* syms.c (bfd_is_local_label): Return false for file symbols.
[deliverable/binutils-gdb.git] / bfd / syms.c
1 /* Generic symbol-table support for the BFD library.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004
4 Free Software Foundation, Inc.
5 Written by Cygnus Support.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
22
23 /*
24 SECTION
25 Symbols
26
27 BFD tries to maintain as much symbol information as it can when
28 it moves information from file to file. BFD passes information
29 to applications though the <<asymbol>> structure. When the
30 application requests the symbol table, BFD reads the table in
31 the native form and translates parts of it into the internal
32 format. To maintain more than the information passed to
33 applications, some targets keep some information ``behind the
34 scenes'' in a structure only the particular back end knows
35 about. For example, the coff back end keeps the original
36 symbol table structure as well as the canonical structure when
37 a BFD is read in. On output, the coff back end can reconstruct
38 the output symbol table so that no information is lost, even
39 information unique to coff which BFD doesn't know or
40 understand. If a coff symbol table were read, but were written
41 through an a.out back end, all the coff specific information
42 would be lost. The symbol table of a BFD
43 is not necessarily read in until a canonicalize request is
44 made. Then the BFD back end fills in a table provided by the
45 application with pointers to the canonical information. To
46 output symbols, the application provides BFD with a table of
47 pointers to pointers to <<asymbol>>s. This allows applications
48 like the linker to output a symbol as it was read, since the ``behind
49 the scenes'' information will be still available.
50 @menu
51 @* Reading Symbols::
52 @* Writing Symbols::
53 @* Mini Symbols::
54 @* typedef asymbol::
55 @* symbol handling functions::
56 @end menu
57
58 INODE
59 Reading Symbols, Writing Symbols, Symbols, Symbols
60 SUBSECTION
61 Reading symbols
62
63 There are two stages to reading a symbol table from a BFD:
64 allocating storage, and the actual reading process. This is an
65 excerpt from an application which reads the symbol table:
66
67 | long storage_needed;
68 | asymbol **symbol_table;
69 | long number_of_symbols;
70 | long i;
71 |
72 | storage_needed = bfd_get_symtab_upper_bound (abfd);
73 |
74 | if (storage_needed < 0)
75 | FAIL
76 |
77 | if (storage_needed == 0)
78 | return;
79 |
80 | symbol_table = xmalloc (storage_needed);
81 | ...
82 | number_of_symbols =
83 | bfd_canonicalize_symtab (abfd, symbol_table);
84 |
85 | if (number_of_symbols < 0)
86 | FAIL
87 |
88 | for (i = 0; i < number_of_symbols; i++)
89 | process_symbol (symbol_table[i]);
90
91 All storage for the symbols themselves is in an objalloc
92 connected to the BFD; it is freed when the BFD is closed.
93
94 INODE
95 Writing Symbols, Mini Symbols, Reading Symbols, Symbols
96 SUBSECTION
97 Writing symbols
98
99 Writing of a symbol table is automatic when a BFD open for
100 writing is closed. The application attaches a vector of
101 pointers to pointers to symbols to the BFD being written, and
102 fills in the symbol count. The close and cleanup code reads
103 through the table provided and performs all the necessary
104 operations. The BFD output code must always be provided with an
105 ``owned'' symbol: one which has come from another BFD, or one
106 which has been created using <<bfd_make_empty_symbol>>. Here is an
107 example showing the creation of a symbol table with only one element:
108
109 | #include "bfd.h"
110 | int main (void)
111 | {
112 | bfd *abfd;
113 | asymbol *ptrs[2];
114 | asymbol *new;
115 |
116 | abfd = bfd_openw ("foo","a.out-sunos-big");
117 | bfd_set_format (abfd, bfd_object);
118 | new = bfd_make_empty_symbol (abfd);
119 | new->name = "dummy_symbol";
120 | new->section = bfd_make_section_old_way (abfd, ".text");
121 | new->flags = BSF_GLOBAL;
122 | new->value = 0x12345;
123 |
124 | ptrs[0] = new;
125 | ptrs[1] = 0;
126 |
127 | bfd_set_symtab (abfd, ptrs, 1);
128 | bfd_close (abfd);
129 | return 0;
130 | }
131 |
132 | ./makesym
133 | nm foo
134 | 00012345 A dummy_symbol
135
136 Many formats cannot represent arbitrary symbol information; for
137 instance, the <<a.out>> object format does not allow an
138 arbitrary number of sections. A symbol pointing to a section
139 which is not one of <<.text>>, <<.data>> or <<.bss>> cannot
140 be described.
141
142 INODE
143 Mini Symbols, typedef asymbol, Writing Symbols, Symbols
144 SUBSECTION
145 Mini Symbols
146
147 Mini symbols provide read-only access to the symbol table.
148 They use less memory space, but require more time to access.
149 They can be useful for tools like nm or objdump, which may
150 have to handle symbol tables of extremely large executables.
151
152 The <<bfd_read_minisymbols>> function will read the symbols
153 into memory in an internal form. It will return a <<void *>>
154 pointer to a block of memory, a symbol count, and the size of
155 each symbol. The pointer is allocated using <<malloc>>, and
156 should be freed by the caller when it is no longer needed.
157
158 The function <<bfd_minisymbol_to_symbol>> will take a pointer
159 to a minisymbol, and a pointer to a structure returned by
160 <<bfd_make_empty_symbol>>, and return a <<asymbol>> structure.
161 The return value may or may not be the same as the value from
162 <<bfd_make_empty_symbol>> which was passed in.
163
164 */
165
166 /*
167 DOCDD
168 INODE
169 typedef asymbol, symbol handling functions, Mini Symbols, Symbols
170
171 */
172 /*
173 SUBSECTION
174 typedef asymbol
175
176 An <<asymbol>> has the form:
177
178 */
179
180 /*
181 CODE_FRAGMENT
182
183 .
184 .typedef struct bfd_symbol
185 .{
186 . {* A pointer to the BFD which owns the symbol. This information
187 . is necessary so that a back end can work out what additional
188 . information (invisible to the application writer) is carried
189 . with the symbol.
190 .
191 . This field is *almost* redundant, since you can use section->owner
192 . instead, except that some symbols point to the global sections
193 . bfd_{abs,com,und}_section. This could be fixed by making
194 . these globals be per-bfd (or per-target-flavor). FIXME. *}
195 . struct bfd *the_bfd; {* Use bfd_asymbol_bfd(sym) to access this field. *}
196 .
197 . {* The text of the symbol. The name is left alone, and not copied; the
198 . application may not alter it. *}
199 . const char *name;
200 .
201 . {* The value of the symbol. This really should be a union of a
202 . numeric value with a pointer, since some flags indicate that
203 . a pointer to another symbol is stored here. *}
204 . symvalue value;
205 .
206 . {* Attributes of a symbol. *}
207 .#define BSF_NO_FLAGS 0x00
208 .
209 . {* The symbol has local scope; <<static>> in <<C>>. The value
210 . is the offset into the section of the data. *}
211 .#define BSF_LOCAL 0x01
212 .
213 . {* The symbol has global scope; initialized data in <<C>>. The
214 . value is the offset into the section of the data. *}
215 .#define BSF_GLOBAL 0x02
216 .
217 . {* The symbol has global scope and is exported. The value is
218 . the offset into the section of the data. *}
219 .#define BSF_EXPORT BSF_GLOBAL {* No real difference. *}
220 .
221 . {* A normal C symbol would be one of:
222 . <<BSF_LOCAL>>, <<BSF_FORT_COMM>>, <<BSF_UNDEFINED>> or
223 . <<BSF_GLOBAL>>. *}
224 .
225 . {* The symbol is a debugging record. The value has an arbitrary
226 . meaning, unless BSF_DEBUGGING_RELOC is also set. *}
227 .#define BSF_DEBUGGING 0x08
228 .
229 . {* The symbol denotes a function entry point. Used in ELF,
230 . perhaps others someday. *}
231 .#define BSF_FUNCTION 0x10
232 .
233 . {* Used by the linker. *}
234 .#define BSF_KEEP 0x20
235 .#define BSF_KEEP_G 0x40
236 .
237 . {* A weak global symbol, overridable without warnings by
238 . a regular global symbol of the same name. *}
239 .#define BSF_WEAK 0x80
240 .
241 . {* This symbol was created to point to a section, e.g. ELF's
242 . STT_SECTION symbols. *}
243 .#define BSF_SECTION_SYM 0x100
244 .
245 . {* The symbol used to be a common symbol, but now it is
246 . allocated. *}
247 .#define BSF_OLD_COMMON 0x200
248 .
249 . {* The default value for common data. *}
250 .#define BFD_FORT_COMM_DEFAULT_VALUE 0
251 .
252 . {* In some files the type of a symbol sometimes alters its
253 . location in an output file - ie in coff a <<ISFCN>> symbol
254 . which is also <<C_EXT>> symbol appears where it was
255 . declared and not at the end of a section. This bit is set
256 . by the target BFD part to convey this information. *}
257 .#define BSF_NOT_AT_END 0x400
258 .
259 . {* Signal that the symbol is the label of constructor section. *}
260 .#define BSF_CONSTRUCTOR 0x800
261 .
262 . {* Signal that the symbol is a warning symbol. The name is a
263 . warning. The name of the next symbol is the one to warn about;
264 . if a reference is made to a symbol with the same name as the next
265 . symbol, a warning is issued by the linker. *}
266 .#define BSF_WARNING 0x1000
267 .
268 . {* Signal that the symbol is indirect. This symbol is an indirect
269 . pointer to the symbol with the same name as the next symbol. *}
270 .#define BSF_INDIRECT 0x2000
271 .
272 . {* BSF_FILE marks symbols that contain a file name. This is used
273 . for ELF STT_FILE symbols. *}
274 .#define BSF_FILE 0x4000
275 .
276 . {* Symbol is from dynamic linking information. *}
277 .#define BSF_DYNAMIC 0x8000
278 .
279 . {* The symbol denotes a data object. Used in ELF, and perhaps
280 . others someday. *}
281 .#define BSF_OBJECT 0x10000
282 .
283 . {* This symbol is a debugging symbol. The value is the offset
284 . into the section of the data. BSF_DEBUGGING should be set
285 . as well. *}
286 .#define BSF_DEBUGGING_RELOC 0x20000
287 .
288 . {* This symbol is thread local. Used in ELF. *}
289 .#define BSF_THREAD_LOCAL 0x40000
290 .
291 . flagword flags;
292 .
293 . {* A pointer to the section to which this symbol is
294 . relative. This will always be non NULL, there are special
295 . sections for undefined and absolute symbols. *}
296 . struct bfd_section *section;
297 .
298 . {* Back end special data. *}
299 . union
300 . {
301 . void *p;
302 . bfd_vma i;
303 . }
304 . udata;
305 .}
306 .asymbol;
307 .
308 */
309
310 #include "bfd.h"
311 #include "sysdep.h"
312 #include "libbfd.h"
313 #include "safe-ctype.h"
314 #include "bfdlink.h"
315 #include "aout/stab_gnu.h"
316
317 /*
318 DOCDD
319 INODE
320 symbol handling functions, , typedef asymbol, Symbols
321 SUBSECTION
322 Symbol handling functions
323 */
324
325 /*
326 FUNCTION
327 bfd_get_symtab_upper_bound
328
329 DESCRIPTION
330 Return the number of bytes required to store a vector of pointers
331 to <<asymbols>> for all the symbols in the BFD @var{abfd},
332 including a terminal NULL pointer. If there are no symbols in
333 the BFD, then return 0. If an error occurs, return -1.
334
335 .#define bfd_get_symtab_upper_bound(abfd) \
336 . BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))
337 .
338 */
339
340 /*
341 FUNCTION
342 bfd_is_local_label
343
344 SYNOPSIS
345 bfd_boolean bfd_is_local_label (bfd *abfd, asymbol *sym);
346
347 DESCRIPTION
348 Return TRUE if the given symbol @var{sym} in the BFD @var{abfd} is
349 a compiler generated local label, else return FALSE.
350 */
351
352 bfd_boolean
353 bfd_is_local_label (bfd *abfd, asymbol *sym)
354 {
355 /* The BSF_SECTION_SYM check is needed for IA-64, where every label that
356 starts with '.' is local. This would accidentally catch section names
357 if we didn't reject them here. */
358 if ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_FILE | BSF_SECTION_SYM)) != 0)
359 return FALSE;
360 if (sym->name == NULL)
361 return FALSE;
362 return bfd_is_local_label_name (abfd, sym->name);
363 }
364
365 /*
366 FUNCTION
367 bfd_is_local_label_name
368
369 SYNOPSIS
370 bfd_boolean bfd_is_local_label_name (bfd *abfd, const char *name);
371
372 DESCRIPTION
373 Return TRUE if a symbol with the name @var{name} in the BFD
374 @var{abfd} is a compiler generated local label, else return
375 FALSE. This just checks whether the name has the form of a
376 local label.
377
378 .#define bfd_is_local_label_name(abfd, name) \
379 . BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))
380 .
381 */
382
383 /*
384 FUNCTION
385 bfd_canonicalize_symtab
386
387 DESCRIPTION
388 Read the symbols from the BFD @var{abfd}, and fills in
389 the vector @var{location} with pointers to the symbols and
390 a trailing NULL.
391 Return the actual number of symbol pointers, not
392 including the NULL.
393
394 .#define bfd_canonicalize_symtab(abfd, location) \
395 . BFD_SEND (abfd, _bfd_canonicalize_symtab, (abfd, location))
396 .
397 */
398
399 /*
400 FUNCTION
401 bfd_set_symtab
402
403 SYNOPSIS
404 bfd_boolean bfd_set_symtab
405 (bfd *abfd, asymbol **location, unsigned int count);
406
407 DESCRIPTION
408 Arrange that when the output BFD @var{abfd} is closed,
409 the table @var{location} of @var{count} pointers to symbols
410 will be written.
411 */
412
413 bfd_boolean
414 bfd_set_symtab (bfd *abfd, asymbol **location, unsigned int symcount)
415 {
416 if (abfd->format != bfd_object || bfd_read_p (abfd))
417 {
418 bfd_set_error (bfd_error_invalid_operation);
419 return FALSE;
420 }
421
422 bfd_get_outsymbols (abfd) = location;
423 bfd_get_symcount (abfd) = symcount;
424 return TRUE;
425 }
426
427 /*
428 FUNCTION
429 bfd_print_symbol_vandf
430
431 SYNOPSIS
432 void bfd_print_symbol_vandf (bfd *abfd, void *file, asymbol *symbol);
433
434 DESCRIPTION
435 Print the value and flags of the @var{symbol} supplied to the
436 stream @var{file}.
437 */
438 void
439 bfd_print_symbol_vandf (bfd *abfd, void *arg, asymbol *symbol)
440 {
441 FILE *file = arg;
442
443 flagword type = symbol->flags;
444
445 if (symbol->section != NULL)
446 bfd_fprintf_vma (abfd, file, symbol->value + symbol->section->vma);
447 else
448 bfd_fprintf_vma (abfd, file, symbol->value);
449
450 /* This presumes that a symbol can not be both BSF_DEBUGGING and
451 BSF_DYNAMIC, nor more than one of BSF_FUNCTION, BSF_FILE, and
452 BSF_OBJECT. */
453 fprintf (file, " %c%c%c%c%c%c%c",
454 ((type & BSF_LOCAL)
455 ? (type & BSF_GLOBAL) ? '!' : 'l'
456 : (type & BSF_GLOBAL) ? 'g' : ' '),
457 (type & BSF_WEAK) ? 'w' : ' ',
458 (type & BSF_CONSTRUCTOR) ? 'C' : ' ',
459 (type & BSF_WARNING) ? 'W' : ' ',
460 (type & BSF_INDIRECT) ? 'I' : ' ',
461 (type & BSF_DEBUGGING) ? 'd' : (type & BSF_DYNAMIC) ? 'D' : ' ',
462 ((type & BSF_FUNCTION)
463 ? 'F'
464 : ((type & BSF_FILE)
465 ? 'f'
466 : ((type & BSF_OBJECT) ? 'O' : ' '))));
467 }
468
469 /*
470 FUNCTION
471 bfd_make_empty_symbol
472
473 DESCRIPTION
474 Create a new <<asymbol>> structure for the BFD @var{abfd}
475 and return a pointer to it.
476
477 This routine is necessary because each back end has private
478 information surrounding the <<asymbol>>. Building your own
479 <<asymbol>> and pointing to it will not create the private
480 information, and will cause problems later on.
481
482 .#define bfd_make_empty_symbol(abfd) \
483 . BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
484 .
485 */
486
487 /*
488 FUNCTION
489 _bfd_generic_make_empty_symbol
490
491 SYNOPSIS
492 asymbol *_bfd_generic_make_empty_symbol (bfd *);
493
494 DESCRIPTION
495 Create a new <<asymbol>> structure for the BFD @var{abfd}
496 and return a pointer to it. Used by core file routines,
497 binary back-end and anywhere else where no private info
498 is needed.
499 */
500
501 asymbol *
502 _bfd_generic_make_empty_symbol (bfd *abfd)
503 {
504 bfd_size_type amt = sizeof (asymbol);
505 asymbol *new = bfd_zalloc (abfd, amt);
506 if (new)
507 new->the_bfd = abfd;
508 return new;
509 }
510
511 /*
512 FUNCTION
513 bfd_make_debug_symbol
514
515 DESCRIPTION
516 Create a new <<asymbol>> structure for the BFD @var{abfd},
517 to be used as a debugging symbol. Further details of its use have
518 yet to be worked out.
519
520 .#define bfd_make_debug_symbol(abfd,ptr,size) \
521 . BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))
522 .
523 */
524
525 struct section_to_type
526 {
527 const char *section;
528 char type;
529 };
530
531 /* Map section names to POSIX/BSD single-character symbol types.
532 This table is probably incomplete. It is sorted for convenience of
533 adding entries. Since it is so short, a linear search is used. */
534 static const struct section_to_type stt[] =
535 {
536 {".bss", 'b'},
537 {"code", 't'}, /* MRI .text */
538 {".data", 'd'},
539 {"*DEBUG*", 'N'},
540 {".debug", 'N'}, /* MSVC's .debug (non-standard debug syms) */
541 {".drectve", 'i'}, /* MSVC's .drective section */
542 {".edata", 'e'}, /* MSVC's .edata (export) section */
543 {".fini", 't'}, /* ELF fini section */
544 {".idata", 'i'}, /* MSVC's .idata (import) section */
545 {".init", 't'}, /* ELF init section */
546 {".pdata", 'p'}, /* MSVC's .pdata (stack unwind) section */
547 {".rdata", 'r'}, /* Read only data. */
548 {".rodata", 'r'}, /* Read only data. */
549 {".sbss", 's'}, /* Small BSS (uninitialized data). */
550 {".scommon", 'c'}, /* Small common. */
551 {".sdata", 'g'}, /* Small initialized data. */
552 {".text", 't'},
553 {"vars", 'd'}, /* MRI .data */
554 {"zerovars", 'b'}, /* MRI .bss */
555 {0, 0}
556 };
557
558 /* Return the single-character symbol type corresponding to
559 section S, or '?' for an unknown COFF section.
560
561 Check for any leading string which matches, so .text5 returns
562 't' as well as .text */
563
564 static char
565 coff_section_type (const char *s)
566 {
567 const struct section_to_type *t;
568
569 for (t = &stt[0]; t->section; t++)
570 if (!strncmp (s, t->section, strlen (t->section)))
571 return t->type;
572
573 return '?';
574 }
575
576 /* Return the single-character symbol type corresponding to section
577 SECTION, or '?' for an unknown section. This uses section flags to
578 identify sections.
579
580 FIXME These types are unhandled: c, i, e, p. If we handled these also,
581 we could perhaps obsolete coff_section_type. */
582
583 static char
584 decode_section_type (const struct bfd_section *section)
585 {
586 if (section->flags & SEC_CODE)
587 return 't';
588 if (section->flags & SEC_DATA)
589 {
590 if (section->flags & SEC_READONLY)
591 return 'r';
592 else if (section->flags & SEC_SMALL_DATA)
593 return 'g';
594 else
595 return 'd';
596 }
597 if ((section->flags & SEC_HAS_CONTENTS) == 0)
598 {
599 if (section->flags & SEC_SMALL_DATA)
600 return 's';
601 else
602 return 'b';
603 }
604 if (section->flags & SEC_DEBUGGING)
605 return 'N';
606 if ((section->flags & SEC_HAS_CONTENTS) && (section->flags & SEC_READONLY))
607 return 'n';
608
609 return '?';
610 }
611
612 /*
613 FUNCTION
614 bfd_decode_symclass
615
616 DESCRIPTION
617 Return a character corresponding to the symbol
618 class of @var{symbol}, or '?' for an unknown class.
619
620 SYNOPSIS
621 int bfd_decode_symclass (asymbol *symbol);
622 */
623 int
624 bfd_decode_symclass (asymbol *symbol)
625 {
626 char c;
627
628 if (bfd_is_com_section (symbol->section))
629 return 'C';
630 if (bfd_is_und_section (symbol->section))
631 {
632 if (symbol->flags & BSF_WEAK)
633 {
634 /* If weak, determine if it's specifically an object
635 or non-object weak. */
636 if (symbol->flags & BSF_OBJECT)
637 return 'v';
638 else
639 return 'w';
640 }
641 else
642 return 'U';
643 }
644 if (bfd_is_ind_section (symbol->section))
645 return 'I';
646 if (symbol->flags & BSF_WEAK)
647 {
648 /* If weak, determine if it's specifically an object
649 or non-object weak. */
650 if (symbol->flags & BSF_OBJECT)
651 return 'V';
652 else
653 return 'W';
654 }
655 if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL)))
656 return '?';
657
658 if (bfd_is_abs_section (symbol->section))
659 c = 'a';
660 else if (symbol->section)
661 {
662 c = coff_section_type (symbol->section->name);
663 if (c == '?')
664 c = decode_section_type (symbol->section);
665 }
666 else
667 return '?';
668 if (symbol->flags & BSF_GLOBAL)
669 c = TOUPPER (c);
670 return c;
671
672 /* We don't have to handle these cases just yet, but we will soon:
673 N_SETV: 'v';
674 N_SETA: 'l';
675 N_SETT: 'x';
676 N_SETD: 'z';
677 N_SETB: 's';
678 N_INDR: 'i';
679 */
680 }
681
682 /*
683 FUNCTION
684 bfd_is_undefined_symclass
685
686 DESCRIPTION
687 Returns non-zero if the class symbol returned by
688 bfd_decode_symclass represents an undefined symbol.
689 Returns zero otherwise.
690
691 SYNOPSIS
692 bfd_boolean bfd_is_undefined_symclass (int symclass);
693 */
694
695 bfd_boolean
696 bfd_is_undefined_symclass (int symclass)
697 {
698 return symclass == 'U' || symclass == 'w' || symclass == 'v';
699 }
700
701 /*
702 FUNCTION
703 bfd_symbol_info
704
705 DESCRIPTION
706 Fill in the basic info about symbol that nm needs.
707 Additional info may be added by the back-ends after
708 calling this function.
709
710 SYNOPSIS
711 void bfd_symbol_info (asymbol *symbol, symbol_info *ret);
712 */
713
714 void
715 bfd_symbol_info (asymbol *symbol, symbol_info *ret)
716 {
717 ret->type = bfd_decode_symclass (symbol);
718
719 if (bfd_is_undefined_symclass (ret->type))
720 ret->value = 0;
721 else
722 ret->value = symbol->value + symbol->section->vma;
723
724 ret->name = symbol->name;
725 }
726
727 /*
728 FUNCTION
729 bfd_copy_private_symbol_data
730
731 SYNOPSIS
732 bfd_boolean bfd_copy_private_symbol_data
733 (bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
734
735 DESCRIPTION
736 Copy private symbol information from @var{isym} in the BFD
737 @var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}.
738 Return <<TRUE>> on success, <<FALSE>> on error. Possible error
739 returns are:
740
741 o <<bfd_error_no_memory>> -
742 Not enough memory exists to create private data for @var{osec}.
743
744 .#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
745 . BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
746 . (ibfd, isymbol, obfd, osymbol))
747 .
748 */
749
750 /* The generic version of the function which returns mini symbols.
751 This is used when the backend does not provide a more efficient
752 version. It just uses BFD asymbol structures as mini symbols. */
753
754 long
755 _bfd_generic_read_minisymbols (bfd *abfd,
756 bfd_boolean dynamic,
757 void **minisymsp,
758 unsigned int *sizep)
759 {
760 long storage;
761 asymbol **syms = NULL;
762 long symcount;
763
764 if (dynamic)
765 storage = bfd_get_dynamic_symtab_upper_bound (abfd);
766 else
767 storage = bfd_get_symtab_upper_bound (abfd);
768 if (storage < 0)
769 goto error_return;
770 if (storage == 0)
771 return 0;
772
773 syms = bfd_malloc (storage);
774 if (syms == NULL)
775 goto error_return;
776
777 if (dynamic)
778 symcount = bfd_canonicalize_dynamic_symtab (abfd, syms);
779 else
780 symcount = bfd_canonicalize_symtab (abfd, syms);
781 if (symcount < 0)
782 goto error_return;
783
784 *minisymsp = syms;
785 *sizep = sizeof (asymbol *);
786 return symcount;
787
788 error_return:
789 bfd_set_error (bfd_error_no_symbols);
790 if (syms != NULL)
791 free (syms);
792 return -1;
793 }
794
795 /* The generic version of the function which converts a minisymbol to
796 an asymbol. We don't worry about the sym argument we are passed;
797 we just return the asymbol the minisymbol points to. */
798
799 asymbol *
800 _bfd_generic_minisymbol_to_symbol (bfd *abfd ATTRIBUTE_UNUSED,
801 bfd_boolean dynamic ATTRIBUTE_UNUSED,
802 const void *minisym,
803 asymbol *sym ATTRIBUTE_UNUSED)
804 {
805 return *(asymbol **) minisym;
806 }
807
808 /* Look through stabs debugging information in .stab and .stabstr
809 sections to find the source file and line closest to a desired
810 location. This is used by COFF and ELF targets. It sets *pfound
811 to TRUE if it finds some information. The *pinfo field is used to
812 pass cached information in and out of this routine; this first time
813 the routine is called for a BFD, *pinfo should be NULL. The value
814 placed in *pinfo should be saved with the BFD, and passed back each
815 time this function is called. */
816
817 /* We use a cache by default. */
818
819 #define ENABLE_CACHING
820
821 /* We keep an array of indexentry structures to record where in the
822 stabs section we should look to find line number information for a
823 particular address. */
824
825 struct indexentry
826 {
827 bfd_vma val;
828 bfd_byte *stab;
829 bfd_byte *str;
830 char *directory_name;
831 char *file_name;
832 char *function_name;
833 };
834
835 /* Compare two indexentry structures. This is called via qsort. */
836
837 static int
838 cmpindexentry (const void *a, const void *b)
839 {
840 const struct indexentry *contestantA = a;
841 const struct indexentry *contestantB = b;
842
843 if (contestantA->val < contestantB->val)
844 return -1;
845 else if (contestantA->val > contestantB->val)
846 return 1;
847 else
848 return 0;
849 }
850
851 /* A pointer to this structure is stored in *pinfo. */
852
853 struct stab_find_info
854 {
855 /* The .stab section. */
856 asection *stabsec;
857 /* The .stabstr section. */
858 asection *strsec;
859 /* The contents of the .stab section. */
860 bfd_byte *stabs;
861 /* The contents of the .stabstr section. */
862 bfd_byte *strs;
863
864 /* A table that indexes stabs by memory address. */
865 struct indexentry *indextable;
866 /* The number of entries in indextable. */
867 int indextablesize;
868
869 #ifdef ENABLE_CACHING
870 /* Cached values to restart quickly. */
871 struct indexentry *cached_indexentry;
872 bfd_vma cached_offset;
873 bfd_byte *cached_stab;
874 char *cached_file_name;
875 #endif
876
877 /* Saved ptr to malloc'ed filename. */
878 char *filename;
879 };
880
881 bfd_boolean
882 _bfd_stab_section_find_nearest_line (bfd *abfd,
883 asymbol **symbols,
884 asection *section,
885 bfd_vma offset,
886 bfd_boolean *pfound,
887 const char **pfilename,
888 const char **pfnname,
889 unsigned int *pline,
890 void **pinfo)
891 {
892 struct stab_find_info *info;
893 bfd_size_type stabsize, strsize;
894 bfd_byte *stab, *str;
895 bfd_byte *last_stab = NULL;
896 bfd_size_type stroff;
897 struct indexentry *indexentry;
898 char *file_name;
899 char *directory_name;
900 int saw_fun;
901 bfd_boolean saw_line, saw_func;
902
903 *pfound = FALSE;
904 *pfilename = bfd_get_filename (abfd);
905 *pfnname = NULL;
906 *pline = 0;
907
908 /* Stabs entries use a 12 byte format:
909 4 byte string table index
910 1 byte stab type
911 1 byte stab other field
912 2 byte stab desc field
913 4 byte stab value
914 FIXME: This will have to change for a 64 bit object format.
915
916 The stabs symbols are divided into compilation units. For the
917 first entry in each unit, the type of 0, the value is the length
918 of the string table for this unit, and the desc field is the
919 number of stabs symbols for this unit. */
920
921 #define STRDXOFF (0)
922 #define TYPEOFF (4)
923 #define OTHEROFF (5)
924 #define DESCOFF (6)
925 #define VALOFF (8)
926 #define STABSIZE (12)
927
928 info = *pinfo;
929 if (info != NULL)
930 {
931 if (info->stabsec == NULL || info->strsec == NULL)
932 {
933 /* No stabs debugging information. */
934 return TRUE;
935 }
936
937 stabsize = (info->stabsec->rawsize
938 ? info->stabsec->rawsize
939 : info->stabsec->size);
940 strsize = (info->strsec->rawsize
941 ? info->strsec->rawsize
942 : info->strsec->size);
943 }
944 else
945 {
946 long reloc_size, reloc_count;
947 arelent **reloc_vector;
948 int i;
949 char *name;
950 char *function_name;
951 bfd_size_type amt = sizeof *info;
952
953 info = bfd_zalloc (abfd, amt);
954 if (info == NULL)
955 return FALSE;
956
957 /* FIXME: When using the linker --split-by-file or
958 --split-by-reloc options, it is possible for the .stab and
959 .stabstr sections to be split. We should handle that. */
960
961 info->stabsec = bfd_get_section_by_name (abfd, ".stab");
962 info->strsec = bfd_get_section_by_name (abfd, ".stabstr");
963
964 if (info->stabsec == NULL || info->strsec == NULL)
965 {
966 /* No stabs debugging information. Set *pinfo so that we
967 can return quickly in the info != NULL case above. */
968 *pinfo = info;
969 return TRUE;
970 }
971
972 stabsize = (info->stabsec->rawsize
973 ? info->stabsec->rawsize
974 : info->stabsec->size);
975 strsize = (info->strsec->rawsize
976 ? info->strsec->rawsize
977 : info->strsec->size);
978
979 info->stabs = bfd_alloc (abfd, stabsize);
980 info->strs = bfd_alloc (abfd, strsize);
981 if (info->stabs == NULL || info->strs == NULL)
982 return FALSE;
983
984 if (! bfd_get_section_contents (abfd, info->stabsec, info->stabs,
985 0, stabsize)
986 || ! bfd_get_section_contents (abfd, info->strsec, info->strs,
987 0, strsize))
988 return FALSE;
989
990 /* If this is a relocatable object file, we have to relocate
991 the entries in .stab. This should always be simple 32 bit
992 relocations against symbols defined in this object file, so
993 this should be no big deal. */
994 reloc_size = bfd_get_reloc_upper_bound (abfd, info->stabsec);
995 if (reloc_size < 0)
996 return FALSE;
997 reloc_vector = bfd_malloc (reloc_size);
998 if (reloc_vector == NULL && reloc_size != 0)
999 return FALSE;
1000 reloc_count = bfd_canonicalize_reloc (abfd, info->stabsec, reloc_vector,
1001 symbols);
1002 if (reloc_count < 0)
1003 {
1004 if (reloc_vector != NULL)
1005 free (reloc_vector);
1006 return FALSE;
1007 }
1008 if (reloc_count > 0)
1009 {
1010 arelent **pr;
1011
1012 for (pr = reloc_vector; *pr != NULL; pr++)
1013 {
1014 arelent *r;
1015 unsigned long val;
1016 asymbol *sym;
1017
1018 r = *pr;
1019 /* Ignore R_*_NONE relocs. */
1020 if (r->howto->dst_mask == 0)
1021 continue;
1022
1023 if (r->howto->rightshift != 0
1024 || r->howto->size != 2
1025 || r->howto->bitsize != 32
1026 || r->howto->pc_relative
1027 || r->howto->bitpos != 0
1028 || r->howto->dst_mask != 0xffffffff)
1029 {
1030 (*_bfd_error_handler)
1031 (_("Unsupported .stab relocation"));
1032 bfd_set_error (bfd_error_invalid_operation);
1033 if (reloc_vector != NULL)
1034 free (reloc_vector);
1035 return FALSE;
1036 }
1037
1038 val = bfd_get_32 (abfd, info->stabs + r->address);
1039 val &= r->howto->src_mask;
1040 sym = *r->sym_ptr_ptr;
1041 val += sym->value + sym->section->vma + r->addend;
1042 bfd_put_32 (abfd, (bfd_vma) val, info->stabs + r->address);
1043 }
1044 }
1045
1046 if (reloc_vector != NULL)
1047 free (reloc_vector);
1048
1049 /* First time through this function, build a table matching
1050 function VM addresses to stabs, then sort based on starting
1051 VM address. Do this in two passes: once to count how many
1052 table entries we'll need, and a second to actually build the
1053 table. */
1054
1055 info->indextablesize = 0;
1056 saw_fun = 1;
1057 for (stab = info->stabs; stab < info->stabs + stabsize; stab += STABSIZE)
1058 {
1059 if (stab[TYPEOFF] == (bfd_byte) N_SO)
1060 {
1061 /* N_SO with null name indicates EOF */
1062 if (bfd_get_32 (abfd, stab + STRDXOFF) == 0)
1063 continue;
1064
1065 /* if we did not see a function def, leave space for one. */
1066 if (saw_fun == 0)
1067 ++info->indextablesize;
1068
1069 saw_fun = 0;
1070
1071 /* two N_SO's in a row is a filename and directory. Skip */
1072 if (stab + STABSIZE < info->stabs + stabsize
1073 && *(stab + STABSIZE + TYPEOFF) == (bfd_byte) N_SO)
1074 {
1075 stab += STABSIZE;
1076 }
1077 }
1078 else if (stab[TYPEOFF] == (bfd_byte) N_FUN)
1079 {
1080 saw_fun = 1;
1081 ++info->indextablesize;
1082 }
1083 }
1084
1085 if (saw_fun == 0)
1086 ++info->indextablesize;
1087
1088 if (info->indextablesize == 0)
1089 return TRUE;
1090 ++info->indextablesize;
1091
1092 amt = info->indextablesize;
1093 amt *= sizeof (struct indexentry);
1094 info->indextable = bfd_alloc (abfd, amt);
1095 if (info->indextable == NULL)
1096 return FALSE;
1097
1098 file_name = NULL;
1099 directory_name = NULL;
1100 saw_fun = 1;
1101
1102 for (i = 0, stroff = 0, stab = info->stabs, str = info->strs;
1103 i < info->indextablesize && stab < info->stabs + stabsize;
1104 stab += STABSIZE)
1105 {
1106 switch (stab[TYPEOFF])
1107 {
1108 case 0:
1109 /* This is the first entry in a compilation unit. */
1110 if ((bfd_size_type) ((info->strs + strsize) - str) < stroff)
1111 break;
1112 str += stroff;
1113 stroff = bfd_get_32 (abfd, stab + VALOFF);
1114 break;
1115
1116 case N_SO:
1117 /* The main file name. */
1118
1119 /* The following code creates a new indextable entry with
1120 a NULL function name if there were no N_FUNs in a file.
1121 Note that a N_SO without a file name is an EOF and
1122 there could be 2 N_SO following it with the new filename
1123 and directory. */
1124 if (saw_fun == 0)
1125 {
1126 info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF);
1127 info->indextable[i].stab = last_stab;
1128 info->indextable[i].str = str;
1129 info->indextable[i].directory_name = directory_name;
1130 info->indextable[i].file_name = file_name;
1131 info->indextable[i].function_name = NULL;
1132 ++i;
1133 }
1134 saw_fun = 0;
1135
1136 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1137 if (*file_name == '\0')
1138 {
1139 directory_name = NULL;
1140 file_name = NULL;
1141 saw_fun = 1;
1142 }
1143 else
1144 {
1145 last_stab = stab;
1146 if (stab + STABSIZE >= info->stabs + stabsize
1147 || *(stab + STABSIZE + TYPEOFF) != (bfd_byte) N_SO)
1148 {
1149 directory_name = NULL;
1150 }
1151 else
1152 {
1153 /* Two consecutive N_SOs are a directory and a
1154 file name. */
1155 stab += STABSIZE;
1156 directory_name = file_name;
1157 file_name = ((char *) str
1158 + bfd_get_32 (abfd, stab + STRDXOFF));
1159 }
1160 }
1161 break;
1162
1163 case N_SOL:
1164 /* The name of an include file. */
1165 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1166 break;
1167
1168 case N_FUN:
1169 /* A function name. */
1170 saw_fun = 1;
1171 name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1172
1173 if (*name == '\0')
1174 name = NULL;
1175
1176 function_name = name;
1177
1178 if (name == NULL)
1179 continue;
1180
1181 info->indextable[i].val = bfd_get_32 (abfd, stab + VALOFF);
1182 info->indextable[i].stab = stab;
1183 info->indextable[i].str = str;
1184 info->indextable[i].directory_name = directory_name;
1185 info->indextable[i].file_name = file_name;
1186 info->indextable[i].function_name = function_name;
1187 ++i;
1188 break;
1189 }
1190 }
1191
1192 if (saw_fun == 0)
1193 {
1194 info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF);
1195 info->indextable[i].stab = last_stab;
1196 info->indextable[i].str = str;
1197 info->indextable[i].directory_name = directory_name;
1198 info->indextable[i].file_name = file_name;
1199 info->indextable[i].function_name = NULL;
1200 ++i;
1201 }
1202
1203 info->indextable[i].val = (bfd_vma) -1;
1204 info->indextable[i].stab = info->stabs + stabsize;
1205 info->indextable[i].str = str;
1206 info->indextable[i].directory_name = NULL;
1207 info->indextable[i].file_name = NULL;
1208 info->indextable[i].function_name = NULL;
1209 ++i;
1210
1211 info->indextablesize = i;
1212 qsort (info->indextable, (size_t) i, sizeof (struct indexentry),
1213 cmpindexentry);
1214
1215 *pinfo = info;
1216 }
1217
1218 /* We are passed a section relative offset. The offsets in the
1219 stabs information are absolute. */
1220 offset += bfd_get_section_vma (abfd, section);
1221
1222 #ifdef ENABLE_CACHING
1223 if (info->cached_indexentry != NULL
1224 && offset >= info->cached_offset
1225 && offset < (info->cached_indexentry + 1)->val)
1226 {
1227 stab = info->cached_stab;
1228 indexentry = info->cached_indexentry;
1229 file_name = info->cached_file_name;
1230 }
1231 else
1232 #endif
1233 {
1234 long low, high;
1235 long mid = -1;
1236
1237 /* Cache non-existent or invalid. Do binary search on
1238 indextable. */
1239 indexentry = NULL;
1240
1241 low = 0;
1242 high = info->indextablesize - 1;
1243 while (low != high)
1244 {
1245 mid = (high + low) / 2;
1246 if (offset >= info->indextable[mid].val
1247 && offset < info->indextable[mid + 1].val)
1248 {
1249 indexentry = &info->indextable[mid];
1250 break;
1251 }
1252
1253 if (info->indextable[mid].val > offset)
1254 high = mid;
1255 else
1256 low = mid + 1;
1257 }
1258
1259 if (indexentry == NULL)
1260 return TRUE;
1261
1262 stab = indexentry->stab + STABSIZE;
1263 file_name = indexentry->file_name;
1264 }
1265
1266 directory_name = indexentry->directory_name;
1267 str = indexentry->str;
1268
1269 saw_line = FALSE;
1270 saw_func = FALSE;
1271 for (; stab < (indexentry+1)->stab; stab += STABSIZE)
1272 {
1273 bfd_boolean done;
1274 bfd_vma val;
1275
1276 done = FALSE;
1277
1278 switch (stab[TYPEOFF])
1279 {
1280 case N_SOL:
1281 /* The name of an include file. */
1282 val = bfd_get_32 (abfd, stab + VALOFF);
1283 if (val <= offset)
1284 {
1285 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1286 *pline = 0;
1287 }
1288 break;
1289
1290 case N_SLINE:
1291 case N_DSLINE:
1292 case N_BSLINE:
1293 /* A line number. If the function was specified, then the value
1294 is relative to the start of the function. Otherwise, the
1295 value is an absolute address. */
1296 val = ((indexentry->function_name ? indexentry->val : 0)
1297 + bfd_get_32 (abfd, stab + VALOFF));
1298 /* If this line starts before our desired offset, or if it's
1299 the first line we've been able to find, use it. The
1300 !saw_line check works around a bug in GCC 2.95.3, which emits
1301 the first N_SLINE late. */
1302 if (!saw_line || val <= offset)
1303 {
1304 *pline = bfd_get_16 (abfd, stab + DESCOFF);
1305
1306 #ifdef ENABLE_CACHING
1307 info->cached_stab = stab;
1308 info->cached_offset = val;
1309 info->cached_file_name = file_name;
1310 info->cached_indexentry = indexentry;
1311 #endif
1312 }
1313 if (val > offset)
1314 done = TRUE;
1315 saw_line = TRUE;
1316 break;
1317
1318 case N_FUN:
1319 case N_SO:
1320 if (saw_func || saw_line)
1321 done = TRUE;
1322 saw_func = TRUE;
1323 break;
1324 }
1325
1326 if (done)
1327 break;
1328 }
1329
1330 *pfound = TRUE;
1331
1332 if (file_name == NULL || IS_ABSOLUTE_PATH (file_name)
1333 || directory_name == NULL)
1334 *pfilename = file_name;
1335 else
1336 {
1337 size_t dirlen;
1338
1339 dirlen = strlen (directory_name);
1340 if (info->filename == NULL
1341 || strncmp (info->filename, directory_name, dirlen) != 0
1342 || strcmp (info->filename + dirlen, file_name) != 0)
1343 {
1344 size_t len;
1345
1346 if (info->filename != NULL)
1347 free (info->filename);
1348 len = strlen (file_name) + 1;
1349 info->filename = bfd_malloc (dirlen + len);
1350 if (info->filename == NULL)
1351 return FALSE;
1352 memcpy (info->filename, directory_name, dirlen);
1353 memcpy (info->filename + dirlen, file_name, len);
1354 }
1355
1356 *pfilename = info->filename;
1357 }
1358
1359 if (indexentry->function_name != NULL)
1360 {
1361 char *s;
1362
1363 /* This will typically be something like main:F(0,1), so we want
1364 to clobber the colon. It's OK to change the name, since the
1365 string is in our own local storage anyhow. */
1366 s = strchr (indexentry->function_name, ':');
1367 if (s != NULL)
1368 *s = '\0';
1369
1370 *pfnname = indexentry->function_name;
1371 }
1372
1373 return TRUE;
1374 }
This page took 0.072731 seconds and 5 git commands to generate.