1999-09-11 Donn Terry <donn@interix.com>
[deliverable/binutils-gdb.git] / bfd / syms.c
1 /* Generic symbol-table support for the BFD library.
2 Copyright (C) 1990, 91, 92, 93, 94, 95, 96, 97, 98, 1999
3 Free Software Foundation, Inc.
4 Written by Cygnus Support.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22 /*
23 SECTION
24 Symbols
25
26 BFD tries to maintain as much symbol information as it can when
27 it moves information from file to file. BFD passes information
28 to applications though the <<asymbol>> structure. When the
29 application requests the symbol table, BFD reads the table in
30 the native form and translates parts of it into the internal
31 format. To maintain more than the information passed to
32 applications, some targets keep some information ``behind the
33 scenes'' in a structure only the particular back end knows
34 about. For example, the coff back end keeps the original
35 symbol table structure as well as the canonical structure when
36 a BFD is read in. On output, the coff back end can reconstruct
37 the output symbol table so that no information is lost, even
38 information unique to coff which BFD doesn't know or
39 understand. If a coff symbol table were read, but were written
40 through an a.out back end, all the coff specific information
41 would be lost. The symbol table of a BFD
42 is not necessarily read in until a canonicalize request is
43 made. Then the BFD back end fills in a table provided by the
44 application with pointers to the canonical information. To
45 output symbols, the application provides BFD with a table of
46 pointers to pointers to <<asymbol>>s. This allows applications
47 like the linker to output a symbol as it was read, since the ``behind
48 the scenes'' information will be still available.
49 @menu
50 @* Reading Symbols::
51 @* Writing Symbols::
52 @* Mini Symbols::
53 @* typedef asymbol::
54 @* symbol handling functions::
55 @end menu
56
57 INODE
58 Reading Symbols, Writing Symbols, Symbols, Symbols
59 SUBSECTION
60 Reading symbols
61
62 There are two stages to reading a symbol table from a BFD:
63 allocating storage, and the actual reading process. This is an
64 excerpt from an application which reads the symbol table:
65
66 | long storage_needed;
67 | asymbol **symbol_table;
68 | long number_of_symbols;
69 | long i;
70 |
71 | storage_needed = bfd_get_symtab_upper_bound (abfd);
72 |
73 | if (storage_needed < 0)
74 | FAIL
75 |
76 | if (storage_needed == 0) {
77 | return ;
78 | }
79 | symbol_table = (asymbol **) xmalloc (storage_needed);
80 | ...
81 | number_of_symbols =
82 | bfd_canonicalize_symtab (abfd, symbol_table);
83 |
84 | if (number_of_symbols < 0)
85 | FAIL
86 |
87 | for (i = 0; i < number_of_symbols; i++) {
88 | process_symbol (symbol_table[i]);
89 | }
90
91 All storage for the symbols themselves is in an objalloc
92 connected to the BFD; it is freed when the BFD is closed.
93
94
95 INODE
96 Writing Symbols, Mini Symbols, Reading Symbols, Symbols
97 SUBSECTION
98 Writing symbols
99
100 Writing of a symbol table is automatic when a BFD open for
101 writing is closed. The application attaches a vector of
102 pointers to pointers to symbols to the BFD being written, and
103 fills in the symbol count. The close and cleanup code reads
104 through the table provided and performs all the necessary
105 operations. The BFD output code must always be provided with an
106 ``owned'' symbol: one which has come from another BFD, or one
107 which has been created using <<bfd_make_empty_symbol>>. Here is an
108 example showing the creation of a symbol table with only one element:
109
110 | #include "bfd.h"
111 | main()
112 | {
113 | bfd *abfd;
114 | asymbol *ptrs[2];
115 | asymbol *new;
116 |
117 | abfd = bfd_openw("foo","a.out-sunos-big");
118 | bfd_set_format(abfd, bfd_object);
119 | new = bfd_make_empty_symbol(abfd);
120 | new->name = "dummy_symbol";
121 | new->section = bfd_make_section_old_way(abfd, ".text");
122 | new->flags = BSF_GLOBAL;
123 | new->value = 0x12345;
124 |
125 | ptrs[0] = new;
126 | ptrs[1] = (asymbol *)0;
127 |
128 | bfd_set_symtab(abfd, ptrs, 1);
129 | bfd_close(abfd);
130 | }
131 |
132 | ./makesym
133 | nm foo
134 | 00012345 A dummy_symbol
135
136 Many formats cannot represent arbitary symbol information; for
137 instance, the <<a.out>> object format does not allow an
138 arbitary number of sections. A symbol pointing to a section
139 which is not one of <<.text>>, <<.data>> or <<.bss>> cannot
140 be described.
141
142 INODE
143 Mini Symbols, typedef asymbol, Writing Symbols, Symbols
144 SUBSECTION
145 Mini Symbols
146
147 Mini symbols provide read-only access to the symbol table.
148 They use less memory space, but require more time to access.
149 They can be useful for tools like nm or objdump, which may
150 have to handle symbol tables of extremely large executables.
151
152 The <<bfd_read_minisymbols>> function will read the symbols
153 into memory in an internal form. It will return a <<void *>>
154 pointer to a block of memory, a symbol count, and the size of
155 each symbol. The pointer is allocated using <<malloc>>, and
156 should be freed by the caller when it is no longer needed.
157
158 The function <<bfd_minisymbol_to_symbol>> will take a pointer
159 to a minisymbol, and a pointer to a structure returned by
160 <<bfd_make_empty_symbol>>, and return a <<asymbol>> structure.
161 The return value may or may not be the same as the value from
162 <<bfd_make_empty_symbol>> which was passed in.
163
164 */
165
166
167
168 /*
169 DOCDD
170 INODE
171 typedef asymbol, symbol handling functions, Mini Symbols, Symbols
172
173 */
174 /*
175 SUBSECTION
176 typedef asymbol
177
178 An <<asymbol>> has the form:
179
180 */
181
182 /*
183 CODE_FRAGMENT
184
185 .
186 .typedef struct symbol_cache_entry
187 .{
188 . {* A pointer to the BFD which owns the symbol. This information
189 . is necessary so that a back end can work out what additional
190 . information (invisible to the application writer) is carried
191 . with the symbol.
192 .
193 . This field is *almost* redundant, since you can use section->owner
194 . instead, except that some symbols point to the global sections
195 . bfd_{abs,com,und}_section. This could be fixed by making
196 . these globals be per-bfd (or per-target-flavor). FIXME. *}
197 .
198 . struct _bfd *the_bfd; {* Use bfd_asymbol_bfd(sym) to access this field. *}
199 .
200 . {* The text of the symbol. The name is left alone, and not copied; the
201 . application may not alter it. *}
202 . CONST char *name;
203 .
204 . {* The value of the symbol. This really should be a union of a
205 . numeric value with a pointer, since some flags indicate that
206 . a pointer to another symbol is stored here. *}
207 . symvalue value;
208 .
209 . {* Attributes of a symbol: *}
210 .
211 .#define BSF_NO_FLAGS 0x00
212 .
213 . {* The symbol has local scope; <<static>> in <<C>>. The value
214 . is the offset into the section of the data. *}
215 .#define BSF_LOCAL 0x01
216 .
217 . {* The symbol has global scope; initialized data in <<C>>. The
218 . value is the offset into the section of the data. *}
219 .#define BSF_GLOBAL 0x02
220 .
221 . {* The symbol has global scope and is exported. The value is
222 . the offset into the section of the data. *}
223 .#define BSF_EXPORT BSF_GLOBAL {* no real difference *}
224 .
225 . {* A normal C symbol would be one of:
226 . <<BSF_LOCAL>>, <<BSF_FORT_COMM>>, <<BSF_UNDEFINED>> or
227 . <<BSF_GLOBAL>> *}
228 .
229 . {* The symbol is a debugging record. The value has an arbitary
230 . meaning, unless BSF_DEBUGGING_RELOC is also set. *}
231 .#define BSF_DEBUGGING 0x08
232 .
233 . {* The symbol denotes a function entry point. Used in ELF,
234 . perhaps others someday. *}
235 .#define BSF_FUNCTION 0x10
236 .
237 . {* Used by the linker. *}
238 .#define BSF_KEEP 0x20
239 .#define BSF_KEEP_G 0x40
240 .
241 . {* A weak global symbol, overridable without warnings by
242 . a regular global symbol of the same name. *}
243 .#define BSF_WEAK 0x80
244 .
245 . {* This symbol was created to point to a section, e.g. ELF's
246 . STT_SECTION symbols. *}
247 .#define BSF_SECTION_SYM 0x100
248 .
249 . {* The symbol used to be a common symbol, but now it is
250 . allocated. *}
251 .#define BSF_OLD_COMMON 0x200
252 .
253 . {* The default value for common data. *}
254 .#define BFD_FORT_COMM_DEFAULT_VALUE 0
255 .
256 . {* In some files the type of a symbol sometimes alters its
257 . location in an output file - ie in coff a <<ISFCN>> symbol
258 . which is also <<C_EXT>> symbol appears where it was
259 . declared and not at the end of a section. This bit is set
260 . by the target BFD part to convey this information. *}
261 .
262 .#define BSF_NOT_AT_END 0x400
263 .
264 . {* Signal that the symbol is the label of constructor section. *}
265 .#define BSF_CONSTRUCTOR 0x800
266 .
267 . {* Signal that the symbol is a warning symbol. The name is a
268 . warning. The name of the next symbol is the one to warn about;
269 . if a reference is made to a symbol with the same name as the next
270 . symbol, a warning is issued by the linker. *}
271 .#define BSF_WARNING 0x1000
272 .
273 . {* Signal that the symbol is indirect. This symbol is an indirect
274 . pointer to the symbol with the same name as the next symbol. *}
275 .#define BSF_INDIRECT 0x2000
276 .
277 . {* BSF_FILE marks symbols that contain a file name. This is used
278 . for ELF STT_FILE symbols. *}
279 .#define BSF_FILE 0x4000
280 .
281 . {* Symbol is from dynamic linking information. *}
282 .#define BSF_DYNAMIC 0x8000
283 .
284 . {* The symbol denotes a data object. Used in ELF, and perhaps
285 . others someday. *}
286 .#define BSF_OBJECT 0x10000
287 .
288 . {* This symbol is a debugging symbol. The value is the offset
289 . into the section of the data. BSF_DEBUGGING should be set
290 . as well. *}
291 .#define BSF_DEBUGGING_RELOC 0x20000
292 .
293 . flagword flags;
294 .
295 . {* A pointer to the section to which this symbol is
296 . relative. This will always be non NULL, there are special
297 . sections for undefined and absolute symbols. *}
298 . struct sec *section;
299 .
300 . {* Back end special data. *}
301 . union
302 . {
303 . PTR p;
304 . bfd_vma i;
305 . } udata;
306 .
307 .} asymbol;
308 */
309
310 #include "bfd.h"
311 #include "sysdep.h"
312 #include "libbfd.h"
313 #include "bfdlink.h"
314 #include "aout/stab_gnu.h"
315
316 static char coff_section_type PARAMS ((const char *));
317
318 /*
319 DOCDD
320 INODE
321 symbol handling functions, , typedef asymbol, Symbols
322 SUBSECTION
323 Symbol handling functions
324 */
325
326 /*
327 FUNCTION
328 bfd_get_symtab_upper_bound
329
330 DESCRIPTION
331 Return the number of bytes required to store a vector of pointers
332 to <<asymbols>> for all the symbols in the BFD @var{abfd},
333 including a terminal NULL pointer. If there are no symbols in
334 the BFD, then return 0. If an error occurs, return -1.
335
336 .#define bfd_get_symtab_upper_bound(abfd) \
337 . BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))
338
339 */
340
341 /*
342 FUNCTION
343 bfd_is_local_label
344
345 SYNOPSIS
346 boolean bfd_is_local_label(bfd *abfd, asymbol *sym);
347
348 DESCRIPTION
349 Return true if the given symbol @var{sym} in the BFD @var{abfd} is
350 a compiler generated local label, else return false.
351 */
352
353 boolean
354 bfd_is_local_label (abfd, sym)
355 bfd *abfd;
356 asymbol *sym;
357 {
358 if ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0)
359 return false;
360 if (sym->name == NULL)
361 return false;
362 return bfd_is_local_label_name (abfd, sym->name);
363 }
364
365 /*
366 FUNCTION
367 bfd_is_local_label_name
368
369 SYNOPSIS
370 boolean bfd_is_local_label_name(bfd *abfd, const char *name);
371
372 DESCRIPTION
373 Return true if a symbol with the name @var{name} in the BFD
374 @var{abfd} is a compiler generated local label, else return
375 false. This just checks whether the name has the form of a
376 local label.
377
378 .#define bfd_is_local_label_name(abfd, name) \
379 . BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))
380 */
381
382 /*
383 FUNCTION
384 bfd_canonicalize_symtab
385
386 DESCRIPTION
387 Read the symbols from the BFD @var{abfd}, and fills in
388 the vector @var{location} with pointers to the symbols and
389 a trailing NULL.
390 Return the actual number of symbol pointers, not
391 including the NULL.
392
393
394 .#define bfd_canonicalize_symtab(abfd, location) \
395 . BFD_SEND (abfd, _bfd_canonicalize_symtab,\
396 . (abfd, location))
397
398 */
399
400
401 /*
402 FUNCTION
403 bfd_set_symtab
404
405 SYNOPSIS
406 boolean bfd_set_symtab (bfd *abfd, asymbol **location, unsigned int count);
407
408 DESCRIPTION
409 Arrange that when the output BFD @var{abfd} is closed,
410 the table @var{location} of @var{count} pointers to symbols
411 will be written.
412 */
413
414 boolean
415 bfd_set_symtab (abfd, location, symcount)
416 bfd *abfd;
417 asymbol **location;
418 unsigned int symcount;
419 {
420 if ((abfd->format != bfd_object) || (bfd_read_p (abfd)))
421 {
422 bfd_set_error (bfd_error_invalid_operation);
423 return false;
424 }
425
426 bfd_get_outsymbols (abfd) = location;
427 bfd_get_symcount (abfd) = symcount;
428 return true;
429 }
430
431 /*
432 FUNCTION
433 bfd_print_symbol_vandf
434
435 SYNOPSIS
436 void bfd_print_symbol_vandf(PTR file, asymbol *symbol);
437
438 DESCRIPTION
439 Print the value and flags of the @var{symbol} supplied to the
440 stream @var{file}.
441 */
442 void
443 bfd_print_symbol_vandf (arg, symbol)
444 PTR arg;
445 asymbol *symbol;
446 {
447 FILE *file = (FILE *) arg;
448 flagword type = symbol->flags;
449 if (symbol->section != (asection *) NULL)
450 {
451 fprintf_vma (file, symbol->value + symbol->section->vma);
452 }
453 else
454 {
455 fprintf_vma (file, symbol->value);
456 }
457
458 /* This presumes that a symbol can not be both BSF_DEBUGGING and
459 BSF_DYNAMIC, nor more than one of BSF_FUNCTION, BSF_FILE, and
460 BSF_OBJECT. */
461 fprintf (file, " %c%c%c%c%c%c%c",
462 ((type & BSF_LOCAL)
463 ? (type & BSF_GLOBAL) ? '!' : 'l'
464 : (type & BSF_GLOBAL) ? 'g' : ' '),
465 (type & BSF_WEAK) ? 'w' : ' ',
466 (type & BSF_CONSTRUCTOR) ? 'C' : ' ',
467 (type & BSF_WARNING) ? 'W' : ' ',
468 (type & BSF_INDIRECT) ? 'I' : ' ',
469 (type & BSF_DEBUGGING) ? 'd' : (type & BSF_DYNAMIC) ? 'D' : ' ',
470 ((type & BSF_FUNCTION)
471 ? 'F'
472 : ((type & BSF_FILE)
473 ? 'f'
474 : ((type & BSF_OBJECT) ? 'O' : ' '))));
475 }
476
477
478 /*
479 FUNCTION
480 bfd_make_empty_symbol
481
482 DESCRIPTION
483 Create a new <<asymbol>> structure for the BFD @var{abfd}
484 and return a pointer to it.
485
486 This routine is necessary because each back end has private
487 information surrounding the <<asymbol>>. Building your own
488 <<asymbol>> and pointing to it will not create the private
489 information, and will cause problems later on.
490
491 .#define bfd_make_empty_symbol(abfd) \
492 . BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
493 */
494
495 /*
496 FUNCTION
497 bfd_make_debug_symbol
498
499 DESCRIPTION
500 Create a new <<asymbol>> structure for the BFD @var{abfd},
501 to be used as a debugging symbol. Further details of its use have
502 yet to be worked out.
503
504 .#define bfd_make_debug_symbol(abfd,ptr,size) \
505 . BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))
506 */
507
508 struct section_to_type
509 {
510 CONST char *section;
511 char type;
512 };
513
514 /* Map section names to POSIX/BSD single-character symbol types.
515 This table is probably incomplete. It is sorted for convenience of
516 adding entries. Since it is so short, a linear search is used. */
517 static CONST struct section_to_type stt[] =
518 {
519 {"*DEBUG*", 'N'},
520 {".bss", 'b'},
521 {"zerovars", 'b'}, /* MRI .bss */
522 {".data", 'd'},
523 {"vars", 'd'}, /* MRI .data */
524 {".rdata", 'r'}, /* Read only data. */
525 {".rodata", 'r'}, /* Read only data. */
526 {".sbss", 's'}, /* Small BSS (uninitialized data). */
527 {".scommon", 'c'}, /* Small common. */
528 {".sdata", 'g'}, /* Small initialized data. */
529 {".text", 't'},
530 {"code", 't'}, /* MRI .text */
531 {".drectve", 'i'}, /* MSVC's .drective section */
532 {".idata", 'i'}, /* MSVC's .idata (import) section */
533 {".edata", 'e'}, /* MSVC's .edata (export) section */
534 {".pdata", 'p'}, /* MSVC's .pdata (stack unwind) section */
535 {".debug", 'N'}, /* MSVC's .debug (non-standard debug syms) */
536 {0, 0}
537 };
538
539 /* Return the single-character symbol type corresponding to
540 section S, or '?' for an unknown COFF section.
541
542 Check for any leading string which matches, so .text5 returns
543 't' as well as .text */
544
545 static char
546 coff_section_type (s)
547 const char *s;
548 {
549 CONST struct section_to_type *t;
550
551 for (t = &stt[0]; t->section; t++)
552 if (!strncmp (s, t->section, strlen (t->section)))
553 return t->type;
554
555 return '?';
556 }
557
558 #ifndef islower
559 #define islower(c) ((c) >= 'a' && (c) <= 'z')
560 #endif
561 #ifndef toupper
562 #define toupper(c) (islower(c) ? ((c) & ~0x20) : (c))
563 #endif
564
565 /*
566 FUNCTION
567 bfd_decode_symclass
568
569 DESCRIPTION
570 Return a character corresponding to the symbol
571 class of @var{symbol}, or '?' for an unknown class.
572
573 SYNOPSIS
574 int bfd_decode_symclass(asymbol *symbol);
575 */
576 int
577 bfd_decode_symclass (symbol)
578 asymbol *symbol;
579 {
580 char c;
581
582 if (bfd_is_com_section (symbol->section))
583 return 'C';
584 if (bfd_is_und_section (symbol->section))
585 {
586 if (symbol->flags & BSF_WEAK)
587 return 'w';
588 else
589 return 'U';
590 }
591 if (bfd_is_ind_section (symbol->section))
592 return 'I';
593 if (symbol->flags & BSF_WEAK)
594 return 'W';
595 if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL)))
596 return '?';
597
598 if (bfd_is_abs_section (symbol->section))
599 c = 'a';
600 else if (symbol->section)
601 c = coff_section_type (symbol->section->name);
602 else
603 return '?';
604 if (symbol->flags & BSF_GLOBAL)
605 c = toupper (c);
606 return c;
607
608 /* We don't have to handle these cases just yet, but we will soon:
609 N_SETV: 'v';
610 N_SETA: 'l';
611 N_SETT: 'x';
612 N_SETD: 'z';
613 N_SETB: 's';
614 N_INDR: 'i';
615 */
616 }
617
618 /*
619 FUNCTION
620 bfd_symbol_info
621
622 DESCRIPTION
623 Fill in the basic info about symbol that nm needs.
624 Additional info may be added by the back-ends after
625 calling this function.
626
627 SYNOPSIS
628 void bfd_symbol_info(asymbol *symbol, symbol_info *ret);
629 */
630
631 void
632 bfd_symbol_info (symbol, ret)
633 asymbol *symbol;
634 symbol_info *ret;
635 {
636 ret->type = bfd_decode_symclass (symbol);
637 if (ret->type != 'U' && ret->type != 'w')
638 ret->value = symbol->value + symbol->section->vma;
639 else
640 ret->value = 0;
641 ret->name = symbol->name;
642 }
643
644 /*
645 FUNCTION
646 bfd_copy_private_symbol_data
647
648 SYNOPSIS
649 boolean bfd_copy_private_symbol_data(bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
650
651 DESCRIPTION
652 Copy private symbol information from @var{isym} in the BFD
653 @var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}.
654 Return <<true>> on success, <<false>> on error. Possible error
655 returns are:
656
657 o <<bfd_error_no_memory>> -
658 Not enough memory exists to create private data for @var{osec}.
659
660 .#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
661 . BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
662 . (ibfd, isymbol, obfd, osymbol))
663
664 */
665
666 /* The generic version of the function which returns mini symbols.
667 This is used when the backend does not provide a more efficient
668 version. It just uses BFD asymbol structures as mini symbols. */
669
670 long
671 _bfd_generic_read_minisymbols (abfd, dynamic, minisymsp, sizep)
672 bfd *abfd;
673 boolean dynamic;
674 PTR *minisymsp;
675 unsigned int *sizep;
676 {
677 long storage;
678 asymbol **syms = NULL;
679 long symcount;
680
681 if (dynamic)
682 storage = bfd_get_dynamic_symtab_upper_bound (abfd);
683 else
684 storage = bfd_get_symtab_upper_bound (abfd);
685 if (storage < 0)
686 goto error_return;
687
688 syms = (asymbol **) bfd_malloc ((size_t) storage);
689 if (syms == NULL)
690 goto error_return;
691
692 if (dynamic)
693 symcount = bfd_canonicalize_dynamic_symtab (abfd, syms);
694 else
695 symcount = bfd_canonicalize_symtab (abfd, syms);
696 if (symcount < 0)
697 goto error_return;
698
699 *minisymsp = (PTR) syms;
700 *sizep = sizeof (asymbol *);
701 return symcount;
702
703 error_return:
704 if (syms != NULL)
705 free (syms);
706 return -1;
707 }
708
709 /* The generic version of the function which converts a minisymbol to
710 an asymbol. We don't worry about the sym argument we are passed;
711 we just return the asymbol the minisymbol points to. */
712
713 /*ARGSUSED*/
714 asymbol *
715 _bfd_generic_minisymbol_to_symbol (abfd, dynamic, minisym, sym)
716 bfd *abfd ATTRIBUTE_UNUSED;
717 boolean dynamic ATTRIBUTE_UNUSED;
718 const PTR minisym;
719 asymbol *sym ATTRIBUTE_UNUSED;
720 {
721 return *(asymbol **) minisym;
722 }
723
724 /* Look through stabs debugging information in .stab and .stabstr
725 sections to find the source file and line closest to a desired
726 location. This is used by COFF and ELF targets. It sets *pfound
727 to true if it finds some information. The *pinfo field is used to
728 pass cached information in and out of this routine; this first time
729 the routine is called for a BFD, *pinfo should be NULL. The value
730 placed in *pinfo should be saved with the BFD, and passed back each
731 time this function is called. */
732
733 /* We use a cache by default. */
734
735 #define ENABLE_CACHING
736
737 /* We keep an array of indexentry structures to record where in the
738 stabs section we should look to find line number information for a
739 particular address. */
740
741 struct indexentry
742 {
743 bfd_vma val;
744 bfd_byte *stab;
745 bfd_byte *str;
746 char *directory_name;
747 char *file_name;
748 char *function_name;
749 };
750
751 /* Compare two indexentry structures. This is called via qsort. */
752
753 static int
754 cmpindexentry (a, b)
755 const PTR *a;
756 const PTR *b;
757 {
758 const struct indexentry *contestantA = (const struct indexentry *) a;
759 const struct indexentry *contestantB = (const struct indexentry *) b;
760
761 if (contestantA->val < contestantB->val)
762 return -1;
763 else if (contestantA->val > contestantB->val)
764 return 1;
765 else
766 return 0;
767 }
768
769 /* A pointer to this structure is stored in *pinfo. */
770
771 struct stab_find_info
772 {
773 /* The .stab section. */
774 asection *stabsec;
775 /* The .stabstr section. */
776 asection *strsec;
777 /* The contents of the .stab section. */
778 bfd_byte *stabs;
779 /* The contents of the .stabstr section. */
780 bfd_byte *strs;
781
782 /* A table that indexes stabs by memory address. */
783 struct indexentry *indextable;
784 /* The number of entries in indextable. */
785 int indextablesize;
786
787 #ifdef ENABLE_CACHING
788 /* Cached values to restart quickly. */
789 struct indexentry *cached_indexentry;
790 bfd_vma cached_offset;
791 bfd_byte *cached_stab;
792 char *cached_file_name;
793 #endif
794
795 /* Saved ptr to malloc'ed filename. */
796 char *filename;
797 };
798
799 boolean
800 _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset, pfound,
801 pfilename, pfnname, pline, pinfo)
802 bfd *abfd;
803 asymbol **symbols;
804 asection *section;
805 bfd_vma offset;
806 boolean *pfound;
807 const char **pfilename;
808 const char **pfnname;
809 unsigned int *pline;
810 PTR *pinfo;
811 {
812 struct stab_find_info *info;
813 bfd_size_type stabsize, strsize;
814 bfd_byte *stab, *str;
815 bfd_byte *last_stab = NULL;
816 bfd_size_type stroff;
817 struct indexentry *indexentry;
818 char *directory_name, *file_name;
819 int saw_fun;
820
821 *pfound = false;
822 *pfilename = bfd_get_filename (abfd);
823 *pfnname = NULL;
824 *pline = 0;
825
826 /* Stabs entries use a 12 byte format:
827 4 byte string table index
828 1 byte stab type
829 1 byte stab other field
830 2 byte stab desc field
831 4 byte stab value
832 FIXME: This will have to change for a 64 bit object format.
833
834 The stabs symbols are divided into compilation units. For the
835 first entry in each unit, the type of 0, the value is the length
836 of the string table for this unit, and the desc field is the
837 number of stabs symbols for this unit. */
838
839 #define STRDXOFF (0)
840 #define TYPEOFF (4)
841 #define OTHEROFF (5)
842 #define DESCOFF (6)
843 #define VALOFF (8)
844 #define STABSIZE (12)
845
846 info = (struct stab_find_info *) *pinfo;
847 if (info != NULL)
848 {
849 if (info->stabsec == NULL || info->strsec == NULL)
850 {
851 /* No stabs debugging information. */
852 return true;
853 }
854
855 stabsize = info->stabsec->_raw_size;
856 strsize = info->strsec->_raw_size;
857 }
858 else
859 {
860 long reloc_size, reloc_count;
861 arelent **reloc_vector;
862 int i;
863 char *name;
864 char *file_name;
865 char *directory_name;
866 char *function_name;
867
868 info = (struct stab_find_info *) bfd_zalloc (abfd, sizeof *info);
869 if (info == NULL)
870 return false;
871
872 /* FIXME: When using the linker --split-by-file or
873 --split-by-reloc options, it is possible for the .stab and
874 .stabstr sections to be split. We should handle that. */
875
876 info->stabsec = bfd_get_section_by_name (abfd, ".stab");
877 info->strsec = bfd_get_section_by_name (abfd, ".stabstr");
878
879 if (info->stabsec == NULL || info->strsec == NULL)
880 {
881 /* No stabs debugging information. Set *pinfo so that we
882 can return quickly in the info != NULL case above. */
883 *pinfo = (PTR) info;
884 return true;
885 }
886
887 stabsize = info->stabsec->_raw_size;
888 strsize = info->strsec->_raw_size;
889
890 info->stabs = (bfd_byte *) bfd_alloc (abfd, stabsize);
891 info->strs = (bfd_byte *) bfd_alloc (abfd, strsize);
892 if (info->stabs == NULL || info->strs == NULL)
893 return false;
894
895 if (! bfd_get_section_contents (abfd, info->stabsec, info->stabs, 0,
896 stabsize)
897 || ! bfd_get_section_contents (abfd, info->strsec, info->strs, 0,
898 strsize))
899 return false;
900
901 /* If this is a relocateable object file, we have to relocate
902 the entries in .stab. This should always be simple 32 bit
903 relocations against symbols defined in this object file, so
904 this should be no big deal. */
905 reloc_size = bfd_get_reloc_upper_bound (abfd, info->stabsec);
906 if (reloc_size < 0)
907 return false;
908 reloc_vector = (arelent **) bfd_malloc (reloc_size);
909 if (reloc_vector == NULL && reloc_size != 0)
910 return false;
911 reloc_count = bfd_canonicalize_reloc (abfd, info->stabsec, reloc_vector,
912 symbols);
913 if (reloc_count < 0)
914 {
915 if (reloc_vector != NULL)
916 free (reloc_vector);
917 return false;
918 }
919 if (reloc_count > 0)
920 {
921 arelent **pr;
922
923 for (pr = reloc_vector; *pr != NULL; pr++)
924 {
925 arelent *r;
926 unsigned long val;
927 asymbol *sym;
928
929 r = *pr;
930 if (r->howto->rightshift != 0
931 || r->howto->size != 2
932 || r->howto->bitsize != 32
933 || r->howto->pc_relative
934 || r->howto->bitpos != 0
935 || r->howto->dst_mask != 0xffffffff)
936 {
937 (*_bfd_error_handler)
938 (_("Unsupported .stab relocation"));
939 bfd_set_error (bfd_error_invalid_operation);
940 if (reloc_vector != NULL)
941 free (reloc_vector);
942 return false;
943 }
944
945 val = bfd_get_32 (abfd, info->stabs + r->address);
946 val &= r->howto->src_mask;
947 sym = *r->sym_ptr_ptr;
948 val += sym->value + sym->section->vma + r->addend;
949 bfd_put_32 (abfd, val, info->stabs + r->address);
950 }
951 }
952
953 if (reloc_vector != NULL)
954 free (reloc_vector);
955
956 /* First time through this function, build a table matching
957 function VM addresses to stabs, then sort based on starting
958 VM address. Do this in two passes: once to count how many
959 table entries we'll need, and a second to actually build the
960 table. */
961
962 info->indextablesize = 0;
963 saw_fun = 1;
964 for (stab = info->stabs; stab < info->stabs + stabsize; stab += STABSIZE)
965 {
966 if (stab[TYPEOFF] == N_SO)
967 {
968 /* N_SO with null name indicates EOF */
969 if (bfd_get_32 (abfd, stab + STRDXOFF) == 0)
970 continue;
971
972 /* if we did not see a function def, leave space for one. */
973 if (saw_fun == 0)
974 ++info->indextablesize;
975
976 saw_fun = 0;
977
978 /* two N_SO's in a row is a filename and directory. Skip */
979 if (stab + STABSIZE < info->stabs + stabsize
980 && *(stab + STABSIZE + TYPEOFF) == N_SO)
981 {
982 stab += STABSIZE;
983 }
984 }
985 else if (stab[TYPEOFF] == N_FUN)
986 {
987 saw_fun = 1;
988 ++info->indextablesize;
989 }
990 }
991
992 if (saw_fun == 0)
993 ++info->indextablesize;
994
995 if (info->indextablesize == 0)
996 return true;
997 ++info->indextablesize;
998
999 info->indextable = ((struct indexentry *)
1000 bfd_alloc (abfd,
1001 (sizeof (struct indexentry)
1002 * info->indextablesize)));
1003 if (info->indextable == NULL)
1004 return false;
1005
1006 file_name = NULL;
1007 directory_name = NULL;
1008 saw_fun = 1;
1009
1010 for (i = 0, stroff = 0, stab = info->stabs, str = info->strs;
1011 i < info->indextablesize && stab < info->stabs + stabsize;
1012 stab += STABSIZE)
1013 {
1014 switch (stab[TYPEOFF])
1015 {
1016 case 0:
1017 /* This is the first entry in a compilation unit. */
1018 if ((bfd_size_type) ((info->strs + strsize) - str) < stroff)
1019 break;
1020 str += stroff;
1021 stroff = bfd_get_32 (abfd, stab + VALOFF);
1022 break;
1023
1024 case N_SO:
1025 /* The main file name. */
1026
1027 /* The following code creates a new indextable entry with
1028 a NULL function name if there were no N_FUNs in a file.
1029 Note that a N_SO without a file name is an EOF and
1030 there could be 2 N_SO following it with the new filename
1031 and directory. */
1032 if (saw_fun == 0)
1033 {
1034 info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF);
1035 info->indextable[i].stab = last_stab;
1036 info->indextable[i].str = str;
1037 info->indextable[i].directory_name = directory_name;
1038 info->indextable[i].file_name = file_name;
1039 info->indextable[i].function_name = NULL;
1040 ++i;
1041 }
1042 saw_fun = 0;
1043
1044 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1045 if (*file_name == '\0')
1046 {
1047 directory_name = NULL;
1048 file_name = NULL;
1049 saw_fun = 1;
1050 }
1051 else
1052 {
1053 last_stab = stab;
1054 if (stab + STABSIZE >= info->stabs + stabsize
1055 || *(stab + STABSIZE + TYPEOFF) != N_SO)
1056 {
1057 directory_name = NULL;
1058 }
1059 else
1060 {
1061 /* Two consecutive N_SOs are a directory and a
1062 file name. */
1063 stab += STABSIZE;
1064 directory_name = file_name;
1065 file_name = ((char *) str
1066 + bfd_get_32 (abfd, stab + STRDXOFF));
1067 }
1068 }
1069 break;
1070
1071 case N_SOL:
1072 /* The name of an include file. */
1073 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1074 break;
1075
1076 case N_FUN:
1077 /* A function name. */
1078 saw_fun = 1;
1079 name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1080
1081 if (*name == '\0')
1082 name = NULL;
1083
1084 function_name = name;
1085
1086 if (name == NULL)
1087 continue;
1088
1089 info->indextable[i].val = bfd_get_32 (abfd, stab + VALOFF);
1090 info->indextable[i].stab = stab;
1091 info->indextable[i].str = str;
1092 info->indextable[i].directory_name = directory_name;
1093 info->indextable[i].file_name = file_name;
1094 info->indextable[i].function_name = function_name;
1095 ++i;
1096 break;
1097 }
1098 }
1099
1100 if (saw_fun == 0)
1101 {
1102 info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF);
1103 info->indextable[i].stab = last_stab;
1104 info->indextable[i].str = str;
1105 info->indextable[i].directory_name = directory_name;
1106 info->indextable[i].file_name = file_name;
1107 info->indextable[i].function_name = NULL;
1108 ++i;
1109 }
1110
1111 info->indextable[i].val = (bfd_vma) -1;
1112 info->indextable[i].stab = info->stabs + stabsize;
1113 info->indextable[i].str = str;
1114 info->indextable[i].directory_name = NULL;
1115 info->indextable[i].file_name = NULL;
1116 info->indextable[i].function_name = NULL;
1117 ++i;
1118
1119 info->indextablesize = i;
1120 qsort (info->indextable, i, sizeof (struct indexentry), cmpindexentry);
1121
1122 *pinfo = (PTR) info;
1123 }
1124
1125 /* We are passed a section relative offset. The offsets in the
1126 stabs information are absolute. */
1127 offset += bfd_get_section_vma (abfd, section);
1128
1129 #ifdef ENABLE_CACHING
1130 if (info->cached_indexentry != NULL
1131 && offset >= info->cached_offset
1132 && offset < (info->cached_indexentry + 1)->val)
1133 {
1134 stab = info->cached_stab;
1135 indexentry = info->cached_indexentry;
1136 file_name = info->cached_file_name;
1137 }
1138 else
1139 #endif
1140 {
1141 /* Cache non-existant or invalid. Do binary search on
1142 indextable. */
1143
1144 long low, high;
1145 long mid = -1;
1146
1147 indexentry = NULL;
1148
1149 low = 0;
1150 high = info->indextablesize - 1;
1151 while (low != high)
1152 {
1153 mid = (high + low) / 2;
1154 if (offset >= info->indextable[mid].val
1155 && offset < info->indextable[mid + 1].val)
1156 {
1157 indexentry = &info->indextable[mid];
1158 break;
1159 }
1160
1161 if (info->indextable[mid].val > offset)
1162 high = mid;
1163 else
1164 low = mid + 1;
1165 }
1166
1167 if (indexentry == NULL)
1168 return true;
1169
1170 stab = indexentry->stab + STABSIZE;
1171 file_name = indexentry->file_name;
1172 }
1173
1174 directory_name = indexentry->directory_name;
1175 str = indexentry->str;
1176
1177 for (; stab < (indexentry+1)->stab; stab += STABSIZE)
1178 {
1179 boolean done;
1180 bfd_vma val;
1181
1182 done = false;
1183
1184 switch (stab[TYPEOFF])
1185 {
1186 case N_SOL:
1187 /* The name of an include file. */
1188 val = bfd_get_32 (abfd, stab + VALOFF);
1189 if (val <= offset)
1190 {
1191 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1192 *pline = 0;
1193 }
1194 break;
1195
1196 case N_SLINE:
1197 case N_DSLINE:
1198 case N_BSLINE:
1199 /* A line number. The value is relative to the start of the
1200 current function. */
1201 val = indexentry->val + bfd_get_32 (abfd, stab + VALOFF);
1202 if (val <= offset)
1203 {
1204 *pline = bfd_get_16 (abfd, stab + DESCOFF);
1205
1206 #ifdef ENABLE_CACHING
1207 info->cached_stab = stab;
1208 info->cached_offset = val;
1209 info->cached_file_name = file_name;
1210 info->cached_indexentry = indexentry;
1211 #endif
1212 }
1213 if (val > offset)
1214 done = true;
1215 break;
1216
1217 case N_FUN:
1218 case N_SO:
1219 done = true;
1220 break;
1221 }
1222
1223 if (done)
1224 break;
1225 }
1226
1227 *pfound = true;
1228
1229 if (file_name[0] == '/' || directory_name == NULL)
1230 *pfilename = file_name;
1231 else
1232 {
1233 size_t dirlen;
1234
1235 dirlen = strlen (directory_name);
1236 if (info->filename == NULL
1237 || strncmp (info->filename, directory_name, dirlen) != 0
1238 || strcmp (info->filename + dirlen, file_name) != 0)
1239 {
1240 if (info->filename != NULL)
1241 free (info->filename);
1242 info->filename = (char *) bfd_malloc (dirlen +
1243 strlen (file_name)
1244 + 1);
1245 if (info->filename == NULL)
1246 return false;
1247 strcpy (info->filename, directory_name);
1248 strcpy (info->filename + dirlen, file_name);
1249 }
1250
1251 *pfilename = info->filename;
1252 }
1253
1254 if (indexentry->function_name != NULL)
1255 {
1256 char *s;
1257
1258 /* This will typically be something like main:F(0,1), so we want
1259 to clobber the colon. It's OK to change the name, since the
1260 string is in our own local storage anyhow. */
1261
1262 s = strchr (indexentry->function_name, ':');
1263 if (s != NULL)
1264 *s = '\0';
1265
1266 *pfnname = indexentry->function_name;
1267 }
1268
1269 return true;
1270 }
This page took 0.071159 seconds and 5 git commands to generate.