This commit was generated by cvs2svn to track changes on a CVS vendor
[deliverable/binutils-gdb.git] / bfd / syms.c
1 /* Generic symbol-table support for the BFD library.
2 Copyright (C) 1990, 91, 92, 93, 94, 95, 96, 97, 98, 1999
3 Free Software Foundation, Inc.
4 Written by Cygnus Support.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22 /*
23 SECTION
24 Symbols
25
26 BFD tries to maintain as much symbol information as it can when
27 it moves information from file to file. BFD passes information
28 to applications though the <<asymbol>> structure. When the
29 application requests the symbol table, BFD reads the table in
30 the native form and translates parts of it into the internal
31 format. To maintain more than the information passed to
32 applications, some targets keep some information ``behind the
33 scenes'' in a structure only the particular back end knows
34 about. For example, the coff back end keeps the original
35 symbol table structure as well as the canonical structure when
36 a BFD is read in. On output, the coff back end can reconstruct
37 the output symbol table so that no information is lost, even
38 information unique to coff which BFD doesn't know or
39 understand. If a coff symbol table were read, but were written
40 through an a.out back end, all the coff specific information
41 would be lost. The symbol table of a BFD
42 is not necessarily read in until a canonicalize request is
43 made. Then the BFD back end fills in a table provided by the
44 application with pointers to the canonical information. To
45 output symbols, the application provides BFD with a table of
46 pointers to pointers to <<asymbol>>s. This allows applications
47 like the linker to output a symbol as it was read, since the ``behind
48 the scenes'' information will be still available.
49 @menu
50 @* Reading Symbols::
51 @* Writing Symbols::
52 @* Mini Symbols::
53 @* typedef asymbol::
54 @* symbol handling functions::
55 @end menu
56
57 INODE
58 Reading Symbols, Writing Symbols, Symbols, Symbols
59 SUBSECTION
60 Reading symbols
61
62 There are two stages to reading a symbol table from a BFD:
63 allocating storage, and the actual reading process. This is an
64 excerpt from an application which reads the symbol table:
65
66 | long storage_needed;
67 | asymbol **symbol_table;
68 | long number_of_symbols;
69 | long i;
70 |
71 | storage_needed = bfd_get_symtab_upper_bound (abfd);
72 |
73 | if (storage_needed < 0)
74 | FAIL
75 |
76 | if (storage_needed == 0) {
77 | return ;
78 | }
79 | symbol_table = (asymbol **) xmalloc (storage_needed);
80 | ...
81 | number_of_symbols =
82 | bfd_canonicalize_symtab (abfd, symbol_table);
83 |
84 | if (number_of_symbols < 0)
85 | FAIL
86 |
87 | for (i = 0; i < number_of_symbols; i++) {
88 | process_symbol (symbol_table[i]);
89 | }
90
91 All storage for the symbols themselves is in an objalloc
92 connected to the BFD; it is freed when the BFD is closed.
93
94
95 INODE
96 Writing Symbols, Mini Symbols, Reading Symbols, Symbols
97 SUBSECTION
98 Writing symbols
99
100 Writing of a symbol table is automatic when a BFD open for
101 writing is closed. The application attaches a vector of
102 pointers to pointers to symbols to the BFD being written, and
103 fills in the symbol count. The close and cleanup code reads
104 through the table provided and performs all the necessary
105 operations. The BFD output code must always be provided with an
106 ``owned'' symbol: one which has come from another BFD, or one
107 which has been created using <<bfd_make_empty_symbol>>. Here is an
108 example showing the creation of a symbol table with only one element:
109
110 | #include "bfd.h"
111 | main()
112 | {
113 | bfd *abfd;
114 | asymbol *ptrs[2];
115 | asymbol *new;
116 |
117 | abfd = bfd_openw("foo","a.out-sunos-big");
118 | bfd_set_format(abfd, bfd_object);
119 | new = bfd_make_empty_symbol(abfd);
120 | new->name = "dummy_symbol";
121 | new->section = bfd_make_section_old_way(abfd, ".text");
122 | new->flags = BSF_GLOBAL;
123 | new->value = 0x12345;
124 |
125 | ptrs[0] = new;
126 | ptrs[1] = (asymbol *)0;
127 |
128 | bfd_set_symtab(abfd, ptrs, 1);
129 | bfd_close(abfd);
130 | }
131 |
132 | ./makesym
133 | nm foo
134 | 00012345 A dummy_symbol
135
136 Many formats cannot represent arbitary symbol information; for
137 instance, the <<a.out>> object format does not allow an
138 arbitary number of sections. A symbol pointing to a section
139 which is not one of <<.text>>, <<.data>> or <<.bss>> cannot
140 be described.
141
142 INODE
143 Mini Symbols, typedef asymbol, Writing Symbols, Symbols
144 SUBSECTION
145 Mini Symbols
146
147 Mini symbols provide read-only access to the symbol table.
148 They use less memory space, but require more time to access.
149 They can be useful for tools like nm or objdump, which may
150 have to handle symbol tables of extremely large executables.
151
152 The <<bfd_read_minisymbols>> function will read the symbols
153 into memory in an internal form. It will return a <<void *>>
154 pointer to a block of memory, a symbol count, and the size of
155 each symbol. The pointer is allocated using <<malloc>>, and
156 should be freed by the caller when it is no longer needed.
157
158 The function <<bfd_minisymbol_to_symbol>> will take a pointer
159 to a minisymbol, and a pointer to a structure returned by
160 <<bfd_make_empty_symbol>>, and return a <<asymbol>> structure.
161 The return value may or may not be the same as the value from
162 <<bfd_make_empty_symbol>> which was passed in.
163
164 */
165
166
167
168 /*
169 DOCDD
170 INODE
171 typedef asymbol, symbol handling functions, Mini Symbols, Symbols
172
173 */
174 /*
175 SUBSECTION
176 typedef asymbol
177
178 An <<asymbol>> has the form:
179
180 */
181
182 /*
183 CODE_FRAGMENT
184
185 .
186 .typedef struct symbol_cache_entry
187 .{
188 . {* A pointer to the BFD which owns the symbol. This information
189 . is necessary so that a back end can work out what additional
190 . information (invisible to the application writer) is carried
191 . with the symbol.
192 .
193 . This field is *almost* redundant, since you can use section->owner
194 . instead, except that some symbols point to the global sections
195 . bfd_{abs,com,und}_section. This could be fixed by making
196 . these globals be per-bfd (or per-target-flavor). FIXME. *}
197 .
198 . struct _bfd *the_bfd; {* Use bfd_asymbol_bfd(sym) to access this field. *}
199 .
200 . {* The text of the symbol. The name is left alone, and not copied; the
201 . application may not alter it. *}
202 . CONST char *name;
203 .
204 . {* The value of the symbol. This really should be a union of a
205 . numeric value with a pointer, since some flags indicate that
206 . a pointer to another symbol is stored here. *}
207 . symvalue value;
208 .
209 . {* Attributes of a symbol: *}
210 .
211 .#define BSF_NO_FLAGS 0x00
212 .
213 . {* The symbol has local scope; <<static>> in <<C>>. The value
214 . is the offset into the section of the data. *}
215 .#define BSF_LOCAL 0x01
216 .
217 . {* The symbol has global scope; initialized data in <<C>>. The
218 . value is the offset into the section of the data. *}
219 .#define BSF_GLOBAL 0x02
220 .
221 . {* The symbol has global scope and is exported. The value is
222 . the offset into the section of the data. *}
223 .#define BSF_EXPORT BSF_GLOBAL {* no real difference *}
224 .
225 . {* A normal C symbol would be one of:
226 . <<BSF_LOCAL>>, <<BSF_FORT_COMM>>, <<BSF_UNDEFINED>> or
227 . <<BSF_GLOBAL>> *}
228 .
229 . {* The symbol is a debugging record. The value has an arbitary
230 . meaning, unless BSF_DEBUGGING_RELOC is also set. *}
231 .#define BSF_DEBUGGING 0x08
232 .
233 . {* The symbol denotes a function entry point. Used in ELF,
234 . perhaps others someday. *}
235 .#define BSF_FUNCTION 0x10
236 .
237 . {* Used by the linker. *}
238 .#define BSF_KEEP 0x20
239 .#define BSF_KEEP_G 0x40
240 .
241 . {* A weak global symbol, overridable without warnings by
242 . a regular global symbol of the same name. *}
243 .#define BSF_WEAK 0x80
244 .
245 . {* This symbol was created to point to a section, e.g. ELF's
246 . STT_SECTION symbols. *}
247 .#define BSF_SECTION_SYM 0x100
248 .
249 . {* The symbol used to be a common symbol, but now it is
250 . allocated. *}
251 .#define BSF_OLD_COMMON 0x200
252 .
253 . {* The default value for common data. *}
254 .#define BFD_FORT_COMM_DEFAULT_VALUE 0
255 .
256 . {* In some files the type of a symbol sometimes alters its
257 . location in an output file - ie in coff a <<ISFCN>> symbol
258 . which is also <<C_EXT>> symbol appears where it was
259 . declared and not at the end of a section. This bit is set
260 . by the target BFD part to convey this information. *}
261 .
262 .#define BSF_NOT_AT_END 0x400
263 .
264 . {* Signal that the symbol is the label of constructor section. *}
265 .#define BSF_CONSTRUCTOR 0x800
266 .
267 . {* Signal that the symbol is a warning symbol. The name is a
268 . warning. The name of the next symbol is the one to warn about;
269 . if a reference is made to a symbol with the same name as the next
270 . symbol, a warning is issued by the linker. *}
271 .#define BSF_WARNING 0x1000
272 .
273 . {* Signal that the symbol is indirect. This symbol is an indirect
274 . pointer to the symbol with the same name as the next symbol. *}
275 .#define BSF_INDIRECT 0x2000
276 .
277 . {* BSF_FILE marks symbols that contain a file name. This is used
278 . for ELF STT_FILE symbols. *}
279 .#define BSF_FILE 0x4000
280 .
281 . {* Symbol is from dynamic linking information. *}
282 .#define BSF_DYNAMIC 0x8000
283 .
284 . {* The symbol denotes a data object. Used in ELF, and perhaps
285 . others someday. *}
286 .#define BSF_OBJECT 0x10000
287 .
288 . {* This symbol is a debugging symbol. The value is the offset
289 . into the section of the data. BSF_DEBUGGING should be set
290 . as well. *}
291 .#define BSF_DEBUGGING_RELOC 0x20000
292 .
293 . flagword flags;
294 .
295 . {* A pointer to the section to which this symbol is
296 . relative. This will always be non NULL, there are special
297 . sections for undefined and absolute symbols. *}
298 . struct sec *section;
299 .
300 . {* Back end special data. *}
301 . union
302 . {
303 . PTR p;
304 . bfd_vma i;
305 . } udata;
306 .
307 .} asymbol;
308 */
309
310 #include "bfd.h"
311 #include "sysdep.h"
312 #include "libbfd.h"
313 #include "bfdlink.h"
314 #include "aout/stab_gnu.h"
315
316 static char coff_section_type PARAMS ((const char *));
317
318 /*
319 DOCDD
320 INODE
321 symbol handling functions, , typedef asymbol, Symbols
322 SUBSECTION
323 Symbol handling functions
324 */
325
326 /*
327 FUNCTION
328 bfd_get_symtab_upper_bound
329
330 DESCRIPTION
331 Return the number of bytes required to store a vector of pointers
332 to <<asymbols>> for all the symbols in the BFD @var{abfd},
333 including a terminal NULL pointer. If there are no symbols in
334 the BFD, then return 0. If an error occurs, return -1.
335
336 .#define bfd_get_symtab_upper_bound(abfd) \
337 . BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))
338
339 */
340
341 /*
342 FUNCTION
343 bfd_is_local_label
344
345 SYNOPSIS
346 boolean bfd_is_local_label(bfd *abfd, asymbol *sym);
347
348 DESCRIPTION
349 Return true if the given symbol @var{sym} in the BFD @var{abfd} is
350 a compiler generated local label, else return false.
351 */
352
353 boolean
354 bfd_is_local_label (abfd, sym)
355 bfd *abfd;
356 asymbol *sym;
357 {
358 if ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0)
359 return false;
360 if (sym->name == NULL)
361 return false;
362 return bfd_is_local_label_name (abfd, sym->name);
363 }
364
365 /*
366 FUNCTION
367 bfd_is_local_label_name
368
369 SYNOPSIS
370 boolean bfd_is_local_label_name(bfd *abfd, const char *name);
371
372 DESCRIPTION
373 Return true if a symbol with the name @var{name} in the BFD
374 @var{abfd} is a compiler generated local label, else return
375 false. This just checks whether the name has the form of a
376 local label.
377
378 .#define bfd_is_local_label_name(abfd, name) \
379 . BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))
380 */
381
382 /*
383 FUNCTION
384 bfd_canonicalize_symtab
385
386 DESCRIPTION
387 Read the symbols from the BFD @var{abfd}, and fills in
388 the vector @var{location} with pointers to the symbols and
389 a trailing NULL.
390 Return the actual number of symbol pointers, not
391 including the NULL.
392
393
394 .#define bfd_canonicalize_symtab(abfd, location) \
395 . BFD_SEND (abfd, _bfd_canonicalize_symtab,\
396 . (abfd, location))
397
398 */
399
400
401 /*
402 FUNCTION
403 bfd_set_symtab
404
405 SYNOPSIS
406 boolean bfd_set_symtab (bfd *abfd, asymbol **location, unsigned int count);
407
408 DESCRIPTION
409 Arrange that when the output BFD @var{abfd} is closed,
410 the table @var{location} of @var{count} pointers to symbols
411 will be written.
412 */
413
414 boolean
415 bfd_set_symtab (abfd, location, symcount)
416 bfd *abfd;
417 asymbol **location;
418 unsigned int symcount;
419 {
420 if ((abfd->format != bfd_object) || (bfd_read_p (abfd)))
421 {
422 bfd_set_error (bfd_error_invalid_operation);
423 return false;
424 }
425
426 bfd_get_outsymbols (abfd) = location;
427 bfd_get_symcount (abfd) = symcount;
428 return true;
429 }
430
431 /*
432 FUNCTION
433 bfd_print_symbol_vandf
434
435 SYNOPSIS
436 void bfd_print_symbol_vandf(PTR file, asymbol *symbol);
437
438 DESCRIPTION
439 Print the value and flags of the @var{symbol} supplied to the
440 stream @var{file}.
441 */
442 void
443 bfd_print_symbol_vandf (arg, symbol)
444 PTR arg;
445 asymbol *symbol;
446 {
447 FILE *file = (FILE *) arg;
448 flagword type = symbol->flags;
449 if (symbol->section != (asection *) NULL)
450 {
451 fprintf_vma (file, symbol->value + symbol->section->vma);
452 }
453 else
454 {
455 fprintf_vma (file, symbol->value);
456 }
457
458 /* This presumes that a symbol can not be both BSF_DEBUGGING and
459 BSF_DYNAMIC, nor more than one of BSF_FUNCTION, BSF_FILE, and
460 BSF_OBJECT. */
461 fprintf (file, " %c%c%c%c%c%c%c",
462 ((type & BSF_LOCAL)
463 ? (type & BSF_GLOBAL) ? '!' : 'l'
464 : (type & BSF_GLOBAL) ? 'g' : ' '),
465 (type & BSF_WEAK) ? 'w' : ' ',
466 (type & BSF_CONSTRUCTOR) ? 'C' : ' ',
467 (type & BSF_WARNING) ? 'W' : ' ',
468 (type & BSF_INDIRECT) ? 'I' : ' ',
469 (type & BSF_DEBUGGING) ? 'd' : (type & BSF_DYNAMIC) ? 'D' : ' ',
470 ((type & BSF_FUNCTION)
471 ? 'F'
472 : ((type & BSF_FILE)
473 ? 'f'
474 : ((type & BSF_OBJECT) ? 'O' : ' '))));
475 }
476
477
478 /*
479 FUNCTION
480 bfd_make_empty_symbol
481
482 DESCRIPTION
483 Create a new <<asymbol>> structure for the BFD @var{abfd}
484 and return a pointer to it.
485
486 This routine is necessary because each back end has private
487 information surrounding the <<asymbol>>. Building your own
488 <<asymbol>> and pointing to it will not create the private
489 information, and will cause problems later on.
490
491 .#define bfd_make_empty_symbol(abfd) \
492 . BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
493 */
494
495 /*
496 FUNCTION
497 bfd_make_debug_symbol
498
499 DESCRIPTION
500 Create a new <<asymbol>> structure for the BFD @var{abfd},
501 to be used as a debugging symbol. Further details of its use have
502 yet to be worked out.
503
504 .#define bfd_make_debug_symbol(abfd,ptr,size) \
505 . BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))
506 */
507
508 struct section_to_type
509 {
510 CONST char *section;
511 char type;
512 };
513
514 /* Map section names to POSIX/BSD single-character symbol types.
515 This table is probably incomplete. It is sorted for convenience of
516 adding entries. Since it is so short, a linear search is used. */
517 static CONST struct section_to_type stt[] =
518 {
519 {"*DEBUG*", 'N'},
520 {".bss", 'b'},
521 {"zerovars", 'b'}, /* MRI .bss */
522 {".data", 'd'},
523 {"vars", 'd'}, /* MRI .data */
524 {".rdata", 'r'}, /* Read only data. */
525 {".rodata", 'r'}, /* Read only data. */
526 {".sbss", 's'}, /* Small BSS (uninitialized data). */
527 {".scommon", 'c'}, /* Small common. */
528 {".sdata", 'g'}, /* Small initialized data. */
529 {".text", 't'},
530 {"code", 't'}, /* MRI .text */
531 {".drectve", 'i'}, /* MSVC's .drective section */
532 {".idata", 'i'}, /* MSVC's .idata (import) section */
533 {".edata", 'e'}, /* MSVC's .edata (export) section */
534 {".pdata", 'p'}, /* MSVC's .pdata (stack unwind) section */
535 {".debug", 'N'}, /* MSVC's .debug (non-standard debug syms) */
536 {0, 0}
537 };
538
539 /* Return the single-character symbol type corresponding to
540 section S, or '?' for an unknown COFF section.
541
542 Check for any leading string which matches, so .text5 returns
543 't' as well as .text */
544
545 static char
546 coff_section_type (s)
547 const char *s;
548 {
549 CONST struct section_to_type *t;
550
551 for (t = &stt[0]; t->section; t++)
552 if (!strncmp (s, t->section, strlen (t->section)))
553 return t->type;
554
555 return '?';
556 }
557
558 #ifndef islower
559 #define islower(c) ((c) >= 'a' && (c) <= 'z')
560 #endif
561 #ifndef toupper
562 #define toupper(c) (islower(c) ? ((c) & ~0x20) : (c))
563 #endif
564
565 /*
566 FUNCTION
567 bfd_decode_symclass
568
569 DESCRIPTION
570 Return a character corresponding to the symbol
571 class of @var{symbol}, or '?' for an unknown class.
572
573 SYNOPSIS
574 int bfd_decode_symclass(asymbol *symbol);
575 */
576 int
577 bfd_decode_symclass (symbol)
578 asymbol *symbol;
579 {
580 char c;
581
582 if (bfd_is_com_section (symbol->section))
583 return 'C';
584 if (bfd_is_und_section (symbol->section))
585 {
586 if (symbol->flags & BSF_WEAK)
587 {
588 /* If weak, determine if it's specifically an object
589 or non-object weak. */
590 if (symbol->flags & BSF_OBJECT)
591 return 'v';
592 else
593 return 'w';
594 }
595 else
596 return 'U';
597 }
598 if (bfd_is_ind_section (symbol->section))
599 return 'I';
600 if (symbol->flags & BSF_WEAK)
601 {
602 /* If weak, determine if it's specifically an object
603 or non-object weak. */
604 if (symbol->flags & BSF_OBJECT)
605 return 'V';
606 else
607 return 'W';
608 }
609 if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL)))
610 return '?';
611
612 if (bfd_is_abs_section (symbol->section))
613 c = 'a';
614 else if (symbol->section)
615 c = coff_section_type (symbol->section->name);
616 else
617 return '?';
618 if (symbol->flags & BSF_GLOBAL)
619 c = toupper (c);
620 return c;
621
622 /* We don't have to handle these cases just yet, but we will soon:
623 N_SETV: 'v';
624 N_SETA: 'l';
625 N_SETT: 'x';
626 N_SETD: 'z';
627 N_SETB: 's';
628 N_INDR: 'i';
629 */
630 }
631
632 /*
633 FUNCTION
634 bfd_is_undefined_symclass
635
636 DESCRIPTION
637 Returns non-zero if the class symbol returned by
638 bfd_decode_symclass represents an undefined symbol.
639 Returns zero otherwise.
640
641 SYNOPSIS
642 boolean bfd_is_undefined_symclass (int symclass);
643 */
644
645 boolean
646 bfd_is_undefined_symclass (symclass)
647 int symclass;
648 {
649 return symclass == 'U' || symclass == 'w' || symclass == 'v';
650 }
651
652 /*
653 FUNCTION
654 bfd_symbol_info
655
656 DESCRIPTION
657 Fill in the basic info about symbol that nm needs.
658 Additional info may be added by the back-ends after
659 calling this function.
660
661 SYNOPSIS
662 void bfd_symbol_info(asymbol *symbol, symbol_info *ret);
663 */
664
665 void
666 bfd_symbol_info (symbol, ret)
667 asymbol *symbol;
668 symbol_info *ret;
669 {
670 ret->type = bfd_decode_symclass (symbol);
671
672 if (bfd_is_undefined_symclass (ret->type))
673 ret->value = 0;
674 else
675 ret->value = symbol->value + symbol->section->vma;
676
677 ret->name = symbol->name;
678 }
679
680 /*
681 FUNCTION
682 bfd_copy_private_symbol_data
683
684 SYNOPSIS
685 boolean bfd_copy_private_symbol_data(bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
686
687 DESCRIPTION
688 Copy private symbol information from @var{isym} in the BFD
689 @var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}.
690 Return <<true>> on success, <<false>> on error. Possible error
691 returns are:
692
693 o <<bfd_error_no_memory>> -
694 Not enough memory exists to create private data for @var{osec}.
695
696 .#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
697 . BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
698 . (ibfd, isymbol, obfd, osymbol))
699
700 */
701
702 /* The generic version of the function which returns mini symbols.
703 This is used when the backend does not provide a more efficient
704 version. It just uses BFD asymbol structures as mini symbols. */
705
706 long
707 _bfd_generic_read_minisymbols (abfd, dynamic, minisymsp, sizep)
708 bfd *abfd;
709 boolean dynamic;
710 PTR *minisymsp;
711 unsigned int *sizep;
712 {
713 long storage;
714 asymbol **syms = NULL;
715 long symcount;
716
717 if (dynamic)
718 storage = bfd_get_dynamic_symtab_upper_bound (abfd);
719 else
720 storage = bfd_get_symtab_upper_bound (abfd);
721 if (storage < 0)
722 goto error_return;
723
724 syms = (asymbol **) bfd_malloc ((size_t) storage);
725 if (syms == NULL)
726 goto error_return;
727
728 if (dynamic)
729 symcount = bfd_canonicalize_dynamic_symtab (abfd, syms);
730 else
731 symcount = bfd_canonicalize_symtab (abfd, syms);
732 if (symcount < 0)
733 goto error_return;
734
735 *minisymsp = (PTR) syms;
736 *sizep = sizeof (asymbol *);
737 return symcount;
738
739 error_return:
740 if (syms != NULL)
741 free (syms);
742 return -1;
743 }
744
745 /* The generic version of the function which converts a minisymbol to
746 an asymbol. We don't worry about the sym argument we are passed;
747 we just return the asymbol the minisymbol points to. */
748
749 /*ARGSUSED*/
750 asymbol *
751 _bfd_generic_minisymbol_to_symbol (abfd, dynamic, minisym, sym)
752 bfd *abfd ATTRIBUTE_UNUSED;
753 boolean dynamic ATTRIBUTE_UNUSED;
754 const PTR minisym;
755 asymbol *sym ATTRIBUTE_UNUSED;
756 {
757 return *(asymbol **) minisym;
758 }
759
760 /* Look through stabs debugging information in .stab and .stabstr
761 sections to find the source file and line closest to a desired
762 location. This is used by COFF and ELF targets. It sets *pfound
763 to true if it finds some information. The *pinfo field is used to
764 pass cached information in and out of this routine; this first time
765 the routine is called for a BFD, *pinfo should be NULL. The value
766 placed in *pinfo should be saved with the BFD, and passed back each
767 time this function is called. */
768
769 /* We use a cache by default. */
770
771 #define ENABLE_CACHING
772
773 /* We keep an array of indexentry structures to record where in the
774 stabs section we should look to find line number information for a
775 particular address. */
776
777 struct indexentry
778 {
779 bfd_vma val;
780 bfd_byte *stab;
781 bfd_byte *str;
782 char *directory_name;
783 char *file_name;
784 char *function_name;
785 };
786
787 /* Compare two indexentry structures. This is called via qsort. */
788
789 static int
790 cmpindexentry (a, b)
791 const PTR *a;
792 const PTR *b;
793 {
794 const struct indexentry *contestantA = (const struct indexentry *) a;
795 const struct indexentry *contestantB = (const struct indexentry *) b;
796
797 if (contestantA->val < contestantB->val)
798 return -1;
799 else if (contestantA->val > contestantB->val)
800 return 1;
801 else
802 return 0;
803 }
804
805 /* A pointer to this structure is stored in *pinfo. */
806
807 struct stab_find_info
808 {
809 /* The .stab section. */
810 asection *stabsec;
811 /* The .stabstr section. */
812 asection *strsec;
813 /* The contents of the .stab section. */
814 bfd_byte *stabs;
815 /* The contents of the .stabstr section. */
816 bfd_byte *strs;
817
818 /* A table that indexes stabs by memory address. */
819 struct indexentry *indextable;
820 /* The number of entries in indextable. */
821 int indextablesize;
822
823 #ifdef ENABLE_CACHING
824 /* Cached values to restart quickly. */
825 struct indexentry *cached_indexentry;
826 bfd_vma cached_offset;
827 bfd_byte *cached_stab;
828 char *cached_file_name;
829 #endif
830
831 /* Saved ptr to malloc'ed filename. */
832 char *filename;
833 };
834
835 boolean
836 _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset, pfound,
837 pfilename, pfnname, pline, pinfo)
838 bfd *abfd;
839 asymbol **symbols;
840 asection *section;
841 bfd_vma offset;
842 boolean *pfound;
843 const char **pfilename;
844 const char **pfnname;
845 unsigned int *pline;
846 PTR *pinfo;
847 {
848 struct stab_find_info *info;
849 bfd_size_type stabsize, strsize;
850 bfd_byte *stab, *str;
851 bfd_byte *last_stab = NULL;
852 bfd_size_type stroff;
853 struct indexentry *indexentry;
854 char *directory_name, *file_name;
855 int saw_fun;
856
857 *pfound = false;
858 *pfilename = bfd_get_filename (abfd);
859 *pfnname = NULL;
860 *pline = 0;
861
862 /* Stabs entries use a 12 byte format:
863 4 byte string table index
864 1 byte stab type
865 1 byte stab other field
866 2 byte stab desc field
867 4 byte stab value
868 FIXME: This will have to change for a 64 bit object format.
869
870 The stabs symbols are divided into compilation units. For the
871 first entry in each unit, the type of 0, the value is the length
872 of the string table for this unit, and the desc field is the
873 number of stabs symbols for this unit. */
874
875 #define STRDXOFF (0)
876 #define TYPEOFF (4)
877 #define OTHEROFF (5)
878 #define DESCOFF (6)
879 #define VALOFF (8)
880 #define STABSIZE (12)
881
882 info = (struct stab_find_info *) *pinfo;
883 if (info != NULL)
884 {
885 if (info->stabsec == NULL || info->strsec == NULL)
886 {
887 /* No stabs debugging information. */
888 return true;
889 }
890
891 stabsize = info->stabsec->_raw_size;
892 strsize = info->strsec->_raw_size;
893 }
894 else
895 {
896 long reloc_size, reloc_count;
897 arelent **reloc_vector;
898 int i;
899 char *name;
900 char *file_name;
901 char *directory_name;
902 char *function_name;
903
904 info = (struct stab_find_info *) bfd_zalloc (abfd, sizeof *info);
905 if (info == NULL)
906 return false;
907
908 /* FIXME: When using the linker --split-by-file or
909 --split-by-reloc options, it is possible for the .stab and
910 .stabstr sections to be split. We should handle that. */
911
912 info->stabsec = bfd_get_section_by_name (abfd, ".stab");
913 info->strsec = bfd_get_section_by_name (abfd, ".stabstr");
914
915 if (info->stabsec == NULL || info->strsec == NULL)
916 {
917 /* No stabs debugging information. Set *pinfo so that we
918 can return quickly in the info != NULL case above. */
919 *pinfo = (PTR) info;
920 return true;
921 }
922
923 stabsize = info->stabsec->_raw_size;
924 strsize = info->strsec->_raw_size;
925
926 info->stabs = (bfd_byte *) bfd_alloc (abfd, stabsize);
927 info->strs = (bfd_byte *) bfd_alloc (abfd, strsize);
928 if (info->stabs == NULL || info->strs == NULL)
929 return false;
930
931 if (! bfd_get_section_contents (abfd, info->stabsec, info->stabs, 0,
932 stabsize)
933 || ! bfd_get_section_contents (abfd, info->strsec, info->strs, 0,
934 strsize))
935 return false;
936
937 /* If this is a relocateable object file, we have to relocate
938 the entries in .stab. This should always be simple 32 bit
939 relocations against symbols defined in this object file, so
940 this should be no big deal. */
941 reloc_size = bfd_get_reloc_upper_bound (abfd, info->stabsec);
942 if (reloc_size < 0)
943 return false;
944 reloc_vector = (arelent **) bfd_malloc (reloc_size);
945 if (reloc_vector == NULL && reloc_size != 0)
946 return false;
947 reloc_count = bfd_canonicalize_reloc (abfd, info->stabsec, reloc_vector,
948 symbols);
949 if (reloc_count < 0)
950 {
951 if (reloc_vector != NULL)
952 free (reloc_vector);
953 return false;
954 }
955 if (reloc_count > 0)
956 {
957 arelent **pr;
958
959 for (pr = reloc_vector; *pr != NULL; pr++)
960 {
961 arelent *r;
962 unsigned long val;
963 asymbol *sym;
964
965 r = *pr;
966 if (r->howto->rightshift != 0
967 || r->howto->size != 2
968 || r->howto->bitsize != 32
969 || r->howto->pc_relative
970 || r->howto->bitpos != 0
971 || r->howto->dst_mask != 0xffffffff)
972 {
973 (*_bfd_error_handler)
974 (_("Unsupported .stab relocation"));
975 bfd_set_error (bfd_error_invalid_operation);
976 if (reloc_vector != NULL)
977 free (reloc_vector);
978 return false;
979 }
980
981 val = bfd_get_32 (abfd, info->stabs + r->address);
982 val &= r->howto->src_mask;
983 sym = *r->sym_ptr_ptr;
984 val += sym->value + sym->section->vma + r->addend;
985 bfd_put_32 (abfd, val, info->stabs + r->address);
986 }
987 }
988
989 if (reloc_vector != NULL)
990 free (reloc_vector);
991
992 /* First time through this function, build a table matching
993 function VM addresses to stabs, then sort based on starting
994 VM address. Do this in two passes: once to count how many
995 table entries we'll need, and a second to actually build the
996 table. */
997
998 info->indextablesize = 0;
999 saw_fun = 1;
1000 for (stab = info->stabs; stab < info->stabs + stabsize; stab += STABSIZE)
1001 {
1002 if (stab[TYPEOFF] == N_SO)
1003 {
1004 /* N_SO with null name indicates EOF */
1005 if (bfd_get_32 (abfd, stab + STRDXOFF) == 0)
1006 continue;
1007
1008 /* if we did not see a function def, leave space for one. */
1009 if (saw_fun == 0)
1010 ++info->indextablesize;
1011
1012 saw_fun = 0;
1013
1014 /* two N_SO's in a row is a filename and directory. Skip */
1015 if (stab + STABSIZE < info->stabs + stabsize
1016 && *(stab + STABSIZE + TYPEOFF) == N_SO)
1017 {
1018 stab += STABSIZE;
1019 }
1020 }
1021 else if (stab[TYPEOFF] == N_FUN)
1022 {
1023 saw_fun = 1;
1024 ++info->indextablesize;
1025 }
1026 }
1027
1028 if (saw_fun == 0)
1029 ++info->indextablesize;
1030
1031 if (info->indextablesize == 0)
1032 return true;
1033 ++info->indextablesize;
1034
1035 info->indextable = ((struct indexentry *)
1036 bfd_alloc (abfd,
1037 (sizeof (struct indexentry)
1038 * info->indextablesize)));
1039 if (info->indextable == NULL)
1040 return false;
1041
1042 file_name = NULL;
1043 directory_name = NULL;
1044 saw_fun = 1;
1045
1046 for (i = 0, stroff = 0, stab = info->stabs, str = info->strs;
1047 i < info->indextablesize && stab < info->stabs + stabsize;
1048 stab += STABSIZE)
1049 {
1050 switch (stab[TYPEOFF])
1051 {
1052 case 0:
1053 /* This is the first entry in a compilation unit. */
1054 if ((bfd_size_type) ((info->strs + strsize) - str) < stroff)
1055 break;
1056 str += stroff;
1057 stroff = bfd_get_32 (abfd, stab + VALOFF);
1058 break;
1059
1060 case N_SO:
1061 /* The main file name. */
1062
1063 /* The following code creates a new indextable entry with
1064 a NULL function name if there were no N_FUNs in a file.
1065 Note that a N_SO without a file name is an EOF and
1066 there could be 2 N_SO following it with the new filename
1067 and directory. */
1068 if (saw_fun == 0)
1069 {
1070 info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF);
1071 info->indextable[i].stab = last_stab;
1072 info->indextable[i].str = str;
1073 info->indextable[i].directory_name = directory_name;
1074 info->indextable[i].file_name = file_name;
1075 info->indextable[i].function_name = NULL;
1076 ++i;
1077 }
1078 saw_fun = 0;
1079
1080 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1081 if (*file_name == '\0')
1082 {
1083 directory_name = NULL;
1084 file_name = NULL;
1085 saw_fun = 1;
1086 }
1087 else
1088 {
1089 last_stab = stab;
1090 if (stab + STABSIZE >= info->stabs + stabsize
1091 || *(stab + STABSIZE + TYPEOFF) != N_SO)
1092 {
1093 directory_name = NULL;
1094 }
1095 else
1096 {
1097 /* Two consecutive N_SOs are a directory and a
1098 file name. */
1099 stab += STABSIZE;
1100 directory_name = file_name;
1101 file_name = ((char *) str
1102 + bfd_get_32 (abfd, stab + STRDXOFF));
1103 }
1104 }
1105 break;
1106
1107 case N_SOL:
1108 /* The name of an include file. */
1109 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1110 break;
1111
1112 case N_FUN:
1113 /* A function name. */
1114 saw_fun = 1;
1115 name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1116
1117 if (*name == '\0')
1118 name = NULL;
1119
1120 function_name = name;
1121
1122 if (name == NULL)
1123 continue;
1124
1125 info->indextable[i].val = bfd_get_32 (abfd, stab + VALOFF);
1126 info->indextable[i].stab = stab;
1127 info->indextable[i].str = str;
1128 info->indextable[i].directory_name = directory_name;
1129 info->indextable[i].file_name = file_name;
1130 info->indextable[i].function_name = function_name;
1131 ++i;
1132 break;
1133 }
1134 }
1135
1136 if (saw_fun == 0)
1137 {
1138 info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF);
1139 info->indextable[i].stab = last_stab;
1140 info->indextable[i].str = str;
1141 info->indextable[i].directory_name = directory_name;
1142 info->indextable[i].file_name = file_name;
1143 info->indextable[i].function_name = NULL;
1144 ++i;
1145 }
1146
1147 info->indextable[i].val = (bfd_vma) -1;
1148 info->indextable[i].stab = info->stabs + stabsize;
1149 info->indextable[i].str = str;
1150 info->indextable[i].directory_name = NULL;
1151 info->indextable[i].file_name = NULL;
1152 info->indextable[i].function_name = NULL;
1153 ++i;
1154
1155 info->indextablesize = i;
1156 qsort (info->indextable, i, sizeof (struct indexentry), cmpindexentry);
1157
1158 *pinfo = (PTR) info;
1159 }
1160
1161 /* We are passed a section relative offset. The offsets in the
1162 stabs information are absolute. */
1163 offset += bfd_get_section_vma (abfd, section);
1164
1165 #ifdef ENABLE_CACHING
1166 if (info->cached_indexentry != NULL
1167 && offset >= info->cached_offset
1168 && offset < (info->cached_indexentry + 1)->val)
1169 {
1170 stab = info->cached_stab;
1171 indexentry = info->cached_indexentry;
1172 file_name = info->cached_file_name;
1173 }
1174 else
1175 #endif
1176 {
1177 /* Cache non-existant or invalid. Do binary search on
1178 indextable. */
1179
1180 long low, high;
1181 long mid = -1;
1182
1183 indexentry = NULL;
1184
1185 low = 0;
1186 high = info->indextablesize - 1;
1187 while (low != high)
1188 {
1189 mid = (high + low) / 2;
1190 if (offset >= info->indextable[mid].val
1191 && offset < info->indextable[mid + 1].val)
1192 {
1193 indexentry = &info->indextable[mid];
1194 break;
1195 }
1196
1197 if (info->indextable[mid].val > offset)
1198 high = mid;
1199 else
1200 low = mid + 1;
1201 }
1202
1203 if (indexentry == NULL)
1204 return true;
1205
1206 stab = indexentry->stab + STABSIZE;
1207 file_name = indexentry->file_name;
1208 }
1209
1210 directory_name = indexentry->directory_name;
1211 str = indexentry->str;
1212
1213 for (; stab < (indexentry+1)->stab; stab += STABSIZE)
1214 {
1215 boolean done;
1216 bfd_vma val;
1217
1218 done = false;
1219
1220 switch (stab[TYPEOFF])
1221 {
1222 case N_SOL:
1223 /* The name of an include file. */
1224 val = bfd_get_32 (abfd, stab + VALOFF);
1225 if (val <= offset)
1226 {
1227 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1228 *pline = 0;
1229 }
1230 break;
1231
1232 case N_SLINE:
1233 case N_DSLINE:
1234 case N_BSLINE:
1235 /* A line number. The value is relative to the start of the
1236 current function. */
1237 val = indexentry->val + bfd_get_32 (abfd, stab + VALOFF);
1238 if (val <= offset)
1239 {
1240 *pline = bfd_get_16 (abfd, stab + DESCOFF);
1241
1242 #ifdef ENABLE_CACHING
1243 info->cached_stab = stab;
1244 info->cached_offset = val;
1245 info->cached_file_name = file_name;
1246 info->cached_indexentry = indexentry;
1247 #endif
1248 }
1249 if (val > offset)
1250 done = true;
1251 break;
1252
1253 case N_FUN:
1254 case N_SO:
1255 done = true;
1256 break;
1257 }
1258
1259 if (done)
1260 break;
1261 }
1262
1263 *pfound = true;
1264
1265 if (IS_ABSOLUTE_PATH(file_name) || directory_name == NULL)
1266 *pfilename = file_name;
1267 else
1268 {
1269 size_t dirlen;
1270
1271 dirlen = strlen (directory_name);
1272 if (info->filename == NULL
1273 || strncmp (info->filename, directory_name, dirlen) != 0
1274 || strcmp (info->filename + dirlen, file_name) != 0)
1275 {
1276 if (info->filename != NULL)
1277 free (info->filename);
1278 info->filename = (char *) bfd_malloc (dirlen +
1279 strlen (file_name)
1280 + 1);
1281 if (info->filename == NULL)
1282 return false;
1283 strcpy (info->filename, directory_name);
1284 strcpy (info->filename + dirlen, file_name);
1285 }
1286
1287 *pfilename = info->filename;
1288 }
1289
1290 if (indexentry->function_name != NULL)
1291 {
1292 char *s;
1293
1294 /* This will typically be something like main:F(0,1), so we want
1295 to clobber the colon. It's OK to change the name, since the
1296 string is in our own local storage anyhow. */
1297
1298 s = strchr (indexentry->function_name, ':');
1299 if (s != NULL)
1300 *s = '\0';
1301
1302 *pfnname = indexentry->function_name;
1303 }
1304
1305 return true;
1306 }
This page took 0.077481 seconds and 5 git commands to generate.