Change inferior thread list to be a thread map
[deliverable/binutils-gdb.git] / bfd / syms.c
1 /* Generic symbol-table support for the BFD library.
2 Copyright (C) 1990-2020 Free Software Foundation, Inc.
3 Written by Cygnus Support.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 /*
23 SECTION
24 Symbols
25
26 BFD tries to maintain as much symbol information as it can when
27 it moves information from file to file. BFD passes information
28 to applications though the <<asymbol>> structure. When the
29 application requests the symbol table, BFD reads the table in
30 the native form and translates parts of it into the internal
31 format. To maintain more than the information passed to
32 applications, some targets keep some information ``behind the
33 scenes'' in a structure only the particular back end knows
34 about. For example, the coff back end keeps the original
35 symbol table structure as well as the canonical structure when
36 a BFD is read in. On output, the coff back end can reconstruct
37 the output symbol table so that no information is lost, even
38 information unique to coff which BFD doesn't know or
39 understand. If a coff symbol table were read, but were written
40 through an a.out back end, all the coff specific information
41 would be lost. The symbol table of a BFD
42 is not necessarily read in until a canonicalize request is
43 made. Then the BFD back end fills in a table provided by the
44 application with pointers to the canonical information. To
45 output symbols, the application provides BFD with a table of
46 pointers to pointers to <<asymbol>>s. This allows applications
47 like the linker to output a symbol as it was read, since the ``behind
48 the scenes'' information will be still available.
49 @menu
50 @* Reading Symbols::
51 @* Writing Symbols::
52 @* Mini Symbols::
53 @* typedef asymbol::
54 @* symbol handling functions::
55 @end menu
56
57 INODE
58 Reading Symbols, Writing Symbols, Symbols, Symbols
59 SUBSECTION
60 Reading symbols
61
62 There are two stages to reading a symbol table from a BFD:
63 allocating storage, and the actual reading process. This is an
64 excerpt from an application which reads the symbol table:
65
66 | long storage_needed;
67 | asymbol **symbol_table;
68 | long number_of_symbols;
69 | long i;
70 |
71 | storage_needed = bfd_get_symtab_upper_bound (abfd);
72 |
73 | if (storage_needed < 0)
74 | FAIL
75 |
76 | if (storage_needed == 0)
77 | return;
78 |
79 | symbol_table = xmalloc (storage_needed);
80 | ...
81 | number_of_symbols =
82 | bfd_canonicalize_symtab (abfd, symbol_table);
83 |
84 | if (number_of_symbols < 0)
85 | FAIL
86 |
87 | for (i = 0; i < number_of_symbols; i++)
88 | process_symbol (symbol_table[i]);
89
90 All storage for the symbols themselves is in an objalloc
91 connected to the BFD; it is freed when the BFD is closed.
92
93 INODE
94 Writing Symbols, Mini Symbols, Reading Symbols, Symbols
95 SUBSECTION
96 Writing symbols
97
98 Writing of a symbol table is automatic when a BFD open for
99 writing is closed. The application attaches a vector of
100 pointers to pointers to symbols to the BFD being written, and
101 fills in the symbol count. The close and cleanup code reads
102 through the table provided and performs all the necessary
103 operations. The BFD output code must always be provided with an
104 ``owned'' symbol: one which has come from another BFD, or one
105 which has been created using <<bfd_make_empty_symbol>>. Here is an
106 example showing the creation of a symbol table with only one element:
107
108 | #include "sysdep.h"
109 | #include "bfd.h"
110 | int main (void)
111 | {
112 | bfd *abfd;
113 | asymbol *ptrs[2];
114 | asymbol *new;
115 |
116 | abfd = bfd_openw ("foo","a.out-sunos-big");
117 | bfd_set_format (abfd, bfd_object);
118 | new = bfd_make_empty_symbol (abfd);
119 | new->name = "dummy_symbol";
120 | new->section = bfd_make_section_old_way (abfd, ".text");
121 | new->flags = BSF_GLOBAL;
122 | new->value = 0x12345;
123 |
124 | ptrs[0] = new;
125 | ptrs[1] = 0;
126 |
127 | bfd_set_symtab (abfd, ptrs, 1);
128 | bfd_close (abfd);
129 | return 0;
130 | }
131 |
132 | ./makesym
133 | nm foo
134 | 00012345 A dummy_symbol
135
136 Many formats cannot represent arbitrary symbol information; for
137 instance, the <<a.out>> object format does not allow an
138 arbitrary number of sections. A symbol pointing to a section
139 which is not one of <<.text>>, <<.data>> or <<.bss>> cannot
140 be described.
141
142 INODE
143 Mini Symbols, typedef asymbol, Writing Symbols, Symbols
144 SUBSECTION
145 Mini Symbols
146
147 Mini symbols provide read-only access to the symbol table.
148 They use less memory space, but require more time to access.
149 They can be useful for tools like nm or objdump, which may
150 have to handle symbol tables of extremely large executables.
151
152 The <<bfd_read_minisymbols>> function will read the symbols
153 into memory in an internal form. It will return a <<void *>>
154 pointer to a block of memory, a symbol count, and the size of
155 each symbol. The pointer is allocated using <<malloc>>, and
156 should be freed by the caller when it is no longer needed.
157
158 The function <<bfd_minisymbol_to_symbol>> will take a pointer
159 to a minisymbol, and a pointer to a structure returned by
160 <<bfd_make_empty_symbol>>, and return a <<asymbol>> structure.
161 The return value may or may not be the same as the value from
162 <<bfd_make_empty_symbol>> which was passed in.
163
164 */
165
166 /*
167 DOCDD
168 INODE
169 typedef asymbol, symbol handling functions, Mini Symbols, Symbols
170
171 */
172 /*
173 SUBSECTION
174 typedef asymbol
175
176 An <<asymbol>> has the form:
177
178 */
179
180 /*
181 CODE_FRAGMENT
182
183 .
184 .typedef struct bfd_symbol
185 .{
186 . {* A pointer to the BFD which owns the symbol. This information
187 . is necessary so that a back end can work out what additional
188 . information (invisible to the application writer) is carried
189 . with the symbol.
190 .
191 . This field is *almost* redundant, since you can use section->owner
192 . instead, except that some symbols point to the global sections
193 . bfd_{abs,com,und}_section. This could be fixed by making
194 . these globals be per-bfd (or per-target-flavor). FIXME. *}
195 . struct bfd *the_bfd; {* Use bfd_asymbol_bfd(sym) to access this field. *}
196 .
197 . {* The text of the symbol. The name is left alone, and not copied; the
198 . application may not alter it. *}
199 . const char *name;
200 .
201 . {* The value of the symbol. This really should be a union of a
202 . numeric value with a pointer, since some flags indicate that
203 . a pointer to another symbol is stored here. *}
204 . symvalue value;
205 .
206 . {* Attributes of a symbol. *}
207 .#define BSF_NO_FLAGS 0
208 .
209 . {* The symbol has local scope; <<static>> in <<C>>. The value
210 . is the offset into the section of the data. *}
211 .#define BSF_LOCAL (1 << 0)
212 .
213 . {* The symbol has global scope; initialized data in <<C>>. The
214 . value is the offset into the section of the data. *}
215 .#define BSF_GLOBAL (1 << 1)
216 .
217 . {* The symbol has global scope and is exported. The value is
218 . the offset into the section of the data. *}
219 .#define BSF_EXPORT BSF_GLOBAL {* No real difference. *}
220 .
221 . {* A normal C symbol would be one of:
222 . <<BSF_LOCAL>>, <<BSF_UNDEFINED>> or <<BSF_GLOBAL>>. *}
223 .
224 . {* The symbol is a debugging record. The value has an arbitrary
225 . meaning, unless BSF_DEBUGGING_RELOC is also set. *}
226 .#define BSF_DEBUGGING (1 << 2)
227 .
228 . {* The symbol denotes a function entry point. Used in ELF,
229 . perhaps others someday. *}
230 .#define BSF_FUNCTION (1 << 3)
231 .
232 . {* Used by the linker. *}
233 .#define BSF_KEEP (1 << 5)
234 .
235 . {* An ELF common symbol. *}
236 .#define BSF_ELF_COMMON (1 << 6)
237 .
238 . {* A weak global symbol, overridable without warnings by
239 . a regular global symbol of the same name. *}
240 .#define BSF_WEAK (1 << 7)
241 .
242 . {* This symbol was created to point to a section, e.g. ELF's
243 . STT_SECTION symbols. *}
244 .#define BSF_SECTION_SYM (1 << 8)
245 .
246 . {* The symbol used to be a common symbol, but now it is
247 . allocated. *}
248 .#define BSF_OLD_COMMON (1 << 9)
249 .
250 . {* In some files the type of a symbol sometimes alters its
251 . location in an output file - ie in coff a <<ISFCN>> symbol
252 . which is also <<C_EXT>> symbol appears where it was
253 . declared and not at the end of a section. This bit is set
254 . by the target BFD part to convey this information. *}
255 .#define BSF_NOT_AT_END (1 << 10)
256 .
257 . {* Signal that the symbol is the label of constructor section. *}
258 .#define BSF_CONSTRUCTOR (1 << 11)
259 .
260 . {* Signal that the symbol is a warning symbol. The name is a
261 . warning. The name of the next symbol is the one to warn about;
262 . if a reference is made to a symbol with the same name as the next
263 . symbol, a warning is issued by the linker. *}
264 .#define BSF_WARNING (1 << 12)
265 .
266 . {* Signal that the symbol is indirect. This symbol is an indirect
267 . pointer to the symbol with the same name as the next symbol. *}
268 .#define BSF_INDIRECT (1 << 13)
269 .
270 . {* BSF_FILE marks symbols that contain a file name. This is used
271 . for ELF STT_FILE symbols. *}
272 .#define BSF_FILE (1 << 14)
273 .
274 . {* Symbol is from dynamic linking information. *}
275 .#define BSF_DYNAMIC (1 << 15)
276 .
277 . {* The symbol denotes a data object. Used in ELF, and perhaps
278 . others someday. *}
279 .#define BSF_OBJECT (1 << 16)
280 .
281 . {* This symbol is a debugging symbol. The value is the offset
282 . into the section of the data. BSF_DEBUGGING should be set
283 . as well. *}
284 .#define BSF_DEBUGGING_RELOC (1 << 17)
285 .
286 . {* This symbol is thread local. Used in ELF. *}
287 .#define BSF_THREAD_LOCAL (1 << 18)
288 .
289 . {* This symbol represents a complex relocation expression,
290 . with the expression tree serialized in the symbol name. *}
291 .#define BSF_RELC (1 << 19)
292 .
293 . {* This symbol represents a signed complex relocation expression,
294 . with the expression tree serialized in the symbol name. *}
295 .#define BSF_SRELC (1 << 20)
296 .
297 . {* This symbol was created by bfd_get_synthetic_symtab. *}
298 .#define BSF_SYNTHETIC (1 << 21)
299 .
300 . {* This symbol is an indirect code object. Unrelated to BSF_INDIRECT.
301 . The dynamic linker will compute the value of this symbol by
302 . calling the function that it points to. BSF_FUNCTION must
303 . also be also set. *}
304 .#define BSF_GNU_INDIRECT_FUNCTION (1 << 22)
305 . {* This symbol is a globally unique data object. The dynamic linker
306 . will make sure that in the entire process there is just one symbol
307 . with this name and type in use. BSF_OBJECT must also be set. *}
308 .#define BSF_GNU_UNIQUE (1 << 23)
309 .
310 . flagword flags;
311 .
312 . {* A pointer to the section to which this symbol is
313 . relative. This will always be non NULL, there are special
314 . sections for undefined and absolute symbols. *}
315 . struct bfd_section *section;
316 .
317 . {* Back end special data. *}
318 . union
319 . {
320 . void *p;
321 . bfd_vma i;
322 . }
323 . udata;
324 .}
325 .asymbol;
326 .
327 */
328
329 #include "sysdep.h"
330 #include "bfd.h"
331 #include "libbfd.h"
332 #include "safe-ctype.h"
333 #include "bfdlink.h"
334 #include "aout/stab_gnu.h"
335
336 /*
337 DOCDD
338 INODE
339 symbol handling functions, , typedef asymbol, Symbols
340 SUBSECTION
341 Symbol handling functions
342 */
343
344 /*
345 FUNCTION
346 bfd_get_symtab_upper_bound
347
348 DESCRIPTION
349 Return the number of bytes required to store a vector of pointers
350 to <<asymbols>> for all the symbols in the BFD @var{abfd},
351 including a terminal NULL pointer. If there are no symbols in
352 the BFD, then return 0. If an error occurs, return -1.
353
354 .#define bfd_get_symtab_upper_bound(abfd) \
355 . BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))
356 .
357 */
358
359 /*
360 FUNCTION
361 bfd_is_local_label
362
363 SYNOPSIS
364 bfd_boolean bfd_is_local_label (bfd *abfd, asymbol *sym);
365
366 DESCRIPTION
367 Return TRUE if the given symbol @var{sym} in the BFD @var{abfd} is
368 a compiler generated local label, else return FALSE.
369 */
370
371 bfd_boolean
372 bfd_is_local_label (bfd *abfd, asymbol *sym)
373 {
374 /* The BSF_SECTION_SYM check is needed for IA-64, where every label that
375 starts with '.' is local. This would accidentally catch section names
376 if we didn't reject them here. */
377 if ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_FILE | BSF_SECTION_SYM)) != 0)
378 return FALSE;
379 if (sym->name == NULL)
380 return FALSE;
381 return bfd_is_local_label_name (abfd, sym->name);
382 }
383
384 /*
385 FUNCTION
386 bfd_is_local_label_name
387
388 SYNOPSIS
389 bfd_boolean bfd_is_local_label_name (bfd *abfd, const char *name);
390
391 DESCRIPTION
392 Return TRUE if a symbol with the name @var{name} in the BFD
393 @var{abfd} is a compiler generated local label, else return
394 FALSE. This just checks whether the name has the form of a
395 local label.
396
397 .#define bfd_is_local_label_name(abfd, name) \
398 . BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))
399 .
400 */
401
402 /*
403 FUNCTION
404 bfd_is_target_special_symbol
405
406 SYNOPSIS
407 bfd_boolean bfd_is_target_special_symbol (bfd *abfd, asymbol *sym);
408
409 DESCRIPTION
410 Return TRUE iff a symbol @var{sym} in the BFD @var{abfd} is something
411 special to the particular target represented by the BFD. Such symbols
412 should normally not be mentioned to the user.
413
414 .#define bfd_is_target_special_symbol(abfd, sym) \
415 . BFD_SEND (abfd, _bfd_is_target_special_symbol, (abfd, sym))
416 .
417 */
418
419 /*
420 FUNCTION
421 bfd_canonicalize_symtab
422
423 DESCRIPTION
424 Read the symbols from the BFD @var{abfd}, and fills in
425 the vector @var{location} with pointers to the symbols and
426 a trailing NULL.
427 Return the actual number of symbol pointers, not
428 including the NULL.
429
430 .#define bfd_canonicalize_symtab(abfd, location) \
431 . BFD_SEND (abfd, _bfd_canonicalize_symtab, (abfd, location))
432 .
433 */
434
435 /*
436 FUNCTION
437 bfd_set_symtab
438
439 SYNOPSIS
440 bfd_boolean bfd_set_symtab
441 (bfd *abfd, asymbol **location, unsigned int count);
442
443 DESCRIPTION
444 Arrange that when the output BFD @var{abfd} is closed,
445 the table @var{location} of @var{count} pointers to symbols
446 will be written.
447 */
448
449 bfd_boolean
450 bfd_set_symtab (bfd *abfd, asymbol **location, unsigned int symcount)
451 {
452 if (abfd->format != bfd_object || bfd_read_p (abfd))
453 {
454 bfd_set_error (bfd_error_invalid_operation);
455 return FALSE;
456 }
457
458 abfd->outsymbols = location;
459 abfd->symcount = symcount;
460 return TRUE;
461 }
462
463 /*
464 FUNCTION
465 bfd_print_symbol_vandf
466
467 SYNOPSIS
468 void bfd_print_symbol_vandf (bfd *abfd, void *file, asymbol *symbol);
469
470 DESCRIPTION
471 Print the value and flags of the @var{symbol} supplied to the
472 stream @var{file}.
473 */
474 void
475 bfd_print_symbol_vandf (bfd *abfd, void *arg, asymbol *symbol)
476 {
477 FILE *file = (FILE *) arg;
478
479 flagword type = symbol->flags;
480
481 if (symbol->section != NULL)
482 bfd_fprintf_vma (abfd, file, symbol->value + symbol->section->vma);
483 else
484 bfd_fprintf_vma (abfd, file, symbol->value);
485
486 /* This presumes that a symbol can not be both BSF_DEBUGGING and
487 BSF_DYNAMIC, nor more than one of BSF_FUNCTION, BSF_FILE, and
488 BSF_OBJECT. */
489 fprintf (file, " %c%c%c%c%c%c%c",
490 ((type & BSF_LOCAL)
491 ? (type & BSF_GLOBAL) ? '!' : 'l'
492 : (type & BSF_GLOBAL) ? 'g'
493 : (type & BSF_GNU_UNIQUE) ? 'u' : ' '),
494 (type & BSF_WEAK) ? 'w' : ' ',
495 (type & BSF_CONSTRUCTOR) ? 'C' : ' ',
496 (type & BSF_WARNING) ? 'W' : ' ',
497 (type & BSF_INDIRECT) ? 'I' : (type & BSF_GNU_INDIRECT_FUNCTION) ? 'i' : ' ',
498 (type & BSF_DEBUGGING) ? 'd' : (type & BSF_DYNAMIC) ? 'D' : ' ',
499 ((type & BSF_FUNCTION)
500 ? 'F'
501 : ((type & BSF_FILE)
502 ? 'f'
503 : ((type & BSF_OBJECT) ? 'O' : ' '))));
504 }
505
506 /*
507 FUNCTION
508 bfd_make_empty_symbol
509
510 DESCRIPTION
511 Create a new <<asymbol>> structure for the BFD @var{abfd}
512 and return a pointer to it.
513
514 This routine is necessary because each back end has private
515 information surrounding the <<asymbol>>. Building your own
516 <<asymbol>> and pointing to it will not create the private
517 information, and will cause problems later on.
518
519 .#define bfd_make_empty_symbol(abfd) \
520 . BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
521 .
522 */
523
524 /*
525 FUNCTION
526 _bfd_generic_make_empty_symbol
527
528 SYNOPSIS
529 asymbol *_bfd_generic_make_empty_symbol (bfd *);
530
531 DESCRIPTION
532 Create a new <<asymbol>> structure for the BFD @var{abfd}
533 and return a pointer to it. Used by core file routines,
534 binary back-end and anywhere else where no private info
535 is needed.
536 */
537
538 asymbol *
539 _bfd_generic_make_empty_symbol (bfd *abfd)
540 {
541 bfd_size_type amt = sizeof (asymbol);
542 asymbol *new_symbol = (asymbol *) bfd_zalloc (abfd, amt);
543 if (new_symbol)
544 new_symbol->the_bfd = abfd;
545 return new_symbol;
546 }
547
548 /*
549 FUNCTION
550 bfd_make_debug_symbol
551
552 DESCRIPTION
553 Create a new <<asymbol>> structure for the BFD @var{abfd},
554 to be used as a debugging symbol. Further details of its use have
555 yet to be worked out.
556
557 .#define bfd_make_debug_symbol(abfd,ptr,size) \
558 . BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))
559 .
560 */
561
562 struct section_to_type
563 {
564 const char *section;
565 char type;
566 };
567
568 /* Map section names to POSIX/BSD single-character symbol types.
569 This table is probably incomplete. It is sorted for convenience of
570 adding entries. Since it is so short, a linear search is used. */
571 static const struct section_to_type stt[] =
572 {
573 {".bss", 'b'},
574 {"code", 't'}, /* MRI .text */
575 {".data", 'd'},
576 {"*DEBUG*", 'N'},
577 {".debug", 'N'}, /* MSVC's .debug (non-standard debug syms) */
578 {".drectve", 'i'}, /* MSVC's .drective section */
579 {".edata", 'e'}, /* MSVC's .edata (export) section */
580 {".fini", 't'}, /* ELF fini section */
581 {".idata", 'i'}, /* MSVC's .idata (import) section */
582 {".init", 't'}, /* ELF init section */
583 {".pdata", 'p'}, /* MSVC's .pdata (stack unwind) section */
584 {".rdata", 'r'}, /* Read only data. */
585 {".rodata", 'r'}, /* Read only data. */
586 {".sbss", 's'}, /* Small BSS (uninitialized data). */
587 {".scommon", 'c'}, /* Small common. */
588 {".sdata", 'g'}, /* Small initialized data. */
589 {".text", 't'},
590 {"vars", 'd'}, /* MRI .data */
591 {"zerovars", 'b'}, /* MRI .bss */
592 {0, 0}
593 };
594
595 /* Return the single-character symbol type corresponding to
596 section S, or '?' for an unknown COFF section.
597
598 Check for leading strings which match, followed by a number, '.',
599 or '$' so .text5 matches the .text entry, but .init_array doesn't
600 match the .init entry. */
601
602 static char
603 coff_section_type (const char *s)
604 {
605 const struct section_to_type *t;
606
607 for (t = &stt[0]; t->section; t++)
608 {
609 size_t len = strlen (t->section);
610 if (strncmp (s, t->section, len) == 0
611 && memchr (".$0123456789", s[len], 13) != 0)
612 return t->type;
613 }
614
615 return '?';
616 }
617
618 /* Return the single-character symbol type corresponding to section
619 SECTION, or '?' for an unknown section. This uses section flags to
620 identify sections.
621
622 FIXME These types are unhandled: c, i, e, p. If we handled these also,
623 we could perhaps obsolete coff_section_type. */
624
625 static char
626 decode_section_type (const struct bfd_section *section)
627 {
628 if (section->flags & SEC_CODE)
629 return 't';
630 if (section->flags & SEC_DATA)
631 {
632 if (section->flags & SEC_READONLY)
633 return 'r';
634 else if (section->flags & SEC_SMALL_DATA)
635 return 'g';
636 else
637 return 'd';
638 }
639 if ((section->flags & SEC_HAS_CONTENTS) == 0)
640 {
641 if (section->flags & SEC_SMALL_DATA)
642 return 's';
643 else
644 return 'b';
645 }
646 if (section->flags & SEC_DEBUGGING)
647 return 'N';
648 if ((section->flags & SEC_HAS_CONTENTS) && (section->flags & SEC_READONLY))
649 return 'n';
650
651 return '?';
652 }
653
654 /*
655 FUNCTION
656 bfd_decode_symclass
657
658 DESCRIPTION
659 Return a character corresponding to the symbol
660 class of @var{symbol}, or '?' for an unknown class.
661
662 SYNOPSIS
663 int bfd_decode_symclass (asymbol *symbol);
664 */
665 int
666 bfd_decode_symclass (asymbol *symbol)
667 {
668 char c;
669
670 if (symbol->section && bfd_is_com_section (symbol->section))
671 return 'C';
672 if (bfd_is_und_section (symbol->section))
673 {
674 if (symbol->flags & BSF_WEAK)
675 {
676 /* If weak, determine if it's specifically an object
677 or non-object weak. */
678 if (symbol->flags & BSF_OBJECT)
679 return 'v';
680 else
681 return 'w';
682 }
683 else
684 return 'U';
685 }
686 if (bfd_is_ind_section (symbol->section))
687 return 'I';
688 if (symbol->flags & BSF_GNU_INDIRECT_FUNCTION)
689 return 'i';
690 if (symbol->flags & BSF_WEAK)
691 {
692 /* If weak, determine if it's specifically an object
693 or non-object weak. */
694 if (symbol->flags & BSF_OBJECT)
695 return 'V';
696 else
697 return 'W';
698 }
699 if (symbol->flags & BSF_GNU_UNIQUE)
700 return 'u';
701 if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL)))
702 return '?';
703
704 if (bfd_is_abs_section (symbol->section))
705 c = 'a';
706 else if (symbol->section)
707 {
708 c = decode_section_type (symbol->section);
709 if (c == '?')
710 c = coff_section_type (symbol->section->name);
711 }
712 else
713 return '?';
714 if (symbol->flags & BSF_GLOBAL)
715 c = TOUPPER (c);
716 return c;
717
718 /* We don't have to handle these cases just yet, but we will soon:
719 N_SETV: 'v';
720 N_SETA: 'l';
721 N_SETT: 'x';
722 N_SETD: 'z';
723 N_SETB: 's';
724 N_INDR: 'i';
725 */
726 }
727
728 /*
729 FUNCTION
730 bfd_is_undefined_symclass
731
732 DESCRIPTION
733 Returns non-zero if the class symbol returned by
734 bfd_decode_symclass represents an undefined symbol.
735 Returns zero otherwise.
736
737 SYNOPSIS
738 bfd_boolean bfd_is_undefined_symclass (int symclass);
739 */
740
741 bfd_boolean
742 bfd_is_undefined_symclass (int symclass)
743 {
744 return symclass == 'U' || symclass == 'w' || symclass == 'v';
745 }
746
747 /*
748 FUNCTION
749 bfd_symbol_info
750
751 DESCRIPTION
752 Fill in the basic info about symbol that nm needs.
753 Additional info may be added by the back-ends after
754 calling this function.
755
756 SYNOPSIS
757 void bfd_symbol_info (asymbol *symbol, symbol_info *ret);
758 */
759
760 void
761 bfd_symbol_info (asymbol *symbol, symbol_info *ret)
762 {
763 ret->type = bfd_decode_symclass (symbol);
764
765 if (bfd_is_undefined_symclass (ret->type))
766 ret->value = 0;
767 else
768 ret->value = symbol->value + symbol->section->vma;
769
770 ret->name = symbol->name;
771 }
772
773 /*
774 FUNCTION
775 bfd_copy_private_symbol_data
776
777 SYNOPSIS
778 bfd_boolean bfd_copy_private_symbol_data
779 (bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
780
781 DESCRIPTION
782 Copy private symbol information from @var{isym} in the BFD
783 @var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}.
784 Return <<TRUE>> on success, <<FALSE>> on error. Possible error
785 returns are:
786
787 o <<bfd_error_no_memory>> -
788 Not enough memory exists to create private data for @var{osec}.
789
790 .#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
791 . BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
792 . (ibfd, isymbol, obfd, osymbol))
793 .
794 */
795
796 /* The generic version of the function which returns mini symbols.
797 This is used when the backend does not provide a more efficient
798 version. It just uses BFD asymbol structures as mini symbols. */
799
800 long
801 _bfd_generic_read_minisymbols (bfd *abfd,
802 bfd_boolean dynamic,
803 void **minisymsp,
804 unsigned int *sizep)
805 {
806 long storage;
807 asymbol **syms = NULL;
808 long symcount;
809
810 if (dynamic)
811 storage = bfd_get_dynamic_symtab_upper_bound (abfd);
812 else
813 storage = bfd_get_symtab_upper_bound (abfd);
814 if (storage < 0)
815 goto error_return;
816 if (storage == 0)
817 return 0;
818
819 syms = (asymbol **) bfd_malloc (storage);
820 if (syms == NULL)
821 goto error_return;
822
823 if (dynamic)
824 symcount = bfd_canonicalize_dynamic_symtab (abfd, syms);
825 else
826 symcount = bfd_canonicalize_symtab (abfd, syms);
827 if (symcount < 0)
828 goto error_return;
829
830 if (symcount == 0)
831 /* We return 0 above when storage is 0. Exit in the same state
832 here, so as to not complicate callers with having to deal with
833 freeing memory for zero symcount. */
834 free (syms);
835 else
836 {
837 *minisymsp = syms;
838 *sizep = sizeof (asymbol *);
839 }
840 return symcount;
841
842 error_return:
843 bfd_set_error (bfd_error_no_symbols);
844 if (syms != NULL)
845 free (syms);
846 return -1;
847 }
848
849 /* The generic version of the function which converts a minisymbol to
850 an asymbol. We don't worry about the sym argument we are passed;
851 we just return the asymbol the minisymbol points to. */
852
853 asymbol *
854 _bfd_generic_minisymbol_to_symbol (bfd *abfd ATTRIBUTE_UNUSED,
855 bfd_boolean dynamic ATTRIBUTE_UNUSED,
856 const void *minisym,
857 asymbol *sym ATTRIBUTE_UNUSED)
858 {
859 return *(asymbol **) minisym;
860 }
861
862 /* Look through stabs debugging information in .stab and .stabstr
863 sections to find the source file and line closest to a desired
864 location. This is used by COFF and ELF targets. It sets *pfound
865 to TRUE if it finds some information. The *pinfo field is used to
866 pass cached information in and out of this routine; this first time
867 the routine is called for a BFD, *pinfo should be NULL. The value
868 placed in *pinfo should be saved with the BFD, and passed back each
869 time this function is called. */
870
871 /* We use a cache by default. */
872
873 #define ENABLE_CACHING
874
875 /* We keep an array of indexentry structures to record where in the
876 stabs section we should look to find line number information for a
877 particular address. */
878
879 struct indexentry
880 {
881 bfd_vma val;
882 bfd_byte *stab;
883 bfd_byte *str;
884 char *directory_name;
885 char *file_name;
886 char *function_name;
887 int idx;
888 };
889
890 /* Compare two indexentry structures. This is called via qsort. */
891
892 static int
893 cmpindexentry (const void *a, const void *b)
894 {
895 const struct indexentry *contestantA = (const struct indexentry *) a;
896 const struct indexentry *contestantB = (const struct indexentry *) b;
897
898 if (contestantA->val < contestantB->val)
899 return -1;
900 if (contestantA->val > contestantB->val)
901 return 1;
902 return contestantA->idx - contestantB->idx;
903 }
904
905 /* A pointer to this structure is stored in *pinfo. */
906
907 struct stab_find_info
908 {
909 /* The .stab section. */
910 asection *stabsec;
911 /* The .stabstr section. */
912 asection *strsec;
913 /* The contents of the .stab section. */
914 bfd_byte *stabs;
915 /* The contents of the .stabstr section. */
916 bfd_byte *strs;
917
918 /* A table that indexes stabs by memory address. */
919 struct indexentry *indextable;
920 /* The number of entries in indextable. */
921 int indextablesize;
922
923 #ifdef ENABLE_CACHING
924 /* Cached values to restart quickly. */
925 struct indexentry *cached_indexentry;
926 bfd_vma cached_offset;
927 bfd_byte *cached_stab;
928 char *cached_file_name;
929 #endif
930
931 /* Saved ptr to malloc'ed filename. */
932 char *filename;
933 };
934
935 bfd_boolean
936 _bfd_stab_section_find_nearest_line (bfd *abfd,
937 asymbol **symbols,
938 asection *section,
939 bfd_vma offset,
940 bfd_boolean *pfound,
941 const char **pfilename,
942 const char **pfnname,
943 unsigned int *pline,
944 void **pinfo)
945 {
946 struct stab_find_info *info;
947 bfd_size_type stabsize, strsize;
948 bfd_byte *stab, *str;
949 bfd_byte *nul_fun, *nul_str;
950 bfd_size_type stroff;
951 struct indexentry *indexentry;
952 char *file_name;
953 char *directory_name;
954 bfd_boolean saw_line, saw_func;
955
956 *pfound = FALSE;
957 *pfilename = bfd_get_filename (abfd);
958 *pfnname = NULL;
959 *pline = 0;
960
961 /* Stabs entries use a 12 byte format:
962 4 byte string table index
963 1 byte stab type
964 1 byte stab other field
965 2 byte stab desc field
966 4 byte stab value
967 FIXME: This will have to change for a 64 bit object format.
968
969 The stabs symbols are divided into compilation units. For the
970 first entry in each unit, the type of 0, the value is the length
971 of the string table for this unit, and the desc field is the
972 number of stabs symbols for this unit. */
973
974 #define STRDXOFF (0)
975 #define TYPEOFF (4)
976 #define OTHEROFF (5)
977 #define DESCOFF (6)
978 #define VALOFF (8)
979 #define STABSIZE (12)
980
981 info = (struct stab_find_info *) *pinfo;
982 if (info != NULL)
983 {
984 if (info->stabsec == NULL || info->strsec == NULL)
985 {
986 /* No stabs debugging information. */
987 return TRUE;
988 }
989
990 stabsize = (info->stabsec->rawsize
991 ? info->stabsec->rawsize
992 : info->stabsec->size);
993 strsize = (info->strsec->rawsize
994 ? info->strsec->rawsize
995 : info->strsec->size);
996 }
997 else
998 {
999 long reloc_size, reloc_count;
1000 arelent **reloc_vector;
1001 int i;
1002 char *function_name;
1003 bfd_size_type amt = sizeof *info;
1004
1005 info = (struct stab_find_info *) bfd_zalloc (abfd, amt);
1006 if (info == NULL)
1007 return FALSE;
1008
1009 /* FIXME: When using the linker --split-by-file or
1010 --split-by-reloc options, it is possible for the .stab and
1011 .stabstr sections to be split. We should handle that. */
1012
1013 info->stabsec = bfd_get_section_by_name (abfd, ".stab");
1014 info->strsec = bfd_get_section_by_name (abfd, ".stabstr");
1015
1016 if (info->stabsec == NULL || info->strsec == NULL)
1017 {
1018 /* Try SOM section names. */
1019 info->stabsec = bfd_get_section_by_name (abfd, "$GDB_SYMBOLS$");
1020 info->strsec = bfd_get_section_by_name (abfd, "$GDB_STRINGS$");
1021
1022 if (info->stabsec == NULL || info->strsec == NULL)
1023 {
1024 /* No stabs debugging information. Set *pinfo so that we
1025 can return quickly in the info != NULL case above. */
1026 *pinfo = info;
1027 return TRUE;
1028 }
1029 }
1030
1031 stabsize = (info->stabsec->rawsize
1032 ? info->stabsec->rawsize
1033 : info->stabsec->size);
1034 stabsize = (stabsize / STABSIZE) * STABSIZE;
1035 strsize = (info->strsec->rawsize
1036 ? info->strsec->rawsize
1037 : info->strsec->size);
1038
1039 info->stabs = (bfd_byte *) bfd_alloc (abfd, stabsize);
1040 info->strs = (bfd_byte *) bfd_alloc (abfd, strsize);
1041 if (info->stabs == NULL || info->strs == NULL)
1042 return FALSE;
1043
1044 if (! bfd_get_section_contents (abfd, info->stabsec, info->stabs,
1045 0, stabsize)
1046 || ! bfd_get_section_contents (abfd, info->strsec, info->strs,
1047 0, strsize))
1048 return FALSE;
1049
1050 /* Stab strings ought to be nul terminated. Ensure the last one
1051 is, to prevent running off the end of the buffer. */
1052 info->strs[strsize - 1] = 0;
1053
1054 /* If this is a relocatable object file, we have to relocate
1055 the entries in .stab. This should always be simple 32 bit
1056 relocations against symbols defined in this object file, so
1057 this should be no big deal. */
1058 reloc_size = bfd_get_reloc_upper_bound (abfd, info->stabsec);
1059 if (reloc_size < 0)
1060 return FALSE;
1061 reloc_vector = (arelent **) bfd_malloc (reloc_size);
1062 if (reloc_vector == NULL && reloc_size != 0)
1063 return FALSE;
1064 reloc_count = bfd_canonicalize_reloc (abfd, info->stabsec, reloc_vector,
1065 symbols);
1066 if (reloc_count < 0)
1067 {
1068 if (reloc_vector != NULL)
1069 free (reloc_vector);
1070 return FALSE;
1071 }
1072 if (reloc_count > 0)
1073 {
1074 arelent **pr;
1075
1076 for (pr = reloc_vector; *pr != NULL; pr++)
1077 {
1078 arelent *r;
1079 unsigned long val;
1080 asymbol *sym;
1081 bfd_size_type octets;
1082
1083 r = *pr;
1084 /* Ignore R_*_NONE relocs. */
1085 if (r->howto->dst_mask == 0)
1086 continue;
1087
1088 octets = r->address * bfd_octets_per_byte (abfd, NULL);
1089 if (r->howto->rightshift != 0
1090 || r->howto->size != 2
1091 || r->howto->bitsize != 32
1092 || r->howto->pc_relative
1093 || r->howto->bitpos != 0
1094 || r->howto->dst_mask != 0xffffffff
1095 || octets + 4 > stabsize)
1096 {
1097 _bfd_error_handler
1098 (_("unsupported .stab relocation"));
1099 bfd_set_error (bfd_error_invalid_operation);
1100 if (reloc_vector != NULL)
1101 free (reloc_vector);
1102 return FALSE;
1103 }
1104
1105 val = bfd_get_32 (abfd, info->stabs + octets);
1106 val &= r->howto->src_mask;
1107 sym = *r->sym_ptr_ptr;
1108 val += sym->value + sym->section->vma + r->addend;
1109 bfd_put_32 (abfd, (bfd_vma) val, info->stabs + octets);
1110 }
1111 }
1112
1113 if (reloc_vector != NULL)
1114 free (reloc_vector);
1115
1116 /* First time through this function, build a table matching
1117 function VM addresses to stabs, then sort based on starting
1118 VM address. Do this in two passes: once to count how many
1119 table entries we'll need, and a second to actually build the
1120 table. */
1121
1122 info->indextablesize = 0;
1123 nul_fun = NULL;
1124 for (stab = info->stabs; stab < info->stabs + stabsize; stab += STABSIZE)
1125 {
1126 if (stab[TYPEOFF] == (bfd_byte) N_SO)
1127 {
1128 /* if we did not see a function def, leave space for one. */
1129 if (nul_fun != NULL)
1130 ++info->indextablesize;
1131
1132 /* N_SO with null name indicates EOF */
1133 if (bfd_get_32 (abfd, stab + STRDXOFF) == 0)
1134 nul_fun = NULL;
1135 else
1136 {
1137 nul_fun = stab;
1138
1139 /* two N_SO's in a row is a filename and directory. Skip */
1140 if (stab + STABSIZE + TYPEOFF < info->stabs + stabsize
1141 && *(stab + STABSIZE + TYPEOFF) == (bfd_byte) N_SO)
1142 stab += STABSIZE;
1143 }
1144 }
1145 else if (stab[TYPEOFF] == (bfd_byte) N_FUN
1146 && bfd_get_32 (abfd, stab + STRDXOFF) != 0)
1147 {
1148 nul_fun = NULL;
1149 ++info->indextablesize;
1150 }
1151 }
1152
1153 if (nul_fun != NULL)
1154 ++info->indextablesize;
1155
1156 if (info->indextablesize == 0)
1157 return TRUE;
1158 ++info->indextablesize;
1159
1160 amt = info->indextablesize;
1161 amt *= sizeof (struct indexentry);
1162 info->indextable = (struct indexentry *) bfd_alloc (abfd, amt);
1163 if (info->indextable == NULL)
1164 return FALSE;
1165
1166 file_name = NULL;
1167 directory_name = NULL;
1168 nul_fun = NULL;
1169 stroff = 0;
1170
1171 for (i = 0, stab = info->stabs, nul_str = str = info->strs;
1172 i < info->indextablesize && stab < info->stabs + stabsize;
1173 stab += STABSIZE)
1174 {
1175 switch (stab[TYPEOFF])
1176 {
1177 case 0:
1178 /* This is the first entry in a compilation unit. */
1179 if ((bfd_size_type) ((info->strs + strsize) - str) < stroff)
1180 break;
1181 str += stroff;
1182 stroff = bfd_get_32 (abfd, stab + VALOFF);
1183 break;
1184
1185 case N_SO:
1186 /* The main file name. */
1187
1188 /* The following code creates a new indextable entry with
1189 a NULL function name if there were no N_FUNs in a file.
1190 Note that a N_SO without a file name is an EOF and
1191 there could be 2 N_SO following it with the new filename
1192 and directory. */
1193 if (nul_fun != NULL)
1194 {
1195 info->indextable[i].val = bfd_get_32 (abfd, nul_fun + VALOFF);
1196 info->indextable[i].stab = nul_fun;
1197 info->indextable[i].str = nul_str;
1198 info->indextable[i].directory_name = directory_name;
1199 info->indextable[i].file_name = file_name;
1200 info->indextable[i].function_name = NULL;
1201 info->indextable[i].idx = i;
1202 ++i;
1203 }
1204
1205 directory_name = NULL;
1206 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1207 if (file_name == (char *) str)
1208 {
1209 file_name = NULL;
1210 nul_fun = NULL;
1211 }
1212 else
1213 {
1214 nul_fun = stab;
1215 nul_str = str;
1216 if (file_name >= (char *) info->strs + strsize
1217 || file_name < (char *) str)
1218 file_name = NULL;
1219 if (stab + STABSIZE + TYPEOFF < info->stabs + stabsize
1220 && *(stab + STABSIZE + TYPEOFF) == (bfd_byte) N_SO)
1221 {
1222 /* Two consecutive N_SOs are a directory and a
1223 file name. */
1224 stab += STABSIZE;
1225 directory_name = file_name;
1226 file_name = ((char *) str
1227 + bfd_get_32 (abfd, stab + STRDXOFF));
1228 if (file_name >= (char *) info->strs + strsize
1229 || file_name < (char *) str)
1230 file_name = NULL;
1231 }
1232 }
1233 break;
1234
1235 case N_SOL:
1236 /* The name of an include file. */
1237 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1238 /* PR 17512: file: 0c680a1f. */
1239 /* PR 17512: file: 5da8aec4. */
1240 if (file_name >= (char *) info->strs + strsize
1241 || file_name < (char *) str)
1242 file_name = NULL;
1243 break;
1244
1245 case N_FUN:
1246 /* A function name. */
1247 function_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1248 if (function_name == (char *) str)
1249 continue;
1250 if (function_name >= (char *) info->strs + strsize
1251 || function_name < (char *) str)
1252 function_name = NULL;
1253
1254 nul_fun = NULL;
1255 info->indextable[i].val = bfd_get_32 (abfd, stab + VALOFF);
1256 info->indextable[i].stab = stab;
1257 info->indextable[i].str = str;
1258 info->indextable[i].directory_name = directory_name;
1259 info->indextable[i].file_name = file_name;
1260 info->indextable[i].function_name = function_name;
1261 info->indextable[i].idx = i;
1262 ++i;
1263 break;
1264 }
1265 }
1266
1267 if (nul_fun != NULL)
1268 {
1269 info->indextable[i].val = bfd_get_32 (abfd, nul_fun + VALOFF);
1270 info->indextable[i].stab = nul_fun;
1271 info->indextable[i].str = nul_str;
1272 info->indextable[i].directory_name = directory_name;
1273 info->indextable[i].file_name = file_name;
1274 info->indextable[i].function_name = NULL;
1275 info->indextable[i].idx = i;
1276 ++i;
1277 }
1278
1279 info->indextable[i].val = (bfd_vma) -1;
1280 info->indextable[i].stab = info->stabs + stabsize;
1281 info->indextable[i].str = str;
1282 info->indextable[i].directory_name = NULL;
1283 info->indextable[i].file_name = NULL;
1284 info->indextable[i].function_name = NULL;
1285 info->indextable[i].idx = i;
1286 ++i;
1287
1288 info->indextablesize = i;
1289 qsort (info->indextable, (size_t) i, sizeof (struct indexentry),
1290 cmpindexentry);
1291
1292 *pinfo = info;
1293 }
1294
1295 /* We are passed a section relative offset. The offsets in the
1296 stabs information are absolute. */
1297 offset += bfd_section_vma (section);
1298
1299 #ifdef ENABLE_CACHING
1300 if (info->cached_indexentry != NULL
1301 && offset >= info->cached_offset
1302 && offset < (info->cached_indexentry + 1)->val)
1303 {
1304 stab = info->cached_stab;
1305 indexentry = info->cached_indexentry;
1306 file_name = info->cached_file_name;
1307 }
1308 else
1309 #endif
1310 {
1311 long low, high;
1312 long mid = -1;
1313
1314 /* Cache non-existent or invalid. Do binary search on
1315 indextable. */
1316 indexentry = NULL;
1317
1318 low = 0;
1319 high = info->indextablesize - 1;
1320 while (low != high)
1321 {
1322 mid = (high + low) / 2;
1323 if (offset >= info->indextable[mid].val
1324 && offset < info->indextable[mid + 1].val)
1325 {
1326 indexentry = &info->indextable[mid];
1327 break;
1328 }
1329
1330 if (info->indextable[mid].val > offset)
1331 high = mid;
1332 else
1333 low = mid + 1;
1334 }
1335
1336 if (indexentry == NULL)
1337 return TRUE;
1338
1339 stab = indexentry->stab + STABSIZE;
1340 file_name = indexentry->file_name;
1341 }
1342
1343 directory_name = indexentry->directory_name;
1344 str = indexentry->str;
1345
1346 saw_line = FALSE;
1347 saw_func = FALSE;
1348 for (; stab < (indexentry+1)->stab; stab += STABSIZE)
1349 {
1350 bfd_boolean done;
1351 bfd_vma val;
1352
1353 done = FALSE;
1354
1355 switch (stab[TYPEOFF])
1356 {
1357 case N_SOL:
1358 /* The name of an include file. */
1359 val = bfd_get_32 (abfd, stab + VALOFF);
1360 if (val <= offset)
1361 {
1362 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1363 if (file_name >= (char *) info->strs + strsize
1364 || file_name < (char *) str)
1365 file_name = NULL;
1366 *pline = 0;
1367 }
1368 break;
1369
1370 case N_SLINE:
1371 case N_DSLINE:
1372 case N_BSLINE:
1373 /* A line number. If the function was specified, then the value
1374 is relative to the start of the function. Otherwise, the
1375 value is an absolute address. */
1376 val = ((indexentry->function_name ? indexentry->val : 0)
1377 + bfd_get_32 (abfd, stab + VALOFF));
1378 /* If this line starts before our desired offset, or if it's
1379 the first line we've been able to find, use it. The
1380 !saw_line check works around a bug in GCC 2.95.3, which emits
1381 the first N_SLINE late. */
1382 if (!saw_line || val <= offset)
1383 {
1384 *pline = bfd_get_16 (abfd, stab + DESCOFF);
1385
1386 #ifdef ENABLE_CACHING
1387 info->cached_stab = stab;
1388 info->cached_offset = val;
1389 info->cached_file_name = file_name;
1390 info->cached_indexentry = indexentry;
1391 #endif
1392 }
1393 if (val > offset)
1394 done = TRUE;
1395 saw_line = TRUE;
1396 break;
1397
1398 case N_FUN:
1399 case N_SO:
1400 if (saw_func || saw_line)
1401 done = TRUE;
1402 saw_func = TRUE;
1403 break;
1404 }
1405
1406 if (done)
1407 break;
1408 }
1409
1410 *pfound = TRUE;
1411
1412 if (file_name == NULL || IS_ABSOLUTE_PATH (file_name)
1413 || directory_name == NULL)
1414 *pfilename = file_name;
1415 else
1416 {
1417 size_t dirlen;
1418
1419 dirlen = strlen (directory_name);
1420 if (info->filename == NULL
1421 || filename_ncmp (info->filename, directory_name, dirlen) != 0
1422 || filename_cmp (info->filename + dirlen, file_name) != 0)
1423 {
1424 size_t len;
1425
1426 /* Don't free info->filename here. objdump and other
1427 apps keep a copy of a previously returned file name
1428 pointer. */
1429 len = strlen (file_name) + 1;
1430 info->filename = (char *) bfd_alloc (abfd, dirlen + len);
1431 if (info->filename == NULL)
1432 return FALSE;
1433 memcpy (info->filename, directory_name, dirlen);
1434 memcpy (info->filename + dirlen, file_name, len);
1435 }
1436
1437 *pfilename = info->filename;
1438 }
1439
1440 if (indexentry->function_name != NULL)
1441 {
1442 char *s;
1443
1444 /* This will typically be something like main:F(0,1), so we want
1445 to clobber the colon. It's OK to change the name, since the
1446 string is in our own local storage anyhow. */
1447 s = strchr (indexentry->function_name, ':');
1448 if (s != NULL)
1449 *s = '\0';
1450
1451 *pfnname = indexentry->function_name;
1452 }
1453
1454 return TRUE;
1455 }
1456
1457 long
1458 _bfd_nosymbols_canonicalize_symtab (bfd *abfd ATTRIBUTE_UNUSED,
1459 asymbol **location ATTRIBUTE_UNUSED)
1460 {
1461 return 0;
1462 }
1463
1464 void
1465 _bfd_nosymbols_print_symbol (bfd *abfd ATTRIBUTE_UNUSED,
1466 void *afile ATTRIBUTE_UNUSED,
1467 asymbol *symbol ATTRIBUTE_UNUSED,
1468 bfd_print_symbol_type how ATTRIBUTE_UNUSED)
1469 {
1470 }
1471
1472 void
1473 _bfd_nosymbols_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
1474 asymbol *sym ATTRIBUTE_UNUSED,
1475 symbol_info *ret ATTRIBUTE_UNUSED)
1476 {
1477 }
1478
1479 const char *
1480 _bfd_nosymbols_get_symbol_version_string (bfd *abfd,
1481 asymbol *symbol ATTRIBUTE_UNUSED,
1482 bfd_boolean *hidden ATTRIBUTE_UNUSED)
1483 {
1484 return (const char *) _bfd_ptr_bfd_null_error (abfd);
1485 }
1486
1487 bfd_boolean
1488 _bfd_nosymbols_bfd_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
1489 const char *name ATTRIBUTE_UNUSED)
1490 {
1491 return FALSE;
1492 }
1493
1494 alent *
1495 _bfd_nosymbols_get_lineno (bfd *abfd, asymbol *sym ATTRIBUTE_UNUSED)
1496 {
1497 return (alent *) _bfd_ptr_bfd_null_error (abfd);
1498 }
1499
1500 bfd_boolean
1501 _bfd_nosymbols_find_nearest_line
1502 (bfd *abfd,
1503 asymbol **symbols ATTRIBUTE_UNUSED,
1504 asection *section ATTRIBUTE_UNUSED,
1505 bfd_vma offset ATTRIBUTE_UNUSED,
1506 const char **filename_ptr ATTRIBUTE_UNUSED,
1507 const char **functionname_ptr ATTRIBUTE_UNUSED,
1508 unsigned int *line_ptr ATTRIBUTE_UNUSED,
1509 unsigned int *discriminator_ptr ATTRIBUTE_UNUSED)
1510 {
1511 return _bfd_bool_bfd_false_error (abfd);
1512 }
1513
1514 bfd_boolean
1515 _bfd_nosymbols_find_line (bfd *abfd,
1516 asymbol **symbols ATTRIBUTE_UNUSED,
1517 asymbol *symbol ATTRIBUTE_UNUSED,
1518 const char **filename_ptr ATTRIBUTE_UNUSED,
1519 unsigned int *line_ptr ATTRIBUTE_UNUSED)
1520 {
1521 return _bfd_bool_bfd_false_error (abfd);
1522 }
1523
1524 bfd_boolean
1525 _bfd_nosymbols_find_inliner_info
1526 (bfd *abfd,
1527 const char **filename_ptr ATTRIBUTE_UNUSED,
1528 const char **functionname_ptr ATTRIBUTE_UNUSED,
1529 unsigned int *line_ptr ATTRIBUTE_UNUSED)
1530 {
1531 return _bfd_bool_bfd_false_error (abfd);
1532 }
1533
1534 asymbol *
1535 _bfd_nosymbols_bfd_make_debug_symbol (bfd *abfd,
1536 void *ptr ATTRIBUTE_UNUSED,
1537 unsigned long sz ATTRIBUTE_UNUSED)
1538 {
1539 return (asymbol *) _bfd_ptr_bfd_null_error (abfd);
1540 }
1541
1542 long
1543 _bfd_nosymbols_read_minisymbols (bfd *abfd,
1544 bfd_boolean dynamic ATTRIBUTE_UNUSED,
1545 void **minisymsp ATTRIBUTE_UNUSED,
1546 unsigned int *sizep ATTRIBUTE_UNUSED)
1547 {
1548 return _bfd_long_bfd_n1_error (abfd);
1549 }
1550
1551 asymbol *
1552 _bfd_nosymbols_minisymbol_to_symbol (bfd *abfd,
1553 bfd_boolean dynamic ATTRIBUTE_UNUSED,
1554 const void *minisym ATTRIBUTE_UNUSED,
1555 asymbol *sym ATTRIBUTE_UNUSED)
1556 {
1557 return (asymbol *) _bfd_ptr_bfd_null_error (abfd);
1558 }
1559
1560 long
1561 _bfd_nodynamic_get_synthetic_symtab (bfd *abfd,
1562 long symcount ATTRIBUTE_UNUSED,
1563 asymbol **syms ATTRIBUTE_UNUSED,
1564 long dynsymcount ATTRIBUTE_UNUSED,
1565 asymbol **dynsyms ATTRIBUTE_UNUSED,
1566 asymbol **ret ATTRIBUTE_UNUSED)
1567 {
1568 return _bfd_long_bfd_n1_error (abfd);
1569 }
This page took 0.061255 seconds and 4 git commands to generate.