Touches most files in bfd/, so likely will be blamed for everything..
[deliverable/binutils-gdb.git] / bfd / syms.c
1 /* Generic symbol-table support for the BFD library.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001
4 Free Software Foundation, Inc.
5 Written by Cygnus Support.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
22
23 /*
24 SECTION
25 Symbols
26
27 BFD tries to maintain as much symbol information as it can when
28 it moves information from file to file. BFD passes information
29 to applications though the <<asymbol>> structure. When the
30 application requests the symbol table, BFD reads the table in
31 the native form and translates parts of it into the internal
32 format. To maintain more than the information passed to
33 applications, some targets keep some information ``behind the
34 scenes'' in a structure only the particular back end knows
35 about. For example, the coff back end keeps the original
36 symbol table structure as well as the canonical structure when
37 a BFD is read in. On output, the coff back end can reconstruct
38 the output symbol table so that no information is lost, even
39 information unique to coff which BFD doesn't know or
40 understand. If a coff symbol table were read, but were written
41 through an a.out back end, all the coff specific information
42 would be lost. The symbol table of a BFD
43 is not necessarily read in until a canonicalize request is
44 made. Then the BFD back end fills in a table provided by the
45 application with pointers to the canonical information. To
46 output symbols, the application provides BFD with a table of
47 pointers to pointers to <<asymbol>>s. This allows applications
48 like the linker to output a symbol as it was read, since the ``behind
49 the scenes'' information will be still available.
50 @menu
51 @* Reading Symbols::
52 @* Writing Symbols::
53 @* Mini Symbols::
54 @* typedef asymbol::
55 @* symbol handling functions::
56 @end menu
57
58 INODE
59 Reading Symbols, Writing Symbols, Symbols, Symbols
60 SUBSECTION
61 Reading symbols
62
63 There are two stages to reading a symbol table from a BFD:
64 allocating storage, and the actual reading process. This is an
65 excerpt from an application which reads the symbol table:
66
67 | long storage_needed;
68 | asymbol **symbol_table;
69 | long number_of_symbols;
70 | long i;
71 |
72 | storage_needed = bfd_get_symtab_upper_bound (abfd);
73 |
74 | if (storage_needed < 0)
75 | FAIL
76 |
77 | if (storage_needed == 0) {
78 | return ;
79 | }
80 | symbol_table = (asymbol **) xmalloc (storage_needed);
81 | ...
82 | number_of_symbols =
83 | bfd_canonicalize_symtab (abfd, symbol_table);
84 |
85 | if (number_of_symbols < 0)
86 | FAIL
87 |
88 | for (i = 0; i < number_of_symbols; i++) {
89 | process_symbol (symbol_table[i]);
90 | }
91
92 All storage for the symbols themselves is in an objalloc
93 connected to the BFD; it is freed when the BFD is closed.
94
95 INODE
96 Writing Symbols, Mini Symbols, Reading Symbols, Symbols
97 SUBSECTION
98 Writing symbols
99
100 Writing of a symbol table is automatic when a BFD open for
101 writing is closed. The application attaches a vector of
102 pointers to pointers to symbols to the BFD being written, and
103 fills in the symbol count. The close and cleanup code reads
104 through the table provided and performs all the necessary
105 operations. The BFD output code must always be provided with an
106 ``owned'' symbol: one which has come from another BFD, or one
107 which has been created using <<bfd_make_empty_symbol>>. Here is an
108 example showing the creation of a symbol table with only one element:
109
110 | #include "bfd.h"
111 | main()
112 | {
113 | bfd *abfd;
114 | asymbol *ptrs[2];
115 | asymbol *new;
116 |
117 | abfd = bfd_openw("foo","a.out-sunos-big");
118 | bfd_set_format(abfd, bfd_object);
119 | new = bfd_make_empty_symbol(abfd);
120 | new->name = "dummy_symbol";
121 | new->section = bfd_make_section_old_way(abfd, ".text");
122 | new->flags = BSF_GLOBAL;
123 | new->value = 0x12345;
124 |
125 | ptrs[0] = new;
126 | ptrs[1] = (asymbol *)0;
127 |
128 | bfd_set_symtab(abfd, ptrs, 1);
129 | bfd_close(abfd);
130 | }
131 |
132 | ./makesym
133 | nm foo
134 | 00012345 A dummy_symbol
135
136 Many formats cannot represent arbitary symbol information; for
137 instance, the <<a.out>> object format does not allow an
138 arbitary number of sections. A symbol pointing to a section
139 which is not one of <<.text>>, <<.data>> or <<.bss>> cannot
140 be described.
141
142 INODE
143 Mini Symbols, typedef asymbol, Writing Symbols, Symbols
144 SUBSECTION
145 Mini Symbols
146
147 Mini symbols provide read-only access to the symbol table.
148 They use less memory space, but require more time to access.
149 They can be useful for tools like nm or objdump, which may
150 have to handle symbol tables of extremely large executables.
151
152 The <<bfd_read_minisymbols>> function will read the symbols
153 into memory in an internal form. It will return a <<void *>>
154 pointer to a block of memory, a symbol count, and the size of
155 each symbol. The pointer is allocated using <<malloc>>, and
156 should be freed by the caller when it is no longer needed.
157
158 The function <<bfd_minisymbol_to_symbol>> will take a pointer
159 to a minisymbol, and a pointer to a structure returned by
160 <<bfd_make_empty_symbol>>, and return a <<asymbol>> structure.
161 The return value may or may not be the same as the value from
162 <<bfd_make_empty_symbol>> which was passed in.
163
164 */
165
166 /*
167 DOCDD
168 INODE
169 typedef asymbol, symbol handling functions, Mini Symbols, Symbols
170
171 */
172 /*
173 SUBSECTION
174 typedef asymbol
175
176 An <<asymbol>> has the form:
177
178 */
179
180 /*
181 CODE_FRAGMENT
182
183 .
184 .typedef struct symbol_cache_entry
185 .{
186 . {* A pointer to the BFD which owns the symbol. This information
187 . is necessary so that a back end can work out what additional
188 . information (invisible to the application writer) is carried
189 . with the symbol.
190 .
191 . This field is *almost* redundant, since you can use section->owner
192 . instead, except that some symbols point to the global sections
193 . bfd_{abs,com,und}_section. This could be fixed by making
194 . these globals be per-bfd (or per-target-flavor). FIXME. *}
195 .
196 . struct _bfd *the_bfd; {* Use bfd_asymbol_bfd(sym) to access this field. *}
197 .
198 . {* The text of the symbol. The name is left alone, and not copied; the
199 . application may not alter it. *}
200 . const char *name;
201 .
202 . {* The value of the symbol. This really should be a union of a
203 . numeric value with a pointer, since some flags indicate that
204 . a pointer to another symbol is stored here. *}
205 . symvalue value;
206 .
207 . {* Attributes of a symbol: *}
208 .
209 .#define BSF_NO_FLAGS 0x00
210 .
211 . {* The symbol has local scope; <<static>> in <<C>>. The value
212 . is the offset into the section of the data. *}
213 .#define BSF_LOCAL 0x01
214 .
215 . {* The symbol has global scope; initialized data in <<C>>. The
216 . value is the offset into the section of the data. *}
217 .#define BSF_GLOBAL 0x02
218 .
219 . {* The symbol has global scope and is exported. The value is
220 . the offset into the section of the data. *}
221 .#define BSF_EXPORT BSF_GLOBAL {* no real difference *}
222 .
223 . {* A normal C symbol would be one of:
224 . <<BSF_LOCAL>>, <<BSF_FORT_COMM>>, <<BSF_UNDEFINED>> or
225 . <<BSF_GLOBAL>> *}
226 .
227 . {* The symbol is a debugging record. The value has an arbitary
228 . meaning, unless BSF_DEBUGGING_RELOC is also set. *}
229 .#define BSF_DEBUGGING 0x08
230 .
231 . {* The symbol denotes a function entry point. Used in ELF,
232 . perhaps others someday. *}
233 .#define BSF_FUNCTION 0x10
234 .
235 . {* Used by the linker. *}
236 .#define BSF_KEEP 0x20
237 .#define BSF_KEEP_G 0x40
238 .
239 . {* A weak global symbol, overridable without warnings by
240 . a regular global symbol of the same name. *}
241 .#define BSF_WEAK 0x80
242 .
243 . {* This symbol was created to point to a section, e.g. ELF's
244 . STT_SECTION symbols. *}
245 .#define BSF_SECTION_SYM 0x100
246 .
247 . {* The symbol used to be a common symbol, but now it is
248 . allocated. *}
249 .#define BSF_OLD_COMMON 0x200
250 .
251 . {* The default value for common data. *}
252 .#define BFD_FORT_COMM_DEFAULT_VALUE 0
253 .
254 . {* In some files the type of a symbol sometimes alters its
255 . location in an output file - ie in coff a <<ISFCN>> symbol
256 . which is also <<C_EXT>> symbol appears where it was
257 . declared and not at the end of a section. This bit is set
258 . by the target BFD part to convey this information. *}
259 .
260 .#define BSF_NOT_AT_END 0x400
261 .
262 . {* Signal that the symbol is the label of constructor section. *}
263 .#define BSF_CONSTRUCTOR 0x800
264 .
265 . {* Signal that the symbol is a warning symbol. The name is a
266 . warning. The name of the next symbol is the one to warn about;
267 . if a reference is made to a symbol with the same name as the next
268 . symbol, a warning is issued by the linker. *}
269 .#define BSF_WARNING 0x1000
270 .
271 . {* Signal that the symbol is indirect. This symbol is an indirect
272 . pointer to the symbol with the same name as the next symbol. *}
273 .#define BSF_INDIRECT 0x2000
274 .
275 . {* BSF_FILE marks symbols that contain a file name. This is used
276 . for ELF STT_FILE symbols. *}
277 .#define BSF_FILE 0x4000
278 .
279 . {* Symbol is from dynamic linking information. *}
280 .#define BSF_DYNAMIC 0x8000
281 .
282 . {* The symbol denotes a data object. Used in ELF, and perhaps
283 . others someday. *}
284 .#define BSF_OBJECT 0x10000
285 .
286 . {* This symbol is a debugging symbol. The value is the offset
287 . into the section of the data. BSF_DEBUGGING should be set
288 . as well. *}
289 .#define BSF_DEBUGGING_RELOC 0x20000
290 .
291 . flagword flags;
292 .
293 . {* A pointer to the section to which this symbol is
294 . relative. This will always be non NULL, there are special
295 . sections for undefined and absolute symbols. *}
296 . struct sec *section;
297 .
298 . {* Back end special data. *}
299 . union
300 . {
301 . PTR p;
302 . bfd_vma i;
303 . } udata;
304 .
305 .} asymbol;
306 */
307
308 #include "bfd.h"
309 #include "sysdep.h"
310 #include "libbfd.h"
311 #include "bfdlink.h"
312 #include "aout/stab_gnu.h"
313
314 static char coff_section_type PARAMS ((const char *));
315 static int cmpindexentry PARAMS ((const PTR, const PTR));
316
317 /*
318 DOCDD
319 INODE
320 symbol handling functions, , typedef asymbol, Symbols
321 SUBSECTION
322 Symbol handling functions
323 */
324
325 /*
326 FUNCTION
327 bfd_get_symtab_upper_bound
328
329 DESCRIPTION
330 Return the number of bytes required to store a vector of pointers
331 to <<asymbols>> for all the symbols in the BFD @var{abfd},
332 including a terminal NULL pointer. If there are no symbols in
333 the BFD, then return 0. If an error occurs, return -1.
334
335 .#define bfd_get_symtab_upper_bound(abfd) \
336 . BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))
337
338 */
339
340 /*
341 FUNCTION
342 bfd_is_local_label
343
344 SYNOPSIS
345 boolean bfd_is_local_label(bfd *abfd, asymbol *sym);
346
347 DESCRIPTION
348 Return true if the given symbol @var{sym} in the BFD @var{abfd} is
349 a compiler generated local label, else return false.
350 */
351
352 boolean
353 bfd_is_local_label (abfd, sym)
354 bfd *abfd;
355 asymbol *sym;
356 {
357 /* The BSF_SECTION_SYM check is needed for IA-64, where every label that
358 starts with '.' is local. This would accidentally catch section names
359 if we didn't reject them here. */
360 if ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_SECTION_SYM)) != 0)
361 return false;
362 if (sym->name == NULL)
363 return false;
364 return bfd_is_local_label_name (abfd, sym->name);
365 }
366
367 /*
368 FUNCTION
369 bfd_is_local_label_name
370
371 SYNOPSIS
372 boolean bfd_is_local_label_name(bfd *abfd, const char *name);
373
374 DESCRIPTION
375 Return true if a symbol with the name @var{name} in the BFD
376 @var{abfd} is a compiler generated local label, else return
377 false. This just checks whether the name has the form of a
378 local label.
379
380 .#define bfd_is_local_label_name(abfd, name) \
381 . BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))
382 */
383
384 /*
385 FUNCTION
386 bfd_canonicalize_symtab
387
388 DESCRIPTION
389 Read the symbols from the BFD @var{abfd}, and fills in
390 the vector @var{location} with pointers to the symbols and
391 a trailing NULL.
392 Return the actual number of symbol pointers, not
393 including the NULL.
394
395 .#define bfd_canonicalize_symtab(abfd, location) \
396 . BFD_SEND (abfd, _bfd_canonicalize_symtab,\
397 . (abfd, location))
398
399 */
400
401 /*
402 FUNCTION
403 bfd_set_symtab
404
405 SYNOPSIS
406 boolean bfd_set_symtab (bfd *abfd, asymbol **location, unsigned int count);
407
408 DESCRIPTION
409 Arrange that when the output BFD @var{abfd} is closed,
410 the table @var{location} of @var{count} pointers to symbols
411 will be written.
412 */
413
414 boolean
415 bfd_set_symtab (abfd, location, symcount)
416 bfd *abfd;
417 asymbol **location;
418 unsigned int symcount;
419 {
420 if ((abfd->format != bfd_object) || (bfd_read_p (abfd)))
421 {
422 bfd_set_error (bfd_error_invalid_operation);
423 return false;
424 }
425
426 bfd_get_outsymbols (abfd) = location;
427 bfd_get_symcount (abfd) = symcount;
428 return true;
429 }
430
431 /*
432 FUNCTION
433 bfd_print_symbol_vandf
434
435 SYNOPSIS
436 void bfd_print_symbol_vandf(bfd *abfd, PTR file, asymbol *symbol);
437
438 DESCRIPTION
439 Print the value and flags of the @var{symbol} supplied to the
440 stream @var{file}.
441 */
442 void
443 bfd_print_symbol_vandf (abfd, arg, symbol)
444 bfd *abfd;
445 PTR arg;
446 asymbol *symbol;
447 {
448 FILE *file = (FILE *) arg;
449 flagword type = symbol->flags;
450 if (symbol->section != (asection *) NULL)
451 {
452 bfd_fprintf_vma (abfd, file,
453 symbol->value + symbol->section->vma);
454 }
455 else
456 {
457 bfd_fprintf_vma (abfd, file, symbol->value);
458 }
459
460 /* This presumes that a symbol can not be both BSF_DEBUGGING and
461 BSF_DYNAMIC, nor more than one of BSF_FUNCTION, BSF_FILE, and
462 BSF_OBJECT. */
463 fprintf (file, " %c%c%c%c%c%c%c",
464 ((type & BSF_LOCAL)
465 ? (type & BSF_GLOBAL) ? '!' : 'l'
466 : (type & BSF_GLOBAL) ? 'g' : ' '),
467 (type & BSF_WEAK) ? 'w' : ' ',
468 (type & BSF_CONSTRUCTOR) ? 'C' : ' ',
469 (type & BSF_WARNING) ? 'W' : ' ',
470 (type & BSF_INDIRECT) ? 'I' : ' ',
471 (type & BSF_DEBUGGING) ? 'd' : (type & BSF_DYNAMIC) ? 'D' : ' ',
472 ((type & BSF_FUNCTION)
473 ? 'F'
474 : ((type & BSF_FILE)
475 ? 'f'
476 : ((type & BSF_OBJECT) ? 'O' : ' '))));
477 }
478
479 /*
480 FUNCTION
481 bfd_make_empty_symbol
482
483 DESCRIPTION
484 Create a new <<asymbol>> structure for the BFD @var{abfd}
485 and return a pointer to it.
486
487 This routine is necessary because each back end has private
488 information surrounding the <<asymbol>>. Building your own
489 <<asymbol>> and pointing to it will not create the private
490 information, and will cause problems later on.
491
492 .#define bfd_make_empty_symbol(abfd) \
493 . BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
494 */
495
496 /*
497 FUNCTION
498 bfd_make_debug_symbol
499
500 DESCRIPTION
501 Create a new <<asymbol>> structure for the BFD @var{abfd},
502 to be used as a debugging symbol. Further details of its use have
503 yet to be worked out.
504
505 .#define bfd_make_debug_symbol(abfd,ptr,size) \
506 . BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))
507 */
508
509 struct section_to_type
510 {
511 const char *section;
512 char type;
513 };
514
515 /* Map section names to POSIX/BSD single-character symbol types.
516 This table is probably incomplete. It is sorted for convenience of
517 adding entries. Since it is so short, a linear search is used. */
518 static const struct section_to_type stt[] =
519 {
520 {"*DEBUG*", 'N'},
521 {".bss", 'b'},
522 {"zerovars", 'b'}, /* MRI .bss */
523 {".data", 'd'},
524 {"vars", 'd'}, /* MRI .data */
525 {".rdata", 'r'}, /* Read only data. */
526 {".rodata", 'r'}, /* Read only data. */
527 {".sbss", 's'}, /* Small BSS (uninitialized data). */
528 {".scommon", 'c'}, /* Small common. */
529 {".sdata", 'g'}, /* Small initialized data. */
530 {".text", 't'},
531 {"code", 't'}, /* MRI .text */
532 {".drectve", 'i'}, /* MSVC's .drective section */
533 {".idata", 'i'}, /* MSVC's .idata (import) section */
534 {".edata", 'e'}, /* MSVC's .edata (export) section */
535 {".pdata", 'p'}, /* MSVC's .pdata (stack unwind) section */
536 {".debug", 'N'}, /* MSVC's .debug (non-standard debug syms) */
537 {0, 0}
538 };
539
540 /* Return the single-character symbol type corresponding to
541 section S, or '?' for an unknown COFF section.
542
543 Check for any leading string which matches, so .text5 returns
544 't' as well as .text */
545
546 static char
547 coff_section_type (s)
548 const char *s;
549 {
550 const struct section_to_type *t;
551
552 for (t = &stt[0]; t->section; t++)
553 if (!strncmp (s, t->section, strlen (t->section)))
554 return t->type;
555
556 return '?';
557 }
558
559 #ifndef islower
560 #define islower(c) ((c) >= 'a' && (c) <= 'z')
561 #endif
562 #ifndef toupper
563 #define toupper(c) (islower(c) ? ((c) & ~0x20) : (c))
564 #endif
565
566 /*
567 FUNCTION
568 bfd_decode_symclass
569
570 DESCRIPTION
571 Return a character corresponding to the symbol
572 class of @var{symbol}, or '?' for an unknown class.
573
574 SYNOPSIS
575 int bfd_decode_symclass(asymbol *symbol);
576 */
577 int
578 bfd_decode_symclass (symbol)
579 asymbol *symbol;
580 {
581 char c;
582
583 if (bfd_is_com_section (symbol->section))
584 return 'C';
585 if (bfd_is_und_section (symbol->section))
586 {
587 if (symbol->flags & BSF_WEAK)
588 {
589 /* If weak, determine if it's specifically an object
590 or non-object weak. */
591 if (symbol->flags & BSF_OBJECT)
592 return 'v';
593 else
594 return 'w';
595 }
596 else
597 return 'U';
598 }
599 if (bfd_is_ind_section (symbol->section))
600 return 'I';
601 if (symbol->flags & BSF_WEAK)
602 {
603 /* If weak, determine if it's specifically an object
604 or non-object weak. */
605 if (symbol->flags & BSF_OBJECT)
606 return 'V';
607 else
608 return 'W';
609 }
610 if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL)))
611 return '?';
612
613 if (bfd_is_abs_section (symbol->section))
614 c = 'a';
615 else if (symbol->section)
616 c = coff_section_type (symbol->section->name);
617 else
618 return '?';
619 if (symbol->flags & BSF_GLOBAL)
620 c = toupper (c);
621 return c;
622
623 /* We don't have to handle these cases just yet, but we will soon:
624 N_SETV: 'v';
625 N_SETA: 'l';
626 N_SETT: 'x';
627 N_SETD: 'z';
628 N_SETB: 's';
629 N_INDR: 'i';
630 */
631 }
632
633 /*
634 FUNCTION
635 bfd_is_undefined_symclass
636
637 DESCRIPTION
638 Returns non-zero if the class symbol returned by
639 bfd_decode_symclass represents an undefined symbol.
640 Returns zero otherwise.
641
642 SYNOPSIS
643 boolean bfd_is_undefined_symclass (int symclass);
644 */
645
646 boolean
647 bfd_is_undefined_symclass (symclass)
648 int symclass;
649 {
650 return symclass == 'U' || symclass == 'w' || symclass == 'v';
651 }
652
653 /*
654 FUNCTION
655 bfd_symbol_info
656
657 DESCRIPTION
658 Fill in the basic info about symbol that nm needs.
659 Additional info may be added by the back-ends after
660 calling this function.
661
662 SYNOPSIS
663 void bfd_symbol_info(asymbol *symbol, symbol_info *ret);
664 */
665
666 void
667 bfd_symbol_info (symbol, ret)
668 asymbol *symbol;
669 symbol_info *ret;
670 {
671 ret->type = bfd_decode_symclass (symbol);
672
673 if (bfd_is_undefined_symclass (ret->type))
674 ret->value = 0;
675 else
676 ret->value = symbol->value + symbol->section->vma;
677
678 ret->name = symbol->name;
679 }
680
681 /*
682 FUNCTION
683 bfd_copy_private_symbol_data
684
685 SYNOPSIS
686 boolean bfd_copy_private_symbol_data(bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
687
688 DESCRIPTION
689 Copy private symbol information from @var{isym} in the BFD
690 @var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}.
691 Return <<true>> on success, <<false>> on error. Possible error
692 returns are:
693
694 o <<bfd_error_no_memory>> -
695 Not enough memory exists to create private data for @var{osec}.
696
697 .#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
698 . BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
699 . (ibfd, isymbol, obfd, osymbol))
700
701 */
702
703 /* The generic version of the function which returns mini symbols.
704 This is used when the backend does not provide a more efficient
705 version. It just uses BFD asymbol structures as mini symbols. */
706
707 long
708 _bfd_generic_read_minisymbols (abfd, dynamic, minisymsp, sizep)
709 bfd *abfd;
710 boolean dynamic;
711 PTR *minisymsp;
712 unsigned int *sizep;
713 {
714 long storage;
715 asymbol **syms = NULL;
716 long symcount;
717
718 if (dynamic)
719 storage = bfd_get_dynamic_symtab_upper_bound (abfd);
720 else
721 storage = bfd_get_symtab_upper_bound (abfd);
722 if (storage < 0)
723 goto error_return;
724
725 syms = (asymbol **) bfd_malloc ((bfd_size_type) storage);
726 if (syms == NULL)
727 goto error_return;
728
729 if (dynamic)
730 symcount = bfd_canonicalize_dynamic_symtab (abfd, syms);
731 else
732 symcount = bfd_canonicalize_symtab (abfd, syms);
733 if (symcount < 0)
734 goto error_return;
735
736 *minisymsp = (PTR) syms;
737 *sizep = sizeof (asymbol *);
738 return symcount;
739
740 error_return:
741 if (syms != NULL)
742 free (syms);
743 return -1;
744 }
745
746 /* The generic version of the function which converts a minisymbol to
747 an asymbol. We don't worry about the sym argument we are passed;
748 we just return the asymbol the minisymbol points to. */
749
750 /*ARGSUSED*/
751 asymbol *
752 _bfd_generic_minisymbol_to_symbol (abfd, dynamic, minisym, sym)
753 bfd *abfd ATTRIBUTE_UNUSED;
754 boolean dynamic ATTRIBUTE_UNUSED;
755 const PTR minisym;
756 asymbol *sym ATTRIBUTE_UNUSED;
757 {
758 return *(asymbol **) minisym;
759 }
760
761 /* Look through stabs debugging information in .stab and .stabstr
762 sections to find the source file and line closest to a desired
763 location. This is used by COFF and ELF targets. It sets *pfound
764 to true if it finds some information. The *pinfo field is used to
765 pass cached information in and out of this routine; this first time
766 the routine is called for a BFD, *pinfo should be NULL. The value
767 placed in *pinfo should be saved with the BFD, and passed back each
768 time this function is called. */
769
770 /* We use a cache by default. */
771
772 #define ENABLE_CACHING
773
774 /* We keep an array of indexentry structures to record where in the
775 stabs section we should look to find line number information for a
776 particular address. */
777
778 struct indexentry
779 {
780 bfd_vma val;
781 bfd_byte *stab;
782 bfd_byte *str;
783 char *directory_name;
784 char *file_name;
785 char *function_name;
786 };
787
788 /* Compare two indexentry structures. This is called via qsort. */
789
790 static int
791 cmpindexentry (a, b)
792 const PTR a;
793 const PTR b;
794 {
795 const struct indexentry *contestantA = (const struct indexentry *) a;
796 const struct indexentry *contestantB = (const struct indexentry *) b;
797
798 if (contestantA->val < contestantB->val)
799 return -1;
800 else if (contestantA->val > contestantB->val)
801 return 1;
802 else
803 return 0;
804 }
805
806 /* A pointer to this structure is stored in *pinfo. */
807
808 struct stab_find_info
809 {
810 /* The .stab section. */
811 asection *stabsec;
812 /* The .stabstr section. */
813 asection *strsec;
814 /* The contents of the .stab section. */
815 bfd_byte *stabs;
816 /* The contents of the .stabstr section. */
817 bfd_byte *strs;
818
819 /* A table that indexes stabs by memory address. */
820 struct indexentry *indextable;
821 /* The number of entries in indextable. */
822 int indextablesize;
823
824 #ifdef ENABLE_CACHING
825 /* Cached values to restart quickly. */
826 struct indexentry *cached_indexentry;
827 bfd_vma cached_offset;
828 bfd_byte *cached_stab;
829 char *cached_file_name;
830 #endif
831
832 /* Saved ptr to malloc'ed filename. */
833 char *filename;
834 };
835
836 boolean
837 _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset, pfound,
838 pfilename, pfnname, pline, pinfo)
839 bfd *abfd;
840 asymbol **symbols;
841 asection *section;
842 bfd_vma offset;
843 boolean *pfound;
844 const char **pfilename;
845 const char **pfnname;
846 unsigned int *pline;
847 PTR *pinfo;
848 {
849 struct stab_find_info *info;
850 bfd_size_type stabsize, strsize;
851 bfd_byte *stab, *str;
852 bfd_byte *last_stab = NULL;
853 bfd_size_type stroff;
854 struct indexentry *indexentry;
855 char *file_name;
856 char *directory_name;
857 int saw_fun;
858
859 *pfound = false;
860 *pfilename = bfd_get_filename (abfd);
861 *pfnname = NULL;
862 *pline = 0;
863
864 /* Stabs entries use a 12 byte format:
865 4 byte string table index
866 1 byte stab type
867 1 byte stab other field
868 2 byte stab desc field
869 4 byte stab value
870 FIXME: This will have to change for a 64 bit object format.
871
872 The stabs symbols are divided into compilation units. For the
873 first entry in each unit, the type of 0, the value is the length
874 of the string table for this unit, and the desc field is the
875 number of stabs symbols for this unit. */
876
877 #define STRDXOFF (0)
878 #define TYPEOFF (4)
879 #define OTHEROFF (5)
880 #define DESCOFF (6)
881 #define VALOFF (8)
882 #define STABSIZE (12)
883
884 info = (struct stab_find_info *) *pinfo;
885 if (info != NULL)
886 {
887 if (info->stabsec == NULL || info->strsec == NULL)
888 {
889 /* No stabs debugging information. */
890 return true;
891 }
892
893 stabsize = info->stabsec->_raw_size;
894 strsize = info->strsec->_raw_size;
895 }
896 else
897 {
898 long reloc_size, reloc_count;
899 arelent **reloc_vector;
900 int i;
901 char *name;
902 char *function_name;
903 bfd_size_type amt = sizeof *info;
904
905 info = (struct stab_find_info *) bfd_zalloc (abfd, amt);
906 if (info == NULL)
907 return false;
908
909 /* FIXME: When using the linker --split-by-file or
910 --split-by-reloc options, it is possible for the .stab and
911 .stabstr sections to be split. We should handle that. */
912
913 info->stabsec = bfd_get_section_by_name (abfd, ".stab");
914 info->strsec = bfd_get_section_by_name (abfd, ".stabstr");
915
916 if (info->stabsec == NULL || info->strsec == NULL)
917 {
918 /* No stabs debugging information. Set *pinfo so that we
919 can return quickly in the info != NULL case above. */
920 *pinfo = (PTR) info;
921 return true;
922 }
923
924 stabsize = info->stabsec->_raw_size;
925 strsize = info->strsec->_raw_size;
926
927 info->stabs = (bfd_byte *) bfd_alloc (abfd, stabsize);
928 info->strs = (bfd_byte *) bfd_alloc (abfd, strsize);
929 if (info->stabs == NULL || info->strs == NULL)
930 return false;
931
932 if (! bfd_get_section_contents (abfd, info->stabsec, info->stabs,
933 (bfd_vma) 0, stabsize)
934 || ! bfd_get_section_contents (abfd, info->strsec, info->strs,
935 (bfd_vma) 0, strsize))
936 return false;
937
938 /* If this is a relocateable object file, we have to relocate
939 the entries in .stab. This should always be simple 32 bit
940 relocations against symbols defined in this object file, so
941 this should be no big deal. */
942 reloc_size = bfd_get_reloc_upper_bound (abfd, info->stabsec);
943 if (reloc_size < 0)
944 return false;
945 reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
946 if (reloc_vector == NULL && reloc_size != 0)
947 return false;
948 reloc_count = bfd_canonicalize_reloc (abfd, info->stabsec, reloc_vector,
949 symbols);
950 if (reloc_count < 0)
951 {
952 if (reloc_vector != NULL)
953 free (reloc_vector);
954 return false;
955 }
956 if (reloc_count > 0)
957 {
958 arelent **pr;
959
960 for (pr = reloc_vector; *pr != NULL; pr++)
961 {
962 arelent *r;
963 unsigned long val;
964 asymbol *sym;
965
966 r = *pr;
967 if (r->howto->rightshift != 0
968 || r->howto->size != 2
969 || r->howto->bitsize != 32
970 || r->howto->pc_relative
971 || r->howto->bitpos != 0
972 || r->howto->dst_mask != 0xffffffff)
973 {
974 (*_bfd_error_handler)
975 (_("Unsupported .stab relocation"));
976 bfd_set_error (bfd_error_invalid_operation);
977 if (reloc_vector != NULL)
978 free (reloc_vector);
979 return false;
980 }
981
982 val = bfd_get_32 (abfd, info->stabs + r->address);
983 val &= r->howto->src_mask;
984 sym = *r->sym_ptr_ptr;
985 val += sym->value + sym->section->vma + r->addend;
986 bfd_put_32 (abfd, (bfd_vma) val, info->stabs + r->address);
987 }
988 }
989
990 if (reloc_vector != NULL)
991 free (reloc_vector);
992
993 /* First time through this function, build a table matching
994 function VM addresses to stabs, then sort based on starting
995 VM address. Do this in two passes: once to count how many
996 table entries we'll need, and a second to actually build the
997 table. */
998
999 info->indextablesize = 0;
1000 saw_fun = 1;
1001 for (stab = info->stabs; stab < info->stabs + stabsize; stab += STABSIZE)
1002 {
1003 if (stab[TYPEOFF] == N_SO)
1004 {
1005 /* N_SO with null name indicates EOF */
1006 if (bfd_get_32 (abfd, stab + STRDXOFF) == 0)
1007 continue;
1008
1009 /* if we did not see a function def, leave space for one. */
1010 if (saw_fun == 0)
1011 ++info->indextablesize;
1012
1013 saw_fun = 0;
1014
1015 /* two N_SO's in a row is a filename and directory. Skip */
1016 if (stab + STABSIZE < info->stabs + stabsize
1017 && *(stab + STABSIZE + TYPEOFF) == N_SO)
1018 {
1019 stab += STABSIZE;
1020 }
1021 }
1022 else if (stab[TYPEOFF] == N_FUN)
1023 {
1024 saw_fun = 1;
1025 ++info->indextablesize;
1026 }
1027 }
1028
1029 if (saw_fun == 0)
1030 ++info->indextablesize;
1031
1032 if (info->indextablesize == 0)
1033 return true;
1034 ++info->indextablesize;
1035
1036 amt = info->indextablesize;
1037 amt *= sizeof (struct indexentry);
1038 info->indextable = (struct indexentry *) bfd_alloc (abfd, amt);
1039 if (info->indextable == NULL)
1040 return false;
1041
1042 file_name = NULL;
1043 directory_name = NULL;
1044 saw_fun = 1;
1045
1046 for (i = 0, stroff = 0, stab = info->stabs, str = info->strs;
1047 i < info->indextablesize && stab < info->stabs + stabsize;
1048 stab += STABSIZE)
1049 {
1050 switch (stab[TYPEOFF])
1051 {
1052 case 0:
1053 /* This is the first entry in a compilation unit. */
1054 if ((bfd_size_type) ((info->strs + strsize) - str) < stroff)
1055 break;
1056 str += stroff;
1057 stroff = bfd_get_32 (abfd, stab + VALOFF);
1058 break;
1059
1060 case N_SO:
1061 /* The main file name. */
1062
1063 /* The following code creates a new indextable entry with
1064 a NULL function name if there were no N_FUNs in a file.
1065 Note that a N_SO without a file name is an EOF and
1066 there could be 2 N_SO following it with the new filename
1067 and directory. */
1068 if (saw_fun == 0)
1069 {
1070 info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF);
1071 info->indextable[i].stab = last_stab;
1072 info->indextable[i].str = str;
1073 info->indextable[i].directory_name = directory_name;
1074 info->indextable[i].file_name = file_name;
1075 info->indextable[i].function_name = NULL;
1076 ++i;
1077 }
1078 saw_fun = 0;
1079
1080 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1081 if (*file_name == '\0')
1082 {
1083 directory_name = NULL;
1084 file_name = NULL;
1085 saw_fun = 1;
1086 }
1087 else
1088 {
1089 last_stab = stab;
1090 if (stab + STABSIZE >= info->stabs + stabsize
1091 || *(stab + STABSIZE + TYPEOFF) != N_SO)
1092 {
1093 directory_name = NULL;
1094 }
1095 else
1096 {
1097 /* Two consecutive N_SOs are a directory and a
1098 file name. */
1099 stab += STABSIZE;
1100 directory_name = file_name;
1101 file_name = ((char *) str
1102 + bfd_get_32 (abfd, stab + STRDXOFF));
1103 }
1104 }
1105 break;
1106
1107 case N_SOL:
1108 /* The name of an include file. */
1109 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1110 break;
1111
1112 case N_FUN:
1113 /* A function name. */
1114 saw_fun = 1;
1115 name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1116
1117 if (*name == '\0')
1118 name = NULL;
1119
1120 function_name = name;
1121
1122 if (name == NULL)
1123 continue;
1124
1125 info->indextable[i].val = bfd_get_32 (abfd, stab + VALOFF);
1126 info->indextable[i].stab = stab;
1127 info->indextable[i].str = str;
1128 info->indextable[i].directory_name = directory_name;
1129 info->indextable[i].file_name = file_name;
1130 info->indextable[i].function_name = function_name;
1131 ++i;
1132 break;
1133 }
1134 }
1135
1136 if (saw_fun == 0)
1137 {
1138 info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF);
1139 info->indextable[i].stab = last_stab;
1140 info->indextable[i].str = str;
1141 info->indextable[i].directory_name = directory_name;
1142 info->indextable[i].file_name = file_name;
1143 info->indextable[i].function_name = NULL;
1144 ++i;
1145 }
1146
1147 info->indextable[i].val = (bfd_vma) -1;
1148 info->indextable[i].stab = info->stabs + stabsize;
1149 info->indextable[i].str = str;
1150 info->indextable[i].directory_name = NULL;
1151 info->indextable[i].file_name = NULL;
1152 info->indextable[i].function_name = NULL;
1153 ++i;
1154
1155 info->indextablesize = i;
1156 qsort (info->indextable, (size_t) i, sizeof (struct indexentry),
1157 cmpindexentry);
1158
1159 *pinfo = (PTR) info;
1160 }
1161
1162 /* We are passed a section relative offset. The offsets in the
1163 stabs information are absolute. */
1164 offset += bfd_get_section_vma (abfd, section);
1165
1166 #ifdef ENABLE_CACHING
1167 if (info->cached_indexentry != NULL
1168 && offset >= info->cached_offset
1169 && offset < (info->cached_indexentry + 1)->val)
1170 {
1171 stab = info->cached_stab;
1172 indexentry = info->cached_indexentry;
1173 file_name = info->cached_file_name;
1174 }
1175 else
1176 #endif
1177 {
1178 /* Cache non-existant or invalid. Do binary search on
1179 indextable. */
1180
1181 long low, high;
1182 long mid = -1;
1183
1184 indexentry = NULL;
1185
1186 low = 0;
1187 high = info->indextablesize - 1;
1188 while (low != high)
1189 {
1190 mid = (high + low) / 2;
1191 if (offset >= info->indextable[mid].val
1192 && offset < info->indextable[mid + 1].val)
1193 {
1194 indexentry = &info->indextable[mid];
1195 break;
1196 }
1197
1198 if (info->indextable[mid].val > offset)
1199 high = mid;
1200 else
1201 low = mid + 1;
1202 }
1203
1204 if (indexentry == NULL)
1205 return true;
1206
1207 stab = indexentry->stab + STABSIZE;
1208 file_name = indexentry->file_name;
1209 }
1210
1211 directory_name = indexentry->directory_name;
1212 str = indexentry->str;
1213
1214 for (; stab < (indexentry+1)->stab; stab += STABSIZE)
1215 {
1216 boolean done;
1217 bfd_vma val;
1218
1219 done = false;
1220
1221 switch (stab[TYPEOFF])
1222 {
1223 case N_SOL:
1224 /* The name of an include file. */
1225 val = bfd_get_32 (abfd, stab + VALOFF);
1226 if (val <= offset)
1227 {
1228 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1229 *pline = 0;
1230 }
1231 break;
1232
1233 case N_SLINE:
1234 case N_DSLINE:
1235 case N_BSLINE:
1236 /* A line number. The value is relative to the start of the
1237 current function. */
1238 val = indexentry->val + bfd_get_32 (abfd, stab + VALOFF);
1239 if (val <= offset)
1240 {
1241 *pline = bfd_get_16 (abfd, stab + DESCOFF);
1242
1243 #ifdef ENABLE_CACHING
1244 info->cached_stab = stab;
1245 info->cached_offset = val;
1246 info->cached_file_name = file_name;
1247 info->cached_indexentry = indexentry;
1248 #endif
1249 }
1250 if (val > offset)
1251 done = true;
1252 break;
1253
1254 case N_FUN:
1255 case N_SO:
1256 done = true;
1257 break;
1258 }
1259
1260 if (done)
1261 break;
1262 }
1263
1264 *pfound = true;
1265
1266 if (IS_ABSOLUTE_PATH(file_name) || directory_name == NULL)
1267 *pfilename = file_name;
1268 else
1269 {
1270 size_t dirlen;
1271
1272 dirlen = strlen (directory_name);
1273 if (info->filename == NULL
1274 || strncmp (info->filename, directory_name, dirlen) != 0
1275 || strcmp (info->filename + dirlen, file_name) != 0)
1276 {
1277 if (info->filename != NULL)
1278 free (info->filename);
1279 info->filename = (char *) bfd_malloc ((bfd_size_type) dirlen
1280 + strlen (file_name) + 1);
1281 if (info->filename == NULL)
1282 return false;
1283 strcpy (info->filename, directory_name);
1284 strcpy (info->filename + dirlen, file_name);
1285 }
1286
1287 *pfilename = info->filename;
1288 }
1289
1290 if (indexentry->function_name != NULL)
1291 {
1292 char *s;
1293
1294 /* This will typically be something like main:F(0,1), so we want
1295 to clobber the colon. It's OK to change the name, since the
1296 string is in our own local storage anyhow. */
1297
1298 s = strchr (indexentry->function_name, ':');
1299 if (s != NULL)
1300 *s = '\0';
1301
1302 *pfnname = indexentry->function_name;
1303 }
1304
1305 return true;
1306 }
This page took 0.080775 seconds and 4 git commands to generate.