #define CPU_PA_RISC1_1 0x210
49 #endif /* CPU_PA_RISC1_1 */
50
51 #ifndef CPU_PA_RISC2_0
52 #define CPU_PA_RISC2_0 0x214
53 #endif /* CPU_PA_RISC2_0 */
54
55 #ifndef _PA_RISC1_0_ID
56 #define _PA_RISC1_0_ID CPU_PA_RISC1_0
57 #endif /* _PA_RISC1_0_ID */
58
59 #ifndef _PA_RISC1_1_ID
60 #define _PA_RISC1_1_ID CPU_PA_RISC1_1
61 #endif /* _PA_RISC1_1_ID */
62
63 #ifndef _PA_RISC2_0_ID
64 #define _PA_RISC2_0_ID CPU_PA_RISC2_0
65 #endif /* _PA_RISC2_0_ID */
66
67 #ifndef _PA_RISC_MAXID
68 #define _PA_RISC_MAXID 0x2FF
69 #endif /* _PA_RISC_MAXID */
70
71 #ifndef _PA_RISC_ID
72 #define _PA_RISC_ID(__m_num) \
73 (((__m_num) == _PA_RISC1_0_ID) || \
74 ((__m_num) >= _PA_RISC1_1_ID && (__m_num) <= _PA_RISC_MAXID))
75 #endif /* _PA_RISC_ID */
76
77 /* HIUX in it's infinite stupidity changed the names for several "well
78 known" constants. Work around such braindamage. Try the HPUX version
79 first, then the HIUX version, and finally provide a default. */
80 #ifdef HPUX_AUX_ID
81 #define EXEC_AUX_ID HPUX_AUX_ID
82 #endif
83
84 #if !defined (EXEC_AUX_ID) && defined (HIUX_AUX_ID)
85 #define EXEC_AUX_ID HIUX_AUX_ID
86 #endif
87
88 #ifndef EXEC_AUX_ID
89 #define EXEC_AUX_ID 0
90 #endif
91
92 /* Size (in chars) of the temporary buffers used during fixup and string
93 table writes. */
94
95 #define SOM_TMP_BUFSIZE 8192
96
97 /* Size of the hash table in archives. */
98 #define SOM_LST_HASH_SIZE 31
99
100 /* Max number of SOMs to be found in an archive. */
101 #define SOM_LST_MODULE_LIMIT 1024
102
103 /* Generic alignment macro. */
104 #define SOM_ALIGN(val, alignment) \
105 (((val) + (alignment) - 1) &~ ((unsigned long) (alignment) - 1))
106
107 /* SOM allows any one of the four previous relocations to be reused
108 with a "R_PREV_FIXUP" relocation entry. Since R_PREV_FIXUP
109 relocations are always a single byte, using a R_PREV_FIXUP instead
110 of some multi-byte relocation makes object files smaller.
111
112 Note one side effect of using a R_PREV_FIXUP is the relocation that
113 is being repeated moves to the front of the queue. */
114 struct reloc_queue {
115 unsigned char *reloc;
116 unsigned int size;
117 } reloc_queue[4];
118
119 /* This fully describes the symbol types which may be attached to
120 an EXPORT or IMPORT directive. Only SOM uses this formation
121 (ELF has no need for it). */
122 typedef enum {
123 SYMBOL_TYPE_UNKNOWN,
124 SYMBOL_TYPE_ABSOLUTE,
125 SYMBOL_TYPE_CODE,
126 SYMBOL_TYPE_DATA,
127 SYMBOL_TYPE_ENTRY,
128 SYMBOL_TYPE_MILLICODE,
129 SYMBOL_TYPE_PLABEL,
130 SYMBOL_TYPE_PRI_PROG,
131 SYMBOL_TYPE_SEC_PROG,
132 } pa_symbol_type;
133
134 struct section_to_type {
135 char *section;
136 char type;
137 };
138
139 /* Assorted symbol information that needs to be derived from the BFD symbol
140 and/or the BFD backend private symbol data. */
141 struct som_misc_symbol_info {
142 unsigned int symbol_type;
143 unsigned int symbol_scope;
144 unsigned int arg_reloc;
145 unsigned int symbol_info;
146 unsigned int symbol_value;
147 unsigned int priv_level;
148 unsigned int secondary_def;
149 };
150
151 /* Forward declarations */
152
153 static boolean som_mkobject PARAMS ((bfd *));
154 static const bfd_target * som_object_setup PARAMS ((bfd *,
155 struct header *,
156 struct som_exec_auxhdr *,
157 unsigned long));
158 static boolean setup_sections PARAMS ((bfd *, struct header *, unsigned long));
159 static const bfd_target * som_object_p PARAMS ((bfd *));
160 static boolean som_write_object_contents PARAMS ((bfd *));
161 static boolean som_slurp_string_table PARAMS ((bfd *));
162 static unsigned int som_slurp_symbol_table PARAMS ((bfd *));
163 static long som_get_symtab_upper_bound PARAMS ((bfd *));
164 static long som_canonicalize_reloc PARAMS ((bfd *, sec_ptr,
165 arelent **, asymbol **));
166 static long som_get_reloc_upper_bound PARAMS ((bfd *, sec_ptr));
167 static unsigned int som_set_reloc_info PARAMS ((unsigned char *, unsigned int,
168 arelent *, asection *,
169 asymbol **, boolean));
170 static boolean som_slurp_reloc_table PARAMS ((bfd *, asection *,
171 asymbol **, boolean));
172 static long som_get_symtab PARAMS ((bfd *, asymbol **));
173 static asymbol * som_make_empty_symbol PARAMS ((bfd *));
174 static void som_print_symbol PARAMS ((bfd *, PTR,
175 asymbol *, bfd_print_symbol_type));
176 static boolean som_new_section_hook PARAMS ((bfd *, asection *));
177 static boolean som_bfd_copy_private_symbol_data PARAMS ((bfd *, asymbol *,
178 bfd *, asymbol *));
179 static boolean som_bfd_copy_private_section_data PARAMS ((bfd *, asection *,
180 bfd *, asection *));
181 static boolean som_bfd_copy_private_bfd_data PARAMS ((bfd *, bfd *));
182 #define som_bfd_merge_private_bfd_data _bfd_generic_bfd_merge_private_bfd_data
183 #define som_bfd_set_private_flags _bfd_generic_bfd_set_private_flags
184 static boolean som_bfd_is_local_label_name PARAMS ((bfd *, const char *));
185 static boolean som_set_section_contents PARAMS ((bfd *, sec_ptr, PTR,
186 file_ptr, bfd_size_type));
187 static boolean som_get_section_contents PARAMS ((bfd *, sec_ptr, PTR,
188 file_ptr, bfd_size_type));
189 static boolean som_set_arch_mach PARAMS ((bfd *, enum bfd_architecture,
190 unsigned long));
191 static boolean som_find_nearest_line PARAMS ((bfd *, asection *,
192 asymbol **, bfd_vma,
193 const char **,
194 const char **,
195 unsigned int *));
196 static void som_get_symbol_info PARAMS ((bfd *, asymbol *, symbol_info *));
197 static asection * bfd_section_from_som_symbol PARAMS ((bfd *,
198 struct symbol_dictionary_record *));
199 static int log2 PARAMS ((unsigned int));
200 static bfd_reloc_status_type hppa_som_reloc PARAMS ((bfd *, arelent *,
201 asymbol *, PTR,
202 asection *, bfd *,
203 char **));
204 static void som_initialize_reloc_queue PARAMS ((struct reloc_queue *));
205 static void som_reloc_queue_insert PARAMS ((unsigned char *, unsigned int,
206 struct reloc_queue *));
207 static void som_reloc_queue_fix PARAMS ((struct reloc_queue *, unsigned int));
208 static int som_reloc_queue_find PARAMS ((unsigned char *, unsigned int,
209 struct reloc_queue *));
210 static unsigned char * try_prev_fixup PARAMS ((bfd *, int *, unsigned char *,
211 unsigned int,
212 struct reloc_queue *));
213
214 static unsigned char * som_reloc_skip PARAMS ((bfd *, unsigned int,
215 unsigned char *, unsigned int *,
216 struct reloc_queue *));
217 static unsigned char * som_reloc_addend PARAMS ((bfd *, bfd_vma,
218 unsigned char *,
219 unsigned int *,
220 struct reloc_queue *));
221 static unsigned char * som_reloc_call PARAMS ((bfd *, unsigned char *,
222 unsigned int *,
223 arelent *, int,
224 struct reloc_queue *));
225 static unsigned long som_count_spaces PARAMS ((bfd *));
226 static unsigned long som_count_subspaces PARAMS ((bfd *));
227 static int compare_syms PARAMS ((const void *, const void *));
228 static int compare_subspaces PARAMS ((const void *, const void *));
229 static unsigned long som_compute_checksum PARAMS ((bfd *));
230 static boolean som_prep_headers PARAMS ((bfd *));
231 static int som_sizeof_headers PARAMS ((bfd *, boolean));
232 static boolean som_finish_writing PARAMS ((bfd *));
233 static boolean som_build_and_write_symbol_table PARAMS ((bfd *));
234 static void som_prep_for_fixups PARAMS ((bfd *, asymbol **, unsigned long));
235 static boolean som_write_fixups PARAMS ((bfd *, unsigned long, unsigned int *));
236 static boolean som_write_space_strings PARAMS ((bfd *, unsigned long,
237 unsigned int *));
238 static boolean som_write_symbol_strings PARAMS ((bfd *, unsigned long,
239 asymbol **, unsigned int,
240 unsigned *,
241 COMPUNIT *));
242 static boolean som_begin_writing PARAMS ((bfd *));
243 static reloc_howto_type * som_bfd_reloc_type_lookup
244 PARAMS ((bfd *, bfd_reloc_code_real_type));
245 static char som_section_type PARAMS ((const char *));
246 static int som_decode_symclass PARAMS ((asymbol *));
247 static boolean som_bfd_count_ar_symbols PARAMS ((bfd *, struct lst_header *,
248 symindex *));
249
250 static boolean som_bfd_fill_in_ar_symbols PARAMS ((bfd *, struct lst_header *,
251 carsym **syms));
252 static boolean som_slurp_armap PARAMS ((bfd *));
253 static boolean som_write_armap PARAMS ((bfd *, unsigned int, struct orl *,
254 unsigned int, int));
255 static void som_bfd_derive_misc_symbol_info PARAMS ((bfd *, asymbol *,
256 struct som_misc_symbol_info *));
257 static boolean som_bfd_prep_for_ar_write PARAMS ((bfd *, unsigned int *,
258 unsigned int *));
259 static unsigned int som_bfd_ar_symbol_hash PARAMS ((asymbol *));
260 static boolean som_bfd_ar_write_symbol_stuff PARAMS ((bfd *, unsigned int,
261 unsigned int,
262 struct lst_header,
263 unsigned int));
264 static boolean som_is_space PARAMS ((asection *));
265 static boolean som_is_subspace PARAMS ((asection *));
266 static boolean som_is_container PARAMS ((asection *, asection *));
267 static boolean som_bfd_free_cached_info PARAMS ((bfd *));
268 static boolean som_bfd_link_split_section PARAMS ((bfd *, asection *));
269
270 /* Map SOM section names to POSIX/BSD single-character symbol types.
271
272 This table includes all the standard subspaces as defined in the
273 current "PRO ABI for PA-RISC Systems", $UNWIND$ which for
274 some reason was left out, and sections specific to embedded stabs. */
275
276 static const struct section_to_type stt[] = {
277 {"$TEXT$", 't'},
278 {"$SHLIB_INFO$", 't'},
279 {"$MILLICODE$", 't'},
280 {"$LIT$", 't'},
281 {"$CODE$", 't'},
282 {"$UNWIND_START$", 't'},
283 {"$UNWIND$", 't'},
284 {"$PRIVATE$", 'd'},
285 {"$PLT$", 'd'},
286 {"$SHLIB_DATA$", 'd'},
287 {"$DATA$", 'd'},
288 {"$SHORTDATA$", 'g'},
289 {"$DLT$", 'd'},
290 {"$GLOBAL$", 'g'},
291 {"$SHORTBSS$", 's'},
292 {"$BSS$", 'b'},
293 {"$GDB_STRINGS$", 'N'},
294 {"$GDB_SYMBOLS$", 'N'},
295 {0, 0}
296 };
297
298 /* About the relocation formatting table...
299
300 There are 256 entries in the table, one for each possible
301 relocation opcode available in SOM. We index the table by
302 the relocation opcode. The names and operations are those
303 defined by a.out_800 (4).
304
305 Right now this table is only used to count and perform minimal
306 processing on relocation streams so that they can be internalized
307 into BFD and symbolically printed by utilities. To make actual use
308 of them would be much more difficult, BFD's concept of relocations
309 is far too simple to handle SOM relocations. The basic assumption
310 that a relocation can be completely processed independent of other
311 relocations before an object file is written is invalid for SOM.
312
313 The SOM relocations are meant to be processed as a stream, they
314 specify copying of data from the input section to the output section
315 while possibly modifying the data in some manner. They also can
316 specify that a variable number of zeros or uninitialized data be
317 inserted on in the output segment at the current offset. Some
318 relocations specify that some previous relocation be re-applied at
319 the current location in the input/output sections. And finally a number
320 of relocations have effects on other sections (R_ENTRY, R_EXIT,
321 R_UNWIND_AUX and a variety of others). There isn't even enough room
322 in the BFD relocation data structure to store enough information to
323 perform all the relocations.
324
325 Each entry in the table has three fields.
326
327 The first entry is an index into this "class" of relocations. This
328 index can then be used as a variable within the relocation itself.
329
330 The second field is a format string which actually controls processing
331 of the relocation. It uses a simple postfix machine to do calculations
332 based on variables/constants found in the string and the relocation
333 stream.
334
335 The third field specifys whether or not this relocation may use
336 a constant (V) from the previous R_DATA_OVERRIDE rather than a constant
337 stored in the instruction.
338
339 Variables:
340
341 L = input space byte count
342 D = index into class of relocations
343 M = output space byte count
344 N = statement number (unused?)
345 O = stack operation
346 R = parameter relocation bits
347 S = symbol index
348 T = first 32 bits of stack unwind information
349 U = second 32 bits of stack unwind information
350 V = a literal constant (usually used in the next relocation)
351 P = a previous relocation
352
353 Lower case letters (starting with 'b') refer to following
354 bytes in the relocation stream. 'b' is the next 1 byte,
355 c is the next 2 bytes, d is the next 3 bytes, etc...
356 This is the variable part of the relocation entries that
357 makes our life a living hell.
358
359 numerical constants are also used in the format string. Note
360 the constants are represented in decimal.
361
362 '+', "*" and "=" represents the obvious postfix operators.
363 '<' represents a left shift.
364
365 Stack Operations:
366
367 Parameter Relocation Bits:
368
369 Unwind Entries:
370
371 Previous Relocations: The index field represents which in the queue
372 of 4 previous fixups should be re-applied.
373
374 Literal Constants: These are generally used to represent addend
375 parts of relocations when these constants are not stored in the
376 fields of the instructions themselves. For example the instruction
377 addil foo-$global$-0x1234 would use an override for "0x1234" rather
378 than storing it into the addil itself. */
379
380 struct fixup_format {
381 int D;
382 const char *format;
383 };
384
385 static const struct fixup_format som_fixup_formats[256] = {
386 /* R_NO_RELOCATION */
387 { 0, "LD1+4*=" }, /* 0x00 */
388 { 1, "LD1+4*=" }, /* 0x01 */
389 { 2, "LD1+4*=" }, /* 0x02 */
390 { 3, "LD1+4*=" }, /* 0x03 */
391 { 4, "LD1+4*=" }, /* 0x04 */
392 { 5, "LD1+4*=" }, /* 0x05 */
393 { 6, "LD1+4*=" }, /* 0x06 */
394 { 7, "LD1+4*=" }, /* 0x07 */
395 { 8, "LD1+4*=" }, /* 0x08 */
396 { 9, "LD1+4*=" }, /* 0x09 */
397 { 10, "LD1+4*=" }, /* 0x0a */
398 { 11, "LD1+4*=" }, /* 0x0b */
399 { 12, "LD1+4*=" }, /* 0x0c */
400 { 13, "LD1+4*=" }, /* 0x0d */
401 { 14, "LD1+4*=" }, /* 0x0e */
402 { 15, "LD1+4*=" }, /* 0x0f */
403 { 16, "LD1+4*=" }, /* 0x10 */
404 { 17, "LD1+4*=" }, /* 0x11 */
405 { 18, "LD1+4*=" }, /* 0x12 */
406 { 19, "LD1+4*=" }, /* 0x13 */
407 { 20, "LD1+4*=" }, /* 0x14 */
408 { 21, "LD1+4*=" }, /* 0x15 */
409 { 22, "LD1+4*=" }, /* 0x16 */
410 { 23, "LD1+4*=" }, /* 0x17 */
411 { 0, "LD8<b+1+4*=" }, /* 0x18 */
412 { 1, "LD8<b+1+4*=" }, /* 0x19 */
413 { 2, "LD8<b+1+4*=" }, /* 0x1a */
414 { 3, "LD8<b+1+4*=" }, /* 0x1b */
415 { 0, "LD16<c+1+4*=" }, /* 0x1c */
416 { 1, "LD16<c+1+4*=" }, /* 0x1d */
417 { 2, "LD16<c+1+4*=" }, /* 0x1e */
418 { 0, "Ld1+=" }, /* 0x1f */
419 /* R_ZEROES */
420 { 0, "Lb1+4*=" }, /* 0x20 */
421 { 1, "Ld1+=" }, /* 0x21 */
422 /* R_UNINIT */
423 { 0, "Lb1+4*=" }, /* 0x22 */
424 { 1, "Ld1+=" }, /* 0x23 */
425 /* R_RELOCATION */
426 { 0, "L4=" }, /* 0x24 */
427 /* R_DATA_ONE_SYMBOL */
428 { 0, "L4=Sb=" }, /* 0x25 */
429 { 1, "L4=Sd=" }, /* 0x26 */
430 /* R_DATA_PLEBEL */
431 { 0, "L4=Sb=" }, /* 0x27 */
432 { 1, "L4=Sd=" }, /* 0x28 */
433 /* R_SPACE_REF */
434 { 0, "L4=" }, /* 0x29 */
435 /* R_REPEATED_INIT */
436 { 0, "L4=Mb1+4*=" }, /* 0x2a */
437 { 1, "Lb4*=Mb1+L*=" }, /* 0x2b */
438 { 2, "Lb4*=Md1+4*=" }, /* 0x2c */
439 { 3, "Ld1+=Me1+=" }, /* 0x2d */
440 { 0, "" }, /* 0x2e */
441 { 0, "" }, /* 0x2f */
442 /* R_PCREL_CALL */
443 { 0, "L4=RD=Sb=" }, /* 0x30 */
444 { 1, "L4=RD=Sb=" }, /* 0x31 */
445 { 2, "L4=RD=Sb=" }, /* 0x32 */
446 { 3, "L4=RD=Sb=" }, /* 0x33 */
447 { 4, "L4=RD=Sb=" }, /* 0x34 */
448 { 5, "L4=RD=Sb=" }, /* 0x35 */
449 { 6, "L4=RD=Sb=" }, /* 0x36 */
450 { 7, "L4=RD=Sb=" }, /* 0x37 */
451 { 8, "L4=RD=Sb=" }, /* 0x38 */
452 { 9, "L4=RD=Sb=" }, /* 0x39 */
453 { 0, "L4=RD8<b+=Sb=" }, /* 0x3a */
454 { 1, "L4=RD8<b+=Sb=" }, /* 0x3b */
455 { 0, "L4=RD8<b+=Sd=" }, /* 0x3c */
456 { 1, "L4=RD8<b+=Sd=" }, /* 0x3d */
457 /* R_SHORT_PCREL_MODE */
458 { 0, "" }, /* 0x3e */
459 /* R_LONG_PCREL_MODE */
460 { 0, "" }, /* 0x3f */
461 /* R_ABS_CALL */
462 { 0, "L4=RD=Sb=" }, /* 0x40 */
463 { 1, "L4=RD=Sb=" }, /* 0x41 */
464 { 2, "L4=RD=Sb=" }, /* 0x42 */
465 { 3, "L4=RD=Sb=" }, /* 0x43 */
466 { 4, "L4=RD=Sb=" }, /* 0x44 */
467 { 5, "L4=RD=Sb=" }, /* 0x45 */
468 { 6, "L4=RD=Sb=" }, /* 0x46 */
469 { 7, "L4=RD=Sb=" }, /* 0x47 */
470 { 8, "L4=RD=Sb=" }, /* 0x48 */
471 { 9, "L4=RD=Sb=" }, /* 0x49 */
472 { 0, "L4=RD8<b+=Sb=" }, /* 0x4a */
473 { 1, "L4=RD8<b+=Sb=" }, /* 0x4b */
474 { 0, "L4=RD8<b+=Sd=" }, /* 0x4c */
475 { 1, "L4=RD8<b+=Sd=" }, /* 0x4d */
476 /* R_RESERVED */
477 { 0, "" }, /* 0x4e */
478 { 0, "" }, /* 0x4f */
479 /* R_DP_RELATIVE */
480 { 0, "L4=SD=" }, /* 0x50 */
481 { 1, "L4=SD=" }, /* 0x51 */
482 { 2, "L4=SD=" }, /* 0x52 */
483 { 3, "L4=SD=" }, /* 0x53 */
484 { 4, "L4=SD=" }, /* 0x54 */
485 { 5, "L4=SD=" }, /* 0x55 */
486 { 6, "L4=SD=" }, /* 0x56 */
487 { 7, "L4=SD=" }, /* 0x57 */
488 { 8, "L4=SD=" }, /* 0x58 */
489 { 9, "L4=SD=" }, /* 0x59 */
490 { 10, "L4=SD=" }, /* 0x5a */
491 { 11, "L4=SD=" }, /* 0x5b */
492 { 12, "L4=SD=" }, /* 0x5c */
493 { 13, "L4=SD=" }, /* 0x5d */
494 { 14, "L4=SD=" }, /* 0x5e */
495 { 15, "L4=SD=" }, /* 0x5f */
496 { 16, "L4=SD=" }, /* 0x60 */
497 { 17, "L4=SD=" }, /* 0x61 */
498 { 18, "L4=SD=" }, /* 0x62 */
499 { 19, "L4=SD=" }, /* 0x63 */
500 { 20, "L4=SD=" }, /* 0x64 */
501 { 21, "L4=SD=" }, /* 0x65 */
502 { 22, "L4=SD=" }, /* 0x66 */
503 { 23, "L4=SD=" }, /* 0x67 */
504 { 24, "L4=SD=" }, /* 0x68 */
505 { 25, "L4=SD=" }, /* 0x69 */
506 { 26, "L4=SD=" }, /* 0x6a */
507 { 27, "L4=SD=" }, /* 0x6b */
508 { 28, "L4=SD=" }, /* 0x6c */
509 { 29, "L4=SD=" }, /* 0x6d */
510 { 30, "L4=SD=" }, /* 0x6e */
511 { 31, "L4=SD=" }, /* 0x6f */
512 { 32, "L4=Sb=" }, /* 0x70 */
513 { 33, "L4=Sd=" }, /* 0x71 */
514 /* R_RESERVED */
515 { 0, "" }, /* 0x72 */
516 { 0, "" }, /* 0x73 */
517 { 0, "" }, /* 0x74 */
518 { 0, "" }, /* 0x75 */
519 { 0, "" }, /* 0x76 */
520 { 0, "" }, /* 0x77 */
521 /* R_DLT_REL */
522 { 0, "L4=Sb=" }, /* 0x78 */
523 { 1, "L4=Sd=" }, /* 0x79 */
524 /* R_RESERVED */
525 { 0, "" }, /* 0x7a */
526 { 0, "" }, /* 0x7b */
527 { 0, "" }, /* 0x7c */
528 { 0, "" }, /* 0x7d */
529 { 0, "" }, /* 0x7e */
530 { 0, "" }, /* 0x7f */
531 /* R_CODE_ONE_SYMBOL */
532 { 0, "L4=SD=" }, /* 0x80 */
533 { 1, "L4=SD=" }, /* 0x81 */
534 { 2, "L4=SD=" }, /* 0x82 */
535 { 3, "L4=SD=" }, /* 0x83 */
536 { 4, "L4=SD=" }, /* 0x84 */
537 { 5, "L4=SD=" }, /* 0x85 */
538 { 6, "L4=SD=" }, /* 0x86 */
539 { 7, "L4=SD=" }, /* 0x87 */
540 { 8, "L4=SD=" }, /* 0x88 */
541 { 9, "L4=SD=" }, /* 0x89 */
542 { 10, "L4=SD=" }, /* 0x8q */
543 { 11, "L4=SD=" }, /* 0x8b */
544 { 12, "L4=SD=" }, /* 0x8c */
545 { 13, "L4=SD=" }, /* 0x8d */
546 { 14, "L4=SD=" }, /* 0x8e */
547 { 15, "L4=SD=" }, /* 0x8f */
548 { 16, "L4=SD=" }, /* 0x90 */
549 { 17, "L4=SD=" }, /* 0x91 */
550 { 18, "L4=SD=" }, /* 0x92 */
551 { 19, "L4=SD=" }, /* 0x93 */
552 { 20, "L4=SD=" }, /* 0x94 */
553 { 21, "L4=SD=" }, /* 0x95 */
554 { 22, "L4=SD=" }, /* 0x96 */
555 { 23, "L4=SD=" }, /* 0x97 */
556 { 24, "L4=SD=" }, /* 0x98 */
557 { 25, "L4=SD=" }, /* 0x99 */
558 { 26, "L4=SD=" }, /* 0x9a */
559 { 27, "L4=SD=" }, /* 0x9b */
560 { 28, "L4=SD=" }, /* 0x9c */
561 { 29, "L4=SD=" }, /* 0x9d */
562 { 30, "L4=SD=" }, /* 0x9e */
563 { 31, "L4=SD=" }, /* 0x9f */
564 { 32, "L4=Sb=" }, /* 0xa0 */
565 { 33, "L4=Sd=" }, /* 0xa1 */
566 /* R_RESERVED */
567 { 0, "" }, /* 0xa2 */
568 { 0, "" }, /* 0xa3 */
569 { 0, "" }, /* 0xa4 */
570 { 0, "" }, /* 0xa5 */
571 { 0, "" }, /* 0xa6 */
572 { 0, "" }, /* 0xa7 */
573 { 0, "" }, /* 0xa8 */
574 { 0, "" }, /* 0xa9 */
575 { 0, "" }, /* 0xaa */
576 { 0, "" }, /* 0xab */
577 { 0, "" }, /* 0xac */
578 { 0, "" }, /* 0xad */
579 /* R_MILLI_REL */
580 { 0, "L4=Sb=" }, /* 0xae */
581 { 1, "L4=Sd=" }, /* 0xaf */
582 /* R_CODE_PLABEL */
583 { 0, "L4=Sb=" }, /* 0xb0 */
584 { 1, "L4=Sd=" }, /* 0xb1 */
585 /* R_BREAKPOINT */
586 { 0, "L4=" }, /* 0xb2 */
587 /* R_ENTRY */
588 { 0, "Te=Ue=" }, /* 0xb3 */
589 { 1, "Uf=" }, /* 0xb4 */
590 /* R_ALT_ENTRY */
591 { 0, "" }, /* 0xb5 */
592 /* R_EXIT */
593 { 0, "" }, /* 0xb6 */
594 /* R_BEGIN_TRY */
595 { 0, "" }, /* 0xb7 */
596 /* R_END_TRY */
597 { 0, "R0=" }, /* 0xb8 */
598 { 1, "Rb4*=" }, /* 0xb9 */
599 { 2, "Rd4*=" }, /* 0xba */
600 /* R_BEGIN_BRTAB */
601 { 0, "" }, /* 0xbb */
602 /* R_END_BRTAB */
603 { 0, "" }, /* 0xbc */
604 /* R_STATEMENT */
605 { 0, "Nb=" }, /* 0xbd */
606 { 1, "Nc=" }, /* 0xbe */
607 { 2, "Nd=" }, /* 0xbf */
608 /* R_DATA_EXPR */
609 { 0, "L4=" }, /* 0xc0 */
610 /* R_CODE_EXPR */
611 { 0, "L4=" }, /* 0xc1 */
612 /* R_FSEL */
613 { 0, "" }, /* 0xc2 */
614 /* R_LSEL */
615 { 0, "" }, /* 0xc3 */
616 /* R_RSEL */
617 { 0, "" }, /* 0xc4 */
618 /* R_N_MODE */
619 { 0, "" }, /* 0xc5 */
620 /* R_S_MODE */
621 { 0, "" }, /* 0xc6 */
622 /* R_D_MODE */
623 { 0, "" }, /* 0xc7 */
624 /* R_R_MODE */
625 { 0, "" }, /* 0xc8 */
626 /* R_DATA_OVERRIDE */
627 { 0, "V0=" }, /* 0xc9 */
628 { 1, "Vb=" }, /* 0xca */
629 { 2, "Vc=" }, /* 0xcb */
630 { 3, "Vd=" }, /* 0xcc */
631 { 4, "Ve=" }, /* 0xcd */
632 /* R_TRANSLATED */
633 { 0, "" }, /* 0xce */
634 /* R_AUX_UNWIND */
635 { 0,"Sd=Vf=Ef=" }, /* 0xcf */
636 /* R_COMP1 */
637 { 0, "Ob=" }, /* 0xd0 */
638 /* R_COMP2 */
639 { 0, "Ob=Sd=" }, /* 0xd1 */
640 /* R_COMP3 */
641 { 0, "Ob=Ve=" }, /* 0xd2 */
642 /* R_PREV_FIXUP */
643 { 0, "P" }, /* 0xd3 */
644 { 1, "P" }, /* 0xd4 */
645 { 2, "P" }, /* 0xd5 */
646 { 3, "P" }, /* 0xd6 */
647 /* R_SEC_STMT */
648 { 0, "" }, /* 0xd7 */
649 /* R_N0SEL */
650 { 0, "" }, /* 0xd8 */
651 /* R_N1SEL */
652 { 0, "" }, /* 0xd9 */
653 /* R_LINETAB */
654 { 0, "Eb=Sd=Ve=" }, /* 0xda */
655 /* R_LINETAB_ESC */
656 { 0, "Eb=Mb=" }, /* 0xdb */
657 /* R_LTP_OVERRIDE */
658 { 0, "" }, /* 0xdc */
659 /* R_COMMENT */
660 { 0, "Ob=Ve=" }, /* 0xdd */
661 /* R_RESERVED */
662 { 0, "" }, /* 0xde */
663 { 0, "" }, /* 0xdf */
664 { 0, "" }, /* 0xe0 */
665 { 0, "" }, /* 0xe1 */
666 { 0, "" }, /* 0xe2 */
667 { 0, "" }, /* 0xe3 */
668 { 0, "" }, /* 0xe4 */
669 { 0, "" }, /* 0xe5 */
670 { 0, "" }, /* 0xe6 */
671 { 0, "" }, /* 0xe7 */
672 { 0, "" }, /* 0xe8 */
673 { 0, "" }, /* 0xe9 */
674 { 0, "" }, /* 0xea */
675 { 0, "" }, /* 0xeb */
676 { 0, "" }, /* 0xec */
677 { 0, "" }, /* 0xed */
678 { 0, "" }, /* 0xee */
679 { 0, "" }, /* 0xef */
680 { 0, "" }, /* 0xf0 */
681 { 0, "" }, /* 0xf1 */
682 { 0, "" }, /* 0xf2 */
683 { 0, "" }, /* 0xf3 */
684 { 0, "" }, /* 0xf4 */
685 { 0, "" }, /* 0xf5 */
686 { 0, "" }, /* 0xf6 */
687 { 0, "" }, /* 0xf7 */
688 { 0, "" }, /* 0xf8 */
689 { 0, "" }, /* 0xf9 */
690 { 0, "" }, /* 0xfa */
691 { 0, "" }, /* 0xfb */
692 { 0, "" }, /* 0xfc */
693 { 0, "" }, /* 0xfd */
694 { 0, "" }, /* 0xfe */
695 { 0, "" }, /* 0xff */
696 };
697
698 static const int comp1_opcodes[] = {
699 0x00,
700 0x40,
701 0x41,
702 0x42,
703 0x43,
704 0x44,
705 0x45,
706 0x46,
707 0x47,
708 0x48,
709 0x49,
710 0x4a,
711 0x4b,
712 0x60,
713 0x80,
714 0xa0,
715 0xc0,
716 -1
717 };
718
719 static const int comp2_opcodes[] = {
720 0x00,
721 0x80,
722 0x82,
723 0xc0,
724 -1
725 };
726
727 static const int comp3_opcodes[] = {
728 0x00,
729 0x02,
730 -1
731 };
732
733 /* These apparently are not in older versions of hpux reloc.h (hpux7). */
734 #ifndef R_DLT_REL
735 #define R_DLT_REL 0x78
736 #endif
737
738 #ifndef R_AUX_UNWIND
739 #define R_AUX_UNWIND 0xcf
740 #endif
741
742 #ifndef R_SEC_STMT
743 #define R_SEC_STMT 0xd7
744 #endif
745
746 /* And these first appeared in hpux10. */
747 #ifndef R_SHORT_PCREL_MODE
748 #define NO_PCREL_MODES
749 #define R_SHORT_PCREL_MODE 0x3e
750 #endif
751
752 #ifndef R_LONG_PCREL_MODE
753 #define R_LONG_PCREL_MODE 0x3f
754 #endif
755
756 #ifndef R_N0SEL
757 #define R_N0SEL 0xd8
758 #endif
759
760 #ifndef R_N1SEL
761 #define R_N1SEL 0xd9
762 #endif
763
764 #ifndef R_LINETAB
765 #define R_LINETAB 0xda
766 #endif
767
768 #ifndef R_LINETAB_ESC
769 #define R_LINETAB_ESC 0xdb
770 #endif
771
772 #ifndef R_LTP_OVERRIDE
773 #define R_LTP_OVERRIDE 0xdc
774 #endif
775
776 #ifndef R_COMMENT
777 #define R_COMMENT 0xdd
778 #endif
779
780 #define SOM_HOWTO(TYPE, NAME) \
781 HOWTO(TYPE, 0, 0, 32, false, 0, 0, hppa_som_reloc, NAME, false, 0, 0, false)
782
783 static reloc_howto_type som_hppa_howto_table[] = {
784 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
785 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
786 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
787 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
788 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
789 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
790 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
791 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
792 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
793 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
794 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
795 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
796 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
797 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
798 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
799 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
800 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
801 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
802 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
803 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
804 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
805 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
806 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
807 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
808 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
809 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
810 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
811 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
812 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
813 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
814 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
815 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
816 SOM_HOWTO (R_ZEROES, "R_ZEROES"),
817 SOM_HOWTO (R_ZEROES, "R_ZEROES"),
818 SOM_HOWTO (R_UNINIT, "R_UNINIT"),
819 SOM_HOWTO (R_UNINIT, "R_UNINIT"),
820 SOM_HOWTO (R_RELOCATION, "R_RELOCATION"),
821 SOM_HOWTO (R_DATA_ONE_SYMBOL, "R_DATA_ONE_SYMBOL"),
822 SOM_HOWTO (R_DATA_ONE_SYMBOL, "R_DATA_ONE_SYMBOL"),
823 SOM_HOWTO (R_DATA_PLABEL, "R_DATA_PLABEL"),
824 SOM_HOWTO (R_DATA_PLABEL, "R_DATA_PLABEL"),
825 SOM_HOWTO (R_SPACE_REF, "R_SPACE_REF"),
826 SOM_HOWTO (R_REPEATED_INIT, "REPEATED_INIT"),
827 SOM_HOWTO (R_REPEATED_INIT, "REPEATED_INIT"),
828 SOM_HOWTO (R_REPEATED_INIT, "REPEATED_INIT"),
829 SOM_HOWTO (R_REPEATED_INIT, "REPEATED_INIT"),
830 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
831 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
832 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
833 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
834 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
835 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
836 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
837 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
838 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
839 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
840 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
841 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
842 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
843 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
844 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
845 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
846 SOM_HOWTO (R_SHORT_PCREL_MODE, "R_SHORT_PCREL_MODE"),
847 SOM_HOWTO (R_LONG_PCREL_MODE, "R_LONG_PCREL_MODE"),
848 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
849 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
850 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
851 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
852 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
853 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
854 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
855 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
856 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
857 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
858 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
859 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
860 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
861 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
862 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
863 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
864 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
865 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
866 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
867 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
868 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
869 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
870 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
871 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
872 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
873 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
874 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
875 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
876 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
877 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
878 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
879 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
880 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
881 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
882 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
883 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
884 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
885 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
886 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
887 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
888 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
889 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
890 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
891 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
892 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
893 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
894 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
895 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
896 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
897 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
898 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
899 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
900 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
901 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
902 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
903 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
904 SOM_HOWTO (R_DLT_REL, "R_DLT_REL"),
905 SOM_HOWTO (R_DLT_REL, "R_DLT_REL"),
906 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
907 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
908 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
909 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
910 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
911 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
912 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
913 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
914 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
915 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
916 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
917 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
918 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
919 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
920 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
921 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
922 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
923 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
924 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
925 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
926 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
927 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
928 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
929 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
930 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
931 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
932 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
933 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
934 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
935 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
936 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
937 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
938 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
939 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
940 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
941 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
942 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
943 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
944 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
945 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
946 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
947 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
948 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
949 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
950 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
951 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
952 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
953 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
954 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
955 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
956 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
957 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
958 SOM_HOWTO (R_MILLI_REL, "R_MILLI_REL"),
959 SOM_HOWTO (R_MILLI_REL, "R_MILLI_REL"),
960 SOM_HOWTO (R_CODE_PLABEL, "R_CODE_PLABEL"),
961 SOM_HOWTO (R_CODE_PLABEL, "R_CODE_PLABEL"),
962 SOM_HOWTO (R_BREAKPOINT, "R_BREAKPOINT"),
963 SOM_HOWTO (R_ENTRY, "R_ENTRY"),
964 SOM_HOWTO (R_ENTRY, "R_ENTRY"),
965 SOM_HOWTO (R_ALT_ENTRY, "R_ALT_ENTRY"),
966 SOM_HOWTO (R_EXIT, "R_EXIT"),
967 SOM_HOWTO (R_BEGIN_TRY, "R_BEGIN_TRY"),
968 SOM_HOWTO (R_END_TRY, "R_END_TRY"),
969 SOM_HOWTO (R_END_TRY, "R_END_TRY"),
970 SOM_HOWTO (R_END_TRY, "R_END_TRY"),
971 SOM_HOWTO (R_BEGIN_BRTAB, "R_BEGIN_BRTAB"),
972 SOM_HOWTO (R_END_BRTAB, "R_END_BRTAB"),
973 SOM_HOWTO (R_STATEMENT, "R_STATEMENT"),
974 SOM_HOWTO (R_STATEMENT, "R_STATEMENT"),
975 SOM_HOWTO (R_STATEMENT, "R_STATEMENT"),
976 SOM_HOWTO (R_DATA_EXPR, "R_DATA_EXPR"),
977 SOM_HOWTO (R_CODE_EXPR, "R_CODE_EXPR"),
978 SOM_HOWTO (R_FSEL, "R_FSEL"),
979 SOM_HOWTO (R_LSEL, "R_LSEL"),
980 SOM_HOWTO (R_RSEL, "R_RSEL"),
981 SOM_HOWTO (R_N_MODE, "R_N_MODE"),
982 SOM_HOWTO (R_S_MODE, "R_S_MODE"),
983 SOM_HOWTO (R_D_MODE, "R_D_MODE"),
984 SOM_HOWTO (R_R_MODE, "R_R_MODE"),
985 SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
986 SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
987 SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
988 SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
989 SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
990 SOM_HOWTO (R_TRANSLATED, "R_TRANSLATED"),
991 SOM_HOWTO (R_AUX_UNWIND, "R_AUX_UNWIND"),
992 SOM_HOWTO (R_COMP1, "R_COMP1"),
993 SOM_HOWTO (R_COMP2, "R_COMP2"),
994 SOM_HOWTO (R_COMP3, "R_COMP3"),
995 SOM_HOWTO (R_PREV_FIXUP, "R_PREV_FIXUP"),
996 SOM_HOWTO (R_PREV_FIXUP, "R_PREV_FIXUP"),
997 SOM_HOWTO (R_PREV_FIXUP, "R_PREV_FIXUP"),
998 SOM_HOWTO (R_PREV_FIXUP, "R_PREV_FIXUP"),
999 SOM_HOWTO (R_SEC_STMT, "R_SEC_STMT"),
1000 SOM_HOWTO (R_N0SEL, "R_N0SEL"),
1001 SOM_HOWTO (R_N1SEL, "R_N1SEL"),
1002 SOM_HOWTO (R_LINETAB, "R_LINETAB"),
1003 SOM_HOWTO (R_LINETAB_ESC, "R_LINETAB_ESC"),
1004 SOM_HOWTO (R_LTP_OVERRIDE, "R_LTP_OVERRIDE"),
1005 SOM_HOWTO (R_COMMENT, "R_COMMENT"),
1006 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1007 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1008 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1009 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1010 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1011 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1012 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1013 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1014 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1015 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1016 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1017 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1018 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1019 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1020 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1021 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1022 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1023 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1024 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1025 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1026 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1027 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1028 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1029 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1030 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1031 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1032 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1033 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1034 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1035 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1036 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1037 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1038 SOM_HOWTO (R_RESERVED, "R_RESERVED"),
1039 SOM_HOWTO (R_RESERVED, "R_RESERVED")
1040 };
1041
1042 /* Initialize the SOM relocation queue. By definition the queue holds
1043 the last four multibyte fixups. */
1044
1045 static void
1046 som_initialize_reloc_queue (queue)
1047 struct reloc_queue *queue;
1048 {
1049 queue[0].reloc = NULL;
1050 queue[0].size = 0;
1051 queue[1].reloc = NULL;
1052 queue[1].size = 0;
1053 queue[2].reloc = NULL;
1054 queue[2].size = 0;
1055 queue[3].reloc = NULL;
1056 queue[3].size = 0;
1057 }
1058
1059 /* Insert a new relocation into the relocation queue. */
1060
1061 static void
1062 som_reloc_queue_insert (p, size, queue)
1063 unsigned char *p;
1064 unsigned int size;
1065 struct reloc_queue *queue;
1066 {
1067 queue[3].reloc = queue[2].reloc;
1068 queue[3].size = queue[2].size;
1069 queue[2].reloc = queue[1].reloc;
1070 queue[2].size = queue[1].size;
1071 queue[1].reloc = queue[0].reloc;
1072 queue[1].size = queue[0].size;
1073 queue[0].reloc = p;
1074 queue[0].size = size;
1075 }
1076
1077 /* When an entry in the relocation queue is reused, the entry moves
1078 to the front of the queue. */
1079
1080 static void
1081 som_reloc_queue_fix (queue, index)
1082 struct reloc_queue *queue;
1083 unsigned int index;
1084 {
1085 if (index == 0)
1086 return;
1087
1088 if (index == 1)
1089 {
1090 unsigned char *tmp1 = queue[0].reloc;
1091 unsigned int tmp2 = queue[0].size;
1092 queue[0].reloc = queue[1].reloc;
1093 queue[0].size = queue[1].size;
1094 queue[1].reloc = tmp1;
1095 queue[1].size = tmp2;
1096 return;
1097 }
1098
1099 if (index == 2)
1100 {
1101 unsigned char *tmp1 = queue[0].reloc;
1102 unsigned int tmp2 = queue[0].size;
1103 queue[0].reloc = queue[2].reloc;
1104 queue[0].size = queue[2].size;
1105 queue[2].reloc = queue[1].reloc;
1106 queue[2].size = queue[1].size;
1107 queue[1].reloc = tmp1;
1108 queue[1].size = tmp2;
1109 return;
1110 }
1111
1112 if (index == 3)
1113 {
1114 unsigned char *tmp1 = queue[0].reloc;
1115 unsigned int tmp2 = queue[0].size;
1116 queue[0].reloc = queue[3].reloc;
1117 queue[0].size = queue[3].size;
1118 queue[3].reloc = queue[2].reloc;
1119 queue[3].size = queue[2].size;
1120 queue[2].reloc = queue[1].reloc;
1121 queue[2].size = queue[1].size;
1122 queue[1].reloc = tmp1;
1123 queue[1].size = tmp2;
1124 return;
1125 }
1126 abort ();
1127 }
1128
1129 /* Search for a particular relocation in the relocation queue. */
1130
1131 static int
1132 som_reloc_queue_find (p, size, queue)
1133 unsigned char *p;
1134 unsigned int size;
1135 struct reloc_queue *queue;
1136 {
1137 if (queue[0].reloc && !memcmp (p, queue[0].reloc, size)
1138 && size == queue[0].size)
1139 return 0;
1140 if (queue[1].reloc && !memcmp (p, queue[1].reloc, size)
1141 && size == queue[1].size)
1142 return 1;
1143 if (queue[2].reloc && !memcmp (p, queue[2].reloc, size)
1144 && size == queue[2].size)
1145 return 2;
1146 if (queue[3].reloc && !memcmp (p, queue[3].reloc, size)
1147 && size == queue[3].size)
1148 return 3;
1149 return -1;
1150 }
1151
1152 static unsigned char *
1153 try_prev_fixup (abfd, subspace_reloc_sizep, p, size, queue)
1154 bfd *abfd ATTRIBUTE_UNUSED;
1155 int *subspace_reloc_sizep;
1156 unsigned char *p;
1157 unsigned int size;
1158 struct reloc_queue *queue;
1159 {
1160 int queue_index = som_reloc_queue_find (p, size, queue);
1161
1162 if (queue_index != -1)
1163 {
1164 /* Found this in a previous fixup. Undo the fixup we
1165 just built and use R_PREV_FIXUP instead. We saved
1166 a total of size - 1 bytes in the fixup stream. */
1167 bfd_put_8 (abfd, R_PREV_FIXUP + queue_index, p);
1168 p += 1;
1169 *subspace_reloc_sizep += 1;
1170 som_reloc_queue_fix (queue, queue_index);
1171 }
1172 else
1173 {
1174 som_reloc_queue_insert (p, size, queue);
1175 *subspace_reloc_sizep += size;
1176 p += size;
1177 }
1178 return p;
1179 }
1180
1181 /* Emit the proper R_NO_RELOCATION fixups to map the next SKIP
1182 bytes without any relocation. Update the size of the subspace
1183 relocation stream via SUBSPACE_RELOC_SIZE_P; also return the
1184 current pointer into the relocation stream. */
1185
1186 static unsigned char *
1187 som_reloc_skip (abfd, skip, p, subspace_reloc_sizep, queue)
1188 bfd *abfd;
1189 unsigned int skip;
1190 unsigned char *p;
1191 unsigned int *subspace_reloc_sizep;
1192 struct reloc_queue *queue;
1193 {
1194 /* Use a 4 byte R_NO_RELOCATION entry with a maximal value
1195 then R_PREV_FIXUPs to get the difference down to a
1196 reasonable size. */
1197 if (skip >= 0x1000000)
1198 {
1199 skip -= 0x1000000;
1200 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1201 bfd_put_8 (abfd, 0xff, p + 1);
1202 bfd_put_16 (abfd, (bfd_vma) 0xffff, p + 2);
1203 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1204 while (skip >= 0x1000000)
1205 {
1206 skip -= 0x1000000;
1207 bfd_put_8 (abfd, R_PREV_FIXUP, p);
1208 p++;
1209 *subspace_reloc_sizep += 1;
1210 /* No need to adjust queue here since we are repeating the
1211 most recent fixup. */
1212 }
1213 }
1214
1215 /* The difference must be less than 0x1000000. Use one
1216 more R_NO_RELOCATION entry to get to the right difference. */
1217 if ((skip & 3) == 0 && skip <= 0xc0000 && skip > 0)
1218 {
1219 /* Difference can be handled in a simple single-byte
1220 R_NO_RELOCATION entry. */
1221 if (skip <= 0x60)
1222 {
1223 bfd_put_8 (abfd, R_NO_RELOCATION + (skip >> 2) - 1, p);
1224 *subspace_reloc_sizep += 1;
1225 p++;
1226 }
1227 /* Handle it with a two byte R_NO_RELOCATION entry. */
1228 else if (skip <= 0x1000)
1229 {
1230 bfd_put_8 (abfd, R_NO_RELOCATION + 24 + (((skip >> 2) - 1) >> 8), p);
1231 bfd_put_8 (abfd, (skip >> 2) - 1, p + 1);
1232 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1233 }
1234 /* Handle it with a three byte R_NO_RELOCATION entry. */
1235 else
1236 {
1237 bfd_put_8 (abfd, R_NO_RELOCATION + 28 + (((skip >> 2) - 1) >> 16), p);
1238 bfd_put_16 (abfd, (bfd_vma) (skip >> 2) - 1, p + 1);
1239 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1240 }
1241 }
1242 /* Ugh. Punt and use a 4 byte entry. */
1243 else if (skip > 0)
1244 {
1245 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1246 bfd_put_8 (abfd, (skip - 1) >> 16, p + 1);
1247 bfd_put_16 (abfd, (bfd_vma) skip - 1, p + 2);
1248 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1249 }
1250 return p;
1251 }
1252
1253 /* Emit the proper R_DATA_OVERRIDE fixups to handle a nonzero addend
1254 from a BFD relocation. Update the size of the subspace relocation
1255 stream via SUBSPACE_RELOC_SIZE_P; also return the current pointer
1256 into the relocation stream. */
1257
1258 static unsigned char *
1259 som_reloc_addend (abfd, addend, p, subspace_reloc_sizep, queue)
1260 bfd *abfd;
1261 bfd_vma addend;
1262 unsigned char *p;
1263 unsigned int *subspace_reloc_sizep;
1264 struct reloc_queue *queue;
1265 {
1266 if (addend + 0x80 < 0x100)
1267 {
1268 bfd_put_8 (abfd, R_DATA_OVERRIDE + 1, p);
1269 bfd_put_8 (abfd, addend, p + 1);
1270 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1271 }
1272 else if (addend + 0x8000 < 0x10000)
1273 {
1274 bfd_put_8 (abfd, R_DATA_OVERRIDE + 2, p);
1275 bfd_put_16 (abfd, addend, p + 1);
1276 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1277 }
1278 else if (addend + 0x800000 < 0x1000000)
1279 {
1280 bfd_put_8 (abfd, R_DATA_OVERRIDE + 3, p);
1281 bfd_put_8 (abfd, addend >> 16, p + 1);
1282 bfd_put_16 (abfd, addend, p + 2);
1283 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1284 }
1285 else
1286 {
1287 bfd_put_8 (abfd, R_DATA_OVERRIDE + 4, p);
1288 bfd_put_32 (abfd, addend, p + 1);
1289 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1290 }
1291 return p;
1292 }
1293
1294 /* Handle a single function call relocation. */
1295
1296 static unsigned char *
1297 som_reloc_call (abfd, p, subspace_reloc_sizep, bfd_reloc, sym_num, queue)
1298 bfd *abfd;
1299 unsigned char *p;
1300 unsigned int *subspace_reloc_sizep;
1301 arelent *bfd_reloc;
1302 int sym_num;
1303 struct reloc_queue *queue;
1304 {
1305 int arg_bits = HPPA_R_ARG_RELOC (bfd_reloc->addend);
1306 int rtn_bits = arg_bits & 0x3;
1307 int type, done = 0;
1308
1309 /* You'll never believe all this is necessary to handle relocations
1310 for function calls. Having to compute and pack the argument
1311 relocation bits is the real nightmare.
1312
1313 If you're interested in how this works, just forget it. You really
1314 do not want to know about this braindamage. */
1315
1316 /* First see if this can be done with a "simple" relocation. Simple
1317 relocations have a symbol number < 0x100 and have simple encodings
1318 of argument relocations. */
1319
1320 if (sym_num < 0x100)
1321 {
1322 switch (arg_bits)
1323 {
1324 case 0:
1325 case 1:
1326 type = 0;
1327 break;
1328 case 1 << 8:
1329 case 1 << 8 | 1:
1330 type = 1;
1331 break;
1332 case 1 << 8 | 1 << 6:
1333 case 1 << 8 | 1 << 6 | 1:
1334 type = 2;
1335 break;
1336 case 1 << 8 | 1 << 6 | 1 << 4:
1337 case 1 << 8 | 1 << 6 | 1 << 4 | 1:
1338 type = 3;
1339 break;
1340 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2:
1341 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2 | 1:
1342 type = 4;
1343 break;
1344 default:
1345 /* Not one of the easy encodings. This will have to be
1346 handled by the more complex code below. */
1347 type = -1;
1348 break;
1349 }
1350 if (type != -1)
1351 {
1352 /* Account for the return value too. */
1353 if (rtn_bits)
1354 type += 5;
1355
1356 /* Emit a 2 byte relocation. Then see if it can be handled
1357 with a relocation which is already in the relocation queue. */
1358 bfd_put_8 (abfd, bfd_reloc->howto->type + type, p);
1359 bfd_put_8 (abfd, sym_num, p + 1);
1360 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1361 done = 1;
1362 }
1363 }
1364
1365 /* If this could not be handled with a simple relocation, then do a hard
1366 one. Hard relocations occur if the symbol number was too high or if
1367 the encoding of argument relocation bits is too complex. */
1368 if (! done)
1369 {
1370 /* Don't ask about these magic sequences. I took them straight
1371 from gas-1.36 which took them from the a.out man page. */
1372 type = rtn_bits;
1373 if ((arg_bits >> 6 & 0xf) == 0xe)
1374 type += 9 * 40;
1375 else
1376 type += (3 * (arg_bits >> 8 & 3) + (arg_bits >> 6 & 3)) * 40;
1377 if ((arg_bits >> 2 & 0xf) == 0xe)
1378 type += 9 * 4;
1379 else
1380 type += (3 * (arg_bits >> 4 & 3) + (arg_bits >> 2 & 3)) * 4;
1381
1382 /* Output the first two bytes of the relocation. These describe
1383 the length of the relocation and encoding style. */
1384 bfd_put_8 (abfd, bfd_reloc->howto->type + 10
1385 + 2 * (sym_num >= 0x100) + (type >= 0x100),
1386 p);
1387 bfd_put_8 (abfd, type, p + 1);
1388
1389 /* Now output the symbol index and see if this bizarre relocation
1390 just happened to be in the relocation queue. */
1391 if (sym_num < 0x100)
1392 {
1393 bfd_put_8 (abfd, sym_num, p + 2);
1394 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1395 }
1396 else
1397 {
1398 bfd_put_8 (abfd, sym_num >> 16, p + 2);
1399 bfd_put_16 (abfd, (bfd_vma) sym_num, p + 3);
1400 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1401 }
1402 }
1403 return p;
1404 }
1405
1406 /* Return the logarithm of X, base 2, considering X unsigned.
1407 Abort -1 if X is not a power or two or is zero. */
1408
1409 static int
1410 log2 (x)
1411 unsigned int x;
1412 {
1413 int log = 0;
1414
1415 /* Test for 0 or a power of 2. */
1416 if (x == 0 || x != (x & -x))
1417 return -1;
1418
1419 while ((x >>= 1) != 0)
1420 log++;
1421 return log;
1422 }
1423
1424 static bfd_reloc_status_type
1425 hppa_som_reloc (abfd, reloc_entry, symbol_in, data,
1426 input_section, output_bfd, error_message)
1427 bfd *abfd ATTRIBUTE_UNUSED;
1428 arelent *reloc_entry;
1429 asymbol *symbol_in ATTRIBUTE_UNUSED;
1430 PTR data ATTRIBUTE_UNUSED;
1431 asection *input_section;
1432 bfd *output_bfd;
1433 char **error_message ATTRIBUTE_UNUSED;
1434 {
1435 if (output_bfd)
1436 {
1437 reloc_entry->address += input_section->output_offset;
1438 return bfd_reloc_ok;
1439 }
1440 return bfd_reloc_ok;
1441 }
1442
1443 /* Given a generic HPPA relocation type, the instruction format,
1444 and a field selector, return one or more appropriate SOM relocations. */
1445
1446 int **
1447 hppa_som_gen_reloc_type (abfd, base_type, format, field, sym_diff, sym)
1448 bfd *abfd;
1449 int base_type;
1450 int format;
1451 enum hppa_reloc_field_selector_type_alt field;
1452 int sym_diff;
1453 asymbol *sym;
1454 {
1455 int *final_type, **final_types;
1456
1457 final_types = (int **) bfd_alloc (abfd, (bfd_size_type) sizeof (int *) * 6);
1458 final_type = (int *) bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1459 if (!final_types || !final_type)
1460 return NULL;
1461
1462 /* The field selector may require additional relocations to be
1463 generated. It's impossible to know at this moment if additional
1464 relocations will be needed, so we make them. The code to actually
1465 write the relocation/fixup stream is responsible for removing
1466 any redundant relocations. */
1467 switch (field)
1468 {
1469 case e_fsel:
1470 case e_psel:
1471 case e_lpsel:
1472 case e_rpsel:
1473 final_types[0] = final_type;
1474 final_types[1] = NULL;
1475 final_types[2] = NULL;
1476 *final_type = base_type;
1477 break;
1478
1479 case e_tsel:
1480 case e_ltsel:
1481 case e_rtsel:
1482 final_types[0] = (int *) bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1483 if (!final_types[0])
1484 return NULL;
1485 if (field == e_tsel)
1486 *final_types[0] = R_FSEL;
1487 else if (field == e_ltsel)
1488 *final_types[0] = R_LSEL;
1489 else
1490 *final_types[0] = R_RSEL;
1491 final_types[1] = final_type;
1492 final_types[2] = NULL;
1493 *final_type = base_type;
1494 break;
1495
1496 case e_lssel:
1497 case e_rssel:
1498 final_types[0] = (int *) bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1499 if (!final_types[0])
1500 return NULL;
1501 *final_types[0] = R_S_MODE;
1502 final_types[1] = final_type;
1503 final_types[2] = NULL;
1504 *final_type = base_type;
1505 break;
1506
1507 case e_lsel:
1508 case e_rsel:
1509 final_types[0] = (int *) bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1510 if (!final_types[0])
1511 return NULL;
1512 *final_types[0] = R_N_MODE;
1513 final_types[1] = final_type;
1514 final_types[2] = NULL;
1515 *final_type = base_type;
1516 break;
1517
1518 case e_ldsel:
1519 case e_rdsel:
1520 final_types[0] = (int *) bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1521 if (!final_types[0])
1522 return NULL;
1523 *final_types[0] = R_D_MODE;
1524 final_types[1] = final_type;
1525 final_types[2] = NULL;
1526 *final_type = base_type;
1527 break;
1528
1529 case e_lrsel:
1530 case e_rrsel:
1531 final_types[0] = (int *) bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1532 if (!final_types[0])
1533 return NULL;
1534 *final_types[0] = R_R_MODE;
1535 final_types[1] = final_type;
1536 final_types[2] = NULL;
1537 *final_type = base_type;
1538 break;
1539
1540 case e_nsel:
1541 final_types[0] = (int *) bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1542 if (!final_types[0])
1543 return NULL;
1544 *final_types[0] = R_N1SEL;
1545 final_types[1] = final_type;
1546 final_types[2] = NULL;
1547 *final_type = base_type;
1548 break;
1549
1550 case e_nlsel:
1551 case e_nlrsel:
1552 final_types[0] = (int *) bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1553 if (!final_types[0])
1554 return NULL;
1555 *final_types[0] = R_N0SEL;
1556 final_types[1] = (int *) bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1557 if (!final_types[1])
1558 return NULL;
1559 if (field == e_nlsel)
1560 *final_types[1] = R_N_MODE;
1561 else
1562 *final_types[1] = R_R_MODE;
1563 final_types[2] = final_type;
1564 final_types[3] = NULL;
1565 *final_type = base_type;
1566 break;
1567 }
1568
1569 switch (base_type)
1570 {
1571 case R_HPPA:
1572 /* The difference of two symbols needs *very* special handling. */
1573 if (sym_diff)
1574 {
1575 bfd_size_type amt = sizeof (int);
1576 final_types[0] = (int *) bfd_alloc (abfd, amt);
1577 final_types[1] = (int *) bfd_alloc (abfd, amt);
1578 final_types[2] = (int *) bfd_alloc (abfd, amt);
1579 final_types[3] = (int *) bfd_alloc (abfd, amt);
1580 if (!final_types[0] || !final_types[1] || !final_types[2])
1581 return NULL;
1582 if (field == e_fsel)
1583 *final_types[0] = R_FSEL;
1584 else if (field == e_rsel)
1585 *final_types[0] = R_RSEL;
1586 else if (field == e_lsel)
1587 *final_types[0] = R_LSEL;
1588 *final_types[1] = R_COMP2;
1589 *final_types[2] = R_COMP2;
1590 *final_types[3] = R_COMP1;
1591 final_types[4] = final_type;
1592 if (format == 32)
1593 *final_types[4] = R_DATA_EXPR;
1594 else
1595 *final_types[4] = R_CODE_EXPR;
1596 final_types[5] = NULL;
1597 break;
1598 }
1599 /* PLABELs get their own relocation type. */
1600 else if (field == e_psel
1601 || field == e_lpsel
1602 || field == e_rpsel)
1603 {
1604 /* A PLABEL relocation that has a size of 32 bits must
1605 be a R_DATA_PLABEL. All others are R_CODE_PLABELs. */
1606 if (format == 32)
1607 *final_type = R_DATA_PLABEL;
1608 else
1609 *final_type = R_CODE_PLABEL;
1610 }
1611 /* PIC stuff. */
1612 else if (field == e_tsel
1613 || field == e_ltsel
1614 || field == e_rtsel)
1615 *final_type = R_DLT_REL;
1616 /* A relocation in the data space is always a full 32bits. */
1617 else if (format == 32)
1618 {
1619 *final_type = R_DATA_ONE_SYMBOL;
1620
1621 /* If there's no SOM symbol type associated with this BFD
1622 symbol, then set the symbol type to ST_DATA.
1623
1624 Only do this if the type is going to default later when
1625 we write the object file.
1626
1627 This is done so that the linker never encounters an
1628 R_DATA_ONE_SYMBOL reloc involving an ST_CODE symbol.
1629
1630 This allows the compiler to generate exception handling
1631 tables.
1632
1633 Note that one day we may need to also emit BEGIN_BRTAB and
1634 END_BRTAB to prevent the linker from optimizing away insns
1635 in exception handling regions. */
1636 if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
1637 && (sym->flags & BSF_SECTION_SYM) == 0
1638 && (sym->flags & BSF_FUNCTION) == 0
1639 && ! bfd_is_com_section (sym->section))
1640 som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
1641 }
1642 break;
1643
1644 case R_HPPA_GOTOFF:
1645 /* More PLABEL special cases. */
1646 if (field == e_psel
1647 || field == e_lpsel
1648 || field == e_rpsel)
1649 *final_type = R_DATA_PLABEL;
1650 break;
1651
1652 case R_HPPA_COMPLEX:
1653 /* The difference of two symbols needs *very* special handling. */
1654 if (sym_diff)
1655 {
1656 bfd_size_type amt = sizeof (int);
1657 final_types[0] = (int *) bfd_alloc (abfd, amt);
1658 final_types[1] = (int *) bfd_alloc (abfd, amt);
1659 final_types[2] = (int *) bfd_alloc (abfd, amt);
1660 final_types[3] = (int *) bfd_alloc (abfd, amt);
1661 if (!final_types[0] || !final_types[1] || !final_types[2])
1662 return NULL;
1663 if (field == e_fsel)
1664 *final_types[0] = R_FSEL;
1665 else if (field == e_rsel)
1666 *final_types[0] = R_RSEL;
1667 else if (field == e_lsel)
1668 *final_types[0] = R_LSEL;
1669 *final_types[1] = R_COMP2;
1670 *final_types[2] = R_COMP2;
1671 *final_types[3] = R_COMP1;
1672 final_types[4] = final_type;
1673 if (format == 32)
1674 *final_types[4] = R_DATA_EXPR;
1675 else
1676 *final_types[4] = R_CODE_EXPR;
1677 final_types[5] = NULL;
1678 break;
1679 }
1680 else
1681 break;
1682
1683 case R_HPPA_NONE:
1684 case R_HPPA_ABS_CALL:
1685 /* Right now we can default all these. */
1686 break;
1687
1688 case R_HPPA_PCREL_CALL:
1689 {
1690 #ifndef NO_PCREL_MODES
1691 /* If we have short and long pcrel modes, then generate the proper
1692 mode selector, then the pcrel relocation. Redundant selectors
1693 will be eliminted as the relocs are sized and emitted. */
1694 bfd_size_type amt = sizeof (int);
1695 final_types[0] = (int *) bfd_alloc (abfd, amt);
1696 if (!final_types[0])
1697 return NULL;
1698 if (format == 17)
1699 *final_types[0] = R_SHORT_PCREL_MODE;
1700 else
1701 *final_types[0] = R_LONG_PCREL_MODE;
1702 final_types[1] = final_type;
1703 final_types[2] = NULL;
1704 *final_type = base_type;
1705 #endif
1706 break;
1707 }
1708 }
1709 return final_types;
1710 }
1711
1712 /* Return the address of the correct entry in the PA SOM relocation
1713 howto table. */
1714
1715 static reloc_howto_type *
1716 som_bfd_reloc_type_lookup (abfd, code)
1717 bfd *abfd ATTRIBUTE_UNUSED;
1718 bfd_reloc_code_real_type code;
1719 {
1720 if ((int) code < (int) R_NO_RELOCATION + 255)
1721 {
1722 BFD_ASSERT ((int) som_hppa_howto_table[(int) code].type == (int) code);
1723 return &som_hppa_howto_table[(int) code];
1724 }
1725
1726 return (reloc_howto_type *) 0;
1727 }
1728
1729 /* Perform some initialization for an object. Save results of this
1730 initialization in the BFD. */
1731
1732 static const bfd_target *
1733 som_object_setup (abfd, file_hdrp, aux_hdrp, current_offset)
1734 bfd *abfd;
1735 struct header *file_hdrp;
1736 struct som_exec_auxhdr *aux_hdrp;
1737 unsigned long current_offset;
1738 {
1739 asection *section;
1740 int found;
1741
1742 /* som_mkobject will set bfd_error if som_mkobject fails. */
1743 if (! som_mkobject (abfd))
1744 return 0;
1745
1746 /* Set BFD flags based on what information is available in the SOM. */
1747 abfd->flags = BFD_NO_FLAGS;
1748 if (file_hdrp->symbol_total)
1749 abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;
1750
1751 switch (file_hdrp->a_magic)
1752 {
1753 case DEMAND_MAGIC:
1754 abfd->flags |= (D_PAGED | WP_TEXT | EXEC_P);
1755 break;
1756 case SHARE_MAGIC:
1757 abfd->flags |= (WP_TEXT | EXEC_P);
1758 break;
1759 case EXEC_MAGIC:
1760 abfd->flags |= (EXEC_P);
1761 break;
1762 case RELOC_MAGIC:
1763 abfd->flags |= HAS_RELOC;
1764 break;
1765 #ifdef SHL_MAGIC
1766 case SHL_MAGIC:
1767 #endif
1768 #ifdef DL_MAGIC
1769 case DL_MAGIC:
1770 #endif
1771 abfd->flags |= DYNAMIC;
1772 break;
1773
1774 default:
1775 break;
1776 }
1777
1778 /* Allocate space to hold the saved exec header information. */
1779 obj_som_exec_data (abfd) = (struct som_exec_data *)
1780 bfd_zalloc (abfd, (bfd_size_type) sizeof (struct som_exec_data));
1781 if (obj_som_exec_data (abfd) == NULL)
1782 return NULL;
1783
1784 /* The braindamaged OSF1 linker switched exec_flags and exec_entry!
1785
1786 We used to identify OSF1 binaries based on NEW_VERSION_ID, but
1787 apparently the latest HPUX linker is using NEW_VERSION_ID now.
1788
1789 It's about time, OSF has used the new id since at least 1992;
1790 HPUX didn't start till nearly 1995!.
1791
1792 The new approach examines the entry field. If it's zero or not 4
1793 byte aligned then it's not a proper code address and we guess it's
1794 really the executable flags. */
1795 found = 0;
1796 for (section = abfd->sections; section; section = section->next)
1797 {
1798 if ((section->flags & SEC_CODE) == 0)
1799 continue;
1800 if (aux_hdrp->exec_entry >= section->vma
1801 && aux_hdrp->exec_entry < section->vma + section->_cooked_size)
1802 found = 1;
1803 }
1804 if (aux_hdrp->exec_entry == 0
1805 || (aux_hdrp->exec_entry & 0x3) != 0
1806 || ! found)
1807 {
1808 bfd_get_start_address (abfd) = aux_hdrp->exec_flags;
1809 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_entry;
1810 }
1811 else
1812 {
1813 bfd_get_start_address (abfd) = aux_hdrp->exec_entry + current_offset;
1814 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_flags;
1815 }
1816
1817 obj_som_exec_data (abfd)->version_id = file_hdrp->version_id;
1818
1819 bfd_default_set_arch_mach (abfd, bfd_arch_hppa, pa10);
1820 bfd_get_symcount (abfd) = file_hdrp->symbol_total;
1821
1822 /* Initialize the saved symbol table and string table to NULL.
1823 Save important offsets and sizes from the SOM header into
1824 the BFD. */
1825 obj_som_stringtab (abfd) = (char *) NULL;
1826 obj_som_symtab (abfd) = (som_symbol_type *) NULL;
1827 obj_som_sorted_syms (abfd) = NULL;
1828 obj_som_stringtab_size (abfd) = file_hdrp->symbol_strings_size;
1829 obj_som_sym_filepos (abfd) = file_hdrp->symbol_location + current_offset;
1830 obj_som_str_filepos (abfd) = (file_hdrp->symbol_strings_location
1831 + current_offset);
1832 obj_som_reloc_filepos (abfd) = (file_hdrp->fixup_request_location
1833 + current_offset);
1834 obj_som_exec_data (abfd)->system_id = file_hdrp->system_id;
1835
1836 return abfd->xvec;
1837 }
1838
1839 /* Convert all of the space and subspace info into BFD sections. Each space
1840 contains a number of subspaces, which in turn describe the mapping between
1841 regions of the exec file, and the address space that the program runs in.
1842 BFD sections which correspond to spaces will overlap the sections for the
1843 associated subspaces. */
1844
1845 static boolean
1846 setup_sections (abfd, file_hdr, current_offset)
1847 bfd *abfd;
1848 struct header *file_hdr;
1849 unsigned long current_offset;
1850 {
1851 char *space_strings;
1852 unsigned int space_index, i;
1853 unsigned int total_subspaces = 0;
1854 asection **subspace_sections = NULL;
1855 asection *section;
1856 bfd_size_type amt;
1857
1858 /* First, read in space names. */
1859
1860 amt = file_hdr->space_strings_size;
1861 space_strings = bfd_malloc (amt);
1862 if (!space_strings && amt != 0)
1863 goto error_return;
1864
1865 if (bfd_seek (abfd, current_offset + file_hdr->space_strings_location,
1866 SEEK_SET) != 0)
1867 goto error_return;
1868 if (bfd_bread (space_strings, amt, abfd) != amt)
1869 goto error_return;
1870
1871 /* Loop over all of the space dictionaries, building up sections. */
1872 for (space_index = 0; space_index < file_hdr->space_total; space_index++)
1873 {
1874 struct space_dictionary_record space;
1875 struct subspace_dictionary_record subspace, save_subspace;
1876 int subspace_index;
1877 asection *space_asect;
1878 char *newname;
1879
1880 /* Read the space dictionary element. */
1881 if (bfd_seek (abfd,
1882 (current_offset + file_hdr->space_location
1883 + space_index * sizeof space),
1884 SEEK_SET) != 0)
1885 goto error_return;
1886 amt = sizeof space;
1887 if (bfd_bread (&space, amt, abfd) != amt)
1888 goto error_return;
1889
1890 /* Setup the space name string. */
1891 space.name.n_name = space.name.n_strx + space_strings;
1892
1893 /* Make a section out of it. */
1894 amt = strlen (space.name.n_name) + 1;
1895 newname = bfd_alloc (abfd, amt);
1896 if (!newname)
1897 goto error_return;
1898 strcpy (newname, space.name.n_name);
1899
1900 space_asect = bfd_make_section_anyway (abfd, newname);
1901 if (!space_asect)
1902 goto error_return;
1903
1904 if (space.is_loadable == 0)
1905 space_asect->flags |= SEC_DEBUGGING;
1906
1907 /* Set up all the attributes for the space. */
1908 if (! bfd_som_set_section_attributes (space_asect, space.is_defined,
1909 space.is_private, space.sort_key,
1910 space.space_number))
1911 goto error_return;
1912
1913 /* If the space has no subspaces, then we're done. */
1914 if (space.subspace_quantity == 0)
1915 continue;
1916
1917 /* Now, read in the first subspace for this space. */
1918 if (bfd_seek (abfd,
1919 (current_offset + file_hdr->subspace_location
1920 + space.subspace_index * sizeof subspace),
1921 SEEK_SET) != 0)
1922 goto error_return;
1923 amt = sizeof subspace;
1924 if (bfd_bread (&subspace, amt, abfd) != amt)
1925 goto error_return;
1926 /* Seek back to the start of the subspaces for loop below. */
1927 if (bfd_seek (abfd,
1928 (current_offset + file_hdr->subspace_location
1929 + space.subspace_index * sizeof subspace),
1930 SEEK_SET) != 0)
1931 goto error_return;
1932
1933 /* Setup the start address and file loc from the first subspace
1934 record. */
1935 space_asect->vma = subspace.subspace_start;
1936 space_asect->filepos = subspace.file_loc_init_value + current_offset;
1937 space_asect->alignment_power = log2 (subspace.alignment);
1938 if (space_asect->alignment_power == (unsigned) -1)
1939 goto error_return;
1940
1941 /* Initialize save_subspace so we can reliably determine if this
1942 loop placed any useful values into it. */
1943 memset (&save_subspace, 0, sizeof (struct subspace_dictionary_record));
1944
1945 /* Loop over the rest of the subspaces, building up more sections. */
1946 for (subspace_index = 0; subspace_index < space.subspace_quantity;
1947 subspace_index++)
1948 {
1949 asection *subspace_asect;
1950
1951 /* Read in the next subspace. */
1952 amt = sizeof subspace;
1953 if (bfd_bread (&subspace, amt, abfd) != amt)
1954 goto error_return;
1955
1956 /* Setup the subspace name string. */
1957 subspace.name.n_name = subspace.name.n_strx + space_strings;
1958
1959 amt = strlen (subspace.name.n_name) + 1;
1960 newname = bfd_alloc (abfd, amt);
1961 if (!newname)
1962 goto error_return;
1963 strcpy (newname, subspace.name.n_name);
1964
1965 /* Make a section out of this subspace. */
1966 subspace_asect = bfd_make_section_anyway (abfd, newname);
1967 if (!subspace_asect)
1968 goto error_return;
1969
1970 /* Store private information about the section. */
1971 if (! bfd_som_set_subsection_attributes (subspace_asect, space_asect,
1972 subspace.access_control_bits,
1973 subspace.sort_key,
1974 subspace.quadrant))
1975 goto error_return;
1976
1977 /* Keep an easy mapping between subspaces and sections.
1978 Note we do not necessarily read the subspaces in the
1979 same order in which they appear in the object file.
1980
1981 So to make the target index come out correctly, we
1982 store the location of the subspace header in target
1983 index, then sort using the location of the subspace
1984 header as the key. Then we can assign correct
1985 subspace indices. */
1986 total_subspaces++;
1987 subspace_asect->target_index = bfd_tell (abfd) - sizeof (subspace);
1988
1989 /* Set SEC_READONLY and SEC_CODE/SEC_DATA as specified
1990 by the access_control_bits in the subspace header. */
1991 switch (subspace.access_control_bits >> 4)
1992 {
1993 /* Readonly data. */
1994 case 0x0:
1995 subspace_asect->flags |= SEC_DATA | SEC_READONLY;
1996 break;
1997
1998 /* Normal data. */
1999 case 0x1:
2000 subspace_asect->flags |= SEC_DATA;
2001 break;
2002
2003 /* Readonly code and the gateways.
2004 Gateways have other attributes which do not map
2005 into anything BFD knows about. */
2006 case 0x2:
2007 case 0x4:
2008 case 0x5:
2009 case 0x6:
2010 case 0x7:
2011 subspace_asect->flags |= SEC_CODE | SEC_READONLY;
2012 break;
2013
2014 /* dynamic (writable) code. */
2015 case 0x3:
2016 subspace_asect->flags |= SEC_CODE;
2017 break;
2018 }
2019
2020 if (subspace.dup_common || subspace.is_common)
2021 subspace_asect->flags |= SEC_IS_COMMON;
2022 else if (subspace.subspace_length > 0)
2023 subspace_asect->flags |= SEC_HAS_CONTENTS;
2024
2025 if (subspace.is_loadable)
2026 subspace_asect->flags |= SEC_ALLOC | SEC_LOAD;
2027 else
2028 subspace_asect->flags |= SEC_DEBUGGING;
2029
2030 if (subspace.code_only)
2031 subspace_asect->flags |= SEC_CODE;
2032
2033 /* Both file_loc_init_value and initialization_length will
2034 be zero for a BSS like subspace. */
2035 if (subspace.file_loc_init_value == 0
2036 && subspace.initialization_length == 0)
2037 subspace_asect->flags &= ~(SEC_DATA | SEC_LOAD | SEC_HAS_CONTENTS);
2038
2039 /* This subspace has relocations.
2040 The fixup_request_quantity is a byte count for the number of
2041 entries in the relocation stream; it is not the actual number
2042 of relocations in the subspace. */
2043 if (subspace.fixup_request_quantity != 0)
2044 {
2045 subspace_asect->flags |= SEC_RELOC;
2046 subspace_asect->rel_filepos = subspace.fixup_request_index;
2047 som_section_data (subspace_asect)->reloc_size
2048 = subspace.fixup_request_quantity;
2049 /* We can not determine this yet. When we read in the
2050 relocation table the correct value will be filled in. */
2051 subspace_asect->reloc_count = (unsigned) -1;
2052 }
2053
2054 /* Update save_subspace if appropriate. */
2055 if (subspace.file_loc_init_value > save_subspace.file_loc_init_value)
2056 save_subspace = subspace;
2057
2058 subspace_asect->vma = subspace.subspace_start;
2059 subspace_asect->_cooked_size = subspace.subspace_length;
2060 subspace_asect->_raw_size = subspace.subspace_length;
2061 subspace_asect->filepos = (subspace.file_loc_init_value
2062 + current_offset);
2063 subspace_asect->alignment_power = log2 (subspace.alignment);
2064 if (subspace_asect->alignment_power == (unsigned) -1)
2065 goto error_return;
2066 }
2067
2068 /* This can happen for a .o which defines symbols in otherwise
2069 empty subspaces. */
2070 if (!save_subspace.file_loc_init_value)
2071 {
2072 space_asect->_cooked_size = 0;
2073 space_asect->_raw_size = 0;
2074 }
2075 else
2076 {
2077 /* Setup the sizes for the space section based upon the info in the
2078 last subspace of the space. */
2079 space_asect->_cooked_size = (save_subspace.subspace_start
2080 - space_asect->vma
2081 + save_subspace.subspace_length);
2082 space_asect->_raw_size = (save_subspace.file_loc_init_value
2083 - space_asect->filepos
2084 + save_subspace.initialization_length);
2085 }
2086 }
2087 /* Now that we've read in all the subspace records, we need to assign
2088 a target index to each subspace. */
2089 amt = total_subspaces;
2090 amt *= sizeof (asection *);
2091 subspace_sections = (asection **) bfd_malloc (amt);
2092 if (subspace_sections == NULL)
2093 goto error_return;
2094
2095 for (i = 0, section = abfd->sections; section; section = section->next)
2096 {
2097 if (!som_is_subspace (section))
2098 continue;
2099
2100 subspace_sections[i] = section;
2101 i++;
2102 }
2103 qsort (subspace_sections, total_subspaces,
2104 sizeof (asection *), compare_subspaces);
2105
2106 /* subspace_sections is now sorted in the order in which the subspaces
2107 appear in the object file. Assign an index to each one now. */
2108 for (i = 0; i < total_subspaces; i++)
2109 subspace_sections[i]->target_index = i;
2110
2111 if (space_strings != NULL)
2112 free (space_strings);
2113
2114 if (subspace_sections != NULL)
2115 free (subspace_sections);
2116
2117 return true;
2118
2119 error_return:
2120 if (space_strings != NULL)
2121 free (space_strings);
2122
2123 if (subspace_sections != NULL)
2124 free (subspace_sections);
2125 return false;
2126 }
2127
2128 /* Read in a SOM object and make it into a BFD. */
2129
2130 static const bfd_target *
2131 som_object_p (abfd)
2132 bfd *abfd;
2133 {
2134 struct header file_hdr;
2135 struct som_exec_auxhdr aux_hdr;
2136 unsigned long current_offset = 0;
2137 struct lst_header lst_header;
2138 struct som_entry som_entry;
2139 bfd_size_type amt;
2140 #define ENTRY_SIZE sizeof (struct som_entry)
2141
2142 amt = FILE_HDR_SIZE;
2143 if (bfd_bread ((PTR) &file_hdr, amt, abfd) != amt)
2144 {
2145 if (bfd_get_error () != bfd_error_system_call)
2146 bfd_set_error (bfd_error_wrong_format);
2147 return 0;
2148 }
2149
2150 if (!_PA_RISC_ID (file_hdr.system_id))
2151 {
2152 bfd_set_error (bfd_error_wrong_format);
2153 return 0;
2154 }
2155
2156 switch (file_hdr.a_magic)
2157 {
2158 case RELOC_MAGIC:
2159 case EXEC_MAGIC:
2160 case SHARE_MAGIC:
2161 case DEMAND_MAGIC:
2162 #ifdef DL_MAGIC
2163 case DL_MAGIC:
2164 #endif
2165 #ifdef SHL_MAGIC
2166 case SHL_MAGIC:
2167 #endif
2168 #ifdef SHARED_MAGIC_CNX
2169 case SHARED_MAGIC_CNX:
2170 #endif
2171 break;
2172
2173 #ifdef EXECLIBMAGIC
2174 case EXECLIBMAGIC:
2175 /* Read the lst header and determine where the SOM directory begins. */
2176
2177 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0)
2178 {
2179 if (bfd_get_error () != bfd_error_system_call)
2180 bfd_set_error (bfd_error_wrong_format);
2181 return 0;
2182 }
2183
2184 amt = SLSTHDR;
2185 if (bfd_bread ((PTR) &lst_header, amt, abfd) != amt)
2186 {
2187 if (bfd_get_error () != bfd_error_system_call)
2188 bfd_set_error (bfd_error_wrong_format);
2189 return 0;
2190 }
2191
2192 /* Position to and read the first directory entry. */
2193
2194 if (bfd_seek (abfd, lst_header.dir_loc, SEEK_SET) != 0)
2195 {
2196 if (bfd_get_error () != bfd_error_system_call)
2197 bfd_set_error (bfd_error_wrong_format);
2198 return 0;
2199 }
2200
2201 amt = ENTRY_SIZE;
2202 if (bfd_bread ((PTR) &som_entry, amt, abfd) != amt)
2203 {
2204 if (bfd_get_error () != bfd_error_system_call)
2205 bfd_set_error (bfd_error_wrong_format);
2206 return 0;
2207 }
2208
2209 /* Now position to the first SOM. */
2210
2211 if (bfd_seek (abfd, som_entry.location, SEEK_SET) != 0)
2212 {
2213 if (bfd_get_error () != bfd_error_system_call)
2214 bfd_set_error (bfd_error_wrong_format);
2215 return 0;
2216 }
2217
2218 current_offset = som_entry.location;
2219
2220 /* And finally, re-read the som header. */
2221 amt = FILE_HDR_SIZE;
2222 if (bfd_bread ((PTR) &file_hdr, amt, abfd) != amt)
2223 {
2224 if (bfd_get_error () != bfd_error_system_call)
2225 bfd_set_error (bfd_error_wrong_format);
2226 return 0;
2227 }
2228
2229 break;
2230 #endif
2231
2232 default:
2233 bfd_set_error (bfd_error_wrong_format);
2234 return 0;
2235 }
2236
2237 if (file_hdr.version_id != VERSION_ID
2238 && file_hdr.version_id != NEW_VERSION_ID)
2239 {
2240 bfd_set_error (bfd_error_wrong_format);
2241 return 0;
2242 }
2243
2244 /* If the aux_header_size field in the file header is zero, then this
2245 object is an incomplete executable (a .o file). Do not try to read
2246 a non-existant auxiliary header. */
2247 memset (&aux_hdr, 0, sizeof (struct som_exec_auxhdr));
2248 if (file_hdr.aux_header_size != 0)
2249 {
2250 amt = AUX_HDR_SIZE;
2251 if (bfd_bread ((PTR) &aux_hdr, amt, abfd) != amt)
2252 {
2253 if (bfd_get_error () != bfd_error_system_call)
2254 bfd_set_error (bfd_error_wrong_format);
2255 return 0;
2256 }
2257 }
2258
2259 if (!setup_sections (abfd, &file_hdr, current_offset))
2260 {
2261 /* setup_sections does not bubble up a bfd error code. */
2262 bfd_set_error (bfd_error_bad_value);
2263 return 0;
2264 }
2265
2266 /* This appears to be a valid SOM object. Do some initialization. */
2267 return som_object_setup (abfd, &file_hdr, &aux_hdr, current_offset);
2268 }
2269
2270 /* Create a SOM object. */
2271
2272 static boolean
2273 som_mkobject (abfd)
2274 bfd *abfd;
2275 {
2276 /* Allocate memory to hold backend information. */
2277 abfd->tdata.som_data = (struct som_data_struct *)
2278 bfd_zalloc (abfd, (bfd_size_type) sizeof (struct som_data_struct));
2279 if (abfd->tdata.som_data == NULL)
2280 return false;
2281 return true;
2282 }
2283
2284 /* Initialize some information in the file header. This routine makes
2285 not attempt at doing the right thing for a full executable; it
2286 is only meant to handle relocatable objects. */
2287
2288 static boolean
2289 som_prep_headers (abfd)
2290 bfd *abfd;
2291 {
2292 struct header *file_hdr;
2293 asection *section;
2294 bfd_size_type amt = sizeof (struct header);
2295
2296 /* Make and attach a file header to the BFD. */
2297 file_hdr = (struct header *) bfd_zalloc (abfd, amt);
2298 if (file_hdr == NULL)
2299 return false;
2300 obj_som_file_hdr (abfd) = file_hdr;
2301
2302 if (abfd->flags & (EXEC_P | DYNAMIC))
2303 {
2304
2305 /* Make and attach an exec header to the BFD. */
2306 amt = sizeof (struct som_exec_auxhdr);
2307 obj_som_exec_hdr (abfd) =
2308 (struct som_exec_auxhdr *) bfd_zalloc (abfd, amt);
2309 if (obj_som_exec_hdr (abfd) == NULL)
2310 return false;
2311
2312 if (abfd->flags & D_PAGED)
2313 file_hdr->a_magic = DEMAND_MAGIC;
2314 else if (abfd->flags & WP_TEXT)
2315 file_hdr->a_magic = SHARE_MAGIC;
2316 #ifdef SHL_MAGIC
2317 else if (abfd->flags & DYNAMIC)
2318 file_hdr->a_magic = SHL_MAGIC;
2319 #endif
2320 else
2321 file_hdr->a_magic = EXEC_MAGIC;
2322 }
2323 else
2324 file_hdr->a_magic = RELOC_MAGIC;
2325
2326 /* These fields are optional, and embedding timestamps is not always
2327 a wise thing to do, it makes comparing objects during a multi-stage
2328 bootstrap difficult. */
2329 file_hdr->file_time.secs = 0;
2330 file_hdr->file_time.nanosecs = 0;
2331
2332 file_hdr->entry_space = 0;
2333 file_hdr->entry_subspace = 0;
2334 file_hdr->entry_offset = 0;
2335 file_hdr->presumed_dp = 0;
2336
2337 /* Now iterate over the sections translating information from
2338 BFD sections to SOM spaces/subspaces. */
2339
2340 for (section = abfd->sections; section != NULL; section = section->next)
2341 {
2342 /* Ignore anything which has not been marked as a space or
2343 subspace. */
2344 if (!som_is_space (section) && !som_is_subspace (section))
2345 continue;
2346
2347 if (som_is_space (section))
2348 {
2349 /* Allocate space for the space dictionary. */
2350 amt = sizeof (struct space_dictionary_record);
2351 som_section_data (section)->space_dict =
2352 (struct space_dictionary_record *) bfd_zalloc (abfd, amt);
2353 if (som_section_data (section)->space_dict == NULL)
2354 return false;
2355 /* Set space attributes. Note most attributes of SOM spaces
2356 are set based on the subspaces it contains. */
2357 som_section_data (section)->space_dict->loader_fix_index = -1;
2358 som_section_data (section)->space_dict->init_pointer_index = -1;
2359
2360 /* Set more attributes that were stuffed away in private data. */
2361 som_section_data (section)->space_dict->sort_key =
2362 som_section_data (section)->copy_data->sort_key;
2363 som_section_data (section)->space_dict->is_defined =
2364 som_section_data (section)->copy_data->is_defined;
2365 som_section_data (section)->space_dict->is_private =
2366 som_section_data (section)->copy_data->is_private;
2367 som_section_data (section)->space_dict->space_number =
2368 som_section_data (section)->copy_data->space_number;
2369 }
2370 else
2371 {
2372 /* Allocate space for the subspace dictionary. */
2373 amt = sizeof (struct subspace_dictionary_record);
2374 som_section_data (section)->subspace_dict =
2375 (struct subspace_dictionary_record *) bfd_zalloc (abfd, amt);
2376 if (som_section_data (section)->subspace_dict == NULL)
2377 return false;
2378
2379 /* Set subspace attributes. Basic stuff is done here, additional
2380 attributes are filled in later as more information becomes
2381 available. */
2382 if (section->flags & SEC_IS_COMMON)
2383 {
2384 som_section_data (section)->subspace_dict->dup_common = 1;
2385 som_section_data (section)->subspace_dict->is_common = 1;
2386 }
2387
2388 if (section->flags & SEC_ALLOC)
2389 som_section_data (section)->subspace_dict->is_loadable = 1;
2390
2391 if (section->flags & SEC_CODE)
2392 som_section_data (section)->subspace_dict->code_only = 1;
2393
2394 som_section_data (section)->subspace_dict->subspace_start =
2395 section->vma;
2396 som_section_data (section)->subspace_dict->subspace_length =
2397 bfd_section_size (abfd, section);
2398 som_section_data (section)->subspace_dict->initialization_length =
2399 bfd_section_size (abfd, section);
2400 som_section_data (section)->subspace_dict->alignment =
2401 1 << section->alignment_power;
2402
2403 /* Set more attributes that were stuffed away in private data. */
2404 som_section_data (section)->subspace_dict->sort_key =
2405 som_section_data (section)->copy_data->sort_key;
2406 som_section_data (section)->subspace_dict->access_control_bits =
2407 som_section_data (section)->copy_data->access_control_bits;
2408 som_section_data (section)->subspace_dict->quadrant =
2409 som_section_data (section)->copy_data->quadrant;
2410 }
2411 }
2412 return true;
2413 }
2414
2415 /* Return true if the given section is a SOM space, false otherwise. */
2416
2417 static boolean
2418 som_is_space (section)
2419 asection *section;
2420 {
2421 /* If no copy data is available, then it's neither a space nor a
2422 subspace. */
2423 if (som_section_data (section)->copy_data == NULL)
2424 return false;
2425
2426 /* If the containing space isn't the same as the given section,
2427 then this isn't a space. */
2428 if (som_section_data (section)->copy_data->container != section
2429 && (som_section_data (section)->copy_data->container->output_section
2430 != section))
2431 return false;
2432
2433 /* OK. Must be a space. */
2434 return true;
2435 }
2436
2437 /* Return true if the given section is a SOM subspace, false otherwise. */
2438
2439 static boolean
2440 som_is_subspace (section)
2441 asection *section;
2442 {
2443 /* If no copy data is available, then it's neither a space nor a
2444 subspace. */
2445 if (som_section_data (section)->copy_data == NULL)
2446 return false;
2447
2448 /* If the containing space is the same as the given section,
2449 then this isn't a subspace. */
2450 if (som_section_data (section)->copy_data->container == section
2451 || (som_section_data (section)->copy_data->container->output_section
2452 == section))
2453 return false;
2454
2455 /* OK. Must be a subspace. */
2456 return true;
2457 }
2458
2459 /* Return true if the given space containins the given subspace. It
2460 is safe to assume space really is a space, and subspace really
2461 is a subspace. */
2462
2463 static boolean
2464 som_is_container (space, subspace)
2465 asection *space, *subspace;
2466 {
2467 return (som_section_data (subspace)->copy_data->container == space
2468 || (som_section_data (subspace)->copy_data->container->output_section
2469 == space));
2470 }
2471
2472 /* Count and return the number of spaces attached to the given BFD. */
2473
2474 static unsigned long
2475 som_count_spaces (abfd)
2476 bfd *abfd;
2477 {
2478 int count = 0;
2479 asection *section;
2480
2481 for (section = abfd->sections; section != NULL; section = section->next)
2482 count += som_is_space (section);
2483
2484 return count;
2485 }
2486
2487 /* Count the number of subspaces attached to the given BFD. */
2488
2489 static unsigned long
2490 som_count_subspaces (abfd)
2491 bfd *abfd;
2492 {
2493 int count = 0;
2494 asection *section;
2495
2496 for (section = abfd->sections; section != NULL; section = section->next)
2497 count += som_is_subspace (section);
2498
2499 return count;
2500 }
2501
2502 /* Return -1, 0, 1 indicating the relative ordering of sym1 and sym2.
2503
2504 We desire symbols to be ordered starting with the symbol with the
2505 highest relocation count down to the symbol with the lowest relocation
2506 count. Doing so compacts the relocation stream. */
2507
2508 static int
2509 compare_syms (arg1, arg2)
2510 const PTR arg1;
2511 const PTR arg2;
2512
2513 {
2514 asymbol **sym1 = (asymbol **) arg1;
2515 asymbol **sym2 = (asymbol **) arg2;
2516 unsigned int count1, count2;
2517
2518 /* Get relocation count for each symbol. Note that the count
2519 is stored in the udata pointer for section symbols! */
2520 if ((*sym1)->flags & BSF_SECTION_SYM)
2521 count1 = (*sym1)->udata.i;
2522 else
2523 count1 = som_symbol_data (*sym1)->reloc_count;
2524
2525 if ((*sym2)->flags & BSF_SECTION_SYM)
2526 count2 = (*sym2)->udata.i;
2527 else
2528 count2 = som_symbol_data (*sym2)->reloc_count;
2529
2530 /* Return the appropriate value. */
2531 if (count1 < count2)
2532 return 1;
2533 else if (count1 > count2)
2534 return -1;
2535 return 0;
2536 }
2537
2538 /* Return -1, 0, 1 indicating the relative ordering of subspace1
2539 and subspace. */
2540
2541 static int
2542 compare_subspaces (arg1, arg2)
2543 const PTR arg1;
2544 const PTR arg2;
2545
2546 {
2547 asection **subspace1 = (asection **) arg1;
2548 asection **subspace2 = (asection **) arg2;
2549
2550 if ((*subspace1)->target_index < (*subspace2)->target_index)
2551 return -1;
2552 else if ((*subspace2)->target_index < (*subspace1)->target_index)
2553 return 1;
2554 else
2555 return 0;
2556 }
2557
2558 /* Perform various work in preparation for emitting the fixup stream. */
2559
2560 static void
2561 som_prep_for_fixups (abfd, syms, num_syms)
2562 bfd *abfd;
2563 asymbol **syms;
2564 unsigned long num_syms;
2565 {
2566 unsigned long i;
2567 asection *section;
2568 asymbol **sorted_syms;
2569 bfd_size_type amt;
2570
2571 /* Most SOM relocations involving a symbol have a length which is
2572 dependent on the index of the symbol. So symbols which are
2573 used often in relocations should have a small index. */
2574
2575 /* First initialize the counters for each symbol. */
2576 for (i = 0; i < num_syms; i++)
2577 {
2578 /* Handle a section symbol; these have no pointers back to the
2579 SOM symbol info. So we just use the udata field to hold the
2580 relocation count. */
2581 if (som_symbol_data (syms[i]) == NULL
2582 || syms[i]->flags & BSF_SECTION_SYM)
2583 {
2584 syms[i]->flags |= BSF_SECTION_SYM;
2585 syms[i]->udata.i = 0;
2586 }
2587 else
2588 som_symbol_data (syms[i])->reloc_count = 0;
2589 }
2590
2591 /* Now that the counters are initialized, make a weighted count
2592 of how often a given symbol is used in a relocation. */
2593 for (section = abfd->sections; section != NULL; section = section->next)
2594 {
2595 int j;
2596
2597 /* Does this section have any relocations? */
2598 if ((int) section->reloc_count <= 0)
2599 continue;
2600
2601 /* Walk through each relocation for this section. */
2602 for (j = 1; j < (int) section->reloc_count; j++)
2603 {
2604 arelent *reloc = section->orelocation[j];
2605 int scale;
2606
2607 /* A relocation against a symbol in the *ABS* section really
2608 does not have a symbol. Likewise if the symbol isn't associated
2609 with any section. */
2610 if (reloc->sym_ptr_ptr == NULL
2611 || bfd_is_abs_section ((*reloc->sym_ptr_ptr)->section))
2612 continue;
2613
2614 /* Scaling to encourage symbols involved in R_DP_RELATIVE
2615 and R_CODE_ONE_SYMBOL relocations to come first. These
2616 two relocations have single byte versions if the symbol
2617 index is very small. */
2618 if (reloc->howto->type == R_DP_RELATIVE
2619 || reloc->howto->type == R_CODE_ONE_SYMBOL)
2620 scale = 2;
2621 else
2622 scale = 1;
2623
2624 /* Handle section symbols by storing the count in the udata
2625 field. It will not be used and the count is very important
2626 for these symbols. */
2627 if ((*reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2628 {
2629 (*reloc->sym_ptr_ptr)->udata.i =
2630 (*reloc->sym_ptr_ptr)->udata.i + scale;
2631 continue;
2632 }
2633
2634 /* A normal symbol. Increment the count. */
2635 som_symbol_data (*reloc->sym_ptr_ptr)->reloc_count += scale;
2636 }
2637 }
2638
2639 /* Sort a copy of the symbol table, rather than the canonical
2640 output symbol table. */
2641 amt = num_syms;
2642 amt *= sizeof (asymbol *);
2643 sorted_syms = (asymbol **) bfd_zalloc (abfd, amt);
2644 memcpy (sorted_syms, syms, num_syms * sizeof (asymbol *));
2645 qsort (sorted_syms, num_syms, sizeof (asymbol *), compare_syms);
2646 obj_som_sorted_syms (abfd) = sorted_syms;
2647
2648 /* Compute the symbol indexes, they will be needed by the relocation
2649 code. */
2650 for (i = 0; i < num_syms; i++)
2651 {
2652 /* A section symbol. Again, there is no pointer to backend symbol
2653 information, so we reuse the udata field again. */
2654 if (sorted_syms[i]->flags & BSF_SECTION_SYM)
2655 sorted_syms[i]->udata.i = i;
2656 else
2657 som_symbol_data (sorted_syms[i])->index = i;
2658 }
2659 }
2660
2661 static boolean
2662 som_write_fixups (abfd, current_offset, total_reloc_sizep)
2663 bfd *abfd;
2664 unsigned long current_offset;
2665 unsigned int *total_reloc_sizep;
2666 {
2667 unsigned int i, j;
2668 /* Chunk of memory that we can use as buffer space, then throw
2669 away. */
2670 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2671 unsigned char *p;
2672 unsigned int total_reloc_size = 0;
2673 unsigned int subspace_reloc_size = 0;
2674 unsigned int num_spaces = obj_som_file_hdr (abfd)->space_total;
2675 asection *section = abfd->sections;
2676 bfd_size_type amt;
2677
2678 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2679 p = tmp_space;
2680
2681 /* All the fixups for a particular subspace are emitted in a single
2682 stream. All the subspaces for a particular space are emitted
2683 as a single stream.
2684
2685 So, to get all the locations correct one must iterate through all the
2686 spaces, for each space iterate through its subspaces and output a
2687 fixups stream. */
2688 for (i = 0; i < num_spaces; i++)
2689 {
2690 asection *subsection;
2691
2692 /* Find a space. */
2693 while (!som_is_space (section))
2694 section = section->next;
2695
2696 /* Now iterate through each of its subspaces. */
2697 for (subsection = abfd->sections;
2698 subsection != NULL;
2699 subsection = subsection->next)
2700 {
2701 int reloc_offset;
2702 unsigned int current_rounding_mode;
2703 #ifndef NO_PCREL_MODES
2704 int current_call_mode;
2705 #endif
2706
2707 /* Find a subspace of this space. */
2708 if (!som_is_subspace (subsection)
2709 || !som_is_container (section, subsection))
2710 continue;
2711
2712 /* If this subspace does not have real data, then we are
2713 finised with it. */
2714 if ((subsection->flags & SEC_HAS_CONTENTS) == 0)
2715 {
2716 som_section_data (subsection)->subspace_dict->fixup_request_index
2717 = -1;
2718 continue;
2719 }
2720
2721 /* This subspace has some relocations. Put the relocation stream
2722 index into the subspace record. */
2723 som_section_data (subsection)->subspace_dict->fixup_request_index
2724 = total_reloc_size;
2725
2726 /* To make life easier start over with a clean slate for
2727 each subspace. Seek to the start of the relocation stream
2728 for this subspace in preparation for writing out its fixup
2729 stream. */
2730 if (bfd_seek (abfd, current_offset + total_reloc_size, SEEK_SET) != 0)
2731 return false;
2732
2733 /* Buffer space has already been allocated. Just perform some
2734 initialization here. */
2735 p = tmp_space;
2736 subspace_reloc_size = 0;
2737 reloc_offset = 0;
2738 som_initialize_reloc_queue (reloc_queue);
2739 current_rounding_mode = R_N_MODE;
2740 #ifndef NO_PCREL_MODES
2741 current_call_mode = R_SHORT_PCREL_MODE;
2742 #endif
2743
2744 /* Translate each BFD relocation into one or more SOM
2745 relocations. */
2746 for (j = 0; j < subsection->reloc_count; j++)
2747 {
2748 arelent *bfd_reloc = subsection->orelocation[j];
2749 unsigned int skip;
2750 int sym_num;
2751
2752 /* Get the symbol number. Remember it's stored in a
2753 special place for section symbols. */
2754 if ((*bfd_reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2755 sym_num = (*bfd_reloc->sym_ptr_ptr)->udata.i;
2756 else
2757 sym_num = som_symbol_data (*bfd_reloc->sym_ptr_ptr)->index;
2758
2759 /* If there is not enough room for the next couple relocations,
2760 then dump the current buffer contents now. Also reinitialize
2761 the relocation queue.
2762
2763 No single BFD relocation could ever translate into more
2764 than 100 bytes of SOM relocations (20bytes is probably the
2765 upper limit, but leave lots of space for growth). */
2766 if (p - tmp_space + 100 > SOM_TMP_BUFSIZE)
2767 {
2768 amt = p - tmp_space;
2769 if (bfd_bwrite ((PTR) tmp_space, amt, abfd) != amt)
2770 return false;
2771
2772 p = tmp_space;
2773 som_initialize_reloc_queue (reloc_queue);
2774 }
2775
2776 /* Emit R_NO_RELOCATION fixups to map any bytes which were
2777 skipped. */
2778 skip = bfd_reloc->address - reloc_offset;
2779 p = som_reloc_skip (abfd, skip, p,
2780 &subspace_reloc_size, reloc_queue);
2781
2782 /* Update reloc_offset for the next iteration.
2783
2784 Many relocations do not consume input bytes. They
2785 are markers, or set state necessary to perform some
2786 later relocation. */
2787 switch (bfd_reloc->howto->type)
2788 {
2789 case R_ENTRY:
2790 case R_ALT_ENTRY:
2791 case R_EXIT:
2792 case R_N_MODE:
2793 case R_S_MODE:
2794 case R_D_MODE:
2795 case R_R_MODE:
2796 case R_FSEL:
2797 case R_LSEL:
2798 case R_RSEL:
2799 case R_COMP1:
2800 case R_COMP2:
2801 case R_BEGIN_BRTAB:
2802 case R_END_BRTAB:
2803 case R_BEGIN_TRY:
2804 case R_END_TRY:
2805 case R_N0SEL:
2806 case R_N1SEL:
2807 #ifndef NO_PCREL_MODES
2808 case R_SHORT_PCREL_MODE:
2809 case R_LONG_PCREL_MODE:
2810 #endif
2811 reloc_offset = bfd_reloc->address;
2812 break;
2813
2814 default:
2815 reloc_offset = bfd_reloc->address + 4;
2816 break;
2817 }
2818
2819 /* Now the actual relocation we care about. */
2820 switch (bfd_reloc->howto->type)
2821 {
2822 case R_PCREL_CALL:
2823 case R_ABS_CALL:
2824 p = som_reloc_call (abfd, p, &subspace_reloc_size,
2825 bfd_reloc, sym_num, reloc_queue);
2826 break;
2827
2828 case R_CODE_ONE_SYMBOL:
2829 case R_DP_RELATIVE:
2830 /* Account for any addend. */
2831 if (bfd_reloc->addend)
2832 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2833 &subspace_reloc_size, reloc_queue);
2834
2835 if (sym_num < 0x20)
2836 {
2837 bfd_put_8 (abfd, bfd_reloc->howto->type + sym_num, p);
2838 subspace_reloc_size += 1;
2839 p += 1;
2840 }
2841 else if (sym_num < 0x100)
2842 {
2843 bfd_put_8 (abfd, bfd_reloc->howto->type + 32, p);
2844 bfd_put_8 (abfd, sym_num, p + 1);
2845 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2846 2, reloc_queue);
2847 }
2848 else if (sym_num < 0x10000000)
2849 {
2850 bfd_put_8 (abfd, bfd_reloc->howto->type + 33, p);
2851 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2852 bfd_put_16 (abfd, (bfd_vma) sym_num, p + 2);
2853 p = try_prev_fixup (abfd, &subspace_reloc_size,
2854 p, 4, reloc_queue);
2855 }
2856 else
2857 abort ();
2858 break;
2859
2860 case R_DATA_ONE_SYMBOL:
2861 case R_DATA_PLABEL:
2862 case R_CODE_PLABEL:
2863 case R_DLT_REL:
2864 /* Account for any addend using R_DATA_OVERRIDE. */
2865 if (bfd_reloc->howto->type != R_DATA_ONE_SYMBOL
2866 && bfd_reloc->addend)
2867 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2868 &subspace_reloc_size, reloc_queue);
2869
2870 if (sym_num < 0x100)
2871 {
2872 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2873 bfd_put_8 (abfd, sym_num, p + 1);
2874 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2875 2, reloc_queue);
2876 }
2877 else if (sym_num < 0x10000000)
2878 {
2879 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
2880 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2881 bfd_put_16 (abfd, (bfd_vma) sym_num, p + 2);
2882 p = try_prev_fixup (abfd, &subspace_reloc_size,
2883 p, 4, reloc_queue);
2884 }
2885 else
2886 abort ();
2887 break;
2888
2889 case R_ENTRY:
2890 {
2891 unsigned int tmp;
2892 arelent *tmp_reloc = NULL;
2893 bfd_put_8 (abfd, R_ENTRY, p);
2894
2895 /* R_ENTRY relocations have 64 bits of associated
2896 data. Unfortunately the addend field of a bfd
2897 relocation is only 32 bits. So, we split up
2898 the 64bit unwind information and store part in
2899 the R_ENTRY relocation, and the rest in the R_EXIT
2900 relocation. */
2901 bfd_put_32 (abfd, bfd_reloc->addend, p + 1);
2902
2903 /* Find the next R_EXIT relocation. */
2904 for (tmp = j; tmp < subsection->reloc_count; tmp++)
2905 {
2906 tmp_reloc = subsection->orelocation[tmp];
2907 if (tmp_reloc->howto->type == R_EXIT)
2908 break;
2909 }
2910
2911 if (tmp == subsection->reloc_count)
2912 abort ();
2913
2914 bfd_put_32 (abfd, tmp_reloc->addend, p + 5);
2915 p = try_prev_fixup (abfd, &subspace_reloc_size,
2916 p, 9, reloc_queue);
2917 break;
2918 }
2919
2920 case R_N_MODE:
2921 case R_S_MODE:
2922 case R_D_MODE:
2923 case R_R_MODE:
2924 /* If this relocation requests the current rounding
2925 mode, then it is redundant. */
2926 if (bfd_reloc->howto->type != current_rounding_mode)
2927 {
2928 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2929 subspace_reloc_size += 1;
2930 p += 1;
2931 current_rounding_mode = bfd_reloc->howto->type;
2932 }
2933 break;
2934
2935 #ifndef NO_PCREL_MODES
2936 case R_LONG_PCREL_MODE:
2937 case R_SHORT_PCREL_MODE:
2938 if (bfd_reloc->howto->type != current_call_mode)
2939 {
2940 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2941 subspace_reloc_size += 1;
2942 p += 1;
2943 current_call_mode = bfd_reloc->howto->type;
2944 }
2945 break;
2946 #endif
2947
2948 case R_EXIT:
2949 case R_ALT_ENTRY:
2950 case R_FSEL:
2951 case R_LSEL:
2952 case R_RSEL:
2953 case R_BEGIN_BRTAB:
2954 case R_END_BRTAB:
2955 case R_BEGIN_TRY:
2956 case R_N0SEL:
2957 case R_N1SEL:
2958 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2959 subspace_reloc_size += 1;
2960 p += 1;
2961 break;
2962
2963 case R_END_TRY:
2964 /* The end of an exception handling region. The reloc's
2965 addend contains the offset of the exception handling
2966 code. */
2967 if (bfd_reloc->addend == 0)
2968 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2969 else if (bfd_reloc->addend < 1024)
2970 {
2971 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
2972 bfd_put_8 (abfd, bfd_reloc->addend / 4, p + 1);
2973 p = try_prev_fixup (abfd, &subspace_reloc_size,
2974 p, 2, reloc_queue);
2975 }
2976 else
2977 {
2978 bfd_put_8 (abfd, bfd_reloc->howto->type + 2, p);
2979 bfd_put_8 (abfd, (bfd_reloc->addend / 4) >> 16, p + 1);
2980 bfd_put_16 (abfd, bfd_reloc->addend / 4, p + 2);
2981 p = try_prev_fixup (abfd, &subspace_reloc_size,
2982 p, 4, reloc_queue);
2983 }
2984 break;
2985
2986 case R_COMP1:
2987 /* The only time we generate R_COMP1, R_COMP2 and
2988 R_CODE_EXPR relocs is for the difference of two
2989 symbols. Hence we can cheat here. */
2990 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2991 bfd_put_8 (abfd, 0x44, p + 1);
2992 p = try_prev_fixup (abfd, &subspace_reloc_size,
2993 p, 2, reloc_queue);
2994 break;
2995
2996 case R_COMP2:
2997 /* The only time we generate R_COMP1, R_COMP2 and
2998 R_CODE_EXPR relocs is for the difference of two
2999 symbols. Hence we can cheat here. */
3000 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
3001 bfd_put_8 (abfd, 0x80, p + 1);
3002 bfd_put_8 (abfd, sym_num >> 16, p + 2);
3003 bfd_put_16 (abfd, (bfd_vma) sym_num, p + 3);
3004 p = try_prev_fixup (abfd, &subspace_reloc_size,
3005 p, 5, reloc_queue);
3006 break;
3007
3008 case R_CODE_EXPR:
3009 case R_DATA_EXPR:
3010 /* The only time we generate R_COMP1, R_COMP2 and
3011 R_CODE_EXPR relocs is for the difference of two
3012 symbols. Hence we can cheat here. */
3013 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
3014 subspace_reloc_size += 1;
3015 p += 1;
3016 break;
3017
3018 /* Put a "R_RESERVED" relocation in the stream if
3019 we hit something we do not understand. The linker
3020 will complain loudly if this ever happens. */
3021 default:
3022 bfd_put_8 (abfd, 0xff, p);
3023 subspace_reloc_size += 1;
3024 p += 1;
3025 break;
3026 }
3027 }
3028
3029 /* Last BFD relocation for a subspace has been processed.
3030 Map the rest of the subspace with R_NO_RELOCATION fixups. */
3031 p = som_reloc_skip (abfd, bfd_section_size (abfd, subsection)
3032 - reloc_offset,
3033 p, &subspace_reloc_size, reloc_queue);
3034
3035 /* Scribble out the relocations. */
3036 amt = p - tmp_space;
3037 if (bfd_bwrite ((PTR) tmp_space, amt, abfd) != amt)
3038 return false;
3039 p = tmp_space;
3040
3041 total_reloc_size += subspace_reloc_size;
3042 som_section_data (subsection)->subspace_dict->fixup_request_quantity
3043 = subspace_reloc_size;
3044 }
3045 section = section->next;
3046 }
3047 *total_reloc_sizep = total_reloc_size;
3048 return true;
3049 }
3050
3051 /* Write out the space/subspace string table. */
3052
3053 static boolean
3054 som_write_space_strings (abfd, current_offset, string_sizep)
3055 bfd *abfd;
3056 unsigned long current_offset;
3057 unsigned int *string_sizep;
3058 {
3059 /* Chunk of memory that we can use as buffer space, then throw
3060 away. */
3061 size_t tmp_space_size = SOM_TMP_BUFSIZE;
3062 unsigned char *tmp_space = alloca (tmp_space_size);
3063 unsigned char *p = tmp_space;
3064 unsigned int strings_size = 0;
3065 asection *section;
3066 bfd_size_type amt;
3067
3068 /* Seek to the start of the space strings in preparation for writing
3069 them out. */
3070 if (bfd_seek (abfd, (file_ptr) current_offset, SEEK_SET) != 0)
3071 return false;
3072
3073 /* Walk through all the spaces and subspaces (order is not important)
3074 building up and writing string table entries for their names. */
3075 for (section = abfd->sections; section != NULL; section = section->next)
3076 {
3077 size_t length;
3078
3079 /* Only work with space/subspaces; avoid any other sections
3080 which might have been made (.text for example). */
3081 if (!som_is_space (section) && !som_is_subspace (section))
3082 continue;
3083
3084 /* Get the length of the space/subspace name. */
3085 length = strlen (section->name);
3086
3087 /* If there is not enough room for the next entry, then dump the
3088 current buffer contents now and maybe allocate a larger
3089 buffer. Each entry will take 4 bytes to hold the string
3090 length + the string itself + null terminator. */
3091 if (p - tmp_space + 5 + length > tmp_space_size)
3092 {
3093 /* Flush buffer before refilling or reallocating. */
3094 amt = p - tmp_space;
3095 if (bfd_bwrite ((PTR) &tmp_space[0], amt, abfd) != amt)
3096 return false;
3097
3098 /* Reallocate if now empty buffer still too small. */
3099 if (5 + length > tmp_space_size)
3100 {
3101 /* Ensure a minimum growth factor to avoid O(n**2) space
3102 consumption for n strings. The optimal minimum
3103 factor seems to be 2, as no other value can guarantee
3104 wasting less than 50% space. (Note that we cannot
3105 deallocate space allocated by `alloca' without
3106 returning from this function.) The same technique is
3107 used a few more times below when a buffer is
3108 reallocated. */
3109 tmp_space_size = MAX (2 * tmp_space_size, 5 + length);
3110 tmp_space = alloca (tmp_space_size);
3111 }
3112
3113 /* Reset to beginning of the (possibly new) buffer space. */
3114 p = tmp_space;
3115 }
3116
3117 /* First element in a string table entry is the length of the
3118 string. Alignment issues are already handled. */
3119 bfd_put_32 (abfd, (bfd_vma) length, p);
3120 p += 4;
3121 strings_size += 4;
3122
3123 /* Record the index in the space/subspace records. */
3124 if (som_is_space (section))
3125 som_section_data (section)->space_dict->name.n_strx = strings_size;
3126 else
3127 som_section_data (section)->subspace_dict->name.n_strx = strings_size;
3128
3129 /* Next comes the string itself + a null terminator. */
3130 strcpy (p, section->name);
3131 p += length + 1;
3132 strings_size += length + 1;
3133
3134 /* Always align up to the next word boundary. */
3135 while (strings_size % 4)
3136 {
3137 bfd_put_8 (abfd, 0, p);
3138 p++;
3139 strings_size++;
3140 }
3141 }
3142
3143 /* Done with the space/subspace strings. Write out any information
3144 contained in a partial block. */
3145 amt = p - tmp_space;
3146 if (bfd_bwrite ((PTR) &tmp_space[0], amt, abfd) != amt)
3147 return false;
3148 *string_sizep = strings_size;
3149 return true;
3150 }
3151
3152 /* Write out the symbol string table. */
3153
3154 static boolean
3155 som_write_symbol_strings (abfd, current_offset, syms, num_syms, string_sizep,
3156 compilation_unit)
3157 bfd *abfd;
3158 unsigned long current_offset;
3159 asymbol **syms;
3160 unsigned int num_syms;
3161 unsigned int *string_sizep;
3162 COMPUNIT *compilation_unit;
3163 {
3164 unsigned int i;
3165
3166 /* Chunk of memory that we can use as buffer space, then throw
3167 away. */
3168 size_t tmp_space_size = SOM_TMP_BUFSIZE;
3169 unsigned char *tmp_space = alloca (tmp_space_size);
3170 unsigned char *p = tmp_space;
3171
3172 unsigned int strings_size = 0;
3173 unsigned char *comp[4];
3174 bfd_size_type amt;
3175
3176 /* This gets a bit gruesome because of the compilation unit. The
3177 strings within the compilation unit are part of the symbol
3178 strings, but don't have symbol_dictionary entries. So, manually
3179 write them and update the compliation unit header. On input, the
3180 compilation unit header contains local copies of the strings.
3181 Move them aside. */
3182 if (compilation_unit)
3183 {
3184 comp[0] = compilation_unit->name.n_name;
3185 comp[1] = compilation_unit->language_name.n_name;
3186 comp[2] = compilation_unit->product_id.n_name;
3187 comp[3] = compilation_unit->version_id.n_name;
3188 }
3189
3190 /* Seek to the start of the space strings in preparation for writing
3191 them out. */
3192 if (bfd_seek (abfd, (file_ptr) current_offset, SEEK_SET) != 0)
3193 return false;
3194
3195 if (compilation_unit)
3196 {
3197 for (i = 0; i < 4; i++)
3198 {
3199 size_t length = strlen (comp[i]);
3200
3201 /* If there is not enough room for the next entry, then dump
3202 the current buffer contents now and maybe allocate a
3203 larger buffer. */
3204 if (p - tmp_space + 5 + length > tmp_space_size)
3205 {
3206 /* Flush buffer before refilling or reallocating. */
3207 amt = p - tmp_space;
3208 if (bfd_bwrite ((PTR) &tmp_space[0], amt, abfd) != amt)
3209 return false;
3210
3211 /* Reallocate if now empty buffer still too small. */
3212 if (5 + length > tmp_space_size)
3213 {
3214 /* See alloca above for discussion of new size. */
3215 tmp_space_size = MAX (2 * tmp_space_size, 5 + length);
3216 tmp_space = alloca (tmp_space_size);
3217 }
3218
3219 /* Reset to beginning of the (possibly new) buffer
3220 space. */
3221 p = tmp_space;
3222 }
3223
3224 /* First element in a string table entry is the length of
3225 the string. This must always be 4 byte aligned. This is
3226 also an appropriate time to fill in the string index
3227 field in the symbol table entry. */
3228 bfd_put_32 (abfd, (bfd_vma) length, p);
3229 strings_size += 4;
3230 p += 4;
3231
3232 /* Next comes the string itself + a null terminator. */
3233 strcpy (p, comp[i]);
3234
3235 switch (i)
3236 {
3237 case 0:
3238 obj_som_compilation_unit (abfd)->name.n_strx = strings_size;
3239 break;
3240 case 1:
3241 obj_som_compilation_unit (abfd)->language_name.n_strx =
3242 strings_size;
3243 break;
3244 case 2:
3245 obj_som_compilation_unit (abfd)->product_id.n_strx =
3246 strings_size;
3247 break;
3248 case 3:
3249 obj_som_compilation_unit (abfd)->version_id.n_strx =
3250 strings_size;
3251 break;
3252 }
3253
3254 p += length + 1;
3255 strings_size += length + 1;
3256
3257 /* Always align up to the next word boundary. */
3258 while (strings_size % 4)
3259 {
3260 bfd_put_8 (abfd, 0, p);
3261 strings_size++;
3262 p++;
3263 }
3264 }
3265 }
3266
3267 for (i = 0; i < num_syms; i++)
3268 {
3269 size_t length = strlen (syms[i]->name);
3270
3271 /* If there is not enough room for the next entry, then dump the
3272 current buffer contents now and maybe allocate a larger buffer. */
3273 if (p - tmp_space + 5 + length > tmp_space_size)
3274 {
3275 /* Flush buffer before refilling or reallocating. */
3276 amt = p - tmp_space;
3277 if (bfd_bwrite ((PTR) &tmp_space[0], amt, abfd) != amt)
3278 return false;
3279
3280 /* Reallocate if now empty buffer still too small. */
3281 if (5 + length > tmp_space_size)
3282 {
3283 /* See alloca above for discussion of new size. */
3284 tmp_space_size = MAX (2 * tmp_space_size, 5 + length);
3285 tmp_space = alloca (tmp_space_size);
3286 }
3287
3288 /* Reset to beginning of the (possibly new) buffer space. */
3289 p = tmp_space;
3290 }
3291
3292 /* First element in a string table entry is the length of the
3293 string. This must always be 4 byte aligned. This is also
3294 an appropriate time to fill in the string index field in the
3295 symbol table entry. */
3296 bfd_put_32 (abfd, (bfd_vma) length, p);
3297 strings_size += 4;
3298 p += 4;
3299
3300 /* Next comes the string itself + a null terminator. */
3301 strcpy (p, syms[i]->name);
3302
3303 som_symbol_data (syms[i])->stringtab_offset = strings_size;
3304 p += length + 1;
3305 strings_size += length + 1;
3306
3307 /* Always align up to the next word boundary. */
3308 while (strings_size % 4)
3309 {
3310 bfd_put_8 (abfd, 0, p);
3311 strings_size++;
3312 p++;
3313 }
3314 }
3315
3316 /* Scribble out any partial block. */
3317 amt = p - tmp_space;
3318 if (bfd_bwrite ((PTR) &tmp_space[0], amt, abfd) != amt)
3319 return false;
3320
3321 *string_sizep = strings_size;
3322 return true;
3323 }
3324
3325 /* Compute variable information to be placed in the SOM headers,
3326 space/subspace dictionaries, relocation streams, etc. Begin
3327 writing parts of the object file. */
3328
3329 static boolean
3330 som_begin_writing (abfd)
3331 bfd *abfd;
3332 {
3333 unsigned long current_offset = 0;
3334 int strings_size = 0;
3335 unsigned long num_spaces, num_subspaces, i;
3336 asection *section;
3337 unsigned int total_subspaces = 0;
3338 struct som_exec_auxhdr *exec_header = NULL;
3339
3340 /* The file header will always be first in an object file,
3341 everything else can be in random locations. To keep things
3342 "simple" BFD will lay out the object file in the manner suggested
3343 by the PRO ABI for PA-RISC Systems. */
3344
3345 /* Before any output can really begin offsets for all the major
3346 portions of the object file must be computed. So, starting
3347 with the initial file header compute (and sometimes write)
3348 each portion of the object file. */
3349
3350 /* Make room for the file header, it's contents are not complete
3351 yet, so it can not be written at this time. */
3352 current_offset += sizeof (struct header);
3353
3354 /* Any auxiliary headers will follow the file header. Right now
3355 we support only the copyright and version headers. */
3356 obj_som_file_hdr (abfd)->aux_header_location = current_offset;
3357 obj_som_file_hdr (abfd)->aux_header_size = 0;
3358 if (abfd->flags & (EXEC_P | DYNAMIC))
3359 {
3360 /* Parts of the exec header will be filled in later, so
3361 delay writing the header itself. Fill in the defaults,
3362 and write it later. */
3363 current_offset += sizeof (struct som_exec_auxhdr);
3364 obj_som_file_hdr (abfd)->aux_header_size
3365 += sizeof (struct som_exec_auxhdr);
3366 exec_header = obj_som_exec_hdr (abfd);
3367 exec_header->som_auxhdr.type = EXEC_AUX_ID;
3368 exec_header->som_auxhdr.length = 40;
3369 }
3370 if (obj_som_version_hdr (abfd) != NULL)
3371 {
3372 bfd_size_type len;
3373
3374 if (bfd_seek (abfd, (file_ptr) current_offset, SEEK_SET) != 0)
3375 return false;
3376
3377 /* Write the aux_id structure and the string length. */
3378 len = sizeof (struct aux_id) + sizeof (unsigned int);
3379 obj_som_file_hdr (abfd)->aux_header_size += len;
3380 current_offset += len;
3381 if (bfd_bwrite ((PTR) obj_som_version_hdr (abfd), len, abfd) != len)
3382 return false;
3383
3384 /* Write the version string. */
3385 len = obj_som_version_hdr (abfd)->header_id.length - sizeof (int);
3386 obj_som_file_hdr (abfd)->aux_header_size += len;
3387 current_offset += len;
3388 if (bfd_bwrite ((PTR) obj_som_version_hdr (abfd)->user_string, len, abfd)
3389 != len)
3390 return false;
3391 }
3392
3393 if (obj_som_copyright_hdr (abfd) != NULL)
3394 {
3395 bfd_size_type len;
3396
3397 if (bfd_seek (abfd, (file_ptr) current_offset, SEEK_SET) != 0)
3398 return false;
3399
3400 /* Write the aux_id structure and the string length. */
3401 len = sizeof (struct aux_id) + sizeof (unsigned int);
3402 obj_som_file_hdr (abfd)->aux_header_size += len;
3403 current_offset += len;
3404 if (bfd_bwrite ((PTR) obj_som_copyright_hdr (abfd), len, abfd) != len)
3405 return false;
3406
3407 /* Write the copyright string. */
3408 len = obj_som_copyright_hdr (abfd)->header_id.length - sizeof (int);
3409 obj_som_file_hdr (abfd)->aux_header_size += len;
3410 current_offset += len;
3411 if (bfd_bwrite ((PTR) obj_som_copyright_hdr (abfd)->copyright, len, abfd)
3412 != len)
3413 return false;
3414 }
3415
3416 /* Next comes the initialization pointers; we have no initialization
3417 pointers, so current offset does not change. */
3418 obj_som_file_hdr (abfd)->init_array_location = current_offset;
3419 obj_som_file_hdr (abfd)->init_array_total = 0;
3420
3421 /* Next are the space records. These are fixed length records.
3422
3423 Count the number of spaces to determine how much room is needed
3424 in the object file for the space records.
3425
3426 The names of the spaces are stored in a separate string table,
3427 and the index for each space into the string table is computed
3428 below. Therefore, it is not possible to write the space headers
3429 at this time. */
3430 num_spaces = som_count_spaces (abfd);
3431 obj_som_file_hdr (abfd)->space_location = current_offset;
3432 obj_som_file_hdr (abfd)->space_total = num_spaces;
3433 current_offset += num_spaces * sizeof (struct space_dictionary_record);
3434
3435 /* Next are the subspace records. These are fixed length records.
3436
3437 Count the number of subspaes to determine how much room is needed
3438 in the object file for the subspace records.
3439
3440 A variety if fields in the subspace record are still unknown at
3441 this time (index into string table, fixup stream location/size, etc). */
3442 num_subspaces = som_count_subspaces (abfd);
3443 obj_som_file_hdr (abfd)->subspace_location = current_offset;
3444 obj_som_file_hdr (abfd)->subspace_total = num_subspaces;
3445 current_offset += num_subspaces * sizeof (struct subspace_dictionary_record);
3446
3447 /* Next is the string table for the space/subspace names. We will
3448 build and write the string table on the fly. At the same time
3449 we will fill in the space/subspace name index fields. */
3450
3451 /* The string table needs to be aligned on a word boundary. */
3452 if (current_offset % 4)
3453 current_offset += (4 - (current_offset % 4));
3454
3455 /* Mark the offset of the space/subspace string table in the
3456 file header. */
3457 obj_som_file_hdr (abfd)->space_strings_location = current_offset;
3458
3459 /* Scribble out the space strings. */
3460 if (! som_write_space_strings (abfd, current_offset, &strings_size))
3461 return false;
3462
3463 /* Record total string table size in the header and update the
3464 current offset. */
3465 obj_som_file_hdr (abfd)->space_strings_size = strings_size;
3466 current_offset += strings_size;
3467
3468 /* Next is the compilation unit. */
3469 obj_som_file_hdr (abfd)->compiler_location = current_offset;
3470 obj_som_file_hdr (abfd)->compiler_total = 0;
3471 if (obj_som_compilation_unit (abfd))
3472 {
3473 obj_som_file_hdr (abfd)->compiler_total = 1;
3474 current_offset += COMPUNITSZ;
3475 }
3476
3477 /* Now compute the file positions for the loadable subspaces, taking
3478 care to make sure everything stays properly aligned. */
3479
3480 section = abfd->sections;
3481 for (i = 0; i < num_spaces; i++)
3482 {
3483 asection *subsection;
3484 int first_subspace;
3485 unsigned int subspace_offset = 0;
3486
3487 /* Find a space. */
3488 while (!som_is_space (section))
3489 section = section->next;
3490
3491 first_subspace = 1;
3492 /* Now look for all its subspaces. */
3493 for (subsection = abfd->sections;
3494 subsection != NULL;
3495 subsection = subsection->next)
3496 {
3497
3498 if (!som_is_subspace (subsection)
3499 || !som_is_container (section, subsection)
3500 || (subsection->flags & SEC_ALLOC) == 0)
3501 continue;
3502
3503 /* If this is the first subspace in the space, and we are
3504 building an executable, then take care to make sure all
3505 the alignments are correct and update the exec header. */
3506 if (first_subspace
3507 && (abfd->flags & (EXEC_P | DYNAMIC)))
3508 {
3509 /* Demand paged executables have each space aligned to a
3510 page boundary. Sharable executables (write-protected
3511 text) have just the private (aka data & bss) space aligned
3512 to a page boundary. Ugh. Not true for HPUX.
3513
3514 The HPUX kernel requires the text to always be page aligned
3515 within the file regardless of the executable's type. */
3516 if (abfd->flags & (D_PAGED | DYNAMIC)
3517 || (subsection->flags & SEC_CODE)
3518 || ((abfd->flags & WP_TEXT)
3519 && (subsection->flags & SEC_DATA)))
3520 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3521
3522 /* Update the exec header. */
3523 if (subsection->flags & SEC_CODE && exec_header->exec_tfile == 0)
3524 {
3525 exec_header->exec_tmem = section->vma;
3526 exec_header->exec_tfile = current_offset;
3527 }
3528 if (subsection->flags & SEC_DATA && exec_header->exec_dfile == 0)
3529 {
3530 exec_header->exec_dmem = section->vma;
3531 exec_header->exec_dfile = current_offset;
3532 }
3533
3534 /* Keep track of exactly where we are within a particular
3535 space. This is necessary as the braindamaged HPUX
3536 loader will create holes between subspaces *and*
3537 subspace alignments are *NOT* preserved. What a crock. */
3538 subspace_offset = subsection->vma;
3539
3540 /* Only do this for the first subspace within each space. */
3541 first_subspace = 0;
3542 }
3543 else if (abfd->flags & (EXEC_P | DYNAMIC))
3544 {
3545 /* The braindamaged HPUX loader may have created a hole
3546 between two subspaces. It is *not* sufficient to use
3547 the alignment specifications within the subspaces to
3548 account for these holes -- I've run into at least one
3549 case where the loader left one code subspace unaligned
3550 in a final executable.
3551
3552 To combat this we keep a current offset within each space,
3553 and use the subspace vma fields to detect and preserve
3554 holes. What a crock!
3555
3556 ps. This is not necessary for unloadable space/subspaces. */
3557 current_offset += subsection->vma - subspace_offset;
3558 if (subsection->flags & SEC_CODE)
3559 exec_header->exec_tsize += subsection->vma - subspace_offset;
3560 else
3561 exec_header->exec_dsize += subsection->vma - subspace_offset;
3562 subspace_offset += subsection->vma - subspace_offset;
3563 }
3564
3565 subsection->target_index = total_subspaces++;
3566 /* This is real data to be loaded from the file. */
3567 if (subsection->flags & SEC_LOAD)
3568 {
3569 /* Update the size of the code & data. */
3570 if (abfd->flags & (EXEC_P | DYNAMIC)
3571 && subsection->flags & SEC_CODE)
3572 exec_header->exec_tsize += subsection->_cooked_size;
3573 else if (abfd->flags & (EXEC_P | DYNAMIC)
3574 && subsection->flags & SEC_DATA)
3575 exec_header->exec_dsize += subsection->_cooked_size;
3576 som_section_data (subsection)->subspace_dict->file_loc_init_value
3577 = current_offset;
3578 subsection->filepos = current_offset;
3579 current_offset += bfd_section_size (abfd, subsection);
3580 subspace_offset += bfd_section_size (abfd, subsection);
3581 }
3582 /* Looks like uninitialized data. */
3583 else
3584 {
3585 /* Update the size of the bss section. */
3586 if (abfd->flags & (EXEC_P | DYNAMIC))
3587 exec_header->exec_bsize += subsection->_cooked_size;
3588
3589 som_section_data (subsection)->subspace_dict->file_loc_init_value
3590 = 0;
3591 som_section_data (subsection)->subspace_dict->
3592 initialization_length = 0;
3593 }
3594 }
3595 /* Goto the next section. */
3596 section = section->next;
3597 }
3598
3599 /* Finally compute the file positions for unloadable subspaces.
3600 If building an executable, start the unloadable stuff on its
3601 own page. */
3602
3603 if (abfd->flags & (EXEC_P | DYNAMIC))
3604 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3605
3606 obj_som_file_hdr (abfd)->unloadable_sp_location = current_offset;
3607 section = abfd->sections;
3608 for (i = 0; i < num_spaces; i++)
3609 {
3610 asection *subsection;
3611
3612 /* Find a space. */
3613 while (!som_is_space (section))
3614 section = section->next;
3615
3616 if (abfd->flags & (EXEC_P | DYNAMIC))
3617 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3618
3619 /* Now look for all its subspaces. */
3620 for (subsection = abfd->sections;
3621 subsection != NULL;
3622 subsection = subsection->next)
3623 {
3624
3625 if (!som_is_subspace (subsection)
3626 || !som_is_container (section, subsection)
3627 || (subsection->flags & SEC_ALLOC) != 0)
3628 continue;
3629
3630 subsection->target_index = total_subspaces++;
3631 /* This is real data to be loaded from the file. */
3632 if ((subsection->flags & SEC_LOAD) == 0)
3633 {
3634 som_section_data (subsection)->subspace_dict->file_loc_init_value
3635 = current_offset;
3636 subsection->filepos = current_offset;
3637 current_offset += bfd_section_size (abfd, subsection);
3638 }
3639 /* Looks like uninitialized data. */
3640 else
3641 {
3642 som_section_data (subsection)->subspace_dict->file_loc_init_value
3643 = 0;
3644 som_section_data (subsection)->subspace_dict->
3645 initialization_length = bfd_section_size (abfd, subsection);
3646 }
3647 }
3648 /* Goto the next section. */
3649 section = section->next;
3650 }
3651
3652 /* If building an executable, then make sure to seek to and write
3653 one byte at the end of the file to make sure any necessary
3654 zeros are filled in. Ugh. */
3655 if (abfd->flags & (EXEC_P | DYNAMIC))
3656 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3657 if (bfd_seek (abfd, (file_ptr) current_offset - 1, SEEK_SET) != 0)
3658 return false;
3659 if (bfd_bwrite ((PTR) "", (bfd_size_type) 1, abfd) != 1)
3660 return false;
3661
3662 obj_som_file_hdr (abfd)->unloadable_sp_size
3663 = current_offset - obj_som_file_hdr (abfd)->unloadable_sp_location;
3664
3665 /* Loader fixups are not supported in any way shape or form. */
3666 obj_som_file_hdr (abfd)->loader_fixup_location = 0;
3667 obj_som_file_hdr (abfd)->loader_fixup_total = 0;
3668
3669 /* Done. Store the total size of the SOM so far. */
3670 obj_som_file_hdr (abfd)->som_length = current_offset;
3671
3672 return true;
3673 }
3674
3675 /* Finally, scribble out the various headers to the disk. */
3676
3677 static boolean
3678 som_finish_writing (abfd)
3679 bfd *abfd;
3680 {
3681 int num_spaces = som_count_spaces (abfd);
3682 asymbol **syms = bfd_get_outsymbols (abfd);
3683 int i, num_syms, strings_size;
3684 int subspace_index = 0;
3685 file_ptr location;
3686 asection *section;
3687 unsigned long current_offset;
3688 unsigned int total_reloc_size;
3689 bfd_size_type amt;
3690
3691 /* We must set up the version identifier here as objcopy/strip copy
3692 private BFD data too late for us to handle this in som_begin_writing. */
3693 if (obj_som_exec_data (abfd)
3694 && obj_som_exec_data (abfd)->version_id)
3695 obj_som_file_hdr (abfd)->version_id = obj_som_exec_data (abfd)->version_id;
3696 else
3697 obj_som_file_hdr (abfd)->version_id = NEW_VERSION_ID;
3698
3699 /* Next is the symbol table. These are fixed length records.
3700
3701 Count the number of symbols to determine how much room is needed
3702 in the object file for the symbol table.
3703
3704 The names of the symbols are stored in a separate string table,
3705 and the index for each symbol name into the string table is computed
3706 below. Therefore, it is not possible to write the symbol table
3707 at this time.
3708
3709 These used to be output before the subspace contents, but they
3710 were moved here to work around a stupid bug in the hpux linker
3711 (fixed in hpux10). */
3712 current_offset = obj_som_file_hdr (abfd)->som_length;
3713
3714 /* Make sure we're on a word boundary. */
3715 if (current_offset % 4)
3716 current_offset += (4 - (current_offset % 4));
3717
3718 num_syms = bfd_get_symcount (abfd);
3719 obj_som_file_hdr (abfd)->symbol_location = current_offset;
3720 obj_som_file_hdr (abfd)->symbol_total = num_syms;
3721 current_offset += num_syms * sizeof (struct symbol_dictionary_record);
3722
3723 /* Next are the symbol strings.
3724 Align them to a word boundary. */
3725 if (current_offset % 4)
3726 current_offset += (4 - (current_offset % 4));
3727 obj_som_file_hdr (abfd)->symbol_strings_location = current_offset;
3728
3729 /* Scribble out the symbol strings. */
3730 if (! som_write_symbol_strings (abfd, current_offset, syms,
3731 num_syms, &strings_size,
3732 obj_som_compilation_unit (abfd)))
3733 return false;
3734
3735 /* Record total string table size in header and update the
3736 current offset. */
3737 obj_som_file_hdr (abfd)->symbol_strings_size = strings_size;
3738 current_offset += strings_size;
3739
3740 /* Do prep work before handling fixups. */
3741 som_prep_for_fixups (abfd,
3742 bfd_get_outsymbols (abfd),
3743 bfd_get_symcount (abfd));
3744
3745 /* At the end of the file is the fixup stream which starts on a
3746 word boundary. */
3747 if (current_offset % 4)
3748 current_offset += (4 - (current_offset % 4));
3749 obj_som_file_hdr (abfd)->fixup_request_location = current_offset;
3750
3751 /* Write the fixups and update fields in subspace headers which
3752 relate to the fixup stream. */
3753 if (! som_write_fixups (abfd, current_offset, &total_reloc_size))
3754 return false;
3755
3756 /* Record the total size of the fixup stream in the file header. */
3757 obj_som_file_hdr (abfd)->fixup_request_total = total_reloc_size;
3758
3759 /* Done. Store the total size of the SOM. */
3760 obj_som_file_hdr (abfd)->som_length = current_offset + total_reloc_size;
3761
3762 /* Now that the symbol table information is complete, build and
3763 write the symbol table. */
3764 if (! som_build_and_write_symbol_table (abfd))
3765 return false;
3766
3767 /* Subspaces are written first so that we can set up information
3768 about them in their containing spaces as the subspace is written. */
3769
3770 /* Seek to the start of the subspace dictionary records. */
3771 location = obj_som_file_hdr (abfd)->subspace_location;
3772 if (bfd_seek (abfd, location, SEEK_SET) != 0)
3773 return false;
3774
3775 section = abfd->sections;
3776 /* Now for each loadable space write out records for its subspaces. */
3777 for (i = 0; i < num_spaces; i++)
3778 {
3779 asection *subsection;
3780
3781 /* Find a space. */
3782 while (!som_is_space (section))
3783 section = section->next;
3784
3785 /* Now look for all its subspaces. */
3786 for (subsection = abfd->sections;
3787 subsection != NULL;
3788 subsection = subsection->next)
3789 {
3790
3791 /* Skip any section which does not correspond to a space
3792 or subspace. Or does not have SEC_ALLOC set (and therefore
3793 has no real bits on the disk). */
3794 if (!som_is_subspace (subsection)
3795 || !som_is_container (section, subsection)
3796 || (subsection->flags & SEC_ALLOC) == 0)
3797 continue;
3798
3799 /* If this is the first subspace for this space, then save
3800 the index of the subspace in its containing space. Also
3801 set "is_loadable" in the containing space. */
3802
3803 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3804 {
3805 som_section_data (section)->space_dict->is_loadable = 1;
3806 som_section_data (section)->space_dict->subspace_index
3807 = subspace_index;
3808 }
3809
3810 /* Increment the number of subspaces seen and the number of
3811 subspaces contained within the current space. */
3812 subspace_index++;
3813 som_section_data (section)->space_dict->subspace_quantity++;
3814
3815 /* Mark the index of the current space within the subspace's
3816 dictionary record. */
3817 som_section_data (subsection)->subspace_dict->space_index = i;
3818
3819 /* Dump the current subspace header. */
3820 amt = sizeof (struct subspace_dictionary_record);
3821 if (bfd_bwrite ((PTR) som_section_data (subsection)->subspace_dict,
3822 amt, abfd) != amt)
3823 return false;
3824 }
3825 /* Goto the next section. */
3826 section = section->next;
3827 }
3828
3829 /* Now repeat the process for unloadable subspaces. */
3830 section = abfd->sections;
3831 /* Now for each space write out records for its subspaces. */
3832 for (i = 0; i < num_spaces; i++)
3833 {
3834 asection *subsection;
3835
3836 /* Find a space. */
3837 while (!som_is_space (section))
3838 section = section->next;
3839
3840 /* Now look for all its subspaces. */
3841 for (subsection = abfd->sections;
3842 subsection != NULL;
3843 subsection = subsection->next)
3844 {
3845
3846 /* Skip any section which does not correspond to a space or
3847 subspace, or which SEC_ALLOC set (and therefore handled
3848 in the loadable spaces/subspaces code above). */
3849
3850 if (!som_is_subspace (subsection)
3851 || !som_is_container (section, subsection)
3852 || (subsection->flags & SEC_ALLOC) != 0)
3853 continue;
3854
3855 /* If this is the first subspace for this space, then save
3856 the index of the subspace in its containing space. Clear
3857 "is_loadable". */
3858
3859 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3860 {
3861 som_section_data (section)->space_dict->is_loadable = 0;
3862 som_section_data (section)->space_dict->subspace_index
3863 = subspace_index;
3864 }
3865
3866 /* Increment the number of subspaces seen and the number of
3867 subspaces contained within the current space. */
3868 som_section_data (section)->space_dict->subspace_quantity++;
3869 subspace_index++;
3870
3871 /* Mark the index of the current space within the subspace's
3872 dictionary record. */
3873 som_section_data (subsection)->subspace_dict->space_index = i;
3874
3875 /* Dump this subspace header. */
3876 amt = sizeof (struct subspace_dictionary_record);
3877 if (bfd_bwrite ((PTR) som_section_data (subsection)->subspace_dict,
3878 amt, abfd) != amt)
3879 return false;
3880 }
3881 /* Goto the next section. */
3882 section = section->next;
3883 }
3884
3885 /* All the subspace dictiondary records are written, and all the
3886 fields are set up in the space dictionary records.
3887
3888 Seek to the right location and start writing the space
3889 dictionary records. */
3890 location = obj_som_file_hdr (abfd)->space_location;
3891 if (bfd_seek (abfd, location, SEEK_SET) != 0)
3892 return false;
3893
3894 section = abfd->sections;
3895 for (i = 0; i < num_spaces; i++)
3896 {
3897 /* Find a space. */
3898 while (!som_is_space (section))
3899 section = section->next;
3900
3901 /* Dump its header. */
3902 amt = sizeof (struct space_dictionary_record);
3903 if (bfd_bwrite ((PTR) som_section_data (section)->space_dict,
3904 amt, abfd) != amt)
3905 return false;
3906
3907 /* Goto the next section. */
3908 section = section->next;
3909 }
3910
3911 /* Write the compilation unit record if there is one. */
3912 if (obj_som_compilation_unit (abfd))
3913 {
3914 location = obj_som_file_hdr (abfd)->compiler_location;
3915 if (bfd_seek (abfd, location, SEEK_SET) != 0)
3916 return false;
3917
3918 amt = COMPUNITSZ;
3919 if (bfd_bwrite ((PTR) obj_som_compilation_unit (abfd), amt, abfd) != amt)
3920 return false;
3921 }
3922
3923 /* Setting of the system_id has to happen very late now that copying of
3924 BFD private data happens *after* section contents are set. */
3925 if (abfd->flags & (EXEC_P | DYNAMIC))
3926 obj_som_file_hdr (abfd)->system_id = obj_som_exec_data (abfd)->system_id;
3927 else if (bfd_get_mach (abfd) == pa20)
3928 obj_som_file_hdr (abfd)->system_id = CPU_PA_RISC2_0;
3929 else if (bfd_get_mach (abfd) == pa11)
3930 obj_som_file_hdr (abfd)->system_id = CPU_PA_RISC1_1;
3931 else
3932 obj_som_file_hdr (abfd)->system_id = CPU_PA_RISC1_0;
3933
3934 /* Compute the checksum for the file header just before writing
3935 the header to disk. */
3936 obj_som_file_hdr (abfd)->checksum = som_compute_checksum (abfd);
3937
3938 /* Only thing left to do is write out the file header. It is always
3939 at location zero. Seek there and write it. */
3940 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0)
3941 return false;
3942 amt = sizeof (struct header);
3943 if (bfd_bwrite ((PTR) obj_som_file_hdr (abfd), amt, abfd) != amt)
3944 return false;
3945
3946 /* Now write the exec header. */
3947 if (abfd->flags & (EXEC_P | DYNAMIC))
3948 {
3949 long tmp, som_length;
3950 struct som_exec_auxhdr *exec_header;
3951
3952 exec_header = obj_som_exec_hdr (abfd);
3953 exec_header->exec_entry = bfd_get_start_address (abfd);
3954 exec_header->exec_flags = obj_som_exec_data (abfd)->exec_flags;
3955
3956 /* Oh joys. Ram some of the BSS data into the DATA section
3957 to be compatable with how the hp linker makes objects
3958 (saves memory space). */
3959 tmp = exec_header->exec_dsize;
3960 tmp = SOM_ALIGN (tmp, PA_PAGESIZE);
3961 exec_header->exec_bsize -= (tmp - exec_header->exec_dsize);
3962 if (exec_header->exec_bsize < 0)
3963 exec_header->exec_bsize = 0;
3964 exec_header->exec_dsize = tmp;
3965
3966 /* Now perform some sanity checks. The idea is to catch bogons now and
3967 inform the user, instead of silently generating a bogus file. */
3968 som_length = obj_som_file_hdr (abfd)->som_length;
3969 if (exec_header->exec_tfile + exec_header->exec_tsize > som_length
3970 || exec_header->exec_dfile + exec_header->exec_dsize > som_length)
3971 {
3972 bfd_set_error (bfd_error_bad_value);
3973 return false;
3974 }
3975
3976 if (bfd_seek (abfd, obj_som_file_hdr (abfd)->aux_header_location,
3977 SEEK_SET) != 0)
3978 return false;
3979
3980 amt = AUX_HDR_SIZE;
3981 if (bfd_bwrite ((PTR) exec_header, amt, abfd) != amt)
3982 return false;
3983 }
3984 return true;
3985 }
3986
3987 /* Compute and return the checksum for a SOM file header. */
3988
3989 static unsigned long
3990 som_compute_checksum (abfd)
3991 bfd *abfd;
3992 {
3993 unsigned long checksum, count, i;
3994 unsigned long *buffer = (unsigned long *) obj_som_file_hdr (abfd);
3995
3996 checksum = 0;
3997 count = sizeof (struct header) / sizeof (unsigned long);
3998 for (i = 0; i < count; i++)
3999 checksum ^= *(buffer + i);
4000
4001 return checksum;
4002 }
4003
4004 static void
4005 som_bfd_derive_misc_symbol_info (abfd, sym, info)
4006 bfd *abfd ATTRIBUTE_UNUSED;
4007 asymbol *sym;
4008 struct som_misc_symbol_info *info;
4009 {
4010 /* Initialize. */
4011 memset (info, 0, sizeof (struct som_misc_symbol_info));
4012
4013 /* The HP SOM linker requires detailed type information about
4014 all symbols (including undefined symbols!). Unfortunately,
4015 the type specified in an import/export statement does not
4016 always match what the linker wants. Severe braindamage. */
4017
4018 /* Section symbols will not have a SOM symbol type assigned to
4019 them yet. Assign all section symbols type ST_DATA. */
4020 if (sym->flags & BSF_SECTION_SYM)
4021 info->symbol_type = ST_DATA;
4022 else
4023 {
4024 /* Common symbols must have scope SS_UNSAT and type
4025 ST_STORAGE or the linker will choke. */
4026 if (bfd_is_com_section (sym->section))
4027 {
4028 info->symbol_scope = SS_UNSAT;
4029 info->symbol_type = ST_STORAGE;
4030 }
4031
4032 /* It is possible to have a symbol without an associated
4033 type. This happens if the user imported the symbol
4034 without a type and the symbol was never defined
4035 locally. If BSF_FUNCTION is set for this symbol, then
4036 assign it type ST_CODE (the HP linker requires undefined
4037 external functions to have type ST_CODE rather than ST_ENTRY). */
4038 else if ((som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
4039 || som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
4040 && bfd_is_und_section (sym->section)
4041 && sym->flags & BSF_FUNCTION)
4042 info->symbol_type = ST_CODE;
4043
4044 /* Handle function symbols which were defined in this file.
4045 They should have type ST_ENTRY. Also retrieve the argument
4046 relocation bits from the SOM backend information. */
4047 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ENTRY
4048 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE
4049 && (sym->flags & BSF_FUNCTION))
4050 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
4051 && (sym->flags & BSF_FUNCTION)))
4052 {
4053 info->symbol_type = ST_ENTRY;
4054 info->arg_reloc = som_symbol_data (sym)->tc_data.ap.hppa_arg_reloc;
4055 info->priv_level= som_symbol_data (sym)->tc_data.ap.hppa_priv_level;
4056 }
4057
4058 /* For unknown symbols set the symbol's type based on the symbol's
4059 section (ST_DATA for DATA sections, ST_CODE for CODE sections). */
4060 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN)
4061 {
4062 if (sym->section->flags & SEC_CODE)
4063 info->symbol_type = ST_CODE;
4064 else
4065 info->symbol_type = ST_DATA;
4066 }
4067
4068 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN)
4069 info->symbol_type = ST_DATA;
4070
4071 /* From now on it's a very simple mapping. */
4072 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ABSOLUTE)
4073 info->symbol_type = ST_ABSOLUTE;
4074 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
4075 info->symbol_type = ST_CODE;
4076 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_DATA)
4077 info->symbol_type = ST_DATA;
4078 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_MILLICODE)
4079 info->symbol_type = ST_MILLICODE;
4080 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PLABEL)
4081 info->symbol_type = ST_PLABEL;
4082 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PRI_PROG)
4083 info->symbol_type = ST_PRI_PROG;
4084 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_SEC_PROG)
4085 info->symbol_type = ST_SEC_PROG;
4086 }
4087
4088 /* Now handle the symbol's scope. Exported data which is not
4089 in the common section has scope SS_UNIVERSAL. Note scope
4090 of common symbols was handled earlier! */
4091 if (bfd_is_und_section (sym->section))
4092 info->symbol_scope = SS_UNSAT;
4093 else if (sym->flags & (BSF_EXPORT | BSF_WEAK)
4094 && ! bfd_is_com_section (sym->section))
4095 info->symbol_scope = SS_UNIVERSAL;
4096 /* Anything else which is not in the common section has scope
4097 SS_LOCAL. */
4098 else if (! bfd_is_com_section (sym->section))
4099 info->symbol_scope = SS_LOCAL;
4100
4101 /* Now set the symbol_info field. It has no real meaning
4102 for undefined or common symbols, but the HP linker will
4103 choke if it's not set to some "reasonable" value. We
4104 use zero as a reasonable value. */
4105 if (bfd_is_com_section (sym->section)
4106 || bfd_is_und_section (sym->section)
4107 || bfd_is_abs_section (sym->section))
4108 info->symbol_info = 0;
4109 /* For all other symbols, the symbol_info field contains the
4110 subspace index of the space this symbol is contained in. */
4111 else
4112 info->symbol_info = sym->section->target_index;
4113
4114 /* Set the symbol's value. */
4115 info->symbol_value = sym->value + sym->section->vma;
4116
4117 /* The secondary_def field is for weak symbols. */
4118 if (sym->flags & BSF_WEAK)
4119 info->secondary_def = true;
4120 else
4121 info->secondary_def = false;
4122
4123 }
4124
4125 /* Build and write, in one big chunk, the entire symbol table for
4126 this BFD. */
4127
4128 static boolean
4129 som_build_and_write_symbol_table (abfd)
4130 bfd *abfd;
4131 {
4132 unsigned int num_syms = bfd_get_symcount (abfd);
4133 file_ptr symtab_location = obj_som_file_hdr (abfd)->symbol_location;
4134 asymbol **bfd_syms = obj_som_sorted_syms (abfd);
4135 struct symbol_dictionary_record *som_symtab = NULL;
4136 unsigned int i;
4137 bfd_size_type symtab_size;
4138
4139 /* Compute total symbol table size and allocate a chunk of memory
4140 to hold the symbol table as we build it. */
4141 symtab_size = num_syms;
4142 symtab_size *= sizeof (struct symbol_dictionary_record);
4143 som_symtab = (struct symbol_dictionary_record *) bfd_zmalloc (symtab_size);
4144 if (som_symtab == NULL && symtab_size != 0)
4145 goto error_return;
4146
4147 /* Walk over each symbol. */
4148 for (i = 0; i < num_syms; i++)
4149 {
4150 struct som_misc_symbol_info info;
4151
4152 /* This is really an index into the symbol strings table.
4153 By the time we get here, the index has already been
4154 computed and stored into the name field in the BFD symbol. */
4155 som_symtab[i].name.n_strx = som_symbol_data(bfd_syms[i])->stringtab_offset;
4156
4157 /* Derive SOM information from the BFD symbol. */
4158 som_bfd_derive_misc_symbol_info (abfd, bfd_syms[i], &info);
4159
4160 /* Now use it. */
4161 som_symtab[i].symbol_type = info.symbol_type;
4162 som_symtab[i].symbol_scope = info.symbol_scope;
4163 som_symtab[i].arg_reloc = info.arg_reloc;
4164 som_symtab[i].symbol_info = info.symbol_info;
4165 som_symtab[i].xleast = 3;
4166 som_symtab[i].symbol_value = info.symbol_value | info.priv_level;
4167 som_symtab[i].secondary_def = info.secondary_def;
4168 }
4169
4170 /* Everything is ready, seek to the right location and
4171 scribble out the symbol table. */
4172 if (bfd_seek (abfd, symtab_location, SEEK_SET) != 0)
4173 return false;
4174
4175 if (bfd_bwrite ((PTR) som_symtab, symtab_size, abfd) != symtab_size)
4176 goto error_return;
4177
4178 if (som_symtab != NULL)
4179 free (som_symtab);
4180 return true;
4181 error_return:
4182 if (som_symtab != NULL)
4183 free (som_symtab);
4184 return false;
4185 }
4186
4187 /* Write an object in SOM format. */
4188
4189 static boolean
4190 som_write_object_contents (abfd)
4191 bfd *abfd;
4192 {
4193 if (! abfd->output_has_begun)
4194 {
4195 /* Set up fixed parts of the file, space, and subspace headers.
4196 Notify the world that output has begun. */
4197 som_prep_headers (abfd);
4198 abfd->output_has_begun = true;
4199 /* Start writing the object file. This include all the string
4200 tables, fixup streams, and other portions of the object file. */
4201 som_begin_writing (abfd);
4202 }
4203
4204 return (som_finish_writing (abfd));
4205 }
4206 \f
4207 /* Read and save the string table associated with the given BFD. */
4208
4209 static boolean
4210 som_slurp_string_table (abfd)
4211 bfd *abfd;
4212 {
4213 char *stringtab;
4214 bfd_size_type amt;
4215
4216 /* Use the saved version if its available. */
4217 if (obj_som_stringtab (abfd) != NULL)
4218 return true;
4219
4220 /* I don't think this can currently happen, and I'm not sure it should
4221 really be an error, but it's better than getting unpredictable results
4222 from the host's malloc when passed a size of zero. */
4223 if (obj_som_stringtab_size (abfd) == 0)
4224 {
4225 bfd_set_error (bfd_error_no_symbols);
4226 return false;
4227 }
4228
4229 /* Allocate and read in the string table. */
4230 amt = obj_som_stringtab_size (abfd);
4231 stringtab = bfd_zmalloc (amt);
4232 if (stringtab == NULL)
4233 return false;
4234
4235 if (bfd_seek (abfd, obj_som_str_filepos (abfd), SEEK_SET) != 0)
4236 return false;
4237
4238 if (bfd_bread (stringtab, amt, abfd) != amt)
4239 return false;
4240
4241 /* Save our results and return success. */
4242 obj_som_stringtab (abfd) = stringtab;
4243 return true;
4244 }
4245
4246 /* Return the amount of data (in bytes) required to hold the symbol
4247 table for this object. */
4248
4249 static long
4250 som_get_symtab_upper_bound (abfd)
4251 bfd *abfd;
4252 {
4253 if (!som_slurp_symbol_table (abfd))
4254 return -1;
4255
4256 return (bfd_get_symcount (abfd) + 1) * (sizeof (asymbol *));
4257 }
4258
4259 /* Convert from a SOM subspace index to a BFD section. */
4260
4261 static asection *
4262 bfd_section_from_som_symbol (abfd, symbol)
4263 bfd *abfd;
4264 struct symbol_dictionary_record *symbol;
4265 {
4266 asection *section;
4267
4268 /* The meaning of the symbol_info field changes for functions
4269 within executables. So only use the quick symbol_info mapping for
4270 incomplete objects and non-function symbols in executables. */
4271 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4272 || (symbol->symbol_type != ST_ENTRY
4273 && symbol->symbol_type != ST_PRI_PROG
4274 && symbol->symbol_type != ST_SEC_PROG
4275 && symbol->symbol_type != ST_MILLICODE))
4276 {
4277 unsigned int index = symbol->symbol_info;
4278 for (section = abfd->sections; section != NULL; section = section->next)
4279 if (section->target_index == index && som_is_subspace (section))
4280 return section;
4281
4282 /* Could be a symbol from an external library (such as an OMOS
4283 shared library). Don't abort. */
4284 return bfd_abs_section_ptr;
4285
4286 }
4287 else
4288 {
4289 unsigned int value = symbol->symbol_value;
4290
4291 /* For executables we will have to use the symbol's address and
4292 find out what section would contain that address. Yuk. */
4293 for (section = abfd->sections; section; section = section->next)
4294 {
4295 if (value >= section->vma
4296 && value <= section->vma + section->_cooked_size
4297 && som_is_subspace (section))
4298 return section;
4299 }
4300
4301 /* Could be a symbol from an external library (such as an OMOS
4302 shared library). Don't abort. */
4303 return bfd_abs_section_ptr;
4304
4305 }
4306 }
4307
4308 /* Read and save the symbol table associated with the given BFD. */
4309
4310 static unsigned int
4311 som_slurp_symbol_table (abfd)
4312 bfd *abfd;
4313 {
4314 int symbol_count = bfd_get_symcount (abfd);
4315 int symsize = sizeof (struct symbol_dictionary_record);
4316 char *stringtab;
4317 struct symbol_dictionary_record *buf = NULL, *bufp, *endbufp;
4318 som_symbol_type *sym, *symbase;
4319 bfd_size_type amt;
4320
4321 /* Return saved value if it exists. */
4322 if (obj_som_symtab (abfd) != NULL)
4323 goto successful_return;
4324
4325 /* Special case. This is *not* an error. */
4326 if (symbol_count == 0)
4327 goto successful_return;
4328
4329 if (!som_slurp_string_table (abfd))
4330 goto error_return;
4331
4332 stringtab = obj_som_stringtab (abfd);
4333
4334 amt = symbol_count;
4335 amt *= sizeof (som_symbol_type);
4336 symbase = (som_symbol_type *) bfd_zmalloc (amt);
4337 if (symbase == NULL)
4338 goto error_return;
4339
4340 /* Read in the external SOM representation. */
4341 amt = symbol_count;
4342 amt *= symsize;
4343 buf = bfd_malloc (amt);
4344 if (buf == NULL && amt != 0)
4345 goto error_return;
4346 if (bfd_seek (abfd, obj_som_sym_filepos (abfd), SEEK_SET) != 0)
4347 goto error_return;
4348 if (bfd_bread (buf, amt, abfd) != amt)
4349 goto error_return;
4350
4351 /* Iterate over all the symbols and internalize them. */
4352 endbufp = buf + symbol_count;
4353 for (bufp = buf, sym = symbase; bufp < endbufp; ++bufp)
4354 {
4355
4356 /* I don't think we care about these. */
4357 if (bufp->symbol_type == ST_SYM_EXT
4358 || bufp->symbol_type == ST_ARG_EXT)
4359 continue;
4360
4361 /* Set some private data we care about. */
4362 if (bufp->symbol_type == ST_NULL)
4363 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
4364 else if (bufp->symbol_type == ST_ABSOLUTE)
4365 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ABSOLUTE;
4366 else if (bufp->symbol_type == ST_DATA)
4367 som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
4368 else if (bufp->symbol_type == ST_CODE)
4369 som_symbol_data (sym)->som_type = SYMBOL_TYPE_CODE;
4370 else if (bufp->symbol_type == ST_PRI_PROG)
4371 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PRI_PROG;
4372 else if (bufp->symbol_type == ST_SEC_PROG)
4373 som_symbol_data (sym)->som_type = SYMBOL_TYPE_SEC_PROG;
4374 else if (bufp->symbol_type == ST_ENTRY)
4375 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ENTRY;
4376 else if (bufp->symbol_type == ST_MILLICODE)
4377 som_symbol_data (sym)->som_type = SYMBOL_TYPE_MILLICODE;
4378 else if (bufp->symbol_type == ST_PLABEL)
4379 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PLABEL;
4380 else
4381 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
4382 som_symbol_data (sym)->tc_data.ap.hppa_arg_reloc = bufp->arg_reloc;
4383
4384 /* Some reasonable defaults. */
4385 sym->symbol.the_bfd = abfd;
4386 sym->symbol.name = bufp->name.n_strx + stringtab;
4387 sym->symbol.value = bufp->symbol_value;
4388 sym->symbol.section = 0;
4389 sym->symbol.flags = 0;
4390
4391 switch (bufp->symbol_type)
4392 {
4393 case ST_ENTRY:
4394 case ST_MILLICODE:
4395 sym->symbol.flags |= BSF_FUNCTION;
4396 som_symbol_data (sym)->tc_data.ap.hppa_priv_level =
4397 sym->symbol.value & 0x3;
4398 sym->symbol.value &= ~0x3;
4399 break;
4400
4401 case ST_STUB:
4402 case ST_CODE:
4403 case ST_PRI_PROG:
4404 case ST_SEC_PROG:
4405 som_symbol_data (sym)->tc_data.ap.hppa_priv_level =
4406 sym->symbol.value & 0x3;
4407 sym->symbol.value &= ~0x3;
4408 /* If the symbol's scope is SS_UNSAT, then these are
4409 undefined function symbols. */
4410 if (bufp->symbol_scope == SS_UNSAT)
4411 sym->symbol.flags |= BSF_FUNCTION;
4412
4413 default:
4414 break;
4415 }
4416
4417 /* Handle scoping and section information. */
4418 switch (bufp->symbol_scope)
4419 {
4420 /* symbol_info field is undefined for SS_EXTERNAL and SS_UNSAT symbols,
4421 so the section associated with this symbol can't be known. */
4422 case SS_EXTERNAL:
4423 if (bufp->symbol_type != ST_STORAGE)
4424 sym->symbol.section = bfd_und_section_ptr;
4425 else
4426 sym->symbol.section = bfd_com_section_ptr;
4427 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
4428 break;
4429
4430 case SS_UNSAT:
4431 if (bufp->symbol_type != ST_STORAGE)
4432 sym->symbol.section = bfd_und_section_ptr;
4433 else
4434 sym->symbol.section = bfd_com_section_ptr;
4435 break;
4436
4437 case SS_UNIVERSAL:
4438 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
4439 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
4440 sym->symbol.value -= sym->symbol.section->vma;
4441 break;
4442
4443 #if 0
4444 /* SS_GLOBAL and SS_LOCAL are two names for the same thing.
4445 Sound dumb? It is. */
4446 case SS_GLOBAL:
4447 #endif
4448 case SS_LOCAL:
4449 sym->symbol.flags |= BSF_LOCAL;
4450 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
4451 sym->symbol.value -= sym->symbol.section->vma;
4452 break;
4453 }
4454
4455 /* Check for a weak symbol. */
4456 if (bufp->secondary_def)
4457 sym->symbol.flags |= BSF_WEAK;
4458
4459 /* Mark section symbols and symbols used by the debugger.
4460 Note $START$ is a magic code symbol, NOT a section symbol. */
4461 if (sym->symbol.name[0] == '$'
4462 && sym->symbol.name[strlen (sym->symbol.name) - 1] == '$'
4463 && !strcmp (sym->symbol.name, sym->symbol.section->name))
4464 sym->symbol.flags |= BSF_SECTION_SYM;
4465 else if (!strncmp (sym->symbol.name, "L$0\002", 4))
4466 {
4467 sym->symbol.flags |= BSF_SECTION_SYM;
4468 sym->symbol.name = sym->symbol.section->name;
4469 }
4470 else if (!strncmp (sym->symbol.name, "L$0\001", 4))
4471 sym->symbol.flags |= BSF_DEBUGGING;
4472
4473 /* Note increment at bottom of loop, since we skip some symbols
4474 we can not include it as part of the for statement. */
4475 sym++;
4476 }
4477
4478 /* We modify the symbol count to record the number of BFD symbols we
4479 created. */
4480 bfd_get_symcount (abfd) = sym - symbase;
4481
4482 /* Save our results and return success. */
4483 obj_som_symtab (abfd) = symbase;
4484 successful_return:
4485 if (buf != NULL)
4486 free (buf);
4487 return (true);
4488
4489 error_return:
4490 if (buf != NULL)
4491 free (buf);
4492 return false;
4493 }
4494
4495 /* Canonicalize a SOM symbol table. Return the number of entries
4496 in the symbol table. */
4497
4498 static long
4499 som_get_symtab (abfd, location)
4500 bfd *abfd;
4501 asymbol **location;
4502 {
4503 int i;
4504 som_symbol_type *symbase;
4505
4506 if (!som_slurp_symbol_table (abfd))
4507 return -1;
4508
4509 i = bfd_get_symcount (abfd);
4510 symbase = obj_som_symtab (abfd);
4511
4512 for (; i > 0; i--, location++, symbase++)
4513 *location = &symbase->symbol;
4514
4515 /* Final null pointer. */
4516 *location = 0;
4517 return (bfd_get_symcount (abfd));
4518 }
4519
4520 /* Make a SOM symbol. There is nothing special to do here. */
4521
4522 static asymbol *
4523 som_make_empty_symbol (abfd)
4524 bfd *abfd;
4525 {
4526 bfd_size_type amt = sizeof (som_symbol_type);
4527 som_symbol_type *new = (som_symbol_type *) bfd_zalloc (abfd, amt);
4528 if (new == NULL)
4529 return 0;
4530 new->symbol.the_bfd = abfd;
4531
4532 return &new->symbol;
4533 }
4534
4535 /* Print symbol information. */
4536
4537 static void
4538 som_print_symbol (abfd, afile, symbol, how)
4539 bfd *abfd;
4540 PTR afile;
4541 asymbol *symbol;
4542 bfd_print_symbol_type how;
4543 {
4544 FILE *file = (FILE *) afile;
4545 switch (how)
4546 {
4547 case bfd_print_symbol_name:
4548 fprintf (file, "%s", symbol->name);
4549 break;
4550 case bfd_print_symbol_more:
4551 fprintf (file, "som ");
4552 fprintf_vma (file, symbol->value);
4553 fprintf (file, " %lx", (long) symbol->flags);
4554 break;
4555 case bfd_print_symbol_all:
4556 {
4557 const char *section_name;
4558 section_name = symbol->section ? symbol->section->name : "(*none*)";
4559 bfd_print_symbol_vandf (abfd, (PTR) file, symbol);
4560 fprintf (file, " %s\t%s", section_name, symbol->name);
4561 break;
4562 }
4563 }
4564 }
4565
4566 static boolean
4567 som_bfd_is_local_label_name (abfd, name)
4568 bfd *abfd ATTRIBUTE_UNUSED;
4569 const char *name;
4570 {
4571 return (name[0] == 'L' && name[1] == '$');
4572 }
4573
4574 /* Count or process variable-length SOM fixup records.
4575
4576 To avoid code duplication we use this code both to compute the number
4577 of relocations requested by a stream, and to internalize the stream.
4578
4579 When computing the number of relocations requested by a stream the
4580 variables rptr, section, and symbols have no meaning.
4581
4582 Return the number of relocations requested by the fixup stream. When
4583 not just counting
4584
4585 This needs at least two or three more passes to get it cleaned up. */
4586
4587 static unsigned int
4588 som_set_reloc_info (fixup, end, internal_relocs, section, symbols, just_count)
4589 unsigned char *fixup;
4590 unsigned int end;
4591 arelent *internal_relocs;
4592 asection *section;
4593 asymbol **symbols;
4594 boolean just_count;
4595 {
4596 unsigned int op, varname, deallocate_contents = 0;
4597 unsigned char *end_fixups = &fixup[end];
4598 const struct fixup_format *fp;
4599 const char *cp;
4600 unsigned char *save_fixup;
4601 int variables[26], stack[20], c, v, count, prev_fixup, *sp, saved_unwind_bits;
4602 const int *subop;
4603 arelent *rptr = internal_relocs;
4604 unsigned int offset = 0;
4605
4606 #define var(c) variables[(c) - 'A']
4607 #define push(v) (*sp++ = (v))
4608 #define pop() (*--sp)
4609 #define emptystack() (sp == stack)
4610
4611 som_initialize_reloc_queue (reloc_queue);
4612 memset (variables, 0, sizeof (variables));
4613 memset (stack, 0, sizeof (stack));
4614 count = 0;
4615 prev_fixup = 0;
4616 saved_unwind_bits = 0;
4617 sp = stack;
4618
4619 while (fixup < end_fixups)
4620 {
4621
4622 /* Save pointer to the start of this fixup. We'll use
4623 it later to determine if it is necessary to put this fixup
4624 on the queue. */
4625 save_fixup = fixup;
4626
4627 /* Get the fixup code and its associated format. */
4628 op = *fixup++;
4629 fp = &som_fixup_formats[op];
4630
4631 /* Handle a request for a previous fixup. */
4632 if (*fp->format == 'P')
4633 {
4634 /* Get pointer to the beginning of the prev fixup, move
4635 the repeated fixup to the head of the queue. */
4636 fixup = reloc_queue[fp->D].reloc;
4637 som_reloc_queue_fix (reloc_queue, fp->D);
4638 prev_fixup = 1;
4639
4640 /* Get the fixup code and its associated format. */
4641 op = *fixup++;
4642 fp = &som_fixup_formats[op];
4643 }
4644
4645 /* If this fixup will be passed to BFD, set some reasonable defaults. */
4646 if (! just_count
4647 && som_hppa_howto_table[op].type != R_NO_RELOCATION
4648 && som_hppa_howto_table[op].type != R_DATA_OVERRIDE)
4649 {
4650 rptr->address = offset;
4651 rptr->howto = &som_hppa_howto_table[op];
4652 rptr->addend = 0;
4653 rptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
4654 }
4655
4656 /* Set default input length to 0. Get the opcode class index
4657 into D. */
4658 var ('L') = 0;
4659 var ('D') = fp->D;
4660 var ('U') = saved_unwind_bits;
4661
4662 /* Get the opcode format. */
4663 cp = fp->format;
4664
4665 /* Process the format string. Parsing happens in two phases,
4666 parse RHS, then assign to LHS. Repeat until no more
4667 characters in the format string. */
4668 while (*cp)
4669 {
4670 /* The variable this pass is going to compute a value for. */
4671 varname = *cp++;
4672
4673 /* Start processing RHS. Continue until a NULL or '=' is found. */
4674 do
4675 {
4676 c = *cp++;
4677
4678 /* If this is a variable, push it on the stack. */
4679 if (ISUPPER (c))
4680 push (var (c));
4681
4682 /* If this is a lower case letter, then it represents
4683 additional data from the fixup stream to be pushed onto
4684 the stack. */
4685 else if (ISLOWER (c))
4686 {
4687 int bits = (c - 'a') * 8;
4688 for (v = 0; c > 'a'; --c)
4689 v = (v << 8) | *fixup++;
4690 if (varname == 'V')
4691 v = sign_extend (v, bits);
4692 push (v);
4693 }
4694
4695 /* A decimal constant. Push it on the stack. */
4696 else if (ISDIGIT (c))
4697 {
4698 v = c - '0';
4699 while (ISDIGIT (*cp))
4700 v = (v * 10) + (*cp++ - '0');
4701 push (v);
4702 }
4703 else
4704 /* An operator. Pop two two values from the stack and
4705 use them as operands to the given operation. Push
4706 the result of the operation back on the stack. */
4707 switch (c)
4708 {
4709 case '+':
4710 v = pop ();
4711 v += pop ();
4712 push (v);
4713 break;
4714 case '*':
4715 v = pop ();
4716 v *= pop ();
4717 push (v);
4718 break;
4719 case '<':
4720 v = pop ();
4721 v = pop () << v;
4722 push (v);
4723 break;
4724 default:
4725 abort ();
4726 }
4727 }
4728 while (*cp && *cp != '=');
4729
4730 /* Move over the equal operator. */
4731 cp++;
4732
4733 /* Pop the RHS off the stack. */
4734 c = pop ();
4735
4736 /* Perform the assignment. */
4737 var (varname) = c;
4738
4739 /* Handle side effects. and special 'O' stack cases. */
4740 switch (varname)
4741 {
4742 /* Consume some bytes from the input space. */
4743 case 'L':
4744 offset += c;
4745 break;
4746 /* A symbol to use in the relocation. Make a note
4747 of this if we are not just counting. */
4748 case 'S':
4749 if (! just_count)
4750 rptr->sym_ptr_ptr = &symbols[c];
4751 break;
4752 /* Argument relocation bits for a function call. */
4753 case 'R':
4754 if (! just_count)
4755 {
4756 unsigned int tmp = var ('R');
4757 rptr->addend = 0;
4758
4759 if ((som_hppa_howto_table[op].type == R_PCREL_CALL
4760 && R_PCREL_CALL + 10 > op)
4761 || (som_hppa_howto_table[op].type == R_ABS_CALL
4762 && R_ABS_CALL + 10 > op))
4763 {
4764 /* Simple encoding. */
4765 if (tmp > 4)
4766 {
4767 tmp -= 5;
4768 rptr->addend |= 1;
4769 }
4770 if (tmp == 4)
4771 rptr->addend |= 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2;
4772 else if (tmp == 3)
4773 rptr->addend |= 1 << 8 | 1 << 6 | 1 << 4;
4774 else if (tmp == 2)
4775 rptr->addend |= 1 << 8 | 1 << 6;
4776 else if (tmp == 1)
4777 rptr->addend |= 1 << 8;
4778 }
4779 else
4780 {
4781 unsigned int tmp1, tmp2;
4782
4783 /* First part is easy -- low order two bits are
4784 directly copied, then shifted away. */
4785 rptr->addend = tmp & 0x3;
4786 tmp >>= 2;
4787
4788 /* Diving the result by 10 gives us the second
4789 part. If it is 9, then the first two words
4790 are a double precision paramater, else it is
4791 3 * the first arg bits + the 2nd arg bits. */
4792 tmp1 = tmp / 10;
4793 tmp -= tmp1 * 10;
4794 if (tmp1 == 9)
4795 rptr->addend += (0xe << 6);
4796 else
4797 {
4798 /* Get the two pieces. */
4799 tmp2 = tmp1 / 3;
4800 tmp1 -= tmp2 * 3;
4801 /* Put them in the addend. */
4802 rptr->addend += (tmp2 << 8) + (tmp1 << 6);
4803 }
4804
4805 /* What's left is the third part. It's unpacked
4806 just like the second. */
4807 if (tmp == 9)
4808 rptr->addend += (0xe << 2);
4809 else
4810 {
4811 tmp2 = tmp / 3;
4812 tmp -= tmp2 * 3;
4813 rptr->addend += (tmp2 << 4) + (tmp << 2);
4814 }
4815 }
4816 rptr->addend = HPPA_R_ADDEND (rptr->addend, 0);
4817 }
4818 break;
4819 /* Handle the linker expression stack. */
4820 case 'O':
4821 switch (op)
4822 {
4823 case R_COMP1:
4824 subop = comp1_opcodes;
4825 break;
4826 case R_COMP2:
4827 subop = comp2_opcodes;
4828 break;
4829 case R_COMP3:
4830 subop = comp3_opcodes;
4831 break;
4832 default:
4833 abort ();
4834 }
4835 while (*subop <= (unsigned char) c)
4836 ++subop;
4837 --subop;
4838 break;
4839 /* The lower 32unwind bits must be persistent. */
4840 case 'U':
4841 saved_unwind_bits = var ('U');
4842 break;
4843
4844 default:
4845 break;
4846 }
4847 }
4848
4849 /* If we used a previous fixup, clean up after it. */
4850 if (prev_fixup)
4851 {
4852 fixup = save_fixup + 1;
4853 prev_fixup = 0;
4854 }
4855 /* Queue it. */
4856 else if (fixup > save_fixup + 1)
4857 som_reloc_queue_insert (save_fixup, fixup - save_fixup, reloc_queue);
4858
4859 /* We do not pass R_DATA_OVERRIDE or R_NO_RELOCATION
4860 fixups to BFD. */
4861 if (som_hppa_howto_table[op].type != R_DATA_OVERRIDE
4862 && som_hppa_howto_table[op].type != R_NO_RELOCATION)
4863 {
4864 /* Done with a single reloction. Loop back to the top. */
4865 if (! just_count)
4866 {
4867 if (som_hppa_howto_table[op].type == R_ENTRY)
4868 rptr->addend = var ('T');
4869 else if (som_hppa_howto_table[op].type == R_EXIT)
4870 rptr->addend = var ('U');
4871 else if (som_hppa_howto_table[op].type == R_PCREL_CALL
4872 || som_hppa_howto_table[op].type == R_ABS_CALL)
4873 ;
4874 else if (som_hppa_howto_table[op].type == R_DATA_ONE_SYMBOL)
4875 {
4876 /* Try what was specified in R_DATA_OVERRIDE first
4877 (if anything). Then the hard way using the
4878 section contents. */
4879 rptr->addend = var ('V');
4880
4881 if (rptr->addend == 0 && !section->contents)
4882 {
4883 /* Got to read the damn contents first. We don't
4884 bother saving the contents (yet). Add it one
4885 day if the need arises. */
4886 section->contents = bfd_malloc (section->_raw_size);
4887 if (section->contents == NULL)
4888 return (unsigned) -1;
4889
4890 deallocate_contents = 1;
4891 bfd_get_section_contents (section->owner,
4892 section,
4893 section->contents,
4894 (bfd_vma) 0,
4895 section->_raw_size);
4896 }
4897 else if (rptr->addend == 0)
4898 rptr->addend = bfd_get_32 (section->owner,
4899 (section->contents
4900 + offset - var ('L')));
4901
4902 }
4903 else
4904 rptr->addend = var ('V');
4905 rptr++;
4906 }
4907 count++;
4908 /* Now that we've handled a "full" relocation, reset
4909 some state. */
4910 memset (variables, 0, sizeof (variables));
4911 memset (stack, 0, sizeof (stack));
4912 }
4913 }
4914 if (deallocate_contents)
4915 free (section->contents);
4916
4917 return count;
4918
4919 #undef var
4920 #undef push
4921 #undef pop
4922 #undef emptystack
4923 }
4924
4925 /* Read in the relocs (aka fixups in SOM terms) for a section.
4926
4927 som_get_reloc_upper_bound calls this routine with JUST_COUNT
4928 set to true to indicate it only needs a count of the number
4929 of actual relocations. */
4930
4931 static boolean
4932 som_slurp_reloc_table (abfd, section, symbols, just_count)
4933 bfd *abfd;
4934 asection *section;
4935 asymbol **symbols;
4936 boolean just_count;
4937 {
4938 char *external_relocs;
4939 unsigned int fixup_stream_size;
4940 arelent *internal_relocs;
4941 unsigned int num_relocs;
4942 bfd_size_type amt;
4943
4944 fixup_stream_size = som_section_data (section)->reloc_size;
4945 /* If there were no relocations, then there is nothing to do. */
4946 if (section->reloc_count == 0)
4947 return true;
4948
4949 /* If reloc_count is -1, then the relocation stream has not been
4950 parsed. We must do so now to know how many relocations exist. */
4951 if (section->reloc_count == (unsigned) -1)
4952 {
4953 amt = fixup_stream_size;
4954 external_relocs = (char *) bfd_malloc (amt);
4955 if (external_relocs == (char *) NULL)
4956 return false;
4957 /* Read in the external forms. */
4958 if (bfd_seek (abfd,
4959 obj_som_reloc_filepos (abfd) + section->rel_filepos,
4960 SEEK_SET)
4961 != 0)
4962 return false;
4963 if (bfd_bread (external_relocs, amt, abfd) != amt)
4964 return false;
4965
4966 /* Let callers know how many relocations found.
4967 also save the relocation stream as we will
4968 need it again. */
4969 section->reloc_count = som_set_reloc_info (external_relocs,
4970 fixup_stream_size,
4971 NULL, NULL, NULL, true);
4972
4973 som_section_data (section)->reloc_stream = external_relocs;
4974 }
4975
4976 /* If the caller only wanted a count, then return now. */
4977 if (just_count)
4978 return true;
4979
4980 num_relocs = section->reloc_count;
4981 external_relocs = som_section_data (section)->reloc_stream;
4982 /* Return saved information about the relocations if it is available. */
4983 if (section->relocation != (arelent *) NULL)
4984 return true;
4985
4986 amt = num_relocs;
4987 amt *= sizeof (arelent);
4988 internal_relocs = (arelent *) bfd_zalloc (abfd, (amt));
4989 if (internal_relocs == (arelent *) NULL)
4990 return false;
4991
4992 /* Process and internalize the relocations. */
4993 som_set_reloc_info (external_relocs, fixup_stream_size,
4994 internal_relocs, section, symbols, false);
4995
4996 /* We're done with the external relocations. Free them. */
4997 free (external_relocs);
4998 som_section_data (section)->reloc_stream = NULL;
4999
5000 /* Save our results and return success. */
5001 section->relocation = internal_relocs;
5002 return (true);
5003 }
5004
5005 /* Return the number of bytes required to store the relocation
5006 information associated with the given section. */
5007
5008 static long
5009 som_get_reloc_upper_bound (abfd, asect)
5010 bfd *abfd;
5011 sec_ptr asect;
5012 {
5013 /* If section has relocations, then read in the relocation stream
5014 and parse it to determine how many relocations exist. */
5015 if (asect->flags & SEC_RELOC)
5016 {
5017 if (! som_slurp_reloc_table (abfd, asect, NULL, true))
5018 return -1;
5019 return (asect->reloc_count + 1) * sizeof (arelent *);
5020 }
5021 /* There are no relocations. */
5022 return 0;
5023 }
5024
5025 /* Convert relocations from SOM (external) form into BFD internal
5026 form. Return the number of relocations. */
5027
5028 static long
5029 som_canonicalize_reloc (abfd, section, relptr, symbols)
5030 bfd *abfd;
5031 sec_ptr section;
5032 arelent **relptr;
5033 asymbol **symbols;
5034 {
5035 arelent *tblptr;
5036 int count;
5037
5038 if (! som_slurp_reloc_table (abfd, section, symbols, false))
5039 return -1;
5040
5041 count = section->reloc_count;
5042 tblptr = section->relocation;
5043
5044 while (count--)
5045 *relptr++ = tblptr++;
5046
5047 *relptr = (arelent *) NULL;
5048 return section->reloc_count;
5049 }
5050
5051 extern const bfd_target som_vec;
5052
5053 /* A hook to set up object file dependent section information. */
5054
5055 static boolean
5056 som_new_section_hook (abfd, newsect)
5057 bfd *abfd;
5058 asection *newsect;
5059 {
5060 bfd_size_type amt = sizeof (struct som_section_data_struct);
5061 newsect->used_by_bfd = (PTR) bfd_zalloc (abfd, amt);
5062 if (!newsect->used_by_bfd)
5063 return false;
5064 newsect->alignment_power = 3;
5065
5066 /* We allow more than three sections internally. */
5067 return true;
5068 }
5069
5070 /* Copy any private info we understand from the input symbol
5071 to the output symbol. */
5072
5073 static boolean
5074 som_bfd_copy_private_symbol_data (ibfd, isymbol, obfd, osymbol)
5075 bfd *ibfd;
5076 asymbol *isymbol;
5077 bfd *obfd;
5078 asymbol *osymbol;
5079 {
5080 struct som_symbol *input_symbol = (struct som_symbol *) isymbol;
5081 struct som_symbol *output_symbol = (struct som_symbol *) osymbol;
5082
5083 /* One day we may try to grok other private data. */
5084 if (ibfd->xvec->flavour != bfd_target_som_flavour
5085 || obfd->xvec->flavour != bfd_target_som_flavour)
5086 return false;
5087
5088 /* The only private information we need to copy is the argument relocation
5089 bits. */
5090 output_symbol->tc_data.ap.hppa_arg_reloc =
5091 input_symbol->tc_data.ap.hppa_arg_reloc;
5092
5093 return true;
5094 }
5095
5096 /* Copy any private info we understand from the input section
5097 to the output section. */
5098
5099 static boolean
5100 som_bfd_copy_private_section_data (ibfd, isection, obfd, osection)
5101 bfd *ibfd;
5102 asection *isection;
5103 bfd *obfd;
5104 asection *osection;
5105 {
5106 bfd_size_type amt;
5107
5108 /* One day we may try to grok other private data. */
5109 if (ibfd->xvec->flavour != bfd_target_som_flavour
5110 || obfd->xvec->flavour != bfd_target_som_flavour
5111 || (!som_is_space (isection) && !som_is_subspace (isection)))
5112 return true;
5113
5114 amt = sizeof (struct som_copyable_section_data_struct);
5115 som_section_data (osection)->copy_data =
5116 (struct som_copyable_section_data_struct *) bfd_zalloc (obfd, amt);
5117 if (som_section_data (osection)->copy_data == NULL)
5118 return false;
5119
5120 memcpy (som_section_data (osection)->copy_data,
5121 som_section_data (isection)->copy_data,
5122 sizeof (struct som_copyable_section_data_struct));
5123
5124 /* Reparent if necessary. */
5125 if (som_section_data (osection)->copy_data->container)
5126 som_section_data (osection)->copy_data->container =
5127 som_section_data (osection)->copy_data->container->output_section;
5128
5129 return true;
5130 }
5131
5132 /* Copy any private info we understand from the input bfd
5133 to the output bfd. */
5134
5135 static boolean
5136 som_bfd_copy_private_bfd_data (ibfd, obfd)
5137 bfd *ibfd, *obfd;
5138 {
5139 /* One day we may try to grok other private data. */
5140 if (ibfd->xvec->flavour != bfd_target_som_flavour
5141 || obfd->xvec->flavour != bfd_target_som_flavour)
5142 return true;
5143
5144 /* Allocate some memory to hold the data we need. */
5145 obj_som_exec_data (obfd) = (struct som_exec_data *)
5146 bfd_zalloc (obfd, (bfd_size_type) sizeof (struct som_exec_data));
5147 if (obj_som_exec_data (obfd) == NULL)
5148 return false;
5149
5150 /* Now copy the data. */
5151 memcpy (obj_som_exec_data (obfd), obj_som_exec_data (ibfd),
5152 sizeof (struct som_exec_data));
5153
5154 return true;
5155 }
5156
5157 /* Set backend info for sections which can not be described
5158 in the BFD data structures. */
5159
5160 boolean
5161 bfd_som_set_section_attributes (section, defined, private, sort_key, spnum)
5162 asection *section;
5163 int defined;
5164 int private;
5165 unsigned int sort_key;
5166 int spnum;
5167 {
5168 /* Allocate memory to hold the magic information. */
5169 if (som_section_data (section)->copy_data == NULL)
5170 {
5171 bfd_size_type amt = sizeof (struct som_copyable_section_data_struct);
5172 som_section_data (section)->copy_data =
5173 (struct som_copyable_section_data_struct *) bfd_zalloc (section->owner,
5174 amt);
5175 if (som_section_data (section)->copy_data == NULL)
5176 return false;
5177 }
5178 som_section_data (section)->copy_data->sort_key = sort_key;
5179 som_section_data (section)->copy_data->is_defined = defined;
5180 som_section_data (section)->copy_data->is_private = private;
5181 som_section_data (section)->copy_data->container = section;
5182 som_section_data (section)->copy_data->space_number = spnum;
5183 return true;
5184 }
5185
5186 /* Set backend info for subsections which can not be described
5187 in the BFD data structures. */
5188
5189 boolean
5190 bfd_som_set_subsection_attributes (section, container, access,
5191 sort_key, quadrant)
5192 asection *section;
5193 asection *container;
5194 int access;
5195 unsigned int sort_key;
5196 int quadrant;
5197 {
5198 /* Allocate memory to hold the magic information. */
5199 if (som_section_data (section)->copy_data == NULL)
5200 {
5201 bfd_size_type amt = sizeof (struct som_copyable_section_data_struct);
5202 som_section_data (section)->copy_data =
5203 (struct som_copyable_section_data_struct *) bfd_zalloc (section->owner,
5204 amt);
5205 if (som_section_data (section)->copy_data == NULL)
5206 return false;
5207 }
5208 som_section_data (section)->copy_data->sort_key = sort_key;
5209 som_section_data (section)->copy_data->access_control_bits = access;
5210 som_section_data (section)->copy_data->quadrant = quadrant;
5211 som_section_data (section)->copy_data->container = container;
5212 return true;
5213 }
5214
5215 /* Set the full SOM symbol type. SOM needs far more symbol information
5216 than any other object file format I'm aware of. It is mandatory
5217 to be able to know if a symbol is an entry point, millicode, data,
5218 code, absolute, storage request, or procedure label. If you get
5219 the symbol type wrong your program will not link. */
5220
5221 void
5222 bfd_som_set_symbol_type (symbol, type)
5223 asymbol *symbol;
5224 unsigned int type;
5225 {
5226 som_symbol_data (symbol)->som_type = type;
5227 }
5228
5229 /* Attach an auxiliary header to the BFD backend so that it may be
5230 written into the object file. */
5231
5232 boolean
5233 bfd_som_attach_aux_hdr (abfd, type, string)
5234 bfd *abfd;
5235 int type;
5236 char *string;
5237 {
5238 bfd_size_type amt;
5239
5240 if (type == VERSION_AUX_ID)
5241 {
5242 size_t len = strlen (string);
5243 int pad = 0;
5244
5245 if (len % 4)
5246 pad = (4 - (len % 4));
5247 amt = sizeof (struct aux_id) + sizeof (unsigned int) + len + pad;
5248 obj_som_version_hdr (abfd) =
5249 (struct user_string_aux_hdr *) bfd_zalloc (abfd, amt);
5250 if (!obj_som_version_hdr (abfd))
5251 return false;
5252 obj_som_version_hdr (abfd)->header_id.type = VERSION_AUX_ID;
5253 obj_som_version_hdr (abfd)->header_id.length = len + pad;
5254 obj_som_version_hdr (abfd)->header_id.length += sizeof (int);
5255 obj_som_version_hdr (abfd)->string_length = len;
5256 strncpy (obj_som_version_hdr (abfd)->user_string, string, len);
5257 }
5258 else if (type == COPYRIGHT_AUX_ID)
5259 {
5260 int len = strlen (string);
5261 int pad = 0;
5262
5263 if (len % 4)
5264 pad = (4 - (len % 4));
5265 amt = sizeof (struct aux_id) + sizeof (unsigned int) + len + pad;
5266 obj_som_copyright_hdr (abfd) =
5267 (struct copyright_aux_hdr *) bfd_zalloc (abfd, amt);
5268 if (!obj_som_copyright_hdr (abfd))
5269 return false;
5270 obj_som_copyright_hdr (abfd)->header_id.type = COPYRIGHT_AUX_ID;
5271 obj_som_copyright_hdr (abfd)->header_id.length = len + pad;
5272 obj_som_copyright_hdr (abfd)->header_id.length += sizeof (int);
5273 obj_som_copyright_hdr (abfd)->string_length = len;
5274 strcpy (obj_som_copyright_hdr (abfd)->copyright, string);
5275 }
5276 return true;
5277 }
5278
5279 /* Attach an compilation unit header to the BFD backend so that it may be
5280 written into the object file. */
5281
5282 boolean
5283 bfd_som_attach_compilation_unit (abfd, name, language_name, product_id,
5284 version_id)
5285 bfd *abfd;
5286 const char *name;
5287 const char *language_name;
5288 const char *product_id;
5289 const char *version_id;
5290 {
5291 COMPUNIT *n = (COMPUNIT *) bfd_zalloc (abfd, (bfd_size_type) COMPUNITSZ);
5292 if (n == NULL)
5293 return false;
5294
5295 #define STRDUP(f) \
5296 if (f != NULL) \
5297 { \
5298 n->f.n_name = bfd_alloc (abfd, (bfd_size_type) strlen (f) + 1); \
5299 if (n->f.n_name == NULL) \
5300 return false; \
5301 strcpy (n->f.n_name, f); \
5302 }
5303
5304 STRDUP (name);
5305 STRDUP (language_name);
5306 STRDUP (product_id);
5307 STRDUP (version_id);
5308
5309 #undef STRDUP
5310
5311 obj_som_compilation_unit (abfd) = n;
5312
5313 return true;
5314 }
5315
5316 static boolean
5317 som_get_section_contents (abfd, section, location, offset, count)
5318 bfd *abfd;
5319 sec_ptr section;
5320 PTR location;
5321 file_ptr offset;
5322 bfd_size_type count;
5323 {
5324 if (count == 0 || ((section->flags & SEC_HAS_CONTENTS) == 0))
5325 return true;
5326 if ((bfd_size_type) (offset+count) > section->_raw_size
5327 || bfd_seek (abfd, (file_ptr) (section->filepos + offset), SEEK_SET) != 0
5328 || bfd_bread (location, count, abfd) != count)
5329 return (false); /* on error */
5330 return (true);
5331 }
5332
5333 static boolean
5334 som_set_section_contents (abfd, section, location, offset, count)
5335 bfd *abfd;
5336 sec_ptr section;
5337 PTR location;
5338 file_ptr offset;
5339 bfd_size_type count;
5340 {
5341 if (! abfd->output_has_begun)
5342 {
5343 /* Set up fixed parts of the file, space, and subspace headers.
5344 Notify the world that output has begun. */
5345 som_prep_headers (abfd);
5346 abfd->output_has_begun = true;
5347 /* Start writing the object file. This include all the string
5348 tables, fixup streams, and other portions of the object file. */
5349 som_begin_writing (abfd);
5350 }
5351
5352 /* Only write subspaces which have "real" contents (eg. the contents
5353 are not generated at run time by the OS). */
5354 if (!som_is_subspace (section)
5355 || ((section->flags & SEC_HAS_CONTENTS) == 0))
5356 return true;
5357
5358 /* Seek to the proper offset within the object file and write the
5359 data. */
5360 offset += som_section_data (section)->subspace_dict->file_loc_init_value;
5361 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
5362 return false;
5363
5364 if (bfd_bwrite ((PTR) location, count, abfd) != count)
5365 return false;
5366 return true;
5367 }
5368
5369 static boolean
5370 som_set_arch_mach (abfd, arch, machine)
5371 bfd *abfd;
5372 enum bfd_architecture arch;
5373 unsigned long machine;
5374 {
5375 /* Allow any architecture to be supported by the SOM backend. */
5376 return bfd_default_set_arch_mach (abfd, arch, machine);
5377 }
5378
5379 static boolean
5380 som_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
5381 functionname_ptr, line_ptr)
5382 bfd *abfd ATTRIBUTE_UNUSED;
5383 asection *section ATTRIBUTE_UNUSED;
5384 asymbol **symbols ATTRIBUTE_UNUSED;
5385 bfd_vma offset ATTRIBUTE_UNUSED;
5386 const char **filename_ptr ATTRIBUTE_UNUSED;
5387 const char **functionname_ptr ATTRIBUTE_UNUSED;
5388 unsigned int *line_ptr ATTRIBUTE_UNUSED;
5389 {
5390 return (false);
5391 }
5392
5393 static int
5394 som_sizeof_headers (abfd, reloc)
5395 bfd *abfd ATTRIBUTE_UNUSED;
5396 boolean reloc ATTRIBUTE_UNUSED;
5397 {
5398 (*_bfd_error_handler) (_("som_sizeof_headers unimplemented"));
5399 fflush (stderr);
5400 abort ();
5401 return (0);
5402 }
5403
5404 /* Return the single-character symbol type corresponding to
5405 SOM section S, or '?' for an unknown SOM section. */
5406
5407 static char
5408 som_section_type (s)
5409 const char *s;
5410 {
5411 const struct section_to_type *t;
5412
5413 for (t = &stt[0]; t->section; t++)
5414 if (!strcmp (s, t->section))
5415 return t->type;
5416 return '?';
5417 }
5418
5419 static int
5420 som_decode_symclass (symbol)
5421 asymbol *symbol;
5422 {
5423 char c;
5424
5425 if (bfd_is_com_section (symbol->section))
5426 return 'C';
5427 if (bfd_is_und_section (symbol->section))
5428 return 'U';
5429 if (bfd_is_ind_section (symbol->section))
5430 return 'I';
5431 if (symbol->flags & BSF_WEAK)
5432 return 'W';
5433 if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL)))
5434 return '?';
5435
5436 if (bfd_is_abs_section (symbol->section)
5437 || (som_symbol_data (symbol) != NULL
5438 && som_symbol_data (symbol)->som_type == SYMBOL_TYPE_ABSOLUTE))
5439 c = 'a';
5440 else if (symbol->section)
5441 c = som_section_type (symbol->section->name);
5442 else
5443 return '?';
5444 if (symbol->flags & BSF_GLOBAL)
5445 c = TOUPPER (c);
5446 return c;
5447 }
5448
5449 /* Return information about SOM symbol SYMBOL in RET. */
5450
5451 static void
5452 som_get_symbol_info (ignore_abfd, symbol, ret)
5453 bfd *ignore_abfd ATTRIBUTE_UNUSED;
5454 asymbol *symbol;
5455 symbol_info *ret;
5456 {
5457 ret->type = som_decode_symclass (symbol);
5458 if (ret->type != 'U')
5459 ret->value = symbol->value + symbol->section->vma;
5460 else
5461 ret->value = 0;
5462 ret->name = symbol->name;
5463 }
5464
5465 /* Count the number of symbols in the archive symbol table. Necessary
5466 so that we can allocate space for all the carsyms at once. */
5467
5468 static boolean
5469 som_bfd_count_ar_symbols (abfd, lst_header, count)
5470 bfd *abfd;
5471 struct lst_header *lst_header;
5472 symindex *count;
5473 {
5474 unsigned int i;
5475 unsigned int *hash_table = NULL;
5476 bfd_size_type amt;
5477 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5478
5479 amt = lst_header->hash_size;
5480 amt *= sizeof (unsigned int);
5481 hash_table = (unsigned int *) bfd_malloc (amt);
5482 if (hash_table == NULL && lst_header->hash_size != 0)
5483 goto error_return;
5484
5485 /* Don't forget to initialize the counter! */
5486 *count = 0;
5487
5488 /* Read in the hash table. The has table is an array of 32bit file offsets
5489 which point to the hash chains. */
5490 if (bfd_bread ((PTR) hash_table, amt, abfd) != amt)
5491 goto error_return;
5492
5493 /* Walk each chain counting the number of symbols found on that particular
5494 chain. */
5495 for (i = 0; i < lst_header->hash_size; i++)
5496 {
5497 struct lst_symbol_record lst_symbol;
5498
5499 /* An empty chain has zero as it's file offset. */
5500 if (hash_table[i] == 0)
5501 continue;
5502
5503 /* Seek to the first symbol in this hash chain. */
5504 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) != 0)
5505 goto error_return;
5506
5507 /* Read in this symbol and update the counter. */
5508 amt = sizeof (lst_symbol);
5509 if (bfd_bread ((PTR) &lst_symbol, amt, abfd) != amt)
5510 goto error_return;
5511
5512 (*count)++;
5513
5514 /* Now iterate through the rest of the symbols on this chain. */
5515 while (lst_symbol.next_entry)
5516 {
5517
5518 /* Seek to the next symbol. */
5519 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
5520 != 0)
5521 goto error_return;
5522
5523 /* Read the symbol in and update the counter. */
5524 amt = sizeof (lst_symbol);
5525 if (bfd_bread ((PTR) &lst_symbol, amt, abfd) != amt)
5526 goto error_return;
5527
5528 (*count)++;
5529 }
5530 }
5531 if (hash_table != NULL)
5532 free (hash_table);
5533 return true;
5534
5535 error_return:
5536 if (hash_table != NULL)
5537 free (hash_table);
5538 return false;
5539 }
5540
5541 /* Fill in the canonical archive symbols (SYMS) from the archive described
5542 by ABFD and LST_HEADER. */
5543
5544 static boolean
5545 som_bfd_fill_in_ar_symbols (abfd, lst_header, syms)
5546 bfd *abfd;
5547 struct lst_header *lst_header;
5548 carsym **syms;
5549 {
5550 unsigned int i, len;
5551 carsym *set = syms[0];
5552 unsigned int *hash_table = NULL;
5553 struct som_entry *som_dict = NULL;
5554 bfd_size_type amt;
5555 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5556
5557 amt = lst_header->hash_size;
5558 amt *= sizeof (unsigned int);
5559 hash_table = (unsigned int *) bfd_malloc (amt);
5560 if (hash_table == NULL && lst_header->hash_size != 0)
5561 goto error_return;
5562
5563 /* Read in the hash table. The has table is an array of 32bit file offsets
5564 which point to the hash chains. */
5565 if (bfd_bread ((PTR) hash_table, amt, abfd) != amt)
5566 goto error_return;
5567
5568 /* Seek to and read in the SOM dictionary. We will need this to fill
5569 in the carsym's filepos field. */
5570 if (bfd_seek (abfd, lst_filepos + lst_header->dir_loc, SEEK_SET) != 0)
5571 goto error_return;
5572
5573 amt = lst_header->module_count;
5574 amt *= sizeof (struct som_entry);
5575 som_dict = (struct som_entry *) bfd_malloc (amt);
5576 if (som_dict == NULL && lst_header->module_count != 0)
5577 goto error_return;
5578
5579 if (bfd_bread ((PTR) som_dict, amt, abfd) != amt)
5580 goto error_return;
5581
5582 /* Walk each chain filling in the carsyms as we go along. */
5583 for (i = 0; i < lst_header->hash_size; i++)
5584 {
5585 struct lst_symbol_record lst_symbol;
5586
5587 /* An empty chain has zero as it's file offset. */
5588 if (hash_table[i] == 0)
5589 continue;
5590
5591 /* Seek to and read the first symbol on the chain. */
5592 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) != 0)
5593 goto error_return;
5594
5595 amt = sizeof (lst_symbol);
5596 if (bfd_bread ((PTR) &lst_symbol, amt, abfd) != amt)
5597 goto error_return;
5598
5599 /* Get the name of the symbol, first get the length which is stored
5600 as a 32bit integer just before the symbol.
5601
5602 One might ask why we don't just read in the entire string table
5603 and index into it. Well, according to the SOM ABI the string
5604 index can point *anywhere* in the archive to save space, so just
5605 using the string table would not be safe. */
5606 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
5607 + lst_symbol.name.n_strx - 4, SEEK_SET) != 0)
5608 goto error_return;
5609
5610 if (bfd_bread (&len, (bfd_size_type) 4, abfd) != 4)
5611 goto error_return;
5612
5613 /* Allocate space for the name and null terminate it too. */
5614 set->name = bfd_zalloc (abfd, (bfd_size_type) len + 1);
5615 if (!set->name)
5616 goto error_return;
5617 if (bfd_bread (set->name, (bfd_size_type) len, abfd) != len)
5618 goto error_return;
5619
5620 set->name[len] = 0;
5621
5622 /* Fill in the file offset. Note that the "location" field points
5623 to the SOM itself, not the ar_hdr in front of it. */
5624 set->file_offset = som_dict[lst_symbol.som_index].location
5625 - sizeof (struct ar_hdr);
5626
5627 /* Go to the next symbol. */
5628 set++;
5629
5630 /* Iterate through the rest of the chain. */
5631 while (lst_symbol.next_entry)
5632 {
5633 /* Seek to the next symbol and read it in. */
5634 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
5635 != 0)
5636 goto error_return;
5637
5638 amt = sizeof (lst_symbol);
5639 if (bfd_bread ((PTR) &lst_symbol, amt, abfd) != amt)
5640 goto error_return;
5641
5642 /* Seek to the name length & string and read them in. */
5643 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
5644 + lst_symbol.name.n_strx - 4, SEEK_SET) != 0)
5645 goto error_return;
5646
5647 if (bfd_bread (&len, (bfd_size_type) 4, abfd) != 4)
5648 goto error_return;
5649
5650 /* Allocate space for the name and null terminate it too. */
5651 set->name = bfd_zalloc (abfd, (bfd_size_type) len + 1);
5652 if (!set->name)
5653 goto error_return;
5654
5655 if (bfd_bread (set->name, (bfd_size_type) len, abfd) != len)
5656 goto error_return;
5657 set->name[len] = 0;
5658
5659 /* Fill in the file offset. Note that the "location" field points
5660 to the SOM itself, not the ar_hdr in front of it. */
5661 set->file_offset = som_dict[lst_symbol.som_index].location
5662 - sizeof (struct ar_hdr);
5663
5664 /* Go on to the next symbol. */
5665 set++;
5666 }
5667 }
5668 /* If we haven't died by now, then we successfully read the entire
5669 archive symbol table. */
5670 if (hash_table != NULL)
5671 free (hash_table);
5672 if (som_dict != NULL)
5673 free (som_dict);
5674 return true;
5675
5676 error_return:
5677 if (hash_table != NULL)
5678 free (hash_table);
5679 if (som_dict != NULL)
5680 free (som_dict);
5681 return false;
5682 }
5683
5684 /* Read in the LST from the archive. */
5685
5686 static boolean
5687 som_slurp_armap (abfd)
5688 bfd *abfd;
5689 {
5690 struct lst_header lst_header;
5691 struct ar_hdr ar_header;
5692 unsigned int parsed_size;
5693 struct artdata *ardata = bfd_ardata (abfd);
5694 char nextname[17];
5695 bfd_size_type amt = 16;
5696 int i = bfd_bread ((PTR) nextname, amt, abfd);
5697
5698 /* Special cases. */
5699 if (i == 0)
5700 return true;
5701 if (i != 16)
5702 return false;
5703
5704 if (bfd_seek (abfd, (file_ptr) -16, SEEK_CUR) != 0)
5705 return false;
5706
5707 /* For archives without .o files there is no symbol table. */
5708 if (strncmp (nextname, "/ ", 16))
5709 {
5710 bfd_has_map (abfd) = false;
5711 return true;
5712 }
5713
5714 /* Read in and sanity check the archive header. */
5715 amt = sizeof (struct ar_hdr);
5716 if (bfd_bread ((PTR) &ar_header, amt, abfd) != amt)
5717 return false;
5718
5719 if (strncmp (ar_header.ar_fmag, ARFMAG, 2))
5720 {
5721 bfd_set_error (bfd_error_malformed_archive);
5722 return false;
5723 }
5724
5725 /* How big is the archive symbol table entry? */
5726 errno = 0;
5727 parsed_size = strtol (ar_header.ar_size, NULL, 10);
5728 if (errno != 0)
5729 {
5730 bfd_set_error (bfd_error_malformed_archive);
5731 return false;
5732 }
5733
5734 /* Save off the file offset of the first real user data. */
5735 ardata->first_file_filepos = bfd_tell (abfd) + parsed_size;
5736
5737 /* Read in the library symbol table. We'll make heavy use of this
5738 in just a minute. */
5739 amt = sizeof (struct lst_header);
5740 if (bfd_bread ((PTR) &lst_header, amt, abfd) != amt)
5741 return false;
5742
5743 /* Sanity check. */
5744 if (lst_header.a_magic != LIBMAGIC)
5745 {
5746 bfd_set_error (bfd_error_malformed_archive);
5747 return false;
5748 }
5749
5750 /* Count the number of symbols in the library symbol table. */
5751 if (! som_bfd_count_ar_symbols (abfd, &lst_header, &ardata->symdef_count))
5752 return false;
5753
5754 /* Get back to the start of the library symbol table. */
5755 if (bfd_seek (abfd, (ardata->first_file_filepos - parsed_size
5756 + sizeof (struct lst_header)), SEEK_SET) != 0)
5757 return false;
5758
5759 /* Initializae the cache and allocate space for the library symbols. */
5760 ardata->cache = 0;
5761 amt = ardata->symdef_count;
5762 amt *= sizeof (carsym);
5763 ardata->symdefs = (carsym *) bfd_alloc (abfd, amt);
5764 if (!ardata->symdefs)
5765 return false;
5766
5767 /* Now fill in the canonical archive symbols. */
5768 if (! som_bfd_fill_in_ar_symbols (abfd, &lst_header, &ardata->symdefs))
5769 return false;
5770
5771 /* Seek back to the "first" file in the archive. Note the "first"
5772 file may be the extended name table. */
5773 if (bfd_seek (abfd, ardata->first_file_filepos, SEEK_SET) != 0)
5774 return false;
5775
5776 /* Notify the generic archive code that we have a symbol map. */
5777 bfd_has_map (abfd) = true;
5778 return true;
5779 }
5780
5781 /* Begin preparing to write a SOM library symbol table.
5782
5783 As part of the prep work we need to determine the number of symbols
5784 and the size of the associated string section. */
5785
5786 static boolean
5787 som_bfd_prep_for_ar_write (abfd, num_syms, stringsize)
5788 bfd *abfd;
5789 unsigned int *num_syms, *stringsize;
5790 {
5791 bfd *curr_bfd = abfd->archive_head;
5792
5793 /* Some initialization. */
5794 *num_syms = 0;
5795 *stringsize = 0;
5796
5797 /* Iterate over each BFD within this archive. */
5798 while (curr_bfd != NULL)
5799 {
5800 unsigned int curr_count, i;
5801 som_symbol_type *sym;
5802
5803 /* Don't bother for non-SOM objects. */
5804 if (curr_bfd->format != bfd_object
5805 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5806 {
5807 curr_bfd = curr_bfd->next;
5808 continue;
5809 }
5810
5811 /* Make sure the symbol table has been read, then snag a pointer
5812 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5813 but doing so avoids allocating lots of extra memory. */
5814 if (! som_slurp_symbol_table (curr_bfd))
5815 return false;
5816
5817 sym = obj_som_symtab (curr_bfd);
5818 curr_count = bfd_get_symcount (curr_bfd);
5819
5820 /* Examine each symbol to determine if it belongs in the
5821 library symbol table. */
5822 for (i = 0; i < curr_count; i++, sym++)
5823 {
5824 struct som_misc_symbol_info info;
5825
5826 /* Derive SOM information from the BFD symbol. */
5827 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5828
5829 /* Should we include this symbol? */
5830 if (info.symbol_type == ST_NULL
5831 || info.symbol_type == ST_SYM_EXT
5832 || info.symbol_type == ST_ARG_EXT)
5833 continue;
5834
5835 /* Only global symbols and unsatisfied commons. */
5836 if (info.symbol_scope != SS_UNIVERSAL
5837 && info.symbol_type != ST_STORAGE)
5838 continue;
5839
5840 /* Do no include undefined symbols. */
5841 if (bfd_is_und_section (sym->symbol.section))
5842 continue;
5843
5844 /* Bump the various counters, being careful to honor
5845 alignment considerations in the string table. */
5846 (*num_syms)++;
5847 *stringsize = *stringsize + strlen (sym->symbol.name) + 5;
5848 while (*stringsize % 4)
5849 (*stringsize)++;
5850 }
5851
5852 curr_bfd = curr_bfd->next;
5853 }
5854 return true;
5855 }
5856
5857 /* Hash a symbol name based on the hashing algorithm presented in the
5858 SOM ABI. */
5859
5860 static unsigned int
5861 som_bfd_ar_symbol_hash (symbol)
5862 asymbol *symbol;
5863 {
5864 unsigned int len = strlen (symbol->name);
5865
5866 /* Names with length 1 are special. */
5867 if (len == 1)
5868 return 0x1000100 | (symbol->name[0] << 16) | symbol->name[0];
5869
5870 return ((len & 0x7f) << 24) | (symbol->name[1] << 16)
5871 | (symbol->name[len - 2] << 8) | symbol->name[len - 1];
5872 }
5873
5874 /* Do the bulk of the work required to write the SOM library
5875 symbol table. */
5876
5877 static boolean
5878 som_bfd_ar_write_symbol_stuff (abfd, nsyms, string_size, lst, elength)
5879 bfd *abfd;
5880 unsigned int nsyms, string_size;
5881 struct lst_header lst;
5882 unsigned elength;
5883 {
5884 file_ptr lst_filepos;
5885 char *strings = NULL, *p;
5886 struct lst_symbol_record *lst_syms = NULL, *curr_lst_sym;
5887 bfd *curr_bfd;
5888 unsigned int *hash_table = NULL;
5889 struct som_entry *som_dict = NULL;
5890 struct lst_symbol_record **last_hash_entry = NULL;
5891 unsigned int curr_som_offset, som_index = 0;
5892 bfd_size_type amt;
5893
5894 amt = lst.hash_size;
5895 amt *= sizeof (unsigned int);
5896 hash_table = (unsigned int *) bfd_zmalloc (amt);
5897 if (hash_table == NULL && lst.hash_size != 0)
5898 goto error_return;
5899
5900 amt = lst.module_count;
5901 amt *= sizeof (struct som_entry);
5902 som_dict = (struct som_entry *) bfd_zmalloc (amt);
5903 if (som_dict == NULL && lst.module_count != 0)
5904 goto error_return;
5905
5906 amt = lst.hash_size;
5907 amt *= sizeof (struct lst_symbol_record *);
5908 last_hash_entry = ((struct lst_symbol_record **) bfd_zmalloc (amt));
5909 if (last_hash_entry == NULL && lst.hash_size != 0)
5910 goto error_return;
5911
5912 /* Lots of fields are file positions relative to the start
5913 of the lst record. So save its location. */
5914 lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5915
5916 /* Symbols have som_index fields, so we have to keep track of the
5917 index of each SOM in the archive.
5918
5919 The SOM dictionary has (among other things) the absolute file
5920 position for the SOM which a particular dictionary entry
5921 describes. We have to compute that information as we iterate
5922 through the SOMs/symbols. */
5923 som_index = 0;
5924
5925 /* We add in the size of the archive header twice as the location
5926 in the SOM dictionary is the actual offset of the SOM, not the
5927 archive header before the SOM. */
5928 curr_som_offset = 8 + 2 * sizeof (struct ar_hdr) + lst.file_end;
5929
5930 /* Make room for the archive header and the contents of the
5931 extended string table. Note that elength includes the size
5932 of the archive header for the extended name table! */
5933 if (elength)
5934 curr_som_offset += elength;
5935
5936 /* Make sure we're properly aligned. */
5937 curr_som_offset = (curr_som_offset + 0x1) & ~0x1;
5938
5939 /* FIXME should be done with buffers just like everything else... */
5940 amt = nsyms;
5941 amt *= sizeof (struct lst_symbol_record);
5942 lst_syms = bfd_malloc (amt);
5943 if (lst_syms == NULL && nsyms != 0)
5944 goto error_return;
5945 strings = bfd_malloc ((bfd_size_type) string_size);
5946 if (strings == NULL && string_size != 0)
5947 goto error_return;
5948
5949 p = strings;
5950 curr_lst_sym = lst_syms;
5951
5952 curr_bfd = abfd->archive_head;
5953 while (curr_bfd != NULL)
5954 {
5955 unsigned int curr_count, i;
5956 som_symbol_type *sym;
5957
5958 /* Don't bother for non-SOM objects. */
5959 if (curr_bfd->format != bfd_object
5960 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5961 {
5962 curr_bfd = curr_bfd->next;
5963 continue;
5964 }
5965
5966 /* Make sure the symbol table has been read, then snag a pointer
5967 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5968 but doing so avoids allocating lots of extra memory. */
5969 if (! som_slurp_symbol_table (curr_bfd))
5970 goto error_return;
5971
5972 sym = obj_som_symtab (curr_bfd);
5973 curr_count = bfd_get_symcount (curr_bfd);
5974
5975 for (i = 0; i < curr_count; i++, sym++)
5976 {
5977 struct som_misc_symbol_info info;
5978
5979 /* Derive SOM information from the BFD symbol. */
5980 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5981
5982 /* Should we include this symbol? */
5983 if (info.symbol_type == ST_NULL
5984 || info.symbol_type == ST_SYM_EXT
5985 || info.symbol_type == ST_ARG_EXT)
5986 continue;
5987
5988 /* Only global symbols and unsatisfied commons. */
5989 if (info.symbol_scope != SS_UNIVERSAL
5990 && info.symbol_type != ST_STORAGE)
5991 continue;
5992
5993 /* Do no include undefined symbols. */
5994 if (bfd_is_und_section (sym->symbol.section))
5995 continue;
5996
5997 /* If this is the first symbol from this SOM, then update
5998 the SOM dictionary too. */
5999 if (som_dict[som_index].location == 0)
6000 {
6001 som_dict[som_index].location = curr_som_offset;
6002 som_dict[som_index].length = arelt_size (curr_bfd);
6003 }
6004
6005 /* Fill in the lst symbol record. */
6006 curr_lst_sym->hidden = 0;
6007 curr_lst_sym->secondary_def = info.secondary_def;
6008 curr_lst_sym->symbol_type = info.symbol_type;
6009 curr_lst_sym->symbol_scope = info.symbol_scope;
6010 curr_lst_sym->check_level = 0;
6011 curr_lst_sym->must_qualify = 0;
6012 curr_lst_sym->initially_frozen = 0;
6013 curr_lst_sym->memory_resident = 0;
6014 curr_lst_sym->is_common = bfd_is_com_section (sym->symbol.section);
6015 curr_lst_sym->dup_common = 0;
6016 curr_lst_sym->xleast = 3;
6017 curr_lst_sym->arg_reloc = info.arg_reloc;
6018 curr_lst_sym->name.n_strx = p - strings + 4;
6019 curr_lst_sym->qualifier_name.n_strx = 0;
6020 curr_lst_sym->symbol_info = info.symbol_info;
6021 curr_lst_sym->symbol_value = info.symbol_value | info.priv_level;
6022 curr_lst_sym->symbol_descriptor = 0;
6023 curr_lst_sym->reserved = 0;
6024 curr_lst_sym->som_index = som_index;
6025 curr_lst_sym->symbol_key = som_bfd_ar_symbol_hash (&sym->symbol);
6026 curr_lst_sym->next_entry = 0;
6027
6028 /* Insert into the hash table. */
6029 if (hash_table[curr_lst_sym->symbol_key % lst.hash_size])
6030 {
6031 struct lst_symbol_record *tmp;
6032
6033 /* There is already something at the head of this hash chain,
6034 so tack this symbol onto the end of the chain. */
6035 tmp = last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size];
6036 tmp->next_entry
6037 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
6038 + lst.hash_size * 4
6039 + lst.module_count * sizeof (struct som_entry)
6040 + sizeof (struct lst_header);
6041 }
6042 else
6043 {
6044 /* First entry in this hash chain. */
6045 hash_table[curr_lst_sym->symbol_key % lst.hash_size]
6046 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
6047 + lst.hash_size * 4
6048 + lst.module_count * sizeof (struct som_entry)
6049 + sizeof (struct lst_header);
6050 }
6051
6052 /* Keep track of the last symbol we added to this chain so we can
6053 easily update its next_entry pointer. */
6054 last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size]
6055 = curr_lst_sym;
6056
6057 /* Update the string table. */
6058 bfd_put_32 (abfd, strlen (sym->symbol.name), p);
6059 p += 4;
6060 strcpy (p, sym->symbol.name);
6061 p += strlen (sym->symbol.name) + 1;
6062 while ((int) p % 4)
6063 {
6064 bfd_put_8 (abfd, 0, p);
6065 p++;
6066 }
6067
6068 /* Head to the next symbol. */
6069 curr_lst_sym++;
6070 }
6071
6072 /* Keep track of where each SOM will finally reside; then look
6073 at the next BFD. */
6074 curr_som_offset += arelt_size (curr_bfd) + sizeof (struct ar_hdr);
6075
6076 /* A particular object in the archive may have an odd length; the
6077 linker requires objects begin on an even boundary. So round
6078 up the current offset as necessary. */
6079 curr_som_offset = (curr_som_offset + 0x1) &~ (unsigned) 1;
6080 curr_bfd = curr_bfd->next;
6081 som_index++;
6082 }
6083
6084 /* Now scribble out the hash table. */
6085 amt = lst.hash_size * 4;
6086 if (bfd_bwrite ((PTR) hash_table, amt, abfd) != amt)
6087 goto error_return;
6088
6089 /* Then the SOM dictionary. */
6090 amt = lst.module_count * sizeof (struct som_entry);
6091 if (bfd_bwrite ((PTR) som_dict, amt, abfd) != amt)
6092 goto error_return;
6093
6094 /* The library symbols. */
6095 amt = nsyms * sizeof (struct lst_symbol_record);
6096 if (bfd_bwrite ((PTR) lst_syms, amt, abfd) != amt)
6097 goto error_return;
6098
6099 /* And finally the strings. */
6100 amt = string_size;
6101 if (bfd_bwrite ((PTR) strings, amt, abfd) != amt)
6102 goto error_return;
6103
6104 if (hash_table != NULL)
6105 free (hash_table);
6106 if (som_dict != NULL)
6107 free (som_dict);
6108 if (last_hash_entry != NULL)
6109 free (last_hash_entry);
6110 if (lst_syms != NULL)
6111 free (lst_syms);
6112 if (strings != NULL)
6113 free (strings);
6114 return true;
6115
6116 error_return:
6117 if (hash_table != NULL)
6118 free (hash_table);
6119 if (som_dict != NULL)
6120 free (som_dict);
6121 if (last_hash_entry != NULL)
6122 free (last_hash_entry);
6123 if (lst_syms != NULL)
6124 free (lst_syms);
6125 if (strings != NULL)
6126 free (strings);
6127
6128 return false;
6129 }
6130
6131 /* Write out the LST for the archive.
6132
6133 You'll never believe this is really how armaps are handled in SOM... */
6134
6135 static boolean
6136 som_write_armap (abfd, elength, map, orl_count, stridx)
6137 bfd *abfd;
6138 unsigned int elength;
6139 struct orl *map ATTRIBUTE_UNUSED;
6140 unsigned int orl_count ATTRIBUTE_UNUSED;
6141 int stridx ATTRIBUTE_UNUSED;
6142 {
6143 bfd *curr_bfd;
6144 struct stat statbuf;
6145 unsigned int i, lst_size, nsyms, stringsize;
6146 struct ar_hdr hdr;
6147 struct lst_header lst;
6148 int *p;
6149 bfd_size_type amt;
6150
6151 /* We'll use this for the archive's date and mode later. */
6152 if (stat (abfd->filename, &statbuf) != 0)
6153 {
6154 bfd_set_error (bfd_error_system_call);
6155 return false;
6156 }
6157 /* Fudge factor. */
6158 bfd_ardata (abfd)->armap_timestamp = statbuf.st_mtime + 60;
6159
6160 /* Account for the lst header first. */
6161 lst_size = sizeof (struct lst_header);
6162
6163 /* Start building the LST header. */
6164 /* FIXME: Do we need to examine each element to determine the
6165 largest id number? */
6166 lst.system_id = CPU_PA_RISC1_0;
6167 lst.a_magic = LIBMAGIC;
6168 lst.version_id = VERSION_ID;
6169 lst.file_time.secs = 0;
6170 lst.file_time.nanosecs = 0;
6171
6172 lst.hash_loc = lst_size;
6173 lst.hash_size = SOM_LST_HASH_SIZE;
6174
6175 /* Hash table is a SOM_LST_HASH_SIZE 32bit offsets. */
6176 lst_size += 4 * SOM_LST_HASH_SIZE;
6177
6178 /* We need to count the number of SOMs in this archive. */
6179 curr_bfd = abfd->archive_head;
6180 lst.module_count = 0;
6181 while (curr_bfd != NULL)
6182 {
6183 /* Only true SOM objects count. */
6184 if (curr_bfd->format == bfd_object
6185 && curr_bfd->xvec->flavour == bfd_target_som_flavour)
6186 lst.module_count++;
6187 curr_bfd = curr_bfd->next;
6188 }
6189 lst.module_limit = lst.module_count;
6190 lst.dir_loc = lst_size;
6191 lst_size += sizeof (struct som_entry) * lst.module_count;
6192
6193 /* We don't support import/export tables, auxiliary headers,
6194 or free lists yet. Make the linker work a little harder
6195 to make our life easier. */
6196
6197 lst.export_loc = 0;
6198 lst.export_count = 0;
6199 lst.import_loc = 0;
6200 lst.aux_loc = 0;
6201 lst.aux_size = 0;
6202
6203 /* Count how many symbols we will have on the hash chains and the
6204 size of the associated string table. */
6205 if (! som_bfd_prep_for_ar_write (abfd, &nsyms, &stringsize))
6206 return false;
6207
6208 lst_size += sizeof (struct lst_symbol_record) * nsyms;
6209
6210 /* For the string table. One day we might actually use this info
6211 to avoid small seeks/reads when reading archives. */
6212 lst.string_loc = lst_size;
6213 lst.string_size = stringsize;
6214 lst_size += stringsize;
6215
6216 /* SOM ABI says this must be zero. */
6217 lst.free_list = 0;
6218 lst.file_end = lst_size;
6219
6220 /* Compute the checksum. Must happen after the entire lst header
6221 has filled in. */
6222 p = (int *) &lst;
6223 lst.checksum = 0;
6224 for (i = 0; i < sizeof (struct lst_header) / sizeof (int) - 1; i++)
6225 lst.checksum ^= *p++;
6226
6227 sprintf (hdr.ar_name, "/ ");
6228 sprintf (hdr.ar_date, "%ld", bfd_ardata (abfd)->armap_timestamp);
6229 sprintf (hdr.ar_uid, "%ld", (long) getuid ());
6230 sprintf (hdr.ar_gid, "%ld", (long) getgid ());
6231 sprintf (hdr.ar_mode, "%-8o", (unsigned int) statbuf.st_mode);
6232 sprintf (hdr.ar_size, "%-10d", (int) lst_size);
6233 hdr.ar_fmag[0] = '`';
6234 hdr.ar_fmag[1] = '\012';
6235
6236 /* Turn any nulls into spaces. */
6237 for (i = 0; i < sizeof (struct ar_hdr); i++)
6238 if (((char *) (&hdr))[i] == '\0')
6239 (((char *) (&hdr))[i]) = ' ';
6240
6241 /* Scribble out the ar header. */
6242 amt = sizeof (struct ar_hdr);
6243 if (bfd_bwrite ((PTR) &hdr, amt, abfd) != amt)
6244 return false;
6245
6246 /* Now scribble out the lst header. */
6247 amt = sizeof (struct lst_header);
6248 if (bfd_bwrite ((PTR) &lst, amt, abfd) != amt)
6249 return false;
6250
6251 /* Build and write the armap. */
6252 if (!som_bfd_ar_write_symbol_stuff (abfd, nsyms, stringsize, lst, elength))
6253 return false;
6254
6255 /* Done. */
6256 return true;
6257 }
6258
6259 /* Free all information we have cached for this BFD. We can always
6260 read it again later if we need it. */
6261
6262 static boolean
6263 som_bfd_free_cached_info (abfd)
6264 bfd *abfd;
6265 {
6266 asection *o;
6267
6268 if (bfd_get_format (abfd) != bfd_object)
6269 return true;
6270
6271 #define FREE(x) if (x != NULL) { free (x); x = NULL; }
6272 /* Free the native string and symbol tables. */
6273 FREE (obj_som_symtab (abfd));
6274 FREE (obj_som_stringtab (abfd));
6275 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
6276 {
6277 /* Free the native relocations. */
6278 o->reloc_count = (unsigned) -1;
6279 FREE (som_section_data (o)->reloc_stream);
6280 /* Free the generic relocations. */
6281 FREE (o->relocation);
6282 }
6283 #undef FREE
6284
6285 return true;
6286 }
6287
6288 /* End of miscellaneous support functions. */
6289
6290 /* Linker support functions. */
6291
6292 static boolean
6293 som_bfd_link_split_section (abfd, sec)
6294 bfd *abfd ATTRIBUTE_UNUSED;
6295 asection *sec;
6296 {
6297 return (som_is_subspace (sec) && sec->_raw_size > 240000);
6298 }
6299
6300 #define som_close_and_cleanup som_bfd_free_cached_info
6301
6302 #define som_read_ar_hdr _bfd_generic_read_ar_hdr
6303 #define som_openr_next_archived_file bfd_generic_openr_next_archived_file
6304 #define som_get_elt_at_index _bfd_generic_get_elt_at_index
6305 #define som_generic_stat_arch_elt bfd_generic_stat_arch_elt
6306 #define som_truncate_arname bfd_bsd_truncate_arname
6307 #define som_slurp_extended_name_table _bfd_slurp_extended_name_table
6308 #define som_construct_extended_name_table \
6309 _bfd_archive_coff_construct_extended_name_table
6310 #define som_update_armap_timestamp bfd_true
6311 #define som_bfd_print_private_bfd_data _bfd_generic_bfd_print_private_bfd_data
6312
6313 #define som_get_lineno _bfd_nosymbols_get_lineno
6314 #define som_bfd_make_debug_symbol _bfd_nosymbols_bfd_make_debug_symbol
6315 #define som_read_minisymbols _bfd_generic_read_minisymbols
6316 #define som_minisymbol_to_symbol _bfd_generic_minisymbol_to_symbol
6317 #define som_get_section_contents_in_window \
6318 _bfd_generic_get_section_contents_in_window
6319
6320 #define som_bfd_get_relocated_section_contents \
6321 bfd_generic_get_relocated_section_contents
6322 #define som_bfd_relax_section bfd_generic_relax_section
6323 #define som_bfd_link_hash_table_create _bfd_generic_link_hash_table_create
6324 #define som_bfd_link_hash_table_free _bfd_generic_link_hash_table_free
6325 #define som_bfd_link_add_symbols _bfd_generic_link_add_symbols
6326 #define som_bfd_link_just_syms _bfd_generic_link_just_syms
6327 #define som_bfd_final_link _bfd_generic_final_link
6328
6329 #define som_bfd_gc_sections bfd_generic_gc_sections
6330 #define som_bfd_merge_sections bfd_generic_merge_sections
6331 #define som_bfd_discard_group bfd_generic_discard_group
6332
6333 const bfd_target som_vec = {
6334 "som", /* name */
6335 bfd_target_som_flavour,
6336 BFD_ENDIAN_BIG, /* target byte order */
6337 BFD_ENDIAN_BIG, /* target headers byte order */
6338 (HAS_RELOC | EXEC_P | /* object flags */
6339 HAS_LINENO | HAS_DEBUG |
6340 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED | DYNAMIC),
6341 (SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS
6342 | SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* section flags */
6343
6344 /* leading_symbol_char: is the first char of a user symbol
6345 predictable, and if so what is it */
6346 0,
6347 '/', /* ar_pad_char */
6348 14, /* ar_max_namelen */
6349 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
6350 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
6351 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
6352 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
6353 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
6354 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
6355 {_bfd_dummy_target,
6356 som_object_p, /* bfd_check_format */
6357 bfd_generic_archive_p,
6358 _bfd_dummy_target
6359 },
6360 {
6361 bfd_false,
6362 som_mkobject,
6363 _bfd_generic_mkarchive,
6364 bfd_false
6365 },
6366 {
6367 bfd_false,
6368 som_write_object_contents,
6369 _bfd_write_archive_contents,
6370 bfd_false,
6371 },
6372 #undef som
6373
6374 BFD_JUMP_TABLE_GENERIC (som),
6375 BFD_JUMP_TABLE_COPY (som),
6376 BFD_JUMP_TABLE_CORE (_bfd_nocore),
6377 BFD_JUMP_TABLE_ARCHIVE (som),
6378 BFD_JUMP_TABLE_SYMBOLS (som),
6379 BFD_JUMP_TABLE_RELOCS (som),
6380 BFD_JUMP_TABLE_WRITE (som),
6381 BFD_JUMP_TABLE_LINK (som),
6382 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
6383
6384 NULL,
6385
6386 (PTR) 0
6387 };
6388
6389 #endif /* HOST_HPPAHPUX || HOST_HPPABSD || HOST_HPPAOSF */
This page took 0.157139 seconds and 5 git commands to generate.