Update year range in copyright notice of binutils files
[deliverable/binutils-gdb.git] / bfd / syms.c
1 /* Generic symbol-table support for the BFD library.
2 Copyright (C) 1990-2018 Free Software Foundation, Inc.
3 Written by Cygnus Support.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 /*
23 SECTION
24 Symbols
25
26 BFD tries to maintain as much symbol information as it can when
27 it moves information from file to file. BFD passes information
28 to applications though the <<asymbol>> structure. When the
29 application requests the symbol table, BFD reads the table in
30 the native form and translates parts of it into the internal
31 format. To maintain more than the information passed to
32 applications, some targets keep some information ``behind the
33 scenes'' in a structure only the particular back end knows
34 about. For example, the coff back end keeps the original
35 symbol table structure as well as the canonical structure when
36 a BFD is read in. On output, the coff back end can reconstruct
37 the output symbol table so that no information is lost, even
38 information unique to coff which BFD doesn't know or
39 understand. If a coff symbol table were read, but were written
40 through an a.out back end, all the coff specific information
41 would be lost. The symbol table of a BFD
42 is not necessarily read in until a canonicalize request is
43 made. Then the BFD back end fills in a table provided by the
44 application with pointers to the canonical information. To
45 output symbols, the application provides BFD with a table of
46 pointers to pointers to <<asymbol>>s. This allows applications
47 like the linker to output a symbol as it was read, since the ``behind
48 the scenes'' information will be still available.
49 @menu
50 @* Reading Symbols::
51 @* Writing Symbols::
52 @* Mini Symbols::
53 @* typedef asymbol::
54 @* symbol handling functions::
55 @end menu
56
57 INODE
58 Reading Symbols, Writing Symbols, Symbols, Symbols
59 SUBSECTION
60 Reading symbols
61
62 There are two stages to reading a symbol table from a BFD:
63 allocating storage, and the actual reading process. This is an
64 excerpt from an application which reads the symbol table:
65
66 | long storage_needed;
67 | asymbol **symbol_table;
68 | long number_of_symbols;
69 | long i;
70 |
71 | storage_needed = bfd_get_symtab_upper_bound (abfd);
72 |
73 | if (storage_needed < 0)
74 | FAIL
75 |
76 | if (storage_needed == 0)
77 | return;
78 |
79 | symbol_table = xmalloc (storage_needed);
80 | ...
81 | number_of_symbols =
82 | bfd_canonicalize_symtab (abfd, symbol_table);
83 |
84 | if (number_of_symbols < 0)
85 | FAIL
86 |
87 | for (i = 0; i < number_of_symbols; i++)
88 | process_symbol (symbol_table[i]);
89
90 All storage for the symbols themselves is in an objalloc
91 connected to the BFD; it is freed when the BFD is closed.
92
93 INODE
94 Writing Symbols, Mini Symbols, Reading Symbols, Symbols
95 SUBSECTION
96 Writing symbols
97
98 Writing of a symbol table is automatic when a BFD open for
99 writing is closed. The application attaches a vector of
100 pointers to pointers to symbols to the BFD being written, and
101 fills in the symbol count. The close and cleanup code reads
102 through the table provided and performs all the necessary
103 operations. The BFD output code must always be provided with an
104 ``owned'' symbol: one which has come from another BFD, or one
105 which has been created using <<bfd_make_empty_symbol>>. Here is an
106 example showing the creation of a symbol table with only one element:
107
108 | #include "sysdep.h"
109 | #include "bfd.h"
110 | int main (void)
111 | {
112 | bfd *abfd;
113 | asymbol *ptrs[2];
114 | asymbol *new;
115 |
116 | abfd = bfd_openw ("foo","a.out-sunos-big");
117 | bfd_set_format (abfd, bfd_object);
118 | new = bfd_make_empty_symbol (abfd);
119 | new->name = "dummy_symbol";
120 | new->section = bfd_make_section_old_way (abfd, ".text");
121 | new->flags = BSF_GLOBAL;
122 | new->value = 0x12345;
123 |
124 | ptrs[0] = new;
125 | ptrs[1] = 0;
126 |
127 | bfd_set_symtab (abfd, ptrs, 1);
128 | bfd_close (abfd);
129 | return 0;
130 | }
131 |
132 | ./makesym
133 | nm foo
134 | 00012345 A dummy_symbol
135
136 Many formats cannot represent arbitrary symbol information; for
137 instance, the <<a.out>> object format does not allow an
138 arbitrary number of sections. A symbol pointing to a section
139 which is not one of <<.text>>, <<.data>> or <<.bss>> cannot
140 be described.
141
142 INODE
143 Mini Symbols, typedef asymbol, Writing Symbols, Symbols
144 SUBSECTION
145 Mini Symbols
146
147 Mini symbols provide read-only access to the symbol table.
148 They use less memory space, but require more time to access.
149 They can be useful for tools like nm or objdump, which may
150 have to handle symbol tables of extremely large executables.
151
152 The <<bfd_read_minisymbols>> function will read the symbols
153 into memory in an internal form. It will return a <<void *>>
154 pointer to a block of memory, a symbol count, and the size of
155 each symbol. The pointer is allocated using <<malloc>>, and
156 should be freed by the caller when it is no longer needed.
157
158 The function <<bfd_minisymbol_to_symbol>> will take a pointer
159 to a minisymbol, and a pointer to a structure returned by
160 <<bfd_make_empty_symbol>>, and return a <<asymbol>> structure.
161 The return value may or may not be the same as the value from
162 <<bfd_make_empty_symbol>> which was passed in.
163
164 */
165
166 /*
167 DOCDD
168 INODE
169 typedef asymbol, symbol handling functions, Mini Symbols, Symbols
170
171 */
172 /*
173 SUBSECTION
174 typedef asymbol
175
176 An <<asymbol>> has the form:
177
178 */
179
180 /*
181 CODE_FRAGMENT
182
183 .
184 .typedef struct bfd_symbol
185 .{
186 . {* A pointer to the BFD which owns the symbol. This information
187 . is necessary so that a back end can work out what additional
188 . information (invisible to the application writer) is carried
189 . with the symbol.
190 .
191 . This field is *almost* redundant, since you can use section->owner
192 . instead, except that some symbols point to the global sections
193 . bfd_{abs,com,und}_section. This could be fixed by making
194 . these globals be per-bfd (or per-target-flavor). FIXME. *}
195 . struct bfd *the_bfd; {* Use bfd_asymbol_bfd(sym) to access this field. *}
196 .
197 . {* The text of the symbol. The name is left alone, and not copied; the
198 . application may not alter it. *}
199 . const char *name;
200 .
201 . {* The value of the symbol. This really should be a union of a
202 . numeric value with a pointer, since some flags indicate that
203 . a pointer to another symbol is stored here. *}
204 . symvalue value;
205 .
206 . {* Attributes of a symbol. *}
207 .#define BSF_NO_FLAGS 0
208 .
209 . {* The symbol has local scope; <<static>> in <<C>>. The value
210 . is the offset into the section of the data. *}
211 .#define BSF_LOCAL (1 << 0)
212 .
213 . {* The symbol has global scope; initialized data in <<C>>. The
214 . value is the offset into the section of the data. *}
215 .#define BSF_GLOBAL (1 << 1)
216 .
217 . {* The symbol has global scope and is exported. The value is
218 . the offset into the section of the data. *}
219 .#define BSF_EXPORT BSF_GLOBAL {* No real difference. *}
220 .
221 . {* A normal C symbol would be one of:
222 . <<BSF_LOCAL>>, <<BSF_UNDEFINED>> or <<BSF_GLOBAL>>. *}
223 .
224 . {* The symbol is a debugging record. The value has an arbitrary
225 . meaning, unless BSF_DEBUGGING_RELOC is also set. *}
226 .#define BSF_DEBUGGING (1 << 2)
227 .
228 . {* The symbol denotes a function entry point. Used in ELF,
229 . perhaps others someday. *}
230 .#define BSF_FUNCTION (1 << 3)
231 .
232 . {* Used by the linker. *}
233 .#define BSF_KEEP (1 << 5)
234 .
235 . {* An ELF common symbol. *}
236 .#define BSF_ELF_COMMON (1 << 6)
237 .
238 . {* A weak global symbol, overridable without warnings by
239 . a regular global symbol of the same name. *}
240 .#define BSF_WEAK (1 << 7)
241 .
242 . {* This symbol was created to point to a section, e.g. ELF's
243 . STT_SECTION symbols. *}
244 .#define BSF_SECTION_SYM (1 << 8)
245 .
246 . {* The symbol used to be a common symbol, but now it is
247 . allocated. *}
248 .#define BSF_OLD_COMMON (1 << 9)
249 .
250 . {* In some files the type of a symbol sometimes alters its
251 . location in an output file - ie in coff a <<ISFCN>> symbol
252 . which is also <<C_EXT>> symbol appears where it was
253 . declared and not at the end of a section. This bit is set
254 . by the target BFD part to convey this information. *}
255 .#define BSF_NOT_AT_END (1 << 10)
256 .
257 . {* Signal that the symbol is the label of constructor section. *}
258 .#define BSF_CONSTRUCTOR (1 << 11)
259 .
260 . {* Signal that the symbol is a warning symbol. The name is a
261 . warning. The name of the next symbol is the one to warn about;
262 . if a reference is made to a symbol with the same name as the next
263 . symbol, a warning is issued by the linker. *}
264 .#define BSF_WARNING (1 << 12)
265 .
266 . {* Signal that the symbol is indirect. This symbol is an indirect
267 . pointer to the symbol with the same name as the next symbol. *}
268 .#define BSF_INDIRECT (1 << 13)
269 .
270 . {* BSF_FILE marks symbols that contain a file name. This is used
271 . for ELF STT_FILE symbols. *}
272 .#define BSF_FILE (1 << 14)
273 .
274 . {* Symbol is from dynamic linking information. *}
275 .#define BSF_DYNAMIC (1 << 15)
276 .
277 . {* The symbol denotes a data object. Used in ELF, and perhaps
278 . others someday. *}
279 .#define BSF_OBJECT (1 << 16)
280 .
281 . {* This symbol is a debugging symbol. The value is the offset
282 . into the section of the data. BSF_DEBUGGING should be set
283 . as well. *}
284 .#define BSF_DEBUGGING_RELOC (1 << 17)
285 .
286 . {* This symbol is thread local. Used in ELF. *}
287 .#define BSF_THREAD_LOCAL (1 << 18)
288 .
289 . {* This symbol represents a complex relocation expression,
290 . with the expression tree serialized in the symbol name. *}
291 .#define BSF_RELC (1 << 19)
292 .
293 . {* This symbol represents a signed complex relocation expression,
294 . with the expression tree serialized in the symbol name. *}
295 .#define BSF_SRELC (1 << 20)
296 .
297 . {* This symbol was created by bfd_get_synthetic_symtab. *}
298 .#define BSF_SYNTHETIC (1 << 21)
299 .
300 . {* This symbol is an indirect code object. Unrelated to BSF_INDIRECT.
301 . The dynamic linker will compute the value of this symbol by
302 . calling the function that it points to. BSF_FUNCTION must
303 . also be also set. *}
304 .#define BSF_GNU_INDIRECT_FUNCTION (1 << 22)
305 . {* This symbol is a globally unique data object. The dynamic linker
306 . will make sure that in the entire process there is just one symbol
307 . with this name and type in use. BSF_OBJECT must also be set. *}
308 .#define BSF_GNU_UNIQUE (1 << 23)
309 .
310 . flagword flags;
311 .
312 . {* A pointer to the section to which this symbol is
313 . relative. This will always be non NULL, there are special
314 . sections for undefined and absolute symbols. *}
315 . struct bfd_section *section;
316 .
317 . {* Back end special data. *}
318 . union
319 . {
320 . void *p;
321 . bfd_vma i;
322 . }
323 . udata;
324 .}
325 .asymbol;
326 .
327 */
328
329 #include "sysdep.h"
330 #include "bfd.h"
331 #include "libbfd.h"
332 #include "safe-ctype.h"
333 #include "bfdlink.h"
334 #include "aout/stab_gnu.h"
335
336 /*
337 DOCDD
338 INODE
339 symbol handling functions, , typedef asymbol, Symbols
340 SUBSECTION
341 Symbol handling functions
342 */
343
344 /*
345 FUNCTION
346 bfd_get_symtab_upper_bound
347
348 DESCRIPTION
349 Return the number of bytes required to store a vector of pointers
350 to <<asymbols>> for all the symbols in the BFD @var{abfd},
351 including a terminal NULL pointer. If there are no symbols in
352 the BFD, then return 0. If an error occurs, return -1.
353
354 .#define bfd_get_symtab_upper_bound(abfd) \
355 . BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))
356 .
357 */
358
359 /*
360 FUNCTION
361 bfd_is_local_label
362
363 SYNOPSIS
364 bfd_boolean bfd_is_local_label (bfd *abfd, asymbol *sym);
365
366 DESCRIPTION
367 Return TRUE if the given symbol @var{sym} in the BFD @var{abfd} is
368 a compiler generated local label, else return FALSE.
369 */
370
371 bfd_boolean
372 bfd_is_local_label (bfd *abfd, asymbol *sym)
373 {
374 /* The BSF_SECTION_SYM check is needed for IA-64, where every label that
375 starts with '.' is local. This would accidentally catch section names
376 if we didn't reject them here. */
377 if ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_FILE | BSF_SECTION_SYM)) != 0)
378 return FALSE;
379 if (sym->name == NULL)
380 return FALSE;
381 return bfd_is_local_label_name (abfd, sym->name);
382 }
383
384 /*
385 FUNCTION
386 bfd_is_local_label_name
387
388 SYNOPSIS
389 bfd_boolean bfd_is_local_label_name (bfd *abfd, const char *name);
390
391 DESCRIPTION
392 Return TRUE if a symbol with the name @var{name} in the BFD
393 @var{abfd} is a compiler generated local label, else return
394 FALSE. This just checks whether the name has the form of a
395 local label.
396
397 .#define bfd_is_local_label_name(abfd, name) \
398 . BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))
399 .
400 */
401
402 /*
403 FUNCTION
404 bfd_is_target_special_symbol
405
406 SYNOPSIS
407 bfd_boolean bfd_is_target_special_symbol (bfd *abfd, asymbol *sym);
408
409 DESCRIPTION
410 Return TRUE iff a symbol @var{sym} in the BFD @var{abfd} is something
411 special to the particular target represented by the BFD. Such symbols
412 should normally not be mentioned to the user.
413
414 .#define bfd_is_target_special_symbol(abfd, sym) \
415 . BFD_SEND (abfd, _bfd_is_target_special_symbol, (abfd, sym))
416 .
417 */
418
419 /*
420 FUNCTION
421 bfd_canonicalize_symtab
422
423 DESCRIPTION
424 Read the symbols from the BFD @var{abfd}, and fills in
425 the vector @var{location} with pointers to the symbols and
426 a trailing NULL.
427 Return the actual number of symbol pointers, not
428 including the NULL.
429
430 .#define bfd_canonicalize_symtab(abfd, location) \
431 . BFD_SEND (abfd, _bfd_canonicalize_symtab, (abfd, location))
432 .
433 */
434
435 /*
436 FUNCTION
437 bfd_set_symtab
438
439 SYNOPSIS
440 bfd_boolean bfd_set_symtab
441 (bfd *abfd, asymbol **location, unsigned int count);
442
443 DESCRIPTION
444 Arrange that when the output BFD @var{abfd} is closed,
445 the table @var{location} of @var{count} pointers to symbols
446 will be written.
447 */
448
449 bfd_boolean
450 bfd_set_symtab (bfd *abfd, asymbol **location, unsigned int symcount)
451 {
452 if (abfd->format != bfd_object || bfd_read_p (abfd))
453 {
454 bfd_set_error (bfd_error_invalid_operation);
455 return FALSE;
456 }
457
458 bfd_get_outsymbols (abfd) = location;
459 bfd_get_symcount (abfd) = symcount;
460 return TRUE;
461 }
462
463 /*
464 FUNCTION
465 bfd_print_symbol_vandf
466
467 SYNOPSIS
468 void bfd_print_symbol_vandf (bfd *abfd, void *file, asymbol *symbol);
469
470 DESCRIPTION
471 Print the value and flags of the @var{symbol} supplied to the
472 stream @var{file}.
473 */
474 void
475 bfd_print_symbol_vandf (bfd *abfd, void *arg, asymbol *symbol)
476 {
477 FILE *file = (FILE *) arg;
478
479 flagword type = symbol->flags;
480
481 if (symbol->section != NULL)
482 bfd_fprintf_vma (abfd, file, symbol->value + symbol->section->vma);
483 else
484 bfd_fprintf_vma (abfd, file, symbol->value);
485
486 /* This presumes that a symbol can not be both BSF_DEBUGGING and
487 BSF_DYNAMIC, nor more than one of BSF_FUNCTION, BSF_FILE, and
488 BSF_OBJECT. */
489 fprintf (file, " %c%c%c%c%c%c%c",
490 ((type & BSF_LOCAL)
491 ? (type & BSF_GLOBAL) ? '!' : 'l'
492 : (type & BSF_GLOBAL) ? 'g'
493 : (type & BSF_GNU_UNIQUE) ? 'u' : ' '),
494 (type & BSF_WEAK) ? 'w' : ' ',
495 (type & BSF_CONSTRUCTOR) ? 'C' : ' ',
496 (type & BSF_WARNING) ? 'W' : ' ',
497 (type & BSF_INDIRECT) ? 'I' : (type & BSF_GNU_INDIRECT_FUNCTION) ? 'i' : ' ',
498 (type & BSF_DEBUGGING) ? 'd' : (type & BSF_DYNAMIC) ? 'D' : ' ',
499 ((type & BSF_FUNCTION)
500 ? 'F'
501 : ((type & BSF_FILE)
502 ? 'f'
503 : ((type & BSF_OBJECT) ? 'O' : ' '))));
504 }
505
506 /*
507 FUNCTION
508 bfd_make_empty_symbol
509
510 DESCRIPTION
511 Create a new <<asymbol>> structure for the BFD @var{abfd}
512 and return a pointer to it.
513
514 This routine is necessary because each back end has private
515 information surrounding the <<asymbol>>. Building your own
516 <<asymbol>> and pointing to it will not create the private
517 information, and will cause problems later on.
518
519 .#define bfd_make_empty_symbol(abfd) \
520 . BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
521 .
522 */
523
524 /*
525 FUNCTION
526 _bfd_generic_make_empty_symbol
527
528 SYNOPSIS
529 asymbol *_bfd_generic_make_empty_symbol (bfd *);
530
531 DESCRIPTION
532 Create a new <<asymbol>> structure for the BFD @var{abfd}
533 and return a pointer to it. Used by core file routines,
534 binary back-end and anywhere else where no private info
535 is needed.
536 */
537
538 asymbol *
539 _bfd_generic_make_empty_symbol (bfd *abfd)
540 {
541 bfd_size_type amt = sizeof (asymbol);
542 asymbol *new_symbol = (asymbol *) bfd_zalloc (abfd, amt);
543 if (new_symbol)
544 new_symbol->the_bfd = abfd;
545 return new_symbol;
546 }
547
548 /*
549 FUNCTION
550 bfd_make_debug_symbol
551
552 DESCRIPTION
553 Create a new <<asymbol>> structure for the BFD @var{abfd},
554 to be used as a debugging symbol. Further details of its use have
555 yet to be worked out.
556
557 .#define bfd_make_debug_symbol(abfd,ptr,size) \
558 . BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))
559 .
560 */
561
562 struct section_to_type
563 {
564 const char *section;
565 char type;
566 };
567
568 /* Map section names to POSIX/BSD single-character symbol types.
569 This table is probably incomplete. It is sorted for convenience of
570 adding entries. Since it is so short, a linear search is used. */
571 static const struct section_to_type stt[] =
572 {
573 {".bss", 'b'},
574 {"code", 't'}, /* MRI .text */
575 {".data", 'd'},
576 {"*DEBUG*", 'N'},
577 {".debug", 'N'}, /* MSVC's .debug (non-standard debug syms) */
578 {".drectve", 'i'}, /* MSVC's .drective section */
579 {".edata", 'e'}, /* MSVC's .edata (export) section */
580 {".fini", 't'}, /* ELF fini section */
581 {".idata", 'i'}, /* MSVC's .idata (import) section */
582 {".init", 't'}, /* ELF init section */
583 {".pdata", 'p'}, /* MSVC's .pdata (stack unwind) section */
584 {".rdata", 'r'}, /* Read only data. */
585 {".rodata", 'r'}, /* Read only data. */
586 {".sbss", 's'}, /* Small BSS (uninitialized data). */
587 {".scommon", 'c'}, /* Small common. */
588 {".sdata", 'g'}, /* Small initialized data. */
589 {".text", 't'},
590 {"vars", 'd'}, /* MRI .data */
591 {"zerovars", 'b'}, /* MRI .bss */
592 {0, 0}
593 };
594
595 /* Return the single-character symbol type corresponding to
596 section S, or '?' for an unknown COFF section.
597
598 Check for any leading string which matches, so .text5 returns
599 't' as well as .text */
600
601 static char
602 coff_section_type (const char *s)
603 {
604 const struct section_to_type *t;
605
606 for (t = &stt[0]; t->section; t++)
607 if (!strncmp (s, t->section, strlen (t->section)))
608 return t->type;
609
610 return '?';
611 }
612
613 /* Return the single-character symbol type corresponding to section
614 SECTION, or '?' for an unknown section. This uses section flags to
615 identify sections.
616
617 FIXME These types are unhandled: c, i, e, p. If we handled these also,
618 we could perhaps obsolete coff_section_type. */
619
620 static char
621 decode_section_type (const struct bfd_section *section)
622 {
623 if (section->flags & SEC_CODE)
624 return 't';
625 if (section->flags & SEC_DATA)
626 {
627 if (section->flags & SEC_READONLY)
628 return 'r';
629 else if (section->flags & SEC_SMALL_DATA)
630 return 'g';
631 else
632 return 'd';
633 }
634 if ((section->flags & SEC_HAS_CONTENTS) == 0)
635 {
636 if (section->flags & SEC_SMALL_DATA)
637 return 's';
638 else
639 return 'b';
640 }
641 if (section->flags & SEC_DEBUGGING)
642 return 'N';
643 if ((section->flags & SEC_HAS_CONTENTS) && (section->flags & SEC_READONLY))
644 return 'n';
645
646 return '?';
647 }
648
649 /*
650 FUNCTION
651 bfd_decode_symclass
652
653 DESCRIPTION
654 Return a character corresponding to the symbol
655 class of @var{symbol}, or '?' for an unknown class.
656
657 SYNOPSIS
658 int bfd_decode_symclass (asymbol *symbol);
659 */
660 int
661 bfd_decode_symclass (asymbol *symbol)
662 {
663 char c;
664
665 if (symbol->section && bfd_is_com_section (symbol->section))
666 return 'C';
667 if (bfd_is_und_section (symbol->section))
668 {
669 if (symbol->flags & BSF_WEAK)
670 {
671 /* If weak, determine if it's specifically an object
672 or non-object weak. */
673 if (symbol->flags & BSF_OBJECT)
674 return 'v';
675 else
676 return 'w';
677 }
678 else
679 return 'U';
680 }
681 if (bfd_is_ind_section (symbol->section))
682 return 'I';
683 if (symbol->flags & BSF_GNU_INDIRECT_FUNCTION)
684 return 'i';
685 if (symbol->flags & BSF_WEAK)
686 {
687 /* If weak, determine if it's specifically an object
688 or non-object weak. */
689 if (symbol->flags & BSF_OBJECT)
690 return 'V';
691 else
692 return 'W';
693 }
694 if (symbol->flags & BSF_GNU_UNIQUE)
695 return 'u';
696 if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL)))
697 return '?';
698
699 if (bfd_is_abs_section (symbol->section))
700 c = 'a';
701 else if (symbol->section)
702 {
703 c = coff_section_type (symbol->section->name);
704 if (c == '?')
705 c = decode_section_type (symbol->section);
706 }
707 else
708 return '?';
709 if (symbol->flags & BSF_GLOBAL)
710 c = TOUPPER (c);
711 return c;
712
713 /* We don't have to handle these cases just yet, but we will soon:
714 N_SETV: 'v';
715 N_SETA: 'l';
716 N_SETT: 'x';
717 N_SETD: 'z';
718 N_SETB: 's';
719 N_INDR: 'i';
720 */
721 }
722
723 /*
724 FUNCTION
725 bfd_is_undefined_symclass
726
727 DESCRIPTION
728 Returns non-zero if the class symbol returned by
729 bfd_decode_symclass represents an undefined symbol.
730 Returns zero otherwise.
731
732 SYNOPSIS
733 bfd_boolean bfd_is_undefined_symclass (int symclass);
734 */
735
736 bfd_boolean
737 bfd_is_undefined_symclass (int symclass)
738 {
739 return symclass == 'U' || symclass == 'w' || symclass == 'v';
740 }
741
742 /*
743 FUNCTION
744 bfd_symbol_info
745
746 DESCRIPTION
747 Fill in the basic info about symbol that nm needs.
748 Additional info may be added by the back-ends after
749 calling this function.
750
751 SYNOPSIS
752 void bfd_symbol_info (asymbol *symbol, symbol_info *ret);
753 */
754
755 void
756 bfd_symbol_info (asymbol *symbol, symbol_info *ret)
757 {
758 ret->type = bfd_decode_symclass (symbol);
759
760 if (bfd_is_undefined_symclass (ret->type))
761 ret->value = 0;
762 else
763 ret->value = symbol->value + symbol->section->vma;
764
765 ret->name = symbol->name;
766 }
767
768 /*
769 FUNCTION
770 bfd_copy_private_symbol_data
771
772 SYNOPSIS
773 bfd_boolean bfd_copy_private_symbol_data
774 (bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
775
776 DESCRIPTION
777 Copy private symbol information from @var{isym} in the BFD
778 @var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}.
779 Return <<TRUE>> on success, <<FALSE>> on error. Possible error
780 returns are:
781
782 o <<bfd_error_no_memory>> -
783 Not enough memory exists to create private data for @var{osec}.
784
785 .#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
786 . BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
787 . (ibfd, isymbol, obfd, osymbol))
788 .
789 */
790
791 /* The generic version of the function which returns mini symbols.
792 This is used when the backend does not provide a more efficient
793 version. It just uses BFD asymbol structures as mini symbols. */
794
795 long
796 _bfd_generic_read_minisymbols (bfd *abfd,
797 bfd_boolean dynamic,
798 void **minisymsp,
799 unsigned int *sizep)
800 {
801 long storage;
802 asymbol **syms = NULL;
803 long symcount;
804
805 if (dynamic)
806 storage = bfd_get_dynamic_symtab_upper_bound (abfd);
807 else
808 storage = bfd_get_symtab_upper_bound (abfd);
809 if (storage < 0)
810 goto error_return;
811 if (storage == 0)
812 return 0;
813
814 syms = (asymbol **) bfd_malloc (storage);
815 if (syms == NULL)
816 goto error_return;
817
818 if (dynamic)
819 symcount = bfd_canonicalize_dynamic_symtab (abfd, syms);
820 else
821 symcount = bfd_canonicalize_symtab (abfd, syms);
822 if (symcount < 0)
823 goto error_return;
824
825 *minisymsp = syms;
826 *sizep = sizeof (asymbol *);
827
828 return symcount;
829
830 error_return:
831 bfd_set_error (bfd_error_no_symbols);
832 if (syms != NULL)
833 free (syms);
834 return -1;
835 }
836
837 /* The generic version of the function which converts a minisymbol to
838 an asymbol. We don't worry about the sym argument we are passed;
839 we just return the asymbol the minisymbol points to. */
840
841 asymbol *
842 _bfd_generic_minisymbol_to_symbol (bfd *abfd ATTRIBUTE_UNUSED,
843 bfd_boolean dynamic ATTRIBUTE_UNUSED,
844 const void *minisym,
845 asymbol *sym ATTRIBUTE_UNUSED)
846 {
847 return *(asymbol **) minisym;
848 }
849
850 /* Look through stabs debugging information in .stab and .stabstr
851 sections to find the source file and line closest to a desired
852 location. This is used by COFF and ELF targets. It sets *pfound
853 to TRUE if it finds some information. The *pinfo field is used to
854 pass cached information in and out of this routine; this first time
855 the routine is called for a BFD, *pinfo should be NULL. The value
856 placed in *pinfo should be saved with the BFD, and passed back each
857 time this function is called. */
858
859 /* We use a cache by default. */
860
861 #define ENABLE_CACHING
862
863 /* We keep an array of indexentry structures to record where in the
864 stabs section we should look to find line number information for a
865 particular address. */
866
867 struct indexentry
868 {
869 bfd_vma val;
870 bfd_byte *stab;
871 bfd_byte *str;
872 char *directory_name;
873 char *file_name;
874 char *function_name;
875 };
876
877 /* Compare two indexentry structures. This is called via qsort. */
878
879 static int
880 cmpindexentry (const void *a, const void *b)
881 {
882 const struct indexentry *contestantA = (const struct indexentry *) a;
883 const struct indexentry *contestantB = (const struct indexentry *) b;
884
885 if (contestantA->val < contestantB->val)
886 return -1;
887 else if (contestantA->val > contestantB->val)
888 return 1;
889 else
890 return 0;
891 }
892
893 /* A pointer to this structure is stored in *pinfo. */
894
895 struct stab_find_info
896 {
897 /* The .stab section. */
898 asection *stabsec;
899 /* The .stabstr section. */
900 asection *strsec;
901 /* The contents of the .stab section. */
902 bfd_byte *stabs;
903 /* The contents of the .stabstr section. */
904 bfd_byte *strs;
905
906 /* A table that indexes stabs by memory address. */
907 struct indexentry *indextable;
908 /* The number of entries in indextable. */
909 int indextablesize;
910
911 #ifdef ENABLE_CACHING
912 /* Cached values to restart quickly. */
913 struct indexentry *cached_indexentry;
914 bfd_vma cached_offset;
915 bfd_byte *cached_stab;
916 char *cached_file_name;
917 #endif
918
919 /* Saved ptr to malloc'ed filename. */
920 char *filename;
921 };
922
923 bfd_boolean
924 _bfd_stab_section_find_nearest_line (bfd *abfd,
925 asymbol **symbols,
926 asection *section,
927 bfd_vma offset,
928 bfd_boolean *pfound,
929 const char **pfilename,
930 const char **pfnname,
931 unsigned int *pline,
932 void **pinfo)
933 {
934 struct stab_find_info *info;
935 bfd_size_type stabsize, strsize;
936 bfd_byte *stab, *str;
937 bfd_byte *nul_fun, *nul_str;
938 bfd_size_type stroff;
939 struct indexentry *indexentry;
940 char *file_name;
941 char *directory_name;
942 bfd_boolean saw_line, saw_func;
943
944 *pfound = FALSE;
945 *pfilename = bfd_get_filename (abfd);
946 *pfnname = NULL;
947 *pline = 0;
948
949 /* Stabs entries use a 12 byte format:
950 4 byte string table index
951 1 byte stab type
952 1 byte stab other field
953 2 byte stab desc field
954 4 byte stab value
955 FIXME: This will have to change for a 64 bit object format.
956
957 The stabs symbols are divided into compilation units. For the
958 first entry in each unit, the type of 0, the value is the length
959 of the string table for this unit, and the desc field is the
960 number of stabs symbols for this unit. */
961
962 #define STRDXOFF (0)
963 #define TYPEOFF (4)
964 #define OTHEROFF (5)
965 #define DESCOFF (6)
966 #define VALOFF (8)
967 #define STABSIZE (12)
968
969 info = (struct stab_find_info *) *pinfo;
970 if (info != NULL)
971 {
972 if (info->stabsec == NULL || info->strsec == NULL)
973 {
974 /* No stabs debugging information. */
975 return TRUE;
976 }
977
978 stabsize = (info->stabsec->rawsize
979 ? info->stabsec->rawsize
980 : info->stabsec->size);
981 strsize = (info->strsec->rawsize
982 ? info->strsec->rawsize
983 : info->strsec->size);
984 }
985 else
986 {
987 long reloc_size, reloc_count;
988 arelent **reloc_vector;
989 int i;
990 char *function_name;
991 bfd_size_type amt = sizeof *info;
992
993 info = (struct stab_find_info *) bfd_zalloc (abfd, amt);
994 if (info == NULL)
995 return FALSE;
996
997 /* FIXME: When using the linker --split-by-file or
998 --split-by-reloc options, it is possible for the .stab and
999 .stabstr sections to be split. We should handle that. */
1000
1001 info->stabsec = bfd_get_section_by_name (abfd, ".stab");
1002 info->strsec = bfd_get_section_by_name (abfd, ".stabstr");
1003
1004 if (info->stabsec == NULL || info->strsec == NULL)
1005 {
1006 /* Try SOM section names. */
1007 info->stabsec = bfd_get_section_by_name (abfd, "$GDB_SYMBOLS$");
1008 info->strsec = bfd_get_section_by_name (abfd, "$GDB_STRINGS$");
1009
1010 if (info->stabsec == NULL || info->strsec == NULL)
1011 {
1012 /* No stabs debugging information. Set *pinfo so that we
1013 can return quickly in the info != NULL case above. */
1014 *pinfo = info;
1015 return TRUE;
1016 }
1017 }
1018
1019 stabsize = (info->stabsec->rawsize
1020 ? info->stabsec->rawsize
1021 : info->stabsec->size);
1022 stabsize = (stabsize / STABSIZE) * STABSIZE;
1023 strsize = (info->strsec->rawsize
1024 ? info->strsec->rawsize
1025 : info->strsec->size);
1026
1027 info->stabs = (bfd_byte *) bfd_alloc (abfd, stabsize);
1028 info->strs = (bfd_byte *) bfd_alloc (abfd, strsize);
1029 if (info->stabs == NULL || info->strs == NULL)
1030 return FALSE;
1031
1032 if (! bfd_get_section_contents (abfd, info->stabsec, info->stabs,
1033 0, stabsize)
1034 || ! bfd_get_section_contents (abfd, info->strsec, info->strs,
1035 0, strsize))
1036 return FALSE;
1037
1038 /* If this is a relocatable object file, we have to relocate
1039 the entries in .stab. This should always be simple 32 bit
1040 relocations against symbols defined in this object file, so
1041 this should be no big deal. */
1042 reloc_size = bfd_get_reloc_upper_bound (abfd, info->stabsec);
1043 if (reloc_size < 0)
1044 return FALSE;
1045 reloc_vector = (arelent **) bfd_malloc (reloc_size);
1046 if (reloc_vector == NULL && reloc_size != 0)
1047 return FALSE;
1048 reloc_count = bfd_canonicalize_reloc (abfd, info->stabsec, reloc_vector,
1049 symbols);
1050 if (reloc_count < 0)
1051 {
1052 if (reloc_vector != NULL)
1053 free (reloc_vector);
1054 return FALSE;
1055 }
1056 if (reloc_count > 0)
1057 {
1058 arelent **pr;
1059
1060 for (pr = reloc_vector; *pr != NULL; pr++)
1061 {
1062 arelent *r;
1063 unsigned long val;
1064 asymbol *sym;
1065
1066 r = *pr;
1067 /* Ignore R_*_NONE relocs. */
1068 if (r->howto->dst_mask == 0)
1069 continue;
1070
1071 if (r->howto->rightshift != 0
1072 || r->howto->size != 2
1073 || r->howto->bitsize != 32
1074 || r->howto->pc_relative
1075 || r->howto->bitpos != 0
1076 || r->howto->dst_mask != 0xffffffff)
1077 {
1078 _bfd_error_handler
1079 (_("Unsupported .stab relocation"));
1080 bfd_set_error (bfd_error_invalid_operation);
1081 if (reloc_vector != NULL)
1082 free (reloc_vector);
1083 return FALSE;
1084 }
1085
1086 val = bfd_get_32 (abfd, info->stabs
1087 + r->address * bfd_octets_per_byte (abfd));
1088 val &= r->howto->src_mask;
1089 sym = *r->sym_ptr_ptr;
1090 val += sym->value + sym->section->vma + r->addend;
1091 bfd_put_32 (abfd, (bfd_vma) val, info->stabs
1092 + r->address * bfd_octets_per_byte (abfd));
1093 }
1094 }
1095
1096 if (reloc_vector != NULL)
1097 free (reloc_vector);
1098
1099 /* First time through this function, build a table matching
1100 function VM addresses to stabs, then sort based on starting
1101 VM address. Do this in two passes: once to count how many
1102 table entries we'll need, and a second to actually build the
1103 table. */
1104
1105 info->indextablesize = 0;
1106 nul_fun = NULL;
1107 for (stab = info->stabs; stab < info->stabs + stabsize; stab += STABSIZE)
1108 {
1109 if (stab[TYPEOFF] == (bfd_byte) N_SO)
1110 {
1111 /* if we did not see a function def, leave space for one. */
1112 if (nul_fun != NULL)
1113 ++info->indextablesize;
1114
1115 /* N_SO with null name indicates EOF */
1116 if (bfd_get_32 (abfd, stab + STRDXOFF) == 0)
1117 nul_fun = NULL;
1118 else
1119 {
1120 nul_fun = stab;
1121
1122 /* two N_SO's in a row is a filename and directory. Skip */
1123 if (stab + STABSIZE + TYPEOFF < info->stabs + stabsize
1124 && *(stab + STABSIZE + TYPEOFF) == (bfd_byte) N_SO)
1125 stab += STABSIZE;
1126 }
1127 }
1128 else if (stab[TYPEOFF] == (bfd_byte) N_FUN
1129 && bfd_get_32 (abfd, stab + STRDXOFF) != 0)
1130 {
1131 nul_fun = NULL;
1132 ++info->indextablesize;
1133 }
1134 }
1135
1136 if (nul_fun != NULL)
1137 ++info->indextablesize;
1138
1139 if (info->indextablesize == 0)
1140 return TRUE;
1141 ++info->indextablesize;
1142
1143 amt = info->indextablesize;
1144 amt *= sizeof (struct indexentry);
1145 info->indextable = (struct indexentry *) bfd_alloc (abfd, amt);
1146 if (info->indextable == NULL)
1147 return FALSE;
1148
1149 file_name = NULL;
1150 directory_name = NULL;
1151 nul_fun = NULL;
1152 stroff = 0;
1153
1154 for (i = 0, stab = info->stabs, nul_str = str = info->strs;
1155 i < info->indextablesize && stab < info->stabs + stabsize;
1156 stab += STABSIZE)
1157 {
1158 switch (stab[TYPEOFF])
1159 {
1160 case 0:
1161 /* This is the first entry in a compilation unit. */
1162 if ((bfd_size_type) ((info->strs + strsize) - str) < stroff)
1163 break;
1164 str += stroff;
1165 stroff = bfd_get_32 (abfd, stab + VALOFF);
1166 break;
1167
1168 case N_SO:
1169 /* The main file name. */
1170
1171 /* The following code creates a new indextable entry with
1172 a NULL function name if there were no N_FUNs in a file.
1173 Note that a N_SO without a file name is an EOF and
1174 there could be 2 N_SO following it with the new filename
1175 and directory. */
1176 if (nul_fun != NULL)
1177 {
1178 info->indextable[i].val = bfd_get_32 (abfd, nul_fun + VALOFF);
1179 info->indextable[i].stab = nul_fun;
1180 info->indextable[i].str = nul_str;
1181 info->indextable[i].directory_name = directory_name;
1182 info->indextable[i].file_name = file_name;
1183 info->indextable[i].function_name = NULL;
1184 ++i;
1185 }
1186
1187 directory_name = NULL;
1188 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1189 if (file_name == (char *) str)
1190 {
1191 file_name = NULL;
1192 nul_fun = NULL;
1193 }
1194 else
1195 {
1196 nul_fun = stab;
1197 nul_str = str;
1198 if (file_name >= (char *) info->strs + strsize || file_name < (char *) str)
1199 file_name = NULL;
1200 if (stab + STABSIZE + TYPEOFF < info->stabs + stabsize
1201 && *(stab + STABSIZE + TYPEOFF) == (bfd_byte) N_SO)
1202 {
1203 /* Two consecutive N_SOs are a directory and a
1204 file name. */
1205 stab += STABSIZE;
1206 directory_name = file_name;
1207 file_name = ((char *) str
1208 + bfd_get_32 (abfd, stab + STRDXOFF));
1209 if (file_name >= (char *) info->strs + strsize || file_name < (char *) str)
1210 file_name = NULL;
1211 }
1212 }
1213 break;
1214
1215 case N_SOL:
1216 /* The name of an include file. */
1217 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1218 /* PR 17512: file: 0c680a1f. */
1219 /* PR 17512: file: 5da8aec4. */
1220 if (file_name >= (char *) info->strs + strsize || file_name < (char *) str)
1221 file_name = NULL;
1222 break;
1223
1224 case N_FUN:
1225 /* A function name. */
1226 function_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1227 if (function_name == (char *) str)
1228 continue;
1229 if (function_name >= (char *) info->strs + strsize)
1230 function_name = NULL;
1231
1232 nul_fun = NULL;
1233 info->indextable[i].val = bfd_get_32 (abfd, stab + VALOFF);
1234 info->indextable[i].stab = stab;
1235 info->indextable[i].str = str;
1236 info->indextable[i].directory_name = directory_name;
1237 info->indextable[i].file_name = file_name;
1238 info->indextable[i].function_name = function_name;
1239 ++i;
1240 break;
1241 }
1242 }
1243
1244 if (nul_fun != NULL)
1245 {
1246 info->indextable[i].val = bfd_get_32 (abfd, nul_fun + VALOFF);
1247 info->indextable[i].stab = nul_fun;
1248 info->indextable[i].str = nul_str;
1249 info->indextable[i].directory_name = directory_name;
1250 info->indextable[i].file_name = file_name;
1251 info->indextable[i].function_name = NULL;
1252 ++i;
1253 }
1254
1255 info->indextable[i].val = (bfd_vma) -1;
1256 info->indextable[i].stab = info->stabs + stabsize;
1257 info->indextable[i].str = str;
1258 info->indextable[i].directory_name = NULL;
1259 info->indextable[i].file_name = NULL;
1260 info->indextable[i].function_name = NULL;
1261 ++i;
1262
1263 info->indextablesize = i;
1264 qsort (info->indextable, (size_t) i, sizeof (struct indexentry),
1265 cmpindexentry);
1266
1267 *pinfo = info;
1268 }
1269
1270 /* We are passed a section relative offset. The offsets in the
1271 stabs information are absolute. */
1272 offset += bfd_get_section_vma (abfd, section);
1273
1274 #ifdef ENABLE_CACHING
1275 if (info->cached_indexentry != NULL
1276 && offset >= info->cached_offset
1277 && offset < (info->cached_indexentry + 1)->val)
1278 {
1279 stab = info->cached_stab;
1280 indexentry = info->cached_indexentry;
1281 file_name = info->cached_file_name;
1282 }
1283 else
1284 #endif
1285 {
1286 long low, high;
1287 long mid = -1;
1288
1289 /* Cache non-existent or invalid. Do binary search on
1290 indextable. */
1291 indexentry = NULL;
1292
1293 low = 0;
1294 high = info->indextablesize - 1;
1295 while (low != high)
1296 {
1297 mid = (high + low) / 2;
1298 if (offset >= info->indextable[mid].val
1299 && offset < info->indextable[mid + 1].val)
1300 {
1301 indexentry = &info->indextable[mid];
1302 break;
1303 }
1304
1305 if (info->indextable[mid].val > offset)
1306 high = mid;
1307 else
1308 low = mid + 1;
1309 }
1310
1311 if (indexentry == NULL)
1312 return TRUE;
1313
1314 stab = indexentry->stab + STABSIZE;
1315 file_name = indexentry->file_name;
1316 }
1317
1318 directory_name = indexentry->directory_name;
1319 str = indexentry->str;
1320
1321 saw_line = FALSE;
1322 saw_func = FALSE;
1323 for (; stab < (indexentry+1)->stab; stab += STABSIZE)
1324 {
1325 bfd_boolean done;
1326 bfd_vma val;
1327
1328 done = FALSE;
1329
1330 switch (stab[TYPEOFF])
1331 {
1332 case N_SOL:
1333 /* The name of an include file. */
1334 val = bfd_get_32 (abfd, stab + VALOFF);
1335 if (val <= offset)
1336 {
1337 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1338 if (file_name >= (char *) info->strs + strsize || file_name < (char *) str)
1339 file_name = NULL;
1340 *pline = 0;
1341 }
1342 break;
1343
1344 case N_SLINE:
1345 case N_DSLINE:
1346 case N_BSLINE:
1347 /* A line number. If the function was specified, then the value
1348 is relative to the start of the function. Otherwise, the
1349 value is an absolute address. */
1350 val = ((indexentry->function_name ? indexentry->val : 0)
1351 + bfd_get_32 (abfd, stab + VALOFF));
1352 /* If this line starts before our desired offset, or if it's
1353 the first line we've been able to find, use it. The
1354 !saw_line check works around a bug in GCC 2.95.3, which emits
1355 the first N_SLINE late. */
1356 if (!saw_line || val <= offset)
1357 {
1358 *pline = bfd_get_16 (abfd, stab + DESCOFF);
1359
1360 #ifdef ENABLE_CACHING
1361 info->cached_stab = stab;
1362 info->cached_offset = val;
1363 info->cached_file_name = file_name;
1364 info->cached_indexentry = indexentry;
1365 #endif
1366 }
1367 if (val > offset)
1368 done = TRUE;
1369 saw_line = TRUE;
1370 break;
1371
1372 case N_FUN:
1373 case N_SO:
1374 if (saw_func || saw_line)
1375 done = TRUE;
1376 saw_func = TRUE;
1377 break;
1378 }
1379
1380 if (done)
1381 break;
1382 }
1383
1384 *pfound = TRUE;
1385
1386 if (file_name == NULL || IS_ABSOLUTE_PATH (file_name)
1387 || directory_name == NULL)
1388 *pfilename = file_name;
1389 else
1390 {
1391 size_t dirlen;
1392
1393 dirlen = strlen (directory_name);
1394 if (info->filename == NULL
1395 || filename_ncmp (info->filename, directory_name, dirlen) != 0
1396 || filename_cmp (info->filename + dirlen, file_name) != 0)
1397 {
1398 size_t len;
1399
1400 /* Don't free info->filename here. objdump and other
1401 apps keep a copy of a previously returned file name
1402 pointer. */
1403 len = strlen (file_name) + 1;
1404 info->filename = (char *) bfd_alloc (abfd, dirlen + len);
1405 if (info->filename == NULL)
1406 return FALSE;
1407 memcpy (info->filename, directory_name, dirlen);
1408 memcpy (info->filename + dirlen, file_name, len);
1409 }
1410
1411 *pfilename = info->filename;
1412 }
1413
1414 if (indexentry->function_name != NULL)
1415 {
1416 char *s;
1417
1418 /* This will typically be something like main:F(0,1), so we want
1419 to clobber the colon. It's OK to change the name, since the
1420 string is in our own local storage anyhow. */
1421 s = strchr (indexentry->function_name, ':');
1422 if (s != NULL)
1423 *s = '\0';
1424
1425 *pfnname = indexentry->function_name;
1426 }
1427
1428 return TRUE;
1429 }
This page took 0.063011 seconds and 5 git commands to generate.