include/elf/
[deliverable/binutils-gdb.git] / bfd / syms.c
1 /* Generic symbol-table support for the BFD library.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2007, 2008
4 Free Software Foundation, Inc.
5 Written by Cygnus Support.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
23
24 /*
25 SECTION
26 Symbols
27
28 BFD tries to maintain as much symbol information as it can when
29 it moves information from file to file. BFD passes information
30 to applications though the <<asymbol>> structure. When the
31 application requests the symbol table, BFD reads the table in
32 the native form and translates parts of it into the internal
33 format. To maintain more than the information passed to
34 applications, some targets keep some information ``behind the
35 scenes'' in a structure only the particular back end knows
36 about. For example, the coff back end keeps the original
37 symbol table structure as well as the canonical structure when
38 a BFD is read in. On output, the coff back end can reconstruct
39 the output symbol table so that no information is lost, even
40 information unique to coff which BFD doesn't know or
41 understand. If a coff symbol table were read, but were written
42 through an a.out back end, all the coff specific information
43 would be lost. The symbol table of a BFD
44 is not necessarily read in until a canonicalize request is
45 made. Then the BFD back end fills in a table provided by the
46 application with pointers to the canonical information. To
47 output symbols, the application provides BFD with a table of
48 pointers to pointers to <<asymbol>>s. This allows applications
49 like the linker to output a symbol as it was read, since the ``behind
50 the scenes'' information will be still available.
51 @menu
52 @* Reading Symbols::
53 @* Writing Symbols::
54 @* Mini Symbols::
55 @* typedef asymbol::
56 @* symbol handling functions::
57 @end menu
58
59 INODE
60 Reading Symbols, Writing Symbols, Symbols, Symbols
61 SUBSECTION
62 Reading symbols
63
64 There are two stages to reading a symbol table from a BFD:
65 allocating storage, and the actual reading process. This is an
66 excerpt from an application which reads the symbol table:
67
68 | long storage_needed;
69 | asymbol **symbol_table;
70 | long number_of_symbols;
71 | long i;
72 |
73 | storage_needed = bfd_get_symtab_upper_bound (abfd);
74 |
75 | if (storage_needed < 0)
76 | FAIL
77 |
78 | if (storage_needed == 0)
79 | return;
80 |
81 | symbol_table = xmalloc (storage_needed);
82 | ...
83 | number_of_symbols =
84 | bfd_canonicalize_symtab (abfd, symbol_table);
85 |
86 | if (number_of_symbols < 0)
87 | FAIL
88 |
89 | for (i = 0; i < number_of_symbols; i++)
90 | process_symbol (symbol_table[i]);
91
92 All storage for the symbols themselves is in an objalloc
93 connected to the BFD; it is freed when the BFD is closed.
94
95 INODE
96 Writing Symbols, Mini Symbols, Reading Symbols, Symbols
97 SUBSECTION
98 Writing symbols
99
100 Writing of a symbol table is automatic when a BFD open for
101 writing is closed. The application attaches a vector of
102 pointers to pointers to symbols to the BFD being written, and
103 fills in the symbol count. The close and cleanup code reads
104 through the table provided and performs all the necessary
105 operations. The BFD output code must always be provided with an
106 ``owned'' symbol: one which has come from another BFD, or one
107 which has been created using <<bfd_make_empty_symbol>>. Here is an
108 example showing the creation of a symbol table with only one element:
109
110 | #include "bfd.h"
111 | int main (void)
112 | {
113 | bfd *abfd;
114 | asymbol *ptrs[2];
115 | asymbol *new;
116 |
117 | abfd = bfd_openw ("foo","a.out-sunos-big");
118 | bfd_set_format (abfd, bfd_object);
119 | new = bfd_make_empty_symbol (abfd);
120 | new->name = "dummy_symbol";
121 | new->section = bfd_make_section_old_way (abfd, ".text");
122 | new->flags = BSF_GLOBAL;
123 | new->value = 0x12345;
124 |
125 | ptrs[0] = new;
126 | ptrs[1] = 0;
127 |
128 | bfd_set_symtab (abfd, ptrs, 1);
129 | bfd_close (abfd);
130 | return 0;
131 | }
132 |
133 | ./makesym
134 | nm foo
135 | 00012345 A dummy_symbol
136
137 Many formats cannot represent arbitrary symbol information; for
138 instance, the <<a.out>> object format does not allow an
139 arbitrary number of sections. A symbol pointing to a section
140 which is not one of <<.text>>, <<.data>> or <<.bss>> cannot
141 be described.
142
143 INODE
144 Mini Symbols, typedef asymbol, Writing Symbols, Symbols
145 SUBSECTION
146 Mini Symbols
147
148 Mini symbols provide read-only access to the symbol table.
149 They use less memory space, but require more time to access.
150 They can be useful for tools like nm or objdump, which may
151 have to handle symbol tables of extremely large executables.
152
153 The <<bfd_read_minisymbols>> function will read the symbols
154 into memory in an internal form. It will return a <<void *>>
155 pointer to a block of memory, a symbol count, and the size of
156 each symbol. The pointer is allocated using <<malloc>>, and
157 should be freed by the caller when it is no longer needed.
158
159 The function <<bfd_minisymbol_to_symbol>> will take a pointer
160 to a minisymbol, and a pointer to a structure returned by
161 <<bfd_make_empty_symbol>>, and return a <<asymbol>> structure.
162 The return value may or may not be the same as the value from
163 <<bfd_make_empty_symbol>> which was passed in.
164
165 */
166
167 /*
168 DOCDD
169 INODE
170 typedef asymbol, symbol handling functions, Mini Symbols, Symbols
171
172 */
173 /*
174 SUBSECTION
175 typedef asymbol
176
177 An <<asymbol>> has the form:
178
179 */
180
181 /*
182 CODE_FRAGMENT
183
184 .
185 .typedef struct bfd_symbol
186 .{
187 . {* A pointer to the BFD which owns the symbol. This information
188 . is necessary so that a back end can work out what additional
189 . information (invisible to the application writer) is carried
190 . with the symbol.
191 .
192 . This field is *almost* redundant, since you can use section->owner
193 . instead, except that some symbols point to the global sections
194 . bfd_{abs,com,und}_section. This could be fixed by making
195 . these globals be per-bfd (or per-target-flavor). FIXME. *}
196 . struct bfd *the_bfd; {* Use bfd_asymbol_bfd(sym) to access this field. *}
197 .
198 . {* The text of the symbol. The name is left alone, and not copied; the
199 . application may not alter it. *}
200 . const char *name;
201 .
202 . {* The value of the symbol. This really should be a union of a
203 . numeric value with a pointer, since some flags indicate that
204 . a pointer to another symbol is stored here. *}
205 . symvalue value;
206 .
207 . {* Attributes of a symbol. *}
208 .#define BSF_NO_FLAGS 0x00
209 .
210 . {* The symbol has local scope; <<static>> in <<C>>. The value
211 . is the offset into the section of the data. *}
212 .#define BSF_LOCAL (1 << 0)
213 .
214 . {* The symbol has global scope; initialized data in <<C>>. The
215 . value is the offset into the section of the data. *}
216 .#define BSF_GLOBAL (1 << 1)
217 .
218 . {* The symbol has global scope and is exported. The value is
219 . the offset into the section of the data. *}
220 .#define BSF_EXPORT BSF_GLOBAL {* No real difference. *}
221 .
222 . {* A normal C symbol would be one of:
223 . <<BSF_LOCAL>>, <<BSF_COMMON>>, <<BSF_UNDEFINED>> or
224 . <<BSF_GLOBAL>>. *}
225 .
226 . {* The symbol is a debugging record. The value has an arbitrary
227 . meaning, unless BSF_DEBUGGING_RELOC is also set. *}
228 .#define BSF_DEBUGGING (1 << 2)
229 .
230 . {* The symbol denotes a function entry point. Used in ELF,
231 . perhaps others someday. *}
232 .#define BSF_FUNCTION (1 << 3)
233 .
234 . {* The symbol is an indirect code object. Unrelated to BSF_INDIRECT.
235 . Relocations against a symbol with this flag have to evaluated at
236 . run-time, where the function pointed to by this symbol is invoked
237 . in order to determine the value to be used in the relocation.
238 . BSF_FUNCTION must also be set for symbols with this flag. *}
239 .#define BSF_INDIRECT_FUNCTION (1 << 4)
240 .
241 . {* Used by the linker. *}
242 .#define BSF_KEEP (1 << 5)
243 .#define BSF_KEEP_G (1 << 6)
244 .
245 . {* A weak global symbol, overridable without warnings by
246 . a regular global symbol of the same name. *}
247 .#define BSF_WEAK (1 << 7)
248 .
249 . {* This symbol was created to point to a section, e.g. ELF's
250 . STT_SECTION symbols. *}
251 .#define BSF_SECTION_SYM (1 << 8)
252 .
253 . {* The symbol used to be a common symbol, but now it is
254 . allocated. *}
255 .#define BSF_OLD_COMMON (1 << 9)
256 .
257 . {* In some files the type of a symbol sometimes alters its
258 . location in an output file - ie in coff a <<ISFCN>> symbol
259 . which is also <<C_EXT>> symbol appears where it was
260 . declared and not at the end of a section. This bit is set
261 . by the target BFD part to convey this information. *}
262 .#define BSF_NOT_AT_END (1 << 10)
263 .
264 . {* Signal that the symbol is the label of constructor section. *}
265 .#define BSF_CONSTRUCTOR (1 << 11)
266 .
267 . {* Signal that the symbol is a warning symbol. The name is a
268 . warning. The name of the next symbol is the one to warn about;
269 . if a reference is made to a symbol with the same name as the next
270 . symbol, a warning is issued by the linker. *}
271 .#define BSF_WARNING (1 << 12)
272 .
273 . {* Signal that the symbol is indirect. This symbol is an indirect
274 . pointer to the symbol with the same name as the next symbol. *}
275 .#define BSF_INDIRECT (1 << 13)
276 .
277 . {* BSF_FILE marks symbols that contain a file name. This is used
278 . for ELF STT_FILE symbols. *}
279 .#define BSF_FILE (1 << 14)
280 .
281 . {* Symbol is from dynamic linking information. *}
282 .#define BSF_DYNAMIC (1 << 15)
283 .
284 . {* The symbol denotes a data object. Used in ELF, and perhaps
285 . others someday. *}
286 .#define BSF_OBJECT (1 << 16)
287 .
288 . {* This symbol is a debugging symbol. The value is the offset
289 . into the section of the data. BSF_DEBUGGING should be set
290 . as well. *}
291 .#define BSF_DEBUGGING_RELOC (1 << 17)
292 .
293 . {* This symbol is thread local. Used in ELF. *}
294 .#define BSF_THREAD_LOCAL (1 << 18)
295 .
296 . {* This symbol represents a complex relocation expression,
297 . with the expression tree serialized in the symbol name. *}
298 .#define BSF_RELC (1 << 19)
299 .
300 . {* This symbol represents a signed complex relocation expression,
301 . with the expression tree serialized in the symbol name. *}
302 .#define BSF_SRELC (1 << 20)
303 .
304 . {* This symbol was created by bfd_get_synthetic_symtab. *}
305 .#define BSF_SYNTHETIC (1 << 21)
306 .
307 . flagword flags;
308 .
309 . {* A pointer to the section to which this symbol is
310 . relative. This will always be non NULL, there are special
311 . sections for undefined and absolute symbols. *}
312 . struct bfd_section *section;
313 .
314 . {* Back end special data. *}
315 . union
316 . {
317 . void *p;
318 . bfd_vma i;
319 . }
320 . udata;
321 .}
322 .asymbol;
323 .
324 */
325
326 #include "sysdep.h"
327 #include "bfd.h"
328 #include "libbfd.h"
329 #include "safe-ctype.h"
330 #include "bfdlink.h"
331 #include "aout/stab_gnu.h"
332
333 /*
334 DOCDD
335 INODE
336 symbol handling functions, , typedef asymbol, Symbols
337 SUBSECTION
338 Symbol handling functions
339 */
340
341 /*
342 FUNCTION
343 bfd_get_symtab_upper_bound
344
345 DESCRIPTION
346 Return the number of bytes required to store a vector of pointers
347 to <<asymbols>> for all the symbols in the BFD @var{abfd},
348 including a terminal NULL pointer. If there are no symbols in
349 the BFD, then return 0. If an error occurs, return -1.
350
351 .#define bfd_get_symtab_upper_bound(abfd) \
352 . BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))
353 .
354 */
355
356 /*
357 FUNCTION
358 bfd_is_local_label
359
360 SYNOPSIS
361 bfd_boolean bfd_is_local_label (bfd *abfd, asymbol *sym);
362
363 DESCRIPTION
364 Return TRUE if the given symbol @var{sym} in the BFD @var{abfd} is
365 a compiler generated local label, else return FALSE.
366 */
367
368 bfd_boolean
369 bfd_is_local_label (bfd *abfd, asymbol *sym)
370 {
371 /* The BSF_SECTION_SYM check is needed for IA-64, where every label that
372 starts with '.' is local. This would accidentally catch section names
373 if we didn't reject them here. */
374 if ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_FILE | BSF_SECTION_SYM)) != 0)
375 return FALSE;
376 if (sym->name == NULL)
377 return FALSE;
378 return bfd_is_local_label_name (abfd, sym->name);
379 }
380
381 /*
382 FUNCTION
383 bfd_is_local_label_name
384
385 SYNOPSIS
386 bfd_boolean bfd_is_local_label_name (bfd *abfd, const char *name);
387
388 DESCRIPTION
389 Return TRUE if a symbol with the name @var{name} in the BFD
390 @var{abfd} is a compiler generated local label, else return
391 FALSE. This just checks whether the name has the form of a
392 local label.
393
394 .#define bfd_is_local_label_name(abfd, name) \
395 . BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))
396 .
397 */
398
399 /*
400 FUNCTION
401 bfd_is_target_special_symbol
402
403 SYNOPSIS
404 bfd_boolean bfd_is_target_special_symbol (bfd *abfd, asymbol *sym);
405
406 DESCRIPTION
407 Return TRUE iff a symbol @var{sym} in the BFD @var{abfd} is something
408 special to the particular target represented by the BFD. Such symbols
409 should normally not be mentioned to the user.
410
411 .#define bfd_is_target_special_symbol(abfd, sym) \
412 . BFD_SEND (abfd, _bfd_is_target_special_symbol, (abfd, sym))
413 .
414 */
415
416 /*
417 FUNCTION
418 bfd_canonicalize_symtab
419
420 DESCRIPTION
421 Read the symbols from the BFD @var{abfd}, and fills in
422 the vector @var{location} with pointers to the symbols and
423 a trailing NULL.
424 Return the actual number of symbol pointers, not
425 including the NULL.
426
427 .#define bfd_canonicalize_symtab(abfd, location) \
428 . BFD_SEND (abfd, _bfd_canonicalize_symtab, (abfd, location))
429 .
430 */
431
432 /*
433 FUNCTION
434 bfd_set_symtab
435
436 SYNOPSIS
437 bfd_boolean bfd_set_symtab
438 (bfd *abfd, asymbol **location, unsigned int count);
439
440 DESCRIPTION
441 Arrange that when the output BFD @var{abfd} is closed,
442 the table @var{location} of @var{count} pointers to symbols
443 will be written.
444 */
445
446 bfd_boolean
447 bfd_set_symtab (bfd *abfd, asymbol **location, unsigned int symcount)
448 {
449 if (abfd->format != bfd_object || bfd_read_p (abfd))
450 {
451 bfd_set_error (bfd_error_invalid_operation);
452 return FALSE;
453 }
454
455 bfd_get_outsymbols (abfd) = location;
456 bfd_get_symcount (abfd) = symcount;
457 return TRUE;
458 }
459
460 /*
461 FUNCTION
462 bfd_print_symbol_vandf
463
464 SYNOPSIS
465 void bfd_print_symbol_vandf (bfd *abfd, void *file, asymbol *symbol);
466
467 DESCRIPTION
468 Print the value and flags of the @var{symbol} supplied to the
469 stream @var{file}.
470 */
471 void
472 bfd_print_symbol_vandf (bfd *abfd, void *arg, asymbol *symbol)
473 {
474 FILE *file = arg;
475
476 flagword type = symbol->flags;
477
478 if (symbol->section != NULL)
479 bfd_fprintf_vma (abfd, file, symbol->value + symbol->section->vma);
480 else
481 bfd_fprintf_vma (abfd, file, symbol->value);
482
483 /* This presumes that a symbol can not be both BSF_DEBUGGING and
484 BSF_DYNAMIC, nor more than one of BSF_FUNCTION, BSF_FILE, and
485 BSF_OBJECT. */
486 fprintf (file, " %c%c%c%c%c%c%c",
487 ((type & BSF_LOCAL)
488 ? (type & BSF_GLOBAL) ? '!' : 'l'
489 : (type & BSF_GLOBAL) ? 'g' : ' '),
490 (type & BSF_WEAK) ? 'w' : ' ',
491 (type & BSF_CONSTRUCTOR) ? 'C' : ' ',
492 (type & BSF_WARNING) ? 'W' : ' ',
493 (type & BSF_INDIRECT) ? 'I' : (type & BSF_INDIRECT_FUNCTION) ? 'i' : ' ',
494 (type & BSF_DEBUGGING) ? 'd' : (type & BSF_DYNAMIC) ? 'D' : ' ',
495 ((type & BSF_FUNCTION)
496 ? 'F'
497 : ((type & BSF_FILE)
498 ? 'f'
499 : ((type & BSF_OBJECT) ? 'O' : ' '))));
500 }
501
502 /*
503 FUNCTION
504 bfd_make_empty_symbol
505
506 DESCRIPTION
507 Create a new <<asymbol>> structure for the BFD @var{abfd}
508 and return a pointer to it.
509
510 This routine is necessary because each back end has private
511 information surrounding the <<asymbol>>. Building your own
512 <<asymbol>> and pointing to it will not create the private
513 information, and will cause problems later on.
514
515 .#define bfd_make_empty_symbol(abfd) \
516 . BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
517 .
518 */
519
520 /*
521 FUNCTION
522 _bfd_generic_make_empty_symbol
523
524 SYNOPSIS
525 asymbol *_bfd_generic_make_empty_symbol (bfd *);
526
527 DESCRIPTION
528 Create a new <<asymbol>> structure for the BFD @var{abfd}
529 and return a pointer to it. Used by core file routines,
530 binary back-end and anywhere else where no private info
531 is needed.
532 */
533
534 asymbol *
535 _bfd_generic_make_empty_symbol (bfd *abfd)
536 {
537 bfd_size_type amt = sizeof (asymbol);
538 asymbol *new = bfd_zalloc (abfd, amt);
539 if (new)
540 new->the_bfd = abfd;
541 return new;
542 }
543
544 /*
545 FUNCTION
546 bfd_make_debug_symbol
547
548 DESCRIPTION
549 Create a new <<asymbol>> structure for the BFD @var{abfd},
550 to be used as a debugging symbol. Further details of its use have
551 yet to be worked out.
552
553 .#define bfd_make_debug_symbol(abfd,ptr,size) \
554 . BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))
555 .
556 */
557
558 struct section_to_type
559 {
560 const char *section;
561 char type;
562 };
563
564 /* Map section names to POSIX/BSD single-character symbol types.
565 This table is probably incomplete. It is sorted for convenience of
566 adding entries. Since it is so short, a linear search is used. */
567 static const struct section_to_type stt[] =
568 {
569 {".bss", 'b'},
570 {"code", 't'}, /* MRI .text */
571 {".data", 'd'},
572 {"*DEBUG*", 'N'},
573 {".debug", 'N'}, /* MSVC's .debug (non-standard debug syms) */
574 {".drectve", 'i'}, /* MSVC's .drective section */
575 {".edata", 'e'}, /* MSVC's .edata (export) section */
576 {".fini", 't'}, /* ELF fini section */
577 {".idata", 'i'}, /* MSVC's .idata (import) section */
578 {".init", 't'}, /* ELF init section */
579 {".pdata", 'p'}, /* MSVC's .pdata (stack unwind) section */
580 {".rdata", 'r'}, /* Read only data. */
581 {".rodata", 'r'}, /* Read only data. */
582 {".sbss", 's'}, /* Small BSS (uninitialized data). */
583 {".scommon", 'c'}, /* Small common. */
584 {".sdata", 'g'}, /* Small initialized data. */
585 {".text", 't'},
586 {"vars", 'd'}, /* MRI .data */
587 {"zerovars", 'b'}, /* MRI .bss */
588 {0, 0}
589 };
590
591 /* Return the single-character symbol type corresponding to
592 section S, or '?' for an unknown COFF section.
593
594 Check for any leading string which matches, so .text5 returns
595 't' as well as .text */
596
597 static char
598 coff_section_type (const char *s)
599 {
600 const struct section_to_type *t;
601
602 for (t = &stt[0]; t->section; t++)
603 if (!strncmp (s, t->section, strlen (t->section)))
604 return t->type;
605
606 return '?';
607 }
608
609 /* Return the single-character symbol type corresponding to section
610 SECTION, or '?' for an unknown section. This uses section flags to
611 identify sections.
612
613 FIXME These types are unhandled: c, i, e, p. If we handled these also,
614 we could perhaps obsolete coff_section_type. */
615
616 static char
617 decode_section_type (const struct bfd_section *section)
618 {
619 if (section->flags & SEC_CODE)
620 return 't';
621 if (section->flags & SEC_DATA)
622 {
623 if (section->flags & SEC_READONLY)
624 return 'r';
625 else if (section->flags & SEC_SMALL_DATA)
626 return 'g';
627 else
628 return 'd';
629 }
630 if ((section->flags & SEC_HAS_CONTENTS) == 0)
631 {
632 if (section->flags & SEC_SMALL_DATA)
633 return 's';
634 else
635 return 'b';
636 }
637 if (section->flags & SEC_DEBUGGING)
638 return 'N';
639 if ((section->flags & SEC_HAS_CONTENTS) && (section->flags & SEC_READONLY))
640 return 'n';
641
642 return '?';
643 }
644
645 /*
646 FUNCTION
647 bfd_decode_symclass
648
649 DESCRIPTION
650 Return a character corresponding to the symbol
651 class of @var{symbol}, or '?' for an unknown class.
652
653 SYNOPSIS
654 int bfd_decode_symclass (asymbol *symbol);
655 */
656 int
657 bfd_decode_symclass (asymbol *symbol)
658 {
659 char c;
660
661 if (symbol->section && bfd_is_com_section (symbol->section))
662 return 'C';
663 if (bfd_is_und_section (symbol->section))
664 {
665 if (symbol->flags & BSF_WEAK)
666 {
667 /* If weak, determine if it's specifically an object
668 or non-object weak. */
669 if (symbol->flags & BSF_OBJECT)
670 return 'v';
671 else
672 return 'w';
673 }
674 else
675 return 'U';
676 }
677 if (bfd_is_ind_section (symbol->section))
678 return 'I';
679 if (symbol->flags & BSF_INDIRECT_FUNCTION)
680 return 'i';
681 if (symbol->flags & BSF_WEAK)
682 {
683 /* If weak, determine if it's specifically an object
684 or non-object weak. */
685 if (symbol->flags & BSF_OBJECT)
686 return 'V';
687 else
688 return 'W';
689 }
690 if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL)))
691 return '?';
692
693 if (bfd_is_abs_section (symbol->section))
694 c = 'a';
695 else if (symbol->section)
696 {
697 c = coff_section_type (symbol->section->name);
698 if (c == '?')
699 c = decode_section_type (symbol->section);
700 }
701 else
702 return '?';
703 if (symbol->flags & BSF_GLOBAL)
704 c = TOUPPER (c);
705 return c;
706
707 /* We don't have to handle these cases just yet, but we will soon:
708 N_SETV: 'v';
709 N_SETA: 'l';
710 N_SETT: 'x';
711 N_SETD: 'z';
712 N_SETB: 's';
713 N_INDR: 'i';
714 */
715 }
716
717 /*
718 FUNCTION
719 bfd_is_undefined_symclass
720
721 DESCRIPTION
722 Returns non-zero if the class symbol returned by
723 bfd_decode_symclass represents an undefined symbol.
724 Returns zero otherwise.
725
726 SYNOPSIS
727 bfd_boolean bfd_is_undefined_symclass (int symclass);
728 */
729
730 bfd_boolean
731 bfd_is_undefined_symclass (int symclass)
732 {
733 return symclass == 'U' || symclass == 'w' || symclass == 'v';
734 }
735
736 /*
737 FUNCTION
738 bfd_symbol_info
739
740 DESCRIPTION
741 Fill in the basic info about symbol that nm needs.
742 Additional info may be added by the back-ends after
743 calling this function.
744
745 SYNOPSIS
746 void bfd_symbol_info (asymbol *symbol, symbol_info *ret);
747 */
748
749 void
750 bfd_symbol_info (asymbol *symbol, symbol_info *ret)
751 {
752 ret->type = bfd_decode_symclass (symbol);
753
754 if (bfd_is_undefined_symclass (ret->type))
755 ret->value = 0;
756 else
757 ret->value = symbol->value + symbol->section->vma;
758
759 ret->name = symbol->name;
760 }
761
762 /*
763 FUNCTION
764 bfd_copy_private_symbol_data
765
766 SYNOPSIS
767 bfd_boolean bfd_copy_private_symbol_data
768 (bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
769
770 DESCRIPTION
771 Copy private symbol information from @var{isym} in the BFD
772 @var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}.
773 Return <<TRUE>> on success, <<FALSE>> on error. Possible error
774 returns are:
775
776 o <<bfd_error_no_memory>> -
777 Not enough memory exists to create private data for @var{osec}.
778
779 .#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
780 . BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
781 . (ibfd, isymbol, obfd, osymbol))
782 .
783 */
784
785 /* The generic version of the function which returns mini symbols.
786 This is used when the backend does not provide a more efficient
787 version. It just uses BFD asymbol structures as mini symbols. */
788
789 long
790 _bfd_generic_read_minisymbols (bfd *abfd,
791 bfd_boolean dynamic,
792 void **minisymsp,
793 unsigned int *sizep)
794 {
795 long storage;
796 asymbol **syms = NULL;
797 long symcount;
798
799 if (dynamic)
800 storage = bfd_get_dynamic_symtab_upper_bound (abfd);
801 else
802 storage = bfd_get_symtab_upper_bound (abfd);
803 if (storage < 0)
804 goto error_return;
805 if (storage == 0)
806 return 0;
807
808 syms = bfd_malloc (storage);
809 if (syms == NULL)
810 goto error_return;
811
812 if (dynamic)
813 symcount = bfd_canonicalize_dynamic_symtab (abfd, syms);
814 else
815 symcount = bfd_canonicalize_symtab (abfd, syms);
816 if (symcount < 0)
817 goto error_return;
818
819 *minisymsp = syms;
820 *sizep = sizeof (asymbol *);
821 return symcount;
822
823 error_return:
824 bfd_set_error (bfd_error_no_symbols);
825 if (syms != NULL)
826 free (syms);
827 return -1;
828 }
829
830 /* The generic version of the function which converts a minisymbol to
831 an asymbol. We don't worry about the sym argument we are passed;
832 we just return the asymbol the minisymbol points to. */
833
834 asymbol *
835 _bfd_generic_minisymbol_to_symbol (bfd *abfd ATTRIBUTE_UNUSED,
836 bfd_boolean dynamic ATTRIBUTE_UNUSED,
837 const void *minisym,
838 asymbol *sym ATTRIBUTE_UNUSED)
839 {
840 return *(asymbol **) minisym;
841 }
842
843 /* Look through stabs debugging information in .stab and .stabstr
844 sections to find the source file and line closest to a desired
845 location. This is used by COFF and ELF targets. It sets *pfound
846 to TRUE if it finds some information. The *pinfo field is used to
847 pass cached information in and out of this routine; this first time
848 the routine is called for a BFD, *pinfo should be NULL. The value
849 placed in *pinfo should be saved with the BFD, and passed back each
850 time this function is called. */
851
852 /* We use a cache by default. */
853
854 #define ENABLE_CACHING
855
856 /* We keep an array of indexentry structures to record where in the
857 stabs section we should look to find line number information for a
858 particular address. */
859
860 struct indexentry
861 {
862 bfd_vma val;
863 bfd_byte *stab;
864 bfd_byte *str;
865 char *directory_name;
866 char *file_name;
867 char *function_name;
868 };
869
870 /* Compare two indexentry structures. This is called via qsort. */
871
872 static int
873 cmpindexentry (const void *a, const void *b)
874 {
875 const struct indexentry *contestantA = a;
876 const struct indexentry *contestantB = b;
877
878 if (contestantA->val < contestantB->val)
879 return -1;
880 else if (contestantA->val > contestantB->val)
881 return 1;
882 else
883 return 0;
884 }
885
886 /* A pointer to this structure is stored in *pinfo. */
887
888 struct stab_find_info
889 {
890 /* The .stab section. */
891 asection *stabsec;
892 /* The .stabstr section. */
893 asection *strsec;
894 /* The contents of the .stab section. */
895 bfd_byte *stabs;
896 /* The contents of the .stabstr section. */
897 bfd_byte *strs;
898
899 /* A table that indexes stabs by memory address. */
900 struct indexentry *indextable;
901 /* The number of entries in indextable. */
902 int indextablesize;
903
904 #ifdef ENABLE_CACHING
905 /* Cached values to restart quickly. */
906 struct indexentry *cached_indexentry;
907 bfd_vma cached_offset;
908 bfd_byte *cached_stab;
909 char *cached_file_name;
910 #endif
911
912 /* Saved ptr to malloc'ed filename. */
913 char *filename;
914 };
915
916 bfd_boolean
917 _bfd_stab_section_find_nearest_line (bfd *abfd,
918 asymbol **symbols,
919 asection *section,
920 bfd_vma offset,
921 bfd_boolean *pfound,
922 const char **pfilename,
923 const char **pfnname,
924 unsigned int *pline,
925 void **pinfo)
926 {
927 struct stab_find_info *info;
928 bfd_size_type stabsize, strsize;
929 bfd_byte *stab, *str;
930 bfd_byte *last_stab = NULL;
931 bfd_size_type stroff;
932 struct indexentry *indexentry;
933 char *file_name;
934 char *directory_name;
935 int saw_fun;
936 bfd_boolean saw_line, saw_func;
937
938 *pfound = FALSE;
939 *pfilename = bfd_get_filename (abfd);
940 *pfnname = NULL;
941 *pline = 0;
942
943 /* Stabs entries use a 12 byte format:
944 4 byte string table index
945 1 byte stab type
946 1 byte stab other field
947 2 byte stab desc field
948 4 byte stab value
949 FIXME: This will have to change for a 64 bit object format.
950
951 The stabs symbols are divided into compilation units. For the
952 first entry in each unit, the type of 0, the value is the length
953 of the string table for this unit, and the desc field is the
954 number of stabs symbols for this unit. */
955
956 #define STRDXOFF (0)
957 #define TYPEOFF (4)
958 #define OTHEROFF (5)
959 #define DESCOFF (6)
960 #define VALOFF (8)
961 #define STABSIZE (12)
962
963 info = *pinfo;
964 if (info != NULL)
965 {
966 if (info->stabsec == NULL || info->strsec == NULL)
967 {
968 /* No stabs debugging information. */
969 return TRUE;
970 }
971
972 stabsize = (info->stabsec->rawsize
973 ? info->stabsec->rawsize
974 : info->stabsec->size);
975 strsize = (info->strsec->rawsize
976 ? info->strsec->rawsize
977 : info->strsec->size);
978 }
979 else
980 {
981 long reloc_size, reloc_count;
982 arelent **reloc_vector;
983 int i;
984 char *name;
985 char *function_name;
986 bfd_size_type amt = sizeof *info;
987
988 info = bfd_zalloc (abfd, amt);
989 if (info == NULL)
990 return FALSE;
991
992 /* FIXME: When using the linker --split-by-file or
993 --split-by-reloc options, it is possible for the .stab and
994 .stabstr sections to be split. We should handle that. */
995
996 info->stabsec = bfd_get_section_by_name (abfd, ".stab");
997 info->strsec = bfd_get_section_by_name (abfd, ".stabstr");
998
999 if (info->stabsec == NULL || info->strsec == NULL)
1000 {
1001 /* Try SOM section names. */
1002 info->stabsec = bfd_get_section_by_name (abfd, "$GDB_SYMBOLS$");
1003 info->strsec = bfd_get_section_by_name (abfd, "$GDB_STRINGS$");
1004
1005 if (info->stabsec == NULL || info->strsec == NULL)
1006 {
1007 /* No stabs debugging information. Set *pinfo so that we
1008 can return quickly in the info != NULL case above. */
1009 *pinfo = info;
1010 return TRUE;
1011 }
1012 }
1013
1014 stabsize = (info->stabsec->rawsize
1015 ? info->stabsec->rawsize
1016 : info->stabsec->size);
1017 strsize = (info->strsec->rawsize
1018 ? info->strsec->rawsize
1019 : info->strsec->size);
1020
1021 info->stabs = bfd_alloc (abfd, stabsize);
1022 info->strs = bfd_alloc (abfd, strsize);
1023 if (info->stabs == NULL || info->strs == NULL)
1024 return FALSE;
1025
1026 if (! bfd_get_section_contents (abfd, info->stabsec, info->stabs,
1027 0, stabsize)
1028 || ! bfd_get_section_contents (abfd, info->strsec, info->strs,
1029 0, strsize))
1030 return FALSE;
1031
1032 /* If this is a relocatable object file, we have to relocate
1033 the entries in .stab. This should always be simple 32 bit
1034 relocations against symbols defined in this object file, so
1035 this should be no big deal. */
1036 reloc_size = bfd_get_reloc_upper_bound (abfd, info->stabsec);
1037 if (reloc_size < 0)
1038 return FALSE;
1039 reloc_vector = bfd_malloc (reloc_size);
1040 if (reloc_vector == NULL && reloc_size != 0)
1041 return FALSE;
1042 reloc_count = bfd_canonicalize_reloc (abfd, info->stabsec, reloc_vector,
1043 symbols);
1044 if (reloc_count < 0)
1045 {
1046 if (reloc_vector != NULL)
1047 free (reloc_vector);
1048 return FALSE;
1049 }
1050 if (reloc_count > 0)
1051 {
1052 arelent **pr;
1053
1054 for (pr = reloc_vector; *pr != NULL; pr++)
1055 {
1056 arelent *r;
1057 unsigned long val;
1058 asymbol *sym;
1059
1060 r = *pr;
1061 /* Ignore R_*_NONE relocs. */
1062 if (r->howto->dst_mask == 0)
1063 continue;
1064
1065 if (r->howto->rightshift != 0
1066 || r->howto->size != 2
1067 || r->howto->bitsize != 32
1068 || r->howto->pc_relative
1069 || r->howto->bitpos != 0
1070 || r->howto->dst_mask != 0xffffffff)
1071 {
1072 (*_bfd_error_handler)
1073 (_("Unsupported .stab relocation"));
1074 bfd_set_error (bfd_error_invalid_operation);
1075 if (reloc_vector != NULL)
1076 free (reloc_vector);
1077 return FALSE;
1078 }
1079
1080 val = bfd_get_32 (abfd, info->stabs + r->address);
1081 val &= r->howto->src_mask;
1082 sym = *r->sym_ptr_ptr;
1083 val += sym->value + sym->section->vma + r->addend;
1084 bfd_put_32 (abfd, (bfd_vma) val, info->stabs + r->address);
1085 }
1086 }
1087
1088 if (reloc_vector != NULL)
1089 free (reloc_vector);
1090
1091 /* First time through this function, build a table matching
1092 function VM addresses to stabs, then sort based on starting
1093 VM address. Do this in two passes: once to count how many
1094 table entries we'll need, and a second to actually build the
1095 table. */
1096
1097 info->indextablesize = 0;
1098 saw_fun = 1;
1099 for (stab = info->stabs; stab < info->stabs + stabsize; stab += STABSIZE)
1100 {
1101 if (stab[TYPEOFF] == (bfd_byte) N_SO)
1102 {
1103 /* N_SO with null name indicates EOF */
1104 if (bfd_get_32 (abfd, stab + STRDXOFF) == 0)
1105 continue;
1106
1107 /* if we did not see a function def, leave space for one. */
1108 if (saw_fun == 0)
1109 ++info->indextablesize;
1110
1111 saw_fun = 0;
1112
1113 /* two N_SO's in a row is a filename and directory. Skip */
1114 if (stab + STABSIZE < info->stabs + stabsize
1115 && *(stab + STABSIZE + TYPEOFF) == (bfd_byte) N_SO)
1116 {
1117 stab += STABSIZE;
1118 }
1119 }
1120 else if (stab[TYPEOFF] == (bfd_byte) N_FUN)
1121 {
1122 saw_fun = 1;
1123 ++info->indextablesize;
1124 }
1125 }
1126
1127 if (saw_fun == 0)
1128 ++info->indextablesize;
1129
1130 if (info->indextablesize == 0)
1131 return TRUE;
1132 ++info->indextablesize;
1133
1134 amt = info->indextablesize;
1135 amt *= sizeof (struct indexentry);
1136 info->indextable = bfd_alloc (abfd, amt);
1137 if (info->indextable == NULL)
1138 return FALSE;
1139
1140 file_name = NULL;
1141 directory_name = NULL;
1142 saw_fun = 1;
1143
1144 for (i = 0, stroff = 0, stab = info->stabs, str = info->strs;
1145 i < info->indextablesize && stab < info->stabs + stabsize;
1146 stab += STABSIZE)
1147 {
1148 switch (stab[TYPEOFF])
1149 {
1150 case 0:
1151 /* This is the first entry in a compilation unit. */
1152 if ((bfd_size_type) ((info->strs + strsize) - str) < stroff)
1153 break;
1154 str += stroff;
1155 stroff = bfd_get_32 (abfd, stab + VALOFF);
1156 break;
1157
1158 case N_SO:
1159 /* The main file name. */
1160
1161 /* The following code creates a new indextable entry with
1162 a NULL function name if there were no N_FUNs in a file.
1163 Note that a N_SO without a file name is an EOF and
1164 there could be 2 N_SO following it with the new filename
1165 and directory. */
1166 if (saw_fun == 0)
1167 {
1168 info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF);
1169 info->indextable[i].stab = last_stab;
1170 info->indextable[i].str = str;
1171 info->indextable[i].directory_name = directory_name;
1172 info->indextable[i].file_name = file_name;
1173 info->indextable[i].function_name = NULL;
1174 ++i;
1175 }
1176 saw_fun = 0;
1177
1178 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1179 if (*file_name == '\0')
1180 {
1181 directory_name = NULL;
1182 file_name = NULL;
1183 saw_fun = 1;
1184 }
1185 else
1186 {
1187 last_stab = stab;
1188 if (stab + STABSIZE >= info->stabs + stabsize
1189 || *(stab + STABSIZE + TYPEOFF) != (bfd_byte) N_SO)
1190 {
1191 directory_name = NULL;
1192 }
1193 else
1194 {
1195 /* Two consecutive N_SOs are a directory and a
1196 file name. */
1197 stab += STABSIZE;
1198 directory_name = file_name;
1199 file_name = ((char *) str
1200 + bfd_get_32 (abfd, stab + STRDXOFF));
1201 }
1202 }
1203 break;
1204
1205 case N_SOL:
1206 /* The name of an include file. */
1207 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1208 break;
1209
1210 case N_FUN:
1211 /* A function name. */
1212 saw_fun = 1;
1213 name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1214
1215 if (*name == '\0')
1216 name = NULL;
1217
1218 function_name = name;
1219
1220 if (name == NULL)
1221 continue;
1222
1223 info->indextable[i].val = bfd_get_32 (abfd, stab + VALOFF);
1224 info->indextable[i].stab = stab;
1225 info->indextable[i].str = str;
1226 info->indextable[i].directory_name = directory_name;
1227 info->indextable[i].file_name = file_name;
1228 info->indextable[i].function_name = function_name;
1229 ++i;
1230 break;
1231 }
1232 }
1233
1234 if (saw_fun == 0)
1235 {
1236 info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF);
1237 info->indextable[i].stab = last_stab;
1238 info->indextable[i].str = str;
1239 info->indextable[i].directory_name = directory_name;
1240 info->indextable[i].file_name = file_name;
1241 info->indextable[i].function_name = NULL;
1242 ++i;
1243 }
1244
1245 info->indextable[i].val = (bfd_vma) -1;
1246 info->indextable[i].stab = info->stabs + stabsize;
1247 info->indextable[i].str = str;
1248 info->indextable[i].directory_name = NULL;
1249 info->indextable[i].file_name = NULL;
1250 info->indextable[i].function_name = NULL;
1251 ++i;
1252
1253 info->indextablesize = i;
1254 qsort (info->indextable, (size_t) i, sizeof (struct indexentry),
1255 cmpindexentry);
1256
1257 *pinfo = info;
1258 }
1259
1260 /* We are passed a section relative offset. The offsets in the
1261 stabs information are absolute. */
1262 offset += bfd_get_section_vma (abfd, section);
1263
1264 #ifdef ENABLE_CACHING
1265 if (info->cached_indexentry != NULL
1266 && offset >= info->cached_offset
1267 && offset < (info->cached_indexentry + 1)->val)
1268 {
1269 stab = info->cached_stab;
1270 indexentry = info->cached_indexentry;
1271 file_name = info->cached_file_name;
1272 }
1273 else
1274 #endif
1275 {
1276 long low, high;
1277 long mid = -1;
1278
1279 /* Cache non-existent or invalid. Do binary search on
1280 indextable. */
1281 indexentry = NULL;
1282
1283 low = 0;
1284 high = info->indextablesize - 1;
1285 while (low != high)
1286 {
1287 mid = (high + low) / 2;
1288 if (offset >= info->indextable[mid].val
1289 && offset < info->indextable[mid + 1].val)
1290 {
1291 indexentry = &info->indextable[mid];
1292 break;
1293 }
1294
1295 if (info->indextable[mid].val > offset)
1296 high = mid;
1297 else
1298 low = mid + 1;
1299 }
1300
1301 if (indexentry == NULL)
1302 return TRUE;
1303
1304 stab = indexentry->stab + STABSIZE;
1305 file_name = indexentry->file_name;
1306 }
1307
1308 directory_name = indexentry->directory_name;
1309 str = indexentry->str;
1310
1311 saw_line = FALSE;
1312 saw_func = FALSE;
1313 for (; stab < (indexentry+1)->stab; stab += STABSIZE)
1314 {
1315 bfd_boolean done;
1316 bfd_vma val;
1317
1318 done = FALSE;
1319
1320 switch (stab[TYPEOFF])
1321 {
1322 case N_SOL:
1323 /* The name of an include file. */
1324 val = bfd_get_32 (abfd, stab + VALOFF);
1325 if (val <= offset)
1326 {
1327 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1328 *pline = 0;
1329 }
1330 break;
1331
1332 case N_SLINE:
1333 case N_DSLINE:
1334 case N_BSLINE:
1335 /* A line number. If the function was specified, then the value
1336 is relative to the start of the function. Otherwise, the
1337 value is an absolute address. */
1338 val = ((indexentry->function_name ? indexentry->val : 0)
1339 + bfd_get_32 (abfd, stab + VALOFF));
1340 /* If this line starts before our desired offset, or if it's
1341 the first line we've been able to find, use it. The
1342 !saw_line check works around a bug in GCC 2.95.3, which emits
1343 the first N_SLINE late. */
1344 if (!saw_line || val <= offset)
1345 {
1346 *pline = bfd_get_16 (abfd, stab + DESCOFF);
1347
1348 #ifdef ENABLE_CACHING
1349 info->cached_stab = stab;
1350 info->cached_offset = val;
1351 info->cached_file_name = file_name;
1352 info->cached_indexentry = indexentry;
1353 #endif
1354 }
1355 if (val > offset)
1356 done = TRUE;
1357 saw_line = TRUE;
1358 break;
1359
1360 case N_FUN:
1361 case N_SO:
1362 if (saw_func || saw_line)
1363 done = TRUE;
1364 saw_func = TRUE;
1365 break;
1366 }
1367
1368 if (done)
1369 break;
1370 }
1371
1372 *pfound = TRUE;
1373
1374 if (file_name == NULL || IS_ABSOLUTE_PATH (file_name)
1375 || directory_name == NULL)
1376 *pfilename = file_name;
1377 else
1378 {
1379 size_t dirlen;
1380
1381 dirlen = strlen (directory_name);
1382 if (info->filename == NULL
1383 || strncmp (info->filename, directory_name, dirlen) != 0
1384 || strcmp (info->filename + dirlen, file_name) != 0)
1385 {
1386 size_t len;
1387
1388 if (info->filename != NULL)
1389 free (info->filename);
1390 len = strlen (file_name) + 1;
1391 info->filename = bfd_malloc (dirlen + len);
1392 if (info->filename == NULL)
1393 return FALSE;
1394 memcpy (info->filename, directory_name, dirlen);
1395 memcpy (info->filename + dirlen, file_name, len);
1396 }
1397
1398 *pfilename = info->filename;
1399 }
1400
1401 if (indexentry->function_name != NULL)
1402 {
1403 char *s;
1404
1405 /* This will typically be something like main:F(0,1), so we want
1406 to clobber the colon. It's OK to change the name, since the
1407 string is in our own local storage anyhow. */
1408 s = strchr (indexentry->function_name, ':');
1409 if (s != NULL)
1410 *s = '\0';
1411
1412 *pfnname = indexentry->function_name;
1413 }
1414
1415 return TRUE;
1416 }
This page took 0.057696 seconds and 5 git commands to generate.