2000-12-19 Kazu Hirata <kazu@hxi.com>
[deliverable/binutils-gdb.git] / bfd / syms.c
1 /* Generic symbol-table support for the BFD library.
2 Copyright (C) 1990, 91, 92, 93, 94, 95, 96, 97, 98, 99, 2000
3 Free Software Foundation, Inc.
4 Written by Cygnus Support.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22 /*
23 SECTION
24 Symbols
25
26 BFD tries to maintain as much symbol information as it can when
27 it moves information from file to file. BFD passes information
28 to applications though the <<asymbol>> structure. When the
29 application requests the symbol table, BFD reads the table in
30 the native form and translates parts of it into the internal
31 format. To maintain more than the information passed to
32 applications, some targets keep some information ``behind the
33 scenes'' in a structure only the particular back end knows
34 about. For example, the coff back end keeps the original
35 symbol table structure as well as the canonical structure when
36 a BFD is read in. On output, the coff back end can reconstruct
37 the output symbol table so that no information is lost, even
38 information unique to coff which BFD doesn't know or
39 understand. If a coff symbol table were read, but were written
40 through an a.out back end, all the coff specific information
41 would be lost. The symbol table of a BFD
42 is not necessarily read in until a canonicalize request is
43 made. Then the BFD back end fills in a table provided by the
44 application with pointers to the canonical information. To
45 output symbols, the application provides BFD with a table of
46 pointers to pointers to <<asymbol>>s. This allows applications
47 like the linker to output a symbol as it was read, since the ``behind
48 the scenes'' information will be still available.
49 @menu
50 @* Reading Symbols::
51 @* Writing Symbols::
52 @* Mini Symbols::
53 @* typedef asymbol::
54 @* symbol handling functions::
55 @end menu
56
57 INODE
58 Reading Symbols, Writing Symbols, Symbols, Symbols
59 SUBSECTION
60 Reading symbols
61
62 There are two stages to reading a symbol table from a BFD:
63 allocating storage, and the actual reading process. This is an
64 excerpt from an application which reads the symbol table:
65
66 | long storage_needed;
67 | asymbol **symbol_table;
68 | long number_of_symbols;
69 | long i;
70 |
71 | storage_needed = bfd_get_symtab_upper_bound (abfd);
72 |
73 | if (storage_needed < 0)
74 | FAIL
75 |
76 | if (storage_needed == 0) {
77 | return ;
78 | }
79 | symbol_table = (asymbol **) xmalloc (storage_needed);
80 | ...
81 | number_of_symbols =
82 | bfd_canonicalize_symtab (abfd, symbol_table);
83 |
84 | if (number_of_symbols < 0)
85 | FAIL
86 |
87 | for (i = 0; i < number_of_symbols; i++) {
88 | process_symbol (symbol_table[i]);
89 | }
90
91 All storage for the symbols themselves is in an objalloc
92 connected to the BFD; it is freed when the BFD is closed.
93
94 INODE
95 Writing Symbols, Mini Symbols, Reading Symbols, Symbols
96 SUBSECTION
97 Writing symbols
98
99 Writing of a symbol table is automatic when a BFD open for
100 writing is closed. The application attaches a vector of
101 pointers to pointers to symbols to the BFD being written, and
102 fills in the symbol count. The close and cleanup code reads
103 through the table provided and performs all the necessary
104 operations. The BFD output code must always be provided with an
105 ``owned'' symbol: one which has come from another BFD, or one
106 which has been created using <<bfd_make_empty_symbol>>. Here is an
107 example showing the creation of a symbol table with only one element:
108
109 | #include "bfd.h"
110 | main()
111 | {
112 | bfd *abfd;
113 | asymbol *ptrs[2];
114 | asymbol *new;
115 |
116 | abfd = bfd_openw("foo","a.out-sunos-big");
117 | bfd_set_format(abfd, bfd_object);
118 | new = bfd_make_empty_symbol(abfd);
119 | new->name = "dummy_symbol";
120 | new->section = bfd_make_section_old_way(abfd, ".text");
121 | new->flags = BSF_GLOBAL;
122 | new->value = 0x12345;
123 |
124 | ptrs[0] = new;
125 | ptrs[1] = (asymbol *)0;
126 |
127 | bfd_set_symtab(abfd, ptrs, 1);
128 | bfd_close(abfd);
129 | }
130 |
131 | ./makesym
132 | nm foo
133 | 00012345 A dummy_symbol
134
135 Many formats cannot represent arbitary symbol information; for
136 instance, the <<a.out>> object format does not allow an
137 arbitary number of sections. A symbol pointing to a section
138 which is not one of <<.text>>, <<.data>> or <<.bss>> cannot
139 be described.
140
141 INODE
142 Mini Symbols, typedef asymbol, Writing Symbols, Symbols
143 SUBSECTION
144 Mini Symbols
145
146 Mini symbols provide read-only access to the symbol table.
147 They use less memory space, but require more time to access.
148 They can be useful for tools like nm or objdump, which may
149 have to handle symbol tables of extremely large executables.
150
151 The <<bfd_read_minisymbols>> function will read the symbols
152 into memory in an internal form. It will return a <<void *>>
153 pointer to a block of memory, a symbol count, and the size of
154 each symbol. The pointer is allocated using <<malloc>>, and
155 should be freed by the caller when it is no longer needed.
156
157 The function <<bfd_minisymbol_to_symbol>> will take a pointer
158 to a minisymbol, and a pointer to a structure returned by
159 <<bfd_make_empty_symbol>>, and return a <<asymbol>> structure.
160 The return value may or may not be the same as the value from
161 <<bfd_make_empty_symbol>> which was passed in.
162
163 */
164
165 /*
166 DOCDD
167 INODE
168 typedef asymbol, symbol handling functions, Mini Symbols, Symbols
169
170 */
171 /*
172 SUBSECTION
173 typedef asymbol
174
175 An <<asymbol>> has the form:
176
177 */
178
179 /*
180 CODE_FRAGMENT
181
182 .
183 .typedef struct symbol_cache_entry
184 .{
185 . {* A pointer to the BFD which owns the symbol. This information
186 . is necessary so that a back end can work out what additional
187 . information (invisible to the application writer) is carried
188 . with the symbol.
189 .
190 . This field is *almost* redundant, since you can use section->owner
191 . instead, except that some symbols point to the global sections
192 . bfd_{abs,com,und}_section. This could be fixed by making
193 . these globals be per-bfd (or per-target-flavor). FIXME. *}
194 .
195 . struct _bfd *the_bfd; {* Use bfd_asymbol_bfd(sym) to access this field. *}
196 .
197 . {* The text of the symbol. The name is left alone, and not copied; the
198 . application may not alter it. *}
199 . CONST char *name;
200 .
201 . {* The value of the symbol. This really should be a union of a
202 . numeric value with a pointer, since some flags indicate that
203 . a pointer to another symbol is stored here. *}
204 . symvalue value;
205 .
206 . {* Attributes of a symbol: *}
207 .
208 .#define BSF_NO_FLAGS 0x00
209 .
210 . {* The symbol has local scope; <<static>> in <<C>>. The value
211 . is the offset into the section of the data. *}
212 .#define BSF_LOCAL 0x01
213 .
214 . {* The symbol has global scope; initialized data in <<C>>. The
215 . value is the offset into the section of the data. *}
216 .#define BSF_GLOBAL 0x02
217 .
218 . {* The symbol has global scope and is exported. The value is
219 . the offset into the section of the data. *}
220 .#define BSF_EXPORT BSF_GLOBAL {* no real difference *}
221 .
222 . {* A normal C symbol would be one of:
223 . <<BSF_LOCAL>>, <<BSF_FORT_COMM>>, <<BSF_UNDEFINED>> or
224 . <<BSF_GLOBAL>> *}
225 .
226 . {* The symbol is a debugging record. The value has an arbitary
227 . meaning, unless BSF_DEBUGGING_RELOC is also set. *}
228 .#define BSF_DEBUGGING 0x08
229 .
230 . {* The symbol denotes a function entry point. Used in ELF,
231 . perhaps others someday. *}
232 .#define BSF_FUNCTION 0x10
233 .
234 . {* Used by the linker. *}
235 .#define BSF_KEEP 0x20
236 .#define BSF_KEEP_G 0x40
237 .
238 . {* A weak global symbol, overridable without warnings by
239 . a regular global symbol of the same name. *}
240 .#define BSF_WEAK 0x80
241 .
242 . {* This symbol was created to point to a section, e.g. ELF's
243 . STT_SECTION symbols. *}
244 .#define BSF_SECTION_SYM 0x100
245 .
246 . {* The symbol used to be a common symbol, but now it is
247 . allocated. *}
248 .#define BSF_OLD_COMMON 0x200
249 .
250 . {* The default value for common data. *}
251 .#define BFD_FORT_COMM_DEFAULT_VALUE 0
252 .
253 . {* In some files the type of a symbol sometimes alters its
254 . location in an output file - ie in coff a <<ISFCN>> symbol
255 . which is also <<C_EXT>> symbol appears where it was
256 . declared and not at the end of a section. This bit is set
257 . by the target BFD part to convey this information. *}
258 .
259 .#define BSF_NOT_AT_END 0x400
260 .
261 . {* Signal that the symbol is the label of constructor section. *}
262 .#define BSF_CONSTRUCTOR 0x800
263 .
264 . {* Signal that the symbol is a warning symbol. The name is a
265 . warning. The name of the next symbol is the one to warn about;
266 . if a reference is made to a symbol with the same name as the next
267 . symbol, a warning is issued by the linker. *}
268 .#define BSF_WARNING 0x1000
269 .
270 . {* Signal that the symbol is indirect. This symbol is an indirect
271 . pointer to the symbol with the same name as the next symbol. *}
272 .#define BSF_INDIRECT 0x2000
273 .
274 . {* BSF_FILE marks symbols that contain a file name. This is used
275 . for ELF STT_FILE symbols. *}
276 .#define BSF_FILE 0x4000
277 .
278 . {* Symbol is from dynamic linking information. *}
279 .#define BSF_DYNAMIC 0x8000
280 .
281 . {* The symbol denotes a data object. Used in ELF, and perhaps
282 . others someday. *}
283 .#define BSF_OBJECT 0x10000
284 .
285 . {* This symbol is a debugging symbol. The value is the offset
286 . into the section of the data. BSF_DEBUGGING should be set
287 . as well. *}
288 .#define BSF_DEBUGGING_RELOC 0x20000
289 .
290 . flagword flags;
291 .
292 . {* A pointer to the section to which this symbol is
293 . relative. This will always be non NULL, there are special
294 . sections for undefined and absolute symbols. *}
295 . struct sec *section;
296 .
297 . {* Back end special data. *}
298 . union
299 . {
300 . PTR p;
301 . bfd_vma i;
302 . } udata;
303 .
304 .} asymbol;
305 */
306
307 #include "bfd.h"
308 #include "sysdep.h"
309 #include "libbfd.h"
310 #include "bfdlink.h"
311 #include "aout/stab_gnu.h"
312
313 static char coff_section_type PARAMS ((const char *));
314
315 /*
316 DOCDD
317 INODE
318 symbol handling functions, , typedef asymbol, Symbols
319 SUBSECTION
320 Symbol handling functions
321 */
322
323 /*
324 FUNCTION
325 bfd_get_symtab_upper_bound
326
327 DESCRIPTION
328 Return the number of bytes required to store a vector of pointers
329 to <<asymbols>> for all the symbols in the BFD @var{abfd},
330 including a terminal NULL pointer. If there are no symbols in
331 the BFD, then return 0. If an error occurs, return -1.
332
333 .#define bfd_get_symtab_upper_bound(abfd) \
334 . BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))
335
336 */
337
338 /*
339 FUNCTION
340 bfd_is_local_label
341
342 SYNOPSIS
343 boolean bfd_is_local_label(bfd *abfd, asymbol *sym);
344
345 DESCRIPTION
346 Return true if the given symbol @var{sym} in the BFD @var{abfd} is
347 a compiler generated local label, else return false.
348 */
349
350 boolean
351 bfd_is_local_label (abfd, sym)
352 bfd *abfd;
353 asymbol *sym;
354 {
355 if ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0)
356 return false;
357 if (sym->name == NULL)
358 return false;
359 return bfd_is_local_label_name (abfd, sym->name);
360 }
361
362 /*
363 FUNCTION
364 bfd_is_local_label_name
365
366 SYNOPSIS
367 boolean bfd_is_local_label_name(bfd *abfd, const char *name);
368
369 DESCRIPTION
370 Return true if a symbol with the name @var{name} in the BFD
371 @var{abfd} is a compiler generated local label, else return
372 false. This just checks whether the name has the form of a
373 local label.
374
375 .#define bfd_is_local_label_name(abfd, name) \
376 . BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))
377 */
378
379 /*
380 FUNCTION
381 bfd_canonicalize_symtab
382
383 DESCRIPTION
384 Read the symbols from the BFD @var{abfd}, and fills in
385 the vector @var{location} with pointers to the symbols and
386 a trailing NULL.
387 Return the actual number of symbol pointers, not
388 including the NULL.
389
390 .#define bfd_canonicalize_symtab(abfd, location) \
391 . BFD_SEND (abfd, _bfd_canonicalize_symtab,\
392 . (abfd, location))
393
394 */
395
396 /*
397 FUNCTION
398 bfd_set_symtab
399
400 SYNOPSIS
401 boolean bfd_set_symtab (bfd *abfd, asymbol **location, unsigned int count);
402
403 DESCRIPTION
404 Arrange that when the output BFD @var{abfd} is closed,
405 the table @var{location} of @var{count} pointers to symbols
406 will be written.
407 */
408
409 boolean
410 bfd_set_symtab (abfd, location, symcount)
411 bfd *abfd;
412 asymbol **location;
413 unsigned int symcount;
414 {
415 if ((abfd->format != bfd_object) || (bfd_read_p (abfd)))
416 {
417 bfd_set_error (bfd_error_invalid_operation);
418 return false;
419 }
420
421 bfd_get_outsymbols (abfd) = location;
422 bfd_get_symcount (abfd) = symcount;
423 return true;
424 }
425
426 /*
427 FUNCTION
428 bfd_print_symbol_vandf
429
430 SYNOPSIS
431 void bfd_print_symbol_vandf(PTR file, asymbol *symbol);
432
433 DESCRIPTION
434 Print the value and flags of the @var{symbol} supplied to the
435 stream @var{file}.
436 */
437 void
438 bfd_print_symbol_vandf (arg, symbol)
439 PTR arg;
440 asymbol *symbol;
441 {
442 FILE *file = (FILE *) arg;
443 flagword type = symbol->flags;
444 if (symbol->section != (asection *) NULL)
445 {
446 fprintf_vma (file, symbol->value + symbol->section->vma);
447 }
448 else
449 {
450 fprintf_vma (file, symbol->value);
451 }
452
453 /* This presumes that a symbol can not be both BSF_DEBUGGING and
454 BSF_DYNAMIC, nor more than one of BSF_FUNCTION, BSF_FILE, and
455 BSF_OBJECT. */
456 fprintf (file, " %c%c%c%c%c%c%c",
457 ((type & BSF_LOCAL)
458 ? (type & BSF_GLOBAL) ? '!' : 'l'
459 : (type & BSF_GLOBAL) ? 'g' : ' '),
460 (type & BSF_WEAK) ? 'w' : ' ',
461 (type & BSF_CONSTRUCTOR) ? 'C' : ' ',
462 (type & BSF_WARNING) ? 'W' : ' ',
463 (type & BSF_INDIRECT) ? 'I' : ' ',
464 (type & BSF_DEBUGGING) ? 'd' : (type & BSF_DYNAMIC) ? 'D' : ' ',
465 ((type & BSF_FUNCTION)
466 ? 'F'
467 : ((type & BSF_FILE)
468 ? 'f'
469 : ((type & BSF_OBJECT) ? 'O' : ' '))));
470 }
471
472 /*
473 FUNCTION
474 bfd_make_empty_symbol
475
476 DESCRIPTION
477 Create a new <<asymbol>> structure for the BFD @var{abfd}
478 and return a pointer to it.
479
480 This routine is necessary because each back end has private
481 information surrounding the <<asymbol>>. Building your own
482 <<asymbol>> and pointing to it will not create the private
483 information, and will cause problems later on.
484
485 .#define bfd_make_empty_symbol(abfd) \
486 . BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
487 */
488
489 /*
490 FUNCTION
491 bfd_make_debug_symbol
492
493 DESCRIPTION
494 Create a new <<asymbol>> structure for the BFD @var{abfd},
495 to be used as a debugging symbol. Further details of its use have
496 yet to be worked out.
497
498 .#define bfd_make_debug_symbol(abfd,ptr,size) \
499 . BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))
500 */
501
502 struct section_to_type
503 {
504 CONST char *section;
505 char type;
506 };
507
508 /* Map section names to POSIX/BSD single-character symbol types.
509 This table is probably incomplete. It is sorted for convenience of
510 adding entries. Since it is so short, a linear search is used. */
511 static CONST struct section_to_type stt[] =
512 {
513 {"*DEBUG*", 'N'},
514 {".bss", 'b'},
515 {"zerovars", 'b'}, /* MRI .bss */
516 {".data", 'd'},
517 {"vars", 'd'}, /* MRI .data */
518 {".rdata", 'r'}, /* Read only data. */
519 {".rodata", 'r'}, /* Read only data. */
520 {".sbss", 's'}, /* Small BSS (uninitialized data). */
521 {".scommon", 'c'}, /* Small common. */
522 {".sdata", 'g'}, /* Small initialized data. */
523 {".text", 't'},
524 {"code", 't'}, /* MRI .text */
525 {".drectve", 'i'}, /* MSVC's .drective section */
526 {".idata", 'i'}, /* MSVC's .idata (import) section */
527 {".edata", 'e'}, /* MSVC's .edata (export) section */
528 {".pdata", 'p'}, /* MSVC's .pdata (stack unwind) section */
529 {".debug", 'N'}, /* MSVC's .debug (non-standard debug syms) */
530 {0, 0}
531 };
532
533 /* Return the single-character symbol type corresponding to
534 section S, or '?' for an unknown COFF section.
535
536 Check for any leading string which matches, so .text5 returns
537 't' as well as .text */
538
539 static char
540 coff_section_type (s)
541 const char *s;
542 {
543 CONST struct section_to_type *t;
544
545 for (t = &stt[0]; t->section; t++)
546 if (!strncmp (s, t->section, strlen (t->section)))
547 return t->type;
548
549 return '?';
550 }
551
552 #ifndef islower
553 #define islower(c) ((c) >= 'a' && (c) <= 'z')
554 #endif
555 #ifndef toupper
556 #define toupper(c) (islower(c) ? ((c) & ~0x20) : (c))
557 #endif
558
559 /*
560 FUNCTION
561 bfd_decode_symclass
562
563 DESCRIPTION
564 Return a character corresponding to the symbol
565 class of @var{symbol}, or '?' for an unknown class.
566
567 SYNOPSIS
568 int bfd_decode_symclass(asymbol *symbol);
569 */
570 int
571 bfd_decode_symclass (symbol)
572 asymbol *symbol;
573 {
574 char c;
575
576 if (bfd_is_com_section (symbol->section))
577 return 'C';
578 if (bfd_is_und_section (symbol->section))
579 {
580 if (symbol->flags & BSF_WEAK)
581 {
582 /* If weak, determine if it's specifically an object
583 or non-object weak. */
584 if (symbol->flags & BSF_OBJECT)
585 return 'v';
586 else
587 return 'w';
588 }
589 else
590 return 'U';
591 }
592 if (bfd_is_ind_section (symbol->section))
593 return 'I';
594 if (symbol->flags & BSF_WEAK)
595 {
596 /* If weak, determine if it's specifically an object
597 or non-object weak. */
598 if (symbol->flags & BSF_OBJECT)
599 return 'V';
600 else
601 return 'W';
602 }
603 if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL)))
604 return '?';
605
606 if (bfd_is_abs_section (symbol->section))
607 c = 'a';
608 else if (symbol->section)
609 c = coff_section_type (symbol->section->name);
610 else
611 return '?';
612 if (symbol->flags & BSF_GLOBAL)
613 c = toupper (c);
614 return c;
615
616 /* We don't have to handle these cases just yet, but we will soon:
617 N_SETV: 'v';
618 N_SETA: 'l';
619 N_SETT: 'x';
620 N_SETD: 'z';
621 N_SETB: 's';
622 N_INDR: 'i';
623 */
624 }
625
626 /*
627 FUNCTION
628 bfd_is_undefined_symclass
629
630 DESCRIPTION
631 Returns non-zero if the class symbol returned by
632 bfd_decode_symclass represents an undefined symbol.
633 Returns zero otherwise.
634
635 SYNOPSIS
636 boolean bfd_is_undefined_symclass (int symclass);
637 */
638
639 boolean
640 bfd_is_undefined_symclass (symclass)
641 int symclass;
642 {
643 return symclass == 'U' || symclass == 'w' || symclass == 'v';
644 }
645
646 /*
647 FUNCTION
648 bfd_symbol_info
649
650 DESCRIPTION
651 Fill in the basic info about symbol that nm needs.
652 Additional info may be added by the back-ends after
653 calling this function.
654
655 SYNOPSIS
656 void bfd_symbol_info(asymbol *symbol, symbol_info *ret);
657 */
658
659 void
660 bfd_symbol_info (symbol, ret)
661 asymbol *symbol;
662 symbol_info *ret;
663 {
664 ret->type = bfd_decode_symclass (symbol);
665
666 if (bfd_is_undefined_symclass (ret->type))
667 ret->value = 0;
668 else
669 ret->value = symbol->value + symbol->section->vma;
670
671 ret->name = symbol->name;
672 }
673
674 /*
675 FUNCTION
676 bfd_copy_private_symbol_data
677
678 SYNOPSIS
679 boolean bfd_copy_private_symbol_data(bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
680
681 DESCRIPTION
682 Copy private symbol information from @var{isym} in the BFD
683 @var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}.
684 Return <<true>> on success, <<false>> on error. Possible error
685 returns are:
686
687 o <<bfd_error_no_memory>> -
688 Not enough memory exists to create private data for @var{osec}.
689
690 .#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
691 . BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
692 . (ibfd, isymbol, obfd, osymbol))
693
694 */
695
696 /* The generic version of the function which returns mini symbols.
697 This is used when the backend does not provide a more efficient
698 version. It just uses BFD asymbol structures as mini symbols. */
699
700 long
701 _bfd_generic_read_minisymbols (abfd, dynamic, minisymsp, sizep)
702 bfd *abfd;
703 boolean dynamic;
704 PTR *minisymsp;
705 unsigned int *sizep;
706 {
707 long storage;
708 asymbol **syms = NULL;
709 long symcount;
710
711 if (dynamic)
712 storage = bfd_get_dynamic_symtab_upper_bound (abfd);
713 else
714 storage = bfd_get_symtab_upper_bound (abfd);
715 if (storage < 0)
716 goto error_return;
717
718 syms = (asymbol **) bfd_malloc ((size_t) storage);
719 if (syms == NULL)
720 goto error_return;
721
722 if (dynamic)
723 symcount = bfd_canonicalize_dynamic_symtab (abfd, syms);
724 else
725 symcount = bfd_canonicalize_symtab (abfd, syms);
726 if (symcount < 0)
727 goto error_return;
728
729 *minisymsp = (PTR) syms;
730 *sizep = sizeof (asymbol *);
731 return symcount;
732
733 error_return:
734 if (syms != NULL)
735 free (syms);
736 return -1;
737 }
738
739 /* The generic version of the function which converts a minisymbol to
740 an asymbol. We don't worry about the sym argument we are passed;
741 we just return the asymbol the minisymbol points to. */
742
743 /*ARGSUSED*/
744 asymbol *
745 _bfd_generic_minisymbol_to_symbol (abfd, dynamic, minisym, sym)
746 bfd *abfd ATTRIBUTE_UNUSED;
747 boolean dynamic ATTRIBUTE_UNUSED;
748 const PTR minisym;
749 asymbol *sym ATTRIBUTE_UNUSED;
750 {
751 return *(asymbol **) minisym;
752 }
753
754 /* Look through stabs debugging information in .stab and .stabstr
755 sections to find the source file and line closest to a desired
756 location. This is used by COFF and ELF targets. It sets *pfound
757 to true if it finds some information. The *pinfo field is used to
758 pass cached information in and out of this routine; this first time
759 the routine is called for a BFD, *pinfo should be NULL. The value
760 placed in *pinfo should be saved with the BFD, and passed back each
761 time this function is called. */
762
763 /* We use a cache by default. */
764
765 #define ENABLE_CACHING
766
767 /* We keep an array of indexentry structures to record where in the
768 stabs section we should look to find line number information for a
769 particular address. */
770
771 struct indexentry
772 {
773 bfd_vma val;
774 bfd_byte *stab;
775 bfd_byte *str;
776 char *directory_name;
777 char *file_name;
778 char *function_name;
779 };
780
781 /* Compare two indexentry structures. This is called via qsort. */
782
783 static int
784 cmpindexentry (a, b)
785 const PTR a;
786 const PTR b;
787 {
788 const struct indexentry *contestantA = (const struct indexentry *) a;
789 const struct indexentry *contestantB = (const struct indexentry *) b;
790
791 if (contestantA->val < contestantB->val)
792 return -1;
793 else if (contestantA->val > contestantB->val)
794 return 1;
795 else
796 return 0;
797 }
798
799 /* A pointer to this structure is stored in *pinfo. */
800
801 struct stab_find_info
802 {
803 /* The .stab section. */
804 asection *stabsec;
805 /* The .stabstr section. */
806 asection *strsec;
807 /* The contents of the .stab section. */
808 bfd_byte *stabs;
809 /* The contents of the .stabstr section. */
810 bfd_byte *strs;
811
812 /* A table that indexes stabs by memory address. */
813 struct indexentry *indextable;
814 /* The number of entries in indextable. */
815 int indextablesize;
816
817 #ifdef ENABLE_CACHING
818 /* Cached values to restart quickly. */
819 struct indexentry *cached_indexentry;
820 bfd_vma cached_offset;
821 bfd_byte *cached_stab;
822 char *cached_file_name;
823 #endif
824
825 /* Saved ptr to malloc'ed filename. */
826 char *filename;
827 };
828
829 boolean
830 _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset, pfound,
831 pfilename, pfnname, pline, pinfo)
832 bfd *abfd;
833 asymbol **symbols;
834 asection *section;
835 bfd_vma offset;
836 boolean *pfound;
837 const char **pfilename;
838 const char **pfnname;
839 unsigned int *pline;
840 PTR *pinfo;
841 {
842 struct stab_find_info *info;
843 bfd_size_type stabsize, strsize;
844 bfd_byte *stab, *str;
845 bfd_byte *last_stab = NULL;
846 bfd_size_type stroff;
847 struct indexentry *indexentry;
848 char *directory_name, *file_name;
849 int saw_fun;
850
851 *pfound = false;
852 *pfilename = bfd_get_filename (abfd);
853 *pfnname = NULL;
854 *pline = 0;
855
856 /* Stabs entries use a 12 byte format:
857 4 byte string table index
858 1 byte stab type
859 1 byte stab other field
860 2 byte stab desc field
861 4 byte stab value
862 FIXME: This will have to change for a 64 bit object format.
863
864 The stabs symbols are divided into compilation units. For the
865 first entry in each unit, the type of 0, the value is the length
866 of the string table for this unit, and the desc field is the
867 number of stabs symbols for this unit. */
868
869 #define STRDXOFF (0)
870 #define TYPEOFF (4)
871 #define OTHEROFF (5)
872 #define DESCOFF (6)
873 #define VALOFF (8)
874 #define STABSIZE (12)
875
876 info = (struct stab_find_info *) *pinfo;
877 if (info != NULL)
878 {
879 if (info->stabsec == NULL || info->strsec == NULL)
880 {
881 /* No stabs debugging information. */
882 return true;
883 }
884
885 stabsize = info->stabsec->_raw_size;
886 strsize = info->strsec->_raw_size;
887 }
888 else
889 {
890 long reloc_size, reloc_count;
891 arelent **reloc_vector;
892 int i;
893 char *name;
894 char *file_name;
895 char *directory_name;
896 char *function_name;
897
898 info = (struct stab_find_info *) bfd_zalloc (abfd, sizeof *info);
899 if (info == NULL)
900 return false;
901
902 /* FIXME: When using the linker --split-by-file or
903 --split-by-reloc options, it is possible for the .stab and
904 .stabstr sections to be split. We should handle that. */
905
906 info->stabsec = bfd_get_section_by_name (abfd, ".stab");
907 info->strsec = bfd_get_section_by_name (abfd, ".stabstr");
908
909 if (info->stabsec == NULL || info->strsec == NULL)
910 {
911 /* No stabs debugging information. Set *pinfo so that we
912 can return quickly in the info != NULL case above. */
913 *pinfo = (PTR) info;
914 return true;
915 }
916
917 stabsize = info->stabsec->_raw_size;
918 strsize = info->strsec->_raw_size;
919
920 info->stabs = (bfd_byte *) bfd_alloc (abfd, stabsize);
921 info->strs = (bfd_byte *) bfd_alloc (abfd, strsize);
922 if (info->stabs == NULL || info->strs == NULL)
923 return false;
924
925 if (! bfd_get_section_contents (abfd, info->stabsec, info->stabs, 0,
926 stabsize)
927 || ! bfd_get_section_contents (abfd, info->strsec, info->strs, 0,
928 strsize))
929 return false;
930
931 /* If this is a relocateable object file, we have to relocate
932 the entries in .stab. This should always be simple 32 bit
933 relocations against symbols defined in this object file, so
934 this should be no big deal. */
935 reloc_size = bfd_get_reloc_upper_bound (abfd, info->stabsec);
936 if (reloc_size < 0)
937 return false;
938 reloc_vector = (arelent **) bfd_malloc (reloc_size);
939 if (reloc_vector == NULL && reloc_size != 0)
940 return false;
941 reloc_count = bfd_canonicalize_reloc (abfd, info->stabsec, reloc_vector,
942 symbols);
943 if (reloc_count < 0)
944 {
945 if (reloc_vector != NULL)
946 free (reloc_vector);
947 return false;
948 }
949 if (reloc_count > 0)
950 {
951 arelent **pr;
952
953 for (pr = reloc_vector; *pr != NULL; pr++)
954 {
955 arelent *r;
956 unsigned long val;
957 asymbol *sym;
958
959 r = *pr;
960 if (r->howto->rightshift != 0
961 || r->howto->size != 2
962 || r->howto->bitsize != 32
963 || r->howto->pc_relative
964 || r->howto->bitpos != 0
965 || r->howto->dst_mask != 0xffffffff)
966 {
967 (*_bfd_error_handler)
968 (_("Unsupported .stab relocation"));
969 bfd_set_error (bfd_error_invalid_operation);
970 if (reloc_vector != NULL)
971 free (reloc_vector);
972 return false;
973 }
974
975 val = bfd_get_32 (abfd, info->stabs + r->address);
976 val &= r->howto->src_mask;
977 sym = *r->sym_ptr_ptr;
978 val += sym->value + sym->section->vma + r->addend;
979 bfd_put_32 (abfd, val, info->stabs + r->address);
980 }
981 }
982
983 if (reloc_vector != NULL)
984 free (reloc_vector);
985
986 /* First time through this function, build a table matching
987 function VM addresses to stabs, then sort based on starting
988 VM address. Do this in two passes: once to count how many
989 table entries we'll need, and a second to actually build the
990 table. */
991
992 info->indextablesize = 0;
993 saw_fun = 1;
994 for (stab = info->stabs; stab < info->stabs + stabsize; stab += STABSIZE)
995 {
996 if (stab[TYPEOFF] == N_SO)
997 {
998 /* N_SO with null name indicates EOF */
999 if (bfd_get_32 (abfd, stab + STRDXOFF) == 0)
1000 continue;
1001
1002 /* if we did not see a function def, leave space for one. */
1003 if (saw_fun == 0)
1004 ++info->indextablesize;
1005
1006 saw_fun = 0;
1007
1008 /* two N_SO's in a row is a filename and directory. Skip */
1009 if (stab + STABSIZE < info->stabs + stabsize
1010 && *(stab + STABSIZE + TYPEOFF) == N_SO)
1011 {
1012 stab += STABSIZE;
1013 }
1014 }
1015 else if (stab[TYPEOFF] == N_FUN)
1016 {
1017 saw_fun = 1;
1018 ++info->indextablesize;
1019 }
1020 }
1021
1022 if (saw_fun == 0)
1023 ++info->indextablesize;
1024
1025 if (info->indextablesize == 0)
1026 return true;
1027 ++info->indextablesize;
1028
1029 info->indextable = ((struct indexentry *)
1030 bfd_alloc (abfd,
1031 (sizeof (struct indexentry)
1032 * info->indextablesize)));
1033 if (info->indextable == NULL)
1034 return false;
1035
1036 file_name = NULL;
1037 directory_name = NULL;
1038 saw_fun = 1;
1039
1040 for (i = 0, stroff = 0, stab = info->stabs, str = info->strs;
1041 i < info->indextablesize && stab < info->stabs + stabsize;
1042 stab += STABSIZE)
1043 {
1044 switch (stab[TYPEOFF])
1045 {
1046 case 0:
1047 /* This is the first entry in a compilation unit. */
1048 if ((bfd_size_type) ((info->strs + strsize) - str) < stroff)
1049 break;
1050 str += stroff;
1051 stroff = bfd_get_32 (abfd, stab + VALOFF);
1052 break;
1053
1054 case N_SO:
1055 /* The main file name. */
1056
1057 /* The following code creates a new indextable entry with
1058 a NULL function name if there were no N_FUNs in a file.
1059 Note that a N_SO without a file name is an EOF and
1060 there could be 2 N_SO following it with the new filename
1061 and directory. */
1062 if (saw_fun == 0)
1063 {
1064 info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF);
1065 info->indextable[i].stab = last_stab;
1066 info->indextable[i].str = str;
1067 info->indextable[i].directory_name = directory_name;
1068 info->indextable[i].file_name = file_name;
1069 info->indextable[i].function_name = NULL;
1070 ++i;
1071 }
1072 saw_fun = 0;
1073
1074 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1075 if (*file_name == '\0')
1076 {
1077 directory_name = NULL;
1078 file_name = NULL;
1079 saw_fun = 1;
1080 }
1081 else
1082 {
1083 last_stab = stab;
1084 if (stab + STABSIZE >= info->stabs + stabsize
1085 || *(stab + STABSIZE + TYPEOFF) != N_SO)
1086 {
1087 directory_name = NULL;
1088 }
1089 else
1090 {
1091 /* Two consecutive N_SOs are a directory and a
1092 file name. */
1093 stab += STABSIZE;
1094 directory_name = file_name;
1095 file_name = ((char *) str
1096 + bfd_get_32 (abfd, stab + STRDXOFF));
1097 }
1098 }
1099 break;
1100
1101 case N_SOL:
1102 /* The name of an include file. */
1103 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1104 break;
1105
1106 case N_FUN:
1107 /* A function name. */
1108 saw_fun = 1;
1109 name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1110
1111 if (*name == '\0')
1112 name = NULL;
1113
1114 function_name = name;
1115
1116 if (name == NULL)
1117 continue;
1118
1119 info->indextable[i].val = bfd_get_32 (abfd, stab + VALOFF);
1120 info->indextable[i].stab = stab;
1121 info->indextable[i].str = str;
1122 info->indextable[i].directory_name = directory_name;
1123 info->indextable[i].file_name = file_name;
1124 info->indextable[i].function_name = function_name;
1125 ++i;
1126 break;
1127 }
1128 }
1129
1130 if (saw_fun == 0)
1131 {
1132 info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF);
1133 info->indextable[i].stab = last_stab;
1134 info->indextable[i].str = str;
1135 info->indextable[i].directory_name = directory_name;
1136 info->indextable[i].file_name = file_name;
1137 info->indextable[i].function_name = NULL;
1138 ++i;
1139 }
1140
1141 info->indextable[i].val = (bfd_vma) -1;
1142 info->indextable[i].stab = info->stabs + stabsize;
1143 info->indextable[i].str = str;
1144 info->indextable[i].directory_name = NULL;
1145 info->indextable[i].file_name = NULL;
1146 info->indextable[i].function_name = NULL;
1147 ++i;
1148
1149 info->indextablesize = i;
1150 qsort (info->indextable, i, sizeof (struct indexentry), cmpindexentry);
1151
1152 *pinfo = (PTR) info;
1153 }
1154
1155 /* We are passed a section relative offset. The offsets in the
1156 stabs information are absolute. */
1157 offset += bfd_get_section_vma (abfd, section);
1158
1159 #ifdef ENABLE_CACHING
1160 if (info->cached_indexentry != NULL
1161 && offset >= info->cached_offset
1162 && offset < (info->cached_indexentry + 1)->val)
1163 {
1164 stab = info->cached_stab;
1165 indexentry = info->cached_indexentry;
1166 file_name = info->cached_file_name;
1167 }
1168 else
1169 #endif
1170 {
1171 /* Cache non-existant or invalid. Do binary search on
1172 indextable. */
1173
1174 long low, high;
1175 long mid = -1;
1176
1177 indexentry = NULL;
1178
1179 low = 0;
1180 high = info->indextablesize - 1;
1181 while (low != high)
1182 {
1183 mid = (high + low) / 2;
1184 if (offset >= info->indextable[mid].val
1185 && offset < info->indextable[mid + 1].val)
1186 {
1187 indexentry = &info->indextable[mid];
1188 break;
1189 }
1190
1191 if (info->indextable[mid].val > offset)
1192 high = mid;
1193 else
1194 low = mid + 1;
1195 }
1196
1197 if (indexentry == NULL)
1198 return true;
1199
1200 stab = indexentry->stab + STABSIZE;
1201 file_name = indexentry->file_name;
1202 }
1203
1204 directory_name = indexentry->directory_name;
1205 str = indexentry->str;
1206
1207 for (; stab < (indexentry+1)->stab; stab += STABSIZE)
1208 {
1209 boolean done;
1210 bfd_vma val;
1211
1212 done = false;
1213
1214 switch (stab[TYPEOFF])
1215 {
1216 case N_SOL:
1217 /* The name of an include file. */
1218 val = bfd_get_32 (abfd, stab + VALOFF);
1219 if (val <= offset)
1220 {
1221 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1222 *pline = 0;
1223 }
1224 break;
1225
1226 case N_SLINE:
1227 case N_DSLINE:
1228 case N_BSLINE:
1229 /* A line number. The value is relative to the start of the
1230 current function. */
1231 val = indexentry->val + bfd_get_32 (abfd, stab + VALOFF);
1232 if (val <= offset)
1233 {
1234 *pline = bfd_get_16 (abfd, stab + DESCOFF);
1235
1236 #ifdef ENABLE_CACHING
1237 info->cached_stab = stab;
1238 info->cached_offset = val;
1239 info->cached_file_name = file_name;
1240 info->cached_indexentry = indexentry;
1241 #endif
1242 }
1243 if (val > offset)
1244 done = true;
1245 break;
1246
1247 case N_FUN:
1248 case N_SO:
1249 done = true;
1250 break;
1251 }
1252
1253 if (done)
1254 break;
1255 }
1256
1257 *pfound = true;
1258
1259 if (IS_ABSOLUTE_PATH(file_name) || directory_name == NULL)
1260 *pfilename = file_name;
1261 else
1262 {
1263 size_t dirlen;
1264
1265 dirlen = strlen (directory_name);
1266 if (info->filename == NULL
1267 || strncmp (info->filename, directory_name, dirlen) != 0
1268 || strcmp (info->filename + dirlen, file_name) != 0)
1269 {
1270 if (info->filename != NULL)
1271 free (info->filename);
1272 info->filename = (char *) bfd_malloc (dirlen +
1273 strlen (file_name)
1274 + 1);
1275 if (info->filename == NULL)
1276 return false;
1277 strcpy (info->filename, directory_name);
1278 strcpy (info->filename + dirlen, file_name);
1279 }
1280
1281 *pfilename = info->filename;
1282 }
1283
1284 if (indexentry->function_name != NULL)
1285 {
1286 char *s;
1287
1288 /* This will typically be something like main:F(0,1), so we want
1289 to clobber the colon. It's OK to change the name, since the
1290 string is in our own local storage anyhow. */
1291
1292 s = strchr (indexentry->function_name, ':');
1293 if (s != NULL)
1294 *s = '\0';
1295
1296 *pfnname = indexentry->function_name;
1297 }
1298
1299 return true;
1300 }
This page took 0.072247 seconds and 5 git commands to generate.