* bfd-in.h (_bfd): Don't define.
[deliverable/binutils-gdb.git] / bfd / syms.c
1 /* Generic symbol-table support for the BFD library.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003
4 Free Software Foundation, Inc.
5 Written by Cygnus Support.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
22
23 /*
24 SECTION
25 Symbols
26
27 BFD tries to maintain as much symbol information as it can when
28 it moves information from file to file. BFD passes information
29 to applications though the <<asymbol>> structure. When the
30 application requests the symbol table, BFD reads the table in
31 the native form and translates parts of it into the internal
32 format. To maintain more than the information passed to
33 applications, some targets keep some information ``behind the
34 scenes'' in a structure only the particular back end knows
35 about. For example, the coff back end keeps the original
36 symbol table structure as well as the canonical structure when
37 a BFD is read in. On output, the coff back end can reconstruct
38 the output symbol table so that no information is lost, even
39 information unique to coff which BFD doesn't know or
40 understand. If a coff symbol table were read, but were written
41 through an a.out back end, all the coff specific information
42 would be lost. The symbol table of a BFD
43 is not necessarily read in until a canonicalize request is
44 made. Then the BFD back end fills in a table provided by the
45 application with pointers to the canonical information. To
46 output symbols, the application provides BFD with a table of
47 pointers to pointers to <<asymbol>>s. This allows applications
48 like the linker to output a symbol as it was read, since the ``behind
49 the scenes'' information will be still available.
50 @menu
51 @* Reading Symbols::
52 @* Writing Symbols::
53 @* Mini Symbols::
54 @* typedef asymbol::
55 @* symbol handling functions::
56 @end menu
57
58 INODE
59 Reading Symbols, Writing Symbols, Symbols, Symbols
60 SUBSECTION
61 Reading symbols
62
63 There are two stages to reading a symbol table from a BFD:
64 allocating storage, and the actual reading process. This is an
65 excerpt from an application which reads the symbol table:
66
67 | long storage_needed;
68 | asymbol **symbol_table;
69 | long number_of_symbols;
70 | long i;
71 |
72 | storage_needed = bfd_get_symtab_upper_bound (abfd);
73 |
74 | if (storage_needed < 0)
75 | FAIL
76 |
77 | if (storage_needed == 0)
78 | return;
79 |
80 | symbol_table = (asymbol **) xmalloc (storage_needed);
81 | ...
82 | number_of_symbols =
83 | bfd_canonicalize_symtab (abfd, symbol_table);
84 |
85 | if (number_of_symbols < 0)
86 | FAIL
87 |
88 | for (i = 0; i < number_of_symbols; i++)
89 | process_symbol (symbol_table[i]);
90
91 All storage for the symbols themselves is in an objalloc
92 connected to the BFD; it is freed when the BFD is closed.
93
94 INODE
95 Writing Symbols, Mini Symbols, Reading Symbols, Symbols
96 SUBSECTION
97 Writing symbols
98
99 Writing of a symbol table is automatic when a BFD open for
100 writing is closed. The application attaches a vector of
101 pointers to pointers to symbols to the BFD being written, and
102 fills in the symbol count. The close and cleanup code reads
103 through the table provided and performs all the necessary
104 operations. The BFD output code must always be provided with an
105 ``owned'' symbol: one which has come from another BFD, or one
106 which has been created using <<bfd_make_empty_symbol>>. Here is an
107 example showing the creation of a symbol table with only one element:
108
109 | #include "bfd.h"
110 | int main (void)
111 | {
112 | bfd *abfd;
113 | asymbol *ptrs[2];
114 | asymbol *new;
115 |
116 | abfd = bfd_openw ("foo","a.out-sunos-big");
117 | bfd_set_format (abfd, bfd_object);
118 | new = bfd_make_empty_symbol (abfd);
119 | new->name = "dummy_symbol";
120 | new->section = bfd_make_section_old_way (abfd, ".text");
121 | new->flags = BSF_GLOBAL;
122 | new->value = 0x12345;
123 |
124 | ptrs[0] = new;
125 | ptrs[1] = (asymbol *)0;
126 |
127 | bfd_set_symtab (abfd, ptrs, 1);
128 | bfd_close (abfd);
129 | return 0;
130 | }
131 |
132 | ./makesym
133 | nm foo
134 | 00012345 A dummy_symbol
135
136 Many formats cannot represent arbitary symbol information; for
137 instance, the <<a.out>> object format does not allow an
138 arbitary number of sections. A symbol pointing to a section
139 which is not one of <<.text>>, <<.data>> or <<.bss>> cannot
140 be described.
141
142 INODE
143 Mini Symbols, typedef asymbol, Writing Symbols, Symbols
144 SUBSECTION
145 Mini Symbols
146
147 Mini symbols provide read-only access to the symbol table.
148 They use less memory space, but require more time to access.
149 They can be useful for tools like nm or objdump, which may
150 have to handle symbol tables of extremely large executables.
151
152 The <<bfd_read_minisymbols>> function will read the symbols
153 into memory in an internal form. It will return a <<void *>>
154 pointer to a block of memory, a symbol count, and the size of
155 each symbol. The pointer is allocated using <<malloc>>, and
156 should be freed by the caller when it is no longer needed.
157
158 The function <<bfd_minisymbol_to_symbol>> will take a pointer
159 to a minisymbol, and a pointer to a structure returned by
160 <<bfd_make_empty_symbol>>, and return a <<asymbol>> structure.
161 The return value may or may not be the same as the value from
162 <<bfd_make_empty_symbol>> which was passed in.
163
164 */
165
166 /*
167 DOCDD
168 INODE
169 typedef asymbol, symbol handling functions, Mini Symbols, Symbols
170
171 */
172 /*
173 SUBSECTION
174 typedef asymbol
175
176 An <<asymbol>> has the form:
177
178 */
179
180 /*
181 CODE_FRAGMENT
182
183 .
184 .typedef struct symbol_cache_entry
185 .{
186 . {* A pointer to the BFD which owns the symbol. This information
187 . is necessary so that a back end can work out what additional
188 . information (invisible to the application writer) is carried
189 . with the symbol.
190 .
191 . This field is *almost* redundant, since you can use section->owner
192 . instead, except that some symbols point to the global sections
193 . bfd_{abs,com,und}_section. This could be fixed by making
194 . these globals be per-bfd (or per-target-flavor). FIXME. *}
195 . struct bfd *the_bfd; {* Use bfd_asymbol_bfd(sym) to access this field. *}
196 .
197 . {* The text of the symbol. The name is left alone, and not copied; the
198 . application may not alter it. *}
199 . const char *name;
200 .
201 . {* The value of the symbol. This really should be a union of a
202 . numeric value with a pointer, since some flags indicate that
203 . a pointer to another symbol is stored here. *}
204 . symvalue value;
205 .
206 . {* Attributes of a symbol. *}
207 .#define BSF_NO_FLAGS 0x00
208 .
209 . {* The symbol has local scope; <<static>> in <<C>>. The value
210 . is the offset into the section of the data. *}
211 .#define BSF_LOCAL 0x01
212 .
213 . {* The symbol has global scope; initialized data in <<C>>. The
214 . value is the offset into the section of the data. *}
215 .#define BSF_GLOBAL 0x02
216 .
217 . {* The symbol has global scope and is exported. The value is
218 . the offset into the section of the data. *}
219 .#define BSF_EXPORT BSF_GLOBAL {* No real difference. *}
220 .
221 . {* A normal C symbol would be one of:
222 . <<BSF_LOCAL>>, <<BSF_FORT_COMM>>, <<BSF_UNDEFINED>> or
223 . <<BSF_GLOBAL>>. *}
224 .
225 . {* The symbol is a debugging record. The value has an arbitary
226 . meaning, unless BSF_DEBUGGING_RELOC is also set. *}
227 .#define BSF_DEBUGGING 0x08
228 .
229 . {* The symbol denotes a function entry point. Used in ELF,
230 . perhaps others someday. *}
231 .#define BSF_FUNCTION 0x10
232 .
233 . {* Used by the linker. *}
234 .#define BSF_KEEP 0x20
235 .#define BSF_KEEP_G 0x40
236 .
237 . {* A weak global symbol, overridable without warnings by
238 . a regular global symbol of the same name. *}
239 .#define BSF_WEAK 0x80
240 .
241 . {* This symbol was created to point to a section, e.g. ELF's
242 . STT_SECTION symbols. *}
243 .#define BSF_SECTION_SYM 0x100
244 .
245 . {* The symbol used to be a common symbol, but now it is
246 . allocated. *}
247 .#define BSF_OLD_COMMON 0x200
248 .
249 . {* The default value for common data. *}
250 .#define BFD_FORT_COMM_DEFAULT_VALUE 0
251 .
252 . {* In some files the type of a symbol sometimes alters its
253 . location in an output file - ie in coff a <<ISFCN>> symbol
254 . which is also <<C_EXT>> symbol appears where it was
255 . declared and not at the end of a section. This bit is set
256 . by the target BFD part to convey this information. *}
257 .#define BSF_NOT_AT_END 0x400
258 .
259 . {* Signal that the symbol is the label of constructor section. *}
260 .#define BSF_CONSTRUCTOR 0x800
261 .
262 . {* Signal that the symbol is a warning symbol. The name is a
263 . warning. The name of the next symbol is the one to warn about;
264 . if a reference is made to a symbol with the same name as the next
265 . symbol, a warning is issued by the linker. *}
266 .#define BSF_WARNING 0x1000
267 .
268 . {* Signal that the symbol is indirect. This symbol is an indirect
269 . pointer to the symbol with the same name as the next symbol. *}
270 .#define BSF_INDIRECT 0x2000
271 .
272 . {* BSF_FILE marks symbols that contain a file name. This is used
273 . for ELF STT_FILE symbols. *}
274 .#define BSF_FILE 0x4000
275 .
276 . {* Symbol is from dynamic linking information. *}
277 .#define BSF_DYNAMIC 0x8000
278 .
279 . {* The symbol denotes a data object. Used in ELF, and perhaps
280 . others someday. *}
281 .#define BSF_OBJECT 0x10000
282 .
283 . {* This symbol is a debugging symbol. The value is the offset
284 . into the section of the data. BSF_DEBUGGING should be set
285 . as well. *}
286 .#define BSF_DEBUGGING_RELOC 0x20000
287 .
288 . {* This symbol is thread local. Used in ELF. *}
289 .#define BSF_THREAD_LOCAL 0x40000
290 .
291 . flagword flags;
292 .
293 . {* A pointer to the section to which this symbol is
294 . relative. This will always be non NULL, there are special
295 . sections for undefined and absolute symbols. *}
296 . struct sec *section;
297 .
298 . {* Back end special data. *}
299 . union
300 . {
301 . PTR p;
302 . bfd_vma i;
303 . }
304 . udata;
305 .}
306 .asymbol;
307 .
308 */
309
310 #include "bfd.h"
311 #include "sysdep.h"
312 #include "libbfd.h"
313 #include "safe-ctype.h"
314 #include "bfdlink.h"
315 #include "aout/stab_gnu.h"
316
317 static char coff_section_type PARAMS ((const char *));
318 static char decode_section_type PARAMS ((const struct sec *));
319 static int cmpindexentry PARAMS ((const PTR, const PTR));
320
321 /*
322 DOCDD
323 INODE
324 symbol handling functions, , typedef asymbol, Symbols
325 SUBSECTION
326 Symbol handling functions
327 */
328
329 /*
330 FUNCTION
331 bfd_get_symtab_upper_bound
332
333 DESCRIPTION
334 Return the number of bytes required to store a vector of pointers
335 to <<asymbols>> for all the symbols in the BFD @var{abfd},
336 including a terminal NULL pointer. If there are no symbols in
337 the BFD, then return 0. If an error occurs, return -1.
338
339 .#define bfd_get_symtab_upper_bound(abfd) \
340 . BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))
341 .
342 */
343
344 /*
345 FUNCTION
346 bfd_is_local_label
347
348 SYNOPSIS
349 bfd_boolean bfd_is_local_label (bfd *abfd, asymbol *sym);
350
351 DESCRIPTION
352 Return TRUE if the given symbol @var{sym} in the BFD @var{abfd} is
353 a compiler generated local label, else return FALSE.
354 */
355
356 bfd_boolean
357 bfd_is_local_label (abfd, sym)
358 bfd *abfd;
359 asymbol *sym;
360 {
361 /* The BSF_SECTION_SYM check is needed for IA-64, where every label that
362 starts with '.' is local. This would accidentally catch section names
363 if we didn't reject them here. */
364 if ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_SECTION_SYM)) != 0)
365 return FALSE;
366 if (sym->name == NULL)
367 return FALSE;
368 return bfd_is_local_label_name (abfd, sym->name);
369 }
370
371 /*
372 FUNCTION
373 bfd_is_local_label_name
374
375 SYNOPSIS
376 bfd_boolean bfd_is_local_label_name (bfd *abfd, const char *name);
377
378 DESCRIPTION
379 Return TRUE if a symbol with the name @var{name} in the BFD
380 @var{abfd} is a compiler generated local label, else return
381 FALSE. This just checks whether the name has the form of a
382 local label.
383
384 .#define bfd_is_local_label_name(abfd, name) \
385 . BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))
386 .
387 */
388
389 /*
390 FUNCTION
391 bfd_canonicalize_symtab
392
393 DESCRIPTION
394 Read the symbols from the BFD @var{abfd}, and fills in
395 the vector @var{location} with pointers to the symbols and
396 a trailing NULL.
397 Return the actual number of symbol pointers, not
398 including the NULL.
399
400 .#define bfd_canonicalize_symtab(abfd, location) \
401 . BFD_SEND (abfd, _bfd_canonicalize_symtab,\
402 . (abfd, location))
403 .
404 */
405
406 /*
407 FUNCTION
408 bfd_set_symtab
409
410 SYNOPSIS
411 bfd_boolean bfd_set_symtab (bfd *abfd, asymbol **location, unsigned int count);
412
413 DESCRIPTION
414 Arrange that when the output BFD @var{abfd} is closed,
415 the table @var{location} of @var{count} pointers to symbols
416 will be written.
417 */
418
419 bfd_boolean
420 bfd_set_symtab (abfd, location, symcount)
421 bfd *abfd;
422 asymbol **location;
423 unsigned int symcount;
424 {
425 if ((abfd->format != bfd_object) || (bfd_read_p (abfd)))
426 {
427 bfd_set_error (bfd_error_invalid_operation);
428 return FALSE;
429 }
430
431 bfd_get_outsymbols (abfd) = location;
432 bfd_get_symcount (abfd) = symcount;
433 return TRUE;
434 }
435
436 /*
437 FUNCTION
438 bfd_print_symbol_vandf
439
440 SYNOPSIS
441 void bfd_print_symbol_vandf (bfd *abfd, PTR file, asymbol *symbol);
442
443 DESCRIPTION
444 Print the value and flags of the @var{symbol} supplied to the
445 stream @var{file}.
446 */
447 void
448 bfd_print_symbol_vandf (abfd, arg, symbol)
449 bfd *abfd;
450 PTR arg;
451 asymbol *symbol;
452 {
453 FILE *file = (FILE *) arg;
454
455 flagword type = symbol->flags;
456
457 if (symbol->section != (asection *) NULL)
458 bfd_fprintf_vma (abfd, file,
459 symbol->value + symbol->section->vma);
460 else
461 bfd_fprintf_vma (abfd, file, symbol->value);
462
463 /* This presumes that a symbol can not be both BSF_DEBUGGING and
464 BSF_DYNAMIC, nor more than one of BSF_FUNCTION, BSF_FILE, and
465 BSF_OBJECT. */
466 fprintf (file, " %c%c%c%c%c%c%c",
467 ((type & BSF_LOCAL)
468 ? (type & BSF_GLOBAL) ? '!' : 'l'
469 : (type & BSF_GLOBAL) ? 'g' : ' '),
470 (type & BSF_WEAK) ? 'w' : ' ',
471 (type & BSF_CONSTRUCTOR) ? 'C' : ' ',
472 (type & BSF_WARNING) ? 'W' : ' ',
473 (type & BSF_INDIRECT) ? 'I' : ' ',
474 (type & BSF_DEBUGGING) ? 'd' : (type & BSF_DYNAMIC) ? 'D' : ' ',
475 ((type & BSF_FUNCTION)
476 ? 'F'
477 : ((type & BSF_FILE)
478 ? 'f'
479 : ((type & BSF_OBJECT) ? 'O' : ' '))));
480 }
481
482 /*
483 FUNCTION
484 bfd_make_empty_symbol
485
486 DESCRIPTION
487 Create a new <<asymbol>> structure for the BFD @var{abfd}
488 and return a pointer to it.
489
490 This routine is necessary because each back end has private
491 information surrounding the <<asymbol>>. Building your own
492 <<asymbol>> and pointing to it will not create the private
493 information, and will cause problems later on.
494
495 .#define bfd_make_empty_symbol(abfd) \
496 . BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
497 .
498 */
499
500 /*
501 FUNCTION
502 _bfd_generic_make_empty_symbol
503
504 SYNOPSIS
505 asymbol * _bfd_generic_make_empty_symbol (bfd *);
506
507 DESCRIPTION
508 Create a new <<asymbol>> structure for the BFD @var{abfd}
509 and return a pointer to it. Used by core file routines,
510 binary back-end and anywhere else where no private info
511 is needed.
512 */
513
514 asymbol *
515 _bfd_generic_make_empty_symbol (abfd)
516 bfd *abfd;
517 {
518 bfd_size_type amt = sizeof (asymbol);
519 asymbol *new = (asymbol *) bfd_zalloc (abfd, amt);
520 if (new)
521 new->the_bfd = abfd;
522 return new;
523 }
524
525 /*
526 FUNCTION
527 bfd_make_debug_symbol
528
529 DESCRIPTION
530 Create a new <<asymbol>> structure for the BFD @var{abfd},
531 to be used as a debugging symbol. Further details of its use have
532 yet to be worked out.
533
534 .#define bfd_make_debug_symbol(abfd,ptr,size) \
535 . BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))
536 .
537 */
538
539 struct section_to_type
540 {
541 const char *section;
542 char type;
543 };
544
545 /* Map section names to POSIX/BSD single-character symbol types.
546 This table is probably incomplete. It is sorted for convenience of
547 adding entries. Since it is so short, a linear search is used. */
548 static const struct section_to_type stt[] =
549 {
550 {".bss", 'b'},
551 {"code", 't'}, /* MRI .text */
552 {".data", 'd'},
553 {"*DEBUG*", 'N'},
554 {".debug", 'N'}, /* MSVC's .debug (non-standard debug syms) */
555 {".drectve", 'i'}, /* MSVC's .drective section */
556 {".edata", 'e'}, /* MSVC's .edata (export) section */
557 {".fini", 't'}, /* ELF fini section */
558 {".idata", 'i'}, /* MSVC's .idata (import) section */
559 {".init", 't'}, /* ELF init section */
560 {".pdata", 'p'}, /* MSVC's .pdata (stack unwind) section */
561 {".rdata", 'r'}, /* Read only data. */
562 {".rodata", 'r'}, /* Read only data. */
563 {".sbss", 's'}, /* Small BSS (uninitialized data). */
564 {".scommon", 'c'}, /* Small common. */
565 {".sdata", 'g'}, /* Small initialized data. */
566 {".text", 't'},
567 {"vars", 'd'}, /* MRI .data */
568 {"zerovars", 'b'}, /* MRI .bss */
569 {0, 0}
570 };
571
572 /* Return the single-character symbol type corresponding to
573 section S, or '?' for an unknown COFF section.
574
575 Check for any leading string which matches, so .text5 returns
576 't' as well as .text */
577
578 static char
579 coff_section_type (s)
580 const char *s;
581 {
582 const struct section_to_type *t;
583
584 for (t = &stt[0]; t->section; t++)
585 if (!strncmp (s, t->section, strlen (t->section)))
586 return t->type;
587
588 return '?';
589 }
590
591 /* Return the single-character symbol type corresponding to section
592 SECTION, or '?' for an unknown section. This uses section flags to
593 identify sections.
594
595 FIXME These types are unhandled: c, i, e, p. If we handled these also,
596 we could perhaps obsolete coff_section_type. */
597
598 static char
599 decode_section_type (section)
600 const struct sec *section;
601 {
602 if (section->flags & SEC_CODE)
603 return 't';
604 if (section->flags & SEC_DATA)
605 {
606 if (section->flags & SEC_READONLY)
607 return 'r';
608 else if (section->flags & SEC_SMALL_DATA)
609 return 'g';
610 else
611 return 'd';
612 }
613 if ((section->flags & SEC_HAS_CONTENTS) == 0)
614 {
615 if (section->flags & SEC_SMALL_DATA)
616 return 's';
617 else
618 return 'b';
619 }
620 if (section->flags & SEC_DEBUGGING)
621 return 'N';
622
623 return '?';
624 }
625
626 /*
627 FUNCTION
628 bfd_decode_symclass
629
630 DESCRIPTION
631 Return a character corresponding to the symbol
632 class of @var{symbol}, or '?' for an unknown class.
633
634 SYNOPSIS
635 int bfd_decode_symclass (asymbol *symbol);
636 */
637 int
638 bfd_decode_symclass (symbol)
639 asymbol *symbol;
640 {
641 char c;
642
643 if (bfd_is_com_section (symbol->section))
644 return 'C';
645 if (bfd_is_und_section (symbol->section))
646 {
647 if (symbol->flags & BSF_WEAK)
648 {
649 /* If weak, determine if it's specifically an object
650 or non-object weak. */
651 if (symbol->flags & BSF_OBJECT)
652 return 'v';
653 else
654 return 'w';
655 }
656 else
657 return 'U';
658 }
659 if (bfd_is_ind_section (symbol->section))
660 return 'I';
661 if (symbol->flags & BSF_WEAK)
662 {
663 /* If weak, determine if it's specifically an object
664 or non-object weak. */
665 if (symbol->flags & BSF_OBJECT)
666 return 'V';
667 else
668 return 'W';
669 }
670 if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL)))
671 return '?';
672
673 if (bfd_is_abs_section (symbol->section))
674 c = 'a';
675 else if (symbol->section)
676 {
677 c = coff_section_type (symbol->section->name);
678 if (c == '?')
679 c = decode_section_type (symbol->section);
680 }
681 else
682 return '?';
683 if (symbol->flags & BSF_GLOBAL)
684 c = TOUPPER (c);
685 return c;
686
687 /* We don't have to handle these cases just yet, but we will soon:
688 N_SETV: 'v';
689 N_SETA: 'l';
690 N_SETT: 'x';
691 N_SETD: 'z';
692 N_SETB: 's';
693 N_INDR: 'i';
694 */
695 }
696
697 /*
698 FUNCTION
699 bfd_is_undefined_symclass
700
701 DESCRIPTION
702 Returns non-zero if the class symbol returned by
703 bfd_decode_symclass represents an undefined symbol.
704 Returns zero otherwise.
705
706 SYNOPSIS
707 bfd_boolean bfd_is_undefined_symclass (int symclass);
708 */
709
710 bfd_boolean
711 bfd_is_undefined_symclass (symclass)
712 int symclass;
713 {
714 return symclass == 'U' || symclass == 'w' || symclass == 'v';
715 }
716
717 /*
718 FUNCTION
719 bfd_symbol_info
720
721 DESCRIPTION
722 Fill in the basic info about symbol that nm needs.
723 Additional info may be added by the back-ends after
724 calling this function.
725
726 SYNOPSIS
727 void bfd_symbol_info (asymbol *symbol, symbol_info *ret);
728 */
729
730 void
731 bfd_symbol_info (symbol, ret)
732 asymbol *symbol;
733 symbol_info *ret;
734 {
735 ret->type = bfd_decode_symclass (symbol);
736
737 if (bfd_is_undefined_symclass (ret->type))
738 ret->value = 0;
739 else
740 ret->value = symbol->value + symbol->section->vma;
741
742 ret->name = symbol->name;
743 }
744
745 /*
746 FUNCTION
747 bfd_copy_private_symbol_data
748
749 SYNOPSIS
750 bfd_boolean bfd_copy_private_symbol_data (bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
751
752 DESCRIPTION
753 Copy private symbol information from @var{isym} in the BFD
754 @var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}.
755 Return <<TRUE>> on success, <<FALSE>> on error. Possible error
756 returns are:
757
758 o <<bfd_error_no_memory>> -
759 Not enough memory exists to create private data for @var{osec}.
760
761 .#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
762 . BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
763 . (ibfd, isymbol, obfd, osymbol))
764 .
765 */
766
767 /* The generic version of the function which returns mini symbols.
768 This is used when the backend does not provide a more efficient
769 version. It just uses BFD asymbol structures as mini symbols. */
770
771 long
772 _bfd_generic_read_minisymbols (abfd, dynamic, minisymsp, sizep)
773 bfd *abfd;
774 bfd_boolean dynamic;
775 PTR *minisymsp;
776 unsigned int *sizep;
777 {
778 long storage;
779 asymbol **syms = NULL;
780 long symcount;
781
782 if (dynamic)
783 storage = bfd_get_dynamic_symtab_upper_bound (abfd);
784 else
785 storage = bfd_get_symtab_upper_bound (abfd);
786 if (storage < 0)
787 goto error_return;
788 if (storage == 0)
789 return 0;
790
791 syms = (asymbol **) bfd_malloc ((bfd_size_type) storage);
792 if (syms == NULL)
793 goto error_return;
794
795 if (dynamic)
796 symcount = bfd_canonicalize_dynamic_symtab (abfd, syms);
797 else
798 symcount = bfd_canonicalize_symtab (abfd, syms);
799 if (symcount < 0)
800 goto error_return;
801
802 *minisymsp = (PTR) syms;
803 *sizep = sizeof (asymbol *);
804 return symcount;
805
806 error_return:
807 bfd_set_error (bfd_error_no_symbols);
808 if (syms != NULL)
809 free (syms);
810 return -1;
811 }
812
813 /* The generic version of the function which converts a minisymbol to
814 an asymbol. We don't worry about the sym argument we are passed;
815 we just return the asymbol the minisymbol points to. */
816
817 asymbol *
818 _bfd_generic_minisymbol_to_symbol (abfd, dynamic, minisym, sym)
819 bfd *abfd ATTRIBUTE_UNUSED;
820 bfd_boolean dynamic ATTRIBUTE_UNUSED;
821 const PTR minisym;
822 asymbol *sym ATTRIBUTE_UNUSED;
823 {
824 return *(asymbol **) minisym;
825 }
826
827 /* Look through stabs debugging information in .stab and .stabstr
828 sections to find the source file and line closest to a desired
829 location. This is used by COFF and ELF targets. It sets *pfound
830 to TRUE if it finds some information. The *pinfo field is used to
831 pass cached information in and out of this routine; this first time
832 the routine is called for a BFD, *pinfo should be NULL. The value
833 placed in *pinfo should be saved with the BFD, and passed back each
834 time this function is called. */
835
836 /* We use a cache by default. */
837
838 #define ENABLE_CACHING
839
840 /* We keep an array of indexentry structures to record where in the
841 stabs section we should look to find line number information for a
842 particular address. */
843
844 struct indexentry
845 {
846 bfd_vma val;
847 bfd_byte *stab;
848 bfd_byte *str;
849 char *directory_name;
850 char *file_name;
851 char *function_name;
852 };
853
854 /* Compare two indexentry structures. This is called via qsort. */
855
856 static int
857 cmpindexentry (a, b)
858 const PTR a;
859 const PTR b;
860 {
861 const struct indexentry *contestantA = (const struct indexentry *) a;
862 const struct indexentry *contestantB = (const struct indexentry *) b;
863
864 if (contestantA->val < contestantB->val)
865 return -1;
866 else if (contestantA->val > contestantB->val)
867 return 1;
868 else
869 return 0;
870 }
871
872 /* A pointer to this structure is stored in *pinfo. */
873
874 struct stab_find_info
875 {
876 /* The .stab section. */
877 asection *stabsec;
878 /* The .stabstr section. */
879 asection *strsec;
880 /* The contents of the .stab section. */
881 bfd_byte *stabs;
882 /* The contents of the .stabstr section. */
883 bfd_byte *strs;
884
885 /* A table that indexes stabs by memory address. */
886 struct indexentry *indextable;
887 /* The number of entries in indextable. */
888 int indextablesize;
889
890 #ifdef ENABLE_CACHING
891 /* Cached values to restart quickly. */
892 struct indexentry *cached_indexentry;
893 bfd_vma cached_offset;
894 bfd_byte *cached_stab;
895 char *cached_file_name;
896 #endif
897
898 /* Saved ptr to malloc'ed filename. */
899 char *filename;
900 };
901
902 bfd_boolean
903 _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset, pfound,
904 pfilename, pfnname, pline, pinfo)
905 bfd *abfd;
906 asymbol **symbols;
907 asection *section;
908 bfd_vma offset;
909 bfd_boolean *pfound;
910 const char **pfilename;
911 const char **pfnname;
912 unsigned int *pline;
913 PTR *pinfo;
914 {
915 struct stab_find_info *info;
916 bfd_size_type stabsize, strsize;
917 bfd_byte *stab, *str;
918 bfd_byte *last_stab = NULL;
919 bfd_size_type stroff;
920 struct indexentry *indexentry;
921 char *file_name;
922 char *directory_name;
923 int saw_fun;
924 bfd_boolean saw_line, saw_func;
925
926 *pfound = FALSE;
927 *pfilename = bfd_get_filename (abfd);
928 *pfnname = NULL;
929 *pline = 0;
930
931 /* Stabs entries use a 12 byte format:
932 4 byte string table index
933 1 byte stab type
934 1 byte stab other field
935 2 byte stab desc field
936 4 byte stab value
937 FIXME: This will have to change for a 64 bit object format.
938
939 The stabs symbols are divided into compilation units. For the
940 first entry in each unit, the type of 0, the value is the length
941 of the string table for this unit, and the desc field is the
942 number of stabs symbols for this unit. */
943
944 #define STRDXOFF (0)
945 #define TYPEOFF (4)
946 #define OTHEROFF (5)
947 #define DESCOFF (6)
948 #define VALOFF (8)
949 #define STABSIZE (12)
950
951 info = (struct stab_find_info *) *pinfo;
952 if (info != NULL)
953 {
954 if (info->stabsec == NULL || info->strsec == NULL)
955 {
956 /* No stabs debugging information. */
957 return TRUE;
958 }
959
960 stabsize = info->stabsec->_raw_size;
961 strsize = info->strsec->_raw_size;
962 }
963 else
964 {
965 long reloc_size, reloc_count;
966 arelent **reloc_vector;
967 int i;
968 char *name;
969 char *function_name;
970 bfd_size_type amt = sizeof *info;
971
972 info = (struct stab_find_info *) bfd_zalloc (abfd, amt);
973 if (info == NULL)
974 return FALSE;
975
976 /* FIXME: When using the linker --split-by-file or
977 --split-by-reloc options, it is possible for the .stab and
978 .stabstr sections to be split. We should handle that. */
979
980 info->stabsec = bfd_get_section_by_name (abfd, ".stab");
981 info->strsec = bfd_get_section_by_name (abfd, ".stabstr");
982
983 if (info->stabsec == NULL || info->strsec == NULL)
984 {
985 /* No stabs debugging information. Set *pinfo so that we
986 can return quickly in the info != NULL case above. */
987 *pinfo = (PTR) info;
988 return TRUE;
989 }
990
991 stabsize = info->stabsec->_raw_size;
992 strsize = info->strsec->_raw_size;
993
994 info->stabs = (bfd_byte *) bfd_alloc (abfd, stabsize);
995 info->strs = (bfd_byte *) bfd_alloc (abfd, strsize);
996 if (info->stabs == NULL || info->strs == NULL)
997 return FALSE;
998
999 if (! bfd_get_section_contents (abfd, info->stabsec, info->stabs,
1000 (bfd_vma) 0, stabsize)
1001 || ! bfd_get_section_contents (abfd, info->strsec, info->strs,
1002 (bfd_vma) 0, strsize))
1003 return FALSE;
1004
1005 /* If this is a relocateable object file, we have to relocate
1006 the entries in .stab. This should always be simple 32 bit
1007 relocations against symbols defined in this object file, so
1008 this should be no big deal. */
1009 reloc_size = bfd_get_reloc_upper_bound (abfd, info->stabsec);
1010 if (reloc_size < 0)
1011 return FALSE;
1012 reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
1013 if (reloc_vector == NULL && reloc_size != 0)
1014 return FALSE;
1015 reloc_count = bfd_canonicalize_reloc (abfd, info->stabsec, reloc_vector,
1016 symbols);
1017 if (reloc_count < 0)
1018 {
1019 if (reloc_vector != NULL)
1020 free (reloc_vector);
1021 return FALSE;
1022 }
1023 if (reloc_count > 0)
1024 {
1025 arelent **pr;
1026
1027 for (pr = reloc_vector; *pr != NULL; pr++)
1028 {
1029 arelent *r;
1030 unsigned long val;
1031 asymbol *sym;
1032
1033 r = *pr;
1034 if (r->howto->rightshift != 0
1035 || r->howto->size != 2
1036 || r->howto->bitsize != 32
1037 || r->howto->pc_relative
1038 || r->howto->bitpos != 0
1039 || r->howto->dst_mask != 0xffffffff)
1040 {
1041 (*_bfd_error_handler)
1042 (_("Unsupported .stab relocation"));
1043 bfd_set_error (bfd_error_invalid_operation);
1044 if (reloc_vector != NULL)
1045 free (reloc_vector);
1046 return FALSE;
1047 }
1048
1049 val = bfd_get_32 (abfd, info->stabs + r->address);
1050 val &= r->howto->src_mask;
1051 sym = *r->sym_ptr_ptr;
1052 val += sym->value + sym->section->vma + r->addend;
1053 bfd_put_32 (abfd, (bfd_vma) val, info->stabs + r->address);
1054 }
1055 }
1056
1057 if (reloc_vector != NULL)
1058 free (reloc_vector);
1059
1060 /* First time through this function, build a table matching
1061 function VM addresses to stabs, then sort based on starting
1062 VM address. Do this in two passes: once to count how many
1063 table entries we'll need, and a second to actually build the
1064 table. */
1065
1066 info->indextablesize = 0;
1067 saw_fun = 1;
1068 for (stab = info->stabs; stab < info->stabs + stabsize; stab += STABSIZE)
1069 {
1070 if (stab[TYPEOFF] == (bfd_byte) N_SO)
1071 {
1072 /* N_SO with null name indicates EOF */
1073 if (bfd_get_32 (abfd, stab + STRDXOFF) == 0)
1074 continue;
1075
1076 /* if we did not see a function def, leave space for one. */
1077 if (saw_fun == 0)
1078 ++info->indextablesize;
1079
1080 saw_fun = 0;
1081
1082 /* two N_SO's in a row is a filename and directory. Skip */
1083 if (stab + STABSIZE < info->stabs + stabsize
1084 && *(stab + STABSIZE + TYPEOFF) == (bfd_byte) N_SO)
1085 {
1086 stab += STABSIZE;
1087 }
1088 }
1089 else if (stab[TYPEOFF] == (bfd_byte) N_FUN)
1090 {
1091 saw_fun = 1;
1092 ++info->indextablesize;
1093 }
1094 }
1095
1096 if (saw_fun == 0)
1097 ++info->indextablesize;
1098
1099 if (info->indextablesize == 0)
1100 return TRUE;
1101 ++info->indextablesize;
1102
1103 amt = info->indextablesize;
1104 amt *= sizeof (struct indexentry);
1105 info->indextable = (struct indexentry *) bfd_alloc (abfd, amt);
1106 if (info->indextable == NULL)
1107 return FALSE;
1108
1109 file_name = NULL;
1110 directory_name = NULL;
1111 saw_fun = 1;
1112
1113 for (i = 0, stroff = 0, stab = info->stabs, str = info->strs;
1114 i < info->indextablesize && stab < info->stabs + stabsize;
1115 stab += STABSIZE)
1116 {
1117 switch (stab[TYPEOFF])
1118 {
1119 case 0:
1120 /* This is the first entry in a compilation unit. */
1121 if ((bfd_size_type) ((info->strs + strsize) - str) < stroff)
1122 break;
1123 str += stroff;
1124 stroff = bfd_get_32 (abfd, stab + VALOFF);
1125 break;
1126
1127 case N_SO:
1128 /* The main file name. */
1129
1130 /* The following code creates a new indextable entry with
1131 a NULL function name if there were no N_FUNs in a file.
1132 Note that a N_SO without a file name is an EOF and
1133 there could be 2 N_SO following it with the new filename
1134 and directory. */
1135 if (saw_fun == 0)
1136 {
1137 info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF);
1138 info->indextable[i].stab = last_stab;
1139 info->indextable[i].str = str;
1140 info->indextable[i].directory_name = directory_name;
1141 info->indextable[i].file_name = file_name;
1142 info->indextable[i].function_name = NULL;
1143 ++i;
1144 }
1145 saw_fun = 0;
1146
1147 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1148 if (*file_name == '\0')
1149 {
1150 directory_name = NULL;
1151 file_name = NULL;
1152 saw_fun = 1;
1153 }
1154 else
1155 {
1156 last_stab = stab;
1157 if (stab + STABSIZE >= info->stabs + stabsize
1158 || *(stab + STABSIZE + TYPEOFF) != (bfd_byte) N_SO)
1159 {
1160 directory_name = NULL;
1161 }
1162 else
1163 {
1164 /* Two consecutive N_SOs are a directory and a
1165 file name. */
1166 stab += STABSIZE;
1167 directory_name = file_name;
1168 file_name = ((char *) str
1169 + bfd_get_32 (abfd, stab + STRDXOFF));
1170 }
1171 }
1172 break;
1173
1174 case N_SOL:
1175 /* The name of an include file. */
1176 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1177 break;
1178
1179 case N_FUN:
1180 /* A function name. */
1181 saw_fun = 1;
1182 name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1183
1184 if (*name == '\0')
1185 name = NULL;
1186
1187 function_name = name;
1188
1189 if (name == NULL)
1190 continue;
1191
1192 info->indextable[i].val = bfd_get_32 (abfd, stab + VALOFF);
1193 info->indextable[i].stab = stab;
1194 info->indextable[i].str = str;
1195 info->indextable[i].directory_name = directory_name;
1196 info->indextable[i].file_name = file_name;
1197 info->indextable[i].function_name = function_name;
1198 ++i;
1199 break;
1200 }
1201 }
1202
1203 if (saw_fun == 0)
1204 {
1205 info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF);
1206 info->indextable[i].stab = last_stab;
1207 info->indextable[i].str = str;
1208 info->indextable[i].directory_name = directory_name;
1209 info->indextable[i].file_name = file_name;
1210 info->indextable[i].function_name = NULL;
1211 ++i;
1212 }
1213
1214 info->indextable[i].val = (bfd_vma) -1;
1215 info->indextable[i].stab = info->stabs + stabsize;
1216 info->indextable[i].str = str;
1217 info->indextable[i].directory_name = NULL;
1218 info->indextable[i].file_name = NULL;
1219 info->indextable[i].function_name = NULL;
1220 ++i;
1221
1222 info->indextablesize = i;
1223 qsort (info->indextable, (size_t) i, sizeof (struct indexentry),
1224 cmpindexentry);
1225
1226 *pinfo = (PTR) info;
1227 }
1228
1229 /* We are passed a section relative offset. The offsets in the
1230 stabs information are absolute. */
1231 offset += bfd_get_section_vma (abfd, section);
1232
1233 #ifdef ENABLE_CACHING
1234 if (info->cached_indexentry != NULL
1235 && offset >= info->cached_offset
1236 && offset < (info->cached_indexentry + 1)->val)
1237 {
1238 stab = info->cached_stab;
1239 indexentry = info->cached_indexentry;
1240 file_name = info->cached_file_name;
1241 }
1242 else
1243 #endif
1244 {
1245 long low, high;
1246 long mid = -1;
1247
1248 /* Cache non-existant or invalid. Do binary search on
1249 indextable. */
1250 indexentry = NULL;
1251
1252 low = 0;
1253 high = info->indextablesize - 1;
1254 while (low != high)
1255 {
1256 mid = (high + low) / 2;
1257 if (offset >= info->indextable[mid].val
1258 && offset < info->indextable[mid + 1].val)
1259 {
1260 indexentry = &info->indextable[mid];
1261 break;
1262 }
1263
1264 if (info->indextable[mid].val > offset)
1265 high = mid;
1266 else
1267 low = mid + 1;
1268 }
1269
1270 if (indexentry == NULL)
1271 return TRUE;
1272
1273 stab = indexentry->stab + STABSIZE;
1274 file_name = indexentry->file_name;
1275 }
1276
1277 directory_name = indexentry->directory_name;
1278 str = indexentry->str;
1279
1280 saw_line = FALSE;
1281 saw_func = FALSE;
1282 for (; stab < (indexentry+1)->stab; stab += STABSIZE)
1283 {
1284 bfd_boolean done;
1285 bfd_vma val;
1286
1287 done = FALSE;
1288
1289 switch (stab[TYPEOFF])
1290 {
1291 case N_SOL:
1292 /* The name of an include file. */
1293 val = bfd_get_32 (abfd, stab + VALOFF);
1294 if (val <= offset)
1295 {
1296 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1297 *pline = 0;
1298 }
1299 break;
1300
1301 case N_SLINE:
1302 case N_DSLINE:
1303 case N_BSLINE:
1304 /* A line number. If the function was specified, then the value
1305 is relative to the start of the function. Otherwise, the
1306 value is an absolute address. */
1307 val = ((indexentry->function_name ? indexentry->val : 0)
1308 + bfd_get_32 (abfd, stab + VALOFF));
1309 /* If this line starts before our desired offset, or if it's
1310 the first line we've been able to find, use it. The
1311 !saw_line check works around a bug in GCC 2.95.3, which emits
1312 the first N_SLINE late. */
1313 if (!saw_line || val <= offset)
1314 {
1315 *pline = bfd_get_16 (abfd, stab + DESCOFF);
1316
1317 #ifdef ENABLE_CACHING
1318 info->cached_stab = stab;
1319 info->cached_offset = val;
1320 info->cached_file_name = file_name;
1321 info->cached_indexentry = indexentry;
1322 #endif
1323 }
1324 if (val > offset)
1325 done = TRUE;
1326 saw_line = TRUE;
1327 break;
1328
1329 case N_FUN:
1330 case N_SO:
1331 if (saw_func || saw_line)
1332 done = TRUE;
1333 saw_func = TRUE;
1334 break;
1335 }
1336
1337 if (done)
1338 break;
1339 }
1340
1341 *pfound = TRUE;
1342
1343 if (file_name == NULL || IS_ABSOLUTE_PATH (file_name)
1344 || directory_name == NULL)
1345 *pfilename = file_name;
1346 else
1347 {
1348 size_t dirlen;
1349
1350 dirlen = strlen (directory_name);
1351 if (info->filename == NULL
1352 || strncmp (info->filename, directory_name, dirlen) != 0
1353 || strcmp (info->filename + dirlen, file_name) != 0)
1354 {
1355 size_t len;
1356
1357 if (info->filename != NULL)
1358 free (info->filename);
1359 len = strlen (file_name) + 1;
1360 info->filename = (char *) bfd_malloc ((bfd_size_type) dirlen + len);
1361 if (info->filename == NULL)
1362 return FALSE;
1363 memcpy (info->filename, directory_name, dirlen);
1364 memcpy (info->filename + dirlen, file_name, len);
1365 }
1366
1367 *pfilename = info->filename;
1368 }
1369
1370 if (indexentry->function_name != NULL)
1371 {
1372 char *s;
1373
1374 /* This will typically be something like main:F(0,1), so we want
1375 to clobber the colon. It's OK to change the name, since the
1376 string is in our own local storage anyhow. */
1377 s = strchr (indexentry->function_name, ':');
1378 if (s != NULL)
1379 *s = '\0';
1380
1381 *pfnname = indexentry->function_name;
1382 }
1383
1384 return TRUE;
1385 }
This page took 0.08026 seconds and 5 git commands to generate.